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Abstract 

Given the importance of the production of ruminants, it is necessary to investigate the 

genetic variants associated with the traits of economic interest in these animals, as well as 

the biology underlying the genotype-phenotype associations. To conduct these 

associations, a widely used strategy is to perform genome-wide association studies 

(GWAS). The GWAS must have the support of adequate quality control (QC), to then 

identify the associations between genetic markers type SNP and phenotypes. Additionally, 

the biological contextualization of these associations starts from the annotation of the 

genes close to the associated markers. Currently, there are several tools, including R 

libraries, to perform these analyses. However, it is necessary to develop a tool that allows 

unifying the three main steps (QC, GWAS, and annotation) for species other than human. 

For the above, the present work developed a methodology that unified the three mentioned 

steps in the R environment. The generated code was submitted for publication and is freely 

available in the repository https://github.com/bojusemo/Diploid-GWAS. The code was 

tested in two populations of ruminants, the Colombian Creole Hair Sheep and Simmental 

cattle. In these populations, the SNPs with low quality were removed, there was no 

detected population stratification, and no samples were removed for low quality. The SNP 

OAR26_10469468.1 was associated with the meat tenderness of Colombian Creole hair 

sheep. This SNP is in the gene TENM3. TENM3 protein has two domains with functions 

associated with meat tenderness in cattle and pigs. The SNP BovineHD4100012055 was 

associated with birth weight in Simmental. The closest gene to this SNP is the olfactory 

receptor 52E8-like, which is a member of the protein family G protein-coupled receptor 

(GPCR). GPCR has associated with birth weight in humans. Six markers were associated 

with 305-day milk yield in Simmental. Neither the closest genes of these markers nor their 

protein domains have been reported as associated with milk production. 

 

 

Keywords: genome-wide association studies; single nucleotide polymorphism, 
annotation, ruminants. 



 

Resumen 

Dada la importancia que tiene la producción de rumiantes, es necesario investigar las 

variantes genéticas asociadas a las características de interés comercial de dichos 

animales, así como la biología subyacente a esas asociaciones genotipo-fenotipo. Para 

hacer dichas asociaciones, una estrategia ampliamente utilizada es realizar estudios de 

asociación del genoma completo (GWAS). Los GWAS deben partir de un filtro adecuado 

de la información de las variables y de los individuos, denominado control de calidad (QC), 

para luego identificar las asociaciones entre marcadores genéticos tipo SNP y los 

fenotipos. Por su parte, la contextualización biológica de estas asociaciones parte de la 

anotación de los genes cercanos a los marcadores asociados. Para realizar estos análisis, 

actualmente hay varias herramientas, incluidas librerías de R. Sin embargo, falta 

desarrollar una herramienta que permita unificar los tres principales pasos (QC, GWAS y 

anotación) para datos de especies distintas al humano en R. Por lo anterior, el presente 

trabajo desarrolló una metodología que unificó en el entorno de R los tres pasos 

mencionados. El código generado se sometió a publicación y se encuentran disponibles 

de manera libre en el repositorio https://github.com/bojusemo/Diploid-GWAS. El código fue 

probado en dos poblaciones de rumiantes, el Ovino de Pelo Criollo Colombiano y los 

bovinos Simmental. En estas poblaciones, se eliminaron los SNPs con una baja calidad, 

no se detectó estratificación poblacional y no se eliminaron muestras por baja calidad. El 

SNP OAR26_10469468.1 estuvo asociado con la terneza de la carne del Ovino de Pelo 

Criollo Colombiano. Éste SNP está en el gen TENM3. La proteína TENM3 tiene dos 

dominios con funciones asociadas con la terneza de la carne en bovinos y porcinos. El 

SNP BovineHD4100012055 estuvo asociado con el peso al nacimiento de Simmental. El 

gen más cercano a este SNP es el olfactory receptor 52E8-like, que pertenece a la familia 

de proteínas G protein-coupled receptor (GPCR). Se ha reportado asociación entre GPCR 

y el peso al nacimiento en humanos. Seis marcadores estuvieron asociados a la 

producción de leche a los 305 días en Simmental. Ni los genes más cercanos a los 

marcadores, ni los dominios de las proteínas han sido reportados como asociados con la 

producción de leche. 

 

 

Palabras clave: estudios de asociación del genoma completo, polimorfismo de 

nucleótido simple, anotación, rumiantes. 
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Introduction 

One can divide the traits of economic importance in ruminants in those that are determined 

by few genes, and in those that are highly polygenic, that is, in which a high number of 

genes determines the effect of genetics. Productive traits as birth weight and milk 

production, and those of quality of the final product like the meat tenderness are between 

the most economically interesting ones. Regarding the traits determined by few genes, in 

many cases, the GWAS have detected SNPs that are in gene regions that have a significant 

effect on the phenotype and have allowed elucidating their mechanism of action. On the 

other hand, for the highly polygenic traits, these studies have contributed to predicting the 

phenotype from the genotype based on the detection of the effects of regions scattered 

throughout the genome on the trait. However, the underlying biology in these latter cases 

often remains elusive (Gondro, van der Werf, & Hayes, 2013). 

 

The GWAS have three stages: quality control (QC), association analysis and gene 

annotation. QC refers to the preparation and filtering phase of the information, where it is 

sought to eliminate data that generate spurious associations. Poor quality information 

includes markers and samples with low genotype accuracy. It also comprises SNPs with a 

low frequency of the minor allele, which is the allele of the marker that has the lowest 

frequency in the population. The low-quality information includes markers in Hardy-

Weinberg imbalance. Quality control also consist of removing SNPs associated with the 

genetic origin of the individuals, which can create a population stratification (Gondro, van 

der Werf, et al., 2013). 

 

Most common association analysis models between SNPs and phenotypes depends on 

statistic tests applied to each SNP. The statistical test to use depends on the trait and 

productive environment. This test can be chi-square, Bayesian models, multivariate 

variance analysis (MANOVA), maximum likelihood estimation, Fisher's exact test, or 

models which include regressions (Ball, 2013; Fernando & Garrick, 2013; Hayes, 2013; 

Purcell et al., 2007b). Some models adjust the effect of the association between SNPs and 
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genetic origin (Wang et al., 2014). A multiple test correction is applied to the results of the 

association to keep false positives below a certain threshold. Among the most used multiple 

test corrections are Bonferroni and the Benjamini-Hochberg (also called "false discovery 

rate" (FDR) (H. Zhang et al., 2012). Finally, the annotation refers to the biological 

contextualization of the genes close to the SNPs associated in the previous step (Thomas, 

2017). Tools that integrate quality control, association analysis, and gene annotation are 

required. 

 

The literature does not report a methodology that integrates the three mentioned steps 

using the programming language R. Wrong decisions in any of these steps can lead to 

incorrect conclusions. However, no global method includes all the steps and leads to 

interpretable and understandable results by users, who do not always have in-depth 

knowledge in bioinformatics or biostatistics. These stages can be integrated using the 

environment and language R, which, because it is open-source and robust for statistical 

analysis, can be used worldwide. 

 

The present work standardized a methodology for quality control, GWAS and gene 

annotation in highly polygenic traits in ruminants using the environment and language R. 

 

 



 

 
 

1. Objectives 

1.1 General objective 

To standardize a methodology of association of single nucleotide polymorphisms with 

phenotypes in ruminants and the subsequent biological contextualization of the related 

genomic regions. 

1.2 Specific objectives 

 To compile and apply tools to filter SNPs and individuals according to the quality of the 

information they contribute to the association study and apply them within the target 

populations. 

 To detect associations between SNPs and phenotypes. 

 To contextualize biologically the regions of the genome associated with the phenotypes. 

 To integrate all the analyzes in a workflow. 

 





 

 
 

2. Background 

2.1 Single nucleotide polymorphism (SNP) 

The genome-wide association studies (GWAS) have the aim of finding, between thousands 

of genomic markers, those associated with a phenotype of interest. Typically, only a few 

markers have large enough effects on the phenotype (Bouwman et al., 2012). 

 

GWAS take advantage of the linkage disequilibrium (LD) between genetic markers and the 

genes associated with a phenotype. LD is a measure of the association of alleles on 

gametes or chromosomes (Hudson, 2004). A population in linkage equilibrium in a loci 

group has their alleles independently distributed in the chromosomes (Hudson, 2004). The 

LD is stronger between closer markers because they have the same or similar ancestral 

genealogies and this situation induces a greater dependence between alleles of different 

markers (Pritchard & Przeworski, 2001). GWAS exploits the LD between markers and gene 

mutations that determine the phenotypic variations. These mutations are in quantitative trait 

loci (QTL) when the phenotype is a quantitative trait. These associations arise because 

there are small segments of the chromosome in the current population that descend from 

the same common ancestor. The chromosome segments, which come from the same 

common ancestor without the intervention of recombination, will carry identical alleles of 

markers or marker haplotypes. If there is a QTL somewhere within the segment of the 

chromosome, they will also carry identical QTL alleles (Hayes, 2013). 

 

The most commonly used genetic markers in GWAS are single nucleotide polymorphisms 

(SNPs). These markers correspond to the variation in the sequence in a single nucleotide 

within a DNA sequence and are commonly the result of transition type mutations (A for G, 

T for C), although there are also transversions (G or A for T or C) ) and deletions of a single 

base (Zaid, Hughes, Porceddu, & Nicholas, 2001). 
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2.2 Preprocessing and quality control 

Within the preprocessing, the researchers give to the data the format required by the 

software used in the following steps. Figure 2-1 describes the essential information 

necessary to conduct a quality control (QC) and GWAS. Additionally, pedigree, 

environmental covariates, and genotyping quality information are also usually included. The 

essential steps in QC are analyses of SNP, samples, and batches. SNP quality control 

includes the genotype quality, and the analyses of population stratification, Hardy-Weinberg 

equilibrium (HWE), and minor allele frequency (MAF). Sample quality depends on genotype 

quality, B Allele Frequency (BAF) variance analysis, and missingness and heterozygosity. 

The batch quality control focuses on the analysis of missing call rate (MCR). 

  

Figure 2-1:  Essential information necessary to conduct a GWAS. 

 

 

 

The genotype file’s format and information vary among the companies that carry out the 

genotyping. In the Illumina’s BeadArray technology, each SNP call has a genotype quality 

score, the GenCall score (Oliphant, Barker, Stuelpnagel, & Chee, 2002). GenCall score 

correlates with the accuracy of the genotyping call, which Illumina evaluated regarding 

concordance, reproducibility, and strand correlation (Oliphant et al., 2002). With this 

technology, it is also possible to generate the quality data call B allele frequency (BAF) and 

Log R Ratio (LRR) for each sample and each SNP. BAF, cannot be confused with MAF. 

BAF is the frequency of the B allele in the population of cells of the extracted DNA. The 

frequency of allele B is expected to be 0, 0.5 or 1. However, the observed frequencies can 

vary in cases of allelic imbalances, as is the case of trisomic cell populations, where the 

frequencies can be 0, 0.33, 0.67 or 1. Furthermore, variations in LRR through a 
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chromosome indicate possible duplications or deletions. It is an indicator of the overall 

quality of the sample (Gogarten et al., 2012).  

The GeneSeek company (https://genomics.neogen.com) uses the Illumina’s BeadArray 

technology. Table 2-1 describes the results this company delivers. These files are 

compressed twice, first each file and then all these together. 

 

Table 2-1:  Files structure delivered by GeneSeek. 

 

File Column name: Description 

LocusSummary.csv Locus_Name: Id or SNP name 

Illumicode_Name: Illumina code 

AA_T_Mean: Normalized theta angles mean for the 

AA genotype. 

AB_T_Mean: Normalized theta angles mean for the 

AB genotype. 

BB_T_Mean: Normalized theta angles mean for the 

BB genotype. 

AA_R_Mean: Normalized R value mean for the AA genotypes. 

AB_R_Mean: Normalized R value mean for the AB genotypes. 

BB_R_Mean: Normalized R value mean for the BB genotypes. 

FinalReportCNV.csv SNP Name: Id or SNP name 

Sample Id 

B Allele frequency (BAF). 

Log R Ratio (LRR). 

FinalReport.txt SNP Name: Id or SNP name 

Sample Id 

Allele1 – AB: Allele 1 with nomenclature AB 

Allele2 – AB: Allele 2 with nomenclature AB 

GC Score 

X: X intensity 

Y: Y intensity 

SNP_Map.txt. Index: consecutive number 

Name: Id or SNP name 

Chromosome 

Position: chromosome position 

SNP: alleles with nomenclature A, C, T, G. [Allele 1/Allele 2]. 

