

Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Daniel Puerta Jiménez

Universidad Nacional de Colombia Facultad de minas, Departamento de Procesos y Energía Medellín, Colombia 2019

Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Daniel Puerta Jiménez

Tesis de investigación presentada como requisito parcial para optar al título de: Magister en Ingeniería Química

> Director (a): Dr. Camilo A. Suárez Méndez Codirector (a): Msc. Darío De Jesús Gallego Suárez

Línea de Investigación: Bioprocesos Grupo de Investigación: Bioprocesos y Flujos Reactivos

Universidad Nacional de Colombia Facultad de minas, Departamento de Procesos y Energía Medellín, Colombia 2019

Este trabajo va dedicado a mi padre, madre, amigos y a todos aquellos que estuvieron presentes en estos "2 años" de maestría. A aquellos con quienes fui creando y creciendo.

"It's the questions we can't answer that teach us the most. They teach us how to think. If you give a man an answer, all he gains is a little fact. But give him a question and he'll look for his own answers."

Patrick Rothfuss, The Wise Man's Fear

Resumen

En el presente trabajo se llevó a cabo el diseñó in silico de un microorganismo chasís (E. coli K-12 MG1655) capaz de valorizar glicerol crudo (residuo de la industria del biodiesel) en ácido propiónico, cuyo metabolismo contiene y refleja las interacciones entre las principales familias de un consorcio microbiano. Este diseño se desarrolló a partir de una perspectiva termodinámica y otra perspectiva de la ingeniería metabólica. Como punto de partida, se planteó un modelo cualitativo que representara las interacciones entre las principales familias de un consorcio microbiano capaz de transformar glicerol en propionato. Estas interacciones se representaron mediante flujos de metabolitos. Las familias que se consideraron fueron cuatro: acidogénicas, acetogénicas, metanogénicas acetoclásticas y metanogénicas hidrogenotróficas. Después, se partió de un modelo termodinámico de caja negra de Herbert-Pirt para cuantificar, para cada familia, los flujos de los metabolitos intercambiados entre ellas. Por último, se desarrolló un modelo metabólico para el chasís que integrara el anabolismo de E. coli K-12 MG1655 con una red catabólica reconstruida a partir de los principales catabolismos presentes en el consorcio microbiano. Para validar ambos modelos, se utilizó la información experimental de un cultivo microbiano mixto, reportada porc. Mediante esta validación se pudo corroborar que los modelos planteados (y sus respectivos supuestos) para el chasís permiten representar y aproximar las interacciones que suceden en el cultivo microbiano mixto.

Palabras clave: glicerol crudo, microorganismo chasís, termodinámica, ingeniería metabólica, consorcio microbiano.

Abstract

In the present work, the design of an in silico chassis microorganism (E. coli K-12 MG1655) capable of valorizing raw glycerol (by-product of the biodiesel industry) into propionic acid, which metabolism contains and represents the interactions between the main families of a microbial consortia, was done. This design was developed from thermodynamic, and metabolic engineering perspectives. As a starting point, a qualitative model in which the interactions between the main families belonging to a microbial consortia capable of transforming glycerol into propionic acid was posed. These interactions were represented through metabolite flujos. The main families were four: acidogens, acetogens, acetoclastic methanogens and hidrogenotrophic methanogens. Then, a Herbert-Pirt thermodynamic black-box model was used to quantify, for each family, the flujos of metabolites shared between them. Last, a metabolic model for the chassis was developed. This model integrated the anabolism of E. coli K-12 MG1655 with a catabolic network that was reconstructed using the main catabolisms present in the microbial consortia. Experimental information reported for a mixed microbial culture, by Chen, Yun, et al. (2016) in [1], was used to validate both models. Through this validation, it was corroborated that the proposed models (and their respective assumptions) for the chassis allow to represent and approximate the interactions happening in a mixed microbial culture.

Keywords: raw glycerol, chassis microorganism, thermodynamics, metabolic engineering, microbial consortium.

Contenido

Pág.

ResumenV	11
Lista de figuras	XI
Lista de tablasXI	V
Lista de Símbolos y abreviaturas XV	/11
Introducción2	26
1. Planteamiento del problema 2 1.1 Problema de investigación: diseño <i>in silico</i> de una transformación biológica par la valorización de glicerol crudo 2 1.2 Hipótesis: valorización de glicerol crudo en ácido propiónico a partir de un microorganismo chasís 2 1.3 Objetivo general 2 1.4 Objetivos específicos 2 1.5 Marco teórico 3 1.5.1 Diseño racional de bioprocesos: consideraciones generales y estado actual 3 1.5.2 Comunidades microbianas y cultivos microbianos mixtos (CMM): enfoque tradicional 1.5.3 Producción de ácido propiónico a partir de glicerol mediante cultivos microbianos mixtos: información experimental 1.5.4 Energía libre de Gibbs de reacción(Δ <i>Gr</i>) como variable de factibilidad termodinámica 1.5.5 Relaciones de Herbert-Pirt para la estimación de distribución de sustrato y planteamiento de la estequiometria de un bioproceso: consideraciones termodinámicas 1.5.6 Rutas metabólicas: generalidades, planteamiento y análisis 1.5.7 Microorganismo chasís: generalidades	29 29 29 29 29 29 29 30 32 35 42 44 48 53
 2. Metodología	57 57 58

X Diseño <i>in silico</i> de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica
 2.3 Pasos metodológicos para la reconstrucción y el análisis del modelo metabólico del microorganismo chasís (<i>E. coli</i> K-12 MG1655)
3. Resultados
 3.1 Resultados del diseño racional del microorganismo chasís
 3.1.2 Especificación de las propiedades de todos los compuestos presentes en el proceso
 3.1.3 Selección del microorganismo a utilizar
 3.1.5 Establecimiento de la estequiometria del proceso: modelo de caja negra 80 3.1.6 Reconstrucción y análisis de las rutas metabólicas de los microorganismos representantes del CMM y construcción del microorganismo chasís (E. coli K-12)
MG1655)
4. Conclusiones y recomendaciones 143 4.1 Conclusiones 143
4.2 Recomendaciones
5. Anexos
5.1 Anexo A: Reacciones del modelo catabólico para E. coli K-12 MG1655147
5.2 Anexo B: Reacciones del modelo anabólico para <i>E. coli</i> K-12 MG1655151
Bibliografía 166

Lista de figuras

Pág.

Figura 1-1:	Desarrollo de bioprocesos basado en biotecnología de sistemas.
Adaptada de [2	6]32
Figura 1-2:	Esquema del 'trade-off' realizado por cepas individuales ante presiones
selectivas. El g	rosor de las líneas negras es proporcional a la cantidad de sustrato
destinada para	un proceso
Figura 1-3:	Gráfica de $\Delta Gr0'$ contra el logaritmo de la presión parcial de hidrógeno
para dos familia	as acetogénicas y una familia metanogénica hidrogenotrófica. Adaptado
de [35].	35
Figura 1-4:	Perfiles de concentración y volumen de biogás para los metabolitos
presentes en R	3. Adaptado de [1]
Figura 1-5:	Perfiles de concentración y volumen de biogás para los metabolitos
presentes en R	5. Adaptado de [1]
Figura 1-6.:	Abundancias relativas de las familias microbianas pertenecientes a los
reactores R3 y	R5 a nivel de <i>fillum</i> . Adaptado de [1]
Figura 1-7:	Abundancia relativa de géneros para arqueas y distribución de familias
para bacterias	en los CMMs de R4 y R5. Adaptado de [1]40
Figura 1-8:	Perfiles de concentración de propionato, acetato, butirato, amonio,
glicerol, CH4, Co	02 y H2 para la prueba de rendimiento de propionato en el reactor de
configuración fe	ed-batch. Adaptado de [1]40
Figura 1-9:	Representación del metabolismo celular en microorganismos. Adaptada
de [48].	49
Figura 1-10:	Sección del metabolismo del propionato en Aminobacterium colombiense.
Adaptado de K	EGG PATHWAY [56]52
Figura 1-11:	La figura de la izquierda presenta el espacio de solución de los modelos
obtenidos al im	plementar una pequeña cantidad de restricciones. Como se puede
apreciar en la n	nedida que se completa el conocimiento del comportamiento celular,
disminuye el es	spacio de solución. Adaptado de [27]53
Figura 2-1:	Modelo base para representar el CMM y las interacciones entre sus
principales fam	ilias mediante flujos q _i [moli/ $C - molX \cdot h$]
Figura 2-2:	Pasos metodológicos para el diseño racional del microorganismo chasís. 59
Figura 2-3:	Ruta lineal para la asimilación de metanol en <i>E. coli</i> . Las flechas de color
naranja y mora	do representan las enzimas utilizadas en la ruta lineal. El plásmido

XI

XII Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

pTrc99A-mdh-f	ls es utilizado para aumentar la expresión de las enzimas MDH y FLS en
E. coli. Adaptac	da de [72]67
Figura 2-4:	Perfiles de concentraciones experimentales para R5. Adaptado de [1]68
Figura 2-5:	Variación de ΔGr en la acetogénesis a diferentes valores de presiones
parciales de hic	drógeno72
Figura 3-1:	Esquema del microorganismo chasís diseñado para transformar glicerol
crudo en ácido	propiónico. Imagen adaptada de [76]75
Figura 3-2:	Porcentaje de sustrato utilizado en mantenimiento en función de la
velocidad de cr	ecimiento de la familia acidogénica87
Figura 3-3:	Porcentaje de sustrato utilizado en mantenimiento en función de la
velocidad de cr	ecimiento de la familia acetogénica
Figura 3-4:	Porcentaje de sustrato utilizado en mantenimiento en función de la
velocidad de cr	ecimiento de la familia metanogénica acetoclástica
Figura 3-5:	Porcentaje de sustrato utilizado en mantenimiento en función de la
velocidad de cr	ecimiento de la familia metanogénica hidrogenotrófica
Figura 3-6:	Perfiles de concentración para los compuestos en fase líquida. Los
círculos son los	resultados del modelo y las x son los datos experimentales
Figura 3-7:	Perfiles de concentración de biomasa para las familias acidogénica y
acetogénica.	91
Figura 3-8:	Perfiles de concentración y volumen para los compuestos en fase
gaseosa. Los c	írculos son los resultados del modelo y las x son los datos experimentales.
	93
Figura 3-9:	Perfiles de concentración de biomasa para las familias M. Acetoclástica y
M. Hidrogenotro	ófica94
Figura 3-10:	Abundancias de cada familia respecto al CMM durante el batch96
Figura 3-11:	Transformación del glicerol en DHAP en el metabolismo de glicerolípidos
de Aminobacte	rium colombiense DSM 12261102
Figura 3-12:	Transformación de DHAP en PEP mediante glicólisis en Aminobacterium
colombiense D	SM 12261103
Figura 3-13:	Transformación de PEP en succinil-CoA mediante el metabolismo
modificado del	piruvato en Aminobacterium colombiense DSM 12261103
Figura 3-14:	Transformación de succinil-CoA en propionato mediante el metabolismo
del propionato	en Aminobacterium colombiense DSM 12261104
Figura 3-15:	Parte de la red catabólica del microorganismo chasís que representa la
acidogénesis. F	Planteada a partir del metabolismo de Aminobacterium colombiense DSM
12261.	105
Figura 3-16:	Transformación de propionato a succinato en el metabolismo del
propionato en (Clostridium acetobutylicum DSM 1731
Figura 3-17:	Transformación del succinato a acetato en el metabolismo del piruvato en
Clostridium ace	etobutylicum DSM 1731

Figura 3-18: Parte de la red catabólica del microorganismo chasís que representa la acetogénesis. Planteada a partir del metabolismo de Clostridium acetobutylicum DSM 1731. 110 Parte de la red catabólica del microorganismo chasís que representa la **Figura 3-19:** metanogénesis acetoclástica. Planteada a partir del metabolismo de Methanosaeta concilii GP6. 111 Figura 3-20: Parte de la red catabólica del microorganismo chasís que representa la metanogénesis hidrogenotrófica. Planteada a partir del metabolismo de Ruta catabólica del microorganismo chasís planteada a partir de las rutas Figura 3-21: catabólicas de las familias representantes del CMM. Líneas verdes: reacciones pertenecientes a la acidogénesis. Líneas rojas: reacciones pertenecientes a la acetogénesis. Líneas moradas: reacciones pertenecientes a la Metanogénesis acetoclástica. Líneas azules: reacciones pertenecientes a la Metanogénesis Comportamiento del flujo de dióxido de carbono, en el metabolismo del Figura 3-22: microorganismo chasís, al variar los flujos de glicerol y metanol. Eje X: flujo de glicerol, Porcentajes de distribución de flujos respecto al flujo total de sustrato, Figura 3-23: para las muestras B, D y E, a través de la glicólisis y el ciclo de TCA en el microorganismo chasís. Los números que se presentan, de arriba abajo, representan las muestras B, D y E respectivamente. Las flechas y los números azules indican que la Porcentajes de distribución de flujos respecto al flujo total de sustrato, Figura 3-24: para las muestras B, D y E, a través del catabolismo del microorganismo chasís. Los números que se presentan, de arriba abajo, representan las muestras B, D y E respectivamente......140

Lista de tablas

Pág.

Tabla I:	Composición del glicerol crudo de diferentes muestras en la industria	
colombiana.	Adaptado de [3]	3
Tabla 1-1:	Metodologías para llevar a cabo evaluaciones ambientales y económicas.	
Adaptado de	[26]	۱
Tabla 1-2:	Fillum predominantes en R3 y sus respectivas funciones metabólicas.	
Adaptado de	[1])
Tabla 1-3:	Fillum predominantes en R5 y sus respectivas funciones metabólicas.	
Adaptado de	[1])
Tabla 1-4:	Balances y rendimientos de COD para las tres fases del fed-batch.	
Adaptado de	[1]42	2
Tabla 1-5:	Parámetros y variables del modelo H-P44	1
Tabla 1-6:	Herramientas computacionales para le predicción de rutas metabólicas.	
Adaptado de	[52]	I
Tabla 1-7:	Ventajas y desventajas del uso de <i>E. coli.</i> Adaptada de [59]54	1
Tabla 2-1:	Microorganismos seleccionados como representantes de cada familia	
principal del (CMM. Tomados del SRA online [36]62	2
Tabla 2-2:	Recopilación de los metabolitos involucrados en la reacción general de	
biomasa.	65	
Tabla 2-3:	Composición elemental de biomasa para <i>E. coli</i> , creciendo en un cultivo	
aeróbico con	glucosa limitada a una taza de dilución de $0.1 h - 1$. Adaptado de [67]66	3
Tabla 2-4:	Concentraciones iniciales de biomasa de cada una de las familias	
perteneciente	es al CMM69)
Tabla 2-5:	Balances de materia para cada uno de los metabolitos de interés en el	
reactor batch)
Tabla 2-6:	Concentraciones iniciales de cada metabolito en R570)
Tabla 3-1:	Cantidades necesarias de glicerol crudo, considerando un rendimiento del	
100%, para g	penerar el 15% del ácido propiónico importado a Colombia.	3
Tabla 3-2:	Cantidades necesarias de glicerol crudo, considerando un rendimiento	_
menor al 100	%, para generar el 15% del ácido propiónico importado a Colombia77	7
Tabla 3-3:	Propiedades fisicoquímicas de los compuestos involucrados en el proceso. 78	
Tabla 3-4:	Corroboración de los criterios de selección del microorganismo chasís para	
E. coli K-12 N	<i>I</i> G 165579)

Tabla 3-5:	Concentraciones necesarias para el buen desempeño del microorganismo
chasís.	79
Tabla 3-6:	Condiciones ambientales para el microorganismo chasís
Tabla 3-7:	Valores estimados de ms y $\Delta Gcat$ para cada familia de interés del CMM81
Tabla 3-8:	Reacciones catabólicas balanceadas acorde a <i>ms</i> 81
Tabla 3-9:	<i>aG</i> para cada familia de interés del CMM82
Tabla 3-10:	Cantidad de sustrato destinada al catabolismo en la producción de
biomasa.	82
Tabla 3-11:	Reacciones catabólicas balanceadas acorde a <i>acat</i> 83
Tabla 3-12:	Cantidad de sustrato destinada al anabolismo en la producción de
biomasa.	83
Tabla 3-13:	Reacciones anabólicas balanceadas acorde a <i>aana</i>
Tabla 3-14:	Reacciones netas anabólicas para la producción de 1 mol de biomasa
para cada far	nilia del CMM84
Tabla 3-15:	Modelos de H-P para cada familia de interés del CMM85
Tabla 3-16:	Funciones-q para las familias de interés del CMM86
Tabla 3-17:	Velocidades de crecimiento para cada familia principal del CMM87
Tabla 3-18:	Información general sobre las biomasas de la familia acidogénica y
acetogénica.	91
Tabla 3-19:	Concentraciones experimentales y estimadas para el propionato con su
respectivo eri	or relativo92
Tabla 3-20:	Concentraciones experimentales y estimadas para el acetato con su
respectivo eri	or relativo92
Tabla 3-21:	Volúmenes de biogás experimentales y estimados de biogás con su
respectivo eri	or relativo95
Tabla 3-22:	Fracciones molares de cada gas, presiones parciales de H2 y CH4, y
relaciones <i>CC</i>	02/CH4 durante el batch95
Tabla 3-23:	Estequiometría para el CMM. Obtenida de los modelos planteados97
Tabla 3-24:	Estequiometría para el microorganismo chasís. Obtenida de los modelos
planteados.	98
Tabla 3-25:	Estequiometría para el modelo de caja negra expresada por mol de
biomasa.	99
Tabla 3-26:	Comparación entre los coeficientes estequiométricos calculados para R5
y los coeficie	ntes calculados mediante el modelo de caja negra100
Tabla 3-27:	Rendimientos de electrones para las fases del experimento de
rendimiento r	náximo de propionato y rendimientos resultantes del modelo del batch
secuencial.	101
Tabla 3-28:	Comparación de las enzimas reportadas para E. coli K-12 MG1655 y las
enzimas nece	esarias para la ruta catabólica del microorganismo chasís planteada a partir
de las interac	ciones del CMM. NR: No Reportada. Construida a partir de KEGG y
BRENDA.	116
Tabla 3-29:	Restricciones definidas para los metabolitos extracelulares120
Tabla 3-30:	Flujos extracelulares resultantes de la simulación del FBA121

Х	Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos,
VI	para un microorganismo chasís capaz de producir ácido propiónico a partir de
	glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Tabla 3-31: modelo metabo	Comparación entre la estequiometría del modelo de caja negra y el
Tabla 3-32:	Porcentaies de recuperación de los modelos de caja negra y metabólicos
para los C, H,	O, N, S, P y electrones
Tabla 3-33:	Relaciones molares metanol/glicerol de las muestras de glicerol crudo en
el ámbito color	nbiano
Tabla 3-34:	Flujos de metabolitos extracelulares para la muestra de glicerol crudo B. 124
Tabla 3-35:	Flujos de metabolitos extracelulares considerando la restricción del flujo
de acetato, y la	as respectivas relaciones molares hidrógeno/biogás125
Tabla 3-36:	Distribución de flujos al fijar el flujo de metano al valor considerado para
la corroboració	n del modelo de caja negra para la muestra D
Tabla 3-37:	Distribución de flujos al fijar el flujo de dióxido de carbono al valor
considerado pa	ara la corroboración del modelo de caja negra para la muestra D127
Tabla 3-38:	Restricciones de flujos para mejorar el rendimiento del propionato bajo
las consideraci	iones mencionadas128
Tabla 3-39:	Flujos de metabolitos extracelulares resultantes para cada una de las
muestras de gl	icerol crudo, bajo restricciones de mejora de producción de propionato. 129
Tabla 3-40:	Flujos de los metabolitos extracelulares resultantes del FBA para la
muestra E.	132
Tabla 3-41:	Rendimiento de moles de propionato por C-mol de sustrato para las
muestras B, D	y E
Tabla 3-42:	Flujo total de ATP y NADH en el microorganismo chasís para las tres
muestras de gl	icerol crudo consideradas133
Tabla 3-43:	Reacciones de mayor consumo y producción de ATP en el
microorganism	o chasís135
Tabla 3-44:	Reacciones de mayor consumo y producción de NADH en el
microorganism	o chasís137

Lista de Símbolos y abreviaturas

Símbolo	Término	Unidad SI	Definición
a	Fracción del sustrato consumido utilizado para la producción de biomasa	mol _{sustrato} C – mol _{biomasa}	Ec. 1.11
a_G	Energía libre de Gibbs necesaria en la síntesis de 1 C-mol de biomasa	$\frac{kJ}{C-mol_x}$	Ec. 1.19
a_{C}	Moles de dióxido de carbono utilizadas/generadas en el anabolismo	mol	Ec. 3.4
a_H	Moles de protones generadas en el anabolismo	mol	Ec. 3.4
a_N	Moles de nitrógeno consumidas en el anabolismo	mol	Ec. 3.4
a_W	Moles de agua generadas en el anabolismo	mol	Ec. 3.4
b	Fracción del sustrato consumido utilizado para la producción de producto anabólico	mol _{sustrato} mol _{producto}	Ec. 1.11
С	Número de carbonos en una molécula	-	Ec 1.19
С	Concentración	Μ	Ec. 1.9
COD	Demanda química de oxígeno (<i>Chemical</i> <i>Oxygen Demand</i>)	g	Cantidad teórica de oxígeno necesaria para oxidar por completo material orgánica
FAD	Flavina Adenina Dinucleótido	-	Conserved moiety

X Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos,
 VII para un microorganismo chasís capaz de producir ácido propiónico a partir de
 I glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Símbolo	Término	Unidad SI	Definición
FADH2	Flavina Adenina Dinucleótido reducida	-	Conserved moiety
h	Hora	hora	
1	Fuerza iónica	М	Ec. 1.10
m_G	Cantidad de energía utilizada para mantenimiento celular	$\frac{kJ}{h \cdot C - mol_{biomasa}}$	Ec. 1.12
m _s	Fracción del sustrato consumido utilizado para mantenimiento	$\frac{mol_{sustrato}}{hora \cdot C - mol_{biomas}}$	_Ec. 1.11 ª
N _H	Número de hidrógenos	-	Ec. 1.10
n_p	Número de carbonos contenidos en un producto	-	Ec. 1.18
Р	Presión	bar	Ec. 1.8
<i>q_C</i>	Velocidad específica de producción de dióxido de carbono	$\frac{mol_{CO_2}}{hora \cdot C - mol_{biomasa}}$	Ec. 1.23
<i>q</i> _{<i>H</i>}	Velocidad específica de generación de protones	$\frac{mol_{H^+}}{hora \cdot C - mol_{biomasa}}$	Ec. 1.23
q_N	Velocidad específica de consumo de nitrógeno	mol _{Nitrógeno} hora · C – mol _{biomasa}	Ec. 1.23
<i>q</i> ₀	Velocidad específica de consumo de oxígeno	mol _{O₂} hora·C – mol _{biomasa}	Ec. 1.23
q_p	Velocidad específica de generación de producto	mol _{producto} hora · C – mol _{biomasa}	Ec. 1.11
<i>qs</i>	Velocidad específica de consumo de sustrato	mol _{sustrato} hora · C − mol _{biomasa}	Ec. 1.11
q_w	Velocidad específica de generación/consumo de agua	mol _{Agua} hora·C – mol _{biomasa}	Ec. 1.11
R	Constante universal de los gases	J mol K	Ec 1.7
Т	Temperatura	К	Ec. 1.7

Símbolo	Término	Unidad SI	Definición
Z	Número de cargas	-	Ec. 1.10

Símbolos con letras griegas

Símbolo	Término	Unidad SI	Definición
ΔG	Energía libre de Gibbs	kJ/mol	Cambio en la energía libre de Gibbs
$\Delta G_f^{0'}$	Energía libre de Gibbs de formación estándar	kJ/mol	Energía libre de Gibbs de formación a condiciones estándar
ΔG_{cat}	Energía libre de Gibbs de catabolismo	o kJ/mol	Cambio en la energía libre de Gibbs de una reacción catabólica
$\Delta G_r^{0'}$	Energía libre de Gibbs de reacción estándar	kJ/mol	Cambio en la energía libre de Gibbs a condiciones estándar
$\Delta G^{m'}$	Energía libre de Gibbs a condiciones celulares estándar	kJ/mol	Cambio en la energía libre de Gibbs a condiciones celulares estándar
γ	Grado de reducción	Electrones	Cantidad de electrones contenidos en un compuesto
μ	Velocidad específica de crecimiento de biomasa	$\frac{C - mol_{biomasa}}{hora \cdot C - mol_{biomasa}}$	Ec. 5.1

X Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos,
 X para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Símbolo	Término	Unidad SI	Definición
μ_1	Velocidad específica de crecimiento de biomasa de la familia acidogénica	$\frac{C - mol_{biomasa}}{hora \cdot C - mol_{biomasa}}$	-
μ_2	Velocidad específica de crecimiento de biomasa de la familia acetogénica	$\frac{C - mol_{biomasa}}{hora \cdot C - mol_{biomasa}}$	-
μ_3	Velocidad específica de crecimiento de biomasa de la familia metanogénica acetoclástica	$\frac{\mathcal{C} - mol_{biomasa}}{hora \cdot \mathcal{C} - mol_{biomasa}}$	-
μ_4	Velocidad específica de crecimiento de biomasa de la familia metanogénica hidrogenotrófica	$\frac{\mathcal{C} - mol_{biomasa}}{hora \cdot \mathcal{C} - mol_{biomasa}}$	-
η	Eficiencia representante de la energía biológica útil	1 -	Ec. 1.16

Subíndices

Subíndice	Término	
ana	Anabolismo	
cat	Catabolismo	
D	Donador de electrones	
f	Formación	
f,ref	Formación de referencia	
i	Metabolito <i>i</i>	
min	Mínimo	
acet	Acetato	
Acet1	Acetogénesis acetoclástica	
Acet2	Acetogénesis hidrogenotrófica	
CH ₄	Metano	

Subíndice	Término	
<i>CH</i> ₄ <i>O</i>	Metanol	
<i>CO</i> ₂	Dióxido de carbono	
cte	Constante	
glic	Glicerol	
KH_2PO_4	Fosfato dipotásico	
MgSO ₄	Sulfato de magnesio	
NaOH	Hidróxido de sodio	
NH ₄ Cl	Cloruro de amonio	
0	Inicial	
p	Producto	
prop	Propionato	
r	Reacción	
R,teórico	Reacción teórica	
S	Sustrato	
x	Biomasa	
X	Compuesto X	

Superíndices

Superíndice	Término
0'	Condiciones estándar
<i>m</i> ′	Condiciones celulares estándar

Abreviaturas

Abreviatura	Término
αKG	Alfa-cetoglutarato

X Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos,
 XII para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Abreviatura	Término	
1,3 BPG	1,3-Bifosfoglicerato	
3PG	3-Fosfoglicerato	
Acetil – P	Acetil fosfato	
ADN	Ácido Desoxirribonucleico	
ADP	Adenosín Difosfato	
AMP	Adenosín Monofosfato	
ATP	Adenosín Trifosfato	
BASF	Badische Anilin- und Soda-Fabrik	
$CH_{1.74}O_{0.34}N_{0.24}S_{0.006}P_{0.005}$	₅ Biomasa con grado de reducción 4.31	
$CH_{1.8}O_{0.5}N_{0.2}$	Biomasa con grado de reducción 4.20	
$CH_{1.9}O_{0.32}N_{0.2}$	Biomasa con grado de reducción 4.67	
$C_3H_8O_3$	Glicerol	
$C_3H_5O_2^-$	Propionato	
$C_3H_6O_2$	Ácido Propiónico	
$C_2H_3O_2^-$	Acetato	
$C_2H_4O_2$	Ácido Acético	
CH ₄	Metano	
СММ	Cultivos Microbianos Mixtos	
СМР	Citosín Monofosfato	
СО	Dióxido de carbono	
СоА	Coenzima A	
СоВ	Coenzima B	
СоМ	Coenzima M	

Abreviatura	Término
СОР	Pesos Colombianos
<i>CO</i> ₂	Dióxido de carbono
dAMP	Desoxiadenilato
dCMP	Desoxicitidilato
dGMP	Desoxiguanilato
DHA	Dihidroxi Acetona
DHAP	Dihidroxi Acetona Fosfato
dTMP	Desoxitimidilato
DRB	Diseño Racional de Bioprocesos
EATOS	Environmental Tool for Organic Syntheses
EC	Enzyme Commision
E. coli	Escherichia coli
FBA	Flux Balance Analysis
<i>Fe</i> ²⁺	Hierro ferroso
Fe ³⁺	Hierro férrico
Ferr _{ox}	Ferredoxina oxidada
Ferr _{red}	Ferredoxina reducida
FLS	Formaldehyde Lyase
G3P	Gliceraldehido-3-fosfato
GMP	Guanosín Monofosfato
H-P	Herbert Pirt
H^+	Ion hidronio
H_2	Hidrógeno
<i>H</i> ₂ <i>0</i>	Agua

X Diseño *in silico* de una red metabólica, a partir de cultivos microbianos mixtos,
 XI para un microorganismo chasís capaz de producir ácido propiónico a partir de
 V glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Abreviatura	Término	
MDH	Methanol Dehidrogenase	
Met. A.	Metanogénesis Acetoclástica	
Met. H.	Metanogénesis Hidrogenotrófica	
NAD ⁺	Nicotinamida Adenina Dinucleótido	
NADH	Nicotinamida Adenina Dinucleótido reducida	
NADP	Nicotinamida Adenina Dinucleótido Fosfato	
NADPH	Nicotinamida Adenina Dinucleótido Fosfato reducida	
NCBI	National Centre for Biotechnology Information	
NH_4^+	Ion de amonio	
<i>NO</i> ₂ ⁻	Nitrato	
OAA	Oxaloacetato	
PEP	Fosfo-Enol Piruvato	
Pi	Ortofosfato	
PPi	Pirofosfato	
Propioil — P	Propionil fosfato	
РМ	Peso Molecular	
<i>q</i> 8	Ubiquinona-8	
q8H2	Ubiquinol-8	
R3	Reactor 3	
R4	Reactor 4	
R5	Reactor 5	
RET	Reverse Electron Transport	

Abreviatura	Término	
Succ-CoA	Succinil-CoA	_
SRA	Sequence Read Archive	
ТСА	Tricarboxilic Acid	
TDF	Thermodynamic Driving Force	
TMP	Tirosín Monofosfato	
USD	Dólares Estadounidenses	

Introducción

El glicerol crudo es un residuo de la industria del biodiesel cuya generación, en Colombia, incrementó aproximadamente de 2.3 kilo toneladas en 2008, a 46 kilo toneladas en 2017 [2]. Se espera que para el 2020 la producción de glicerol crudo alcance un valor de 100 kilo toneladas, las cuales deberán disponerse apropiadamente. Este residuo se encuentra usualmente contaminado con metanol, sales y ácidos grasos. La proporción de estas impurezas (Tabla I) puede variar considerablemente dependiendo del proceso de producción de biodiesel.

colombiana. Ada	aptado de [3].			
	Planta piloto (A)	Planta	Planta Industrial	Planta Industrial
	• • • •	Industrial 1 (B)	2 (C)	3 (D)
Glicerol	41.23	85.81	73.49	49.33
Agua	2.76	6.64	0.46	38.20
Metanol	20.79	-	23.61	4.41
Jabones	6.81	2.67	1.44	-
Cenizas	4.33	4.32	2.54	2.62
Otros compuestos orgánicos	24.08	0.56	0	5.44

Tabla I:Composición del glicerol crudo de diferentes muestras en la industriacolombiana. Adaptado de [3].

El costo de purificación está estimado entre 0.15 USD/kg (474 COP/kg) y 0.30 USD/kg (948 COP/kg) [4], mientras que el precio de venta del glicerol purificado es de aproximadamente 0.1 USD/kg (316 COP/kg) [5] planteándose un escenario económico no favorable para su comercialización. Además, tradicionalmente se ha tratado mediante transformaciones físicas y químicas que acarrean fuertes impactos energéticos [4], [6], [7], las cuales son contrarias a estrategias de disposición sugeridas por las regulaciones ambientales colombianas promovidas por el Conpes 3510 [8]. Debido a esto es necesario buscar nuevas alternativas para el aprovechamiento de este compuesto.

Como solución a esta problemática se pueden utilizar transformaciones biológicas que valoricen el glicerol crudo. Los impactos energéticos asociados a este tipo de

transformaciones suelen ser menores, pues suceden en condiciones de presión y temperatura cercanas a las ambientales (1 atm y 25°C). Incluso, a diferencia de las transformaciones químicas, estas utilizan catalizadores más económicos: microorganismos [9]. El glicerol como sustrato, puede ser utilizado por algunos microorganismos como fuente de carbono y de electrones para su crecimiento y producción de metabolitos de interés. Además, las impurezas presentes en el glicerol crudo también pueden llegar a ser aprovechadas por los microorganismos gracias a su diversidad metabólica.

Se han reportado diversos intentos, a escala de laboratorio, para valorizar el glicerol crudo mediante transformaciones biológicas [10]. Entre ellos se encuentra su conversión en 1,3-propanodiol, metanol, ácido succínico y ácido propiónico. Este último es un ácido mono carboxílico que sirve como plataforma química en múltiples aplicaciones para la industria de alimentos, perfume, pinturas y farmacéutica [11]. Se reporta que, en 2017 en Colombia, se importaron 3500 toneladas de ácido propiónico y se exportaron 222 toneladas, planteándose así una interesante oportunidad para aumentar la producción de dicho ácido [12]. Además su precio de venta es aproximadamente 1.5 USD/kg (adición de valor al glicerol cerca de 15 veces) [13].

