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Title in English
Matrix methods for projective modules over o — PBW extensions.

Titulo en espafiol
Métodos matriciales para médulos proyectivos sobre extensiones o — PBW

Abstract: In this monograph, we study finitely generated projective modules defined on
a certain type of noncommutative rings, called o — PBW extensions, also known as skew
PBW extensions. This class of noncommutative rings of polynomial type include many
important examples of algebras and rings of recent interest as Weyl algebras, envelop-
ing algebras of Lie algebras of finite dimension, diffusion algebras, quantum algebras,
quadratic algebras in three variables, among many others. The study of projective mod-
ules was developed from a constructive matrix approach that will allow us to make effec-
tive calculations using a powerful computational tool: noncommutative Grobner bases.
Specifically, we establish an equivalent constructive matrix interpretation for the notions
of being a projective, stably free or free module. Because of the close relationship between
these three kinds of modules, we investigate when a given finitely generated module be-
longs to one of these classes. In this regard, Stafford showed that any stably free module
on the Weyl algebra D = A, (k) or B, (k), with rank > 2, turns out to be free; in this
direction, we present a constructive proof of such important theorem for arbitrary rings
which satisfy the condition range.

On the other hand, we present several matrix descriptions of Hermite rings, various -
characterizations of PF rings, and some subclasses of Hermite rings. However, since
there is a variety of noncommutative rings that have nontrivial stably free modules, we
use the Stafford’s theorem, the stable range of a ring, and existing bounds for Krull di-
mension of a skew PBW extension, in order to set a value from which all stably free
module are free.

In the second part of this thesis, we develop the theory of Grobner bases for arbitrary bi-
jective skew PBW extensions. Specifically, we extend Grobner theory of quasi-commutative
bijective skew extensions to arbitrary bijective skew PBW extensions. We construct
Buchberger’s algorithm for left (right) ideals and modules over these noncommutative
rings, and we present elementary applications of this theory as the membership prob-
lem, calculation of the syzygy module, intersection of ideals and modules, the quotient
ideal, presentation of a module, calculation of free resolutions and the kernel and im-
age of a homomorphism. Finally, we use the constructive proofs established in the early
chapters, in order to develop effective algorithms to compute the projective dimension of
a given module, algorithms for testing stably-freeness, procedures for computing mini-
mal presentations and bases for free modules.

Resumen: En esta monografia estudiamos los médulos proyectivos definidos sobre un
cierto tipo de anillos no conmutativos, denominados extensiones ¢ — PBW, también
conocidos como extensiones PBW torcidas. Esta clase de anillos no conmutativos de tipo
polinomial incluye importantes ejemplos de algebras y anillos de interés reciente tales



como éalgebras de Weyl, dlgebras envolventes de dlgebras de Lie de dimension finita, 4l-
gebras cuanticas, dlgebras cuadraticas en tres variables, entre muchos otros. El estudio de
los médulos proyectivos lo desarrollamos desde una perspectiva constructiva-matricial,
enfoque que nos permitird hacer célculos efectivos mediante el uso de una importante
herramienta computacional: las bases de Grobner no conmutativas. Especificamente, es-
tablecemos interpretaciones matriciales constructivas para la nocién de médulo proyec-
tivo, médulo establemente libre y médulo libre. Debido a la estrecha relacién existente
entre estas tres clases de médulos, investigamos cudndo un médulo finitamente generado
dado pertenece a una de tales clases. En este sentido, Stafford demostré que cualquier
moédulo establemente libre sobre el dlgebra de Weyl D = A, (k) o B,(k), de rango > 2,
resulta ser libre; a este respecto, presentamos una prueba constructiva de este importante
teorema para anillos arbitrarios que satisfagan la condicién de rango.

Por otra parte, presentamos descripciones matriciales de los anillos de Hermite, caracter-
izaciones de anillos PF, y algunas subclases de anillos de Hermite. Ahora bien, puesto
que existe una gran variedad de anillos no conmutativos que poseen médulos estable-
mente libres no triviales, nosotros usamos el teorema de Stafford, el rango estable de un
anillo, y las cotas existentes para la dimensioén de Krull de una extensién PBW torcida,
con el fin de establecer un valor a partir del cual todo médulo establemente libre resulta
libre.

En la segunda parte de esta tesis desarrollamos la teorfa de bases de Grobner para ex-
tensiones PBW torcidas biyectivas arbitrarias. Concretamente, extendemos la teoria de
Grobner de las extensiones cuasi-conmutativas biyectivas al caso general biyectivo. -
Construimos el algoritmo de Buchberger para ideales izquierdos (derechos) y para moé-
dulos sobre estos anillos, presentamos aplicaciones elementales de esta teoria como el
problema de membresia, el calculo del médulo de sicigias, la interseccion de ideales y
modulos, el ideal cociente, la presentacion de un moédulo, el calculo de resoluciones li-
bres y el nticleo e imagen de un homomorfismo. Finalmente, usamos las demostraciones
constructivas establecidas en los primeros capitulos, con la finalidad de elaborar algorit-
mos que permiten efectivamente calcular la dimension proyectiva de un médulo dado,
verificar si un médulo es establemente libre, calcular presentaciones minimales y bases
para moédulos libres.

Keywords: Skew PBW extensions. Projective, stably free and free modules. Hermite
rings. PF rings. Stable range. Noncommutative Grobner bases.

Palabras clave: Extensiones PBW torcidas. Mdédulos proyectivos, establemente libres y
libres. Anillos de Hermite. Anillos PF. Rango estable. Bases de Grobner no conmutati-
vas.
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Introduction

When a new type of rings arise, the study of finitely generated projective modules over
them is a classical task in homological algebra. Investigating if these modules are free, or
at least stably free, has occupied the attention of many mathematicians; one of the most
famous cases is the Quillen-Suslin theorem about Serre’s problem for the commutative
polynomial ring k1, ..., z,], where k is a field. In this particular example, Quillen and
Suslin proved independently that the finitely generated projective modules are free (see
[106] and [119]). However, for noncommutative rings of polynomial type it is easy to
present examples where Quillen-Suslin theorem fails. In fact, if 7" is a division ring, then
S := T[z,y] has a module M such that M & S = S?, but M is not free ([62]). When
this occurs, we can ask if the modules are stably free, and this situation, to investigate
the minimum value of rank for which the modules start to be free. This is the content
of Stafford’s theorem on Weyl algebras (see [114]), or Artamonov’s theorem for quantum
polynomials ([4],[5] and [6]).

The origin of our interest in investigating projective modules over skew PBW ex-
tensions from a matrix constructive approach arises in a previous thesis (master’s the-
sis) where we study the theory of Grobner bases of left ideals for the particular class of
skew PBW extensions that are quasi-commutative bijective (see Chapter 1). Skew PBW
extensions are a wide class of noncommutative rings of polynomial type introduced in
[40], and generalize the PBW extensions defined in [10]. Skew PBW extensions in-
clude many important classes of noncommutative rings and algebras as Weyl algebras,
enveloping algebras of Lie algebras of finite dimension, important classes of Ore algebras,
quantum algebras, Manin’s algebra of quantum matrices, g-Heisenberg algebra, quan-
tum Weyl algebras, quantum enveloping algebras, Witten’s algebra, diffusion algebras,
among many others. Some ring and homological properties of skew PBW extensions
have been studied in the last years from a purely theoretic non-constructive approach,
for example, global, Krull, Goldie and Gelfand-Kirillov dimensions of these rings have
been computed as well as its K-theory gropus (see [83], [81] and [121]).

In this thesis, we investigate free, stably free, and in general, projective modules over
skew PBW extensions from a matrix approach, complementing the results with the the-
ory of Grobner bases. In the first part of the thesis, we will present matrix criteria (theo-
rems) for testing projectivity, stably freeness and freeness - in general - for finitely gener-
ated modules over arbitrary rings satisfying the rank condition (see Definition 2.1.3). In
the second part, we will present algorithms for bijective skew PBW extensions making
theorems constructive, and finally, we will apply the developed theory of Grobner bases

v
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to illustrate all theorems and algorithms with concrete examples. We want to remark that
the examples of skew PBW extensions selected are completely nontrivial and probably
have not been considered before in the specialized literature in noncommutative Grob-
ner bases. The results presented in the monograph can be applied to any of types of
noncommutative rings and algebras mentioned in the previous paragraph, in particular,
our general theory of noncommutative Grobner bases of skew PBW extensions can be
used in different applications of such algebras as it is done in algebraic analysis (see [13],
[22], [23], [24], [25], [35], [73], [99], [100], [101], [102], [103], [104], [105]). Actually, one of
the main our motivations to study projective modules from a matrix constructive point
of view resides in its future eventual application in algebraic analysis.

The thesis is divided into seven chapters. In the first chapter, we recall the definition
and some basic properties of the skew PBW extensions. Some key and nontrivial exam-
ples of these rings are presented. These interesting examples will we used for illustrating
the theorems and algorithms. Concrete matrix and Grobner computations with this type
of noncommutative rings probably have not been considered before in the literature.

Chapter 2 includes four sections. In Section 2.1, we recall some basic notions on linear
algebra for left modules over arbitrary noncommutative rings. The RC condition (rank
condition) and the ZBN condition (Invariant Basis Number) are recalled. In Corollary
2.1.8 we prove that a skew PBW extension is RC if and only if its ring of coefficients is
RC. Many characterizations of stably free modules are given in Section 2.2. Section 2.3
is devoted to present a completely constructive proof of the general version of Stafford’s
theorem. This theorem was also considered in [105] but introducing an involution for the
ring, our proof avoids this involution and is the main result of the chapter (Lemma 2.3.5
and Theorem 2.3.6). In Section 2.4, we present some theoretic results that give effective
methods for computing the projective dimension of a module, and also for constructing
minimal presentations.

In Chapter 3 are presented some matrix characterizations of Hermite rings (for which
stably free modules are free), PSF rings (for which finitely generated projective modules
are stably free) and PF rings (for which finitely generated projective modules are free).
The main results are Theorem 3.1.2 and Corollary 3.2.4. Some subclasses of Hermite rings
are characterized from a matrix point of view as well as its behavior under products,
quotients and localizations (Theorem 3.4.1).

As it was observed above, it is easy to present examples of skew PBW extensions
that are not Hermite rings. So, instead of this condition it is possible to study a weaker
one, the d-Hermite condition, i.e., when any stably free module of rank > d is free (see
Definition 4.1.2). In Chapter 4, we investigate the d-Hermite condition for skew PBW
extensions. We will give an upper bound for the stable range of a bijective skew PBW
extension with finite left Krull dimension, and with this, in order to know a value d for
which the extension is d-Hermite, i.e., for which every stably free module of rank > d
is free. Closely related to the stable range of a ring and its left Krull dimension is a
Kronecker’s theorem about the radical of finitely generated left ideals. In Section 4.3, we
consider this theorem for bijective skew PBW extensions over left Noetherian domains,
using the technique of Zariski lattice and boundary ideal that we found in [88], [89] and
[123], but in the noncommutative framework. Thus, the main results of Chapter 4 are
Proposition 4.2.2, Theorem 4.3.7 and Corollary 4.3.9.
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Chapters 5, 6 and 7 conform the second part of the thesis. In Chapter 5, we complete
the construction of the theory of Grobner bases for general bijective skew PBW exten-
sions. This construction was initiated in [40] for left ideals and in [58] for left modules,
but under the assumption that the extension is quasi-commutative and bijective. In the
present thesis we not only extend the theory to the general bijective case, eliminating
the quasi-commutative restriction, but also we construct the theory for right ideals and
modules. Thus, we can say that we construct a complete Grobner theory for all quantum
algebras mentioned at the beginning of this preface. The main results of Chapter 5 are
Theorems 5.4.4,5.5.13,5.5.18 and 5.6.6.

In Chapter 6, we present some classical applications of Grobner bases as the mem-
bership problem, the computations of syzygies, intersections, quotient modules, finite
presentations of modules, kernel and images of homomorphisms and the construction
of free resolutions. All of these constructions are illustrated for modules over nontrivial
examples of skew PBW extensions. The main results are Theorem 6.2.12 and Corollary
6.2.7. This corollary establishes that if the rings of coefficients of a bijective skew PBW
extension has a Grobner theory, then the extension also satisfies this property.

The matrix-constructive theorems proved in the first chapters of the thesis will be in-
terpreted by algorithms in the last chapter. Applying the Grobner theory developed in
Chapters 5 and 6, we obtain effective procedures for constructing left and right inverses
of matrices over bijective skew PBW extensions, and with this, effective algorithms for
testing stably freeness, freeness; effective procedures for computing the projective dimen-
sion of a module and for computing bases of free modules.

A Filter-graded transfer is presented in the appendix A, as a generalization of what
was developed in this regard in [19] and [84].



CHAPTER 1

Skew PBW extensions

In this first chapter, we recall the definition of skew PW B extensions (also known as
o-PBW extensions), introduced by Lezama and Gallego in [40], as a generalization of
the PBW (Poincaré-Birkhoff-Witt) extensions. Furthermore, we consider some of their
structural properties and some important facts which are satisfied by them. We also
establish some preliminary notation and necessary results for the subsequent sections.
Finally, we present some examples of this class that includes well known classes of Ore
algebras, operator algebras, and also many quantum rings and algebras.

1.1 Definitions and elementary examples

In this section, we present the definition of skew PBW extensions, some of their struc-
tural properties and some examples of these class of noncommutative rings. As we will
see, the skew PBW extensions are a generalization of PBW extensions defined by Bell
and Goodearl in 1988 in [10].

Definition 1.1.1. Let R and A be rings, we say that A is a skew PBW extension of R (also called
o — PBW extension), if the following conditions hold:

(i) RC A
(ii) There exist finite elements x1,...,x, € A such A is a left R-free module with basis
Mon(A) := Mon{z1,...,z,} = {a* =2 - 2i"|a = (a1, ..., apn) € N'}

In this case it is also said that A is a ring of a left polynomial type over R with respect to
{x1,...,2,} and Mon(A) is the set of standard monomials of A. Moreover, 29 --- 20 =
1 € Mon(A).

(iii) Foreveryl < i <mnandr € R — {0} there exists ¢;,, € R — {0} such that

;T — ¢ € R. (1.1.1)
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(iv) Forevery 1 <i,j < n there exists ¢; j € R — {0} such that
T — CijTix; € R+ Rx1+ -+ Rxy. (1.1.2)
Under these conditions we will write A = o(R)(z1,...,Tp).

Remark 1.1.2. (i) Since that Mon(A) is a R-basis for A, the elements ¢;, and ¢; ; in the
above definition are unique.

(ii) If r = 0, then ¢; o = 0: in fact, 0 = 2,0 = ¢; ox; + s;, with s; € R, but since Mon(A)
is a R-basis, then ¢; o = 0 = s;.

(iii) In (iv), ¢;; = 1: in fact, :1:12 — c”xf = 89 + 8121 + - -+ + Spx,, With s; € R, hence
1—62',1':0:8@'.

(iv) Let ¢ < j, by (1.1.2) there exist ¢;;, ¢;; € R such that z;x; — ¢j;x;2; € R+ Rxy +
-+ Rz and xjz; — ¢ jriz; € R+ Rxy + - - - + Rxy, but since Mon(A) is a R-basis then
1 =c¢jcij, e, forevery 1 <i < j <n,c;;hasaleftinverse and c;; has a right inverse.

(v) Each element f € A— {0} has a unique representation in the form f = ¢; X7+ - -+
Xy, with¢; € R — {0} and X; € Mon(A),1 <i<t.

The following proposition justifies the notation that we have introduced for the skew
PBW extensions.

Proposition 1.1.3. Let A be a skew PBW extension of R. Then, for every 1 < i < n, there exist
an injective ring endomorphism o; : R — R and a o;-derivation 6; : R — R such that

xir = o;(r)z; + 6;(r),
foreachr € R.
Proof. See [40], Proposition 3. O

A particular case of skew PBW extension is when all derivations ¢; are zero. Another
interesting case is when all o; are bijective and the constants c¢;; are invertible. We have
the following definition.

Definition 1.1.4. Let A be a skew PBW extension.
(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 1.1.1 are replaced by
(i13") Forevery 1 < i <nandr € R — {0} there exists ¢;,, € R — {0} such that
TiT = Cipi. (1.1.3)
(iv) Forevery 1 < i,j < n there exists ¢; ; € R — {0} such that
TjT; = C; jT;T;. (1.1.4)

(b) A is bijective if o; is bijective for every 1 < i < nand c; j is invertible forany 1 < i < j <
n.
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Some familiar examples of skew PBW extensions are the following.

Example 1.1.5. (i) Any PBW extension is a bijective skew PBW extension since in this
case0; = igp foreach1 <i <nandc;; = 1forevery1l <i,j <n.

(ii) Any skew polynomial ring Rlx; o, 0] of injective type, i.e., with o injective, is a skew
PBW extension; in this case we have R[z;0,d] = o(R)(z). If additionally 6 = 0, then
R[x; 0] is quasi-commutative.

(iii) Let R[x1;01,01] - - [xn; on, 0] be an iterated skew polynomial ring of injective type,
i.e., if the following conditions hold:
For 1 < < n, o; is injective
Foreveryr € Rand 1 <i < n,0;(r),i(r) € R
Fori < j, 0j(x;) = cx; + d, with ¢, d € R and c has a left inverse.

Fori < j,6;(z;) € R+ Rxy + -+ + Rux;.

Then, R[z1;01,01] - [Tn; on, 0n) is a skew PBW extension. Under these conditions we
have

Rlz1;01,01] - [Tn; 0n, 0n) = o(R) (X1, ..., Tp).
In particular, any Ore extension R[x1;01,61] - - - [Tn; opn, 0p] of injective type, ie., for 1 < i <

n, o; is injective, is a skew PBW extension. In fact, in Ore extensions for every r € R
and 1 < i <mn,04(r),0i(r) € R, and for i < j, 0j(z;) = x; and 0;(z;) = 0. An important
subclass of Ore extension of injective type are the Ore algebras of injective type, i.e., when
R =Kklt1,...,tn], m >0, with k a field. Thus, we have

kt1,...,tm][z1;01,01] - [Tn; On, On] = o(K[t1, ..., tm]) (X1, ... Z0).

Some concrete examples of Ore algebras of injective type are the following.

The algebra of shift operators: let k be a field and h € k, then the algebra of shift operators
is defined by S}, := k[t][zn; on, 05], where o3, (p(t)) := p(t — h), and J;, := 0 (observe that
Sy, can be considered also as a skew polynomial ring of injective type). Thus, S}, is a
quasi-commutative bijective skew PBW extension.

The mixed algebra Dy let again k be a field and h € k, then the mixed algebra D,
is defined by Dy, := klt][z; iy, L[xn; on, 61), where o4(z) := z. Then, Dy, is a quasi-
commutative bijective skew PBW extension.

The algebra for multidimensional discrete linear systems is defined by
D :=K[t1,...,ty][z1;01,0] - - [x; 0pn, 0], where k is a field and
O'i(p(tl, o ,tn)) = p(tl, e ticn, b+ 1, - - ,tn), O'l(l‘z) =x;,1<1<n.

Thus, D is a quasi-commutative bijective skew PBW extension.
Observe that all of these examples are not PBW extensions.

(iv) Additive analogue of the Weyl algebra: let k be a field, the k-algebra A,,(q1,...,qn) is
generated by z1,...,2,,y1, ..., yn and subject to the relations:
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LT = Tiki, Yy = Yiyy, 1 < 4,5 <,
Yij = T;Yi, L F J,
Vit = qiwiy; +1, 1 <i<n,

where ¢; € k — {0}. We observe that A,(q1,...,¢y) is isomorphic to the iterated skew
polynomial ring k[z1, ..., zy][y1;01,01] - - - [Yn; On, O] OVer the commutative polynomial
ring k[z1, ..., xy):

oij(yi) =i, 0(y;) =0, 1<i<j<n,

Ui(xj) = xj,éi(mj) = O, 1 75 j,
0i(w;) == qizi, 6i(z;) =1, 1 <i <.

Thus, A, (q1, ..., gn) satisfies the conditions of (iii) and is bijective; we have

An(qry- - saqn) = o(k[z1, .. xn]) (Y1, -, Yn)-

(v) Multiplicative analogue of the Weyl algebra: let k be a field, the k-algebra O, ()\;;) is
generated by z1, ..., z,, and subject to the relations:

T;T; = )\ji:ci:cj, 1<i< ) <n,

where )\j; € k — {0}. We note that O,,(\j;) is isomorphic to the iterated skew polynomial
ring k{z1][z2; 02] - - - [Tn; 0]

O'j(xi) = )\ji$i7 1<i<j<n.

Thus, O,,(\;;) satisfies the conditions of (iii), and hence O,,(\};) is an iterated skew poly-
nomial ring of injective type but is not Ore. Thus,

On()\jz) = U(k[l‘l])(wg, e ,Z‘n>.

Moreover, note that O, ()\;;) is quasi-commutative and bijective.

(vi) g-Heisenberg algebra: let k be a field, the k-algebra H,,(q) is generated by the ele-
ments x1,...,Tp, Y1,---,Yn, #1, - - - , Z2n, and subject to the relations:

LT = Tk, 22 = ZiZ5, YiYi = YiYy, 1 < 04,5 < n,
2jYi = YiZj, 2iTi = TiZj, YjTi = TiYj, ¢ F J,
ZiYi = QYizi; Ziti = q iz + yi, it = qriyi, 1 <i <,
with ¢ € k — {0}. Note that H,(q) is isomorphic to the iterated skew polynomial ring

klz1, ..., xn]ly1;01] - [yn; onllz1; 01, 01] - - - [2n; O, O] with coefficients in the commutative
polynomial ring k[z1, ..., zy]:
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0i(2i) = zi, 6j(2:) = 0,05(yi) ==y, 1 <i<j<m,
Hj(yi) =Y, 6j(yi) = O,Qj(xi) =y, (53(36@) = 0,0’j<$i) = Ty, 27& j,
0:(yi) == qyi, 6i(yi) == 0,0;(x;) == q 'y, 6i(w;) := i, 04(x) == quy, 1 <i <,
Since 0;(z;) = y; ¢ k[z1,...,x,], then H,(q) is not a skew PBW extension of k[x1, ..., z,],
however, with respect to k, H,(q) satisfies the conditions of (iii), and hence, H,(q) is a
bijective skew PBW extension of k:
Hy(q) = oK) (X1, oy Tn YLy oo s Yni 21y e - oy Zn)-

Remark 1.1.6. we want to emphasize that the skew PBW extensions are not a subclass of
the collection of iterated skew polynomial rings: take for example ¢/(G) or the diffusion
algebra (see [83] and Section 1.3 below). On the other hand, the skew polynomial rings
are not included in the class of skew PBW extensions: take R[z; o, ¢], with o not injective.

1.2 Basic properties

In this section, some basic important properties of skew PBW extensions are presented.
We start with some notation that we will use frequently in this thesis.

Definition 1.2.1. Let A be a skew PBW extension of R with endomorphisms o;, 1 < i < n, as
in Proposition 1.1.3.

(i) For « = (ou,...,0) € N, 0% == of" 200", |la| = o+ -+ op. Iff =
(B1y.--yBn) EN", then a+ B := (a1 + P1, - - .y + Bp).

(il) For X = 2% € Mon(A), exp(X) := aand deg(X) := |a.

(iii) Let 0 # f € A, t(f) is the finite set of terms that shape f, ie., if f = a1 X1 + -+ Xy,
with X; € Mon(A) and ¢; € R — {0}, then t(f) := {c1 X1, ..., Xt}

(iv) Let f be as in (iii), then deg(f) := max{deg(X;)}_;.

The skew PBW extensions can be characterized in a similar way as it was done in
[18] for PBW rings (see Proposition 2.4 there in).

Theorem 1.2.2. Let A be a left polynomial ring over R w.r.t. {z1,...,z,}. Aisaskew PBW
extension of R if and only if the following conditions hold:

(a) Forevery z* € Mon(A) and every 0 # r € R there exist unique elements r,, := o®(r) €
R — {0} and po» € A such that

zr =10z + Par, (1.2.1)

where po,r = 0 or deg(par) < |&| if pa,r # 0. Moreover, if r is left invertible, then 1, is
left invertible.
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b) For every z%, 2 € Mon(A) there exist unique elements c,, 3 € R and p,, 3 € A such that
Y q B B
%P = caﬁxa"‘ﬂ + Pa.g; (1.2.2)

where c,, g is left invertible, p, 3 = 0 or deg(pa,s) < |ae+ B| if pa,g # 0.

Proof. See [40], Theorem 7. O
Remark 1.2.3. (i) A left inverse of ¢, g will be denoted by ¢/, ;. We observe that if o = 0
or 8 =0, thenc, s =1and hencec, ;= 1.

(ii) Let 0,~, 8 € N" and c € R, then we have the following identities:

0 _
07(Cy,8)C0+5 = COCO+,57

a%(07(c))eoy = co,0" T (c).
In fact, since 2% (z72%) = (2%27)P, then

2?(cy,527P + pyy ) = (Cona® + poq)aP,

0+~v+5 +p +v+5 +4q,

0 _ 0
7 (Cy.5)Co 457 = C0,yCO+7,0T

with p = 0 or deg(p) < |6 +~ + 3|, and, ¢ = 0 or deg(q) < |0 + v + B|. From this we get
the first identity. For the second, 2%(x7¢) = (2%27)c, and hence

2%(07(e)2" + ) = (con2”"7 + posy)es

0?(07(c))co AT +p = cg 0" ()27 + g,

with p = 0 or deg(p) < | + 7|, and, ¢ = 0 or deg(q) < |6 + 7|. This proves the second
idenity.

(iii) If A is quasi-commutative, from the proof of Theorem 1.2.2, we conclude that
Pa,r = 0and p, g = 0 for every 0 # r € R and every o, 8 € N". On the other hand, note
that the evaluation function at 0,i.e.,, A - R, f € A — f(0) € R, is a ring surjective ho-
momorphism with kernel (z1,...,z,) the two-sided ideal generated by z1,...,z,. Thus,
A/(z1,...,xn) = R.

(iv) If A is bijective, then c, g is invertible for any «, § € N".

(v) In Mon(A) we define

z® = 2P
or
2% = 2P = {22 # 2P but|a| > |
or
@ # 28 |al = |B|but i with a3 = B1,...,i1 = Bi_1, 05 > Bi.

It is clear that this is a total order on Mon(A), called deglex order. If z = x” but z # 7,
we write 2@ = z°. Each element f € A — {0} can be represented in a unique way as
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f=caz® 4+ 4+ cax*, witheg; € R—{0},1 <i <t and 2 > --- > x*. We say that
x* is the leader monomial of f and we write Im(f) := x®' ; ¢; is the leader coefficient of f,
le(f) == c1, and c12! is the leader term of f denoted by lt(f) := c;x®'. If f = 0, we define
Im(0) := 0,1¢(0) :=0,1t(0) := 0, and we set X > 0 for any X € Mon(A). We observe that

2@ = 28 = Im(27 22 = Im(x72P2), for every 27, 2> € Mon(A).

The following properties are natural and useful results that will be used later.

Proposition 1.2.4. Let A be a bijective skew PBW extension of a ring R. Then,

(i) If R is a domain, the A is a domain.

(ii) AR is free with basis Mon(A).
Proof. See [83] Proposition 1.7 and Proposition 4.1. O

The next theorem shows how can be associated one quasi-commutative skew PBW
extension to an arbitrary skew PBW extension.

Proposition 1.2.5. Let A be a skew PBW extension of R. Then, there exists a quasi-commutative
skew PBW extension A? of R in n variables z1, ..., zy, defined by

2T = CigrZi, 2j%i = CijZizi, 1 <1,§ <n,
where c; ., c; j are the same constants that define A. If A is bijective then A? is also bijective.
Proof. See [83], Proposition 2.1. O

Before continuing, we need to recall the definition of a filtered ring. As we shall see,
the skew PBW extensions are filtered rings; this last fact turns out to be essential in
several important results that we present later.

Definition 1.2.6. A ring S is called a filtered ring with filtration F(S) if there is a sequence
F(S) = {F,(S)}pez of subgroups of the additive group of S such that:
(1) UpGZ FP(S) = 5.
(i) 1 € Fp(S).
(ili) Forp < g, Fy(S) C Fy(9).

(iv) Fp(S)F,(S) C Fpiq(S) forall p,q € Z.

We say that the filtration F'(S) is separated if ()7, Fp(S) = 0. Finally, if F_1(S) = 0, then S'is
called a positively filtered ring, and F(S) is called a positive filtration on S
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Given a filtered ring S with filtration F'(.S), the associated graded ring of S with respect
to F(5), is defined to be the graded ring G(S) = ©,czG(S), with G(S5),, := F,(S)/Fp—1(S)
and the multiplication given by

Fp(S)/Fp-1(8S) x Fy(S)/Fy—1(S) = Fp1q(9)/Fpq-1(5)
(a + Fp_l(S),b + Fq_l(S)) — ab + Fp+q_1(S).

The following theorem shows that any skew PBW extension is a filtered ring, and presents
a characterization of its associated graded ring.

Theorem 1.2.7. Let A be an arbitrary skew PBW extension of the ring R. Then, A is a filtered
ring with filtration given by

B, = {R’ ifm =0, (1.2.3)
{f €Al deg(f)<m}, ifm>1

and the corresponding graded ring Gr(A) is a quasi-commutative skew PBW extension of R.
Moreover, if A is bijective, then Gr(A) is a quasi-commutative bijective skew PBW extension of
R.

Proof. See [83], Theorem 2.2. O

The following theorem is an important result that characterizes the quasi-commutative
skew PBW extensions.

Theorem 1.2.8. Let A be a quasi-commutative skew PBW extension of a ring R. Then,

(i) A isisomorphic to an iterated skew polynomial ring of endomorphism type.

(ii) If Ais bijective, then each endomorphism is bijective.
Proof. See [83], Theorem 2.3. O

These last results allow to establish the Hilbert Basis Theorem for skew PBW exten-
sions.

Theorem 1.2.9 (Hilbert Basis Theorem). Let A be a bijective skew PBW extension of R. If R
is a left (right) Noetherian ring then A is also a left (right) Noetherian ring.

Proof. See [83], Corollary 2.4. O

The task of studying properties of modules defined on skew PBW extensions should
consider the computation of measures such as global dimension, Krull dimension or uni-
form dimension. More specifically, knowing such dimensions will allow us to make as-
sertions about freeness of stably free modules, or more generally, of finitely generated
projective modules. A initial approach in this sense provide us the following two theo-
rems: the first theorem establishes sufficient conditions for a skew PBW extension to be
a regular. The second theorem - that can be considered as Serre’s theorem for these rings



CHAPTER 1. SKEW PBW EXTENSIONS 9

- asserts that if the ring of coefficients is a PSF ring, then the extension also satisfies such
property.

Recall that a noncommutative ring is said to be left regular if every left finitely generated
module has a finite projective dimension or, equivalently, if every left cyclic module over
this ring has a finite projective dimension (right regularity is defined analogously). More-
over, a ring is called left PSF if every left finitely generated projective module is stably
free. This class of rings will be considered again in the Section 3.1, Chapter 3.

Theorem 1.2.10. Let A be a bijective skew PBW extension of a ring R. If R is a left (right)
reqular and left (right) Noetherian ring, then A is left (right) regular.

Proof. See [83], Corollary 2.6. O

Theorem 1.2.11 (Serre’s theorem). Let A be a bijective skew PBW extension of a ring R such
that R is left (right) Noetherian, left (right) reqular and PSF. Then Ais PSF.

Proof. See [83], Corollary 2.8. O

1.3 More examples

Many other important and interesting examples of bijective skew PBW extensions, and
some other classes of noncommutative rings of polynomial type closely related to such
extensions, were presented and discussed in [108] and [83]. In this section, we recall
some of these key examples that will be used later to illustrate the algorithms that will be
presented in the thesis.

Example 1.3.1. The Quantum Weyl Algebra As(J, ) is the k-algebra generated by the vari-
ables x1, x2, 01, 02, with the relations (depending upon parameters a, b € k):

T1To =ToT1 + ax%

Dpdy =010 + b3

Ohz1 =14+ 2101 + ax109

e = — ax101 — abx102 + 1201 + brods
Ohx1 =x109

Oy =1 — bx109 + 2905.

When a = b = 0, we have that A2(Jy ) = A2 (k) for any field k (see [38] for more proper-
ties). In [108] was shown that As(J, ) = o(k[z1, 02])(x2, O1).

Example 1.3.2. The coordinate ring of the manifold of quantum 2 x 2 matrices M,(2). This al-
gebra is also known as Manin algebra of 2 x 2 quantum matrices (cf. [84], [93]). By definition,
M,(2) is the k-algebra generated by the variables z, y, u, v satisfying the relations

Tu=qur, yu=q ‘uy, vu=uv, (1.3.1)

and
av=quz, vy=qy, yr—ay=—(¢—q "uv, (1.3.2)
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where ¢ € k — {0}. Thus, M,(2) = o(k[u])(z,y,v). Due to the last relation in (1.3.2), we
remark that it is not possible to consider M, (2) as a skew PBW extension of k. See [19]
for more details.

Example 1.3.3. According to [55], a diffusion algebra D over a field k is generated by
{D;,z; | 1 <i < n} over k with relations

Tilj = TjLyg, LUZ‘Dj = Djl’i, 1 < i,j <n.

CZ']'DiDj — CjiDjDi = IjDi — .%‘Z'Dj, 1< 7, Cij, Cji € k*.

Thus, D = o(k[z1,...,2,])(D1, ..., Dy,) is a bijective non quasi-commutative skew PBW
extension of k[x1,...,z,]. Observe that D is not a PBW extension neither an iterated
skew polynomial ring of bijective type (see Example 1.1.5).

Example 1.3.4. Viktor Levandovskyy defined in [73] the G-algebras and he constructed
the theory of Grobner bases for these rings (see Chapter 5 of the current monograph for
the Grobner theory of bijective skew PBW extensions). Let k be a field, a k-algebra A is
called a G-algebra itk C Z(A) (center of A) and A is generated by a finite set {z1,...,z,}
of elements that satisfy the following conditions: (a) the collection of standard monomials
of A is a k-basis of A. (b) Tjxi = CijxTix; + dij, forl <i < j < n,with Cij € k — {0} and
d;j € A. (c) There exists a total order <4 on Mon(A) such that for i < j, Im(d;;) <a
x;x;. According to this definition, G-algebras appear like more general than skew PBW
extensions since d;; is not necessarily linear; however, in G-algebras the coefficients of
polynomials are in a field and they commute with the variables z1, ..., z,. Note that the
class of G-algebras does not include the class of skew PBW extensions over fields. For
example, consider the k-algebra A generated by z, y, z subject to the relations

Yr — @ry = T, R — 122 = %, zy=yz, q,q <k

Thus, A is not a G-algebra in the sense of [73]. Note that if ¢i,¢q2 # 0, then A =
o(k)(z,y, 2) is a bijective non quasi-commutative skew PBW extension of k.

Example 1.3.5. Witten’s deformation of U(s((2,k). E. Witten introduced and studied a 7-
parameter deformation of the universal enveloping algebra ¢/ (s[(2,k)) over the field k,
depending on a 7-tuple of parameters { = ({1,. .., {7) of k and subject to relations

xz — 1z =&, 2y —&yz =&y, yr — &y = L2 + &rz

The resulting algebra is denoted by W ({) and it is assumed that ;3¢5 # 0 (see [73]). Note
that if {36486 # 0, then W(§) = o(o(k[z])(z))(y) is a bijective non quasi-commutative
skew PBW extension of o(k[z])(z), and consequently, o (k[x])(z) is a bijective non quasi-
commutative skew PBW extension of k[z]. In [73] is proved that the only way that 1V (£)

is a G-algebra is when §; = {3 and {&; = . Thus, in general, W (¢) is a skew PBW
extension but is not a G-algebra.

Example 1.3.6. In [18] (see also [19]) Bueso, Gémez-Torrecillas and Verschoren defined a
type of rings and algebras called left PBW rings. Many of rings and algebras considered
in [83] (see also [108]) can be interpreted also as left PBW rings. We present an example
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of skew PBW extension that is not a left PBW ring: let k be a field; for any 0 # ¢ € k, let
R be an algebra generated by the variables a, b, c, d subject to the relations

ba = gqab, db=qbd, ca=qac, dc= qcd
be = pch, ad —da = (g~ — q)be.
for some ;1 € k. Then R is not a left PBW ring unless i = 1 (see [19]). Thus, for 1 # 1,

R = o(k[b])(a,c,d) is a bijective non quasi-commutative skew PBW extension of k[b]
that is not a left PBW ring.



CHAPTER 2

Stably free modules

Serre’s Theorem for bijective skew PBW extensions (see Theorem 1.2.11 and Corollary
2.8 in [83]) states that if M is a finitely generated projective module over a bijective skew
PBW extension A of a left Noetherian, left regular PSF ring R, then M is stably free. In
the same way, Remark 3.3. in [83] establishes that if M is a f.g. projective module over
the ring Qg'»(R) of skew quantum polynomials over R, where R satisfies the same above
conditions, then M is stably free. The following natural question arises: when are stably
free modules over A (or over Qg,(R)) free? The first thing that we have to observe is
that not any stably free module over a bijective skew PBW extension is free. The next
trivial example shows this ([62], p. 36): If T is a division ring, then S := T'[z,y] has a
module M such that M & S = S?, but M is not free. In a more general framework, and as
preparatory material for posterior studies in next chapters, we are interested in studying
when stably free modules over enough arbitrary noncommutative rings are free. A well
known result in this direction is the Stafford’s Theorem that we will prove in this chapter.
Many characterizations of stably free modules will be presented also. There are different
techniques to research stably free modules, we will combine homological and matrix
constructive methods.

2.1 RC and ZBN rings

In this section, we recall some notations and elementary properties well known of linear
algebra for left modules. All rings are noncommutative and modules will be considered
on the left; the letter S will represent an arbitrary noncommutative ring, thus S” is the

left S-module of columns of size r x 1. If $° £ S is an S-homomorphism then there
is a matrix associated to f in the canonical bases of S™ and S*, denoted F' := m/(f), and
disposed by columns, i.e., F' € M,+,(S). In fact, if f is given by

s L5 e f,

where {ej,...,es} is the canonical basis of S, f can be represented by a matrix, i.e., if

fi=lhi o Sl

, then the matrix of f in the canonical bases of S and S” is

12
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fir o fis
Fomlfy o fl=|: i | eMas)
frl frs

Note that Im(f) is the column module of F, i.e., the left S-module generated by the
columns of F', denoted by (F'):

Im(f) = (f(er),-... f(es)) = (fy,....f) = (F).
Moreover, observe that if a := (a1, ...,as)” € S%, then
f(a) = (a? FTHT, (2.1.1)
In fact,

fla) =aif(er) +-- +asf(es) =aif, +- -+ af,
S fis
=ay | |+ tas |
fr frs
aifir + - +asfis

ayfrr+ -+ asfrs

Ju - In

Z([a1 as} : DT

fis o frs
— (aTFT)T.

Note that function m : Homg(S%,87) — M,4(S) is bijective; moreover, if S” % SP is a

homomorphism, then the matrix of gf in the canonical bases is m(gf) = (FTGT)T. Thus,

f: 8" — S"is an isomorphism if and only if F7 € GL,(S). Finally, let C € M,(S); the
columns of C' conform a basis of S” if and only if CT" € GL,(9).

We also recall that

Syz({fl, ce ,fs}) = {a = (al, .. .’as)T c Ss’a]fl 4+ asfs — 0}_

Note that
Syz({fy,---.f.}) = kexr(f), (2.1.2)

but Syz({f,,....f,}) # ker(F') since we have
acSyz({f},....f.}) & a F' =o. (2.1.3)

A matrix characterization of f.g. projective modules can be formulated in the following
way.
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Proposition 2.1.1. Let S be an arbitrary ring and M a S-module. Then, M is a f.g. projective
S-module if and only if there exists a square matrix F over S such that FT is idempotent and
M = (F).

Proof. =): If M = 0, then F = 0; let M # 0, there exists s > 1 and a M’ such that
S5 = M@ M'; let f : S° — S® be the projection on M and F the matrix of f in the
canonical basis of S°. Then, f2 = f and (FTFT)T = F, so FTFT = FT; note that
M =1Im(f)=(F).

«<): Let f : S° — S° be the homomorphism defined by F (see (2.1.1)); from FTFT =
FT we get that f2 = f, moreover, since M = (F), then Im(f) = M and hence M is direct
summand of S%, i.e.,, M is f.g. projective (observe that the complement M’ of M is ker(f)
and f is the projection on M). O

Remark 2.1.2. (i) When S is commutative, or when we consider right modules instead of
left modules, (2.1.1) asserts that f(a) = Fa. Moreover, in such cases Syz({f,,....f,}) =
ker(F') and the matrix of a compose homomorphism gf is given by m(gf) = m(g)m(f).
Note that f : S” — S" is an isomorphism if and only if F' € GL,(5); besides, C € GL,(S)
if and only if its columns conform a basis of S”. In addition, Proposition 2.1.1 states that
M is a f.g. projective S-module if and only if there exists a square matrix F" over S such
that F' is idempotent and M = (F').

(if) When the matrices of homomorphisms of left modules are disposed by rows in-
stead of by columns, i.e., if S 1xs is the left free module of rows vectors of length s and the

matrix of the homomorphism S'** L5 §1%" is defined by

fil f{r fll frl
: : = : GMSXT(S)/

F = :
fls frs

;1 fér

then
f(a17"'7as) = ((11,..-,CLS)F/, (214)

ie, f(al) = aT FT. Thus, the values given by (2.1.4) and (2.1.1) agree since ' = FT.
Moreover, the composed homomorphism g f means that g acts first and then acts f, and
hence, the matrix of gf is given by m(gf) = m(g)m(f). Note that f : S1X" — S1*7 is an
isomorphism if and only if m(f) € GL,(S); furthermore, C € GL,(S) if and only if its
rows conform a basis of S'*". This left-row notation is used in [26]. Observe that with this
notation, the proof of Proposition 2.1.1 claims that M is a f.g. projective S-module if and
only if there exists a square matrix /' over S such that F' is idempotent and M = (F'), but
in this case (/') represents the module generated by the rows of F. Note that Proposition
2.1.1 could have been formulated this way: In fact, the set of idempotents matrices of
M;(S) coincides with the set { FT|F € M,(S), FT idempotent}.

Definition 2.1.3 ([62]). Let S be a ring.

(i) S satisfies the rank condition (RC) if for any integers r,s > 1, given an epimorphism
ST i> SS, thenr > s.
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(i) S is an IBN ring (Invariant Basis Number) if for any integers r,s > 1, 8" = S® if and
onlyifr =s.

Proposition 2.1.4. Let S be a ring.
(i) Sis RC if and only if given any matrix F' € My, (S) the following condition holds:
if F' has a right inverse then r > s.
(ii) Sis RC if and only if given any matrix F' € My.,(S) the following condition holds:
if I has a left inverse then s > r.

Proof. (i) =): Let G be a right inverse of F', thatis FG = I;let f : S" — S*and g : S° —
S™ such that m(f) = F and m(g) = G. Thus (FT)T(GT)"T = I,; let fT : S* — S" and
g’ : 8" — S%such that m(f7) = FT and m(g7) = G7, then m(g” fT) = m(iss) and hence
ngT = igs,1.€., gT is surjective. Since S is RC, then r > s.

<): Let S” Iy 5% be an epimorphism, there exists S* 9, S7 such that fg = igs; let

F == m(f) € Mgx,(S) and G := m(g) € M,«s(S), then m(fg) = (GTFT)T = I, so
GTFT = I, i.e.,, GT hasright inverse, and by hypothesis r > s. This means that S is RC.

(ii) =): Let G € M,«(S5) aleft inverse of F, then G has right inverse, and by (i), s > .

<): Let S” i> S* be an epimorphism; as in (i), GTFT = I,,50 FT € M,4(S) has a
left inverse and by the hypothesis r > s. Thus, S is RC. ]

The relation between the RC and ZBN properties is established below.

Proposition 2.1.5. RC = ZBN.

Proof. Let S” i> S® be an isomorphism, then f is an epimorphism, and hence r > s;
considering f~! we get that s > r. O

Example 2.1.6. Most of rings considered in the literature are RC, and hence, ZBN.

(i) Any field kis RC: let k" 4, ksbean epimorphism, then dim(k") = r = dim(ker(f))+
S,S01T > 8.

(ii) Let S and T be rings and let S L, Thea ring homomorphism, if 7" is a RC ring

then S is also a RC ring. In fact, T'is a right S-module, ¢- s := ¢ f(s); suppose that S” i> S8
is an epimorphism, then T'®g S” ST o 55%is also an epimorphism of left T-modules,
i.e., we have an epimorphism 7" — 7%, so r > s (a similar result and proof is valid for

the ZBN property).

(iii) We can apply the property proved in (ii) in many situations. For example, any
commutative ring S is RC: let J be a maximal ideal of S, then the canonical homomor-
phism S — S/J shows that S is RC since S/J is a field.
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(iv) Any ring S with finite uniform dimension (Goldie dimension, see [95] and [51])

is RC: in fact, suppose that S” 1, 5% isan epimorphism, then S” = S° ® M and hence
rudim(S) = sudim(S) + udim(M),sor > s.

(v) Since any left Noetherian ring S has finite uniform dimension, then S is RC. In
particular, any left Artinian ring is RC.

Since the objects studied in the present monograph are the skew PBW extensions, it
is natural to investigate the ZBN and RC properties for these rings.

Proposition 2.1.7. Let B be a filtered ring. If Gr(B) is RC (ZBN), then B is RC (ZBN).

Proof. Let {B,},>0 be the filtration of B and f : B" — B* an epimorphism. For M := B"
we consider the standard positive filtration given by

Fo(M) = BO'61+"'+BO'GT,FP(M) = BpFo(M),pZ 1,

where {e;}]_, is the canonical basis of B". Let ¢ := f(e;), then B® is generated by {e/}/_;
and N := B? has an standard positive filtration given by

Fo(N):=By-€}+ -+ By e, F)(N) :== ByFo(N), p > 1.

Note that f is filtered and strict ': In fact, f(F,(M)) = B,f(Fo(M)) = By(By - f(e1) +
--++ By f(er)) = Bp(Bo- €y + -+ By-e€.) = ByFyo(N) = F,(N). This implies that

Gr(M) ), Gr(N) is surjective (see [97], Theorem 4.4). If we prove that Gr(M) and

Gr(N) are free over Gr(B) with bases of r and s elements, respectively, then from the
hypothesis we conclude that » > s and hence B is RC.

Since every ¢; € Fo(M) and F,(M) = >"_, ®B, - ¢;, M is filtered-free with filtered-
basis {e;}]_,, so Gr(M) is graded-free with graded-basis {€;}_,, & :=¢e; + F_1 (M) = ¢;
(recall that by definition of positive filtration, F_; (M) := 0). For Gr(N) note that NV is also
filtered-free with respect the filtration {F,(IV)},>0 given above: Indeed, we will show
next that the canonical basis { f;};_; of N is a filtered basis. If f; = ;1 - €} + -+, - €],
with zj; € Bp,,, let p := max{p;;},1 <i <r, 1< j < s, then f; € F,(IV), moreover, for
every ¢, By—p - f1® - ® By—p - fs C By—pEFp(N) C Fy(N) (recall that for £ < 0, By, = 0);
in turn, let x € Fy(N) \ Fy—1(N), thenx = by - fi +--- + bs - fs and in Gr(IN) we have
TEGr(N),T=>byfi+ - +bs fs #0,if bj € By, letu := max{u;}, so Ef? € Gr(N)y+p,
soqg=u+p,ie,u=qg—pandhencex € B;_,- f1® - @ By—p- fs, Thus, we have proved
that By—p - f1® -+ ® By—p - fs = Fy(N), for every ¢, and consequently, {f;};_, is a filtered
basis of N. From this we conclude that Gr(N) is graded-free with graded-basis {Tj}jzl,
fj = fj + prl(N).

