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Title in English
Matrix methods for projective modules over σ − PBW extensions.

Título en español
Métodos matriciales para módulos proyectivos sobre extensiones σ − PBW

Abstract: In this monograph, we study finitely generated projective modules defined on
a certain type of noncommutative rings, called σ−PBW extensions, also known as skew
PBW extensions. This class of noncommutative rings of polynomial type include many
important examples of algebras and rings of recent interest as Weyl algebras, envelop-
ing algebras of Lie algebras of finite dimension, diffusion algebras, quantum algebras,
quadratic algebras in three variables, among many others. The study of projective mod-
ules was developed from a constructive matrix approach that will allow us to make effec-
tive calculations using a powerful computational tool: noncommutative Gröbner bases.
Specifically, we establish an equivalent constructive matrix interpretation for the notions
of being a projective, stably free or free module. Because of the close relationship between
these three kinds of modules, we investigate when a given finitely generated module be-
longs to one of these classes. In this regard, Stafford showed that any stably free module
on the Weyl algebra D = An(k) or Bn(k), with rank ≥ 2, turns out to be free; in this
direction, we present a constructive proof of such important theorem for arbitrary rings
which satisfy the condition range.

On the other hand, we present several matrix descriptions of Hermite rings, various -
characterizations of PF rings, and some subclasses of Hermite rings. However, since
there is a variety of noncommutative rings that have nontrivial stably free modules, we
use the Stafford’s theorem, the stable range of a ring, and existing bounds for Krull di-
mension of a skew PBW extension, in order to set a value from which all stably free
module are free.

In the second part of this thesis, we develop the theory of Gröbner bases for arbitrary bi-
jective skewPBW extensions. Specifically, we extend Gröbner theory of quasi-commutative
bijective skew extensions to arbitrary bijective skew PBW extensions. We construct
Buchberger’s algorithm for left (right) ideals and modules over these noncommutative
rings, and we present elementary applications of this theory as the membership prob-
lem, calculation of the syzygy module, intersection of ideals and modules, the quotient
ideal, presentation of a module, calculation of free resolutions and the kernel and im-
age of a homomorphism. Finally, we use the constructive proofs established in the early
chapters, in order to develop effective algorithms to compute the projective dimension of
a given module, algorithms for testing stably-freeness, procedures for computing mini-
mal presentations and bases for free modules.

Resumen: En esta monografía estudiamos los módulos proyectivos definidos sobre un
cierto tipo de anillos no conmutativos, denominados extensiones σ − PBW , también
conocidos como extensiones PBW torcidas. Esta clase de anillos no conmutativos de tipo
polinomial incluye importantes ejemplos de álgebras y anillos de interés reciente tales



como álgebras de Weyl, álgebras envolventes de álgebras de Lie de dimensión finita, ál-
gebras cuánticas, álgebras cuadráticas en tres variables, entre muchos otros. El estudio de
los módulos proyectivos lo desarrollamos desde una perspectiva constructiva-matricial,
enfoque que nos permitirá hacer cálculos efectivos mediante el uso de una importante
herramienta computacional: las bases de Gröbner no conmutativas. Específicamente, es-
tablecemos interpretaciones matriciales constructivas para la noción de módulo proyec-
tivo, módulo establemente libre y módulo libre. Debido a la estrecha relación existente
entre estas tres clases de módulos, investigamos cuándo un módulo finitamente generado
dado pertenece a una de tales clases. En este sentido, Stafford demostró que cualquier
módulo establemente libre sobre el álgebra de Weyl D = An(k) o Bn(k), de rango ≥ 2,
resulta ser libre; a este respecto, presentamos una prueba constructiva de este importante
teorema para anillos arbitrarios que satisfagan la condición de rango.

Por otra parte, presentamos descripciones matriciales de los anillos de Hermite, caracter-
izaciones de anillos PF , y algunas subclases de anillos de Hermite. Ahora bien, puesto
que existe una gran variedad de anillos no conmutativos que poseen módulos estable-
mente libres no triviales, nosotros usamos el teorema de Stafford, el rango estable de un
anillo, y las cotas existentes para la dimensión de Krull de una extensión PBW torcida,
con el fin de establecer un valor a partir del cual todo módulo establemente libre resulta
libre.

En la segunda parte de esta tesis desarrollamos la teoría de bases de Gröbner para ex-
tensiones PBW torcidas biyectivas arbitrarias. Concretamente, extendemos la teoría de
Gröbner de las extensiones cuasi-conmutativas biyectivas al caso general biyectivo. -
Construimos el algoritmo de Buchberger para ideales izquierdos (derechos) y para mó-
dulos sobre estos anillos, presentamos aplicaciones elementales de esta teoría como el
problema de membresía, el calculo del módulo de sicigias, la intersección de ideales y
módulos, el ideal cociente, la presentación de un módulo, el cálculo de resoluciones li-
bres y el núcleo e imagen de un homomorfismo. Finalmente, usamos las demostraciones
constructivas establecidas en los primeros capítulos, con la finalidad de elaborar algorit-
mos que permiten efectivamente calcular la dimensión proyectiva de un módulo dado,
verificar si un módulo es establemente libre, calcular presentaciones minimales y bases
para módulos libres.

Keywords: Skew PBW extensions. Projective, stably free and free modules. Hermite
rings. PF rings. Stable range. Noncommutative Gröbner bases.

Palabras clave: Extensiones PBW torcidas. Módulos proyectivos, establemente libres y
libres. Anillos de Hermite. Anillos PF . Rango estable. Bases de Gröbner no conmutati-
vas.



Acceptation Note

“SUMMA CUM LAUDE mention”

Jury
Blas Torrecillas, Ph. D

Jury
Jesús Gago Vargas, Ph. D

Jury
Eduardo Marcos, Ph.D

Advisor
Oswaldo Lezama, Ph. D

Bogota, D.C., June 2015



Dedicated to

My grandmother, my parents, Dilan, my cute dogs and Paquita.



Acknowledgments

The realization and culmination of this thesis would not have been possible without the
extraordinary support of Professor Oswaldo Lezama, who with wisdom and patience
guided me in this difficult way and gave me unconditional aid, especially in those mo-
ments when my spirit seemed to falter. For this, and for his many teachings: thanks.

I thank to Professor Alexander Zavadskyy (deceased) and Professor Victor Albis by
confidence that they gave me in those moments in which I felt that I was loosing the
course; every second shared with them became in priceless moments of learning and
personal growth.

I wish to express my most sincere gratitude to Dra. Ana Maria Aschner, who with her
support, patience and professionalism accompanied me on the difficult task of dealing
with my deepest fears and darkest feelings.

I must to thank my mom and my nephew for their constant presence and support. I
love them.

Finally, I need to thank the Professor Blas Torrecillas of the University of Almería for
the opportunity to share progress of my doctoral thesis at the Seminary of Algebra and
Mathematical Analysis; I also want to express my gratitude to the Professor Jesús Gago
Vargas of the University of Seville, for giving me the opportunity to participate in the
Seminar of Algebra. To them, thanks by their valuable suggestions, as well as economic
and logistical support that they provided for my stay and displacement in the region of
Andalusia, Spain.



Contents

Contents I

Introduction IV

1. Skew PBW extensions 1

1.1 Definitions and elementary examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Stably free modules 12

2.1 RC and IBN rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Characterizations of stably free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Stafford’s theorem: a constructive proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Projective dimension of a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Hermite rings 33

3.1 Matrix descriptions of Hermite rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Matrix characterization of PF rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Some important subclasses of Hermite rings . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Products and quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Localizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Examples, remarks and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. d-Hermite rings and skew PBW extensions 58

4.1 d-Hermite rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Stable rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

I



CONTENTS II

4.3 Kronecker’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5. Gröbner bases for skew PBW extensions 66

5.1 Monomial orders in skew PBW extensions . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Reduction in skew PBW extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Gröbner bases of left ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Buchberger’s algorithm for left ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Gröbner bases of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Monomial orders on Mon(Am) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 Division algorithm in Am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.3 Gröbner bases for submodules of Am . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.4 Buchberger’s algorithm for modules . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Right skew PBW extensions and right Gröbner bases . . . . . . . . . . . . . . . . 98

6. Elementary applications of Gröbner theory 102

6.1 The membership problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Computing syzygies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Presentation of a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Computing free resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.7 Kernel and image of an homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7. Matrix computations on projective modules using Gröbner bases 128

7.1 Computing the inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Computing projective dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Test for stably-freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Computing minimal presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5 Computing free bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A. Filtered-graded transfer of Gröbner bases 147

A.1 For left ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 For modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Future work 155



CONTENTS III

Bibliography 156



Introduction

When a new type of rings arise, the study of finitely generated projective modules over
them is a classical task in homological algebra. Investigating if these modules are free, or
at least stably free, has occupied the attention of many mathematicians; one of the most
famous cases is the Quillen-Suslin theorem about Serre’s problem for the commutative
polynomial ring k[x1, . . . , xn], where k is a field. In this particular example, Quillen and
Suslin proved independently that the finitely generated projective modules are free (see
[106] and [119]). However, for noncommutative rings of polynomial type it is easy to
present examples where Quillen-Suslin theorem fails. In fact, if T is a division ring, then
S := T [x, y] has a module M such that M ⊕ S ∼= S2, but M is not free ([62]). When
this occurs, we can ask if the modules are stably free, and this situation, to investigate
the minimum value of rank for which the modules start to be free. This is the content
of Stafford’s theorem on Weyl algebras (see [114]), or Artamonov’s theorem for quantum
polynomials ([4],[5] and [6]).

The origin of our interest in investigating projective modules over skew PBW ex-
tensions from a matrix constructive approach arises in a previous thesis (master’s the-
sis) where we study the theory of Gröbner bases of left ideals for the particular class of
skew PBW extensions that are quasi-commutative bijective (see Chapter 1). Skew PBW
extensions are a wide class of noncommutative rings of polynomial type introduced in
[40], and generalize the PBW extensions defined in [10]. Skew PBW extensions in-
clude many important classes of noncommutative rings and algebras as Weyl algebras,
enveloping algebras of Lie algebras of finite dimension, important classes of Ore algebras,
quantum algebras, Manin’s algebra of quantum matrices, q-Heisenberg algebra, quan-
tum Weyl algebras, quantum enveloping algebras, Witten’s algebra, diffusion algebras,
among many others. Some ring and homological properties of skew PBW extensions
have been studied in the last years from a purely theoretic non-constructive approach,
for example, global, Krull, Goldie and Gelfand-Kirillov dimensions of these rings have
been computed as well as its K-theory gropus (see [83], [81] and [121]).

In this thesis, we investigate free, stably free, and in general, projective modules over
skew PBW extensions from a matrix approach, complementing the results with the the-
ory of Gröbner bases. In the first part of the thesis, we will present matrix criteria (theo-
rems) for testing projectivity, stably freeness and freeness - in general - for finitely gener-
ated modules over arbitrary rings satisfying the rank condition (see Definition 2.1.3). In
the second part, we will present algorithms for bijective skew PBW extensions making
theorems constructive, and finally, we will apply the developed theory of Gröbner bases

IV



INTRODUCTION V

to illustrate all theorems and algorithms with concrete examples. We want to remark that
the examples of skew PBW extensions selected are completely nontrivial and probably
have not been considered before in the specialized literature in noncommutative Gröb-
ner bases. The results presented in the monograph can be applied to any of types of
noncommutative rings and algebras mentioned in the previous paragraph, in particular,
our general theory of noncommutative Gröbner bases of skew PBW extensions can be
used in different applications of such algebras as it is done in algebraic analysis (see [13],
[22], [23], [24], [25], [35], [73], [99], [100], [101], [102], [103], [104], [105]). Actually, one of
the main our motivations to study projective modules from a matrix constructive point
of view resides in its future eventual application in algebraic analysis.

The thesis is divided into seven chapters. In the first chapter, we recall the definition
and some basic properties of the skew PBW extensions. Some key and nontrivial exam-
ples of these rings are presented. These interesting examples will we used for illustrating
the theorems and algorithms. Concrete matrix and Gröbner computations with this type
of noncommutative rings probably have not been considered before in the literature.

Chapter 2 includes four sections. In Section 2.1, we recall some basic notions on linear
algebra for left modules over arbitrary noncommutative rings. The RC condition (rank
condition) and the IBN condition (Invariant Basis Number) are recalled. In Corollary
2.1.8 we prove that a skew PBW extension is RC if and only if its ring of coefficients is
RC. Many characterizations of stably free modules are given in Section 2.2. Section 2.3
is devoted to present a completely constructive proof of the general version of Stafford’s
theorem. This theorem was also considered in [105] but introducing an involution for the
ring, our proof avoids this involution and is the main result of the chapter (Lemma 2.3.5
and Theorem 2.3.6). In Section 2.4, we present some theoretic results that give effective
methods for computing the projective dimension of a module, and also for constructing
minimal presentations.

In Chapter 3 are presented some matrix characterizations of Hermite rings (for which
stably free modules are free), PSF rings (for which finitely generated projective modules
are stably free) and PF rings (for which finitely generated projective modules are free).
The main results are Theorem 3.1.2 and Corollary 3.2.4. Some subclasses of Hermite rings
are characterized from a matrix point of view as well as its behavior under products,
quotients and localizations (Theorem 3.4.1).

As it was observed above, it is easy to present examples of skew PBW extensions
that are not Hermite rings. So, instead of this condition it is possible to study a weaker
one, the d-Hermite condition, i.e., when any stably free module of rank ≥ d is free (see
Definition 4.1.2). In Chapter 4, we investigate the d-Hermite condition for skew PBW
extensions. We will give an upper bound for the stable range of a bijective skew PBW
extension with finite left Krull dimension, and with this, in order to know a value d for
which the extension is d-Hermite, i.e., for which every stably free module of rank ≥ d
is free. Closely related to the stable range of a ring and its left Krull dimension is a
Kronecker’s theorem about the radical of finitely generated left ideals. In Section 4.3, we
consider this theorem for bijective skew PBW extensions over left Noetherian domains,
using the technique of Zariski lattice and boundary ideal that we found in [88], [89] and
[123], but in the noncommutative framework. Thus, the main results of Chapter 4 are
Proposition 4.2.2, Theorem 4.3.7 and Corollary 4.3.9.



INTRODUCTION VI

Chapters 5, 6 and 7 conform the second part of the thesis. In Chapter 5, we complete
the construction of the theory of Gröbner bases for general bijective skew PBW exten-
sions. This construction was initiated in [40] for left ideals and in [58] for left modules,
but under the assumption that the extension is quasi-commutative and bijective. In the
present thesis we not only extend the theory to the general bijective case, eliminating
the quasi-commutative restriction, but also we construct the theory for right ideals and
modules. Thus, we can say that we construct a complete Gröbner theory for all quantum
algebras mentioned at the beginning of this preface. The main results of Chapter 5 are
Theorems 5.4.4, 5.5.13, 5.5.18 and 5.6.6.

In Chapter 6, we present some classical applications of Gröbner bases as the mem-
bership problem, the computations of syzygies, intersections, quotient modules, finite
presentations of modules, kernel and images of homomorphisms and the construction
of free resolutions. All of these constructions are illustrated for modules over nontrivial
examples of skew PBW extensions. The main results are Theorem 6.2.12 and Corollary
6.2.7. This corollary establishes that if the rings of coefficients of a bijective skew PBW
extension has a Gröbner theory, then the extension also satisfies this property.

The matrix-constructive theorems proved in the first chapters of the thesis will be in-
terpreted by algorithms in the last chapter. Applying the Gröbner theory developed in
Chapters 5 and 6, we obtain effective procedures for constructing left and right inverses
of matrices over bijective skew PBW extensions, and with this, effective algorithms for
testing stably freeness, freeness; effective procedures for computing the projective dimen-
sion of a module and for computing bases of free modules.

A Filter-graded transfer is presented in the appendix A, as a generalization of what
was developed in this regard in [19] and [84].



CHAPTER 1

Skew PBW extensions

In this first chapter, we recall the definition of skew PWB extensions (also known as
σ-PBW extensions), introduced by Lezama and Gallego in [40], as a generalization of
the PBW (Poincaré-Birkhoff-Witt) extensions. Furthermore, we consider some of their
structural properties and some important facts which are satisfied by them. We also
establish some preliminary notation and necessary results for the subsequent sections.
Finally, we present some examples of this class that includes well known classes of Ore
algebras, operator algebras, and also many quantum rings and algebras.

1.1 Definitions and elementary examples

In this section, we present the definition of skew PBW extensions, some of their struc-
tural properties and some examples of these class of noncommutative rings. As we will
see, the skew PBW extensions are a generalization of PBW extensions defined by Bell
and Goodearl in 1988 in [10].

Definition 1.1.1. LetR andA be rings, we say thatA is a skew PBW extension ofR (also called
σ − PBW extension), if the following conditions hold:

(i) R ⊆ A.

(ii) There exist finite elements x1, . . . , xn ∈ A such A is a left R-free module with basis

Mon(A) := Mon{x1, . . . , xn} = {xα = xα1
1 · · ·xαnn |α = (α1, . . . , αn) ∈ Nn}.

In this case it is also said that A is a ring of a left polynomial type over R with respect to
{x1, . . . , xn} and Mon(A) is the set of standard monomials of A. Moreover, x0

1 · · ·x0
n :=

1 ∈Mon(A).

(iii) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists ci,r ∈ R− {0} such that

xir − ci,rxi ∈ R. (1.1.1)

1



CHAPTER 1. SKEW PBW EXTENSIONS 2

(iv) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (1.1.2)

Under these conditions we will write A = σ(R)〈x1, . . . , xn〉.

Remark 1.1.2. (i) Since that Mon(A) is a R-basis for A, the elements ci,r and ci,j in the
above definition are unique.

(ii) If r = 0, then ci,0 = 0: in fact, 0 = xi0 = ci,0xi + si, with si ∈ R, but since Mon(A)
is a R-basis, then ci,0 = 0 = si.

(iii) In (iv), ci,i = 1: in fact, x2
i − ci,ix2

i = s0 + s1x1 + · · · + snxn, with si ∈ R, hence
1− ci,i = 0 = si.

(iv) Let i < j, by (1.1.2) there exist cj,i, ci,j ∈ R such that xixj − cj,ixjxi ∈ R + Rx1 +
· · ·+Rxn and xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn, but since Mon(A) is a R-basis then
1 = cj,ici,j , i.e., for every 1 ≤ i < j ≤ n, ci,j has a left inverse and cj,i has a right inverse.

(v) Each element f ∈ A−{0} has a unique representation in the form f = c1X1 + · · ·+
ctXt, with ci ∈ R− {0} and Xi ∈Mon(A), 1 ≤ i ≤ t.

The following proposition justifies the notation that we have introduced for the skew
PBW extensions.

Proposition 1.1.3. Let A be a skew PBW extension of R. Then, for every 1 ≤ i ≤ n, there exist
an injective ring endomorphism σi : R→ R and a σi-derivation δi : R→ R such that

xir = σi(r)xi + δi(r),

for each r ∈ R.

Proof. See [40], Proposition 3.

A particular case of skew PBW extension is when all derivations δi are zero. Another
interesting case is when all σi are bijective and the constants cij are invertible. We have
the following definition.

Definition 1.1.4. Let A be a skew PBW extension.

(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 1.1.1 are replaced by

(iii′) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists ci,r ∈ R− {0} such that

xir = ci,rxi. (1.1.3)

(iv′) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi = ci,jxixj . (1.1.4)

(b) A is bijective if σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible for any 1 ≤ i < j ≤
n.
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Some familiar examples of skew PBW extensions are the following.

Example 1.1.5. (i) Any PBW extension is a bijective skew PBW extension since in this
case σi = iR for each 1 ≤ i ≤ n and ci,j = 1 for every 1 ≤ i, j ≤ n.

(ii) Any skew polynomial ring R[x;σ, δ] of injective type, i.e., with σ injective, is a skew
PBW extension; in this case we have R[x;σ, δ] = σ(R)〈x〉. If additionally δ = 0, then
R[x;σ] is quasi-commutative.

(iii) Let R[x1;σ1, δ1] · · · [xn;σn, δn] be an iterated skew polynomial ring of injective type,
i.e., if the following conditions hold:

For 1 ≤ i ≤ n, σi is injective

For every r ∈ R and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R

For i < j, σj(xi) = cxi + d, with c, d ∈ R and c has a left inverse.

For i < j, δj(xi) ∈ R+Rx1 + · · ·+Rxi.

Then, R[x1;σ1, δ1] · · · [xn;σn, δn] is a skew PBW extension. Under these conditions we
have

R[x1;σ1, δ1] · · · [xn;σn, δn] = σ(R)〈x1, . . . , xn〉.

In particular, any Ore extension R[x1;σ1, δ1] · · · [xn;σn, δn] of injective type, i.e., for 1 ≤ i ≤
n, σi is injective, is a skew PBW extension. In fact, in Ore extensions for every r ∈ R
and 1 ≤ i ≤ n, σi(r), δi(r) ∈ R, and for i < j, σj(xi) = xi and δj(xi) = 0. An important
subclass of Ore extension of injective type are the Ore algebras of injective type, i.e., when
R = k[t1, . . . , tm], m ≥ 0, with k a field. Thus, we have

k[t1, . . . , tm][x1;σ1, δ1] · · · [xn;σn, δn] = σ(k[t1, . . . , tm])〈x1, . . . , xn〉.

Some concrete examples of Ore algebras of injective type are the following.

The algebra of shift operators: let k be a field and h ∈ k, then the algebra of shift operators
is defined by Sh := k[t][xh;σh, δh], where σh(p(t)) := p(t − h), and δh := 0 (observe that
Sh can be considered also as a skew polynomial ring of injective type). Thus, Sh is a
quasi-commutative bijective skew PBW extension.

The mixed algebra Dh: let again k be a field and h ∈ k, then the mixed algebra Dh

is defined by Dh := k[t][x; ik[t],
d
dt ][xh;σh, δh], where σh(x) := x. Then, Dh is a quasi-

commutative bijective skew PBW extension.

The algebra for multidimensional discrete linear systems is defined by
D := k[t1, . . . , tn][x1;σ1, 0] · · · [xn;σn, 0], where k is a field and

σi(p(t1, . . . , tn)) := p(t1, . . . , ti−1, ti + 1, ti+1, . . . , tn), σi(xi) = xi, 1 ≤ i ≤ n.

Thus, D is a quasi-commutative bijective skew PBW extension.

Observe that all of these examples are not PBW extensions.

(iv) Additive analogue of the Weyl algebra: let k be a field, the k-algebra An(q1, . . . , qn) is
generated by x1, . . . , xn, y1, . . . , yn and subject to the relations:
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xjxi = xixj , yjyi = yiyj , 1 ≤ i, j ≤ n,

yixj = xjyi, i 6= j,

yixi = qixiyi + 1, 1 ≤ i ≤ n,

where qi ∈ k − {0}. We observe that An(q1, . . . , qn) is isomorphic to the iterated skew
polynomial ring k[x1, . . . , xn][y1;σ1, δ1] · · · [yn;σn, δn] over the commutative polynomial
ring k[x1, . . . , xn]:

σj(yi) := yi, δj(yi) := 0, 1 ≤ i < j ≤ n,

σi(xj) := xj , δi(xj) := 0, i 6= j,

σi(xi) := qixi, δi(xi) := 1, 1 ≤ i ≤ n.

Thus, An(q1, . . . , qn) satisfies the conditions of (iii) and is bijective; we have

An(q1, . . . , qn) = σ(k[x1, . . . , xn])〈y1, . . . , yn〉.

(v) Multiplicative analogue of the Weyl algebra: let k be a field, the k-algebra On(λji) is
generated by x1, . . . , xn and subject to the relations:

xjxi = λjixixj , 1 ≤ i < j ≤ n,

where λji ∈ k− {0}. We note that On(λji) is isomorphic to the iterated skew polynomial
ring k[x1][x2;σ2] · · · [xn;σn]

σj(xi) := λjixi, 1 ≤ i < j ≤ n.

Thus, On(λji) satisfies the conditions of (iii), and hence On(λji) is an iterated skew poly-
nomial ring of injective type but is not Ore. Thus,

On(λji) = σ(k[x1])〈x2, . . . , xn〉.

Moreover, note that On(λji) is quasi-commutative and bijective.

(vi) q-Heisenberg algebra: let k be a field, the k-algebra Hn(q) is generated by the ele-
ments x1, . . . , xn, y1, . . . , yn, z1, . . . , zn and subject to the relations:

xjxi = xixj , zjzi = zizj , yjyi = yiyj , 1 ≤ i, j ≤ n,

zjyi = yizj , zjxi = xizj , yjxi = xiyj , i 6= j,

ziyi = qyizi, zixi = q−1xizi + yi, yixi = qxiyi, 1 ≤ i ≤ n,

with q ∈ k − {0}. Note that Hn(q) is isomorphic to the iterated skew polynomial ring
k[x1, . . . , xn][y1;σ1] · · · [yn;σn][z1; θ1, δ1] · · · [zn; θn, δn] with coefficients in the commutative
polynomial ring k[x1, . . . , xn]:
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θj(zi) := zi, δj(zi) := 0, σj(yi) := yi, 1 ≤ i < j ≤ n,

θj(yi) := yi, δj(yi) := 0, θj(xi) := xi, δj(xi) := 0, σj(xi) := xi, i 6= j,

θi(yi) := qyi, δi(yi) := 0, θi(xi) := q−1xi, δi(xi) := yi, σi(xi) := qxi, 1 ≤ i ≤ n,

Since δi(xi) = yi /∈ k[x1, . . . , xn], thenHn(q) is not a skew PBW extension of k[x1, . . . , xn],
however, with respect to k, Hn(q) satisfies the conditions of (iii), and hence, Hn(q) is a
bijective skew PBW extension of k:

Hn(q) = σ(k)〈x1, . . . , xn; y1, . . . , yn; z1, . . . , zn〉.

Remark 1.1.6. we want to emphasize that the skew PBW extensions are not a subclass of
the collection of iterated skew polynomial rings: take for example U(G) or the diffusion
algebra (see [83] and Section 1.3 below). On the other hand, the skew polynomial rings
are not included in the class of skew PBW extensions: takeR[x;σ, δ], with σ not injective.

1.2 Basic properties

In this section, some basic important properties of skew PBW extensions are presented.
We start with some notation that we will use frequently in this thesis.

Definition 1.2.1. Let A be a skew PBW extension of R with endomorphisms σi, 1 ≤ i ≤ n, as
in Proposition 1.1.3.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1
1 · · ·σαnn , |α| := α1 + · · · + αn. If β =

(β1, . . . , βn) ∈ Nn, then α+ β := (α1 + β1, . . . , αn + βn).

(ii) For X = xα ∈Mon(A), exp(X) := α and deg(X) := |α|.

(iii) Let 0 6= f ∈ A, t(f) is the finite set of terms that shape f , i.e., if f = c1X1 + · · · + ctXt,
with Xi ∈Mon(A) and ci ∈ R− {0}, then t(f) := {c1X1, . . . , ctXt}.

(iv) Let f be as in (iii), then deg(f) := max{deg(Xi)}ti=1.

The skew PBW extensions can be characterized in a similar way as it was done in
[18] for PBW rings (see Proposition 2.4 there in).

Theorem 1.2.2. Let A be a left polynomial ring over R w.r.t. {x1, . . . , xn}. A is a skew PBW
extension of R if and only if the following conditions hold:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exist unique elements rα := σα(r) ∈
R− {0} and pα,r ∈ A such that

xαr = rαx
α + pα,r, (1.2.1)

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. Moreover, if r is left invertible, then rα is
left invertible.
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(b) For every xα, xβ ∈Mon(A) there exist unique elements cα,β ∈ R and pα,β ∈ A such that

xαxβ = cα,βx
α+β + pα,β, (1.2.2)

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α+ β| if pα,β 6= 0.

Proof. See [40], Theorem 7.

Remark 1.2.3. (i) A left inverse of cα,β will be denoted by c′α,β . We observe that if α = 0
or β = 0, then cα,β = 1 and hence c′α,β = 1.

(ii) Let θ, γ, β ∈ Nn and c ∈ R, then we have the following identities:

σθ(cγ,β)cθ,γ+β = cθ,γcθ+γ,β ,

σθ(σγ(c))cθ,γ = cθ,γσ
θ+γ(c).

In fact, since xθ(xγxβ) = (xθxγ)xβ , then

xθ(cγ,βx
γ+β + pγ,β) = (cθ,γx

θ+γ + pθ,γ)xβ ,

σθ(cγ,β)cθ,γ+βx
θ+γ+β + p = cθ,γcθ+γ,βx

θ+γ+β + q,

with p = 0 or deg(p) < |θ + γ + β|, and, q = 0 or deg(q) < |θ + γ + β|. From this we get
the first identity. For the second, xθ(xγc) = (xθxγ)c, and hence

xθ(σγ(c)xγ + pγ,c) = (cθ,γx
θ+γ + pθ,γ)c,

σθ(σγ(c))cθ,γx
θ+γ + p = cθ,γσ

θ+γ(c)xθ+γ + q,

with p = 0 or deg(p) < |θ + γ|, and, q = 0 or deg(q) < |θ + γ|. This proves the second
idenity.

(iii) If A is quasi-commutative, from the proof of Theorem 1.2.2, we conclude that
pα,r = 0 and pα,β = 0 for every 0 6= r ∈ R and every α, β ∈ Nn. On the other hand, note
that the evaluation function at 0, i.e., A → R, f ∈ A 7→ f(0) ∈ R, is a ring surjective ho-
momorphism with kernel 〈x1, . . . , xn〉 the two-sided ideal generated by x1, . . . , xn. Thus,
A/〈x1, . . . , xn〉 ∼= R.

(iv) If A is bijective, then cα,β is invertible for any α, β ∈ Nn.

(v) In Mon(A) we define

xα � xβ ⇐⇒



xα = xβ

or
xα 6= xβ but |α| > |β|
or
xα 6= xβ, |α| = |β| but ∃ i with α1 = β1, . . . , αi−1 = βi−1, αi > βi.

It is clear that this is a total order on Mon(A), called deglex order. If xα � xβ but xα 6= xβ ,
we write xα � xβ . Each element f ∈ A − {0} can be represented in a unique way as
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f = c1x
α1 + · · · + ctx

αt , with ci ∈ R − {0}, 1 ≤ i ≤ t, and xα1 � · · · � xαt . We say that
xα1 is the leader monomial of f and we write lm(f) := xα1 ; c1 is the leader coefficient of f ,
lc(f) := c1, and c1x

α1 is the leader term of f denoted by lt(f) := c1x
α1 . If f = 0, we define

lm(0) := 0, lc(0) := 0, lt(0) := 0, and we set X � 0 for any X ∈Mon(A). We observe that

xα � xβ ⇒ lm(xγxαxλ) � lm(xγxβxλ), for every xγ , xλ ∈Mon(A).

The following properties are natural and useful results that will be used later.

Proposition 1.2.4. Let A be a bijective skew PBW extension of a ring R. Then,

(i) If R is a domain, the A is a domain.

(ii) AR is free with basis Mon(A).

Proof. See [83] Proposition 1.7 and Proposition 4.1.

The next theorem shows how can be associated one quasi-commutative skew PBW
extension to an arbitrary skew PBW extension.

Proposition 1.2.5. LetA be a skewPBW extension ofR. Then, there exists a quasi-commutative
skew PBW extension Aσ of R in n variables z1, . . . , zn defined by

zir = ci,rzi, zjzi = ci,jzizj , 1 ≤ i, j ≤ n,

where ci,r, ci,j are the same constants that define A. If A is bijective then Aσ is also bijective.

Proof. See [83], Proposition 2.1.

Before continuing, we need to recall the definition of a filtered ring. As we shall see,
the skew PBW extensions are filtered rings; this last fact turns out to be essential in
several important results that we present later.

Definition 1.2.6. A ring S is called a filtered ring with filtration F (S) if there is a sequence
F (S) = {Fp(S)}p∈Z of subgroups of the additive group of S such that:

(i)
⋃
p∈Z Fp(S) = S.

(ii) 1 ∈ F0(S).

(iii) For p < q, Fp(S) ⊆ Fq(S).

(iv) Fp(S)Fq(S) ⊆ Fp+q(S) for all p, q ∈ Z.

We say that the filtration F (S) is separated if
⋂
p∈Z Fp(S) = 0. Finally, if F−1(S) = 0, then S is

called a positively filtered ring, and F (S) is called a positive filtration on S
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Given a filtered ring S with filtration F (S), the associated graded ring of S with respect
toF (S), is defined to be the graded ringG(S) = ⊕p∈ZG(S)p withG(S)p := Fp(S)/Fp−1(S)
and the multiplication given by

Fp(S)/Fp−1(S)× Fq(S)/Fq−1(S)→ Fp+q(S)/Fp+q−1(S)

(a+ Fp−1(S), b+ Fq−1(S)) 7→ ab+ Fp+q−1(S).

The following theorem shows that any skewPBW extension is a filtered ring, and presents
a characterization of its associated graded ring.

Theorem 1.2.7. Let A be an arbitrary skew PBW extension of the ring R. Then, A is a filtered
ring with filtration given by

Fm :=

{
R, if m = 0,

{f ∈ A| deg(f) ≤ m}, if m ≥ 1
(1.2.3)

and the corresponding graded ring Gr(A) is a quasi-commutative skew PBW extension of R.
Moreover, if A is bijective, then Gr(A) is a quasi-commutative bijective skew PBW extension of
R.

Proof. See [83], Theorem 2.2.

The following theorem is an important result that characterizes the quasi-commutative
skew PBW extensions.

Theorem 1.2.8. Let A be a quasi-commutative skew PBW extension of a ring R. Then,

(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type.

(ii) If A is bijective, then each endomorphism is bijective.

Proof. See [83], Theorem 2.3.

These last results allow to establish the Hilbert Basis Theorem for skew PBW exten-
sions.

Theorem 1.2.9 (Hilbert Basis Theorem). Let A be a bijective skew PBW extension of R. If R
is a left (right) Noetherian ring then A is also a left (right) Noetherian ring.

Proof. See [83], Corollary 2.4.

The task of studying properties of modules defined on skew PBW extensions should
consider the computation of measures such as global dimension, Krull dimension or uni-
form dimension. More specifically, knowing such dimensions will allow us to make as-
sertions about freeness of stably free modules, or more generally, of finitely generated
projective modules. A initial approach in this sense provide us the following two theo-
rems: the first theorem establishes sufficient conditions for a skew PBW extension to be
a regular. The second theorem - that can be considered as Serre’s theorem for these rings
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- asserts that if the ring of coefficients is a PSF ring, then the extension also satisfies such
property.

Recall that a noncommutative ring is said to be left regular if every left finitely generated
module has a finite projective dimension or, equivalently, if every left cyclic module over
this ring has a finite projective dimension (right regularity is defined analogously). More-
over, a ring is called left PSF if every left finitely generated projective module is stably
free. This class of rings will be considered again in the Section 3.1, Chapter 3.

Theorem 1.2.10. Let A be a bijective skew PBW extension of a ring R. If R is a left (right)
regular and left (right) Noetherian ring, then A is left (right) regular.

Proof. See [83], Corollary 2.6.

Theorem 1.2.11 (Serre’s theorem). Let A be a bijective skew PBW extension of a ring R such
that R is left (right) Noetherian, left (right) regular and PSF . Then A is PSF .

Proof. See [83], Corollary 2.8.

1.3 More examples

Many other important and interesting examples of bijective skew PBW extensions, and
some other classes of noncommutative rings of polynomial type closely related to such
extensions, were presented and discussed in [108] and [83]. In this section, we recall
some of these key examples that will be used later to illustrate the algorithms that will be
presented in the thesis.

Example 1.3.1. The Quantum Weyl AlgebraA2(Ja,b) is the k-algebra generated by the vari-
ables x1, x2, ∂1, ∂2, with the relations (depending upon parameters a, b ∈ k):

x1x2 =x2x1 + ax2
1

∂2∂1 =∂1∂2 + b∂2
2

∂1x1 =1 + x1∂1 + ax1∂2

∂1x2 =− ax1∂1 − abx1∂2 + x2∂1 + bx2∂2

∂2x1 =x1∂2

∂2x2 =1− bx1∂2 + x2∂2.

When a = b = 0, we have that A2(J0,0) ∼= A2(k) for any field k (see [38] for more proper-
ties). In [108] was shown that A2(Ja,b) ∼= σ(k[x1, ∂2])〈x2, ∂1〉.

Example 1.3.2. The coordinate ring of the manifold of quantum 2× 2 matrices Mq(2). This al-
gebra is also known as Manin algebra of 2×2 quantum matrices (cf. [84], [93]). By definition,
Mq(2) is the k-algebra generated by the variables x, y, u, v satisfying the relations

xu = qux, yu = q−1uy, vu = uv, (1.3.1)

and
xv = qvx, vy = qyv, yx− xy = −(q − q−1)uv, (1.3.2)
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where q ∈ k − {0}. Thus, Mq(2) ∼= σ(k[u])〈x, y, v〉. Due to the last relation in (1.3.2), we
remark that it is not possible to consider Mq(2) as a skew PBW extension of k. See [19]
for more details.

Example 1.3.3. According to [55], a diffusion algebra D over a field k is generated by
{Di, xi | 1 ≤ i ≤ n} over k with relations

xixj = xjxi, xiDj = Djxi, 1 ≤ i, j ≤ n.

cijDiDj − cjiDjDi = xjDi − xiDj , i < j, cij , cji ∈ k∗.

Thus, D ∼= σ(k[x1, . . . , xn])〈D1, . . . , Dn〉 is a bijective non quasi-commutative skew PBW
extension of k[x1, . . . , xn]. Observe that D is not a PBW extension neither an iterated
skew polynomial ring of bijective type (see Example 1.1.5).

Example 1.3.4. Viktor Levandovskyy defined in [73] the G-algebras and he constructed
the theory of Gröbner bases for these rings (see Chapter 5 of the current monograph for
the Gröbner theory of bijective skew PBW extensions). Let k be a field, a k-algebra A is
called a G-algebra if k ⊂ Z(A) (center of A) and A is generated by a finite set {x1, . . . , xn}
of elements that satisfy the following conditions: (a) the collection of standard monomials
of A is a k-basis of A. (b) xjxi = cijxixj + dij , for 1 ≤ i < j ≤ n, with cij ∈ k − {0} and
dij ∈ A. (c) There exists a total order <A on Mon(A) such that for i < j, lm(dij) <A
xixj . According to this definition, G-algebras appear like more general than skew PBW
extensions since dij is not necessarily linear; however, in G-algebras the coefficients of
polynomials are in a field and they commute with the variables x1, . . . , xn. Note that the
class of G-algebras does not include the class of skew PBW extensions over fields. For
example, consider the k-algebra A generated by x, y, z subject to the relations

yx− q2xy = x, zx− q1xz = z, zy = yz, q1, q2 ∈ k.

Thus, A is not a G-algebra in the sense of [73]. Note that if q1, q2 6= 0, then A ∼=
σ(k)〈x, y, z〉 is a bijective non quasi-commutative skew PBW extension of k.

Example 1.3.5. Witten’s deformation of U(sl(2, k). E. Witten introduced and studied a 7-
parameter deformation of the universal enveloping algebra U(sl(2,k)) over the field k,
depending on a 7-tuple of parameters ξ = (ξ1, . . . , ξ7) of k and subject to relations

xz − ξ1zx = ξ2x, zy − ξ3yz = ξ4y, yx− ξ5xy = ξ6z
2 + ξ7z.

The resulting algebra is denoted byW (ξ) and it is assumed that ξ1ξ3ξ5 6= 0 (see [73]). Note
that if ξ2ξ4ξ6 6= 0, then W (ξ) ∼= σ(σ(k[x])〈z〉)〈y〉 is a bijective non quasi-commutative
skew PBW extension of σ(k[x])〈z〉, and consequently, σ(k[x])〈z〉 is a bijective non quasi-
commutative skew PBW extension of k[x]. In [73] is proved that the only way that W (ξ)
is a G-algebra is when ξ1 = ξ3 and ξ2 = ξ4. Thus, in general, W (ξ) is a skew PBW
extension but is not a G-algebra.

Example 1.3.6. In [18] (see also [19]) Bueso, Gómez-Torrecillas and Verschoren defined a
type of rings and algebras called left PBW rings. Many of rings and algebras considered
in [83] (see also [108]) can be interpreted also as left PBW rings. We present an example
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of skew PBW extension that is not a left PBW ring: let k be a field; for any 0 6= q ∈ k, let
R be an algebra generated by the variables a, b, c, d subject to the relations

ba = qab, db = qbd, ca = qac, dc = qcd

bc = µcb, ad− da = (q−1 − q)bc.

for some µ ∈ k. Then R is not a left PBW ring unless µ = 1 (see [19]). Thus, for µ 6= 1,
R ∼= σ(k[b])〈a, c, d〉 is a bijective non quasi-commutative skew PBW extension of k[b]
that is not a left PBW ring.



CHAPTER 2

Stably free modules

Serre’s Theorem for bijective skew PBW extensions (see Theorem 1.2.11 and Corollary
2.8 in [83]) states that if M is a finitely generated projective module over a bijective skew
PBW extension A of a left Noetherian, left regular PSF ring R, then M is stably free. In
the same way, Remark 3.3. in [83] establishes that if M is a f.g. projective module over
the ring Qr,nq,σ(R) of skew quantum polynomials over R, where R satisfies the same above
conditions, then M is stably free. The following natural question arises: when are stably
free modules over A (or over Qr,nq,σ(R)) free? The first thing that we have to observe is
that not any stably free module over a bijective skew PBW extension is free. The next
trivial example shows this ([62], p. 36): If T is a division ring, then S := T [x, y] has a
module M such that M ⊕S ∼= S2, but M is not free. In a more general framework, and as
preparatory material for posterior studies in next chapters, we are interested in studying
when stably free modules over enough arbitrary noncommutative rings are free. A well
known result in this direction is the Stafford’s Theorem that we will prove in this chapter.
Many characterizations of stably free modules will be presented also. There are different
techniques to research stably free modules, we will combine homological and matrix
constructive methods.

2.1 RC and IBN rings

In this section, we recall some notations and elementary properties well known of linear
algebra for left modules. All rings are noncommutative and modules will be considered
on the left; the letter S will represent an arbitrary noncommutative ring, thus Sr is the

left S-module of columns of size r × 1. If Ss
f−→ Sr is an S-homomorphism then there

is a matrix associated to f in the canonical bases of Sr and Ss, denoted F := m(f), and
disposed by columns, i.e., F ∈Mr×s(S). In fact, if f is given by

Ss
f−→ Sr , ej 7→ f j

where {e1, . . . , es} is the canonical basis of Ss, f can be represented by a matrix, i.e., if
f j :=

[
f1j . . . frj

]T , then the matrix of f in the canonical bases of Ss and Sr is

12
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F :=
[
f1 · · · f s

]
=

f11 · · · f1s
...

...
fr1 · · · frs

 ∈Mr×s(S).

Note that Im(f) is the column module of F , i.e., the left S-module generated by the
columns of F , denoted by 〈F 〉:

Im(f) = 〈f(e1), . . . , f(es)〉 = 〈f1, . . . , f s〉 = 〈F 〉.

Moreover, observe that if a := (a1, . . . , as)
T ∈ Ss, then

f(a) = (aTF T )T . (2.1.1)

In fact,

f(a) = a1f(e1) + · · ·+ asf(es) = a1f1 + · · ·+ asf s

= a1

f11
...
fr1

+ · · ·+ as

f1s
...
frs


=

a1f11 + · · ·+ asf1s
...

a1fr1 + · · ·+ asfrs


= (
[
a1 · · · as

] f11 · · · fr1
...

...
f1s · · · frs

)T

= (aTF T )T .

Note that function m : HomS(Ss, Sr) → Mr×s(S) is bijective; moreover, if Sr
g−→ Sp is a

homomorphism, then the matrix of gf in the canonical bases is m(gf) = (F TGT )T . Thus,
f : Sr → Sr is an isomorphism if and only if F T ∈ GLr(S). Finally, let C ∈ Mr(S); the
columns of C conform a basis of Sr if and only if CT ∈ GLr(S).

We also recall that

Syz({f1, . . . , f s}) := {a := (a1, . . . , as)
T ∈ Ss|a1f1 + · · ·+ asf s = 0}.

Note that
Syz({f1, . . . , f s}) = ker(f), (2.1.2)

but Syz({f1, . . . , f s}) 6= ker(F ) since we have

a ∈ Syz({f1, . . . , f s})⇔ aTF T = 0. (2.1.3)

A matrix characterization of f.g. projective modules can be formulated in the following
way.
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Proposition 2.1.1. Let S be an arbitrary ring and M a S-module. Then, M is a f.g. projective
S-module if and only if there exists a square matrix F over S such that F T is idempotent and
M = 〈F 〉.

Proof. ⇒): If M = 0, then F = 0; let M 6= 0, there exists s ≥ 1 and a M ′ such that
Ss = M ⊕ M ′; let f : Ss → Ss be the projection on M and F the matrix of f in the
canonical basis of Ss. Then, f2 = f and (F TF T )T = F , so F TF T = F T ; note that
M = Im(f) = 〈F 〉.

⇐): Let f : Ss → Ss be the homomorphism defined by F (see (2.1.1)); from F TF T =
F T we get that f2 = f , moreover, since M = 〈F 〉, then Im(f) = M and hence M is direct
summand of Ss, i.e., M is f.g. projective (observe that the complement M ′ of M is ker(f)
and f is the projection on M ).

Remark 2.1.2. (i) When S is commutative, or when we consider right modules instead of
left modules, (2.1.1) asserts that f(a) = Fa. Moreover, in such cases Syz({f1, . . . , f s}) =
ker(F ) and the matrix of a compose homomorphism gf is given by m(gf) = m(g)m(f).
Note that f : Sr → Sr is an isomorphism if and only if F ∈ GLr(S); besides, C ∈ GLr(S)
if and only if its columns conform a basis of Sr. In addition, Proposition 2.1.1 states that
M is a f.g. projective S-module if and only if there exists a square matrix F over S such
that F is idempotent and M = 〈F 〉.

(ii) When the matrices of homomorphisms of left modules are disposed by rows in-
stead of by columns, i.e., if S1×s is the left free module of rows vectors of length s and the

matrix of the homomorphism S1×s f−→ S1×r is defined by

F ′ =

f
′
11 · · · f ′1r
...

...
f ′s1 · · · f ′sr

 :=

f11 · · · fr1
...

...
f1s · · · frs

 ∈Ms×r(S),

then
f(a1, . . . , as) = (a1, . . . , as)F

′, (2.1.4)

i.e., f(aT ) = aTF T . Thus, the values given by (2.1.4) and (2.1.1) agree since F ′ = F T .
Moreover, the composed homomorphism gf means that g acts first and then acts f , and
hence, the matrix of gf is given by m(gf) = m(g)m(f). Note that f : S1×r → S1×r is an
isomorphism if and only if m(f) ∈ GLr(S); furthermore, C ∈ GLr(S) if and only if its
rows conform a basis of S1×r. This left-row notation is used in [26]. Observe that with this
notation, the proof of Proposition 2.1.1 claims that M is a f.g. projective S-module if and
only if there exists a square matrix F over S such that F is idempotent and M = 〈F 〉, but
in this case 〈F 〉 represents the module generated by the rows of F . Note that Proposition
2.1.1 could have been formulated this way: In fact, the set of idempotents matrices of
Ms(S) coincides with the set {F T |F ∈Ms(S), F T idempotent}.

Definition 2.1.3 ([62]). Let S be a ring.

(i) S satisfies the rank condition (RC) if for any integers r, s ≥ 1, given an epimorphism

Sr
f−→ Ss, then r ≥ s.
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(ii) S is an IBN ring (Invariant Basis Number) if for any integers r, s ≥ 1, Sr ∼= Ss if and
only if r = s.

Proposition 2.1.4. Let S be a ring.

(i) S isRC if and only if given any matrix F ∈Ms×r(S) the following condition holds:

if F has a right inverse then r ≥ s.

(ii) S isRC if and only if given any matrix F ∈Ms×r(S) the following condition holds:

if F has a left inverse then s ≥ r.

Proof. (i)⇒): Let G be a right inverse of F , that is FG = Is; let f : Sr → Ss and g : Ss →
Sr such that m(f) = F and m(g) = G. Thus ((F T )T (GT )T )T = Is; let fT : Ss → Sr and
gT : Sr → Ss such that m(fT ) = F T and m(gT ) = GT , then m(gT fT ) = m(iSs) and hence
gT fT = iSs , i.e., gT is surjective. Since S isRC, then r ≥ s.

⇐): Let Sr
f−→ Ss be an epimorphism, there exists Ss

g−→ Sr such that fg = iSs ; let
F := m(f) ∈ Ms×r(S) and G := m(g) ∈ Mr×s(S), then m(fg) = (GTF T )T = Is, so
GTF T = Is, i.e., GT has right inverse, and by hypothesis r ≥ s. This means that S isRC.

(ii)⇒): LetG ∈Mr×s(S) a left inverse of F , thenG has right inverse, and by (i), s ≥ r.

⇐): Let Sr
f−→ Ss be an epimorphism; as in (i), GTF T = Is, so F T ∈ Mr×s(S) has a

left inverse and by the hypothesis r ≥ s. Thus, S isRC.

The relation between theRC and IBN properties is established below.

Proposition 2.1.5. RC ⇒ IBN .

Proof. Let Sr
f−→ Ss be an isomorphism, then f is an epimorphism, and hence r ≥ s;

considering f−1 we get that s ≥ r.

Example 2.1.6. Most of rings considered in the literature areRC, and hence, IBN .

(i) Any field k isRC: let kr f−→ ks be an epimorphism, then dim(kr) = r = dim(ker(f))+
s, so r ≥ s.

(ii) Let S and T be rings and let S
f−→ T be a ring homomorphism, if T is a RC ring

then S is also aRC ring. In fact, T is a right S-module, t ·s := tf(s); suppose that Sr
f−→ Ss

is an epimorphism, then T⊗SSr
iT⊗f−−−→ T⊗SSs is also an epimorphism of left T -modules,

i.e., we have an epimorphism T r → T s, so r ≥ s (a similar result and proof is valid for
the IBN property).

(iii) We can apply the property proved in (ii) in many situations. For example, any
commutative ring S is RC: let J be a maximal ideal of S, then the canonical homomor-
phism S → S/J shows that S isRC since S/J is a field.
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(iv) Any ring S with finite uniform dimension (Goldie dimension, see [95] and [51])

is RC: in fact, suppose that Sr
f−→ Ss is an epimorphism, then Sr ∼= Ss ⊕M and hence

r udim(S) = s udim(S) + udim(M), so r ≥ s.

(v) Since any left Noetherian ring S has finite uniform dimension, then S is RC. In
particular, any left Artinian ring isRC.

Since the objects studied in the present monograph are the skew PBW extensions, it
is natural to investigate the IBN andRC properties for these rings.

Proposition 2.1.7. Let B be a filtered ring. If Gr(B) isRC (IBN ), then B isRC (IBN ).

Proof. Let {Bp}p≥0 be the filtration of B and f : Br → Bs an epimorphism. For M := Br

we consider the standard positive filtration given by

F0(M) := B0 · e1 + · · ·+B0 · er, Fp(M) := BpF0(M), p ≥ 1,

where {ei}ri=1 is the canonical basis of Br. Let e′i := f(ei), then Bs is generated by {e′i}ri=1

and N := Bs has an standard positive filtration given by

F0(N) := B0 · e′1 + · · ·+B0 · e′r, Fp(N) := BpF0(N), p ≥ 1.

Note that f is filtered and strict 1: In fact, f(Fp(M)) = Bpf(F0(M)) = Bp(B0 · f(e1) +
· · · + B0 · f(er)) = Bp(B0 · e′1 + · · · + B0 · e′r) = BpF0(N) = Fp(N). This implies that

Gr(M)
Gr(f)−−−→ Gr(N) is surjective (see [97], Theorem 4.4). If we prove that Gr(M) and

Gr(N) are free over Gr(B) with bases of r and s elements, respectively, then from the
hypothesis we conclude that r ≥ s and hence B isRC.

Since every ei ∈ F0(M) and Fp(M) =
∑r

i=1⊕Bp · ei, M is filtered-free with filtered-
basis {ei}ri=1, so Gr(M) is graded-free with graded-basis {ei}ri=1, ei := ei + F−1(M) = ei
(recall that by definition of positive filtration, F−1(M) := 0). ForGr(N) note thatN is also
filtered-free with respect the filtration {Fp(N)}p≥0 given above: Indeed, we will show
next that the canonical basis {fj}sj=1 of N is a filtered basis. If fj = xj1 · e′1 + · · ·+ xjr · e′r,
with xji ∈ Bpij , let p := max{pij}, 1 ≤ i ≤ r, 1 ≤ j ≤ s, then fj ∈ Fp(N), moreover, for
every q, Bq−p · f1 ⊕ · · · ⊕ Bq−p · fs ⊆ Bq−pFp(N) ⊆ Fq(N) (recall that for k < 0, Bk = 0);
in turn, let x ∈ Fq(N) \ Fq−1(N), then x = b1 · f1 + · · · + bs · fs and in Gr(N) we have
x ∈ Gr(N)q, x = b1 ·f1+· · ·+bs ·fs 6= 0, if bj ∈ Buj , let u := max{uj}, so bj ·fj ∈ Gr(N)u+p,
so q = u+p, i.e., u = q−p and hence x ∈ Bq−p ·f1⊕· · ·⊕Bq−p ·fs, Thus, we have proved
that Bq−p · f1⊕ · · ·⊕Bq−p · fs = Fq(N), for every q, and consequently, {fj}sj=1 is a filtered
basis of N . From this we conclude that Gr(N) is graded-free with graded-basis {fj}sj=1,
fj := fj + Fp−1(N).

We can repeat the previous proof for the IBN property but assuming that f is an
isomorphism.

Corollary 2.1.8. Let A be a skew PBW extension of a ring R. Then, A is RC (IBN ) if and
only if R isRC (IBN ).

1Remember that a homomorphism f : M → N between filtered modules is a filtered homomorphism if
f(Fp(M)) ⊆ Fp(N) for all p. Moreover, f is strict if f(Fp(M)) = Fp(N) ∩ Im(f).
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Proof. We consider only the proof forRC, the case IBN is completely analogous.

⇒): Since R ↪→ A, Example 2.1.6 shows that if A isRC, then R isRC.

⇐): We consider first the skew polynomial ring R[x;σ] of endomorphism type, then
R[x;σ] → R given by p(x) → p(0) is a ring homomorphism, so R[x;σ] is RC since
R is RC. By Theorem 1.2.8, Gr(A) is isomorphic to an iterated skew polynomial ring
R[z1; θ1] · · · [zn; θn], so Gr(A) isRC. It only remains to apply Proposition 2.1.7.

Remark 2.1.9. (i) The condition IBN for rings is independent of the side we are consi-
dering the modules. In fact, if we define left IBN rings and right IBN rings, depending
on left or right free S-modules, then S is left IBN if and only if S is right IBN (see [79]).
The same is true for theRC property.

