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Director:

Ph.D. Diego Alejandro Mej́ıa Guzmán

Codirector:

Ph.D. Pedro Hernán Zambrano Ramı́rez
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Universidad Nacional de Colombia

Facultad de Ciencias, Departamento de Matemáticas
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Resumen

La noción de problema de espectro de cofinalidad fue introducida en 2016 por Malliaris

y Shelah en [11]. Esta noción permite conectar y dar respuesta a dos antiguos problemas

abiertos en dos áreas totalmente distintas: el problema en Teoŕıa de Modelos de determinar

la maximalidad de SOP2 en el orden de Keisler y el problema en Topoloǵıa Conjuntista de

determinar si los cardinales invariantes del continuo p y t son iguales.

En el presente trabajo hacemos un análisis detallado de la noción de problema de espectro

de cofinalidad y su conexión con el problema de p = t. Además, estudiamos algunas aplica-

ciones topológicas de p = t y damos respuesta a una pregunta abierta hecha por Todorčević

y Veličković en [20] sobre la exisitencia de un conjunto parcialmente ordenado de tamaño p

sin precalibre p como una consecuencia directa de p = t.

Palabras clave: problema de espectro de cofinalidad, número de pseudo-intersección,

número de torre, orden de Keisler.

Abstract

The notion of cofinality spectrum problem was introduced by Malliaris and Shelah in [11].

This notion allows to connect and solve two longstanding open problems in quite diffe-

rent areas: the model-theoretic question of determining the maximality of SOP2-theories in

Keisler’s order and the set-theoretic Topology problem of determining whether the cardinal

invariants of the continuum p y t are the same.

In the present dissertation we do a detailed analysis of the notion of cofinality spectrum

problem and its connection with the problem p = t. Also, we study some topological appli-

cations of p = t and we answer an open question asked by Todorčević y Veličković in [20]

about the existence of a poset of size p without precaliber p as a direct consequence of p = t.

Keywords: cofinality spectrum problem, pseudo-intersection number, tower number,

Keisler’s order.
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Symbol list

Symbol Meaning

P(X) the set of all the subsets of X

P(ω)/fin the set of infinite subsets of N

[κ]λ the set of all the subsets of κ of cardinality λ

[κ]<ℵ0 the set of all the finite subsets of κ

ωω the set of sequences of natural numbers

ω<ω the set of finite sequences of natural numbers

Xω the set of sequences of elements of a set X

X<ω the set of finite sequences of elements of a set X

ȧ the name of a set a ∈ V [G]

ǎ the canonical name of a set a ∈ V

M [G] the generic extension of a transitive model M of ZFC

H(ℵ1) the class of all sets with countable transitive closure

 forcing relation

� satisfaction relation

≡ elementary equivalence

M≺ N M is an elementary substructure of N

MA Martin’s Axiom

E Keisler’s order

Th (M) the set of all sentences true in M

C(D) the cut spectrum of an ultrafilter

[(ai)i∈I ]D, a/D the class of equivalence of an element a modulo D



Introduction

In this thesis we study the notion of cofinality spectrum problem, introduced in 2016 by

Maryanthe Mallaris and Saharon Shelah in [11]. These cofinality spectrum problems allows

to connect and solve two problems in different areas: the set-theoretic topology problem of

determine whether p = t and the model-theoretic problem of maximality of SOP2-theories

in Keisler’s order. Let us first describe both problems.

A cardinal invariant of the continuum is a cardinal which describes a particular property of

the real line, either a topological or a combinatorial property, among others. Usually, these

cardinals lie between ℵ1 and c = 2ℵ0 , and there are several work done determining which

relations between them are provable in ZFC. Also, configurations such as Cichoń’s diagram

or van Douwen’s diagram show us some known relations between them (see [15, p. 199],

among others).

Two of these cardinal invariants are p (known as the pseudo-intersection number) and t

(known as the tower number), which capture interesting combinatorial properties of the set

of infinite subsets of N. By definition, it is straightforward to see that p ≤ t; however, the

problem to determine whether it was consistent that p < t remained open for a long time.

This problem was solved by Malliaris and Shelah in [11] where they proved that p = t in ZFC.

The second problem we describe here is the problem to determine a criterion for maximality

in Keisler’s order on countable complete theories. Keisler’s order (proposed by Keisler [9])

is a preorder which uses the relative difficulty of producing saturated regular ultrapowers to

compare the complexity of any pair of countable complete theories. Keisler [9] showed that

this order has a maximum class and there is a family of ultrafilters that saturates any theory.

The structure of the order on stable theories was first studied by Shelah [16]. Although the

structure on unstable theories still remains unknown, Shelah showed that any theory which

codifies a linear ordering, or more precisely that satisfies the strict order property, belongs to

the maximum class of Keisler’s order. Shelah [17] also proved that theories with a property

denoted as SOP3 and which retains many features of linear order, are in the maximum class.

It is surprising that both p = t and maximality in in Keisler’s order are connected by this

idea of cofinality spectrum problems. Informally, we could think of a cofinality spectrum
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problem as a set of orders which capture many of the behaviour of ω as an ordering, and for

each one of these orderings we have a set of trees which captures many of the features of the

tree of finite functions of natural numbers. In particular, the interesting task is to determine

how to translate the realization (or not) of gaps in certain orderings in the search of upper

bounds for increasing sequences in certain trees. Therefore, one can think of a cofinality

spectrum problem as the precise framework where we can study deep connections between

orderings and trees.

The first chapter is dedicated to some preliminaries in set theory and model theory: the

first three sections of this chapter are dedicated to review the main concepts about filters,

forcing and Martin’s Axiom, and we introduce the cardinals p and t. In these three sections,

we analyze several results about the forcing of infinite subsets of N (denoted by P(ω)/fin)

which will be central in chapter 4. The two remaining sections of this chapter correspond to

a brief review of model theory, focusing our attention on the construction of saturated ultra-

products. We dedicate the last section of this chapter to study the main properties of regular

ultrafilters, a special type of ultrafilters that allow to perform saturation of ultraproducts.

In chapter 2 we study the notion of peculiar gap, introduced by Shelah [18]. A peculiar gap is

a special kind of gap in ωω, and it is possible to ensure the existence of peculiar gaps under

the assumption that p < t. Also, we introduce the notion of cofinality spectrum problem

emphasizing in three main aspects: in Section 2.2, we study the existence or not of certain

special kind of gaps into distinguished orders; in Section 2.3 we analyze the model-theoretic

aspect of a cofinality spectrum problem, studying the notion of Or-type and the possibility

or not of realizing Or-types in a cofinality spectrum problem, called Or-saturation; and al-

so, we analyze the notion of Gödel codification, building a non-standard arithmetic in any

cofinality spectrum problem. Finally, in Section 2.4 we connect these three aspects in the

analysis of the main [11, Thm. 8.1], which allows to rule out assymetric gaps. We slightly

simplify this proof, specially by omitting the notion of internal cardinality.

In chapter 3, we study the Keisler’s order and a characterization of the maximum class of

this order. To do this, we study a special kind of ultrafilters, called good ultrafilters. These

kind of ultrafilters allows us to transfer the saturation of ultraproducts to any infinite un-

countable cardinal. Then, we focus on a special cofinality spectrum problem where we can

characterize the maximum class in Keisler’s order by good ultrafilters.

In chapter 4 we study the proof of p = t, by analysing a convenient cofinality spectrum

problem. Then we present some applications of this result, including an open question asked

by Todorčević and Veličković [20] about the existence of a poset of size p without precaliber

p. In this dissertation, we give an answer to this open question in Theorem 4.2.7.



1 Preliminaries

This chapter is dedicated to introduce the main basic concepts used along this work. In

the first two sections, we give a review about set theory, focusing on forcing theory. This

technique, developed by Paul Cohen in the early 1960s, is a powerful tool that is mainly

used to construct a large number of models of set theory and to prove consistency results.

We focus our attention on a particular forcing notion, which will be central in our work: The

forcing of infinite subsets of N with the partial order of almost inclusion (usually denoted

by P(ω)/fin). Also, we define the cardinals p and t. The study of the equality p = t is the

center of this dissertation.

We dedicate section 1.3 to study the Martin’s Axiom, which is an interesting combinatorial

principle with a great number of interesting applications.

In section 1.4, we give a little review of the most basic notions and results in model theory.

Many of the results and constructions presented here are classical (e.g. construction of ul-

traproducts,  Loś’s theorem, compactness theorem, Tarski-Vaught test, etc.), and they will

be used frequently in this work.

Finally, section 1.5 is dedicated to the construction and analysis of main properties of regular

ultrafilters , central concept used in chapter 3.

1.1. Basic notions in set theory

This section is dedicated to introduce the basic notions in set theory used along this disser-

tation. For this section, we follow [3, 7].

1.1.1. Filters and ultrafilters

We begin introducing the concept of filter.

Definition 1.1.1 Let X be a non-empty set and F ⊆ P(X). We say that F is a filter

over X if:

1. X ∈ F .
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2. If A,B ∈ F , then A ∩B ∈ F .

3. If A ∈ F and A ⊆ C ⊆ X, then C ∈ F .

Example 1.1.2 Let X be a non-empty set.

1. Both {X} and P(X) are filters over X, called the trivial filter and the improper filter,

respectively. A filter F is called proper if it is different from the improper filter.

2. Let A ⊆ X. The set F := {Y ⊆ X : A ⊆ Y } is a filter over X, called the principal

filter generated by A, and denoted by 〈A〉. This filter is proper if and only if A 6= ∅. We

say that a filter F is non-principal if and only if there is no A ⊆ X such that F = 〈A〉.

3. If X is infinite, then the set FrX := {A ⊆ X : |X rA| < ℵ0} is a filter over X, called

the Frèchet filter. This filter is non-principal.

4. A proper filter F over X is called free if
⋂
F = ∅. If X is infinite, we have that F is

free if and only if F contains the Frèchet filter. Moreover, if F is a free proper filter,

then F is non-principal.

There is an easy way of building filters from subsets of X: given G ⊆ P(X), we con-

sider the intersection of all filters over X which contains G, i.e., 〈G〉 :=
⋂
{F : G ⊆

F and F is a filter}. This is called the filter generated by G.

Definition 1.1.3 Let X be a non-empty set and F ⊆ P(X). We say that F has the finite

intersection property if and only if the intersection of any finite number of elements of

F is non-empty.

Fact 1.1.4 ([3, Prop. 4.1.1]) Let G ⊆ P(X) and let 〈G〉 be the filter generated by G.

Then:

(i) 〈G〉 is a filter over X.

(ii) 〈G〉 is the set of all A ⊆ X such that either A = X or, for some B1, ..., Bn ∈ G,

B1 ∩ · · · ∩Bn ⊆ A.

(iii) 〈G〉 is a proper filter if and only if G has the finite intersection property.

Notice that filters over a set can be ordered by inclusion, so we may wonder for the maximal

proper filters.

Definition 1.1.5 Let X be a non-empty set and U a filter over X. We say that U is an

ultrafilter over X if and only if U is a maximal proper filter.

Ultrafilter can be characterized in many ways, but we use the following one.



1.1 Basic notions in set theory 5

Fact 1.1.6 A proper filter U over X is an ultrafilter if and only if for every A ⊆ X, either

A ∈ U or X r A ∈ U .

It is not hard to show that any filter generated by a single point x ∈ X is a principal

ultrafilter over X; moreover, an ultrafilter U is principal if and only if U = 〈{x}〉, for some

x ∈ X. But there are also non-principal ultrafilters: indeed, any ultrafilter which extends the

Frèchet filter is non-principal when X is infinite. The next result allows us to claim that any

filter can be extended to an ultrafilter. The following fact presents several properties about

ultrafilters.

Fact 1.1.7 ([3, Cor. 4.1.4]) Let X be a non-empty set and U be an ultrafilter over X.

1. U is not free if and only if U is principal.

2. (Ultrafilter lemma) Any proper filter F over X can be extended to an ultrafilter over

X.

3. If X is infinite, then there is a non-principal ultrafilter U over X.

We will focus our attention on non-principal ultrafilters along this dissertation.

1.1.2. Cardinals p and t

Now we define the cardinals p and t. The reader can see [21, 7] for further properties about

these cardinals. First, we define a relation between subsets of N, called almost contention.

From now, the set of all infinite subsets of N will be denoted by P(ω)/fin, and the set of all

sequences of natural numbers will be denoted by ωω.

Definition 1.1.8 Let X, Y ∈ P(N) and let f, g ∈ ωω.

1. We say that is X is almost contained in Y if |X r Y | < ℵ0. We denote this as

X ⊆∗ Y .

2. We say that X is almost equal to Y if X ⊆∗ Y and Y ⊆∗ X. We denote this as

X =∗ Y .

3. We say that g eventually dominates f if |{n ∈ N : g(n) < f(n)}| < ℵ0. We denote

this by f ≤∗ g.

Note that every finite subset of N is almost contained in ∅ (hence, every finite subset of N is

almost equal to ∅), and every cofinite subset of N is almost contained in N (so, every cofinite

subset of N is almost equal to N).

Definition 1.1.9 Let F ⊆ P(ω)/fin and B ⊆ ωω.
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1. We say that P ∈ P(ω)/fin is a pseudo-intersection of F if P ⊆∗ F , for every

F ∈ F .

2. We say that F has the strong finite intersection property (abbreviated SFIP) if

for every F1, F2, ..., Fn ∈ F ,
n⋂
i=1

Fi ∈ P(ω)/fin.

3. We say that F is a tower if (F ,⊇∗) is a well-ordered set with no pseudo-intersection.

4. We say that B is bounded in ωω if there is a g ∈ ωω such that f ≤∗ g for all f ∈ B.

Otherwise, we say that B is unbounded in ωω.

Observation 1.1.10 Notice that if a family F has pseudo-intersection, then F has SFIP,

but not vice versa: any free filter F ⊆ P(ω)/fin has SFIP, but no non-principal ultrafilter over

N has pseudo-intersection. Let U be an ultrafilter on N, and let A be a pseudo-intersection

of U , then A ∈ U . Let A = {an |n ∈ N} be an enumeration, and consider B = {a2n |n ∈ N}
and C = {a2n+1 |n ∈ N}. We can see that A = B ∪ C ∈ U , so B ∈ U or C ∈ U , but neither

A *∗ B nor A *∗ C holds, which is absurd.

Thanks to observation 1.1.10, we can give the following definitions.

Definition 1.1.11 1. The pseudo-intersection number p is the smallest cardinality

of a family F ⊆ P(ω)/fin with the SFIP but which does not have a pseudo-intersection;

more formally

p := min {|F| : F ⊆ P(ω)/fin has the SFIP but no pseudo-intersection}. (1-1)

2. The tower number t is the smallest cardinality of a family T ⊆ P(ω)/fin which is a

tower, i.e.

t := min {|T | : T ⊆ P(ω)/fin is a tower}. (1-2)

3. The unbounding number b is the smallest cardinality of an unbounded family B ⊆
ωω, i.e.

b := min {|B| : B ⊆ ωω is an unbounding family}. (1-3)

We mention some useful facts about these two cardinals.

Proposition 1.1.12 ([21, Thm. 3.1]) 1. p and t are regular.

2. ℵ1 ≤ p ≤ t ≤ b ≤ c.
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Proof.

1. Regularity of t is immediate from definition; regularity of p is due to Szymański (see

theorem 3.1(e) [21, p. 116]).

2. For ℵ1 ≤ p, let E = {Xn |Xn ∈ P(ω)/fin, n ∈ ω} with SFIP. Build K = {kn | n ∈ ω}
such that kn ∈

(⋂
i<n Xn

)
r {ki | i < n}. It is clear that K ⊆∗ Xn for all n ∈ ω, hence

K is a pseudo-intersection of E .

For p ≤ t, it is enough to proof that every tower has SFIP. Let T ⊆ P(ω)/fin be a tower

and T1, ..., Tn ∈ T . Without loss of generality, we can assume that T1 ⊇∗ ... ⊇∗ Tn,

then Tn ⊆∗
⋂n
i=1 Ti, so

⋂n
i=1 Tn ∈ P(ω)/fin, which is what we wanted to show.

For t ≤ b, see theorem 3.1(a) [21, p. 120].

This concludes the proof. �

We will revisit these cardinals when we study the forcing of infinite subsets of N in chapter

4.