We can repeat the previous proof for the ZBN property but assuming that f is an
isomorphism. O]

Corollary 2.1.8. Let A be a skew PBW extension of a ring R. Then, A is RC (ZBN) if and
only if R is RC (ZBN).

'Remember that a homomorphism f : M — N between filtered modules is a filtered homomorphism if
f(Fp(M)) C F,(N) for all p. Moreover, f is strict if f(F,(M)) = Fp(N) N Im(f).
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Proof. We consider only the proof for RC, the case ZBN is completely analogous.
=): Since R — A, Example 2.1.6 shows that if A is RC, then R is RC.

<): We consider first the skew polynomial ring R[z; o] of endomorphism type, then
Rlz;0] — R given by p(z) — p(0) is a ring homomorphism, so R[z;o]| is RC since
R is RC. By Theorem 1.2.8, Gr(A) is isomorphic to an iterated skew polynomial ring
Rlz1;61] - - - [2n;0y), 50 Gr(A) is RC. It only remains to apply Proposition 2.1.7. O

Remark 2.1.9. (i) The condition ZBN for rings is independent of the side we are consi-
dering the modules. In fact, if we define left ZBA rings and right ZBN rings, depending
on left or right free S-modules, then S is left ZBN if and only if S is right ZBN (see [79]).
The same is true for the RC property.

(ii) Another property, closely related to ZBN and RC, is the weakly finite condition,
denoted simply by WF: aring S is WF if any epimorphism S” — S” of free modules is
an isomorphism (cf. [63], [26] or [20]). The WF rings satisfy similar properties that the
IBN and RC rings. So, for example, if S is a filtered ring and Gr(S) is WF, then S is
WUF too. Thus, if A is a skew PBW extension of R, then R is WF if and only if A is WF.
Moreover, it is not difficult to show that every ring W.F is RC. Therefore, we have that

WF = RC = IBN,

and these implications are strict (see [28]).

(iii) From now on we will assume that all rings considered in the present thesis are
RC.

2.2 Characterizations of stably free modules

Definition 2.2.1. Let M be a S-module and t > 0 an integer. M is stably free of rank t > 0 if
there exist an integer s > 0 such that S5+ = S% & M.

The rank of M is denoted by rank(A/). Note that any stably free module M is finitely
generated and projective. Moreover, as we will show in the next proposition, rank(M) is
well defined, i.e., rank(M) is unique for M.

Proposition 2.2.2. Let t,t', s, s' > 0 integers such that S*T* = S5 @ M and S*'+" = S @ M.
Then, t' =t.

Proof. We have S* @ S5t = §5' ¢ §5 @ M and S° @ S5+ =~ §° @ §¥ @ M, then since S
isanZBN ring, ' + s+t = s+ s’ + ¢/, and hence t' = ¢. O

Corollary 2.2.3. M is stably free of rank t > 0 if and only if there exist integers r, s > 0 such
that S" = S5 M, withr > sandt = r — s.

Proof. If M is stably free of rank ¢, then S*** = S @ M for some integers s,¢ > 0; taking
r := s+t we get the result. Conversely, if there exist integers r,s > 0 such that S” =
S @ M, withr > s, then S5777% = S5 @ M, i.e.,, M is stably free of rank r — s. O
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Proposition 2.2.4. Let M be an S-module and let v, s > 0 integers such that S" = S° & M.
Then r > s.

Proof. The canonical projection S™ — S* is an epimorphism; since we are assuming that

Sis RC,thenr > s. O
Corollary 2.2.5. M is stably free if and only if there exist integers r,s > 0 such that S™ =
S*a M.

Proof. This is a direct consequence of Corollary 2.2.3 and Proposition 2.2.4. O

Proposition 2.2.6. Let M, My be stably free modules of ranks p, g, respectively. Then, My & M,
is stably free of rank p + q.

Proof. We have S5TP = §% @ M, S"™T1 = S™ @& Mo, then S*P @ My = S @ M; & M, and
also S5TP @ S™ @ My =2 S5 B S™ @ My & M. Hence, S51TP @ S™11 =2 S5t ¢ M, & My, i.e.,
Ss-i—r-i—p-‘rq o~ Ss-‘rr D ]\41 D M2‘ m

Remark 2.2.7. Let S be a ring with finite uniform dimension and let M be stably free,

then
_ udim(M)

~ udim(S)
In fact, from S5t* = S & M we have (s + t) udim(S) = sudim(S) + udim(M ), and this
proves the equality.

rank (M) (2.2.1)

Next, we will prove many characterizations of stably free modules over noncommu-
tative rings (compare with [69], Chapter 21, [86], and [95], Chapter 11).

Theorem 2.2.8. Let M be an S-module. Then, the following conditions are equivalent
(i) M is stably free.
(ii) M is projective and has a finite free resolution:

0 = St Ly gty Temt L S2gn Sy g Doy g

In this case
rank(M) =Y (=1)t;. (2.2.2)
(iii) M is isomorphic to the kernel of an epimorphism of free modules: M = ker(w), w : S" —
S°.

(iv) M is projective and has a finite presentation S* ELNYTRECNG Vg 0, where ker( fo) is stably

free.

(v) M has a finite presentation S* ELN LN Y g 0, where fi has a left inverse.
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Proof. (i) = (ii) If S5*! = S5 @ M for some integers s,t > 0, then M is projective and we
have the finite free resolution

0— 955 g5ttt 5y M 0,

where ¢ is the canonical inclusion and 7 is the canonical projection on M.

(i) = (i) Let

fr—1
=

0 — St & gt By gt I gt Joy g

be a finite free resolution of M. By induction on k, we will prove that M is stably free and
(2.2.2) holds.

If k = 0 then M = S™ is free of finite dimension ¢,, and hence, stably free of rank ¢.
Let & > 1 and let M; = ker(fy). We get the exact sequence

0— M 5 St 2 ar 0,

and hence S =~ M & M, since M is a projective module. This implies that M is also
projective and we have the finite free resolution of M;

fr—1
Shanl

0 — Str oy gt S Ny RNV )

By induction, M is stably free of rank(M;) = Zle(—l)iflti := p. There exists ¢ > 0
such that S9tP = S9 @ M;, and hence, S & S = M ® M; ® S = M ¢ SI7P,j.e., Stotd =
M & S7tP. By Proposition 2.2.4, to+ ¢ > q+p, i.e., to > p, so Satpt(to—p) >~ N @y 9P je.,
M is stably free of rank tg — p = S°F_ (—1)it;.

(i) = (iii) By Proposition 2.2.5 there exist integers r, s > 0 such that S™ = S* & M,
with r > s. Hence M = ker(w), where 7 is the canonical projection of S™ on S°.

(iii) = (i) Let S” & S* be an epimorphism such that M = ker(r). Then we have the
exact sequence

0> M-S 585 50,

but S¢ is projective and hence S = S° ¢ M.
(i) = (iv) Let 8" = S® @ M for some integers r,s > 0, then M is projective and
we have the exact sequence 0 — S* ELN I ELNS Y 0, and also the finite presentation

(RN LN YN 0, where fj is the canonical projection and f; is the canonical injection
of §%in S". But ker(fo) = Im(f1) = S*, thus ker(fo) is free, and hence, stably free.

(iv) = (i) Let M be projective and S* By g Jo Ar 2 0 a finite presentation of M
with ker( fy) stably free. Then S™ = M & ker(Fp). There exist some integers p, ¢ > 0 with
p > ¢ such that SP = S @ ker(Fp) and hence S? & M = S9"; by Corollary 2.2.5, M is
stably free.
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(i) = (v) Let S" = S* @ M for some integers 7, s > 0, then we have the exact sequence

0— S f—1> ST f—0> M — 0, and also the finite presentation S* f—1> ST f—0> M — 0, where
fo is the canonical projection and f; is the canonical injection of S¢ in S”. Since M is
projective there exists hg : M — S” such that fohg = iy, and hence, S" = ker(fy) @
Im(ho) = Im(f1) ® Im(hy). For z € S"™ we have x = f1(y) + ho(z) with y € S* and
z € M, we note that y and z are unique for z since f; and hq are injective, so we define
g1 : 8" — S°by g1(x) = y. Itis clear that ¢; is an S-homomorphism and g¢; f; = igs.

(v) = (i) Let g1 : S™ — S° such that g1 fi = igs, then f; is injective and M has the

finite free resolution 0 — S° L& §7 L% M — 0. M is projective since this sequence splits;
by (ii) and (i) M is stably free. O

Definition 2.2.9. A finite presentation

(SR LNEL NG ) (2.2.3)
of a S-module M is minimal if fi has a left inverse.

Corollary 2.2.10. Let M be an S-module. Then, M is stably free if and only if M has a minimal
presentation.

Proof. See the proof of Theorem 2.2.8, part (i)<(v). O

Unimodular matrices are closely related to the stably free modules.

Definition 2.2.11. Let F' be a matrix over S of size r x s. Then

(i) Letr > s. Fis unimodular if and only if F" has a left inverse.

(ii) Let s > r. Fis unimodular if and only if F has a right inverse.

The set of unimodular column matrices of size r x 1 is denoted by Umc(r, S). Um,(s, S) is the
set of unimodular row matrices of size 1 X s.

Remark 2.2.12. Note that a column matrix is unimodular if and only if the left ideal
generated by its entries coincides with S; in addition, a row matrix is unimodular if and
only if the right ideal generated by its entries is S.

We can add some others characterizations of stably free modules (compare with [105],
Lemma 16).

Corollary 2.2.13. Let M be an S-module. Then the following conditions are equivalent:

(i) M is stably free.

(i) M is projective and has a finite system of generators f,,....f ~such that
Syz{f,,....f.} is the module generated by the columns of a matrix Fy of size r x s such
that F{ has a right inverse.
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(iii) M is projective and has a finite system of generators f,,....f. such that
Syz{fy,-...f.} is the module generated by the columns of a matrix Fy of size r x s such
that F{l' is unimodular.

Proof (i) = (ii) By (v) of Theorem 2.2.8, M is projective and has a finite presentation

g5 Iy gr Jooar 0, where f; has a left inverse. Let f, = fo(e;), where {e;}1<;<, is the
canonical basis of S”. Then M = (f,,....f,) and Im(f1) = ker(fo) = Syz{fy,....f.},
but Im(f;) is the module generated by the columns of the matrix F; defined by f; in the
canonical bases. Thus, let g; : S — 5% be a left inverse of fi, then ¢g; fi = igs and the
matrix of g1 f1 in the canonical bases is I, = (F{ GT)T,so I, = F{'GY.

(ii) = (i) Let f{,....f, be a set of generators of M such that Syz{f,,....f,} is the
module generated by the columns of a matrix Fy of size  x s such that F{ has a right

inverse. We have the exact sequence 0 — ker(fy) = S” “% M — 0, where ¢ is the
canonical injection and fy is defined as above. We have ker( fo) = Syz{fy,---.f,.} =

(F1> and thus we get the finite presentation S* — S" — M — 0, where fl(ej) is the

h column of Fy, 1 < Jj < s. By hypothesis F1 has a rlght inverse, FlT G = I, so
I, = (FlTGlT)T Let g1 : 8" — S° be the homomorphism defined by G € MSXT(S) in
the canonical bases, then g1 f1 = igs and f; is injective, this implies that the sequence

0— 55 % 57 % a1 - 0is exact. By Theorem 2.2.8, M is stably free.

(ii) < (iii) This is a direct consequence of Definition 2.2.11. O

Corollary 2.2.14. Let M be an S-module.

(i) If M is stably free, then for any free resolution of M,

e ge iy g St e g By gso Soy g

Im( fy) is stably free for each k > 0.

(ii) If there exists a free resolution of M as in (i) such that Im( fy,) is stably free for some k > 0
and Im(fx—1),...,Im(fo) are projective, then M is stably free.

Proof. (i) We will prove this by induction on k. For £ = 0 we have Im(fy) = M. For

k = 1 we have the exact sequence 0 — ker(fy) — 5% ELNy VN 0, then S®° = M & ker( fo)
since M is projective. But S? & M = S? since M is stably free, then S*077 = SP & ker( fo),
thus ker(fo) = Im(f1) is stably free. We assume that Im(f;_1) is stably free and we

consider the exact sequence 0 — ker(fy_1) — S%-1! & Im(fx—1) — 0, then S%-1 =

Im(fr—1) @ ker(fy—1), and hence there exist I, > 0 such that S' @ Im(f,_1) = S* and
hence S%+-1+ = S* @ ker(fy_1). Thus, ker(fk,l) = Im(fy) is stably free.

(i) If & = 0 there is nothing to prove. Let k£ > 1, we consider the presentation 5% — I

SRELN Im(fz—1) — 0, by (1V) of Theorem 2.2.8, Im/( fi;_1) is stably free. In the same

way we prove that Im(fx_2),...,Im(f1),Im(fo) = M are stably free. O
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Another interesting result about stably free modules over arbitrary RC' rings is pre-
sented next (see [23], Proposition 12). For this, we recall that if M is a finitely pre-

sented left S-module with presentation S* f—1> ST & M — 0 and Fj is the matrix of
f1 in the canonical bases, then the right S-module M7 defined by M7T = S%/Im(f]),
where f{' : S” — S is the homomorphism of right free S-modules induced by the ma-
trix F{', is called the transposed module of M. Thus, M7 is given by the presentation

rflT s T
ST — S5 —> M*' — 0.

Theorem 2.2.15. Let M be an S-module with exact sequence 0 — S* £> ST f—°> M — 0. Then,
MT =~ Extl (M, S) and the following conditions are equivalent:

(i) M is stably free.
(ii) M is projective.
(ii)) MT = 0.
(iv) F{ has a right inverse.
(V) fi1 has a left inverse.

Proof. We first prove that M7 = Extl(M,S): from the left complex 0 — S* ELN N
we get the right complex

0 — Homg(S",S) £> Homg(S*,S) 9, Homg(0,5) — ---,

ie.,
r I, s O
05" —=58—=0—---,

so Exti(M,S) = ker(0)/Im(ff) = S*/Im(ff). But Im(ff) = Im(f]) under the iso-
morphisms Homg(S",S) = S" and Homg(5*,S) = S°. In fact, we have the following
diagram

Homg(S",S) I Homg(S?,S)

o 8 (2.2.4)

fT
ST : - G5

where the vertical rows are isomorphisms of right S-modules defined by
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and moreover f;(h) := hf; and flT((acl, vy = FlT(acl, ...,z)T. Note that the
diagram is commutative:

Bfi(h) = B(hf1) = (hfiler), ... . hfi(es)" = (((ef F)T), ... h((el F)")T
fll fls
: N

= (h( )y ooy h(

frl frs
h(el) fllh(el) +"'+f7“1h(er)
fah) = fi((h(er),... . he))) =F" | 1 | = :
h(er) flsh(el) + -+ frsh(e’r‘)
h(fier +---+ frie;) Jn J1s
- : — (] ; -

: : )"
h(flsel +"'+f'rser> f'rl

)y h(]
frs
From this, we conclude that Extl (M, S) = S¢/Im(f{) = MT.
(i)=(ii) This is obvious.
(ii)=-(i) This is a direct consequence of Theorem 2.2.8.
(ii)=>(iii) Since M is projective, then Ext} (M, S) = 0 and hence MT = 0.

(ii))=(@) If MT = 0, then Ext§(M,S) = 0. From the given exact sequence of left
modules we get the exact sequence of right modules

0 — Homg(M,S) 7, Homg(S",S) X, Homg(S5%,5) — Exty(M,S) — ...,

T
i.e., we have the exact sequence 0 — M* — S” I, S® — 0; but since S° is projective,
T

this sequence splits, i.e., f7 has right inverse, says S* 25 57, ie., flg7 = igs. Let
G1 be a matrix of size s x 7 such that G7 is the matrix of the right homomorphism g¢f,
then m(fLg7) = m(fIm(gl) = m(iss), ie., FIGT = I,. Let " £ 5% be the left
homomorphism corresponding to G1, then m(g1 f1) = (FL GT)T = I, = m(igs),s0 g1.f1 =
igs,i.e., fi has left inverse. This means that the exact sequence 0 — S° il» ST ﬁ> M —0
splits, so M is stably free.

(ii)<(@{v): if M is projective, then the exact sequence 0 — S° EiN S” ELN VN 0
splits, so there exists ¢g; such that g; fi = igs, and hence, as before, FlT has a right inverse.
Conversely, if FlT GlT = I, then g1 f1 = igs, where S” 9y 85 is the left homomorphism
corresponding to Gy, so the previous sequence splits, and hence, M is projective.

(iv)<(v): from the above discussion, we get that f; has a left inverse if and only if F{
has a right inverse. O

Remark 2.2.16. (i) In Definition 2.2.1, if the finiteness restriction on s and ¢ is not imposed,
then every projective module is free: indeed, using the “trick of Eilenberg”, we can prove
that if P is a projective and @ is a a module such that P ® @) = E is free, then P® F = F,
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where F' := EQE®- - -. On the other hand, if P®.S* is free but P is not finitely generated,
it is not difficult to prove that P is actually free (see [62], Proposition 4.2).

(ii) Theorem 2.2.15 gives procedures for testing stably freeness if we have algorithms
for computing the module of syzygies of a finite set of vectors, the right inverse of a
matrix and the Ext modules. These algorithms will be considered later.

2.3 Stafford’s theorem: a constructive proof

A well known result due Stafford asserts that any left ideal of the Weyl algebras D :=
Ap (k) or By (k), with char(k) = 0, is generated by two elements, (see [114] and [105]).
From the Stafford’s Theorem follows that any stably free left module M over D with
rank(M) > 2 is free. In [105] is shown a constructive proof of this result that we want to
study for arbitrary RC rings. Actually, we will consider the generalization given in [105]
showing that any stably free left S-module M with rank(M) > sr(5) is free, where sr(.5)
denotes the stable rank of the ring S. Our proof have been adapted from [105], however
we do not need the involution of ring S used in [105] because of our left notation for
modules and column representation for homomorphism. This could justify our special
left-column notation. In order to apply the main result of this section to bijective skew
PBW extensions we will estimate the stable rank of such extensions. In Chapter 7, we
will complement these results presenting algorithms for computing the corresponding
free bases.

Definition 2.3.1. Let S be a ring and v := [vl vr]T € Ume(r,S) an unimodular
column vector. v is called stable (reducible) if there exists ai,...,a,_1 € S such that v' :=
[v1 +a1v, ... v+ ar_lvr]T is unimodular. It says that the left stable rank of S is d > 1,

denoted sr(S) = d, if d is the least positive integer such that every unimodular column vector of
length d+1 is stable. It says that sr(S) = oo if for every d > 1 there exits a non stable unimodular
column vector of length d + 1.

Remark 2.3.2. In a similar way is defined the right stable rank of S, however, both ranks
coincide; we list next some well known properties of the stable rank (see [5], [8], [20],
[95], [105], [114], [115], [120], [66] , or also [48]).

(i) sr(S) = sr(SP).
(ii) If T is a division ring, then sr(7) = 1.

(iii) If I is a two sided ideal of S, then sr(S/I) < sr(S). Moreover, if 1 + I C S*, then
sr(S/I) = sr(S). In particular, sr(S/Rad(S)) = sr(5).

(iv) For any field k, sr(k[[z1,...,z,]]) = 1 (this follows from 2.3.2 (iii))

(v) If S is alocal ring, then sr(5) = 1.

(vi) If {S;}icc is a non empty family of rings, then sr(] [, Si) = sup{sr(S;) }icc-
(vii) Ifsr(S) =1, then sr(M,(S)) =1, forany n > 1.

(viii) If S is simple Artinian, semisimple or semilocal, then sr(S) = 1.
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(ix) If Sisa Dedekind domain, then sr(S) = 2. In particular, if k is a field, then sr(k[z]) =
2; thus, sr(Q[z]) = sr(R[z]) = sr(C[z]) = 2.

(x) If kis a field with char(k) = 0 then sr(A4,,(k)) = 2 = sr(B,(k)).
(xi) If S = T[x;0,0], with T a division ring and ¢ is an automorphism, then sr(5) = 2.

(xii) If S is a left Noetherian ring, then sr(S) < Kdim(S) + 1. In particular, if S is a left
Artinian ring, then sr(5) = 1.

(xiii) Letn > 3. If n > sr(5), then E,,(S) < GL,(S5).
Proposition 2.3.3. Let S bearingand v := [vl ... fur] T an unimodular stable column vector

over S, then there exists U € E,(S) such that Uv = ey.

Proof. There exist elements aq,...,a,—1 € S such that

v = (v],..., v )T € Ume(r —1,8), with v} := v; + av,,1 <i<r—1. (2.3.1)

Consider the matrix

100 -+ 0 a
010 -+ 0 a
Ej:=|: 1 | eE(9) (2.3.2)
000 - 1 a1
000 - 0 1|
then F1v = (v],...,v._;,v,)T. Since that v := (v},...,v._;) € Um.(r —1,5), there exists

bi,...,b—1 € Ssuch that Y/~ b} = 1, and hence, S°/_| (v} — 1 — v,)biv} = v} — 1 — v,.
Letv/ := (vf =1 —wv,)b;, 1 <i<r—1land

1 0 0 - 0 0
o 1 0 --- 0 0
Ey:=|: + 1t D € B (S); (2.3.3)
o 0 o0 - 1 0
then ExE1v = (v),...,v._4,v) — 1)T. Moreover, let
1 0 0 0 -1
010 0 O
Es:=|: + + 1 = | eE(Y), (2.3.4)
0 00 1 0
00 0 0 1|
then E3ExEv = (1,v),...,v._;,v} — 1)T. Finally, let
[ 1 00 --- 0 0]
Wy 10 - 0 0
Ey = : = ET’(S)7 (2.3.5)
v, 0 0 10
v +1 0 0 0 1)
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then FE E3EyFiv=e1 and U := E1EyFE3E, € ET(S) ]

As was presented in [105], the proof of above lemma allows us to calculate effectively
the matrix U € E,(S). An algorithm to compute this elementary matrix will be consid-
ered in Section 7.5.

Next we present two lemmas that give some elementary matrix characterizations of free
modules, the second one is needed for the proof of the main theorem of the present sec-
tion.

Lemma 2.3.4. Let S be a ring and let M = (f, ... f.) be a finitely generated S-module. Then,

(i) M is free with basis {f,,....f.} if and only if Syz({f,,....f,}) =0.

(ii) M is free if and only if there exist matrices P of size r x s and @) of size s x r such that
M = (P)and QTPT = I,, with s > r, i.e., M is isomorphic to the column module of
a matrix such that its transpose is unimodular. Thus, M is isomorphic to the image of a
S-module epimorphism of free modules of finite dimension.

Proof. (i) Evident.

(ii)=) There exists an isomorphism M Z S”; from this we get the epimorphism
S ﬂ S”, where S° Do M is defined by h(e;) :=f,, 1 <i < s,and {ey,...,es} is the
canonical basis of S°. Thus, we get the epimorphism p := gh : §° — S”; let P be the
matrix of p in the canonical bases of S® and S”, then P is of size r x s and (P) = M. In
fact, let {z1,...,z,} a basis of M, we choose z; € S® such that h(z;) = z;,1 < j <r. We
define the homomorphism ¢ : M — Im(p) = (P) by t(x;) := p(z;). t is injective since if
tar-z1+ -+ ar-2,) =0witha; € A, thenay - p(z1) + -+ + a, - p(2) = 0 and hence
ay-gh(z1)+---+ay-gh(z) =0,s0 g(ar-h(z1)+---+ar-h(z)) = 0, but g is injective, then
ay-h(z)+---+ar-h(z)=0,ie,a,-z1+---+a, -z, = 0and from thisa; =--- = a, = 0.
Now, if p(z) € Im(p), with z € S%, then p(z) = gh(z) = g(by - x1 + -+ + b, - z;) for
some b; € A,s0 p(z) = g(bi - h(z1) + by - h(2)) = b1 - gh(z1) + -+ + b - gh(z) =
bi-p(z1)+ -+ b -p(z) =t(b1 -1+ -+ + by - ), and this proves that ¢ is surjective.

Since S” is projective there exists an homomorphism S” % S* such that pg = ig- and
hence QT PT = I,, with s > r.

<) Now we assume that (P) = M and Q7 P” = I, where P of size r x s and ) of size
s x r, with s > r. If p, ¢ are the homomorphisms defined by P and @), we have pg = ig-
and S” = Im(igr) C Im(p) C S”,i.e., M = Im(p) = S". O
Lemma 2.3.5. Let S be a ring and M a stably free S-module given by a minimal presentation

S* f—1> ST f—°> M — 0. Let g1 : S™ — S® such that g1 fi = igs. Then the following conditions
are equivalent:

(i) M is free of dimension r — s.
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(ii) There exists a matrix U € GL,(S) such that UGlT = [{)S] , where G is the matrix of g

in the canonical bases. In such case, the last r — s columns of UT conform a basis for M.
Moreover, the first s columns of UT conform the matrix Fy of f1 in the canonical bases.

(iii) There exists a matrix V. € G L,(S) such that GT coincides with the first s columns of V,
ie.,, GI' can be completed to an invertible matrix V of GL,(S).

Proof. By the hypothesis, the exact sequence 0 — S° ELNCIELNG VN splits, so F{
admits a right inverse GlT, where F7 is the matrix of f7 in the canonical bases and G is
the matrix of g1 : S — S°, with g1f1 = igs, i.e.,, F{GT = I,. Moreover, there exists
go : M — S" such that fogo = ips. From this we get also the split sequence 0 — M %%
ST 9L 65 5 0. Note that M = ker(g).

(i) = (ii): We have S" = ker(g1) ® Im(f1); by the hypothesis ker(g) is free. If s = r
then ker(g;) = 0 and hence f; is an isomorphism, so fig1 = igss, i.e., GTFI = I,. Thus,
we can take U := F.

Let r > s; if {e1,...,es} is the canonical basis of S*, then {uy,...,u,} is a basis of
Im(f1) withu; == fi(e;), 1 < i < s;let {vi,...,v,} be a basis of ker(g;) withp = r — s.
Then, {v1,...,vp,u1,...,us} is a basis of S”. We define S” hyogr by h(e;) := u; for
1 <i < s,and h(esq;) = vj for 1 < j < p. Clearly h is bijective; moreover, gih(e;) =
g1(w;) = g1fi(e;) = e; and g1h(esi;) = gi(vj) = 0,ie., HIGT = [%»] Let U := H', so
we observe that the last p columns of U conform a basis of ker(g;) = M and the first s
columns of UT conform F.

0
SO U(i)GlT = eiT, 1 < <s, U(SH)G{’ =0,1<j < pwith p := r — s. This means
that (Ugs44))" € ker(g1) and hence ((Us15))7|1 < j < p) C ker(g1). On the other hand,

(ii) = (i): Let U(k) the k-th row of U, then UG{ = [U(l) s U(S) s U(T)]TGT = |:IS:| p

let ¢ € ker(g1) C 57, then ¢I'GT = 0 and TUUGT = 0, thus cTU! [{ﬂ = 0 and
hence (c"U1)” € ker(l), where | : S” — S* is the homomorphism with matrix [I, 0].
Letd = [dy,...,d, )" € ker(l), then [dy,...,d,] [{)S] = 0 and from this we conclude that

dy = =ds =0, ie, ker(l) = (esi1,€s42,.-.,es1p). From (cTUHT € ker(l) we get
that (cTU )T = a1 -esp1+ - +ap-esip,s0clU™L = (ag - esp1+ - +ap-esip)?, e,
¢’ = (a1 -esr1+ -+ ap-es )" U and from this we get that ¢ € (U(,45))" |1 < j < p).
This proves that ker(g1) = ((Us45))" |1 < j < p); but since U is invertible, then ker(g;) is
free of dimension p. We have proved also that the last p columns of U” conform a basis
for ker(g1) = M.

I

(i) & (iii): UGT = [0] if and only if G = U~! [Is} , but the first s columns of

0

Ut [%} coincides with the first s columns of U™!; taking V := U~! we get the result. [
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Theorem 2.3.6. Let S be a ring. Then any stably free S-module M with rank(M) > sr(S) is
free with dimension equals to rank(M ).

Proof. Since M is stably free it has a minimal presentation, and hence, it is given by an
exact sequence

0 5% L 5m Lo A s

moreover, note that rank(M) = r — s. Since this sequence splits, F{ admits a right
inverse GlT, where F} is the matrix of f; in the canonical bases and (G is the matrix of
g1 : 8" — S°%, with g1 fi = igs. The idea of the proof is to find a matrix U € GL,(S) such

that UGT = Hﬂ and then apply Lemma 2.3.5.

We have F' GT = I, and from this we get that the first column g, of G7 is unimodular,
but since r > r — s > sr(S5), then g, is stable, and by Proposition 2.3.3, there exists
Ui € E,(S) such that U g, = e;. If s = 1, we finish since GT = g,.

Let s > 2; we have

1 *
mﬂ:hFJEGMMMMW)

Note that U; GT has a left inverse (for instance F{'U; '), and the form of this left inverse
is

1 *
L= |:O L2:|/ Ly € M(s—l)x(r—l) (S)/

and hence Lo Fy = I,_1. The first column of F} is unimodular and sincer — 1 > r — s >
sr(S) we apply again Proposition 2.3.3 and we obtain a matrix U; € E,_1(S) such that

1 x*
UyFp = [O FJ’ F3 € M _9)x(s—2)(5).

Let
1 0
U = [0 Ué:| S ET(S),
then we have
1 *x %
U2U1G{: 0 1 =«
0 0 Fs

By induction on s and multiplying on the left by elementary matrices we get a matrix
U € E,(S) such that
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I
T s
UGy = {0}

O

Corollary 2.3.7 (Stafford). Let D := A, (k) or By, (k), with char(k) = 0. Then, any stably free
left D-module M satisfying rank (M) > 2 is free.

Proof. The results follows from Theorem 2.3.6 since sr(D) = 2. O

2.4 Projective dimension of a module

Closely related to the study of stably free modules is the computation of the projective
dimension of a given module M. Later, we will expose some theoretical results that
will be used in Chapter 7 for computing the projective dimension of a finitely presented
left module over certain classes of skew PBW extensions. The first one only requires
the computation of arbitrary free resolutions of M; the second one allows additionally
to compute a minimal presentation of a finitely presented module M when a finite free
resolution of M is given, and also, it allows to check whether M is stably free or not(see
[105]). Remember that S denotes an arbitrary noncommutative RC ring.

We start with the following theorem which can be used for testing if a finitely pre-
sented module is projective (compare with [77], Theorem 4).

Theorem 2.4.1. Let M be an S-module given by a presentation

0— K — 8™ f—°> M — 0,
where K is f.g. Then, the following conditions are equivalent:
(i) M is projective.
(i) Exts(M,K) = 0.
Proof. (i) = (ii) This implication is well known, see [111].
(ii) = (i) From the given sequence we get the exact sequence

0 = Homs(M, K) — Homg(M, 8") Y2 Homg(M, M) — Exty(M,K) =0,

see [111], Theorem 7.3. Then, (fo)« is surjective and there exists f € Homg(M, S™) such
that (fo)«(f) =in, ie., fof = in. This means that S” = K & M, i.e.,, M is projective. [

Let

e N N R e N N LN NN Y
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be a projective resolution of M; recall that ker(f;) is called the i-th syzygy of M. When
P; := S% is free of finite dimension, we get a free resolution of M.

Theorem 2.4.2. Let M be an S-module and

L Ny N R N L N N AN NN N (2.4.1)
a projective resolution of M. Let r be the smallest integer such Im(f,) is projective. Then r does
not depend on the resolution and pd(M) = r.

Proof. It is well known that pd(M) < r if and only if there exists a projective resolution of
M where the (r — 1)-th syzygy is projective if and only if for every projective resolution
of M the (r — 1)-th syzygy is projective (see [111]), Theorem 9.5). Let r be the smallest
integer such I'm(f,) is projective, since Im(f,) = ker(f,—1) = (r — 1)-th syzygy, then
pd(M) < r. Suppose that pd(M) =t < r, then the (¢t — 1)-th syzygy of (2.4.1) is projective,
but this means that r is not minimum. Thus, pd(M) = r.

Let
f; ; f;, / / /
RECENYSQEING O NIEE Ny YNy KNG VN
another projective resolution of M, where s is the smallest integer such I'm(f!) is projec-
tive. Then pd(M) < s and hence r < s. Suppose that r < s, the (r — 1)-th syzygy of M
in the previous resolution is projective since pd(M) = r, but this is impossible since s is
minimum, hence r = s. O

Next we present the second result of this section that allows also to compute the
projective dimension of a module given by a finite free resolution. For this we follow
[105].

Theorem 2.4.3. Let M be an S-module and

0= P, I p, I p, Iz Bop Sup R g (2.4.2)

a projective resolution of M. If m > 2 and there exists a homomorphism g, : Pp—1 — Py, such
that g, fm = ip,,, then we have the following projective resolution of M:

0= Py 2 Py Py 2 p, oy It 2y p D p T (243)

with

fmfl

hm—l = |:
gm

:|/ hum—o = [fm—2 0]
Proof. Im(hpm—1) C ker(hp,—2): we have

hm—2hm—1 = [fm-2 0] [fml] = 0.
Im
ker(hpm—2) C Im(hpy_1): let (a,b)7 € ker(hy,_ o), then a € P, 5, b € P, and
hm—2[(a,0)T] = 0 = fn_2(a). Then there exists ¢ € P,,_1 such that a = f,,_1(c); we
define
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d:= [ipm—l - fmgm fm] (C, b)T =Cc— (fmgm)(c) + fm(b) € Pm—1~

Then, the image of d under h,,,—; is
Jm—1(¢) = fimn—1(fm(gm(c))) + fm—l(fm(b)):| _ |: Jm-1(c) ] _ |:a:|
gm(¢) = ((gmfm)gm)(c) + gm fm(b) gm(¢) = gm(c) + 0] [b]’

hm—1 is injective: if d € ker(hp—1), then hy,—1(d) = 0, 50 fi—1(d) = 0 and g,,(d) = 0; we
consider the exact sequence

0= Py I Poly 7% Ii(fnei) — 0,

since gmfm = ip, this sequence splits, ie., there exists a homomorphism
Em—1: Im(fm—1) — Ppn—1suchthatip , = fimgm + km—1fm—1. Hence, d = fr,gm(d) +
km—lfm—l(d) =0.

Flnally, Im(hm_g) = hm_Q(Pm_Q D Pm) = fm_Q(Pm_Q) = Im(fm_g) = ker(fm_g). L]
Corollary 2.4.4. Let M be an S-module and

0 — §5m f_m>S3m—1 fm—1 Gsm—2 fm—2 B

L2 g Ty gso Jo, g (2.4.4)
a finite free resolution of M. Let F; be the matrix of f; in the canonical bases, 1 < i < m. Then,

(i) If m > 3 and there exists a homomorphism g, : S°"~1 — S° such that g, fm, = igsm,
then we have the following finite free resolution of M:

0y GFm—1 MMl g e Pme2 gen g Smea o fgeo fo, g g (2.4.5)
with
Jm—1
him—1 = |: i , Mmoo = [fm72 O]
9m

In a matrix notation, if G, is the matrix of g, and H; is the matrix of h; in the canonical
bases, j = m — 1,m — 2, then

T T T T F%—Z
Hmfl = [mel Gm]’ Hm72 = 0 .

(ii) If m = 2 and there exists a homomorphism gy : S*' — S*2 such that ga fo = igs2, then we
have the following finite presentation of M:

0 — g5t [y gsotsa hoy pp g (2.4.6)

with

In a matrix notation,
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HT == [FT &), HT = [00]

Proof. This is an obvious consequence of the previous theorem. ]

Theorem 2.4.5. Let M be an S-module and n > 1. pd(M) = n if and only if there exists a finite
projective resolution of M as (2.4.2) where f, is non-split, i.e., there exists no homomorphism
gn : Phn—1 — P, such that g, f, =ip,.

Proof. =): there exists a finite projective resolution of M as in (2.4.2) with m = n; we have

the exact sequence 0 — P, In, P, h;> Im(fn—1) — 0. If f, splits, then I'm(f,—1) is

projective, and by Theorem 2.4.2, pd(M) < n — 1, false. Thus, f,, is non-split.

«): if M has a finite projective resolution as in in (2.4.2), with m = n, which is non-
split, then pd(M) < n and Im(f,—1) in not projective. Suppose that there exists k < n—2

such that Im(fy) is projective; we have the exact sequence 0 — Im(fys1) — Py ELN
Im(fr) — 0, where ¢ is the canonical inclusion, and hence, Im(fy+1) is also projective.
We can repeat this reasoning and we get that Im(f,—1) is projective, false. Thus, the
smallest r such that Im(f,) is projective is » = n, and by Theorem 2.4.2, pd(M) =n. O

Remark 2.4.6. The results above will be used in Chapter 7 for constructing algorithms for
computing the projective dimension of modules over bijective skew PBW extensions,
and also for computing minimal presentations and testing stably-freeness.



CHAPTER 3

Hermite rings

Rings for which all stably free modules are free have occupied special attention in ho-
mological algebra. In this chapter, we will consider matrix-constructive interpretation
of such rings and some other classes closely related. We will study also some classical
algebraic constructions as quotients, products and rings of fractions of these rings. The
material presented here can be considered as preparatory for the next chapter where we
will study the Hermite condition for skew PBW extensions. Recall that all rings consid-
ered are RC (see Remark 2.1.9).

3.1 Matrix descriptions of Hermite rings

Definition 3.1.1. Let S be a ring.

(i) Sisa PF ring if every f.g. projective S-module is free.
(ii) Sisa PSF ring if every f.g. projective S-module is stably free.
(iii) S is a Hermite ring, property denoted by H, if any stably free S-module is free.
The right versions of the above rings (i.e., for right modules) are defined in a similar
way and denoted by PF,, PSF, and H,, respectively. We say that S is a PF ring if S is
PF and PF, simultaneously; similarly, we define the properties PSF and H. However,

we will prove below later that these properties are left-right symmetric, i.e., they can be
denoted simply by PF, PSF and H. For domains we will write PFD, PSFD and HD.

From Definition 3.1.1 we get that
HN PSF = PF. (3.1.1)

The following theorem gives a matrix description of H rings (see [26] and compare with
[78] for the particular case of commutative rings. In [20] is presented a different and
independent proof of this theorem for right modules).

Theorem 3.1.2. Let S be a ring. Then, the following conditions are equivalent.

33
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(i) Sis H.

(ii) For every r > 1, any unimodular row matrix u over S of size 1 x r can be completed to an
invertible matrix of GL,(S) adding r — 1 new rows.

(iii) For every r > 1, if u is an unimodular row matrix of size 1 x r, then there exists a matrix
U € GL,(5) such that uU = (1,0,...,0).

(iv) For every r > 1, given an unimodular matrix F of size s x r, r > s, there exists U €
GL,(S) such that

FU=[I, | 0].
Proof. (i) = (ii): Letu := [u; --- u,] and v := [vg --- v,]T such that uv = 1, i.e., ujvy +
oo+ uv, = 1; we define
ST S
e; —r vU;
where {ej,...,e,} is the canonical basis of the left free module S” of columns vectors.

Observe that a(u’) = 1; we define the homomorphism 3 : S — S” by 3(1) := u”, then
af = ig. From this we get that S” = I'm(8) @ ker(a), (3 is injective, (u”) = Im(B) = S and
Im(B) is free with basis {u”'}. This implies that S” 22 S@ker(a), i.e., ker(a) is stably free of
rank  — 1, so by hypothesis, ker(«) is free of dimension r — 1; let {x1, ..., x,_1} be a basis
of ker(a), then {u”,x1,...,x,_1} is a basis of S". This means that [u” x-- ~xr_1]T €
GL,(S),1i.e., u can be completed to an invertible matrix of GL,(S) adding r — 1 rows.

(ii) =) (i): Let M be a stably free S-module, then there exist integers r,s > 0 such
that S” = §° @ M. It is enough to prove that M is free for the case when s = 1. In fact,
ST S5pM = S (S*~1@ M) is free and hence S*~1 & M is free; repeating this reasoning
we conclude that S @ M is free, so M is free.

Letr > 1suchthat S™ = S@M,letw : S” — S be the canonical projection with kernel

isomorphic to M and let {ey, ..., e, } be the canonical basis of S”; there exists 1 : S — S”
such that mu = ig and S” = ker(7) @ Im(p). Let u(1) := ul = [uy --- u,]T € S", then
7(u’) =1 = win(ey) + -+ + uym(e,), ie., v := [n(e1) --- w(e,)]? is such that uv = 1,

moreover, S” = ker(m) @ (u”). By hypothesis, there exists U € GL,(S) such that el U = u.

Let f7 : S* — S” be the homomorphism defined by U7, then f?(e;) = u’ and
fT(e;) = u; for i > 2, where u, ..., u, are the others columns of U” (i.e., the transpose
of the other rows of U). Since U = (UT)T then f7 is an isomorphism. If we prove that
fT(e;) € ker(m) for each i > 2, then ker(r) is free, and consequently, M is free. In fact,

let f’ be the restriction of f7 to (es,...,e.), i.e., f' : {(es,...,e,) — ker(n). Then f’is
bijective: of course f’ is injective; let w be any vector of S”, then there exists x € S” such
that f7(x) = w, we write x := |11 --- x,]T = x1e; + z, with z = x0e0 + - + z,€,.. We

have fT(x) = fT(z1e1 +z) = 21fT(e1) + f1(z) = x1u’ + fT(z) = w. In particular, if
w € ker(n), then w — f7(z) € ker(m) N (u’) = 0,s0 w = f7(z) and hence w = f'(z), i.e.,
[’ is surjective.

In order to conclude the proof, we will show that f7(e;) € ker () for each i > 2. Since
fT was defined by U7, the idea is to change U7 in a such way that its first column was
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u” and for the others columns were u; € ker(w), 2 < i < r. Let w(w;) := 1, € S, > 2,
and u; := u; — r;u’; then adding to column i of U7 the first column multiplied by —r;
we get a new matrix U” such that its first column is again u” and for the others we have
m(u)) = w(w;) —rim(ul) =r; —r; =0, i.e., u, € ker(m).

(ii) < (iii): u can be completed to an invertible matrix of GL,(S) if and only if there
exists V € GL,(S) such that (1,0,...,0)V = u if and only if (1,0,...,0) = uV~!; thus
U:=Vv-L

(iii) =) (iv): The proof will be done by induction on s. For s = 1 the result is trivial.
We assume that (iv) is true for unimodular matrices with [ < s — 1 rows. Let F be an
unimodular matrix of size s x r,r > s, then there exists a matrix B such that FB = I.
This implies that the first row u of F is unimodular; by (iii) there exists U’ € GL,(S) such
that ulU’ = (1,0,...,0) = el, and hence FU' = F”,

-}

with F’ a matrix of size (s — 1) x 7. Since FB = I, then I, = F"(U'"'B), ie., F" is
an unimodular matrix; let F”” be the matrix eliminating the first column of F’, then F"”
is unimodular of size (s — 1) x (r — 1), with r — 1 > s — 1, since the right inverse of

F" has the form {: . By induction, there exists a matrix C' € GL,_1(S) such that

0
G///
F"C = [I,—1 | 0].From this we get,

1 0o - 0
aj,  ay e ay, [1 0 ]
FU =F" = i ; ) = ’
as_11 Gg—12 "~ 4
and hence
1 0 1 01][1 O 1 0 O
! _ —
Fu [O C’] N [* F”’} [0 C] B [* Iy O}

Multiplying the last matrix on the right by elementary matrices we get (iv).

(iv) =) (iii): Taking s = 1 and F' = u in (iv) we get (iii). O

From the proof of the previous theorem we get the following result.

Corollary 3.1.3. Let S be a ring. Then, S is H if and only if any stably free S-module M of type
ST =S @ M is free.

Remark 3.1.4. (a) If we consider right modules and the right S-module structure on the
module S” of columns vectors, the conditions of the previous theorem can be formulated
in the following way:

()" Sis H,.
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(ii)* For every r > 1, any unimodular column matrix v over S of size r x 1 can be
completed to an invertible matrix of GL,(S) adding r — 1 new columns.

(iii)* For every r > 1, given an unimodular column matrix v over S of size r x 1 there
exists a matrix U € GL,(S) such that Uv = e;.

(iv)" For every r > 1, given an unimodular matrix F' of size r x s, r > s, there exists
U € GL,(S5) such that

or - [t]

The proof is as in the commutative case, see [78]. Corollary 3.1.3 can be formulated in this
case as follows: S'is H, if and only if any stably free right S-module M of type S” = S& M
is free.

(b) Considering again left modules and disposing the matrices of homomorphisms by
rows and composing homomorphisms from the left to the right (see Remark 2.1.2), we
can repeat the proof of Theorem 3.1.2 and obtain the equivalence of conditions (i)-(iv).
With this notation we do not need to take transposes in the proof of Theorem 3.1.2.

(c) If S is a commutative ring, of course, left and right conditions are equivalent, see
[78]. This follows from the fact that (FG)T = GTFT for any matrices F' € M,(S),G €
M, (S). However, as we remarked before, the Hermite condition is left-right symmetric
for general rings (Proposition 3.2.7). Another independent proof of this fact can be found
in [20], Theorem 11.4.4.

3.2 Matrix characterization of PF rings

In [26] are given some matrix characterizations of projective-free rings. In this section,
we present another matrix interpretation of this important class of rings. The main re-
sult presented here (Corollary 3.2.4) extends Theorem 6.2.2 in [78]. This result has been
proved independently also in [20], Proposition 11.4.9. A matrix proof of a Kaplansky
theorem about finitely generated projective modules over local rings is also included.

Theorem 3.2.1. Let S be a Hermite ring and M a f.g. projective module given by the column
module of a matrix F € Ms(S), with FT idempotent. Then, M is free with dim(M) = r if and
only if there exists a matrix U € M(S) such that UT € GL,(S) and

(3.2.1)

(U~ LFTyT = [0 Or.

0 I,

In such case, a basis of M is given by the last r rows of (UT)~L.

Proof. =): As in the proof of Proposition 2.1.1, let f : S* — S° be the homomorphism
defined by F and S* = M @& M’ with Im(f) = M and M’ = ker(f); by the hypothesis M
es free with dimension r, so r < s (recall that S is RC). Let h : M — S" an isomorphism
and {z1,...,z,} C M such that h(z;) = e;, 1 < i < r, then {z1,...,z,} is a basis of M.
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Since S is an Hermite ring, M’ is free, let {w1,...,w,_,} be a basis of M’ (recall that S
is ZBN). Then {w;,...,ws—y;21,...,2,} is a basis for S°. With this we define u in the
following way:

w(w;) :=ej,for1 <j<s-—r,
w(z;) = es_pqq, for 1 <i <r.
Note that v is an isomorphism and we get the following commutative diagram
g —L . g

u u

S8 — §°
to

where ¢ is given by tg(e;) :=0if 1 < j < s —r, and tp(es—r4i) = €s—r4i if 1 <@ < r; thus,
the matrix of ¢y in the canonical basis is

0 0
n-o Y]

Thus, uf = tou and hence FTUT = UTT{'. Note that (U?)~! exists since u is an isomor-
phism, hence (UT) L FTUT = TZ. From u(z;) := es—,+; we get that (zZ UT)T = e;_, 14, s0
zIUT = el |, andhencez; = el (UT)7!, ie, the basis of M coincides with the last r
rows of (UT)~L.