Aunque los bioprocesos pueden llegar a ser más específicos que los procesos químicos tradicionales [14] y presentan las ventajas previamente mencionadas, sus rendimientos y productividades suelen ser menores. Sin embargo, gracias a las aplicaciones desarrolladas en disciplinas como la ingeniería metabólica y la biología de sistemas, los bioprocesos han aumentado a nivel industrial dichos indicadores, mejorando así su competitividad [15]. En la última década, las investigaciones para la transformación biológica de glicerol crudo se han centrado en fermentaciones que usan cepas puras para producir compuestos de interés. Algunos ejemplos son la producción de biopolímeros con *Bacillus megaterium* [16], ácido propiónico con *Propionibacterium* [17], 1,3 propanodiol con *Lactobacillus brevis* [18], entre otros. En estas investigaciones se ha reportado la necesidad de eliminar previamente algunas de las impurezas en el glicerol crudo (como el metanol) y/o modificar genéticamente el microorganismo para prevenir inhibiciones causadas por estas impurezas [19], [20]. Como alternativa a los cultivos puros están los cultivos de comunidades microbianas, también conocidos como cultivos microbianos mixtos (CMM) [21].

Gracias a la diversidad metabólica presente en las comunidades microbianas, los CMM tienen un gran potencial para diferentes aplicaciones industriales, pues pueden alimentarse de sustratos tan variados como el glicerol crudo, y a su vez entregar un amplio catálogo de productos. Los CMM se han utilizado tradicionalmente en fermentaciones anaeróbicas para el tratamiento de aguas residuales, y se ha indagado su uso en otras aplicaciones como la remediación de petróleo en agua marina [22] y la producción de polihidroxialcanoatos [23]. Sin embargo, apenas en la última década se ha comenzado a investigar su uso en aplicaciones industriales como la producción de solventes y biohidrógeno [24], producción de antibióticos y producción de biocombustibles [25].

1. Planteamiento del problema

1.1 Problema de investigación: diseño *in silico* de una transformación biológica para la valorización de glicerol crudo

El problema de investigación a abordar en esta tesis es la búsqueda de una alternativa que permita valorizar el glicerol crudo generado en la industria de biodiesel colombiana mediante transformaciones biológicas, aplicando un enfoque racional para diseñar *in silico* la transformación biológica de glicerol en ácido propiónico y aprovechando las interacciones presentes en cultivos microbianos mixtos. Se reconoce, mediante este enfoque, el importante papel que juegan los aspectos químicos, biológicos y termodinámicos en el desarrollo de los bioprocesos.

1.2 Hipótesis: valorización de glicerol crudo en ácido propiónico a partir de un microorganismo chasís

"Se puede producir ácido propiónico, mediante la fermentación de glicerol crudo, al implementar en un microorganismo vivo la funcionalidad diseñada en un microorganismo chasís *in silico* a partir de las principales características metabólicas de un cultivo microbiano mixto."

1.3 Objetivo general

Diseñar *in silico* una red metabólica con base en la identificación de relaciones termodinámicas y metabólicas entre poblaciones microbianas de cultivos microbianos mixtos, que permita transformar glicerol crudo en ácido propiónico.

1.4 Objetivos específicos

- Definir las condiciones de proceso para la síntesis biológica de ácido propiónico a partir de glicerol crudo: temperatura, presión, concentraciones iniciales de los compuestos, pureza del producto de interés, viabilidad termodinámica de la reacción global y estequiometría global del proceso.
- 2. Identificar la diversidad metabólica potencial de un cultivo microbiano mixto anaeróbico y un microorganismo chasís seleccionado.

- 3. Reconstruir *in silico* una red metabólica para la producción de ácido propiónico a partir de glicerol, basándose en las rutas metabólicas y su respectivo análisis termodinámico para cada microorganismo de interés perteneciente a los cultivos microbianos mixtos.
- 4. Proponer diferentes escenarios, basados en el modelo metabólico, para producir ácido propiónico a partir de glicerol crudo.

1.5 Marco teórico

1.5.1 Diseño racional de bioprocesos: consideraciones generales y estado actual

Tradicionalmente, los bioprocesos industriales se han desarrollado a partir de enfoques experimentales debido a la falta de entendimiento sobre procesos celulares, y a la ausencia de modelos matemáticos que los representen y describan completamente. Los avances hechos en el siglo XXI en tecnologías de alto rendimiento como las tecnologías ómicas, y su implementación en conjunto con ciencias tradicionales como la termodinámica, la química y la biología han permitido caracterizar, describir y analizar, las funciones y la composición celular [26]. En la medida que esta tendencia continúe, cada vez se implementarán más modelos matemáticos *in silico* (en computador) [27]. Para salir del esquema tradicional experimental en el desarrollo y diseño de bioprocesos, es necesario comenzar a plantearlos desde un punto de vista racional.

Con base en el estado del arte consultado, se encontró que a nivel industrial se realizaron los primeros acercamientos al diseño racional de bioprocesos (DRB) hace aproximadamente una década. En estos se hablaba de las aplicaciones del modelamiento metabólico para dirigir el desarrollo en la producción de compuestos químicos de valor agregado [28]. Este enfoque parte de un bioproceso cuya información genómica, bioquímica y fisiológica es conocida, e implementa este conocimiento en simulaciones y modelos de escala genómica basados en restricciones metabólicas. Las restricciones que se incluyen pueden ser del tipo [28]:

- Físicoquímicas: balances de materia y energía, energía libre de Gibbs.
- Topobiológicas: distribuciones moleculares, complejos enzimáticos.
- Ambientales: disponibilidad de nutrientes, pH.
- Regulatorias: inhibición enzimática, expresión génica.

Una vez reconocidas y definidas las restricciones del proceso, se plantea un modelo matemático que incluya toda esta información, para después realizar un análisis *in silico* (en computador). La profundidad y el ajuste del modelo dependen en gran medida del conocimiento que se tenga tanto de las condiciones del proceso (pH, concentraciones, purezas, estado iónico de las especies, etc) [28] como del metabolismo del microorganismo.

Los resultados del análisis *in silico* son posteriormente validados mediante pruebas experimentales con el fin de retroalimentar el modelo, y así, mejorar su predictibilidad.

Por otro lado, se encontró que actualmente el DRB se dirige hacia un enfoque más íntegro en el que además de analizar y modelar el metabolismo del microorganismo, se analizan y modelan otros aspectos del bioproceso como las cinéticas de reacción y el comportamiento del biorreactor (fenómenos de transporte), teniendo en cuenta consideraciones económicas y ambientales de todo el proceso. Con base en el estado del arte consultado, solo se encontró una metodología documentada que se aproxima al entendimiento del DRB [26]. En esta metodología, el diseño del bioproceso comienza con la identificación de microorganismos que puedan ser utilizados en aplicaciones industriales relevantes, y de sus respectivas diversidades metabólicas. Continúa con una evaluación económica (factibilidad económica) y ecológica (impactos ambientales) del proceso, permitiendo así, definir su potencial respecto a otras alternativas. Cada alternativa se evalúa utilizando parámetros como el desempeño de los microorganismos, precio de venta del producto, volumen de producción y la carga ambiental del proceso. Las evaluaciones se llevan a cabo utilizando simulaciones computacionales utilizando diversos métodos (Tabla 1-1).

Tabla 1-1:Metodologías para llevar a cabo evaluaciones ambientales y económicas.Adaptado de [26].

Método de evaluación	Descripción
Clasificación ABC (Hecha en SuperPro	Considera balances de materia y energía,
Designer	mediante índices ambientales.
Sabento	Considera balances de materia y energía, y evaluación económica.
EATOS	Considera índice de masa y factor ambiental E. Basado en evaluación de ciclo de vida.
Ecoeficiencia (BASF)	Evaluación basada en ciclo de vida.
	Requiere información detallada del proceso.
Factor E	Evaluación ecológica de generación de residuos.

El resultado de dichas evaluaciones es la definición de objetivos en términos de productividades, concentraciones de productos y rendimientos a ser alcanzados. Una vez fijados los objetivos, se realiza un análisis del bioproceso a nivel de biocatalizador, y a nivel de las reacciones bioquímicas. Cuando finaliza el diseño, se reevalúa el proceso obtenido y

si no es óptimo se vuelve al primer paso de la metodología. La Figura 1-1**Figura 1-1** presenta un resumen de esta metodología iterativa.

Aunque esta metodología considera todos los aspectos importantes en el diseño íntegro de un bioproceso, depende de experimentación y en todas las fases posteriores a la evaluación económica y ecológica. Los gastos económicos y temporales que acarrea un enfoque de este estilo podrían ser reducidos si se utilizara una metodología de diseño que le dé mayor peso a la racionalización del proceso y al modelamiento matemático [26], [29].

1.5.2 Comunidades microbianas y cultivos microbianos mixtos (CMM): enfoque tradicional

Una comunidad microbiana (o consorcio microbiano) es un grupo de microorganismos, bien sea de la misma o de diversas especies, pertenecientes a diferentes cepas que interactúan entre sí de múltiples maneras en un determinado ambiente [30]. El cultivo de un consorcio microbiano se conoce como cultivo microbiano mixto (CMM) [21]. Tradicionalmente, estos se han estudiado desde la ecología microbiana [24]. Esta disciplina, propone que los consorcios se establecen en la naturaleza gracias a los efectos generados por cambios en las condiciones ambientales a las que se encuentran (concentración de sustrato, concentración de producto, pH, entre otras) [31]. Se han entendido estos cambios como presiones selectivas, las cuales determinan la predominancia de ciertas familias y sus respectivas actividades metabólicas. Las familias del consorcio al verse sometidas a las presiones selectivas responderán tanto de manera individual como de manera conjunta, buscando la supervivencia del consorcio.

Individualmente las familias generarán cambios en su metabolismo inherente ('shifts metabólicos') para adaptarse al nuevo ambiente. Supóngase que bajo una concentración inicial de sustrato la familia destina inicialmente sustrato, en mayor cantidad, para la producción de algún metabolito secundario, y en menor cantidad para la producción de biomasa. Al darse una perturbación en alguna de las presiones selectivas, la familia buscará sobrevivir y hará un *shift* metabólico en el que destine una menor cantidad de sustrato para el metabolito secundario, y una mayor cantidad para biomasa (Figura 1-2). De tal manera, sobreviviría y permanecería en el consorcio [32].

Figura 1-2: Esquema del 'trade-off' realizado por cepas individuales ante presiones selectivas. El grosor de las líneas negras es proporcional a la cantidad de sustrato destinada para un proceso.

Las familias del consorcio responderán de manera conjunta ante las presiones selectivas, pues los '*shift* metabólicos' individuales afectarán directamente las interacciones entre estas. Las interacciones entre familias se establecen por el intercambio de metabolitos que sirven como conexión o contacto físico directo. Estas pueden ser positivas, neutras o negativas. Principalmente hay cinco tipos [33]:

- Amenalismo: interacción en la que un organismo afecta otro organismo sin afectarse a sí mismo. Un ejemplo concreto es el efecto inhibitorio que tienen las bacterias generadoras de ácido láctico en los CMM sobre los demás microorganismos del cultivo [34].
- Competición: competencia de los microorganismos por las fuentes de energía y nutrientes.
- Comensalismo/Sintropía: situación en la que una familia se beneficia de la interacción mientras otra(s) no se ve(n) afectada(s).
- Parasitismo: interacción en la cual una especie se favorece a costa de otra.
- Mutualismo: las familias que interactúan se favorecen mutuamente.

Debido al entendimiento limitado de estas interacciones y el funcionamiento de los CMM, su uso a escala industrial ha sido sesgado principalmente al tratamiento de aguas residuales. Sin embargo, en la última década se ha avanzado, a escala de laboratorio, en la utilización de los CMM para generar productos de interés [25]. Es aquí donde se vislumbra la oportunidad de expandir el entendimiento sobre las interacciones y el funcionamiento de los consorcios

microbianos, desde perspectivas diferentes a las tradicionales, que permitan cuantificar las interacciones entre las familias.

Además del enfoque tradicional de la ecología microbiana, se ha avanzado un poco desde otras perspectivas para entender y representar las interacciones que ocurren en los CMM. Desde un punto de vista termodinámico, se han hecho acercamientos para entender las interacciones entre las familias pertenecientes a un CMM como los presentados por Henze, M. [35]. Aquí se presenta un análisis termodinámico a partir de la energía libre de Gibbs de reacción ($\Delta G_r^{0'}$), para determinar bajo qué condiciones de presión parcial de hidrógeno (P_{H_2}) hay presencia de familias cuya función metabólica es la acetogénesis (transformación de fuentes de carbono en acetato) y familias cuya función metabólica es la metanogénesis hidrogenotrófica (transformación de hidrógeno y dióxido de carbono en metano) en un CMM anaeróbico [35]. Este análisis de los valores de $\Delta G_r^{0'}$ (Figura 1-3) permite determinar que para valores de P_{H_2} entre 10⁻⁴ y 10⁻⁶ atm ($\Delta G_r^{0'} < 0$), sucederán las reacciones acetogénicas y metanogénica y por lo tanto, habrá presencia de ambas familias. Aunque este análisis es un punto de partida útil para determinar cuáles familias microbianas están presentes en un CMM a unas condiciones determinadas, este no permite cuantificar las interacciones que se dan entre las familias, ni otra información de interés como por ejemplo las abundancias de las familias en el consorcio.

Figura 1-3: Gráfica de $\Delta G_r^{0'}$ contra el logaritmo de la presión parcial de hidrógeno para dos familias acetogénicas y una familia metanogénica hidrogenotrófica. Adaptado de [35].

1.5.3 Producción de ácido propiónico a partir de glicerol mediante cultivos microbianos mixtos: información experimental

En la revisión del estado del arte consultado no se encontró ningún artículo en el que se utilizaran CMM para transformar glicerol crudo en ácido propiónico. Sin embargo, se encontró un artículo en el que se reporta el uso de CMM para transformar glicerol puro en ácido propiónico. Este artículo, llamado '*High-purity propionate production from glycerol in mixed culture fermentation*' [1], desarrolla un enfoque netamente experimental para estudiar los efectos de concentración inicial de glicerol (sustrato) sobre las actividades metabólicas del CMM, y para evaluar el rendimiento máximo de propionato que se puede alcanzar.

Para identificar los efectos de la concentración inicial de glicerol, Chen, Yun, et al. (2016) evaluaron tres concentraciones iniciales de glicerol: 2.78, 4.38 y 5.56 g/L, en tres reactores diferentes: R3, R4 y R5 respectivamente. Los volúmenes de operación reportados para estos reactores fueron 1.8, 1.6 y 1.8 L. El pH fue controlado a un valor de 7.0. Cada reactor fue operado inicialmente en modo *batch*, y cuando se comenzó a acumular propionato, se cambió a una operación de lotes secuenciales. Al menos cada 6 horas se cuantificaron las concentraciones de propionato, acetato, butirato, amoníaco y volumen de biogás. Esta información fue reportada en los perfiles de concentración y volumen de biogás para R3 (Figura 1-4) y R5 (Figura 1-5). El perfil de concentración de glicerol no fue reportado. Al final

de la operación en lotes secuenciales se tomaron muestras de las biomasas de R3 y R5 para realizar su respectivo secuenciamiento de ADN. La información del secuenciamiento fue reportada online en el archivo de lectura de secuencias (SRA) del NCBI [36]. Cabe aclarar que no se reportó ningún secuenciamiento para R4.

Figura 1-4: Perfiles de concentración y volumen de biogás para los metabolitos presentes en R3. Adaptado de [1].

Figura 1-5: Perfiles de concentración y volumen de biogás para los metabolitos presentes en R5. Adaptado de [1].

Basándose en la información taxonómica los autores estimaron y reportaron las abundancias relativas, a nivel de *fillum*, de las familias microbianas presentes en los CMMs de R3 y R5 (Figura 1-6).

Figura 1-6.: Abundancias relativas de las familias microbianas pertenecientes a los reactores R3 y R5 a nivel de *fillum*. Adaptado de [1].

Después de identificar las familias y los *fillum* de mayor abundancia relativa, los autores describen las funciones metabólicas predominantes en los CMMs. Reportaron cuatro funciones metabólicas principales:

• Acidogénesis: transformación de glicerol $(C_3H_8O_3)$ en propionato $(C_3H_5O_2^-)$:

$$C_3 H_8 O_3 \to C_3 H_5 O_2^- + H^+ + H_2 O$$
 (1.1)

• Acetogénesis: transformación propionato en acetato $(C_2H_3O_2^-)$, hidrógeno (H_2) y dióxido de carbono (CO_2) :

$$C_3H_5O_2^- + H^+ + 2H_2O \rightarrow C_2H_3O_2^- + H^+ + CO_2 + 3H_2$$
 (1.2)

 Metanogénesis acetoclástica: transformación de acetato en metano (CH₄) y dióxido de carbono:

$$C_2 H_3 O_2^- + H^+ \to C H_4 + C O_2$$
 (1.3)

 Metanogénesis hidrogenotrófica: transformación del hidrógeno y el dióxido de carbono en metano:

$$4 H_2 + CO_2 \to CH_4 + 2H_2O \quad (1.4)$$

Posteriormente, identificaron y asignaron a los *fillum* de mayor abundancia relativa en los CMMs de R3 (Tabla 1-2) y R5 (Tabla 1-3) una de las cuatro funciones metabólicas.

Tabla 1-2:*Fillum* predominantes en R3 y sus respectivas funciones metabólicas.Adaptado de [1].

Fillum	Abundancia relativa	Función metabólica
Euryarchaeota (arqueas)	56%	Metanogénesis
Firmicutes	26%	Acidogénesis
Proteobacterias	5%	-
Fillum restantes (menor presencia)	13%	-

Tabla 1-3:*Fillum* predominantes en R5 y sus respectivas funciones metabólicas.Adaptado de [1].

Fillum	Abundancia relativa	Función metabólica
Firmicutes	32%	Acidogénesis
Synergistetes	23%	Acidogénesis
Euryarchaeota (arqueas)	9%	Metanogénesis
<i>Fillum</i> restantes (menor presencia)	36%	-

Además de las distribuciones de *fillum*, los autores presentan una distribución de abundancias relativas más específica a nivel de género para arqueas y a nivel de familia para bacterias (Figura 1-7). Se encontró que para el reactor con una concentración inicial de glicerol menor (R3) prevalece la presencia de arqueas (61%) encargadas de realizar metanogénesis. La familia bacteriana predominante en R3, cuya función metabólica principal es la acidogénesis, es *Ruminococcaceae* (15%).

Figura 1-7: Abundancia relativa de géneros para arqueas y distribución de familias para bacterias en los CMMs de R4 y R5. Adaptado de [1].

Para evaluar el rendimiento máximo de propionato que se puede alcanzar los autores hicieron un experimento en el que se utilizó el CMM en un reactor de configuración *fed-batch*, el cual operó durante 29 días, los cuales fueron divididos en tres fases: A, B y C. En la fase A, la concentración de amonio se fijó en 0.5 g/L. Se reportó que en el efluente no se detectó ni propionato ni acetato debido a que todo el glicerol se transformó en metano. En la fase B, la concentración de amonio fue aumentada a 1 g/L. Como resultado, a medida que se agregó glicerol, se acumuló más propionato hasta alcanzar una concentración de 22.6 g/L en el final del experimento. En la fase C, se mantuvo la concentración de amonio a 1 g/L y se alcanzó una concentración de acetato de 2g/L. Se reportaron como resultado de estos experimentos los perfiles de concentración de los metabolitos involucrados (Figura 1-8) y los balances de COD para cada fase (Tabla 1-4).

Figura 1-8: Perfiles de concentración de propionato, acetato, butirato, amonio, glicerol, CH_4 , CO_2 y H_2 para la prueba de rendimiento de propionato en el reactor de configuración *fedbatch*. Adaptado de [1].

Fase	Balance de	COD	Rendimier C	nto de los meta OD glicerol co	abolitos [g nsumido]	COD/g
	COD [%]	consumido [g]	Acetato	Propionato	Butirato	Metano
А	88	5	0	0	0	0.88
В	93	120.63	0.01	0.45	0	0.47
С	85	12.3	0.14	0.34	0.01	0.36

Tabla 1-4:Balances y rendimientos de COD para las tres fases del *fed-batch*. Adaptadode [1].

1.5.4 Energía libre de Gibbs de reacción(ΔG_r) como variable de factibilidad termodinámica

A continuación, se presentará la variable que permitirá cuantificar y plantear análisis termodinámicos para analizar las interacciones entre familias del CMM. La energía libre de Gibbs de reacción (ΔG_r) es una variable que permite establecer la factibilidad de una reacción. Por definición, ΔG_r es la diferencia estequiométrica entre la energía libre de Gibbs de formación (ΔG_f) de los productos y los reactivos de una reacción. ΔG_f es una propiedad termodinámica propia para cada compuesto, y generalmente se encuentra definida a condiciones estándar: presión (1 atm), temperatura (25°C) y concentración (1 M). A estas condiciones se conoce como energía libre de Gibbs de formación estándar ($\Delta G_f^{o'}$). El ΔG_r calculado a estas condiciones es el cambio en la energía libre de Gibbs de reacción estándar $\Delta G_r^{o'}$. Tómese como ejemplo la siguiente reacción:

$$aA + bB \rightarrow cC + dD$$
 (1.5)

 ΔG_r se expresa como:

$$\Delta G_r = \left[\left(c \ x \ \Delta G_{f,C} \right) + \left(d \ x \ \Delta G_{f,D} \right) \right] - \left[\left(a \ x \ \Delta G_{f,A} \right) + \left(b \ x \ \Delta G_{f,B} \right) \right] = \left[\frac{kJ}{mol} \right]$$
(1.6)

Se pueden presentar tres casos para ΔG_r :

 Δ*G_r* > 0: la reacción no es un proceso espontáneo, es decir, la reacción requiere inversión extra de energía para que pueda ocurrir. De lo contrario, bajo las condiciones a las que se encuentra el proceso, no sucederá.

42

- $\Delta G_r < 0$: la reacción es un proceso espontáneo y desde un punto de vista termodinámico tiene suficiente energía para suceder a esas condiciones.
- $\Delta G_r = 0$: la reacción se encuentra en equilibrio termodinámico, por lo tanto, no sucederán cambios en el proceso.

Nótese que al calcular el ΔG_r de las reacciones llevadas a cabo por cada familia de microorganismos presentes en un consorcio, se puede estimar cuáles estarían activas y cuáles inactivas. Cabe recordar que en un CMM los cambios generados por presiones selectivas se ven reflejados en variables como las concentraciones de metabolitos, fuerza iónica y pH. A su vez estos cambios afectan directamente ΔG_r , y por lo tanto las interacciones termodinámicas que se dan entre las familias del consorcio. De tal manera, es necesario cuantificar los cambios en estas variables. A continuación, se presenta cómo cuantificar los cambios en ΔG_r y ΔG_f debido a cambios en concentración, pH y fuerza iónica:

Correcciones en Δ*G_r* y Δ*G_f* por cambios en la concentración: para realizar correcciones en Δ*G_r* por cambios en las concentraciones de sus compuestos, primero se puede corregir Δ*G_f* para los compuestos cuya concentración sea diferente a la concentración de referencia. La corrección por concentración, para un compuesto en fase líquida X, se hace utilizando la siguiente expresión [37]:

$$\Delta G_f = \Delta G_{f,ref} + RTln([X]/1) \quad (1.7)$$

Donde R es la constante universal de los gases y T es la temperatura. La concentración del compuesto X se divide por la concentración de referencia que, generalmente, es 1 M. En el caso de un compuesto gaseoso, la corrección se plantea utilizando la presión parcial y la presión de referencia (generalmente 1 atm) [37]:

$$\Delta G_f = \Delta G_{f,ref} + RTln(P_X/1) \quad (1.8)$$

Una vez corregidos los valores de ΔG_f , se procede a calcular el valor de ΔG_r cómo se presentó en la ecuación 1.6. Otra opción para hacer esta corrección es utilizando la siguiente expresión basada en la ley de masas [38]:

$$\Delta G_r = \Delta G_{r,ref} + RT ln \left(\frac{([C]/C_{ref})^c ([D]/C_{ref})^d}{([A]/C_{ref})^a ([B]/C_{ref})^b} \right)$$
(1.9)

Donde C_{ref} es la concentración de referencia de cada compuesto.

 Correcciones en ΔG_f y ΔG_r por cambios en el pH y la fuerza iónica (I): en esta tesis se optó por utilizar la corrección propuesta por Alberty [38]:

$$\Delta G_f(pH,I) = \Delta G_f^o(I=0) - N_H RT \ln(10^{-pH}) - \frac{2.91482}{1+B I^{1/2}} [z^2 - N_H] I^{1/2}$$
(1.10)

Donde $\Delta G_f^o(I=0)$ es la energía libre de Gibbs de formación a I=0, R es la constante universal de los gases, T es la temperatura, I es la fuerza iónica, N_H es el número de hidrógenos en el compuesto, z es su número de cargas y $B = 1.6 L^{1/2} mol^{-1/2}$. Una vez se corrige el valor de ΔG_f^o , se puede calcular ΔG_r utilizando la ecuación 1.6.

1.5.5 Relaciones de Herbert-Pirt para la estimación de distribución de sustrato y planteamiento de la estequiometria de un bioproceso: consideraciones termodinámicas

El modelo de Herbert-Pirt (H-P) es un modelo de caja negra mediante el cual se establece la distribución de consumo de un sustrato. Este supone que el sustrato se distribuye en tres procesos: mantenimiento, crecimiento y formación de producto. La ecuación 1.11 presenta la ecuación del modelo de H-P que se expresa en términos de un parámetro y una velocidad para cada proceso (Tabla 1-5):

$$q_s = a\mu + bq_p + m_s \quad (1.11)$$

		Significado	Unidades
Velocidades de reacción	<i>qs</i>	Velocidad específica de consumo de sustrato	mol _{sustrato} hora · C − mol _{biomasa}
	μ	Velocidad específica de crecimiento	C − mol _{biomasa} hora · C − mol _{biomasa}
	q_p	Velocidad específica de generación de producto	mol _{producto} hora∙C – mol _{biomasa}
Parámetros de Herbert-Pirt	а	Fracción del sustrato consumido utilizado para la producción de biomasa	mol _{sustrato} C – mol _{biomasa}
	b	Fracción del sustrato consumido utilizado para la producción de producto anabólico	mol _{sustrato} mol _{producto}
	m _s	Fracción del sustrato consumido utilizado para mantenimiento	mol _{sustrato} hora · C − mol _{biomasa}

 Tabla 1-5:
 Parámetros y variables del modelo H-P.

Cada uno de los parámetros del modelo se puede estimar de manera experimental o a partir de aproximaciones termodinámicas [39]. A continuación, se describe cada uno de los procesos y se presentan herramientas para el cálculo de sus respectivos parámetros a partir de una aproximación termodinámica:

• Mantenimiento: todos los microorganismos deben llevar a cabo procesos como la reincorporación de moléculas que salen de su membrana, o la reconstrucción de proteínas que son desnaturalizadas. Este tipo de procesos que se presentan con frecuencia, consumen energía extra por parte del microorganismo y son altamente sensibles a la temperatura del medio en el que este se encuentra. La energía consumida en procesos de mantenimiento se obtiene de la energía libre de Gibbs liberada en las reacciones catabólicas (ΔG_{cat}). Estas reacciones son altamente energéticas; pueden llegar a liberar entre 30 y 3000 kJ/mol, dependiendo del aceptor y el donador de electrones de la reacción [37].

Para estimar la cantidad de sustrato utilizado para mantenimiento celular (m_s) , se propone como herramienta calcular la cantidad de energía utilizada en este proceso (m_G) y se divide por toda la energía disponible del catabolismo (ΔG_{cat}) [37]. Heijnen propone que m_G es un valor similar para varios organismos que se puede estimar a partir de una correlación tipo Arrhenius que depende únicamente de la temperatura del proceso [37]:

$$m_{G} = 4.5 \exp\left[-\frac{69000}{R} \left(\frac{1}{T} - \frac{1}{298}\right)\right] [=] \frac{kJ \, energia \, libre \, de \, Gibbs}{h \, de \, mantenimiento \, C - mol_{x}}$$
(1.12)

Finalmente, se puede calcular la cantidad de sustrato requerida para el mantenimiento m_s :

$$m_s = \frac{m_G}{\Delta G_{cat}} \quad (1.13)$$

Como es de esperarse, aquellas reacciones con menor ΔG_{cat} disponible requieren de una mayor cantidad de sustrato para mantenimiento.

Generación de producto: los productos de interés en un proceso biológico pueden ser anabólicos o catabólicos. Los productos catabólicos son aquellos que se obtienen de la reacción catabólica del microorganismo. Por otro lado, los anabólicos están asociados a la producción de biomasa y generalmente demandan energía para su producción. Algunos ejemplos de estos son los biopolímeros (polihidroxialcanoatos), aminoácidos, algunos antibióticos entre otros [40]. El parámetro *b* del modelo de H-P está relacionado a los productos anabólicos. Para estimarlo Heijnen propone los siguientes pasos [37]:

1. Calcular b_{min} , omitiendo la cantidad de sustrato necesario para energía catabólica, utilizando la siguiente expresión:

$$b_{min} = \frac{\gamma_P}{\gamma_s} [=] \frac{mol_{Sustrato}}{mol_{Producto}}$$
 (1.14)

Donde γ_P y γ_s son, respectivamente, los grados de reducción del producto y del sustrato (donador de electrones).

- 2. Utilizar b_{min} para calcular la reacción teórica de producto y su $\Delta G_{R,teórico}$. Al conocer b_{min} se puede calcular la estequiometría de la reacción para generar el producto sin consumo de energía catabólica. Posteriormente, se puede calcular el $\Delta G_{R,teórico}$ de esta reacción. Se presentan dos casos:
 - Δ*G_{R,teórico}* ≪ 0: la generación del producto anabólico puede generar suficiente energía y no habrá necesidad del catabolismo proveniente del sustrato. Así:

$$b = b_{min}(anabolismo) + 0 (catabolismo)$$
(1.15)

 Δ*G_{R,teórico}* > 0: la reacción teórica del producto anabólico requiere energía libre de Gibbs y una cantidad adicional de catabolismo, generada a partir de cierta cantidad de sustrato. De tal manera, se puede calcular la cantidad de sustrato asociada a catabolismo (*b_{cat}*) como:

$$b_{cat} = \frac{\Delta G_{R,tebrico}}{\Delta G_{cat} \eta} [=] \frac{mol_{Sustrato}}{mol_{Producto}} \quad (1.16)$$

Esta relación muestra que la cantidad de sustrato catabolizado proviene de la producción de energía catabólica (ΔG_{cat}). Sin embargo, solo una fracción (η) de energía catabólica se convierte en energía biológica útil. Generalmente $\eta = 0.50$. Así, para este caso:

$$b = b_{min} + b_{cat} = \frac{\gamma_P}{\gamma_s} + \frac{\Delta G_{R,teórico}}{\Delta G_{cat} \eta}$$
(1.17)

3. Considerar una fuerza motriz termodinámica (TDF por sus siglas en inglés) para la formación de producto. Heijnen propone que una cantidad aproximada de TDF para estos casos son $10 n_p$ kJ/molP, donde n_p son los átomos de carbono del producto. Así, cuando $\Delta G_{R,teórico} > 0$, *b* se puede calcular como:

$$b = \frac{\gamma_P}{\gamma_s} + \frac{\Delta G_{R,teórico}}{\Delta G_{cat} \eta} + \frac{10 n_p}{\Delta G_{cat} \eta} \quad (1.18)$$

Producción de biomasa: el parámetro *a* presentado en el modelo de Herbert-Pirt está relacionado a la producción de biomasa, y depende de la naturaleza de la fuente de carbono, el donador y el aceptor de electrones y la fuente de nitrógeno. La energía utilizada en la producción de biomasa se obtiene de la reacción catabólica. De tal manera, para cuantificar la cantidad de donador de electrones para la síntesis de biomasa, se debe calcular la cantidad de sustrato destinada a catabolismo (a_{cat}) y la cantidad destinada a anabolismo (a_{ana}). Inicialmente, para el catabolismo, se debe encontrar la energía libre de Gibbs necesaria en la síntesis de 1 C-mol de biomasa (a_G). Este parámetro se estima de diferentes maneras, dependiendo del tipo de crecimiento del microorganismo (heterotrófico o autotrófico). Para el crecimiento heterotrófico, se ha propuesto la siguiente correlación que depende del número de carbonos (c) y el grado de reducción (γ) de la fuente de carbono [41]:

$$a_G = 200 + 18(6-c)^{1.8} + \exp\left[\left(\frac{3.8-\gamma}{c}\right)^{0.32} (3.6+0.4 c)\right] [=] \frac{kJ}{c-mol_x}$$
(1.19)

Para el crecimiento autotrófico, si la fuente de carbono es CO_2 y el donador de electrones es inorgánico, es necesario definir la naturaleza este último, pues podría necesitarse el uso de un mecanismo conocido como flujo inverso de electrones (RET) para la reducción del CO_2 en biomasa [42]. De tal manera, existen dos posibles casos [37]:

- ΔG_{ana} ≈ 0: esta situación aplica a donadores de electrones como H₂ o CO. En este caso, el microorganismo no necesita utilizar el RET. Así, a_G = 1000 kJ/C − mol_x.
- $\Delta G_{ana} \gg 0$: esta situación aplica a donadores como $Fe^{2+}/Fe^{3+}, NH_4^+/NO_2^-$. En este caso, el microorganismo debe utilizar el RET y por ende el valor aumenta a $a_G = 3500 \ kJ/C mol_x$.

