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Abstract

The world is essentially multidimensional, e.g., neurons, computer networks, Internet traffic,

and financial markets. The challenge is to discover and extract information that lies hidden

in these high-dimensional datasets to support classification, regression, clustering, and visua-

lization tasks. As a result, dimensionality reduction aims to provide a faithful representation

of data in a low-dimensional space. This removes noise and redundant features, which is

useful to understand and visualize the structure of complex datasets. The focus of this work

is the analysis of high-dimensional data to support regression tasks and exploratory data

analysis in real-world scenarios. Firstly, we propose an online framework to predict long-

term future behavior of time-series. Secondly, we propose a new dimensionality reduction

method to preserve the significant structure of high-dimensional data in a low-dimensional

space. Lastly, we propose an sparsification strategy based on dimensionality reduction to

avoid overfitting and reduce computational complexity in online applications.

Keywords: Dimensionality reduction; High-dimensional data; Kernel adaptive filte-

ring; Embedding; Gradient descent; Online sequential learning; Sparsification.
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Resumen

El mundo es esencialmente multidimensional, por ejemplo, neuronas, redes computationales,

tráfico de internet y los mercados financieros. El dasaf́ıo es descubrir y extraer información

que permanece oculta en estos conjuntos de datos de alta dimensión para apoyar tareas de

clasificación, regresión, agrupamiento y visualización. Como resultado de ello, los métodos

de reducción de dimensión pretenden sumunistrar una fiel representación de los datos en un

espacio de baja dimensión. Esto permite eliminar ruido y caracteŕısticas redundantes, lo que

es útil para entender y visualizar la estructura de conjuntos de datos complejos. Este traba-

jo se enfoca en el análisis de datos de alta dimensión para apoyar tareas de regresión y el

análisis exploratorio de datos en escenarios del mundo real. En primer lugar, proponemos un

marco para la predicción del comportamiento a largo plazo de series de tiempo. En segundo

lugar, se propone un nuevo método de reducción de dimensión para preservar la estructu-

ra significativa de datos de alta dimensión en un espacio de baja dimensión. Finalmente,

proponemos una estrategia de esparsificación que utiliza reducción de dimensionalidad para

evitar sobre ajuste y reducir la complejidad computacional de aplicaciones en ĺınea.

Palabras clave: Reducción de dimensionalidad; Datos de alta dimensión, Filtrado adap-

tativo kernel; Incrustación; Gradiente descendente; Aprendizaje secuencial en ĺınea;

esparsificación.
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Notation

The following table summarizes the notation used throughout this thesis.

Notation Description Examples

Scalars Small italic letters y, p, q

Vectors Small bold letters w, u, ω

Matrices Capital BOLD letters U , V

Time or iteration Subscript indices yt, ui,t
Scalar constants Capital ITALIC letters N , M , T
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Symbols

This is a list of the main symbols used throughout this thesis for ease of reference.

ut filter input at time or iteration t

ũt filter input at time or iteration t

yt desired output at time or iteration t

ht filter output at time or iteration t

U input domain

R the set of real numbers

RM M -dimensional real Euclidean space

Rm m-dimensional real Euclidean space

Jt correntropy cost function at time or iteration t

et output estimation error at time or iteration t

wt weight estimate at time or iteration t (a vector in an Euclidean space)

η step-size parameter

ϕ(·) a mapping induced by a reproducing kernel

F feature space induced by the kernel mapping

κ(·, ·) kernel function

(·)> vector or matrix transposition

ω weight estimate at time or iteration t (a vector in a feature space)

C dictionary or center set

‖·‖ Euclidean norm

| · | absolute value

ε quantization-size parameter

σ kernel-size parameter

α dictionary weights

N number of samples

U high-dimensional finite set

M number of features in a high-dimensional space

V low-dimensional representation

m number of features in a low-dimensional space

P kernel matrix that contains high-dimensional similarities

Q kernel matrix that contains low-dimensional similarities

p high-dimensional similarity

q low-dimensional similarity

v low-dimensional vector

T number of iterations
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Abbreviations

Here is a list of the abbreviations used in this document.

LMS least-mean-square algorithm

KAF kernel adaptive filters

RKHS reproducing kernel Hilbert spaces

KLMS kernel least-mean-square algorithm

NNs neural networks

WTI west Texas intermediate

SMAPE symmetric mean absolute percentage error

FNN feedforward neural network

EMD empirical mode decomposition

SBM slope-based methods

PCA principal component analysis

LLE locally linear embedding

LEM laplacian eigenmaps

MDS multidimensional scaling

ISOMAP isometric feature mapping

SNE stochastic neighbor embedding

t-SNE stochastic neighbor embedding with Student’s t-distribution

MSE mean squared error
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1. Preliminaries

This chapter is intended to work as an introduction to the research problem and the upco-

ming chapters. Firstly, we introduce the research problem motivation. Secondly, we describe

the issues under consideration. Thirdly, we present previous proposed solutions and their

limitations. Lastly, we list the objectives and contributions of this thesis.

1.1. Motivation

Machine learning is at the cross-road of disciplines like artificial neural networks, statistics,

applied mathematics, and computer science. It aims to automate, from an engineering point

of view, the construction of an analytical model (Salaken et al., 2017). The main tasks of

machine learning are (Bishop, 2006): (1) classification; (2) regression; (3) clustering; (4)

adaptive filtering; (5) visualization. These tasks are used to discover and extract information

that lies hidden in large amounts of data. Finding this information is not a trivial task as

datasets are usually high-dimensional (Popov and Heß, 2016). In this sense, dimensionality

reduction aims to preserve, as much as possible, the significant structure of high-dimensional

data in a low-dimensional space. This preservation removes noise and redundant features,

which is useful in the five machine learning tasks mentioned above (Hu et al., 2017; Liu

et al., 2018). In practice, dimensionality reduction methods provide a way to understand

and visualize the structure of complex datasets.

In a demographic study, for example, it may be easy to find a correlation between the gross

annual income of people and their level of education. Note that, in this example, there are

two features, i.e., gross annual income and level of education. However, in real-life scenarios,

there are usually more than two features, e.g., age, gender, political affiliation, etc. Then, it

will be natural to ask questions like: (1) are all these features important?; (2) is there any

correlation between these features?; (3) is there any way to “summarize” all these features?

Thus, with more variables, it becomes more difficult to answer the previous questions, i.e.,

the higher the number of features, the harder it gets to visualize the data and then work

on it. In contrast, when data is reduced to two or three dimensions, it is possible to plot,

visualize, analyze, and observe patterns more clearly (Lee and Verleysen, 2007).

The use of high-dimensional data to solve real-life problems is quite extensive. Here, we list
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some of them: (1) Netflix prize 1, where the task was to predict whether someone will enjoy

a movie based on how much they liked or disliked other movies; (2) Passenger screening cha-

llenge 2, which was a competition launched by the U.S. Department of Homeland Security

to identify threats at airports; (3) Santander product recommendation 3, which was a cha-

llenge launched by Santander bank to predict which products their existing customers will

use in the next month based on their past behavior and that of similar customers; (4) Cdis-

count challenge 4, launched by the company Cdiscount to build a model that automatically

classifies the products based on their images; (5) Trading challenge 5, it was a forecasting

competition to predict the stock market’s short-term response following large trades.

In a local context, the research group Signal Processing and Recognition of the Universidad

Nacional de Colombia has been working on: (1) biomedical data to support diagnostic assis-

tance (Alvarez-Meza et al., 2012; Martinez-Vargas et al., 2012; Giraldo-Suarez et al., 2016);

(2) human activity recognition (Valencia-Aguirre et al., 2012); (3) video analysis (Álvarez-

Meza et al., 2013).

1.2. Problem Statement

The main challenge, when working with high-dimensional data, is to preserve its significant

structure in a low-dimensional space (Wang et al., 2017a). This is useful in regression tasks

and exploratory data analysis (Hu et al., 2017; Liu et al., 2018), which is the focus of this

thesis. In particular, the analysis of high-dimensional data allows to: (1) have information

about the long-term future behavior in time series, which is helpful in financial markets,

weather forecasting, and other prediction tasks (Pietrzak et al., 2017; Yang et al., 2017;

Brock, 2018); (2) remove noise and redundant features, which is useful to understand and

visualize the structure of complex datasets (Lee and Verleysen, 2007); (3) avoid overfitting 6

and reduce computational complexity in online applications (Ashiquzzaman et al., 2018).

Firstly, a long-term prediction algorithm, needs to consider complex dependencies between

observations, which are separated by long-time intervals (Ben Taieb et al., 2014). These

algorithms have two challenges (Taieb et al., 2010): (1) prediction strategy; (2) model selec-

tion. On the one hand, there are three prediction strategies (Bontempi, 2008), i.e., iterated,

direct and mimo. However, the main drawback of these strategies is the accumulation of

errors through iterations, which means poor performance in online applications (Chevillon,

1https://www.netflixprize.com/index.html
2https://www.kaggle.com/c/passenger-screening-algorithm-challenge
3https://www.kaggle.com/c/santander-product-recommendation
4https://www.kaggle.com/c/cdiscount-image-classification-challenge
5https://www.kaggle.com/c/AlgorithmicTradingChallenge
6Overfitting happens when a model learns a finite number of data so well, that it negatively impacts the

performance of the model on new data.
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2007; Zhang et al., 2014). On the other hand, the models are generally linear and nonlinear,

e.g., autoregressive moving average (Tiao and Xu, 1993) and neural networks (Vapnik and

Izmailov, 2017). However, their application in prediction tasks is highly conditioned to the

assumption that test data has similar samples as the training data (Taieb et al., 2012).

Secondly, dimensionality reduction methods have proven useful to remove noise and redun-

dant features (Ye et al., 2016; Hu et al., 2017; Liu et al., 2018). There are two main challenges

in these methods (Lee and Verleysen, 2007): (1) manifold 7 structure; (2) embedding 8 pre-

servation. The main problem is how to measure or characterize the structure of a manifold to

preserve its embedding. On the one hand, the manifold structure is usually measured using

variance preservation (Jolliffe, 1986), dot product preservation (Borg and Groenen, 2005),

affinity matrices (Nadler et al., 2006), and similarity preservation (Van Der Maaten, 2014).

Although these methods have proven useful in a wide variety of real-world problems (Chen

et al., 2016b; Sun and Wen, 2017), their success is subject to (Peluffo Ordoñez et al., 2014):

(1) data points densely sampled; (2) tune several parameters for each dataset. On the other

hand, the embedding preservation is calculated using Mercer kernels (Scholkopf and Smola,

2001), Pearson’s chi-square test (Slakter, 1965), Kullback-Leibler (Joyce, 2011) or Jensen-

Shannon divergences (Fuglede and Topsoe, 2004). However, the selection of one method or

another is still an open issue (Álvarez-Meza et al., 2017).

Lastly, the main bottleneck of online prediction algorithms is that complexity increases with

the number of samples (Chen et al., 2012b). Thus, the challenge is to select only an impor-

tant subset of data to train the model (Honeine, 2015), which is also known as sparsification.

There are two main sparsification approaches (Liu et al., 2011): (1) elimination, e.g., support

vector machines (Vapnik, 2013), regularization networks (Evgeniou et al., 2000), relevance

vector machines (Tipping, 2001), and least-squares support vector machines (Suykens et al.,

2000); (2) construction, e.g., quantized kernel least-mean-square (Chen et al., 2012b) and

variants (Zheng et al., 2016). The sparsification criterion determines whether or not a new

sample is “important” to train the model. On the one hand, if this criterion is too restrictive,

then the model may not be trained correctly. On the other hand, if the criterion is relaxed,

then sparsification no longer makes sense (Liu et al., 2011).