<): Let f, u be the homomorphisms defined by /' and U, then m(uf) = m(tou), where
to is the homomorphism defined by 7y, this means that uf = tyu, but by the hypothesis
U7 is invertible, so u is an isomorphism; from this we conclude that I'm(f) = I'm(ty), i.e.,
M = Im(f) = Im(ty) = (Tp) = S". Note that this part of the proof does not use that S is
an Hermite ring. O

From the previous theorem we get the following matrix description of PF rings.

Corollary 3.2.2. Let S be a ring. S is PF if and only if for each s > 1, given a matrix F €
M;(S), with FT idempotent, there exists a matrix U € M(S) such that UT € GL4(S) and

T
0 0} , (32.2)

T\N—1pT7r7T _
w7 FU—{O L

where r = dim((F)), 0 <r <.

Proof. =): Let F € M,(S), with FT idempotent, and let M be the S-module generated
by the columns of F'. By Proposition 2.1.1, M is a f.g. projective module, and by the
hypothesis, M is free. Since S is H, we can apply Theorem 3.2.1. If r = dim(M), then
r = dim((F)).

<): Let M be a finitely generated projective S-module, so there exists s > 1 such that

S5 =M@ M';let S° 74, $° be the canonical projection on M, so FT is idempotent and, by
the hypothesis, there exists U € M;(9S) such that UT € GL4(S) and (3.2.2) holds. From
the second part of the proof of Theorem 3.2.1 we get that M is free. O
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Remark 3.2.3. (i) If we consider right modules instead of left modules, then the previous
corollary can be reformulated in the following way: S'is PF; if and only if for each s > 1,
given an idempotent matrix F' € M(S), there exists a matrix U € GL4(S) such that

4 fo o
UFU _{0 b]’ (3.2.3)

where r = dim((F)), 0 < r < s, and (F') represents the right S-module generated by the
columns of F'. The proof is as in the commutative case, see [78].

(ii) Considering again left modules and disposing the matrices of homomorphisms by
rows and composing homomorphisms from the left to the right (see Remark 2.1.2), we
can repeat the proofs of Theorem 3.2.1 and Corollary 3.2.2 and get the characterization
(3.2.3) for the PF property; with this row notation we do not need to take transposes in
the proofs. However, observe that in this case (F') represents the left S-module generated
by the rows of F'. Note that Corollary 3.2.2 could have been formulated this way: In fact,

o 0]" o o

o .| |0 I
and we can rewrite (3.2.2) as (3.2.3) changing F'I by F (see Remark 2.1.2) and (U7)~! by
U.

(iii) If S is a commutative ring, of course PF' = PF,. = PF. However, we will prove in
Corollary 3.2.5 that the projective-free property is left-right symmetric for general rings.

Corollary 3.2.4. S is PF if and only if for each s > 1, given an idempotent matrix F' € M(.S),
there exists a matrix U € GLg(S) such that

4 _fo o
UFU [0 L]’ (3.2.4)

where r = dim((F)), 0 < r < s, and (F) represents the left S-module generated by the rows of
F.

Proof. This is the content of the part (ii) in the previous remark. O

Corollary 3.2.5. Let S bearing. Sis PF if and only if S is PF,,i.e., PF = PF, = PF.

Proof. Let F' € M,(S) be an idempotent matrix. If S is PF, then there exists P € GL4(S)

such that
110 0
UFU " = [0 AR

where 7 is the dimension of the left S-module generated by the rows of F. Observe
that UFU ! is also idempotent, moreover, the matrices X := UF and Y := U~! satisfy
UFU™! = XY and F = Y X, then from Proposition 0.3.1 in [26] we conclude that the left
S-module generated by the rows of UFU ! coincides with the left S-module generated
by the rows of F, and also, the right S-module generated by the columns of UFU !
coincides with the right S-module generated by the columns of F. This implies that the
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S-module generated by the rows of F' coincides with the right S-module generated by
the columns of F'. This means that S is PF,.. The symmetry of the problem completes the
proof. O

Another interesting matrix characterization of PF rings is given in [26], Proposition
0.4.7: aring S is PF if and only if given an idempotent matrix /' € M(S) there exist
matrices X € My, (S),Y € M,xs(S) such that F = XY and Y X = I,. A similar matrix
interpretation can be given for PSF rings using Proposition 0.3.1 in [26] and Corollary
2.2.5.

Proposition 3.2.6. Let S be a ring. Then,

(i) S is PSF if and only if given an idempotent matrix F' € M, (S) there exist s > 0 and
matrices X € M(,4.5)x,(S),Y € My (45 (S) such that

[FO

0 IJ =XYandYX = 1I,.

(ii) PSF = PSF, = PSF.
Proof. Direct consequence of Proposition 0.3.1 in [26] and Corollary 2.2.5. O

For the H property we have a similar characterization that proves the symmetry of
this condition.

Proposition 3.2.7. Let S be a ring. Then,
(i) Sis H if and only if given an idempotent matrix F' € M, (S) with factorization

[FO

0 1] = XY and Y X = I, for some matrices X € M, 4 1)xr(S),Y € M,y (r41)(5),

there exist matrices X' € M,y ,-1)(S),Y" € Mg_1)x,(S) such that F = X'Y" and
Y'X' =1,_.

(i) H = H, =*H.

Proof. Direct consequence of Propositions 0.3.1 and 0.4.7 in [26], and Corollary 3.1.3. [

Remark 3.2.8. By Theorem 3.1.2, S is H if and only if given u € Um,(n, S) there exist
U € GL,(S) suchuU = (1,0,...,0). This last implies that GL,(S) acts transitively on
Um,(n,S), which is equivalent to say that GL,(S) acts transitively on Umc(n, S) (see
Lemma 11.1.13 in [95]). Therefore, given v € Um,(n,S) there exist V€ GL,(5) such
Vv =ey;ie., Sis H,. Hence, we have obtained an alternative proof of Proposition 3.2.7.

We conclude this section given a matrix constructive proof of a well known Kaplan-
sky’s theorem.

Proposition 3.2.9. Any local ring S is PF.
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Proof. Let M a projective left S-module. By Remark 2.1.2, part (i), there exists an idempo-
tent matrix F' = [f;;] € M(S) such that the module generated by the rows of F' coincides
with M. According to Corollary 3.2.4, we need to show that there exists U € GL;(S) such
that the relation (3.2.4) holds. The proof is by induction on s.

s = 1: In this case F' = [f;;] = [f]; since S is local, its idempotents are trivial, then
f=1or f =0and hence M is free.
s = 2: In view of fact that S is local, two possibilities may arise:

f11 is invertible. Then, one can find G' € G L(S) such that GFG~! = [(1) 2] , for some
L 1 fiit fio . .
f € S. For this it is enough to take G = f f_l 1 1 ; to show that this matrix is
—J21J11
f11 —f12

invertible with inverse G~1 = [ ] we can use the relations that exist

for —fafitfiz+1
between the entries of F. See for example that GG~ = I

fir + fﬂ1f12f21 = 1 because fZ + fiaf21 = f11 and f1; is invertible;
—fia — fii fafor it fro + fit fri2 = —fia + (1 — fiit frafor) fii fiz
= —fio+ fufiifiz=0;

—foafi fu+ fa=0;

forfitfiz = faafi frz +1= 1.

Similar calculations show that G™'G = I. Since F is idempotent, f so is; applying the
case s = 1 we get the result.

1 — f11 is invertible. In the same way, we can find H € GL»(S) such that HFH —

00 o 1 —(1 = fi1) " fi2 1
; for this it is enough to take H = _ ; note that H—* =
[O 9] s 16 for —fa(l—fu) tfiz+1

. _ -1
[1 S (U= )7 e ndeed HE = Iy
—f2 1

1= fir+ (1= fu) ' fizfor =1 = fur + fi1 = 1 because fiafor = (1 = fu1) fui;
(1= fu) " fo— (1= fi) iz =0;

for(1 = fi1) + far (1 = fu) " frafor — for = far(1 = fu1) + forfir — far = 0;
fa(L=fu) iz = fa(l = fu1) 2 +1=1

An analogous calculation shows that H ~1H = I,. Note that g is an idempotent of S, then
g = 0 or g = 1 and the statement follows.

Now suppose that the result holds for s — 1; considering both possibilities for fi; we
have:
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If f1 is invertible, taking

[ 1 fatfe fatfis o fit s

—fafnt 1 0O - 0
G= |-fafii 0 1 0

| —fofi 0 0 1]

we have that G € GL(S) and its inverse is:

[ f11 —f12 —f13 —fis

fa1 —f21f1_11f12 +1 —f21f1_11f13 —f21f1_11f15
Gl= |fa  —fafn'f —fafnfs+l o —fafntfis

fa = fafitfio —faifiitfis o —fafil fis + 1]

In fact, see that GG~ = I,:

fir+ it fiafor + -+ f fisfs = 1 because £ + fiafor + -+ fisfa = fiu;

—fio—fii fafa fint ft it fo— At fs s fint o= = fat fsfa fat fiz = = fia+

(1— £ S5, fufi) fi fria = —fiz + fun fig frz = 0;

—fis—fiat fefa fit fs— ot hsfafat fis— = f fsfa fnt fs+ fat fis = = fis+

(1= fi o0, fifa) fitfis = = fis + finfi fis = 0;

—fafit i+ for = 0; for fit fiz — farfii iz + 1 =1 fa firt fri — for fiit i = O for

every 3 <i <'s;

—fa it fin+ fa = 0; fsi fiit i — fa1fiit f1i = 0 for every 2 < i < s — 1 and, finally,

fslfl_llfls - fslfl_llfls +1=1

I 015
Os—11 B
idempotent matrix. Only remains to apply the induction hypothesis.

Similarly, G™1G = I,. Moreover, GFG™! = [

If 1 — fi11 is invertible, taking

1 —(1= fi1)" " fi2 —(1= fi1)" " fis —(1= fi)) " fis
fo1 —f21(1—f11)_1f12+1 —f21(1—f11)_1f13 _f21(1_f11)_1fls
H= | —f31(1 = f11) " 12 —fa1(1— fi) iz +1 - —fa1(1 = fi1) "' fas

f;1 —f1(1 = f11) " faz —fs1(1 = f11) " 13 o —fa(l = i) s 41

] where '} € M;_1(S) is an
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we have that H € GL,(S) with inverse given by:

[1—fu1 A= fi) e = fi) s - 1= fi) Lfas]

— fo 1 0 0

H'=| —fa 0 1 0
= 0 0 N .

In fact, note that HH ! = I,:

L= fu+1=fi) ' 30, frifin = 1= fui+ fin = 1because 7, fiifia = (1— fu1) fun
and (1 — f11) is invertible; also (1 — f11) ! f1s — (1 — f11) ' f1i for2 <i < s;

for(1 = f11) + faa 2o (U — i) L fufin — far = —fafin + fafun = 0; for(1 —
fi) 7 iz — fa(1 = fi1) iz +1=1;and for (1 — fi) " fi — fa(1— f11) "t fri =0

for3 <i<s.

fa(l=fin)+faa i (A= f11) L frifin—fs1 = —fafutfoafin = 0; fa(l—f11) L fri—
fa(1 = fir) " tfii = 0for 3 < i < s—1and, finally, fs1(1 — fi1) 1fis — fsa(1 —
fi) ths+1=1.

Similarly, we can to show that H ~1H = I,. Furthermore, we have also HFH™! =

{0 0 01}’;_1] with F, € M,_1(S) an idempotent matrix. One more time we apply
s—1,1 2
the induction hypothesis. O

3.3 Some important subclasses of Hermite rings

There are some other classes of rings closely related to Hermite rings that we will recall
next (see [26], [60], [62] and [125]).

Definition 3.3.1. Let S be a ring.

(i) S is an elementary divisor ring (ED) if for any r,s > 1, given a rectangular matrix F &
M, s(S) there exist invertible matrices P € GL,(S) and Q € GL4(S) such that PFQ
is a Smith normal diagonal matrix, i.e., there exist dy,da, . ..,d; € S, with | = min{r, s},
such that

PFQ = diag(dl, da, ... ,dl), with Sd;115 C Sd; N diSfOT 1 <3<,

where SdS denotes the two-sided ideal generated by d.

(ii) Sis an ID ring if for any s > 1, given an idempotent matrix F' € M;(S) there exists an
invertible matrix P € GL4(S) such that PF P~! is a Smith normal diagonal matrix.
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(iii) S isa left K-Hermite ring (KH) if given a,b € S there exist U € GL2(S) and d € S such
that Ua b]" = [d 0]". Sisaright K-Hermite ring (KH,) if [a b]U = [d 0].
The ring S is KH if S is KH and K H,.

(iv) S is a left Bézout ring (B) if every f.q. left ideal of S is principal. S is a right Bézout ring
(By) if every f.g. right ideal of S is principal. S is a B ring if S is B and B,..

(v) S'isaleft cancellable ring (C') if for any f.g. projective left S-modules P, P’ holds: P & S =
P &S < P = P. Sisright cancellable (C,) if for any f.g. projective right S-modules
P,P holds: P& S =P &S < P =P Siscancellable (C) if S is (C) and (C,).

From Proposition 0.3.1 of [26] it is easy to give a matrix interpretation of C rings, and
also, we can deduce that C = C,. = C.

Proposition 3.3.2. Let S be a ring. Then,

(i) S is C if and only if given idempotent matrices ' € M,(S), G € M,(S) the following

statement is true: The matrices
F 0 and G 0
0 1 0 1

can be factorized as

[1(? (1)] = XY, [ﬁ ﬂ =Y'X', for some matrices X' € Msi1yx(r41)(S),
V'€ Mgy1yx(s+1)(S)

ifandonly if F = XY, G =Y X, for some matrices X € My(S),Y € M,(S5).
(i) C=0C, =C.

Proof. Direct consequence of Proposition 0.3.1 in [26]. O

For domains, the above classes of rings are denoted by £DD, 7DD, KHD, KHD,,
KHD, BD, BD,, BD and CD, respectively.

Theorem 3.3.3. (i) €D C KH C B.
(ii) KHD = BD C PFD.
(iii) PF C ID
(iv) ID = PF for rings without nontrivial idempotents. Thus, ZDD = PFD.
(V) PFCCCH.
Similar relations are valid for KH,, KH, B, and B.

Proof. (i) It is clear that £D C KH. Let a,b € S, we want to proof that any left ideal
Sa + Sb is principal. There exist U € GLy(S) and d € S such that U [a b]T =[d 0] r
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this implies that Sd C Sa + Sb, but since [a b]T =U"'[d 0 T then Sa + S C Sd. This
proved that KH C B.

(ii) KHD = BD was proved by Amitsur in [3]. We include the proof by completeness.

In order to prove the inclusion BD C PFD we show first that if S is BD then each
finitely generated left ideal of S is free: Let I be a left ideal of S, if I = 0, so [ is free; let

I # 0, then I = Sa, for some a # 0, but since S has no zero divisors, then I is free with
basis {a}.

Next we will prove that each finitely generated submodule of a free S-module is free:
Let M be a free S-module with basis X and let N = Sz; +- - - 4+ 52 be a finitely generated
submodule of M (if M = 0 or N = 0 there is nothing to prove). Each z; defines a finite
subset X; of X, 1 < i <t ,s0o N C (U_,X;}, and hence, there exists a finite sequence
x1,...,x, of elements of X such that N C Sz1 @ --- ® Sz, i.e.,, N is a submodule of
a free module with a basis of n elements, so we can complete the proof of freeness of
N by induction: For n = 1 we have N C Sx; = S, so N is isomorphic to a finitely
generated left ideal of S, hence N is free. Consider again that N C Sz1 @ --- & Sz, and
we define the function f : N — Sbyz = sjz; + -+ + spx, — s,. Note that fisa
homomorphism and f(XN) is a finitely generated left ideal of S, i.e., f(IN) is free. We have
the exact sequence 0 - N N (Sz1 & --- @ Szp_1) - N — f(N) — 0, but since f(N) is
projective, then this sequence splits, so N = f(N) & (NN (Sz1 & --- @ Szp—1)). Note that
NN (Sz1®---@®Sx,—_1) is a finitely generated submodule of a free module with a basis of
n— 1 elements, by induction NN (Sz1 @ -- @ Sz,—1) is free, and hence N is free. Now we
are able to prove that S is PF: Let M be a finitely generated projective S-module, then
M is a finitely generated submodule (as a free summand) of a free module, hence M is
free.

(iii) Using permutation matrices it is clear that PF C ZD (see Corollary 3.2.4).

(iv) Let S be an ZD ring and let F' = [f;;] € M,(S) be an idempotent matrix over S; by
the hypothesis, there exists P € GL,(S) such that PFP~! is diagonal, let D := PFP~! =
diag(dy,ds, . ..,ds); since PEP~!is idempotent, then each d; is idempotent, so d; = 0 or
d; = 1foreach 1 < ¢ < s. By permutation matrices we can assume that

4 _Jo o
PFP _[O Ll

in addition, note that r is the dimension of the left S-module generated by the rows of F.
Then, S is PF.

(v) Let P, P’ be f.g. S-modules such that P & S = P’ @ S; since S is PF there exists
n,n' such that P = 8", P’ =~ S and hence S" & S = S" & S,son+1 =n' + 1, ie.,
PP,

Let now M be a stably free module, M @& S° = S”, since r > s and S is left cancellable,
then M = 575, ]
From Theorem 3.3.3 we conclude that for domains the following inclusions hold:

EDD CKHD =BD CPFD=1IDD CCD C HD. (3.3.1)

Similar relations are valid for the right side.
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The next proposition gives an alternative characterization of K H rings and will be
used to prove that CH C H for commutative rings.

Proposition 3.3.4. Let S be a ring. S is KH if and only if for every r > 2, given elements

bi,...,by €S, there exists U € Gl,.(S) and d € S such that U [by - -- bT]T =[d - O]T.
Similar characterization holds for K H, rings.

Proof. =): By induction over r. The case r = 2 is direct consequence from the definition.
Suppose that the result holds for any row of size < r and let Uy € GL(S) such that

Up[br—1 b]" = [d 0], for some d’ € S. We have U [by --- by_a by b =
(b1 - b d 0] T with Uy = [ITO_ 2 go } € GL.(S). Applying the induction
hypothesis to by, ..., b,_2,d we find Uy € GL,_1(S) such that Uy [bl coo br_g d’}T =
[d - O}T for somed € S. Let U’ := [%2 (1) ] € GL,(S), then U := U'U; € GL,.(S)
satisfies U [by -+ b,]" =[d 0]".

<): Trivial. O

Corollary 3.3.5. For commutative rings, KH C H.

Proof. Let S be a commutative KH ring and let u = [ul . ur]T be an unimodular

column vector, by Proposition 3.3.4 there exists U € GL,(S)suchthatUu = [d --- 0] 4
for some d € S. This implies that Sd = Su; + --- + Su, = S, i.e., d is left invertible, and
hence, invertible. From this we get that d " 1Uu = e;. O

7

The following characterization of ZD rings for which all idempotents are central will
be used below (see [90] and [78] for the particular case of commutative rings).

Proposition 3.3.6. Let S be a ring such that all idempotents are central. Then the following
conditions are equivalent

(i) S is ID.

(ii) Any idempotent matrix over S is similar to a diagonal matrix.

(iii) Given an idempotent matrix ' € M,.(S) there exists an unimodular vector v = [v1, ..., v,]T
over S and an invertible matrix U € GL,(S) such that Uv = e, and Fv = av, for some
achS.

Proof. (i) = (ii) is trivial.

(ii) = (iii): Let F € M,(S) be idempotent, there exists P € GL,(S) such that PFP~! =
diag(dy, ..., d,), note that each d; is idempotent (see the proof of the part (iv) in Theorem
3.3.3); the canonical vector e; is unimodular, moreover PFP~'e; = die;. Letv := P~ ey,
then v is unimodular, F'v = d;v and Pv = e;. Thus, the result is valid with U = P and

a:dl.
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(iii) = (ii): Let F' € M, (S) be idempotent, we will prove that there exists Q) € GL,(S)
such that QFQ~! is diagonal. The proof is by induction on r. For r = 1, if f € S with
f? = f, then there exist v,u € S* such that uv = 1 and fv = av, for some a € S, hence
f=aie, 1f17 =a.

Suppose that any idempotent matrix of size < r is similar to a diagonal matrix. Let
F € M,(S) idempotent; if F' = 0 there is nothing to prove. Let F' # 0. By the hypothesis,
there exist an unimodular vector v = [v1,...,v,]T over S and an invertible matrix U €
GL,(S) such that Uv = e; and Fv = dyv, for some d; € S. Then, F is similar to the
matrix F := UFU !, and F has the form

di a2 -+ air
~ 0 az -+ az
F =

0 Ar2 ... Qpp

In fact, fel = UFU ley = UFv = Udyv = diUv = dye;. But Fis idempotent since F’
is idempotent, so d? = d and the submatrix H := laij], with 2 < i, j < r,is idempotent
of size (r — 1) x (r — 1). By induction, there exists Q' € GL,_1(S) and da,d3,...,d, € S
such that Q"HQ'~! = diag(da, ds, . . ., d,). From this we get that F is similar to the matrix
13, where

(dy by b --- by
Lo ) 0 0 do 0 ... O
. I — 10 0 d3 ... O
r [0 Q’} E [0 Q’—l] o A
0 0 0 ... d]
for some by, ..., b, € S. Since F' is idempotent, then Fis idempotent, and hence, d% =d;,
for each 1 < i < r, moreover, foreach2 < j <,
bj(dl + dj —1)=0. (3.3.2)

Now we consider for a moment S™ as the right S-module of column vectors (see Remark
2.1.2 (i)); the idea is to make a change of basis of S” and to prove that F is similar to the

matrix diag(d; .. .,d,). For this we have to construct a basis {u,us,...,u,} of S™ such
that Fu; = du;, 1 < ¢ < r. We consider the vectors u; = ey, uy = (ag,l,O,...,O)T,
uz = (a3,0,1,...,0)7, ... u, = (ar,0,0,...,1)T, where as,...,a, € S must be defined.

For 2 < j <r, from condition Fu; = d;u;, the a;’s must satisfy
bj = (dj - dl)aj. (333)

(3.3.2) implies that b;(d; — d; + 2d; — 1) = 0, and hence b;(d; — d;) = b;(1 — 2d;), but
(1 — 2dj)2 = 1, SO bj(dl — dj)(l — de) = bj, thus aj; = bj(Zdj — 1) satisfies (333) With
this change of basis we get H FFH 1 = diag(d; ...,d,), where
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1 —as -—ag —a,
0 1 0
H:= |0 1 0 |, witha; :=bj(2d; —1),2<j <.
0 0 o - 1]
Thus, we have proved that F' is similar to the matrix diag(di, ds, ..., d;), i.e., there exists

P € GL,(S) such that PFP~! = diag(dy, da, ..., d,).

(ii) = (i): Let F' € GL,(S) be an idempotent matrix. Then there exists Q) € GL,(S)
such that QFQ~! = D := diag(di,ds, ..., d,); as we saw before, each d; is idempotent.
We will prove that there exists P € G L,(S) such that PDP~! is a diagonal Smith normal
matrix. We divide this proof in some steps.

Step 1. We observe first that there exist idempotents fi,..., f, € S and a € S such
thatf = [ - f]"

is unimodular and a f; = d;, for 1 < i < r. In fact, we define

ai=di+-+doty (T T] dieediy),
j=2

i1 <ig<---<ij
fi=l—a+d;, 1 <i<r

(fOI‘ example, forr = 3,a = d; +ds + ds — dids — dids — dads + dydads, f1 =1—dy —
ds + didg + dids + dods — didads, fo = 1 — dy — ds + dids + di1ds + dods — didads and
fzs =1—di —dy+dida+dids +dads — didads). By a direct computation can be proved that
ais idempotent and d; = ad;, for 1 < i < r. From this, af; = a(l1—a+d;) = a—a®+ad; =
ad; = di; moreover, f? = (1—a+d;)(1—a+d;) =1 —a+d;—a+a®—ad; +d; —ad; + df =
1 —a+d; = f;. The proof of unimodularity of f can be done by direct computation,
l=gfi+g2fo+--+ grfr, with

r r—2
giv=di— > d+> (-1Y( ] di-di) fori<i<r-—1
j=2

I=i+1 1<ty <ig<--<ij
gr =1+ (=1)""Ydy---d,_;.

Step 2. Now we want to prove that there exists U € GL,(S) such that Uf = e;. We
consider the matrix H := [h;;] € M, (S), with h;; := f;g; central, 1 < 4,j < r (remember
that all idempotents are central). Note that H? = H; by the hypothesis there exists V €
GL,(S) such that VHV ! is diagonal, let D’ := VHV~! = diag(by,bs,...,b,); since
VHV1is idempotent, then each b; is idempotent; moreover, since each h;; is central,
then tr(D') = tr(H) = 1 and hence by + --- 4+ b, = 1. Let w := [by,...,b,]", then wis
unimodular and D'w = w, additionally, We; = w, where

by -1 -1 ... -1
b 1 0 ... O
W.e=106s 0 1 ... 0 e GL.(S).

b 0 0 ... 1
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Let z := [z -+~ 2] := V~lw, then z is unimodular and VHz = VHV 'w = D'w =
w, so Hz = z. Hence, 22:1 figjz; = =, for each i, ie., (Z;Zlgjzj)fi = z;, thus
(> iz1 952 - ' = [21 -+ 2], Butsince fi,..., f are central and z is unimod-

ular, then ¢ := 377, g;2; is left invertible and ¢'c = 1 for some ¢’ € S; observe that cc’ is
idempotent, so central, and by the hypothesis there exists z € S* such that zcc’ =4,
with d € S idempotent, from this we get that c¢’ = d and ¢ = ¢d, i.e., d(1 —d) =0, so
(1—d)d = 0and consequently 1 —d = 0, i.e, c¢ = 1. This means that c is invertible. Note
that V-'We;, = z,50 c 7'V~ 'We; = f. Taking U := W~V ¢ we get the claimed.

Step 3. Df = [dif1 - dpfy] = [aff - aff] =alfi -+ f] =aof. Thus,
we have an idempotent matrix D, an unimodular vector f, an invertible matrix U and
an element a € S such that Df = af and Uf = e;. Then, as in the proof (iii) = (ii),
there exists L € GL,(S) such that LDL~! = diag(a,d),...,a.), and hence T'FT'~! =
diag(a,dl,...,a.), withT’ := LQ € GL,(S). Since diag(al, . . ., a,.) is idempotent, then by
induction there exists T' € GL,(S) such that T'diag(a, a}, ...,a.)T~! = diag(a, as, .. .,a,)
is a diagonal Smith normal matrix. If @ = 0 or as = 0, we have finished. Let a,as # 0,
since a,as,...,a, are central, we must prove that Say C Sa, ie., a divides as. Since
a divides each d;, then a divides each entry of D, and hence, a divides each entry of
LDL™!, thus a divides each a;», 2 < j < r. From this we get that a divides each entry of

Tdiag(a, dj, ...,a.)T~!, so in particular, a divides as.

" I’ I’

Hence, we can conclude that there exists a matrix P € GL,(S) such that PFP~! =
diag(a, ag, ..., a,) is a Smith normal diagonal matrix. O

In (3.3.1) we saw that ZDD C ‘HD, moreover 2D C ‘H for commutative rings (see
[118], [90], and also [78]). These results can be extended using some ideas in the proof of
the previous proposition, and also the following elementary fact.

Remark 3.3.7. If u is an unimodular row of size 1 x r and P € GL,(S), then u is com-
pletable to an invertible matrix if and only if uP is completable.

Proposition 3.3.8. Let S be a ring such that all idempotents are central. Then, ID C H.

Proof. Let u = [uy --- u,] be an unimodular row matrix of size 1 x r, there exists v =
[v1 - v]T such that ujvy + -+ + u,v, = 1; we consider the matrix F' = [fi;] € M,(5),
with f;; = vuj, 1 < i,j5 < r. Note that F? = F; by the hypothesis there exists
P € GL,(S) such that PFP~! is diagonal, let D := PFP~! = diag(dy,ds, ... ,d,); since
PFPlis idempotent, then each d; is idempotent. Let w := uP~! and x := Puv, then
wx = uP~'Pv = 1 and xw = PvuP~! = PFP~! = D. By the above remark, u is com-
pletable if and only if w is. Thus, we will show that w is completable. From xw = D
we obtain that z;w; = d; is idempotent for all 1 < i < r and z;w; = 0 for i # j. But
Y opeq wiz; = 1, then w; = wiz;w; and x; = xyw;x;. Let f; := w;z; for 1 < i < r, hence
each f; is idempotent. By the hypothesis d;, f; are central, then d; = d% = x; fiw; = fid;
and f; = ff = d;f;, so that d; = f; and z;w; = w;x; for 1 < ¢ < r. Therefore,
Oy @)y wi) = 1, hence Y., w; is left invertible, and as we saw in the step 2
in the proof of the previous proposition, ) ;_, w; is invertible; thereby, the matrix
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(w1 we w3 wy |
-1 1 0 0
v=|-1 0 1 0 ,
-1 0 0 1]
is invertible, i.e., w is completable. O

3.4 Products and quotients

Next we will study the properties introduced in Definition 3.3.1 with respect to some
algebraic standard constructions.

Theorem 3.4.1. Let S be a ring and I C Rad(S) an ideal of S. Let {S;}icc be a family of rings.
Then,

(i) SisH if and only if S/I is H.
(i) [Licc Siis H if and only if each S; is H.
(iii) If [[;cc Si is PF, then each S; is P.F.
(iv) If S'is ED, then S/I is ED for any proper ideal I of S.
(V) Ilicc Siis ED if and only if each S; is ED.
(vi) If S'is B, then S/I is B for any proper ideal I of S which is f.g. as left ideal.
(vii) [[;cc Siis B if and only if each S; is B.

(viii) Suppose that in S all idempotents are central and I is a nilideal. If S/I is ID, then S is
iD.

(ix) [licc Siis ID if and only if each S; is ID.
(x) If Sis KH, then S/I is K H for any proper ideal I of S.
(xi) [liec Siis KH if and only if each S; is KH.

(xii) [[;cc Siis C if and only if each S; is C.

(xiii) If [[;cc Siis PSF, then each S; is PSF.

Similar relations are valid for the right side.

Proof. In this proof we will use the following facts: (a) if S := S/I, then U := [u;j] €
GL,(S) if and only if U = [@;;] € GL.(S). Moreover, (U)~" = U-L. In fact, the necessary
condition is trivial. Now let U € GL,(S), then there exists V € GL,(S) such that UV =
I, = VU, where I, is the identical matrix over S; from this we get that UV — I, VU — I, €
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M, (Rad(S)) = Rad(M,(S)), and hence, there exist C, D € M,(S) such that UVC = I,
and DVU = 1I,,s0U € GL,(S).

(b) On the other hand, let B := [],.. S;, then M,(B) = [],.. M,(S;), where the iso-
morphism is defined by F s (F9), with F = [fu.], fuv = (qulv)), FO) = [fqgﬁj)] From this
we obtain that M,(B)* = GLs(B) = [[;,cc GLs(Si) = [;cc Ms(Si)*.

(i) We will use the characterization given in Theorem 3.1.2 (iii).

=): Let# = [v71, . .., ¥;] be an unimodular row matrix of size 1 x r over S. There exist
v1,...,v € Ssuchthatui vy + -+ + . vy = 1, i€, ugvy + - - + upv, — 1 € Rad(S). This
means that u1vy + - - + u,v, € S* and hence, u = [uy,...,u,]T € S” is unimodular. By

the hypothesis, there exists U = [u;;] € GL,(S) such that uU = el From this we get that
ulU =e;7, with U = [u;;] € GL,(S). This proves that S is H.

<): Letu = [uy,...,u,] be unimodular over 5, then # is unimodular over S. By the
hypothesis, there exists U € GL,(S) such that uU = ;. We get that
uruir + - upue — 1= py,

ULUL2 F * -+ UpUp2 = P2,

ULULy + + -+ Uplpy = Dpr,
with py,...,p, € Rad(S). Let z = (1 4+ p1)~!, then z € S* and hence
uUD = [17p27'-',pr]a

where D is the diagonal matrix D = diag(z,1...,1). Finally, uUDH = [1,0,...,0] with
H = Elg(—pg)E13(—p3) s Elr(—pr). Note that UDH ¢ GLT<S)

(ii) <): Let B := [[,c¢ Si and u = [uy, ..., u,] an unimodular row over B, then there
exists vq,...,v, € B such that ujvy + -+ +uv, = 1, let u; := (uy)), uy) € S;,1 e,
1< j <r. Then, u® := [ugi), . ,qu)] is unimodular over S; for each ¢, and there exists
U = ()] € GL,(S;) such that u®U® = [17,0,...,0] (the first canonical vector over
Si). Let U = [up,] with u,q = (uz(fq)) € B, then U € GL,(B) and uU = e (the first
canonical vector over B).

=): Let k € C, we will prove that Sy is H. Let ulk) = [ugk), cel (k)] be unimodular
over Sy, then there exists v*) = [vgk), . ,vﬁk)} such that ug )U(k) T O
Note that u := [uq, . .., u,| is unimodular, with

up = (... 1ug),1,...),u2: (.. Ou(k)0...),...,ur::(...,O,ugk),O,...).

In fact, let

vy = (...,1 vg ),1,...),1)2 = (...,0,v§k),0,...),...,vr = (...,0,v$k),0,...),
thenujvi+- - -4uv, = (..., 1,1,1,...,),and hence, there exists U = [u,,] € GL,(B), with
Upg = (u},q)) such that ulU = el. Thus, for UF) = [u (k)] € GL,(Sk) we have u®U*) =
[1%,0,...,0].
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(iii) Let k& € C, we will prove that S is PF. Let F(*) = | fuv ] € M;(S)) idempotent,

then F' € M(B) is idempotent, where F' = [f,,], with fuv = (fuv) and fl%) = 0fori # k.
There exists P € GLs(B) such that

- 0 0
PFP [0 I]

hence for P*¥) ¢ GL,(S};) we have

ok) k)
k) m(k E)y—1 _
where I,gk) is the identical matrix over S}, of size r x r and the 0) are null matrices over

S, thus S), is PF.

(iv) Let F be a rectangular matrix over S, then F is a rectangular matrix over S and
there exist invertible matrices P € GL,(S),Q € GL4(S) and d,ds,...,d; in S, with
0 <! < min{r, s}, such that PFQ = diag(d,ds,...,d;,0) and Sd;+1.5 C Sd Nd;S, forl <
i < 1. From this we obtain that P € GL,(S),Q € GLs(S)and P F Q = diag(dy, da, .. .,d;)
and Sd; .1 SCSd;nd; S, forl <i<I.

(v) =): Let k € C, we will prove that Sy is ED. Let F(*) = [fq%)] € M,«s(Sk) a
rectangular matrix, then F' € M, s(B) is a rectangular matrix over B, where F' = [fy.],

with fu, = (f)) and f{) = 0 for i # k. There exist P € GL.(B),Q € GLy(G), and
(@™, @Y,..., (d”) in B,1 = min{r, s}, such that

PFQ = diag((d\"), (d),....(d")), B@d\))B  Bd)n (d)B,1<j<L.
Then, P*) € GL,(Sk), Q™ € GL,(Sk) and

POFEQ® = diag(d”, d",....d"), Syl S, € S ndPs, 1< <1,

<) Let F = [fus] € M,xs(B) be a rectangular matrix, with f,, = ( f&?), fqgﬁj) € S;;
then FO) = [£$)] € M, ,,(S;) and there exist matrices P4 € GL,(B), Q¥ € GL,(B) and
dgl)7 dg’), . vdl(i) in S;, [; = min{r, s}, such that

POFOQO = diag(d’,dy, ..., d"), S:d\),5; € 5:d) nds;, 1< j <.

Since for each i, [; = min{r, s}, let [ := min{r, s} and then
PFQ = diag((d"), (" d")), B\ B < B@)n(d")B,1<j<!1
Q = diag((d"), (@), ... (™)), B@),)B < By n (@)B,1<j <t

(vi) and (vii) are direct consequence of the form of left ideals in S/I and [[;.. Si.

(viii) We preserve the previous notation. Let F' € M,(S) be an idempotent matrix,
then F € M,(S) is idempotent and there exists P € GL4(S) such that
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D=PF (P)" = diag(ds, ..., d), with Sd71 5 C S diNd; 5.

Note that D is idempotent, so each d; is idempotent, 1 < i < r; letd := d; - - - d,, then
@’ = d. Since I is nilideal we can assume that d is idempotent (see [68]), and hence,
central; moreover since each d; is central, d;|d;+1, and then d = d,. (this can be easy prove
by induction on ). Note that De, = de,, so F'o = dv, with v := (P)~'e, unimodular
over S, and hence, v is unimodular over S. Moreover, there exists V € GL,(S) such that
Vo = e;. In fact, we have v — P~ le, = u = [uy,...,u,])7, with u; € Rad(S),1 <i < r.
Then, v = P~ 'e,+u, and hence, Pv = e, + Pu is a column matrix with the last component
invertible, so multiplying by elementary and permutation matrices we get V' € GL,(S5)
such that Vv = e;.

We have Fv = dv + z, with z = [z, ... ,zr]T,zi € Rad(5),1 < i < r. From this we
get that F?v = Fo = dFv + Fz,50 Fz = (1 — d)Fv = (1 — d)(dv + z) = (1 — d)z since
(1 —d)d =0. Then, F(v+ (2d —1)z)= Fo+ (2d — 1)Fz = dv+z +(2d — 1)(1 — d)z =
dv +dz = d(v + (2d — 1)z). Thus, given the idempotent matrix F' we have found a vector
w := v+ (2d — 1)z and an element d € S such that Fw = dw, moreover w is unimodular
since v is unimodular and z; € Rad(S), 1 < i < r. In addition, the first component of the
vector Vw = e; +V (2d — 1)z is invertible, so by elementary operations we found a matrix
W e GL,(S) such that Ww = e;. From Proposition 3.3.6 we get that S is an ZD ring,.

(ix) The proof is completely similar to the proof of (v).

(x) Evident.

(xi) The proof is as in (v).

(xii) =): We will apply Proposition 3.3.2. Let k € C and Fk) = [ Q(Lﬁ)] € M(Sk), G =
[ggf,)} € M, (Sy) idempotent matrices, then F' € M,(B), G € M,(B) are idempotent, where
F = [fuw), G = [guv), with fu, = (fz%)),guv = (gq(fg) and fz%) =0= 91(2 for i # k. Since B is
a C ring, the enlarged matrices

F 0 G 0
Rt

can be factorized as in Proposition 3.3.2 if and only if the matrices F, G can be factorized.

This implies that the matrices
F&) d G*) 0
S e[S

can be factorized if and only if the matrices F(*) G(*)
S is a C ring.

can be factorized. This proves that

<): Let F = [fuw] € My(B),G = [guw) € M,(B) be idempotent matrices, with f,, =
( q%))? Juv = (91%)), fy;)vgz(jf)) € Sj; since each ring Sy, is C, we can repeat the previous
reasoning, but in the inverse order, and conclude that B is a C ring.

(xiii) The proof is analogous to the first part of (xii). O
Proposition 3.4.2. Given aring S, if S is H (C) then M,,(S) is H (C) for every n > 1.
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Proof. Let P be a stably free M,,(S)-module, then there exist integers r, s > 0 such that
P& (M,(9))* = (M,(5))". From this we have

glxn D11, (S) P& Gs(1xn) o0 gr(lxn)

and, hence, S7*" ® M, (s) P is a stably free S-module. Since S € H, this module turns out
free with rank n(r — s), i.e., S1*" @, (s) P = S(xn)(r=s) Thus,

S" ®g glxn D1, (S) P~S"®g S(lxn)(T—S)’

which implies that
P = Mn(S) ®Mn(S) P = Mn(S)rfs,

this is, P is a free M,,(S)-module of rank r — s.
Now, given P, ) left finitely generated projective M,,(S)-modules such that P @ M, (S) =
Q ® M,(S), we have that

Slxn ®Mn(S) Po Slxn ~ Slxn ®Mn(5) Q D Slxn'

It is not difficult to show that S'*" ® Ma(s) P and S Ixn & M, (s) @ are finitely generated
S-modules and, therefore,

San ®Mn(S) P San ®Mn(S) Q
Whereby, applying 5" ®g — to this last isomorphism, we get P = Q, i.e., M, (S) € C. O

Remark 3.4.3. The problem of computing the matrices U in Theorem 3.1.2 and Corollary
3.2.4 has been considered in various contexts. For example, in the commutative setting,
Yengui in [2] presents an algorithm for unimodular completion over Laurent polyno-
mial ring, whereas in [96] a method for unimodular completion over Noetherian rings
is developed. Of course, the constructive proofs of Quillen-Suslin Theorem include al-
gorithms for the calculation of such matrices in the case S = k[z1,...,z,] (see [86]). In
[71] Laubenbacher regarded the unimodular completion problem for quotient polyno-
mial rings by monomial ideals. Interesting examples about completion unimodular in
particular cases are shown by Lam in [62], Examples 5.10 - 5.14.

3.5 Localizations

Now we will consider the localizations of rings introduced in Definition 3.3.1.

Proposition 3.5.1. Let S be a ring and T a multiplicative system of S such that T~1S exits. If
Sis ED (KH, B), then T~1S is ED (K H, B). Similar properties are valid for the right side.

Proof. Let S a ED ring and F € M, (T~ 1S), then F = [fij] with f;; = t;jlsij, where
tij € Tand s;5 € S, for1 < i <r,1 < j < s. By Proposition 2.1.16 in [95], there exist
t € T and [;; € S such that f;; = t‘llij, then tF' = [l;;] € M,xs(S), hence tF' admits a
diagonal reduction, i.e., there exist P € GL,(S) and @ € GL4(S) such that P(tF)Q =
diag(dy,...,d;), with dy,...,d; € S, I = min{r, s} and Sd;+1.S C Sd; N d;S. Note that
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Pt,Q € GL.(T~'S). Thus, (Pt)FQ = P(tF)Q = D, moreover, T-'Sd;1T~'S C
T-1Sd; N d;T~1S. This proves that 715 is £D.

The proof for K H is completely analogous.

Suppose now that S is a B ring and let J be a f.g. left ideal of T7'S, then J =
(q1,...,q-} where ¢; = t;lsiwithti eTands; € Sforl <i<r.LetteTanda; € S
such that ¢; = t~'¢;, then tg; = a;. Therefore, J' := T‘ls% 4+ -+ T‘lsaf C J; but
J C J' :in fact, let x = %q1 + -+ g—:qr € J, then x = tl_lbltflaTl 4+ 4+ t,?lbrtflaf;
since bit~! € T'S exist, b, € S and [; € T such that b;t™" = I;0}, 1 < i < r, hence
=t T bt I S = () T+ (Iot) T, % € J'. Thus, J = J'.

Now note that J' = T~11, where I := Sa; + - - + Sa,: clearly T=1I C J'; lety € .J/,
theny:ls’—iaTl—i—---—&—g—:“—{: blsclll +...+%:Mfor50meciESandueT.

Hence y = u~!(c1biag + -+ + ¢bray) € T But I is a f.g. left ideal of S, then I = (a}
for some a € S, and therefore J = T~154,i.e., J is principal. O

Remark 3.5.2. (i) We observe that if S is B and 7" a multiplicative system of S such that
T-1S and ST~ exist, then T~1S is B since ST~! = T-18.

(ii) In general, if S is H (PF, PSF) not always T~ 1S has the correspondent property
(see [26]).

For the localization by primes ideals we need to recall a definition. Let S be a left
Noetherian ring and P a prime ideal of S. It says that P is left localizable if the set

S(P) :={a € S|a € S/P is not a zero divisor}
is a multiplicative system of S and S(P)~1S exists; we will write Sp := S(P)~1S. Right
localizable prime ideals are defined similarly (see [11]).

Proposition 3.5.3. Let S be a left Noetherian ring.

(i) If P is a left (right) localizable prime ideal, then Sp is H.

(ii) If P is a left (right) localizable completely prime ideal, then Sp is PF, and hence, C and
PSF.

Proof. (i) It is well known (see for example [11], and also [80]) that S}, has a unique max-
imal ideal PSp := {% | a € P,s € S(P)}; moreover, Rad(Sp) = PSp and S,/PS, is
simple Artinian, therefore, Sp is a semilocal ring and hence Sp is H (Proposition 3.4.1 ).

(ii) If P is completely prime, S/P is a domain, so that );(S/P) is a division ring,
and therefore, Sp is a local ring. From [26], Corollary 0.3.8, we get that Sp is PF C
CNPSF. O

3.6 Examples, remarks and open problems

Example 3.6.1. (a) Probably the most classical example of PF (and hence of PSF and H)
ring is S{z1, ..., x,], where S is a commutative principal ideal domain (this is the content
of the Quillen-Suslin Theorem).
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(b) Any principal ideal commutative ring (PIR) is K, and hence, H ([62], Theorem
1.4.31).

(c) Any commutative von Neumann regular ring is K+, and hence, H ([62], Theorem
1.4.34).

(d) Any Dedekind domain is # (see [78], Remark 6.7.14).

(e) Any local ring (in the sense that S/ Rad(S) is a division ring) is P.F (see [26], Corol-
lary 0.3.8), and hence, it is also C and H.

(f) Any semilocal ring is H. This follows from Theorem 3.4.1.
(g) Note that PF, PSF # H: Zg (see [78], Example 6.1.2).

Example 3.6.2. Let T be a division ring. Then, any (f.g.) projective left (right) module
over T'[z] is free. Thus, T'[z] is PF, and hence, H ([62], p. 2 and p. 73). However,
S := T[z1, x2] has a module M such that M @& S = S?, but M is not free, i.e., S is not #,
and hence, is not PF ([62], p. 3 and p. 74; [5], Corollary 6.3).

Example 3.6.3. (a) We exhibit a commutative ring that is not H (see [107]). Let S =
Rlz,y,2]and S = Rz, y, 2]/1, with I = (2?+y*+2?—1),thenu = [T J Z]isunimodular
with right inverse u”, however u cannot be completed to an unimodular matrix: In fact,
suppose that exists U € GL3(S) such thatuU = [T 0 --- 0]. Note that makes sense
to evaluate elements of S at points (v1,va,v3) € S?, the unit sphere in R?, since if f = g
then f — g € I and hence f(v1,v2,v3) — g(v1,v2,v3) = 0, i.e., f(v1,v2,v3) = g(v1,va, v3).
Moreover, an unit in S takes nonzero values everywhere on the sphere: in fact, if fg =
1, by above, f(v1,v2,v3)g(v1,ve,v3) = 1 for every (vi,ve,v3) € S?, In particular, since

det U~! is an unit, then det U~! # 0 in every point on §%. So, if U~! = [f,;] € GL3(9),

then o (v) := (f12(v), faa(v), fsa(v)) € R3\ {0} forall v € S% Butu [f1o fan [fa2] =0,
so that v - ¢(v) = 0 and hence, ¢(v) is a tangent vector to S? that results also continuous
(and differentiable) since each f;; is a polynomial. Thus, the map ¢ : S> — R3is a
nowhere zero vector field on S2. But this is a contradiction, because the hairy ball theorem
in topology says every continuous vector field on the sphere vanishes at least once, (see
[62], Chapter III).

