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Chapter 1. Introduction 
 

More than two decades ago, the first genome-scale metabolic (GSM) model of all history 

was generated, with the work of Fleischmann et al. [1] on the bacterium Haemophilus 

influenzae, and the most representative metabolic modeling strategy was initiated. During 

the first stage of GSM modeling, central carbon metabolism was the main object of study. 

After some time, a more engineering-specific orientation took shape when trying to adjust 

the model enough to make predictions of culture conditions as well as the best genetic 

modifications for specific purposes. 

Today, the horizon of GSM modeling is mainly composed of its application to prediction 

in bioprocesses, more specifically, in bioreactors and other equipment where conditions 

vary both spatially and temporally. Although the most widely-employed strategy of 

utilizing GSM models, the Flux Balance Analysis (FBA), is based on uniform and constant 

conditions (steady state and homogeneity of flow and fluid properties), in recent years 

several authors have called attention to its future in "spatiotemporal" [2] and “modular” 

models [3]. 

Westermark et al. [2] devised a strategy in 2016 in which several types of models served as 

complementary modules to the FBA. Following this line of thought, Henson [1] proposed 

the spatiotemporal FBA (sFBA) as a holistic approach that allows not only to predict 

cellular phenotypic states, but also global culture conditions, by restricting the system of 

equations with kinetic information and spatial distributions of properties. At the moment, 
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only one model of this kind has been developed, which was based on the microalga 

Chlamydomonas reinhardtii [3]; however, in their approach they do not take into account 

the phenomena associated with the incidence of light. 

In the cultivation of microalgae, the culture conditions contain spatial distributions of light 

intensity and phenomena of photoinhibition, which is framed in an entirely transient 

environment. Therefore, a photobioreactor model must, in addition to light distribution, 

include kinetics of nutrient consumption that allow it to reproduce the stationary phase. 

Under these conditions, the model would be able to predict conditions of cultivation time, 

photoperiod and light intensity, which will maximize the overall lipid productivity in the 

reactor. In the future, such model could be readily used for photobioreactor design, by 

helping the engineer decide upon the arrangement and types of light source, as well as for 

predicting the behavior of a mutant by blocking genes in the photobioreactor. 

The reason why the cultivation of microalgae, and specifically its lipid productivity, are 

widely studied since these microorganisms are the core to biomass-based energy sources, 

namely third and fourth generation biofuels. These strategies are crucial as a result of the 

need to supply energy for the global exponentially-growing population, in a world with 

finite fossil fuel reserves, not to mention the long-term environmental and health effects 

that their use has caused. 

At present, with a population 350% greater than a century ago, the planet has surpassed 

400 ppm of carbon dioxide (CO2) in the atmosphere [4]. It should be noted that this 

increase, which began around 285 ppm almost two centuries after the industrial revolution, 

has but intensified in the last 50 years [5]. It is not a coincidence that during this period 
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CO2 emissions increased by approximately 90%, with a fossil fuel contribution of around 

78%. Carbon dioxide is far from being the only undesirable product of fossil fuel 

combustion. For example, these fuels contribute to a 50% of the global emissions of 

nitrogen oxides (NOx) [6], causing well-known effects including, but not limited to, the 

formation of smog (particulate matter) and acid rain. 

Colombia, despite having a significant contribution of clean energy such as hydro power, 

is not excluded from the problem. According to the EPA, about a quarter of PM2.5 

particulate matter is composed of nitrogen oxides, whose levels are high enough in Bogota 

to be listed as the fifth worst city in the Americas with a concentration of 24 g∙m-3 [7]. Even 

more so, just this year several public health measures have been undertaken in the capital 

city for the alarming intensification of said pollution. 

Numerous alternatives have been proposed to mitigate the anthropogenic impact on the 

ecosystem in terms of energy production. Biofuels are part of this group and have gained 

importance in recent years. Initially, these were proposed using food crops to produce oils 

(biodiesel) or bioethanol. These, called first-generation biofuels, have been widely 

criticized for the deviation of food crops toward the energy industry, causing an increase 

in their cost. 

In response to this, alternatives were created in which the method is maintained, but the 

raw material is replaced by waste, by-products and inedible parts of crops. However, the 

need to use large areas of land persisted. In order to solve this, a novel strategy using 

microalgae was proposed, with which the soil requirement was much lower and did not 

require soil fertility for the production of biofuels. However, it is necessary to use lipid-
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accumulation species that achieve contents of more than 20%, such as Chlorella vulgaris 

[8], called oleaginous microalgae [9-12]. 

It is then necessary to find those conditions under which an oleaginous microalga, in this 

case Chlorella vulgaris, produces the greatest amount of lipids. Until now, most studies 

have focused on studying alternatives in a purely experimental manner. However, an 

optimization of the kind proposed in this study would take decades of experimental work 

and would be extremely expensive. Consequently, modeling emerges as a useful tool in this 

kind of studies, although it requires a correct and well-curated definition. Specifically, GSM 

models are capable of predicting a greater amount of information than traditional 

experimental models, given their theoretical nature and their basis in species-specific 

omics data. As stated above, the GSM model alone is not able to predict macroscopic 

conditions of a culture in large-scale photobioreactors. In this work, the model iCZ947 was 

modified with the influence of spatial distributions of photon flux, phenomena of 

photoinhibition and recovery of photosystem II, as well as kinetics of nutrient consumption 

as restrictions. By using this model, light- and nutrient-dependent growth and 

concentrations were predicted, in a way that allowed to accurately predict and theorize 

about the intracellular transient behavior of the microalga under several growth 

conditions.  
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Chapter 2. Advances in metabolic 
modeling of oleaginous microalgae 
 

The content of this chapter was published in Biotechnology for Biofuels: Tibocha-Bonilla 

JD, Zuñiga C, Godoy-Silva RD, Zengler K. Advances in metabolic modeling of oleaginous 

microalgae. Biotechnol Biofuels. 2018;11:241.  

2.1. Abstract 

Production of biofuels and bioenergy precursors by phototrophic microorganisms, such as 

microalgae and cyanobacteria, are a promising alternative to conventional fuels obtained 

from non-renewable resources. Several species of microalgae have been investigated as 

potential candidates for the production of biofuels, for most part due to their exceptional 

metabolic capability to accumulate large quantities of lipids. Constraint-based modeling, a 

systems biology approach that accurately predicts the metabolic phenotype of 

phototrophs, has been deployed to identify suitable culture conditions as well as to explore 

genetic enhancement strategies for bioproduction. Core metabolic models were employed 

to gain insight into the central carbon metabolism in photosynthetic microorganisms. 

More recently, comprehensive genome-scale models, including organelle-specific 

information at high resolution, have been developed to gain new insight into the 

metabolism of phototrophic cell factories. Here, we review the current state-of-the-art of 

constraint-based modeling and computational method development and discuss how 
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advanced models led to increased prediction accuracy and thus improved lipid production 

in microalgae. 

Key words – Oleaginous phototrophs, lipid production, constraint-based metabolic 

modeling, central carbon metabolism. 

2.2. Background 

Photosynthetic microorganisms have been recognized as one of the oldest life-forms on 

Earth [1]. These organisms, including microalgae such as Chlamydomonas sp., 

Synechocystis sp., and Chlorella sp., have attracted significant attention from the 

biotechnology industry because of their ability to efficiently transform renewable resources 

(CO2, light, and water) into biomass and fuel precursors [2]. The photosynthetically 

produced biomass along with accumulated and secreted metabolites can be employed for 

the downstream synthesis of fuels (e.g. ethanol, biodiesel, and biocrude) and fine chemicals 

(e.g. pigments and organic acids) [3]. 

The world’s ever-expanding requirement for cheap energy and fuel requires constant 

improvement of production platforms to meet the demand. The increased fuel 

consumption has led to an increase in global greenhouse gas emissions [4], exemplified by 

a sharp increase in CO2 levels from 280 ppm before the industrial revolution to today’s 407 

ppm [5][6]. Over 75% of these CO2 emissions have been attributed to the burning of fossil 

fuels [7,8], rendering the reduction of humanity’s carbon footprint a major global 

technological challenge. One alternative to address this challenge is increased utilization 
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of biofuels from renewable resources and thus significant efforts have been under way to 

improve the efficiency of production of various biofuels [9].  

Biofuels are categorized in first, second, and third generation biofuels depending on the 

type of raw material that is used for their production [10]. First generation biofuels are 

produced from agricultural crops; one example being bioethanol production from sugar 

cane. These biofuels have been widely criticized as they pose extra demands on food 

production, which consequently raises food prices. Additionally, intensive agricultural 

processes to satisfy cost-effective production of crops for biofuels can lead to 

eutrophication and contamination of environmental resources [8,11,12]. As an alternative 

second generation biofuels generated from woody waste and inedible food parts, such as 

biofuels from lignocellulosic biomass, have been proposed as a substitute for first 

generation biofuels generated from food sources [10]. Secondary biofuels still require fertile 

land and often substantial amount of water for irrigation, limiting their areas of production. 

Third generation biofuels, such as biosustainable production by microalgae, have thus been 

investigated to complement first and second-generation biofuels. Third generation biofuels 

also face several drawbacks which need to overcome before turning into an economically 

viable alternative [13]. One of the largest challenges for third generation biofuels from 

photosynthetic microorganisms lies in the harvesting process and downstream refinement 

of compounds of interest. For example, the costly recovery process of lipids from microalgal 

biomass, which in the case of biodiesel can account for up to 50% of the final cost [14], often 

prevent algae biofuel operations to be economically viable [14]. Higher lipid content would 

offset these staggering costs and would widely benefit profitability and applicability of a 
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third-generation biofuel technology. An early study by the U.S. Department of Energy from 

1978, reported that a lipid content of 60% would be necessary for third generation biofuels 

to become economical feasible [15]. This number has now being revised to 20-40%, 

depending on strain and cultivation conditions [16]. Increasing the lipid content of 

phototrophs has thus been a major focus for the biofuel industry. Major efforts to improve 

lipid content have been focused on optimizing culture conditions and on advanced strain 

engineering designs. Both strategies greatly benefit from the use of metabolic modeling 

[98]. In this review we compare various computational methods used for the rational design 

of strains and culture media, including flux balance analysis (FBA), dynamic Flux Balance 

Analysis (dFBA), 13C Metabolic Flux Analysis (13C MFA), and Elementary Modes (EM) 

analysis. We focus in particular on the latest insights into central carbon metabolism 

(tricarboxylic acid cycle, the Calvin cycle, the glyoxylate shunt, glycolysis/gluconeogenesis, 

and the pentose-phosphate pathway) of oleaginous microalgae obtained by computational 

modeling as it is most relevant for production of biofuels and fuel precursors. Furthermore, 

we discuss the impact of time course modeling as well as the importance of incorporating 

compartmentalization into genome-scale models for microalgae and highlight the 

complexity of modeling lipid metabolism to increase biofuel productivity.  

2.2.1. Oleaginous Photosynthetic Microorganisms 

Microalgae have historically been classified in two classes: bacterial microalgae 

(Cyanophyta) and eukaryotic microalgae, the latter including green algae (Chlorophyta), 

red algae (Rhodophyta), and diatoms (Bacillariophyta). Characteristic for all microalgae is 
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their ability to grow photoautotrophically with CO2 and light as only carbon and energy 

source. Several microalgae are also able to grow heterotrophically in the absence of light 

using various organic substrates, or grow mixotrophically, which refers to the uptake of 

organic carbon, e.g. glucose, sucrose, or acetate during growth in the light [17]. Oleaginous 

microalgae are attractive cell factories for the production of third generation biofuels due 

to their ability to achieve an outstanding accumulation of lipids, in some cases surpassing 

20% of total biomass in dry weight [13], reaching economic feasibility [16]. Some studies 

have reported microalgae lipid productivities around 136,900 L ha-1 year-1 [12], which are 

several times higher than those achieved by oil palm plantations (22,780 L ha-1 year-1) 

[12,18]. Microalgae have also been explored for the production of non-lipid-based biofuels 

[12]. Several genera of microalgae have been used for biofuel production and metabolic 

models now exist for organisms such as Chlamydomonas [19–30], Chlorella [31–35], 

Nannochloropsis [36–38], Synechocystis [39–46], Tetraselmis [47], Monoraphidium [48], 

Ostreococcus [49], Tisochrysis [50], and [51–54]. Several of these microalgae are also 

genetically tractable (Chlamydomonas, Synechocystis, Phaeodactylum) [55]. Key 

information regarding central carbon metabolism, nutrient dependence, and reaction 

distribution through different compartments in these organisms has been obtained. 

