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Abstract

In this work the α-transfer reactions mechanism is studied as a technique to populate medium-to-
low spin states in nuclei that cannot be produced with enough intensity in the present radioactive
beam facilities. Uses of the α-transfer population mechanism to measure g factor and lifetimes,
with the Transient Field Technique and the Doppler Shift Attenuation Method respectively, are
presented. Some aspects of the theoretical model to approach the understanding of the mechanism,
such as the Distorted Wave Born Approximation in combination with Optical Potentials, are also
presented. Experimental challenges for future uses of the α-transfer technique are shown, and
possible experimental campaigns are proposed with all possible combinations of stable beams
that can populate radioactive nuclei.

As part of this work an experiment using the reaction 28
14Si + 12

6 C −→ +32
16S + 4He + 4He was

approved by the Program Advisor Committee at University of Sao Paulo, and will be carry out
during 2019. A segmented γ-Ray detector LYSO(Ce) with an array of 16 ∆E-E particle detectors
will be part of the detection system. In future experiments, it is expected to obtain a set of more
detailed nuclear structure parameters to unveil the structure of the populated states.

Keywords

Alpha-transfer reactions, g factor, lifetime, Transient Field Technique, Doppler Shift Attenuation
Method.
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Resumen

En este trabajo, el mecanismo de reacciones de transferencia alfa, es estudiado como una téc-
nica para poblar estados de espín de medios a bajos en núcleos que no pueden ser producidos
con suficiente intensidad usando las herramientas experimentales actuales para producir rayos de
núcleos radioactivos. El uso del poblamiento de estados radioactivos en el núcleo por medio del
mecanismo de transferencia alfa, en combinación con las técnicas de Campo Transiente y Método
de Atenuación por Corrimiento Doppler, para medir factores g y tiempos de vida respectivamen-
te, es presentado. Algunos aspectos del modelo teórico usado para bosquejar el entendimiento
del mecanismo de transferencia alfa, tal como la aproximación de onda distorsionada de Born en
combinación con el uso de potenciales ópticos, son también presentados. Los desafíos en el uso de
la técnica de transferencia alfa en futuros experimentos para la medición de factores g y tiempos
de vida son mostrados junto con la proposición de unas posibles campañas experimentales que
utilizan todas las posibilidades de obtener núcleos radioactivos a partir de proyectiles estables.

La fase exploratoria de estas campañas experimentales, comienza con la realización de un expe-
rimento que utiliza la reacción 28

14Si + 12
6 C −→ +32

16S + 4He + 4He, el cual fue aprobado por el
Comité Asesor de la Universidad de São Paulo y será llevado a cabo en el año 2019. El sistema
de detección conaistirá de varios detectores LYSO(Ce), los cuales constan de la unión de varios
segmentos de cristales semiconductores y se encargarán del registro de la radiación gama y de
un arreglo de 16 detectores ∆E-E que registrarán las partículas emitidas durante la reacción. En
futuros experimentos se espera obtener un conjunto más completo de parámetros de estructura
nuclear que permitan develar la estructura de los estados poblados por la reacción.

Palabras Clave

Reacciones de Transferencia Alfa, Factor g, Tiempo de vida, Técnica de Campo Transiente, Mé-
todo de Atenuación por Corrimiento Doppler.
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Chapter 1

Introduction

Nuclear physics studies present several questions with outstanding challenges for physical

sciences. The chart of nuclides gives a general landscape of the main characteristic of

stable and radioactive nuclei, and plays the same role as the periodic table in atomic physics. The

periodic table is the most important referent to study the atoms and classify them. In nuclear

physics the chart of nuclides (also called the nuclear map) is the referent in which all nuclei are

sorted under parameters which define their internal structure.

The nuclear map contains a complete collection of nuclides of a real or hypothetical chemical ele-

ment. Every nuclide is positioned corresponding to its number of nucleons in a (Z,N) coordinate,

where Z is the number of protons and N is the number of neutrons.

The nuclear map is divided by regions conformed by groups of nuclei with specific characteristics.

The black line, for example, is formed by the most stable nuclei; that is, the ones that do not

decay into another nucleus with less mass. The part of the black line formed by nuclei with Z = N

whose number of protons and neutrons are even are formed by alpha-particles [9]. The yellow

region belongs to the nuclei whose more probable way of decaying is by emitting alpha-particles.

An alpha-particle is the nucleus, 4He which is made up of two protons and two neutrons, it is also

called α-cluster. The nuclear structure based on α-clusters as the constituents of the nucleus is

one of the most senior nuclear structure models. Up to day, the α-cluster model has been able to

explain the nuclear structure of light and heavy ions with good accuracy [9].

17



Figure 1.1: In the chart of nuclides each point plotted represents the nuclide of a chemical element.
The different colors represents the regions conformed by nuclei with an specific type of decay
described in the conventions. Figure adopted from https : //www.revolvy.com/page/Stable −
nuclide

The Alpha-Transfer Reactions (ATR) are a class of direct nuclear reactions which consist of the

donation, or the capture of an α-particle by the projectile or target. The alpha-particle transfer

mechanism has been studied from the 60’s to the 90’s and complex theoretical descriptions of the

problem was developed [10–12]. The scientists at that time were expecting that future compu-

tational facilities will allow using the theoretical description in order to make predictions about

alpha transfer reactions. Nowadays, there are many unknown aspects of the reaction mechanism

and several questions have to be solved to be able to retrieve a deep understanding of ATR. The

nuclear structure information is closely related to the reaction mechanism [13]. Models which de-

scribe α-cluster nuclei together with interaction models will be able to provide information about

the reaction mechanism.
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Chapter 1. Introduction

On the other hand, ATR has been used as a method to populate low-to-medium nuclear spin

states. Reactions of the type X+ 12C −→ (X+α) + 2α with energies around the coulomb barrier,

have been used in transient magnetic field experiments to obtain nuclear magnetic moment mea-

surements [3, 14–21]. The great experimental advantage of α-Transfer Technique is the provision

of radioactive products without the need to handle a radioactive beam. This opens the possibility

to study many low lying spin states in nuclei that are close to the stability line of the nuclear map

with stable beams. Most of these nuclei are even numbered for protons and neutrons and present

collective effects. Nevertheless, α-Transfer reactions method is not the optimal to populate spin

states. There is a lack of precision in the g-factor measurements obtained in experiments that

use ATR as a technique to populate spin states. The problem is the resulting low spin alignment

(nuclear spin without a preferable m-projection) after the states population. As a consequence of

the poor spin alignment, isotropic γ distribution of the decay is observed. The angular correlation

function tends to be flatten when the anisotropy of the γ radiation decreases, as a consequence

the g factor uncertainty increases.

The aleatory m-projection of the spin state in nuclei populated with ATR is related with the re-

action mechanism and there is a lack of knowledge regarding this aspect. Theoretical approaches

to understand transfer- and pick up reactions mechanism as DWBA in combination with Optical

Potential have presented a good fit to differential cross sections in heavy and light nuclei reac-

tions [22]. However, available experimental data is not good enough. As the reaction mechanism

is closely related with nuclear structure [13], future experiments of α-Transfer reactions should

be aimed to get more information of 12C structure. This knowledge could give an answer how to

truly improve the g-factor measurement.

This work is aimed to review the state of the art of the Alpha-transfer reaction technique and

its’ usage to measure nuclear magnetic moment measurements. From this review, we expect to

propose an experimental setup which allows to improve the angular correlation function of the

gamma radiation, as well as a specific experiment that uses such setup. It is expected that future

experiments will contribute not only with the g-factor measurement precision but also with a better

understanding of the alpha transfer reaction mechanism. This can be achieved obtaining nuclear
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structure information as: α widths, spectroscopic factors, and wave functions as the ultimate goal,

to unveil 12C structure.

20



Chapter 2

Theoretical Fundamentals

The nucleus is a finite quantum system, composed of particles of 1/2 spin (fermions) called

nucleons, which are governed by the Pauli exclusion principle. The nucleons are confined

into the nuclear radius which has an order of r ≈ 10−15 m, they have high kinetic energies and move

at relativistic velocities (∼ 0.32 c [23]). Nucleons are massive particles that are subdivided into

two classes, protons and neutrons. Protons are positively charged particles, while neutrons have a

zero net charge. Protons and neutrons are under the action of a potential of the atomic nucleus.

The average nuclear potential can be seen as originating from a mean field which depends on the

interaction of one nucleon with the remaining ones. The associated distribution of the nuclear

mass and charge give us, in turn, information about the nuclear shape and, to some degree,

the symmetries of the nuclear potential. The structure and ordering of atomic nuclei has been

described by different models of nuclear structure, such as, the liquid drop model and the shell

model.

A useful tool to study nuclear structure is via the Nuclear Magnetic Moment (NMM). The origin

of NMM can be found both in the proton currents within the nucleus and the intrinsic magnetic

moments of protons and neutrons. The nuclear magnetic moment value allows to predict the

nucleus internal structure [24], and therein lies the importance of its measurement.

In this chapter will be presented a general description of nuclear magnetic moments together
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with the Larmor’s theory, which describes the magnetic moment dynamics under influence of a

magnetic field. Larmor’s theory presents the physical principle on which specialized experimental

techniques are based for the measurement of NMM in short-lived states.

2.1 Structure Models of Nucleus

Nuclear structure models are the quantum mechanical description of the behaviour of nucleons

(proton and neutrons) inside the atomic nucleus. There are many models which describe the

nucleus, the validity of the model depends on the characteristic of the nucleus. Structure models

can be classified in two big groups, single particle models and collective models. Single particle

model consider that all of nuclei properties depends of only one nucleon and consider that the rest

of the nucleons are coupled or paired in energy levels cancelling their contribution to the total

angular momenta. On the other hand, collective models consider nucleus as a rotating hard core,

and nucleons exhibiting the same behaviour. The next subsections are aimed to present the basic

aspects of this two models.

2.1.1 The Shell Model

Nuclear shell model has similarities with Fermi gas model where the nuclear structure is described

in terms of nucleons occupying energy levels in a separate potential for protons and neutrons.

These energy levels are predicted by a harmonic oscillator potential. The difference between

Fermi gas model and shell model consist in the prediction of the energy levels.

For the shell model, a phenomenological nuclear potential of (2.1) named the Wood-Saxon po-

tential, was introduced in the Schrodinger equation to obtain the level scheme prediction. This

potential depends on the distance r.

V (r) = − V0

1 + e(r−R)/a
. (2.1)
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Where a ≈ 0.65 fermi, V0 ≈ 57 MeV+corrections and R = 1.2A1/3 where A is the total number

of nucleons. Nevertheless, the Woods-Saxon potential is complicated to solve and describes the

behavior for one independent particle. A new nuclear potential called Modified harmonic oscillator

was proposed. This potential is an interpolation between harmonic oscillator and square well. In

addition, the shell model includes the spin-orbit interaction in the Hamiltonian, which allows the

correct prediction of the magic numbers, the name that was given to the numbers of nucleons such

that they are arranged into complete shells within the atomic nucleus. Spin-orbit interaction was

proposed by Maria Goeppert Mayer in 1949 [25]. Thus, the energy level scheme predicted by shell

model is as the one shown in Figure 2.1. The labels on the levels are different from the symbols

for atomic case. The energy levels increase with orbital angular momentum quantum number `,

and the s, p, d, f... symbols are used for ` = 0, 1, 2, 3... exactly as the atomic notation. But there

is really no physical analog to the principal quantum number n. The numbers associated with the

level start at n = 1 for the lowest level associated with a given orbital quantum number, giving

such symbols as 1g which could not occur in the atomic labeling scheme. The quantum number

for orbital angular momentum is not limited to n as in the atomic case. The spin-orbit interaction

splits energy levels predicted by the potential well including angular momentum effects. The

multiplicity of the states is given by 2j+1 which indicate the number of nucleons that can occupy

the level. The parity of the state is (−1)`.

It is worth to say that there is no a general level scheme for all nuclei, every nucleus has its own

level scheme predicted by shell model and depend of its own particular characteristics. This model

it is not able to predict any excited state, all nuclear measurements as total angular momentum,

magnetic moment, electric moment, among others predicted from the shell model are for nuclei

in their fundamental state. There are a lot of modifications of the shell model which are aimed

to describe every kind of nucleus, but we are interested in showing just the basic generalities of

the shell model.

As is shown in Figure 2.2 nucleons occupy level scheme with a number of occupation equal to

2j + 1 following the Pauli’s principle. Neutron potential is deeper than proton potential for the

contribution of Coulomb proton-proton repulsion to the potential. Neutron are particles whose
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2.1 Structure Models of Nucleus

Figure 2.1: Shell model level scheme prediction. In the right side, some magic numbers, which
are predicted from the spin-orbit interaction included by Mayer, are shown. The inclusion of the
spin-orbit term, predict the magenta level scheme.

net total charge is equal to zero, therefore they are not affected by Coulomb effects.

Every couple of neutrons and protons has a nucleon total angular momentum contribution equal to

zero leaving only the unpaired nucleon contribution left. This is an independent particle behaviour

which works well to predict nuclear measurements in even-odd or odd-even nuclei. For even-even

nuclei, collective are strongly observed, and another nuclear structure model is used to describe

their behaviour. This model will be presented in the next subsection.

2.1.2 Liquid-Drop model of nucleus

It was first proposed by George Gamow and then developed by Niels Bohr and John Archibald

Wheeler. Is the most simple model and describes the nucleus as a tight binding particles set, very

close to each other, with a sharp border surface and a homogeneous density. The model supposes

the nucleus to has a behavior similar to an incompressible liquid-drop in which nucleon would play

the role of molecules in the drop. Due to the Coulomb repulsion, protons tend to reside closest
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Figure 2.2: Representation of energy level occupation . The blue line indicates the nuclear potential
for neutrons and the red one the potential for protons. The dashed line indicates the Coulomb
potential. Proton and neutron with a given spin, occupy energy levels with an occupation number
given by 2j+1, fulling degenerate energy levels by pairs with spin up and down cancelling the total
angular momentum value. Nuclear spin or total angular momentum rises from the contribution
of the one unpaired nucleon.

to the surface. The forces on the nucleons on the surface are different from those on nucleons

on the interior where they are completely surrounded by other attracting nucleons as is show in

Figure 2.3. This is something similar to the surface tension as a contributor to the energy of a

tiny liquid drop. In the liquid drop model, the volume of the nucleus is proportional to the mass

number A, and the surface is proportional to A1/3. Nucleons are under the action of five type of

interactions. In Figure 2.3 are shown three of these interactions.

The Bethe-Weizsacker formula or the Semi-empirical mass formula is the relation which predict

the binding energy between nucleons. The equation contains the sum of all type of interaction

between nucleons assumed by the liquid drop model as it follows:
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2.1 Structure Models of Nucleus

Figure 2.3: Illustration of the neutron and proton potential. The liquid-drop model predicts an
inner structure of the nucleus so that most of the protons are placed in the surface detached from
the center due to the Coulomb repulsion. Some nucleon-nucleon type of interaction and the nuclear
radius of the liquid drop model can be observed at the bottom.

B(A,Z) = avA− asA2/3 − acZ
Z − 1

A1/3
− aA

(A− 2Z)2

A
± δ(A,Z) (2.2)

Where B(A,Z) is the total binding energy of the nucleus, Z is the number of protons and A is the

total number of nucleons. The meaning of every term of (2.2) is presented in Table 2.1 following

the same order as the terms are disposed in (2.2).
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Table 2.1: Table of description of Semi-Empirical mass formula terms. Every term contains
information about interaction which liquid-drop model assumes to describe nuclear structure. In-
formation here sorted, consider the fundamental aspects of the model.

Term Description

Volume (av)

Since the nucleons are interacting with the

same neighbors, and the nucleus is assumed to

has a homogeneous density, so the binding en-

ergy is assumed to be the same for every nu-

cleon as well. The volume term energy is a

consequence of the strong nuclear force. Then,

the volume term is equivalent to A multiplied

by a volume energy av = 15.85 MeV. This en-

ergy is smaller than the binding energy of the

nucleons which is of order of 40 MeV . [26]. The

quantity av come from the Fermi energy con-

cepts.

Surface (as)

Notwithstanding the nucleons was assumed to

have the same binding energy to calculate the

contribution of the volume term, a correction

has to be included. As is shown in Figure 2.3

there are nucleons some arranged in the surface.

This nucleons have less surrounding neighbors

and binding energy must be reduced. The sur-

face term is then negative and proportional to

the sphere area of the nucleus (of empirical ra-

dius R = 1.2 fmA1/3) asA2/3 = 18.1A2/3 MeV.
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Coulomb (ac)

Coulomb term is associated to protons. As the

protons have equal charge this term is nega-

tive because makes lower the binding energy be-

tween protons. Coulomb term is proportional

to the proton pairs 2Z/R. The ac factor has

been calculated to be equal to 0.71 MeV.

Asymmetry

(aA)

This term is complex to explain. Is based only

on the Pauli exclusion principle. Neutrons and

protons occupy energy levels following the ex-

clusion principle. As energy starts to increase,

nucleons would be at higher levels, increasing

the total energy of the nucleus and decreasing

the binding energy. Heavier nuclei commonly

have more neutrons than protons. The extra

neutrons provide compensation for the repul-

sion between protons via proton-neutron at-

tractive forces. Nevertheless, Z = N nucleus

is the most stable, and as neutron number is

increasing in heavy nuclei, they will get more

and more unstable. The asymmetry term cal-

culates the "energy of instability" of heavy nu-

clei with an excess of neutron mass. The coef-

ficient aA ∼ 23.7 MeV.
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Pairing

(δ(A,Z))

Pairing term represents the effects of spin-

coupling. As asymmetry term is lower for nu-

clei with Z = N , an even-even nucleus is more

stable due to spin-coupling between their nucle-

ons. So δ is a parameter which depends on A

and Z and it represents a positive contribution

for the binding energy in even-even nuclei (+12

MeV), a negative contribution in odd-odd nu-

clei (-12 MeV) and a null contribution in even-

odd, odd-even.

The binding energies of nucleons are in the range of millions of electron volts (MeV) compared

to tens of eV for atomic electrons. For that reason, a de-excitation process dramatically more

energetic for nuclei than for atoms. In an atomic transition a photon might be emitted in the

range of a few electron volts, maybe in the visible light region. In a nuclear transition a more

energetic photons can be emitted producing gamma-radiation with quantum energies in the order

of MeV.

The binding energy curve is obtained by dividing the total nuclear binding energy by the number

of nucleons A. The curve is disposed in Figure 2.4. The binding energy per nucleon increases

dramatically with mass number A up to 20. For A < 20 exists a peaks recurrence of nuclei

whose mass number are multiples of four and they contain not only equal but also even number

of protons and neutrons. Then the liquid-drop model predicts the stability of even-even nuclei.

The curve becomes almost flat for mass number between 40 and 120. Beyond 120, it decreases

slowly as mass number increases.

There is a maximum of binding energy per nucleon for A = 56 corresponding to the iron nucleus

56
26Fe of 8.8 MeV, becoming it the most stable one, but in general the Fe nuclei are the most stable.

The average binding energy is about 8.5 MeV for nuclei in a range of mass between 40 and 120.
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Figure 2.4: Binding energy per nucleon prediction from the semi-empirical mass formula. The
peaks in the left side are the binding energy for some even-even nuclei. The most tight binding
nuclei is the 56Fe. The left and right sides belongs to nuclei yields for fission and fusion respectively.

These nuclei are comparatively more stable and non radioactive. For masses higher than 120,

the curve drops slowly, and nuclei becomes unstable and radioactive. For example, the average

binding energy per nucleon uranium isotopes is about 7.6 MeV, they are radioactive and unstable.

The lesser amount of binding energy for lighter and heavier nuclei explains nuclear fusion (left

side of Figure 2.4) and fission (right side of Figure 2.4) respectively.

Large amount energy is liberated in a fusion process (when a lighter nucleus is fused with a heavier

one), and also in the opposite, a fission process (when a heavier nucleus disintegrate into lighter

nuclei).