1.2. Forcing

In this section, we review the forcing theory. Broadly speaking, the forcing method could

be described as follows: given a transitive model M (called the ground model) of set theory,

we extend this model by adjoining a new set G (called a generic set) in order to obtain a

larger transitive model of set theory M [G] (called a generic extension) without increasing

the set of ordinals in the model. The generic set is approximated by forcing conditions in the

ground model, and a reasonable choice of forcing conditions determines what is true in the

generic extension. We recall that a pair (P,≤) is called a pre-ordered set if P is a non-empty

set and ≤ is a reflexive and transitive relation. We follow [6, 8, 10] for this section.

Definition 1.2.1 Let (P,≤, 1) be a pre-ordered set where 1 ∈ P is its maximum element,

usually abbreviated as P. We call P a forcing notion, and the elements of P are called

forcing conditions.

If M is a transitive model of ZFC, we have that P ∈M implies 1 ∈M ; it is usual to assume

that ≤∈M .

Definition 1.2.2 Let P be a forcing notion and p, q ∈ P.

1. We say that p is stronger than q if p ≤ q.

2. We say that p is compatible with q if there is an r ∈ P such that r ≤ p and r ≤ q.

We denoted this by p 6⊥ q. Otherwise, they are incompatible (denoted by p ⊥ q).
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3. A set A ⊆ P is called an antichain if its elements are pairwise incompatible. We say

that P has the countable chain condition (abbreviated as ccc) if every antichain of

P is at most countable.

Example 1.2.3 (Cohen forcing or forcing with finite partial functions) Let I, J be

non-empty sets. We define the forcing notion Fn (I, J) whose conditions are finite partial

functions from I to J with finite domain. We establish that a condition f is stronger than g

if f extends g (as a function). Notice that a condition f is incompatible with g if and only

if f ∪ g is not a function. When I = ω and J = 2, the forcing Fn (ω, 2) is called the Cohen

forcing.

Definition 1.2.4 Let P be a forcing notion and G ⊆ P.

1. We say that G is open if whenever p ∈ G and q ≤ p, q ∈ G.

2. We say that G is dense in P if for every p ∈ P there is a q ∈ G such that q ≤ p.

3. We say that G is dense below p ∈ P if for every q ≤ p, there is an r ≤ q such that

r ∈ G.

4. We say that G is a filter in P if

(i) G 6= ∅.
(ii) If p ≤ q and p ∈ G, then q ∈ G.

(iii) If p, q ∈ G, there is a r ∈ G such that r ≤ p and r ≤ q.

From definition, it is clear that any dense subset of a forcing is dense below p for all p ∈ P.

Now we define the notion of generic filter over a transitive model of ZFC.

Definition 1.2.5 Let M be a set, let P be a forcing notion and let G ⊆ P. We say that G

is generic over M (or P-generic over M) if

(i) G is a filter in P.

(ii) If D ⊆ P is dense and D ∈M , then G ∩D 6= ∅.

Notice that the genericity of a set does not depend on the ground model, but depends on

the dense subsets of P which are in M .

In general, a generic set over a transitive model need not exist. However, these generic sets

always exist when the ground model M is countable since there would be just countably

many dense subsets in M .

Lemma 1.2.6 (Generic filter existence lemma, [10, Lemma IV.2.3]) If P is a par-

tially ordered set and D is a countable collection of dense subsets of P, then there exists a

P-generic filter over D. In fact, for every p ∈ P there exists a P-generic filter G over D such

that p ∈ G.
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Proof. Let D = {Dn : n ∈ ω} be a countable collection of dense subsets of P, with

D0 = P. Let p0 = p, and for each n, choose pn+1 such that pn+1 ≤ pn and pn ∈ Dn. Then the

set

G := {q ∈ P : q ≥ pn for some n ∈ ω}

is a P-generic filter over D and p ∈ G. �

Note that, generally, if M is a countable transitive model of ZFC, then G /∈ M . So, we can

build a new transitive model of ZFC which contains both M and G. This new model will

contain all the things we are able to construct from G and elements of M . The elements of

this new model will have a name, which describes how they were built, and this name will

live in M . By recursion, we can define the value for a name, and the set of all values for

names in M will be called M [G].

Fact 1.2.7 (Generic Model Theorem, [8, Thm. 14.5]) Let M be a transitive model of

ZFC and P be a notion of forcing in M . If G ⊆ P is P-generic over M , then there exists a

transitive model M [G] such that:

1. M [G] is a model of ZFC.

2. M ⊆M [G] and G ∈M [G].

3. ONM [G] = ONM , where ONM = ON ∩M denotes the ordinals of the model M .

4. If N is a transitive model of ZFC such that M ⊆ N and G ∈ N , then M [G] ⊆ N .

Now, if we would want to know if the ground model M is a subclass of M [G], and it

is canonically defined, we need to appeal to the canonical names. These canonical names

are defined by ∈-induction as x̌ := {(y̌, 1) : y ∈ x}. This tells us that 1 will force that

y̌ ∈ x̌ whenever y ∈ x (in M), so every condition will have to force that as well. Moreover,

Ġ := {(p̌, p) : p ∈ P} is a name for the filter G in M (even when M does not know about

the existence of G).

The next concepts will be crucial in chapter 4, when we analyze the proof of p = t.

Definition 1.2.8 ([8, Def. 15.5]) Let P a forcing notion and κ an infinite cardinal. We

say that P is κ-distributive if the intersection of κ-many open dense sets is open dense.

We say that P is < κ-distributive if it is λ-distributive for all λ < κ.

Notice that, in the previous definition, we can work with open dense sets below some con-

dition p when we want to use κ-distributivity of a forcing. Also, forcing notions with κ-

distributivity have the convenient property of adding no new sequences of length ≤ κ in

generic extensions.
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Theorem 1.2.9 ([8, Thm. 15.6]) Let κ be an infinite cardinal, let M a transitive model

of ZFC, let G a P-generic filter over M and assume that P is κ-distributive. If f ∈M [G] is

a function from κ into M , then f ∈M . In particular, κ has no new subsets in M [G].

Proof. Let f : κ→ M , f ∈ M [G] and let ḟ be a name for f . Then there is some A ∈ M
and a condition p0 ∈ G such that, in M ,

p0 P “ḟ is a function from κ̌ into Ǎ ”.

Working in M , for each α < κ, the set

Dα = {p ≤ p0 : (∃x ∈ A) p P ḟ(α̌) = x̌}.

is open dense below p0. Hence, D =
⋂
α<κ Dα is dense below p0 and, in M [G], there is some

p ∈ D ∩ G. Back in M , for each α < κ there is some xα such that p  f(α̌) = x̌α. Define

g : κ→ A by g(α) = xα. Notice that, in M [G], f(α) = xα = g(α) for every α < κ, therefore

f ∈M . �

Definition 1.2.10 ([8, Def. 15.7]) Let P be a forcing notion and let κ an infinite cardinal.

We say that P is κ-closed if for every λ ≤ κ, every descending sequence p0 ≥ p1 ≥ ... ≥
pα ≥ ..., with α < λ, has a lower bound in P. We say that P is < κ-closed if it is λ-closed

for all λ < κ.

Usually, verifying closure in a forcing notion is easier than verifying distributivity.

Lemma 1.2.11 ([8, Lemma 15.8]) Let P be a forcing notion and let κ an infinite cardinal.

If P is κ-closed, then it is κ-distributive.

Proof. Let {Dα : α < κ} be a collection of open dense sets. Clearly, the intersection

D =
⋂
α<κ Dα is open, so we need only to show that D is dense. For this purpose, let p ∈ P

be arbitrary. By induction on α < κ, we construct a descending κ-sequence of conditions

p ≤ p0 ≤ p1 ≤ .... set pα as a condition such that p, pζ ≥ pα, for all ζ < α and pα ∈ Dα.

Finally, let q be a condition such that pα ≥ q, for all α < κ. Notice that q ∈ D. �

Remark 1.2.12 Consider the forcing P = P(ω)/fin, ordered by the relation ⊆∗. From

definition of t, we see that this forcing is < t-closed, and hence P(ω)/fin is < t-distributive.

Therefore, if M is a countable transitive model of ZFC and G is a generic filter over M , then

this generic filter will add no new sequences of length < tM and it will preserve cofinalities and

cardinals up to and including tM (we refer the reader interested in these notions to Kunen [10,

pp. 263,264]). Moreover, we can ensure that P(N)M [G] = P(N)M and H(ℵ1)M [G] = H(ℵ1)M .

Lemma 1.2.13 ([6, Prop. 4B]) P t = ť and P p = p̌.
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Proof. To prove P t = ť, let (aξ)ξ<t be a ⊆∗-decreasing family in P(ω)/fin with no lower

bound in P(ω)/fin. Then

P (ǎξ)ξ<ť is a ⊆∗ -decreasing family in P(ω)/fin.

Since P P(N) = ˇP(N), P {ǎξ : ξ < ť} has no lower bound in P(ω)/fin, so P t ≤ ť.

Suppose that κ < t and let p ∈ P and let (ȧξ)ξ<κ be a family of P-names such that

p  (ȧξ)ξ<κ is a ⊆∗ -decreasing family in P(ω)/fin.

Since P is < t-closed, there are a q ≤ p and a family (aξ)ξ<κ in P(N) such that q P ȧξ = ǎξ
for every ξ < κ. Now, it is clear that

q  (ǎξ)ξ<κ̌ is a ⊆∗ -decreasing family in P(ω)/fin,

then (aξ)ξ<κ is a ⊆∗-decreasing family in P(ω)/fin, and as κ < t, there is a lower bound a of

{aξ : ξ < κ} in P(ω)/fin, and

P ǎ is a lower bound of {ǎξ : ξ < κ̌} in P(ω)/fin

thus

q P ǎ is a lower bound of {ȧξ : ξ < κ} in P(ω)/fin

Since (ȧξ)ξ<κ is arbitrary, then P κ̌ < t, and we can conclude that P ť ≤ t, hence P ť = t.

For proving P p̌ = p, we do an analogous argument using the fact that p ≤ t, and then P
is p-closed. �

To finish this section, we give another useful result about the generic filters of the forcing

P(ω)/fin: these generic filters are non-principal Ramsey ultrafilters over N.

Proposition 1.2.14 ([6, Prop. 4C]) Let Ġ be the name {(Ǎ, A) : A ∈ P(ω)/fin}. Then

P P Ġ is a non-principal ultrafilter over N.

Proof. Showing P “Ġ is a filter” does not require too much work; now, let A ∈ P(ω)/fin

and Ċ a name such that A P Ċ ∈ P(ω)/fin, then there are a C ∈ P(ω)/fin and an infinite

A′ ⊆∗ A such that A′ P Ċ = Č (since P(ω)/fin adds no new subsets of N); now, if A′∩C is

infinite, then A′∩C P Ċ ∈ Ġ; otherwise, A′rC is infinite and A′rC P NrĊ ∈ Ġ. Hence,

P “Ġ is a ultrafilter”. Finally, for n ∈ N, we have that N ⊆∗ N r {n} P N r {n} ∈ Ġ,

therefore P “Ġ is non-principal”. �
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1.3. Martin’s Axiom

In this section, we give a short review of Martin’s Axiom (abbreviated MA). This combi-

natorial principle is useful when one wants to introduce several combinatorial complexities,

usually found in forcing. We will mention some basic results which relate MA and the cardinal

p, defined en section 1.1. We follow [2, 10] for this section.

Definition 1.3.1 For any infinite cardinal κ, MAP(κ) is the following statement: For any

family D of dense sets in P such that |D| ≤ κ, there is a filter G on P such that G∩D 6= ∅,
for D ∈ D.

Following the convention used in [10], MA(κ) is the statement saying that MAP(κ) holds for

any ccc forcing P; and MA is the statement that MA(κ) holds for all κ < c.

Also, from the condition |D| ≤ κ in definition 1.3.1, we can ensure that λ ≤ κ implies that

MAP(κ) −→ MAP(λ) and MA(κ) −→ MA(λ). Moreover, we can conclude that

Fact 1.3.2 ([10, Lemma III.3.13]) MA(κ) −→ κ < c

In light of the previous fact, we wonder for the first cardinal κ in which MA(κ) fails, and

how we can relate this cardinal with those studied in section 1.2.

Definition 1.3.3 ([10, Def. III.3.16]) m is the least cardinal κ such that ¬MA(κ).

Lemma 1.3.4 ([10, Lemma III.3.22]) ℵ1 ≤ m ≤ p

Proof. It is clear that ℵ1 ≤ m by Lemma 1.2.6.

Let κ be such that MA(κ) holds (i.e. κ < m) and fix F ⊆ P(ω)/fin such that F has the SFIP

and |F| = κ. We want to find a K ∈ P(ω)/fin such that K is a pseudo-intersection of F .

Define the forcing notion P whose conditions are set of pairs p = (sp,Wp) such that sp ∈
[N]<ℵ0 and Wp ∈ [F ]<ℵ0 , and ordered as follows: we will say that q ≤ p if

(i) sp is an initial segment of sp.

(ii) Wq ⊇ Wp.

(iii) For all Z ∈ Wp, (sq r sp) ⊆ Z.

Broadly speaking, the sp are finite approximations of K, and the Wp are witnessing that

K ⊆∗ Z, for all Z ∈ Wp (this forcing is known as Mathias-Prikry forcing, as it is usually

denoted by MF). We leave to the reader the remaining details of this proof. �

Martin’s Axiom also has a topological statement, which gives us a bound on the number of

closed nowhere dense sets that can cover a compact Hausdorff space. Recall that a topological

space X has the ccc if the forcing notion Ω(X) of non-empty open sets of X, ordered by ⊆,

has the ccc property.
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Theorem 1.3.5 ([10, Lemma III.3.18]) Let X be a ccc compact Hausdorff space. Assume

MA(κ) and let Hα, for α < κ, be closed nowhere dense sets. Then
⋃
α<κ Hα 6= X.

Proof. Let G be a filter in Ω(X). Since G is a filter, then p, q ∈ G implies p∩ q ∈ G, so G

has the finite intersections property, hence FG :=
⋂
{p : p ∈ G} 6= ∅ because X is compact.

Let Dα := {q ∈ Ω(X) : q ∩Hα = ∅}. Notice that each Dα is dense: given p ∈ Ω(X), then

prHα is a non-empty open set of X, and as X is compact Hausdorff, there is an r ∈ Ω(X)

such that r ⊆ r ⊆ prHα. Thus r ∈ Dα and r ≤ p.

Since MA(κ) holds, we can choose a filter G such that G ∩Dα 6= ∅, for all α < κ, and this

implies that FG ∩Hα = ∅, for all α < κ. �

Now we want to consider a strengthening of ccc property and the restriction of MA to it.

Definition 1.3.6 ([10, Def. III.3.23]) Let P be a forcing notion and C ⊆ P. We say that

C is centred if and only if for all n ∈ ω and p1, ..., pn ∈ P, there is a q ∈ P such that q ≤ pi
for all i ≤ n. We say that P is σ-centred if and only if P =

⋃
m∈ω Cm, where each Cm is

centred.

The notion of “centred” is the poset analogous of the finite intersections property for families

of sets. In topological terms, a compact Hausdorff space X is separable (meaning there is a

countable dense subset of X) if and only if the forcing Ω(X) is σ-centred.

Studying MA restricted to σ-centred forcing gives us a characterization of the cardinal p.

This result is due to Bell [2], and it is called Bell’s theorem.

Theorem 1.3.7 (Bell, [2, Thm. 1.2],[10, Lemma III.3.61]) Let mσ be the least cardi-

nal κ such that MAP(κ) is false for some σ-centred forcing P. Then mσ = p.

Proof. Notice that Mathias-Prikry forcing is σ-centred, so we have that mσ ≤ p. The

reader can find the rest of the proof in [2, pp. 151-152] or [10, pp. 187-188]. �

Observation 1.3.8 According to theorems 1.3.5 and 1.3.7, we can see that there is no

separable compact Hausdorff space X which can be covered by fewer than p-many closed

nowhere dense sets.

1.4. Model theory

In this section, we give the basic concepts in model theory used in this work. We assume

the reader has some basic knowledge about Mathematical Logic, first order languages, L-

structures and L-theories. Most of the definitions and results in this section can be found
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in [3, 12, 19]. Unless stated otherwise, all languages considered along this dissertation are

countable first-order languages.