 

When working with large populations, even small sources of systematic or random error 

can cause spurious associations. QC is a crucial step to avoid erroneous results in the 

association analyses between SNPs and phenotypes (Wiggans et al., 2009). Therefore, 

QC must be carried out (C. Laurie, Doheny, Mirel, & Pugh, 2010). In addition to QC based 

https://genomics.neogen.com/
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on genotype quality scores provided by the genotyping company, it is useful to analyze the 

population stratification, the HWE, and MAF for each SNP, the missingness and 

heterozygosity of the samples, and the missing call rate (MCR) per batch. Population 

stratification is aboard on section 2.2.1. Under the assumptions of Hardy-Weinberg 

equilibrium, it is possible to know the allelic frequencies in the next generation of animals. 

If the observed values  vary significantly from those expected, it is said that the marker is 

not in Hardy-Weinberg equilibrium (Turner et al., 2011). Hardy-Weinberg imbalance 

markers may indicate genotyping errors, population stratification and even association with 

the phenotype (Turner et al., 2011). With the HWE values per SNP, it can be calculated the 

inbreeding coefficient per SNP, which can show a possible population substructure. A 

distribution of inbreeding coefficients centered around 0 indicates there is most likely no 

significant population substructure (Gogarten et al., 2012). MAF is the frequency of the 

allele less common of a marker across all the population. The exclusion of SNPs with low 

MAF, generally between 1 and 5%, avoids the association between SNPs and phenotypes 

without strong statistical support (Gondro, Lee, Lee, & Porto-Neto, 2013).  

 

Missingness per sample is the proportion of missing SNPs in each chromosome of each 

sample, and its analysis allows to identify and remove samples with significant missing 

markers (Gogarten et al., 2012). Heterozygosity per sample is the proportion of 

heterozygous SNPs (Gondro, Lee, et al., 2013). Samples with high heterozygosity could 

indicate that they are mixed samples (Gogarten et al., 2012). MCR is either the fraction of 

missing calls per SNP over samples or the fraction per sample over SNPs, and it can be 

used as an indicator of the batches’ genotype quality (C. C. Laurie et al., 2010). 

 

A pipeline was developed to control the quality of data coming from the SNPs of Illumina, 

which includes population parameters such as MAF and HWE (Gondro, Porto-Neto, & Lee, 

2014). A tool commonly used to conduct cleaning of human SNP data is the PLINK software 

(Purcell et al., 2007a). Marras et al. (2017) developed Zanardi, a tool for Linux and Mac 

environments to integrate files with different formats with the aim of being used in the 

genomic analysis. This tool works in diploid species that have less than 60 chromosomes. 

No specific tool for pre-processing non-human species data that performs all the analyses 

previously mentioned exist. In practice, many GWAS carried out in zootechnical species 
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make quality control excluding animals that have a percentage of the missing genotype that 

the authors consider high. They also select SNPs that have a call rate of more than 90% or 

95%, an arbitrary p-value of the chi-squared test for the HWE and a MAF higher than a 

value that each study considers adequate (Eusebi et al., 2017; Fortes et al., 2010; 

Nishimura et al., 2012; C. Zhang et al., 2015). 

2.2.1 Population stratification 

The importance of determining population stratification lies in avoiding associations 

between SNPs with phenotypes, when in fact they are associated with the genetic origin of 

individuals. Therefore, not taking into account the structure of the population can cause 

false positives (Pritchard et al., 2000). In important zootechnical species, the GWAS should 

consider that individuals are generally highly related due to artificial selection, and therefore 

there is a tendency for a population stratification higher than this in human populations. In 

sheep and cattle, the selection of the parents and the direction of the crosses made by the 

human favors the presence of spurious associations. In this sense, if for example a parent 

has a desirable phenotype and it is also homozygous for a rare allele not associated with 

the phenotype, their offspring may present the desirable phenotype and a high frequency 

of the rare allele. In this way, the researchers could mistakenly associate the rare allele with 

the desirable phenotype. 

 

Different methodologies have been developed to avoid false positives generated by 

population stratification. Unlinked genetic markers have been used to infer details of the 

population structure and estimate the ancestry of the individuals sampled, and then that 

information is used to classify individuals into subpopulations and make association tests 

between them (Pritchard et al., 2000). One of the methodologies that have been used to 

determine ancestry and classify individuals into subpopulations is cluster analysis with 

multivariate techniques, including multiple correspondence analysis (MCA) (Cifuentes, 

Cortés, Franco, & Niño, n.d.). In this case, an MCA is conducted between the SNPs and 

the genetic origin, and the result is plotted. If the clusters of genetic origins overlap, there 

are no populations stratification (Cifuentes et al., n.d.).  Another widely used methodology 

is the transmission disequilibrium test (TDT), which depends on genotyping not only 

individuals who present the phenotype of interest but also their parents and thus divide 

individuals by families. TDT identifies the effect of the alleles of each marker that are in 
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each family on the phenotype (Spielman, McGinnis, & Ewens, 1993). In important 

zootechnical species, implementing the TDT methodology is unfeasible due to the cost of 

genotyping all the parents (Hayes, 2013). Principal component analyses also are used to 

avoid population stratification (Y. Zhang, Guan, & Pan, 2013). 

 

Mixed model algorithms, instead of dividing the population into subpopulations or families, 

include all the individuals in the association and treat the genetic origin as a random effect 

of the model (Y. S. Aulchenko, de Koning, & Haley, 2007; Hayes, 2013; H. M. Kang et al., 

2008; Hyun Min Kang et al., 2010; Lippert et al., 2011; Listgarten, Lippert, & Heckerman, 

2013; Svishcheva, Axenovich, Belonogova, van Duijn, & Aulchenko, 2012). Some 

researchers implement these models in the PLINK software (Rentería, Cortes, & Medland, 

2013). Additionally, multiple component analysis to identify clusters of genetically related 

individuals have been developed (Jombart, Devillard, & Balloux, 2010).  

2.3 Association analysis 

The association with categorical phenotypes is done applying a chi-squared test for each 

SNP concerning the phenotypic state (Purcell et al., 2007a). Logistic regressions are also 

used to conduct the association with categorical phenotypes, and linear regressions are 

used when the phenotypes are continuous (Hayes, 2013). The Wald test is applied to the 

result of the regressions to evaluate the degree of contribution of each SNP to the 

phenotype. 

 

The chi-square test (𝑋2) allows to determine the association between two variables by 

comparing the expected and observed frequencies. The null hypothesis (𝐻0) is "there is no 

association between the variables" and the alternative hypothesis (𝐻1) is "there is an 

association between the variables" (Pita & Pértega, n.d.). In general, for a table of     𝑖 =

1, … , 𝑟 rows per j = 1, … , 𝑘 columns, the value of the statistic 𝑋2 is calculated as follows: 

 

𝑋2 = ∑ ∑(𝑂𝑖𝑗 − 𝐸𝑖𝑗)
2

𝑘

𝑗−1

𝑟

𝑖−1

𝐸𝑖𝑗⁄  
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Where: 

𝑂𝑖𝑗  denotes the observed frequencies. It is the number of observed cases classified in the 

ith row of the jth column. 

𝐸𝑖𝑗 denotes the expected or theoretical frequencies. It is the number of expected cases 

corresponding to each row and column. It is the observed frequency when the two variables 

were independent. The expected values are the product of the marginal totals divided by 

the total number of cases (𝑛). 

 

Subsequently, one compares the 𝑋2 value obtained with the value of the statistical 

distribution. The latter depends on a given alpha value and the degrees of freedom 

(𝑟 − 1)(𝑘 − 1). Then, if the calculated value is greater than the value of the statistical 

distribution, 𝐻0 is rejected. 

 

For the associations made with regressions, the most straightforward methodologies are 

the single marker regression models, in which a randomly mating population without 

population stratification is assumed, and has the following model according to Hayes 

(2013): 

 

𝑦 = 𝑊𝑏 + 𝑋𝑔 + 𝑒 

 

Where 𝑦 is the phenotype vector, 𝑊  is a design matrix that assigns registers to fixed effects 

of the phenotypes, 𝑏 is a vector of fixed effects, 𝑋 is a design matrix that assigns registers 

to the effect of the marker, 𝑔 is the effect of the marker, and 𝑒 is a vector of random 

deviations 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒
2), where 𝜎𝑒

2 is the variance of the error. In this model, the marker is 

a fixed effect, and the model is additive since two copies of the rare allele have twice the 

effect of a copy and a genotype without copies of the rare allele does not have any effect.  

After performing the regression, it is necessary to test whether 𝑔 is zero or not. The null 

hypothesis is that the marker is not associated with the phenotype. The Fisher’s exact test 

or one of the three asymptotically equivalent tests, i.e., likelihood ratio test, score test, and 

Wald test, can be applicable (Dominik, 2013; Hayes, 2013). Wald test is considered the 

gold standard test (Yu, Demetriou, & Gillen, 2015). Given that the parameter of interest is 

zero, the Wald test is reduced from the general expression explained by Wasserman 

(2004). Then, the Wald test used is the quotient between the marker’s estimated coefficient 
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(ĝ ), and its standard error 𝑠𝑒(ĝ). This statistic follows a chi-square distribution with one 

degree of freedom. The R package GWASTools uses the Wald test to evaluate the 

significance of associations between SNPs and phenotypes (Gogarten et al., 2012). The 

function of the Wald test is following described. 

 

𝑊𝑎𝑙𝑑 = ĝ 𝑠𝑒(ĝ)⁄  

 

In addition to the marker-by-marker models, algorithms to make associations using linear 

models, eliminating the population structure have been developed. The two-step algorithm 

genomewide rapid association using mixed model and regression (GRAMMAR), 

implemented in the R package of GenABEL, uses a linear mixed model to make the 

association between genetic markers and the phenotype adjusted by the effects of the 

family (Y. S. Aulchenko et al., 2007). The variation of GRAMMAR, GRAMMAR-Gamma has 

been widely used in ruminants(Svishcheva et al., 2012). EMMA is an algorithm 

implemented in the R language that makes the association between SNPs and phenotypes 

corrected by the population stratification and the relationship between individuals (H. M. 

Kang et al., 2008). However, EMMA is computationally infeasible to do association analysis 

with thousands of markers because it calculates the variance parameters for each marker.  

The EMMAX algorithm was developed to solve this problem. EMMAX assumes that since 

the effect of each marker is very small, the variance parameters can be estimated only once 

for the entire database (Hyun Min Kang et al., 2010). Subsequently, another EMMA variant 

was developed, called GEMMA, which is also faster than EMMAX and allows analysis of 

association with thousands of markers (X. Zhou & Stephens, 2012). In addition to the linear 

models, Bayesian models have also been proposed to make the association (Grimm, 

2015).  

2.4 Multiple comparisons 

The number of multiple tests presents a challenge when one defines the level of 

significance (α) of the associations between SNPs and phenotypes. For instance, by 

defining a "nominal" α of 5% for a 50,000 SNP chip, 2,500 false positives could be present 

by chance (type I error). Multiple testing corrections reduce the presence of these errors 
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modifying the p-values of the associations. Bonferroni method divides the type I error by 

the total number of tests, and it is considered a conservative test (Bonferroni, 1936). 

Another correction widely used is the Benjamini-Hochberg method that seeks to control the 

error rate called "false discovery rate" (FDR) (Benjamini & Hochberg, 1995). First, it 

separates the false positives from the true positives. To do so, it orders all positives (true 

and false) from lowest to highest according to their p-value, generates a ranking with this 

information and separates the p-values into two groups according to their position in the 

ranking. The group of true positives is made up of the smallest p-values, counted from the 

lowest (number 1 in the ranking) to this one that occupies the position equal to the number 

of expected false positives. The group of false positives consists of the highest p-values, 

counted from the number of predicted false positives. The logic behind this differentiation 

between true and false positives is the p-values distribution (Figure 2-2). 

 

Figure 2-2:  Definition of FDR. Adapted from Krzywinski y Altman (2014). 

 

 

 

After separating the true from the false positives, the methodology groups false positives 

and negatives. Then, the method orders the values upwards, generates a ranking of them, 

and assigns a p-value of their position in the ranking. Then the next function is applied to 

the larger p-value. 

