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Abstract

In this Master’s degree project, is develops the actuarial valuation methodology of
Stop-Loss reinsurance, in order to provide a solution to the problem of calculating
the optimal retention point and reinsurance premium, which must have the prepaid
medicine companies to cover those high cost procedures that affect their financial
health. It should be noted that, for the application of this methodology, we only use
the adjustment of the number and claims size, in consequence, no considerations
are made about the solvency or probability of ruin of the health-services provider
companies.

Despite that reinsurance in prepaid medicine is contemplated in Law 100/93,
there are relatively few studies that have been carried out on this subject, and even
fewer, the studies carried out from the statistical point of view. For this reason,
we implement the methodology Single Loss Approximation (SLA) to estimate the
optimal retention point and reinsurance premium, for different levels of relative
safety factor, seeking to incorporate recent developments and some alternatives in
the adjustment processes.

Keywords: Heavy Tail Distributions, Poisson Mixtures, Spliced Distributions,
GAMLSS Distributions, High Cost Diseases, Prepaid Medicine, Stop-Loss Reinsur-
ance, Extreme Values, Optimal Retention Point.



Resumen

En este trabajo final de Maestría, se desarrolla de la metodología de valoración
actuarial de reaseguro de excedente de pérdida (Stop-Loss), con el fin de darle
solución al problema del cálculo del punto de retención óptimo y prima de rease-
guro, que deben tener las compañías de medicina prepagada para cubrir aquellos
procedimientos alto costo que afecten su salud financiera. Es de anotar que, para
la aplicación de esta metodología, se emplea únicamente el ajuste del número y
tamaño de las reclamaciones, y en consecuencia, no se hacen consideraciones sobre
la solvencia o probabilidad de ruina de las empresas prestadoras de servicios de salud.

A pesar de que los reaseguros en medicina prepagada están contemplados en la
Ley 100/93, son relativamente pocos los estudios que se han realizado sobre este
tema, y aún más pocos, los estudios realizados desde el punto de vista estadístico.
Por este motivo, se implementa la metodología Single Loss Approximation (SLA)
para la estimación del punto de retención óptimo y la prima de reaseguro, para
diferentes niveles de factor de seguridad relativa, buscando incorporar desarrollos
recientes y algunas alternativas en los procesos de ajuste.

Palabras Clave: Distribuciones de Cola Pesada, Mezclas Poisson, Distribuciones
Spliced, Distribuciones GAMLSS, Enfermedades de Alto Costo, Medicina Prepagada,
Reaseguro de Excedente de Pérdida, Valores Extremos, Punto de Retención Óptimo.



Introduction

The diseases or procedures known as high-cost or catastrophic (HCD onward) are
those that given their nature present one or all of the following characteristics: high
complexity degree, are long-lasting, significantly deteriorate people’s health, have low
cost-effectiveness when treated and above all, these generate high costs for insurance
companies that must ensure their timely treatment.

The HCD can represent great risks to insurers financial health, up to the point
of threatening their survival in the market. Due of this, the insurers should look for
alternative sources of financing to guarantee the necessary resources to face the high
costs generated by the HCD and support all the necessary procedures for the proper
attention of its users. One of the main alternatives of financing to which the insurers
resort is to reinsurance, which is contemplated in Article 19 of Law 1122 of 2007 of
Colombia.

Reinsurance contracts are agreements between reinsurers and insurers to avoid
financial imbalances because of the HCD and thus ensure the financial health of the
insurer through risk reducing given a possible loss. In this agreement, the reinsurer
decides to accept the transfer part of the risk assumed by the insurer, and covers
them once certain threshold or deductible has been overcome, and depending on the
agreement, until a certain coverage limit has been exceeded.

In this way, it is possible offer to the insurer better risk management conditions,
facilitating the control of problematic risks, such as the individual policies with
high severity and low occurrence, managing to protect it against possible large
accumulations of individual losses or the possible cumulative loss of a single event,
through the fragmentation of such cases in different portions assumed by different
reinsurance companies.

In return for the received protection, the insurer pays to the reinsurer(s) an
equivalent premium greater than the expected value of the transferred risk. The
exchange between the part of the risk retained and the premium paid for the
remaining risk, makes of great importance the determination of the optimal retention
point.

Another aspect of interest in this work, focuses on Prepaid Medicine Compa-
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nies (PMC onward), which are described in Article 1 of Decree 1486 of 1994 of
Colombia, as an “organized system (. . .) for the management of medical attention
and health services provision (. . .) by charging a regular price that was previously
agreed (. . .)”. In other words, the PMC are entities covered by the law that
give users who decide to acquire prepaid medical plans, the assistance and medical
procedures that they require, in exchange for a compensation for the services received.

In this sense, the interest of this work is to provide a detailed methodological
guide that allows the PMC evaluate different aspects of a reinsurance before
hiring it, as well established in the Paragraph 4 of Article 162 of Law 100 of 1993
and in the 19 of Law 1122 of 2007 of Colombia, PMC have the obligation to
contract reinsurance to respond individually or collectively for the risks generated
by the HCD. See Appendix A for a summary description of the HCD legal framework.

Another motivation for this study is because in Colombia, is not wide spread the
issue of reinsurance for HCD, and this is confirmed by the small number of studies
which has been carry out both in academic institutions and in the private sector,
where is only possible to highlight the works of Chicaíza and Cabedo (2009) and
Girón and Herrera (2015), which despite presenting the estimation of the reinsurance
pure premium, they leave a gap in the literature by not developing the issue of
optimal retention point.

Given the above and as a summary, the objective of this work will be to find
the optimal retention point that an insurer must have to face the risks generated by
users suffering from HCD, the threshold from which the risk must be transferred to
a third party and the premium that must be paid for such protection. This will be
done through the employment of a Stop-Loss reinsurance methodology, calculated
from the adjustment of spliced and GAMLSS distributions.

The document presented here is structured as follows. In the first chapter is made
a brief description of the dataset with which the work is carried out. The second
chapter describes and performs the adjustment process for the claims number that
occur for each HCD. In the third chapter the description and adjustment is made for
the set of individual costs for each of the HCD, through the use of spliced distributions.

Subsequently in the fourth chapter is described the aggregate loss distributions
theory, the Single Loss Approximation methodology, and the reinsurance theory.
Additionally, is carried out the calculation of the risk measures, namely, Value at
Risk, Tail Value at Risk, and Expected Shorfall, and is performed the calculation of
the optimal retention point for each HCD.

Moreover in the fifth chapter, is performed the individual costs adjustment for
each HCD by means of GAMLSS distributions, and are presented the associated
risk measures and optimal retention points for each HCD. In the sixth chapter, is
present a comparison between the results obtained through the use of spliced and
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GAMLSS distributions. Finally, we present the conclusions associated with the
results obtained in the work.

As additional topics that may be of interest to readers, we present the Ap-
pendix A which introduces the legal framework associated with HCD, where it is
explained which are the HCD, the included treatments and the high-cost services
covered by the law. In Appendix B we present all the codes used in this work, which
can be found next to the databases, in the following URL: https://github.com/
jiperezga/Masters-degree-project

https://github.com/jiperezga/Masters-degree-project
https://github.com/jiperezga/Masters-degree-project


Chapter 1

Data Analysis

Table of Contents
1 Data Analysis

In this work, are used two HCD datasets dating from 1988 to 1993, namely,
hospitalization and general surgery services, where, for both datasets, we have the
record of the year and the total cost of each given intervention, in millions pesos, as
shown in the Table 1.1. This table is made using the kable function of the library
kableExtra(2018). See Code 1 in Appendix B.

Table 1.1: Header of dataset

Hospitalization General Surgery
year cost year cost
1988 19.433239 1988 3.0887698
1988 6.456504 1988 13.0053467
1988 83.058647 1988 8.7786090
1988 5.329266 1988 8.7786090
1988 7.992761 1988 2.1133688
1988 2.043465 1988 0.6502673

For hospitalization services there are a total of 2328 records, while for general
surgery services there is a total of 454 records. These records, represent the number
and claims size of each medical service between the studies period and are represented
in graphic form in the Figures 1.1 and 1.2 by means of the pareto.chart function
of the library qcc (2004) and later in the Tables 1.2 and 1.3 by means of the kable
function of the library kableExtra (2018). See Code 2 and Code 3 in Appendix B.



5

1992 1993 1991 1990 1988 1989

F
re

qu
en

cy

Hospitalization

0
50

0
10

00
15

00
20

00

0%
25

%
50

%
75

%
10

0%

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

Figure 1.1: Pareto chart for claims distribution in hospitalization

Table 1.2: Distribution records hospitalization per year

Frequency Cum.Freq. Percentage Cum.Percent.
1992 546 546 23.45361 23.45361
1993 494 1040 21.21993 44.67354
1991 353 1393 15.16323 59.83677
1990 344 1737 14.77663 74.61340
1988 306 2043 13.14433 87.75773
1989 285 2328 12.24227 100.00000

In the Figure 1.1 and Table 1.2 we appreciate that in 1992 and 1993 are the years
in which the highest claims number occur with a 23.45% and 21.21%, respectively.
While the smallest claims number is observed in the years 1988 and 1989, with a
13.14% and 12.24%, respectively.
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Figure 1.2: Pareto chart for claims distribution in general surgery

Table 1.3: Distribution records general surgery per year

Frequency Cum.Freq. Percentage Cum.Percent.
1992 205 205 45.154185 45.15418
1990 68 273 14.977974 60.13216
1991 57 330 12.555066 72.68722
1993 45 375 9.911894 82.59912
1989 41 416 9.030837 91.62996
1988 38 454 8.370044 100.00000

In the same way, in the Figure 1.2 and in the Table 1.3 is appreciated that the year
in which occurs the largest claims number for general surgery services is 1992, with
a percentage of 45.15% of the total data, while the years in which happen the lowest
claims number are 1988 and 1989, each with less than 10% of the total frequencies.
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Figure 1.3: Histogram, Box-plot, Density and Scatterplot for hospital-
ization costs

To obtain a preliminary view of the individual costs of the two medical services,
it is presented in graphic form the individual costs in million pesos, in order
to have a notion of their distributions, the tails severity level and the amount of
extreme observations that each one possesses. See Code 4 and Code 5 in Appendix B.

In the Figures 1.3.a and 1.3.c for hospitalization services, and 1.4.a and 1.4.c for
general surgery services, it is observed that the distribution of the individual costs
for both, has a positive skewness behavior with a slow decay in the tail area, which
is an interesting result from the extreme values theory, hence, this issue is addressed
later.
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Figure 1.4: Histogram, Box-plot, Density and Scatterplot for general
surgery costs

In the Figures 1.3.b and 1.4.b is presented a box-plot for each medical service to
show if there is any trend in costs over the years, and also, observe the number of
points that are outside the right whisker of the individual costs distribution, since the
greater the number of observations in this area, will be obtained more information
about the severity level of the distribution tail.

The Figures 1.3.d and 1.4.d show the scatterplot of the costs of each medical
service per year, where it is noted that in the hospitalization case, the most expensive
interventions took place in 1988, which exceeded 150 million of pesos, while in the
general surgery case, the most expensive interventions happened in 1992 with a cost
of 93.79 million and in 1991 with 76.71 million.
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2.1 Introduction
In order to perform the reinsurance calculation, it is necessary to select parametric
models that allow capturing in the best possible way, the behavior of the observed
frequencies nk,i and the observed individual costs x(k)

j,i for the k-th medical services
derived from a HCD, where the subscripts i and j refer to the i-th individual and
j-th cost generated.

For the distribution of the observed frequencies nk,i, assume a random variable Nk

representing the number of patients belonging to the k-th medical services generated
by a HCD during the period of 1988-1993 and which has a mass function given by
pnk(x) = P(Nk = x). Deelstra and Plantin (2014, pp. 17–20) point out that to make
the adjustment, there are three laws of frequencies commonly used in the practice,
which depend on the expected value and the variance of the frequencies observed,
namely, the Binomial Law, the Poisson Law (also called Poisson Process) and the
Mixed Poisson Law.

The Binomial law is applied in cases in which the variance of the random variable
Nk is significantly smaller than its expected value. In this case, it is assumed that
the mass function of Nk is given by

P(Nk = x) = n!
(n− x)! x!p

x(1− p)n−x (2.1)
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with mean and variance given by

E(Nk) = np and V ar(Nk) = np(1− p) (2.2)

where n represents the total claims number that occurred in the k-th medical service,
x = 0, . . . , n represents the number of times a claim occurs and 0 < p < 1 is the
adjustment parameter of the distribution and represents the probability of a claim
occurring.

The Poisson law is applied in situations in which the variance and the expected
value of the random variable Nk are similar. In this case, it is assumed that the mass
function of Nk is given by

P(Nk = x) = e−λt(λt)x
x! (2.3)

with mean and variance given by

E(Nk) = V ar(Nk) = λt (2.4)

where x = 0, 1, 2, . . . ,∞ represents the number of times a claim occurs, t > 0
represents the time variable (commonly set t = 1) and λ > 0 is the adjustment
parameter of the distribution and represents the intensity parameter.

The Mixed Poisson Law is applied when the variance of the random variable Nk

is significantly greater than its expected value. In this case, it is assumed that the
mass function of Nk, follows a Poisson Law with random parameter λ (replaced by
θ), and mixing function Fλ (also called risk structure function), such that

P(Nk = x) =
∫ ∞

0

e−θt(θt)x
x! dFλ(θ) (2.5)

with mean and variance given by

E(Nk) = tE(λ) and V ar(Nk) = tE(λ) + t2V ar(λ) (2.6)

where E(λ) and V ar(λ) are respectively the mean and variance of the random pa-
rameter λ . (See Albrecher, Beirlant, and Teugels (2017, pp. 146–149) to observe
some examples of Mixed Poisson Law)

2.2 Frequency model estimation for hospitaliza-
tion services

Based on the frequency laws presented by Deelstra and Plantin (2014), we estimate
the mean and variance of the claims number for hospitalization services, in order to
observe if the empirical variance is greater, less or equal to the empirical mean, to
select the most appropriate frequency law. Once the estimate is made, we observe
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that the expected value is 388 and the variance of 11338.8, which indicates that
the variance is significantly greater than the expected value of the claims number,
consequently, it is concluded that the claims number in hospitalization services
follows a Mixed Poisson Law.

Given that within the category of distributions belonging to the Poisson Mixed
Law, a large number of mixtures can occur, such as the Negative Binomial, General-
ized Poisson, Poisson-Inverse Gaussian, Sichel, among others, it is necessary to use a
statistical software that allows evaluating different distributions of Poisson mixtures
and selecting those that best fit the dataset.

In order to find the distribution that presents the best adjustment to the claims
number for hospitalization services, we use the functions fitDist and gamlssML of
the library gamlss(2005). The fitDist function is used to adjust the distribution
that presents the best fit, while the gamlssML function is employed to adjust the
second and third distribution that presents the best fit. See Code 6 in Appendix B.

Table 2.1: Better fit for frequencies of hospitalization services

PIG GPO NBI NBII DEL
75.0654 75.15057 75.32004 75.32004 75.33117

In Table 2.1 it is observed that the function fitDist suggests through the Akaike
information criterion (AIC onwards), that the distribution that grants the best
adjustment to the number of hospitalization claims is the Poisson-Inverse Gaussian
(PIG onwards) with a value of 75.0654, followed by the Generalized Poisson (GPO
onwards) with a value of 75.15057 and the Negative Binomial type I (NBI onwards)
with a value of 75.32004. The description and presentation of the main statistics of
the distributions PIG, GPO and NBI are presented in Appendix C.

Due to how tedious it could be to program the mean, variance, skewness and
excess kurtosis for these or other distributions, it is decided to use the functions
moments, skew and kurt of the library DistMom (2018) to carry out the calculation
of these values, where it can be proved that the same result is reached using the
formulation proposed in (7.11), (7.5) and (7.8). In addition, The empirical skewness
and excess kurtosis are calculated with the functions skewness and kurtosis of the
library e1071 (2018). See Code 7 in Appendix B.
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Table 2.2: Statistical measurements of hospitalization frequencies

Dist Mean Variance Skewness Excess kurtosis
Empirical 388 11338.800 0.6102662 -1.2966996
PIG 388 8913.969 0.6986897 0.8203684
GPO 388 8931.442 0.6291843 0.6580699
BNI 388 8859.088 0.4745443 0.3377319

In the Table 2.2 it is observed that there is no difference between the calculated
value of the theoretical mean for the three adjusted distributions. In the same way,
it is appreciated that for all cases the value of the theoretical variance is much lower
than the value of the observed variance of 11338.8, being the GPO distribution the
adjusted distribution that has the highest variance with a value of 8931.442. It
is also observed that the theoretical value of the skewness is very similar to that
adjusted by the distributions PIG and GPO, but in the excess kurtosis case, none of
the distributions coincide with the empirical value of −1.2967, which suggests that
the empirical distribution has a platicurtic behavior.

In addition, the Table 2.2 shows that for all the distributions the theoretical
value of the skewness and excess kurtosis are positive but relatively close to zero,
consequently, if the density is plotted, the claims number for hospitalization services
will be in bell-shaped (similar to a normal distribution) with a slight right skewed.
We proceed to observe the graphical adjustment by contrasting the empirical
cumulative distribution versus theoretical cumulative distributions. See Code 8 in
Appendix B.

The Figure 2.1 shows that the behavior of the three adjusted cumulative
distributions is very similar, much that each curve overlapped the others. It is also
noted that none of the three distributions captures well the behavior of the observed
frequency of the claims number in hospitalization service, largely because of the
category that is between 353 and 494 claims.
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Figure 2.1: Adjustment of observed frequency of the claims number in
hospitalization service

Due to the above, it is very likely that the goodness of fit tests of Kolmogorov-
Smirnov (ks.test), Cramer-von Mises (w2.test) y Kuiper (v.test) made with
the library truncgof (2012) throw P-values below 0.05, leading that the hypothesis
contrast proposed in the equation (2.7) be rejected.

The hypothesis contrast is given by

H0 : FNhosp(x|θ) ∈ F̂Nhosp(x|θ̂)
H1 : FNhosp(x|θ) 6∈ F̂Nhosp(x|θ̂)

(2.7)

with FNhosp(x|θ) the distribution function of the claims number for hospitalization
services with parameter vector θ and F̂Nhosp(x|θ̂) the distribution function adjusted
to the claims number for hospitalization services, with vector of estimated parameters
θ̂, where F̂Nhosp refers to any of the three fitted distributions. See Code 9 in Appendix
B.
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Table 2.3: Goodness-of-fit tests hospitalization frequencies

Dist ks.test w2.test v.test
PIG 0.04 0.03 0.06
GPO 0.09 0.13 0.08
NBI 0.03 0.04 0.05

Contrary to the expected, the Table 2.3 shows that the Kolmogorov-Smirnov
test (ks.test) and the Cramer-von Mises test (w2.test), only the GPO dis-
tribution obtained a P-value greater than 5%. Additionally, shows that in the
Kuiper test (v.test) the three adjusted distributions obtained a P-value greater
than or equal to 5%. In these cases it is concluded that there is not enough
empirical evidence to reject the null hypothesis, consequently, it is concluded that
the claims number in hospitalization services is distributed as the specific distribution.

From the results obtained in this section, it is assumed in the rest of this work,
that the claims number in hospitalization services is distributed GPO with estimated
parameter µ̂ = 388 and σ̂ = 0.05663, due it was found, first, that the difference of AIC
associated with the adjustment of the distributions PIG and GPO is small, second,
than the graphical adjustment shown in the Figure 2.1 does not present significant
differences, and third, that the GPO distribution was the only one that obtained a
P-value greater than 5% in the three association tests presented in the Table 2.3.

2.3 Frequency model estimation for general
surgery services

Similar to hospitalization services, is carried out the estimation and comparison
of the empirical mean and variance of the claims number for general surgery
services, in order to classify this service into one of the frequency laws pre-
sented in Deelstra and Plantin (2014). When calculating these measures, it is
evident that the expected value is much lower than the value of the variance,
being equal to 75.667 and 4139.067, respectively. Therefore, it can be deduced
that the claims number in general surgery services belongs to the Mixed Poisson Law.

Given the wide range of mixtures belonging to the Poisson Mixed Law, we should
look for the distribution that best fits the claims number for general surgery services,
therefore, it is decided to use the fitDist function of the library gamlss (Rigby and
Stasinopoulos, 2005) because it contains a great variety of Poisson mixtures. See
Code 10 in Appendix B.
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Table 2.4: Better fit for frequencies of general surgery services

DEL PIG GPO SICHEL SI
61.16453 63.84168 64.34709 64.82573 64.82573

The Table 2.4 shows that the distributions that presented the best adjust-
ment to the claims number for general surgery services are the Delaporte (DEL
onwards) with an AIC of 61.16453, the PIG with an AIC of 63.84168 and the
GPO with an AIC of 64.34709. It should be noted that the AIC of the three
distributions does not differ much from the others, thus, the adjustment made by
the distributions is expected to be similar. The description and presentation of the
main statistics of the distributions DEL, PIG and GPO are presented in Appendix C.

To carry out the calculation of the statistics presented in the equations (7.3),
(7.11) and (7.5), is used the library DistMom (2018), while, for the calculation of the
empirical skewness and excess kurtosis, is used the library e1071 (2018). See Code
11 in Appendix B.

Table 2.5: Statistical measurements of general surgery frequencies

Dist Mean Variance Skewness Excess kurtosis
Empirical 75.66667 4139.067 1.672216 0.9822301
DEL 75.66669 4909.595 4.092893 25.3435239
PIG 75.66667 2310.444 1.844012 5.7031503
BNI 75.66666 2331.757 1.684608 4.7209981

The Table 2.5 shows that there is no significant difference between the calculated
value of the theoretical mean for the three adjusted distributions and the empirical
mean of general surgery services. Similarly, it shows that of the adjusted distribu-
tions, the DEL is the only one that has a variance close to the empirical variance,
the PIG and BNI values similar to the empirical skewness, and none of the adjusted
distributions is close to the empirical value of excess kurtosis, being the DEL the
furthest with a value of 25.3435.

Below is presented the graphical adjustment of the three theoretical cumulative
distribution versus the empirical cumulative distribution. See Code 12 in Appendix B.
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Figure 2.2: Adjustment of observed frequency of the claims number in
general surgery service

The Figure 2.2 shows that the adjustment level of the DEL is much better than
that offered by the PIG or the GPO, since it captures the behavior of the initial and
central probabilities of empirical cumulative distribution. In addition, it is observed
that unlike the PIG and GPO, the distribution DEL gives a probability of very
low occurrence to values under 38 and grants possibilities of occurrence to values
over 205, being those values the minimum and maximum claims number of general
surgery services.

As in the hospitalization case, are calculated the goodness of fit tests of
Kolmogorov-Smirnov (ks.test), Cramer-von Mises (w2.test) and Kuiper (v.test),
in order to obtain a measure of goodness that warns us if the set of observations
is well adjusted by a theoretical distribution. For this, we employ the following
hypothesis contrast

H0 : FNsurg(x|θ) ∈ F̂Nsurg(x|θ̂)
H1 : FNsurg(x|θ) 6∈ F̂Nsurg(x|θ̂)

(2.8)

with FNhosp(x|θ) the distribution function of the claims number for general surgery
services, with parameter vector θ, and F̂Nhosp(x|θ̂) the distribution function adjusted
DEL, PIG and GPO, with vector of estimated parameters θ̂. See Code 13 in Appendix
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B.

Table 2.6: Goodness-of-fit tests general surgery frequencies

Dist ks.test w2.test v.test
DEL 0.23 0.20 0.58
PIG 0.02 0.01 0.11
GPO 0.00 0.00 0.05

As expected from the good fit obtained by the distribution DEL in the graphical
analysis, in the Table 2.6 it is observed that for each of the three association tests, is
obtained a P-value greater than 5%, which concludes that the null hypothesis raised
in the equation (2.8) is not rejected in any of them. On the other hand, the Table
2.6 shows that the distributions PIG and GPO do not present a good fit, since is
rejected the hypothesis null in the tests Kolmogorov-Smirnov and Cramer-von Mises,
due in these the P-value is less than 5%.

Given that in all the obtained results, the distribution DEL had a better per-
formance than the other distributions, hence, it is assumed that the claims num-
ber for general surgery services is distributed as a DEL with estimated parameter
µ̂ = 75.66669, σ̂ = 4.29732 and ν̂ = 0.55675
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3.1 Introduction

For the distribution of the observed individual costs x(k)
i,j , assume a random variable

Xk that represents the individual costs of the patients belonging to the k-th medical
services generated by a HCD during the period of 1988-1993 and which has a
cumulative distribution function given by FXk(x) = P(Xk < x).

Before examining which distributions adjust to the individual costs of each medical
service, It is necessary to perform an exploratory statistical analysis of the data set
and introduce some functions that allow obtaining as much information as possible to
classify the tail of the empirical distributions according to their degree of severity. The
information collected will help to decide a reasonable model for each of the services
and the most appropriate method in each situation.
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3.2 Mean residual life analysis
In some reinsurance treaties, it is usually useful to condition a random variable Xk to
a certain threshold u, such that Xk > u, because this allows to identify in a certain
way the severity of the right tail of a distribution and can be useful to decide the
reinsurance premium.

To identify the severity degree of the right tail distribution for the individual costs
P(Xk > x), is defined for each of the medical services a function eXk(u), known as
a mean excess function or mean residual life function over the threshold u (MRL
onwards), such that

eXk(u) = E(Xk − u|Xk > u), u ≥ 0 (3.1)

is a function that measures the average costs Xk, assuming Xk > u. In other words,
the equation (3.1) measures the expected individual cost of the k-th medical service
once they exceed a threshold u. If FXk(u) = P(Xk > u) is defined as the survival func-
tion of the random variable Xk evaluated in u, then using the definition of conditional
expectation in (3.1), it is possible to rewrite this as (Mikosch, 2009, p. 91)

eXk(u) = E(Xk − u)+

FXk(u)
= E((Xk − u)I(Xk > u))

FXk(u)
(3.2)

where I(Xk > u) is an indicator function such that

I(Xk > u) =
{

1 if Xk > u
0 if Xk ≤ u

(3.3)

From this result, the equation (3.2) can be rewritten again as (Giraldo, 2018, p. 34)

eXk(u) = E((Xk − u)I(Xk > u))
FXk(u)

= E(XkI(Xk > u)− uI(Xk > u))
FXk(u)

= E(XkI(Xk > u))− uP(Xk > u)
FXk(u)

= E(Xk(1− I(Xk ≤ u)))− uP(Xk > u)
FXk(u)

eXk(u) = E(Xk)− E(XkI(Xk ≤ u))− uP(Xk > u)
FXk(u)

(3.4)

where E(XkI(Xk ≤ u))−uP(Xk > u) = E(Xk∧u) is called the limit expected value
(Klugman, Panjer, and Willmot, 2012, p. 25), in consequence, from the equation (3.4)
we obtain

eXk(u) = E(Xk)− E(Xk ∧ u)
FXk(u)

(3.5)



20 Chapter 3. Severity Model Estimation

where Xk ∧ u = min(Xk, u) ∈ [0, u]. Therefore, when Xk > u, the value of E(Xk) −
E(Xk ∧ u) = E(Xk − u), otherwise E(Xk)− E(Xk ∧ u) = 0. In Beirlant, Goegebeur,
Segers, and Teugels (2004, p. 15), the authors show that it is possible to apply
Fubini’s Theorem to the expression E(Xk − u), as follows

E(Xk − u) =
∫ ∞
u

(xk − u) dFXk(xk)

=
∫ ∞
u

∫ xk

u
dy dFXk(xk)

=
∫ ∞
u

dy
∫ ∞
y

dFXk(xk)

=
∫ ∞
u

(1− FXk(y)) dy

E(Xk − u) =
∫ ∞
u

FXk(y) dy

(3.6)

The equation (3.6) allows to express the MRL in a simpler way, such that

eXk(u) =
∫∞
u FXk(y) dy
FXk(u)

(3.7)

where it is observed that there exists a relation between eXk(u) and the behavior of
the survival function FXk(u) of the random variable Xk, evaluated in the threshold
u, when u→∞.

It should be noted that in most situations, the theoretical survival function FXk(u)
is not known, due we only have sample data, hence, it is necessary to use the empirical
survival function F nk , defined for a random sample Xk1 , Xk2 , . . . , Xkn as

F nk(x) = 1
n

n∑
i=1

I(Xki > x), x ∈ R (3.8)

for which it is not difficult to see that if Xk(1,n) , Xk(2,n) , . . . , Xk(n,n) are the order statis-
tics of a random sample, organized in ascending order such that Xk(1,n) ≤ Xk(2,n) ≤
. . . ≤ Xk(n,n) , then, F nk(Xk(n−m,n)) can be defined as

F nk(Xk(n−m,n)) = m

n
, m = 1, 2, . . . , n (3.9)

Based on these results and that the support of F nk is limited, Mikosch (2009, p. 91)
considers the empirical function of MRL enk as

enk(u) = Enk(Y − u|Y > u)

= Enk(Y − u)+

F nk(u)

= 1
n

∑n
i=1(Xk(i,n) − u)+

F nk(u)

=
∑n
i=1(Xk(i,n) − u)+∑n
i=1 I(Xki > u)

(3.10)
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for u ∈
[
Xk(1,n) , Xk(n,n)

)
, and

(Xk(i,n) − u)+ =
{

1, if Xk(i,n) > u

0, if Xk(i,n) ≤ u
(3.11)

for i = 1, 2, . . . , n. Also, by the strong law of large numbers, we have that if
E(Xk) < ∞, then enk(u) a.s−→ eXk(u) for any u > 0 when n → ∞. The term a.s−→
means “converge almost sure, with probability 1 to”.

In Beirlant et al. (2004, p. 16) and Mikosch (2009, p. 89) presents an important
relation of theMRL with the exponential distribution, due to itsmemoryless property,
where it is observed that the MRL of this distribution is a constant and equal to
its shape parameter. Then, Based on the constant behavior of the MRL of the
exponential distribution, it is possible to classify the severity of a random variable Xk,
in one of three categories, depending on whether its behavior is increasing, decreasing
or constant, such that (Giraldo, 2018)

Severity =


Low = Light-tailed: eXk(u)↘, when u→∞
Mid = Medium-tailed: eXk(u)→ cst, when u→∞
High = Heavy-tailed: eXk(u)↗, when u→∞

In Moscadelli (2004, p. 22) it is recommended to adjust the Weibull distribution
when the data are low severity, the Gamma, Exponential, Gumbel and LogNormal
distributions if they are mid severity, and the Pareto distribution when the severity
is high. On the other hand, Mora (2010, p. 73) recommends adjusting the Pareto,
double exponential, t, mixed model and distributions with Pareto tails, when the
dataset has high severity, since these are distributions that have a high kurtosis.

3.2.1 Mean residual life analysis for hospitalization services
To perform the calculation of the MRL for the individual costs of hospitaliza-
tion services and observe graphically if the behavior is increasing, decreasing or
constant, is used the function mrlplot of the library evmix (2018), in order to facili-
tate the identification of the severity level of the dataset. See Code 14 in Appendix B.

In the first section of the Figure 3.1, which is delimited by the red dashed line,
it is observed that for threshold values u less than 35, the MRL has an increasing
behavior that would suggest that the individual hospitalization costs have high
severity.

In the second section of the Figure 3.1, which is delimited by the blue dashed
line, it is observed that for threshold values u between 35 and 60, the MRL has a
constant behavior that would suggest that the individual hospitalization costs have
mid severity.
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In the third section of the Figure 3.1, which is limited with the value in which 6
excesses ocurred, it is observed that for threshold values u greater than 60, the MRL
has a very variable behavior, thus, it is preferable to focus attention on the first and
second sections of the figure.

Due to the above, it is not possible to assure with certainty whether the severity
level of the individual costs is high or not, therefore it is necessary to use another
methodology that allows to observe the severity level of the distribution tail, such
as goodness-of-fit tests, or specialized tests, such as increasing conditional mean ex-
ceedance (Bryson, 1974), among others.
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Figure 3.1: Mean residual life for individual costs of hospitalization
service

3.2.2 Mean residual life analysis for general surgery services
For general surgery services, is used again the function mrlplot of the library evmix
(2018), in order to show if the graph presents an incresing, decreasing or constant
behavior, and for giving a first judgment about the behavior of the distribution tail
of individual costs. See Code 15 in Appendix B.

In the first section of the Figure 3.2, which is delimited by the red dashed line,
it is appreciated that for threshold values u less than 16, the MRL has a weakly
increasing behavior, followed by an increasing behavior in the second section of the



3.3. Tail heaviness 23

figure, which is delimited by the value in which 6 excesses occur.

This could be interpreted as possible evidence that the individual costs of general
surgery services have a high severity level, but given that the behavior in the first
section is weakly increasing, it is necessary to perform other methods of exploratory
statistical analysis in order to corroborate whether in fact, the severity is high or not.
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Figure 3.2: Mean residual life for individual costs of general surgery
service

3.3 Tail heaviness
In insurance and reinsurance, one of the most important parts in the analysis, is
to investigate the tail behavior of the distribution, in order to identify whether or
not there are large claims within the individual costs, since its existence allows us
to determine which type of asymptotic approximation methodology is the most
appropriate to calculate the compound cost distribution.

The Extreme Value Theory (EVT onwards) is a methodology that focuses its
attention on the tail of the empirical distribution with the purpose of identifying
those distributions that have large claims through the criterion known as the regular
variation index. De Haan and Ferreira (2006, Appendix B) define `, as a measurable
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Lebesgue function: R+ → R, to be of regular variation to infinity if for some α ∈ R

lim
t→∞

`(tx)
`(t) = xα, x > 0 (3.12)

which is denoted as ` ∈ RVα and the value α is called the regular variation index.
Where α = 0, it is said that `, is of slowly varying.

From Ferrari and Fumes (2017, p. 8) and Mikosch (1999, p. 11), consider a non-
negative random variable Xk with cumulative distribution FXk for the k-th medical
service, such that FXk = 1− FXk . Then it is said that the distribution Xk regularly
varying with index α > 0 if the right tail FXk is regularly varying to infinity with tail
index −α, such that α = −1/ξ and ξ > 0, this is

lim
t→∞

FXk(tx)
FXk(t)

= x−
1
ξ ; x > 0 (3.13)

where ξ is defined as the tail index of the distribution. Additionally, the authors
point out that when the limit is equal to x−∞, it is said that FXk is of light right
tail with tail index ξ = 0. When the limit is equal to 1 then FXk is a slowly varying
function and it is said that FXk is heavy tail with tail index ξ = ∞ or equivalently
with regular variation index α = 0.