1.4.1. Some basic results

Recall that ifM is an L-structure and A ⊆M, then LA is the language obtained by adding

to L constant symbols for each a ∈ A. It is possible to consider M as an LA-structure by

interpreting the new symbols in the obvious way, i.e. as elements of A. Also, we consider

ThA(M) the set of all true LA-sentences in M.

Definition 1.4.1 ([12, Def. 4.1.1]) Let p be the set of LA-formulas with free variables

v1, ..., vn. We say that p is an n-type if p ∪ ThA(M) is satisfiable. We say that p is a

complete n-type if ϕ ∈ p or ¬ϕ ∈ p for any LA-formula ϕ(v1, ..., vn). By SMn (A) we

denote the set of all complete n-types.

The following result, called the Tarski-Vaught test, allows us to build small elementary subs-

tructures.

Fact 1.4.2 (Tarski-Vaught test, [12, Prop. 2.3.5]) Suppose that M is a substructure

of N . Then M is an elementary substructure of N if and only if, for any formula ϕ(x, y)

and a ∈ M , where y represents a finite tuple of variables, if there is a b ∈ N such that

N � ϕ(b, a), then there is a c ∈M such that N � ϕ(c, a).

Also, we work here with the notion of complete theory.

Definition 1.4.3 Let T be an L-theory. We say that T is complete if M ≡ N , for all

M,N � T .

Definition 1.4.4 Let T be a L-theory with models of size κ, for κ an infinite cardinal. We

say that T is κ-categorical if any two models of T of size κ are isomorphic.

The next result gives us a criterion for finding complete theories. We recall that an L-theory

T is called satisfiable if T has a model.

Fact 1.4.5 (Vaught test, [12, Thm. 2.2.6]) Let T be a satisfiable theory with no finite

models that is κ-categorical for some infinite cardinal κ ≥ |L|. Then T is complete.

Along this dissertation, we work with countable completes theories over countable languages.
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1.4.2. Ultraproducts

Now we give a brief review of the construction of ultraproducts of models Mi modulo an

ultrafilter F .

Suppose I is a non-empty set, F is a filter over I and let (Mi)i∈I be a family of L-structures,

each with universe Mi. For (ai)i∈I , (bi)i∈I ∈
∏

i∈I Mi, define the relation ∼F as follows:

f ∼F g ⇐⇒ {i ∈ I | ai = bi} ∈ F (1-4)

The relation ∼F is an equivalence relation, and thus the set
∏

i∈I Mi/∼F is called the re-

duced product of the family (Mi)i∈I , and it is denoted by
∏

i∈I Mi/F . WhenMi =M,

for all i ∈ I, this product is called the reduced power of M.

Now, when F is an ultrafilter, inM =
∏

i∈I Mi/F we define the interpretations of symbols

in M:

(i) If c is a symbol constant, then cM := [(cMi)i∈I ].

(ii) If F is an n-ary function symbol, then

FM
(
[(a1

i )i∈I ], ..., [(a
n
i )i∈I ]

)
:= [(FMi(a1

i , ..., a
n
i ))i∈I ]

(iii) If R is a k-ary relation symbol, then

RM :=

([(a1
i )i∈I ], ..., [(a

k
i )i∈I ]) ∈

(∏
i∈I

Mi/F

)k

: {i ∈ I : (a1
i , ..., a

k
i ) ∈ RMi} ∈ F


Notice that both FM and RM are well defined, hence the reduced productM =

∏
i∈I Mi/F

is called the ultraproduct of Mi modulo F , and it is often denoted by
∏
F Mi. When

Mi =M for every i ∈ I, the ultraproduct is called the ultrapower of M modulo F , and

it is denoted by MI/F .

The next theorem is the fundamental result about ultraproducts, and gives us a way to

determine when a formula is valid in an ultraproduct.

Theorem 1.4.6 ( Loś’s theorem) Let F be an ultrafilter over I, let M =
∏
F

Mi be the

ultraproduct of (Mi)i∈I and ϕ(x1, ..., xn) be an L-formula. Then

M � ϕ([g1]∼F , ..., [gn]∼F ) ⇐⇒ {i ∈ I : Mi � ϕ(g1(i), ..., gn(i))} ∈ F
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The following is an useful corollary of  Loś’s theorem, and it will be used several times in this

work.

Fact 1.4.7 ([8, Cor. 12.5]) Let M be an L-structure and let U be an ultrafilter on I.

The canonical embedding j : M → MI/U , defined by j(a) := [(a)i∈I ], is an elementary

embedding.

With  Loś’s theorem, it is possible to prove the Compactness theorem.

Fact 1.4.8 (Compactness theorem, [12, Thm. 2.1.4]) An L-theory T is satisfiable if

and only if every finite subset of T is satisfiable.

Another important notion in model theory is called saturation, and it will be crucial in

chapter 3, when we study saturation of ultraproducts.

Definition 1.4.9 ([12, Def. 4.3.1]) Let κ be an infinite cardinal. We say that M is κ-

saturated if, for all A ⊆M such that |A| < κ and p ∈ SMn (A), then p is realized in M . We

say that M is saturated if it is |M |-saturated.

Saturation allows to realize types over small subsets of the universe of a given model. It is

usual to relate saturation with another notion called homogeneity (the reader who wants to

read about homogeneity can find some detailed information in [12, 19]).

1.4.3. Quantifier elimination

Now we study some theories which have an important property, called quantifier elimination,

such as dense linear orders (shortly, DLO) and discrete linear orders.

Definition 1.4.10 ([12, Def. 3.1.1]) Let T be a L-theory. We say that T has quantifier

elimination if for every formula ϕ(x1, ..., xn) there is a quantifier-free formula ψ(x1, ..., xn)

such that T � ϕ↔ ψ

The next theorem gives us a criterion to determine whether a theory has quantifier elimi-

nation or not. We recall that a formula ϕ is called simple existential if ϕ := ∃xψ, where ψ

is a quntifier-free formula. If ψ is a conjunction of atomic formulas or negation of atomic

formulas, then we say that ϕ is primitive existential.

Fact 1.4.11 ([19, Lemma 3.2.4]) Suppose that T is an L-theory. Then T has quantifier

elimination if and only if every simple existential formula ϕ(v) is equivalent to a quantifier-

free L-formula.
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Some important theories have quantifier elimination, such as algebraically closed fields

(shortly, ACF) and dense linear orders (shortly, DLO). The reader can view [12, 19] for

more interesting and fascinating examples.

Now we define the theory of discrete linear orders with minimum element and wit-

hout maximum element, which appears in chapters 2 and 3. Later, we show that this

theory has quantifier elimination.

Definition 1.4.12 Let L = {s,<, 0} be a language with a unary function symbol s, a binary

relation symbol < and a constant symbol 0. The L-theory T of discrete linear orders with

minimum element and without maximum element is defined by the following axioms:

1. ∀x¬(x < x).

2. ∀x ∀y ∀z (x < y ∧ y < z → x < z).

3. ∀x ∀y (x < y ∨ y < x ∨ x = y).

4. ∀x¬(x < 0).

5. ∀x∀y (s(x) = s(y)→ x = y).

6. ∀y (y 6= 0→ ∃x (y = s(x))).

7. ∀x (¬∃y (x < y ∧ y < s(x))).

8. ∀x (x < s(x)).

Theorem 1.4.13 The theory T described in definition 1.4.12 has quantifier elimination.

Proof. See [4, Thm 32A, pp. 195-196]. �

1.5. Regular ultrafilters

This section is dedicated to study a special kind of ultrafilters which allows us to characterize

saturation of ultraproducts. In this section, we follow [3, 9, 16].

Definition 1.5.1 Let I be a non-empty set, D a filter over I and λ an infinite cardinal.

1. A family X = {Xi : i < λ} of subsets of I is called regular if for every u ⊆ λ, we

have⋂
i∈u

Xi 6= ∅ if and only if |u| < ℵ0
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Also, we say that the family X regularizes D (or X is a regularizing family) if it

is regular and Xi ∈ D, for all i < λ.

2. The filter D is called λ-regular if D has a regularizing family X of size λ. We say

that D is regular if it is |I|-regular.

3. We say that D is λ-complete if for every Xi ∈ D, with i < α < λ, we have that⋂
i<α Xi ∈ D.

Observation 1.5.2 Note that a filter D over a set I is λ-regular if there is a subset X ⊆ D
such that |X| = λ and each i ∈ I belongs only to finitely members of X.

Let us give some several useful facts about regular (ultra)filters.

Fact 1.5.3 ([16, Lemma 1.3, Chapter VI]) Let D be a filter over an infinite set I.

1. If D is λ-regular and µ ≤ λ, then D is µ-regular.

2. D is not |I|+-regular.

3. For every cardinal λ ≥ ℵ0, there is a non-principal λ-regular ultrafilter D over a set I

of size λ.

Proof.

1. Immediate from the definitions.

2. If {Xi : i < |I|+} ⊆ D is regular, then choose ji ∈ Xi. For some k ∈ I, we have that

|{i < |I|+ : ji = k}| = |I|+, however we have that
⋂
{Xi : ji = k} ⊇ {k} 6= ∅, which

is a contradiction.

3. Without loss of generality, let I = [λ]<ℵ0 . For each α ∈ λ, consider Xα := {u ∈ [λ]<ℵ0 :

α ∈ u} ⊆ [λ]<ℵ0 . We can see that the family X = {Xα : α ∈ λ} has the finite

intersection property: if α1, ..., αn ∈ λ, then {α1, ..., αn} ∈ Xα1 ∩· · ·∩Xαn . Thus X can

be extended to an ultrafilter D over I. Moreover, this ultrafilter is λ-regular: if L ⊆ λ

is infinite and
⋂
α∈L Xα 6= ∅, then there exists an x ∈ [λ]<ℵ0 such that x ∈ Xα for all

α ∈ L. Therefore, we have that α ∈ x, for all α ∈ L, which is absurd since x is finite.

For proving that D is non-principal, just notice that
⋂
α∈L Xα = ∅.

Here concludes the proof. �

We will focus our attention on ℵ0-regular ultrafilters (also called ω-regular ultrafilters)

and ℵ1-incomplete ultrafilters (also called countably incomplete ultrafilters). These kind

of ultrafilters can be characterized in the following way.
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Proposition 1.5.4 Let D be an ultrafilter over I. The following statements are equivalent:

(i) D is ω-regular.

(ii) D is countable incomplete.

(iii) There is a decreasing countable chain

I = I0 ⊇ I1 ⊇ I2 ⊇ ...

of elements In ∈ D such that
⋂
n∈ω In = ∅.

Proof. (i) =⇒ (ii): Suppose D is ω-regular, then there is a X ⊆ D such that |X | = ℵ0

and each i ∈ I belongs to only many finitely X ∈ X . Then
⋂
X = ∅ /∈ D, so D is countably

incomplete.

(ii) =⇒ (iii): Let D be a countably incomplete ultrafilter over I, so there is a countable

family {Xn : n ∈ ω} ⊆ D such that
⋂
n∈ω Xn /∈ D. Consider{

I0 = X0 r
⋂
n∈ω Xn

In+1 = In ∩Xn+1.

It is easy to see that In ∈ D, since (
⋂
n∈ω Xn)c ∈ D (because D is an ultrafilter). Moreover,

it is clear that In+1 ⊆ In, for all n ∈ ω. Now, we have that⋂
n∈ω

In =
⋂
n∈ω

Xn r
⋂
n∈ω

Xn = ∅.

So {In : n ∈ ω} ⊆ D is a decreasing chain with empty intersection.

(iii) =⇒ (i): Let {In : n ∈ ω} ⊆ D be a decreasing chain with empty intersection. If L ⊆ N
is infinite, then

⋂
n∈L In = ∅, hence D is ω-regular. �

Countably incomplete ultrafilters are very important in model theory, because these allow

us to build ℵ1-saturated ultraproducts.

Theorem 1.5.5 ([3, Thm. 6.1.1]) Let L be a countable language, and let D be a coun-

tably incomplete ultrafilter over a set I. Then for every family (Mi)i∈I of L-structures, the

ultraproduct
∏
D Mi is ℵ1-saturated.

Proof. LetM =
∏
D Mi, let Σ(x) be a set of formulas (with one free variable) of L. It is

enough to prove that if Σ(x) is finitely satisfiable in M, then Σ(x) is satisfiable in M.

Suppose that each finite subset of Σ(x) is realized inM. Since L is countable, then we know

that Σ(x) is countable. Therefore, let Σ(x) = {σn(x) : n ∈ ω} be an enumeration of Σ(x).
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Since D is countably incomplete, there is a decreasing chain I = I0 ⊇ I1 ⊇ ... such that⋂
n∈ω In = ∅ by proposition 1.5.4. Now, let X0 = I and for all n ∈ ω, define

Xn = In ∩ {i ∈ I : Mi � ∃x (σ1(x) ∧ ... ∧ σn(x))}

Then, by  Loś’s theorem, we have that {i ∈ I : Mi � ∃x (σ1(x) ∧ ... ∧ σn(x))} ∈ D, thus

Xn ∈ D for all n ∈ ω. Moreover, it is clear that
⋂
n∈ω Xn = ∅ and Xn ⊇ Xn+1. Hence, for

each i ∈ I, we can find a largest n(i) < ω such that i ∈ Xn(i).

Now, choose f ∈ M as follows: If n(i) = 0, let f(i) be some arbitrary element in Mi. If

n(i) > 0, choose f(i) ∈Mi such that

Mi � σ1(f(i)) ∧ ... ∧ σn(i)(f(i))

Notice that for any i ∈ Xn, we have that n ≤ n(i) and therefore Mi � σn(f(i)). Thus, by

 Loś’s theorem, we have thatM � σn([f ]) for all n > 0, and hence [f ] satisfies Σ(x) inM. �

We have seen that countably incomplete ultrafilters give us certain amount of saturation of

ultraproducts. Regular ultrafilters will allow us to preserve saturation of ultrapowers which

have elementary equivalent ultraroots (recall that an elementary L-substructure N ≺M of

a model of a first-order theory is an ultraroot of M if M is isomorphic to an ultrapower of

N ).

Theorem 1.5.6 ([9, Thm. 2.1]) Let D be a regular ultrafilter over a set I, with |I| = λ.

If M and N are L-structures such that M≡ N and N I/D is λ+-saturated, then MI/D is

λ+-saturated.

Proof. Let Σ(x) be a collection of formulas finitely satisfiable inMI/D such that |Σ(x)| ≤
λ. Since D is a regular ultrafilter, there is some regularizing family X = {Xi : i ∈ I} for D,

and since |Σ(x)| ≤ |X | = λ, let j be an injection from Σ(x) into X . We define the following

sets

Σ(i) := {σ ∈ Σ(x) : i ∈ j(σ)}
X(i) := j(Σ(i)) = {j(σ) : σ ∈ Σ(i)}

Notice that Σ(i) is finite: otherwise, it would be possible to find an infinite collection of

elements of X with non-empty intersection, contradicting the regularity of D. Moreover, we

have that |X(i)| = |Σ(i)| < ℵ0 since j is an injection from Σ(x) to X .

For each i ∈ I, let

ψi(aσ(i) : σ ∈ Σ(i)) :=
∧

w⊆Σ(i)

w 6=∅

ϕw(aσ(i) : σ ∈ w),
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where ϕw(aσ(i) : σ ∈ w)ew := ∃x
∧
σ∈w σ(x, aσ(i)), with

ew :=

 0 if M � ϕw(aσ(i) : σ ∈ w)

1 if M � ¬ϕw(aσ(i) : σ ∈ w)

with ϕ0
w = ϕ and ϕ1

w = ¬ϕ.

Since M � ψi(aσ(i) : σ ∈ Σ(i)) and M ≡ N , we can find 〈bσ(i) : σ ∈ Σ(i)〉 such

that N � ψi(bσ(i) : σ ∈ Σ(i)). For σ ⊆ Σ(i), choose bσ(i) ∈ N arbitrary, and consider

bσ := [(bσ(i))i∈I ].