 

𝑄𝑒 = 𝐸 (
𝑉

𝑅
), 

 

where 

𝐸 is the p-value before the adjustment, 



14 Standardization of a methodology for identification and annotation of 

associations between single nucleotide polymorphisms and highly polygenic 

traits in ruminants 

 
𝑉 is the range or number of elements in the group. It is considered zero when R = 0. 

𝑅 is the position of the p-value in the ranking. 

 

Since for the larger p-value 𝑉 and 𝑅 are equal, their 𝑄𝑒 will be the same, and this one will 

be the adjusted p-value. Then the same function is applied to the second largest p-value, 

and the smallest number between its 𝑄𝑒 and the adjusted p-value of its predecessor is the 

adjusted p-value, that in this case is the adjusted p-value of the greater p-value. The 

methodology applies this same calculation to all the p-values in descendent order (Starmer, 

2017). 

2.5 Manhattan plot 

The Manhattan plot is a typical tool to visualize the association result. In this plot, the 

chromosomes and the position of the marker within them are on the x-axis, and the y-axis 

has the negative Log base 10 of the p-value of the association between the marker and the 

phenotype (Figure 2-3). A SNP is considered associated with the phenotype if its value is 

higher than a given cutoff, which is generally between 0.4 and 0.7. The plot shows this 

cutoffis as a dotted line. Another plots are the “Conditional Manhattan plots”, which uses 

the p-values after multiple comparison adjust (Figure 2-3). In these plots, for instance, the 

SNPs with conditional –log10 FDR greater than 1.3 (that is FDR<0.05), are considered as 

associated with the trait (Andreassen et al., 2013). 

 

Figure 2-3:  Example of a Manhattan plot. Taken from (Ren et al., 2016). 
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Figure 2-4: “Conditional Manhattan plot” of conditional −log10 (FDR) values. 
(Andreassen et al., 2013). 

 

2.6 Gene annotation 

The aim is to know the biological function of the genes possibly associated with the 

phenotype of interest. The SNPs identified as potentially associated with the phenotype in 

the GWAS can be in a gene or an intergenic region. If the marker is in an intergenic region, 

it is likely to be in linkage disequilibrium with nearby genes. Open access databases 

contains biological function information about genes. Within the primary databases are 

those administered by the National Center for Biotechnology Information (NCBI), the 

European Institute of Bioinformatics (EMBL-EBI) and the UniProt consortium, as well as 

the Encyclopedia of Genes and Genomes of Kyoto (KEGG), and the Gene Ontology (GO) 

project. It is possible to access the information found in these databases directly on the 

websites, as well as by other ways, as R packages. 

 

The biomaRt package accesses the Ensembl, COSMIC, Uniprot, HGNC, Gramene and 

Wormbase databases (Durinck et al., 2005; Durinck, Spellman, Birney, & Huber, 2009). 

The Category package allows performing analysis of GO terms (Gentleman, 2018b). 

KEGGrest allows accessing to the metabolic pathways in which the proteins encoded by 

the genes of interest are involved (Tenenbaum, 2018). The annotate library accesses the 
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NCBI databases (Gentleman, 2018a). mygene accesses all the bases mentioned and 

organizes the result according to the identifiers of the genes, transcripts, proteins and GO 

terms used in each one of them (Mark, Thompson, Afrasiabi, & Wu, 2018). 



 

 
 

3. Proposed methodology 

3.1 Introduction 

Genome-wide association studies (GWAS) look for the association between genomic 

markers and phenotypes. Before performing these analyses, it is necessary to do file input 

and quality control (QC) of data. Additionally, it is essential to assess the underlying biology 

of the associations between markers and phenotype. Commonly, the researchers annotate 

the genes close to the associated markers. It is possible to use R libraries developed to 

study human data. The present work proposes a workflow to performs all these steps. 

 

Before performing a GWAS, it is necessary to preprocess the genotype files and do quality 

control (CQ) of data. Generally, genotypes files are large, and genotype companies deliver 

them with specific formats. These files demand an efficient way to input their information 

into the software that will be used in the analyses. After input data, QC filters out markers 

and individuals that can conduct to spurious associations. Finally, is conducted the 

association and multiple comparison analyses, as well as the gene annotation. 

 

It is possible to adapt tools designed to perform QC, GWAS, and annotation for human 

data, to do the same in non-human diploid species. There are many tools to perform these 

analyses in human data. Adapting these tools can be useful in disciplines like agriculture 

and biology. Not everyone interested in GWAS results has the background and the 

experience to carry out these analyses. A portion of this workflow is the adaptation of the 

R package GWASTools to perform analyses of non-human data.  

 

The present work created the Diploid-GWAS tool. Diplod-GWAS has two modules for 

conduct GWAS of any diploid species using the R environment (R-Team, 2013). Module 

one is for input, QC and association analysis. Module two is for gene annotation. 

Furthermore, we submitted to publication to the journal Animal Genetics a paper with the 
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workflow and the repository. The work used two sets of toy data to test the code, one within 

the GeneSeek structure, and other with the general structure.   

 

The toy data and code are in the Appendix A, as well as freely available in the repository 

https://github.com/bojusemo/Diploid-GWAS. This material is divided into three sections: 

Module one QC and association - general structure, module one QC and association - 

GeneSeek structure, and Module two - annotation. The section Input and files structure 

describes the data files of the module one. 

  

https://github.com/bojusemo/Diploid-GWAS
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3.2 Methodologic article submitted to the journal Animal 
Genetics 

Title: Original: Diploid-GWAS: An R workflow for quality control, GWAS, and annotation in 

diploid species 

 

Authors: Boris Sepúlveda-Molina, Liliana López-Kleine 

 

Summary: There are less free tools for genome-wide association studies in non-human 

organisms than in Homo sapiens. Here, we present a workflow that adapts and integrates 

currently available R tools into a workflow to perform quality control and filtering of SNP 

data of all diploid organisms, as well as the association between phenotype and SNPs, and, 

finally, the annotation of the genes close to associated markers. The code and toy data are 

freely available. 

 

Keywords: chip; genome-wide association studies; single nucleotide polymorphism, 

annotation. 

 

Description:  There are many analyses associated with genome-wide association studies 

(GWAS). GWAS allow associating single nucleotide polymorphism (SNP) with phenotypes 

of interest (Gondro, van der Werf, et al., 2013). Before conducting a GWAS, it is necessary 

to implement a quality control (QC) on the data, which includes removing genotypes with 

low accuracy, detecting and correcting population stratification, and performing Minor Allele 

Frequency and Hardy-Weinberg equilibrium testing of markers. Then, a statistical test to 

associate SNPs and traits of interest, followed by an adjustment of the statistical 

significance of these associations using a multiple testing correction is applied. Several 

association tests exist, such as chi-square, Bayesian models, analysis of variance, Fisher's 

exact test, and significance tests on regression models (H. Zhang et al., 2012). Most 

common multiple testing corrections are Bonferroni and false discovery rate (FDR) (H. 

Zhang et al., 2012). After the GWAS, and to study the underlying biology of phenotype-

genotype association, is conducted a gene annotation analysis of the genes close to the 

associated markers. 
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In the R environment (R-Team, 2013) are available tools to perform QC, GWAS, and 

annotation, but none integrate these three steps into a workflow. Moreover, most existing 

libraries in R and other available software perform GWAS in humans. The R package 

GWASTools, for example, executes QC and association analysis from human data 

(Gogarten et al., 2012). There are also packages directed to analyze no human data. 

Gondro et al. (Gondro et al., 2014) developed a pipeline for QC of Illumina genotypes. The 

package GenABEL performs QC and GWAS (Yurii S. Aulchenko, Ripke, Isaacs, & van 

Duijn, 2007). GenABEL’s QC is related to genotypes that pass a given call rate, 

redundancy, minimal marker allele frequency and deviation from Hardy–Weinberg 

equilibrium (Yurii S. Aulchenko et al., 2007). GenABEL and GWASTools support their 

GWAS analysis in the standard R procedure of generalized linear models (glm). 

GWASTools also uses the Wald test for determining the significance of regression 

coefficients. R core team produces functions to adjust P-values for multiple comparisons, 

including Bonferroni and FDR. Additinally, there are packages for gene annotation, as is 

the case of the package mygene (Mark et al., 2018). 

 

The workflow presented in this paper is available in https://github.com/bojusemo/Diploid-

GWAS and performs QC, association analysis, and gene annotation (Figure 3-1). The 

process undertakes the following steps: 

 

1. The user provides the paths of the GeneSeek genotypes that use Illumina 

technology, and the Scan annotation data frame. The last file must include the 

subjectID, sex, and phenotypic traits. 

 

2. Genotype information is extracted from GeneSeek files. GeneSeek delivers a 

compressed .zip main folder, within which are files compressed again in .zip. The 

main files extracted are SNP_Map.txt, Sample_Map.txt, LocusXDNA.csv, 

LocusSummary.csv., FinalReport.txt, and DNAReport.csv. Each file is preceding by 

the structure “*_**_” where “*” correspond to the name of the customer and “**” is 

the delivery date in format YYYYMMDD (Y = year, M = month, D = day).   

 

https://github.com/bojusemo/Diploid-GWAS
https://github.com/bojusemo/Diploid-GWAS


Proposed methodology 21 

 

3. Input the files with genotypes and scan annotation into R. In the genotype files, the 

user has the option of select the number of rows to remove from the header. 

 

4. Reorder genotype information. QC is performed with the package GWASTools 

(Gogarten et al., 2012). While GeneSeek files include data from many samples, 

GWASTools requires each sample’s genotype in a single file. For that reason, a filer 

per sample is performed and exported. 

 

5. GWASTools objects Creation. The code creates the metadata objects "SNP 

Annotation Data Object" and "Scan Annotation Data Object."  The SNP Annotation 

Data Object stores information of each SNP: unique integer ID; Illumina name; the 

chromosome, which can be the number of an autosome or adding 1, 2, 3, or 4 to 

the last autosome number if the chromosome is X, Y, mitochondrial, or unknown, 

respectively; the base pair position on chromosome; the allele in A/B format;  and 

the quality information "mean theta for AA cluster", "mean theta for AB cluster", 

"mean theta for BB cluster", "mean R for AA cluster", "mean R for AB cluster", "mean 

R for BB cluster". The Scan Annotation Data Object stores: sample ID also known 

as scan ID, subject ID, sex, genetic origin, and phenotypes.  

 

6. Export metadata with the format of genomic data structure (GDS). GDS format 

allows for efficient memory management for GWAS (Zheng et al., 2012). The 

workflow creates three files that associate the information of GWASTools objects 

with genotype information of each SNP of each sample. The first one stores the 

alleles; the other two have quality variables: call rate, x and y position, BAlleleFreq, 

LogRRatio. 

 

7. QC process. Reports in PDF and text files about the quality per batch, sample, and 

SNP are generated. 

 

8. Population stratification analysis. The workflow uses multiple correspondence 

analysis to detect population stratification using the function dudi.acm from 

package ade4 (Dray & Dufour, 2007a). The code plots the result with the function 

fviz_mca_ind of the package factoextra (Kassambara & Mundt, 2017). If 
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population stratification is detected, the code performs an association analysis with 

logistic regression between genetic origin and SNPs. Then, the workflow removes 

the associated SNPs. Then, the code makes a new multiple correspondence 

analysis with the retained SNPs and plots the result. 

 

9. Association analysis. The tool carries out the association analysis with GWASTools 

with logistic and linear regressions for categorical and continuous phenotypes, 

respectively. The code determined the significance of the regression coefficient with 

the Wald test. The code adjusts the p-values with the multiple correspondence 

analysis tests Bonferroni or FDR with the function p.adjust of the package stats 

(R_Core_Team, 2018). This test reduces the presence of type I error. The workflow 

exports the associated SNPs and the Manhattan plot created with the function 

assocRegression of GWASTools. 

 

10. Annotation analysis. The user inputs the Entrez or Ensembl gene ID that want to 

analyze. The code performs the gene annotation with the function getGene of the 

package mygene and exports the information generated with this package (Mark et 

al., 2018).  
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Figure 3-1:  Workflow.  