(ii) Another property, closely related to IBN and RC, is the weakly finite condition,
denoted simply byWF : a ring S isWF if any epimorphism Sr → Sr of free modules is
an isomorphism (cf. [63], [26] or [20]). The WF rings satisfy similar properties that the
IBN and RC rings. So, for example, if S is a filtered ring and Gr(S) is WF , then S is
WF too. Thus, if A is a skew PBW extension of R, then R isWF if and only if A isWF .
Moreover, it is not difficult to show that every ringWF isRC. Therefore, we have that

WF =⇒ RC =⇒ IBN ,

and these implications are strict (see [28]).

(iii) From now on we will assume that all rings considered in the present thesis are
RC.

2.2 Characterizations of stably free modules

Definition 2.2.1. Let M be a S-module and t ≥ 0 an integer. M is stably free of rank t ≥ 0 if
there exist an integer s ≥ 0 such that Ss+t ∼= Ss ⊕M .

The rank of M is denoted by rank(M ). Note that any stably free module M is finitely
generated and projective. Moreover, as we will show in the next proposition, rank(M ) is
well defined, i.e., rank(M ) is unique for M .

Proposition 2.2.2. Let t, t′, s, s′ ≥ 0 integers such that Ss+t ∼= Ss ⊕M and Ss′+t′ ∼= Ss
′ ⊕M .

Then, t′ = t.

Proof. We have Ss
′ ⊕ Ss+t ∼= Ss

′ ⊕ Ss ⊕M and Ss ⊕ Ss′+t′ ∼= Ss ⊕ Ss′ ⊕M , then since S
is an IBN ring, s′ + s+ t = s+ s′ + t′, and hence t′ = t.

Corollary 2.2.3. M is stably free of rank t ≥ 0 if and only if there exist integers r, s ≥ 0 such
that Sr ∼= Ss ⊕M , with r ≥ s and t = r − s.

Proof. If M is stably free of rank t, then Ss+t ∼= Ss ⊕M for some integers s, t ≥ 0; taking
r := s + t we get the result. Conversely, if there exist integers r, s ≥ 0 such that Sr ∼=
Ss ⊕M , with r ≥ s, then Ss+r−s ∼= Ss ⊕M , i.e., M is stably free of rank r − s.
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Proposition 2.2.4. Let M be an S-module and let r, s ≥ 0 integers such that Sr ∼= Ss ⊕M .
Then r ≥ s.

Proof. The canonical projection Sr → Ss is an epimorphism; since we are assuming that
S isRC, then r ≥ s.

Corollary 2.2.5. M is stably free if and only if there exist integers r, s ≥ 0 such that Sr ∼=
Ss ⊕M .

Proof. This is a direct consequence of Corollary 2.2.3 and Proposition 2.2.4.

Proposition 2.2.6. LetM1,M2 be stably free modules of ranks p, q, respectively. Then, M1⊕M2

is stably free of rank p+ q.

Proof. We have Ss+p ∼= Ss ⊕M1, Sr+q ∼= Sr ⊕M2, then Ss+p ⊕M2
∼= Ss ⊕M1 ⊕M2 and

also Ss+p ⊕ Sr ⊕M2
∼= Ss ⊕ Sr ⊕M1 ⊕M2. Hence, Ss+p ⊕ Sr+q ∼= Ss+r ⊕M1 ⊕M2, i.e.,

Ss+r+p+q ∼= Ss+r ⊕M1 ⊕M2.

Remark 2.2.7. Let S be a ring with finite uniform dimension and let M be stably free,
then

rank(M) =
udim(M)

udim(S)
. (2.2.1)

In fact, from Ss+t ∼= Ss ⊕M we have (s + t) udim(S) = s udim(S) + udim(M), and this
proves the equality.

Next, we will prove many characterizations of stably free modules over noncommu-
tative rings (compare with [69], Chapter 21, [86], and [95], Chapter 11).

Theorem 2.2.8. Let M be an S-module. Then, the following conditions are equivalent

(i) M is stably free.

(ii) M is projective and has a finite free resolution:

0→ Stk
fk−→ Stk−1

fk−1−−−→ · · · f2−→ St1
f1−→ St0

f0−→M → 0.

In this case

rank(M) =

k∑
i=0

(−1)iti. (2.2.2)

(iii) M is isomorphic to the kernel of an epimorphism of free modules: M ∼= ker(π), π : Sr →
Ss.

(iv) M is projective and has a finite presentation Ss f1−→ Sr
f0−→M → 0, where ker(f0) is stably

free.

(v) M has a finite presentation Ss f1−→ Sr
f0−→M → 0, where f1 has a left inverse.
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Proof. (i)⇒ (ii) If Ss+t ∼= Ss ⊕M for some integers s, t ≥ 0, then M is projective and we
have the finite free resolution

0→ Ss
ι−→ Ss+t

π−→M → 0,

where ι is the canonical inclusion and π is the canonical projection on M .

(ii)⇒ (i) Let

0→ Stk
fk−→ Stk−1

fk−1−−−→ · · · f2−→ St1
f1−→ St0

f0−→M → 0

be a finite free resolution ofM . By induction on k, we will prove thatM is stably free and
(2.2.2) holds.

If k = 0 then M ∼= St0 is free of finite dimension t0, and hence, stably free of rank t0.
Let k ≥ 1 and let M1 = ker(f0). We get the exact sequence

0→M1
ι−→ St0

f0−→M → 0,

and hence St0 ∼= M ⊕M1 since M is a projective module. This implies that M1 is also
projective and we have the finite free resolution of M1

0→ Stk
fk−→ Stk−1

fk−1−−−→ · · · f2−→ St1
f1−→M1 → 0.

By induction, M1 is stably free of rank(M1) =
∑k

i=1(−1)i−1ti := p. There exists q ≥ 0
such that Sq+p ∼= Sq ⊕M1, and hence, St0 ⊕ Sq ∼= M ⊕M1 ⊕ Sq ∼= M ⊕ Sq+p, i.e., St0+q ∼=
M ⊕Sq+p. By Proposition 2.2.4, t0 + q ≥ q+ p, i.e., t0 ≥ p, so Sq+p+(t0−p) ∼= M ⊕Sq+p, i.e.,
M is stably free of rank t0 − p =

∑k
i=0(−1)iti.

(i) ⇒ (iii) By Proposition 2.2.5 there exist integers r, s ≥ 0 such that Sr ∼= Ss ⊕M ,
with r ≥ s. Hence M ∼= ker(π), where π is the canonical projection of Sr on Ss.

(iii) ⇒ (i) Let Sr π−→ Ss be an epimorphism such that M ∼= ker(π). Then we have the
exact sequence

0→M
ι−→ Sr

π−→ Ss → 0,

but Ss is projective and hence Sr ∼= Ss ⊕M .

(i) ⇒ (iv) Let Sr ∼= Ss ⊕ M for some integers r, s ≥ 0, then M is projective and

we have the exact sequence 0 → Ss
f1−→ Sr

f0−→ M → 0, and also the finite presentation

Ss
f1−→ Sr

f0−→M → 0, where f0 is the canonical projection and f1 is the canonical injection
of Ss in Sr. But ker(f0) = Im(f1) ∼= Ss, thus ker(f0) is free, and hence, stably free.

(iv) ⇒ (i) Let M be projective and Ss
f1−→ Sr

f0−→ M → 0 a finite presentation of M
with ker(f0) stably free. Then Sr ∼= M ⊕ ker(F0). There exist some integers p, q ≥ 0 with
p ≥ q such that Sp ∼= Sq ⊕ ker(F0) and hence Sp ⊕M ∼= Sq+r; by Corollary 2.2.5, M is
stably free.
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(i)⇒ (v) Let Sr ∼= Ss⊕M for some integers r, s ≥ 0, then we have the exact sequence

0 → Ss
f1−→ Sr

f0−→ M → 0, and also the finite presentation Ss
f1−→ Sr

f0−→ M → 0, where
f0 is the canonical projection and f1 is the canonical injection of Ss in Sr. Since M is
projective there exists h0 : M → Sr such that f0h0 = iM , and hence, Sr = ker(f0) ⊕
Im(h0) = Im(f1) ⊕ Im(h0). For x ∈ Sr we have x = f1(y) + h0(z) with y ∈ Ss and
z ∈ M , we note that y and z are unique for x since f1 and h0 are injective, so we define
g1 : Sr → Ss by g1(x) = y. It is clear that g1 is an S-homomorphism and g1f1 = iSs .

(v) ⇒ (i) Let g1 : Sr → Ss such that g1f1 = iSs , then f1 is injective and M has the

finite free resolution 0→ Ss
f1−→ Sr

f0−→M → 0. M is projective since this sequence splits;
by (ii) and (i) M is stably free.

Definition 2.2.9. A finite presentation

Ss
f1−→ Sr

f0−→M → 0 (2.2.3)

of a S-module M is minimal if f1 has a left inverse.

Corollary 2.2.10. Let M be an S-module. Then, M is stably free if and only if M has a minimal
presentation.

Proof. See the proof of Theorem 2.2.8, part (i)⇔(v).

Unimodular matrices are closely related to the stably free modules.

Definition 2.2.11. Let F be a matrix over S of size r × s. Then

(i) Let r ≥ s. F is unimodular if and only if F has a left inverse.

(ii) Let s ≥ r. F is unimodular if and only if F has a right inverse.

The set of unimodular column matrices of size r × 1 is denoted by Umc(r, S). Umr(s, S) is the
set of unimodular row matrices of size 1× s.

Remark 2.2.12. Note that a column matrix is unimodular if and only if the left ideal
generated by its entries coincides with S; in addition, a row matrix is unimodular if and
only if the right ideal generated by its entries is S.

We can add some others characterizations of stably free modules (compare with [105],
Lemma 16).

Corollary 2.2.13. Let M be an S-module. Then the following conditions are equivalent:

(i) M is stably free.

(ii) M is projective and has a finite system of generators f1, . . . , fr such that
Syz{f1, . . . , fr} is the module generated by the columns of a matrix F1 of size r × s such
that F T1 has a right inverse.
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(iii) M is projective and has a finite system of generators f1, . . . , fr such that
Syz{f1, . . . , fr} is the module generated by the columns of a matrix F1 of size r × s such
that F T1 is unimodular.

Proof. (i) ⇒ (ii) By (v) of Theorem 2.2.8, M is projective and has a finite presentation

Ss
f1−→ Sr

f0−→ M → 0, where f1 has a left inverse. Let f i = f0(ei), where {ei}1≤i≤r is the
canonical basis of Sr. Then M = 〈f1, . . . , f r〉 and Im(f1) = ker(f0) = Syz{f1, . . . , f r},
but Im(f1) is the module generated by the columns of the matrix F1 defined by f1 in the
canonical bases. Thus, let g1 : Sr → Ss be a left inverse of f1, then g1f1 = iSs and the
matrix of g1f1 in the canonical bases is Is = (F T1 G

T
1 )T , so Is = F T1 G

T
1 .

(ii) ⇒ (i) Let f1, . . . , f r be a set of generators of M such that Syz{f1, . . . , f r} is the
module generated by the columns of a matrix F1 of size r × s such that F T1 has a right

inverse. We have the exact sequence 0 → ker(f0)
ι−→ Sr

f0−→ M → 0, where ι is the
canonical injection and f0 is defined as above. We have ker(f0) = Syz{f1, . . . , f r} =

〈F1〉, and thus we get the finite presentation Ss
f1−→ Sr

f0−→ M → 0, where f1(ej) is the
jth column of F1, 1 ≤ j ≤ s. By hypothesis F T1 has a right inverse, F T1 G

T
1 = Is, so

Is = (F T1 G
T
1 )T . Let g1 : Sr → Ss be the homomorphism defined by G1 ∈ Ms×r(S) in

the canonical bases, then g1f1 = iSs and f1 is injective, this implies that the sequence

0→ Ss
f1−→ Sr

f0−→M → 0 is exact. By Theorem 2.2.8, M is stably free.

(ii)⇔ (iii) This is a direct consequence of Definition 2.2.11.

Corollary 2.2.14. Let M be an S-module.

(i) If M is stably free, then for any free resolution of M ,

· · · fk+1−−−→ Ssk
fk−→ Ssk−1

fk−1−−−→ · · · f2−→ Ss1
f1−→ Ss0

f0−→M −→ 0,

Im(fk) is stably free for each k ≥ 0.

(ii) If there exists a free resolution of M as in (i) such that Im(fk) is stably free for some k ≥ 0
and Im(fk−1), . . . , Im(f0) are projective, then M is stably free.

Proof. (i) We will prove this by induction on k. For k = 0 we have Im(f0) = M . For

k = 1 we have the exact sequence 0→ ker(f0)→ Ss0
f0−→M → 0, then Ss0 ∼= M ⊕ ker(f0)

since M is projective. But Sq ⊕M = Sp since M is stably free, then Ss0+q ∼= Sp ⊕ ker(f0),
thus ker(f0) = Im(f1) is stably free. We assume that Im(fk−1) is stably free and we

consider the exact sequence 0 → ker(fk−1) → Ssk−1
fk−1−−−→ Im(fk−1) → 0, then Ssk−1 ∼=

Im(fk−1) ⊕ ker(fk−1), and hence there exist l, t ≥ 0 such that Sl ⊕ Im(fk−1) ∼= St and
hence Ssk−1+l ∼= St ⊕ ker(fk−1). Thus, ker(fk−1) = Im(fk) is stably free.

(ii) If k = 0 there is nothing to prove. Let k ≥ 1, we consider the presentation Ssk
fk−→

Ssk−1
fk−1−−−→ Im(fk−1) → 0, by (iv) of Theorem 2.2.8, Im(fk−1) is stably free. In the same

way we prove that Im(fk−2), . . . , Im(f1), Im(f0) = M are stably free.
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Another interesting result about stably free modules over arbitrary RC rings is pre-
sented next (see [23], Proposition 12). For this, we recall that if M is a finitely pre-

sented left S-module with presentation Ss
f1−→ Sr

f0−→ M → 0 and F1 is the matrix of
f1 in the canonical bases, then the right S-module MT defined by MT := Ss/Im(fT1 ),
where fT1 : Sr → Ss is the homomorphism of right free S-modules induced by the ma-
trix F T1 , is called the transposed module of M . Thus, MT is given by the presentation

Sr
fT1−−→ Ss →MT → 0.

Theorem 2.2.15. Let M be an S-module with exact sequence 0→ Ss
f1−→ Sr

f0−→M → 0. Then,
MT ∼= Ext1S(M,S) and the following conditions are equivalent:

(i) M is stably free.

(ii) M is projective.

(iii) MT = 0.

(iv) F T1 has a right inverse.

(v) f1 has a left inverse.

Proof. We first prove that MT ∼= Ext1S(M,S): from the left complex 0 → Ss
f1−→ Sr → 0

we get the right complex

0→ HomS(Sr, S)
f∗1−→ HomS(Ss, S)

0−→ HomS(0, S)→ · · · ,

i.e.,

0→ Sr
f∗1−→ Ss

0−→ 0→ · · · ,

so Ext1S(M,S) = ker(0)/Im(f∗1 ) = Ss/Im(f∗1 ). But Im(f∗1 ) ∼= Im(fT1 ) under the iso-
morphisms HomS(Sr, S) ∼= Sr and HomS(Ss, S) ∼= Ss. In fact, we have the following
diagram

HomS(Sr, S) HomS(Ss, S)

Sr Ss

-
f∗1

?

α

?

β

-
fT1

(2.2.4)

where the vertical rows are isomorphisms of right S-modules defined by

α(h) := (h(e1), . . . , h(er))T ,
β(g) := (g(e1), . . . , g(es))T ,
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and moreover f∗1 (h) := hf1 and fT1 ((x1, . . . , xr)
T ) := F T1 (x1, . . . , xr)

T . Note that the
diagram is commutative:

βf∗1 (h) = β(hf1) = (hf1(e1), . . . , hf1(es))T = (h((eT1 F
T
1 )T ), . . . , h((eTs F

T
1 )T ))T

= (h(

f11
...
fr1

), . . . , h(

f1s
...
frs

))T ;

fT1 α(h) = fT1 ((h(e1), . . . , h(er))T ) = F T1

h(e1)
...

h(er)

 =

f11h(e1) + · · ·+ fr1h(er)
...

f1sh(e1) + · · ·+ frsh(er)


=

h(f11e1 + · · ·+ fr1er)
...

h(f1se1 + · · ·+ frser)

 = (h(

f11
...
fr1

), . . . , h(

f1s
...
frs

))T .

From this, we conclude that Ext1S(M,S) ∼= Ss/Im(fT1 ) = MT .

(i)⇒(ii) This is obvious.

(ii)⇒(i) This is a direct consequence of Theorem 2.2.8.

(ii)⇒(iii) Since M is projective, then Ext1S(M,S) = 0 and hence MT = 0.

(iii)⇒(i) If MT = 0, then Ext1S(M,S) = 0. From the given exact sequence of left
modules we get the exact sequence of right modules

0→ HomS(M,S)
f∗0−→ HomS(Sr, S)

f∗1−→ HomS(Ss, S)→ Ext1S(M,S)→ . . . ,

i.e., we have the exact sequence 0 → M∗ → Sr
fT1−−→ Ss → 0; but since Ss is projective,

this sequence splits, i.e., fT1 has right inverse, says Ss
gT1−→ Sr, i.e., fT1 g

T
1 = iSs . Let

G1 be a matrix of size s × r such that GT1 is the matrix of the right homomorphism gT1 ,
then m(fT1 g

T
1 ) = m(fT1 )m(gT1 ) = m(iSs), i.e., F T1 G

T
1 = Is. Let Sr

g1−→ Ss be the left
homomorphism corresponding toG1, thenm(g1f1) = (F T1 G

T
1 )T = Is = m(iSs), so g1f1 =

iSs , i.e., f1 has left inverse. This means that the exact sequence 0→ Ss
f1−→ Sr

f0−→M → 0
splits, so M is stably free.

(ii)⇔(iv): if M is projective, then the exact sequence 0 → Ss
f1−→ Sr

f0−→ M → 0
splits, so there exists g1 such that g1f1 = iSs , and hence, as before, F T1 has a right inverse.
Conversely, if F T1 G

T
1 = Is, then g1f1 = iSs , where Sr

g1−→ Ss is the left homomorphism
corresponding to G1, so the previous sequence splits, and hence, M is projective.

(iv)⇔(v): from the above discussion, we get that f1 has a left inverse if and only if F T1
has a right inverse.

Remark 2.2.16. (i) In Definition 2.2.1, if the finiteness restriction on s and t is not imposed,
then every projective module is free: indeed, using the “trick of Eilenberg”, we can prove
that if P is a projective and Q is a a module such that P ⊕Q = E is free, then P ⊕F ∼= F ,
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where F := E⊕E⊕· · · . On the other hand, if P⊕Ss is free but P is not finitely generated,
it is not difficult to prove that P is actually free (see [62], Proposition 4.2).

(ii) Theorem 2.2.15 gives procedures for testing stably freeness if we have algorithms
for computing the module of syzygies of a finite set of vectors, the right inverse of a
matrix and the Ext modules. These algorithms will be considered later.

2.3 Stafford’s theorem: a constructive proof

A well known result due Stafford asserts that any left ideal of the Weyl algebras D :=
An(k) or Bn(k), with char(k) = 0, is generated by two elements, (see [114] and [105]).
From the Stafford’s Theorem follows that any stably free left module M over D with
rank(M) ≥ 2 is free. In [105] is shown a constructive proof of this result that we want to
study for arbitrary RC rings. Actually, we will consider the generalization given in [105]
showing that any stably free left S-module M with rank(M) ≥ sr(S) is free, where sr(S)
denotes the stable rank of the ring S. Our proof have been adapted from [105], however
we do not need the involution of ring S used in [105] because of our left notation for
modules and column representation for homomorphism. This could justify our special
left-column notation. In order to apply the main result of this section to bijective skew
PBW extensions we will estimate the stable rank of such extensions. In Chapter 7, we
will complement these results presenting algorithms for computing the corresponding
free bases.

Definition 2.3.1. Let S be a ring and v :=
[
v1 . . . vr

]T ∈ Umc(r, S) an unimodular
column vector. v is called stable (reducible) if there exists a1, . . . , ar−1 ∈ S such that v′ :=[
v1 + a1vr . . . vr−1 + ar−1vr

]T is unimodular. It says that the left stable rank of S is d ≥ 1,
denoted sr(S) = d, if d is the least positive integer such that every unimodular column vector of
length d+1 is stable. It says that sr(S) =∞ if for every d ≥ 1 there exits a non stable unimodular
column vector of length d+ 1.

Remark 2.3.2. In a similar way is defined the right stable rank of S, however, both ranks
coincide; we list next some well known properties of the stable rank (see [5], [8], [20],
[95], [105], [114], [115], [120], [66] , or also [48]).

(i) sr(S) = sr(Sop).

(ii) If T is a division ring, then sr(T ) = 1.

(iii) If I is a two sided ideal of S, then sr(S/I) ≤ sr(S). Moreover, if 1 + I ⊆ S∗, then
sr(S/I) = sr(S). In particular, sr(S/Rad(S)) = sr(S).

(iv) For any field k, sr(k[[x1, . . . , xn]]) = 1 (this follows from 2.3.2 (iii))

(v) If S is a local ring, then sr(S) = 1.

(vi) If {Si}i∈C is a non empty family of rings, then sr(
∏
i∈C Si) = sup{sr(Si)}i∈C .

(vii) If sr(S) = 1, then sr(Mn(S)) = 1, for any n ≥ 1.

(viii) If S is simple Artinian, semisimple or semilocal, then sr(S) = 1.
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(ix) If S is a Dedekind domain, then sr(S) = 2. In particular, if k is a field, then sr(k[x]) =
2; thus, sr(Q[x]) = sr(R[x]) = sr(C[x]) = 2.

(x) If k is a field with char(k) = 0 then sr(An(k)) = 2 = sr(Bn(k)).

(xi) If S = T [x;σ, δ], with T a division ring and σ is an automorphism, then sr(S) = 2.

(xii) If S is a left Noetherian ring, then sr(S) ≤ Kdim(S) + 1. In particular, if S is a left
Artinian ring, then sr(S) = 1.

(xiii) Let n ≥ 3. If n > sr(S), then En(S) �GLn(S).

Proposition 2.3.3. Let S be a ring and v :=
[
v1 . . . vr

]T an unimodular stable column vector
over S, then there exists U ∈ Er(S) such that Uv = e1.

Proof. There exist elements a1, . . . , ar−1 ∈ S such that

v′ := (v′1, . . . , v
′
r−1)T ∈ Umc(r − 1, S), with v′i := vi + aivr, 1 ≤ i ≤ r − 1. (2.3.1)

Consider the matrix

E1 :=


1 0 0 · · · 0 a1

0 1 0 · · · 0 a2
...

...
...

...
...

...
0 0 0 · · · 1 ar−1

0 0 0 · · · 0 1

 ∈ Er(S); (2.3.2)

then E1v = (v′1, . . . , v
′
r−1, vr)

T . Since that v′ := (v′1, . . . , v
′
r−1) ∈ Umc(r− 1, S), there exists

b1, . . . , br−1 ∈ S such that
∑r−1

i=1 biv
′
i = 1, and hence,

∑r−1
i=1 (v′1 − 1− vr)biv′i = v′1 − 1− vr.

Let v′′i := (v′1 − 1− vr)bi, 1 ≤ i ≤ r − 1 and

E2 :=


1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
v′′1 v′′2 v′′3 · · · v′′r−1 1

 ∈ Er(S); (2.3.3)

then E2E1v = (v′1, . . . , v
′
r−1, v

′
1 − 1)T . Moreover, let

E3 :=


1 0 0 · · · 0 −1
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

 ∈ Er(S), (2.3.4)

then E3E2E1v = (1, v′2, . . . , v
′
r−1, v

′
1 − 1)T . Finally, let

E4 :=


1 0 0 · · · 0 0
−v′2 1 0 · · · 0 0

...
...

...
...

...
...

−v′r−1 0 0 · · · 1 0
−v′1 + 1 0 0 · · · 0 1

 ∈ Er(S), (2.3.5)
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then E4E3E2E1v = e1 and U := E1E2E3E4 ∈ Er(S).

As was presented in [105], the proof of above lemma allows us to calculate effectively
the matrix U ∈ Er(S). An algorithm to compute this elementary matrix will be consid-
ered in Section 7.5.

Next we present two lemmas that give some elementary matrix characterizations of free
modules, the second one is needed for the proof of the main theorem of the present sec-
tion.

Lemma 2.3.4. Let S be a ring and let M = 〈f1, . . . , fs〉 be a finitely generated S-module. Then,

(i) M is free with basis {f1, . . . , fs} if and only if Syz({f1, . . . , fs}) = 0.

(ii) M is free if and only if there exist matrices P of size r × s and Q of size s × r such that
M ∼= 〈P 〉 and QTP T = Ir, with s ≥ r, i.e., M is isomorphic to the column module of
a matrix such that its transpose is unimodular. Thus, M is isomorphic to the image of a
S-module epimorphism of free modules of finite dimension.

Proof. (i) Evident.

(ii)⇒) There exists an isomorphism M
g−→ Sr; from this we get the epimorphism

Ss
gh−→ Sr, where Ss h−→ M is defined by h(ei) := f i, 1 ≤ i ≤ s, and {e1, . . . , es} is the

canonical basis of Ss. Thus, we get the epimorphism p := gh : Ss → Sr; let P be the
matrix of p in the canonical bases of Ss and Sr, then P is of size r × s and 〈P 〉 ∼= M . In
fact, let {x1, . . . , xr} a basis of M , we choose zj ∈ Ss such that h(zj) = xj , 1 ≤ j ≤ r. We
define the homomorphism t : M → Im(p) = 〈P 〉 by t(xj) := p(zj). t is injective since if
t(a1 · x1 + · · · + ar · xr) = 0 with aj ∈ A, then a1 · p(z1) + · · · + ar · p(zr) = 0 and hence
a1 ·gh(z1)+ · · ·+ar ·gh(zr) = 0, so g(a1 ·h(z1)+ · · ·+ar ·h(zr)) = 0, but g is injective, then
a1 ·h(z1)+ · · ·+ar ·h(zr) = 0, i.e., a1 ·x1 + · · ·+ar ·xr = 0 and from this a1 = · · · = ar = 0.
Now, if p(z) ∈ Im(p), with z ∈ Ss, then p(z) = gh(z) = g(b1 · x1 + · · · + br · xr) for
some bj ∈ A, so p(z) = g(b1 · h(z1) + · · · br · h(zr)) = b1 · gh(z1) + · · · + br · gh(zr) =
b1 · p(z1) + · · ·+ br · p(zr) = t(b1 · x1 + · · ·+ br · xr), and this proves that t is surjective.

Since Sr is projective there exists an homomorphism Sr
q−→ Ss such that pq = iSr and

hence QTP T = Ir, with s ≥ r.

⇐) Now we assume that 〈P 〉 ∼= M andQTP T = Ir, where P of size r×s andQ of size
s × r, with s ≥ r. If p, q are the homomorphisms defined by P and Q, we have pq = iSr

and Sr = Im(iSr) ⊆ Im(p) ⊆ Sr, i.e., M ∼= Im(p) = Sr.

Lemma 2.3.5. Let S be a ring and M a stably free S-module given by a minimal presentation

Ss
f1−→ Sr

f0−→ M → 0. Let g1 : Sr → Ss such that g1f1 = iSs . Then the following conditions
are equivalent:

(i) M is free of dimension r − s.
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(ii) There exists a matrix U ∈ GLr(S) such that UGT1 =

[
Is
0

]
, where G1 is the matrix of g1

in the canonical bases. In such case, the last r − s columns of UT conform a basis for M .
Moreover, the first s columns of UT conform the matrix F1 of f1 in the canonical bases.

(iii) There exists a matrix V ∈ GLr(S) such that GT1 coincides with the first s columns of V ,
i.e., GT1 can be completed to an invertible matrix V of GLr(S).

Proof. By the hypothesis, the exact sequence 0 → Ss
f1−→ Sr

f0−→ M → 0 splits, so F T1
admits a right inverse GT1 , where F1 is the matrix of f1 in the canonical bases and G1 is
the matrix of g1 : Sr → Ss, with g1f1 = iSs , i.e., F T1 G

T
1 = Is. Moreover, there exists

g0 : M → Sr such that f0g0 = iM . From this we get also the split sequence 0 → M
g0−→

Sr
g1−→ Ss → 0. Note that M ∼= ker(g1).

(i) ⇒ (ii): We have Sr = ker(g1) ⊕ Im(f1); by the hypothesis ker(g1) is free. If s = r
then ker(g1) = 0 and hence f1 is an isomorphism, so f1g1 = iSs , i.e., GT1 F

T
1 = Is. Thus,

we can take U := F T1 .

Let r > s; if {e1, . . . , es} is the canonical basis of Ss, then {u1, . . . ,us} is a basis of
Im(f1) with ui := f1(ei), 1 ≤ i ≤ s; let {v1, . . . ,vp} be a basis of ker(g1) with p = r − s.
Then, {v1, . . . ,vp,u1, . . . ,us} is a basis of Sr. We define Sr h−→ Sr by h(ei) := ui for
1 ≤ i ≤ s, and h(es+j) = vj for 1 ≤ j ≤ p. Clearly h is bijective; moreover, g1h(ei) =

g1(ui) = g1f1(ei) = ei and g1h(es+j) = g1(vj) = 0, i.e., HTGT1 =

[
Is
0

]
. Let U := HT , so

we observe that the last p columns of UT conform a basis of ker(g1) ∼= M and the first s
columns of UT conform F1.

(ii) ⇒ (i): Let U(k) the k-th row of U , then UGT1 = [U(1) · · ·U(s) · · ·U(r)]
TGT1 =

[
Is
0

]
,

so U(i)G
T
1 = eTi , 1 ≤ i ≤ s, U(s+j)G

T
1 = 0, 1 ≤ j ≤ p with p := r − s. This means

that (U(s+j))
T ∈ ker(g1) and hence 〈(U(s+j))

T |1 ≤ j ≤ p〉 ⊆ ker(g1). On the other hand,

let c ∈ ker(g1) ⊆ Sr, then cTGT1 = 0 and cTU−1UGT1 = 0, thus cTU−1

[
Is
0

]
= 0 and

hence (cTU−1)T ∈ ker(l), where l : Sr → Ss is the homomorphism with matrix
[
Is 0

]
.

Let d = [d1, . . . , dr]
T ∈ ker(l), then [d1, . . . , dr]

[
Is
0

]
= 0 and from this we conclude that

d1 = · · · = ds = 0, i.e., ker(l) = 〈es+1, es+2, . . . , es+p〉. From (cTU−1)T ∈ ker(l) we get
that (cTU−1)T = a1 · es+1 + · · · + ap · es+p, so cTU−1 = (a1 · es+1 + · · · + ap · es+p)T , i.e.,
cT = (a1 · es+1 + · · · + ap · es+p)TU and from this we get that c ∈ 〈(U(s+j))

T |1 ≤ j ≤ p〉.
This proves that ker(g1) = 〈(U(s+j))

T |1 ≤ j ≤ p〉; but since U is invertible, then ker(g1) is
free of dimension p. We have proved also that the last p columns of UT conform a basis
for ker(g1) ∼= M .

(ii) ⇔ (iii): UGT1 =

[
Is
0

]
if and only if GT1 = U−1

[
Is
0

]
, but the first s columns of

U−1

[
Is
0

]
coincides with the first s columns of U−1; taking V := U−1 we get the result.
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Theorem 2.3.6. Let S be a ring. Then any stably free S-module M with rank(M) ≥ sr(S) is
free with dimension equals to rank(M).

Proof. Since M is stably free it has a minimal presentation, and hence, it is given by an
exact sequence

0→ Ss
f1−→ Sr

f0−→M → 0;

moreover, note that rank(M) = r − s. Since this sequence splits, F T1 admits a right
inverse GT1 , where F1 is the matrix of f1 in the canonical bases and G1 is the matrix of
g1 : Sr → Ss, with g1f1 = iSs . The idea of the proof is to find a matrix U ∈ GLr(S) such

that UGT1 =

[
Is
0

]
and then apply Lemma 2.3.5.

We have F T1 G
T
1 = Is and from this we get that the first column g1 ofGT1 is unimodular,

but since r > r − s ≥ sr(S), then g1 is stable, and by Proposition 2.3.3, there exists
U1 ∈ Er(S) such that U1g1 = e1. If s = 1, we finish since GT1 = g1.

Let s ≥ 2; we have

U1G
T
1 =

[
1 ∗
0 F2

]
, F2 ∈M(r−1)×(s−1)(S).

Note that U1G
T
1 has a left inverse (for instance F T1 U

−1
1 ), and the form of this left inverse

is

L =

[
1 ∗
0 L2

]
, L2 ∈M(s−1)×(r−1)(S),

and hence L2F2 = Is−1. The first column of F2 is unimodular and since r − 1 > r − s ≥
sr(S) we apply again Proposition 2.3.3 and we obtain a matrix U ′2 ∈ Er−1(S) such that

U ′2F2 =

[
1 ∗
0 F3

]
, F3 ∈M(r−2)×(s−2)(S).

Let

U2 :=

[
1 0
0 U ′2

]
∈ Er(S),

then we have

U2U1G
T
1 =

1 ∗ ∗
0 1 ∗
0 0 F3

.

By induction on s and multiplying on the left by elementary matrices we get a matrix
U ∈ Er(S) such that
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UGT1 =

[
Is
0

]
.

Corollary 2.3.7 (Stafford). Let D := An(k) or Bn(k), with char(k) = 0. Then, any stably free
left D-module M satisfying rank(M) ≥ 2 is free.

Proof. The results follows from Theorem 2.3.6 since sr(D) = 2.

2.4 Projective dimension of a module

Closely related to the study of stably free modules is the computation of the projective
dimension of a given module M . Later, we will expose some theoretical results that
will be used in Chapter 7 for computing the projective dimension of a finitely presented
left module over certain classes of skew PBW extensions. The first one only requires
the computation of arbitrary free resolutions of M ; the second one allows additionally
to compute a minimal presentation of a finitely presented module M when a finite free
resolution of M is given, and also, it allows to check whether M is stably free or not(see
[105]). Remember that S denotes an arbitrary noncommutativeRC ring.

We start with the following theorem which can be used for testing if a finitely pre-
sented module is projective (compare with [77], Theorem 4).

Theorem 2.4.1. Let M be an S-module given by a presentation

0→ K → Sn
f0−→M → 0,

where K is f.g. Then, the following conditions are equivalent:

(i) M is projective.

(ii) Ext1S(M,K) = 0.

Proof. (i)⇒ (ii) This implication is well known, see [111].

(ii)⇒ (i) From the given sequence we get the exact sequence

0→ HomS(M,K)→ HomS(M,Sn)
(f0)∗−−−→ HomS(M,M)→ Ext1S(M,K) = 0,

see [111], Theorem 7.3. Then, (f0)∗ is surjective and there exists f ∈ HomS(M,Sn) such
that (f0)∗(f) = iM , i.e., f0f = iM . This means that Sn ∼= K ⊕M , i.e., M is projective.

Let

· · · fr+1−−−→ Pr
fr−→ Pr−1

fr−1−−−→ · · · f2−→ P1
f1−→ P0

f0−→M −→ 0
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be a projective resolution of M ; recall that ker(fi) is called the i-th syzygy of M . When
Pi := Ssi is free of finite dimension, we get a free resolution of M .

Theorem 2.4.2. Let M be an S-module and

· · · fr+1−−−→ Pr
fr−→ Pr−1

fr−1−−−→ · · · f2−→ P1
f1−→ P0

f0−→M −→ 0 (2.4.1)

a projective resolution of M . Let r be the smallest integer such Im(fr) is projective. Then r does
not depend on the resolution and pd(M) = r.

Proof. It is well known that pd(M) ≤ r if and only if there exists a projective resolution of
M where the (r − 1)-th syzygy is projective if and only if for every projective resolution
of M the (r − 1)-th syzygy is projective (see [111]), Theorem 9.5). Let r be the smallest
integer such Im(fr) is projective, since Im(fr) = ker(fr−1) = (r − 1)-th syzygy, then
pd(M) ≤ r. Suppose that pd(M) = t < r, then the (t−1)-th syzygy of (2.4.1) is projective,
but this means that r is not minimum. Thus, pd(M) = r.

Let

· · ·
f ′s+1−−−→ P ′s

f ′s−→ P ′s−1

f ′s−1−−−→ · · ·
f ′2−→ P ′1

f ′1−→ P ′0
f ′0−→M −→ 0

another projective resolution of M , where s is the smallest integer such Im(f ′s) is projec-
tive. Then pd(M) ≤ s and hence r ≤ s. Suppose that r < s, the (r − 1)-th syzygy of M
in the previous resolution is projective since pd(M) = r, but this is impossible since s is
minimum, hence r = s.

Next we present the second result of this section that allows also to compute the
projective dimension of a module given by a finite free resolution. For this we follow
[105].

Theorem 2.4.3. Let M be an S-module and

0→ Pm
fm−−→ Pm−1

fm−1−−−→ Pm−2
fm−2−−−→ · · · f2−→ P1

f1−→ P0
f0−→M −→ 0 (2.4.2)

a projective resolution of M . If m ≥ 2 and there exists a homomorphism gm : Pm−1 → Pm such
that gmfm = iPm , then we have the following projective resolution of M :

0→ Pm−1
hm−1−−−→ Pm−2 ⊕ Pm

hm−2−−−→ Pm−3
fm−3−−−→ · · · f2−→ P1

f1−→ P0
f0−→M −→ 0 (2.4.3)

with

hm−1 :=

[
fm−1

gm

]
, hm−2 :=

[
fm−2 0

]
.

Proof. Im(hm−1) ⊆ ker(hm−2): we have

hm−2hm−1 =
[
fm−2 0

] [fm−1

gm

]
= 0.

ker(hm−2) ⊆ Im(hm−1): let (a, b)T ∈ ker(hm−2), then a ∈ Pm−2, b ∈ Pm and
hm−2[(a, b)T ] = 0 = fm−2(a). Then there exists c ∈ Pm−1 such that a = fm−1(c); we
define
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d :=
[
iPm−1 − fmgm fm

]
(c, b)T = c− (fmgm)(c) + fm(b) ∈ Pm−1.

Then, the image of d under hm−1 is[
fm−1(c)− fm−1(fm(gm(c))) + fm−1(fm(b))

gm(c)− ((gmfm)gm)(c) + gmfm(b)

]
=

[
fm−1(c)

gm(c)− gm(c) + b

]
=

[
a
b

]
.

hm−1 is injective: if d ∈ ker(hm−1), then hm−1(d) = 0, so fm−1(d) = 0 and gm(d) = 0; we
consider the exact sequence

0→ Pm
fm−−→ Pm−1

fm−1−−−→ Im(fm−1)→ 0,

since gmfm = iPm this sequence splits, i.e., there exists a homomorphism
km−1 : Im(fm−1) → Pm−1 such that iPm−1 = fmgm + km−1fm−1. Hence, d = fmgm(d) +
km−1fm−1(d) = 0.

Finally, Im(hm−2) = hm−2(Pm−2 ⊕ Pm) = fm−2(Pm−2) = Im(fm−2) = ker(fm−3).

Corollary 2.4.4. Let M be an S-module and

0→ Ssm
fm−−→ Ssm−1

fm−1−−−→ Ssm−2
fm−2−−−→ · · · f2−→ Ss1

f1−→ Ss0
f0−→M −→ 0 (2.4.4)

a finite free resolution of M . Let Fi be the matrix of fi in the canonical bases, 1 ≤ i ≤ m. Then,

(i) If m ≥ 3 and there exists a homomorphism gm : Ssm−1 → Ssm such that gmfm = iSsm ,
then we have the following finite free resolution of M :

0→ Ssm−1
hm−1−−−−→ Ssm−2+sm

hm−2−−−−→ Ssm−3
fm−3−−−−→ · · · f1−→ Ss0

f0−→M −→ 0 (2.4.5)

with

hm−1 :=

[
fm−1

gm

]
, hm−2 :=

[
fm−2 0

]
.

In a matrix notation, if Gm is the matrix of gm and Hj is the matrix of hj in the canonical
bases, j = m− 1,m− 2, then

HT
m−1 :=

[
F Tm−1 GTm

]
, HT

m−2 :=

[
F Tm−2

0

]
.

(ii) If m = 2 and there exists a homomorphism g2 : Ss1 → Ss2 such that g2f2 = iSs2 , then we
have the following finite presentation of M :

0→ Ss1
h1−→ Ss0+s2 h0−→M → 0, (2.4.6)

with

h1 :=

[
f1

g2

]
, h0 :=

[
f0 0

]
.

In a matrix notation,
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HT
1 :=

[
F T1 GT2

]
, HT

0 :=

[
f0

0

]
.

Proof. This is an obvious consequence of the previous theorem.

Theorem 2.4.5. LetM be an S-module and n ≥ 1. pd(M) = n if and only if there exists a finite
projective resolution of M as (2.4.2) where fn is non-split, i.e., there exists no homomorphism
gn : Pn−1 → Pn such that gnfn = iPn .

Proof. ⇒): there exists a finite projective resolution ofM as in (2.4.2) withm = n; we have

the exact sequence 0 → Pn
fn−→ Pn−1

fn−1−−−→ Im(fn−1) → 0. If fn splits, then Im(fn−1) is
projective, and by Theorem 2.4.2, pd(M) ≤ n− 1, false. Thus, fn is non-split.

⇐): if M has a finite projective resolution as in in (2.4.2), with m = n, which is non-
split, then pd(M) ≤ n and Im(fn−1) in not projective. Suppose that there exists k ≤ n−2

such that Im(fk) is projective; we have the exact sequence 0 → Im(fk+1)
ι−→ Pk

fk−→
Im(fk) → 0, where ι is the canonical inclusion, and hence, Im(fk+1) is also projective.
We can repeat this reasoning and we get that Im(fn−1) is projective, false. Thus, the
smallest r such that Im(fr) is projective is r = n, and by Theorem 2.4.2, pd(M) = n.

Remark 2.4.6. The results above will be used in Chapter 7 for constructing algorithms for
computing the projective dimension of modules over bijective skew PBW extensions,
and also for computing minimal presentations and testing stably-freeness.



CHAPTER 3

Hermite rings

Rings for which all stably free modules are free have occupied special attention in ho-
mological algebra. In this chapter, we will consider matrix-constructive interpretation
of such rings and some other classes closely related. We will study also some classical
algebraic constructions as quotients, products and rings of fractions of these rings. The
material presented here can be considered as preparatory for the next chapter where we
will study the Hermite condition for skew PBW extensions. Recall that all rings consid-
ered areRC (see Remark 2.1.9).

3.1 Matrix descriptions of Hermite rings

Definition 3.1.1. Let S be a ring.

(i) S is a PF ring if every f.g. projective S-module is free.

(ii) S is a PSF ring if every f.g. projective S-module is stably free.

(iii) S is a Hermite ring, property denoted by H , if any stably free S-module is free.

The right versions of the above rings (i.e., for right modules) are defined in a similar
way and denoted by PFr, PSFr and Hr, respectively. We say that S is a PF ring if S is
PF and PFr simultaneously; similarly, we define the properties PSF and H. However,
we will prove below later that these properties are left-right symmetric, i.e., they can be
denoted simply by PF , PSF andH. For domains we will write PFD, PSFD andHD.

From Definition 3.1.1 we get that

H ∩ PSF = PF. (3.1.1)

The following theorem gives a matrix description of H rings (see [26] and compare with
[78] for the particular case of commutative rings. In [20] is presented a different and
independent proof of this theorem for right modules).

Theorem 3.1.2. Let S be a ring. Then, the following conditions are equivalent.

33
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(i) S is H .

(ii) For every r ≥ 1, any unimodular row matrix u over S of size 1× r can be completed to an
invertible matrix of GLr(S) adding r − 1 new rows.

(iii) For every r ≥ 1, if u is an unimodular row matrix of size 1 × r, then there exists a matrix
U ∈ GLr(S) such that uU = (1, 0, . . . , 0).

(iv) For every r ≥ 1, given an unimodular matrix F of size s × r, r ≥ s, there exists U ∈
GLr(S) such that

FU =
[
Is | 0

]
.

Proof. (i) ⇒ (ii): Let u := [u1 · · · ur] and v := [v1 · · · vr]T such that uv = 1, i.e., u1v1 +
· · ·+ urvr = 1; we define

Sr
α−→ S

ei 7→ vi

where {e1, . . . , er} is the canonical basis of the left free module Sr of columns vectors.
Observe that α(uT ) = 1; we define the homomorphism β : S → Sr by β(1) := uT , then
αβ = iS . From this we get that Sr = Im(β)⊕ker(α), β is injective, 〈uT 〉 = Im(β) ∼= S and
Im(β) is free with basis {uT }. This implies that Sr ∼= S⊕ker(α), i.e., ker(α) is stably free of
rank r− 1, so by hypothesis, ker(α) is free of dimension r− 1; let {x1, . . . , xr−1} be a basis
of ker(α), then {uT , x1, . . . , xr−1} is a basis of Sr. This means that

[
uT x1 · · · xr−1

]T ∈
GLr(S), i.e., u can be completed to an invertible matrix of GLr(S) adding r − 1 rows.

(ii) ⇒) (i): Let M be a stably free S-module, then there exist integers r, s ≥ 0 such
that Sr ∼= Ss ⊕M . It is enough to prove that M is free for the case when s = 1. In fact,
Sr ∼= Ss⊕M = S⊕(Ss−1⊕M) is free and hence Ss−1⊕M is free; repeating this reasoning
we conclude that S ⊕M is free, so M is free.

Let r ≥ 1 such that Sr ∼= S⊕M , let π : Sr −→ S be the canonical projection with kernel
isomorphic to M and let {e1, . . . , er} be the canonical basis of Sr; there exists µ : S −→ Sr

such that πµ = iS and Sr = ker(π) ⊕ Im(µ). Let µ(1) := uT := [u1 · · · ur]T ∈ Sr, then
π(uT ) = 1 = u1π(e1) + · · · + urπ(er), i.e., v := [π(e1) · · · π(er)]T is such that uv = 1,
moreover, Sr = ker(π)⊕〈uT 〉. By hypothesis, there exists U ∈ GLr(S) such that eT1 U = u.

Let fT : Sr −→ Sr be the homomorphism defined by UT , then fT (e1) = uT and
fT (ei) = ui for i ≥ 2, where u2, . . . ,ur are the others columns of UT (i.e., the transpose
of the other rows of U ). Since U = (UT )T then fT is an isomorphism. If we prove that
fT (ei) ∈ ker(π) for each i ≥ 2, then ker(π) is free, and consequently, M is free. In fact,
let f ′ be the restriction of fT to 〈e2, . . . , er〉, i.e., f ′ : 〈e2, . . . , er〉 −→ ker(π). Then f ′ is
bijective: of course f ′ is injective; let w be any vector of Sr, then there exists x ∈ Sr such
that fT (x) = w, we write x := [x1 · · · xr]T = x1e1 + z, with z = x2e2 + · · · + xrer. We
have fT (x) = fT (x1e1 + z) = x1f

T (e1) + fT (z) = x1uT + fT (z) = w. In particular, if
w ∈ ker(π), then w− fT (z) ∈ ker(π) ∩ 〈uT 〉 = 0, so w = fT (z) and hence w = f ′(z), i.e.,
f ′ is surjective.

In order to conclude the proof, we will show that fT (ei) ∈ ker(π) for each i ≥ 2. Since
fT was defined by UT , the idea is to change UT in a such way that its first column was
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uT and for the others columns were ui ∈ ker(π), 2 ≤ i ≤ r. Let π(ui) := ri ∈ S, i ≥ 2,
and u′i := ui − riuT ; then adding to column i of UT the first column multiplied by −ri
we get a new matrix UT such that its first column is again uT and for the others we have
π(u′i) = π(ui)− riπ(uT ) = ri − ri = 0, i.e., u′i ∈ ker(π).

(ii)⇔ (iii): u can be completed to an invertible matrix of GLr(S) if and only if there
exists V ∈ GLr(S) such that (1, 0, . . . , 0)V = u if and only if (1, 0, . . . , 0) = uV −1; thus
U := V −1.

(iii)⇒) (iv): The proof will be done by induction on s. For s = 1 the result is trivial.
We assume that (iv) is true for unimodular matrices with l ≤ s − 1 rows. Let F be an
unimodular matrix of size s × r, r ≥ s, then there exists a matrix B such that FB = Is.
This implies that the first row u of F is unimodular; by (iii) there exists U ′ ∈ GLr(S) such
that uU ′ = (1, 0, . . . , 0) = eT1 , and hence FU ′ = F ′′,

F ′′ =

[
eT1
F ′

]
,

with F ′ a matrix of size (s − 1) × r. Since FB = Is, then Is = F ′′(U ′−1B), i.e., F ′′ is
an unimodular matrix; let F ′′′ be the matrix eliminating the first column of F ′, then F ′′′

is unimodular of size (s − 1) × (r − 1), with r − 1 ≥ s − 1, since the right inverse of

F ′′ has the form
[
∗ 0
∗ G′′′

]
. By induction, there exists a matrix C ∈ GLr−1(S) such that

F ′′′C =
[
Is−1 | 0

]
. From this we get,

FU ′ = F ′′ =


1 0 · · · 0
a′11 a′12 · · · a′1r

...
...

...
a′s−11 a′s−12 · · · a′s−1r

 =

[
1 0
∗ F ′′′

]
,

and hence

FU ′
[
1 0
0 C

]
=

[
1 0
∗ F ′′′

] [
1 0
0 C

]
=

[
1 0 0
∗ Is−1 0

]
.

Multiplying the last matrix on the right by elementary matrices we get (iv).

(iv)⇒) (iii): Taking s = 1 and F = u in (iv) we get (iii).

From the proof of the previous theorem we get the following result.

Corollary 3.1.3. Let S be a ring. Then, S is H if and only if any stably free S-module M of type
Sr ∼= S ⊕M is free.

Remark 3.1.4. (a) If we consider right modules and the right S-module structure on the
module Sr of columns vectors, the conditions of the previous theorem can be formulated
in the following way:

(i)r S is Hr.
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(ii)r For every r ≥ 1, any unimodular column matrix v over S of size r × 1 can be
completed to an invertible matrix of GLr(S) adding r − 1 new columns.

(iii)r For every r ≥ 1, given an unimodular column matrix v over S of size r × 1 there
exists a matrix U ∈ GLr(S) such that Uv = e1.

(iv)r For every r ≥ 1, given an unimodular matrix F of size r × s, r ≥ s, there exists
U ∈ GLr(S) such that

UF =

[
Is
0

]
.

The proof is as in the commutative case, see [78]. Corollary 3.1.3 can be formulated in this
case as follows: S isHr if and only if any stably free right S-moduleM of type Sr ∼= S⊕M
is free.

(b) Considering again left modules and disposing the matrices of homomorphisms by
rows and composing homomorphisms from the left to the right (see Remark 2.1.2), we
can repeat the proof of Theorem 3.1.2 and obtain the equivalence of conditions (i)-(iv).
With this notation we do not need to take transposes in the proof of Theorem 3.1.2.

(c) If S is a commutative ring, of course, left and right conditions are equivalent, see
[78]. This follows from the fact that (FG)T = GTF T for any matrices F ∈ Mr×s(S), G ∈
Ms×r(S). However, as we remarked before, the Hermite condition is left-right symmetric
for general rings (Proposition 3.2.7). Another independent proof of this fact can be found
in [20], Theorem 11.4.4.

3.2 Matrix characterization of PF rings

In [26] are given some matrix characterizations of projective-free rings. In this section,
we present another matrix interpretation of this important class of rings. The main re-
sult presented here (Corollary 3.2.4) extends Theorem 6.2.2 in [78]. This result has been
proved independently also in [20], Proposition 11.4.9. A matrix proof of a Kaplansky
theorem about finitely generated projective modules over local rings is also included.

Theorem 3.2.1. Let S be a Hermite ring and M a f.g. projective module given by the column
module of a matrix F ∈ Ms(S), with F T idempotent. Then, M is free with dim(M) = r if and
only if there exists a matrix U ∈Ms(S) such that UT ∈ GLs(S) and

(UT )−1F TUT =

[
0 0
0 Ir

]T
. (3.2.1)

In such case, a basis of M is given by the last r rows of (UT )−1.

Proof. ⇒): As in the proof of Proposition 2.1.1, let f : Ss → Ss be the homomorphism
defined by F and Ss = M ⊕M ′ with Im(f) = M and M ′ = ker(f); by the hypothesis M
es free with dimension r, so r ≤ s (recall that S is RC). Let h : M → Sr an isomorphism
and {z1, . . . , zr} ⊂ M such that h(zi) = ei, 1 ≤ i ≤ r, then {z1, . . . , zr} is a basis of M .



CHAPTER 3. HERMITE RINGS 37

Since S is an Hermite ring, M ′ is free, let {w1, . . . ,ws−r} be a basis of M ′ (recall that S
is IBN ). Then {w1, . . . ,ws−r; z1, . . . , zr} is a basis for Ss. With this we define u in the
following way:

u(wj) := ej , for 1 ≤ j ≤ s− r,

u(zi) := es−r+i, for 1 ≤ i ≤ r.

Note that u is an isomorphism and we get the following commutative diagram

Ss Ss

Ss Ss

-f

?

u

?

u

-
t0

where t is given by t0(ej) := 0 if 1 ≤ j ≤ s− r, and t0(es−r+i) = es−r+i if 1 ≤ i ≤ r; thus,
the matrix of t0 in the canonical basis is

T0 =

[
0 0
0 Ir

]
.

Thus, uf = t0u and hence F TUT = UTT T0 . Note that (UT )−1 exists since u is an isomor-
phism, hence (UT )−1F TUT = T T0 . From u(zi) := es−r+i we get that (zTi U

T )T = es−r+i, so
zTi U

T = eTs−r+i and hence zi = eTs−r+i(U
T )−1, i.e., the basis of M coincides with the last r

rows of (UT )−1.

⇐): Let f, u be the homomorphisms defined by F andU , thenm(uf) = m(t0u), where
t0 is the homomorphism defined by T0, this means that uf = t0u, but by the hypothesis
UT is invertible, so u is an isomorphism; from this we conclude that Im(f) ∼= Im(t0), i.e.,
M = Im(f) ∼= Im(t0) = 〈T0〉 ∼= Sr. Note that this part of the proof does not use that S is
an Hermite ring.

From the previous theorem we get the following matrix description of PF rings.

Corollary 3.2.2. Let S be a ring. S is PF if and only if for each s ≥ 1, given a matrix F ∈
Ms(S), with F T idempotent, there exists a matrix U ∈Ms(S) such that UT ∈ GLs(S) and

(UT )−1F TUT =

[
0 0
0 Ir

]T
, (3.2.2)

where r = dim(〈F 〉), 0 ≤ r ≤ s.

Proof. ⇒): Let F ∈ Ms(S), with F T idempotent, and let M be the S-module generated
by the columns of F . By Proposition 2.1.1, M is a f.g. projective module, and by the
hypothesis, M is free. Since S is H , we can apply Theorem 3.2.1. If r = dim(M), then
r = dim(〈F 〉).