Notice that {σ(x, bσ) : σ ∈ Σ(x)} is finitely satisfiable in N I/D: let w ⊆ Σ(x) be non-empty

and finite. Since Σ(x) is finitely satisfiable in MI/D, then MI/D � ϕw(aσ : σ ∈ w), so

Kw :=

{
i ∈

⋂
σ∈w

j(σ) : M � ϕw(aσ(i) : σ ∈ w)

}
∈ D.

Now fix i ∈ Kw, then w ⊆ Σ(i) and M � ϕw(aσ(i) : σ ∈ w), therefore N � ϕw(bσ(i) : σ ∈
w), i.e. N � ∃x

∧
σ∈w σ(x, bσ(i)), hence

Kw ⊆

{
i ∈ I : N � ∃x

∧
σ∈w

ϕw(x, bσ(i) : σ ∈ w)

}
∈ D,

then by  Loś’s theorem we have that N I/D � ∃x
∧
σ∈w σ(x, bσ).

Since N I/D is λ+-saturated, there is some b∗ ∈ N I/D such that N I/D � σ(b∗, bσ) for all

σ ∈ Σ(x). Fix i ∈ I and let

Wi := {σ ∈ Σ(i) : N � σ(b∗(i), bσ(i))}

Recall that M � ϕWi
(aσ(i) : σ ∈ Wi) if and only if N � ϕWi

(bσ(i) : σ ∈ Wi), but this is

true with ew = 0 for all σ ∈ Wi, so choose some a∗(i) ∈M such thatM � σ(a∗(i), aσ(i)) for

all σ ∈ Wi.

Finally, let us see that M � σ(a∗, aσ) for all σ ∈ Σ(x). Since N I/D � σ(b∗, bσ), then

Jσ := {i ∈ j(σ) : N � σ(b∗(i), bσ(i))} ∈ D.

Fix some i ∈ Jσ, so σ ∈ Wi and M � σ(a∗(i), aσ(i)). Therefore,

Jσ ⊆ {i ∈ I : M � σ(a∗(i), aσ(i))} ∈ D,

hence by  Loś’s theorem, we conclude that M � σ(a∗, aσ) for all σ ∈ Σ(x). �

In chapter 3, we discuss how to extend ℵ1-saturation of ultraproducts via a new type of
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ultrafilters.



2 Cofinality spectrum problems

In this chapter, we present the notion of cofinality spectrum problem, the central concept of

this dissertation.

Before introducing the notion of cofinality spectrum problem, we focus on a special type of

gaps, called peculiar gaps. This type of gaps will be very important when we study the proof

of p = t. section 2.1 is completely dedicated to introduce peculiar gaps.

Section 2.2 is dedicated exclusively to study main definition and results about cofinality

spectrum problems.

In section 2.3 we study two important aspects of cofinality spectrum problems: a model-

theoretical aspect (related to a special kind of types and conditions about realizations of

these types, called local saturation); and a recursive aspect (related to the possibility of

carrying out codifications of trees in a convenient arithmetic).

Finally, in section 2.4 we study the characterization of Cct(s) = ∅, using the tools developed

in the previous sections.

The results and definitions we give in sections 2.2, 2.3 and 2.4 are compiled in Mallaris-Shelah

[11, §2-§9].

2.1. Peculiar gaps

In this section, we discuss the main properties of gaps in ωω. In this section we follow

[5, 11, 13, 18]. First, we recall the definition of gap in a poset.

Definition 2.1.1 ([13, Def. 1.3]) Let P = (P,≤) be a preorder and β, γ ordinals. A (β, γ)-

gap in P is a pair of sequences 〈pξ : ξ < β〉 and 〈qη : η < γ〉 in P such that

(i) 〈pξ : ξ < β〉 is ≤-increasing.

(ii) 〈qη : η < γ〉 is ≤-decreasing.

(iii) pξ ≤ qη for all ξ < β and η < γ.
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(iv) there is no r ∈ P such that pξ ≤ r ≤ qη for all ξ < β and η < γ.

If the pair only satisfies (i)-(iii), we say that it is a (β, γ)-pregap.

It is clear that if (〈pξ : ξ < β〉, 〈qη : η < γ〉) represents a (β, γ)-gap in P , then by reversing

the order in P we will obtain a (γ, β)-gap in (P,≥).

We focus our attention in a very special (and useful) type of gaps in (ωω,≤∗).

Definition 2.1.2 (Shelah, [18, Def. 1.10]) Let κ1, κ2 be infinite regular cardinals. A (κ1, κ2)-

peculiar gap in ωω is a pair of sequences (〈fα : α < κ1〉, 〈gβ : β < κ2〉) of functions in ωω

such that:

(i) (〈fα : α < κ1〉, 〈gβ : β < κ2〉) is a (κ1, κ2)-gap in (ωω,≤∗).

(ii) If h ∈ ωω is such that fα ≤∗ h, for all α < κ1, then gβ ≤∗ h for some β < κ2.

(iii) If h ∈ ωω is such that h ≤∗ gβ, for all β < κ2, then h ≤∗ fα for some α < κ1.

Now we state some very useful results, which give us convenient bounds if we want to build

peculiar gaps.

Proposition 2.1.3 ([5, Thm. 2.2]) Let κ, λ be infinite cardinals. If both κ, λ < p, then

there is no (κ, λ)-peculiar gap.

Proof. Suppose that (〈fα : α < κ〉, 〈gβ : β < λ〉) represents a (κ, λ)-peculiar gap.

Let P be the forcing notion whose conditions are ordered pairs (s, F ) such that s ∈ ω<ω

and F ∈ [λ]<ℵ0 , and ordered as follows: (s, F ) ≤ (s′, F ′) if s′ ⊆ s, F ′ ⊆ F and for all

n ∈ dom (s) r dom (s′) and for all α ∈ F ′, s(n) < gα(n). It is clear that P is a σ-centred

forcing notion, and for α < κ and n < ω, consider the sets

Dα,n := {(s, F ) ∈ P : ∃i ≥ n (s(i) ≥ fα(i))}

By Bell’s theorem, we can choose a filter G such that it intersects Dα,n for all α < κ and

n < ω. Hence, for some filter G we have a function h :=
⋃
{s ∈ ωω : (∃F ∈ [λ]<ℵ0)((s, F ) ∈

G)} such that h ≤∗ gβ for all β < λ, but h �∗ fα for all α < κ. �

Proposition 2.1.4 ([18, Prop. 1.11]) If κ < b, then there is no (κ,ℵ0)-peculiar gap.
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Proof. Assume that (〈fα : α < κ〉, 〈gn : n < ω〉) represents a (κ.ℵ0)-peculiar gap. Given

h ∈ ωω increasing such that h(0) = 0, let us consider the function gh given by

gh :=
⋃
n<ω

gn �[h(n),h(n+1)) .

Let us prove that, for a convenient h, we can find a gh that fills the gap.

Define f ∈ ωω recursively by f(0) = 0 and f(n + 1) := min {k < ω : f(n) < k ∧ (∀k′ ≥
k) gn+1(k′) ≤ gn(k′)}; notice that whenever f ≤∗ h, gh ≤∗ gn for all n < ω.

Now for each α < κ, recursively define hα ∈ ωω by hα(0) = 0 and hα(n) := min {k < ω :

hα(n−1) < k ∧ (∀k′ ≥ k) fα(k′) ≤ gn(k′)} for n > 0; notice that whenever hα ≤∗ h, fα ≤∗ gh
for all α < κ.

Since the family {hα : α < κ} ∪ {f} has < b elements, it is possible to find an h ∈ ωω

almost dominating all of them. Hence, gh will fill the gap, a contradiction. �

Following [18], it is possible to ensure the existence of some peculiar gaps in ωω under the

assumption of p < t.

Theorem 2.1.5 ([18, Thm. 1.12]) Assume p < t. Then for some regular cardinal κ, there

exists a (κ, p)-peculiar gap in ωω with ℵ1 ≤ κ < p.

In chapter 4, we will revisit this result when we analyze the proof of p = t.

2.2. A motivating example and main definitions

This section is dedicated to a complete study of the notion of cofinality spectrum problem,

introduced by Malliaris and Shelah in [11].

First, we give some definitions about ultrafilters.

Definition 2.2.1 ([11, Def. 10.14]) Let D be an ultrafilter over a non-empty set I. We

define the cut spectrum of D as follows:

C(D) := {(κ1, κ2) ∈ |I|+ × |I|+ : κ1, κ2 are regular and (ω,<)I/D has a (κ1, κ2)-gap}.

Remark 2.2.2 Suppose that κ1 is an infinite regular cardinal and κ2 is finite. By  Loś theo-

rem, we know that every 0 6= a ∈ ωI/D has an immediate predecessor; therefore, we can

affirm that (κ1, κ2) /∈ C(D). With a similar argument, we can conclude that (κ2, κ1) /∈ C(D).

Definition 2.2.3 ([11, Def. 10.13]) Let D be an ultrafilter over I and κ a regular cardinal.



26 2 Cofinality spectrum problems

(i) We say that D has κ-treetops if for any κ-saturated model M which interprets a tree

(TM,E), N =MI/D, γ = cf (γ) < κ and for any E-increasing sequence 〈ai : i < γ〉
in (TN ,EN ), there is an a ∈ TN such that ai E a, for all i < γ.

(ii) We say that D has < κ-treetops if D has θ-treetops for any infinite cardinal θ = θ < κ.

The following lemma gives us a first approach on how λ+-treetops in regular ultrafilters have

some essential information about the existence (or not) of some special kind of gaps.

Lemma 2.2.4 ([11, Lemma 2.2]) Suppose D is a regular ultrafilter on λ with λ+-treetops,

and κ < λ+ is regular. Then C(D) has no (κ, κ)-gaps, i.e. (κ, κ) /∈ C(D).

Proof. We use the same notation as in [11]. Let M = (N, <) and M1 = Mλ/D. We suppose

that in M1 there is a (κ, κ)-gap, represented by (a, b) = (〈aα : α < κ〉, 〈bα : α < κ〉), such

that M1 � aβ < aα < bα < bβ, for all β < α < κ and there is no c ∈ M1 satisfying

aα < c < bα, for all α < κ.

As our main assumption refers to trees and not to orders, we have to build a convenient

tree which models the gap, and then, by the λ+-treetops condition, we will be able to find

an element in M1 that fills the gap, and thus we will have a contradiction. In this order of

ideas, it should be natural to consider the tree (T ,E) of finite sequences of pairs of natural

numbers, ordered in its natural way, i.e. f E g ∈ T if and only if f = g � dom(f).

To be able to talk about this tree, the symbol < is not powerful enough to capture all the

information lying in the tree. So, we have to add in an adequate way some relation and

function symbols, with their interpretations in the new language. For this reason, we expand

the model M to an adequate model M+ in which we could find these new symbols. Besides,

thanks to the fact that ultrapowers commute with reduced products, we can transfer natu-

rally these new symbols into the ultrapower M+
1 of M+ (obviously, with their interpretations

in this ultrapower)1. In this ultrapower, we can build an increasing sequence (via transfinite

induction), and the treetops condition will give us an upper bound of this sequence that will

fill the gap, arriving to the desired contradiction.

So, let us perform the first stage of the proof: find an expansion of M . Notice that if we

want to talk about T in M , we could just talk about ordered sequences, but these are not

the only kind of sequences we can have in M . Also, if we want to talk about T , implicitly

we need to refer to the following: for x ∈ T , we have

(a) a length function, lg(x).

(b) a function that gives us the maximum of dom (x), max(dom(x)) := lg(x)− 1.

(c) for each n < max(dom(x)), an evaluation function, x(n).

1In the case of lemma 2.2.4, we are not adding new symbols: what we do is consider a richer symbol (∈),
which allows us to talk about more things than with <.
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(d) for each n < max(dom(x)), projections functions, x(n, 0) and x(n, 1).

Also, by a brief computation using cardinal arithmetic, we can see that T is a countable set.

After this digression, now it should be natural to consider the expansion M+ = (H(ω1),∈
), where H(ω1) is the class of sets whose transitive closures are at most countable. It is

important to notice that, in M+, N and T are definable sets, E is a definable relation, and

the items (a)-(d) are also definable in M+.

Having found an expansion for M , we ask for an expansion on M1. For this purpose, we

can use the fact that ultrapowers commute with reducts to find a convenient expansion on

M1. In this case, this expansion would be M+
1 = (H(ω1),∈)λ/D. Moreover, thanks to  Loś’s

theorem, we have that M �M1 and M+ �M+
1 . Also, it’s important to notice the following:

in the process of finding an expansion for M1, we are not adding new symbols, but these

symbols acquire a new interpretation in the ultrapower (in the case of lemma 2.2.4, we didn’t

add new symbols).

We have performed the first stage of the proof. Now we move to M+
1 = (M+)λ/D and

consider the version T M+
1 of T in M+

1 . In T M+
1 , we consider the subtree T∗ defined by the

formula

ϕ(x) : x ∈ T M
+
1 ∧ (∀n < m < (lg(x)))(x(n, 0) < x(m, 0) < x(m, 1) < x(n, 1)). (2-1)

The subtree T∗ is infinite, but more important is that this subtree represents the supposed

gap. Also, note that if M+
1 � ϕ(c), then M+

1 � ϕ(c �n), for all n ≤ max (dom(c)).

By transfinite induction, we will construct a convenient branch (cα)α<κ of T∗ and nα ∈ NM
+
1

such that

(i) for all β < α < κ, M+
1 � cβ E cα.

(ii) for all α < κ, nα = max (dom(cα)).

(iii) for all α < κ, cα(nα, 0) = aα and cα(nα, 1) = bα.

Let us perform this induction.

1. (Base case) Let c0 = 〈(a0, b0)〉 and n0 = 0.

2. (Inductive step for α = β + 1) Assume that cβ and nβ are defined. We could just

concatenate (aα, bα) to the tail of the sequence. So, cα := cβ
_〈(aβ, bβ)〉 and nα := nβ+1.

3. (Inductive step for α limit) By the treetops hypothesis, we can find a c∗ ∈ T∗ such that

cβ E c∗, for all β < α. Let n∗ = max (dom(c∗)), then for every β < α, we have that

aβ = cβ(nβ, 0) = c∗(nβ, 0) < c∗(n∗, 0) < c∗(n∗, 1) < c∗(nβ, 1) = cβ(nβ, 1) = bβ. (2-2)
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However, we may have the case that aα < c∗(n∗, 0) < c∗(n∗, 1) < bα, in which case c∗
is not the best upper bound we wish to find. To solve this potential issue, observe that

the set

{n ≤ n∗ : c∗(n,0) < aα ∧ bα < c∗(n, 1)} ⊆M+
1 (2-3)

contains nβ for all β < α, and it also is definable in M+
1 and bounded above by n∗. So,

thanks to  Loś’s theorem, we can find the maximum of this set, let us called it m∗. In

this way, if we consider c∗ �m∗ , we note that cβ E c∗ �m∗ for all β < α, and thus we can

concatenate (aα, bα) to the tail of the sequence. Thus, let cα = c �m∗
_〈(aα, bα)〉 and

nα = m∗. Also, notice that cα ∈ T∗: the way we buily this sequence guarantees this

fact.

Finally, by the treetops hypothesis, we can find a d ∈ T∗ such that cα E d for all α < κ, and

let N = max (dom(d)). Then, by the definition of ϕ, we have that

aα = cα(nα, 0) = d(nα, 0) < d(N, 0) < d(N, 1) < d(nα, 1) = cα(nα, 1) = bα (2-4)

Then, the elements d(N, 0) and d(N, 1) are elements in M+
1 (and in fact, in M1) that realizes

the gap, which is absurd. �

We would like to do some important comments about the previous proof.

X First, as we worked with ultraproducts the appearance of  Loś’s theorem should not

be surprising. However,  Loś’s theorem allowed us to find suitable expansions of the

models M and M1, and also preserve the validity of some statements. In particular,

we could observe that all the non-empty, definable and bounded subsets of NM+
1 have

first and last element.

X The fact that ultrapowers commute with reducts allows us to find a natural expansion

of M1 given an expansion for M , while not adding new relation or function symbols to

the new expansion.

With these observations in mind, we will give the main definitions on which we are going to

work on this thesis. These definitions should be seen according to lemma 2.2.4.

Definition 2.2.5 (Enough set theory for trees -ESTT-) Let M1 be a model and ∆ a

non-empty set of formulas in the language of M1. We say that (M1,∆) has enough set

theory for trees when the following conditions are true.