2.2.2. Metabolic Modeling 

Various modeling approaches have been deployed to improve applicability of 

microorganisms for industrial applications. Modeling efforts can be categorized into 

isotope labeling-based, kinetic-based, and constraint-based approaches [56]. Isotope 
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labeling studies and kinetic-based approaches are restricted to core metabolic networks or 

whole cell analysis and none of those methods is yet available on a genome-scale and 

neither of these approaches considers organelle-specific compartmentalization. 

Constraint-based modeling approaches are currently the most widely used methods in 

metabolic modeling of oleaginous microalgae. These models enable in-depth 

understanding of microorganisms and their metabolism by simulating intracellular fluxes 

throughout a metabolic network, often at genome-scale [57].  

Genome-Scale Metabolic models (GSMs) are a mathematical representation of all the 

available biochemical and genomic information about a specific organism. GSMs have 

extensively been used to guide strain engineering designs by optimizing biochemical 

processes within an organism [33]. The reconstruction of a metabolic network can start de 

novo by identifying and adding reactions one by one, or it can be initiated by the creation 

of a draft reconstruction based on sequence homology to another related organism [33]. As 

of May 2018, 44 metabolic models for oleaginous microorganisms have been reported. 

Details about characteristics of available models are summarized in Table 1. Highlights of 

milestones in metabolic modeling of oleaginous microalgae are shown in Figure 2.1. While 

the first models for oleaginous microorganisms contained only core reaction, reaction size 

and complexity increased significantly over time (Figure 2.1).  
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Figure 2.1. Key developments in the constraint-based metabolic modeling of oleaginous 
microalgae. A) Cumulative number of citations for all 44 publications related to “Metabolic 
Modeling of Oleaginous Microalgae and Cyanobacteria” (blue line) and estimated future citations 
is (blue dotted line). Dashed lines represent the number of reactions per model for Chlamydomonas 
(yellow), Synechocystis and Synechococcus (grey), Chlorella (orange), Phaeodactylum (green). B) 
Breakdown of total number of publications by microorganism (percentage) highlights the 
importance of model organisms such as Synechocystis, Synechococcus, Chlorella, Chlamydomonas, 
and Chlorella. C) Frequency of metabolic modeling approaches used to solve models: Flux Balance 
Analysis (FBA), followed by 13C Metabolic Flux Analysis, dynamic Flux Balance Analysis (dFBA), and 
Elementary Modes (EM). 

The first GSMs for oleaginous microalgae were reconstructed for Chlamydomonas 

reinhardtii [19] and Synechocystis sp. [41]. Reconstructing a GSM model, which has been 

and the reviewed in detail previously [58–60], requires a genome sequence and high quality 

information about gene function and metabolism. Manual curation is required to improve 
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accuracy of the model. This curation process is very time and labor intensive, often 

spanning weeks to months before completion. To facilitate rapid model generation, 

automated pipelines, such as ModelSEED [61] and PATRIC [62], have been made publically 

available. ModelSEED and PATRIC are reconstruction tools based on subsystems 

annotation, in which metabolic networks are decomposed into subsystems and analyzed 

individually. Both tools are based on RAST (Rapid Annotations using Subsystems 

Technology) that compares the genome sequence with existing information from 

phylogenetic neighbors [63]. However, it has to be noted that reconstructions created by 

automated tools are prone to errors and special attention must be directed towards quality 

control and quality assurance (QC/QA) tests, in particular in regards to mass balance and 

energy production without input [57,64]. Automatically and semi-automatically 

reconstructed models thus require intensive manual curation before detailed and accurate 

predictions can be made. Figure 2.2A compiles the number of core and genome-scale 

models created for oleaginous photosynthetic microorganisms reported to date. 
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Figure 2.2. Changing biomass composition of Chlorella vulgaris in response to nitrogen 
depletion determined over time. While optical density (OD) increases of a growth course, the 
microalga accumulates storage compounds, such as lipids and carbohydrates, while reducing the 
total protein fraction of the biomass. Data collected from [32]. 

All GSMs can be expressed as a general mass balance, which includes every metabolite 

being produced or consumed within the network in its respective reaction. This mass 

balance takes the form shown in (1). 

d

dt
𝐶 = [𝑺]𝑣 (1) 

The vector 𝐶 represents the instantaneous concentration of metabolites inside the cell, the 

vector contains all reaction rates and the matrix represents the stoichiometric information 

about reactions and participant metabolites. The stoichiometric matrix is a shared 

requirement among all constraint-based flux analysis approaches. Each column of this 

matrix contains the stoichiometric coefficients of a compound for all included reactions. In 

a similar fashion, each row represents the coefficients of all metabolites that take part in a 

single reaction [65]. A m number of metabolites would render the S matrix of mxn 

dimensions, with n always greater than m.  

The rectangular nature of the S matrix is one of the most important obstacles to overcome 

when working with metabolic networks and is easily seen when taking into account that 

for m number of metabolites, there are m change rates inside vector C, m transport rates, 

and p intracellular rates that are unknown. The system of equations is then comprised of 

only m mass balances and as many as n=2m+p variables [66]. This system indetermination 

is what has given birth to several different approaches to metabolic modeling, which are 

discussed below. For system determination to be achieved, the measurement of a total of 
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m-n variables would be required. Large metabolic networks contain degrees of freedom 

that can amount to several hundreds. Therefore, so-called core models, focusing on central 

metabolism have been developed. These core models are used in Metabolic Flux Analysis, 

such as the 13C-MFA, i.e. fluxomics. However, it is currently computationally infeasible to 

use large and compartmentalized metabolic networks for fluxomics analysis. Due to this, 

metabolic engineers have simplified the problem by transforming reaction (1) into an 

optimization problem using an objective function and a defined set of constraints [65]. The 

definition of constraints results in a solution space, which delimits all possible functional 

states of a reconstructed network and a set of permitted phenotypes [67]. Metabolic models 

account for three types of constraints [65,67]: a) physico-chemical, which are based on 

conservation laws of mass and energy, dependency of reaction rates on biochemical loops 

and thermodynamics; b) environmental, such as availability of nutrients, electron 

acceptors, and other external conditions (e.g. photon uptake); and c) regulatory, including 

enzyme composition and performance, which helps to contextualize gene-related 

information, such as expression data and accurate gene-protein-reaction associations [68].  

In phototrophic organisms some physicochemical constraints are decided upon by 

following thermodynamic limits, regarding direction, reversibility or non-reversibility of 

reactions, which can be determined by calculating the Gibbs free energy. Environmental 

constraints are usually based on measured experimental values of light quality, and 

nutrient and substrate uptake rates. Some regulatory constraints are those used in a study 

by Levering et al., in which the GSM of the diatom Phaeodactylum tricornutum was 

employed to capture the response to varying environmental conditions due to a 
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transcriptional regulatory network [69]. Despite this, there are still too many variables to 

account for in the dynamic system. Various approaches to analyze the metabolic network 

of oleaginous microalgae are discussed below. 

2.2.3. Flux Balance Analysis (FBA) 

Most metabolic modeling studies involving oleaginous microalgae have been using FBA for 

simulation. A few other approaches have been used as an alternative or complement, such 

as 13C-MFA [22,31,34,42] or EM [50]. Figure 2.1B and C highlights existing models and 

methods used to interrogate these models. Currently, large–scale metabolic networks are 

analyzed mainly in silico using FBA. Analysis of dynamic data obtained by experimentally–

intensive strategies like 13C-MFA rely on simplified metabolic models, e.g. representing only 

central metabolism [22,31,34,42].   

 

FBA refers to the application of linear programming to analyze fluxes under balanced 

metabolite conditions [65]. This statement is based on two assumptions: First, the cells are 

in steady state and second, all cells have a general objective while growing. The first 

assumption simplifies the system significantly by neglecting all transient behavior of the 

metabolite concentrations, thus yielding (2). The elimination of all the unknown 

concentration change rates inside is mathematically convenient, but forces the system, i.e. 

a culture flask or bioreactor, to theoretically exist in a steady state.  

[𝑺]𝑣 = 0  (2) 
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The second assumption of an objective function in the model implies that all cells grow 

with a specific objective, which is the same for every cell during the calculation time. The 

most widely used objective function for FBA is the maximization of biomass production, 

which implies that the organism has evolved sufficiently to have the optimal arrangement 

of fluxes so that its growth will be maximized. While this assumption is likely correct for 

certain microorganisms, it is not universally applicable [70]. For example, under nutrient-

sufficient conditions the objective of a cell might not be biomass production but rather the 

optimization of the production rate of storage compounds for later use. In a similar way, 

we know that phenotypic states vary in accordance with the growth phase or 

environmental conditions (Figure 2.2), especially those that exhibit a dynamic biomass 

composition, such as phototrophs [71–73] and yeast [74]. Thus, time-specific biomass 

compositions are needed for light-dark cycles, considering degradation of storage pools 

during dark periods. This is of particular interest for production of biofuel precursors. 

Furthermore, maximization of carbon uptake rate as CO2 has been proposed as a suitable 

objective function for autotrophic modeling during the light period [32]. FBA has proven 

to be useful and to reproduce overall experimental behavior in silico, although a true steady 

state is hardly encountered in experimental settings [58]. Its versatility and the accurate 

reproducibility of experimental results under several culture conditions make FBA one of 

the most widely used methods for metabolic modeling [75].  
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2.2.4. Biomass Objective Function 

The biomass objective function (BOF) is a broadly used modeling reaction, which drives 

the supplemented resources across the metabolic network in order to produce all known 

cellular components in the model (such as amino acids, nucleotides, fatty acids, 

carbohydrates, vitamins, ions, and cofactors). Maximizing for the BOF allows simulating 

growth rate and biomass yields. The BOF can be determined from the genome sequence 

[59] or through experimentation. Both approaches have been successfully applied, 

especially for prokaryotic microorganisms. However, when microorganisms have been 

subjected to non-optimal conditions, such as extreme temperatures, pH, or limited 

nutrient concentrations, a single BOF is often not suitable to predict experimental data 

successfully [70,76]. For these cases, auxiliary objective functions have been proven 

necessary, such as minimization of ATP production, substrate uptake rate, or redox 

potential production rate [70]. 

There are several levels of refinement of the BOF [77], but it generally consists in the 

definition of a set of metabolites which compose the biomass. The set can be composed of 

just one reaction yielding a hypothetical compound called “biomass” or could otherwise be 

refined up to building blocks or biomass components (carbohydrates, lipids, proteins, 

DNA, RNA, pigments, etc.) [78]. The BOF of manually curated metabolic models of 

oleaginous microorganisms often account for hundreds of metabolites as part of the lipid 

metabolism, because lipids being the primary target for biofuel production in these 

organisms. Lipid chain fatty acids (14:0, 16:1, 18:1, 16:2) are usually summarized as 

triacylglycerols (TAG), monogalactosyldiacylglycerols (MGDG), etc. representing the 
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entirety off all lipids in the organism. Accurate BOF composition has enabled the improved 

prediction of phenotypic states. It has been claimed that constrained BOF furthers the 

predictability of experimental nutrient- and light-limited conditions [33]. In some cases, 

the BOF has been complemented by a two-step optimization approach with minimization 

of uptake rates. In autotrophic growth conditions, minimization of light uptake (photons) 

has been employed but no significant improvement of the growth rate prediction has been 

obtained [23,39]. In the same way, minimization of carbon source substrate uptake rate has 

been utilized for heterotrophic growth [25,47]. As alternatives, minimization of flux 

magnitudes across the network was used for P. tricornutum [51,54], maximization of ATP 

yield [28], and minimization of ATP demand [24] for C. reinhardtii, and maximization of 

hydrogen production rate for both C. reinhardtii [25] and Synechocystis sp. [40]. 