⇐): Let M be a finitely generated projective S-module, so there exists s ≥ 1 such that

Ss = M ⊕M ′; let Ss
f−→ Ss be the canonical projection on M , so F T is idempotent and, by

the hypothesis, there exists U ∈ Ms(S) such that UT ∈ GLs(S) and (3.2.2) holds. From
the second part of the proof of Theorem 3.2.1 we get that M is free.
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Remark 3.2.3. (i) If we consider right modules instead of left modules, then the previous
corollary can be reformulated in the following way: S is PFr if and only if for each s ≥ 1,
given an idempotent matrix F ∈Ms(S), there exists a matrix U ∈ GLs(S) such that

UFU−1 =

[
0 0
0 Ir

]
, (3.2.3)

where r = dim(〈F 〉), 0 ≤ r ≤ s, and 〈F 〉 represents the right S-module generated by the
columns of F . The proof is as in the commutative case, see [78].

(ii) Considering again left modules and disposing the matrices of homomorphisms by
rows and composing homomorphisms from the left to the right (see Remark 2.1.2), we
can repeat the proofs of Theorem 3.2.1 and Corollary 3.2.2 and get the characterization
(3.2.3) for the PF property; with this row notation we do not need to take transposes in
the proofs. However, observe that in this case 〈F 〉 represents the left S-module generated
by the rows of F . Note that Corollary 3.2.2 could have been formulated this way: In fact,

[
0 0
0 Ir

]T
=

[
0 0
0 Ir

]

and we can rewrite (3.2.2) as (3.2.3) changing F T by F (see Remark 2.1.2) and (UT )−1 by
U .

(iii) If S is a commutative ring, of course PF = PFr = PF . However, we will prove in
Corollary 3.2.5 that the projective-free property is left-right symmetric for general rings.

Corollary 3.2.4. S is PF if and only if for each s ≥ 1, given an idempotent matrix F ∈Ms(S),
there exists a matrix U ∈ GLs(S) such that

UFU−1 =

[
0 0
0 Ir

]
, (3.2.4)

where r = dim(〈F 〉), 0 ≤ r ≤ s, and 〈F 〉 represents the left S-module generated by the rows of
F .

Proof. This is the content of the part (ii) in the previous remark.

Corollary 3.2.5. Let S be a ring. S is PF if and only if S is PFr, i.e., PF = PFr = PF .

Proof. Let F ∈ Ms(S) be an idempotent matrix. If S is PF , then there exists P ∈ GLs(S)
such that

UFU−1 =

[
0 0
0 Ir

]
,

where r is the dimension of the left S-module generated by the rows of F . Observe
that UFU−1 is also idempotent, moreover, the matrices X := UF and Y := U−1 satisfy
UFU−1 = XY and F = Y X , then from Proposition 0.3.1 in [26] we conclude that the left
S-module generated by the rows of UFU−1 coincides with the left S-module generated
by the rows of F , and also, the right S-module generated by the columns of UFU−1

coincides with the right S-module generated by the columns of F . This implies that the
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S-module generated by the rows of F coincides with the right S-module generated by
the columns of F . This means that S is PFr. The symmetry of the problem completes the
proof.

Another interesting matrix characterization of PF rings is given in [26], Proposition
0.4.7: a ring S is PF if and only if given an idempotent matrix F ∈ Ms(S) there exist
matrices X ∈ Ms×r(S), Y ∈ Mr×s(S) such that F = XY and Y X = Ir. A similar matrix
interpretation can be given for PSF rings using Proposition 0.3.1 in [26] and Corollary
2.2.5.

Proposition 3.2.6. Let S be a ring. Then,

(i) S is PSF if and only if given an idempotent matrix F ∈ Mr(S) there exist s ≥ 0 and
matrices X ∈M(r+s)×r(S), Y ∈Mr×(r+s)(S) such that[

F 0
0 Is

]
= XY and Y X = Ir.

(ii) PSF = PSFr = PSF .

Proof. Direct consequence of Proposition 0.3.1 in [26] and Corollary 2.2.5.

For the H property we have a similar characterization that proves the symmetry of
this condition.

Proposition 3.2.7. Let S be a ring. Then,

(i) S is H if and only if given an idempotent matrix F ∈Mr(S) with factorization[
F 0
0 1

]
= XY and Y X = Ir, for some matrices X ∈M(r+1)×r(S), Y ∈Mr×(r+1)(S),

there exist matrices X ′ ∈ Mr×(r−1)(S), Y ′ ∈ M(r−1)×r(S) such that F = X ′Y ′ and
Y ′X ′ = Ir−1.

(ii) H = Hr = H.

Proof. Direct consequence of Propositions 0.3.1 and 0.4.7 in [26], and Corollary 3.1.3.

Remark 3.2.8. By Theorem 3.1.2, S is H if and only if given u ∈ Umr(n, S) there exist
U ∈ GLn(S) such uU = (1, 0, . . . , 0). This last implies that GLn(S) acts transitively on
Umr(n, S), which is equivalent to say that GLn(S) acts transitively on Umc(n, S) (see
Lemma 11.1.13 in [95]). Therefore, given v ∈ Umr(n, S) there exist V ∈ GLn(S) such
V v = e1; i.e., S is Hr. Hence, we have obtained an alternative proof of Proposition 3.2.7.

We conclude this section given a matrix constructive proof of a well known Kaplan-
sky’s theorem.

Proposition 3.2.9. Any local ring S is PF .
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Proof. LetM a projective left S-module. By Remark 2.1.2, part (ii), there exists an idempo-
tent matrix F = [fij ] ∈Ms(S) such that the module generated by the rows of F coincides
withM . According to Corollary 3.2.4, we need to show that there exists U ∈ GLs(S) such
that the relation (3.2.4) holds. The proof is by induction on s.

s = 1: In this case F = [fij ] = [f ]; since S is local, its idempotents are trivial, then
f = 1 or f = 0 and hence M is free.
s = 2: In view of fact that S is local, two possibilities may arise:

f11 is invertible. Then, one can findG ∈ GL2(S) such thatGFG−1 =

[
1 0
0 f

]
, for some

f ∈ S. For this it is enough to take G =

[
1 f−1

11 f12

−f21f
−1
11 1

]
; to show that this matrix is

invertible with inverse G−1 =

[
f11 −f12

f21 −f21f
−1
11 f12 + 1

]
we can use the relations that exist

between the entries of F . See for example that GG−1 = I2:

f11 + f−1
11 f12f21 = 1 because f2

11 + f12f21 = f11 and f11 is invertible;

−f12 − f−1
11 f12f21f

−1
11 f12 + f−1

11 f12 = −f12 + (1− f−1
11 f12f21)f−1

11 f12

= −f12 + f11f
−1
11 f12 = 0;

−f21f
−1
11 f11 + f21 = 0;

f21f
−1
11 f12 − f21f

−1
11 f12 + 1 = 1.

Similar calculations show that G−1G = I2. Since F is idempotent, f so is; applying the
case s = 1 we get the result.

1 − f11 is invertible. In the same way, we can find H ∈ GL2(S) such that HFH−1 =[
0 0
0 g

]
; for this it is enough to take H =

[
1 −(1− f11)−1f12

f21 −f21(1− f11)−1f12 + 1

]
; note that H−1 =[

1− f11 (1− f11)−1f12

−f21 1

]
. Indeed HH−1 = I2:

1− f11 + (1− f11)−1f12f21 = 1− f11 + f11 = 1 because f12f21 = (1− f11)f11;

(1− f11)−1f12 − (1− f11)−1f12 = 0;

f21(1− f11) + f21(1− f11)−1f12f21 − f21 = f21(1− f11) + f21f11 − f21 = 0;

f21(1− f11)−1f12 − f21(1− f11)−1f12 + 1 = 1.

An analogous calculation shows that H−1H = I2. Note that g is an idempotent of S, then
g = 0 or g = 1 and the statement follows.

Now suppose that the result holds for s− 1; considering both possibilities for f11 we
have:
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If f11 is invertible, taking

G =


1 f−1

11 f12 f−1
11 f13 · · · f−1

11 f1s

−f21f
−1
11 1 0 · · · 0

−f31f
−1
11 0 1 · · · 0

... · · ·
−fs1f−1

11 0 0 · · · 1


we have that G ∈ GLs(S) and its inverse is:

G−1 =


f11 −f12 −f13 · · · −f1s

f21 −f21f
−1
11 f12 + 1 −f21f

−1
11 f13 · · · −f21f

−1
11 f1s

f31 −f31f
−1
11 f12 −f31f

−1
11 f13 + 1 · · · −f31f

−1
11 f1s

... · · ·
fs1 −fs1f−1

11 f12 −fs1f−1
11 f13 · · · −fs1f−1

11 f1s + 1

 .

In fact, see that GG−1 = Is:

f11 + f−1
11 f12f21 + · · ·+ f−1

11 f1sfs1 = 1 because f2
11 + f12f21 + · · ·+ f1sfs1 = f11;

−f12−f−1
11 f12f21f

−1
11 f12+f−1

11 f12−f−1
11 f13f31f

−1
11 f12−· · ·−f−1

11 f1sfs1f
−1
11 f12 = −f12+

(1− f−1
11

∑s
i=2 f1ifi1)f−1

11 f12 = −f12 + f11f
−1
11 f12 = 0;

...

−f1s−f−1
11 f12f21f

−1
11 f1s−f−1

11 f13f31f
−1
11 f1s−· · ·−f−1

11 f1sfs1f
−1
11 f1s+f−1

11 f1s = −f1s+
(1− f−1

11

∑s
i=2 f1ifi1)f−1

11 f1s = −f1s + f11f
−1
11 f1s = 0;

−f21f
−1
11 f11 + f21 = 0; f21f

−1
11 f12 − f21f

−1
11 f12 + 1 = 1; f21f

−1
11 f1i − f21f

−1
11 f1i = 0 for

every 3 ≤ i ≤ s;

...

−fs1f−1
11 f11 + fs1 = 0; fs1f−1

11 f1i − fs1f−1
11 f1i = 0 for every 2 ≤ i ≤ s− 1 and, finally,

fs1f
−1
11 f1s − fs1f−1

11 f1s + 1 = 1.

Similarly, G−1G = Is. Moreover, GFG−1 =

[
1 01,s−1

0s−1,1 F1

]
where F1 ∈ Ms−1(S) is an

idempotent matrix. Only remains to apply the induction hypothesis.

If 1− f11 is invertible, taking

H =


1 −(1− f11)

−1f12 −(1− f11)
−1f13 · · · −(1− f11)

−1f1s

f21 −f21(1− f11)
−1f12 + 1 −f21(1− f11)

−1f13 · · · −f21(1− f11)
−1f1s

f31 −f31(1− f11)
−1f12 −f31(1− f11)

−1f13 + 1 · · · −f31(1− f11)
−1f1s

... · · ·
fs1 −fs1(1− f11)

−1f12 −fs1(1− f11)
−1f13 · · · −fs1(1− f11)

−1f1s + 1


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we have that H ∈ GLs(S) with inverse given by:

H−1 =


1− f11 (1− f11)−1f12 (1− f11)−1f13 · · · (1− f11)−1f1s

−f21 1 0 · · · 0
−f31 0 1 · · · 0

... · · ·
−fs1 0 0 · · · 1

 .

In fact, note that HH−1 = Is:

1−f11 +(1−f11)−1
∑s

i=2 f1ifi1 = 1−f11 +f11 = 1 because
∑s

i=2 f1ifi1 = (1−f11)f11

and (1− f11) is invertible; also (1− f11)−1f1i − (1− f11)−1f1i for 2 ≤ i ≤ s;

f21(1 − f11) + f21
∑s

i=1(1 − f11)−1f1ifi1 − f21 = −f21f11 + f21f11 = 0; f21(1 −
f11)−1f12 − f21(1− f11)−1f12 + 1 = 1; and f21(1− f11)−1f1i − f21(1− f11)−1f1i = 0
for 3 ≤ i ≤ s.

...

fs1(1−f11)+fs1
∑s

i=1(1−f11)−1f1ifi1−fs1 = −fs1f11+f21f11 = 0; fs1(1−f11)−1f1i−
fs1(1 − f11)−1f1i = 0 for 3 ≤ i ≤ s − 1 and, finally, fs1(1 − f11)−1f1s − fs1(1 −
f11)−1f1s + 1 = 1.

Similarly, we can to show that H−1H = Is. Furthermore, we have also HFH−1 =[
0 01,s−1

0s−1,1 F2

]
with F2 ∈ Ms−1(S) an idempotent matrix. One more time we apply

the induction hypothesis.

3.3 Some important subclasses of Hermite rings

There are some other classes of rings closely related to Hermite rings that we will recall
next (see [26], [60], [62] and [125]).

Definition 3.3.1. Let S be a ring.

(i) S is an elementary divisor ring (ED) if for any r, s ≥ 1, given a rectangular matrix F ∈
Mr×s(S) there exist invertible matrices P ∈ GLr(S) and Q ∈ GLs(S) such that PFQ
is a Smith normal diagonal matrix, i.e., there exist d1, d2, . . . , dl ∈ S, with l = min{r, s},
such that

PFQ = diag(d1, d2, . . . , dl), with Sdi+1S ⊆ Sdi ∩ diS for 1 ≤ i ≤ l,

where SdS denotes the two-sided ideal generated by d.

(ii) S is an ID ring if for any s ≥ 1, given an idempotent matrix F ∈ Ms(S) there exists an
invertible matrix P ∈ GLs(S) such that PFP−1 is a Smith normal diagonal matrix.
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(iii) S is a left K-Hermite ring (KH) if given a, b ∈ S there exist U ∈ GL2(S) and d ∈ S such
that U

[
a b

]T
=
[
d 0

]T . S is a right K-Hermite ring (KHr) if
[
a b

]
U =

[
d 0

]
.

The ring S is KH if S is KH and KHr.

(iv) S is a left Bézout ring (B) if every f.g. left ideal of S is principal. S is a right Bézout ring
(Br) if every f.g. right ideal of S is principal. S is a B ring if S is B and Br.

(v) S is a left cancellable ring (C) if for any f.g. projective left S-modules P, P ′ holds: P ⊕S ∼=
P ′ ⊕ S ⇔ P ∼= P ′. S is right cancellable (Cr) if for any f.g. projective right S-modules
P, P ′ holds: P ⊕ S ∼= P ′ ⊕ S ⇔ P ∼= P ′. S is cancellable (C) if S is (C) and (Cr).

From Proposition 0.3.1 of [26] it is easy to give a matrix interpretation of C rings, and
also, we can deduce that C = Cr = C.

Proposition 3.3.2. Let S be a ring. Then,

(i) S is C if and only if given idempotent matrices F ∈ Ms(S), G ∈ Mr(S) the following
statement is true: The matrices [

F 0
0 1

]
and

[
G 0
0 1

]
can be factorized as[

F 0
0 1

]
= X ′Y ′,

[
G 0
0 1

]
= Y ′X ′, for some matrices X ′ ∈M(s+1)×(r+1)(S),

Y ′ ∈M(r+1)×(s+1)(S)

if and only if F = XY , G = Y X , for some matrices X ∈Ms(S), Y ∈Mr(S).

(ii) C = Cr = C.

Proof. Direct consequence of Proposition 0.3.1 in [26].

For domains, the above classes of rings are denoted by EDD, IDD, KHD, KHDr,
KHD, BD, BDr, BD and CD, respectively.

Theorem 3.3.3. (i) ED ⊆ KH ⊆ B.

(ii) KHD = BD ⊆ PFD.

(iii) PF ⊆ ID

(iv) ID = PF for rings without nontrivial idempotents. Thus, IDD = PFD.

(v) PF ⊆ C ⊆ H.

Similar relations are valid for KHr,KH, Br and B.

Proof. (i) It is clear that ED ⊆ KH . Let a, b ∈ S, we want to proof that any left ideal
Sa + Sb is principal. There exist U ∈ GL2(S) and d ∈ S such that U

[
a b

]T
=
[
d 0

]T ,
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this implies that Sd ⊆ Sa+ Sb, but since
[
a b

]T
= U−1

[
d 0

]T , then Sa+ S ⊆ Sd. This
proved that KH ⊆ B.

(ii)KHD = BDwas proved by Amitsur in [3]. We include the proof by completeness.

In order to prove the inclusion BD ⊆ PFD we show first that if S is BD then each
finitely generated left ideal of S is free: Let I be a left ideal of S, if I = 0, so I is free; let
I 6= 0, then I = Sa, for some a 6= 0, but since S has no zero divisors, then I is free with
basis {a}.

Next we will prove that each finitely generated submodule of a free S-module is free:
LetM be a free S-module with basisX and letN = Sz1 + · · ·+Szt be a finitely generated
submodule of M (if M = 0 or N = 0 there is nothing to prove). Each zi defines a finite
subset Xi of X , 1 ≤ i ≤ t, so N ⊆ 〈∪ti=1Xi}, and hence, there exists a finite sequence
x1, . . . , xn of elements of X such that N ⊆ Sx1 ⊕ · · · ⊕ Sxn, i.e., N is a submodule of
a free module with a basis of n elements, so we can complete the proof of freeness of
N by induction: For n = 1 we have N ⊆ Sx1

∼= S, so N is isomorphic to a finitely
generated left ideal of S, hence N is free. Consider again that N ⊆ Sx1 ⊕ · · · ⊕ Sxn and
we define the function f : N → S by x = s1x1 + · · · + snxn 7→ sn. Note that f is a
homomorphism and f(N) is a finitely generated left ideal of S, i.e., f(N) is free. We have
the exact sequence 0 → N ∩ (Sx1 ⊕ · · · ⊕ Sxn−1) → N → f(N) → 0, but since f(N) is
projective, then this sequence splits, so N ∼= f(N)⊕ (N ∩ (Sx1⊕ · · · ⊕Sxn−1)). Note that
N ∩ (Sx1⊕· · ·⊕Sxn−1) is a finitely generated submodule of a free module with a basis of
n−1 elements, by inductionN ∩ (Sx1⊕· · ·⊕Sxn−1) is free, and henceN is free. Now we
are able to prove that S is PF : Let M be a finitely generated projective S-module, then
M is a finitely generated submodule (as a free summand) of a free module, hence M is
free.

(iii) Using permutation matrices it is clear that PF ⊆ ID (see Corollary 3.2.4).

(iv) Let S be an ID ring and let F = [fij ] ∈Ms(S) be an idempotent matrix over S; by
the hypothesis, there exists P ∈ GLs(S) such that PFP−1 is diagonal, let D := PFP−1 =
diag(d1, d2, . . . , ds); since PFP−1 is idempotent, then each di is idempotent, so di = 0 or
di = 1 for each 1 ≤ i ≤ s. By permutation matrices we can assume that

PFP−1 =

[
0 0
0 Ir

]
,

in addition, note that r is the dimension of the left S-module generated by the rows of F .
Then, S is PF .

(v) Let P, P ′ be f.g. S-modules such that P ⊕ S ∼= P ′ ⊕ S; since S is PF there exists
n, n′ such that P ∼= Sn, P ′ ∼= Sn

′
and hence Sn ⊕ S ∼= Sn

′ ⊕ S, so n + 1 = n′ + 1, i.e.,
P ∼= P ′.

Let now M be a stably free module, M ⊕Ss ∼= Sr, since r ≥ s and S is left cancellable,
then M ∼= Sr−s.

From Theorem 3.3.3 we conclude that for domains the following inclusions hold:

EDD ⊆ KHD = BD ⊆ PFD = IDD ⊆ CD ⊆ HD. (3.3.1)

Similar relations are valid for the right side.
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The next proposition gives an alternative characterization of KH rings and will be
used to prove that KH ⊆ H for commutative rings.

Proposition 3.3.4. Let S be a ring. S is KH if and only if for every r ≥ 2, given elements
b1, . . . , br ∈ S, there exists U ∈ Glr(S) and d ∈ S such that U

[
b1 · · · br

]T
=
[
d · · · 0

]T .
Similar characterization holds for KHr rings.

Proof. ⇒): By induction over r. The case r = 2 is direct consequence from the definition.
Suppose that the result holds for any row of size < r and let U0 ∈ GL2(S) such that
U0

[
br−1 br

]T
=
[
d′ 0

]T , for some d′ ∈ S. We have U1

[
b1 · · · br−2 br−1 br

]T
=[

b1 · · · br−2 d′ 0
]T , with U1 :=

[
Ir−2 0

0 U0

]
∈ GLr(S). Applying the induction

hypothesis to b1, . . . , br−2, d
′ we find U2 ∈ GLr−1(S) such that U2

[
b1 · · · br−2 d′

]T
=[

d · · · 0
]T for some d ∈ S. Let U ′ :=

[
U2 0
0 1

]
∈ GLr(S), then U := U ′U1 ∈ GLr(S)

satisfies U
[
b1 · · · br

]T
=
[
d · · · 0

]T .

⇐): Trivial.

Corollary 3.3.5. For commutative rings, KH ⊆ H.

Proof. Let S be a commutative KH ring and let u =
[
u1 · · · ur

]T be an unimodular

column vector, by Proposition 3.3.4 there exists U ∈ GLr(S) such that Uu =
[
d · · · 0

]T ,
for some d ∈ S. This implies that Sd = Su1 + · · · + Sur = S, i.e., d is left invertible, and
hence, invertible. From this we get that d−1Uu = e1.

The following characterization of ID rings for which all idempotents are central will
be used below (see [90] and [78] for the particular case of commutative rings).

Proposition 3.3.6. Let S be a ring such that all idempotents are central. Then the following
conditions are equivalent

(i) S is ID.

(ii) Any idempotent matrix over S is similar to a diagonal matrix.

(iii) Given an idempotent matrixF ∈Mr(S) there exists an unimodular vector v = [v1, . . . , vr]
T

over S and an invertible matrix U ∈ GLr(S) such that Uv = e1 and Fv = av, for some
a ∈ S.

Proof. (i)⇒ (ii) is trivial.

(ii)⇒ (iii): Let F ∈Mr(S) be idempotent, there exists P ∈ GLr(S) such that PFP−1 =
diag(d1, . . . , dr), note that each di is idempotent (see the proof of the part (iv) in Theorem
3.3.3); the canonical vector e1 is unimodular, moreover PFP−1e1 = d1e1. Let v := P−1e1,
then v is unimodular, Fv = d1v and Pv = e1. Thus, the result is valid with U = P and
a = d1.
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(iii)⇒ (ii): Let F ∈Mr(S) be idempotent, we will prove that there exists Q ∈ GLr(S)
such that QFQ−1 is diagonal. The proof is by induction on r. For r = 1, if f ∈ S with
f2 = f , then there exist v, u ∈ S∗ such that uv = 1 and fv = av, for some a ∈ S, hence
f = a, i.e., 1f1−1 = a.

Suppose that any idempotent matrix of size < r is similar to a diagonal matrix. Let
F ∈Mr(S) idempotent; if F = 0 there is nothing to prove. Let F 6= 0. By the hypothesis,
there exist an unimodular vector v = [v1, . . . , vr]

T over S and an invertible matrix U ∈
GLr(S) such that Uv = e1 and Fv = d1v, for some d1 ∈ S. Then, F is similar to the
matrix F̃ := UFU−1, and F̃ has the form

F̃ =


d1 a12 · · · a1r

0 a22 · · · a2r
...

...
...

...
0 ar2 . . . arr

.

In fact, F̃ e1 = UFU−1e1 = UFv = Ud1v = d1Uv = d1e1. But F̃ is idempotent since F
is idempotent, so d2

1 = d1 and the submatrix H := [aij ], with 2 ≤ i, j ≤ r, is idempotent
of size (r − 1) × (r − 1). By induction, there exists Q′ ∈ GLr−1(S) and d2, d3, . . . , dr ∈ S
such that Q′HQ′−1 = diag(d2, d3, . . . , dr). From this we get that F is similar to the matrix
F̂ , where

F̂ :=

[
1 0
0 Q′

]
F̃

[
1 0
0 Q′−1

]
=


d1 b2 b3 · · · br
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
. . .

...
0 0 0 . . . dr

,

for some b2, . . . , br ∈ S. Since F is idempotent, then F̂ is idempotent, and hence, d2
i = di,

for each 1 ≤ i ≤ r, moreover, for each 2 ≤ j ≤ r,

bj(d1 + dj − 1) = 0. (3.3.2)

Now we consider for a moment Sr as the right S-module of column vectors (see Remark
2.1.2 (i)); the idea is to make a change of basis of Sr and to prove that F is similar to the
matrix diag(d1 . . . , dr). For this we have to construct a basis {u1,u2, . . . ,ur} of Sr such
that F̂ui = diui, 1 ≤ i ≤ r. We consider the vectors u1 = e1, u2 = (a2, 1, 0, . . . , 0)T ,
u3 = (a3, 0, 1, . . . , 0)T , . . . ,ur = (ar, 0, 0, . . . , 1)T , where a2, . . . , ar ∈ S must be defined.
For 2 ≤ j ≤ r, from condition F̂uj = djuj , the aj ’s must satisfy

bj = (dj − d1)aj . (3.3.3)

(3.3.2) implies that bj(d1 − dj + 2dj − 1) = 0, and hence bj(d1 − dj) = bj(1 − 2dj), but
(1 − 2dj)

2 = 1, so bj(d1 − dj)(1 − 2dj) = bj , thus aj := bj(2dj − 1) satisfies (3.3.3). With
this change of basis we get HF̂H−1 = diag(d1 . . . , dr), where
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H :=


1 −a2 −a3 · · · −ar
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

, with aj := bj(2dj − 1), 2 ≤ j ≤ r.

Thus, we have proved that F is similar to the matrix diag(d1, d2, . . . , dr), i.e., there exists
P ∈ GLr(S) such that PFP−1 = diag(d1, d2, . . . , dr).

(ii) ⇒ (i): Let F ∈ GLr(S) be an idempotent matrix. Then there exists Q ∈ GLr(S)
such that QFQ−1 = D := diag(d1, d2, . . . , dr); as we saw before, each di is idempotent.
We will prove that there exists P ∈ GLr(S) such that PDP−1 is a diagonal Smith normal
matrix. We divide this proof in some steps.

Step 1. We observe first that there exist idempotents f1, . . . , fr ∈ S and a ∈ S such
that f =

[
f1 · · · fr

]T is unimodular and afi = di, for 1 ≤ i ≤ r. In fact, we define

a :=d1 + · · ·+ dr +

r∑
j=2

(−1)j+1(
∏

i1<i2<···<ij

di1 · · · dij ),

fi :=1− a+ di, 1 ≤ i ≤ r

(for example, for r = 3, a = d1 + d2 + d3 − d1d2 − d1d3 − d2d3 + d1d2d3, f1 = 1 − d2 −
d3 + d1d2 + d1d3 + d2d3 − d1d2d3, f2 = 1 − d1 − d3 + d1d2 + d1d3 + d2d3 − d1d2d3 and
f3 = 1−d1−d2 +d1d2 +d1d3 +d2d3−d1d2d3). By a direct computation can be proved that
a is idempotent and di = adi, for 1 ≤ i ≤ r. From this, afi = a(1−a+di) = a−a2 +adi =
adi = di; moreover, f2

i = (1−a+di)(1−a+di) = 1−a+di−a+a2−adi+di−adi+d2
i =

1 − a + di = fi. The proof of unimodularity of f can be done by direct computation,
1 = g1f1 + g2f2 + · · ·+ grfr, with

gi :=di −
r∑

l=i+1

dl +
r−2∑
j=2

(−1)j(
∏

i<i1<i2<···<ij

di1 · · · dij ), for 1 ≤ i ≤ r − 1

gr :=1 + (−1)r−1d1 · · · dr−1.

Step 2. Now we want to prove that there exists U ∈ GLr(S) such that U f = e1. We
consider the matrix H := [hij ] ∈ Mr(S), with hij := figj central, 1 ≤ i, j ≤ r (remember
that all idempotents are central). Note that H2 = H ; by the hypothesis there exists V ∈
GLr(S) such that V HV −1 is diagonal, let D′ := V HV −1 = diag(b1, b2, . . . , br); since
V HV −1 is idempotent, then each bi is idempotent; moreover, since each hij is central,
then tr(D′) = tr(H) = 1 and hence b1 + · · · + br = 1. Let w := [b1, . . . , br]

T , then w is
unimodular and D′w = w, additionally, W e1 = w, where

W :=


b1 −1 −1 . . . −1
b2 1 0 . . . 0
b3 0 1 . . . 0
...

...
...

...
...

br 0 0 . . . 1

 ∈ GLr(S).
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Let z := [z1 · · · zr]T := V −1w, then z is unimodular and V Hz = V HV −1w = D′w =
w, so Hz = z. Hence,

∑r
j=1 figjzj = zi, for each i, i.e., (

∑r
j=1 gjzj)fi = zi, thus

(
∑r

j=1 gjzj)[f1 · · · fr]T = [z1 · · · zr]T . But since f1, . . . , fr are central and z is unimod-
ular, then c :=

∑r
j=1 gjzj is left invertible and c′c = 1 for some c′ ∈ S; observe that cc′ is

idempotent, so central, and by the hypothesis there exists x ∈ S∗ such that xcc′x−1 = d,
with d ∈ S idempotent, from this we get that cc′ = d and c′ = c′d, i.e., c′(1 − d) = 0, so
(1− d)c′ = 0 and consequently 1− d = 0, i.e, cc′ = 1. This means that c is invertible. Note
that V −1W e1 = z, so c−1V −1W e1 = f . Taking U := W−1V c we get the claimed.

Step 3. Df =
[
d1f1 · · · drfr

]T
=
[
af2

1 · · · af2
r

]T
= a

[
f1 · · · fr

]T
= af . Thus,

we have an idempotent matrix D, an unimodular vector f , an invertible matrix U and
an element a ∈ S such that Df = af and U f = e1. Then, as in the proof (iii) ⇒ (ii),
there exists L ∈ GLr(S) such that LDL−1 = diag(a, a′2, . . . , a

′
r), and hence T ′FT ′−1 =

diag(a, a′2, . . . , a
′
r), with T ′ := LQ ∈ GLr(S). Since diag(a′2, . . . , a

′
r) is idempotent, then by

induction there exists T ∈ GLr(S) such that Tdiag(a, a′2, . . . , a
′
r)T
−1 = diag(a, a2, . . . , ar)

is a diagonal Smith normal matrix. If a = 0 or a2 = 0, we have finished. Let a, a2 6= 0,
since a, a2, . . . , ar are central, we must prove that Sa2 ⊆ Sa, i.e., a divides a2. Since
a divides each di, then a divides each entry of D, and hence, a divides each entry of
LDL−1, thus a divides each a′j , 2 ≤ j ≤ r. From this we get that a divides each entry of
Tdiag(a, a′2, . . . , a

′
r)T
−1, so in particular, a divides a2.

Hence, we can conclude that there exists a matrix P ∈ GLr(S) such that PFP−1 =
diag(a, a2, . . . , ar) is a Smith normal diagonal matrix.

In (3.3.1) we saw that IDD ⊆ HD, moreover ID ⊆ H for commutative rings (see
[118], [90], and also [78]). These results can be extended using some ideas in the proof of
the previous proposition, and also the following elementary fact.

Remark 3.3.7. If u is an unimodular row of size 1 × r and P ∈ GLr(S), then u is com-
pletable to an invertible matrix if and only if uP is completable.

Proposition 3.3.8. Let S be a ring such that all idempotents are central. Then, ID ⊆ H.

Proof. Let u = [u1 · · · ur] be an unimodular row matrix of size 1 × r, there exists v =
[v1 · · · vr]T such that u1v1 + · · · + urvr = 1; we consider the matrix F = [fij ] ∈ Mr(S),
with fij := viuj , 1 ≤ i, j ≤ r. Note that F 2 = F ; by the hypothesis there exists
P ∈ GLr(S) such that PFP−1 is diagonal, let D := PFP−1 = diag(d1, d2, . . . , dr); since
PFP−1 is idempotent, then each di is idempotent. Let w := uP−1 and x := Pv, then
wx = uP−1Pv = 1 and xw = PvuP−1 = PFP−1 = D. By the above remark, u is com-
pletable if and only if w is. Thus, we will show that w is completable. From xw = D
we obtain that xiwi = di is idempotent for all 1 ≤ i ≤ r and xiwj = 0 for i 6= j. But∑r

k=1wixi = 1, then wi = wixiwi and xi = xiwixi. Let fi := wixi for 1 ≤ i ≤ r, hence
each fi is idempotent. By the hypothesis di, fi are central, then di = d2

i = xifiwi = fidi
and fi = f2

i = difi, so that di = fi and xiwi = wixi for 1 ≤ i ≤ r. Therefore,
(
∑r

i=1 xi)(
∑r

i=1wi) = 1, hence
∑r

i=1wi is left invertible, and as we saw in the step 2
in the proof of the previous proposition,

∑r
i=1wi is invertible; thereby, the matrix



CHAPTER 3. HERMITE RINGS 49

V :=


w1 w2 w3 · · · wr
−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
...

...
−1 0 0 · · · 1

,

is invertible, i.e., w is completable.

3.4 Products and quotients

Next we will study the properties introduced in Definition 3.3.1 with respect to some
algebraic standard constructions.

Theorem 3.4.1. Let S be a ring and I ⊆ Rad(S) an ideal of S. Let {Si}i∈C be a family of rings.
Then,

(i) S isH if and only if S/I isH.

(ii)
∏
i∈C Si isH if and only if each Si isH.

(iii) If
∏
i∈C Si is PF , then each Si is PF .

(iv) If S is ED, then S/I is ED for any proper ideal I of S.

(v)
∏
i∈C Si is ED if and only if each Si is ED.

(vi) If S is B, then S/I is B for any proper ideal I of S which is f.g. as left ideal.

(vii)
∏
i∈C Si is B if and only if each Si is B.

(viii) Suppose that in S all idempotents are central and I is a nilideal. If S/I is ID, then S is
ID.

(ix)
∏
i∈C Si is ID if and only if each Si is ID.

(x) If S is KH , then S/I is KH for any proper ideal I of S.

(xi)
∏
i∈C Si is KH if and only if each Si is KH .

(xii)
∏
i∈C Si is C if and only if each Si is C.

(xiii) If
∏
i∈C Si is PSF , then each Si is PSF .

Similar relations are valid for the right side.

Proof. In this proof we will use the following facts: (a) if S := S/I , then U := [uij ] ∈
GLr(S) if and only if U = [uij ] ∈ GLr(S). Moreover, (U)−1 = U−1. In fact, the necessary
condition is trivial. Now let U ∈ GLr(S), then there exists V ∈ GLr(S) such that U V =
Ir = V U , where Ir is the identical matrix over S; from this we get that UV −Ir, V U−Ir ∈
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Mr(Rad(S)) = Rad(Mr(S)), and hence, there exist C,D ∈ Mr(S) such that UV C = Ir
and DV U = Ir, so U ∈ GLr(S).

(b) On the other hand, let B :=
∏
i∈C Si, then Ms(B) ∼=

∏
i∈CMs(Si), where the iso-

morphism is defined by F 7→ (F (i)), with F = [fuv], fuv = (f
(i)
uv ), F (i) = [f

(i)
uv ]. From this

we obtain that Ms(B)∗ = GLs(B) ∼=
∏
i∈C GLs(Si) =

∏
i∈CMs(Si)

∗.

(i) We will use the characterization given in Theorem 3.1.2 (iii).

⇒): Let u = [v1, . . . , vr] be an unimodular row matrix of size 1× r over S. There exist
v1, . . . , vr ∈ S such that u1 v1 + · · · + ur vr = 1, i.e., u1v1 + · · · + urvr − 1 ∈ Rad(S). This
means that u1v1 + · · · + urvr ∈ S∗, and hence, u = [u1, . . . , ur]

T ∈ Sr is unimodular. By
the hypothesis, there exists U = [uij ] ∈ GLr(S) such that uU = eT1 . From this we get that
uU = e1

T , with U = [uij ] ∈ GLr(S). This proves that S isH.

⇐): Let u = [u1, . . . , ur] be unimodular over S, then u is unimodular over S. By the
hypothesis, there exists U ∈ GLr(S) such that uU = e1

T . We get that

u1u11 + · · ·+ urur1 − 1 = p1,

u1u12 + · · ·+ urur2 = p2,

...
u1u1r + · · ·+ ururr = pr,

with p1, . . . , pr ∈ Rad(S). Let z = (1 + p1)−1, then z ∈ S∗ and hence

uUD = [1, p2, . . . , pr],

where D is the diagonal matrix D = diag(z, 1 . . . , 1). Finally, uUDH = [1, 0, . . . , 0] with
H := E12(−p2)E13(−p3) · · ·E1r(−pr). Note that UDH ∈ GLr(S).

(ii)⇐): Let B :=
∏
i∈C Si and u = [u1, . . . , ur] an unimodular row over B, then there

exists v1, . . . , vr ∈ B such that u1v1 + · · · + urvr = 1, let uj := (u
(i)
j ), u(i)

j ∈ Si, i ∈ C,

1 ≤ j ≤ r. Then, u(i) := [u
(i)
1 , . . . , u

(i)
r ] is unimodular over Si for each i, and there exists

U (i) := [u
(i)
pq ] ∈ GLr(Si) such that u(i)U (i) = [1i, 0, . . . , 0] (the first canonical vector over

Si). Let U = [upq] with upq = (u
(i)
pq ) ∈ B, then U ∈ GLr(B) and uU = eT1 (the first

canonical vector over B).

⇒): Let k ∈ C, we will prove that Sk is H. Let u(k) := [u
(k)
1 , . . . , u

(k)
r ] be unimodular

over Sk, then there exists v(k) = [v
(k)
1 , . . . , v

(k)
r ]T such that u(k)

1 v
(k)
1 + · · · + u

(k)
r v

(k)
r = 1.

Note that u := [u1, . . . , ur] is unimodular, with

u1 := (. . . , 1, u
(k)
1 , 1, . . . ), u2 := (. . . , 0, u

(k)
2 , 0, . . . ), . . . , ur := (. . . , 0, u

(k)
r , 0, . . . ).

In fact, let

v1 := (. . . , 1, v
(k)
1 , 1, . . . ), v2 := (. . . , 0, v

(k)
2 , 0, . . . ), . . . , vr := (. . . , 0, v

(k)
r , 0, . . . ),

then u1v1+· · ·+urvr = (. . . , 1, 1, 1, . . . , ), and hence, there existsU = [upq] ∈ GLr(B), with
upq = (u

(i)
pq ), such that uU = eT1 . Thus, for U (k) = [u

(k)
pq ] ∈ GLr(Sk) we have u(k)U (k) =

[1k, 0, . . . , 0].
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(iii) Let k ∈ C, we will prove that Sk is PF . Let F (k) = [f
(k)
uv ] ∈ Ms(Sk) idempotent,

then F ∈ Ms(B) is idempotent, where F = [fuv], with fuv = (f
(i)
uv ) and f (i)

uv = 0 for i 6= k.
There exists P ∈ GLs(B) such that

PFP−1 =

[
0 0
0 Ir

]
,

hence for P (k) ∈ GLs(Sk) we have

P (k)F (k)(P (k))−1 =

[
0(k) 0(k)

0(k) I
(k)
r

]
,

where I(k)
r is the identical matrix over Sk of size r × r and the 0(k) are null matrices over

Sk, thus Sk is PF .

(iv) Let F be a rectangular matrix over S, then F is a rectangular matrix over S and
there exist invertible matrices P ∈ GLr(S), Q ∈ GLs(S) and d1, d2, . . . , dl in S, with
0 ≤ l ≤ min{r, s}, such that PFQ = diag(d1, d2, . . . , dl, 0) and Sdi+1S ⊆ Sdi∩diS, for 1 ≤
i ≤ l. From this we obtain that P ∈ GLr(S), Q ∈ GLs(S) and P F Q = diag(d1, d2, . . . , dl)
and S di+1 S ⊆ S di ∩ di S, for 1 ≤ i ≤ l.

(v) ⇒): Let k ∈ C, we will prove that Sk is ED. Let F (k) = [f
(k)
uv ] ∈ Mr×s(Sk) a

rectangular matrix, then F ∈ Mr×s(B) is a rectangular matrix over B, where F = [fuv],
with fuv = (f

(i)
uv ) and f

(i)
uv = 0 for i 6= k. There exist P ∈ GLr(B), Q ∈ GLs(G), and

(d
(i)
1 ), (d

(i)
2 ), . . . , (d

(i)
l ) in B, l = min{r, s}, such that

PFQ = diag((d
(i)
1 ), (d

(i)
2 ), . . . , (d

(i)
l )), B(d

(i)
j+1)B ⊆ B(d

(i)
j ) ∩ (d

(i)
j )B, 1 ≤ j ≤ l.

Then, P (k) ∈ GLr(Sk), Q(k) ∈ GLs(Sk) and

P (k)F (k)Q(k) = diag(d
(k)
1 , d

(k)
2 , . . . , d

(k)
l ), Skd

(k)
j+1Sk ⊆ Skd

(k)
j ∩ d

(k)
j Sk, 1 ≤ j ≤ l,

⇐) Let F = [fuv] ∈ Mr×s(B) be a rectangular matrix, with fuv = (f
(i)
uv ), f (i)

uv ∈ Si;
then F (i) = [f

(i)
uv ] ∈ Mr×s(Si) and there exist matrices P (i) ∈ GLr(B), Q(i) ∈ GLs(B) and

d
(i)
1 , d

(i)
2 , . . . , d

(i)
li

in Si, li = min{r, s}, such that

P (i)F (i)Q(i) = diag(d
(i)
1 , d

(i)
2 , . . . , d

(i)
li

), Sid
(i)
j+1Si ⊆ Sid

(i)
j ∩ d

(i)
j Si, 1 ≤ j ≤ li.

Since for each i, li = min{r, s}, let l := min{r, s} and then

PFQ = diag((d
(i)
1 ), (d

(i)
2 ), . . . , (d

(i)
l )), B(d

(i)
j+1)B ⊆ B(d

(i)
j ) ∩ (d

(i)
j )B, 1 ≤ j ≤ l.

(vi) and (vii) are direct consequence of the form of left ideals in S/I and
∏
i∈C Si.

(viii) We preserve the previous notation. Let F ∈ Ms(S) be an idempotent matrix,
then F ∈Ms(S) is idempotent and there exists P ∈ GLs(S) such that
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D = P F (P )−1 = diag(d1, . . . , dr), with S di+1 S ⊆ S di ∩ di S.

Note that D is idempotent, so each di is idempotent, 1 ≤ i ≤ r; let d := d1 · · · dr, then
d

2
= d. Since I is nilideal we can assume that d is idempotent (see [68]), and hence,

central; moreover since each di is central, di|di+1, and then d = dr (this can be easy prove
by induction on r). Note that Der = der, so Fv = dv, with v := (P )−1er unimodular
over S, and hence, v is unimodular over S. Moreover, there exists V ∈ GLr(S) such that
V v = e1. In fact, we have v − P−1er = u = [u1, . . . , ur]

T , with ui ∈ Rad(S), 1 ≤ i ≤ r.
Then, v = P−1er+u, and hence, Pv = er+Pu is a column matrix with the last component
invertible, so multiplying by elementary and permutation matrices we get V ∈ GLr(S)
such that V v = e1.

We have Fv = dv + z, with z = [z1, . . . , zr]
T , zi ∈ Rad(S), 1 ≤ i ≤ r. From this we

get that F 2v = Fv = dFv + Fz, so Fz = (1 − d)Fv = (1 − d)(dv + z) = (1 − d)z since
(1 − d)d = 0. Then, F (v + (2d − 1)z)= Fv + (2d − 1)Fz = dv + z +(2d − 1)(1 − d)z =
dv + dz = d(v + (2d− 1)z). Thus, given the idempotent matrix F we have found a vector
w := v + (2d− 1)z and an element d ∈ S such that Fw = dw, moreover w is unimodular
since v is unimodular and zi ∈ Rad(S), 1 ≤ i ≤ r. In addition, the first component of the
vector Vw = e1 +V (2d−1)z is invertible, so by elementary operations we found a matrix
W ∈ GLr(S) such that Ww = e1. From Proposition 3.3.6 we get that S is an ID ring.

(ix) The proof is completely similar to the proof of (v).

(x) Evident.

(xi) The proof is as in (v).

(xii)⇒): We will apply Proposition 3.3.2. Let k ∈ C and F (k) = [f
(k)
uv ] ∈Ms(Sk),G(k) =

[g
(k)
uv ] ∈Mr(Sk) idempotent matrices, then F ∈Ms(B),G ∈Mr(B) are idempotent, where

F = [fuv], G = [guv], with fuv = (f
(i)
uv ), guv = (g

(i)
uv ) and f (i)

uv = 0 = g
(i)
uv for i 6= k. Since B is

a C ring, the enlarged matrices [
F 0
0 1

]
and

[
G 0
0 1

]
can be factorized as in Proposition 3.3.2 if and only if the matrices F,G can be factorized.
This implies that the matrices [

F (k) 0
0 1

]
and

[
G(k) 0

0 1

]
can be factorized if and only if the matrices F (k), G(k) can be factorized. This proves that
Sk is a C ring.

⇐): Let F = [fuv] ∈ Ms(B), G = [guv] ∈ Mr(B) be idempotent matrices, with fuv =

(f
(k)
uv ), guv = (g

(k)
uv ), f (k)

uv , g
(k)
uv ∈ Sk; since each ring Sk is C, we can repeat the previous

reasoning, but in the inverse order, and conclude that B is a C ring.

(xiii) The proof is analogous to the first part of (xii).

Proposition 3.4.2. Given a ring S, if S isH (C) then Mn(S) isH (C) for every n ≥ 1.
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Proof. Let P be a stably free Mn(S)-module, then there exist integers r, s ≥ 0 such that
P ⊕ (Mn(S))s ∼= (Mn(S))r. From this we have

S1×n ⊗Mn(S) P ⊕ Ss(1×n) ∼= Sr(1×n)

and, hence, S1×n ⊗Mn(S) P is a stably free S-module. Since S ∈ H, this module turns out
free with rank n(r − s), i.e., S1×n ⊗Mn(S) P ∼= S(1×n)(r−s). Thus,

Sn ⊗S S1×n ⊗Mn(S) P ∼= Sn ⊗S S(1×n)(r−s),

which implies that
P ∼= Mn(S)⊗Mn(S) P ∼= Mn(S)r−s,

this is, P is a free Mn(S)-module of rank r − s.
Now, given P,Q left finitely generated projectiveMn(S)-modules such that P ⊕Mn(S) ∼=
Q⊕Mn(S), we have that

S1×n ⊗Mn(S) P ⊕ S1×n ∼= S1×n ⊗Mn(S) Q⊕ S1×n.

It is not difficult to show that S1×n ⊗Mn(S) P and S1×n ⊗Mn(S) Q are finitely generated
S-modules and, therefore,

S1×n ⊗Mn(S) P ∼= S1×n ⊗Mn(S) Q.

Whereby, applying Sn ⊗S − to this last isomorphism, we get P ∼= Q, i.e., Mn(S) ∈ C.

Remark 3.4.3. The problem of computing the matrices U in Theorem 3.1.2 and Corollary
3.2.4 has been considered in various contexts. For example, in the commutative setting,
Yengui in [2] presents an algorithm for unimodular completion over Laurent polyno-
mial ring, whereas in [96] a method for unimodular completion over Noetherian rings
is developed. Of course, the constructive proofs of Quillen-Suslin Theorem include al-
gorithms for the calculation of such matrices in the case S = k[x1, . . . , xn] (see [86]). In
[71] Laubenbacher regarded the unimodular completion problem for quotient polyno-
mial rings by monomial ideals. Interesting examples about completion unimodular in
particular cases are shown by Lam in [62], Examples 5.10 - 5.14.

3.5 Localizations

Now we will consider the localizations of rings introduced in Definition 3.3.1.

Proposition 3.5.1. Let S be a ring and T a multiplicative system of S such that T−1S exits. If
S is ED (KH , B), then T−1S is ED (KH , B). Similar properties are valid for the right side.

Proof. Let S a ED ring and F ∈ Mr×s(T
−1S), then F = [fij ] with fij = t−1

ij sij , where
tij ∈ T and sij ∈ S, for 1 ≤ i ≤ r, 1 ≤ j ≤ s. By Proposition 2.1.16 in [95], there exist
t ∈ T and lij ∈ S such that fij = t−1lij , then tF = [lij ] ∈ Mr×s(S), hence tF admits a
diagonal reduction, i.e., there exist P ∈ GLr(S) and Q ∈ GLs(S) such that P (tF )Q =
diag(d1, . . . , dl), with d1, . . . , dl ∈ S, l = min{r, s} and Sdi+1S ⊆ Sdi ∩ diS. Note that
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Pt,Q ∈ GLr(T
−1S). Thus, (Pt)FQ = P (tF )Q = D, moreover, T−1Sdi+1T

−1S ⊆
T−1Sdi ∩ diT−1S. This proves that T−1S is ED.

The proof for KH is completely analogous.

Suppose now that S is a B ring and let J be a f.g. left ideal of T−1S, then J =
〈q1, . . . , qr} where qi = t−1

i si with ti ∈ T and si ∈ S for 1 ≤ i ≤ r. Let t ∈ T and ai ∈ S
such that qi = t−1qi, then tqi = ai. Therefore, J ′ := T−1S a1

1 + · · · + T−1S ar1 ⊆ J ; but
J ⊆ J ′ : in fact, let x = b1

t1
q1 + · · · + br

tr
qr ∈ J , then x = t−1

1 b1t
−1 a1

1 + · · · + t−1
r brt

−1 ar
1 ;

since bit−1 ∈ T−1S exist, b′i ∈ S and li ∈ T such that bit−1 = l−1
i b′i, 1 ≤ i ≤ r, hence

x = t−1
1 l−1

1 b′1
a1
1 + · · ·+ t−1

r l−1
r b′r

ar
1 = (l1t1)−1b′1

a1
1 + · · ·+ (lrtr)

−1b′r
ar
1 ∈ J

′. Thus, J = J ′.

Now note that J ′ = T−1I , where I := Sa1 + · · · + Sar: clearly T−1I ⊆ J ′; let y ∈ J ′,
then y = b1

s1
a1
1 + · · ·+ br

sr
ar
1 = b1a1

s1
+ · · ·+ brar

sr
= c1b1a1+···+crbrar

u for some ci ∈ S and u ∈ T .
Hence y = u−1(c1b1a1 + · · · + crbrar) ∈ T−1I . But I is a f.g. left ideal of S, then I = 〈a}
for some a ∈ S, and therefore J = T−1S a1 , i.e., J is principal.

Remark 3.5.2. (i) We observe that if S is B and T a multiplicative system of S such that
T−1S and ST−1 exist, then T−1S is B since ST−1 ∼= T−1S.

(ii) In general, if S is H (PF , PSF) not always T−1S has the correspondent property
(see [26]).

For the localization by primes ideals we need to recall a definition. Let S be a left
Noetherian ring and P a prime ideal of S. It says that P is left localizable if the set

S(P ) := {a ∈ S|a ∈ S/P is not a zero divisor}

is a multiplicative system of S and S(P )−1S exists; we will write SP := S(P )−1S. Right
localizable prime ideals are defined similarly (see [11]).

Proposition 3.5.3. Let S be a left Noetherian ring.

(i) If P is a left (right) localizable prime ideal, then SP isH.

(ii) If P is a left (right) localizable completely prime ideal, then SP is PF , and hence, C and
PSF .

Proof. (i) It is well known (see for example [11], and also [80]) that Sp has a unique max-
imal ideal PSP := {as | a ∈ P, s ∈ S(P )}; moreover, Rad(SP ) = PSP and Sp/PSp is
simple Artinian, therefore, SP is a semilocal ring and hence SP isH (Proposition 3.4.1 ).

(ii) If P is completely prime, S/P is a domain, so that Ql(S/P ) is a division ring,
and therefore, SP is a local ring. From [26], Corollary 0.3.8, we get that SP is PF ⊆
C ∩ PSF .

3.6 Examples, remarks and open problems

Example 3.6.1. (a) Probably the most classical example of PF (and hence of PSF andH)
ring is S[x1, . . . , xn], where S is a commutative principal ideal domain (this is the content
of the Quillen-Suslin Theorem).
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(b) Any principal ideal commutative ring (PIR) is KH, and hence, H ([62], Theorem
I.4.31).

(c) Any commutative von Neumann regular ring is KH, and hence,H ([62], Theorem
I.4.34).

(d) Any Dedekind domain isH (see [78], Remark 6.7.14).

(e) Any local ring (in the sense that S/Rad(S) is a division ring) is PF (see [26], Corol-
lary 0.3.8), and hence, it is also C andH.

(f) Any semilocal ring isH. This follows from Theorem 3.4.1.

(g) Note that PF ,PSF 6= H: Z6 (see [78], Example 6.1.2).

Example 3.6.2. Let T be a division ring. Then, any (f.g.) projective left (right) module
over T [x] is free. Thus, T [x] is PF , and hence, H ([62], p. 2 and p. 73). However,
S := T [x1, x2] has a module M such that M ⊕ S ∼= S2, but M is not free, i.e., S is not H,
and hence, is not PF ([62], p. 3 and p. 74; [5], Corollary 6.3).

Example 3.6.3. (a) We exhibit a commutative ring that is not H (see [107]). Let S =
R[x, y, z] and S = R[x, y, z]/I , with I = 〈x2+y2+z2−1〉, then u =

[
x y z

]
is unimodular

with right inverse uT , however u cannot be completed to an unimodular matrix: In fact,
suppose that exists U ∈ GL3(S) such that uU =

[
1 0 · · · 0

]
. Note that makes sense

to evaluate elements of S at points (v1, v2, v3) ∈ S2, the unit sphere in R3, since if f = g
then f − g ∈ I and hence f(v1, v2, v3) − g(v1, v2, v3) = 0, i.e., f(v1, v2, v3) = g(v1, v2, v3).
Moreover, an unit in S takes nonzero values everywhere on the sphere: in fact, if fg =
1, by above, f(v1, v2, v3)g(v1, v2, v3) = 1 for every (v1, v2, v3) ∈ S2, In particular, since
detU−1 is an unit, then detU−1 6= 0 in every point on S2. So, if U−1 = [f ij ] ∈ GL3(S),

then ϕ(v) := (f12(v), f22(v), f32(v)) ∈ R3 \ {0} for all v ∈ S2. But u
[
f12 f22 f32

]T
= 0,

so that v · ϕ(v) = 0 and hence, ϕ(v) is a tangent vector to S2 that results also continuous
(and differentiable) since each fij is a polynomial. Thus, the map ϕ : S2 → R3 is a
nowhere zero vector field on S2. But this is a contradiction, because the hairy ball theorem
in topology says every continuous vector field on the sphere vanishes at least once, (see
[62], Chapter III).

(b) This example also shows that if S is H not always S/I is H, with I an arbitrary
proper ideal of S. In the same way, this example also shows that if S is ID not always
S/I is ID.

Example 3.6.4. The product of PF rings is not necessarily PF . In fact, Z2 and Z3 are PF ,
but Z6

∼= Z2 × Z3 is not PF (see Example 3.6.1, literal (d)). This example also shows that
quotients of PF rings are not necessarily PF : Z is PF . In addition, from Theorem 3.4.1
we obtain that Z6

∼= Z2 × Z3 is C, so PF 6= C.

Example 3.6.5. H and PF are not (in general) preserved by localizations by arbitrary
multiplicative systems ([62], Remark I.4.19. See also see [26], Exercise 0.7.15).