1. ∆ consists of first-order formulas ϕ(x, y; z), with lg(x) = lg(y).

2. For each ϕ ∈ ∆ and each parameter c ∈ lg(z)M1, ϕ(x, y; c) defines a discrete linear

order on {a : M1 � ϕ(a, a; c)} with first and last element.
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3. The family of all linear orders defined in this way will be denoted by Or(M1,∆). Spe-

cifically, each a ∈ Or(M1,∆) is a tuple (Xa,≤a, ϕa, ca, da), where:

(a) Xa denotes the underlying set {a : M1 � ϕa(a, a; ca)}.

(b) x ≤a y abbreviates the formula ϕa(x, y; ca) and ϕa ∈ ∆.

(c) da ∈ Xa is a bound for the length of elements in the associated tree; it is often,

but not always, maxXa. If da is finite, we call a trivial.

4. For each a ∈ Or(M1,∆), (Xa,≤a) is pseudofinite, meaning that any bounded, non-

empty, M1-definable subset has ≤a-greatest and ≤a-least element.

5. For each pair a and b in Or(M1,∆), there is a c ∈ Or(M1,∆) such that:

(a) There exists an M1-definable bijection Pr : Xa×Xb → Xc such that the coordinate

projections are M1-definable.

(b) If da is not finite in Xa and db is not finite in Xb, then also dc is not finite in

Xc.

6. For some nontrivial a ∈ Or(M1,∆), there is a c ∈ Or(M1,∆) such that Xc = Pr(Xa×
Xa) and the ordering c satisfies

M1 � (∀x ∈ Xa)(∃y ∈ Xc)(∀x1, x2 ∈ Xa)(max {x1, x2} ≤a x⇔ Pr(x1, x2) ≤c y)

7. To the family of distinguished orders, we associate a family of trees as follows. For

each formula ϕ(x, y; z) in ∆ there are formulas ψ0, ψ1, ψ2 of the language of M1 such

that for any a ∈ Or(s) with ϕa = ϕ:

(a) ψ0(x; ca) defines a set, denoted Ta, of partial functions from Xa to Xa.

(b) ψ1(x, y; c) defines a function lga : Ta → Xa satisfying:

(i) For all b ∈ Ta, lga(b) ≤a da.

(ii) For all b ∈ Ta, lga(b) = max (dom(b)) + 1.

(c) ψ2(x, y; c) defines a function from {(b, a) : b ∈ Ta, a ∈ Xa, a <a lga(b)} into Xa

whose value is called vala(b, c), and abbreviated b(a), such that

(i) If c ∈ Ta, lga(c) <a da and a ∈ Xa, then c_〈a〉 exists, i.e. there is a c0 ∈ Ta
such that lga(c0) = lga(c)+1, c0(lga(c)) = a, and (∀a <a lga(c))(c(a) = c0(a)).

(ii) if b1 6= b2 ∈ Ta, lga(b1) = lga(b2) then for some n <a lga(b1), b1(n) 6= b2(n).

(d) ψ3(x, y; c) defines the partial order Ea on Ta given by initial segment, that is, such

that that b1 Ea b2 implies:

(i) lga(b1) ≤a lga(b2).

(ii) (∀a <a lga(b1))(b2(a) = b1(a)).
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The family of all Ta defined this way will be denoted Tr(M1,∆). We refer to elements of this

family as trees.

Now we are ready to give the central definition of this work.

Definition 2.2.6 (Cofinality spectrum problems) We say that

s := (M s,M s
1 ,M

+,s,M+,s
1 , T s,∆s)

is a cofinality spectrum problem when

1. M s �M s
1 .

2. ∆s is a set of formulas in the language of M s, i.e., we are interested in studying the

orders of L(M s) = L(M s
1) in the presence of the additional structure of L(M+,s) =

L(M+,s
1 ).

3. σM
s ∈ T s for all σ ∈ Th (M s), where σM

s
denotes the relativization of σ to M s, see

[8, definition 12.6]. (Notice that the language of T s is L(M+,s) and M s is definable in

L(M+,s))

4. M+,s,M+,s
1 expand M s,M s

1 respectively so that M+,s � M+,s
1 � T s and (M+,s

1 ,∆) has

enough set theory for trees.

When the context is clear, we often omit the upper index s.

In this work, when we consider a cofinality spectrum problem s, the model M given in

definition 2.2.6 will be called the ground model of s, and the model M+
1 will be called

the main expansion of s. This convention is just used to simplify some aspects about the

behaviour of any cofinality spectrum problem.

Remark 2.2.7 In [11, p. 249], there is mentioned the following example of a cofinality

spectrum problem in relation to lemma 2.2.4: “Consider M = (N, <). Then there are a set

of L-formulas ∆ ⊇ {x < y}, an expanded language L+, and an L+-theory T ⊇ Th (M) such

that (M,M1,M
+,M+

1 , T,∆) is a cofinality spectrum problem. For instance, we may take

T = Th (H(ω1),∈) and identify N with ω”. This is not true, as we have that Th (H(ω1),∈
) + Th (M): indeed, the sentence σ : “{1} is not a set” is true in Th (M), but is not in

Th (H(ω1),∈). Actually, it is just necessary that the whole theorems of Th (M) relativized

in M hold in M+.

As cofinality spectrum problems are conformed by models and sets of formulas, it is natural

to wonder how to compare any pair of cofinality spectrum problems.
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Definition 2.2.8 Let s1 = (M s1 ,M s1
1 ,M

+,s1 ,M+,s1

1 , T s1 ,∆s1) and s2 = (M s2 ,M s2
1 ,M

+,s2,

M+,s2

1 , T s2 ,∆s2) be cofinality spectrum problems. We say that s2 is more complex2 than

s1 (we denote this by s1 ≤ s2) if

(i) M s1 = M s2, M s1
1 = M s2

1 , i.e. the ground models are the same.

(ii) L(M+,s1) ⊆ L(M+,s2), i.e. in the problem s2 we might require new symbols, and also

T s1 ⊆ T s2.

(iii) (M+,s2) �L(M+,s1 )
∼= M+,s1.

(iv) (M+,s2

1 ) �L(M
+,s1
1 )
∼= M+,s1

1 , i.e. the main model of s1 is the main model of s2 restricted

to an adequate vocabulary.

(v) ∆s1 ⊆ ∆s2.

Definition 2.2.9 Let s be a cofinality spectrum problem. We define the following:

1. Or(s) = Or(M s
1 ,∆

s), but Xa and Ta are interpreted in M+,s
1 when a ∈ Or(s).

2. Cct(s) = {(κ1, κ2) : for some a ∈ Or(s), (Xa,≤a) has a (κ1, κ2)-gap} (this set will

be called the cut spectrum of s).

3. Tr(s) = {Ta : a ∈ Or(s)} = Tr(M s
1 ,∆

s), and moreover, Ta is interpreted in M+,s
1 when

a ∈ Or(s).

4. Cttp(s) = {κ : κ ≥ ℵ0, a ∈ Or(s), and there is in the tree Ta
a strictly increasing sequence of cofinality κ with no upper bound} (this set will be ca-

lled the treetops of s).

5. Let ts = min Cttp(s) and ps = min {κ : (κ1, κ2) ∈ Cct(s) and κ = κ1 + κ2}.

6. For an infinite cardinal λ, write

C(s, λ) = {(κ1, κ2) : κ1 + κ2 < λ, (κ1, κ2) ∈ Cct(s)} (2-5)

Remark 2.2.10 Let us give some pertinent observations about definition 2.2.9.

1. Given an ultrafilter D on ω, we may define the following:

(1) Let Po<ω(D) be the class of preorders of the form (P,≤) :=
∏

n∈ω (Pn,≤n)/D,

where (Pn,≤n) is a finite non-empty partial order, for all n ∈ ω.

(2) Let Lo<ω(D) be the class of linear orders of the form (L,≤) :=
∏

n∈ω (Ln,≤n)/D,

where (Ln,≤n) is a finite non-empty linear order, for all n ∈ ω.

2This name actually is not mentioned in [11]. This is just a name which we thought it could be precise for
naming this relation.
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(3) Define tD as the least ordinal γ such that there is an unbounded ≤-increasing

sequence of length γ in some (P,≤) ∈ Po<ω(D).

(4) Define pD as the least ordinal γ such that there is some β < γ such that in some

(L,≤) ∈ Lo<ω(D) it is possible to find a (β, γ)-gap.

There are a lot of results known about pD and tD: e.g, both pD and tD are uncountable

regular cardinal; or if D is regular, then tD ≤ pD and there are no (κ, λ)-gaps with

κ, λ < tD (see [6, 13, 14] for details). So, roughly speaking, cofinality spectrum problems

are general frames in which we can analyze the relations between performing certain

gaps in linear orders and finding bounds for increasing sequences in some distinguished

trees. Also, it is natural to think in ps and ts as natural generalizations of the cardinals

pD and tD, respectively.

2. Another characterization of ts is given as follows: if κ is a regular cardinal such that

κ = ts, then there is a definable linear order which has a (κ, κ)-gap (see [11, Lemma

6.2]). This useful characterization will be use in chapter 3.

Following remark 2.2.10, the cardinals ps and ts are regular. The purpose of this work is the

study of the cut spectrum below ts of a cofinality spectrum.

Definition 2.2.11 Let s be a cofinality spectrum problem and a ∈ Or(s).

1. Write 0a for the ≤a-least element of Xa.

2. For any natural number k and any a ∈ Xa, let Ska(a) denote the k-th successor of

a in the discrete linear order ≤a, if defined, and likewise let S−ka (a) denote the k-th

predecessor of a, if defined. When the context is clear, we will generally write Sk(a)

and S−k(a).

3. Say that c ∈ Ta is below the ceiling if Sk(lg(c)) <a da for all k < ω, i.e. if these

successors exist and the statement is true.

As this point, we should do some pertinent remarks.

X The orders we work within a cofinality spectrum problem can be seen as a generalization

of non-standard natural numbers: sets with a definable order relation, a distinguished

element (the so-called da, non reachable via finite successors of 0a) and in which their

non-empty definable bounded sets have first and last element.

X Following lemma 2.2.4, we can see that the study of certain gaps in a cofinality spectrum

problem could be analyzed considering conditions in certain distinguished trees.
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X Conditions 5. and 6. in definition 2.2.5 could be seen as artificial conditions inside

a cofinality spectrum problem, but these conditions will allow us later to define an

arithmetic in a cofinality spectrum problem, which will be very useful, and will let us

consider more sophisticated orders.

The next two results are shown having in mind lemma 2.2.4. When we realized the construc-

tion of the sequence (cα)α<κ in T∗, we consider a suitable upper bound c∗ ∈ T∗ which will

allow us deduce a contradiction. We are giving the tools that allow us find these convenient

upper bounds to certain sequences in a cofinality spectrum problem.

Fact 2.2.12 ([11, Claim 2.14]) Let s be a cofinality spectrum problem, M+
1 = M+,s

1 . Let

a ∈ Or(s), so Ta ∈ Tr(s). Let ϕ be a formula, possibly with parameters in M+
1 , and let

(T ,Ea) be the subtree of (Ta,Ea) defined by ϕ in M+
1 . Let 〈cα : α < κ〉 be a Ea-increasing

sequence of elements of T , with κ = cf(κ) < ts. Then there is a c∗ ∈ T such that for all

α < κ, cα Ea c∗.

Proof. By definition of ts, we may find an element c ∈ Ta (not necessarily in T ) such that

cα Ea c for all α < κ. Now the set {lg(c′) : c′ Ea c and c′ ∈ T } is a nonempty definable

subset of Xa, hence it contains a last member a∗, and consider c∗ := c �a∗ : it is clear that

c∗ Ea c, lg (c∗) = a∗ and c∗ ∈ T is an upper bound of {cα : α < κ}. �

Fact 2.2.13 ([11, Lemma 2.15]) Let s be a cofinality spectrum problem, a ∈ Or(s), κ <

min {ps, ts}. Let T ⊆ Ta a definable subtree and c = 〈cα : α < κ〉 be a strictly Ea-increasing

sequence of elements of T . Then there is a c∗∗ ∈ T such that for all α < κ, cαEa c∗∗ and c∗∗
is below the ceiling.

Proof. Let c∗ ∈ T be such that cα Ea c∗, just as given by fact 2.2.12. Since c is strictly

increasing, for each α < κ the element cα is below the ceiling. If c∗ is also below the ceiling,

we are done. Otherwise, notice that ({lg (cβ) : β < α}, {S−k(lg (c∗)) : k < ω}) represents a

pre-gap in Xa, which cannot be a gap, since ℵ0 ≤ κ < ps. Therefore, we may choose some

a ∈ Xa that realizes this pre-gap, and consider c∗∗ := c∗ �a. �

2.2.1. The lower cofinality function lcf in a cofinality spectrum

problem

In lemma 2.2.4, we have seen there are some kind of gaps we cannot realize in a specific cofi-

nality spectrum problem (the so-called symmetric gaps, i.e. (κ, κ)-gaps). However, a question

emerges immediately: given s a cofinality spectrum problem and κ a regular cardinal, can

we find an adequate cardinal λ such that (κ, λ) ∈ Cct(s)? Under which conditions can we

possibly find this λ?
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Lemma 2.2.14 ([11, Lemma 3.1]) Let s be a cofinality spectrum problem. If a ∈ Or(s) is

nontrivial, then for each infinite regular κ ≤ ps:

(1) There is a strictly decreasing κ-indexed sequence a = 〈aα : α < κ〉 of elements of Xa

such that

({Sk(0a) : k < ω}, {aα : α < κ})

represents a pre-gap (and possibly a gap) in Xa.

(2) There is a strictly increasing κ-indexed sequence a = 〈aα : α < κ〉 of elements of Xa

such that

({aα : α < κ}, {S−k(da) : k < ω})

represents a pre-gap (and possibly a gap) in Xa.

(3) There is at least one infinite regular θ such that (κ, θ) ∈ Cct(s), witnessed by a (κ, θ)-gap

in Xa.

(4) There is at least one infinite regular θ′ such that (θ′, κ) ∈ Cct(s), witnessed by a (θ′, κ)-

gap in Xa.

Proof. We will prove (2) and (4) following the ideas on the proofs of (1) and (3) done in

[11]

(2) By induction on α < κ we choose elements aα ∈ Xa such that:

(i) for each α < κ and each k < ω, aα <a S
−k(da).

(ii) β < α implies aβ <a aα.

For α = 0, let a0 = 0a. As a is nontrivial, condition (i) is satisfied. For α = β + 1,

consider aα = S1(aβ). As any non-empty definable subset of Xa has a least element,

the successor of any element not equal to da is well defined. Since (i) holds for β, it

will still hold for β + 1. Now, for α limit, we know that

({aβ : β < α}, {S−k(da) : k < ω})

is a pre-gap, which can’t be a gap: otherwise, (cf (α),ℵ0) ∈ Cct(s) and α < κ ≤ ps,

contradicting the definition of ps. So, we are able to choose aα that fills this pre-gap,

finishing the proof.

(4) Let a be the κ-indexed strictly decreasing ≤a-monotonic sequence of elements of Xa

given by (1). By construction, B = {b ∈ Xa : α < κ implies b <a aα} 6= ∅ and it does
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not have maximum. Let θ′ = cf (B). By the way we consider the sequence a, we can

conclude that

({bγ : γ < θ′}, {aα : α < κ})

represents a gap, for any cofinal increasing sequence 〈bγ : γ < θ′〉 ⊆ B. Hence, θ′ is an

infinite regular cardinal such that (θ′, κ) ∈ Cct(s).

This concludes the proof. �

Note that lemma 2.2.14 just provides to us the existence of some θ, θ′ such that (κ, θ), (θ′, κ) ∈
Cct(s). The following theorem will let us deduce that, in fact, θ = θ′ whenever κ < ts.

Theorem 2.2.15 ([11, Thm. 3.1]) Let s be a cofinality spectrum problem. Then for each

regular κ ≤ ps, κ < ts

(1) there is one and only one λ regular such that (κ, λ) ∈ Cct(s).

(2) (κ, λ) ∈ Cct(s) if and only if (λ, κ) ∈ Cct(s).