Consequently, this thesis aims to address the following research problems: i) How to improve

prediction tasks to infer the future behavior of time-series under noisy and non-stationary

conditions?; ii) How to preserve the significant structure of high-dimensional data in a low-

dimensional space to enhance the performance of a pattern recognition system?; iii) How

to use low-dimensional representations in online prediction tasks to avoid overfitting, reduce

computational complexity, and provide stable solutions in real-life scenarios?

7In practice, a manifold is the underlying support of data distribution.
8Representation of a topological object, like a manifold, in a certain space.
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1.3. Previous Work

This section describes the scientific work related to the research problems (see Section 1.2)

of this thesis. Note that there is a subsection for each research problem.

1.3.1. Research Problem 1: long-term future behavior

The prediction of time series is of great interest because it can guide decisions in many

economic or industrial fields (Coussement et al., 2017; Brock, 2018). Predictions are usually

obtained from a sequence of past observations, also known as time-series (Weigend, 2018).

The further in the future you can predict, the more useful the predictions will be (Xiong

et al., 2013). This is what we call long-term future behavior or prediction of several steps

ahead. However, the design of a prediction algorithm for several steps ahead is not a tri-

vial task, i.e., complex dependencies between observations, accumulative errors, and loss of

accuracy (Liu, 2009). Additionally, these algorithms have two challenges (Ben Taieb et al.,

2014): (1) how to select the prediction strategy; (2) how to choose the model to perform the

predictions.

Firstly, there are three commonly used prediction strategies (Taieb et al., 2010): (1) Iterated,

here a one-step-ahead predictor is iterated many times to obtain several predictions in the

future. That is, the future series value is estimated and then this value is fed back as an

input to the following prediction. Thus, the predictor takes estimated values as inputs, which

means negative consequences in terms of error propagation, e.g., recurrent neural networks

and variants (Zaremba et al., 2014; Hardy and Buonomano, 2018); (2) Direct, this strategy

estimates a set of prediction models, each returning a direct prediction, which means higher

functional complexity than iterated ones, e.g., the combination of k-nearest neighbors (Cun-

ningham and Delany, 2007), mutual information (Peng et al., 2005), and nonparametric

noise estimation methods (Sorjamaa et al., 2007); (3) Mimo, unlike the previous strategies,

it returns a vector of future values in a single step, e.g., locally constant method for multi-

output regression (Bontempi and Taieb, 2011). This strategy avoids the error accumulation

of iterated and the conditional independence assumption of direct (Taieb et al., 2010).

Secondly, the model to perform long-term predictions is usually: (1) linear, e.g., autore-

gressive moving average (Erdem and Shi, 2011; Isufi et al., 2017), simplified autoregressive

moving average (Oliveira et al., 2018), and autoregressive integrated moving average (Zou

et al., 2017). However, these models may not be adequate to characterize the stochastic

nature of real-world data (Chen and Yu, 2014); (2) nonlinear, e.g., long short-term me-

mory (Hochreiter and Schmidhuber, 1997), extreme learning machine (Huang et al., 2006),

feed forward neural networks (Ketkar, 2017; Ojha et al., 2017), and echo state networks (Jae-

ger, 2007; Chitsazan et al., 2017; Gallicchio and Micheli, 2017). Although nonlinear models
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based on neural networks have shown high tolerance to noisy conditions (Chen et al., 2013),

their application in prediction tasks is subject to the assumption that test data has similar

samples as the training data (Taieb et al., 2012).

Kernel-based adaptive filters, like neural networks, are nonlinear approximators. They com-

bine the universal approximation property of neural networks and the convex optimization of

linear adaptive filters. In contrast to neural networks, kernel-based adaptive filters are non-

parametric, have convex optimization, and moderate computational complexity (Liu et al.,

2010). These algorithms, also known as kernel adaptive filters (KAF), operate in a very

special Hilbert space of functions called a reproducing kernel Hilbert space (RKHS). The

operation with such functions become much easier in RKHS if the computation is restricted

to inner products, which is the idea behind kernel methods. The following KAF algorithms

have proven to be an alternative in time series prediction: (1) kernel least-mean-square (Liu

et al., 2008), which is the simplest among the family of KAF; (2) kernel affine projection (Liu

and Pŕıncipe, 2008), which provides a unifying model for several neural network techniques,

including kernel least-mean-square algorithms, kernel adaline, and regularization networks;

(3) kernel recursive least-squares (Engel et al., 2004), this algorithm performs linear regres-

sion in a high-dimensional feature space induced by a Mercer kernel (Scholkopf and Smola,

2001); (4) extended kernel recursive least-squares (Liu et al., 2009), which implements a

general linear state model in RKHS; (5) quantized kernel least-mean-square (Chen et al.,

2012b) and variants (Chen et al., 2012a; Zhao et al., 2013; Zheng et al., 2016; Luo et al.,

2017), which aims to reduce the computational complexity of KAF algorithms. However, as

far as we know, there have not been previous work studying how to integrate KAF algorithms

with Mimo strategies to predict long-term future behavior of time-series.

1.3.2. Research Problem 2: dimensionality reduction

Dimensionality reduction aims to provide a faithful representation of data in a low-dimensional

space (Paul and Chalup, 2017). These methods have found extensive application in diverse

areas, such as information retrieval (Zhang et al., 2018a; Zhuo et al., 2014), computer vi-

sion (Cassisi et al., 2012; Simão et al., 2017), compressive sensing (Gao et al., 2012), and

streaming data (Na and Lee, 2014). There are two main challenges in dimensionality reduc-

tion methods (Lee and Verleysen, 2007): (1) how to measure the underlying support of data

distribution, which is also known as manifold; (2) how to preserve the representation of a

topological object, like a manifold, in a certain space.

The first challenge is to find relationships in the high-dimensional and low-dimensional spa-

ces, which are usually calculated using: (1) variance preservation, e.g., principal component

analysis (PCA) (Jolliffe, 1986); (2) dot product preservation, e.g., classical multidimensional

scaling (MDS) (Borg and Groenen, 2005); (3) weighted distance preservation, e.g., nonlinear
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variants of MDS (Sammon, 1969); (4) affinity matrices, e.g., Laplacian eigenmaps (Belkin

and Niyogi, 2002), locally linear embedding (Roweis and Saul, 2000), diffusion maps (Nad-

ler et al., 2006), and isometric feature mapping (Isomap) (Lee et al., 2004); (5) similarity

preservation, e.g., stochastic neighbor embedding (SNE) (Hinton and Roweis, 2003) and va-

riants (Maaten and Hinton, 2008; Van Der Maaten, 2014). Although these methods have

proven useful in a wide variety of real-world problems (Sadatnejad and Ghidary, 2016; Chen

et al., 2016b; Sun and Wen, 2017), their success is subject to (Tsai, 2010; Peluffo Ordoñez

et al., 2014): (1) a reliable local neighborhood; (2) data points densely sampled; (3) tune

several free parameters for each data set.

The second challenge, in dimensionality reduction methods, is how to measure the mismatch

between the high-dimensional and low-dimensional representations, i.e., embedding preserva-

tion. This mismatch is usually calculated using Mercer kernels (Scholkopf and Smola, 2001),

Pearson’s chi-square test (Slakter, 1965), Kullback-Leibler (Joyce, 2011) or Jensen-Shannon

divergences (Fuglede and Topsoe, 2004). For example, a spectral dimensionality reduction

method proposes to preserve the Renyi entropy in the input space using a kernel-based es-

timator (Shi et al., 2015), i.e., the Renyi entropy is expressed in terms of projections onto

principal axes in kernel feature space. A recent study proposes a new dimensionality re-

duction method (Álvarez-Meza et al., 2017), where Mercer kernels are used to measure the

manifold structures and the SNE method is combined with a kernel-based entropy crite-

rion to preserve the embedding. On the one hand, due to the Mercer kernels, kernel-based

methods creates symmetric and positive-definite matrices. On the other hand, due to the

Kullback-Leibler divergence, SNE-based techniques provide asymmetric similarities. In other

words, the manifold structure is measured using a symmetric strategy, while the embedding

preservation is computed with an asymmetric technique. Consequently, the universal ap-

proximating capability and numeric stability, provided by some Mercer kernels (Liu et al.,

2011), may be affected by the asymmetry of SNE-like techniques. This means that poor

performance, in the preservation of global data structures, can be expected.

1.3.3. Research Problem 3: sparsification

The baseline solutions to perform prediction tasks are the statistical methods, mostly emplo-

ying some improved versions of regressive models (Yang et al., 2018). However, their imposed

analytic models frequently face numerous restrictions when dealing with non-stationarities

and nonlinearities of data (Chen and Yu, 2014). To overcome nonlinearities, data-driven

approaches are widely used like Neural Networks (NN), employing one or more layers of

non-linear units to predict outputs. Nonetheless, NN algorithms tend to demand long trai-

ning time and may get stuck in local minima (Ren et al., 2015).
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Other data-driven approaches that have proven useful in prediction tasks are the kernel

methods, which embed data into a potentially infinite dimensional feature space. In contrast

to NNs, kernel-based adaptive filters have convex optimization and moderate computational

complexity. Even that the choice of a kernel is non-trivial and does usually depend on the

specific application, the kernel methods pose three main open issues (Chen et al., 2012b): i)

selection of an appropriate kernel bandwidth; ii) step-size parameter tuning; iii) selection

of samples to train the model.

Having significant influence on the learning performance, the kernel bandwidth controls the

mapping smoothness and can be set manually or estimated in advance by Silverman’s ru-

le (Sheather, 2004), penalizing functions (Härdle, 1990), and cross validation (An et al.,

2007). For determining an optimal bandwidth in kernel-based adaptive filters, however, an

approximation in a joint space must be performed, which is different from density estima-

tion. Thus, a stochastic gradient-based bandwidth optimization is developed in (Chen et al.,

2016a), showing that the variable bandwidth fosters the kernel-based adaptive filters to con-

verge faster and achieve better accuracy. Yet, joint optimization of bandwidth and learning-

rate parameters remains an open matter. Another parameter to optimize is the step-size

that reflects a tradeoff between misadjustment and speed of adaptation. If this parameter is

too large, the risk of overfitting increases, while a small step-size decreases misadjustment,

but also gives a longer convergence time. A variety of adaptive step-size methods have been

proposed to improve performance of the standard least-mean-square algorithm (Li and Ha-

mamura, 2015; Niu and Chen, 2018). However, these methods may not work properly on

kernel-based adaptive filters, as they originate from a different problem (Chen et al., 2016a).

Thus, this parameter is usually calculated off-line, meaning that it remains unchanged th-

rough iterations (Zheng et al., 2016). Lastly, the main bottleneck of kernel-based adaptive

filters is that computation scales with the number of samples (Chen et al., 2012b). These

algorithms train the model using a sequence of input vectors with their target predictions.

Thus, the aim is to select only an important subset of the training data, also known as dic-

tionary, to train the model (Honeine, 2015). Samples stored in the dictionary should cover,

as much as possible, the area where new samples are likely to appear. In practice, this means

to store “sparse” samples, which is why this technique is also known as sparsification (Zhang

et al., 2018b).

