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Abstract

This thesis deals with the proposal, analytical background and practical

implementation of fiber optic based sensors for measuring electrical vari-

ables in high voltage systems. The thesis presents the physical and math-

ematical formulation for each of the sensing principles that were tackled

in the proposition and develops the theoretical backgorund for each par-

ticular application. Three main contributions should be highlighted from

the obtained results: Firstly, the formulation of the interaction character-

istics with optical fibers by extending the coupled theory mode through a

Hamiltonian formulation of the Helmholtz equation to account for trans-

verse perturbations into the propagation characteristics of propagating

light. Secondly, the proposition of a numerical method for predicting

the magnetic characteristics of magnetostrictive-powder/epoxy compos-

ites with arbitrary shapes. Finally, the proposition of two fiber-based

sensor for sensing electric variables (magnetic field and voltage magni-

tudes) from high voltage systems. Proposed sensors were implemented in

practice and their results were contrasted to the theoretical expected per-

formance leading to very good agreements. Future work is proposed based

on the main opportunities discovered during the analytical and practical

implementation of the sensors.

Key Words: Optical Fibers, Magnetostriction, Piezoelectric, Terfenol-

D, magnetostrictive composites, Piezoelectric Bimorph.
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Chapter 1

Introduction

Measurement of electrical variables such as voltage and currents are of great impor-

tance in the control and operation of power systems. In high voltage systems, sensors

are required to present high standards of reliability and insulation levels for avoiding

undesired outages of services, as well as the minimum required maintenance. Power

lines are currently controlled and operated by using very mature technology in current

and voltage measurements known as Current and Potential Transformers (CTs and

PTs). However, in some situations these sensors present some limitations related to

its operational principles, maintenance requirements, low flexibility and portability.

Smart Grids is a new tendency in power-systems which consists in giving flexibility

and maximum reliability to power-grids. This tendency is becoming mandatory in

the operation and control of power-systems due to the increasing and exigent de-

mand. Therefore, more measurements points with higher flexibility and portability

are required in this growing industry in order to provide more information about the

power-lines condition, as well as to propose more effective protective coordination

schemes and reliable power-system operation under contingency maneuvers caused

by faults or lightning strikes. Based on this fact, the usage of optical sensors for

the electrical variables in high voltage systems has been seen as a very interesting

alternative to attend this measurement necessity. These sensors present more flexi-

ble systems and in some cases relatively lower costs. Besides, optical systems have

enormous advantages when compared with the traditional elements, particularly, its

immunity to electromagnetic noise and high dielectric strength; this latter of especial

benefit in practical implementations because it allows eliminating those sophisticated

and large size insulation elements that are required in high-voltage applications, en-

abling the usage of lightweight optical-based devices. This interest have motivated

the proposal of novel techniques for measuring electrical variables from overhead lines
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based on the usage of fiber optic technology.

Overhead transmission and distributions lines are the dominant technology to

transport energy from generator plants and deliver electric power to industries and

homes [40]. Typical operation of the overhead lines is normally performed at 50/60Hz.

Figure 1.1(a) presents a conceptual schematic of a single-phase overhead line.
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Figure 1.1: Overhead Line Conceptualization. (a) single-phase overhead line over
perfectly conducting ground (b) Image method

The fundamental assumption for finding typical transmission line equations and the

corresponding magnitudes of the electric and magnetic field is the consideration of

transversal fields, i.e. the electric field intensity vector, ~Eext(~r, t), and the magnetic

field intensity vector, ~Hext(~r, t), lie on the transversal plane to the direction of prop-

agation (the x-y plane in Fig. 1.1). Subscripts ext have been included to these fields

to distiguish them as the fields associated to the overhead line. Transversal electro-

magnetic field (TEM) assumption allows to solve the propagation equations for both

current and voltage along the transmission lines. This assumption will be considered

here for deriving the electric and magnetic field intensities for a single-phase over-

head line. Maxwell’s equations for homogeneous, linear and isotropic medium can be

written by:

∇× ~Eext(~r, t) = −µ0
∂ ~Hext(~r, t)

∂t
(1.1a)

∇× ~Hext(~r, t) = σ~Eext + ε
∂~Eext(~r, t)

∂t
+ ~Jfr(~r, t) (1.1b)

∇ · ~Dext(~r, t) = ρfr (1.1c)

∇ · ~Eext(~r, t) = 0, (1.1d)
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where σ, µ and ε are the conductivity, magnetic permeability and electric permittivity

of the medium respectively. ~Dext(~r, t) is the displacement vector. ρfr and ~Jfr(~r, t)

represents any free-charge and free-current density in the region of analysis.

We want to derive the nature of the electromagnetic field in the region between

the ground plane and the overhead conductor. Assuming no conductivity or air,

neither free sources within this region, we can write σ = 0, ρfr = 0 and ~Jfr(~r, t) = 0.

Displacement vector will be linearly related with the electric field, ~Dext = ε~Eext.

Additionally, we are considering transversal fields only, i.e. ~Eextz = 0 and ~Hextz = 0.

Besides, ∇ operator can be divided by: ∇ = ∇t + ∇z, where ∇t operates over

transversal field components and ∇z over longitudinal ones. Operating upon Eqs.

1.1 we can obtain for transversal fields the following equations:

∇t × ~Eextt(~rt, t) = 0 (1.2a)

∇t × ~Hextt(~rt, t) = 0 (1.2b)

This result shows that under TEM considerations, electric and magnetic fields obey

the same equations as in the electrostatic and magnetostatic case. Therefore, we can

find the magnitudes of the electric field by defining a scalar potential, φ(~rt) such as
~Eextt(~rt) = −∇φ(~rt) and magnetostatic approaches can be also proposed for finding

the magnetic fields. In order to find the magnitudes of electric and magnetic fields, we

can take advantage of the method of images [40] in order to convert the infinite wire

over a ground conducting plane to an equivalent two-wire problem as shown in Fig.

1.1(b). Under the assumption of uniform distribution of charges in the conductor

wires and a voltage V given between ground plane and conductor wire, it can be

shown that charge on the overhead conductor and radial electric field magnitude.

[40]:

Er =
V

r ln
(

2h
rw

) . (1.3)

A typical radius for conductor wires used in distribution and transmission lines is

about rw = 1[cm]. Therefore, approximated electric field intensities can be calculated

depending on the wire height. Assuming typical heights about h = 12[m], h = 17[m],

h = 18[m] for voltage levels about V = 44[kV], V = 132[kV], V = 275[kV] we can

obtained the electric field magnitudes in terms of distance to the conductor wire. Fig.

1.2(a) shows the estimated results for the radial electric field magnitude by using Eq.

1.3. As it can be seen from Fig. 1.2(a), maximum field strengths are obtained at the

conductor radius, then decreases rapidly over the first centimeters. Maximum electric

field intensities were about |~E| = 565[kV/m], |~E| = 1623[kV/m], |~E| = 3358[kV/m]
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Figure 1.2: (a)Electric field radial component distribution for typical overhead lines
in high voltage systems. (b)Magnetic field azimuthal component from overhead lines
with I = 1[kA] and different heights of conductor wires

from lower to higher voltage level respectively. On the other hand, magnetic field

intensity from overhead lines can be also quantified under magnetostatic assumption,

in this case we will have for the azimuthal component:

H =
I

2πr
ln

(
2h

rw

)
(1.4)

In contrast to the voltage in overhead lines, current magnitude will depend on the

electric load, hence a definite value can not be given. However, nominal currents

can be established depending on the electric power that the overhead line will trans-

port. Considering an electric apparent power of S = 100[MVA], we can calculate the

magnitude of the current in terms of the overhead line voltage. For the three cases

under analysis, currents through overhead line conductors will be about I = 2[kA],

I = 757[A] and I = 363[A], for voltages from 44[kV], 132[kV] and 275[kV] respectively.

It is worth noting that unity power factor was used for calculating the current magni-

tude from apparent power. Additionally, since the power was assumed to be constant,

current magnitudes for lower voltages are much higher than those for high voltages.

Nevertheless, in practice as higher voltage is used for transmission and distribution

lines as higher power is transported, thus currents are also increased. Fig. 1.2(b)

plots the intensity of magnetic field from the conductor wire surface when a current

of I = 1[kA] is assumed and different heights of conductor wires are considered. As

can be seen from Fig. 1.2(b), intensity of magnetic field is much more dependent on

the current magnitude than the overhead line height. This results allows to estimate

the expected magnetic field intensity based on typical primary currents. As in the

case of electric field intensity (Fig. 1.2(a)), we will find higher magnitudes near the

conductor surface and will decrease with the inverse of distance.
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This thesis presents two approaches based on optical fibers that can indirectly mea-

sure these electrical variables from the overhead lines. Current magnitude can be

estimated through measuring the magnetic field around the conductor and voltage

can be estimated from the associated electric field magnitude and geometrical as-

pects of the overhead line. The strategies that were selected to explore in the current

thesis were based on the use of magnetostriction and piezoelectric properties of cer-

tain materials to transfer mechanical strains to optical devices based on the electric

and magnetic field magnitudes, such as the external magnitude of interest can be

estimated through the modulation of light guided in an optical fiber.
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Chapter 2

Scope of the thesis

This thesis is focused on the theoretical description and practical implementation of

magnetostrictive and piezoelectric sensors for magnetic field and voltage measure-

ments. This thesis proposes two sensor arrangements for inferring external magnetic

field and voltage magnitude by modulating light in an optical fiber. The analysis

of both sensors are supported theoretically based on the known prior art, as well as

some novel developments are proposed for describing the experimental results. Fig.

2.1 presents the scope of the thesis in a methodological diagram where the main

physical interactions in the measurement of electrical variables in high voltage sys-

tems are highlighted. Light is sent from the ground level by using an optical fiber

Figure 2.1: Methodological diagram of the interactions analyzed in this document

as a waveguide, light propagating in the optical fiber interacts with magnetostrictive

and piezoelectric materials that are driven by the electromagnetic fields generated

from the overhead line. This interaction allows to determine a sensing principle for
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each of the variable that enables its inference through an optical detection. This doc-

ument is organized in the following chapters: Chapter 3 presents the strategies

to transfer the strain due to the external perturbations into light modulation. This

chapter presents a mathematical framework for extending the well known Coupled

Mode Theory (CMT) through a Hamiltonian Formulation of the Helmholtz equa-

tion for accounting, in the propagation characteristics of few-mode fibers, additional

perturbations across transverse spatial distribution of the propagating mode. As a

particular case, this chapter considers the Fiber Bragg Gratings (FBGs) as one of

the techniques to transfer the mechanical strain due to the external perturbations

for altering the characteristics of the propagating light throughout the optical fiber.

Chapter 4 presents the characteristics of magnetized bodies due to an external

magnetic field. This chapter describes the effects of geometry in the behavior of the

demagnetization field, as well as discusses the difference of full vectorial solutions of

the magnetization problem for finite length bodies against approached solutions that

considers only magnetization along the external field direction. This chapter presents

the most used methods for accounting non linearity, hysteresis and magnetostrictive

effects due to the magnetization process.

After dealing with the physical description of magnetization and magnetostriction

in continuum bodies, Chapter 5 deals with the description of magnetostrictive

composites. In this chapter, a novel numerical description of magnetic composites is

presented and discussed in terms of previous literature reports and experimental re-

sults. The proposed method models the magnetic powder particles in the composite

as individual cuboids, which allows to calculate a closed solution for the magnetic

vector potential as well as controlling the geometric aspect ratio for each particle

in the composite. This chapter presents some theoretical comparisons based on the

magnetic powder particle size and its spatial distributions against magnetization of

monolithic bodies, showing and highlighting the role that plays the demagnetization

field of each of the particles in the overall magnetostrictive response of the composite

body. Once magnetostrictive effects have been addressed in the previous chapters,

Chapter 6 presents the basics of piezoelectric devices modeling, especially the the-

oretical background of piezoelectric bi-morph and uni-morph actuators. Simplified

analytical approaches are compared to Finite Element Method (FEM) results.

Once both sensing principles: magnetostriction and piezoelectric effects have been

addressed, Chapter 7 presents the experimental implementations for sensing mag-

netic and electric field by using magnetostrictive and piezoelectric devices and its
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coupling methods to optical fibers. Reported results present the capability of the im-

plemented type of sensors to use the advantages of optical fiber to develop sensors in

power systems. Some of the found drawbacks are also discussed and their limitations

are explained. As a last section, Chapter 8 presents the concluding remarks of the

thesis and proposes future work based on the achieved results.
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Chapter 3

Propagating light characteristics in
optical fiber waveguides

In this chapter, the properties of propagating light into an optical fiber are analyzed

with the aim to provide a background for the interaction between external perturba-

tions and propagating light into the waveguide. First section of the chapter presents

the most important characteristics of the light that propagates throughout an optical

fiber. Appendix A presents a more detailed explanation of the used equations in

this chapter. Main properties of propagating modes are considered for accounting

their interaction with the external perturbations, which in the scope of this thesis

will be associated to external strains transferred by magnetostrictive and piezoelec-

tric effects. Secondly, one of the most used theory for mode interaction analysis, the

Coupled Mode Theory (CMT), is discussed focused on its definition of orthogonality

relationship between modes and modal expansion criteria. Since CMT formulation

does not describe explicitly the effects of transverse perturbations upon the propa-

gating mode characteristics, a Hamiltonian formulation of the Helmholtz equation

(HFHE) is developed to provide a mathematical framework for computing the distor-

tions over the spatial distribution of the propagating modes under some transverse

perturbation. Discussed framework supports the application of the perturbation the-

ory for few-mode fibers and its possible applications in modal conversion. Finally,

as a particular case of a longitudinal perturbation, the Fiber Bragg Grating (FBGs)

are addressed to be used as the optical device that allows the modulation of light by

means of mechanical strain into its grating distribution.
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3.1 Electromagnetic Fields in a Optical Fiber Waveg-

uide

The description of electromagnetic waves that propagates through an optical fiber

waveguide are in general described by the Maxwell’s equations in a source-free medium:

∇× E = −jωµH (3.1)

∇×H = jωεE, (3.2)

where E and H are complex vectors. There is a very well known decomposition of

the electric and magnetic field components into transverse (Et,Ht) and longitudinal

direction (Ez,Hz), where this latter is considered as the direction of propagation of

the resultant propagating waves (in this particular case z-axis has been defined as the

propagating direction). By means fo this decomposition transverse fields can be found

such as they satisfy the boundary conditions imposed by the waveguide. Afterwards,

longitudinal components can be also found such as the total electromagnetic field

can be determined for the waveguide. A more detailed explanation can be found in

appendix A and Reference [38]. Once the electromagnetic field is known, the optical

power carried by the electromagnetic field can be calculated from the Poynting vector

definition, this latter is given by: ~S = E×H, and relates the associated electric and

magnetic energy of the electromagnetic wave [38]. Assuming a waveguide oriented

through z-direction, averaged z-component of the Poynting vector is given by:

< Sz >=
1

4
(E∗t ×Ht + Et ×H∗t ) (3.3)

being Et and Ht tangential components of the field. Based on this result, the total

power through the cross-section of the waveguide can be calculated by:

Ptz =
1

4

¨
(E∗t ×Ht + Et ×H∗t ) · d ~A. (3.4)

This result enables the calculation of the total power carried out by a propagating

mode into a determined waveguide.

Since depending on the characteristics of the waveguide there can exist several prop-

agating modes, an orthogonality relationship can be established between two of these

solutions [28]. Assume two solutions to the Maxwell’s equation in a waveguide, i.e.

E1,H1,E2 and H2 and their conjugated vectors E∗1,H∗1,E∗2 and H∗2. It can be shown

that the orthogonality relationship that holds for these two propagating modes is

given by (details are presented in appendix A):

−j(β1 − β2)

¨
(E1t ×H∗2t + E∗2t ×H1t) · d ~A = 0. (3.5)
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where β1 and β2 are the propagating constants for each mode, and E1t, H1t, E2t,

H2t, are the transverse field spatial distribution of the electromagnetic fields. This

orthogonality relation supports the Coupled Mode Theory (CMT) and establishes

the power-mode independence between transversal solutions of propagating modes in

waveguides [28]. Based on this orthogonality relationship, a modal expansion can be

proposed for an arbitrary tangential field in terms of forward (êνt(x, y), ĥνt(x, y)) and

backward modes (ê−νt(x, y), ĥ−νt(x, y)) by:

Et(x, y) =
∑
ν

aν êνt(x, y) +
∑
ν

bν ê−νt(x, y) (3.6)

Ht(x, y) =
∑
ν

aν ĥνt(x, y) +
∑
ν

bν ĥ−νt(x, y). (3.7)

such as the forward and backwards amplitudes: aν , bν , can be found for each ele-

ment in the expansion. When there is a perturbation in the permittivity (∆εt, ∆εz),

propagating modes can present energy interactions. Including the external pertur-

bation and taking advantage of the current orthogonality relationship, we can define

tangential and longitudinal coupling coefficients by:

Kt
νµ = ω

¨
ê∗tµ(x, y)∆εtêνt(x, y)dA (3.8a)

Kz
νµ = ω

¨
ê∗zµ(x, y)

∆εzε

(ε + ∆εz)
êνz(x, y)dA (3.8b)

such as it is possible to write for the forward and backward amplitudes (see appendix

A for details):

a′µ(z) + jβµaµ(z) = −j
∑
ν

[
aν(z)

(
Kt
νµ +Kz

νµ

)
+ bν(z)

(
Kt
νµ −Kz

νµ

)]
(3.9)

b′µ(z)− jβµbµ(z) = j
∑
ν

[
aν(z)

(
Kt
νµ −Kz

νµ

)
+ bν(z)

(
Kt
νµ +Kz

νµ

)]
(3.10)

CMT theory allows to find the amplitudes of the expansion coefficients by solving the

resultant equations. There are some typical situations where the CMT theory allows

to find explicit solutions for the unknown coefficients when initial conditions for the

amplitudes and modal characteristics are given. It is the case of co-directional and

counter-directional coupling, where interaction modes are predefined in direction of

propagation and propagation constant.

It should be noticed that CMT theory does not impose orthogonality between the

modes spatial distribution themselves, but the power they carry out. As it was

shown, the orthogonality relationship holds for propagating modes that present dif-

ferent propagation constants and propagation directions but there is no way to find
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out the effects upon the propagation constant due to the perturbation neither the

modifications of the spatial distributions of the transverse field.

Next section proposes an alternative formulation for calculating the corrections to the

propagation constant as well as the transverse modal distortion due to an external

perturbation.

3.2 Hamiltonian formulation for the Helmholtz equa-

tion in optical fibers

In optical fibers, those electromagnetic fields should be attached to appropriated

boundary conditions which imposes additional conditions to the propagation con-

stant. Assuming harmonic time dependence, i.e. exp(jωt ± jβz), solutions for radi-

ated and guided modes in Eqs. (3.1) can be found by solving an eigen-value problem,

written in terms of the propagation constant β. Eigenfunctions that solve this prob-

lem are characterized by a specific set of parameters to describe the propagation

characteristics as an unique entity, such as: spatial distribution for each field compo-

nent, an effective refractive index and the optical power distribution for each of the

propagating modes [47, 38, 8]. Closed form solutions has been extensively studied to

solve for the transverse electric field distributions in basic dielectric profiles εt(~r⊥),

such as rectangular slabs and cylindrical waveguides. However, interaction with ex-

ternal phenomena can lead to more complex transverse dielectric distributions and

numerical techniques should be implemented. Perturbation theory is an analytical

approximation that proposes a solution for the complex problem spanning the per-

turbed scenario through a linear combination of the unperturbed solutions[9]. This

approach, in contrast to numerical simulation solutions, keeps most of the physical

basis of the initial problem which helps much more in the understanding the effects of

perturbation upon the propagating modes. In order to implement the perturbation

theory to optical waveguides in the same fashion as in the Hamiltonian eigenproblem

in quantum mechanics [9], a Hamiltonian formulation of the Maxwell’s equations can

be proposed [27, 44, 45, 46]. In this formulation, the propagating parameters of a

waveguide with perturbed transverse dielectric profile ε̃t(~r⊥) are calculated from the

unperturbed waveguide εt(~r⊥), assuming that the perturbed dielectric profile can be

considered as small change from the unperturbed one as: ε̃t(~r⊥) = εt(~r⊥) + ∆εt(~r⊥).

References [44, 46] writes Maxwell’s equation by means of two operators. A first

operator B̂ acting as a longitudinal projector, and a second one Â, that includes the

12



transverse characteristics of the waveguide [44]. By using this procedure, correspond-

ing equations can be written as a generalized eigenproblem, that expressed in Dirac’s

notation, can be written by means of the standard perturbation theory by:

Â |Ψ〉 = βB̂ |Ψ〉 (3.11a)

|Ψ〉 =

[
Et

Ht

]
, (3.11b)

with the same power orthogonality condition presented in the section before, such as

between two eigenkets this relationship is given by:

(βi − βj)
¨

(Eit ×H∗jt + E∗jt ×Hit) · îzdA = 0, (3.12)

where βi and βj are non-degenerate propagation constants, and Eit, Hit, Ejt and

Hjt are their corresponding transverse mode distributions. Orthogonality expression

in Eq.(3.12) is the same one used in the Coupled Mode Theory (CMT) widely dis-

cussed in previous section [29, 47]. Formulation in Eq.(3.11) allows the application of

the stationary perturbation theory considering the eigenkets as a composition of the

tangential electric and magnetic field (as stated in Eq.(3.11b)), this strategy implies

that perturbation expansion coefficients will involve both fields instead of dealing

with them individually. Helmholtz equation, in contrast to Maxwel equations, has

the advantage of writing relationships for each tangential field independently. Eval-

uation of perturbation effects over the electric and magnetic field in a separated way

constitutes an advantage in the analysis of dielectric waveguides, particularly for the

electric field which can be modified not only in its propagation characteristics but

also in its transverse distributions when immersed in dielectric profile perturbations.

In the attempt to deal with decoupled Maxwell equations as independent eigen-

problems, (Eq.(3.13a) and Eq.(3.13b) written here again for readability), only Eq.(3.13b)

satisfies hermiticity condition for the resultant operator [46], but perturbation terms

associated to linear and non-linear contributions due to the polarization vector cannot

be included into the formulation [46].

∇× (∇× E(~r)) = µ0ω
2D(~r) (3.13a)

∇×
(

1

ε(~r)
∇×H(~r)

)
= µ0ω

2H(~r) (3.13b)

∇ ·D(~r) = 0 (3.13c)

∇ ·H(~r) = 0, (3.13d)
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On the other hand, Eq.(3.13a) includes polarization vector effects, but resultant op-

erator does not satisfy hermiticity [44, 46].

In the following, a theoretical background of an analytical approach for dealing

with the non-hermiticity of Eq.(3.13a) is presented, such as propagation parameters,

as well as the distortions on the transverse electric field distribution can be calculated

from a perturbation due to a polarization vector. This fact offers a main advantage of

over conventional methods based on the CMT theory, because instead of considering

the whole transversal field in expansion coefficients, proposed formulation calculates

based on the electric field distribution in the cross section, which can be naturally

connected to the polarization vector. In the proposed formulation completeness re-

quirement is relaxed by means of a reduced basis analysis where both conditions can

be achieved, which in some cases could be enough to describe the perturbed scenario.

In practice, few-mode fibers are highly suitable for this type of analysis inasmuch as

only some propagating modes can be excited. A set of numerical experiments for

fiber optics waveguides are discussed to show the accuracy of the proposed method

when different types of perturbation terms such as: inhomogeneities, anisotropies and

nonlinearities are included. Results obtained through this formulation shows an ex-

cellent agreement with FEM simulations and results reported previously in literature.

Consider a z-directed propagating waves with propagation constant β. By using

the vectorial identity∇×(∇×A) = ∇ (∇ ·A)−∇2A, the eigenproblem in Eq.(3.13a)

can be written as:

(
∇2
⊥ + k2

0 (1 + χ)− β2 + Ŵt

)
E (~r⊥) = 0 (3.14a)

Ŵt = ∇
(
−∇ε (~r⊥)

ε (~r⊥)
·
)

+
ω2∆χ̂(1)

c2
+ (3.14b)

ω2

c2

(
χ̂(2) : E (~r⊥) + χ̂(3)E (~r⊥) : E (~r⊥) + ...

)
,

where k0 = ω/c is the wavenumber, c the speed of light in vacuum; β = neffk0 the

propagation constant through the waveguide with neff the mode effective refractive

index; χ is the linear, homogeneous, and isotropic susceptibility. Additional term Ŵt

includes any inhomogeneity associated to the spatial distribution of the permittivity

and polarization vector effects. Linear anisotropies are included through the term

∆χ̂(1) and the nonlinearities are taken into account according to the electric field de-

pendence [8]. This mathematical artifice casts Helmholtz equation into a Hamiltonian
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eigenvalue problem in quantum mechanics [9], where unperturbed case is determined

by isotropic, linear and lossless material, which reduces Eq. (3.14) to the Helmholtz

equation for the electric field:(
∇2
⊥ + k2

0n
2 − β2

)
E (~r⊥) = 0 (3.15a)

∇2
⊥E (~r⊥) = k2

eE (~r⊥) , (3.15b)

where n =
√

1 + χ is the refractive index of the linear and isotropic medium and

k2
e = β2 − k2

0n
2 acts as the eigenvalue. It is worth noting that full-vectorial charac-

teristics of the electromagnetic field kept in Eq.(3.15) as long as each electric field

component is included into the formulation, any anisotropic effect that involves dif-

ferent electric field components can be addressed by means of the perturbation terms

in the polarization vector as presented in Eq.(3.14b). Using Dirac’s notation, Eq.

(3.15) can be written as:

∇2
⊥ |eαj〉 =

(
β2
j − k2

0n
2
)
|eαj〉 , (3.16)

where |eαi〉 are the normalized kets that represent the modal spatial distribution

for each electric field component (α = x, y, z) projected on the coordinate system.

These normalized kets can be calculated from solutions to Eq.(3.15b) after imposing

the corresponding boundary conditions associated to the waveguide characteristics,

which leads to a set of functions {Ei (~r⊥)} that are able to propagate throughout the

waveguide.

At this point, we can make use of a Hamiltonian formulation of the Helmholtz equa-

tion (in Eq.(3.16)) to describe some interactions and relationships that holds for the

transversal fields in terms of those eventual transverse perturbation, as well as some

other direct relationship that holds for the coupling factor integral expression. Once

the basis of eigenkets
{
|eαj〉

}
is constructed by orthonormal and non-degenerated

eigenfunctions that solve Eq.(3.16), first-order stationary perturbation theory allows

to compute associated correction terms for the eigenvalue (propagation parameter)

and eigenket (mode distortion) through the expressions [9]:

β̃2 = β2
0 + 〈eα0|Ŵt|eα0〉 (3.17a)

|ẽα〉 = |eα0〉+
∞∑

j=1,j 6=0

〈eαj|Ŵt|eα0〉
β2

0 − β2
j

|eαj〉 , (3.17b)

where β̃ and |ẽα〉 are the propagation constant and mode field distribution after

perturbation, respectively. Modified propagation constant can be calculated from
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Eq.(3.17a) using the simplification:

β̃ = β0

√
1 +

∆β2

β2
0

≈ β0 +
∆β2

2β0

, (3.18)

where ∆β2 = 〈eα0|Ŵt|eα0〉. Here, it was assumed that ∆β2 << β2
0 . It is worth noting

that perturbation operator Ŵt can include any inhomogeneity, linear anisotropy, and

nonlinear effects, depending on which terms are included in Eq. (3.14b).

As discussed before, main advantage of the proposed formulation in this part of the

thesis is to write the perturbation expressions in terms of the electric field components

only. In order to accomplish this, we make use of the TEM wave properties to

normalize eigenkets in terms of optical power using the relation of intensity of the

electric field , where |~Sz| = | ~Et|2/2η, with η the impedance of the medium. Based on

this, we can write:

|~Sz| =
|Exi(x, y)|2 + |Eyi(x, y)|2

2η
(3.19)

(3.20)

where medium impedance η is given by η = η0/n. As it can be seen from Eq.(3.20),

power written in terms of the electric field components can be decomposed as the

sum of squares of the electric field components.

2Ptz =
n

2η0

¨ (
| ~Ex(x, y)|2 + | ~Ey(x, y)|2

)
d ~A (3.21)

In the current formulation components of the electric field are treated independently

leading to different normalization factor for each component in associated to the

corresponding ket. However, power carried for each component can be used in the

normalization factor such as the projection of the kets in the Cartesian coordinate

system is given by:

〈~r|eαi〉 =
Eαi(x, y)√

1
2η

˜
|Eαi(x, y)|2 dxdy

=
Eαi(x, y)√

n
2η0

Ami

, (3.22)

where Ami can be defined as the modal area for its respective component. Based on

this definition orthogonality relationship for the current formulation will be given by:

〈eαi|eαj〉 = 2ηδij. (3.23)
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It should be stressed that this formulation does not have same value of normal-

ization as in the CMT. Therefore, any result obtained by these relationships in terms

of possible affections of the perturbation to the transverse modal distributions should

be calculated back to their initial values for being included in the CMT. Perturbed

mode can be written back to coordinate space by:

〈~r|ẽα〉 = 〈~r|eα0〉+
∞∑

j=1,j 6=0

〈eαj|Ŵt|eα0〉
β2

0 − β2
j

〈~r|eαj〉 , (3.24a)

Ẽα0(x, y) = Eα0(x, y) +
∞∑

j=1,j 6=0

〈eαj|Ŵt|eα0〉
β2

0 − β2
j

√
Am0

Amj

Eαj(x, y), (3.24b)

Finally, perturbed transverse field will be given by:

Ẽ1t = Ẽx0(x, y) + Ẽy0(x, y). (3.25a)

This result allows to write:

ˆ̃eνt(x, y) =
Ẽ1t√
2Ptz

(3.26a)

Leading to modified coupling coefficient for the transversal field defined by:

K̃t
νµ = ω

¨
ˆ̃e∗tµ(x, y)∆εt ˆ̃eνt(x, y)dA. (3.27)

In contrast to typical CMT, this formulation includes the possibility for modifying

the coupling coefficient when tangential fields interact each other due to an external

perturbation. Additionally, as it is stated in the perturbation theory, eigenfunctions

are able to form a basis that allows to span the space of solutions, if completeness

and orthogonality are satisfied [9]. These two latter conditions are the main difficul-

ties in applying the perturbation theory to Eq.(3.16) with the aim of calculating the

transverse mode distortions. However, in some scenarios a reduced set of elements

taken from the set of solutions can be enough to describe the perturbed scenario. In

practice, few-mode fibers are highly suitable for this type of analysis inasmuch as only

some propagating modes can be excited and orthogonality relationships hold for all

the components of the electric field. Appendix B presents a discussion of orthogo-

nality between the spatial distribution of transverse modes and their consequences in

the validity of the current formulation.
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3.2.1 Numerical Experiments

This section presents a set of numerical experiments to show the accuracy of the

HFHE method in the calculation of modal propagation parameters under the pres-

ence of external perturbations. Inhomogeneity and anisotropies of refractive-index

profiles can be designed to enhance the inter-modal interaction, which can exploit

the induced distortion on the mode field profile in the design, for instance, of spatial-

multiplexing processes and all-optical switching. By means of the present formulation,

the external perturbations can be conveniently engineered such as each component

of the electric field in the propagating mode is affected selectively. The application

of the current formulation is very suitable in few-mode fibers where the amount of

supported propagating modes constitutes an orthogonal basis for each of the electric

field components. Different types of analysis were performed in order to illustrate

how the perturbations can be included into the analysis and the accuracies are also

discussed. Appendix B presents additional simulations cases that can be of interest

to the reader.

3.2.1.1 Linear Inhomogeneities

This section considers a step-index few-mode fiber with the following parameters:

ncore = 1.46, nclad = 1.3 and radius ρ = 1.5[µm]; the wavelength was set to be

λ = 1600[nm] in order to allow only one propagating mode for each family. In this case

the set of solutions for the unperturbed Helmholtz equation is composed by orthogonal

functions with propagating modes: {TE01, TM01, HE11, EH11, HE21}. Perturbation

consisted in the inclusion of spatial inhomogeneities for the linear refractive index

in both the core and the cladding region, such us the perturbation strength, ∆n =

|2n(r, θ)∆χ(r, θ)|, was imposed from the unperturbed case ∆n = 0, to refractive index

changes about ∆n ≈ 10−2. This term can be included in Eq. (3.14b), where only

the first two terms are considered. The presence of inhomogeneities in the spatial

distribution of the permittivity makes to appear a polarization charge density at the

interfaces between the inhomogeneous regions. It is worth noting that the first term

of the operator in Eq.(3.14b) represents the polarization charge that can be found

by ρp = −ε0
∇ε
ε
· E. In the case under study, the azimuthal change of susceptibility

∆χ(θ) will impose a surface charge density at each azimuthal interface θ = θ′0. Using

cylindrical coordinates polarization charge density at each azimuthal interface can be

written by:
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ρp(r
′, θ′, z′) =

ε0

r′

(
ε1 − ε2

ε2

)
E1θj(r

′, θ′0, z
′)δ(θ − θ′0), (3.28)

where subscript 1, 2 defines both regions at the interface in which the azimuthal

component of the electric field is directed from 1 to 2. Subscript j relates the mode

function for the corresponding propagating mode. As it is stated in Eq.(3.28), the

magnitude of the perturbation depends on the relative change of permittivity due to

the inhomogeneity. For the refractive index contrasts under consideration, induced

polarization charge at the interfaces can be neglected, thus the perturbation operator

can be given by a simple expression Ŵt = µ0ε0ω
2∆χ(1)(x, y), which is a spatial-

dependent perturbation.

Core Cladding

(b)
 

x

y

Figure 3.1: Spatial-dependent linear inhomogeneity and orthogonal propagating
modes: (a) Unperturbed fiber; (b) perturbed fiber with azimuthal changes ∆χ(θ)
of periodicity π/2

In order to compare the accuracy of the proposed approach in the prediction of

the effects due to the inhomogeneities ∆χ(x, y), the results obtained with the HFHE

formulation were compared with those obtained from the vector FEM approach. Com-

parisons were performed for both the effective refractive index and the distortion in

the electric-field distribution that undergoes each mode. It is worth noting that the

simulations with the FEM are performed assuming that fiber does not suffer any per-

turbation, i.e., inhomogeneities are included as initial conditions of the problem, so

it is not rigorously speaking an induced distortion by a perturbation, but an initial

distribution of refractive index. This is an important advantage of the HFHE method

because it can describe the transition from an initial spatial distribution of the guided

mode into a distorted one due to the presence of an external perturbation, which can

be used as an strategy for modal division multiplexing [4].

Figure 3.1 shows the spatial dependence of the perturbative terms. Once the per-

turbation is included, both the effective refractive index and the change in the field
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Figure 3.2: Effective refractive index of the perturbed optical fiber in Fig.3.1 (b) for
the four propagation modes versus ∆n obtained by our HFHE formulation (lines) and
calculated by the vector FEM (dots).

distribution for each propagating mode are calculated as a function of the perturbation

magnitude. Fig. 3.2 presents the dependence of the effective refractive index for each

propagating mode as a function of the perturbation strength. From this figure, we can

see that our results are in good agreement with the vector FEM solutions. We found

a maximum absolute error about 0.1% between them at the strongest perturbation.

Sources of the mismatch can come from neglecting the induced polarization charges

due to the imposed inhomogeneities in the polarization vector. An additional com-

parison was performed on the calculation of the Ex field profiles of the guided modes

due to the presence of the inhomogeneity. In Ref. [44] correction terms were applied

only to propagation constants. However, by using HFHE formulation and through

the perturbation method described before, spatial-distribution correction can also be

well estimated after the perturbation, as it is presented in Fig. 3.3.

It must be noted that transverse modes are most affected because they do not

present symmetry respect to the spatial inhomogeneity, increasing the magnitude of

the coupling coefficient between modes in Eq. (3.17b). When these field distributions

are compared with the unperturbed ones, the effect of the perturbation is to rotate the

mode in a clockwise direction in which the rotation angle depends on the perturbation

magnitude, and it is directly related with the coupling coefficient between TE and

TM modes. In practice, this effect can be exploited by doping the fiber in specific
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Figure 3.3: Mode field distributions (Ex-component) of the perturbed optical fiber
in Fig. 3.1(b). (a) HE11 , (b) TE01 , (c) TM01. When these field distributions are
compared with the unperturbed ones in Fig. 3.1(c), the effect of the perturbation is
to rotate the mode distribution in a clockwise direction.

regions where inhomogeneities can be controlled externally allowing mode conversion

processes.

3.3 Fiber Bragg Gratings

A Fiber Bragg Grating (FBGs) is a particular case of an external perturbations along

the propagation path. FBGs are changes on the refractive index of the core of the

fiber that are intentionally induced along the propagation path in optical fibers in

order to couple propagating modes. These changes are typically modeled assuming a

perturbation of the effective refractive index given by [13]:

δneff(z) = δ̄neff(z)

[
1 + v cos

(
2π

Λ
z + φ(z)

)]
. (3.29)

As it was presented in the section above, the existence of a perturbation can couple co-

propagating and contra-propagating modes. This section makes the analysis of Fiber

Bragg Gratings (FBGs) based on the CMT and the notation followed in [13]. More
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details about the analysis of the effects of perturbations due to FBGs is presented in

Appendix C.

The interaction between a propagating mode and a counter-propagating mode due

to the existence of the longitudinal perturbation allows to find a reflection coefficient

given by:

ρ(κ, σ̂, L) =
−jκ√

κ2 − σ̂2 coth(L
√
κ2 − σ̂2) + jσ̂

. (3.30)

where parameter σ̂ and κ are given by:

σ̂ = δ + σνµ(z)− 1

2

dφ(z)

dz
(3.31)

κ = κνµ(z) (3.32)

detuning parameter δ is given by: δ = βo − π
Λ

and σνµ(z) is determined by:

σνµ(z) = ωncoδ̄nco(z)

¨
ê∗tµ(x, y)êνt(x, y)dA (3.33)

κνµ(z) =
v

2
σνµ(z). (3.34)

In order to validate that the numerical implementation in this thesis is in agreement

with previous results in literature, Figure 3.4 compares the reflected spectrum of an

experimental FBG (taken from [13]) and its theoretical prediction assuming L =

1[mm], v = 1, δ̄nco = 8 × 10−4, nco = 1.45. This latter is assumed because it is not

given in the paper. As it can be seen from Fig. 3.4 implemented numerical in this
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Figure 3.4: Comparison of the reflected spectrum of an experimental FBG (taken
from [13]) and its theoretical prediction.

thesis, reproduces main characteristics and magnitude of the reflected spectra of the

experimental results presented in Ref. [13].
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3.3.1 Non-Uniform Gratings

In practice uniform gratings are not always desired because they present several

side lobes. Therefore, different types of apodizations are imposed to the grating.