Una vez se encuentra el valor de a_G , este se divide por la energía libre de Gibbs disponible de la reacción catabólica para encontrar la cantidad de sustrato dirigida a catabolismo en la producción de biomasa:

$$a_{cat} = \frac{a_G}{\Delta G_{cat}} \quad (1.20)$$

Para calcular la cantidad de sustrato dirigida a anabolismo en la producción de biomasa, se divide el grado de reducción de la biomasa (γ_X) sobre el grado de reducción del donador de electrones(γ_D). Esta razón no es más que la cantidad de electrones del sustrato que literalmente irán a la biomasa:

$$a_{ana} = \frac{\gamma_X}{\gamma_D}$$
 (1.21)

El grado de reducción de la biomasa depende de la constitución elemental de cada microorganismo [43]. Sin embargo, de manera general para una gran variedad de microorganismos, se suele utiliza un valor promedio de $\gamma_X = 4.2$ al cual le corresponde la siguiente fórmula química: $CH_{1.8}O_{0.5}N_{0.2}$ [44]. Una vez calculado a_{ana} , se puede encontrar *a*:

$$a = a_{cat} + a_{ana} \qquad (1.22)$$

Después de estimar los parámetros $a, b y m_s$, se plantea el modelo de H-P. Esta expresión se puede utilizar para desarrollar expresiones estequiométricas que permitan conocer la cantidad consumida o generada de cada uno de los compuestos involucrados, en términos de μ . Estas expresiones son llamadas 'funciones-q'. Estas funciones permiten plantear una estequiometria global expresada de la siguiente manera:

 $q_{s} Sustrato + q_{0}O_{2} + q_{N}NH_{4}^{+} \rightarrow \mu CH_{1.8}O_{0.5}N_{0.2} + q_{P} Producto + q_{w}H_{2}O + q_{H}H^{+} + q_{c} CO_{2}$ (1.23)

1.5.6 Rutas metabólicas: generalidades, planteamiento y análisis

Generalidades

Una parte del campo de la ingeniería metabólica se encarga de estudiar las secuencias de reacciones bioquímicas dentro los microorganismos encargadas de transformar metabolitos en productos (rutas metabólicas) [45] con el fin de optimizar de manera dirigida los flujos metabólicos de dichas rutas, y la variedad metabólica de un microorganismo. Esto puede llevarse a cabo por adición, eliminación o cambio de genes en los microorganismos. Parte de su enfoque es la integración de rutas metabólicas y se fundamenta en los flujos metabólicos como determinantes de la fisiología celular y la cuantificación de control metabólico [46].

Dentro de las aplicaciones de este estudio, está la ampliación de los tipos de sustratos que puede utilizar un microorganismo y la inserción de nuevos genes en microorganismos que son ampliamente conocidos, controlables y genéticamente modificables (microorganismos chasís [47]) con el fin de generar productos de interés.

Específicamente, las rutas metabólicas son secuencias de reacciones bioquímicas, catalizadas por enzimas de microorganismos, que transforman un sustrato inicial en uno o múltiples productos (metabolitos) finales. Las reacciones que se encuentran entre el sustrato y el metabolito final son reacciones intermediarias y sus productos son metabolitos intermediarios. Desde un punto de vista energético, las rutas metabólicas se clasifican en dos tipos [48]:

- Catabólicas: son aquellas que degradan compuestos orgánicos en productos menos complejos para extraer energía química, y transformarla en alguna forma útil para el microorganismo.
- Anabólicas: rutas que toman pequeños precursores, y los convierten en moléculas más grandes y complejas como proteínas y ácidos nucleicos. Inherentemente requieren inversión de energía.

El metabolismo celular de un microorganismo (Figura 1-9) está constituido por todas las rutas metabólicas (catabólicas y anabólicas) presentes en este. Las rutas metabólicas que están presentes en la generación de los principales constituyentes celulares, como proteínas, lípidos, carbohidratos y ácidos nucleicos, son similares en la mayoría de los microorganismos.

Figura 1-9: Representación del metabolismo celular en microorganismos. Adaptada de [48].

Para llevar a cabo las múltiples reacciones bioquímicas (fosforilaciones, reducciones, oxidaciones, descarboxilaciones, entre otras) que suceden en las rutas metabólicas, suele ser necesaria la presencia de diferentes moléculas como cofactores y/o iones metálicos que actúan de manera indirecta en las enzimas. Algunos de los cofactores más frecuentes en las rutas metabólicas de microorganismos son la Coenzima A (CoA), transportadores de electrones como la nicotinamida adenina dinucleótido (NAD⁺ en su forma oxidada y NADH en su forma reducida) y la flavina adenina dinucleótido (FAD en su forma oxidada y FADH2 en su forma reducida), y el adenosín trifosfato (ATP). El ATP es de gran importancia en todas las rutas metabólicas, pues sirve como intermediario energético entre el anabolismo y el catabolismo. Su síntesis como 'moneda energética' en células vivas, a condiciones celulares ([ATP] = 10 mM; [ADP] = 1 mM; [Pi] = 10mM), requiere alrededor de 50 kJ/mol [49]:

$$ADP + P_i \rightarrow ATP \ \Delta G^m = +50kJ/mol$$
 (1.24)

Debido a irreversibilidades de la reacción generalmente se requieren alrededor de 20 kJ extras por mol de ATP sintetizada, necesitándose así alrededor de 70 kJ por mol de ATP sintetizada. Sin embargo, bajo condiciones limitadas de energía el valor extra de energía puede disminuir a 10 kJ/mol. De manera contraria, la desfosforilación de una molécula de ATP puede llegar a liberar entre 50 y 70 kJ/mol [49]:

$$ATP \rightarrow ADP + P_i \qquad \Delta G_r^m = -50 \sim -70 \ kJ/mol \quad (1.25)$$

Los cofactores se pueden clasificar como '*conserved moieties*'. Las *conserved moieties* son especies transferidas entre otros metabolitos en reacciones internas. Estas no son sintetizadas, degradadas ni intercambiadas con el ambiente. Por ende, su cantidad al interior de la célula debe permanecer constante en todo momento [50].

Planteamiento de rutas metabólicas y Análisis de Balance de Flujos (FBA)

El planteamiento y análisis de rutas metabólicas tienen la finalidad, a nivel industrial, de encontrar maneras de aprovechar los metabolismos microbianos para obtener productos de interés. En la producción de todos estos compuestos se suelen presentar bajos rendimientos y productividades. Sin embargo, al reconstruir y analizar las rutas metabólicas para su producción, se pueden aumentar estos indicadores al optimizar dichas rutas [51]. El planteamiento de una ruta metabólica para la transformación de un sustrato A en un producto X se basa en información genética, bioquímica y enzimática. Para llegar de A a X, pueden existir múltiples rutas, y la selección de las rutas más factibles y/o óptimas se puede llevar a cabo de manera netamente manual, o utilizando algoritmos computacionales (Tabla 1-6). Algunos de ellos se centran en hacer modificaciones a rutas ya existentes simulando *knockout* o adición de enzimas, mientras que otros identifican posibles rutas basándose en principios fundamentales o posibles biotransformaciones entre estructuras químicas [52].

Tabla 1-6:	Herramientas	computacionales	para	le	predicción	de	rutas	metabólicas.
Adaptado de	[52].							

Herramienta	Descripción
BNICE	Identificación y evaluación termodinámica de todas las posibles rutas para la producción de algún compuesto
DESHARKY	Identificación de rutas metabólicas que se acomodan a la ruta metabólica nativa de un chasís en específico
FMM	Servidor web que encuentra rutas biosintéticas entre dos metabolitos, utilizando la base de datos KEGG
CarbonSearch	Algoritmo que identifica rutas dentro de redes metabólicas existentes, mediante seguimiento de átomos

La información necesaria para la reconstrucción de las rutas puede encontrarse en diferentes bases de datos en línea, como KEGG [53], BRENDA [54], BioCyC [55], entre otras. Generalmente se suelen utilizar de manera conjunta para tener una visión más completa. Para ilustrar la información más importante de KEGG a la hora de reconstruir una ruta metabólica, se tomará como ejemplo el metabolismo del propionato del microorganismo *Aminobacterium colombiense* (Figura 1-10). Los números presentes en esta ruta metabólica se conocen como números EC, utilizados como "las cédulas de las enzimas" para identificar sus diferentes tipos. En KEGG, si un número EC se encuentra en un cuadro de color verde en la ruta de algún microorganismo, esto indica que dicha enzima ha sido anotada en su metabolismo (es decir, que se ha corroborado experimentalmente que el microorganismo posee la enzima). Si el número EC se encuentra en un cuadro de color blanco, esto indica que la enzima no ha sido anotada en su metabolismo. Una enzima puede no haber sido anotada en el metabolismo de un microorganismo bien sea porque hasta el momento no se ha hecho experimentación para corroborar su presencia, porque no se ha reportado en KEGG, o porque no se encuentra presente en el metabolismo del microorganismo.

Figura 1-10: Sección del metabolismo del propionato en *Aminobacterium colombiense*. Adaptado de KEGG PATHWAY [56].

Aquellas enzimas/reacciones que no son reportadas en una ruta metabólica para algún microorganismo se conocen como 'gaps'. Estos gaps se pueden corroborar mediante experimentación, al observar si la enzima efectivamente está o no presente en el microorganismo. Cabe resaltar que acá se vislumbra la utilidad de la ingeniería metabólica, pues, en caso de querer llenar algún gap en una ruta metabólica, se pueden utilizar enzimas heterólogas para completarla [14].

Después de plantear una ruta metabólica mediante algoritmos, o manualmente, se deben cuantificar y analizar los flujos a través de esta. Uno de los métodos más utilizados para esto es el método matemático de Análisis de Balance de Flujos (*FBA* por sus siglas en inglés) [15]. El *FBA* es un método matemático versátil, basado en restricciones, que permite estimar la distribución de flujos metabólicos intracelulares. Como punto de partida, se deben determinar/definir los flujos extracelulares de metabolitos, y las reacciones que se tendrán en cuenta en la ruta metabólica. Posteriormente se define una función objetivo a optimizar, por ejemplo, maximizar la velocidad de crecimiento celular, o la producción de ATP, o la velocidad de producción de un metabolito de interés.

El planteamiento de la función objetivo se fundamenta en los balances de materia de los metabolitos intracelulares, su respectiva estequiometría, y en el supuesto de que las concentraciones de los metabolitos permanecen constantes en el tiempo (estado estacionario). Las mayores ventajas del *FBA* son que no se requiere conocer previamente las concentraciones de los metabolitos ni las cinéticas enzimáticas [15]. Mediante el *FBA* se pueden plantear múltiples escenarios metabólicos para una ruta específica. Una vez establecida la ruta, se puede evaluar qué sucedería si se eliminan reacciones de ésta y/o se podría evaluar cómo cambia la distribución de flujos si se incorporan reacciones extra en la ruta. Otra posibilidad es evaluar qué sucede si hay modificaciones en el medio de cultivo al que se encuentra sometido un microorganismo [57].

La solución que entrega el *FBA* no suele ser única, sino un espacio de soluciones, de las cuales algunas pueden no tener sentido en la situación real. En la medida que se incorpore una mayor cantidad de restricciones que permitan representar mejor el metabolismo celular, el espacio de soluciones disminuirá en tamaño y entregará un modelo con mejor ajuste (Figura 1-11).

Figura 1-11: La figura de la izquierda presenta el espacio de solución de los modelos obtenidos al implementar una pequeña cantidad de restricciones. Como se puede apreciar en la medida que se completa el conocimiento del comportamiento celular, disminuye el espacio de solución. Adaptado de [27]

1.5.7 Microorganismo chasís: generalidades

Un microorganismo chasís, o célula hospedera, es un microorganismo que se diseña teniendo en cuenta genomas pertenecientes a un solo o múltiples microorganismos. Esto con el fin de diversificar el genoma de dicho organismo, permitiéndole así sobrevivir bajo condiciones específicas de cultivo, o generar algún producto de interés [58]. Los microorganismos utilizados comúnmente como chasís son bacterias (*Escherichia coli, Bacillus subtilis, Streptomyces sp.*), levaduras (*Sa ccharomyces cerevisiae*) y hongos filamentosos [59]. Estos microorganismos han sido utilizados en escalas industriales y tienen en común diferentes características que favorecen las necesidades prácticas de la ingeniería metabólica como: estar ampliamente caracterizados en términos de medios de cultivo, genéticos y de bioprocesos, requerir nutrientes simples, poseer un genoma fácilmente manipulable [60].

E. coli es una bacteria que se ha utilizado muy frecuentemente a nivel industrial gracias a características destacables como: la facilidad de crecimiento en medios de cultivos sintéticos, sus rápidos tiempos de duplicación y el conocimiento que ha sido colectado a través de los años debido a la gran cantidad de experimentos en los que ha sido utilizada [59]. La Tabla 1-7 presenta una recopilación de ventajas y desventajas del uso de *E. coli* como microorganismo productor.

Ventajas	Desventajas
Rápido crecimiento en diferentes tipos de azúcares	Desbordamiento del metabolismo, resultante en generación de acetato a altos flujos de glucosa
Posibilidad de crecimiento en altas densidades celulares	Capacidad limitada para la producción de proteínas largas
Su genoma está completamente secuenciado y hay diferentes plásmidos disponibles	Requerimientos energéticos relativamente altos de mantenimiento
No requiere medios de cultivo complejos (e.g, adición de vitaminas)	Debido a su metabolismo facultativo, la formación de productos puede cambiar en grandes escalas cuando haya zonas de poco oxígeno
Alto uso en la industria gracias a su experiencia	Producción de endotoxinas

 Tabla 1-7:
 Ventajas y desventajas del uso de *E. coli.* Adaptada de [59].

A nivel industrial estos son los cambios que se pueden hacer en *E. coli*, para aprovechar al máximo este microorganismo en la fabricación de una gran gama de productos [59]:

- Cambios en el tipo de sustrato utilizado.
- Incremento en el rendimiento de algún precursor obtenido del sustrato.
- Inserción de genes para la generación de un producto.
- Modificaciones genéticas (generalmente eliminación de genes) que disminuyan la producción de subproductos.

Las cepas de *E. coli*, no patógenas, que han sido ampliamente utilizadas a nivel industrial, y a nivel de modificaciones genéticas son la cepa K-12 y la cepa B [61]. Ambas son

constantemente desarrolladas, enfocándose en el mejoramiento de la expresión de genes que no son característicos de *E. coli* para promover la estabilidad y el plegamiento de proteínas [62].

2. Metodología

2.1 Planteamiento del modelo base del cultivo microbiano mixto

Para poder plasmar, explicar y cuantificar las interacciones entre las principales familias de un cultivo microbiano mixto capaz de transformar glicerol en ácido propiónico fue necesario generar un modelo inicial. Éste fue la base para el posterior desarrollo de los modelos matemáticos de caja negra y el modelo metabólico del microorganismo chasís. Se incluyeron las cuatro familias reportadas por Chen, Yun, et al. (2016) en [1] y descritas anteriormente en la sección 1.5.3 de este documento, cada una representante de las principales funciones metabólicas del consorcio y, además, se representaron las interacciones entre dichas familias utilizando flujos extracelulares de los metabolitos (q_i) (Figura 2-1). El modelo parte de los siguientes supuestos:

- 1. Cada una de las familias del consorcio interactúa como mínimo con otra familia al servirle como proveedor de sustrato (donador de electrones).
- 2. El glicerol es consumido por la familia acidogénica y transformado en propionato.
- 3. La familia acetogénica consume parte del propionato generado por la familia acidogénica y lo transforma en acetato e hidrógeno.
- 4. Parte del acetato producido por la familia acetogénica es utilizado como sustrato por la familia metanogénica acetoclástica para producir metano y dióxido de carbono.
- 5. La familia metanogénica hidrogenotrófica utilizará parte del hidrógeno producido por la familia acetogénica, y parte del dióxido de carbono generado por las demás familias para generar metano.

Figura 2-1: Modelo base para representar el CMM y las interacciones entre sus principales familias mediante flujos q_i [$mol_i/C - mol_X \cdot h$].

2.2 Pasos metodológicos para el diseño racional del microorganismo chasís

El diseño racional del microorganismo chasís se hizo teniendo en cuenta consideraciones generales del ambiente al que se vería sometido en un escenario real, consideraciones termodinámicas, y consideraciones de ingeniería metabólica, además de las interacciones entre las familias pertenecientes a un CMM capaz de transformar glicerol en ácido propiónico. En total se plantearon 6 pasos metodológicos (Figura 2-2). Los pasos 1-4 tienen como finalidad establecer de manera general los objetivos de diseño del microorganismo chasís y el medio en el que éste se va a desarrollar, teniendo en cuenta consideraciones para el bioproceso industrial en el que el microorganismo podría llegar a utilizarse. Mediante el paso 5 se establece la estequiometría del proceso utilizando un modelo de caja negra que tenga consideraciones termodinámicas. El paso final busca entender más detalladamente qué sucede en el metabolismo del microorganismo.

Figura 2-2: Pasos metodológicos para el diseño racional del microorganismo chasís.

A continuación, se describe cada uno:

1. Definición del producto a generar, las materias primas y otros compuestos necesarios

Inicialmente se definió la cantidad a generar de producto en unidades de [mol/h] con base en la disponibilidad de glicerol crudo proveniente de la industria de biodiesel, su pureza y su estado final para comercialización: sólido, líquido o gaseoso, entre otras. Además, se eligió el sustrato a utilizar como fuente de carbono y de electrones teniendo en cuenta los rendimientos que se pueden alcanzar. También se seleccionó el tipo de microorganismo, y los compuestos complementarios más generales que se deben tener en cuenta para su crecimiento y mantenimiento: fuente de nitrógeno, azufre y fósforo.

2. Especificación de las propiedades de todos los compuestos presentes en el proceso

Se especificaron propiedades fisicoquímicas y de transporte, de interés, para los compuestos del proceso. Estas se obtuvieron de dos fuentes:

- Bases de datos online: NIST [63], PubChem [64], eQuilibrator [65].
- Simulaciones realizadas mediante software computacional: el software utilizado fue Aspen Plus [66].
- 3. Selección del microorganismo a utilizar

Esta selección se llevó a cabo buscando un microorganismo que fuera versátil en términos del proceso. De tal manera, se buscó que cumpliera con estas consideraciones:

- 1. Existe vasta disponibilidad de información genética y de cultivo del microorganismo.
- 2. Puede crecer aeróbica o anaeróbicamente.
- 3. Puede consumir nutrientes económicos y variados.
- 4. Tiene potencial para trabajar a escala industrial: puede soportar altas concentraciones de productos y condiciones extremas en términos generales

4. Aproximación a la definición de las condiciones del medio de cultivo del microorganismo

En este paso se definió cuál sería el medio de cultivo para el microorganismo. Para tal fin, se especificaron las concentraciones del sustrato, de oxígeno, de nitrógeno, la temperatura del proceso, el pH y la presión.

5. Establecimiento de la estequiometria del proceso utilizando modelos de Herbert-Pirt y funciones-q

Para establecer la estequiometría global para el proceso que utiliza el microorganismo chasís, inicialmente, se plantearon las estequiometrías de las cuatro familias principales pertenecientes a un CMM anaeróbico capaz de transformar glicerol en propionato: familia acidogénica, familia acetogénica, familia metanogénica acetoclástica y familia metanogénica hidrogenotrófica. Esto fue hecho mediante modelos de Herbert-Pirt y funciones-q para cada una.

Para plantear los modelos de Herbert-Pirt en cada uno de los cuatro casos se encontraron ΔG_{cat} , y los parámetros referentes a mantenimiento (m_s) , producción de biomasa (a), y generación de producto (b) de la siguiente manera:

- ΔG_{cat} : con el fin de que ΔG_{cat} reflejara la cantidad de energía disponible a condiciones celulares, los $\Delta G_f^{o'}$ de los compuestos involucrados en las reacciones catabólicas de cada familia fueron corregidos a una concentración de 1 mM, y a un pH de 7.0 y fuerza iónica de 0.1 M utilizando, respectivamente, las ecuaciones 1.7 y 1.10. Con los ΔG_f corregidos se calcularon los ΔG_{cat} para cada familia utilizando la ecuación 1.6. En los casos específicos de las familias acetogénica y la familia metanogénica acetoclástica, acorde a lo reportado por Henze, M. [35] para la presencia de familias metanogénicas en CMM anaeróbicos, fue necesario corregir a una presión de $4.5x10^{-4} bar$ utilizando la ecuación 1.8.
- m_s : para cada familia se calculó la cantidad de sustrato requerida para mantenimiento m_s utilizando la ecuación 1.13 que depende de m_G y ΔG_{cat} . La variable m_G se calculó utilizando la ecuación 1.12, a una temperatura de 37°C.
- *b*: este valor debe ser igual a cero para todas las familias, pues todos los productos generados son catabólicos.

60

• *a*: para cada familia fue necesario calcular el aporte catabólico a_{cat} y anabólico a_{ana} para la producción de biomasa. a_{cat} fue calculado utilizando la ecuación 1.20 que depende de a_G y ΔG_{cat} . Para calcular a_G se definió, para cada familia, el número de carbonos (*c*) y el grado de reducción (γ) de sus sustratos, y se utilizó la ecuación 1.19. Para calcular a_{ana} , se definió el grado de reducción de la biomasa de cada familia (γ_x) y el grado de reducción del donador de electrones (γ_D) y se utilizó la ecuación 1.21. Por último, para calcular *a*, se utilizó la ecuación 1.22.

Después de encontrar los parámetros a, b, y m_s se planteó el modelo de H-P para cada una de las cuatro familias utilizando la ecuación 1.11. Posteriormente, para cada familia, se hallaron las funciones q partiendo de los modelos de H-P a través de los balances de materia (carbono, hidrógeno, oxígeno, nitrógeno, cargas y electrones). Así, se obtuvieron cuatro expresiones como la presentada en la ecuación 1.23 para cada familia. Al dividir la expresión de cada familia por su respectiva velocidad de crecimiento se obtuvo la estequiometría de cada una tal y como se presenta en la ecuación 2.1:

$$\frac{q_s}{\mu} Sustrato + \frac{q_0}{\mu}O_2 + \frac{q_N}{\mu}NH_4^+ \to 1 CH_{1.8}O_{0.5}N_{0.2} + \frac{q_P}{\mu} Producto + \frac{q_W}{\mu}H_2O + \frac{q_H}{\mu}H^+ + \frac{q_c}{\mu}CO_2$$
(2.1)

La única variable de la expresión 2.1 es la velocidad de crecimiento de cada familia. Basta con determinarlas y sustituirlas para establecer la estequiometría de cada una de las familias. Finalmente, para establecer la estequiometría del microorganismo chasís se partió del supuesto de que la fórmula molecular para la biomasa de todas las familias es $CH_{1.9}O_{0.32}N_{0.2}$. Así, una vez fueron definidas las velocidades de crecimiento de cada familia y fueron sustituidas en la expresión 2.1, se sumaron las cuatro estequiometrías resultantes y se obtuvo la estequiometría global para el microorganismo chasís.

6. Planteamiento del modelo metabólico del microorganismo chasís

Para plantear el modelo metabólico del microorganismo chasís fue necesario reconstruir una red metabólica que integrara su catabolismo y anabolismo. La red catabólica fue reconstruida a partir de los catabolismos de microorganismos representantes de las cuatro principales funciones metabólicas del CMM (acidogénesis, acetogénesis, metanogénesis acetoclástica y metanogénesis hidrogenotrófica. La red anabólica fue reconstruida a partir del modelo planteado para el crecimiento de *E. coli* K-12 MG1655 por Taymaz-Nikerel, Hilal, et al. (2010) [67]. Además, se agregó una ruta para la asimilación de metanol en *E. coli* K-12 MG1655. Posteriormente, se juntaron las reacciones de las rutas en una red que representa el metabolismo del microorganismo chasís. Posteriormente, se corroboró utilizando *FBA* que las relaciones estequiométricas de los metabolitos extracelulares, obtenidas mediante la simulación del modelo metabólico, fueran las mismas que se obtuvieron al utilizar los modelos de Herbert-Pirt y las funciones q. Finalmente, se buscó cuál sería el mejor sustrato para maximizar la producción de propionato, considerando diferentes composiciones de glicerol crudo.

2.3 Pasos metodológicos para la reconstrucción y el análisis del modelo metabólico del microorganismo chasís (*E. coli* K-12 MG1655)

El modelo metabólico del microorganismo chasís está compuesto por el modelo del catabolismo, el modelo del anabolismo y un modelo para la asimilación de metanol. A continuación, se presenta cómo se reconstruyó cada uno.

Catabolismo: para reconstruir la red catabólica del microorganismo chasís, primero fue necesario reconstruir las rutas catabólicas que representan las funciones metabólicas de las principales familias pertenecientes al CMM presentado en esta tesis. Con tal fin se seleccionó un microorganismo representante de cada una de las familias teniendo en cuenta el análisis taxonómico reportado para el CMM del reactor R5 [1] en la plataforma online de 'Sequence Read Archive' (SRA) del NCBI [36]. Este análisis taxonómico reporta los porcentajes de lecturas para los múltiples microorganismos identificados en el CMM. Basándose en esta información y en los *fillum* asignados por Chen, Yun, et al. (2016) [1], para cada función metabólica, se seleccionó el microorganismo con mayor porcentaje de lectura cuya ruta metabólica de interés tuviera la menor cantidad de gaps (Tabla 2-1).

Tabla 2-1:Microorganismos seleccionados como representantes de cada familia principaldel CMM. Tomados del SRA online [36].

Familia	Microorganismo seleccionado	Porcentaje de identificación en el SRA ¹
Acidogénesis	Aminobacterium colombiense DSM 12261	14.04%
Acetogénesis	Clostridium acetobutylicum DSM 1731	0.71%
Metanogénesis acetoclástica	Methanosaeta concilii GP6	5.5%
Metanogénesis hidrogenotrófica	Methanobacterium paludis	1.1%

Para la reconstrucción de las rutas se utilizó principalmente la base de datos KEGG. Específicamente, las siguientes secciones:

¹ El análisis taxonómico reportado en el SRA presenta los porcentajes de lecturas *identificadas* (95.77%), las cuales fueron categorizadas inicialmente en reinos (Bacterias: 87.43%, Arqueas: 8.3%). Estos reinos fueron distribuidos en *fillum* de la siguiente manera: Bacterias: Terrabacteria (18.35%), Synergistetes (14.44%), Proteobacteria (2.42%), grupo FCB (2.11%), Deferribacteres (0.01%); Arqueas: Methanomicrobia (5.04%), Thermoplasmata (1.32%), Methanobacteria (1.02%). Finalmente, para cada *fillum* se presentaron aquellos microorganismos que fueron *identificados*. Cabe aclarar que para la mayoría de *fillum* solo se logró identificar una baja cantidad de microorganismos.

- KEGG PATHWAY: sección que contiene una colección de rutas metabólicas que busca representar interacciones moleculares, reacciones y relaciones entre las rutas [56]. Acá se presentan mapas de diferentes metabolismos, categorizados de la siguiente manera:
 - Mapas globales
 - Metabolismo de carbohidratos
 - Metabolismo de energía
 - Metabolismo de lípidos
 - Metabolismo de nucleótidos
 - Metabolismo de aminoácidos
 - Metabolismo de otros aminoácidos
 - Metabolismo y biosíntesis de glicano
 - Metabolismo de cofactores y vitaminas
 - Biosíntesis de otros metabolitos secundarios
 - Metabolismo y biodegradación de xenobióticos
- KEGG MODULE: colección de unidades funcionales, definidas manualmente, utilizadas para documentar e interpretar genomas secuenciados. En esta sección se encuentran rutas metabólicas ya planteadas. En su mayoría están corroboradas mediante experimentación o reportes de literatura [68].
- KEGG ENZYME: sección de KEGG donde se implementa la nomenclatura de enzimas (sistema de números de comisión de enzimas) producida por el comité de nomenclatura bioquímica IUBMB/IUPAC [69].
- KEGG REACTION: base de datos de reacciones químicas, en su mayoría reacciones enzimáticas, que contiene todas las reacciones que reportadas en KEGG PATHWAY y en KEGG ENZYME [70]. Para cada reacción se especifica su nombre, la enzima que cataliza la reacción (mediante su respectivo número de comisión) y en qué rutas y módulos de KEGG aparece.
- KEGG COMPOUND: colección que contiene pequeñas moléculas, biopolímeros y otros compuestos químicos que son relevantes para sistemas biológicos [71]. En esta sección se puede encontrar información como el nombre del compuesto, su fórmula química, peso molecular, y en qué reacciones y rutas metabólicas se encuentra reportado el compuesto en KEGG REACTION y KEGG PATHWAY.

Como complemento de KEGG se utilizó la base de datos BRENDA. Esta cuenta con una amplia recopilación de información sobre enzimas y se puede corroborar si cierta enzima ha sido catalogada como reportada, anotada o adicionada a un microorganismo en específico. Además, suele presentarse información sobre la reacción que cataliza y recopilaciones sobre hallazgos e información de interés para dicha enzima.

Para la reconstrucción de la ruta catabólica de los microorganismos pertenecientes a las familias acidogénica y acetogénica, inicialmente se definió qué sustrato consumen y qué producto final generan cada uno. Posteriormente se buscaron en KEGG PATHWAY las rutas metabólicas que incluían los compuestos de interés para cada microorganismo. Con esta información, se reconstruyeron las rutas buscando que estos modelos metabólicos coincidieran con la estequiometría de sus respectivos modelos de caja negra. Para la reconstrucción de las rutas catabólicas de los microorganismos pertenecientes a las familias metanogénica acetoclástica y metanogénica hidrogenotrófica se utilizaron las rutas reportadas en KEGG MODULE, para cada uno, verificando que coincidieran con la estequiometría de los modelos de caja negra. Por último, se unieron las reacciones de las cuatro rutas metabólicas en la red catabólica del microorganismo chasís y se corroboró, utilizando KEGG y BRENDA, cuales reacciones pertenecientes a esta red han sido reportadas para la cepa *E. coli* K-12, pues desde un comienzo se desea identificar cuales genes/enzimas se tendrían que insertar/crear experimentalmente en el microorganismo chasís.

- Anabolismo: la red anabólica del microorganismo chasís fue representada utilizando como base el modelo planteado para el crecimiento de *E. coli* K-12 MG1655 por Taymaz-Nikerel, Hilal, et al. (2010) [67]. Este incluye reacciones de los siguientes metabolismos pertenecientes al metabolismo del carbono central:
 - Glicolisis: degradación de azúcares en piruvato, que además produce metabolitos precursores utilizados en reacciones de biosíntesis.
 - Ruta de las pentosas fosfato: suministro de precursores para la síntesis de aminoácidos y nucleótidos. Además, mantiene balanceados los niveles de NADP⁺/NADPH.
 - Ciclo del TCA: bajo condiciones aeróbicas se encarga de generar energía. Sin embargo, como el microorganismo chasís está bajo condiciones anaeróbicas, parte de este metabolismo se encuentra involucrado con moléculas del catabolismo del microorganismo chasís.
 - Reacciones anapleróticas: conversión de los intermediarios del ciclo del TCA a intermediarios glicolíticos durante el crecimiento en intermediarios del ciclo de TCA.

Además del metabolismo del carbono central, se tuvieron en cuenta:

 Metabolismo de aminoácidos y proteínas para la síntesis de biomasa: estas moléculas son las precursoras de las proteínas necesarias para generar la biomasa. Los aminoácidos que se tuvieron en cuenta fueron: alanina, aspartato, arginina, prolina, glutamato, glicina, serina, histidina, metionina, treonina, lisina, tirosina, triptófano, fenilalanina, cisteína, valina, leucina, e isoleucina.

- Metabolismo de nucleótidos, polimerización del ADN y polimerización del ARN: los nucleótidos son los precursores en la polimerización del ADN y el ARN. Se consideró el metabolismo de desoxiadenilato (dAMP), desoxitimidilato (dTMP), desoxicitidilato (dCMP) y el desoxiguanilato (dGMP) y sus respectivos conjugadas de ribosa (AMP, TMP, CMP y GMP).
- Biosíntesis de la envoltura celular y metabolismo de lípidos: los lípidos y los ácidos grasos son necesarios como tal para la síntesis de la biomasa.
- Reacciones para el crecimiento de *E. coli* en glicerol: para que el microorganismo chasís sea capaz de asimilar el glicerol como fuente de carbono, se agregaron las reacciones catalizadas por las enzimas glicerol quinasa, glicerol-3-fosfato deshidrogenasa y la fructosa bifosfatasa.
- Fosforilación oxidativa: las reacciones que se incluyeron de este metabolismo fueron las catabolizadas por las enzimas formato deshidrogenasa, NADH deshidrogenasa, ubiquinol oxidasa y succinato deshidrogenasa. No se tuvo en cuenta la ubiquinol oxidasa, pues esta enzima requiere la presencia de oxígeno y esto implicaría que el proceso fuera aeróbico.

Mediante estos metabolismos se generan los precursores para sintetizar un mol de biomasa (Tabla 2-2), manteniendo la siguiente estequiometría:

 $\begin{array}{l} 0.74 \ Biom_{Prot} + 0.00865 \ DNA + 0.0109 \ etha + 0.0122 \ glyc + 0.000956 \ glycogen + \\ 0.00304 \ hdca + 0.00235 \ hdcea + 0.0000543 \ lps_{EC} + 0.00154 \ ocdcea + \\ 0.000156 \ peptido_{EC} + 0.000784 \ ptrc + 0.0535 \ RNA_{tot} + 0.000159 \ spmd \rightarrow Biomasa \\ (2.2) \end{array}$

 Tabla 2-2:
 Recopilación de los metabolitos involucrados en la reacción general de biomasa.