There are two main sparsification approaches (Liu et al., 2011): (1) elimination, where all

samples are stored in the dictionary and then some of them are eliminated by solving an opti-

mization problem, e.g., support vector machines (Vapnik, 2013), regularization networks (Ev-

geniou et al., 2000), relevance vector machines (Tipping, 2001), and least-squares support

vector machines (Suykens et al., 2000); (2) construction, where the algorithm starts with

an empty dictionary and gradually adds new samples, according to some criterion, during

the learning process, e.g., quantized kernel least-mean-square (Chen et al., 2012b) and va-
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riants (Zheng et al., 2016). The challenge is to design a suitable sparsification criterion for

online prediction. However, if this technique is too restrictive, the model may not be trai-

ned correctly and poor performance can be expected, while if the technique is relaxed, then

sparsification no longer makes sense (Liu et al., 2011).
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1.4. Objectives

1.4.1. General Objective

To develop a kernel-based framework to analyze high-dimensional data for the support of

regression tasks within continuous adaptation scenarios. The framework must identify com-

plex dependencies between observations to infer long-term future behavior of noisy and non-

stationary time-series. In addition, the significant structure of high-dimensional data must

be preserved, as much as possible, in a low-dimensional space to enhance the performance

of pattern recognition systems within the context of real-life scenarios.

1.4.2. Specific Objectives

– To develop a kernel-based approach to infer the long-term future behavior of noisy and

non-stationary time-series. The proposed approach must highlight the inherent complex

dynamics of continuous adaptation scenarios and provide stable solutions within the

context of real-life applications.

– To propose a new kernel-based dimensionality reduction approach to preserve the sig-

nificant structure of high-dimensional data in a low-dimensional space. The proposed

approach must remove noise and redundant features from high-dimensional data to

support regression tasks.

– To build a kernel-based approach for online prediction tasks using low-dimensional

representations from high-dimensional data to reduce computational complexity and

provide stable solutions in real-life scenarios.
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1.5. Contributions

Considering the results of the proposed models, we highlight the following contributions of

this thesis:

– A kernel-based framework to predict long-term future behavior in time-

series is proposed. The method is able to capture complex dynamics within con-

tinuous adaptation scenarios. The proposed approach is validated on two real-world

datasets, showing its ability to provide stable solutions in short, medium, and long-term

prediction tasks (See Chapter 3).

– A new dimensionality reduction method that uses a Mercer kernel to mea-

sure the manifold structures. Additionally, a kernel-based cost function is proposed

to quantify the embedding preservation. In contrast to other dimensionality reduction

approaches, the proposed method is easy to implement in different datasets due to its

small number of hyper-parameters. The method is validated on both synthetic and

real-world datasets. Simulation results show that our proposal preserves the global

structures in a variety of datasets (See Chapter 4).

– A framework that addresses three well-known problems of kernel-based

adaptive filters. In contrast to similar methods, the proposed framework sequen-

tially optimize the kernel bandwidth and step-size parameters using stochastic gradient

algorithms that maximize the correntropy function (See Chapter 5).

– A sparsification approach based on dimensionality reduction is proposed to

remove redundant samples from high-dimensional data within continuous

adaptation scenarios. The framework is validated on both synthetic and real-world

datasets. Simulation results show that our proposal reduce computational complexity

and provide stable solutions in real-world applications (See Chapter 5).



2. Background

This chapter briefly describes the technical background used throughout this thesis. Firstly,

we provide the mathematical background on the use of kernel functions for machine lear-

ning applications. Secondly, we introduce the simplest and most commonly used form of

an adaptive filtering algorithm. Lastly, we formally describe some of the most-well known

dimensionality reduction techniques. The content of this chapter is based on the works

of (Scholkopf and Smola, 2001; Lee and Verleysen, 2007; Liu et al., 2010).

2.1. Reproducing kernel Hilbert spaces

Mercer kernels are continuous, symmetric, and positive-definite functions (Scholkopf and

Smola, 2001). The most commonly known are the Gaussian (Equation (2-1a)) and the poly-

nomial kernels (Equation (2-1b))

κ (u,u′) = exp
(
−‖u− u′‖2

/2σ2
)

(2-1a)

κ (u,u′) =
(
u>u′ + 1

)p
(2-1b)

where κ : U × U → R denotes the Mercer kernel, U is the input domain, ‖·‖ stands for `2

norm, σ∈R+ is the bandwidth that controls the mapping smoothness, p is the polynomial

degree, while u,u′∈U are input vectors. More formally (Liu et al., 2011), let H be any vector

space of all real-valued functions of u that are generated by the kernel κ (u, ·). In addition,

suppose that the following two functions are picked from the space H

h =
l∑

i=1

= aiκ (ci, ·) (2-2a)

g =
m∑
i=1

= bjκ (c̃i, ·) (2-2b)

Thus, from Equations (2-2a) and (2-2b), the following bilinear form is obtained

〈h, g〉 =
l∑

i=1

m∑
j=1

aiκ (ci, c̃i) bj (2-3)

Note, when g (·) = κ (u, ·), the above expression leads to the reproducing property (Szafra-

niec, 2015) shown in Equation (2-4)
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〈h, κ (u, ·)〉 =
l∑

i=1

aiκ (ci,u) = h (u) (2-4)

The kernel κ (u,u′), which represents a function of the two vectors, is called a reproducing

kernel of the vector space H if the following two conditions are met (Wu et al., 2015): i)

for every u∈U, κ (u,u′) as a function of the vector u′ belongs to H; ii) it satisfies the

reproducing property. The previous conditions are satisfied by the Mercer kernel, thereby

endowing it with the designation “reproducing kernel”. Thus, if the inner product space

H, in which the reproducing kernel space is defined, is also complete, then it is called a

reproducing kernel Hilbert space (RKHS). In this sense, the Mercer theorem (Burges, 1998)

states that any reproducing kernel κ (u,u′) can be expanded as follows:

κ (u,u′) =
∞∑
i=1

ζiφi (u)φi (u
′) (2-5)

where ζi and φi are the eigenvalues and the eigenfunctions, respectively. The eigenvalues are

non-negative. Therefore, a mapping ϕ can be constructed as

ϕ : U→ F (2-6)

ϕ (u) =
[√

ζ1φ1 (u) ,
√
ζ2φ2 (u) , . . .

]
(2-7)

Note, in the machine learning literature, ϕ is usually treated as the feature mapping and

ϕ (u) is the transformed feature vector lying in the feature space F, which is an inner product

space (see Figure 2-1).

Figure 2-1.: Nonlinear mapping ϕ(·) from the input space to the feature space.

That is, any Mercer kernel κ(u,u′), induces a mapping ϕ such that the following relationship,

the kernel trick (Scholkopf and Smola, 2001), holds:

ϕ(u)>ϕ(u′) = κ(u,u′) (2-8)

The feature space F is essentially the same as the RKHS induced by the kernel by identifying

ϕ (u) = κ (u, ·), which are the bases of the two spaces, respectively. Thus, as suggested in (Liu

et al., 2011), we do not distinguish F and H if no confusion is involved.
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2.2. Linear Adaptive Filters

The simplest and most commonly used form of an adaptive filtering algorithm is the so-called

least-mean-square (LMS) algorithm. Let us assume that the goal is to learn a continuous

input-output mapping f : U → R based on a sequence of input-output samples {u1, y1},
{u2, y2}, . . . , {ut, yt}, where ut is an M -dimensional input vector that belongs to the input

domain U ⊂ RM , and yt∈R is the output time series over the time domain. The LMS

algorithm operates by minimizing the instantaneous cost function Jt = 1
2
e2
t , where et is

defined as follows:

et = yt −w>t−1ut (2-9)

The optimal weight wt can be computed using the instantaneous version of the gradient

descent, that is,

wt = wt−1 − η
[

∂

∂wt−1

Jt

]
wt = wt−1 − η [−etut]
wt = wt−1 + ηetut

where η∈R+ is the step-size parameter. Consequently, the LMS algorithm assumes a linear

model and uses the following procedure (Haykin et al., 2003):
w0 = 0

et = yt −w>t−1ut

wt = wt−1 + ηetut

(2-10)

However, if the mapping between y and u is highly nonlinear, then poor performance can

be expected from LMS.

2.3. Kernel Adaptive Filters

Kernel adaptive filters (KAF) provide a generalization of linear adaptive filters as the later

become a special case of the former when expressed in the dual space. The learning rule is a

combination of the error-correction and memory-based learning. These algorithms reproduce

kernel Hilbert spaces (RKHS), which uses a linear adaptive structure to obtain nonlinear

filters in the input space.

The kernel least-mean-square (KLMS) algorithm is the simplest among the family of KAF.

To overcome the limitation of linearity in LMS, KLMS employs a kernel-induced mapping

ϕ : U → F to transform the input ut into a high-dimensional feature space F, which is an

inner product space, as ϕ(ut).
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When the LMS algorithm is applied to the sample sequence {ϕ(ut), yt}, the following se-

quential rule is obtained:

ω0 = 0

et = yt − ω>t−1ϕ(ut)

ωt = ωt−1 + ηetϕ(ut)

where ωt = η
∑t

j=1 ejϕ(uj) is the weight vector in F at iteration t. Thus, when u′ arrives to

the filter, the output can be computed as follows:

ω>t ϕ(u′) =

[
η

t∑
j=1

ejϕ(uj)
>

]
ϕ(u′)

ω>t ϕ(u′) = η
t∑

j=1

ej
[
ϕ(uj)

>ϕ(u′)
]

Note that, ϕ(uj)
>ϕ(u′) is actually the kernel trick (Equation (2-8)). Thus, the filter output

is computed in the input space by kernel evaluations as:

ω>t ϕ(u′) = η
t∑

j=1

ejκ(uj,u
′)

Then, if ft is denoted as the estimate of the input-output nonlinear mapping at time t, the

following sequential rule in the original space for KLMS is obtained (Liu et al., 2010):
f0 = 0

et = yt − ft−1(ut)

ft = ft−1 + ηetκ(ut, ·)
(2-11)

This sequential rule produces a growing radial-basis-function network by allocating a new

kernel unit for every new sample with ut as the center and ηet as its coefficient.

2.4. Dimensionality Reduction

The aim of dimensionality reduction approaches is to find a low-dimensional representation

from a high-dimensional space so that the performance of a pattern recognition system

can be improved (Lee and Verleysen, 2007). Thus, several techniques such as Locally Linear

Embedding (LLE) (Roweis and Saul, 2000), Laplacian Eigenmaps (LEM) (Belkin and Niyogi,

2002), and Isometric Feature Mapping (Isomap) (Lee et al., 2004) have been developed. In

the following sections, some of the most well-known dimensionality reduction techniques are

described.
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2.4.1. Locally Linear Embedding – LLE

This technique aims to compute a low-dimensional embedding using simple geometric in-

tuitions. That is, nearby points in the high-dimensional space should remain nearby in the

low-dimensional representation (Roweis and Saul, 2000). Let U={ui∈RM :i∈[1, N ]} be a

high-dimensional finite set, containing M features extracted at N samples, for which a low-

dimensional representation, V ={vi∈Rm:i∈[1, N ]}, must be obtained, so that it holds that

m ≤M . The LLE procedure has the following stages:

1. The k-nearest neighbors per point are searched and measured by Euclidean distance;

2. Compute the weight matrix W∈RN×N that minimize the reconstruction error

ε (W) =
N∑
i=1

∥∥∥∥∥ui −
N∑
j=1

ωijuj

∥∥∥∥∥
2

; (2-12)

3. The low-dimensional representation V is found by minimizing

Φ (V ) =
N∑
i=1

∥∥∥∥∥vi −
N∑
j=1

ωijvj

∥∥∥∥∥
2

, (2-13)

subject to: i)
∑N

i=1 vi = 0; ii)
∑N

i=1 viv
>
i /N = Im×m. Note, I is an identity matrix

and vi∈Rm is a row output vector of V .