Liquid-drop model is for the collective models of the nucleus, what shell model is for the single

particle models of the nucleus. Collective models are of special interest for this work due to 12C

nucleus, is an even-even nucleus whose nuclear structure presents a collective behaviour. In the

next section we are going to show the most basic aspects of collective models for the prediction

of nuclear internal states.
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Collective Models

Shell model predicts all even-even nuclei to have IP = 0 in their ground state. The existence of

a first excited state at one energy of 1 MeV with IP = 2+ is a property of even-even nuclei in

nearly all cases, it does not matter their level structure [27]. Such property is known as a collective

property and it is not possible to explain it from the shell model. The collective model explains

the existence of this low-lying state, considering that all nucleons belonging to a nucleus make a

transition the first state together.

There are two general models which explains the behaviour of nucleus as a collective: the vibra-

tional model and the rotational model, let us review some basic aspects of them.

The vibrational model

The nucleus is considered as a liquid drop that vibrates with a high frequency, whose shape is

in average spherical. All nucleons are vibrating such that they deform the shape of the nucleus.

Every vibrational mode is characterized by λ and they are associated with the total angular

momentum value. The corresponding states to a vibrational mode λ are actually eigenstates of

total angular momentum I = λ with well defined parity P = (−1)λ. In Table 2.2 are shown some

of this vibrations.

Table 2.2: Predictions of the vibration forms for two values of the nuclear spin based in the
vibrational model.

Quadrupole vibration (λ = 2): IP = 2+. Is the
fundamental mode of vibrational model. The

vibrations are not spherical and the nucleus oscillates
between prolate and oblate shapes.

Octupole vibration (λ = 3): IP = 3−. Includes
changes in the parity. Vibrations are complex in

sundry axes.

Fundamental state IP = 0+ is symmetrically spherical and there are no vibration. Vibrational

model is used for even-even nuclei with A < 150.
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The rotational model

Rotational model is applicable for the so-called deformed nuclei, these nuclei does not have a

spherical equilibrium position and are far from magic numbers regions (150 < A < 190, 220 <

A < 250 and A ∼ 24). Deformed nuclei shape can be prolate or oblate with a rotation axis

perpendicular to the symmetry axis as in Figure 2.5.

Figure 2.5: Deformed shapes for even-even nuclei predicted by the rotational model. The deformed
shape (prolate or oblate) is a characteristic associated with the electric moment.

Only deformed nuclei can rotate collectively. It is possible to define just one moment of inertia J

and the hamiltonian of even-even nuclei (with no nucleons external to the core) becomes

Hrot =
R2

2J
(2.3)

Where R is the collective angular momentum. For purely collective rotation I = R and it is said

that the nucleus is a perfect rotor. The energy values for the perfect rotor are:

EI =
~2

2J
I(I + 1) (2.4)

Where Iπ = 0+, 2+, 4+, 6+.... The sequence of states |I〉 whose energies are defined by (2.4) are

defined as a rotational band.
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In this section, we have presented the most referenced nuclear structure models. These models

are successful in understanding ground states in the most nuclei of the nuclear map. Nuclear

structure is crucial for the understanding of the interaction between nuclei (nuclear reaction). Let

us review some fundamental aspects of nuclear reactions.

2.2 Fundamentals of Nuclear Reactions

A nuclear reaction takes place when two nuclei interacts. In a nuclear reaction there are a projec-

tile, a target and products. Nuclear reactions can be classified by the outgoing products and by

the mechanism type which governs the process, like this:

1. Direct reactions: This type of reaction refers to the ones in which projectile interacts only

with the nucleons of the surface of the target. During the interaction some nucleons can be

shared between target and projectile, removing or inserting them of nuclei involved in the

reaction. The time needed for the interaction is typical of 10−22 s.

2. Compound reactions: Contrary to the direct reactions, in compound reactions, projectile

and target are completely fusion. After the reaction projectile and target become indistin-

guishable and together constitute the particular excited state of the compound nucleus. The

compound nucleus is excited by both the kinetic energy of the projectile and by the binding

nuclear energy. The time scale of compound nucleus reactions is of the order of 10−18 s –

10−16 s, but lifetimes as long as 10−14 s have been also observed [28].

A broadly use notation for nuclear reaction is the follow

X(a, b)Y.

Where a is the projectile, X is the target, Y and b are the products.

An important aspect of nuclear reactions is the Coulomb barrier. In a nuclear reaction, the

projectile has to overcome the Coulomb repulsion having larger energy than the Coulomb barrier
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energy.

The Coulomb barrier

Due to the coulomb repulsion between protons from the projectile and target, there is an energy

which tends to separate away the nuclei of a reaction. As nuclei are getting closer this repul-

sion energy increases, but when nuclei are close enough the Coulomb barrier is overcome by the

projectile and starts to interact with the target. The energy of the coulomb barrier is given by.

ECB =
kZ1Z2e

2

rc
with k = 8.99× 109 Nm2/C2. (2.5)

Where Z1 and Z2 are the number of protons of the projectile and target respectively, e is the

elemental charge 1.60217653× 10−19 C, and rc is the interaction radius of the nuclei.

2.2.1 Cross Section

For a flux of ions F that are being shot against a target of area A with a number n of scattering

centers as in Figure 2.6, there is a number of scattering events expected in a solid angle dΩ whose

direction is deviated on an angle θ with respect of the beam axis. The number of scattering events

with respect to the solid angle per unit time is called the differential cross section. Is one of the

most important parameters in the study of nuclear reactions, and can be expressed as it follows.

dσ

dΩ
=

Number of reactions
∆t per scattering center through dΩ in (θ)F

.

Then

dσ

dΩ
=

N

N0nx∆Ω
. (2.6)

Where
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• N - Number of particles registered by the detector.

• N0 - Total number of particles falling on the target.

• n = ρNA/M - Number of nuclei per unit volume on the target thickness (scattering centers).

• x - is the target thickness.

• ∆Ω - the solid angle which could be determined from the system configuration.

Figure 2.6: Cross section representation.

The total cross section σ is then defined as

σ =

∫
dσ

dΩ
dΩ. (2.7)

Roughly speaking ω is a measure of the probability that the reaction happens. Total cross section

has dimensions of area per nucleus and its unit is the barn (1 b = 100 fm2 ).

2.2.2 Optical potential

The optical potential comes from the analysis of an elastic scattering process by partial waves [29].

The analysis is made in the description of the time evolution of the states associated to a particle

scattered by a potential. The state of the scattered particle is represented by a wave packet,

whose time evolution is obtained if it is expressed as a superposition of stationary states. Those

stationary states are the associated solutions of the Schrodinger equation of the system and have

a well-defined energy E. Thus, the total wave function ψ(r) it is expressed as a superposition of
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a plane incident wave with a scattered spherical wave. This total wave function can be written

asymptotically as

ψ(r)⇒ eik·r + f(Ω)
eikr

r
for r ⇒∞. (2.8)

Where f(Ω) is the total scattering amplitude which depends on the angle of the scattered waves, r

is the distance to the potential, k is the wave number and the term eikr

r is the spherically outgoing

wave . The information about the potential is contained in the scattering amplitude (or nuclear

phase shift which defines it).

The plane wave packet has a plane wave expansion as it follows.

eikz =
∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ). (2.9)

The scattering amplitude is related with differential cross section this way

dσ

dΩ
= |f(Ω)|2. (2.10)

The simplest form of the optical potential

VN(r) = Uf(r) + iWg(r). (2.11)

Where U and W are the depths of the real and imaginary parts, and f(r) and g(r) their radial

form factors.

That is so called to make an analogy with the refraction index in optics, where adding an imaginary

part accounts for the processes in which light is absorbed by a medium.

The optical potential has successfully predict the cross section of many reactions and it is broadly

referenced and used to understand nuclear reactions [30].
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2.2.3 São Paulo Potential

The São Paulo Potential (SPP) it is a model based on a double-folding potential with an additional

factor. The SPP potential is attempts to describe the mean nuclear potential of two interacting

nuclei [31] and has the form

VSPP(R, Erel) = VFold(R)e−4v
2/c. (2.12)

Where c is the speed of the light, v is the speed of relative motion between nuclei, R is the relative

coordinate between the center of mass of the projectile and the target (see Figure 2.7).

Figure 2.7: Coordinate system of two nuclei (projectile and target) with masses A1 and A2.

Vfold is the double folding potential given by

VFold(R) = V0

∫
dr1

∫
dr2ρ1(r1)ρ2(r2)δ(r12 = R + r2 − r2). (2.13)

Where the ρi parameter represents the distributions of the nuclei center of mass at the ground

state of the i-nucleus, they are called density distribution and their values are obtained from shell

model. The parameter V0 = −456 MeVfm3.

The São Paulo potential has described heavy-ion reaction successfully in a broad energy rank [32].

The SPP has the advantage of depends only on the distance between the nuclei, energy and the

relative velocity between the nuclei.

One of the perspectives of this work is to use the SPP potential to study alpha-transfer reactions.
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In this section we have review the fundamental aspects of nuclear reactions. To enter to the main

part of this work, the next section is aimed to present different aspects of the nuclear magnetic

moment.

2.3 Nuclear Magnetic Moments

To explain softly the meaning of magnetic moment, let’s remember the action of the torque in

a DC motor with a coil moving around an axis (see Figure 2.8). When electrical current I pass

through the coil with a longitude L and width W under the action of a magnetic field B, it

produces a magnetic force F (Lorentz force) perpendicular to the axis of rotation and F produces

a torque which turns the DC motor.

Figure 2.8: Schematic representation of forces in a DC motor. In a DC motor with electric current
I passing through two coils which are under the action of a magnetic field B, it produces a torque
τ perpendicular to the rotation axis. Adapted from hyperphysics.

As it follows in the inferior-left part of Figure 2.8, torque is proportional to I and B magnitudes

multiplied by area A of the coil, multiplied by sin of the angle between direction of magnetic field

and normal to coil θ.
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τ = IBA sin θ. (2.14)

Torque on a DC motor is related to the characteristic of the coil. They are basically: the area

A and the current-carrying I. Now, in general, this characteristics on any current loop can be

summarized on its Magnetic Moment µ as it follows,

µ = IA. (2.15)

Figure 2.9: Graphical representation of dipolar magnetic moment µ induced by a current loop I
with area A. Magnetic moment is oriented perpendicular to the current loop plane in the right-hand
rule direction.

The magnetic moment is a vector quantity with direction perpendicular to the current loop.

2.3.1 Quantum description of Magnetic Moment

Consider a charged particle +q and mass m moving along a perfectly circular loop of radius r at

a velocity v, as shown in Figure 2.9, produces an electric current

I =
qv

2πr
, (2.16)

therefore, the magnitude of (2.15) becomes:
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µ =
qva

2πr
(2.17)

=
q

2πr
πr2v

=
qrv

2
.

Adding a factor m/m (where m corresponds to the mass of the charged particle) in (2.17) and

taking into account that the magnitude of the angular momentum is given by |`| = mvr, we have:

µ =
qmvr

2m
⇒ q`

2m
, (2.18)

finally, taking the corresponding vector magnitudes, the dipole magnetic moment is given by:

µ =
q

2m
`. (2.19)

In nuclear physics, nuclear spin I = ` + S is the equivalent to the total angular momentum J.

Then, the mathematical relationship for the magnetic moment of one nucleon is,

µ = g
e~

2mN
I. (2.20)

Where the g factor is a dimensionless correction value which has a quantum mechanical prediction

(see Appendix A for more details), mN and e are the mass of the nucleon and the proton charge

respectively. It is convenient to introduce the so called nuclear magneton. This term refers to

the magnetic unit for the nuclear magnetic moment, which obeys the relationship

µN =
e~

2mN
.

The approximate values of the nuclear magneton are arranged in Table 2.3.
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SI CGS
5.05078353(11)× 1027Joules/Tesla 3.1524512550(15)× 10−8eV/Tesla

Table 2.3: Nuclear magneton values for two different unit systems.

The nuclear magnetic moment is the sum of the individual magnetic moments of each nucleon

that composes the nucleus

µ =
A∑
i=1

µi. (2.21)

Where A is the total number of protons and neutrons. The expression (2.21), can be decomposed

into;

µ =
Z∑
i=1

µi +
N∑
j=1

µj . (2.22)

Where Z and N, are the total number of protons and neutrons respectively. Nuclear magnetic

moment has a contribution of each proton and neutron inside the nucleus. As nucleons have

independent contribution to the total angular momenta, they have a different g factor value for

protons and neutrons. The respective values of g factor are arranged in the Table 2.4. The sign

of the factor g, indicates if the magnetic moment is parallel (positive) or nonparallel (negative)

to the total angular momentum. It is important to remark that we will mainly mention g factor

value along this document, but it is very easy to migrate from magnetic moment value to g factor

with the relation (2.20).

Nucleon g` gS
p 1 +5.5858
n 0 -3.8263

Table 2.4: Table of g factors associated with the orbital angular momentum and the spin for
protons and neutrons [5].

The magnetic moment does not have the same direction as the total angular momentum. In

concordance with Table 2.4, the different values of the g factor, will cause the magnetic moment
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vector to point to a different direction than I, as shown in Figure 2.10.

(a) (b)

Figure 2.10: Graphic representation of the magnetic moments of different nucleons. In (a) is
shown the magnetic moment produced by the protons which are parallel to the nuclear spin I. In
(b) the magnetic moment has a non-parallel direction to the nuclear spin for a neutron. This
difference in the magnetic moment direction is key to understand the nuclei internal structure.
The determination of proton and neutron currents within the nuclei is related with the sing of the
magnetic moment and with its direction with respect to nuclear spin.

The expected value of |I〉 is defined as its maximum projection on the z axis as is shown in

Figure 2.11. This projection corresponds to the maximum value of the magnetic quantum number

M , that is, whenM = I [33]. The expected value of the nuclear spin, then follows the relationship

M = max Iz. (2.23)

The expected value of an arbitrary operator Ô in the maximum projection on the axis z, fulfills

the relation,

〈Ô〉 = 〈M = I|Ô|M ′ = I’〉. (2.24)
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(a) (b)

Figure 2.11: An illustration of the nuclear spin as a vector whose magnitude is the expected value
of its operator. In (a) the maximum projection of a state of spin on the axis z is shown. In (b)
all the possible values that M can take for a value of I = 2 are shown, it is noteworthy that the
maximum value of M is found in M = I.

Where the action of 〈Ô〉 makes the state |M ′ = I’〉 to become into a state of the same basis as

〈M = I|.

According with (2.24)

µ = 〈M = I|µ̂|M ′ = I’〉, (2.25)

Thus the magnetic moment has the value of its maximum projection.

µ = maxµz. (2.26)

For even-even nuclei the nuclear magnetic moment is equal to zero at ground states. There are

some exceptions including odd-odd nuclei, however they are present only in very few cases and

therefore not considered in this work. A large number of nuclei have g-factor values close to +0.5

(g ≈ Z/A), because of the collective effects that dominates the vast majority of atomic nuclei. A

prediction of the g-factor value in the case of collective effects is described in the next subsection.

The g factor prediction for collective nuclei
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When nucleus has collective effects, the g factor is no longer governed by the equation (A.7) and

is governed by [34]:

g = gπ
Nπ

Nπ +Nν
+ gν

Nν

Nν +Nπ
, (2.27)

Nπ is the number of proton bosons and Nν the number of neutron bosons, gν and gπ are the g

factors associated with each term. It can be considered an inert nucleus for which the intrinsic

spin of the nucleons is coupled and is zero, therefore gπ = 1 and gν = 0, thus;

g =
Nπ

Nπ +Nν
=
Z

A
. (2.28)

Besides the fact that neutron is an uncharged particle it has a magnetic moment different to zero,

which is attributed to its internal structure formed by three quarks. Furthermore, its intrinsic

magnetic moment is negative which means that the magnetic moment of the neutron tends to

precess counterclockwise in the direction of the magnetic field. This behaviour is fundamental for

the study of the structure of the atomic nucleus, the opposite signs in the intrinsic g factors of the

proton and the neutron open the possibility to determine if the wave function of a nuclear state

is dominated by protons or neutrons. Most of nuclei have a positive g factor, due to the double

contribution of both the orbital part and the spin part of protons.

In this section we have presented some aspects of nuclear magnetic moment, in the next section

we are going to present its dynamic under a magnetic field.

2.4 Larmor’s Precession

According with (2.14) and (2.15) and considering the vector product magnitude relationship,

torque is related with magnetic moment this way
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τ = µ×B, (2.29)

(2.29) is called Larmor’s theorem (see Appendix C for more information), this torque tends

to line up the magnetic moment with the magnetic field B, so this represents its lowest energy

configuration [35]. The potential energy associated with the magnetic moment is,

U(θ) = −µ ·B. (2.30)

Where U(θ) is a parameter which depends on the angle, since if energy associated to µ is higher,

magnetic moment vector will be less aligned with B and vice-versa.

Torque produces a translation of the magnetic moment and the spin forcing them to rotate around

the direction of the magnetic field, this movement is known as Larmor precession.

2.4.1 Precession Angle

The precession angle is the name given to the length of the arc traveled by the magnetic moment

and the spin when subjected to a magnetic field. Its mathematical deduction is described bellow.

Starting from (2.29), it is known that the magnitude of the torque vector is given by,

|τ | = B µ sinϕ. (2.31)

Where ϕ is an angle formed by the two vectors µ and B as Figure 2.12.

Torque can also be expressed as the rate of change between the spin and the orbital angular

moment, taking into account the measure of the arc length due to the change of position of the

spin, we have:

|τ | = ∆I
∆t

=
∆θ I sinϕ

∆t
= Bµ sinϕ. (2.32)
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2.4 Larmor’s Precession

Figure 2.12: Geometrical description of precession angle graphic. The magnetic field B vector
oriented in the direction of the z-axis which is the axis of rotation of mu and I. The displacement
is named ∆I, it corresponds to the arc length traveled in an angular change of ∆θ.

Applying this formalism to the case of the nucleus and returning to what has already been shown

in the previous section, we know that the magnitude of the nuclear magnetic moment is given by,

µ =
g e

2mp
I,

therefore,

|τ | = ∆I
∆t

=
∆θ I sinϕ

∆t
=

g e

2mp
I B sinϕ. (2.33)

Clearly ∆θ is equivalent to

∆θ =
g e

2mp
B∆t. (2.34)

∴ ∆θ =
g µN
~

B∆t.

This effect of precession have been widely used in the nuclear magnetic moments measuring of

short-lived spin states. In the next chapter, we will present experimental techniques based on
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Larmor precession, the relation with the angular distribution of gamma rays and their challenges.
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Chapter 3

Experimental techniques to measure Nuclear Magnetic

Moments of short-lived excited states: description and

challenges

During the last 100 years γ-spectroscopy experiments have been carried out using elegant and

innovative techniques. They have been used to collect measurements of electric moments,

charge radii, g-factor measurements, among others. The result, in the most of the cases, were

only obtained after overcoming challenging technology limitations. Techniques aimed to obtain

magnetic and electric moments measurements have been performed for specific lifetimes ranges

of nuclear states. Each method can be classified according to its time range effectiveness, as

Figure 3.1 shows.

Techniques as Transient Field (TF), have allowed measuring the g factor in nuclear states with

life-times of few picoseconds or less [36]. Less recent techniques as Recoil Into Vacuum (RIV)

have been used to obtain g-factor measurements as well, although they show more limitations in

comparison with TF. Such techniques exploit the principle of precession by submitting excited

nucleus under the action of strong hyperfine fields.

This chapter is aimed to present the experimental techniques used to measure NMM in very short-

lived states. We describe the transient field technique, showing the experimental performance
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Figure 3.1: Experimental techniques to measure Nuclear Magnetic Moment classified by their va-
lidity in different ranges of life times. The techniques mentioned in the figure includes: Transient
Field (TF), Recoil Into Vacuum (RIV), Time Differential Recoil Into Vacuum (TDRIV), Per-
turbed Angular Correlation (PAC), Time Differential Perturbed Angular Distribution (TDPAD)
and Nuclear Magnetic Resonance (NMR).

targets, accelerators, ion sources, magnets, detector arrays and while giving a general description

of data analysis to introduce the main challenge: the use of radioactive and no radioactive beams

to populate nuclear states, which is the central point of this work. In addition, an explanation of

how the Transient field technique can be used to obtain lifetime measurements will be made.