Dealing with non-uniform gratings requires the solution of the transfer matrix with

z-dependent coupling coefficients, which normally requires the usage of numerical

methods. Typically, a piecewise linear approximation is used for solving Eq.(C.12),

such as each section is solved as a constant coefficients section. Based on this method,

we are able to calculate the reflected spectrum from z-dependent gratings. Figures

3.5(a) and 3.5(b) present the comparison of our numerical implementation with those

results presented in Ref. [13], for a grating that follows a Gaussian-apodized function

given by:

δ̄neff(z) = δ̄ncoe

(
−4 ln 2(z−L/2)2

FWHM2

)
, (3.35)

where FWHM is the full-width-at-half-maximum of the grating profile. As it can be

seen from Figs.(3.5(a,b)), numerical method impletemed in this thesis for modeling

nonuniform gratings is in agreement with the results previously published in Ref.[13].
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(a)

(b)

Figure 3.5: (a)Comparison with the reference results presented in [13]. Gaussian-
apodized function, L = 3[cm], v = 1, δ̄nco = 1 × 10−4, nco = 1.45,FWHM=
1[cm].(b)Gaussian-apodized function, L = 3[cm], v = 1, δ̄nco = 8 × 10−4, nco =
1.45,FWHM= 1[cm].
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3.3.2 Chirped Gratings

For those applications were the FBG is non-uniformly modulated in length, analysis

of chirped gratings is of extremely high importance because this is the predominant

scenario in many sensors based on this effect. Depending on the applied force and its

distribution along the grating length is the reflected spectrum behavior. In Ref.[13],

it is proposed an expression for writing the phase term of the grating φ(z), such as

the term in the coupling coefficient associated to the chirped grating can be written

by:

1

2

dφ

dz
=
−4πneffz

λ2
D

dλD
dz

, (3.36)

where λD is the equivalent wavelength associated with the grating pitch Λ by:

λD = 2neffΛ. (3.37)

3.3.2.1 Linear Chirp

One of the simplest chirping is that composed of a linear increment of the grating

along the FBG length. In order to include a linear chirping in the grating function

description, we can write the pitch length dependence along z given by the expression:

Λ(z) = Λo ± γpz, (3.38)

where γp is a proportional constant. Therefore, we can write for the frequency:

ωg(z) =
2π

Λ(z)
=

2π

Λo ± γpz
. (3.39)

By using a Taylor series expansion and taking the first order only, we can write:

ωg(z) =
2π

Λo + γpz
u

2π

Λo

− 2π

Λ2
o

γpz (3.40)

ωg(z) =
2π

Λo − γpz
u

2π

Λo

+
2π

Λ2
o

γpz (3.41)

Based on this expression, we can write in general:

ωg(z) = kpz ∓
2π

Λo

(3.42)

δnAC(z) = cos

(
2π

Λo

z ∓ kpz2

)
, (3.43)
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where kp is a proportional quantity that relates the initial and final pitch in the chirp

by:

kp =
2π

Λ2
o

γp. (3.44)

If the last grating pitch is written in terms of the initial pitch frequency by a factor

αp, we can find the proportionality factor kp by:

kp =
2π

ΛoL
(αp − 1) (3.45)

this allows us to write:

ωg(z) =
2π

ΛoL
(αp − 1)z +

2π

Λo

(3.46)

δnAC(z) = cos

(
2π

Λo

z +
2π

ΛoL
(αp − 1)z2

)
. (3.47)

In order to include this expression in the previous results, we have:

φ(z) =
2π

ΛoL
(αp − 1)z2 (3.48)

1

2

dφ

dz
=

2π

ΛoL
(αp − 1)z (3.49)

Figure 3.6 presents the effect on the reflected spectrum when a linear chirp is con-

sidered along the FBG. As it can be seen from the figure, the effect of a chirped

grating relay on both: central wavelength and spectrum broadening. However, the

reflectivity is highly attenuated when longer chirp periods are considered. This effect
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Figure 3.6: Comparison with the reference results presented in [13]. Gaussian-
apodized function with different linear chirps, L = 3cm, v = 1, δ̄nco = 1 × 10−4,
nco = 1.45,FWHM= 1cm.
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is directly related with the interference processs that holds for light in the grating,

such as the matching condition for the phase between optical paths along the FBG

is not longer satisfied, leading to a change in the peak reflection and the selectivity

of the reflected spectrum (bandwidth).

3.3.2.2 Symmetric Linear Chirp

We can also have chirped gratings that vary along both directions of the FBG. For

this case let’s consider first a symmetric linear variation that begins at the middle of

the FBG length. In this particular situation kp can be written by:

kp =

{
4π

ΛoL
(αp − 1) 0 < z < L/2

−4π
ΛoL

(αp − 1) L/2 ≤ z ≤ L.
(3.50)

Therefore, the grating function can be written by:

ωg(z) = kp =

{
4π(αp−1)

ΛoL
z + 2π

Λo
0 < z < L/2

4π(1−αp)

ΛoL
(z − L) + 2π

Λo
L/2 ≤ z ≤ L.

, (3.51)

in order to include this expression in the previous results, we have to find the argument

of the cosine function. Therefore, we can write for cos(ωg(z)z) = cos((2π/Λo)z+φ(z)),

where we have for the phase:

φ(z) =

{
4π(αp−1)

ΛoL
z2 0 < z < L/2

4π(1−αp)

ΛoL
(z2 − Lz) L/2 ≤ z ≤ L.

, (3.52)

calculating the derivatives respect to z, we have:

1

2

dφ

dz
=

{
4π(αp−1)

ΛoL
z 0 < z < L/2

2π(1−αp)

ΛoL
(2z − L) L/2 ≤ z ≤ L.

(3.53)

Following figure presents the effect of different values of αp in the reflection spectrum.

It should be noticed the dramatic effect upon the reflection spectrum shape when a

symmetric linear chirping is imposed to the FBG. In contrast to the reflection decaying

spectra presented in Fig.3.6, resultant spectra due to symmetric linear chirp, present

a two sided lobes in the reflection spectrum that separates each other as the coefficient

factor αp decreases. This effect can be understood as a splitting of the FBG into two

different ones.
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Figure 3.7: Comparison of different reflected spectrum results of Gaussian-apodized
function with different linear symmetric chirps, L = 3cm, v = 1, δ̄nco = 1 × 10−4,
nco = 1.45,FWHM= 1cm.

3.3.2.3 Asymmetric Linear Chirp

The same analysis can be performed over a linear chirp, but in this case we can

consider an asymmetric chirp function, i.e. the inflection point is not located at the

center of the FBG. For this case let’s assume the inflection point is located at some

point z = L/m, being m a real number such as: 0 < m < 1. In this situation kp can

be written by:

kp =

{
2mπ
ΛoL

(αp − 1) 0 < z < L/m
2mπ
ΛoL

(1− αp) L/m ≤ z ≤ L.
(3.54)

Therefore, the grating function can be written by:

ωg(z) = kp =

{
2mπ(αp−1)

ΛoL
z + 2π

Λo
0 < z < L/m

2mπ(1−αp)

ΛoL(m−1)
(z − L) + 2π

Λo
L/m ≤ z ≤ L.

, (3.55)

Using the same analysis for the phase function, cos(ωg(z)z) = cos((2π/Λo)z + φ(z)),

we can write for the phase:

φ(z) =

{
2mπ(αp−1)

ΛoL
z2 0 < z < L/2

2mπ(1−αp)

ΛoL(m−1)
(z2 − Lz) L/2 ≤ z ≤ L.

, (3.56)

calculating the derivatives respect to z, we have:

1

2

dφ

dz
=

{
2mπ(αp−1)

ΛoL
z 0 < z < L/2

mπ(1−αp)

ΛoL(m−1)
(2z − L) L/2 ≤ z ≤ L.

(3.57)
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Figure 3.8 presents the behavior of the reflectivity when different values for αp are

considered. It should be noticed that when αp is smaller than the unity the spectrum

is modified to the right of the central frequency. The ripples that appear in the

spectra can be explained by the tunning condition that achieves the wavelength and

phase of the incident light wave with the abrupt change caused by the slopes of the

chirping function.

Figure 3.8: Comparison of different reflected spectrum results of Gaussian-apodized
function with different linear symmetric chirps, λD = 1549.5 [nm], L = 3cm, v = 1,
δ̄nco = 1× 10−4, nco = 1.45,FWHM= 3cm.

An different behavior is obtained in the reflected spectra when instead of a tension

(αp < 1), we exert a compression (αp > 1) somewhere along the FBG. Figure 3.9

presents the results of the calculated spectrum when the asymmetric chirp occurs at

different points along the FBG. In this particular case, smaller lobes appear in the left

side of the peak wavelength. Same ripples in the reflected spectrum are also present

as in the previous case.

Figure 3.9: Comparison of different reflected spectrum results of Gaussian-apodized
function with different linear symmetric chirps, λD = 1549.5 [nm],L = 3cm, v = 1,
δ̄nco = 1× 10−4, nco = 1.45,FWHM= 3cm.

As it has been presented in this subsection, chirped FBGs exhibit different spec-

tral shapes when different functions of grating distribution are considered. in contrast
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to the uniform deformation of the FBG where only a shifting of the central wave-

length is expected, chirped FBGs exhibit important deformations on thee reflected

spectrum that can be used for improving the sensing strategies based on FBGs. It

is worth noting that sensitivity to the parameters is also an important issue in the

spectrum shape, achieving multiple reflection spectra patterns and reflection peaks

when coefficients of the chirping function are slightly changed.Therefore, one expects

that chirped FBGs can easily set up as a good strategy for sensing mechanical strains

and shape deformations.

3.4 Concluding Remarks

This chapter described main theoretical aspects of propagating modes in optical

fibers. Orthogonality and completeness of guided electromagnetic fields in optical

fibers were discussed and analyzed through well known analytical solutions for prop-

agating modes. Coupled Mode Theory (CMT) basis was described and main results

were derived (see Appendix A for details). Since CMT does not account explicitly

for corrections to the propagation constant and spatial distribution of propagating

modes for each component of the electric field when they are under a transverse exter-

nal perturbation, a formulation of the Helmholtz equation in terms of eigenfunctions

of an eigenvalue equation (considering Laplacian operator as a Hamiltonian opera-

tor) allowed to determine spatial distortion of propagating modes by using the first

order perturbation theory. Numerical experiments showed the feasibility for using

developed framework to successfully calculate spatial distortions due to transverse

perturbations (see Appendix B for details). Therefore, a theoretical connection be-

tween spatially disturbed modes and coupled mode theory framework was achieved,

so one could expand the arbitrary field E1t in the transverse perturbed modal basis

(ˆ̃etν(x, y)) by:

E1t(x, y, z) =
∑
ν

(aν(z) + bν(z)) ˆ̃etν(x, y) (3.58)

where both effects can be considered. Amplitude coefficients can be then determined

by solving the corresponding linear system that results in the CMT by:

a′µ(z) + jβ̃µaµ(z) = −j
∑
ν

[
aν(z)

(
K̃t
νµ +Kz

νµ

)
+ bν(z)

(
K̃t
νµ −Kz

νµ

)]
(3.59)

b′µ(z)− jβ̃µbµ(z) = j
∑
ν

[
aν(z)

(
K̃t
νµ −Kz

νµ

)
+ bν(z)

(
K̃t
νµ +Kz

νµ

)]
(3.60)
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Finally, Fiber Bragg gratings were addressed as one of the most used optical devices

for modulating light characteristics based on longitudinal perturbations upon a uni-

form grating (see Appendix C for details). Chirping effects were analyzed when

longitudinal perturbation presents a phase chirp. Changes in the spectrum shape,

as well as peak wavelength were observed in the reflection spectra. Since magne-

tostrictive and piezoelectric materials create a mechanical deformation that can be

transferred to an FBG with some particular characteristics such as the particular

sensitivity on the spectrum properties could be used as the strategy for modulating

light and infer the external field magnitudes.
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Chapter 4

Magnetization and
Magnetostriction

Magnetic induction, ~B, is the response of a medium due to the presence of a magnetic

field ~H. These two quantities can be related by the general expression:

~B = µ0

(
~H + ~M

)
(4.1)

where µ0 is the magnetic permeability of vacuum and ~M is the magnetization vector.

This latter accounts for the properties of the material and describes of the magne-

tization process inside the material [6, 22]. When dealing with finite lengths of the

magnetic material, magnetization makes a demagnetization field to appear, thus a

correction of the total magnetizing or internal magnetic field should be done by:

~H = ~Hext + ~Hdmg (4.2)

where ~Hdmg is the corresponding magnetic field due to the magnetization spatial dis-

tribution, therefore the geometry dependence of this field can be used to engineer

some desired internal magnetic field distributions. Most traditional description of

magnetization is based on a macroscopic interpretation of atomic interactions. This

approach defines the existence of “magnetic moments” that are related to the pop-

ulation of electrons along the atom orbitals and their spin moments. Therefore, a

magnetic material can be imaged as a collection of magnetic moments subdivided

into regions, called magnetic domains, where the internal energy rules the alignment

of the magnetic moments. On the other hand, the dependence of magnetic moment on

the electronic charge cloud distribution in the atom, suggests that under the action of

an external magnetic field the dimensions of this spatial distribution should be mod-

ified in a certain preferred direction, inducing displacements upon the neighboring

ions, establishing a natural connection between magnetic properties and mechanical
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strain in the material. These relations determine the magneto-elastic properties of

the material [33]. The averaged effect over a volume large enough to include many

domains allows to describe the macroscopic behavior of magnetic and magnetostric-

tive materials [6]. Since this thesis deals with macroscopic magnetic effects, this

magnetization description was chosen in this thesis as a valid framework for models

and experiments. This chapter discusses the characteristics of the magnetization of

materials and validates the implementation of the numerical models comparing their

results to those presented previously in literature.

4.1 Demagnetization Field

This section will discuss the effects of the geometry over the magnetization and also

the advantages of using different shapes of the sensors for taking advantage of certain

type of internal magnetic field distributions. Appendix D presents a more general

description for calculating the demagnetization field for a given magnetization inside

an arbitrary shaped magnetic body as well as some comparisons against Finite Ele-

ment Method predictions. Following description is known as the scalar approach and

can be used to find the demagnetization field in case of a current free source media
~J = 0. In this particular case we can write for the demagnetization field∇× ~Hdmg = 0,

which allows to propose a magnetic scalar potential such as ~Hdmg(~r) = −∇φm(~r). In

linear media one have ∇ · ~Bdmg(~r) = µ0∇ ·
(
~Hdmg(~r) + ~M(~r)

)
= 0. Combining both

expressions and taking the divergence of the magnetic field, following expression can

be written for the magnetic scalar potential:

∇2φm(~r) = ∇ · ~M(~r), (4.3)

where the divergence of the magnetization acts as a “magnetic source” in the volume

domain, ρm = −∇ · ~M(~r′) of the scalar potential, such as ∇2φm(~r) = −ρm. This

equation resembles the Poisson’s equation, which in a free boundary space can be

solved by using the divergence theorem and the Green’s function in free space, this

procedure leads to [19]:

φm(~r) = − 1

4π

˚
v′

∇′ · ~M(~r′)

|~r − ~r′|
d3r′ +

1

4π

¨
~an · ~M(~r′)

|~r − ~r′|
ds′, (4.4)

In the particular case of a constant magnetization we have ∇′ · ~M(~r′) = 0. Therefore,

second term of the integral in Eq.(4.4) contributes to the scalar potential φm(~r).
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Finally, magnetic field can be found by taking the gradient over the scalar magnetic

potential function:

~Hdmg(~r) = −∇φm(~r). (4.5)

This method allows to calculate the demagnetization field for a given magnetization

distribution and stresses the dependence of geometry upon the internal distribution

of the total internal magnetic field and the resultant magnetization. In most cases

the demagnetization field can be written as a function of a constant magnetization

(Mo) and a geometrical factor function Gf (~r), i.e. ~Hdmg(~r) = −MoGf (~r), such as the

total internal magnetic field can be calculated by summing up the demagnetization

field and the external field.

Hint = Hext −MoGf (~r). (4.6)

It should be noticed that the negative sign is included in the demagnetization field

magnitude since it opposes to the external field. In the linear case, magnetization can

be written in terms of the internal field by M0 = χmHint. Therefore, we can write:

Hint = Hext − χmHintGf (~r), (4.7)

which allows to solve for the internal field by:

Hint =
Hext

1 + χmGf (~r)
. (4.8)

Once the internal field is calculated we can recalculate for the magnetization by:

M = χmHint. (4.9)

This procedure can be used to find the internal distribution of magnetization for a

finite length magnetic body immersed in an external magnetic field. Appendix D

presents some examples of the current approximation and discusses its accuracy com-

paring against Finite Element Method.

Magnetization not only depends on geometry aspects of the magnetic body. There

is also a well known non-linear behavior of magnetized bodies that should be ad-

dressed in the analysis of magnetization process. Next section presents the non-linear

dependence of the magnetization in terms of the internal magnetic field.
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4.2 Jiles-Atherton model

This section presents the main assumptions and considerations of the Jiles-Artherton

model (J-A Model) for modeling the ferromagnetic hysteresis. This model was pro-

posed initially in Ref. [20] and has been widely used in scientific community because

of its simplicity and capabilities for fitting experimental results. J-A model uses

the modified Langevin function for describing the internal effective field and its con-

sequence in magnetization, and includes some corrections due to energy losses and

hysteresis. Modified Langevin function of magnetization, M , considers the interaction

of a system of magnetic moments under the action of a magnetizing magnetic field

with the external field[24]. The equation that describes anhysteretic magnetization

can be written by:

Man = Ms

[
coth

(
Hint + αMan

a

)
− a

Hint + αMan

]
(4.10)

where Ms is the saturation magnetization, Hint corresponds to the magnetizing field

and a is a parameter that controls the slope of the magnetization before reaching sat-

uration. This expression allows to describe the magnetization process in terms of the

external magnetic field as a reversible process, i.e. during the magnetization domains

earn potential energy from the external field, once the magnetic field stops, magnetic

domains return to their initial state. Anhysteretic curve is achieved experimentally

by applying a DC field Hdc superimposed by a decaying AC field Hac. The oscillation

of the magnetic field around a determined bias, Hdc, converges to a magnetization,

M(Hdc), in the anhysteretic curve. It should be noticed that Eq.(4.10) for describing

the anhysteretic modeling of the magnetization, configures a transcendental equation

where the variable M is on both sides of the equation and can not be solved directly.

A simple procedure to solve the anhysteretic equation consists into assign some values

to a known variable X defined in a certain domain (e.g. X ∈ [−10×10−3, 10×10−3]),

such as M can be calculated by direct evaluation. After Man is found assuming values

for X, magnetizing field Hint can be found by Hint = X − αMan. In order to validate

this method, a comparison with reported experimental results was performed. Fig.4.1

presents the comparison of the anhysteretic curve modeled in Eq.(4.10) respect to ex-

perimental results presented in Ref. [25]. Parameters used for the calculation were

Ms = 1.6× 106, a = 1100 and α = 1.6× 10−3. As it can be seen from the figure, the

computed result follows the experimental data taken from [25].
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Figure 4.1: Magnetization in terms of the external magnetic field. circles: experimen-
tal, solid line: theoretical.Parameters used for the calculation were Ms = 1.6 × 106,
a = 1100 and α = 1.6× 10−3

4.2.1 Hysteresis in magnetization

Anhysteretic modeling presented in section before models reversible magnetization

process. However, hysteretic behavior is observed in ferromagnetic materials when

material is under different magnetic field loops, exhibiting different paths in magne-

tization [6]. When hysteretic curves want to be modeled, a frictional force should be

considered in the work done by the external magnetic field. J-A model is one of the

most widely used model to describe scalar (1D) ferromagnetic hysteresis, and it is

based on the idea that magnetic domains alignment is impeded by the existence of

an amount of energy density that pines the domain and restrict its formation [20].

Therefore, observed magnetization will differ from the anhysteretic one, due to the

existence of this pinning energy when changing the direction of the magnetic field.

The argument used in the J-A model establishes that this pinning energy is propor-

tional to the volume stretched due to the wall motion during magnetization, thus a

relation between the pinning energy density and magnetization can be established

through the equation:

dEloss

dM
= k, (4.11)
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where k is a constant factor and Eloss is the energy due to this pinning. The proposed

picture suggests that during magnetization (wall motion), there will be an amount of

energy that is required to overcome the pinning energy. This amount of energy can

be calculated by:

Eloss =

ˆ
dEloss =

ˆ
kdM. (4.12)

Since this energy losses is related to the opposition to the external magnetic field

action, a factor δ is included to take into account the direction of the magnetic field,

i.e. δ = +1 if dM/dHint > 0 and δ = −1 if dM/dHint < 0, this factor guarantees that

energy due to pinning energy density will always act as a lossy force:

Eloss =

ˆ
δkdM. (4.13)

Finally, total energy, Et, associated to the magnetization process inside the material

can be written by:

Et =

ˆ
MdBe =

ˆ
Ms

[
coth

(
H + αM

a

)
− a

H + αM

]
dBe, (4.14)

where the effective induction field, Be is given by Be = µ0 (Hint + αM). Energy

balance can be calculated over the total energy, such as it includes the losses due to

the pinning energy and the magnetizing energy. Therefore, balance equation can be

written by:

ˆ
MdBe +

ˆ
δkdM =

ˆ
Ms

[
coth

(
Hint + αM

a

)
− a

Hint + αM

]
dBe. (4.15)

which can be written in terms of a differential equation by taking the derivative

respect to dBe:

δk
dM

dBe

= Ms

[
coth

(
Be

µ0a

)
− µ0a

Be

]
−M, (4.16)

A more convenient expression is to write Eq.(4.16) as differential equation of the

magnetizing field H´ instead of Be. For accomplish this, we can proceed as follows:

Man = Ms

[
coth

(
Be

µ0a

)
− µ0a

Be

]
(4.17)

δk
dM

dBe

= Man −M, (4.18)
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writing the derivative respect to Hint, we can write:

dM

dBe

=
dM

dHint

dHint

dBe

. (4.19)

Since, Be = µ0 (Hint + αM), we can find an expression for Hint and take the derivative

respect to Be. Finally, it can be obtained a differential equation in terms of the

magnetizing field by:

δk
dM

dHint

[
1

µ0

− α
(
Man −M

δk

)]
= Man −M (4.20)

Rearranging some terms, it can be obtained:

dM

dHint

=
1

δk/µ0 − α (Man −M)
(Man −M) . (4.21)

There is an additional effect that can be included in the energy losses formulation.

As it was suggested in Ref. [25], domain walls can simply bend instead of actually

moving the domain boundaries. This interpretation allows the description of a re-

versible magnetization that recovers its previous magnitude when the magnetic field

is removed. The main difference between this picture and the initially proposed, is

that now magnetization can be changed without necessity of wall displacement and

energy state can be restored after removing the external magnetic field. Under the

assumption that wall bending corresponds to a circle curvature, reversible magneti-

zation can be expressed in terms of the bending curvature (c) and the anhysteretic

magnetization, Man, by [25]:

Mrev = c (Man −M) , (4.22)

where c is a constant that can be found experimentally from the susceptibilities in the

anhysteretic magnetization curve[25]. As a consequence of including the possibility

of wall domain bending as a reversible magnetization, total magnetization can be

expressed as the sum of a irreversible component, described by the factor k, and a

reversible component Mrev, such as:

M = Mirrev +Mrev (4.23)

M = Mirrev + c (Man −M) (4.24)

M =

(
1

1 + c

)
Mirrev +

(
c

1 + c

)
Man (4.25)
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Equation (4.25) is simply the sum between the solution of the irreversible magnetiza-

tion given in Eq.(4.21) and the anhysteretic magnetization in Eq.(4.10). Therefore,

differential equation for the total magnetization M in terms of the magnetizing field,

will be given by:

dM

dHint

=
1

δk/µ0 − α (Man −M)
(Man −M) +

(
c

1 + c

)
dMan

dHint

. (4.26)

In order to validate the correct numerical implementation of this magnetization model,

Figure 4.2(a) shows the comparison between experimental data and our computa-

tional calculations for an initial magnetization curve presented in Ref.[25]. As it can
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Figure 4.2: Magnetization curves (a) comparison between experimental data and
theoretical initial magnetization presented in Ref.[25]. Used parameters were Ms =
1.6 × 106[A/m], k = 400, α = 1.6 × 10−3, c = 0.2. (b) Magnetization Curves for
0MPa Stress (circles: experimental data [24], solid line: anhysteretic curve, dashed
line: hysteretic curve). (c) Hysteresis curve with no stress (σ = 0MPa), (circles:
experimental data [24], solid line: theoretical). Parameters used: α = 0.033, a =
3750A/m, k0 = 3250, k1 = 2000, Ms = 1.6× 106A/m, Hmax =1500A/m.

be seen from Fig. 4.2(a), the numerical implementation for the magnetization, in-

cluding energy losses associated to reversible and irreversible process, reproduces the

result of the experimental data presented in Ref.[25]. Figure 4.2(b) shows the predic-

tion of magnetization for the initial magnetization curve and the ahysteretic curve.

As it can be seen from Fig. 4.2(b), factor k can reproduce satisfactory the hysteretic

curve.

An additional comparison took place considering a whole loop in the magnetic field

leading to a hysteresis loops in the magnetization. In this case, lossy factor k can be

defined as a field-dependent parameter k(H). As it is discussed in [24], this functional
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dependence should be determined from the experimental data. Reproduced results

used the following expression for this particular case:

k(H) = k0

[
1 +

k1

k0

exp

(
−Hmax

1500

)]{
1−

(
Mmax

Ms

)2
[

1−
(

H

Hmax

)2
]}

, (4.27)

Fig. 4.2(c) shows the results obtained by the numerical computation implemented in

this thesis and those results presented in [25]. As it can be seen from 4.2(c) there

is an excellent agreement between them. It should be noticed that the implemented

numerical calculations, reproduces correctly the initial magnetization curve, as well

as the major hysteresis loop.

4.2.2 Effects of mechanical stress on magnetization

Experimental evidence have shown that magnetization curves can be affected by ap-

plying external stress upon the ferromagnetic material. This behavior is known as

the magneto-mechanical effect and accounts for the changes in magnetization of a

magnetic material due to the application of mechanical stresses. Inclusion of stress

in magnetization can be done by an additional energy term due to the external me-

chanical action such as an equivalent magnetic field caused by the external stress

can be included in the Langevin function argument [21]. This additional term comes
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Figure 4.3: (a)Anhysteretic Magnetization Curve, (circles: experimental data [24],
solid line: reproduced anhysteretic curve, dashed line: reproduced hysteretic curve).
(b) Hysteretic Magnetization Curve, (circles: experimental data [24], solid line: an-
hysteretic curve, dashed line: hysteretic curve)

from considering the energy associated to the strain and stress in the volume control,
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where the energy density per unit volume can be written by [21]:

E = µ0HM +
µ0

2
αM2 +

3

2
σε+ TS, (4.28)

being T the temperature, S the entropy, σ and ε the mechanical stress and strain

respectively. Under the assumption of iso-entropic change, total change in energy can

be associated to the action of an effective magnetizing field, Heff, such as:

Heff =
1

µ0

dE

dM
(4.29)

taking the corresponding derivative,

Heff = H + αM +
3σ

2µ0

dε

dM
, (4.30)

where ε is a function that depends on stress and magnetization given by:

ε(σ,M) = γ1(σ)M2 + γ2(σ)M4 (4.31)

ε(σ,M) = (γ11 + σγ12)M2 + (γ21 + σγ22)M4 (4.32)

dε(σ,M)

dM
= 2(γ11 + σγ12)M + 4(γ21 + σγ22)M3. (4.33)

Through this additional term, modified Langevin function that accounts for the stress

dependence in the anhysteretic magnetization can be written by:

M = Ms

[
coth

(
H + αM + 3σ

2µ0

(
dλ
dM

)
a

)
− a

H + αM + 3σ
2µ0

(
dλ
dM

)] (4.34)

Stress term can be numerically seen as an equivalent change in parameter a of the

previous , and allowing a more accurate description of the anhysteretic curves under

different stresses [24, 21]. Figure 4.3(a-b) has been obtained by using this additional

term in the modified Langevin function. Fig.4.3(a) presents the anhysteretic magne-

tization curve for a specimen when it is at no stress condition and under compression

stress. Inclusion of losses in the stress-dependent effective field can be done by us-

ing the same mathematical framework shown in sections before. Expression in Eq.

(4.16) allows to find the magnetization magnitude taking into account the change

on magnetization due to magnetic domain stretching described by a factor k (which

has a physical interpretation in terms of losses as presented by Jiles and Arther-

ton [20]), and effective induction field Be should include the stress dependence term.

Experimental data shown in Fig.4.3(b) were taken from [24]. Using the irreversible
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modeling, those experimental results were reproduced with a set of parameters k, α

and a. In this particular case, a different set of parameters were used leaving α and

k unchanged for both cases, but finding the best fit for a. Figures Fig.(4.4(a)) and

Fig.(4.4(b)) present some parameters that are able to reproduce the experimental data

of the anhysteretic behavior of the magnetization under different conditions of stress.

Parameters used for describing the dependence of the magnetostriction coefficient
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Figure 4.4: (a) Anhysteretic Magnetization Curve, (circles: experimental data [24],
dashed line: anhysteretic model with best fit parameters). (b) Anhysteretic Magne-
tization Curve, (circles: experimental data [24], dashed line: anhysteretic model with
best fit parameters

ε(σ,M) were: γ11 = 2× 10−18, γ12 = 0.5× 10−26, γ21 = 1× 10−30, γ22 = −1× 10−39.

4.2.2.1 Irreversible magnetization due to stress

As it was mentioned before, magnetization can be seen as the sum of two different

effects: reversible and irreversible, where irreversible component will take into account

the losses and reversible term is related to the flexibility of the magnetic wall domain

[25, 21], based on this idea and the evident dependence of magnetization on stress,

Jiles [21] proposed a stress-dependence rate of the irreversible magnetization based on

a similar ”law of approach” between the anisotropic and irreversible magnetization:

dMirrev

dW
=

1

ξ
(Man −Mirrev) , (4.35)

where ξ is a constant coefficient and W = σ2/(2E) is the energy per unit volume

supplied to the material due to the external stress σ with E the elasticity modulus.
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M = Mirrev +Mrev (4.36)

dM

dW
=
dMirrev

dW
+
dMrev

dW
(4.37)

dM

dW
=

1

ξ
(Man −Mirrev) +

dMrev

dW
(4.38)

taking into account the relationship proposed before for the reversible component

Mrev = c (Man −Mirrev) (4.39)

dMrev

dW
= c

(
dMan

dW
− dMirrev

dW

)
(4.40)

dMrev

dW
= c

dMan

dW
− c

ξ
(Man −Mirrev) , (4.41)

total magnetization can be then written by:

dM

dW
=

1− c
ξ

(Man −Mirrev) + c
dMan

dW
, (4.42)

since dW = (σ/E) dσ, it can be written in terms of the stress as follows:

dM

dσ
=
σ (1− c)
Eξ

(Man −Mirrev) + c
dMan

dσ
, (4.43)

where irreversible magnetization is the solution to the following differential equation

for the magnetic fields:

dMirrev

dH
=

1

δk/µ0 − α (Man −Mirrev)
(Man −Mirrev) (4.44)

Man = Ms

coth

(
H + αMan + 3σ

2µ0

(
dλ
dM

)
a

)
− a

H + αMan + 3σ
2µ0

(
dλ

dMan

)
 (4.45)

4.2.2.2 Effects of stress on hysteresis loops

Major hysteresis loops exhibits also a dependence on stress. Reference [24] presents

experimental results for steel samples under tension and compression stress and sev-

eral magnetization loops. Figure 4.5(a) shows the magnetization loop for a tension

stress test, when specimen is under σ = +200[MPa]. Fig. 4.5(b) presents same spec-

imen but under compression (σ = −200[MPa]). Fig.4.5(c) summarizes both effects

upon magnetization. As it can be seen in Fig.4.5(c), tension stress presents changes
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Figure 4.5: (a) Magnetization Curve Tension Stress (σ = +200[MPa]), (circles: exper-
imental data [24], solid line: Theoretical). (b) Magnetization curve under compression
stress (σ = −200[MPa]), (circles: experimental data [24], solid line: Theoretical). (c)
Comparison between model predictions for different stress conditions showing the
effects on the magnetization curve due to the stress nature.

in the loop area mostly when compared with the no stress case. On the other hand,

compression effects presents a considerable reduction of the maximum magnetization

reached at the same magnetic field leaving the loop area almost unchanged.

At this point main aspects of magnetization in finite length bodies have been

addressed. Geometric and nonlinear effects have been discussed and experimental re-

sults were able to be reproduced and compared against exiting literature. Next section

considers the magnetostriction effect described by the magnetization magnitude.

4.2.3 Magnetostriction

This section is based mainly in the description given in Ref. [22] and presents a sim-

plified and basic perspective of magnetostriction of isotropic materials based on the

modeling of domain alignments to certain direction of interest. Ferromagnetic mate-

rials exhibit a spontaneous strain for each domain due to the existence of spontaneous

magnetization. Therefore, it is expected that the whole material body suffers a total

deformation because of the individual deformations of the domains. With the aim of

describing this issue, let’s consider a set of domains (magnetic moments pointing in

a certain direction in a defined volume) to have a given magnetization and maximum

spontaneous strain e. Strain of the domain will vary from the direction of spontaneous

magnetization Ms by the expression:

e(θ) = e cos2 θ (4.46)

44



Thus, strain of a certain domain could be maximum and some other will not present

strain deformation.

Figure 4.6: Description of the magnetostriction of an isotropic material. (a) direction
of the spontaneous strain in a domain.(b) Several domains isotropically distributed.
(c) Domains aligned to the external magnetic field direction.

Figure 4.6 (a) depicts this variation for one particular domain. Fig. 4.6 (b) shows a

schematic of a set of randomly magnetized domains, i.e. magnetization direction does

not depend on the crystallographic properties of the material and can be pointing to

any direction, and its associated spontaneous strain can vary in magnitude given

by (e(θ) = e cos2 θ) where θ is also a random angle for each domain. An averaged

deformation for several angles θ can be calculated by:

ε0 =

ˆ π/2

−π/2
e cos2 θ sin θdθ (4.47)

ε0 =
e

3
(4.48)

This means that in average the whole body with randomly oriented spontaneous mag-

netizations as shown in Fig.4.6 (b) will be strained about ε0 = e/3. In Fig. 4.6 (c)

we have assumed that all the domains have the same direction for their spontaneous

magnetization and have the maximum allowed strain e. Considering that the body

goes from a randomly distributed spontaneous magnetizations per domain to a de-

termined magnetization direction for each of the domains with maximum strain e, we

can calculate for the total strain in that direction, also called the saturation strain εs:

εs = e− ε0 =
2e

3
. (4.49)
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Once we know in terms of the maximum strain per domain e, the saturation strain

and the averaged strain for a randomly distributed domains, we can write an expres-

sion for an isotropic magnetic body regarding a certain direction. Let’s assume we

have an applied magnetic field Hext pointing to a predefined direction that makes

the magnetization to point along the same direction. Therefore, we can write an

expression for the strain of each domain regarding the angle α of the domain with

the external field. Therefore, we can simply write:

ε(α) =
3

2
εs

(
cos2 α− 1

3

)
. (4.50)

It should be noticed that we are still considering that the angle α between the field

direction and the strain for each domain is assumed to be randomly distributed re-

garding the spontaneous magnetization vector Ms direction. In this description εs is

considered as a constant and previously known value.

4.2.4 Magnetostriciton of Terfenol-D

Terfenol-D is a very well known material that possesses giant magnetostrictive proper-

ties. Monolithic Terfenol-D has been widely used in mechanical actuator applications

because of its considerably large strain when it is under external magnetic fields.

(a) (b)

Figure 4.7: (a) Strain ε for a monolithic Terfenol-D sample [10]. (b) Theoretical com-
parison with experimental results of magneto-strain λ for a monolithic Terfenol-D rod
under different compression stresses (Dashed Lines: Theoretical, Dotted: Experiment
[10]).

