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Director:

Juan Carlos Galvis

Co-Director:

Boyan S. Lazarov

Ĺınea de Investigación:
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Resumen

En este libro vamos a proponer varios precondicionadores para la ecuación de elasticidad. Los

precondicionadores están construidos en base los métodos de descomposición de dominios y

métodos de multiescala para las ecuaciones de calor y elasticidad. El objetivo de la aplicación

de dichos precondicionadores es disminuir la condición de la matriz asociada al problema de

elasticidad y el número de iteraciones para llegar a la solución del problema. Además pre-

sentaremos el problema de optimización topológica donde aplicaremos los precondicionadores

al problema de minimización y haremos varios experimentos para mostrar su utilidad en la

solución de este tipo de problemas.

Palabras clave: ecuación de elasticidad, método multiescala, descomposición de do-

minios, precondicionador de dos niveles de Schwarz, optimización topológica.

Abstract

In this work, we propose several preconditioners for the elasticity equation. The precon-

ditioners are built based on domain decomposition and multiscale methods for the heat

and elasticity equations. The main goal of the application of preconditioners is to decrease

the condition number of the matrix associated with the elasticity problem and the number

of iterations needed to arrive at the solution of the elasticity equation. We also present

an elasticity topology optimization problem, where we apply the preconditioners to the

minimum compliance design problems. We present numerical experiments in order to show

the advantages of our approach to the solution of these type of problems.

Keywords: elasticity problem, multiscale method, domain decomposition method, two

level Schwarz prreconditoner, topology optimization.
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1 Introduction

The objective of this document is to obtain an elasticity preconditioner to improve the

numerical methods in topology optimization problems. For the topology optimization, we

consider the finite element formulation of the elasticity equation in a fine mesh to capture

the small details of the design structure. One of the issues of solving the optimization

problem with a fine mesh is that the linear system solved in every optimization step is poorly

conditioned leading to a high computational cost. For instance, in some articles [3, 1, 22, 23],

the authors present problems associated with the design of structures with specific properties

for different purposes, if the structure is complex (for instance, the structure has high stiffness

channels), we need the fine mesh to capture details in each part of the structure.

An implementation and design of some two-levels preconditioner for the elasticity to solve

topology optimization problems is presented in [22]. In this work design numerically test a

several model a two-levels preconditioner for the elasticity and also we use the two-levels

preconditioner from the heat equation as in [37] based in a work by [20] and [19]. We mix

the preconditioners from the heat and elasticity problem and create a preconditioner that

improves the condition of the problem and that is cheaper because it has half the size of

the two-levels elasticity preconditioner that in two dimensions leads to a reduction of the

computational cost by a factor of 4.

The first chapter summarizes the two-dimensional elasticity problem that is used in topology

optimization, including the most relevant definitions and the variational formulation with

the finite element method of the elasticity problem in a square mesh. We also present some

experiments with different material contrast that simulate the structure of materials. The

performance of the solvers in these experiments are compared with the two-levels precondi-

tioner in the next chapter.

In the next chapters, we focus on describing the methods to create the elasticity two-levels pre-

conditioner. First we describe the multiscale method for the elasticity equation that uses local

information to build smaller dimensional coarse spaces, as in [13, 12, 16, 4]. Then we review

the overlapping domain decomposition preconditioner, which uses the coarse space obtained

in the multiscale method, as in [30, 10, 17, 18, 14]. After that, we build some precondi-

tioners that uses the two-levels heat preconditioner and the two-levels elasticity preconditioner.
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In the fifth chapter we describe the minimization problem of the elasticity equation for

the design of certain structures, and the challenges to find a structure that can be built

for a desired purpose. In this chapter, we present several numerical examples of topology

optimization problems. For each experiment, we use the best preconditioners obtained

in the previous chapters and we analyze the performance of different preconditioners com-

paring the number of iterations and the objective function value with high contrast coefficient.

In the last chapter we present some comments and final conclusions.



2 Elasticity problem

In this part, we introduce the most important constitutive equations of the stress approach

for isotropic media under internal or external forces applied to a continuum. We begin with

some general remarks about the principles of linear elasticity as defined by Hooke’s law

see more in [25]. We present the problem of linear elasticity in two dimensions. Then we

discretize the elasticity problem in two dimensions and present its variational formulation.

We also, show examples of the solution of the elasticity equation with different contrasts.

2.1 Linear elasticity

We consider a three-dimensional isotropic body Ω with Γ boundary. The boundary conditions

are defined in two different parts, Γ1 and Γ2 with prescribed displacements u and the normal

stress σn respectively.

Ω

x

y

z

τ31

τ32

σ3

τ21
τ23

σ2

τ12

τ13
σ1

Figure 2-1: A body Ω under external and internal forces F , boundary divided Γ1 and Γ2,

normal stress σn and the displacement u. And the right picture is the tensor in

the infinitesimal element over Ω, with σi for i = 1, 2, 3. normal stresses and τij
for i, j = 1, 2, 3 the plane stress.
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The stress state of internal forces at a point of the body is imagined as an infinitesimal

small cube like Figure 2-1. The stress acting of six sides of the cube can be resolved into

components normal to the 2 axes. The stress tensor σ is

σ =

 σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 ,
where σ11, σ22 and σ33 are the stress components aligned with the x,y, and z axes and τij the

cubic face i and have j direction. In the engineering literature the tensor’s symmetry help us

to write the stress tensor with Voigt notation is,

σ̂ = [σ11 σ22 σ33 τ23 τ13 τ12]>.

Which should satisfy the equilibrium’s equations

∂σ11

∂x
+
∂τ12

∂y
+
∂τ13

∂z
+ Fx = 0,

∂σ22

∂y
+
∂τ12

∂x
+
∂τ23

∂z
+ Fy = 0,

∂σ33

∂z
+
∂τ13

∂x
+
∂τ23

∂y
+ Fz = 0.

Fx, Fy and Fz are the volume load’s components, see more in [33], and the equilibrium’s

equation is

− div(σ) = F. (2-1)

We can write the stress tensor in the Voigt notation as

−∇̂>(σ̂) = F, (2-2)

where

∇̂ =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


.

When an elastic body is subjected to loading, it changes size and displaces, then the relative

deformations are called strain. The strain is a relative change of a dimension of a body and

in the three-dimensional body is defined by the so-called strain tensor given as,

ε =

 ε11 γ12 γ13

γ21 ε22 γ23

γ31 γ32 ε33

 ,



6 2 Elasticity problem

ij(kl) I(J)

11 1

22 2

33 3

23, 32 4

13, 31 5

12, 21 6

Table 2-1: Voigt notation for the stiffness matrix, see [21]. In the left column are the pair

indexes of the stiffness tensor C and in the right column are the replace indexes

that reduce the tensor.

in the reduced notation the tensor ε has six independent components,

ε̂ = [ε11 ε22 ε33 γ23 γ13 γ12]> .

In the so-called small displacement theory the strain-displacement tensor is given as follows

ε(u) =
1

2

(
∇u+ (∇u)>

)
, (2-3)

where u is the displacement of the point of isotropic media.

In addition to the equilibrium and kinematic equations defined above, we need the constitutive

equations providing the link between stress and strain,

σ = Cε(u) (2-4)

where C contains the constitutive parameters (Young’s modulus, bulk modulus and Poisson’s

ratio) and C is a fourth-rank tensor usually called stiffness tensor with 81 entries.

σij =
3∑

k=1

3∑
l=1

Cijklεkl, with i, j, k, l ∈ {1, 2, 3}. (2-5)

Due to symmetries in the tensor Cijkl would be written in the 6 × 6 stiffness matrix CIJ
[21]. This means the couple of indexes ij(kl) are replaced by one index I(J) according to

the next table In the most simple symmetry case of the isotropic elastic material depends of

Young’s modulus E and Poisson’s ratio ν (measure of a material tends to expand in directions

perpendicular to the direction of compression see more in [21]). The stiffness tensor Cijkl can

be written like,

Cijkl =

[
Eν

3(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk)

]
εkl, (2-6)



2.2 Two dimension elasticity problem 7

where δ is the Kronecker delta function defined as

δij =

{
0 for i 6= j

1 for i = j
, i, j ∈ {1, 2, 3}.

And the stiffness tensor of isotropic media in Voigt notation is

C =



C33 C12 C12 0 0 0

C12 C33 C12 0 0 0

C12 C12 C33 0 0 0

0 0 0 C55 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55


.

We can combine the equilibrium’s equation (2-1), strain-displacement tensor defined in (2-3)

and the Hooke’s law (2-4) for a isotropic media, in the first order differential equation

{
− div(σ) = F,

σ − C(ε(u)) = 0.
(2-7)

The last equation system can be combined in a second order equation

− div(C(ε(u))) = F. (2-8)

For plane bodies with loads applied in-plane the 3D problem is reduced to 2D with details

provided in the next section.

2.2 Two dimension elasticity problem

To study the elasticity in two dimensions, discuss two cases: plane stress and plane strain.

For the plane stress, we consider a thin plate, as in Figure 2-2(a), wherein the loading is

uniformly distributed over the thickness, parallel to the plane of the plate. And for the plane

strain we consider a cylinder under pressure and assume the external force to be functions

of the x and y coordinates only see in Figure 2-2(c). In both cases, we just analyze the body

in the xy−plane, as in [25, 31].
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Ω

F

y

F x

F

F

F

F

(a)

z

y

(b)

x

y

z

F

F

F

F

F

F

(c)

Figure 2-2: Figure (a), represent the plane stress problem with load forces F applied per-

pendicular to the z direction. Figure (b), shows the forces when the body is

projected in the yz plane and Figure (c), is the plane deformation problem when

the load forces are perpendicular to the xy−plane.

We work on a body made of an isotropic linear elastic material, with a boundary Γ divided

into two parts, Γu and Γσ with prescribed displacements u, traction forces σn respectively

and load force F like in Figure 2-3.

Γ2

σn

Γ

u u

F

Γ1

Ω

(x, y)

(x+ dx, y + dy)

Fx

Fy

σy

σy +
∂σy
∂y

dy

σx
σx +

∂σx
∂x

dx

τxy

τxy +
∂τxy
∂x

dx

τxy

τxy +
∂τxy
∂y

dy

Figure 2-3: Domain Ω over the xy-plane with loading force F and boundary Γ. The boundary

is divided in two sub-boundaries Γ1 and Γ2. The displacement u and normal

stress σn is the prescribed over Γ2.
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The stress state at a point of the body is defined by

σ =

[
σ11 τ12

τ21 σ22

]
,

where σ11 and σ22 are the normal stress components in the x and y direction and τ12 is the

plane stress and represent the shear stress in the cubic face x that have y direction. Note

also that τ12 = τ21, using this symmetry we can write the stress tensor with Voigt notation

(reduce tensor dimension):

σ̂ = [σ11 σ22 τ12]>.

In the plane stress problem and plane deformation, the stress in the z plane and z direction

are insignificant. The stress should satisfy the equilibrium’s equations

∂σ11

∂x
+
∂τ12

∂y
+ Fx = 0,

∂σ22

∂y
+
∂τ12

∂x
+ Fy = 0,

whereFx and Fy are the volume load’s components in two dimension problem is not considered

because the changes in the stress components in the z axes are small than changes in the x,

y axes, see more in [33].

If we write in the Voigt notation, see more in [21], the equilibrium’s equation is,

−∇̂>(σ̂) = F, (2-9)

where

∇̂ =


∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

 .
Also we define the strain tensor at a point of the body, by

ε =

[
ε11 γ12

γ21 ε22

]
,

or in compact notation as,

ε̂ = [ε11 ε22 γ12]> .

In the small displacement theory, the strain-displacement are given by the strain tensor as in

(2-3) and the constitutive equation is given by (2-4), but in two dimension elasticity, stiffness

tensor C is a fourth-rank tensor usually called stiffness tensor and which has 16 entries.

In general, form Hooke’s Law reads,

σij =
2∑

k=1

2∑
l=1

Cijklεkl, with i, j, k, l ∈ {1, 2}. (2-10)
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The Hooke’s law leads to complicated relations but simplifies in the isotropic media case, see

more in [21]. Each component of stress σij is linearly dependent upon every components of

strain εkl.

On the other hand, one way to express the strain as a linear combination stress

εij =
2∑

k=1

2∑
l=1

Cijklσkl, i, j ∈ {1, 2}, (2-11)

where (Dijkl) is the elastic compliance tensor and its elements are called compliances. Note

that and D and C have the same symmetry and

CijklDklmn = Iijmn.

The stiffness tensor Cijkl would be written in the 4× 4 stiffness matrix CIJ , see more in [21].

This means that the couple of indexes ij(kl) are replaced by one index I(J) according to the

table 2-2, see more in [21].

ij(kl) I(J)

11 1

22 2

12, 21 3

Table 2-2: Voigt notation for the stiffness matrix in two dimensions. In the left column are

the pair indexes of the stiffness tensor C and in the right column are the indexes

that we must replace to reduce the tensor.

For the plane stress we define the stiffness tensor in the isotropic media like,

C(x) =
E

1− ν2

 1 ν 0

ν 1 0

0 0 1−ν
2

 ,

where E is the Young’s modulus and ν is Poisson’s ratio, see more in [25]. And for a plane

deformation state we have

C(x) =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 .