2.2.5. Dynamic FBA 

Overcoming the steady-state assumption of standard FBA is vital for the modeling of highly 

dynamic systems, which are characteristic of photosynthetic microorganisms [33,37,79]. 

These organisms have evolved under cyclic light/dark conditions, which require switching 

between different phenotypic states. During light periods, inorganic carbon is fixed into 

storage carbon compounds, such as carbohydrates and lipids, which are consumed in the 

dark period to accommodate vital cell functions. The storing-for-later behavior results in a 

dynamic biomass composition that can change during the light period (hours) or along the 

course of growth (days). In the case of C. vulgaris and other phototrophs it has been shown 

that the biomass composition is also dependent on nitrogen availability (Figure 2.2).  Since 
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FBA is used under a steady–state assumption, it is virtually disqualified for its use in the 

aforementioned cases. On the other hand, not including this assumption would add a set 

of ordinary differential equations to the problem, yielding a differential-algebraic system. 

To solve this, a dynamic FBA approach was proposed using either a Dynamic Optimization 

Approach (DOA) or a Static Optimization Approach (SOA) [80].  

The DOA calculates time profiles of fluxes and metabolite concentrations by solving the 

optimization problem over the entire time span of interest, running the calculation only 

once. The dynamic system is transformed into a non-linear programming problem (NLP) 

by parameterizing the differential equations through the method of orthogonal collocation 

on finite elements, described by Cuthrell and Biegler [81]. The BOF is then rewritten as a 

weighted average of the instantaneous and the terminal objective functions, and is 

subjected to the system of differential equations along with the constraints. The SOA 

approach, on the other hand, solves the optimization problem multiple times, once for each 

time interval. At the end, an integration of the set of instantaneous rates of change over the 

interval is carried out for the calculation of metabolite concentrations.  

Experiment-based BOF constraints are an alternative method to simulate dynamic 

metabolic behavior [33]. Changes in the BOF influence the state of the metabolic network, 

thus directly affecting predictions. This approach improved the accuracy of flux prediction 

by considering measurements over the course of growth under autotrophic and 

heterotrophic conditions in Chlorella vulgaris. The time series flux distributions accurately 

simulate 75% of expression and proteomics data collected over the course of growth, 

including allosteric reactions and multi-subunit enzymes. This approach also enabled the 
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determination of the net content of nitrogen pools at each condition [33]. When an 

experimental determination of metabolites constituting the BOF is not feasible, unsteady-

state methods, such as unsteady-state FBA (uFBA). These unsteady-state methods operate 

with a limited number of measured metabolites. uFBA was recently developed and applied 

to study heterotrophic microorganism [86] but uFBA would be a promising approach for 

the analysis of photosynthetic microorganisms. 

2.2.6. Unsteady-state FBA 

The aim of uFBA is to calculate internal flux distributions from existing time-course data, 

e.g. target metabolomics data. These data sets typically contain information about several 

(five to ten) metabolites such as glycerol, ethanol, acetate, etc. It is necessary to determine 

the rate of change of these metabolites from the experimental data and to include these 

rates in the system of equations [82]. Ideally, all rates of change would be known and the 

uFBA could be run as a series of standard FBA methods. Since this is often not feasible, all 

immeasurable variables are assumed to be, initially, under steady-state conditions as well 

as under a closed system assumption, i.e. with no possibility of transport inside or outside 

the cell. Elimination of this amount of transport reactions can often over-determine the 

system and requires further conditioning. A “metabolite node relaxation” algorithm has 

been deployed that assigns sink reactions to unmeasured variables to allow for their 

accumulation or depletion. The algorithm is based on optimizations that find the minimum 

number of sink reactions that are necessary while keeping the model computable [86]. 
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2.2.7. Metabolic Flux Analysis (MFA)  

MFA is an alternative to FBA which also assumes a steady-state mass balance [83]. When 

working with small enough metabolic networks, it is possible to measure or define enough 

numbers of internal or external fluxes to determine the algebraic equation system. For this 

strategy, (2) is rewritten by decomposing the matrix and the vector into the measurable 

(known) and the immeasurable (unknown) fluxes, as shown in (3).  

[𝑺]𝑢𝑣𝑢 + [𝑺]𝑚𝑣𝑚 = 0  (3) 

The larger the metabolic network, the more fluxes are necessary to measure for system 

determination. Therefore, metabolic networks of several hundred reactions require 

measurements of internal fluxes for most of the fluxes, e.g. by 13C labeling [22,31,42].  

2.2.8. Elementary Modes (EM) 

EM is based on the calculation of all the solutions of the system in (2) in the allowable flux 

space, restricting the solution with a thermodynamic constraint and a non-

decomposability constraint [84]. The latter renders each solution an elementary flux mode, 

which means it is a unique and minimal set of reactions. These sets can be rewritten into 

macroscopic reactions, thus reducing the degrees of freedom exhibited formerly by (2). 

Often EM is combined with core genome-scale metabolic models in order to provide 

energetic efficiencies and optimal flux distributions [84,85] . The use of EM analysis (Figure 

2.1C) has been declined over the last years, in part due to the rapid development of omic 

tools applied to sequencing, which enables to generate genome-scale metabolic network 

reconstructions based on complete genome sequences. 
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2.3. Lessons learned from metabolic modeling of oleaginous 

phototrophs 

Advances in modeling of microalgae are in part due to the availability of full genome 

sequences [23]. Having full genome sequences available was crucial for generating the 

initial genome-scale metabolic models for the microalgae Chlamydomonas [26] and opened 

the possibilities to create additional algae models based on homology [32]. In this section 

we describe different approaches to reconstruct and simulate with metabolic models for 

oleaginous microalgae to increase growth and lipid content and improve bioproduction. 

2.3.1 Growth conditions 

Several microalgae are able to grow as autotrophs, heterotrophs, or mixotrophs. Some 

metabolic pathways are only active under certain growth modes, including the 

oxidative/reductive pentose phosphate pathway [22,23,27,39,40], Calvin cycle, and 

presumably the glyoxylate shunt [39]. Hence, differential mathematical models are 

necessary for correct prediction for each growth condition, requiring unique stoichiometric 

matrixes and biomass formation equations. The study and prediction of phenotypes 

dependent on growth conditions is perhaps the most studied aspect regarding in 

oleaginous microalgae. 

Experimentally, highest biomass yields have been reported for autotrophic conditions, 

while lowest were obtained under heterotrophic growth [23,39,53,79]. Mixotrophic growth, 

as a kind of hybrid condition, has shown biomass yields falling between ones observed for 
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autotrophic and heterotrophic. However, an exception is the study of Navarro et al. [40], 

in which a mixotrophic biomass yield (92%) higher than the autotrophic one (60%) was 

predicted as reported for Synechocystis sp. The constraints regarding growth conditions 

directly affect the way carbon is distributed across the metabolic network, and thus the 

biomass yield and production rate. So, it is crucial to determine and adjust these constrains 

if needed for each growth condition. For example, under autotrophic growth the biomass 

yields have been reported to be close to 100%, since no carbon is lost in the process 

[23,39,44,53,79], thus experimental measurements can be used directly. On the other hand, 

under heterotrophic growth conditions a significant carbon loss as CO2 in oleaginous 

microalgae has been reported to vary between 37% [39] to 40% for Synechocystis sp. [40], 

50% for C. reinhardtii [23] and 50.5% for Chlorella sp. [79] as a result of the carbon input 

flux is lost as CO2 due to energy production through the TCA cycle and the oxidative 

pentose phosphate pathway (PPP) [23,39,44,53,79]. Mixotrophic biomass yields tend to be 

higher than under heterotrophy since part of the released CO2 is fixed once again [39]. 

Reported net biomass yields are therefore around 92% (Synechocystis sp.), 100% (C. 

reinhardtii) and 80% (Chlorella sp.) assuming a closed system.  

2.3.2. Light conditions 

Since light directly impacts microalgae growth and behavior, efforts have been made to 

define the quality and quantity of light constraints in metabolic models [29, 37]. Models 

can be significantly improved by considering a more realistic light uptake mechanism. 

Chang et al. [26] proposed to divide the total light spectrum into effective spectral 
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bandwidths, each of which had an associated effective bandwidth coefficient. These 

coefficients, along with the activity spectra of light-driven reactions, allowed for the correct 

calculation of flux distribution along these reactions, taking into account that phototrophic 

organisms are strongly affected by the nature of the incoming light. It has been shown that 

the bandwidth coefficient varies from microorganism to microorganism. In general, 

microorganism-specific refining for light uptake modeling in the GSM models will be 

needed for further improvement [39]. 

2.3.3. Intracellular pools 

Although metabolic modeling has focused on simulating the intracellular environment of 

a cell under steady state, allowing the accumulation of certain metabolites in pools has 

proven necessary for the correct prediction of phenotypic states [60,86]. Metabolite pools 

can play an important role in regulation of reactions, since different pathways find 

themselves interconnected by common metabolite collections. Target metabolomics data 

has been used successfully to constrain the metabolic model of Chlorella and determined 

the pool size of nitrogen [33]. Another target examples are energy-dependent and energy-

replenishing processes are coordinated by the ATP, ADP and AMP pools [86] as well as 

nitrogen and chrysolaminarin pools in P. tricornutum [54].  

2.3.4. Compartmentalization  

Eukaryotic microalgae contain different organelles (e.g. cytosol, mitochondria, nucleus, 

endoplasmic reticulum, glyoxysome, chloroplast, Golgi apparatus, vacuole, thylakoid, eye 

spot, and the cell wall). The exact compartmentalization is species dependent. Accurate 
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annotation of proteins and compartmentalization in the model is necessary for maximizing 

information content and gaining detailed knowledge about microalgae metabolism. Flux 

distributions highly depend on the model’s capability for metabolic exchange prediction 

between organelles. Careful manual curation of these models and delimitation of 

capabilities while adding reactions and reconstructing eukaryotic models in an automatic 

matter is thus crucial to achieve maximal predictability [63].  

The example of nicotinamide adenine dinucleotide phosphate (NADPH) production in 

eukaryotic microalgae highlights the importance of compartmentalization. The PPP plays 

the role of producing NADPH in the cytosol, while the electron transport chain (ETC) is in 

charge of producing it in the chloroplast. Non-compartmentalized models can predict that 

the entire NADPH demand is supplied by the ETC, rather than PPP supplying NADPH 

demand outside the chloroplast. This issue was encountered in the first metabolic model 

of an oleaginous microalgae C. pyrenoidosa [35]. While the model can simulate central 

carbon metabolism in general, it cannot predict detailed engineering targets since 

information about where fluxes take place is not available. 

Early metabolic models were focused on the reconstruction of core algae models, which 

were later expanded to include genome-scale information (Table 1) [19,20,35,49,50]. The 

least compartmentalized model included only the chloroplast and cytosol, in order to 

uncouple the NADPH consumption/production of the Calvin cycle and the PPP [28]. More 

refined models now account for the mitochondria, thylakoid lumen, glyoxysome 

(peroxisome), extracellular environment, nucleus, Golgi apparatus, endoplasmic 

reticulum, vacuoles and the cell wall [21,24,26,30,36,37].   
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2.3.5. Modeling lipid production 

Phototrophs produce several different kinds of lipids, including tri- and diglycerides, 

phospho- and glycolipids and hydrocarbons [14]. More specifically, lipid production in 

oleaginous microalgae includes triacylglycerol (TAG), phosphatidylglycerol, 

phosphatidylinositol, phosphatidylethanolamine, sulfoquinovosyldiglycerol, MGDG, 

digalactosyldiglycerol, and phosphatidylcholine. TAG alone can accumulate from 20% to 

60% of dry cell weight in some species like C. vulgaris [32]. Modeling and gaining insight 

into the increased lipid content of microalgae has been the object of several studies. Most 

of these studies have investigated the effect of nitrogen depletion [21,33,34,37,38,42,48,54], 

while others have studied the influence of low CO2 and low light  [54] on increasing overall 

lipid content. A study of Nannochloropsis gaditana reported increased lipid productivity 

under mixotrophic growth conditions [38]. 