2.4.2. Laplacian Eigenmaps – LEM

This nonlinear dimensionality reduction technique aims to preserve the intrinsic geometric

structure of the manifold (Belkin and Niyogi, 2002). Let U={ui∈RM :i∈[1, N ]} be a high-

dimensional finite set, containing M features extracted at N samples. The goal is to provide

a low-dimensional representation V ={vi∈Rm:i∈[1, N ]}, being m�M . The LEM algorithm

has the following main steps:

1. Compute an undirected weighted graph;

2. Construct a weight matrix W∈RN×N . For this purpose, if nodes i and j are connected,

then Wij = κ (ui,uj), where κ (·, ·) is a kernel function (see Section 2.1), otherwise

Wij = 0. Given W, the graph Laplacian L∈RN×N is defined as in Equation (2-14)

L = D−W, (2-14)

where D∈RN×N is a diagonal matrix with elements Dii =
∑

jWji. Note, each Dii is

usually called the degree of the vertex ui, which can be interpreted as a measure of

the empirical density points around each sample;
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3. The following expression should be minimized∑
ij

(vi − vj)2Wij, (2-15)

Equation (2-15) incurs a penalty if points ui and uj are mapped far apart.

2.4.3. Isometric Feature Mapping – Isomap

The Isometric Feature Mapping (Isomap) aims to preserve the intrinsic geometry of the data

using the geodesic distance between all pairs of data points (Lee et al., 2004). The Isomap

algorithm has the following stages:

1. Construct a discrete representation of the manifold in the form of a topology preserving

network;

2. Compute the shortest-path distance between any two points in the network;

3. Construct a global geometry preserving map of the observations V in a low-dimensional

Euclidean space



3. Proposed framework to predict

long-term future behavior in

time-series

In real-life scenarios, sometimes, it is useful to know not only the next value but also to

have information about the long-term future behavior in time-series (Xiong et al., 2013). For

example, in financial markets, the investors could hedge their assets or take appropriate ac-

tions given their investment objectives and risk tolerance (Han et al., 2013). In this chapter 1,

a framework to predict long-term future behavior in time-series is introduced. The frame-

work uses a mimo strategy and a non-linear model based on Kernel Adaptive Filters (KAF).

In practice, for every new sample, the approach proceeds in two stages: i) training stage,

where both past and future observations are known; ii) testing stage, where the prediction

for the desired horizon is computed. The framework is validated in the following datasets: i)

West Texas Intermediate (WTI) crude oil prices; ii) NN3 competition time-series. Results

show that the framework is robust to noisy and non-stationary conditions. In addition, when

compared to similar methods, relatively low values of Symmetric Mean Absolute Percentage

Error (SMAPE) are obtained, improving accuracy in short, medium and long-term. The

main contribution of this chapter is a KAF-based framework to predict long-term future

behavior in time-series.

The remainder of the chapter has the following structure: Section 3.1 introduces the propo-

sed method; Sections 3.2 and 3.3 describe the simulation results; Section 3.4 presents a brief

summary of the chapter.

1The outcomes of this chapter were published in the IEEE International Joint Conference on Neural

Networks – IJCNN 2016 (Garcia-Vega et al., 2016).
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3.1. A mimo strategy based on kernel adaptive filters

Given the univariate time series yt−M , . . . , yt, the goal is to predict the next M observations

yt+1, . . . , yt+M . The proposed framework comprises two stages: i) a training stage operating

on a known vector ut = [yt+1, . . . , yt+M ] that contains the next true observations of the

univariate time series; ii) a testing stage operating on the vector ũt = [ỹt+1, . . . , ỹt+M ],

which is an approximation of ut.

3.1.1. Training stage

Let ut ∈ RM be a vector containing, at time t, the next true observations of a time series.

The goal is to use ut and the available dictionary2 to find an accurate approximation ût of ut,

where the dictionary and its weights are provided by the KAF method (see Section 2.3). The

proposed algorithm starts when the first sample of the dictionary u1∈RM and its weight ηy1

are created (Lines 3-4, Alg. 1). Then, the output of the adaptive filter is calculated3 using ut
and the dictionary C (Line 9, Alg. 1). The mimo strategy is applied to get the approximation

ût (Lines 11-13, Alg. 1). Finally, when ût is computed, the network is updated (Lines 15-

19, Alg. 1) as in the traditional quantized KLMS algorithm (Chen et al., 2012b). The training

stops when the average error of the current epoch is greater than the previous one 4.

Algorithm 1: Training stage to predict long-term future behavior in time-series.
1 Initialization:

2 σ∈R+– kernel bandwidth ; η∈R+– step-size parameter; ε ≥ 0– quantization-size;

3 C = {u1}– initial dictionary

4 α = [ηy1]– initial weight

5 Computation:

6 while ut available do

7 Compute adaptive filter output:

8 for n=1:M do

9 hn =
∑size(C)
j=1 αj,nκσ (cj,n, yt+n)

10 Mimo strategy:

11 for n=1:M do

12 ŷt+n =
∑M
r=n hr

13 ût = [ŷt+1, . . . , ŷt+M ]

14 Compute error: et =
‖ut−ût‖2

‖ut‖2

15 Select the closest sample to ut: j∗ = arg máx
1≤j≤i∗

κσ (cj ,ut)

16 if κσ
(
cj∗ ,ut

)
> ε then

17 Update the weight of the closest sample j∗: αj∗ = αj∗ + ηet

18 else

19 Create a new sample in the dictionary: C = {C,ut}; α = [α, ηet]

2The dictionary is a selected set of input samples used to estimate the nonlinear model (Saide et al., 2015).
3Note: (1) cj,n denotes the n-th value of cj ; (2) The Mercer kernel κσ is assumed to be the Gaussian kernel

due to its universal approximating capability and numeric stability (Liu et al., 2010).
4An epoch is a full training cycle on the training set.
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3.1.2. Testing stage

The input vector ut that contains the next true observations is not available during testing

stage. Thus, to overcome this limitation, we propose to compute the approximation ũt as

follows:

1. if 1
M−1

∑M−1
i=1

(
yt−i − yt−(i+1)

)
> 0 and 1

i∗M

∑i∗

j=1

∑M
n=1 cj,n < yt:

ũt =

[
yt−M +

1

M − 1

M−1∑
i=1

(
yt−i − yt−(i+1)

)
, . . . , yt−1 +

1

M − 1

M−1∑
i=1

(
yt−i − yt−(i+1)

)]
(3-1)

2. if 1
M−1

∑M−1
i=1

(
yt−i − yt−(i+1)

)
< 0 and 1

i∗M

∑i∗

j=1

∑M
n=1 cj,n > yt:

ũt =

[
yt−M −

1

M − 1

M−1∑
i=1

(
yt−i − yt−(i+1)

)
, . . . , yt−1 +

1

M − 1

M−1∑
i=1

(
yt−i − yt−(i+1)

)]
(3-2)

3. otherwise:

ũt =

[
máx

1≤j≤i∗
P (cj,1|yt) , máx

1≤j≤i∗
P (cj,2|yt) , . . . , máx

1≤j≤i∗
P (cj,N |yt)

]
(3-3)

Then, it is possible to build the sequence ũt during testing. Note that the algorithm could

lead to poor performance when tries to predict a dynamic that was not present in the training

set. Thus, the current trend of the time series is used to improve prediction (see Equations (3-

1) and (3-2)). Lastly, once the sequence ũt is estimated, the algorithm predicts the next M

values and the network is updated (see Alg. 2).

Algorithm 2: Testing stage to predict long-term future behavior in time-series
1 Initialization:

2 C: provided by Alg. 1; α: provided by Alg. 1

3 Computation:

4 while ũt available do

5 i∗ = size(C)

6 for n=1:M do

7 hn =
∑i∗

j=1 αj,nκσ (cj,n, ỹt+n)

8 for n=1:M do

9 ŷt+n =
∑N
r=n hr

10 ŷt = [ŷt+1, . . . , ŷt+M ]

11 et =
‖ũt−ût‖2

‖ũt‖2

12 j∗ = arg máx
1≤j≤i∗

κσ (cj , ũt)

13 if κσ
(
cj∗ , ũt

)
> ε then

14 αj∗ = αj∗ + ηet
15 else

16 C = {C, ũt}
17 α = [α, ηet]
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3.2. Experimental Design

We validate the proposed framework for long-term prediction using two performance mea-

sures: i) SMAPE (Makridakis and Hibon, 2000); ii) Directional Symmetry (Yu et al., 2008).

3.2.1. Datasets

Testing is carried out on the following two publicly available datasets:

– WTI crude oil prices 5: This dataset shows crude oil prices, in dollars per barrel, in

a weekly resolution, covering January 7, 2000, to December 30, 2011 (see Figure 3.1(a)).

Here, the task is to predict the next 4, 8, 12, 16, 20, and 24 values using the previous

consecutive samples. The data are normalized for the computation convenience. The

training set covers January 7, 2000, to January 10, 2008, while the test set covers

January 11, 2008, to December 30, 2011.

– NN3 competition 6: The dataset is composed by 111 monthly time series drawn

from homogeneous population of empirical business (see Figure 3.1(b)). Here, the task

is to predict the last 18 observations of each time series. The data are normalized for

the computation convenience. The last 18 consecutive samples of each time series are

used as test set, while the rest are used as the training set.
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Figure 3-1.: Datasets considered in the experiments.

5This dataset publicly available at https://www.eia.gov
6This dataset publicly available at http://www.neural-forecasting-competition.com/NN3/datasets.htm
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3.2.2. Reference methods

WTI crude oil prices

For comparison purposes, the proposed framework is contrasted with the following methods:

i) Feedforward Neural Network (FNN) (Eldan and Shamir, 2016); ii) Empirical Mode De-

composition (EMD) (Ali et al., 2015); iii) Slope Based Method (SBM) (Xiong et al., 2013). In

addition, the previous methods are tested using three commonly multi-step-ahead prediction

strategies proposed in the literature, including Iterated, Direct, and Mimo. The considered

feedforward neural network, as suggested in (Xiong et al., 2013), has one hidden layer with

15 neurons.

NN3 competition

The following methods are used for comparison purposes (Bao et al., 2014): i) Näıve; ii)

Seasonal Näıve; iii) Support Vector Regression (Iterated); iv) Support Vector Regression

(Direct); v) Support Vector Regression (Mimo).

3.2.3. Parameter settings

WTI crude oil prices

– Proposal : The kernel bandwidth σ is calculated using the method proposed by (Car-

denas et al., 2014); the step-size is set at η = 0,09; the quantization-size is set at

ε = 0,85. The parameters were heuristically adjusted to provide the best possible

accuracy.

– Reference methods: For comparison purposes, we include the accuracy results esti-

mated by (Xiong et al., 2013).

NN3 competition

– Proposal : The set-up is the same as in WTI crude oil dataset.

– Reference methods: For comparison purposes, we include the accuracy results esti-

mated by (Bao et al., 2014).
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3.3. Results

3.3.1. WTI Crude oil prices

Table 3-1 shows the SMAPE values in the test set 7. Overall, the best performance is

reached with a prediction horizon of 4, i.e., the longer the prediction horizon the higher the

SMAPE values. The iterated strategy shows to be less accurate than the direct and mimo

strategies. This indicates that, in the iterated strategy, the predictions may be affected by

the accumulation of errors. In addition, we see that our proposal outperforms other methods,

converging to smaller values of SMAPE. In our proposal, unlike the considered methods, the

dictionary and its weights are also updated during the test stage (see Alg. 2). This allows

the framework to adjust to abrupt changes in the system.