 

3.3 Description of module one 

Module one performs data input, QC and association analysis. There are two versions of 

this module, one for files with GeneSeek structure, and another for files with a general 

structure. The code differences regard the way to input the data, the necessary object 

creation and, the analysis of the population stratification. The remaining code is the same 

for both versions. The R packages used are GWASTools (Gogarten et al., 2012), ade4 

(Dray & Dufour, 2007a), and SNPRelate (Zheng et al., 2012). The examples of the results 

show in this module were obtained applying the code in the toy data described in the 

Apendix A. 

 

We developed this tool for users that do not necessarily have worked with R/Bioconductor. 

The user must install R with the instructions of https://cran.r-project.org/. Then, they can 

install a graphical interface (www.rstudio.com). Files are created and stored in the same 

environment as the script. Therefore, it is recommended to store the script in a new folder. 

The user must install Bioconductor and some packages. Bioconductor can be installed 

typing in the console of RStudio the command 

https://cran.r-project.org/
http://www.rstudio.com/
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source("https://bioconductor.org/biocLite.R"). Then, packages must be 

installed typing in the console the following commands: biocLite(“GWASTools”), 

biocLite(“SNPRelate”), install.packages(“ade4”), 

install.packages(“factoextra”), and install.packages(“mygene”). The 

user must define the parameters as described in this document in the section Parameter 

input. The user also must input the data as described in the Input and files structure section 

of this document. Then, select all the script (Ctrl + A) and run (Ctrl + Enter or click on run). 

The results will appear in the directory Results, created in the same path where is executed 

the script.  

 

The workflow carries out three kinds of results related to quality control (QC): SNP quality 

control, sample quality control, and batch quality control. Low-quality data are filtered out. 

A batch is a group of samples genotyped at the same time. The batch quality control allows 

the researchers to decide whether to remove batches. The folders described in Figure 3-2 

store the results. 

 

 

Figure 3-2:  Results folder structure. 
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3.3.1 Input and files structure 

Genotypes with the GeneSeek structure 

GeneSeek works with Illumina technology and delivers the genotypes with the structure 

following described. These files are compressed. The user must specify in quotation marks, 

the genotype´s path in the object path.folders. For instance, if genotypes are in a folder 

called Data, which is in the desktop, the path would be path.folders <- 

"~/Desktop/Data". 

 

These files must have at least the columns described below and in the same order. They 

can contain more columns and different numbers of header rows. 

 

 LocusSummary.csv 

 Locus_Name: Id or name of the SNP 

 Illumicode_Name: Illumina code name 

 AA_T_Mean: Normalized theta angles mean for the AA genotype. 

 AB_T_Mean: Normalized theta angles mean for the AB genotype. 

 BB_T_Mean: Normalized theta angles mean for the BB genotype. 

 AA_R_Mean: Normalized R-value mean for the AA genotypes. 

 AB_R_Mean: Normalized R-value mean for the AB genotypes. 

 BB_R_Mean: Normalized R-value mean for the BB genotypes.  

 

 FinalReportCNV.csv. This file is optional. 

 SNP Name: Id or name of the SNP 

 Sample ID 

 B Allele Freq: Allelic intensity ratio. B Allele frequency (BAF). 

 Log R Ratio: Genotyping total signal intensity. Log R Ratio (LRR). 

 

 FinalReport.txt 

 SNP Name: Id or name of the SNP 

 Sample ID  

 Allele1 – AB: Allele 1 with nomenclature AB 

 Allele2 – AB: Allele 2 with nomenclature AB 

 GC Score: GeneCall score. It is a measure of the genotyping quality. 
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 X: intensity value X 

 Y: intensity value Y 

 

 SNP_Map.txt. The third column must be the Chromosome. 

 Index: consecutive number 

 Name: Id or name of the SNP 

 Chromosome: SNP chromosome 

 Position: SNP position on the chromosome 

 SNP: alleles with nomenclature A, C, T, or G. [Allele 1/Allele 2]. 

 ILMN Strand: Order of Alleles A and B  

 Customer Strand: Order of Alleles A and B 

 

After inputting genotypes, the user must input a file with sample information concerning to 

phenotypes and population structure. The R object created must be called 

Scan_Annotation_Data_Frame. The file must have these columns in this order: 

 subjectID: It must coincide with the column Sample ID of the file FinalReport.txt. 

 sex: coded as M for male and F for female. 

 trait: phenotype 

 

Additionally, it could have the following columns: 

 batch: genotyping batch 

 genetic_origin: genetic origin group coded as 0 or 1 for each origin. 

 sire: Male parent 

 dam: Female parent 

 generation: the number of the generation of the subject 

 

Genotypes with the general structure 

This version aims to allow the input of data with a general structure. The user must have 

data frames and generate the following R objects with them. The Import Dataset section of 

RStudio can be used to do so, activating the option of defining the first row as header. It is 

essential that the files have the same name, and the structure described below.  

 snp_annot_data_frame. This file must contain these columns in order: 
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 snpName: Id or name of the SNPs 

 chromosome: SNP chromosome 

 position: SNP position in the chromosome 

Additionally, the following columns could be present: 

 alleleA: A, C, T, or G 

 alleleB: A, C, T, or G 

 AA_T_Mean: Normalized theta angles mean for the AA genotype. 

 AB_T_Mean: Normalized theta angles mean for the AB genotype. 

 BB_T_Mean: Normalized theta angles mean for the BB genotype. 

 AA_R_Mean: Normalized R value mean for the AA genotypes. 

 AB_R_Mean: Normalized R value mean for the AB genotypes. 

 BB_R_Mean: Normalized R value mean for the BB genotypes. 

 

 Scan_Annotation_Data_Frame. This file must contain these columns in order: 

 subjectID: subject identifier 

 sex: sex coded as M=male and F=female 

 trait: phenotype 

Additionally, it can have these columns: 

 genetic_origin: genetic origin group 

 sire: Male parent 

 dam: Female parent 

 generation: the number of the generation of the subject 

 batch: genotyping batch 

 

 FinalReport. This file must contain these columns in the following order: 

 SNP.Name: Id or name of the SNPs. It must match with the names 

of the column snpName of the file SNP annotation data frame. 

 Sample.ID: subject identifier. It must match with the names of 

the column subjectID of the scan annotation data frame file.  

 Allele1...AB: Allele 1 with nomenclature AB 

 Allele2...AB: Allele 2 with nomenclature AB 

 GC Score: GeneCall score. It is a measure of the genotyping 

quality. 
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Additionally, it can have these columns: 

 X: intensity value X 

 Y: intensity value Y  

 

 FinalReportCNV. This file is optional. The columns are: 

 SNP.Name: Id or name of the SNPs. It must match with the names 

of the column snpName of the file SNP annotation data frame. 

 Sample.ID: subject identifier. It must match with the names of the 

column subjectID of the scan annotation data frame file. 

 B Allele Freq: Allelic intensity ratio. B Allele frequency (BAF). 

 Log R Ratio: Genotyping total signal intensity. Log R Ratio (LRR). 

3.3.2 Parameter input 

The users provide the parameters in the R script and store these parameters in the R 

objects described below. The objects must have the names described in Table 3-1.  

 

Table 3-1:  Workflow parameters provided by the user. 

 

Parameter Description 

Autosomes Number of autosomes of the species 

num_SNP_auto Total number of SNPs in autosomes 

Quality control parameters 

Maf Minor allele frequency cutoff 

Pvalue P-value cutoff of Hardy-Weinberg equilibrium test. A 

Fisher's exact test is used to determine the deviance of 

SNPs from Hardy-Weinberg Equilibrium. 

Cutoff The cutoff of missing call rate 

 

mean_GC.score_sample 

median_GC.score_sample 

GenCall Score cutoff: 

    GenCall Score mean per sample 

    GenCall Score median per sample 
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mean_GC.score_snp 

median_GC.score_snp 

    GenCall Score mean per SNP 

    GenCall Score median per SNP 

pop_signif The cutoff of the population stratification's Manhattan 

plot. This parameter is optional. The user can conduct 

the genetic origin analysis when the population has two 

origins. It should be a column called genetic_origin in 

the Scan_Annotation_Data_Frame with values 0 or 1 

for each origin. 

Association analysis parameters 

Outcome Column name of the phenotype of interest 

model.type Model type. Can be linear or logistic. Logistic is for 

case-control studies with values of 0 and 1 in the 

phenotype column. 

Covar Covariates. If there are covariates, replace "NULL" with 

the name or names of covariates. Covariates names 

must be columns in the 

Scan_Annotation_Data_Frame. For more than one 

covariate use the form  

covar = c(covar_name_1, covar_name_1, ...) 

Ivar Covariate interaction with genotype. 

CI Confidence interval. 

block.size Number of SNPs to read in at once. 

method Multiple comparisons test. Use fdr or bonferroni. 

signif Manhattan plot cutoff. 

 

3.3.3 Creation of basic objects 

This section decompresses the GeneSeek files. The files, that are in the path.folders 

(see Input and files structure section), are uncompressed and imported in R. Additionally, 

data from both GeneSeek and general structures are imported in R. Objects of the package 

GWASTools need to be created to do QC steps and association analysis (Gogarten et al., 

2012). 
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Per each batch, GeneSeek delivers many files. This workflow uses the files 

LocusSummary, SNP Map, FinalReport, and FinalReportCNV. These files are provided 

individually compressed in a zip format. Additionally, these zip files are compressed again 

in another zip by each batch. A list of batch paths is created with the function list.files  

to uncompress the zip batch files. The function lapply is used to apply the function unzip 

to the files of this list. The code repeats these two steps with a list of the individual zip files. 

The tool contains functions to input each kind of file. The workflow creates a list per each 

kind of files from different batches, using the function list.files. These functions are 

read_function_LocusSummary, read_function_SNP_Map, 

read_function_FinalReport, and read_function_FinalReportCNV. The 

functions are applied to the list using the function lapply. Then, the code unifies the 

objects in the FinalReport and FinalReportCNV objects with the function do.call. 

The tool removes the SNPs that are not in all the samples. This last step allows working 

with individuals genotyped with different SNP chips. 

 

GWASTools package was developed to work with human data (Gogarten et al., 2012). This 

section of the workflow modifies the objects created in GWASTools to use them in the 

analyses of non-human diploid species. First, the tool generates the SNP Annotation Data 

and Scan Annotation Data objects. They store metadata of markers and samples, 

respectively. Then, the workflow makes the Data Files, which store genotypes and 

genotype quality data with the Genomic Data Structure (GDS) format (Zheng et al., 2017, 

2012). This format divides data in arrays and allows to store and access to them. With this 

information, the workflow makes three data files: Genotype File, Intensity File, and B Allele 

Frequency and Log R Ratio File. The former contains genotypes and the two-last genotype 

quality data. Finally, there are combined the Annotation objects and Data Files into one 

GenotypeData and two IntensityData objects.  

 

The SNP annotation object stores marker’s information. If the data has a general structure, 

the user must input this object. With GeneSeek structure data, the object is created merging 

the SNP Map and LocusSummary files with the function merge. In the chromosome column, 

the values of X, XY (pseudoautosomal region), Y, mitochondrial, and unknown are 

reassigned as the number of autosomes plus one, two, three, four, and five, respectively. 
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Then, the code creates the SNP annotation data frame. This data frame contains the SNP’s 

name, chromosome, position, allele A, Allele B, Bead Set ID, mean theta for AA cluster, 

mean theta for AB cluster, mean theta for BB cluster, mean R for AA cluster, mean R for 

AB cluster, and mean R for BB cluster. The SNPs removed from the FinalReport files are 

filtered out of the SNP annotation data frame to match the information. With this data frame, 

the tool performs the SNP Annotation Data Object. 

 

The code recodes the SNPs to create the SNP Annotation Data Object. The SNPs are 

recoded creating a new column called snpID in the snp_annot_data_frame. snpID is 

the key variable to connect the SNP Annotation Data with the GDS files. This identifier is 

as a consecutive number generated sorting the snp_annot_data_frame object by 

chromosome and then by position. With this data frame, the SNP Annotation Data Object 

is created using the function SnpAnnotationDataFrame. Metadata is added to describe 

the columns of the SNP Annotation Data Object with the function varMetadata. 

 

The workflow also recodes the samples. The user must input the Scan Annotation Data 

object that stores the information of the samples. The tool performs an identifier for each 

sample (scanID). This id is the key variable to connect the Scan Annotation Data with the 

GDS files and corresponds to the row number of each sample in the scan annotation data 

frame. With this new information, and using the function ScanAnnotationDataFrame, 

the workflow makes the Scan Annotation Data Object.  