Example 3.6.6. It is well known that B 6= Br, a classical example is given by the skew
polynomial ring T [x;σ], where T is a division ring a σ is an endomorphism of T that
is not automorphism. Every left ideal of this ring is principal, hence, it is a left Bézout
ring; but if a /∈ σ(T ), then the right ideal generated by x and ax is not principal. In fact,
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suppose that there exists f ∈ T [x;σ] such that xT [x;σ] + axT [x;σ] = fT [x;σ], we have
x = fh and ax = fg, for some polynomials f, g ∈ T [x;σ]; f is not a constant polynomial
since f ∈ xT [x;σ] + axT [x;σ], so x = (f1x + f0)h0, from this we get that f0 = 0, h0 6= 0
and f1 = σ(h−1

0 ). From ax = fg we conclude that ax = f1xg0, i.e., a = σ(h−1
0 g0), a

contradiction.

This example shows also that KH 6= KHr. In fact, as we saw T [x;σ] is BD = KHD,
but T [x;σ] is not KHDr = BDr.

Example 3.6.7. Note that if k is a field, then k[x, y] is PFD but is not BD. Thus, B 6= PF ,
and consequently, B 6= C, B 6= H, KH 6= PF , KH 6= C, KH 6= H, ED 6= PF , ED 6= C,
ED 6= H.

Example 3.6.8. In (3.3.1) we observed that BD ⊆ PFD, note that in general B * PF .
In fact, consider Z6. This example also shows that PF 6= ID since Z6 is semilocal and
commutative semilocal rings are ID (see [118]).

Example 3.6.9. Z[
√
−5] shows that ID 6= H, see [78], Example 6.6.1 and Remark 6.7.14.

Example 3.6.10. Note that if k is a field, then S := M2(k) ∈ C by Proposition 3.4.2;
nevertheless S /∈ PSF : indeed, we have that

M2(k) =

[
k 0
k 0

]
⊕
[
0 k
0 k

]
,

thus P :=

[
k 0
k 0

]
is a finitely generated projective S-module. If P was stably free, then

there exist integers r, s ≥ 0 such that P ⊕ Ss ∼= Sr (S-isomorphism). But every S-
isomorphism is a k-isomorphism, hence P ⊕ Ss ∼= Sr as vectorial spaces. From this,
it follows dimk(P ⊕ Ss) = 2 + 4s = dimk(Sr) = 4r, and whence, 2 = 4(r − s) ≥ 4, a
contradiction. Therefore, C * PSF . On the other hand, A1(k) ∈ PSF but this ring is not
C (see Example 11.1.4 in [95]). So, PSF * C.

Remark 3.6.11. (a) In [50] it is proved that ED 6= KH 6= B.

(b) In [60], Theorem 3.2, Kaplansky proved that a commutative Bézout ring is KH
when all zero divisors of the ring are in the Jacobson radical, establishing in particular
that if S is local then KH = B (see also [3] and [62], Theorem I.4.27).

(c) In [125], Theorem 2, it is proved that every commutative Bézout ring with compact
minimal prime spectrum is KH.

(d) In [126], Theorem 1, Zabavsky showed that a commutative Bézout ring S is KH if
and only if sr(S) ≤ 2.

(e) [126], Theorem 2, shows that a Br ring with stable range 1 is KHr. Moreover,
Corollary 1 in [110] shows that a Br ring with stable range 1 isH (see also Corollary 4.1.5
in the next chapter). In a similar direction, in [52] is proved that if S is Br and Rad(S)
contains a completely prime ideal, then S is KHr.

(f) For noncommutative rings, Zabavsky in [126], Corollary 2, proved that any semilo-
cal right Bézout ring is KHr.

(g) In [125], Proposition 2, it is proved that a n −KHr ring has stable range ≤ n (let
n ≥ 2, a ring S is n −KHr if given a row matrix u of size 1 × n there exist U ∈ GLn(S)
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and d ∈ S such that uU =
[
d 0 · · · 0

]
; in a similar way the rings n−KH and n−KH

are defined; note that 2 −KHr = KHr. In Lemma 3.3.4 we have proved that a ring S is
KH if and only if S is n−KH , for all n ≥ 2).

(h) If S is Br with sr(S) = n then S is m−KHr, for all m ≥ n+ 1 ([125], Corollary 1).

(i) If S is n−KHr, then S is Br ([125], Proposition 4).

(j) If S is n−KH and Br, then S is right n−KHr ([125], Proposition 3).

(k) Let S be an integral domain, i.e., a commutative domain. If S is BD with enumer-
able many maximal ideals or with Krull dimension 1, then S is EDD. If S is BD such that
given a proper invertible integral ideal I of S there exists a non-empty finite set of finitely
generated maximal ideals that contain I , then S is EDD ([78], Remark 6.7.7).

Remark 3.6.12. A very close notion to the task of studying when stably free modules are
free is that of power-free modules. We say that a stably free S-module P with rank t is
power-free if exists a positive integer n such that Pn ∼= Stn. In [64], Theorem 5.10 and
Theorem 5.11, Lam proved that if S is a right (left) noetherian ring or a commutative
ring, then every stably free module is power-free. From this, we can conclude that if A is
a bijective skew PBW extension of a right (left) noetherian ring R, then every stably free
A-module is power-free.

Problem 3.6.13. (a) In general, ID ⊆ C? (b) In general, ID ⊆ H ? (d) C 6= H ? (see [26],
Exercise 0.4.7).

Conjecture 3.6.14 (Kaplansky). For commutative domains, BD = EDD.



CHAPTER 4

d-Hermite rings and skew PBW extensions

As we saw at the beginning of Chapter 2, under suitable conditions on the ring R of co-
efficients, most of skew PBW extensions are PSF . It was also remarked that if R is a left
Noetherian, left regular PSF ring, then the ring of skew quantum polynomials Qr,nq,σ(R)
is also PSF . In particular, if k is a field, the k-algebra of skew quantum polynomials
Qr,nq,σ(k) is a PSF ring. Related to the H property that we study in the previous chapter,
there exists an important example of skew polynomial ring that satisfies this condition:
let T be a division ring and T [x;σ, δ] the ring of skew polynomials ring over T , where σ is
an automorphism, then it is well known that T [x;σ, δ] is a principal ideal domain (PID),
i.e., it has non zero divisors and all left and right ideals are principal (see [26], Theorem
1.3.2, see also [80]), but any PID is EDD ([26], Theorem 1.4.7), so by (3.3.1), T [x;σ, δ] is
HD. For example, B1(k) is HD. However, it is easy to show examples of skew PBW
extensions A = σ(R)〈x1, . . . , xn〉 that are notH rings (and hence, are not PF): if T is a di-
vision ring, then S := T [x, y] has a moduleM such thatM⊕S ∼= S2, butM is not free, i.e.,
S is not H (see [62], p. 36 and [98], Proposition 1). Let R = H[[x, y]] be the power series
ring in x, y over the division ring H of the real quaternions, and let A := R[t]. Then, R is
a noncommutative local ring but R[t] is not H (see [62], p. 325). Another example occurs
in Weyl algebras: let k be a field, with char(k) = 0, the Weyl algebra A1(k) = k[t][x; ddt ]
is not H since there exist stably free modules of rank 1 over An(k) that are not free ([26],
Corollary 1.5.3; see also [95], Example 11.1.4). Note that k[t] is H. In general, if R is a left
Noetherian domain, then An(R) is notH ([95], Corollary 11.2.11). In this chapter, we will
study a weaker condition than theH property for skew PBW extensions: the d-Hermite
condition. Recall that we always assume that all rings areRC.

4.1 d-Hermite rings

There is a famous conjecture in commutative algebra which asserts that if R is a com-
mutative H-ring, then the polynomial ring R[x] is H (see [62]). As we observed at the
beginning of the chapter, this conjecture for skew PBW extensions is not true. Thus,
instead of considering theH condition and the conjecture for skew PBW extensions, we
will study a weakly property, the d-Hermite property. The following proposition induces

58
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the definition of d-Hermite rings.

Proposition 4.1.1. Let S be a ring. For any integer d ≥ 0, the following statements are equiva-
lent:

(i) Any stably free module of rank ≥ d is free.

(ii) Any unimodular row matrix over S of length ≥ d + 1 can be completed to an invertible
matrix over S.

(iii) For every r ≥ d+1, if u is an unimodular row matrix of size 1×r, then there exists a matrix
U ∈ GLr(S) such that uU = (1, 0, . . . , 0), i.e., GLr(S) acts transitively on Umr(r, S).

(iv) For every r ≥ d + 1, given an unimodular matrix F of size s × r, r ≥ s, there exists
U ∈ GLr(S) such that

FU =
[
Is | 0

]
.

Proof. We can repeat the proof of Theorem 3.1.2 taking r ≥ d+ 1.

Definition 4.1.2. Let S be a ring and d ≥ 0 an integer. S is d-Hermite, property denoted by
d-H, if S satisfies any of conditions in Proposition 4.1.1.

The next result extends Proposition 3.2.7.

Proposition 4.1.3. The d-Hermite condition is left-right symmetric.

Proof. We can repeat the proof of Proposition 3.2.7 taking r ≥ d+ 1. See also [95], Lemma
11.1.13.

Corollary 4.1.4. Let S be a ring. Then, S is sr(S)-H.

Proof. This follows from Definition 4.1.2 and Theorem 2.3.6.

Corollary 4.1.5. Let S be a ring. If sr(S) = 1, then S isH.

Proof. According to Corollary 4.1.4 S is 1-H, however, it is well known that rings with
stable rank 1 are cancellable (see [34]), so by Theorem 3.3.3, S isH.

Remark 4.1.6. (i) Observe that 0-Hermite rings coincide withH rings, and for commuta-
tive rings, 1-Hermite coincides also with H (see [62], Theorem I.4.11). If K is a field with
char(k) = 0, by Corollary 2.3.7, A1(k) is 2-H but, as we observed at the beginning of the
chapter, A1(k) is not 1-H. In general,H ( 1-H ( 2-H ( · · · (see [26]).

(ii) Note thatH = 1-H∩WF (a ring S isWF , weakly finite, if for all n ≥ 0, P ⊕Sn ∼= Sn

if and only if P = 0. See Remark 2.1.9).

(iii) Any left Artinian ring S is H since sr(S) = 1, see Remark 2.3.2. In particular,
semisimple and semilocal rings areH.

(iv) Rings with big stable rank can be Hermite, for example sr(R[x1, . . . , xn]) = n + 1
([95], Theorem 11.5.9), but by Quillen-Suslin Theorem, R[x1, . . . , xn] isH.
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4.2 Stable rank

Corollaries 2.3.7 and 4.1.4 motivate the task of computing the stable rank of bijective skew
PBW extensions. For this purpose, we need to recall the famous stable range theorem.
This theorem relates the stable rank and the Krull dimension of a ring. The original
version of this classical result is due to Bass (1968, [8]) and states that if S is a commutative
Noetherian ring and Kdim(S) = d then sr(S) ≤ d + 1. Heitmann extends the theorem
for arbitrary commutative rings (1984, [53]). Lombardi et. al. in 2004 ([30], Theorem 2.4;
see also [88]) proved again the theorem for arbitrary commutative rings using the Zariski
lattice of a ring and the boundary ideal of an element. This proof is elementary and
constructive. Stafford in 1981 ([115]) proved a noncommutative version of the theorem
for left Noetherian rings.

Proposition 4.2.1 (Stable range theorem). Let S be a left Noetherian ring and
lKdim(S) = d, then sr(S) ≤ d+ 1.

Proof. See [115].

From this we get the following modest result.

Proposition 4.2.2. Let R be a left Noetherian ring with finite left Krull dimension and A =
σ(R)〈x1, . . . , xn〉 a bijective skew PBW extension of R, then

1 ≤ sr(A) ≤ lKdim(R) + n+ 1,

and A is d-H, with d := (lKdim(R) + n+ 1).

Proof. The inequalities follow from Proposition 4.2.1 and Theorem 4.2 in [83]. The second
statement follows from Corollary 4.1.4.

Example 4.2.3. The results in [83] for the Krull dimension of bijective skew PBW ex-
tensions can be combined with Proposition 4.2.2 in order to get an upper bound for the
stable rank. With this, we can estimate also the d-Hermite condition. The following table
gives such estimations:
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Ring U. B.
Habitual polynomial ringR[x1, . . . , xn] dim(R) + n + 1
Ore extension of bijective typeR[x1;σ1, δ1] · · · [xn;σn, δn] dim(R) + n + 1
Weyl algebraAn(K) 2n + 1
Extended Weyl algebraBn(K) n + 1
Universal enveloping algebra of a Lie algebra g, U(g),K commutative ring dim(K) + n + 1
Tensor productR⊗K U(G) dim(R) + n + 1
Crossed productR ∗ U(G) dim(R) + n + 1
Algebra of q-differential operatorsDq,h[x, y] 3
Algebra of shift operators Sh 3
Mixed algebraDh 4
Discrete linear systems k[t1, . . . , tn][x1, σ1] · · · [xn;σn] 2n + 1
Linear partial shift operators k[t1, . . . , tn][E1, . . . , En] 2n + 1
Linear partial shift operators k(t1, . . . , tn)[E1, . . . , En] n + 1
L. P. Differential operators k[t1, . . . , tn][∂1, . . . , ∂n] 2n + 1
L. P. Differential operators k(t1, . . . , tn)[∂1, . . . , ∂n] n + 1
L. P. Difference operators k[t1, . . . , tn][∆1, . . . ,∆n] 2n + 1
L. P. Difference operators k(t1, . . . , tn)[∆1, . . . ,∆n] n + 1

L. P. q-dilation operators k[t1, . . . , tn][H
(q)
1 , . . . , H

(q)
m ] n +m + 1

L. P. q-dilation operators k(t1, . . . , tn)[H
(q)
1 , . . . , H

(q)
m ] m + 1

L. P. q-differential operators k[t1, . . . , tn][D
(q)
1 , . . . , D

(q)
m ] n +m + 1

L. P. q-differential operators k(t1, . . . , tn)[D
(q)
1 , . . . , D

(q)
m ] m + 1

Diffusion algebras 2n + 1
Additive analogue of the Weyl algebraAn(q1, . . . , qn) 2n + 1
Multiplicative analogue of the Weyl algebraOn(λji) n + 1

Quantum algebra U′(so(3, k)) 4
3-dimensional skew polynomial algebras 4
Dispin algebra U(osp(1, 2)) 4
Woronowicz algebraWν(sl(2, k)) 4
Complex algebra Vq(sl3(C)) 11
Algebra U 3n + 1
Manin algebraOq(M2(k)) 5
Coordinate algebra of the quantum group SLq(2) 5
q-Heisenberg algebra Hn(q) 3n + 1
Quantum enveloping algebra of sl(2, k), Uq(sl(2, k)) 4
Hayashi algebraWq(J) 3n + 1
Differential operators on a quantum space Sq ,Dq(Sq) 2n + 1
Witten’s Deformation of U(sl(2, k) 4

Quantum Weyl algebra of MaltsiniotisAq,λ
n ,K commutative ring dim(K) + 2n + 1

Quantum Weyl algebraAn(q, pi,j) 2n + 1
Quantum Weyl algebraA2(Ja,b), a 6= b 4

Multiparameter Weyl algebraAQ,Γn (k) 2n + 1

Quantum symplectic spaceOq(sp(k2n)) 2n + 1
Quadratic algebras in 3 variables 4

Table 4.1: Stable rank for some examples of bijective skew PBW extensions.

Remark 4.2.4. (i) The values presented in Table 4.1 can be improved for some particular
classes of skew PBW extensions. For example, it is well known that sr(An(k)) = 2 if
char(k) = 0 (see Remark 2.3.2). A challenging problem is to give exact values for the
stable rank of all examples of bijective PBW extensions presented in [83].

(ii) For the algebra of quantum polynomialsOq, Artamonov proved that under ceratin
conditions on the system of parameters q := [qij ], if P is a f.g. projective module over Oq
of rank at least 2, then P is free (the rank of P is the dimension of Q(Oq) ⊗Oq P ; see [5],
Theorem 5.3 and Corollary 5.39; [4], Theorems 4.1 and 4.2; [6], Theorems 1.3 and 1.12).
Thus, Oq is 2-H.

4.3 Kronecker’s theorem

Closely related to the stable range theorem is the Kronecker’s theorem stating that if S is
a commutative ring with Kdim(S) < d, then every finitely generated ideal I of S has the
same radical as an ideal generated by d elements. In this section, we want to investigate
this theorem for noncommutative rings using the Zariski lattice and the boundary ideal,
but generalizing these tools and their properties to noncommutative rings. The main
result will be applied to skew PBW extensions.
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Definition 4.3.1. Let S be a ring and Spec(S) the set of all prime ideals of S. The Zariski lattice
of S is defined by

Zar(S) := {D(X)|X ⊆ S}, with D(X) :=
⋂

X⊆P∈Spec(S)

P.

Zar(S) is ordered with respect to the inclusion. The description of the Zariski lattice is
presented in the next proposition, 〈X}, 〈X〉, {X〉 will represent the left, two-sided, and
right ideal of S generated by X , respectively. ∨ denotes the sup and ∧ the inf .

Proposition 4.3.2. Let S be a ring, I, I1, I2, I3 two-sided ideals of S,X ⊆ S, and x1, . . . , xn, x, y ∈
S. Then,

(i) D(X) = D(〈X}) = D(〈X〉) = D({X〉).

(ii) D(I) = rad(S) if and only if I ⊆ rad(S). In particular, D(0) = rad(S).

(iii) D(I) = S if and only if I = S.

(iv) I ⊆ D(I) and D(D(I)) = D(I). Moreover, if I1 ⊆ I2, then D(I1) ⊆ D(I2).

(v) Let {Ij}j∈J a family of two-sided ideals of S. Then, D(
∑

j∈J Ij) = ∨j∈JD(Ij). In
particular, D(x1, . . . , xn) = D(x1) ∨ · · · ∨D(xn).

(vi) D(I1I2) = D(I1) ∧D(I2). In particular, D(〈x〉〈y〉) = D(x) ∧D(y).

(vii) D(x+ y) ⊆ D(x, y).

(viii) If 〈x〉〈y〉 ⊆ D(0), then D(x, y) = D(x+ y).

(ix) If x ∈ D(I), then D(I) = D(I, x).

(x) If S := S/I , then D(J) = D(J), for any two-sided ideal J of S containing I .

(xi) u ∈ D(I) if and only if u ∈ rad(S/I). In such case, if u ∈ D(I), there exists k ≥ 1 such
that uk ∈ I .

(xii) Zar(S) is distributive:

D(I1) ∧ [D(I2) ∨D(I3)] = [D(I1) ∧D(I2)] ∨ [D(I1) ∧D(I3)],

D(I1) ∨ [D(I2) ∧D(I3)] = [D(I1) ∨D(I2)] ∧ [D(1) ∨D(I3)].

Proof. (i), (ii), (iv), (ix) and (x) are evident from the definitions.

(iii) If I = S there is no prime ideal containing I , so the intersection of prime ideals
containing I is taken equals S (see [51], p. 51). Conversely, if I 6= S the intersection of
proper ideals containing I is proper (this collection is not empty since I is contained in at
least one prime ideal), thus D(I) 6= S.

(v) We prove, first, that ∨j∈JD(Ij) = D(
∑

j∈J D(Ij)): for every j ∈ J , D(Ij) ⊆∑
j∈J D(Ij) ⊆ D(

∑
j∈J D(Ij)); let D(I) ⊇ D(Ij) for every j ∈ J , then

D(I) ⊇
∑

j∈J D(Ij) and hence D(I) = D(D(I)) ⊇ D(
∑

j∈J D(Ij)).
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It only remains to show that D(
∑

j∈J D(Ij)) = D(
∑

j∈J Ij): since Ij ⊆
∑

j∈J Ij , then
D(Ij) ⊆ D(

∑
j∈J Ij), so D(

∑
j∈J Ij) ⊇ ∨j∈JD(Ij) = D(

∑
j∈J D(Ij)); on the other hand,

D(
∑

j∈J D(Ij)) ⊇
∑

j∈J D(Ij) ⊇
∑

j∈J Ij , so D(D(
∑

j∈J D(Ij))) ⊇ D(
∑

j∈J Ij), thus
D(
∑

j∈J D(Ij)) ⊇ D(
∑

j∈J Ij).

(vi) It is clear that D(I1I2) ⊆ D(I1), D(I2). Let I be a two-side ideal of S such that
D(I) ⊆ D(I1), D(I2), then D(I) ⊆ D(I1) ∩ D(I2) ⊆ D(I1I2). The last inclusion follows
from the fact that if P is a prime ideal containing I1I2, then I1 ⊆ P or I2 ⊆ P , thus if
x ∈ D(I1)∩D(I2), then x ∈ P , i.e., x ∈ D(I1I2). This implies thatD(I1)∧D(I2) = D(I1I2).

(vii) Since 〈x+ y〉 ⊆ 〈x, y〉, then the result follows from (iv).

(viii) According to (vii), D(x + y) ⊆ D(x, y); for the other inclusion, note first that
D(x, y) = D(x+y, 〈x〉〈y〉): the inclusionD(x+y, 〈x〉〈y〉) ⊆ D(x, y) is clear since any prime
ideal containing x, y contains x + y, 〈x〉〈y〉. Let P be a prime that contains x + y, 〈x〉〈y〉,
so x ∈ P or y ∈ P , in the first case x ∈ P and y ∈ P and the same it is true for the second
case. This implies that D(x, y) ⊆ D(x+ y, 〈x〉〈y〉).

By the hypothesis and numeral (ii), 〈x〉〈y〉 ⊆ rad(S), i.e., 〈x〉〈y〉 is contained in all
primes, so D(x+ y, 〈x〉〈y〉) = D(x+ y) and hence D(x, y) = D(x+ y).

(xi) The first assertion is clear from the definition of D(I) and rad(S/I). If u ∈ D(I),
then u ∈ rad(S/I) and hence u is strongly nilpotent, but this implies that u is nilpotent
(see [95]), i.e., there exists k ≥ 1 such that uk = 0, i.e., uk ∈ I .

(xii) For the first identity we have:

D(I1) ∧ [D(I2) ∨D(I3)] = D(I1) ∧D(I2 + I3) = D[I1(I2 + I3)] = D(I1I2 + I1I3) =
D(I1I2) ∨D(I1I3) = [D(I1) ∧D(I2)] ∨ [D(I1) ∧D(I3].

For the second relation we have

D(I1) ∨ [D(2) ∧D(I3)] = D(I1) ∨D(I2I3) = D(I1 + I2I3) ⊇ D[(I1 + I2)(I1 + I3)] =
[D(I1) ∨D(I2)] ∧ [D(I1) ∨D(I3)];

the other inclusion follows from the fact that D(I1 + I2I3) ⊆ D[(I1 + I2)(I1 + I3)] since if
P is a prime ideal that contains (I1 + I2)(I1 + I3), then P ⊇ (I1 + I2) or P ⊇ (I1 + I3), thus
P ⊇ I1 and P ⊇ I2 ⊇ I2I3, or, P ⊇ I1 and P ⊇ I3 ⊇ I2I3, i.e., P ⊇ I1 + I2I3.

Definition 4.3.3. Let S be a ring and v ∈ S, the boundary ideal of v is defined by Iv := 〈v〉 +
(D(0) : 〈v〉), where (D(0) : 〈v〉) := {x ∈ S|〈v〉x ⊆ D(0)}.

Note that Iv 6= 0 for every v ∈ S. On the other hand, if v is invertible or if v = 0, then
Iv = S. If S is a domain and v 6= 0, then Iv = 〈v〉.

Definition 4.3.4. Let S be a ring such that lKdim(S) exists. We say the S satisfies the boundary
condition if for any d ≥ 0 and every v ∈ S,

lKdim(S) ≤ d⇒ lKdim(S/Iv) ≤ d− 1.

Example 4.3.5. (i) Any commutative Noetherian ring satisfies the boundary condition:
indeed, for commutative Noetherian rings, the classical Krull dimension and the Krull
dimension coincide, so we can apply Theorem 13.2 in [88].
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(ii) Any prime ring S with left Krull dimension satisfies the boundary condition:
in fact, for prime rings, any non-zero two sided ideal is essential, so lKdim(S/Iv) <
lKdim(S) (see [95], Proposition 6.3.10).

(iii) Any domain with left Krull dimension satisfies the boundary condition: indeed,
any domain is a prime ring.

Remark 4.3.6. In [29], a constructive notion of classical Krull dimension for commutative
rings is presented. Such concept is used to give a constructive proof of Stable Range
Theorem for commutative case. Since in right FBN rings 1 the classical Krull dimension
and module theoretic left (right) Krull dimension coincides (see e.g., [51], Theorem 15.13),
we could think that this constructive notion holds over these rings. Nevertheless, for this,
the boundary condition must be satisfied which, in general, is not true for FBN rings: let
S = M2(k), with k a field. Thus S is semisimple and, hence, an artinian ring. Since S
has not essential ideals, S is a FBN ring. Now, note that Rad(S) = rad(S) = 0; so, if

v =

(
1 0
0 0

)
, then Iv 6= S and lKdim(S/Iv) = 0, i.e., S does not satisfy the boundary

condition: indeed, if u =

(
x y
z w

)
∈ (rad(S) : 〈v〉), in particular we must have that

vu = 0, i.e.,
(

1 0
0 0

)(
x y
z w

)
=

(
0 0
0 0

)
. The latter implies x = 0 and y = 0 and u =(

0 0
z w

)
, with z, w ∈ k arbitraries. But,

(
1 0
0 0

)(
1 1
0 0

)
=

(
1 1
0 0

)
∈ 〈v〉, and thus(

1 1
0 0

)(
0 0
z w

)
=

(
0 0
0 0

)
, i.e., z = 0 and w = 0, therefore, if u ∈ (rad(S) : 〈v〉), then

u = 0. As v /∈M2(k)∗, then Iv 6= S and lKdim(S/Iv) = 0, since S/Iv is artinian.

Theorem 4.3.7 (Kronecker). Let S be a domain such that lKdim(S) exists. If
lKdim(S) < d and u1, . . . , ud, u ∈ S, then there exist x1, . . . , xd ∈ S such that

D(u1, . . . , ud, u) = D(u1 + x1u, . . . , ud + xdu).

Proof. The proof is by induction on d. Let d = 1 and u1, u ∈ S, if lKdim(S) = −1,
then by definition S = 0 and u1, u = 0, so we take x1 := 0. Let lKdim(S) = 0; by the
boundary condition, lKdim(S/Iu1) = −1, i.e., S = Iu1 = 〈u1〉 + (D(0) : 〈u1〉). There
exist c1, c

′
1, . . . , cl, c

′
l ∈ S and x1 ∈ (D(0) : 〈u1〉) such that 1 = c1u1c

′
1 + · · · + clu1c

′
l + x1,

then 〈u1〉〈x1〉 ⊆ D(0) and u = c1u1c
′
1u + · · · + clu1c

′
lu + x1u, thus u ∈ 〈u1, x1u〉 and

hence u ∈ D(u1, x1u) (Proposition 4.3.2, part (iv)). Moreover, 〈u1〉〈x1u〉 ⊆ D(0), then
by Proposition 4.3.2, part (viii), D(u1, x1u) = D(u1 + x1u). Thus, u ∈ D(u1 + x1u), so
D(u1 + x1u) = D(u1 + x1u, u) (Proposition 4.3.2, part (ix)), but D(u1 + x1u, u) = D(u1, u)
since 〈u1 + x1u, u〉 = 〈u1, u〉, so D(u1, u) = D(u1 + x1u).

Now, let us assume that the proposition is true for rings with left Krull dimension
< d− 1, d ≥ 2, and let S be a ring with lKdim(S) < d. Let u1, . . . , ud, u ∈ S. We consider
two cases.

1A prime ring is right bounded if every essential right ideal contains a nonzero ideal; a ring S is right
fully bounded if S/P is right bounded for each prime ideal P of S. Thus, bounded or fully bounded, means
the ring also has the left-handed property. A ring S is right FBN (respectively FBN) is a right Noetherian
ring fully bounded (respectively, a Noetherian fully bounded ring).
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Case 1. If ud = 0, then the theorem is trivial with x1 = · · · = xd−1 = 0, xd = 1.

Case 2. Let ud 6= 0. Let I be the boundary ideal of ud, then D(I) = 〈ud〉. We consider
the elements u1, . . . , ud−1, u ∈ S, with S := S/I . By the hypothesis, lKdim(S) < d − 1
and hence there exist elements x1, . . . , xd−1 ∈ S such that D(u1, . . . , ud−1, u) = D(u1 +
x1 u, . . . , ud−1 + xd−1 u). From this, we get that

D(〈u1, . . . , ud−1, u〉+ I) = D(〈u1 + x1u, . . . , ud−1 + xd−1u〉+ I),

but by Proposition 4.3.2, part (x),

D(〈u1, . . . , ud−1, u〉+ I) = D(〈u1 + x1u, . . . , ud−1 + xd−1u〉+ I), i.e.,

D(〈u1, . . . , ud−1, u〉+ I) = D(〈u1 + x1u, . . . , ud−1 + xd−1u〉+ I).

Since u ∈ 〈u1, . . . , ud−1, u〉+I ⊆ D(〈u1, . . . , ud−1, u〉+I), then u ∈ D(〈u1 +x1u, . . . , ud−1 +
xd−1u〉+I) = D(〈u1 +x1u, . . . , ud−1 +xd−1u)∨D(I) = D(〈u1 +x1u, . . . , ud−1 +xd−1u, ud).
Taking xd := 0 we get that u ∈ D(u1 + x1u, . . . , ud−1 + xd−1u, ud + xdu). From this, and
using Proposition 4.3.2, part (ix), we conclude that

D(u1 + x1u, . . . , ud−1 + xd−1u, ud + xdu) = D(u1 + x1u, . . . , ud−1 + xd−1u, ud + xdu, u)

however note that

〈u1 + x1u, . . . , ud−1 + xd−1u, ud + xdu, u〉 = 〈u1, . . . , ud−1, ud, u〉,

so D(u1 + x1u, . . . , ud−1 + xd−1u, ud + xdu) = D(u1, . . . , ud−1, ud, u).

Corollary 4.3.8. Let S be a domain such that lKdim(S) exists. If lKdim(S) < d and u1, . . . , ud+1 ∈
S are such that 〈u1, . . . , ud+1〉 = S, then there exist elements x1, . . . , xd ∈ S such that 〈u1 +
x1ud+1, . . . , ud + xdud+1〉 = S.

Proof. The statement follows directly from Proposition 4.3.2, part (iii), and Theorem 4.3.7.

Corollary 4.3.9. LetA = σ(R)〈x1, . . . , xn〉 be a bijective skew PBW extension of a left Noethe-
rian domain R. If lKdim(R) < d and u1, . . . , ud+n, u ∈ A, then there exist y1, . . . , yd+n ∈ A
such that

D(u1, . . . , ud+n, u) = D(u1 + y1u, . . . , ud+n + yd+nu).

Proof. This follows directly from Proposition 1.2.4, Theorem 1.2.9, Theorem 4.2 in [83],
and Theorem 4.3.7.



CHAPTER 5

Gröbner bases for skew PBW extensions

In order to make constructive the theory of projective modules, stably free modules and
Hermite rings studied in the previous chapters, we will study the theory of Gröbner
bases of left (right) ideals and modules for bijective skew PBW extensions in the current
chapter. This theory was initially investigated in [40], [57] and [58] for the particular
case of quasi-commutative bijective skew PBW extensions. We will extend the theory to
arbitrary bijective skew PBW extensions, in particular, Buchberger’s algorithm will be
established for general bijective extensions. We start recalling the basic facts of Gröbner
theory for arbitrary skew PBW extensions; we will use the notation given in Definition
1.2.1.

5.1 Monomial orders in skew PBW extensions

Let A = σ(R)〈x1, . . . , xn〉 be an arbitrary skew PBW extension of R and let � be a total
order defined on Mon(A). If xα � xβ but xα 6= xβ we will write xα � xβ . Further,
xβ � xα means that xα � xβ . Let f 6= 0 be a polynomial of A, if

f = c1X1 + · · ·+ ctXt,

with ci ∈ R − {0} and X1 � · · · � Xt are the monomials of f , then lm(f) := X1 is the
leading monomial of f , lc(f) := c1 is the leading coefficient of f and lt(f) := c1X1 is the
leading term of f . If f = 0, we define lm(0) := 0, lc(0) := 0, lt(0) := 0, and we set X � 0
for any X ∈Mon(A). Thus, we extend � to Mon(A) ∪ {0}.

Definition 5.1.1. Let � be a total order on Mon(A), it says that � is a monomial order on
Mon(A) if the following conditions hold:

(i) For every xβ, xα, xγ , xλ ∈Mon(A)

xβ � xα⇒ lm(xγxβxλ) � lm(xγxαxλ).

(ii) xα � 1, for every xα ∈Mon(A).

66
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(iii) � is degree compatible, i.e., |β| ≥ |α| ⇒ xβ � xα.

Monomial orders are also called admissible orders. The condition (iii) of the previous
definition is needed for the proof of the following proposition, and this one will be used
in the division algorithm (Theorem 5.2.6).

Proposition 5.1.2. Every monomial order onMon(A) is a well-order. Thus, there are not infinite
decreasing chains in Mon(A).

Proof. See [40], Proposition 12.

From now on, we will assume that Mon(A) is endowed with some monomial order.

Definition 5.1.3. Let xα, xβ ∈ Mon(A), we say that xα divides xβ , denoted by xα|xβ , if there
exists xγ , xλ ∈ Mon(A) such that xβ = lm(xγxαxλ). We will also say that any monomial
xα ∈Mon(A) divides the polynomial zero.

Proposition 5.1.4. Let xα, xβ ∈Mon(A) and f, g ∈ A− {0}. Then,

(a) lm(xαg) = lm(xαlm(g)) = xα+exp(lm(g)), i.e., exp(lm(xαg)) = α + exp(lm(g). In
particular,

lm(lm(f)lm(g)) = xexp(lm(f))+exp(lm(g)), i.e.,

exp(lm(lm(f)lm(g))) = exp(lm(f)) + exp(lm(g))

and
lm(xαxβ) = xα+β, i.e., exp(lm(xαxβ)) = α+ β. (5.1.1)

(b) The following conditions are equivalent:

(i) xα|xβ .

(ii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xθxα) = xθ+α and hence
β = θ + α.

(iii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xαxθ) = xα+θ and hence
β = α+ θ.

(iv) βi ≥ αi for 1 ≤ i ≤ n, with β := (β1, . . . , βn) and α := (α1, . . . , αn).

Proof. See [40], Proposition 14.

Remark 5.1.5. We note that a least common multiple of monomials of Mon(A) there
exists: in fact, let xα, xβ ∈ Mon(A), then lcm(xα, xβ) = xγ ∈ Mon(A), where γ =
(γ1, . . . , γn) with γi := max{αi, βi} for each 1 ≤ i ≤ n.
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5.2 Reduction in skew PBW extensions

Some natural computational conditions on R will be assumed in the remaining sections
of this thesis (see [75]).

Definition 5.2.1. A ring R is left Gröbner soluble (LGS) if the following conditions hold:

(i) R is left Noetherian.

(ii) Given a, r1, . . . , rm ∈ R there exists an algorithm which decides whether a is in the left
ideal Rr1 + · · ·+Rrm, and if so, find b1, . . . , bm ∈ R such that a = b1r1 + · · ·+ bmrm.

(iii) Given r1, . . . , rm ∈ R there exists an algorithm which finds a finite set of generators of the
left R-module

SyzR[r1 · · · rm] := {(b1, . . . , bm) ∈ Rm|b1r1 + · · ·+ bmrm = 0}.

Remark 5.2.2. The three above conditions imposed toR are needed in order to guarantee
a Gröbner theory in the rings of coefficients, in particular, to have an effective solution of
the membership problem in R (see (ii) in Definition 5.2.3 below). From now on we will
assume that A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension of R, where R is a LGS
ring and Mon(A) is endowed with some monomial order.

Definition 5.2.3. Let F be a finite set of non-zero elements of A, and let f, h ∈ A, we say that
f reduces to h by F in one step, denoted f F−−→ h, if there exist elements f1, . . . , ft ∈ F and
r1, . . . , rt ∈ R such that

(i) lm(fi)|lm(f), 1 ≤ i ≤ t, i.e., there exists xαi ∈Mon(A) such that lm(f) = lm(xαi lm(fi)),
i.e., αi + exp(lm(fi)) = exp(lm(f)).

(ii) lc(f) = r1σ
α1(lc(f1))cα1,f1 + · · · + rtσ

αt(lc(ft))cαt,ft , where cαi,fi are defined as in
Theorem 1.2.2, i.e., cαi,fi := cαi,exp(lm(fi)).

(iii) h = f −
∑t

i=1 rix
αifi.

We say that f reduces to h by F , denoted f F−−→+ h, if there exist h1, . . . , ht−1 ∈ A such that

f h1 h2 · · · ht−1 h-F -F -F -F -F

f is reduced (also called minimal) w.r.t.. F if f = 0 or there is no one step reduction of f by F , i.e.,
one of the first two conditions of Definition 5.2.3 fails. Otherwise, we will say that f is reducible
w.r.t. F . If f F−−→+ h and h is reduced w.r.t. F , then we say that h is a remainder for f w.r.t. F .

Remark 5.2.4. (i) By Theorem 1.2.2, the coefficients cαi,fi in the previous definition are
unique and satisfy

xαi lm(fi) = cαi,fix
αi+exp(lm(fi)) + pαi,fi ,
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where pαi,fi = 0 or deg(pαi,fi) < |αi + exp(lm(fi))|, 1 ≤ i ≤ t.

(ii) lm(f) � lm(h) and f − h ∈ 〈F}, where 〈F} denotes the left ideal of A generated
by F .

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0
F−→ 0.

From the reduction relation we get the following interesting properties.

Proposition 5.2.5. Let A be a skew PBW extension such that cα,β is invertible for each α, β ∈
Nn. Let f, h ∈ A, θ ∈ Nn and F = {f1, . . . , ft} be a finite set of non-zero polynomials of A.
Then,

(i) If f F−−→ h, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that xθf +p
F−−→

xθh. In particular, if A is quasi-commutative, then p = 0.

(ii) If f F−−→+ h and p ∈ A is such that p = 0 or lm(h) � lm(p), then f + p
F−−→+ h+ p.

(iii) If f F−−→+ h, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that xθf +

p
F−−→+ xθh. If A is quasi-commutative, then p = 0.

(iv) If f F−−→+ 0, then there exists p ∈ A with p = 0 or lm(xθf) � lm(p) such that xθf +

p
F−−→+ 0. If A is quasi-commutative, then p = 0.

Proof. See [40], Proposition 20.

The next theorem is the theoretical support of the division algorithm for skew PBW
extensions.

Theorem 5.2.6. Let F = {f1, . . . , ft} be a finite set of non-zero polynomials of A and f ∈ A,
then the division algorithm below produces polynomials q1, . . . , qt, h ∈ A, with h reduced w.r.t.
F , such that f F−−→+ h and

f = q1f1 + · · ·+ qtft + h,

with

lm(f) = max{lm(lm(q1)lm(f1)), . . . , lm(lm(qt)lm(ft)), lm(h)}.
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Division algorithm in A

INPUT: f, f1, . . . , ft ∈ A with fj 6= 0 (1 ≤ j ≤ t)

OUTPUT: q1, . . . , qt, h ∈ A with f = q1f1 + · · · + qtft + h, h reduced w.r.t.
{f1, . . . , ft} and
lm(f) = max{lm(lm(q1)lm(f1)), . . . , lm(lm(qt)lm(ft)), lm(h)}

INITIALIZATION: q1 := 0, q2 := 0, . . . , qt := 0, h := f

WHILE h 6= 0 and there exists j such that lm(fj) divides lm(h) DO

Calculate J := {j | lm(fj) divides lm(h)}
FOR j ∈ J DO

Calculate αj ∈ Nn such that αj + exp(lm(fj)) =
exp(lm(h))

IF the equation lc(h) =
∑

j∈J rjσ
αj (lc(fj))cαj ,fj is soluble, where

cαj ,fj are defined as in the Theorem 1.2.2 THEN

Calculate one solution (rj)j∈J

h := h−
∑

j∈J rjx
αjfj

FOR j ∈ J DO
qj := qj + rjx

αj

ELSE

Stop

Proof. See [40], Theorem 21.

The following example illustrates the above procedure.

Example 5.2.7. For this example, we consider the Manin algebra (see Example 1.3.2) with
k := Q, the order deglex on Mon(Oq(M2(Q))) with x � y � v, and q = −1

2 . Let f =
(3u3+2u)x2y2v+(u−2)xyv+2uyv ∈ Oq(M2(Q)) andG := {f1 := (u2+1)xyv+2uv2, f2 :=
uxy + 3v, f3 := (u− 1)yv}. We will divide f by G using the above algorithm.
Step 1. We start with h := f , q1 := 0, q2 := 0, q3 := 0. Since lm(fj) | lm(f) forj = 1, 2, 3,
we compute α = (αj1, αj2, αj3) ∈ N3 such that αj + exp(lm(fj)) = exp(lm(h)) and the
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corresponding value of σαj (lc(fj))cαj ,βj , where βj = exp(lm(fj)):

(α11, α12, α13) + (1, 1, 1) = (2, 2, 1)⇒ α11 = 1, α12 = 1, α13 = 0,

σα1(lc(f1))cα1,β1 = σ1σ2σ
0
3(u2 + 1) = u2 + 1,

(α21, α22, α23) + (1, 1, 0) = (2, 2, 1)⇒ α21 = 1, α22 = 1, α23 = 1,

σα2(lc(f2))cα2,β2 = σ1σ2σ3(u) = u,

(α31, α32, α33) + (0, 1, 1) = (2, 2, 1)⇒ α31 = 2, α32 = 1, α33 = 0,

σα3(lc(f3))cα3,β3 = σ2
1σ2σ

0
3(u− 1) = −1

2
u− 1.

Now, we solve the equation

lc(h) = 3u3 + 2u = r1(u2 + 1) + r2(u) + r3(−1
2u− 1)⇒ r1 = 3u, r2 = −1xc, r3 = 0,

and with the relations defining Oq(M2(Q)), we compute

h =h− (r1x
α1f1 + r2x

α2f2 + r3x
α3f3)

=h− (r1[(u2 + 1)x2y2v +

(
−3

8
u3 − 3

8
u+ 2u

)
xyv2] + r2[ux2y2v +

(
−3

8
u2 + 3

)
xyv2] + 0)

=

(
9

8
u4 − 21

4
u2 + 3

)
xyv2 + (u− 2)xyv + 2uyv.

We compute also

q1 := 3uxy, q2 := −xyv, q3 := 0.

Step 2. lm(h) = xyv2, lc(h) = 9
8u

4 − 21
4 u

2 + 3. Again, lm(fj) | lm(f) for j = 1, 2, 3,
we compute α = (αj1, αj2, αj3) ∈ N3 such that αj + exp(lm(fj)) = exp(lm(h)) and
σαj (lc(fj))cαj ,βj :

(α11, α12, α13) + (1, 1, 1) = (1, 1, 2)⇒ α11 = 0, α12 = 0, α13 = 1,

σα1(lc(f1))cα1,β1 = σ0
1σ

0
2σ3(u2 + 1) = u2 + 1,

(α21, α22, α23) + (1, 1, 0) = (1, 1, 2)⇒ α21 = 0, α22 = 0, α23 = 2,

σα2(lc(f2))cα2,β2 = σ0
1σ

0
2σ

2
3(u) = u,

(α31, α32, α33) + (0, 1, 1) = (1, 1, 2)⇒ α31 = 1, α32 = 0, α33 = 1,

σα3(lc(f3))cα3,β3 = σ1σ
0
2σ

0
3(u− 1)cα3,β3 =

1

4
u+

1

2
.

We resolve the equation

lc(h) = 9
8u

4− 21
4 u

2+3 = r1(u2+1)+r2(u)+r3(1
4u+ 1

2)⇒ r1 = 9
8u

2− 51
8 , r2 = −75

16 , r3 = 75
4 ;

we have:

h =h− (r1x
α1f1 + r2x

α2f2 + r3x
α3f3)

=h− (r1[(u2 + 1)xyv2 + 2uv3] + r2[uxyv2 + 3v3] + r3[

(
1

4
+

1

2

)
xyv2])

=(u− 2)xyv −
(

9

4
u3 − 51

4
u− 225

16

)
v3 + 2uyv.

and
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q1 := 3uxy +

(
9
8u

2 − 51
8

)
v, q2 := −xyv − 75

16v
2, q3 := 75

4 xv.

Step 3. Note that lm(h) = xyv and lm(fj) | lm(h) for j = 1, 2, 3. For this case we have:

(α11, α12, α13) + (1, 1, 1) = (1, 1, 1)⇒ α11 = 0, α12 = 0, α13 = 0,

σα1(lc(f1))cα1,β1 = σ0
1σ

0
2σ

0
3(u2 + 1) = u2 + 1,

(α21, α22, α23) + (1, 1, 0) = (1, 1, 1)⇒ α21 = 0, α22 = 0, α23 = 1,

σα2(lc(f2))cα2,β2 = σ0
1σ

0
2σ3(u) = u,

(α31, α32, α33) + (0, 1, 1) = (1, 1, 1)⇒ α31 = 1, α32 = 0, α33 = 0,

σα3(lc(f3))cα3,β3 = σ1σ
0
2σ

0
3(u− 1) = −1

2
u− 1.

We solve,

u− 2 = r1(u2 + 1) + r2(u) + r3(−1
2u− 1)⇒ r1 = 0, r2 = 2, r3 = 2;

thus,

h =h− (r1x
α1f1 + r2x

α2f2 + r3x
α3f3)

=h− (r2[uxyv + 3v2] + r3[

(
−1

2
u− 1

)
xyv])

=−
(

9

4
u3 − 51

4
u− 225

16

)
v3 + 2uyv − 6v2.

and also

q1 := 3uxy +

(
9
8u

2 − 51
8

)
v, q2 := −xyv − 75

16v
2 + 2v, q3 := 75

4 xv + 2x.

Step 4. Since lm(h) = v3 is not divisible by lm(fj) for j = 1, 2, 3, then h is reduced with
respect to G, and we can check that f = q1f1 + q2f2 + q3f3 + h; i.e.,

f =

(
3uxy +

(
9

8
u2 − 51

8

)
v

)
f1 +

(
−xyv − 75

16
v2 + 2v

)
f2 +

(
75

4
xv + 2x

)
f3

−
(

9

4
u3 − 51

4
u− 225

16

)
v3 + 2uyv − 6v2;

we also see that,

max{lm(lm(q1)lm(f1)), lm(lm(q2)lm(f2)), lm(lm(q3)lm(f3))}
= max{x2y2v, x2y2v, xyv2, v3} = x2y2v = lm(f).

5.3 Gröbner bases of left ideals

Our next purpose is to recall the definition of a Gröbner bases for the left ideals of the
skew PBW extension A = σ(R)〈x1, . . . , xn〉. Remember that if ∅ 6= F ⊆ A, with 〈F} we
are denoting the left ideal of A generated by F .
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Definition 5.3.1. Let I 6= 0 be a left ideal of A and let G be a non empty finite subset of non-zero
polynomials of I , we say that G is a Gröbner basis for I if each element 0 6= f ∈ I is reducible
w.r.t. G.

We will say that {0} is a Gröbner basis for I = 0.

Theorem 5.3.2. Let I 6= 0 be a left ideal of A and let G be a finite subset of non-zero polynomials
of I . Then the following conditions are equivalent:

(i) G is a Gröbner basis for I .

(ii) For any polynomial f ∈ A,

f ∈ I if and only if f G−−→+ 0.

(iii) For any 0 6= f ∈ I there exist g1, . . . , gt ∈ G such that lm(gj)|lm(f), 1 ≤ j ≤ t, (i.e.,
there exist αj ∈ Nn such that αj + exp(lm(gj)) = exp(lm(f))) and

lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ
αt(lc(gt))cαt,gt}.

(iv) For α ∈ Nn, let 〈α, I} be the left ideal of R defined by

〈α, I} := 〈lc(f)|f ∈ I, exp(lm(f)) = α}.

Then, 〈α, I} = J , with

J := 〈σβ(lc(g))cβ,g|g ∈ G, with β + exp(lm(g)) = α}.

Proof. See [40], Theorem 24.

From this theorem we get the following consequences.

Corollary 5.3.3. Let I 6= 0 be a left ideal of A. Then,

(i) If G is a Gröbner basis for I , then I = 〈G}.

(ii) Let G be a Gröbner basis for I , if f ∈ I and f G−−→+ h, with h reduced, then h = 0.

(iii) Let G = {g1, . . . , gt} be a set of non-zero polynomials of I with lc(gi) ∈ R∗ for each
1 ≤ i ≤ t. Then, G is a Gröbner basis of I if and only if given 0 6= r ∈ I there exists i such
that lm(gi) divides lm(r).

Proof. (i) This is a direct consequence of Theorem 5.3.2.

(ii) Let f ∈ I and f
G−−→+ h, with h reduced; since f − h ∈ 〈G} = I , then h ∈ I ; if

h 6= 0 then h can be reduced by G, but this is not possible since h is reduced.

(iii) IfG is a Gröbner basis of I , then given 0 6= r ∈ I , r is reducible w.r.t. G, hence there
exists i such that lm(gi) divides lm(r). Conversely, if this condition holds for some i, then
r is reducible w.r.t. G since the equation lc(r) = r1σ

αi(lc(gi)cαi,gi , with αi+exp(lm(gi)) =
exp(lm(r)), is soluble with solution r1 = lc(r)c′αi,gi(σ

αi(lc(gi)))
−1, where c′αi,gi is a left

inverse of cαi,gi .
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Corollary 5.3.4. Let G be a Gröbner basis for a left ideal I . Given g ∈ G, if g is reducible w.r.t.
G′ = G− {g}, then G′ is a Gröbner basis for I .

Proof. According to Theorem 5.3.2, it is enough to show that all f ∈ I is reducible w.r.t
G′. Let f be a nonzero polynomial in I ; since G is a Gröbner basis for I , f is reducible
w.r.t G and there exist elements g1, . . . , gt ∈ G satisfying the conditions (i), (ii) and (iii) in
the Definition 5.2.3. If g 6= gi for each 1 ≤ i ≤ t, then we finished. Suppose that g = gj for
some j ∈ {1, . . . , t} and let βi = exp(gi) for i 6= j, β = exp(g), and αi, α ∈ Nn such that
αi + βi = exp(f) = α+ β. Thus,

lc(f) = r1σ
α1(lc(g1))cα1,β1 + · · ·+ rjσ

α(lc(g))cα,β + · · ·+ rtσ
αt(lc(gt))cαt,βt .

On the other hand, since g is reducible w.r.t. G′, there exist g′1, . . . , g
′
s ∈ G′ such that

lm(g′l) | lm(g) and lc(g) =
∑s

l=1 r
′
lσ
α′l(lc(g′l))cα′l,β

′
l
, where β′l = exp(g′l), α′l ∈ Nn and

α′l + β′l = exp(g) = β. So, lm(g′l) | lm(f) for 1 ≤ i ≤ s; moreover, using the identities of
Remark 1.2.3, we have that

σα(lc(g))cα,β =σα(

s∑
l=1

r′lσ
α′l(lc(g′l))cα′l,β′l)cα,β

=σα(r′1)σασα
′
1(lc(g′1))σα(cα′1,β′1)cα,β + · · ·+ σα(r′s)σ

ασα
′
s(lc(g′s))σ

α(cα′s,β′s)cα,β

=σα(r′1)cα,α′1σ
α+α′1(lc(g′1))c−1α,α′1

σα(cα′1,β′1)cα,β + · · ·+

σα(r′s)cα,α′sσ
α+α′s(lc(g′s))c

−1
α,α′s

σα(cα′s,β′s)cα,β

=σα(r′1)cα,α′1σ
α+α′1(lc(g′1))cα+α′1,β′1 + · · ·+ σα(r′s)cα,α′sσ

α+α′s(lc(g′s))cα+α′s,β′s .

Since α + β = exp(f), then α + α′l + β′l = exp(f). Further, if gk ∈ {g1, . . . , gt} exists
such that gk = g′l for some l ∈ {1, . . . , s}, then β′l = βk and α + α′l = αk; therefore, in the
representation of lc(f) would appear the term (rk + rjσ

α(r′l)cα,α′l)σ
αk(lc(gk))cαk,βk . From

above it follows that f is reducible w.r.t. G′ and, hence, G′ is a Gröbner basis for I .

5.4 Buchberger’s algorithm for left ideals

In [40] was constructed the Buchberger’s algorithm for computing Gröbner bases of left
ideals for the particular case of quasi-commutative bijective skew PBW extensions. In
this section, we extend the Buchberger’s procedure to the general case of bijective skew
PBW extensions without assuming that they are quasi-commutative. Complementing
Remark 5.2.2, from now on we will assume that A = σ(R)〈x1, . . . , xn〉 is bijective.

We start fixing some notation and proving a preliminary key result for bijective skew
PBW extensions.

Definition 5.4.1. Let F := {g1, . . . , gs} ⊆ A, XF the least common multiple of
{lm(g1), . . . , lm(gs)}, θ ∈ Nn, βi := exp(lm(gi)) and γi ∈ Nn such that γi + βi = exp(XF ),
1 ≤ i ≤ s. BF,θ will denote a finite set of generators of

SF,θ := SyzR[σγ1+θ(lc(g1))cγ1+θ,β1 · · · σγs+θ(lc(gs))cγs+θ,βs)].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .
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Remark 5.4.2. Let (b1, . . . , bs) ∈ SF,θ. If A is a bijective skew PBW extension, then there
exists an unique (b′1, . . . , b

′
s) ∈ SF such that bi = σθ(b′i)cθ,γi for 1 ≤ i ≤ s: in fact, the

existence and uniqueness of (b′1, . . . , b
′
s) it follows of the bijectivity of A. Now, since

(b1, . . . , bs) ∈ SF,θ, then
∑s

i=1 biσ
θ+γi(lc(gi))cθ+γi,βi = 0. Replacing bi by σθ(b′i)cθ,γi in

the last equation, we obtain
∑s

i=1 σ
θ(b′i)cθ,γiσ

θ+γi(lc(gi))c
−1
θ,γi

cθ,γicθ+γi,βi = 0; multiplying
by c−1

θ,γi+βi
we get

∑s
i=1 σ

θ(b′i)cθ,γiσ
θ+γi(lc(gi))c

−1
θ,γi

cθ,γicθ+γi,βic
−1
θ,γi+βi

= 0; now we can use
the identities of Remark 1.2.3, so

∑s
i=1 σ

θ(b′i)σ
θ(σγi(lc(gi)))σ

θ(cγi,βi) = 0, and since σθ is
injective then

∑s
i=1 b

′
iσ
γi(lc(gi))cγi,βi = 0, i.e., (b′1, . . . , b

′
s) ∈ SF .