Method
Prediction Horizon

4 8 12 16 20 24

FNN (Iterated) 5.851 6.124 6.621 8.514 10.349 10.854

FNN (Direct) 4.242 4.413 4.851 6.048 8.594 9.524

FNN (Mimo) 4.275 4.628 5.128 6.241 8.196 8.818

EMD-FNN (Iterated) 4.123 4.284 5.685 6.219 7.928 8.548

EMD-FNN (Direct) 3.874 4.051 4.385 5.618 6.415 6.954

EMD-FNN (Mimo) 3.365 3.518 4.428 5.916 6.382 7.248

EMD-SBM-FNN (Iterated) 3.951 4.281 5.518 6.824 7.294 8.158

EMD-SBM-FNN (Direct) 2.282 3.048 4.351 5.149 6.161 6.948

EMD-SBM-FNN (Mimo) 3.214 3.531 4.019 5.348 5.812 6.507

Proposal 0.621* 1.351* 2.029* 2.436* 3.033* 3.591*

Table 3-1.: SMAPE values during testing in WTI crude oil prices.

Table 3-2 shows the directional symmetry values in the test set 8. Once again, our proposal

outperforms FNN, EMD, and SBM. In particular, the best performance is achieved for long

prediction horizons, i.e., 16, 20, and 24 weeks ahead.

7Feedforward neural network (FNN); Empirical mode decomposition (EMD); slope-based methods (SBM).

The words Iterated, Direct, and Mimo indicate the prediction strategy used by each method. For each

column, the bold notation and marked with an asterisk indicates the method which is better than all the

other, and the entry with the second-best value is highlighted in bold. For the sake of comparison, we

include accuracies estimated in (Xiong et al., 2013).
8Feedforward neural network (FNN); Empirical mode decomposition (EMD); Slope-based methods (SBM).

The words iterated, direct, and mimo indicate the prediction strategy used by each method. For each

column, the bold notation and marked with an asterisk indicates the method which is better than all

the other, and the entry with the second-best value is highlighted in bold. For comparison purposes, we

include the accuracies estimated in (Xiong et al., 2013).
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Method
Prediction Horizon

4 8 12 16 20 24

FNN (Iterated) 0.752 0.654 0.624 0.516 0.533 0.462

FNN (Direct) 0.797 0.765 0.733 0.651 0.652 0.524

FNN (Mimo) 0.801 0.744 0.723 0.692 0.707 0.598

EMD-FNN (Iterated) 0.786 0.704 0.642 0.676 0.562 0.514

EMD-FNN (Direct) 0.857 0.832* 0.824* 0.731 0.704 0.636

EMD-FNN (Mimo) 0.865 0.783 0.772 0.746 0.682 0.615

EMD-SBM-FNN (Iterated) 0.821 0.717 0.655 0.593 0.597 0.546

EMD-SBM-FNN (Direct) 0.878 0.815 0.803 0.752 0.685 0.597

EMD-SBM-FNN (Mimo) 0.810 0.823 0.812 0.782 0.725 0.661

Proposal 0.903* 0.826 0.821 0.787* 0.734* 0.748*

Table 3-2.: Directional symmetry values during testing in WTI crude oil prices.

Figure 3-2 shows the predictions of our proposal in the test set. The case of short-term

prediction performs the best accuracy (see Figures 3.2(a) and 3.2(b)), reaching SMAPE

values of 0,621 and 1,351 (see Table 3-1), respectively. For the medium-term prediction

(see Figures 3.2(c) and 3.2(d)), although the performance slightly decreases, it is still accepta-

ble (see Table 3-1). The long-term prediction gives the worst performance (see Figures 3.2(e)

and 3.2(f)) but achieves the best accuracy among the compared methods (see Tables 3-1

and 3-2). Note, a big challenge during the testing stage is to predict observations that were

not available in the training set. For example, the upward trend from January 11, 2008, to

July 18, 2008, is only available in the test set. Thus, this upward trend is completely unk-

nown by Alg. 2, which could lead to poor performance. To address this problem, we consider

the most recent trend of the time series (see Equations (3-1) and (3-2)), which is provided

by the last consecutive samples. Simulation results show that this strategy works well for

prediction tasks in both the short and medium term (see Figure 3-2).
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Figure 3-2.: Crude oil prices prediction in the test set.
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3.3.2. NN3 time-series

Table 3-3 shows the SMAPE values in the test set9. The column labeled as Average shows

the average SMAPE over the prediction horizon 1 to 18. Once again, our proposal achieves

the best performance over all the prediction horizons. This behavior can be explained by the

following reason: the proposed approach identifies the most recent trend of the time series

to improve the prediction. This trend depends on the prediction horizon, i.e, the longer the

horizon, the better the estimate of the trend. Thus, the proposed framework works better in

long-term prediction tasks.

Method

Testing Samples

Prediction Horizon Average

2 3 6 18 1 to 18

Näıve 19.439 22.812 23.014 25.886 22.554

Seasonal Näıve 17.238 20.805 16.629 22.277 18.512

Support Vector Regression (iterated) 8.824* 10.916* 19.879 22.409 18.493

Support Vector Regression (direct) 8.909 11.031 20.724 21.781 17.193

Support Vector Regression (mimo) 9.077 11.074 17.370 21.640 16.659

Proposal 13.123 13.984 15.942* 16.139* 14.753*

Table 3-3.: SMAPE values during testing in NN3 data set.

Figure 3-3 shows the performance of the proposed framework on each prediction horizon

along all the time-series of NN3 dataset, i.e., each box is representing the prediction perfor-

mance along the 111 time-series in terms of SMAPE. Note, there is one box per prediction

horizon. In each box: the central mark is the median; the edges of the box are 25th and

75th percentiles; the whiskers extend to the most extreme data points, disregarding outliers;

and outliers are plotted individually. As seen from this figure, the performance is stable on

each prediction horizon. However, it is easy to identify some outliers, which are represented

by the symbol “+”. Note that each outlier represents the time-series with the worst perfor-

mance in the prediction task. In this sense, we found that the proposed approach achieves

the worst performance when tries to predict the time-series number 25 (this happens for

all the prediction horizons), while the prediction of the time-series number 77 shows the

best performance. Thus, according to these results, the proposed method fails when tries to

predict highly non-stationary signals, e.g., time-series number 25.

9The words iterated, direct, and mimo indicate the prediction strategy used by each method. For each

column, the bold notation and marked with an asterisk indicates the method which is significantly better

than all the other, and the entry with the second-best value is highlighted in bold. For the sake of

comparison, we include the accuracies estimated in (Bao et al., 2014).
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Figure 3-3.: Performance of the proposed framework on the NN3 dataset.

3.4. Summary

In this study, we proposed a mimo strategy using a kernel-based adaptive filter to predict

long-term future behavior in time-series. The proposed approach employs multiple inputs

from the previously stored samples to produce multiple predictions in the future through an

adaptive filter based on kernels. This is done in two stages, i.e., training and testing. In the

training stage, the network is trained according to the desired response. In the testing stage,

the future values are predicted using the information provided by the training set. Addi-

tionally, the network continues learning from the time series, even during the testing stage.

Simulation results show that the proposed approach outperforms the compared reference

methods in all the considered prediction horizons.



4. Proposed nonlinear dimensionality

reduction within kernel-based

framework

Dimensionality reduction aims to preserve, as much as possible, the significant structure

of high-dimensional data in the low-dimensional space. This allows removing noise and re-

dundant features, which is useful in exploratory data analysis, classification, and regression

tasks. There are two main challenges in dimensionality reduction: (1) how to measure the

manifold structures; (2) how to quantify the embedding preservation. On the one hand, pre-

vious approaches try to measure the manifold structure using variance, dot product, distance,

and similarity preservation. On the other hand, the embedding quality is usually quantified

with divergence-based measures such as Kullback-Leibler and Jensen-Shannon. In this chap-

ter 1, we propose a dimensionality reduction method that minimizes the mismatch between

high and low-dimensional spaces. Unlike traditional dimensionality reduction formulations,

the proposed approach uses a kernel-based cost function to quantify the embedding qua-

lity. Our approach is validated on both synthetic and real-world datasets. In terms of visual

inspection and quantitative evaluation of neighborhood preservation, results show that our

proposal preserves global data structures in the low-dimensional representation.

The remainder of the chapter has the following structure: Section 4.1 introduces the propo-

sed method; Sections 4.2 and 4.3 describe the simulation results; Section 4.4 presents a brief

summary of the chapter.

1The outcomes of this chapter were published in the peer-reviewed scientific journal Pattern Recognition

Letters (Garcia-Vega and Castellanos-Dominguez, 2019).
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4.1. Nonlinear dimensionality reduction within

kernel-based framework

For reducing high-dimensional data, the Mercer kernel has been proposed before to measure

the similarity between the high and low dimensional spaces, enabling the formulation of

a kernel-based cost function that, in this work, is optimized through the gradient descent

method.

Let U={ui∈RM :i∈[1, N ]} be a high-dimensional finite set, containing M features extrac-

ted at N samples, for which a low-dimensional representation, V ={vi∈Rm:i∈[1, N ]}, must

be obtained, so that it holds that m<M . With the aim of encoding all non-linear data re-

lationships within the spaces, a couple of kernel matrices are introduced: i) input kernel,

P∈RN×N that holds elements pij=κU(ui,uj), with κU :RM ×RM → R
+; ii) output kernel,

Q∈RN×N with elements qij=κV (vi,vj), κV : Rm×Rm→R+. Both real-valued kernels, which

are positive-definite (or Mercer) and infinitely divisible, are assumed to be the Gaussian due

to their universal approximating capability, desirable smoothness, and numeric stability (Liu

et al., 2011). The computation of the similarity matrices scales with the number of samples,

meaning that it will take several hours to find a good embedding for large datasets. Hence,

the similarity measures of high and low dimensional spaces are, respectively, given as follows:

pij = exp
(
−‖ui − uj‖2/2σ2

)
(4-1a)

qij = exp
(
−‖vi − vj‖2/2σ2

)
(4-1b)

where σ∈R+ is the kernel bandwidth, and notation ‖·‖ stands for `2 norm. Note that the

kernel bandwidth allows defining the similarity metric in the reproducing kernel Hilbert space

(RKHS), which is the basis of our inference. Namely, selecting a different bandwidth in either

space, distinct similarities will be performed by the same kernel for the same data, resulting

in a more complex cost function to be optimized. To relax the formulation in Equations (4-

1a) and (4-1b), in practice, the same kernel bandwidth is selected on both spaces, assuming

the same notion of neighborhood dispersion and therefore, meaning that we aim to preserve

the similarities found on the RKHS spaces rather than similarities on the input space (Liu

et al., 2011).