When microalgae are subjected to nitrogen depletion conditions, carbon flux is shifted 

away from photosynthetic pathways as cells shift into the stationary phase and begin to 

store carbon as starch and lipids. This phenomenon and its effect on biomass composition 

is displayed in Figure 2.2, in which a general trend of biomass composition evolution as a 

function of time and nitrogen availability is presented. Under these non-optimal culture 

conditions, microalgae shift the central carbon flux from biomass production to the 

production of storage compounds. As a result the growth rate is decreased because 

carbohydrates and/or lipid are accumulated under stress conditions [40]. C. protothecoides 

was reported to redirect 81% of the input carbon flux towards fatty acid synthesis, but as a 

consequence decreased its growth rate by 30% [34]. In a similar way, C. reinhardtii was 
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found to accumulate TAG when faced with nutrient limitation, but its growth halted after 

8 h of cultivation [22]. Interestingly, Lim et al. [47] reported for Tetraselmis sp. that after 

24 h of culture, TAG biosynthesis was downregulated, though the accumulation of TAG 

continued. The authors explained their finding to be a result of decreased lipid degradation 

rather than lipid production. 

2.4. New insights into the central carbon metabolism of microalgae 

Most studies on oleaginous microalgae have focused on the central carbon metabolism and 

revealed new findings about glycolysis, PPP, TCA cycle, and the Calvin cycle. Figure 2.3 

shows the most important metabolic pathways in microalgae and how they are linked to 

lipid metabolism. FBA has been used to study genome-wide fluxes through the metabolic 

network under mixotrophy, heterotrophy, and autotrophy. While most studies coincide in 

their assessment of functionality and fluxes in central carbon pathways, other pathways 

such as the glyoxylate and ornitine shunt are still not well understood, and modeling results 

are often not consistent between different studies and organisms 

[22,23,25,31,34,39,40,42,79]. As a general rule, significant carbon flow through the TCA cycle 

has been reported under heterotrophic conditions, which demand catabolism of external 

organic compounds, contributing to the reduction of flux through the electron transport 

chain (ETC) and the Calvin cycle [23,32,35,38]. During heterotrophic growth, most 

microalgage prefer glucose as carbon and energy source (Figure 2.3). Other microalgae, 

such as C. reinhardtii, are only capable of assimilating two-carbon organic compounds, like 

acetate [22]. When glucose enters the cytosol, its fate can either be oxidation via glycolysis 
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to pyruvate, oxidation via PPP to ribose 5-phosphate or transformation into storage 

compounds (lipids, glycogen and starch) [87]. In microalgae, acetate coming from the 

extracellular environment can be converted in the glyoxysome to succinate through the 

glyoxylate shunt, which can be considered as a variation of the TCA cycle. Succinate, an 

important biosynthetic precursor that can be converted into oxaloacetate, from which 

phosphoenolpyruvate (PEP) can be synthetized by the enzyme PEP carboxykinase, and 

enter gluconeogenesis for carbohydrate or lipid synthesis [17]. Under autotrophic growth, 

the carbon source is inorganic (CO2) and the energy source is light. In the thylakoid lumen 

of eukaryotic microalgae, the ETC takes advantage of protons from light to store its energy 

in the form of ATP and NADPH, which are subsequently used to reduce CO2 molecules 

into triose phosphates (G3P) in the Calvin cycle. G3P can then be converted into glucose 6-

phosphate (G6P), sucrose, starch and other sugars in the chloroplast.  
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Figure 2.3. Central metabolism in eukaryotic microalgae. The main compartments of active 
metabolism, i.e. the chloroplast (h), thylakoid lumen (t), vacuole (v), mitochondria (m), 
glyoxysome (g) and cytosol (c) and shown. 

2.4.1. Tricarboxilic acid cycle 

The TCA accounts for the highest carbon fluxes and number of active reactions under 

heterotrophic growth conditions [32,35]. Under this mode, the percentage of the total 

carbon input flux into the TCA cycle was reported to be 35.6% in C. reinhardtii grown with 

acetate [22] and 18.7% in C. protothecoides grown with glucose. However, under 

autotrophic and mixotrophic conditions only half of the activity has been reported [79], 

with only 8-10 out of 22 reactions carrying flux for both microorganisms [32]. The role of 

the TCA under these conditions shifts to the production of biosynthetic precursors rather 
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than energy production. Figure 2.4 shows complete and possible bypass variations of the 

TCA cycle observed in different photosynthetic microorganisms. Cogne et al. [27] reported 

that under autotrophic growth the TCA cycle in C. reinhardtii was operating as two 

branches with production of 2-oxoglutarate on one end, and malate on the other, with an 

input through oxaloacetate via the anaplerotic activity of the phosphoenol pyruvate 

carboxylase (Figure 2.4).  

Zero flux was found through the enzymes 2-oxoglutarate dehydrogenase, succinyl-CoA 

synthetase, and succinate dehydrogenase, since energy demands can be supplied by the 

PPP and the glyoxylate shunt. Other studies have also reported such similarities between 

prokaryotic and eukaryotic organisms [88,89], in which prokaryotic microalgae, like 

Synechocystis sp. and Synechococcus elongatus, do not possess a complete TCA cycle. These 

bacteria lack the alpha-ketoglutarate (2-oxoglutarate) dehydrogenase and succinyl CoA 

synthetase [17,78]. Knoop et al. [41] have claimed  a bypass via the succinate-semialdehyde 

dehydrogenase to compensate for the lack of 2-oxoglutarate dehydrogenase as shown in 

Figure 2.4. The bypass replenishes intermediaries in the TCA cycle linked to lipids 

biosynthesis such as acetyl-CoA. 

2.4.2. Reductive/oxidative pentose phosphate pathway 

The oxidative and reductive phases of the PPP serve different purposes. While the oxidative 

phase is serving as catabolic pathway for NADPH production from the oxidation of G6P, 

the reductive phase represents an anabolic pathway of biosynthesis of 5-carbon 
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carbohydrates for synthesis of nucleic acid, coenzyme A, ATP, and other biomass and lipids 

biosynthetic  

 

Figure 2.4. Variations of the TCA cycle in photosynthetic microorganisms. A) Complete and 
fully functional TCA cycle. B) TCA cycle observed in microalgae, such as Synechococcus sp., which 
lacks the enzymes succinyl-CoA synthetase and 𝛼-ketoglutarate dehydrogenase (enzymes 
highlighted in red). A bypass observed in Synechocystis sp. via succinate-semialdehyde 
dehydrogenase. C) Split TCA cycle as reported for C. reinhardtii [30]. The two branches producing 
2-oxoglutarate and malate for downstream biosynthesis. Oxaloacetate in this split TCA cycle is 
provided via anaplerotic activity of phosphoenol pyruvate carboxylase [46]. 
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precursors [79]. High flux through the oxidative PPP means that energy production is being 

used for maintenance rather than growth [35]. It has been reported that depending on the 

growth conditions, either one phase can appear active. However, for the diatom P. 

tricornutum a low flux through the whole PPP pathway was determined. The reduced flux 

is explained with this organisms’ ability to obtain 5-carbon carbohydrates via 

phosphopentose epimerase [53]. 

As a general result for non-compartmentalized models, energy-yielding oxidative PPP 

appears inactive during autotrophic growth, since the model predicts energy comes from 

the ETC in the form of NADPH rather than the dissimilatory pathways [35,39]. As stated 

above, NADPH demand outside the chloroplast should be supplied by the PPP rather than 

the ETC. However, the compartmentalized models of Cogne et al. [27] and Boyle & Morgan 

[23] predicted inactivation of the oxidative PPP for C. reinhardtii under autotrophic 

conditions. In the latter study, cells were found to prefer indirect energy transport by taking 

G3P from the chloroplast to the mitochondria and degrading it to 3-phosphoglycerate 

(3PG), releasing both ATP and NADH [23]. Furthermore, the fact that C. reinhardtii uses 

acetate as a carbon source instead of glucose greatly affects its phenotypic behavior and 

flux distribution under heterotrophy. Since the input to the PPP is G6P, incoming acetate 

would have to be transformed through several reactions in the glyoxylate shunt to 

oxaloacetate and then to G6P (Figure 2.3). For this reason, NADPH production in C. 

reinhardtii is preferably taking place via the ETC under autotrophic growth, while it is 

produced mainly through the glyoxylate shunt under heterotrophic growth 

[22,23,31,34,35,39–41,79]. Limitation in the transport or consumption of G6P or 3PG can 



 
  51 

 
 

result in metabolite accumulation, leading to the synthesis of certain types of lipids. For 

example, C. reinhardtii produces mainly triglyceride lipids. 

Apart from growth conditions, other external factors have been reported to alter the flux 

distribution through the PPP. Wu et al. [31] found that increased oxygen availability in C. 

protothecoides decreases the flux through the PPP and instead enhances flux through the 

TCA cycle, thus producing more energy and yielding more CO2. Moreover, increased 

synthesis of storage compounds under nitrogen-depletion conditions were shown to 

increase PPP fluxes due to increased demand of NADPH for biosynthesis [34]. 

2.4.3. Glyoxylate shunt 

The ability of the glyoxylate shunt of transforming acetyl-CoA into succinate for 

biosynthetic purposes renders it vital for the metabolism of acetate independent of its 

source, i.e. extracellular environment. However, the glyoxylate shunt has been found to be 

inactive under heterotrophic [31,34,79], autotrophic [39,40,79], or mixotrophic growth 

conditions [42] for various organisms, e.g. Synechococcus sp. In C. reinhardtii and P. 

tricornutum however, the glyoxylate shunt has been reported to be active for all tested 

heterotrophic conditions [22,23,25]. The inactive glyoxylate shunt under autotrophic 

growth can be explained by the cell not taking up acetate from the environment, but rather 

synthetizing storage compounds, such as lipids and carbohydrates, that represent desirable 

bioproducts [40,80].  
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2.4.4. Calvin cycle 

Reducing equivalents and ATP formed in the ETC under autotrophic conditions are used 

later in the Calvin cycle to produce triose phosphates (G3P) for further synthesis of 

carbohydrates, which can be assimilated or turned into back-bone structures of lipids. It 

has been reported in green algae that the Calvin cycle fixes CO2 in the form of 3PG, which 

gets converted to dihydroxyacetone phosphate (DHAP) subsequently [79]. Naturally, the 

Calvin cycle is inactive in the dark. When microalgae are subjected to mixotrophic 

conditions, carbohydrate demand poses a competition between uptake of external organic 

carbon sources and the Calvin cycle (i.e. inorganic carbon uptake). In C. reinhardtii the 

majority of carbon flux was found to be directed towards the Calvin cycle, rather than 

glycolysis and TCA under mixotrophic growth [23]. The cyanobacterium Synechocystis sp. 

however was found to be dominated completely by the organic carbon uptake before a 

specific threshold of light intensity was surpassed. After this verge of irradiance, rubisco-

dependent carboxylation and oxygenation were increased immediately and all Calvin cycle 

reactions were activated [41].  

2.5. Conclusions 

Great advances have been made in constraint-based modeling of photosynthetic 

microorganisms over the last two decades. Metabolic modeling has been proven critical for 

our understanding of complex metabolism in microalgae. Model-driven approaches have 

helped to identify boundaries for light and nutrient conditions as well as suitable genetic 

targets to increase lipid productivity. Metabolic models have progressed from core models 
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to genome-scale metabolic models, which now include detailed compartmentalization and 

light uptake. Furthermore, the dynamic behavior and rapidly changing phenotypes due to 

changing environmental parameters is an important trait of these organisms and has now 

been included in model simulations. Those recent extensions and improvements allow to 

elucidate phenotypic behavior under different growth and culture conditions over time. In 

addition, these new models provide a high-quality standard for the improvements of 

existing metabolic models as well as for future reconstructions. Despite extensive efforts 

on refinement and manual curation of metabolic models, there are still open questions 

regarding the central metabolism in microalgae, such as the activity of the glyoxylate shunt 

and ornithine shunt as well as pathways coupling across different compartments.  
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2.7. Tables 

Table 2.1. Characteristics of current metabolic models of oleaginous microalgae. Metabolic 
models are classified in two different groups: Genome-scale metabolic models (GSM) and core 
models (CM); whereas the analyses were classified in: Flux Balance Analysis (FBA), Dynamic FBA 
(dFBA), Elementary Modes (EM), Metabolic Flux Analysis (MFA), MFA using 13C Tracer (13C MFA), 
and their combinations. 