(b) This example also shows that if S is # not always S/I is H, with I an arbitrary
proper ideal of S. In the same way, this example also shows that if S is 7D not always
S/1isID.

Example 3.6.4. The product of PF rings is not necessarily PF. In fact, Zs and Zs are PF,
but Ze = Zy x Zs3 is not PF (see Example 3.6.1, literal (d)). This example also shows that
quotients of PF rings are not necessarily PF: Z is PF. In addition, from Theorem 3.4.1
we obtain that Zg & Zy x Z3is C,so PF # C.

Example 3.6.5. H and PF are not (in general) preserved by localizations by arbitrary
multiplicative systems ([62], Remark 1.4.19. See also see [26], Exercise 0.7.15).

Example 3.6.6. It is well known that B # B,, a classical example is given by the skew
polynomial ring T'[z; o], where T is a division ring a ¢ is an endomorphism of 7" that
is not automorphism. Every left ideal of this ring is principal, hence, it is a left Bézout
ring; but if a ¢ o(T), then the right ideal generated by x and ax is not principal. In fact,
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suppose that there exists f € T'[z;0] such that 2T [z; 0] + azT[x;0] = fT[x; 0], we have
x = fhand ax = fg, for some polynomials f, g € T'[z;0]; f is not a constant polynomial
since f € aT[z;0] + axT|x; 0], so x = (fiz + fo)ho, from this we get that fo = 0,hg # 0
and f; = a(ho_l). From ax = fg we conclude that ax = fixgo, ie., a = a(hglgo), a
contradiction.

This example shows also that K'H # K H,. In fact, as we saw T'[z;0]is BD = KHD,
but T'[x; o] isnot KHD, = BD,.

Example 3.6.7. Note that if k is a field, then k[z, y| is PFD but is not BD. Thus, B # PF,
and consequently, B # C, B # H, KH # PF, KH # C, KH # H,D # PF,ED #C,
ED #H.

Example 3.6.8. In (3.3.1) we observed that BD C PFD, note that in general B ¢ PF.
In fact, consider Zg. This example also shows that PF # ZD since Zg is semilocal and
commutative semilocal rings are ZD (see [118]).

Example 3.6.9. Z[\/—5] shows that ZD # H, see [78], Example 6.6.1 and Remark 6.7.14.

Example 3.6.10. Note that if k is a field, then S := My(k) € C by Proposition 3.4.2;
nevertheless S ¢ PSF: indeed, we have that

win- s 9=

thus P := [t 8] is a finitely generated projective S-module. If P was stably free, then

there exist integers r,s > 0 such that P & S° = S” (S-isomorphism). But every S-
isomorphism is a k-isomorphism, hence P & S° = S" as vectorial spaces. From this,
it follows dimy (P & S*) = 2 + 4s = dimg(S™) = 4r, and whence, 2 = 4(r —s) > 4, a
contradiction. Therefore, C ¢ PSF. On the other hand, A (k) € PSF but this ring is not

C (see Example 11.1.4 in [95]). So, PSF ¢ C.
Remark 3.6.11. (a) In [50] it is proved that ED # KH # B.

(b) In [60], Theorem 3.2, Kaplansky proved that a commutative Bézout ring is KH
when all zero divisors of the ring are in the Jacobson radical, establishing in particular
that if S is local then KH = B (see also [3] and [62], Theorem 1.4.27).

(c) In [125], Theorem 2, it is proved that every commutative Bézout ring with compact
minimal prime spectrum is KH.

(d) In [126], Theorem 1, Zabavsky showed that a commutative Bézout ring S is KH if
and only if sr(5) < 2.

(e) [126], Theorem 2, shows that a B, ring with stable range 1 is K H,. Moreover,
Corollary 1 in [110] shows that a B, ring with stable range 1 is #H (see also Corollary 4.1.5
in the next chapter). In a similar direction, in [52] is proved that if S is B, and Rad(S5)
contains a completely prime ideal, then S is K H,.

(f) For noncommutative rings, Zabavsky in [126], Corollary 2, proved that any semilo-
cal right Bézout ring is K H...

(g) In [125], Proposition 2, it is proved that a n — K H,. ring has stable range < n (let
n > 2,aring S is n — K H, if given a row matrix u of size 1 x n there exist U € GL,,(S5)
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andd € SsuchthatulU = [d 0 --- 0];inasimilar way the ringsn — KH and n — KH
are defined; note that 2 — K H, = K H,. In Lemma 3.3.4 we have proved that a ring S is
KH ifand only if Sisn — KH, for alln > 2).

(h) If S is B, with sr(S) = n then S is m — K H,, for all m > n + 1 ([125], Corollary 1).
(i) If Sisn — KH,, then S is B, ([125], Proposition 4).
(G) If Sisn — KH and B,, then S is right n — K H, ([125], Proposition 3).

(k) Let S be an integral domain, i.e., a commutative domain. If S is BD with enumer-
able many maximal ideals or with Krull dimension 1, then S is EDD. If S is BD such that
given a proper invertible integral ideal I of S there exists a non-empty finite set of finitely
generated maximal ideals that contain I, then S is £DD ([78], Remark 6.7.7).

Remark 3.6.12. A very close notion to the task of studying when stably free modules are
free is that of power-free modules. We say that a stably free S-module P with rank ¢ is
power-free if exists a positive integer n such that P"* = S™. In [64], Theorem 5.10 and
Theorem 5.11, Lam proved that if S is a right (left) noetherian ring or a commutative
ring, then every stably free module is power-free. From this, we can conclude that if A is
a bijective skew PBW extension of a right (left) noetherian ring R, then every stably free
A-module is power-free.

Problem 3.6.13. (a) In general, ZD C C? (b) In general, ZD C H ? (d) C # H ? (see [26],
Exercise 0.4.7).

Conjecture 3.6.14 (Kaplansky). For commutative domains, BD = EDD.



CHAPTER 4

d-Hermite rings and skew PBW extensions

As we saw at the beginning of Chapter 2, under suitable conditions on the ring R of co-
efficients, most of skew PBW extensions are PSF. It was also remarked that if R is a left
Noetherian, left regular PSF ring, then the ring of skew quantum polynomials Qg (R)
is also PSF. In particular, if k is a field, the k-algebra of skew quantum polynomials
Qq. (k) is a PSF ring. Related to the # property that we study in the previous chapter,
there exists an important example of skew polynomial ring that satisfies this condition:
let T be a division ring and T'[x; o, 0] the ring of skew polynomials ring over 7', where o is
an automorphism, then it is well known that T'[z; o, d] is a principal ideal domain (PZD),
i.e., it has non zero divisors and all left and right ideals are principal (see [26], Theorem
1.3.2, see also [80]), but any PZD is EDD ([26], Theorem 1.4.7), so by (3.3.1), T'[z; 0, 4] is
HD. For example, By (k) is HD. However, it is easy to show examples of skew PBW
extensions A = o(R)(x1, ..., x,) that are not / rings (and hence, are not P.F): if T is a di-
vision ring, then S := T'[z, y| has a module M such that M &S = S2, but M is not free, i.e.,
S is not H (see [62], p. 36 and [98], Proposition 1). Let R = H][x, y]] be the power series
ring in x, y over the division ring H of the real quaternions, and let A := R[t]. Then, R is
a noncommutative local ring but R[t] is not # (see [62], p. 325). Another example occurs
in Weyl algebras: let k be a field, with char(k) = 0, the Weyl algebra A; (k) = kl[t][z; &]
is not H since there exist stably free modules of rank 1 over A, (k) that are not free ([26],
Corollary 1.5.3; see also [95], Example 11.1.4). Note that k[¢] is . In general, if R is a left
Noetherian domain, then A,,(R) is not H ([95], Corollary 11.2.11). In this chapter, we will
study a weaker condition than the H property for skew PBW extensions: the d-Hermite
condition. Recall that we always assume that all rings are RC.

4.1 d-Hermite rings

There is a famous conjecture in commutative algebra which asserts that if R is a com-
mutative 7{-ring, then the polynomial ring R[z| is H (see [62]). As we observed at the
beginning of the chapter, this conjecture for skew PBW extensions is not true. Thus,
instead of considering the # condition and the conjecture for skew PBW extensions, we
will study a weakly property, the d-Hermite property. The following proposition induces

58
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the definition of d-Hermite rings.

Proposition 4.1.1. Let S be a ring. For any integer d > 0, the following statements are equiva-
lent:

(i) Any stably free module of rank > d is free.

(ii) Any unimodular row matrix over S of length > d + 1 can be completed to an invertible
matrix over S.

(iii) Foreveryr > d+1, if u is an unimodular row matrix of size 1 X r, then there exists a matrix
U € GL,(S) such that uU = (1,0,...,0), i.e., GL,(S) acts transitively on Um,(r, S).

(iv) For every r > d + 1, given an unimodular matrix F of size s X v, r > s, there exists
U € GL,(S) such that

FU=[I, | 0]

Proof. We can repeat the proof of Theorem 3.1.2 taking r > d + 1. O

Definition 4.1.2. Let S be a ring and d > 0 an integer. S is d-Hermite, property denoted by
d-H, if S satisfies any of conditions in Proposition 4.1.1.

The next result extends Proposition 3.2.7.

Proposition 4.1.3. The d-Hermite condition is left-right symmetric.

Proof. We can repeat the proof of Proposition 3.2.7 taking r > d + 1. See also [95], Lemma
11.1.13. O

Corollary 4.1.4. Let S be a ring. Then, S is sr(S)-H.

Proof. This follows from Definition 4.1.2 and Theorem 2.3.6. O
Corollary 4.1.5. Let S be a ring. If sr(S) = 1, then S is H.

Proof. According to Corollary 4.1.4 S is 1-H, however, it is well known that rings with
stable rank 1 are cancellable (see [34]), so by Theorem 3.3.3, S'is H. O

Remark 4.1.6. (i) Observe that 0-Hermite rings coincide with H rings, and for commuta-
tive rings, 1-Hermite coincides also with H (see [62], Theorem 1.4.11). If K is a field with
char(k) = 0, by Corollary 2.3.7, A; (k) is 2-H but, as we observed at the beginning of the
chapter, A; (k) is not 1-H. In general, H C 1-H C 2-H C --- (see [26]).

(ii) Note that H = 1-HNW.F (aring S is WF, weakly finite, if for alln > 0, P S™ = S"
if and only if P = 0. See Remark 2.1.9).

(iii) Any left Artinian ring S is # since sr(S) = 1, see Remark 2.3.2. In particular,
semisimple and semilocal rings are H.

(iv) Rings with big stable rank can be Hermite, for example sr(R[z1,...,2,]) =n +1
([95], Theorem 11.5.9), but by Quillen-Suslin Theorem, R[z1, ..., x,] is H.
y
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4.2 Stable rank

Corollaries 2.3.7 and 4.1.4 motivate the task of computing the stable rank of bijective skew
PBW extensions. For this purpose, we need to recall the famous stable range theorem.
This theorem relates the stable rank and the Krull dimension of a ring. The original
version of this classical result is due to Bass (1968, [8]) and states that if S is a commutative
Noetherian ring and Kdim(S) = d then sr(S) < d + 1. Heitmann extends the theorem
for arbitrary commutative rings (1984, [53]). Lombardi et. al. in 2004 ([30], Theorem 2.4;
see also [88]) proved again the theorem for arbitrary commutative rings using the Zariski
lattice of a ring and the boundary ideal of an element. This proof is elementary and
constructive. Stafford in 1981 ([115]) proved a noncommutative version of the theorem
for left Noetherian rings.

Proposition 4.2.1 (Stable range theorem). Let S be a left Noetherian ring and
IKdim(S) = d, then sr(S) < d+ 1.

Proof. See [115]. O

From this we get the following modest result.

Proposition 4.2.2. Let R be a left Noetherian ring with finite left Krull dimension and A =
o(R)(z1,...,xn) a bijective skew PBW extension of R, then

1 <sr(A) <IKdim(R)+n+1,
and A is d-H, with d := (IKdim(R) + n + 1).
Proof. The inequalities follow from Proposition 4.2.1 and Theorem 4.2 in [83]. The second

statement follows from Corollary 4.1.4. O

Example 4.2.3. The results in [83] for the Krull dimension of bijective skew PBW ex-
tensions can be combined with Proposition 4.2.2 in order to get an upper bound for the
stable rank. With this, we can estimate also the d-Hermite condition. The following table
gives such estimations:
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Ring U. B.

Habitual polynomial ring R[z1, . .., @p] dim(R) +n+1
Ore extension of bijective type R[z1;01,01] - - [n;0n, On] dim(R) +n + 1
Weyl algebra A, (K) 2n + 1

Extended Weyl algebra B, (K) n+1

Universal enveloping algebra of a Lie algebra g, i (g), K commutativering | dim(K) +n + 1
Tensor product R ® i U(G) dim(R) +n + 1
Crossed product R = U(G) dim(R) +n + 1
Algebra of g-differential operators Dy [z, y] 3

Algebra of shift operators S, 3

Mixed algebra Dy, 4

Discrete linear systemsk[t1, ..., tn][®1,01] - - [@n;on] 2n + 1

Linear partial shift operators k[t1, . . ., tn][E1, ..., En] 2n + 1

Linear partial shift operators k(t1, ..., tn)[E1, ..., Fn] n+ 1

L. P. Differential operatorsk[t1, . .., t,][01, ..., On] 2n + 1

L. P. Differential operators k(t1, . . ., t5,)[01, ..., On] n+ 1

L. P. Difference operators k[t1, . . ., tn][A1, ..., Ayn] 2n + 1

L. P. Difference operators k(¢1, . . ., tn)[D1, ..., An] n+ 1

L. P. g-dilation operators k[tq, . . ., t"][HYI), ey H,S,(f)] n+m+1

L. P. g-dilation operators k(t1, ..., tn )[HEQ)A, ey Hﬁ”] m+ 1

L. P. g-differential operators k[ty, ..., ty] [Diq)7 ey Dgff)] n+m+1

L. P. g-differential operators k(t1, . . ., tn)[DYZ), ey Dg,‘f)] m 4+ 1

Diffusion algebras 2n + 1

Additive analogue of the Weyl algebra Ay, (g1, .- -, qn) 2n + 1
Multiplicative analogue of the Weyl algebra O, (A ;4) n+1

Quantum algebra U’ (s0(3,k)) 4

3-dimensional skew polynomial algebras 4

Dispin algebra U (osp(1, 2)) 4

Woronowicz algebra W, (s[(2, k)) 4

Complex algebra V, (s[3(C)) 11

Algebra U 3n+1

Manin algebra O, (M2 (k)) 5

Coordinate algebra of the quantum group ST (2) 5

g-Heisenberg algebra H,, (q) 3n +1

Quantum enveloping algebra of s[(2, k), U (s[(2,k)) 4

Hayashi algebra W (J) 3n+1
Differential operators on a quantum space Sq, Dq(Sq) 2n + 1

Witten’s Deformation of U (s1(2, k) 4

Quantum Weyl algebra of Maltsiniotis A%’)‘, K commutative ring dim(K) +2n + 1
Quantum Weyl algebra A, (g, pi ;) 2n + 1

Quantum Weyl algebra A5 (J, 1), a # b 4

Multiparameter Weyl algebra Aﬁf'l (k) 2n 41

Quantum symplectic space O (sp(k°")) 2n 41

Quadratic algebras in 3 variables 4

Table 4.1: Stable rank for some examples of bijective skew PBW extensions.

Remark 4.2.4. (i) The values presented in Table 4.1 can be improved for some particular
classes of skew PBW extensions. For example, it is well known that sr(4,(k)) = 2 if
char(k) = 0 (see Remark 2.3.2). A challenging problem is to give exact values for the
stable rank of all examples of bijective PBW extensions presented in [83].

(ii) For the algebra of quantum polynomials O4, Artamonov proved that under ceratin
conditions on the system of parameters q := [¢;;], if P is a f.g. projective module over Oqg
of rank at least 2, then P is free (the rank of P is the dimension of Q(Oq4) ®0, P; see [5],
Theorem 5.3 and Corollary 5.39; [4], Theorems 4.1 and 4.2; [6], Theorems 1.3 and 1.12).
Thus, Oq is 2-H.

4.3 Kronecker’s theorem

Closely related to the stable range theorem is the Kronecker’s theorem stating that if S is
a commutative ring with Kdim(S) < d, then every finitely generated ideal I of S has the
same radical as an ideal generated by d elements. In this section, we want to investigate
this theorem for noncommutative rings using the Zariski lattice and the boundary ideal,
but generalizing these tools and their properties to noncommutative rings. The main
result will be applied to skew PBW extensions.
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Definition 4.3.1. Let S be a ring and Spec(S) the set of all prime ideals of S. The Zariski lattice
of S is defined by

Zar(S) := {D(X)|X C S}, with D(X) := N P
X CPeSpec(S)

Zar(S) is ordered with respect to the inclusion. The description of the Zariski lattice is
presented in the next proposition, (X}, (X), {X) will represent the left, two-sided, and
right ideal of S generated by X, respectively. V denotes the sup and A the inf.

Proposition 4.3.2. Let Sbearing, I, 11, I5, Is two-sided ideals of S, X C S,and x1, ..., xn, 2,y €
S. Then,

(i) D(X) = D((X}) = D((X)) = D{X)).

(ii) D(I) = rad(S) ifand only if I C rad(S). In particular, D(0) = rad(S).
(iii) D(I) = Sifandonlyif I = S
(iv) I € D(I)and D(D(I)) = D(I). Moreover, if I; C Iy, then D(I;) C D(I2).

(V) Let {I;}jeg a family of two-sided ideals of S. Then, D(3_;c 7 1;) = VjegD(l;). In
particular, D(zy,...,xn) = D(z1) V -+ -V D(zy).

(vi) D(I1Iy) = D(I1) A D(Is). In particular, D({x){y)) = D(z) A D(y).
(vil) D(z +y) € D(z,y).
(viii) If (z)(y) € D(0), then D(z,y) = D(z +y).

(ix) Ifz € D(I), then D(I) = D(I, z).

(x) If S := S/I, then D(J) = D(J), for any two-sided ideal J of S containing I.

(xi) w € D(I) ifand only if u € rad(S/I). In such case, if u € D(I), there exists k > 1 such
that u* € I.

(xii) Zar(S) is distributive:

D(11) AN[D(I2) v D(I3)] = [D(I1) A D(I2)] V [D(I1) A D(I3)],
D(I) vV [D(I2) A D(I3)] = [D(I1) V D(I2)] A [D(1) V D(I3)].

Proof. (i), (ii), (iv), (ix) and (x) are evident from the definitions.

(iii) If I = S there is no prime ideal containing I, so the intersection of prime ideals
containing I is taken equals S (see [51], p. 51). Conversely, if I # S the intersection of
proper ideals containing I is proper (this collection is not empty since I is contained in at
least one prime ideal), thus D(I) # S.

(v) We prove, first, that VjesD(I;) = D(3_,c 7 D(1))): for every j € J, D(I;) C
Yies D) S D(XjesD(I;)); let D) 2 D(Ij) for every 5 € J, then
(D) 2 Z]eg (Zj) and hence D(I) = D(D(I)) 2 D(}_;c 7 D(1))-
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It only remains to show that D(dej D(I;)) = D(ZJEJ Ij): since I; C 37, 7 I;, then
D(I;) C D> jeq1j),s0 D(X e 7 1) 2 ViegD(L;) = D(3_,c 7 D(L))); onthe other hand,
D(ZJGJD(I')) 2 e D (1) 2 z]ej Ij, so D( (E]ej (I'))) 2 D(3jes 1j), thus
D(ZjejD(Ij)) 2 D(Zjej Ij)-

(vi) It is clear that D(I1I3) € D(I1),D(I2). Let I be a two-side ideal of S such that
D(I) € D(I),D(I3), then D(I) C D(I;) N D(I2) C D(I;13). The last inclusion follows
from the fact that if P is a prime ideal containing I1/5, then Iy C P or I C P, thus if
x € D(I1)ND(I2),thenx € P,i.e., x € D(I;12). Thisimplies that D(I;)AD(I2) = D(I;12).

(vii) Since (z + y) C (x,y), then the result follows from (iv).

(viii) According to (vii), D(z + y) C D(z,y); for the other inclusion, note first that
D(z,y) = D(z+y, (x)(y)): theinclusion D(z+y, (x)(y)) C D(x,y) is clear since any prime
ideal containing x,y contains = + y, (z)(y). Let P be a prime that contains x + y, (z)(y),
sox € Pory € P, in the first case x € P and y € P and the same it is true for the second
case. This implies that D(z,y) C D(z + y, (x)(y)).

By the hypothesis and numeral (ii), (z)(y) C rad(S), i.e., (z)(y) is contained in all
primes, so D(x + y, (x)(y)) = D(z + y) and hence D(z,y) = D(z + y).
(xi) The first assertion is clear from the definition of D(/) and rad(S/I). If u € D(I),

then @ € rad(S/I) and hence @ is strongly nilpotent, but this implies that @ is nilpotent
(see [95]), i.e., there exists k > 1 such that @* = 0, i.e., u* € I.

(xii) For the first identity we have:

D(I) N[D(I2) vV D(I3)] = D(I1) A D(Is + I3) = DI (I2 + I3)] = D(I11> + 11 I3) =
D(Ilfg)\/D(Ilfg) [ (Il>/\D( )] [ (11)/\D(13]

For the second relation we have

D(I) V [D(2) A D(I3)] = D(I1) V D(I21.

3) = D(I1 + I213) 2 D[(I1 + I2)(I1 + I3)] =
[D(I1) vV D(I2)] A [D(I

1)V D(L));

the other inclusion follows from the fact that D(I; + I2I3) C D[(I1 + I2)(I1 + I3)] since if
P is a prime ideal that contains (I; + I2)(I1 + I3), then P D (I + I3) or P D (I; + I3), thus
P :_) Il and P 2 IQ :_) [2]3, or, P 2 Il and P :_> Ig :_) [2[3, i.e., P :_> Il + [2]3. O

Definition 4.3.3. Let S be a ring and v € S, the boundary ideal of v is defined by I,, := (v) +
(D(0) : (v)), where (D(0) : (v)) := {x € S|(v)z C D(0)}.
Note that I, # 0 for every v € S. On the other hand, if v is invertible or if v = 0, then
I, = S.1f S is a domain and v # 0, then I, = (v).
Definition 4.3.4. Let S be a ring such that 1Kdim(.S) exists. We say the S satisfies the boundary
condition if for any d > 0 and every v € S,
IKdim(S) < d = IKdim(S/1,,) < d — 1.

Example 4.3.5. (i) Any commutative Noetherian ring satisfies the boundary condition:
indeed, for commutative Noetherian rings, the classical Krull dimension and the Krull
dimension coincide, so we can apply Theorem 13.2 in [88].



CHAPTER 4. D-HERMITE RINGS AND SKEW PBW EXTENSIONS 64

(ii) Any prime ring S with left Krull dimension satisfies the boundary condition:
in fact, for prime rings, any non-zero two sided ideal is essential, so 1IKdim(S/I,) <
IKdim(.S) (see [95], Proposition 6.3.10).

(iii) Any domain with left Krull dimension satisfies the boundary condition: indeed,
any domain is a prime ring.

Remark 4.3.6. In [29], a constructive notion of classical Krull dimension for commutative
rings is presented. Such concept is used to give a constructive proof of Stable Range
Theorem for commutative case. Since in right FBN rings ! the classical Krull dimension
and module theoretic left (right) Krull dimension coincides (see e.g., [51], Theorem 15.13),
we could think that this constructive notion holds over these rings. Nevertheless, for this,
the boundary condition must be satisfied which, in general, is not true for FBN rings: let
S = My(k), with k a field. Thus S is semisimple and, hence, an artinian ring. Since S
has not essential ideals, S is a FBN ring. Now, note that Rad(S) = rad(S) = 0; so, if

v = <(1) 8)’ then I, # S and IKdim(S/I,) = 0, i.e., S does not satisfy the boundary

condition: indeed, if u = <j i/]) € (rad(S) : (v)), in particular we must have that

vu = 0, ie., <1 0) (z y) = (O O). The latter implies x = 0 and y = 0 and u =

0 0 z w 0 0
0 O . . . 1 0 1 1 1 1
<z w>’ with z,w € k arbitraries. But, <0 O> (0 0) = <O 0> € (v), and thus
1 1 0 O 0 0\ . .
(0 0> <z w) = <O 0), ie, z = 0and w = 0, therefore, if u € (rad(S) : (v)), then

u=0.Asv ¢ Msy(k)*, then I, # S and IKdim(S/I,) = 0, since S/, is artinian.

Theorem 4.3.7 (Kronecker). Let S be a domain such that 1Kdim(S) exists. If
IKdim(S) < dand uy,...,uq,u € S, then there exist x1,...,xq € S such that

D(uy,...,ug,u) = D(u1 + 214, ..., uq + xqu).

Proof. The proof is by induction on d. Let d = 1 and uy,u € S, if IKdim(S) = -1,
then by definition S = 0 and u;,u = 0, so we take z; := 0. Let IKdim(S) = 0; by the
boundary condition, IKdim(S/I,,) = —1,ie, S = I,, = (u1) + (D(0) : (u1)). There
exist ¢i,¢},...,¢,¢; € Sand z; € (D(0) : (u1)) such that 1 = ciuic} + -+ + quic) + z1,
then (u1)(z1) € D(0) and u = cruidju + -+ + quicju + z1u, thus u € (ui,z1u) and
hence u € D(uy,z1u) (Proposition 4.3.2, part (iv)). Moreover, (u1)(xziju) € D(0), then
by Proposition 4.3.2, part (viii), D(u1,z1u) = D(u; + zju). Thus, v € D(u; + z1u), so
D(ui + z1u) = D(u1 + z1u, u) (Proposition 4.3.2, part (ix)), but D(u; + z1u, u) = D(u1,u)
since (u1 + z1u,u) = (u1,u), so D(ui,u) = D(uy + x1u).

Now, let us assume that the proposition is true for rings with left Krull dimension
<d—-1,d > 2,and let S be a ring with IKdim(S) < d. Let uy,...,uq,u € S. We consider
two cases.

1A prime ring is right bounded if every essential right ideal contains a nonzero ideal; a ring S is right
fully bounded if S/ P is right bounded for each prime ideal P of S. Thus, bounded or fully bounded, means
the ring also has the left-handed property. A ring S is right FBN (respectively FBN) is a right Noetherian
ring fully bounded (respectively, a Noetherian fully bounded ring).
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Case 1. If ug = 0, then the theorem is trivial with z; = -+ - =241 =0, zg = 1.

Case 2. Let ug # 0. Let I be the boundary ideal of u4, then D(I) = (u4). We consider
the elements uy, ..., ug_1,u € S, with S := S/I. By the hypothesis, IKdim(S) < d — 1
and hence there exist elements 77, ...,T4_1 € S such that D(uy,...,ug1,u) = D(uy +
Z1G,...,U4—1 + T4 u). From this, we get that

D({u,...,ug—1,u)y +I) = D((u1 + 14, ..., u4—1 + xg_1u) + I),

but by Proposition 4.3.2, part (x),

D({uy,...,ug—1,u) +I) = D((u1 + z1u, ..., ug—1 + xq_1u) + I), i.e.,
D((u1,...,ug—1,u) +I) = D({w1 + 214, .. ., ug—1 + x4-1u) + I).

Sinceu € (u1,...,ug—1,u)+1 € D((u1,...,ug—1,u)+1I),thenu € D((u1+z1u,...,us_1+
rg—uw)+I) = D((ui+z1u, ..., ug—1+x4-1u)VD(I) = D((u1 +z1u, ..., Ug—1 +Tg—1U, Uq).
Taking =4 := 0 we get that u € D(u1 + 214, ..., ug—1 + Tg—1u, ug + r4u). From this, and
using Proposition 4.3.2, part (ix), we conclude that

D(uy + z1u, ..., ug—1 + Tg_1u, ug + xqu) = D(ug + 21U, . .., Ug—1 + Tg—1U, Ug + Tqu, u)
however note that
<U1 + 21U, ..., Ug—1 + Tg—1U, U + T4U, u> = <u17 <oy Ud—1, Ud, U>,

so D(uj + x1u, . .., ug—1 + Tg_1u,ug + xqu) = D(u1, ..., ug_1, Uq, u). dJ

Corollary 4.3.8. Let S be a domain such that IKdim(.S) exists. IfIKdim(S) < dand uy, ..., uq+1 €
S are such that (uq,...,uqr1) = S, then there exist elements x1,...,xq € S such that (u; +
T1UGH1y -« - Ug + TgUgy1) = S.

Proof. The statement follows directly from Proposition 4.3.2, part (iii), and Theorem 4.3.7.
O

Corollary 4.3.9. Let A = o(R)(x1, ..., xy,) bea bijective skew PBW extension of a left Noethe-
rian domain R. If IKdim(R) < d and uy, ..., ugin,u € A, then there exist yi,...,Ygin € A
such that

D(uy, ..., ugin,u) = D(ur + y1u, . . ., Udsn + Yd+nlt).

Proof. This follows directly from Proposition 1.2.4, Theorem 1.2.9, Theorem 4.2 in [83],
and Theorem 4.3.7. O



CHAPTER 5

Grobner bases for skew PBWW extensions

In order to make constructive the theory of projective modules, stably free modules and
Hermite rings studied in the previous chapters, we will study the theory of Grobner
bases of left (right) ideals and modules for bijective skew PBW extensions in the current
chapter. This theory was initially investigated in [40], [57] and [58] for the particular
case of quasi-commutative bijective skew PBW extensions. We will extend the theory to
arbitrary bijective skew PBW extensions, in particular, Buchberger’s algorithm will be
established for general bijective extensions. We start recalling the basic facts of Grobner
theory for arbitrary skew PBW extensions; we will use the notation given in Definition
1.2.1.

5.1 Monomial orders in skew PBIV extensions

Let A = o(R)(x1,...,xy) be an arbitrary skew PBW extension of R and let > be a total
order defined on Mon(A). If 2% > 28 but 2@ # 2° we will write z* > 2°. Further,
2P < 2% means that 2z = 2. Let f # 0 be a polynomial of A4, if

f=aXi+-+caXy,
with ¢; € R — {0} and X; > --- > X; are the monomials of f, then im(f) := X; is the
leading monomial of f, le(f) := c; is the leading coefficient of f and lt(f) := ;X is the

leading term of f. If f = 0, we define Im(0) := 0,1c(0) := 0,1¢(0) := 0, and we set X > 0
for any X € Mon(A). Thus, we extend > to Mon(A) U {0}.

Definition 5.1.1. Let = be a total order on Mon(A), it says that = is a monomial order on
Mon(A) if the following conditions hold:

(i) Forevery z°, 2%, 27, 2* € Mon(A)
2P = 1% = Im (V2P 2?) = Im (2 z2?).
(ii) = > 1, for every z* € Mon(A).

66
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(iii) > is degree compatible, i.e., |5] > |a| = 8 = e

Monomial orders are also called admissible orders. The condition (iii) of the previous
definition is needed for the proof of the following proposition, and this one will be used
in the division algorithm (Theorem 5.2.6).

Proposition 5.1.2. Every monomial order on Mon(A) is a well-order. Thus, there are not infinite
decreasing chains in Mon(A).

Proof. See [40], Proposition 12. O

From now on, we will assume that Mon(A) is endowed with some monomial order.

Definition 5.1.3. Let 2%, 2% € M on(A), we say that x* divides zP, denoted by xa|:c5, if there
exists 7, x* € Mon(A) such that 2° = Im(z72%2). We will also say that any monomial
x® € Mon(A) divides the polynomial zero.

Proposition 5.1.4. Let z® 2% € Mon(A) and f,g € A —{0}. Then,

@) im(z%g) = Im(z*Im(g)) = zotePlm©) e exp(lm(z®g)) = a + exp(im(g). In
particular,

Im(Im(f)lm(g)) = zePUm(H)t+explm(g)) j,
exp(im(lm(f)lm(g))) = exp(im(f)) + exp(lm(g))

and
Im(z%2P) = 298 ie., exp(Im(z®2P)) = a + B. (5.1.1)

(b) The following conditions are equivalent:

(i) x®|zP.
(ii) There exists a unique 2° € Mon(A) such that 2° = Im(z%2%) = 297 and hence
B=0+a.
(iii) There exists a unique 2% € Mon(A) such that 2° = Im(2®2%) = 2% and hence
8=a+0.

(iv) Bi >« for 1 <i <mn,with := (B1,...,0n) and a := (ai,...,an).

Proof. See [40], Proposition 14. O

Remark 5.1.5. We note that a least common multiple of monomials of Mon(A) there
exists: in fact, let 2,27 € Mon(A), then lem(z®,2°) = 27 € Mon(A), where v =
(Y1, -y yn) With y; := max{a;, 5;} foreach 1 <i < n.
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5.2 Reduction in skew PBW extensions

Some natural computational conditions on R will be assumed in the remaining sections
of this thesis (see [75]).

Definition 5.2.1. A ring R is left Grobner soluble (LG'S) if the following conditions hold:

(i) R is left Noetherian.

(ii) Given a,ry,...,rm € R there exists an algorithm which decides whether a is in the left
ideal Rry + - - -+ Rry,, and if so, find by, ..., by, € Rsuch that a = biry + -+ + byrm.

(iii) Given ry,...,ry, € R there exists an algorithm which finds a finite set of generators of the
left R-module

Syzg[r1 -+ rm] = {(b1,...,by) € R™byr1 + - + byyrm = 0}.

Remark 5.2.2. The three above conditions imposed to R are needed in order to guarantee
a Grobner theory in the rings of coefficients, in particular, to have an effective solution of
the membership problem in R (see (ii) in Definition 5.2.3 below). From now on we will
assume that A = o(R){(x1,...,x,) is a skew PBW extension of R, where R is a LGS
ring and Mon(A) is endowed with some monomial order.

Definition 5.2.3. Let F be a finite set of non-zero elements of A, and let f,h € A, we say that

f reduces to h by F' in one step, denoted f x, h, if there exist elements fi,..., f; € F and
r1,...,7¢ € R such that

@) Im(fi)llm(f), 1 <i <t ie., thereexists x* € Mon(A)suchthatim(f) = Im(z“Im(f;)),
ie., a; +exp(Im(f;)) = exp(Im(f)).

(i) le(f) = mo®(le(fi))car,f + -+ + 10 (lc(fi))Cas,f,r Where cq, 5, are defined as in
Theorem 1.2.2,i.e., Cay,f; = Coyexp(im(f))-

(il) b= f— S b, ra®ifi.

We say that f reduces to h by F, denoted f inr h, if there exist hy, ..., hy—1 € A such that

F F F F

f hy ——s o e hy ——

‘hl

[ is reduced (also called minimal) w.r.t.. F if f = 0 or there is no one step reduction of f by F', i.e.,
one of the first two conditions of Definition 5.2.3 fails. Otherwise, we will say that f is reducible

wrt F.If f i>+ h and h is reduced w.r.t. F, then we say that h is a remainder for f w.r.t. F.

Remark 5.2.4. (i) By Theorem 1.2.2, the coefficients c,, r, in the previous definition are
unique and satisfy

z%lm(f;) = Cai,fixaiJrexp(lm(fi)) + Pai.fir
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where p,, ¢, = 0 or deg(pa,.1,) < |oi +exp(im(f;))|, 1 <i <t.

(ii) Im(f) > lm(h) and f — h € (F'}, where (F'} denotes the left ideal of A generated
by F.

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0 o

From the reduction relation we get the following interesting properties.

Proposition 5.2.5. Let A be a skew PBW extension such that c,, g is invertible for each o, f €
N". Let f,h € A, 0 € N*and F = {f1,..., f:} be a finite set of non-zero polynomials of A.
Then,

@ Iff L b, then there exists p € Awithp = 0or im(x? f) = Im(p) such that 2 f +p N
2% h. In particular, if A is quasi-commutative, then p = 0.

@) If f —E—>+ hand p € Ais such that p = 0 or lm(h) = Ilm(p), then f + p —£—>+ h+p.

(iii) If f i>+ h, then there exists p € A with p = 0 or Im(z%f) > Im(p) such that 2% f +
D Lnr 2% h. If A is quasi-commutative, then p = 0.

@iv) If f L)Jr 0, then there exists p € A with p = 0 or Im(2?f) = Im(p) such that 2% f +
D im 0. If A is quasi-commutative, then p = 0.

Proof. See [40], Proposition 20. O

The next theorem is the theoretical support of the division algorithm for skew PBW
extensions.

Theorem 5.2.6. Let ' = {f1,..., fi} be a finite set of non-zero polynomials of A and f € A,
then the division algorithm below produces polynomials q1,...,q;, h € A, with h reduced w.r.t.

F, such that f i>+ h and
f=afit+ -+aqft+h
with

Im(f) = max{im(im(q)lm(f1)), ..., Im(Im(qe)lm(f:)), im(h)}.
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Division algorithm in A

INPUT: f, f1,...,fi € Awith f; #0(1 < j <t)

OUTPUT: ¢1,...,q,h € Awith f = q1f1 + -+ + q.ft + h, h reduced w.r.t.

{fi,..., fe}and
Im(f) = max{Im(Im(q1)lm(f1)),...,Im(Im(q)lm(f;)),Im(h)}

INITIALIZATION: ¢; := 0,q2 :=0,...,q :=0,h := f
WHILE h # 0 and there exists j such that Im( f;) divides Im(h) DO

Calculate J := {j | Im(f;) divides Im(h)}
FOR j € J DO

Calculate o; € N" such that a; + exp(Im(f;)) =

exp(lm(h))
IF the equation lc(h) = 3 _,c ;rjo® (le(fj))ca,, 1, is soluble, where
Cay,f; are defined as in the Theorem 1.2.2 THEN

Calculate one solution (r;);cs

h:=nh-— EjeJ rjx% f;

FOR j € J DO

q; = ¢j + 1z

ELSE

Stop

Proof. See [40], Theorem 21. O

The following example illustrates the above procedure.

Example 5.2.7. For this example, we consider the Manin algebra (see Example 1.3.2) with
k := Q, the order deglex on Mon(O4(M>(Q))) with z > y > v, and ¢ = _71 Let f =
(Bud+2u)z?y?v+ (u—2)zyv+2uyv € Of(M2(Q)) and G := {f1 = (v*+1)zyv+2uv?, fo ==
uzy + 3v, f3 := (u— 1)yv}. We will divide f by G using the above algorithm.

Step 1. We start with b := f, ¢1 := 0, g2 := 0, g3 := 0. Since Im(f;) | Im(f) forj =1,2,3,
we compute a = (aj1,aj2,a;3) € N such that a; + exp(Im(f;)) = exp(Im(h)) and the
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corresponding value of 0% (Ic(f;))ca, 5, where 3; = exp(Im(f;)):

(11, 012, 013) +(1,1,1) = (2,2,1) = ann = Laip = L,a;3 =0
o (le(f1))car 8 = 010905 (u? +1) = u? +1,

(o1, 00, a93) + (1,1,0) = (2,2,1) = o1 = 1,00 = 1,03 = 1
d*%(le(f2))cay,, = o10203(0) = u,

(31,32, 033) + (0,1,1) = (2,2,1) = a31 = 2,032 = 1,33 = 0,

1
a3 (le(f3))Cas,8; = a%agag(u —1)=—u-—1.

Now, we solve the equation

le(h) = 3ud 4+ 2u =ri(u® + 1) + r%(u) + r3(—3u — 1) = r1 = 3u, ro = —lac, 13 = 0,
and with the relations defining O, (M>(Q)), we compute

h =h — (r1x® fi 4+ 1222 fo + 132 f3)

3 3 3
=h — (r1[(v® + 1)2y*v + (—8u3 —g¥ + 2u> zyv®] + rao[uz’y?v + <_8u2 + 3) zyv®] +0)
= <Zu4 — ZUQ + 3) ayv® + (u— 2)zyv + 2uyv.

We compute also

q1 = 3uxy, g3 == —xyv, q3 := 0.
Im(h) = xyv?, le(h) = Iyt — 2L

Su eLu? + 3. Again, Im(f;) | Im(f) for j = 1,2,3
we compute o = (aj1, 52, a53) € N? such that a; + exp(Im(f;)) exp(lm(h)) and
o (le(f5))Cay 85"

Step 2.

= a1 =0,a12 =0,a13 =1,

o™ (lc(fl))coaﬁl - 0—?0203(’” = u2 +1,

(c21, 22, r23) + (1,1,0) = (1
o2 (1c(f2))Cag,p = 0505035 (
(a1, a32,a33) +(0,1,1) =

(11, a12,013) + (1,1,1) = (1, 1,2)
+1) =

,1,2) = ag1 = 0,00 =0, 93 = 2
) = u,

(1,1,2) = (31 = 1,a32 = 0,0[33 =1

2

1 1
o (lc(f3))ca3 Bs — 010300( 1)0013”33 =Ju+ 5.

s 4772
We resolve the equation
le(h) = ut =22 4+3 = r (WP +1)+r2(u)+r3(Futd) = r = Ju? =52 rp = =1 rg = B3
we have:

h =h —

(r1z® fi + rox®? fo + 132 f3)

1 1
=h — (7’1[(u2 + 1)xy112 + 2uv3] + 79 [uavyv2 + 31)3] + 7“3[(4 + 2>xy112])
9 51 225
=(u — 2)zyv — < 3

- = +2
4U 4U 16>U uYyv.
and
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q1 = 3uxy + ( u? — 51)1} Q2 ‘= —TYv — 7—21}2 qs : 745331)

Step 3. Note that lm(h) = zyv and Im(f;) | Im(h) for j = 1,2, 3. For this case we have:

(11, 12, 013) + (1,1,1)

o (Ie(f1))Cayr 1 = 010503
(o1, a2, a23) + (1,1,0) = (1,
72 (Ic(f2))Caz b2 = 0V0303(1) = u,
(g1, 32, a33) + (0,1,1) = (1,1,1) = a1 = 1,a30 = 0,33 = 0,

1,1,1) = a1 = 0,a12 = 0,13 = 0,

a3 (1c(f3))Cas.ps = 010905 (u — 1) = —%u —1.
We solve,
u—2=r1(u?+1) +T2(U)+T3(—%u— )=r1=0,1r0=2,1r3=2;
thus,
h =h — (riz® fi + r22°? fo + 132 f3)
=h — (ro[uzyv + 3v?] + r3[<—;u — 1>xyv])
= <iu3 — %u 21265> 3 4 uyw — 602
and also

q1 = 3uxy + (gu — %)v, g2 ‘= —xYv — %02 +2v, g3 : 75:rv + 2z.

Step 4. Since Im(h) = v? is not divisible by Im(f;) for j = 1,2,3, then h is reduced with
respect to G, and we can check that f = q1 f1 + q2f2 + g3f3 + h; i.e.,

9 51 75 75
f :(3uxy + <8u2 — 8)1}) i+ < TYv — Ev + 2v> fo+ <4a:v + 2:1:) f3

9 5 51 225
= 92 _
<4u 4u 16)1} + 2uyv 6v2;

we also see that,

max{lm(lm(q1)im(f1)), m(Im(qz2)im(f2)),Im(Im(gs)lm(f3))}
= max{x?y?v, 2%y%v, zyv?, v3} = 2%y%v = Im(f).

5.3 Grobner bases of left ideals

Our next purpose is to recall the definition of a Grobner bases for the left ideals of the
skew PBW extension A = o(R)(z1,...,%,). Remember that if @ # F' C A, with (F'} we
are denoting the left ideal of A generated by F'.
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Definition 5.3.1. Let I # 0 be a left ideal of A and let G be a non empty finite subset of non-zero
polynomials of I, we say that G is a Grobner basis for I if each element 0 # f € I is reducible
w.r.t. G.

We will say that {0} is a Grobner basis for I = 0.

Theorem 5.3.2. Let I # 0 be a left ideal of A and let G be a finite subset of non-zero polynomials
of 1. Then the following conditions are equivalent:

(i) G isa Grobner basis for I.

(ii) For any polynomial f € A,

f e Iifand only if f inr 0.

(iii) Forany O # f € I there exist gi,...,g: € G such that lm(g;)|lm(f), 1 < j <, (ie.,
there exist oc; € N™ such that oi; + exp(Im(g;)) = exp(Im(f))) and

le(f) € (0™ (le(g1))cargrs - - -0 (le(ge) ) Car,g: }-

(iv) Fora € N", let (o, I'} be the left ideal of R defined by
(o, I} = (le()If € L exp(im(f)) = a},
Then, (a, I} = J, with
T = (0P (Ie(g))epglg € G, with 8+ exp(im(g)) = a.

Proof. See [40], Theorem 24. O

From this theorem we get the following consequences.

Corollary 5.3.3. Let I # 0 be a left ideal of A. Then,
(i) If G is a Grobner basis for I, then I = (G}.

(ii) Let G be a Grobner basis for I, if f € I and f iur h, with h reduced, then h = 0.

(iii) Let G = {g1,...,9+} be a set of non-zero polynomials of I with lc(g;) € R* for each
1 < <t. Then, G is a Grobner basis of I if and only if given 0 # r € I there exists i such
that lm(g;) divides Im(r).

Proof. (i) This is a direct consequence of Theorem 5.3.2.

(ii) Let f € I and f -+, h, with h reduced; since f — h € (G} = I, then h € I; if
h # 0 then h can be reduced by G, but this is not possible since h is reduced.

(iii) If G is a Grobner basis of I, then given 0 # r € I, r is reducible w.r.t. G, hence there
exists i such that lm(g;) divides im(r). Conversely, if this condition holds for some i, then
r is reducible w.r.t. G since the equation lc(r) = r10 (lc(gi)Cay,,g:» With a; +exp(Im(g;)) =
exp(lm(r)), is soluble with solution 1 = lc(r)c,, , (0% (lc(g:))) ™!, where ¢, . is a left
inverse of cq, g;- O
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Corollary 5.3.4. Let G be a Grobner basis for a left ideal 1. Given g € G, if g is reducible w.r.t.
G' = G —{g}, then G' is a Grobner basis for I.