Furthermore, from De Haan and Ferreira (2006, p. 17) it is obtained that when
ξ > 0 and the cumulative distribution FXk is differentiable and equal to the density
function fXk , then

lim
t→∞

tfXk(t)
FXk(t)

= 1
ξ

(3.14)

An important result can be derived from the equation (3.14), once the adjustment
process is done, since it allows to extract the value of the tail index ξ or the regular
variation index α from the random variable Xk, through the relation it has with the
tail index ξ.

When no distribution has been adjusted to the dataset, different proposals have
been developed in order to estimate the value of the tail index ξ, including the simplest
but well known, the Hill estimator Hm,n = ξ̂, proposed by Hill (1975). In De Haan and
Ferreira (2006, pp. 19–20) it is shown that from the equation (3.13), an equivalent
expression can be written

lim
t→∞

∫∞
t

1
x
FXk(x) dx
FXk(t)

= ξ; x > 0 (3.15)

which, by partial integration can be rewritten as

lim
t→∞

∫∞
t (log x− log t) dFXk(x)

FXk(t)
= ξ (3.16)
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Based on (3.16), by replacing t with Xk(n−m,n) , the (n − m)-th order statistic of a
random sample iid Xk(1,n) , Xk(2,n) , . . . , Xk(n,n) , with Xk(1,n) ≤ Xk(2,n) ≤ . . . ≤ Xk(n,n)

and replacing FXk by the empirical distribution function Fnk , we obtain an estimator
based on asymptotic results

Hm,n =

∫∞
Xk(n−m,n)

(log x− logXk(n−m,n)) dFnk(x)

F nk(Xk(n−m))
(3.17)

Examining the equation (3.17) it is evident that there is a close relationship between
the Hill estimator and the MRL, since the divisor of the equation (3.17) is equal to
the equation presented in (3.9), while the numerator of the equation (3.17) is similar
to that shown in equation (3.6), except that instead of employing E(Xk − u), is used
the expected value of the difference of logarithms, such that

E
(
log x− logXk(n−m,n)

)
=
∫ ∞

logXk(n−m,n)

(log x− logXk(n−m,n)) dFnk(x) (3.18)

for Xk(n−m,n) ≤ x < ∞. Due to the relationship of the Hill estimator and the MRL,
it is possible to use the equation (3.10) and the result of the equation (3.9) to obtain

Hm,n = 1
m

m−1∑
i=0

(
logX(n−i,n) − logX(n−m,n)

)
(3.19)

where Hm,n is the Hill’s tail index estimator. (See Embrechts, Klúppelberg, and
Mikosch (1997, Section 6.4), De Haan and Ferreira (2006, Section 3.2) Drees, De
Haan, and Resnick (2000) and Hill (1975) for more information on Hill’s tail index
estimator).

In his work, Hill (1975) establishes that the proposed method depends on the
subjective choice of the threshold or value of the order statistic (n −m), and warns
that if is selected a very low threshold, there will be many observations, including
some that are not extreme, which will cause the estimator to be skewed, while if is
selected a very high threshold, there will be few extreme observations, which will
cause the estimator to have high variability.

Due to the exchange between bias and variability caused by the arbitrary selection
of the threshold, the Hill’s basic approach suggests selecting by default an arbitrary
threshold close to the order statistic (n−m), corresponding to a percentile between
90% and 95% and then selecting as the tail index of Hill the value where Hm,n is in a
stable region (region that is best visualized from the Hill plot). If a stable region is
not found in the Hill plot, it is recommended to consult some of the alternatives such
as the Smoothed Hill plot, the Alternative Hill plot and the Alternative Smoothed
Hill plot. (See Resnick, 2007, Section 4.4.3).

In Resnick and Stărică (1997) it is shown that due to the extreme volatility that
can occur in the Hill estimator, finding a stable region can be a very problematic task,
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therefore recommends applying a smoothing of the statistic to facilitate the location
of such a region. Resnick and Stărică (1997, p. 274) explains that the smoothing
procedure consists of averaging the values of the Hill estimator for different number
of order statistics, namely

smooHm,n = 1
(r − 1)m

mr∑
j=m+1

Hj,n (3.20)

for r > 1 (usually 2 or 3). The authors also propose an alternative way to plot the
Hill estimator and the Smoothed Hill estimator, where the objective will be to give a
larger proportion on the plot to the sectors in which there is a relatively small number
of order statistics, and reduce or scale those sectors in which there is a larger number.
The alternative way to plot the estimators is given by the relationship

{θ,H−1
dnθe,n} (3.21)

where 0 ≤ θ ≤ 1 and dye is the ceiling value of y, i.e., is the smallest integer greater
or equal to y, with y ≥ 0. It should be noted that to find the estimated value of ξ
in the alternative graphs, one must also look for the region in which the line of the
graph is stable.

Once the stable region of the Hill graph has been determined and consequently
the value of the Hill’s tail index, it is possible the interpretation of this value, due
to the relationship that this index has with the shape parameter of the Generalized
Pareto distribution (GPD onwards), the Generalized Extreme Value distributions
(GEV onwards) and the tail heaviness of these distributions.

Where, due to the relation α = −1
ε
, large values of the form parameter ξ are

equivalent to small values of the regular variation index α, hence it means that
the distributions tail is heavy. Similarly, small values of the form parameter ξ are
equivalent to large values of the regular variation index α, in consequence it means
that the distributions tail is light.

Another result derived from the regular variation index, is that if the distribution
of claims is distributed as a GEV or GPD, the number of finite moments they possess
can be immediately inferred, because these distributions have the characteristic
that their moments depend on the value of the regular variation index, so that
E(Xk) < ∞ for all k < α, i.e., the moments of order equal to or greater than α do
not exist.

3.3.1 Tail index with Hill plot for hospitalization services
In order to observe the value of tail index ξ and the value of regular variation index
α for the set of individual costs of hospitalization services, are performed the Hill
plot, the Alternative Hill plot (AltHill), the Smoothed Hill plot (SmooHill) and the
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Alternative Smoothed Hill plot (AltSmooHill). To do this, is used the hillplot
function from the library evmix (2018). See Code 16 in Appendix B.
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Figure 3.3: Hill, AltHill, SmooHill and AltSmooHill for hospitalization
services
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In the Figure 3.3 it is observed that in all panels, the value of the tail index ξ
is between 0.52 and 0.53, while the value of the regular variation index α = 1.9
for a threshold u = 33.23116. It should be noted that the value of the thresh-
old u is automatically selected by the library evmix (2018), as the percentile that
has under its value, 90% of the total of the individual costs of hospitalization services.

Additionally, in the Figures 3.3.a and 3.3.b show that the cut-off point of the
horizontal line with the curve, coincides with a slightly stable region for the threshold
u = 33, but in general it is observed that the curve has a gradual increase, therefore
it is not pertinent to suggest that the found values of ξ and α are viable.

On the other hand, and in a contradictory way, the Figures 3.3.c and 3.3.d instead
of facilitating the visualization of the stable region, they suggest that in reality there
is no region that can be considered as stable in the graphs, due to the increasing and
almost constant tendency of the curves, corroborating the results obtained in the
Figures 3.3.a and 3.3.b.

Due to the above, it is not possible to affirm with certainty that the value of
the tail index for individual hospitalization costs is between 0.52 and 0.53, i.e., it
is not possible to make affirmations about the tail heaviness of the individual costs
distribution. Therefore, a method of automatic adjustment of distributions will be
used later, in order to appreciate which are the distributions that best fit the dataset,
and verify if these have characteristics that allow classifying the data set at a specific
severity level, with a specific tail index.

3.3.2 Tail index with Hill plot for general surgery services
Like hospitalization services, are used for general surgery services the Hill plot,
the Alternative Hill plot (AltHill), the Smoothed Hill plot (SmooHill) and the
Alternative Smoothed Hill plot (AltSmooHill), in order to locate stable regions
that allow the appropriate selection of the tail index for the dataset. To do this,
is employed the hillplot function from the library evmix (2018). See Code 17 in
Appendix B.

The Figures 3.4.a and 3.4.b, show that in the threshold u = 16 there is a stable
region in the graphs, which corresponds to tail index ξ = 0.34 or to regular variation
index α = 2.9. It should be noted that for these two graphs, the threshold value was
automatically selected by the library evmix(2018), as the percentile that has under
its value, 90% of the total order statistics of the individual costs of general surgery
services.

In the Figures 3.4.c and 3.4.d it is shown that for the threshold u = 16 (green
line) automatically selected by the library evmix(2018), the stable region that the
graphs possess is not captured, since such a stable region is to the left of the selected
threshold. Due to this, it is decided to manually select the threshold value by means
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of the 95% percentile, and it is observed that for the threshold u = 18, the blue
line cuts the curve of the graphs in the stable region, showing that the tail index is
ξ = 0.35 and the regular variation index is α = 2.8.
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Figure 3.4: Hill, AltHill, SmooHill and AltSmooHill for general surgery
services
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Due in all the panels of the Figure 3.4 it is observed that exist a stable region in
which are obtained similar values for ξ and α, it is possible to affirm that the tail
index value for the individual costs of general surgery services is between 0.34 and
0.35, and that the regular variation index value it is between 2.8 and 2.9. This means
that if the adjusted distribution to the dataset belongs to the Pareto family, there
would be certainty of the existence of its first two moments, but it will not be certain
that there are more of these, this being a sign that the individual costs of general
surgery services have a heavy tail.

3.4 Spliced distributions
Sometimes, there are datasets that show different statistical behaviors in some of
their intervals, which makes the conventional adjustment of a distribution inefficient,
generates loss information and causes possible errors in the inference, even in
situations in which attention is focused on a single part of the dataset. An example
of this is seen in the EVT, where interest is focuses on modeling the tail of the
dataset, without paying attention to its central part, which is defined as the values
that are under a certain threshold.

In order to give a solution to this problem, is proposed the use of mixtures or
spliced distributions. Albrecher et al. (2017, p. 50) defines a m-component spliced
distribution with a probability density function as

fXk(x) =



πk1
fk1 (x)

Fk1 (ck1 )−Fk1 (ck0 ) ck0 < x ≤ ck1

πk2
fk2 (x)

Fk2 (ck2 )−Fk2 (ck1 ) ck1 < x ≤ ck2

... ...
πkm

fkm (x)
Fkm (ckm )−Fkm (ckm−1 ) ckm−1 < x ≤ ckm

(3.22)

where fki(x) and Fki(x) are the probability density function and the cumulative
distribution function of the i-th interval of a random variable Xk, respectively.
πki > 0 is the proportion or weight of each of the categories of the k-th medical
service, with ∑m

i=1 πki = 1. cki are the intervals for which the random variable Xk is
defined in each category or also called union points. All the above variables defined
for i = 0, 1, . . . ,m.

A current use given to spliced distribution arises from EVT, in which the dataset
is divided into two parts (m = 2), i.e., the dataset is separated in those observations
that are under and over a threshold u, to then adjust in the lower part of u a light
tail distribution and in the upper part a GPD.

Behrens, Lopes, and Gamerman (2004) proposes a parametric form for a spliced
distribution, from a set of observations Xk1 , Xk2 , . . . , Xkn iid and a threshold u, which
is considered as an additional parameter implicit within the model, such that the
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observations above u will be distributed as a GPD, i.e., (Xki|Xki ≥ u) ∼ G(·|u, σ, ξ),
being G(·|u, σ, ξ) the cumulative distribution function of GPD and defined as

G(x|u, σu, ξ) = P(Xk ≤ x|Xk > u) =
 1−

[
1 + ξ

(
x−u
σu

)]−1/ξ
; ξ 6= 0

1− exp
[
−
(
x−u
σu

)]
; ξ = 0

(3.23)

where σu > 0 is the form parameter, ξ is the scale parameter and u sometimes
described as the location parameter. Using u as an implicit parameter within the
model, allows the calculation of the unconditional survival probability of GPD, such
that

P(Xk > x) = φu[1− P(Xk ≤ x|Xk > u)] = φu[1−G(x|u, σu, ξ)] (3.24)

where φu = P(X > u) is defined as the proportion that exceeds u, such that
0 < φ < 1. Furthermore, when ξ < 0 the tail of G(·|u, σ, ξ) will be light, with
u ≤ x ≤ u − σu/ξ, when ξ = 0 the tail of G(·|u, σ, ξ) will be exponential type, with
x ≥ u and when ξ > 0 the tail of G(·|u, σ, ξ) will be heavy, with x ≥ u (MacDonald
et al. 2011, p. 2138).

Behrens et al. (2004, p. 229) states that observations below u will be distributed
as a H(·|η) with parameter vector η, i.e., (Xki |Xki < u) ∼ H(·|η), where H(·|η) can
be estimated parametrically by distributions such as Gamma, Normal, Weibull, or
non-parametrically by smooth kernel density estimator.

Then, the cumulative distribution function of the mixture between H(·|η) and
G(·|u, σ, ξ) for any value of the random variable Xk, can be written as

FXk(x|η, u, σu, ξ) =
{
H(x|η), x ≤ u
H(u|η) + [1−H(u|η)]G(x|u, σu, ξ), x > u

(3.25)

In order to obtain a more general form of the equation (3.25), Hu and Scarrott (2018)
and MacDonald et al. (2011), use the definition obtained in the equation (3.24) and
rewrite 1−H(u|η) as φu, getting by reordering terms

FXk(x|η, u, σu, ξ) =
{

(1− φu)H(x|η)
H(u|η) , x ≤ u

(1− φu) + φuG(x|u, σu, ξ), x > u
(3.26)

where it is observed that (1 − φu) + φuG(x|u, σu, ξ) is the unconditional cumulative
distribution function of the GPD, obtained from the equation (3.24). From the equa-
tion (3.26), it is possible to express the density function of the spliced distribution
like in the equation (3.22) with m = 2, such that

fXk(x) = πk
h(x|η)
H(u|η)I(x ≤ u) + (1− πk)g(x|u, σu, ξ)I(x > u) (3.27)

where πk = (1 − φu) represents the weight of the category, with 0 < πk < 1, I(·) is
an indicator variable, h(·) and H(·) are the parametric density and cumulative dis-
tribution function (e.g. Gamma, Normal or Weibull) or non-parametric (e.g. smooth
kernel density), and g(x|u, σu, ξ) is the density function of GPD.
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3.4.1 Spliced distributions for hospitalization services
To adjust the individual costs of hospitalization services through spliced distribu-
tions, are used the functions fgammagpd, fnormgpd, fweibullgpd of the library
evmix (2018) to adjust the mixtures Gamma-Generalized Pareto (G-GP onwards),
Normal-Generalized Pareto (N-GP onwards) and Weibull-Generalized Pareto (W-GP
onwards), respectively. See Code 18 in Appendix B.

From the adjustment made, it is highlighted that of the three mixtures, the one
closest to the threshold 33.23116 proposed as a stable area in the four panels of the
Figure 3.3, is the G-GP with a value of 33.8329, followed by the W-GP with 35.5702
and the N-GP with a threshold of 23.03631.

Due the parametric form of the mean, variance, skewness and excess kurtosis
of the adjusted spliced distributions is unknown, it is decided to use the functions
moments, skew and kurt from the DistMom (2018) library, to calculate the value of
the statistics for the adjusted distributions. To calculate the empirical value of the
skewness and excess kurtosis of the individual costs of hospitalization services, is used
the library e1071 (2018). See Code 19 in Appendix B.

Table 3.1: Statistical measurements of spliced distributions for hospi-
talization services

Dist Mean Variance Skewness Excess Kurtosis
Empirical 14.93863 362.5129 2.982862 11.97454
gammagdp 14.82290 333.8197 3.084240 13.39314
normgdp 14.67612 268.4622 3.370531 18.18369
weibullgdp 14.83413 339.0651 3.043860 12.90941

When comparing the empirical statistics of the individual costs with respect
to those presented in the Table 3.1, it is shown that the W-GP mixture presents
the values closest to all the empirical statistics, followed very closely by the G-GP
mixture.

On the other hand, the N-GP mixture presents the measures furthest away
from the empirical values, which could be due to the domain that has the normal
distribution x ∈ [−∞,∞]. When taking into account these results together with the
adjusted threshold by the three mixtures, it is expected that the spliced distribution
W-GP is the one that presents the best graphical adjustment of the three alternatives.

To observe the adjustment of the mixtures we made the graphs 3.5, 3.6 and
3.7. In the first we present the cumulative distribution of the individual costs of
hospitalization versus the cumulative distribution of the adjusted spliced distributions.
In the second we present the natural logarithm of the survival distribution of the
individual costs versus the natural logarithm of the survival functions of the three
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adjusted mixtures. In the third, we present three panels containing the Q-Q plot
of the three adjusted spliced distributions to the individual costs of hospitalization
services. See Code 20, Code 21, Code 22 in Appendix B.
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The Figure 3.5 shows that of the adjusted mixtures, G-GP and W-GP present
very good adjustment to individual costs for hospitalization services, where it is
observed that the curves of these mixtures are superimposed on the cumulative
empirical distribution.

Furthermore, it is observed that as expected after the results presented in the
Table 3.1, the N-GP mixture shows a bad adjustment in the initial and central
part of the cumulative empirical distribution, due largely to the normal distribution
domain.

For its part, the Figure 3.6 shows in more detail the adjustment made by the
mixtures to the tail of the individual costs of hospitalization services, allows to see
more closely the union area that have the mixtures and allows to observe in which
sectors of the adjustment may be lost information.

Given the above, the Figure 3.6 shows that of the three mixtures, the G-GP and
W-GP have a smoother behavior in their union, than the N-GP. In addition, it is
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observed that the G-GP and W-GP mixtures capture almost perfectly the form of
the empirical distribution before and after the threshold u.
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Figure 3.6: Adjustment of log-survival distribution of the individual
costs of hospitalization service for spliced distributions

In the Figures 3.7.a and 3.7.c is appreciated that most observations are within
the confidence bands, except for a group of values between 50 and 100, which are
very close to the outside of the confidence bands. Additionally, it is shown that for
values over 100, there are several observations that move away from the diagonal
line, but without being outside the confidence bands. Hence, it is concluded that
since there are no significant observations outside the confidence bands, it is not
possible to say that the individual costs of hospitalization services do not have a
G-GP or W-GP spliced distribution.

For the Figure 3.7.b, it is observed that the N-GP mixture has values below 0
that are outside the diagonal line and confidence bands. Furthermore, it is observed
that this same behavior for values that are around 100, therefore, it is ruled out that
the individual costs of hospitalization services have a N-GP spliced distribution.
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Figure 3.7: Q-Q plot spliced distribution for hospitalization

To perform the statistical test and evidence which mixture is the one with better
fit to the individual costs, we use the goodness of fit tests Kolmogorov-Smirnov,
Cramer-von Mises and Kuiper. Also, we use specialized goodness of fit tests for
heavy tail distributions, namely, the Quadratic Class Upper Tail Anderson-Darling
test and Supremum Class Upper Tail Anderson-Darling test (Chernobai, Rachev,
and Fabozzi, 2015, pp. 584–585).

The hypothesis contrast is given by

H0 : FXhosp(x|η, u, σu, ξ) ∈ F̂Xhosp(x|η̂, û, σ̂u, ξ̂)
H1 : FXhosp(x|η, u, σu, ξ) 6∈ F̂Xhosp(x|η̂, û, σ̂u, ξ̂)

(3.28)

with FXhosp(x|η, u, σu, ξ) the distribution function of the individual costs with
parameters η, u, σu, ξ and F̂Xhosp(x|η̂, û, σ̂u, ξ̂) the distribution function of the
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adjusted mixtures with estimated parameters η̂, û, σ̂u, ξ̂).

To perform the goodness of fit tests, are used the functions ks.test for the
Kolmogorov-Smirnov test, w2.test for the Cramer-von Mises test, v.test for the
Kuiper test, ad2up.test for the Quadratic Class Upper Tail Anderson-Darling test
and adup.test for the Supremum Class Upper Tail Anderson-Darling test, from the
library truncgof (2012). See Code 23 in Appendix B.

Table 3.2: Goodness-of-fit tests hospitalization services for spliced dis-
tributions

Dist ks.test w2.test v.test adup.test ad2up.test
gammagpd 0.87 0.89 0.79 0.04 0.01
normgpd 0.52 0.44 0.58 0.12 0.00
weibullgpd 0.91 0.91 0.87 0.08 0.00

In relation to the G-GP mixture, the Table 3.2 shows that for the goodness of fit
tests Kolmogorov-Smirnov, Cramer-von Mises and Kuiper, the null hypothesis is not
rejected, because are obtained P-values higher than the confidence level of 5%. In
contrast, for specialized goodness of fit tests for heavy tail distributions, the Table
3.2 shows that are obtained P-values of 4% and 1% for the tests Supremum Class
Upper Tail Anderson-Darling and Quadratic Class Upper Tail Anderson-Darling,
respectively, indicating that the G-GP mixture does not offer a good fit in the tail
of the individual costs distribution for hospitalization services.

With reference to the N-GP mixture, it is observed that despite not showing close
values to the empirical statictics in the Table 3.1 or presenting good adjustments in
the Figures 3.5, 3.6 and 3.7, we have that in the Table 3.2 only in the Quadratic
Class Upper Tail Anderson-Darling test is rejected the adjustment of the mixture to
individual costs for hospitalization services. Furthermore, it can be noted that unlike
the G-GP mixture, the N-GP obtains a P-value higher than 5% for the Supremum
Class Upper Tail Anderson-Darling test, indicating that this mixture presents a good
fit in the right tail of the individual costs distribution.

With respect to the W-GP mixture, the Table 3.2 shows that, as for the G-GP
and N-GP mixtures, the hypothesis (3.28) is not rejected for the Kolmogorov-
Smirnov, Cramer-von Mises and Kuiper tests. Also, unlike the G-GP mixture, it is
not rejected for the Supremum Class Upper Tail Anderson-Darling test, which as
mentioned before, is a specialized test for heavy tail distributions.

From all the previous results it is observed that in the Figures 3.5, 3.6 and 3.7, no
differences are found between the G-GP and W-GP mixture, therefore, the selection
of the spliced distribution that best fits the individual costs of hospitalization
services is based on the Tables 3.1 and 3.2, which show that it also does not
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reject the Supremum Class Upper Tail Anderson-Darling test, the W-GP mixture
presented closer statistics to the empirical than those presented by the G-GP mixture.

Hence, it is assumed that the individual costs of hospitalization services have a W-
GP spliced distribution, with parameters Ŵshape = 0.9417177, Ŵscale = 13.39916, û =
35.5702, σ̂u = 31.77728, ξ̂ = −0.1190043, φ̂u = 0.1017503. Being η̂ = (Ŵshape, Ŵscale)
the parameter vector of the Weibull distribution and û, σ̂u, ξ̂ and φ̂ the parameter
vector of the Generalized Pareto distribution.

3.4.2 Spliced distributions for general surgery services
Like for hospitalization services, are adjusted the mixtures G-GP, N-GP, and W-GP
to the individual costs of general surgery services through the functions fgammagpd,
fnormgpd, fweibullgpd from the library evmix(2018). See Code 24 in Appendix B.

The adjustment shows that G-GP and W-GP mixtures have thresholds
of 16.12222 and 16.12227, respectively, which are very close to the threshold
u = 16.12321 proposed by the Hill plots presented in the panels (a) and (b) of the
Figure 3.4. It also shows that the N-GP mixture presents a threshold of 6.324662,
which is very far from the threshold proposed in the Hill plots.

Again, are used the libraries e1071 (2018) and DistMom (2018) to calculate the
value of the mean, variance, skewness and excess kurtosis of the individual costs
for general surgery services and the adjusted spliced distributions. See Code 25 in
Appendix B.

Table 3.3: Statistical measurements of spliced distributions for general
surgery services

Dist Mean Variance Skewness Excess Kurtosis
Empirical 6.680426 82.89872 4.671353 33.36082
gammagdp 7.379634 does not exist does not exist does not exist
normgdp 7.142194 66.2263 2.819053 15.91668
weibullgdp 7.731212 does not exist does not exist does not exist

The Table 3.3 shows a very interesting result, since with respect to the G-GP
and W-GP mixtures, no moments are found after the first, hence when applying
the function moments with k = 2, and the functions skew and kurt from the
library DistMom (2018) results in the message “The asymptotic method does not
converge, the value of the moment is very large or the moment of the distribution
does not exist”. Therefore, because the tail of the mixtures is given by a Generalized
Pareto distribution, it can be suggested from the EVT, that the individual costs
for general surgery services have a heavy tail, with a regular variation index 1 < α < 2.
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Another result of the Table 3.3, is that none of the three fitted mixtures has a
mean close to the empirical value of the individual costs, being the closest the N-GP
mixture. Moreover, it is evident that despite the N-GP mixture is the closest to
the empirical value of the mean, it is observed that for the other statistics, its value
differs considerably from the empirical values.

To show the adjustment of the spliced distributions are made three graphs, namely,
the Figures 3.8, 3.9 and 3.10. In the first are presented the cumulative distributions,
in the second, the natural logarithm of the survival distributions, and in the third, the
Q-Q plot for the three adjustments. See Code 26, Code 27 and Code 28 in Appendix
B.
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Figure 3.8: Adjustment of the individual costs of general surgery service
for spliced distributions

The Figure 3.8 shows that the three adjusted mixtures present problems to
capture the initial behavior of the empirical cumulative distribution, being the
most notable difference the one presented by the N-GP mixture. Additionally,
in the union area of the G-GP and W-GP, the Figure 3.8 shows again that the
mixtures present problems to capture the behavior of the empirical cumulative dis-
tribution, where it is observed that the empirical curve are above the adjusted curves.

It should be noted that similar to the hospitalization case, in the Figure 3.8 it
is evident that the mixture that presents the worst adjustment is the N-GP, and it
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is observed that there are no significant differences between the adjustment of the
G-GP and W-GP mixtures.
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Figure 3.9: Adjustment of log-survival distribution of the individual
cost in general surgery service for spliced distributions

The Figure 3.9 shows in more detail the tail behavior of the empirical distribution,
where it is observed that both the empirical survival distribution and the G-GP and
W-GP mixtures seem to have a slow decay in the tail area, more precisely, after
the value 2.78026, which is the natural logarithm of the threshold value u = 16.12321.

It should be noted that in the final part of the Figure 3.9 it can be seen that
the curve associated with the W-GP mixture decays more slowly than the curve
representing the G-GP mixture, indicating that the W-GP has a heavier tail than
the G-GP.

Additionally, the Figure 3.9 shows the bad adjustment made by the N-GP mixture,
where it is evident that around 0, is well above the empirical value, later around 3,
it is very far to the right of the empirical value, and finally around 4, it presents a
faster decay to zero than the log-survival distribution.
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Figure 3.10: Q-Q plot spliced distribution for hospitalization

The Figures 3.10.a and 3.10.c show unusual behavior in their confidence bands,
which could be related to the result obtained in the Table 3.3 on which the variance,
skewness and excess kurtosis for these mixtures do not exist. Moreover, in both
panels, there are several observations that despite being within the confidence bands
are very far from the diagonal line.

For its part, the Figure 3.10.b shows a behavior similar to that presented in the
hospitalization case, where it is evident that there is a group of observations that are
below zero due to the domain that has the normal distribution. In addition, between
the values 20 and 35, it is observed that a group of points appears that move away
from the diagonal line, leaving outside the confidence bands.

To perform the statistical contrast, are used the conventional goodness-of-fit
tests and specialized goodness-of-fit tests for heavy tail distributions, namely,
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Kolmogorov-Smirnov, Cramer-von Mises, Kuiper, Supremum Class Upper Tail
Anderson-Darling and Quadratic Class Upper Tail Anderson-Darling.

For this purpose, is established the following hypothetical contrast
H0 : FXsurg(x|η, u, σu, ξ) ∈ F̂Xsurg(x|η̂, û, σ̂u, ξ̂)
H1 : FXsurg(x|η, u, σu, ξ) 6∈ F̂Xsurg(x|η̂, û, σ̂u, ξ̂)

(3.29)

with FXsurg(x|η, u, σu, ξ) the distribution function of the individual costs for general
surgery services with parameters η, u, σu, ξ and F̂Xhosp(x|η̂, û, σ̂u, ξ̂) the distribution
function of the adjusted mixtures with estimated parameters η̂, û, σ̂u, ξ̂.

To perform the conventional goodness of fit tests, are employed the functions
ks.test, w2.test and v.test, while for specialized goodness of fit tests for heavy
tail distributions, are used the functions adup.test and ad2up.test, all belonging
to the library truncgof (2012). See Code 29 in Appendix B.

Table 3.4: Goodness-of-fit tests general surgery services for spliced dis-
tributions

Dist ks.test w2.test v.test adup.test ad2up.test
gammagpd 0.31 0.23 0.17 0.21 0.06
normgpd 0.62 0.65 0.78 0.02 0.00
weibullgpd 0.26 0.39 0.27 0.26 0.07

The Table 3.4 shows that the G-GP and W-GP mixtures have a similar behavior,
in the sense that in none of the five goodness of fit tests reject the hypothesis (3.29).
Moreover, it is appreciated that the N-GP mixture, reject the null hypothesis for the
specialized tests in distributions of heavy tail, because are obtained P-values of 2%
and 0%, respectively.

From the results obtained in this section, for the adjustment of the individual
costs of general surgery services by means of spliced distributions, it is observed that
no large differences were found between the G-GP and W-GP mixtures, since it is
only possible to point out that in the Figure 3.9 the W-GP mixture has a slightly
heavier tail than the G-GP and that in the Table 3.4 the W-GP mixture obtained
slightly larger values in almost all the statistics than the G-GP.

Taking into consideration that no other test is available to select which of the
two mixtures is the one that presents the best fit, it is assumed that the individual
costs of general surgery services have a W-GP spliced distribution, with parameters
Ŵshape = 0.8458848, Ŵscale = 6.121305, û = 16.12227, σ̂u = 2.802543, ξ̂ = 0.853189
and φ̂u = 0.1034537, where η̂ = (Ŵshape, Ŵscale) are the parameter vector of the
Weibull distribution and û, σ̂u, ξ̂ and φ̂ are the parameter vector of the Generalized
Pareto distribution.
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4.1 Introduction
After selecting the frequency distribution Nk for the claims number that occur
during a one year period and the severity distribution Xk for the individual
costs of medical services, for each portfolio1, we proceed to calculate the aggregate
loss distribution Sk, for the annual cost of medical services, for each of the k portfolios.

For this, we start with Embrechts et al. (1997, p. 24), which defines the total
amount of claims Sk as

Sk =
{ ∑Nk

i=1Xk,i Nk > 0
0 Nk = 0 (4.1)

where, Xk,1, Xk,2, . . . , Xk,Nk is a succession of non-negative random variables iid
Xk,i > 0 , with cumulative distribution FXk(x) = P(Xk ≤ x) with support [0,∞),

1The word “portfolio” refers to each of the medical services of interest.
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such that FXk(x) < 1, ∀x > 0 , FXk(0+) = 0, and with E(Xk,i) < ∞. Additionally,
Nk and Xk,i are taken as mutually independent random variables ∀i = 1, 2, . . .
(Bowers et al., 1997, p. 367).

The compound distribution Sk is obtained through the weighted infinite sum of
succesive Nk-convolutions of Fk with itself, where, depending on the distribution of
Nk, it will have the distribution type of Sk, e.g., if Nk is distributed Poisson, then Sk
will have a compound Poisson distribution or if Nk is distributed (Negative) Binomial,
then Sk will have a compound (Negative) Binomial distribution (Kaas, Goovaerts,
Dhaene, and Denuit, 2008, p. 41). Moreover, the cumulative distribution of the
variable Sk is denoted by FSk(x), and is obtained by the Total Probability Theorem

FSk(x) = P

Nk∑
i=0

Xk,i ≤ x


=
∞∑
n=0

P(Nk = n)P
Nk∑
i=0

Xk,i ≤ x|Nk = n


=
∞∑
n=0

pnkP(Xk,1 +Xk,2 + . . .+Xk,n ≤ x)

FSk(x) =
∞∑
n=0

pnkF
∗n
Xk

(x)

(4.2)

where pnk = P(Nk = n) is the probability distribution of Nk evaluated in n and
F ∗nXk(x) = P(Xk,1 + Xk,2 + . . . + Xk,n ≤ x) is the n-th convolution of FXk with itself
(Feller, 1978).

Since the compound distribution of Sk is an infinite weigthed sum of distributions,
obtaining a closed form for FSk is often difficult to find analytically, which renders
impossible to calculate probability or quantiles for Sk. Therefore, in order to
overcome this difficulty, some authors have proposed functions and algorithms that
allow to approximate the extreme quantiles for FSk .

These approaches seek to determine the value of the extreme quantiles in the right
part of the aggregate loss distribution, in order to quantify the risk associated with
high losses that may affect the company’s financial health. Some of these approxi-
mations are described in Kaas et al. (2008, Chapters 2–3), Beard, Pentikáinen, and
Pesonen (1984, Chapter 3) and Albrecher et al. (2017, Chapter 6).

4.2 Single Loss Approximation
Although there are different approximations, the implementation of each of them
is beyond the scope of this work, therefore we focus on a single approach known
as Single Loss Approximation (SLA onwards) which was introduced by Böcker and
Klüppelberg (2005), in the case of heavy or regular variation distributions. The
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reason for this is that the SLA method provides a closed approximation asymptotic
formula that does not require algorithms for its calculation, and also, it has been
demonstrated in the literature that it offers more accurate results under different
conditions than other methods, e.g., see Hess (2011), Opdyke (2014), Peters, Targino,
and Shevchenko (2013).

To introduce the SLA method, we start from Embrechts et al. (1997, Theorem
1.3.9, p. 45) and Albrecher et al.(2017, p. 36), which assume that the severities Xk,i

have a distribution FXk , that is classified within subexponential class distributions,
such that for any non-negative integer n, when x→∞ we have to

lim
x→∞

1− F ∗nXk(x)
1− FXk(x) = lim

x→∞

F̄ ∗nXk(x)
F̄Xk(x)

= n (4.3)

where, F̄Xk(·) = 1−FXk(·) is the tail distribution of the individual costs and F̄ ∗nXk(·) =
1−F ∗nXk(·) is the tail distribution of the convolution of n individual costs. Then, from
Embrechts et al. (1997, Theorem 1.3.9, p. 45) we have for a fixed time t > 0 and
assuming that pnk satisfies

∞∑
n=0

(1 + ε)npnk <∞ (4.4)

for some ε > 0, it is said that FSk is classify within the subexponential class, when
its tail behavior is given by

F̄Sk(x) ∼ E(Nk)F̄Xk(x); x→∞ (4.5)

where, F̄Sk(·) = 1− FSk(·) is the tail distribution of the aggregate loss and E(Nk) is
the expected value of the frequency distribution Nk. Furthermore, the symbol ∼ is
equivalent to say that for every fixed time t > 0

lim
x→∞

F̄Sk(x)
E(Nk)F̄Xk(x)

= 1 (4.6)

or equivalently

lim
x→∞

F̄Sk(x)
F̄Xk(x)

= E(Nk) (4.7)

The equation (4.5), will then be known as the Böcker-Klüppelberg formula, and from
this, is developed the whole mathematical procedure necessary to obtain the approx-
imation formula of the method SLA for the Value at Risk, Expected Shortfall and
Stop-Loss Premium, which are the most commonly used risk measures in practice2.