3.1 General description of precession experiments

Intensity and angular distribution of radiation emitted from nuclei are predicted by quantum

radiation theory. Depending on the nuclear spin projections, the angular distribution of the

gamma radiation of the decay will present the shapes shown in Figure 3.2

Figure 3.2: Angular distributions shapes predicted by spherical harmonics for I = 2 nuclear state.
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In γ-spectroscopy experiments the information of nucleus is obtained through the detection of

gamma radiation. Precession effects in the angular distribution of the emitted radiation are used

to estimate the value and sing of g-factor measurements. The Magnetic field intensity to produce

this precession depends on the interaction time, which is limited by how long lived the nuclear

state is. According to equation (2.34), the relationship between interaction time and magnetic

field strength for different values of ∆θ and taking g = 1 the Figure 3.3 is obtained.

Figure 3.3: Graph of τ against B for different values of precession angle. The interaction time
between the magnetic field and the spin, represented by the factor ∆t in (2.34) was replaced by the
Greek letter τ . This graph is built on a logarithmic scale.

From Figure 3.3 it can be conclude that huge magnetic fields are needed to produce a small

precession of the magnetic moment for short lived nuclear states. Magnetic fields with these

strengths can not be produced with current technology, only hyperfine fields reach such intensities

therefore experimental techniques have to be aimed to produce them.

3.1.1 Hyperfine Fields

Magnetic hyperfine fields are generated by hyperfine interaction between the nucleus and a inner-

shell electron. In experiments to measure nuclear magnetic moments of short-lived excited states,

hyperfine fields in experimental setups attempting to measure g factor can be generated by recoil-

ing in ferromagnetic solids or foil (TF) or recoiling into vacuum (RIV). In TF experiments, when

ions recoil beyond the target and get through in the ferromagnetic foil they can lose some or even
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all their electrons depending on the recoil velocity [37]. After implantation into the foil, unpaired

electrons from foil can be trapped by the nucleus, when only one is trapped by nuclear field the

hyperfine interaction occurs and transient magnetic field takes place. The situation is illustrated

in Figure 3.4.

Figure 3.4: Graphic representation of the spin-orbit interaction of a hydrogen atom. The light blue
circle represents the nucleus (+Ze), the red circle represents the electron (−e) and the dotted red
oval represents the hyperfine interaction.

Something similar occurs with ions recoiling into vacuum, as they start to recoil beyond the

target after the nuclear reaction, they lose all their electrons and becomes h-like ions (with just

one electron) hyperfine interaction takes place generating a free-ion hyperfine field.

For TF and RIV techniques, measuring the hyperfine field is needed for the g-facto restimation.

Calculations of transient fields could be made from first principles (Hartree-Fock) for the transient

field case, but charge state distributions of ions moving in solid ferromagnetic hosts are required,

and they are still unknown [38]. Parametrizations have been performed for the TF measurement.

Although, we will not go deep into this subject, is worth to recommend a good explanation avail-

able in [39]. For the RIV technique there have also been challenges for hyperfine field calculations

because of the electron configuration.

In the next section, details of TF technique will be presented.
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3.2 Transient Field Technique

Transient field (TF) experiments have consistently been used to measure g-factor of low-to-medium

spin states of heavy and light nuclei with life time in the order of picoseconds (cite Rutgers articles).

This section is aimed to present a basic notion of this method to obtain g-factor measurements.

TF technique is based on a three layer target (see Figure 3.5). In the first layer (called objective)

the nuclear reaction takes place. Objectives are generally constructed from sputtering deposition

of carbon on ferromagnetic layer. They have a typical thickness of 0.5mg/cm2 (less than 1 µm).

In this layer nuclei are excited and ejected with a certain recoil velocity towards the ferromagnetic

layer. Recoil velocities have a magnitude of around 0.06 c, which is not a considerable fraction

of light speed. The second layer, is made by a ferromagnetic solid, generally iron or gadolinium,

with a typical thickness of 5 µm. In ferromagnetic layer hyperfine interaction between nuclei and

electrons from host takes place while producing the transient field. In this layer, ions start to slow

down as well. Subsequently, the nuclei lead to the third layer (stopper) which is usually a copper

material with thickness between 6 - 10 µm and in this layer the nuclei are completely stopped.

The target is exposed to an external magnetic field produced by a cooled magnet (with a liquid

nitrogen cooled or He-cooled Closed-Cycle Cryocooler design), this magnet has two pole tips

which enclose the target at the top and bottom sides so the pole axis lays perpendicular to the

beam axis. The ferromagnetic layer becomes polarized when the the magnet provides a magnetic

field of 0.06 T. The external magnetic field direction (purple arrow in Figure 3.5) is changed

periodically in time intervals shorter than the beam pulse. This change induces he inversion of

the ferromagnetic inner field direction (black arrow), which in turn induces the inversion of the

hyperfine field direction (red arrow), finally producing an inversion in the precession movement of

magnetic moment. Both the magnet and the target are located inside a vacuum chamber

Beam production and population of nuclear states in TF experiments have two ways to be per-

formed; the first, coulomb excitation, involves radioactive beams to produce radioactive products

and to populate low spin states via elastic scattering reactions, and the second, Alpha Transfer
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Reaction, involves a non radioactive beam to produce radioactive products and to populate low-

to-medium spin states. We will give more details about this two ways to options by the end of

this chapter to introduce the central point of this work.

In TF experiments, inverse kinematic nuclear reactions are suitable given that heavy nuclei are

involved. It results convenient to accelerate heavy particles because it is more feasible that light

particles get enough kinetic energy from the reaction, to recoil through ferromagnetic host and

stopper layers and finally reach the particle detector. In the recoiling process nuclei have certain

probability to decay by gamma ray emission.

In transient field experiments usually low lying spin states are populated. Generally the I = 2

spin state with M = 0 projection is populated.

1 2 3

v

Figure 3.5: Graphic representation of a three-layer target. The thinnest layer (cyan) represents
the target, where the nuclear reaction takes place. The middle layer (green) represents the fer-
romagnetic material, where a fraction of the ions, are left with only one electron; in this layer
the hyperfine interaction produced by the transient field takes place. Finally, the stopper layer
(brilliant blue) stops the ions that made their way through the ferromagnet. The points attached
to the lines represent the ion probe and the red curve its γ-emission radiation.

TF experiments need a detection system which should be able to record both, recoil particles and

gamma rays. Different γ-detection systems have been used, from clover to gammasphere arrays,

with scintillator detectors (as NaI or BaF) or semiconductor detectors as High Purity Germanium

(HP-Ge). For most experiments, clover detectors are preferable for their high efficiency result of

the junction of 4 High Purity Germanium detectors [40]. Multi-detectors arrays, as gammasphere,

54



Chapter 3. Experimental techniques to measure Nuclear Magnetic Moments of
short-lived excited states: description and challenges

do not add considerable sensitivity. A large amount of detectors occupy insensitive angles and

detectors out of plane see a diminished anisotropy of the angular correlation [36]. Clover detector

is a junction of four HP-Ge detectors arranged in a clover leaves like shape. A typical clover

detector layout (see Figure 3.6) involves 16 HP Ge-detectors. Detector arrangement is crucial for

γ detection. Positions of the detectors are chosen so to record the small magnetic moment rotation,

while defined angles at which the slope of the angular correlation is large and the intensity of γ-

rays is not too low. When spin alignment is high in a quadrupolar decay, the highest probability

of emission is at 67◦ degrees of the beam direction.

Beam

Target

Particle
Detector

-Detectors

-Detectors

Figure 3.6: Typical γ-particle detection layout for TF experiments. This arrangement is the one
used for a quadrupolar transition whose x-z plane is represented by a green flower or clover leaves
in the figure. Particle detector is positioned behind the target to implement inverse kinematics
nuclear reactions. The clover detector is defined by the group of four Ge-detectors.

Particle detection is important for reaction products selection. For example, scattered particles at

180◦ degrees have a special interest since they are related with the interaction type, that is, they

give information about excitation functions making possible to know if there was a superficial

or inner interaction. Particle detector position depends on the kinematics, of the reaction. For

inverse kinematic an annular Si-surface-barrier particle detector located behind the target facing

the beam, is typically used to detect the recoiled particles. For direct kinematics nuclear reactions,

the detector is placed facing of the target. A thin beam stopper is placed on the particle detector
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behind or forward (depending on kinematics) the target to avoid any particle from the beam reach

to the detector. Furthermore, particle detection cone is placed out of the scattered particles range.

Only γ-rays in coincidence with backscattered particles are considered in the data analysis.

In the next section, the mechanism to measure the slight precession by means of the angular

correlation of gamma radiation will be explained.

3.2.1 Angular correlation function and g-factor measurement

The theory of the angular distribution of γ-rays has been systematically developed from nuclear

spectroscopy theory, both the formulas of angular distribution, and the transition probability

corresponding to gamma emission with wave vector k and a polarization ε between to states, they

are deduced using the time-dependent perturbation theory [41].

When the reaction takes place and nuclei reach excited states, the orientation of spins follows

a definite distribution. The spin alignment is a term that refers to the largest probability of

population for a specific quantum magnetic number (just one of all possible projections), which

means that after the reaction most of nuclei will show an anisotropic angular distribution of

gamma radiation with a well defined shape (Figure 3.2).

The spins of the excited nuclei can be aligned by the reaction, as is the case of Coulomb excitation

reactions, with the first layer of the target. This alignment is perpendicular to the direction of

the beam.

The angular correlation function of gamma radiation is described by

W (θ) = 1 +
∑
k par

Ak · Pk(cos θ), (3.1)

where Pk are the Legendre polynomials and Ak are coefficients that depend on the geometry of

the experimental array and the detection efficiency [42].

The direction of the transient field follows the direction of the polarization field of the alternating
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polarization ferromagnetic layer (up-down). This situation is illustrated in Figure 3.7. The mea-

surement of the precession is directly proportional to the rate of the change of the γ ray decays;

and these, in turn, have a different value according to the polarity of the field. The decay change

ratios for opposite polarities are calculated by the pairs of detectors arranged at opposite angles.

For the detector i and the detector j, the decay rate is [42]:

ρi,j =

√
εi ↑ εj ↓
εi ↓ εj ↑

(3.2)

Where εi ↑ and εj ↓ are the change ratios measured by each detector with different polarities

(up-down).

Figure 3.7: Graphical representation of the detection and the shift of the angular distribution of
the γ-radiation. The angular correlation function is calculated for the two different directions of
transient field (see W (θ)plot). The angular shift is produced by the nuclear magnetic moment
precession (represented in the bottom) which produce a rotation in the gamma-distribution.

In this way, the change rate of change of all the detectors is equal to the rate of change between

the detectors i, j arranged at opposite angles and can be defined as:
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f =
ρ− 1

ρ+ 1
. (3.3)

And the logarithmic slope parameter is given by:

S(θ) =
1

W (θ)

dW (θ)

dθ
. (3.4)

Finally, ∆θ will be the ratio between (3.3) and (3.4),

∆θ =
f

S(θ)
. (3.5)

Following the formalism presented in section 2.4.1 and taking into account the action of transient

magnetic field, (2.34) becomes an integral equation

∆θ =
gµN
~

∫ tout

tin

B[v(t)]e−
t
τd t, (3.6)

where tin and tout corresponds to the times when the ion enters and leaves, respectively the fer-

romagnetic layer1, B[v(t)] is the transient magnetic field which depends on the recoiling velocity

of the ion and τ is the life-time of the excited state that appears in the exponential attenuation

factor of the transient field. This equation is called integral of the precession, its sign can vary de-

pending on the orientation of the precession, that is, if the precession has an clockwise orientation,

precession integral will have a negative value, otherwise it will have a positive value.

Recoil Into Vacuum (RIV)

RIV is another experimental technique to obtain g-factor measurements of low spin nuclear states

with lifetimes in the order of picoseconds. This technique woks with hyperfine fields as well,

but in contrast to TF the ions produced in the reaction are recoiled into vacuum instead on the

ferromagnetic solid. Hyperfine field is produced by hyperfine interaction between the inner shell
1remember transient field appears for the interaction with ion and ferromagnetic electrons

58



Chapter 3. Experimental techniques to measure Nuclear Magnetic Moments of
short-lived excited states: description and challenges

electron spin and the nuclear magnetic moment. In a typical RIV experiment, the target layout

consists of a thin first layer where reaction takes place, free space instead of the ferromagnet and

a stopper. This stopper can be movable. As the ion is flying across the vacuum, detected gamma

radiation is being attenuated, g-factor measurement is obtained from attenuation functions as

well as lifetime measurements. One of the limitations of RIV technique is that the direction of

the precession can not be determined, therefore the g factor sing can not be known and a TF

experiment is required to obtain it.

In the next section, methods to obtain lifetime measurements in TF and RIV experiments, will

be presented.

3.2.2 Life-time measurements

Experimental setup for g-factor measurements that include hyperfine fields are commonly per-

formed in combination with Doppler Shift measurements to obtain life-time measurements. In

this section we will explain the general aspects of this technique.

Doppler Shift Measurements (DSM) of Nuclear lifetimes

Doppler shift principle has been used as a tool to measure lifetimes of nuclear states in the order

of few picoseconds or less. This method is based on the detection of emitted γ-rays by nuclei in a

de-excitation process, while they move. The detection of γ-rays will be affected by Doppler effect

and a energy shifted will observed. The Doppler Shift effect is utilized in different methods to

obtain lifetime measurements. In Transient Field experiments, Doppler Shift Attenuation Method

(DSAM) is widely used. In this section we are going to present DSAM. In addition, we briefly

mention the plunger method which is used in combination with the RIV technique to measure the

g-factor and lifetimes of short-lived nuclear states.

The working principle of DSAM is illustrated in Figure 3.8. When projectiles are shot against the

target with a certain energy, part of this energy will be transferred as kinetic energy to the excited

ions produced during the collision. In case the excited ions have sufficient kinetic energy ,it will
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be able to recoil beyond the first layer and travel into the stopper. The ions have the possibility

to decay while they are moving and the gamma radiation from the de-excitation is affected by

Doppler effect, and the energy observed Eobs
γ by detector at laboratory frame is given by:

Eobs
γ = E0

γ

√
1− (β(t))2

1− β(t) cos θ

v<<c≈ E0
γ(1 + β(t) cos θ)

∴ ∆E = E0
γβ(t) cos θ,

(3.7)

where E0
γ is the energy of γ-ray emitted by the ion at rest, β(t) = |v(t)|/c with v(t) the velocity

distribution of ions, c the the speed of light and θ the angle defined by the beam axis and the

direction of emitted γ-ray. Right side of (3.7) results after first order Taylor approximation for

velocities considerable smaller than c. Last line of (3.7) results of grouping term Eobs
γ −E0

γ = ∆E

which represent the energy shift.

A typical spectrum of a DSAM experiment is shown on the right side of Figure 3.8, as ion travels

across the stopper its velocity decreases and the shifted energy of γ-rays is attenuated. This

process will produce a spectrum with two different energies of γ-rays, both associated to the same

transition and has a shape similar to a elephant silhouette. The energy spectrum in Figure 3.8 of

detected γ-ray is composed by ions in three different stages. When ion is just entering into the

stopper (fully shifted) the most energetic (purple peak) is created. The less energetic peak (cyan)

corresponds to γ-emission by ions at the rest (fully stopped) and the contribution of ions which

are traveling across the stopper (partially shifted) are plotted on the peach colored part of the

spectrum. Lifetime measurement is extracted from the attenuation factor which is proportional

to the energy shift.

To explain the obtaining of the life time, consider an ensemble of N0 nuclei prepared at t = 0 in

an excited state with mean lifetime τ . Assume these nuclei have an initial velocity ~v0 with a well

defined magnitude and direction, and that they decay by γ ray emission with unshifted energy

E0. If nuclei are recoiling into a solid, it will take at most a few picoseconds to stop them. As

nuclei are slowed down, their rate of decay is given by
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Figure 3.8: Schematic representation of DSAM experiment. In the left part of the figure a typical
setup is shown. The incoming beam is shot against the target with a energy such that the desired
excited states are populated via nuclear reaction with target ions (full stop). After the reaction,
resulting ions recoil into the stopper (gray layer). A detector, positioned at an angle θ with respect
to the beam axis, registers the γ-rays produced from nuclear de-excitation with a shifted energy.
A particle detector is positioned behind target to register recoil nuclei. In the right side of figure,
spectrum corresponding to detection of γ-rays in every moment of the ion motion, peaks corre-
sponding to fully shifted (purple peak), partially shifted (peach color region) and fully stopped (cyan
peak) ions while they are emitting γ-rays are shown.

dN(t)

dt
= −N0

τ
e−

t
τ , (3.8)

where N(t) is the number of nuclei that have not decayed at time t. If nuclei preserve the same

direction after crossing the whole stopper, the Doppler shift can be obtained as follows: the

fraction of nuclei decaying between t and (t + dt) is given by (3.8), the Doppler shift associated

with decay is given by (3.7).Finally, the average Doppler shift is obtained by multiplying (3.8)

times the energy shift (3.7) and integrating over time until the last decay (infinity)

∆E =
E0 cos θ

cτ

∫ ∞
0

v(t) e−
t
τ dt. (3.9)
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The maximum energy shift reached when |v(t)| = v0, since v0 is the maximum ion speed, so

∆Emax =
v0
c
E0 cos θ. (3.10)

The ratio ∆E/∆Emax is called attenuation factor and is given by

F (τ) =
1

v0τ

∫ ∞
0

v(t)e−
t
τ dt. (3.11)

The attenuation factor F (τ) relates lifetime τ with attenuated Doppler shift through nuclei veloci-

ties. Slowing down time is the standard time to which lifetime is compared. Equation (3.11) has a

limited usage due to restrictions on the initial velocity distribution and subsequent slowing-down

characteristics. In practice, nuclear reactions might not produce monoenergetic and unidirectional

recoiling nuclei and modifications of F (τ) are necessary, normally by averaging over the initial

velocity distribution. In addition, the assumption that nuclei travel in straight lines while they

are recoiling is valid only in special cases. When the nuclei does not travel in straight line it is

necessary to include a detailed description of energy loss for ions moving in a stopping medium [43].

There are different manner in which nuclei loses energy when they are crossing solid materials.

Electronic stopping for example, is a energy loss mechanism in which energy is transferred to

the atomic electrons of the stopping material via ionization and excitation. If ions travel with

velocities shorted than a small fruition of the velocity of light, electronic stopping power or energy

loss per unit path length is directly proportional to ion velocity;

dE

dx
= −kv

d(1/2mv2)

dx
= −kv

1

2
m

2vd(v)

dx
= −kv

∴
dv

dx
= − k

m

(3.12)
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Where dE is the kinetic energy lost per unit path length dx by an ion of mass m moving at

velocity v, and k is a constant of proportionality. Hence

dv

dt

dt

dx
= − k

m
,

taking into account that,

dt

dx
=

1

v
.

Then

dv

dt
= − k

m
v. (3.13)

Last differential equation has the solution,

v(t) = v0 e
t
α . (3.14)

where α is the characteristic slowing-down time equivalent to m/k and v0 = v(t = 0). If (3.14) is

inserted to (3.11), the attenuation factor becomes,

F (τ) =
α

α+ τ
. (3.15)

Nevertheless, (3.15) is valid only when ions lose energy due to electronic stopping, if any other

kind of ion-solid interaction is present then, significant modifications in the velocity distribution

expression and the attenuation factor function are needed [43]. In general, an ion losses energy

by both electronic stopping and nuclear scattering processes. Depending on the magnitude of

its initial velocity, different models of stopping power can be used. In TF-experiments, recoil

velocities do not reach a considerable fraction of the velocity of the light (from 6% of c onwards).
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Bethe formula with charge distribution corrections for Z > 26 nuclei is used. There are different

methods to obtain τ measurements. Desired state of the method depends on the experimental

conditions (methods to excite the given state, stopping material or detector geometry). If the

stopping power is know, the lifetime of the observed state can be extracted [43]. In general,

Doppler shift methods uses the fact that the decay law is given by e−t/τ and (3.15) is a good

starting point. There are two main variants of Doppler shift measurements: the first evaluates the

shift in the centroid of γ-ray energy distribution observed at two angles and compare it with the

maximum shift energy obtaining the measure of attenuation, and the second makes a compares

the γ-rays observed at a single angle, when they recoil into two different stopping materials (or

vacuum). In the case of vacuum, a plunger can be used, this method is briefly described below.