We can combine equations (2-1), (2-3) and (2-4) in the first order differential equation:{
− div(σ) = F,

σ − C(x)(ε(u)) = 0.
(2-12)

This problem can also be written as the second order equation

− div(C(x)(ε(u))) = F. (2-13)
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2.3 Two dimension elasticity variational formulation

Equation (2-8) represents the elasticity problem in two dimensions. We obtained the varia-

tional formulation by introducing an arbitrary virtual displacement v in (2-8) and integrating

the terms over the domain Ω∫
Ω

− div(C(x)(ε(u))) : v dΩ =

∫
Ω

F : v dΩ,

where : represent the Frobenius product, which is a component-wise inner product of two

matrices, see in [35].

And using Green’s Formula, we have∫
Ω

(C(x)(ε(u))) : ε(v) dΩ−
∫

Γ

σn : v d S =

∫
Ω

F : v dΩ,

and ∫
Ω

(C(x)(ε(u))) : ε(v) dΩ =

∫
Ω

F : v dΩ +

∫
Γ

σn : v d S. (2-14)

In the Voigt notation (2-14) can be written∫
Ω

ε̂>(v)Ĉ(x)ε̂(v) dΩ =

∫
Ω

v>F dΩ +

∫
Γ

v>σ̂n d S, (2-15)

where

σ̂n = ∇̂>n σ̂, ∇̂>n =

[
nx 0 ny
0 ny nx

]
,

and nx, ny are the normal directions in x and y respectively. The elasticity problem in two

dimensions contain two unknown differential equations in every point ux and uy, these are

approximated in most cases by a linear combination of basis functions for the two components.

If we are taking the same partition as in Ω for the minimum compliance design in two

dimensions and define

P 1(τh) =

{
v : Ω→ R

∣∣∣∣ v continuous function in Ω

v|Qi
is a first degree polynomial function

}
.

We can write the solution in this form:

u ≈ uh =



n∑
i=1

ϕ2i−1α2i−1

n∑
i=1

ϕ2iα2i

 , (2-16)
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where ϕ contains the basis functions and the parameters in α are nodal displacements. In

this mesh we define two basis functions, see more in [1]. The Galerkin’s formulation is∑
i∈IΩ

∫
Ω

C (αiε(ϕi)) εϕj =

∫
Ω

fϕj −
∑
l∈∂Ω

∫
Ω

C (βlε(ϕl)) ε(ϕj).

Define the following matrices and vectors,

aEij =

∫
Ω

C (ε(ϕi)) ε(ϕj),

bj =

∫
Ω

fϕj −
∫

Ω

C (βlε(ϕl)) ε(ϕ)j,

we can write this as a linear system

AE
#»α =

# »

bE (2-17)

where AEij = a(ϕi, ϕj), with i, j = 1, . . . , k. And bEj = l(ϕj) for j = 1, . . . , k.

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

(1, 2) (3, 4) (5, 6) (7, 8) (9, 10)

(11, 12) (13, 14) (15, 16) (17, 18) (19, 20)

(21, 22) (23, 24) (25, 26) (27, 28) (29, 30)

(31, 32) (33, 34) (35, 36) (37, 38) (39, 40)

Figure 2-4: Mesh over Ω for the elasticity problem, each node has two degrees of freedom

(dof). Even labels represents horizontal dof while odd labels represent vertical

dof.

2.4 Numerical experiments for the elasticity equation

In this section, we show some experiments for the elasticity problem described in (2-17) with

different coefficients κ where

Cij = κC0
ij. (2-18)

And we use a tolerance of 1 × 10−6 for a 100 × 100 mesh and up to 2000 iterations in

the conjugate gradient method without preconditioning. The goal is to demonstrate the
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performance of the CG iterative method and to show its dependence of the contrast in the

PDE coefficients.

Coefficient without channels that reach the domain border

The first coefficient in Figure 2-5, we represent a material whit high stiffness in the middle of

the domain. The high stiffness area is the black circle in the domain and the three different

forcing terms in Figure 2-6 are applied in the high stiffness region.

Figure 2-5: Coefficient I, the high-stiffness

channels reach the boundary.

Figure 2-6: Forcing terms applied to the cir-

cle shaped coefficient in figure

2-5.

For different contrast values of the coefficient we solve the elasticity problem using the

conjugate gradient without preconditioners and we get next results in table 2-3.

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 233 3.2× 103 276 3.2× 103 220 3.2× 103

1× 10−2 1983 2.6× 105 2000 2.6× 105 2000 2.6× 105

1× 10−4 2000 2.4× 107 2000 2.4× 107 2000 2.4× 107

1× 10−2 2000 1.5× 109 2000 1.5× 109 2000 1.5× 109

Table 2-3: Elasticity problem using coefficient I defined in Figure 2-5.

We observe large iteration number and the conjugate gradient fails to converge before 2000

iterations. We also observe that the number of iterations increase with the contrast.
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Coefficient with the high stiffness channels reach the boundary

In this case, we take the coefficient in Figure 2-7. The coefficient has three high stiffness

channels over the domain, and has two channels reach the boundary domain. For this

coefficient we apply the forces in Figure 2-8.

Figure 2-7: Coefficient II, the high-stiffness

channels reach the boundary.

Figure 2-8: Forcing terms applied to the H

shaped coefficient II.

And, we solve the elasticity equation using the conjugate gradient method without precondi-

tioners with the coefficient in Figure 2-7 and we get the next results in Table 2-4.

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 235 3.2× 103 276 3.2× 103 295 3.2× 103

1× 10−2 1218 5.8× 104 1212 4.7× 104 1313 4.8× 104

1× 10−4 2000 1.6× 106 2000 2.8× 106 2000 1.7× 106

1× 10−6 2000 5.6× 107 2000 6.3× 107 2000 4.9× 107

Table 2-4: Elasticity problem without using coefficient II defined in Figure 2-7.

We also observe in Table 2-4 large iteration counts as before and larger number of iterations

when the contrast increase.

High contrast coefficient

In the last example we get a high contrast coefficient with high stiffness channels are connected

over all the domain see in Figure 2-9, and we apply two different forces over the domain, see

in Figure 2-10.
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Figure 2-9: Coefficient III, the high-stiffness

channels reach the boundary.

Figure 2-10: Forcing terms applied to the co-

efficient III.

Solving the elasticity problem using the conjugate gradient without preconditioners and the

high contrast coefficient in Figure 2-9 and we have the results in Table 2-5. We observe

similar results than before.

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 292 3.2× 103 293 3.2× 103

1× 10−2 1662 1.2× 105 1583 1.2× 105

1× 10−4 2000 8.6× 105 2000 1.2× 106

1× 10−6 2000 4.5× 106 2000 4× 106

Table 2-5: Elasticity problem without preconditioner using coefficient III defined in Figure

2-9.

The coefficient κij(x) = κ(x)δij represents the stiffness of the media Ω. We focus on two-

levels overlapping domain decomposition and use local spectral information in constructing

“minimal” dimensional coarse spaces (MDCS) within this setting. After some review on

constructing MDCS and their use in overlapping domain decomposition preconditioners, we

present an approach, which uses MDCS to minimize the condition number to a condition

number closer to 1, see more in [17, 10, 16, 12].

We assume that there exists κmin and κmax with 0 < κmin ≤ κ(x) ≤ κmax for all x ∈ Ω. The

coefficient κ has a multiscale structure (significant local variations of κ occur across Ω at

different scales). We regard that the coefficient κ is a high-contrast coefficient (the constrast

is η = κmax/κmin). We consider that η is large compared to the coarse-grid size, see more in

[17].

It is well known that performance of numerical methods for high-contrast multiscale problems

depend on η and local variations of κ across Ω. For finite element methods, the condition to
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obtain good approximation results is that the finite element mesh has to be fine enough to

resolve the variations of the coefficient κ. For this reasons, finite element approximation leads

to the solution of very large ill-conditioned problems (with the condition number scaling with

h−2 and η). Therefore, the performance of solvers depends on η and local variations of κ

across Ω, this was seen in [17, 14, 13, 6].

Let T h be a triangulation of the domain Ω, where h is the size of a typical element. We

consider only the case of discretization by the classical finite element method V = P1(T h) of

piecewise (bi)linear functions. Other discretizations can also be considered. The application

of the finite element discretization leads to the solution of a very large ill-conditioned system

2-17 where AE is roughly of size h−2 and the condition number of AE scales with η and h−2.

In general, the main goal is to obtain an efficient good approximation of solution u. The two

main solution strategies are:

• Choose h sufficiently small and implement an iterative method. It is important to

implement a preconditioner M−1 to solve M−1Au = M−1b. Then, it is important to

have the condition number of M−1A to be small and bounded independently of physical

parameters, e.g., η and the multiscale structure of κ, see more in [13, 9, 11, 10, 6, 12, 7,

15, 17].

• Solve a smaller dimensional linear system (T H with H > h) so that computations of

solutions can be done efficiently1.

This usually involves the construction of a downscaling operator R0 (from the coarse-

scale to fine-scale v0 7→ v) and an upscaling operator (from fine-scale to coarse-scale,

v 7→ v0) (or similar operators). Using these operators, the linear system Au = b becomes

a coarse linear system A0u0 = b0 so that R0u0 or functionals of it can be computed.

The main goal of this approach it to obtain a sub-grid capturing such that ||u−R0u0||
is small, see more in [17, 14, 18, 30, 5, 16, 8, 7].

Here we focus on the first option and, based in the results in [37] and [17, 26]. We

design and numerically test several preconditioners for the elasticity eqquation, see also

in [26]. The main idea is to use two levels domain descomposition with generalized

multiscale finite element space for the second level.

1The coarse mesh does not necessarily resolve all the variations of κ.
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In this chapter we briefly describe the multiscale method making special emphases on

the generalized multiscale method, which is used in this work, for a detailed explanation

see [15, 36, 16] and [17]. In the high contrast elasticity problem in the last example of

the previous chapter, we represent mixed material like ground, metal alloys or fibers. The

properties of these materials are difficult to be obtained in a coarse mesh, but solving this

type of problems in a fine mesh has great computational cost and takes a long time, for this

reason, we use the multiscale method.

We investigate how to use a multiscale method to solve the high contrast problem using

spectral multiscale basis functions [11]. In the multiscale method, we have two partitions of

a domain, in the first partition we define a fine mesh (with more elements) and on the other

one a coarse mesh. We want to approximate the solution in the fine mesh by solving local

problems in the coarse mesh that needs less computational cost.

Multiscale basis in the coarse mesh is constructed with the eigenvectors of the spectral

problem in each subdomain of the coarse space. The local spectral problem strongly depends

on the choice of an initial partition of the unity functions that includes the properties of the

original problem. Next, we present the construction of the basis functions of the coarse space

and its advantages.

3.1 Generalized Multiscale Method

Let Ω ⊂ R2 a polygonal domain and T H a the coarse grid partition, with H the size of the

coarse grid.

We consider the partial differential equation,{
− div(σ(u)) = F in Ω,

σ(u) = Cε(u) in Ω,

defined in equation 2-12, where σ is the stress tensor, ε is the strain tensor, C is the stiffness

tensor u is the displacement and F the external force. In this case we assume the material to

be isotropic and

Cij = κC0
ij

where κ is the contrast of the material defined in 2-18 also we assume that κmin and κmax

exist, and κmin ≤ κ ≤ κmax for all x ∈ Ω.
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We take the variational formulation of the elasticity problem in two dimensions defined in

2-15 and define bilinear form,

aE(u, v) =

∫
Ω

(Cε(u)) : ε(v) dx for all u, v ∈ V, (3-1)

and the linear form,

l(v) =

∫
Ω

F : v dΩ +

∫
Γ

σn : v dS for all u, v ∈ V. (3-2)

Let T h be a fine triangulation which is a refinement of T H like in Figure 3-1.

Qi

H

h

Figure 3-1: Coarse grid and fine grid in square domain, where Qi is an element the coarse

space, H is the size of the coarse grid and h is the size of the fine grid.

We define V h(Ω) the basis functions space that are piecewise linear continuous with respect

to the fine triangulation T h.
The Galerkin formulation from [17] is: find u ∈ V h

0 (Ω) such that

aE(u, v) = f(v),

and in the matrix form,

AEu = b,

where u, v ∈ V h(Ω),

u>AEv =

∫
Ω

(Cε(u)) : ε(v) dx,

and

v>b =

∫
Ω

F : v dx.

We denote {yi}Nv the vertices of the coarse mesh T H and define the neighborhood of the

node yi by,

ωi = ∪{Qj ∈ T H ; yi ∈ Qj}, (3-3)
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and the neighborhood of the coarse element Q (see Figure 3-2) by

ωQ = ∪{ωj ∈ T H ; yj ∈ Q̄}. (3-4)

Q

yi

ωi

ωQ

Figure 3-2: The orange rectangle represent the neighborhood of node yi called ωi and the

violet rectangle is the neighborhood of the coarse element Q.

In T H we consider coarse functions {φi}
NQ

i=1 where NQ is the number of coarse basis functions,

see more in [11], and we consider a high contrast eigenvalue problem with a high-contrast

coefficient defined in 2-9.

For any ωi ⊂ Ω, we define the Neumann matrix AΩi as,

vAωi
E w =

∫
Ω

(Cε(v)) : ε(w) dx for all v, w ∈ V h(Ω),

and the mass matrix Mωi by

vMωiw =

∫
Ω

(Cv)w for all v, w ∈ V h(Ω).