2For other risk measures, see Denuit, Dhaene, Goovaerts, and Kaas (2005, Chapter 2) and Kaas
et al. (2008, Chapter 5)
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4.2.1 Value at Risk (VaR)
Bockër and Klüppelberg Approximation

To obtain the equality between the right and left terms of the equation (4.5), in
Albrecher, Hipp, and Kortschak (2010, p. 106) is presented the first-order asymptotic
approximation for compound sums, such that

F̄Sk(x) = E(Nk)F̄Xk(x)(1 + o(1)); x→∞ (4.8)

where o(1)→ 0 when x→∞. It should be noted that, the equations (4.5) and (4.8)
are related, being the term (1 + o(1)) the value that generates the equality between
the left and right terms of the equation (4.5).

Since F̄Sk(x) = 1 − FSk(x), then, by clearing the term FSk(x), from the equation
(4.8) we get

FSk(x) = 1− E(Nk)F̄Xk(x)(1 + o(1)); x→∞ (4.9)

Böcker and Klüppelberg (2005, p. 91) equals the right member of the equation (4.9)
to a value κ, with κ→ 1, in order to obtain an asymptotic solution for FXk(x), such
that

FXk(x) = 1− 1− κ
E(Nk)

(1 + o(1)); x→∞ (4.10)

Applying the inverse transformation F−1
Xk

in both sides of the equation (4.10), we
obtain that the value x is given by

x = F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)
; κ→ 1 (4.11)

Similarly, Böcker and Klüppelberg (2005, p. 91) equals the left side of the equation
(4.9) to the same value κ, and applies the inverse function F−1

Sk
on both sides of the

equation, to obtain the next value for x

x = F−1
Sk

(κ); κ→ 1 (4.12)

Finally, by equating (4.11) and (4.12), the authors obtain a closed expression for the
calculation of the value x associated with an extreme quantiles of the aggregate loss
function Sk, such that

x = F−1
Sk

(κ) = F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)
; κ→ 1 (4.13)

From the equation (4.13), Böcker and Klüppelberg (2005, p. 91), present the approx-
imation of the VaR by means of the SLA method, for a level κ, with 0 < κ < 1 and
defined as the κ-quantile of the aggregate loss distribution

V aRSk(κ) = F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)
; κ→ 1 (4.14)
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or equivalently

V aRSk(κ) ∼ F−1
Xk

(
1− 1− κ

E(Nk)

)
; κ→ 1 (4.15)

Bockër and Sprittulla Approximation

Although the equation (4.15) has a very attractive structure, in Böcker and Sprittulla
(2006, p. 96), the authors point out that this equation must be used carefully because
this approximation underestimate the VaR, therefore, its estimation error could be
considerably large. The underestimation of the VaR, is because the aproximation
does not take into account all loss events Xk,i, which contribute to the aggregate loss
Sk.

Given the above and in order to refine the equation (4.13), Böcker and Sprittulla
(2006, p. 97) start from one of the properties presented in Embrechts et al. (1997, p.
41) for subexponential distributions

lim
x→∞

F̄Xk(x− y)
F̄Xk(x)

= 1; y ∈ R+ (4.16)

this property allows authors to present the following two relationships for FSk(x) and
FXk(x), assuming that the individual losses distribution has a finite mean (E(Xk,i <
∞)

F̄Sk(x) ∼ F̄Sk(x+ E(Nk)E(Xk,i)); x→∞
F̄Xk(x) ∼ F̄Xk(x+ E(Xk,i)); x→∞

(4.17)

Then, by replacing the equation (4.17) in (4.5), is obtained

F̄Sk(x+ E(Nk)E(Xk,i)) ∼ E(Nk)F̄Xk(x+ E(Xk,i)); x→∞ (4.18)

From this result, Böcker and Sprittulla (2006, p. 97) present an improved approxi-
mation for the VaR, which seeks to correct the underestimation of VaR, by adding the
correction constant given by C = (E(Nk)− 1)E(Xk,i). Given the above, the authors
define the improved approximation for the VaR as

V aRSk(κ) = F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)
+ (E(Nk)− 1)E(Xk,i); κ→ 1 (4.19)

where it is evident that the V aRSk(κ) obtained in this equation has a similar
structure to the one presented in the equation (4.14), but differently in the equation
(4.19) there is a second term that does not depend on the confidence level κ, and
represents a constant value associated with the expected loss size.
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This value is denoted by Böcker and Sprittulla (2006, p. 97) as a mean correction
factor for the V aR and point out that the value (E(Nk)−1)E(Xk,i) could be replaced
by any other constant value, because independently of the assumed constant, the limit
behavior of the equation (4.17) is preserved. They also point out that the constant
selected by them is not the one that produces the most accurate approximation of
V aR, but it is selected, due the stronger convergence properties hold when using
centered random variables.

Degen Approximation

After the proposal of Böcker and Sprittulla (2006), Degen (2010, p. 7), points out that
the constant mean correction factor proposed by Böcker and Sprittulla (2006) lacks
a mathematical justification and shows that this can be replaced by a non-constant
factor of the order o(F−1

Xk
(κ)), with κ→ 1, such that

F−1
Sk

(κ) = F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)


1 + (E(Nk)− 1)E(Xk,i)

F−1
Xk

(
1− 1− κ

E(Nk)
(1 + o(1))

)
︸ ︷︷ ︸

=o(1)


; κ→ 1

(4.20)

In order to give analytical support to the SLA method, Degen (2010) proposes
an estimation framework for the extreme quantiles calculation for the aggregate
loss distribution, which can be applied with a wide range of severity distributions,
regardless of whether or not they have finite mean.

To carry out his proposal, Degen (2010, p. 5) began with the second order subex-
ponential theory given by the expansion

F̄Sk(x) = E(Nk)F̄Xk(x)(1 + cb(x) + o(b(x))) x→∞ (4.21)

with

b(x) =


fXk (x)
F̄Xk (x) if E[Xk] <∞
µFXk

(x)fXk (x)
F̄ (x) if E[Xk] =∞

(4.22)

c =


E[Xk]E[(Nk−1)Nk]
Nk

if E[Xk] <∞
cξE[(Nk−1)Nk]

E[Nk] if E[Xk] =∞
(4.23)

and with µFXk (x) and cξ given by (Degen, 2010, p. 15)

µFXk (x) =
∫ x

0
F(s)ds (4.24)
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cξ =
{ 1 if ξ = 1

(1− ξ)Γ2(1−1/ξ)
2γ(1−2/ξ) if 1 < ξ <∞ (4.25)

When calculating the inverse relationship of the equation (4.21), through the proce-
dure described between the equations (4.8) to (4.14), we obtain

F−1
Sk

(κ) = F−1
Xk

(
1− 1− κ

E(Nk)
1

1 + cb(F−1
Xk

(κ̃)) + o(b(F−1
Xk

(κ̃)))

)
; κ→ 1 (4.26)

with κ̃ = 1− (1− κ)/E(Nk).

Additionally, the author proposes an equation that allows to measure the approx-
imation error that exists between the quantile function of the aggregate losses F−1

Sk
(·)

and the quantile function of the individual losses F−1
Xk

(·), for different levels of κ, such
that

e(κ) =
F−1
Xk

(
1− 1−κ

E(Nk)

)
F−1
Sk

(κ)
− 1; κ ∈ (0, 1) (4.27)

By clearing the term F−1
Sk

(κ) from the equation (4.27), Degen (2010, p. 8) gets an
improved approximation equation for the quantiles calculation of the aggregate loss
distributions

F−1
Sk

(κ) =
F−1
Xk

(
1− 1−κ

E(Nk)

)
1 + e(κ) ; κ→ 1 (4.28)

where it is shown that, for the particular case of heavy tail distributions with tail
index ξ > 0, and when κ→ 1, the term 1

1+e(κ) is equal to

1
1 + e(κ) = 1 + ξcb(F−1

Xk
(κ̃)) + o(b(F−1

Xk
(κ̃))); κ ∈ (0, 1) (4.29)

Finally, from the equations (4.26) and (4.29), Degen (2010) derives three approx-
imations for the extreme quantiles calculation for the aggregate loss distribution.
Namely, the first is used when it has severities distribution with heavy tail and finite
mean, the second is employed when the severities distribution has heavy tail and
infinite mean, and the third is used when the tail of the severities distribution is
semi-heavy.

Heavy-tailed, finite mean: It arises when the distribution of the individual costs
Xk is classified within the subexponential class of distributions with a tail index
0 < ξ < 1. In such situation, we have b(x) ∼ 1/(ξx), with x→∞, which leads to the
improved SLA approximation proposed by Degen (2010, p. 10) of

F−1
Sk

(κ) ≈ F−1
Xk

(
1− 1− κ

E(Nk)

)
+ E(Xk)(E(Nk) + d− 1) (4.30)
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where d is a dispersion factor defined as d = V ar(Nk)/E(Nk)). An alternative struc-
ture of the equation (4.30) derived from by Albrecher et al. (2017, p. 199), which
replaces the V ar(Nk) of the term d by E(N2

k )− E(Nk)2 obtaining

F−1
Sk

(κ) ≈ F−1
Xk

(
1− 1− κ

E(Nk)

)
+ E(Xk)

(
E(Nk) + E(N2

k )− E(Nk)2

E(Nk)
− 1

)
(4.31)

or equivalently

F−1
Sk

(κ) ≈ F−1
Xk

(
1− 1− κ

E(Nk)

)
+ E(Xk)

(
E(N2

k )
E(Nk)

− 1
)

(4.32)

Heavy-tailed, infinite mean: The heavy tail distributions with infinite mean,
are presented by two different approximations, namely, when the tail index ξ is equal
to 1 or when it is greater than 1. If ξ > 1, Degen (2010, p. 10) points out that
b(x) = µFXkfXk/FXk , which guarantees by regular variation theory that

b(x) ∼ 1
ξ − 1 F̄ (Xk); x→∞ (4.33)

From this and the equation (4.29), is given place the following approximation when
the tail index ξ > 1

F−1
Sk

(κ) ≈ F−1
Xk

(
1− 1− κ

E(Nk)

)
− (1− κ)F−1

Xk

(
1− 1− κ

E(Nk)

)
cξ

1− (1/ξ)

(
1 + d− 1

E(Nk)

)
(4.34)

Similarly, we have the special event of ξ = 1, Degen (2010, p. 10) states that b(x) =
µFXk/FXk , when x → ∞, and presents the following approximation for the SLA
method

F−1
Sk

(κ) ≈ F−1
Xk

(
1− 1− κ

E(Nk)

)
+ (E(Nk) + d− 1)µFXk

(
F−1
Xk

(
1− 1− κ

E(Nk)

))
(4.35)

Semi-heavy tailed: This occurs when the tail index ξ = 0, which does not make
possible to directly use the equation (4.29) to obtain the SLA approximation for the
extreme quantiles calculation of the aggregate loss distribution. Due to this, and in
order to obtain an approximation for the SLA method, Degen (2010, p. 12) derives
the following equation

1
1 + e(κ) = 1 + c

F−1
Xk

(κ̃)
(4.36)

where c is defined in the equation (4.25). Moreover, by replacing the equation (4.36)
in (4.28), Degen (2010, p. 12) obtains that the approximation SLA has an identical
structure to the equation (4.30) given by

F−1
Sk

(κ) = F−1
Xk

(
1− 1− κ

E(Nk)

)
+ E(Xk)(E(Nk) + d− 1) (4.37)
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4.2.2 Expected Shortfall (ES/TVaR/AVaR/CVaR)
With the purpose of providing a closed equation for the ES calculation, Biagini and
Ulmer (2009) employ the results obtained by Böcker and Klüppelberg (2005), and
find an expression that associates VaR and ES, such that

ESSk(κ) = E(Nk)
1− κ

α

α− 1V aRSk(κ)F̄Xk(V aRSk(κ)) (4.38)

where F̄Xk ∈ RV−α, with α the regular variation index. In his work, Biagini and
Ulmer (2009) assumes that the V aRSk(κ) is given by the equation (4.15), therefore,
when applying the Asymptotic Investment Theorem presented in Bingham, Goldie,
and Teugels (1989, Theorem 1.5.12, p. 28), it is possible to replace F̄Xk(V aRSk(κ))
by

F̄Xk

(
F−1
Xk

(
1− 1− κ

E(Nk)

))
= 1− κ

E(Nk)
(4.39)

Then, by replacing the equation (4.39) in (4.38) we get

ESSk(κ) ∼ α

α− 1V aRSk(κ); κ→ 1 (4.40)

It is important to note that the result shown on (4.40) will only be fulfilled if the
V aRSk(κ) is given by the equation (4.15), therefore, the procedure described in
Biagini and Ulmer (2009, p. 8) could only be applied when is used the VaR proposed
by Böcker and Klüppelberg (2005), which as it was previously mention, has the
problem of not taking into consideration all loss events Xk,i, that contribute to the
aggregate loss Sk, generating an underestimation of VaR.

Due to the above, if is replaced the VaR proposed by Böcker and Klüppelberg
(2005) in the equation (4.40), by a corrected VaR such as those proposed in Böcker
and Sprittulla (2006) or Degen (2010), with the structure

V aRSk(κ) = F−1
Xk

(
1− 1− κ

E(Nk)

)
+ C (4.41)

it would be obtained by following the procedure described in Biagini and Ulmer (2009,
p. 8) an approximation for ES with the structure

ESSk(κ) = E(Nk)
1− κ

α

α− 1

[
F−1
Xk

(
1− 1− κ

E(Nk)

)
+ C

]
F̄Xk

(
F−1
Xk

(
1− 1− κ

E(Nk)

)
+ C

)
(4.42)

At this point, it is not possible to conclude the procedure described in Biagini and
Ulmer (2009, p. 8), since it would not be mathematically correct to replace the
equation (4.41) in the equation (4.40), because the correction factor C, therefore, it
is not possible to conclude the following equalities

F̄Xk

(
F−1
Xk

(
1− 1− κ

E(Nk)

)
+ C

)
= 1− κ

E(Nk)
+ C (4.43)
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or

F̄Xk

(
F−1
Xk

(
1− 1− κ

E(Nk)

)
+ C

)
= 1− κ

E(Nk)
+ F−1

Xk
(C) (4.44)

when C is a variable that represents those constant and non-constant values found
to the right of F−1

Xk

(
1− 1−κ

E(Nk)

)
in the equations (4.19), (4.30), (4.34), (4.35) and (4.37).

Then, we decided to use the basic definition of ES presented in Kaas et al. (2008,
p. 129) and Denuit et al. (2005, p. 72) as

ESSk(κ) = 1
1− κ

∫ 1

κ
V aRSk(θ)dθ (4.45)

which despite not having a closed form as proposed by Biagini and Ulmer (2009),
it is simple to numerically calculate and takes into account those constant and non-
constant C corrections proposed by Böcker and Sprittulla (2006) and Degen (2010).
If we replaced the equation (4.41) in (4.45) we will have that ESSk(κ) would be
determined by

ESSk(κ) = 1
1− κ

[∫ 1

κ

(
F−1
Xk

(
1− 1− θ

E(Nk)

)
+ C

)
dθ
]

(4.46)

In the particular case in which the term C is constant, i.e, it does not depend on θ,
the ESSk(κ) can be rewritten as

ESSk(κ) = 1
1− κ

[∫ 1

κ
F−1
Xk

(
1− 1− θ

E(Nk)

)
dθ
]

+ C (4.47)

4.2.3 Stop-Loss Premium (SLP)
To obtain an expression for the SLP calculation, we use the definition presented by
Denuit et al. (2005, p. 73), in which the authors propose the relationship that SLP
has with respect to VaR and ES. To find this relationship, the authors start from the
basic definition of SLP given by

SLPSk(κ) = E[(Sk − V aRSk(κ))+] (4.48)
when applying the definition of the expected value, the equation (4.48) can be rewrit-
ten as

SLPSk(κ) =
∫ 1

0
(V aRSk(θ)− V aRSk(κ))+ dθ (4.49)

=
∫ 1

κ
V aRSk(θ)dθ − V aRSk(κ)(1− κ) (4.50)

Now, from the definition of ESSk given in (4.45), the equation (4.49) can be rewritten
as

SLPSk(κ) = (1− κ) [ESSk(κ)− V aRSk(κ)] (4.51)
which gives a simple expression for the SLP calculation, based on the values obtained
from the VaR and ES calculation.
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4.3 Risk measures estimation for hospitalization
services

To estimate the risk measures associated with the aggregate loss distribution for
hospitalization services, it is necessary to identify the the tail index value ξ associated
with the adjusted distribution to the individual costs of hospitalization services. For
this end, we use the equation proposed by De Haan and Ferreira (2006, p. 17) defined
in (3.14) as

lim
x→∞

xfXk(x)
FXk(x)

= 1
ξ

(4.52)

Then, by inverting the place of the numerator and the denominator, we have an
equation that allows us to obtain the tail index value ξ as

lim
x→∞

FXk(x)
xfXk(x) = ξ (4.53)

It should be noted that sometimes, the value FXk(x) can get faster to 0 than fXk(x)
when x → ∞, or vice versa, therefore, is used a graphical representation of the
behavior of the equation (4.53), with the objective of looking for stable region in the
graph, since this stable region is associated to the value of tail index ξ. See Code 30
in Appendix B.

In the Figure 4.1 it is observed that as x increases, the limit value presented in
the equation (4.53) decreases until it reaches zero, which means that the tail index
value for the individual costs distribution of hospitalization services is equal to zero,
i.e, ξ = 0.

Given the previous result, the individual costs distribution has to be found in the
semi-heavy tail situation proposed by Degen (2010, p. 12), hence, to carry out the
estimation of the VaR, is used the equation of (4.37) given by

V aRShosp(κ) = F−1
Xhosp

(
1− 1− κ

E(Nhosp)

)
+ E(Xhosp)(E(Nhosp) + d− 1) (4.54)

where d = V ar(Nhosp)/E(Nhosp). From the equation (4.54) it is observed that the
V aRShosp depends on a value κ, which represents the κ-quantile of the aggregate costs
distribution, of the quantile function F−1

Xhosp
and the expected value E(Xhosp) of the

individual costs, and of the expected value E(Nhosp) and variance V ar(Nhosp) of the
claims number for hospitalization services.
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Figure 4.1: Tail index estimation for hospitalization services

Since the interest of the V aRShosp(κ) is centered for values of κ close to 1, is
shown in the Figure 4.2 the value of the V aRShosp(κ) for values of κ between 0.9
and 0.999. Additionally, to perform the calculation of the quantile function F−1

Xhosp
,

is used the function qweibullgpd of the library evmix(2018), with the parameters
obtained in the adjustment process.

Similarly, for the calculation of the expected values E(Xhosp), E(Nhosp) and
variance V ar(Nhosp), we use the values presented in the Tables 3.1 and 2.2, which
were obtained by the function moments of the library DistMom(2018). See Code 31
in Appendix B.

From the Figure 4.2 it is evident that the VaR for the aggregate costs of hospital-
ization services, when 0.9 < κ < 0.999, it is between 6250.264 and 6307.058 million
of pesos, where as specific cases, the V aRShosp(κ) = 6260.922 when κ = 0.95 and
V aRShosp(κ) = 6282.528 when κ = 0.99.
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Figure 4.2: Value at Risk for hospitalization services

To perform the ES calculation, we start from the equation (4.47), which takes into
account those constant and non-constant C values proposed to correct the VaR. In
this case, the individual costs distribution has a semi-heavy tail, therefore, the C value
of the equation (4.47) is replaced by the correction constant E(Xhosp)(E(Nhosp)+d−1)
raised by Degen (2010, p. 12) and presented in the equation (4.37), obtaining that
the ES for the aggregate costs of hospitalization services is given by

ESShosp(κ) = 1
1− κ

[∫ 1

κ
F−1
Xhosp

(
1− 1− θ

E(Nhosp)

)
dθ
]

+ E(Xhosp)(E(Nhosp) + d− 1)

(4.55)

from the equation (4.55) it is observed that the ESShosp(κ), depends on κ, F−1
Xhosp

,
E(Xhosp), E(Nhosp) and V ar(Nhosp), as in the V aRShosp(κ) case, but unlike this one,
the ESShosp(κ) has an integral. To solve this integral, is used the integrate function
of the library stats (2018). See Code 32 in Appendix B.
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Figure 4.3: Expected Shortfall for hospitalization services

From the Figure 4.3 it can be seen that the ES is between the 6264.579
and 6315.334 millions pesos for values of κ between 0.90 and 0.999, where it is
noted that, for specific values of κ, we have that ESShosp(0.95) = 6274.104 and
ESShosp(0.99) = 6293.412, where said values are greater than those found for the
VaR with the same quantiles.

Finally, to perform the SLP calculation, we employed the equation (4.51), which
suggests that, once are calculated the values of the V aRShosp(κ) and ESShosp(κ), then
the SLPShosp(κ), can be calculated by replacing the equations (4.54) and (4.55) in
(4.51), obtaining

SLPShosp(κ) =(1− κ)
(

1
1− κ

[∫ 1

κ
F−1
Xhosp

(
1− 1− θ

E(Nhosp)

)
dθ
]

+

E(Xhosp)(E(Nhosp) + d− 1)− F−1
Xhosp

(
1− 1− κ

E(Nhosp)

)
−

E(Xhosp)(E(Nhosp) + d− 1))

(4.56)
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where it is noted that the term E(Xhosp)(E(Nhosp)+d−1) disappears from the equation
(4.56), finally obtaining that SLP for hospitalization services is given by

SLPShosp(κ) =
[∫ 1

κ
F−1
Xhosp

(
1− 1− θ

E(Nhosp)

)
dθ
]
− (1− κ)F−1

Xhosp

(
1− 1− θ

E(Nhosp)

)
(4.57)

this indicates that, if constant values are used to correct the VaR, the SLP calculated
value would not be affected. Below it is graphically present the behavior of the SLP,
for values of κ between 0.90 and 0.999. See Code 33 in Appendix B.
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Figure 4.4: Stop-Loss Premium for hospitalization services

From the Figure 4.4 it is observed that the SLP has a decreasing behavior that
ranges from 1.432 to 0.008 million of pesos as the value of κ increases from 0.9 to
0.999. Particularly when κ is equal to 0.95 and 0.99, the SLPSk(κ) is equal to 0.659
and 0.109 million of pesos, respectively.
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4.4 Risk measures estimation for general surgery
services

Similar to hospitalization services, we use the equation (4.53) to find the tail index
value ξ for the adjusted distribution to the individual costs of general surgery, where
as previously indicated, should be located that section of the plot where is evidenced
a stable region. See Code 34 in Appendix B.
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Figure 4.5: Tail index estimation for general surgery services

The Figure 4.5 shows that the limit proposed in the equation (4.53) has a stable
region around 0.84, consequently, it is concluded that the tail index for the individual
costs distribution of general surgery services is approximately 0.84. As previously
mentioned, the value ξ is related to the tail heaviness of the distribution, therefore,
the ξ ≈ 0.84 value is the reason why the mixture W-GP had not defined a value for
any of the moments that were above the first.

From this result, it is possible to classify the individual costs distribution in the
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scenario of heavy tail with finite mean proposed by Degen (2010, p. 10), which
calculated the VaR given by (4.30) as

V aRSsurg(κ) = F−1
Xsurg

(
1− 1− κ

E(Nsurg)

)
+ E(Xsurg)(E(Nsurg) + d− 1) (4.58)

Below is graphically shown the behavior of VaR for general surgery, for values of κ
between 0.9 and 0.999. See Code 35 in Appendix B.
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Figure 4.6: Value at Risk for general surgery services

In the Figure 4.6 it is shown that the VaR of aggregate costs for general surgery
services is between 1227.303 and 7986.619 million of pesos, when κ is between 0.9
and 0.999, since when κ→ 1, the value of V aRSsurg(κ)→∞.

This difference between the quantiles 0.9 and 0.999 is due to the behavior of
the aggregate costs distribution for general surgery services, which has a heavy
tail, because to this, it is expected a significant change in the values VaR when
κ approaches 1. Additionally, as specific cases we have that for κ = 0.95, the
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V aRSsurg(κ) = 1336.635 and for κ = 0.99, the V aRSsurg(κ) = 2058.540.

In order to calculate the ES, we start from the fact that the equation (4.58) for
the calculation of VaR, has the same structure of the equation (4.54), such that

ESSsurg(κ) = 1
1− κ

[∫ 1

κ
F−1
Xsurg

(
1− 1− θ

E(Nsurg)

)
dθ
]

+ E(Xsurg)(E(Nsurg) + d− 1)

(4.59)

From the equation (4.59) is made the ES calculation and is presented its behav-
ior graphically for values of κ from 0.9 to 0.999 since when κ → 1, the value of
ESSsurg(κ)→∞. See Code 36 in Appendix B.
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Figure 4.7: Expected Shortfall for general surgery services

The Figure 4.7 shows an increasing behavior, where as the value κ approaches
1 the value of ES increases to infinity. Additionally it is noted that for values of
κ = 0.95 and κ = 0.99, the ESSsurg(κ) has values of 2759.851 and 7677.093 million
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pesos, respectively.

Finally, the SLP calculation is implemented for general surgery services, where it
is employed a similar equation to the one used for hospitalization, because the VaR
in both scenarios have the same structure, hence, SLPSsurg(κ) is given by

SLPSsurg(κ) =
[∫ 1

κ
F−1
Xsurg

(
1− 1− θ

E(Nsurg)

)
dθ
]
− (1− κ)F−1

Xsurg

(
1− 1− θ

E(Nsurg)

)
(4.60)

In the Figure 4.8 it is shown that the SLP for general surgery services, has a decreasing
behavior ranging from 78.784 to 40.069 million of pesos, when κ goes from 0.90 to
0.999. Additionally, it is evidenced that for point quantiles of κ = 0.95 and κ = 0.99,
the SLP is 71.161 and 56.186 million of pesos. See Code 37 in Appendix B.
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Figure 4.8: Stop-Loss Premium for general surgery services
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4.5 Reinsurance
An insurance contract is an agreement where in exchange for a premium, an
insurance company agrees to indemnify in part or in all of the agreed risks, once
occurs the agreed specific event within the contract coverage limits. At the same
time, the insurance company may reach an agreement with a reinsurer, in order to
transfer some or all of the assumed risks in the agreed contracts, to minimize the
loss risk.

In the same way, a reinsurance contract fulfills the same characteristics of an
insurance contract, with the difference that reinsurance is an insurance agreed
between insurance companies. In consecuense, the reinsurer will never have any
direct link with the insurance policies buyers, if not only with the reinsured company.
Furthermore, the coverage level provided by the reinsurer depends on the type and
form of the reinsurance contract agreed after the negotiation between entities, since
the decision of which contract is more convenient for the insurer depends on the
severity of the policies, their reserves and their needs.

Before addressing the types of reinsurance, consider a variable k ≥ 1 that repre-
sents the number of HCD portfolios of an insurer. For example, chemotherapy and
radiotherapy treatment for cancer, AIDS treatment and its complications, intensive
care unit treatment for more than five days, among others. If we define the aggregate
costs associated with the k-th portfolio as in the equation (4.1), for the validity period
of a policy (usually one year). Then a reinsurance contract for the k-th HCD can be
defined as

Sk =Dk +Rk (4.61)

where Dk represents the amount deductible or retained by the insurer and Rk

represents the amount paid by the reinsurer (Albrecher, et al., 2017, p. 19).

To calculate the retained part by the insurer and the ceded part to the reinsurer,
there are different reinsurance types, such as Quota-Share, Surplus, Excess of Loss,
Stop-Loss, etc., but the implementation of each of them is beyond the scope of this
work, therefore, in order to provide an approximation to the calculation of these
values, is used a Stop-Loss reinsurance, given that this is the reinsurance method
that provides less variation of the risk retained by the insurer (Cai and Tan, 2007,
p. 94).

In Stop-Loss reinsurance, are reinsured only those costs Xk,i that exceed a fixed
amount of retention Mk > 0, which may or may not be restricted to a higher limit
Lk, defined as the maximum coverage limit amount of the reinsurance contract. The
above means that, if is agreed a maximum coverage limit of Lk, then the reinsurer
will cover those costs between Mk and the limit Lk, and costs that are below Mk or
those that exceed Lk, are covered by the insurer.
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If we take the situation where there is no reinsurance limit, i.e, Lk =∞, then the
Stop-Loss reinsurance for the k-th portfolio is defined as

Dk = (Sk ∧Mk) , Rk = (Sk −Mk)+ (4.62)

where the notation (a ∧ b) represents

(a ∧ b) = min(a, b) (4.63)

and the notation (a− b)+ represents

(a− b)+ =
{

0 (a− b) ≤ 0
(a− b) (a− b) > 0 (4.64)

Otherwise, if Lk ≤ ∞, reinsurance is defined as

Dk =
[
(Sk ∧Mk) + (Sk − Lk)+

]
, Rk =

[
(Sk −Mk)+ ∧ (Lk −Mk)

]
(4.65)

In exchange for the coverage offered by the reinsurer for a particular risk, the insurer
pays compensation, which we assume by the expected value principle3, defined as

δ(Mk) = (1 + ρ)π(Mk) (4.66)

where δ(Mk) is the reinsurance premium, ρ > 0 is defined as the reinsurer’s relative
safety load factor, which can be interpreted as a risk premium rate, and π(Mk) it is
known as the net Stop-Loss premium, defined in Klugman et al. (2012, p. 146) as

π(Mk) = E[(Sk −Mk)+] =
∫ ∞
Mk

F̄Sk(x)dx (4.67)

From the equation (4.67), it is evidenced that there is a direct relationship between
this measure and the SLP defined in the equation (4.48), when the retention level
Mk is equal to V aRSk(κ). The above is stated in Denuit et al. (2005, p. 73), where
the authors point out that an important aspect of the Stop-Loss reinsurance contract
is that for a retention point Mk equal to V aRSk(κ), the value of the net premium
π(Mk) is given by SLPSk(κ).

If we define Tk as the total costs paid by the insurer in a Stop-Loss contract for
the k-th medical service, then we can write Tk as

Tk = Dk + δ(Mk) (4.68)

From the equation (4.68) is observed an exchange between the amount deductible or
retained by the insurer and the premium paid for the coverage of the reinsurance,
where, Cai and Tan (2007, p. 95) indicate that, if is selected a low for the retention
level Mk, then the reinsurance premium will be high, because the insurer will be

3Other principles for the premium calculation of reinsurance can be consulted in Centeno and
Simões (2009, p. 389)
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transferring the greater amount of risk to the reinsurer, while, if is selected a low
level for the reinsurance premium δ(Mk), it is assumed that the insurer will be
transferring a small amount of risk to the reinsurer, therefore, it will be exposed to
a potentially dangerous liability for its financial health.

For this reason, it is necessary to find the optimal retention level that an
insurer must have, given a relative security charge level ρ, in such a way that the
retained risk is minimized and/or the insurer’s utility is maximized when is used
a Stop-Loss reinsurance method. In other words, the objective is to ensure that
the risk measure associated with Tk is as small as possible (Cai and Tan, 2007, p. 96).

To achieve this objective, we use the VaR minimization criterion of the total costs
Tk, where to find that expression, it is necessary to start from the definition of the
VaR of the retained loss, which is presented by Cai and Tan (2007, p. 98) as

V aRDk(Mk, κ) =
{
Mk; 0 < Mk < V aRSk(κ)
V aRSk(κ); Mk > V aRSk(κ) (4.69)

From the equations (4.69) and (4.68) it follows that the VaR of the total costs Tk is
equal to

V aRTk(Mk, κ) = V aRDk(Mk, κ) + δ(Mk) (4.70)

or equivalently to

V aRTk(Mk, κ) =
{
Mk + δ(Mk); 0 < Mk < V aRSk(κ)
V aRSk(κ) + δ(Mk); Mk > V aRSk(κ) (4.71)

If we define M∗
k as a random variable that represents the optimal retention level for

a Stop-Loss reinsurance, then using the equation (4.71), the objective is to find the
value M∗

k that minimizes the function V aRTk(Mk, κ), such that

V aRTk(M∗
k , κ) = min

Mk>0
(V aRTk(Mk, κ)) (4.72)

To find the optimal point M∗
k , in Cai and Tan (2007, pp. 98–100) are established the

sufficient and necessary conditions for the existence of the optimal retention point for
the V aRTk(M∗

k , κ), where, the authors indicate that the optimal point M∗
k is equal to

M∗
k = V aRSk(ρ∗) (4.73)

if and only if, there is a term ρ∗ = 1
1+ρ , so that the following two conditions are met

1− κ < ρ∗ < F̄Sk(0) (4.74)

and

V aRSk(κ) ≥ V aRSk(ρ∗) + δ(V aRSk(ρ∗)) (4.75)
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if both conditions are fulfilled, the VaR of the total costs Tk, paid by the insurer in a
Stop-Loss contract for the k-th portfolio is given by

V aRTk(M∗
k , κ) = M∗

k + δ(M∗
k ) (4.76)

where it is noted that for the optimal retention point M∗
k calculation, it is only neces-

sary to know the aggregate loss distribution of Sk, the VaR of Sk and the reinsurer’s
relative safety load factor ρ.

4.6 Optimum retention point estimation for hos-
pitalization services

To obtain the optimal retention point for the aggregate costs of hospitalization ser-
vices, we decided to construct a results table, which presents for different levels
of ρ, the value of the optimal quantile κρ∗ = 1 − ρ∗, the optimal retention point
M∗

hosp = V aRShosp(κρ∗), the reinsurance premium δ(M∗
hosp) = (1 + ρ)SLPShosp(κρ∗),

and the VaR of the total costs Thosp, V aRThosp(κρ∗). See Code 38 in Appendix B.

Table 4.1: Optimum retention point estimation for hospitalization ser-
vices

ρ κρ∗ M∗
hosp δ(M∗

hosp) V aRThosp(κρ∗)
0.1 0.090909 6209.826 18.616 6228.442
0.2 0.166667 6211.630 18.424 6230.054
0.3 0.230769 6213.272 18.249 6231.521
0.5 0.333333 6216.170 17.941 6234.111
0.8 0.444444 6219.791 17.556 6237.346
1.0 0.500000 6221.848 17.337 6239.185
1.2 0.545455 6223.686 17.142 6240.828
1.5 0.600000 6226.120 16.883 6243.003
2.0 0.666667 6229.527 16.520 6246.048
3.0 0.750000 6234.756 15.964 6250.720
4.0 0.800000 6238.689 15.546 6254.236
5.0 0.833333 6241.827 15.212 6257.039
7.0 0.875000 6246.642 14.700 6261.342
10.0 0.909091 6251.782 14.154 6265.936
20.0 0.952381 6261.640 13.105 6274.745
50.0 0.980392 6273.989 11.792 6285.781

In the Table 4.1 it is shown that as the reinsurer’s relative safety load factor
increases, the value of the optimal quantile κρ∗ rises until it is close to 99% when
ρ = 50. It is also observed that as the retention level increases, the premium paid
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by the insurer declines, this could be explained by the almost constant decreasing
behavior of SLPShosp(κ) and the tendency to infinite of V aRShosp(κ) when κ = 1.
Additionally, it is evident that there are no sudden changes in the increments of the
variables M∗

hosp or V aRThosp(κρ∗).