Organism Metabolic 

model (ID) 

Analysis Genes Reactions Metabolites Compartments Citations 

[Reference] 

Chlamydomonas reinhardtii GSM - 1069 - - - 143 [19] 

Chlamydomonas reinhardtii GSM - - 1500 1200 - 53 [20] 

Chlamydomonas reinhardtii GSM FBA - 484 458 3 292 [23] 

Chlamydomonas reinhardtii GSM FBA - 259 - 10 82 [24] 

Chlamydomonas reinhardtii GSM 

(AlgaGEM) 

FBA 2249 1725 1862 4 96 [25] 

Chlamydomonas reinhardtii GSM 

(iRC1080) 

FBA 1080 2190 1068 10 231 [26] 

Chlamydomonas reinhardtii CM FBA - 280 278 - 47 [27] 

Chlamydomonas reinhardtii GSM FBA - 160 164 2 100 [28] 

Chlamydomonas reinhardtii GSM FBA - 280 278 0 12 [29]1 

Chlamydomonas reinhardtii GSM 

(iBD1106) 

FBA 1106 2445 1959 10 10 [30]2 

Chlamydomonas reinhardtii GSM 

(iCre1355) 

FBA 1355 2394 1133 10 12 [21] 

Chlamydomonas reinhardtii GSM FBA/13C MFA - 139 - 3 2 [22] 

Chlorella protothecoides CM 13C MFA - 24 19 0 83 [34] 

Chlorella protothecoides GSM FBA/13C MFA 461 272 - 4 0 [31] 

Chlorella pyrenoidosa CM MFA - 67 - 0 258 [35] 

Chlorella sp. CM dFBA - 114 161 - 31 [79] 
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Chlorella variabilis GSM 

(iAJ526) 

FBA 526 1455 1236 5 10 [90] 

Chlorella vulgaris UTEX 395 GSM 

(iCZ843) 

FBA 843 2294 1770 6 14 [32] 

Chlorella vulgaris UTEX 396 GSM 

(iCZ947) 

dFBA 946 2294 1770 6 2 [33]3 

Nannochloropsis gaditana GSM 

(iRJ1321) 

FBA 1321 1918 1862 4 1 [38] 

Nannochloropsis salina GSM 

(iNS934) 

dFBA 934 2345 - 10 4 [37] 

Nannochloropsis sp. GSM FBA 383 987 1024 6 0 [36] 

Ostreococcus lucimarinus GSM FBA - 964 1100 2 38 [49] 

Ostreococcus tauri GSM FBA - 871 1014 2 38 [49] 

Phaeodactylum tricornutum GSM - 151 88 - 5 289 [51] 

Phaeodactylum tricornutum GSM FBA - - - 2 12 [52] 

Phaeodactylum tricornutum GSM FBA 607 849 587 6 27 [53] 

Phaeodactylum tricornutum GSM 

(iLB1027) 

FBA 1027 4456 2172 6 24 [54] 

Synechococcus elongatus 

PCC7942 

GSM 

(iJB785) 

FBA 785 850 768 7 13 [78] 

Synechococcus sp. PCC 7002 GSM 

(iSyp611) 

FBA 611 552 542 2 39 [91] 

Synechococcus sp. PCC 7002 GSM 

(iSyp708) 

FBA 708 646 581 2 39 [92] 

Synechococcus sp. PCC 7002 GSM 

(iSyp821) 

FBA 821 792 777 3 3 [93] 

Synechococcus sp. PCC 7002 GSM 

(iSyp728) 

FBA 728 742 696 7 22 [94] 

Synechocystis sp. PCC 6803 CM 13C MFA - 29 - - 181 [95] 

Synechocystis sp. PCC 6803 CM FBA - 70 46 2 165 [39] 
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1 Modified the metabolic model of C. reinhardtii from Cogne et al. [27]. 

2 Modified the metabolic model of C. reinhardtii from Chang et al. [26]. 

3 Used the genome-scale model of C. vulgaris from Zuñiga et al. [32]. 

4 Used the genome-scale model of C. reinhardtii from Dal’Molin et al. [25] with constraints for 
Tetraselmis sp. 

Synechocystis sp. PCC 6803 CM FBA - 43 - - 43 [40] 

Synechocystis sp. PCC 6803 GSM FBA - 380 291 6 159 [41] 

Synechocystis sp. PCC 6803 GSM FBA 669 882 790 2 113 [44] 

Synechocystis sp. PCC 6803 GSM 

(iSyn811) 

FBA 811 956 911 2 59 [43] 

Synechocystis sp. PCC 6803 GSM FBA/13C MFA - 493 465 2 51 [42] 

Synechocystis sp. PCC 6803 GSM 

(iJN678) 

FBA 678 863 795 3 206 [46] 

Synechocystis sp. PCC 6803 GSM FBA 677 759 601 6 143 [45] 

Tetraselmis sp. GSM FBA 2249 1725 1862 4 2 [47]4 

Tisochrysis lutea CM EM - 157 162 2 2 [50] 
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Chapter 3. Objectives 
 

General: Predict the dynamic behavior of cellular concentration and composition of an 

oleaginous microalga in a photobioreactor. 

 

Specific: 

1. Generate a spatiotemporal genome-scale metabolic model for Chlorella vulgaris 

based on the model iCZ947, which includes the influence of spatial distribution of 

photon flux, phenomena of photoinhibition and recovery of photosystem II, as well 

as nutrient uptake kinetics for the transient prediction of growth and cellular 

composition. 

 

2. Validate growth and cellular composition predictions of the model by contrasting 

them with previously reported experimental kinetic data of Chlorella vulgaris. 

 

3. Calculate the conditions of light intensity, photoperiod and culture timespan which 

maximize the global lipid productivity of an internally-illuminated stirred-tank 

photobioreactor. 
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Chapter 4. Multiscale metabolic 
modeling of the oleaginous microalga 
Chlorella vulgaris in a photobioreactor 
 

The content of this chapter will be submitted as a research paper with authors: Juan D. 

Tibocha-Bonilla, Cristal Zuñiga, Jared T. Broddrick, Karsten Zengler, Rubén D. Godoy-Silva 

under the same title. 

4.1. Abstract 

Metabolic modeling of microalgae has been a resourceful tool to predict and analyze 

metabolic behavior of organisms for almost one decade. In the case of oleaginous 

microalgae, some genome-scale metabolic models have been generated and improved to 

study their metabolism. However, little effort has been made on applying metabolic models 

to control large-scale cultures of industrial interest. For such purpose, nutrients starvation 

as well as light uptake and attenuation have been identified as drivers of the process 

performance. In this work, we combined the latest genome-scale metabolic model of 

Chlorella vulgaris with kinetic models that consider light uptake, photoinhibition, nitrogen 

and carbon uptake, metabolite-specific carbon allocation (carbohydrates, lipids, and 

nucleotides), and reactor geometry. We successfully predicted growth under different 

growth conditions and light intensities. The developed model’s robustness enabled to 

design strategies upon different light sources as well as culture timing for increased lipid 

productivity. 
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Key words – Photobioreactor, reactor design and optimization, microalgae bioengineering, 

genome-scale metabolic modeling, multiscale modeling. 

4.2. Introduction 

Microalgae hold an important position in biological and industrial research, as they serve 

as model organisms for the study of photosynthetic pathways and interspecific 

interactions, as well as the production of biofuels. Oleaginous microalgae are capable of 

accumulating lipids beyond 20% of dry cell weight in reduced culture areas and without 

the requirement of organic carbon input, which renders them remarkable for third and 

fourth generation biofuel production, especially Chlorella vulgaris [1–3].  

However, several drawbacks are yet to be overcome for these biofuels to be economically 

feasible. First and most importantly, the process of lipid extraction often accounts for about 

50% of the final cost, as water adds up to around 99% of the mass content of the separated 

algal biomass. Moreover, the high protein content of the algal cell turns into high nitrogen 

and sulfur content of the final product, which ends up lowering the quality of the fuel and 

deteriorating fungibility. Therefore, the maximization of lipid productivity in microalgae 

bioreactors is necessary, as it has been reported that a lipid content of 20 – 40% is required 

for profitability [4], depending on culture conditions. main 

The maximization of lipid productivity in microalgae has been a main field of study for 

several decades, mainly by varying light, nitrogen and growth mode conditions. Yet, 

experimental determination of optimal conditions is extremely time- and resource-
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intensive, which makes modeling a resourceful alternative for photobioreactor design and 

optimization. 

4.2.1. Metabolic modeling of oleaginous microalgae 

The industrial application and evolutionary importance of microalgae have rendered them 

a focus of systems biology for the past decade. Early GSM models of oleaginous microalgae 

consisted of non-compartmentalized networks [5], such as Chlamydomonas [6] and 

Synechocystis [7]. Further improvement of the models allowed the study of organelle 

functionality and pathway coupling, as well as the interactions between photosynthetic 

pathways with the rest of the network under different light wavelengths [8]. 

However, the importance that has been given to the metabolic modeling of large-scale 

bioreactors is little, and non-existent for photobioreactors. So far, the metabolic modeling 

of oleaginous microalgae has focused on carbon allocation, organelle functions, and 

community modeling. These, although having been vital for the formulation and curation 

of the models, are not enough for predicting reactor scale-up and optimization. 

4.2.2. Modeling of large-scale photobioreactors 

Reactor scale-up comes with a series of improvements on productivity, unit cost, and 

profitability, but at the expense of amplified operational inefficiencies. In microalgae 

photobioreactors, such issues include shading (light attenuation), photoinhibition and 

mixing. Other drawbacks that are inherent to microalgae cannot be ignored for the correct 

prediction of a complete growth curve, namely nutrient depletion, and the tradeoff 

between growth and lipid production. In this work, we generated the first-ever multiscale 
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metabolic model of a photobioreactor, by including the modeling of sub-optimal growth 

phenomena in the latest genome-scale metabolic model of C. vulgaris (iCZ947) as follows: 

light attenuation and uptake, photoinhibition, nitrogen and carbon uptake kinetics, and a 

carbon allocation algorithm (carbohydrate and lipid accumulation and consumption). 

4.3. Results and Discussion 

4.3.1. Prediction of biomass composition and growth 

In their study, Adesanya et al. [9] cultivated Chlorella vulgaris at two different initial 

nitrogen concentrations and tracked macromolecular content of the cells through the 

culture time. Initial nitrate concentrations of 0.35 and 1.89 mM were employed to evaluate 

the impact of nitrogen availability on carbon allocation and growth. This allowed us to test 

our model for its capability of predicting intracellular concentrations of molecules of 

interest, specifically triacylglycerols (TAGs). As explained in Methods, our model includes 

a mechanistic approach to the modeling of carbon distribution across the cell, which is 

bound to provide it with the ability of predicting the microscopic and macroscopic effect 

of nitrogen concentration.   

We used one set of reported data (Figure 4.1A) for the regression of strain-specific 

parameters (shown in Table 4.2) and simulated a second scenario (Figure 4.1B)  to test for 

predictive capability. In the first scenario, a relatively low initial nitrate concentration in 

the media (exactly half that of standard BBM medium [10]) caused the size of the internal 

nitrogen pool to decrease steadily throughout the time of culture (Figure 4.1D). Since the 
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microalga was not able to replenish its nitrogen reserves, lipid accumulation was triggered 

100 h after nitrogen was depleted in the medium. More accurately, nitrogen depletion from 

the medium signifies the beginning of the end of exponential growth, rather than the end 

itself. A similar behavior was obtained by Mansouri et al. [11] under a comparable setup. 

They reported that exponential growth was maintained for the first 96 h of growth, time 

after which growth gradually stopped until their last recorded instance at 168 h.  