Monolithic Terfenol-D is normally manufactured in rod-shapes, being one of the

most used geometries in industry and research applications. This section presents

the validation of the previous models for reproducing experimental magnetostriction
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curves of Terfenol-D bars. Figure 4.7(a) presents some experimental results of com-

pression tests performed upon monolithic Terfenol-D sample, which was exposed to

a magnetic field directed along its axis. Mechanical strain of the bar was measured

when compressed at different stresses magnitudes [10]. As it can be seen from the re-

sults, both the area of the hysteresis loop, as well as the shape/slope of the response,

depend on the applied compression load. As it was discussed in the section before,

an equivalent magnetic field caused by the external stress can be considered in the

Langevin function argument such as the effective field that shapes the magnetization

curve can be associated to an external stress magnitude. Therefore, magnetostriction

ε[p.p.m] will be also a function that depends on stress, and it is expressed in general

by the expression:

ε(σ,M) = γ1(σ)M2 + γ2(σ)M4 (4.51)

Although some functional dependence is required for the equivalent field in terms of

stresses, it is more convenient to find its dependence in terms of parameter aσ in a

normalized Langevin function, such that the each stress condition can be fitted by

using normalized experimental strain data:

ε̂ =

[
coth

(
Hext

aσ

)
− aσ
Hext

]2

+ k̂n

[
coth

(
Hext

aσ

)
− aσ
Hext

]4

, (4.52)

where k̂n is also a fitting parameter to take into account high order terms of the

magnetization. It is worth noting that through this method only Hext is required

during the fitting process and should not be confused with the effective field discussed

in Ref.[21]. However, the effects of this latter are all included through the fitting

parameter aσ. Once aσ is found for each particular case of stress that allows to

obtain an expression for in terms of the stress, i.e. aσ(σ), the effective magnetic field

due to stress can be written by:

Hext + αM +Hσ

a0

=
Hext

aσ(σ)
(4.53)

where a0 is the parameter that fits the curve when no stress is imposed to the mag-

netostrictive sample. By using this procedure and by means a non-linear fitting al-

gorithm, functional form for aσ in terms of the stress experimental data presented in

Figure 4.7(a) can be obtained for each of the stress condition through a linear relation

for the stress parameter aσ = κσ + a0. Once the characteristics of the function that

better fits the parameter aσ is determined, coefficients of the magnetostriction curve

can be found by fitting Eq.(4.51). Figure 4.8 presents the behavior of the fitting

parameter for the normalized Langevin function when different compression stress
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Figure 4.8: Bestfit for aσ parameter. Linear fitting to describe the dependence of this
parameter in terms of stress magnitude

magnitudes are considered. Afterwards, fitting function can be directly applied to

Eq.(4.51) to obtain the magnetostriction magnitude. By using the models described

and implemented above, and by using a fitting algorithm, functional form of magne-

tostriction can be reproduced in terms of the experimental stress data presented in

Figure 4.7(a). Figure 4.7(b) presents the theoretical prediction contrasted to the ex-

perimental data. Typical magnetostriction coefficient associated to the second power

of the magnetostriction curve can be found from the fitted coefficient γ1(σ) by the

expression:

εs1(σ) =
M2

s γ1(σ)

1.5
(4.54)

Figure 4.9 presents the behavior of the estimated magnetostriction coefficient associ-

ated to thw second power of the samples evaluated in Ref.[10]. As it can be seen from

the figure, estimated magnetostriction coefficient presents a clear decrement when

sample is under high magnitudes of compression. However, there is a region in the

initial compression range where this effective magnetostriction coefficient increases

respect to the no-stress condition. This effect can be understood from the idea that

magnetostriction domains in compression are closer each other, thus when the ex-

ternal magnetic field forces the alignment in a determined direction there is a better

transfer of mechanical strain between each domain. However, when the compression is

high enough the magnetic domain is so mechanically restricted that internal energy

is increased in magnetization instead of liberating strain. These results show that

stress dependence of magnetostrictive materials could lead to important diminishing

of the magnetostrictive effect and more complicated relationships are involved in their

related physics that are certainly beyond the current thesis scope.
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Figure 4.9: Estimation of the magnetostriction coefficient associated to the second
power of magnetization for the sample presented in Ref.[10]

4.3 Concluding Remarks

As it was presented in this chapter, magnetization and magnetostrictive models that

were implemented numerically by the author are able to reproduce experimental

results presented in previous publications and experiments. Main characteristics

of magnetization, such as anhysteretic behavior, hysteresis and mechanical stress-

dependence, can be reproduced by the implemented models. As it was presented in

the chapter, demagnetization field appears as a consequence of the finite lengths of

the magnetic body. This field depends on the geometry and its able to change the

spatial distribution of magnetic field inside the magnetic body, and consequently its

magnetization. Based on this result, some magnetostrictive features of the magne-

tized body can be engineered to exhibit desired strains along specific regions of the

body where the FBG (described in chapter 3) can be placed. As it is presented in

this chapter, experimental magnetostrictive curves can be reproduced by the imple-

mented models for magnetization and magnetostriction, which validates its usage in

the coming sections.
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Chapter 5

Magnetostrictive Composites

This section presents a proposal to model the magnetic behavior of a Terfenol-D

composite. In the sections above the magnetic material has been considered as a

continuous material. However, practical implementations of magnetostrictive com-

posites use an epoxy matrix as a binder for the magnetic particles, where these latter

can be selected in size and distribution inside the composite. This section proposes

a numerical approach to analyze in a more realistic manner the behavior of magne-

tostrictive composites and shows some insights about the expected behavior of the

magnetostriction based on the particle size and its distribution in the composite. Con-

sider a continuous magnetic body as that shown in figure 5.1(a) and same geometric

aspect body made of a magnetostrictive composite as shown in figure 5.1(b). Mag-

netostrictive composite is modeled by a set of finite number of discrete nonmagnetic

cells with a magnetic cuboid inside that can partially or totally fill the cell volume.

Magnetostrictive cuboid can be associated to a region of the space with volume ∆Vi

defined by the prime coordinates, where the cuboid volume is determined in the in-

tervals: x′1 ≤ x′i ≤ x′2, y′1 ≤ y′i ≤ y′2, z′1 ≤ z′i ≤ z′2. Each cuboid can be assigned with a

particular geometric apect ratio inside the nonmagnetic cell as those shown in figure

5.1(c), allowing the modeling of different magnetostrictive powder-particle sizes and

orientations. Magnetostrictive material for each cell is determined by a magnetization

vector ( ~Mi(~r′i)) located at the centroid of the cell, ~ri
′. Magnetic vector potential at

some observation point ~r due to the ith-cuboid can be calculated by:

∆ ~Ai(~r) =
µ0

4π

~Mi(~r′i)×
(
~r − ~r′i

)
|~r − ~r′i|3

∆Vi (5.1)

Taking into account that the region where holds the magnetization is very small

compared to the microscopical distances that we are considering, we can write for the
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Figure 5.1: Engineered shape of Magnetostrictive device (a) Monolithic representation
(b) Proposal of the magnetostrictive composite model (c) single cuboid in a discrete
cell of non-magnetic material.

vector potential:

~Ai(~r) =
µ0

4π

˚
v′i

~Mi(~r′i)×
(
~r − ~r′i

)
|~r − ~r′i|3

dv′i (5.2)

since the vector potential will depend on the volumetric distributions of the magne-

tization, we should define a particle geometry for dealing with this vector potential.

5.1 Cuboid small magnetic bodies

This subsection will define the magnetic vector potential for a small ( still macro-

scopic) magnetic particle when its shape is considered as a cuboid with a constant

magnetization vector ~Mi(~r′i) = mxiîx+myîiy +mziîz. Applying the expression for the

vector potential we can write for each component:

~Axi(~r) =
µ0

4π

˚
∆v′i

myi (z − z′)−mzi (y − y′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.3)

~Ayi(~r) =
µ0

4π

˚
∆v′i

mzi (x− x′)−mxi (z − z′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.4)

~Azi(~r) =
µ0

4π

˚
∆v′i

mxi (y − y′)−myi (x− x′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.5)

Based on these equations, we should find a solution for the integrals:

Fx(x, y, z) =

˚
∆v′i

(x− x′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.6)

Fy(x, y, z) =

˚
∆v′i

(y − y′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.7)

Fz(x, y, z) =

˚
∆v′i

(z − z′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′ (5.8)
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Since the functional form of the integral is the same one for each variable we can find

a solution for one of those, and extend the result to the rest of the variables. In order

to accomplish this aim, let’s first consider the integral:

F1(a, z) =

ˆ
∆z′

(z − z′)
[a2 + (z − z′)2](3/2)

dz′ (5.9)

let be u = (z − z′), then du = −dz′, we can write:

F (a, u) = −
ˆ

∆u

u

[a2 + u2]
3
2

du (5.10)

this integral can be solved analytically by:

F (a, u) = −
(
− 1√

a2 + u2

∣∣∣∣
∆u

)
(5.11)

going back to the z′ variable:

F (a, z′) =
1√

a2 + (z − z′)2

∣∣∣∣
∆z′

(5.12)

now we can write the triple integral respect to z′ as:

F (x, y, z) =

ˆ
∆x′

ˆ
∆y′

[ˆ
∆z′

(z − z′)
[(x− x′)2 + (y − y′)2 + (z − z′)2](3/2)

dz′

]
dy′dx′ (5.13)

using the result for the integral obtained before we can write:

F (x, y, z) =

ˆ
∆x′

ˆ
∆y′

[
1√

(x− x′)2 + (y − y′)2 + (z − z′)2

∣∣∣∣
∆z′

]
dy′dx′ (5.14)

in order to solve this integral respect to y′ we should find a solution for the integral:

F2(y, a) =

ˆ
∆y′

1

[(y − y′)2 + a2]
1
2

dy′ (5.15)

let be u = y − y′, then du = −dy′, then we can write:

F2(u, a) = −
ˆ

∆u

1

[u2 + a2]
1
2

du′ (5.16)

we can solve this integral analytically by:

F2(u, a) = − ln
[
u+
√
u2 + a2

] ∣∣∣∣
∆u

(5.17)
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retrieving back to the y′ variable:

F2(y′, a) = − ln
[
(y − y′) +

√
(y − y′)2 + a2

] ∣∣∣∣
∆y′

(5.18)

writing the integral again:

F (x, y, z) =

ˆ
∆x′

[ˆ
∆y′

(
1√

(x− x′)2 + (y − y′)2 + (z − z′)2

∣∣∣∣
∆z′

)
dy′

]
dx′ (5.19)

using the result found for y′

F (x, y, z) =

ˆ
∆x′

[
− ln

[
(y − y′) +

√
(x− x′)2 + (y − y′)2 + (z − z′)2

] ∣∣∣∣
∆z′

∣∣∣∣
∆y′

]
dx′(5.20)

for solving the last integral respect to x′ we should find a solution for the integral:

F3(x, a) =

ˆ
∆x′

ln
[
a+

√
(x− x′)2 + a2 + b2

]
dx′ (5.21)

let be u = (x− x′), then du = −dx′. Therefore, we can write:

F3(u, a) = −
ˆ

∆u′
ln
[
a+
√
u2 + a2 + b2

]
du (5.22)

This integral can be solved analytically by:

F3(u, a) = −
[
u ln

[√
u2 + a2 + b2 + a

]
+ a ln

[√
u2 + a2 + b2 + u

]
−b arctan

(
au

b
√
u2 + a2 + b2

)
+ b arctan

(u
b

)
− u
]∣∣∣∣

∆u

(5.23)

going back to the x′ variable:

F3(x, a) = −
[
(x− x′) ln

[√
(x− x′)2 + a2 + b2 + a

]
+

a ln
[√

(x− x′)2 + a2 + b2 + (x− x′)
]

−b arctan

(
a(x− x′)

b
√

(x− x′)2 + a2 + b2

)
+ b arctan

(
(x− x′)

b

)
− (x− x′)

]∣∣∣∣
∆x′

(5.24)

writing the desired integral again:

F (x, y, z) =

ˆ
∆x′

[
− ln

[
(y − y′) +

√
(x− x′)2 + (y − y′)2 + (z − z′)2

] ∣∣∣∣
∆z′

∣∣∣∣
∆y′

]
dx′(5.25)
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replacing the integral for the corresponding result found for x′ we have:

F (x, y, z) =

[
(x− x′) ln

[√
(x− x′)2 + (y − y′)2 + (z − z′)2 + (y − y′)

]
+

(y − y′) ln
[√

(x− x′)2 + (y − y′)2 + (z − z′)2 + (x− x′)
]

−(z − z′) arctan

(
(y − y′)(x− x′)

(z − z′)
√

(x− x′)2 + (y − y′)2 + (z − z′)2

)
+

(z − z′) arctan

(
(x− x′)
(z − z′)

)
− (x− x′)

]∣∣∣∣
∆z′

∣∣∣∣
∆y′

∣∣∣∣
∆x′

(5.26)

This solution can be extended to the other variables. For doing this, let’s define:

FΓ(Γ, γ, η) =

˚
∆v′i

Γ

[η2 + γ2 + Γ2](3/2)
dv′ (5.27)

based on the results obtained before, we can write for the integral:

FΓ(Γ, γ, η) =

[
η ln

[√
η2 + γ2 + Γ2 + γ

]
+

γ ln
[√

η2 + γ2 + Γ2 + η
]

−Γ arctan

(
γη

Γ
√
η2 + γ2 + Γ2

)
+

Γ arctan
( η

Γ

)
− η
]∣∣∣∣

∆v′

(5.28)

Finally, the evaluation of the function at the cuboid will give us the value of the

integral by:

FΓ(Γ, γ, η)

∣∣∣∣
∆v′

= [FΓ(Γ2, γ2, η2)− FΓ(Γ1, γ2, η2)]− [FΓ(Γ2, γ1, η2)− FΓ(Γ1, γ1, η2)]

− [FΓ(Γ2, γ2, η1)− FΓ(Γ1, γ2, η1)] + [FΓ(Γ2, γ1, η1)− FΓ(Γ1, γ1, η1)] ,

(5.29)

where the arguments for the function FΓ(Γ, γ, η)

Γi =


(x− x′i) i = 1, 2

(y − y′i) i = 1, 2

(z − z′i) i = 1, 2,

(5.30)

for γ

γi =


(y − y′i) i = 1, 2

(z − z′i) i = 1, 2

(x− x′i) i = 1, 2

(5.31)

54



for η

ηi =


(z − z′i) i = 1, 2

(x− x′i) i = 1, 2

(y − y′i) i = 1, 2

(5.32)

where the cuboid is defined in the region: x′1 ≤ x′ ≤ x′2, y′1 ≤ y′ ≤ y′2, z′1 ≤ z′ ≤ z′2.

In the case of several magnetized bodies we can calculate the total vector potential,

associated to the demagnetization field, by summing up all the contributions of the

existing N magnetic bodies:

~Admg(~r) =
µ0

4π

N∑
i

˚
v′i

~Mi(~r′i)×
(
~r − ~r′i

)
|~r − ~r′i|3

dv′i (5.33)

where the integration for each magnetic body can be done by using the analytical

solution found before. Once the vector potential is known, the magnetic flux density

of the demagnetization field ~Bdmg(~r) can be calculated taking the curl of the vector

magnetic potential ~Bdmg(~r) = ∇× ~Admg(~r).

5.2 Determination of the induced magnetization

Magnetostrictive particles are magnetized by the application of an external field.

this magnetization process depends on geometrical and mechanical factors, thus its

distribution inside the whole composite is not known a priori. Therefore, we should

calculate the magnetization ~M that will be induced by that external magnetic field

and the current energy state of the magnetic body. If we assume that the induced

magnetization ~M to be found can be written in terms of the magnetic field by:

~M =
[
χm(| ~H|, σ)

]
~H (5.34)

where χm is the magnetic susceptibility. This quantity is typically considered as a

function of the magnetic field only. However, as it was widely discussed in chapter 4,

magnetic susceptibility can be considered in general as a function of several physical

quantities, in particular the magnitude of the magnetic field intensity (| ~H|) and the

mechanical stress (σ). By using this fact, we could eventually include the external

effects of the stress upon the magnetization. Considering the same discretization for

the magnetization in small magnetic bodies, we will have for the magnetization:

~Mi =
[
χm(| ~Hi|, σi)

]
~Hi (5.35)
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Magnetic field intensity in this case can be decomposed by the sum of an external

known field ~Hext and the field due to the induced magnetization ~Hdmg:

~H = ~Hext + ~Hdmg (5.36)

we have shown that the demagnetization field can be found if ~M(~r) is known every-

where in the body by using the vector potential by:

~Admg(~r) =
µ0

4π

N∑
j

˚
v′j

~Mj(~r′j)×
(
~r − ~r′j

)
|~r − ~r′j|3

dv′j (5.37)

~Bdmg(~r) = ∇× ~Admg(~r) (5.38)

the magnetic flux density ~Bdmg(~r) found by the application of the curl operation upon

the vector potential should satisfy:

~Bdmg(~r) = µ0

(
~Hdmg(~r) + ~M(~r)

)
(5.39)

~Hdmg(~r) =
~Bdmg(~r)

µ0

− ~M(~r) (5.40)

writing the demagnetization field explicitly in one of the cells that contains magnetic

body:

~Hdmg(~ri) =
1

4π
∇×

 N∑
j

˚
v′j

~Mj(~r′j)×
(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′i

− ~Mi(~ri) (5.41)

where magnetization magnitude for each body ~Mj(~r′j) is still unknown. Taking into

account that for each magnetic body it should be satisfied:

~H(~ri) = ~Hext(~ri) + ~Hdmg(~ri) (5.42)

and considering also that magnetization can be related with the magnetic field inten-

sity by:

~Mi(~ri) =
[
χm(| ~Hi(~ri)|, σ(~ri))

]
~Hi(~ri) (5.43)

where | ~Hi(~ri)| and σ(~ri) are the magnetic field intensity and stress tensor at the

magnetic body located at ~ri, we can write the equation for the magnetic field intensity

as:

~Mi(~ri)[
χm(| ~Hi(~ri)|, σ(~ri))

] = ~Hext(~ri) + ~Hdmg(~ri) (5.44)
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For linear materials and no mechanical stress conditions, we can simplify to:

~Mi(~ri)

χm
= ~Hext(~ri) + ~Hdmg(~ri) (5.45)

Therefore, magnetization ~Mi(~ri) will be the vector that satisfy the equation:

~Mi(~ri)

χm
− ~Hdmg(~ri) = ~Hext(~ri) (5.46)

that can be written explicitly in terms of the magnetization vector by:

~Mi(~ri)

χm
−

 1

4π
∇×

 N∑
j

˚
v′j

~Mj(~r′j)×
(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mi(~ri)

 = ~Hext(~ri) (5.47)

Rearranging some terms we have:

~Mi(~ri)

(
1 + χm
χm

)
−

 1

4π
∇×

 N∑
j

˚
v′j

~Mj(~r′j)×
(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

 = ~Hext(~ri)(5.48)

Using the function found before for the calculation of the triple integral FΓ(Γ, γ, η),

we can write for the triple integral over one cuboid:

~Gj( ~Mj, ~ri) =

˚
v′j

~Mj(~r′j)×
(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j (5.49)

Gxj(mxj,myj,mzj, ~ri) = myjFΓZ (Γ, γ, η)−mzjFΓY (Γ, γ, η) (5.50)

Gyj(mxj,myj,mzj, ~ri) = mzjFΓX (Γ, γ, η)−mxjFΓZ (Γ, γ, η) (5.51)

Gzj(mxj,myj,mzj, ~ri) = mxjFΓY (Γ, γ, η)−myjFΓX (Γ, γ, η) (5.52)

Defining a new vector ~Rj( ~Mj, ~ri) by taking the curl over the resulting vector ~Rj( ~Mj, ~ri) =

∇× ~Gj( ~Mj, ~ri)

Rxj(mxj,myj,mzj, ~ri) = ∂yGzj − ∂zGyj (5.53)

Ryj(mxj,myj,mzj, ~ri) = ∂zGxj − ∂xGzj (5.54)

Rzj(mxj,myj,mzj, ~ri) = ∂xGyj − ∂yGxj (5.55)

we can re-write the expressions above to have:
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mxi

(
1 + χm
χm

)
− 1

4π

N∑
j

Rxj = Hxext(~ri) (5.56)

myi

(
1 + χm
χm

)
− 1

4π

N∑
j

Ryj = Hyext(~ri) (5.57)

mzi

(
1 + χm
χm

)
− 1

4π

N∑
j

Rzj = Hzext(~ri) (5.58)

partial derivatives ∂x, ∂y and ∂z will act over the corresponding functions FΓ(Γ, γ, η)

and the magnetization magnitudes can be taken out of the operation. Therefore, we

can write:

(
1 + χm
χm

)
mxi −

1

4π

N∑
j

(∂yGzj − ∂zGyj) = Hxext(~ri) (5.59)

(
1 + χm
χm

)
myi −

1

4π

N∑
j

(∂zGxj − ∂xGzj) = Hyext(~ri) (5.60)

(
1 + χm
χm

)
mzi −

1

4π

N∑
j

(∂xGyj − ∂yGxj) = Hzext(~ri) (5.61)

replacing for the explicit dependences on the magnetization components.

Let’s consider first for the x-component of the magnetization:(
1 + χm
χm

)
mxi −

1

4π

N∑
j

(
∂y (mxjFΓY −myjFΓX )

−∂z (mzjFΓX −mxjFΓZ )

)
= Hxext(~ri)

(5.62)

gathering similar terms we can write:

N∑
j

([
4π(1 + χm)

χm
δij − (∂yFΓY + ∂zFΓZ )

]
mxj + (∂yFΓX )myj

+ (∂zFΓX )mzj

)
= 4πHxext(~ri)

(5.63)

Now, let’s consider for the y-component of the magnetization:(
1 + χm
χm

)
myi −

1

4π

N∑
j

(∂zGxj − ∂xGzj) = Hyext(~ri) (5.64)

58



replacing the corresponding functions:

(
1 + χm
χm

)
myi −

1

4π

N∑
j

(
∂z (myjFΓZ −mzjFΓY )

−∂x (mxjFΓY −myjFΓX )

)
= Hyext(~ri)

(5.65)

As we did before, let’s gather similar terms:

N∑
j

(
mxj∂xFΓY +

[
4π(1 + χm)

χm
δij − (∂zFΓZ + ∂xFΓX )

]
myj

+mzj∂zFΓY

)
= 4πHyext(~ri)

(5.66)

Now, let’s consider for the z-component of the magnetization:(
1 + χm
χm

)
mzi −

1

4π

N∑
j

(∂xGyj − ∂yGxj) = Hzext(~ri) (5.67)

replacing by the corresponding functions:

(
1 + χm
χm

)
mzi −

1

4π

N∑
j

(
∂x (mzjFΓX −mxjFΓZ )

−∂y (myjFΓZ −mzjFΓY )

)
= Hzext(~ri)

(5.68)

Gathering similar terms and simplifying the expression following the same procedure

done before over x and y components:

N∑
j

(
mxj∂xFΓZ +myj∂yFΓZ[

4π(1 + χm)

χm
δij − (∂xFΓX + ∂yFΓY )

]
mzj

)
= 4πHzext(~ri)

(5.69)

Retrieving the results obtained for each component:
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N∑
j

([
4π(1 + χm)

χm
δij − (∂yFΓY + ∂zFΓZ )

]
mxj + (∂yFΓX )myj

+ (∂zFΓX )mzj

)
= 4πHxext(~ri)

(5.70)

N∑
j

(
(∂xFΓY )mxj +

[
4π(1 + χm)

χm
δij − (∂zFΓZ + ∂xFΓX )

]
myj

+ (∂zFΓY )mzj

)
= 4πHyext(~ri)

(5.71)

N∑
j

(
(∂xFΓZ )mxj + (∂yFΓZ )myj[

4π(1 + χm)

χm
δij − (∂xFΓX + ∂yFΓY )

]
mzj

)
= 4πHzext(~ri)

(5.72)

Finally, performing the sum over the elements, we can obtain a matrix system for

each of the components. As an example for x-component the matrix is given by:


Lx11 Ly11 Lz11 Lx12 Ly12 Lz12 .. .. Lx1N Ly1N Lz1N
Lx21 Ly21 Lz21 Lx22 Ly22 Lz22 .. .. Lx2N Ly2N Lz2N
Lx31 Ly31 Lz31 Lx32 Ly32 Lz32 .. .. Lx3N Ly3N Lz3N
Lx41 Ly41 Lz41 Lx42 Ly42 Lz42 .. .. Lx4N Ly4N Lz4N

: : : : : : .. .. : : :
LxN1 LyN1 LzN1 LxN2 LyN2 LzN2 .. .. LxNN LyNN LzNN





mx1

my1

mz1

mx2

my2

mz2

.

.

.
mxN

myN

mzN



= 4π



Hx1

Hx2

Hx3

Hx4

.

.

.
HxN


(5.73)

where Lxij, L
y
ij, L

z
ij are the respective terms associated to the derivatives for each

component.

5.2.1 Single Cube Case: Mz = M0,Mx = 0,My = 0

This section will consider the case when the magnetization is imposed along a partic-

ular axis. In this case, we will consider the same scenario used in section 4.1 where

the magnetization is assumed to have a constant value pointing along the external

field. Since for this case there is only one component of the magnetization, the linear

system for the magnetization components can be solved easily. In order to show how
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the formulation above calculates the demagnetization field and the magnetization it-

self along the cube axis, let’s consider a single cuboid in the formulation presented

before. In this case, we will consider that this single cube will have dimensions:

L=2 × 2 × 2[cm3], magnetic susceptibility χm = 9, and is exposed to an uniform

external field of ~Hext = H0îz with H0 = 1[A/m]. Since in this particular case we

are imposing transversal magnetization components to be zero, we can simplify the

expression above to have:

N=1∑
j

(
(∂zFΓX )mzj

)
= 4πHxext(~ri) (5.74)

N=1∑
j

(
(∂zFΓY )mzj

)
= 4πHyext(~ri) (5.75)

N=1∑
j

([
4π(1 + χm)

χm
δij − (∂xFΓX + ∂yFΓY )

]
mzj

)
= 4πHzext(~ri) (5.76)

For this case, first two equations lead to trivial solution, which means that ∂zFΓX =

0,∂zFΓY = 0. Since there is only one cube we should write:[
4π(1 + χm)

χm
− (∂xFΓX + ∂yFΓY )

]
mz = 4πH0 (5.77)

where magnetization mz can be found everywhere in the magnetic body by simply

evaluating the expression at any desired point:

mz =
4πH0[

4π(1+χm)
χm

− (∂xFΓX + ∂yFΓY )
] (5.78)

Magnetic field along the axis can be calculated by: ~Hzint = χmmz îz, then:

Hzint =
4πχmH0[

4π(1+χm)
χm

− (∂xFΓX + ∂yFΓY )
] (5.79)

Finally, the demagnetization field can be calculated by ~Hdmg = ~Hzint −H0îz. Figure

5.2 presents the comparison between the approach considered by the formulation

above and the result obtained by using a COMSOL.

It should be noticed that the main difference between both results is due to the

neglected transversal magnetization components, which are considered in the FEM

simulation.
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Figure 5.2: Comparison of the internal magnetic field and the magnetization for a
single cube of side L = 2[cm] between the proposed discrete formulation and FEM.

5.2.2 Discretized cube case: Mz = M0,Mx = 0,My = 0

In order to check the prediction performance when several cubes are considered to

shape the magnetic body by using only the magnetization component that points in

the same direction of the magnetic field, let’s consider same single magnetic permeable

cube, with relative permeability µr = 10, side length of 2 [cm], exposed to an external

field give by ~Hext = H0îz, with H0 = 1[A/m]. In this case, we keep considering that

magnetization is pointing in the same direction as the external field, but in this case

we will have several cubes that will form the magnetic body under analysis. Figure

5.3 presents the idea behind discretization of the magnetic body into small magnetic

cuboids.

Figure 5.3: Ferromagnetic cube under the action of an external magnetic field, total
magnetic body in a composite is modeled by several magnetic cubes.

Based on this fact we can write for the i-th magnetic cube:

N=1∑
j

(
(∂zFΓX )mzj

)
= 4πHxext(~ri) (5.80)

N=1∑
j

(
(∂zFΓY )mzj

)
= 4πHyext(~ri) (5.81)

N=1∑
j

([
4π(1 + χm)

χm
δij − (∂xFΓX + ∂yFΓY )

]
mzj

)
= 4πHzext(~ri) (5.82)
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It is also worth noting that the external field is assumed to be uniform in the whole

magnetic body. Therefore, magnetization magnitude for each cube can be calculated

by solving the linear system above.
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Figure 5.4: Ferromagnetic cube of dimensions 2 × 2 × 2[cm3] modeled by the com-
position of 1000 small cubes with magnetization along z-axis under the action of an
external magnetic field.

As a result for this approximation the assumption of a constant magnetization compo-

nent along z-axis results in an underestimation of the internal field and the magneti-

zation. This result shows that by assuming only one component of the magnetization,

the demagnetization field for each of the cube or cuboids is not completely taken into

account. The accuracy on the demagnetization field calculation is very important in

the estimation of the total energy associated to the magnetization of the magnetic

grain. This also will determine the magnetostriction effect along certain direction of

interest because it will affect the current elongation of a particle given its orientation

when magnetic anisotropy is included.

5.2.3 Discretized cube case: full vectorial magnetization

This subsection will consider the three components for the magnetization to be cal-

culated when the set of cubes are under the action of an uniform external magnetic

field. In this case, the linear system to be solved is defined by the full set of equations
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Figure 5.5: Ferromagnetic cube under the action of an external magnetic field, to-
tal magnetic body in the composite is modeled by several magnetic cubes with full
vectorial magnetization.

derived before:

N∑
j

([
4π(1 + χm)

χm
δij − (∂yFΓY + ∂zFΓZ )

]
mxj + (∂yFΓX )myj

+ (∂zFΓX )mzj

)
= 4πHxext(~ri)

(5.83)

N∑
j

(
(∂xFΓY )mxj +

[
4π(1 + χm)

χm
δij − (∂zFΓZ + ∂xFΓX )

]
myj

+ (∂zFΓY )mzj

)
= 4πHyext(~ri)

(5.84)

N∑
j

(
(∂xFΓZ )mxj + (∂yFΓZ )myj[

4π(1 + χm)

χm
δij − (∂xFΓX + ∂yFΓY )

]
mzj

)
= 4πHzext(~ri)

(5.85)

where magnetization components for each cube should be found that solves the linear

system. In contrast to typical approximations of one component of magnetization,

a more accurate estimation of the demagnetization factor for each grain can be per-

formed by the set of the equations above. Figure 5.6 presents the comparison for the

axial magnetic field and magnetization when the total cube is discretized by using

125 small cubes. In order to show the convergence of the proposed scheme when

more cubes are considered, same scenario is run with 1000 small cubes to conform

the whole cube under analysis. Results for this latter case are presented in Figure

5.7.
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Figure 5.6: Ferromagnetic cube of dimensions 2 × 2 × 2[cm3] modeled by the com-
position of 125 small cubes with full vectorial magnetization under the action of an
external magnetic field.
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Figure 5.7: Ferromagnetic cube of dimensions 2 × 2 × 2[cm3] modeled by the com-
position of 1000 small cubes with full vectorial magnetization under the action of an
external magnetic field.

5.2.4 Inclusion of non-linear magnetization

Once the magnetic field flux density is calculated in the domain of interest, we can

implement an iterative method for finding the actual magnetization state [39, 7].

This method refreshes the magnetization state ~Mk+1 based on a previous estimation

of the magnetization ~Mk and the non-linear interaction with the external magnetic

field. To illustrate the iterative method, suppose a guessed initial state of magneti-

zation ~Mk
dmg(~r) for each magnetic body in the analysis, this magnetization allows to

calculated the demagnetization field ~Hk
dmg(~r) by a certain type of function that will

depend on the geometry and number of cuboids in the simulation. Therefore, we can

write:

~Hk
dmg(~r) = f( ~Mk

dmg(~r)) (5.86)

we have for the total magnetic field inside the domain:

~Hk
T = ~Hext + ~Hk

dmg (5.87)

Let’s suppose we have an non-linear dependence between the magnetization and the

magnetizing field determined by constitutive relation χ( ~Hk
T), such as:

~Mk+1
c =

[
χ( ~Hk

T)
]
~Hk

T (5.88)
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Finally, an updating equation to the magnetization state ~Mk can be written by:

~Mk+1 = ~Mk + β
(
~Mk+1
c − ~Mk

)
(5.89)

Once the new state for the magnetization is found, the iteration process begins again

with the calculation of the associated demagnetization field ~Hk+1
dmg to the new state of

magnetization ~Mk+1. In our proposed approach we can guess the initial magnetization
~Mk
i (~ri) for all the cuboids that conform the body shape, this can be achieved by

solving the linear system described in section above where the magnetization at the

i-th cuboid should satisfy:

~Mk
i (~ri)

χm
−

 1

4π
∇×

 N∑
j

˚
v′j

~Mk
j (~r′j)×

(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mk
i (~ri)

 = ~Hext(~ri)(5.90)

Once ~Mk
i (~ri) is known for each cuboid, we can calculate the associated demagnetiza-

tion vector by:

~Hk
dmg(~ri) =

1

4π
∇×

 N∑
j

˚
v′j

~Mk
j (~r′j)×

(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mk
i (~ri) (5.91)

It is worth noting that the demagnetization field can be calculated if the magnetization

is given for all of the cuboids in the simulation. Then, total internal field at the center

of the cuboid can be calculated by:

~Hk
T(~ri) = ~Hext(~ri) + ~Hk

dmg(~ri) (5.92)

At this point we can calculate the non-linear magnetization based on the current

magnetizing field ~Hk
T(~ri)

~Mk+1
c (~ri) = f( ~Hk

T(~ri)) (5.93)

One of the functions that can be used at this point is the Langevin function for the

anhysteretic curve of magnetization, such as we can calculate for each component of

the magnetization:

Mk+1
xc (~ri) = Ms

(
coth

[
Hk
xT

(~ri)

ao

]
− ao
Hk
xT

(~ri)

)
(5.94)

Mk+1
yc (~ri) = Ms

(
coth

[
Hk
yT

(~ri)

ao

]
− ao
Hk
yT

(~ri)

)
(5.95)

Mk+1
zc (~ri) = Ms

(
coth

[
Hk
zT

(~ri)

ao

]
− ao
Hk
zT

(~ri)

)
(5.96)
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Where Ms is the saturation magnetization and ao is a parameter that controls the

curve shape. Finally, an updating equation to the magnetization state for the i-th

cuboid, ~Mk+1(~ri), can be written by:

~Mk+1(~ri) = ~Mk(~ri) + β
(
~Mk+1
c (~ri)− ~Mk(~ri)

)
(5.97)

A relative error between magnetizations iterations can be defined, such as the global

convergence of the iterative process can be monitored. This error was defined in our

case by the expression:

error =
1

N

√√√√ N∑
j

(
Mk+1

xj
−Mk

xj

)2

+
N∑
j

(
Mk+1

yj
−Mk

yj

)2

+
N∑
j

(
Mk+1

zj
−Mk

zj

)2

(5.98)

By using this definition of error we can stop the iterative process at certain minimum

error and control the convergence to that minimum of the whole algorithm.

5.2.5 Inclusion of the Jiles-Artherton hysteresis model in the
analysis of magnetostrictive composites

Based on the proposed method for the analysis of magnetostrictive composites by

using a set of discrete cuboids that shape the geometry of the composite body, we were

able to include the non-linear an-hysteretic behavior of the magnetization by using

the well known Jiles-Artherton model [20, 25]. This section discusses the inclusion

of hysteresis to the current model by considering the same two arguments about

reversible and irreversible magnetization. Total work done by the magnetic field on

a per-unit volume element can be calculated by:

Et =

ˆ
~H · d ~B, (5.99)

where ~B = µ0( ~H + ~M), where we can write for the total energy done by the external

magnetic field:

Et =
1

µ0

ˆ
~B · d ~B −

ˆ
~M · d ~B, (5.100)

where
´
~M · d ~B is the work done over the magnetized body. In our case, total

magnetizing field in the i-th cuboid is given by:

~H(~ri) = ~Hext(~ri) + ~Hdmg(~ri), (5.101)
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It is worth noting that ~Hdmg(~ri) is a function of the magnetization and also depends on

the geometry of the current i-th cuboid and the rest of the cuboids in the simulation.

This field is given explicitly by:

~Hk
dmg(~ri) =

1

4π
∇×

 N∑
j

˚
v′j

~Mk
j (~r′j)×

(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mk
i (~ri) (5.102)

Jiles-Atherton method proposes to simplify the interaction between dipoles by a sim-

ple factor of the magnetization such as the magnetizing field can be written by:

~H(~ri) = ~Hext(~ri) + αi ~M(~ri), (5.103)

where αi takes into account the demagnetization field that is dependent on the mag-

netization. In our formulation this factor can be calculated for each component of

the demagnetization field and the corresponding magnetization component by:

αxi =
Hxdmg(~ri)

Mx(~ri)
(5.104)

If there is no hysteresis, magnetization can be written as a function of this effective

field at the i-th cuboid:

Manhy(~ri) = Ms

(
coth

[
Hext(~ri) +Hdmg(~ri)

ao

]
− ao
Hext(~ri) +Hdmg(~ri)

)
(5.105)

Or in the same formulation as proposed by Jiles-Atherton we can write:

Manhy(~ri) = Ms

(
coth

[
Hext(~ri) + αiM(~ri)

ao

]
− ao
Hext(~ri) + αiM(~ri)

)
(5.106)

Therefore, the work done on the magnetic cuboid can be calculated by using the

anhysteretic function for the magnetization:
ˆ
M(~ri) · dB(~ri) =

ˆ
Manhy(~ri) · dB(~ri), (5.107)

However, the argument used by Jiles-Artherton establishes that there is an additional

energy that must be supplied to overcome pinning sites in a volume when occurring

the magnetization. This energy will be proportional through a constant factor k to

the change in magnetization and it can be written by:

Eloss =

ˆ
kdM(~ri), (5.108)
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since this energy losses is related to the opposition to the external magnetic field

action, a factor δ is included to take into account the direction of the magnetic field

regarding the current magnetization, i.e. δ = +1 if dM/dH > 0 and δ = −1 if

dM/dH < 0, this factor guarantees that energy due to pinning energy density will

always act as a lossy force:

Eloss =

ˆ
δkdM(~ri), (5.109)

Therefore, total energy on the sample should be the ammount of energy to magnetize

the anhysteretic behavior minus the energy lost in overcoming pinning sites
ˆ
M(~ri) · dB(~ri) =

ˆ
Manhy(~ri) · dB(~ri)−

ˆ
δkdM(~ri), (5.110)

which can be written in terms of a differential equation taking the derivative respect

to dB(~ri):

δk
dM(~ri)

dB(~ri)
= Manhy(~ri)−M(~ri), (5.111)

However, it is more convenient to write this expression as differential equation of

Hext(~ri) instead of B(~ri). For accomplish this, we can proceed as follows:

dM(~ri)

dB(~ri)
=

dM(~ri)

dHext(~ri)

dHext(~ri)

dB(~ri)
, (5.112)

Now, magnetic flux density associated to this definition of the effective field ~He(~ri) =
~Hext(~ri) + αi ~M(~ri) in the i-th cuboid is given by:

~Be(~ri) = µ0
~He(~ri) (5.113)

Bx(~ri) = µ0 (Hxext(~ri) + αxiMx(~ri)) (5.114)

By(~ri) = µ0 (Hyext(~ri) + αyiMy(~ri)) (5.115)

Bz(~ri) = µ0 (Hzext(~ri) + αziMz(~ri)) , (5.116)

In the following we will find an expression for a general component Hext(~ri) and take

the derivative respect to B(~ri), then we obtain:

Hext(~ri) =
B(~ri)

µ0

− αiM(~ri) (5.117)

dHext(~ri)

dB(~ri)
=

1

µ0

− αi
dM(~ri)

dB(~ri)
(5.118)
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where expression dM(~ri)/dB(~ri) can be replaced by:

dHext(~ri)

dB(~ri)
=

1

µ0

− αi
δk

(Manhy(~ri)−M(~ri)) (5.119)

By using the expression found above in the rule chain of derivatives, we can write an

expression for dM/dB :

dM(~ri)

dB(~ri)
=

dM(~ri)

dHext(~ri)

dHext(~ri)

dB(~ri)
(5.120)

dM(~ri)

dB(~ri)
=

dM(~ri)

dHext(~ri)

[
1

µ0

− αi
δk

(Mani(~ri)−M(~ri))

]
, (5.121)

replacing in the original expression we can write:

1

δk
(Manhy(~ri)−M(~ri)) =

dM(~ri)

dHt(~ri)

[
1

µ0

− αi
δk

(Manhy(~ri)−M(~ri))

]
(5.122)

Rearranging some terms it can be obtained:

dM(~ri)

dHt(~ri)
=

(Manhy(~ri)−M(~ri))

δk/µ0 − αi (Manhy(~ri)−M(~ri))
. (5.123)

As it was suggested in [25], domain walls can simply bend due to magnetic field more

that overcome the pinning energy sites. This will result in reversible magnetization

when the magnetic field is removed. Jiles-Atherton model proposes that magnetiza-

tion is the sum of reversible and irreversible processes such that for the i-th cuboid

we can write:

M(~ri) = Mirr(~ri) +Mrev(~ri) (5.124)

where a first approximation to the reversible magnetization can be written in terms

of the anhysteretic magnetization by:

Mrev(~ri) = c (Manhy(~ri)−M(~ri)) (5.125)

where c is a constant that can be found experimentally from the susceptibilities in the

anhysteretic and normal magnetization curve[25]. As a consequence of including the

possibility of wall domain bending as a reversible magnetization, total magnetization

can be expressed as the sum of two magnetization components, such as:

M(~ri) =

(
1

1 + c

)
Mirr(~ri) +

(
c

1 + c

)
Manhy(~ri) (5.126)

where Mirr(~ri) is the solution to the differential equation:

dMirr(~ri)

dHt(~ri)
=

(Manhy(~ri)−Mirr(~ri))

δk/µ0 − αi (Manhy(~ri)−Mirr(~ri))
. (5.127)
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5.2.6 Quasi-static hysteresis model in the analysis of magne-
tostrictive composites

At this point we can calculate the hysteretic behavior of a quasi-static time dependent

external field by:

~Hext(~ri, tn) = ~H0f(tn) (5.128)

where tn corresponds to a discrete time step. With this magnitude of external mag-

netic field we can solve an internal loop with index k for calculating the anhysteretic

magnetization (which was shown to converge as in the previous section) and the

irreversible magnetization regarding the total magnetizing field. Let’s consider an

internal loop that is triggered each time the external field changes, this loop will cal-

culate the anhysteretic magnetization from an initial guess of magnetization ~Mk
i (~ri)

for all the cuboids that conform the body shape, this can be achieved by solving the

linear system described in section above where the magnetization at the i-th cuboid

should satisfy:

~Mk
i (~ri)

χm
−

 1

4π
∇×

 N∑
j

˚
v′j

~Mk
j (~r′j)×

(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mk
i (~ri)

 = ~H0f(tn)

(5.129)

Once ~Mk
i (~ri) is known for each cuboid, we can calculate the associated demagnetiza-

tion vector by:

~Hk
dmg(~ri) =

1

4π
∇×

 N∑
j

˚
v′j

~Mk
j (~r′j)×

(
~ri − ~r′j

)
|~ri − ~r′j|3

dv′j

− ~Mk
i (~ri) (5.130)

Therefore, total internal magnetizing field at the center of the cuboid can be calculated

by:

~Hk
T(~ri, tn) = ~Hext(~ri, tn) + ~Hk

dmg(~ri, tn) (5.131)

At this point we can calculate for the non-linear magnetization at iteration k + 1

based on the magnetizing field in the iteration k, ~Hk
T(~ri, tn)

~Mk+1
anhy(~ri, tn) = Ms

(
coth

[
~Hk

T(~ri, tn)

ao

]
− ao

~Hk
T(~ri, tn)

)
(5.132)
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Where Ms is the saturation magnetization and ao is a parameter that controls the

curve shape. Finally, an updating equation to the magnetization state at the iteration

step k + 1 for the i-th cuboid, ~Mk+1(~ri), can be written by:

~Mk+1(~ri, tn) = ~Mk(~ri, tn) + β
(
~Mk+1

anhy(~ri, tn)− ~Mk(~ri, tn)
)

(5.133)

Once the relative error between magnetizations iterations converges to the desired

one we can find the anhysteretic magnetization for the last iteration kf in the the

internal loop, we will have ~M
kf
anhy(~ri, tn) = ~Mkf (~ri, tn).