It should be noted that, if is used the optim function of the library stats (2018)
to obtain the optimal retention points, then, by optimizing the VaR function for
the total costs Thosp, we arrive at the same results as using the value of the optimal
quantile κρ∗ = 1− ρ∗.

4.7 Optimum retention point estimation for gen-
eral surgery services

Similar to hospitalization, we build the Table 4.2 to summarize the results obtained
for general surgery services. In this table, we could appreciate that the reinsurance
premium has a different behavior from the one presented in the hospitalization case,
since as the optimal retention level of the insurer increases, the premium paid for
coverage increases too in a greater proportion than the retention level, to the point
where the premium paid is greater than the retention level when ρ ≥ 20. See Code
39 in Appendix B.

Table 4.2: Optimum retention point estimation for general surgery ser-
vices

ρ κρ∗ M∗
surg δ(M∗

surg) V aRTsurg(κρ∗)
0.1 0.090909 1112.357 119.829 1232.186
0.2 0.166667 1113.946 129.063 1243.009
0.3 0.230769 1115.515 138.185 1253.701
0.5 0.333333 1118.603 156.130 1274.733
0.8 0.444444 1123.125 182.407 1305.532
1.0 0.500000 1126.077 199.564 1325.641
1.2 0.545455 1128.986 216.470 1345.456
1.5 0.600000 1133.278 241.415 1374.694
2.0 0.666667 1140.270 282.047 1422.317
3.0 0.750000 1153.771 360.510 1514.282
4.0 0.800000 1166.781 436.114 1602.895
5.0 0.833333 1179.411 509.515 1688.926
7.0 0.875000 1203.801 651.258 1855.059
10.0 0.909091 1238.787 854.577 2093.364
20.0 0.952381 1347.044 1483.711 2830.756
50.0 0.980392 1636.039 3163.199 4799.239
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The above can be explained by the SLPSsurg(κ) when evaluating values of κ close
to 1, since it is observed that these are not close to 0. Additionally, it can be explained
by the value of the V aRSsurg(κ) when κ→ 1, which indicates that if the insurer only
wants to cover these extreme values, he should pay a higher premium.



Chapter 5

GAMLSS distributions an
alternative to adjust severity
distributions

Table of Contents
5 GAMLSS distributions to adjust severity distributions

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Adjustment of GAMLSS distributions for hospitalization services

severities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Risk measures estimation for hospitalization services with GAMLSS . 77
5.4 Optimum retention point estimation for hospitalization service with

GAMLSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Adjustment of GAMLSS distributions for severities of general surgery

services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6 Risk measures estimation for general surgery services with GAMLSS . 86
5.7 Optimum retention point estimation for general surgery service with

GAMLSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Introduction
The generalized additive models for location, scale and shape (GAMLSS onwards)
proposed by Rigby and Stasinopoulos (2005), are a general class of semi-parametric
regression models composed of a response variable and one or more explanatory
variables, where the response variable requires a parametric structure, which can
be selected from a more general family of distributions than the exponential family,
while the explanatory variables can have fixed effects, random effects or smoothed
nonparametric functions.

The main advantage of the GAMLSS compared to conventional regression models
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is that they allow to adjust a great collection of discrete or continuous distributions
to the response variable, which can have very asymmetric shapes, with positive or
negative biases, and/or shapes with large kurtosis. Among the distributions that
can be adjusted to the response variable, is highlighted a large amount of Poisson
mixtures for the discrete case, along with distributions belonging to the Pareto and
Power Exponential families for the continuous case.

To conceptually introduce the GAMLSS, we start from Stasinopoulos and Rigby
(2007, p. 2) which present the GAMLSS as models that assume a set of independent
observations y1, y2, . . . , yn, with probability function f(yi|θi) conditioned to θi, a vec-
tor of up to four parameters, with structure θi = µi or θi = (µi, σi) or θi = (µi, σi, νi)
or θi = (µi, σi, νi, τi), which can be taken as functions of the explanatory variables,
and in turn are considered as the parameters of the distribution of yi.

In addition, given a response vector yT = (y1, y2, . . . , yn), Rigby and Stasinopou-
los (2005, p. 509), propose an equation that allows to express mathematically the
GAMLSS, as

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Zjkγjk (5.1)

with gk(·) a monotone link function that relates the parameter vector θk with
the explanatory variables, being θTk = (µ,σ,ν, τ ) for k = 1, 2, 3, 4, respectively.
Furthermore, µ, σ, ν, τ and ηk are vectors of size n, βT

k = (β1k, β2k, . . . , βJ ′
k
k) is a

parameters vector of size J ′k, Zjk is a fixed known design matrix of size n × qjk and
γjk is a random variable of dimension qjk.

It should be noted that J ′k represents the number of covariates used in the fixed
effects in ηk, and Jk represents the number of random effects in ηk. Rigby and
Stasinopoulos (2005, p. 509) points out that if Jk = 0 for k = 1, 2, 3, 4, then the model
presented in the equation (5.1) is reduced to a completely parametric structure, given
by

gk(θk) = ηk = Xkβk (5.2)

whereas, if Zjk = In is an identity matrix n× n, and γjk = hjk(xjk) for all combina-
tions of j = 1, 2, . . . , Jk and k = 1, 2, 3, 4, then the model presented in the equation
(5.1) can be rewritten as

gk(θk) = ηk = Xkβk +
Jk∑
j=1

hjk(xjk) (5.3)

with hjk an unknown function of explanatory variables Xjk, and xjk a known vector
of explanatory variables of size n.
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To measure the tail heaviness of the continuous distributions fY (y), Rigby,
Stasinopoulos, Heller, and Voudouri (2014, Chapter 12), advise focus the attention
on the logarithm of the distribution, because this exaggerates the distribution tail
behavior and allows to evidence more easily the true heaviness that it has.

Thus to define if one distribution has a heavier tail than another, the authors
define two continuous random variables Y1 and Y2 with probability densities fY1(y)
and fY2(y) for which it is satisfied limy→∞ fY1(y) = limy→∞ fY2(y) = 0, then

Y2 has a heavier right tail than Y1 ⇔ lim
y→∞

[log fY2(y)− log fY1(y)] =∞ (5.4)

where, if the equation (5.4) is fulfilled, then it must be satisfied that (Rigby et al. 2014,
Appendix 12.5.1)

Y2 has a heavier right tail than Y1 ⇔ fY1(y) = o (fY2(y)) as y →∞ (5.5)

with o(·) the term known as little-o, which refers to that fY2(y) grows much faster
than fY1(y), for sufficiently large values of y, when fY1(y) = o (fY2(y)). Additionally,
if the equation (5.5) is fulfilled, then it must also be satisfied that (Rigby et al. 2014,
Appendix 12.5.2)

Y2 has a heavier right tail than Y1 ⇔ F Y1(y) = o
(
F Y2(y)

)
as y →∞ (5.6)

with F Yi(y) = 1− FYi(y), being FYi(y) the cumulative distribution function of Yi for
i = 1, 2.

From the previous results, Rigby et al. (2014, p. 200) classify the asymptotic
behavior of the logarithm of the distributions, log fY (y), in three of its main forms
when y →∞, being log fY (y) ∼

Type I: − k2 (log |y|)k1 ,

Type II: − k4 |y|k3 ,

Type III: − k6e
k5|y|

where the tail Type I is heavier than the tails Type II and Type III, while the
tail Type II is heavier than the tail Type III. In order to understand the difference
among these, we present the Figure 5.1, in which it is shown the tail behavior of the
three different types for k1, k3, k5 = 1, 2, and k2, k4, k6 = 1, 2. See Code 40 in
Appendix B.
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Figure 5.1: Figure shows the tail shape for diferent types of GAMLSS
distributions for k1, k3, k5 = 1, 2, and k2, k4, k6 = 1, 2. Smaller values i
the k’s result heavier tails. Rigby et al. (2014)

From these results, Rigby et al. (2014, p. 204) classify the tail heaviness of the
distributions in four categories of the seven proposed by Mandelbrot (1997, Chapter
E5), namely, mild, slow, wild and extreme randomness. On the other hand, Ferrari
and Fumes (2017, pp. 9–10) based on the equations (3.13) and using the Maple 13
software, complements the classification made by Rigby et al. (2014, p. 204), by
adding the tail index ξ corresponding to each situation

• Non-heavy tail (mild): k3 ≥ 1 or 0 < k5 <∞, with tail index ξ = 0



5.2. Adjustment of GAMLSS distributions for hospitalization services severities 71

• Heavy tail (slow): k1 > 1 and 0 < k3 < 1, with tail index ξ = 0

• Paretian type tail (wild): k1 = 1 and k2 > 1, with tail index ξ = 1/(k2 − 1)

• Heavier than any Paretian type tail (extreme): k1 = 1 and k2 = 1, with tail
index ξ =∞

where the “heavy tail” category means that the distribution has a heavier tail than
any exponential distribution but lighter than any Parentian distribution.

Additionally in Rigby et al. (2014, p. 204), the authors create a sub-classification
for the tails Type II, from the value that has k3, where

• if 0 < k3 < 1, then the distribution has a heavier tail than the Laplace.

• if 1 < k3 < 2, then the distribution has a lighter tail than the Laplace but
heavier than the normal.

• if k3 > 2, then the distribution has a lighter tail than the normal.

5.2 Adjustment of GAMLSS distributions for hos-
pitalization services severities

To adjust the individual costs of hospitalization services through GAMLSS distribu-
tions, is used the function fitDist of the library gamlss (2005) to find the distribu-
tion that offers a better fit. Additionally, since the fitDist function only stores the
parameters of the distribution that provide the best fit, is employed the gamlssML
function of the library gamlss (2005) to adjust the second and third distribution that
present the best adjustment. See Code 41 in Appendix B.

Table 5.1: Better fit for individual cost of hospitalization services with
GAMLSS distributions

GG GB2 BCPE BCPEo BCCG
17102.02 17104.02 17104.86 17104.86 17105.39

The Table 5.1, shows that the distributions that provide the best fit with the
library gamlss (2005), are the Generalized Gamma (GG onwards), followed by the
Generalized Beta type 2 (GB2 onwards) and the Box-Cox Power Exponential (BCPE
onwards), with an AIC of 17102.02, 17104.02 and 17104.86, respectively. Due the
AIC of the three fitted distributions does not differ by much, it is expected that the
adjustment presented by the three will be similar. The description and presentation
of the main statistics of the distributions GG, GB2 and BCPE are presented in
Appendix C.
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From the equation (7.21), it is observed that the existence of the GG moments
are conditioned to the value taken by ν and σ2|ν|, where, as evidenced in Rigby et
al. (2014, p. 203), the tail heaviness of the GG distribution depends on these same
values, showing that in case of having a Parentian tail, there is a direct relationship
between the existence of the moments and the value of σ2|ν|.

Namely, when ν < 0, the value k1 = 1 and k2 = (σ2|ν|)−1 + 1, then, if
(σ2|ν|) → ∞ the GG right tail is considered heavier than any Parentian type
tail because k2 → 1, otherwise, the distribution tail is regarded Parentian type.
Moreover, when ν > 0, the value k3 = ν and k4 = (µνσ2ν2)−1, therefore, if ν < 1 the
GG right tail would be heavier than the Laplace or any exponential distribution tail,
but lighter than any Parentian type tail, otherwise, the distribution tail would have a
light tail. In this case, k4 makes the tail a little heavier (small k4) or lighter (large k4).

The adjustment shows that σ̂ = 1.209628 and ν̂ = 0.4395007 > 0, i.e.,
k3 = 0.4395007 and k4 = 1.258322, giving as result that the adjusted GG distribu-
tion tail is heavier than the Laplace or any exponential distribution tail, but lighter
than any Parentian type tail, with a tail index ξ = 0.

The equation (7.18) shows that the existence of the moments of the GB2
distribution are conditioned to the values that take τ and σ, where we have that the
four moments exist if τ > 4σ−1. Additionally, Rigby et al. (2014, p. 203) shows that
the GB2 distribution has a Paretian type tail, because independently of the values
of the parameters σ and τ , the value of k1 will always be equal to 1, but k2 always
has a value greater than 1, given that k2 = στ + 1.

The obtained adjustment shows that σ̂ = 0.4392977 and τ̂ = 14972.83, as a
consequence the adjusted GB2 distribution has a Paretian type tail with values
k1 = 1 and k2 = 6578.53, and tail index ξ = 1/(k2 − 1) ≈ 0.

From the tables presented in Rigby et al. (2014, pp. 202–203) it is observed
that the BCPE distribution can possess any of the four tail types presented in the
previous section, hence is constructed the Table 5.2 as a guide for the classification
of the BCPE distribution tail.
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Table 5.2: Classification table for tail heaviness of the BCPE distribu-
tion

Condition Value of k1 − k6 Tail Heavier
ν < 0 k1 = 1; k2 = |ν|+ 1 Paretian type tail

Heavier than any
ν = 0; τ < 1 k1 = 1; k2 = 1 Parentian type tail
ν = 0; τ = 1 k1 = 1; k2 = 1 + (Γ(1/ν)1/2Γ(3/ν)−1/2σ)−τ Paretian type tail
ν = 0; τ > 1 k1 = τ ; k2 = (Γ(1/ν)1/2Γ(3/ν)−1/2σ)−τ Heavy tail

Heavy tail if 0 < k3 < 1
ν > 0 k3 = ντ ; k4 = (Γ(1/ν)1/2Γ(3/ν)−1/2µνσν)−τ Non heavy-tail if k3 ≥ 1

From the obtained adjustment and based on the Table 5.2 it is observed that
µ̂ = 8.366066, σ̂ = 1.250054, ν̂ = 0.1361926 and τ̂ = 2.165023, hence, given that
ν > 0 the adjusted BCPE distribution has a heavy tail with values k3 = 0.2948602
and k4 = 2.334661 × 1019, and tail index ξ = 0. Besides, since 0 < k3 < 1, the
adjusted tail is heavier than the Laplace distribution.

To perform the calculation of the theorical and empirical mean, variance, skewness
and excess kurtosis of the distributions that presented better fit for the individual
costs for hospitalization services, we use the functions moments, skew, kurt, skewness
and kurtosis of the libraries DistMom (2018) and e1071 (2018). See Code 42 in
Appendix B.

Table 5.3: Statistical measurements of GAMLSS distributions for hos-
pitalization services

Dist Mean Variance Skewness Excess Kurtosis
Empirical 14.93863 362.5129 2.982862 11.97454
GG 14.97395 387.1405 3.820502 27.59570
GB2 14.96473 386.7492 3.822866 27.64090
BCPE 14.94636 377.6279 3.642886 24.80356

The Table 5.3 shows that the three adjusted distributions have values similar
to the empirical mean of 14.93863, being the BCPE distribution the one that most
closely approximates with a value of 14.94636. Similarly for the other three statistics,
it is observed that despite not presenting values similar to the empirical, of the three
adjusted distributions, the BCPE is the one that presents statistics closest to the
empiricals.
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Once the estimations are made, we proceed to present three graphs, in the first
we plot the theoricals vs the empirical cumulative distribution, in the second we show
the theoricals vs the empirical natural logarithm of the survival distribution, and in
the third we display the Q-Q plot of the three adjusted distributions. See Code 43,
Code 44 and Code 45 in Appendix B.
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Figure 5.2: Adjustment of the individual costs of general surgery service
with GAMLSS distributions

In the Figure 5.2 no differences are observed among the three adjusted distri-
butions, since each curve is overlapped on the others. It is also evidenced that the
three distributions capture well the behavior of the individual costs of hospitalization
service, being only possible to note the curve associated to the cumulative empirical
distribution shortly before the value 50 and between 50 and 100.
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Figure 5.3: Adjustment of log-survival distribution of the individual
cost in general surgery service for GAMLSS distributions

To improve the visualization in the tail area of the adjusted distributions by
gamlss (2005), we build the Figure 5.3 and it is observed that there is no difference
between the adjustment made by the distributions GG and GB2 because their
curves are overlapped in the whole of the plot. Furthermore, the Figure 5.3 shows
that although the BCPE distribution has a behavior very similar to the other
distributions, this exhibits a little faster decay than the distributions GG and GB2
in the final area of the curve, which makes it look more similar to the empirical
log-survival distribution curve.

In panels (a), (b) and (c) of the Figure 5.4 it is appreciated that between the
values 50 and 100, there is a set of points that are found outside of the confidence
bands, which could generate that goodness of fit tests reject the adjustment made
by any of these distributions to the individual costs of hospitalization service. It is
also evidenced that for values higher than 150 the observations move away from the
diagonal line, which means that the adjustment of the distributions GG, GB2 and
BCPE are not very good to capture the behavior of the higher costs of this medical
service. It should be noted that this behavior can also be seen in the Figure 5.3 for
values higher than 5.
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Figure 5.4: Q-Q plot GAMLSS distribution for hospitalization

To perform the hypothesis test, we employ the same goodness of fit tests used
in the spliced distribution case, namely the tests Kolmogorov-Smirnov, Cramer-von
Mises, Kuiper, Supremum class Upper Tail Anderson-Darling and Quadratic Class
Upper Tail Anderson-Darling. Being the hypothesis contrast given by

H0 : FXhosp(x|θ) ∈ F̂Xhosp(x|θ̂)
H1 : FXhosp(x|θ) 6∈ F̂Xhosp(x|θ̂)

(5.7)

with FXhosp(x|θ) the distribution function of individual costs for hospitalization
services with parameter θ = (µ, σ, ν) or (µ, σ, ν, τ), and F̂Xhosp(x|θ̂) the adjusted
distribution function by the library gamlss(2005) with estimated parameter
θ̂ = (µ̂, σ̂, ν̂) or (µ̂, σ̂, ν̂, τ̂) depending on whether the adjusted distribution is GG or
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are GB2, BCPE, respectively.

To perform the goodness of fit tests and prove whether the hypothesis presented
in the equation (5.7) is rejected or not, we use the functions ks.test, w2.test,
v.test, adup.test and ad2up.test from the library truncgof(2012). See Code 46
in Appendix B.

Table 5.4: Goodness-of-fit tests for hospitalization services with
GAMLSS distributions

Dist ks.test w2.test v.test adup.test ad2up.test
GG 0.02 0.04 0.03 0.47 0.09
GB2 0.98 0.99 1.00 0.00 0.97
BCPE 0.00 0.01 0.01 0.49 0.04

For the GG distribution case it is shown that the three conventional tests of
goodness of fit, Kolmogorov-Smirnov, Cramer-von Mises and Kuiper, are rejected
with P-values of 2%, 4% and 3%, respectively, while in the specialized goodness tests
in heavy tail distributions, it is appreciated that neither of the two tests rejects the
null hypothesis (5.7), because the P-values are 47% and 9% for the Supremum and
Quadratic Class Upper Tail Anderson-Darling, respectively.

For the GB2 distribution it is observed that four of the five tests present values
close to 100%, being the hypothesis (5.7) only rejected by the Supremum Class
Upper Tail Anderson-Darling test with a P-value of 0%. On the contrary, for the
distribution BCPE it is noted that only one of the five tests presents a value higher
than 5%, being the Supremum Class Upper Tail Anderson-Darling test not rejected
because its P-value is 49%.

Since in the Table 5.3 and in the Figures 5.2, 5.3 and 5.4 there are not significant
differences between the adjustment distributions GG, GB2, BCPE, the selection of
the best fit for the individual costs of hospitalization services is completely based on
the result obtained in the Table 5.4, in which it is observed that the GB2 distribution
does not reject four out of five tests of goodness of fit. Therefore, it is assumed that the
individual costs of hospitalization services have a GB2 distribution, with estimated
parameters µ̂ = 1884308708, σ̂ = 0.4392977, ν̂ = 3.542926 and τ̂ = 14972.83.

5.3 Risk measures estimation for hospitalization
services with GAMLSS

In the previous section it was mentioned that the adjusted GB2 distribution had a
Parentian type tail with a value k2 = 6578.53, which indicated that the tail index
ξ = 1/(k2 − 1) ≈ 0. In order to corroborate this, we use a graphic representation of
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the equation (4.53), where the objective is to look for a stable region in the graph,
because this represents the value of the tail index of the distribution. See Code 47 in
Appendix B.
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Figure 5.5: Tail index estimation for hospitalization services with
GAMLSS

The Figure 5.5 shows a constantly decreasing behavior, which does not ensure
the existence of a stable region in the graph, suggesting that the tail index of the
GB2 distribution is ξ = 0, which corroborated the previously raised by the value
ξ = 1/(k2 − 1). The above is clear evidence that the adjusted distribution to the
individual costs for hospitalization services has a semi-heavy tail as proposed in
Degen (2010, p. 12).

Accordingly, to perform the estimation of VaR, ES and SLP when the distribution
has a semi-heavy tail, we employ the equations (4.54), (4.55) and (4.57), respectively,
to present a graphical behavior representation of each measurements. See Code 48 in
Appendix B.
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Figure 5.6: Risk measures for hospitalization services with GAMLSS

In panels (a) and (b) of the Figure 5.6 it is shown that both VaR and ES have
an increasing behavior until infinity, where as to be expected, the values of ES are
always above the values of VaR. This can be better seen, by observing specific values
for κ, where it is appreciated that when κ = 0.95, the VaR is equal to 6404.842,
while the ES is equal to 6458.878, and when κ = 0.99, the VaR is equal to 6490.391,
while the ES is equal to 6551.634.

In the other hand, panels (c) of the Figure 5.6 show that SLP has a decreasing
behavior that goes from a value close to 5 million pesos when κ = 0.90 to 0 when
κ ≈ 1. In addition, for specific values of κ = 0.95, 0.99, are obtained values of SLP
of 2.702 and 0.612, respectively.
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5.4 Optimum retention point estimation for hos-
pitalization service with GAMLSS

In the following table, we present for different levels of the relative safety load factor
ρ the optimal retention point that an insurer should have when the individual hospi-
talization costs are adjusted through a GB2 distribution. See Code 49 in Appendix
B.

Table 5.5: Optimum retention point estimation for hospitalization ser-
vices with GAMLSS

ρ κρ∗ M∗
hosp δ(M∗

hosp) V aRThosp(κρ∗)
0.1 0.090909 6279.488 41.256 6320.744
0.2 0.166667 6282.714 41.636 6324.350
0.3 0.230769 6285.711 41.985 6327.697
0.5 0.333333 6291.139 42.611 6333.750
0.8 0.444444 6298.182 43.409 6341.591
1.0 0.500000 6302.319 43.870 6346.189
1.2 0.545455 6306.102 44.288 6350.390
1.5 0.600000 6311.239 44.848 6356.087
2.0 0.666667 6318.688 45.649 6364.337
3.0 0.750000 6330.738 46.914 6377.651
4.0 0.800000 6340.333 47.896 6388.230
5.0 0.833333 6348.335 48.700 6397.035
7.0 0.875000 6361.257 49.971 6411.228
10.0 0.909091 6375.985 51.381 6427.366
20.0 0.952381 6407.265 54.253 6461.518
50.0 0.980392 6453.197 58.217 6511.414

The Table 5.5 shows the different levels of optimal retention, M∗
hosp, associated

with the optimal reinsurance premiums δ(M∗
hosp) and the optimal VaR of the total

costs V aRThosp(κρ∗), depending on the relative security load levels ρ selected by
the reinsurer. Besides it is appreciated that the variables M∗

hosp, δ(M∗
hosp) and

V aRThosp(κρ∗) have an increasing behavior as ρ increases.

The above is evidenced, when the optimal retention point increases from 6279.488
million pesos when ρ = 0.1, up to 6453.197 million pesos when ρ = 50. Similarly, it is
observed that the optimal reinsurance premium increases from 41.256, up to 58.217
million pesos, and the total VaR increases from 6320.744 to 6511.414 millions pesos
when the security load factor level goes from 0.1 to 50.
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5.5 Adjustment of GAMLSS distributions for
severities of general surgery services

To find the GAMLSS distribution that present a better fit to the individual costs
of general surgery services, we employ the functions fitDist and gamlssML of the
library gamlss (2005) to adjust the parameters of the three distributions that present
the best fit to the data set. See Code 50 in Appendix B.

Table 5.6: Better fit for individual cost of general surgery services with
GAMLSS distributions

BCPEo BCPE GG GB2 BCCGo
2535.645 2585.225 2604.319 2606.321 2606.974

The Table 5.6, shows that the Box-Cox Power Exponential - original (BCPEo
onwards) is the one that presents the best adjustment to the individual costs of
general surgery services with a AIC of 2535.645, followed by the BCPE distribution
with a AIC of 2585.225 and the GG distribution with a AIC of 2604.319. Unlike
the hospitalization services, in this case it is observed that the AIC of the BCPEo
distribution differs from the other distributions by more than 60 units, thus, it is
expected that significant differences will be found in the calculated statistics, in the
graphic adjustment and in the goodness of fit tests. The description and presentation
of the main statistics of the distributions BCPEo, BCPE and GG are presented in
Appendix C.

For the BCPEo distribution, is found that the adjustment parameters are
µ̂ = 0.4877005, σ̂ = 116.0758, ν̂ = 1.370003 and τ̂ = 0.2788162, then based on the
Table 5.2 it is seen that the parameter ν > 0, and because the value k3 = 0.3819789
we have that the adjusted BCPEo distribution has a heavier tail that the any
exponential distribution or Laplace, but lighter than a Parentian type tail, with tail
index ξ = 0.

On the other hand, the parameters adjusted by the BCPE distribution are
µ̂ = 3.271356, σ̂ = 1.343855, ν̂ = 0.1164034 and τ̂ = 3.126172, and as a result we get
that the adjusted BCPE distribution has a lighter tail than the Parentian type tail,
but has a heavier tail than any exponential or Laplace, because ν > 0 and its value
k3 = 0.363897.

From the parameters adjusted by the GG distribution, we have that the value
of σ̂ is 1.270459 and ν̂ is 0.5135504, so that the GG distribution it is within the
category of heavy tails, i.e, it has a lighter tail than Parentian type tails because
ν > 0, but it has a heavier tail than any exponential or Laplace distribution because
k3 = 0.5135504.
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Once is known the distributions tail heaviness, we proceed to calculate the mean,
variance, skewness and excess kurtosis of the distributions that best adjusted the
individual costs for general surgery services. For this, we use the libraries DistMom
(2018) and e1071 (2018). See Code 51 in Appendix B.

Table 5.7: Statistical measurements of GAMLSS distributions for gen-
eral surgery services

Dist Mean Variance Skewness Excess Kurtosis
Empirical 6.680426 82.89872 4.671353 33.36082
BCPEo 6.787825 122.55566 5.179333 53.99778
BCPE 6.369685 65.78484 2.648852 10.67166
GG 6.721370 82.68801 3.710635 25.10128

The Table 5.7 shows that the distribution that has mean, variance and excess
kurtosis closest to the empirical values is GG, while the distribution that has
skewness closer to the empirical value is the BCPEo. The previous result seems
contradictory to what is found in the Table 5.6, since the GG distribution could be
expected to better adjust the individual costs of general surgery services than the
BCPEo distribution.

To test whether this result is consistent with the graphical analysis, we plot the
cumulative distribution of the individual costs of general surgery versus the adjusted
cumulative distribution functions, the natural logarithm of the empirical survival
distribution versus the natural logarithm of the adjusted survival functions, and the
Q-Q plots of the adjusted distributions. See Code 52, Code 53 and Code 54 in
Appendix B.
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Figure 5.7: Adjustment of the individual costs of general surgery service
with GAMLSS distributions

The Figure 5.7 shows that the adjusted curves do not have the shape of the
cumulative empirical curve, where it is noted that between the values 0 and 20 the
three curves are to the left of the cumulative empirical curve, and after 20 these are
below the cumulative empirical curve. In addition, it is possible to notice that the
BCPEo distribution is below the other distributions, i.e, its cumulative distribution
function takes longer to reach 1, than the other distributions.

The Figure 5.8 presents better the behavior and the adjustment made by the dis-
tributions BCPEo, BCPE and GG to the individual costs of general surgery services,
and it is observed that none of the three curves are able to capture the individual costs
behavior, because in spite of trying to have a good adjustment in the tail area of the
distribution, they do not capture the set of observations that are around 3 ≈ log(20).
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Figure 5.8: Adjustment of log-survival distribution of the individual
cost in general surgery service for GAMLSS distributions

The Figure 5.9.a shows that despite capturing those high individual costs, it
does not manage to adequately capture the behavior of those central costs, which
are between 20 and 50, since there is a large number of points that are outside the
confidence bands. This could be a clear sign that the BCPEo distribution is not an
adequate distribution to model the individual costs of hospitalization services.

The Figure 5.9.b, displays a situation similar to the one presented in the Figure
5.9.a, because are observed groups of points that are outside of the confidence bands,
which can be appreciated between 20 and 35, and between 40 and 50. This could be
taken as a sign that the BCPE distribution does not adequately capture the behavior
of the individual costs of hospitalization services, since in this case, the distribution
is not capable of modeling the individual costs associated with mid or extreme values.

The Figure 5.9.c has a very similar shape to the Figure 5.8.a, since it is capable of
capturing the highest individual costs, but not the individual costs that are between
20 and 40. The most notorious difference between these two figures is that the set
of observations that are outside the confidence bands are greater that in the BCPEo
distribution case, and that the observations associated with highest individual costs
are closer to the diagonal line in the GG distribution case.
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Figure 5.9: Q-Q plot GAMLSS distribution for general surgery

Finally, as in the other subsections, we present the hypothesis set of the adjusted
distributions, in order to observe whether when performing the goodness of fit tests
of the library truncgof (2012), the null hypothesis (5.8) is not rejected and it is
possible to conclude that there is insufficient evidence against the individual costs of
general surgery services being distributed as one of the three adjusted distributions.
See Code 55 in Appendix B.

H0 : FXsurg(x|θ) ∈ F̂Xsurg(x|θ̂)
H1 : FXsurg(x|θ) 6∈ F̂Xsurg(x|θ̂)

(5.8)
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Table 5.8: Goodness-of-fit tests for general surgery services with
GAMLSS distributions

Dist ks.test w2.test v.test adup.test ad2up.test
BCPEo 0.35 0.34 0.29 0.37 0.27
BCPE 0.01 0.02 0.00 0.00 0.00
GG 0.03 0.00 0.00 0.15 0.01

The Table 5.8 shows that the distribution BCPEo gets P-values greater than
5% in each of the tests, suggesting that the individual costs of hospitalization have
a distribution BCPEo. Also note that for the BCPE all tests are rejected with
P-values less than 2%. While for the GG distribution it is appreciated that are
rejected four of the five tests performed, only obtaining a P-value greater than 5%
for the Supremum Class Upper Tail Anderson-Darling test.

Taking into consideration the previous results, it is assumed that the individual
costs of general surgery services have a BCPEo distribution with parameters µ̂ =
0.4877005, σ̂ = 116.0758, ν̂ = 1.370003 and τ̂ = 0.2788162, because, in first place,
the Table 5.6 shows that the BCPEo distribution reports a lower AIC than the others,
in second place, the Table 5.7 exhibits that the BCPEo has statistics closer to the
empirical values, and in third place, the BCPEo is the only distribution of the three
proposals, which does not reject any of the five goodness-of-fit tests proposed in the
table 5.8).

5.6 Risk measures estimation for general surgery
services with GAMLSS

To observe the tail type that has the distribution adjusted to the individual costs of
general surgery services, we use the equation (4.53), where it is expected to find that
the tail index is consistent with that presented in the previous section. See Code 56
in Appendix B.

In the figure 5.10 it is evident that the curve does not present a stable region, due
the curve decreases constantly. It should be noted that although there seems to be
a stable region between 2.500 and 3.000, the behavior in this area is unstable and it
would not be appropriate to establish a stable region in this area. Consequently, it is
concluded that the tail index of the adjusted distribution is ξ = 0, which is consistent
with the previous section, where it was presented that the parameter ν of the BCPEo
distribution was greater than zero, thus the tail index would be equal to zero.
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Figure 5.10: Tail index estimation for general surgery services with
GAMLSS

The figure 5.11 presents different risk measures associated with the aggregate
costs distribution, when we use a BCPEo distribution to adjust the individual costs
of general surgery services. In this case, given that ξ = 0, the BCPEo distribution
tail is classified within the class of semi-heavy tail distributions, consequently the
equations (4.58), (4.59) and (4.60) are used for the graphic representation of VaR, ES
y SLP, respectively. See Code 57 in Appendix B.
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Figure 5.11: Risk measures for general surgery services with GAMLSS

In the Figure 5.11.a it is evident that the VaR has an increasing form, that goes
from 1048.636 when κ = 0.90 up to 1223.431 when κ = 0.999, where, the upper
value of κ = 0.999 is established, because in κ = 1 the VaR is equal to infinity. In
addition, as particular values κ = 0.95, 0.99 the VaR takes values of 1069.029 and
1124.268 million pesos, respectively.

Similarly, in the Figure 5.11.b it is evident that the ES also has an increasing
behavior, that goes from 1104.253 to 1166.677, when κ ranging from 0.90 to 0.999,
where, on this occasion the upper value of κ = 0.999 is established because the
integral presented in the equation (4.59) is singular when θ = 1. It should be noted
that the values of ES when κ = 0.95 and 0.99 are 1104.253 and 1166.677 million
pesos, respectively.

In the Figure 5.11.c it is also shown the behavior of the curve for values of κ
between 0.9 and 0.999, and it is appreciated that it has a decreasing behavior ranging
from 3.224 to 0.053 million pesos, where, the SLP has a value of 1.761 when κ = 0.95
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and 0.424 when κ = 0.99.

5.7 Optimum retention point estimation for gen-
eral surgery service with GAMLSS

Finally, we displayed the Table 5.9 to show the behavior of the optimal retention
point and the reinsurance premium that an insurer should pay when using different
levels of the relative safety load factor ρ and the BCPEo distribution to adjust the
individual costs of general surgery services. See Code 58 in Appendix B.