The coarse basis function are obtained by solving the eigenvalue problem,

− div(C(x)ε(u)) = λκ(x)u, for all x ∈ ωi. (3-5)

We use Neumann boundary condition on ∂ωi \ ∂Ω and Dirichlet condition on ∂ωi ∩ ∂Ω it its

not empty. In matrix form we have,

Aωi
E φ

ωi = λMωiφωi , (3-6)

and the eigenvalues and the eigenvectors are denoted as {λωi
l } and {ψωi

l } respectively and

the eigenvalues are ordered as,

λωi
1 ≤ λωi

2 ≤ λωi
3 ≤ · · · ≤ λωi

j ≤ · · ·
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We construct a set of enriched multiscale basis functions given by χiψ
ωi
` for the selected

eigenvectors ψωi
` . Using Li to denote the number of basis functions from the coarse region ωi,

we then define the coarse GMsFEM space by

V0 = span{φi,` = χiψ
ωi
` , i = 1, . . . , Nv, ` = 1, . . . , Li}.

For a detailed construction and additional properties of the space V0 see more in [9, 10, 11, 37].

Due to our numerical experiments we see that selection of the number of coarse basis in

the elasticity case is complicated since the low modes of the spectrum doesn’t show a clear

behavior with the high-stiffness regions. The optimal number of low modes are to be related

to the disconnected high-stiffness regions and to the RBM (rigid bod motions) of this regions.

The space RBM of rigid bod modes on Ω ⊂ Rd is defined for d = 2, by

RBM(Ω)

{
v ∈ [L2(Ω)]2 : v = a+ b

(
−x2

x1

)
, a ∈ R2, b ∈ R, x ∈ Ω

}
As seen in Figure 3-3, the basis elements depend on the number of high-stiffness regions, and

per each region we add three basis, each one related to a RBM. In this work the selection of

the coarse basis elements for the experiments is done in a manual way, i.e. we specify the

quantity of basis elements based on the disconnected high-stiffness regions present in the

specific overlap domain.

Figure 3-3: Two disconnected high-stiffness regions and its contrast dependent modes. Three

for each region corresponding to the RBM. The next mode is contrast independent.
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We know that {ωωi
l }yi∈T h is a covering of Ω. Let {χl}Nv

i=1 be a partition of unity subordinated

to the covering {ωωi
l }yi∈T h such that χi ∈ V h(Ω) and |∇χi| ≤

1

H
for i = 1, . . . Nv.

φi,l = χiψ
ωi
l , (3-7)

where li is the number of eigenvalues, see more in [11].

Figure 3-4: Description of basis function construction for some element of the domain. We

choose one eigenvector in the region and a linear function in the element and the

last figure is the result of multiply the first ones.
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For the elasticity problem the GMsFEM approximate the solution on a coarse grid as,

u0 =
Nv∑
i

ciφi

where ci are the unknown constant, and the new problem is

aE(u0, v) = F (v) for all v ∈ span{φi}Nc
i=1.

Multiscale Finite Element Method also solve underlying fine-scale equation on the coarse

grid. Given coarse scale basis function are determined by the coarse matrix

AE,0 = RE,0AER
>
E,0, (3-8)

where

R>E,0 = [φ1 φ2 · · ·φNc ]. (3-9)

Multiscale finite element solution is the finite element projection of fine-scale solution in V0

as,

AE,0u0 = f0, (3-10)

where f0 = R>E,0b. Note the RE,0u0 is the approximation of the solution, see more details in

[12, 17, 11, 16, 10, 9, 5, 6, 7, 8, 15].

In the next chapter we will use the multi-scale method to construct a two-level preconditioner

for the elasticity equation. The multiscale method is the first level of the Schwarz additive

preconditioner and we will also use it for the construction of low cost preconditioners.
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Method

In this chapter, we describe the two level overlapping Schwarz domain decomposition method

for the heat and elasticity problems with different conductivity and stiffness coefficient,

respectively. In the first part of the chapter, we present the main idea of the domain

decomposition method for the Poisson problem and we construct the preconditioner with

Schwarz additive method. After that, we study the abstract theory of the Schwarz Method,

which is useful in the design and analysis of new and old iterative methods, and also gives the

necessary requirements to convert linear systems of large and poorly conditioned algebraic

equations into well-conditioned linear systems. Finally, we present some experiment with

different coefficients for the isotropic elasticity problem and we compare the results with and

without preconditioner.

4.1 Schwarz’s method

A simple domain decomposition method was presented by H.A. Schwarz in 1870. Schwarz

used an iterative algorithm to determine the existence of harmonic functions in non-smooth

bounded regions.

Ω1

Ω2

Ω3

Ω1

Ω2 Ω3

Figure 4-1: Left figure: Domain divided into three non-overlapping subregions with the union

of the original domain. Right figure: Domain divided into three overlapping

subregions with the union of the original domain.
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He constructed a region with the union of subregions see in Figure 4-1 and solve recursively

the problem on each subregion. Schwarz proved that the iterative method converges on the

norm of the maximum.

The idea of the recursive algorithm for a two-stage problem is,

• Solve the problem in a subregion.

• Solve the problem in the union of the other subregions using recursively the previous

step.

Let us apply the Schwarz method in two regions for the Poisson problem (4-1) in a continuous

region with Dirichlet boundary condition, using recursively the previous steps,{
−∆u = f in Ω,

u = 0 on ∂Ω.
(4-1)

We divide the domain Ω into two overlapping subregions Ω1 and Ω2 of the original region

Ω = Ω1 ∪ Ω2, see more in [30].

Ω1 Γ2 Γ1 Ω2

Figure 4-2: Domain Ω divided in two domains Ω1 and Ω2, with borders Γ1 and Γ2 respectively.

Given an initial value u0 that satisfies the boundary condition, the iteration un+1 is determined

by the previous iterations un, in two sequential steps whose solution approximates to the

solution in both subdomains,
−∆un+1/2 = f in Ω1,

un+1/2 = un on ∂Ω1,

un+1/2 = un in Ω2 − Ω1.

(4-2)

In linear system 4-2 we describe the Poisson problem in the green rectangle in figure 4-2 and

in the linear system 4-3 we analyze the blue circle region in Figure 4-2.
−∆un+1 = f in Ω2,

un+1 = un+1/2 on ∂Ω2,

un+1 = un+1/2 in Ω1 − Ω2.

(4-3)
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To analyze the problem we use the space V 1
0 and the bilinear form,

a(u, v) =

∫
Ω

∇u · ∇v dx,

the Poisson problem defined in (4-1) can be written as

a(u, v) =

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx.

Choosing appropriate basis functions that spans V 1
0 and writing u as a linear combination of

these functions, we can write this and similar problems in matrix formulation, as in (4-4).

Now we can in order to use the finite element method

Au = b (4-4)

where the matrix A is symmetric and positive definite.

Define V as the functions space defined over Ω, and Vi as the space of functions defined over

Ωi with i = 1, 2. We take the natural extension operators,

R>i : Vi → V, i = 1, 2.

The operator R>i take the local functions in Vi with zero in the border and extend them to Ω

giving global functions in V , if we also define local bilinear forms,

ai(u, v) =

∫
Ωi

∇u · ∇v dx,

we can write the Schwarz method as two orthogonal projections Pi with i = 1, 2, defined as,

Pi = R>i P̃i,

where P̃i : V → Vi defined as

ai(P̃iu, vi) = a(u,R>i vi), vi ∈ Vi,

that means that if we solve the last equation in each subspace Vi we can find the solution of

(4-1).

4.1.1 Block Jacobi Preconditioners

An important derivation of the Schwarz method is the Schwarz additive method, for which we

are going to consider two-block Jacobi or the conjugate gradient. In the conjugate gradient

method we are going to precondition A with a matrix A−1
J , in the Poisson problem in 4-4 we

have,

A−1
J Au = A−1

J b, (4-5)
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where the matrix AJ is the direct sum of the blocks of the diagonal of A. Each block of the

matrix AJ corresponds to a set of degrees of freedom that define a subspace Vi, and the space

V can be written as the direct sum of the subspaces Vi for i = 1, 2,

V = R>1 V1 ⊕R>2 V2,

where R>i are natural extension operators,

R>i : Vi → V, i = 1, 2,

and R>i take the set of degrees of freedom of Vi and extend them with zeros to the domain Ω.

If we take A in Vi we denote it as Ai, the preconditioner A−1
J can be written as,

A−1
J =

(
A−1

1 0

0 0

)
+

(
0 0

0 A−1
2

)
=

(
A1 0

0 A2

)−1

To write the compact form AJ of A, we proceed by eliminating the couplings between spaces

Vi. As the coupling between the two spaces is smaller then the preconditioner is better, see

more in [30].

To write more compactly AJ we write the operator,

Ri : V → Vi, i = 1, 2,

where Ri is the adjoint operator of R>i with respect to the Euclidean scalar product. We

know that Ri takes a vector with the complete set of degrees of freedom and extracts the

degrees of freedom which corresponds to the subspace Vi which yields,

Ai = RiAR
>
i , i = 1, 2,

and,

A−1
J = R>1 A

−1
1 R1 +R>2 A

−1
2 R2.

To connect the Schwarz method we introduce the additive projection operator:

Pad = A−1
J A,

which we can write using projections as,

Pi : R>i A
−1
i RiA : V → V, i = 1, 2,

and

Pad = P1 + P2.

Then Pad is the sum of orthogonal projections in the internal product generated by the

bilinear form a(·, ·) and is upper bounded. And the Poisson problem 4-4 can be written as

the preconditioned system,

Padu = A−1
J b.
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4.2 Abstract Theory of Schwarz Methods

In the last section, we describe Schwarz domain decomposition with the Poisson problem but

is but it is necessary to analyze the general case of the additive Schwarz method. In this

section, we present some theorems and important assumptions that show the importance of

the application .solving problems.

Consider a finite dimensional Hilbert space V , and the symmetric and positive definite

bilinear form,

a(·, ·) :V × V → R
(u, v)→ a(u, v).

Given f ∈ V ′, we consider the problem of finding u ∈ V such that,

a(u, v) = f(v), for all v ∈ V. (4-6)

Given a basis of V , we can represent u ∈ V uniquely by its degrees of freedom, like the linear

functional f ∈ V ′ which corresponds to a load vector.

We define A is the stiffness matrix associated with the bilinear form a(·, ·) in the problem

(4-6) and b is the vector associated with the linear form f , we obtain the following linear

system,

Au = b,

with A symmetric and positive definite.

We also consider a family of subspaces Vi with i = 1, 2, . . . , N and we assume that there exists

interpolation operators R>i : Vi → V, called extension operator. The extension operator

R>i extends the elements of subspace Vi into elements of space V .

Assuming that the space V admits the following decomposition

V = R>0 V0 +
N∑
i=1

R>i Vi, (4-7)

this decomposition is not necessarily the direct sum of subspaces of V and in some cases the

representation of V in function of Vi is not unique and also Vi is not always a subspace of

V and the subspace V0 represent the coarse space of multi-scale approach presented in the

previous chapter.

In the subspaces Vi, we introduce the bilinear form associated to the subspaces Vi,

ai(·, ·) : Vi × Vi → R, for all i = 0, 1, . . . , N,

defined as,

ai(ui, vi) = a
(
R>i ui, R

>
i vi
)
, ui, vi ∈ Vi.
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The stiffness matrix associated to ai(·, ·) is Ai : Vi → Vi defined as,

Ai = RiAR
>
i .

If we resolve

Aiui = bi, ui, vi ∈ Vi,

and we obtain the projection in the subspace Vi for i = 1, . . . , N .

We define the Schwarz operator in terms of the projection operators,

Pi = R>i P̃i : H → RiVi ⊂ V, i = 0, 1, . . . , N, (4-8)

where P̃i : V → Vi, is defined as:

ai(P̃iu, vi) = a(u,R>i vi), vi ∈ Vi, (4-9)

with P̃i is well defined since the local bilinear forms are coercive and in case of exact solvers

(see more in [30]),

a(Piu,R
>
i vi) = a(u,R>i vi) vi ∈ Vi (4-10)

Lemma 1. The Schwarz operator Pi [30, p.36] can be written as,

Pi = R>i A
−1
i RiA, 0 ≤ i ≤ N,

where a(·, ·) is a symmetric and definite positive bilinear form [30, p.35], Ri is the interpolation

operator [30, p.36] and A is the stiffness matrix [30, p.36]. In addition, Pi is self-adjoint with

respect to the scalar product induced by a(·, ·) and positive semi-definite. If moreover the

local bilinear form is given by 4-10, then Pi is a projection, i.e.,

P 2
i = Pi.

Proof. If we consider the matrix form of P̃i defined by (4-9),

v>i AiP̃iu = (R>i vi)
>Au, for all u ∈ V y vi ∈ Vi,

therefore, applying the transpose on the right side of the previous equation we have:

v>i AiP̃iu = v>i RiAu,

and the last expression is for all u ∈ V and vi ∈ Vi, we find:

AiP̃i = RiA,

with the last expression the operator P̃i can be written as:

P̃i = A−1
i RiA, (4-11)



4.2 Abstract Theory of Schwarz Methods 29

and Pi = R>i P̃i. We also get from expression 4-11,

Pi = R>i A
−1
i RiA, for 0 ≤ i ≤ N. (4-12)

Now, we prove that Pi is a self-adjoint operator with the expression (4-12). Take u, v ∈ V
and,

a(Piu, v) = a((R>i A
−1
i RiA)u, v),

if we take the right side of the last equation it can be written as,

a((R>i AiRiA)u, v) = v>A(R>i A
−1
i RiAu),

= (R>i A
−1
i RiAv)>Au,

= a(u, Piv),

and we have,

a(Piu, v) = a(u, Piv).