Lemma 5.4.3. Let g1, . . . , gs ∈ A , c1, . . . , cs ∈ R − {0} and α1, . . . , αs ∈ Nn be such that
αi + exp(gi) = δ. If lm(

∑s
i=1 cix

αigi) ≺ xδ, then there exist r1, . . . , rk ∈ R and l1, . . . , ls ∈ A
such that

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
+

s∑
i=1

ligi,

whereXF is the least common multiple of lm(g1), . . . , lm(gs), γi ∈ Nn is such that γi+exp(gi) =
exp(XF ), 1 ≤ i ≤ s, and (bj1, . . . , bjs) ∈ BF . Moreover, we have that lm(xδ−exp(XF )

∑s
i=1 bjix

γigi) ≺
xδ and lm(lm(li)lm(gi)) ≺ xδ.

Proof. Let xβi := lm(gi) for 1 ≤ i ≤ s; since xδ = lm(xαi lm(gi)), then lm(gi) | xδ and hence
XF | xδ, so there exists θ ∈ Nn such that exp(XF ) + θ = δ. On the other hand, γi + βi =
exp(XF ) and αi + βi = δ, so αi = γi + θ for every 1 ≤ i ≤ s. Now, lm(

∑s
i=1 cix

αigi) ≺ xδ

implies that
∑s

i=1 ciσ
αi(lc(gi))cαi,βi = 0. So we have

∑s
i=1 ciσ

θ+γi(lc(gi))cθ+γi,βi = 0.
Hence, we have that (c1, . . . , cs) ∈ SF,θ; from Remark 5.4.2 we know that exists an unique
(c′1, . . . , c

′
s) ∈ SF such that ci = σθ(c′i)cθ,γi . Then,

s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi.

Now,

xθc′ix
γi = (σθ(c′i)x

θ + pc′i,θ)x
γi

= σθ(c′i)x
θxγi + pc′i,θx

γi

= σθ(c′i)cθ,γix
θ+γi + σθ(c′i)pθ,γi + pc′i,θx

γi

= σθ(c′i)cθ,γix
θ+γi + p′i

where p′i := σθ(c′i)pθ,γi + pc′i,θx
γi ; note that p′i = 0 or lm(p′i) ≺ xθ+γi for each 1 ≤ i ≤ s.

Thus, σθ(c′i)cθ,γix
θ+γi = xθc′ix

γi + pi, with pi = 0 or lm(pi) ≺ xθ+γi . Hence,

s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi

=

s∑
i=1

(xθc′ix
γi + pi)gi

=

s∑
i=1

xθc′ix
γigi +

s∑
i=1

pigi,
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con pigi = 0 or lm(lm(pi)lm(gi)) ≺ xθ+γi+βi = xδ. On the other hand, let BF :=
{b1, . . . , bk} := {(b11, . . . , b1s), . . . ,
(bk1, . . . , bks)} be a set of generators of SF ; as (c′1, . . . , c

′
s) ∈ SF , then there exist r′1, . . . , r

′
k ∈

R such that (c′1, . . . , c
′
s) = r′1b1 + · · ·+ r′kbk = r′1(b11, . . . , b1s) + · · ·+ r′k(bk1, . . . , bks), thus

c′i =
∑k

j=1 r
′
jbji. Using this, we have

s∑
i=1

xθc′ix
γigi =

s∑
i=1

xθ
( k∑
j=1

r′jbji
)
xγigi

=
s∑
i=1

( k∑
j=1

xθr′jbji
)
xγigi

=
s∑
i=1

( k∑
j=1

(σθ(r′j)x
θ + pr′j ,θ)bji

)
xγigi

=
s∑
i=1

( k∑
j=1

σθ(r′j)x
θbjix

γigi +
k∑
j=1

pr′j ,θbjix
γigi
)

=
k∑
j=1

s∑
i=1

σθ(r′j)x
θbjix

γigi +
s∑
i=1

k∑
j=1

pr′j ,θbjix
γigi

=
k∑
j=1

σθ(r′j)x
θ

s∑
i=1

bjix
γigi +

s∑
i=1

qigi,

where qi :=
∑k

j=1 pr′j ,θbjix
γi = 0 or lm(qi) ≺ xθ+γi . Therefore,

s∑
i=1

cix
αigi =

k∑
j=1

rjx
θ

s∑
i=1

bjix
γigi +

s∑
i=1

ligi,

with li := pi + qi for 1 ≤ i ≤ s and rj := σθ(r′j) for 1 ≤ j ≤ k. Finally, is easy to see
lm(xθ

(∑s
i=1 bjix

γigi)) ≺ xδ since that lm(
∑s

i=1 bjix
γigi) ≺ xγi+βi , and lm(lm(li)lm(gi)) ≤

max{lm(lm(pi)lm(gi)), lm(lm(qi)lm(gi))} ≺ xδ.

With the notation of Definition 5.4.1 and Lemma 5.4.3, we can prove the main result
of the present section.

Theorem 5.4.4. Let I 6= 0 be a left ideal of A and let G be a finite subset of non-zero generators
of I . Then the following conditions are equivalent:

(i) G is a Gröbner basis of I .

(ii) For all F := {g1, . . . , gs} ⊆ G, and for any (b1, . . . , bs) ∈ BF ,

∑s
i=1 bix

γigi
G−−→+ 0.
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Proof. (i)⇒ (ii): We observe that f :=
∑s

i=1 bix
γigi ∈ I , so by Theorem 5.3.2 f G−−→+ 0.

(ii)⇒ (i): Let G := {g1, . . . , gt}, then there exist h1, . . . , ht ∈ A such that f = h1g1 +
· · · + htgt and we can choose {hi}ti=1 such that xδ := max{lm(lm(hi)lm(gi))}ti=1 is min-
imal. Let xαi := lm(hi), ci := lc(hi), xβi := lm(gi) for 1 ≤ i ≤ t and F := {gi ∈
G | lm(lm(hi)lm(gi)) = xδ}; renumbering the elements of G we can assume that F =
{g1, . . . , gs}. We will consider two possible cases.

Case 1: lm(f) = xδ. Then lm(gi) | lm(f) for 1 ≤ i ≤ s and

lc(f) = c1σ
α1(lc(g1))cα1,β1 + · · ·+ csσ

αs(lc(gs))cαs,βs ,

i.e., the condition (iii) of Theorem 5.3.2 holds.

Case 2: lm(f) ≺ xδ. We will prove that this produces a contradiction. To begin, note
that f can be written as

f =
s∑
i=1

cix
αigi +

s∑
i=1

(hi − cixαi)gi +
t∑

i=s+1

higi; (5.4.1)

we have that lm(lm(hi−cixαi)lm(gi)) ≺ xδ for each 1 ≤ i ≤ s, and lm(lm(hi)lm(gi)) ≺ xδ
for every s+ 1 ≤ i ≤ t, so

lm(
∑s

i=1 cix
αigi) ≺ xδ and lm(

∑t
i=s+1 higi) ≺ xδ,

and hence lm(
∑s

i=1 cix
αigi) ≺ xδ. By lemma 5.4.3 (and its notation), we have

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi
)

+
s∑
i=1

ligi, (5.4.2)

where lm(xδ−exp(XF )
∑s

i=1 bjix
γigi) ≺ xδ for every 1 ≤ j ≤ k and lm(lm(li)lm(gi)) ≺ xδ

for 1 ≤ i ≤ s. By hypothesis,
∑s

i=1 bjix
γi+θgi

G−−→+ 0, and according to Theorem 5.2.6,
there exist q1, . . . , qt ∈ A such that

∑s
i=1 bjix

γigi =
∑t

i=1 qigi, with lm(
∑s

i=1 bjix
γigi) =

max{lm(lm(qi)lm(gi))}ti=1, but (bj1, . . . , bjs) ∈ BF , so lm(
∑s

i=1 bjix
γigi) ≺ XF and hence

lm(lm(qi)lm(gi)) ≺ XF for every 1 ≤ i ≤ t. Thus,

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi
)

=

k∑
j=1

rjx
δ−exp(XF )

( t∑
i=1

qigi
)

=

t∑
i=1

k∑
j=1

rjx
δ−exp(XF )qigi

=
t∑
i=1

q̃igi,

with q̃i :=
∑k

j=1 rjx
δ−exp(XF )qi and lm(lm(q̃i)lm(gi)) ≺ xδ. Substituting

∑s
i=1 cix

αigi =∑t
i=1 q̃igi +

∑s
i=1 ligi into equation 5.4.1, we obtain

f =

t∑
i=1

q̃igi +

s∑
i=1

(hi − cixαi)gi +

s∑
i=1

ligi +

t∑
i=s+1

higi,
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and so we have expressed f as a combination of polynomials g1, . . . , gt, where every
term has leading monomial ≺ xδ. This contradicts the minimality of xδ and we finish the
proof.

Corollary 5.4.5. Let F = {f1, . . . , fs} be a set of non-zero polynomials of A. The algorithm
below produces a Gröbner basis for the left ideal 〈F} of A (P (X) denotes the set of subsets of the
set X):

Buchberger’s algorithm for
bijective skew PBW extensions

INPUT: F := {f1, . . . , fs} ⊆ A, fi 6= 0, 1 ≤ i ≤ s

OUTPUT: G = {g1, . . . , gt} a Gröbner basis for 〈F}

INITIALIZATION: G := ∅, G′ := F

WHILE G′ 6= G DO

D := P (G′)− P (G)

G := G′

FOR each S := {gi1 , . . . , gik} ∈ D DO

Compute BS
FOR each b = (b1, . . . , bk) ∈ BS DO

Reduce
∑k

j=1 bjx
γjgij

G′−−→+ r, with r reduced
with respect to G′ and γj defined as in Definition
5.4.1

IF r 6= 0 THEN
G′ := G′ ∪ {r}

From Theorem 1.2.9 and the previous corollary we get the following direct conclusion.

Corollary 5.4.6. Each left ideal of A has a Gröbner basis.

Example 5.4.7. For this example, we consider a diffusion algebra described in Example
1.3.3. Let n = 2, k = Q, d12 = −2 and d21 = −1. In this ring,D2D1 = 2D1D2+x2D1−x1D2

and the automorphisms σ1 and σ2 are the identity. We consider the order deglex with
D1 � D2 and the polynomials f1 = x2

1x2D
2
1D2, f2 = x2

2D1D
2
2. We will calculate a Gröb-

ner basis for the left ideal generated by f1 and f2.
We start taking G := ∅ and G′ := {f1, f2}.
Step 1. Since G′ 6= G, we have D = {S1, S2, S1,2}.
We make G = G′.
Since R has not zero divisors, S1 and S2 do not add any polynomial to G′. For S1,2,
we compute BS1,2 , a generator set of SyzR[σγ1(lc(f1))cγ1,β1 , σ

γ2(lc(f2))cγ2,β2 ]: X1,2 =
lcm{D2

1D2, D1D
2
2} = D2

1D
2
2, so γ1 = (0, 1) and D2(D2

1D2) = 4D2
1D

2
2 + 3x2D

2
1D2 −
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3x1D1D
2
2 − x1x2D1D2 + x1D

2
2, thus cγ1,β1 = 4; in a similar way, γ2 = (1, 0) and cγ2,β2 = 1.

Whence, BS1,2 = {(1
4x2,−x2

1)} and we have

1
4x2D2f1 − x2

1D1f2 = 3
4x

2
1x

3
2D

2
1D2 − x3

1x
2
2D1D

2
2 − 1

4x
3
1x

3
2D1D2 + 1

4x
4
1x

2
2D

2
2;

Since that

3
4x

2
1x

3
2D

2
1D2 − x3

1x
2
2D1D

2
2 − 1

4x
3
1x

3
2D1D2 + 1

4x
4
1x

2
2D

2
2

G−−→+ −1
4x

3
1x

3
2D1D2 + 1

4x
4
1x

2
2D

2
2 =: f3

and f3 is reduced with respect to G, we add the polynomial f3 and we make G′ :=

{f1, f2, f3}.
Step 2. Since G′ 6= G, we compute D = P (G′)−P (G) and we make G = G′. In D we only
need to consider three subsets:

S1,3 = {f1, f3}, S2,3 = {f2, f3}, S1,2,3 = {f1, f2, f3}.

For S1,3, XS1,3 = D2
1D2 so γ1 = (0, 0), cγ1,β1 = 1; in the same way, γ3 = (1, 0) and

cγ3,β3 = 1. Thus, we must calculate a generator set for SyzR[x2
1x2,−1

4x
3
1x

3
2]. We have

BS1,3 = {(x1x
2
2, 4)} and, therefore,

x1x
2
2f1 + 4D1f3 = x4

1x
2
2D1D

2
2

that can be reduced to 0 by f2.
For S2,3, XS2,3 = D1D

2
2, so γ2 = (0, 0) and cγ2,β2 = 1; in the same way, γ3 = (0, 1) and,

since D2D1D2 = 2D1D
2
2 + x2D1D2 − x1D

2
2, then cγ3,β3 = 2. Thus, a set of generators for

SyzR[x2
2,−1

2x
3
1x

3
2] is BS2,3 = {(x3

1x2, 2)}, and

x3
1x2f2 + 2D2f3 = 1

2x
4
1x

2
2D

3
2 − 1

2x
3
1x

4
2D1D2 + 1

2x
4
1x

3
2D

2
2 =: f4.

Since that f4 is reduced with respect toG, then we add f4 and we makeG′ := {f1, f2, f3, f4}.
For S1,2,3, XS1,2,3 = D2

1D
2
2 and hence γ1 = (0, 1), γ2 = (1, 0) and γ3 = (1, 1). So, cγ1,β1 = 4,

cγ2,β2 = 1 and, sinceD1D2D1D2 = 2D2
1D

2
2+x2D

2
1D2−x1D1D

2
2, then cγ3,β3 = 2. Therefore,

a system of generators for SyzR[4x2
1x2, x

2
2,−1

2x
3
1x

3
2] isBS1,2,3 = {(1

4x2,−x2
1, 0), (1

4x1x
2
2, 0, 2)};

for the first generator we obtain a polynomial that can be reduced to 0 by f1, f2 and f3

(in this case, we have the same calculations than step one). For the second generator, we
obtain the following polynomial:

1
4x1x

2
2D2f1 + 2D1D2f3 = 1

4x
3
1x

4
2D

2
1D2 − 1

2x
4
1x

3
2D1D

2
2 − 1

4x
4
1x

4
2D1D2 + 1

4x
5
1x

3
2D

2
2

which can be reduced to 0 by f1, f2 and f3. In consequence, we do not add any polyno-
mial.
Step 3. Again, G 6= G′. Thus, we compute D = P (G′) − P (G) and we make G = G′. In
this case, we only need to consider the following subsets:

S1,4, S2,4, S3,4, S1,2,4, S1,3,4, S2,3,4, S1,2,3,4.

For S1,4, XS1,4 = D2
1D

3
2, and γ1 = (0, 2), γ4 = (2, 0). Now, since
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D2
2D

2
1D2 =

16D2
1D

3
2 + 24x2D

2
1D

2
2 − 24x1D1D

3
2 + 9x22D

2
1D2 − 26x1x2D1D

2
2 + 9x21D

3
2 − 4x1x

2
2D1D2 + 4x21x2D

2
2 ,

then cγ1,β1 = 16. As cγ4β4 = 1, a generator set for SyzR[16x2
1x2,

1
2x

4
1x

2
2] is BS1,4 =

{( 1
16x

2
1x2,−2)}. With this single generator, we obtain

1
16x

2
1x2D

2
2f1 − 2D2

1f4 = x3
1x

4
2D

3
1D2 − 1

2x
4
1x

3
2D

2
1D

2
2 − 3

2x
5
1x

2
2D1D

3
2 + 9

16x
4
1x

4
2D

2
1D2 −

13
8 x

5
1x

3
2D1D

2
2 + 9

16x
6
1x

2
2D

3
2 − 1

4x
5
1x

4
2D1D2 + 1

4x
6
1x

3
2D2,

a polynomial reducible to 0 by f1, f2, f3 and f4.
For S2,4, XS2,4 = D1D

3
2, so γ2 = (0, 1) and γ4 = (1, 0). As D2D1D

2
2 = 2D1D

3
2 +

x2D1D
2
2 − x1D

3
2, then cγ2,β2 = 2. Thus, BS2,4 = {(1

2x
4
1,−2)} is a system of generators

of SyzR[2x2
2,

1
2x

4
1x

2
2], and we have

1
2x

4
1D2f2 − 2D1f4 = x3

1x
4
2D

2
1D2 + 1

2x
4
1x

3
2D1D

2
2 − 1

2x
5
1x

2
2D

3
2,

which is also reducible to 0 w.r.t. f1, f2, f3 and f4.
For S3,4, XS3,4 = D1D

3
2, whence γ3 = (0, 2) and γ4 = (1, 0). Seeing that D2

2D1D2 =
4D1D

3
2 + 4x2D1D

2
2 − 3x1D

3
2 + x2

2D1D2 − x1x2D
2
2, then cγ3,β3 = 4. Thus, a generator set

for SyzR[−x3
1x

3
2,

1
2x

4
1x

2
2] is BS3,4 = {(−x1,−2x2)}; therefore,

−x1D
2
2f3 − 2x2D1f4 = −1

4x
5
1x

2
2D

4
2 + x3

1x
5
2D

2
1D2 − 3

4x
5
1x

3
2D

3
2 + 1

4x
4
1x

5
2D1D2 − 1

4x
5
1x

4
2D

2
2.

Since this last polynomial is reducible to 0 through f2, f3 and f4, then no polynomial is
added.
For S1,2,4 we have XS1,2,4 = D2

1D
3
2, hence γ1 = (0, 2), γ2 = (1, 2) and γ4 = (2, 0). Thus,

cγ1,β1 = 16, cγ2,β2 = 2, cγ4,β4 = 1 and, hence, BS1,2,4 = {( 1
16x2,−1

2x
2
1, 0), ( 1

16x
2
1x2, 0,−2)}.

For these generators, we obtain polynomial that are reducible to 0 by f1, f2, f3, and f4.
For S1,3,4, XS1,3,4 = D2

1D
3
2; thus γ1 = (0, 2), γ3 = (1, 2) and γ4 = (2, 0). In consequence,

cγ1,β1 = 16, cγ3,β3 = 4, cγ4,β4 = 1 and a set of generators for SyzR[16x2
1x2,−x3

1x
3
2,

1
2x

4
1x

2
2] is

BS1,3,4 = {( 1
16x1x

2
2, 1, 0),

( 1
16x

2
1x2, 0,−2)}. It is not difficult to show that these generators produce polynomials

which can be reducible to 0 w.r.t. f1, f2, f3, and f4.
For S2,3,4, we obtain a similar situation,
Finally, for S1,2,3,4 we have that XS1,2,3,4 = D2

1D
3
2, γ1 = (0, 2), γ2 = (1, 1), γ3 = (1, 2)

and γ4 = (2, 0). Thus cγ1,β1 = 16, cγ2,β2 = 2, cγ3,β3 = 4, cγ4,β4 = 1, and BS1,2,3,4 =
{( 1

16x2,−1
2x

2
1, 0, 0), ( 1

16x1x
2
2, 0, 1, 0),

( 1
16x

2
1x2, 0, 0,−2)}. Once again, the polynomials obtained through these generators are

reducible to 0 by f1, f2, f3 and f4. Therefore, G = {f1, f2, f3, f4} is a Gröbner basis for
I := 〈f1, f2}.
Example 5.4.8. For this example, we consider the ring R described in the Example 1.3.6.
For computational reasons, we rewrite the generators and relations for this algebra in the
following way:

x := b, y := a, z := c, w := d,

and the relations in this ring as:

yx = q−1xy, wx = qxw, zy = qyz, wz = qzw

zx = µ−1xz, wy = yw + (q − q−1)xz.
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Thus, R ∼= σ(k[x])〈y, z, w〉. On Mon(R), we consider the order deglex with y � z � w;
further, we will take k = Q, µ = 1

2 and q = 3. From above relations, we obtain that
σ1(x) = 1

3x, σ2(x) = 2x and σ3(x) = 3x. Given the polynomials f1 = x2y2zw2 and
f2 = y2z2w, we will calculate a Gröbner basis for the left ideal I := 〈f1, f2}.
We start taking G := ∅ and G′ := {f1, f2}.
Step 1. Since G′ 6= G, we have D = {S1, S2, S1,2}.
We make G = G′.
Since R does not have zero divisors, S1 and S2 do not add any polynomial to G′. For
S1,2, we have XS1,2 = y2z2w2 and, therefore, γ1 = (0, 1, 0) and γ2 = (0, 0, 1). Since
that zy2zw2 = 9y2z2w2 and wy2z2w = 9y2z2w2 + 80

9 xyz
3w, we obtain that cγ1,β1 = 9 =

cγ2,β2 . Moreover, σγ1(lc(f1)) = 4x2 and σγ2(lc(f2)) = 1 and, whence, we must calculate a
generator set of SyzR[σγ1(lc(f1))cγ1,β1 , σ

γ2(lc(f2))cγ2,β2 ] = SyzR[36x2, 9]. It is not hard to
see that we can take BS1,2 = {( 1

36x2,−1
9x

2)}. So,

1
36zf1 − 1

9x
2wf2 = −80

81x
3yz3 =: f3

and, since f3 is reduced with respect to G, we add the polynomial f3 and we make G′ :=
{f1, f2, f3}.
Step 2. Since G′ 6= G, we compute D = P (G′)−P (G) and we make G = G′. In D we only
need to consider three subsets:

S1,3 = {f1, f3}, S2,3 = {f2, f3}, S1,2,3 = {f1, f2, f3}.

For S1,3, XS1,3 = y2z3w2 so γ1 = (0, 2, 0) and γ3 = (1, 0, 1). Since z2y2zw2 = 81y2z3w2

and ywyz3w = 27y2z3w2 + 8
9xyz

4w, we have that cγ1,β1 = 81 and cγ3,β3 = 27. On the other
hand, σγ1(lc(f1)) = 16x2 and σγ3(lc(f3)) = −80

81x
3; thus, we must calculate a generator

set for SyzR[1296x2,−80
3 x

3]. We have BS1,3 = {
(

1
1296x,

3
80

)
} and, therefore,

1
1296xf1 + 3

80ywf2 = − 8
243x

4yz4w

that can be reduced to 0 by f3.
For S2,3, XS2,3 = y2z3w, so γ2 = (0, 1, 0) and γ3 = (1, 0, 0). Since zyz2w = 9y2z3w then
cγ2,β2 = 9; in the same way, cγ3,β3 = 1 and σγ2(lc(f2)) = 1, σγ3(lc(f3)) = − 80

2187x
3. Hence,

a set of generators for SyzR[9,− 80
2187x

3] is BS2,3 = {
(

1
9x

3,−2187
80

)
}, and

1
9x

3zf2 − 2187
80 yf3 = 1

9x
3z(y2z2w) + 2187

80 y(−80
81x

3yz3w) = 0.

For S1,2,3, XS1,2,3 = y2z3w2 and hence γ1 = (0, 2, 0), γ2 = (0, 1, 1) and γ3 = (1, 0, 1). Since
z2y2zw2 = 81y2z3w2 , zwy2z2w = 81y2z3w2 + 160

3 xyz4 and ywyz3w = 27y2z3w2 + 8
9xyz

4w,
then cγ1,β1 = 81, cγ2,β2 = 81 and cγ3,β3 = 27. Further, σγ1(lc(f1)) = 16x2, σγ2(lc(f2)) = 1
and σγ3(lc(f3)) = −80

81x
3. Therefore, a system of generators for SyzR[1296x2, 81,−80

3 x
3] is

BS1,2,3 = {( 1
1296 ,−

1
81x

2, 0), (0, 1
81x

3, 3
80)}; for both generators we obtain a polynomial that

can be reduced to 0 by f3. In consequence, we do not add any polynomial, and therefore,
G = {f1, f2, f3} is a Gröbner basis for I := 〈f1, f2}.

Remark 5.4.9. If I is a left ideal a bijective skew PBW extension A and G = {g1, . . . , gt}
is a subset of nonzero polynomials in I , then Corollary 5.3.3 gives us a tool to verify if
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G is a Gröbner basis for I when lc(gi) ∈ R∗ for each 1 ≤ i ≤ t. For example, let A be
the ring described in Example 1.3.4, with k = Q, q1 = 5

4 , q2 = 2
3 , and I = A〈f1, f2},

where f1 = y2z + 3xz and f2 = x2z − yz. Employing the Buchberger’s algorithm and the
Corollary 5.3.4, we have that G = {xz, yz} is a Gröbner basis for I . To verify this, note
that given f ∈ I , lm(f) = xα1yα2zα3 with α3 ≥ 1, α1 ≥ 1 or α2 ≥ 1; in either case, lm(f)
will be divisible by xz or yz.

5.5 Gröbner bases of modules

In this section, we recall the general theory of Gröbner bases for submodules of Am, m ≥
1, whereAm is the left freeA-module of column vectors of lengthm,A = σ(R)〈x1, . . . , xn〉
is a bijective skew PBW extension of R, with R a LGS ring (see Definition 5.2.1) and
Mon(A) is endowed with some monomial order (see Definition 5.1.1). Since A is a left
Noetherian ring (Theorem 1.2.9), we have thatA is an IBN ring (Invariant Basis Number,
see [79]), and hence, all bases of the free module Am have m elements. Note also that Am

is a left Noetherian, and hence, any submodule of Am is finitely generated. This theory
was studied in [57] and [58], but now we will extend Buchberger’s algorithm to the gen-
eral bijective case without assuming thatA is quasi-commutative. The goal is to establish
and calculate Gröbner bases for submodules of Am; for this, we will define the monomi-
als inAm, orders on the monomials, the concept of reduction, we will construct a division
algorithm, give equivalent conditions in order to define Gröbner bases, and finally, we
will compute Gröbner bases using a similar procedure to Buchberger’s algorithm for the
general case of bijective skew PBW extensions (not necessarily quasi-commutative as
was assumed in [57] and [58]). The results presented in this section are an easy general-
ization of those of the previous sections, i.e., taking m = 1 we get the theory of Gröbner
bases for the left ideals of A developed before. We will include only some proofs since
most of them can be consulted in [57] and [58] or they are an easy adaptation of those
of the previous sections. The theory presented in this section has been also studied by
Gómez-Torrecillas et al. (see [18] , [19]) for left PBW algebras over division rings and
assuming some special commutative conditions.

5.5.1 Monomial orders on Mon(Am)

In the remainder of this section, we will write the elements of Am as row vectors, if this
not represent confusion. We recall that the canonical basis of Am is

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1).

Definition 5.5.1. A monomial in Am is a vector X = Xei, where X = xα ∈ Mon(A) and
1 ≤ i ≤ m, i.e.,

X = Xei = (0, . . . , X, . . . , 0),

where X is in the i-th position, named the index of X, ind(X) := i. A term is a vector cX, where
c ∈ R. The set of monomials of Am will be denoted by Mon(Am). Let Y = Y ej ∈Mon(Am), we
say that X divides Y if i = j and X divides Y . We will say that any monomial X ∈ Mon(Am)
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divides the null vector 0. The least common multiple of X and Y, denoted by lcm(X,Y), is 0 if
i 6= j, and Uei, where U = lcm(X,Y ), if i = j. Finally, we define exp(X) := exp(X) = α and
deg(X) := deg(X) = |α|.

Next, we define monomial orders on Mon(Am).

Definition 5.5.2. A monomial order on Mon(Am) is a total order � satisfying the following
three conditions:

(i) lm(xβxα)ei � xαei, for every monomial X = xαei ∈Mon(Am) and any monomial xβ in
Mon(A).

(ii) If Y = xβej � X = xαei, then lm(xγxβ)ej � lm(xγxα)ei for every monomial xγ ∈
Mon(A).

(iii) � is degree compatible, i.e., deg(X) ≥ deg(Y)⇒ X � Y.

If X � Y but X 6= Y we will write X � Y. Y � X means that X � Y.

Proposition 5.5.3. Every monomial order on Mon(Am) is a well-order.

Proof. We can repeat the proof of Proposition 5.1.2: Suppose that we have a monomial or-
der � on Mon(Am) that is not a well order. This means that we have an infinite sequence
of monomials

X1 � X2 � X3 � · · ·

and since � is degree compatible, then we have the an infinite subsequence

deg(Xi1) > deg(Xi2) > deg(Xi3) > · · · ,

but this is impossible since deg(Xi1) is finite.

Given a monomial order� onMon(A), we can define two natural orders onMon(Am).

Definition 5.5.4. Let X = Xei and Y = Y ej ∈Mon(Am).

(i) The TOP (term over position) order is defined by

X � Y⇐⇒


X � Y
or
X = Y and i > j.

(ii) The TOPREV order is defined by

X � Y⇐⇒


X � Y
or
X = Y and i < j.
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Remark 5.5.5. (i) Note that with TOP we have

em � em−1 � · · · � e1

and

e1 � e2 � · · · � em

for TOPREV.

(ii) The POT (position over term) and POTREV orders defined in [1] and [75] for
modules over classical polynomial commutative rings are not degree compatible.

(iii) Other examples of monomial orders in Mon(Am) are considered in [19], e.g, or-
ders with weight.

We fix a monomial order on Mon(A), let f 6= 0 be a vector of Am, then we may write
f as a sum of terms in the following way

f = c1X1 + · · ·+ ctXt,

where c1, . . . , ct ∈ R− 0 and X1 � X2 � · · · � Xt are monomials of Mon(Am).

Definition 5.5.6. With the above notation, we say that

(i) lt(f) := c1X1 is the leading term of f.

(ii) lc(f) := c1 is the leading coefficient of f.

(iii) lm(f) := X1 is the leading monomial of f.

(iv) ind(f) := ind(lm(f)) is the index of f.

For f = 0 we define lm(0) = 0, lc(0) = 0, lt(0) = 0, and if � is a monomial or-
der on Mon(Am), then we define X � 0 for any X ∈ Mon(Am). So, we extend � to
Mon(Am)

⋃
{0}.

5.5.2 Division algorithm in Am

The reduction process in Am is defined as follows.

Definition 5.5.7. Let F be a finite set of non-zero vectors of Am, and let f,h ∈ Am, we say
that f reduces to h by F in one step, denoted f F−−→ h, if there exist elements f1, . . . , ft ∈ F and
r1, . . . , rt ∈ R such that

(i) lm(fi)|lm(f), 1 ≤ i ≤ t, i.e., ind(lm(fi)) = ind(lm(f)) and there exists xαi ∈ Mon(A)
such that αi + exp(lm(fi)) = exp(lm(f)).

(ii) lc(f) = r1σ
α1(lc(f1))cα1,f1 + · · ·+ rtσ

αt(lc(ft))cαt,ft , where cαi,fi := cαi,exp(lm(fi)).
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(iii) h = f−
∑t

i=1 rix
αifi.

We say that f reduces to h by F , denoted f F−−→+ h, if and only if there exist vectors h1, . . . ,ht−1 ∈
Am such that

f h1 h2 · · · ht−1 h-F -F -F -F -F

f is reduced (also called minimal) w.r.t. F if f = 0 or there is no one step reduction of f by
F , i.e., one of the first two conditions of Definition 5.5.7 fails. Otherwise, we will say that f is
reducible w.r.t. F . If f F−−→+ h and h is reduced w.r.t. F , then we say that h is a remainder for f
w.r.t. F .

Remark 5.5.8. Related to the previous definition we have the following remarks:

(i) By Theorem 1.2.2, the coefficients cαi,f i in the previous definition are unique and
satisfy

xαixexp(lm(f i)) = cαi,f ix
αi+exp(lm(f i)) + pαi,f i ,

where pαi,f i = 0 or deg(lm(pαi,f i)) < |αi + exp(lm(f i))|, 1 ≤ i ≤ t.

(ii) lm(f) � lm(h) and f − h ∈ 〈F 〉, where 〈F 〉 is the submodule of Am generated by
F .

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0 F−→ 0.

(v)

lt(f) =

t∑
i=1

rilt(x
αi lt(f i)),

Proposition 5.5.9. Let f,h ∈ Am, θ ∈ Nn and F = {f1, . . . , ft} be a finite set of non-zero vectors
of Am. Then,

(i) If f F−−→ h, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p) such that xθf+p F−−→
xθh. In particular, if A is quasi-commutative, then p = 0.

(ii) If f F−−→+ h and p ∈ Am is such that p = 0 or lm(h) � lm(p), then f + p F−−→+ h + p.

(iii) If f F−−→+ h, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p) such that xθf +

p F−−→+ xθh. If A is quasi-commutative, then p = 0.

(iv) If f F−−→+ 0, then there exists p ∈ Am with p = 0 or lm(xθf) � lm(p) such that xθf +

p F−−→+ 0. If A is quasi-commutative, then p = 0.

Proof. This proof is an easy adaptation of the ideal case. See [58], Proposition 22.
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Theorem 5.5.10. Let F = {f1, . . . , ft} be a set of non-zero vectors of Am and f ∈ Am, then the
the division algorithm below produces polynomials q1, . . . , qt ∈ A and a reduced vector h ∈ Am

w.r.t.. F such that f F−−→+ h and

f = q1f1 + · · ·+ qtft + h

with

lm(f) = max{lm(lm(q1)lm(f1)), . . . , lm(lm(qt)lm(ft)), lm(h)}.

Division algorithm in Am

INPUT: f, f1, . . . , ft ∈ Am with fj 6= 0 (1 ≤ j ≤ t)

OUTPUT: q1, . . . , qt ∈ A , h ∈ Am with f = q1f1 + · · ·+qtft+h, h reduced w.r.t..
{f1, . . . , ft} and
lm(f) = max{lm(lm(q1)lm(f1)), . . . , lm(lm(qt)lm(ft)), lm(h)}

INITIALIZATION: q1 := 0, q2 := 0, . . . , qt := 0,h := f

WHILE h 6= 0 and there exists j such that lm(fj) divides lm(h) DO

Calculate J := {j | lm(fj) divides lm(h)}
FOR j ∈ J DO

Calculate αj ∈ Nn such that αj + exp(lm(fj)) =
exp(lm(h))

IF the equation lc(h) =
∑

j∈J rjσ
αj (lc(fj))cαj ,fj is soluble, where

cαj ,fj are defined as in Definition 5.5.7

THEN

Calculate one solution (rj)j∈J

h := h−
∑

j∈J rjx
αj fj

FOR j ∈ J DO
qj := qj + rjx

αj

ELSE

Stop

Proof. The proof is an easy adaptation of the proof of Theorem 21 in [40]. See [58].

Example 5.5.11. We illustrate the above algorithm for A, the diffusion algebra used in
Example 1.3.3. In this case, we will take k = Q, m = 2, d12 = −2, d21 = −1, deglex
order on Mon(A) with D1 � D2, and TOPREV on Mon(A2), with e1 > e2. Note that
in this ring the endomorphism σi are the identity. Let f1 = (D1D

2
2, D

2
1 + x1D1D2), f2 =

(x1D1D2 + x1D1, D
2
2), f3 = (x1D1, D

2
2 + x2), f4 = (D2, D

2
1) and f = ((x1x2 + 1)D2

1D
2
2 +
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x1D
2
1, D1D2 + x2D

2
2). Then, we divide f by f1, f2, f3 and f4.

Step 1. We start with h := f , q1 := 0, q2 := 0, q3 := 0, q4 := 0. Since lm(f j) | lm(f) for
j = 1, 2, we compute α = (αj1, αj2) ∈ N2 such that αj + exp(lm(f j)) = exp(lm(h)) and
the corresponding value of σαj (lc(f j))cαj ,βj , where βj := exp(lm(f j)):

(α11, α12) + (1, 2) = (2, 2)⇒ α11 = 1, α12 = 0,

D1D1D
2
2 = D2

1D
2
2 ⇒ cα1,β1 = 1,

(α21, α22) + (1, 1) = (2, 2)⇒ α21 = 1, α22 = 1,

D1D2D1D2 = 2D2
1D

2
2 + x2D

2
1D2 − x1D1D

2
2 ⇒ cα2,β2 = 2.

Now, we solve the equation

lc(h) = x1x2 + 1 = r1 + 2r2x1 ⇒ r1 = 1, r2 = 1
2x2,

and with the relations defining A, we compute

h =h− (r1x
α1f1 + r2x

α2f2)

=h−D1(D1D
2
2e1 + x1D1D2e2 +D2

2e2)− 1

2
x2D1D2(x1D1D2e1 +D2

2e2 + x1D1e1)

=− 1

2
x2D1D

3
2e2 − (

1

2
x1x

2
2 + x1x2)D2

1D2e1 − x1D
2
1D2e2 +

1

2
x2

1x2D1D
2
2e1 −D3

2e2

− 1

2
x1x

2
2D

2
1e1 +

1

2
x2

1x2D1D2e1.

We also compute

q1 := D1, q2 := 1
2x2D1D2, q3 := 0, q4 := 0.

Step 2. lm(h) = D1D
3
2e2, lc(h) = −1

2x2. In this case, lm(fj) | lm(f) just for j = 3, and we
must compute α = (α31, α32, α33) ∈ N3 such that α3 + exp(lm(f3)) = exp(lm(h)):

(α31, α32) + (0, 2) = (1, 3)⇒ α31 = 1, α32 = 1,

D1D2D
2
2 = D1D

3
2 ⇒ cα3,β3 = 1,

and we have lc(h) = −1
2x2 = r3. Thus,

h =h +
1

2
x2D1D2f3

=− 1

2
x1x

2
2D

2
1D2e1 − x1D

2
1D2e2 +

1

2
x2

1x2D1D
2
2e1 −D3

2e2 +
1

2
x2

2D1D2e2,

and

q1 := D1, q2 := 1
2x2D1D2, q3 := −1

2x2D1D2, q4 := 0.

Step 3. Note that lm(h) = D2
1D2e1 and lm(f j) | lm(h) for j = 2. In this case, we have:

(α21, α22) + (1, 1) = (2, 1)⇒ α21 = 1, α22 = 0,

D1D1D2 = D2
1D2 ⇒ cα2,β2 = 1.
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and r2 = −1
2x

2
2. Therefore,

h =h +
1

2
x2

2D1f2

=− x1D
2
1D2e2 +

1

2
x2

1x2D1D
2
2e1 +

1

2
x2

2D1D
2
2e2 −D3

2e2 +
1

2
x2

2D1D2e2 +
1

2
x2D

2
1e1,

and,

q1 := D1, q2 := 1
2x2D1D2 − 1

2x
2
2D1, q3 := −1

2x2D1D2, q4 := 0.

Step 4. lm(h) = D2
1D2e2 and lm(f j) | lm(h) just for j = 4. So,

(α41, α42) + (2, 0) = (2, 1)⇒ α21 = 0, α22 = 1,

D2D
2
1 = 4D2

1D2 + 3x2D
2
1 − 4x1D1D2 − x1x2D1 + x2

1D2 ⇒ cα4,β4 = 4.

and r4 = 1
4x1. Therefore,

h =h +
1

4
x1D2f4

=
1

2
x2

1x2D1D
2
2e1 +

1

2
x2

2D1D
2
2e2 −D3

2e2 +
3

4
x1x2D

2
1e2 +

(1

2
x2

2 − x2
1

)
D1D2e2+

1

2
x2D

2
1e1 −

1

4
x2

1x2D1e2 +
1

4
x3

1D2e2,

and

q1 := D1, q2 := 1
2x2D1D2 − 1

2x
2
2D1, q3 := −1

2x2D1D2, q4 := −1
4x1D2.

Step 5. lm(h) = D1D
2
2e1 and lm(fj) | lm(h) for j = 1, 2. So,

(α11, α12) + (1, 2) = (1, 2)⇒ α11 = 0, α12 = 0,

D1D1D
2
2 = D2

1D
2
2 ⇒ cα1,β1 = 1,

(α21, α22) + (1, 1) = (1, 2)⇒ α21 = 0, α22 = 1,

D2D1D2 = 2D1D
2
2 + x2D1D2 − x1D

2
2 ⇒ cα2,β2 = 2.

Now, we solve the equation

lc(h) = 1
2x

2
1x2 = r1 + 2r2x1 ⇒ r1 = 1

2x
2
1x2, r2 = 0,

and with the relations defining A, we compute

h =h− 1

2
x2

1x2f1

=
1

2
x2

2D1D
2
2e2 −D3

2e2 +
3

4
x1x2D

2
1e2 +

(
−1

2
x3

1x2 +
1

2
x2

2 − x2
1

)
D1D2e2 +

1

2
x2D

2
1e1

− 1

2
x2

1x2D
2
2e2 −

1

4
x2

1x2D1e2 +
1

4
x3

1D2e2.

Further,
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q1 := D1, q2 := 1
2x2D1D2 − 1

2x
2
2D1 − 1

2x
2
1x2, q3 := −1

2x2D1D2, q4 := −1
4x1D2.

Step 6. lm(h) = D1D
2
2e2 and lm(f j) | lm(h) for j = 3. We have,

(α31, α32) + (0, 2) = (1, 2)⇒ α31 = 1, α32 = 0,

D1D
2
2 = D1D

2
2 ⇒ cα3,β3 = 1,

and r3 = 1
2x

2
2. Hence,

h =h− 1

2
x2

2D1f3

=−D3
2e2 −

1

2
x1x

2
2D

2
1e1 +

3

4
x1x2D

2
1e2 +

(
−1

2
x3

1x2 +
1

2
x2

2 − x2
1

)
D1D2e2 +

1

2
x2D

2
1e1

− 1

2
x1x2D

2
2e2 −

1

2
(x3

2 +
1

2
x2

1x2)D1e2 +
1

4
x3

1D2e2.

Moreover,

q1 := D1, q2 := 1
2x2D1D2 − 1

2x
2
2D1 − 1

2x
2
1x2, q3 := −1

2x2D1D2 + 1
2x

2
2D1, q4 := −1

4x1D2.

Step 7. lm(h) = D3
2e2 and lm(f j) | lm(h) for j = 3. We have,

(α31, α32) + (0, 2) = (0, 3)⇒ α31 = 0, α32 = 1,

D2D
2
2 = D3

2 ⇒ cα3,β3 = 1,

and r3 = −1. Hence,

h =h +D2f3

=− 1

2
x1x

2
2D

2
1e1 + 2x1D1D2e1 +

3

4
x1x2D

2
1e2 +

(
−1

2
x31x2 +

1

2
x22 − x21

)
D1D2e2 +

1

2
x2D

2
1e1

− 1

2
x1x2D

2
2e2 + x2D1e1 −

1

2
(x32 +

1

2
x21x2)D1e2 − x1D2e1 + (

1

4
x31 + x2)D2e2,

and

q1 := D1, q2 := 1
2x2D1D2 − 1

2x
2
2D1 − 1

2x
2
1x2, q3 := −1

2x2D1D2 + 1
2x

2
2D1 −D2,

q4 := −1
4x1D2.

Step 8. Finally, note that lm(h) = D2
1e1 is not divisible by any lm(fi), i = 1, 2, 3, 4. Thus,

we have that

f = D1f1+(1
2x2D1D2− 1

2x
2
2D1− 1

2x
2
1x2)f2+(−1

2x2D1D2+ 1
2x

2
2D1−D2)f3+(−1

4x1D2)f4+h.

We also see that,

max{lm(lm(q1)lm(f1)), lm(lm(q2)lm(f2)), lm(lm(q3)lm(f3)), lm(lm(q4)lm(f4))}
= max{D2

1D
2
2e1, D

2
1D

2
2e1, D1D

3
2e2, D

2
1D2e2} = D2

1D
2
2e1 = lm(f).
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5.5.3 Gröbner bases for submodules of Am

Our next purpose is to define Gröbner bases for submodules of Am.

Definition 5.5.12. Let M 6= 0 be a submodule of Am and let G be a non empty finite subset of
non-zero vectors of M , we say that G is a Gröbner basis for M if each element 0 6= f ∈ M is
reducible w.r.t. G.

We will say that {0} is a Gröbner basis for M = 0.

Theorem 5.5.13. Let M 6= 0 be a submodule of Am and let G be a finite subset of non-zero
vectors of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis for M .

(ii) For any vector f ∈ Am,

f ∈M if and only if f G−−→+ 0.

(iii) For any 0 6= f ∈ M there exist g1, . . . , gt ∈ G such that lm(gj)|lm(f), 1 ≤ j ≤ t,
(i.e., ind(lm(gj)) = ind(lm(f)) and there exist αj ∈ Nn such that αj + exp(lm(gj)) =
exp(lm(f))) and

lc(f) ∈ 〈σα1(lc(g1))cα1,g1
, . . . , σαt(lc(gt))cαt,gt}.

(iv) For α ∈ Nn and 1 ≤ u ≤ m, let 〈α,M}u be the left ideal of R defined by

〈α,M}u := 〈lc(f)|f ∈M, ind(lm(f)) = u, exp(lm(f)) = α}.

Then, 〈α,M}u = Ju, with

Ju := 〈σβ(lc(g))cβ,g|g ∈ G, ind(lm(g)) = u and β + exp(lm(g)) = α}.

Proof. See [58], Theorem 26.

From this theorem we get the following consequences.

Corollary 5.5.14. Let M 6= 0 be a submodule of Am. Then,

(i) If G is a Gröbner basis for M , then M = 〈G〉.

(ii) Let G be a Gröbner basis for M , if f ∈M and f G−−→+ h, with h reduced, then h = 0.

(iii) Let G = {g1, . . . , gt} be a set of non-zero vectors of M with lc(gi) ∈ R∗ for each 1 ≤ i ≤ t.
Then, G is a Gröbner basis of M if and only if given 0 6= r ∈ M there exists i such that
lm(gi) divides lm(r).
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Proof. (i): this is a direct consequence of Theorem 5.5.13.

(ii): let f ∈ M and f
G−−→+ h, with h reduced; since f − h ∈ 〈G〉 = M , then h ∈ M ; if

h 6= 0 then h can be reduced by G, but this is not possible since h is reduced.

(iii): if G is a Gröbner basis of M , then given 0 6= r ∈ M , r is reducible w.r.t. G,
hence there exists i such that lm(gi) divides lm(r). Conversely, if this condition holds
for some i, then r is reducible w.r.t. G since the equation lc(r) = r1σ

αi(lc(gi)cαi,gi , with
αi + exp(lm(gi)) = exp(lm(r)), is soluble with solution r1 = lc(r)c−1

αi,gi
(σαi(lc(gi)))

−1.

Note that the remainder of f ∈ Am with respect to a Gröbner basis is not unique.
Moreover, changing the term order, a Gröbner basis could not be again a Gröbner basis.
In fact, a counterexample was given in [75] for the trivial case when A = R[x1, . . . , xn] is
the commutative polynomial ring.

Of course, there exists a version of Corollary 5.3.4 for the module case.

Corollary 5.5.15. Let G be a Gröbner basis for a left A-module M . Given g ∈ G, if g is reducible
w.r.t. G′ = G− {g}, then G′ is a Gröbner basis for M .

Proof. According to Theorem 5.5.13, is enough to show that all f ∈ M is reducible w.r.t
G′. Let f be a nonzero vector in M ; since G is a Gröbner basis for M , f is reducible w.r.t
G and there exist elements g1, . . . , gt ∈ G satisfying the conditions (i), (ii) and (iii) in the
Definition 5.5.7. If g 6= gi for each 1 ≤ i ≤ t, then we finished. Suppose that g = gj for
some j ∈ {1, . . . , t} and let βi = exp(gi) for i 6= j, β = exp(g), and αi, α ∈ Nn such that
αi + βi = exp(f) = α+ β. Thus,

lc(f) = r1σ
α1(lc(g1))cα1,β1 + · · ·+ rjσ

α(lc(g))cα,β + · · ·+ rtσ
αt(lc(gt))cαt,βt .

On the other hand, since g is reducible w.r.t. G′, there exist g′1, . . . , g
′
s ∈ G′ such that

lm(g′l) | lm(g) and lc(g) =
∑s

l=1 r
′
lσ
α′l(lc(g′l))cα′l,β′l , where β′l = exp(g′l), α′l ∈ Nn and

α′l + β′l = exp(g) = β. So, lm(g′l) | lm(f) for 1 ≤ i ≤ s; moreover, using the identities of
Remark 1.2.3, we have that

σα(lc(g))cα,β =σα(
s∑
l=1

r′lσ
α′l(lc(g′l))cα′l,β′l)cα,β

=σα(r′1)σασα
′
1(lc(g′1))σα(cα′1,β′1)cα,β + · · ·+ σα(r′s)σ

ασα
′
s(lc(g′s))σ

α(cα′s,β′s)cα,β

=σα(r′1)cα,α′1σ
α+α′1(lc(g′1))c−1α,α′1

σα(cα′1,β′1)cα,β + · · ·+

σα(r′s)cα,α′sσ
α+α′s(lc(g′s))c

−1
α,α′s

σα(cα′s,β′s)cα,β

=σα(r′1)cα,α′1σ
α+α′1(lc(g′1))cα+α′1,β′1 + · · ·+ σα(r′s)cα,α′sσ

α+α′s(lc(g′s))cα+α′s,β′s .

Since α + β = exp(f), then α + α′l + β′l = exp(f). Further, if exists gk ∈ {g1, . . . , gt} such
that gk = g′l for some l ∈ {1, . . . , s}, then β′l = βk and α + α′l = αk; therefore, in the
representation of lc(f) would appear the term (rk + rjσ

α(r′l)cα,α′l)σ
αk(lc(gk))cαk,βk . From

above it follows that f is reducible w.r.t. G′ and, hence, G′ is a Gröbner basis for M .
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5.5.4 Buchberger’s algorithm for modules

Recall that we are assuming that A is a bijective skew PBW extension. We will prove in
the current section that every submodule M of Am has a Gröbner basis, and also we will
construct the Buchberger’s algorithm for computing such bases. The results obtained
here improve those of [58] and [57], and generalize the results obtained in Section 5.4 for
left ideals.

We start fixing some notation and proving a preliminary general result.

Definition 5.5.16. Let F := {g1, . . . , gs} ⊆ Am such that the least common multiple of
{lm(g1), . . . , lm(gs)}, denoted by XF , is non-zero. Let θ ∈ Nn, βi := exp(lm(gi)) and γi ∈ Nn
such that γi + βi = exp(XF ), 1 ≤ i ≤ s. BF,θ will denote a finite set of generators of

SF,θ := SyzR[σγ1+θ(lc(g1))cγ1+θ,β1 · · · σγs+θ(lc(gs))cγs+θ,βs)].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .

Lemma 5.5.17. Let g1, . . . , gs ∈ Am , c1, . . . , cs ∈ R − {0} and α1, . . . , αs ∈ Nn be such
that lm(xαi lm(gi)) = Xδ. If lm(

∑s
i=1 cix

αigi) ≺ Xδ, then there exist r1, . . . , rk ∈ R and
l1, . . . , ls ∈ A such that

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi

)
+

s∑
i=1

ligi,

where XF is the least common multiple of lm(g1), . . . , lm(gs), γi ∈ Nn is such that γi+exp(gi) =
exp(XF ), 1 ≤ i ≤ s, and (bj1, . . . , bjs) ∈ BF . Moreover, we have that lm(xδ−exp(XF )

∑s
i=1 bjix

γigi) ≺
Xδ and lm(lm(li)lm(gi)) ≺ Xδ.

Proof. Let βi := exp(lm(gi)) for 1 ≤ i ≤ s; since Xδ = lm(xαi lm(gi)), then lm(gi) | Xδ

and hence XF | Xδ, so there exists θ ∈ Nn such that exp(XF ) + θ = δ, with δ := exp(Xδ).
On the other hand, γi + βi = exp(XF ) and αi + βi = δ, so αi = γi + θ for every 1 ≤
i ≤ s. Now, lm(

∑s
i=1 cix

αigi) ≺ Xδ implies that
∑s

i=1 ciσ
αi(lc(gi))cαi,βi = 0. So we have∑s

i=1 ciσ
θ+γi(lc(gi))cθ+γi,βi = 0. Hence, we have that (c1, . . . , cs) ∈ SF,θ; from Remark

5.4.2 we know that exist (c′1, . . . , c
′
s) ∈ SF such that ci = σθ(c′i)cθ,γi . Then,

s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi.

Now,

xθc′ix
γi = (σθ(c′i)x

θ + pc′i,θ)x
γi

= σθ(c′i)x
θxγi + pc′i,θx

γi

= σθ(c′i)cθ,γix
θ+γi + σθ(c′i)pθ,γi + pc′i,θx

γi

= σθ(c′i)cθ,γix
θ+γi + p′i
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where p′i := σθ(c′i)pθ,γi + pc′i,θx
γi ; note that p′i = 0 or lm(p′i) ≺ xθ+γi for each 1 ≤ i ≤ s.

Thus, σθ(c′i)cθ,γix
θ+γi = xθc′ix

γi + pi, with pi = 0 or lm(pi) ≺ xθ+γi . Therefore,

s∑
i=1

cix
αigi =

s∑
i=1

σθ(c′i)cθ,γix
αigi

=
s∑
i=1

(xθc′ix
γi + pi)gi

=
s∑
i=1

xθc′ix
γigi +

s∑
i=1

pigi,

with pigi = 0 or lm(lm(pi)lm(gi)) ≺ xθ+γi+βi = xδ. On the other hand, let BF :=
{b1, . . . , bk} := {(b11, . . . , b1s),
. . . , (bk1, . . . , bks)} be a set of generators of SF ; as (c′1, . . . , c

′
s) ∈ SF , then there exist

r′1, . . . , r
′
k ∈ R such that (c′1, . . . , c

′
s) = r′1b1+· · ·+r′kbk = r′1(b11, . . . , b1s)+· · ·+r′k(bk1, . . . , bks),

thus c′i =
∑k

j=1 r
′
jbji. Using this, we have

s∑
i=1

xθc′ix
γigi =

s∑
i=1

xθ
( k∑
j=1

r′jbji
)
xγigi

=
s∑
i=1

( k∑
j=1

xθr′jbji
)
xγigi

=
s∑
i=1

( k∑
j=1

(σθ(r′j)x
θ + pr′j ,θ)bji

)
xγigi

=
s∑
i=1

( k∑
j=1

σθ(r′j)x
θbjix

γigi +
k∑
j=1

pr′j ,θbjix
γigi
)

=
k∑
j=1

s∑
i=1

σθ(r′j)x
θbjix

γigi +
s∑
i=1

k∑
j=1

pr′j ,θbjix
γigi

=
k∑
j=1

σθ(r′j)x
θ

s∑
i=1

bjix
γigi +

s∑
i=1

qigi,

where qi :=
∑k

j=1 pr′j ,θbjix
γi = 0 or lm(qi) ≺ xθ+γi . So,

s∑
i=1

cix
αigi =

k∑
j=1

rjx
θ

s∑
i=1

bjix
γigi +

s∑
i=1

ligi,

with li := pi + qi for 1 ≤ i ≤ s and rj := σθ(r′j) for 1 ≤ j ≤ k. Finally, is easy to
see lm(xθ

(∑s
i=1 bjix

γigi)) ≺ Xδ since that lm(
∑s

i=1 bjix
γigi) ≺ lm(xγi lm(gi)). Moreover,

lm(lm(li)lm(gi)) ≤ max{lm(lm(pi)lm(gi)), lm(lm(qi)lm(gi))} ≺ Xδ.

Using the above result, we can establish Buchberger’s algorithm for modules:
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Theorem 5.5.18. Let M 6= 0 be a submodule of Am and let G be a finite subset of non-zero
generators of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis of M .

(ii) For all F := {g1, . . . , gs} ⊆ G, with XF 6= 0, and for any (b1, . . . , bs) ∈ BF ,

∑s
i=1 bix

γigi
G−−→+ 0.