Plunger Method

The plunger method is used to measure lifetimes shorter than tens of picoseconds or even in the

order of femtoseconds. From the mechanical point of view, the design looks like a syringe: a

movable tube inside a tube. The setup consists of the target and stopper previously explained

although now they are separate. The target is placed on the fixed face of the syringe (where the

needle would be) and the stopper is placed on the plunger behind the target. The projectiles are

shot and the excited ions recoil in the space between target and stopper. The whole assembly

is within a vacuum chamber. During this process, ions can decay while are traveling at a given

velocity with respect to the surface of the plunger. When they reach the plunger, they brake

abruptly until stopping. In that case, the decay occurs at rest. Comparison of the intensities

of the "in flight" and "at rest" peak intensities is made as a function of the distance between

the target and the plunger inner surface. This is intensity-to-distance analysis differs from the

intensity-to-time by the velocity factor, whose measurement is necessary to determine the lifetime

of any state. The methodology of this experiment is summarized as: measure the "in flight" and

"at rest" intensities for a certain distance, that is, take data during, for example, one hour (the

mean lifetime of the state and the intensity of the accelerator beam determine that time). Save the

data, change target-plunger distance. Regain intensities for an hour and so on. The comparison of

the intensities emitted in flight and emitted at rest allows to calculate the life time of the nuclei.
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3.3 Population of nuclear states

Population of nuclear states is completed by the nuclear reaction. In TF-experiments two types of

nuclear reactions are used to populate spin states, in the first, a radioactive beam is needed, which

allows a very good spin alignment. In the second, there is no radioactive beam, what represents

an experimental advantage due to the difficulty of a radioactive beam production, however spin

alignment is poor.

Coulomb excitation

In Coulomb excitation (Coulex) the spin alignment is very high, for example, them = 0 projection

is strongly observed for a quadrupolar transition induced with this mechanism. With this method,

the mass of the involved nuclei remains equal after and before the reaction. In α-transfer reactions,

a new nucleus is created and populated after the reaction. Then, the spin projections are not

equally probable.

Alpha Transfer reactions

Alpha-transfer reactions can populate low-to-medium spin states without radioactive beams. Nev-

ertheless, this mechanism has limitations, whereas Coulomb excitation (Coulex) uses only elec-

trostatic repulsion to populate spin states; in alpha-transfer process more than only electrostatic

forces are involved. The spin alignment term refers to a preferential total angular momentum pro-

jection of the populated excited state; for example, in an Coulex populated excited state, there is

one preferable projection m of the nuclear spin, whereas for the alpha-transfer case, there is no

preferential m projection.

Another problem in the alpha transfer population mechanism is related to the level of the excited

states and feeding corrections [36]. While in Coulex the populated energy levels can be predicted,

in alpha-transfer there is uncertainty in which of the possible levels will be populated and a

higher spin states of the expected are achieved. The theoretical understanding of the population

mechanism could explain why this happen.
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Despite the problems, alpha-transfer reactions have been utilized in the measurement of nuclear

magnetic moments. In the next section the use of alpha-transfer population mechanism in com-

bination with another experimental techniques for the obtaining of this measurement will be

explained.
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Alpha particles are made of two protons and two neutrons in a highly symmetrical nuclear

arrangement with a total angular momentum of J = 0 (they are bosons), parity π = +, and

isospin T = 0. The alpha particle does not have excited states below 20 MeV, its binding energy

has a value of 28.3 MeV [44] and it has a positive charge of value 2e. Alpha decay processes occur

in heavy nuclei such as 238U which decays through the reaction 238U→ 234Th+α, the theoretical

description of this decay was formulated by Gamow in 1928 [45]. The high stability of alpha

particles makes them suitable for the description of some nuclei α-clusters [46].

The 12C isotope is a good example of an α-clusterized nucleus. Its description as a junction of three

alpha particles (see Figure 4.1) is the most successful model to explain its nuclear structure [47].

Figure 4.1: Graphical representation of 12C nucleus made of three alpha clusters.

The transient field experiments have been used 12C as a target or projectile. The pick up of the

α-particle is strongly observed in a range of energies near to the Coulomb barrier. This allows the
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possibility to produce new nuclei in excited states, and to study radioactive species.

The population of excited states in radioactive nuclei is another interesting point to consider when

studying the alpha transfer process. In this chapter, a review of the state of the art theory and

recent experimental results of alpha-transfer process are presented.

4.1 Basics of Alpha-transfer reactions

Alpha-transfer reactions (ATR) are a kind of heavy ion reactions in which the projectile or target

capture an alpha particle from the other nucleus involved in the reaction, and creates a new

isotope. The reaction can populate medium-to-low spin states of the new isotope. Generally

alpha transfer reactions involve 12C nuclei because of their alpha-cluster inner structure. They

can be used either as a target or projectile as it follows:

12C + A −→ B = (A + α) +8 Be

In direct kinematics, or

A +12 C −→ B = (A + α) +8 Be

In inverse Kinematics.

A specific example of an α-transfer process is the nuclear reaction 96Re + 12C → 100Pd+2α,

illustrated in the Figure 4.2

After the collision, the radioactive states in the formed nucleus are populated and a 8Be nucleus

or two alpha particles can be produced as residual products.

The Coulomb barrier in alpha transfer reactions is calculated with the formula:

Vc = 1.109(A1 +A2)[Z1Z2/A2(A
1/3
1 +A

1/3
2 )] [MeV]. (4.1)
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Figure 4.2: The Alpha transfer process in the reaction 96Ru + 12C → 100Pd, where the residual
products can be two α-particles or a 8Be nucleus.

Where A1 and Z1 are the number of nucleons and protons of the projectile respectively and A2

and Z2 are the number of nucleons and protons of the target respectively.

In ATR the final product is formed during the reaction. As the radioactive nuclei is formed in the

process, the spin alignment is low. In the next subsection the experimental problems associated

with the spin alignment will be explained.

4.2 The spin alignment and the angular distribution

The major problem with the low spin alignment in α-transfer reactions is that there is not a well

defined angular distribution (anisotropic) for random nuclear spin projections. Instead a mix of

possible γ-radiation (isotropic) is observed instead.

Alpha-transfer commonly populates the 2+ states(quadrupolar transitions) of the produced nu-

cleus. Three possible configurations of spin projections for a quadrupolar transition are shown in

the top of Figure 4.3. In Coulex experiments, the beam is prepared to populate 2+ levels with a

defined m = 0 projection and as a result, a high spin alignment is obtained with a well defined

anisotropic distribution of the gamma rays. Contrary, with ATR, the beam is prepared only for

obtaining the radioactive nucleus and the subsequent spin state population is poorly aligned. It

implicates that their m projections are something specific of the nature of the population mecha-

nism of the reaction and it does not depends on the experimental setup. Then, the three possible
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m projections are contributing on the angular distribution of the gamma radiation, and the sum

of the spherical harmonics that describe their shape is approximately a sphere or a circle in a

2-dim plane.

Figure 4.3: Possible γ-ray intensities distributions for a quadrupolar transition for different spin
projections (top) and mix of all of the distributions for a random spin alignment in the quadrupolar
transition (bottom).

When the photon associated with the gamma distribution reach the detector it has an energy

that gives information about the nuclear transition. By interacting with the atoms of the detector

(through Compton or photoelectric effects or forming a pair production) the energy of this photon

is transferred, amplified and registered as a count. Many photons produced in the reaction reach

the detector and an energy peak is formed by the counts. This peak is positioned in a channel

which corresponds to a determined energy. The ratio between the number of counts in a full-energy

peak by the number of photons that are actually emitted by the decay is called the efficiency of

the detector.

In the TF experiments which uses the ATR technique to populate spin states, the efficiency changes

when magnetic field change its orientation. The angular correlation functions (W (θ)), which are

obtained from the efficiency in a specific direction of the magnetic field, present an angular shift

(∆θ) between them. The origin of this shift is the precession of the magnetic moment.

The angular correlation function for a well shaped anisotropic gamma distribution is a well defined
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curve. When there is a mix between different gamma radiation distributions, the photons associ-

ated to all gamma distributions reach the detector and the angular correlation function becomes

flat. Therefore, the uncertainty of ∆θ measurement and the subsequent g factor measurement

increases.

Let us see Figure 4.4, where the angular correlation function for the quadrupolar radiation of

100Pd is shown. This angular correlation function corresponds to the quadrupolar radiation of

100Pd. The ion was obtained and excited by an α-transfer reaction.

Figure 4.4: The experimental γ-ray angular correlations,W (θ), for the 2+1 → 0+1 transitions; open
circles correspond to 100Pd and diamonds to 96Ru. The solid and dashed lines correspond to fits
to the angular correlation function for 100Pd and 96Ru, respectively. Figure taken from [1].

It is easy to notice the difference between the angular correlation for the 96Ru which was excited

with Coulex and the one obtained for the 100Pd, produced and excited by an ATR.

Experimental investigation with the aim to obtain angular correlation functions of ATR is required

to solve this problem. Theoretical understanding of the population mechanism is also needed to

improve the correlation function.

In the next section the state of the art of the role of the ATR in the nuclear structure charac-

terization of medium-to-low spin states via magnetic and electric moments measurements will be

presented. As an added value a short review of the theoretical and experimental attempts to

understand the reaction mechanism was made.
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4.3 Understanding nuclear structure and reaction mechanism

From early times of nuclear physics research, α-particles have been of particular interest because

of their relation with nuclear structure. In 1929 a simple model of the nuclei was proposed by G.

Gamow. This model consist in a nucleus formed by alpha particles, very similar to a water-drop

held together by surface tension [48]. This was the first proposal where the nucleus structure was

described in terms of α-particles. Afterwards, in 1938, Hafstad and Teller extended the theory of

the nuclei composed only by alpha particles to cases where in addition a single neutron or proton

is present in the nucleus. They also proposed a model in which light nuclei is based on α-particle

structure [49] and in 1955, Morinaga made a description of the 4n-type light nuclei energy levels

structure based on experimental and theoretical results.

Alpha-transfer reactions have been used as a tool to understand different aspects of the nuclear

structure. Michigan group -with a very notable production- carried out the first big alpha-transfer

experiment ever performed. They worked with the (d,6Li) reaction using even-even nuclei in a

range of masses between 12C to 238U as targets. By shooting deuteron beams with a strong

intensity in energies around 35 MeV and detecting the resulting 6-Lithium nuclei at the angle

corresponding to the maximum cross section of the reaction, they obtained data of the α-particle

picked-up from the targets.

Figure 4.5: Sa spectroscopic parameter obtained from (d,6Li) reactions, normalized to unity at 16O
plotted as a function of target mass AT . Figure taken from [2].
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Using distorted wave theory, they made calculations for alpha pick up in the reaction and found

a factor Sa that represents the probability of finding an α-particle in the target nucleus for each

reaction and plotted it as a function of mass Figure 4.5. Fluctuations can be observed in Figure

4.5. In 1975, Hodgson made an interpretation of these fluctuations, performed using shell model.

Targets in a closed shell have less probability to "donate" an alpha particle to the deuteron,

whereas open shells present a maximum in the probably to donate an alpha particle instead.

Alpha transfer reaction mechanism is closely related with nuclear structure, thus, a more ad-

vanced knowledge about clustered 12C nucleus is needed to close up to the reaction mechanism

knowledge and viceversa. A lot of theories have been created to understand the reaction mech-

anism. There are two kind of results that are possible to obtain: a weakly bound α-particle tie

to radioactive isotope core, or find compound effects on the radioactive isotope after the particle

transfer. Therefore, theoretical descriptions of reaction mechanism can be classified in two big

groups; the ones that attempt to describe the transference mechanism whose result is a weakly

bound α-particle orbiting around a core in the produced nucleus and the ones that try describing

the mechanism that produces compound effects. DWBA (Distorted Wave Born Approximation)

theory has been thoroughly used to describe reaction mechanism that produces weakly bound

effects. Many theories have been used to describe reaction driving to compound effects, however

we will allow us to highlight DWBA theory because of the good accuracy results it has been able

to obtain in the description of differential cross section of alpha transfer reactions [22,50].

Theories as DWBA, work in conjunction with: a model of nuclear potential and an interaction

model. In general, theoretical physicists have predicted on the reaction mechanism using DWBA

in combination with the optical potential.

The interaction models are the ones which define the manner in which nucleons of the target and

projectile interact. Four main interaction models are worth to be mentioned:

• JJ shell model.

• SU(3) model.

• The pairing vibrational model.
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• The linear combination of nuclear orbitals model.

The last model has been obtained interesting results for the 32S nucleus [51]. This subject is

crucial for the study of the results of the experiment that we proposed, but is not the focus of

this work.

In this subsection we have reviewed what are the principal models for the theoretical descriptions

of ATR. In the next section the state of the art of the experiments which have used ATR technique

to measure nuclear magnetic moments will be presented.

4.3.1 Uses in the nuclear structure characterization

The simultaneous measurement of g-factors and mean life times have enabled the possibility to

study the nuclear structure characterization of low lying nuclear spin states of radioactive nuclei

( I = 2+1 , I = 4+1 and I = 6+1 ). Alpha transfer reactions have been used as a tool in front of

the difficulty to obtain radioactive nuclei from radioactive beams. The earliest experiment to

use α-transfer reactions in order to measure g-factors was the one performed by Horstman et.

al in 1975 [3]. They worked with the reactions 12C(16O,α)24Mg and 12C(12C,α)20Ne obtaining

g-factors and mean lives values for Iπ = 2+1 states (see table 4.1). These values were obtaining

from recoil-distance measurements using the time differential recoil into vacuum technique. In

2003, 28 years later, the next experiment using alpha transfer reactions to produce radioactive

isotopes, by Sheickle et. al. They measured g-factors and lifetimes of the 2+1 and 4+1 states in 44Ti

for the first time, in that way contributing to the N = Z nuclei studies. Improving the prediction

of the simple rotational model (g = Z/A), they could explain very well the g-factor, by a full fp

shell model calculation using the FPD6 effective NN interaction, as well as the deduced B(E2)

value [15] . Two years later, Leske et. al. made the first g-factor measurement of radioactive

68Ge in 2+1 state and the first lifetime measurement of the 2+3 state. Lifetimes of 2+1 , 2
+
2 and 4+1

were remeasured resulting a disagreement value for the 2+2 state in comparison with the previous

measurements. According with Leske, alpha transfer method is a suitable candidate to replace

Coulomb excitation to populate low lying spin levels of radioactive species. Discussion presented
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by Leske mentions that feeding corrections are despicable for the low contamination on 2+1 → 0+1

decay [17], any discussion about spin alignment was presented. Thus, more experiments of alpha

transfer reactions have been developed until 2016.All of given results from all experiments are

presented in Table 4.1.

Beam Nucleus Iπi g factor τ [ps] Ref
12C 20Ne(∗) 2+1 0.54(4) 0.8(2) [3]
16O 24Mg(∗) 2+1 0.51(2) 2.09(13) [3]
32S 36Ar 2+1 + 0.24(12) 0.65(2) [14]
34S 38Ar 2+1 and 2+2 + 0.52(18) and +1.1(11) 0.71(3) and 0.068(8) [14]
40Ca 44Ti 2+1 + 0.52(15) 3.97(28) [15]
48Ca 52Ti 2+1 and 4+1 +0.83(19) and +0.46(15) 5.2(2) and 4.8(6) [16]
64Zr 68Ge 2+1 + 0.55(14) 2.9(2) [17]
78Kr 82Sr 2+1 and 4+1 +0.44(19) and +0.53(39) - [18]
86Kr 90Sr 2+1 and 4+1 +0.12(11) and +0.02(17) - [18]
84Sr 88Zr 2+1 and 4+1 +0.30(11) and +0.65(18) 3.6(4) and 2.2(2) [19]
96Ru 100Pd 2+1 and 4+1 +0.12(11) and +0.02(17) 9.0(4)(∗∗) and 3.6(3)(∗∗) [20]
106Cd 110Sn 2+1 and 4+1 +0.29(11) and +0.05(14) 0.81(10) and unknown [21]

Table 4.1: (∗)These isotopes were created by two α-particles transfer and results were obtaining
by TDRIV method in combination with DSAM ("plunger method"). (∗∗)Life-times values taken
from [6]. Result from first experiments to perform g factor measures with α transfer in combination
with transient field technique.

In general, in all TF experiments arranged in the Table 4.1 a considerable improve in the angular

correlation function was not proposed or performed. Due to this reason this work is aimed to open

the door to a detailed investigation of alpha-transfer reactions that provides a deep understanding

about experimental and theoretical aspects of the reaction mechanism. The improvement of the

angular correlation function is the first step to follow. Through a modern experimental setup it is

expected to obtain more information about the gamma-radiation distribution as well as the sub-

sequent particles in the reaction. From the particle-γ coincidence method, important information

about excitation functions must be obtained. In the next chapter, the first experimental proposal

of a campaign of alpha transfer reaction is presented.
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Our experimental proposal and perspectives

As a part of this work, an experimental proposal was presented to Laboratorio Aberto de

Física Nuclear (LAFN) of Sao Paulo University, Brazil. The proposal has been accepted and

scheduled to be carried out in 2019. The entire document of the proposal is shown in Appendix D.

This experiment is just the door of entrance to an experimental campaign for measuring off nuclear

magnetic and electric moments of short-lived radioactive states in nuclei close to stability line.

In this chapter will be described the facilities of LAFN and their main working principles. A

complete list of nuclei whose radioactive states can be populated with stable beams via alpha-

transfer reactions is presented in this chapter. Most of these nuclei present collective effects.

Such list contains the most update information about electric moments (life times) and magnetic

moments (g factor) measurements of low lying states of nuclei we are interested in. Obtained

measurements will allow the unveiling nuclear structure of nuclei that present collective effects.

However, it is worth saying that the experimental campaign is also aimed to study Alpha-transfer

reactions themselves.

As mentioned in previous chapter, there is a lack of information about Alpha-Transfer reaction

mechanism. Theoretical approaches to understanding transfer and pick up reactions mechanism

as DWBA in combination with Optical Potential have presented a good fit to differential cross sec-

tions in heavy and light nuclei reactionsbut available experimental data is not good enough. In the

future experiments, it expects to obtain nuclear structure information as α widths, spectroscopic
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factors, and wave functions as the ultimate goal, to unveil 12C structure.

5.1 Proposed experiment: the reaction and the experimental lay-

out

This section is divided into three parts, the first is aimed to show the acceleration system and ion

source available in LAFN, that will be used in the proposed experiment. In the second section a

description of detection array which is subdivided between the gamma detection and the particle

detection together with the choice of nuclear reaction will be shown, and by last, the third part

contains the perspectives of future experiments in alpha-transfer reactions.

5.1.1 Accelerators

Accelerators are differentiated by their working physics principles, cyclotrons, for example, uses

big magnets to accelerate beam particles, and electrostatic accelerators use high voltage terminals

to accelerate ions. In LAFN, there is an electrostatic accelerator type tandem which works with

a pellet charge system. Tandem accelerators work as a junction of two Van de Graff accelerators

whose work mechanism will be discussed then.

Van de Graaff accelerator

Van de Graaff accelerator is a type of electrostatic accelerator, that uses the huge voltage that

Van de Graaff generator can achieve to accelerated charged particles. The main elements of this

type of accelerator are showing in 5.1.