Therefore, the kernel-based framework is devised so that the more correctly the points vi
and vj explain the similarity between the high-dimensional data points ui and uj, the more

alike the kernel values pij and qij become. In other words, the principal rationale behind the

suggested similarity framework in Equations (4-1a) and (4-1b) is to find a low-dimensional

data representation V so that the mismatch between pij and qij can be minimized. To this

end, the following cost function is proposed:
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C =
1

N−1
E {|pij−qij|/pij : ∀i, j ∈ N, j 6= i} , C ∈ R (4-2)

where notation E {·} denotes the expectation operator. It is worth noting that Equation (4-

2) aims at preserving the global structures rather than the local ones, enabling extraction

of the most relevant samples (from the viewpoint of embedding preservation) while main-

taining a competitive performance in machine learning applications like in regression and

classification (Zhong and Enke, 2017; Zhao et al., 2015). In particular, the proposed fra-

mework can be employed to determine whether a new sample should be used to estimate

the nonlinear model. We suggest to perform the cost function minimization using a gradient

descent method, yielding the learning rule described as below:

vti = vt−1
i − η ∂C

∂vt−1
i

(4-3)

where vt−1
i is the low-dimensional representation of ui at iteration t − 1 and η∈R+ is the

step-size parameter. Taking into account Equations (4-1a), (4-1b) and (4-2), the gradient

update results in the following rule (for a detailed explanation, see in Appendix A.1):

vti=v
t−1
i −η′E


(
vt−1i −vt−1j

) (
pijq

t−1
ij −
(
qt−1ij
)2
)

pij
∣∣pij−qt−1ij ∣∣ : ∀j∈N, j 6=i

 (4-4)

where η′=η/σ(N − 1). Consequently, the updating rule in Equation (4-4) shows that using

kernel-based similarity measures, the low-dimensional representations are updated iterati-

vely. Likewise, during the optimization process, the low-dimensional similarities will chan-

ge, while high-dimensional similarities stay constant. That is, the mismatch between high

and low dimensional spaces will be reduced as long as qij tends to pij. Thus, the learning

rule quantifies the embedding preservation in dimensionality reduction through the intro-

duced kernel-based cost function. Note, the strategy used to compute the non-linear data

relationships within the spaces (see Equations (4-1a) and (4-1b)) has similarities to some

previously proposed methods as in (Spathis et al., 2018). As the key difference between both

methods, our proposal handles the kernel function to compute similarities not only in the

high-dimensional space but also in the low-dimensional one. That is, although both approa-

ches compute in a similar way the similarities of the high-dimensional space, our proposed

objective function aims at reducing the mismatch between the similarities provided by the

kernel evaluations on each space. In addition, it may be possible to find some relationships

with SNE-based techniques (Hinton and Roweis, 2003; Maaten and Hinton, 2008). However,

the following are the key differences between both strategies: i) our proposal computes the si-

milarity preservation using kernel evaluations rather than asymmetric probability measures;

ii) the proposed framework uses a kernel-based cost function, while the SNE cost function

relies on Kullback-Leibler divergence.
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4.2. Experimental Design

To validate the proposed framework of high-dimensional data reduction, we measure the

embedding quality as follows: i) Visual inspection (Álvarez-Meza et al., 2017); ii) Quality

assessment (Lee and Verleysen, 2008). The task is to get a two-dimensional representation

of each dataset (Lee et al., 2013).

4.2.1. Datasets

Testing is carried out on the following four publicly available datasets2:

– Swiss-Roll 3: This collection contains samples that share nonlinear structures, gene-

rating an input space with size M=3 and N=500 (Yu et al., 2018). Here, the challenge

is to cut the manifold so that the main nonlinear data structures are clearly revealed.

– S-Curve 4: This collection is a standard benchmark for manifold learning, providing

an input space with size M=3 and N=500 (Li et al., 2011).

– Wine 5: This dataset is the result of a chemical analysis of wines grown in the same

region in Italy by three different cultivators, generating an input space with size M=13

and N=178 (Fischer and Poland, 2005).

– MNIST 6: This dataset contains 60000 gray-level images of scanned handwritten

digits sizing 28 × 28. Here, as suggested in (Lee et al., 2013), a random subset of

6000 images are selected. These images are vectorized, providing an input space with

M=784 and N=6000 (Deng, 2012).

4.2.2. Reference methods

For comparison purposes, the following dimensionality reduction methods are contrasted:

1. PCA (Abdi and Williams, 2010), which performs the linear projection applying the

spectral decomposition of the covariance matrix;

2. Isomap (Tenenbaum et al., 2000), that uses the geodesic distance as metric;

3. SNE (Hinton and Roweis, 2003), where the similarity preservation is based on Kullback-

Leibler divergence;

2Note, in the simulations, datasets are normalized for computation convenience.
3This dataset publicly available at https://scikit-learn.org
4This dataset is publicly available at https://scikit-learn.org
5This dataset is publicly available at https://archive.ics.uci.edu/ml/datasets/wine
6This dataset is publicly available at http://yann.lecun.com/exdb/mnist/
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4. t-SNE (Maaten and Hinton, 2008), which is a SNE extension based on student’s t-

distribution;

5. NeRV (Venna et al., 2010), type 1 mixture of Kullback-Leibler divergences;

6. JSE (Lee et al., 2013), type 2 mixture of Kullback-Leibler divergences;

7. KEDR (Álvarez-Meza et al., 2017), which is a recently proposed entropy dimensionality

reduction method based on kernels.

4.2.3. Parameter settings

Table 4-1 summarizes the set-up of compared methods. In particular, as suggested in (Lee

et al., 2013), the perplexity value K is fixed to N/20. The Renyi’s entropy α and trade-off

γ parameters were selected using the strategy proposed in (Álvarez-Meza et al., 2017). In

addition, the kernel bandwidth σ was adjusted using the strategy proposed in (Liu et al.,

2011). Note, the performance of our proposal is sensitive to the selection of η and T . However,

values for these parameters can be selected as follows: i) η–step size, where a value of 0,01

has shown stable performance on all tested datasets; ii) T–number of iterations, based on

our experimentation, an appropriate value is in the interval [1000, 2000].

Table 4-1.: Parameter setting of compared methods. K–perplexity value, λ–number of

neighbors, α–Renyi’s entropy, γ–trade-off parameter, σ–kernel bandwidth, η–

step size, T–number of iterations.

Dataset Parameter
Method

PCA Isomap SNE t-SNE NeRV JSE KEDR Proposal

Swiss-Roll

K - - 25 25 25 25 - -

λ - 25 - - - - - -

α - - - - - - 2 -

γ - - - - - - 0 -

σ - - - - - - - 0.04

η - - - - - - - 0.01

T - - - - - - - 1500

S-Curve

K - - 25 25 25 25 - -

λ - 25 - - - - - -

α - - - - - - 2 -

γ - - - - - - 0 -

σ - - - - - - - 2

η - - - - - - - 0.01

T - - - - - - - 1500

Wine

K - - 9 9 9 9 - -

λ - 9 - - - - - -

α - - - - - - 2 -

γ - - - - - - 0 -

σ - - - - - - - 0.06

η - - - - - - - 0.01

T - - - - - - - 1500

MNIST

K - - 300 300 300 300 - -

λ - 300 - - - - - -

α - - - - - - 2 -

γ - - - - - - 0 -

σ - - - - - - - 0.006

η - - - - - - - 0.01

T - - - - - - - 1500
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4.3. Results

In practice, the high-dimensional input data U is provided and for a desired value m, an

initial m-dimensional training data set, noted as V 0, is performed by generating a random

set with centered Gaussian distribution, having a small variance as suggested in (Maaten

and Hinton, 2008). After that, the kernel matrices P and Q0 are computed, for which the

optimization of V is performed.

4.3.1. Dimensionality reduction on synthetic datasets

Figure 4-1 shows the two-dimensional embeddings of the Swiss roll dataset. On the one hand,

our proposal and Isomap tend to preserve the “spiral shape”(see Figures 4.1(a) and 4.1(h)).

As seen, both methods aim to conserve global neighborhoods. On the other hand, all other

methods aim to cut the Swiss roll and unfold it (see Figures 4.1(b) to 4.1(g)), meaning

that they favor the preservation of local neighborhoods. Thus, unlike methods based on

Euclidean distances, the approximations are computed along the manifold. Additionally,

t- SNE highlights the local structures due to its Student’s t-distribution. Figure 4-2 shows

the two-dimensional embeddings of the S-curve dataset. Once again, the methods follow two

very different strategies to embed the high-dimensional manifold. That is, global (see Figu-

res 4.2(a) and 4.2(h)) and local (see Figures 4.2(b) to 4.2(g)) neighborhoods.

Figure 4-3 shows the rank-based qualities of the Swiss-Roll and S-Curve datasets. Note, all

curves are shown in a diagram with a logarithmic scale for the abscissa. This gives to each

neighborhood size the most appropriate weight, which is important for visual representa-

tion, but also allows to each curve to be summarized into a scalar value (Lee and Verleysen,

2008). In addition, each area under the curve is reported in the diagram legend. This number

reflects the overall quality of the embedding at all scales, i.e., for all K-ary neighborhood

sizes. In particular: (1) both JSE and t-SNE score very high for the preservation of small

neighborhoods. In turn, PCA and our proposal show a different shape, i.e., these methods

are totally unable to preserve local structures; (2) our proposal achieves the highest scores

for large neighborhoods, which supports the results found in Figures 4.1(h) and 4.2(h).
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(a) PCA (b) Isomap (c) SNE (d) t-SNE

(e) NeRV (f) JSE (g) KEDR (h) Proposal

Figure 4-1.: Embeddings of Swiss-Roll dataset.

(a) PCA (b) Isomap (c) SNE (d) t-SNE

(e) NeRV (f) JSE (g) KEDR (h) Proposal

Figure 4-2.: Embeddings of S-Curve dataset.
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Figure 4-3.: Quality assessments in synthetic datasets.

4.3.2. Dimensionality reduction on real-world datasets

Figure 4-4 shows the two-dimensional embeddings of the Wine dataset, where each color

indicates a different cultivator. Note that the labels are not used to determine the spatial

coordinates of the embeddings. These labels just provide a way to evaluate the preservation

of similarities within each class.

A quick glance shows that the methods follow the same strategy to embed the data (see Fi-

gure 4-4). That is, they tend to create a cluster per each cultivator. However, some of these

clusters have samples of their neighbors, which is a situation that occurs in all contras-

ted methods. This may be due to: (1) the definition of pairwise relationships in both the

high-dimensional and low-dimensional spaces; (2) the two-dimensional embeddings reveal

a hidden dynamic, which is not observable in the input space. Further, Figure 4-5 shows

the two-dimensional embeddings of the MNIST dataset. Again, we use these labels just for

viewing purposes. Four methods (Figures 4.5(c) to 4.5(f)) try to create clusters in the em-

beddings, meaning that they tend to find similarities in local neighborhoods. In contrast, it

is not clear whether Isomap is trying to keep local or global structures (see Figure 4.5(b)).

Finally, Figure 4-6 shows the rank-based qualities of the real-world datasets. The t-SNE

method shows the best performance in small neighborhoods. In addition, as in Section 4.3.1,

our proposal achieves the highest scores for the global structures. The superiority of t-SNE,

for small neighborhoods, is evident. However, this method needs many hyper-parameters and

“tricks” (Maaten and Hinton, 2008). For example, besides the step-size η, the t-SNE method

requires: (1) perplexity value; (2) initial momentum; (3) final momentum; (4) in the early

stages of the optimization, Gaussian noise should be added to the samples at each iteration;

(5) a variance value per each sample. In contrast to t-SNE, an advantage of our proposal is
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its simplicity. This makes it easy to implement in different data sets. That is, besides the

step-size, the only hyper-parameter is the kernel bandwidth σ.

(a) PCA (b) Isomap (c) SNE (d) t-SNE

(e) NeRV (f) JSE (g) KEDR (h) Proposal

Figure 4-4.: Embeddings of Wine dataset.

(a) PCA (b) Isomap (c) SNE (d) t-SNE

(e) NeRV (f) JSE (g) KEDR (h) Proposal

Figure 4-5.: Embeddings of MNIST dataset.
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Figure 4-6.: Quality assessments in real-world datasets.