Pi being positive and semi-definite is a consequence of the coercivity of the local bilinear

forms,

a(Piu, u) = u>APiu,

= u>AR>i AiRiAu,

= v>i A
−1
i vi ≥ 0.

Now, we prove that P 2
i = Pi. We have from (4-12) that,

P 2
i = R>i A

−1
i RiAR

>
i A
−1
i RiA,

and Ai = RiAR
>
i we have,

P 2
i = R>i A

−1
i AiA

−1
i RiA,

and simplifying the previous expression we get,

P 2
i = R>i A

−1
i RiA = Pi,

therefore the operator Pi is self-adjoint.

A set of subspaces and local bilinear forms can define a number of different Schwarz operators.

Each one is defined by polynomials of operators {Pi} without the zero term and we can

notice that:

Piu = R>i P̃iu,

and u the solution of (4-6).
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If we defined the additive operator as,

Pad =
N∑
i=0

Pi. (4-13)

The explicit form of the additive preconditioner is,

Pad = A−1
adA, A−1

ad =
N∑
i=0

R>i Ã
−1
i Ri. (4-14)

For the additive operator we estimate the condition number of Pad,

κ(Pad) =
λmax(Pad)

λmin(Pad)
.

To prove bounds for the additive Schwarz operator, is enough to make the next three

assumptions.

Assumption 1 (Stable Decomposition). There exists a constant C0, such that every u ∈ V
admit a decomposition,

u =
N∑
i=0

Riui, {ui ∈ Vi, 0 ≤ i ≤ N},

that satisfies,
N∑
i=0

ai(ui, ui) ≤ C2
0a(u, u). (4-15)

Assumption 2 (Strengthened Cauchy-Schwarz Inequalities). There exist constants 0 ≤ εij ≤
1, for 1 ≤ i, j ≤ N , such that

|a(R>i ui, R
>
j uj)| ≤ εija(R>i ui, R

>
j uj)

1/2a(R>i ui, R
>
j uj)

1/2 (4-16)

for ui ∈ Vi and uj ∈ Vj. We denote the spectral radius of E = {εij} by ρ(E).

Assumption 3 (Local Stability). There exist ω > 0, such that,

a(R>i ui, R
>
i ui) ≤ ωai(ui, ui), ui ∈ range(P̃i) ⊂ Vi, 0 ≤ i ≤ N. (4-17)

Lemma 2. Assuming the stable decomposition. Then,

a(Padu, u) ≥ C−2
0 a(u, u), u ∈ V, (4-18)

and consequently Pad defined in [30, p.37] is invertible. In addition,

a(P−1
ad u, u) = min

ui∈Vi u=
∑
R>

i ui

N∑
i=0

ai(ui, ui).
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Proof. Applying u decomposition, we get,

a(u, u) = a

(
u,

N∑
i=0

R>i ui

)
,

and given that a(·, ·) is a linear operator,

a(u, u) =
N∑
i=0

a(u,R>i ui).

If we express in terms of the space Vi, then by definition (4-9),

a(u, u) =
N∑
i=0

ai(Piu, ui),

and using the Cauchy-Schwarz inequality in the last expression we have:

a(u, u) ≤

(
N∑
i=0

ai(P̃iu, P̃iu)

)1/2( N∑
i=0

ai(ui, ui)

)1/2

,

and using the stable decomposition yields,

a(u, u) ≤

(
N∑
i=0

ai(P̃iu, P̃iu)

)1/2 (
C2

0a(u, u)
)1/2

.

Now we apply the Cauchy-Schwarz inequality in Vi and since the local bilinear forms are

symmetric and positive definite we get:

a(u, u)1/2 ≤ C0

(
N∑
i=0

ai(P̃iu, P̃iu)

)1/2

,

squaring and projecting to the Hilbert space V with the definition (4-9) as:

a(u, u) ≤ C2
0

(
N∑
i=0

a(u,R>i P̃iu)

)
,

since a(·, ·) is linear,

a(u, u) ≤ C2
0a

(
u,

N∑
i=0

R>i P̃iu

)
,

and using the equivalence of Pi of the equation (4-12),

a(u, u) ≤ C2
0a

(
u,

N∑
i=0

Piu

)
.
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By definition of Pad we have that,

a(u, u) ≤ C2
0a (u, Padu) ,

this completes the proof of Lemma (4-18) and also yields that Pad is invertible.

For the second part of the lemma, we find the u ∈ V decomposition, as:

ui = P̃iP
−1
ad u o ≤ i ≤ N. (4-19)

and

u =
N∑
i=0

R>i ui.

If we take the decomposition:

N∑
i=0

ai(ui, ui) =
N∑
i=0

ai(P̃iP
−1
ad u, P̃iP

−1
ad u),

projecting in V with (4-9) we get that

N∑
i=0

ai(ui, ui) =
N∑
i=0

a(P−1
ad u,R

>
i P̃iP

−1
ad u),

and since a(·, ·) is a bilinear form, we have:

N∑
i=0

ai(ui, ui) = a

(
P−1
ad u,

N∑
i=0

R>i P̃iP
−1
ad u

)
,

for the u decomposition yields,

N∑
i=0

ai(ui, ui) = a
(
P−1
ad u, u

)
.

The equation (4.2) is true for any decomposition of the form u =
N∑
i=0

R>i u, and it can written

as,

a(P−1
ad u, u) =

N∑
i=0

a(P−1
ad u,R

>
i ui),

projecting on the subspace Vi with (4-9),

a(P−1
ad u, u) =

N∑
i=0

ai(P̃iP
−1
ad u, ui),
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by the inequality of Cauchy-Schwarz we have,

a(P−1
ad u, u) ≤

(
N∑
i=0

ai(P̃iP
−1
ad u, P̃iP

−1
ad u)

)1/2( N∑
i=0

ai(ui, ui)

)1/2

,

and in the space V , we can write it as:

a(P−1
ad u, u) ≤

(
N∑
i=0

a(P−1
ad u,R

>
i P̃iP

−1
ad u)

)1/2( N∑
i=0

ai(ui, ui)

)1/2

,

regard the decomposition (4.2) in the last expression and we get,

a(P−1
ad u, u) ≤

(
N∑
i=0

a(P−1
ad u, u)

)1/2( N∑
i=0

ai(ui, ui)

)1/2

,

and since a(·, ·) is a bilinear and definite positive form, it yields that,

a(P−1
ad u, u)1/2 ≤

(
N∑
i=0

ai(ui, ui)

)1/2

,

And if we take the minimum on the decomposition (4.2) in the last inequality we have,

a(P−1
ad u, u) = min

ui∈Vi u=
∑
R>

i ui

N∑
i=0

ai(ui, ui).

Lemma 3. Assuming the local stability and the inequalities of Cauchy-Schwarz, then for

i = 0, . . . , N we have that,

||Pi||a ≤ ω.

In addition,

a(Padu, u) ≥ ω(ρ(E) + 1)a(u, u),

where ρ(E) is the spectral radius.

Proof. By definition,

a(Piu, Piu) = a(R>i P̃iu,R
>
i P̃iu),

using local stability defined in (4-17) on the right side of the previous expression, we get

a(Piu, Piu) ≤ ωai(P̃iu, P̃iu),

applying (4-9) yields,

a(Piu, Piu) ≤ ωa(u,R>i P̃iu),
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by the definition of Pi we have,

a(Piu, Piu) ≤ ωa(u, Piu), (4-20)

and consequently applying Cauchy Schwarz, we have,

a(Piu, Piu) ≤ ωa(u, u)1/2a(Piu, Piu)1/2,

squaring and simplifying terms we get,

a(Piu, Piu) ≤ ω2a(u, u).

For the second inequality of the lemma, we consider the operator

P̂ =
N∑
i=1

Pi (4-21)

note the operator P̂ = Pad−P0 given that the strengthened Cauchy-Schwarz inequality works

for Vi with 1 ≤ i ≤ N , so

a(Padu, u) = a(P0u, u) + a(P̂ , u), (4-22)

Let us consider,

a(P̂ u, P̂ u) = a

(
N∑
i=1

Piu,
N∑
j=1

Pju

)
as a(·, ·) is the bilinear form, we get

a(P̂ u, P̂ u) =
N∑
i=1

N∑
j=1

a (Piu, Pju)

and using the strengthened Cauchy-Schwarz inequalities,

a(P̂ u, P̂ u) ≤
N∑
i=1

N∑
j=1

εija (Piu, Piu)1/2 a(Pju, Pju)1/2.

Using (4-20) the last expression yielding,

a(P̂ u, P̂ u) ≤
N∑
i=1

N∑
j=1

εijω
1/2a (u, Piu)1/2 ω1/2a(u, Pju)1/2.

by the symmetry of E , and that therefore in l2 norm is equal to its the spectral radius, we

can write

a(P̂ u, P̂ u) ≤
N∑
i=1

ωρ(E)a (u, Piu) ,
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and using the definition of P̂ , we get

a(P̂ u, P̂ u) ≤ ωρ(E)a
(
u, P̂u

)
,

finally we have,

a(P̂ u, P̂ u) ≤ ωρ(E)a (u, u)1/2 a(P̂ u, P̂ u)1/2.

In the other hand, using Cauchy-Schwarz inequality yields,

a(P̂ u, u) ≤ a(P̂ u, P̂ u)1/2a(u, u)1/2,

then

a(P̂ u, u) ≤ ωρ(E)a(u, u)1/2,

and using the bound for ||P0||a ≤ ω, we find

a(Padu, u) = a(P0u, u) + a(P̂ u, u),

≤ ω a(u, u) + ωρ(E)a(u, u),

and we finally get

a(Padu, u) ≤ ω(ρ(E) + 1)a(u, u).

Theorem 1 (Addive operator’s condition number). Let stable descomposition, local stability

and strengthened Cauchy-Schwarz inequalities be satisfied. Then the condition number of the

additive Schwarz operator satisfies

κ(Pad) ≤ C2
0ω(ρ(E) + 1).

Proof. We estimate the condition number of Pad as

κ(Pad) =
λmax(Pad)

λmin(Pad)
, (4-23)

where

λmax = sup
u∈V

a(Padu, u)

a(u, u)
and λmin = inf

u∈V

a(Padu, u)

a(u, u)
,

see more in [30]. Using previous lemmas we have

a(Padu, u) ≥ C−2
0 a(u, u) and a(Padu, u) ≤ ω(ρ(E) + 1)a(u, u).

Hence,

sup
u∈V

a(Padu, u)

a(u, u)
≤ ω(ρ(E) + 1)a(u, u)

a(u, u)

= ω(ρ(E) + 1),
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and

inf
u∈V

a(Padu, u)

a(u, u)
≤ C−2

0 a(u, u)

a(u, u)

= C−2
0 .

We get

κ(Pad) =

sup
u∈V

a(Padu, u)

a(u, u)

inf
u∈V

a(Padu, u)

a(u, u)

≤ C2
0ω(ρ(E) + 1), (4-24)

this complete the proof.

In the next section we apply domain decomposition method in the heat and elasticity problems

and we obtain the two level preconditioner for both equations.

4.3 Two level preconditioner for the heat equation

Let H1
0 (Ω) be the subspace of functions v ∈ H1(Ω) with v|∂Ω = 0. Note that if we define

a(u, v) =

∫
Ω

(K∇u)∇v, and l(v) =

∫
Ω

fv,

we see that a(u, v) is a bilinear form and l(v) is a linear functional.

To obtain the Galerkin formulation of the problem we need to take v ∈ V h where V h is a

finite dimensional space. Here h > 0 is a discretization parameter. We also need to choose

a basis for V h, say {ϕ1, ϕ2, . . . , ϕk} with k the dimension of V h. We can approximate the

temperature u with uh over the domain using a linear combination of basis functions and

write uh =
∑k

j=1 αjϕj, with αj unknown coefficients. Within Galerkin’s formulation, we

should find uh ∈ V h such that∑
i∈IΩ

∫
Ω

K (αi∇ϕi)∇ϕj =

∫
Ω

fϕj −
∑
l∈∂Ω

∫
Ω

K (βl∇ϕl)∇ϕj.

And we can write this as a linear system

A #»α =
#»

b (4-25)

where Aij = a(ϕi, ϕj), with i, j = 1, . . . , k. And bj = l(ϕj) for j = 1, . . . , k.

Now, we introduce a non-overlaping decomposition {Ωi}Ni=1 in Ω that is,

Ω =
N⋃
i=1

Ω̄i,

Ωi ∩ Ωj = ∅ for i 6= j
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Construct an overlapping decomposition {Ω′i}
N
i=1 by adding a layer of width δ to each Ωi and

we have,

V h(Ωi) =
{
vh ∈ V h : supp(vh) ≤ Ω′i

}
V0 = V ms

0 ,

where V ms
0 is the space in the multiscale method. We define the local sub-matrices of A

corresponding the subdomains Vi by

Ai = RiAR
>
i ,

where Ri : Vi → V is the restriction matrix and R>i : V → Vi is the extension matrix. In the

other hand, we take coarse triangulation QH of Ω′ into coarse element, with V H
0 ⊂ V h

O coarse

space.The function φH ∈ V H
0 omits a representation with respect to the fine scale basis.