 

The workflow makes a file with genotype information for each sample to match with the 

GWASTools structure. First, it creates a folder inside the data directory to store the files. 

The scanID is an index in the creation of the individual files. The workflow generates a 

data frame for each sample of the FinalReport and FinalReport CNV objects. These files 

are merged using the function func_Merg_FinalReport_FinalReportCNV and sorted 

in a list called FinalReports. Then, this list is joined with the scanID in the 

FinalReport_scanID object using the functions lapply and 

func_Merg_FinalReport_scanID. At this point, the function 

func_create_file_names makes the files' names and paths. Then, the tool exports the 

files using the functions func_creat_files, func_individual_files, and the 

apply family functions. The folder Individual genotype files store the files (Figure 3-2). 
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After the creation of individual files, the tool  makes the GDS files. It creates data frames 

with key variables of the Scan Annotation and SNP Annotation objects. These data frames 

are required in the GDS files creation to match them with the key variables of individual 

files. One object is called scan.annotation and stores scanID, scanName, and path 

files. The other one is the snp.annotation, that stores the snpID, snpNAme, 

chromosome and position. Then, the code produces three GDS files with the use of the 

function createDataFile. These files are diag.geno, diag.qxy, and diag.bl. The first one 

stores the genotype information. diag.qxy has information about the GC score, and X and 

Y coordinates. The last GDS file contains the BAlleleFreq and LogRRatio. 

 

Finally, the workflow combines these three GDS files with the Annotation objects using the 

functions GenotypeData and IntensityData to create the objects used in the QC and 

association analyses. These objects are genoData, qxyData, and blData.  The tool 

adjusts the number of chromosomes to the chromosome number of the species. 

3.3.4 Quality control 

In this section, the tool conducts the quality control per SNP, sample, and batche. The SNP 

quality control reports includes the analyses of GenCall (GC) score, population 

stratification, Hardy-Weinberg equilibrium, and minor allele frequency. The sample quality 

control generates reports of the GC score, B Allele Frequency variance, and missingness 

and heterozygosity within samples. Finally, the batch quality control analyzes the missing 

call rate (MCR). The tool exports the results as text or PDF files, creating the paths with the 

function dir.create. 

 

SNP quality control 

 GC score analysis per SNP 

The GC score is a measurement of the genotype quality of Illumina technology. Samples 

with a mean and median GC score smaller than the cutoff are filtered out. A list of the SNPs 

with mean and median greater than the cutoff (Figure 3-3) are filtered out.  A plot of the 

number of SNPs, before and after the filter, in function of the SNP’s mean and median GC 
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score over all samples is shown (Figure 3-4). The function qualityScoreBySnp 

calculates the mean and median GC score. The workflow identifies the SNPs with mean 

and median bellow cutoff and filters them out. The results are in the folder 

stratification_analysis.  

 

Figure 3-3:  SNPs with mean and median greater than GC score cutoff 

 

 

 

Figure 3-4:  Number of SNPs, before and after the filter, in function of the SNP’s mean 
and median GC score over all samples. 

 

 

 

 Population stratification analysis 
 

The workflow recodes the genotypes with the 2, 1, or 0 B alleles structure. It allows 

performing a multiple correspondence analysis (MCA) between two the genetic origins of 
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the individuals and the SNPs with the function dudi.acm of the package ade4 (Dray & 

Dufour, 2007b). MCA is a generalization of principal component analysis when the variables 

to be analyzed are categorical instead of quantitative (Abdi & Williams, 2010). With the 

function fviz_mca_ind of the package factoextra (Kassambara & Mundt, 2017), a scatter 

diagram with the coordinates of each sample generated in the MCA is plotted (Figure 3-5). 

Then, the function assocRegression of GWASTools carry out an association test 

between the SNPs and the genetic origin using logistic regression. A list with the SNPs 

associated with the origin is exported (Figure 3-6). After that, a Manhattan plot with the p-

values of the association is shown (Figure 3-7). The tool removes the associated SNPs, 

and the results are stored again with the filtered data. 

 

Figure 3-5:  Scatter plot of multiple correspondence analysis of individuals from genetic 

origins. 

 

 
 
 
 
 
 
 
 



Proposed methodology 35 

 

Figure 3-6:  List of SNP associated with the origin. 

 
 

Figure 3-7:  Manhattan plot of the association between SNPs and genetic origin. 

 

 

 

 Hardy-Weinberg equilibrium 

A population is in Hardy-Weinberg equilibrium (HWE) when the allele frequencies remain 

constant through the generations. In this section, the tool uses the Fisher's exact test to 

determine the departure of SNPs from HWE. The function used is exactHWE of the 

package GWASTools. Then, the code removes the SNPs with a score smaller than the 

cutoff. Files with HWE results before and after removing the SNPs are produced (Figure 

3-8). With the HWE values per SNP, it can be calculated the inbreeding coefficient per SNP, 

which can show a possible population substructure. A distribution of inbreeding coefficients 

centered around 0 indicates there is most likely no significant population substructure 

(Gogarten et al., 2012). A plot of the number of SNPs per inbreeding coefficient value is 

used (Figure 3-9). Before performing the test, the workflow removes the founder individuals. 

HWE is done separately for autosomes and the X chromosome, and then, the results are 

merged. Below are examples of the results obtained. 
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Figure 3-8:  Hardy-Weinberg equilibrium before (top) and after (bottom) the filter. 

 

 

 
 

Figure 3-9:  Inbreeding coefficient before (top) and after (bottom) the filter. 

 

 

 Minor allele frequency analysis 
 

The workflow calculates the minor allele frequency per each SNP with the function 

exactHWE. The tool removes the SNPs with a score smaller than the cutoff. The number 

of SNPs in function of their MAF before and after the filter are plotted (Figure 3-10). A text 
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file with MAF information of the SNPs with MAF greater than the cutoff is generated (Figure 

3-11). 

 

Figure 3-10:  Number of SNPs in function of their MAF before and after the filter. 

 

 
 
Figure 3-11:  MAF information of the SNPs with MAF greater than the cutoff. 
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Sample quality control 

The GC score per sample, the B Allele Frequency (BAF) and Log R Ratio (LRR), and the 

missingness and heterozygosity are analyzed. The tool uses the function 

qualityScoreByScan of GWASTools to calculate the GC score per sample. A list with 

the samples that have GC score mean and median greater than the cutoff (Figures 3-12 

and 3-13) is generated, as well as plots of the number of samples before and after sample 

filtering 

 

Figure 3-12:  Samples with GC score mean and median greater than the cutoff. 

 

 
 
Figure 3-13:  Number of samples before and after the filter out samples with GC score 

mean and median bellow cutoff. 

 

 

At this point, the tool identifies the genomic region-samples pairs that have a BAF at least 

four standard deviations away from the mean of the BAF in the same region over all the 
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(Figure3-14 and Figure 3-15). Figure 3-15A shows an example of a genomic region – 

sample pair with less than four standard deviations of BAF from the mean of BAF of all 

samples in the same genomic region. Figure 3-15B shows an example of a genomic region 

– sample pair with more than four standard deviations of BAF from the mean of BAF of all 

samples in the same genomic region. 

 

The function sdByScanChromWindow is applied to calculate the standard deviation of BAF 

at each window in each sample. The workflow calculates the mean of the BAF standard 

deviations in each region with the function meanSdByChromWindow. The function 

findBAF is used to identify samples with BAF standard deviation four times higher 

compared to other samples in a given region. These functions are from the package 

GWASTools. 

 

Figure 3-14:  List of the genomic region – sample pairs with more than four standard 

deviations of BAF from the mean of BAF of all samples in the same genomic region. 

 

 

Figure 3-15:  BAF and LRR of the genomic region – sample pairs. 

A 

  

B 
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The code conducts tests for missingness and heterozygosity within samples. Samples with 

high heterozygosity may indicate a mixed sample. The tool identifies outliers regarding 

missingness and exports four plots: Missingness by chromosome (Figure 3-16), X 

chromosome missingness by sex (Figure 3-17), autosomal heterozygosity (Figure 3-18), 

and chromosome heterozygosity in females (Figure 3-19). Missingness is calculated with 

the function missingGenotypeByScanChrom of GWASTools. The workflow calculates 

the proportion of missingness with the apply function. The workflow calculates the 

heterozygosity by sample and chromosome with the function hetByScanChrom of 

GWASTools. 

 

Figure 3-16:  Missingness by chromosome. 

 

 

Figure 3-17:  X Chromosome missingness by sex. 
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Figure 3-18:  Autosomal heterozygosity. 
 

 
 
Figure 3-19:  X Chromosome heterozygosity in females. 

 

 

Batch quality control  

This section provides information about batch quality. A batch is a group of samples 

genotyped at the same time. In this section, the workflow performs the genotype quality per 

batch. The aim is to look for missing call rate (MCR) differences between batches. These 

analyses provide a view of the quality data to make decisions about batches. The tool 

creates three folders to store the results, one for the missing call before the filter, another 

for the missing call after the filter, and another that contains the last two. Additionally, the 

tool saves some results in the main folder of the batch quality control. These results are a 

plot with the number of samples per batch (Figure 3-20), a plot of the association between 

the mean MCR per batch and the number of samples per batch (Figure 3-21), a text with 

the mean MCR per batch (Figure 3-22), the genomic inflation factor per batch (Figure 3-23), 

and the association between batches and genetic origin (Figure 3-24). 
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The workflow shows results based on the analysis of the MCR per SNP and sample before 

and after filtering them out with a cutoff of 0.05.  The results folders are 

Missing_call_rate_before_filter and Missing_call_rate_after_filter. Analyses of the MCR of 

the SNPs over all samples, MCR of the samples for all SNPs, MCR of the SNPs over 

samples whose MCR is greater than the cutoff, and MCR of the samples which MCR is 

greater than the cutoff are filtered out. After the filter, the results show analyses over all 

samples removing SNPs with high MCR, and for all SNPs removing samples with high 

MCR. In result number four (Figure 3-28), the proportion of SNPs per chromosome with 

MCR smaller than cutoff is not 1.0 because there are SNPs with an MCR greater than cutoff 

in non-remove samples. In the same sense, the results five (Figure 3-29) and nine (Figure 

3-33) show result per SNPs removing high-MCR samples, and per sample removing high-

MCR SNPs, respectively. The tool exports nine results before filter and the same nine after 

applying the filter. These results are listed below. 

 
1. Number of samples, per sex, with missing calls in each SNP (Figure 3-25). 

2. Number of samples by sex (Figure 3-26). 

3. Fraction of missing calls per SNP (Figure 3-27). 

4. Proportion of SNPs above MCR by chromosome (Figure 3-28). 

5. Number of SNPs in function of MCR (Figure 3-29). 

6. Missing counts per sample by chromosome (Figure 3-30). 

7. Missing SNPs per chromosome (Figure 3-31).  

8. Missing fraction per sample (Figure 3-32).  

9. Number of samples in function of missing call rate (Figure 3-33). 

 
Some examples of the results are shown below. 
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Figure 3-20:  Number of samples per batch. 

 

 

Figure 3-21:  MCR per batch in function of the number of samples of the batch. 

 
 

Figure 3-22:  Mean missing call rate per batch. 

 
  
 
Figure 3-23:  Genomic inflation factor per batch. 
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Figure 3-24:  Association between batches and genetic origin. 

 

 
 
 
 
Figure 3-25:  Missing counts by SNP and sex. M = male. F = female. 

 

 
Figure 3-26:  Samples by sex. M = Male. F = Female. 

Before filter  After filter 
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Figure 3-27:  The fraction of missing calls per SNP over all samples. 

Before filter 

After filter 
 
Figure 3-28:  The proportion of SNPs above MCR by chromosome. 

 Before filter 

 After filter 
 
 
Figure 3-29:  Number of SNPs in function of MCR.  

 
Before filter     After filter 
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Figure 3-30:  Missing counts per sample by chromosome. 

Before filter 

After filter 
 

Figure 3-31:  Missing SNPs per chromosome. 

Before filter 

After filter 
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Figure 3-32:  Missing fraction per sample. 

Before filter 

After filter 
 
Figure 3-33:  Number of samples in function of missing call rate. 