Identificador	Nombre	Fórmula
laonanoador	Hembre	i onnaia
<i>Biom_{Prot}</i>	Proteína para la biomasa	$CH_{1.58}O_{0.31}N_{0.29}S_{0.009}$
DNA	ADN	$CH_{1.05}N_{0.39}O_{0.62}P_{0.10}$
etha	Etanolamina	C_2H_8NO
glyc	Glicerol	$C_3H_8O_3$
glycogen	Glicogeno	$C_{6}H_{10}O_{5}$
hdca	Hexadecanoato ($C_{16:0}$)	$C_{16}H_{31}O_2$

Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

hdcea	Hexadecenoato ($C_{16:1}$)	$C_{16}H_{29}O_2$
lps_{EC}	Lipopolisacáridos (E.coli)	$C_{171}H_{297}O_{88}N_4P_2$
ocdcea	$Octadecenoato$ ($C_{18:1}$)	$C_{18}H_{33}O_2$
$peptido_{EC}$	Subunidad de peptidoglicano (E.coli)	$C_{40}H_{62}N_8O_{21}$
ptrc	Putrescina	$C_4H_{14}N_2$
RNA _{tot}	ARN	$CH_{1.02}N_{0.41}O_{0.73}P_{0.10}$
spmd	Espermidina	$C_7 H_{22} N_3$
Biomasa	Biomasa	$CH_{1.74}N_{0.24}O_{0.34}S_{0.006}P_{0.006}$

Cabe aclarar que, para la composición elemental reportada en el modelo anabólico base (Tabla 2-3), se tiene una fórmula molecular de biomasa de $CH_{1.74}O_{0.34}N_{0.24}S_{0.006}P_{0.005}$ y un grado de reducción de $\gamma_X = 4.31$. Debido a que esta fórmula molecular y grado de reducción son diferentes a los considerados en el modelo de caja negra ($CH_{1.9}O_{0.32}N_{0.2}$; $\gamma_X = 4.67$), fue necesario agregar una reacción para transporte de NADPH que compensara la diferencia entre los electrones contenidos en las dos biomasas.

Tabla 2-3: Composición elemental de biomasa para *E. coli*, creciendo en un cultivo aeróbico con glucosa limitada a una taza de dilución de $0.1 h^{-1}$. Adaptado de [67].

Componente	Porcentaje
Proteína	68.19
ARN	7.26
ADN	1.10
Lípidos totales	14.54
Glicerol	4.54
Etanolamina	2.73
Ácidos grasos (C _{16:0})	3.12
Ácidos grasos $(C_{16\cdot 1})$	2.40
Acidos grasos($C_{18,1}$)	1.74
Lipopolisacáridos	0.85
Polisacáridos (glicógeno)	0.62
Peptidoglicano (mureína)	0.62

Putrescina	0.29
Espermidina	0.10
Cenizas	6.43
Suma	100.00
Composición de biomasa	$CH_{1.74}O_{0.34}N_{0.24}S_{0.006}P_{0.005}$
γ_X	4.31

 Asimilación de metanol: aunque el metanol no fue considerado en el modelo de caja negra, su transformación fue considerada dentro de la ruta metabólica del microorganismo chasís para simular el comportamiento del microorganismo chasís al utilizar glicerol crudo, el cual contiene una fracción de metanol que aportaría electrones extra a las reacciones redox. Con tal fin, se implementó la ruta lineal creada por Wang, X., et al. (2017) [72] capaz de transformar metanol en dihidroxiacetona (DHA) (Figura 2-3).

Figura 2-3: Ruta lineal para la asimilación de metanol en *E. coli*. Las flechas de color naranja y morado representan las enzimas utilizadas en la ruta lineal. El plásmido pTrc99A-mdh-fls es utilizado para aumentar la expresión de las enzimas MDH y FLS en *E. coli*. Adaptada de [72].

Finalmente, el modelo metabólico completo del microorganismo chasís se construyó uniendo las reacciones de la ruta catabólica, la ruta anabólica y de la ruta para asimilar el metanol. El análisis de la red resultante se llevó a cabo mediante el método *FBA*. Todo el problema del *FBA* se planteó y resolvió utilizando el software 'COBRA Toolbox' de MATLAB.

2.4 Metodología para la validación del modelo de caja negra (distribución de Herbert-Pirt)

La validación del modelo de caja negra para el microorganismo chasís se hizo utilizando la información reportada por Chen, Yun, et al. (2016) para las primeras 48 horas del *batch*

secuencial reportado bajo el nombre de R5 [1], cuya concentración inicial de glicerol fue 5.56 g/L. Esta información incluye los perfiles de concentración de propionato, acetato, amonio, butirato y biogás, los cuales fueron extraídos utilizando el software PlotDigitizer (Figura 2-4).

Los datos de las concentraciones de propionato, acetato y el volumen de biogás fueron utilizados para validar el modelo. Es importante mencionar que para estos datos experimentales no se reportan sus respectivos valores de error ni de desviación estándar. Como paso inicial para la validación, se plantearon los balances de materia en un reactor de configuración *batch* para las concentraciones de biomasa de cada familia y para los compuestos previamente mencionados. El balance de cada uno de los compuestos involucrados en el proceso depende de la concentración de biomasa (C_x) de cada familia que lo genera y/o consume. Para cualquiera de las cuatro familias, la biomasa que se acumula es igual a la biomasa generada:

$$\frac{dC_{x,i}}{dt} = \mu_i * C_{x,i} [=] \frac{1}{hora} * \frac{gramos_X}{Litro}$$
(2.3)

En estos balances, las concentraciones son las variables simuladas y las velocidades de crecimiento (μ) de cada familia son parámetros. Para definir las concentraciones iniciales de biomasa fue necesario fijar la velocidad de crecimiento de cada una de las familias. $\mu_{Acidogenesis}$, $\mu_{Acetogenesis}$ y $\mu_{Met. A}$ fueron fijadas utilizando como valores de referencia las

velocidades máximas de crecimiento reportadas por Henze, M. en [35], y $\mu_{Met. H}$ fue fijada mediante iteraciones del modelo matemático. Una vez fijadas estas velocidades, se iteró manualmente cada una de las concentraciones iniciales de biomasa (Tabla 2-4) buscando minimizar el error relativo entre el modelo matemático planteado y los datos experimentales.

Tabla 2-4: Concentraciones iniciales de biomasa de cada una de las familias pertenecientes al CMM.

Familia	Concentración inicial de biomasa (C_{xo}) [g/L]
Acidogénica	$1.38x10^{-1}$
Acetogénica	$8.99x10^{-2}$
Metanogénica acetoclástica	$1.03x10^{-2}$
Metanogénica hidrogenotrófica	$3.50x10^{-3}$

Una vez establecidos los balances para la concentración de biomasa de cada familia, se plantearon los balances de materia de cada uno de los metabolitos de interés basándose en el modelo presentado previamente (Figura 2-1; sección 2.1). El consumo y generación de estos se expresaron en términos de C_x y de los flujos de cada metabolito (q_i) como:

$$q_i C_x[=] \frac{mol_i}{l_i h} \qquad (2.4)$$

Los flujos q_i son variables que se calcularon utilizando relaciones estequiométricas y el modelo de H-P presentado en la sección 1.5.5. Estos flujos fueron utilizados para plantear los balances de materia de cada metabolito (Tabla 2-5).

Compuesto	Balances de materia ²	Unidades
Glicerol	$\frac{dC_{glic}}{dt} = q_s _{Acid} C_{x,Aci} \frac{PM_{Glic}}{PM_X} (2.5)$	
Propionato	$\frac{dC_{prop}}{dt} = \left(q_P _{Acid}C_{x,Aci} + q_s _{Acet} C_{x,Acet}\right) \frac{PM_{prop}}{PM_X} $ (2.6)	
Acetato	$\frac{dC_{Acet}}{dt} = \left(q_P _{Acet}C_{x,Acet} + q_S _{Met1}C_{x,Met1}\right)\frac{PM_{Acet}}{PM_x} (2.7)$	$\frac{g_i}{Lh}$
Hidrógeno	$\frac{dC_{H_2}}{dt} = \left(q_{H_2} _{Acet} C_{x,Acet} + q_S _{Met2} C_{x,Met2}\right) \frac{PM_{H_2}}{PM_x} (2.8)$	LIL
Metano	$\frac{dC_{CH_4}}{dt} = \left(q_{CH_4} _{Met1} + q_{CH_4} _{Met2}\right) \frac{PM_{CH_4}}{PM_x} (2.9)$	
<i>CO</i> ₂	$\frac{dC_{CO_2}}{dt} = \left(q_c _{Aci}C_{x,Aci} + q_c _{Acet}C_{xAcet} + q_c _{Met.A} C_{x,Met.A} + q_c _{Met.H} C_{x,Met.H}\right) \frac{PM_{CO_2}}{PM_X} (2.10)$	

 Tabla 2-5:
 Balances de materia para cada uno de los metabolitos de interés en el reactor

 batch.

Las condiciones iniciales para la concentración de cada metabolito fueron obtenidas de la información experimental (Tabla 2-6).

Metabolito	Concentración inicial [g/L]
Glicerol	5.56
Propionato	2.73
Acetato	0
Hidrógeno	0
Metano	0
<i>CO</i> ₂	0

Tabla 2-6: Concentraciones iniciales de cada metabolito en R5.

Para la validación, además de los balances de materia, se tuvieron en cuenta los siguientes supuestos planteados a partir de los perfiles de concentración experimentales:

 Supuesto 1: a partir del perfil experimental del propionato (Figura 2-4), se calculó su velocidad de producción entre las 7 y las 14 horas al hacer la diferencia entre sus

² El signo que indica una velocidad de consumo de un metabolito estará dado por el valor estimado de (q_i) .

respectivos valores de concentración, y posteriormente dividir este valor por el invertalo de tiempo transcurrido (7 horas). Se encontró que entre estas horas se da su mayor velocidad de producción $(0.166 g/L \cdot h)$. Que haya producción de propionato implica que la velocidad de producción de la familia acidogénica es mayor que la velocidad de consumo de propionato de la familia acetogénica. Entre las 14 y las 24 horas la velocidad de producción disminuye a un valor de $0.032 g/L \cdot h$ (disminución del 80%). Después de las 24 horas comienza a haber un consumo neto de propionato a una velocidad promedio de $0.010 g/L \cdot h$. Debido a esta tendencia del perfil de concentración de propionato, se asumió que el glicerol adicionado comienza a agotarse cerca de la hora 14 y se termina completamente cerca de la hora 24, lo cual implica un cese en la función metabólica de la familia acidogénica a partir de la hora 14.

A nivel del modelo matemático el cese de la función metabólica de la familia acidogénica, a partir de las 14 horas, significa que:

- 1. La velocidad de crecimiento es igual a cero: $\mu|_{14h \rightarrow 48h} = 0$.
- 2. La concentración de biomasa permanece constante: $C_{x,aci} = cte|_{14h \rightarrow 48h}$.
- 3. El mantenimiento es igual a cero: $m_s|_{14h \rightarrow 48 h} = 0$.
- Supuesto 2: al analizar el perfil experimental del acetato en la Figura 2-4, se calculó que la velocidad de producción máxima de acetato, al igual que para el propionato, se alcanza entre las 7 y 14 horas y es de 0.113 g/L · h. Entre las 14 y las 24 horas la velocidad de producción es prácticamente cero, lo cual implica que las velocidades de consumo y producción de acetato en este intervalo son iguales. Después, a partir de la hora 24, el acetato se consume a una velocidad promedio de 0.024 g/L · h. Este hecho está relacionado con el cese de producción de ácido propiónico en este mismo intervalo de tiempo, y con el consumo realizado por la familia metanogénica acetoclástica. A diferencia del comportamiento y el supuesto presentado para el perfil del propionato, se observa en el perfil del acetato, que su producción cesa a partir de la hora 14 sin que el sustrato utilizado para su generación se agote. Debido a esto se asumió que cerca de las 14 horas cesa la función metabólica de la familia acetogénica. Las implicaciones a nivel matemático son las mismas que se hicieron en el supuesto 1 aplicadas a la familia acetogénica.

Una posible explicación para que, a pesar de que todavía haya sustrato, cese esta función metabólica se puede plantear desde un punto de vista termodinámico. Recuérdese de la sección 1.5.2 que la presión parcial de hidrógeno tiene impacto sobre los ΔG_r de las familias acetogénica y metanogénica acetoclástica. La cuantificación de los cambios en el ΔG_r de la acetogénesis, debidos a la presión parcial de hidrógeno, se hizo utilizando la ecuación 1.8 como base:

$$\Delta G_{cat,Acet} = \Delta G_{cat,Acet}^{o'} + RTln\left(\frac{C_{C_2H_4O_2P_{CO_2}P_{H_2}^3}}{C_{C_3H_6O_2}}\right) \quad (2.11)$$

Como valor de referencia a condiciones celulares se calculó $\Delta G_{cat,Acet}^{o'} = +61.71 \, kJ/mol$. La relación $C_{C_2H_4O_2}/C_{C_3H_6O_2}$, P_{CO_2} y P_{CH_4} se fijaron a los valores experimentales 0.38 (relación de los valores máximos de estos metabolitos), 0.58 *atm* (valor promedio para los experimentos en los que se reportó esta presión, presentados por Chen, Yun, et al. (2016) [1]) y 0.419 *atm* (valor correspondiente a la P_{CH_4} indicada). Obsérvese que el comportamiento de ΔG_r de la función acetogénica (Figura 2-5) es volverse negativo para valores de presión de hidrógeno menores a los 2 x 10⁻⁴ *bar*. En caso de que la presión de hidrógeno sea mayor a este valor, la reacción catabólica de la familia acetogénica no podría ocurrir, y por lo tanto no habría presencia de dicha función. Así, se plantea que cerca de las 14 horas, la presión parcial de hidrógeno debe superar el valor de referencia y por ende cesaría la acetogénesis.

Figura 2-5: Variación de ΔG_r en la acetogénesis a diferentes valores de presiones parciales de hidrógeno.

Recuérdese que el ΔG_r de la función acetogénica también se ve afectado por la presión parcial de hidrógeno. Este efecto se cuantificó en el modelo haciendo la corrección para el ΔG_{cat} de la metanogénesis acetoclástica. Así:

$$\Delta G_{cat,Met.\ A} = \Delta G_{cat,Met.\ A}^{o\prime} + RTln\left(\frac{P_{CH_4}}{P_{CO_2}P_{H_2}}\right) \quad (2.12)$$

Como valor de referencia ($\Delta G_{cat,Met.A}^{o'}$) se utilizó -120.38 kJ/mol. Este último fue calculado a partir de los $\Delta G_f^{o'}$ de los compuestos corregidos a un pH de 7, fuerza iónica de 0.1 M y presión de 1 atm.
Es importante mencionar que los supuestos 1 y 2 se podrían corroborar si se contara con los perfiles experimentales de glicerol e hidrógeno, respectivamente y los perfiles de concentración de biomasa. Sin embargo, diferenciar y cuantificar completamente un CMM en sus diferentes familias es algo que no se ha logrado realizar [73]. A pesar de las limitaciones en la disponibilidad de los datos de fermentación, los escenarios aquí planteados son plausibles y permiten reproducir el comportamiento del sistema biológico. La validación de los datos experimentales se hizo calculando los errores relativos entre las estequiometrías de los datos experimentales y las obtenidas al simular el modelo matemático resultante de los balances de materia y los supuestos realizados. Finalmente, se compararon los balances de electrones del escenario simulado con la información experimental reportada por Chen, Yun, et al. (2016) [1] en el experimento de rendimiento máximo de propionato.

3. Resultados

3.1 Resultados del diseño racional del microorganismo chasís

3.1.1 Definición del producto a generar, las materias primas y otros compuestos necesarios

El microorganismo chasís fue diseñado para transformar glicerol crudo en ácido propiónico (Figura 3-1). Con el fin de tener presente el bioproceso en el que podría llegar a ser utilizado este biocatalizador, a continuación, se analiza la demanda de ácido propiónico en Colombia y qué otras consideraciones generales se deben tener en cuenta: para el año 2017 la cantidad importada de ácido propiónico hacia Colombia fue de aproximadamente 3500 toneladas [74], mientras que la cantidad exportada fue de aproximadamente 222 toneladas [75], planteándose así una oportunidad favorable para su producción. Supóngase que con el uso de este microorganismo chasís se querría cubrir el 16% del total importado de ácido propiónico en Colombia (550 toneladas).

Figura 3-1: Esquema del microorganismo chasís diseñado para transformar glicerol crudo en ácido propiónico. Imagen adaptada de [76].

Para corroborar que se contaría con una cantidad suficiente de glicerol crudo para lograr esta cantidad, se plantean dos casos:

Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Rendimiento del 100%: como se presentó en la ecuación 1.1 (sección 1.5.3), el escenario ideal para la transformación de glicerol en ácido propiónico genera 1 mol de producto por mol de glicerol, lo cual implica que, para este escenario se requerirían 550 toneladas de glicerol. Recuérdese que el glicerol crudo, en el contexto colombiano, puede presentar diferentes composiciones y, por lo tanto, se tuvo que corroborar la cantidad de glicerol crudo que sería necesaria en cada uno de los escenarios presentados en la Tabla I (Introducción) fuera menor al total producido en 2017 en Colombia (46 kilo toneladas). Nótese que todas las muestras requerirían una cantidad de glicerol crudo (Tabla 3-1) considerablemente inferior a este valor y, por lo tanto, se podría producir la cantidad supuesta de ácido propiónico.

Tabla 3-1:Cantidades necesarias de glicerol crudo, considerando un rendimiento del100%, para generar el 15% del ácido propiónico importado a Colombia.

	Planta piloto (A)	Planta Industrial 1 (<i>B</i>)	Planta Industrial 2 (<i>C</i>)	Planta Industrial 3 (<i>D</i>)
Porcentaje glicerol	41.23	85.81	73.49	49.33
Glicerol crudo necesario [ton]	1333.98	640.95	748.40	1114.94
Porcentaje respecto al total generado en 2017	2.90	1.39	1.63	2.42

 Rendimiento menor al 100%: tomando como referencia la estequiometría experimental reportada por Chen, Yun, et al. (2016) [1]:

$$2C_3H_8O_3 \rightarrow C_3H_6O_2 + 1.75CH_4 + 1.25CO_2 + 1.5H_2O \quad (3.1)$$

Se observa que el glicerol no se transforma únicamente en ácido propiónico, sino que también se transforma en metano y CO_2 , obteniéndose un rendimiento de 0.5 moles de ácido propiónico por mol de glicerol. Como puede observarse (Tabla 3-2), bajo este rendimiento también habría suficiente glicerol crudo para lograr la cantidad de ácido propiónico esperada.

	Planta piloto (A)	Planta Industrial 1 (B)	Planta Industrial 2 (C)	Planta Industrial 3 (D)
Porcentaje glicerol	41.23	85.81	73.49	49.33
Glicerol crudo necesario [ton]	3316.58	1593.55	1860.70	2772.00
Porcentaje respecto al total generado en 2017	7.21	3.46	4.04	6.03

Tabla 3-2:Cantidades necesarias de glicerol crudo, considerando un rendimiento menoral 100%, para generar el 15% del ácido propiónico importado a Colombia.

Una vez corroborado el hecho de que se contaría con suficiente materia prima para producir la cantidad esperada de ácido propiónico, se definieron las especificaciones bajo las que se comercializaría el producto. Para cumplir con la Norma Técnica Colombiana, la pureza final del producto debe ser 99.5% [77]. Su estado final de comercialización sería sólido. Además del glicerol crudo (fuente de carbono y electrones) fue necesario establecer desde un inicio las fuentes de nitrógeno, azufre y potasio, pues son necesarias para el crecimiento del microorganismo. El microorganismo que se utilizó como chasís es *E. coli* K-12 MG1655. De tal manera, se plantea utilizar los siguientes compuestos propuestos por Taymaz-Nikerel, Hilal, et al. (2010) [67] para el crecimiento de este microorganismo:

- Fuente de nitrógeno: cloruro de amonio (NH₄Cl).
- Fuente de azufre: sulfato de magnesio (*MgSO*₄).
- Fuente de potasio: fosfato dipotásico (KH₂PO₄).

Como titulador para controlar pH se propone hidróxido de sodio (NaOH).

3.1.2 Especificación de las propiedades de todos los compuestos presentes en el proceso

La Tabla 3-3 presenta un resumen de las propiedades fisicoquímicas de mayor interés para cada uno de los compuestos del proceso. Esta información fue útil a lo largo del diseño para los cálculos termodinámicos, y para tener presente las limitaciones y/o ventajas que tendría el proceso a escala industrial.

		-	-		-			-		
Propiedad	Glicerol	Ácido propiónico	Metano	Dióxido de carbono	Ácido acético	Ácido butírico	Cloruro de amonio	Hidróxido de sodio	Agua	Metanol
Estado a condiciones estándar	Líquido	Líquido	Gas	Gas	Líquido	Líquido	Sólido	Sólido	Líquido	Líquido
Soluble en glicerol y agua	Sí	Sí	No	No	Sí	Sí	Sí	Sí	Sí	Miscible
Fórmula química	$C_3H_8O_3$	$C_3H_6O_2$	CH ₄	<i>CO</i> ₂	$C_2H_4O_2$	$C_4H_8O_2$	NH ₄ Cl	NaOH	H ₂ 0	CH ₄ O
Peso molecular[$\frac{g}{mol}$]	92.09	74.04	16.04	44.00	60.05	88.11	53.49	40.00	18.02	32.04
Carga a pH=7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Densidad $[\frac{kg}{m^3}]$	1259	988	1.62	1.98	1042	952	1500	1913	995	790
Calor específico [<u>kJ</u> [<u>kmol-K</u>]	196.17	121.43	35.77	37.51	113.52	160.48	314.56	-	72.55	81.12
Delta G de formación [<u>kJ</u> mol]	-485.09	-382.53	-50.50	-394.39	-388.23	-377.98	-203.89	-379.40	-237.16	-166.81
Delta H de formación [<u>kJ</u> mol]	-667.40	-507.69	-74.61	-393.51	-483.17	-534.51	-314.55	-425.93	-285.86	-238.79
Delta S estándar [<u>kJ</u> mol-K]	-0.61	-0.42	-0.08	0.00	-0.32	-0.53	-0.37	-0.16	-0.16	-0.24
Lambda vaporización [<u>kJ</u> mol]	89.51	30.97	-	-	24.31	40.18	-	-	43.98	37.46
Presión de vapor [bar]	0.00	0.00	367.67	64.36	0.02	0.00	0.00	0.00	0.03	0.17
Viscosidad [cP]	866.32	1.02	0.01	0.02	1.12	1.47	-	-	0.91	0.53
Grado de reducción por carbono	4.76	4.76	8	0	4	5	3 (Amonio)	0	0	6
pKa	14.40	4.80	-	-	4.76	4.82	-	-	-	15.30
Solubilidad [mol/L] @25°C	0.58	0.27	-	0.07	10.04	0.12	-	-	-	-

Tabla 3-3: Propiedades fisicoquímicas de los compuestos involucrados en el proceso.

3.1.3 Selección del microorganismo a utilizar

La facilidad de producir moléculas relativamente sencillas, como lo son los ácidos grasos volátiles, la versatilidad para crecer a diferentes condiciones de disponibilidad de electrones, y la posibilidad de utilizar un sustrato mixto como lo es el glicerol crudo [78] fueron los principales criterios de selección de *E. coli* K-12 MG 1655 como microorganismo chasís. Además, este chasís también cumple con los otros criterios (Tabla 3-4) presentados en la sección 2.2.

Tabla 3-4:Corroboración de los criterios de selección del microorganismo chasís para *E.coli* K-12 MG 1655.

Criterio	Cumple	Observaciones
 Vasta disponibilidad de información genética y de cultivo del microorganismo. 	Sí	Esta información se encuentra en bases de datos como KEGG [56] y BRENDA [54], y la literatura [61], [67], [78]–[80].
 Capacidad de crecer bajos condiciones aeróbicas o anaeróbicas. 	Sí	[78]
 Capacidad de consumir nutrientes económicos y variados. 	Sí	[78]
4. Potencial capacidad para trabajar a escala industrial.	Sí	[78]

3.1.4 Aproximación a la definición de las condiciones del medio de cultivo de *E. coli* K-12 MG1655

Para las fuentes de nitrógeno, azufre, potasio y el sustrato determinados se definieron sus concentraciones deseadas en el proceso (Tabla 3-5). Se tuvieron en cuenta las condiciones de crecimiento reportadas para *E. coli* K-12 MG1655 por Taymaz-Nikerel, Hilal, et al. (2010) [67] y las condiciones de operación para el CMM reportado por Chen, Yun, et al. (2016) [1].

Tabla 3-5:	Concentraciones	necesarias	para	el	buen	desempeño	del	microorganismo
chasís.								

Concentraciones	Valor	Unidades
[Glicerol] _{incial}	5.56	
[Glicerol] _{final}	0	
[Propionato] _{inicial}	0	\underline{g}
[Propionato] _{final}	1.87	\overline{L}
$[NH_4Cl]$ (constante)	1	
$[KH_2PO_4]$ (constante)	2	

Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

 $[MgSO_4]$ (constante) 0.50

Otras condiciones que se definieron para la operación del microorganismo chasís son pH, presión y temperatura (Tabla 3-6). Debido a que valores de pH extremo no son favorables para el crecimiento de *E. coli* [78], se definió un valor de pH de 7. Al no haber necesidad de consideraciones especiales para la presión, se define la condición atmosférica de 1 atm. Por último, se define una temperatura de 37°C pues, en los experimentos reportados por Chen, Yun, et al. (2016) [1], esta es la temperatura que alcanza el proceso de producción de ácido propiónico a partir de glicerol utilizando CMM. Esto con el fin de no incurrir en gastos energéticos y/o económicos extra para disminuir la temperatura del proceso. Cabe aclarar que en caso de que la temperatura alcanzada por el proceso, utilizando el microorganismo chasís, no llegara a los 37°C no habría ningún problema y podría permanecer en el valor de temperatura que alcance siempre y cuando sea menor a 45°C (temperaturas mayores a esta afectan el crecimiento de *E. coli* [78]).

Tabla 3-6: Condiciones ambientales para el microorganismo chasís
--

Condición	Valor	Unidades
рН	7.0	-
Temperatura	37	°C
Presión	1	atm

3.1.5 Establecimiento de la estequiometria del proceso: modelo de caja negra

El modelo de caja negra utilizado para establecer la estequiometría del proceso fue el de distribución de sustrato de H-P, considerando un enfoque termodinámico. Así, para cada una de las familias principales del CMM se estimaron los parámetros del modelo de H-P.

Mantenimiento (m_s)

Para todas las familias del CMM se necesita la misma cantidad de energía para mantenimiento (m_G) , pues esta depende únicamente de la temperatura a la que se encuentre el consorcio. Se utilizó la ecuación 1.12 para encontrar este valor:

$$m_{G} = 4.5 \exp\left[-\frac{69000}{R}\left(\frac{1}{310} - \frac{1}{298}\right)\right] = 13.21 \frac{kJ \, energia \, libre \, de \, Gibbs}{h \, de \, mantenimiento \, C - mol_{x}} \quad (3.2)$$

Basándose en este valor y en ΔG_{cat} se estima m_s , para cada familia, utilizando la ecuación 1.13 (Tabla 3-7).

Familia	$\Delta G_{cat}[=]\frac{kJ}{mol}$	$m_s[=]rac{mol_{sustrato}}{C-mol_X h}$
Acidogénica	-146.35	-0.09
Acetogénica	-31.48	-0.42
M. Acetoclástica	-31.63	-0.42
M. Hidrogenotrófica	-1.64	-8.00

Tabla 3-7: Valores estimados de m_s y ΔG_{cat} para cada familia de interés del CMM.

Nótese que la familia acidogénica al tener la mayor energía catabólica disponible (-146.35 kJ/mol) de todo el consorcio, requiere la menor cantidad de sustrato para procesos de mantenimiento. Las familias acetogénicas y metanogénica acetoclástica, al tener valores tan cercanos de energía catabólica disponible (-31.48 y -31.63 kJ/mol, respectivamente) necesitan invertir la misma cantidad de sustrato en procesos de mantenimiento. Por último, la familia metanogénica hidrogenotrófica necesita consumir una cantidad tan alta de sustrato ya que su reacción catabólica es la que tiene menos energía catabólica disponible (-1.64 kJ/mol), y se encuentra cerca del equilibrio termodinámico. Después de conocerse m_s , se encontraron las cantidades consumidas y generadas para mantenimiento, de cada compuesto en las reacciones catabólicas (Tabla 3-8).

Función metabólica	Reacción catabólica balanceada (m_s)
Acidogénesis	$0.09 \ C_3 H_8 O_3 \rightarrow 0.09 \ C_3 H_6 O_2 + 0.09 H_2 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3$
Acetogénesis	$0.42 \ C_3 H_6 O_2 \ + \ 0.84 \ H_2 O \rightarrow 0.42 \ C_2 H_4 O_2 + 0.42 \ C O_2 + 1.26 H_2$
M. Acetoclástica	$0.42 \ C_2 H_4 O_2 \rightarrow 0.42 \ CH_4 + 0.42 \ CO_2$
M. Hidrogenotrófica	$32.00 \ H_2 + 8.00 \ CO_2 \rightarrow 8.00 \ CH_4 + 16.00 \ H_2O$

Generación de producto (b)

Para el caso particular del CMM todas las funciones metabólicas consideradas generan productos catabólicos. Por ende, la cantidad de sustrato destinado a productos anabólicos (*b*) debe ser igual a cero en todos los casos:

$$b = 0$$
 (3.3)

Producción de biomasa (a)

Para las familias acidogénica, acetogénica y metanogénica acetoclástica el crecimiento es heterotrófico. Por lo tanto, para encontrar sus respectivos valores de a_G (Tabla 3-9) se utilizó la ecuación 1.19. Debido a que la familia metanogénica hidrogenotrófica utiliza CO_2 como

fuente de carbono y H_2 como fuente de electrones, su crecimiento es autotrófico y, por ende, su valor de a_G se fijó en 1000 kJ/C-molX.

Familia	ŶD	Número de carbonos	a _G	Unidades
Acidogénica	14	3	428.06	
Acetogénica	14	3	428.06	kJ
M. Acetoclástica	8	2	432.12	$\overline{C-mol_x}$
M. Hidrogenotrófica	-	-	1000	

Tabla 3-9: a_G para cada familia de interés del CMM.

La cantidad de sustrato destinada a la reacción catabólica para producir un mol de biomasa (a_{cat}) se encontró para cada familia utilizando la ecuación 1.20 (Tabla 3-10).

Tabla 3-10: Cantidad de sustrato destinada al catabolismo en la producción de biomasa.

Familia	$a_{cat} \left[\frac{mol_{sustrato}}{C - mol_x} \right]$
Acidogénica	2.93
Acetogénica	13.60
M. Acetoclástica	13.66
M. Hidrogenotrófica	607.90

Para las familias que presentan crecimiento heterotrófico, aquellas con un mayor ΔG_{cat} necesitan consumir una menor cantidad de sustrato gracias a la alta disponibilidad de energía. Nótese cómo, aunque la familia acidogénica y acetogénica requieren la misma cantidad de energía para generar una C-mol de biomasa (a_G) , la cantidad de sustrato que requiere la segunda es más de cinco veces la requerida por la primera. Esto se debe a que la familia acidogénica tiene disponible más de cuatro veces la energía catabólica de la familia acetogénica. Así, a nivel del consorcio, la familia acidogénica prevalecerá respecto a la familia acetogénica.

Contrario a las familias de crecimiento heterotrófico, la familia metanogénica hidrogenotrófica requiere consumir cantidades de sustrato del orden de 10² debido al costoso mecanismo que

82

utiliza para reducir su fuente de carbono. A nivel del consorcio, un valor de consumo de sustrato tan alto implicará que la abundancia de esta familia sea pequeña, pues las familias que requieran de menos sustrato para generar biomasa prevalecerán. El hecho de que esta familia se encuentre presente en el CMM, a pesar de su a_{cat} , radica en que la familia acetogénica requiere de su presencia para que disminuya la presión parcial de hidrógeno a un valor lo suficientemente bajo que le permita generar suficiente energía en su catabolismo ($\Delta G_{cat} < 0$) para sobrevivir. Al conocerse el valor de a_{cat} se puede balancear cada reacción catabólica asociada a la producción de biomasa (Tabla 3-11).

Reacción catabólica balanceada (a_{cat})					
Acidogénesis	$2.93 \ C_3 H_8 O_3 \rightarrow 2.93 \ C_3 H_6 O_2 + 2.93 \ H_2 O_2$				
Acetogénesis	$13.60 \ C_3 H_6 O_2 \ + 27.20 H_2 O \rightarrow 13.60 \ C_2 H_4 O_2 + 13.60 \ C O_2 + 40.80 \ H_2$				
M. Acetoclástica	$13.66 \ C_2 H_4 O_2 \rightarrow 13.66 \ CH_4 + 13.66 \ CO_2$				
M. Hidrogenotrófica	$2431.60H_2 + 607.90CO_2 \rightarrow 607.90CH_4 + 1215.80H_2O$				

Tabla 3-11:	Reacciones	catabólicas	balanceadas	acorde a	$a a_{cat}$.
-------------	------------	-------------	-------------	----------	---------------

Ahora, es necesario encontrar el valor de a_{ana} . En el caso específico de esta tesis, debido a los resultados encontrados mediante balances de masa de la información reportada en [1] se tomará un grado de reducción para la biomasa de $\gamma_X = 4.66$. Su respectiva fórmula química será $CH_{1.9}O_{0.32}N_{0.2}$. La Tabla 3-12 presenta los valores de a_{ana} para cada función metabólica asumiendo que las biomasas de los microorganismos tiene la misma composición y por ende la misma fórmula molecular.

 Tabla 3-12:
 Cantidad de sustrato destinada al anabolismo en la producción de biomasa.

Familia	$a_{ana} \left[\frac{mol_{sustrato}}{C - mol_x} \right]$
Acidogénica	0.33
Acetogénica	0.33
M. Acetoclástica	0.58
M. Hidrogenotrófica	2.33

Obsérvese que las familias acidogénica y acetogénica requieren la menor cantidad de sustrato, pues sus sustratos tienen la mayor cantidad de electrones disponibles ($\gamma_D = 14$). Que el costo para producir biomasa sea el mismo para las dos familias implicaría, bajo este criterio, que las abundancias de ambas familias fueran similares en el consorcio. Sin embargo, como la familia acetogénica depende del propionato generado por la familia acidogénica, mientras que el sustrato de esta última no depende de ninguna otra familia, la prevalencia de

una sobre otra recae en sus velocidades de crecimiento. De manera contraria a estas dos familias, la familia M. Hidrogenotrófica es la que requiere la mayor cantidad de sustrato para producir 1 C-mol de biomasa en el consorcio. Esto se debe a que su fuente de electrones únicamente provee dos. Teniendo en cuenta a_{ana} , la fuente de nitrógeno, el sustrato, CO_2 , H^+ y H_2O , se puede plantear una reacción general para la producción de un mol de biomasa para cada familia (Tabla 3-13):

$$a_{ana} Sustrato + a_N NH_4^+ \rightarrow \mu CH_{1.9}O_{0.32}N_{0.2} + a_w H_2O + a_H H^+ + a_c CO_2$$
 (3.4)

 Tabla 3-13:
 Reacciones anabólicas balanceadas acorde a a_{ana} .