Proof. (i)⇒ (ii): we observe that f :=
∑s

i=1 bix
γi+θgi ∈M , so by Theorem 5.5.13 f G−−→+ 0.

(ii)⇒ (i): let 0 6= f ∈M , we will prove that the condition (iii) of Theorem 5.5.13 holds. Let
G := {g1, . . . , gt}, then there exist h1, . . . , ht ∈ A such that f = h1g1 + · · · + htgt, we can
choose {hi}ti=1 such that Xδ := max{lm(lm(hi)lm(gi))}ti=1 is minimal. Let lm(hi) := xαi ,
ci := lc(hi), exp(lm(gi)) = βi for 1 ≤ i ≤ t and F := {gi ∈ G | lm(lm(hi)lm(gi)) = Xδ};
renumbering the elements of G we can assume that F = {g1, . . . , gs}. We will consider
two possible cases.

Case 1: lm(f) = Xδ. Then lm(gi) | lm(f) for 1 ≤ i ≤ s and

lc(f) = c1σ
α1(lc(g1))cα1,β1 + · · ·+ csσ

αs(lc(gs))cαs,βs ,

i.e., the condition (iii) of Theorem 5.5.13 holds.

Case 2: lm(f) ≺ Xδ. We will prove that this produces a contradiction. To begin, note
that f can be written as

f =

s∑
i=1

cix
αigi +

s∑
i=1

(hi − cixαi)gi +

t∑
i=s+1

higi; (5.5.1)

we see that lm(
∑s

i=1(hi − cix
αi)gi) ≺ Xδ and lm(

∑t
i=s+1 higi) ≺ Xδ, therefore

lm(
∑s

i=1 cix
αigi) ≺ Xδ; by lemma 5.5.17, we have

s∑
i=1

cix
αigi =

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi
)

+
s∑
i=1

ligi, (5.5.2)

where lm(ligi) ≺ Xδ for 1 ≤ i ≤ s. By hypothesis,
∑s

i=1 bjix
γi+θgi

G−−→+ 0, and accord-
ing to Theorem 5.5.10, there exist q1, . . . , qt ∈ A such that

∑s
i=1 bjix

γigi =
∑t

i=1 qigi, with
lm(

∑s
i=1 bjix

γigi) = max{lm(lm(qi)lm(gi))}ti=1, but (bj1, . . . , bjs) ∈ SF , so
lm(

∑s
i=1 bjix

γigi) ≺ XF and hence lm(lm(qi)lm(gi)) ≺ XF for every 1 ≤ i ≤ t. Thus,

k∑
j=1

rjx
δ−exp(XF )

( s∑
i=1

bjix
γigi
)

=

k∑
j=1

rjx
δ−exp(XF )

( t∑
i=1

qigi
)

=

t∑
i=1

k∑
j=1

rjx
δ−exp(XF )qigi =

t∑
i=1

q̃igi,
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with q̃i :=
∑k

j=1 rjx
δ−exp(XF )qi and lm(q̃igi) ≺ Xδ. Substituting

∑s
i=1 cix

αigi =
∑t

i=1 q̃igi
into equation 5.5.1, we obtain

f =

t∑
i=1

q̃igi +

s∑
i=1

(hi − cixαi)gi +

s∑
i=1

ligi +

t∑
i=s+1

higi,

and so we have expressed f as a combination of the vectors g1, . . . , gt, where every term
has leading monomial ≺ Xδ. This contradicts the minimality of Xδ and we finish the
proof.

Corollary 5.5.19. Let F = {f1, . . . , fs} be a set of non-zero vectors of Am. The algorithm below
produces a Gröbner basis for the submodule 〈f1, . . . , fs〉 (P (X) denotes the set of subsets of the set
X):

Buchberger’s algorithm for modules
over bijective skew PBW extensions

INPUT: F := {f1, . . . , fs} ⊆ Am, fi 6= 0, 1 ≤ i ≤ s

OUTPUT: G = {g1, . . . , gt} a Gröbner basis for 〈F 〉

INITIALIZATION: G := ∅, G′ := F

WHILE G′ 6= G DO

D := P (G′)− P (G)

G := G′

FOR each S := {gi1 , . . . , gik} ∈ D, with XS 6= 0, DO

Compute BS
FOR each b = (b1, . . . , bk) ∈ BS DO

Reduce
∑k

j=1 bjx
γjgij

G′−−→+ r, with r reduced
with respect to G′ and γj defined as in Definition
5.5.16

IF r 6= 0 THEN
G′ := G′ ∪ {r}

From Theorem 1.2.9 and the previous corollary we get the following direct conclusion.

Corollary 5.5.20. Every submodule of Am has a Gröbner basis.

Example 5.5.21. For this first example, we consider the ringR given in the Example 1.3.6.
Once again, for computational reasons, we rewrite the generators and relations for this
algebra in the following way:

x := b, y := a, z := c, w := d,
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and

yx = q−1xy, wx = qxw, zy = qyz, wz = qzw

zx = µ−1xz, wy = yw + (q − q−1)xz,

and, therefore,R ∼= σ(k[x])〈y, z, w〉. On Mon(R) we use the order deglex with y � z � w
and in Mon(A2) the TOPREV order, whence e1 > e2.
Further, we will take k = Q, µ = 1

2 and q = 2
3 . From above relations, we obtain that

σ1(x) = 3
2x, σ2(x) = 2x and σ3(x) = 2

3x. Let f1 = xywe1 + we2 and f2 = x2zwe1 + xye2.
We will construct a Gröbner basis for the modules M := R〈f1, f2〉.
Step 1. we start with G := ∅, G′ := {f1, f2}. Since G′ 6= G, we make D := P (G′)− P (G),
i.e., D := {S1, S2, S1,2}, where S1 := {f1}, S2 := {f2}, S1,2 := {f1, f2}. We also make
G := G′, and for every S ∈ D such that XS 6= 0 we compute BS :
� For S1 we have SyzQ[x][σ

γ1(lc(f1))cγ1,β1 ], where β1 = exp(lm(f1)) = (1, 0, 1), γ1 =
(0, 0, 0) and cγ1,β1 = 1; thus BS1 = {0} and we do not add any vector to G′.
� For S2 we have an identical situation.
� For S1,2 we have X1,2 = lcm{lm(f1), lm(f2)} = yzwe1, thus γ1 = (0, 1, 0) and γ2 =
(1, 0, 0). Since zyw = 2

3yzw, then cγ1,β1 = 2
3 and σγ1(lc(f1)) = σ2(x) = 2x. Analogously,

cγ2,β2 = 1 and σγ2(lc(f2)) = σ1(x2) = 9
4x

2. Hence, we must calculate a system of gener-
ators for SyzQ[x][

4
3x,

9
4x

2]. Such generator set can be BS1,2 = {(3
4x,−

4
9)}. From this, we

get

3

4
xzf1 −

4

9
yf2 =

3

4
xz(xywe1 + we2)− 4

9
y(x2zwe1 + xye2)

=x2zywe1 +
3

4
xzwe2 − x2yzwe1 −

2

3
xy2e2

=− 2

3
xy2e2 +

3

4
xzwe2 := f3,

Observe that f3 is reduced with respect to G′. We make G′ := {f1, f2, f3}.

Step 2: since G = {f1,f2} 6= G′ = {f1,f2,f3}, we make D := P(G′) − P(G), i.e.,
D := {S3, S1,3, S2,3, S1,2,3}, where S1 := {f1}, S1,3 := {f1,f3}, S2,3 := {f2,f3}, S1,2,3 :=
{f1,f2,f3}. We make G := G′, and for every S ∈ D such thatXS 6= 0 we must compute
BS . SinceXS1,3 = XS2,3 = XS1,2,3 = 0, we only need to consider S3.
� We compute

SyzQ[x][σ
γ3(lc(f3))cγ3,β3 ],

where β3 = exp(lm(f3)) = (2, 0, 0); XS3 = lcm{lm(f3)} = lm(f3) = y2e2; exp(XS3) =
(0, 2, 0); γ3 = exp(XS3)− β3 = (0,0, 0); xγ3xβ3 = y2, so cγ3,β3 = 1. Hence

σγ3(lc(f3))cγ3,β3 = σγ3(−2

3
x)1 = σ0

2σ
0
3(−2

3
x) = −2

3
x,

and SyzQ[x][−2
3x] = {0}, i.e., BS3 = {0}. This means that we not add any vector to G′ and

hence G = {f1,f2,f3} is a Gröbner basis for M .

Example 5.5.22. For this other example, we employ the additive analogue of algebra de Weyl,
An(q1, . . . , qn) (see Example 1.1.5, (iv)). We will take n = 2, k = Q, q1 = 1

2 , q2 = 1
3 and

A = A2(1
2 ,

1
3). On Mon(A), we use the order deglex with y1 � y2 and in Mon(A2) the
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TOPREV order with e1 > e2.
Let f1 = x1y

2
1e1 + x2y2e2 and f2 = x2y

2
2e1 + x1y1e2. We will construct a Gröbner basis for

the module M := A〈f1, f2〉.
Step 1. we start with G := ∅, G′ := {f1, f2}. Since G′ 6= G, we make D := P (G′)− P (G),
i.e., D := {S1, S2, S1,2}, where S1 := {f1}, S2 := {f2}, S1,2 := {f1, f2}. We also make
G := G′, and for every S ∈ D such that XS 6= 0 we compute BS :
� For S1 we have SyzQ[x1,x2][σ

γ1(lc(f1))cγ1,β1 ], where β1 = exp(lm(f1)) = (2, 0), γ1 = (0, 0)
and cγ1,β1 = 1; thus BS1 = {0} and we do not add any vector to G′.
� For S2 we have an identical situation.
� For S1,2 we compute

SyzQ[x1,x2][σ
γ1(lc(f1))cγ1,β1 , σ

γ1(lc(f2))cγ2,β2 ],

where β1 = exp(lm(f1)) = (2, 0), β2 = exp(lm(f2)) = (0, 2); we have
X1,2 = lcm{lm(f1), lm(f2)} = y2

1y
2
2e1; γ1 = (0, 2); yγ1yβ1 = y2

1y
2
2 , so cγ1,β1 = 1 and

σγ1(lc(f1)) = x1; analogously, σ2 = (2, 0), cγ2,β2 = 1 and σγ2(lc(f2)) = x2. Hence,
SyxQ[x1,x2][x1, x2] = 〈(x2,−x1)〉 and BS1,2 = {(x2,−x1)}. From this we get

x2y
γ1f1 − x1y

2
1f2 =x2y

2
2(x1y

2
1e1 + x2y2e2)− x1y

2
1(x2y

2
2e1 + x1y1e2)

=x1x2y
2
2y

2
1y

2
2e1 + x2y

2
2x2y2e2 − x1x2y

2
1y

2
1y2e1 − x1y

2
1x1y1e2

=− 1

4
x2

1y
3
1e2 +

1

9
x2

2y
3
2e2 −

3

2
x1y

2
1e2 +

4

3
x2y

2
2e2 := f3,

We observe that f3 is reduced with respect to G′. We make G′ := {f1, f2, f3}.

Step 2: since G = {f1,f2} 6= G′ = {f1,f2,f3}, we make D := P(G′) − P(G), i.e.,
D := {S3, S1,3, S2,3, S1,2,3}, where S1 := {f1}, S1,3 := {f1,f3}, S2,3 := {f2,f3}, S1,2,3 :=
{f1,f2,f3}. We make G := G′, and for every S ∈ D such thatXS 6= 0 we must compute
BS . SinceXS1,3 = XS2,3 = XS1,2,3 = 0, we only need to consider S3.

� We have to compute
SyzQ[x1,x2][σ

γ3(lc(f3))cγ3,β3 ],

where β3 = exp(lm(f3)) = (0, 3); XS3 = lcm{lm(f3)} = lm(f3) = y3
1e2; exp(XS3) =

(0, 3); γ3 = exp(XS3)− β3 = (0, 0); xγ3xβ3 = y3
1 , so cγ3,β3 = 1. Hence

σγ3(lc(f3))cγ3,β3 = σγ3(−x2
1)1 = σ0

2σ
0
3(−x2

1) = −x2
1,

and SyzQ[x1,x2][−x2
1] = {0}, i.e., BS3 = {0}. This means that we not add any vector to G′

and hence G = {f1,f2,f3} is a Gröbner basis for M .

Finally, we get the following direct consequence from Theorem 5.5.18.

Corollary 5.5.23. Let G = {g1, . . . , gt} be a generator set of a module M . If ind(gi) 6= ind(gj)
for every i 6= j, then G is a Gröbner basis for M .

Proof. If we have ind(gi) 6= ind(gj) for every i 6= j, then XF = 0 for each subset F of G.
In this way, the condition (ii) in Theorem 5.5.18 trivially holds; thus G = {g1, . . . , gt} is a
Gröbner basis for M .
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5.6 Right skew PBW extensions and right Gröbner bases

Our definition of a skew PBW extensionA of a ringR depends on assumption thatA is a
free leftR-module over the standard monomialsMon(A) (see Definition 1.1.1). However,
ifA is bijective, thenA is a right freeR-module with basisMon(A) (see Proposition 1.2.4).

Definition 5.6.1. Let A and R be rings with R ⊆ A; let x1, . . . , xn be finitely many elements
of A. We say that A is a ring of right polynomial type over R w.r.t. {x1, . . . , xn} if A is a right
R-free module with basis

Mon(A) := Mon{x1, . . . , xn} := {xα = xα1
1 · · ·xαnn |α = (α1, . . . , αn) ∈ Nn}.

Moreover, we say that A is a ring of polynomial type over R w.r.t. x1, . . . , xn if Mon(A) is a
basis for A as a left and as a right R-module.

Thus, if A is a ring of polynomial type w.r.t. x1, . . . , xn, every element f ∈ A has a
standard representation both left and right in the following way:

f =
∑s

i=1 cix
αi =

∑t
j=1 x

βjdj ,

for some ci, dj ∈ R and xαi , xβj ∈Mon(A), 1 ≤ i ≤ s, 1 ≤ j ≤ t. Given a monomial order
on Mon(A) (e.g., deglex order), we can rewrite f with the property that xα1 � · · · � xαs

and xβ1 � · · · � xβt . Thus, the left and right leading monomials of f are, respectively,
lml(f) := xα1 and lmr(f) := xβ1 .

Since the habitual definition of skew PBW extensions consider left representation
(see Definition 1.1.1), we could call them “left skew PBW extensions”. Thus, using the
right polynomial ring notion, we can establish the definition of “right skew PBW exten-
sion”, as follows.

Definition 5.6.2. Let R and A be rings, we say that A is a right skew PBW extension of R, if
the following conditions hold:

(i) R ⊆ A.

(ii) There exist finite elements x1, . . . , xn ∈ A such A is a right R-free module with basis

Mon(A) := {xα = xα1
1 · · ·xαnn |α = (α1, . . . , αn) ∈ Nn}.

(iii) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists di,r ∈ R− {0} such that

rxi − xidi,r ∈ R. (5.6.1)

(iv) For every 1 ≤ i, j ≤ n there exists di,j ∈ R− {0} such that

xjxi − xixjdi,j ∈ R+ x1R+ · · ·+ xnR. (5.6.2)

Under these conditions, we will write A = σr(R)〈x1, . . . , xn〉.
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The right version of Theorem 1.2.2 is as follows.

Theorem 5.6.3. Let A be a ring of right polynomial type over R w.r.t. {x1, . . . , xn}. A is a right
skew PBW extension of R if and only if the following conditions hold:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exist unique elements rα ∈ R − {0}
and qα,r ∈ A such that

rxα = xαrα + qα,r, (5.6.3)

where qα,r = 0 or deg(qα,r) < |α| if qα,r 6= 0. Moreover, if r is right invertible, then rα is
right invertible.

(b) For every xα, xβ ∈Mon(A) there exist unique elements dα,β ∈ R and qα,β ∈ A such that

xαxβ = xα+βdα,β + qα,β, (5.6.4)

where dα,β is right invertible, qα,β = 0 or deg(qα,β) < |α+ β| if qα,β 6= 0.

Remark 5.6.4. (i) All properties mentioned in Sections 1.1 and 1.2 can be established for
right skew PBW extensions. For example, the elements di,j in (5.6.2) are right invertible
for i < j: indeed, let i < j, by (5.6.2) there exist dj,i, di,j ∈ R such that xixj − xjxidj,i ∈
R+ x1R+ · · ·+ xnR and xjxi − xixjdi,j ∈ R+ x1R+ · · ·+ xnR. So, xixj − xixjdi,jdj,i ∈
R+x1R+ · · ·+xnR and since Mon(A) is a R-basis for AR, then 1 = di,jdj,i, i.e., for every
1 ≤ i < j ≤ n, di,j has a right inverse and dj,i has a left inverse.

(ii) In a similar way as were defined quasi-commutative and bijective left skew PBW
extensions, it is also possible to define the same notions in the right case. Hence, if A is a
right skew PBW extension of a ring R, then A is bijective if the endomorphisms induced
by the elements di,r in (5.6.1) are automorphism of R, and the coefficients di,j in (5.6.2)
are invertible (compare with Definition 1.1.4).

Lemma 5.6.5. Let A be a ring of polynomial type over R w.r.t. x1, . . . , xn. If A is a left or right
skew PBW extension of R, then lml(f) = lmr(f) for every f ∈ A.

Proof. Suppose that A is a left skew PBW extension of R; if f = 0 there is nothing
to prove. If 0 6= f with lmr(f) = xβ1 , then f has a right representation in the form
f = xβ1d1 + · · ·+ xβtdt with xβ1 � · · · � xβt and 0 6= di ∈ R, for 1 ≤ i ≤ t. From Theorem
1.2.2 we obtain that f = σβ1(d1)xβ1 + pβ1,d1 + · · ·+ σβt(dt)x

βt + pβt,dt where pβi,di = 0 or
deg(pβi,di) < |βi| if pβ1,d1 6= 0. From this we get that lml(f) = xβ1 . A similar proof holds
if we suppose that A is a right skew PBW extension of R.

The following theorem allow us to establish the Gröbner bases theory for right ideals
and right modules of bijective left skew PBW extensions.

Theorem 5.6.6. LetA andR be rings such thatR ⊆ A, and let x1, . . . , xn be nonzero elements in
A. Suppose that Mon(A) is ordered by some monomial order. Consider the following statements:

(i) A is a ring of right polynomial type overRw.r.t. x1, . . . , xn and a left skew PBW extension
of R.



CHAPTER 5. GRÖBNER BASES FOR SKEW PBW EXTENSIONS 100

(ii) A is a ring of left polynomial type overRw.r.t. x1, . . . , xn and a right skew PBW extension
of R.

(iii) A is a bijective left skew PBW extension of R.

(iv) A is a bijective right skew PBW extension of R.

Then, (i)⇔ (ii), (iii)⇔ (iv) and (iii)⇒ (i). Further, if in (i) we replace the first condition by
A is also a right skew PBW extension of R, then (i)⇒ (iii).

Proof. (i)⇔ (ii): Since A is a left skew PBW extension of R, then Mon(A) is a basis for
RA, i.e., A is a ring of left polynomial type over R w.r.t. x1, . . . , xn. Now, since A is a ring
of right polynomial type over R w.r.t. x1, . . . , xn, then A satisfies (ii) in Definition 5.6.2.
On the other hand, given 0 6= r ∈ R and 1 ≤ i ≤ n, we have that rxi = xidi,r + pi,r for
some 0 6= di,r ∈ R and pi,r ∈ R (see Lemma 5.6.5). Similarly, for 1 ≤ i, j ≤ n, we have that
xjxi = ci,jxixj +pi,j = xixjdi,j + qi,j for some 0 6= di,j ∈ R and qi,j ∈ R+x1R+ · · ·+xnR.
The proof of (ii)⇒ (i) is analogous.

(iii)⇔ (iv): From Proposition 1.2.4 we have that A is a right free R-module with basis
Mon(A). Only remains to show that there exist elements di,r and di,j in R satisfying (iii)
and (iv) in Definition 5.6.2, and that with these elements A turns out to be bijective. Since
A is bijective, each endomorphism σi in Proposition 1.1.3 is an automorphism; thus given
r ∈ R and 1 ≤ i ≤ n, rxi − xiσ−1

i (r) ∈ R, so it is enough to take di,r := σ−1
i (r). We define

σ′i : R → R as σ′i := σ−1
i . Thus, (iii) in Definition 5.6.2 holds and, of course, each σ′i is

bijective. For 1 ≤ i, j ≤ n, we have that xjxi = ci,jxixj + pi,j , where ci,j is invertible and
pi,j ∈ R + Rx1 + · · · + Rxn. Using again Lemma 5.6.5, as in the first part of the proof,
xjxi = xixjdi,j +qi,j for some di,j 6= 0 and qi,j ∈ R+x1R+ · · ·+xnR. So, (iv) in Definition
5.6.2 holds. Moreover, observe that

xixjdi,j = xi[σj(di,j)xj + r] = xiσj(di,j)xj + xir = [σi(σj(di,j))xi + s]xj + xir =
σi(σj(di,j))xixj + sxj + σi(r)xi + u, with r, s, u ∈ R,

whence, ci,j = σi(σj(di,j)), i.e., di,j = σ−1
j (σ−1

i (ci,j)) is invertible. We have proved that
A is a bijective right skew PBW extension of R. The reverse implication can be proved
similarly.

The implication (iii)⇒ (i) is immediate.

Finally, if A is a left and right skew PBW extension of R, then the endomorphism
σi is bijective for each 1 ≤ i ≤ n: In fact, since for r ∈ R we have rxi = xiσ

′
i(r) +

qi,r = σi(σ
′
i(r))xi + q′i,r for certain q′i,r ∈ R. Uniqueness in the standard representation

implies that r = σi(σ
′
i(r)); i.e., σiσ′i = iR and hence σi is surjective, but according to

Proposition 1.1.3, σi is injective. So, σi is bijective and σ′i = σ−1
i . Now, as above, di,j =

σ−1
j (σ−1

i (ci,j)) and di,j is right invertible (see Remark 5.6.4), then ci,j is right invertible,
ie.e, ci,j is invertible for 1 ≤ i, j ≤ n.

Remark 5.6.7. The equivalence (iii)⇔(iv) in the previous theorem let us to get the follow-
ing key conclusion: if A is a bijective skew PBW extension of a ring R (we mean left as
always in the present work), A is also a bijective right skew PBW extension of ring R,
and therefore, we have a left and a right division algorithm. Obviously, if the elements
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of A are given by their left standard representation, we may have to rewrite them in their
right standard representation, in order to be able to perform right divisions. Left and
right versions of Buchberger’s algorithm are also available. Thus, the theory of Gröbner
bases for left ideals and submodules of left free modules developed in this chapter has
its counterpart on the right.



CHAPTER 6

Elementary applications of Gröbner theory

There are some classical and elementary applications of Gröbner theory that we will
study in this chapter. We will consider the membership problem, we will compute the
syzygy module, free resolutions of modules, the intersection and quotient of ideals and
submodules, the matrix presentation of a finitely presented module, and the kernel and
the image of homomorphism between modules. Recall that A = σ(R)〈x1, . . . , xn〉 repre-
sents a bijective skew PBW extension of a LGS ring R.

6.1 The membership problem

Let F = {f1, . . . , fs} ⊂ A and I := 〈F} be the left ideal generated by F . The membership
problem ask whether one may effectively decide if an element f ∈ A belongs to I . Gröb-
ner theory provides an easy answer to this problem. Indeed, letG be a Gröbner basis of I ;
making use of the division algorithm (Theorem 5.2.6), it is possible to obtain polynomials

h1, . . . , ht, h ∈ A, with h reduced w.r.t. G, such that f G−−→+ h and f = q1f1 + · · ·+qtft+h;
according to Corollary 5.3.3 if h 6= 0, then f /∈ I ; and if h = 0, then f ∈ I .

The next theorem complements the answer allowing us to write f as A-linear combi-
nation of f1, . . . , fs when f ∈ I .

Theorem 6.1.1. Let F = {f1, . . . , fs} be a subset of A and G = {g1, . . . , gt} be a Gröbner basis
of I := 〈F}. Then, there exist matrices H = [hij ] ∈ Ms×t(A) and Q = [qij ] ∈ Mt×s(A) such
that

GT = HTF T and F T = QTGT ,

where G :=
[
g1 · · · gt

]
, F :=

[
f1 · · · fs

]
and

H :=

h11 · · · h1t
...

. . .
...

hs1 · · · hst

 ; and Q :=

q11 · · · q1s
...

. . .
...

qt1 · · · qts

 .

102
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Proof. Initially, we show how the Buchberger’s algorithm allows us to compute the ma-
trix H . For this, we take

G−1 := ∅
G0 := F

Gi+1 := Gi ∪
{
r 6= 0 |

k∑
j=1

bjx
γjgij

G−→+ r, for (b1, . . . , bk) ∈ BS
}
,

where S = {gi1 , . . . , gik} ∈ P (Gi)− P (Gi−1) and Gi := {g1, . . . , gti}. Suppose thatg1
...
gti

 =

h11 · · · hs1
...

. . .
...

h1ti · · · hsti


f1

...
fs


and let gti+1 be an element in A − {0} such that

∑k
j1
bjx

γjgij
Gi−→+ gti+1; then,∑k

j1
bjx

γjgij = a1g1 + · · ·+ atigti + gti+1, and thus

gti+1 =
∑k

j=1 bjx
γjgij + (−a1)g1 + · · ·+ (−ati)gti = (−a1)g1 + · · ·+ (b1x

γ1 − ai1)gi1 + · · ·+
(bkx

γk −aik)gik + · · ·+ (−ati)gti = (−a1)(h11f1 + · · ·+hs1fs) + · · ·+ (b1x
γ1 −ai1)(h1i1f1 +

· · ·+hsi1fs)+ · · ·+(bkx
γk −aik)(h1ikf1 + · · ·+hsikfs)+ · · ·+(−ati)(h1tif1 + · · ·+hstifs) =

(−a1h11 + · · ·+(b1x
γ1−ai1)h1i1 + · · ·+(bkx

γk−aik)h1ik + · · ·−atih1ti)f1 + · · ·+(−a1hs1 +
· · ·+ (b1x

γ1 − ai1)hsi1 + · · ·+ (bkx
γk − aik)hsik + · · · − atihsti)fs = h1ti+1f1 + · · ·+hsti+1fs,

with hrti+1 := −a1hr1 + · · ·+ (b1x
γ1 − ai1)hri1 + · · ·+ (bkx

γk − aik)hrik + · · · − atihrti , for
1 ≤ r ≤ s. With this last we have

Htk+1 =

h11 · · · h1ti+1
...

. . .
...

hs1 · · · hsti+1

 .
Iterating this construction, we will obtain a matrix H with the required properties.

In order to obtain matrix Q, it is enough to remember that if G = {g1, . . . , gt} is a

Gröbner basis for 〈F} then fi
G−→+ 0 for any1 ≤ i ≤ s; the division algorithm implies that

fi = q1ig1 + · · ·+ qtigt for all 1 ≤ i ≤ s, and thus the matrix

Q =

q11 · · · q1s
...

. . .
...

qt1 · · · qts


satisfies the assertion.

Example 6.1.2. As in the Example 5.4.7, let A be the diffusion algebra. We want to know
if the polynomial f = x2

1x2D1D
2
2 + 3

2x
2
1x

2
2D1D2 − x2

1x
3
2D1 + 1

2x1x
2
2D2 is in the left ideal

I := 〈f1, f2}, where f1 = x1D1D2 + x2, f2 = x2D
2
2. For this task, we calculate a Gröbner

basis for I and we check if f can be reduced to 0 with respect to {f1, f2}. We consider the
order deglex on Mon(A), with D1 � D2.
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We start taking G := ∅ and G′ := {f1, f2}.
Step 1. Since G′ 6= G, we have D = {S1, S2, S1,2}.
We make G = G′.
Since R has not zero divisors, S1 and S2 do not add any polynomial to G′. For S1,2,
we compute BS1,2 , a generator set of SyzR[σγ1(lc(f1))cγ1,β1 , σ

γ2(lc(f2))cγ2,β2 ]: X1,2 =
lcm{D1D2, D2} = D1D

2
2, so γ1 = (0, 1), D2(D1D2) = 2D1D

2
2 + x2D1D2 − x1D

2
2, and

whence, cγ1,β1 = 2; in a similar way, γ2 = (1, 0) and cγ2,β2 = 1. Therefore, BS1,2 =
{(1

2x2,−x1)} and we have

1
2x2D2f1 − x1D1f2 = 1

2x1x
2
2D1D2 − 1

2x
2
1x2D

2
2 + 1

2x
2
2D2.

Since that

1
2x1x

2
2D1D2 − 1

2x
2
1x2D

2
2 + 1

2x
2
2D2

G−−→+
1
2x

2
2D2 − 1

2x
3
2 =: f3

and f3 is reduced with respect to G, we add the polynomial f3 and we make G′ :=
{f1, f2, f3}.
Step 2. Since G′ 6= G, we compute D = P (G′)−P (G) and we make G = G′. In D we only
need to consider three subsets:

S1,3 = {f1, f3}, S2,3 = {f2, f3}, S1,2,3 = {f1, f2, f3}.

For S1,3 we have X1,3 = D1D2 and, hence, γ1 = (0, 0) and γ3 = (1, 0). From this it follows
that BS1,3 = {(x2

2,−2x1)}, and we obtain

x2
2f1 − 2x1D1f3 = x1x

3
2D1 + x3

2 =: f4

and f4 is reduced with respect to G, we add the polynomial f4 and we make G′ :=
{f1, f2, f3, f4}.
For S2,3, XS2,3 = D2

2, so γ2 = (0, 0) and cγ2,β2 = 1; in the same way, γ3 = (0, 1) and
cγ3,β3 = 1. Thus BS2,3 = {(x2,−2)}, and

x2f2 − 2D2f3 = x3
2D2

G−−→ x4
2 =: f5.

Since f5 is reduced with respect to G, we add f5 and we make G′ := {f1, f2, f3, f4, f5}.
For S1,2,3 we have that γ1 = (0, 1), γ2 = (1, 0), γ3 = (1, 1), and hence,BS1,2,3 = {(0, x2,−2), (1

2x2,−x1, 0)};
for the first generator we obtain a polynomial that can be reduced to 0 by f1, f2 and f3.
The same applies for the second generator. Therefore, we do not add any polynomial to
G′.
Step 3. Again, G 6= G′. Thus, we compute D = P (G′) − P (G) and we make G = G′. In
this case, we need to consider 14 sets in D. For these subsets we obtain polynomials that
are reducible to 0 by G = {f1, f2, f3, f4, f5}. Thus, G is a Gröbner basis for I := 〈f1, f2}.
Finally, applying the division algorithm, f reduces to 0 with respect to {f1, f2, f3, f4, f5}.
Moreover, we have that

f = (
1

2
x1x2D2 + x1x

2
2)f1 +

1

2
x3

1f2 − x1f3.
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The membership problem can be extended for modules: let F = {f1, . . . , f s} be a
set of non-zero vectors in Am and M := 〈f1, . . . , f s〉 the A-submodule of Am generated
by f1, . . . , f s; let G = {g1, . . . , gt} be a Gröbner basis for M and f ∈ Am, applying the
division algorithm we find l1, . . . , lt,∈ A and a reduced vector h ∈ Am w.r.t. F such that
f = l1g1 + · · · + ltgt + h; then, f ∈ M if and only if h = 0. In addition, Theorem 6.1.1 can
be formulated and proved for modules.

Theorem 6.1.3. Let F = {f1, . . . , fs} be a subset of nonzero vectors ofAm, andG = {g1, . . . , gt}
be a Gröbner basis of M := A〈F 〉. Then, there exist matrices H = [hij ] ∈ Ms×t(A) and
Q = [qij ] ∈Mt×s(A) such that

GT = HTF T and F T = QTGT , (6.1.1)

where G :=
[
g1 · · · gt

]
, F :=

[
f1 · · · fs

]
and

H :=

h11 · · · h1t
...

. . .
...

hs1 · · · hst

 ; and Q :=

q11 · · · q1s
...

. . .
...

qt1 · · · qts

 .
Therefore, 6.1.1 allow us to write f as A-linear combination of f1, . . . , fs when f ∈M .

As application of the membership problem, given two ideals I and J of A generated
by {f1, . . . , fm} and {g1, . . . , gn} respectively, we can effectively decide whether I = J : it
is enough to check if fi ∈ J for all i ≤ i ≤ m, and if gj ∈ I for all 1 ≤ j ≤ n. A similar
remark can be done for modules.

Remark 6.1.4. Of course, Theorems 6.1.1 and 6.1.3 have their right version (see Remark
2.1.2): Let F = {f1, . . . , f s} be a subset of Am and G = {g1, . . . , gt} be a Gröbner basis of
M := 〈F 〉A. Then, there exist matrices H = [hij ] ∈ Ms×t(A) and Q = [qij ] ∈ Mt×s(A)
such that

G = FH and F = GQ,

where G :=
[
g1 · · · gt

]
and F :=

[
f1 · · · f s

]
.

6.2 Computing syzygies

Now, we will compute the syzygy module of a finite set of polynomials of A, and more
generally, of a finite set of elements of Am.

Let Am be the left A-module of column vectors of length m ≥ 1. Given I a left ideal
of A, with I = 〈f1, . . . , fs}, we may define the following A-homomorphism:

φ : As → I; (h1, . . . , hs)
T 7→

s∑
i=1

hifi;

Note that φ is surjective and, therefore, I ∼= As/ ker(φ).

Definition 6.2.1. The kernel of the homomorphism φ is called the syzygy module of the matrix[
f1 · · · fs

]
. It is denoted by Syz(f1, . . . , fs). An element (h1, . . . , hs)

T ∈ Syz(f1, . . . , fs) is
called a syzygy of

[
f1 · · · fs

]
and satisfies

h1f1 + · · ·+ hsfs = 0.
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Note that φ can be viewed as the matrix multiplication:

φ(h1, . . . , hs) =
[
h1 · · · hs

] f1
...
fs

 ;

and Syz(f1, . . . fs) as the set of all solutions (h1, . . . , hs)
T ∈ As of the linear equation

[
h1 · · · hs

] f1
...
fs

 = 0.

Since A is a left Noetherian ring, then Syz(f1, . . . , fs) is a finitely generated left A-
module. We will compute a system of generators for Syz(f1, . . . , fs) for any f1, . . . , fs ∈
A. For this, we first compute a Gröbner basis G = {g1, . . . , gt} for I = 〈f1, . . . , fs}. Next,
we obtain a set of generators for Syz(g1, . . . , gt) and, finally, we will obtain a system of
generators for Syz(f1, . . . , fs) from one of Syz(g1, . . . , gt).
So, let G = {g1, . . . , gt} be a Gröbner basis for I , S = {gi1 , . . . , gik} ⊆ G and b =
(b1, . . . , bk) ∈ BS (recall that BS is a set of generators of SyzR(σγj (lc(gij ))cγj ,exp(gij ) |

1 ≤ j ≤ k)); we know that
∑k

j=1 bjx
γjgij

G−→+ 0 and hence there exist h1, . . . , ht ∈ A such
that

∑k
j=1 bjx

γjgij =
∑t

i=1 higi. For each b ∈ BS , we define

sbS :=

k∑
j=1

bjx
γjeij − (h1, . . . , ht) ∈ At;

then sbS ∈ Syz(g1, . . . , gt): in fact,

sbS

g1
...
gt

 = [
k∑
j=1

bjx
γjeij − (h1, . . . , ht)]

g1
...
gt


=

k∑
j=1

bjx
γjgij −

t∑
i=1

higi = 0.

One natural question that aries here is: must we calculate all vectors sbS for each subset
of G? The answer is negative; we just need certain particular subsets.

Definition 6.2.2. Let X1, . . . , Xt ∈Mon(A) and J ⊆ {1, . . . , t}. Let

XJ := lcm{Xj | j ∈ J}.

We say that J is saturated with respect to {X1, . . . , Xt}, if

Xj | XJ ⇒ j ∈ J,

for any j ∈ {1, . . . , t}. The saturation J ′ of J consists of all j ∈ {1, . . . , t} such that Xj | XJ .
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Theorem 6.2.3. With the above notations, a generating set for Syz(g1, . . . , gt) is

S := {sJv | J ⊆ {1, . . . , t} is saturated w.r.t.{lm(g1), . . . , lm(gt)}, 1 ≤ v ≤ lJ},

where
sJv :=

∑
j∈J

bJvjx
γjej − (hv1, . . . , h

v
t ),

with γj ∈ Nn such that γj + βj = exp(XJ), βj = exp(gj) for j ∈ J , BJ := {bJ1 , . . . , bJlJ}
a system of generators for SJ := SyzR[σγj (lc(gj))cγj ,βj | j ∈ J ], and bJv := (bJvj)j∈J for
1 ≤ v ≤ lJ .

Proof. We have already seen that A〈S〉 ⊆ Syz(g1, . . . , gt). Suppose that there exists u =
(u1, . . . , ut) ∈ Syz(g1, . . . , gt)− 〈S〉. We can choose u such that

xδ := max
1≤i≤t

{lm(lm(ui)lm(gi))}

is minimal with respect to �. Let

J := {j ∈ {1, . . . , t} | lm(lm(uj)lm(gj)) = xδ}.

Since
∑t

i=1 uigi = 0, we have
∑

j∈J lc(uj)σ
αj (lc(gj))cαj ,βj = 0, where αi := exp(ui) for

1 ≤ i ≤ t. If XJ := lcm{lm(gj) | j ∈ J}, then XJ | xδ and there is θ ∈ Nn with
θ + exp(XJ) = δ. But αj + βj = δ and γj + βj = exp(XJ) for all j ∈ J , then θ + γj + βj =
αj + βj , i.e., θ + γj = αj . Thus, (lc(uj))j∈J ∈ SJ,θ := SyzR[σθ+γj (lc(gj))cθ+γj ,βj | j ∈ J ]. If
J ′ is the saturation of J , then XJ = XJ ′ and w = (wj)j∈J ′ given by

wj =

{
lc(uj), if j ∈ J,
0, if j ∈ J ′ − J

is an element of SJ ′,θ. According to Remark 5.4.2, there exists
(bj)j∈J ′ ∈ SJ ′ := SyzR[σγj (lc(gj))cγj ,βj | j ∈ J ′] such that wj = σθ(bj)cθ,γj for j ∈ J ′.

This implies that bj = 0 for j ∈ J ′−J . Now, (bj)j∈J ′ =
∑lJ′

v=1 r
′
vbJ

′
v , withBJ ′ := {bJ ′v | 1 ≤

v ≤ lJ ′} a system of generators for SJ ′ and r′v ∈ R for 1 ≤ v ≤ lJ ′ . Hence, bj =
∑lJ′

v=1 r
′
vb
J ′
vj

and thus wj =
∑lJ′

v=1 σ
θ(r′v)σ

θ(bJ
′
vj)cθ,γj for all j ∈ J ′. Define u′ := u−

∑lJ′
v=1 rvx

θsJ
′
v , with

rv := σθ(r′v) for 1 ≤ v ≤ lJ ′ ; then u′ ∈ Syz(g1, . . . , gt) since
∑lJ′

v=1 rvx
θsJ

′
v ∈ A〈S〉. Note

that
lJ′∑
v=1

rvx
θsJ

′
v = r1x

θsJ
′

1 + · · ·+ rlJ′x
θsJ

′
lJ′

= r1x
θ[
∑
j∈J ′

bJ
′

1jx
γjej − (h1

1, . . . , h
1
t )] + · · ·+

rlJ′x
θ[
∑
j∈J ′

bJ
′
lJ′j

xγjej − (h
lJ′
1 , . . . , h

lJ′
t )]

= r1[
∑
j∈J ′

(σθ(bJ
′

1j)cθ,γjx
θ+γj + p1

j )ej − (h1
1, . . . , h

1
t )] + · · ·+

rlJ′ [
∑
j∈J ′

(σθ(bJ
′
lJ′j

)cθ,γjx
θ+γj + p

lJ′
j )ej − (h

lJ′
1 , . . . , h

lJ′
t )]
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Thus, for j ∈ J we have that

u′j = uj − [

lJ′∑
v=1

rvσ
θ(bJ

′
vj)cθ,γjx

θ+γj +

lJ′∑
v=1

pvj −
lJ′∑
v=1

hvj ]

= uj − [

lJ′∑
v=1

σθ(r′v)σ
θ(bJ

′
vj)cθ,γjx

αj +

lJ′∑
v=1

pvj −
lJ′∑
v=1

hvj ]

= uj − lc(uj)xαj −
lJ′∑
v=1

pvj +

lJ′∑
v=1

hvj

since j ∈ J , γj + θ = αj and wj = lc(uj) =
∑lJ′

v=1 σ
θ(r′v)σ

θ(bJ
′
vj)cθ,γj . Here pvj = 0 or

deg(pvj ) < |θ + γj | for every 1 ≤ v ≤ lJ ′ . Then,

lm(lm(uj − lc(uj)xαj )lm(gj)) ≺ lm(lm(uj)lm(gj)) = xδ, lm(lm(pvj )lm(gj)) ≺ xθ+γj+βj = xδ,

and
lm(lm(hvj )lm(gj)) � lm(

∑
j∈J ′

bJ
′
vjx

γjgj) ≺ XJ ′ = XJ � xδ,

so lm(lm(u′j)lm(gj)) ≺ xδ. Now, if j ∈ J ′ − J , then wj =
∑lJ′

v=1 σ
θ(r′v)σ

θ(bJ
′
vj)cθ,γj = 0

and lm(lm(uj)lm(gj)) ≺ xδ, thus lm(lm(u′j)lm(gj)) ≺ xδ. Finally, if j /∈ J ′, then u′j =

uj +
∑lJ′

v=1 h
v
j and lm(lm(u′j)lm(gj)) ≺ xδ. So, lm(lm(u′i)lm(gi)) ≺ xδ for every 1 ≤ i ≤ t

and, by minimality of u, we have that u′ ∈ A〈S〉 and hence, u ∈ A〈S〉, a contradiction.
Therefore, A〈S〉 = Syz(g1, . . . , gt).

Now, we return to the initial problem of calculating a system of generators for
Syz(f1, . . . , fs), where {f1, . . . , fs} is a collection of nonzero polynomials, which no nec-
essarily form a Gröbner basis for I = 〈f1, . . . , fs}. As we saw in Theorem 6.1.1, there
exist H ∈ Ms×t(A) and Q ∈ Mt×s(A) such that GT = HTF T and F T = QTGT , where
G :=

[
g1 · · · gt

]
, F :=

[
f1 · · · fs

]
and G is a Gröbner basis for I . By Theorem

6.2.3, we may compute a set of generators {s1, . . . , sl} for Syz(g1, . . . , gt). Thus, for each
1 ≤ i ≤ l we have that

siHTF T = siGT = 0,

and therefore, 〈siHT | 1 ≤ i ≤ l〉 ⊆ Syz(f1, . . . , fs). Further,

[
Is −QTHT

] f1
...
fs

 =

f1
...
fs

−QTHT

f1
...
fs

 =

0
...
0

 ,
and thereby the rows r1, . . . , rs of Is −QTHT also belong to Syz(f1, . . . , fs).

Theorem 6.2.4. With the above notation, we have

Syz(f1, . . . , fs) = 〈s1H
T , . . . , slHT , r1, . . . , rs〉 ≤ As.
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Proof. Let s = (a1, . . . , as)
T be an element in Syz(f1, . . . , fs), then

0 = sTF T = sTQTGT ,

and therefore sTQT ∈ Syz(g1, . . . , gt). Thus, sTQT =
∑l

i=1 pisi for some pi ∈ A. Thereby,
sTQTHT =

∑l
i=1 pi(siHT ) and

sT = sT − sTQTHT + sQTHT

= sT (Is −QTHT ) +
l∑

i=1

pi(siHT )

=
s∑
i=1

airi +
l∑

i=1

pi(siHT );

thus, sT ∈ 〈s1H
T , . . . , slHT , r1, . . . , rs〉 and we obtain the required equality.

Remark 6.2.5. Note that if G is a Gröbner basis obtained through the Corollary 5.4.5, the
matricesQ andH in the Theorem 6.1.1 satisfies thatQTHT = Is. In such case, a generator
set for SyzA(F ) is given by {s1H

T , . . . , slHT }, where {s1, . . . , sl} is a system of generators
for SyzA(G).

Example 6.2.6. We continue to work with the Example 5.4.7, where A is the diffusion
algebra described in Example 1.3.3, with n = 2, k = Q, d12 = −2 and d21 = −1. In this ring,
we haveD2D1 = 2D1D2+x2D1−x1D2 and the automorphisms σ1 and σ2 are the identity.
We consider the order deglex with D1 � D2 and the polynomials f1 = x2

1x2D
2
1D2, f2 =

x2
2D1D

2
2. As we saw, G = {f1, f2, f3, f4} is a Gröbner basis for I := A〈f1, f2}, where

f3 = −1
4x

3
1x

3
2D1D2 + 1

4x
4
1x

2
2D

2
2 f4 = x3

1x2f2 + 2D2f3 = 1
2x

4
1x

2
2D

3
2− 1

2x
3
1x

4
2D1D2 + 1

2x
4
1x

3
2D

2
2.

We will use this for computing a system of generators for SyzA{f1, f2}.
Now, according to Theorem 6.2.3, we must consider the saturated subsets of {1, 2, 3, 4}
w.r.t. {lm(fi)}4i=1; these sets are: J3 = {3}, J4 = {4}, J1,3 = {1, 3}, J2,3 = {2, 3}, J1,2,3 =
{1, 2, 3}, J2,3,4 = {2, 3, 4} and J1,2,3,4 = {1, 2, 3, 4}. We have:
� For J3 = {1} we compute a system BJ3 of generators of SyzR[σγ1(lc(f3))]cγ3,β3 , where
γ1 = XJ3 − β3 = (0, 0). Then BJ3 = {0}, and hence we have only one generator bJ3

1 =
(bJ3

11) = 0 and sJ3
1 = bJ3

11x
γ3 ẽ3 − (0, 0, 0, 0) = (0, 0, 0, 0), con ẽ1 = (0, 0, 0, 0)T .

� For J4 = {4} the situation is similar.
� For J1,3: XJ1,3 = D2

1D2 and γ1 = (0, 0), γ3 = (1, 0); thus, cγ1,β1 = 1 and cγ3,β3 = 1. A
system of generators of

SyzR[σγ1(lc(f1))cγ1,β1 , σ
γ3(lc(f3))cγ3,β3 ] = SyzR[x2

1x2,−1
4x

3
1x2]

is BJ1,3 = {(x1x
2
2, 4)}.

Thus, we only have one generator bJ1,3

1 = (x1x
2
2, 4).

Since that

x1x
2
2f1 + 4D1f3 = x4

1f2,
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then

s
J1,3

1 = x1x
2
2ẽ1 + 4D1ẽ3 − (0, x4

1, 0, 0)

=


x1x

2
2

−x4
1

4D1

0

 .
� For J2,3: XJ2,3 = D1D

2
2 and γ2 = (0, 0), γ3 = (0, 1); thus, cγ2,β2 = 1. Since D2(D1D2) =

2D1D
2
2 + x2D1D2 − x1D

2
2, then cγ3,β3 = 2. A system of generators of

SyzR[σγ2(lc(f2))cγ2,β2 , σ
γ3(lc(f3))cγ3,β3 ] = SyzR[x2,−1

2x
3
1x

3
2]

is BJ2,3 = {(x3
1x2, 2)}.

Therefore,

x3
1x2f2 + 2D2f3 = f4,

and

s
J2,3

1 = x3
1x2ẽ2 + 2D2ẽ3 − (0, 0, 0, 1)

=


0

x3
1x2

2D2

−1

 .
� For J1,2,3: XJ1,2,3 = D2

1D
2
2 and γ1 = (0, 1), γ2 = (1, 0) and γ3 = (1, 1). Now, since

D2D
2
1D2 = 4D2

1D
2
2 + 3x2D

2
1D2 − 4x1D1D

2
2 − x1x2D1D2 + x2

1D
2
2,

D1D2D1D2 = 2D2
1D

2
2 + x2D

2
1D2 − x1D1D

2
2,

then cγ1,β1 = 4, cγ2,β2 = 1 and cγ3,β3 = 2. We have that,

SyzR[4x2
1x2, x

2
2,−1

2x
3
1x

3
2] = 〈(1

4x2,−x2
1, 0), (1

4x1x
2
2, 0, 2)〉.

For bJ1,2,3

1 = (1
4x2,−x2

1, 0), is obtained

1
4x2D2f1 − x2

1D1f2 = 3
4x

2
2f1 − x3

1f2 + f3

and

s
J1,2,3

1 =
1

4
x2D2ẽ1 − x2

1D1ẽ2 − (
3

4
x2

2,−x3
1, 1, 0)

=


1
4x2D2 − 3

4x
2
2

−x2
1D1 + x3

1

−1
0

 .
For bJ1,2,3

2 = (1
4x1x

2
2, 0, 2), is obtained
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1
4x1x

2
2D2f1 + 2D1D2f3 = 3

4x1x
3
2f1 − x4

1x2f2 + x1x2f3 +D1f4

and

s
J1,2,3

2 =
1

4
x1x

2
2D2ẽ1 + 2D1D2ẽ2 − (

3

4
x1x

3
2,−x4

1x2, x1x2, D1)

=


1
4x1x

2
2D2 − 3

4x1x
3
2

x4
1x2

2D1D2 − x1x2

−D1

 .
� For J2,3,4: XJ2,3,4 = D1D

3
2, so γ2 = (0, 1), γ3 = (0, 2) and γ4 = (1, 0). Now, since

D2D1D
2
2 = 2D1D

3
2 + x2D1D

2
2 − x1D

3
2,

D2
2D1D2 = 4D1D

3
2 + 4x2D1D

2
2 − 3x1D

3
2 + x2

2D1D2 − x1x2D
2
2,

then cγ2,β2 = 2, cγ3,β3 = 4 and cγ4,β4 = 1. We have that

SyzR[2x2
2,−x3

1x
3
2,

1
2x

4
1x

2
2] = 〈(1

2x
3
1x2, 1, 0), (1

2x
4
1, 0,−2)〉.

For bJ2,3,4

1 = (1
2x

3
1x2, 1, 0), the following equality holds

1
2x

3
1x2D2f2 +D2

2f3 = 1
2D2f4

and

s
J2,3,4

1 =
1

2
x3

1x2D2ẽ2 +D2
2ẽ3 − (0, 0, 0,

1

2
D2)

=


0

1
2x

2
1x2

D2
2

1
2D2

 .

For bJ2,3,4

2 = (1
2x

4
1, 0,−2),

1
2x

4
1D2f2 − 2D1f4 = x1x

3
2f1 − 1

2x
4
1x2f2 − 2x1x2f3 − x1f4

and hence

s
J2,3,4

2 =
1

2
x4

1D2ẽ2 − 2D1ẽ4 − (x1x
3
2,−

1

2
x4

1x2,−2x1x2,−x1)

=


−x1x

3
2

1
2x

4
1 + 1

2x
4
1x2

2x1x2

−2D1 + x1

 .
� For J1,2,3,4: XJ1,2,3,4 = D2

1D
3
2, so γ1 = (0, 2), γ2 = (1, 1), γ3 = (1, 2) and γ4 = (2, 0). In this

case, cγ1,β1 = 16, cγ2,β2 = 2, cγ3,β3 = 4 and cγ4,β4 = 1. We have that
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SyzR[16x2
1x2, 2x

2
2,−x3

1x
3
2,

1
2x

4
1x

2
2] = 〈( 1

16x2,−1
2x

2
1, 0, 0), ( 1

16x1x
2
2, 0, 1, 0), ( 1

16x
2
1x2, 0, 0,−2)〉.

For bJ1,2,3,4

1 = ( 1
16x2,−1

2x
2
1, 0, 0) we obtain

1
16x2D

2
2f1 − 1

2x
2
1D1D2f2 = 9

16x
3
2f1 + (x2

1x2D1 − 1
2x

3
1D2 − 17

8 x
3
1x2)f2 + 21

4 x2f3 + 17
8 f4,

thereby

s
J1,2,3,4

1 =
1

16
x2D

2
2ẽ1 −

1

2
x2

1D1D2ẽ2 − (
9

16
x3

2, x
2
1x2D1 −

1

2
x3

1D2 −
17

8
x3

1x2,
21

4
x2,

17

8
)

=


1
16x2D

2
2 − 9

16x
3
2

−1
2x

2
1D1D2 − x2

1x2D1 + 1
2x

3
1D2 + 17

8 x
3
1x2

−21
4 x2

−17
8

 .

For bJ1,2,3,4

2 = ( 1
16x1x

2
2, 0, 1, 0),

1
16x1x

2
2D

2
2f1 +D1D

2
2f3 = 9

16x1x
4
2f1 − 13

8 x
4
1x

2
2f2 + 13

4 x1x
2
2f3 + (1

2D1D2 − x2D1 + 9
8x1x2)f4

and

s
J1,2,3,4

2 =
1

16
x1x

2
2D

2
2ẽ1 +D1D

2
2ẽ3 − (

9

16
x1x

4
2,−

13

8
x41x

2
2,

13

4
x1x

2
2,

1

2
D1D2 − x2D1 +

9

8
x1x2)

=


1
16x1x

2
2D

2
2 − 9

16x1x
4
2

13
8 x

4
1x

2
2

D1D
2
2 − 13

4 x1x
2
2

− 1
2D1D2 + x2D1 − 9

8x1x2

 .

For bJ1,2,3,4

3 = ( 1
16x

2
1x2, 0, 0,−2),

1
16x

2
1x2D

2
2f1 − 2D2

1f4 =
(x1x

3
2D1 + 33

16x
2
1x

3
2)f1 + (1

2x
4
1x2D1 − 17

8 x
5
1x2)f2 + 11

2 x
2
1x2f3 + (−3x1D1 + 9

8x
2
1)f4

and

s
J1,2,3,4

3 =
1

16
x2

1x2D
2
2ẽ1 − 2D2

1ẽ4 − (x1x
3
2D1 +

33

16
x2

1x
3
2,

1

2
x4

1x2D1 −
17

8
x5

1x2,
11

2
x2

1x2,−3x1D1 +
9

8
x2

1)

=


1
16
x2

1x2D
2
2 − x1x

3
2D1 − 33

16
x2

1x
3
2

− 1
2
x4

1x2D1 + 17
8
x5

1x2

− 11
2
x2

1x2

−2D2
1 + 3x1D1 − 9

8
x2

1

 .