Proof. We are following the same notation used in [11]. Let κ be as in the hypothesis of

the theorem. Lemma 2.2.14 allows us to ensure that there are some infinite regular cardinals

θ1, θ2 such that (κ, θ1), (θ2, κ) ∈ Cct(s). Therefore, we will prove that given a,b ∈ Or(s), if

X (〈a1
α : α < κ〉, 〈b1

γ : γ < θ1〉) represents a (κ, θ1)-gap in (Xa, <a).

X (〈b2
γ : γ < θ2〉, 〈a2

α : α < κ〉) represents a (θ2, κ)-gap in (Xb;<b),

then θ1 = θ2.

The main problem in this proof is that we have to model two gaps (in two different orders)

instead of one. However, we can consider the order c ∈ Or(s) given by Xc = Xa × Xb. In

this way, the associated tree Tc will model both gaps, and the treetops condition (implicit

in proof, as we know that κ < ts) will witness the realization or omission of theses gaps.

So, first we are giving a simple description of Tc: given x ∈ Tc, for each n ≤ max (dom(x)),

x(n) = (x(n, 1), x(n, 2)), where x(n, 1) ∈ Xa and x(n, 2) ∈ Xb.

Our next step is to describe both gaps in a suitable subtree. For this, consider T0 ⊆ Tc
defined by

n < m < max (dom(x)) implies (x(n, 1) <a x(m, 1)) ∧ (x(m, 2) <b x(n, 2)) (2-6)

Now, by transfinite induction, we choose 〈cα : α < κ〉 ⊆ T0 and 〈nα : α < κ〉 ⊆ Xc as

follows:

(i) β < α implies M+
1 � cβ Ec cα.
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(ii) nα = lg(cα)− 1, so max (dom(cα)) is well defined.

(iii) nα is below the ceiling (see definition 2.2.11 (3)).

(iv) cα(nα, 1) = a1
α and cα(nα, 2) = a2

α.

Let’s perform the induction:

X (Case α = 0) Let c0 = 〈a1
0, a

2
0〉 and n0 = 0c.

X (Case α = β + 1) Note that cβ is below the ceiling, and thanks to conditions (ii)-(iv),

we can concatenate, so define cα = cβ
_〈a1

β, a
2
β〉 and nα = nβ + 1.

X (Case α < κ limit) Since cf(α) < min {ps, ts}, by fact 2.2.13 we can find c ∈ T0 such

that M+
1 � cβEc c, for any β < α with dom c below the ceiling. Let n = max (dom(c)).

Note that we might have the case that a1
α <a c(n, 1) and c(n, 2) <b a

2
α. However, the

set

{n : n < lg(c),M+
1 � (c(n, 1) <a a

1
α) ∧ (a2

α <b c(n, 2))} (2-7)

is a non-empty, definable and bounded set, so it has a maximal element n∗. We can

concatenate since n and all its initial segments are below the ceiling. In that way, we’re

able to define cα = (c �n∗)
_〈a1

α, a
2
α〉 and nα = n∗.

Using fact 2.2.12, there is a c ∈ T0 such that cαEc c for any α < κ. Let n∗∗ = lg(c)−1 ∈ Xc,

and define

nγ,1 = max {n ≤c n∗∗ : c(n, 1) <a b
1
γ}

nγ,2 = max {n ≤c n∗∗ : b2
γ <b c(n, 2)}

Note that α < κ implies nα <c nγ,1 and nα <c nγ,2. By the choice of sequences witnessing

the original gaps, we can conclude that for l = 1, 2

(〈nα : α < κ〉, 〈nγ,l; : γ < θl〉) (2-8)

represents a gap in Xc: otherwise, if there were an m realizing this pre-gap, we would have

that

a1
α = c(nα, 1) <a c(m, 1) and c(m, 1) <b c(nγ, 1) < b1

γ (2-9)

so c(m, 1) would realize the first of the original gaps, which is absurd. The same argument

applies for l = 2. This previous fact and the regularity of θ1, θ2 (given by hypothesis) gua-

rantees us that θ1 = θ2: indeed, consider the map f : θ1 → θ2 such that f(ζ) := min {γ <
θ2 : nγ,2 < nζ,1}. Notice that f is well defined, since for every nζ,1 there is a nγ,2 such that
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nγ,2 < nζ,1. Moreover, f is cofinal in θ2, since if ζ < θ2, then n1
γ < n2

ζ for some γ < θ1, because

(〈nα : α < κ〉, 〈nγ,1 : γ < θ1〉) witnesses a (κ, θ1)-gap. Therefore, we may conclude that

f(γ) > ζ. Hence θ2 = cof (θ2) ≤ θ1. An analog argument allows to conclude that θ1 ≤ θ2. �

Thanks to the theorem 2.2.15, we can give the following definition.

Definition 2.2.16 (The lower cofinality lcf(κ, s)) Let s be a cofinality spectrum problem.

Given a regular cardinal κ ≤ ps, κ < ts, we define lcf(κ, s) to be the unique θ such that

(κ, θ) ∈ Cct(s).

According to lemma 2.2.14 and theorem 2.2.15, the following corollaries are immediate.

Corollary 2.2.17 Let s be a cofinality spectrum problem and κ a regular cardinal, κ ≤ ps,

κ < ts. Then the following are equivalent:

(1) lcf(κ, s) = θ.

(2) (κ, θ) ∈ Cct(s).

(3) (θ, κ) ∈ Cct(s).

Corollary 2.2.18 Let s1, s2 be cofinality spectrum problems and suppose that M s1 = M s2,

M+,s1

1 = M+,s2

1 up to the language L(M+,s1

1 ) ∩ L(M+,s2

1 ). If there is a non-trivial order

a ∈ Or(s1) ∩ Or(s2) (i.e. ∆s1 ∩ ∆s2 6= ∅) then, for all regular κ with κ ≤ min {ps1 , ps2},
κ < min {ts1 , ts2}, lcf(κ, s1) = lcf(κ, s2). Moreover, the same conclusion holds if s1 ≤ s2.

Proof. If lcf (κ, s1) = θ, then, by theorem 2.2.15, there is a (κ, θ)-gap in Xa (in s1). As

M s1 = M s2 and M+,s1

1 = M+,s2

1 , then this gap in Xa is also detected in the problem s2, thus

lcf (κ, s2) = θ. �

Remark 2.2.19 Corollary 2.2.18 is really useful: it provides us a kind of “invariance” of

the function lcf under the relation ≤. Also, this result tells us that certain gaps in Xa in a

cofinality spectrum problem s will remain the same in any other cofinality spectrum problem

s′ that contains a and with the same ground model and main expansion of s.

2.3. Local saturation and Gödel codes

In this section we study the logic aspects in a cofinality spectrum problem. First, we study

a notion of Model-theoretic saturation, called local saturation. Then, we focus our efforts in

building an adequate arithmetic which will allow us carry out a Gödel codification.
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2.3.1. Or-types

In this section, we discuss the property of the cofinality spectrum problems of having some

amount of local saturation. As indicated in [11], the “local” sense here means partial types

satisfied in a distinguished order.

Definition 2.3.1 Let s be a cofinality spectrum problem, let λ be a regular cardinal and

p = p(x0, ..., xn−1) be a consistent partial type with parameters in M+
1 .

(1) We say that p is an Or-type over M+
1 if p is a consistent partial type in M+

1 and for

some a0, ..., an−1 ∈ Or(s), we have that

p `
∧
i<n

xi ∈ Xai (2-10)

(2) An Or-type p over M+
1 is realized in M+

1 if there are a = (a0, ..., an−1) ∈ |M+
1 | such

that M+
1 � ϕ(a) for all ϕ(x) ∈ p.

(3) We say that M+
1 is λ-Or-saturated if every Or-type p over M+

1 with parameters in

some A ⊆M+
1 of size < λ is realized in M+

1 .

(4) Finally, we say that s is λ-Or-saturated if M+
1 is.

In the previous definition, we may assume that p = p(x), where p ` x ∈ Xa, for some

a ∈ Or(s) (by the closure under -finite- Cartesian products).

Theorem 2.3.2 ([11, Thm. 4.1]) If s is a cofinality spectrum problem and κ < min {ps, ts},
then s is κ+-Or-saturated.

Proof. This proof will be done by induction over κ < min {ps, ts}. Let us first give a little

description of the proof.

As in lemma 2.2.4 and theorem 2.2.15, given a convenient order a ∈ Or and its associated

tree Ta ∈ Tr(s), we have to find a definable subtree which models, in this case, the realization

or omission of Or-types.

So, suppose either κ = ℵ0 or that the theorem holds for any µ < κ. Let a ∈ Or(s) and let

p = {ϕi(x; ai) : i < κ} be finitely satisfiable in Xa. Doing a new induction (called “internal”)

on α ≤ κ, we choose cα ∈ Ta and nα ∈ Xa as follows:

(1) β < α implies cβ Ea cα.

(2) nα = lg(cα)− 1.

(3) cα is below the ceiling.

(4) if i < β ≤ α and nβ ≤a n ≤a nα, then M+
1 � ϕi(cα(n), ai).
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Let’s perform the induction.

X (Case α = 0) Since p is finitely satisfiable, we can find some d ∈ Xa such that M+
1 �

ϕ0(d, a0). Let c0 := 〈d〉 and n0 := 0.

X (Case α = β + 1) We analyze two cases.

• If κ = ℵ0 and β < ω, then {ϕi(x, ai) : i ≤ β} is finite, and by the finitely

satisfability of p we have that there is some d ∈ Xa such that M+
1 � ϕi(d, ai) for

all i ≤ β. By hypothesis (3) we can do concatenations, so define cα := cβ
_〈d〉 and

nα := nβ + 1.

• Otherwise, by external inductive hypothesis, we can find a realization d ∈ Xa of

{ϕi(x, ai) : i ≤ β} (since |α| < κ), and by the the internal inductive hypothesis

(3), we can do concatenations, so define cα := cβ
_〈d〉 and nα := nβ + 1.

X (Case α ≤ κ limit) By fact 2.2.13, we can find c∗ ∈ Ta such that β < α implies cβEa c∗,

c∗ is below the ceiling and let n∗ := lg(c∗)− 1. As before, we need to refine this value

to satisfy condition (4). We will do this as follows: for each i < α, define

n(i)a := max {n ≤a n∗ : M+
1 � ϕi(c∗(m), ai) for all m such that ni <a m ≤a n}

(2-11)

We can see this is a nonempty bounded subset of Xa, so n(i) exists for each i < α, and

the internal inductive hypothesis (4) guarantees us that n(i)a > nβ for each i, β < α.

Thus,

({nβ : β < α}, {n(i)a : i < α}) (2-12)

represents a pre-gap in Xa. Let γ be a co-initial subsequence of {n(i)a : i < α}. Note

that |γ| ≤ κ < ps, and besides (cf(α), γ) /∈ C(s, ts): otherwise, we would contradict the

definition of ps. Thus, let n∗∗ ∈ Xa realizing this pre-gap, and define cα = c �n∗∗ and

nα = lg(cα)− 1. This completes the induction. Also, note that M+
1 � ϕi(cα(n), ai) for

each i < α and ni ≤ n ≤ nα.

As the limit case also included α = κ, we claim that cκ(nκ) is the realization of p we desired.�

2.3.2. Arithmetic in a cofinality spectrum problem

Until now, the study of the cofinality spectrum problems has been centred in analyzing

branches of certain trees of distinguished orders. These branches capture some properties

we want to know about these trees, i.e. realization or omission of certain gaps. Neverthe-

less, complexity of these trees could be getting more difficult when we need to capture more
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information about certain gaps in orders. So, how can we reduce the complexity of theses

trees? That is the main task of the Gödel codifications.

The following proposition allows us to refine orders in a cofinality spectrum problems without

modifying the essence of gaps.

Proposition 2.3.3 ([11, Cor. 3.9]) Let s = (M s,M s
1 ,M

+,s,M+,s
1 , T s,∆s) be a cofinality

spectrum problem. Then we may assume Or(s) is closed under definable subsets of Xa, i.e.

whenever a ∈ Or(s), ψ(x) a formula in the language of M1 such that ψ(x) ` x ∈ Xa, there

is b ∈ Or(s) with ≤b=≤a and

Xb = {a ∈ Xa : M1 � ψ(a)} (2-13)

For definiteness, we specify that db = min {da,maxXb}}.

Proof. Let s be a cofinality spectrum problem. We consider the set of formulas

∆′ := {χ(x, y, z) = ϕ(x, y, z1) ∧ ψ(x, z2) : ϕ(x, y, z1) ∈ ∆s, ψ(x, z2) ∈ L(M), z := z1
_z2}

It is clear that ∆s ⊆ ∆′, hence applying Corollary 2.2.18, we claim that the cofinality

spectrum problem s′ := (M s,M s
1 ,M

+,s,M+,s
1 , T s,∆′) is more complex than s. Now, since

∆s ⊆ ∆′, we have that ps′ ≤ ps′ and ts′ ≤ ts′ . Now suppose that Xb = {a ∈ Xa : M1 � ψ(a)}.
If (a, b) is a gap in Xb, then it is also a gap in Xa. If not, and c ∈ Xa fills the gap, then

c′ := min {a ∈ Xa : M+
1 � ψ(a) ∧ c ≤ a} ∈ Xb and fills the gap. Likewise, if η is an

increasing unbounded sequence in Tb, then it is also in Ta. �

Now let us describe how Gödel codifications of trees works. Let b ∈ Or(s) be a non-trivial

order. We define the formulas associated to the sum, the multiplication and the exponen-

tiation (in the language of M+
1 ) on Xb. It is important to remark that ϕb

+, ϕb
× and ϕb

exp

are defined along a branch of Tb. The variables range over elements of Xb unless otherwise

indicated.

(1) Define the sum ϕb
+(x, y, z) as follows

(∃η ∈ Tb)[lg(η) = y + 1 ∧ η(0) = x ∧ η(y) = z

∧ (∀i ∈ Xb)(i < y → η(S(i)) = S(η(i))].

(2) Define the product ϕb
×(x, y, z) as follows

(∃η ∈ Tb)[lg(η) = y + 1 ∧ η(0) = x ∧ η(y) = z

∧ (∀i ∈ Xb)(i < y → ϕb
+(η(i), x, η(S(i)))].
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(3) Define the exponentiation ϕb
exp(x, y, z) as follows

(∃η ∈ Tb)[lg(η) = y + 1 ∧ η(0) = x ∧ η(y) = z

∧ (∀i ∈ Xb)(i < y) → ϕb
×(η(i), x, η(S(i)))].

With help of the sum and the product, we can define the formula “x divides y”:

ϕb
div(x, y) : x < y ∧ ∃z ∈ Xb ϕ

b
×(x, z, y),

also, we can define “x is prime” as follows:

ϕb
prime(x) : x > 1b ∧ ∀y (ϕb

div(x, y) ⇐⇒ (y = 1b ∧ y = x)).

Having the notion of prime number in Xb, we can define the formula “y is the first prime

above x”:

ϕb
fp(x, y) : x < y ∧ ϕb

prime(y) ∧ ¬∃p (x < p < y ∧ ϕb
prime(p)),

and the formula “x is the nth prime”:

ψb(x, n) : ∃η ∈ Tb [lg (η) = n+ 1 ∧ η(0) = 2 ∧
(
∀k < nϕb

fp(η(k), η(S(k))) ∧ η(n) = x]
)
,

Why do we have to define all these formulas? Informally speaking, we want to imitate two

well-known processes in N: prime decomposition and Fundamental theorem of Arithmetic.

Moreover, since induction is valid in Xb, then all the notations we are about to introduce

make sense as long as objects remain below db. Also, the choice of db will give us a bound

for the length of the branches of Tb.

Let us describe first how we can perform prime decomposition of elements of Xb: define the

formula χ1(x, n,m) saying that “x is divisible by the nth prime exactly m times”:

χ1(x, n,m) : ∃η ∈ Tb ∃p [ψb(p, n) ∧ lg (η) = m+ 1 ∧ η(0) = x

∧¬ϕb
div(p, η(m)) ∧ ∀k < mϕb

×(η(S(k)), p, η(k)].