Before filter 

After filter 
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3.3.5 Association analysis 

The association analysis is performed with the parameters provided by the user and using 

the function assocRegression of the package GWASTools (Gogarten et al., 2012). The 

analysis excludes the samples with low mean and median GC score. The tool adjusts the 

p-values with the multiple comparisons test defined by the user. The function is p.adjust  

of the package stats (R_Core_Team, 2018). A table with the association result (Figure 3-

34), a Manhattan plot performed with the function manhattanPlot of GWASTools (Figure 

3-35), and a list with the associated SNPs is generated (Figure 3-36). 

 

Figure 3-34.  Association result per SNP. 

 
 

 

Figure 3-35:  Manhattan plot of the association analysis. 

 
 

Figure 3-36:  Information of the associated SNPs. 
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3.4 Description of module two – gene annotation 

This module performs the annotation of one gene using the function getGene of the 

package mygene (Mark et al., 2018). The user creates the object gene with its Entrez or 

Ensembl gene identifier. With the function print_annotation, the tool formats the result, 

and exports it. Appendix A contains a result example working with the gene with Entrez id 

number 282659.  
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Abstract. Colombian Creole Hair Sheep (CCHS) has adapted to the low and middle tropical 

climate conditions of Colombia. This breed has the potential to be a genetic base of sheep 

meat production programs to compete in the international lamb market. In this market, the 

quality standards demanded a shire force of 5.0 Kg measured with the Warner-Bratzlet 

Shear Force (WBSF) test. The objective of the present work was to identify single 

nucleotide polymorphisms (SNPs) associated with the tenderness of roasted muscle 

longissimus dorsi of CCHS. 41 males and 62 females, from two geographical origins of 

Colombia, were genotyped with the OvineSNP50 BeadChip of Illumina. Mean, standard 

deviation, and ANCOVA analyses of WBSF was conducted in R. Data preprocessing, 

quality control, association analysis, and gene annotation were conducted with the tool 

Diploid-GWAS. Association analysis was performed with linear regression with sex and age 

as covariates, the statistical significance was evaluated with Wald test, and the p-values 

were adjusted with the False Discovery Rate test. Quality control included analyses of 

GenCall, minor allele frequency, Hardy-Weinberg equilibrium, and population stratification. 

25,842 SNP were removed due to low quality. There was no population stratification. WBSF 

was 3.8 ± 0.98 kg, which is consistent with reported values in hair ovine breeds on similar 
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conditions. The interaction between sex and age affected the tenderness, and for that 

reason, they were used as covariates in the association analysis. A SNP was detected as 

associated with WBSF on chromosome 26 on the gene Teneurin transmembrane protein 3 

(TENM3). TENM3 protein has two domains with functions associated with meat tenderness, 

the Epidermal growth factor (EGF) - like domain and the Carboxypeptidase-like regulatory 

domain. 

 

Keywords — genome-wide association study, single nucleotide polymorphism, sheep 

meat, mutton, meat tenderness, longissimus dorsi. 

4.1 Introduction 

The Colombian sheep value chain is relatively young; it has been historically marginal, and 

its development depends on a higher participation on the lamb market (Buelvas & Pineda, 

2008; Castellanos, Rodríguez, Toro, & Luengas, 2010). The lamb per capita consumption 

in Colombia is 310 g, representing the 0.4% of national meat intake, the lowest of all species 

and has had an annual decrease because the market cannot afford the price (Espinal, 

Martínez Covaleda, & Amézquita, 2006). Nevertheless, Colombia has a significant sheep 

number that could be used to export lamb. The international market pays around 4 US 

billion dollars each year for lamb. One of the principal importers is the United States 

(AgMRC, 2018). The leading exporters can reduce their offer by the effect of global warming 

in their production (Gowane et al., 2017). CCHS can supply part of this offer thanks to its 

adaptation to the tropical climate. The geographical proximity between Colombia and the 

USA represents an opportunity for Colombia to export mutton to the US. Additionally, other 

potential markets are the European Union, the United Kingdom, and México because they 

are importers and have commercial agreements with Colombia (ww.tlc.gov.co; G-3, 1994; 

Reina & Oviedo, 2011).  

 

Competing in the world market requires to produce meat with high-quality standards. This 

quality depends on its development in meat by-products industry, as well as its nutritional 

level, and sensorial acceptability (Hamill, Marcos, Rai, & Mullen, 2012). Regarding 

sensorial acceptability, tenderness is generally considered the most influential variable and 
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day after day the customers pay higher prices for more tender meat (Aaslyng, Kerry, 

Ledward, & others, 2009; Goodson et al., 2002; Huffman et al., 1996; Lusk, Fox, Schroeder, 

Mintert, & Koohmaraie, 2001; Miller, Carr, Ramsey, Crockett, & Hoover, 2001; Rodas-

González, Huerta-Leidenz, Jerez-Timaure, & Miller, 2009; Schroeder, Riley, & Frasier, 

2008; Schroeder, Ward, Mintert, & Peel, 1998; Smith, Casas, Rexroad, Kappes, & Keele, 

2000). There have been developed some mechanical methods to predict human perception 

of meat tenderness (O’Diam, 2009). The direct and most accepted instrumental method for 

tenderness measuring is Warner-Bratzler shear force (WBSF) (O’Diam, 2009). WBSF 

measures in kilograms (kg) the maximum shear force applied to a sample of meat by a 

blade of a texturometer. This test consists of a blade with a triangular hole, and blunt edge, 

which is used to cut a meat sample. Then, a spring dynamometer measures the force 

applied (AMSA, 2016). World market considers tough sheep meat with a WBSF value 

above 5 kg (Bianchi, Garibotto, Feed, Bentancur, & Franco, 2006; Safari, Channon, 

Hopkins, Hall, & Van De Ven, 2002).  

 

CCHS is adapted to the low and middle Colombian tropic environment (Pastrana & 

Calderón, 1996). This natural adaptation increases rusticity, fertility, and disease resistance 

(Andersson & Georges, 2004; Egito, Mariante, & Albuquerque, 2002). CCHS was 

compared with commercial and adapted breeds from Brazil, Uruguay and Colombia and 

showed one of the lowest birth weights (2.5 kg) that could favor the lambing ease, and one 

of the highest weights at 365 days of age and adult weights, 37.52 kg and 80.12 kg, 

respectively (Carneiro et al., 2010). 

 

Genome-wide association studies (GWAS) have contributed to improving the tenderness 

in sheep meat. These studies aimed to identify single nucleotide polymorphisms (SNP) 

associated with differences in tenderness between individuals of the same genetic 

composition and under similar environmental conditions. Ortiz et al. (2015) searched for 

SNPs associated with tenderness in cooked CCHS meat. They used the OvinSNP50 chip 

of Illumina and found three associated markers: OAR3_130491628.1, 

OAR4_118954127.1, and s43296.1. Illumina chip contains 6 SNPs close to genes 

associated with the cutting force in other species: CAPN1 (OAR21: 47225725), CAPN2 

(OAR12: 28694194), CAPN3 (OAR7: 39000331) and CAST (OAR5: 101742566, OAR5: 

101792466 and OAR5: 101853472). However, it has not been possible to predict the cutting 
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force when doing GWAS studies (Byun, Zhou, & Hickford, 2008; Ortiz et al., 2015; H. Zhou, 

Byun, Frampton, Bickerstaffe, & Hickford, 2008; H. Zhou, Hickford, & Fang, 2007). For this 

reason, an independent validation was carried out doing a GWAS with 1252 animals in 

Australia. These researchers genotyped the animals with 182 previously identified SNPs 

(M. I. Knight et al., 2012) and identified 3 SNPs in the CAST gene (CAST_101781475, 

CAST_101783060, and CAST_101829736) associated with the cutting force at the fifth-

day post-mortem (p <0.05). They did not find associations between SNPs of CAPN1, 

CAPN2 or CAPN3 (Matthew I. Knight et al., 2014). Knight et al. (2012) identified two SNPs 

in CAST (CAST_101781475 and CAST_101841509) and one in CAPN2 

(CAPN2_28667683) associated with the shear force at fifth day post-mortem. 

 

The objective of this work was to identify SNPs associated with meat tenderness in the 

CCHS using a GWAS with the chip OvinSNP50 of Illumina. 

4.2 Materials and methods 

Animals and genotypes 

This work analyzed 103 CCHS individuals, 41 males, and 62 females, between 4 and 12 

months of age, produced in extensive production based in a grazing system, organized into 

two sacrifice groups and from two geographical origins: Valles Interandinos (VI) and 

Piedemonte (PDM). The animals were genotyped using the chip OvinSNP50 Beadchip of 

Illumina. This chip is an array of 54,241 SNP probes. The chip was developed by a 

collaboration of Illumina, AgResearch, Baylor UCSC, CSIRO, and the USDA as part of the 

International Sheep Genomics Consortium (www.illumina.com). 

 

Facilities and Slaughtering 

The team received the samples at the Instituto de Ciencia y Tecnología de Alimentos of the 

Universidad Nacional de Colombia. The samples come from animals slaughtered after 24 

hours of fasting. The longissimus dorsi muscle was removed, divided into two rashers of 

160 gr approximated, and vacuum packaged.  
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The variable recorded was the Warner-Bratzler Shear Force (WBSF) following the protocol 

of AMSA (2016). The samples were roasted in a “George Foreman” griddle until they had 

an internal temperature of 72°C registered with a digital thermometer “Tylor 9842”. Later, 

the rashers were cold down to room temperature (17-21°C). From each rasher, three cores 

of 3 cm in length and 1.27 cm in diameter parallel to the longitudinal orientation of the 

muscle fibers were obtained with a hand-held coring device. The strength and hardness 

measurements were obtained using the software Exponent Soft and a texture analyzer “TA 

XT plus” with a pre-test speed of 2.0 mm/s, the test speed of 2.0 mm/s, the post-test speed 

of 10.0 mm/s, and a distance of 30mm.  

 

Data preprocessing and quality control  

This work used the R-workflow Diploid-GWAS available at 

https://github.com/bojusemo/Diploid-GWAS (Sepúlveda-Molina & López-Kleine, n.d.). The 

genotype file had the following data obtained with the software GenomeStudio of Illumina: 

Consecutive number of SNP, SNP name, chromosome, position, GenCall score, a fraction 

of nucleotide in the population, and theta and R values. The animal file contained animal 

id, sex, age, slaughter, demographic origin, strength, and hardness.  

 

Three quality control (QC) steps were performed using the tool Diploid-GWAS. This work 

removed the SNPs with a GenCall Score smaller than 0.7, minor allele frequency analysis 

(MAF) smaller than 0.01, and Hardy-Weinberg equilibrium (HWE) p-value cutoff smaller 

than 0.05. With the HWE values per SNP, it can be calculated the inbreeding coefficient 

per SNP, which can show a possible population substructure. A distribution of inbreeding 

coefficients centered around 0 indicates there is most likely no significant population 

substructure (Gogarten et al., 2012). There was calculated the inbreeding coefficient per 

SNP. Additionally, a population stratification analysis was performed. multiple 

correspondence analysis (MCA) was carried out. Concerning the samples, This work made 

a test to identify individuals with a GenCall score smaller than 0.7. This score cutoff was 

select because 0.7 usually report well-behaving genotypes (Illumina, 2005).. 

 

WBSF analysis  

There was calculated the arithmetic mean and the standard deviation of WBSF using the 

functions mean of R base and sd of the package stats (R_Core_Team, 2018; R-Team, 

https://github.com/bojusemo/Diploid-GWAS
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2013). An analysis of covariance (ANCOVA) was conducted to evaluate the effect of sex, 

geographical origin, and age on WBSF. The effect of sex was included as a categorical 

variable with (male and female) with fixed effects. Geographical origin was included a 

categorical variable with the levels pie de monte (PDM) and valles interandinos (VI), with 

fixed effects. The age was included as a covariate. The test was performed with the function 

aov of the package stats (R_Core_Team, 2018).  

 

Association analysis and gene annotation 

After the QC, this work conducted an association test between SNPs and WBSF with linear 

regression using in the Diploid-GWAS tool (Sepúlveda-Molina & López-Kleine, n.d.). The 

association test used sex and age as covariates and computes p-values using the Wald 

tests. The sex and age were chosen as covariates because ANCOVA showed that their 

interaction affected WBSF. Additionally, the age has determined meat tenderness in other 

studies (Hopkins, Hegarty, Walker, & Pethick, 2006).  The p-values were adjusted using 

the Benjamini-Hochberg method that seeks to control the "false discovery rate" (FDR) 

(Benjamini & Hochberg, 1995). A “conditional FDR Manhattan plot” was generated using 

Diploid-GWAS. In this plot, the SNP with conditional –log10 FDR>2 (that is FDR<0.01) is 

shown with the name of the gene where is located. The gene where the SNP is located was 

identified with the Genome Data Viewer browser of the National Center for Biotechnology 

Information (www.ncbi.nlm.nih.gov/genome/gdv). With Diploid-GWAS, an annotation of this 

gene was carried out looking for information in the biological databases. 