Table 5.9: Optimum retention point estimation for general surgery ser-
vices with GAMLSS

ρ κρ∗ M∗
surg δ(M∗

surg) V aRTsurg(κρ∗)
0.1 0.090909 996.633 23.193 1019.826
0.2 0.166667 998.322 23.537 1021.859
0.3 0.230769 999.902 23.854 1023.756
0.5 0.333333 1002.787 24.422 1027.210
0.8 0.444444 1006.577 25.151 1031.729
1.0 0.500000 1008.826 25.575 1034.401
1.2 0.545455 1010.898 25.959 1036.857
1.5 0.600000 1013.732 26.477 1040.208
2.0 0.666667 1017.884 27.219 1045.103
3.0 0.750000 1024.703 28.400 1053.103
4.0 0.800000 1030.220 29.324 1059.543
5.0 0.833333 1034.875 30.084 1064.959
7.0 0.875000 1042.494 31.293 1073.787
10.0 0.909091 1051.322 32.646 1083.968
20.0 0.952381 1070.541 35.436 1105.976
50.0 0.980392 1099.792 39.359 1139.151

From the Table 5.9 it is observed that the optimal retention point, the reinsurance
premium and the VaR of the total costs have an increasing behavior when the relative
safety level increases. In addition, it is evident that the optimum retention point and
the reinsurance premium amount to 1051.322 and 32.646 million pesos, when ρ = 10,
and they amount to 1099.792 and 39.359 million pesos, when ρ = 50, respectively.
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6.1 Introduction

Because two alternatives were proposed to adjust the individual costs of medical ser-
vices, the objective in this section is to perform a comprehensive comparative analysis
using tables and graphs of the results obtained through the adjustment presented by
spliced distributions Section 3.4 and GAMLSS distributions Chapter 5, to observe if
there are significant differences between the optimal retention points and reinsurance
premiums obtained in each case.
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6.2 Adjustment comparison between the spliced
and GAMLSS distribution for hospitalization
services

To observe if there are significant differences between the W-GP mixture with es-
timated parameters Ŵshape = 0.9417177, Ŵscale = 13.39916, û = 35.5702, σ̂u =
31.77728, ξ̂ = −0.1190043, φ̂u = 0.101750 and the GB2 distribution with estimated
parameters µ̂ = 1884308708, σ̂ = 0.4392977, ν̂ = 3.542926 and τ̂ = 14972.83, regard-
ing the adjustment of the individual costs of hospitalization services, is presented the
Table 6.1 in order to show which of the two distributions presents statistics closer to
the mean, variance, skewness and excess kurtosis of the individual costs of hospital-
ization services. See Code 59 in Appendix B.

Table 6.1: Statistical measurements comparison for hospitalization ser-
vices

Dist Mean Variance Skewness Excess Kurtosis
Empirical 14.93863 362.5129 2.982862 11.97454
weibullgpd 14.83413 339.0651 3.043860 12.90941
GB2 14.96473 386.7492 3.822866 27.64090

The Table 6.1 shows that of the four statistics, the GB2 distribution has a value
of mean closer than the W-GP mixture, but it has an value of excess kurtosis of
more than double the empirical value. For its part, the W-GP mixture presents a
variance, skewness and excess kurtosis more similar to the empirical values, which
could be a signal in favor of the W-GP mixture as the distribution that best fits the
individual costs of hospitalization services.

To observe the graphical adjustment, the graphs of the cumulative distributions,
the natural logarithm of the survival distributions and the Q-Q plots of the individual
costs of hospitalization services versus the W-GP mixture and GB2 distribution are
presented below. See Code 60, Code 61 and Code 62 in Appendix B.
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Figure 6.1: Adjustment comparison for cumulative individual costs of
hospitalization services

In the Figure 6.1 it is observed that the adjustment of the Weibull-Pareto
Generalized mixture is very similar to that of the GB2 distribution, except for
values between 25 and 50, where we can see that the GB2 distribution is below the
cumulative empirical distribution and the W-GP mixture. Even though we see in
the Figure 6.1 some difference in the adjustment of the curves between the values 25
and 50, this difference is not very informative, thus it will not be taken into account
for the decision on which of the two adjusted distributions presents a better fit.

The Figure 6.2 presents in more detail the adjustment made by the adjusted
distributions in the tail area, being the W-GP mixture the one that captures better
the behavior of the individual costs for services of hospitalization in the area of the
tail, since it can be seen that the fall of the curve associated with the W-GP mixture
has a similar shape to the empirical curve, while the curve associated with the GB2
distribution has a fall that is to the right of the empirical curve, i.e., a slower fall or
a heavier tail.
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Figure 6.2: Adjustment comparison for log-survival costs of hospital-
ization services

In panels (a) and (b) of the Figure 6.3 are shown the Q-Q plots for the W-GP
mixture and the GB2 distribution, respectively, showing that the set of points
associated with the W-GP mixture oscillate around the diagonal line very closely,
while the set of points associated with the GB2 distribution are farther from the
diagonal line, in special in the upper right area.

This supports the adjustment observed in the Figure 6.2, where theW-GP mixture
presents a similar adjustment to the GB2 distribution, when the individual costs
are low or medium, but presents a better fit than the GB2 distribution when the
individual costs are high or extreme, this being a point in favor of the W-GP mixture,
in the decision making.
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Figure 6.3: Q-Q plot comparison for hospital services

To perform the hypothesis testing for the goodness of fit tests of the spliced and
GAMLSS distributions, we employed the equations (3.28) and (5.7), respectively. In
addition, we used the values already obtained in the Tables 3.2 and 5.8 to construct a
new table that facilitates the appreciation of the results obtained in these tests. See
Code 63 in Appendix B.

Table 6.2: Goodness-of-fit tests comparison for hospitalization services

Dist ks.test w2.test v.test adup.test ad2up.test
weibullgpd 0.91 0.91 0.87 0.08 0.00
GB2 0.98 0.99 1.00 0.00 0.97

The Table 6.2 shows that neither of the two distributions rejects the null
hypothesis for the Kolmogorov-Smirnov, Cramer-von Mises and Kuiper tests, since
they get P-values higher than 5% in each of these tests. Additionally, it is observed
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that the W-GP mixture presents a P-value greater than 5% in the Supremum class
Upper Tail Anderson-Darling test but a P-value less than 5% in the Quadratic
Class Upper Tail Anderson-Darling test, while the GB2 distribution presents a
P-value less than 5% in the Supremum class Upper Tail Anderson-Darling test
and a P-value more than 5% in the Quadratic Class Upper Tail Anderson-Darling test.

From the results presented in this subsection, it is observed that the W-GP
mixture presents statistics closer to the empirical values of the individual costs, than
the GB2 distribution. Also graphically, it is observed that in the Figures 6.2 and
6.3, the W-GP mixture better fits the shape of the tail of the the individual costs,
showing that their estimated values are closer to the empirical values, than the
values estimated by adjusting the GB2 distribution.

Therefore, for the calculation of the risk measures, the optimal retention points
and the reinsurance premiums are taken as the reference values, those adjusted by
means of the W-GP mixture.

6.3 Risk measures comparison for hospitalization
services

In order to make a comparison between risk measures when a W-GP mixture or GB2
distribution is adjusted to the individual costs of hospitalization services, is made a
graphical representation of the behavior of VaR, ES and SLP for each adjustment.
See Code 64 in Appendix B.

The Figure 6.4 shows that risk measures associated with the GB2 distribution
are above those associated with the W-GP mixture, and based on what was
mentioned in the previous section, about the mixture W-GP is the one that
offers the best adjustment to the set of individual costs of hospitalization services,
and consequently, it is the situation that is taken as a point of reference, then,
it is concluded that the GB2 distribution overestimates the value of the risk measures.

Additionally, in the Figure 6.4.a it is observed that when is used a percentile
κ = 0.9, the GB2 adjustment overestimates the VaR, for a little less than 150 million
pesos, while, when the value of κ approaches 0.999, the GB2 adjustment increases
the overestimation to close to 326 million pesos.

In the same way, it is observed in the Figure 6.4.b that the overestimation of ES
goes from 157.910, to 389.333 millions of pesos, when κ increases from 0.90 to 0.999.
While, in the Figure 6.4.c the difference of the SLP decreases between adjustments,
as the value of κ increases, being the difference of little more than 3.5 millon pesos
when κ = 0.9, to be less of 1 million pesos when κ = 0.999.
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Figure 6.4: Risk measures comparison for hospitalization services

6.4 Optimum retention point comparison for hos-
pitalization services

To observe the difference between the optimal retention points and the reinsurance
premiums obtained by adjusting the W-GP mixture and the GB2 distribution to the
individual costs of hospitalization services, we present the Table 6.3, which shows for
different safety load factor levels, the optimal retention point and the reinsurance
premium that an insurer must have depending on the adjusted distribution. See
Code 65 in Appendix B.

The Table 6.3 shows that both the optimal retention point and the reinsurance
premium are greater for all relative safety factor levels, when is used the adjustment
of the GB2 distribution to fit the individual costs, than when is employ the W-GP
mixture.
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Table 6.3: Optimum retention point comparison for hospitalization ser-
vices

ρ κρ∗ M∗
hospW−GP

M∗
hospGB2

δ(M∗
hospW−GP

) δ(M∗
hospGB2

)

0.1 0.090909 6209.826 6279.488 18.616 41.256
0.2 0.166667 6211.630 6282.714 18.424 41.636
0.3 0.230769 6213.272 6285.711 18.249 41.985
0.5 0.333333 6216.170 6291.139 17.941 42.611
0.8 0.444444 6219.791 6298.182 17.556 43.409
1.0 0.500000 6221.848 6302.319 17.337 43.870
1.2 0.545455 6223.686 6306.102 17.142 44.288
1.5 0.600000 6226.120 6311.239 16.883 44.848
2.0 0.666667 6229.527 6318.688 16.520 45.649
3.0 0.750000 6234.756 6330.738 15.964 46.914
4.0 0.800000 6238.689 6340.333 15.546 47.896
5.0 0.833333 6241.827 6348.335 15.212 48.700
7.0 0.875000 6246.642 6361.257 14.700 49.971
10.0 0.909091 6251.782 6375.985 14.154 51.381
20.0 0.952381 6261.640 6407.265 13.105 54.253
50.0 0.980392 6273.989 6453.197 11.792 58.217

Consequently, it is concluded that in this case, the use of the GB2 distribution
leads to an overestimation of the reinsurance premium in an amount exceeding 20
million pesos, and overestimates the optimal retention point for a value exceeding 65
million pesos, leading the insurer to pay a greater amount to cover the risk associated
to hospitalization services.

6.5 Adjustment comparison between the spliced
and GAMLSS distribution for general surgery
services

Similar to the hospitalization case, the objective of this subsection is to decide which
of the two proposed alternatives is the distribution that best fits the individual
costs of general surgery services. Namely, the first alternative was obtained by
adjusting spliced distributions with a W-GP mixture with estimated parameters
Ŵshape = 0.8458848, Ŵscale = 6.121305, û = 16.12227, σ̂u = 2.802543, ξ̂ = 0.853189
and φ̂u = 0.1034537, and the second alternative was obtained by GAMLSS dis-
tributions with a BCPEo distribution with estimated parameters µ̂ = 0.4877005,
σ̂ = 116.0758, ν̂ = 1.370003 and τ̂ = 0.2788162.

To make such a decision, we initially present the Table 6.4, which shows the values
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of the mean, variance, skewness and excess kurtosis of the individual costs of general
surgery and the estimated statistics associated to the W-GP mixture and the BCPEo
distribution. See Code 66 in Appendix B.

Table 6.4: Statistical measurements comparison for general surgery
services

Dist Mean Variance Skewness Excess Kurtosis
Empirical 6.680426 82.89872 4.671353 33.36082
weibullgdp 7.731212 does not exist does not exist does not exist
BCPEo 6.787825 122.55566 5.179333 53.99778

The Table 6.4 is not very useful to compare the fitted distributions, because only
the first moment is defined for the W-GP mixture, consequently, it is not possible to
make a comparison of the similarity between the empirical and estimated statistics
by this distribution. This does not mean that the W-GP mixture can not make
a good fit to the data set, since the values that present the individual costs for
variance, skewness and excess kurtosis are calculated from observed data and not
from an infinite set of identically distributed observations.

Additionally, the Table 6.4 shows that unlike the W-GP mixture, the BCPEo
distribution presents values for each of the statistics, among which we highlight
the value of the estimated mean and skewness, due to the closeness they have with
respect to the empirical mean and skewness.

To observe the adjustment of the fitted distributions, we build three plots. In
the first we present the cumulative distribution of the individual costs of general
surgery versus the adjustment of the W-GP mixture and BCPEo distribution. In the
second we present the natural logarithm of the survival distribution of the individual
costs versus the natural logarithm of the survival functions of the fitted distributions.
In the third, two panels are presented that contain the Q-Q plot of each adjusted
distribution to the individual costs of general surgery services. See Code 67, Code 68
and Code 69 in Appendix B.
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Figure 6.5: Adjustment comparison for cumulative individual costs of
general surgery services

The Figure 6.5 shows that the curve associated to the BCPEo distribution does
not have the shape of the empirical curve, since it is on the left in the initial part,
and below in the middle part of the cumulative empirical curve. On the contrary,
the curve associated to the W-GP mixture manages to adequately capture the
behavior of the empirical curve, being the threshold u = 16.12227, the place where
the greatest difference between curves can be seen, being this the continuity point
between the Weibull and Generalized Pareto distribution.

In the Figure 6.6 we can see that the curve associated to the natural logarithm
of the survival distribution of the individual costs has a concave behavior, followed
by a convex behavior from a value close to 2.5. Due to this, we observe as the use of
a distribution by parts such as the W-GP mixture, can provide a better fit than a
complete distribution such as the BCPEo.

To illustrate the above, the Figure 6.6 shows how the curve associated with the
W-GP mixture presents a good fit both in the Weibull and Generalized Pareto part,
being the value 2.780202 the continuity point in the mixture, such that this value is
simply the natural logarithm of the threshold u = 16.12227.
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Figure 6.6: Adjustment comparison for log-survival costs of general
surgery services

In addition, the Figure 6.6 shows as the curve associated with the BCPEo
distribution, presents a good fit in the initial part while the empirical curve has
a concave shape, but once the empirical curve takes convex shape, the Figure 6.6
displays as the curve associated with the BCPEo distribution, begins to present
problems in the adjustment, since it is always to the right of the empirical curve.

The Q-Q plots for the W-GP mixture and the BCPEo distribution are exhibited
respectively, in the panels (a) and (b) of the Figure 6.7. In the panel (a) it is
evidenced that the confidence bands indefinitely open, covering all the points of
the graph, where, this behavior can be explained by the fact that the adjusted
distribution only has defined its first moment.

For its part, in the panel (b) presents confidence bands defined along the graph,
and it is shown that there is a set of points that are below and above the confidence
bands, which can be taken as a sign that the adjusted distribution is not the one
indicated for modeling the set of individual costs of general surgery services.
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Figure 6.7: Q-Q plot comparison for general surgery services

For the hypothesis testing of the spliced and the GAMLSS distributions, we use
the equations (3.29) and (5.8), with the values already reported in the Tables 3.4 and
5.8, in order to build a table that facilitates the comparison of the P-Value obtained
in the goodness of fit tests, with the W-GP mixture and the BCPEo distribution.
See Code 70 in Appendix B.

Table 6.5: Goodness-of-fit tests comparison for general surgery services

Dist ks.test w2.test v.test adup.test ad2up.test
weibullgpd 0.26 0.39 0.27 0.26 0.07
BCPEo 0.35 0.34 0.29 0.37 0.27

The Table 6.5 shows that for all tests we get P-values greater than 5%, therefore,
none of the tests used rejects the null hypothesis, thus it is concluded that there is
not enough evidence to say that the individual costs for general surgery services are
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not distributed as a W-GP mixture or as a BCPEo distribution.

Considering that none of the tables presented in this subsection were informative
to decide which distribution best fits the individual costs of general surgery services,
the decision is made based on the graphic evidence obtained in the Figures 6.5, 6.6
and 6.7.

Hence, it is concluded that the distribution that presents a better adjustment to
the individual costs of general surgery services is the mixture W-GP, consequently,
it is the distribution that is taken as a reference for the calculation of risk measures,
optimal retention points and reinsurance premiums.

6.6 Risk measures comparison for general surgery
services

To observe the difference between the risk measures associated with the adjustment
of the W-GP mixture and the GB2 distribution to the individual costs of hospital-
ization services, we presented graphically the behavior of the VaR, ES and SLP for
each adjustment. See Code 71 in Appendix B.

The Figure 6.8 shows that there are significant differences in all the risk measures
associated with the BCPEo distribution and the W-GP mixture, where, it is
evidenced that the curves associated with the adjustment W-GP are above those
associated with the adjustment BCPEo in all the panels.

Because the mixture W-GP presented better adjustment to the individual costs
of general surgery services and it was decided to use it as the reference distribution,
then from the results obtained in the Figure 6.8, it is concluded that the adjustment
of the distribution BCPEo underestimates the value of all the risk measures.

In the panel (a) is noted that the underestimation of VaR by the adjustment
BCPEo is 1169.887 when κ = 0.90 and 7754.409 when κ = 0.999, similarly, the panel
(b) shows that the underestimation of the ES amounts from 1925.483 to 47770.578
when κ rises from 0.90 to 0.999, while, in the panel (c) it is evident that the under-
estimation of SLP drops from 75.560 when κ = 0.90 to 40.016 when κ = 0.999.
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Figure 6.8: Risk measures comparison for general surgery services

6.7 Optimum retention point comparison for gen-
eral surgery services

In order to observe the difference between the optimal retention points and the
reinsurance premiums that an insurer must pay for different levels of the security
load factor, when using the adjustment BCPEo and W-GP to the individual costs
of general surgery services, we presented the Table 6.6. See Code 72 in Appendix B.

In this table it is appreciated that there are significant differences between the
points of optimal retention and the reinsurance premiums, when is used the adjust-
ment of the BCPEo distribution or the W-GP mixture for the individual costs of
general surgery services.
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Table 6.6: Optimum retention point comparison for general surgery
services

ρ κρ∗ M∗
surgW−GP

M∗
surgBCPEo δ(M∗

surgW−GP
) δ(M∗

surgBCPEo
)

0.1 0.090909 2103.577 996.633 119.829 23.193
0.2 0.166667 2105.166 998.322 129.063 23.537
0.3 0.230769 2106.736 999.902 138.185 23.854
0.5 0.333333 2109.824 1002.787 156.130 24.422
0.8 0.444444 2114.345 1006.577 182.407 25.151
1.0 0.500000 2117.298 1008.826 199.564 25.575
1.2 0.545455 2120.207 1010.898 216.470 25.959
1.5 0.600000 2124.499 1013.732 241.415 26.477
2.0 0.666667 2131.491 1017.884 282.047 27.219
3.0 0.750000 2144.992 1024.703 360.510 28.400
4.0 0.800000 2158.002 1030.220 436.114 29.324
5.0 0.833333 2170.632 1034.875 509.515 30.084
7.0 0.875000 2195.022 1042.494 651.258 31.293
10.0 0.909091 2230.008 1051.322 854.577 32.646
20.0 0.952381 2338.265 1070.541 1483.711 35.436
50.0 0.980392 2627.260 1099.792 3163.199 39.359

Since it is evident that as the reinsurer’s relative safety factor increases, the
underestimation by the BCPEo distribution of retention points and reinsurance
premiums increases too from 1106.944 and 96.636 million pesos when ρ = 0.1, to
1527.468 and 3123.84 million pesos when ρ = 50, respectively.

The biggest difference between the value of the reinsurance premium for the ad-
justment BCPEo and W-GP when κp∗ → 1, may be due to the adjustment in the tail
area presented by the distributions in the Figures 6.6 and 6.7, where it is observed
that unlike the W-GP mixture, the BCPEo distribution does not capture the tail
area behavior of the individual costs, which also leads to a bad adjustment for the
reinsurance premium.
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Conclusions

An objective of this work was to propose the GAMLSS distributions as an alternative
to the distributions usually employed in practice for adjusting the number and
claims size, since are generally employed distributions such as Poisson, Binomial or
Negative Binomial to adjust the claims number, and distributions such as Weibull,
Log-Normal, Gumbel, the Pareto family distributions, or spliced distributions to
adjust the claims size.

For the claims number, stand out the fact that there is a wide variety of
distributions and mixtures that can be employed for frequency adjustment, because
in practice, when is applied the actuarial method, is usually assumed that the claims
number is distributed Poisson, Binomial or Negative Binomial, when there really are
other distributions or mixtures that can offer a better fit.

A sample of this is presented in the Figure 2.2, where the adjustment process
is done through the wide list of distributions contained in GAMLSS, where, it is
observed that the Delaporte distribution is the one that offers a better adjustment
to the claims number for general surgery services.

For the claims size, are compared the GAMLSS distributions adjustments perfor-
mance against spliced distributions, obtaining that in this case, as shown in the figures
6.2 and 6.6, the spliced distributions offer a better adjustment, in consecuense, these
distributions should be the ones used for the calculation of optimal retention points
and reinsurance premiums, since the use of distributions that do not adjust correctly
the claims size, may lead to underestimations or overestimates of these measurements.

Because of this, it is recommended not to make assumptions about the distribu-
tion of the number or claims size, since assuming or using a distribution that does
not offer a good adjustment, can generate overestimates or underestimates both in
the calculation of the reinsurance premium, and in the optimum retention point that
an insurer must have to cover a certain risk associated with a HCD, as shown in the
tables 6.3 and 6.6.
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Evidence of this is presented in Chapter 6, where it is shown that adjusting a GB2
distribution to the individual costs of hospitalization services, overestimates retention
points and optimal reinsurance premiums, while adjusting a BCPEo distribution to
the individual costs of general surgery services, significantly underestimates these
measures.

Therefore, to avoid overestimation and underestimation of retention and reinsur-
ance premium, it is recommended to test the adjustment of as many distributions
and mixtures as possible, since the better the adjustment to the number and claims
size, the more accurate are the optimal calculated values, taking into consideration
the real risk of the claims.

Additionally, it is recommended to use data sets that have a tail index ξ = 1
and ξ > 1, in order to test the behavior of the reinsurance premium under the two
scenarios outlined in the section 4.2.1, which could not be covered in this Master’s
degree project, due to the limitations of time and information, since in this work only
could be covered the case of heavy tail distributions with finite mean and semi-heavy
tail distributions.

Another recommendation is not to indiscriminately use the equations and
approximations proposed in papers, and we invite you to carefully review this
before using them, because, as shown in section 4.2.2, although the proposal for
the calculation of TVaR made by Biagini and Ulmer (2009) and presented in the
equation (4.40) is well-founded under certain conditions, this can not be applied
when changing the approximation of VaR proposed by Böcker and Klüppelberg
(2005), for a corrected approximation as the one proposed by Böcker and Sprittulla
(2006) or Degen (2010).

Finally, it is expected that the methodology presented here for the calculation of
the optimum retention point that an insurer must have for a HCD, is useful for prepaid
medicine companies, especially, for those people who are interested in the subject of
reinsurance, because an effort was made to explain in the best possible way, both the
theoretical and practical part necessary for the application of the methodology.



Appendix A: Colombia’s regulation
of critical diseases in medical
services

In Colombia, as well defined by Article 16 of Resolution 5261 of 1994, the HCD are
those that due to their nature, have a low frequency, have a high technical complexity
in their management, represent a low cost-effectiveness in their treatment and they
generate high costs. In addition, in Article 17 of the same resolution, are described
the treatments that are included or accepted for the management of HCD:

a) Treatment with radiotherapy and chemotherapy for cancer.
b) Dialysis for chronic renal failure, kidney transplantation, heart, bone marrow

and cornea.
c) Treatment for AIDS and its complications.
d) Surgical treatment for heart diseases and central nervous system.
e) Surgical treatment for genetic origin or congenital diseases.
f) Surgical medical treatment for major trauma.
g) Intensive care unit therapy.
h) Joint replacements.

Due to the HCD nature, it is established in Paragraph 4 of Article 162 of Law 100 of
1993 that every health promoting entity will reinsure the risks derived from the care
of diseases qualified by the National Council of Social Security as high cost.

Additionally, the Article 19 of Law 1122 of 2007 establishes that for the care
of HCD, health promoting entities will contract reinsurance or respond, directly or
collectively for said risk, in accordance with the regulations issued by the National
Government.

Furthermore, it is decided to include other diseases among the HCD, and they are
described in the Article 1 of Resolution 3974 of 2009 as:

1. Cervical cancer
2. Breast cancer
3. Stomach cancer
4. Colon and rectum cancer
5. Prostate cancer
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6. Acute lymphocytic leukemia
7. Acute myeloid leukemia
8. Hodgkin lymphoma
9. Non-hodgkin lymphoma
10. Epilepsy
11. Rheumatoid arthritis
12. Infection by the Human Immunodeficiency Virus (HIV) and Acquired Immun-

odeficiency Syndrome (AIDS).

To complete the definition of high-cost events and services, in the Article 126 of
Resolution 5521 of 2013 defines high-cost events and services as:

1. Kidney transplant, heart, liver, bone marrow y córnea.
2. Peritoneal dialysis and hemodialysis.
3. Surgical management for heart diseases.
4. Surgical management for diseases of the central nervous system.
5. Joint replacements.
6. Medical surgical management of the large burned patient.
7. Major trauma management.
8. Diagnosis and management of the HIV-infected patient.
9. Chemotherapy and radiotherapy for cancer.
10. Management of patients in the Intensive Care Unit.
11. Surgical management of congenital diseases.

In addition, in the Article 127 of Resolution 5521 of 2013 defines the types of injuries
that a patient must have to be considered as a large burn, therefore, be considered
as a patient that requires a high-cost service or event.

1. Burns of 2◦ and 3◦ degree in more than 20% of body surface.
2. Burns of total or deep thickness, in any extension, affecting hands, face, eyes,

ears, feet and perineum or genital anus.
3. Burns complicated by aspiration injury.
4. Deep and mucous burns, electrical and/or chemical.
5. Complicated burns with fractures and other major trauma.
6. Burns in patients at high risk for being younger than 5 years and older than

60 years or complicated by intercurrent diseases, severe or previous critical
condition.

Finally, in the Article 128 of Resolution 5521 of 2013 states that in order to consider
a patient as having greater trauma, it is required that this has one or more serious
injuries caused by external violence, which require for medical-surgical management
the performance of multiple therapeutic procedures or interventions, which require
for medical-surgical management the performance of multiple therapeutic procedures
or interventions, which is carried out under a service of high complexity.



Appendix B: R language scripts

Data analysis
Code 1: Load dataset and header

if(!require("kableExtra")) install.packages("kableExtra")
require(kableExtra)
### Loading data
hospita <- read.table("data/hospitalization.dat", header = T)
hospita$cost <- hospita$cost/1000000
surgery <- read.table("data/surgery.dat", header = T)
surgery$cost <- surgery$cost/1000000
### Header
kable(cbind(head(hospita), round(head(surgery), 3)),

caption = "Header of dataset
\\label{tab:header}",
"latex", booktabs = T) %>%
add_header_above(c("Hospitalization" = 2,

"General Surgery" = 2)) %>%
column_spec(column = 2, border_right = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 2: Pareto chart and table for hospitalization frequencies

if(!require("qcc")) install.packages("qcc")
require(qcc)
### Pareto chart hospitalization
parhosp <- pareto.chart(table(hospita$year),

main = "Hospitalization", las = 1)
### Table
kable(parhosp,

caption = "Distribution records hospitalization per year
\\label{tab:frech}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 3: Pareto chart and table for general surgery frequencies
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### Pareto chart
parsurg <- pareto.chart(table(surgery$year),

main = "General surgery", las = 1)
### Table
kable(parsurg,

caption = "Distribution records general surgery per year
\\label{tab:frecs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 4: Histogram, Box-plot, Density and Scatterplot for hospitalization costs

par(mfrow=c(2,2))
### Histogram
hist(hospita$cost, freq = F, xlab = "Costs",

main = "(a) Hospitalization costs \n Histogram",
col = "lightblue")

### Box-plot
boxplot(hospita$cost~factor(hospita$year), col = rainbow(6, s = 0.6),

main = "(a) Hospitalization services \n Box-plot",
xlab = "Costs", ylab = "Years", horizontal = T, las=1)

### Density
plot(density(hospita$cost), lwd = 2,

main = "(c) Hospitalization costs \n Density")
polygon(density(hospita$cost), col = "lightblue")
### Scatterplot
plot(hospita$year,hospita$cost, ylab="Costs", xlab = "Year",

main = "(d) Hospitalization services \n Year vs Cost")

Code 5: Histogram, Box-plot, Density and Scatterplot general surgery costs

par(mfrow=c(2,2))
### Histogram
hist(surgery$cost, freq = F, xlab = "Costs",

main = "(a) General surgery costs \n Histogram",
col = "lightblue")

### Box-plot
boxplot(surgery$cost~factor(surgery$year), col = rainbow(6, s = 0.6),

main = "(b) General surgery services \n Box-plot",
xlab = "Costs", ylab = "Years", horizontal = T, las=1)

### Density
plot(density(surgery$cost), lwd = 2,

main = "(c) General surgery costs \n Density")
polygon(density(surgery$cost), col = "lightblue")
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### Scatterplot
plot(surgery$year,surgery$cost, ylab="Costs", xlab = "Year",

main = "(d) General surgery services \n Year vs Cost")

Frequency model estimation for hospitalization
Code 6: Best fit with GAMLSS for frequencies of hospitalization services

if(!require("gamlss")) install.packages("gamlss")
require(gamlss)
### The adjustment is made
FitN_hosp1 <- fitDist(y = table(hospita$year), type = "counts")
### Estimation of second and third distribution with best fit
FitN_hosp2 <- gamlssML(formula = table(hospita$year), family = GPO)
FitN_hosp3 <- gamlssML(formula = table(hospita$year), family = NBI)
### The five distributions that present the best fit are
kable(rbind(FitN_hosp1$fits[1:5]),

caption = "Better fit for frequencies of hospitalization services
\\label{tab:fitfhosp}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Once the estimates have been made, it is possible to extract the value of the
parameters µ, σ, ν and τ , depending on whether the estimated distribution has
one, two, three or four parameters, respectively. To do this, use the command
FitN_hosp1$mu to extract the parameter µ, from the PIG distribution, or the
command FitN_hospi3$sigma to extract the parameter σ, of the NBI distribution.