Proof. According to Theorem 5.3.2, it is enough to show that all f € I is reducible w.r.t
G'. Let f be a nonzero polynomial in I; since G is a Grobner basis for I, f is reducible
w.r.t G and there exist elements g1, . . ., g: € G satisfying the conditions (i), (ii) and (iii) in
the Definition 5.2.3. If g # g; for each 1 < i < ¢, then we finished. Suppose that g = g, for
some j € {1,...,t} and let 5; = exp(g;) fori # j, § = exp(g), and «;, @ € N such that
a; + B; = exp(f) = a+ B. Thus,

le(f) = rio®t(le(g1))cay,p, + -+ +1j0%(le(g))caps + -+ + 10 (Ic(ge) ) Cay 5, -

On the other hand, since g is reducible w.r.t. G’, there exist g},...,¢g., € G’ such that
Im(g)) | Im(g) and lc(g9) = >, rfoai(lc(g{))cag,ﬂg, where 3/ = exp(g)), a; € N" and
o) + B = exp(g) = B. So, Im(g)) | Im(f) for 1 < i < s; moreover, using the identities of
Remark 1.2.3, we have that

S

0% (le(9))eas =0 (Y o (le(9D))eag,5)ca s
=1

=0 (r))o 0 (Ic(g})) 0 (cay 5 )Cars + -+ + 0% (1) o0 (Ic(g,)) 0™ (car 31 ) Ca
=0 (1})Cavay 0T (Le(g1)) sy 0 (Cap ) Cap + -+

0% () o, 7 (Ie(gL)) e by 7 (Car 1 ) Carp
=0 (r)Ca,a, 0T (le(0))) Casat by + - + 0 (1))Cara, 0T (Ie(g)))Cartar 51

Since o + 8 = exp(f), then a + o] + 3] = exp(f). Further, if g, € {g1,...,q:} exists
such that g, = g) forsome ! € {1,...,s}, then ] = 5 and a + o] = «y,; therefore, in the
representation of lc( f) would appear the term (7 + rjaa(r;)caya; Yok (lc(gk))cay,,- From
above it follows that f is reducible w.r.t. G’ and, hence, G’ is a Grobner basis for 1. ]

5.4 Buchberger’s algorithm for left ideals

In [40] was constructed the Buchberger’s algorithm for computing Grobner bases of left
ideals for the particular case of quasi-commutative bijective skew PBW extensions. In
this section, we extend the Buchberger’s procedure to the general case of bijective skew
PBW extensions without assuming that they are quasi-commutative. Complementing
Remark 5.2.2, from now on we will assume that A = o(R)(x1, ..., z,) is bijective.

We start fixing some notation and proving a preliminary key result for bijective skew
PBW extensions.

Definition 5.4.1. Let F' := {g1,...,9s} C A, Xp the least common multiple of
{lm(g1),...,lm(gs)}, 0 € N", 5; := exp(Im(g;)) and ~v; € N" such that v; + 5; = exp(Xp),
1 <i < s. Bpg will denote a finite set of generators of

Sro = Syzrlo" T (lc(g1)) 10,8, -+ 070 (lc(gs))Cyoro,8,)]-

For 0 =0:=(0,...,0), Sgg will be denoted by S and Brg by Br.



CHAPTER 5. GROBNER BASES FOR SKEW P BW EXTENSIONS 75

Remark 5.4.2. Let (b1,...,bs) € Spy. If Ais abijective skew PBWV extension, then there
exists an unique (b},...,b,) € Sp such that b; = o?(b)cy, for 1 < i < s: in fact, the
existence and uniqueness of (b, ...,b}) it follows of the bijectivity of A. Now, since
(bi,...,bs) € Spg, then >°7_; b;o?*i(lc(g;))co4~.5, = 0. Replacing b; by o?(b})cg, in
the last equation, we obtain >_;_, a?(b})cg -, 9+%(lC(gy))69_,1}12097%09_5_%7& = 0; multiplying
by ¢, ! iap Wegetyl o (b)) cp 0" (le(g ))Ce :C0.7:CO+:,8:Cp ,%+B = 0; now we can use
the identities of Remark 1.2.3, s0 "¢, o/(b})o (o%(lc(gl))) %(c,, 5,) = 0, and since 0¥ is
injective then > 7 | bio"i(le(gs))cy, 5, = 0, ie., (b}, ..., b)) € Sp.

i=1"1

Lemma 54.3. Let ¢1,...,9s € A, c1,...,¢s € R—{0}and ay,...,as € N" be such that
a; +exp(gi) = 0. If im(>°7_, cix®ig;) < 20, then there exist r1,...,r, € Randly,...,ls€ A

such that i

Z cix®gi = Z 7jad ~exP(XF) (Z bjix%gi> + Z ligi,

i=1 j=1 i=1 i=1
where X is the least common multiple of Im(g1), . . ., Im(gs), vi € N™is such that ~;+exp(g;) =
exp(Xr), 1 <i < s,and (bjy,...,bjs) € Br. Moreover, we have that Im(z0~P(Xr) S paig;) <
2% and Im(Im(1;)Im(g;)) < =°.

Proof. Let 2% :=Im(g;) for 1 < i < s;since 2° = Im(z&lm(g;)), then Im(g;) | ° and hence
Xr | 2°, so there exists # € N™ such that exp(Xr) + 6 = 6. On the other hand, v; + §; =
exp(Xp)and a; + f; = 6,50 o = 7; + 0 for every 1 < i < s. Now, Im(D> 7, c;z%g;) < 20
implies that "7, ¢;o%(Ic(gi))ca, 5, = 0. So we have Y7 | c;0?i(Ic(gi))cosr; 5, = O.

Hence, we have that (ci, ..., ¢s) € Spg; from Remark 5.4.2 we know that exists an unique
(ch,...,c.) € Spsuch that ¢; = 0%(cl)cp ;. Then,
s
Z cix™g; = Z o 60,% % g;.
i=1
Now,

2 = (6%(c))a? + perp)a

= o ()a?z + pu WA

;)

i

o (C;)C 0,7y L 9+% +o ( i)pe,%- erc;ﬂx%
/
i)

=0 (C Ce’Yz 9+’Yz +p

where p! := ¢%(c))pg~. + po gz 7; Note that pi = 0 or Im(p,) < 2917 foreach 1 < i < s.
1 [ Vi ;0 7 7
Thus, 09(62)097%559-#% = xec;-a:%' + p;, with p; = 0 or Im(p;) < %7, Hence,

i Ci‘raigz Z g 09,%1' ‘i
i=1
= Z (2"ca + pi)g
= Z 2 cjaig; + sz'gi,
i=1 i=1
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con p;gi = 0 or Im(lm(p;)lm(g;)) < 278 = 2% On the other hand, let By :=
{bl,...,bk} = {(bl].)"'abls))"')

(bg1, - - -, brs)} be aset of generators of Sg; as (¢}, ..., c,) € S, then thereexistr],...,r, €
R such that (Clv"'vc;) = T’lbl +"'+T‘;€bk Z’I”ll(bll,...,blg) +-'-+T§€(bk1,...,bk5),thus
= Z; 1 73bji. Using this, we have

5 s k

0 .7
Zx g = E ? Z bji)x i g;
i=1 i=1

e

i=1 j—l
_Z Z $ +pr 6?)()]2)x7 gi
=1 j=1
_Z ZU 9b jil .%"‘Zpr 9b jil gz)
i=1 j=1 j=1
_ZZJ ebﬂx’y gl+zzpr Objzxﬁy 9i
j=11i=1 i=1 j=1

= Z o z? Z bjzl'%gz + Z qi9i,

where ¢; := E?Zl pr;,gbjiZC% =0 orlm(g) < %7 Therefore,
s k s s
D eiaigi =Y ra®> buaVigi+ Y ligi,
j=1 i=1 i=1

=1

withl; == p; + ¢ for1 <i < sand r; := o¥(r %) for 1 < j < k. Finally, is easy to see
Im (2% (3°_; bjixig;)) < x° since that Im (3"} =1 bjizYig) = 2P and Im(Im(1;)lm(g:)) <
max{lm(Im(p;)lm(g)), Im(Im(q;)lm(g:))} < «° n

With the notation of Definition 5.4.1 and Lemma 5.4.3, we can prove the main result
of the present section.

Theorem 5.4.4. Let I # 0 be a left ideal of A and let G be a finite subset of non-zero generators
of 1. Then the following conditions are equivalent:

(i) G isa Grobner basis of I.
(i) Forall F:={g1,...,9s} C G, and for any (by,...,bs) € Bp,

‘ G
Zle b;xig; —4 0.
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Proof. (i) = (ii): We observe that f := 7 | bjzYg; € I, so by Theorem 5.3.2 f inr 0.

(il)) = (i): Let G := {g1,...,9¢}, then there exist hy,...,hy € A such that f = hig; +
-+ + hyg; and we can choose {h;}!_, such that 2° := max{Im(Im(h;)im(g;))}t_, is min-
imal. Let 2% := Im(h;), ¢; := le(hi), % = Im(g;) for 1 < i < tand F := {g €
G | Im(Im(h;)lm(g;)) = 2°}; renumbering the elements of G we can assume that F' =
{g1,---,9s}. We will consider two possible cases.

Case 1: Im(f) = «°. Then Im(g;) | Im(f) for 1 <i < s and

le(f) = c1o®t(le(g1))Car o + -+ + 50 (Ie(9s))Cas por

i.e., the condition (iii) of Theorem 5.3.2 holds.

Case 2: Im(f) < x°. We will prove that this produces a contradiction. To begin, note
that f can be written as

s s t
[ = Z cix™ g + Z(hi — ™) g; + Z higs; (5.4.1)
i—1 =1

i=s+1
we have that Im(Im(h; —c;z%)lm(g;)) < x° foreach 1 < i < s, and Im(Im(h;)Im(g;)) < 2°
forevery s +1 <1 <t,s0

Im(327 cixigs) < 2% and lm(Zfzs+1 higi) < 0,

and hence Im(3"7_, c;z%g;) < 2°. By lemma 5.4.3 (and its notation), we have

s k s s
Z cir¥ig; = Z Wa—exp(XF) (Z bjiﬂc%gi) + Z ligi, (5.4.2)
=1 7=1 =1 i=1

where lm(x‘S*eXp(XF) Yo bjixig) < 20 for every 1 < j < kand Im(Im(l;)lm(g;)) < ol
for 1 < i < s. By hypothesis, >7_, bj;z7*g; ~GA+ 0, and according to Theorem 5.2.6,
there exist ¢1,...,q: € Asuch that >, | bjiz"ig; = Zle ¢igi, with Im(>7_ | bjixvig;) =
max{Im(Im(q;)lm(g;))}._,, but (bj1,...,bjs) € Bp,solm(>.;_; bjiz"g;) < X and hence
Im(Im(q;)lm(g;)) < Xr forevery 1 <i < t. Thus,

k s k t
Z zj(s*eXp(XF) (Z bjﬁ%gi) _ Z Tj:Eé*EXP(XF) (Z Qigi)
=1 i—1 j=1 i—1
t k
= Z Z zj(s_eXp(XF)qigi
=1 j—1

t
=1

with g; = Z§=1 720~ PXE) g and Im(Im(g;)im(g;)) < «°. Substituting 35 | c;x%g; =
S @gi +3°5_, lig; into equation 5.4.1, we obtain

t s s t
F=YGgi+ > (hi—cax®)gi+ Y ligi+ > higi,
i=1 i=1 i=1

i=s+1
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and so we have expressed f as a combination of polynomials g1, ..., g, where every
term has leading monomial < z°. This contradicts the minimality of z° and we finish the
proof. O

Corollary 5.4.5. Let F' = {fi,..., fs} be a set of non-zero polynomials of A. The algorithm
below produces a Grobner basis for the left ideal (F'} of A (P(X) denotes the set of subsets of the
set X):

Buchberger’s algorithm for
bijective skew PBW extensions

INPUT: F = {f1,....f} CA f, #0,1<i<s
OUTPUT: G = {gi, ..., gt} a Grobner basis for (F'}
INITIALIZATION: G :=0,G' .= F
WHILE G’ # G DO
D := P(G') — P(G)
G:=G¢
FOR each S := {gi,,...,9i,} € D DO
Compute Bg
FOR each b = (by,...,b;) € B¢ DO

Reduce Z?Zl bjzig;, i/nr r, with r reduced
with respect to G’ and ~; defined as in Definition
5.4.1

IF r # 0 THEN
G =G uU{r}

From Theorem 1.2.9 and the previous corollary we get the following direct conclusion.
Corollary 5.4.6. Each left ideal of A has a Grobner basis.

Example 5.4.7. For this example, we consider a diffusion algebra described in Example
1.33. Letn =2,k =Q,dio = —2and do; = —1. In this ring, DoDy =2D1Do+xo0D1—x1 D2
and the automorphisms o; and o9 are the identity. We consider the order deglex with
D; = D5 and the polynomials f; = x3x9D3Ds, fo = x3D1D3. We will calculate a Grob-
ner basis for the left ideal generated by f; and f.

We start taking G := @ and G’ := { f1, f2}.

Step 1. Since G’ # G, we have D = {5, S2, 512}

We make G = G.

Since R has not zero divisors, S; and S2 do not add any polynomial to G'. For S,
we compute Bg, ,, a generator set of Syzr[o™ (Ic(f1))cy, 8,072 (lc(f2))Cn 8]0 X12 =
lem{D3Dy, D1D3} = D3D3, so v1 = (0,1) and D9(D3Ds) = 4D?D3 + 329D?Ds —
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321 D1D3 — x129D1 Dy + 1 D3, thus ¢, g, = 4; in a similar way, 72 = (1,0) and ¢, 5, = 1.
Whence, Bg, , = {(322, —2%)} and we have

%JIQDQfl — l’%lez % D2D2 l’ll'QDlDz 1$1$2D1D2 + QTIIL‘QD%,
Since that
x1x2D2D2 x1x2D1D2 x1x2D1D2 + xla,'%DQ —>+ —fxlmQDng + xlx%DQ : fs

and f3 is reduced with respect to G, we add the polynomial f3 and we make G’ :=
{fl7 .f27 .f3}

Step 2. Since G’ # G, we compute D = P(G’) — P(G) and we make G = G’. In D we only
need to consider three subsets:

Si13=1{f1, f3}, S23={fo, f3}, S123 = {f1, f2, f3}.

For S13, Xs,, = D3Dy so v = (0,0), Cy,p = 1; in the same way, v3 = (1,0) and
Cys3; = 1. Thus, we must calculate a generator set for Syzg[zizo, —1z323]. We have
Bg, , = {(#123,4)} and, therefore,

$1x%f1 + 4D1f3 = xlx2D1D2

that can be reduced to 0 by fs.
For S33, Xs,, = D1 D3, 50 v2 = (0,0) and Cyy,8, = 1; in the same way, 73 = (0,1) and,
since Dy D1 D9y = 2D1D§ + x9D1 D9y — xlDQ, then c,, g, = 2. Thus, a set of generators for

SyzR[x%, Qm:fzng] is Bg, , = {(l’ll‘g, 2)}, and

239 fo + 2Do f3 = %x%x%D%’ — ffcleDlDz + xla:;’DZ : fa

Since that f4 is reduced with respect to G, then we add f4 and we make G’ := {f1, f2, f3, fa}.
For S12.3, Xg,,, = D}D3 and hence v1 = (0,1), 72 = (1,0) and 73 = (1,1). So, ¢y, 5, = 4,
Cyy,8, = 1 and, since D1 Dy D1 Dy = 2D3D3+x9D3 Dy — 11 D1 D3, then ¢, 3, = 2. Therefore,
a system of generators for Syzg[dzixs, 23, —3x3a3]is By, ,, = {(F22, —2%,0), (2123,0,2)};
for the first generator we obtain a polynomial that can be reduced to 0 by fi, f> and f3
(in this case, we have the same calculations than step one). For the second generator, we
obtain the following polynomial:

41‘1.’1}2D2f1 + 2D1D2f3 = 1‘11‘2D2D2 — $1$2D1D2 — ll’lnglDQ + IEll‘%DQ

which can be reduced to 0 by f1, f> and f3. In consequence, we do not add any polyno-
mial.

Step 3. Again, G # G'. Thus, we compute D = P(G’) — P(G) and we make G = G'. In
this case, we only need to consider the following subsets:

S1,4, 52,4, 534, S1.2.4, 51,34, 5234, 51,2,34-

For S14, Xs,, = DiD3, and 1 = (0,2), 74 = (2,0). Now, since
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D3D2Dy =
then ¢y, 3, = 16. As ¢y,3, = 1, a generator set for Syzg[l16zixs, Jx{a3] is Bs,, =
+23w9, —2)}. With this single generator, we obtain
a? 2)}. With this single g t btai

Latz,D3f1 — 2D2f4 = 2324D3 Dy — Lata3DID3 — 7x1x2D1D + 2 aizdDIDy —
x1x2D1D2 16x1$2D3 — lx1x2D1D2 + 12823 Ds,

a polynomial reducible to 0 by fi, fa2, f3 and fj.
For 52,4, Xs,, = Di1D3, 50 v = (0,1) and 74 = (
xoD1D3 — 21 D3, then ¢y, 3, = 2. Thus, Bs,, = {(32

of Syzg[223, $x123], and we have

1,0) As DngDg = 2D1D§’ +
1,—2)}isa system of generators

4 — 3,412 1,.4.3 2 1..5,.203

which is also reducible to 0 w.r.t. f1, f2, f3 and f;.

For S34, Xg,, = Dng’, whence 73 = (0,2) and 74 = (1,0). Seeing that D3D1Dy =
4D D3 + 4x2D1 D} — 321 D3 + 23D, Dy — z129D3, then ¢, 3, = 4. Thus, a generator set
for Syzgr[—a3z3, 2123 is By, , = {(—x1, —2x,)}; therefore,

—21D3 f3 — 239Dy f1 = —32823 D5 + 2323 D3 Dy — 32823 D3 + Latai D1 Dy — 12824 D3,

Since this last polynomial is reducible to 0 through f>, f3 and fi, then no polynomial is
added.

For 5124 we have Xg,,, = D{D3, hence 1 = (0,2), 72 = (1,2) and 74 = (2,0). Thus,
Cy o = 16, Cyy 8, = 2, ¢y, 3, = 1 and, hence, Bg, ,, = {(£z2, —32%,0), (52322,0, —2)}.
For these generators, we obtain polynomial that are reducible to 0 by f1, f2, f3, and fs.
For S134, Xg,,, = DiD3; thus v; = (0,2), v3 = (1,2) and 4 = (2,0). In consequence,
Cyi o = 16, ¢y 8, = 4, ¢y, 5, = 1 and a set of generators for Syzg[1623xy, —2323, 223 is
BSl 3.4 {(1161‘1.%%, 1 0)

(16 x%xg, 0,—2)}. It is not difficult to show that these generators produce polynomials
which can be reducible to 0 w.r.t. f1, fo, f3, and f3.

For S5 3 4, we obtain a similar situation,

Finally, for S) 2,34 we have that Xg ,,, = DiD3, 1 = (0,2), 72 = (1,1), 13 = (1,2)
and Y4 = (2 0) Thus C71 B = 16 Crp, B2 = 2, Cy3,83 = 4, Cyy,Bs = 1, and 351’2)3‘4 =
{({522, —323,0,0), (f52123,0,1,0),

(f52322,0,0,—2)}. Once again, the polynomials obtained through these generators are
reducible to 0 by fi, f2, f3 and f4. Therefore, G = {f1, f2, f3, fa} is a Grobner basis for

I:=(f1, fa}.

Example 5.4.8. For this example, we consider the ring R described in the Example 1.3.6.
For computational reasons, we rewrite the generators and relations for this algebra in the
following way:

r:=0b, y:=a, z:=c¢ w:=d,

and the relations in this ring as:

yr = q ‘zy, wr=qrw, 2y=qyz, Wz=qIw

cx=p ez, wy=yw+ (¢—q Dz
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Thus, R = o(k[z])(y, z,w). On Mon(R), we consider the order deglex with y > z > w;
further, we will take k = Q, p = % and ¢ = 3. From above relations, we obtain that
o1(z) = %z, 03(z) = 2z and o3(x) = 3z. Given the polynomials f; = 2?y?2w? and
f2 = y?2%w, we will calculate a Grobner basis for the left ideal I := (f1, f2}.

We start taking G := @ and G’ := { f1, f2}.

Step 1. Since G’ # G, we have D = {51, 52, 512}

We make G = G'.

Since R does not have zero divisors, S; and Sy do not add any polynomial to G’. For
S1,2, we have Xg,, = y?2%2w? and, therefore, v; = (0,1,0) and v, = (0,0,1). Since
that zy?2w? = 9y%2*w? and wy?z*w = 9y?22w? + Lzy23w, we obtain that ¢,, 5, = 9 =
Cyy,8,- Moreover, a7 (Ic(f1)) = 422 and 072(Ic(f2)) = 1 and, whence, we must calculate a
generator set of Syzg[o" (Ic(f1))cyy 81,072 (le(f2))Cys,8,] = Syzr[36x2,9]. It is not hard to
see that we can take Bg, , = {(5522, —§2%)}. So,

1 1 80 .
352/1 — ngQQUfQ = _ﬁxgyzg = f3

and, since f3 is reduced with respect to G, we add the polynomial f3 and we make G’ :=
{f17 f27 f3}

Step 2. Since G’ # G, we compute D = P(G’) — P(G) and we make G = G'. In D we only
need to consider three subsets:

S1,3 = {f1, f3}, Se3 = {f2, f3}, S1,23 = {f1, fo, f3}.

For 513, X5, 5 = y?23w2 s0 v = (0,2,0) and 43 = (1,0,1). Since z2y?zw? = 81y?z3w?
and ywyz3w = 27y*z%w? + Szyz'w, we have that ¢,, 3, = 81 and c,, g, = 27. On the other
hand, 07 (le(f1)) = 162 and 072 (le(f3)) = —Pa3; thus, we must calculate a generator

set for Syzp[12962%, — % 2%]. We have B, , = { (13552, &) } and, therefore,
st + Sywh = — ety

that can be reduced to 0 by fs.

For S33, Xs,, = y223w, so y2 = (0,1,0) and 43 = (1,0,0). Since zyz?w = 9y?23w then
Cyp,8, = 9; in the same way, ¢y, g, = 1 and 072(Ic(f2)) = 1, 07 (Ic(f3)) = —F2=23. Hence,
a set of generators for Syzg[9, —5°%-2%] is Bs, , = { (32, —281)}, and

1,3 2187 o _ 1.3 (2.2 2187, ¢ 80 3. 3, \ _
g2 fo — oty fs = griz(y iz w) + Hry(—gretyz"w) = 0.

For S12.3, Xg,,, = y*2*w? and hence 71 = (0,2,0), 72 = (0,1,1) and 73 = (1,0, 1). Since
2292 20% = 81y223w? , 2wy 2Pw = 81y?23w? + 1g—oxyz4 and ywyz3w = 27y%23w? + %$y24w,
then ¢, g, = 81, ¢y, 3, = 81 and ¢, g, = 27. Further, 67 (Ic(f1)) = 1622, 072(lc(f2)) = 1
and 073 (Ic(f3)) = — D a3. Therefore, a system of generators for Syz[129622,81, —2z] is
Bg, 45 = {(1356, —3:2%,0), (0, &72°, 3)}; for both generators we obtain a polynomial that
can be reduced to 0 by f3. In consequence, we do not add any polynomial, and therefore,
G = {f1, f2, f3} is a Grobner basis for I := (f1, fa}.

Remark 5.4.9. If I is a left ideal a bijective skew PBW extension A and G = {g1,...,9:}
is a subset of nonzero polynomials in /, then Corollary 5.3.3 gives us a tool to verify if
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G is a Grobner basis for I when lc(g;) € R* for each 1 < i < t. For example, let A be
the ring described in Example 1.3.4, withk = Q, ¢ = %, g2 = %, and I = 4(f1, f2},
where f1 = y?z + 32z and f = 222 — y2. Employing the Buchberger’s algorithm and the
Corollary 5.3.4, we have that G = {zz,yz} is a Grobner basis for I. To verify this, note
that given f € I, Im(f) = 2*y*22* with az > 1, oy > 1 or ag > 1; in either case, Im(f)
will be divisible by zz or yz.

5.5 Grobner bases of modules

In this section, we recall the general theory of Grobner bases for submodules of A™, m >
1, where A™ is the left free A-module of column vectors of length m, A = o(R)(x1,..., %)
is a bijective skew PBW extension of R, with R a LGS ring (see Definition 5.2.1) and
Mon(A) is endowed with some monomial order (see Definition 5.1.1). Since A is a left
Noetherian ring (Theorem 1.2.9), we have that A is an I/ BN ring (Invariant Basis Number,
see [79]), and hence, all bases of the free module A™ have m elements. Note also that A™
is a left Noetherian, and hence, any submodule of A™ is finitely generated. This theory
was studied in [57] and [58], but now we will extend Buchberger’s algorithm to the gen-
eral bijective case without assuming that A is quasi-commutative. The goal is to establish
and calculate Grobner bases for submodules of A™; for this, we will define the monomi-
alsin A™, orders on the monomials, the concept of reduction, we will construct a division
algorithm, give equivalent conditions in order to define Grébner bases, and finally, we
will compute Grobner bases using a similar procedure to Buchberger’s algorithm for the
general case of bijective skew PBW extensions (not necessarily quasi-commutative as
was assumed in [57] and [58]). The results presented in this section are an easy general-
ization of those of the previous sections, i.e., taking m = 1 we get the theory of Grobner
bases for the left ideals of A developed before. We will include only some proofs since
most of them can be consulted in [57] and [58] or they are an easy adaptation of those
of the previous sections. The theory presented in this section has been also studied by
Gomez-Torrecillas et al. (see [18], [19]) for left PBW algebras over division rings and
assuming some special commutative conditions.

5.5.1 Monomial orders on Mon(A™)

In the remainder of this section, we will write the elements of A™ as row vectors, if this
not represent confusion. We recall that the canonical basis of A™ is

e = (1,0,...,0),e2 = (0,1,0,...,0),...,em = (0,0,...,1).
Definition 5.5.1. A monomial in A™ is a vector X = Xe;, where X = z¢ € Mon(A) and
1<i<m,ie.,

X=Xe;=(0,...,X,...,0),

where X is in the i-th position, named the index of X, ind(X) := i. A term is a vector cX, where
¢ € R. The set of monomials of A™ will be denoted by Mon(A™). Let Y = Ye; € Mon(A™), we
say that X divides Y if i = j and X divides Y. We will say that any monomial X € Mon(A™)
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divides the null vector 0. The least common multiple of X and Y, denoted by lem(X,Y), is 0 if
i # j, and Ue;, where U = lem(X,Y), if i = j. Finally, we define exp(X) := exp(X) = a and
deg(X) := deg(X) = |a|.

Next, we define monomial orders on Mon(A™).

Definition 5.5.2. A monomial order on Mon(A™) is a total order = satisfying the following
three conditions:

(i) Im(zP2*)e; = x“e;, for every monomial X = x%e; € Mon(A™) and any monomial 2 in
Mon(A).

(i) fY = 2°e; = X = x%;, then Im(z72P)e; = Im(x72%)e; for every monomial z7 €
Mon(A).

(iii) > is degree compatible, i.e., deg(X) > deg(Y) = X = Y.

If X > Ybut X # Y we will write X >~ Y. Y < X means that X >~ Y.

Proposition 5.5.3. Every monomial order on Mon(A™) is a well-order.
Proof. We can repeat the proof of Proposition 5.1.2: Suppose that we have a monomial or-

der > on Mon(A™) that is not a well order. This means that we have an infinite sequence
of monomials

X1 -Xo X35>+
and since > is degree compatible, then we have the an infinite subsequence
deg(Xi,) > deg(Xi,) > deg(Xiy) > -+,
but this is impossible since deg(Xj, ) is finite. O

Given a monomial order > on Mon(A), we can define two natural orders on Mon(A™).

Definition 5.5.4. Let X = Xe;and Y =Ye; € Mon(A™).

(i) The TOP (term over position) order is defined by
X=Y<+= qor

X=Yand i>j.

(ii) The TOPREYV order is defined by

X =Yand i<j.
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Remark 5.5.5. (i) Note that with TOP we have
em > Cm_1 = - = €]
and
el ey > > en

for TOPREV.

(ii) The POT (position over term) and POTREV orders defined in [1] and [75] for
modules over classical polynomial commutative rings are not degree compatible.

(iii) Other examples of monomial orders in Mon(A™) are considered in [19], e.g, or-
ders with weight.

We fix a monomial order on Mon(A), let f # 0 be a vector of A™, then we may write
f as a sum of terms in the following way

f=aXi+ - +aX,

where cy,...,¢; € R—0and X; > X9 > --- = X; are monomials of Mon(A™).

Definition 5.5.6. With the above notation, we say that

(i) it(f) := c1X; is the leading term of f.

(ii) le(f) := c1 is the leading coefficient of f.
(iii) im(f) := X; is the leading monomial of f.
(iv) ind(f) := ind(Im(f)) is the index of f.

For f = 0 we define im(0) = 0,1c(0) = 0,{t(0) = 0, and if > is a monomial or-
der on Mon(A™), then we define X > 0 for any X € Mon(A™). So, we extend > to
Mon(A™)(J{0}.

5.5.2 Division algorithm in A™

The reduction process in A™ is defined as follows.

Definition 5.5.7. Let F' be a finite set of non-zero vectors of A™, and let f,h € A™, we say

that f reduces to h by F in one step, denoted f x, h, if there exist elements f,,....f, € F and
r1,...,7t € Rsuch that

@) Im(f,)[im(f), 1 < i <t ie., ind(Im(f;)) = ind(Im(f)) and there exists z* € Mon(A)
such that a; + exp(Im(f;)) = exp(Im(f)).

(11) lc(f) =rio* (lc(fl))cal,fl 4+ o (lC(ft))cht,ft/ where Cai f, = Cayexp(Im(f,))
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(il) h=f— >\, rizf.
We say that f reduces to h by F', denoted f LJr h, if and only if there exist vectors hy, ..., hi_1 €

A™ such that

f—— b —— Ty —— - b ——

f is reduced (also called minimal) w.r.t. F if f = 0 or there is no one step reduction of f by
F, i.e., one of the first two conditions of Definition 5.5.7 fails. Otherwise, we will say that f is

reducible w.r.t. F. If f imr h and h is reduced w.r.t. F, then we say that h is a remainder for f
w.r.t. F.

Remark 5.5.8. Related to the previous definition we have the following remarks:
(i) By Theorem 1.2.2, the coefficients c,, s, in the previous definition are unique and
satisfy

2% pexp(im(f;)) — Ca.f_xai+eXp(lm(f¢)) T

where p,, ¢, = 0 or deg(im(pa, r,)) < |a; +exp(Im(f;))], 1 <i <t

(ii) Im(f) > Im(h) and f — h € (F), where (F') is the submodule of A™ generated by
F.

(iii) The remainder of f is not unique.

(iv) By definition we will assume that 0 o

(v)

t

it(f) = Z rilt(*E(f;)),

i=1

Proposition 5.5.9. Let f,h € A™, 0 € N* and F = {f,, ..., f,} bea finite set of non-zero vectors
of A™. Then,

i Iff L b, then there exists p € A™ withp = 0 or im(2%) = Im(p) such that 2°f+p N
2%h. In particular, if A is quasi-commutative, then p = 0.

(i) Iff ihr hand p € A™ is such that p = 0 or Im(h) > Ilm(p), then f+p i>+ h+p.

(iii) If f i>+ h, then there exists p € A™ with p = 0 or Im(x%f) = Im(p) such that 2°f +
P LJr 2%h. If A is quasi-commutative, then p = 0.

(iv) If f —E—>+ 0, then there exists p € A™ with p = 0 or Im(2%f) = Im(p) such that 2°f +
p — 4+ 0. If A is quasi-commutative, then p = 0.

Proof. This proof is an easy adaptation of the ideal case. See [58], Proposition 22. O
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Theorem 5.5.10. Let F' = {f,,....f,} be a set of non-zero vectors of A™ and f € A™, then the
the division algorithm below produces polynomials q1,...,q € A and a reduced vector h € A™

w.r.t.. F such that f inr h and
f=afi+ - +af,+h
with

Im(f) = max{Im(Im(q1)lm(f,)), ..., Im(Im(q;)lm(f,)), im(h)}.

Division algorithm in A™
INPUT: f.f,,....f, € A" with f; #0(1 < j <1)

OUTPUT: q1,...,q € A ,h € A™with f = qif, +- - - +aqf, +h, hreduced w.r.t..
{fio-- - fiyand
Im(f) = max{Im(Im(q1)lm(f,)), . . ., Im(Im(q;)lm(f,)), Im(h)}

INITIALIZATION: ¢ := 0,q3 :=0,...,q = 0,h:=f
WHILE h # 0 and there exists j such that Im(f;) divides Im(h) DO
Calculate J := {j | Im(f;) divides Im(h)}
FOR j € J DO

Calculate o; € N" such that a; + exp(im(f;)) =
exp(Im(h))

IF the equation lc(h) = 3¢ ;0% (le(f;))ca, £ is soluble, where
Ca, f, are defined as in Definition 5.5.7
THEN

Calculate one solution (r;),cy

h:=h- ZjeJ zj"‘ffj

FOR j € /DO

qj = qj + iz

ELSE

Stop

Proof. The proof is an easy adaptation of the proof of Theorem 21 in [40]. See [58]. O

Example 5.5.11. We illustrate the above algorithm for A, the diffusion algebra used in
Example 1.3.3. In this case, we will take k = Q, m = 2, dio = -2, do1 = —1, deglex
order on Mon(A) with D; = Ds, and TOPREV on Mon(A?), with e; > es. Note that
in this ring the endomorphism o; are the identity. Let f, = (Dng, D% +x1D1D), fy =
(xlDlDQ + ZL‘lDl,D%),fg = (ZElDl,Dg + ZL’Q),f4 = (DQ,D%) andf = ((]}1.232 + 1)D%D% +
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x1D?, D1 Dy + z2D3). Then, we divide f by f,, f,, f; and f,.

Step 1. We start with h := f, ¢1 := 0, ¢2 := 0, g3 := 0, ¢4 := 0. Since lm(fj) | Im(f) for
j = 1,2, we compute a = (a1, aj2) € N? such that o + exp(im(f;)) = exp(lm(h)) and
the corresponding value of 0% (Ic(f))ca; 8, where B; := exp(Im(f;)):

(a11,002) + (1,2) = (2,2) = aq1 = 1,12 = 0,

D1D1D3 = DiD3 = coy 5, = 1,

(o1, 92) + (1,1) = (2,2) = ag1 = 1,90 = 1,
D1D3D1 Dy = 2D3D3 + 22D? Dy — 21 D1D3 = coy 5, = 2.

Now, we solve the equation
le(h) =x120+ 1 =11+ 2rex1 =>r1 =1, 1y = %xg,

and with the relations defining .4, we compute
h =h— (riz®'f, 4+ rea®f,)
—=h — Dy(DyD3e; + x1D1 Doey + D3es) — %$2D1D2($1D1D281 + D3ey + x1D1ey)
= %ngngeg - (%xlx% + x122) DI Dgey — x1D? Doeq + %36%3721711)%31 — Djes
— %xlng%el + %z%ngngel.
We also compute

q1:= D1, g2 := 329D1 D3, g3 := 0, g4 := 0.

Step 2. lm(h) = DyD3es, lc(h) = —3x5. In this case, Im(f;) | Im(f) just for j = 3, and we
must compute a = (as1, a2, ass) € N? such that as + exp(Im(f3)) = exp(Im(h)):

(a31,032) +(0,2) = (1,3) = az1 =1, a32 = 1,
D1DyD3 = D1D3 = coy 5, = 1,

and we have lc(h) = —%xz = r3. Thus,
1
h=h+ §$2D1D2f3
1 1 1
= — il‘lllgD%Dgel — ZL‘1D%D282 + ilL‘%ZL'QDlD%(Zl — D%eg + §$%D1D262,

and
@1 := D1, q2 == 322D1Ds, g3 := — 129 D1 Dy, q4 := 0.
2 C : .
Step 3. Note that Im(h) = DyDe; and Im(f ) | im(h) for j = 2. In this case, we have:

(o1, a02) + (1,1) = (2,1) = ag1 = 1,92 = 0,
D1D1Dy = DiDy = Cay 5, = 1.
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and ry = —123. Therefore,
h=h+ %w%D]fQ
= —21D3Dge; + %x%nglD%el + %nglpgeQ — Dies + %ngngeg + %:@D%el,
and,
@1 := D1, g2 == 322D1 Dy — 323Dy, q3 := —22D1 D3, q4 := 0.
Step 4. Im(h) = D} Daes and Im(f ;) | Im(h) just for j = 4. So,

(ca1,a42) + (2,0) = (2,1) = az = 0,a22 =1,
DQ.D% = 4D%D2 + 3:L’2D% —4x1D1 Dy — x129D1 + JI%DQ = Cay,By = 4.

and r4 = %xl. Therefore,

h=h+ i$1D2f4

1 1 3 1
:*ZL‘%CL‘QDlD%el + iﬂnglD%EQ — D%EQ + lel‘gD%eg + (535'% — x%)D1D262+

1 1
—x9D7e; — ZI%QL‘Q.D:[QQ + Zx?DQEQ,
and
@1 := D1, g2 == 322D1Dy — 333D, q3 := —29D1 D5, qu = — 121 Ds.

Step 5. Im(h) = D1 D3ey and Im(f;) | Im(h) for j = 1,2. So,
(a11,012) +(1,2) = (1,2) = a1 = 0,12 = 0,
D1D1D3 = DiD3 = coy 5, = 1,
(a21,a92) + (1,1) = (1,2) = ag; = 0,00 = 1,
DoD1Dy = 2D1D% +x2D1 Dy — xng = Cay,By = 2.

Now, we solve the equation
le(h) = %x%xg =r1+2rox; =1 = %l’%l’g, ro =0,
and with the relations defining .4, we compute

1
h =h — iw%ngl

1 3 1 1 1
:§$%D1D%BQ — Dgeg + Z:L'IIEQD%EQ + (—51‘?1'2 + 51’% — ZE%)DlDQQQ + §IL‘2D%81

1 1 1
— §$%$2D%€2 — Zx%z:ngeg + Z"E?DQeQ.

Further,
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@1 = D1, @2 := 322D1Dy — 323Dy — Y23y, g3 := —322D1 D3, q4 == — a1 Ds.
Step 6. lm(h) = D1 D3ez and Im(f;) | Im(h) for j = 3. We have,

(az1,a32) +(0,2) = (1,2) = az1 = 1,a32 = 0,
DiD3 = D1D3 = cpyp, = 1,

and r3 = 3. Hence,

h =h — %x%leg

1 3 1 1 1
= — D%eg — §$1$%D%81 + lea:QD%eg + (—*.7):%.%2 + *l‘g — $%)D1D262 + 53}2D%81

2 2
1 1 1 1
— *$1:E2D362 — *(.T% + *.f%ﬂ?Q)DleQ + *CL’?DQ@Q.
2 2 2 4
Moreover,
@1 := D1, @2 := 322D1D3 — $23D1 — $a%my, g3 := —3w2D1 Dy + 323D, 4 := — 21 Da.

Step 7. lm(h) = D3es and Im(f;) | Im(h) for j = 3. We have,

(a31,a32) +(0,2) = (0,3) = az1 = 0,a32 = 1,
DyD3 = D3 = coyp, = 1,

and r3 = —1. Hence,
h =h + Df,
1 3 1 1 1
= — ixlng%el + 2x1D1Dseq + lexQD%ez + (—5{,6?1'2 + 59;‘% - .’L‘%)DlDQeQ + ing%el
1 1 1 1
- 53315621)%62 +x2D1e; — 5(37% + §$?$2)D1€2 —x1Doey + (ZHS? + x2)Daes,
and
q1 = Dl, qo = %CL‘QDlDQ — %.’E%Dl — %I‘%.’EQ, q3 ‘= —%$2D1D2 + %ngl - D2/
— 1. D
qq = —z21L02.

Step 8. Finally, note that Im(h) = D?e; is not divisible by any im(f;), i = 1,2,3, 4. Thus,
we have that

f = D1 fi+(322D1Do—323D1 — 32322) fot+ (— 322 D1 Do+ 323 D1 — Dy) f3+(— 1 21D2) fa+h.
We also see that,

max{lm(Im(q1)lm(f,)), im(Im(q2)im(f,)), Im(Im(qgz)lm(fy)), iIm(Im(qa)im(f,))}
= max{D?D3e;, D? D3e1, D1 D3es, D?Daes} = D?D3ey = Imf(f).
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5.5.3 Grobner bases for submodules of A™

Our next purpose is to define Grobner bases for submodules of A™.

Definition 5.5.12. Let M # 0 be a submodule of A™ and let G be a non empty finite subset of
non-zero vectors of M, we say that G is a Grobner basis for M if each element 0 # f € M is
reducible w.r.t. G.

We will say that {0} is a Grobner basis for M = 0.

Theorem 5.5.13. Let M # 0 be a submodule of A™ and let G be a finite subset of non-zero
vectors of M. Then the following conditions are equivalent:

(i) G is a Grobner basis for M.
(ii) For any vector fe A™,

fe Mz'fzmdonlyszinr 0.

(ie, ind(im(g;)) = ind(Im(f)) and there exist cij € N" such that o; + exp(im(g;))
exp(Im(f))) and

(iii) For any 0 # f € M there exist g,...,8, € G such that Im(g;)[lm(f), 1 < j < ¢,

le(f) € (0™ (lc(81))Car gy - - 0 (le(8,))Car g, }-
(iv) Fora e N"and 1 < u < m, let (o, M },, be the left ideal of R defined by
(a, M}y := (le(PIf € M, ind(Im(f)) = u, exp(Im(f)) = a}.
Then, (a, M },, = J,,, with
Ju = (0 (16(8) s glg € Gy ind(Im(g)) = w and B+ exp(im(g)) = a}.
Proof. See [58], Theorem 26. O

From this theorem we get the following consequences.

Corollary 5.5.14. Let M # 0 be a submodule of A™. Then,
(i) If G is a Grobner basis for M, then M = (G).

(ii) Let G be a Grobner basis for M, if f € M and f inr h, with h reduced, then h = 0.

(iii) Let G = {gy,..-,§,} be aset of non-zero vectors of M with lc(g,) € R* foreach 1 <i < t.
Then, G is a Grobner basis of M if and only if given 0 # r € M there exists i such that
Im(g;) divides Im(r).
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Proof. (i): this is a direct consequence of Theorem 5.5.13.

(ii): let f € M and f —§—>+ h, with h reduced; since f —h € (G) = M, then h € M; if
h # 0 then h can be reduced by G, but this is not possible since h is reduced.

(iii): if G is a Grobner basis of M, then given 0 # r € M, r is reducible w.r.t. G,
hence there exists i such that Im(g;) divides Im(r). Conversely, if this condition holds
for some i, then r is reducible w.r.t. G since the equation lc(r) = rla i(le(g;)casg,, With
a; +exp(lm(g;)) = exp(lm(r)), is soluble with solution 1 = lc(r)c ;Z (o (lc(g;))) ™ L. O

Note that the remainder of f € A™ with respect to a Grobner basis is not unique.
Moreover, changing the term order, a Grobner basis could not be again a Grébner basis.
In fact, a counterexample was given in [75] for the trivial case when A = R[z1, ..., z,] is
the commutative polynomial ring.

Of course, there exists a version of Corollary 5.3.4 for the module case.

Corollary 5.5.15. Let G be a Grobner basis for a left A-module M. Given g € G, if g is reducible
w.rt. G = G — {g}, then G' is a Grobner basis for M.

Proof. According to Theorem 5.5.13, is enough to show that all f € M is reducible w.r.t
G'. Let f be a nonzero vector in M; since G is a Grobner basis for M, f is reducible w.r.t
G and there exist elements g, ...,g, € G satistfying the conditions (i), (ii) and (iii) in the
Definition 5.5.7. If g # g, for each 1 < i < ¢, then we finished. Suppose that g = g, for
some j € {1,...,t} and let §; = exp(g;) for i # j, f = exp(g), and «;, @ € N" such that
a; + Bi = exp(f) = a + 5. Thus,

le(f) = o (le(gy))ca 6y + -+ 10" (1e(§))Cap + -+ + 110 (16(81))Cay 1

On the other hand, since g is reducible w.r.t. G, there exist g/,...,8. € G’ such that

Im(g)) | tm(g) and le(g) = Yoi_ rjo®i(le(8)))cay 5, Where B = exp(g)), af € N" and
a; + B = exp(g) = B. So, Im(g)) | Im(f) for 1 < i < s; moreover, using the identities of
Remark 1.2.3, we have that

o (1c(8))Carp =oa<zr;aaf (1c(8)))Cay 51 )Carp

=o“<r1 01 (Ie(8)))0 (Cay 8y )Cap + - + 0% (1) 0 (16(8.)) 0 (Car 52 ) Car
=0%(r1)Ca “““(lc(gl))ca 0% (Cay By )Cap o+

af"(r;)c O (Ie(8))) ey 0 (Car 1 ) a3

=0 (r})Ca,at ol <lc<gl>>ca+a1 g e+ 0% (1) Caar 0T (Le(8))) Cartar 61 -

Since o + 3 = exp(f), then o + o + B8] = exp(f). Further, if exists g, € {g;,...,g,} such
that g, = g for some [ € {1,...,s}, then 8] = f; and a + a; = «y; therefore, in the
representation of lc(f) would appear the term (rj, +7;0%(r])cq,q,)0** (Ic(8;)) cay, 5, - From
above it follows that fis reducible w.r.t. G’ and, hence, G’ is a Grobner basis for M. O
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5.5.4 Buchberger’s algorithm for modules

Recall that we are assuming that A is a bijective skew PBW extension. We will prove in
the current section that every submodule M of A™ has a Grobner basis, and also we will
construct the Buchberger’s algorithm for computing such bases. The results obtained
here improve those of [58] and [57], and generalize the results obtained in Section 5.4 for
left ideals.

We start fixing some notation and proving a preliminary general result.

Definition 5.5.16. Let F' := {g,,...,8.,} C A™ such that the least common multiple of
{ilm(gy),...,Im(g,)}, denoted by Xr, is non-zero. Let 0 € N", 3; := exp(lm(g,)) and v; € N"
such that v; + 5; = exp(Xr), 1 <1 < s. Bpg will denote a finite set of generators of

Spe = Syzrlo" TP (lc(gy)) ey 40,8 -+ 070 (le(g,))yir0,8.)]-

For =0:=(0,...,0), Sge will be denoted by Sy and Brg by Bp.

Lemma 5.5.17. Let g,,...,8, € A™ , c1,...,cs € R — {0} and ay,..., o, € N” be such
that Im(z*m(g;)) = Xs5. If Im(>°;_, ciz™g,) < X, then there exist r1,...,r, € R and
l1,...,ls € Asuch that

k

i cixtig, = Z Tj$6_eXp(XF) (i bjil‘%gi> + i lig;,
=1

j=1 i=1 i=1

where X is the least common multiple of Im(g,), . .., Im(g,), v € N"is such that v;+exp(g;) =
exp(Xr), 1 <i < s,and (bj1,...,bjs) € Bp. Moreover, we have that Im(z0~PXr) 5% | poaig) <
Xs and Im(Im(1;)Im(g;)) < Xs.