4.4. Summary

In this study, we have introduced and evaluated a kernel-based dimensionality reduction

method. To test its performance, we used both synthetic and real-world data sets. Simu-

lation results demonstrated that: (1) our proposal preserves large neighborhoods; (2) the

small number of hyper-parameters, in our proposal, makes it easy to implement in different

datasets. This work addressed two challenges of dimensionality reduction methods, i.e., how

to measure the manifold structures and embedding preservation. Consequently, we used the

Gaussian kernel to: (1) measure the manifold structures in both the high-dimensional and

low-dimensional spaces; (2) propose a kernel-based cost function, which is minimized using

a gradient descent method.



5. Proposed framework for time series

prediction using dimensionality

reduction

Kernel-based adaptive filters are sequential learning algorithms, operating in reproducing

kernel Hilbert spaces. Their learning performance is susceptible to the selection of appropriate

values for kernel bandwidth and step-size parameters. Additionally, as these algorithms train

the model using a sequence of input vectors, their computation scales with the number of

samples. In this chapter1, we propose a framework that addresses the previous open challen-

ges of kernel-based adaptive filters. In contrast to similar methods, our proposal sequentially

optimizes the bandwidth and step-size parameters using stochastic gradient algorithms that

maximize the correntropy function. To remove redundant samples, a sparsification approach

based on dimensionality reduction is introduced. The framework is validated on both synt-

hetic and real-world datasets. Results show that our proposal converges to relatively low

values of mean-square-error while provides stable solutions in real-world applications.

The remainder of the chapter has the following structure: Section 5.1 introduces the proposed

framework; Sections 5.2 and 5.3 describe the simulation results; Section 5.4 presents a brief

summary of the chapter.

1The outcomes of this chapter were published in IEEE International Conference on Acoustics, Speech, and

Signal Processing – ICASSP 2019 (Garcia-Vega et al., 2019).
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5.1. Implementation of kernel-based adaptive filters

The goal is to learn a continuous input-output mapping f :U→ R based on a paired sequence

of input-output examples {u1, y1}, . . . , {ut, yt}, where ut is an m-dimensional input vector

that belongs to the input set U⊂Rm, and yt∈R is the output time series over the time domain

t∈N . Because its ability to model non-linear systems, the input-output mapping function

f can be learned using a kernel-based adaptive filter, yielding the following sequential rule

through the time domain (As detailed in Section 2.3):

ft =

{
ft−1 + ηetκσ(ut, ·), ∀t 6= 0

0, t = 0
(5-1a)

et =yt − ft−1 (ut) (5-1b)

where η∈R+ is the learning-rate, κσ (·, ·)∈R+ is a Mercer kernel with a bandwidth σ∈R+

that controls the mapping smoothness. We propose to optimize both η and σ by minimizing

the prediction error et∈R, using the following stages of adaptive filter implementation.

5.1.1. Kernel bandwidth optimization using correntropy

Based on nonlinear similarity measures, the adaptive filter parameters are proposed to be

optimized using the correntropy cost function expressed over time as follows (Wang et al.,

2017b):

Jt = arg máx
∀σ,η

{exp
(
−e2

t (σt, ηt)/2λ
2
)
} (5-2)

where λ∈R+ is the correntropy bandwidth that rules similarity between data points. Co-

rrentropy generalizes the conventional correlation function to nonlinear spaces, which has

proven useful in many areas such as regression (Liu et al., 2007), adaptive filtering (Zhao

et al., 2011), classification (Singh and Principe, 2010), and spectral characterization (Gar-

de et al., 2010). The primary rationale behind the suggested strategy in Equation (5-2) is

to extract more information from the data structure for the adaptation process, yielding

solutions that are more accurate for non-Gaussian processes (Liu et al., 2006). In the first

optimizing value, we perform the Kernel bandwidth estimation in Equation (5-2) using the

gradient descent method, yielding the learning rule given as:

σt = σt−1 + β∂Jt/∂σt−1 (5-3)
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where σt is the bandwidth at iteration t and β∈R+ is the step-size parameter. Thus, using

Equations (5-1a), (5-2) and (5-3), the kernel bandwidth estimation results in the following

rule (see Appendix A.2):

σt = σt−1 + αηetet−1||ut − ut−1||2κσt−1 (ut,ut−1) (5-4)

where α=Jtβ/λ
2σ3

t−1, and notation || · || stands for `2 norm.

5.1.2. Learning-rate estimation based on correntropy

Likewise in Equation (5-3), the gradient-descent estimation yields the following learning-rate

update at iteration t:

ηt = ηt−1 + β∂Jt/∂ηt−1 (5-5)

where β∈R+ is the step-size parameter. Then, considering Equations (5-1a), (5-2) and (5-5),

the learning-rate update results as below (see Appendix A.2):

ηt = ηt−1 + β
′′
etet−1κσ (ut,ut−1) (5-6)

being β
′′
= β exp(−e2

t/2λ
2).

5.1.3. Dimensionality reduction through a sparsification strategy

In dimensionality reduction, a low-dimensional representation, V ={vi∈Rm:i∈[1, t−1]}, must

be obtained from a provided high-dimensional finite set U={ui∈RM :i∈[1, t− 1]} that holds

M features extracted at t − 1 samples, under the dimensionality restriction m<M . To this

end, given a training pair {ut, yt} fed at the kernel-based adaptive filter input, sparsification

methods can be employed to decide whether a new sample ut should be added to a dictionary

(that is, a reduced set of input samples) used to estimate nonlinear models (Saide et al.,

2015), decreasing the computational complexity.

For encoding all non-linear data relationships within spaces, therefore, a couple of kernel

matrices are introduced: i) Input kernel, P∈Rt−1×t−1 that holds elements pij=κσU (ui,uj),

κσU :RM × RM→R+; ii) Output kernel, Q∈Rt−1×t−1 with elements qij=κσV (vi,vj), κσV :

R
m×Rm→R+. Both real-valued kernels are assumed to be Gaussian due to their universal

approximating capability, desirable smoothness, and numeric stability (Liu et al., 2011). So,

the similarity measures of high and low dimensional spaces are respectively as below:

pij = exp
(
−‖ui − uj‖2/2σ2

U

)
(5-7a)

qij = exp
(
−‖vi − vj‖2/2σ2

V

)
(5-7b)

where σU , σV∈R+ are the corresponding kernel sizes. Therefore, the kernel-based framework

is devised so that the more correctly the points (vi and vj) explain the similarity between the

high-dimensional data points (ui and uj), the more alike the kernel values pij and qij become.
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Thus, the principal rationale behind the suggested similarity framework in Equations (5-7a)

and (5-7b) is to find a low-dimensional data representation V so that the mismatch between

pij and qij can be minimized. So, the following cost function is proposed:

C =
1

(t− 1)− 1
E {|pij − qij|/pij : ∀i, j∈t− 1, j 6= i} , C∈R (5-8)

where notation E {·} denotes the expectation operator. In particular, we suggest to perform

the cost function minimization using a gradient descent method, yielding the learning rule

described as below:

vki = vk−1
i − µ∂C/∂vk−1

i (5-9)

where vk−1
i is the low-dimensional representation of ui at iteration k − 1 and µ∈R+ is the

step-size parameter. Relying on Equations (5-7a), (5-7b) and (5-8), the gradient update

results in the following rule (for more details see Chapter 4):

vki =vk-1i −µ′E

{
(vk-1i −vk-1j )

(
pijq

k-1
ij −(qk-1ij )2

)
pij|pij−qk-1ij |

:∀j∈t-1, j 6=i

}

where µ
′
=µ/(σ2

V ((t− 1)−1)). Consequently, introducing the quantization-size ε∈R+ (Chen

et al., 2012b), the following sparsification strategy is proposed:

i) mı́n
1≤i≤t−1

‖vt − vi‖≤ε: Update the closest sample weight to ut.

ii) mı́n
1≤i≤t−1

‖vt − vi‖>ε: Add the input sample ut to the dictionary.

In terms of embedding preservation, the previous imposed restraints aim to select only the

input data that encodes the global structures extracted from training samples. Thus, the

main rationale behind the sparse dictionary building is to hold, as much as possible, those

samples, which are more likely to appear.
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5.2. Experimental Design

We validate the proposed kernel-based adaptive framework in the case of prediction tasks,

using the mean-square-error (MSE) as a measure of performance. At each iteration of the

training set, therefore, the learned filter is used to compute the MSE value on each test set

as carried out in (Liu et al., 2011).

5.2.1. Datasets

Testing is carried out on the following two benchmarking datasets used in prediction tasks:

– Mackey-Glass chaotic time-series. Prediction performance is validated on a short-

term signal set, which is generated by a chaotic system whose states are governed by a

set of time-delayed differential equations. The task is to predict the current value using

the previous ten consecutive samples. As experimented in (Liu et al., 2011), the data

are normalized for the computation convenience, and for implementing the validation

strategy, 500 samples are used as the training subset, while another 100 consecutive

samples are the test subset.

– Wind Speed data. This collection holds hourly wind speed records from the northern

region of Colombia2. In this case, the performance is also evaluated in predicting the

current value using the previous ten consecutive samples. The considered training set

ranges from September-24-2008 to October-31-2008, and the test set ranges from May-

28-2009 to June-02-2009.

5.2.2. Reference methods

For a comparison purpose, the proposed variable bandwidth, adaptive step-size, and sparsi-

fication strategy are contrasted with the following kernel-based adaptive filters:

1. Kernel least-mean-square (noted as KLMS) as the simplest kernel-based adaptive stra-

tegy (Liu et al., 2008);

2. Quantized kernel least-mean-square (QKLMS) that introduces an online vector quan-

tization method into KLMS (Chen et al., 2012b);

3. Kernel least-mean-square with variable kernel bandwidth (KLMS-VKS) described in (Chen

et al., 2016a);

4. Kernel-least-mean-square tested with a variable learning rate (KLMS-VSS) discussed

in (Niu and Chen, 2018).

2The dataset is publicly available at http://www.ideam.gov.co/solicitud-de-informacion
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5.2.3. Parameter settings

The set-up of compared adaptive filters is as follows: i) the step-size is adjusted at η=0,2 for

KLMS and QKLMS, while the initial learning-rate η1 is set at 0 for KLMS-VKS, KLMS-VSS,

and our proposal; ii) the kernel bandwidth is set at σ=
√

1/2 for KLMS and QKLMS, which

is also the initial bandwidth in our proposal, KLMS-VKS, and KLMS-VSS i.e., σ1=
√

1/2;

iii) the quantization size ε is set at 0,05 and 0,1 for QKLMS and our proposal, respectively;

iv) the learning-rate β is set at 0,1; v) the correntropy bandwidth is set at λ=1; vi) dimensio-

nality reduction method, k=1000, m=2, µ=0,1 and σU , σV =0,2. All used kernel parameters

had been adjusted heuristically.

5.3. Results

5.3.1. Mackey-Glass time-series

Figure 5.1(a) displays the learning curves, plotting the mean-square-error results performed

by each compared solution versus the number of iterations. A quick glance shows that KLMS-

VSS performs the worst MSE values, having abrupt changes during training, which may

suggest that the algorithm is easily trapped on local minimums. As seen, KLMS and KLMS-

VKS methods show a relatively good performance since they achieve more stable MSE

values through iterations. However, the evolution curves of network size in Figure 5.1(b)

make clear that their dictionary sizes linearly grows during training. This issue may be

explained since both algorithms do not incorporate any sparsification technique, resulting in

a significant drawback for implementation in online applications. By contrast, the number

of samples of QKLMS algorithm grows very slowly, resulting in a final network that sizes

only 150. Even that QKLMS and our proposal achieve similar MSE values, the former

method demands a dictionary size significantly higher as seen in Figure 5.1(b), and therefore,

increasing the computational burden of online applications. As seen in Figure 5.1(c), the

proposed framework achieves a competitive performance, reaching the lowest network size

through iterations and suggesting that its sparsification strategy (based on dimensionality

reduction) helps to hold the most relevant samples to perform prediction tasks.