 

Figure 4.1. Simulated and reported data of the culture of Chlorella vulgaris at two different initial 
nitrogen concentrations. (A) and (C) correspond to the experiment with an initial nitrogen 
concentration of 0.021 g L-1, while (B) and (D) were recorded under one of 0.124 g L-1. All experiments 

were reported under a continuous irradiance of 80 
μE

m2s
. Continuous lines and markers represent 

predicted data by our model and reported data by Adesanya et al. [9], respectively. 
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Under the growth conditions of the second scenario, nitrogen availability was increased 

six-fold. However, growth rate was only amplified from an average of 0.0032 to 0.0038 h-1 

(19% increase), which was still one order of magnitude lower than previously reported 

maximum growth rates of 0.039 [3] and 0.033 h-1 [11,12]. This was mainly caused by the 

comparatively reduced irradiance used by Adesanya et al. [9], as opposed to working 

irradiances of 648 [2,3], 20 – 1400 [13], and 30 – 848 [12] 
μE

m2s
 .  As reported and shown by our 

predictions, low light irradiance hindered the overall growth rate of the microalga, which, 

in addition to its higher nitrogen availability, allowed it to replenish its nitrogen reserves 

for the first 200 h, and caused it to deplete nitrogen from the medium at 230 h, as well as 

its internal nitrogen reserves 250 h later.  This relative nutrient sufficiency caused storage 

molecule (lipid and starch) production to drop and rendered lipid accumulation almost 

non-present. A visible over-estimation of starch content in the second scenario was mainly 

caused by the prioritization of starch consumption in the dark period of the topology of 

our carbon allocation algorithm (see Figure S4.2), which induces error when trying to 

predict a permanently-illuminated culture, as used by Adesanya et al. [9]. Further work on 

the generation of a GSM model for the mixotrophic growth of C. vulgaris will be necessary 

for this model to properly include starch consumption in the light period, as carbon 

allocation and the differential destination of carbon sources under mixotrophy is not yet 

well understood and accounted for in the models. 
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4.3.2. Simulation at different light intensities 

Data reported by Kim et al. [12] at an irradiance of 848 μE m−2 s−1 was used for the 

regression of parameters (see Methods), while data at 30, 55, 80, 197 and 476 μE m−2 s−1 

were employed for model validation. Simulation results of the regression at an irradiance 

of 848 μE m−2 s−1 are shown in Figure 4.2. 

Experimental total biomass concentrations were followed closely by our model, and both 

internal and external concentrations of important nutrients and macromolecules were 

predicted. Even though intracellular concentrations were not measured by Kim et al., the 

model could be used to theorize about microscopic and macroscopic phenomena that lay 

underneath. As opposed to the case of Adesanya et al. [9], an elevated irradiance of 848 
𝜇𝐸

𝑚2𝑠
 

made impossible for the microalga to maintain the intracellular nitrogen levels after the 

nitrogen was depleted from the medium at 100 h. This caused the lipid production to be 

triggered around the same time point, as intracellular nitrogen levels were already 

decreasing sharply (Figure 4.2B). 
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Figure 4.2. Simulation of results of the culture of Chlorella vulgaris contrasted with data reported 

by Kim et al [12] at 848 
𝜇𝐸

𝑚2𝑠
 and using a 16:8 light/dark strategy. (A) Global reactor concentrations 

of active (non-storage) biomass, starch, lipids, total biomass and nitrate contrasted with reported 
data of total biomass. (B) Intracellular content of starch, lipids and nitrogen. (C) Contrast of lipid 
productivity with lipid yield (% of carbon input directed to lipid production). (D) Variation of cell 
size. Continuous lines and markers represent predicted data by our model and reported data, 
respectively. 

Circadian clock oscillations are also evident in all monitored variables. Figure 4.2B and 

Figure 4.2D show the starch accumulation-consumption cycles, along with a macroscopic 

interchange of carbon flow between starch and lipids after nitrogen depletion. Other 

oleaginous microalgae, such as Synechococcus elongatus [14], Chlorella sorokoniana [15] 

and Dunalliela salina [16], have been shown to exhibit such circadian clock oscillations. In 
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one study, S. elongatus exhibited a peak in ADP-glucose pyrophosphorylase activity, as well 

as in glycerol-3-phosphate (G3P) production from ribulose biphosphate (RuBP) coming 

from the reductive pentose-phosphate pathway (PPP) close to dawn, implying high starch 

production in the light period [14]. The same study found the exact opposite behavior in 

the dark, with peak activities of glygocen debranching enzyme (glgX). 

Moreover, Figure 4.2C and Figure 4.2D exhibit the well-known trade-off behavior between 

specific lipid bioproduction and growth rate. According to our simulations, the optimum 

lipid productivity was achieved shortly after nitrogen was consumed from the medium but 

rapidly decreased afterward. It is worthy to note that even though nitrogen depletion from 

the medium was achieved at 100 h, peak global lipid productivity of the photobioreactor 

took place at 168 h, when internal reserves were running low but were not completely 

depleted yet. Overall lipid productivity decreased steadily for the following 167 h, as growth 

was increasingly hindered by internal nitrogen depletion (where 𝑞 = 𝑞𝑛) and the cell size 

reaching its limit. 
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Figure 4.3. Simulation results of the experimental conditions reported by Kim et al. [12] at different 
irradiance conditions. Lines represent model simulations while markers show reported 
experimental data. 

 

Figure 4.3 shows simulation results of the multiscale metabolic model of this jacketed 

cylindrical photobioreactor. The regressed model successfully predicted growth behavior 

in this geometry at different irradiance conditions. Even though it showed a sub-estimation 

of biomass production at low intensities, the overall growth trends were predicted 

accurately. Low intensities slowed down carbon dioxide uptake (data not shown) and 

increased overall shading in the photobioreactor, thus lowering the steepness of the growth 

curves. Photoinhibition and light attenuation influences were visible at high intensities 

since an increase from 476 to 848 μE m−2 s−1 did not signify an improvement in the overall 

culture growth.  
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4.3.3. Optimization of the lipid productivity in an internally-illuminated stirred-

tank photobioreactor 

In order to illustrate the model’s aptitude for process design and optimization, we 

predicted the optimal light strategy to maximize lipid productivity in an internally-

illuminated stirred-tank photobioreactor reactor with six radially-distributed fluorescent 

lamps. 

In general, five variables were manipulated to search for the optimal global lipid 

productivity condition: lamp irradiance at time zero I0, lamp irradiance at the end of the 

culture If, photoperiod p, culture duration tf, and shape of irradiance temporal profile (see 

Methods) represented by the coefficient bI. A hypothetical base case was given to the model 

as the initial condition of the optimization. Figure S4.3 shows a summary of the simulation 

results of the base case, and Table 4.1 summarizes the base case and optimized values of 

the manipulated variables. 

Table 4.1. Initial and final values of the manipulated variables of the optimization. 

 𝐈𝟎 
𝛍𝐄 𝐦−𝟐 𝐬−𝟏 

𝐈𝐟 
𝛍𝐄 𝐦−𝟐 𝐬−𝟏 

𝐩 
𝐡 

𝐭𝐟 
𝐡 

𝐛𝐈 

Base case 400 600 16 300 0.5 

Optimized 966 966 17 374 0.0 

 

As shown in Figure 4.4, a final biomass concentration of 1.83 g/L is achieved after 374 h, 

which is roughly a 7% increase in biomass for 25% more culture time. Even though this 

does not seem as much of an improvement, final global lipid concentration increased 46%.   
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Figure 4.4. Simulation results of the maximization of lipid productivity by varying light strategy, 
photoperiod and culture time. 

As opposed to previous trials on light strategies which irradiance increase in a stairstep 

fashion [17], our model predicted an optimal global light productivity at a constant lamp 

irradiance of 966 μE m−2 s−1. Even though that means that at the early stage of the culture 

(0 – 100 h) a fraction of the culture is subjected to an irradiance of around 3000 μE m−2 s−1, 

a large portion of it is under lower irradiances but still relatively high irradiances of 

200 μE m−2 s−1, which along with high nitrogen availability, favors higher growth rates in 

such a way that photoinhibition is compensated. Moreover, the optimization showed that 
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a photoperiod of 17:7 is enough for full photoreparation to take place without further 

negative impact on growth and finally lipid productivity.  

As early as 25 h into the culture, the highest irradiance inside the culture lowers to 2400 

μE m−2 s−1 which, according to Pfendler et al., is the limit above which photoinhibition 

seriously hinders light uptake in C. vulgaris [18]. During the medium-growth stage (100 - 

200 h) shading rapidly diminishes photoinhibition from approximately 80% to 25%, as 

highest irradiances are of only 800 μE m−2 s−1, and the average drops to 200 μE m−2 s−1.  

At the low-growth stage (200+ h), shading is so substantial that the average irradiance 

drops to 142 μE m−2 s−1 and stabilizes there for the rest of the culture. Moreover, as 

exhibited in Figure 4.5, at this point light uptake has almost halted throughout the majority 

of the reactor, with an average of only 70 mmol gDW−1 h−1, as opposed to an average of 

1000 mmol gDW−1 h−1 at the high-growth stage. At this point, increasing the irradiance of 

the lamps hardly alters the global light availability and uptake, but critically increases 

irradiance in the vicinity of the lamps, where nitrogen-deplete microalgae are no longer 

capable of compensating photoinhibition with amplified metabolic activity. This means 

that, for this case, an individual lamp irradiance of 966 μE m−2 s−1 is not high enough to 

halt growth at the early stage and is not low enough to do it at the late stage, which renders 

it optimal for overall growth and lipid production in the photobioreactor. 
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Figure 4.5. Light and photon uptake distributions at the beginning and end of the culture for both 
the initial and the final case (optimum). 

 

In addition, it is worth noting that our model does not yet include neither the modeling of 

heat transfer mechanisms between the lamps, medium and surroundings, nor mixing 

phenomena which causes it to assume every cell is at a fixed position and subjected to the 

same temperature. With this, the found optimum is only attainable under a cooling system 

that is efficient enough to maintain overall temperature between 22 – 26 °C [19].  

4.4. Methods 

All simulations were carried out within the MATLAB 2016b (MathWorks Inc.) environment 

and using the COBRA Toolbox v3.0 [20]. Dynamic Flux Balance Analysis (dFBA) was used 

for time-course flux distribution calculations and concentration updates, and GUROBI 
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7.5.2 was employed as the solver for the linear optimization problems. A more detailed 

explanation of the model’s algorithms is shown in this section. 

4.4.1. The multiscale metabolic model 

At the core of our calculations lies the genome-scale metabolic model of the oleaginous 

microalga Chlorella vulgaris: iCZ947 [2], with previously proposed modifications for both 

heterotrophic and autotrophic growth [2,3]. Overall, the GSM model was solved using 

COBRA Toolbox (dFBA) for metabolic flux distributions. In addition, a set of additional 

models were included to account for secondary phenomena which constrained the solution 

space of the Linear Programming (LP) system (GSM model in Figure 4.6). Phenomena were 

included according to previous reports of specific physical and physiological mechanisms 

significantly affecting growth, as well as our expertise in microalgae culture. Included 

mechanisms were light attenuation, light uptake, photoinhibition, nitrogen and carbon 

uptake kinetics, and carbon allocation (carbohydrate and lipid accumulation and 

consumption). Mixing, heat and mas transfer phenomena were not included in the present 

model. A simplified representation of the general numerical algorithm is presented in 

Figure 4.6. 

4.4.2. Light attenuation 

Several studies have focused on light attenuation of microalgae [21–26], with a few solely 

on Chlorella vulgaris [21,22]. In this work, we decided to use the model for light absorption 

and scattering proposed by Naderi et al. [22], which allowed to accurately predict light 
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distribution at low and high cell densities. The intensity profile function is shown in Eq. 

(1). 

I(r, X) = I0 exp (−r ∙ Ka ∙ X
rw

pk + rw
) 

(1)  

For internally-lit reactors, the distance r was computed as the distance between the edge 

of the light source and any given point inside the culture. Several internal sources were 

accounted for by calculating individual light distributions and adding them up. For 

externally-lit (jacketed) reactors r was calculated as the distance between the illuminated 

edge of the reactor and any given point inside the culture. 

 

Figure 4.6. Schematic representation of the numerical algorithm employed in a single timestep and 

light interval. 

The initial intensity 𝐼0 corresponds to either the nominal or measured intensity of the light 

source, whichever was reported in the studies. Absorption and scattering coefficients were 
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left unchanged throughout the culture time, although further studies can compute time-

specific coefficients from absorption spectrum data. 