Función metabólica	Reacción anabólica balanceada (a_{ana})
Acidogénesis	$0.33 C_3 H_8 O_3 + 0.2 N H_4^+ + 0.001 CO_2 \rightarrow 1 C H_{1.9} O_{0.32} N_{0.2} + 0.68 H_2 O + 0.2 H^+$
Acetogénesis	$0.33 C_3 H_6 O_2 + 0.2 N H_4^+ + 0.001 C O_2 \rightarrow 1 C H_{1.9} O_{0.32} N_{0.2} + 0.35 H_2 O + 0.2 H^+$
M. Acetoclástica	$0.58 C_2 H_4 O_2 + 0.2 N H_4^+ \rightarrow 0.17 C O_2 + 1 C H_{1.9} O_{0.32} N_{0.2} + 0.52 H_2 O + 0.2 H^+$
M. Hidrogenotrófica	$2.33 H_2 + 1 CO_2 + 0.2 NH_4^+ \rightarrow +1 CH_{1.9}O_{0.32}N_{0.2} + 1.68 H_2O + 0.2 H^+$

Finalmente, una vez encontrados a_{ana} y a_{cat} para cada familia, se puede encontrar la reacción neta para generar 1 mol de biomasa encontrando el parámetro a, utilizando la ecuación 1.22, para cada familia (Tabla 3-14).

Tabla 3-14:	Reacciones	netas	anabólicas	para	la	producción	de	1	mol	de	biomasa	para
cada familia d	del CMM.											

Función metabólica	Reacción anabólica neta (a)
Acidogénesis	$3.35 C_3 H_8 O_3 + 0.2 N H_4^+ + 0.001 C O_2 \rightarrow 1 C H_{1.9} O_{0.32} N_{0.2} + 3.02 C_3 H_6 O_2 + 3.61 H_2 O + 0.2 H^+$
Acetogénesis	$13.93 C_3 H_6 O_2 + 0.2 N H_4^+ + 26.85 H_2 O$ $\rightarrow 1 C H_{1.9} O_{0.32} N_{0.2} + 13.60 C O_2 + 13.60 C_2 H_4 O_2 + 40.80 H_2 + 0.2 H^+$
M. Acetoclástica	$14.24 \ C_2 H_4 O_2 + 0.2 \ N H_4^+ \rightarrow 13.83 \ C O_2 + 13.66 \ C H_4 + 1 \ C H_{1.9} O_{0.32} N_{0.2} + 0.52 \ H_2 O + 0.2 \ H^+$
M. Hidrogenotrófica	$2465.93H_2 + 616.90CO_2 + 0.2NH_4^+ \rightarrow 615.90CH_4 + 1CH_{1.9}O_{0.32}N_{0.2} + 1233.48H_2O + 0.2H^+$

Planteamiento de las expresiones de H-P

Una vez obtenidos todos los parámetros del modelo de H-P, se pudo determinar el consumo de sustrato para cada familia como función de sus velocidades de crecimiento (μ) (Tabla 3-15).

 Tabla 3-15:
 Modelos de H-P para cada familia de interés del CMM.

Familia	Modelo de Herbert-Pirt
Acidogénica	$q_{glicerol} = -3.35\mu_1 - 0.09$
Acetogénica	$q_{Propionato} = -13.93 \ \mu_2 - 0.42$
M. Acetoclástica	$q_{Acetato} = -14.24\mu_3 - 0.42$
M. Hidrogenotrófica	$q_{CO_2} = -616.90\mu_4 - 8.00$ $q_{H_2} = -2465.93\mu_4 - 32.00$

De igual manera, teniendo en cuenta la estequiometría de todos los compuestos para el catabolismo, el anabolismo y las relaciones de H-P, se plantearon las funciones-q (Tabla 3-16).

	Acidogénica	Acetogénica			
Sustrato	$q_{glic} = -3.35\mu_1 - 0.09$	$q_{Prop2} = -13.93 \mu_2 - 0.42$			
Producto	$a_{\rm p} = 3.02u_{\rm s} + 0.09$	$q_{Prop2} = -13.93 \ \mu_2 - 0.42$ $q_{Acet1} = 13.60 \ \mu_2 + 0.42$ $q_{H_2,1} = 40.80 \ \mu_2 + 1.26$ $q_N = -0.2 \ \mu_2$ $q_H = 0.2 \ \mu_2$			
FIODUCIO	$q_{prop1} = 5.02\mu_1 + 5.05$	$q_{H_2,1} = 40.80 \ \mu_2 + 1.26$			
NH_4^+	$q_N = -0.2 \ \mu_1$	$q_N = -0.2 \ \mu_2$			
H^+	$q_H = 0.2 \ \mu_1$	$q_H=0.2~\mu_2$			
<i>CO</i> ₂	$q_{\mathcal{C}} = -0.001\mu_1$	$q_C = 13.60 \ \mu_2 + 0.42$			
<i>H</i> ₂ <i>0</i>	$q_w = 3.61 \mu_1 + 0.09$	$q_w = -26.85\mu_2 - 0.84$			

 Tabla 3-16:
 Funciones-q para las familias de interés del CMM.

	M. Acetoclástica	M. Hidrogenotrófica
Sustrato	$q_{Acet2} = -14.24\mu_3 - 0.42$	$q_{CO_2} = -616.90\mu_4 - 8.00$
		$q_{H_2} = -2465.93\mu_4 - 32.00$
Producto	$q_{CH_4} = 13.66\mu_3 + 0.42$	$q_{CH_4} = 615.90 \mu_4 + 8.00$
NH_4^+	$q_N = -0.2 \ \mu_3$	$q_N=-0.2~\mu_4$
H^+	$q_H = 0.2 \ \mu_3$	$q_H=0.2~\mu_4$
<i>CO</i> ₂	$q_C = 13.83\mu_3 + 0.42$	-
H ₂ 0	$q_w = 0.52 \ \mu_3$	$q_w = 1233.48\mu_4 + 16.00$

Los flujos mediante los cuales interactúan las familias del consorcio en el modelo base (sección 2.1) son cuantificados por medio de las funciones-q. Así, al combinar el modelo base con la cuantificación de cada velocidad q, se debe cumplir el modelo de caja negra del CMM y del microorganismo chasís. Para validar el modelo de caja negra, y establecer la estequiometría del proceso, se utilizaron los datos experimentales presentados por Chen, Yun, et al. (2016) [1] para las primeras 48 horas del *batch* secuencial con concentración inicial de glicerol de 5.56 g/L, utilizando la metodología presentada en la sección 2.4. Inicialmente, para cada familia se fijaron sus respectivas velocidades de crecimiento (Tabla 3-17). Al conocer la velocidad de crecimiento de cada familia, se pudo analizar en qué proporción gasta cada una su respectivo sustrato en procesos de crecimiento y mantenimiento (Figura 3-2, Figura 3-3, Figura 3-4 y Figura 3-5). Estos análisis se hicieron a partir de las expresiones de H-P y las funciones-q.

Velocidad de crecimiento (μ) [h^{-1}]
$7.90x10^{-2}$
$4.25x10^{-3}$
$1.35x10^{-2}$
$1.75x10^{-3}$

Tabla 3-17: Velocidades de crecimiento para cada familia principal del CMM.

La familia acidogénica es la familia que mejor invierte su sustrato (Figura 3-2), pues 74% de este es utilizado en procesos de producción de biomasa y el resto (26%) en mantenimiento. Este hecho soporta la prevalencia de esta familia en el CMM sobre las demás.

Figura 3-2: Porcentaje de sustrato utilizado en mantenimiento en función de la velocidad de crecimiento de la familia acidogénica.

Familia acidogénica: porcentaje del mantenimiento respecto a q

Nótese además que, las familias acetogénica (Figura 3-3) y M. Hidrogenotrófica (Figura 3-5) utilizan un porcentaje cercano al 87% del sustrato para procesos de mantenimiento (13% del sustrato lo utilizan para crecimiento). Esto significa que una vez transcurra todo el batch, las abundancias de estas dos familias en el CMM deberían ser considerablemente menores respecto a la familia acidogénica. Por último, obsérvese que la familia M. Acetoclástica (Figura 3-4) utiliza 69% de su sustrato en procesos de mantenimiento.

Porcentaje de sustrato utilizado en mantenimiento en función de la velocidad Figura 3-3: de crecimiento de la familia acetogénica.

Porcentaje de sustrato utilizado en mantenimiento en función de la velocidad Figura 3-4: de crecimiento de la familia metanogénica acetoclástica.

Familia metanogénica acetoclástica: porcentaje del mantenimiento respecto a q

Figura 3-5: Porcentaje de sustrato utilizado en mantenimiento en función de la velocidad de crecimiento de la familia metanogénica hidrogenotrófica.

Una vez fijadas las velocidades de crecimiento de cada familia, se simuló el modelo matemático generado para el *batch* secuencial. Obsérvese que tanto el perfil de glicerol (Figura 3-6), como el perfil de concentración de biomasa acidogénica (Figura 3-7), reflejan el supuesto 1 que se realizó en la sección 2.4, pues el sustrato se comienza a acabar cerca de las 13 horas y en este mismo momento, la concentración de biomasa comienza a alcanzar un valor constante. Una de las consecuencias de este supuesto es que μ_1 tenga el valor más alto de todas las velocidades de crecimiento (el glicerol es el sustrato que más velozmente se consume) y, por ende, que la familia acidogénica sea la que aumente su concentración de biomasa a mayor velocidad.

Figura 3-6: Perfiles de concentración para los compuestos en fase líquida. Los círculos son los resultados del modelo y las x son los datos experimentales.

Nótese que en el período de duración del *batch* la familia acidogénica incrementa su concentración de biomasa en un 217%, mientras que la familia acetogénica apenas logra un incremento del 6% (Tabla 3-18). Esta diferencia se puede explicar debido a que μ_1 es 19 veces μ_2 , y a que la familia acidogénica invierte un 61% más de sustrato para crecimiento.

Figura 3-7: Perfiles de concentración de biomasa para las familias acidogénica y acetogénica.

Tabla 3-18: Información general sobre las biomasas de la familia acidogénica y acetogénica.

Familia	Concentración inicial [g/L]	Concentración final [g/L]	Cambio global de la concentración [g/L]	Abundancia final en el consorcio [%]
Acidogénica	$1.38 x 10^{-1}$	$4.37 x 10^{-1}$	$2.99x10^{-1}$	78.51
Acetogénica	$8.99x10^{-2}$	$9.61x10^{-2}$	$6.17x10^{-3}$	17.25

Para el perfil del propionato se obtuvo un error máximo de 3.64% y un error promedio de 1.89% (Tabla 3-19). En el caso del acetato, se obtuvo un error máximo de 16.11% y un error promedio de 5.92% (Tabla 3-20). Estos valores fueron calculados con el fin de tener una referencia a la aproximación respecto a los valores experimentales reportados. Sin embargo, recuérdese que los errores experimentales no fueron reportados por los autores del documento base [1].

Tiempo [<i>h</i>]	Concentración experimental propionato [<i>g/L</i>]	Concentración estimada propionato[<i>g/L</i>]	Error relativo [%]
0	2.73	2.73	-
6.69	3.12	3.06	1.84
13.73	4.28	4.39	2.47
23.86	4.60	4.50	2.23
31.27	4.54	4. 50	0.86
37.31	4.52	4. 50	0.30
48.21	4.34	4. 50	3.64

Tabla 3-19: Concentraciones experimentales y estimadas para el propionato con su respectivo error relativo.

Tabla 3-20: Concentraciones experimentales y estimadas para el acetato con su respectivo error relativo.

Tiempo [h]	Concentración experimental acetato [<i>g/L</i>]	Concentración estimada acetato $[g/L]$	Error relativo [%]	
0	0	0	-	
6.69	0.59	0.68	16.11	
13.73	1.38	1.41	1.97	
23.86	1.40	1.42	1.31	
31.27	1.22	1.23	0.95	
37.31	1.10	1.07	3.09	
48.21	0.83	0.73	12.09	

Para los metabolitos que se encuentran en fase gaseosa (H_2 , CO_2 y CH_4), además de simular el perfil de volumen de biogás, se simularon sus perfiles molares (Tabla 3-8) y los perfiles de concentración de biomasa de las familias que los generan (Tabla 3-9). El perfil de volumen de biogás se halló suponiendo que las moles totales de gas son la sumatoria de las moles de H_2 , CO_2 y CH_4 . Las condiciones experimentales de temperatura (37°C) y presión (1 atm) del experimento se consultaron a través de comunicación personal con uno de los autores. Debido a la baja presión a la que se encuentran los gases, su comportamiento se aproximó utilizando el modelo de gas ideal, para así estimar el volumen de biogás como:

$$V_{biog\acute{a}s} = \frac{n_{biog\acute{a}s}RT}{P_{total}} \quad (3.5)$$

Donde P_{total} es la presión total a la que está sometida el consorcio, $V_{biogás}$ el volumen de biogás, $n_{biogás}$ las moles totales de gas, R la constante universal de los gases y T la temperatura del *batch*. Obsérvese que la familia metnogénica acetoclástica presentó un incremento en su concentración inicial del 92%, mientras que la familia metnogénica hidrogenotrófica tuvo un incremento del 9% (Figura 3-9). Esto se debe a que el valor de μ_3 es 8 veces μ_4 y a que la primera familia invierta más porcentaje de su sustrato en la producción de biomasa.

Figura 3-8: Perfiles de concentración y volumen para los compuestos en fase gaseosa. Los círculos son los resultados del modelo y las x son los datos experimentales.

Figura 3-9: Perfiles de concentración de biomasa para las familias M. Acetoclástica y M. Hidrogenotrófica.

Con los resultados obtenidos para el perfil de volumen de biogás, y la información experimental se calcularon sus respectivos errores relativos (Tabla 3-21) encontrándose un error máximo de 22.58% y un error promedio de 11.46%. Aunque la menor fracción molar de gas en todo el batch fue la del H_2 , no se logró obtener una presión parcial de H_2 dentro del rango reportado por Henze, M. para este tipo de CMM [35]. Al comparar los errores relativos y la variabilidad de los parámetros del modelo de la fase líquida con los de la fase gaseosa, se encuentra que los primeros presentan una mejor aproximación de los resultados experimentales. Recuérdese que para los metabolitos de la fase líquida se contó con dos perfiles experimentales de concentración (propionato y acetato) con los que se simularon tres perfiles de concentración de metabolitos (propionato, acetato y glicerol); para la fase gaseosa se contó con un solo perfil experimental (volumen de biogás), con el que se iteró la velocidad de crecimiento de la familia metanogénica hidrogenotrófica y se simularon tres perfiles molares $(H_2, CO_2 \vee CH_4)$, además del perfil del volumen de biogás. De tal manera, si se hubiera contado con los demás comportamientos experimentales para la fase gaseosa, se habría podido plantear un mejor ajuste para dicha fase. A pesar de esto, para el CO_2 y el CH_4 , se encontró que todos los valores simulados de la relación CH_4/CO_2 (Tabla 3-22) se encuentran cerca al valor promedio calculado con uno de los experimentos presentados por Chen, Yun, et al. (2016) [1]. Además, las presiones parciales simuladas de CH₄ se encuentran dentro del rango de presiones reportadas para estos mismos experimentos.

Tiempo [<i>h</i>]	Volumen experimental biogás [<i>L</i>]	Volumen estimado biogás [<i>L</i>]	Error relativo [%]	
0	0	0	-	
6.69	1.11	0.86	22.58	
13.73	1.98	1.83	7.63	
23.86	2.63	2.35	10.84	
31.27	2.93	2.59	11.57	
37.31	3.10	2.81	9.39	
48.21	3.48	3.25	6.73	

Tabla 3-21:	Volúmenes de biogás experimentales y estimados de biogás con su respectivo
error relativo.	

Tabla 3-22: Fracciones molares de cada gas, presiones parciales de H_2 y CH_4 , y relaciones CO_2/CH_4 durante el *batch*.

Tiempo [h]	Fracción molar de <i>H</i> ₂	Fracción molar de <i>CO</i> 2	Fracción molar de <i>CH</i> 4	Presión parcial de <i>H</i> ₂ [atm]	Presión parcial de <i>CH</i> 4 [atm]	Relación <i>CO</i> 2/ <i>CH</i> 4
0	0	0	0	0	0	0
6.69	0.072	0.304	0.624	0.072	0.624	0.486
13.73	0.088	0.304	0.608	0.088	0.608	0.501
23.86	0.066	0.329	0.606	0.066	0.606	0.543
31.27	0.045	0.349	0.607	0.045	0.607	0.575
37.31	0.030	0.364	0.607	0.030	0.607	0.599
48.21	0.005	0.387	0.608	0.005	0.608	0.637
	Valores de	e referencia		10^{-4} ; 10^{-6} atm ³	0.5;0.75 atm ⁴	0.6125

Cabe resaltar que, mediante el modelo de caja negra planteado se pueden simular las abundancias de las cuatro familias del CMM en el transcurso del *batch* (Figura 3-10). Durante

⁵ Calculado a partir de los experimentos reportados para el CMM en un reactor *Fed-batch* en [1] suponiendo que el biogás solo está compuesto por CH_4 y CO_2 .

³ Referencia [35]

⁴ Referencia [1]

las 48 horas se mantuvo la misma tendencia de prevalencia de las familias; al final del *batch*, la familia más predominante fue la familia acidogénica (78.5%), seguida por la acetogénica (17.3%), la M. Acetoclástica (3.6%), y, por último, la M. Hidrogenotrófica (0.67%). Es coherente que la familia de mayor presencia en el consorcio sea aquella que tenga la mayor velocidad de crecimiento y la mayor energía disponible para crecer (ΔG_{cat}). Obsérvese que a partir de las 14 horas la única familia que tiene un cambio considerable (de 2.40% a 3.56% en la hora 48) es la familia M. Acetoclástica. Este comportamiento va en línea con el comportamiento que presenta la concentración experimental de acetato, pues entre las 14 y 48 horas, esta es la concentración que presenta el cambio más drástico de todos los metabolitos, disminuyendo un 40%.

Figura 3-10: Abundancias de cada familia respecto al CMM durante el batch.

A partir de las velocidades de crecimiento de cada familia, sus funciones q, y la ecuación $q_s Sustrato + q_0 O_2 + q_N NH_4^+ \rightarrow \mu CH_{1.8}O_{0.5}N_{0.2} + q_P Producto + q_w H_2O + q_H H^+ + q_c CO2$ (1.23, se calculó la estequiometría del proceso (Tabla 3-23).

Reactivos	Coeficiente estequiométrico	
Glicerol $(C_3H_8O_3)$	$1.09x10^{-1}$	
Amonio (NH_4^+)	$5.20 x 10^{-3}$	
Productos	Coeficiente estequiométrico	
Ácido propiónico ($C_3H_6O_2$)	$4.31x10^{-2}$	
Ácido acético ($C_2H_4O_2$)	$2.18x10^{-2}$	
Hidrógeno (H ₂)	$6.00 x 10^{-4}$	
Metano (CH ₄)	$7.78 x 10^{-2}$	
Dióxido de carbono (CO_2)	$4.95 x 10^{-2}$	
lones hidronio (H^+)	$5.20 x 10^{-3}$	
Agua (<i>H</i> ₂ <i>0</i>)	$8.90 x 10^{-2}$	
Biomasa Acidogénica (CH _{1.9} O _{0.32} N _{0.2})	$2.47 x 10^{-2}$	
Biomasa Acetogénica (<i>CH</i> _{1.9} <i>O</i> _{0.32} <i>N</i> _{0.2})	$5.09x10^{-4}$	
Biomasa M. Acetoclástica $(CH_{1.9}O_{0.32}N_{0.2})$	$7.83x10^{-4}$	
Biomasa M. Hidrogenotrófica (<i>CH</i> _{1.9} <i>O</i> _{0.32} <i>N</i> _{0.2})	$2.51x10^{-5}$	

Tabla 3-23: Estequiomet	a para el CMM. Obtenida	de los modelos planteados.
-------------------------	-------------------------	----------------------------

Como todas las familias del consorcio fueron supuestas con la misma fórmula molecular, se pueden sumar los coeficientes estequiométricos de las biomasas para plantear la estequiometría del microorganismo chasís (Tabla 3-24).

Tabla 3-24:Estequiometría para el microorganismo chasís. Obtenida de los modelosplanteados.

Reactivos	Coeficiente estequiométrico		
Glicerol $(C_3H_8O_3)$	$1.09x10^{-1}$		
Amonio (NH_4^+)	5.20×10^{-3}		
Productos	Coeficiente estequiométrico		
Ácido propiónico ($C_3H_6O_2$)	$4.31x10^{-2}$		
Ácido acético $(C_2H_4O_2)$	2.18×10^{-2}		
Hidrógeno (H ₂)	$6.00 x 10^{-4}$		
Metano (CH ₄)	7.78×10^{-2}		
Dióxido de carbono (CO_2)	4.95×10^{-2}		
lones hidronio (H^+)	5.20×10^{-3}		
Agua (<i>H</i> ₂ <i>0</i>)	8.90×10^{-2}		
Biomasa chasís ($CH_{1.9}O_{0.32}N_{0.2}$)	2.60×10^{-2}		

Con el fin de vislumbrar de una manera más clara esta estequiometría, se calculó la estequiometría del proceso por mol de biomasa (Tabla 3-25).

Reactivos	Coeficiente estequiométrico
Glicerol ($C_3H_8O_3$)	4.18
Amonio (NH ₄ ⁺)	0.20
Productos	Coeficiente estequiométrico
Ácido propiónico ($C_3H_6O_2$)	1.66
Ácido acético ($C_2H_4O_2$)	0.84
Hidrógeno (H ₂)	0.02
Metano (CH ₄)	2.98
Dióxido de carbono (CO_2)	1.90
lones hidronio (H^+)	0.20
Agua (<i>H</i> ₂ <i>0</i>)	3.42
Biomasa chasís ($CH_{1.9}O_{0.32}N_{0.2}$)	1.00

Tabla 3-25: Estequiometría para el modelo de caja negra expresada por mol de biomasa.

Al calcular los errores relativos de la estequiometría calculada con respecto a la estequiometría experimental (Tabla 3-26) se observó que, al igual que para los perfiles de concentración, la aproximación para el coeficiente estequiométrico del ácido propiónico es mejor que la aproximación para el ácido acético.

Reactivos	Coeficiente estequiométrico	Coeficiente estequiométrico	Error relativo (%)	
	(Modelo)	(Artículo)		
Glicerol ($C_3H_8O_3$)	$1.09x10^{-1}$	$1.09x10^{-1}$	0	
Amonio (NH ₄ ⁺)	5.20×10^{-3}	-	-	
	Coeficiente	Coeficiente		
Productos	estequiométrico	estequiométrico	Error relativo (%)	
	(Modelo)	(Artículo)		
Ácido propiónico $(C_3H_6O_2)$	cido propiónico $(C_3H_6O_2)$ 4.31 $x10^{-2}$ 3.93 x		9.67	
Ácido acético $(C_2H_4O_2)$	$2.18x10^{-2}$	2.48×10^{-2}	12.10	
Hidrógeno (H ₂)	$6.00x10^{-4}$	-	-	
Metano (CH_4)	7.78×10^{-2}	-	-	
Dióxido de carbono (<i>CO</i> ₂)	4.95×10^{-2}	-	-	
lones hidronio (H ⁺)	5.20×10^{-3}	-	-	
Agua (H_2O)	8.90×10^{-2}	-	-	
Biomasa $(CH_{1.9}O_{0.32}N_{0.2})$ $2.60x10^{-2}$		-	-	

Tabla 3-26: Comparación entre los coeficientes estequiométricos calculados⁶ para R5 y los coeficientes calculados mediante el modelo de caja negra.

Para la estequiometría del microorganismo chasís se corroboró que fuera termodinámicamente viable, calculando su energía libre de Gibbs de reacción global. Se encontró que, bajo las condiciones establecidas, la reacción es termodinámicamente viable:

⁶ Los coeficientes estequiométricos fueron calculados a partir de la información experimental reportada por Chen, Yun, et al. (2016) en [1].

$$\Delta G_{reacción \ global} = -267.91 \frac{kJ}{mol \ glicerol} \quad (3.6)$$

Finalmente, este modelo también se validó utilizando los valores experimentales para los balances de COD reportados por Chen, Yun, et al. (2016) en su experimento de producción de propionato de alta pureza (Tabla 1-4, sección 1.5.3). Debido a que los rendimientos de COD son equivalentes a los rendimientos de electrones, se compararon los rendimientos de electrones obtenidos de simular el *batch* secuencial con los experimentales (Tabla 3-27). Se supuso que para cada fase reportada por los autores, la cantidad faltante de COD/electrones (A: 0.12, B: 0.07 y C: 0.15) corresponde a producción de biomasa. De las tres fases reportadas (A, B y C) no se tomó en cuenta la fase A como referencia de análisis, pues el glicerol fue transformado en su totalidad a metano.

Tabla 3-27: Rendimientos de electrones para las fases del experimento de rendimiento máximo de propionato y rendimientos resultantes del modelo del *batch* secuencial.

Rendimiento de electrones [e- metabolito/ e- consumidos de sustrato]						
	Acetato Propionato Butirato Metano Biom					
A	0	0	0	0.88	0.12	
В	0.01	0.45	0	0.47	0.07	
С	0.14	0.34	0.01	0.36	0.15	
Modelo	0.12	0.40	0	0.41	0.08	

Obsérvese que los rendimientos obtenidos para el modelo del batch secuencial se encuentran dentro del rango de valores de las fases B y C. Por ejemplo, la diferencia entre los resultados del modelo con los de la muestra B se puede explicar de la siguiente manera: los rendimientos de propionato y metano del modelo son 0.05 y 0.06 electrones menores que los de la fase B, mientras que el rendimiento de acetato es 0.11 electrones mayor. Esto indica que estequiométricamente, el proceso que ocurre en el batch secuencial es diferente al del fedbatch. Así, de los 0.11 electrones que hay en el acetato, 0.05 electrones deberían corresponder al propionato y 0.06 electrones deberían corresponder al metano. Los 0.05 electrones extra de acetato provienen del propionato que había al comienzo del batch secuencial. Para explicar los 0.06 electrones que permanecieron como acetato se infiere (en línea con el supuesto 2 presentado en la sección 2.4) que debido a que la presión parcial de hidrógeno en el batch quizá no fue lo suficientemente baja, entonces termodinámicamente no se pudo transformar tanto acetato en metano como sucedió en la fase B. La única discrepancia que habría entre los rendimientos de la fase B y el modelo serían 0.01 electrones de diferencia entre los rendimientos de la biomasa. El resultado de contrastar las predicciones del modelo con los resultados experimentales demuestran que la estequiometría planteada para cada una de las reacciones del proceso son correctas, y por lo tanto el modelo de caja negra del CMM se ajusta a las condiciones reales del proceso estudiado.

Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

3.1.6 Reconstrucción y análisis de las rutas metabólicas de los microorganismos representantes del CMM, y construcción del microorganismo chasís (*E. coli* K-12 MG1655)

Reconstrucción de la red metabólica del microorganismo chasís

Catabolismo: Con base en la selección de los microorganismos representantes de cada familia de interés del CMM, presentada en la sección 1.5.3 (Tabla 2-1), a continuación se reconstruirá una ruta catabólica para cada función metabólica con el fin de unir las cuatro rutas resultantes en una ruta catabólica para el microorganismo chasís. Cabe aclarar que aunque la selección de los microorganismos representantes fue hecha con las limitantes de la información experimental taxonómica disponible en el SRA [36], lo importante para la reconstrucción del catabolismo del chasís es tener un punto de partida que permita garantizar que todas las funciones metabólicas del consorcio sean representadas en este.

Ruta catabólica para la acidogénesis (Aminobacterium colombiense DSM 12261)

Se encontró que el metabolismo de este microorganismo transforma el glicerol en ácido propiónico en tres etapas. Primero, mediante el metabolismo de glicerolípidos, transforma el glicerol en glicerona fosfato (DHAP) (Figura 3-11).

Figura 3-11: Transformación del glicerol en DHAP en el metabolismo de glicerolípidos de *Aminobacterium colombiense* DSM 12261.

Después, la DHAP es llevada hasta fosfoenol piruvato (PEP) mediante la glicólisis (Figura 3-12).

Figura 3-12: Transformación de DHAP en PEP mediante glicólisis en Aminobacterium colombiense DSM 12261.

Posteriormente, el PEP es llevado a succinil-CoA (Succ-CoA) mediante el metabolismo del piruvato (Figura 3-13). Aunque la enzima 1.6.5.11 no ha sido anotada en KEGG para este microorganismo, esta se encuentra reportada, y fue adicionada a la ruta catabólica para que el chasís sea capaz de representar el catabolismo presentado en el modelo de caja negra.

Figura 3-13: Transformación de PEP en succinil-CoA mediante el metabolismo modificado del piruvato en *Aminobacterium colombiense* DSM 12261.

Por último, el succinil-CoA es llevado hasta propionato mediante el metabolismo del propionato (Figura 3-14).

104 Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Figura 3-14: Transformación de succinil-CoA en propionato mediante el metabolismo del propionato en *Aminobacterium colombiense* DSM 12261.

Después de unir cada una de las secciones reconstruidas, se obtiene como resultado la ruta catabólica que representa la acidogénesis en el microorganismo chasís (Figura 3-15).

Figura 3-15: Parte de la red catabólica del microorganismo chasís que representa la acidogénesis. Planteada a partir del metabolismo de *Aminobacterium colombiense* DSM 12261.

La reacción neta de esta ruta metabólica corresponde a la misma reacción catabólica encontrada para el modelo de caja negra, pero incluye *ADP*, *ATP* y *Pi*:

$$C_3H_8O_3 + ADP + Pi \rightarrow C_3H_6O_2 + ATP + 2H_2O$$
 (3.7)

Cabe recordar que estos cofactores son *conserved moieties* y, por ende, se puede afirmar que estas especies si bien pueden obviarse pues sus cantidades deben permanecer constantes en el microorganismo, es necesario que estén balanceadas en el modelo metabólico. Por ejemplo, la sumatoria de flujos de las reacciones productoras de ATP debe ser igual a la sumatoria de flujos de las reacciones consumidoras de ATP. Lo mismo aplica para otros *moieties* como NADH, NADPH, entre otros. Finalmente, la reacción neta se puede expresar como la misma reacción acidogénica del modelo de caja negra:

$$C_3 H_8 O_3 \to C_3 H_6 O_2 + H_2 O$$
 (3.8)

• Ruta catabólica para la acetogénesis (Clostridium acetobutylicum DSM 1731)

La acetogénesis parte de propionato y termina en acetato. Para *Clostridium acetobutylicum* DSM 1731 se encontró que el metabolismo de partida es el metabolismo de propionato (Figura 3-16), donde se lleva el propionato hasta succinato.

Figura 3-16: Transformación de propionato a succinato en el metabolismo del propionato en *Clostridium acetobutylicum* DSM 1731.

Una vez se llega a succinato, este es transformado en el metabolismo del piruvato hasta acetato (Figura 3-17).

Figura 3-17: Transformación del succinato a acetato en el metabolismo del piruvato en *Clostridium acetobutylicum* DSM 1731.

En esta parte se producen las tres moles estequiométricas de H_2 de la reacción catabólica. Aunque en las rutas presentadas en KEGG no aparece anotada la enzima encargada de la generación de este compuesto en *Clostridium acetobutylicum* DSM 1731, se buscó una enzima que llevara a cabo esta función. De tal manera, se encontraron enzimas que utilizan los cofactores NAD^+y Ferr_{ox}. En la base de datos
BRENDA se corroboró si estas están reportadas para el microorganismo, que es el caso de 1.12.7.2. Aunque la enzima 1.12.1.2 no se ha reportado para este microorganismo, se podría corroborar experimentalmente su presencia, o plantear como alternativa la enzima 1.12.99.6. Esta última se encuentra anotada para *Clostridium acetobutylicum* y aunque no se reporta como específica para reducir *NAD*⁺ se reporta que, de manera general, produce H_2 al reducir "diferentes compuestos" [54]. La unión de estas dos secciones es la reconstrucción de la función metabólica acetogénica del microorganismo chasís (Figura 3-18).

Figura 3-18: Parte de la red catabólica del microorganismo chasís que representa la acetogénesis. Planteada a partir del metabolismo de *Clostridium acetobutylicum* DSM 1731.

El balance neto de los metabolitos de la ruta reconstruida da como resultado la misma reacción catabólica planteada en el modelo de caja negra:

$$C_3H_6O_2 + 2H_2O \to C_2H_4O_2 + 3H_2 + CO_2$$
 (3.9)

 Ruta catabólica para la metanogénesis acetoclástica (Methanosaeta concilii GP6)

El módulo KEGG utilizado para la metanogénesis acetoclástica contiene reacciones únicamente del metabolismo del metano perteneciente a *Methanosaeta concilii* GP6. A este metabolismo base se le agregó la reacción catalizada por la enzima 1.2.7.4 para que la ruta coincidiera con el modelo de caja negra. Aunque esta enzima no se encuentra anotada para este microorganismo, se encontró en KEGG que está anotada para otro microorganismo perteneciente a su mismo género (*Methanosaeta harundinacea*), y así, se podría corroborar experimentalmente su presencia en *M. concilii*. La ruta resultante (Figura 3-19) representa la función metabólica de la metanogénesis acetoclástica.

Figura 3-19: Parte de la red catabólica del microorganismo chasís que representa la metanogénesis acetoclástica. Planteada a partir del metabolismo de *Methanosaeta concilii* GP6.