Proof. Let 3; := exp(lm(g;)) for 1 < i < s; since X5 = Im(x*Im(g;)), then Im(g,) | Xs
and hence X | X;, so there exists § € N" such that exp(Xr) + 6 = 9, with ¢ := exp(X5).
On the other hand, v; + 3; = exp(Xr) and o + 8; = 6,50 o = v; + 0 for every 1 <
i < s. Now, Im (3.7 ciz*ig;) < X; implies that Y7, ¢;0% (lc(g;))ca;,8, = 0. So we have
S8 cio?i(le(g;))co+; 5 = 0. Hence, we have that (ci,...,cs) € Srp; from Remark
5.4.2 we know that exist (¢}, ..., c,) € Sp such that ¢; = 0%(c})cy -, Then,

rs

S S

o 0. Qa;
E ciz™g; = E 0" (ci)co,, 28
=1 i=1

Now,
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where p, := o?(c )P0,y + pe 2 ™; MOtE that p, = 0 or Im(p}) < 297 foreach 1 < i < s.
Thus, 0%(c})cg 217 = 27 ;a:% + p;, with p; = 0 or Im(p;) < %+, Therefore,

S
Z cixtig, = Z o’(c})co,x'g,
i=1
= Z (2¥cixi + pi)g;

= Z:cec Vg, + Zpigi7
1=1

with p;g; = 0 or Im(Im(p;)lm(g;)) < x%F*Bi = 29 On the other hand, let Bp :=
{bl, ey bk} = {(bll, ceey b15)7
.y (bg1s ..., bgs)} be a set of generators of Sg; as (c,...,c,) € Sp, then there exist

’s

i, ..., € Rsuchthat (c],...,c,) = ribi+---+riby = (b1, ..., big)+ 47 (br1, - - ., bis),
thus ¢, = Y% j—17bji- Using this, we have

s

k
Z 27¢ alig = Z 2? (Z T;bji)x%gi
j=1

=1

s k
=>_(D_a"rjbii)a"g;

i=1 j—l

= Z Z )2’ + P 0)bii) g,

11]1

= Z ZU abjiaig, + Zpr #bjie"'g;)

'Lljl J=1

_ZZO‘ eblac%g +ZZpr objiz'g;

j=11i=1 i=1 j=1
= Z o’ (rj)a’ Z bjia™'g, + Z a8

where ¢; := Z?:l pT;_’gbjix% =0 orIm(g;) < x%+7. So,

s k s s
o — 0 i
D cir®gy =) rja’ Y b8+ lig;
=1 j=1 =1 =1

with [; == p; + ¢ for1 < i < sand r; := 09(7“;-) for 1 < j < k. Finally, is easy to
see Im(z% (3_7_; bjizig,;)) < Xs since that Im(}"7_, bjz"ig,;) < Im(z7lm(g,)). Moreover,
Im(Ilm(l;)lm(g;)) < max{Im(lm(p;)lm(g;)), im(Im(q;)lm(g;))} < Xs. O

Using the above result, we can establish Buchberger’s algorithm for modules:
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Theorem 5.5.18. Let M # 0 be a submodule of A™ and let G be a finite subset of non-zero
generators of M. Then the following conditions are equivalent:

(i) G is a Grobner basis of M.
(i) Forall F :={g,,...,8,} € G, with X # 0, and for any (b, ...,bs) € B,

i biavig; < 0.

Proof. (i) = (ii): we observe thatf := )7 | bix%’*egi € M, so by Theorem 5.5.13 f i>+ 0
(ii) = (i): let 0 # f € M, we will prove that the condition (iii) of Theorem 5.5.13 holds. Let
G :=1{gy,...,8;}, then there exist hy,...,h; € Asuchthat f = hyg, +---+ g, we can
choose {h;}!_; such that X; := max{Im(Im(h;)im(g;))};_, is minimal. Let im(h;) := x*,
c; := lc(h;), exp(lm(g;)) = Bifor 1 <i < tand F := {g;, € G | Im(Im(h;)lm(g;)) = Xs};
renumbering the elements of G we can assume that F' = {g,,...,g.}. We will consider
two possible cases.

Case 1: Im(f) = Xs. Then Im(g;) | Im(f) for 1 <i < sand

le(f) = c1o0%(le(8y))cay gy + -+ - + €50 (lc(gs))casvﬁa"

i.e., the condition (iii) of Theorem 5.5.13 holds.

Case 2: Im(f) < Xs5. We will prove that this produces a contradiction. To begin, note
that f can be written as

s s t
= ciaig, + Y (hi —cix®)g, + Y hig;; (5.5.1)
=1 i=1 i=s+1

we see that Im(>.; ((h; — ciz®)g,) < X5 and Im(> s11hig;) < X, therefore
Im(Y>7_ ciz™ig;) < Xs; by lemma 5.5.17, we have

s k s s
Z cix“gi _ Z zj(s—eXP(XF) (Z bjix%gi) + Z lig, (5.5.2)
=1 7j=1 =1 =1

where Im(l;g;) < Xs for 1 < i < s. By hypothesis, >7_, bj;z7 g, inr 0, and accord-
ing to Theorem 5.5.10, there exist g1, ..., ¢: € A such that 21:1 bjixVig, = Zle ¢8;, with
Im(>°;_  bjizvig,) = max{Im(im(g;)lm(g,))}i_y, but (bj1,...,bjs) € Sp, so
Im(3>°7_4 bjx"'g,) < Xp and hence Im(Im(q;)lm(g;)) < Xr for every 1 < i < t. Thus,

Zk: 5 exp(XF) Zb .T% ZT :116 exp( Xp Zngl
j=1 =1
—ZZT e Zngz,

=1 j=1
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with g; == Z;‘-’:l r;xd=PXr) g, and Im(gig;) < Xs. Substituting >0, cia®ig, = S0_| Gig;

into equation 5.5.1, we obtain

S

t s t
f= Z %i8; + Z(hz — cix™)g; + Z lig; + Z hig;,
i=1 =1

=1 1=s+1

and so we have expressed f as a combination of the vectors g,,...,g,, where every term
has leading monomial < X;. This contradicts the minimality of X5 and we finish the
proof. O

Corollary 5.5.19. Let F' = {f,,....f,} be a set of non-zero vectors of A™. The algorithm below
produces a Grobner basis for the submodule (f,, ... ,f.) (P(X) denotes the set of subsets of the set
X):

Buchberger’s algorithm for modules
over bijective skew PBW extensions

INPUT: F:= {f,,....f,} CA™ f, #0,1<i<s
OUTPUT: G = {g,,...,8,} a Grobner basis for (F')
INITIALIZATION: G :=(,G' := F
WHILE G’ # G DO
D :=P(G") — P(G)
G:=G¢
FOReach S :={g, ,....8; } € D, with Xs # 0, DO

Compute Bg

FOR each b = (by,...,b;) € Bs DO
Reduce Zle bjz"g; i>+ r, with r reduced
with respect to G’ and ~; defined as in Definition

5.5.16
IF r # 0 THEN
G =G U{r}

From Theorem 1.2.9 and the previous corollary we get the following direct conclusion.
Corollary 5.5.20. Every submodule of A™ has a Grobner basis.

Example 5.5.21. For this first example, we consider the ring R given in the Example 1.3.6.
Once again, for computational reasons, we rewrite the generators and relations for this
algebra in the following way:
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and

Yyxr = q—lxy’ wWr = qrw, 2Y =qyz, Wz = qzw

ar =y ez, wy=yw+(¢-q )z,

and, therefore, R = o(k[z])(y, z, w). On Mon(R) we use the order deglex with y > z > w
and in Mon(A?) the TOPREV order, whence e; > es.

Further, we will take k = Q, p = % and ¢ = % From above relations, we obtain that
oi(x) = %x, o2(x) = 2z and o3(z) = %m Let f, = zywe; + wez and f, = z2zweq + zyes.
We will construct a Grobner basis for the modules M := (f,,f,).

Step 1. we start with G := @, G’ := {f,,f,}. Since G’ # G, we make D := P(G') — P(G),
ie, D := {S1,52,512}, where S; := {f,}, So := {f,}, S12 = {f,.f,}. We also make
G := G, and for every S € D such that X5 # 0 we compute Bg:

. For S1 we have Syzg(y (o7 (lc(f,))cy, 6], where p1 = exp(Im(f,)) = (1,0,1), 1 =
(0,0,0) and ¢,, 5, = 1; thus Bg, = {0} and we do not add any vector to G’.

. For S5 we have an identical situation.

. For S12 we have X; 9 = lem{lm(f1),Im(f2)} = yzwe;, thus v = (0,1,0) and , =
(1,0,0). Since zyw = 2yzw, then c,, 3, = % and 7' (lc(f1)) = 02(z) = 2z. Analogously,
Cypp = 1 and 072 (le(f2)) = o1(2?) = 2% Hence, we must calculate a system of gener-
ators for SyzQ[x][gx, 32%]. Such generator set can be Bg, , = {(2z,—5)}. From this, we
get

3 4 3 4

szfl — §yf2 :sz(acywel + wey) — §y(x2,zwe1 + zyes)
_.2 3 2 _ 22
=x’zywey + JLAwez — ayzwer — Syt

2 3
= — ggcy262 + Zmzweg = fg,

Observe that f is reduced with respect to G’. We make G’ := {f,,f,.f3}.

Step 2: since G = {f, fo} # G' = {f1,f2, f3}, we make D := P(G') — P(G), ie,
D := {S3,513,523, 51,23}, where S1 := {f},513 := {f1, F3}, 523 := {fa, F3}, 5123 :=
{f1, f2, f3}. Wemake G := , and for every S € D such that X g # 0 we must compute
Bs. Since Xg, ;, = X5,, = X, ,5; =0, we only need to consider Sj.
. We compute
Sysz o7 (lc(f3))073,,33]>

where 33 = exp(Im(f3)) = (2,0,0); X g, = lem{lm(f3)} = Im(f3) = y?es; exp(Xs,) =
(0,2,0); v3 = exp(Xs,) — B3 = (0,0, 0); 27327 = 42, so Cvs,8; = 1. Hence
(Lol f3))epy 50 = 0 (— o)1 = o0l (~ o) = — 2a,
S 3 3 3
and Syzgi,] [—2z] = {0}, i.e, Bg, = {0}. This means that we not add any vector to G’ and
hence G = {f1, fo, f3} is a Grobner basis for M.

Example 5.5.22. For this other example, we employ the additive analogue of algebra de Wey!,
An(qi,---,qn) (see Example 1.1.5, (iv)). We will taken =2,k = Q, ¢1 = %, g2 = % and
A = Ay(3, %) On Mon(A), we use the order deglex with y; > y2 and in Mon(A?) the
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TOPREYV order with e; > es.

Letf, = xly%el + z2y0e2 and f, = Jrzy%el + x1y12. We will construct a Grobner basis for
the module M := 4(f,,f,).

Step 1. we start with G := @, G’ := {f,,f,}. Since G’ # G, we make D := P(G') — P(G),
ie, D := {51,852, 512}, where Sy := {f,}, S2 := {fy}, Si12 := {f,.f,}. We also make
G := G’, and for every S € D such that X5 # 0 we compute Bg:

. For S1 we have Syzqy, 4, [07 (lc(f))cqy 5, ], Where 81 = exp(Im(f,)) = (2,0),71 = (0,0)
and ¢y, g, = 1; thus Bs, = {0} and we do not add any vector to G.

. For Sy we have an identical situation.

. For S1 2 we compute

SyZQ[Il,IQ] [o™ (lc(f1))cw,51 ot (ZC(fQ))Cw,ﬂz]'

where 31 = exp(im(fi1)) = (2,0), B2 = exp(lm(fz)) = 1(0,2); we have
X12 = lem{lm(f1),im(f2)} = yivze m = (0,2); "'y’ = yiy3, s0 ¢y 5, = 1 and
oM (le(f,)) = x1; analogously, o2 = (2,0), ¢y, 3, = 1 and 0"*(lc(f,)) = x2. Hence,
SYTQ[zy 0] [T1, T2] = (22, —21)) and Bg, , = {(w2, —71)}. From this we get

zoy ' f, — T1yif, =Tay5(T1y5e1 + Tayoes) — z1yi (T2yser + T1y1€2)

2 .2 2 2 2 2 2
=T122Y2Y 1 Y2€1 + T2YaTaly2e2 — T1T2Y1Y1Y2€1 — T1Y1T1Y1€2

1 1 3 4
=- Zx%y:fez + §l‘§y§e2 — §$1y%€2 + §$2y§‘32 =fs,

We observe that f3 is reduced with respect to G'. We make G’ := {f,,f,,f5}.

Step 2: since G = {f, fo} # G' = {f1,f2, f3}, we make D := P(G’) — P(G), ie,
D = {53, 5173, S273, 51,273}, Where Sl = {fl}, 5173 = {fl, f3}, 52,3 = {_fz, fg}, 517273 =
{f1, fa, f3}- Wemake G := @, and for every S € D such that X ¢ # 0 we must compute
Bg. Since Xg, ; = X5,; = X5, ,5; = 0, we only need to consider Ss.
. We have to compute
SY2Qey,22)107° (16(£3)) 3,85

where 3 = exp(Im(f3)) = (0,3); X5, = lem{Im(f3)} = Im(f3) = yies; exp(Xs,) =
(0,3); 73 = exp(Xs,) — B3 =(0,0); xBrhs = yi”, SO Cv, 3, = 1. Hence

074 (le(£5))Ca,8, = 07 (—a1)1 = 0hof(~at) = —af,

and SYzg(z, u,) [—z3] = {0}, i.e., Bs, = {0}. This means that we not add any vector to G’
and hence G = {f, f, f3} is a Grobner basis for M.

Finally, we get the following direct consequence from Theorem 5.5.18.
Corollary 5.5.23. Let G = {g,,...,g,} be a generator set of a module M. If ind(g,) # ind(g;)
for every i # j, then G is a Grobner basis for M.

Proof. If we have ind(g;) # ind(g;) for every i # j, then X = 0 for each subset I of G.
In this way, the condition (ii) in Theorem 5.5.18 trivially holds; thus G = {g,,...,8,} isa
Grobner basis for M. O
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5.6 Right skew PBIV extensions and right Grobner bases

Our definition of a skew PBW extension A of a ring R depends on assumption that A isa
free left R-module over the standard monomials M on(A) (see Definition 1.1.1). However,
if Aisbijective, then A is a right free R-module with basis M on(A) (see Proposition 1.2.4).

Definition 5.6.1. Let A and R be rings with R C A; let x4, ..., x, be finitely many elements
of A. We say that A is a ring of right polynomial type over R w.r.t. {x1,...,x,} if Ais a right
R-free module with basis

Mon(A) := Mon{z1,...,z,} = {z* = 27" - 22" |a = (o, ..., 0p) € N}

Moreover, we say that A is a ring of polynomial type over R w.r.t. x1,...,xy, if Mon(A) is a
basis for A as a left and as a right R-module.

Thus, if A is a ring of polynomial type w.r.t. xi,...,z,, every element f € A has a
standard representation both left and right in the following way:

f=20 ca =Y 2Pidy,

for some ¢;,d; € Rand 2, = Mon(A),1<i<s,1<j <t Givenamonomial order
on Mon(A) (e.g., deglex order), we can rewrite f with the property that 2 > ... > %
and 271 = ... = 2P Thus, the left and right leading monomials of f are, respectively,
Im!(f) := 2 and Im"(f) := 2P.

Since the habitual definition of skew PBW extensions consider left representation
(see Definition 1.1.1), we could call them “left skew PBW extensions”. Thus, using the
right polynomial ring notion, we can establish the definition of “right skew PBW exten-
sion”, as follows.

Definition 5.6.2. Let R and A be rings, we say that A is a right skew PBW extension of R, if
the following conditions hold:

(i) RC A
(ii) There exist finite elements x1, ..., x, € A such A is a right R-free module with basis
Mon(A) :={z* =27 - 20"|a = (a1,...,a,) € N"}.
(iii) Forevery1l <i <mnandr € R — {0} there exists d;, € R — {0} such that
re; — xid;» € R. (5.6.1)
(iv) Forevery 1 <1i,j < n there exists d; j; € R — {0} such that
rjr; —wiwjd; ; € R+ 1R+ +x,R. (5.6.2)

Under these conditions, we will write A = 0" (R)(x1, ..., Ty).
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The right version of Theorem 1.2.2 is as follows.

Theorem 5.6.3. Let A be a ring of right polynomial type over R w.r.t. {x1,...,xn}. Aisaright
skew PBW extension of R if and only if the following conditions hold:

(a) For every z* € Mon(A) and every 0 # r € R there exist unique elements ro, € R — {0}
and qo,r € A such that
re® = x%%q + qar, (5.6.3)

where o = 0 0r deg(qa,r) < || if ga,r # 0. Moreover, if r is right invertible, then r,, is
right invertible.

(b) For every x®, 2% € Mon(A) there exist unique elements d,, 5 € Rand q, g € A such that
2P = on_ﬂdaﬂ + Qa.p; (5.6.4)
where d, g is right invertible, g, g = 0 or deg(qa,8) < |a + B| if ga,p # 0.

Remark 5.6.4. (i) All properties mentioned in Sections 1.1 and 1.2 can be established for
right skew PBW extensions. For example, the elements d; ; in (5.6.2) are right invertible
for i < j: indeed, let i < j, by (5.6.2) there exist d;;,d; ; € R such that x;x; — xjx,d;; €
R+xz 1R+ ---+z,Rand TjT; — l‘il‘jdivj eER+x1R+ -+ x,R. So, TiTj — ZL‘il‘jdi’jdj,i S
R+21R+ - +2,R and since Mon(A) is a R-basis for Ag, then1 = d; ;d;;, i.e., for every
1 <i < j <n,d;;hasarightinverse and d;; has a left inverse.

(ii) In a similar way as were defined quasi-commutative and bijective left skew PBW
extensions, it is also possible to define the same notions in the right case. Hence, if Aisa
right skew PBW extension of a ring R, then A is bijective if the endomorphisms induced
by the elements d;, in (5.6.1) are automorphism of R, and the coefficients d; ; in (5.6.2)
are invertible (compare with Definition 1.1.4).

Lemma 5.6.5. Let A be a ring of polynomial type over R w.r.t. x1,...,xy. If Ais a left or right
skew PBW extension of R, then Im!(f) = Im" (f) for every f € A.

Proof. Suppose that A is a left skew PBW extension of R; if f = 0 there is nothing
to prove. If 0 # f with Im"(f) = 2z, then f has a right representation in the form
f= 2rdy + -+ 2Prd, with 281 = -+ = 2Pt and 0 #d; € R, for 1 < i < t. From Theorem
1.2.2 we obtain that f = 071 (d1)2”" + pg, 4, + -+ + 0% (di)2P + pg, 4, where ps, 4, = 0 or
deg(ps,.a,) < |Bi| if pp,.a, # 0. From this we get that Im!(f) = 21. A similar proof holds
if we suppose that A is a right skew PBW extension of R. O

The following theorem allow us to establish the Grobner bases theory for right ideals
and right modules of bijective left skew PBW extensions.

Theorem 5.6.6. Let Aand R be rings such that R C A, and let 1, . . ., x,, be nonzero elements in
A. Suppose that Mon(A) is ordered by some monomial order. Consider the following statements:

(i) Aisaring of right polynomial type over Rw.r.t. x1,. .., x, and a left skew PBW extension
of R.



CHAPTER 5. GROBNER BASES FOR SKEW PBW EXTENSIONS 100

(ii) Aisaring of left polynomial type over Rw.r.t. 1, ..., xy, and a right skew P BW extension
of R.

(iii) A is a bijective left skew PBW extension of R.

(iv) A is a bijective right skew PBW extension of R.

Then, (i) < (i1), (i17) < (iv) and (iii) = (i). Further, if in (i) we replace the first condition by
A is also a right skew PBW extension of R, then (i) = (iii).

Proof. (i) < (ii): Since A is a left skew PBW extension of R, then Mon(A) is a basis for
rA, ie., Ais aring of left polynomial type over R w.r.t. z1,...,z,. Now, since A is a ring
of right polynomial type over R w.r.t. x1,...,x,, then A satisfies (ii) in Definition 5.6.2.
On the other hand, given 0 # r € Rand 1 < ¢ < n, we have that rz; = z;d; , + p;, for
some 0 # d; » € Rand p;, € R (see Lemma 5.6.5). Similarly, for 1 < ¢, j < n, we have that
TjT; = CijTiT5+Pij = :EZ'{L‘de'J‘ +qij for some 0 7é di,j € Rand gij € R+x1R+---+2x,R.
The proof of (ii) = (i) is analogous.

(iii) < (iv): From Proposition 1.2.4 we have that A is a right free R-module with basis
Mon(A). Only remains to show that there exist elements d; , and d; j in R satisfying (iii)
and (iv) in Definition 5.6.2, and that with these elements A turns out to be bijective. Since
A is bijective, each endomorphism ¢; in Proposition 1.1.3 is an automorphism; thus given
reRand1<i<n,rz; — xiai_l(r) € R, soitis enough to take d; , := 0;1(7“). We define
o, R — Ras o, =0, ! Thus, (iii) in Definition 5.6.2 holds and, of course, each o} is
bijective. For 1 < i, j < n, we have that z;z; = ¢; jx;x; + p; j, where ¢; ; is invertible and
pij € R+ Rxy + --- + Rx,. Using again Lemma 5.6.5, as in the first part of the proof,
TjT; = xixjdi,j +qi for some di,j 75 0 and Qi € R+z1R+---+z,R. So, (iV) in Definition
5.6.2 holds. Moreover, observe that

$i$jdi,j = :ci[aj (dij):cj + T] = a:iaj(di7j)xj + x;r = [O’i(Uj(di,j))wi + 8]:Ej + x;r =

’

oi(0j(dij))xix; + sxj + oi(r)z; +u, with r,s,u € R,

whence, ¢; ; = 0i(0;(di;)), ie., di; = aj*l(a;l(cm)) is invertible. We have proved that
A is a bijective right skew PBW extension of R. The reverse implication can be proved

similarly.
The implication (iii) = (i) is immediate.

Finally, if A is a left and right skew PBW extension of R, then the endomorphism
o; is bijective for each 1 < i < n: In fact, since for r € R we have rz; = z;0l(r) +
¢y = 0i(0(r))w; + g, for certain ¢;,, € R. Uniqueness in the standard representation
implies that r = o4(0}(r)); i.e., 0,0, = ir and hence o; is surjective, but according to
Proposition 1.1.3, o; is injective. So, o; is bijective and o, = o, 1. Now, as above, di; =
aj_l(ai_ Y(c;;)) and d; ; is right invertible (see Remark 5.6.4), then c¢; ; is right invertible,
ie.e, ¢; j is invertible for 1 <i,j <n. O
Remark 5.6.7. The equivalence (iii)<(iv) in the previous theorem let us to get the follow-
ing key conclusion: if A is a bijective skew PBW extension of a ring R (we mean left as
always in the present work), A is also a bijective right skew PBW extension of ring R,
and therefore, we have a left and a right division algorithm. Obviously, if the elements
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of A are given by their left standard representation, we may have to rewrite them in their
right standard representation, in order to be able to perform right divisions. Left and
right versions of Buchberger’s algorithm are also available. Thus, the theory of Grobner
bases for left ideals and submodules of left free modules developed in this chapter has
its counterpart on the right.



CHAPTER 6

Elementary applications of Grobner theory

There are some classical and elementary applications of Grobner theory that we will
study in this chapter. We will consider the membership problem, we will compute the
syzygy module, free resolutions of modules, the intersection and quotient of ideals and
submodules, the matrix presentation of a finitely presented module, and the kernel and
the image of homomorphism between modules. Recall that A = o(R)(x1,...,x,) repre-
sents a bijective skew PBW extension of a LGS ring R.

6.1 The membership problem

Let ' ={fi,..., fs} C Aand I := (F'} be the left ideal generated by F. The membership
problem ask whether one may effectively decide if an element f € A belongs to 1. Grob-
ner theory provides an easy answer to this problem. Indeed, let G'be a Grobner basis of I;
making use of the division algorithm (Theorem 5.2.6), it is possible to obtain polynomials

hi,...,hy, h € A, with h reduced w.r.t. G, such that f i>+ hand f=qfi+ - +qfi+h
according to Corollary 5.3.3 if h # 0, then f ¢ I; and if h = 0, then f € I.

The next theorem complements the answer allowing us to write f as A-linear combi-
nation of f1,..., fs when f € I.

Theorem 6.1.1. Let F' = {f1,..., fs} be a subset of Aand G = {g1, ..., g:} be a Grobner basis
of I := (F'}. Then, there exist matrices H = [h;j] € Msx:(A) and Q = [qi;] € Myxs(A) such
that

GT = HTFT and FT = QTG7,

where G :=[g1 -+ g] ,F:=[fi -~ fs]and
hi1 -+ hu a1 - Qs
H:=1|: -  :|;andQ:= :
hsl te hst 12 S/ 2

102
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Proof. Initially, we show how the Buchberger’s algorithm allows us to compute the ma-
trix H. For this, we take

G_1:=0
Go:=F
k
Gip1 =G U{r#0[ > bjavig, Sir, for (bi,...,by) € Bs},
7j=1

where S = {gi,,..., 9.} € P(G;) — P(G;—1) and G; := {g1, . .., g, }- Suppose that

g1 hii -+ hal |fi

gti hlti Tt hsti fs

and let ¢;, 11 be an element in A — {0} such that ZZ bz g;, &m gt,+1; then,
Zj-’l bjxg;; = arg1 + -+ ay, g, + gi,+1, and thus

Grit1 = 5oy bia gy + (—a1)gr + -+ (—ar)gr, = (—an)gr 4+ (12" — i, )gi, +- -+
(bkx™ = ai ) giy, + -+ (—at,) g, = (—a1)(hfi+ -+ hsi fs) + -+ (b1z? —aiy ) (haiy f1 +
st hg fo) 4o+ (D™ —ag, ) (b fi A hsi fs) oo (—ag) (R fi 4 -+ ha fs) =
(—a1h11 +-- (bl$71 _ail)hlil +- (bkm% — aik>h1ik +- = atihlti)fl +- (—a1h51 +
st (0" = agy )iy + - A (bR — aq )iy, + 0 = aghse) fs = i fi oo+ hst £

with hrti—l—l = —athqq +---+ (blx” - ail)hm‘l + -+ (ka’y’“ - aik)hrik + = atihrti/ for
1 < r < 5. With this last we have

hit -+ hig41
Hy 1 = :
hsl T hsti—l—l

Iterating this construction, we will obtain a matrix H with the required properties.

In order to obtain matrix @, it is enough to remember that if G = {gi1,...,¢:} is a

Grobner basis for (F'} then f; g+ 0 for anyl < i < s; the division algorithm implies that
fi=quig1 + -+ quge for all 1 < i < s, and thus the matrix

qi1 - (qi1s
Q=|: :
qt1 0 Qts

satisfies the assertion. O

Example 6.1.2. As in the Example 5.4.7, let A be the diffusion algebra. We want to know
if the polynomial f = z?z,D1D3 + 32223D1 Dy — 233Dy + Jx123D5 is in the left ideal
I := (f1, fo}, where fi = 21 D1 D5 + x2, fo = x2D3. For this task, we calculate a Grébner
basis for I and we check if f can be reduced to 0 with respect to { f1, fo}. We consider the
order deglex on Mon(A), with D; > Ds.
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We start taking G := @ and G’ := { f1, f2}.

Step 1. Since G’ # G, we have D = {51, 52, 512}

We make G = G.

Since R has not zero divisors, S; and Sz do not add any polynomial to G'. For S o,
we compute Bg, ,, a generator set of Syzr[o" (lc(f1))cy, 8,,072(lc(f2))Cn 8]0 X12 =
lcm{Dng,Dg} = DlD%, SO 71 = (0, 1), DQ(DlDQ) = 2D1D% + JIQDlDQ — 371D%, and
whence, ¢y, 3, = 2; in a similar way, 72 = (1,0) and ¢, 3, = 1. Therefore, Bs,, =
{(322, —21)} and we have

1 1 2 1,.2 2, 1.2
5:172D2f1 —x1D1fo = §x1x2D1D2 — 5.%11’21)2 + ia:QDQ.
Since that
1 2 1,2 2, 1,2 G 1,2 1,3 _.
5210501 D2 — 52129 D5 + 505D2 — 4 50509 — 575 =: f3

and f3 is reduced with respect to G, we add the polynomial f3 and we make G’ :=
{f17 f27 f3}

Step 2. Since G’ # G, we compute D = P(G’) — P(G) and we make G = G'. In D we only
need to consider three subsets:

S13 = {f1, f3}, So3 = {f, f3}, S123 = {f1, f2, f3}.

For S; 3 we have X 3 = D1 D5 and, hence, 71 = (0,0) and 3 = (1, 0). From this it follows
that B, , = {(#3, —221)}, and we obtain

23 f1 — 201D f3 = 21@3 Dy + a3 =: f4

and f4 is reduced with respect to G, we add the polynomial f4 and we make G’ :=
{f1. fa, f3, fa}.

For So3, Xg,, = D3, 3072 = (0,0) and ¢,, 3, = 1; in the same way, v3 = (0,1) and
Cys,8; = L. Thus Bg, , = {(z2,—-2)}, and

G
zafo — 2Daf3s = 43Dy — x5 =t f5.

Since f5 is reduced with respect to G, we add f5 and we make G’ := { f1, f2, f3, f1, 5}

For 51 23 we have thaty; = (0,1),72 = (1,0),73 = (1,1),and hence, Bg, , ; = {(0, 72, —2), (%.ﬁlfg, —x1, (
for the first generator we obtain a polynomial that can be reduced to 0 by fi, f2 and fs.

The same applies for the second generator. Therefore, we do not add any polynomial to

G

Step 3. Again, G # G'. Thus, we compute D = P(G') — P(G) and we make G = G'. In

this case, we need to consider 14 sets in D. For these subsets we obtain polynomials that

are reducible to 0 by G = { f1, fa, f3, f1, f5}. Thus, G is a Grobner basis for I := (fi, f2}.

Finally, applying the division algorithm, f reduces to 0 with respect to { f1, f2, f3, f1, f5}.

Moreover, we have that

1 1
[= (§$1$2D2 +z123) fL + §$?f2 — 1 f3.
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The membership problem can be extended for modules: let F' = {f,,...,f.} be a
set of non-zero vectors in A™ and M := (f,,...,f,) the A-submodule of A™ generated
by f,,....f, let G = {g,,...,8,} be a Grobner basis for M and f € A™, applying the
division algorithm we find l4,...,l;,€ A and a reduced vector h € A™ w.r.t. F' such that
f=1Ug, +---+1:;g, +h; then, f € M if and only if h = 0. In addition, Theorem 6.1.1 can
be formulated and proved for modules.

Theorem 6.1.3. Let F' = {f,,...,f.} beasubset of nonzero vectorsof A™,and G = {g,,...,8,}
be a Grobner basis of M = A(F). Then, there exist matrices H = [h;j] € Msx+(A) and
Q = [qij] € Myxs(A) such that

GT = HTFT and FT = QTG7, (6.1.1)
where G :=[g, -+ g&].F:=1f, - f,]and
hii -+ hu Q1o Qs
H:=1|:1 - |;adQ:= :
hsl to hst g1 - Qts

Therefore, 6.1.1 allow us to write f as A-linear combination of f,, ..., f, when f € M.

As application of the membership problem, given two ideals I and J of A generated
by {fi,..., fm} and {g1, ..., gn} respectively, we can effectively decide whether I = J: it
is enough to check if f; € J foralli < i < m,andif g; € [ forall1 < j < n. A similar
remark can be done for modules.

Remark 6.1.4. Of course, Theorems 6.1.1 and 6.1.3 have their right version (see Remark
2.1.2): Let F = {f,,....f,} be asubset of A and G = {g,,...,g,} be a Grébner basis of
M := (F)4. Then, there exist matrices H = [h;;] € Msx(A) and Q = [qi;] € Mixs(A)
such that

G =FH and F = GQ,

where G :=[g, -+ gJand F:=[f; - f,].

6.2 Computing syzygies
Now, we will compute the syzygy module of a finite set of polynomials of A, and more

generally, of a finite set of elements of A™.

Let A™ be the left A-module of column vectors of length m > 1. Given I a left ideal
of A, with I = (fi,..., fs}, we may define the following A-homomorphism:

¢ A5 =T, (h1,---,hs)T'—>Zhifz';
=1

Note that ¢ is surjective and, therefore, I = A®/ker(¢).

Definition 6.2.1. The kernel of the homomorphism ¢ is called the syzygy module of the matrix
[f1 -+ fs]. Itisdenoted by Syz(fi,..., fs). Anelement (hy,... hs)T € Syz(fi1,..., fs)is
called a syzygy of [fi --- fs] and satisfies

hifi+- 4+ hsfs =0.
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Note that ¢ can be viewed as the matrix multiplication:

fi

¢(h,... hs) =[h1 -+ hs] | :];

Is

and Syz(f1,... fs) as the set of all solutions (h1, ..., hs)T € A® of the linear equation

fi

e - h|:|=0.

[s
Since A is a left Noetherian ring, then Syz(fi,..., fs) is a finitely generated left A-

module. We will compute a system of generators for Syz(fi,..., fs) forany fi,..., fs €

A. For this, we first compute a Grobner basis G = {g1,...,g:} for I = (f1,..., fs}. Next,

we obtain a set of generators for Syz(gi,...,¢:) and, finally, we will obtain a system of

generators for Syz(f1,..., fs) from one of Syz(g1,...,gt).

So, let G = {gi1,...,9:} be a Grobner basis for I, S = {¢i,...,9;,} € Gand b =

(b1,...,br) € Bs (recall that Bg is a set of generators of Syzr(c™ (Ic(gi;))¢y; exp(g;.) |

J
1 < j < k)); we know that Z§:1 bjzi g;; £>+ 0 and hence there exist hq,...,hs € A such
that Z§:1 bjxYig;, = > i_; hig;. For each b € Bg, we define

k
Sps = Z bjl’%eij — (hl, . ,ht) € At;
=1

then sps € Syz(g1,...,9:): in fact,

g1 k g1
B S

gt gt

7=1
k t
= Z bjx'“gij - Z higi =0.
7j=1 =1

One natural question that aries here is: must we calculate all vectors spg for each subset
of G? The answer is negative; we just need certain particular subsets.

Definition 6.2.2. Let X1,...,X; € Mon(A)and J C {1,...,t}. Let
Xy =lem{X;|je J}
We say that .J is saturated with respect to { X1, ..., X}, if
X | X;=jel,

forany j € {1,...,t}. The saturation J' of J consists of all j € {1,...,t} such that X; | X ;.
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Theorem 6.2.3. With the above notations, a generating set for Syz(g, . .., gt) is
S:={s] | JC{1,...,t}issaturated w.rt.{Im(gy),...,Im(g)},1 < v < 1y},

where

= blate; — (BY,... hY),

JjeJ
with v; € N" such that v; + B; = exp(Xy), Bj = exp(g;) for j € J, By := {bi],...,b;{]}
a system of generators for S; = Syzgr[o¥(lc(gj))cy; 8, | 7 € J], and b = (b;{j)jeJ for
1<v <.

Proof. We have already seen that 4(S) C Syz(g1,...,9:). Suppose that there exists u =
(ui,...,u) € Syz(g1,-..,9t) — (S). We can choose u such that

o8 = ma {m(im(us)im(g:))}

is minimal with respect to <. Let

J={je{1,....t} | Im(Im(u;)lm(g;)) = 2°}.
Since S°!_, u;g; = 0, we have > jele(ug)o®i(le(g)))ea, 6, = 0, where a; := exp(u;) for
1 <i<t If X;:=Ilem{lm(g;) | j € J}, then X; | 2° and there is § € N" with
0 +exp(Xy) = 0. But o + B = 0 and v; + B = exp(X) forall j € J, then 0 4 v; + 3; =
a; + Bj,ie, 0 +v; = a;. Thus, (Ic(uj))jes € Syg := Syzplo?+i (lc(g))) o4y, | 5 € J) I
J' is the saturation of J, then X; = Xy and w = (wj) je.;» given by

le(ug), ifjeJ,
w,; =
77 o, ifjeJ —J

is an element of Sy g. According to Remark 5.4.2, there exists
(bj)jes € Sy = Syzrlo¥i(lc(gj))ey, 3, | § € J'] such that w; = o%(bj)cy,, for j € J'.
This implies that b; = 0 for j € .J' —.J. Now, (b;) ;e = S v/ b, with By == {b | 1 <

v <y} a system of generators for Sy and r, € Rfor 1 <wv <1;. Hence, b; = Zl*" r b

v=1"Tv vj

and thus w; = Zi"'l o (r!)o (bJ )co ., forall j € J'. Define u' := u — Z 7 rpals), with
ry i= o?(rl) for 1 < v < ly; thenu' € Syz(g1,...,g:) since ZU rox’s) € 4(S). Note
that

Ly

erxe J —Tla:esi]/ +oet TlJ,arest//

v=1

:7“13:9[2 bi]j{x"’fej —(hi,...,h)] 4+

jeJ’

0 ’ . L Ly
T, T [Z bi]J,ijJej —(hy", ... 7))

jeJ’
9 .
:Tl[Z( (blj)c97] +Vj+p})ej_(h%7ahtl)]++
jeJ’
0/pJ O+~ 57 % Ly

v, Y (07, )02 +p ey — (Y- )]

jeJ
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Thus, for j € J we have that

lJ/ lJ’ lJ’
;o 07 6+, v v
Wy =uj— [ oo’ (b;)con; a7+ i =D b
v=1 v=1 v=1
Ly Ly Ly
_ 0/ 0N\ - 0pJ a; v v
= u;— [0’ (r})o” (b;)con, % + Y pi =Y hY]
v=1 v=1 v=1
lJl lJ/

= uj — le(uy)z® =Y pl+ > hY
v=1 v=1
/

i"zll oe(Tv)ae(b,ijl-)ca,yj. Here pj = 0 or

since j € J,v;+ 6 = o and w; = lc(u;) = Y,
deg(p}) < |0 + ;| for every 1 < v <. Then,

im(im(u; — le(u;)2*)im(g;)) < Im(lm(u;)im(g;)) = 2, im(Im(p)im(g;)) < 4% = o,

and
tm(Im(h)im(g;)) = Im(Y_ bla7g;) < Xy = X <2,
jeJ’
so Im(lm(u})lm(g;)) < 2°. Now, if j € J' — J, then w; = i"z’l ae(r;)ae(bz{;)caw =0

and Im(Im(u;)im(gj)) < °, thus Im(Im(u})lm(g;)) < 2°. Finally, if j ¢ J', then u =
uj + Zi";l hy and Im(Im(u})lm(g;)) < 2°. So, Im(Im(u})lm(g;)) < 2 forevery 1 <i <t
and, by minimality of u#, we have that #’ € 4(S) and hence, u € 4(S), a contradiction.

Therefore, 4(S) = Syz(g1,...,9t)- O

Now, we return to the initial problem of calculating a system of generators for
Syz(fi,-.., fs), where {f1,..., fs} is a collection of nonzero polynomials, which no nec-
essarily form a Grobner basis for I = (fi,..., fs}. As we saw in Theorem 6.1.1, there
exist H € My(A) and Q € M;ys(A) such that GT = HTFT and FT = QTG”, where
G:=|gn - @), F:=1[fi -+ fJ and G is a Grobner basis for I. By Theorem
6.2.3, we may compute a set of generators {si,...,s;} for Syz(gi,...,g:). Thus, for each
1 < ¢ <l wehave that

siH'FT = 5,GT =0,

and therefore, (s; H” | 1 <i <) C Syz(f1,..., fs). Further,

1 1 f1 0
[L—QTHT] || =|:|=Q"H" | :|=|:],
s s Is 0
and thereby the rows rq, ..., 75 of I, — QT HT also belong to Syz(f1,. .., fs)-

Theorem 6.2.4. With the above notation, we have

Syz(fi,..., fs) = <51HT,...,slHT,rl,...,r3> < A%,
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Proof. Lets = (ay,. .. ,as)T be an element in Syz(f1,..., fs), then
0= STFT — STQTGT,

and therefore s” Q" € Syz(g1, ..., g:). Thus, sTQT = S2!_, p;s; for some p; € A. Thereby,
sTQTHT = Zizl pi(s;H") and

ST _ ST o STQTHT +SQTHT
l
:sT(Is_QTHT)+Zpi(SiHT)

i=1
s l
= Z aiti + Zpi(SiHT)§
i=1 i=1

thus, s € (s1HT,... ,s;H" rq,...,rs) and we obtain the required equality. O

Remark 6.2.5. Note that if G is a Grobner basis obtained through the Corollary 5.4.5, the
matrices @ and H in the Theorem 6.1.1 satisfies that Q7 H” = I,. In such case, a generator
set for Syza(F)isgivenby {s1HT,... s;H*}, where {s1,...,s;} is a system of generators
for Syza(G).

Example 6.2.6. We continue to work with the Example 5.4.7, where A is the diffusion

algebra described in Example 1.3.3, withn = 2,k = Q, d12 = —2and d»; = —1. In thisring,

we have Dy Dy = 2D Dy+29D1 —x1 D9 and the automorphisms o and o5 are the identity.

We consider the order deglex with D; = D5 and the polynomials f; = 2329D?Ds, fo =
r3D1D3. As we saw, G = {fl,fg,fg, f4} is a Grobner basis for I := 4{f1, f2} where

fs = —12323D1 Do+ L2123 D3 fi = a3xsfo+2Ds f3 = Sata3D3 — lxlacQDng + 1ata3D3.

We will use this for computing a system of generators for Syza{ f1, f2}.

Now, according to Theorem 6.2.3, we must consider the saturated subsets of {1,2,3,4}

w.rt. {Im(f;)}+ -1, these sets are: J3 = {3}, Jy = {4}, J13 = {1,3}, Jo3 = {2,3}, Ji23 =

{1, 2, 3}, J2’374 = {2 3, 4} and J17273’4 = {1, 2, 3, 4}. We have:

. For J3 = {1} we compute a system B, of generators of Syzr[o" (lc(f3))]|cy,,3,, Where

m = X, — B3 = (0,0). Then B, = {0}, and hence we have only one generator b1J3 =

(b3) = 0 and 575 = b/227E3 — (0,0,0,0) = (0,0,0,0), con & = (0,0,0,0)7.

. For J, = {4} the situation is similar.

. For Ji3: X, = DiDsand v, = (0,0), v3 = (1,0); thus, ¢y, 3, = land ¢\, 3, = 1. A

system of generators of

SyzR[U’yl (lc(fl))c’hﬁua'ys (lc(f?)))c’mﬂs] = SyZR[x%x% —il‘?l@]
is BJ1,3 = {(xlx%7 4)}

Thus, we only have one generator b,"* = (z,22, 4).
Since that

1123 f1 + 4D1 f3 = 21 fa,
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then

s = w1a3er +4Des — (0,271,0,0)

xlx%

4
-z
4D,

0

. For Jo3: Xj,, = D1 D3 and 72 = (0,0), 3 = (0,1); thus, ¢, 8, = 1. Since Dy(D1Ds) =
2D1D3 + x9D1 Dy — 1 D3, then ¢, g, = 2. A system of generators of

Syzr[072(1(£2))C10,8,, 07 (1e(f3))Cra 5] = Syzrlwa, —5aia]]

is BJ2,3 = {(‘T?x% 2)}
Therefore,

x3wafo + 2Dof3 = f1,

and

8‘1]2’3 — .%':1;1'252 + 2D2E3 - (07 07 O? 1)

0
319
2Ds

-1

.For Ji23: Xj,,, = D{D3 and v, = (0,1), 72 = (1,0) and 73 = (1, 1). Now, since

DyD3Dy = AD3D3 + 3x9D3Ds — 421 D1 D3 — z1290D1 D2 + 232 D3,
D1DysD1 Dy = QD%D% + xQD%DQ — [ElDlD%,

then ¢y, 5, =4, ¢y, 3, = 1 and ¢, g, = 2. We have that,
SyZR[le%w?a (E%, _%x?x%] = <(ix27 _‘T% 0)7 (ixlxg, 0, 2)>
J172,3 /1 2 . .
For by " = (w2, —1,0), is obtained

172Daf1 — 3Dy fo = 223 f1 — 2} fo + f3

and
1 - - 3
8111’2‘3 = 1$2D261 — xiD1és — (nga —x%,1,0)
LaaDs — 423
_ —CC%Dl + x:f
-1
0

For bgl‘” = (12123,0,2), is obtained
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1123Dy f1 + 2D Do f3 = 3myad fi — afwafo + 122 fs + Difi

and

J1,23 1 21 = ~ 3 3 4
= Z$19€2D261 +2D;Dse; — (13311‘2, —xiT2, T122, D1)
1 2 3 3
17175 D9 — 175
.1‘1111'2
2D1D2 — T1X2
-Dy

.For Jo34: Xj,,, = D1D3,50 v, = (0,1), v3 = (0,2) and 4 = (1,0). Now, since

DQDID% = 2D1D§ + .I'QDlD% — xng’,
D3D1Dy = 4Dy D3 + 4x9D1 D3 — 331 D3 + x3D1 Dy — x129D3,

then c,, 3, = 2, ¢y, 3, = 4 and ¢, g, = 1. We have that
Syzg[223, —x3x3, Lafad] = (3232, 1,0), (321,0,-2)).

For b)>** = (32325,1,0), the following equality holds

sx3x9Dy fo + D3 fs = $Da f4
and

. N N 1
g1 _ 521020282 + D3es — (0,0,0, 5 Do)

0
1.2
55512952

1Dz
2 D2

For 19“2]2’3’4 = (321,0,-2),

571 Dafy — 2D\ fy = 2133 f1 — §xiwafo — 20130 f3 — w1 fy

and hence
J2,3,4 1 41 = ~ 3 1 4
82 = §$1D262 — 2D164 — (Ct?ll‘Q, *5331!%2, *2:E1£CQ, *l‘l)
—.%1:6%
1.4 1,.4
_ |27 + 527%2
2%1%2
—2D1 + 24

For Jig34: Xy, 5,, = DiD3,s5071 = (0,2),72 = (1,1), 73 = (1,2) and 4 = (2,0). In this
case, ¢y, g, = 16, Cy, 8, = 2, ¢y, 8, = 4 and ¢, g, = 1. We have that
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SyzR[lﬁx%xgﬂx%,—x?x%,%x%m%] = ((11—6.%2,— 22,0,0), (161'1302,0 1,0), (16x1x2,0 0,—-2)).