In consequence, S = {sJ1,3

1 , s
J2,3

1 , s
J1,2,3

1 , s
J1,2,3

2 , s
J2,3,4

1 , s
J2,3,4

2 , s
J1,2,3,4

1 , s
J1,2,3,4

2 , s
J1,2,3,4

3 } is a
set of generators for SyzA(G). For computing a generator set for SyzA(M), we use the
Theorem 6.2.4: in this case the matrices H and Q in Theorem 6.1.3 are:

Q =


1 0
0 1
0 0
0 0

; H =

[
1 0 1

4x2D2 − 3
4x

2
2

1
2x2D

2
2 − 3

2x
2
2D2

0 1 −x2
1D1 + x3

1 −4x2
1D1D2 − 2x2

1x2D1 + 4x3
1D2 + x3

1x2

]
.
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Since I2 − QTHT =

[
0 0
0 0

]
, then the generators for SyzA(f1, f2) are given by sHT for

each s ∈ S. Therefore:

� s1 := sJ1,3

1 HT =

[
x2D1D2 − 3x2

2D1 + x1x
2
2

−4x2
1D

2
1 + 4x3

1D1 − x4
1

]
� sJ2,3

1 HT = sJ1,2,3

1 HT = sJ1,2,3

2 HT = 0

� s2 := sJ2,3,4

1 HT =

[
1
2
x2D

3
2 − 3

2
x2

2D
2
2

−8x2
1D1D

2
2 − 8x2

1x2D1D2 + 7x3
1D

2
2 − 2x2

1x
2
2D1 + 5

2
x3

1x2D2 + 1
2
x2

1x2

]
� s3 := sJ2,3,4

2 HT =

[
−x2D1D

2
2 + 3x2

2D1D2 + 1
2
x1x2D

2
1 − x1x

2
2D2 − 5

2
x1x

3
2

8x2
1D

2
1D2 − 12x3

1D1D2 + 4x2
1x2D

2
1 − 6x3

1x2D1 + 4x4
1D2 + 5

2
x4

1x2 + 1
2
x4

1

]
� s4 := sJ1,2,3,4

1 HT =

[
−x2D

2
2 + 15

8
x2D2 + 27

8
x3

2

8x2
1D1D2 + 17

2
x2

1x2D1 − 8x3
1D2 − 21

4
x3

1x2

]
� s5 := sJ1,2,3,4

2 HT =

[
1
2
x2

2D1D
2
2 − 3

2
x3

2D1D2 − 1
2
x1x

2
2D

2
2 + 7

8
x1x

3
2D2 + 15

8
x1x

4
2

−4x2
1x2D

2
1D2 + 8x3

1x2D1D2 − 2x2
1x

2
2D

2
1 − 9

2
x4

1x2D2 − 11
4
x4

1x
2
2

]
� s6 := s

J1,2,3,4
3 HT =

[
−x2D

2
1D

2
2 + 3x2

2D
2
1D2 + 3

2
x1x2D1D

2
2 −

9
2
x1x

2
2D1D2 − 1

2
x2

1x2D
2
2 − x1x

3
2D1 + 5

16
x2

1x
2
2D2 + 33

16
x2

1x
3
2

8x2
1D

3
1D2 − 20x3

1D
2
1D2 + 4x2

1x2D
3
1 − 8x3

1x2D
2
1 + 33

2
x4

1D1D2 + 41
4
x4

1x2D1 − 9
2
x5

1D2 − 9
2
x5

1x2

]
.

Hence, {s1, s2, s3, s4, s5, s6} is a generator set for SyzA(f1, f2).

The above allow us to establish the following remarkable fact about the behaviour of
Gröbner soluble property on bijective skew PBW extensions.

Corollary 6.2.7. Let R be a LGS ring. If A = σ(R)〈x1, . . . , xn〉 is a bijective skew PBW
extension of R, then A is LGS.

Proof. This follows from Hilbert Basis Theorem (Theorem 1.2.9), the discussion at the
beginning of previous section, Theorem 6.1.1, and from Theorem 3.2.4.

Remark 6.2.8. (a) Adapting the conditions (i), (ii) and (iii) in Definition 5.2.1 we can define
the notion of right Gröbner soluble rings (RGS).

(b) From Theorems 1.2.9 and 5.6.6 is immediate that Hilbert basis theorem holds for
bijective right skew PBW extensions. Moreover, the applications established in this
chapter for left ideals and submodules of left free modules, have also their right version.
Therefore, we have a natural right counterpart of the Corollary 6.2.7.

Corollary 6.2.9. Let R be a RGS ring. If A = σ(R)〈x1, . . . , xn〉 is a bijective right skew PBW
extension of R, then A is RGS.

Now, we can generalize the method described above for computing the syzygy mod-
ule of a submodule M = 〈f1, . . . , f s〉 of Am. Let F :=

[
f1 · · · f s

]
, we recall that

Syz(M) := Syz(F ) consists of column vectors h =
[
h1 · · · hs

]T ∈ As such that

h1f1 + · · ·+ hsf s = 0,

i.e., hTF T = 0. We note that Syz(F ) is a submodule of As and we can set a matrix with
its generators, so sometimes we will refer to Syz(F ) as a matrix. We also will write

Syz(M) = Syz(F ) = Syz({f1, . . . , f s}). (6.2.1)

The computation of Syz(F ) is done in two steps. First, we consider a Gröbner basis
G = {g1, . . . , gt} for M and we compute Syz(G) := Syz({g1, . . . , gt}) ≤ At, and then, we
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obtain a system of generators for Syz(F ) from one for Syz(G). For S = {gi1 , . . . , gik} ⊆ G
and (b1, . . . , bk) ∈ BS , with BS a set of generators of SyzR(σγj (lc(gij ))cγj ,exp(gij ) | 1 ≤ j ≤

k), we have that
∑k

j=1 bjx
γjgij

G−−→+ 0, and hence, there exist h1, . . . , hs ∈ A such that∑k
j=1 bjx

γjgij =
∑t

i=1 higi. For each b ∈ BS , we define

sbS :=
k∑
j=1

bjx
γjeij − (h1, . . . , ht) ∈ At;

then sbS ∈ Syz(g1, . . . , gt): in fact,

sbS

g1
...

gt

 = [
k∑
j=1

bjx
γjeij − (h1, . . . , ht)]

g1
...

gt


=

k∑
j=1

bjx
γjgij −

t∑
i=1

higi = 0.

Definition 6.2.10. Let X1, . . . ,Xt ∈Mon(Am) and J ⊆ {1, . . . , t}. Let

XJ := lcm{Xj | j ∈ J}.

We say that J is saturated with respect to {X1, . . . ,Xt}, if

Xj | XJ ⇒ j ∈ J,

for any j ∈ {1, . . . , t}. The saturation J ′ of J consists of all j ∈ {1, . . . , t} such that Xj | XJ .

Theorem 6.2.11. With the above notations, a generating set for Syz(g1, . . . , gt) is

S := {sJv | J ⊆ {1, . . . , t} is saturated w.r.t.{lm(g1), . . . , lm(gt)}, 1 ≤ v ≤ lJ},

where
sJv :=

∑
j∈J

bJvjx
γjej − (hv1, . . . , h

v
t ),

with γj ∈ Nn such that γj + βj = exp(XJ), βj = exp(gj), j ∈ J , BJ := {bJ1 , . . . , bJlJ} is a
system of generators for SJ := SyzR[σγj (lc(gj))cγj ,βj | j ∈ J ], and bJv := (bJvj)j∈J .

Proof. We have already seen that A〈S〉 ⊆ Syz(g1, . . . , gt). Suppose that there exists u =
(u1, . . . , ut) ∈ Syz(g1, . . . , gt) − 〈S〉. We can choose u with Xδ := max

1≤i≤t
{lm(lm(ui)lm(gi))}

minimal with respect to �. Let

J := {j ∈ {1, . . . , t} | lm(lm(uj)lm(gj)) = Xδ}.

Since
∑t

i=1 uigi = 0, in particular we have
∑

j∈J lc(uj)σ
αj (lc(gj))cαj ,βj = 0, where αi :=

exp(ui) for 1 ≤ i ≤ t. If XJ := lcm{lm(gj) | j ∈ J}, then XJ | Xδ therefore there is
θ ∈ Nn with with property θ + exp(XJ) = δ. But αj + βj = δ and γj + βj = exp(XJ)
for all j ∈ J , then θ + γj + βj = αj + βj , i.e., θ + γj = αj . Thus, (lc(uj))j∈J ∈ SJθ :=
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SyzR[σθ+γj (lc(gj))cθ+γj ,βj | j ∈ J ]. If J ′ is the saturation of J , then XJ = XJ ′ and w =
(wj)j∈J ′ given by

wj =

{
lc(uj), if j ∈ J,
0, if j ∈ J ′ − J

is an element of SJ ′,θ. According to Remark 5.4.2, there exists

(bj)j∈J ′ ∈ SJ ′ := SyzR[σγj (lc(gj))cγj ,βj | j ∈ J ′]

such that wj = σθ(bj)cθ,γj for j ∈ J ′. This implies that bj = 0 for j ∈ J ′ − J . Now,

(bj)j∈J ′ =
∑lJ′

v=1 r
′
vbJ

′
v , with {bJ ′v | 1 ≤ v ≤ lJ ′} a system of generators for SJ

′
and r′v ∈ R

for 1 ≤ v ≤ lJ ′ . Hence, bj =
∑lJ′

v=1 r
′
vb
J ′
vj and thus wj =

∑lJ′
v=1 σ

θ(r′v)σ
θ(bJ

′
vj)cθ,γj for all

j ∈ J ′. Define u′ := u−
∑lJ′

v=1 rvx
θsJ

′
v , with rv := σθ(r′v) for 1 ≤ v ≤ lJ ′ ; then u′ ∈ Syz(G)

since
∑lJ′

v=1 rvx
θsJ

′
v ∈ 〈S〉. Note that

lJ′∑
v=1

rvx
θsJ

′
v =r1x

θsJ
′

1 + · · ·+ rlJ′x
θsJ

′
lJ′

=r1x
θ[
∑
j∈J ′

bJ
′

1jx
γjej − (h1

1, . . . , h
1
t )] + · · ·+

rlJ′x
θ[
∑
j∈J ′

bJ
′
lJ′j

xγjej − (hlJ
′

1 , . . . , h
lJ′
t )]

=r1[
∑
j∈J ′

σθ(bJ
′

1j)cθ,γjx
θ+γj + p1

jej − (h1
1, . . . , h

1
t )] + · · ·+

rlJ′ [
∑
j∈J ′

σθ(bJ
′
lJ′j

)cθ,γjx
θ+γj + p

lJ′
j ej − (h

lJ′
1 , . . . , h

lJ′
t )]

Thus, for j ∈ J we have that

u′j = uj − [

lJ′∑
v=1

rvσ
θ(bJ

′
vj)cθ,γjx

θ+γj +

lJ′∑
v=1

pvj −
lJ′∑
v=1

hvj ]

= uj − [

lJ′∑
v=1

σθ(r′v)σ
θ(bJ

′
vj)cθ,γjx

αj +

lJ′∑
v=1

pvj −
lJ′∑
v=1

hvj ]

= uj − lc(uj)xαj −
lJ′∑
v=1

pvj +

lJ′∑
v=1

hvj

since for j ∈ J , γj + θ = αj and wj = lc(uj) =
∑lJ′

v=1 σ
θ(r′v)σ

θ(bJ
′
vj)cθ,γj . Here pvj = 0

or deg(pvj ) < |θ + γj | for every 1 ≤ v ≤ lJ ′ . Then lm(lm(uj − lc(uj)x
αj )lm(gj)) ≺

lm(lm(uj)lm(gj)) = Xδ, lm(pvjgj) ≺ xθ+γj+βj = Xδ, and

lm(lm(hvj )lm(gj)) � lm(
∑

j∈J ′ b
J ′
vjx

γjgj) ≺ XJ ′ = XJ � Xδ

and therefore lm(lm(u′j)lm(gj)) ≺ Xδ. Now, if j ∈ J ′ − J , then
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wj =
∑lJ′

v=1 σ
θ(r′v)σ

θ(bJ
′
vj)cθ,γj = 0,

and lm(lm(uj)lm(gj)) ≺ Xδ, and thus lm(lm(u′j)lm(gj)) ≺ Xδ. Finally, if j /∈ J ′, then

u′j = uj +
∑lJ′

v=1 h
v
j and lm(lm(u′j)lm(gj)) ≺ Xδ. So, lm(lm(u′i)lm(gi)) ≺ Xδ for every

1 ≤ i ≤ t and, by minimality of u, we have that u′ ∈ _A〈S〉 and hence, u ∈ A〈S〉, a
contradiction. Thus A〈S〉 = Syz(g1, . . . , gt).

We return to the task of calculating a system of generators for Syz(f1, . . . , f s), where
{f1, . . . , f s} is a collection of nonzero vectors, which non necessarily form a Gröbner ba-
sis for M = 〈f1, . . . , f s〉. From Theorem 6.1.3, there exist H ∈ Ms×t(A) and Q ∈ Mt×s(A)
such that GT = HTF T and F T = QTGT , where G :=

[
g1 · · · gt

]
, F :=

[
f1 · · · f s

]
and G is a Gröbner basis for 〈f1, . . . , f s〉. By Theorem 6.2.11, we compute a set of genera-
tors {s1, . . . , sl} for Syz(g1, . . . , gt). Thus, for each 1 ≤ i ≤ l we have

siHTF T = siGT = 0,

and therefore, 〈siHT | 1 ≤ i ≤ l〉 ⊆ Syz(f1, . . . , f s). If Syz(G) := Z(G) :=
[
s1 · · · sl

]
,

then Syz(g1, . . . , gt) is the module generated by columns of Z(G) and this last equation
may be written as

Z(G)THTF T = Z(G)TGT = 0. (6.2.2)

Further,

[Is −QTHT ]

f1
...

f s

 =

f1
...

f s

−QTHT

f1
...

f s

 =

0
...
0

 ,
and thereby the rows r1, . . . , rs of Is −QTHT also belong to Syz(f1, . . . , f s).

Theorem 6.2.12. With the above notation, we have

Syz(f1, . . . , fs) = 〈s1H
T , . . . , slHT , r1, . . . , rs〉 ≤ As.

In a matrix notation, Syz(F ) coincides with the column module of the extended matrix
[
(Z(G)THT )T Is − (QTHT )T

]
,

i.e.,
Syz(F ) =

[
(Z(G)THT )T Is − (QTHT )T

]
(6.2.3)

Proof. Let sT = (a1, . . . , as) be an element in Syz(f1, . . . , f s), then

0 = sTF T = sTQTGT ,

and therefore sTQT ∈ Syz(g1, . . . , gt). Thus, sTQT =
∑l

i=1 pisi for some pi ∈ A. Thereby,
sTQTHT =

∑l
i=1 pi(siHT ), and thus

sT = sT − sTQTHT + sTQTHT

= sT (Is −QTHT ) +

l∑
i=1

pi(siHT )

=

s∑
i=1

airi +
l∑

i=1

pi(siHT );

whence, sT ∈ 〈s1H
T , . . . , slHT , r1, . . . , rs〉 and we obtain the required equality.



CHAPTER 6. ELEMENTARY APPLICATIONS OF GRÖBNER THEORY 117

Remark 6.2.13. When the homomorphisms are disposed by rows and homomorphisms
acts from left to right (compare with [78] and see Remark 2.1.2), we have

Syz(F ) =
[
HZ(G) Is −HQ

]
.

Example 6.2.14. Once more, we consider the additive analogue of the Weyl algebra A =
A2(1

2 ,
1
3), used in the Example 5.5.22, with the same monomial order on Mon(A) and on

Mon(A2). For this example, we want to find a finite set of generators for SyzA[f1, f2],
where f1 = x1y

2
1e1 + x2y2e2 and f2 = x2y

2
2e1 + x1y1e2. As we saw in the Example 5.5.22,

G = {f1,f2,f3}, with f3 = −1
4x

2
1y

3
1e2 + 1

9x
2
2y

3
2e2 − 3

2x1y
2
1e2 + 4

3x2y
2
2e2 is a Gröbner basis

for M .
Now, according to the Theorem 6.2.11, to compute a system of generators for Syz(G) =
SyzA[f1,f2,f3], we must compute the saturated subsets J of {1, 2, 3} with respect to
{y2

1e1, y
2
2e1, y

3
1e2}. We have:

� For J1 = {1} we compute a system BJ1 of generators of SyzR[σγ1(lc(f1))]cγ1,β1 , where
β1 := exp(lm(f1)) and γ1 = XJ1 − β1 = (0, 0). Then BJ1 = {0}, and hence we have only
one generator bJ1

1 = (bJ1
11) = 0 and sJ1

1 = bJ1
11x

γ1 ẽ1 − (0, 0, 0) = (0, 0, 0), con ẽ1 = (0, 0, 0)T .
� For J2 = {2} and J3 = {3} the situation is similar.
� For J1,2 = {1, 2}, a system of generators of

SyzR[σγ1(lc(f1))cγ1,β1 , σ
γ1(lc(f2))cγ2,β2 ],

where β1 = exp(lm(f1)), β2 = exp(lm(f2)), γ1 = (0, 2), γ2 = (2, 0), cγ1,β1 = 1 and
cγ2,β2 = 1, is BJ1,2 = {(x2,−x1)}.
Thus, we only have one generator bJ1,2

1 = (x2,−x1).
Since that

x2y
2
2f1 − x1y

2
1f2 = f3,

then

s
J1,2

1 = x2y
2
2ẽ1 − x1y

2
1ẽ2 − (0, 0, 1)

=

 x2y
2
2

−x1y
2
1

−1

 .
� For J1,3 = {1, 3} and J2,3 = {2, 3}, we haveXJ1,3 = XJ2,3 = 0.
Hence,

Syz(G) =

〈 x2y
2
2

−x1y
2
1

−1

〉

Finally, we compute a generator set for SyzA(M): let s =
[
x2y

2
2 −x1y

2
1 −1

]T ; from
Theorem 6.1.3 there exist matrices H and Q such that GT = HTF T and F T = QTGT ; in
this case,

H =

[
1 0 x2y

2
2

0 1 −x1y
2
1

]
and Q =

1 0
0 1
0 0

.
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Hence, sTHT =
[
0 0

]
and I2 −QTHT =

[
0 0
0 0

]
. Then SyzA(f1,f2) = 0 and therefore,

M is a free left module of rank two.

6.3 Intersections

Using syzygies, we will compute in this section the intersection of left ideals of A and
submodules of Am. For this, let I = 〈f1, . . . , fs} and J = 〈g1, . . . , gt} be left ideals of A;
for h ∈ I ∩ J there exist some a1, . . . , as and b1, . . . , bt elements in A such that

h = a1f1 + · · ·+ asfs = b1g1 + · · ·+ btgt.

The above can be reformulated saying that

[
−h a1 . . . as

]


1
f1
...
fs

 = 0 and
[
−h b1 . . . bt

]


1
g1
...
gt

 = 0,

i.e., (−h, a1, . . . , as)
T ∈ Syz(1, f1, . . . , fs) and (−h, b1, . . . , bt)T ∈ Syz(1, g1, . . . , gt). Set-

ting i := (1, 1), f1 := (f1, 0),. . ., f s := (fs, 0), g1 := (0, g1), . . . , gt := (0, gt), these two
conditions may be rewritten as the following single condition: there exist polynomials
a1, . . . , as, b1, . . . , bt ∈ A such that the vector (−h, a1, . . . , as, b1, . . . , bt)

T is a syzygy of L,
where L =

[
i f1 · · · f s g1 · · · gt

]
. Since h ∈ I ∩ J if and only if −h ∈ I ∩ J , we

may rephrase the above by the more natural condition that (h, a1, . . . , as, b1, . . . , bt)
T be a

syzygy of L. Thus, we have proved the following result.

Theorem 6.3.1. The elements in I ∩ J are polynomials h ∈ A with the property that there exist
a1, . . . , as, b1, . . . , bt ∈ A such that (h, a1, . . . , as, b1, . . . , bt)

T ∈ Syz(L).

A system of generators for the intersection is given in the following corollary.

Corollary 6.3.2. Let {h1, . . . ,hl} be a generating set for Syz(L). If h1j is the first coordinate of
hj , for 1 ≤ j ≤ l, then L = {h11, . . . , h1l} generates I ∩ J .

Proof. Let h ∈ I ∩ J , then there exist a1, . . . , as, b1, . . . , bt ∈ A such that h = a1f1 + · · · +
asfs = b1g1+· · ·+btgt; thus, (h, a1, . . . , as, b1, . . . , bt)

T ∈ Syz(L), and hence (h, a1, . . . , as, b1, . . . , bt)
T =∑l

j=1 rjhj for certain r1, . . . , rl ∈ A. From this we get that h =
∑l

j=1 rjh1j , i.e., I∩J ⊆ 〈L}.
The other inclusion follows from the definition of Syz(L).

Example 6.3.3. Let A = σ(Q)〈x, y〉 defined through the relation yx = −xy + 1. Over
Mon(A) we consider the deglex order, with x � y. Let I = A〈xy, y2} and and J = A〈y}
be left ideals of A. We will compute a system of generators of I ∩ J . In this case

L =

[
1 xy x2 0
1 0 0 y

]
.
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Employing the TOPREV order on Mon(A2), with e1 < e2, and using the method de-
scribed above for computing syzygies, we have the following generator set for SyzA(L):
{(xy,−1, 0,−x), (0,−x, y, 0), (−x2y, 0, y, x2)}. Hence, I ∩ J = A〈xy, x2y} = A〈xy}.

Now, we consider the intersection of a arbitrary finite family of left ideals of A, Ij =
〈f1j , . . . , ftjj}, 1 ≤ j ≤ r. We define

i := (1, 1, . . . , 1), f11 = (f11, 0, . . . , 0), f21 = (f21, 0, . . . , 0) . . . , f t11 =
(ft11, 0, . . . , 0), . . . , f1r = (0, . . . , 0, f1r), . . . , f trr = (0, . . . , 0, ftrr),

and
L =

[
i f11 f21 · · · f t11 · · · f1r f2r · · · f trr

]
∈Mr×l(A),

where l = 1 +
∑r

j=1 tj . Thus, if s ∈ Syz(L), then sTLT = 0. As we observed above,
the first coordinates of a generating set for Syz(L) turn out to be a generating set for
I1 ∩ · · · ∩ Ir.

We can extend the previous results to compute the intersection of submodules. For
this, let M and N be two submodules of Am, with m ≥ 1. Suppose that M = 〈f1, . . . , f s〉
and N = 〈g1, . . . , gr〉. Thus, h ∈ M ∩N if and only if there exist a1, . . . , as, b1, . . . , bt ∈ A
such that

h = a1f1 + · · ·+ asf s = b1g1 + · · ·+ btgt.

If h =
[
h1 · · · hm

]T , then[
−h1 · · · −hm a1 · · · as

]T and
[
−h1 · · · −hm b1 · · · bt

]T
are a syzygies of the matrices[

Im f1 · · · f s
]

and
[
Im g1 · · · gt

]
,

respectively, where Im is the identity matrix of order m. Mimicking the reasoning for the
ideal case, we define the matrix L, given by

L =

[
Im f1 · · · f s 0 · · · 0
Im 0 · · · 0 g1 · · · gt

]
,

and it is easy to prove the following result.

Proposition 6.3.4. With the above notation, M ∩N consists exactly of vectors h whose coordi-
nates are precisely the first m elements of vectors of Syz(L). Moreover, the set of vectors which
consisting of the firsts m coordinates of each element of a set of generators for Syz(L) is system of
generators for M ∩N .

The previous result can be extended to a finite set of modules: let M1, . . . ,Mr be
submodules of Am, with r ≥ 3. Suppose that each Mi is generated by the columns of
some matrix Fi ∈Mm×ti(A), and define

L =


Im F1 0 · · · 0
Im 0 F2 · · · 0
...

...
...

. . .
...

Im 0 0 · · · Fr

 .
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Proposition 6.3.5. With the previous notation, the intersection
⋂r
i=1Mi is the set of all vectors h

which are the firstm coordinates of vectors in Syz(L). Furthermore, the set of vectors that consist
of the first m entries of each of vectors of a generator set for Syz(L) is a system of generators for
the intersection.

Example 6.3.6. We consider the Example 6.2.5 in [19] and we verify the calculations de-
veloped there, using our algorithms. Let A = σ(Q)〈x, y〉, with yx = −xy and the deglex
order on Mon(A). Let M , N be submodules of A2, where M = A〈(x, x), (y, 0)〉 and
N = A〈(0, y2), (y, x)〉. In this case, the matrix L is given by

L =


1 0 x y 0 0
0 1 x 0 0 0
1 0 0 0 0 y
0 1 0 0 y2 x

.

So, if we consider the TOP order on Mon(A4), with e4 > e3 > e2 > e1, then a Gröbner
basis for the left A-module generated by the columns of L is G = {f i}8i=1, where f i is the
i-th column of L for 1 ≤ i ≤ 6, f7 = y2e2 and f8 = −xe1 − ye3. A set of generators for
SyzA(G) is

{y2e2 − e5 − e7, xe2 − e3 − e6 − e8, y
2e3 − xye4 − xe7,−y2e1 + (x+ y)e4 − ye8, xy

2e2 −
xe5 − xe7, y

3e1 + xy2e2 − y2e4 − y2e6 − xe7}.

Computing the corresponding matrix H in Theorem 6.1.3, we have that

SyzA(L) = A〈(0,−xy2, y2 − xy, x, 0), (−y2, xy, y, x+ y, 0, y), (y3, 0, 0,−y2, x,−y2)〉.

Thus, M ∩ N is generated by (0,−xy2), (−y2, xy), (y3, 0); but (y3, 0) = −y(−y2, xy) +
(0,−xy2), hence M ∩N = A〈(0, xy2), (−y2, xy)〉.

6.4 Quotients

We can use syzygies to compute a set of generators for the quotient of left ideals and
modules. For this, let I be a finitely generated left ideal of A, say I = 〈f1, . . . , fs}, and
let G be an arbitrary subset of A. Recall that (I : G) consist of elements h ∈ A such that
hg ∈ I for all g ∈ G, in other words, for every g ∈ G there exist a1g, . . . , asg ∈ A with
property hg =

∑s
i=1 aigfi. It is straightforward to show that (I : G) is a left ideal of A.

Furthermore,
(I : G) =

⋂
g∈G

(I : g).

So, if G = {g1 . . . , gt}, then

(I : G) =
t⋂
i=1

(I : g).

Note that, given a polynomial g ∈ A, h ∈ (I : g) if, and only if, (−h, h1, . . . , hs) ∈
SyzA(g, f1, . . . , fs) where h1, . . . , hs ∈ A are elements such that hg = h1f1 + · · · + hsfs.
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But, h ∈ (I : g) if, and only if, −h ∈ (I : g), thus for computing a system of generators of
(I : G), with G = {g1 . . . , gt}, we will consider the matrix L given by

L =

g1 f1 · · · fs 0 · · · 0
...

... · · · · · ·
... · · ·

...
gt 0 · · · 0 f1 · · · fs

 .
In consequence, (I : G) is the set of all elements in A that are the first coordinates of
vectors in Syz(L), and a generator set is given by the first coordinates of the vectors in a
generator system for Syz(L).

Example 6.4.1. Let A be the ring σ(Q)〈x, y〉, where yx = xy + x. Given I = A〈x2y, xy}
and G = {x2, y}, we will compute a generator set for (I : G). For this, we consider the
following matrix [

x2 x2y xy 0 0
y 0 0 x2y xy

]
Now, if Mon(A) is ordered by deglex order, with x � y, and Mon(A2) is ordered by
TOPREV order, with e1 > e2, then a Gröbner basis for the left A-module generated by
columns of L is G = {f i}6i=1, where f i is the i-th column of L and f6 = y2e2 − 2ye2.
Further,

Syz(G) = A〈(y − 2)e1 − e2 − e6, (y − 2)e1 − xe3 − e6, e4 − xe5, (y − 3)e5 − xe6, (y − 1)e4 −
xye5,−3e4, xye5 − x2e6〉.

From this it follows that a system of generators for SyzA(L) is:

{(0, 1,−x, 0, 0), (0, 0, 0, 1,−x), (−xy + 2x, x, 0, 0, y − 3), (0, 0, 0, y − 1,−xy), (−x2y +
2x2, x2, 0,−3, xy)}.

In consequence, (I : G) = A〈−xy + 2x〉.

6.5 Presentation of a module

Let M = 〈f1, . . . , f s〉 be a submodule of Am, there exists a natural surjective homomor-
phism πM : As −→ M defined by πM (ei) := f i, where {ei}1≤i≤s is the canonical basis
of As. We have the isomorphism πM : As/ ker(πM ) ∼= M , defined by πM (ei) := f i,
where ei := ei + ker(πM ). We note that ker(πM ) is also a finitely generated module,
ker(πM ) := 〈h1, . . . ,hs1〉, and hence, we have the exact sequence

As1
δM−−→ As

πM−−→M −→ 0, (6.5.1)

with δM := lM ◦ π′M , where lM is the inclusion of ker(πM ) in As and π′M is the natural
surjective homomorphism from As1 to ker(πM ). We note that ker(πM ) = Syz(M) =
Syz(F ), where F = [f1 · · · f s] ∈Mm×s(A)
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Definition 6.5.1. It says that As/Syz(M) is a presentation of M . It says also that the sequence
(6.5.1) is a finite presentation of M , and M is a finitely presented module.

Theorem 6.2.11 gives a method for computing a presentation of M when A is a bijec-
tive skew PBW extension. Moreover, let ∆M be the matrix of δM in the canonical bases
of As1 and As; since Im(δM ) = ker(πM ), then

∆M =
[
h1 · · · hs1

]
=

h11 · · · h1s1
...

...
hs1 · · · hss1

 ∈Ms×s1(A),

and hence, the columns of ∆M are the generators of Syz(F ). With the notation of Section
6.2, ∆M = Z(F ).

Definition 6.5.2. With the previous notation, it says that ∆M is a matrix presentation of M .

As we just saw, ∆M is computable when A is a bijective skew PBW extension. We
can also compute presentations of quotient modules. Indeed, let N ⊆ M be submodules
of Am, where M = 〈f1, . . . , f s〉, N = 〈g1, . . . , gt〉 and M/N = 〈f1, . . . , f s〉, then we have
a canonical surjective homomorphism As −→ M/N such that a presentation of M/N is
given by M/N ∼= As/Syz(M/N). But Syz(M/N) can be computed in the following way:
h = (h1, . . . , hs)

T ∈ Syz(M/N) if and only if h1f1 + · · · + hsf s ∈ 〈g1, . . . , gt〉 if and only
if there exist hs+1, . . . , hs+t ∈ A such that h1f1 + · · ·+ hsf s + hs+1g1 + · · ·+ hs+tgt = 0 if
and only if (h1, . . . , hs, hs+1, . . . , hs+t) ∈ Syz(H), where

H := [f1 · · · f s g1 · · · gt].

Theorem 6.5.3. With the notation above, a presentation of M/N is given by
As/Syz(M/N), where a set of generators of Syz(M/N) are the first s coordinates of genera-
tors of Syz(H). Thus, a finite presentation of M/N is effective computable.

Example 6.5.4. Again, let A be the ring σ(Q)〈x, y〉, where yx = xy + x. Given M =

A〈(1, 1), (xy, 0), (y2, 0), (0, x)〉, we will compute a finite presentation for M . For this, use
the deglex order on Mon(A), with x � y, and the TOP order over Mon(A2), with e2 > e1.
A straightforward calculation shows that

G = {(1, 1), (xy, 0), (y2, 0), (0, x), (x, 0)}

is a Gröbner basis for M . Moreover, a set of generators for SyzA(G) is given by

{(x, 0, 0,−1,−1), (0, 1, 0, 0,−y + 1), (0,−y + 1, x, 0, 0), (0,−y − 1, 0, 0, y2 − 1)}

and, therefore, SyzA(M) = A〈s1 = (0,−y + 1, x, 0), s2 = (−xy, 1, 0, y − 1), s3 = (xy2 +
2xy,−y − 1, 0, 1− y2)〉. Thus, we have obtained the following presentation for M :

M ∼= A4/〈s1, s2, s3〉.
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6.6 Computing free resolutions

In this section, we will compute free resolutions for left submodules of Am. Let M be
a submodule of Am, we recall that a free resolution of M is an exact sequence of free
modules

· · · Fr+2−−−→ Asr
Fr−→ Asr−1

Fr−1−−−→ · · · F2−→ As1
F1−→ As0

F0−→M −→ 0,

with si ≥ 0 for each i ≥ 0. We assume that A0 = 0. r is the length of this sequence if
sr 6= 0 and si = 0 for i ≥ r + 1. The following proposition describes a simple procedure
for constructing a free resolution of M .

Theorem 6.6.1. Let M = 〈f(0)
1 , . . . , f(0)

s0
〉 be a submodule of the free left module Am. Let F0 be

the matrix whose columns are f(0)
1 , . . . , f(0)

s0
, and for i ≥ 1 let

Fi := Syz(Fi−1) =
[
f(i)
1 · · · f(i)

si

]
.

Then,

· · · fr+2−−−→ Asr
fr−→ Asr−1

fr−1−−−→ · · · f2−→ As1
f1−→ As0

f0−→M −→ 0,

is a free resolution of M , where

fi(e(i)
ji

) = [(e(i)
ji

)TF Ti ]T = f(i)
ji

and {e(i)
ji
}1≤ji≤si is the canonical basis of Asi .

Proof. Each homomorphism fi is represented by a matrix, and hence, a resolution ofM is
described as a sequence of matrices {Fi}i≥0, where the columns of Fi are the generators
of Syz(Fi−1), i ≥ 1. The columns of F0 are the generators of M . Thus, by definition of
matrices Fi, we have that Im(fi) = Syz(Fi−1) = ker(fi−1) for each i ≥ 1, and that F0 is a
surjective homomorphism.

We can illustrate this procedure in the following example.

Example 6.6.2. Let A be the ring σ(Q)〈x, y〉, where yx = xy + x. We will calculate a
free resolution for the left module M := A〈(1, 1), (xy, 0), (y2, 0), (0, x)〉 given in the Ex-
ample 6.5.4. There we saw that M ∼= A4/〈s1, s2, s3〉, where s1 = (0,−y + 1, x, 0), s2 =
(−xy, 1, 0, y − 1), s3 = (xy2 + 2xy,−y − 1, 0, 1 − y2). Now, we must compute a gen-
erator set for SyzA(s1, s2, s3). For such task, we consider the deglex order on Mon(A),
with x � y, and the TOP order over Mon(A2), with e2 > e1. Is not difficult to see that
{s1, s2, s3} is a Gröbner basis; so, SyzA(s1, s2, s3) = A〈(0, y + 1, 1)〉. Finally, SyzA(s) = 0,
where s = (0, y + 1, 1). In consequence,
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F0 =

[
1 xy y2 0
1 0 0 x

]
, F1 =


0 −xy xy2 + 2xy

−y + 1 1 −y − 1
x 0 0
0 y − 1 1− y2

, F2 =

 0
y + 1

1


and a free resolution for M is given by

0 A A3 A4 M 0- -F2 -F1 -F0 -

6.7 Kernel and image of an homomorphism

Let M ⊆ Am and N ⊆ Al be modules, with M = 〈f1, . . . , f s〉, N = 〈g1, . . . , gt〉, and let
φ : M −→ N be a homomorphism. Then, there exists a matrix Φ = [φji] of size t× s with
entries in A given by

φ(f i) = φ1ig1 + · · ·+ φtigt,

for each 1 ≤ i ≤ s. In this section, we will calculate a system of generators and presen-
tations for kerφ and Im(φ) by using the matrix Φ induced by the homomorphism φ. Let
As/Syz(M) and At/Syz(N) be presentations of M and N respectively. We consider the
canonical isomorphisms

πM : As/Syz(M) −→M , πN : At/Syz(N) −→ N

defined by πM (ei) = f i, for 1 ≤ i ≤ s, and πN (e′j) = gj , for 1 ≤ j ≤ t, where {ei}1≤i≤s
is the canonical basis of As and {e′j}1≤j≤t is the canonical basis of At. Thus, we have the
following commutative diagram

M N

As/Syz(M) At/Syz(N)

-φ

? ?
-

φ

(6.7.1)

where the vertical arrows are the isomorphisms (πM )−1 and (πN )−1. Hence, φ(ei) =
(πN )−1 ◦ φ ◦ πM (ei) = φ1ie′1 + · · · + φtie′t, for each 1 ≤ i ≤ s. Note that ker(φ) ∼= ker(φ)
and Im(φ) ∼= Im(φ): in fact, is enough to see that (πM )−1 restricted to ker(φ) is an iso-
morphism between ker(φ) and ker(φ); analogously for Im(φ) and Im(φ). Let m ∈ ker(φ),
then m = a1f1 + · · ·+ asf s and thus, (πN )−1(φ(h1f1 + · · ·+hsf s)) = 0 = φ((πM )−1(h1f1 +

· · ·+hsf s))= φ(h1e1 + · · ·+hses) = h1φ(e1)+ · · ·+hsφ(es) = h1(φ11e′1 + · · ·+φt1e′t)+ · · ·+
hs(φ1se′1 + · · ·+φtse′t) = (h1φ11 + · · ·+hsφ1s)e′1 + · · ·+(h1φt1 + · · ·+hsφts)e′t. This implies
that (h1φ11 + · · ·+ hsφ1s)e′1 + · · ·+ (h1φt1 + · · ·+ hsφts)e′t ∈ Syz(N). By Theorem 6.2.11,
we can compute a system of generators for Syz(N) = 〈s1, . . . , st1〉 ⊆ At. Hence, there
exist as+1, . . . , as+t1 ∈ A such that
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a1

φ11
...
φt1

+ · · ·+ as

φ1s
...
φts

+ as+1s1 + · · ·+ as+t1st1 = 0.

Conversely, if (a1, . . . , as) ∈ ker(φ), the above calculations allow us conclude that a1f1 +
· · ·+ asf s ∈ ker(φ); thus, we have obtained that

a1f1 + · · ·+ asf s ∈ ker(φ)⇔ (a1, . . . , as) ∈ ker(φ).

We have proved the following theorem.

Theorem 6.7.1. With the above notation, let

H =
[
Φ1 · · · Φs s1 · · · st1

]
,

where Φi is the i− th column of the matrix Φ, for 1 ≤ i ≤ s. Then,

(a1, . . . , as, as+1, . . . , as+t1) ∈ Syz(H)⇔ a1f1 + · · ·+ asfs ∈ ker(φ).

Thus, if {z1, . . . , zv} ⊂ As+t1 is a system of generators of Syz(H), let z′k ∈ As be the vector
obtained from zk when omitting the last t1 components, 1 ≤ k ≤ v, then {z′1, . . . , z′v} is a system
of generators for ker(φ). Moreover, if

z′1 = (h11, . . . , h1s), . . . , z′v = (hv1, . . . , hvs),

then {h11f1 + · · ·+ h1sfs, . . . , hv1f1 + · · ·+ hvsfs} is a system of generators for ker(φ).

A presentation of ker(φ) is given in the following way.

Corollary 6.7.2. With the notation of this section, a presentation of ker(φ) is given by Av/K,
where

K = Syz(ker(φ)) = Syz
[
h11f1 + · · ·+ h1sfs · · · hv1f1 + · · ·+ hvsfs

]
.

Now we also want to compute also an explicit presentation for ker(φ). We assume
that we have computed a system of generators for Syz(M) = 〈w1, . . . ,ws1〉 ⊆ As. We
know that a presentation of ker(φ) is given by ker(φ) ∼= Av/K ′, whereK ′ = Syz(ker(φ)) =
Syz(〈z′1, . . . , z′v〉). But, (l1, . . . , lv) ∈ Syz(〈z′1, . . . , z′v〉) if and only if there exist
lv+1, . . . , lv+s1 ∈ A such that l1z′1 + · · · + lvz′v + lv+1w1 + · · · + lv+s1ws1 = 0. Thus,
we have proved the following corollary.

Corollary 6.7.3. With the above notation, let

L =
[
z′1 · · · z′v w1 · · · ws1

]
.

If {l1, . . . , lq} ⊆ Av+s1 is a system of generators of Syz(L), let l′k ∈ Av be the vector obtained
from lk when omitting the last s1 components, 1 ≤ k ≤ q, then {l′1, . . . , l′q} is a system of
generators for K ′, and hence, a presentation of ker(φ) is given by Av/K ′.
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We consider now the image of homomorphism φ : M −→ N in (6.7.1). Then the
following result is clear from the above discussion.

Corollary 6.7.4. A system of generators for Im(φ) is given by

Im(φ) = 〈φ11g1 + · · ·+ φt1gt, . . . , φ1sg1 + · · ·+ φtsgt〉.

A presentation of Im(φ) is As/I , where

I = Syz
[
φ11g1 + · · ·+ φt1gt . . . φ1sg1 + · · ·+ φtsgt

]
.

Many of the theoretical results of the present chapter will be illustrated with other
concrete examples in the last chapter.

We conclude this section by showing an explicit presentation of Im(φ). We know
that Im(φ) = 〈φ11e′1 + · · · + φt1e′t, . . . , φ1se′1 + · · · + φtse′t〉, thus a presentation of Im(φ)
is given by Im(φ) ∼= As/Syz(Im(φ)). Let (h1, . . . , hs) ∈ Syz(Im(φ)), then there exist
hs+1, . . . , hs+t1 ∈ A such that

h1

φ11
...
φt1

+ · · ·+ hs

φ1s
...
φts

+ hs+1u1 + · · ·+ hs+t1ut1 = 0.

Thus, we have proved the following corollary.

Corollary 6.7.5. Let H be the matrix in Theorem 6.7.1. If {z1, . . . , zv} ⊆ As+t1 is a system
of generators of Syz(H), let z′k ∈ As be the vector obtained from zk when omitting the last t1
components, 1 ≤ k ≤ v. Then, {z′1, . . . , z′v} is a system of generators for Syz(Im(φ)) and
As/Syz(Im(φ)) is a presentation of Im(φ).

Example 6.7.6. Let A := σ(Q[x1])〈x2, x3〉 = O3

(
2, 1

2 , 3
)
. Let M := 〈f1,f2〉 ⊆ A2, where

f1 = x2
1x

2
2e1 + x2x3e2 and f2 = 2x1x2x3e1 + x2e2. In a similar way as was done in

Example 6.2.14, we can prove that Syz(M) = 0 and hence M is free with basis {f1,f2}.
Let N := 〈g1, g2〉 ⊆ A2, where g1 = (2x1 + 1)x2

2e1 + x2x3e2 and g2 = (4x2
1 + x1)e1 +

x1x
2
2x3e2. We consider the homomorphism φ : M −→ N given by

φ(f1) := g1 + 2g2

φ(f2) := x1g1 + g2.

The matrix Φ induced by φ is

Φ =

[
1 x1

2 1

]
Using the results of Section 6.2 we verify that

Syz(N) =

〈(
x1x2

−1

)〉
,

so the matrix H of Theorem 6.7.1 is

H =

[
1 x1 x1x2

2 1 −1

]
.
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Once more, by the results of Section 6.2, a system of generators of Syz(H) is
2x2

1 − 1
2x1 + x2

1x2 − 1
2x1x2

−2x1 + 1
2 − 2x2

1x2 + x1x2

4x2
1 − 3x1 + 1

2

 ,

1
2x1 + 2x2

1x2 + 1
2x1x2 + x2

1x
2
2

−1
2 − 2x2

1x
2
2 − 3

2x1x2

4x2
1x2 − 1

2x1x2 + x1 − 1
2

 ∈ A3,

and by Theorem 6.7.1, a system of generators of ker(φ) is

{
(
2x2

1 − 1
2x1 + x2

1x2 − 1
2x1x2

)
f1 + (−2x1 + 1

2 − 2x2
1x2 + x1x2)f2,

(1
2x1 + 2x2

1x2 + 1
2x1x2 + x2

1x
2
2)f1 + (−1

2 − 2x2
1x

2
2 − 3

2x1x2)f2},

and a system of generators of Im(φ) is {φ(f1), φ(f2)} = {g1 + 2g2, x1g1 + g2}.



CHAPTER 7

Matrix computations on projective modules using
Gröbner bases

In this last chapter, we will use the constructive proofs developed in the former part of
this thesis and the Gröbner basis theory, in the order of establishing several algorithms
that will allow us to carry out effective calculations as projective dimension, testing stably
freeness, constructing minimal presentations and obtaining bases for free modules.

7.1 Computing the inverse of a matrix

We will present an algorithm that determines whether a given rectangular matrix over a
bijective skew PBW extension is left invertible and, in such a case, this computes one of
its left inverses. A similar algorithm will be constructed for the right side case. We start
with the following elementary fact about left invertible matrices.

Proposition 7.1.1. Let F be a rectangular matrix of size r × s with entries in a ring S. If F has
left inverse, then r ≥ s. Moreover, F has a left inverse if and only if the left module generated by
the rows of F coincides with Ss.

Proof. First statement follows from the fact that we are assuming S satisfying the RC
condition (see Proposition 2.1.4 and Remark 2.1.9). Now, suppose that F has a left inverse
L ∈Ms×r(S), i.e., LF = Is. Define the following S-homomorphisms

f t : Sr → Ss

a 7→ (aTF )T
lt : Ss → Sr

b 7→ (bTL)T ,

then m(f t) = F T and m(lt) = LT (for the notation, see Chapter 1). Whence, m(f t ◦ lt) =
(LF )T = ITs = Is, i.e, f t is an epimorphism. Hence, Im(f t) = Ss, i.e., the left submodule
generated by the rows of F coincides with the free module Ss. Conversely, suppose that
the module generated by the rows of F coincides wit Ss, then for f t defined as above,
there exist a1 . . . ,as ∈ Sr such that f t(ai) = ei for each 1 ≤ i ≤ s, and where e1, . . . , es

128
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denote the canonical vectors of Ss. Thus, if ai =
[
a1i a2i · · · ari

]T , we have

aTi F =
[
a1i a2i · · · ari

]
F = a1iF(1) + · · ·+ ariF(r) = ei,

where F(j) denotes the j-th row of F , 1 ≤ j ≤ r. Therefore, if L is the matrix whose rows
are the vectors aTi , then LF = Is, i.e., F has a left inverse.

Corollary 7.1.2. Let A be a bijective skew PBW extension and let F ∈Mr×s(A) be a rectangu-
lar matrix overA. The algorithm below determines whether F is left invertible, and in the positive
case, it computes a left inverse of F :

Algorithm for the left inverse of a matrix

INPUT: A rectangular matrix F ∈Mr×s(A)

OUTPUT: A matrix L ∈ Ms×r(A) satisfying LF = Is in case that it
exists, and 0 in other case

INITIALIZATION:

IF r < s

RETURN 0

IF r ≥ s, let G := {g1, . . . , gt} be a Gröbner basis for the left
submodule generated by rows of F and let {ei}si=1 be the canon-
ical basis of As. Use the division algorithm to verify whether
ei ∈ A〈G〉 for each 1 ≤ i ≤ s.
IF there exists some ei such that ei /∈ 〈G〉,

RETURN 0

IF 〈G〉 = As, let H ∈ Mr×t(A) with the property GT = HTF ,
and consider K := [kij ] ∈ Mt×s, where the kij ’s are such that
ei = k1ig1 + k2ig2 + · · ·+ ktigt for 1 ≤ i ≤ s. Thus, Is = KTGT

RETURN L := KTHT

Example 7.1.3. Let A = σ(Q)〈x, y〉 defined through the relation yx = −xy + 1. Given the
matrix

F =


1 1
xy 0
x2 0
1 y

 ,
we apply the above algorithm in order to verify whether F has a left inverse. For this,
we compute a Gröbner basis of the left module generated by the rows of F . Considering
the deglex order on Mon(A), with x � y, and the TOPREV order on Mon(A2), with
e1 > e2, a Gröbner basis for A〈F T 〉 is {e1, e2} (here, we also used the Corollary 5.3.4). In
consequence, F has a left inverse and, from calculations obtained during the process of
Buchberger’s algorithm, we have that
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L =

[
xy2 − y y + 1 0 −xy + 1

−xy2 + y + 1 −y − 1 0 xy − 1

]
is a left inverse for F .

Corollary 7.1.4. Let F be a square matrix of size r × r with entries in a ring S. Then, F is
invertible if and only if the rows of F shape a basis of Ss.

Proof. Let L ∈ Mr(A) such that LF = Ir = FL. From LF = Ir it follows that the rows of
F generate Sr. Let f t and lt be like in the proof of Proposition 7.1.1; since FL = Ir, then
lt ◦ f t = iSr and, therefore, f t is a monomorphism, i.e., Syz(F T ) = 0. Thus, the rows of
F are linearly independent, and this complete the first implication. Conversely, since the
rows of F generate Sr, by Proposition 7.1.1, F has a left inverse. Let L be a such inverse,
then LF = Ir. We have FLF = F , this implies that (FL − Ir)F = 0r, but Syz(F T ) = 0,
then FL = Ir, i.e., F−1 = L.

Corollary 7.1.5. LetA be a bijective skew PBW extension and F ∈Mr(A) a square matrix over
A. The algorithm below determines whether F is invertible, and in the positive case, it computes
the inverse of F :

Algorithm for the inverse of a square matrix

INPUT: A square matrix F ∈Mr(A)

OUTPUT: A matrix L ∈ Mr(A) satisfying LF = Ir = FL in case that it
exists, and 0 in other case

INITIALIZATION:

Use the algorithm in Corollary 7.1.2 to determine whether F is left in-
vertible

IF F is not left invertible
RETURN 0

ELSE Compute Syz(F T )

IF Syz(F T ) 6= 0

RETURN 0

ELSE Compute the matrices H and K in the algorithm of Corol-
lary 7.1.2

RETURN L := KTHT

Example 7.1.6. Once more, we consider the additive analogue of the Weyl algebra A =
A2(1

2 ,
1
3), used in Example 5.5.22, with the same monomial order on Mon(A) and on

Mon(A2). For this example, let F be the following matrix
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F =

[
x1y

2
1 x2y

2
2

x2y2 x1y1

]
.

We want to check whether columns of F conform a basis for A2. From Section 2.1, we
know that this is true if and only if F T is invertible. Using the above algorithm, we start
verifying that F T has a left inverse; for this purpose, we compute a Gröber basis of the
left A-module generated by the rows of F T , i.e., of the left A-module Im(F ). As we saw,
(see Example 5.5.22) G = {f1,f2,f3} is a Gröbner basis for this module, where f1 =
x1y

2
1e1 + x2y2e2, f2 = x2y

2
2e1 + x1y1e2 and f3 = −1

4x
2
1y

3
1e2 + 1

9x
2
2y

3
2e2− 3

2x1y
2
1e2 + 4

3x2y
2
2e2.

Using the division algorithm we can check that e1 /∈ 〈G〉, whereby A〈G〉 6= A2. Thus F T

has no a left inverse and, hence, the columns of F are not a basis for A2.

Remark 7.1.7. If S is a left (or right) Noetherian ring, then every epimorphism α : Sr →
Sr is an automorphism (see Proposition 1.14 in [63]). In terms of the Remark 2.1.9, we
have that every left (or right) Noetherian ring isWF . Therefore, to test that F ∈ Mr(S)
is invertible, it is enough to show that F has a right or a left inverse. So, in the above
algorithm, when A is a bijective PBW extension of a LGS ring, it is not necessary the
computation of SyzS(F T ) to test whether the matrix is invertible, it would be sufficient
to apply the algorithm for the left inverse given in Corollary 7.1.2.

Now we will consider the right inverse of a rectangular matrix. We start with the
following theoretical result.

Proposition 7.1.8. Let F be a rectangular matrix of size r × s with entries in the ring S. If F
has right inverse, then s ≥ r and the module of syzygies of the submodule generated by the rows
of F is zero, i.e., Syz(F T ) = 0. In other words, if F has a right inverse then the rows of F are
linearly independent.

Proof. s ≥ r since we are assuming that S is RC (Proposition 2.1.4 and Remark 2.1.9).
Let L ∈ Ms×r(S) such that FL = Ir. Consider the homomorphisms f t and lt as in
Proposition 7.1.1, then f t is a monomorphism. Hence, ker(f t) = 0, i.e., Syz(F T ) = 0.

Proposition 7.1.9. Let F be a rectangular matrix of size r × s with entries in the ring S. If F
has right inverse, then s ≥ r. Moreover, F has a right inverse if and only if Syz(F T ) = 0 and
Im(F T ) is a summand direct of Ss, where Im(F T ) denotes the module generated by the columns
of F T i.e., the module generated by the rows of F .

Proof. To begin, s ≥ r since we are assuming that S is RC (Proposition 2.1.4 and Remark
2.1.9). Now, let L ∈ Ms×r(S) such that FL = Ir. Consider the homomorphisms f t

and lt as in Proposition 7.1.1, then lt ◦ f t = iSr , i.e, f t is a split monomorphism. Thus,
Ss = Im(f t) ⊕ ker(lt), and Im(f t) is a direct summand of Ss. Conversely, let M be a
submodule of Ss such that Ss = Im(f t)⊕M . So, given f ∈ Ss there exist unique elements
f1 ∈ Im(f t) and f2 ∈ M such that f = f1 + f2. Define the homomorphism lt : Ss → Sr

as lt(f) := hf , where hf ∈ Sr is such that f t(hf ) = f1. By hypothesis Syz(F T ) = 0, so
f t is injective and we get that lt is well defined. It is not difficult to show that lt is a
S-homomorphism. Consequently, lt ◦ f t = iSr and if LT := m(lt), then FL = Ir, i.e., F
has a right inverse.
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Remark 7.1.10. If we had a computational tool for to check when a submodule of a
free module is a summand direct, then Proposition 7.1.9 would establish an algorithm
to check the existence of a right inverse.

Following [23] and [105], consider a matrix F := [fij ] ∈Mr×s(A), with s ≥ r, whereA
is a bijective skew PBW extension endowed with an involution θ, i.e., a function θ : S →
S such that θ(a+ b) = θ(a) + θ(b), θ(ab) = θ(b)θ(a) and θ2 = iS , for all a, b ∈ S. Note that
θ(1) = 1, and hence, θ is an anti-isomorphism of S. We define θ(F ) := [θ(fij)]. Observe
that if K ∈Ms×r(A), then

θ(FK)T = θ(K)T θ(F )T . (7.1.1)

Proposition 7.1.11. Let A be a bijective skew PBW extension endowed with an involution θ
and let F := [fij ] ∈ Mr×s(A), with s ≥ r. Then, F has a right inverse if and only if for each

1 ≤ j ≤ r, ej
G′−→+ 0, where G′ is a Gröbner basis of the left A-module generated by the columns

of θ(F ) and {ej}rj=1 is the canonical basis of Ar.

Proof. G := [gij ] ∈ Ms×r(A) is a right inverse of F if and only if FG = Ir, and this is
equivalent to say that

ej =


f11

f21
...
fr1

 · g1j + · · ·+


f1s

f2s
...
frs

 · gsj , 1 ≤ j ≤ r;

applying θ we obtain

ej = θ(g1j) ·


θ(f11)
θ(f21)

...
θ(fr1)

+ · · ·+ θ(gsj) ·


θ(f1s)
θ(f2s)

...
θ(frs)

.

Thus, G is a right inverse of F if and only if the canonical vectors of Ar belong to the left
A-module generated by the columns of θ(F ), i.e., e1, . . . , er ∈ 〈θ(F )〉. Let G′ be a Gröbner
basis of 〈θ(F )〉, then by Theorem 5.5.13, G is a right inverse of F if and only if for each j,

ej
G′−→+ 0.

Corollary 7.1.12. Let A be a bijective skew PBW extension with an involution θ, and F ∈
Mr×s(A) be a rectangular matrix over A. The algorithm below determines whether F is right
invertible, and in the positive case, it computes the right inverse of F :
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Algorithm 1 for the right inverse of a matrix

INPUT: An involution θ of A; a rectangular matrix F ∈Mr×s(A)

OUTPUT: A matrix H ∈ Ms×r(A) satisfying FH = Ir if it exists, and
0 in other case

INITIALIZATION:

IF s < r

RETURN 0

IF s ≥ r, let G′ := {g1, . . . , gt} be a Gröbner basis for the
left submodule generated by columns of θ(F ) and let {ej}rj=1 be
the canonical basis of Ar. Use the division algorithm to verify if
ej ∈ 〈G′〉 for each 1 ≤ j ≤ r.