El balance neto de los metabolitos es:

$$C_2H_4O_2 + ATP + H_2O \rightarrow CH_4 + CO_2 + AMP + PPi$$
 (3.10)

Como el *ATP*, *AMP* y *PPi* son *conserved moieties*, esta reacción es equivalente a la encontrada en el modelo de caja negra:

$$C_2 H_4 O_2 \to C H_4 + C O_2$$
 (3.11)

Ruta catabólica para la metanogénesis hidrogenotrófica (Methanobacterium paludis)

El módulo KEGG de la metanogénesis hidrogenotrófica considera únicamente el metabolismo del metano de *Methanobacterium paludis*. A esta ruta se le adicionó la reacción catalizada por la enzima 1.12.98.1 que se encarga de consumir 1 mol de hidrógeno extra para oxidar la molécula $Co - F420_{red}$. Esta enzima se encuentra reportada en KEGG para *Methanobacterium paludis*. La ruta resultante (Figura 3-20) representa la función metabólica de la metanogénesis hidrogenotrófica.

Figura 3-20: Parte de la red catabólica del microorganismo chasís que representa la metanogénesis hidrogenotrófica. Planteada a partir del metabolismo de *Methanobacterium paludis*.

La reacción global de esta ruta metabólica coincide exactamente con la reacción planteada en el modelo de caja negra:

$$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$$
 (3.12)

 Acoplamiento de las rutas catabólicas del CMM en una red catabólica para el microorganismo chasís

Una vez se reconstruyeron las rutas catabólicas para cada familia representante del CMM, estas se incorporaron en un único modelo catabólico para el microorganismo chasís (Figura 3-21). Se tuvo en cuenta que, al acoplar este modelo con el modelo anabólico del chasís, la red metabólica resultante debe ser

capaz de replicar la estequiometría del modelo de caja negra. El código de colores de esta figura indica a qué familia pertenece cada reacción. El color verde hace alusión a la familia acidogénica, el rojo a la familia acetogénica, el morado a la M. Acetoclástica y el azul a la M. Hidrogenotrófica. Los puntos suspensivos azules entre el CO_2 y el 5 – Metil – 5, 6, 7, 8 – tetrahidrometanopterina hacen referencia a las reacciones, que no se presentan en la Figura 3-21, catalizadas por las enzimas 1.2.7.12, 2.3.1.101, 1.12.98.1, 1.12.98.2, 1.5.98.2 (Figura 3-20). Todas las reacciones pertenecientes a la ruta resultante se presentan en la sección 5.1.

Figura 3-21: Ruta catabólica del microorganismo chasís planteada a partir de las rutas catabólicas de las familias representantes del CMM. Líneas verdes: reacciones pertenecientes a la acidogénesis. Líneas rojas: reacciones pertenecientes a la acetogénesis. Líneas moradas: reacciones pertenecientes a la Metanogénesis acetoclástica. Líneas azules: reacciones pertenecientes a la Metanogénesis hidrogenotrófica.

6 Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Nótese que las interacciones entre los catabolismos, a nivel metabólico, se logran gracias a los metabolitos que estos tienen en común: piruvato, acetil-CoA y 5-Metil-5,6,7,8-tetrahidrometanopterina. El piruvato es el metabolito mediante el cual interactúan los catabolismos de la acidogénesis y la acetogénesis. El acetil-CoA es el metabolito de interacción entre la acetogénesis y la metanogénesis acetoclástica, y el 5-Metil-5,6,7,8-tetrahidrometanopterina es el punto de interacción entre la metanogénesis acetoclástica y la metanogénesis hidrogenotrófica. Una vez planteada la ruta catabólica se verificó en KEGG y BRENDA cuáles enzimas, de esta ruta, están anotadas para *E. coli* K-12 MG1655 (Tabla 3-28) con el fin de identificar aquellas que deberían ser adicionadas al chasís.

Tabla 3-28: Comparación de las enzimas reportadas para *E. coli* K-12 MG1655 y las enzimas necesarias para la ruta catabólica del microorganismo chasís planteada a partir de las interacciones del CMM. NR: No Reportada. Construida a partir de KEGG y BRENDA.

Número EC	Anotada	Tipo de metabolismo	Función metabólica del CMM
1.1.1.6	Sí		
2.7.1.29	NR. Sin embargo, está presente 2.7.1.121 que cumple una función similar.	Metabolismo de Glicerolípidos	
5.3.1.1			sis.
1.2.1.12			зде́пе
2.7.2.3	Sí	Glicólisis	Acido
5.4.2.11	51	GIICOIISIS	
4.2.1.11			
2.7.1.40			
4.1.1.3	Aunque		
1.1.5.4	4.1.1.3 no se reporta, la enzima 1.1.1.38	Metabolismo del Piruvato	

	sustituye estas dos funciones.			
4.2.1.2				
1.3.5.4	Sí			
6.2.1.5	51		-	
5.4.99.2				
5.1.99.1	NR	Metabolismo del		
4.1.1.41		propionato		
2.3.1.8	Sí			
2.7.2.1				
1.3.5.1	Sí			
1.2.7.11	NR. Sin embargo, está presente 1.2.7.1 que cumple la misma función.	Metabolismo del piruvato	génesis	
2.3.1.8	O'		ceto	
3.6.1.7	51		<	
1.12.1.2		Otros		
1.12.7.2	Sí [54]	(Metabolismos de cofactores)		
6.2.1.1	Sí			
2.3.1.169	NR		ssis	
1.2.7.4	NR. Sin embargo, hay reportes de que se ha expresado	Metabolismo del metano	Metanogéne acetoclásti	

18 Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

	en <i>E. coli</i> [54]		
2.1.1.86			
2.8.4.1	NR		
1.8.7.3	NR. Sin embargo, hay reportes de que se ha expresado en <i>E. coli</i> [54]		
1.2.7.11			
2.3.1.101			
3.5.4.27	ND		
1.12.98.2	INIX		
1.5.98.2			
2.1.1.86		Metabolismo del metano	Metanogénesis hidrogenotrófica
1.12.98.1	NR. Sin embargo, hay reportes de que se ha expresado en <i>E. coli</i> [54]		

Respecto a las enzimas pertenecientes a las funciones metabólicas de la acidogénesis y la acetogénesis, se encontró que la única enzima que no está anotada para *E. coli* K-12 MG1655 (o que no se cuenta con una enzima similar) es la 5.1.99.1 (Metilmalonil-CoA epimerasa). Sin embargo, esta enzima se encuentra expresada en *E. coli* BL21(DE3) [54]. Por lo tanto, al estar expresada en otra cepa de la misma especie, es factible expresarla en la cepa K-12 MG1655. En lo que respecta a la M. acetoclástica e hidrogenotrófica, el chasís solo cuenta con la enzima 6.2.1.1. A pesar de esto, Ahlert, S., et al. (2016) reportan en su reseña sobre metanogénesis [81] diversos estudios experimentales ([82]–[84]) en los que se han insertado genes del metabolismo de

118

microorganismos metanogénicos en *E. coli*. En la práctica, para las demás enzimas se tendría que recurrir a herramientas de ingeniería metabólica que permitan adicionarlas al chasís.

Anabolismo: debido a que la biomasa asumida para estimar el modelo de caja negra difiere en su grado de reducción ($\gamma_x = 4.66$) de la biomasa del modelo metabólico para el microorganismo chasís ($\gamma_x = 4.31$), se presenta una diferencia en la estequiometría de los electrones que debe ser corregida en las simulaciones del *FBA*. Para esto, los equivalentes de electrones se ajustaron con una reacción de transporte de NADPH, cuyo flujo debe explicar la desviación en el número de electrones que no terminan en el espacio extracelular y por lo tanto deben ser parte de la biomasa. Así, al modelo anabólico base se le agregó una reacción para el transporte de NADPH:

$$NADPH_{"extracelular"} \rightarrow NADPH_{"intracelular"}$$
 (3.13)

Por cada mol de NADPH que esté saliendo, se supone que se transportan dos electrones los cuales representan electrones pertenecientes a la biomasa. Todas las reacciones del modelo anabólico para el chasís se presentan en la sección 5.2.

• FBA y análisis de los escenarios evaluados

El modelo completo del microorganismo chasís se hizo uniendo las rutas catabólica y anabólica, y la ruta de asimilación de metanol. Este modelo se validó antes de evaluar diferentes escenarios para la valorización del glicerol crudo. Para esto, se comparó la estequiometría obtenida al simular el modelo de caja negra con los resultados del *FBA* del modelo metabólico. En este *FBA* se tomó como función objetivo la maximización del flujo extracelular de propionato, y como restricciones se fijaron los flujos de los otros metabolitos extracelulares (Tabla 3-29).

Metabolitos	$Flujo\left[\frac{mmol}{\mathit{C-mol}_X\mathit{h}}\right]$
Glicerol $(C_3H_8O_3)$	-417.83
Acetato $(C_2H_3O_2^-)$	83.85
Hidrógeno (H ₂)	2.31
Metano (CH ₄)	298.36
Dióxido de carbono (CO_2)	190.16
NAPDH	18.13
Biomasa chasís ($CH_{1.9}O_{0.35}N_{0.25}S_{0.007}P_{0.007}$)	100.00

Tabla 3-29:	Restricciones definidas	para los metabolitos	extracelulares.
			•/

Cabe aclarar que el flujo de *NADPH* se fija en el valor de la Tabla 3-29 para compensar la diferencia en los grados de reducción de la biomasa del modelo de caja negra y el modelo metabólico. Al sumar el flujo de electrones que van en la biomasa con el flujo de electrones correspondientes al *NADPH*, y dividirlo por el flujo total de biomasa, se obtiene el grado de reducción correspondiente a la biomasa del modelo de caja negra:

$$\gamma_x = \frac{4.31*100+18.13*2}{100} = 4.67 \frac{e^-}{mol_x} \quad (3.14)$$

Para comparar las estequiometrías del modelo de caja negra y del modelo metabólico, inicialmente se sustituyeron los flujos obtenidos de simular el *FBA* (Tabla 3-30) en la ecuación 1.23. Después, se dividió cada coeficiente de la expresión resultante por la velocidad de crecimiento μ (flujo de biomasa), obteniéndose la estequiometría del modelo metabólico por mol de biomasa.

Metabolitos	$Flujo\left[\frac{mmol}{C-mol_Xh}\right]$
Fuente de azufre (SO_4^{2-})	-0.68
Fuente de fosfato (HPO_4^{2-})	-0.66
Fuente de nitrógeno (NH ₄ ⁺)	-25.31
Propionato $(C_3H_5O_2^-)$	165.70
Agua (H_2O)	344.60
H^+	291.0
NADP ⁺	-18.13

Tabla 3-30: Flujos extracelulares resultantes de la simulación	del F	-ΒA.
--	-------	------

La estequiometría resultante se comparó con la del modelo de caja negra mediante errores relativos (Tabla 3-31), encontrándose que los únicos coeficientes que difieren son los del amonio, el agua y los iones hidronio. Para corregir esta desviación, se podría asumir una reacción de sumidero de nitrógeno en la biomasa de manera análoga a los electrones. Dicha corrección se puede hacer porque el metabolismo de ese nitrógeno no debe afectar el grado de reducción de la biomasa, y por lo tanto los electrones seguirían balanceados. Las desviaciones de los coeficientes de los iones hidronio y del agua se deben a la redistribución que se da por la diferencia en los coeficientes del hidrógeno en la biomasa. Aunque existan desviaciones, estas son menores al 1.46% entre los modelos. Además, en ambos casos las recuperaciones de C, H, O, N (S y P en el caso del modelo metabólico) y electrones fueron cercanas al 100% (Tabla 3-32).

122 Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Reactivos	Estequiometría caja negra	Estequiometría modelo metabólico	Error relativo (%)
Glicerol	4.18	4.18	0
Amonio	0.20	0.25	-
Productos	Estequiometría caja negra	Estequiometría modelo metabólico	Error relativo (%)
Ácido propiónico/Propionato	1.67	1.67	0
Ácido acético/Acetato	0.84	0.84	0
Hidrógeno	0.02	0.02	0
Metano	2.98	2.98	0
Dióxido de carbono	1.90	1.90	0
lones hidronio	2.717	2.738	0.74
Agua	3.42	3.47	1.46
Biomasa	1.00	1.00	0

Tabla 3-31: Comparación entre la estequiometría del modelo de caja negra y el modelo metabólico.

⁷ Como en el modelo de caja negra no se tuvieron en cuenta las especies protonadas de los ácidos, al valor 0.2 se le sumó lo que serían las contribuciones del ácido propiónico (1.67) y ácido acético (0.84).

⁸ Fue necesario restar el aporte estequiométrico de los protones del NADPH (0.18).

Tabla 3-33:

Elemento	Recuperación modelo caja negra	Recuperación modelo metabólico
Carbono	99.98%	99.99%
Hidrógeno	99.36%	100.02%
Oxígeno	100.00%	100.01%
Nitrógeno	100.00%	99.80%
Azufre	_	97.14%
Fósforo	-	99.93%
Electrones	99.97%	100.00%

Tabla 3-32: Porcentajes de recuperación de los modelos de caja negra y metabólicos para los C, H, O, N, S, P y electrones.

Después de validar el modelo, se analizó *in silico* el comportamiento del chasís al "alimentarlo" con las muestras de glicerol crudo presentadas previamente en la Tabla (en la introducción). Para cada una se evaluaron los resultados de los flujos de metabolitos extracelulares, la energía (ATP) y el poder reductor (NADH). En cada uno de los cuatro casos se fijó un flujo de glicerol de -417.8 mmol/C-mol h (valor utilizado en la validación de la ruta metabólica del chasís). Este se multiplicó por las relaciones de metanol/glicerol (Tabla 3-33) calculadas para cada muestra con el fin de obtener el flujo de metanol.

Relaciones molares metanol/glicerol de las muestras de glicerol crudo en el

ámbito colombiano. Muestra Relación molar Metanol/Glicerol

Metanol/Glicerol
1.45
0.00
0.92
0.26

Para encontrar cuál de estos es el mejor escenario para producir propionato, se tomaron como referencia inicial los resultados obtenidos al utilizar la muestra B (muestra sin metanol) como sustrato. En este caso, la función objetivo del *FBA* fue la maximización de propionato y las restricciones fueron los flujos de glicerol (-417.8 mmol/C-mol h), biomasa (100 mmol/C-mol h), NADPH (18.13 mmol/C-mol h) e hidrógeno (0.02 mmol/C-mol h). Este último flujo se fija para reflejar la condición termodinámica que se encontró en el modelo de caja negra. En cada caso en particular

que se evalúe, debe corroborarse que la relación molar del hidrógeno respecto a las moles totales de la fase gaseosa sea menor o igual 0.005 mol H_2 /mol biogás (valor obtenido del modelo de caja negra).

Como resultados del *FBA*, se obtuvieron los flujos extracelulares de acetato, amonio, propionato, H^+ , H_2O , CO_2 y CH_4 (Tabla 3-34). Nótese que, bajo las condiciones planteadas se encuentra que, el microorganismo chasís debería consumir acetato. Esto se debe a que el flujo de acetato no fue restringido y, por lo tanto, el microorganismo chasís puede maximizar la producción de propionato al transformar acetato (función metabólica acetogénica). Aunque esto es coherente, en esta tesis, se busca que el microorganismo chasís consuma únicamente los compuestos presentes en el glicerol crudo. Por lo tanto, además de las restricciones de flujos hechas para la muestra B, se fijó el flujo de acetato al valor utilizado en la validación del modelo de caja negra (83.85 mmol/C-mol h).

Reactivos	$Flujo\left[\frac{mmol}{C-mol_X h}\right]$	
	В	
Glicerol	-417.80	
Acetato	-232.80	
Amonio	-25.31	
Productos	$Flujo\left[\frac{mmol}{C-mol_X h}\right]$	
Propionato	389.80	
Hidrógeno	2.31	
Metano	126.90	
Dióxido de carbono	226.70	
lones hidronio	198.60	
Agua	456.60	
Biomasa	100.00	

Tabla 3-34: F	Flujos de metabolitos	extracelulares para	la muestra de	glicerol crudo B.
---------------	-----------------------	---------------------	---------------	-------------------

Teniendo en cuenta la restricción para el flujo de acetato, además de las restricciones indicadas inicialmente para la muestra B, se simularon los *FBA*s de las muestras B y D. Se puede observar que para ambas la relación molar hidrógeno/biogás sobrepasa el límite de 0.005 mol H_2 /mol biogás (Tabla 3-35). Esto significa que bajo las restricciones a las que fueron sometidos ambos escenarios, no serían termodinámicamente factibles debido a la fracción molar de hidrógeno.

Tabla 3-35:Flujos de metabolitos extracelulares considerando la restricción del flujo deacetato, y las respectivas relaciones molares hidrógeno/biogás.

Matabalitaa	iol/C-mol h]	
Metabolitos.	В	D
Glicerol	-417.80	-417.80
Metanol	0	-108.64
Amonio	-25.31	-25.31
Propionato	295.70	331.90
Acetato	83.85	83.85
Hidrógeno	2.31	2.31
Metano	70.78	88.89
Dióxido de carbono	27.65	9.54
lones hidronio	421.1	457.40
Agua	409.6	482
Biomasa	100	100
NADPH (compensación grado de reducción)	18.13	18.13
Relación molar hidrógeno/biogás	0.023	0.023

Por lo tanto, se decidió aplicar otras dos restricciones para las muestras B y D, con el fin de corroborar si bajo alguna de estas se logra cumplir con el límite:

- 1. Restricción del flujo de *CH*₄ al valor utilizado en la corroboración del modelo de caja negra.
- 2. Restricción del flujo de *CO*₂ al valor utilizado en la corroboración del modelo de caja negra.

Se puede observar en los flujos resultantes del caso número I (Tabla 3-36) que ambas muestras cumplen con la relación de hidrógeno y, por lo tanto, estos escenarios serían factibles para el microorganismo chasís.

Tabla 3-36: Distribución de flujos al fijar el flujo de metano al valor considerado para la corroboración del modelo de caja negra para la muestra D.

Reactivos	$Flujo\left[\frac{mmol}{c-mol_X h}\right]$		
	В	D	
Glicerol	-417.80	-417.80	
Metanol	0	-108.60	
Amonio	-25.31	-25.31	
Productos	Flujo [-	$\frac{mmol}{C-mol_X h}$	
Propionato	165.70	212.20	
Acetato	83.85	83.85	
Hidrógeno	2.31	2.31	
Metano	298.40	298.40	
Dióxido de carbono	190.20	159.20	
Iones hidronio	291.1	337.60	
Agua	344.6	422.10	
Biomasa	100.00	100.00	
Relación molar hidrógeno/biogás	0.004	0.005	

Al evaluar el caso II, se encontró que las dos muestras también cumplen con la relación molar H_2 /biogás (Tabla 3-37). Sin embargo, nótese que el flujo de propionato en el caso II para la muestra D, es un 15% menor que para la misma muestra en el caso I (Tabla 3-36) a costa de un incremento del 15% en el flujo de metano. Esto se debe a que los electrones y el carbono que aportan las moles de metanol se transforman en moles de CH_4 pues es una especie más reducida y, termodinámicamente, más propensa a formarse.

Reactivos	$Flujo\left[\frac{mmol}{c-mol_X h}\right]$		
	В	D	
Glicerol	-417.80	-417.80	
Metanol	0	-108.60	
Amonio	-25.31	-25.31	
Productos	Flujo [7	$\frac{mmol}{C-mol_X h}$	
Propionato	165.70	187.50	
Acetato	83.85	83.85	
Hidrógeno	2.31	2.31	
Metano	298.30	341.70	
Dióxido de carbono	190.17	190.17	
lones hidronio	291.1	312.90	
Agua	344.60	409.80	
Biomasa	100.00	100.00	
Relación molar hidrógeno/biogás	0.005	0.005	

Tabla 3-37:Distribución de flujos al fijar el flujo de dióxido de carbono al valor consideradopara la corroboración del modelo de caja negra para la muestra D.

Basándose en esta información se decidió que la manera de mejorar el rendimiento de propionato para las relaciones estequiométricas propuestas a través de las restricciones, y cumplir la restricción termodinámica del H_2 es mantener las restricciones que se han propuesto para el acetato, H_2 , CH_4 , biomasa y *NADPH* (Tabla 3-38). Cabe aclarar que, in vivo, estas restricciones se podrían lograr modificando la expresión de aquellos genes del microorganismo chasís que regulan la producción de estos metabolitos, mediante herramientas de ingeniería metabólica.

Relación flujos Flujo $\left[\frac{mmol}{C-mol_X h}\right]$ Metabolito metabolito/glicerol 83.85 0.20 Acetato Hidrógeno 2.31 0.006 0.71 Metano 298.36 Biomasa 100.00 0.24 NADPH 18.13 0.04

Tabla 3-38: Restricciones de flujos para mejorar el rendimiento del propionato bajo las consideraciones mencionadas.

A partir de estas restricciones, se evaluó el comportamiento del chasís al utilizar como sustrato las diferentes muestras (A, B, C y D) que contienen metanol. Para cada una se simuló su respectivo *FBA* y posteriormente se compararon sus resultados (Tabla 3-39).

	Flujos [mmol/C-mol h]			
Metabolitos	В	D	С	А
Glicerol	-417.80	-417.80	-417.80	-417.80
Metanol	0	-108.60	-384.40	-605.85
Amonio	-25.31	-25.31	-25.31	-25.31
Propionato	165.70	212.20	330.40	425.30
Acetato	83.85	83.85	83.85	83.85
Hidrógeno	2.31	2.31	2.31	2.31
Metano	298.36	298.36	298.36	298.36
Dióxido de carbono	190.20	159.20	80.38	17.10
lones hidronio	291.10	337.60	455.80	550.80
Agua	344.60	422.10	619.10	777.30
Biomasa	100.00	100.00	100.00	100.00
NADPH (compensación grado de reducción)	18.13	18.13	18.13	18.13
Relación molar hidrógeno/biogás	0.005	0.005	0.006	0.007

Tabla 3-39: Flujos de metabolitos extracelulares resultantes para cada una de las muestras

 de glicerol crudo, bajo restricciones de mejora de producción de propionato.

Obsérvese que a medida que aumenta el metanol en las muestras, aumenta la cantidad de propionato generado y disminuye la cantidad de CO_2 . Aunque un incremento en la producción de propionato es beneficioso, esto acarrea un aumento en la relación molar H_2 /biogás hasta el punto en el que para las muestras A y C (muestras con mayor cantidad de metanol), no se cumple la restricción termodinámica. Debido a esto se pudo establecer que para no sobrepasar la relación de 0.005 (bajo las restricciones establecidas) es necesario que el flujo de CO_2 sea mayor a 124 mmol/C-mol h. De tal manera, se hizo un análisis de sensibilidad para observar cómo varía el flujo de dióxido de carbono al variar el flujo de metanol alimentado, con el fin de encontrar cuál es el valor máximo de metanol que podría consumir el microorganismo chasís sin que se presentara un sobrepase de la restricción termodinámica.

Las variables independientes del análisis fueron los flujos de glicerol y metanol (ejes X y Y) y la variable dependiente fue el flujo de dióxido de carbono (eje Z) (Figura 3-22). El plano que se presenta tiene una pendiente constante y, por lo tanto, se pudo realizar una interpolación lineal entre los dos puntos señalados en la Figura 3-22. Se encontró que para alcanzar un flujo de dióxido de carbono de 124 mmol/C-mol h (alimentando un flujo de aproximadamente 417.8 mmol glicerol/C-mol h), el flujo de metanol debe ser 231.59 mmol/C-mol h. Se define entonces que, bajo las restricciones consideradas, este es el flujo máximo de metanol que puede consumir el microorganismo chasís. Este flujo equivale a una relación máxima metanol/glicerol de 0.55.

Figura 3-22: Comportamiento del flujo de dióxido de carbono, en el metabolismo del microorganismo chasís, al variar los flujos de glicerol y metanol. Eje X: flujo de glicerol, eje Y: flujo de metanol, eje Z: flujo de dióxido de carbono.

Debido a este hallazgo se analizó, bajo las restricciones presentadas en la Tabla 3-38, una muestra "artificial" (designada con la letra E) que contiene una relación metanol/glicerol de 0.55. Como puede observarse en los resultados del *FBA* para esta muestra (Tabla 3-40) se obtuvo un incremento en la cantidad de propionato producido y además se cumple la restricción del H_2 . También cabe resaltar que a comparación de las muestras B y D, esta muestra es la que mejor rendimiento propionato/sustrato presenta (Tabla 3-41), concluyéndose así que la muestra E es el mejor sustrato evaluado para la producción de propionato.

	Flujos [mmol/C-mol h]	
Metabolitos	E	
Glicerol	-417.80	
Metanol	-231.60	
Amonio	-25.31	
Propionato	264.90	
Acetato	83.85	
Hidrógeno	2.31	
Metano	298.40	
Dióxido de carbono	124.00	
lones hidronio	390.40	
Agua	510.00	
Biomasa	100.00	
NADPH (compensación grado de reducción)	18.13	
Relación molar hidrógeno/biogás	0.005	

 Tabla 3-40:
 Flujos de los metabolitos extracelulares resultantes del FBA para la muestra E.

Tabla 3-41:	Rendimiento de moles de propionato por C-mol de sustrato para las muestras
B, D y E.	

	Muestra			
	В	D	Е	
Rendimiento mol propionato/C-mol sustrato	0.13	0.16	0.18	

Una vez definidas las estequiometrías de los metabolitos extracelulares de las muestras B, D y E, se analizaron las distribuciones del ATP y del NADH para cada caso. De los flujos totales y rendimientos por C-mol de sustrato para ambos metabolitos (Tabla 3-42) se puede observar que, en el caso del ATP, a medida que las C-mol de sustrato aumentan, el ATP generado aumenta proporcionalmente. En el caso del NADH al comparar la muestra B (sin metanol) y las muestras D y E (con metanol), se ve un incremento más marcado en el rendimiento. Para entender mejor los puntos clave en estas diferencias, se identificaron las reacciones de mayor consumo y producción, y los respectivos flujos para cada metabolito.

	В	D	Е	Unidades
Flujo total ATP	1065.2	1184.1	1318.8	mmol
Flujo total NADH	1120.1	1266.2	1431.7	$\overline{C-mol\ h}$
C-mol glicerol	1253.4	1253.4	1253.4	
C-mol metanol	0	108.6	231.6	-
C-mol total	1253.4	1362.0	1485.0	
Rendimiento mol ATP/C-mol sustrato	0.85	0.87	0.89	
Rendimiento mol NADH/C-mol sustrato	0.89	0.93	0.96	-

Tabla 3-42:Flujo total de ATP y NADH en el microorganismo chasís para las tres muestrasde glicerol crudo consideradas.

Al identificar las reacciones de mayor consumo de ATP para cada muestra (Tabla 3-43) se encuentra que las mayores diferencias son que el microorganismo chasís utiliza la reacción de succinato a succinil-CoA (reacción 18) en menor medida para la muestra B (10.14%) que para las muestras D (12.07%) y E (13.84%). Como la producción de succinil-CoA está directamente ligada a la producción de propionato (remitirse a la Figura 3-15), al aumentar el flujo a través de esta reacción, habrá un incremento en la producción de propionato. Así, debido a que en las muestras D y E hay una mayor

cantidad de electrones y carbono (el metanol), estos recursos se destinan directamente a esta reacción. La diferencia entre los porcentajes de estas muestras (B respecto a D: -1.93%; B respecto a E: -3.70%), para dicha reacción, se compensa con la diferencia de porcentajes de la reacción 266 (B respecto a D: 0.88%; B respecto a E: 3.95%) y la diferencia de porcentajes de las reacciones restantes (B respecto a D: 0.97%; B respecto a E: -0.41%).

Obsérvese que en los tres casos la reacción de mayor porcentaje de consumo de ATP es su hidrólisis (reacción 195). Esto es coherente con lo observado para el CMM en el modelo de caja negra, pues esta es la reacción de consumo de ATP para mantenimiento del microorganismo chasís. Recuérdese que en las interacciones de las familias del CMM, tres de las cuatro funciones metabólicas destinaban más del 50% de su sustrato (acetogénica: 87%, metanogénica acetoclástica: 69% y metanogénica hidrogenotrófica: 87%) a procesos de mantenimiento. Todas las reacciones de consumo de ATP, menos la de mantenimiento, hacen parte del catabolismo del microorganismo chasís. Respecto a la producción de ATP (Tabla 3-43) se puede observar que los porcentajes son bastante similares en las reacciones para las tres muestras. Sin embargo, resaltan las diferencias en los porcentajes de la reacción de desfosforilación de propionil fosfato (reacción 273) (B respecto a D: -2.37%; B respecto a E: -4.54%); esto ocurre pues este es el paso final en la producción de propionato, y en la medida que incrementa la cantidad de metanol, el rendimiento de propionato aumenta. Todas las reacciones que se presentan de producción de ATP hacen parte del catabolismo del microorganismo chasís. Las cinco reacciones restantes, pertenecen a la ruta de salvamento de nucleótidos.

Reacción	Porcentaje de consumo/producción respecto al flujo total				
	В	D	E		
Consum	0				
18: ATP + CoA + Succinato $\rightarrow ADP + Pi + Succ$ - CoA	10.14	12.07	13.84		
$195: ATP + H_2O \rightarrow ADP + Pi + H^+$	41.02	40.94	40.87		
266: $ATP + DHA \rightarrow ADP + DHAP + H^+$	39.16	38.29	35.21		
Reacciones restantes (sumatoria de porcentajes) ⁹	9.67 (x48)	9.70 (x48)	10.08(x48)		
Producción					
$6: ADP + 1,3 BPG \rightarrow 3PG + ATP$	38.67	37.84	37.08		
9: $ADP + PEP + H^+ \rightarrow Piruvato + ATP$	37.89	37.14	36.46		
72: $ADP + Acetil - P \rightarrow Acetato + ATP$	7.72	6.95	6.24		
273: $ADP + Propionil - P$ $\rightarrow Propionato + ATP$	15.55	17.92	20.09		
Reacciones restantes (sumatoria de porcentajes)	0.06 (x5)	0.04 (x5)	0.03(x5)		

Tabla 3-43: Reacciones de mayor consumo y producción de ATP en el microorganismo chasís.

En lo que respecta al consumo de NADH (Tabla 3-44), se observa que para las tres muestras el microorganismo chasís utiliza las reacciones de reducción de oxaloacetato (reacción 16), reducción de q_8 (reacción 191) y generación de hidrógeno (reacción 274). Las diferencias entre la muestra B y las muestras D y E son que cuando se utiliza la muestra B, el microorganismo chasís consume, respectivamente, un 1.67% y un 3.16% menos de NADH para reducir oxaloacetato, y también un 0.78% y un 1.46% menos de NADH para la reducción del q_8 . Estas cantidades se ven compensadas para la muestra B, al utilizar un 2.54% y un 4.62% más de NADH para la generación de hidrógeno. Al igual que sucedió con las reacciones de consumo de ATP, el flujo a

⁹ El número de reacciones restantes son indicadas entre paréntesis como (x n) donde n es el número de reacciones.

través de la reacción 16 aumenta, pues está directamente ligada a la producción de propionato.

En la producción de NADH (Tabla 3-44) la diferencia más notable entre la muestra B y las muestras D y E, es que con estas últimas se genera NADH debido a la asimilación del metanol (reacción 288), mientras que con la muestra B no. Debido a esto, al utilizar la muestra B, el microorganismo chasís compensa este escenario utilizando las reacciones de oxidación de *G3P* (reacción 5), oxidación de piruvato a acetil-CoA (reacción 10) y oxidación de glicerol (reacción 265) en mayor proporción que en las muestras D y E (todas relacionadas a la transformación del glicerol). Todas las reacciones de producción de NADH hacen parte del catabolismo del microorganismo chasís, menos la de asimilación de metanol.

	Porcentaje de			
Poposión	consumo/producción respecto al			
Reaction		flujo te	otal	
	В	D	E	
Consur	10			
$16: Oxaloacetato + NADH \rightarrow Malato + NAD^+$	9.38	11.05	12.54	
$191:q8 + NADH + H^+ \rightarrow q8H2 + NAD^+$	9.20	9.97	10.66	
$274: 3H^+ + 3NADH \rightarrow 3H_2 + 3NAD^+$	81.39	78.94	76.77	
Reacciones restantes	0.03 (x1)	0.03 (x1)	0.03 (x1)	
Producci	ón			
$5: G3P + NAD^{+} + Pi$ $\rightarrow 1,3DPG + NADH + H^{+}$	36.77	35.39	34.16	
10: Piruvato + NAD^+ + CoA $\rightarrow Ac - CoA + NADH$ + CO_2	20.01	16.88	14.11	
$11: \alpha KG + NAD^{+} + CoA$ $\rightarrow Succ - CoA + NADH$ $+ CO_{2}$	5.27	5.58	5.86	
265: Glicerol + NAD^+ $\rightarrow DHA + NADH + H^+$	37.24	32.95	29.14	
288: Metanol + NAD ⁺ \rightarrow Formaldehido + NADH + H ⁺	-	8.58	16.18	
Reacciones restantes	0.71 (x6)	0.63 (x6)	0.54 (x6)	

Tabla 3-44: Reacciones de mayor consumo y producción de NADH en el microorganismo chasís.

Las diferencias que se presentan en la generación/producción y los rendimientos de estas moléculas llevaron a preguntarse "¿Qué diferencias ocurren en el catabolismo del microorganismo chasís?". Con el fin de responder esta pregunta se analizó la glicólisis, el ciclo de TCA y la red catabólica del chasís. Los primeros dos metabolismos fueron tomados en cuenta por hacer parte fundamental del metabolismo de carbono central y porque el catabolismo del microorganismo chasís contiene la mayoría de las

reacciones que los componen. Así, se simularon los *FBA* de las muestras B, D y E y se compararon los porcentajes de distribución de flujos del TCA y la glicólisis (Figura 3-23), y los de la red catabólica (Figura 3-24).