In the coarse space, the stiffness matrix is given by

A0 = R0AR
>
0 ,

where R0 : V H
0 → V h

0 is the restriction matrix in the coarse space to fine space and R>0 is the

extension matrix.

The additive Schwarz preconditioned is M−1
H A where the preconditioned matrix if defined by,

M−1
H = M−1

H,1 +M−1
H,2, (4-26)

where the part corresponding to the first level is

M−1
H,1r =

N∑
i=1

RiA
−1
i R>i r, (4-27)

and the part corresponding to the second (or coarse) level is

M−1
H,2r = R0A

−1
0 R>0 r (4-28)

where A0 = RART . Here the matrix R is a matrix where each column is a coarse basis

function. Here the basis functions are of the form χiψ` where χi is a partition of unity

function and ψ` are eigenvalues of a generalized eigenvalue problem.

4.4 Preconditioner for the elasticity equation

The elasticity problem, in two dimensions, defined in 2-13 contains two unknown differential

equations in every point ux and uy, these are approximated in most cases by a linear

combination of basis functions for the two components. We can write this as a linear system

AEα = bE (4-29)
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where AEij = a(ϕi, ϕj), with i, j = 1, . . . , k. And bEj = l(ϕj) for j = 1, . . . , k. Now, we

introduce a non-overlaping decomposition {Ωi}Ni=1 in Ω that is,

Ω =
N⋃
i=1

Ω̄i,

Ωi ∩ Ωj = ∅ for i 6= j

Construct an overlapping decomposition {Ω′i}
N
i=1 by adding a layer of width δ to each Ωi and

we have,

V h(Ωi) =
{
vh ∈ V h : supp(vh) ≤ Ω′i

}
V0 = V ms

0 ,

where V ms
0 is the space in the multi-scale method. We define the local sub-matrices of AE

corresponding the subdomains Vi by

AE,i = RE,iAER
>
E,i,

where RE,i : Vi → V is the restriction matrix and R>E,i : V → Vi is the extension matrix. In

the other hand, we take coarse triangulation QH of Ω′ into coarse element, with V H
0 ⊂ V h

0

coarse space.The function φH ∈ V H
0 omits a representation with respect to the fine scale

basis.

In the coarse space, the stiffness matrix is given by

AE,0 = RE,0AER
>
E,0,

where RE,0 : V H
0 → V h

0 is the restriction matrix in the coarse space to fine space and R>0 is the

extension matrix. The additive Schwarz preconditioner is M−1
E AE where the preconditioned

matrix if defined by,

M−1
E = M−1

E,1 +M−1
E,2, (4-30)

where the part corresponding to the first level is

M−1
E,1r =

N∑
i=1

RE,iA
−1
E,iR

>
E,ir, (4-31)

and the part corresponding to the second (or coarse) level is

M−1
E,2r = RE,0A

−1
E,0R

>
E,0r (4-32)

where AE,0 = REAER
T
E. Here the matrix RE is a matrix where each column is a coarse

basis function. Here the basis functions are of the form χiψ` where χi is a partition of unity

function and ψ` are eigenvalues of a generalized eigenvalue problem.
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4.4.1 Experiments for the elasticity preconditioner

The next experiments we use the same coefficients used in previous chapter. And we take

a tolerance of 1 × 10−6 and up to 2000 iterations in the conjugate gradient method with

preconditioning. We use a 10 × 10 coarse mesh and inside each coarse-element we have a

10× 10 fine-mesh.

Elasticity problem with coefficient I

For solve the elasticity problem with two level preconditioner, we take the coefficient in the

Figure 2-5 and the vector forces in the Figure 2-6, and we have the results in the Table 4-1

for the forces in Figure 2-6.

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 14 4.5 14 4.6 14 4.5

1× 10−2 16 5.3 16 5.3 16 5.3

1× 10−4 17 5.3 17 5.3 17 5.3

1× 10−6 17 5.3 17 5.3 18 5.3

Table 4-1: Results of the elasticity equation with two level precondicioner using coefficient I

defined in Figure 2-5.

Elasticity problem with coefficient II

We regard the coefficient in Figure 2-7 and force vector in Figure 2-8, and we get the results

in table 4-2.

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 14 4.6 14 4.6 14 4.5

1× 10−2 16 5.3 15 5.2 16 5.1

1× 10−4 16 5.3 15 5.2 16 5.1

1× 10−6 16 5.3 15 5.2 16 5.1

Table 4-2: Results of the elasticity equation with elasticity eigenvectors using coefficient II

defined in Figure 2-7.

Elasticity problem with coefficient III

In this example, we take the complex coefficient in the Figure 2-9 and the vector forces in

Figure 2-10. And we get the next results in Table 4-3.
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Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 14 4.6 243 14 4.6 243

1× 10−2 29 16.7 387 26 16.0 387

1× 10−4 62 114.6 387 53 113.8 387

1× 10−6 61 257.2 387 44 140.6 387

Table 4-3: Results of the elasticity equation with elasticity eigenvectors using coefficient III

defined in Figure 2-9.

Comparing the Tables 2-3, 2-4 and 2-5 obtained by solving the elasticity problem without

preconditioner in chapter 2, and Tables 4-1, 4-2 and 4-3, it can be noted that the spectral

condition of the matrix improves when the preconditioner is applied. In addition, the number

of iterations is considerably reduced when the preconditioner is applied to the elasticity

equation. We also observe that the number of iterations (and estimated condition numbers)

does not depend on the contrast as before. As showed in [17], here the use or several basis

functions per node is of fundamental importance, as well as the fact that these basis functions

are constructed using a local eigenvalue problem.

The table also shows the dimension of the coarse matrix has a maximum value of 387 for

the high contrast coefficient, and although the values are better than those in Table 4-3, the

cost of calculating the eigenvectors for the coarse matrix is very high so we try to find a two

levels preconditioner for the elasticity equation combining elasticity with heat.
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elasticity equation

In this chapter we combine heat preconditioners in (4-27) and (4-28) studied in [37] with

elasticity preconditioners in (4-31) and (4-32) to decrease the number of iterations of the

elasticity problem with fewer computational cost since the heat problem is smaller than the

elasticity problem.

The motivation to use the heat preconditioner is the master tesis [37] and in a work [20, 19].

In [37] the author shows the operation of the heat preconditioners to solve topological op-

timization problems we analyze the performance of the Schwarz two-levels preconditioners

applied to the topology optimization problem for the heat equation. These preconditioners

are built using a domain decomposition method and the generalized multiscale finite element

method (GMsFEM) recently introduced. It is known that for a good performance of the pre-

conditioner it is important the design of the basis functions. In this document, the calculation

of multiscale basis functions uses the solution of carefully selected local eigenvalue problems

as usual in the GMsFEM. We also propose the approximation of the local eigenvalues using

a randomized algorithm to obtain an overall less expensive methodology, see in [26].

Finally, we show some results and advantages of each preconditioner, and we choose the one

that reduces the computational cost and that decrease the number of iterations. With this

preconditioner, we present other modifications to improve convergence.

5.1 High contrast Coefficients

For both problems, we take three different coefficients and different forcing vectors. In the

heat problem, the coefficient represents the conductivity in the media and the force vector

stand for a source of heat applied to the body. In the elasticity problem, the coefficient is the

stiffness of the material and the force vector represent the external forces applied.

The coefficients represent the properties of the medium that we are going to analyze, in our

case the three following coefficients are academic examples. We use the coefficient in previous

chapter for the elasticity problem, and we apply the coefficient κ, in heat problem in the

conductivity matrix,

Kij = κK0
ij, (5-1)
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and in the elasticity problem as,

Cij = κC0
ij. (5-2)

• Coefficient without channels that reach the domain border The first coefficient

in Figure 2-5, we represent a material whit high conductivity (stiffness) in the middle

of the domain. The high conductivity (stiffness) area is the black circle in the domain.

This coefficient does not have high conductivity channels in the border of the domain

and the three different forcing terms in Figure 2-6 are applied in the high stiffness

region.

• Coefficient with the high stiffness reaching the boundary

We use the coefficient in Figure 2-7 in previous chapter for the elasticity problem. This

coefficient is different from the previous one. It has two high conductivity channels that

pass through the domain border and have three high conductivity channels. And we

use the three forcing terms in Figure 2-8.

• High-contrast coefficient The last coefficient in Figure 2-9 represent the complex

material with high conductivity connected channels in the domain, and the Figure 2-10

has the forces in the high conductivity channels.

5.1.1 Block-diagonal one level preconditioner for the elasticity equation

In the first experiment, we apply the first level of heat preconditioner in the equation 4-27

within the elasticity problem.[
M−1

H,1 0

0 M−1
H,1

]
AEuE =

[
M−1

H,1 0

0 M−1
H,1

]
bE.

Observe that here we use a block-diagonal preconditioner where in each block (that is, in each

direction x and y) we use the one-level preconditioner constructed previously for the heat

equation. If we solve the previous preconditioned elasticity problem for different contrast in

the coefficient κ we obtain the results in Tables 5-1, 5-2 and 5-3.

• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 40 83 48 83 40 83

1× 10−2 92 4.3× 103 93 4.3× 103 94 4.3× 103

1× 10−4 123 4.2× 105 124 4.2× 105 126 4.2× 105

1× 10−6 159 4.2× 107 159 4.2× 107 160 4.2× 107

Table 5-1: Elasticity problem with a block-diagonal one level preconditioner using coefficient

I defined in Figure 2-5 with load forces in Figure 2-6.
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• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 42 83 48 83 51 83

1× 10−2 92 8.6× 102 78 1.6× 102 96 8.6× 102

1× 10−4 96 1.1× 103 97 1.1× 103 98 1.1× 103

1× 10−6 96 1.1× 103 97 1.1× 103 98 1.1× 103

Table 5-2: Elasticity problem with a block-diagonal one level preconditioner using coefficient

II defined in Figure 2-7 and the load forces in Figure 2-8.

• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 42 83 42 83

1× 10−2 156 6.9× 102 156 6.9× 102

1× 10−4 611 8× 103 611 8× 103

1× 10−6 761 5.7× 104 761 5.7× 104

Table 5-3: Elasticity problem with a block-diagonal one level preconditioner using coefficient

III defined Figure 2-9 and the load forces in 2-10.

Comparing the results in Tables 2-3, 2-4 and 2-5 solving the elasticity problem without

preconditioner with Tables 5-1, 5-2 and 5-3 the number of iterations decreases when the

preconditioner is applied but the spectral condition increases. Comparing with the results of

the tables 4-1, 4-2 and 4-3 the block-diagonal one level preconditioner does not give good

results in the elasticity equation.

5.1.2 Block-diagonal two-level preconditioner for the elasticity

equation

In this example we take the domain decomposition’s matrix of the heat equation in the

following form [
M−1

H 0

0 M−1
H

]
.

That is, the block-diagonal preconditioner in equation 4-26 where in each block we employ

the two-levels preconditioner constructed previously for the heat equation. Therefore, the
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linear system for the elasticity problem is[
M−1

H 0

0 M−1
H

]
AEuE =

[
M−1

H 0

0 M−1
H

]
.bE.

If we change the coefficient κ in the linear system we obtain the values for the solution in the

Tables 5-4, 5-5 and 5-6.

• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 22 10 22 10 22 9.4

1× 10−2 38 3.5× 102 39 3.5× 102 38 3.5× 102

1× 10−4 52 3.4× 104 52 3.4× 104 51 3.4× 104

1× 10−6 67 3.4× 106 67 3.4× 106 66 3.4× 106

Table 5-4: Block-diagonal two-level preconditioner using coefficient I defined in Figure 2-5

and load forces in Figure 2-6.

• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 23 11 22 10 23 11

1× 10−2 42 51 38 49 41 51

1× 10−4 43 64 40 64 43 64

1× 10−6 4 3 64 40 64 43 64

Table 5-5: Block-diagonal two-level preconditioner using coefficient II defined in Figure 2-7

and load forces in Figure 2-8.

• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 22 10 23 11

1× 10−2 89 1.5× 102 78 1.5× 102

1× 10−4 295 2.2× 103 244 2.2× 103

1× 10−6 345 1.5× 104 266 7.5× 103

Table 5-6: Block-diagonal two-level preconditioner using coefficient III defined in Figure 2-9

and load forces in Figure 2-10.
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Comparing the results in Tables 4-1, 4-2 and 4-3 solving the two level elasticity preconditioner

with Tables 5-4, 5-5 and 5-6, in block diagonal two level preconditioner there are more

iterations than in the preconditioner and also the spectral condition does not decrease.

5.1.3 Block-diagonal one level preconditioner with elasticity coarse

projection in the coarse level

In this example we take the first level of the domain decomposition matrix of the heat problem

in the equation 4-26 and we modify the coarse level of the preconditioner. That is,

M−1
E =

[
M−1

H 0

0 M−1
H

]
+

[
R0

R0

]
A−1

0,E

[
R0

R0

]>
,

where

A0,E =

[
R0

R0

]
AE

[
R0

R0

]>
.

If we solve the elasticity problem using this preconditioner for different values of the contrast

and forces, we obtain the results in Tables 5-7, 5-8 and 5-9.

• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 28 19 28 19 27 18

1× 10−2 36 28 37 28 35 28

1× 10−4 44 40 46 40 43 40

1× 10−6 54 52 55 52 52 52

Table 5-7: Results of Block-diagonal one level preconditioner with elasticity coarse projection

in the coarse level using coefficient I defined in Figure 2-5 and load forces in

Figure 2-6.

• Coefficient with the high stiffness reaching the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 29 21 28 19 29 21

1× 10−2 39 31 35 30 38 30

1× 10−4 40 31 36 31 38 31

1× 10−6 40 31 36 31 38 31

Table 5-8: Results of Block-diagonal one level preconditioner with elasticity coarse projection

in the coarse using coefficient II defined in Figure 2-7 and load forces in Figure

2-8.
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• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 27 19 29 21

1× 10−2 96 2.6× 102 86 2.4× 102

1× 10−4 212 2.1× 103 200 2.1× 103

1× 10−6 215 1.4× 104 141 2.2× 103

Table 5-9: Results of Block-diagonal one level preconditioner with elasticity coarse projection

in the coarse using coefficient III defined in Figure 2-9 and load forces in Figure

2-10.

If we compare this preconditioner with the previous preconditioners, we see an improvement

in the number of iterations but the spectral condition is very high.

5.1.4 Block-diagonal one level preconditioner and elasticity coarse

projection with rotations

In this case we take the previous example and modify the coarse level of the preconditioner

adding rotations. We enrich the coarse spaces used in the last preconditioner. This is

motivated by the fact that the elasticity matrix has a null space spanned by the rigid body

motions. In particular, in two-dimensions and due to our previous construction we only

need to add the rotations. Let r = (rx, ry) be the interpolation on the fine-grid of the vector

function representing the rotation. To the basis functions previously constructed we add the

basis

[χirx, χiry], (5-3)

in each neighborhood. That is,

M−1
E,rot =

[
M−1

H 0

0 M−1
H

]
+

[
R0,rot

R0,rot

]
A−1

0,E

[
R0,rot

R0,rot

]>
,

with

A0,E =

[
R0,rot

R0,rot

]
AE

[
R0,rot

R0,rot

]>
.

We solve the elasticity problem using this preconditioner for different values of the contrast

and forces,

M−1
E,rotAEuE = M−1

E,rotbE,

and we obtain the results in Tables 5-10, 5-11 and 5-12.
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• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 26 16 26 17 26 16

1× 10−2 34 23 34 21 33 22

1× 10−4 43 35 45 35 43 35

1× 10−6 50 40 52 40 49 40

Table 5-10: Results of block-diagonal one level preconditioner and elasticity coarse projection

with rotations using coefficient I defined in Figure 2-5 and load forces in Figure

2-6.

• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 27 18 26 17 27 19

1× 10−2 36 28 33 28 35 29

1× 10−4 37 30 34 29 36 30

1× 10−6 37 30 34 29 36 30

Table 5-11: Results of block-diagonal one level preconditioner and elasticity coarse projection

with rotations using coefficient II defined in Figure 2-7 and load forces in Figure

2-8.

• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 26 17 29 21

1× 10−2 92 2.7× 102 81 2.4× 102

1× 10−4 138 6.3× 102 117 6.3× 102

1× 10−6 130 5.4× 102 110 5.4× 102

Table 5-12: Results of block-diagonal one level preconditioner and elasticity coarse projection

with rotations using coefficient III defined in Figure 2-9 and load forces in Figure

2-10.
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The result for the block diagonal one level preconditioner and the elasticity coarse

projection with rotations are better than the three previous ones, because it reduces

the iterations and the spectral condition decreases, but if we compare to the Tables

4-1, 4-2 and 4-3, we see that the two levels elasticity preconditioner makes half the

iterations. And the spectral condition for the new preconditioner increases for high

contrast.

5.1.5 Heat coarse projection in the coarse level for the elasticity

problem

In this case the coarse level of the preconditioner comes from the heat problem in equation

4-27 and the first level from elasticity in the equation 4-31. That is,

M−1
E,1 +

[
R0A

−1
0 R>0

R0A
−1
0 R>0

]
,

where the part corresponding to the first level is

M−1
E,1r =

N∑
i=1

RE,iA
−1
E,iR

>
E,ir.

We solve the elasticity problem using this preconditioner for different values of the contrast

and forces

M−1
E,1 +

[
R0A

−1
0 R>0

R0A
−1
0 R>0

]
AE = M−1

E,1 +

[
R0A

−1
0 R>0

R0A
−1
0 R>0

]
bE (5-4)

and we get the results in Tables 5-13, 5-14 and 5-15.

• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 26 22 28 24 25 22

1× 10−2 44 7.5× 102 44 7.5× 102 45 7.5× 102

1× 10−4 55 7.3× 104 56 7.3× 104 55 7.3× 104

1× 10−6 65 7.3× 106 65 7.3× 106 65 7.3× 106

Table 5-13: Results of elasticity coarse projection in the coarse level for the elasticity problem

for coefficient I defined in Figure 2-5 and load forces in Figure 2-6.



5.1 High contrast Coefficients 49

• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 27 22 28 24 28 24

1× 10−2 49 1.4× 102 49 1.3× 102 49 1.4× 102

1× 10−4 50 1.7× 102 50 1.7× 102 50 1.7× 102

1× 10−6 50 1.7× 102 50 1.7× 102 50 1.7× 102

Table 5-14: Results of elasticity coarse projection in the coarse level for the elasticity problem

with coefficient II defined in Figure 2-7 and load forces in Figure 2-8.

• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 30 24 29 24

1× 10−2 60 87 56 82

1× 10−4 162 8.7× 102 139 9.2× 102

1× 10−6 174 5.6× 103 120 2.5× 103

Table 5-15: Results of elasticity coarse projection in the coarse level for the elasticity problem

with coefficient III defined in Figure 2-9 and load forces in Figure 2-10.

Comparing with the previous preconditioner that so far has good results, in the tables

5-13, 5-14 and 5-15, we can see that the iterations increase and the spectral condition is

disproportionately higher for all the contrasts.

5.1.6 Elasticity coarse projection in the coarse level for the elasticity

problem

In this case we take the first level of elasticity preconditioner described in equation 4-31 and

we modify the coarse level of the preconditioner,

M−1
E,1 +

[
R0

R0

]
A−1

0,E

[
R0

R0

]>
,

where

A0,E =

[
R0

R0

]
AE

[
R0

R0

]>
.
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And we solve the elasticity problem using this preconditioner(
M−1

E,1 +

[
R0

R0

]
A−1

0,E

[
R0

R0

]>)
AEuE =

(
M−1

E,1 +

[
R0

R0

]
A−1

0,E

[
R0

R0

]>)
bE.

For different values of the contrast we obtain the results in Tables 5-16, 5-17 and 5-18.

• Coefficient without channels that reach the domain border

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 15 5.2 15 5.2 15 5

1× 10−2 23 12 23 12 22 12

1× 10−4 28 19 29 19 28 19

1× 10−6 33 24 34 24 32 24

Table 5-16: Results of elasticity coarse projection in the coarse level for the elasticity problem

using coefficient I defined in Figure 2-5 and load forces in Figure 2-6 .

• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 15 5.2 15 5.2 15 5.2

1× 10−2 21 8.8 20 10 20 10

1× 10−4 21 9.3 20 11 20 10

1× 10−6 19 7.8 19 7.6 18 7

Table 5-17: Results of elasticity coarse projection in the coarse level for the elasticity problem

using coefficient II defined in Figure 2-7 and load forces in 2-8.

• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition Iterations Spectral condition

1 15 5.2 15 5.2

1× 10−2 39 73 35 72

1× 10−4 81 3.6× 102 69 3.6× 102

1× 10−6 97 2.4× 103 58 1.8× 102

Table 5-18: Results of elasticity coarse projection in the coarse level for the elasticity problem

using coefficient defined in Figure 2-9 and load forces in Figure 2-10.
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5.1.7 Enriching the coarse space with rotations

We enrich the coarse spaces used in the last preconditioner, we constructed the bases function

for the rotations described in the equation 5-3. The preconditioner enrich with rotations is,

M−1
E,1 +

[
R0,rot

R0,rot

]
A−1

0,E

[
R0,rot

R0,rot

]>
(5-5)

where

A0,E =

[
R0,rot

R0,rot

]
AE

[
R0,rot

R0,rot

]>
.

And we solve the next linear system(
M−1

E,1 +

[
R0,rot

R0,rot

]
A−1

0,E

[
R0,rot

R0,rot

]>)
AEuE =

(
M−1

E,1 +

[
R0,rot

R0,rot

]
A−1

0,E

[
R0,rot R0,rot

]>)
bE.

We get the results in Tables 5-19, 5-20 and 5-21 .

• Coefficient without channels that reach the domain border with coefficient

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 14 4.6 14 4.6 14 4.5

1× 10−2 21 11 22 11 20 11

1× 10−4 26 15 28 15 26 15

1× 10−6 31 19 32 19 30 19

Table 5-19: Results of the elasticity equation with rotations in coarse spaces using coefficient

I defined in Figure 2-5 and load forces in Figure 2-6.

• Coefficient with the high stiffness reach the boundary

Forcing term A Forcing term B Forcing term C

Coefficient Iterations Spectral condition Iterations Spectral condition Iterations Spectral condition

1 14 4.6 14 4.6 14 4.5

1× 10−2 18 6.2 17 6.2 17 6.1

1× 10−4 20 8.1 18 7.9 18 7.1

1× 10−6 19 7.2 19 11 18 7.7

Table 5-20: Results of the elasticity equation with rotations in coarse spaces using coefficient

II defined in Figure 2-7 and load forces in Figure 2-8.
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• High-contrast coefficient

Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 14 4.6 243 14 4.6 243

1× 10−2 30 18.4 387 28 18.3 387

1× 10−4 64 111.8 387 56 108.9 387

1× 10−6 82 374.8 387 58 140.8 387

Table 5-21: Results of the elasticity equation with rotations in coarse spaces using coefficient

III defined in Figure 2-9 and load forces in Figure 2-10.

For the following experiments we use the enriching the coarse space with rotations precon-

ditioner in section 5.1.7, that gave the best results to solve the elasticity equation. The

enriching the coarse space with rotations preconditioner does not decrease the iterations of

the preconditioner of two levels of elasticity, but is more computationally efficient because it

uses the base functions of heat equation and the number of iterations is lower than in the

other preconditioners presented.

In addition, we only use the high contrast coefficient, which is the most complicated coefficient

to solve the elasticity equation.

5.1.8 Randomized eigenvectors approximation

In this section we analyze the random method of eigenvectors seen in [37].

We consider an abstract variational problem, where the global bilinear form is obtained by

assembling local bilinear forms, see more in [17]. That is a(u, v) =
∑
Q

aQ(RQu,RQv), where

aQ(u, v) is a bilinear form acting on functions with supports being the coarse block Q. Define

the subdomain bilinear form aωi
(u, v) =

∑
Q⊂ωi

aQ(u, v). We consider the abstract problem

a(u, v) = F (v) for all v ∈ V.

We introduce {χj}, a partition of unity subordinated to coarse-mesh blocks and {ξi} a

partition of unity subordinated to overlapping decomposition, see in [17]. We also define the

mass bilinear form mωi
and the Rayleigh quotient Qabs by

mωi
(v, v) :=

∑
j∈ωi

a(ξiχjv, ξiχjv) and Qabs(v) :=
aωi

(v, v)

mωi
(v, v)

.

The snapshot space can be obtained by dimension reduction techniques or similar computa-

tions. For example, we can consider: In each subdomain ωi, i = 1, . . . , NS:



5.1 High contrast Coefficients 53

(1) Generate forcing terms f1, f2, . . . , fM randomly (
∫
ωi
f` = 0);

(2) Compute the local solutions −div(κ∇u`) = f` with homogeneous Neumann boundary

condition;

(3) Generate Wi = span{u`} ∪ {1, rx, ry};
(4) Consider Qgm with Wi in (3) and compute important modes.

The idea is to restrict the eigenvalue problem (3-5), and therefore (3-6) to the subspace Wi.

Consider the matrix Ui whose columns generate the subspace Wi = span{u`} ∪ {1, rx, ry}.
Then we can introduce the reduced size matrices,

ÃE

ωi

= UT
i AE

ωiUi,

and

M̃ωi = UT
i M

ωiUi.

Then, instead of (3-6) we can solve the smaller dimension eigenvalue problem

ÃE

ωi

ψ̃ωi = λ̃ωiM̃ωiψ̃ωi . (5-6)

As in [17] we then consider the approximations of the eigenvalues as

λωi ≈ λ̃ωi , (5-7)

and the approximation of the eigenvectors as,

ψωi ≈ Uiψ̃
ωi . (5-8)

We note that the eigenvalue problem (5-6) is of the size of the dimension of the space Wi (or

the number of snapshots, as they are call it in [17, 9]). Therefore the size of the eigenvalue

problem (5-6) is much smaller than the size of the full eigenvalue problem (3-5), see more in

[37].

Heat basis

This experiment is result of applying the random method for the heat part of the preconditioner

in section 5.1.7, we use 10 and 15 random vectors, see in Tables 5-22 and 5-23 for the coarse

heat space in 5-5.