Code 7: Statistical measurements of hospitalization frequencies

if(!require("devtools")) install.packages("devtools")
require(devtools)
if(!require("DistMom")) install_github("jiperezga/DistMom")
require(DistMom)
if(!require("e1071")) install.packages("e1071")
require(e1071)
### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanNhEmp <- mean(table(hospita$year))
MeanNhPIG <- moments(k = 1, dist = "PIG", domain = "counts",

param = c(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
MeanNhGPO <- moments(k = 1, dist = "GPO", domain = "counts",

param = c(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
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MeanNhNBI <- moments(k = 1, dist = "NBI", domain = "counts",
param = c(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))

#### Variance
VariNhEmp <- var(table(hospita$year))
VariNhPIG <- moments(k = 2, dist = "PIG", domain = "counts",

param = c(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma),
central = TRUE)

VariNhGPO <- moments(k = 2, dist = "GPO", domain = "counts",
param = c(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma),
central = TRUE)

VariNhNBI <- moments(k = 2, dist = "NBI", domain = "counts",
param = c(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma),
central = TRUE)

### Skewness
SkewNhEmp <- skewness(table(hospita$year), type = 1)
SkewNhPIG <- skew(dist = "PIG", domain = "counts",

param = c(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
SkewNhGPO <- skew(dist = "GPO", domain = "counts",

param = c(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
SkewNhNBI <- skew(dist = "NBI", domain = "counts",

param = c(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))
### Excess Kurtosis
KurtNhEmp <- kurtosis(table(hospita$year), type = 1)
KurtNhPIG <- kurt(dist = "PIG", domain = "counts", excess = TRUE,

param = c(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
KurtNhGPO <- kurt(dist = "GPO", domain = "counts", excess = TRUE,

param = c(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
KurtNhNBI <- kurt(dist = "NBI", domain = "counts", excess = TRUE,

param = c(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))

kable(cbind(data.frame(Dist = c("Empirical", "PIG", "GPO", "BNI")),
"Mean" = c(MeanNhEmp, unname(MeanNhPIG), unname(MeanNhGPO),
unname(MeanNhNBI)), "Variance" = c(VariNhEmp,
unname(VariNhPIG), unname(VariNhGPO), unname(VariNhNBI)),
"Skewness" = c(SkewNhEmp, unname(SkewNhPIG),
unname(SkewNhGPO), unname(SkewNhNBI)), "Excess kurtosis" =
c(KurtNhEmp, unname(KurtNhPIG), unname(KurtNhGPO),
unname(KurtNhNBI))),

caption = "Statistical measurements of hospitalization
frequencies \\label{tab:StatisticsNh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 8: Adjustment cumulative frequencies of hospitalization
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### Empirical vs Theorical cumulative distribution function
plot(ecdf(table(hospita$year)), lwd = 3,

xlab = "Sample quantiles of frequencies of hospitalization",
main = "Adjustment cumulative frequencies of hospitalization")

curve(pPIG(x, mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma),
add = T, from = 200, to = 600, lwd = 3, col = "blue", lty = 1)

curve(pGPO(x, mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma),
add = T, from = 200, to = 600, lwd = 3, col = "green", lty = 2)

curve(pNBI(x, mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma),
add = T, from = 200, to = 600, lwd = 3, col = "red", lty = 4)

grid()
legend("bottomright", lty = 1, col = c("black", "blue", "green",

"red"), legend = c("Cumulative empirical distribution",
"Poisson-Inverse Gaussian", "Generalized Poisson",
"Negative Binomial type I"), lwd = 2)

Code 9: Goodness-of-fit tests for hospitalization frequencies

# A seed is established so that the results can be replicated
set.seed(1248)
if(!require("truncgof")) install.packages("truncgof")
require(truncgof)
freqhosp <- table(hospita$year)
### Kolmogorov-Smirnov test
kshPIG <- ks.test(x = freqhosp, distn = "pPIG", H = min(freqhosp),

fit = list(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
kshGPO <- ks.test(x = freqhosp, distn = "pGPO", H = min(freqhosp),

fit = list(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
kshNBI <- ks.test(x = freqhosp, distn = "pNBI", H = min(freqhosp),

fit = list(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))
### Cramer-von Mises test
cvmhPIG <- w2.test(x = freqhosp, distn = "pPIG", H = min(freqhosp),

fit = list(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
cvmhGPO <- w2.test(x = freqhosp, distn = "pGPO", H = min(freqhosp),

fit = list(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
cvmhNBI <- w2.test(x = freqhosp, distn = "pNBI", H = min(freqhosp),

fit = list(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))
### Kuiper test
kuhPIG <- v.test(x = freqhosp, distn = "pPIG", H = min(freqhosp),

fit = list(mu = FitN_hosp1$mu, sigma = FitN_hosp1$sigma))
kuhGPO <- v.test(x = freqhosp, distn = "pGPO", H = min(freqhosp),

fit = list(mu = FitN_hosp2$mu, sigma = FitN_hosp2$sigma))
kuhNBI <- v.test(x = freqhosp, distn = "pNBI", H = min(freqhosp),

fit = list(mu = FitN_hosp3$mu, sigma = FitN_hosp3$sigma))
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kable(cbind(data.frame(Dist = c("PIG", "GPO", "BNI")),
"ks.test" = c(kshPIG$p.value, kshGPO$p.value,
kshNBI$p.value), "w2.test" = c(cvmhPIG$p.value,
cvmhGPO$p.value, cvmhNBI$p.value), "v.test" = c(
kuhPIG$p.value, kuhGPO$p.value, kuhNBI$p.value)),

caption = "Goodness-of-fit tests hospitalization frequencies
\\label{tab:gftNh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Frequency model estimation for general surgery
Code 10: Best fit with gamlss for frequencies of general surgery services

### The adjustment is made
FitN_surg1 <- fitDist(y = table(surgery$year), type = "counts")
### Estimation of second and third distribution with best fit
FitN_surg2 <- gamlssML(formula = table(surgery$year), family = PIG)
FitN_surg3 <- gamlssML(formula = table(surgery$year), family = GPO)
### The five distributions that present the best fit are
kable(rbind(FitN_surg1$fits[1:5]),

caption = "Better fit for frequencies of general surgery
services \\label{tab:fitfhosp}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 11: Statistical measurements of general surgery frequencies

### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanNsEmp <- mean(table(surgery$year))
MeanNsDEL <- moments(k = 1, dist = "DEL", domain = "counts",

param = c(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

MeanNsPIG <- moments(k = 1, dist = "PIG", domain = "counts",
param = c(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

MeanNsGPO <- moments(k = 1, dist = "GPO", domain = "counts",
param = c(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

#### Variance
VariNsEmp <- var(table(surgery$year))
VariNsDEL <- moments(k = 2, dist = "DEL", domain = "counts",

param = c(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu), central = TRUE)
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VariNsPIG <- moments(k = 2, dist = "PIG", domain = "counts",
param = c(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma),
central = TRUE)

VariNsGPO <- moments(k = 2, dist = "GPO", domain = "counts",
param = c(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma),
central = TRUE)

### Skewness
SkewNsEmp <- skewness(table(surgery$year), type = 1)
SkewNsDEL <- skew(dist = "DEL", domain = "counts",

param = c(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

SkewNsPIG <- skew(dist = "PIG", domain = "counts",
param = c(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

SkewNsGPO <- skew(dist = "GPO", domain = "counts",
param = c(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

### Excess Kurtosis
KurtNsEmp <- kurtosis(table(surgery$year), type = 1)
KurtNsDEL <- kurt(dist = "DEL", domain = "counts", excess = TRUE,

param = c(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

KurtNsPIG <- kurt(dist = "PIG", domain = "counts", excess = TRUE,
param = c(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

KurtNsGPO <- kurt(dist = "GPO", domain = "counts", excess = TRUE,
param = c(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

kable(cbind(data.frame(Dist = c("Empirical", "DEL", "PIG", "BNI")),
"Mean" = c(MeanNsEmp, unname(MeanNsDEL), unname(MeanNsPIG),
unname(MeanNsGPO)), "Variance" = c(VariNsEmp,
unname(VariNsDEL), unname(VariNsPIG), unname(VariNsGPO)),
"Skewness" = c(SkewNsEmp, unname(SkewNsDEL),
unname(SkewNsPIG), unname(SkewNsGPO)), "Excess kurtosis" =
c(KurtNsEmp, unname(KurtNsDEL), unname(KurtNsPIG),
unname(KurtNsGPO))),

caption = "Statistical measurements of general surgery
frequencies \\label{tab:StatisticsNs}",

"latex", booktabs = T) %>%
kable_styling(latex_options = c("striped", "hold_position"))

Code 12: Adjustment cumulative frequencies of general surgery

### Empirical vs Theorical cumulative distribution function
plot(ecdf(table(surgery$year)), lwd = 3,

xlab = "Sample quantiles of frequencies of general surgery",
main = "Adjustment cumulative frequencies of general surgery")
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curve(pDEL(x, mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu), add = T, from = 10, to = 250, lwd = 3,
col = "blue", lty = 1)

curve(pPIG(x, mu = FitN_surg2$mu, sigma = FitN_surg2$sigma),
add = T, from = 10, to = 250, lwd = 3, col = "green", lty = 2)

curve(pGPO(x, mu = FitN_surg3$mu, sigma = FitN_surg3$sigma),
add = T, from = 10, to = 250, lwd = 3, col = "red", lty = 4)

grid()
legend("bottomright", lty = 1, col = c("black", "blue", "green",

"red"), legend = c("Cumulative empirical distribution",
"Poisson-Inverse Gaussian", "Generalized Poisson",
"Negative Binomial type I"), lwd = 2)

Code 13: Goodness-of-fit for tests general surgery frequencies

# A seed is established so that the results can be replicated
set.seed(1248)
freqsurg <- table(surgery$year)
### Kolmogorov-Smirnov test
kshDEL <- ks.test(x = freqsurg, distn = "pDEL", H = min(freqsurg),

fit = list(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

kshPIG <- ks.test(x = freqsurg, distn = "pPIG", H = min(freqsurg),
fit = list(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

kshGPO <- ks.test(x = freqsurg, distn = "pGPO", H = min(freqsurg),
fit = list(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

### Cramer-von Mises test
cvmhDEL <- w2.test(x = freqsurg, distn = "pDEL", H = min(freqsurg),

fit = list(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

cvmhPIG <- w2.test(x = freqsurg, distn = "pPIG", H = min(freqsurg),
fit = list(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

cvmhGPO <- w2.test(x = freqsurg, distn = "pGPO", H = min(freqsurg),
fit = list(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

### Kuiper test
kuhDEL <- v.test(x = freqsurg, distn = "pDEL", H = min(freqsurg),

fit = list(mu = FitN_surg1$mu, sigma = FitN_surg1$sigma,
nu = FitN_surg1$nu))

kuhPIG <- v.test(x = freqsurg, distn = "pPIG", H = min(freqsurg),
fit = list(mu = FitN_surg2$mu, sigma = FitN_surg2$sigma))

kuhGPO <- v.test(x = freqsurg, distn = "pGPO", H = min(freqsurg),
fit = list(mu = FitN_surg3$mu, sigma = FitN_surg3$sigma))

kable(cbind(data.frame(Dist = c("DEL", "PIG", "GPO")),
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"ks.test" = c(kshDEL$p.value, kshPIG$p.value,
kshGPO$p.value), "w2.test" = c(cvmhDEL$p.value,
cvmhPIG$p.value, cvmhGPO$p.value), "v.test" = c(
kuhDEL$p.value, kuhPIG$p.value, kuhGPO$p.value)),

caption = "Goodness-of-fit tests general surgery frequencies
\\label{tab:gftNs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Mean residual life analysis for hospitalization
Code 14: Mean residual life hospitalizacion service

if(!require("evmix")) install.packages("evmix")
require(evmix)
### Graphic adjustment of mean residual life
mrlplot(hospita$cost, legend.loc = NULL, try.thresh = NULL)
abline(v = 35, col = "red", lwd = 2, lty = 2)
abline(v = 60, col = "blue", lwd = 2, lty = 2)

Mean residual life analysis for general surgery
Code 15: Mean residual life hospitalizacion service

### Graphic adjustment of mean residual life
mrlplot(surgery$cost, legend.loc = NULL, try.thresh = NULL)
abline(v = 16, col = "red", lwd = 2, lty = 2)

Tail index with Hill plot for hospitalization
Code 16: Hill, AltHill, SmooHill and AltSmooHill for hospitalizacion service

par(mfrow = c(2, 2), cex = 0.7)
### Hill Plot
hillplot(data = hospita$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "Hill", ylim = c(0, 2), main = "")
title(main = "(a) Hill Plot", line = 3.3)
### AltHill Plot
hillplot(data = hospita$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "Hill", ylim = c(0, 2), x.theta = TRUE,
main = "")
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title(main = "(b) AltHill Plot", line = 3.3)
### SmooHill Plot
hillplot(data = hospita$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "SmooHill", ylim = c(0, 2), main = "")
title(main = "(c) SmooHill Plot", line = 3.3)
### AltSmooHill plot
hillplot(data = hospita$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "SmooHill", ylim = c(0, 2), x.theta = TRUE,
main = "")

title(main = "(d) AltSmooHill Plot", line = 3.3)

Tail index with Hill plot for general surgery
Code 17: Hill, AltHill, SmooHill and AltSmooHill for general surgery service

par(mfrow = c(2, 2), cex = 0.7)
### Hill Plot
hillplot(data = surgery$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "Hill", ylim = c(0, 2), main = "")
title(main = "(a) Hill Plot", line = 3.3)
### AltHill Plot
hillplot(data = surgery$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "Hill", ylim = c(0, 2), x.theta = TRUE,
main = "")

title(main = "(b) AltHill Plot", line = 3.3)
### SmooHill Plot
hillplot(data = surgery$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "SmooHill", ylim = c(0, 2), main = "",
try.thresh = quantile(surgery$cost, c(0.9, 0.95),

na.rm = TRUE))
title(main = "(c) SmooHill Plot", line = 3.3)
### AltSmooHill plot
hillplot(data = surgery$cost, alpha = 0.05, legend.loc = "topleft",

hill.type = "SmooHill", ylim = c(0, 2), x.theta = TRUE,
main = "", try.thresh = quantile(surgery$cost,
c(0.9, 0.95), na.rm = TRUE))

title(main = "(d) AltSmooHill Plot", line = 3.3)

Adjustment with spliced distributions for hospital-
ization

Code 18: Adjustment with spliced distributions for hospitalization service
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### The adjustment with evmix is made
SpHfit1 <- fgammagpd(x = hospita$cost)
SpHfit2 <- fnormgpd(x = hospita$cost)
SpHfit3 <- fweibullgpd(x = hospita$cost)

Code 19: Statistical measurements of spliced distributions for hospitalization services

### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanXhSpE <- mean(hospita$cost)
MeanXhSpG <- moments(k = 1, dist = "gammagpd", domain = "realplus",

param = c(phiu = SpHfit1$phiu, gshape = SpHfit1$gshape,
gscale = SpHfit1$gscale, u = SpHfit1$u, xi = SpHfit1$xi,
sigmau = SpHfit1$sigmau))

MeanXhSpN <- moments(k = 1, dist = "normgpd", domain = "realline",
param = c(phiu = SpHfit2$phiu, nmean = SpHfit2$nmean,
nsd = SpHfit2$nsd, u = SpHfit2$u, xi = SpHfit2$xi,
sigmau = SpHfit2$sigmau))

MeanXhSpW <- moments(k = 1, dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpHfit3$phiu, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau))

#### Variance
VariXhSpE <- var(hospita$cost)
VariXhSpG <- moments(k = 2, dist = "gammagpd", domain = "realplus",

param = c(phiu = SpHfit1$phiu, gshape = SpHfit1$gshape,
gscale = SpHfit1$gscale, u = SpHfit1$u, xi = SpHfit1$xi,
sigmau = SpHfit1$sigmau), central = TRUE)

VariXhSpN <- moments(k = 2, dist = "normgpd", domain = "realline",
param = c(phiu = SpHfit2$phiu, nmean = SpHfit2$nmean,
nsd = SpHfit2$nsd, u = SpHfit2$u, xi = SpHfit2$xi,
sigmau = SpHfit2$sigmau), central = TRUE)

VariXhSpW <- moments(k = 2, dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpHfit3$phiu, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau), central = TRUE)

### Skewness
SkewXhSpE <- skewness(hospita$cost, type = 1)
SkewXhSpG <- skew(dist = "gammagpd", domain = "realplus",

param = c(phiu = SpHfit1$phiu, gshape = SpHfit1$gshape,
gscale = SpHfit1$gscale, u = SpHfit1$u, xi = SpHfit1$xi,
sigmau = SpHfit1$sigmau))

SkewXhSpN <- skew(dist = "normgpd", domain = "realline",
param = c(phiu = SpHfit2$phiu, nmean = SpHfit2$nmean,
nsd = SpHfit2$nsd, u = SpHfit2$u, xi = SpHfit2$xi,
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sigmau = SpHfit2$sigmau))
SkewXhSpW <- skew(dist = "weibullgpd", domain = "realplus",

param = c(phiu = SpHfit3$phiu, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau))

### Excess Kurtosis
KurtXhSpE <- kurtosis(hospita$cost, type = 1)
KurtXhSpG <- kurt(dist = "gammagpd", domain = "realplus",

param = c(phiu = SpHfit1$phiu, gshape = SpHfit1$gshape,
gscale = SpHfit1$gscale, u = SpHfit1$u, xi = SpHfit1$xi,
sigmau = SpHfit1$sigmau), excess = TRUE)

KurtXhSpN <- kurt(dist = "normgpd", domain = "realline",
param = c(phiu = SpHfit2$phiu, nmean = SpHfit2$nmean,
nsd = SpHfit2$nsd, u = SpHfit2$u, xi = SpHfit2$xi,
sigmau = SpHfit2$sigmau), excess = TRUE)

KurtXhSpW <- kurt(dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpHfit3$phiu, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau), excess = TRUE)

kable(cbind(data.frame(Dist = c("Empirical", "gammagdp", "normgdp",
"weibullgdp")), "Mean" = c(MeanXhSpE, unname(MeanXhSpG),
unname(MeanXhSpN), unname(MeanXhSpW)), "Variance" = c(
VariXhSpE, unname(VariXhSpG), unname(VariXhSpN),
unname(VariXhSpW)), "Skewness" = c(SkewXhSpE,
unname(SkewXhSpG), unname(SkewXhSpN), unname(SkewXhSpW)),
"Excess Kurtosis" = c(KurtXhSpE, unname(KurtXhSpG),
unname(KurtXhSpN), unname(KurtXhSpW))),

caption = "Statistical measurements of spliced distributions for
hospitalization services \\label{tab:StatisticsSpXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 20: Adjustment of cumulative individual costs of hospitalization services with
spliced distributions

FnXh <- ecdf(hospita$cost)
sortXh <- sort(hospita$cost)
### Empirical vs Theorical cumulative distribution function
plot(FnXh, lwd = 3,

xlab = "Sample quantiles of individual costs of hospitalization",
main = "Adjustment cumulative individual costs of hospitalization")

fitXhG <- pgammagpd(q = sortXh, phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
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u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau)
lines(sortXh, fitXhG, lwd = 3, lty = 1, col = "blue")
fitXhN <- pnormgpd(q = sortXh, phiu = SpHfit2$phiu,

nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
xi = SpHfit2$xi, sigmau = SpHfit2$sigmau)

lines(sortXh, fitXhN, lwd = 3, lty = 2, col = "red")
fitXhW <- pweibullgpd(q = sortXh, phiu = SpHfit3$phiu,

wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau)

lines(sortXh, fitXhW, lwd = 3, lty = 4, col = "green")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red",

"green"), legend = c("Cumulative empirical distribution",
"Gamma-Generalized Pareto", "Normal-Generalized Pareto",
"Weibull-Generalized Pareto"), lwd = 2)

Code 21: Adjustment of log-survival distribution of hospitalization with spliced
distributions

### Empirical vs Theorical log-survival distribution function
survXh <- 1 - FnXh(sortXh)
plot(x = log(sortXh), y = log(survXh), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
hospitalization)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
hospitalization", type = "l")

survXhG <- 1 - fitXhG
lines(log(sortXh), log(survXhG), lwd = 3, col = "blue")
survXhN <- 1 - fitXhN
lines(log(sortXh), log(survXhN), lwd = 3, col = "red", lty = 2)
survXhW <- 1 - fitXhW
lines(log(sortXh), log(survXhW), lwd = 3, col = "green", lty = 4)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red", "green"),

legend = c("log-Survival Distribution",
"Gamma-Generalized Pareto", "Normal-Generalized Pareto",
"Weibull-Generalized Pareto"), lwd = 2)

Code 22: Q-Q plot spliced distribution for hospitalization

if(!require("car")) install.packages("car")
require(car)
par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
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### QQ-plot
qqPlot(x = hospita$cost, lwd = 1, distribution = "gammagpd",

phiu = SpHfit1$phiu, gshape = SpHfit1$gshape,
gscale = SpHfit1$gscale, u = SpHfit1$u, xi = SpHfit1$xi,
sigmau = SpHfit1$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(a) Gamma-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = hospita$cost, lwd = 1, distribution = "normgpd",
phiu = SpHfit2$phiu, nmean = SpHfit2$nmean,
nsd = SpHfit2$nsd, u = SpHfit2$u, xi = SpHfit2$xi,
sigmau = SpHfit2$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Normal-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = hospita$cost, lwd = 1, distribution = "weibullgpd",
phiu = SpHfit3$phi, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(c) Weibull-Generalized Pareto Q-Q Plot", id = FALSE)

Code 23: Goodness-of-fit tests for hospitalization services for spliced distributions

# A seed is established so that the results can be replicated
set.seed(1248)
### Kolmogorov-Smirnov test
kolmSpXhG <- ks.test(x = hospita$cost, distn = "pgammagpd",

H = min(hospita$cost), fit = list(phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau))

kolmSpXhN <- ks.test(x = hospita$cost, distn = "pnormgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit2$phiu,
nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
xi = SpHfit2$xi, sigmau = SpHfit2$sigmau))

kolmSpXhW <- ks.test(x = hospita$cost, distn = "pweibullgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit3$phiu,
wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau))

### Cramer-von Mises test
cramSpXhG <- w2.test(x = hospita$cost, distn = "pgammagpd",

H = min(hospita$cost), fit = list(phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau))

cramSpXhN <- w2.test(x = hospita$cost, distn = "pnormgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit2$phiu,
nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
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xi = SpHfit2$xi, sigmau = SpHfit2$sigmau))
cramSpXhW <- w2.test(x = hospita$cost, distn = "pweibullgpd",

H = min(hospita$cost), fit = list(phiu = SpHfit3$phiu,
wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau))

### Kuiper test
kuipSpXhG <- v.test(x = hospita$cost, distn = "pgammagpd",

H = min(hospita$cost), fit = list(phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau))

kuipSpXhN <- v.test(x = hospita$cost, distn = "pnormgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit2$phiu,
nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
xi = SpHfit2$xi, sigmau = SpHfit2$sigmau))

kuipSpXhW <- v.test(x = hospita$cost, distn = "pweibullgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit3$phiu,
wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau))

### Supremum class Upper Tail Anderson-Darling test
adupSpXhG <- adup.test(x = hospita$cost, distn = "pgammagpd",

H = min(hospita$cost), fit = list(phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau))

adupSpXhN <- adup.test(x = hospita$cost, distn = "pnormgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit2$phiu,
nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
xi = SpHfit2$xi, sigmau = SpHfit2$sigmau))

adupSpXhW <- adup.test(x = hospita$cost, distn = "pweibullgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit3$phiu,
wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau))

### Quadratic Class Upper Tail Anderson-Darling test
ad2upSpXhG <- ad2up.test(x = hospita$cost, distn = "pgammagpd",

H = min(hospita$cost), fit = list(phiu = SpHfit1$phiu,
gshape = SpHfit1$gshape, gscale = SpHfit1$gscale,
u = SpHfit1$u, xi = SpHfit1$xi, sigmau = SpHfit1$sigmau))

ad2upSpXhN <- ad2up.test(x = hospita$cost, distn = "pnormgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit2$phiu,
nmean = SpHfit2$nmean, nsd = SpHfit2$nsd, u = SpHfit2$u,
xi = SpHfit2$xi, sigmau = SpHfit2$sigmau))

ad2upSpXhW <- ad2up.test(x = hospita$cost, distn = "pweibullgpd",
H = min(hospita$cost), fit = list(phiu = SpHfit3$phiu,
wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
u = SpHfit3$u, xi = SpHfit3$xi, sigmau = SpHfit3$sigmau))
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### Results table
kable(cbind(data.frame(Dist = c("gammagpd", "normgpd", "weibullgpd")),

"ks.test" = c(kolmSpXhG$p.value, kolmSpXhN$p.value,
kolmSpXhW$p.value), "w2.test" = c(cramSpXhG$p.value,
cramSpXhN$p.value, cramSpXhW$p.value), "v.test" = c(
kuipSpXhG$p.value, kuipSpXhN$p.value, kuipSpXhW$p.value),
"adup.test" = c(adupSpXhG$p.value, adupSpXhN$p.value,
adupSpXhW$p.value), "ad2up.test" = c(ad2upSpXhG$p.value,
ad2upSpXhN$p.value, ad2upSpXhW$p.value)),

caption = "Goodness-of-fit tests hospitalization services for
spliced distributions \\label{tab:gftSpXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Adjustment with spliced distributions for general
surgery

Code 24: Adjustment with spliced distributions for general surgery service

### The adjustment with evmix is made
SpSfit1 <- fgammagpd(x = surgery$cost)
SpSfit2 <- fnormgpd(x = surgery$cost)
SpSfit3 <- fweibullgpd(x = surgery$cost)

Code 25: Statistical measurements of spliced distributions for general surgery services

### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanXsSpE <- mean(surgery$cost)
MeanXsSpG <- moments(k = 1, dist = "gammagpd", domain = "realplus",

param = c(phiu = SpSfit1$phiu, gshape = SpSfit1$gshape,
gscale = SpSfit1$gscale, u = SpSfit1$u, xi = SpSfit1$xi,
sigmau = SpSfit1$sigmau))

MeanXsSpN <- moments(k = 1, dist = "normgpd", domain = "realline",
param = c(phiu = SpSfit2$phiu, nmean = SpSfit2$nmean,
nsd = SpSfit2$nsd, u = SpSfit2$u, xi = SpSfit2$xi,
sigmau = SpSfit2$sigmau))

MeanXsSpW <- moments(k = 1, dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpSfit3$phiu, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau))

#### Variance
VariXsSpE <- var(surgery$cost)
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VariXsSpG <- moments(k = 2, dist = "gammagpd", domain = "realplus",
param = c(phiu = SpSfit1$phiu, gshape = SpSfit1$gshape,
gscale = SpSfit1$gscale, u = SpSfit1$u, xi = SpSfit1$xi,
sigmau = SpSfit1$sigmau), central = TRUE)

VariXsSpN <- moments(k = 2, dist = "normgpd", domain = "realline",
param = c(phiu = SpSfit2$phiu, nmean = SpSfit2$nmean,
nsd = SpSfit2$nsd, u = SpSfit2$u, xi = SpSfit2$xi,
sigmau = SpSfit2$sigmau), central = TRUE)

VariXsSpW <- moments(k = 2, dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpSfit3$phiu, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau), central = TRUE)

### Skewness
SkewXsSpE <- skewness(surgery$cost, type = 1)
SkewXsSpG <- skew(dist = "gammagpd", domain = "realplus",

param = c(phiu = SpSfit1$phiu, gshape = SpSfit1$gshape,
gscale = SpSfit1$gscale, u = SpSfit1$u, xi = SpSfit1$xi,
sigmau = SpSfit1$sigmau))

SkewXsSpN <- skew(dist = "normgpd", domain = "realline",
param = c(phiu = SpSfit2$phiu, nmean = SpSfit2$nmean,
nsd = SpSfit2$nsd, u = SpSfit2$u, xi = SpSfit2$xi,
sigmau = SpSfit2$sigmau))

SkewXsSpW <- skew(dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpSfit3$phiu, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau))

### Excess Kurtosis
KurtXsSpE <- kurtosis(surgery$cost, type = 1)
KurtXsSpG <- kurt(dist = "gammagpd", domain = "realplus",

param = c(phiu = SpSfit1$phiu, gshape = SpSfit1$gshape,
gscale = SpSfit1$gscale, u = SpSfit1$u, xi = SpSfit1$xi,
sigmau = SpSfit1$sigmau), excess = TRUE)

KurtXsSpN <- kurt(dist = "normgpd", domain = "realline",
param = c(phiu = SpSfit2$phiu, nmean = SpSfit2$nmean,
nsd = SpSfit2$nsd, u = SpSfit2$u, xi = SpSfit2$xi,
sigmau = SpSfit2$sigmau), excess = TRUE)

KurtXsSpW <- kurt(dist = "weibullgpd", domain = "realplus",
param = c(phiu = SpSfit3$phiu, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau), excess = TRUE)

kable(cbind(data.frame(Dist = c("Empirical", "gammagdp", "normgdp",
"weibullgdp")), "Mean" = c(MeanXsSpE, unname(MeanXsSpG),
unname(MeanXsSpN), unname(MeanXsSpW)), "Variance" = c(
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VariXsSpE, "does not exist", unname(VariXsSpN),
"does not exist"), "Skewness" = c(SkewXsSpE,
"does not exist", unname(SkewXsSpN), "does not exist"),
"Excess Kurtosis" = c(KurtXsSpE, "does not exist",
unname(KurtXsSpN), "does not exist")),

caption = "Statistical measurements of spliced distributions for
general surgery services \\label{tab:StatisticsSpXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 26: Adjustment of cumulative individual costs of general surgery services with
spliced distributions

FnXs <- ecdf(surgery$cost)
sortXs <- sort(surgery$cost)
### Empirical vs Theorical cumulative distribution function
plot(FnXs, lwd = 3,

xlab = "Sample quantiles of individual costs of general surgery",
main = "Adjustment cumulative individual costs of general surgery")

fitXsG <- pgammagpd(q = sortXs, phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau)

lines(sortXs, fitXsG, lwd = 3, lty = 1, col = "blue")
fitXsN <- pnormgpd(q = sortXs, phiu = SpSfit2$phiu,

nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau)

lines(sortXs, fitXsN, lwd = 3, lty = 2, col = "red")
fitXsW <- pweibullgpd(q = sortXs, phiu = SpSfit3$phiu,

wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau)

lines(sortXs, fitXsW, lwd = 3, lty = 4, col = "green")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red",

"green"), legend = c("Cumulative empirical distribution",
"Gamma-Generalized Pareto", "Normal-Generalized Pareto",
"Weibull-Generalized Pareto"), lwd = 2)

Code 27: Adjustment of log-survival distribution of general surgery with
spliced distributions

### Empirical vs Theorical log-survival distribution function
survXs <- 1 - FnXs(sortXs)
plot(x = log(sortXs), y = log(survXs), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
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general surgery)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
general surgery", type = "l")

survXsG <- 1 - fitXsG
lines(log(sortXs), log(survXsG), lwd = 3, col = "blue")
survXsN <- 1 - fitXsN
lines(log(sortXs), log(survXsN), lwd = 3, col = "red", lty = 2)
survXsW <- 1 - fitXsW
lines(log(sortXs), log(survXsW), lwd = 3, col = "green", lty = 4)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red", "green"),

legend = c("log-Survival Distribution",
"Gamma-Generalized Pareto", "Normal-Generalized Pareto",
"Weibull-Generalized Pareto"), lwd = 2)

Code 28: Q-Q plot spliced distribution for general surgery

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
### QQ-plot
qqPlot(x = surgery$cost, lwd = 1, distribution = "gammagpd",

phiu = SpSfit1$phiu, gshape = SpSfit1$gshape,
gscale = SpSfit1$gscale, u = SpSfit1$u, xi = SpSfit1$xi,
sigmau = SpSfit1$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(a) Gamma-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = surgery$cost, lwd = 1, distribution = "normgpd",
phiu = SpSfit2$phiu, nmean = SpSfit2$nmean,
nsd = SpSfit2$nsd, u = SpSfit2$u, xi = SpSfit2$xi,
sigmau = SpSfit2$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Normal-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = surgery$cost, lwd = 1, distribution = "weibullgpd",
phiu = SpSfit3$phi, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(c) Weibull-Generalized Pareto Q-Q Plot", id = FALSE)

Code 29: Goodness-of-fit tests for general surgery services for spliced distributions

# A seed is established so that the results can be replicated
set.seed(1248)
### Kolmogorov-Smirnov test
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kolmSpXsG <- ks.test(x = surgery$cost, distn = "pgammagpd",
H = min(surgery$cost), fit = list(phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau))

kolmSpXsN <- ks.test(x = surgery$cost, distn = "pnormgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit2$phiu,
nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau))

kolmSpXsW <- ks.test(x = surgery$cost, distn = "pweibullgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit3$phiu,
wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau))

### Cramer-von Mises test
cramSpXsG <- w2.test(x = surgery$cost, distn = "pgammagpd",

H = min(surgery$cost), fit = list(phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau))

cramSpXsN <- w2.test(x = surgery$cost, distn = "pnormgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit2$phiu,
nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau))

cramSpXsW <- w2.test(x = surgery$cost, distn = "pweibullgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit3$phiu,
wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau))

### Kuiper test
kuipSpXsG <- v.test(x = surgery$cost, distn = "pgammagpd",

H = min(surgery$cost), fit = list(phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau))

kuipSpXsN <- v.test(x = surgery$cost, distn = "pnormgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit2$phiu,
nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau))

kuipSpXsW <- v.test(x = surgery$cost, distn = "pweibullgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit3$phiu,
wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau))

### Supremum class Upper Tail Anderson-Darling test
adupSpXsG <- adup.test(x = surgery$cost, distn = "pgammagpd",

H = min(surgery$cost), fit = list(phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau))

adupSpXsN <- adup.test(x = surgery$cost, distn = "pnormgpd",
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H = min(surgery$cost), fit = list(phiu = SpSfit2$phiu,
nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau))

adupSpXsW <- adup.test(x = surgery$cost, distn = "pweibullgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit3$phiu,
wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau))

### Quadratic Class Upper Tail Anderson-Darling test
ad2upSpXsG <- ad2up.test(x = surgery$cost, distn = "pgammagpd",

H = min(surgery$cost), fit = list(phiu = SpSfit1$phiu,
gshape = SpSfit1$gshape, gscale = SpSfit1$gscale,
u = SpSfit1$u, xi = SpSfit1$xi, sigmau = SpSfit1$sigmau))

ad2upSpXsN <- ad2up.test(x = surgery$cost, distn = "pnormgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit2$phiu,
nmean = SpSfit2$nmean, nsd = SpSfit2$nsd, u = SpSfit2$u,
xi = SpSfit2$xi, sigmau = SpSfit2$sigmau))

ad2upSpXsW <- ad2up.test(x = surgery$cost, distn = "pweibullgpd",
H = min(surgery$cost), fit = list(phiu = SpSfit3$phiu,
wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
u = SpSfit3$u, xi = SpSfit3$xi, sigmau = SpSfit3$sigmau))

### Results table
kable(cbind(data.frame(Dist = c("gammagpd", "normgpd", "weibullgpd")),

"ks.test" = c(kolmSpXsG$p.value, kolmSpXsN$p.value,
kolmSpXsW$p.value), "w2.test" = c(cramSpXsG$p.value,
cramSpXsN$p.value, cramSpXsW$p.value), "v.test" = c(
kuipSpXsG$p.value, kuipSpXsN$p.value, kuipSpXsW$p.value),
"adup.test" = c(adupSpXsG$p.value, adupSpXsN$p.value,
adupSpXsW$p.value), "ad2up.test" = c(ad2upSpXsG$p.value,
ad2upSpXsN$p.value, ad2upSpXsW$p.value)),

caption = "Goodness-of-fit tests general surgery services for
spliced distributions \\label{tab:gftSpXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Risk measures estimation for hospitalization ser-
vices

Code 30: Tail index estimation for hospitalization services

### Density function
fhosp <- function(x) dweibullgpd(x, wshape = SpHfit3$wshape,

wscale = SpHfit3$wscale, sigmau = SpHfit3$sigmau,
u = SpHfit3$u, xi = SpHfit3$xi, phiu = SpHfit3$phiu)
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### Cumulative function
Fhosp <- function(x) pweibullgpd(x, wshape = SpHfit3$wshape,

wscale = SpHfit3$wscale, sigmau = SpHfit3$sigmau,
u = SpHfit3$u, xi = SpHfit3$xi, phiu = SpHfit3$phiu)

### Equation to calculate the tail index
tailindexH <- function(x) (1-Fhosp(x))/(x * fhosp(x))
curve(expr = tailindexH, from = 1, to = 320, ylim = c(0,1),

ylab = "Limit", xlab = "x", mgp=c(2.5,1,0), lwd = 2,
main = "Estimation of the tail index for hospitalization

services")

Code 31: Value at Risk for hospitalization services

quantileH <- function(kappa) 1 - ((1 - kappa) / MeanNhGPO)
FquantileH <- function(kappa) qweibullgpd(p = quantileH(kappa),

wshape = SpHfit3$wshape, wscale = SpHfit3$wscale,
sigmau = SpHfit3$sigmau, u = SpHfit3$u, xi = SpHfit3$xi,
phiu = SpHfit3$phiu)

correctionH <- MeanXhSpW * (MeanNhGPO + (VariNhGPO / MeanNhGPO) - 1)
VaRH <- function(kappa) FquantileH(kappa) + correctionH

curve(expr = VaRH, from = 0.90, to = 0.999,
ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Value at Risk for hospitalization services")

rect(xleft = 0.95, ybottom = VaRH(0.95) + 9, xright = 0.95,
ytop = VaRH(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = VaRH(0.99) + 9, xright = 0.99,
ytop = VaRH(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(VaRH(0.95), VaRH(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.94, y = VaRH(0.95) + 15, bty = "n",
legend = round(VaRH(0.95), 3))

legend(x = 0.98, y = VaRH(0.99) + 15, bty = "n",
legend = round(VaRH(0.99), 3))

Code 32: Expected Shortfall for hospitalization services

TVaRH <- function(kappa) (1/(1-kappa)) * as.numeric(integrate(
f = VaRH, lower = kappa, upper = 1)$value)

TVaRH <- Vectorize(TVaRH)

curve(expr = TVaRH, from = 0.90, to = 0.999,
ylab = "Expected Shortfall (in millions of pesos)",



131

xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Expected Shortfall for hospitalization services")

rect(xleft = 0.95, ybottom = TVaRH(0.95) + 8, xright = 0.95,
ytop = TVaRH(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = TVaRH(0.99) + 8, xright = 0.99,
ytop = TVaRH(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(TVaRH(0.95), TVaRH(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.94, y = TVaRH(0.95) + 15, bty = "n",
legend = round(TVaRH(0.95), 3))

legend(x = 0.98, y = TVaRH(0.99) + 15, bty = "n",
legend = round(TVaRH(0.99), 3))