Finally, we can write an updating equation in time for the irreversible component

of magnetization by:

Mirr(~ri, tn+1) = Mirr(~ri, tn)+(
M

kf
anhy(~ri, tn)−Mirr(~ri, tn)

)
δk/µ0 −

(
M

kf
anhy(~ri, tn)−Mirr(~ri, tn)

) (Hext(~ri, tn+1)−Hext(~ri, tn)) .
(5.134)

with this magnetization and recalculating for the anhysteretic magnetization for
~Hext(~ri, tn+1)+, M

kf
anhy(~ri, tn+1) we can solve for:

M(~ri, tn+1) =

(
1

1 + c

)
Mirr(~ri, tn+1) +

(
c

1 + c

)
M

kf
anhy(~ri, tn+1) (5.135)

5.3 Magnetostriction of composites

Once the magnetization magnitude is known for each cuboid inside the composite.

Magnetostriction curves can be calculated by using the expressions discussed in chap-

ter 4. Expression that will be used for calculating the magnetostriction of each cuboid

will consider the saturation magnetization Ms and the magnetostriction coefficient εs

as known and constant values. These two values will be assumed to be known based

on the fact that each cuboid is considered made of monolithic Terfenol-D. There-

fore, its magnetostrictive coefficients and magnetic characteristics remain unchanged.

Equation that calculated the magneto-strain for each cuboid can be given by:

εi (M(~ri)) =
3

2
εs

[
M2(~ri)

M2
s

]
(5.136)

It is important to notice that strictly speaking, each cuboid will be under some

stress distribution due to the epoxy curing. Indeed, after the interaction of the

magnetostrictive particulate material with the external magnetic field, the individual
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strain of each particle could induce complicated stress distributions upon the epoxy

matrix, and correspondingly, to the neighboring magnetostrictive particles. Although

this effect could lead to very complicated relationships between mechanical strain

resultant from the external field and the internal changes on the effective field due to

the associated stress energy, this particular effect will be disregarded for the current

formulation based on the fact that experiments (as those reproduced in section

4.2.4) show that high compressive stress should be applied to monolithic Terfenol-D

material to affect in a representative manner the characteristics of magnetostriction

coefficients. Additionally, in the current formulation model is aimed to include and

describe the magnetic properties only, such as the resultant behavior of the particulate

system can be understood in terms of the magnetic interactions of the cuboids.

5.3.1 Case of Study: Cylinder

This subsection presents the analysis of the proposed model when it is applied to one of

the mostly used shape in Terfenol-D actuators, a cylindrical shape. Fig. 5.8 presents

the comparison of the composite modeling against the magnetization obtained by

COMSOL through the Finite Element Method. Simulation consisted on a cylinder

of 1[cm] in radius and 3[cm] in length. In the FEM case, cylinder is modeled as a

continuous magnetic body. In contrast, for the composite modeling a discretization

in cuboids was implemented for the simulation with ∆X=1.3[mm], ∆Y=1.3[mm] and

∆Z=1.9[mm].
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Figure 5.8: Magnetization z-component magnitude alonsg the cylinder axis. Com-
parison against FEM results (dashed line) against magnetization obtained through
the composite modeling strategy (cuboids filled 100%).

As it can be seen from Fig. 5.8, there is a mismatch between both results. A relative

error about 3.8% is calculated in the maximum of the magnetization. This mismatch

can be caused by the discretization process of the cylindrical shape, which is performed
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through cuboids that could lead to a lack of geometrical representation when dealing

with non rectangular shapes. Fig. 5.9 presents the discrete model of the cylinder whe

it is represented through cuboids.

Figure 5.9: Discrete representation of the magnetic body as a set of finite cuboids
(∆X=1.3[mm], ∆Y=1.3[mm] and ∆Z=1.9[mm]).

As it can be seen from Fig. 5.9 there is an evident lack of representation in geometry

for the circular pattern since it should be represented by using the cuboid unit cells.

This issue can be one of the source errors in the simulation. One of the advantages

that presents current modeling strategy is the possibility of controlling the size of

each cuboid in the composite.

Figure 5.10: Definition of the size fraction of the magnetic cuboid v′i = ∆Xi∆Yi∆Zi

Figure 5.11 presents the calculation of the total strain achieved by different per-

centages of filling of magnetic material inside the cuboid unit cell. As it can be seen

from Fig. 5.11 is that the effects of changing the volume fraction of the magnetostric-

tive material in the cuboid unit cell has effect in both: the total mechanical strain

that can be obtained from the specimen and its magnetic properties, saturation and

magnetostriction curve. These two effects have been observed in several experiments

and theoretical predictions [12, 11]. An interesting prediction of the current model
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Figure 5.11: Discrete representation of the magnetic body as a set of finite cuboids
(∆X=1.3[mm], ∆Y=1.3[mm] and ∆Z=1.9[mm]. Different size fractions.)

occurs when lower size fractions are considered in the analysis. Figure 5.12 presents

the expected results when volume fraction smaller than 80% are considered. As it

can be seen from the figure, higher mechanical strains are predicted for volumen frac-

tions of 30% than those obtained by 80%. It is worth noting that in the formulation

there have not been included any mechanical strain interaction between the epoxy

matrix and the magnetostrictive inclusion. However, it is important to note that

magnetic effects associated to the interaction between each of the magnetic bodies

that composes the total volume have an effect in the total performance of the com-

posite. This effect was observed experimentally in Ref. [11] where lower fractions

of volume exhibited higher longitudinal magnetostriction. Although the explanation

given in Ref. [11] included some stress transferred to the epoxy, current formulation

gives an additional source of explanation of this phenomena based in magnetic effects

only. An additional analysis that can be made by using the proposed formulation for

analyzing the shape of the particle.

In the results of Fig.5.13 smaller unit cells were considered. Although, lower volume

per unit cell is considered, total volume remain constant, such as more particulate

material composes the total composite body, reaching even more magnetization that

bigger particles in the 90% filling case. This theoretical result can explain some of

the experimental results obtained for different particle concentration and sizes where

a suitable optimization based on these two variables have been evidenced.
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Figure 5.12: Discrete representation of the magnetic body as a set of finite cuboids
(∆X=1.3[mm], ∆Y=1.3[mm] and ∆Z=1.9[mm]). Smaller size fractions of magne-
tostrictive composites.

H [kA/m]
0 50 100 150 200 250 300

S
z
[µ
m
]

0

20

40

60

90% coarse

20% fine particles

20% coarse

Figure 5.13: Discrete representation of the magnetic body as a set of finite cuboids
(Coarse dimensions: ∆X=1.3[mm], ∆Y=1.3[mm] and ∆Z=1.9[mm]) and (Fine di-
mensions: ∆X=625[µm], ∆Y=625[µm] and ∆Z=1.3[mm]). Smaller size fractions of
magnetostrictive composites.
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5.4 Concluding Remarks

This chapter proposed a numerical model for describing magnetostrictive composites.

Closed solution for vector magnetic potential was found for a single magnetic cuboid

to represent the monolithic magnetostrictive particle. Afterwards, magnetization was

calculated by writing a set of linear equations that involved full vectorial magne-

tization field and numerical methods were applied to solve the resultant system of

equations. Proposed method allows flexible description of powder particle size and

geometric aspect ratios. Several effects due to particulate geometry could be modeled

through the proposed framework and compared against monolithic prediction. Addi-

tional characteristics of ferromagnetic materials such as hysteresis and nonlinearities

were successfully included in the model.

Good agreement was found when comparing results from monolithic bodies simulated

by FEM and those modeled through cuboids fully filled of magnetic material. The

flexibility of defining specific sizes for each cuboid in the current model can be used to

predict the influence that each particle geometry has upon the behavior of the whole

body regarding its magnetization and consequently magnetostriction.
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Chapter 6

Piezoelectricity

This section present most of the well known approaches for modeling piezoelectricity

in materials. As it was discussed above, any type of external mechanical interaction

that results in body deformation can be included in the strain equation as an additive

term. Piezoelectric materials can be expressed by:

ξi = SEijσj + dPijEj + α∆T (6.1)

where SEij corresponds to the compliance matrix. This matrix is a characteristic

of the material and is superscripted by E to denote that relates the compliance of

the material at constant electric field E. Coefficients dPij correspond to the coupling

factors between strain and electric field in a piezoelectric material and, α∆T includes

the effects of thermal expansion. Compliance matrix can be written explicitly by:

SE =
1

Y


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0

0 0 2(1 + ν) 0 0
0 0 0 2(1 + ν) 0
0 0 0 0 2(1 + ν)

 (6.2)

In principle piezoelectric can be created by the application of an external strong

electric field over certain materials that induces some anisotropy on the electric charge

distribution. This procedure is known as poling and allows the description of the crys-

tal by means of an axial system, where the axis that points in the poling direction

becomes the principal axis. Once the axis system is defined, the behavior of the

piezoelectric material can be described by the coefficients dPij to totally define th con-

stitutive relations of the piezoelectric under study. Figure 6.1 presents the definition

of the principal axes on the material anisotropy.
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Figure 6.1: (a) Material under poling electric field (b) Principal axes of anisotropy.
X3 points in the poling electric field direction. Shear axes can be also taken into
account for describing the full strain deformation

As it is shown in Figure 6.1, prinicipal axis x3 points in the poling direction. Shear de-

formations can be also taken into account by including the corresponding coefficients.

A typical matrix of piezoelectric coefficients is given by:

dPij =


0 0 d31

0 0 d32

0 0 d33

0 d24 0
d15 0 0
0 0 0

 (6.3)

Therefore, coefficients d3j characterizes the strain along the j axis due to an electric

field E3 along the X3 axis. Coefficient d24 determines the strain in the plane 2 − 3

due to an electric field pointing along X2 and d15 determines the strain in the plane

3− 1 due to an electric field pointing along X1.
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6.1 Piezoelectric composite bimorph actuator

A piezoelectric bimorph is a composite bilayer actuator that is characterized for hav-

ing two piezoelectric layers and a metal shim in between them. As it is presented

in Appendix E, the existence of a bending moment throughout the beam causes

a deflection along the longitudinal dimension. This subsection derives the deflection

expression for a bimorph actuator based on the same analysis provided before and

including the electrostrictive effect upon the piezoelectric layers. Figure 6.2 presents

a bimorph actuator with two piezoelectric layers with tp in thickness. Those piezo-

electric layers are bonded by a thin metallic shim of tm in thickness. The width of

the actuator is w and its length is L.

Figure 6.2: (a) Piezoelectric bimorph (b) deflection curve of cantilever bimorph (c)
Cross section detail of the longitudinal stress

As it was discussed in the section above, the deflection curve can be found from the

bending moment distribution along the beam. In the case of a symmetric bimorph

the neutral axis still crosses the centroid of the transverse section.Therefore, same

expressions can be found for the deflection curve as in the homogeneous case discussed

before defining and effective curvature κeff, such as we can write:

ξx = κeffy, (6.4)

Where ξx will be the strain profile, that should be found based on the neutral axis

location. In a symmetric bimorph, such as this one we are dealing with, the neutral

axis location will coincides with the centroid of the cross section. Following the same

analysis as before, the defection curve can be found once the curvature is known by

integrating the expression:

d2ν(x)

dx2
= κeff (6.5)
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We can follow the same procedure for finding κeff from the bending moment. However,

in this case we have two layers that make each stress component to have different

values based on the region and will be determined by the poling direction and voltage

excitation upon the piezoelectric layers. Figure 6.3 presents the adopted polarization

(material axes described by X1,X2,X3) for a given piezoelectric material.

Figure 6.3: Piezoelectric bimorph polarization depending on the voltage excitation

We can write the longitudinal stress over the cross section as follows:

σx(y(x), z) =


Ypξx − d31YpE3 −tp − tm/2 < y < −tm/2

Ymξx −tm/2 < y < tm/2
Ypξx + d31YpE3 tm/2 < y < tp + tm/2

(6.6)

where Ym and Yp are the Young’s module of the metal shim and the piezoelectric layer

respectively. It should be noticed that there is an additional term in the stress function

for the piezoelectric regions. This term corresponds to the electrostriction caused by

the electric field upon the piezoelectric material. Negative or positive sign will depend

on the polarization of the layer respect to the electric field, which is determined by the

electrodes arrangement in the bimorph and the poling direction for the piezoelectric

layer. For this case, superior layer is under an anti-parallel electric field respect to

the poling direction and lower layer is excited along the poling direction (See Figure

6.3 for details). Total moment at the cross section can be calculated by:

Mpiezo =

¨
σx(y(x), z)ydydz (6.7)

Therefore, we can write an integral for each corresponding region:

Mpiezo =

ˆ −tm/2
−tp−tm/2

(Ypξx − d31YpE3)wydy+

ˆ tm/2

−tm/2
(Ymξx)wydy +

ˆ tp+tm/2

tm/2

(Ypξx + d31YpE3)wydy (6.8)
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we replace the expression for the strain into the integrals to obtain:

Mpiezo =

ˆ −tm/2
−tp−tm/2

(Yp (−κeffy)− d31YpE3)wydy+

ˆ tm/2

−tm/2
(Ym (−κeffy))wydy +

ˆ tp+tm/2

tm/2

(Yp (−κeffy) + d31YpE3)wydy (6.9)

Rearranging terms in the integrals:

Mpiezo =

ˆ −tm/2
−tp−tm/2

(
−κeffYpwy2 − d31YpE3wy

)
dy+

ˆ tm/2

−tm/2
−wYmκeffy

2dy +

ˆ tp+tm/2

tm/2

(
−κeffYpwy2 + d31YpE3wy

)
dy (6.10)

integration can be performed directly to obtain:

Mpiezo =

[
−κeffYpw

y3

3
− d31YpE3w

y2

2

]∣∣∣∣−tm/2
−tp−tm/2

+[
−wYmκeff

y3

3

]∣∣∣∣tm/2
−tm/2

+

[
−κeffYpw

y3

3
+ d31YpE3w

y2

2

]∣∣∣∣tp+tm/2

tm/2

(6.11)

simplifying the expression, we have:

Mpiezo = −Ypκeffw

(
t2mtp

2
+ tmt

2
p +

2t3p
3

)
− Ymκeffw

t3m
12
− Ypwd31E3

(
tmtp + t2p

)
(6.12)

Now, a free body analysis over the cantilever bimorph should be done in order to

write the static equilibrium equations. Figure 6.4 presents the free body diagram for

the case under study. As it can be seen, there is an initial force over the cantilever

Figure 6.4: (a) Distributed weight force (b) free-body diagram with the current forces
over the piezoelectric bimorph cantilever

bimorph that corresponds to its own weight. Therefore, there is a total reaction

moment MzR(0) on the fixed point due to the weight, as well as a total vertical force
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directed upwards FyR to compensate the weight of the whole actuator. Additionally,

since in the piezoelectric bimorph there is an additional term in the stress function

due to the driving electric field σxE = ±d31YpE3, we have to express force equilibrium

along the longitudinal axes,

FxR(0)− w
ˆ tm/2+tp

−tm/2−tp
σx(y)dy = 0, (6.13)

integration can be done using the piecewise stress function to have:

FxR(0)− w
ˆ −tm/2
−tm/2−tp

(Ypκeffy − d31YpE3) dy

− w
ˆ tm/2

−tm/2
Ymκeffydy

− w
ˆ tm/2+tp

tm/2

(Ypκeffy + d31YpE3) dy = 0, (6.14)

since the bimorph is symmetric, the neutral axis crosses the centroid of cross-section.

This makes the integrals in the extensional force equilibrium to cancel out, implying

FxR(0) = 0.

On the other hand, for the calculation of the bending moment equilibrium, we can

assume that the total weight is Wg and it is distributed uniformly along the beam,

we will have that the sum of the bending moments at some point x of the deflection

curve is given by:

MzR(0)−MFyR +Mpiezo(x) +

ˆ x

o

Wg

L
xdx = 0, (6.15)

Weight moments are not considered, leading to:

Mpiezo(x) = 0, (6.16)

which allows us to calculate the curvature by[50]:

κeff =
12Ypd31E3

(
tmtp + t2p

)
2Yp

(
3t2mtp + 6tmt2p + 4t3p

)
+ Ymt3m

(6.17)

The sign of the curvature will be dependent on the convention assumed for the bend-

ing moments and also the deflection direction. Since the curvature results being
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independent of the x coordinate, and ν(0) = 0 and ν ′(0) = 0. The deflection curve

can be calculated simply by:

ν(x) = κeff
x2

2
(6.18)

In order to validate the modeling presented before, a bimorph bender with dimen-

sions w = 7.8[mm], L = 28[mm], tm = 0.1 and tp = 0.35[mm] was simulated by using

Finite Element Method FEM. Metal shim was assumed to be made of aluminum with

a Young module given by Ym = 70×109[Pa]. The poling direction of the piezoelectric

was assumed to points in the y-direction of the coordinate system (see Fig. 6.3). Me-

chanical properties of the piezoelectric layers were considered based on typical ceramic

characteristics. In the analysis a Young module Yp = 60.6× 109[Pa] was assumed for

the piezoelectric layer with a piezoelectric coefficient d31 = 650 × 10−12[m/V]. This

piezoelectric coefficient was taken from the maximum tip displacement that commer-

cial piezoelectric bimorph achieve under maximum external field when it is operated

by exciting both piezoelectric layers as shown in Fig. 6.3. In practical implemen-

tations of bimorph actuators, dielectric constant of the piezoelectric decreases the

effective electric field produced by the charge density on the bimorph surface.

(a)

Total Displacement [um]

xy

z

Total Displacement [um]

(b)

Figure 6.5: (a) Total downward displacement. (b) Total upward displacement.

Figure 6.5 presents the total mechanical displacement that exhibits the bimorph

when 150V are applied upon the piezoelectric layers. As it can be seen from Fig.

6.5 both sides deflection can be obtained depending on the resultant electric field

direction across the layer. Figure 6.6 presents the deflection curve calculated by the

analytical approach when an electric field about E3 = 428.6[kV/m] is applied across

the piezoelectric layers. As it can be seen from Figure 6.6, there is an underestimation

in the analytical solution respect to the FEM result in the deflection strain along z.

It is highly important to note, that analytical derivation assumes a constant electric

field magnitude. However, in practice strain associated to the bending action modifies

the electric displacement magnitude along the cross section. Therefore, electric field

magnitude results in a continuous linear distribution along the cross section instead
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Figure 6.6: Calculation of the deformation for the bimorph under analysis via FEM
and analytical procedure presented before. (a) downward deflection. (b) Upward
deflection

of a constant value as assumed in the analytical approach. This situation is closer to

practical implementations and causes the mismatch between analytical approach and

the results obtained by FEM. Figure 6.7(a) presents the actual distribution of the

electric field along the cross section, showing a spatial distribution with a maximum

field about to ±750[kV/m] close to the bimorph external surfaces and decreases about

to ±100[kV/m] on the metal shim surface (Fig.6.7(b)).

(b)(a)
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Figure 6.7: Actual electric field distribution across bimorph piezoelectric layers. (a)
Spatial distribution of electric field(both layers) (b) Electric field norm across one
piezoelectric layer

6.2 Effective field correction

As it is presented before, the distribution of the electric field along the cross section

differs to the analytical assumption of a constant electric field. A rigorous solution

should include the effects in the electric field due to the bending action upon the piezo-

electric that modifies the electric field magnitude along the cross section. However,

a simplified correction can be proposed to find an effective field magnitude such as

total momentum upon the cross section is equivalent in both cases. Afterwards, this

effective field can be plugged into the analytical approach as a constant magnitude to

satisfy that total bending moment equations on the cross section is equivalent to that
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created by the linear distribution of the electric field. Total moment on a piezoelectric

layer can be calculated by:

ˆ
tp

Eeffwydy =

ˆ
tp

E3(y)wydy, (6.19)

spatial dependence of the electric field can be described by a linear relation based on

the maximum and minimum electric field found at the plate surfaces:

E3(y) =
Emax − Emin

tp
y + Emin. (6.20)

Plugging the expression into the momentum integrals one finds an effective field given

by:

Eeff =
2

3
Emax +

1

3
Emin. (6.21)

Considering this effective field for the current case, analytical approach can be recal-

culated by using E3 = 533.33[kV/m], which is around 1.24 times the initial electric

field calculated under uniform distribution assumption. Figure 6.8 presents the de-

flection curve with the corrected field magnitude. As it can be seen from Fig. 6.8

x [mm]
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ξ z
[µ
m
]
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Figure 6.8: Comparison of deflection curve when corrected effective field is considered
in the analytical formulation.

effective field included in the analytical formulation increases the accuracy of the pre-

dicted deflection curve. This proposed method of effective field correction enables to

use the analytical formulation for accounting spatial electric field distribution along

the cross section of the bimorph actuator.

6.3 Concluding Remarks

This chapter presented the theoretical framework for piezoelectric bimorph actuator.

Analytical description of this type of actuators was derived and compared to Finite
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Element Method (FEM) results. Owing to the assumption of constant electric field in

the analytical model, some differences along the deflection curve were found. However,

the definition of an effective electric field in the analytical approach can be proposed

to enable the use of the analytical description to fit the FEM calculations. Effective

field correction is proposed as a consequence of the spatial distribution of the electric

field inside the bimorph plates when strain modifies total electric displacement field.

In order to provide a more accurate definition of the effective field, total bending

moment was calculated for a linearly distributed electric field along the cross section

such as a constant effective field results in the same amount of bending moment. As

it was shown in this chapter effective field correction decreased the relative error at

the tip displacement from 16.77% to 3.57%.
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Chapter 7

Experimental Results

This chapter presents some of the experimental set-ups that were conducted to vali-

date the theoretical framework developed in the previous chapters. Two main optical

fiber-based magnetic and electric field sensors were implemented to propose a suitable

arrangement for measuring electrical variables in high voltage power systems. Mag-

netic field was inferred by using magnetostriction as a sensing principle, and electric

field by means of piezolectric bimorph/unimorph actuators.

Two main strategies for developing the aforementioned fiber-based sensors were

tackled in the experimental set-ups. Supported on the theoretical background de-

veloped in chapter 5 and the properties that geometry offers in controlling the dis-

tribution of the internal magnetic field, which in turns controls the strain generated

by magnetostriction, magnetic field sensor was implemented through an embedded

Fiber Bragg Grating (FBG) into Terfenol-D/Epoxy composite. Electric field sensor

was achieved based on the discussed relationships in chapter 6 through the im-

plementation of a piezoelectric bimorph as an electric-field actuator. Experimental

results were compared in both cases with the expected theoretical performance. Al-

though good agreements were obtained between predicted and measured results in

both sensors, some of the most important issues that could cause the mismatches are

discussed by the author and addressed as future work plans. This chapter is organized

as follows: First section deals with the magnetic field sensor implemented through

a Terfenol-D/Epoxy composite. Initially some geometric aspects were considered in

order to determine what kind of magnetic body geometry was more suitable to imple-

ment and offered more advantages regarding the internal field distribution. A closed

solution for the internal magnetic field is obtained for frustum cone case based on the

assumptions discussed in chapter 4 for monolithic magnetostrictive bodies. After-

wards, proposed modeling strategy described in chapter 5 is used for the particular

shape of a frustum cone. Effects on the internal magnetic field due to the particle
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size and randomness distribution is analyzed. Comparison against FEM solutions is

presented for each case. Nonlinearity of the magnetization was included by using the

Langevin function in the J-A model. Error curves are presented for validating the

convergence of the proposed method for this particular geometry. Main steps of the

composite fabrication is presented. Theoretical broadening of the reflected spectrum

is calculated by using the theoretical expected strains profiles upon the FBG. Finally,

a set of comparison of the experimental implementations and theoretical predictions

is performed.

Second section of the chapter presents the results of the implementation of a

high voltage sensor by using the piezoelectric bimorph discussed in chapter 6 and a

FBG attached to it. Longitudinal strain is transferred to the FBG producing central

wavelength shifting. Characterization of the sensor in single side operation of the

bimorph is performed for compression and tension actuation. For allowing inference

of the external voltage magnitude based on optical power measurements, a technique

based on a reference FBG is used. Such as central wavelength modulation of the

attached FBG to the bimorph can be filtered by the reference FBG, leading to spec-

trum change in the transmitted optical signal. Several frequencies were considered in

the experimental, achieving good performance up to 1.0kHz.

7.1 Magnetostrictive frustum cone for magnetic

field sensing

As it was discussed in sections before, fiber-based sensing principle of magnetic fields

based on magnetostriction requires to transfer the induced strain from the magne-

tostrictive material to an optical device such as a FBG. As it as widely discussed

in chapter 3, optical parameters of FBG can be changed by exerting strain along

the grating, i.e. uniform and nonuniform strains can be exerted to the longitudinal

perturbation of the FBG controlling its optical interference characteristics. Since

the strain produced by magnetostriction is dependent on the magnetization, external

magnetic field magnitude can be estimated from the characteristics of the optical

reflection spectrum from the optical device [36]. If only end points of the FBG are

anchored to the mechanical action, uniform induced strain will be transferred to the

grating and uniform change in the effective pitch period will lead to a wavelength

shift of the reflected central peak. However, if the FBG is embedded in the mag-

netostrictive material or composite, internal magnetic field distribution will govern
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the strain profile exerted to the FBG. Therefore, mechanical strain transferred to

the optical device will be affected by the respective geometry of the magnetostric-

tive material (as presented in the demagnetization field effects discussed in chapter

4). Geometric dependence of the internal magnetization distribution, ~M(~r), can be

used to engineer different shapes of the magnetostrictive composites in order to turn

an initially nonchirped FBG into a chirped one, allowing to sense the external field

magnitude through optical power measurements.

7.1.1 Frustum cone with different side-slopes

An initial approach for the geometry consists in a variation of the cylinder discussed

in chapter 4). In this case a frustum cone with different side wall geometries is con-

sidered. The selection of this particular shape of the sensor is based on its simplicity

for being manufactured experimentally, as well as some material can be saved when

compared with cylindrical shapes. As it has been discussed in the sections above,

geometric shape of the magnetic body has an evident influence upon the distribution

of the internal magnetic field. Frustum cone presents a very different distribution

when compared with the cylindrical or spherical shape. This section is aimed to

compute the effects of changing the side slope in a frustum cone to determine which

side slope is more suitable to induced nonuniform strain upon the fiber. Consider a

frustum cone shaped that has a bottom radius b0 and an upper radius a0, as shown

in Fig.(7.1). In this particular case, radius at the side wall will be given in general by

the function: z′ = ap (b0 − r)n, where ap is a constant.

x

y

z'
ao

r

z'
dz'

dl'

Figure 7.1: Uniformly magnetized frustum cone with parabolic side
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Constant ap of the parabolic function that describes the side wall can be written by:

ap =
L

(b0 − a0)n
(7.1)

Function that describes the radius can be written by:

r(z′) = b0 − n

√
z′

ap
. (7.2)

Normal vector to the body surface can be found by taking the gradient of the function

f(r, z′) = z′ − ap(r − b0)n evaluated at the contour radius, for both even an odd

exponents n. Taking the gradient and calculating the unitary vector at the surface

in cylindrical coordinates, i.e. n̂′ = ∇f(r(z′), z′)/|∇f(r(z′), z′)|, it can be obtained:

n̂′ =

[
apn

(
z′

ap

)n−1
n

]
îr + îz√

1 +

[
a2
pn

2
(
z′

ap

) 2n−2
n

] . (7.3)

It is worth noting that deriving the expression for the gradient one should be consis-

tent of the concavity of the functions that describe the side contour of the magnetic

body, such that the normal vector points out in the maximum decrement of the func-

tion. Assuming that the magnetic body is under a constant external magnetic field

directed along the z-axis, ~H = H0îz, one can assume as a first approach, a magne-

tization vector along the same direction, i.e. ~M = M0îz with M0 being a constant.

Therefore, the equivalent surface magnetic current, ~Km =
(
M0îz

)
×~an, can be written

by:

~Km = M0

[
apn

(
z′

ap

)n−1
n

]
√

1 +

[
a2
pn

2
(
z′

ap

) 2n−2
n

] îϕ. (7.4)

Finally, magnetic flux density along the z-axis can be calculated from the integral:

Bmg(z) =
µ0

2

ˆ L

0

(
~Km × ûr

)
îz
r(z′)

cos θ [(z − z′)2 + r(z′)2]
dz′, (7.5)

Magnetic field flux density in Eq.(7.5) can be evaluated numerically by using well

known integration methods [16]. Intensity of the demagnetization field can be found

from the constitutive equation:

Hmg(z) =
Bmg(z)

µ0

−M0. (7.6)
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Trapezoidal rule was used to calculate the magnetic field intensity for different side

contours controlled by the parameter n in Eq.(7.2), and evaluate the effect of geometry

in the field distribution along the z-axis. Since M0 continues being unknown, we can

assume a linear magnetization relationship with the internal field Hint(z) given by:

M0 = χmHint(z) (7.7)

allowing to find a magnetization magnitude based on the internal field. Therefore,

internal magnetic field can be calculated as the sum of the external field and the

demagnetization field by:

Hint(z) = Hext(z) +Hmg(z) (7.8)

Hint(z) = Hext(z) +
Bmg(z)

µ0

− χmHint(z). (7.9)

Magnetic flux density is given by:

Bmg(z) =
µ0M0

2

ˆ L

0

(
~Km × ûr

)
îz
r(z′)

cos θ [(z − z′)2 + r(z′)2]
dz′, (7.10)

Therefore, we can write for the internal field:

Hint(z) =
Hext(z)

1 + χm

[
1− 1

2

´ L
0

( ~Km×ûr)
îz
r(z′)

cos θ[(z−z′)2+r(z′)2]
dz′
] . (7.11)

Fig. 7.2 presents the calculations of the internal magnetic field for truncated cones

with top and bottom radii a0 = 0.2[cm] and b0 = 0.5[cm] respectively, a total length

of L = 1.85[cm], and different paraboloid radius contours given by Eq.(7.2).

As it can be seen from Fig.7.2, magnetic field intensity along the axis presents different

longitudinal profiles depending on the order of the parabolic side-contour showing

that the geometry of the side contour has an important effect in the internal field

distribution along the axis. Longitudinal distribution of the magnetic field for two

cylinders with matched minor and major radii have been included as a reference. It

should be highlighted that the most tilted profile is that obtained by the straight side

contour (n = 1), while the effects of higher orders in the parabolic geometry tends

to flat the profile as in the limit case of a cylinder. In Appendix F the analytical

solution for the frustum under constant magnetization assumption is shown.
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Figure 7.2: Internal magnetic field along the axis for different geometries due to the
demagnetization field

7.1.2 Mechanical strain transfer to a coaxial FBG

This section An FBG was placed in a cylindrical hole along cone axis with about

330[µm] in diameter. Thus, epoxy was injected into the hole such that it bonded the

FBG to the cone as it is shwon in Fig.(7.3).

When the magnetostrictive composite exhibits large enough magnetostriction prop-

erties, mechanical strains can be transfered to a nonchirped FBG placed coaxially to

cone, as shown in Fig. (7.1), with the aim to modify the properties of the reflected

and transmitted optical spectrum from the FBG. Expected internal distribution of

the internal magnetic field will produce a nonuniform strain profile along the axis

that can be transferred to the FBG period to induce a chirp [51, 26, 18, 41, 34]. As

a result, magnetostriction effect can modify the parameters of the Bragg grating by

changing the reflection spectrum characteristics of the FBG [26]. Therefore, the total

period of the chirped grating can be written in general by:

Λ(Hint, z) = Λ0 + ∆Λ(Hint, z) (7.12)

where the grating period dependence on the magnetic field can be seen as an effect

over the central wavelength and an additional induced nonuniform strain due to the

magnetostriction. Since temperature produces also an additional strain in the grating

period, the total effect over this parameter can be estimated by [41, 36, 17]:

∆Λ(Hint, z) = Λ0 (1− Peff) ε(M(Hint, z))

+Λ0 ((1− Peff)(αM − αn) + αn + ζ) ∆T
(7.13)
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Figure 7.3: Magnetized frustum cone with an embedded coaxial nonchirped FBG

where neff is the effective refractive index of the fiber, and Peff corresponds to the total

strain-optic effect assumed to be dependent on the axial strain only [41, 34]. Thermal

expansion can be taken into account by coefficients αM and αn that correspond to the

thermal expansion coefficients for the magnetostrictive composite and the fiber, and

ζ is the thermo-optic coefficient of the fiber. ∆T is the change of temperature that

suffers the whole system during the measuring process. However, temperature effects

on the chirp magnitude can be neglected [51, 26]. Temperature dependence was not

considered in the scope of this thesis and it is left for future work. In order to avoid

any drift due to possible temperature effects,. measurements took place in a relatively

constant temperature environment. A central wavelength shifting is expected as an

averaged effect of the total expansion occurred on the cone, leading to a net increase

in the magnitude of the central wavelength in the reflected spectrum that can be

directly correlated to the external magnetic field. On the other hand, nonuniform

strain will drive the local induced strain ε(M(Hint, z)) due to internal magnetization

along the axis and will determine the shape of the reflected spectrum. Strain due to

magnetostriction can be calculated by using the magnetization magnitude along the

axis:

ε (M(Hint, z))) =
3

2
εs

[(
M2(z)

M2
s

)]
(7.14)

where εs should be determined experimentally and M(z) is the magnetization distri-

bution along the axis for different external magnetic fields. In contrast to uniformly
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strained FBGs [36], steeped strain profiles transferred to FBGs will result in a chirped

phase function for the Bragg grating period that turns out into a strong dependence

of the reflected spectrum shape magnitude [13, 18]. These effects imply a dependence

on the total optical power reflected back from the FBG, allowing the correlation of

the optical power with the external field magnitude, which simplifies enormously the

instrumentation and measurement devices required during the practical implemen-

tation. Once the FBG is bounded along the axis of the cone, the grating will be

modulated in length by the magnetostriction effect, leading to a peak wavelength

shifting and broadening of the reflected spectrum around the central wavelength. For

calculating these effects, it was considered the same description for the effective re-

fractive index in a FBG used in Chapter 3 and Ref. [13], where the refractive index

perturbation can be written by the expression:

δneff(z) = δ̄neff(z)

[
1 + v cos

(
2π

Λ0

z + φ(z)

)]
, (7.15)

being δ̄neff an effective refractive index and v represents the fringe visibility. φ(z) is

the phase shift defined by the chirp effect. Frequency of the grating is controlled by

the argument of the cosine function, cos (ωg(z)z), that in general can be written as

a function of z by ωg(z) = 2π/Λ(z), such as for a uniform grating spacing should

result in a constant grating frequency given by ω0 = 2π/Λ0. Once the chirping pe-

riod is determined for several magnetic fields, we can determine both: the spectrum

shape of the light reflected back from the FBG and the total optical power associ-

ated to each magnetic field. Consider a conical frustum with top and bottom radii

a0=0.2[cm] and b0=0.5[cm] respectively, total length of L=3[cm]. Magnetization was

simulated by using the Langeving function to account for nonlinear behavior of mag-

netization with parameters α = 0 and a = 60084. Magnetostriction coefficient for

the theoretical calculation was assumed to be εs = 750[ppm]. Figure 7.4 presents

the behavior of the magnetostriction curve for the current theoretical analysis. It is

worth noting that saturation of the magnetostriction curve is due to the nonlinear

magnetization process modeled by the Langevin function as explained in Chapter

4. Figure 7.5 presents the theoretical strain distribution of the FBG period caused

by the internal distribution of the magnetization for different magnetic fields. Two

different behaviors can be theoretically obtained from the strain distribution imposed

by the magnetostriction and the side of light incidence. Figure 7.6 presents the the-

oretical response when light incidents through the cone’s top and basis. As it can

be seen from both figures, depending on the direction of incident light, the spectrum

response of the FBG exhibits different spectral properties. As ti can be seen from
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Figure 7.4: magnetostrictive curve for the theoretical analysis
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Figure 7.5: Theoretical strain distribution along the cone axis caused by the nonuni-
form magnetic field distribution inside the cone

Fig.7.6(a), incidence through the cone’s top leads to broadening of the spectrum with

small shifting in frequency for the peak wavelength. On the other hand, incidence

thorough the cone basis presents some wavelength shifting for the peak wavelength as

well as some broadening in the reflected spectrum for different magnetic fields. Since

spectral broadening occurs in both cases, a dependence on the total optical power

can be also obtained in both configurations. Figure 7.7 shows the theoretical optical

power associated to each of the spectrum shapes when light incidents through basis

and top.