IF there exists some ej such that ej /∈ 〈G′〉,
RETURN 0

IF 〈G′〉 = Ar, let J ∈ Ms×t(A) with the property G′T = JT θ(F )T ,
and consider K := [kij ] ∈ Mt×r, where the kij ’s are such that
ej = k1jg1 + k2jg2 + · · ·+ ktjgt for 1 ≤ j ≤ r. Thus, Ir = KTG′T

RETURN H := θ(J)θ(K)

Proof. Applying (7.1.1) we get

Ir = KTG′T = KTJT θ(F )T = θ(θ(K))T θ(θ(J))T θ(F )T = θ(θ(J)θ(K))T θ(F )T =
θ(Fθ(J)θ(K))T ,

so Ir = θ(Fθ(J)θ(K)) = θ(Ir), and from this we get Ir = Fθ(J)θ(K).

Example 7.1.13. Let us consider the ring A = σ(Q)〈x, y〉, with yx = −xy + 1. Using the
above algorithm, we will compute a right inverse for

F =

[
x 0 1

y − 1 x− 1 x− y

]
provided that it exists. For this, we consider the involution θ on A given by θ(x) = −x
and θ(y) = −y. With this involution, we have that θ(xy) = −xy + 1. Thus,

θ(F ) =

[
−x 0 1
−y − 1 −x− 1 −x+ y

]
We start computing a Gröbner basis for the left module generated by the columns of θ(F ).
From Corollaries 5.3.4 and 5.4.5, we get G′ = {e1, e2} is a Gröbner basis for A〈θ(F )〉. In
this case, F has a right inverse and



CHAPTER 7. MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING GRÖBNER BASES 134

J =

 −x+ y −1
x2 + 2xy − y2 − x+ y − 1 x+ y − 1

−x2 − xy + 2 −x

 is such that G′T = JT θ(F )T .

Since G′T = I2, then K = I2 and L := θ(J) is a right inverse for F , where

θ(J) =

 x− y −1
x2 − 2xy − y2 + x− y + 1 −x− y − 1

−x2 + xy + 1 x

.

To find involutions of skew PBW extensions it is a difficult task, so the above al-
gorithm is not practical. A second algorithm for testing the existence and computing a
right inverse of a matrix uses the theory of Gröbner bases for right modules developed in
Section 5.6. For this we will make a simple adaptation of Proposition 7.1.1 and Corollary
7.1.2 for right submodules, using the right notation in Remark 2.1.2.

Proposition 7.1.14. Let F be a rectangular matrix of size r × s with entries in a ring S. If F
has right inverse, then s ≥ r. Moreover, F has a right inverse if and only if the right module
generated by the columns of F coincides with Sr.

Proof. The first statement follows from Proposition 2.1.4 and Remark 2.1.9. Now, suppose
that F has a right inverse and let L be a matrix such that FL = Ir. Define the following
homomorphism of right free S-modules:

f : Ss → Sr

a 7→ Fa
l : Sr → Ss

b 7→ Lb,

then m(f) = F and m(l) = L. Whence, m(f ◦ l) = FL = Ir, i.e, f is an epimorphism.
Therefore, Im(f) = Sr, i.e., the right submodule generates by columns of F coincides
with the free module Sr. Conversely, if Im(F ) = Sr, then for f defined as above, there
exist a1 . . . ,as ∈ Ss such that f(ai) = ei for each 1 ≤ i ≤ s, and where e1, . . . , es denote
the canonical vectors of Ss. Thus, if aj =

[
a1j a2j · · · arj

]T , we have

Faj = F
[
a1j a2j · · · arj

]
= F (1)a1j + · · ·+ F (r)arj = ej ,

where F (j) denotes the j-th column of F , 1 ≤ j ≤ r. So, if L is the matrix whose columns
are the vectors aTj , then FL = Ir, i.e., F has a right inverse.

Thus, considering the results of Section 5.6, we have the following alternative algo-
rithm for testing the existence of a right inverse.

Corollary 7.1.15. Let A be a bijective skew PBW extension and F ∈Mr×s(A) be a rectangular
matrix over A. The algorithm below determines whether F is right invertible, and in the positive
case, it computes a right inverse of F :
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Algorithm 2 for the right inverse of a matrix

INPUT: A rectangular matrix F ∈Mr×s(A)

OUTPUT: A matrix L ∈ Ms×r(A) satisfying FL = Ir when it exists,
and 0 in other case

INITIALIZATION:

IF s < r

RETURN 0

IF s ≥ r, let G := {g1, . . . , gt} be a right Gröbner basis for the
right submodule generated by columns of F and let {ej}rj=1 be
the canonical basis of ArA. Use right version of division algorithm
to verify if ei ∈ 〈G〉A for each 1 ≤ i ≤ r.

IF there exists some ej such that ej /∈ 〈G〉A,

RETURN 0

IF 〈G〉A = Ar, let H ∈ Ms×t(A) with the property G = FH (see
Remark 6.1.4), and consider K := [kij ] ∈ Mt×s, where the kij ’s
are such that ej = g1k1j + g2k2j + · · · + gtktj for 1 ≤ i ≤ r. Thus,
Ir = GK

RETURN L := HK

Example 7.1.16. Consider the ring A = σ(Q)〈x, y〉, with yx = −xy + 1, and let F be the
matrix given by

F =

[
y2 −xy y

xy − 1 x2 x

]
.

Applying the right versions of Buchberger’s algorithm and Corollary 5.5.15, we have that
a Gröbner basis for the right module generated by the columns of F isG = {e1, e2}. From
Corollary 7.1.15 we can show that F has a right inverse; moreover, one right inverse for
F is given by

L =

 0 −1
−1 0
x y

.

7.2 Computing projective dimension

Theorem 2.4.2 holds for any projective resolution of M , thus we can consider a free res-
olution {fi}i≥0 computed using the results of Section 6.6. Hence, by Theorem 2.4.3 we
obtain the following algorithm which computes the projective dimension of a module
M ⊆ Am given by a finite set of generators, where A is a bijective skew PBW extension
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of aLGS ringRwith finite left global dimension. Note thatA is left Noetherian (Theorem
1.2.9) and lgld(A) <∞ (see [83]).

Projective dimension of a module
over a bijective skew PBW extension

Algorithm 1

INPUT: lgld(A) <∞,M = 〈f1, . . . , f s〉 ⊆ Am, with fk 6= 0,
1 ≤ k ≤ s

OUTPUT: pd(M)

INITIALIZATION: Compute a free resolution {fi}i≥0 of M

i := 0

WHILE i ≤ lgld(A) DO

IF Im(fi) is projective THEN pd(M) = i

ELSE i = i+ 1

Observe that, in the previous algorithm, we no need to compute finite free resolutions of
M ; any free resolution computed using syzygies is enough.

Next, we present another algorithm for computing the left projective dimension of a
module M ⊆ Am given by a finite free resolution:

0→ Asm
fm−−→ Asm−1

fm−1−−−→ Asm−2
fm−2−−−→ · · · f2−→ As1

f1−→ As0
f0−→M −→ 0. (7.2.1)

This algorithm is supported by Corollary 2.4.4 and Theorem 2.4.5.
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Projective dimension of a module
over a bijective skew PBW extension

Algorithm 2

INPUT: An A-module M defined by a finite free resolution (7.2.1)

OUTPUT: pd(M)

INITIALIZATION: Set j := m and Hj := Fm, with Fm the matrix of fm in
the canonical bases

WHILE j ≤ m DO

Step 1. Check whether or not HT
j admits a right inverse GTj :

(a) If no right inverse of HT
j exists, then pd(M) = j

(b) If there exists a right inverse GTj of HT
j and

(i) If j = 1, then pd(M) = 0
(ii) If j = 2, then compute (2.4.6)
(iii) If j ≥ 3, then compute (2.4.5)

Step 2. j := j − 1

Example 7.2.1. Let A be the ring σ(Q)〈x, y〉, where yx = xy + x. We will calculate the
projective dimension of the left module M = A〈(1, 1), (xy, 0), (y2, 0), (0, x)〉 given in the
Example 6.5.4. As we saw in the Example 6.6.2, a free resolution for M is given by:

0 A A3 A4 M 0- -F2 -F1 -F0 -

where,

F0 =

[
1 xy y2 0
1 0 0 x

]
, F1 =


0 −xy xy2 + 2xy

−y + 1 1 −y − 1
x 0 0
0 y − 1 1− y2

, F2 =

 0
y + 1

1

.

In order to apply the above algorithm, we start checking whether F2 =
[
0 y + 1 1

]T
has a right inverse. A straightforward calculation shows that a right inverse for F2 is
G2 =

[
0 1 −y

]T , so we compute (2.4.6):

0 A3 A5 M 0- -H1 -H0 - (7.2.2)

where

H1 :=


0 −xy xy2 + 2xy

−y + 1 1 −y − 1
x 0 0
0 y − 1 1− y2

0 1 −y

 and H0 :=

[
1 xy y2 0
1 0 0 x

]
.
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To verify whether HT
1 has a right inverse, we must calculate a Gröbner basis for the right

module generated by the columns of HT
1 . Since the ring A considered is a bijective skew

PBW extension, we can use the right version of Buchberger’s algorithm. For this, we
consider the deglex order onMon(A), with x � y, and the TOP order overMon(A3), with
e1 < e2 < e3. Applying this algorithm, along with Corollary 5.5.15, we obtain the follow-
ing Gröbner basis for 〈HT

1 〉A,G = {(x, 0, 0), (1−y, 0,−1), (0,−1, 1), (0,−x, 0), (0, y−1, 0)}.
Note that e1 is not reducible by G, thus 〈G〉A 6= A3 and hence HT

1 does not have a right
inverse. Therefore, pd(M) = 1.

Remark 7.2.2. The above algorithms can be used for testing whether a given module M
is projective: we can compute its projective dimension, and hence, M es projective if and
only if pd(M) = 0.

7.3 Test for stably-freeness

Theorem 2.2.15 gives a procedure for testing stably-freeness for a module M ⊆ Am given
by an exact sequence

0→ As
f1−→ Ar

f0−→M → 0,

where A is a bijective skew PBW extension.

Test for stably-freeness
Algorithm 1

INPUT: M an A-module with exact sequence

0→ As
f1−→ Ar

f0−→M → 0

OUTPUT: TRUE in case that M is stably free, FALSE otherwise

INITIALIZATION: Compute the matrix F1 of f1

IF F T1 has right inverse THEN

RETURN TRUE

ELSE

RETURN FALSE

Example 7.3.1. Let A = σ(Q)〈x, y〉, with yx = −xy. We want to know whether the left
A-module M given by

M = A〈e3 + e1, e4 + e2, xe2 + xe1, ye1, y
2e4, xe4 + ye3〉
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is stably free or not. To answer this question, we start computing a finite presentation
of M . Considering the deglex order on Mon(A) with x � y, the TOP order on Mon(A4)
with e4 > e3 > e2 > e1, and using the methods established in the previous sections, we
have that a system of generators for Syz(M) is given by

S = {(0,−xy2, y2,−xy, x, 0), (−y2, xy, y, x+ y, 0, y), (y3, 0, 0,−y2, x,−y2)}.

Therefore, we get a following finite presentation for M :

A3 A6 M 0-F1 -F0 - (7.3.1)

where,

F1 :=



0 −y2 y3

−xy2 xy 0
y2 y 0
−xy x+ y −y2

x 0 x
0 y −y2

 and F0 :=


1 0 x y 0 0
0 1 x 0 0 0
1 0 0 0 0 y
0 1 0 0 y2 x

.

Applying the method for computing the syzygy module, we have that SyzA(F1) = 0, so
the presentation obtained in 7.3.1 becomes

0 A3 A6 M 0- -F1 -F0 -

Finally, we must to test whether F T1 has a right inverse. For this, we calculate a Gröb-
ner basis for the right module generated by the columns of F T1 . Using the TOP order on
Mon(A3), with e3 > e2 > e1, a Gröbner basis for 〈F T1 〉A is given by G = {f i}7i=1, where f i
is the i-th column of F T1 for 1 ≤ i ≤ 6, and f7 = −e2xy

2 + e1xy
2. Note that, for example,

e1 /∈ 〈G〉A so that A6 6= 〈G〉A. Thus, F T1 has not right inverse and hence M is not stably
free.

Remark 7.3.2. From Theorem 2.2.15, if M is a left A-module with exact sequence 0 →
As

f1−→ Ar
f0−→ M → 0, then MT ∼= Ext1A(M,A), where MT = Ss/Im(fT1 ) and fT1 : Sr →

Ss is the homomorphism of right free S-modules induced by the matrix F T1 . Thus, for
testing stably freeness of M , we can use the results in the Section 5.6 and computing a
Gröbner basis for the right module generated by columns of F T1 . Using the right version
of the division algorithm, is possible to check whether Ss = Im(F T1 ). If this last equality
holds, then MT = 0 and M is stably free.

Corollary 2.4.4 gives another procedure for testing stably-freeness for a module M ⊆
Am given by a finite free resolution (2.4.4) with S = A: Indeed, if m ≥ 3 and fm has not
left inverse, then M is non stably free; if fm has a left inverse, we compute the new finite
free resolution (2.4.5) and we check whether hm−1 has a left inverse. We can repeat this
procedure until (2.4.6); if h1 has not left inverse, then M is non stably free. If h1 has a left
inverse, then M is stably free.
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Example 7.3.3. Let A be the ring σ(Q)〈x, y〉, where yx = xy + x and consider the left
module M = A〈(1, 1), (xy, 0), (y2, 0), (0, x)〉 given in the Example 6.5.4. As we saw in the
Example 7.2.1, a finite presentation for M is given by:

0 A3 A5 M 0- -H1 -H0 - (7.3.2)

where

H1 :=


0 −xy xy2 + 2xy

−y + 1 1 −y − 1
x 0 0
0 y − 1 1− y2

0 1 −y

 and H0 :=

[
1 xy y2 0
1 0 0 x

]
.

In such example, we showed that HT
1 has not a right inverse, hence M is not a stably free

module.

7.4 Computing minimal presentations

If M ⊆ Am is a stably free module given by the finite free resolution (2.4.4) with S = A,
then the Corollary 2.4.4 gives a procedure for computing a minimal presentation of M .
In fact, if m ≥ 3, then fm has a left inverse (if not, pd(M) = m, but this is impossible
by Theorem 2.4.5 since M is projective). Hence, we compute the new finite presentation
(2.4.5) and we will repeat the procedure until we get a finite presentation as in (2.4.6),
which is a minimal presentation of M .

Example 7.4.1. Let us consider again the ring A = σ(Q)〈x, y〉, with yx = −xy + 1. Let M
be the left A-module given by presentation A2/Im(F1), where

F1 =

[
y2 xy − 1
−xy x2

]
.

Regarding the deglex order on Mon(A), with y � x, and the TOP order over Mon(A2)
with e2 > e1, we have that SyzA(F1) is generated by (x, y). So, the following exact se-
quence is obtained:

0 A A2 A2 M 0- -F2 -F1 -π -

where F2 :=
[
x y

]T . Note that F T2 has a right inverse: GT2 =

[
y
x

]
; thus, from Corol-

lary 2.4.4 we get the following finite presentation for M :

0 A2 A3 M 0- -h1 -h0 - (7.4.1)

with HT
1 =

[
F T1 GT2

]
and h0 =

[
f0 0

]T . In the Example 7.1.16, we showed that HT
1 has

a right inverse; moreover, one right inverse for HT
1 is
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LT1 =

 0 −1
−1 0
x y

.

In consequence, (7.4.1) is a minimal presentation for M , and M turns out to be a stably
free module.

7.5 Computing free bases

In the Section 2.3, it was showed that if M is a stably free module with rank(M) ≥ sr(S),
then M is free with dimension equals to rank(M). For computing a basis of M , we start
establishing an algorithm for to calculate the elementary matrixU in the Proposition 2.3.3:

Algorithm for computing U in Proposition 2.3.3

INPUT: An unimodular stable column vector v =
[
v1 · · · vr

]T over
S.

OUTPUT: An elementary matrix U ∈Mr(S) such that Uv = e1.

DO:

1. Compute a1, . . . , ar−1 ∈ S such that (2.3.1) holds.

2. Compute the matrix E1 given in (2.3.2).

3. Calculate the elements b1, . . . , br−1 ∈ S with the property
that

∑r−1
i=1 biv

′
i = 1, with v′i = vi + aivr for 1 ≤ i ≤ r − 1.

4. Define v′′i := (v′i − 1 − vr)bi for 1 ≤ i ≤ r − 1, and compute
the matrices E2, E3 and E4 given in (2.3.3)-(2.3.5).

RETURN: U := E4E3E2E1.

We will illustrate below this algorithm.

Example 7.5.1. Consider the Quantum Weyl Algebra A2(Ja,b), described in the Example
1.3.1, with k = Q, a = 0 and b = −1. Thus, the relations in this ring are given by:

x1x2 =x2x1

∂2∂1 =∂1∂2 − ∂2
2

∂1x1 =1 + x1∂1

∂1x2 =x2∂1 − x2∂2

∂2x1 =x1∂2

∂2x2 =1 + x1∂2 + x2∂2.
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E4(A2(J0,−1)) it will denote the group generated by all elementary matrices of size 4× 4

over A2(J0,−1). Let v =
[
∂2 + x1 ∂2 + ∂1 x2 ∂1

]T , then u =
[
∂1 −∂2 0 −x1

]
is

such that uv = 1, whereby v ∈ Umc(4, A2(J0,−1)). Moreover, the column vector v′ =[
∂2 + x1 ∂2 x2

]T has a left inverse u′ =
[
0 x2 − x1 ∂2

]
, so v is a stable unimodular

column. In this case, a1 = 0, a2 = −1, a3 = 0 and the matrix E1 is given by

E1 =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1

.

With this elementary matrix we get E1v =
[
∂2 + x1 ∂2 x2 ∂1

]T . If we define v′′1 := 0,
v′′2 := (∂2 + x1 − 1− ∂1)(x2 − x1), v′′3 = (∂2 + x1 − 1− ∂1)∂2 and

E2 =


1 0 0 0
0 1 0 −1
0 0 1 0
0 v′′2 v′′3 1

,

we obtain E2E1v =
[
∂2 + x1 ∂2 x2 ∂2 + x1 − 1

]T . Finally, if we define

E3 =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ E4(A2(J0,−1)), E4 =


1 0 0 0
−∂2 1 0 0
−x2 0 1 0

−∂2 − x1 + 1 0 0 1

 ∈ E4(A2(J0,−1))

and U := E4E3E2E1 ∈ E4(A2(J0,−1)), then we have Uv = e1.

The proof of Theorem 2.3.6 allows us to establish an algorithm to compute a basis for
M , when M is a stably free module given by a minimal presentation

0→ Ss
f1−→ Sr

f0−→M → 0, (7.5.1)

with g1 : Sr → Ss such that g1 ◦ f1 = iSs , and rank(M) = r − s ≥ sr(S).
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Algorithm for computing bases

INPUT: F1 = m(f1) such that F T1 ∈Ms×r(S) has a right inverse GT1 ∈
Mr×s(S), and satisfies r − s ≥ sr(S).

OUTPUT: A matrix U ∈ Mr(S) such that UGT1 =
[
Is 0

]T ; by
Lemma 2.3.5 the set {(UT )(s+1), . . . , (UT )(r)} is a basis for M ,
where (UT )(j) denotes the j-th column of UT for s+ 1 ≤ j ≤ r.

INITIALIZATION: i = 1, V = Ir.

WHILE i < r DO:

1. Denote by vi ∈ Sr−i+1 the column vector given by taking the
last r − i+ 1 entries of the i-th column of V GT1 .

2. Apply the previous algorithm to compute Li ∈ Er−i+1(S)
such that Livi = e1.

3. Define the matrix Ui :=

[
Ii−1 0

0 Li

]
∈ Er(S) for i > 1, and

U1 := L1.

4. i = i+ 1

RETURN U := PUsV , where P is an adequate elementary ma-
trix.

Example 7.5.2. Let A be the Quantum Weyl Algebra A2(Ja,b) considered in Example 7.5.1,
with k = Q, a = 0 and b = −1. In order to illustrate the previous algorithm, take
M = A6/Im(F1), where

F1 =



0 ∂1

x2 ∂2

0 −x1

∂1 0
x1 1
∂2 −1

.

Using the algorithm described in Corollary 7.1.15, the deglex order over Mon(A), with
x2 > ∂1, and the TOPREV order on Mon(A6), with e1 > e2, it is possible to show that F T1
has a right inverse given by:

GT1 =



x1∂1 x1

0 0
∂2

1 ∂1

x1 0
−∂1 0

0 0

.
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Hence, we have the following minimal presentation for M :

0→ A2 F1−→ A6 π−→M → 0, (7.5.2)

where π is the canonical projection. Thus, M is a stably free A-module with rank(M) = 4.
Since lKdim(A) = 3 (see [38], Theorem 2.2), then sr(A) ≤ 4 and by the Theorem 2.3.6,
M is free with dimension equals to rank(M). We will use the previous algorithm for
computing a basis of M .
� Step 1. Let V = I6 and v1 the first column of V GT1 , i.e.,

v1 =
[
x1∂1 0 ∂2

1 x1 −∂1 0
]T ,

then v1 ∈ Umc(6, A) and u1 =
[
0 x2 0 ∂1 x1 −∂1

]
is such that u1v1 = 1. Note that

v′1 =
[
x1∂1 0 ∂2

1 x1 −∂1

]T is trivially unimodular. Applying to v1 the first algorithm
of the current section, we have that E1 = I6,

E2 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 (x1∂1 − 1)x2 0 (x1∂1 − 1)∂1 (x1∂1 − 1)x1 1

,

E3 =



1 0 0 0 0 −1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 and, E4 =



1 0 0 0 0 0
0 1 0 0 0 0
−∂2

1 0 1 0 0 0
−x1 0 0 1 0 0
∂1 0 0 0 1 0

−x1∂1 + 1 0 0 0 0 1

.

We can check that

U1 := E4E3E2E1 =
1 −(x1∂1 − 1)x2 0 −(x1∂1 − 1)∂1 −(x1∂1 − 1)x1 −1
0 1 0 0 0 0
−∂2

1 ∂2
1(x1∂1 − 1)x2 1 ∂2

1(x1∂1 − 1)∂1 ∂2
1(x1∂1 − 1)x1 ∂2

1

−x1 x1(x1∂1 − 1)x2 0 x1(x1∂1 − 1)∂1 + 1 x1(x1∂1 − 1)x1 x1

∂1 −∂1(x1∂1 − 1)x2 0 −∂1(x1∂1 − 1)∂1 −∂1(x1∂1 − 1)x1 + 1 −∂1

−x1∂1 + 1 x1∂1(x1∂1 − 1)x2 0 x1∂1(x1∂1 − 1)∂1 x1∂1(x1∂1 − 1)x1 x1∂1

 ∈ E6(A)

and

U1G
T
1 =



1 x1

0 0
0 −x1∂

2
1 − ∂1

0 −x2
1

0 x1∂1 + 1
0 −x2

1∂1

.
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� Step 2. Make V := U1 and let v2 be the column vector given by taking the last five
entries of the 2-th column of V GT1 ; i.e., v2 =

[
0 −x1∂

2
1 − ∂1 −x2

1 x1∂1 + 1 −x2
1∂1

]T .
Note that u2 =

[
0 −x1 ∂2

1 3 0
]

satisfies u2v2 = 1, thus v2 ∈ Umc(5, A). Moreover,
v′2 =

[
0 −x1∂

2
1 − ∂1 −x2

1 x1∂1 + 1
]

is unimodular with u′2 =
[
0 −x1 ∂2

1 3
]

such
that u′2v′2 = 1, and hence v2 is stable. Using the algorithm at the beginning of this section,
we have that E1 = I5,

E2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 −(−1 + x2

1∂1)x1 (−1 + x2
1∂1)∂2

1 3(−1 + x2
1∂1) 1

, E3 =


1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



and, E4 =


1 0 0 0 0

x1∂
2
1 + ∂1 1 0 0 0
x2

1 0 1 0 0
−x1∂1 − 1 0 0 1 0

1 0 0 0 1

.

Making the respective calculations, we have that

L2 := E4E3E2E1 =
1 (−1 + x2

1∂1)x1 −(−1 + x2
1∂1)∂2

1 −3(−1 + x2
1∂1) −1

x1∂
2
1 + ∂1 1 + (x1∂

2
1 + ∂1)(−1 + x2

1∂1)x1 −(x1∂
2
1 + ∂1)(−1 + x2

1∂1)∂2
1 −3(x1∂

2
1 + ∂1)(−1 + x2

1∂1) −(x1∂
2
1 + ∂1)

x2
1 x2

1(−1 + x2
1∂1)x1 1− x2

1(−1 + x2
1∂1)∂2

1 −3x2
1(−1 + x2

1∂1) −x2
1

−(x1∂1 + 1) −(x1∂1 + 1)(−1 + x2
1∂1)x1 (x1∂1 + 1)(−1 + x2

1∂1)∂2
1 1 + 3(x1∂1 + 1)(−1 + x2

1∂1) x1∂1 + 1
1 0 0 0 0

.

and L2v2 = e1 ∈ A5. Define U2 :=

[
1 0
0 L2

]
; then

U2U1G
T
1 =



1 x1

0 1
0 0
0 0
0 0
0 0

.

Finally, if

P1 :=



1 −x1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, then UGT1 =



1 0
0 1
0 0
0 0
0 0
0 0

,

where U := P1U2U1. Thus, a basis for M is given by {π(U(3)), π(U(4)), π(U(5)), π(U(6))},
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with UT(i) denoting the transpose of i-th row of the matrix U , for i = 3, 4, 5, 6; i.e.,

UT(3) =


−x31∂21 + x1∂

3
1 − 4x21∂1 − 2x1

(x1∂
2
1 + ∂1)(1− x1∂21x2 + x31∂

3
1x2 + ∂1x2)

1 + (x1∂
2
1 + ∂1)(−1 + x21∂1)x1

(x1∂
2
1 + ∂1)(x31∂

4
1 − x1∂31 + 2∂21 − x1∂31)

(x1∂
2
1 + ∂1)(∂1x1 − x1∂21x1 + x31∂

3
1x1 − 3x21∂1 + 3)

(x1∂
2
1 + ∂1)(−∂1 + x21∂

2
1 − x1∂1) + ∂21

 ,

UT(4) =


x21∂1 − x41∂21 + x31∂1 − x21 − x1

x21 + (−x21∂1 + x41∂
2
1 − x31∂1 + x1)(x1∂1 − 1)x2

−x31 + x51∂1 + x41
−x31∂31 + x51∂

4
1 + 2x21∂

2
1 − x1∂1 − x41∂31 + 1

−x41∂21 − x31∂1 + x61∂
3
1 + 3x51∂

2
1 − 3x41∂1 + 3x21

−x21∂1 + x41∂
2
1 − x31∂1 + x1

 ,

UT(5) =


−x1∂21 + x31∂

3
1 + 2x21∂

2
1 − x1∂1 + 1

x1∂1(−1 + x1∂
2
1x2 − x31∂31x2)− x31∂31x2 − 1

−(x1∂1 + 1)(−1 + x21∂1)x1
(x1∂1 + 1)(x1∂

3
1 − x31∂41 + x21∂

3
1 − ∂21)

(x1∂1 + 1)(x1∂
2
1x1 − x31∂31 + 3x21∂1 − 3)− x21∂21 + 2x1∂1 + 1

−(x1∂1 + 1)(−∂1 + x21∂
2
1 − x1∂1)− ∂1

 , U
T
(6) =


0
1
0
0
0
0

 .
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Filtered-graded transfer of Gröbner bases

In [84] it was shown that if A = k[ai]i∈Λ is a k-algebra generated by {ai}i∈Λ over the field
k, and I a left ideal of A, then a nonempty subset G of I is a Gröbner basis for I if, and
only if, G is a Gröbner basis of Gr(I), where G denotes the image of G in Gr(A) and
Gr(I) is the left ideal associated to I in Gr(A). A similar fact is proved in [19] for the
case of PBW algebras. We will present an analogous result for skew PBW extensions,
specifically for those of bijective type.

A.1 For left ideals

In [83] was showed that if A is a skew PBW extension, then its associated graded ring
Gr(A) is a quasi-commutative skew PBW extension (see Theorem 1.2.5). In this section
we will prove this fact using a different technique. Furthermore, we establish the transfer
of Gröbner bases between A and Gr(A).

By (1.2.7), givenA a skewPBW extension of the ringR, the collection of subsets {Fp(A)}p∈Z
of A defined by

Fp(A) :=


0, if p ≤ −1,

R, if p = 0,

{f ∈ A|deg(lm(f)) ≤ p}, if p ≥ 1.

is a filtration for the ring A, named standard filtration.
Now, notice that

Fp(A) =
{∑

cαx
α | cα ∈ R \ {0}, xα ∈Mon(A), deg(xα) ≤ p

}
;

in this case, we say that this filtration is the filtration Mon(A)-standard on A. Moreover,

Mon(A) =
⋃
p≥0

Mon(A)p,

147
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where Mon(A)p := {xα ∈ Mon(A) | deg(xα) ≤ p}, and if |α| = p, then xα /∈ Mon(A)p−1.
In this case, it says that Mon(A) is a strictly filtered basis.

It can be noted that any filtration {Fp(A)}p∈Z on A defines an order function v : A → Z
in the following way:

v(f) :=

{
p, if f ∈ Fp(A)− Fp−1(A),

−∞, if f ∈ ∩p∈ZFp(A).

Definition A.1.1. Let Gr(A) be the graded ring associated to the filtered ring A, and let f ∈ A
with f =

∑
|α|≤p cαx

α, where p =deg(f), cα ∈ R \ {0} and α = (α1, . . . , αn) ∈ Nn. In what
follows, η(f) will denote the image (or principal symbol) of f in Gr(A), i.e.,

η(f) :=
∑
|α|=p

cαx
α + Fp−1(A) ∈ Fp(A)/Fp−1(A).

Lemma A.1.2. Let A, Mon(A) and {Fp(A)}p as above, then:

(i) For each f ∈ A, deg(f) = v(f).

(ii) For each p ∈ N, Mon(A)p is a R-basis for Fp(A).

(iii) For xα, xβ ∈Mon(A), η(xα) = η(xβ) if and only if xα = xβ .

Proof. (i) From definition of {Fp(A)}p∈Z it follows that if 0 6= f ∈ A, then there exists p ∈ N
such that f ∈ Fp(A)−Fp−1(A) and, therefore, v(f) = p. But, if f ∈ Fp(A)−Fp−1(A), then
deg(f) = p and we obtain the equality.
(ii) Let f ∈ Fp(A), then f =

∑
|α|≤p cαx

α, and hence, f ∈ R〈Mon(A)p}. The linear
independence of Mon(A)p it follows from fact that Mon(A)p ⊆ Mon(A) and Mon(A) is
linearly independent.
(iii) Let xα, xβ ∈ Mon(A) such that 0 6= η(xα) = η(xβ) ∈ Gr(A)p = Fp(A)/Fp−1(A);
this last implies that xα − xβ ∈ Fp−1(A), i.e., xα − xβ ∈ R〈Mon(A)p−1}. Now, since xα,
xβ /∈ Fp−1(A), we have that xα − xβ = 0, namely xα = xβ . The other implication is a
straightforward reasoning.

Lemma A.1.3. If xα, xβ ∈ Mon(A), with deg(xα) = p and deg(xβ) = q, then η(xαxβ) =
η(xα)η(xβ). In particular, if xα = xα1

1 · · ·xαnn ∈ Fp(A) − Fp−1(A), necessarily η(xα) 6= 0 and
η(xα) = η(x1)α1 · · · η(xn)αn ∈ Gr(A)p.

Proof. In fact, xαxβ = cα,βx
α+β + pα,β , where cα,β ∈ R is left invertible and pα,β = 0 or

deg(pα,β) < |α + β| = p + q (see Theorem 1.2.2), whence 0 6= η(xαxβ) = cα,βxα+β =

cα,βxα+β ∈ Fp+q(A)/Fp+q−1(A). Furthermore, 0 6= η(xα)η(xβ) = xαxβ = xαxβ ∈
Fp+q(A)/Fp+q−1(A); but xαxβ − cα,βx

α+β = pα,β ∈ Fp+q−1(A), then xαxβ = cα,βxα+β ,
i.e., η(xαxβ) = η(xα)η(xβ).

Proposition A.1.4. Let A, Mon(A) and {Fp(A)} as before, then η(Mon(A)p) := {η(xα) |
xα ∈Mon(A)p}, forms aR-basis ofGr(A)p for each p ∈ N. Moreover, η(Mon(A)) := {η(xα) |
xα ∈Mon(A)} is a R-basis for Gr(A).
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Proof. Let f ∈ Fp(A) \ Fp−1(A), then f =
∑
|α|≤p cαx

α with cα ∈ R \ {0} y η(f) =∑
|α|=p cαη(xα) 6= 0. By Lemma A.1.3, η(xα) ∈ Gr(A)p for every α with |α| = p, thus

η(Mon(A)p) is a generating set for the left R-module Gr(A)p. Now, suppose that there
are λi ∈ R such that 0 =

∑
λiη(xαi) ∈ Gr(A)p for certain xαi ∈Mon(A)p, then

∑
λix

αi ∈
Fp−1(A); but deg(xαi) = p for each i andMon(A) is aR-basis filtered strictly, hence λi = 0
for every i.

The above preliminaries enable us to establish one of the main theorems of this section.

Theorem A.1.5. If A = σ(R)〈x1, . . . , xn〉 is a (bijective) skew PBW extension of ring R, then
Gr(A) is a (bijective) quasi-commutative skew PBW extension of R.

Proof. We must show that in Gr(A) there exist nonzero elements y1, . . . , yn satisfying
the conditions in (a) from Definition 1.1.4. Define yi := η(xi) for each 1 ≤ i ≤ n; by
Proposition A.1.4 we have that

η(Mon(A)) := {η(xα) = η(x1)α1 · · · η(xn)αn | xα ∈Mon(A)}

is a R-basis for Gr(A). Now, given r ∈ R \ {0}, there is ci,r ∈ R \ {0} such that xir −
ci,rxi = pi,r ∈ R; from last equality it follows that η(xir) − η(ci,rxi) = η(pi,r) = 0, i.e.,
η(xir) = η(ci,rxi) = ci,rη(xi); but xir 6= 0 for any nonzero r ∈ R because Mon(A) is a R-
basis for the right R-module AR (see Proposition 1.2.4), thus η(xir) = η(xi)η(r) = η(xi)r,
and consequently η(xi)r = ci,rη(xi). On the other hand, given i, j ∈ {1, . . . n}, there
exists ci,j ∈ R \ {0} such that xjxi− ci,jxixj = pi,j ∈ R+Rx1 + · · ·+Rxn; hence we have
that η(xjxi) = η(ci,jxixj) = ci,jη(xi)η(xj), and by Lemma A.1.3 η(xjxi) = η(xj)η(xi),
therefore η(xj)η(xi) = ci,jη(xi)η(xj). Since the ci,r’s and ci,j ’s that define to Gr(A) as a
quasi-commutative skew PBW extension are the same that define A as a skew PBW
extension of R, then the bijectivity of A implies the of Gr(A).

Remark A.1.6. The last theorem will allow us to establish a back and forth between Gröb-
ner bases theory for A and Gr(A). As we will show, the existence of one theory implies
the existence of the other.

In the following, the set η(Mon(A)) will be denoted by Mon(Gr(A)). Thus, Mon(Gr(A))
is the basis for the left R-module Gr(A) composed by the standard monomials in the
variables η(x1), . . . , η(xn).

Proposition A.1.7. If� is a monomial order onMon(A), then relation�gr defined overMon(Gr(A))
by

η(xα) �gr η(xβ)⇔ xα � xβ (A.1.1)

is a monomial order for Mon(Gr(A)).

Proof. We will show that �gr satisfies the conditions in the Definition 5.1.1: (i) Let η(xα),
η(xβ), η(xλ), η(xγ) ∈Mon(Gr(A)) and suppose that η(xβ) �gr η(xα), then,

lm(η(xγ)η(xβ)η(xλ)) �gr lm(η(xγ)η(xα)η(xλ))⇔ lm(η(xγxβxλ)) �gr lm(η(xγxαxλ)).
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But, η(lm(xγxβxλ)) = lm(η(xγxβxλ)) for all γ, β, λ ∈ Nn: indeed, η(xγxβxλ) = cxγ+β+λ

= cη(xγ+β+λ), where c := cγ,βcγ+β,λ (see Remark 1.2.3). Therefore,

lm(η(xγxβxλ)) = lm(cη(xγ+β+λ)) = η(xγ+β+λ) = η(lm(xγxβxλ)).

Since � is a order monomial on Mon(A), it has lm(xγxβxλ) � lm(xγxαxλ), so that
η(lm(xγxβxλ)) �gr η(lm(xγxαxλ)), i.e., lm(η(xγxβxλ)) �gr lm(η(xγxαxλ)). In conse-
quence, lm(η(xγ)η(xβ)η(xλ)) �gr lm(η(xγ)η(xα)η(xλ)).
The conditions (ii) y (iii) in Definition 5.1.1 are easily verifiable.

Lemma A.1.8. LetA as before,� a monomial order onMon(A) and f ∈ A an arbitrary element.
Then,

(i) f ∈ Fp(A) if and only if deg(f) ≤ p. Further, f ∈ Fp(A) − Fp−1(A) if, and only, if
deg(f) = p.

(ii) η(lm(f)) = lm(η(f)).

Proof. (i) It follows from the definition of Fp(A) and Lemma A.1.2.
(ii) Let f be a nonzero polynomial in A; there exists p ∈ N such that f ∈ Fp(A)−Fp−1(A).
Let f =

∑n
i=1 λix

αi , with λi ∈ R \ {0} y xαi ∈ Mon(A)p, 1 ≤ i ≤ n, where xα1 � xα2 �
· · · � xαn . Hence, lm(f) = xα1 , deg(f) = p and η(f) =

∑
|αi|=p λiη(xαi). From the

definition of �gr, we have that lm(η(f)) = η(xα1) = η(lm(f)).

We will prove that the reciprocal of the Proposition A.1.7 also holds.

Proposition A.1.9. Let A and Gr(A) as before. If �gr is a monomial order on Mon(Gr(A)),
then the relation � defined as

xα � xβ ⇔ η(xα) �gr η(xβ) (A.1.2)

is a monomial order over Mon(A).

Proof. Since �gr is a well order, from (A.1.2) it follows that � is a well order also. Now,
we show that � is a monomial order: indeed, let xα, xβ , xγ , xλ ∈ Mon(A) and suppose
that xβ � xα, so:

η(xβ) � η(xα)

η(lm(xγxβxλ)) = lm(η(xγxβxλ)) = lm(η(xγ)η(xβ)η(xλ))

η(lm(xγxαxλ)) = lm(η(xγxαxλ)) = lm(η(xγ)η(xα)η(xλ))

lm(η(xγ)η(xβ)η(xλ)) �gr lm(η(xγ)η(xα)η(xλ)),

and hence, lm(xγxβxλ) � lm(xγxαxλ). Clearly xα � 1 for all xα ∈ Mon(A), and � is
degree compatible.

Definition A.1.10. Let I be a left (right or two side) ideal of A. The graduation of I (or the
associated graded ideal to I) is defined as G(I) := ⊕pGr(I)p∈N, where Gr(I)p := I ∩Fp(A)/I ∩
Fp−1(A) ∼= (I + Fp−1(A)) ∩ Fp(A)/Fp−1(A), for each p ∈ N; (e.g., see [97]).
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The following theorem shows how calculate Gröbner basis for I , if we have one for
Gr(I).

Theorem A.1.11. LetA,Gr(A),Mon(A) andMon(Gr(A)) as before,� a monomial order over
Mon(A), and I a left ideal of A. If G = {Gj}j∈J is a Gröbner basis for Gr(I), with respect to the
monomial order �gr, and such basis is formed by homogeneous elements, then G := {gj}j∈J is a
Gröbner basis for I , where gj ∈ I is a selected polynomial with property that η(gj) = Gj for each
j ∈ J .

Proof. Let 0 6= f ∈ I ∩ Fp(A) \ Fp−1(A); we shall show that the condition (iii) in the
Theorem 5.3.2 is satisfied: let f := η(f), then 0 6= f ∈ G(I)p. Since G is a Gröbner
basis of G(I), there exist G1, . . . , Gt ∈ G such that lm(Gj) | lm(f) for each 1 ≤ j ≤
t and lc(f) ∈ 〈σα1(lc(G1))cα1,G1 , . . . , σ

αt(lc(Gt))cαt,Gt}, with αj ∈ Nn such that αj +
exp(lm(Gj)) = exp(lm(f)) = exp(lm(f)) = p and cαj ,Gj is the coefficient determined
by the product η(x)αj lm(Gj) in Gr(A), for 1 ≤ j ≤ t. From this last it follows that
lm(η(x)αj lm(Gj)) = lm(f); but lm(η(x)αj lm(Gj)) = lm(η(xαjxβj )), where xβj := lm(gj)
y gj ∈ I ∩ Fp(A) is such that η(gj) = Gj . From Lemma A.1.8 we get that lm(η(xαjxβj )) =
η(lm(xαjxβj )) ∈ F (A)p/F (A)p−1, so that η(lm(xαjxβj )) = lm(f) = η(lm(f)). The la-
tter implies that lm(xαjxβj ) − lm(f) ∈ Fp−1(A) and, therefore, lm(xαjxβj ) = lm(f),
i.e., lm(gj) | lm(f) for each 1 ≤ j ≤ t. Further, lc(h) = lc(η(h)) for all h ∈ A, then
lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ

αt(lc(gt))cαt,gt}.

In this way, a Gröbner basis of Gr(I) can be transfer to a Gröbner basis of I . In
particular, from a Gröbner basis ofGr(I) we can get a set of generators for I . Reciprocally,
when we need obtain a generating set of Gr(I) from one of I = 〈f1, . . . , fr}, we could
think thatGr(I) = 〈η(f1), . . . , η(fr)}. Nevertheless, this affirmation in general is not true:
in fact, let A = A2(k), the second Weyl algebra, i.e., A = k[x1, x2][y1,

∂
∂x1

][y2,
∂
∂x2

] with
its associated standard filtration, and consider the left ideal I generated by f1 = x1y1

and f2 = x2y
2
1 − y1. Note that x1 ∈ I , since x1 = (t2x

2
1 − x1)f1 − (t1x1 + 2)f2, but

η(x1) /∈ 〈η(f1), η(f2)}, where η(f1) = η(t1)η(x1) ∈ Gr(I)1 and η(f2) = η(t2)η(x1)2 ∈
Gr(I)2 (see [84]). However, if G = {f1, . . . , fr} is a Gröbner basis for I , we will show
that η(G) = {η(f1), . . . , η(fr)} is a Gröbner basis for Gr(I) and, from this we will have a
generating set for Gr(I).

Theorem A.1.12. With notation as above, let G = {gi}i∈J be a Gröbner basis for a left ideal I of
A. Then G = {η(gi)}i∈J is a Gröbner basis of Gr(I) consisting of homogeneous elements.

Proof. Since Gr(I) is a homogeneous ideal, it suffices to show that every nonzero homo-
geneous element F ∈ Gr(I) satisfies the condition (iii) in the Theorem 5.3.2. Let 0 6= F ∈
Gr(I)p, then F = η(f) for some f ∈ I ∩Fp(A)− I ∩Fp−1(A) and there exist g1, . . . , gt ∈ G
with the property that lm(gi) | lm(f) and lc(f) ∈ 〈σα1(lc(g1))cα1,g1 , . . . , σ

αt(lc(gt))cαt,gt},
where αi ∈ Nn is such that αi + exp(gi) = exp(f) for each 1 ≤ i ≤ t. By Lemma A.1.8 we
have that η(lm(f)) = lm(η(f)) = lm(F ), then lm(η(gi)) | lm(F ). Further, since lc(f) =
lc(η(f)) = lc(F ), it follows that lc(F ) ∈ 〈σα1(lc(η(g1)))cα1,η(g1), . . . , σ

αt(lc(η(gt)))cαt,η(gt)}
and, in consequence G is a Gröbner basis for Gr(I).
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A.2 For modules

Similar results to those presented in the previous section can be proved in the case of
modules. For this, let M be a submodule of the free module Am, m ≥ 1, where A is a
skew PBW extension of a ring R. Define the following collection of subsets of M :

Fp(M) := {f ∈M | deg(f) ≤ p}. (A.2.1)

It is not difficult to show that the collection {Fp(M)}p≥0 given in (A.2.1) is a filtration for
M , called the natural filtration onM . With this filtration we can define the graded module
associated to M , which will be denoted by Gr(M), in the following way: Gr(M) :=
⊕p≥0Fp(M)/Fp−1(M); if f ∈ Fp(M)−Fp−1(M), then f is said to have degree p. Thus, we
may associate to f its principal symbol η(f) := f+Fp−1(M) ∈ Gp(M) = Fp(M)/Fp−1(M).
The Gr(A)-structure is given by, via distributive laws, the following multiplication:

η(r)η(f) :=

{
η(rf), if rf /∈ Fi+j−1(M),

0, otherwise
(A.2.2)

where r ∈ Fi(A)− Fi−1(A) and f ∈ Fj(M)− Fj−1(M).

Notice that any filtration {Fp(M)}p∈Z on M defines an order function v : M → Z in
the following way:

v(f) :=

{
p, if f ∈ Fp(M)− Fp−1(M),

−∞, if f ∈ ∩p∈ZFp(M).

Lemma A.2.1. Let A, M and {Fp(M)}p as above. Then for each f ∈M , deg(f) = v(f).

Proof. From definition of {Fp(M)}p≥0, it follows that if 0 6= f ∈M , then there exists p ∈ N
such that f ∈ Fp(M)− Fp−1(M) and, therefore, v(f) = p. But, if f ∈ Fp(M)− Fp−1(M),
then deg(f) = p and we obtain the equality.

We have a version of the Proposition A.1.7 for module case.

Proposition A.2.2. If > is a monomial order on Mon(Am), then relation >gr defined over
Mon(Gr(A)m) by

η(X) >gr η(Y)⇔ X > Y (A.2.3)

is a monomial order for Mon(Gr(A)m).

Proof. We will show that �gr satisfies the conditions in the Definition 5.5.2: to begin,
note that >gr is a total order because > it is. Now, to prove (i) we must show that
lm(η(xβ)η(xα))ei ≥gr η(xα)ei for every X = η(xα)ei ∈ Mon(Gr(A)m) and η(xβ) ∈
Mon(Gr(A)). It can be noted that,

lm(η(xβ)η(xα))ei ≥gr η(xα)ei ⇔ η(lm(xβxα))ei ≥gr η(xα)ei.
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Since > is a monomial order on Mon(Am), we have that lm(xβxα)ei ≥ xαei and, from
(A.2.3) it follows that η(lm(xβxα))ei ≥gr η(xα)ei. So, lm(η(xβ)η(xα))ei ≥gr η(xα)ei.
For (ii), let Y = η(xβ)ej and X = η(xα)ei monomials in Mon(Gr(A)m) such that Y ≥gr X.
Given η(xγ) ∈Mon(Gr(A)), we have

lm(η(xγ)η(xβ))ej ≥gr lm(η(xγ)η(xα))ei ⇔ η(lm(xγxβ))ej ≥gr η(lm(xγxα))ei.

In Mon(A) we get that lm(xγxβ)ej ≥ lm(xγxα)ei and, once again, from (A.2.3) it follows
that η(lm(xγxβ))ej ≥gr η(lm(xγxα))ei.
Finally is easily verifiable that ≥gr is degree compatible.

Lemma A.2.3. Let A, M , Gr(A), Gr(M) and < as before, and consider an arbitrary element
f ∈M . Then,

(i) f ∈ Fp(M) if, and only if, deg(f) ≤ p. Further, f ∈ Fp(M) − Fp−1(M) if, and only, if
deg(f) = p.

(ii) η(lm(f)) = lm(η(f)).

Proof. (i) It follows from the definition of Fp(M) and Lemma A.2.1.
(ii) Let f be a nonzero vector in M , then there exists p ∈ N such that f ∈ Fp(M) −
Fp−1(M). Thus, f =

∑l
i=1 λiXi with λi ∈ R \ {0}, Xi ∈ Mon(Am) where deg(Xi) ≤

p for each 1 ≤ i ≤ l, and X1 > X2 > · · · > X l. Whence, lm(f) = X1 and since
deg(f) = p and η(f) =

∑
| exp(Xi)|=p λiη(Xi), from the definition given for ≥gr, we have

that lm(η(f)) = η(X1) = η(lm(f)).

The conversely of Proposition A.2.2 is also true, as will be shown below.

Proposition A.2.4. With the same notation used so far, if≥gr a monomial order onMon(Gr(A)m),
then ≥ defined as

X ≥ Y⇔ η(X) ≥gr η(Y) (A.2.4)

is a monomial order over Mon(Am).

Proof. Since ≥gr is a total order, from (A.2.4) it follows that ≥ is a total order also. Now,
we show that ≥ is a monomial order: indeed, let xβ ∈Mon(A) and X = xαei an element
in Mon(Am); we must to show lm(xγxβ)ei ≥ xαei for all xγ ∈Mon(A); however

η(lm(xγxβ))ei ≥gr η(xα)ei ⇔ lm(η(xγ)η(xβ))ei ≥gr η(xα)ei

and since ≥gr is a monomial order, this last inequality is true. From (A.2.4) it follows that
lm(xγxβ)ei ≥ xαei, as we had to show. Now, if Y = xβej and X = xαei are monomials
in Mon(Am) such that Y ≥ X, then η(Y) ≥gr η(X). Thus, given η(xγ) ∈ Mon(Gr(A)) we
have that

lm(η(xγ)η(xβ))ej ≥gr lm(η(xγ)η(xα))ei

i.e.,
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η(lm(xγxβ))ej ≥gr η(lm(xγxα))ei.

This implies that lm(xγxβ)ej ≥ lm(xγxα)ei. Finally, it is easy to prove that ≥ is degree
compatible.

We are ready to prove the main theorem of this last section.

Theorem A.2.5. Let A, Gr(A), Mon(A) and Mon(Gr(A)) be as before, ≥ a monomial order
over Mon(Am), and M a nonzero submodule of Am. The following statements hold:

(i) If G = {Gj}j∈J is a Gröbner basis for Gr(M), with respect to the monomial order ≥gr,
and such basis is formed by homogeneous elements, then G := {gj}j∈J is a Gröbner basis
for M , where gj ∈M is a selected vector with the property that η(gj) = Gj for each j ∈ J .

(ii) If G = {gi}i∈J is a Gröbner basis for M , then G = {η(gi)}i∈J is a Gröbner basis of Gr(M)
consisting of homogeneous elements.

Proof. (i) Let 0 6= f ∈ Fp(M) \Fp−1(M); we shall show that the condition (iii) in Theorem
5.5.13 is satisfied (see also [58], Theorem 26): let f := η(f), then 0 6= f ∈ G(M)p. Since
G is a Gröbner basis of G(M), there exist G1, . . . ,Gt ∈ G such that lm(Gj) | lm(f) for
each 1 ≤ j ≤ t and lc(f) ∈ 〈σα1(lc(G1))cα1,G1

, . . . , σαt(lc(Gt))cαt,Gt}, with αj ∈ Nn such
that αj + exp(lm(Gj)) = exp(lm(f)) = p and cαj ,Gj is the coefficient determined by the
product η(x)αj lm(Gj) inGr(M), for 1 ≤ j ≤ t. But, exp(lm(f)) = exp(lm(f)), thus of the
above mentioned follows that lm(η(xαj )lm(Gj)) = lm(f); note that lm(η(xαj )lm(Gj)) =
lm(η(xαjXj)), where X := lm(gj) and gj ∈ Fp(M) is such that η(gj) = Gj . From
Lemma A.2.3 we get that lm(η(xαjX)) = η(lm(xαjX)) ∈ F (M)p/F (M)p−1, so that
η(lm(xαjX)) = lm(f) = η(lm(f)). The latter implies that lm(xαjX)− lm(f) ∈ Fp−1(M)
and, therefore, lm(xαjX) = lm(f), i.e., lm(gj) | lm(f) for each 1 ≤ j ≤ t. Further,
lc(h) = lc(η(h)) for all h ∈ Am, then lc(f) ∈ 〈σα1(lc(g1))cα1,g1

, . . . , σαt(lc(gt))cαt,gt}.

(ii) Since Gr(M) is a graded module, it suffices to show that every nonzero homoge-
neous element F ∈ Gr(M) satisfies the condition (iii) in the Theorem 5.5.13. Suppose that
F ∈ Gr(M)p; then, F = η(f) for some f ∈ Fp(M)−Fp−1(M) and there exist g1, . . . , gt ∈ G
with the property that lm(gi) | lm(f) and lc(f) ∈ 〈σα1(lc(g1))cα1,g1

, . . . , σαt(lc(gt))cαt,gt},
where αi ∈ Nn is such that αi + exp(f i) = exp(f) for each 1 ≤ i ≤ t. By Lemma A.2.3
we have that lm(f) = lm(η(f)) = lm(F), then lm(η(gi)) | lm(F) and, since lc(f) =
lc(η(f)) = lc(F), it follows that lc(F) ∈ 〈σα1(lc(η(g1)))cα1,η(g1), . . . , σ

αt(lc(η(gt)))cαt,η(gt)}
and, hence, G is a Gröbner basis for Gr(M).



Future work

Some other tasks closely related to the research of projective modules over skew PBW
extensions consist of giving constructive proofs of the following theorems that were es-
tablished in previous works by using tools of rings and modules and classical homologi-
cal techniques:

• Serre’s theorem about stably free modules: Let A be a bijective skew PBW extension
of a ring R such that R is left (right) Noetherian, left (right) regular and PSF . Then A is
PSF .

A non-constructive proof of this theorem was given in [83], Corollary 2.8. A con-
structive proof for the habitual commutative ring of polynomials can be found for
example in [78].

• Hilbert’s syzygy theorem about the global dimension of bijective skew PBW ex-
tensions.

A non-constructive proof of this theorem was given in [83], Theorem 4.2.

Another problem to be considered is the computation of Ext and Tor for bimodules
over bijective skew PBW extensions. In order to do this, it is necessary to construct the
theory of two-sided Gröbner bases for bijective skew PBW extensions with some extra
conditions. These constructions could be useful for the study of some algebras of recent
interest arising in non-commutative algebraic geometry such as Artin-Schelter regular
algebras and Calabi-Yau algebras (see [109]).

On the other hand, it would be really important developing a computational pack-
age for the calculation of Gröbner bases on bijective skew PBW extensions, besides to
be able to perform computations related with the matrix-constructive interpretations of
properties as being a projective-free, PSF , Hermite or cancellable ring.

Finally, another field of future investigation is the application in algebraic analysis of
theorems, algorithms and Gröbner theory presented in this thesis (see [13] and [25]).
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