4.3 Results and discussion 

Data preprocessing and quality control  

25,842 SNPs were removed due to low quality. 19,049 SNPs had a mean and median 

GenCall score under the cutoff of 0.7. The number of SNPs in function of the GenCall before 

and after remove SNPs by their GenCall are shown in Figure 4-1. 4,892 SNPs had a MAF 

smaller than 0.01, and the number of SNPs in function in MAF before and after applying 

the MAF filter are in Figure 4-2. 13,041 SNPs had an HWE p-value smaller than 0.05.  

 

http://www.ncbi.nlm.nih.gov/genome/gdv
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Figure 4-3 shows the distribution of inbreeding coefficients before and after filtering out 

SNPs with HWE criterium. The number of SNP removed by low GenCall score was higher 

than expected, corresponding to 35% of the markers. Population stratification analysis 

showed that were no markers associated with the genetic origin (Figure 4-4). There were 

no samples removed by low quality, bassing on the GenCall cutoff of 0.7. 

 

Figure 4-1:  Distribution of the number of SNPs in function of GenCall score before and 

after the filter. 

 

 

 

Figure 4-2:  Minor allele frequency distribution before and after the filter. 
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Figure 4-3:  Inbreeding coefficient before and after the filter of HWE. 

  

 

Figure 4-4:  Scatter diagram of MCA coordinates. 

 

 

WBSF analysis  

The meat of CCHS showed a mean WBSF of 3.8 kg and a standard deviation of 0.98 kg. 

Burke and Apple (2007) measured the shear force of longissimus muscle of the hair sheep 

breeds Katahdin and St. Croix and the hair x wool breed Dorper in similar conditions to the 

present study and the results were similar. The shear force in this study was 3.8 kg, 3.8 kg, 

and 4.0 kg for Katahdin, St. Croix, and Dorper, respectively. Shackelford et al.(2012) 

reported the tenderness of the longissimus muscle for the hair breed Kathadin (4.7 kg), 

hair-wool breed Dorper (4.9 kg), and wool Finnsheep (4.4 kg), Romanov (4.7 kg), 

Rambouillet (5.1 kg), Suffolk (5.5 kg), Texel (4.9 kg), Dorset (5.2 kg), and Composite (5.7 

kg) (p<0.05). These animals were fed with hey and concentrate, slaughtered before the 
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year of age, and their meat is less tender compared with CCHS. Another study reported 

that Dorper ram’ descendant showed tender meat than Suffolk ram’ descendant, being 2.8 

kg and 3.98 kg, respectively (p<0.05) (Snowder & Duckett, 2003). The shear force of 

longissimus dorsi of lambs fed with commercial concentrate was smaller in the breeds St. 

Croix (2.21 kg) and crossbreeds 1/2 St. Croix + 1/2 Dorper (2.46 kg) and 1/2 Dorper + 1/4 

de Suffolk + 1/4 Rambouillet (2.55 kg), than in the breed Suffolk (4.0 kg) and the 

crossbreeds 1/2 St. Croix + 1/4 Suffolk + 1/4 Rambouillet (3.96 kg), 1/2 St. Croix + 7/16 

Suffolk + 1/16  Rambouillet-Dorset (4.97 kg), 11/16 Suffolk + 1/4 de Rambouillet + 1/16  

Rambouillet-Dorset (4.92 kg) and 11/16  Suffolk  +  5/16  Rambouillet (3.87 kg) (p<0.05) 

(Bunch et al., 2004).  

 

Neither sex, geographical origin, nor age had a direct effect on the WBSF (Table 4-1). The 

same table shows a p-value for the interaction between sex and age of 0.026, which is 

significant at 0.05 level of significance. Then, the null hypothesis that ‘there is no significant 

effect of interaction between sex and age on the WBSF’ was rejected. Thus, it can be 

concluded that the WBSF depends on the interaction between sex and age. 

 

Table 4-1:  ANCOVA result. Effect of sex, geographical origin, and age on WBSF. 

  Df Sum Sq Mean Sq F value p 

Sex 1 2.297 2.297 2.425 0.123 

Geographical origin 1 0.027 0.027 0.028 0.868 

Age 1 2.065 2.066 2.18 0.143 

Sex x geographical origin 1 1.023 1.023 1.08 0.302 

Sex x age 1 4.85 4.85 5.12 0.026 

Geographical origin x age 1 0.28 0.28 0.296 0.588 

Sex x geographical origin x age 1 0.123 0.123 0.13 0.719 

Residuals 
91 86.219 0.948 

 
 

The age was included as a covariate. 

 

Association analysis and gene annotation 

The SNP OAR26_10469468.1 that is in the position 10469468 of chromosome 26 was 

detected as associated (Figure 4-5). The Wald p-value, p-value adjusted, and -log10 of the 

p-value were 3.49e-09, 9.34e-05, and 4.03, respectively. The SNP is in the gene Teneurin 
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transmembrane protein 3 (TENM3), a protein-coding gene. Appendix A stores the 

annotation result. 

 

Figure 4-5.  “Conditional FDR Manhattan plot”. Conditional –log10 (FDR) for meat 

tenderness in Colombian Creole Hair Sheep. The SNP with conditional –log10 FDR>2 (that 

is FDR<0.01) is shown with name of the gene where is located. 

 

 

TENM3 protein has two domains with functions associated with meat tenderness. These 

domains are Epidemial growth factor (EGF) - like domain (Interpro ID IPR000742), and 

Carboxypeptidase-like regulatory domain (Interpro ID IPR008969). The EGF links with its 

cell receptor on the cell surface and stimulates the activation of protein tyrosine kinase (Jura 

et al., 2009). Castro et al. (2017) reviewed and discussed how the tyrosine kinase might 

influence meat tenderness. A GWAS associated EGF-like domain with meat tenderness in 

Nellore cattle (Castro et al., 2017). Furthermore, the EGF affects the proportion of the type 

of muscle fibers and their areas, which determines the meat tenderness. The proportion of 

the types of fibers and their area affect the WBSF in bovines (Calkins, Dutson, Smith, 

Carpenter, & Davis, 1981). In muscle longissimus dorsi of pigs, the serum EGF was 

positively related to the percentage of type I muscle fiber (r = 0.27; P < 0.015), and 

negatively related to cross-sectional area percentage of type IIa fiber (r = -0.21; P < 0.05) 

(Ryu, Choi, Ko, & Kim, 2007). For its part, Carboxypeptidase B is a proteolytic enzyme 

presented in skeletal muscle cells that could facilitate postmortem changes associated with 
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the increase in meat tenderness (Koohmaraie, 1989). The present study is the first one that 

associate EGF-like and Carboxypeptidase-like regulatory domains with meat tenderness in 

sheep. 

4.4 Conclusions 

The meat tenderness of Colombian Creole Hair Sheep is competitive in the international 

market. These animals can contribute with its meat tenderness in breeding programs.  

 

This work found an association between the SNP OAR26_10469468.1 and the meat shear 

force in the Colombian Creole Hair Sheep. This SNP is in the gene Teneurin 

transmembrane protein 3 (TENM3). TENM3 protein has two domains with functions 

associated with meat tenderness, the Epidemial growth factor (EGF) - like domain and 

Carboxypeptidase-like regulatory domain. 

 

No SNP close to CAPN1, CAPN2, CAPN3 or CAST was associated with the meat shear 

force. This result coincides with previous studies. It is recommendable to work with 

customizing chips with more markers close to the mentioned genes.  
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Abstract. Cattle played a vital role in human evolution and currently is a critical portion of 

the Colombian rural economy. Genome-wide association studies (GWAS) have contributed 

to identifying single nucleotide polymorphisms (SNP) associated with economically 

important traits in the Simmental breed. This work aimed to identify SNPs associated with 

birth weight and 305-day milk yield in the Colombian Simmental population. The chip used 

was the GeneSeek GGP Bovine LD (30K). The quality control, association analysis, and 

gene annotation were performed with the open source tool Diplod-GWAS. The statistical 

model used was a linear regression per SNP. Quality control showed that genotypes had 

adequate quality in terms of GenCall, minor allele frequency, and Hardy-Weinberg 

equilibrium. Additionally, there was not identify population stratification. The SNP 

BovineHD4100012055 was associated with birth weight. The markers 

BovineHD1000024158, BovineHD0900002080, ARS-BFGL-NGS-7347, 

BovineHD2200017281, ARS-BFGL-NGS-66370, and BovineHD0500034987 were 

associated with 305-day milk yield. 

 

Keywords — birth weight, genome-wide association study, milk production, pigmentation, 

single nucleotide polymorphism. 
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5.1 Introduction 

The consumption of animal protein has played a fundamental role in the evolution of the 

human being and is an essential food for health and development of humanity (Bodwell & 

Anderson, 1986; Cottle & Kahn, 2014; Lombardi-Boccia, Lanzi, & Aguzzi, 2005). Cattle 

production contributes with 1.7% of the Colombian Gross Domestic Product (GDP), which 

represents 53% of the livestock GDP and 20% of the agricultural GDP, generating 7% of 

the national employment (FEDEGAN, 2011). Colombia produced, between 2002 and 2012, 

an average of 800 thousand tons/year of beef and 600 thousand tons/year of milk and its 

derivatives, the fourth largest producer in Latin America (FAO, 2013). 

 

To compete in the international market, the Colombian Simmental producers’ association, 

Asociación Colombiana de Criadores de Ganado Simmental, Simbrah, Simmcebú y sus 

Cruces (Asosimmental), has identified two traits and aims to improve them. Colombia 

signed trade agreements with exporting and importing countries such as the US, Canada, 

Mexico and Chile (www.tlc.gov.co). This situation obliges to Colombia to strengthen its 

presence in the domestic market and penetrate international markets (Beltrán et al., 2011). 

Optimizing the available resources is necessary. Therefore, it is essential to identify and 

improve the phenotypes of cattle breeds. Asosimmental has measured the birth weight and 

305-day milk yield. Simmental cows tend to have calving difficulty and lower birth survival 

rates than other breeds because the calves are relatively heavy at birth (Comerford, 

Bertrand, Benyshek, & Johnson, 1987). Milk production is one of the most critical traits for 

Asosimmental because 60% of Colombian Simmental population is intended for milk 

production (Forero, 2014).  

 

Genome-Wide Association Studies (GWAS) can be used to improve these traits. GWAS 

aim to identify associations between single nucleotide polymorphisms (SNPs) and traits 

and diseases in many species. GWAS in cattle, commonly use Illumina BeadChip 

technology given the low costs per genotype. GWAS have identified SNPs associated with 

multiple traits in Simmental (An et al., 2018; Song et al., 2016; Xia et al., 2017). Snelling et 

al. (2017) identified 293 SNPs associated with birth weight in 18 cattle breeds (Bonferroni-
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corrected P < 0.05). The SNP rs29004488 in the leptin gene (LEP) and rs41974998 in milk 

fat globule-epidermal growth factor 8 protein gene (MFGE8) were associated with milk yield 

in the Italian Simmental population (P=0.043 and P=0.033, respectively). This study was 

conducted using a single marker regression model, which performs a regression for each 

marker. 

 

Two processes are related to GWAS, a previous data quality control (QC) and the 

annotation of close genes to the SNPs associated with the phenotype. Before conducting 

GWAS, it is necessary to perform a data QC. QC includes genotype quality, as well as 

analyses of population stratification, Hardy-Weinberg equilibrium (HWE), and minor allele 

frequency (MAF). Genotype quality in Illumina BeadChip technology is reported as GenCall 

score (Oliphant et al., 2002). Population stratification can cause spurious associations 

(Somers et al., 2007). Between the techniques to identify population stratification is the 

multiple correspondence analysis between the SNPs and the genetic origin with the aim of 

found clusters of genetic origins (Cifuentes et al., n.d.). SNPs with Hardy-Weinberg 

imbalance may indicate genotyping errors, population stratification and even association 

with the phenotype (Turner et al., 2011). The exclusion of SNPs with low MAF avoids 

statistically unsupported associations (Gondro, Lee, et al., 2013). 