As it can be seen from Fig. 7.7 normalized optical power increases in both scenarios

reaching a saturation point. In the case of top incidence (Fig. 7.7(a)) behavior of

the reflected is dominated by the high slope of the initial section of the transferred

strain. Therefore, the wavelength shifting is minimal. In the other case, there is an

appreciable shifting and spectrum broadening (Fig. 7.7(b)), this latter accounting as

well for power increment. In this particular case, there is a slightly inflection point

in the external magnetic field magnitude where the optical power folds to decrease.

This effect is mainly because at some point of the transferred strain, the interference

pattern that reflects one specific wavelength is lost due to the high deformation of
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Figure 7.6: Theoretical reflected spectrum from the FBG under the strain distribution
caused by the nonuniform magnetic field inside the conical frustum. (a) Incidence
through the top. (b) Incidence through the basis.
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Figure 7.7: Theoretical optical power of the light reflected from the FBG under
different magnetic field magnitudes. (a) Incidence through the top. (b) Incidence
through the basis.

the initial section, appearing some ringing spectrum at the left side of the peak

wavelength. It is important to note that this is the typical behavior of linear chirp

discussed in chapter 3. In the following subsections, a set of practical implementation

of a fiber magnetic sensor were done based on the theoretical framework presented

before but using magnetostrictive composites instead of monolithic magnetostrictive

materials.

7.1.3 Magnetostrictive composite fabrication

Monolithic implementations of magnetostrictive transducers presents some manufac-

turing disadvantages. Particularly, Terfenol-D is restricted to be manufactured in spe-

cific geometrical shapes. Additionally, Terfenol-D in its monolithic phase it is very

brittle, which restricts its usage in some industrial applications. These drawbacks

have motivated the use of magnetostrictive composites for developing new magnetic

field sensors. This subsection describes the fabrication of magnetostrictive compos-

ites, where instead of monolithic Terfernol-D, an epoxy resin is used as a host matrix

for Terfenol-D powder. One of the advantages of using epoxy resin is the capabil-
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ity of having several geometrical shapes, which represents a high flexibility in the

proposition and fabrication of engineering composites. Figure 7.8 shows the process

of the mold construction. Once the mold is fabricated, Terfenol-D powder and epoxy

(a)
(b) (c)

(d) (e)

Figure 7.8: Negative cone-volume mold fabrication, (a) Mold resin, (b) Cavity for the
mold fabrication, (c-d) filling the cavity with the mold, (e) Cone Mold, (e) mold with
negative volume of the cone

resin can be mixed to form the desired geometrical shape. Figure 7.9 depicts the

fabrication process of a 3D-cone shape magnetostrictive composite.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 7.9: cone shape magnetostrictive Composite Fabrication, (a) Epoxy-Hardener
Ratio Fabrication, (b) Air bubbles in Epoxy-Hardener Mix, (c) Epoxy-Hardener Mix
after vacuum chamber (d) Epoxy Cone with coaxial cavity (e) Epoxy Cone with
coaxial Fiber Optic (f) Epoxy-resin and Iron or Terfenol-D powder particles (g) Mag-
netostrictive Composite, (h) Magnetostrictive Composite in mold cavity with a piano-
wire (i) Cavity with piano-wire (j) Cone-shaped Magnetostrictive Composite
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Composite fabrication specification by mass
Cone Ø Terf.-D [gr] Epoxy [gr] Hard.[gr] T-D mass

in comp.
[gr]

Ratio

1,
Ø =330.2µm

8.989 5.200 2.345 6.19 54%

2,
Ø =431.8µm

10.086 3.543 1.829 7.44 65%

3,
Ø =330.2µm

10.939 3.621 1.888 7.58 67%

Table 7.1: Composite fabrication of frustum cones. Axial channel diameters: Cone 1,
Ø =330.2µm. Cone 2, Ø =431.8µm. Cone 3, Ø =330.2µm. Terfenol-D mass used in
the mixture, used mass Epoxy/Hardener, Terfenol-D mass in the cone, Ratio between
Terfenol-D mass and total mass

A magnetostrictive cone-shaped composite was fabricated of Terfenorl-D powder

with particle sizes between 200-300 [µ m]. The composite was made by using epoxy

resin to mold a cone with 3[cm] in length and three different cases were considered

in the fabrication. Total mass of this cone made of monolithic Terfenol-D can be

calculated by:

mT = ρ
π

3
L
(
b2
o + a2

o + aobo
)

(7.16)

Density of Terfenol-D is reported to be about 9200-9300 [kg/m3], leading to a total

monolithic mass around mT = 11.4[gr]. Since the usage of epoxy and hardener

during the fabrication process, density of the Terfenol-D particulate composite will

depend on the mixture ratios. Fabrication process firstly mixes the epoxy/hardener

slightly avoiding air bubbles inclusion. Afterwards, the epoxy/hardener mixture is

put into a vacuum chamber to extract some of the air bubbles gained in the mixture

during the mixing process. Finally, Terfenol-D particles are added to the mixture

and slightly mixed. Once the composite mixture looks homogeneous, it is poured

into the cone mold for curing. Depending on the amount of Terfenol-D powder added

to the mixture, one can calculate the ratio of Terfenol-D in the composite and the

corresponding total mass of magnetostrictive material used for fabricating the cone.

Table 7.1 resumes the amount of epoxy-hardener and Terfenol-D powder during the

fabrication process of the mixing.

As it shown in Table 7.1, different channel diameters were used for the experimental

set-up. Cone 1 was the cone that used less amount of Terfenol-D with the smallest
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channel diameter gauge with the aim to validate is less material was able to generated

the chirping process.

7.1.4 Magnetostrictive composite frustum cone

In the previous analysis of the mechanical strain transferred to the coaxially embed-

ded FBG, the internal magnetic field distribution was assumed to be created by a

monolithic magnetostrictive frustum cone. However, as it was discussed and presented

in chapter 5 some corrections in the formulation of the internal field distribution

should be done for accounting particulate material effects. This section will analyze

the case of a frustum cone by using the model developed in chapter 5 for dealing

with magnetic composites and depending on the magnetization distribution to calcu-

late the associated magnetostriction. Figure 7.10 presents a schematic of a frustum

cone made of magnetic particulate material modeled by cuboids. Figure 7.11 shows

Magnetization at each cube

has the three components

Figure 7.10: Schematic of the discretization of a frustum cone of radius at the bottom
and the top b0, a0, respectively and length L.

the actual aspect of a discretized cone by using the proposed model for dealing with

magnetostrictive composites. Depending on the cuboid size the representation of the

actual geometry will be enhanced. As it can be seen from Fig. 7.11 representation of

circular shapes leads to some inaccuracies regarding geometry because of the rectan-

gular system used for solving the vector potential equations in Chapter 5. However,

it will be shown in this chapter that inaccuracies in the internal magnetic field calcu-

lation and consequently the magnetization, can be neglected in describing the main

aspects of the magnetostrictive results. For the initial case, a frustum cone made

of Terfenol-D/Epoxy with same geometric dimensions as in the monolithic case was

considered. Radius at the bottom and the top b0 = 5[mm], a0 = 2[mm], respectively,
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Figure 7.11: Actual discretization of the cone in cuboids by using the proposed dis-
crete model to analyze magnetostrictive composites.

and length L = 3[cm]. Different discretization sizes were considered in the analysis.

Typical cuboid dimension was about v′i = 0.83×0.83×2.25[mm3]. However, some sim-

ulations were performed with smaller particles (cuboid maximum length side about

250[µm]) to validate the results.Figure 7.12 presents the magnetization distribution

(equi-potential lines) inside the composite when discrete particles are considered.

Figure 7.13 presents the comparison between Finite Element Method (FEM) calcu-

lations and the current approach for the magnetic field and magnetization along the

axis for a frustum cone, when the magnetic material fills totally the discrete cell. As

it can be seen from the figure, current proposal is able to reproduce main charac-

teristics of the induced magnetization in the frustum cone. It is worth noting that

differences can be due to the discretization process where geometrical representation

through cuboids could lead to the discrepancies between both calculations.

One of the main advantages of the proposed composite model is that we can con-

trol the size of magnetic body for each cell, thus we can evaluate different scenarios

associated to the size distribution of the magnetic bodies in the analysis of the mag-

netostrictive composite. Figure 7.14 presents the comparison of the magnetic field

and magnetization along the axis for different volume fraction of the magnetic body

inside the cell. Magnetization and magnetic field are evaluated at the center of each

magnetic body. As it can be seen from Figure 7.14, the main effect of the magnetic

particle size is to decrease the steepness of the magnetization distribution along the

axis, reaching a flatter profile for the lowest volume fraction considered in the calcu-
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Figure 7.12: Internal distribution of magnetization by using the proposed compos-
ite model. Transverse cuts along axis of the frustum cone (a) x-component (b) y-
component (c) z-component

lations. This result shows that the effect of the spatial distribution of the particles

not necessarily changes the main aspect of internal field profile when compared to the

solid analysis, but the size of the particles plays an important role in the steepness of

the internal magnetization profile.
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Figure 7.13: Calculated magnetic field and magnetization along the axis for a frustum
cone of radius at the bottom and the top b0 = 5[mm],a0 = 2[mm], respectively and
length L = 3[cm].(solid line: FEM, dashed line: current discrete approach).
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Figure 7.14: Calculated magnetic field and magnetization along the axis for a frustum
cone for different volume fractions. (radius at the bottom and the top b0 = 5[mm],a0 =
2[mm], length L = 3[cm])

Since in the experimental process different particulate magnetostrictive material sizes

are included in the same composite. An additional simulation was performed to cal-

culate the response of the magnetization along the axis of the cone when different

particles sizes are present in the magnetic body. In this case, a simulation assigning

different dimensions to each of the cuboid was implemented, such as we can approx-

imate the magnetization response due to non-uniform size particles. Since in the

proposed formulation dimensions for each cuboid ∆Xi, ∆Yi, ∆Zi can be specifically

determined as an input, total magnetization effect pointing along the z-axis can be

evaluated based on a random distribution of the particle sizes. Figure 7.15 present the

behavior of the internal magnetic field and magnetization when two ranges of varia-

tion in size are considered. It is worth noting that the inclusion of random sizes in

the particulate material leads to some ripples in the magnetic field magnitude as well

as in magnetization along the axis. This effect is understood from the spaces between

magnetic particles that leads to a some variations in coupled field magnitude between

magnetic bodies in the composite. However, same effect happens to the steepness of
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Figure 7.15: Calculated magnetic field and magnetization along the axis for a frustum
cone for random sizes of the particles (being 100% of the volume a particle about
700µm). (radius at the bottom and the top b0 = 5[mm],a0 = 2[mm], length L =
3[cm])

the magnetic field when decreasing the effective volume that fills the magnetostric-

tive material in the discrete cell as shown in Fig.7.14. There is an additional issue

that should be taken into account for the analysis of the composite responses. In

the previous analyses unit cell size was about two times (700[µm]) the actual particle

size used in the experiment (300[µm]). Therefore, with the aim of checking for the

influence of the unit cell size in the discretized model, a last simulation case was

performed regarding the particle random size and the number of particles in the to-

tal volume. In this case a greater number of cells were used to model the magnetic

body which means smaller unit cell size, thus smaller dimensions for the particulate

material. Since randomness showed to have some ripple effect upon the internal field,

this random sizes of the particles were also included in the simulation. Figure 7.16

presents the comparison of the internal magnetic field and associated magnetization

when smaller particulate grains are considered. As it can be seen from Fig.7.16(a),

there are some differences between the responses for random sizes between 90% to

100%. However, bigger sizes for the particles tracks the main characteristics of the

internal field along the axis for the correspondent percent of particle size. Magne-

tization is also well represented by bigger particles. These results suggest that the

parameter that controls the magnetization and internal field characteristics along the

axis is mostly the volume fraction to the corresponding cell size instead of its actual

size. Therefore, acceptable results can be obtained by using bigger unit cell sizes if

the right volume fraction is taken into account.
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Figure 7.16: Calculated magnetic field and magnetization along the axis for a frustum
cone for random sizes of the particles when smaller particles are included (being
100% of the volume a particle about 250µm). (radius at the bottom and the top
b0 = 5[mm],a0 = 2[mm], length L = 3[cm])

7.1.4.1 Anhysteretic model for the composite frustum cone

This section presents the implementation of the proposed approach over a frustum

cone with the same dimensions of that presented before. Therefore, consider a frustum

cone of radius at the bottom and the top b0 = 5[mm], a0 = 2[mm], respectively, and

length L = 3[cm]. For the sake of simplicity analysis the anhysteretic behavior of

the cone is modeled through the modified Langevin function presented by Jiles and

Artherton [24]. In this case, we are going to assume that each component of the

magnetization vector of each cuboid satisfy the equation:

M = Ms

(
coth

[
Hext + αM

ao

]
− ao
Hext + αM

)
(7.17)

In the initial proposition of the JA model, factor α represents the interaction between

the magnetic dipoles and it is typically chosen to fit the experimental data. One of

the advantages of the current formulation is that this parameter can be evaluated

from the geometry of the composite through the demagnetization field. Therefore,

modified Langevin function for the discretized model can be written by:

M = Ms

(
coth

[
Hext +Hdmg(M)

ao

]
− ao
Hext +Hdmg(M)

)
(7.18)

where all the components of the demagnetization field can be taken into account

for the calculation. First simulation case will present the convergence of the iterative

method when this non-linearity in the magnetization is included. Linear susceptibility

can be calculated from the modified Langevin function by the expression:

χ0 =
Ms

3ao
, (7.19)
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Let’s consider a saturation magnetization of Ms = 1.5[MA/m] and ao = 55556[A/m]

such as the susceptibility in the linear region of the saturation function is about

χ0 u 9. However, with the aim to validate the convergence of the method we will

consider and initial susceptibility of χm = 4 and χm = 40 to guess an initial magneti-

zation, thus the iterative process should converge in both cases to the magnetization

defined by the modified Langevin function at the corresponding internal magnetic

field. External field is considered along the z-axis by ~Hext = H0îz, with H0 = 10[A/m].

Figure presents the results of the magnetization along the z-axis of the frustum cone

when initial guesses of magnetization are far from the current magnetization defined

by the modified Langevin function. Convergence error plots are also presented in
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Figure 7.17: Magnetization along the z-axis of the frustum cone for two guessed
initial magnetizations and convergence to the same magnetization profile defined by
the modified Langevin function.

Fig. 7.18(a) to show that in both situations the iterative algorithm finds the current

solution for a maximum relative error of errormax = 1 × 10−3. Next simulation con-

iteration
0 5 10 15 20 25

er
ro
r

0

0.5

1

1.5

Linear �m= 4

Linear �m= 40

iteration
0 50 100 150

er
ro
r

0

2000

4000

6000

8000

10000

Hz=75[kA/m]

Hz=150[kA/m]

Hz=225[kA/m]

Hz=300[kA/m]

(a) (b)

Figure 7.18: (a)Error convergence for two initial susceptibilities to guess the initial
magnetization inside the magnetic body. (b)Error convergence for different external
magnetic fields along the z-axis.

sidered different magnitudes of the external magnetic field when the magnetization

for each cuboid is driven by a modified Langevin function defined by the parameters
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Ms = 1.5[MA/m] and ao = 35556[A/m]. Figure 7.18(b) presents the convergence plot

when different external magnetic fields are considered. Maximum relative error for

stopping the iterative process was set to errormax = 1 × 10−3. Magnetization inside

the body was calculated for each of the external fields. Figure 7.19(a) presents the

results of the z-component of the magnetization along the axis of the frustum cone.

Finally, Fig 7.19(b) presents the magnetization against the external magnetic field for

different points along the axis of the frustum cone.As it can be seen from the figure,

those points located at the volumetric center of the cone reach the saturation easier

than those points at the top and bottom. This is expected from the distribution of

the magnetization magnitude.
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Figure 7.19: z-component of magnetization along the axis for different external mag-
netic fields (a) Magnetization along the axis for different external magnetic fields. (b)
magnetization for different heights along the axis of the frustum cone.

7.1.4.2 Effects of the particle shape in the anhysteretic behavior of the
composite frustum cone

Taking advantage of the proposed formulation for modeling composites, random sizes

and shapes of the magnetic material can be included in the simulation. As it was

shown before, the presence of random particle sizes in the composite tends to de-

crease the total magnetization when compared with the solid case and includes some

fluctuations of the magnetization magnitude along the longitudinal axis. Addition-

ally, shape of the cuboid contributes with a demagnetization field that can be seen

as an additional anisotropy due to the geometrical shape and the orientation regard-

ing the external magnetic field. Next simulation considered two different types of

magnetic cuboids in the composite. One of the cuboids had set to have a wider di-

mensions for the ∆Xi and ∆Yi, i.e. ∆Xi > ∆Zi and ∆Yi > ∆Zi. On the other

hand, we considered cuboids where the longer dimension was along the z-axis, i.e.

∆Zi > ∆Yi and ∆Zi > ∆Xi. The idea behind this simulation is to compare the

effects upon the magnetization when different demagnetization fields for a z-directed
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external field occurs in each cuboid. Figure 7.20 presents a comparison of the mag-

netization along the axis of a frustum cone of radius at the bottom and the top

respectively of b0 = 5[mm], a0 = 2[mm], and length L = 3[cm]. For the first simula-

tion case a grid of ∆xi = ∆yi = 833µm and ∆zi = 780µm. For the second simulation

∆xi = ∆yi = 416.67µm and ∆zi = 1.6mm.
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Figure 7.20: Nonlinear magnetization along the axis for two different shapes of grains.
Dashed lines considers random size of cuboids with a maximum size of ∆xi = ∆yi =
833µm and ∆zi = 780µm. Continuous line considers random size of cuboids with a
maximum size of ∆xi = ∆yi = 416.67µm and ∆zi = 1.6mm.

Figure 7.20 suggests that the contribution of shape anisotropy in the case of wider

cuboids induces important variations of the magnetization profile along the axis. In

contrast, when longer particles are considered softer profiles of magnetization along

the axis are obtained. This behavior is explained by the contribution of the de-

magnetization field due to the cuboid shape, which in the last case is smaller and

the multi-cuboid interactions is the dominant effect over the magnetization of the

whole body. Next simulation case shows the results of the quasi-static algorithm for

different positions along the cone axis. Figure 7.21 presents the behavior of the an-

hysteretic magnetization for a modified Langevin with parameter a0 = 15556[A/m]

and Ms = 1.5[MA/m].

Hysteresis was also included by using the Jiles-Atherton proposal. Figure 7.22

presents the hysteresis curves for reversible and irreversible magnetizations at different

heights of the cone, when c = 0.2 and a0 = 15556[A/m]. Lossy factor was set to be

k/µ0 = 10e3.

Figure 7.23 presents the anhysteretic and the hysteretic curve for the cuboid at

z = 2[cm] of the axis of the cone. In this hysteretic consideration the reversible and

irreversible magnetizations were considered. Parameters of the anhysteretic modified

Langevin function were a0 = 15556[A/m] and Ms = 1.5[MA/m]. Different lossy fac-

tors were consider to check the typical increment on the internal area of the hysteresis
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Figure 7.21: Anhysteretic curves at different heights of the cone.

Figure 7.22: Hysteretic curves at different heights of the cone.

curve, these factors were k/µ0 = 10e3, k/µ0 = 100e3 and k/µ0 = 1000e3. All the

simulations include a factor for accounting the reversible magnetization of c = 0.2.

An additional simulation was performed in order to check the effects of the parti-

cle size in the hysteresis behavior of the composite. Figure 7.24 presents the behavior

of the hysteresis curves for the same discretization case. However, one of the simu-

lation case includes a random size of the particle inside the discrete cell. As it can
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Figure 7.23: Anhysteretic and Hysteretic curve for one of the cuboids at z = 2[cm]
of the cone axis.

be seen from the results, an important reduction of the loop area in the hysteretic

behavior of the cone a different heights is noticed. In contrast, the saturation point

is reached almost at the same magnetic field. As it was shown in the previous sec-

tion, the effects of the particle size on the magnetization of each cuboid are of great

importance. Therefore, Jiles-Atherthon model will be also driven by this dependence

on the particle size.
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Figure 7.24: Hysteresis curves at different heights of the cone axis when random
particles sizes are considered.

7.1.4.3 Comparison against the analytical approach

The assumption of linearity in the analytical approach becomes an important differ-

ence between the results obtained in the composite model and those results obtained
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by the analytical solution. Figure 7.25 shows the comparison for the magnetization

along the axis between theoretical approach when magnetic susceptibility is consid-

ered a function of the magnetization and those results obtained by using the composite

model presented in Chapter 5.
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Figure 7.25: Comparison of the analytical approach against the results obtained by
the proposed composite model assuming anhysteretic magnetization. Dashed lines:
Analytical. Solid with markers: Composite model

As it can be seen from Fig. 7.25 analytical approach predicts relatively good the

magnetization value in some range in the cone center. However, there is an underes-

timation in the first section of the cone length. This is because the model that has

been assumed for the saturation of the cuboids in the composite case, where trans-

verse components of magnetization contribute to saturate quickly along this top and

bottom sections of the cone. As it will be shown in the following, this effect asso-

ciated to the increment of the initial slope has important effects upon the behavior

of the reflected spectrum and the broadening properties. In order to present these

effects, same simulation scenario presented in section 7.1.2 was simulated again,

but in this case by using the composite model including anhysteretic magnetization

process. Figure 7.26 presents the theoretical spectrum responses when light incidents

through the top (Fig. 7.26(a)) and basis (Fig. 7.26(b)). An important difference with

the results calculated by the analytical approach in section 7.1.2 is that spectral

broadening are very similar each other and present wider bandwidths. Based on the

same argument of spectral broadening, there is a dependence on the optical power

for both cases. Figure 7.27 presents the theoretical normalized optical power for both

sides of light input. As it can be seen from Fig.7.27 same main tendency is obtained

for the normalized power in both cases. There is a particular difference associated

to the initial slope of the top incidence of light. Although maximum normalized

power in sightly higher, sensitivity in the initial region is certainly larger as in the
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Figure 7.26: Theoretical reflected spectrum from the FBG under the strain distribu-
tion caused by the nonuniform magnetic field inside the conical frustum calculated
using the composite model. (a) Incidence through the top. (b) Incidence through the
basis.
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Figure 7.27: Theoretical normalized optical power. (a) Incidence through the top.
(b) Incidence through the basis.

theoretical case analyzed by using the analytical approach. Another important result

derived form the composite model is that both top and basis incidence of light leads

to around 1.3 times the initial power due to broadening. This effect can be explained

by the initial slope that will be transferred to the FBG when anhysteretic behavior

is included. Following sections presents some of the experimental results that were

acquired during the implementation of the magnetic field sensor.
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7.1.4.4 Curing and FBG bonding process

Once the cone-shape composite is fabricated. A FBG is attached coaxial to the cone

by using fiber bond epoxy. Before performing any measurement of the magnetostric-

tive behavior of a cone-shaped composite, it was required to leave the bond between

the FBG and cone to cure completely. Since mechanical properties can be changed

during this process, the FBG reflection spectrum was monitored during the whole

curing time process. Fig. 7.28 presents the reflection Spectrum before and after FBG

bonding process.
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Figure 7.28: Reflection Spectrum before and after FBG bonding process

As it can be seen from Fig.(7.28) the bonding process between the FBG and the cone

leads to a wavelength shift in the peak reflected wavelength, but also a modification in

the total spectrum change. This curing process implies an initial non-uniform strain

distribution along the FBG. prediction of this pre-strain in the FBG is a very difficult

task because it involves several factors associated to the mechanical condition of the

FBG inside the channel, different dynamics of curing process of the bonding epoxy, as

well as non-uniformities of the amount of epoxy along the FBG. Control strategies of

all these factors during the fabrication process are part of future improvements for the

construction of this type of sensors and are proposed as future work. In the scope of

this thesis, the analysis is performed upon some initial assumptions and it is focused

on describing the main characteristics of the sensor for its suitable implementation in

practice.

7.1.4.5 Experimental measurements

This subsection is aimed to show the experimental behavior of the sensor when it

is exposed to the magnetic field. Experimental set-up consisted in introducing the
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cone-shaped composite into an external magnetic field produced by a set of Helmholtz

coils that generates an uniform magnetic field along the cone axis. During measure-

ments reflected spectra from the embedded FBG were done by using an Optical

Spectrum Analyzer (OSA) during different magnetization cycles, as well as the use

of a photodetector for measuring the optical power reflected back from the embedded

FBG.Figure 7.29 shows the experimental set-up for measuring the external magnetic

field. Fig 7.29(a) shows the magnetostrictive composite frustum cone place between

two Helmholtz coils. Fig 7.29(b) presents a schematic of the optical circuit for mea-

suring the reflected spectrum characteristics of the embedded FBG and Fig 7.29(c)

presents the simplified optical circuit where the optical spectrum analyzer is replaced

by a photo detector with a data acquisition system.
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Figure 7.29: Experimental set-up (a) Magnetostrictive cone immersed in a uniform
magnetic field generated by a pair of Helmholtz coils. (b)Schematic of the optical cir-
cuit for measuring the reflected spectrum. (c) Simplified optical circuit for measuring
optical power.

In this set-up, magnetic field was measured using a calibrated probe, which was lo-

cated close to one of the cone’s end. Magnetic flux density measured by the probe

was increased up to Bm = 3000[G] and decreased down to the minimum value. After-

wards, magnetic field was reversed and increased again up to the top and decreased

gradually to zero. This test allows to determine hysteresis and saturation of the

composite and the effects upon the embedded FBG.
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7.1.4.6 Averaged magnetization method for characterization of the mag-
netostrictive composite

An averaged magnetization method can be used for describing the experimental shift-

ing in central wavelength, such as reflected peak wavelength can be associated to an

uniform period change due to tensile force at the ends of the cones, as it is depicted in

Fig. 7.30. Based on the change of the reflected peak wavelength, one can approximate

L

Figure 7.30: Transfer of uniform strain to the FBG along the axis of the cone

the magnetostriction coefficient of the composite by:

ξ =
∆l

L
=

∆Λ0

Λ0

=
∆λc
λc

(7.20)

where ε corresponds to the elongation along the axis. Therefore, we can write for the

strain due to magnetostriction:

ξ =
∆λc
λc

=
3

2
εs

[
M̄2

M2
s

]
(7.21)

where εs represents the magnetostriction constant, Ms is the saturation magnetization

and M̄ is the magnetization of the cone. This latter can be described by using the

Langevin function:

M̄ = Ms

[
coth

(
Hint + αM̄

a

)
− a

Hint + αM̄

]
, (7.22)

where Hint is the internal magnetic field, α represents a coupling between the magnetic

dipoles, a is a parameter that controls the shape of the function[20, 24, 23]. Figure
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Figure 7.31: Magnetostrictive curve in terms of the normalized change in the central
wavelength ∆λc(M̄)/λc0 of the FBG versus the external magnetic field intensity.

7.31 presents the theoretical magnetostrictive curve based on modeling of the magne-

tization by the Langevin function with a = 41852 and Ms = 1.6×106[A/m] and fitting

to the experimental data for λc, λ̄c(M). Its variation ∆ ¯λc(M) = λ̄c(M)− λc0 can be

assumed to be proportional to the square of magnetization [33], i.e. ∆λ̄c(M) = γ1M̄2,

where M̄2 is the mean square value of the magnetization, γ1 = 2.5982 × 10−13 [nm

m2/A2] is a fitting coefficient, and λc0 = 1549.4[nm]. The normalized variation

∆ ¯λc(M)/λc0 tracks the expected behavior of a magnetostrictive curve. With the

average grating period is defined by Λ̄(M) = 0.5λ̄c(M)/neff, magnetostrictive strain

constant associated with the square of the magnetization can be estimated with γ1

by expressing εs1 = γ1λ
−1
c0 M

2
s /1.5 which gives εs1 ≈ 272.41[ppm]. Hence, the axial

strain distribution can be obtained from ε(M(z)) = 1.5εs1(M(z)/Ms)
2 that enables

the evaluation of the chirp function. Since the phase shift introduced by the chirp

function will contain the information of the nonuniform strain distribution along the

FBG and can be written as φ(z) = 2πz(Λ−1(z) − Λ̄−1). Its derivative relates to the

frequency chirping and can be applied to the coupled mode theory for modeling the

corresponding reflectance spectrum [13]. Figure 7.32 presents the comparison of the

experimental spectrum and the theoretical prediction for different magnetic field mag-

nitudes. As it can be seen from the figure, theoretical results capture most features in

the experimental spectra, particularly their shapes, under various external magnetic

field magnitudes. Experimental spectra have wider band than those from theory even

at low field magnitudes. This effect can be attributed to the introduction of a pre-

strain, in addition to the magnetostrictive strain, from the curing of the epoxy for

bonding the FBG into the channel. Such an effect in the fabrication process becomes

the random factor for accurate matching the theory to experiments.
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Figure 7.32: Comparison of theoretical (above) and experimental power reflectance
spectrum Γ under various external magnetic field intensities.

An additional simulation was implemented for including the effects that the com-

posite model can predict in the interaction with the embedded FBG. Figure 7.33

presents the comparison of the spectra for different external magnetic field magni-

tudes. As it can be seen from Fig.7.33 there is a lower influence upon the maximum
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Figure 7.33: Comparison of theoretical response using the composite model for Ms =
1.6×106, aco = 35556, and particle size about 0.54% (above) and experimental power
reflectance spectrum Γ under various external magnetic field intensities.

reflected wavelength when compared to the previous case. However, there is still a

clear chirping effect upon the FBG due to the internal distribution of the field. It

should be noticed that in this last simulation case the total excursion of the maximum

reflected peak follows much better the experimental case.

One of the most important advantages provided by this sensor over conventional mag-

netic field transducer based on magnetostriction is its ability to indicate the external
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magnetic field magnitude by a single optical power measurement with a photodetec-

tor. Figure 7.34 presents the experimental results of the total optical power normal-

ized by its lowest value obtained from spectra recorded with a spectrum analyzer and

direct power measurements with a photodetector. Both methods produce consistent

results with maximum normalized power increasing with magnetic fields to about

1.02 times of the minimum power before diminishing under the external magnetic

field around 155 [kA/m]. Although the total power reflectance initially rises with

spectral widening caused by frequency chirping, this upward trend cannot be sus-

tained when the shift of λc above a few times of the initial linewidth and the total

power reflectance remains flat or even below its maximum.
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Figure 7.34: Normalized optical power of the reflected signal from the FBG as a
function of the external magnetic field intensities. (circles: power measured by a
photodetector, crosses: power calculated from experimental power spectra)

7.1.4.7 Slightly chirped reflected spectrum

As it was discussed in previous sections, there were fabricated three cones with differ-

ent initial conditions. Both cones that used wider channel diameter presented more

consistent reproduction of reflected wavelengths. Figure 7.35 presents the relative

change in central wavelength as a function of the external magnetic field and a theo-

retical fitting based on the Langevin function using the same procedure of averaged

magnetization discussed in section before.

As it has been done before, once the central wavelength is explained by the

Langevin function we can reproduce the spectrum for different magnetic field mag-

nitudes. Table 7.2 presents the fitted constants for describing the relative central

wavelength change in terms of the external magnetic field.

An important result of this fitting process is that three cones presented very similar

magnetostriction coefficients, even with different channel diameters and amount of
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Figure 7.35: relative central wavelength of the reflected spectrum. (a) Cone 2
Ø =431.8µm (b) Cone 3 Ø =330.2µm

Fitting parameters in averaged magnetization
Cone Ø a [A/m] εs [ppm]
1, Ø =330.2µm 41852 272.41
2, Ø =431.8µm 29624 293.45
3, Ø =330.2µm 29942 270.07

Table 7.2: Fitting parameters averaged magnetization: Cone 1, Ø =330.2µm.
Cone 2, Ø =431.8µm. Cone 3, Ø =330.2µm. a-parameter in Langevin function,
εs:approximated magnetostrictive coefficient.

Terfenol-D in each composite. Figure 7.36 presents the spectrum reproduction for

different magnetic field magnitudes for cone 2 and cone 3. As it can be seen from

Fig. 7.36(a)-(b) is that these two particular cones did not show important changes

in the spectrum. However, Cone 2 presented a slightly broadening in the left side

of the spectrum (Fig. 7.36(a)). Therefore, both cones were successfully modeled

through central wavelength shifting. These results suggest that bonding process in

this two particular cones was not that good as for cone 1 case, so the nonuniform

strain created by the magnetization distribution along the axis is not fully transferred

to the FBG, exhibiting the averaged effect exclusively that leads to a quasi-uniform

strain deformation upon the FBG.

7.1.5 Time domain response analysis

This subsection presents the experimental and theoretical analysis of the frequency

response for the magnetostrictive composite under a time dependent magnetic field.

Frequency response was limited to low frequencies in the experimental set-up because

the high inductive load of the electromagnet required high voltage amplifications for

the input signal in order to get appreciable magnetic fields magnitudes. Therefore,

only low frequencies up to 25Hz were able to be excited in the electromagnet to pro-

duce detectable fields by the implemented sensor. Due to the temporal response of
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Figure 7.36: Spectrum Reproduction for different magnetic fields magnitudes (dots:
experimental, lines: theoretical) (a) cone 2, Ø =330.2µm T-D ratio=65% (b) cone 3,
Ø =330.2µm T-D ratio=67%.

typical optical spectrum analyzers, frequency analysis was performed through optical

power measurements directly. Time domain responses of the magnetostrictive sensor

were captured by a data acquisition system connected to a photo-detector. Load resis-

tor for the photo-detector was carefully selected to guarantee sensitivity and meeting

input requirements of the acquisition system. A load resistor of 10kΩ was used for

acquiring the data. Figure 7.37 presents the temporal response of the optical power

reflected back from the FBG under several magnetic fields magnitudes and frequen-

cies. As it can be seen from the figures, low frequencies were able to generate higher

magnetic field magnitudes. However, for higher frequencies maximum magnetic field

magnitude decreased due to the incrementation of the associated impedance of the

electromagnet, leading to a decrement in the current through the coil which turns

into a lower magnetic field excitation.
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Figure 7.37: Optical power time-domain response under different magnetic field mag-
nitudes and frequencies. (a) f = 3Hz. (b) f = 6Hz. (c) f = 10Hz. (d) f = 15Hz. (e)
f = 20Hz. (f) f = 25Hz.

In order to analyze the response of the magnetostrictive sensor to frequency, a com-
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parison of the experimental results against the expected result for DC excitation was

performed. Figure 7.38 presents the external magnetic field magnitudes that were ex-

cited at different frequencies against the maximum ripple of normalized power, which

can be also understood as the sensitivity of the sensor. Fig. 7.38 presents the compar-

ison for different magnitudes when the magnetostrictive sensor was under a external

magnetic field excitation at different frequencies. As it can be seen lower frequencies

presented a higher deviation from the expected DC results. This figure suggests that

there is an important change in sensitivity when the magnetostrictive sensor is under

different frequencies. This can be due to some saturation-frequency dependence as

well as mechanical response in the strain transfer to the FBG that should be vali-

dated in future works. In contrast, at lower fields experimental and expected results

in the DC case are around the same region of change. Same behavior is presented for
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Figure 7.38: Comparison of the expected ripple in normalized optical power for dif-
ferent frequencies: 10Hz, 15Hz, 20Hz, 25Hz.

higher frequencies under 40kA/m in the external magnetic field. Although, there are

some discrepancies when compared to the DC expected ripple, those frequencies are

located around the same sensitivity in optical power. This frequency analysis shows

that there could be some dependence on frequency of the saturation curve for the

magnetostrictive composite and should be addressed in future works for improving

the sensitivity of the magnetostrictive sensor to higher frequencies.
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7.2 Piezoelectric Bimorph for Electric field Sens-

ing

This section discusses the electric field sensing through piezoelectric materials. In

this case the strategy for sensing the electric field is based on a bimorph actuator

that transfers uniform strain to a couple of FBGs attached to each of its faces. Fibers

were attached at one point at each end to induce uniform strain along the grating.

Figure 7.39 depicts the two possibilities for the actuator operation.

(a) (b)

x

y

Figure 7.39: Experimental set-up for an electric field sensor based on a bimorph
actuator. (a) bimorph in rest condition (b) positive bending (c) negative bending

Bimorph behavior will be determined by the relative orientation of the electric field

across the layers regarding to the poling direction of each layer. An important dif-

ference of the current experimental implementation with the bimorph actuator in

chapter 6, is that in this case active layers are poled in opposite directions as shown

in Fig. 7.40(a), thus bending of the bimorph is achieved by single side excitation.