J :
For b, "*** = (Lo, —12%,0,0) we obtain

~aoD3f1 — 223D Do fo = {53 fi + (a3wa Dy — 323Dy — Yadas) fo + Eaofs + K fy,
thereby
J 1 - 9 1 17 21 17
811’2’3’4 = 16 2D261 .I%DlDQeQ — (T6$§,CL‘%$2D1 — il‘?Dg — gl‘:{)xg, ZCI;Q, g)

1 2 9.3
165”2D 16$2

ll'%DlDQ J,‘leDl + xng + 17LU1$2
2

J1,2,3,4 1 2
For b, = (1g7175,0,1,0),

r123D3 f1 + D1 D3 f3 = Saqxd fi — Latadfo + Baadfs + (3D01D2 — 22Dy + J2122) fa

and
1 9 13 13 1 9
351’2’3’4 = 163:1562D261 + Dy D3és — (Exlxé, 3 x‘ll:r%, 1 — 23, 2D1D2 —x9Dq + lexz)
16x1x2D2 16m1x2
1342
_ E s T123
D1D3 — —xlmg

1
—§D1D2 + .’132D1 - gl‘lxg

J1,2,3,4 1.2
For b; = (1gT772,0,0,-2),

16.%'1332D2f1 - 2D f4 =

(z123D1 + Batad) f1 + (Faiwe Dy — 9311?2)f2 + Ba?zyfs + (—321D1 + 322) f4
and
1 33 1 17 5 1 9
551’2’3’4 = 1—6x1x2D2el — 2Dle4 — (x1x2D1 + E.’L‘%CE?, Qx%ngl - gaf{xg, 5 xlxg, —3z1D1 + 8171)
116m1m2D2 — 125D — —x%x%
_ —2aiwa Dy + *5551’552
—%1’%1’2

72D1 + 3x1D1 — %x%

Jig Jo2z Jioz Ji23 J23a4 J23a J1,234 J1234 J1234y -
In consequence, S = {s]"", 8,77, 8] 77, 557, 870 sy S , S5 , 85 }isa

set of generators for Syz4(G). For computing a generator set for Syz4 (M), we use the
Theorem 6.2.4: in this case the matrices H and @ in Theorem 6.1.3 are:

1 0 433‘2D2 l‘g %ngg — %$%D2
0 1 —:chl + xl —43;%D1D2 — Qx%ngl + 4:1:51)’D2 + x:fxz )

o O O
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Since I, — QTHT =

each s € S. Therefore:
J1,3 17T 1’2D1D2 — 3ZL‘2D1 + ZEll’Q
.S = H' =
S1= 51 —422D? 4+ 423D, — 24
5{2’3HT _ 5{1’2’3HT _ 2J1 2, 3HT —0

8 8] , then the generators for Syza(f1, f2) are given by sH T for

'S = SJ2,3.4HT _ %mZDQ - *5U2D2
A —822D1 D3 — 8x3xaD1 Do + 7:[;1D2 — 22325 D1 + 3atwaDa + Saiws
\Sa = SJ2 34HT —$2D1D2 =+ 3I2D1D2 + 1’1:172D1 — :171:1’2D2 .’El.’E%
3 8a71D2D2 — 12x1D1D2 —|—4x1x2D1 — 6x1m2D1 + 4m1D2 + 1‘11‘2 + xl
'S4 = SJ1’2‘3’4HT _ _CU2D2 + 2D2 + 27 3
’ 1 8331D1D2 —+ 2 l‘ll‘le — S.T?DQ — ZZ’%Z’Q
Lss i g2 gT _ D1D2 — *$2D1D2 - CﬂlfﬂzDQ + $1$2D2 + *37133%
57 %2 4x1x2D1D2 + lengng —2x2aiD? — ﬁclwng — —x‘llxg

. s6 = s']1‘2’3’4HT _ |:—12D2D2 + .31%D2D2 + zleD1D2 — 71112D1D2 — Ezlngz — zleDl + 181'1:1)2D2 + l zlzg]
T3

821D} Dy — 20z D? DQ + 4222y DY — 8xfwa D} + 3221 D1 Dy + LLataaDy — Ja Do — Satas

Hence, {s1, s2, 3, 54, S5, S6 } 1s a generator set for Syz4(f1, f2).

The above allow us to establish the following remarkable fact about the behaviour of
Grobner soluble property on bijective skew PBW extensions.

Corollary 6.2.7. Let R be a LGS ring. If A = o(R)(x1,...,xy) is a bijective skew PBW
extension of R, then Ais LGS.

Proof. This follows from Hilbert Basis Theorem (Theorem 1.2.9), the discussion at the
beginning of previous section, Theorem 6.1.1, and from Theorem 3.2.4. O

Remark 6.2.8. (a) Adapting the conditions (i), (ii) and (iii) in Definition 5.2.1 we can define
the notion of right Grobner soluble rings (RGS).

(b) From Theorems 1.2.9 and 5.6.6 is immediate that Hilbert basis theorem holds for
bijective right skew PBW extensions. Moreover, the applications established in this
chapter for left ideals and submodules of left free modules, have also their right version.
Therefore, we have a natural right counterpart of the Corollary 6.2.7.

Corollary 6.2.9. Let Rbea RGS ring. If A = o(R)(x1, ..., xy) is a bijective right skew PBW
extension of R, then Ais RGS.

Now, we can generalize the method described above for computing the syzygy mod-
ule of a submodule M = (f,....f,) of A™. Let F := [f; --- f,], we recall that

Syz(M) := Syz(F) consists of column vectors h = [h; - hs}T € A® such that

h]f1+"'+h8f5:0/

i.e., ' FT = 0. We note that Syz(F) is a submodule of A° and we can set a matrix with
its generators, so sometimes we will refer to Syz(F') as a matrix. We also will write

Syz(M) = Syz(F) = Syz({f,,---.f.})- (6.2.1)

The computation of Syz(F') is done in two steps. First, we consider a Grobner basis
G =1{gy,-...8,} for M and we compute Syz(G) := Syz({g,,....§,}) < A', and then, we
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obtain a system of generators for Syz(F) from one for Syz(G). For S = {g, ,....8, } € G

and (b1, ...,b;) € Bg, with Bg a set of generators of Syzr(c7 (lc( ij))CWj,exp(g- y[1<5<
i

k), we have that 25:1 bjz"g; i>+ 0, and hence, there exist hy,...,hs € A such that
Z§=1 bjavg, = St _, hig,. For each b € Bg, we define

beﬂel (hi,... . h) € A%;

then spg € Syz(gy,....8;): in fact,

&1 81

Definition 6.2.10. Let X;,...,X; € Mon(A™)and J C {1,...,t}. Let
Xy:=lem{X;|je J}.
We say that .J is saturated with respect to {X1, ..., X}, if
X |X;=jel
forany j € {1,...,t}. The saturation J' of J consists of all j € {1,...,t} such that X; | X;.
Theorem 6.2.11. With the above notations, a generating set for Syz(g,,...,8,) is
S = {s] | J C{1,...,t} is saturated w.r.t.{Im(g,), . . . Jm(g)} 1 <wv <y},

where

=Y byalie; — (hY,...,hY),

jeJ

with v; € N" such that v; + 3; = exp(Xy), B; = exp(gj),j € J, B/ = {b{, .. .,leJ} isa
system of generators for S7 .= Syzg[c7i (lc(§5))ey, ;| 5 € J], and b] = (bij)jej.

Proof. We have already seen that 4(S) C Syz(g,,...,8,)- Suppose that there exists u =
(u1,...,ut) € Syz(gy,--.,8,;) — (S). We can choose u with X := 1H<1a§t{lm(lm(ui)lm( )}

minimal with respect to <. Let
Ji= {5 € {1t} | Im(im(u;)im(g;)) = Xs}-

Since "'_, u;g; = 0, in particular we have 2 jele(u;)o®i(le(g;))ca; 8, = 0, where o =
exp(u;) for 1 < i < t. If Xy := lem{lm(g;) | j € J}, then XJ | X5 therefore there is
6 € N" with with property 6 + exp(X;) = 6. But a; + 3; = 6 and v; + ; = exp(X)
forall j € J, then 6 +v; + B8; = a;j + B3j, i.e, 0 +v; = aj. Thus, (Ic(uj))jes € Sj =
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SyzR[aeJ“ﬁ(lc(gj))c”vngj | j € J]. If J' is the saturation of J, then X; = X and w =
('U]j)jejl given by
v — le(uy), ifjed,
7 o, ifjeJ —J

is an element of S/ 9. According to Remark 5.4.2, there exists
(bj)jes € Sy = Syzrlo(lc(g;))cy; 8, | 7 € J']

such that w; = ae(bj)CQ,%. for j € J'. This implies that b; = 0 for j € J' — J. Now,
(bj)jes = Ziﬂz’l rb?, with {b) |1 <v<liy}a system of generators for S7" and v/, € R
for 1 < v < ly. Hence, bj = S22 r,bJ; and thus w; = b ¥ (rl,)a? (b)) co,q, for all
jeJ. Definew :=u— X" rua’s), withr, = o%(r!) for 1 < v < ly; thenu’ € Syz(G)
since Ei":' L rox?s) € (S). Note that

Ly
Z rvxes;{/ :rlmes‘ljl + -+ rl‘]@eleJ,,
v=1
4 .
=r12?( Y bjave; — (b, b))+ +
jeJ’
/ . U l
le/xe[z bi{]/jx’yjej - (hllJ Yooy ht(ﬂ)}
jeJ’
/ .
=r1[ > o (0]))con, 2" + pie; — (M, B+ +
jeJ’
/ . 1 l l
. [Z Ua(bz{],j)c&waﬁ%w —|-pj"/ej — (b, )]
jeJ’
Thus, for j € J we have that
Ly Ly Ly
0/1J O+,
R SULICATIEES SR 9
v=1 v=1 v=1
Ly Ly Ly
! .
=u; — Yoo’ (b)) coq, a0 + Y 05 =Y Y
v=1 v=1 v=1

Ly Ly
= uy —le(u;)z® = > pi+ > hY
v=1 v=1

. . L ! v
since for j € J, v; + 6 = a; and w; = lc(uy) = > ;0 , ae(r{,)ae(bgj)caw. Here pj = 0
or deg(p}) < [0 + v;| for every 1 < v < lp. Then Im(lm(u; — lc(u;)z®)im(g;)) <
Im(lm(u;)im(g;)) = Xs, Im(pjg;) < 2978 = X5, and

Im(Im(h)Im(g;)) = Im(3 e bla7ig;) < Xy = X5 =< X5

and therefore Im(Im(u)lm(g;)) < Xs. Now, if j € J' — J, then
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l ’
wj =30 09(7";)‘70(@{]')097% =0,

and Im(im(u;)im(g;)) < X5, and thus Im(im(uj)im(g;)) < Xs. Finally, if j ¢ J/, then
up = uj + ZZJ/ hj and Im(lm(u})lm(g;)) < Xs. So, Im(Im(uz)lm(g;)) < X for every

v=1

1 < i < tand, b}g minimality of u, we have that ' € _A(S) and hence, u € 4(S5), a
contradiction. Thus 4(S) = Syz(g;,.-.,8,)- O

We return to the task of calculating a system of generators for Syz(f,,...,f,), where
{fi,---.f.} is a collection of nonzero vectors, which non necessarily form a Grébner ba-
sis for M = (f,,...,f,). From Theorem 6.1.3, there exist H € M;(A) and Q € M;y(A)
such that G = H'FT and F* = QTGT, where G .= [g, -+ g F=1[f - f
and G is a Grobner basis for (f,,...,f,). By Theorem 6.2.11, we compute a set of genera-

tors {s1,...,s;} for Syz(g,,...,8;). Thus, foreach 1 < i <[ we have
s; HTFT = 5,GT =0,

and therefore, (s, HT | 1 < i < 1) C Syz(f,,....f,). f Syz(G) :== Z(G) :== [s1 -+ s,
then Syz(g,,...,8,) is the module generated by columns of Z(G) and this last equation
may be written as

Z(G)THTFT = z(¢)TGT =o. (6.2.2)

Further,

[Is - QTHT]

and thereby the rows ry,..., 75 of I, — QTHT also belong to Syz(f,,....f)-

Theorem 6.2.12. With the above notation, we have
Syz(.f17 D 7fs) = <51HT7 . '7SlHT7r17 e ,1‘5> S AS-
In a matrix notation, Syz(F) coincides with the column module of the extended matrix [(Z(G)THT)T I, — (
ie.,
Sy=(F) = [(Z(G)THTYT I, — (QUHT)T] (623)
Proof. Lets” = (ay,...,as) be an element in Syz(f,....f,) then
0= STFT — STQTGT7

and therefore s” Q7 € Syz(g,,---,8,;)- Thus, sTQT = Zé:l pis; for some p; € A. Thereby,
sTQTHT = 22:1 pi(siHT), and thus

ST — ST . STQTHT + STQTHT

!
=sT(I; - QTHT) + Zpi(siHT)
i=1

s l
= ami+ Y pi(siHT);
i=1 i=1

whence, s’ € (siHT,...,s;HT r1,...,rs) and we obtain the required equality. O
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Remark 6.2.13. When the homomorphisms are disposed by rows and homomorphisms
acts from left to right (compare with [78] and see Remark 2.1.2), we have

Syz(F)=[HZ(G) I,—HQ].

Example 6.2.14. Once more, we consider the additive analogue of the Weyl algebra A =
Ag(%, %), used in the Example 5.5.22, with the same monomial order on Mon(A) and on
Mon(A?). For this example, we want to find a finite set of generators for Syzalf,,f,),
where f, = xly%el + woy0ez and f, = x2y§e1 + x1y1e2. As we saw in the Example 5.5.22,
G ={f1,f2 f3}, withf, = —ix%y%eg + %x%y%’eg - %xly%eg + %.1)2]/%62 is a Grobner basis
for M.

Now, according to the Theorem 6.2.11, to compute a system of generators for Syz(G) =
Syzalfi, fa, 3], we must compute the saturated subsets J of {1,2,3} with respect to
{yle1,y3e1,yjea}. We have:

. For J; = {1} we compute a system B, of generators of Syzr[c" (lc(f1))]cy, 5,, Where
B1 :=exp(lm(f,)) and v1 = X j, — B1 = (0,0). Then B;, = {0}, and hence we have only
one generator b/ = (b/1) = 0 and s7* = b1z &, — (0,0,0) = (0,0,0), con & = (0,0,0)7.
. For J, = {2} and J3 = {3} the situation is similar.

. For J; 2 = {1, 2}, a system of generators of

SyZR[U’Yl (lc(‘fl))c’ylﬂl ;oM (lc(fQ))C’m#bL

where 81 = exp(im(f1)), B2 = exp(Im(f3)), 11 = (0,2), 2 = (2,0), ¢y, 3, = 1 and
Cyp,B2 = 1,is BJ1,2 = {($27 _‘7:1)}'
Thus, we only have one generator b'lh’2 = (w2, —11).

Since that
2 2p _
rays 1 — myi fo = [,
then
J ~ -
81" = mayse) — ryies — (0,0,1)
x2y§
= —fﬂly%
-1

.For J13 = {1,3} and Jo3 = {2,3}, wehave X 5, , = X j,, = 0.

Hence,
$2y%
SyZ(G)=< —a1y? >
-1

Finally, we compute a generator set for Syza(M): let s = [:rgyg —xly% —1}T; from
Theorem 6.1.3 there exist matrices H and Q such that GT = HTFT and FT = QTG”; in
this case,

1
2

H:[l 0 “%] and Q = |0

0 1 .

—21Y7

S = O
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0 0

Hence, s"HT = [0 0] and I, — QTHT = [O 0

} Then Syza(f, f2) = 0 and therefore,

M is a free left module of rank two.

6.3 Intersections

Using syzygies, we will compute in this section the intersection of left ideals of A and
submodules of A™. For this, let I = (fi,..., fs} and J = (g1,...,9:} be left ideals of A;
for h € I N J there exist some a1, ...,as and by, ..., b elements in A such that

h=ai1fi+---+asfs =big1 +--- + bg;.

The above can be reformulated saying that

1 1
b o o a] |7 =0and [=h b o.on) [P ] =0,
Is gt

ie., (=h,a1,...,a5)" € Syz(1, f1,...,fs) and (=h,b1,...,b)T € Syz(1,g1,...,q:). Set-
ting i := (1,1),f, == (f1,0),-.., f, == (fs,0),8;, == (0,91),...,8, := (0,9;), these two
conditions may be rewritten as the following single condition: there exist polynomials
a1,...,0,b1,...,b € Asuch that the vector (—h,a1,...,as,b1,...,b)7 is a syzygy of L,
whereL=1[i f, -+ f, & - &) Sinceh eInJifandonlyif—helInJ, we
may rephrase the above by the more natural condition that (h, a1, ..., as,b1,...,b)7 bea
syzygy of L. Thus, we have proved the following result.

Theorem 6.3.1. The elements in I N J are polynomials h € A with the property that there exist
ai,...,as,b1,...,b € Asuch that (h,al, e, Qg b, ,bt)T € Syz(L)

A system of generators for the intersection is given in the following corollary.

Corollary 6.3.2. Let {hi,...,h;} be a generating set for Syz(L). If hq; is the first coordinate of
hj, for 1 < j <, then L = {hy1,...,hy} generates I N J.

Proof. Let h € I N J, then there exist ai,...,as,b1,...,b € Asuchthath =a1fi + - +

asfs = bigi+- - +bigs; thus, (h,aq, ..., as,b1,...,b)7 € Syz(L),and hence (h, a1, ..., as, b, ...

22:1 r;hj for certainr,...,r; € A. From this we get that h = 22:1 rihij,ie., INJ C (L}.
The other inclusion follows from the definition of Syz(L). O

Example 6.3.3. Let A = 0(Q)(z,y) defined through the relation yz = —xy + 1. Over
Mon(A) we consider the deglex order, with z = y. Let [ = 4(zy,4?} and and J = 4(y}
be left ideals of A. We will compute a system of generators of I N J. In this case

Lzlxyﬂs20‘
1 0 0 vy
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Employing the TOPREV order on Mon(A?), with e; < es, and using the method de-
scribed above for computing syzygies, we have the following generator set for Syz4(L):
{(zy,-1,0,—2), (0, —z,y,0), (—2%y,0,y,2?)}. Hence, I N J = alzy,z*y} = alzy}.

Now, we consider the intersection of a arbitrary finite family of left ideals of A, I; =
(fijs--os Je;51 1 < j < r. We define

i:= (1717"'71)/,’:11 = (f11707""0)’f21 = (f21’0""’0)“"ft11 -
(o 000y = 00 A, o = (00, T,

and
L:[i fio fa o ft11 o fre for o ftrr]eMTXl(A)a

where I = 1+ 7", t;. Thus, if s € Syz(L), then s'LT = 0. As we observed above,
the first coordinates of a generating set for Syz(L) turn out to be a generating set for
LHnNn---NI.

We can extend the previous results to compute the intersection of submodules. For
this, let M and N be two submodules of A™, with m > 1. Suppose that M = (f,,...,f,)
and N = (g,,...,8,). Thus, h € M N N if and only if there exist ai, ..., as,b1,...,b; € A
such that

h:a1f1+"'+a5f5:b1g1+"'+btgt'
Ifh = [h1 hm]T, then

[—hy o —hp @ - as]Tand[—hl oo —hy, by - by

are a syzygies of the matrices

I fi -+ fJand [Im g - &l

respectively, where I,, is the identity matrix of order m. Mimicking the reasoning for the
ideal case, we define the matrix L, given by

and it is easy to prove the following result.

9

Proposition 6.3.4. With the above notation, M N N consists exactly of vectors h whose coordi-
nates are precisely the first m elements of vectors of Syz(L). Moreover, the set of vectors which
consisting of the firsts m coordinates of each element of a set of generators for Syz(L) is system of
generators for M N N.

The previous result can be extended to a finite set of modules: let M;,..., M, be
submodules of A™, with » > 3. Suppose that each M; is generated by the columns of
some matrix F; € M,,x,(A), and define

I, F1 0 --- O
L, 0 Fy --- O
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Proposition 6.3.5. With the previous notation, the intersection (\;_, M; is the set of all vectors h
which are the first m coordinates of vectors in Syz(L). Furthermore, the set of vectors that consist
of the first m entries of each of vectors of a generator set for Syz(L) is a system of generators for
the intersection.

Example 6.3.6. We consider the Example 6.2.5 in [19] and we verify the calculations de-
veloped there, using our algorithms. Let A = o(Q)(x, y), with yz = —zy and the deglex
order on Mon(A). Let M, N be submodules of A%, where M = 4{(z,z),(y,0)) and
N = 4((0,9?%), (y,x)). In this case, the matrix L is given by

1 0z y 0 0
L |01 @0 00
1000 0 y|
01 0 0 92 x

So, if we consider the TOP order on Mon(A*), with e, > e3 > ey > ey, then a Grébner
basis for the left A-module generated by the columns of Lis G = {f,}?_,, where f, is the

i=1/
i-th column of L for 1 < i < 6, f, = y2es and fs = —xe1 — yes3. A set of generators for
Syza(Q) is

2 2 2 2
{y“es —e5 — e7,xeq — e3 — eg — eg, y“es — wyes — xer, —y°e; + (v + y)es — yes, xy“es —
2 2 2
ves — zer, yier + xy’es — yley — yleg — zer}.

Computing the corresponding matrix I in Theorem 6.1.3, we have that

SyZA(L) = A<(07 _Iy2) ?/2 —TY,x, 0)) (_y27 ryY,Y,x + Y, 07 y)v (y3) 07 07 _y2) x, _y2)>

Thus, M N N is generated by (0, —zy?), (—y?, xy), (v,0); but (y>,0) = —y(—y?, zy) +
(0, —2y?), hence M NN = A((0, %), (=y*, ).

6.4 Quotients

We can use syzygies to compute a set of generators for the quotient of left ideals and
modules. For this, let I be a finitely generated left ideal of A, say I = (fi,..., fs}, and
let G be an arbitrary subset of A. Recall that ( : G) consist of elements h € A such that
hg € I for all g € G, in other words, for every g € G there exist aiy,...,asy € A with
property hg = > 7_, aigfi. It is straightforward to show that (I : G) is a left ideal of A.

Furthermore,
I:G)=(\U:9).
geG

So,if G={g1...,9:}, then
t
(I:G)=()T:g.
=1

Note that, given a polynomial ¢ € A, h € (I : g) if, and only if, (—h,hy,...,hs) €
Syza(g, f1,---,fs) where hy,... hs € A are elements such that hg = hyfi + -+ + hsfs.
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But, h € (I : g) if, and only if, —h € (I : g), thus for computing a system of generators of
(I:G),withG ={g1...,9}, wewill consider the matrix L given by

a1 fl e fS 0 e O
L=1|: = ... ... i ...
g 0 - 0 fi o f
In consequence, (I : G) is the set of all elements in A that are the first coordinates of

vectors in Syz(L), and a generator set is given by the first coordinates of the vectors in a
generator system for Syz(L).

Example 6.4.1. Let A be the ring o(Q)(x, y), where yx = xy + x. Given I = A(z%y,zy}
and G = {2?,y}, we will compute a generator set for (I : G). For this, we consider the
following matrix

22 2%y zy O 0
y 0 0 2%y ay

Now, if Mon(A) is ordered by deglex order, with > y, and M on(A?) is ordered by
TOPREV order, with e; > es, then a Grobner basis for the left A-module generated by

columns of L is G = {f,}}_,, where f, is the i-th column of L and f; = y?e; — 2yes.
Further,

Syz(G) = a((y —2)e1 — ez —eq, (y — 2)e1 — we3 — eg,eq — xes, (y — 3)es — wes, (y — 1)eq —
Tyes, —3eq, Tyes — req).

From this it follows that a system of generators for Syz4(L) is:

{(0,1,~-2,0,0),(0,0,0,1, —2), (—zy + 2x,2,0,0,y — 3),(0,0,0,y — 1, —zy), (—xy +
222 22,0, -3, zy)}.

In consequence, (I : G) = a(—zy + 2x).

6.5 Presentation of a module

Let M = (f,,...,f,) be a submodule of A™, there exists a natural surjective homomor-
phism 75 : A* — M defined by 7y (e;) := f,, where {e;}1<;<, is the canonical basis
of A%. We have the isomorphism 737 : A%/ ker(my) = M, defined by m/(e;) = f,,

where e; := e; + ker(mys). We note that ker(my/) is also a finitely generated module,
ker(mas) == (h1, ..., hs,), and hence, we have the exact sequence
At DM s T ap g, (6.5.1)

with 6y := lp o ), where l) is the inclusion of ker(my) in A® and 7, is the natural
surjective homomorphism from A°! to ker(mys). We note that ker(my) = Syz(M) =
Syz(F), where F = [f,---f.] € My,xs(A)
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Definition 6.5.1. It says that A®/Syz(M) is a presentation of M. It says also that the sequence
(6.5.1) is a finite presentation of M, and M is a finitely presented module.

Theorem 6.2.11 gives a method for computing a presentation of M/ when A is a bijec-
tive skew PBW extension. Moreover, let A, be the matrix of §;; in the canonical bases
of A% and A®; since Im(dys) = ker(mps), then

hit - hig
Ay =[h1 - hy]l=]: D | € Mgy, (A),
hsl e hssl

and hence, the columns of A are the generators of Syz(F'). With the notation of Section
6.2, Ay = Z(F).

Definition 6.5.2. With the previous notation, it says that Ay is a matrix presentation of M.

As we just saw, Ay is computable when A is a bijective skew PBW extension. We
can also compute presentations of quotient modules. Indeed, let N C M be submodules
of A™, where M = (f,.....f.), N = (g,,...,8,) and M/N = (f,,....f.), then we have
a canonical surjective homomorphism A°* — M/N such that a presentation of M/N is
givenby M /N = A®/Syz(M/N). But Syz(M/N) can be computed in the following way:
h = (hi,...,hs)T € Syz(M/N) if and only if hif, + - + hsf, € (g,....8,) if and only
if there exist hgy1,...,hsye € Asuchthat hif, + -+ hof + hs1g, + - + hsyig, = 0if
and only if (h1, ..., hs, hst1,..., hsyt) € Syz(H), where

H = [fl "'fsgl gt]

Theorem 6.5.3. With the notation above, a presentation of M/N is given by
A% /Syz(M/N), where a set of generators of Syz(M/N) are the first s coordinates of genera-
tors of Syz(H). Thus, a finite presentation of M /N is effective computable.

Example 6.5.4. Again, let A be the ring o(Q)(z,y), where yz = zy + z. Given M =
A4((1,1), (zy,0), (y2,0), (0,z)), we will compute a finite presentation for M. For this, use
the deglex order on Mon(A), with z = y, and the TOP order over Mon(A?), with e > e;.
A straightforward calculation shows that

G = {(17 1)1 (xya 0)7 (y2a 0)7 (0733)1 (.I', 0)}
is a Grobner basis for M. Moreover, a set of generators for Syza(G) is given by
{(l’, 0707 _17 _1)7 (07 1a Oa Oa -y + 1)7 (Oa —y+ 131’" 07 0)? (Oa —Y - 17 07 anQ - 1)}

and, therefore, Syza(M) = 4(sy = (0,—y + 1,2,0),80 = (—2y,1,0,y — 1),s3 = (23> +
2xy, —y — 1,0,1 — y?)). Thus, we have obtained the following presentation for M:

M = A4/<51,52,53>.
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6.6 Computing free resolutions

In this section, we will compute free resolutions for left submodules of A™. Let M be
a submodule of A™, we recall that a free resolution of M is an exact sequence of free
modules

Fr_ F: F Fi
Froay By pe By s B,

g pse Frgopsea
with s; > 0 for each i > 0. We assume that A° = 0. r is the length of this sequence if
s, # 0and s; = 0 for i > r + 1. The following proposition describes a simple procedure
for constructing a free resolution of M.

Theorem 6.6.1. Let M = <f<10)7 ce fg?) be a submodule of the free left module A™. Let Fy be

the matrix whose columns are f<10), . fgg), and for i > 1 let

F; = Syz(Fi_) = [ﬁi) fgﬂ
Then,

...fr_+2>A57"£>A5r71‘ﬂ_71>...f_2>A51£>A50f_0>M_>0,

is a free resolution of M, where
filel) = (e FIIT = £
and {egj)}lgjigsi is the canonical basis of A*.

Proof. Each homomorphism f; is represented by a matrix, and hence, a resolution of M is
described as a sequence of matrices {F; };>o, where the columns of F; are the generators
of Syz(Fi—1), ¢ > 1. The columns of Fj are the generators of M. Thus, by definition of
matrices F;, we have that Im(f;) = Syz(F;_1) = ker(fi—1) for each i > 1, and that Fy is a
surjective homomorphism. O

We can illustrate this procedure in the following example.

Example 6.6.2. Let A be the ring 0(Q)(x,y), where yz = xy + . We will calculate a
free resolution for the left module M := 4((1,1), (zy,0), (y2,0), (0,z)) given in the Ex-
ample 6.5.4. There we saw that M = A*/(sq,ss,s3), where s; = (0,—y + 1,2,0),82 =
(—2y,1,0,y — 1),s3 = (zy* + 22y, —y — 1,0,1 — y?). Now, we must compute a gen-
erator set for Syza(s1,s2,s3). For such task, we consider the deglex order on Mon(A),
with x = y, and the TOP order over Mon(A?), with es > e;. Is not difficult to see that
{s1, 82,83} is a Grobner basis; so, Syza(s1,s2,53) = 4((0,y + 1,1)). Finally, Syza(s) =0,
where s = (0,y + 1, 1). In consequence,
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0
y+1

1

0 —xy  xy® + 22y
2 _ _a—
Foz[l Ty Yy 0],F1: y+1 1 y—1 By =

and a free resolution for M is given by

s

0 - A - q3

I
Y p——— y/ 0

6.7 Kernel and image of an homomorphism

Let M C A" and N C A! be modules, with M = (f,,....f.), N = (g,,...,&,), and let
¢ : M — N be a homomorphism. Then, there exists a matrix ® = [¢;;] of size ¢ x s with
entries in A given by

O(f,) = o8y + - + D1igys

for each 1 < ¢ < s. In this section, we will calculate a system of generators and presen-
tations for ker ¢ and I'm(¢) by using the matrix ® induced by the homomorphism ¢. Let
A% /Syz(M) and A'/Syz(N) be presentations of M and N respectively. We consider the
canonical isomorphisms

a1 s A%/Syz(M) — M, 7N : AY/Syz(N) — N
defined by m/(e;) = f,, for 1 < i < s, and ﬁ(g) =8 for 1 < j <'t, where {e; }1<i<s
is the canonical basis of A% and {e;-}lg j<t is the canonical basis of At. Thus, we have the

following commutative diagram

M - N

6.7.1)
A%[Sys(M) —= A'/Sy=(N)

where the vertical arrows are the isomorphisms (737) ! and (7x)~!. Hence, ¢(¢;) =
(7n) " togomyu(e) = ¢1ia 4o+ ¢ti;%, for each 1 < i < s. Note that ker(¢) = ker(¢)
and Im(¢) = Im(¢): in fact, is enough to see that (737) ! restricted to ker(¢) is an iso-
morphism between ker(¢) and ker(¢); analogously for I'm(¢) and Im(¢). Let m € ker(¢),
thenm = aif| +- -+ asf, and thus, (7x) " H(p(hif |+ + hsf,)) = 0= o((7ar) " (haf, +
ot hef )= d(her+ -+ hses) = hd(er) + -+ hso(es) = hi(pne) +- -+ duep)+- -+
hs(p1s€y +- - -+ prse;) = (higr1+- - -+ hsprs)e] +- - -+ (higp + - - - + hsprs)e). This implies
that (h1¢11 + -+ + hsprs)el] + -+ (higu + - - + hsdrs)e, € Syz(N). By Theorem 6.2.11,
we can compute a system of generators for Syz(N) = (s1,...,s;,) € A’. Hence, there
exist as41,...,as++, € Asuch that
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P11 P15
aq + -+ as + as1181 + - + Qs Sty =0.
¢t1 ¢ts
Conversely, if (a1, ...,as) € ker(¢), the above calculations allow us conclude that a1f, +

-+ asf , € ker(¢); thus, we have obtained that

aif, + -+ asf, €ker(¢) & (a1,...,as) € ker(o).

We have proved the following theorem.

Theorem 6.7.1. With the above notation, let
H = [‘131 R T StJ,
where ®; is the i — th column of the matrix ®, for 1 <1i < s. Then,

(@1,... 05, Q5415 .-, a514,) € Syz(H) & arf; + - - + asf, € ker(o).

Thus, if {z1,...,zv} C A5t is a system of generators of Syz(H), let z, € A® be the vector
obtained from zj, when omitting the last t, components, 1 < k < v, then {2}, ...z} } is a system

of generators for ker(¢). Moreover, if
Z/l = (hu,...,hls),...,z; = (hvla-~-7hvs)/
then {hy1f) + -+ hisfss - - s hotfy + -+ - 4 hosf, } is a system of generators for ker(¢).

A presentation of ker(¢) is given in the following way.

Corollary 6.7.2. With the notation of this section, a presentation of ker(¢) is given by A"/K,
where

K = Syz(ker(¢)) = Syz [hllfl +oodhif, oo hofy o+ hvsfs].

Now we also want to compute also an explicit presentation for ker(¢). We assume
that we have computed a system of generators for Syz(M) = (wy,...,ws,) C A5. We
know that a presentation of ker(¢) is given by ker(¢) = A”/K’, where K’ = Syz(ker(¢)) =
Syz((z),...,20)). But, (l1,...,l,) € Syz((z},...,z])) if and only if there exist
lyg1y---ylyts, € A such that [1z] + -+ + L,z + Lypywy + -+ + Lyys,ws;, = 0. Thus,
we have proved the following corollary.

Corollary 6.7.3. With the above notation, let

L = [Z,l zé} wp - wsl].

If{ly,...,1,} C A"t is a system of generators of Syz(L), let I, € A" be the vector obtained
from Iy, when omitting the last s; components, 17§ k < q, then {I},..., l;} is a system of
generators for K', and hence, a presentation of ker(¢) is given by AV /K.
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We consider now the image of homomorphism ¢ : M — N in (6.7.1). Then the
following result is clear from the above discussion.

Corollary 6.7.4. A system of generators for Im(¢) is given by

Im(qb) = <¢11g1 + -+ Cbtlgta ERE ¢lsgl + e+ ¢tsgt>-

A presentation of Im(¢) is A®/I, where

I:Syz [¢1lgl+"'+¢t1gt ¢13g1+"'+¢tsgt]-

Many of the theoretical results of the present chapter will be illustrated with other
concrete examples in the last chapter.

We conclude this section by showing an explicit presentation of Im(¢). We know

that Im(¢) = (p11€| + - + dnel, ..., d1:€| + - - + P15€}), thus a presentation of I'm(¢)

is given by Im(¢) = A®/Syz(Im(¢)). Let (hi,...,hs) € Syz(Im(¢)), then there exist
hs+1,...,hsyt, € Asuch that

b1 P1s
Sl et hs | P |+ hspaur o+ sy iy, = 0.

¢t1 ¢ts

Thus, we have proved the following corollary.

Corollary 6.7.5. Let H be the matrix in Theorem 6.7.1. If {z1,...,z,} C A5t is a system
of generators of Syz(H), let zj. € A® be the vector obtained from zj, when omitting the last t,

components, 1 < k < v. Then, {z},... 2} is a system of generators for Syz(Im(¢)) and
As/Syz(Im(¢)) is a presentation of Im().

Example 6.7.6. Let A := o(Q[21])(z2,3) = O3 (2,3,3). Let M := (fy, f5) C A%, where
Ff1 = zizde; + z9z3€0 and fo, = 2717973€1 + 72€2. In a similar way as was done in
Example 6.2.14, we can prove that Syz(M) = 0 and hence M is free with basis { f, f»}.
Let N := (g;,9,) C A?, where g; = (221 + 1)z3e1 + x273e2 and gy = (42} + 71)e; +
z12323€9. We consider the homomorphism ¢ : M — N given by

o(f1) :== g1 + 29

(f2) == 1191 + g2

_1 1
v=lp 7

Using the results of Section 6.2 we verify that

e

so the matrix H of Theorem 6.7.1 is

. 1 r1 I1x2
H_[Q 1 —1}

The matrix ¢ induced by ¢ is
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Once more, by the results of Section 6.2, a system of generators of Syz(H) is

203 — w1 + 2 — Lo $21 4 22239 + S2120 + 2303
—2z1 + % — 2:3%3:2 + 129 |, —% — Qx%x% — %xll‘g e A3,
4zf — 371 + 5 dzdxs — driwo + 21 — 3

and by Theorem 6.7.1, a system of generators of ker(¢) is

{(2156% — 3w1 + 2wy — Jriwg) f1 4 (—221 + 5 — 22wa + 172) f,
(A1 + 22220 + Lwyao + 232d) f1 + (—5 — 20323 — Sa120) fy ),

and a system of generators of Im(¢) is {¢(f1), d(f2)} = {91 + 292, 7191 + g2}



CHAPTER 7

Matrix computations on projective modules using
Grobner bases

In this last chapter, we will use the constructive proofs developed in the former part of
this thesis and the Grobner basis theory, in the order of establishing several algorithms
that will allow us to carry out effective calculations as projective dimension, testing stably
freeness, constructing minimal presentations and obtaining bases for free modules.

7.1 Computing the inverse of a matrix

We will present an algorithm that determines whether a given rectangular matrix over a
bijective skew PBW extension is left invertible and, in such a case, this computes one of
its left inverses. A similar algorithm will be constructed for the right side case. We start
with the following elementary fact about left invertible matrices.

Proposition 7.1.1. Let F be a rectangular matrix of size r x s with entries in a ring S. If F' has
left inverse, then r > s. Moreover, F has a left inverse if and only if the left module generated by
the rows of F coincides with S°.

Proof. First statement follows from the fact that we are assuming S satisfying the RC
condition (see Proposition 2.1.4 and Remark 2.1.9). Now, suppose that F" has a left inverse
L € Mx,(S),i.e., LF = I;. Define the following S-homomorphisms

ft.8" - 6% It 8% - 8§"
a— (alF)T b (b'L)T,

then m(f*) = FT and m(I*) = LT (for the notation, see Chapter 1). Whence, m(f! o It) =
(LF)T =117 = I,,i.e, f! is an epimorphism. Hence, Im(f!) = S, i.e., the left submodule
generated by the rows of F' coincides with the free module S°. Conversely, suppose that
the module generated by the rows of F' coincides wit S, then for f* defined as above,
there exist a; ...,as € S” such that f!(a;) = e; for each 1 < i < s, and where ey, ..., e;s

128
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denote the canonical vectors of S*. Thus, if a; = [a1; az -+ ar] T we have
al F = lati agi -+ an| F = auFay+ -+ aniFy) = e

where Fj denotes the j-th row of F', 1 < j < r. Therefore, if L is the matrix whose rows
are the vectors aiT, then LF = I, i.e., I has a left inverse. O

Corollary 7.1.2. Let A be a bijective skew PBW extension and let F' € M, s(A) be a rectangu-
lar matrix over A. The algorithm below determines whether F' is left invertible, and in the positive
case, it computes a left inverse of F':

Algorithm for the left inverse of a matrix

INPUT: A rectangular matrix F' € M, s(A)

OUTPUT: A matrix L € My, (A) satisftying LF' = I, in case that it
exists, and 0 in other case
INITIALIZATION:
IFr <s
RETURN 0

IFr > s, let G := {g,,...,8,} be a Grobner basis for the left
submodule generated by rows of F' and let {e;}{_, be the canon-
ical basis of A°. Use the division algorithm to verify whether
e; € 4(G)foreach1 <i<s.

IF there exists some e; such thate; ¢ (G),

RETURN 0
IF (G) = A®, let H € M,y (A) with the property G = HTF,
and consider K := [k;;] € M;x,, where the k;;’s are such that

e; = k‘h’gl + kzng —+ o+ ktz’gt for1 <4 <s. Thus, I, = KTGT
RETURN L := KTHT

Example 7.1.3. Let A = 0(Q)(x, y) defined through the relation yx = —xy + 1. Given the
matrix

1

_ =y
F=|"
1

< O O =

we apply the above algorithm in order to verify whether F' has a left inverse. For this,
we compute a Grobner basis of the left module generated by the rows of F'. Considering
the deglex order on Mon(A), with = y, and the TOPREV order on Mon(A?), with
e1 > ey, a Grobner basis for 4(F7) is {e1, e} (here, we also used the Corollary 5.3.4). In
consequence, F' has a left inverse and, from calculations obtained during the process of
Buchberger’s algorithm, we have that
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ry? —y y+1 0 —zy+1
—ryl+y+1 —y—1 0 ay—1

is a left inverse for F'.

Corollary 7.1.4. Let F be a square matrix of size r x r with entries in a ring S. Then, F is
invertible if and only if the rows of F shape a basis of S°.

Proof. Let L € M,(A) such that LF' = I, = F L. From LF = I, it follows that the rows of
F generate S”. Let f t and ! be like in the proof of Proposition 7.1.1; since 'L = I,, then
It o f = igr and, therefore, f! is a monomorphism, i.e., Syz(FT) = 0. Thus, the rows of
F are linearly independent, and this complete the first implication. Conversely, since the
rows of F' generate S”, by Proposition 7.1.1, F' has a left inverse. Let L be a such inverse,
then LF = I,. We have FLF = F, this implies that (FL — I,)F = 0,, but Syz(FT) =0,
then FL =1I,,ie., F~!1 = L. O

Corollary 7.1.5. Let A be a bijective skew PBW extension and F' € M, (A) a square matrix over
A. The algorithm below determines whether F is invertible, and in the positive case, it computes
the inverse of F':

Algorithm for the inverse of a square matrix

INPUT: A square matrix F' € M,(A)

OUTPUT: A matrix L € M,(A) satisfying LF = I,, = FL in case that it
exists, and 0 in other case
INITIALIZATION:

Use the algorithm in Corollary 7.1.2 to determine whether F is left in-
vertible

IF F' is not left invertible
RETURN 0

ELSE Compute Syz(FT)
IF Syz(FT) #0
RETURN 0

ELSE Compute the matrices H and K in the algorithm of Corol-
lary 7.1.2

RETURN L := KTHT

Example 7.1.6. Once more, we consider the additive analogue of the Weyl algebra A =

Ag(%, %), used in Example 5.5.22, with the same monomial order on Mon(A) and on
Mon(A?). For this example, let F' be the following matrix
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e |:551y% xw%}
2Y2 T1Yy1

We want to check whether columns of F' conform a basis for A2. From Section 2.1, we
know that this is true if and only if F7 is invertible. Using the above algorithm, we start
verifying that F'7 has a left inverse; for this purpose, we compute a Grober basis of the
left A-module generated by the rows of FT,i.e., of the left A-module Im(F). As we saw,
(see Example 5.5.22) G = {f1, fo, f3} is a Grobner basis for this module, where f;, =
xly%el + @202, fo = 9323/361 +x1y1€2 and f, = —ix%y%ez + %x%yé’@ - %$1y%32 + %9623/%32-
Using the division algorithm we can check that e; ¢ (G), whereby 4(G) # A2. Thus FT
has no a left inverse and, hence, the columns of F are not a basis for A2.

Remark 7.1.7. If S is a left (or right) Noetherian ring, then every epimorphism « : S” —
S” is an automorphism (see Proposition 1.14 in [63]). In terms of the Remark 2.1.9, we
have that every left (or right) Noetherian ring is W.F. Therefore, to test that F' € M,.(S5)
is invertible, it is enough to show that F' has a right or a left inverse. So, in the above
algorithm, when A is a bijective PBW extension of a LGS ring, it is not necessary the
computation of Syzs(FT) to test whether the matrix is invertible, it would be sufficient
to apply the algorithm for the left inverse given in Corollary 7.1.2.

Now we will consider the right inverse of a rectangular matrix. We start with the
following theoretical result.

Proposition 7.1.8. Let F be a rectangular matrix of size r x s with entries in the ring S. If F
has right inverse, then s > r and the module of syzygies of the submodule generated by the rows
of F is zero, i.e., Syz(FT) = 0. In other words, if F' has a right inverse then the rows of F' are
linearly independent.

Proof. s > r since we are assuming that S is RC (Proposition 2.1.4 and Remark 2.1.9).
Let L € Mgy, (S) such that FL = I.. Consider the homomorphisms f* and I' as in
Proposition 7.1.1, then f is a monomorphism. Hence, ker(f?) = 0, i.e.,, Syz(FT) =0. O

Proposition 7.1.9. Let F be a rectangular matrix of size r x s with entries in the ring S. If F
has right inverse, then s > r. Moreover, F has a right inverse if and only if Syz(F1) = 0 and
Im(FT) is a summand direct of S*, where Im(F™) denotes the module generated by the columns
of FT i.e., the module generated by the rows of F.

Proof. To begin, s > r since we are assuming that S is RC (Proposition 2.1.4 and Remark
2.1.9). Now, let L € My,(S) such that FL = I,. Consider the homomorphisms f*
and [! as in Proposition 7.1.1, then I’ o f! = igr, i.e, f! is a split monomorphism. Thus,
S5 = Im(f") @ ker(I*), and I'm(f?) is a direct summand of S*. Conversely, let M be a
submodule of S® such that S% = I'm(f')® M. So, given f € S* there exist unique elements
f1 € Im(f') and f, € M such that f = f, + f,. Define the homomorphism /* : S5 — S”
as I'(f) := hy, where hy € S" is such that f*(hs) = f,. By hypothesis Syz(F') = 0, so
ft is injective and we get that ! is well defined. It is not difficult to show that ! is a
S-homomorphism. Consequently, I! o f! = igr and if LT := m(l), then FL = I,, i.e., F
has a right inverse. O
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Remark 7.1.10. If we had a computational tool for to check when a submodule of a
free module is a summand direct, then Proposition 7.1.9 would establish an algorithm
to check the existence of a right inverse.

Following [23] and [105], consider a matrix F' := [f;;] € M,«s(A), with s > r, where A
is a bijective skew PBW extension endowed with an involution 6§, i.e., a function § : § —
S such that 8(a + b) = 0(a) + 0(b), 0(ab) = 6(b)f(a) and 0* = ig, for all a,b € S. Note that
6(1) = 1, and hence, 6 is an anti-isomorphism of S. We define 0(F') := [(f;;)]. Observe
that if K € My, (A), then

O(FK)T = 0(K)To(F)T. (7.1.1)

Proposition 7.1.11. Let A be a bijective skew PBW extension endowed with an involution ¢
and let F' := [f;;] € M,xs(A), with s > r. Then, F has a right inverse if and only if for each

1<j<r e i/>+ 0, where G’ is a Grobner basis of the left A-module generated by the columns
of O(F) and {e;};_, is the canonical basis of A”.

Proof. G := [gij] € Msx,(A) is a right inverse of F' if and only if FG = I,, and this is
equivalent to say that

fu fis
fa fas :
ej=1|.|-gyt+-F]|. | g l<i<r;
frl fTS
applying ¢ we obtain
H(fll) e(fls)
9 0(fas
ej = 0(g15) - ({21) + o4 0(gs5) - (1.72 !
0(fr1) 0(frs)

Thus, G is a right inverse of F' if and only if the canonical vectors of A™ belong to the left
A-module generated by the columns of §(F), i.e., ei,...,e, € (§(F)). Let G’ be a Grobner
basis of (§(F)), then by Theorem 5.5.13, G is a right inverse of F' if and only if for each j,

ej i/>+ 0. O
Corollary 7.1.12. Let A be a bijective skew PBW extension with an involution 0, and F €

M, «s(A) be a rectangular matrix over A. The algorithm below determines whether F is right
invertible, and in the positive case, it computes the right inverse of F:
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Algorithm 1 for the right inverse of a matrix

INPUT: An involution 6 of A; a rectangular matrix F' € M, (A)

OUTPUT: A matrix H € M;y,(A) satisfying FFH = I, if it exists, and
0 in other case
INITIALIZATION:
IFs<r
RETURN 0

IF s > r, let G := {g,...,8,} be a Grobner basis for the
left submodule generated by columns of 6(F) and let {e;}’_; be
the canonical basis of A”. Use the division algorithm to verify if
e; € (G') foreach1 < j <r.

IF there exists some e; such thate; ¢ (G'),

RETURN 0
IF (G') = A", let J € My (A) with the property G'T = JT0(F)T,
and consider K := [k;;] € M;x,, where the k;;’s are such that

ej = kijg, +kojgy + - +kyg, forl1 < j <r. Thus, I, = KTg'm
RETURN H := 0(.J)0(K)

Proof. Applying (7.1.1) we get

I = KTG'T = KT JT9(F)T = 0(0(K))T0(0(J)T0(F)T = 0(0(J)8(K))T9(F)T =
0(FO(J)0(K))",

so I, = 6(FO(J)0(K)) = 0(I,), and from this we get I, = F(J)0(K). O

Example 7.1.13. Let us consider the ring A = o0(Q)(z,y), with yr = —zy + 1. Using the
above algorithm, we will compute a right inverse for

z 0 1
F_[y—l x—1 x—y}

provided that it exists. For this, we consider the involution § on A given by (z) = —x
and 6(y) = —y. With this involution, we have that §(xy) = —xy + 1. Thus,

-y—1 —xz—-1 —z+y

Q(F):[ 2 0 1 }

We start computing a Grobner basis for the left module generated by the columns of §(F").
From Corollaries 5.3.4 and 5.4.5, we get G’ = {ej, ez} is a Grobner basis for 4(0(F)). In
this case, F' has a right inverse and
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—x+y -1
J= |22 +22y—y*—2+y—1 x+y—1|issuchthat G'T = JTO(F)T.
—z? —zy+2 —x

Since G'T' = I, then K = Iy and L :=6(J) isa right inverse for F', where

r—y -1
0(J)= |22 —22y -y +2—y+1 —xz—y—1].
—z? +ay+1 T

To find involutions of skew PBW extensions it is a difficult task, so the above al-
gorithm is not practical. A second algorithm for testing the existence and computing a
right inverse of a matrix uses the theory of Grobner bases for right modules developed in
Section 5.6. For this we will make a simple adaptation of Proposition 7.1.1 and Corollary
7.1.2 for right submodules, using the right notation in Remark 2.1.2.