Code 33: Stop-Loss Premium for hospitalization services

ESH <- function(kappa) (1 - kappa)*(TVaRH(kappa) - VaRH(kappa))

curve(expr = ESH, from = 0.90, to = 0.999,
ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Stop-Loss Premium for hospitalization services")

rect(xleft = 0.95, ybottom = ESH(0.95) + 0.2, xright = 0.95,
ytop = ESH(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = ESH(0.99) + 0.2, xright = 0.99,
ytop = ESH(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(ESH(0.95), ESH(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.942, y = ESH(0.95) + 0.35, bty = "n",
legend = round(ESH(0.95), 3))

legend(x = 0.982, y = ESH(0.99) + 0.35, bty = "n",
legend = round(ESH(0.99), 3))

Risk measures estimation for general surgery ser-
vices

Code 34: Tail index estimation for general surgery services

### Density function
fsurg <- function(x) dweibullgpd(x, wshape = SpSfit3$wshape,

wscale = SpSfit3$wscale, sigmau = SpSfit3$sigmau,
u = SpSfit3$u, xi = SpSfit3$xi, phiu = SpSfit3$phiu)

### Cumulative function
Fsurg <- function(x) pweibullgpd(x, wshape = SpSfit3$wshape,
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wscale = SpSfit3$wscale, sigmau = SpSfit3$sigmau,
u = SpSfit3$u, xi = SpSfit3$xi, phiu = SpSfit3$phiu)

### Equation to calculate the tail index
tailindexS <- function(x) (1-Fsurg(x))/(x * fsurg(x))
curve(expr = tailindexS, from = 1, to = 4e11, ylim = c(0.80,0.90),

ylab = "Limit", xlab = "x", mgp=c(2.5,1,0), lwd = 2,
main = "Estimation of the tail index for general surgery

services")
abline(h = tailindexS(0.9e11), col = "red")
rect(xleft = 5e10, ybottom = tailindexS(0.9e11), xright = 5e10,

ytop = tailindexS(0.9e11) + 0.02, lwd = 2, border = "red")
points(x = 5e10, y = tailindexS(0.9e11),

pch = 19, col = "red", cex = 1.2)
legend(x = 1.2e10, y = tailindexS(0.9e11) + 0.032, bty = "n",

legend = round(tailindexS(0.9e11), 3))

Code 35: Value at Risk for general surgery services

quantileS <- function(kappa) 1 - ((1 - kappa) / MeanNsDEL)
FquantileS <- function(kappa) qweibullgpd(p = quantileS(kappa),

wshape = SpSfit3$wshape, wscale = SpSfit3$wscale,
sigmau = SpSfit3$sigmau, u = SpSfit3$u, xi = SpSfit3$xi,
phiu = SpSfit3$phiu)

correctionS <- MeanXsSpW * (MeanNsDEL + (VariNsDEL / MeanNsDEL) - 1)
VaRS <- function(kappa) FquantileS(kappa) + correctionS

curve(expr = VaRS, from = 0.90, to = 0.999,
ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Value at Risk for general surgery services")

rect(xleft = 0.95, ybottom = VaRS(0.95) + 1000, xright = 0.95,
ytop = VaRS(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = VaRS(0.99) + 1000, xright = 0.99,
ytop = VaRS(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(VaRS(0.95), VaRS(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.94, y = VaRS(0.95) + 1700, bty = "n",
legend = round(VaRS(0.95), 3))

legend(x = 0.98, y = VaRS(0.99) + 1700, bty = "n",
legend = round(VaRS(0.99), 3))

Code 36: Expected Shortfall for general surgery services
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TVaRS <- function(kappa) (1/(1-kappa)) * as.numeric(integrate(
f = VaRS, lower = kappa, upper = 1)$value)

TVaRS <- Vectorize(TVaRS)

curve(expr = TVaRS, from = 0.90, to = 0.999,
ylab = "Expected Shortfall (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Expected Shortfall for general surgery services")

rect(xleft = 0.95, ybottom = TVaRS(0.95) + 10000, xright = 0.95,
ytop = TVaRS(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = TVaRS(0.99) + 10000, xright = 0.99,
ytop = TVaRS(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(TVaRS(0.95), TVaRS(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.94, y = TVaRS(0.95) + 15000, bty = "n",
legend = round(TVaRS(0.95), 3))

legend(x = 0.98, y = TVaRS(0.99) + 15000, bty = "n",
legend = round(TVaRS(0.99), 3))

Code 37: Stop-Loss Premium for general surgery services

ESS <- function(kappa) (1 - kappa)*(TVaRS(kappa) - VaRS(kappa))

curve(expr = ESS, from = 0.90, to = 0.999,
ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Stop-Loss Premium for general surgery services")

rect(xleft = 0.95, ybottom = ESS(0.95) - 8, xright = 0.95,
ytop = ESS(0.95), lwd = 2, border = "red")

rect(xleft = 0.99, ybottom = ESS(0.99) - 8, xright = 0.99,
ytop = ESS(0.99), lwd = 2, border = "red")

points(x = c(0.95, 0.99), y = c(ESS(0.95), ESS(0.99)),
pch = 19, col = "red", cex = 1.2)

legend(x = 0.942, y = ESS(0.95) - 8, bty = "n",
legend = round(ESS(0.95), 3))

legend(x = 0.982, y = ESS(0.99) - 8, bty = "n",
legend = round(ESS(0.99), 3))

Optimum retention point estimation for hospital-
ization service

Code 38: Optimum retention point estimation for hospitalization service
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rho <- c(0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.2, 1.5, 2, 3, 4, 5, 7,
10, 20, 50)

VaRTH <- function(rho, kappa) VaRH(kappa) + (1 + rho)*ESH(kappa)
ResultH <- function(rho){

kapparho <- 1 - 1/(1 + rho)
VaRHrho <- round(VaRH(kapparho), 3)
DeltaHrho <- round((1+rho)*ESH(kapparho), 3)
VaRTHrho <- round(VaRTH(rho, kapparho), 3)
return(c(rho, kapparho, VaRHrho, DeltaHrho, VaRTHrho))

}

tableH <- round(t(sapply(X = rho, FUN = ResultH)), 6)

kable(cbind(data.frame(tableH)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",

"$M_{hosp}^*$", "$\\delta(M_{hosp}^*)$",
"$VaR_{T_{hosp}}(\\kappa_{\\rho^*})$"),

caption = "Optimum retention point estimation for
hospitalization services \\label{tab:retentionH}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")

Optimum retention point estimation for general
surgery services

Code 39: Optimum retention point estimation for hospitalization service

VaRTS <- function(rho, kappa) VaRS(kappa) + (1 + rho)*ESS(kappa)
ResultS <- function(rho){

kapparho <- 1 - 1/(1 + rho)
VaRSrho <- round(VaRS(kapparho), 3)
DeltaSrho <- round((1+rho)*ESS(kapparho), 3)
VaRTSrho <- round(VaRTS(rho, kapparho), 3)
return(c(rho, kapparho, VaRSrho, DeltaSrho, VaRTSrho))

}

tableS <- round(t(sapply(X = rho, FUN = ResultS)), 6)

kable(cbind(data.frame(tableS)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",

"$M_{surg}^*$", "$\\delta(M_{surg}^*)$",
"$VaR_{T_{surg}}(\\kappa_{\\rho^*})$"),
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caption = "Optimum retention point estimation for
general surgery services \\label{tab:retentionS}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")

GAMLSS distributions to adjust severity distribu-
tions
Code 40: Figure shows the tail shape for diferent types of GAMLSS distributions for

k1, k3, k5 = 1, 2, and k2, k4, k6 = 1, 2. Smaller values i the k’s
result heavier tails. Rigby et al. (2014)

### Types of distributions
TypeI <- function(x, k1, k2) - k2 * log(abs(x))^k1
TypeII <- function(x, k3, k4) - k4 * abs(x)^k3
TypeIII <- function(x, k5, k6) - k6 * exp(k5 * abs(x))
x <- seq(0, 10, 0.001)
x2 <- seq(1, 10, 0.001)
par(mfrow = c(2, 2), cex.main = 0.9, lwd = 2)

plot(x = x, y = TypeIII(x = x, k5 = 1, k6 = 1), type = "l",
main = expression(paste(k[1], ", ", k[3], ", ", k[5], " = ", 1,
" and ", k[2], ", ", k[4], ", ", k[6], " = ", 1)), lty = 4,
ylab = "Types of heavy tails", col = "blue", ylim = c(-10, 1))

legend("topright", legend = c("Type I", "Type II", "Type III"),
col = c("black", "red", "blue"), lty = c(1,2,4))

lines(x = x, y = TypeII(x = x, k3 = 1, k4 = 1), type = "l",
col = "red", lwd = 2, lty = 2)

lines(x = x, y = TypeI(x = x, k1 = 1, k2 = 1), type = "l",
col = "black", lwd = 2, lty = 1)

plot(x = x, y = TypeIII(x = x, k5 = 1, k6 = 2), type = "l",
main = expression(paste(k[1], ", ", k[3], ", ", k[5], " = ", 1,
" and ", k[2], ", ", k[4], ", ", k[6], " = ", 2)), lty = 4,
ylab = "Types of heavy tails", col = "blue", ylim = c(-10, 1))

legend("topright", legend = c("Type I", "Type II", "Type III"),
col = c("black", "red", "blue"), lty = c(1,2,4))

lines(x = x, y = TypeII(x = x, k3 = 1, k4 = 2), type = "l",
col = "red", lwd = 2, lty = 2)

lines(x = x, y = TypeI(x = x, k1 = 1, k2 = 2), type = "l",
col = "black", lwd = 2, lty = 1)
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plot(x = x, y = TypeIII(x = x, k5 = 2, k6 = 1), type = "l",
main = expression(paste(k[1], ", ", k[3], ", ", k[5], " = ", 2,
" and ", k[2], ", ", k[4], ", ", k[6], " = ", 1)), lty = 4,
ylab = "Types of heavy tails", col = "blue", ylim = c(-10, 1))

legend("topright", legend = c("Type I", "Type II", "Type III"),
col = c("black", "red", "blue"), lty = c(1,2,4))

lines(x = x, y = TypeII(x = x, k3 = 2, k4 = 1), type = "l",
col = "red", lwd = 2, lty = 2)

lines(x = x2, y = TypeI(x = x2, k1 = 2, k2 = 1), type = "l",
col = "black", lwd = 2, lty = 1)

plot(x = x, y = TypeIII(x = x, k5 = 2, k6 = 2), type = "l",
main = expression(paste(k[1], ", ", k[3], ", ", k[5], " = ", 2,
" and ", k[2], ", ", k[4], ", ", k[6], " = ", 2)), lty = 4,
ylab = "Types of heavy tails", col = "blue", ylim = c(-10, 1))

legend("topright", legend = c("Type I", "Type II", "Type III"),
col = c("black", "red", "blue"), lty = c(1,2,4))

lines(x = x, y = TypeII(x = x, k3 = 2, k4 = 2), type = "l",
col = "red", lwd = 2, lty = 2)

lines(x = x2, y = TypeI(x = x2, k1 = 2, k2 = 2), type = "l",
col = "black", lwd = 2, lty = 1)

Adjustment of GAMLSS distributions for hospital-
ization services severities
Code 41: Best fit with GAMLSS distributions for individual cost of hospitalization

services

### The adjustment is made
GdHfit1 <- fitDist(y = hospita$cost, type = "realplus")
### Estimation of second and third distribution with best fit
GdHfit2 <- gamlssML(formula = hospita$cost, family = GB2)
GdHfit3 <- gamlssML(formula = hospita$cost, family = BCPE)
### The five distributions that present the best fit are
kable(rbind(GdHfit1$fits[1:5]),

caption = "Better fit for individual cost of hospitalization
services with GAMLSS distributions \\label{tab:fitfhosp}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 42: Statistical measurements of GAMLSS distributions for hospitalization
services
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### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanXhGdE <- mean(hospita$cost)
MeanXhGdGG <- moments(k = 1, dist = "GG", domain = "realplus",

param = c(mu = GdHfit1$mu, sigma = GdHfit1$sigma,
nu = GdHfit1$nu))

MeanXhGdGB2 <- moments(k = 1, dist = "GB2", domain = "realplus",
param = c(mu = GdHfit2$mu, sigma = GdHfit2$sigma,
nu = GdHfit2$nu, tau = GdHfit2$tau))

MeanXhGdBCPE <- moments(k = 1, dist = "BCPE", domain = "realplus",
param = c(mu = GdHfit3$mu, sigma = GdHfit3$sigma,
nu = GdHfit3$nu, tau = GdHfit3$tau))

#### Variance
VariXhGdE <- var(hospita$cost)
VariXhGdGG <- moments(k = 2, dist = "GG", domain = "realplus",

param = c(mu = GdHfit1$mu, sigma = GdHfit1$sigma,
nu = GdHfit1$nu), central = TRUE)

VariXhGdGB2 <- moments(k = 2, dist = "GB2", domain = "realplus",
param = c(mu = GdHfit2$mu, sigma = GdHfit2$sigma,
nu = GdHfit2$nu, tau = GdHfit2$tau), central = TRUE)

VariXhGdBCPE <- moments(k = 2, dist = "BCPE", domain = "realplus",
param = c(mu = GdHfit3$mu, sigma = GdHfit3$sigma,
nu = GdHfit3$nu, tau = GdHfit3$tau), central = TRUE)

### Skewness
SkewXhGdE <- skewness(hospita$cost, type = 1)
SkewXhGdGG <- skew(dist = "GG", domain = "realplus",

param = c(mu = GdHfit1$mu, sigma = GdHfit1$sigma,
nu = GdHfit1$nu))

SkewXhGdGB2 <- skew(dist = "GB2", domain = "realplus",
param = c(mu = GdHfit2$mu, sigma = GdHfit2$sigma,
nu = GdHfit2$nu, tau = GdHfit2$tau))

SkewXhGdBCPE <- skew(dist = "BCPE", domain = "realplus",
param = c(mu = GdHfit3$mu, sigma = GdHfit3$sigma,
nu = GdHfit3$nu, tau = GdHfit3$tau))

### Excess Kurtosis
KurtXhGdE <- kurtosis(hospita$cost, type = 1)
KurtXhGdGG <- kurt(dist = "GG", domain = "realplus",

param = c(mu = GdHfit1$mu, sigma = GdHfit1$sigma,
nu = GdHfit1$nu), excess = TRUE)

KurtXhGdGB2 <- kurt(dist = "GB2", domain = "realplus",
param = c(mu = GdHfit2$mu, sigma = GdHfit2$sigma,
nu = GdHfit2$nu, tau = GdHfit2$tau), excess = TRUE)

KurtXhGdBCPE <- kurt(dist = "BCPE", domain = "realplus",
param = c(mu = GdHfit3$mu, sigma = GdHfit3$sigma,
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nu = GdHfit3$nu, tau = GdHfit3$tau), excess = TRUE)

kable(cbind(data.frame(Dist = c("Empirical", "GG", "GB2",
"BCPE")), "Mean" = c(MeanXhGdE, unname(MeanXhGdGG),
unname(MeanXhGdGB2), unname(MeanXhGdBCPE)),
"Variance" = c(VariXhGdE, unname(VariXhGdGG),
unname(VariXhGdGB2), unname(VariXhGdBCPE)),
"Skewness" = c(SkewXhGdE, unname(SkewXhGdGG),
unname(SkewXhGdGB2), unname(SkewXhGdBCPE)),
"Excess Kurtosis" = c(KurtXhGdE, unname(KurtXhGdGG),
unname(KurtXhGdGB2), unname(KurtXhGdBCPE))),

caption = "Statistical measurements of GAMLSS distributions for
hospitalization services \\label{tab:StatisticsGdXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 43: Adjustment of cumulative individual costs of hospitalization services with
GAMLSS distributions

FnXh <- ecdf(hospita$cost)
sortXh <- sort(hospita$cost)
### Empirical vs Theorical cumulative distribution function
plot(FnXh, lwd = 3,

xlab = "Sample quantiles of individual costs of hospitalization",
main = "Adjustment cumulative individual costs of hospitalization")

fitXhGG <- pGG(q = sortXh, mu = GdHfit1$mu, sigma = GdHfit1$sigma,
nu = GdHfit1$nu)

lines(sortXh, fitXhGG, lwd = 3, lty = 1, col = "blue")
fitXhGB2 <- pGB2(q = sortXh, mu = GdHfit2$mu, sigma = GdHfit2$sigma,

nu = GdHfit2$nu, tau = GdHfit2$tau)
lines(sortXh, fitXhGB2, lwd = 3, lty = 2, col = "red")
fitXhBCPE <- pBCPE(q = sortXh, mu = GdHfit3$mu,

sigma = GdHfit3$sigma, nu = GdHfit3$nu, tau = GdHfit3$tau)
lines(sortXh, fitXhBCPE, lwd = 3, lty = 4, col = "green")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red",

"green"), legend = c("Cumulative empirical distribution",
"Generalized Gamma", "Generalized Beta type 2",
"Box-Cox Power Exponential"), lwd = 2)

Code 44: Adjustment of log-survival distribution of hospitalization with GAMLSS
distributions
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### Empirical vs Theorical log-survival distribution function
survXh <- 1 - FnXh(sortXh)
plot(x = log(sortXh), y = log(survXh), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
hospitalization)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
hospitalization", type = "l")

survXhGG <- 1 - fitXhGG
lines(log(sortXh), log(survXhGG), lwd = 3, col = "blue")
survXhGB2 <- 1 - fitXhGB2
lines(log(sortXh), log(survXhGB2), lwd = 3, col = "red", lty = 2)
survXhBCPE <- 1 - fitXhBCPE
lines(log(sortXh), log(survXhBCPE), lwd = 3, col = "green", lty = 4)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red", "green"),

legend = c("log-Survival Distribution", "Generalized Gamma",
"Generalized Beta type 2", "Box-Cox Power Exponential"),
lwd = 2)

Code 45: Q-Q plot GAMLSS distribution for hospitalization services

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
### QQ-plot
qqPlot(x = hospita$cost, lwd = 1, distribution = "GG",

mu = GdHfit1$mu, sigma = GdHfit1$sigma, nu = GdHfit1$nu,
cex = 1, col.lines = "red" , xlab = "Theorical Quantiles",
ylab = "Sample Quantiles", id = FALSE,
main = "(a) Generalized Gamma Q-Q Plot")

qqPlot(x = hospita$cost, lwd = 1, distribution = "GB2",
mu = GdHfit2$mu, sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau, cex = 1, col.lines = "red",
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Generalized Beta type 2 Q-Q Plot", id = FALSE)

qqPlot(x = hospita$cost, lwd = 1, distribution = "BCPE",
mu = GdHfit3$mu, sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(c) Box-Cox Power Exponential Q-Q Plot", id = FALSE)

Code 46: Goodness-of-fit tests for hospitalization services for GAMLSS

# A seed is established so that the results can be replicated
set.seed(1248)
### Kolmogorov-Smirnov test
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kolmGdXhGG <- ks.test(x = hospita$cost, distn = "pGG",
H = min(hospita$cost), fit = list(mu = GdHfit1$mu,
sigma = GdHfit1$sigma, nu = GdHfit1$nu))

kolmGdXhGB2 <- ks.test(x = hospita$cost, distn = "pGB2",
H = min(hospita$cost), fit = list(mu = GdHfit2$mu,
sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau))

kolmGdXhBCPE <- ks.test(x = hospita$cost, distn = "pBCPE",
H = min(hospita$cost), fit = list(mu = GdHfit3$mu,
sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau))

### Cramer-von Mises test
cramGdXhGG <- w2.test(x = hospita$cost, distn = "pGG",

H = min(hospita$cost), fit = list(mu = GdHfit1$mu,
sigma = GdHfit1$sigma, nu = GdHfit1$nu))

cramGdXhGB2 <- w2.test(x = hospita$cost, distn = "pGB2",
H = min(hospita$cost), fit = list(mu = GdHfit2$mu,
sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau))

cramGdXhBCPE <- w2.test(x = hospita$cost, distn = "pBCPE",
H = min(hospita$cost), fit = list(mu = GdHfit3$mu,
sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau))

### Kuiper test
kuipGdXhGG <- v.test(x = hospita$cost, distn = "pGG",

H = min(hospita$cost), fit = list(mu = GdHfit1$mu,
sigma = GdHfit1$sigma, nu = GdHfit1$nu))

kuipGdXhGB2 <- v.test(x = hospita$cost, distn = "pGB2",
H = min(hospita$cost), fit = list(mu = GdHfit2$mu,
sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau))

kuipGdXhBCPE <- v.test(x = hospita$cost, distn = "pBCPE",
H = min(hospita$cost), fit = list(mu = GdHfit3$mu,
sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau))

### Supremum class Upper Tail Anderson-Darling test
adupGdXhGG <- adup.test(x = hospita$cost, distn = "pGG",

H = min(hospita$cost), fit = list(mu = GdHfit1$mu,
sigma = GdHfit1$sigma, nu = GdHfit1$nu))

adupGdXhGB2 <- adup.test(x = hospita$cost, distn = "pGB2",
H = min(hospita$cost), fit = list(mu = GdHfit2$mu,
sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau))

adupGdXhBCPE <- adup.test(x = hospita$cost, distn = "pBCPE",
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H = min(hospita$cost), fit = list(mu = GdHfit3$mu,
sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau))

### Quadratic Class Upper Tail Anderson-Darling test
ad2upGdXhGG <- ad2up.test(x = hospita$cost, distn = "pGG",

H = min(hospita$cost), fit = list(mu = GdHfit1$mu,
sigma = GdHfit1$sigma, nu = GdHfit1$nu))

ad2upGdXhGB2 <- ad2up.test(x = hospita$cost, distn = "pGB2",
H = min(hospita$cost), fit = list(mu = GdHfit2$mu,
sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau))

ad2upGdXhBCPE <- ad2up.test(x = hospita$cost, distn = "pBCPE",
H = min(hospita$cost), fit = list(mu = GdHfit3$mu,
sigma = GdHfit3$sigma, nu = GdHfit3$nu,
tau = GdHfit3$tau))

### Results table
kable(cbind(data.frame(Dist = c("GG", "GB2", "BCPE")),

"ks.test" = c(kolmGdXhGG$p.value, kolmGdXhGB2$p.value,
kolmGdXhBCPE$p.value), "w2.test" = c(cramGdXhGG$p.value,
cramGdXhGB2$p.value, cramGdXhBCPE$p.value), "v.test" = c(
kuipGdXhGG$p.value, kuipGdXhGB2$p.value,
kuipGdXhBCPE$p.value), "adup.test" = c(adupGdXhGG$p.value,
adupGdXhGB2$p.value, adupGdXhBCPE$p.value),
"ad2up.test" = c(ad2upGdXhGG$p.value,
ad2upGdXhGB2$p.value, ad2upGdXhBCPE$p.value)),

caption = "Goodness-of-fit tests for hospitalization services
with GAMLSS distributions \\label{tab:gftGdXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Risk measures estimation for hospitalization ser-
vices with GAMLSS

Code 47: Tail index estimation for hospitalization services with GAMLSS

### Density function
fhospG <- function(x) dGB2(x, mu = GdHfit2$mu,

sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau)

### Cumulative function
FhospG <- function(x) pGB2(x, mu = GdHfit2$mu,

sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau)
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### Equation to calculate the tail index
tailindexHG <- function(x) (1-FhospG(x))/(x * fhospG(x))
curve(expr = tailindexHG, from = 1, to = 3600, ylim = c(0,0.2),

ylab = "Limit", xlab = "x", mgp=c(2.5,1,0), lwd = 2,
main = "Tail index estimation for hospitalization

services")

Code 48: Risk measures for hospitalization services with GAMLSS

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))

### Value at Risk
quantileHG <- function(kappa) 1 - ((1 - kappa) / MeanNhGPO)
FquantileHG <- function(kappa) qGB2(quantileHG(kappa),

mu = GdHfit2$mu, sigma = GdHfit2$sigma,
nu = GdHfit2$nu, tau = GdHfit2$tau)

correctionHG <- MeanXhGdGB2 * (MeanNhGPO + (VariNhGPO / MeanNhGPO) - 1)
VaRHG <- function(kappa) FquantileHG(kappa) + correctionHG

curve(expr = VaRHG, from = 0.90, to = 0.999,
ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(a) Value at Risk for hospitalization

services with GAMLSS")
rect(xleft = 0.95, ybottom = VaRHG(0.95) + 30, xright = 0.95,

ytop = VaRHG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = VaRHG(0.99) + 30, xright = 0.99,

ytop = VaRHG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(VaRHG(0.95), VaRHG(0.99)),

pch = 19, col = "red", cex = 1.2)
legend(x = 0.935, y = VaRHG(0.95) + 65, bty = "n",

legend = round(VaRHG(0.95), 3))
legend(x = 0.975, y = VaRHG(0.99) + 65, bty = "n",

legend = round(VaRHG(0.99), 3))

### Expected Shortfall
TVaRHG <- function(kappa)(1/(1-kappa)) * as.numeric(integrate(

f = VaRHG, lower = kappa, upper = 1)$value)
TVaRHG <- Vectorize(TVaRHG)

curve(expr = TVaRHG, from = 0.90, to = 0.999,
ylab = "Expected Shortfall (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(b) Expected Shortfall for hospitalization
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services with GAMLSS")
rect(xleft = 0.95, ybottom = TVaRHG(0.95) + 30, xright = 0.95,

ytop = TVaRHG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = TVaRHG(0.99) + 30, xright = 0.99,

ytop = TVaRHG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(TVaRHG(0.95), TVaRHG(0.99)),

pch = 19, col = "red", cex = 1.2)
legend(x = 0.935, y = TVaRHG(0.95) + 68, bty = "n",

legend = round(TVaRHG(0.95), 3))
legend(x = 0.975, y = TVaRHG(0.99) + 68, bty = "n",

legend = round(TVaRHG(0.99), 3))

### Stop-Loss Premium
ESHG <- function(kappa) (1 - kappa)*(TVaRHG(kappa) - VaRHG(kappa))

curve(expr = ESHG, from = 0.90, to = 0.999,
ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(c) Stop-Loss Premium for hospitalization

services with GAMLSS")
rect(xleft = 0.95, ybottom = ESHG(0.95) + 0.6, xright = 0.95,

ytop = ESHG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = ESHG(0.99) + 0.6, xright = 0.99,

ytop = ESHG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(ESHG(0.95), ESHG(0.99)),

pch = 19, col = "red", cex = 1.2)
legend(x = 0.938, y = ESHG(0.95) + 1.3, bty = "n",

legend = round(ESHG(0.95), 3))
legend(x = 0.978, y = ESHG(0.99) + 1.3, bty = "n",

legend = round(ESHG(0.99), 3))

Optimum retention point estimation for hospital-
ization service with GAMLSS

Code 49: Optimum retention point estimation for hospitalization service with GAMLSS

VaRTHG <- function(rho, kappa) VaRHG(kappa) + (1 + rho)*ESHG(kappa)
ResultHG <- function(rho){

kapparho <- 1 - 1/(1 + rho)
VaRHGrho <- round(VaRHG(kapparho), 3)
DeltaHGrho <- round((1+rho)*ESHG(kapparho), 3)
VaRTHGrho <- round(VaRTHG(rho, kapparho), 3)
return(c(rho, kapparho, VaRHGrho, DeltaHGrho, VaRTHGrho))
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}

tableHG <- round(t(sapply(X = rho, FUN = ResultHG)), 6)

kable(cbind(data.frame(tableHG)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",

"$M_{hosp}^*$", "$\\delta(M_{hosp}^*)$",
"$VaR_{T_{hosp}}(\\kappa_{\\rho^*})$"),

caption = "Optimum retention point estimation for
hospitalization services with GAMLSS \\label{tab:retentionHG}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")

Adjustment of GAMLSS distributions for general
surgery services severities
Code 50: Best fit with GAMLSS distributions for individual cost of general surgery

services

### The adjustment is made
GdSfit1 <- fitDist(y = surgery$cost, type = "realplus")
### Estimation of second and third distribution with best fit
GdSfit2 <- gamlssML(formula = surgery$cost, family = BCPE)
GdSfit3 <- gamlssML(formula = surgery$cost, family = GG)
### The five distributions that present the best fit are
kable(rbind(GdSfit1$fits[1:5]),

caption = "Better fit for individual cost of general surgery
services with GAMLSS distributions \\label{tab:GdSfit}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 51: Statistical measurements of GAMLSS distributions for general surgery
services

### Estimation of mean, variance, skewness and excess kurtosis
#### Mean
MeanXsGdE <- mean(surgery$cost)
MeanXsGdBCPEo <- moments(k = 1, dist = "BCPEo", domain = "realplus",

param = c(mu = GdSfit1$mu, sigma = GdSfit1$sigma,
nu = GdSfit1$nu, tau = GdSfit1$tau))

MeanXsGdBCPE <- moments(k = 1, dist = "BCPE", domain = "realplus",
param = c(mu = GdSfit2$mu, sigma = GdSfit2$sigma,
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nu = GdSfit2$nu, tau = GdSfit2$tau))
MeanXsGdGG <- moments(k = 1, dist = "GG", domain = "realplus",

param = c(mu = GdSfit3$mu, sigma = GdSfit3$sigma,
nu = GdSfit3$nu))

#### Variance
VariXsGdE <- var(surgery$cost)
VariXsGdBCPEo <- moments(k = 2, dist = "BCPEo", domain = "realplus",

param = c(mu = GdSfit1$mu, sigma = GdSfit1$sigma,
nu = GdSfit1$nu, tau = GdSfit1$tau), central = TRUE)

VariXsGdBCPE <- moments(k = 2, dist = "BCPE", domain = "realplus",
param = c(mu = GdSfit2$mu, sigma = GdSfit2$sigma,
nu = GdSfit2$nu, tau = GdSfit2$tau), central = TRUE)

VariXsGdGG <- moments(k = 2, dist = "GG", domain = "realplus",
param = c(mu = GdSfit3$mu, sigma = GdSfit3$sigma,
nu = GdSfit3$nu), central = TRUE)

### Skewness
SkewXsGdE <- skewness(surgery$cost, type = 1)
SkewXsGdBCPEo <- skew(dist = "BCPEo", domain = "realplus",

param = c(mu = GdSfit1$mu, sigma = GdSfit1$sigma,
nu = GdSfit1$nu, tau = GdSfit1$tau))

SkewXsGdBCPE <- skew(dist = "BCPE", domain = "realplus",
param = c(mu = GdSfit2$mu, sigma = GdSfit2$sigma,
nu = GdSfit2$nu, tau = GdSfit2$tau))

SkewXsGdGG <- skew(dist = "GG", domain = "realplus",
param = c(mu = GdSfit3$mu, sigma = GdSfit3$sigma,
nu = GdSfit3$nu))

### Excess Kurtosis
KurtXsGdE <- kurtosis(surgery$cost, type = 1)
KurtXsGdBCPEo <- kurt(dist = "BCPEo", domain = "realplus",

param = c(mu = GdSfit1$mu, sigma = GdSfit1$sigma,
nu = GdSfit1$nu, tau = GdSfit1$tau), excess = TRUE)

KurtXsGdBCPE <- kurt(dist = "BCPE", domain = "realplus",
param = c(mu = GdSfit2$mu, sigma = GdSfit2$sigma,
nu = GdSfit2$nu, tau = GdSfit2$tau), excess = TRUE)

KurtXsGdGG <- kurt(dist = "GG", domain = "realplus",
param = c(mu = GdSfit3$mu, sigma = GdSfit3$sigma,
nu = GdSfit3$nu), excess = TRUE)

kable(cbind(data.frame(Dist = c("Empirical", "GG", "BCPEo",
"BCPE")), "Mean" = c(MeanXsGdE, unname(MeanXsGdBCPEo),
unname(MeanXsGdBCPE), unname(MeanXsGdGG)),
"Variance" = c(VariXsGdE, unname(VariXsGdBCPEo),
unname(VariXsGdBCPE), unname(VariXsGdGG)),
"Skewness" = c(SkewXsGdE, unname(SkewXsGdBCPEo),
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unname(SkewXsGdBCPE), unname(SkewXsGdGG)),
"Excess Kurtosis" = c(KurtXsGdE, unname(KurtXsGdBCPEo),
unname(KurtXsGdBCPE), unname(KurtXsGdGG))),

caption = "Statistical measurements of GAMLSS distributions for
general surgery services \\label{tab:StatisticsGdXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 52: Adjustment of cumulative individual costs of general surgery services with
GAMLSS distributions

FnXs <- ecdf(surgery$cost)
sortXs <- sort(surgery$cost)
### Empirical vs Theorical cumulative distribution function
plot(FnXs, lwd = 3,

xlab = "Sample quantiles of individual costs of general surgery",
main = "Adjustment cumulative individual costs of general surgery")

fitXsBCPEo <- pBCPEo(q = sortXs, mu = GdSfit1$mu,
sigma = GdSfit1$sigma, nu = GdSfit1$nu,
tau = GdSfit1$tau)

lines(sortXs, fitXsBCPEo, lwd = 3, lty = 1, col = "blue")
fitXsBCPE <- pBCPE(q = sortXs, mu = GdSfit2$mu, sigma = GdSfit2$sigma,

nu = GdSfit2$nu, tau = GdSfit2$tau)
lines(sortXs, fitXsBCPE, lwd = 3, lty = 2, col = "red")
fitXsGG <- pGG(q = sortXs, mu = GdSfit3$mu, sigma = GdSfit3$sigma,

nu = GdSfit3$nu)
lines(sortXs, fitXsGG, lwd = 3, lty = 4, col = "green")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red",

"green"), legend = c("Cumulative empirical distribution",
"Box-Cox Power Exponential-Original",
"Box-Cox Power Exponential", "Generalized Gamma"), lwd = 2)

Code 53: Adjustment of log-survival distribution of general surgery with GAMLSS
distributions

### Empirical vs Theorical log-survival distribution function
survXs <- 1 - FnXs(sortXs)
plot(x = log(sortXs), y = log(survXs), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
general surgery)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
general surgery", type = "l")

survXsBCPEo <- 1 - fitXsBCPEo
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lines(log(sortXs), log(survXsBCPEo), lwd = 3, col = "blue")
survXsBCPE <- 1 - fitXsBCPE
lines(log(sortXs), log(survXsBCPE), lwd = 3, col = "red", lty = 2)
survXsGG <- 1 - fitXsGG
lines(log(sortXs), log(survXsGG), lwd = 3, col = "green", lty = 4)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red", "green"),

legend = c("log-Survival Distribution",
"Box-Cox Power Exponential-Original",
"Box-Cox Power Exponential", "Generalized Gamma"),
lwd = 2)