The charge system working principle of this accelerator is based on triboelectric effect, which

consist in a contact electrification of two materials (one of them predisposed to donate electrons

and the another to receive electrons). A rubber belt turns around two rollers made of materials

triboellectrically different to the rubber, an electric charge supply spray positive charge using a
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Figure 5.1: Schematic representation of a Van de Graff accelerator system. This kind of accel-
erators works with a pellet chain, transporting a big amount of charge to a terminal that uses
the electric attraction to expel a negative ion beam found inside it to a evacuation tube inside a
electrode array and afterwards shot to a target.

voltage of 20-30 kV, which is transported to the dome by the rubber belt. The pressure tank

contains a gas that avoid the possible corona discharges of the dome an helps to maintain the

huge amount of charge and the subsequently the high voltage related by:

V =
Q

C
, (5.1)

where V is the voltage due to the dome and C is its capacitance; in an accelerator system placed

in air, voltages can up to a few MV, for inert gases like nitrogen at 15 atm, voltage of up to 12

MV can be obtained.

Positive ions are produced in the ion source; they are repelled by the positive charge distribution

at the dome and conduced though the acceleration tube, this tube is positioned onto equipotential

planes attached by resistances using to distribute the terminal voltage uniformly and avoid the
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lose of kinetic energy which is directly related with the voltage following the relation:

qV =
1

2
mv2, (5.2)

where q is the charge, m is the mass and v is the velocity of the accelerated particle. Finally, the

particle is deflected by a magnet towards the target.

An evolution of the Van de Graaff acceleration system is the tandem accelerator which can be

viewed as the junction of two Van de Graaff accelerators and actually produces twice as much

energy than Van de Graaff. This accelerator will be reviewed in the next section.

Pelletron-Tandem accelerator

The pelletron tandem accelerator is a junction of two Van de Graff accelerators with a charged

system based on pellets. The particularity of this accelerator is that the negative ion source can

be convert to a positive ion source by a stripper. Tandem’s schema is shown in Figure 5.2.

Figure 5.2: Working’s schema of pelletron-tandem accelerator. This type of electrostatic accelerator
is an evolution of Van de Graff acceleration system.

An input negative ion source is the first phase of the beam; the entering ions are sorted by the

analyzing magnet, only allowing to pass the ions of interest. The negative ions are accelerating

towards the positively charged terminal through an array of intermediate electrodes. Inside the
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terminal a stripper cuts the electrons of the negative ion beam and the ions becomes positive.

The positive ion beam is now instead repealed from the terminal and conduced into another array

of intermediate electrodes, finally, a deflecting magnet send the beam to the target.

The pellet charge system

The pellet chains are made of an stainless steel cylinder (pellet) and connected by insulating nylon

links in order to keep the charge in the pellet (see Figure 5.3).

Figure 5.3: The pellet chain. In the right side the parts of the pellet chain are indicated. A
picture of a pellet chain is shown in the left side. The picture of the pellet chain was adopted from
https : //www.slideshare.net/AnuradhaKV erma/m1− accelerators.

For a positive terminal (Single Ended) Pelletron, the negatively-charged inductor electrode pushes

electrons off the pellets while they are in contact with the grounded drive pulley. Since the pellets

are still inside the inductor field as they leave the pulley, they retain a net positive charge. The

chain then transports this charge to the high-voltage terminal, where the reverse process occurs.

When it reaches the terminal, the chain passes through a negatively-biased suppressor electrode,

which prevents arcing as the pellets make contact with the terminal pulley. As the pellets leave

the suppressor, charge flows smoothly onto the terminal pulley, giving the terminal a net positive

charge.
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Figure 5.4: Schematic representation of pelletron charge system. This charged system is used to
accumulate a large amount of charge (up to and above 25 MV) in the dome of the accelerator.

Sao Paulo Pelletron Accelerator

The pelletron tandem accelerator in the Laboratorio Aberto de Física Nuclear in Sao Paulo, Brazil,

is a Tandem electrostatic machine, built by the National Electrostatic Corporation (NEC) and

acquired by the University of Sao Paulo and installed at the Institute of Physics of USP in 1972.

The name pelletron originates from an innovative process introduced by NEC which consist in the

transportation of the charge by pellets. This accelerator works with a voltage of 8 MV and have a

negative ion source to accelerate different stable ions. The working mechanism of the ion source

is described below.

5.1.2 Ion sources

Pelletron accelerator have a Multicathode Source of Negative Ions by Cesium Sputtering (MC-

SNICS) as ion source, acquired of NEC can produce negative ion beams of virtually all chemical

elements or molecules.

Beam generation is done by cesium ion bombardment and subsequent spraying of a small amount

of compacted material in a special crucible forming a tablet (cathode). The cesium vapor rises

from the reservoir to the ionization chamber. Part of the cesium condenses on the front surface of

the cathode and another part of the cesium is ionized by the hot surface of the ionizer. The ionizer

produces a primary cesium beam that strikes the cooling surface of the sample. Cesium, positively
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Figure 5.5: MC-SNICS: Multicathode Source of Negative Ions by Cesium Sputtering schema of
working. This negative ion source is specially designed for the working of the Tandem accelerator.

ionized, accelerates to the cathode by bombarding particles of the tablet (cathodic spray) under

the condensed cesium layer. The cathode particles, in turn, are expelled due to impact with the

positive ion, traversing the cesium layer of the surface of the pellet and forming negative ions by

capturing weakly bound cesium electrons.

The beams generated at this source have an energy of 5 KeV and are extracted by a potential of

extraction of 20 KV. The energy of the beam after extraction is 25 KeV. The ion source is mounted

on an electrically isolated structure to which a voltage of -80KV is applied to pre-accelerate the

beam so that it can be injected into the accelerator. This pre-acceleration is done in the pre-

acceleration tube. The beam energy after this acceleration is 105 KeV. With this, we conclude the

review of the acceleration setup to produce the nuclear reaction. In the next section, the features

of the reaction, and the detection system will be presented.

5.1.3 Reaction and Detection system

Reaction that is described in Figure 5.6, was proposed to be performed in LAFN.

In the experiment is expected to observe following spin states 2+, 4+ and 6+.
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Figure 5.6: Schematic representation of the nuclear reactions to be performed in the proposed
experiment. When 12C is shot against a 28Si target at energies around 13.13 MeV, two type of
reactions should be observed. When an alpha particle is transferred to the 28Si nucleus (situation
illustrated at the top) a radioactive 32S is produced. If the 12C do not transfer, or the 28Si do not
capture the alpha particle, a low-lying spin state in 28 is populate via Coulomb excitation. For both
reactions is expected to observe a decay from the 2+ spin state.

Alpha-transfer reaction and coulomb excitation can occurs in the experiment for beam energies

around 13.13 MeV. The specific selected range is between 9.31 MeV to 17.3 MeV. Details about
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data registration are disposed in D.

Detection layout is similar to the one described in Chapter 3. The disposition of detectors are

shown in Figure 5.7. Gamma-ray detection system will consist of a LYSO(Ce) crystals arrange-

ment. The goal of this experiment is to obtain a detailed particle-γ angular correlation, that

means, only detected gamma rays in coincidence with detected particles will be take into ac-

count. An array of 16 ∆E −E telescopes will be used to detect particles after the reaction. Four

LYSO(Ce) scintillators crystals will be placed at approx 67◦ to the beam direction as is shown in

Figure 5.7.

Figure 5.7: The detection setup of the proposed experiment. For the γ detection, four segmented
scintillator detectors composed by an array of 25 LYSO(Ce) crystals will be placed at 67◦ of the
beam direction. For the particle detection 16 ∆E-E photo-switch detectors will be positioned behind
the target.

Both, γ and particle detection systems are based on scintillator detectors. Scintillators detector

are constructed by liquid, solid or gas materials. These materials are capable to produce sparks of
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light, when they are exposed to ionizing radiation. They convert part of the kinetic energy of an

incident particle into light. Below are some important aspects of the detectors that will be used

in the experiment.

Cerium-doped Lutetioum Yttrium Orthosilicate LYSO(Ce) Scintillator γ-ray detector

Lutetium Yttrium Orthosilicate is an inorganic chemical compound which is broadly use as a

scintillator crystal, whose chemical formula is Lu2SiO5. LYSO is a relatively new ideal generation

of a scintillator crystal, it has the advantages of high light output and density, quick decay time,

adequate energy resolution and low cost. Crystal contains the element lutetium which is composed

by two isotopes: 175Lu (stable) present in a percentage of 97,41% and 176Lu (beta emitter) present

in a percentage of 2,59%, it decays with half-life of 3,78 × 1010 years. Due to the content of

Lutetium, the crystal LYSO appears to be weakly radioactive. In the experiment a LYSO crystal

array doped with cerium is coupled to a Silicon Photomultiplier (SiPM) to obtain a gamma

radiation detector. The resulted is a square segmented particle detector as is shown in Figure 5.8.

The segmentation on the detector will be very useful to discriminate angles of γ-detection which

is very important for angular correlation function calculation.

Figure 5.8: LYSO(Ce) array or segmented square LYSO(Ce) crystal available in LAFN with its
dimensions. Every crystal in the array is a square of (16 x 16) mm, a total of 25 crystals will
be used. The longitude of the crystals is of 50 mm. All these crystals are connected to a silicon
photomultiplier.

It is worth to say that LYSO crystals which will be used in the experiment are doped with Cerium
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atoms. By the addition of Cerium the detector presents semiconductor properties. In Figure 5.9

are disposed two real pictures of the LYSO(Ce) crystals.

(a) (b)

Figure 5.9: LYSO(Ce) crystal pictures. In picture on the left side (a) an array of LYSO(Ce)
crystals similar as the one represented in Figure 5.8 is shown. On the right picture there is a
LYSO crystal joint to a SiPM forming a scintillator detector.

In the next subsection it will be presented the particle detector together with a explanation of the

photomultiplier function in the plastic detectors.

∆E - E photo-switch

The ∆E - E telescope or photo-switch detector it is basically the blending of two scintillators of

different thickness and a photomultiplier as is shown in Figure 5.10. The thin and thick scintillators

array is close to a photomultiplier tube as LYSO(Ce) crystal. The function of this photomultiplier

is to amplify the signal produced by the spark after the interaction between ionizing radiation and

the detector. When spark is produced the photons interact with a photocatode which converts

the interaction into an electrical signal. A focusing electrode conduce the electrical signal into an

array of dynodes and anodes. As the signal ricochet in the array of dynodes and anodes is being

amplified. By last, the amplified signal is deposited in connector pines and collected in the data

acquisition system. All elements mentioned to amplify the signal are inside a vacuum tube.
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Figure 5.10: ∆E - E telescope or photo-switch formed by a thin and a thick scintillator array
together with a photomultiplier tube. The blending of the ∆E - E array and the photomultiplier
tube form a plastic scintillator detector. The photo-switch is responsible for producing the spark as
the result of the interaction between the particle and the material and th photomultiplier convert
the spark into a suitable electrical signal.

When the charged particle reach the thin layer it lose energy, the residual energy of the particle is

lost due to the interaction with the thin layer. This allows discerning between different types of

charged particles and their energies. The layers have a dimensions of 0.01 millimeters for the ∆E

layer and of 10 millimeters for the E layer. The decay time of the pulse produced by the interaction

is of 2.4 ns for ∆E and 264 ns for E layer. With this detector it is possible to distinguish the

detected particle by analyzing the loss energy by Bethe-Block equation.

With this detector we finalize the description of the experimental tools which will be used in the

experiment. In the next section we are going to present the future experiments as the perspectives

of this first one.

5.2 Future experiments in alpha transfer reactions

The proposal presented to São Paulo is aimed to start a research program to study α-transfer

reactions, from obtaining particle-γ correlation with nuclear reactions which involves n α nuclei-

like systems. Nuclear reactions with 16O ,20Ca and 24Mg are thought to next experiments in

LAFN. However, the proposal of the experimental campaign of magnetic and electric moments

measurements is much more comprehensive. As a result of this work, a complete recompilation
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of all radioactive nuclei that can be produced from an alpha-transfer reaction with a stable beam

is presented in Table 5.1. The beams needed to produce these nuclei with an alpha transfer

reaction are presented together with laboratories capable to accelerate such projectiles. This

table contains all the lifetimes and g-factor measurements of low lying spin states that have been

made in the nuclei we are interested in produce by alpha-transfer reactions. A first approach to the

TRIUMF lab have been established and in the Appendix E is disposed a list with all possible alpha

transfer reactions that can be perform with their beam facilities. In these future experiments is

expected to considerable improve particle-γ correlation in order to reduce uncertainty on g-factor

measurements as well as obtain structure information to understand better the reaction mechanism

in alpha-transfer.

Table 5.1: Table of transfer reactions. This table shows life time (τ) and nuclear g-factors measures
of even spin states with positive parity. The first column indicates and the laboratories that can
produce the beams of the second column. Light violet color indicates the existence of measures of
another nuclear spin states different that even nuclear spin with positive parity. Red color indicates
that there is no nuclear magnetic moment measures of any spin state until 2011. The “Product"
column belong to the group of nuclei that populate radioactive states after alpha-transfer reaction.

Lab Beam Product Iπ τ and T1/2(gs) g Ref.

Bk/Jy 3
2He 7

4Be 3/2−gs 53.22(6) d [52]

A&M/Jy/Lg/IUAC/Ar14
7 N 18

9 F 1+gs 109.77(5) d [52]

Lg 33
16S 37

18Ar 3/2+gs 35.04(4) d [52]

- 39
19K 43

21Sc 7/2−gs 3.891(12) h [52]

- 40
19K 44

21Sc

2+gs 3.97(4) h µ=+2.505(3) µN
[52,

53]

4+ 4.52(27) ns +0.90(12) [54]

6+ 84.55(14) h +0.635(1) [53]

Lg/Jy/IU/Ar 40
20Ca 44

22Ti
0+gs 59.1(3) y [52]

2+ 3.97(28) ps +0.52(15) [15]

IUAC 45
21Sc 49

23V 7/2−gs 330(15) d [52]

89



5.2 Future experiments in alpha transfer reactions

Lg 48
20Ca 52

22Ti

0+gs 1.7(1) m [52]

2+ 5.2(2) ps +0.84(19) [14]

4+ 4.8(6) ps +0.46(15) [14]

- 47
22Ti 51

24Cr 7/2−gs 27.7025(24) d [52]

IUAC/Bk 50
23V 54

25Mn 3+gs 312.20(20) d [52]

- 61
28Ni 65

30Zn 7/2−gs 243.93(9) d [52]

Lg/A&M/Jy/IUAC/Bk/Ar63
29Cu 67

31Ga 3/2−gs 3.2617(5) d [52]

Ar/IU/Jy/Lg 64
30Zn 68

32Ge

0+gs 270.93(13) d [52]

2+ 3.1(2) ps +0.55(14) [55]

8+1 1.5(3) ps +0.10(4) [17]

8+2 0.7(3,2) ps -0.28(13) [17]

Lg 69
31Ga 73

33As 3/2−gs 80.30(6) d [52]

Lg 77
34Se 81

36Kr 7/2+gs 2.29×105(11) y [52]

Lg/Ar 79
35Br 83

37Rb 5/2−gs 86.2(1) d [52]

Jy 84
38Sr 88

40Zr

0+gs 83.4(3) d [52]

2+ 3.6(4) ps +0.30(11) [56]

4+ 2.2(2) ps +0.65(18) [56]

8+ 1.90(36) µs -0.22(2) U*

Bk 86
36Kr 90

38Sr

0+gs 28.90(3) y [52]

2+ 10.09(2) ps -0.12(11)*
[57,

58]

4+ 17.31(2) ps -0.02(17)*
[57,

58]

- 87
37Rb 91

39Y 1/2−gs 58.51(6) d [52]

- 93
41Nb 97

43Tc 1/2−gs 4.21×106(16) y [52]

- 105
46 Pd 109

48 Cd 5/2+gs 461.4(12) d [52]
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IUAC/Bk/Ar/Lg/A&M/Jy107
47 Ag 111

49 In 9/2+gs 2.8047(4) d [52]

Lg 99
44Ru 103

46 Pd 5/2+ 16.991(19) d [52]

Lg 96
44Ru 100

46 Pd

0+gs 3.63(9) d [52]

2+ 6.23(4) ps +0.39(18) [1,20]

4+ 2.49(3) ps +0.45(14) [1,20]

6+ 2.56(5) ps +1.47(87) [1,20]

- 106
48 Cd 110

50 Sn

0+gs 4.11(10) h [52]

2+ 0.56(10) ps +0.29(11) [21]

4+ unknown +0.05(14) ps [21]

6+ 5.61(4) +0.01(19) [21]

- 112
50 Sn 116

52 Te 0+gs 2.49(4) h [52]

- 114
50 Sn 119

52 Te 1/2+gs 16.05(5) h [52]

- 117
50 Sn 121

52 Te 1/2+gs 19.17(4) d [52]

- 113
53 In 117

51 Sb 5/2+gs 2.80(1) h [52]

- 115
53 In 119

51 Sb 5/2+gs 38.19(22) h [52]

- 121
51 Sb 125

53 I 5/2+gs 59.407(10) h [52]

Bk 124
54 Xe 128

56 Ba 0+gs 2.43(5) d [52]

- 123
52 Te 127

24 Xe 1/2+gs 36.346(3) d [52]

Lg/IUAC/Jy 127
53 I 131

55 Cs 5/2+gs 9.689(16) d [52]

A&M 129
54 Xe 133

56 Ba 1/2+gs 10.551(11) y [52]

Jy/Bk 136
54 Xe 140

56 Ba 0+gs 12.7527(23) d [52]

- 137
56 Ba 141

58 Ce 7/2+gs 24.84(17) s [52]

- 138
57 La 142

59 Pr 2−gs 19.12(4) h [52]

- 139
57 La 143

59 Pr 7/2+gs 13.57(2) d [52]

A&M 141
59 Pr 145

61 Pm 5/2+gs 17.7(4) y [52]
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- 142Nd 146
62 Sm 0+gs 10.3×107(5) y [52]

- 147
62 Sm 151

64 Gd 7/2+gs 123.9(10) d [52]

- 149
62 Sm 153

64 Gd 3/2−gs 240.4(10) d [52]

- 151
63 Eu 155

65 Tb 3/2+gs 5.32(6) d [52]

- 153
63 Eu 157

65 Tb 3/2+gs 71(7) y [52]

- 155
64 Gd 159

66 Dy 3/2−gs 144.4(2) d [52]

Bk 159
65 Tb 163

67 Ho 7/2−gs 4570(25) y [52]

- 161
66 Dy 165

68 Er 5/2−gs 10.36(4) h [52]

- 162
63 Er 166

70 Yb 0+gs 56.7(1) h [52]

- 168
70 Yb 172

72 Hf

0+gs 1.87(3) y [52]

2+ 2.23(14) ns +0.25(5)
[59,

60]

(6+) 6.92(5) ns +0.92(10) [61]

(8-) 235.10(4) ns +0.982(8) [61]

- 169
69 Tm 173

71 Lu 7/2+gs 1.37(1) y [52]

- 171
70 Yb 175

72 Hf 5/2(−)gs 70(2) d [52]

- 174
72 Hf 178

74 W 0+gs 21.6(3) D [52]

- 175
71 Lu 179

73 Ta 7/2+gs 1.82(3) Y [52]

- 177
72 Hf 181

74 W 9/2+gs 121.2(2) d [52]

- 180
73 Ta 184

75 Re
0+gs 35.4(7) d [52]

8+ 243.81(11) d (+)0.36(13)
[62]/

[63]

- 185
75 Re 189

77 Ir 3/2+gs 13.2(1) d [52]

- 187
76 Os 191

78 Pt 3/2−gs 2.83(3) d [52]

- 189
76 Os 193

78 Pt 1/2−gs 50(6) y [52]

- 190
78 Pt 194

80 Hg

0+gs 444(77) y [52]
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10+ 4.18(72) ns -0.24(4)* [64]

12+ 11.68(72) ns -0.24(4)* [64]

- 191
77 Ir 195

79 Au 3/2+gs 186.01(6) d [52]

- 196
80 Hg 200

82 Pb
0+gs 21.5(4) h [52]

12+ 291.42(72) ns -0.1557(6) [65]

Lg/A&M/Jy/IUAC/Bk197
79 Au 201

81 Tl 7/2+gs 3.0421(17) d [52]

- 198
80 Hg 202

82 Pb
0+gs 52.5×103 y [52]

4+ 2.84(28) ns +0.002(4) [66]

- 199
80 Hg 203

82 Pb 5/2−gs 51.92(3) h [52]

- 201
80 Hg 205

82 Pb 5/2−gs 1.73×107(7) y [52]

- 203
81 Tl 207

83 Bi 9/2−gs 31.55(4) y [52]

- 204
82 Pb 208

84 Po

0+gs 2.898(2) y [52]

6+ 6.20(14) ns +0.88(1)
[67]

[52]

8+ 504.94(28) ns +0.919(1) [68]

- 206
82 Pb 210

84 Po

0+gs 138.376(2) d [52]

6+ 61.45(14) ns +0.908(2) [68]

8+ 138.49(20) ns +0.908(2) [68]

- 207
82 Pb 211

84 Po 9/2−gs 0.516(3) s [52]

Jy/IUAC/Ar 208
82 Pb 212

84 Po 0+gs 44.6(4) m [52]

Ar 209
82 Bi 213

85 At 9/2−gs 125(6) ns [52]

- 232
90 Th 236

92 U 0+gs 2.342×107(4) y [52]

- 234
92 U 238

94 Pu 0+gs 87.7(1) y [52]

- 235
92 U 239

94 Pu 1/2+gs 24110(30) y [52]

Ar 238
92 U 242

94 Pu 0+gs 3.75×105(33) y [52]
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Hyperfine field techniques have used alpha transfer reactions as a tool to populate medium-

to-low nuclear spin states in 9 experiments (see Table 4.1). From these experiments it

was obtained a total of 19 g-factor and 14 lifetime measurements of the 2+1 , 2+2 and 4+1 spin

states. Such g-factor values present an uncertainty considerable larger than the ones measured in

Coulex-populated excited states [20]. The reason is the low level spin alignment, which is strongly

observed after the population of the nuclear states with α-transfer reactions. As it was discussed

in Chapter 4, the anisotropy of the gamma distribution of the de-excitation process is directly

related to the spin alignment level.