Having prime decomposition, it is natural to think whether this decomposition is unique. To

ensure this, define the formula staying that there is an η 6= ∅ such that η ∈ Tb, x > 2, and

for all i < lg (η), x is divisible by the ith prime exactly η(i) + 1 times:

∃ !ηbpr ∈ Tb [ηbpr(0) = 2 ∧ (∀k < max dom (ηbpr))ϕ
b
fp(ηbpr(k), ηbpr(k + 1))

∧ (∀p ≤ db) (ϕb
prime(p)⇒ ∃k < lg (ηbpr) (p = ηbpr(k)))].

(Last formula allows us to enumerate all the prime below db in order). Now, let χ2(x, η) be
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the formula saying that x ∈ Xb is a Gödel code for η:

χ2(x, η) : ∀k < lg (ηbpr)
(
χ1(x, k, η(k)) + 1) ∧ lg (η) = lg (ηbpr

)
.

Now, we notice that each element of Xb is the code of some η ∈ Tb, but not all the elements

of in Tb will have a Gödel code. So, consider the set

Xa := {y ∈ Xb : (∃x ≤ db)(∃η ∈ Tb)(∃k < lg (η))χ2(x, η) ∧ y = η(k)}. (2-14)

Notice that da := maxXa ≤ db and Xa is an initial segment of Xb, i.e. Xa := {x ∈ Xb :

x ≤ da}. By proposition 2.3.3, then a ∈ Or(s) and b contains all the Gödel codes of elements

of Ta. What we wanted to do here was to describe the mechanism of Gödel codification.

Lemma 2.3.4 ([11, Lemma 5.3]) Let s be a cofinality spectrum problem and b ∈ Or(s).

Then there is a ∈ Or(s) such that Xa is an initial segment of Xb and all Gödel codes for

elements of Ta belong to Xb. In particular, we may identify Ta = {η ∈ Tb : ∃x ≤ db :

χ2(x, η)}.

Lemma 2.3.4 is fundamental in our context: it provides us the tools to work with more

complex trees viewing them as definable subsets of some suitable order without changing

the cofinality spectrum problem we are working on. Besides, along with Corollaries 2.2.17

and 2.2.18, the study of certain gaps in some order of a cofinality spectrum problem will

remain invariant when we carry out the codification. From now on, we can consider richer

trees that model more conditions about certain orders.

Definition 2.3.5 (Covers, [11, Def. 5.4]) Let s be a cofinality spectrum problem and a ∈
Or(s).

(1) Say that b ∈ Or(s) is a cover for a if all Gödel codes for elements of Ta belong to Xb.

The usual case is when Xa is an initial segment of Xb, so is itself an element of Or(s)

by proposition 2.3.3.

(2) We define k-coverable by induction on k < ω.

(a) Say that a is 0-coverable if a ∈ Or(s) is nontrivial.

(b) Say that a is (k+ 1)-coverable if there exists b ∈ Or(s) such that b is a cover for

a and b is itself k-coverable.

(3) Say that a is coverable if it is 1-coverable; this will be our main case.

(4) Say that a is coverable as a pair by d ∈ Or(s) when

(a) there is a c ∈ Or(s) such that Xc = Xa × Xa and definition 2.2.5 (6) holds of

a, c.
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(b) c is coverable by d.

By lemma 2.3.4, we have that there is some k-coverable a for any k (likewise for coverable

as a pair). So, we have the necessary tools to reach our main goal.

2.4. Characterization of C(s, ts) = ∅
After analyzing some useful properties of cofinality spectrum problems (such as local sa-

turation and Gödel codifications), we have new elements to continue with our main goal:

characterize the cut spectrum C(s, ts).

Remark 2.4.1 In lemma 2.2.4 we study how to rule out symmetric gaps in regular ul-

trafilters. Actually, it is natural to think in bringing this result to the context of cofinality

spectrum problem and indeed, it is possible to rule out (κ, κ)-gaps in any cofinality spectrum

problem, for κ ≤ ps, κ < ts (see [11, Lemma 6.1]). The proof is similar to lemma 2.2.4, so

we leave the details to the reader.

Fact 2.4.2 ([11, Claim 8.2]) Let s be a cofinality spectrum problem, a ∈ Or(s), κ ≤ ps,

(κ, λ) ∈ C(s, ts) and let f : Xa → Xa be multiplication by 2. Then we may choose sequences

〈dε : ε < κ〉, 〈eα : α < λ〉 of elements of Xa such that (〈dε : ε < κ〉, 〈eα : α < λ〉)
represents a (κ, λ)-gap, and moreover, for all α < λ we have that f(eα+1) <a eα.

Proof. Suppose that there is a (κ, λ)-gap in Xa, for some a ∈ Or (s). Since (κ, λ) ∈ C(s, ts),
by definition we have that κ+λ < ts. Consider the definable subtree T4 of Ta whose elements

x are such that:

(i) If n1 <a n2 <a lg (x), then f(x(n1)) <a x(n2).

(ii) If n1 <a n2 <a lg (x), then x(n1) <a x(n2).

Notice that this tree is nonempty and contains arbitrarily long finite branches. Now, by

induction on ε < κ we construct a sequence cε ∈ T4, nε := lg (cε) − 1 ∈ Xa, and dε ∈ Xa as

follows:

(a) cβ E cε for all β < ε.

(b) cε(nε) = dε.

(c) cε is below the ceiling.

(d) for each n <a nε and m < ω, there are x0, ..., xm ∈ Xa such that cε(n) = x0, f(xk) <

xk+1 for all k < m, and cε(n) < x1 < ... < xn.
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We leave the details of the induction to the reader (see [11, pp. 268-269]).

Since κ < ts, by fact 2.2.12 we can find an upper bound c ∈ T4 of the sequence 〈cε : ε < κ〉.
By theorem 2.2.15 and the assumption that (κ, λ) ∈ C(s, ts), there is a decreasing sequence

〈mα : α < λ〉 of elements of {n ∈ Xa : n <a lg (c)} such that (〈nε : ε < κ〉, 〈mα : α < λ〉)
represents a (κ, λ)-gap and m0 ≤ lg (c) − 1. Define the sequence 〈eα : α < λ〉 in Xa by

eα := c(mα). It is clear that dε <a eα for all ε < κ and α < λ, and by hypothesis (d) of

the construction of T4, we have that f(eα+1) <a eα for all α < λ. Hence, the sequences

〈dε : ε < κ〉, 〈eα : α < λ〉 satisfy the conditions of the fact. �

The idea of the previous fact is to determine how far apart we can choose the elements of

the right side of a gap, and in this way, having sufficient space in the interval (eα+1, eα).

Fact 2.4.3 ([11, Fact 8.4]) For every κ, there is some symmetric function g : κ+×κ+ → κ

such that for every W ∈ [κ+]κ
+

we have that sup (ran (g �W×W )) = κ.

Proof. Since for all α < κ+ there is an injection from α into κ, then let g be such that

for all β < γ < α, g(β, α) 6= g(γ, α). Now let W ∈ [κ+]κ
+

. Then we choose α ∈ W such that

|α ∩W | = κ. Hence for all distinct γ, β ∈ α ∩W , we have that g(γ, α) 6= g(β, α). Therefore,

sup (ran (g �W×W )) = κ. �

Now we are ready to prove the main result in [11] which allows us to rule out asymmetric

gaps below ts.

Theorem 2.4.4 ([11, Thm. 8.1]) Let s be a cofinality spectrum problem. Suppose that κ, λ

are regular and κ < λ ≤ ps and λ < ts. Then (κ, λ) /∈ C(s, ts).

Proof. Let a ∈ Or(s) coverable as a pair by some a′ and suppose that (κ, λ) ∈ C(s, ts).
Without loss of generality, in Xa, this gap is represented by

(〈dε : ε < κ〉, 〈eα : α < λ〉),

and the sequences 〈dε : ε < κ〉, 〈eα : α < λ〉 can be chosen as in fact 2.4.2 (we often

abbreviate this cut as (d, e)). To complete our preliminaries, let g : κ+ × κ+ → κ be a

symmetric function as in fact 2.4.3.

Now we define a convenient tree that models this gap: let b ∈ Or(s) be such that Xb =

Xa ×Xa ×Xa ×Xa′ ×Xa′ ×Xa′ , and consider the subtree T6 ⊆ Tb given as follows: x ∈ Tb
if and only if:

(1) n1 <b n2 <b lg (x) implies

x(n2, 0) ≤a x(n2, 1) <a x(n2, 2) <a x(n1, 0)

carlosadiprisco
Resaltado
have
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(these first three coordinates witness the progression of the leftward towards the gap,).

(2) x(n, 3) is a non-empty subset of Xa (i.e. x(n, 3) ∈ Ta such that x(n, 3)(k) < 2a for all

k < lg (x(n, 3))) such that |x(n, 3)| + |x(n, 3)| ≤ da, where |x(n, 3)| ∈ Xa is below the

ceiling and satifies

∃η [lg (η) = lg (x(n,3)) + 1 ∧ η(0) = 0 ∧ η(lg (η)− 1) = |x(n, 3)|
∧ (∀k < lg (η)− 1) (η(k + 1) = η(k) + x(n, 3)(k))].

(3) x(n, 4) is a symmetric 2-place function with domain x(n, 3)× x(n, 3) and range ⊆ Xa,

which we call a distance estimate function (this function provides a lower bound for

condition (4)).

(4) x(n, 5) is an injective function from x(n, 3) into the interval (x(n, 1), x(n, 2))a such

that:

a 6= b ∈ x(n, 3) implies x(n, 4)(a, b) ≤ |x(n, 5)(a)− x(n, 5)(b)|

where | · | represents the usual absolute value.

(5) If n1 <b n2 <b lg (x) and a, b ∈ Xa are such that (∀m)((n1 ≤b m ≤b n2) → {a, b} ⊆
x(m, 3)) then x(n1, 4)(a, b) = x(n2, 4)(a, b) (the distance estimate of two elements in

the domain of x(n, 5) is constant if these elements remain continously in the sequence

of these domains).

Now we will choose cα ∈ T6 and nα = max (dom (cα)) by induction on α < λ. When α < κ+

is a successor, then we will also choose a constant yα. They satisfy the following:

X For all α < λ:

(1) β < α implies cβ E cα.

(2) β < α implies

eα+1 ≤a cα(nα, 0) ≤a cα(nα, 1) <a cα(nα, 2) <a eβ+1

and if α = β + 1, then in addition c(nα, 0) = eα+1.

(3) For all γ < min {α, κ+}:

(a) (∀m)[nγ+1 ≤b m ≤b nα → yγ+1 ∈ cα(m, 3)] (i.e. all constants of small index

are in the domain of cα(n, 5), and they will remain in the domains of cβ(n, 5)

for all β > α).
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(b) for all ζ < γ and for all m such that nγ+1 ≤b m ≤b nα,

cα(m, 4)(yζ+1, yγ+1) = dg(ζ+1,γ+1).

(the distance estimate function gives a lower bound to the distance of the

cα(m, 5) images of yζ+1 and yγ+1, and this distance is not larger than dg(ζ+1,γ+1).

Meanwhile yζ+1 and yγ+1 stay in the domain of cα(m, 5) for nγ+1 ≤ m ≤ nα,

so the distance estimate will remain the same by (5)).

X When α = β + 1 < κ+, then in addition :

(4) yβ+1 ∈ Xa r {yγ+1 : γ < β}.

(5) yβ+1 ∈ cα(nα, 3).

(6) yβ+1 /∈ cβ(nβ, 3).

(7) |cα(nα, 3)|+ |cα(nα, 3)| ≤ da.

(8) for all γ + 1 < β + 1 and all n such that nγ+1 ≤b n ≤b nβ+1,

x(n, 4)(yγ+1, yβ+1) = dg(γ+1,β+1)

Let us perform the induction.

X (Case α = 0): Let c0(n0, 0), c0(n0, 1), c0(n0, 2) ∈ Xa such that

e1 ≤a c0(n0, 0) ≤a c0(n0, 1) <a c0(n0, 2) <a e0.

and n0 = 0. Also, define c0(n0, 3) := {0a}, c0(n0, 4)(0a, 0a) := 0a ∈ Xa and c0(n0, 5)(0a) :=

0.

X (Case α = β+1, when in addition α < κ+): If α = β+1 < κ+, we first define yα = yβ+1.

By inductive hypothesis, we have that M+
1 � cβ ∈ T6, hence by (2) in the definition of

T6, then we claim that Xa r cβ(nβ, 3) 6= ∅. Choose yβ+1 ∈ Xa r cβ(nβ, 3). Notice that

since the size of cβ(nβ, 3) ∪ {yβ+1} is no larger than its complement in Xa and below

the ceiling, then we can choose cα(nα, 3) in such a way that it remains small enough.

It is clear that conditions (4) and (6) of the inductive hypothesis hold, therefore by

condition (5) in our definition of T6, we will be able to freely choose the value of

cα(nα, 4) on any pair which includes yβ+1 (*). This remark will be useful later. This

step continues below.

X (Case α = β + 1 for arbitrary α < λ): This is the key part of the induction. Suppose

that we have already chosen yβ+1 for all β < min {α, κ+} and continue the induction

for α = β + 1 < λ.
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At this step, we are interested in defining cα(nα, l) for l < 6. The nontrivial cases,

as expected, are l = 3, 4, 5. This will be done by showing it may be expressed as

a consistent partial Or-type, and then applying local saturation (see theorem 2.3.2).

Recall that we suppose that λ < ts.

Let p := p(x0, x1, x2, x3, x4, x5) be the partial type stating the following.

(P1) x0, x1, x2 ∈ Xa and x3, x4, x5 ∈ Xa′ .

(P2) x0 = eα+1 ≤a x1 <a x2 <a eα.

(P3) x3 = dom (x4) ⊆ Xa is below the ceiling and |x3|+ |x3| ≤ da.

(P4) x4 is a definable symmetric 2-place function from x3 to Xa.

(P5) x5 is a definable injection from x3 into the interval (eα+1, eα)a such that a 6= b ∈ x3

implies that x4(a, b) < |x5(a)− x5(b)|.

(P6) x1 < min (ran (x5)), x2 > max (ran (x5)).

(P7) if a, b ∈ cβ(nβ, 3) ∩ x3 then x4(a, b) = cβ(nβ, 4)(a, b).

For γ < min {α, κ+} we also consider

(P8)γ yγ+1 ∈ x3.

For ζ < γ < min {α, κ+} we consider

(P9)ζ,γ x4(yζ+1, yγ+1) = dg(ζ+1,γ+1). (Notice that the remark (*) of case α = β + 1 < κ∗

allows us to choose x4 in this way when the pair includes yβ+1, and by (4) of the

inductive hypothesis for all other pairs of y’s.)

Notice that p depends on the parameters {eα+1, eα, cβ} ∪ {yγ+1 : γ < min {α, κ+}} ∪
{dg(ζ+1,γ+1) : ζ, γ < min {α, κ+}}, and also we have that |α| < ps, since λ ≤ ps.

Therefore, to show that p is an Or-type it is enough to prove that p is finitely satisfiable

in Xb, recalling that since we chose a partial injection x5, the domain of this partial

injection x3 and a distance estimate function x4, then the conditions (P8) and (P9) are

restrictions that forces us to find certain elements in the domain x3, with an estimated

distance previously fixed and, when necessary, certain new distances set.

We will see that p is finitely satisfiability by using a compactness argument. Let Γ ⊆ α

be a non-empty finite subset and let p0 ⊆ p be finite and such that p0 implies (P1)-

(P7), p0 implies (P8)γ for each γ ∈ Γ and p0 implies (P9)γ,ζ for each γ, ζ ∈ Γ. Let us

prove that p0 is satisfiable. Define b3, b4, b5, b1, b2 as follows.

(i) Let b3 := {yγ+1 : γ ∈ Γ}.

(ii) Let b4 be the symmetric 2-place function on b3 defined by b4(yζ+1, yζ+1) :=

dg(ζ+1,γ+1).

(iii) Let d = max {dg(ζ+1,γ+1) : ζ 6= γ ∈ Γ}. It is clear that d < eα for all α < λ,

because of the way we chose the gap at the beginning of the proof.
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(iv) Let {γ0, ..., γn} be an increasing enumeration of Γ without repetitions, and define

b5 by b5(yγi+1) := eα+1 +a 1 +a i · d for i = 0, 1, ..., n. Because of the way we chose

the sequence e, we have that max (ran (b5)) <a eα.