Code 54: Q-Q plot GAMLSS distribution for general surgery

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
### QQ-plot
qqPlot(x = surgery$cost, lwd = 1, distribution = "BCPEo",

mu = GdSfit1$mu, sigma = GdSfit1$sigma, nu = GdSfit1$nu,
tau = GdSfit1$tau, cex = 1, col.lines = "red", id = FALSE,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(a) Box-Cox Power Exponential-Orig. Q-Q Plot")

qqPlot(x = surgery$cost, lwd = 1, distribution = "BCPE",
mu = GdSfit2$mu, sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau, cex = 1, col.lines = "red", id = FALSE,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Box-Cox Power Exponential Q-Q Plot")

qqPlot(x = surgery$cost, lwd = 1, distribution = "GG",
mu = GdSfit3$mu, sigma = GdSfit3$sigma, nu = GdSfit3$nu,
cex = 1, col.lines = "red", id = FALSE,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(c) Generalized Gamma Q-Q Plot")

Code 55: Goodness-of-fit tests for general surgery services for GAMLSS distributions

# A seed is established so that the results can be replicated
set.seed(1248)
### Kolmogorov-Smirnov test
kolmGdXsBCPEo <- ks.test(x = surgery$cost, distn = "pBCPEo",

H = min(surgery$cost), fit = list(mu = GdSfit1$mu,
sigma = GdSfit1$sigma,nu = GdSfit1$nu,
tau = GdSfit1$tau))

kolmGdXsBCPE <- ks.test(x = surgery$cost, distn = "pBCPE",
H = min(surgery$cost), fit = list(mu = GdSfit2$mu,
sigma = GdSfit2$sigma, nu = GdSfit2$nu,
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tau = GdSfit2$tau))
kolmGdXsGG <- ks.test(x = surgery$cost, distn = "pGG",

H = min(surgery$cost), fit = list(mu = GdSfit3$mu,
sigma = GdSfit3$sigma, nu = GdSfit3$nu))

### Cramer-von Mises test
cramGdXsBCPEo <- w2.test(x = surgery$cost, distn = "pBCPEo",

H = min(surgery$cost), fit = list(mu = GdSfit1$mu,
sigma = GdSfit1$sigma,nu = GdSfit1$nu,
tau = GdSfit1$tau))

cramGdXsBCPE <- w2.test(x = surgery$cost, distn = "pBCPE",
H = min(surgery$cost), fit = list(mu = GdSfit2$mu,
sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau))

cramGdXsGG <- w2.test(x = surgery$cost, distn = "pGG",
H = min(surgery$cost), fit = list(mu = GdSfit3$mu,
sigma = GdSfit3$sigma, nu = GdSfit3$nu))

### Kuiper test
kuipGdXsBCPEo <- v.test(x = surgery$cost, distn = "pBCPEo",

H = min(surgery$cost), fit = list(mu = GdSfit1$mu,
sigma = GdSfit1$sigma,nu = GdSfit1$nu,
tau = GdSfit1$tau))

kuipGdXsBCPE <- v.test(x = surgery$cost, distn = "pBCPE",
H = min(surgery$cost), fit = list(mu = GdSfit2$mu,
sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau))

kuipGdXsGG <- v.test(x = surgery$cost, distn = "pGG",
H = min(surgery$cost), fit = list(mu = GdSfit3$mu,
sigma = GdSfit3$sigma, nu = GdSfit3$nu))

### Supremum class Upper Tail Anderson-Darling test
adupGdXsBCPEo <- adup.test(x = surgery$cost, distn = "pBCPEo",

H = min(surgery$cost), fit = list(mu = GdSfit1$mu,
sigma = GdSfit1$sigma,nu = GdSfit1$nu,
tau = GdSfit1$tau))

adupGdXsBCPE <- adup.test(x = surgery$cost, distn = "pBCPE",
H = min(surgery$cost), fit = list(mu = GdSfit2$mu,
sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau))

adupGdXsGG <- adup.test(x = surgery$cost, distn = "pGG",
H = min(surgery$cost), fit = list(mu = GdSfit3$mu,
sigma = GdSfit3$sigma, nu = GdSfit3$nu))

### Quadratic Class Upper Tail Anderson-Darling test
ad2upGdXsBCPEo <- ad2up.test(x = surgery$cost, distn = "pBCPEo",

H = min(surgery$cost), fit = list(mu = GdSfit1$mu,
sigma = GdSfit1$sigma,nu = GdSfit1$nu,
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tau = GdSfit1$tau))
ad2upGdXsBCPE <- ad2up.test(x = surgery$cost, distn = "pBCPE",

H = min(surgery$cost), fit = list(mu = GdSfit2$mu,
sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau))

ad2upGdXsGG <- ad2up.test(x = surgery$cost, distn = "pGG",
H = min(surgery$cost), fit = list(mu = GdSfit3$mu,
sigma = GdSfit3$sigma, nu = GdSfit3$nu))

### Results table
kable(cbind(data.frame(Dist = c("BCPEo", "BCPE", "GG")),

"ks.test" = c(kolmGdXsBCPEo$p.value, kolmGdXsBCPE$p.value,
kolmGdXsGG$p.value), "w2.test" = c(cramGdXsBCPEo$p.value,
cramGdXsBCPE$p.value, cramGdXsGG$p.value), "v.test" = c(
kuipGdXsBCPEo$p.value, kuipGdXsBCPE$p.value,
kuipGdXsGG$p.value), "adup.test" = c(adupGdXsBCPEo$p.value,
adupGdXsBCPE$p.value, adupGdXsGG$p.value), "ad2up.test" =
c(ad2upGdXsBCPEo$p.value, ad2upGdXsBCPE$p.value,
ad2upGdXsGG$p.value)),

caption = "Goodness-of-fit tests for general surgery services
with GAMLSS distributions \\label{tab:gftGdXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Risk measures estimation for general surgery ser-
vices with GAMLSS

Code 56: Tail index estimation for general surgery services with GAMLSS

### Density function
fsurgG <- function(x) dBCPEo(x, mu = GdSfit1$mu,

sigma = GdSfit1$sigma, nu = GdSfit1$nu,
tau = GdSfit1$tau)

### Cumulative function
FsurgG <- function(x) pBCPEo(x, mu = GdSfit1$mu,

sigma = GdSfit1$sigma, nu = GdSfit1$nu,
tau = GdSfit1$tau)

### Equation to calculate the tail index
tailindexSG <- function(x) (1-FsurgG(x))/(x * fsurgG(x))
curve(expr = tailindexSG, from = 1, to = 3600, ylim = c(0,0.2),

ylab = "Limit", xlab = "x", mgp=c(2.5,1,0), lwd = 2,
main = "Tail index estimation for general surgery

services with GAMLSS")
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Code 57: Risk measures for general surgery services with GAMLSS

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))

### Value at Risk
quantileSG <- function(kappa) 1 - ((1 - kappa) / MeanNsDEL)
FquantileSG <- function(kappa) qBCPEo(quantileSG(kappa),

mu = GdSfit1$mu, sigma = GdSfit1$sigma,
nu = GdSfit1$nu, tau = GdSfit1$tau)

correctionSG <- MeanXsGdBCPEo * (MeanNsDEL + (VariNsDEL / MeanNsDEL) -
1)

VaRSG <- function(kappa) FquantileSG(kappa) + correctionSG

curve(expr = VaRSG, from = 0.90, to = 0.999,
ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Value at Risk for general surgery

services with GAMLSS")
rect(xleft = 0.95, ybottom = VaRSG(0.95) + 30, xright = 0.95,

ytop = VaRSG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = VaRSG(0.99) + 30, xright = 0.99,

ytop = VaRSG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(VaRSG(0.95), VaRSG(0.99)),

pch = 19, col = "red", cex = 1.2)
legend(x = 0.94, y = VaRSG(0.95) + 50, bty = "n",

legend = round(VaRSG(0.95), 3))
legend(x = 0.98, y = VaRSG(0.99) + 50, bty = "n",

legend = round(VaRSG(0.99), 3))

### Expected Shortfall
TVaRSG <- function(kappa) (1/(1-kappa)) * as.numeric(integrate(

f = VaRSG, lower = kappa, upper = 1)$value)
TVaRSG <- Vectorize(TVaRSG)

curve(expr = TVaRSG, from = 0.90, to = 0.999,
ylab = "Expected Shortfall (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Expected Shortfall for general surgery

services with GAMLSS")
rect(xleft = 0.95, ybottom = TVaRSG(0.95) + 30, xright = 0.95,

ytop = TVaRSG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = TVaRSG(0.99) + 30, xright = 0.99,

ytop = TVaRSG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(TVaRSG(0.95), TVaRSG(0.99)),
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pch = 19, col = "red", cex = 1.2)
legend(x = 0.94, y = TVaRSG(0.95) + 52, bty = "n",

legend = round(TVaRSG(0.95), 3))
legend(x = 0.98, y = TVaRSG(0.99) + 52, bty = "n",

legend = round(TVaRSG(0.99), 3))

### Stop-Loss Premium
ESSG <- function(kappa) (1 - kappa)*(TVaRSG(kappa) - VaRSG(kappa))

curve(expr = ESSG, from = 0.90, to = 0.999,
ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "Stop-Loss Premium for general surgery

services with GAMLSS")
rect(xleft = 0.95, ybottom = ESSG(0.95) + 0.5, xright = 0.95,

ytop = ESSG(0.95), lwd = 2, border = "red")
rect(xleft = 0.99, ybottom = ESSG(0.99) + 0.5, xright = 0.99,

ytop = ESSG(0.99), lwd = 2, border = "red")
points(x = c(0.95, 0.99), y = c(ESSG(0.95), ESSG(0.99)),

pch = 19, col = "red", cex = 1.2)
legend(x = 0.942, y = ESSG(0.95) + 0.85, bty = "n",

legend = round(ESSG(0.95), 3))
legend(x = 0.982, y = ESSG(0.99) + 0.85, bty = "n",

legend = round(ESSG(0.99), 3))

Optimum retention point estimation for general
surgery service with GAMLSS

Code 58: Optimum retention point estimation for general surgery service with GAMLSS

VaRTSG <- function(rho, kappa) VaRSG(kappa) + (1 + rho)*ESSG(kappa)
ResultSG <- function(rho){

kapparho <- 1 - 1/(1 + rho)
VaRSGrho <- round(VaRSG(kapparho), 3)
DeltaSGrho <- round((1+rho)*ESSG(kapparho), 3)
VaRTSGrho <- round(VaRTSG(rho, kapparho), 3)
return(c(rho, kapparho, VaRSGrho, DeltaSGrho, VaRTSGrho))

}

tableSG <- round(t(sapply(X = rho, FUN = ResultSG)), 6)

kable(cbind(data.frame(tableSG)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",
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"$M_{surg}^*$", "$\\delta(M_{surg}^*)$",
"$VaR_{T_{surg}}(\\kappa_{\\rho^*})$"),

caption = "Optimum retention point estimation for
general surgery services with GAMLSS \\label{tab:retentionSG}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")

Adjustment comparison between the spliced and
GAMLSS distribution for hospitalization services

Code 59: Statistical measurements comparison for hospitalization services

kable(cbind(data.frame(Dist = c("Empirical", "weibullgpd", "GB2")),
"Mean" = c(MeanXhGdE, unname(MeanXhSpW),
unname(MeanXhGdGB2)), "Variance" = c(VariXhGdE,
unname(VariXhSpW), unname(VariXhGdGB2)),
"Skewness" = c(SkewXhGdE, unname(SkewXhSpW),
unname(SkewXhGdGB2)), "Excess Kurtosis" = c(KurtXhGdE,
unname(KurtXhSpW), unname(KurtXhGdGB2))),

caption = "Statistical measurements comparison for
hospitalization services \\label{tab:StatisticsCpXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 60: Adjustment comparison for cumulative individual costs of hospitalization
services

### Empirical vs Theorical cumulative distribution function
plot(FnXh, lwd = 3,

xlab = "Sample quantiles of individual costs of hospitalization",
main = "Adjustment cumulative individual costs of hospitalization")

lines(sortXh, fitXhW, lwd = 3, lty = 1, col = "blue")
lines(sortXh, fitXhGB2, lwd = 3, lty = 2, col = "red")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red"),

lwd = 2, legend = c("Cumulative empirical distribution",
"Weibull-Generalized Pareto", "Generalized Beta type 2"))

Code 61: Adjustment comparison for log-survival costs of hospitalization
services
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### Empirical vs Theorical log-survival distribution function
plot(x = log(sortXh), y = log(survXh), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
hospitalization)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
hospitalization", type = "l")

lines(log(sortXh), log(survXhW), lwd = 3, col = "blue", lty = 1)
lines(log(sortXh), log(survXhGB2), lwd = 3, col = "red", lty = 2)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red"),

lwd = 2, legend = c("log-Survival Distribution",
"Weibull-Generalized Pareto", "Generalized Beta type 2"))

Code 62: Q-Q plot comparison for hospitalization services

par(mfrow = c(2,1))
### QQ-plot
qqPlot(x = hospita$cost, lwd = 1, distribution = "weibullgpd",

phiu = SpHfit3$phi, wshape = SpHfit3$wshape,
wscale = SpHfit3$wscale, u = SpHfit3$u, xi = SpHfit3$xi,
sigmau = SpHfit3$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(a) Weibull-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = hospita$cost, lwd = 1, distribution = "GB2",
mu = GdHfit2$mu, sigma = GdHfit2$sigma, nu = GdHfit2$nu,
tau = GdHfit2$tau, cex = 1, col.lines = "red",
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Generalized Beta type 2 Q-Q Plot", id = FALSE)

Code 63: Goodness-of-fit tests comparison for hospitalization services

### Results table
kable(cbind(data.frame(Dist = c("weibullgpd", "GB2")),

"ks.test" = c(kolmSpXhW$p.value, kolmGdXhGB2$p.value),
"w2.test" = c(cramSpXhW$p.value, cramGdXhGB2$p.value),
"v.test" = c(kuipSpXhW$p.value, kuipGdXhGB2$p.value),
"adup.test" = c(adupSpXhW$p.value, adupGdXhGB2$p.value),
"ad2up.test" = c(ad2upSpXhW$p.value, ad2upGdXhGB2$p.value)),

caption = "Goodness-of-fit tests comparison for hospitalization
services
\\label{tab:gftCpXh}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))
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Risk measures comparison for hospitalization ser-
vices

Code 64: Risk measures comparison for hospitalization services

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
### Value at Risk
curve(expr = VaRH, from = 0.90, to = 0.999,

ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(a) Value at Risk comparison for

hospitalization services", ylim = c(6250, 6750))
curve(expr = VaRHG, from = 0.90, to = 0.999, add = T,

col = "blue", lwd = 2)

legend("topleft", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
"Generalized Beta Type II"), lwd = c(2, 2))

### Expected Shortfall
curve(expr = TVaRH, from = 0.90, to = 0.999,

ylab = "Expected Shortfall (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(b) Expected Shortfall comparison for

hospitalization services", ylim = c(6250, 6750))
curve(expr = TVaRHG, from = 0.90, to = 0.999, add = T,

col = "blue", lwd = 2)

legend("topleft", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
"Generalized Beta Type II"), lwd = c(2, 2))

### Stop-Loss Premium
curve(expr = ESH, from = 0.90, to = 0.999,

ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(c) Stop-Loss Premium comparison for

hospitalization services", ylim = c(0, 5.2))
curve(expr = ESHG, from = 0.90, to = 0.999, add = T,

col = "blue", lwd = 2)

legend("topright", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
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"Generalized Beta Type II"), lwd = c(2, 2))

Optimum retention point comparison for hospital-
ization services

Code 65: Optimum retention point comparison for hospitalization services

tableHC <- cbind(tableH[, 1:3], tableHG[, 3], tableH[, 4],
tableHG[, 4])

kable(cbind(data.frame(tableHC)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",

"$M_{hosp_{W-GP}}^*$", "$M_{hosp_{GB2}}^*$",
"$\\delta(M_{hosp_{W-GP}}^*)$",
"$\\delta(M_{hosp_{GB2}}^*)$"),

caption = "Optimum retention point comparison for
hospitalization services \\label{tab:retentionHC}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")

Adjustment comparison between the spliced and
GAMLSS distribution for general surgery

Code 66: Statistical measurements comparison for general surgery services

kable(cbind(data.frame(Dist = c("Empirical", "weibullgpd",
"BCPEo")), "Mean" = c(MeanXsGdE, unname(MeanXsSpW),
unname(MeanXsGdBCPEo)), "Variance" = c(round(VariXsGdE,
5), "does not exist", round(unname(VariXsGdBCPEo), 5)),
"Skewness" = c(round(SkewXsGdE, 6), "does not exist",
round(unname(SkewXsGdBCPEo), 6)), "Excess Kurtosis" =
c(round(KurtXsGdE, 5), "does not exist", round(unname(
KurtXsGdBCPEo, 5)))),

caption = "Statistical measurements comparison for
general surgery services \\label{tab:StatisticsCpXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Code 67: Adjustment comparison for cumulative individual costs of general surgery
services
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### Empirical vs Theorical cumulative distribution function
plot(FnXs, lwd = 3,

xlab = "Sample quantiles of individual costs of general surgery",
main = "Adjustment cumulative individual costs of general surgery")

lines(sortXs, fitXsW, lwd = 3, lty = 1, col = "blue")
lines(sortXs, fitXsBCPEo, lwd = 3, lty = 2, col = "red")
grid()
legend("bottomright", lty = 1, col = c("black", "blue", "red"),

lwd = 2, legend = c("Cumulative empirical distribution",
"Weibull-Generalized Pareto",
"Box-Cox Power Exponential-Original"))

Code 68: Adjustment comparison for log-survival costs of general surgery
services

### Empirical vs Theorical log-survival distribution function
plot(x = log(sortXs), y = log(survXs), lwd = 3,

xlab = "log(Sample quantiles of individual cost of
general surgery)", ylab = "log(1 - Fn(x))",
main = "Adjustment of log-survival distribution of
general surgery", type = "l")

lines(log(sortXs), log(survXsW), lwd = 3, col = "blue", lty = 1)
lines(log(sortXs), log(survXsBCPEo), lwd = 3, col = "red", lty = 2)
grid()
legend("bottomleft", lty = 1, col = c("black", "blue", "red"),

lwd = 2, legend = c("log-Survival Distribution",
"Weibull-Generalized Pareto",
"Box-Cox Power Exponential-Original"))

Code 69: Q-Q plot comparison for general surgery services

par(mfrow = c(2,1))
### QQ-plot
qqPlot(x = surgery$cost, lwd = 1, distribution = "weibullgpd",

phiu = SpSfit3$phi, wshape = SpSfit3$wshape,
wscale = SpSfit3$wscale, u = SpSfit3$u, xi = SpSfit3$xi,
sigmau = SpSfit3$sigmau, cex = 1, col.lines = "red" ,
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(a) Weibull-Generalized Pareto Q-Q Plot", id = FALSE)

qqPlot(x = surgery$cost, lwd = 1, distribution = "BCPEo",
mu = GdSfit2$mu, sigma = GdSfit2$sigma, nu = GdSfit2$nu,
tau = GdSfit2$tau, cex = 1, col.lines = "red",
xlab = "Theorical Quantiles", ylab = "Sample Quantiles",
main = "(b) Box-Cox Power Exponential-Orig. Q-Q Plot",
id = FALSE)
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Code 70: Goodness-of-fit tests comparison for general surgery services

### Results table
kable(cbind(data.frame(Dist = c("weibullgpd", "BCPEo")),

"ks.test" = c(kolmSpXsW$p.value, kolmGdXsBCPEo$p.value),
"w2.test" = c(cramSpXsW$p.value, cramGdXsBCPEo$p.value),
"v.test" = c(kuipSpXsW$p.value, kuipGdXsBCPEo$p.value),
"adup.test" = c(adupSpXsW$p.value, adupGdXsBCPEo$p.value),
"ad2up.test" = c(ad2upSpXsW$p.value,

ad2upGdXsBCPEo$p.value)),
caption = "Goodness-of-fit tests comparison for general surgery
services
\\label{tab:gftCpXs}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"))

Risk measures comparison for general surgery ser-
vices

Code 71: Risk measures comparison for general surgery services

par(mai=rep(0.5, 4))
layout(matrix(c(1,1, 2,2, 0, 3,3, 0), ncol = 4, byrow = TRUE))
### Value at Risk
curve(expr = VaRS, from = 0.90, to = 0.999,

ylab = "Value at Risk (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(a) Value at Risk comparison for

general surgery services", ylim = c(1000, 3000))
curve(expr = VaRSG, from = 0.90, to = 0.999, add = T,

col = "blue", lwd = 2)

legend("topleft", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
"Box-Cox Power Exponential-orig."), lwd = c(2, 2))

### Expected Shortfall
curve(expr = TVaRS, from = 0.90, to = 0.999,

ylab = "Expected Shortfall (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(b) Expected Shortfall comparison for

general surgery services", ylim = c(1000, 10000))
curve(expr = TVaRSG, from = 0.90, to = 0.999, add = T,
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col = "blue", lwd = 2)

legend("topleft", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
"Box-Cox Power Exponential-orig."), lwd = c(2, 2))

### Stop-Loss Premium
curve(expr = ESS, from = 0.90, to = 0.999,

ylab = "Stop-Loss Premium (in millions of pesos)",
xlab = expression(kappa), mgp=c(2,1,0), lwd = 2,
main = "(c) Stop-Loss Premium comparison for

general surgery services", ylim = c(0, 80))
curve(expr = ESSG, from = 0.90, to = 0.999, add = T,

col = "blue", lwd = 2)

legend("left", col = c("black", "blue"), lty = c(1, 1),
legend = c("Weibull-Generalized Pareto",
"Box-Cox Power Exponential-orig."), lwd = c(2, 2))

Optimum retention point comparison for general
surgery services

Code 72: Optimum retention point comparison for general surgery service

tableSC <- cbind(tableS[, 1:3], tableSG[, 3], tableS[, 4],
tableSG[, 4])

kable(cbind(data.frame(tableSC)), escape = FALSE,
col.names = c("$\\rho$", "$\\kappa_{\\rho^*}$",

"$M_{surg_{W-GP}}^*$", "$M_{surg{BCPEo}}^*$",
"$\\delta(M_{surg_{W-GP}}^*)$",
"$\\delta(M_{surg_{BCPEo}}^*)$"),

caption = "Optimum retention point comparison for
general surgery services \\label{tab:retentionSC}",
"latex", booktabs = T) %>%

kable_styling(latex_options = c("striped", "hold_position"),
position = "center")



Appendix C: Description of
GAMLSS distributions

Este apéndice busca realizar una descripción a las distribuciones ajustadas mediante
la librería gamlss (2005), que se emplearon en los capítulos 2 y 5.

Frequency Model

Delaporte (DEL)
The DEL distribution is a Poisson mixtures known in actuarial literature, according
to Johnson, Kemp, and Kotz (2005), as the convolution of a Negative Binomial distri-
bution with a Poisson distribution. In Rigby et al. (2008, pp. 385–386), the authors
define the probability function of the DEL distribution as

fy(y) = eµν

Γ(1/σ) [1 + µσ(1− ν)]−1/σS (7.1)

where

S =
y∑
j=0

(
y

j

)
µyνy−j

y!

[
µ+ 1

σ(1− ν)

]−j
Γ
( 1
σ

+ j
)

(7.2)

for y = 0, 1, 2, . . . ,∞, µ > 0, σ > 0 and 0 < ν < 1. Furthermore, in Rigby et
al. (2008, p. 393) establishes the mean, variance, skewness and excess kurtosis of the
DEL distribution as

E(Y ) = µ

V ar(Y ) = µ+ µ2σ(1− ν)2

Skew(Y ) = µ[1 + 3µσ(1− ν)2 + 2µ2σ2(1− ν)3]
(µ+ µ2σ(1− ν)2)1.5

Kurt(Y ) = µ[1 + 7µσ(1− ν)2 + 12µ2σ2(1− ν)3 + 6µ3σ3(1− ν)4]
(µ+ µ2σ(1− ν)2)2

(7.3)
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Generalized Poisson (GPO)
The GPO distribution proposed by Consul and Jain (1973) is defined as a gener-
alization of the Poisson distribution with two parameters, obtained in a limit way
when approximating the two gamma functions that have the Generalized Negative
Binomial distribution through the Stirling’s formula. In Rigby et al. (2017, p. 319)
is defined the probability function of the GPO distribution as

fy(y) =
(

µ

1 + µσ

)y (1 + µσ)y−1

y! exp
[
−µ(1 + σy)

1 + µσ

]
(7.4)

for y = 0, 1, . . . ,∞, where µ > 0, σ > 0. In addition, Rigby et al. (2017, p. 319)
define the mean, variance, skewness and excess kurtosis of Y as

E(Y ) = µ

V ar(Y ) = µ(1 + µσ)2

Skew(Y ) = (1 + 3µσ)/µ0.5

Kurt(Y ) = (1 + 10µσ + 15µ2σ2)/µ

(7.5)

Negative Binomial type I (NBI)
The NBI distribution is one of the most used distributions within the Mixed Poisson
Law, since by assuming that the parameter λ ∼ Gamma(α, β), is obtained

dFλ(θ) = βα

Γ(α)θ
α−1e−βθ, θ > 0 (7.6)

with α > 0 and β > 0. In Rigby et al. (2017, p. 321) the authors denote the
probability function of the NBI distribution as

fy(y) = Γ(y + (1/σ))
Γ(1/σ)Γ(y + 1)

(
µσ

1 + µσ

)y ( 1
1 + µσ

)1/σ

(7.7)

for y = 0, 1, . . . ,∞, with µ > 0, σ > 0. Also, Rigby et al., (2017, p. 321) define the
mean, variance, skewness and excess kurtosis of the distribution NBI as

E(Y ) = µ

V ar(Y ) = (µ+ µ2σ)
Skew(Y ) = (1 + 2µσ)/(µ+ µ2σ)0.5

Kurt(Y ) = 6σ + (1/(µ+ µ2σ))

(7.8)
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Poisson-Inverse Gaussian (PIG)
As pointed out by Willmot (1987), the PIG distribution as a Poisson mixture dis-
tribution has statistical and mathematical properties very similar to the Negative
Binomial distribution. On the other hand, Rigby et al. (2017, p. 325) defines the
probability function of the PIG distribution as

fy(y) =
(2α
π

)1/2 µye
1
σKy− 1

2
(α)

(ασ)yy! (7.9)

where µ > 0, σ > 0, α2 = 1
σ2 + 2µ

σ
, for y = 0, 1, . . . ,∞, and

Kλ(t) = 1
2

∫ ∞
0

xλ−1e−
1
2 t(x+x−1)dx (7.10)

is the modified Bessel function of the third type. Furthermore, Rigby et al. (2017, p.
325) establish that the mean, variance, skewness and excess kurtosis of Y are given
by

E(Y ) = µ

V ar(Y ) = µ(1 + µσ)
Skew(Y ) = (1 + 3µσ + 3µ2σ2)/

[
µ0.5(1 + µσ)1.5

]
Kurt(Y ) = (1 + 7µσ + 18µ2σ2 + 15µ3σ3)/

[
µ(1 + µσ)2

] (7.11)

Severity model

Box-Cox Power Exponential (BCPE)
The BCPE distribution was proposed by Rigby and Stasinopoulos (2004) and is
presented by the authors as a generalization of the distributions Power Exponential
(when the skewness parameter is zero) and Normal Box-Cox (when the kurtosis
parameter is zero), with the advantage of modeling both the skewness and the
kurtosis of the dependent variable Y .

In Rigby and Stasinopoulos (2004, p. 3058) and Rigby et al. (2017, p. 291) the
probability distribution of the BCPE is presented as

fy(y) = yν−1fT (z)
µνσFT

(
1
σ|ν|

) (7.12)

where y > 0, µ > 0, σ > 0, −∞ < ν < ∞, T is distributed as a standard Power
Exponential (mean zero and variance one), fT (z) is the density function of T evaluated
in the transformed random variable Z defined as

fT (z) = τe−|z/c|
τ

2cΓ(1/τ) (7.13)
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where τ > 0, c2 = Γ(1/τ)
Γ(3/τ) , and Z is a transformed random variable that follows

a truncated standard normal distribution, with range Z > −1/(σν) if ν > 0 or
Z < −1/(σν) if ν < 0, defined as

Z =


1
σν

[((
Y
µ

)ν
− 1

)]
if ν 6= 0

1
σ
log

(
Y
µ

)
if ν = 0

(7.14)

and FT (1/σ|ν|) is the cumulative distribution of T evaluated in 1
σν

defined as

FT

(
1
σ|ν|

)
= 1

2

1 +
γ
(

1
τ
,
∣∣∣ 1
cσ|ν|

∣∣∣τ)
Γ
(

1
τ

) sign

(
1
σ|ν|

) (7.15)

where Γ(·) is the gamma function and γ(·) is the incomplete gamma function.

It should be noted that the BCPE distribution does not have equations for the
calculation of its moments, but in Rigby and Stasinopoulos (2004, p. 3073), the
authors present approximations of the mean, coefficient of variation, skewness and
kurtosis of Y , when the parameter ν > 0 and σ < 0.2/max(|ν|, 1), due this allows us to
ignore the truncation of the random variable Z. (See Rigby and Stasinopoulos (2004,
p. 3073) for the approximation equations of the moments of the BCPE distribution).

Box-Cox Power Exponential - original (BCPEo)
It is worth noting what is expressed by Rigby et al. (2017, p. 292), with respect to
the relationship of the distributions BCPEo and BCPE, where the authors point
out that both distributions have the same probability density function, but they
differ in the link function to calculate the µ parameter. The link function of the
parameter µ for the BCPEo is log while for the BCPE is identity, therefore, to
adjust the parameter µ in the BCPEo, the optimization algorithm uses the domain
(−∞,∞), whereas in the BCPEo, the optimization algorithm uses the domain (0,∞).

Additionally, in Stasinopoulos, Rigby, Heller, Voudouris, and De Bastiani (2017,
p. 454) it is indicated that the selection of the link function for a parameter does
not generate problems, and that the preference for one or another link function (in
this case, using one or another distribution) lies in the one that obtains a GAIC(ω)
smaller in the adjustment (In this case ω = 2 thus GAIC(2) it is equivalent to AIC).

Generalized Beta type 2 (GB2)
The GB2 distribution is defined by McDonald and Xu (1995), as a particular case
of the Generalized Beta distribution, when the parameter c = 1. Also, in McDonald
and Xu (1995, p. 136) the authors point out that the GB2 has a large number of
nested distributions, among which stand out the Generalized Gamma, Burr type 3
and type 12, Lognormal, Weibull, Gamma, Lomax, F statistic, Rayleigh, Chi-square,
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Half-normal, Half-Student’s t, Exponential and Log-logistic.

In Rigby et al. (2017, p. 293) the probability function of the GB2 is defined as

fy(y) = |σ|yσν−1

µσνB(ν, τ)[1 + (y/µσ)]σ+τ (7.16)

for y > 0, µ > 0, σ > 0, ν > 0, τ > 0 and where B(a, b) is the beta function defined
as

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) (7.17)

Furthermore, Rigby et al. (2017, p. 293), defines the mean, variance, skewness and
excess kurtosis of the GB2 distribution as
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E(Y ) =
{

µB(ν+σ−1,τ−σ−1)
B(ν,τ) , if τ > 1

σ

∞, if τ ≤ 1
σ

V ar(Y ) =
{

µ2
B(ν,τ)2 , if τ > 2

σ

∞, if τ ≤ 2
σ

where µ2 =
[
B(ν + 2σ−1, τ − 2σ−1)B(ν, τ)−B(ν + σ−1, τ − σ−1)2

]

Skew(Y ) =
{

µ3
B(ν,τ)3V ar(Y )1.5 , if τ > 3

σ

∞, if τ ≤ 3
σ

where µ3 = µ3[B(ν + 3σ−1, τ − 3σ−1)B(ν, τ)2

− 3B(ν + 2σ−1, τ − 2σ−1)B(ν + σ−1, τ − σ−1)B(ν, τ)
+ 2B(ν + σ−1, τ − σ−1)3]

Kurt(Y ) =
{

µ4
B(ν,τ)4V ar(Y )2 − 3, if τ > 4

σ

∞, if τ ≤ 4
σ

where µ4 = µ4[B(ν + 4σ−1, τ − 4σ−1)B(ν, τ)3

− 4B(ν + 3σ−1, τ − 3σ−1)B(ν + σ−1, τ − σ−1)B(ν, τ)2

+ 6B(ν + 2σ−1, τ − 2σ−1)B(ν + σ−1, τ − σ−1)2B(ν, τ)
− 3B(ν + σ−1, τ − σ−1)4]

(7.18)

Generalized Gamma
The GG distribution was proposed by Stacy (1962) in its article “A generalization of
the Gamma Distribution” and is known for being a generalization of the Gamma and
Weibull distributions. Additionally, as shown in Crooks (2010), the GG distribution
is a particular case of the four-parameter income function proposed by Amoroso
(1925, p. 124).

Where, after completing and reparameterizing the Amoroso function so that it
was a probability density function, Stacy (1962) equals the location parameter to
zero to finally obtain the GG distribution formula. In Rigby et al. (2017, p. 284),
the authors present the probability function of the GG distribution as

fy(y) = |ν|z
θθθe−zθ

Γ(θ)y (7.19)

where

z =
(
y

µ

)ν
and θ = 1

σ2ν2 (7.20)



165

for y > 0, µ > 0, σ > 0 and −∞ < ν < ∞, with ν 6= 0. Furthermore, Rigby et al.,
(2017, p. 284) point out that the mean, variance, skewness and excess kurtosis of Y
are given as

E(Y ) =


µΓ(θ+ 1
ν )

θ1/νΓ(θ) , if {ν > 0} or {ν < 0, σ2|ν| < 1}
∞, if ν < 0 and σ2|ν| ≥ 1

V ar(Y ) =


µ2
θ2/νΓ(θ)2 , if {ν > 0} or

{
ν < 0, σ2|ν| < 1

2

}
∞, if ν < 0 and σ2|ν| ≥ 1

2

where µ2 = µ2
[
Γ
(
θ + 2

ν

)
Γ(θ)− Γ

(
θ + 1

ν

)2]

Skew(Y ) =
{

µ3
θ3/νΓ(θ)3V ar(Y )1.5 , if {ν > 0} or

{
ν < 0, σ2|ν| < 1

3

}
∞, if ν < 0 and σ2|ν| ≥ 1

3

where µ3 = µ3

Γ
(
θ + 3

ν

)
Γ(θ)2 − 3Γ

(
θ + 2

ν

)
Γ
(
θ + 1

ν

)
Γ(θ) + 2Γ

(
θ + 1

ν

)3


Kurt(Y ) =
{

µ4
θ4/νΓ(θ)4V ar(Y )2 − 3, if {ν > 0} or

{
ν < 0, σ2|ν| < 1

4

}
∞, if ν < 0 and σ2|ν| ≥ 1

4

where µ4 = µ4

Γ
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θ + 4
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Γ(θ)3 − 4Γ
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θ + 3

ν
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Γ
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θ + 1
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+ 6Γ
(
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Γ
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Γ(θ)− 3Γ

(
θ + 1
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)4


(7.21)

being Γ(·) the gamma function.
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