In 8 of the 9 mentioned experiments, Transient Field technique in combination with Doppler

Shift Attenuation Method was used in the g factor and lifetime measurements obtaining. The

remaining experiment used the Time Differential Recoil Into Vacuum technique combined with

Recoil Doppler Shift Method and it was the first in using alpha transfer reactions to populate spin

states. This experiment was carried out by Horstman, et al. They calculated a relatively small

uncertainty in the g-factor measurement. They proposed a vertical slit with an aperture of 45◦

in front of the particle detector (see Figure 5.11) to maximize the improvement on the angular

correlation function shape, which becomes flatten when anisotropy in the gamma-ray distribution

decreases. In general, the alpha-transfer reactions experiments in which have been combined the

TF and DSAM techniques have obtained uncertainties between 30% and 40% larger than the ones

obtained from experiments in where Coulex was used as a population method [20].

The TF technique is more suitable than the RIV method due to its capability to resolve the g
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Figure 5.11: Alpha gamma angular correlations with the 20Ne reaction for three different positions
of the rectangular mask. The three curves were fitted simultaneously to the experimental points
normalized to the coincident yield at 0◦ of the beam direction. Figure taken from [3].

factor sign of short-lived (∼ps) excited states. Recent RIV experiments with modern setups have

produced highly accurate g-factor measurements [69], however, TF technique is still indispensable

to obtain the g factor sign, which is needed to tell about the protons or neutron domination in

the nuclear wave function [70].

The vertical slit was kept in use as a method to obtain better angular correlation measurements.

Nevertheless, the slit cannot be considered as a solution to the angular correlation function [36].

Up to this point, Coulex performs better than Alpha-transfer reaction technique as population

mechanism. More experimental improvements have to be made in order to obtain precise enough

g-factor measurements using the ATR technique.

On the other hand, knowledge about α-transfer reaction mechanism and 12C structure is still being

scarce [36]. Theoretical approaches to understand transfer and pick up reaction mechanism, such

as DWBA in combination with Optical Potential, have presented a good fit to the experimental

data of the differential cross sections in heavy and light nuclei reactions [13]. Interaction models as

Linear combination of nuclear orbitals, the SU3 model and the JJ-shell model, have been used as

a tool to study the reaction mechanism [71–74]. The population mechanism of the nuclear states

is crucial for understanding the random distribution of the M projections. Recent studies on 32S
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suggest that alpha particle of 12C is transferred to the 28Si by tunneling through its potential [51].

Experimental data from Alpha-transfer reactions as well as theoretical studies are necessary to

understand the reaction mechanism and 12C nuclear structure. Future experiments of alpha-

transfer reactions should be aimed to discuss the angular correlation function. The usage of

particle-γ-γ coincidence will allow to obtain more information about the reaction mechanism and

re-evaluate the obtained values of magnetic and electric moments. The quality of the particle-

γ-γ correlation function can be considerably improved by using a segmented particle detector,

which enables the identification of the dispersion angle of the detected particles. Due to lack of

knowledge about how the states are populated in ATR, the low spin alignment can not be reduced.

Nevertheless, the flatness in the correlation function can be improved using a detector as the one

shown in the Figure 5.12. This and the segmented γ-detectors represent a proposal for future

experiments.

A campaign of α-Transfer reaction experiments is proposed with all the possible combinations of

a stable beam, which together with an α-particle can provide a radioactive product. The first

experiment of this campaign uses the reaction 28Si(12C, 4He)32S to determine the particle-γ-γ

angular correlation function from a quadrupolar emission. The experiment is going to include

an array of 16 ∆E - E particle detectors positioned behind the target, along with 4 arrays of 25

LYSO(Ce) crystals connected to a silicon photomultiplier to form a segmented γ-ray. The detector

will be positioned at 67◦, corresponding to the angle with the largest probability of quadrupolar

emission. The SPP is the best option to study the reaction mechanism due to its good performance

in the interpretation of heavy ion reactions with α-cluster systems [32]. The DWBA is proposed

as the method to calculate SPP with the program FRESCO [75].

The experiment suggested in this thesis is the first in a series of α-transfer experiments. The

final goal is a better understanding of the alpha-transfer reaction mechanism and the possibility

to improve g-factor measurements of many nuclei in their low-lying spin states.
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Figure 5.12: Schematic representation of a circular segmented particle detector proposed to be used
in the next Alpha-transfer experiments. This detector is able to distinguish the dispersed angle of
the detected particle (i.e. θ1, θ2...). The information of the particle is registered in coincidence
with a γ-ray which comes from the radioactive nuclei produced in the ATR. With this information
the particle-γ-γ correlation function will improve it.
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Appendix A

More about g-factor

A.1 Quantum mechanical formalism

The quantum mechanical formalism of g factor will be developed in this section. As an additional

detail, dependence between magnetic moment and nuclear spin will be presented as well.

As shown in Chapter 2, when the magnetic moment is displayed as a vector, it does not point in

the direction of angular momentum. However, due to the Wigner-Eckart theorem, the expected

value of the magnetic moment is roughly in the direction of I. The factor g can be determined

using this theorem and following the rules of nuclear spin selection [33].

Taking into account (2.25),

〈I, Iz|µ|I, Iz′〉 = gIµN〈I, Iz|I|I, Iz′〉. (A.1)

Adding a factor 〈I, Iz′ |I|I, Iz〉,
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〈I, Iz|µ|I, Iz′〉 · 〈I, Iz′ |I|I, Iz〉 = gIµN〈I, Iz|I|I, Iz′〉 · 〈I, Iz′ |I|I, Iz〉 (A.2)

∴
∑
Iz′

〈I, Iz|µ |I, Iz′〉 · 〈I, Iz′ |︸ ︷︷ ︸
Matriz identidad

I|I, Iz〉 =
∑
Iz′

gIµN〈I, Iz|I |I, Iz′〉 · 〈I, Iz′ |︸ ︷︷ ︸
Matriz identidad

I|I, Iz〉

=⇒ 〈I, Iz|µ · I|I, Iz′〉 = gIµN〈I, Iz|I · I|I, Iz′〉

∴ gI =
〈I, Iz|g` ` · I + gS S · I|I, Iz′〉
〈I, Iz|I · I|I, Iz′〉µN

.

Where

S = I− ` (A.3)

` = I− S,

and

S · S = S2 = I2 + `2 − 2I · ` (A.4)

` · ` = `2 = I2 + S2 − 2I · S,

therefore

` · I =
1

2
(I2 + `2 − S2) (A.5)

S · I =
1

2
(I2 + S2 − `2).

Thus, last line of (A.2) is

102



Appendix A. More about g-factor

gI =
g`[I(I + 1) + `(`+ 1)− S(S + 1)] + gS[I(I + 1) + S(S + 1)− `(`+ 1)]

2I(I + 1)
. (A.6)

Nucleons are fermions with spin S = 1/2 and nuclear spin |`− 1
2 | < I < |`+ 1

2 |, thus (A.6) becomes

gI = g` ±
gS − g`
2`+ 1

. (A.7)

Then, with (A.7) g factor for each nucleon can be write. Recalling the g` and gS values disposed

in Table 2.4,

gProton = 1± 5.59− 1

2`+ 1
, (A.8)

then

gProtón =

 1 + 4.59
2I si I = `+ 1/2

1− 4.59
2(I+1) si I = `− 1/2

(A.9)

and

µProtón = gProtón · I =

 I + 2.3 si I = `+ 1/2

I− 2.3
1+1/I if I = `− 1/2

, (A.10)

for proton, and

gNeutrón = 0± −3.83

2`+ 1
, (A.11)

therefore
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gNeutrón =


3.83
2I if I = `+ 1/2

3.83
2(I+1) if I = `− 1/2

, (A.12)

and

µNeutrón = gNeutrón · I =

 −1.92 if I = `+ 1/2

1.92
1+1/I if I = `− 1/2

, (A.13)

for neutron.

104



Appendix B

Schmidt lines

After developing the previous formalism, a new question can be formulated; What will be the

value of µ for different nuclear states? [33]. Assuming that the nucleus is a Fermi gas where

the nucleons are subjected to a potential (independent particle model), the value of the nuclear

magnetic moment for different nuclear states in odd nuclei whose nucleon does not Paired is found

in a well-defined orbital is described by the Schmidt lines. Observe Figure B.1.

(a) Even-even nuclei. (b) Even-odd nuclei.

Figure B.1: Graphic representation of level energy occupation of even-even and odd-even nuclei.

The even-even nuclei are characterized by having all their nucleons paired, therefore the nuclear

spin of this type of nucleus is I = 0 and µ = 0 in its ground state, because the contribution to
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the nuclear spin comes from the nucleons that are not paired. In their states excited with I 6= 0

their magnetic moment values are different from zero and the measurement of these moments in

excited states is the topic of interest of this work.

By using (A.10) and (A.13) with different spin values, the Schmidt lines are obtained (Figure B.2).

These curves represent the prediction of the nuclear magnetic moment value for different nuclear

spin states for the independent particle model.

Figure B.2: Schmith lines with different spin values.

Although the prediction of the Schmidt lines for the value of the nuclear magnetic moment in

different states of nuclear spin approximates the experimental data of the magnetic moment of

some nuclei, this prediction is not completely satisfactory. Figure B.3 illustrates the superposition

of different experimental magnetic moment measurements for different nuclei.

The divergence between the experimental lines and the prediction of the independent particle

model is attributed to a possible polarization of the rest of the nucleus, to a variation between

the magnetic moment of the protons and neutrons inside the nucleus and the nucleons as free

particles, to an exchange of meson streams, among others [33]. A good approximation of the

106



Appendix B. Schmidt lines

Figure B.3: Superposition of the Schmidt lines and the experimental measurements of nuclear mag-
netic moment of some nuclei. The experimental measurements were taken from the reference [4].

magnetic moment measurements is obtained when the spin part of the factor g, is reduced to an

effective geffS ≈ 0.7gfreeS .
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Larmor Theorem

For a system of charged particles, all with the same charge-mass ratio, the movement of the

particles subjected to a central force field and a uniform magnetic induction B due to a magnetic

field, will be exactly equal to movement described in the absence of B, except for the superposition

of a common precession of angular velocity equal to the Larmor frequency.

Proof

Hypothesis: The only force that disturbs the movement of the charged particle system is the central

type force.

Consider the motion of a particle of mass m and charge q under the influence of a central-type

force f(r)r and the Lorentz force due to a static magnetic field B.

F = f(r)r + qv ×B. (C.1)

If the particle is observed from an inertial frame of reference with coordinates r and from a frame

of reference that is rotating with a velocity ω with respect to the frame of inertial reference , with

rotated coordinates r′, the equation (C.1), seen from the inertial frame would be;
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Finerc = f(r)r + qvinerc ×B. (C.2)

Bearing in mind that for a rotating reference system the speed, seen from an inertial frame of

reference, is given by:

ṙ = ṙ′ + ω × r, (C.3)

where vinerc = ṙ and vrot = ṙ′; acceleration is given by:

r̈ =
dvrot
dt

+ ω × ṙ. (C.4)

Recalling dvrot
dt = r̈′ + ω × vrot and ω × ṙ = ω × vrot + ω × (ω × r) substituting ainerc = r̈ y

arot = r̈′, (C.4) becomes in:

ainerc = arot + 2ω × vrot + ω × (ω × r). (C.5)

Multiplying by the mass of the particle on both sides of (C.5)

Finerc = Frot + 2mω × vrot +mω × (ω × r). (C.6)

according with anti-commutative property of the vector product, the second term of (C.6) be-

comes;

Finerc = Frot − 2mvrot × ω +mω × (ω × r). (C.7)

Equating (C.2) y (C.7), it haves:
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Appendix C. Larmor Theorem

Frot − 2mvrot × ω +mω × (ω × r) = f(r)r + qvinerc ×B. (C.8)

Using (C.3), second term from right side of (C.8) is now:

Frot − 2mvrot × ω +mω × (ω × r) = f(r)r + qvrot ×B + q(ω × r)×B. (C.9)

grouping similar terms in (C.9)

Frot − vrot × (2mω ×+qB) + (qB +mω)(ω × r) = f(r)r. (C.10)

Larmor’s theorem will be assumed to be true to prove the hypothesis by affirmation. Therefore if

ω = − q
2mB (C.10) becomes:

Frot − vrot × (
���

���
�:0

−qB×+qB)− q2

4m
[B× (B× r)] = f(r)r

∴ Frot = f(r)r +
q2

4m
[B× (B× r)] (C.11)

Assuming that the magnetic field involved is a weak field, the second term on the right side of

(C.11) will become zero, therefore the hypothesis is affirmed that the central type force is the only

one acting on the system of charged particles.
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Appendix D

São Paulo Proposal

In the next page is attached the experimental proposal presented to the Laboratorio Aberto de

Física Nuclear in São Paulo, Brazil. This proposal was presented in 2018 and accepted the same

year, it is scheduled to be performed in 2019.
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Abstract

A research program to study α-transfer reactions from nα nuclei-like systems, such as 12C, 16O,

20Ca, 24Mg, and the subsequent population mechanism of excited states of the formed nuclei is

proposed. The study will provide information of the stellar nucleo-synthesis processes and nuclear

structure information. The experimental tools will involve the use of particle-γ coincidences using

high-efficiency scintillator detectors LYSO(Ce), coupled to silicon photo-multipliers (SiPM), for

γ-ray detection and to an array of ∆E − E photoswich type (Plastic Scintillators). The Tandem

The Pelletron accelerator at University of Sao Paulo, Brazl, will be utilized to accelerate the nuclei

of interest at energies around the coulomb barrier. Theoretically, the use of the Sao Paulo potential

in conjunction with recent developed tools will be utilized to describe and test the results.

The initial proposed experiment is:

12
6 C + 28

14Si → 32
16S + 4He + 4He

With a range of energies between 0.7 to 1.3 the Coulomb barrier, thus between 9.31 MeV to 17.3

MeV beam energy. A total of five days of beam time is requested plus two days for the preparing

of the experimental setup.

Keywords: alpha transfer, Sao Paulo potential

∗ datorresg@unal.edu.co
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A. Introduction

The nuclear structure information is closely related to the reaction mechanism [8], it is

expected that due to its high binding energy the transfer of an α cluster from a projectile or

from a target will yield information on the structure of the residual nuclei. Research around

α transfer has two focal and related points:

1. the reaction mechanism of the process.

2. the nuclear structure information, such as α widths, spectroscopic factors, and wave

functions as the ultimate goal.

In recent years the use of α-transfer reactions near and even bellow the coulomb barrier to

populate excited states in radioactive nuclei has allowed the study of magnetic and electric

moments using stable beams [6, 15–18, 24–26, 30]. The produced nuclei are created with

enough yields to allow the use of experimental techniques such as the Transient Field and

the Doppler Shift Attenuation Method, to study the main components of the nuclear wave

function in states near to the ground state. Many of the produced nuclei cannot be produced

with enough intensity in the present reaction beam facilities, and it is worth to mention that

the understanding of α-transfer reactions will also provide information to use in future

experiments using radioactive beams, this will open the possibility to have more available

and clean radioactive beams.

Magnetic moments measurements that make use of α-transfer reactions have a lack of

precision due to the poor nuclear-spin alignment of the reaction. Compared with coulomb

excitation reactions, with errors of the order of 5%, the α-transfer provides values of around

40%. The understanding of the reaction process and the population mechanism is pivotal

to re-evaluate the obtained values, and to propose future experiments to measure magnetic

and electric moments in radioactive species.

The study of α-transfer reactions has been subject of study for several decades, and most

of those agree that the reaction mechanism is complex and the main focus has been in

the explanation of α-particle clustering in nuclei. The use of particle-γ correlations, using

high-efficiency setups, gives a powerful tool to extract detailed information in the reaction

mechanism and the structure of the states, in conjunction with theoretical tools such as:

• Distorted Wave Born Approximation (DWBA) in conjunction with optical potential,
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as the Sao Paulo potential for example, to explain the reaction mechanism [3, 11,

19, 27]. Also, algebraic scattering theory has been utilized to understand the angular

distribution in certain systems [28].

• For the structure part three main models are worth to be mentioned [9]:

1. J − J shell model.

2. the SU(3) model.

3. The pairing vibrational model.

To date, there is a lack of information in the reaction mechanism and the population

of the states of the residual nuclei for reactions around the coulomb barrier. The use of

particle-γ coincidence provides one of the most outstanding experimental tools to study this

type of reaction.

In this document, a experimental campaign to study the α-transfer mechanism for ener-

gies around and bellow the Coulomb barrier will be proposed. The use of a γ-ray array of

LYSO(Ce) detectors and Ge detectors, in conjunction with telescopes SiPM for the detection

of residual nuclei will be utilized [13]. The Pelletron at Sao Paulo University will be used to

accelerate the ion of interest. The experimental results will be analyzed with the use of the

Sao Paulo potential.

B. Alpha transfer reactions

During the 60’s and the 70’s the study of α-transfer reactions was an active area of

study, leaded by the existence of new available beams of lithium, oxygen, nitrogen, flourine

and neon. The theoretical description used the DWBA formalism, and bellow the coulomb

barrier probably a direct tunneling mechanism is dominating the reaction. Experimentally,

transfer bellow the coulomb barrier has been observed recently in several experiments, and

a clear explanation for this process, including the effects of deformation and/or diffuseness

of the barrier, is needed.