 

This work aimed to identify SNPs associated with birth weight and 305-day milk yield in the 

Colombian Simmental population. 

5.2 Materials and methods 

Data description 

This work is a pilot GWAS in the Colombian Simmental population. Data were obtained 

from a genomic evaluation of the breed performed by Asosimmental and the company 

Biotecnologia y Genetica S.A. The number of individuals analyzed, and the descriptive 

information of the traits analyzed in this study are shown in Table 1.  In the genomic 

evaluation, the animals with phenotypic information and more descendants were selected 

to be genotyped. The DNA from the hair follicle was extracted using the phenol-chloroform 

standard method (Innis, Golfand, & White, 1990). 
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The samples were genotyped with the chip GeneSeek GGP Bovine LD (30K). The chip 

used contained 30,105 SNPs and was developed by GeneSeek, USDA-ARS and other 

collaborators using Illumina BeadChip technology.  This chip includes evenly spaced and 

highly polymorphic SNPs with a mean gap of 89 kb, higher density marker placement at 

the telomeric region of the chromosomes for increased imputation accuracy. The imputation 

accuracy is higher than 99% in most well-characterized breeds included Simmental, the 

call rate success averages are above 99% and contains a large percentage of SNP overlap 

with other commercially available arrays including the original BovineSNP 50k of Illumina 

(www.neogen.com). It was assumed that the SNPs were in linkage equilibrium because the 

markers are expected to be linked to the same QTL alleles in distances less than 50 kb, as 

in the case of chips with more than 50,000 SNPs (Biegelmeyer, Gulias-Gomes, Caetano, 

Steibel, & Cardoso, 2016). 

 

Birth weight is a continuous variable measured on the first day of life. 305-day milk is 

another continuous variable and measures the cow's milk yield from day 1 to day 305 of 

the lactation period (Kong et al., 2018). The number of lactations affects the 305-day milk 

yield (Ray, Halbach, & Armstrong, 1992). Based on it, 305-day milk yield for each lactation 

was treated as a new trait, creating three dependent variables. The phenotypic values are 

consistent with the reported in the breed (Comerford et al., 1987; Nistor et al., 2011). 

 

Table 5-1:  Traits included in the study. 

Trait N Mean SD CV% 

Birth weight (kg) 129 39.8 3.89 9.78 

First lactation 305-day milk yield 64 3820 1414 37.02 

Second lactation 305-day milk yield 80 5007 1667 33.29 

Third lactation 305-day milk yield 62 4864 1585 32.59 

 

Quality control 

Simmental is used as a dual-purpose breed in Colombia. The sires of the animals 

registered in Asosimmental are mainly from Europe and the United States. 

Asosimmental recommends the use of sires from Europe when the goal is improving milk 

production traits, and bulls from the United States when the objective is to improve traits 
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associated with beef production (Forero, 2014). This situation could generate a 

population stratification. 

 

For this reason, the population was divided according to the generic origin of the animals' 

sires. Then, to identify population stratification, a multiple correspondence analysis 

(MCA) was carried out between the SNPs and the genetic origin. The result was plotted 

in a scatter plot. These analyses were conducted utilizing Diploid-GWAS (Sepúlveda-

Molina & López-Kleine, n.d.). With the same tool, there were removed SNPs with a 

GenCall Score smaller than 0.7, minor allele frequency analysis (MAF) lower than 0.01, 

and Hardy-Weinberg equilibrium (HWE) p-value cutoff smaller than 0.05. With the HWE 

values, it can be calculated the inbreeding coefficient per SNP, which can show a 

possible population substructure. A distribution of inbreeding coefficients centered 

around 0 indicates there is most likely no significant population substructure (Gogarten 

et al., 2012). QC also included removing samples with a GenCall score smaller than 0.7. 

The GenCall score cutoff followed the criterium of Illumina (Illumina, 2005). 

 

Association analysis and gene annotation 

There was performed a single marker regression GWAS. In this model, a randomly mating 

population without population stratification is assumed. According to Hayes (2013), the 

model has the following function: 

𝑦 = 𝑊𝑏 + 𝑋𝑔 + 𝑒 

Where 𝑦 is the phenotype vector, 𝑊  is a design matrix that assigns registers to fixed effects 

of the phenotypes, 𝑏 is a vector of fixed effects, 𝑋 is a design matrix that assigns registers 

to the effect of the marker, 𝑔 is the effect of the marker, and 𝑒 is a vector of random 

deviations 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒
2), where 𝜎𝑒

2 is the variance of the error.  

 

Then, the Wald test was applied to evaluate the degree of contribution of each SNP to the 

phenotype. Wald test evaluates if 𝑔 is different of zero (null hypothesis) (Wasserman, 

2004). The p-values were adjusted using the Benjamini-Hochberg method that seeks to 

control the "false discovery rate" (FDR) (Benjamini & Hochberg, 1995), and the result were 

called conditional –log10 (FDR). A “conditional FDR Manhattan plot” per trait was 

performed. The manhattan plot cutoffs were conditional –log10 FDR>1.3 and 1.0 (that is, 

FDR<0.05 and 0.1, respectively). 
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The SNPs above the cutoffs were treated as associated with the traits. The closest gene to 

each of these markers was identified with the Genome Data Viewer browser of the National 

Center for Biotechnology Information (www.ncbi.nlm.nih.gov/genome/gdv). These genes 

were annotated with the tool Diploid-GWAS (Sepúlveda-Molina & López-Kleine, n.d.). 

5.3 Results 

Quality control 

From the initial 31,105 SNPs, 27,144 SNPs had a mean and median GenCall score above 

the cutoff of 0.7. 25,235 SNPs had a MAF greater than 0.01. 27,113 SNPs had an HWE p-

value greater than 0.05. Figure 1 shows the number of SNPs in function of inbreeding 

coefficients after filtering out SNPs that are not in HWE. This result indicates there is most 

likely no significant population substructure. Population stratification analysis showed that 

were no markers associated with the genetic origin (Figure 2). 21,968 SNPs had values 

greater than the cutoff of all parameters. The percentage of SNPs removed was similar in 

all chromosomes (25.5±5.8%). There was no a region with a high proportion of SNPs 

removed. There were no samples removed by low quality, based on the GenCall cutoff of 

0.7. Supplementary material 1 includes the number of SNPs in function of the GenCall and 

MAF before and after CQ. 

 

Figure 5-1:  Number of SNPs in function of inbreeding coefficients after QC. 
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Figure 5-2:  Scatter diagram of MCA coordinates. Different colors represent the genetic 

origin of the animal’s sire, where 0 and 1 are Europe and United States origins, respectively. 

 

 

Association analysis and annotation 

Seven SNPs were associated with the traits (Figure 3). Supplementary material 2 stores 

the annotation result. The SNP BovineHD4100012055 that is in the position 47195335 of 

chromosome 15 was associated with the birth weight (conditional –log10 (FDR) = 1.382). 

The closest gene to this marker is the olfactory receptor 52E8-like (Ensemble ID 

ENSBTAG00000000118). This gene coded for the protein with Ensembl ID 

ENSBTAP00000052030. 

 

Six SNPs were associated with 305-day milk yield. The marker BovineHD1000024158 

(position 84583993 and chromosome 10) was associated with the first lactation (conditional 

–log10 (FDR) = 1.178). The production in the second lactation was associated with the 

SNPs BovineHD0900002080, ARS-BFGL-NGS-7347, BovineHD2200017281, and ARS-

BFGL-NGS-66370. The conditional –log10 (FDR) values were 1.608, 1.092, 1.092, and 

1.092 respectively. These markers have the following position, respectively: 8709002 

(chromosome 9), 67090770 (chromosome 20), 59530721 (chromosome 22), and 

27942008 (chromosome 26).  The SNP BovineHD0500034987 was associated with the 

trait in the third lactation, it is in chromosome 5 in position 119754719, and the conditional 

–log10 (FDR) was 1.653. The genes where are the SNPs or the closest genes to the 

markers are mentioned in the Manhattan plot. The protein domains are described in the 

supplementary material 2. 
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Figure 5-3:  “Conditional FDR Manhattan plot”. In descending order, conditional –log10 

(FDR) values for birth weight, and first, second and third lactation 305-day milk yield. SNPs 

with conditional –log10 FDR>1.3 and 1.0 (that is, FDR<0.05 and 0.1, respectively) are 

shown with closets gene name or Ensembl gene ID. 
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5.4 Discussion and conclusions 

Simmental cattle breed contributes with 150,000 liters of milk per day and with genetic 

material to produce meat in Colombia (ContextoGanadero, 2018). For this reason, the 

Simmental producer association, Asosimmental, have measured two phenotypes: birth 

weight and 305-day milk yield. We performed a GWAS to identify significant SNPs 

associated with these essential traits in Simmental cattle using a high-density SNP chip. 

Seven SNPs were associated with the two traits, and most SNPs were harbored on genes. 

Our results provide several novel markers associated with birth weight and 305-day milk 

yield in Simmental cattle. 

 

This work is the first genome-wide association study on Colombian Simmental population, 

and some of the loci newly identified in this study may help to better DNA markers that 

determine increased beef and milk production in Simmental cattle. Further studies using a 

larger sample size will allow confirmation of the candidates identified in this study. 

 

From the 30,105 SNPs analyzed, 21,968 SNPs had values greater than the cutoff of all QC 

parameters. There was no population stratification. The SNP BovineHD4100012055 was 

associated with birth weight. The closest gene to BovineHD4100012055 is the olfactory 

receptor 52E8-like (Ensemble ID ENSBTAG00000000118). This gene is a member of the 

three InterPro protein families: G protein-coupled receptor, rhodopsin-like; Olfactory 

receptor; and the G protein-coupled receptor (GPCR), rhodopsin-like, 7TM. None of these 

families have been reported as associated with birth weight in livestock species. However, 

GPCR has associated with birth weight in humans (Kovacs & Schöneberg, 2016). The 

markers BovineHD1000024158, BovineHD0900002080, ARS-BFGL-NGS-7347, 

BovineHD2200017281, ARS-BFGL-NGS-66370, and BovineHD0500034987 were 

associated with 305-day milk yield. Neither the closest genes nor the protein domains have 

been reported as associated with milk production.  
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6. Conclusions and recommendations 

6.1 Conclusions 

A work methodology was standardized and organized in a workflow to perform the quality 

control, the association analysis between single nucleotide polymorphisms and phenotypes 

in ruminants and the subsequent biological contextualization of genes close to the SNPs 

associated with the phenotypes. 

 

The work methodology was applied to the Colombian Creole Hair Sheep and Colombian 

Simmental cattle populations. The SNPs with low quality were removed. No samples were 

removed for low quality. There was no population stratification. 

 

The SNP OAR26_10469468.1 was associated with the meat tenderness of Colombian 

Creole hair sheep. This SNP is in the gene Teneurin transmembrane protein 3 (TENM3). 

TENM3 protein has two domains with functions associated with meat tenderness, the 

Epidemial growth factor (EGF) - like domain and Carboxypeptidase-like regulatory domain. 

 

The SNP BovineHD4100012055 was associated with birth weight. The closest gene to this 

SNP is the olfactory receptor 52E8-like, which is a member of the protein family G protein-

coupled receptor (GPCR). GPCR has associated with birth weight in humans. 

 

The markers BovineHD1000024158, BovineHD0900002080, ARS-BFGL-NGS-7347, 

BovineHD2200017281, ARS-BFGL-NGS-66370, and BovineHD0500034987, were 

associated with 305-day milk yield. Neither the closest genes nor the protein domains have 

been reported as associated with milk production.  

 

 

 



 

 

6.2 Recommendations 

 It is advisable to develop an R package with the workflow developed. 

 It is recommended to use the tool developed with data of other species. 

 It is advisable to improve the Hardy-Weinberg filter to avoid removing markers that 

are associated with the phenotype, as indicated by Turner et al. (2011). 

 It is recommended to complement the tool developed with association analysis other 

than single marker regression.  





 

 

 

 

 

 

 

 

 

  





 

 

 

 

A. Appendix: compact disc 

The disc contains the code and toy data described below. 

 Module one QC and association - general structure 

 Module one QC and association - GeneSeek structure 

 Module two - annotation 

 

Additionally, it also contains the following documents. 

 Example of the annotation result 

 Annotation of TENM3 

 Supplementary materials 1 and 2 of chapter 5 
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