• Using 10 random vectors
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Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 24 13.0 243 24 13.8 243

1× 10−2 35 26.9 387 32 26.8 387

1× 10−4 72 111.2 387 62 111.1 387

1× 10−6 90 388.3 387 69 276.7 387

Table 5-22: Elasticity coarse projection in the coarse level for the elasticity problem with

rotations for coefficient III, using random eigenvectors generation with 10 random

vectors.

• Using 15 random vectors

Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 25 16.0 243 25 15.6 243

1× 10−2 34 25.9 387 33 27.0 387

1× 10−4 72 112.5 387 62 111.4 387

1× 10−6 90 388.2 387 69 276.5 387

Table 5-23: Elasticity coarse projection in the coarse level for the elasticity problem with

rotations for coefficient III, using random eigenvectors generation with 15 random

vectors.

Elasticity basis

In this experiment, we use the two level additive Schwarz preconditioner for the elasticity

equation defined in 4-30. We apply the random method in the first level of the elasticity

preconditioner in equation 4-31. In the Tables 5-24 and 5-25 we present the results of the

elasticity equation with 10 and 15 random vectors respectively.

• Using 10 random vectors

Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 20 9.4 243 20 9.4 243

1× 10−2 32 23.7 387 30 22.9 387

1× 10−4 68 124.4 387 57 121.9 387

1× 10−6 72 141.2 387 63 141.0 387

Table 5-24: Two-levels domain decomposition for the elasticity equation for coefficient III,

using random eigenvectors generation with 10 random vectors.
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• Using 15 random vectors

Forcing term A Forcing term B

Coefficient Iterations Spectral condition dimA0 Iterations Spectral condition dimA0

1 20 9.4 243 20 9.4 243

1× 10−2 32 22.6 387 30 22.8 387

1× 10−4 68 124.3 387 58 122.0 387

1× 10−6 72 141.2 387 63 141.1 387

Table 5-25: Two-levels domain decomposition for the elasticity equation for coefficient III,

using random eigenvectors generation with 15 random vectors.

After analyzing all the possible combinations between the elasticity and heat preconditioners

for the elasticity problem with the high contrast coefficient, based on the number of iterations

of the conjugate gradient and on the spectral condition of the conditioned matrix, we can

compare the less cost preconditioners with the two-level elasticity preconditioner.

Based on the number of iterations, the best preconditioner is the two levels elasticity

preconditioner because for all the coefficients and applied forces the number of iterations is

lower. But we have to emphasize that the cases of the elasticity coarse projection enriched

with rotations in the coarse level preconditioner presented in 5.1.7, the random eigenvectors

generation with heat basis preconditioner and the random eigenvectors generation with

elasticity basis preconditioner have good results for the number of iterations of the conjugate

gradient for the high contrast coefficient. We also note that the spectral condition of the

conditioned matrix in these cases does not increase too much compared with the two levels

elasticity preconditioner, see tables 5-21, 5-22,5-23, 5-24 and 5-25. In the next chapter

we use these three preconditioners to solve topology optimization problems to test their

operation.
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Topology optimization consists in finding the efficient material distribution in different set-

tings. The first formal work on this topic is “Generating optimal topologies in structural

design using a homogenization method” (see [2]) that had a high impact on the industrial

applications. Other important work of Bendsøe is a compilation of topology optimization

theory, applications and the finite element code used to solve these applications in “Topology

optimization” (as we can see in [3]). The more recent review can be find in [28]. Several

articles have published freely available codes as in [27] and [1].

Perhaps the most popular approach to topology optimization so called the density technique,

illustrated in the Figure 6-1 where the structure is discretized and the density of each element

is calculated iteratively by an optimization algorithm, using multiple calls to the Finite

Element solver. The result is a distribution of material density that specifies the optimal

shape of the structure.

Figure 6-1: Categories of structural optimization types for the MBB beam, original shape on

left and optimized state on right. By [3, p.2].

The topology optimization goal is to improve a specified quantity of interest subject to a set

of constraints. To achieve this optimal behavior we must minimize or maximize a functional

that describes the desired property of the material subject to a boundary value problem

which describes the physical conditions. To solve the boundary value problem the Finite

Element Method is applied. For the optimization part, we use algorithms like the method of

moving asymptotes (MMA) among others.
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6.1 Minimum compliance design

Consider a mechanical element as a body occupying a domain Ωmat which is part of a larger

reference domain Ω (for a detailed exposition see [3]). We define the optimal design problem

in the reference domain Ω as finding the optimal stiffness tensor E(x) defined in the elasticity

problem, which is variable over Ω. The minimum compliance problem can defined as,

min
u∈u,C

(∫
Ω

F : u dΩ +

∫
Γ

σn : u dS

)
s.t.:∫

Ω

(C(x)(ε(u))) : ε(v) dΩ =

∫
Ω

F : v dΩ +

∫
Γ

σn : v dS for all u ∈ u,

Vol (Ωmat) ≤ V ∗,

C ∈ Cad

(6-1)

where u is the space of kinematically admissible displacement fields, V ∗ is a prescribed volume

of material and Ead is the set of admissible stiffness tensor for our problem. To solve (6-1)

we discretized the problem using FEM leading to the following discrete formulation,

min
u,Ce

c(u) = F>u

s.t.:

K(Ce)u = F,

Vol (Ωmat) ≤ V ∗,

Ce ∈ Cad

(6-2)

Here u and f are the displacement and load vectors, respectively. The local stiffness matrix

K depends on the stiffness CQ in the elements Q ∈ {1, 2, . . . , n} and K the global stiffness

matrix is written as:

K =

NQ∑
Q=1

KQ(CQ),

where KQ is the element stiffness matrix (see more in [3]).

6.1.1 Example: MBB Beam

Assume the following optimization problem: take a rectangular bar supported on both

extremes and under a downward force in the center of the bar as we can see in Figure 6-2.

Figure 6-2: MBB problem scheme, consider a bar supported on both extremes and under

the action of a force.
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We want to minimize the flexibility (or compliance) of the bar by combining two materials

but reducing one of the materials to a given percentage. So the problem is recast as to

determinate the best shape of the bar to achieve this objective. This problem arose from a

support beam from a layout aircraft produced by Messerschmitt-Bölkow-Blohm1, now MBB

beam is the classical problem to show in topology optimization.

Usually, the problem is reduced by symmetry to the half MBB beam as shown in Figure 6-3.

Figure 6-3: Half MBB problem scheme, due to symmetry the MBB problem can be reduced.

This means the domain is cut to the half of the original size.

To solve this problem several approaches can be taken, but historically, the evolution of

methods began with size optimization. It is a process that relies on shrinking or enlarging

parts of the structure in order to optimize it. Note that this optimization process conserves

the shape of the object and allow for minimal modifications which do not change significantly

the properties of the original structure.

Other popular approach is shape optimization which improves the last method by changing

the shape of the structure in order to find the optimum value of a cost functional. But shape

optimization maintains the topological properties of the structure fixed and it is unable to

modify it extensively. For example, this method does not allow the creation of void parts

inside the structure. The advantage of topology optimization is that it is possible to change

the topological properties of the structure which provides a great flexibility in the search for

the best topology.

6.2 Design Parametrization

To design an optimal structure of an isotropic material, we must determine which are the

places where there are material and voids (no material), we look for a black and white design

that can be manufactured using a certain amount of material.

The design should be on the Ω domain, and what we are looking for is to find Ωmat the

optimal set of points with material see more in [3]. The set of admissible values Cad describe

1Messerschmitt-Bölkow-Blohm (MBB) was a German aerospace manufacturer formed as the result of several

mergers in the late 1960s. Among its best-known products was the MBB Bo 105 light twin helicopter.

The company was bought by DASA (Deutsche Aerospace AG) in 1989, which is now part of Airbus, from

[34].
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the problem defined as:

Cijk = 1ΩmatC0
ijkl,

where Cijkl is the stiffness tensor, C0
ijkl have the proprieties of the material and

1Ωmat =

{
1 if x ∈ Ωmat,

0 if x ∈ Ω/Ωmat.

The maximum volume required is,∫
1Ωmat = V (Ωmat) ≤ V,

here V is a prescribed volume bound. Since the stiffness tensor, C0
ijkl ∈ L∞(Ω) and we want

to obtain a (0-1) result, we have to implement a penalty that turns the problem into a discrete

problem.

6.2.1 Modified SIMP approach

For problem (6-1) we consider a black and white representation of the solution, for which in

each element Q we assigned a physical density ρQ and 0 ≤ ρpQ ≤ 1

CQ(ρQ) = Cmin + ρpQ(C0 − Cmin), (6-3)

where C0 is the material stiffness, Cmin is a very small stiffness assigned to void regions in

order to ensure that the global stiffness matrix is possitive definite and invertable and p is

the penalty parameter (usually we use p = 3). The equation (6-3) is called modified SIMP

(Solid Isotropic material with penalization).

The minimum compliance problem (6-2) written in density terms and including the modified

SIMP is: 

min
u,CQ

c(u) = u>F =

NQ∑
Q=1

CQ(ρQ)u>QK0uQ

s.t.:

K(CQ)u = F,

CQ(ρQ) = Cmin + ρpQ(C0 − Cmin), ∀Q

fν(ρQ) =

∑
i∈NQ

ρivi

V
≤ V ∗,

0 ≤ ρQ ≤ 1

(6-4)

That intermediate densities are unfavourable for p = 3 in the sense that the stiffness obtained

is small compared to the cost (volume) of the material, see Figure 6-4. For the experiments

the volume constraint is active and penalty parameter p = 3 is big enough so that the design

we get is close to (0− 1), see more in [3].
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p = 1 p = 2

p = 3 p = 4

Figure 6-4: The optimized design obtained with a variant of the 88 line code, using the

modified SIMP approach for multiple penalty values p.

6.3 Solution methods

To solve a problem of topological optimization it is important to be efficient, so we use an

optimization adapted with certain variables, according to the problem.

6.3.1 Conditions of optimality

For the minimum compliance problem in (6-4) can be utilized to generate efficient com-

putational update schemes. The most common heuristic gradient based updating scheme

is,

ρK+1 =


max(0, ρK

Q −m) if ρQB
η
Q ≤ max(0, ρK

Q −m)

ρK
QB

η
Q if max(0, ρK

Q −m) ≤ ρK
QB

η
Q ≤ min(1, ρK

Q +m)

min(1, ρK
Q +m) if ρK

QB
η
Q ≥ min(1, ρK

Q +m)

(6-5)

Here ρK is the density iteration step K, η is a numerical damping efficient to stabilize the

iteration,m is a positive move limit (η and m are chosen by experiment, in order to obtain

convergence of the iteration), A useful value η and m is 0.5 and 0.2, respectively. And

BK

Q =

− ∂c

∂ρQ

λ
∂V

∂ρQ

(6-6)

where λ is Lagrangian multiplier, see more in [1, 3] and c is objective function.
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Sensitivity analysis

To solve the topological optimization problem we are interested in analyzing the variables of the

mathematical programming algorithm. The sensitivity analysis considers the displacement

fields are given implicitly in terms of the design variables through the equilibrium equation

and finding the derivatives of the displacements with respect to the design variables, see more

in [3].

We consider the optimization problem defined in the equation (6-4), where the equilibrium

equation is considered as part of the function

c(ρQ) = F>u,

To solve (6-4) we use (6-6), for which we need a gradient of the objective function, which in

turn can be obtained by taking the derivative of the equilibrium equation Ku = F , see more

in [3]. We use the adjoint method rewriting c(ρ) by adding the zero function,

c(ρ) = F>u− ũ>(Ku− F ),

where ũ is any arbitrary, but fixed real vector.

∂c

∂ρQ

=
(
F> − ũ>K

) ∂u
∂ρQ

− ũ>
(
∂K

∂ρQ

u

)
,

when ũ satisfies the adjoint problem F> = ũ>K, we can written u = ũ

∂c

∂ρQ

= −ũ>
(
∂K

∂ρQ

u

)
and we have,

∂c

∂ρQ

= −pρp−1
Q (C0 − Cmin)u>K0u. (6-7)

And the material volume sensitivities V with respect to the element density ρQ are given by:

∂V

∂ρQ

= 1, (6-8)

see more in [1, 3].

6.3.2 MMA

An alternative to Optimality Criteria is the Method of Moving Asymptotes (MMA) is a

method for non-linear programming in general and structural optimization, from [24] and

[29] in sense that they work with a sequence of simpler approximate subproblems, see more

in [3]. In each step of the iterative process, a strictly convex approximating subproblem

is generated and solved. The generation of these subproblems is controlled by so called
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“moving asymptotes”, which may both stabilize and speed up the convergence of the general

process. The Method of Moving Asymptotes allows us to solve problems with more than

one constraint, without significant changes to the code, and its implementation is easy as it

requires almost the same parameters as the Optimality Criteria.

In MMA the approximation or a function f of n real variables x = (x1, . . . , xn) around a

given iteration point x0 is,

f(x) ≈ f(x0) +
n∑
i=1

(
ri

Ui − xi
+

si
xi − Li

)
,

where the numbers ri and si are chosen as (see more in [3]),

if
∂f

∂xi
(x0) > 0, then ri = (Ui − x0

i )
∂F

∂xi
(x0) and si = 0,

if
∂f

∂xi
(x0) < 0, then si = −(x0

i − Li)2 ∂F

∂xi
(x0) and ri = 0

where the positive numbers Ui and Li control the range for the f approximation, this

parameters give a vertical asymptotes for the optimization problem. MMA approximation of

the compliance gives a subproblem after iteration step k as

min
ρQ

(ρk)−
NQ∑
Q=1

(ρkQ − LQ)2

ρQ − LQ

∂c

∂ρQ

(ρk)


s.t.:

fν(ρQ) =

∑
i∈NQ

ρivi

V
≤ V ∗,

0 ≤ ρQ ≤ 1

(6-9)

The MMA is the most popular optimization method, it improves the speed of convergence

and it is also more flexible than optimality criteria to add constraints, see in [3, 24] and [29].