Se ha reportado que para la glicólisis, el flujo a través de la reacción que transforma fructosa-1,6 BP en dihidroxiacetona fosfato (DHAP) y gliceraldehído 3-fosfato (G3P), para el crecimiento de *E. coli* ML 308 en condiciones limitadas de glicerol, es igual al 13% del flujo de consumo de glicerol [85]. También se ha reportado que, bajo esta condición, el flujo para la transformación de G3P a glicerato-1,3 P es del 80% del flujo de consumo de glicerol. En el microorganismo chasís que se ha construido, se presentan diferencias respecto a estos valores (Figura 3-23) pues para la asimilación de glicerol no se tiene únicamente en cuenta su transformación en glicerol 3-fosfato, sino que además se considera su transformación en DHA, prevaleciendo en todos los casos este mecanismo de asimilación. Se debe tener en cuenta que para las muestras D y E microorganismo también consume metanol como sustrato.

Figura 3-23: Porcentajes de distribución de flujos respecto al flujo total de sustrato, para las muestras B, D y E, a través de la glicólisis y el ciclo de TCA en el microorganismo chasís. Los números que se presentan, de arriba abajo, representan las muestras B, D y E respectivamente. Las flechas y los números azules indican que la reacción se da en el sentido contrario a las flechas negras.

Nótese cómo para las tres muestras el ciclo de TCA no actúa como ciclo, sino que se ramifica a nivel del oxaloacetato (OAA), y todas las reacciones confluyen en el succinil-CoA (Suc-CoA). Esto se debe a que en los tres casos se buscó maximizar la producción de propionato y el Suc-CoA actúa como molécula precursora de este metabolito. Dos observaciones importantes son las disminuciones en los porcentajes entre la transformación de piruvato a acetil-CoA y la transformación de oxaloacetato a citrato. En ambos casos se da una disminución debido a las reacciones del catabolismo que transforman piruvato en OAA y la transformación de acetil-CoA a acetil fosfato (Figura 3-24).

Respecto al comportamiento de la ruta catabólica (Figura 3-24) para las muestras B, D y E (respectivamente de arriba abajo) se puede observar que la diferencia entre los porcentajes de los flujos pertenecientes a la sección acidogénica, que se encuentra entre el piruvato y el propionato, es la menor (1-2%) de toda la ruta catabólica. Esto se debe a que en todos los casos la función objetivo es la maximización de propionato y, por ende para cada caso, se destinará la mayor cantidad posible de los recursos por esta sección.

Figura 3-24: Porcentajes de distribución de flujos respecto al flujo total de sustrato, para las muestras B, D y E, a través del catabolismo del microorganismo chasís. Los números que se presentan, de arriba abajo, representan las muestras B, D y E respectivamente.

4. Conclusiones y recomendaciones

4.1 Conclusiones

En el presente trabajo se desarrolló el diseño *in silico* de una red metabólica, basada en las interacciones de las principales familias pertenecientes a un cultivo microbiano mixto, para un microorganismo chasís (*E. coli* K-12 MG1655) capaz de producir ácido propiónico a partir de glicerol crudo. Los resultados de este modelo indicaron que el microorganismo chasís se puede utilizar, efectivamente, como alternativa biológica para la correcta disposición y valorización de glicerol crudo a condiciones de proceso con poca exigencia energética (temperatura = 37°C y presión = 1 atm). A continuación, se presentarán las conclusiones obtenidas para cada uno de los objetivos específicos que fueron planteados en la sección 1.4.

Objetivo específico 1 - "Definir las condiciones de proceso para la síntesis biológica de ácido propiónico a partir de glicerol crudo: temperatura, presión, concentraciones iniciales de los compuestos, pureza del producto de interés, viabilidad termodinámica de la reacción global y estequiometría global del proceso": tal y como se presentó en la sección 3.1, este objetivo fue alcanzado en su totalidad gracias al seguimiento de los pasos metodológicos para el diseño racional del microorganismo chasís. Haber partido desde una visión global y racional del bioproceso fue la base para definir desde un comienzo las condiciones de proceso. De tal manera, se aseguró que el diseño del chasís se llevara a cabo teniendo en cuenta las necesidades del proceso en el que este se desempeñaría.

Después de haber determinado las condiciones del proceso, fue gracias al modelo termodinámico que se estableció la estequiometría global de la reacción del proceso (sección 3.1.5). Esto se hizo tanto para un cultivo microbiano mixto (CMM) que transforma glicerol crudo en ácido propiónico (Tabla 3-23), como para un microorganismo chasís que integra las principales funciones metabólicas de dicho CMM. Finalmente, mediante el cálculo de energía libre de Gibbs de la reacción fue posible identificar que, bajo las condiciones del proceso, es posible transformar glicerol en ácido propiónico utilizando el microorganismo chasís. Cabe aclarar que la degradación del metanol presente en el glicerol crudo no fue considerada en el modelo termodinámico pues, inicialmente, se quizo desarrollar un modelo termodinámico capaz de representar un CMM real, y no se encontró información reportada sobre un CMM que transformara glicerol crudo. Sin embargo, a partir de este modelo se pudo desarrollar el modelo metabólico para el chasís, en el cual se incorporó la degradación de metanol.

Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica

Objetivo específico 2 – "Identificar la diversidad metabólica potencial de un cultivo microbiano mixto anaeróbico y un microorganismo chasís seleccionado": este objetivo también fue alcanzado en su totalidad. Gracias al estado del arte consultado, se identificó que en un CMM anaeróbico capaz de transformar glicerol en ácido propiónico hay cuatro funciones metabólicas principales: acidogénesis, acetogénesis, metanogénesis acetotrófica y metanogénesis hidrogenotrófica. Gracias a la representación inicial del CMM presentada en la sección 2.1, y a su desarrollo desde un enfoque termodinámico, el modelo de caja negra desarrollado en esta tesis fue capaz de cuantificar las interacciones entre dichas funciones mediante flujos extracelulares (q_i) . También se pudo determinar, desde un punto de vista termodinámico, que la presencia de las dos funciones metanogénicas es clave para el funcionamiento del consorcio, y por ende del microorganismo chasís. La presencia de la función metanogénica hidrogenotrófica se encarga de disminuir la presión parcial de hidrógeno a un valor lo suficientemente bajo (sección 1.5.4) como para que la función metabólica acetogénica pueda suceder ($\Delta G_{cat} < 0$). A su vez, la presencia de la función acetogénica asegura la supervivencia de las funciones metanogénicas, pues esta es la proveedora de sus respectivos sustratos. Además, este modelo también permitió cuantificar cuáles son las proporciones de cada función metabólica en el CMM. Poder cuantificar la distribución de familias/funciones metabólicas en un CMM a partir de un modelo es un gran valor agregado para el estudio de CMMs, pues como se presentó en la sección 3.1.5, todavía es complejo cuantificar esto de manera experimental.

Una vez identificadas y cuantificadas las funciones metabólicas de las familias, estas se pudieron acoplar en el microorganismo chasís bajo el supuesto de que las familias tenían la misma fórmula molecular de biomasa, para así obtener un modelo de caja negra que permitiera cuantificar su estequiometría. La validez de este supuesto está sujeta a la variación biológica entre especies y no involucraría errores superiores al 10% para la acidogénesis, 2.4% para la acetogénesis, 4% para la metanogénesis acetoclástica y 0.1% para la metanogénesis hidrogenotrófica (los porcentajes fueron calculados con base en la contribución del sustrato por parte del catabolismo que se destina a la formación de biomasa). Sin embargo, al introducir en el chasís una funcionalidad metabólica mayoritariamente catabólica y vinculando la fórmula molecular correspondiente al chasís seleccionado, se espera que en éste el error por la reacción de biomasa sea minimizado.

La diversidad del microorganismo chasís también fue identificada gracias a la revisión del estado del arte realizada y fue comparada con la diversidad metabólica de las principales funciones metabólicas del CMM. Como se presentó en la sección 3.1.6 (Tabla 3-28) se encontró que E. coli K-12 MG1655 contiene en su metabolismo la mayoría de reacciones necesarias para llevar a cabo las reacciones de acidogénesis y acetogénesis. Sin embargo, sería necesario modificar genéticamente este chasís para adicionar la mayoría de reacciones asociadas con metanogénesis.
- de ácido propiónico a partir de glicerol, basándose en las rutas metabólicas y su respectivo análisis termodinámico para cada microorganismo de interés perteneciente a los cultivos microbianos mixtos": este objetivo fue alcanzado en su totalidad, y además de incluir las cuatro funciones metabólicas de interés, la red metabólica reconstruida incluye la degradación de metanol en el microorganismo chasís. Inicialmente, la red metabólica fue validada a partir del modelo de caja negra, y se encontró que los resultados de ambos concuerdan (por ende, la red también concuerda con la validación hecha para el modelo de caja negra a partir de información experimental). La ruta reconstruida permitió identificar cuáles son los metabolitos intracelulares mediante los cuales interactúan las funciones metabólicas del CMM (sección 3.1.6), y además se pudo identificar cuáles son las principales reacciones productoras/consumidoras de energía (ATP) y poder reductor (NADH). Esta identificación puede ser utilizada en trabajos posteriores para fijar objetivos de ingeniería metabólica que permitan redireccionar los flujos de electrones dentro del chasís para así incrementar los rendimientos de ácido propiónico. Haber hecho la reconstrucción de la red metabólica basándose en una visión termodinámica permitió identificar aspectos claves como tener en cuenta el papel que juega la presión parcial de H₂ para que este proceso sea factible. Finalmente, cabe resaltar que los análisis realizados con este modelo metabólico permitirán facilitar y optimizar la valorización del glicerol crudo en ácido propiónico.
- Objetivo específico 4 "Proponer diferentes escenarios, basados en el modelo metabólico, para producir ácido propiónico a partir de glicerol crudo": este objetivo fue cumplido en su totalidad. Los escenarios que se plantearon en la sección 3.1.6 se basaron en muestras de glicerol crudo provenientes de la industria del biodiesel en Colombia, para así tener una idea más concreta de cómo sería realmente el comportamiento del chasís en un escenario real. Como se señaló al analizar el comportamiento del metabolismo del chasís al utilizar la muestra D como sustrato (comparaciones para la muestra D entre los casos I y II, sección 3.1.6) y al no restringir el flujo de metano en el FBA, se observó que el metanol adicionado se transforma principalmente en metano. Esto sucede, pues al reducir la fuente de carbono a metano se logra cosechar, termodinámicamente, la mayor cantidad de energía posible. Para la valorización del glicerol crudo en ácido propiónico utilizando el chasís este hecho no es positivo, pues se está invirtiendo uno de los sustratos en uno de los productos secundarios, desviándose así del rendimiento máximo que se podría alcanzar de propionato. Sin embargo, si se piensa desde un punto de vista de la disposición de residuo, los metabolitos producidos en mayor proporción son el ácido propiónico y el metano, que podrían ser utilizados, respectivamente, para su comercialización y su uso como fuente de energía (biogás). En caso tal de querer disminuir la cantidad de metano generada por el chasís, se podría buscar la generación mínima de metano posible, y experimentalmente, se podría utilizar ingeniería metabólica para fijar el flujo de metano al deseado.

4.2 Recomendaciones

Las principales recomendaciones para trabajos a futuro son:

- 1. Para mejorar la predicción del modelo, la información experimental clave que hace falta son obtener los perfiles de concentración de glicerol, los perfiles molares de CO₂, CH₄ y H₂, y el perfil de concentración de biomasa. Tener el perfil de concentración de glicerol facilitaría la verificación total de la velocidad de crecimiento de la familia acidogénica. De igual manera, tener los perfiles molares de los gases permitiría hacer una mejor estimación de las velocidades de crecimiento para las familias metanogénicas, y por ende, permitiría obtener una mejor aproximación a sus respectivos datos experimentales. También sería conveniente obtener los perfiles de consumo de fuente de nitrógeno y tituladores para tener un mapeo completo de todos los compuestos que han sido considerados hasta el momento en el modelo, con el fin de corroborar y cerrar todos los balances de materia.
- 2. Para corroborar el supuesto hecho para las interacciones entre la función metabólica acetogénica y la función metanogénica hidrogenotrófica, se propone realizar experimentos en un reactor de operación continua (lo cual permitiría fijar la velocidad de crecimiento del chasís) en los que se suministre glicerol crudo como sustrato, y se utilice algún método de separación de hidrógeno (por ejemplo una membrana selectiva) para así variar la presión parcial, y analizar cómo se altera la estequiometría del problema.

5. Anexos

5.1 Anexo A: Reacciones del modelo catabólico para *E. coli* K-12 MG1655

17

mcom + cob => comsscob + ch4

Acidogénesis y acetogénesis

1	glyc + nad <=> nadh + h + dha	18	comsscob + 2 h + 2 fdxrd <=> 2 fdxox + com + cob
2	atp + dha => adp + dhap + h	Metar	nogénesis hidrogenotrófica
4	fum + q8h2 <=> succ + q8	19	co2 + h + 2 fdxrd + mfr <=> formmfr + 2 fdxox + h2o
5	succoa <=> mmcoa_R	20	formmfr + h4mpt + h <=> 5f4mpt +
6	mmcoa_R <=> mmcoa_S	mfr	
7	mmcoa_S + h <=> ppcoa + co2	21	5f4mpt + h => 5,10menthm + h2o
8	ppcoa + pi <=> ppap + coa	22	5,10menthm + h2 => $5,10$ mylthm + h
9	adp + ppap => atp + ppa	23 f420ox	5,10mylthm + f420rd <=> 5m4mpt + + h
10	3 nadh + 3 h <=> 3 nad + 3 h2	24	f420ox + h2 <=> f420rd
Metan	ogénesis acetoclástica	25	comsscob + 2 h2 + 2 fdox <=> 2 h +
11	ac + atp + coa => amp + ppi + accoa	2 fdxrd	+ com + cob
14	accoa + h4mpt <=> 5m4mpt + coa + co	Metak	polismo del metanol
15	co + 2 fdxox + h2o => 2 h + 2 fdxrd +	26	meoh + nad <=> fald + nadh + h
co2		27	3 fald => dha
16	5m4mpt + com => mcom + h4mpt		

Abreviaciones de metabolitos

5f4mpt	5-formil-5,6,7,8- tetrahidrometanopterina	h	Iones hidronio
5m4mpt	5-metil-5,6,7,8- tetrahidrometanopterina	h2	Hidrógeno
5,10,menthm	5,10-Meteniltetrahidrometanopterina	h2o	Agua
5,10,mylthm	5,10-Metilenetetrahidrometanopterina	h4mpt	5,6,7,8-tetrahidrometanopterina
ac	Acetato	mcom	Metil coenzima M
accoa	Acetil-CoA	meoh	Metanol
adp	ADP	mmcoa_R	Metilmalonil-CoA (R)
amp	AMP	mmcoa_S	Metilmalonil-CoA (S)
atp	ATP	nad	Nicotinamida adenina dinucleotido
ch4	Metano	nadh	Nicotinamida adenina dinucleotido reducida
со	Monóxido de carbono	oaa	Oxaloacetato
co2	Dióxido de carbono	pi	Fosfato
соа	Coenzima A	рра	Propionato
cob	Coenzima B	ррар	Propionato fosfato
com	Coenzima M	ррсоа	Propanoil-CoA
comsscob		ррі	Difosfato
dha	Dihidroxiacetona	pyr	Piruvato
dhap	Dihidroxiacetona fosfato	q8	Ubiquinona-8
f420ox	Coenzima 420 oxidada	q8h2	Ubiquinol-8
f420rd	Coenzima 420 reducida	succoa	Succinil-CoA
fald	Formaldehido		
fdxox	Ferredoxina oxidada		
fdxrd	Ferredoxina reducida		
formmfr	Formilmetanofurano		

148

5.2 Anexo B: Reacciones del modelo anabólico para *E. coli* K-12 MG1655

El modelo anabólico base (reacciones 1-279) fue tomado del trabajo reportado por Taymaz-Nikerel, Hilal, et al. (2010) [67]. A continuación se presenta el modelo con las respectivas abreviaciones para los metabolitos.

Glicolisis/Gluconeogénesis		17	icit + nadp <=> akg + co2 + nadph
1	g6p <=> <u>f6p</u>	18	mal-L + nad <=> h + nadh + oaa
2	atp + f6p => adp + fdp + h	19	fad + succ => fadh2 + fum
3	fdp <=> dhap + g3p	20 succoa	atp + coa + succ <=> adp + pi +
4	dhap <=> g3p	21	dhf + h + nadph <=> nadp + thf
5	g3p + nad + pi <=> 13dpg + h + nadh		
6	3pg + atp <=> 13dpg + adp	Reacc	iones ananleróticas
7	2pg <=> 3pg	Neacc	
8	2pg <=> h2o + pep	22	h2o + ppi => h + 2 pi
9	adp + h + pep => atp + pyr	23	co2 + h2o + pep => h + oaa + pi
10 nadh	coa + nad + pyr => accoa + co2 +	Ciclo d	le las pentosas fosfato
11	atp + g1p + h => adpglc + ppi	24	g6p + nadp <=> 6pgl + h + nadph
12	adpglc => adp + glycogen + h	25	6pgl + h2o => 6pgc + h
Ciala a		26 ru5p-D	6pgc + nadp => co2 + nadph +
	IEI KIEDS (TCA)	27	r5p <=> ru5p-D
13 succoa	akg + coa + nad => co2 + nadh +	28	ru5p-D <=> xu5p-D
14	cit <=> icit	29	g3p + s7p <=> e4p + f6p
15	accoa + h2o + oaa => cit + coa + h	30	r5p + xu5p-D <=> g3p + s7p
16	fum + h2o <=> mal-L	31	e4p + xu5p-D <=> f6p + g3p
Fosfor	ilación oxidativa		
32	adp + 4 h:ext + pi <=> atp + 3 h + h2o	50	nh4:ext <=> nh4

33	(2δ) h + 0.5 o2 + q8h2 => (2δ) h:ext +	51	co2:ext <=> co2
0.4	$1/20 + q_0$	52	glc-D:ext + pep => g6p + pyr
34	nad + $q8h2$	53	h:ext + lac-D:ext <=> h + lac-D
35	fadh2 + q8 <=> fad + q8h2	54	etoh <=> etoh:ext
36	for + (δ +1) h + q8 => co2 + (δ) h:ext +	55	for:ext <=> for
q8h2		56	glyc <=> glyc:ext
37	h + nadph + trdox => nadp + trdrd	57	h2o:ext <=> h2o
		58	o2:ext <=> o2
Metab	oolismo del piruvato	59	h:ext + pi:ext <=> h + pi
38 2 nad	accoa + 2 h + 2 nadh <=> coa + etoh +	60	h + succ => h:ext + succ:ext
39	ac + atp <=> actp + adp	61 + so4	atp + h2o + so4:ext => adp + h + pi
40	lac-D + nad <=> h + nadh + pyr		
41	accoa + pi <=> actp + coa	Metab	olismo de la alanine y el
		aspart	ato
Metab	oolismo alternativo del carbono	aspart 62	ato ala-L <=> ala-D
Metab 42	oolismo alternativo del carbono ru5p-D <=> ara5p	aspart 62 63	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi
Metab 42 43	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p	aspart 62 63 64	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa
Metab 42 43 44	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph	aspart 62 63 64 65	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr
Metab 42 43 44 45	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p	aspart 62 63 64 65 Metab	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina
Metab 42 43 44 45 46	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p	aspart 62 63 64 65 Metab 66	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h +
Metab 42 43 44 45 46 47	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p 2dr1p <=> 2dr5p	aspart 62 63 64 65 Metab 66 pi	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h +
Metab 42 43 44 45 46 47 Trans	oolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p 2dr1p <=> 2dr5p porte, extracelular	aspart 62 63 64 65 Metab 66 pi 67	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h + 2kmb + glu-L => akg + met-L
Metab 42 43 44 45 46 47 Trans 48	polismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p 2dr1p <=> 2dr5p porte, extracelular acald:ext <=> acald	aspart 62 63 64 65 Metab 66 pi 67 68	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h + 2kmb + glu-L => akg + met-L 5mdru1p => dkmpp + h2o
Metab 42 43 44 45 46 47 Trans 48 49	polismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p 2dr1p <=> 2dr5p porte, extracelular acald:ext <=> acald ac:ext + h:ext <=> ac + h	aspart 62 63 64 65 Metab 66 pi 67 68 69	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h + 2kmb + glu-L => akg + met-L 5mdru1p => dkmpp + h2o 5mtr + atp => 5mdr1p + adp + h
Metab 42 43 44 45 46 47 Trans 48 49 70	<pre>bolismo alternativo del carbono ru5p-D <=> ara5p 2dr5p => acald + g3p glyc3p + nadp <=> dhap + h + nadph g1p <=> g6p r1p <=> r5p 2dr1p <=> 2dr5p porte, extracelular acald:ext <=> acald ac:ext + h:ext <=> ac + h 5mdr1p <=> 5mdru1p</pre>	aspart 62 63 64 65 Metab 66 pi 67 68 69 92	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h + 2kmb + glu-L => akg + met-L 5mdru1p => dkmpp + h2o 5mtr + atp => 5mdr1p + adp + h accoa + ser-L <=> acser + coa
Metab 42 43 44 45 46 47 Trans 48 49 70 71	polismo alternativo del carbono $ru5p-D \ll ara5p$ $2dr5p \Rightarrow acald + g3p$ $glyc3p + nadp \ll dhap + h + nadph$ $g1p \ll g6p$ $r1p \ll r5p$ $2dr1p \ll 2dr5p$ porte, extracelular $acald:ext \ll acald$ $ac:ext + h:ext \ll ac + h$ $5mdr1p \ll 5mdru1p$ $acglu + atp \Rightarrow acg5p + adp$	aspart 62 63 64 65 Metab 66 pi 67 68 69 92 93	ato ala-L <=> ala-D asp-L + atp + nh4 => amp + asn-L + h + ppi akg + asp-L <=> glu-L + oaa akg + ala-L <=> glu-L + pyr olismo de la arginine y prolina dkmpp + 3 h2o => 2kmb + for + 6 h + 2kmb + glu-L => akg + met-L 5mdru1p => dkmpp + h2o 5mtr + atp => 5mdr1p + adp + h accoa + ser-L <=> acser + coa atp + gtp + h2o + so4 => aps + gdp +

152

73	acorn + akg <=> acg5sa + glu-L	94 podph	3 h2o + h2s + 3 nadp <=> 5 h + 3
74	amet + h <=> ametam + co2	naapn + so3	
75	argsuc <=> arg-L + fum	Metak	polismo del glutamato
76	asp-L + atp + citr-L => amp + argsuc + h + ppi	95	glu-L + h2o + nadp <=> akg + h + nadph + nh4
77	2 atp + gln-L + h2o + hco3 => 2 adp + cbp + glu-L + 2 h + pi	96 + pi	atp + glu-L + nh4 => adp + gln-L + h
78	atp + glu-L => adp + glu5p	Metak	polismo de la glicina y la serina
79	glu5p + h + nadph => glu5sa + nadp +	97	ser-L + thf => gly + h2o + mlthf
рі		98	3pg + nad => 3php + h + nadh
80	glu5sa => 1pyr5c + h + h2o	99	h2o + pser-L => pi + ser-L
81	5mta + h2o => 5mtr + ade	100	3php + glu-L => akg + pser-L
82 nadph	acg5sa + nadp + pi <=> acg5p + h +	Metak	oolismo de la histidina
83	accoa + glu-L => acglu + coa + h	101	prfp => prlp
84	cbp + orn <=> citr-L + h + pi	102	atp + prpp => ppi + prbatp
85	h + orn => co2 + ptrc	103 nadh	h2o + histd + 2 nad => 3 h + his-L + 2
86	1pyr5c + 2 h + nadph => nadp + pro-L	104	h2o + hisp => histd + pi
87	ametam + ptrc => 5mta + h + spmd	105	glu-L + imacp => akg + hisp
		106	gln-L + prlp => aicar + eig3p + glu-L
Metab	oolismo de la cisteina	+ h	
88	h2o + pap => amp + pi	107	eig3p => h2o + imacp
89	aps + atp => adp + h + paps	108	h2o + prbamp => prfp
90	acser + h2s => ac + cys-L + h	109	h2o + prbatp => h + ppi + prbamp
91	paps + trdrd => 2 h + pap + so3 +	110	atp + r5p <=> amp + h + prpp
trdox		Metak	polismo de la metionina
111	cyst-L + h2o => hcys-L + nh4 + pyr	132	chor + gln-L => anth + glu-L + h +
112	hom-L + succoa => coa + suchms	pyr	
113	atp + h2o + met-L => amet + pi + ppi	133	chor => pphn
114	5mthf + hcys-L => met-L + thf	134	3psme => chor + pi
115	cys-L + suchms => cyst-L + h + succ	135	$2cpr5p + h \Rightarrow 3ig3p + co2 + h2o$
		136	akg + phe-L <=> glu-L + phpyr

Metabolismo de la treonina y la lisina		137	pran => 2cpr5p		
116	asp-L + atp <=> 4pasp + adp	138	$h + pphn \Rightarrow co2 + h2o + phpyr$		
117	aspsa + nadp + pi <=> 4pasp + h +	139	nad + pphn => 34hpp + co2 + nadh		
nadph		140	3dhsk + h + nadph <=> nadp + skm		
118	26dap-M + h => co2 + lys-L	141	atp + skm => adp + h + skm5p		
119	26dap-LL <=> 26dap-M	142	3ig3p => g3p + indole		
120	23dhdp + h + nadph => nadp + thdp	143	h2o + trp-L <=> indole + nh4 + pyr		
121	aspsa + pyr => 23dhdp + h + 2 h2o	144	akg + tyr-L <=> 34hpp + glu-L		
122	hom-L + nadp <=> aspsa + h + nadph				
123	h2o + sl26da => 26dap-LL + succ				
124	akg + sl26da <=> glu-L + sl2a6o				
125	h2o + succoa + thdp => coa + sl2a6o	Metabolismo de la leucine, isoleucine y			
126	126 thr-L <=> acald + gly		la valina		
		145	2obut + h + pyr => 2ahbut + co2		
Metabolismo de la tirosina, treonina y el		146	2ippm + h2o <=> 3c3hmp		
triptófa	ano	147	3mob + accoa + h2o => 3c3hmp +		
127	3dhq <=> 3dhsk + h2o	coa + h	1		
128	2dda7p => 3dhq + pi	148	3c4mop + h => 4mop + co2		
129	e4p + h2o + pep => 2dda7p + pi	149	3c2hmp <=> 2ippm + h2o		
130	pep + skm5p <=> 3psme + pi	150 nadh	3c2hmp + nad => 3c4mop + h +		
131	anth + prpp => ppi + pran	151	alac-S + h + nadph => 23dhmb +		
152	h + 2 pyr => alac-S + co2	nadp			
153	23dhmb => 3mob + h2o	172	atp + gmhep1p + h => adphep-D,D +		

155 akg + ile-L <=> 3mop + glu-L

 $23dhmp \Rightarrow 3mop + h2o$

156 2ahbut + h + nadph => 23dhmp + nadp

157 4mop + glu-L => akg + leu-L

158 $thr-L \Rightarrow 2obut + nh4$

154

ррі

173 gmhep17bp + h2o => gmhep1p + pi

174 atp + gmhep7p => adp + gmhep17bp + h

175 $0.02 \ 12dgr_EC + atp => adp + h +$ 0.02 pa_EC

159	akg + val-L <=> 3mob + glu-L	176	ddcaACP + kdo2lipid4 => ACP + kdo2lipid4L
Biosín	tesis de la envoltura celular	177 lipa	kdo2lipid4L + myrsACP => ACP +
160	ara5p + h2o + pep => kdo8p + pi	178	cmp + h + 0.02 pe_EC <=> 0.02 12dgr_EC + cdpea
161 162 kdo2lini	ckdo + lipidA => cmp + h + kdolipid4 ckdo + kdolipid4 => cmp + h + d4	179 1 h	accoa + gam1p => acgam1p + coa +
163	ctp + kdo => ckdo + ppi	180	glu-D <=> glu-L
164	$h_{20} + k_{d08p} => k_{d0} + p_i$	181	f6p + gln-L => gam6p + glu-L
165	ACP + atp + ttdcea => amp + ppi +	182	g3pe + h2o => etha + glyc3p + h
tdeACP		183	g3pg + h2o => glyc + glyc3p + h
166	ACP + atp + hdca => amp + palmACP	184	lipidX + u23ga => h + lipidAds + udp
167	ACP + atp + hdcea => amp + hdeACP + ppi	185	3 adphep-L,D + 2 cdpea + 3 ckdo + lipa + 2 udpg => 3 adp + 2 cdp + 3 cmp + 10 h + lps_EC + 2 udp
168	ACP + atp + ocdcea => amp + octeACP + ppi	186	0.02 agpe_EC + h2o => g3pe + h + 0.36 hdca + 0.07 hdcea + 0.5 ocdcea + 0.02 ttdca + 0.05 ttdcea
169	ACP + atp + ttdca => amp + myrsACP + ppi	187	$0.02 \text{ agpg}_EC + h20 => g3pg + h + 0.02 \text{ agpg}_EC + h20 => g3pg + h + 0.02 \text{ agpg}_EC + h20 => 0.02 \text{ agpg}_EC + h$
170	adphep-D,D => adphep-L,D		0.36 hdca + 0.07 hdcea + 0.5 ocdcea + 0.02 ttdca + 0.05 ttdcea
171 pi	2 ala-D + atp <=> adp + alaala + h +	188 udcpdp	uaagmda => h + peptido_EC +

189	h2o + 0.02 pe_EC => 0.02 agpe_EC + h + 0.36 hdca + 0.07 hdcea + 0.5 ocdcea + 0.02 ttdca + 0.05 ttdcea	Metabolismo del folato		
		209	h + mlthf + nadh => 5mthf + nad	
190	gam1p <=> gam6p	210	10fthf + h2o => for + h + thf	
191	h2o + 0.02 pg_EC => 0.02 agpg_EC +	211	h2o + methf <=> 10fthf	
	h + 0.36 hdca + 0.07 hdcea + 0.5 ocdcea + 0.02 ttdca + 0.05 ttdcea	212	mlthf + nadp <=> h + methf + nadph	
192	udcpp + ugmda => uagmda + ump			
193	s7p => gmhep7p	Metab	olismo de lípidos de membrana	
194	atp + lipidAds => adp + h + lipidA	213	ddcaACP + 2 h + malACP + nadph =>	
195	3hmrsACP + u3hga => ACP + h +		3nmrsACP + ACP + co2 + nadp	
u23ga		214	accoa + atp + hco3 <=> adp + h + malcoa + pi	
196	h2o + u3aga => ac + u3hga	215	accoa + h + malACP => actACP +	
197	h + nadph + uaccg => nadp + uamr		co2 + coa	
198	pep + uacgam => pi + uaccg	216	ctp + h + 0.02 pa_EC <=> 0.02	
199	3hmrsACP + uacgam <=> ACP +	capaag	1 + ррі	
usaga		217	actACP + 14 h + 4 malACP + 10 nadph => 4 ACP + 4 co2 + ddcaACP + 5 h2o	
200	acgam1p + h + utp => ppi + uacgam		+ 10 nadp	
201 udp	uacgam + uagmda => h + uaagmda +	218	actACP + 17 h + 5 malACP + 12 nadph	
202	ala-L + ato + uamr => ado + h + oi +		=> 5 ACP + 5 co2 + 6 h20 + myrsACP + 12 nadp	
uama		219	actACP + 20 h + 6 malACP + 14 nadph	
203	atp + glu-D + uama => adp + h + pi + uamag		=> 6 ACP + 6 co2 + 7 h2o + 14 nadp + palmACP	
204	26dap-M + atp + uamag => adp + h + pi + ugmd	220	actACP + 19 h + 6 malACP + 13 nadph => 6 ACP + 6 co2 + 7 h2o + hdeACP + 13 nadp	
205	alaala + atp + ugmd => adp + h + pi + ugmda	221	actACP + 22 h + 7 malACP + 15 nadph => 7 ACP + 7 co2 + 8 h2o + 15 nadp +	
206	h2o + u23ga => 2 h + lipidX + ump		octeACP	
207	h2o + udcpdp => h + pi + udcpp	222	ACP + malcoa <=> coa + malACP	
208	g1p + h + utp <=> ppi + udpg			
		245	trdrd + utp => dutp + h2o + trdox	

246 dump + mlthf => dhf + dtmp

223	glyc3p + 0.14 hdeACP + 0.04 myrsACP + octeACP + 0.72 palmACP + 0.1 tdeACP => 2 ACP +	247	atp + ump <=> adp + udp
		248	atp + dump <=> adp + dudp
	0.02 pa_EC		
224	h2o + 0.02 pgp_EC => 0.02 pg_EC + pi	Biosí	ntesis de purina y pirimidina
225	0.02 cdpdag1 + glyc3p <=> cmp + h +	249	25aics <=> aicar + fum
226	0.02 pgp_EC h + 0.02 ps_EC => co2 + 0.02 pe_EC	250	asp-L + gtp + imp => dcamp + gdp + 2 h + pi
227	0.02 cdpdag1 + ser-L <=> cmp + h +	251	dcamp <=> amp + fum
0.02 p	s_EC	252	asp-L + cbp => cbasp + h + pi
Ruta	de salvamento de nucleótidos	253	atp + gln-L + h2o + utp => adp + ctp
228	damp + h2o => dad-2 + pi	~ ~ /	+ glu-L + 2 h + pi
229	adn + atp => adp + amp + h	254	dhor-S + q8 => orot + q8h2
230	amp + atp <=> 2 adp	255	dhor-S + h2o <=> cbasp + h
231	atp + cmp <=> adp + cdp	256 pram	gln-L + h2o + prpp => glu-L + ppi +
232	atp + dcmp <=> adp + dcdp	257	atp + gln-L + h2o + xmp => amp +
233	atp + damp <=> adp + dadp	-	glu-L + gmp + 2 h + ppi
234	atp + dgmp <=> adp + dgdp	258	h2o + imp <=> fprica
235	atp + gmp <=> adp + gdp	259	h2o + imp + nad => h + nadh + xmp
236	atp + cdp <=> adp + ctp	260	orot5p + ppi <=> orot + prpp
237	atp + dudp <=> adp + dutp	261	h + orot5p => co2 + ump
238	atp + gdp <=> adp + gtp	262	air + atp + hco3 => 5caiz + adp + h
239	atp + udp <=> adp + utp	+ pi	
240	adn + pi <=> ade + r1p	203	stati faram u oda u oja u 2 h u ni
241	dad-2 + pi <=> 2dr1p + ade	264	atp + tpram => adp + air + 2 n + pi
242	adp + trdrd => dadp + h2o + trdox	265	10itht + aicar <=> tprica + tht
243	cdp + trdrd => dcdp + h2o + trdox		
244	gdp + trdrd => dgdp + h2o + trdox		
266	5aizc + asp-L + atp <=> 25aics + adp + h + pi		
267	atp + fgam + gln-L + h2o => adp + fpram + glu-L + h + pi		

```
268 10fthf + gar <=> fgam + h + thf
269 atp + gly + pram <=> adp + gar + h + pi
```