The relationship between the reaction mechanism and the structure is alto to be inves-

tigated. An overview of some experimental and theoretical tool in α transfer reactions is

presented in the Table below.
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Nuclear Model Studied Reaction Reference

Anomalous large-angle alpha scattering, optical

model and Regge pole calculation

[10]

Distorted Wave Born Approximation using the

Gobbi and Vandenbosch potentials

[3]

Three-Body Model and continuum-discretized

coupled-channels method (CDCC)

[20]

The j-j coupled Shell Model, The SU(3) model,

The pairing Vibration Model

[9]

Optical model and closed formalism parameters [27]

The alpha particle model for 16O and 12C [21]

Modified DWBA model considering the reaction

take place at the nuclear surface. It has useful to

consider the introduction of interference and re-

coil effects which are not considered by DWBA

model. The alternative is the use of phenomeno-

logical calculations considering the plane wave

approximation

[8]

Intranuclear cascade model α+27Al [23]

Single folding optical model α+24,28,32,40Mg,Si,S,Ca [2]

semimicroscopic single folding potentials 4He+12C and 4He+ 16O [1]

Optical model code SPI-GENOA 12C(16O,12C)16O&16O(12C,16O)12C [22]

DWBA calculations in combination with exten-

sive shell-model calculations

32S(16O,12C)36Ar [5]

SU(3). Calculations of 8Be 16O,24,26Mg,28Si,32S, 40Ca(α,12C) [4]

Microscopic and macroscopic DWBA 28Si(α,d)30P &32S(α,d)34Cl [12]

DWBA. α-transfer reaction between light nuclei. 20Ne(16O,20Ne)16O [29]

Alpha transfer reaction and distorted-wave Born

approximation analysis.

27Al(6Li,2H)31P, 29Si(6Li,2H)33S

31P(6Li,2H)35Cl

[14]
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Alpha tranfer reaction in combination with

Transient Field Technique

[18],

[16],

[15],

[24],

[7],

[31]

C. Proposed Experiment

The use of particle-γ correlations is the proposed experimental technique. This will allows

the study of both, the reaction mechanism and the nuclear structure of the systems. Recent

experiments use α-transfer as a mechanism to populate excited states in radioactive nuclei.

The setup is presented in Fig. 2 and results from particle-γ coincidences are presented in

Fig. 1.

The obtaining of a detailed particle-γ angular correlation is one experimental challenges

of the proposal. To do this a highly efficient setup will be utilized, composed by γ-ray LYSO

scintillator detectors, see Fig. 3, working in coincidence with 16 ∆E-E telescopes.

The proposed experiment will be

12
6 C + 28

14Si → 32
16S + 4He + 4He

At beam energies between 9.31 MeV to 17.3 MeV, the Coulomb barrier is estimated to be

at Vc = 13.13 MeV.

A minimun of 5 measures should be taken along this range. With a cross section of around

150 mb and a current of 1 pnA, and a efficiency detection of around 2% for the system

working in coincidence, it is estimated that a day of data taking per energy will be requiered.

This gives a total of five days od experiment.

A deep understanding of the α-transfer mechanism from nα nuclei is expected to be
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FIG. 1. Results from the 96Ru+12C reaction at 350 MeV [15], the coulomb barrier is estimated

at ∼ 335 MeV, the energy at the middle of the target is around the Coulomb barrier. The

experimental setup is presented at figure 2. The central figure corresponds to the signals from the

particle detector, silicon PIPs. Outside figures correspond to the γ-ray signals from the Ge-Clover

detectors in coincidence with the different particle regions. The signals from the particle detector

are very clean, and allows a clear identification of the residual nuclei.

obtained as a result of this project.
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FIG. 2. The experimental setup utilized in experiments reported in Ref. [15, 24] to study magnetic

moments using α-transfer reactions from a carbon target in inverse kinematic reactions. Gamma-

ray Ge-Clover detectors 2 and 3 were placed at ± 67◦ with respect to the beam, while clovers 1

and 4 were placed at ± 113◦. A silicon PIPs particle detector was positioned behind the target

to detect the 8Be=2α particles. A heavy-ion beam impact a multilayered target with carbon as

the first layer. For inverse kinematic reactions the 12C layer provides the environment for both

α-transfer and Coulomb-excitation reactions, producing highly forward-focused 12C ions and α

particles from the decay of 8Be, with distinct energies for each reaction. Figure 1 presents results

from one of the experiments.

FIG. 3. Scintillator γ-ray detector LYSO(Ce). LYSO crystal is an ideal generation scintillator

crystal. LYSO (Cerium-doped Lutetium Yttrium Orthosilicate.) LYSO crystal has the advantages
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[21] Göran Fäldt and Lars Gislén. Fragmentation of relativistic nuclei in the α-particle model.

Nuclear Physics A, 254(2):341 – 348, 1975.

[22] S. Hamada, N. Burtebayev, K.A. Gridnev, and N. Amangeldi. Analysis of alpha-cluster trans-

fer in 16o+12c and 12c+16o at energies near coulomb barrier. Nuclear Physics A, 859(1):29–38,

2011.

[23] M.J. Kobra, G. Watanabe, Y. Yamaguchi, Y. Uozumi, and M. Nakano. An intranuclear

cascade model for inelastic scattering and breakup reactions involving deuterons and alpha

particles. Journal of Nuclear Science and Technology, 55(2):209–216, 2018.

[24] G. J. Kumbartzki, N. Benczer-Koller, K.-H. Speidel, D. A. Torres, J. M. Allmond, P. Fallon,

I. Abramovic, L. A. Bernstein, J. E. Bevins, H. L. Crawford, Z. E. Guevara, G. Gürdal, A. M.
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Appendix E

TRIUMF possible experiments list

The following table shows all possible Alpha-

Transfer reactions that can be obtained from

shooting all beams available at TRIUMF lab to

12C-layer as a target. The column labeled as

τ contains the time-life values of the resulting

nuclei.

Table E.1: Table of Alpha-Transfer reactions
with available beams (parent) at TRIUMF [7].
All lifetimes corresponds to ground state of the
daughter nuclei. τ values were taken from [8].

Parent Daughter τ

6He 10Be 1.5×106 (4×106) y

8He 12Be 21.47(4) ms

6Li 10B stable

7Li 11B stable

8Li 12B 20.26(2) ms

9Li 13B 17.33(17) ms

11Li 15B 10.18(3) ms

Continued on next column

Continued from previous column

Parent Daughter τ

7Be 11C 20.364(14) m

9Be 13C stable

10Be 14C 5700(30) y

11Be 15C 2.449(5) s

12Be 16C 0.747(8) s

9C 13O 8.58(5) ms

10C 14O 70.62(15) s

11C 15O 122.24(16) s

15C 19O 26.88(5) s

16C 20O 13.51(5) s

13N 17F 64.49(16) s

14O 18Ne 1.66(17) s

15O 19Ne 17.22(2) s

19O 23Ne 37.24(12) s

20O 24Ne 3.38(2) m

21O 25Ne 602(8) ms

17F 21Na 22.49(4) s

Continued on next column
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Continued from previous column

Parent Daughter τ

18F 22Na 2.6018(22) y

20F 24Na 14.997(12) y

21F 25Na 59.1(6) s

22F 26Na 1.07128(25) s

23F 27Na 301(6) ms

17Ne 21Mg 122(33) ms

18Ne 22Mg 3.8755(1) s

19Ne 23Mg 11.317(11) s

23Ne 27Mg 9.458(12) m

24Ne 28Mg 20.915(9) h

25Ne 29Mg 1.3(12) s

20Na 24Al 20.053(4) s

21Na 25Al 7.183(12) s

22Na 26Al 7.17×105(24×105) y

23Na 27Al stable

24Na 28Al 2.245(2) m

25Na 29Al 6.56(6) m

26Na 30Al 3.62(6) s

27Na 31Al 644(25) ms

28Na 32Al 31.9(8) ms

29Na 33Al 41.7(2) ms

30Na 34Al 56.3(6) ms

31Na 35Al 37.6(14) ms

32Na 36Al 94(37) ms

Continued on next column

Continued from previous column

Parent Daughter τ

20Mg 24Si 140.5(15) ms

21Mg 25Si 220(3) ms

22Mg 26Si 2.2453(7) s

23Mg 27Si 4.15(4) s

24Mg 28Si stable

25Mg 29Si stable

26Mg 30Si stable

27Mg 31Si 157.36(6) m

28Mg 32Si 153(19) y

29Mg 33Si 6.11(21) s

30Mg 34Si 2.77(20) s

31Mg 35Si 780(120) ms

32Mg 36Si 450(60) ms

33Mg 37Si 90(60) ms

34Mg 38Si 95(10) ms

35Mg 39Si 47.5(20) ms

23Al 27P 260(80) ms

24Al 28P 270.3(5) ms

25Al 29P 4.142(15) s

26Al 30P 2.498(4) m

28Al 32P 14.268(5) d

29Al 33P 25.35(11) d

30Al 34P 12.43(10) s

33Cl 37K 1.226(7) s

Continued on next column
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Appendix E. TRIUMF possible experiments list

Continued from previous column

Parent Daughter τ

34Cl 38K 7.636(18) m

38Cl 42K 12.355(7) h

39Cl 43K 22.3(1) h

40Cl 44K 22.13(19) m

41Cl 45K 17.81(61) m

33Ar 37Ca 181.1(10) ms

34Ar 38Ca 440(12) ms

35Ar 39Ca 859.6(14) ms

36Ar 40Ca > 3.0 ×1021 y

41Ar 45Ca 162.61(9) d

43Ar 47Ca 4.536(3) d

44Ar 48Ca > 5.8×1022 y

45Ar 49Ca 8.178(6) m

46Ar 50Ca 31.9(6) s

35K 39Sc 300 ns

36K 40Sc 182.3(7) ms

37K 41Sc 596.3(17) ms

38K 42Sc 680.79(28) ms

42K 46Sc 83.79(4) d

43K 47Sc 3.3492(6) d

44K 48Sc 43.67(9) h

45K 49Sc 57.18(13) m

46K 50Sc 102.5(5) s

47K 51Sc 12.4(1) s

Continued on next column

Continued from previous column

Parent Daughter τ

48K 52Sc 8.2(2) s

49K 53Sc 2.6(4) s

50K 54Sc 526(15) ms

51K 55Sc 105(6) ms

52K 56Sc 26(6) ms

38Ca 42Ti 208.65(8) ms

39Ca 43Ti 509(5) ms

47Ca 51Ti 5.76(1) m

49Ca 53Ti 32.7(9) s

50Ca 54Ti 2.1(10) s

51Ca 55Ti 1.3(1) s

52Ca 56Ti 0.2(5) s

50Sc 54V 49.8(5) s

51Sc 55V 6.54(15) s

52Sc 56V 0.216(4) s

46Ti 50Cr 1.3 ×1018 y

47Ti 51Cr 27.704(4) d

48Ti 52Cr stable

49Ti 53Cr stable

50Ti 54Cr stable

51Ti 55Cr 3.4976(3) m

52Ti 56Cr 5.94(10) m

53Ti 57Cr 21.1(10) s

54V 58Mn 3(1) s

Continued on next column
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Continued from previous column

Parent Daughter τ

51Cr 55Fe 2.744(9) y

56Cr 60Fe 2.6×106(4×106) y

49Mn 53Co 240(9) ms

50Mn 54Co 193.28(7) ms

51Mn 55Co 17.53(3) h

52Mn 56Co 77.236(23) d

53Mn 57Co 271.74(6) d

54Mn 58Co 70.86(6) d

55Mn 59Co stable

56Mn 60Co 1925.28(14) d

57Mn 61Co 1.649(5) h

58Mn 62Co 1.54(10) m

59Mn 63Co 27.4(5) s

60Mn 64Co 0.3(3) s

61Mn 65Co 1.16(3) s

62Mn 66Co 0.2(2) s

63Mn 67Co 0.425(20) s

64Mn 68Co 0.2(2) s

65Mn 69Co 227(11) ms

66Mn 70Co 112(7) ms

67Mn 71Co 80(3) ms

68Mn 72Co 59.9(17) ms

57Ni 61Zn 89.1(2) s

57Cu 61Ga 167(3) ms

Continued on next column

Continued from previous column

Parent Daughter τ

58Cu 62Ga 116.121(21) ms

59Cu 63Ga 32.4(5) s

60Cu 64Ga 2.627(12) m

61Cu 65Ga 15.2(2) m

62Cu 66Ga 9.49(3) h

63Cu 67Ga 3.2617(5) d

64Cu 68Ga 67.71(8) m

65Cu 69Ga stable

66Cu 70Ga 21.14(5) m

67Cu 71Ga stable

68Cu 72Ga 14.1(2) h

69Cu 73Ga 4.86(3) h

70Cu 74Ga 8.12(12) m

71Cu 75Ga 126(2) s

72Cu 76Ga 32.6(6) s

73Cu 77Ga 13.2(2) s

74Cu 78Ga 5.09(5) s

59Zn 63Ge 150(9) ms

60Zn 64Ge 63.75(25) s

61Zn 65Ge 30.9(5) s

62Zn 66Ge 2.26(5) h

63Zn 67Ge 18.9(3) m

64Zn 68Ge 270.93(13) d

65Zn 69Ge 39.05(10) h

Continued on next column
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Continued from previous column

Parent Daughter τ

66Zn 70Ge stable

67Zn 71Ge 11.43(3) d

69Zn 73Ge stable

70Zn 74Ge stable

71Zn 75Ge 82.78(4) m

72Zn 76Ge stable

73Zn 77Ge 11.211(3) h

74Zn 78Ge 88(10) m

75Zn 79Ge 18.98(3) s

76Zn 80Ge 29.5(4) s

77Zn 81Ge 7.6(6) s

78Zn 82Ge 4.56(26) s

79Zn 83Ge 1.85(6) s

61Ga 65As 128(16) ms

62Ga 66As 95.77(23) ms

63Ga 67As 42.5(12) s

64Ga 68As 151.6(8) s

65Ga 69As 15.2(2) m

66Ga 70As 52.6(3) m

67Ga 71As 65.3(7) h

68Ga 72As 26(1) h

69Ga 73As 80.3(6) d

70Ga 74As 17.77(2) d

71Ga 75As stable

Continued on next column

Continued from previous column

Parent Daughter τ

72Ga 76As 26.24(9) h

73Ga 77As 38.79(5) h

74Ga 78As 90.7(2) m

75Ga 79As 9.01(15) m

76Ga 80As 15.2(2) s

77Ga 81As 33.3(8) s

78Ga 82As 19.1(5) s

79Ga 83As 13.4(3) s

80Ga 84As 4.2(5) s

81Ga 85As 2.021(12) s

82Ga 86As 0.945(8) s

83Ga 87As 484(40) ms

84Ga 88As 0.2(s)

64Ge 68Se 35.5(7) s

65Ge 69Se 27.4(2) s

66Ge 70Se 41.1(3) m

67Ge 71Se 4.74(5) m

69Ge 73Se 7.15(8) h

71Ge 75Se 119.7(5) d

76Ge 80Se stable

80Ge 84Se 3.26(10) m

71Se 75Kr 4.6(7) m

72Se 76Kr 14.8(1) h

73Se 77Kr 74.4(6) m

Continued on next column
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Continued from previous column

Parent Daughter τ

71Br 75Rb 19(12) s

72Br 76Rb 36.5(6) s

73Br 77Rb 3.78(4) m

74Br 78Rb 17.66(3) m

75Br 79Rb 22.9(5) m

84Br 88Rb 17.773(18) m

85Br 89Rb 15.32(10) m

86Br 90Rb 158(5) s

87Br 91Rb 58.3(2) s

88Br 92Rb 4.48(3) s

89Br 93Rb 5.84(2) s

72Kr 76Sr 7.89(7) s

73Kr 77Sr 9(2) s

74Kr 78Sr 160(8) s

75Kr 79Sr 2.25(10) m

76Kr 80Sr 106.3(15) m

77Kr 81Sr 22.3(4) m

79Kr 83Sr 25.35(3) d

87Kr 91Sr 9.65(6) h

88Kr 92Sr 2.611(17) h

89Kr 93Sr 7.43(3) m

90Kr 94Sr 75.3(2) s

91Kr 95Sr 23.9(14) s

92Kr 96Sr 1.07(1) s

Continued on next column

Continued from previous column

Parent Daughter τ

93Kr 97Sr 429(5) ms

94Kr 98Sr 0.653(2) s

95Kr 99Sr 0.269(1) s

96Kr 100Sr 202(3) ms

97Kr 101Sr 118(3) ms

74Rb 78Y 53(8) ms

75Rb 79Y 14.8(6) s

76Rb 80Y 30.1(5) s

77Rb 81Y 70.4(1) s

78Rb 82Y 8.3(20) s

79Rb 83Y 7.08(8) ms

80Rb 84Y 39.5(8) m

81Rb 85Y 2.68(5) h

82Rb 86Y 14.74(2) h

83Rb 87Y 79.8(3) h

84Rb 88Y 106.626(21) d

86Rb 90Y 64(21) h

88Rb 92Y 3.54(1) h

89Rb 93Y 10.18(8) h

90Rb 94Y 18.7(1) m

91Rb 95Y 10.3(1) m

92Rb 96Y 5.34(5) s

93Rb 97Y 3.75(3) s

94Rb 98Y 0.548(2) s

Continued on next column
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Continued from previous column

Parent Daughter τ

95Rb 99Y 1.484(7) s

96Rb 100Y 735(7) ms

97Rb 101Y 0.45(2) s

98Rb 102Y 0.36(4) s

99Rb 103Y 0.23(2) s

100Rb 104Y 197(4) ms

101Rb 105Y 95(9) ms

76Sr 80Zr 4.6(6) s

78Sr 82Zr 37(5) s

79Sr 83Zr 42(2) s

80Sr 84Zr 25.8(5) m

81Sr 85Zr 7.86(4) m

83Sr 87Zr 1.68(1) h

85Sr 89Zr 78.41(12) h

87Sr 91Zr stable

91Sr 95Zr 64.032(6) d

92Sr 96Zr 2.0×1019(4×1019) y

93Sr 97Zr 16.749(8) h

94Sr 98Zr 30.7(4) s

95Sr 99Zr 21.1(1) s

96Sr 100Zr 7.1(4) s

97Sr 101Zr 2.3(1) s

98Sr 102Zr 2.9(2) s

99Sr 103Zr 1.3(1) s

Continued on next column

Continued from previous column

Parent Daughter τ

100Sr 104Zr 1.2(3) s

101Sr 105Zr 670(28) ms

102Sr 106Zr 180(9) ms

83Y 87Nb 3.7(1) m

84Y 88Nb 14.5(11) m

86Y 90Nb 14.6(5) h

87Y 91Nb 6.8×102(13 ×102) y

88Y 92Nb 3.47×107(24×107) y

89Y 93Nb stable

90Y 94Nb 2.034×104(16×104) y

91Y 95Nb 34.991(6) d

94Y 98Nb 2.86(6) s

95Y 99Nb 15(2) s

96Y 100Nb 1.5(2) s

97Y 101Nb 7.1(3) s

98Y 102Nb 4.3(4) s

99Y 103Nb 1.5(2) S

99Tc 103Rh stable

98Ag 102In 23.3(1) s

99Ag 103In 65 (7) s

100Ag 104In 1.80(3) m

101Ag 105In 5.07(7) m

102Ag 106In 6.2(1) m

103Ag 107In 32.4(3) m

Continued on next column
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Continued from previous column

Parent Daughter τ

104Ag 108In 58.0(12) m

105Ag 109In 4.159(10) h

107Ag 111In 2.8047(4) d

109Ag 113In stable

110Ag 114In 71.9(1) s

111Ag 115In 4.41×1014(25×1014) y

112Ag 116In 14.10(3) s

113Ag 117In 43.2(3) m

115Ag 119In 2.4(1) m

116Ag 120In 3.08(8) s

117Ag 121In 23.1(6) s

118Ag 122In 1.5(3) s

119Ag 123In 6.17(5) s

120Ag 124In 3.12(9) s

117Cd 121Sr 27.03(4) h

119Cd 123Sr 129.2(4) d

121Cd 125Sr 9.64(33) d

123Cd 127Sr 2.10(4) h

124Cd 128Sr 59.07(14) m

125Cd 129Sr 2.23(4) m

126Cd 130Sr 3.72(7)m

127Cd 131Sr 56.0(5) s

129Cd 133Sr 1.46(3) s

130Cd 134Sr 1.050(11) s

Continued on next column

Continued from previous column

Parent Daughter τ

104In 108Sb 7.4(3) s

105In 109Sb 17.2(5) s

106In 110Sb 23.6(3) s

107In 111Sb 75(1) s

108In 112Sb 53.5(6) s

109In 113Sb 6.67(7) m

110In 114Sb 3.49(3) m

111In 115Sb 32.1(3) m

112In 116Sb 15.8(8) m

116In 120Sb 15.89(4) m

118In 122Sb 2.72348(2) d

119In 123Sb stable

120In 124Sb 60.20(3) d

121In 125Sb 2.75856(25) y

122In 126Sb 12.35(6) d

123In 127Sb 3.85(5) d

124In 128Sb 9.05 (4) h

125In 129Sb 4.366 (26) h

126In 130Sb 39.5 (8) m

127In 131Sb 23.03 (4) m

128In 132Sb 2.79 (7) m

129In 133Sb 2.34 (5) m

130In 134Sb 0.78 (6) s

131In 135Sb 1.679 (15) s

Continued on next column
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Continued from previous column