For increased computation speed, we divided the photobioreactor in a finite number of 

zones with the same light intensity and calculated the overall reaction rates as a volume-

weighted average of the individual intervals. The number of light intervals (NI) were 

determined in a logarithmic fashion, as shown in Eq. (2). Mesh dependence analyses 

showed that 10 active (with non-zero irradiance) intervals were enough for the simulations 

to be independent of the number of intervals. 

Ii = 10
(Imin+

(Imax−Imin)
NI

∗i)
         ∀i ∋ {1, … , N} 

(2)  

4.4.3. Light uptake 

To date, metabolic modeling studies on the photoautotrophic growth of microalgae have 

assumed that the available intensity at any given point in the culture matches the amount 

of light that enters microalgae [2,3,5,8,27]. Even though this causes unit inconsistency, it 

has been useful as an approximation while the inclusion of light uptake mechanisms in 

GSM models improved. However, for accurate predictions of large-scale vessels, it is 

necessary to accurately define the amount of uptaken photons per cell throughout the 

culture, in standard GSM model units of mmol gDW−1 h−1, as opposed to formerly-used 

flux units of μE m−2 s−1. Therefore, we defined a photon conservation balance over a 

differential element (Figure S4.1), as shown in Eq. (3). 

(I A)r − (I A)r+Δr = U X ΔV (3)  
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The conservation balance is readily converted to the differential equation shown in Eq. (4), 

and a cellular uptake profile (U)  is obtained in Eq. (5). The magnitude U is at this point a 

unit-consistent input to the GSM model of the microalga, which represents the upper 

bound of specific photon uptake rate. 

∂I

∂r
+

1

r
I + U X = 0 

(4)  

U(r, X) = −
1

X
∙ [

∂I

∂r
+

1

r
I] 

(5)  

 A similar procedure for a planar reactor yields the homologous expression shown in Eq. 

(6) . 

U(r, X) = −
1

X

dI

dr
 

(6)  

4.4.4. Photoinhibition 

Photoinhibition is a major drawback in photobioreactors, as it restricts the maximum 

amount of light a culture can be subjected to, as well as the duration of exposure. Although 

several species have been shown to adapt to high light conditions in the long term [28,29], 

photoinhibition still significantly diminishes the growth capability of phototrophs 

[17,30,31], and specifically of Chlorella vulgaris above 2400 μE m−2 s−1 [18].  

A group of studies have focused their attention on the modeling of photoinhibition in 

microalgae [32], which allowed us to include a photoinhibition model that described the 

fraction of active chlorophyll. Photosystem II (PSII) has been shown to be the bottleneck 

in the photosynthetic pathways as a consequence of the photodamage of the protein D1. 

Therefore, the effect of photoinhibition in the model was represented by the fraction of 
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active PSII, as proposed by Han [32], with the coefficients reported by Baroli et al. [30] (see 

Eqs. (7) and (8)). The magnitude θ represented the fraction of available light that was used 

by the metabolic network. 

dθ

dt
= kr(1 − θ) − kd I θ 

(7)  

kd = m𝑘 I + bk (8)  

4.4.5. Nitrogen and carbon uptake kinetics 

Nitrogen availability in the media directly influences carbon allocation in oleaginous 

microalgae, since its depletion hinders protein, nucleic acid and pigment biosynthesis. 

Nitrogen-induced stress conditions trigger in these phototrophs the accumulation of 

storage molecules, namely fatty acids. The uptake rate of nitrogen is a function of nitrogen 

quota (Qn) and extracellular nitrogen concentration (N), as proposed by Adesanya et al. [9] 

and shown in Eq. (9) . 

rN =
qnm − Qn

qnm − qn
[

νnm N

N + νnh
] 

(9)  

A simple mass balance on including growth-induced depletion and replenishment yields 

Eq. (10). 

dQn

dt
= rN − Qnμ 

(10)  

Similarly, we used the inorganic carbon uptake kinetics model proposed by Filali [33] to 

calculate the maximum carbon uptake rate at any given moment, as shown in Eq. (11). 
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rCO2

max = rCO2

max,GSM (
CCO2

CCO2
+ KC ∗

X
ZminT  

) 

(11)  

4.4.6. Carbon allocation 

Nutrient availability in the media directly alters the way carbon is distributed across the 

cell. During nutrient-sufficient conditions, microalgae tend to allocate carbon on amino 

acid and nucleic acid biosynthesis (herein active biomass or X); on the other hand, nutrient-

depletion, and in general stress conditions, causes metabolism to shift carbon flow towards 

lipid elongation. In photobioreactors, the nitrogen poses as bottleneck for overall growth, 

but also as trigger for lipid accumulation [2,3,9,11,34]. 

Light, as the energy source, induces differential phenotypes as well. Under light conditions, 

microalgae prioritize synthesis of active biomass, and rapid-use storage molecules, namely 

starch. During the dark period, the latter is used as organic carbon source for further 

growth and maintenance of the cell [14]. 

For this rather intricate behavior, we proposed a simple flow distribution algorithm, with 

cell size (Z) and nitrogen quota (Qn) as coefficients for the estimation of carbon allocation. 

Increased nitrogen quota favored biosynthesis of active biomass and starch, whereas low 

nitrogen levels shifted carbon flow towards lipid production. We defined a magnitude n, 

which played the role of a penalty function on active biomass production and followed the 

Michaelis-Menten-type function shown in Eq. (12). 

n = 1 −
q

q + qh
  

(12)  
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Where q is the relative nitrogen level q = Qn/qnm, and qh is the half-saturation coefficient. 

In a similar fashion, decreased cell sizes favored the uptake of inorganic carbon and the 

accumulation of storage molecules, while bigger cells were assumed to lower carbon uptake 

levels, as previously reported by the studies of Taguchi et al. [35]  and Thompson et al. [36]. 

Therefore, we defined a penalty function 𝑧 on inorganic carbon uptake, presented in Eq. 

(13). 

z =
T − 1

Tmax  − 1
 

(13)  

Where T is the size increase, calculated as a function of the intracellular content of starch 

(xstarch) and lipids (xlipid), as shown in Eq. (14).  

T =
1

1 − xstarch − xlipid
 

(14)  

Finally, storage starch consumption is limited by a third penalty function based on the 

intracellular starch concentration. 

s =
Cstarch

Cstarch + K
 

(15)  

In the end, the penalty functions were used for GSM model constraints as shown in Eq. (16) 

to (19). Every variable with superscript max is internally calculated in the algorithm as the 

maximum possible value at any given time point and light interval. During light and dark 

periods, the objective functions were, respectively, starch accumulation and biomass 

production, following previous reports of peak activities of starch production and 

consumption in light and dark periods, respectively [14–16]. An overview of the carbon 

allocation algorithm is illustrated in Figure S4.2. 
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rTAG = rTAG
max ∙ n (16)  

rCO2

light
= rCO2

max ∙ (1 − z) (17)  

rStarch
dark,max = rStarch

max ∙ (z) ∙ (s) (18)  

μlight = μmax ∙ (1 − n) ∙ (𝑧) (19)  

4.4.7. Parameter estimation 

Metabolic capabilities across species and even strains rarely remain constant. This has been 

one of the most significant drawbacks when trying to generate a wide-spectrum biological 

model. However, in this work we were able to identify five strain-specific parameters which 

are assumed to be inherent to the microorganism: maximum size increase 𝑧max, maximum 

oxygen evolution rO2

max maximum carbon uptake rCO2

max, nitrogen quota half-saturation 

coefficient qh, and starch accumulation half-saturation coefficient K. Parameter estimation 

was done with MATLAB Optimization Toolbox, using the active-set algorithm. As a result, 

this model is capable of predicting the macroscopic outcome of a photobioreactor under 

different conditions for a single strain if these parameters are known. For each study we 

used one of the available sets of kinetic data to calculate these parameters, specifically data 

at an initial nitrate concentration of 0.35 mM for Adesanya et al. [9] and data at an 

irradiance of 848 μmol m−2 s−1 for Kim et al. [12]. Regression parameter values are shown 

in Table 4.2, and a summary of all other parameters is shown Table 4.3. 

Table 4.2. Parameter regression results for both studies included in this work. 

Data 𝒛𝐦𝐚𝐱 𝐫𝐎𝟐

𝐦𝐚𝐱 
𝐦𝐦𝐨𝐥 𝐠𝐃𝐖−𝟏 𝐡−𝟏 

𝐫𝐂𝐎𝟐

𝐦𝐚𝐱 
𝐦𝐦𝐨𝐥 𝐠𝐃𝐖−𝟏 𝐡−𝟏 

𝐪𝐡 
𝐠 𝐠𝐃𝐖−𝟏 

𝐊 
𝐠 𝐋−𝟏 

Ref. 
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Adesanya et 

al. 

2.94 5.29 -4.64 0.040 0.034 [9] 

Kim et al. 1.74 8.84 -5.18 0.049 0.124 [12] 

 

4.4.8. Maximization of lipid productivity 

Maximization of lipid productivity in microalgae has been known to be possible through 

different growth modes [1,9], nutrient-related stress [37,38] and time-dependent irradiance 

strategies [17,39]. Although some genome-scale modeling has been used for giving insight 

into the first two options in oleaginous microalgae [5], no such strategy has been employed 

to assess the latter. Therefore, we employed the model to maximize the lipid productivity 

of a photobioreactor as an illustration of the model’s capability of predicting optimal 

operating conditions for process design and optimization.  The photobioreactor in question 

is owned by the Chemical and Biochemical Processes research group of the Universidad 

Nacional de Colombia, which renders further experimentation possible for the validation 

of model predictions. Five variables were manipulated to search for the optimal global lipid 

productivity (𝑅𝐿 in Eq. (20)) condition: initial lamp irradiance I0, final lamp irradiance If, 

photoperiod p, culture duration tf, and a coefficient bI which represents the shape of the 

light profile, as shown in Eq. (21). 

RL =
CLipids

𝑡𝑓
 

(20)  

I(t) = aI ∗ tbI + I0 (21)  
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In Eq. (21), only bI is used as an optimization variables, as aI is dependent on the variables 

I0, If and bI itself, as presented in Eq. (22). 

aI =
𝐼𝑓 − 𝐼0

(𝑡𝑓)
𝑏𝐼

 
(22)  
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Table 4.3. Summary of model parameters. 

Parameter 𝑺𝒚𝒎𝒃𝒐𝒍 𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 𝑼𝒏𝒊𝒕𝒔 
Ref

. 