Proposition 7.1.14. Let F' be a rectangular matrix of size r x s with entries in a ring S. If F
has right inverse, then s > r. Moreover, F' has a right inverse if and only if the right module
generated by the columns of F coincides with S™.

Proof. The first statement follows from Proposition 2.1.4 and Remark 2.1.9. Now, suppose
that F" has a right inverse and let L be a matrix such that /'L = I,.. Define the following
homomorphism of right free S-modules:

Fi85 8T 1: 8" = 8%
a— Fa b— Lb,
then m(f) = F and m(l) = L. Whence, m(f ol) = FL = I, i.e, f is an epimorphism.

Therefore, Im(f) = 5", i.e., the right submodule generates by columns of F' coincides
with the free module S”. Conversely, if Im(F') = S”, then for f defined as above, there

exist a; ...,as € S® such that f(a;) = e; foreach 1 < i < s, and where e, ..., es denote
the canonical vectors of S%. Thus, if a; = [a1; ag; - arj}T, we have

where FU) denotes the j-th column of F, 1 < j < r. So, if L is the matrix whose columns
are the vectors a?, then F'L = I,,i.e.,, F' has a right inverse. O

Thus, considering the results of Section 5.6, we have the following alternative algo-
rithm for testing the existence of a right inverse.

Corollary 7.1.15. Let A be a bijective skew PBW extension and F' € M, s(A) be a rectangular
matrix over A. The algorithm below determines whether F is right invertible, and in the positive
case, it computes a right inverse of F:
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Algorithm 2 for the right inverse of a matrix

INPUT: A rectangular matrix F' € M, s(A)

OUTPUT: A matrix L € M;y,(A) satisfying F'L = I, when it exists,
and 0 in other case
INITIALIZATION:
IFs<r
RETURN 0

IF s > r,letG := {g,,...,8,} be aright Grobner basis for the
right submodule generated by columns of F' and let {e;};_, be
the canonical basis of A”;. Use right version of division algorithm
to verify if e; € (G)4 foreach 1 <i <r.

IF there exists some e; such that e; ¢ (G) 4,
RETURN 0

IF (G)a = A", let H € M;y(A) with the property G = FH (see
Remark 6.1.4), and consider K := [k;;] € M;y,, where the k;;’s
are such that e; = g, k1; + g koj + -+ - + g,kyj for 1 < i < r. Thus,
I, = GK

RETURN L := HK

Example 7.1.16. Consider the ring A = 0(Q)(z, y), with yz = —zy + 1, and let F' be the
matrix given by
2 —

zy—1 =z T

Applying the right versions of Buchberger’s algorithm and Corollary 5.5.15, we have that
a Grobner basis for the right module generated by the columns of F'is G = {e1, e2}. From
Corollary 7.1.15 we can show that F has a right inverse; moreover, one right inverse for
F is given by

7.2 Computing projective dimension

Theorem 2.4.2 holds for any projective resolution of M, thus we can consider a free res-
olution { f;}i>o computed using the results of Section 6.6. Hence, by Theorem 2.4.3 we
obtain the following algorithm which computes the projective dimension of a module
M C A™ given by a finite set of generators, where A is a bijective skew PBW extension
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of a LGS ring R with finite left global dimension. Note that A is left Noetherian (Theorem
1.2.9) and Igld(A) < oo (see [83]).

Projective dimension of a module
over a bijective skew PBW extension
Algorithm 1

INPUT: Igld(A) < oo, M = {f,....f,) € A™, withf, # 0,
1<k<s

OUTPUT: pd(M)

INITIALIZATION: Compute a free resolution { f; };>0 of M
1:=0

WHILE i < Igld(4) DO
IF I'm(f;) is projective THEN pd(M) = ¢

ELSEi=1¢+1

Observe that, in the previous algorithm, we no need to compute finite free resolutions of
M; any free resolution computed using syzygies is enough.

Next, we present another algorithm for computing the left projective dimension of a
module M C A™ given by a finite free resolution:

-2

0 — ASm fi> Asm—1 fm—l; ASm—2 fm N f_2> At f—1> AS0 f—0> M — 0. (7.2.1)

This algorithm is supported by Corollary 2.4.4 and Theorem 2.4.5.
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Projective dimension of a module
over a bijective skew PBW extension
Algorithm 2

INPUT: An A-module M defined by a finite free resolution (7.2.1)
OUTPUT: pd(M)

INITIALIZATION: Set j := m and H; := F,;,, with F},, the matrix of f,, in
the canonical bases

WHILE j < m DO
Step 1. Check whether or not H; admits a right inverse G :

(a) If no right inverse of H] exists, then pd(M) = j
(b) If there exists a right inverse G of H] and

(@ Ifj=1thenpd(M)=0

(ii) If j = 2, then compute (2.4.6)

(iii) If 7 > 3, then compute (2.4.5)

Step2.j:=75—1

Example 7.2.1. Let A be the ring 0(Q)(z, y), where yz = zy + z. We will calculate the
projective dimension of the left module M = 4{((1,1), (zy,0), (y?,0), (0,x)) given in the
Example 6.5.4. As we saw in the Example 6.6.2, a free resolution for M is given by:

F>

F Fy

0 - A - A3 - A1 - M -0
where,
0 —xy  xy® + 2y 0
1wy y? 0 |y +1 1 —y—1 _
R_L 0 0 Jﬂ_ v 0 0 ’B_yTL
2

0 y—1 1—y
In order to apply the above algorithm, we start checking whether F» = [0 y+1 1}T
has a right inverse. A straightforward calculation shows that a right inverse for F5 is

Gy = [0 1 —y} T, so we compute (2.4.6):
H H
0 - A3 —— A — > M - 0 (7.2.2)
where
0 —xy  xy® + 2y
— _ |1 =y ¥y O
Hy = T 0 0 and Hy := [1 0 0 m]

0 y—1 11—y
0 1 —y
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To verify whether H{ has a right inverse, we must calculate a Grobner basis for the right
module generated by the columns of H{ . Since the ring A considered is a bijective skew
PBW extension, we can use the right version of Buchberger’s algorithm. For this, we
consider the deglex order on Mon(A), with z > y, and the TOP order over Mon(A3), with
e1 < ez < e3. Applying this algorithm, along with Corollary 5.5.15, we obtain the follow-
ing Grobner basis for (H]) 4, G = {(,0,0), (1—y,0, —1), (0, —1,1), (0, —z,0), (0, y—1,0)}.
Note that e; is not reducible by G, thus (G)4 # A2 and hence H 1[ does not have a right
inverse. Therefore, pd(M) = 1.

Remark 7.2.2. The above algorithms can be used for testing whether a given module M
is projective: we can compute its projective dimension, and hence, M es projective if and
only if pd(M) = 0.

7.3 Test for stably-freeness

Theorem 2.2.15 gives a procedure for testing stably-freeness for a module M C A™ given
by an exact sequence

O—>Asf—1>ATf—O>M—>O,

where A is a bijective skew PBW extension.

Test for stably-freeness
Algorithm 1

INPUT: M an A-module with exact sequence
S fl r fO
0—+A"—=A"—=M=0

OUTPUT: TRUE in case that M is stably free, FALSE otherwise
INITIALIZATION: Compute the matrix F of f;
IF F{ has right inverse THEN
RETURN TRUE
ELSE
RETURN FALSE

Example 7.3.1. Let A = 0(Q)(z,y), with yr = —xy. We want to know whether the left
A-module M given by

2
M = 4(es + e1,es + e2, xes + xe1, yer, y-es, xeq + yes)
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is stably free or not. To answer this question, we start computing a finite presentation
of M. Considering the deglex order on Mon(A) with x > y, the TOP order on Mon(A%)
with e4 > e3 > ey > eq, and using the methods established in the previous sections, we
have that a system of generators for Syz(M) is given by

S = {(07 _xyzv 927 —XY,x, 0)7 (—927 XY,Y,T + Y, 0) y)a (y37 07 07 _y27 Z, —?/2)}
Therefore, we get a following finite presentation for M:

Fy Fo

A3 - AS - M -0 (7.3.1)
where,
[0 =yt Y]
—zy?  wy 0 1 0 zy 0 O
2
1y Y 0 1001 = 0 0 O
F1 = —zy z4y —y2 al’ldFo =11 000 0 y .
T 0 x 01 0 0 9> «
0 y -y

Applying the method for computing the syzygy module, we have that Syz4(F;) = 0, so
the presentation obtained in 7.3.1 becomes

Fy Fy

- AS - M -0

0 - A3

Finally, we must to test whether F{ has a right inverse. For this, we calculate a Grob-
ner basis for the right module generated by the columns of F. Using the TOP order on
Mon(A?), with e > ey > eq, a Grobner basis for (F) 4 is given by G = {f,}]_,, where f,
is the i-th column of FlT for1 <i<6,andf, = —eoxy? + e1xy®. Note that, for example,
e1 ¢ (G)4 so that AS £ (G) 4. Thus, F{ has not right inverse and hence M is not stably
free.

Remark 7.3.2. From Theorem 2.2.15, if M is a left A-module with exact sequence 0 —
J/CREEN UL Y/ N 0, then MT = Extl (M, A), where MT = S /Im(ff') and f{ : S —
S¢ is the homomorphism of right free S-modules induced by the matrix F{'. Thus, for
testing stably freeness of M, we can use the results in the Section 5.6 and computing a
Grobner basis for the right module generated by columns of Fi. Using the right version
of the division algorithm, is possible to check whether S* = I'm(F{'). If this last equality
holds, then MT = 0 and M is stably free.

Corollary 2.4.4 gives another procedure for testing stably-freeness for a module M C
A™ given by a finite free resolution (2.4.4) with S = A: Indeed, if m > 3 and f,, has not
left inverse, then M is non stably free; if f,,, has a left inverse, we compute the new finite
free resolution (2.4.5) and we check whether h,,_; has a left inverse. We can repeat this
procedure until (2.4.6); if h; has not left inverse, then M is non stably free. If h; has a left
inverse, then M is stably free.
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Example 7.3.3. Let A be the ring 0(Q)(x,y), where yz = zy + = and consider the left
module M = 4((1,1), (zy,0), (y2,0), (0,z)) given in the Example 6.5.4. As we saw in the
Example 7.2.1, a finite presentation for M is given by:

H, Hyp

0 - A3 - A° M 0 (7.3.2)
where
0 —zy  xy® + 2y
Hy = T 0 0 and Hy := E l;)y yO g]
0 y—1 1—y?
0 1 —y

In such example, we showed that H{ has not a right inverse, hence M is not a stably free
module.

7.4 Computing minimal presentations

If M C A™ is a stably free module given by the finite free resolution (2.4.4) with S = A4,
then the Corollary 2.4.4 gives a procedure for computing a minimal presentation of M.
In fact, if m > 3, then f,, has a left inverse (if not, pd(M) = m, but this is impossible
by Theorem 2.4.5 since M is projective). Hence, we compute the new finite presentation
(2.4.5) and we will repeat the procedure until we get a finite presentation as in (2.4.6),
which is a minimal presentation of M.

Example 7.4.1. Let us consider again the ring A = 0(Q)(z,y), with yz = —zy + 1. Let M
be the left A-module given by presentation A?/Im(F), where

2
xy — 1
Flz[y v }
-y

Regarding the deglex order on Mon(A), with y > x, and the TOP order over Mon(A?)
with es > e, we have that Syz4(F) is generated by (z,y). So, the following exact se-
quence is obtained:

Fy

0 - A - g2

™

‘A2 M 0

where F, := [z y}T. Note that F has a right inverse: GI = [g], thus, from Corol-

lary 2.4.4 we get the following finite presentation for M:

0 -a2 M sy - 0 (7.4.1)

with H = [F{' G}]and ho = [fo 0] ", In the Example 7.1.16, we showed that HT has
a right inverse; moreover, one right inverse for H lT is
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0 -1
LT=|-1 0
Ty
In consequence, (7.4.1) is a minimal presentation for M, and M turns out to be a stably

free module.

7.5 Computing free bases

In the Section 2.3, it was showed that if M is a stably free module with rank(M) > sr(.5),
then M is free with dimension equals to rank(M). For computing a basis of M, we start
establishing an algorithm for to calculate the elementary matrix U in the Proposition 2.3.3:

Algorithm for computing U in Proposition 2.3.3

INPUT: An unimodular stable column vectorv = [v; --+  vy] T over
S.

OUTPUT: An elementary matrix U € M, (S) such that Uv = e;.
DO:

1. Compute ay,...,a,—1 € S such that (2.3.1) holds.
2. Compute the matrix F; given in (2.3.2).

3. Calculate the elements by,...,b,—1 € S with the property
that Z:;ll biv, =1, with v} = v; + a;v, for1 <¢ <r—1.

4. Define v} := (v, —1 —v,)b; for 1 < i < r — 1, and compute
the matrices E», F3 and E, given in (2.3.3)-(2.3.5).

RETURN: U := E4E3Es F;.

We will illustrate below this algorithm.

Example 7.5.1. Consider the Quantum Weyl Algebra As(J, ), described in the Example
1.3.1, withk = Q, @ = 0 and b = —1. Thus, the relations in this ring are given by:

T1T2 =T2X]

Dp0) =0105 — O3

O1x1 =1+ 2104

O01To =901 — T909
Oox1 =109

Ogxg =1 + 2109 + x205.
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E4(A2(Jop,—1)) it will denote the group generated by all elementary matrices of size 4 x 4
over AQ(J()’,l). Letv = [82 +x1 O +01 xo 81]T, then u = [81 -0y 0 —$1] is
such that uv = 1, whereby v € Umc(4, A2(Jo.—1)). Moreover, the column vector v/ =
[82 +x1 O xg]T has a left inverse u' = [O To — I 82], so v is a stable unimodular

column. In this case, a; = 0, az = —1, ag = 0 and the matrix £, is given by
1 0 0 O
01 0 -1
Ev=tg 01 o
0 0 0 1

With this elementary matrix we get Eyo = [0, + 21 02 x2 O] T If we define vy =0,
Ug = (82 +r1—1-— 81)($2 — 331), Ué/ = (82 +x1—1-— 61)82 and

1 0 0 O
0o 1 0 -1
Ee=1g 0 1 ol
0 vf v§ 1
we obtain EyE10 = [82—1—361 Oy o 82+3:1—1]T. Finally, if we define
1 0 0 -1 1 00 0
01 0 O -0 1 00
Bs=1y o 1 o €FalAetlo)) Ba= —xz 0 1 ol €Eu(A2(Jo-1))
0 0 0 1 —0y—x21+1 0 0 1

and U := E E3EyE, € Eq(Az(Jp—1)), then we have Uv = e;.

The proof of Theorem 2.3.6 allows us to establish an algorithm to compute a basis for
M, when M is a stably free module given by a minimal presentation

05 5m Lo s, (7.5.1)

with g1 : S — S° such that g1 o f; = igs, and rank(M) = r — s > sr(5).
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Algorithm for computing bases

INPUT: F; = m(f1) such that F{ € M;y,(S) has a right inverse GT €
M, «s(S), and satisfies r — s > sr(S).

OUTPUT: A matrix U € M,(S) such that UG] = [I, 0] T by

Lemma 2.3.5 the set {(UT)+D ... (UT)("} is a basis for M,

where (UT)() denotes the j-th column of U7 for s +1 < j < r.

INITIALIZATION: i =1,V = I,.
WHILE ¢ < r DO:

1. Denote by v; € S”~**! the column vector given by taking the
last r — i + 1 entries of the i-th column of VGT .

2. Apply the previous algorithm to compute L; € E,_;1(S5)
such that L;v; = ey.

3. Define the matrix U; := [Iial 2] € E.(S) fori > 1, and
U1 = Ll.
4. i=i+1

RETURN U := PU,V, where P is an adequate elementary ma-
trix.

Example 7.5.2. Let A be the Quantum Weyl Algebra A3(J, ) considered in Example 7.5.1,
withk = Q, ¢ = 0 and b = —1. In order to illustrate the previous algorithm, take
M = AS/Im(F), where

"0 o, T
T2 82

10 =2
h=1a o
T 1

(02 —1]

Using the algorithm described in Corollary 7.1.15, the deglex order over Mon(A), with
z2 > 01, and the TOPREV order on Mon(AY), with e; > ey, it is possible to show that F}
has a right inverse given by:

_xlal .CC1_

0 0

0? 0

T _ 1 1
Gi = A
-0 0

L0 0]




CHAPTER 7. MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING GROBNER BASES 144

Hence, we have the following minimal presentation for M:

0— A2 25 A6 T v 0, (7.5.2)

where 7 is the canonical projection. Thus, M is a stably free A-module with rank(M) = 4.
Since IKdim(A) = 3 (see [38], Theorem 2.2), then sr(A) < 4 and by the Theorem 2.3.6,
M is free with dimension equals to rank(M). We will use the previous algorithm for
computing a basis of M.

. Step 1. Let V = I and v, the first column of VGT e,

01:[$181 0 8% 1 —81 O]T,

then vy € Um.(6,A) and u; = [0 2 0 O = —81] is such that u1v; = 1. Note that

v = [:clal 0 8% T —81] T is trivially unimodular. Applying to v; the first algorithm
of the current section, we have that £, = I,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
E2= 1, 0 0 1 0 0l
0 0 0 0 1 0
_0 (.%181 — 1)332 0 (x181 - 1)81 (l‘lal - 1)%1 1_
1 0 0 0 0 —1 1 0 0 0 0 O]
01 0 0O0 O 0 1 0 0 00
00100 0 B —0% 01000
Bs=1g 0010 of™E=] o 0010 0|
00001 O o1 00 010
00000 1] —210,+1 0 0 0 0 1)
We can check that
Uy, = E4E3FEx By =
1 —(1'181 — 1)%2 0 —(Ilal — 1)81 —($181 — 1)1‘1 -1
0 1 0 0 0 0
—0? R(@1d —Dzz 1 (101 — 1)01 0 (2101 — 1)an o € Es(A)
—T xl(aclal — 1)%2 0 $1($161 — 1)81 + 1 561(56181 — 1){E1 X1 6
81 —81(11181 - 1)1‘2 0 —81 (:E181 — 1)81 —81 (11181 — 1)1‘1 + 1 —81
—2101+1 z101(x10h —1)z2 0 z101(x101 — 1)0s 2101(2101 — 1)x1 z101
and
r1 - -
0 0
0 —x,0?2 -0
T _ 1Y1 1
UlGl - 0 —[L‘%
0 101 + 1
_0 —x%@l
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. Step 2. Make V' := U; and let v be the column vector given by taking the last five
entries of the 2-th column of VGY; ie, vy = [0 —2107 — 01 —a} 2101 +1 —x%BI}T.
Note that uy = [O —z1 0% 3 O} satisfies ugve = 1, thus vo € Um,(5, A). Moreover,
vh = [0 —210f — 01 —a] x10) + 1] is unimodular with )y = [0 —zy 87 3] such
that u50, = 1, and hence v, is stable. Using the algorithm at the beginning of this section,
we have that F; = I,

1 0 0 0 0 1 0 0 0 -1
0 1 0 0 0 010 0 O
Ey =10 0 1 0 0|,E35=10 0 1 0 O
0 0 0 1 0 0O 00 1 O
0 —(=1+4+2%0)z1 (—1+2301)07 3(-1+230,) 1 0000 1
1 0 0 0 O
11024+0;, 1 0 0 0
and, By = z? 01 0 0f.
—1’181—1 0 010
1 0 0 0 1
Making the respective calculations, we have that
Lo := E4E3EoFE] =
1 (=14 2381)xy —(—1+2301)83 —3(—1+2381) -1
118f2+81 1+<zla;+al)(g1+zfal>zl 7(118%281)(71;11821)8% 73(218f2+81)(712+1561) 7<zlafz+al)
3 z7(=1+ x701)x 1—ax7(—=1+4x701)07 —3z7(—=1+4 x791) —x7 .
— (2181 + 1) — (2101 + 1)(=1 + 2281)x1 (2101 + 1)(—1 + 220,)87 14 3(x101 + 1)(—1 +228;) 191 + 1
1 0 0 0 0
5 . 1 0
and Lovs = e1 € A°. Define U, := ; then
0 Lo
T
0 1
0 O
T _
U, UG = 0 0
0 O
[0 0]
Finally, if
[1 —21 0 0 0 O] [1 0]
0 1 0 00O 01
10 0 1 0 00 r 100
P = 0 0 0 1 0 O,thenUGl— o ol
0 O 0 010 0 0
0 0 0 0 0 1} 10 0]

where U := PiUsU;. Thus, a basis for M is given by {7(Us)), 7(Uwy), 7(Us)), 7(Us)) },
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with U, (7;) denoting the transpose of i-th row of the matrix U, for i = 3,4, 5,6; i.e,,

T __
U =

*1’%8% + l‘la{’ — 4()’]%81 — 2Z1
(!Ela% + 81)(1 - x18%$2 + (Ei’a%iﬂg + 81{1,'2)
1+ (2107 + ) (=1 + 270 )y
(131612 + 81)(13:13611 — 1‘18113 + 28% — xlaf) ’
(.1‘1(912 + 61)(81331 — xlafxl + x{’@fxl — 31‘%81 + 3)
(1‘13% + 81)(*31 + xf&f - Ilal) + 812
2301 — 2107 + 2301 — 23 — 11
22+ (=220, + 210? — 2301 + 1) (2101 — 1)
—z3 + 230, + 2%
—2303 + 2307 + 2220? — 1101 — 2103 + 1 ’
—10? — 230, + 2803 + 3230? — 3210, + 322
—220) + 210 — 230, + 11
—210? + 2303 + 2220? — 1101 + 1
2101 (=1 + 210329 — 2303 20) — 230329 — 1
—(2101 + 1) (=1 + 2101)21
(2101 + 1) (210§ — 2301 + 2303 — 07)
(2101 + 1) (210221 — 2303 + 32301 — 3) — 230? + 22101 + 1
7(%181 + 1)(*31 + x%&f — 1’1(91) — 0

T __
Uy =

[eNeoNoNeN =



APPENDIX A

Filtered-graded transfer of Grobner bases

In [84] it was shown that if A = k[a;];en is a k-algebra generated by {a;}ica over the field
k, and I a left ideal of A, then a nonempty subset G of I is a Grobner basis for I if, and
only if, G is a Grébner basis of Gr(I), where G denotes the image of G in Gr(A) and
Gr(I) is the left ideal associated to I in Gr(A). A similar fact is proved in [19] for the
case of PBW algebras. We will present an analogous result for skew PBW extensions,
specifically for those of bijective type.

A.1 For leftideals

In [83] was showed that if A is a skew PBW extension, then its associated graded ring
Gr(A) is a quasi-commutative skew PBW extension (see Theorem 1.2.5). In this section
we will prove this fact using a different technique. Furthermore, we establish the transfer
of Grobner bases between A and Gr(A).

By (1.2.7), given A a skew PBW extension of the ring R, the collection of subsets { F},(A) },cz
of A defined by

07 lfp S _17
FP(A) = Ra lfp = 07
{f € Aldeg(Im(f)) <p}, ifp=>1

is a filtration for the ring A, named standard filtration.
Now, notice that

Fy(A) = > car® | ca € R\ {0}, 2% € Mon(A), deg(z*) < p};
in this case, we say that this filtration is the filtration M on(A)-standard on A. Moreover,

Mon(A) = U Mon(A),,
p>0

147
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where Mon(A), := {z® € Mon(A) | deg(z*) < p}, and if || = p, then 2* ¢ Mon(A)p—1.
In this case, it says that Mon(A) is a strictly filtered basis.

It can be noted that any filtration {F},(A)},cz on A defines an order functionv : A — Z
in the following way:

o) A7 P ERA) — Fra(4),
T =00, i f € MpezFp(A).

Definition A.1.1. Let Gr(A) be the graded ring associated to the filtered ring A, and let f € A
with f =3, <, cax®, where p =deg(f), ca € R\ {0} and o = (v, ..., an) € N". In what
follows, n( f) will denote the image (or principal symbol) of f in Gr(A), i..,

n(f) = car® + Fpo1(A) € Fp(A)/Fp1(A).

|a|=p

Lemma A.1.2. Let A, Mon(A) and {F,(A)}, as above, then:

(i) Foreach f € A, deg(f) = v(f).
(ii) Foreachp € N, Mon(A), is a R-basis for Fj,(A).

(iii) For 2%, 2% € Mon(A), n(x®) = n(z®) if and only if 2> = 25.

Proof. (i) From definition of { F,,(A) },cz it follows thatif 0 # f € A, then there exists p € N
such that f € F,,(A) — F,,—1(A) and, therefore, v(f) = p. But, if f € F,(A) — F,_1(A), then
deg(f) = p and we obtain the equality.

(ii) Let f € Fp(A), then f = 37, ., caa®, and hence, f € g(Mon(A),}. The linear
independence of Mon(A), it follows from fact that Mon(A), C Mon(A) and Mon(A) is
linearly independent.

(iii) Let 2%, 2” € Mon(A) such that 0 # n(z®) = n(2°) € Gr(A), = Fy(A)/F,—1(A);
this last implies that z® — 2% € F,_;(A), i.e, 2% — 27 € r(Mon(A),_1}. Now, since z%,
2P ¢ F,_1(A), we have that 2% — 2% = 0, namely 2* = 2. The other implication is a
straightforward reasoning. O

Lemma A.1.3. If 2%, 2 € Mon(A), with deg(z®) = p and deg(z®) = q, then n(z*z®) =
n(x®)n(z?). In particular, if v = 2§* - - - 28 € Fy(A) — F,_1(A), necessarily n(x®) # 0 and
n(x®) = n(z) - -n(zn)™ € Gr(A),.

Proof. In fact, 2°2° = co 32°TP + po 5, where ¢, g € R is left invertible and p, 5 = 0 or
deg(pas) < |a+ B8] = p + g (see Theorem 1.2.2), whence 0 # n(z*z®) = c,pztF =
Capr®tB € Foi o (A)/Fyiq1(A). Furthermore, 0 # n(z®)n(z’) = 2928 = zoab ¢
Fpiq(A)/Fpiq—1(A); but 2928 — ¢4 5291 = pog € Fpig-1(A), then 202 = ¢, grots,
ie., n(z*z?) = n(z®)n(z?). O

Proposition A.1.4. Let A, Mon(A) and {F,(A)} as before, then n(Mon(A),) = {n(z®) |
x® € Mon(A)y}, forms a R-basis of Gr(A), for each p € N. Moreover, n(Mon(A)) := {n(xz®) |
x® € Mon(A)} is a R-basis for Gr(A).
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Proof. Let f € Fp(A) \ Fp-1(A), then f = 3 o caz® with o € R\ {0} y n(f) =
> laj=p Can(z®) # 0. By Lemma A.1.3, n(z*) € Gr(A), for every o with |a| = p, thus
n(Mon(A),) is a generating set for the left R-module Gr(A),. Now, suppose that there
are \; € Rsuch that0 =) \n(z*) € Gr(A), for certain z* € Mon(A),, then > \;jz% €
F,_1(A); butdeg(xz“) = p for each i and Mon(A) is a R-basis filtered strictly, hence \; = 0
for every i. O

The above preliminaries enable us to establish one of the main theorems of this section.

Theorem A.1.5. If A = o(R)(x1,...,xy) is a (bijective) skew PBW extension of ring R, then
Gr(A) is a (bijective) quasi-commutative skew P BW extension of R.

Proof. We must show that in Gr(A) there exist nonzero elements v, ...,y, satisfying
the conditions in (a) from Definition 1.1.4. Define y; := n(x;) for each 1 < i < n; by
Proposition A.1.4 we have that

n(Mon(A)) := {n(x®) = n(z1)™ ---n(en)* [ 2% € Mon(A)}

is a R-basis for Gr(A). Now, given r € R\ {0}, thereis ¢;,, € R\ {0} such that z;r —
¢irxi = piy € R; from last equality it follows that n(z;r) — n(c;,xi) = n(piy) = 0, ie,,
n(xir) = n(cirzi) = ¢ n(x;); but z;r # 0 for any nonzero r € R because Mon(A) is a R-
basis for the right R-module Ay (see Proposition 1.2.4), thus n(z;r) = n(x;)n(r) = n(x;)r,
and consequently n(z;)r = c¢;,n(x;). On the other hand, given i,j € {1,...n}, there
exists ¢; ; € R\ {0} such that z;z; — ¢; jo;2; = p; j € R+ Rx1+ - - - + Rxp; hence we have
that n(z;z;) = n(cijxiz;) = cin(xi)n(x;), and by Lemma A.1.3 n(z;x;) = n(z;)n(x;),
therefore n(xz;)n(x;) = c;jn(xi)n(x;). Since the ¢;,’s and ¢; ;’s that define to Gr(A) as a
quasi-commutative skew PBW extension are the same that define A as a skew PBW
extension of R, then the bijectivity of A implies the of Gr(A). O

Remark A.1.6. The last theorem will allow us to establish a back and forth between Grob-
ner bases theory for A and Gr(A). As we will show, the existence of one theory implies
the existence of the other.

In the following, the set n(Mon(A)) will be denoted by Mon(Gr(A)). Thus, Mon(Gr(A))
is the basis for the left R-module Gr(A) composed by the standard monomials in the
variables n(z1), ..., n(xy).

Proposition A.1.7. If = is a monomial order on Mon(A), then relation >, defined over Mon(Gr(A))
by

n(@®) =g (a?) & 2% = 2 (A1)

is a monomial order for Mon(Gr(A)).

Proof. We will show that >, satisfies the conditions in the Definition 5.1.1: (i) Let n(z®),
n(x?), n(z*), n(z7) € Mon(Gr(A)) and suppose that n(z”) =, n(z®), then,

Im(n(z7)n(x®)n(z)) =gr Im(n(z)n(z)n(2?)) < Im(n(z7zz)) =gr Im(n(zYz2)).
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But, n(Im(272%2))) = Im(n(z7282*)) for all y, B, A € N indeed, n(z72%2?) = cxr+5+A
= cen(z7HPA), where ¢ := ¢, gc, 4.1 (see Remark 1.2.3). Therefore,

tm(n(z72%2*)) = lm(en(z7 7)) = n(a*42) = n(im(a72P2?)).
Since > is a order monomial on Mon(A), it has Im(z72°2*) = Im(x7z%2?), so that
n(Im(z72Pz*)) =g nIm(z72%2Y)), ie., Im(n(z72PzN)) =4 Im(n(zY2z*z?)). In conse-
quence, im(n(z)n(z%)n(z?)) =g Im(n(z)n(z)n(zt)).

The conditions (ii) y (iii) in Definition 5.1.1 are easily verifiable. O

Lemma A.1.8. Let A as before, = a monomial order on Mon(A) and f € Aan arbitrary element.
Then,

(i) f € Fy(A) if and only if deg(f) < p. Further, f € F,(A) — F,_1(A) if, and only, if
deg(f) = p-
(i) n(Im(f)) = lm(n(f)).

Proof. (i) It follows from the definition of F},(A) and Lemma A.1.2.

(ii) Let f be a nonzero polynomial in A; there exists p € N such that f € F},(A) — F,_1(A).

Let f = >"  Nz®, with \; € R\ {0} y 2% € Mon(A)py, 1 <i < n, where 2% = z*2 -
- = a%". Hence, Im(f) = «*, deg(f) = p and n(f) = >_,, =, An(z®). From the

definition of ., we have that im(n(f)) = n(z*') = n(Im(f)). O

We will prove that the reciprocal of the Proposition A.1.7 also holds.

Proposition A.1.9. Let A and Gr(A) as before. If =, is a monomial order on Mon(Gr(A)),
then the relation > defined as

2% = 2P < n(@®) =g n(a?) (A.1.2)

is a monomial order over Mon(A).

Proof. Since >, is a well order, from (A.1.2) it follows that > is a well order also. Now,
we show that > is a monomial order: indeed, let 2%, 2%, 27, 2* € Mon(A) and suppose
that 2° = 2%, so:

n(x?) = n(a®)

n(im(z7zP ) = Im(n(z72P2*)) = Im(n(a?)n(z)n(=*))
n(m(z7z®2)) = Im(n(z7z®2*)) = Im(n(z7)n(z*)n(z*)
Im(n(a")n(2P)n(x?)) =gr tm(n(a?)n(z*)n(z)),

and hence, Im(z72%2*) = Im(272%2*). Clearly z® = 1 for all % € Mon(A), and = is
degree compatible. O

Definition A.1.10. Let I be a left (right or two side) ideal of A. The graduation of I (or the
associated graded ideal to I) is defined as G(I) := ®,Gr(I)pen, where Gr(I), == INF,(A)/IN
Fp1(A) = (I+ Fp1(A)NF,(A)/Fp—1(A), for each p € N; (e.g., see [97]).
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The following theorem shows how calculate Grobner basis for I, if we have one for
Gr(I).

Theorem A.1.11. Let A, Gr(A), Mon(A) and Mon(Gr(A)) as before, = a monomial order over
Mon(A), and I a left ideal of A. If G = {G,}je is a Grobner basis for Gr(I), with respect to the
monomial order =, and such basis is formed by homogeneous elements, then G := {g;} ;e isa
Grobner basis for I, where g; € 1 is a selected polynomial with property that n(g;) = G; for each
jed.

Proof. Let 0 # f € I N F,(A) \ Fp—1(A); we shall show that the condition (iii) in the
Theorem 5.3.2 is satisfied: let f := n(f), then 0 # f € G(I),. Since G is a Grébner
basis of G(I), there exist G1,...,G; € G such that Im(G;) | Im(f) foreach 1 < j <
t and lce(f) € (0“1 (1e(Gh))Cay.Grs - - - » 0% (1c(Gh))Cay,c }, With aj € N™ such that o +
exp(Im(Gy)) = exp(im(f)) = exp(im(f)) = p and cq, @, is the coefficient determined
by the product n(x)*im(G;) in Gr(A), for 1 < j < t. From this last it follows that
Im(n(x)%1Im(G;)) = Im(f); but Im(n(z)*1Im(G;)) = Im(n(z*2%)), where 2% := Im(g;)
y g; € I N F,(A)is such thatn(g;) = G;. From Lemma A.1.8 we get that Im(n(z®2%)) =
n(lm(x®2P)) € F(A),/F(A),-1, so that n(im(z%25)) = Im(f) = n(lm(f)). The la-
tter implies that Im(x®2%) — Im(f) € F,_1(A) and, therefore, Im(z®z%) = Im(f),
ie., Im(g;) | Im(f) for each 1 < j < t. Further, le(h) = lc(n(h)) for all h € A, then

le(f) € (0™ (le(g1))car,gis - -+ 0% (Le(ge)) Car,ge }- d

In this way, a Grobner basis of Gr(I) can be transfer to a Grobner basis of I. In
particular, from a Grobner basis of Gr(I) we can get a set of generators for /. Reciprocally,
when we need obtain a generating set of Gr(I) from one of I = (f1,..., fr}, we could
think that Gr(I) = (n(f1),...,n(fr)}. Nevertheless, this affirmation in general is not true:
in fact, let A = Ay(k), the second Weyl algebra, i.e.,, A = k[z1, z2][y1, 8%][3/2, 3%2] with
its associated standard filtration, and consider the left ideal I generated by fi = z1y1
and fo = IL‘Qy% — y1. Note that z1 € I, since 1 = (tgl‘% — l'l)fl — (tlfL‘l + 2)f2, but
n(z1) ¢ (n(f1),n(f2)}, where n(f1) = n(ti)n(z1) € Gr(I)1 and n(f2) = nlt2)n(z1)* €
Gr(I)y (see [84]). However, if G = {f1,..., fr} is a Grobner basis for I, we will show
that n(G) = {n(f1),...,n(f)} is a Grobner basis for Gr(I) and, from this we will have a
generating set for Gr([).

Theorem A.1.12. With notation as above, let G = {g;}ics be a Grobner basis for a left ideal I of
A. Then G = {n(g;) }ics is a Grobner basis of Gr(I) consisting of homogeneous elements.

Proof. Since Gr(I) is a homogeneous ideal, it suffices to show that every nonzero homo-
geneous element ' € Gr([) satisfies the condition (iii) in the Theorem 5.3.2. Let 0 # F' €
Gr(I)p, then F' = n(f) for some f € INF,(A) —INF,_1(A) and there exist g1,...,9: € G
with the property that Im(g;) | Im(f) and le(f) € (0°'(le(g1))Carg1s - - - 0¥ (Lle(gt) ) Cayge }o
where a; € N” is such that a; + exp(g;) = exp(f) foreach 1 < i < ¢. By Lemma A.1.8 we
have that n(im(f)) = Im(n(f)) = Im(F), then im(n(g;)) | Im(F'). Further, since lc(f) =

le(n(f)) = le(F), it follows that Ic(F) € (0% (Ie(11(91)))¢ay n(gr): - - - » 0 (Le(n(ge))) Carmign }
and, in consequence G is a Grobner basis for Gr(I). O
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A.2 For modules

Similar results to those presented in the previous section can be proved in the case of
modules. For this, let M be a submodule of the free module A™, m > 1, where A is a
skew PBW extension of a ring R. Define the following collection of subsets of M:

Fy(M) = {f € M | deg(f) < p}. (A2.1)

It is not difficult to show that the collection {F},(M)},>0 given in (A.2.1) is a filtration for
M, called the natural filtration on M. With this filtration we can define the graded module
associated to M, which will be denoted by Gr(M), in the following way: Gr(M) :=
Sp>0Lp(M)/Fp_1(M); if f € Fp(M)—F,_1(M), then f is said to have degree p. Thus, we
may associate to f its principal symbol n(f) := f+ Fp—1(M) € Gp(M) = F,(M)/F,—1(M).
The Gr(A)-structure is given by, via distributive laws, the following multiplication:

U(Tf)a ifr.f%FiJrj*l(M)»

] (A.2.2)
0, otherwise

n(r)n(f) = {

where r € F;(A) — F;_1(A) and f € F;(M) — F;_1(M).

Notice that any filtration {F},(M)},cz on M defines an order function v : M — Z in
the following way:

o(f) = A if f € F,(M)— F,_1(M),
| —oo, if f € NpezFp(M).

Lemma A.2.1. Let A, M and {F,(M)},, as above. Then for each f € M, deg(f) = v(f).

Proof. From definition of { F},(M)},>0, it follows thatif 0 # f € M, then there exists p € N
such that f € Fj,(M) — F,—1(M) and, therefore, v(f) = p. But, if f € F,(M) — F,_1(M),
then deg(f) = p and we obtain the equality. O

We have a version of the Proposition A.1.7 for module case.

Proposition A.2.2. If > is a monomial order on Mon(A™), then relation >, defined over
Mon(Gr(A)™) by

N(X) > n(Y) & X>Y (A.2.3)

is a monomial order for Mon(Gr(A)™).

Proof. We will show that >, satisfies the conditions in the Definition 5.5.2: to begin,
note that >/, is a total order because > it is. Now, to prove (i) we must show that
Im(n(®)n(z¥))e; >4 n(z®)e; for every X = n(z*)e; € Mon(Gr(A)™) and n(z?) €
Mon(Gr(A)). It can be noted that,

tm(n(a”)n(®))e; >gr n(a®)e; < n(lm(z’z®))e; g 1(z*)e:.
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Since > is a monomial order on Mon(A™), we have that Im(z%z%)e; > z“e; and, from
(A.2.3) it follows that n(im(z°2%))e; >4 n(z*)e;. So, Im(n(x)n(z*))e; >4 n(z)e;.

For (ii), let Y = n(2”)e; and X = n(z*)e; monomials in Mon(Gr(A)™) such that Y >, X.
Given n(z7) € Mon(Gr(A)), we have

lm(n(aﬂ)n(wﬁ))éj >gr Im(n(z7)n(z®))e; < n(lm@wxﬁ))éj >gr n(lm(z7z))e;.

In Mon(A) we get that Im(272%)e; > Im(z72%)e; and, once again, from (A.2.3) it follows
that n(im(z727))e; >4 n(lm(z7z%))e;.
Finally is easily verifiable that >, is degree compatible. ]

Lemma A.2.3. Let A, M, Gr(A), Gr(M) and < as before, and consider an arbitrary element
f € M. Then,

(i) f € F,(M) if, and only if, deg(f) < p. Further, f € F,(M) — F,_1(M) if, and only, if
deg(f) = p.
(i) n(lm(f)) = tm(n(f))-

Proof. (i) It follows from the definition of F,(M) and Lemma A.2.1.

(ii) Let f be a nonzero vector in M, then there exists p € N such that f € F,(M) —
Fy—1(M). Thus, f = 22:1 XiX; with \; € R\ {0}, X; € Mon(A™) where deg(X;) <
pforeachl < i <[, and X; > X9 > --- > X;. Whence, Im(f) = X; and since
deg(f) = pand n(f) = 3| cxp(x,)|=p 2i7(X ), from the definition given for >4, we have
that Im(n(f)) = n(X1) = n(lm(f)). =

The conversely of Proposition A.2.2 is also true, as will be shown below.

Proposition A.2.4. With the same notation used so far, if >4, a monomial order on Mon(Gr(A)™),
then > defined as

X>Y < nX) Zg n(Y) (A.24)

is a monomial order over Mon(A™).

Proof. Since >, is a total order, from (A.2.4) it follows that > is a total order also. Now,
we show that > is a monomial order: indeed, let z” € Mon(A) and X = z; an element
in Mon(A™); we must to show Im(z72”)e; > 2%e; for all 27 € Mon(A); however

n(m(z7a?))e; >4r n(x*)e; < Im(n(z?)n(z’))e; >4 n(x*)e;
and since >, is a monomial order, this last inequality is true. From (A.2.4) it follows that
Im(z72%)e; > x%e;, as we had to show. Now, if Y = xﬁe]- and X = x%e; are monomials

in Mon(A™) such that Y > X, then n(Y) >, n(X). Thus, given n(zY) € Mon(Gr(A)) we
have that

Im(n(z7)n(x%))e; =g Im(n(z7)n(z*))e;

ie.,
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n(m(a2P))e; > e n(lm(a2®))e;

This implies that Im(z72")e; > Im(x72%)e;. Finally, it is easy to prove that > is degree
compatible. 0O

We are ready to prove the main theorem of this last section.

Theorem A.2.5. Let A, Gr(A), Mon(A) and Mon(Gr(A)) be as before, > a monomial order
over Mon(A™), and M a nonzero submodule of A™. The following statements hold:

() If G = {G,}jes is a Gribner basis for Gr(M), with respect to the monomial order >,
and such basis is formed by homogeneous elements, then G := {g;};c is a Grobner basis
for M, where g; € M is a selected vector with the property that n(g;) = G, for each j € J.

(ii) If G = {g;}ics is a Grobner basis for M, then G = {n(g,) }ic.s is a Grobner basis of Gr(M)
consisting of homogeneous elements.

Proof. (i) Let0 # f € F,(M)\ F,—1(M); we shall show that the condition (iii) in Theorem
5.5.13 is satisfied (see also [58], Theorem 26): let f := n(f), then 0 # f € G(M),. Since
G is a Grobner basis of G(M), there exist G1,...,G¢ € G such that Im(G;) | Im(f) for
each 1 < j < tandlc(f) € (021 (1c(G1))Cay Gys - - -+ 0 (1c(Gt))Cay 6, }, With aj € N™ such
that a; + exp(im(G;)) = exp(im(f)) = p and ¢, g, is the coefficient determined by the
product n(z)%1m(G;) in Gr(M), for 1 < j < t. But, exp(Im(f)) = exp(lm(f)) thus of the
above mentioned follows that lm(n(z)im(G;)) = Im(f); note that Im(n(z )im(G;)) =
Im(n(z® X ;)), where X := Im(g;) and g; € F,(M) is such that n(g;) = G;. From
Lemma A.2.3 we get that im(n(z* X)) = n(im(z“ X)) € F(M )p/F( )p—1, so that
n(Im(z% X)) = Im(f) = n(lm(f)). The latter implies that Im(z% X) — Im(f) € F,—1(M)
and, therefore, Im(z% X)) = Im(f), ie, Im(g;) | Im(f) for each 1 < j < t. Further,
le(h) = le(n(h)) forall h € A™, then lc(f) € (0% (lc(g1))Car g, »---» 0¥ (lc(9y))Carg, }-

(ii) Since Gr(M) is a graded module, it suffices to show that every nonzero homoge-
neous element F € Gr(M) satisfies the condition (iii) in the Theorem 5.5.13. Suppose that
F € Gr(M); then, F = n(f) forsome f € F,(M)—F,_1(M) and there existg,,...,g, € G
with the property that im(g;) | Im(f) and ic(f) € (0“1 (Ic(g1))cay,g,s- - -0 (lc(gy))Carg, 1
where o; € N” is such that a; + exp(f;) = exp(f) foreach 1 < i < t. By Lemma A.2.3
we have that Im(f) = Im(n(f)) = Im(F), then im(n(g;)) | Im(F) and, since le(f) =
Ie(n(f)) = le(F), it follows that Le(F) € (0™ (1e(n(1)))Car nigy)s- - 0% (€1(Z0))) Carmigy
and, hence, G is a Grobner basis for Gr(M). O



Future work

Some other tasks closely related to the research of projective modules over skew PBW
extensions consist of giving constructive proofs of the following theorems that were es-
tablished in previous works by using tools of rings and modules and classical homologi-
cal techniques:

e Serre’s theorem about stably free modules: Let A be a bijective skew PBW extension
of a ring R such that R is left (right) Noetherian, left (right) reqular and PSF. Then A is
PSF.

A non-constructive proof of this theorem was given in [83], Corollary 2.8. A con-
structive proof for the habitual commutative ring of polynomials can be found for
example in [78].

e Hilbert’s syzygy theorem about the global dimension of bijective skew PBW ex-
tensions.

A non-constructive proof of this theorem was given in [83], Theorem 4.2.

Another problem to be considered is the computation of Ext and Tor for bimodules
over bijective skew PBW extensions. In order to do this, it is necessary to construct the
theory of two-sided Grobner bases for bijective skew PBW extensions with some extra
conditions. These constructions could be useful for the study of some algebras of recent
interest arising in non-commutative algebraic geometry such as Artin-Schelter regular
algebras and Calabi-Yau algebras (see [109]).

On the other hand, it would be really important developing a computational pack-
age for the calculation of Grobner bases on bijective skew PBW extensions, besides to
be able to perform computations related with the matrix-constructive interpretations of
properties as being a projective-free, PSF, Hermite or cancellable ring.

Finally, another field of future investigation is the application in algebraic analysis of
theorems, algorithms and Grobner theory presented in this thesis (see [13] and [25]).
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