Parent Daughter τ

132In 136Sb 0.923 (14) s

133In 137Sb 450 (50) ms

104Sn 108Te 2.1(1) s

105Sn 109Te 4.4(2) s

106Sn 110Te 18.6(8) s

107Sn 111Te 19.3(4) s

108Sn 112Te 2(2) m

109Sn 113Te 1.7(2) m

110Sn 114Te 15.2(7) m

111Sn 115Te 5.8(2) m

112Sn 116Te 2.49(4) h

113Sn 117Te 62(2) m

114Sn 118Te 6(2) d

115Sn 119Te 16.05(5) h

116Sn 120Te stable

117Sn 121Te 19.17(4) d

118Sn 122Te stable

119Sn 123Te 9.2×1016 y

120Sn 124Te stable

121Sn 125Te stable

122Sn 126Te stable

124Sn 128Te 7.7×1024(4×1024) y

108Sb 112I 3.34(8) s

109Sb 113I 6.6(2) s

Continued on next column

Continued from previous column

Parent Daughter τ

110Sb 114I 2.1(2) s

111Sb 115I 1.3(2) m

112Sb 116I 2.91(15) s

113Sb 117I 2.22(4) m

114Sb 118I 13.7(5) m

115Sb 119I 19.1(4) m

116Sb 120I 81.6(2) m

117Sb 121I 2.12(1) h

118Sb 122I 3.63(6) m

119Sb 123I 13.2235(19) h

120Sb 124I 4.176(3) d

130Sb 134I 52.5(2) m

121I 125Cs 46.7(1) m

122I 126Cs 1.64(2) m

123I 127Cs 6.25(10) h

124I 128Cs 3.64(14) m

130I 134Cs 2.0652(4) y

138I 142Cs 1.684(14) s

123Xe 127Ba 12.7(4) m

125Xe 129Ba 2.23(11) h

127Xe 131Ba 11.5(6) d

138Xe 142Ba 10.6(2) m

139Xe 143Ba 14.5(3) s

140Xe 144Ba 11.5(2) s

Continued on next column
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Continued from previous column

Parent Daughter τ

141Xe 145Ba 4.31(16) s

142Xe 146Ba 2.21(6) s

143Xe 147Ba 0.894(10) s

117Cs 121La 5.3(2) s

118Cs 122La 8.6(5) s

119Cs 123La 17(3) s

120Cs 124La 21(4) s

121Cs 125La 64.8(12) s

122Cs 126La 54(2) s

123Cs 127La 5.1(1) m

124Cs 128La 5.18(14) m

125Cs 129La 11.6(2) m

126Cs 130La 8.7(1) m

127Cs 131La 59(2) m

128Cs 132La 4.8(2) h

129Cs 133La 3.912(8) h

130Cs 134La 6.45(16) m

132Cs 136La 9.87(3) m

138Cs 142La 91.1(5) m

139Cs 143La 14.2(1) m

140Cs 144La 40.8(4) s

141Cs 145La 3.01(6) m

142Cs 146La 13.49(16) m

143Cs 147La 4.06(4) s

Continued on next column

Continued from previous column

Parent Daughter τ

144Cs 148La 1.26(8) s

125Ba 129Ce 3.5(3) m

129Ba 133Ce 97(4) m

137Ba 141Ce 32.511(13) d

139Ba 143Ce 33.039(6) h

140Ba 144Ce 284.91(5) d

141Ba 145Ce 3.01(6) m

142Ba 146Ce 13.49(16) m

143Ba 147Ce 56.4(10) s

147Ba 151Ce 1.76(6) s

128La 132Pr 1.6(3) m

129La 133Pr 6.5(3) m

130La 134Pr 17(2) m

131La 135Pr 24(1) m

132La 136Pr 13.1(1) m

142La 146Pr 24.09(10) m

146La 150Pr 6.19(16) s

131Ce 135Nd 12.4(6) m

132Ce 136Nd 50.65(33) m

135Ce 139Nd 29.7(5) m

146Ce 150Nd 0.91×1019(7×1019) y

130Pr 136Pm 47(2) s

131Pr 137Pm 2.4(1) m

132Pr 138Pm 10(2) s

Continued on next column
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Continued from previous column

Parent Daughter τ

133Pr 139Pm 4.15(5) m

134Pr 140Pm 9.2(2) s

135Pr 141Pm 20.9(5) m

136Pr 142Pm 40.5(5) s

146Pr 152Pm 4.12(8) m

129Nd 133Sm 2.89(16)

133Nd 137Sm 45(1) s

136Nd 140Sm 14.82(12) m

137Nd 141Sm 10.2(2) m

141Nd 145Sm 140(3) d

134Pm 138Eu 12.1(6) s

135Pm 139Eu 17.9(6) s

136Pm 140Eu 1.51(2) s

137Pm 141Eu 40.7(7) s

138Pm 142Eu 2.34(12) s

141Pm 145Eu 5.93(4) d

142Pm 146Eu 4.61(3) d

136Sm 140Gd 43327(4) s

137Sm 141Gd 14(4) s

139Sm 143Gd 39(2) s

140Sm 144Gd 4.47(6) m

141Sm 145Gd 23(4) m

143Sm 147Gd 38.06(12) h

138Eu 142Tb 597(17) ms

Continued on next column

Continued from previous column

Parent Daughter τ

141Eu 145Tb

142Eu 146Tb 8(4) s

143Eu 147Tb 1.64(3) h

144Eu 148Tb 60(1) m

145Eu 149Tb 4.118(25) h

146Eu 150Tb 3.48(16) h

158Eu 162Tb 7.6(15) m

159Eu 163Tb 19.5(3) m

160Eu 164Tb 3(1) m

161Eu 165Tb 2.11(10) m

162Eu 166Tb 25.1(21) s

163Eu 167Tb 19.4(27) s

164Eu 168Tb 8.2(13) s

143Gd 147Dy 67(7) s

144Gd 148Dy 3.3(2) m

145Gd 149Dy 4.2(14) m

146Gd 150Dy 7.17(5) m

147Gd 151Dy 17.9(3) m

148Gd 152Dy 2.38(2) h

149Gd 153Dy 6.4(0.1) h

150Gd 154Dy 3.0×1016(15×1016) y

151Gd 155Dy 9.9(2) h

152Gd 156Dy stable

153Gd 157Dy 8.14(4) h

Continued on next column
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Continued from previous column

Parent Daughter τ

154Gd 158Dy stable

145Tb 149Ho 21.1(2) s

146Tb 150Ho 72(4) s

147Tb 151Ho 35.2(1) s

148Tb 152Ho 161.8(3) s

149Tb 153Ho 2.01(3) m

150Tb 154Ho 11.76(19) m

151Tb 155Ho 48(1) m

152Tb 156Ho 56(1) m

153Tb 157Ho 12.6(2) m

154Tb 158Ho 11.3(4) m

155Tb 159Ho 33.05(11) m

147Dy 151Er 23.5(2) s

148Dy 152Er 10.3(1) s

149Dy 153Er 37.1(2) s

150Dy 154Er 3.73(9) m

151Dy 155Er 5.3(3) m

152Dy 156Er 19.5(10) m

153Dy 157Er 18.65(10) m

157Dy 161Er 3.21(3) h

146Ho 150Tm 2.2(6) s

147Ho 151Tm 4.17(11) s

148Ho 152Tm 8(1) s

149Ho 153Tm 1.48(1) s

Continued on next column

Continued from previous column

Parent Daughter τ

150Ho 154Tm 8.1(3) s

151Ho 155Tm 21.6(2) s

152Ho 156Tm 83.8(18) s

153Ho 157Tm 3.63(9) m

154Ho 158Tm 3.98(6) m

155Ho 159Tm 9.13(16) m

156Ho 160Tm 9.4(3) m

157Ho 161Tm 30.2(8) m

158Ho 162Tm 21.7(19) m

159Ho 163Tm 1.81(5) h

160Ho 164Tm 2(1) m

161Ho 165Tm 30.06(3) h

162Ho 166Tm 7.7(3) h

163Ho 167Tm 9.25(2) d

164Ho 168Tm 93.1(2) d

165Ho 169Tm stable

149Er 153Yb 4.2(2) s

151Er 155Yb 1.793(19) s

152Er 156Yb 26.1(7) s

153Er 157Yb 38.6(10) s

154Er 158Yb 1.49(13) m

155Er 159Yb 1.67(9) m

156Er 160Yb 4.8(2) m

157Er 161Yb 4.2(2) m

Continued on next column
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Continued from previous column

Parent Daughter τ

158Er 162Yb 18.87(19) m

159Er 163Yb 11.05(35) m

160Er 164Yb 75.8(17) m

161Er 165Yb 9.9(3) m

163Er 167Yb 17.5(2) m

164Er 168Yb stable

167Er 171Yb stable

153Tm 157Lu 6.8(18) s

155Tm 159Lu 12.1(10) s

156Tm 160Lu 36.1(3) s

157Tm 161Lu 77(2) s

158Tm 162Lu 1.37(2) m

159Tm 163Lu 3.97(13) m

160Tm 164Lu 3.14(3) m

161Tm 165Lu 10.74(10) m

162Tm 166Lu 2.65(10) m

163Tm 167Lu 51.5(10) m

164Tm 168Lu 5.5(1) m

165Tm 169Lu 34.06(5) h

166Tm 170Lu 2.012(20) d

172Tm 176Lu 3.76×1010(7×1010) y

173Tm 177Lu 6.647(4) d

174Tm 178Lu 28.4(2) m

175Tm 179Lu 4.59(6) h

Continued on next column

Continued from previous column

Parent Daughter τ

176Tm 180Lu 5.7(1) m

153Yb 157Hf 115(1) ms

154Yb 158Hf 2.85(7) s

155Yb 159Hf 5.6(4) s

156Yb 160Hf 13.6(2) s

157Yb 161Hf 18.4(4) s

158Yb 162Hf 39.4(9) s

159Yb 163Hf 40(6) s

160Yb 164Hf 111(8) s

162Yb 166Hf 6.77(30) m

163Yb 167Hf 2.05(5) m

164Yb 168Hf 25.95(20) m

165Yb 169Hf 3.24(4) m

166Yb 170Hf 16.01(13) h

167Yb 171Hf 12.1(4) h

168Yb 172Hf 1.87(3) y

169Yb 173Hf 23.6(1) h

170Yb 174Hf 2.0×1015(4×1015) y

171Yb 175Hf 70(2) d

172Yb 176Hf stable

174Yb 178Hf stable

175Yb 179Hf stable

176Yb 180Hf stable

177Yb 181Hf 42.39(6) d

Continued on next column
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Continued from previous column

Parent Daughter τ

178Yb 182Hf 8.90×106(9×106) y

156Lu 160Ta 155(4) s

158Lu 162Ta 3.357(12) s

159Lu 163Ta 10.6(18) s

160Lu 164Ta 14.2(3) s

162Lu 166Ta 34.4(5) s

163Lu 167Ta 80(4) s

164Lu 168Ta 2(1) m

165Lu 169Ta 4.9(4) m

166Lu 170Ta 6.76(6) m

167Lu 171Ta 23.3(3) m

168Lu 172Ta 36.8(3) m

169Lu 173Ta 3.14(13) h

170Lu 174Ta 1.14(8) h

171Lu 175Ta 10.5(2) h

172Lu 176Ta 8.09(5) h

174Lu 178Ta 2.36(8) h

176Lu 180Ta 8.154(6) h

177Lu 181Ta stable

178Lu 182Ta 114.74(12) d

179Lu 183Ta 5.1(1) d

180Lu 184Ta 8.7(1) h

190Au 194Tl 33(5) m

190Hg 194Pb 10.7(6) m

Continued on next column

Continued from previous column

Parent Daughter τ

191Hg 195Pb 15 m

192Hg 196Pb 37(3) m

207Hg 211Pb 36.1(2) m

190Tl 194Bi 95(3) s

191Tl 195Bi 183(4) s

192Tl 196Bi 308(12) s

193Tl 197Bi 9.33(50) m

194Tl 198Bi 10.3(3) m

195Tl 199Bi 27(1) m

196Tl 200Bi 36.4(5) m

197Tl 201Bi 103(3) m

198Tl 202Bi 1.71(4) h

200Tl 204Bi 11.22(10) h

208Tl 212Bi 60.55(6) m

190Pb 194Po 0.392(4) s

191Pb 195Po 4.64(9) s

192Pb 196Po 5.8(2) s

193Pb 197Po 84(16) s

195Pb 199Po 5.47(15) m

196Pb 200Po 11.51(8) m

198Pb 202Po 44.6(4) m

199Pb 203Po 36.7(5) m

211Pb 215Po 1.781(5) ms

192Bi 196At 0.388(7) s

Continued on next column
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Continued from previous column

Parent Daughter τ

193Bi 197At 0.388(6) s

195Bi 199At 7.03(15) s

196Bi 200At 43(1) s

197Bi 201At 85.2(16) s

198Bi 202At 184(1) s

199Bi 203At 7.4(2) m

200Bi 204At 9.12(11) m

201Bi 205At 26.9(8) m

202Bi 206At 30.6(8) m

204Bi 208At 1.63(3) h

211Bi 215At 0.1(2) ms

212Bi 216At 0.3(3) ms

213Bi 217At 32.3(4) ms

195Po 199Rn 0.59(3) s

196Po 200Rn 1.03(20−11) s

197Po 201Rn 7(4) s

198Po 202Rn 9.7(1) s

199Po 203Rn 44(2) s

200Po 204Rn 74.5(14) s

201Po 205Rn 170(4) s

202Po 206Rn 5.67(17) m

203Po 207Rn 9.25(17) m

204Po 208Rn 24.35(14) m

205Po 209Rn 28.8(10) m

Continued on next column

Continued from previous column

Parent Daughter τ

206Po 210Rn 2.4(1) h

207Po 211Rn 14.6(2) h

208Po 212Rn 23.9(12) m

210Po 214Rn 0.27(2) µs

211Po 215Rn 2.3(10) µs

195At 199Fr 12(10−4) ms

196At 200Fr 49(4) ms

197At 201Fr 62(5) ms

198At 202Fr 0.3(5) s

199At 203Fr 0.55(1) s

200At 204Fr 1.8(3) s

201At 205Fr 3.92(4) s

202At 206Fr 16 s

203At 207Fr 14.8(1) s

204At 208Fr 59.1(3) s

205At 209Fr 50.5(7) s

206At 210Fr 3.18(6) m

207At 211Fr 3.1(2) m

208At 212Fr 20(6) m

209At 213Fr 34.82(14) s

210At 214Fr 5(2) ms

211At 215Fr 86(5) ns

212At 216Fr 0.7(2) µs

217At 221Fr 4.9(2) m

Continued on next column
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Continued from previous column

Parent Daughter τ

218At 222Fr 14.2(3) m

219At 223Fr 22(7) m

201Rn 205Ra 210(+60-40) ms

202Rn 206Ra 0.24(2) s

203Rn 207Ra 1.35(+22-13) s

204Rn 208Ra 1.3(2) s

205Rn 209Ra 4.8(2) s

206Rn 210Ra 3.7(2) s

207Rn 211Ra 13(2) s

208Rn 212Ra 13(2) s

209Rn 213Ra 2.73(5) m

210Rn 214Ra 2.46(3) s

211Rn 215Ra 1.66(2) ms

212Rn 216Ra 182(10) ns

213Rn 217Ra 1.6(2) µ s

218Rn 222Ra 38(5) s

219Rn 223Ra 11.43(5) d

220Rn 224Ra 3.6319(2) d

221Rn 225Ra 14.9(2) d

222Rn 226Ra 1600(7) y

223Rn 227Ra 42.2(5) m

201Fr 205Ac 20(+99 - 7) ms

202Fr 206Ac 22(+9-5) ms

203Fr 207Ac 27(+11-6) ms

Continued on next column

Continued from previous column

Parent Daughter τ

204Fr 208Ac 95(+24-16) ms

205Fr 209Ac 0.087(+12-9) s

206Fr 210Ac 0.35(5) s

207Fr 211Ac 0.21(3) s

208Fr 212Ac 0.93(5) s

209Fr 213Ac 738(16) ms

210Fr 214Ac 8.2(2) s

211Fr 215Ac 0.17(1) s

212Fr 216Ac 440(16) µs

213Fr 217Ac 69(4) ns

214Fr 218Ac 1.08(9) µs

218Fr 222Ac 5(5) s

219Fr 223Ac 2.1(5) ms

220Fr 224Ac 2.78(16) h

221Fr 225Ac 9.9203(3) d

222Fr 226Ac 29.37(12) h

223Fr 227Ac 21.772(3) y

224Fr 228Ac 6.15(2) h

225Fr 229Ac 62.7(5) h

227Fr 231Ac 7.5(1) m

228Fr 232Ac 119(5) s

229Fr 233Ac 145(10) s

230Fr 234Ac 44(7) s

231Fr 235Ac 62(4) s

Continued on next column
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Appendix E. TRIUMF possible experiments list

Continued from previous column

Parent Daughter τ

207Ra 211Th 37(+28-11) ms

208Ra 212Th 31.7(13) ms

209Ra 213Th 144(21) ms

210Ra 214Th 87(10) ms

211Ra 215Th 1.2(2) s

212Ra 216Th 26(2) ms

213Ra 217Th 0.241(5) ms

214Ra 218Th 117(9) ns

220Ra 224Th 1.04(2) s

221Ra 225Th 8.75(4) m

222Ra 226Th 30.57(10) m

223Ra 227Th 18.697(7) d

224Ra 228Th 1.9116(16) y

225Ra 229Th 7880(120) y

226Ra 230Th 7.54×104(3×104) y

227Ra 231Th 25.52(1) h

229Ra 233Th 21.83(4) m

230Ra 234Th 24.1(3) d

231Ra 235Th 7.2(1) m

233Ra 237Th 4.8(5) m

222Ac 226Pa 1.8(2) m

223Ac 227Pa 38.3(3) m

225Ac 229Pa 1.5(5) d

226Ac 230Pa 17.4(5) d

Continued on next column

Continued from previous column

Parent Daughter τ

228Ac 232Pa 1.32(2) d

229Ac 233Pa 26.975(13) d

230Ac 234Pa 6.7(5) h

231Ac 235Pa 24.4(2) m

232Ac 236Pa 9.1(1) m

233Ac 237Pa 8.7(2) m

239Pu 241Cm 29.1(1) y

Concluded
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Abbreviations

NMM Nuclear Magnetic Moment

TF Transient Field

ATR Alpha Transfer Reaction

RIV Recoil Into Vacuum

DSAM Doppler Shift Attenuation Method

NMM Nuclear Magnetic Moment

TDRIV Time Differential Recoil Into Vacuum

DWBA Distorted Wave Born Approximation

TDPAD Time Differential Perturbed Angular distribution

PAC Perturbed Angular Correlation

NMR Nuclear Magnetic Resonance

SPP São Paulo Potential

HP-Ge High-Purity Germanium

NEC National Electrostatic Corporation

LAFN Laboratorio Aberto de Fisica Nuclear

MC-SNICS Multicathode Source of Negative Ions by Cesium Sputtering

SiPM Silicon Photomultiplier

LYSO(Ce) Cerium-doped Lutetioum Yttrium Orthosilicate

PIPS Passivated Implanted Planar Silicon
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