As regards the kernel bandwidth and learning-rate influence on the performed prediction,

Table 5-1 displays the MSE evolution over the test set, showing that the proposed framework

achieves the lowest MSE at iteration 100. Thus, there is an improvement in convergence time

while competitive performance is maintained in future iterations, proving that our proposal

converges to relatively low values of MSE, avoids overfitting, and provide stable solutions in

real-world applications.
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Figure 5-1.: Performed results by each compared adaptive filter on Mackey-Glass.
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Table 5-1.: Performed results on Mackey-Glass time-series prediction at different iterations.

The best overall method of each column are marked with bold notation. MSE -

mean square error. DS -Dictionary Size.

Method Measure
Iteration

100 200 300 400 500

KLMS
MSE 0.016 0.017 0.007 0.006 0.004

DS 100 200 300 400 500

QKLMS
MSE 0.017 0.017 0.007 0.006 0.004

DS 80 103 126 136 150

KLMS-VKS
MSE 0.021 0.019 0.011 0.008 0.005

DS 100 200 300 400 500

KLMS-VSS
MSE 0.028 0.021 0.016 0.013 0.011

DS 100 200 300 400 500

Proposal
MSE 0.016 0.007 0.007 0.006 0.004

DS 57 71 86 100 104

5.3.2. Wind Speed

Figure 5.2(a) shows the learning curves estimated for the test set. The contrasted algo-

rithms provide a robust performance through iterations. Although KLMS-VSS produces the

poorest MSE values as in the previous dataset, the displayed MSE evolution shows that

its performance becomes even worse because of the increased complexity of real-world da-

ta. By contrast, the other contrasted methods provide a more robust performance through

iterations. It is worth noting that the testing MSE decreases slower in all methods when com-

pared with the learning curves of synthetic results (see Figure 5.1(a)), clearly pointing out

on the presence of highly non-stationary dynamics. This situation makes the kernel-based

adaptive filters demand more time to encode the most relevant samples of this time-series co-

rrectly. The variable bandwidth and step-size, incorporated by our framework, promote the

kernel-based adaptive filter to converge faster without significant loss of accuracy. As seen

in Figure 5.2(b), the evolution curves make clear also that our proposal reaches the lowest

dictionary size during training while maintains a competitive MSE performance (see Figu-

re 5.2(c)). However, if their initial values are inappropriately chosen at the beginning, the

converging speed can be very slow. In this case, the suitable initial values of bandwidth

and step-size can be selected using one of the methods developed on this account like the

Silverman’s rule of thumb.

Furthermore, the results presented in Table 5-2 suggest that the proposed framework is

an adequate alternative to increase the convergence speed while maintains a high accuracy

with the benefit of demanding a condensed dictionary size, and therefore, improving the

performance of on-line prediction tasks.
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Figure 5-2.: Performed results by each compared adaptive filter on wind speed prediction.
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Table 5-2.: Performed results on Wind Speed at different iterations. The bold notation

indicates the best overall method. MSE -mean square error. DS -Dictionary Size.

Method Measure
Iteration

28/09/08 06/10/08 14/10/08 23/10/08 31/10/08

KLMS
MSE 0.253 0.299 0.249 0.084 0.115

DS 100 300 500 700 900

QKLMS
MSE 0.252 0.302 0.255 0.087 0.122

DS 81 193 280 357 371

KLMS-VKS
MSE 0.241 0.311 0.253 0.066 0.094

DS 100 300 500 700 900

KLMS-VSS
MSE 0.307 0.481 0.263 0.056 0.063

DS 100 300 500 700 900

Proposal
MSE 0.262 0.311 0.272 0.074 0.095

DS 62 88 96 108 121

5.4. Summary

In this study, a framework for kernel-based adaptive filters is introduced that addresses three

main challenges of their online implementation: selection of appropriate kernel bandwidth,

step-size parameter, and training samples. In particular, the first two stages are optimized

based on nonlinear similarity cost function expressed over time. To reduce the dictionary

size, we also include a dimensionality reduction method that incorporates a sparsification

strategy, employing a kernel-based cost function that quantifies the global structures of

training samples. Validation on both datasets, synthetic and real-world, proves that the

proposed framework converges to relatively low values of mean-square-error, avoiding while

provides stable solutions in real-world applications.
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6.1. Concluding Remarks

– The proposed framework determines the low-dimensional data representation by redu-

cing the mismatch between the non-linear data relationships within the spaces, mea-

ning that the optimization procedure considers the whole training set to find the most

suitable embeddings. Thus, under an out-of-sample scenario, the optimization has to

start from scratch as the similarity measures may vary slightly.

– It is worth noting that the introduced dimensionality reduction method comprises

an O(N3) computational complexity, resulting in an expensive execution time when

compared to conventional SNE-based algorithms.

– The proposed framework sequentially updates the bandwidth and step-size parame-

ters using a stochastic gradient algorithm that maximizes the correntropy function.

Thus, the estimation error decreases along iterations, which means an improvement

in convergence time while maintaining the robustness and simplicity of kernel-based

adaptive filters.

– As the correntropy function is inherently insensitive to outliers, the proposed adaptive

bandwidth and step-size provide an effective mechanism to eliminate the detrimental

effect of outliers, and they are intrinsically different from the use of a threshold in

conventional techniques.

– The proposed sparsification strategy is trained with the samples that are most likely

to appear during the prediction task, starting with an empty dictionary and gradually

adding new samples. As a result, the prediction task is performed by extracting the

most relevant input data – concerning the embedding preservation – while maintaining

a competitive performance. However, we must clarify that our sparsification strategy

may be adversely affected with few training samples, due to it is more difficult to

identify global structures under this scenario.
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6.2. Future Work

We are in the process of expanding our research in the following areas:

– More elaborate optimization algorithms or GPU-based implementations must be con-

sidered to reduce the computational burden in the proposed dimensionality reduction

method;

– Extend the results to the case where a more elaborate hyper-parameter tuning proce-

dure is introduced into the compared kernel-based adaptive filters;

– Considering additional Mercer kernels, i.e., not restricted to the Gaussian kernel;

– Evaluating the discriminative ability of low-dimensional representations in classifica-

tion and regression tasks;

– Consider additional information theoretic measures;

– Integrate the proposed methods with additional classification and regression tasks.
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A. Appendix

A.1. Gradient descent based optimization of cost function

The minimization of cost function C is performed using a gradient descent method as follows:

vti = vt−1
i − η ∂

∂vt−1
i

[C] (A-1)

where vt−1
i is the low-dimensional representation of ui at iteration t−1 and η∈R+ is the

step-size parameter,
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i − η ∂
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i
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multiplying the exponent of exp (·) by 2/2,

vti = vt−1
i − η
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Finally, the gradient update is given by

vti = vt−1
i − η
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Remark. Equation (A-2) aims to find the points vi and vj that minimizes the mismatch

between pij and qij. Note, the pij similarity will not change during the optimization process

(see Equation (4-1a)), but this is not the case for qij. Thus, the following scenarios may

appear:

1. 0 < qij < pij: The sum argument in Equation (A-2) will give values between 0 and 1,

i.e., 0 <
(
pijq

t−1
ij − (qt−1

ij )2
)
/
(
pij|pij − qt−1

ij |
)
< 1, which means a small change between

vt−1
i and vti .

2. qij > pij: Here, vi is updated with relatively high values at each iteration, i.e.,
(
pijq

t−1
ij −

(qt−1
ij )2

)
/
(
pij|pij − qt−1

ij |
)
< 0.
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A.2. Kernel bandwidth and step-size optimization

Provided a step-size value β∈R+, the cost function Jt in Equation (5-2) is maximized in terms

of either optimizing parameter ζ={σ, η} through the gradient descent method as follows:

ζt = ζt−1 + β∂Jt/∂ζt−1 (A-3)

The learning rule Equation (A-3) can be unfolded as below:

ζt =ζt−1 + β
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From Equation (2-11), it holds for the σ parameter that

ft−1 (ut)=ft−2 (ut) + ηet−1κσt−1 (ut,ut−1)

then, the following expression takes place:
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Besides, we assumme the Mercer kernel κσt−1 be Gaussian kernel, that is,
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so that we obtain:
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Lastly, the gradient update yields as follows:

σt = σt−1 + αηetet−1||ut − ut−1||2κσt−1 (ut,ut−1) (A-4)

where α=Jtβ/λ
2σ3

t−1, and notation ‖·‖ stands for `2 norm. In the case of η parameter, the

sequential rule in Equation (2-11) is as follows:

ft−1 (ut) = ft−2 (ut) + ηt−1et−1κσ (ut,ut−1)

Therefore, the gradient update of η yields as below:

ηt = ηt−1 + β
′′
etet−1κσ (ut,ut−1) (A-5)

where β
′′
= β exp(−e2

t/2λ
2).
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Álvarez-Meza, A. M., Valencia-Aguirre, J., Daza-Santacoloma, G., Acosta-Medina, C. D.,

and Castellanos-Domı́nguez, G. (2013). Video analysis based on multi-kernel representa-

tion with automatic parameter choice. Neurocomputing, 100:117–126.

An, S., Liu, W., and Venkatesh, S. (2007). Fast cross-validation algorithms for least squares

support vector machine and kernel ridge regression. Pattern Recognition, 40(8):2154–2162.

Ashiquzzaman, A., Tushar, A. K., Islam, M. R., Shon, D., Im, K., Park, J.-H., Lim, D.-S.,

and Kim, J. (2018). Reduction of overfitting in diabetes prediction using deep learning

neural network. In IT Convergence and Security 2017, pages 35–43. Springer.

Bao, Y., Xiong, T., and Hu, Z. (2014). Multi-step-ahead time series prediction using multiple-

output support vector regression. Neurocomputing, 129:482–493.

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding

and clustering. In Advances in neural information processing systems, pages 585–591.

Ben Taieb, S., Hyndman, R. J., and Bontempi, G. (2014). Machine learning strategies for

multi-step-ahead time series forecasting.



56 Bibliography

Bishop, C. M. (2006). Machine learning and pattern recognition. Information Science and

Statistics. Springer, Heidelberg.

Bontempi, G. (2008). Long term time series prediction with multi-input multi-output local

learning. Proc. 2nd ESTSP, pages 145–154.

Bontempi, G. and Taieb, S. B. (2011). Conditionally dependent strategies for multiple-step-

ahead prediction in local learning. International journal of forecasting, 27(3):689–699.

Borg, I. and Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applica-

tions. Springer Science & Business Media.

Brock, W. A. (2018). Causality, chaos, explanation and prediction in economics and finance.

In Beyond Belief, pages 230–279. CRC Press.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery, 2(2):121–167.

Cardenas, D., Orbes-Arteaga, M., Castro-Ospina, A., Alvarez-Meza, A., and Castellanos-

Dominguez, G. (2014). A kernel-based representation to support 3d mri unsupervised

clustering. In Pattern Recognition (ICPR), 2014 22nd International Conference on, pages

3203–3208. IEEE.

Cassisi, C., Montalto, P., Aliotta, M., Cannata, A., and Pulvirenti, A. (2012). Similarity

measures and dimensionality reduction techniques for time series data mining. In Advances

in data mining knowledge discovery and applications. InTech.
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