This particular situation implies some changes in the results obtained in chapter 6

and technically constitutes a unimorph operation. In contrast to the bimorph actu-

ator, neutral axis in the unimorph does not coincide with the centroid of the cross

section, this characteristic makes to appear a net extensional force, along the mid-

plane, different from zero. Following the same analysis as in chapter 6, under only

one side operation and assuming a constant electric field across the piezoelectric layer,

longitudinal stress upon the cross section at a given point x can be written by:

σx(y(x), z) =


Ypξx(x)− d31YpE3 −tp − tm/2 < y < −tm/2

Ymξx(x) −tm/2 < y < tm/2
Ypξx(x) tm/2 < y < tp + tm/2

(7.23)

where Ym and Yp are the Young’s module of the metal shim and the piezoelectric

layer respectively. tm and tp represents the thickness of the metal and piezoelectric

layers and w is the width of the cross section. Effective curvature for the single side
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operation is reduced to a half of the equation 6.17, thus it can be calculated by:

κeff =
6Ypd31E3

(
tmtp + t2p

)
2Yp

(
3t2mtp + 6tmt2p + 4t3p

)
+ Ymt3m

(7.24)

Therefore, deflection curve will be given by:

ν(x) = κeff
x2

2
(7.25)

achieving a half of the maximum deflection. Figure 7.41 shows the calculated de-

flection curve obtained by COMSOL solving for the single side operation, and the

results calculated by using the effective curvature in Eq. 7.24 and the correction to

the electric field through the effective field proposed in section 6.2.

Figure 7.40: (a) Poling direction convention and FBG anchoring points(b) Experi-
mental implementation of a piezoelectric bimorph with two FBGs attached to each
piezo side
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Figure 7.41: Comparison of deflection curve

In this particular set-up, fibers will be interacting with different longitudinal strains

depending on which layer is excited and its particular polarity. An important dif-

ference of this operation compared to the bimorph operation in Chapter 6 is that

surfaces of the actuator will exhibit different longitudinal strain depending on its
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configuration. Figure 7.42 shows the possible configurations to operate the current

bimorph. For sake of simplicity, Fig. 7.42 shows only one of the FBG attached to the

outer surface of the lower layer. Configuration A excites upper layer to induce tension

upon the FBG. Configuration B excites the bottom layer to induce compression upon

the FBG.

(b)

x

y

x

y

(a)

Figure 7.42: Experimental set-up for an electric field sensor based on a bimorph
actuator. (a) bimorph in rest condition (b) positive bending (c) negative bending

The strains upon the FBG for each configuration, in contrast to the symmetry ob-

served in the bimorph actuator of Chapter 6, will be different each other because the

neutral axis won’t match the midplane. This mismatch is explained by the fact that

for configurations A and B, the inactive layer (that one not excited) acts as a passive

material causing an asymmetric distribution of the longitudinal strains respect to the

mid-plane, leading to different maximum strains at the surfaces of the layers for both

configuration of operation. Figure 7.43 presents the calculated longitudinal strains

upon the layers of the bimorph when it is excited in configuration A and B. As it

can be seen from Fig. 7.43(a), configuration A presents higher longitudinal strains

for the upper layer when it is excited in direct polarity respect to the poling direc-

tion. Tension upon the upper layer is almost three times greater than the lower face.

Same effect happens in configuration B but for lower layer. Fig. 7.43(b) shows the

longitudinal strains calculated for configuration B when applied voltage polarity is in

the same direction of poling. As it can be seen in this figure, longitudinal strain upon

the lower layer is almost three times grater than the upper layer.

In the practical implementation for the current transducer, two FBGs were attached

to each of the surface layers in the bimorph. Different excitation configurations were

used for the implementation to validate the theoretical results about the asymmetric

longitudinal strain. Figure 7.44 presents the simulation results obtained by FEM

when the longitudinal strain is calculated at the tip of the piezoelectric bimorph.

As it can be seen from Fig.7.44 the expected ration between the slopes in both

conditions is mC/mT=2.85. This result suggests that at least for the range of analysis
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Figure 7.43: Longitudinal strains upon the actuator surface depending on which
layer is excited. Theoretical sensitivity ratio between maximum strains operations
mC/mT=2.85. (a) Configuration A: Upper layer is excited. (b) Configuration B:
Bottom layer is excited.

(a) (b)

Figure 7.44: Longitudinal strains upon the actuator surface depending on which
layer is excited as a function of the driving voltage. Theoretical sensitivity between
maximum strains operations |mC |/mT=2.85 is validated. (a) Configuration A: Upper
layer is excited. (b) Configuration B: Bottom layer is excited.

there is a linear relation between the longitudinal strain and the driving voltage

magnitude. Since this ration is the same one for the strain along the bimorph, this

linear relation applies for all the points along the bimorph length.

7.2.0.1 Case 1: Fiber on the lower face in Compression and Tension

This case was performed over the fiber located on the lower part of the bimorph. For

the first condition the bimorph was polarized to have a negative bending, i.e. lower

face experimented a compression and upper face experimented a tension. Since the

fiber under test was bonded on the lower face, it suffered a compression for this initial

condition. After that, the bimorph was opposite polarized to exert on this same fiber

a tensional force. Figure 7.45(a) presents some of the measured reflected spectrum

for different voltages that exerted a negative bending over the bimorph, acting as a

compression strain upon the lower FBG. When the bimorph is polarized to have a

positive bending, the lower FBG behaves under tension. Figure 7.45(b) presents some

of the spectrum recorded for different magnitudes of voltage. As it can be seen from
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both figures, a slight change in the spectrum shape can be explained from the non-

uniform strain distribution along the FBG. Figure 7.46 presents the behavior of the

central wavelength when the lower FBG in the current experimental set-up is under

tension and compression. As it was discussed in the theoretical background in the

section above two different sensitivities can be obtained upon the FBG depending

on the configuration and excitation of the piezoelectric layers. Fig. 7.46 presents

the linear fits for two different operations of the bimorph that lead to tension and

compression upon the lower FBG. Linear fits result in a slope of mT = 0.0025[nm/V]

under tension action and a slope of mC = −0.0077[nm/V] under compression. These

two sensitivities are in agreement with the theoretical expectation to be about three

times each other in magnitude. Based on this results, spectra of the FBG can be

modeled through . Figure 7.47 presents the spectral response of the FBG attached

to the lower side of the bimorph when it is under tension and compression.

7.2.0.2 Case 2: Fiber on the upper face in Compression and Tension

Same measurements were performed upon the upper FBG in the experimental set-up.

Figure 7.48 presents the experimental spectra obtained for the FBG attached to the

upper piezoelectric layer for different voltages.

Figure 7.49 shows the experimental central reflected wavelength for the FBG attached

to the upper layer in the bimorph when it is under different voltages. Additional linear

fit lines are plotted to fit the experimental data. Slopes of the linear fits are shown

for both cases: tension and compression. As it can be seen from this particular

experiment, there is a deviation from the expected linear behavior when the upper

FBG is in tension. This can be due to the bonding characteristics of the FBG to the

piezoelectric layer surface. Bonding quality in FBG based sensors are one of the most

difficult issues to guarantee in the fabrications process. Defects in bonding processes

lead to undesirable behaviors and non-linear effects as occurred in this experimental

case. Although, this nonlinearity is not explained by the current model, linear part of
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Figure 7.45: (a) Measured spectrum for the lower FBG in compression. (b) Measured
spectrum for the lower FBG in tension.
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Figure 7.46: Measured spectrum for the lower FBG in tension and compression. Sen-
sitivity in tension mT=0.0025[nm/V]. Sensitivity in compression mC=-0.0077[nm/V].
Sensitivity ratio |mC |/mT=3.08.
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Figure 7.47: (a) Spectra for the lower FBG in compression (b) Spectra for the lower
FBG in tension (dots: measured, solid: theoretical)

the reflected wavelength in tension presents the same sensitivity as that obtained for

the FBG attached to the lower side of the bimorph. Indeed, sensitivity ratio between

linear parts in tension and compression is about mC/mT=4.53 which is still close to

the expected ratio.

7.2.1 AC voltage measurements with a bimorph actuator

This subsection presents the results that were obtained for the bimorph when it was

under an alternate electric field. In this case, lower FBG was used to sense the

deformation occurred in the bimorph when it is under electric field excitation. Two

different strategies were used for sensing the mechanical deflection. Figure 7.50 depicts

a schematic of the optical circuits used for each case. A first strategy considered to

interrogate the central wavelength reflected back form the FBG when AC electric

fields of different magnitudes and frequency were applied to the active layer (see

Fig. 7.50(a)). Although this method allows to determine directly the effects of the

extensional forces upon the FBG, it implies the usage of sophisticated equipments for

interrogating the peak wavelength, as well as it frequency response is limited by the

sampling frequency of these equipments, which are not able to follow rapid changes

of the peak wavelengths. A second strategy was to include an additional FBG that
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Figure 7.48: Power Reflected Spectrum for the experimental setup (a) Compression
(b) Tension
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Figure 7.49: Central wavelength of the upper FBG in tension and compression. Sen-
sitivity in tension mT=0.0017[nm/V]. Sensitivity in compression mC=-0.0077[nm/V].
Sensitivity ratio |mC |/mT=4.53.

worked as a filter of the reflected spectrum from the sensing FBG (that on under

extensional force. See Fig. 7.50(b)). This technique is very well known in literature

and allows to use a photo-detector instead of a wavelength interrogator. Since sensing

FBGs were successfully modeled by uniform strain transfer in the section before,

next subsections present the results obtained experimentally by means of these two

measurement methods, as well as the comparison of the expected results by using the

theoretical model.

7.2.1.1 Central wavelength shifting

This subsection shows the results for the behavior of the central wavelength reflected

back from the FBG attached to the lower side of the bimorph by using the optical

circuit presented in Fig.7.50(a). Measurements of the central reflected wavelength

were done by using an optical wavelength interrogator manufactured by Micron Op-

tics, model si425, with a wavelength range from 1520nm to 1570nm with a maximum

resolution of 2pm for each channel. During the experiments, voltage and frequency

were changed to analyze the behavior of the reflected central wavelength. Figure 7.51

shows the behavior of the central reflected wavelength for different voltage magnitudes
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Figure 7.50: Optical circuits for inferring the external voltage. (a) Measuring through
peak wavelength interrogator (b) Measuring through optical power by using a fixed
FBG as a reference (fixed filter technique)

at 7Hz sinusoidal excitation, and Figure 7.52 presents the behavior of the reflected

wavelength at 20V of excitation with different frequencies.
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Figure 7.51: Central Reflected Wavelength for different voltage magnitudes at 7Hz
sinusoidal excitation

As it can be seen from Figures 7.51 and 7.52, optical system responds correctly two

both type of excitations. As it is expected the excursion magnitude of the reflected

central wavelength accounts for the voltage magnitude. Figure 7.53 presents the peak-

to-peak excursion of the central wavelength for different magnitudes of the driving

voltage at different frequencies.

As it can be seen from Figure 7.53 frequency response of the bimorph presents a linear

tendency in the analyzed range of frequency. It should be highlighted that optical

interrogator used for the measurements does not present a high sweep frequency.

Therefore, range of analysis is restricted up to 20Hz approximately. A set of different

waveforms in the driving voltage were used to check the bimorph response. Figure

7.54 presents the behavior of the bimorph when the driving voltage was set to 5Hz

in frequency and 10V in amplitude, under sawtooth, square and triangular waveform

excitation.
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Figure 7.52: Central Reflected Wavelength for different frequencies at 20V magnitude
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Figure 7.53: Excursion of the central wavelength reflected back from the FBG at-
tached to the bimoprh, when it is under different voltage magnitudes and frequency
values.

As it can be seen from Fig. 7.54, the optical response follows in the reflected wave-

length the imposed waveform by the source. However, it should be noticed that the

measurement device is limited in frequency response due to the sampling frequency

of the wavelength interrogator. In order to overcome this limitation, an additional

FBG can be used as a reference such as the interaction between this reference spec-

trum and the reflected spectrum from the FBG attached to the bimorph leads to a

optical-power variable spectrum, which allows the measurement with a photodetector

instead of wavelength interrogator. Next section presents the results of the bimorph

when a reference FBG is used as a filter.

7.2.1.2 Optical power detection method by using a reference FBG

As it was discussed in the section before, the analysis of the electric field sensor is

mostly restricted by the sampling characteristics of the optical interrogator. This

issue can be overcome by using an additional FBG to act as a filter such as the

frequency response of the cascade FBG arrangement allows to deduce the applied

voltage by using an optical power detector. This measurement technique allows to

characterize the electric field sensor in a wider range of frequency. Figure 7.55 presents

the spectra of the FBG from the bimorph, the reflectance spectrum of the FBG that
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Figure 7.54: Reflected central wavelength under different signal waveforms of the
driving voltage.

will serve as a filter and the resultant spectrum when the light reflected back from

the sensing FBG (attached to the bimorph) and is transmitted through the reference

filter. As it can be seen from Fig. 7.55(b) experimental transmitted spectrum can

be successfully reproduced from the interaction between the reflected light from the

sensing FBG and the transmittance characteristics of the filter. Main advantage of

this method is that transmitted spectrum will present a variable optical power, thus

the overlapping between transmission spectrum and reflected light from the sensing

FBG can be measured by optical power measurements when the bimorph is under

the electric field action.
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Figure 7.55: Reference FBG filter technique. (a) Reflectance spectrum of the FBG
attached to the bimorph and the FBG used as a reference filter. (b) Experimental
transmitted spectra and theoretical calculation under no excitation.

The particular configuration for using the transmitted spectrum through the refer-

ence FBG as measured variable is a slight variation of the common optical circuit

that uses this technique. Typically, an additional optical circulator is used in the

circuit to use the reflectance properties of the reference FBG instead of the trans-

mittance characteristics. The strategy of using the transmittance properties saves

one optical element, but it has to be very well tuned for achieving some region of

linear operation. Figure 7.56(a) presents the theoretical spectra transmitted to the
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Figure 7.56: (a)Theoretical calculation of the transmitted spectra (b) Normalized op-
tical power for the transmitted spectra. (c) Theoretical and experimental comparison
of the optical power in the interval of interest.

photodetector in the implemented optical circuit. It should be noticed that in AC

excitation, compression and tension can be achieved upon the FBG exciting the same

piezoelectric layer. On the other hand, total optical power was calculated from the

resultant spectrum for different values of the excitation voltage and normalized to the

maximum power as shown in Fig. 7.56(b). As it can be observed from this figure,

there are two saturation regions for driving voltages where total normalized power of

the transmitted spectrum remains constant. This effect occurs because the sensing

FBG lies far from the reference FBG rejection wavelength interval. An additional
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characteristic of this implementation is that symmetry of the total transmitted power

is about 20V. Therefore, an approximated range in driving voltages can be deter-

mined for having almost linear output in optical power. This range can be proposed

to be between -20V and 20V. Figure 7.56(c) presents the experimental results of the

total normalized optical power for positive and negative voltages, and the expected

results by using the theoretical response of the transmittance. As it can be seen from

Fig.7.56(c), experimental data is followed by the theoretical expectations in the range

of interest. In order to analyze the frequency response of the current sensor, resultant

optical signal was connected to a photo-detector manufactured by Thorlabs, reference

DET08CFC/M-InGaAs, with a responsitivity about 0.9[A/W] at 1550nm. Output

of photodetector was connected to an oscilloscope with input impedance of 1[MΩ],

while the input voltage was set to a constant amplitude to 10V peak and changed in

frequency. Figure 7.57 presents the optical power measured in the time domain at

the photo-detector for different frequency excitations. Optical power waveforms are
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Figure 7.57: Time domain response in optical power for several frequencies. (a)
15Hz.(b) 60Hz. (c) 180Hz. (d) 500Hz. (e) 1500Hz. (f) 2000Hz.

shown unbiased for the sake of simplicity. It is worth noting that there is a clear in-

crease in the amplitude measured at the photo-detector when driving frequency goes

higher. Figure 7.58 shows the frequency response of the optical power amplitude for
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Figure 7.58: Frequency response in optical power measured at the photodetector for
constant input voltage amplitude (20Vpp)

several frequencies. As it can be seen from Fig.7.58 there is an increase in the optical

power amplitude when frequency goes beyond 800Hz approximately. This increment

in the amplitude can occur due to the poor mechanical response of the bimorph for

those frequencies, such as the attached FBG is not properly strained at these frequen-

cies, leading to an averaged bending condition that is far from the deflection region

that allows the modulation of the optical power and transmits higher optical power.

Resonant frequency for the current bimorph was specified to be around 370Hz where

a slight increase was also detected in the optical power. Linear behavior in frequency

is well determined below 280Hz approximately, which allows the use of this sensor for

low frequency or steady state applications.

7.2.1.3 High voltage power line measurements

Once the performance of the bimorph as an optical transducer of external voltage has

been reviewed in previous section, this section presents the experimental results when

the bimorph sensor is used for sensing high voltage at industrial frequency (60Hz). As

it was discussed in the previous sections, deflection curve of the piezoelectric bimorph

depends on the volatge upon the active layer. Figure 7.59 presents a schematic of

the implemented set-up for measuring high voltages by using the sensor described

in section before, where capacitive characteristics of the piezoelectric bimorph are

used in a capacitive divisor for estimating a external high voltage. As it is shown in

the schematic set-up in Fig.7.59, high voltage magnitude will be divided between the

capacitance of the bimorph Cb and the external capacitance Ca by the expression:

Vb =
Ca

Ca + Cb
Vext (7.26)

Capacitance of the bimorph is around Cb = 550[nF] for each layer. Capacitance

Ca was implemented through a series capacitive divisor available at the laboratory,
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Figure 7.59: Schematic of the experimental set-up for measuring high voltage systems

to obtained an equivalent capacitance about Ca = 4.53[nF] to obtain a reduction

ratio about 122.4 times of the external voltage. This strategy of using a capacitive

divisor is widely used in high voltage measurements because large impedances can

be obtained by using relatively small capacitances. Figure 7.60 shows the actual

implementation of the experimental set-up. In this experimental setup, a variac was
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Figure 7.60: Experimental set-up for measuring high voltages

use to control the high voltage magnitude generated by a transformer that acted

as a high voltage source. A capacitive divisor was placed between the high voltage

side and one of the bimorph ends. Magnitude of the voltage source was increased

gradually and optical signals measured at the photo detector by an oscilloscope were

saved for each step. Voltage was increased up to 5kV when clear distortions in the

optical signal were observed. Figure 7.61 presents the time domain response for

different voltage magnitudes. As it can be seen from Fig.7.61 amplitude measured

in the optical signal depends on the magnitude of the external voltage. As it was

expected from the characterization of the bimorph as voltage sensor, voltages upon

the active piezoelectric layer greater than 20Vp will lead to some distortions in the

corresponding signal for the optical power. This effect is explained in the non-linear

behavior that optical power of the transmitted spectrum presents respect to voltage

input. Indeed, saturation present in Fig.7.61(f) occurs in the lower region of the
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Figure 7.61: Time domain responses for different external voltage magnitudes.
(a)0[kV]. (b)1[kV]. (c)2[kV]. (d)3[kV]. (e)4[kV]. (f)5[kV].

optical power as predicted in the theoretical model presented in Fig.7.56(b). Figure

7.62 present the experimental results and the linear fit for the optical power amplitude

and the external field amplitude. As it can be seen from Fig.7.62 a linear fit between
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Figure 7.62: Experimental behavior of the optical signal amplitude for different ex-
ternal voltage

external voltage and optical power amplitude can be used for estimating the external

voltage for voltages up to 4kV. A total sensitivity of 0.03867[µW/kV] was achieved for

the current capacitive divisor. It should be noticed that depending on the capacitive

divisor hogher voltages can be measured such as the voltage upon the bimporh active

layer lies between the linear region presented presented in Fig.7.56(b).
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Chapter 8

Conclusions and future work

This thesis dealt with the proposal, analytical background and practical implementa-

tion of two fiber optic based sensors for measuring electrical variables in high voltage

systems. Particularly, this dissertation addressed the measurement of magnetic field

and voltage by using Fiber Bragg grating as optical device to modulate light and infer

external variable magnitudes. Most of the models implemented in this thesis were

compared against previous literature reports as well as commercial finite element sim-

ulation software to validate their accuracy. A comparison between experimental data

obtained and theoretical expectations have been presented as thoroughly as possible

in order to explain the phenomena involved in the physical interactions of the sensors.

As they were presented along the document, three main conclusions should be high-

lighted from the obtained results: first, the formulation of interaction characteristics

of optical fibers by extending the coupled mode theory with a Hamiltonian formula-

tion of the Helmholtz’s equation to account for transverse perturbations. Numerical

simulations showed the feasibility of using the developed framework to successfully

calculate spatial distortions from transverse perturbations. As future work, Fiber

Bragg gratings in few-modes fibers could be analyzed by using the developed frame-

work to combine the interference properties of the longitudinal grating with the spatial

distortions that the propagating modes suffer under transverse perturbations. This

combination could lead to the development of optical devices that can control con-

version between modes (spatial characteristics due to transverse perturbations) and

frequency selectivity in the reflected spectrum (longitudinal perturbations).

Second, the proposition of a numerical method for predicting the magnetic char-

acteristics of magnetostrictive powder/epoxy composites with arbitrary shapes. A

closed solution for vector magnetic potential was found for a single magnetic cuboid

to represent the monolithic magnetostrictive particle immersed into an epoxy matrix.
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Afterwards, the magnetization was calculated by a set of linear equations that in-

volved full vectorial magnetization field. The advantage of the proposed method is

that it allows for a flexible description of powder particle size and geometric aspect

ratios. When this method was applied to the frustum cone geometry, internal dis-

tribution of the magnetization in the linear and non-linear regime showed to lead to

important differences from the expected results if a monolithic material is assumed.

Experimental results were successfully reproduced through the proposed model. A

future scenario of analysis considers different size fractions along the height of the

frustum cone. Figure 8.1 presents the profile of the magnetic field and the magne-
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Figure 8.1: Calculated magnetic field and magnetization along the axis for a frustum
cone for linear particles size distribution. (Cone radius at the bottom and the top
b0 = 5[mm],a0 = 2[mm], length L = 3[cm])

tization when different density distributions of magnetic bodies are considered. In

this simulation case, different particles sizes were considered, where the smallest one

is assumed to have a 70% of size fraction and the biggest one is simulated through a

100% of size fraction. Linear distribution of these particles were considered from top

to bottom in two cases: big particles at the bottom and small particles at the top.

Conversely, bigger particles at the top and smaller at the bottom. As it can be seen

from Figure 8.1 the distribution of bigger particles at the top keeps the non-uniform

profile of the magnetization. On the contrary, when bigger particles are located at

the bottom a flatter profile is obtained. These characteristics are very important to

account in order to save magnetostrictive material.

Finally, the design and implementation of two fiber-based sensors for sensing elec-

tric variables, magnetic field and voltage magnitudes, was presented. The magnitudes

of the external fields were as similar as possible to those from high voltage systems.

Some limitations were found in frequency characterization but good performance

was evidenced for low frequency applications. Proposed sensors were implemented

in practice and the results were contrasted to the theoretically expected behavior,
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leading to very good agreements. The magnetic field sensor was based on a uniform

FBG embedded coaxially into a magnetostrictive composite that turned into chirped

FBG when non-uniform strain due to the internal distribution of the magnetization

is exerted along the grating. Experimental results for this sensor showed that the

curing process induces several effects in the FBG spectrum, since some pre-strain dis-

tributions are exerted to the FBG due to the drying process of the epoxy that bonds

the FBG coaxially to the cone. As future work, a method to ensure manufacturing

consistency is required for improving the magnetostrictive transducer with the aim

to reduce initial pre-strain and increase the accuracy.

On the other hand, voltage sensing with a piezoelectric bimorph presented very

good agreement with the theoretical predictions. In the theoretical description of the

bimorph operation, the definition of an effective electric field in the analytical ap-

proach was proposed to correct the maximum strain as a consequence of the spatial

distribution of the electric field inside the bimorph plates when strain modifies total

electric displacement field. This effective field was calculated for a linearly distributed

electric field along the cross section such as it creates the same amount of bending

moment. Relative error at the tip displacement was improved from 16.77% to 3.57%

in the analytical calculation when compared to a finite element method solution. Two

different strategies were used for sensing the mechanical deflection and the associate

external voltage magnitude upon the piezoelectric layer. A first strategy considered

to interrogate the central wavelength reflected back form the sensing FBG that re-

quired the usage of a wavelength interrogator, and a second strategy by using an

additional FBG to act as a filter such as the frequency response of the cascade FBG

arrangement allows to deduce the applied voltage by using an optical power detector.

These two detection methods were implemented for different external voltage magni-

tudes and frequencies. Very good agreements were achieved between theoretical and

experimental results, and a linear transduction function was achieved for the external

high voltage inputs and the optical power amplitude measurements. Temperature de-

pendency was not considered in the current scope of this thesis since measurements

of the addressed interactions took place in a relatively constant place. However, for

practical implementations of these type of sensors a rigorous temperature analysis

must be performed in order to propose effective temperature correction strategies or

proper thermal insulation.
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Appendix A

Propagating modes in Optical
Fibers

The analysis of a fiber optic as a waveguide amounts to finding the solutions of the

Maxwell’s equations subjected to the boundary conditions imposed by the waveguide.

A typical approach for finding these solutions is the decomposition into tangential

(also called transverse) and longitudinal components of the electromagnetic field. This

decomposition is very useful in the description of electromagnetic field in waveguides,

where the longitudinal direction corresponds to the propagating direction and

tangential components are those components that lye on the waveguide cross-

section. Consider the Maxwell’s equations for a source-free medium:

∇× E = −jωµH (A.1)

∇×H = jωεE (A.2)

where E and H are complex vectors. Let’s consider the following decomposition for

the electric and magnetic field:

E =

 Ex
Ey
0

+

 0
0
Ez

 (A.3)

E = Et + Ez (A.4)

H = Ht + Hz (A.5)

applying this decomposition of the electric and magnetic field to the Maxwell’s equa-

tions:

∇× (Et + Ez) = −jωµ (Ht + Hz) (A.6)

∇× (Ht + Hz) = jωε (Et + Ez) , (A.7)
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In the following, main calculations for the electric field components will be shown.

Same procedure can be followed for the magnetic field. Writing rotational operator

explicitly and equating components in the equations, it leads to:

∂Ey
∂x
− ∂Ex

∂y
= −jωµHz (A.8)

∂

∂z

[
−Ey
Ex

]
+∇× Ez = −jωµ

[
Hx

Hy

]
, (A.9)

which can be more simplified by using the identity:

îz × Et =

∣∣∣∣∣∣
î ĵ ẑ
0 0 1
Ex Ey 0

∣∣∣∣∣∣ =

 −EyEx
0

 (A.10)

∂

∂z

[
−Ey
Ex

]
=

∂

∂z
îz × Et = îz ×

∂Et

∂z
. (A.11)

Therefore, Maxwell’s equation can be written in terms of tangential and longitudinal

components of the electromagnetic field by:

∂Ey
∂x
− ∂Ex

∂y
= −jωµHz (A.12)

îz ×
∂Et

∂z
+∇× Ez = −jωµHt (A.13)

∂Hy

∂x
− ∂Hx

∂y
= jωεEz (A.14)

îz ×
∂Ht

∂z
+∇×Hz = jωεEt (A.15)

defining the transversal operator ∇t = ( ∂
∂x
, ∂
∂y
, 0), it can be shorted further by:

∇t × Et = −jωµHz (A.16)

îz ×
∂Et

∂z
+∇t × Ez = −jωµHt (A.17)

∇t × ~Ht = jωεEz (A.18)

îz ×
∂Ht

∂z
+∇t ×Hz = jωεEt. (A.19)

It is worth noting that tangential and longitudinal components are related each other

in the equations above. Therefore, finding the transversal distribution of the fields in

the waveguide allows to find longitudinal components, and the electromagnetic field

can be completely described.
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A.0.1 Electromagnetic Power

Electromagnetic power is typically used as a normalization factor for the electromag-

netic field modes in waveguides. Therefore, this subsection will show a very well

known derivation of the optical power from the Poynting vector definition. Poynting

vector is defined as: ~S = E×H, and relates the electric and magnetic energy that an

electromagnetic wave can carry on through propagation. In practice, optical power

is a physical quantity measured by electro-optic devices, thus only real components

of the electric and magnetic fields are detected. Based on this, we can write down:

S = <
{
Eejωt

}
×<

{
Hejωt

}
(A.20)

S =
1

2

(
Eejωt + E∗e−jωt

)
× 1

2

(
Hejωt + H∗e−jωt

)
(A.21)

S =
1

4

(
E×Hej2ωt + E∗ ×H + E×H∗ + E∗ ×H∗e−j2ωt

)
(A.22)

An important simplification disregards fast oscillations in time leading to:

< S >=
1

4
(E∗ ×H + E×H∗) (A.23)

Assuming a waveguide oriented through z-direction, averaged z-component of the

Poynting vector is given by:

< Sz >=
1

4
(E∗t ×Ht + Et ×H∗t ) (A.24)

being Et and Ht tangential components of the field. Based on this result it is more

useful to define a new vector ~Sz that holds for the tangential field components given

by:

~Sz = Et ×H∗t , (A.25)

such as,

<
{
~Sz

}
=

1

2

(
~Sz + ~S∗z

)
. (A.26)

This definition allows the calculation of the total power through the cross-section of

the waveguide using the tangential components only, leading to the expression:

Ptz =
1

4

¨
(E∗t ×Ht + Et ×H∗t ) · d ~A (A.27)
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A.0.2 Orthogonality between transversal guided modes

The most well known procedure for showing the orthogonality relationship between

two solutions of the Maxwell’s equation, takes advantage of a vectorial identity closely

related with the reciprocity theorem in electromagnetism. This latter relates the

electric and magnetic field of a source and a receptor located at different positions, and

establishes an equivalence between “electromagnetic” effects when source and receptor

positions are switched [32]. A similar procedure is used in [28] resulting in a natural

relationship with the Poynting’s vector and power carried by each mode, establishing

that each mode carriers its own power independently. Assume two solutions to the

Maxwell’s equation in a waveguide (it will be seen later the importance of being

electromagnetic fields in a waveguide), i.e. E1,H1,E2 and H2 and their conjugated

vectors E∗1,H∗1,E∗2 and H∗2. Since we are dealing with conjugated expression of the

fields, Maxwell’s equations including these conjugated vectors are given by:

∇× E = −jωµH (A.28)

∇×H = jωµE (A.29)

∇× E∗ = jωµH∗ (A.30)

∇×H∗ = −jωµE∗. (A.31)

We will use the vector identity ∇·(a×b) = b(∇×a)−a(∇×b) over the fields E1×H∗2

and E∗2 ×H1, to obtain:

∇ · (E1 ×H∗2) = jω (εE1E
∗
2 − µH1H

∗
2) (A.32)

∇ · (E∗2 ×H1) = −jω (εE1E
∗
2 − µH1H

∗
2) (A.33)

summing both results, it can be obtained:

∇ · (E1 ×H∗2 + E∗2 ×H1) = 0. (A.34)

Since we are dealing with waveguides, ∇ operator can be separated into its transversal

and longitudinal components as we did for the components before, ∇ = ∇t + ∇z,

resulting in:

∇t · (E1 ×H∗2 + E∗2 ×H1) +∇z · (E1 ×H∗2 + E∗2 ×H1) = 0. (A.35)

it should be noticed that the ∇z operator will extract the z-component of the internal

vectorial products. This implies the following expressions:

∇z · (E1 ×H∗2) =
∂

∂z

(
H∗2yE1x −H∗2xE1y

)
, (A.36)

∇z · (E∗2 ×H1) =
∂

∂z

(
E∗2xH1y − E∗2yH1x

)
. (A.37)
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An important highlight should be done about the scalar nature of this term. Although

it is written as a vectorial operation, the whole result should lead to a scalar value,

thus it is required to include a dot product with the unitary vector îz. By using this

artifact the expression for the longitudinal ∇z operator can be written as:

∇z · (E1 ×H∗2 + E∗2 ×H1) =
∂

∂z
(E1t ×H∗2t + E∗2t ×H1t) · îz. (A.38)

The usefulness of this result is that it relates the tangential components of the electric

and magnetic fields instead of dealing with the whole filed components. As it will be

shown latter, this will lead to a set of properties that are satisfied by these tangential

components. Using this result, we can write for Eq.(A.35):

∇t · (E1 ×H∗2 + E∗2 ×H1) +
∂

∂z
(E1t ×H∗2t + E∗2t ×H1t) · îz = 0. (A.39)

In case of longitudinal dependence of each component of the propagating modes, i.e.

z-dependence in the form e−jβiz, being βi the propagation constant for the i-mode,

derivative regarding z leads to:

∇t · (E1 ×H∗2 + E∗2 ×H1)− j(β1 − β2)(E1t ×H∗2t + E∗2t ×H1t) · îz = 0, (A.40)

After integrating over the cross section, first term of the left side of the equation

vanishes by using the Stokes theorem and integrating over an infinite curve far from

the axis waveguide where all propagating fields are null. As it is mentioned in [28],

this argument also applies for radiation modes focused on the oscillatory behavior

of the radiation modes. It should be also noticed that îz is parallel to d ~A, thus

d ~A = îz · dA, being dA = dxdy. This procedure leads to:

−j(β1 − β2)

¨
(E1t ×H∗2t + E∗2t ×H1t) · d ~A = 0 (A.41)

The analysis can be also performed when both fields are co-propagating in the negative

direction of z-axis. For doing this, we should change the corresponding signs in the

magnetic field (to satisfy the power flow direction that can be easily verified by

using the “right-hand” rule, but it can be also shown by symmetry properties of the

Maxwell’s equations [28]) as:

E−νt(x, y) = Eνt(x, y) (A.42)

H−νt(x, y) = −Hνt(x, y) (A.43)

E−µt(x, y) = Eνt(x, y) (A.44)

H−µt(x, y) = −Hµt(x, y) (A.45)
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This procedure should also consider that z-dependence will be known given by ejβiz,

being βi the propagation constant for the i-mode, leading to:

−j(βν − βµ)

¨
(Eνt ×H∗µt + E∗µt ×Hνt) · d ~A = 0 (A.46)

which is exactly the same result as for co-propagating forward modes. This means

that the term of the equation
˜

(Eνt ×H∗µt + E∗µt ×Hνt) · d ~A should be zero for any

case when βν 6= βµ.

¨
(Eνt ×H∗µt + E∗µt ×Hνt) · d ~A = 0. (A.47)

It is worth noting that when βν = βµ in expression (A.46) is trivially satisfied by the

first factor. Then, we can calculate the non-zero value of the integral term, which

will lead to the total power through the cross-section area as in Eq. (A.27):

¨
(Eνt ×H∗νt + E∗νt ×Hνt) · d ~A = 4Ptz. (A.48)

A particular case occurs when the analysis of Eq.(A.39) is performed over two counter-

propagating modes. For this case we have to change the tangential magnetic field

only:

Eνt(x, y) = Eνt(x, y) (A.49)

Hνt(x, y) = Hνt(x, y) (A.50)

E−µt(x, y) = Eµt(x, y) (A.51)

H−µt(x, y) = −Hµt(x, y) (A.52)

leading to an expression given by:

−j(βν + βµ)

¨
(−Eνt ×H∗µt + E∗µt ×Hνt) · d ~A = 0. (A.53)

this result shows that for two counter-propagating modes, the equation above is only

satisfied when:
¨

(E∗µt ×Hνt − Eνt ×H∗µt) · d ~A = 0. (A.54)

An additional expression can be derived by using the orthogonality relation previously

found. Summing Eq.(A.47) and Eq.(A.54) we can find a simplified expression that

should be also satisfied [28]:
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¨
(Eνt ×H∗µt) · d ~A = 0. (A.55)

Moreover, if instead of summing the expressions we make a subtraction, we can obtain

an additional relation that is also true for the analysis:¨
(E∗µt ×Hνt) · d ~A = 0. (A.56)

These two last expressions (Eqs.(A.55) and (A.56)) are also orthogonality relation-

ships that are very useful to connect the modal fields using plane wave relations of

the field components and will play an important role in the analysis of the Helmholtz

equation written in a Hamiltonian formulation, particularly in supporting the normal-

ization for establishing the orthogonality relationships and the basis expansion. Addi-

tionally, orthogonality relations found in this subsection support the Coupled Mode

Theory (CMT) and establishes the power-mode independence between transversal

solutions of propagating modes in waveguides [28].

A.0.3 Normalization to optical power

A natural normalization factor for defining orthonormality relations uses the total

optical power carried out by the mode. Normalization factor will be done in terms

of power P , i.e P = 2Pzt instead of Ptz which is followed in [28]. As it was shown in

Eq.(A.27) total power through the cross-section of the waveguide can be written by:

Ptz =
1

4

¨
(E∗t ×Ht + Et ×H∗t ) · d ~A. (A.57)

Since Et×H∗t becomes real in waveguides (which physically means propagated power

through the waveguide), we define P as:

P = 2Ptz = <
{¨

Et ×H∗t · d ~A
}

=

¨
(Et ×H∗t ) · d ~A. (A.58)

It should be noticed that the normalization factor must be P , thus in our definition

we will use P = 2Ptz. Based on this definition, the orthogonality relationship will be

written by:

êνt(x, y) =
E1t√
2Ptz

=
E1t√˜

(E1t ×H∗1t)dA
(A.59)

ĥνt(x, y) =
H1t√
2Ptz

=
H1t√˜

(E1t ×H∗1t)dA
(A.60)

¨
(êνt(x, y)× ĥ∗νt(x, y))dA = δνµ (A.61)
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Therefore, orthogonality relationship can be written by:

¨
(êνt(x, y)× ĥ∗νt(x, y))dA = δνµ (A.62)

A.0.4 Modes of a Waveguide

A mode of a waveguide is defined as a field solution of the form:

E(x, y, z) = Eν(x, y)e−jβνz (A.63)

H(x, y, z) = Hν(x, y)e−jβνz (A.64)

where βν can be real or complex. In the first case leading to propagating modes

and the the second one to evanescent modes. When this particular form of the fields

(where the z-dependence is explicitly determined) are inserted into the Maxwell’s

equations, it leads to:

∇t × Eνt(x, y) = −jωµHνz(x, y) (A.65a)

∇t ×Hνt(x, y) = jωεEνz(x, y) (A.65b)

−jβν
(
îz × Eνt(x, y)

)
+∇t × Eνz(x, y) = −jωµHνt(x, y) (A.65c)

−jβν
(
îz ×Hνt(x, y)

)
+∇t ×Hνz(x, y) = jωεEνt(x, y) (A.65d)

Solutions for guided modes should satisfy set of Eqs.(A.65). There are some properties

of the solutions that are typically desired: completeness and orthogonality. These two

are of great importance because allows the expansion of arbitrary solutions in terms

of this modal field solutions. Next procedure (followed from [28]) shows how to find

an expression for the orthogonality of propagating modes.