6.4 Filtering

In topology optimization, two problems can appear, mesh dependence and checkerboard

patterns. The mesh dependency can be evidenced when we refine the mesh size and the

structure changes at the end of the optimization see in Figure 6-5. And the checkerboard

patterns appear due to bad numerical properties of the discretization, and then the solution

does not represent optimal solution. In this section we present different filters to solve both

problems.
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Figure 6-5: Topology Optimization without filter.

6.4.1 Sensitivity Filter

Sensitivity filters are efficient to solve problems with the dependence of the mesh. The

sensitivity filter modifies the sensitivities
∂c

∂ρQ

,

∂c

∂ρQ

=
1

max(γ, rmin − ‖xi − xQ‖)
∑

i∈NQ
ωQ,i

∑
i∈NQ

ωQ,iρi

∂c

∂ρi

(6-10)

where γ is the small number introduced in order to avoid division by zero, NQ is the set of

element I for which the center-to-center distance ‖xI − xQ‖ to element Q,

ω(xI) = rmin − ‖xI − xQ‖. (6-11)

and rmin is the radius filter, which usually is equal to 0.04 times the width of the domain.

In the next figures, we present some experiment in the half MBB problem with different

mesh size and sensitivity filter.

Figure 6-6: Half MBB problem with 75 × 25

cells and rmin = 3.

Figure 6-7: Half MBB problem with 150× 50

cells and rmin = 6.
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In Figure 6-6 we take a mesh with 75× 25 elements and rmin = 3 and in Figure 6-7 we take

the double elements, in both cases the topology optimization have the same results.

6.4.2 Density Filter

The most popular optimization method is density filter that will help us find the projection

filter. For the optimization problem we apply conditions for the density with the modified

SIMP, see more in [3]. Density filtering can be written in form of the convolution integral as:

ρ̃Q(x) =

∫
Ω

ω(x− y)ρQ(x),

where w(x) is a weighting function.

The density filter can be explicitly defined as,

ρ̃Q =

∑
i∈NQ

ω(xI)viρI∑
i∈NQ

ω(xI)vI

, (6-12)

where vI is volume in the element I and ω is defined in 6-11. And the derivative of the

density filter is:
∂ρ̃Q

∂ρj
=

w(xJ)vJ∑
j∈NQ

w(xQ)vQ

(6-13)

In the Figure 6-8, we apply the density filter for the half MBB problem, and we have a

structure with mesh independence.
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2000
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200 400 600 800 1000 1200

0.4995
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0.5005
Volume

200 400 600 800 1000 1200

0

0.2

0.4
Change of volume

Figure 6-8: Left: the optimized design obtained with a variant of the 88 line code, using

density filter. Right: evolution of parameters during the optimization.
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6.5 Projections

Implementing a filter in the optimization algorithm allows to eliminate the mesh dependency

and the checkerboard patterns of the optimal structure, but the filter radius allows gray areas

with intermediate density. To eliminate the gray areas and for the optimization process to be

a pure black and white design, we are going to implement a filter based on projections.

Heaviside projection filtering

All filtered density values ρ̃Q above a threshold η are projected to 1 and the values below

to 0. The projected physical density ¯̃ρQ is calculated by a smooth function controlled by a

projection parameter β and give as:

¯̃ρQ =


η[exp(−β(1− ρ̃Q/η))− (1− ρ̃Q/η) exp(−β)] 0 ≤ ρ̃Q ≤ η,

(1− η)[1− exp(−β(ρ̃Q − η)/(1− η))

+(ρ̃Q − η)/(1− η) exp(−β)] + η η ≤ ρ̃Q ≤ 1.

(6-14)

The expression 6-14 can be substitute the previous expression for smoothed Heaviside function

as:

¯̃ρQ =
tanh(βη) + tanh(β(ρ̃Q − η))

tanh(βη) + tanh(β(1− η))
, (6-15)

with β → ∞. The physical density ¯̃ρQ is used to compute the stiffness matrix and the

sensitivities are:

∂c

∂ρQ

=
∑
I∈NQ

∑
J∈NI

∂c

∂¯̃ρQ

∂¯̃ρQ

∂ρ̃Q

∂ρ̃Q

∂ρ̃Q

In the Figure 6-9 we have the optimal design for the half-MBB problem with Heaviside

projection filter.
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Figure 6-9: Left: the optimized design obtained with a variant of the 88 line code, using

Heaviside approach. Right: evolution of parameters during the optimization.

For the different η values we can find multiple projections. Two important projections are

obtained by replacing η = 0 and η = 1 in equation 6-14, resulting in the dilatation and

erosion operators respectively.

Dilate operator

The dilate operator in this discrete form is a max-operator i.e. the physical density of the

element Q takes the maximum of the densities in the neighborhood NQ. But this form is

not applicable in topology optimization, for that we take the continuous form of the dilate

operator like a Heaviside function approximated as:

¯̃ρQ

d
= 1− exp(βρQ)Q + ρQ exp(−β). (6-16)

Erode operator

The erode operator in this discrete form is a min-operator i.e. the physical density of element

Q takes the minimum of the densities in the neighborhood NQ. But this form is not applicable

in topology optimization, for that we take the continuous form of the erode operator like a

Heaviside function approximated as:

¯̃ρQ
e

= exp(β(1− ρQ)) + (1− ρQ) exp(−β). (6-17)

The threshold projections for η = 1 and η = 0 result in the high contrast filtered designs, and

we use the dilate and erode operator to reformulate the design problem in the next section,

see more in [32].
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6.6 Experiments of topology optimization

Experiment 1

For the first experiment, we take a square plane with homogeneous Dirichlet boundary

condition and distributed force over the domain, as in Figure 6-10. This is not a physically

realistic experiment but is a good example to test preconditioners as the topology optimization

result is a highly complex design.

Figure 6-10: Square plane with homogeneous Dirichlet boundary condition and distributed

force over the domain.

We use the topology optimization code with the MMA optimizer and the density filter to

solve the topology optimization problem in Figure 6-10. In addition, the volume fraction

is 0.3, the SIMP penalty is 3, the artificial Young’s modulus assigned to void regions is

Emin = 10−3, see [1], and the filter radius is rmin = 3.

Table 6-1 has the results of the topology optimization for the elasticity equation with different

preconditioners. We use a conjugate gradient method tolerance of 1× 10−6 with a fine mesh

of size 10 × 10 and coarse mesh 10 × 10. For the two levels elasticity preconditioner, the

random preconditioner with heat basis, and the random preconditioner with elasticity basis,

the maximum number of eigenvectors in each subdomain is λmax = 4. We use coarse basis

recalculation as in [37] and [26]. The iterations count is for the topology optimization

algorithm.
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Method Iterations Objective Function Coarse calculations

Without preconditioner 107 54.8158 —

Two-levels elasticity preconditioner 107 54.8158 17

Two-levels elasticity random preconditioner 107 54.8158 17

Two-levels heat preconditioner 107 54.8158 17

Two-levels heat random preconditioner 107 54.8158 16

Table 6-1: Results of the topology optimization reusing the coarse basis calculations.

In the Table 6-1, we see how all the tested methods achieve, in the same number of

iterations, the same objective function value. In Figure 6-11, we see the result of the topology

optimization for all cases.

Figure 6-11: Topology optimization of the elasticity equation, see problem scheme in Figure 6-

10.

In the Figures 6-12, 6-13, 6-14 and 6-15 we have the evolution of the objective function, the

volume fraction, the volume change in the optimization, the iterations of the preconditioned

conjugate gradient in each step of the optimization, the size of the coarse space, and (in the

blue points) the steps of the optimization in which the coarse space is calculated.
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Figure 6-12: Evolution of parameters in

the topology optimization

with a two levels elasticity

preconditioner.
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Figure 6-13: Evolution of parameters in the

topology optimization using a

preconditioner with heat basis

in the coarse space.
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Figure 6-14: Evolution of parameters in the

topology optimization using

a random preconditioner with

elasticity basis.
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Figure 6-15: Evolution of parameters in the

topology optimization using

a random preconditioner with

heat basis.

We can see in Figures 6-12, 6-13, 6-14 and 6-15 how the first three parameters evolve in

the same way for all the cases. We can also see how PCG iterations vary a lot in the first

optimization steps due to the variations in the design. As optimization iterations advance
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the PCG iterations stabilize. In the bottom plot we have the dimension of the coarse space.

Experiment 2

In this experiment, we take a square plane with homogeneous Dirichlet boundary condition

and two fix bars over the domain with nine load forces in each, as in Figure 6-16.

We use the topology optimization code with the MMA optimizer and the density filter to

solve the topology optimization problem in Figure 6-16. In addition, the volume fraction

is 0.5, the SIMP penalty is 3, the artificial Young’s modulus assigned to void regions is

Emin = 10−3, see [1], and the filter radius is rmin = 3.

L
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L
20
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L1
0

L

L
10

L
10

Figure 6-16: Square plane with homogeneous Dirichlet boundary condition and two fix bars

over the domain with nine load forces in each.

Table 6-2 has the results of the topology optimization for the elasticity equation with different

preconditioners, for example 6-16. We use a conjugate gradient method tolerance of 1× 10−6

with a fine mesh of size 10 × 10 and coarse mesh 10 × 10. For the two levels elasticity

preconditioner, the random preconditioner with heat basis, and the random preconditioner

with elasticity basis, the maximum number of eigenvectors in each subdomain is λmax = 4, in

the random preconditioner we take two different λ values, (9 and 12), and 15 snapshots. We
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use coarse basis recalculation as in [37] and [26]. The iterations count is for the topology

optimization algorithm.

Method Iterations Objective Function Coarse calculations

Without preconditioner 300 0.180 651 —

Two-levels elasticity preconditioner 300 0.180 631 22

Two-levels elasticity random preconditioner 300 0.180 861 19

Two-levels heat preconditioner 300 0.180 720 16

Two-levels heat random preconditioner 300 0.180 721 17

Table 6-2: Results of the topology optimization reusing the coarse basis calculations.

In the Table 6-2, we see how all the tested methods achieve, in the same number of

iterations, the same objective function value. In Figure 6-17, we see the result of the topology

optimization for all cases.

Figure 6-17: Topology optimization of the elasticity equation, see problem scheme in Figure

6-16.

We can see in Figures 6-18, 6-19, 6-20 and 6-21 how the first three parameters evolve in

the same way for all the cases. We can also see how PCG iterations vary a lot in the first

optimization steps due to the variations in the design. As optimization iterations advance

the PCG iterations stabilize. In the bottom plot we have the dimension of the coarse space.
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Figure 6-18: Evolution of parameters in

the topology optimization

of the elasticity equation

with a two levels elasticity

preconditioner.
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Figure 6-19: Evolution of parameters in the

topology optimization using a

preconditioner with heat basis

in the coarse space.

Figure 6-20: Evolution of parameters in the

topology optimization using

a random preconditioner with

elasticity basis.

Figure 6-21: Evolution of parameters in the

topology optimization using

a random preconditioner with

heat basis.
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7.1 Conclusions

Topology optimization is important to solve multiple problems in the industry. To solve

this type of problems we have to take a fine mesh to capture all the detail of the material

distribution which makes the convergence of the state problem at every iteration extremely

expensive. The use of preconditioners in this work shows that we can decrease the solver

time in such topology optimization problems.

The two-levels elasticity preconditioner constructed in chapters three and four shows the

decrease in the number of iterations of the conjugate gradient to solve the elasticity equa-

tion, which improves the calculation time in each step of the minimization in the topology

optimization problem. We must bear in mind that the calculation time of the basis that

constitute the coarse space has a significant computational cost. The presented alterna-

tive is to build lower cost preconditioners that mix heat preconditioners with elasticity.

These preconditioners require less computational cost because the heat equation has half the

parameters as the elasticity equation in two dimensions and also the two-levels heat precondi-

tioner has a good performance in heat topology optimization for problems, see more in [37, 26].

After testing several combinations of the heat preconditioner with the elasticity preconditioner

we obtained three possible preconditioners for the elasticity equation, elasticity coarse

projection in the coarse space enriching with rotations preconditioner, randomized eigenvectors

with heat basis preconditioner and randomized eigenvectors with elasticity basis preconditioner.

In topology optimization we tested in different experiments we obtained good results for

all preconditioners, re-utilization coarse basis, which means that we can apply this type of

preconditioners to reduce the number of iterations in the conjugate gradient in each step

of the minimization of the topology optimization and the calculation time in high contrast

problems.

7.2 Recommendations

In a future work, we could formally prove that the preconditioner with a second level formed

by heat basis enriched with rotations, randomized eigenvectors with heat and elasticity basis
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are a viable option to solve the elasticity equation for topology optimization problems and

and support the numerical results presented in this work.

For topology optimization problems we can select a suitable criterion for the calculation of

the number of basis in each subdomain for the elasticity equation, as it is in the heat equation

presented in [37]. We could also experiment with the re-utilization the coarse basis lower the

computational cost.
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