Light intensity profile I I(r, X) μmol m−2 s−1 
[22
] 

Light uptake rate U U(r, X) mmol gDW−1 h−1 − 

Fraction of active photo-system II (PSII) θ θ(θ, I, t) − 
[30

] 

Maximum attenuation coefficient Ka,max 1041 m−1 
[22
] 

 
Light modeling parameters 

b 1.03 kg m−3 
[22
] 

w -0.3128 − 
[22
] 

pk 12.66 − 
[22
] 

First-order PSII photoreparation coefficient kr 0.7 h−1 
[30

] 

First-order PSII photodamage coefficient kd kd(I) m2 s μmol−1 h−1 
[30

] 

Photoinhibition parameters 
mk 0.00042 m4 s2 μmol−2 h−2 

[30
] 

bk 0.05 m2 s μmol−1 h−1 
[30

] 
Nitrogen uptake rate rN rN(Qn. N) mmol gDW−1 h−1  [9] 

Nitrogen quota Qn Qn(𝑟𝑁 , 𝑄𝑛 , 𝜇) mmol gDW−1 [9] 
Maximum nitrogen quota qnm 6.78 mmol gDW−1 [9] 
Minimum nitrogen quota qn 2.29 mmol gDW−1 [9] 

Maximum nitrogen uptake rate νnm 2.02 mmol gDW−1 h−1 [9] 
Nitrogen uptake half-saturation coefficient νnh 4.29 mM [9] 
Carbon uptake half-saturation coefficient KC 0.0128 mmolN cell−1 [33] 

Nitrogen-dependent penalty function n n(q) − − 
Relative nitrogen quota q q(Qn) − − 

Size-dependent penalty function z z(𝑍) − − 

Cell size Z Z(xstarch, 𝑥𝑙𝑖𝑝𝑖𝑑) pg cell−1  

Minimum cell size Zmin 75 pg cell−1 
[40

] 
Cell size increase T T(Z) − − 

Intracellular starch mass fraction xstarch − − − 

Intracellular lipid mass fraction xlipid − − − 

Starch content-dependent penalty function s s(Cstarch) − − 
Lipid production rate 𝑟𝑇𝐴𝐺  𝑟𝑇𝐴𝐺(n) mmol gDW−1 h−1 − 

Maximum CO2 uptake in GSM rCO2

max,GSM − mmol gDW−1 h−1 [3] 

Maximum lipid production rate rTAG
max − mmol gDW−1 h−1 − 

Starch consumption rate rStarch
dark,max rStarch

dark (s, z) mmol gDW−1 h−1 − 

Maximum starch production rate rStarch
max  − mmol gDW−1 h−1 − 

CO2 consumption rate rCO2 
light

 rCO2 
light

(s, z) mmol gDW−1 h−1 − 

Maximum CO2 consumption rate rCO2 
max  − mmol gDW−1 h−1 − 

Specific active biomass production rate μlight μlight(n, z)  h−1 − 

Global lipid productivity RL RL(Clipids, tf) g L−1 − 

Global lipid concentration Clipids − g L−1 − 



 
  98 

 
 

Global CO2 concentration CCO2
 − g L−1 − 
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4.6. Supplementary Figures 

 

 

Figure S4.1. Differential photon conservation balance in a photobioreactor. 
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Figure S4.2. Illustration of carbon allocation algorithm. 
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Figure S4.3. Simulation results of the growth of Chlorella vulgaris at a hypothetical initial condition 
for the optimization of lipid productivity. (A) Global reactor concentrations of active biomass, 
starch, lipids, total biomass and ammonium. (B) Intracellular content of starch, lipids and nitrogen. 
(C) Contrast of lipid productivity with lipid yield. (D) Variation of cell size. 
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Chapter 5. Conclusions and 

recommendations 

5.1. Conclusions 

In this work, we obtained the first-ever multiscale metabolic model for the prediction of 

the dynamic growth of Chlorella vulgaris in a photobioreactor. This model included 

substrate uptake and light attenuation phenomena acting as modules that allowed for the 

accurate estimation of global biomass production, as well as intracellular concentrations of 

macromolecules of industrial interest, namely triacylglycerols. The fact that at the core lies 

a genome-scale metabolic bases our model on species-specific omics data which rendered 

our model capable of predicting metabolic flux distributions at every time of the culture in 

a photobioreactor. With it, we were able to predict light strategy conditions which would 

increase the global lipid productivity of an internally-illuminated stirred-tank 

photobioreactor in roughly 47%, exhibiting the potential this model has for process design 

and optimization. In the future, this model could help decide upon gene-knockout 

strategies that not only favor specific lipid production rates, but also global lipid 

productivities of the whole photobioreactor and an industrial plant. 

5.2. Recommendations 

The model allows for several applications we did not include in this study, such as: 

• Prediction of continuous cultures, as well as estimation of best culture conditions 

for optimal steady-state lipid productivities. 

• Adaptation to other oleaginous microalgae species, by changing species-specific 

models and coefficients to appropriate ones. 
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• Prediction of promissory gene-knockout mutants that maximize lipid productivity 

in the photobioreactor, or profit in a whole-plant scale. 

On the other hand, future work will be necessary for this model’s flexibility to be even 

greater. We identified several key points that need to be addressed for this purpose: 

• The model needs to account for the influence of temperature on cell mortality, as 

well as a heat transfer model that includes convection and radiation phenomena. 

• Starch consumption in the light period should be included in the model, as no-dark 

strategies are often suggested for increased lipid productivity, and the model 

overestimates starch accumulation as a result of the current carbon allocation 

algorithm. 

• Light attenuation coefficients can vary greatly with biomass composition. Since our 

model is already capable of predicting biomass composition, time-dependent 

absorption coefficients could be calculated by employing absorption spectrum data. 

• Our model does not yet include shading due to the presence of an internal lamp. 

This phenomenon could prove significant at even larger scales than tested in this 

study. 

• Photoinhibition is a complex phenomenon, and the kinetic model we used is, 

although mechanistic and the best available, very simple. As the understanding of 

photoinhibiton and photoreparation/photoadaptation improves, better models 

might arise giving opportunity for this model to be even more accurate in high-

irradiance cases. 
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Appendix 1. The genome-scale metabolic 

model 

A1.1. A brief reminder of genome-scale metabolic modeling 

As previously explained in Chapter 2, a genome-scale metabolic (GSM) model is an omics-

based network of metabolic reactions, which describe the metabolism of an organism. GSM 

models can be used in various ways to predict metabolic flux distributions, pathway 

coupling, interspecific interactions, and to analyze the impact of nutrient-stress and gene 

deletions these aspects. The most widely used strategy to compute these distributions is 

called Flux Balance Analysis (FBA), which is based on the following steady-state mass 

balance: 

𝑆 ∙ 𝜈 = 0 

Where S is the matrix containing all the stoichiometric information of the network and 𝜈 

is the vector of metabolic fluxes corresponding to each metabolic reaction included. Said 

reactions not only include chemical transformations, but also transport between 

compartments and exchange reactions with the medium. Commonly, a genome-scale 

metabolic model can account for over 2000 reactions and 1500 metabolites. In any case, the 

number of reactions is always greater than that of metabolites, rendering the mass balance 

under-determined. Hence, FBA uses linear programming to compute the values inside 

vector 𝜈 following an objective function, which usually corresponds to but is not restricted 

to the maximization of biomass production.  
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Overall, the generic solution algorithm of FBA is as follows: 

 

 

(Definition of objective function) ……………………… max 𝜇                  𝑠. 𝑡. 

(Mass balance at steady state) …………………………. 𝑆 ∙ 𝜈 = 0 

(Upper and lower boundaries of reactions) ………. 𝜈𝑖
𝑚𝑖𝑛 ≤ 𝜈𝑖 ≤ 𝜈𝑖

𝑚𝑖𝑛 

A1.2. The GSM model iCZ843 

The model iCZ843, available online at http://www.plantphysiol.org/cgi/pmidlookup? 

view=long&pmid=27372244, contains a total of 2294 reactions, 1770 metabolites and 843 

genes. This model was generated using RAVEN Toolbox and curated both manually and 

semi-automatically using COBRA Toolbox within MATLAB. The high quality of this model 

allowed it to predict growth under several different carbon sources (including 

heterotrophy, autotrophy and mixotrophy), along with outstanding definition of amino 

acid and lipid metabolism pathways. These characteristics rendered the model suitable for 

further work on prediction of dynamic behavior, as proposed and developed in this work.  
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Appendix 2. Further details on methods 

A2.1. MATLAB code, scripts and functions 

The complete set of functions (herein “the toolbox”) and scripts is available in GitHub at 

https://github.com/jdtibochab/pbr. Overall, the toolbox consists of 4 subgroups of 

functions which correspond to: prediction, parameter regression, photobioreactor 

optimization and visualization. Naturally, regression and optimization functions refer to 

predictive functions for their calculations, and visualization functions reproduce the 

graphs used to generate the figures showed in Chapter 4.  

A2.2. Predictive functions 

Predictive functions compose the multiscale metabolic model, and are spread across the 

following folders: calculation, consumptionKinetics, experimentalData, light, and lipids. 

Within these folders functions for solution algorithms, nutrient consumption kinetics, 

retrieval of reported data, light distribution calculation and carbon allocation are available, 

respectively. 

A2.2.1. FBAcalc 

The core calculation of the multiscale metabolic model is contained in FBAcalc, following 

the algorithm shown in Figure 4.6. FBAcalc receives the struct variables solution and PBR, 

both containing a pre-allocated solution and setup variables, respectively, and returns an 

updated version of solution to be used by sFBAcalc to update time-dependent variables. 
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PBR is generated by PBRgeneration, after the latter has called the data-containing script 

data, which contains all the case-specific information. This script also contains calls to 

other data-containing scripts, such as: experimentalData (for experimental time-course 

data) and reactorData (for reactor geometry data). 

The algorithm used by FBAcalc can be broken down as follows: 

1. Retrieve values of time-dependent variables at previous timestep. 

2. Calculate irradiance and light uptake distribution, as well as generate different light 

intervals. 

3. Calculate global photoinhibition at present time as the weight-averaged 

photoinhibition and assume all light intervals at present time are at the same 

photoinhibition (so as to account for macromixing during one timestep). 

4. Calculate maximum possible CO2 uptake rate from carbon uptake kinetics. 

5. If during light period, for each light interval do as follows. If not, skip to 6. 

a. Calculate “ideal” metabolic flux distribution at current light interval. 

b. Calculate maximum possible light uptake. 

Umax = Uideal ∗ θ 

c. Calculate maximum biomass and lipid production rates by solving for 

“photoinhibited” metabolic flux distributions. 

d. Calculate active biomass and lipids production rates using the carbon 

allocation algorithm. 

e. Solve for final metabolic flux distributions at current light interval by fixing 

active biomass and lipid production rates. 
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6. If during dark period do as follows: 

a. Calculate maximum starch consumption rate from starch consumption 

kinetics. 

b. Solve for metabolic flux distributions to determine maximum possible lipid 

productivity. 

c. Calculate lipid production rate from carbon allocation algorithm. 

d. Solve for final metabolic flux distributions by setting upper boundary of 

starch consumption rate and lipid fixing production rate. 

7. Return metabolic flux rates and variables at present time through solution struct. 

A2.2.2. sFBAcalc 

This function carries out the whole calculation by calling FBAcalc and updating variables 

after obtaining production and consumption rates at each timestep. This function receives 

the setup struct variable PBR and returns the solution struct variable solution. Moreover, 

it contains code for calculation monitoring and data saving. 

A2.2.3. Nutrient consumption kinetics 

In this model, nutrient uptake kinetics are restricted to CO2, starch and nitrogen source. 

Kinetic models are included in separate scripts in the folder consumptionKinetics. 
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A2.2.4. Light distribution 

Irradiance and light uptake distributions are calculated in the folder light with biomass 

concentration-dependent functions, with the light distribution model at its core, along 

with functions for both internal and external lamps. 

A2.2.5. Carbon allocation 

The carbon allocation algorithm in this model is contained in both lipids and 

consumptionKinetics folders. The latter being mainly due to the nitrogenUptake 

functions, which serves the purpose of calculating intracellular nitrogen availability and 

transforming it into the nitrogen-dependent penalty function. In addition, inside the folder 

lipids lie the modification of the GSM model for the inclusion of lipid and starch demand 

reactions.  

A2.2.6. How to run 

All data regarding the prediction of culture growth is contained in the script data, which 

is called by PBRgeneration to create the struct variable with all the relevant information 

called PBR. To run a calculation, define appropriately the variables and parameters in data, 

and run the main script run. 

A2.3. Regression functions 

Parameter regression functions are contained in the folder regression. There lies the 

calculation of the error function which is evaluated by the optimization function fmincon. 
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The cases of study included in this work are located inside the folder cases. One dedicated 

folder of data-defining functions belongs to each case of study, in this work Adesanya et al. 

and Kim et al. For each case, basic settings for prediction are defined in the script called 

data and are called by the function run, which generates the setup struct variable PBR and 

a pre-allocated solution variable solution, both of which are inputs to sFBAcalc. 

For parameter regression calculations, the script data was slightly changed to allow for 

optimization variables to be changed by the main regression script regressionModel. The 

regression data script is called data_reg. Parallelization is recommended for this 

computation (6+ cores). 

A2.4. Optimization functions 

These functions are contained in the folder optimization. The optimization followed the 

same strategy of calculation as the regression, which required the script data to be altered 

into data_opt. The data script is called by the main script optimizationPBR, which uses 

a fitness function in the same folder. 

A2.5. Visualization functions 

A set of suggested visualization functions are provided in the folder visualization. All the 

results figures in Chapter 4 were generated using these functions. For a quick summary of 

results, call summary(solution), or for a more detailed report, call report(solution). 