Sin asignar

Requerimiento de ATP para mantenimiento; ATPM

270 atp + h2o => adp + h + pi

Reacción de equilibrio de HCO3; HCO3E

271 co2 + h2o <=> h + hco3

Anabolismo

Síntesis de aminoácidos para proteína; Aaprot

272 0.113 ala-L + 0.0512 arg-L + 0.0532 asn-L + 0.0532 asp-L + 0.0176 cys-L + 0.0599 gln-L + 0.0599 glu-L + 0.0872 gly + 0.0182 his-L + 0.0493 ile-L + 0.0541 leu-L + 0.0605 lys-L + 0.0259 met-L + 0.0350 phe-L + 0.0416 pro-L + 0.0501 ser-L + 0.0545 thr-L + 0.0114 trp-L + 0.0290 tyr-L + 0.0752 val-L => 1Aaprot

Formación de biomasa; Biomform_01

273 0.7400 Biom_Prot + 0.00865 DNA + 0.0109 etha + 0.0122 glyc +

0.000956 glycogen + 0.00304 hdca + 0.00235 hdcea + 0.0000543 lps_EC + 0.00154 ocdcea +

0.000156 peptido_EC + 0.000784 ptrc + 0.0535 RNAtot + 0.000159 spmd => 1 Biom_01

Síntesis de proteína de biomasa; Protsyn

274 1 Aaprot + 4 atp + 3 h2o => 4 adp + 4.77 Biom_Prot + 4 h + 4 pi

Polimerización de ADN; DNA_pol

275 2 atp + 0.246 damp + 0.254 dcmp + 0.254 dgmp + 0.246 dtmp + 1 h2o => 2 adp + 9.75 DNA + 2 h + 2 pi

Polimerización de ARN; RNA_pol_tot

276 0.262 amp + 2 atp + 0.2 cmp + 0.322 gmp + 1 h2o + 0.216 ump => 2 adp + 2 h + 2 pi + 9.58 RNAtot

Reacciones adicionales para crecimiento en glicerol

Glicerol quinasa

- 277 atp + glyc => adp + glyc3p + h Glicerol-3P dehidrogenasa
- 278 glyc3p + q8 => dhap + q8h2

Fructosa-bifosfatasa

279 fdp + h2o => f6p + pi

Abreviaciones de metabolitos

10fthf	10-Formiltetrahidrofolato	ac	Acetato
12dgr_EC	1,2-Diacilglicerol (E.coli) **	acald	Acetaldehido
13dpg	3-Fosfo-D-gliceroil fosfato	accoa	Acetil-CoA
1pyr5c	1-Pirroline-5-carboxilato	acg5p	N-Acetil-L-glutamil 5-fosfato
23dhdp	2,3-Dihidrodipicolinato	acg5sa	N-Acetil-L-glutamato 5-semialdehido
23dhmb	(R)-2,3-Dihidroxi-3-metilbutanoato	acgam1p	N-Acetil-D-glucosamina 1-fosfato
23dhmp	(R)-2,3-Dihidroxi-3-metilpentanoato	acglu	N-Acetil-L-glutamato
25aics	(S)-2-[5-Amino-1-(5-fosfo-D-ribosil) imidazol-4-carboxamido]succinato	acorn	N2-Acetil-L-ornitina
26dap-LL	LL-2,6-Diaminoheptanedioato	ACP	Proteína portadora de acil
26dap-M	meso-2,6-Diaminoheptanedioato	acser	O-Acetil-L-serina
2ahbut	(S)-2-Aceto-2-hidroxibutanoato	actACP	Acetoacetil-ACP
2cpr5p	1-(2-Carboxiphenilamino)-1-deoxi-D- ribulosa-5-fosfato	actp	Acetil fosfato
2dda7p	2-Dehidro-3-deoxi-D-arabino- heptonato7-fosfato	ade	Adenina
2dr1p	2-Deoxi-D-ribosa 1-fosfato	adn	Adenosina
2dr5p	2-Deoxi-D-ribosa 5-fosfato	adp	ADP
2ippm	2-Isopropilmaleato	adpglc	ADPglucosa
2kmb	2-ceto-4-metiltiobutirato	adphep-D,D	ADP-D-glicero-D-mano-heptosa
2obut	2-Oxobutanoato	adphep-L,D	ADP-L-glicero-D-mano-heptosa
2pg	D-Glicerato 2-fosfato	agpe_EC	acil-glicerofosfoetanolamina (E.coli) **
34hpp	3-(4-Hidroxifenil)piruvato	agpg_EC	acil-glicerofosfoglicerol (E.coli) **
3c2hmp	3-Carboxi-2-hidroxi-4-metilpentanoato	aicar	5-Amino-1-(5-Fosfo-D-ribosil)imidazol- 4-carboxiamida
3c3hmp	3-Carboxi-3-hidroxi-4-metilpentanoato	air	5-amino-1-(5-fosfo-D-ribosil)imidazol
3c4mop	3-Carboxi-4-metil-2-oxopentanoato	akg	2-Oxoglutarato
3dhq	3-Dehidroquinato	alaala	D-Alanil-D-alanina

160

3dhsk	3-Dehidroshikimato	alac-S	(S)-2-Acetolactato
3hmrsACP	R-3-hidroxi-miristoil-ACP	ala-D	D-Alanina
3ig3p	C'-(3-Indolil)-glicerol 3-fosfato	ala-L	L-Alanina
3mob	3-Metil-2-oxobutanoato	amet	S-Adenosil-L-methionina
3mop	(S)-3-Metil-2-oxopentanoato	ametam	S-Adenosilmethioninamina
Зрд	3-Fosfo-D-glicerato	amp	AMP
3php	3-Fosfohidroxipiruvato	anth	Antranilato
3psme	5-O-(1-Carboxivinil)-3-fosfoshikimato	aps	Adenosine 5'-fosfosulfato
4mop	4-Metil-2-oxopentanoato	ara5p	D-Arabinosa 5-fosfato
4pasp	4-Fosfo-L-aspartato	arg-L	L-Arginina
5aizc	5-amino-1-(5-fosfo-D-ribosil)imidazol- 4-carboxilato	argsuc	N(omega)-(L-Arginino)succinato
5caiz	5-fosforibosil-5-carboxiaminoimidazol	asn-L	L-Asparagina
5mdr1p	5-Metiltio-5-deoxi-D-ribosa 1-fosfato	asp-L	L-Aspartato
5mdru1p	5-Metiltio-5-deoxi-D-ribulosa 1-fosfato	aspsa	L-Aspartato 4-semialdehido
5mta	5-Metiltioadenosine	atp	ATP
5mthf	5-Metiltetrahidrofolato	Biom_Prot	Proteína de biomas
5mtr	5-Metiltio-D-ribosa	biom3	biomass3
6рдс	6-Fosfo-D-gluconato	cbasp	N-Carbamoil-L-aspartato
6pgl	6-fosfo-D-glucono-1,5-lactona	cbp	Carbamoil fosfato
Aaprot	Composición promedio de los aminoácidos para síntesis de proteína	cdp	CDP
cdpdag1	CDPdiacilglicerol (E coli) **	gar	N1-(5-Fosfo-D-ribosil)glicinamida
cdpea	CDPetanolamina	gdp	GDP
chor	Corismato	glc-D	D-Glucosa
cit	Citrato	gln-L	L-Glutamina
citr-L	L-Citrullina	glu5p	L-Glutamato 5-fosfato
ckdo	CMP-3-deoxi-D-manno-octulosonato	glu5sa	L-Glutamato 5-semialdehido
cmp	СМР	glu-D	D-Glutamato

co2	CO2	glu-L	L-Glutamato
соа	Coenzima A	gly	Glicina
ctp	СТР	glic	Glicerol
cys-L	L-Cisteina	glic3p	Glicerol 3-fosfato
cyst-L	L-Cistationina	glicogen	glicogeno
dad-2	Deoxiadenosine	gmhep17bp	D-Glicero-D-mano-heptosa 1,7-bisfosfato
dadp	dADP	gmhep1p	D-Glicero-D-mano-heptosa 1-fosfato
damp	dAMP	gmhep7p	D-Glicero-D-mano-heptosa 7-fosfato
dcamp	N6-(1,2-Dicarboxietil)-AMP	gmp	GMP
dcdp	dCDP	gtp	GTP
dcmp	dCMP	h	H+
ddcaACP	Dodecanoil-ACP (n-C12:0ACP)	h2o	H2O
dgdp	dGDP	h2s	Hidrogen sulfide
dgmp	dGMP	hco3	Bicarbonato
dhap	Dihidroxiacetona fosfato	hcys-L	L-Homocisteina
dhf	7,8-Dihidrofolato	hdca	Hexadecanoato (n-C16:0)
dhor-S	(S)-Dihidroorotato	hdcea	Hexadecenoato (n-C16:1)
dkmpp	2,3-diceto-5-metiltio-1-fosfopentano	hdeACP	Hexadecenoil-ACP (n-C16:1ACP)
DNA	Ácido Desoxiribonucléico (ADN)	his-L	L-Histidina
dtmp	dTMP	hisp	L-Histidinol fosfato
dudp	dUDP	histd	L-Histidinol
dump	dUMP	hom-L	L-Homosarina
dutp	dUTP	icit	Isocitrato
e4p	D-Eritrosa 4-fosfato	ile-L	L-Isoleucina
eig3p	D-eritro-1-(Imidazol-4-il)glicerol3-fosfato	imacp	3-(Imidazol-4-il)-2-oxopropil fosfato
etha	Etanolamina	imp	IMP
etoh	Etanol	Indole	Indol

reduced

f6p	D-Fructosa 6-fosfato	kdo	3-Deoxi-D-mano-2-octulosonato
fad	FAD	kdo2lipid4	KDO(2)-lipid IV(A)
fadh2	FADH2	kdo2lipid4L	KDO(2)-lipid IV(A) con laurato
fdp	D-Fructosa 1,6-bisfosfato	kdo8p	3-Deoxi-D-manno-octulosonato 8-fosfato
fgam	N2-Formil-N1-(5-fosfo-D- ribosil)glicinamida	kdolipid4	KDO-lipid IV(A)
for	Formato	lac-D	D-Lactato
fpram	2-(Formamido)-N1-(5-fosfo-D-ribosil) acetamidina	leu-L	L-Leucina
fprica	5-Formamido-1-(5-fosfo-D- ribosil)imidazol-4-carboxamida	lipa	KDO(2)-lipid (A)
fum	Fumarato	lipidA	2,3,2'3'-Tetrakis(beta-hidroximiristoil)- D-glucosaminil-1,6-beta-D-glucosam
g1p	D-Glucosa 1-fosfato	lipidAds	Lipido A Disacarido
дЗр	Gliceraldehido 3-fosfato	lipidX	2,3-Bis(3-hidroxitetradecanoil)-beta-D- glucosaminil 1-fosfato
g3pe	sn-Glicero-3-fosfoetanolamina	lps_EC	lipopolisacarido (<i>E. coli</i>)
g3pg	Glicerofosfoglicerol	lys-L	L-Lysine
g6p	D-Glucosa 6-fosfato	malACP	Malonil-[proteína portadora de acil]
gam1p	D-Glucosamina 1-fosfato	malcoa	Malonil-CoA
gam6p	D-Glucosamina 6-fosfato	mal-L	L-Malato
methf	5,10-Meteniltetrahidrofolato	s7p	Sedoheptulosa 7-fosfato
met-L	L-Metionina	ser-L	L-Serina
mlthf	5,10-Metilenetetrahidrofolato	skm	Shikimato
myrsACP	Miristoil-ACP (n-C14:0ACP)	skm5p	Shikimato 5-fosfato
nad	Nicotinamida adenina dinucleotido	sl26da	N-Succinil-LL-2,6- diaminoheptanedioato
nadh	Nicotinamida adenina dinucleotido - reducida	sl2a6o	N-Succinil-2-L-amino-6- oxoheptanedioato
nadp	Nicotinamida adenina dinucleotido fosfato	so3	Sulfite
nadph	Nicotinamida adenina dinucleotido fosfato-	so4	Sulfato

nh4	Amonio	spmd	Espermidina
o2	02	SUCC	Succinato
oaa	Oxaloacetato	succoa	Succinil-CoA
ocdcea	Octadecenoato (n-C18:1)	suchms	O-Succinil-L-homosarina
octeACP	Octadecenoil-ACP (n-C18:1ACP)	tdeACP	Tetradecenoil-ACP (n-C14:1ACP)
orn	Ornitina	thdp	2,3,4,5-Tetrahidrodipicolinato
orot	Orotato	thf	5,6,7,8-Tetrahidrofolato
orot5p	Orotidina 5'-fosfato	thr-L	L-Treonina
pa_EC	Fosfatidato (E. coli) **	trdox	Tioredoxina oxidada
palmACP	Palmitoil-ACP (n-C16:0ACP)	trdrd	Tioredoxina reducida
рар	Adenosina 3',5'-bisfosfato	trp-L	L-Triptofano
paps	3'-Fosfoadenilil sulfato	ttdca	Tetradecanoato (n-C14:0)
pe_EC	Fosfatidiletanolamina (E. coli) **	ttdcea	Tetradecenoato (n-C14:1)
рер	Fosfoenolpiruvato	tyr-L	L-Tirosina
peptido_EC	Subunidad peptidoglicano de E. coli	u23ga	UDP-2,3-bis(3-hidroxitetradecanoil) glucosamina
pg_EC	Fosfatidilglicerol (<i>E. coli</i>) **	u3aga	UDP-3-O-(3-hidroxitetradecanoil)- N- acetilglucosamina
pgp_EC	Fosfatidilglicerofosfato (<i>E. coli</i>) **	u3hga	UDP-3-O-(3-hidroxitetradecanoil)- D- glucosamina
phe-L	L-Fenilalanina	uaagmda	Undecaprenil-difosfo-N-acetilmuramoil-(N- acetilglucosamina)-L-ala-D-glu-m
phpyr	Fenilpiruvato	uaccg	UDP-N-acetil-3-O-(1-carboxivinil)- D- glucosamina
pi	Fosfato	uacgam	UDP-N-acetil-D-glucosamina
pphn	Prefenato	uagmda	Undecaprenil-difosfo-N-acetilmuramoil-L-alanil- D-glutamil-meso-2,6-diamin
ррі	Difosfato	uama	UDP-N-acetilmuramoil-L-alanina
pram	5-Fosfo-beta-D-ribosilamina	uamag	UDP-N-acetilmuramoil-L-alanil-D- glutamato
pran	N-(5-Fosfo-D-ribosil)antranilato	uamr	UDP-N-acetilmuramato
prbamp	1-(5-Fosforibosil)-AMP	udcpdp	Undecaprenil difosfato

prbatp	1-(5-Fosforibosil)-ATP	udcpp	Undecaprenil fosfato
prfp	1-(5-Fosforibosil)-5-[(5- fosforibosilamino)metilideneamino]imidazole-4	udp	UDP
prlp	5-[(5-fosfo-1-deoxiribulos-1- ilamino)metilideneamino]-1-(5-fosforibosy	udpg	UDPglucosa
pro-L	L-Prolina	ugmd	UDP-N-acetilmuramoil-L-alanil- D-gamma- glutamil-meso-2,6-diaminopimelato
prpp	5-Fosfo-alpha-D-ribosa 1-difosfato	ugmda	UDP-N-acetilmuramoil-L-alanil- D-glutamil- meso-2,6-diaminopimeloil-D-alanil-
ps_EC	phosphatidilserine (Ecoli) **	ump	UMP
pser-L	O-Fosfo-L-serina	utp	UTP
ptrc	Putrescina	val-L	L-Valina
pyr	Piruvato	xmp	Xantosina 5'-fosfato
q8	Ubiquinona-8	xu5p-D	D-Xilulosa 5-fosfato
q8h2	Ubiquinol-8		
r1p	Alfa-D-Ribosa 1-fosfato		
r5p	Alfa-D-Ribosa 5-fosfato		
RNAtot	Ácido ribonucleico total (ARN total)		
ru5p-D	D-Ribulosa 5-fosfato		

Bibliografía

- [1] Y. Chen, T. Wang, N. Shen, F. Zhang, and R. J. Zeng, "High-purity propionate production from glycerol in mixed culture fermentation," *Bioresour. Technol.*, vol. 219, pp. 659–667, 2016.
- [2] "Federación Nacional de Biocombustibles de Colombia." [Online]. Available: http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Biodiesel.htm. [Accessed: 10-Oct-2017].
- [3] J. R. Gómez Rueda and J. F. Cancino Ortiz, "Caracterización de los productos obtenidos a partir de la fermentación de glicerol crudo con microorganismos nativos," pp. 3–61, 2011.
- [4] R. Ciriminna, C. Della Pina, M. Rossi, and M. Pagliaro, "Understanding the glycerol market," *Eur. J. Lipid Sci. Technol.*, vol. 116, no. 10, pp. 1432–1439, 2014.
- [5] "Cotizaciones Glicerol | Biodiesel | Glycerol." [Online]. Available: https://es.scribd.com/doc/97207736/Cotizaciones-Glicerol. [Accessed: 07-May-2017].
- [6] P. Boyaval and C. C. Production, "Production of propionic acid P Boyaval, C Corre To cite this version :," *Elsevier*, vol. 75, no. 4 5, pp. 453–461, 1995.
- [7] C. Len and R. Luque, "Continuous flow transformations of glycerol to valuable products: an overview," *Sustain. Chem. Process.*, vol. 2, no. 1, p. 1, Jan. 2014.
- [8] Ministerio de Minas y Energía *et al.*, *Lineamentos de Política para Promover la Producción Sostenible de Biocombustibles en Colombia*. 2008.
- [9] L. Liu *et al.*, "Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives," *Crit. Rev. Biotechnol.*, vol. 32, no. November 2011, pp. 1–8, 2012.
- [10] D. Montoya, "Bioprocesos aplicados a la valorización del glicerol residual en la producción de biodiésel," *Palmas*, vol. 31, no. 2, pp. 126–135, 2010.
- [11] J. Liu, J. Li, H. Shin, L. Liu, G. Du, and J. Chen, "Protein and metabolic engineering for the production of organic acids," *Bioresour. Technol.*, vol. 239, pp. 412–421, 2017.
- [12] "Trade Map Trade statistics for international business development." [Online]. Available: https://www.trademap.org/(X(1)S(0gqjdv45d0ulky55scogge55))/Index.aspx. [Accessed: 01-Sep-2018].
- [13] "Chemical profile: Propionic acid." [Online]. Available:

https://www.icis.com/resources/news/2009/03/30/9203721/chemical-profile-propionic-acid/. [Accessed: 10-Oct-2017].

- [14] P. F. Stanbury, A. Whitaker, and S. J. Hall, "Principles of Fermentation Technology THIRD EDITION."
- [15] J. W. Lee, D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee, "Systems metabolic engineering of microorganisms for natural and non-natural chemicals," *Nat. Chem. Biol.*, vol. 8, no. 6, pp. 536–546, 2012.
- [16] J. M. Naranjo, J. A. Posada, J. C. Higuita, and C. A. Cardona, "Valorization of glycerol through the production of biopolymers: The PHB case using Bacillus megaterium," *Bioresour. Technol.*, vol. 133, pp. 38–44, 2013.
- [17] N. Ahmadi, K. Khosravi-Darani, and A. M. Mortazavian, "An overview of biotechnological production of propionic acid: From upstream to downstream processes," *Electron. J. Biotechnol.*, vol. 28, pp. 67–75, 2017.
- [18] N. Vivek, A. Pandey, and P. Binod, "Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3," *Bioresour. Technol.*, vol. 213, pp. 222–230, 2015.
- [19] A. Zhang and S. T. Yang, "Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici," *Process Biochem.*, vol. 44, no. 12, pp. 1346–1351, 2009.
- [20] J. Wallenius *et al.*, "Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix," *Bioresour. Technol.*, vol. 197, pp. 1–6, Dec. 2015.
- [21] O. Perez-Garcia, G. Lear, and N. Singhal, "Metabolic network modeling of microbial interactions in natural and engineered environmental systems," *Front. Microbiol.*, vol. 7, no. MAY, 2016.
- [22] R. M. Atlas and R. Bartha, "Degradation and mineralization of petroleum in sea water: Limitation by nitrogen and phosphorous," *Biotechnol. Bioeng.*, vol. 14, no. 3, pp. 309– 318, 1972.
- [23] H. Salehizadeh and M. C. M. Van Loosdrecht, "Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance," *Biotechnol. Adv.*, vol. 22, no. 3, pp. 261–279, 2004.
- [24] R. Kleerebezem and M. C. van Loosdrecht, "Mixed culture biotechnology for bioenergy production," *Current Opinion in Biotechnology*. 2007.
- [25] X. "Nick" Peng, S. P. Gilmore, and M. A. O'Malley, "Microbial communities for bioprocessing: lessons learned from nature," *Curr. Opin. Chem. Eng.*, vol. 14, pp. 103– 109, 2016.

- [26] D. Kuhn, L. M. Blank, A. Schmid, and B. Bühler, "Systems biotechnology Rational whole-cell biocatalyst and bioprocess design," *Engineering in Life Sciences*. 2010.
- [27] B. Palsson, "The challenges of in silico biology," *Nat. Biotechnol.*, vol. 18, no. 11, pp. 1147–1150, 2000.
- [28] R. Mahadevan, A. P. Burgard, I. Famili, S. Van Dien, and C. H. Schilling, "Applications of metabolic modeling to drive bioprocess development for the production of valueadded chemicals," *Biotechnology and Bioprocess Engineering*. 2005.
- [29] J. Lima-ramos, N. Al Haque, K. V Gernaey, and J. M. Woodley, "Advances in the Process Development of Biocatalytic Processes," 2013.
- [30] N. S. McCarty and R. Ledesma-Amaro, "Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology," *Trends Biotechnol.*, vol. xx, 2018.
- [31] W. Sabra, D. Dietz, D. Tjahjasari, and A. P. Zeng, "Biosystems analysis and engineering of microbial consortia for industrial biotechnology," *Eng. Life Sci.*, vol. 10, no. 5, pp. 407– 421, 2010.
- [32] A. Goel, M. T. Wortel, D. Molenaar, and B. Teusink, "Metabolic shifts: A fitness perspective for microbial cell factories," *Biotechnol. Lett.*, vol. 34, no. 12, pp. 2147–2160, 2012.
- [33] S. Sieuwerts, F. A. M. De Bok, J. Hugenholtz, and J. E. T. Van Hylckama Vlieg, "Unraveling microbial interactions in food fermentations: From classical to genomics approaches," *Appl. Environ. Microbiol.*, vol. 74, no. 16, pp. 4997–5007, 2008.
- [34] L. De Vuyst and P. Neysens, "The sourdough microflora: Biodiversity and metabolic interactions," *Trends Food Sci. Technol.*, vol. 16, no. 1–3, pp. 43–56, 2005.
- [35] M. Henze, *Biological wastewater treatment : principles, modelling and design*. IWA Pub, 2008.
- [36] "Sequence Read Archive: NCBI/NLM/NIH." [Online]. Available: https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR3233654. [Accessed: 03-Sep-2018].
- [37] U. von (Urs) Stockar, *Biothermodynamics: The Role of Thermodynamics in Bioechmical Engineering*. 2013.
- [38] R. A. Alberty, "Calculation of standard transformed gibbs energies and standard transformed enthalpies of biochemical reactants," *Arch. Biochem. Biophys.*, vol. 353, no. 1, pp. 116–130, 1998.
- [39] S. J. Heijnen, "Thermodynamics of microbial growth and its implications for process design Definition of the growth system and its thermodynamic analysis."
- [40] H. W. Blanch and D. S. Clark, *Biochemical engineering*. M. Dekker, 1997.
- [41] J. J. Heijnen, "Bioenergetics of Microbial GrowthMicrobial Growth," in *Encyclopedia of Bioprocess Technology*, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002.

- 170 Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica
- [42] B. Kim and G. Gadd, *Bacterial physiology and metabolism*. 2008.
- [43] P. Duboc, N. Schill, L. Menoud, W. Van Gulik, and U. Von Stockar, "Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction," *J. Biotechnol.*, vol. 43, no. 2, pp. 145–158, 1995.
- [44] P. M. Doran, *Bioprocess Engineering Principles*, no. May. Elsevier, 1995.
- [45] B. M. Woolston, S. Edgar, and G. Stephanopoulos, "Metabolic Engineering: Past and Future," *Annu. Rev. Chem. Biomol. Eng.*, vol. 4, no. 1, pp. 259–288, 2013.
- [46] G. Stephanopoulos, "Metabolic Flujos and Metabolic Engineering," *Metab. Eng.*, vol. 1, no. 1, pp. 1–11, 1999.
- [47] J. L. Snoep and H. V. Westerhoff, "From isolation to integration, a systems biology approach for building the Silicon Cell," *Syst. Biol. (Stevenage).*, vol. 13, no. January, pp. 13–30, 2005.
- [48] J. Boyle, "Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M.," *Biochem. Mol. Biol. Educ.*, vol. 33, no. 1, pp. 74–75, Jan. 2005.
- [49] B. Schink, "Energetics of syntrophic cooperation in methanogenic degradation.," *Microbiol. Mol. Biol. Rev.*, vol. 61, no. 2, pp. 262–280, 1997.
- [50] H. S. Haraldsdóttir and R. M. T. Fleming, "Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks," *PLoS Comput. Biol.*, vol. 12, no. 11, pp. 1–30, 2016.
- [51] J. M. Woodley, "Bioprocess intensification for the effective production of chemical products," *Comput. Chem. Eng.*, vol. 105, pp. 297–307, 2017.
- [52] M. H. Medema, R. Van Raaphorst, E. Takano, and R. Breitling, "Computational tools for the synthetic design of biochemical pathways," *Nat. Publ. Gr.*, vol. 10, no. 3, pp. 191– 202, 2012.
- [53] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, "KEGG: new perspectives on genomes, pathways, diseases and drugs," *Nucleic Acids Res.*, vol. 45, no. D1, pp. D353–D361, Jan. 2017.
- [54] "Enzyme Database BRENDA." [Online]. Available: https://www.brenda-enzymes.org/. [Accessed: 06-Aug-2018].
- [55] R. Caspi *et al.*, "The MetaCyc database of metabolic pathways and enzymes," *Nucleic Acids Res.*, vol. 46, no. D1, pp. D633–D639, Jan. 2018.
- [56] "KEGG PATHWAY Database." [Online]. Available: https://www.genome.jp/kegg/pathway.html. [Accessed: 17-Sep-2018].
- [57] J. Villadsen, J. Nielsen, and G. Lidén, *Bioreaction Engineering Principles*. 2011.

- [58] E. Leonard, D. Nielsen, K. Solomon, and K. J. Prather, "Engineering microbes with synthetic biology frameworks," *Trends Biotechnol.*, vol. 26, no. 12, pp. 674–681, 2008.
- [59] C. D. Smolke, *The metabolic pathway engineering handbook*, First edit. CRC Press, 2010.
- [60] P. Calero and P. I. Nikel, "Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms," *Microb. Biotechnol.*, vol. 0, pp. 1–27, 2018.
- [61] M. Riley *et al.*, "Escherichia coli K-12: A cooperatively developed annotation snapshot 2005," *Nucleic Acids Res.*, vol. 34, no. 1, pp. 1–9, 2006.
- [62] H. Grüneberg, "Classic papers in genetics," Eugen. Rev., 1960.
- [63] "Libro del Web de Química del NIST." [Online]. Available: https://webbook.nist.gov/chemistry/. [Accessed: 24-Jul-2018].
- [64] "PubChem open chemistry database." [Online]. Available: https://pubchemdocs.ncbi.nlm.nih.gov/about. [Accessed: 24-Jul-2018].
- [65] "eQuilibrator: The Biochemical Thermodynamics Calculator." [Online]. Available: http://equilibrator.weizmann.ac.il/. [Accessed: 18-Jul-2018].
- [66] "Aspen Plus." [Online]. Available: https://www.aspentech.com/products/engineering/aspen-plus. [Accessed: 24-Jul-2018].
- [67] H. Taymaz-Nikerel, A. E. Borujeni, P. J. T. Verheijen, J. J. Heijnen, and W. M. van Gulik, "Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry," *Biotechnol. Bioeng.*, vol. 107, no. 2, pp. 369–381, 2010.
- [68] M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, "Data, information, knowledge and principle: back to metabolism in KEGG," *Nucleic Acids Res.*, vol. 42, no. D1, pp. D199–D205, Jan. 2014.
- [69] "KEGG ENZYME Database." [Online]. Available: https://www.genome.jp/kegg/annotation/enzyme.html. [Accessed: 17-Sep-2018].
- [70] A. Muto, M. Kotera, T. Tokimatsu, Z. Nakagawa, S. Goto, and M. Kanehisa, "Modular Architecture of Metabolic Pathways Revealed by Conserved Sequences of Reactions," *J. Chem. Inf. Model.*, vol. 53, no. 3, pp. 613–622, Mar. 2013.
- [71] "KEGG COMPOUND Database." [Online]. Available: https://www.genome.jp/kegg/compound/. [Accessed: 17-Sep-2018].
- [72] X. Wang *et al.*, "Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway," *Bioresour. Bioprocess.*, vol. 4, no. 1, p. 41, 2017.
- [73] C. Sundberg et al., "454 Pyrosequencing Analyses of Bacterial and Archaeal Richness

in 21 Full-Scale Biogas Digesters," *FEMS Microbiol. Ecol.*, vol. 85, no. 3, pp. 612–626, 2013.

- [74] "Scavage Colombia | Definitive Import de 2915.50.10.00." [Online]. Available: https://www.scavage.com/trade?menu=co.import/definitive&query=product:291550100 0&group=2,-1&resolve=1. [Accessed: 04-Jan-2019].
- [75] "Scavage Colombia | Definitive Export de 2915.50.10.00." [Online]. Available: https://www.scavage.com/trade?menu=co.export/definitive&query=product:291550100 0&group=2,-1&resolve=1. [Accessed: 04-Jan-2019].
- [76] *The Science and Applications of Synthetic and Systems Biology*. Washington, D.C.: National Academies Press, 2011.
- [77] "NORMA TÉCNICA NTC COLOMBIANA 1453 PARA CONSERVACIÓN DE ALIMENTOS E: FOOD ADDITIVES. PRESERVED SUBSTANCES FOR FOOD CORRESPONDENCIA."
- [78] S. Pontrelli, T. Y. Chiu, E. I. Lan, F. Y. H. Chen, P. Chang, and J. C. Liao, "Escherichia coli as a host for metabolic engineering," *Metab. Eng.*, no. February, pp. 0–1, 2018.
- [79] J. L. Reed, T. D. Vo, C. H. Schilling, and B. O. Palsson, "An expanded genome-scale model of Escherichia coli K-12 (i JR904 GSM / GPR)," vol. 4, no. 9, pp. 1–12, 2003.
- [80] M. E. Poccia, A. J. Beccaria, and R. G. Dondo, "Modeling the microbial growth of two escherichia coli strains in a multi-substrate environment," *Brazilian J. Chem. Eng.*, vol. 31, no. 2, pp. 347–354, 2014.
- [81] S. Ahlert, R. Zimmermann, J. Ebling, and H. König, "Analysis of propionate-degrading consortia from agricultural biogas plants," *Microbiologyopen*, vol. 5, no. 6, pp. 1027– 1037, 2016.
- [82] S. Shima, D. S. Weiss, and R. K. Thauer, "Formylmethanofuran:tetrahydromethanopterin formyltransferase (Ftr) from the hyperthermophilic Methanopyrus kandleri. Cloning, sequencing and functional expression of the ftr gene and one-step purification of the enzyme overproduced in Escherichia coli.," Eur. J. Biochem., vol. 230, no. 3, pp. 906–13, Jun. 1995.
- [83] M. Vaupel, H. Dietz, D. Linder, and R. K. Thauer, "Primary structure of cyclohydrolase (Mch) from Methanobacterium thermoautotrophicum (strain Marburg) and functional expression of the mch gene in Escherichia coli.," *Eur. J. Biochem.*, vol. 236, no. 1, pp. 294–300, Feb. 1996.
- [84] Μ. Vaupel and R. K. Thauer, "Coenzyme F420-dependent N5,N10methylenetetrahydromethanopterin reductase (Mer) from Methanobacterium thermoautotrophicum strain Marburg. Cloning, sequencing, transcriptional analysis, and functional expression in Escherichia coli of the mer gene.," Eur. J. Biochem., vol. 231, no. 3, pp. 773–8, Aug. 1995.

[85] H. Taymaz-nikerel, A. E. Borujeni, P. J. T. Verheijen, J. J. Heijnen, and W. M. Van Gulik, "Genome-Derived Minimal Metabolic Models for Escherichia coli MG1655 With Estimated In Vivo Respiratory ATP Stoichiometry," vol. 107, no. 2, 2010.