A.0.5 Modal Expansion

Orthogonality relations and completeness allow the determination of a set of modes

that form a basis for expressing any arbitrary tangential field as a linear combination

of modal tangential fields. However, completeness is not totally guaranteed for the

Maxwell’s equations associated to the boundary conditions even with the existence

of an orthogonal basis [45, 44]. Anyway, a modal expansion can be proposed for an

arbitrary tangential field in terms of forward and backward modes. If only forward
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modes are considered in the expansion:

Et(x, y) =
∑
ν

(aν) êνt(x, y) (A.66a)

Ht(x, y) =
∑
ν

(aν) ĥνt(x, y) (A.66b)

where expansion coefficients can be found by:

ˆ (
Et(x, y)× ĥ∗µt

)
dA =

∑
ν

(aν)

ˆ (
êνt × ĥ∗µt

)
dA (A.67)

aµ = 2

ˆ (
Et(x, y)× ĥ∗µt(x, y)

)
dA (A.68)

for the magnetic field coefficients we have:

ˆ (
ê∗µt ×Ht(x, y)

)
dA =

∑
ν

(aν)

ˆ (
ê∗µt × ĥνt

)
dA (A.69)

aµ = 2

ˆ (
ê∗µt(x, y)×Ht(x, y)

)
dA (A.70)

In case of forward and backward modes were considered into the expansion, we

can write:

Et(x, y) =
∑
ν

aν êνt(x, y) +
∑
ν

bν ê−νt(x, y) (A.71)

Ht(x, y) =
∑
ν

aν ĥνt(x, y) +
∑
ν

bν ĥ−νt(x, y) (A.72)

since for propagating modes, forward and backward fields are related by ê−νt(x, y) =

êνt(x, y) and ĥ−νt(x, y) = −ĥνt(x, y), we can write:

Et(x, y) =
∑
ν

(aν + bν) êνt(x, y) (A.73)

Ht(x, y) =
∑
ν

(aν − bν) ĥνt(x, y) (A.74)

as in the case before, we can find the coefficients of the expansion by using the

orthogonality relation. Thus, we multiply each term by the corresponding field to

find the same relation as in the orthonormality case:
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ˆ (
Et(x, y)× ĥ∗µt

)
dA =

∑
ν

(aν + bν)

ˆ (
êνt × ĥ∗µt

)
dA (A.75)

ˆ (
ê∗µt ×Ht(x, y)

)
dA =

∑
ν

(aν − bν)
ˆ (

ê∗µt × ĥνt
)
dA (A.76)

Applying the orthogonal relationship found before, we can write:

2

ˆ (
Et(x, y)× ĥ∗µt

)
dA = (aµ + bµ) (A.77)

2

ˆ (
ê∗µt ×Ht(x, y)

)
dA = (aµ − bµ) (A.78)

where we can simply add and subtract both equations to obtain the corresponding

expansion coefficients:

aµ =

ˆ (
Et(x, y)× ĥ∗µt(x, y) + ê∗µt(x, y)×Ht(x, y)

)
dA (A.79)

bµ =

ˆ (
Et(x, y)× ĥ∗µt(x, y)− ê∗µt(x, y)×Ht(x, y)

)
dA. (A.80)

An additional important result is the calculation of the averaged Poynting vector of

the arbitrary field Et and Ht, in terms of the expansion coefficients:

< S >=
1

4
(E∗t ×Ht + Et ×H∗t ) (A.81)

< S >=
1

2

∑
ν

a∗νaν − bνb∗ν (A.82)

A.0.6 Polarization vector as a source of coupling

As it was presented in the previous sections, orthogonality relations were derived from

Maxwell equations in free-source media. In presence of polarization sources, Maxwell

equations can be written as:

∇× (∇× E(~r)) = µ0ω
2D(~r) (A.83a)

∇×
(

1

ε(~r)
∇×H(~r)

)
= µ0ω

2H(~r) (A.83b)

∇ ·D(~r) = 0 (A.83c)

∇ ·H(~r) = 0, (A.83d)
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where time dependence is assumed to be exp(jωt). Vectors E(~r) and H(~r) are the

electric and magnetic field vector. D(~r) represents the electric displacement vector

given by D(~r) = ε0E(~r) + P(~r), with ε(~r) electric permittivity of the media and

ε0 permittivity of vacuum. P(~r) the polarization vector that includes linear and

nonlinear responses given by: P(~r) = PL(~r) + PNL(~r) [8]. Polarization vector P(~r)

is responsible for including linear and non-linear response of dielectrics. In the case

of isotropic materials, the linear term of the polarization vector can be expressed

through a scalar relation with the electric field, i.e. PL(~r) = ε0χE(~r), where χ is the

first order electrical susceptibility of the material. However, when anisotropies are

present, the polarization vector and the electric field vector must be related trough

a tensorial relationship given by PL(~r) = ε0χ̂
(1)E(~r) [8, 43]. On the other hand,

nonlinear response of the material implies to take into account a set of relatively

more complex relations with the electric field [8]. In the majority of dielectrics, the

nonlinear polarization vector can be written in terms of powers of the electric field as

PNL(~r) = P
(
E2 (~r) ,E3 (~r) , ..., χ̂(2), χ̂(3), ...

)
, where χ̂(j) corresponds to the high-order

susceptibility tensors. Far from their natural resonances, this relation can be given by

a sum of these terms: PNL(~r) = ε0

(
χ̂(2)E (~r) E (~r) + χ̂(3)E (~r) E (~r) E (~r) +, ...,

)
[8].

Perturbations in polarization vector is able to couple modes in the optical waveguide,

such as propagating, radiation and evanescent modes can interact and interchange

power between them.

A.0.7 Coupled Mode Theory

In this subsection, polarization vector will be treated as a perturbation source that

allows the interactions between two modes. This interaction will be described by

using the modal expansion and orthogonality properties found for the propagating

modes in the preceding subsections. Let’s consider two different fields, i.e. E1,H1,E2

and H2 and their conjugated vectors E∗1,H∗1,E∗2 and H∗2. As an assumption, consider

that one of the EM fields (E1 and H1) satisfy a no source-free relationship. Maxwell’s

equations for these fields are given by:

∇× E1 = −jωµH1 (A.84a)

∇×H1 = jωεE1 + jωP1 (A.84b)

∇× E2 = −jωµH2 (A.84c)

∇×H2 = jωεE2. (A.84d)

xi



Using the same Stokes theorem procedure used before and integrating over an infinite

curve far from the axis waveguide, the left side of the equation will vanish, leading

to:
¨

∂

∂z
(E1t ×H∗2t + E∗2t ×H1t)dA = −jω

¨
E∗2 ·P1 · d ~A. (A.85)

This result resembles the orthogonality relationship found before for source-free elec-

tromagnetic propagation. In this particular case, one must consider a longi-

tudinal dependence of each coefficient in the mode expansion. This z-

dependence is made explicit to associate the interaction between modes

along the propagation path due to a polarization source. Let’s consider E1t

and H1t arbitrary tangential fields that are generated by a source of polarization P1,

and let’s take advantage of the current form of Eq.(A.85) to write them in terms of

modal fields. By doing this, we can expand the arbitrary field E1t and H1t in the

modal basis by:

E1t(x, y, z) =
∑
ν

(aν(z) + bν(z)) êtν(x, y) (A.86)

H1t(x, y, z) =
∑
ν

(aν(z)− bν(z)) ĥtν(x, y). (A.87)

where expansion coefficients are z-dependent given by: aν(z) = Aν(z)e−jβνz and

bν(z) = Bν(z)ejβνz. Two different types of z-dependence for the mode E2, H2 can

be considered. In one case, it can be a forward propagating mode, with E2 =

êtµ(x, y)e−jβµz + êzµ(x, y)e−jβµz, and in the other case, it can be a backward propa-

gating mode E2 = êtµ(x, y)ejβµz − êzµ(x, y)ejβµz. In both cases, modal fields (êµ and

ĥµ) should satisfy the orthogonal relationships given by:

ˆ (
êtν × ĥ∗tµ

)
dA =

δνµ
2
, (A.88)

ˆ (
ê∗tν × ĥtµ

)
dA =

δνµ
2
. (A.89)

Assuming forward propagating modes, tangential components E2t and H2t are given

by: E2t = êµt(x, y)e−jβµz and H2t = ĥµt(x, y)e−jβµz. Plug in them into Eq.(A.85) and

applying the orthogonality relationship leads to:

∂

∂z

(
aµ(z)ejβµz

)
= −jω

¨ (
ê∗tµ(x, y) + ê∗zµ(x, y)

)
ejβµz ·P1 · d ~A (A.90)

a′µ(z) + jβµaµ(z) = −jω
¨ (

ê∗tµ(x, y) + ê∗zµ(x, y)
)
·P1 · d ~A. (A.91)
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Now, in case of backward propagating mode field, tangential fields E2t and H2t can

be obtained by replacing ê−µ = êµ and ĥ−µ = −ĥµ, which changes the expression to

be:

∂

∂z

(
bµ(z)e−jβµz

)
= jω

¨ (
ê∗tµ(x, y)− ê∗zµ(x, y)

)
e−jβµz ·P1 · d ~A (A.92)

b′µ(z)− jβµbµ(z) = jω

¨ (
ê∗tµ(x, y)− ê∗zµ(x, y)

)
·P1 · d ~A. (A.93)

Finally, we can write for the expansion coefficients that accounts for forward and

backward propagating modes:

a′µ(z) + jβµaµ(z) = −jω
¨ (

ê∗tµ(x, y) + ê∗zµ(x, y)
)
·P1 · d ~A (A.94)

b′µ(z)− jβµbµ(z) = jω

¨ (
ê∗tµ(x, y)− ê∗zµ(x, y)

)
·P1 · d ~A (A.95)

where a′µ(z) and b′µ(z) represent total derivatives regarding z of the coefficients. Po-

larization vector P1 can be written in terms of the electric field by:

P1 = ∆εE1, (A.96)

As expressed in Eq.(A.96), longitudinal and tangential decomposition for the polar-

ization vector will depend on the tensor nature of the term ∆ε. In the particular

case, we can write change of permittivity tensor by:

∆ε =

[
∆εt 0

0 ∆εz

]
, (A.97)

which allows to write polarization vector in the same fashion of longitudinal and

transverse components by:

P1 = ∆εE1 (A.98)

P1 = ∆εtE1t + ∆εzE1z, (A.99)

replacing E1t by its corresponding modal expansion, polarization vector can be written

by:

P1 = ∆εt

(∑
ν

(aν(z) + bν(z)) êνt(x, y)

)
+ ∆εzE1z. (A.100)

From Maxwell’s equation: ∇×H1 = jωεE1 + jωP1, we can find for the z-component

of the electric field:

∇×H1t = jωεE1z + jωP1z (A.101)

∇×H1t = jωεE1z + jω∆εzE1z (A.102)

E1z =
1

jω (ε + ∆εz)
∇×H1t, (A.103)
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where one can expand H1t in terms of the basis elements,

i.e. H1t(x, y, z) =
∑

ν (aν(z)− bν(z)) ĥνt(x, y), leading to:

E1z =
1

jω (ε + ∆εz)
∇×

(∑
ν

(aν(z)− bν(z)) ĥνt(x, y)

)
(A.104)

rotational operator acting upon the tangential magnetic field in the modal expansion

can be replaced by: ∇× ĥνt(x, y) = jωεêνz(x, y), allowing to write:

E1z =
jωε

jω (ε + ∆εz)

(∑
ν

(aν(z)− bν(z)) êνz(x, y)

)
, (A.105)

which can be plugged in Eq.(A.100) to obtain:

P1 = ∆εt

(∑
ν

(aν(z) + bν(z)) êνt(x, y)

)

+
∆εzε

(ε + ∆εz)

(∑
ν

(aν(z)− bν(z)) êνz(x, y)

)
.

(A.106)

Once polarization vector is written in the modal expansion terms, we can plug this

expression into Eq.(A.94), first for the forward coefficient:

a′µ(z) + jβµaµ(z) = −jω
¨ (

ê∗tµ(x, y) + ê∗zµ(x, y)
)
·P1 · d ~A (A.107)

to obtain:

a′µ(z) + jβµaµ(z) = −jω
¨ ∑

ν

[
(aν(z) + bν(z)) ê∗tµ(x, y)∆εtêνt(x, y)

]
dA (A.108)

+− jω
¨ ∑

ν

[
(aν(z)− bν(z)) ê∗zµ(x, y)

∆εzε

(ε + ∆εz)
êνz(x, y)

]
dA

and for the backward coefficient:

b′µ(z)− jβµbµ(z) = jω

¨ (
ê∗tµ(x, y)− ê∗zµ(x, y)

)
·P1 · d ~A, (A.109)

which leads to:

b′µ(z)− jβµbµ(z) = jω

¨ ∑
ν

[
(aν(z) + bν(z)) ê∗tµ(x, y)∆εtêνt(x, y)

]
dA (A.110)

−jω
¨ ∑

ν

[
(aν(z)− bν(z)) ê∗zµ(x, y)

∆εzε

(ε + ∆εz)
êνz(x, y)

]
dA,
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we can define tangential and longitudinal coupling coefficients by:

Kt
νµ = ω

¨
ê∗tµ(x, y)∆εtêνt(x, y)dA (A.111a)

Kz
νµ = ω

¨
ê∗zµ(x, y)

∆εzε

(ε + ∆εz)
êνz(x, y)dA (A.111b)

then we are able to write for the forward and backward amplitudes:

a′µ(z) + jβµaµ(z) = −j
∑
ν

[
aν(z)

(
Kt
νµ +Kz

νµ

)
+ bν(z)

(
Kt
νµ −Kz

νµ

)]
(A.112)

b′µ(z)− jβµbµ(z) = j
∑
ν

[
aν(z)

(
Kt
νµ −Kz

νµ

)
+ bν(z)

(
Kt
νµ +Kz

νµ

)]
(A.113)

An additional step is followed in [28] to write an explicit set of expressions for the

amplitude of the expansion coefficient instead of the coefficient itself. Then we can

write:

aµ(z) = Aµ(z)e−jβµz (A.114)

bµ(z) = Bµ(z)ejβµz (A.115)

from this definition we can write:

Aµ(z) = aµ(z)ejβµz (A.116)

Bµ(z) = bµ(z)e−jβµz (A.117)

this expression has the advantage that taking the derivative of the coefficient respect

to z, it will lead to:

A′µ(z) =
(
a′µ(z) + jβµaµ(z)

)
ejβµz (A.118)

B′µ(z) =
(
b′µ(z)− jβµbµ(z)

)
e−jβµz (A.119)

in order to apply this result we can multiply by their corresponding exponential

dependence at each side of Eqs.(A.112 and A.113) to obtain:

A′µ(z) = −j
∑
ν

[
aν(z)

(
Kt
νµ +Kz

νµ

)
+ bν(z)

(
Kt
νµ −Kz

νµ

)]
ejβµz (A.120)

B′µ(z) = j
∑
ν

[
aν(z)

(
Kt
νµ −Kz

νµ

)
+ bν(z)

(
Kt
νµ +Kz

νµ

)]
e−jβµz. (A.121)

Using the same definition for the coefficients aν(z) and bν(z), we have:
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aν(z) = Aν(z)e−jβνz (A.122)

bν(z) = Bν(z)ejβνz, (A.123)

which allows to write:

A′µ(z) = −j
∑
ν

[
Aν(z)e−jβνz

(
Kt
νµ +Kz

νµ

)
+Bν(z)ejβνz

(
Kt
νµ −Kz

νµ

)]
ejβµz(A.124)

B′µ(z) = j
∑
ν

[
Aν(z)e−jβνz

(
Kt
νµ −Kz

νµ

)
+Bν(z)ejβνz

(
Kt
νµ +Kz

νµ

)]
e−jβµz(A.125)

where we can make some simplifications to write:

A′µ(z) = −j
∑
ν

Aν(z)
(
Kt
νµ +Kz

νµ

)
e−j(βν−βµ)z + ... (A.126)

−j
∑
ν

Bν(z)
(
Kt
νµ −Kz

νµ

)
ej(βν+βµ)z

B′µ(z) = j
∑
ν

Aν(z)
(
Kt
νµ −Kz

νµ

)
e−j(βν+βµ)z + ... (A.127)

j
∑
ν

Bν(z)
(
Kt
νµ +Kz

νµ

)
ej(βν−βµ)z.

We have followed the procedure presented in [28] and showed in detail the deriva-

tion of the coupled mode equations Eq.(A.126) and Eq.(A.127). The problem to solve

hereafter is to find the expressions for the evolution along z-direction for Aµ(z) and

Bµ(z), based on the number of modes considered in the expansion.

A.0.7.1 Contra-directional Coupling Equations

In this case we will consider that only two modes are in interaction. A forward prop-

agating mode with amplitude aν(z) = Aν(z)e−jβνz and a backward propagating mode

with amplitude bµ(z) = Bµ(z)ejβµz. Therefore, equations Eq.(A.126) and Eq.(A.127)

are required to be used. Fortunately, they simplify to the interaction between forward

and backward propagating modes:

A′ν(z) = −jAν(z)
(
Kt
νν +Kz

νν

)
− jBµ(z)

(
Kt
νµ −Kz

νµ

)
ej(βν+βµ)z (A.128)

B′µ(z) = jAν(z)
(
Kt
νµ −Kz

νµ

)
e−j(βν+βµ)z + jBµ(z)

(
Kt
µµ +Kz

µµ

)
(A.129)
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which in general can be written in a matrix form given by:

d

dz

[
Aν
Bµ

]
=

[
−j (Kt

νν +Kz
νν) −j

(
Kt
νµ −Kz

νµ

)
ej(βν+βµ)z

j
(
Kt
νµ −Kz

νµ

)
e−j(βν+βµ)z j

(
Kt
µµ +Kz

µµ

) ] [
Aν
Bµ

]
(A.130)

For optical fibers one can consider pure transverse modes or quasi-transverse modes,

this latter is a commonly used approximation in optical fibers under the “weakly

guide” assumption, i.e. refractive index contrast between core and cladding is small,

normally around ∆ ≈ 0.001. Based on this approximation we can write:

d

dz

[
Aν
Bµ

]
=

[
−j (Kt

νν) −j
(
Kt
νµ

)
ej(βν+βµ)z

j
(
Kt
νµ

)
e−j(βν+βµ)z j

(
Kt
µµ

) ] [
Aν
Bµ

]
(A.131)

We want to analyze the case where the forward and backward mode that are coupled

by the perturbation have exactly the same propagation constant, i.e. βν = βµ = βo.

We can also write κ = Kt
νµ, δ = βo + κ, This implies to solve the characteristic

polynomial of the matrix M:

λ2 − (δ2 − κ2) = 0 (A.132)

λ = ±
√
δ2 − κ2. (A.133)

Once the roots of the characteristic polynomial are solved, matrix can be diagonalized

through its eigenvalues and eigenvectors. Therefore, we can write the matrix as:[
R(z)
S(z)

]
=[

cosh(jβsz)−
√
δ2−κ2

δ
sinh(jβsz) κ

δ
sinh(jβsz)

κ
δ

sinh(jβsz) cosh(jβsz) +
√
δ2−κ2

δ
sinh(jβsz)

][
R(0)
S(0)

]
.

(A.134)

In typical situations with this type of coupling, the input amplitude of the forwarding

mode is set to be R(0) = 1 and the amplitude of the backward is set to be S(L) = 0,

where L is the total length of interaction. Therefore, R(L) and S(0) become the

incognito values. Then, we can be solved by [28]:

S(0) =
−jκ√

κ2 − δ2 coth(L
√
κ2 − δ2) + jδ

(A.135)

R(L) =

√
κ2 − δ2

√
κ2 − δ2 cosh(L

√
κ2 − δ2) + jδ sinh(L

√
κ2 − δ2)

(A.136)
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where the reflection factor at the input can be written by:

ρ =
S(0)

R(0)
= S(0) (A.137)

ρ =
−jκ sinh(L

√
κ2 − δ2)√

κ2 − δ2 cosh(L
√
κ2 − δ2) + jδ sinh(L

√
κ2 − δ2)

(A.138)

A.0.7.2 Co-directional Coupling Equations

In this case we will consider that only two modes are in interaction. A forward

propagating mode with amplitude aν(z) = Aν(z)e−jβνz and a forward propagating

mode with amplitude aµ(z) = Aµ(z)e−jβµz. Therefore, equation Eq.(A.126) is the

only one required because only forward modes are considered. Based on this we can

write for the interaction between two forward propagating modes:

A′ν(z) = −jAν(z)
(
Kt
νν +Kz

νν

)
− jAµ(z)

(
Kt
νµ +Kz

νµ

)
e−j(βµ−βν)z (A.139)

A′µ(z) = −jAν(z)
(
Kt
νµ +Kz

νµ

)
e−j(βν−βµ)z − jAµ(z)

(
Kt
µµ +Kz

µµ

)
(A.140)

which can be written in a matrix form as:

d

dz

[
Aν
Aµ

]
=

[
−j (Kt

νν +Kz
νν) −j

(
Kt
νµ +Kz

νµ

)
ej(βν−βµ)z

−j
(
Kt
νµ +Kz

νµ

)
e−j(βν−βµ)z −j

(
Kt
µµ +Kz

µµ

) ] [
Aν
Aµ

]
(A.141)

For optical fibers one can consider pure transverse modes or quasi-transverse modes,

this latter is a commonly used approximation in optical fibers under the ”weakly

guide” assumption, i.e. refractive index contrast between core and cladding is small,

normally around ∆ ≈ 0.001. Based on this approximation we can write:

d

dz

[
Aν
Aµ

]
=

[
−j (Kt

νν) −j
(
Kt
νµ

)
ej(βν−βµ)z

−j
(
Kt
νµ

)
e−j(βν−βµ)z −j

(
Kt
µµ

) ] [
Aν
Aµ

]
(A.142)

We can also write κ = Kt
νµ and 2δ = βν − βµ, to obtain:

A′ν = −jκAν − jκAµej2δz (A.143)

A′µ = −jκAνe−j2δz − jκAµ (A.144)

Solving the equation system as before, we can find for co-direction coupling, under

boundary conditions given by R(0) = 1 and S(0) = 0, the expressions given by:

R(z) = cos2(η)e−jβsz + sin2(η)e−jβmz (A.145)

S(z) = cos(η) sin(η)
(
e−jβsz − e−jβmz

)
(A.146)
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Appendix B

Orthogonality between fiber-optic
transverse modes

Orthogonality condition must be tested between the set of solutions to Eq.(3.16). In

the case of EH and HE families, it is easy to demonstrate orthogonality since their

angular dependence leads to a null inner product independently of the radial functions

[38]. However, when the orthogonality condition is tested between solutions of the

same family, it will depend on Bessel’s functions associated to the radial coordinate

[38]:

〈eli|elj〉r<a = πAliAlj

[ˆ a

0

Jν(
uli
a
r)Jν(

ulj
a
r)rdr

]
(B.1a)

〈eli|elj〉r>a = πAliAlj

[ˆ ∞
a

Kν(
wli
a
r)Kν(

wlj
a
r)rdr

]
, (B.1b)

where Al, Am are complex constants, a is the fiber core radius; uli,ulj,wli and wlj

are different roots of the transcendental equation for the EH or HE hybrid mode

[38]. A simple inspection over the integral in Eq. (B.1) shows that the inner product

between two general modes vanishes only when uli and ulj are roots of the Bessel

function Jν(r) with r ∈ [0, a], which is not the case for the step-index fibers, be-

cause uli and ulj are determined by the boundary conditions at the core-cladding

interface and in general they do not coincide with a root of the Bessel function [5].

This fact shows that hermiticity of the Laplacian operator in step-index fiber waveg-

uides underlies on the boundary conditions, which supports the discussion presented

in Ref.[27] about the non-hermiticity of the operator that results from Eq.(3.11a)

after multiplying from the left by B̂−1. Since Laplacian operator in step-index fibers

is non-hermitian, it is not possible to use the typical procedures for finding their

corresponding correction terms to the eigenvalue and eigenstate [9]. Indeed, it is

required more sophisticated expressions in the formulation of perturbative terms in
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order to deal with non-hermitian operators and propose an approached solution by

using the whole set of non-orthogonal eigenstates [37]. Another possibility is to find a

set of orthonormal functions through a systematic orthogonalization process such as

Gramm-Schmidt [9], which allows to span each eigenstate |eαi〉 as a linear combina-

tion of a new orthonormal set of functions {|vαi〉} that could be used as an orthogonal

basis. This procedure works fine when degeneracy is present. However, in the case of

non-degeneracy, this new-basis elements will not constitute eigenstates of the zero-th

order Hamiltonian [37, 35].

A more practical approach is to select some elements from the set of solutions in

order to form a convenient orthogonal reduced basis that guarantees the diagonal ma-

trix representation of the Laplacian operator [9, 46]. This assumption can make sense

physically in fiber optics since propagating modes constitute a finite basis and under

a small external perturbation these modes will interact among each other instead of

changing the mathematical nature of the solutions. The procedure for selecting solu-

tions consists in testing the hermiticity of the operator between the functions of the

set of solutions. By solving Eq. (3.16), it is found a finite number of functions
{
|eαj〉

}
with different eigenvalues, k2

αj
= β2

j − k2
0n

2. We can write two different eigenvalue

equations: ∇2
⊥ |eαi〉 = k2

αi
|eαi〉,∇2

⊥ |eαj〉 = k2
αj
|eαj〉. Assuming that each ket |eαi〉 has

associated a corresponding bra 〈eαi |, Hermitian condition of the Laplacian operator

can be tested through:

〈eαj |∇2
⊥|eαi〉 = 〈eαi |∇2

⊥|eαj〉
∗

(B.2a)

k2
αi
〈eαj |eαi〉 = (k2

αj
)∗ 〈eαj |eαi〉 . (B.2b)

Since the eigenvalues obtained in Eq. (3.16) are real valued, conjugation makes no ef-

fects in the test. When there is not degeneracy between propagating modes, k2
αi
6= k2

αj
,

Eqs. (B.2) are satisfied only by these spatial distributions that are strictly orthog-

onal each other. Whether the inner product between two non-degenerate solutions

is different from zero, i.e. 〈eαi |eαj〉 6= 0, hermiticity test of the Laplacian operator

upon these solutions will fail and they are not suitable functions to be used in the

reduced basis. An important case to take into account appears when 〈eαi|eαj〉 = 0,

Eq. (B.2) is satisfied but eigenvalues could be degenerated, k2
αi

= k2
αj

, which implies

to use a different formulation of perturbation theory [9]. Although this is not found

in step-index fibers because of eigenvalues are different each other, this could hap-

pen under the weakly-guiding approximation [38], where degeneracy can be overcome

grouping degenerated modes into a new set of propagating modes, known as Linearly

Polarized (LP) modes, which can also be analyzed by using the same formulation.
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Certainly, the accuracy of the result will depend on the number of modes that are

included into the basis as well as the perturbation nature. It is shown in this thesis

that perturbations involving spatial inhomogeneities, as well as some anisotropies and

non-linearities, can be analyzed through this simplification leading to accurate results

in the propagation parameters, as long as the optical fiber propagates few modes only.

However, other type of perturbations that imposes strong changes over the number

of propagating modes must be addressed by different approaches.

B.0.1 Additional set of numerical experiments

An additional set of numerical experiments were considered for testing the validity of

the approximation by using the proposed formulation of the HFHE.

B.0.1.1 Linear Anisotropies

Linear anisotropies can be also included into the HFHE formulation, these can be

considered in the second terms of Eq. (3.14b). In this case the perturbation term

is an imposed anisotropy that additionally has a spatial variation in the refractive

index. The same spatial dependence shown in Fig. 3.1(b) is used for the anisotropic

perturbation, but in this case the perturbation term is defined as a diagonal tensor

given by:

Ŵt = µ0ε0ω
2

 ∆χ(1)(x, y) 0 0
0 −∆χ(1)(x, y) 0
0 0 ∆χ(1)(x, y)

 (B.3)

This situation differs greatly from the previous case, since we must now include

the effect of the perturbation on each component of the electric field in the propa-

gating mode exploiting the full-vector characteristics of the formulation. A negative

perturbation is included for the y-component in order to induce a linear uniaxial

birefringence in the waveguide. Fig. B.1 presents the comparison between the full-

vectorial calculation by the FEM and the HFHE for those propagating modes that

are most affected.

As can be seen from Fig. B.1, the results obtained from the two schemes are

in good agreement. In this instance a maximum mismatch about 0.6% was found

between them. This case is of great importance in propagation analysis, because it

allows the calculation of individual effects over the electric-field components of the

propagating modes under a external perturbation. A significant difference between
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Figure B.1: Effective refractive index of the optical fiber with uniaxial birefringence
having the same spatial dependence of Fig.3.1(b) versus ∆n obtained by the HFHE
formulation (lines) and calculated by the vector FEM (dots). Solid lines correspond
to Ex component and dashed lines to Ey component.

both prediction occurs when calculating effective refractive index for the EH11 mode.

As can be observed in Fig. B.1, the FEM method does not report birefringence for

this mode and the predicted effective refractive index remains on the calculated val-

ues for the x-component in the HFHE method. This discrepancy could be related

with the corresponding mode-profile for the hybrid EH11 mode and the spatial distri-

bution of the imposed inhomogeneity. FEM solves the vectorial eigenvalue problem

independently of the coordinate axis orientation and unperturbed mode distributions,

whereas HFHE method starts from an analytical solution expressed in well-defined

coordinate axes and calculates the effects of the perturbation upon the unperturbed

mode distributions leading to correction terms for each electric field component as

shown in Fig. B.1.

B.0.1.2 Kerr Nonlinearity

In silica optical fibers second order susceptibility term χ̂(2) is null due to the material

symmetry [8]. However, χ̂(3) can cause several nonlinear effects, such as: four-waves

mixing phenomena (FWM), third harmonic generation (THG), self-phase modulation

(SPM), and cross-phase modulation (XPM). In practice, FWM and THG effects

require phase-matching conditions that are typically of great difficulty to achieve in

optical fibers [3], therefore Kerr effect is typically included through the refractive-

index dependence on the electric field intensity, which is related with the SPM. This
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refractive index change is given by [3]:

∆n (ω, |E|) =
3

8n
<
(
χ(3)
xxxx

)
|E|2 = n̄2 |E|2 , (B.4)

where <
(
χ

(3)
xxxx

)
is the real part of the third-order susceptibility under the assumption

of a constant state of polarization and n̄2 is known as the nonlinear index coefficient.

In optical fiber analyses, it is very common to report the nonlinear Kerr parameter

or simply the nonlinear refractive index, n2, which is calculated by n2 = 2n̄2/ε0nc [3].

To calculate the induced change in susceptibility due to the Kerr-type nonlinearity,

it is known that ∆χ = 2n∆n, thus:

∆χ =
3

4
<
(
χ(3)
xxxx

)
|E|2 . (B.5)

It has been shown in literature that scalar approach is not always accurate enough

to correctly determine the effective refractive index associated with the nonlinear ef-

fect [42]. Therefore, a vectorial description of the Kerr-nonlinearity must be consid-

ered for an accurate description of its associated nonlinear effects. By means of a

similar procedure, used in section B.0.1.1, a full vectorial relation can be included in

the calculation of the effective nonlinear refractive index through a perturbation term

given by

Ŵt = µ0ε0ω
2∆χ(x, y), (B.6)

where ∆χ(x, y) is a diagonal tensor that will affect each of the electric field compo-

nents based on the material symmetry properties. For silica fibers the full vectorial

effect of the polarization vector can be arranged through a second-rank diagonal ten-

sor by following equations [49, 48]:

∆χ(x, y)x,y =
3

4
<
(
χ(3)
xxxx

)(
|Ex|2 + |Ey|2 +

1

3
|Ez|2

)
(B.7a)

∆χ(x, y)z =
3

4
<
(
χ(3)
xxxx

)(1

3

(
|Ex|2 + |Ey|2

)
+ |Ez|2

)
. (B.7b)

These full-vectorial perturbation terms can be directly included into the third term

in the formulation of Eq.(3.14b) and using similar procedure as in section B.0.1.1,

both effective propagation constant and mode distortion correction can be calculated

through Eq.(3.17b) when SPM nonlinearity is induced due to the electric field inten-

sity.

In order to test the validity of the proposed approach, the effective refractive index
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by using the HFHE method is calculated for a nonlinear waveguide with the same

parameters reported in Ref. [49], where an iterative method was used for finding the

effective propagation constant based on the input power. Optical fiber parameters

are defined as follows: radius a = 0.5µm, wavelength λ = 1.55µm, linear refractive

indexes nco = 1.45, ncl = nair = 1.00, and the nonlinear Kerr coefficient is given by

n2 = 3.2× 10−20[m2/W ].

Figure B.2 shows the calculation of the effective refractive-index for a single-mode

fiber as a function of the optical power. The results are compared to those obtained

with the iterative solution reported in [49]. Effective refractive index is presented for

the Ex field component of the fundamental mode HE11. As can be seen from Fig.

B.2, a very good agreement is found for a wide input-power range. In addition, the

maximum absolute error is about 0.5% at the highest optical excitation power.

0 0.5 1 1.5 2 2.5
1.1

1.15

1.2

1.25

1.3

Pin[MW ]

 

 

n
x

n
ref

Figure B.2: Effective refractive index neff for a silica rod as a function of the input
optical power. The dashed line is the neff given by the HFHE formulation, whereas
the dots represent the results calculated by a full-vectorial iterative approach (FVI)
[49].

This result shows the validity of the proposed method for dealing with vectorial

perturbation terms in single-mode fibers. It is worth noting that for single-mode

fibers, hermiticity analysis of Eq. (B.2) is not required because there is only one

propagating mode. Birefringence analysis are typically performed under the assump-

tion of two orthogonal polarized-modes, but in that particular case the analysis is

more suitable to be performed through the formulation in Ref. [45].

B.0.1.3 Nonlinear Parameter Calculation

Nonlinear parameter γ is defined in the analysis of optical pulse propagation when

solving the nonlinear propagation equation [43]; particularly for fiber-optics γ is re-
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lated mainly with the SPM effect. It is worth noting that Refs. [1, 49, 14] have

proposed different expressions for extending the calculation of γ in order to take

into account all full-vectorial Kerr-type perturbation. Indeed, different definitions

of γ are still under discussion and research [31]. Typical definition of the nonlinear

parameter in single-mode fiber relates the propagation constant change due to the

nonlinear effects and the optical power that carries the transverse electromagnetic

field [3]. However, when multimode fibers are under analysis mode interactions due

to nonlinearities must be considered [1]. These propositions have been derived based

on the power-orthogonality relation discussed in Eq.(3.12) and, though they can in-

clude full-vectorial properties of the waveguide such as anisotropies and losses, these

definitions remain on the perturbation expansion associated to power independence,

and as it was discussed in section 3.2.1.1, external perturbations in multi-mode fibers

can cause also spatial-mode distortions when perturbative terms enable the interac-

tion between propagating modes as stated in Eq.(3.17). A simple extension of the

definition for γ in Ref.[3] can be achieved based on the HFHE method, in which the

distortions on spatial distribution can be included into the calculation of the optical

power carried by the perturbed mode, and consequently in the nonlinear parameter

evaluation. With the aim to take into account these possible mode distortion for each

j-th propagating mode, nonlinear parameter γj can be written by:

γj =
2∆β˜
<{S̃} · îzdA

(B.8a)

γj =
〈eαj|Ŵt|eαj〉

cε0βjAmj 〈ẽαj|n(x, y)|ẽαj〉
, (B.8b)

where S̃ = Ẽ × H̃∗ is the complex Poynting’s vector for the perturbed propagating

mode, with Ẽ and H̃ the perturbed fields calculated from Eq.(3.17). Magnetic field

components can be determined directly from the perturbed electric field by using

the Maxwell’s equations [38]. For single-mode fibers, and considering that the usual

nonlinearities are only in the core region, Poynting’s vector S̃ can be simplified un-

der the assumption of dominant electric field components as: S̃z = |Ẽx|2/η, being η

the intrinsic impedance η = 1/(ncε0). This simplification allows to write the optical

power for the resultant field in terms of perturbed kets, leading to the expression in

Eq.(B.8b). This latter is similar to that proposed in Ref. [1] and presents the same ad-

vantages in the analysis of the nonlinearity separated into parts, namely, contributions

of linear and nonlinear regions. Besides, Eq.(B.8b) allows associating the inter-mode

interaction effects through the inclusion of perturbed kets in the denominator. From
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Eq.(B.8b), it is also possible to reproduce the expression proposed in Ref. [3] for the

nonlinear parameter. This can be achieved under the following considerations: 1) No

modal interactions are considered and only the x-component of the electric field is

propagating, i.e. |ẽxj〉 ≈ |exj〉; 2) Kerr-effect is induced due to x-polarized field, thus

the perturbation operator can be written as Ŵt = (ω2/c2)2n(x, y)n̄2(x, y)|Ex(x, y)|2;

3) nonlinear effects occur only in the core region; 4) the propagation constant for

single-mode fiber can be approached by β ≈ nω/c.

Under these assumptions Eqs.(B.8) for the nonlinear parameter calculation leads to:

γ =
ω

c

2n̄2

ε0n

˜
|Ex(x, y)|4dxdy(˜
|Ex(x, y)|2dxdy

)2 (B.9a)

γ =
ωn2

cAeff

(B.9b)

Aeff =

(˜
|Ex(x, y)|2dxdy

)2

˜
|Ex(x, y)|4dxdy

, (B.9c)

where Aeff is the standard definition of the effective area [3].

In order to show the accuracy of the derived expression in Eq.(B.8) for calculat-

ing nonlinear parameter when full-vectorial Kerr-nonlinearity is considered, a set of

step-index rod configurations with a high index contrast were considered. Rod config-

urations were the same as those analyzed in Ref. [1] by using the expression for γ in

Ref.[14]. Figure B.3 displays the comparison between γ obtained with Eq. (B.8) and

from those reported in Ref. [1]. As it can be seen in Fig. B.3, the calculation through

Eq.(B.8) allows to reproduce the nonlinear parameter with relatively good accuracy.

Maximum differences were found when higher refractive contrasts were considered,

which could be due to the overestimation of the optical power transported in the core

region of the rods with high refractive contrasts, which affects the calculation of the

intensity-dependent perturbation. Experimental tests reported in Ref. [2] show that

effectively high nonlinearities are expected when full-vectorial Kerr effect description

is included.
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Figure B.3: Nonlinear parameter γ at λ = 800nm as a function of the core diameter
obtained by the HFHE formulation (continuous line) and results given in Ref.[1, 14]
(dots). (a) Silica Rod: nc = 1.45, ncl = 1.0, n2 = 2.6×10−20m2/W (b) Bismuth Rod:
nc = 2.05, ncl = 1.0, n2 = 3.2 × 10−19m2/W (c) Silicon Rod: nc = 3.45,ncl = 1.45,
n2 = 4.5× 10−18m2/W
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Appendix C

Coupling coefficients in a Fiber
Bragg Grating

As it is mentioned in the chapter 3 a Fiber Bragg Gratings (FBGs) is modeled

assuming a perturbation of the effective refractive index given by [13]:

δneff(z) = δ̄neff(z)

[
1 + v cos

(
2π

Λ
z + φ(z)

)]
(C.1)

which can be also related with the refractive index of the core assuming that power

is almost confined to the core region and the wave “sees” only one refractive index.

Based on this argument δneff(z) = δnco(z) . Additionally, we can make the Taylor

series expansion for the permittivity in terms of the refractive index, to write ∆εt u
2ncoδnco. Then, considering a z-dependence of this perturbation we can have:

∆εt(z) = 2nδ̄nco(z)

[
1 + v cos

(
2π

Λ
z + φ(z)

)]
(C.2)

we can plug this into the coupling coefficient to obtain:

Kt
νµ(z) = ω2ncoδ̄nco(z)

[
1 + v cos

(
2π

Λ
z + φ(z)

)]¨
ê∗tµ(x, y)êνt(x, y)dA (C.3)

Since the perturbation does not depend on the transversal direction, this integral

equation relates the coupling between transversal modes. We can obtain for the

integral
˜
ê∗tµ(x, y)êνt(x, y)dA. Then, we can define two new coefficients to simplify

the writing by:

σνµ(z) = ωncoδ̄nco(z)

¨
ê∗tµ(x, y)êνt(x, y)dA (C.4)

κνµ(z) =
v

2
σνµ(z) (C.5)

i



then we can write:

Kt
νµ(z) = σνµ(z) + 2κνµ(z) cos

(
2π

Λ
z + φ(z)

)
(C.6)

this last expression can be re-written by:

Kt
νµ(z) = σνµ(z) + κνµ(z)

[
ej(

2π
Λ
z+φ(z)) + e−j(

2π
Λ
z+φ(z))

]
(C.7)

this exponential form for the z-dependence is much more convenient for the coupled-

mode equations in Eq.A.131. We can plug this equations to have:

K11 = σνµ(z) + κνµ(z)
[
ej(

2π
Λ
z+φ(z)) + e−j(

2π
Λ
z+φ(z))

]
(C.8)

K12 = σνµ(z)ej(2βo)z + κνµ(z)
[
ej2((βo+

π
Λ

)z+
φ(z)

2 ) + ej2((βo− πΛ )z−φ(z)
2 )
]

(C.9)

Here we apply the “synchronous approximation”, which consist in neglecting all rapid

variations with z. Those rapid variations are: variations associated with the refractive

index change, i.e. e±j(
2π
Λ
z+φ(z)), because our interest is to determine the slow variation

along the total perturbation length. Based on the same argument, we will neglect

terms that have: ej(2βo)z and ej2((βo− πΛ )z−φ(z)
2 ). We will keep slow variation terms only.

Therefore, let’s define a parameter δ = βo − π
Λ

K11 = σνµ(z) (C.10)

K12 = κνµ(z)ej2(δz−
φ(z)

2 ) (C.11)

d

dz

[
Aν
Bµ

]
=

[
−jσνµ(z) −jκνµ(z)ej2(δz−

φ(z)
2 )

jκνµ(z)e−j2(δz−
φ(z)

2 ) jσνµ(z)

][
Aν
Bµ

]
(C.12)

We to obtain:

A′ν = −jσνµ(z)Aν − jκνµ(z)ej2(δz−
φ(z)

2 )Bµ (C.13)

B′µ = jκνµ(z)e−j2(δz−
φ(z)

2 )Aν + jσνµ(z)Bµ (C.14)

following the same procedure as for the general case. Let’s begin defining Aν =

Aνe
jσνµ(z)z, we obtain:

A′ν + jσνµ(z)Aν = −jκνµ(z)ej2(δz−
φ(z)

2 )Bµ (C.15)

A′ν = −jκνµ(z)e
j2

(
δz+

σνµ(z)

2
z−φ(z)

2

)
Bµ (C.16)
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doing the same procedure for the back-propagating mode. Defining Bµ = Bµe
−jσνµ(z)z,

we have:

B′µ − jσνµ(z)Bµ = jκνµ(z)e−j2(δz−
φ(z)

2 )Aν (C.17)

B′µ = jκνµ(z)e
−j2

(
δz+

σνµ(z)

2
z−φ(z)

2

)
Aν (C.18)

After this procedure, we can make use again of the new definitions,Aν = Aνe
−jσνµ(z)z

and Bµ = Bµejσνµ(z)z. Then, replacing into their corresponding equations we can

write:

A′ν = −jκνµ(z)ej2(δz+σνµ(z)z−φ(z)
2 )Bµ (C.19)

B′µ = jκνµ(z)e−j2(δz+σνµ(z)z−φ(z)
2 )Aν (C.20)

defining ∆ = δ + σνµ(z), we can write:

A′ν = −jκνµ(z)Bµej2(∆z−φ(z)
2

) (C.21)

B′µ = jκνµ(z)Aνe
−j2(∆z−φ(z)

2
) (C.22)

An additional substitution by:

Aν = Rej(∆z−
φ(z)

2
) (C.23)

Bµ = Se−j(∆z−
φ(z)

2
) (C.24)

replacing we have:

R′ej(∆z−
φ(z)

2
) + j

(
∆z − 1

2

dφ(z)

dz

)
Rej(∆z−

φ(z)
2

) = −jκνµ(z)Sej(∆z−
φ(z)

2
) (C.25)

S ′e−j(∆z−
φ(z)

2
) − j

(
∆z − 1

2

dφ(z)

dz

)
Se−j(∆z−

φ(z)
2

) = jκνµ(z)Re−j(∆z−
φ(z)

2
) (C.26)

which simplifies to:

R′ + j

(
∆z − 1

2

dφ(z)

dz

)
R = −jκνµ(z)S (C.27)

S ′ − j
(

∆z − 1

2

dφ(z)

dz

)
S = jκνµ(z)R (C.28)

where we can write:

R′ + j

(
δ + σνµ(z)− 1

2

dφ(z)

dz

)
R = −jκνµ(z)S (C.29)

S ′ − j
(
δ + σνµ(z)− 1

2

dφ(z)

dz

)
S = jκνµ(z)R (C.30)
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this result is the same presented in [13], where a new parameter σ̂ and κ given by:

σ̂ = δ + σνµ(z)− 1

2

dφ(z)

dz
(C.31)

κ = κνµ(z) (C.32)

based on this definitions we can re-write the equations as:

R′ + jσ̂R = −jκS (C.33)

S ′ − jσ̂S = jκR (C.34)

we showed the solutions for this set of equations before. With initial boundary con-

ditions: R(0)=1 and S(L)=0), solution is given by:

S(0) =
−jκ√

κ2 − σ̂2 coth(L
√
κ2 − σ̂2) + jσ̂

(C.35)

R(L) =

√
κ2 − σ̂2

√
κ2 − σ̂2 cosh(L

√
κ2 − σ̂2) + jσ̂ sinh(L

√
κ2 − σ̂2)

(C.36)

Based on this expression we can find the magnitude of the reflected spectrum by S(0):

ρ(κ, σ̂, L) =
−jκ√

κ2 − σ̂2 coth(L
√
κ2 − σ̂2) + jσ̂

(C.37)
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Figures C.1 presents the reflection spectrum for different parameters κL [13][52].
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Figure C.1: Reflection spectrum calculated for different parameters κL. (It can be
compared to Fig12.19 in [52])
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Appendix D

Geometry Effect in the
Magnetization Vector ~M

In as much magnetic field from magnetization vector will produce a net magnetic field

different from zero, it is expected that induced magnetizations modify the magnetic

field intensity in both inside and outside the magnetic material. Consider a magnetic

dipole moment per unit volume and its corresponding vector potential:

d~m = ~Mdv′ (D.1)

d ~Admg(~r) =
µ0

4π

d~m(~r′)×
(
~r − ~r′

)
|~r − ~r′|3

, (D.2)

where the subindex (dmg) has been included to make explicit the dependence to the

magnetization distribution that leads to demagnetization field. Total vector potential

at some determined point can be calculated by integrating over the volume of the

magnetized material to obtain:

~Admg(~r) =
µ0

4π

˚ ~M(~r′)×
(
~r − ~r′

)
|~r − ~r′|3

dv′ (D.3)

having in mind the vectorial identity:

∇′ 1

|~r − ~r′|
=

~r − ~r′

|~r − ~r′|3
, (D.4)

vector potential can be written as:

~Admg(~r) =
µ0

4π

˚
~M(~r′)×∇′ 1

|~r − ~r′|
dv′. (D.5)
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By using vector identity in ∇× (G~a) = G (∇× ~a) + (∇G)× ~a, and with the aim to

apply divergence theorem upon the resultant integral
˝

v′
∇′×

(
~M(~r′)/|(~r − ~r′)|

)
dv′,

one can write the argument of the integral as a divergence by using the vectorial

identity: ∇ · (~a× ~n) = ~n · (∇× ~a) − ~a · (∇× ~n) with ~n the normal vector to the

surface, this allows to write the vector potential as:

~Admg(~r) =
µ0

4π

˚
v′

∇′ × ~M(~r′)

|~r − ~r′|
dv′ +

µ0

4π

‹
s

~M(~r′)× ~n′

|~r − ~r′|
ds′, (D.6)

which means that vector potential due to magnetized bodies is produced by volu-

metric: ~Jm and surface ~Km “magnetic currents”, allowing to replace the magnetized

body for those equivalent sources during the magnetic field calculation. Finally, mag-

netic flux density associated to the demagnetization field can be found from Eq.(D.6)

by taking the curl upon ~Admg(~r) as: ~Bdmg(~r) = ∇ × ~Admg(~r) which leads to the

Biot-Savart law.

~BdmgJm(~r) =
µ0

4π

˚
v′

~Jm(~r′)× (~r − ~r′)
|~r − ~r′|3

dv′ (D.7)

~BdmgKm(~r) =
µ0

4π

¨
s

~Km(~r′)× (~r − ~r′)
|~r − ~r′|3

ds′. (D.8)

These fields ~BdmgJm(~r) and ~BdmgKm(~r) are produced by magnetization ~M of the

body and will interact with any external field. As it is stated in Eqs.(D.7) and (D.8),

magnetic induction due to the demagnetization field can be found in general over

any known magnetic volume. There is an alternative way to find the demagnetiza-

tion field from a scalar potential to simplify, in some of the cases, the complexity

of the resultant integrals. Following examples show the accuracy of the analytical

approximation for different geometries.

D.0.0.1 Magnetized Sphere

A very well known problem in literature is the constant magnetized sphere. This

particular scenario considers a sphere of radius R located at the origin of coordinates

with constant magnetization ~M(~r′) = M0îz. The idea is to calculate the magnetic field

magnitude and the magnetic flux density generated by the constant magnetization.

In order to address this problem, we take advantage of the magnetic scalar potential

that should satisfy:

∇2φm(~r) = ∇ · ~M(~r), (D.9)
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As discussed before, the magnetic scalar potential for a constant magnetization will

be generated by the equivalent surface charges at the sphere shell, σm(~r′) = ~an ·
~M(~r′). Therefore, magnetic scalar potential can be calculated by integrating the

corresponding expression:

φm(~r) =
1

4π

¨
~an · ~M(~r′)

|~r − ~r′|
ds′, (D.10)

Or by using the solution of the Laplace equation ∇2φm(~r) = 0 and apply the bound-

ary conditions that apply for the magnetic scalar potential at the body surface. In

spherical coordinates the Laplace equation for axial symmetrical geometries can be

solved by the Legendre polynomials Pl(cos θ). Since inside the sphere and outside the

sphere the Laplace equation should be satisfied, we can write for the magnetic scalar

potential:

φm(~r) =


∞∑
l=0

Alr
lPl(cos θ) r ≤ R

∞∑
l=0

Cl
rl+1

Pl(cos θ) R ≤ r

, (D.11)

then, we impose the boundary conditions: first one corresponds to the continuity of

the magnetic scalar potential at r = R:

∞∑
l=0

AlR
lPl(cos θ) =

∞∑
l=0

Cl
Rl+1

Pl(cos θ), (D.12)

leading to:

Cl = AlR
2l+1, (D.13)

Simplifying for the magnetic potential as:

φm(~r) =


∞∑
l=0

Alr
lPl(cos θ) r ≤ R

∞∑
l=0

AlR
2l+1

rl+1
Pl(cos θ) R ≤ r

, (D.14)

At this point, Al coefficients remain unknown. In order to find them we should make

use of the relationship of the scalar potential derivative and the surface charge (in
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the exact analogous manner as dealing with the electric field generated by surface

charges), then we have: [
∂φm(~r)

∂r

] ∣∣∣∣
R

= −σm(~r′), (D.15)

Since the derivate is respect to r, and their dependence is polynomial, its analytical

expression can be found easily by:

∞∑
l=0

−
[
(l + 1)

R2l+1

rl+2
+ lrl−1

] ∣∣∣∣
R

AlPl(cos θ) = −~an · ~M(~r′) (D.16)

∞∑
l=0

[
(l + 1)

R2l+1

Rl+2
+ lRl−1

]
AlPl(cos θ) = M0 cos θ, (D.17)

In order to satisfy the equation, l = 1 is the only polynomial order that should be

taken into account, i.e. P1(cos θ) = cos θ. Therefore, we can write:

A1 =
M0

3
, (D.18)

Finally, magnetic scalar potential due to constant magnetization is given by:

φm(r, θ) =


M0

3
r cos θ r ≤ R

M0

3

R3

r2
cos θ R ≤ r,

(D.19)

Once the potential is known everywhere in the space, we can calculate the demag-

netization magnetic field, ~Hdmg, by taking the corresponding derivative ~Hdmg =

−∇φm(r, θ). Thus, potential inside the sphere φm(r, θ) = (M0/3)r cos θ, can be writ-

ten in terms of the cartesian z-coordinate z = r cos θ, leading to an internal field, in

the region r ≤ R, caused by the magnetization given by:

~Hdmg(z) = −M0

3
îz, (D.20)

which indicates a constant demagnetization magnetic field inside the sphere. Cor-

responding magnetic flux density associated to the demagnetization field inside the

sphere can be calculated from the constitutive equation by ~Bdmg = µ0

(
~Hdmg + ~M

)
.

In this case, associated magnetic flux density due to this demagnetization field can

be written by:

~Bdmg = µ0

(
−M0

3
+M0

)
(D.21)

~Bdmg = µ0
2M0

3
îz, (D.22)
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At this point we are able to describe the magnetic field inside and outside a sphere

as an uniform magnetization. Therefore, once M0 is given, we can calculate their

corresponding magnetic fields (flux density and magnetic field intensity) everywhere

in the space. Initial magnetization, M0, was assumed as known and it was not

related to any external field. However, in practice, this magnetization is induced by

an external magnetic field (Hext) and depends on the magnetic susceptibility, and it is

not known a priori. External field in vacuum will have a magnetic induction field given

by Bext = µ0Hext. In other materials we should look into the B-H curve properties of

the corresponding material. An important case is when the magnetization M0 follows

a linear relation with the magnetic field intensity by M0 = χmHtotal, being χm the

magnetic susceptibility. This relationship will cause that total fields will be written

by:

Btotal = Bext + µ0
2χmHtotal

3
(D.23)

Htotal = Hext −
χmHtotal

3
, (D.24)

Therefore, the total magnetic field intensity will be given by:

Htotal =
Hext

1 + χm
3

, (D.25)

Then, magnitude of the magnetic field intensity allows to calculate the magnitude of

the magnetization by:

M0 = χmHtotal (D.26)

M0 =
3χm

3 + χm
Hext. (D.27)

In order to show the distribution of the magnetic flux density, as well as to validate

the implementation of the Finite Element Method (FEM) for computing the magnetic

flux density inside a sphere, characterized by χm = µr − 1 and placed in a uniform

external magnetic field Bext. Figure D.1 shows the distribution of the magnetic flux

density and the azimuthal component of the magnetic vector potential.

D.0.0.2 Magnetized Cylinder

Second case is a finite length cylinder exposed to an external uniform magnetic field,
~Hext = H0îz. Consider a cylinder of radius b and height L which is orientated along

the z-axis as shown in Fig. D.2.
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Figure D.1: Magnetic flux density of an uniform Magnetized sphere, radius R =
15[mm]. µr = 10, Bext = 0.1T îz

An initial approximation is to assume that the external magnetic field will induce

inside the cylinder a constant magnetization pointing in the same direction as the

external field, i.e. ~M = Moîz. Therefore, demagnetization field due to this mag-

netization can be calculated by the two methods presented before: vector magnetic

potential and scalar magnetic potential.

Demagnetization field through vector magnetic potential In this particular

case where magnetization is constant, no volumetric magnetic currents exist because

derivatives are null, i.e. ~Jm = ∇′× ~M = 0. However current magnetic surface on the

side wall of the cylinder is not zero, i.e. ~Km = ~M × îr = Moîz × îr = Moîϕ. Unitary

vector can be written by:

ûr =
~r − ~r′

|~r − ~r′|
= cosα(−îr) + sinα(̂iz), (D.28)

where

cosα =
b√

(z − z′)2 + b2
(D.29)

sinα =
z − z′√

(z − z′)2 + b2
. (D.30)

Contribution of the equivalent magnetic surface currents will be given by:

~Km × ûr =
M0b√

(z − z′)2 + b2
îz +

M0(z − z′)√
(z − z′)2 + b2

îϕ, (D.31)
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x

y

z

Figure D.2: Uniform Magnetized Cylinder

Owing to the symmetry properties, contributions from radial components îr are null

when integration over
´
dϕ. Finally, magnetic induction along the z-axis is given by:

Bdmg(z) =
µ0

4π

ˆ 2π

0

ˆ L

0

M0b
2dz′dϕ

[(z − z′)2 + b2]3/2
îz, (D.32)

which after integration leads to:

Bdmg(z) =
−µ0M0

2

[
z − L√

b2 + (z − L)2
− z√

b2 + z2

]
îz (D.33)

Once the magnetic induction field due to the magnetization is found, one can cal-

culate for the magnetic field intensity associated to this particular distribution of

magnetization by using the constitutive equation:

Hdmg(z) =
Bdmg(z)

µ0

−M0 (D.34)

Replacing from the result obtained for the magnetic flux density, we have:

Hdmg(z) =
−M0

2

[
z − L√

b2 + (z − L)2
− z√

b2 + z2

]
−M0 (D.35)

which can be written by:

Hdmg(z) = −M0

[
1 +

1

2

z − L√
b2 + (z − L)2

− 1

2

z√
b2 + z2

]
. (D.36)
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Once the magnetic field produced by the magnetization of the magnetic body is found.

Total internal magnetic field can be calculated by summing up the demagnetization

field and the external field.

Hint(z) = Hext(z) +Hmg(z). (D.37)

In the linear case, magnetization can be written in terms of the internal field by

M0 = χmHint(z). Therefore, we can write:

Hint(z) = Hext(z)−M0

[
1 +

1

2

z − L√
b2 + (z − L)2

− 1

2

z√
b2 + z2

]
(D.38)

Hint(z) = Hext(z)− χmHint(z)

[
1 +

1

2

z − L√
b2 + (z − L)2

− 1

2

z√
b2 + z2

]
(D.39)

Rearranging the expression, we can solve for the internal field by:

Hint(z) =
Hext(z)

1 + χm

[
1 + 1

2
z−L√

b2+(z−L)2
− 1

2
z√

b2+z2

] . (D.40)

Figure D.3 shows the internal magnetic field intensity along the z-axis of a cylinder

with magnetic susceptibility χm = 9 under several external magnetic fields. The

cylinder has a radius of r = 5[mm] and height L = 18.5[mm]. Numerical solution

by using the Finite Element Method (FEM) has been compared with the analytical

approach to ensure the consistency of the approximation.

0 0.5 1 1.5 2
0

0.05

0.1

0.15
H=80kA/m -FEM
H=135kA/m -FEM
H=190kA/m -FEM
H=245kA/m -FEM
H=300kA/m -FEM
H=300kA/m
H=245kA/m
H=190kA/m
H=135kA/m
H=80kA/m

Figure D.3: Internal magnetic field intensity along the axis. Comparison of the
approach of an uniformly magnetized cylinder (in dashed lines) and the Finite Element
Method (FEM) solution (in solid lines)

As it can be seen from Fig. D.3, cylindric geometry presents a quasi uniform mag-

nitude of the internal magnetic field along the axis of the cylinder. In contrast, the
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approximation based on a constant magnetization over-estimates the field and pre-

dicts a steeped distribution of the field along the axis. Once the internal magnetic field

is calculated, magnetization along the axis can be calculated by M(z) = χmHint(z).

Demagnetization field through scalar magnetic potential A second strategy

for computing the demagnetization field is through the scalar magnetic potential

formulation. In this particular case we assume constant magnetization, leading to:

∇′ · ~M(~r′) = 0. Therefore, second term of the integral in Eq.(4.4) contributes to the

scalar potential φm(~r). Considering the case of the uniformly magnetized cylinder in

Fig. (D.2), we have:

φm(~r) =
1

4π

¨
~an · ~M(~r′)

|~r − ~r′|
ds′, (D.41)

where the surface differential of area is given by ds′ = r′dr′dϕ in both top and bottom

faces. We will have σtop = M0 and σtop = −M0 because of the vectorial dot product

at each surface. Considering the calculation of the scalar potential along the axis

~r = zîz, we can write for the scalar magnetic potential:

φm(z) =
M0

4π

¨
r′√

r′2 + (z − L)2
dr′dϕ− M0

4π

¨
r′√

r′2 + z2
dr′dϕ, (D.42)

In this case the integration can be performed simply. Therefore, integrating respect

to the angular variable, it reduces to:

φm(z) =
M0

2

ˆ b

0

r′√
r′2 + (z − L)2

dr′ − M0

2

ˆ b

0

r′√
r′2 + z2

dr′, (D.43)

which leads to:

φm(z) =
M0

2

[√r′2 + (z − L)2
]∣∣∣∣∣
b

0

−
[√

r′2 + z2
]∣∣∣∣∣
b

0

 , (D.44)

evaluating at the respective limits:

φm(z) =
M0

2

(√
b2 + (z − L)2 − |(z − L)| −

√
b2 + z2 + |z|

)
, (D.45)
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For the case inside the cylinder, 0 < z < L, absolute values can be changed for their

respective sings to obtain:

φm(z) =
M0

2

(√
b2 + (z − L)2 −

√
b2 + z2 + 2z − L

)
, (D.46)

Finally, magnetic field can be found by taking the gradient of the scalar potential, in

this case respect to z:

Hdmg = −dφm(z)

dz
îz (D.47)

Hdmg = −M0

(
1 +

1

2

(z − L)√
b2 + (z − L)2

− 1

2

z√
b2 + z2

)
îz, (D.48)

that is an identical result of that found by using the magnetic flux density approach

in Eq.(D.36).
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Appendix E

Cantilever beam analysis for a
piezoelectric bimorph

The cantilever beam analysis constitutes a very important case of study in this section

because it describes the physics of one the most common actuators in piezoelectric

applications, i.e. the piezoelectric bimorph.

(a)

(b) x

y

Figure E.1: Cantilever beam deformed by an external force

As it will be discussed in coming sections, the cantilever set-up is frequently used in

bimorph and unimorph actuators to generate bending actions from external electric

or magnetic fields through the piezoelectric and magnetostrictive effect. Cantilever

actuator is shown in Fig. (E.1). If an external force is applied in the XY plane, it

will lead to a bending of the cantilever beam axis. ν(x) is called the deflection curve

and describes the bending magnitude of the beam axis. Fig. E.2 shows the variables

associated to the cantilever beam deflection. The curvature κ = 1/ρ can be expressed
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assuming an external point O′ that ables to write the deflection length by ρdθ = ds.

Besides, the angle θ can be written by:

tan θ =
dν

ds
(E.1)

κ =
1

ρ
=
dθ

ds
(E.2)

x

y

Figure E.2: Definition of the differential variables in terms of the deflection curve and
curvature

If the deflection is small, we can consider ds u dx, then tan θ u θ. So, we can simplify

the expressions above to write:

θ =
dν

dx
(E.3)

κ =
1

ρ
=
dθ

dx
(E.4)

Now, taking the derivative of θ regarding x we can write:

dθ

dx
=
d2ν

dx2
(E.5)

from the curvature equation we can write a differential equation for the deflection

curve ν(x) by:

d2ν

dx2
= κ (E.6)

Curvature magnitude κ is intimate related to the elastic properties of the material.

These properties can be described by using the strain-stress relationships of the ma-

terial. During the bending process, there will exist a curve somewhere in the body

that will remain with the same length as in the undeformed condition. That curve

is called the neutral axis. However, curves above the neutral axis will shrink and

curves below it will stretch. This condition allows us to write an expression for the

ii



strain distribution inside the body. Let’s consider a line above the neutral axis at

a distance y as it is shown in Fig. E.3. We can think that after deformation the

distance between both curves will remain the same, even if there positions respect

the coordinate system can change.

Figure E.3: Determination off the strain distribution based on the definition of the
neutral axis

Based on Fig. E.3, it can be seen that total deformation of the curve located at y

distance from the neutral axis can be written by:

dl = (ρ− y)dθ (E.7)

from the curvature equation, we have:

dθ =
dx

ρ
(E.8)

Based on this result, we can write:

dl = (ρ− y)
dx

ρ
(E.9)

dl = dx− ydx
ρ

(E.10)

dl − dx
dx

= −y
ρ

(E.11)

Therefore, the definition of the strain can be used to write:

ξx =
dl − dx
dx

= −y
ρ

= −κy. (E.12)

It should be noticed that the measurement of the strain is done over the x-axis. How-

ever, there is also a deformation over the cross-section area caused by the Poisson’s
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ratio. This latter deformation is being neglected in the analysis, since it has been

shown to be good enough to describe experimental behavior of cantilever bimorphs

[15]. For linear elastic materials, we can write a linear relationship between the stress

and the strain given by the Young’s module Y . Thus, we can write:

σx = Yξx (E.13)

σx = −Yκy. (E.14)

So far we have defined y as the distance between the neutral axis (up to now, it is still

unknown) and any other curve above or below it. Therefore, we should determine

the exact location of the neutral axis such that we can solve for any point in the solid

respect to the global coordinate system. In order to accomplish this, we should write

the equations of force equilibrium and momentum equilibrium in the solid.

Figure E.4: Calculation of forces and momentum along the cantilever bimorph

First, we calculate forces and bending moments respect to the z-axis due to the

corresponding stress component σx. Figure E.4 represents these forces (Fig. E.4 (a))

and moments (Fig. E.4 (b)) acting over the cross section of the cantilever bimorph.

Based on this situation, we can obtain the differential expressions for the force and

the bending moment respectively:

dFx = σxdA (E.15)

dMz = −σxydA (E.16)

At the origin there should be the total bending moment reaction, MzR, to equilibrate

the moments. Pure bending, means that all the bending is caused by the angular

moment acting at each cross section along the beam. Therefore, forces along x should

cancel out,
˜
dFxdA = 0, and total torque created by the stress component should

be equal to the moment reaction at the origin. Based on this argument, we can write:¨
σxdA = 0 (E.17)

MzR −
ˆ
dMz = 0 (E.18)

iv



given σx = −Yκy, these results imply:

−Yκ
¨

ydA = 0 (E.19)

MzR = Yκ
¨

y2dA (E.20)

First result implies that y should be always located at the centroid, since summation

of the stresses over the cross section leads always to zero. Second result, allows to

calculate the moment reaction at the origin based on the geometrical characteristics

of the cross section, Ic =
˜
y2dA (where Ic is the moment of inertia of the cross

section), the Young’s module Y , and the curvature of the bending k. It is worth

noting that in the strict sense, curvature of bending could change along x, thus it

should be written as k(x), implying that bending moment is also a function of x, i.e.

MzR(x). Using these results, we can go back to the differential equation found for the

the deflection curve ν(x), to write:

d2ν

dx2
=
MzR(x)

YIc
(E.21)

Unknown variable is the bending moment MzR(x) for each position along x and it is

the resultant torque at some distance x from the origin (clamping point) of all the

stresses distributed over the cross section of the cantilever bimorph. Therefore, its

magnitude will depend on the longitudinal distribution of the forces forces that act

upon the beam.
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Appendix F

Closed solution for a frustum cone

Subsection 7.1.1 showed that side slope n = 1 presents the more stepped profile in the

internal magnetic field. This result suggests that magnetostrictive effect due to this

internal field distribution could be transferred to a nonchirped coaxially embedded

FBG, such as depending on the external field magnitude a chirping can be induced

in the FBG. Since the axial field profile for the cone is of great interest in the anal-

ysis, in the following we show a closed solution for a frustum cone magnetic body

by using the magnetic scalar potential approach. Previous attempts for designing

current sensors based on magnetostrictive composites have been done in the Labo-

ratory of Smart Composites at the University of Wisconsin-Milwaukee. Particularly,

in the case of a frustum cone a previous work used the geometry among others to

induce frequency chirping in the embedded FBGs[30]. Although, some optical power

dependence were achieved in the initial results for different external magnetic fields,

spectral broadening was not fully obtained and several aspects of the frustum cone

modeling were not considered. Consider a frustum cone to evaluate the magnetic

flux density along the z-axis as shown in Fig. F.1. As it was discussed in chapter

4, a first approximation for finding the internal magnetic field distribution due to

geometric effects is to consider a constant magnetization directed along the external

magnetic field. In this case, external field points along the z-direction, ~Hext = H0îz

which implies an assumption for magnetization given by ~M = M0îz. This constant

magnetization inside the magnetic body implies: ∇′ · ~M(~r′) = 0. Therefore, only

surface magnetic sources contribute to the scalar potential as discussed in chapter

4. For this particular geometry, radius at any height z′ in Fig. (F.1) is given by:

r(z′) = b0 − tan θz′. (F.1)

where tan θ = (b0−a0)/L. Surface charge densities at the top and bottom of the cone

will be same magnitude but opposite signs, σmt = ±M0, depending on the surface
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Figure F.1: Uniformly magnetized frustum cone

normal vector. Integration regarding angle ϕ can be performed easily leading to:

φa0(z) =
M0

2

ˆ a0

0

r′√
r′2 + (z − L)2

dr′ (F.2)

φb0(z) = −M0

2

ˆ b0

0

r′√
r′2 + z2

dr′, (F.3)

performing the integrals we obtain:

φa0(z) =
M0

2

([√
r′2 + (z − L)2

]∣∣∣∣∣
a0

0

)
(F.4)

φb0(z) =
−M0

2

[√r′2 + z2
]∣∣∣∣∣
b0

0

 (F.5)

evaluating the expressions at the corresponding limits, we have:

φa0(z) =
M0

2

(√
a2

0 + (z − L)2 − |(z − L)|
)

(F.6)

φb0(z) =
−M0

2

(√
b2

0 + z2 − |z|
)

(F.7)

If 0 < z < L we can write:

φa0(z) =
M0

2

(√
a2

0 + (z − L)2 + (z − L)

)
(F.8)

φb0(z) =
−M0

2

(√
b2

0 + z2 − z
)

(F.9)
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the sum of the scalar magnetic potential due to the top and bottom surface can be

written by:

φa0(z) + φb0(z) =
M0

2

(
2z +

√
a2

0 + (z − L)2 −
√
b2

0 + z2 − L
)
. (F.10)

Now we should account for lateral surface charge density, σ = ~an · ~M . Outward

normal vector to the surface can be found from the normal vector to the surface

~an = cos θîr + sin θîz, which leads to a surface magnetic charge density determined

by σ = M0 sin θ. From geometry sin θ is given by:

sin θ =
b0 − a0√

(b0 − a0)2 + L2
(F.11)

which finally allows us to write for the equivalent surface charge density:

σ = M0
b0 − a0√

(b0 − a0)2 + L2
. (F.12)

Surface differential will be given by ds′ = r(z′) dϕ dl′, which written in terms of z′

leads to the expression:

ds′ = r(z′) dϕ
dz′

cos θ
. (F.13)

In order to test the validity of the surface differential, surface area of the frustum

cone can be calculated by:

As =

ˆ 2π

0

ˆ L

0

ds′ =

ˆ 2π

0

ˆ L

0

r(z′) dϕ
dz′

cos θ
(F.14)

As = 2π
sin θ

cos2 θ

ˆ L

0

[cot θb0 − z′] dz′ (F.15)

As = 2π
tan θ

cos θ

[
cot θb0z

′ − z′2

2

]∣∣∣∣∣
L

0

(F.16)

As = 2π
1

cos θ

[
b0L−

tan θL2

2

]
, (F.17)

From geometry of the frustum cone shown in Fig. F.1, we can write for tan θ and

cos θ:

tan θ =
b0 − a0

L
(F.18)

cos θ =
L√

L2 + (b0 − a0)2
(F.19)
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Thus, total surface area can be written by:

As =
2πb0L

cos θ
−
[
π (b0 − a0)L

cos θ

]
(F.20)

As =

√
L2 + (b0 − a0)2

L
[2πb0L− π (b0 − a0)L] , (F.21)

which leads to the known formula for finding the surface area of a frustum cone:

As = π(b0 + a0)
(√

L2 + (b0 − a0)2
)
. (F.22)

Once surface differential ds′ has been tested to reproduce the total surface area cor-

rectly after integration, scalar potential along the z-axis associated to the lateral

surface charge density can be written by:

φs(z) =
M0 sin θ

4π

1

cos θ

ˆ 2π

0

ˆ L

0

(bo − tan θz′)

[(z − z′)2 + (bo − tan θz′)2]1/2
dz′dϕ (F.23)

after simplification we have:

φs(z) =
M0 tan θ

2

ˆ L

0

(bo − tan θz′)

[(z − z′)2 + (bo − tan θz′)2]1/2
dz′, (F.24)

Let be u = bo − tan θz′, then z′ = −(u − bo)/ tan θ. Calculating the corresponding

derivative regarding u, we have du = − tan θdz′. Therefore, limits of the integral

become uo = bo to uL = bo − tan θL. Writing the integral in terms of the new

variable:

φs(z) =
−M0

2

ˆ uL

uo

u

[(z + (u− bo)/ tan θ)2 + u2]1/2
du, (F.25)

after some algebra manipulations we can write:

φs(z) =
−M0

2

ˆ uL

uo

u

[au2 + bu+ c]1/2
du, (F.26)

which can be solved analytically to obtain:

φs(z) =
−M0

2

[
1

a

√
au2 + bu+ c− b

2a3/2
ln

(
2au+ b√

a
+ 2
√
au2 + bu+ c

)]∣∣∣∣∣
uL

uo

,(F.27)

Total scalar potential can be found by summing the respective contributions of the

magnetic scalar potential from each surface, which leads to:

φm(z) =
M0

2

(
2z +

√
a2

0 + (z − L)2 −
√
b2

0 + z2 − L
)

−M0

2

[
1

a

√
au2 + bu+ c− b

2a3/2
ln

(
2au+ b√

a
+ 2
√
au2 + bu+ c

)]∣∣∣∣∣
uL

uo

(F.28)
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where

a = 1 + cot2 θ (F.29)

b =
2

tan θ

(
z − b0

tan θ

)
(F.30)

c =

(
z − b0

tan θ

)2

. (F.31)

Finally, magnetic field intensity can be calculated taking the derivative respect to z

of the scalar potential by:

~Hdmg(z) = −dφm(z)

dz
. (F.32)

Once the internal field is known, magnetization can be calculated based on the

magnetic susceptibility as presented in chapter 4. In this case we are assuming

χm = 9 immersed in an external magnetic field Hext=255[kA/m]. Figure F.2 presents

the magnetic field along the axis by using the scalar potential method. As it is

shown in the figure, contribution of top and bottom surfaces generates some kind

of non symmetric distribution of the axial field. However, lateral surface contribu-

tion enhances the asymmetric profile when it is considered. This issue validates the

z[cm]
0 0.5 1 1.5 2 2.5 3

H
z
[M

A
/m

]

0

0.05

0.1

0.15

0.2

0.25

Top and bottom contribution
All surfaces contribution

Figure F.2: Contribution to the internal magnetic field from top, bottom and lateral
surface in the scalar potential formulation.

fact that proposed geometry has interesting potential for controlling the steepness

of the induced magnetization and consequently the corresponding magnetostriction.

FigureF.3 shows the comparison of the calcualtion of internal magnetic field by using

the magnetic vector potential method and the scalar potential formulation that allows

to write a closed solution for the internal field. As it can be seen from Fig.F.3 there is

an equivalence between both methods. Therefore, the use of the analytical approach

obtained from the scalar potential formulation can be used in the following analysis

for the sake of simplicity in the coming calculations.
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Figure F.3: Internal magnetic field along the frustum cone axis calculated by scalar
potential and vector potential formulations.

Results presented above assume only one component of the magnetization that points

in the same direction as the external magnetic field. In practice, once a body is ex-

posed to an external field the magnetization distribution inside the body will present

full vectorial components that will depend on the geometry and the relative position

against the external field direction. Figure F.4 presents the comparison of the cal-

culation of the internal magnetic field along the axis of the cone between COMSOL

and the analytical approximation.

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25
H=80kA/m -FEM
H=153kA/m -FEM
H=227kA/m -FEM
H=300kA/m -FEM
H=80kA/m
H=153kA/m
H=227kA/m
H=300kA/m

Figure F.4: Magnetic Flux density along z-axis for a uniformly magnetized Cone
~M = M0îz

As it can be seen from Fig.F.4 analytical approximation over estimates the maxi-

mum internal magnetic field, this is caused due to the assumption that there are not

transverse components of the magnetization. Figure F.5 shows the distribution of the

vector magnetic potential Aφ inside the material for a frustum cone of bottom and

top radius b0 = 5[mm] and a0 = 2[mm] of L = 3[cm] in length and relative magnetic

permeability of µr = 10, immersed into an external magnetic field ~Bext = 0.1[T ]̂iz.
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Figure F.5: Magnetic Flux density along z-axis for a uniformly magnetized Cone
~M = M0îz

As it is showed in the numerical simulation, there is an spatial distribution of the

internal field that could lead to transverse magnetization components. Based on

the solutions for the magnetic field flux density ~B(r, z), magnetization vector inside

the material can be found for each component by using the constitutive equation
~B = µ0( ~H + ~M). Radial and z component for the magnetization vector are plotted

in Fig. F.6.

(a) (b)

Figure F.6: Magnetization components. (a) radial component. (b) axial component

As it is shown in Fig.F.6 radial component of the magnetization vector is almost

null inside the cone except at the corners, this causes the mismatch of the analytical

approach with the numerical FEM results in Fig.F.4 near to the cone ends. However,

z-component of the magnetization vector is the dominant component along the middle

of the cone, thus central region pattern of the internal magnetic field is well predicted

by the analytical approximation.
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