(v) Let b0, b1, b2 be defined from b3, b4, b5 by conditions (P1), (P2) and (P6) of the

definition of p.

We want to show that (b0, ..., b5) � p0. It is clear that condition (P1) holds. Conditions

(P2) and (P6) follow from the fact that by (iv), we claim that max (ran (b5)) <a eα.

Condition (P3) holds since b3 is finite and Xa is not. Conditions (P4), (P5), and

(P6) follow immediately because of the way we chose the elements bi, and for ζ <

γ ≤ β conditions (P8)γ and (P9)ζ,γ also follow immediately. So, it remains to analyze

condition (P7), knowing that cβ(nβ, 3) ∩ b3 ⊆ b3. By inductive hypothesis (1) and (5),

we have that cβ(nβ, 3)∩b3 = {yγ+1 : γ ∈ Γ, γ 6= β}. Therefore, if ζ < γ < β, condition

(P7) for a = yζ+1, b = yγ+1 holds by condition (P9), and if ζ < γ then condition (p.7)

for a = yζ+1, b = yβ+1 is immediate since yβ+1 /∈ cβ(nβ, x3).

Since p0 is realized, then we have that p is an Or-type in the sense of definition 2.3.1

over a set of size < ps, and by theorem 2.3.2 we can find a realization 〈b∗i : i <

6〉 of p. By inductive hypothesis, we can concatenate, therefore we consider cα :=

cβ
_〈b∗0, b∗1, b∗2, b∗3, b∗4, b∗5〉 and nα := nβ + 1. With this, the successor step is done.

X (Case α limit): Since cf (α) < λ ≤ ps < ts, then by fact 2.2.13 there is a c ∈ T6 such

that cβE c for all β < α and c is below the ceiling. As in proof of lemma 2.2.4, we want

to refine this bound c by choosing a convenient initial segment cα in such way that

conditions (1), (2) and (3a) of the inductive hypothesis will be satisfied. Conditions

(3b-3c) will follow directly from definition of T6). First, let

n∗ := max {n : n ≤b lg (c), M+
1 � eα <a c(n, 0))}.

Notice that lg (cβ) <b n∗ for all β < α. Now, for each β < max {α, κ+}, let

n(β) := max {n ≤b n∗ : yβ+1 ∈ c(n, 3)}.

For each γ < β < α, by the inductive hypothesis (3) for β, we may ensure that

yγ+1 ∈ cβ(nβ, 3). Therefore, ({nβ : β < α ∩ κ+}, {n(β) : β < α ∩ κ+}) represents a

(κ1, κ2)-pre-gap in Xb, for some regular κ1, κ2 ∈ |α ∩ κ+|. It cannot represent a gap,

since κ1 + κ2 ≤ |α| < λ ≤ ps, contradicting the definition of ps. Hence, we can choose

n∗∗ ≤b n∗ such that nγ <b n∗∗ <b n(β) for all γ, β < α ∩ κ+. Consider nα := n∗∗ and

cα := c �nα+1. This completes the limit case, and hence we have finished the inductive

construction of the sequences 〈cα : α < λ〉 and 〈nα : α < λ〉.

Having built the sequence 〈cα : α < λ〉 and as λ < ts, we can find cλ ∈ T6 such that cα E cλ
for all α < λ, with nλ = max (dom (cλ)). Note that cλ is a function from Xb into Xb, so
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〈nα : α < λ〉 is a strictly increasing sequence in Xb below nλ, so by theorem 2.2.15 we can

find a strictly decreasing sequence 〈mε : ε < κ〉 such that (〈nα : α < λ〉, 〈mε : ε < κ〉) re-

presents a (λ, κ)-gap in Xb (again, sometimes we will refer this gap as (n,m). Since cλ(n, 2)

is strictly decreasing in Xa as n is too large, then we may ensure that cλ(mε, 2) ≤a dγ
for some γ: since cα(mε, 2) ≤a eα for all α < λ and (d, e) represents a (κ, λ)-gap in Xa,

then cλ(mε, 2) <a dγ for some γ. Hence, we can choose a map ζ : κ → κ such that

cλ(mε, 2) <a dζ(ε).

What about the constants yβ+1? Well, for β < κ+, consider the set

Xβ := {n : n ≤b nλ, (∀n′)(nβ+1 ≤b n
′ ≤b n→ yβ+1 ∈ cλ(n′, 3))}.

It is clear that Xβ is a subset of Xb that includes [nα1 , nα2 ]b, for all β < α1 < α2 < λ+.

Therefore, each Xβ has a maximal element above all the nα’s, and since (n,m) is a (λ, κ)-cut,

then for some ε(β) < κ we have that [nβ+1,mε(β)]b ⊆ Xb. Since there are κ+-many β’s, then

we may assure the existence of some W ⊆ κ+ of size κ+ and ε∗ < κ such that ε(β) = ε∗ for

all β ∈ W .

Xa

Xb

yβ+1

nβ nα mε∗ mε

x(·, 5)

cλ(·, 5)

Figure 2-1: Sketch which describes how to obtain the desired bound mε∗ .
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yγ+1 yβ+1

cλ(mε∗ , 2)

cλ(mε∗ , 1)

dζ(ε∗)

dg(γ,β)

cλ(mε∗ , 5)

Xa

Xa

Figure 2-2: Behaviour of cλ(n, 5) in mε∗ .

By construction, for every β 6= γ ∈ W , we have that F (yγ, yβ) = dg(γ,β), and also, by the

choice of g, we can find γ, β ∈ W such that ζ(ε∗) < g(γ, β), so

cλ(mε∗ , 2) <a dζ(ε∗) <a dg(γ,β) = cλ(mε∗ , 4)(yγ+1, yβ+1)

≤a |cλ(mε∗ , 5)(yγ+1)− cλ(mε∗ , 5)(yβ+1)| <a cλ(mε∗ , 2),

a contradiction. �

Theorem 2.4.5 ([11, Central theorem 9.1]) Let s be a cofinality spectrum problem. Then

C(s, ts) = ∅. In particular, ts ≤ ps.

Proof. If ps < ts, without loss of generality suppose that κ ≤ λ are such that κ + λ = ps
and (κ, λ) ∈ C(s, ts). We have seen that neither the case κ = λ (lemma 2.2.4 and remark

2.4.1) nor κ < λ (theorem 2.4.4) can occur. So this case cannot occur. So, we have that

ts ≤ ps. By definition of ps, then C(s, ts) = ∅. �
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Keisler’s order was first introduced by Keisler in 1967 (see [9]). This order uses the notion of

saturations of ultrapowers to compare the complexity of any two countable complete first-

order theories, giving a set theoretic characterization of the maximal theories in terms of

the combinatorial properties of the ultrafilters which saturate them. Several facts are known

about this order: for example, Keisler’s order restricted to stable theories is linear (see [16],

chapter VI), but its complete structure is still unknown.

Keisler [9] showed that there is a maximum class for this order. Later, Shelah [16] proved that

any theory of linear order, or more precisely with the strict order property (abbreviated as

SOP), belongs to the maximum class; this was weakened to the strong order property SOP3,

(a weak version of linear orders). Malliaris and Shelah [11] showed that theories with SOP2

belong to the maximum class of Keisler’s order. In this chapter, define a convenient cofinality

spectrum problem related to a regular ultrafilter D. In this cofinality spectrum problem, it

is possible to characterize C(s, ts) by combinatorial properties of D, such as goodness D or

existence of treetops. The aim of this chapter is to analyze how these combinatorial proper-

ties of D are related to C(s, ts).

Unless stated otherwise, we will work with countable languages and first-order complete

theories.

3.1. Definition of Keisler’s order

In Section 1.5, we have studied several properties about countably incomplete ultrafilters and

regular ultrafilters. For regular ultrafilters, we can wonder about saturation of an ultrapower

beyond ℵ1.

Definition 3.1.1 Let D be a regular ultrafilter over I, T an L-theory and M � T . We say

that D saturates M if MI/D is |I|+-saturated.

The main property of regular ultrafilters, described in Theorem 1.5.6, allows us to preserve

saturation of ultrapowers when we have elementary equivalent ultraroots. Therefore, if M
is a model of a complete theory T (see definition 1.4.3) and D is a regular ultrafilters that

saturatesM, then D saturates any model of T , so we can talk about saturation of complete

theories.
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Definition 3.1.2 ([11, Def. 10.5]) Let T be a countable complete first order theory. If D
is a regular ultrafilter over a set I, we say that D saturates T if D saturates M, for every

M � T .

The previous definitions gives us an effective method to compare any pair of first order

theories via regular ultrafilters.

Definition 3.1.3 ([11, Def. 10.6]) Let T1, T2 be countable complete first order theories.

We say that T1ET2 if for any cardinal λ and any regular ultrafilter D over λ, if D saturates

T2 then D saturates T1.

The relation E given in definition 3.1.3 is known as Keisler’s order.

3.2. Good ultrafilters

This section is dedicated to the study of good ultrafilters. This ultrafilters allow to transfer

ℵ1-saturation of ultraproducts to uncountable cardinal above ℵ1. In this section, given I a

non-empty set and κ an infinite cardinal, we will say that a function f : [κ]<ℵ0 → P(I) is

monotone if for every u, v ∈ [κ]<ℵ0 such that u ⊆ v, then f(u) ⊇ f(v) (i.e. in this context,

“monotone” means antimonotone).

Definition 3.2.1 ([11, Def. 10.8]) Let D be a filter over a non-empty set I. We say that

D is λ-good if for every κ < λ, every monotone function f : [κ]<ℵ0 → D has a multiplicative

refinement, i.e., there is g : [κ]<ℵ0 → D such that:

(1) If u ∈ [κ]<ℵ0, then g(u) ⊆ f(u).

(2) If u, v ∈ [κ]<ℵ0, then g(u) ∩ g(v) = g(u ∪ v).

We say that D is good if it is |I|+-good.

The following theorem guarantees the existence of good ultrafilters for any non-empty set.

Fact 3.2.2 ([3, Thm. 6.1.4]) Let I be a set of cardinality λ. Then there is a λ+-good ω-

regular ultrafilter D over I.

Proof. Without loss of generality, consider I = λ. Let {fξ : ξ < 2λ} be an enumeration

of all monotone function from [λ]<ℵ0 to P(λ) Define by transfinite induction two sequences,

(Πξ)ξ<2λ , (Fξ)ξ<2λ, as follows:

(i) If η < ξ < 2λ, Fξ ⊇ Fη and Πξ ⊆ Πη.
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(ii) |Πξ| = 2λ

(iii) |Πξ r Πξ+1| < ℵ0

(iv) For δ limit, Πδ =
⋂
η<δ Πη and Fδ =

⋃
η<δ Fη.

(v) (Πξ, Fξ) is consistent for η < 2λ (see [3, lemma 6.1.7]).

Then, by construction, it is possible to see that F :=
⋃
ξ<2λ Fξ is the λ+-good countably

incomplete ultrafilter seeked. We leave the remaining details of this proof to the reader (see

[3, Thm. 6.1.4]). �

Example 3.2.3 Let D be an ultrafilter over N and let f : [N]<ℵ0 → D be monotone. Given

A ∈ [N]<ℵ0 , define n(A) := min {n ∈ N : A ⊆ n} ∈ [N]<ℵ0 , with n = {0, 1, ..., n − 1}. Now,

consider g : [N]<ℵ0 → D defined by g(A) = f(n(A)). Since A ⊆ n(A) and f is monotone,

then we have that g(A) = f(n(A)) ⊆ f(A) for A ∈ [N]<ℵ0 , and thus g ≤ f . To prove that

g is multiplicative, let A,B ∈ [N]<ℵ0 . Then n(A ∪ B) = n(A) ∪ n(B) = max {n(A), n(B)},
hence

g(A ∪B) = f(n(A ∪B)) = f(max {n(A), n(B)}) = f(n(A)) ∩ f(n(B)) = g(A) ∩ g(B)

Therefore, D is a ℵ1-good ultrafilter over N.

Proposition 3.2.4 ([16, Claim 2.4, chapter VI]) Let D be an ultrafilter over I and let λ

be an infinite regular cardinal. If D is λ+-good and countably incomplete, then D is λ-regular.

Proof. Since D is countably incomplete, by proposition 1.5.4, there is a decreasing coun-

table chain {In ∈ D : n < ω〉 such that
⋂
n<ω In = ∅. Define f : [λ]<ℵ0 → D by f(w) := I|w|,

and since D is λ+-good, let g : [λ]<ℵ0 be the multiplicative refinement of f . It is clear that

g({α}) ∈ D, for all α < λ.

Suppose that D is not λ-regular, then there is an infinite w ⊆ λ such that t ∈
⋂
α∈w g({α}),

for some t ∈ I. For each n < ω, choose w(n) ⊆ w such that |w(n)| = n, then t ∈⋂
α∈w(n) g({α}) = g(w(n)) ∈ In, which contradicts the fact that

⋂
n<ω In = ∅. Hence,⋂

α∈w g({α}) = ∅, and we may conclude that {g({α}) : α < λ} is a λ-regularizing family

for D. �

The importance of good ultrafilters is that they give us essential data about theories with

saturated ultraproducts.

Theorem 3.2.5 ([3, Thm. 6.1.8]) Let λ be an infinite and let D be a λ-good ω-regular

ultrafilter over I. Suppose that {Mi : i ∈ I} is a family of L-structures, with |L| < λ. Then

the L-structure
∏
D Mi is λ-saturated.
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Proof. Without loss of generality, let p = p(x) = {ϕµ(x) : µ < κ} be a type in M =∏
D Mi without parameters: p(x) has parameters (aµ)µ<κ), then consider the language L′ =
L ∪ {ci : i < µ}, where ci is a constant symbol. We should prove that if p(x) is finitely

satisfiable in (Mam)m<ω, where (Mam)m<ω is the expansion of M by interpretating each

element am as a constant symbol ci ∈ L′, then p(x) is satisfiable in (Mam)m<ω. Notice that

if am = [(am(i)i∈I ] ∈M, then(∏
D

(Mi)am

)
m<ω

=
∏
D

((Mi)am)m<ω

Since L and L′ are of size les than λ, then it is enough to prove that if p(x) is finitely

satisfiable (without parameters) in M, then p(x) is satisfiable in M.

Since D is countably incomplete, there is a decreasing chain {In : n ∈ ω} ⊆ D such that⋂
n∈ω In = ∅. Define f : [p]<ℵ0 → D as follows:

f(u) :=

I if u = ∅
I|u| ∩

{
i ∈ I : M � ∃x

∧
ϕ∈u ϕ(x)

}
if u 6= ∅

(3-1)

It is clear that f is monotone: if u ⊆ v, then I|u| ⊇ I|v|, and{
i ∈ I : M � ∃x

∧
ϕ∈u

ϕ(x)

}
⊇

{
i ∈ I : M � ∃x

∧
ϕ∈v

ϕ(x)

}

Since D is λ-good, there is a multiplicative refinement g : [p]<ℵ0 → D of f . For each i ∈ I,

consider

σ(i) := {ϕ(x) ∈ p(x) : i ∈ g({ϕ(x)})}

First of all, let us prove that σ(i) is finite, for every i ∈ I: otherwise, if |σ(i)| ≥ n, then choose

n distinct elements ϕ1, ..., ϕn ∈ σ(i). Thus, we will have that i ∈ g({ϕj}) for j ∈ {1, ...n},
and by multiplicativity if D, we may assure that

i ∈ g({ϕ1}) ∩ ... ∩ g({ϕn}) = g({ϕ1 ∪ ... ∪ ϕn})
⊆ f({ϕ1 ∪ ... ∪ ϕn}) ⊆ In

If σ(i) were not finite, then i ∈ In for infinitely many n, a contradiction.

Thus σ(i) is finite and i ∈ g({ϕ}) for finitely many ϕ ∈ p. Moreover, for i ∈ I, we have that

i ∈
⋂
{g({ϕ(x)}) : ϕ(x) ∈ σ(i)} = g(σ(i)) ⊆ f(σ(i))

Now we will build a suitable hD which satisfies p(x) in
∏
D Mi. If σ(i) = ∅, choose any
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h(i) ∈Mi; otherwise, since (3-1) holds, for i ∈ I, choose h(i) ∈Mi such that

Mi �
∧

ϕ∈σ(i)

ϕ(h(i))

We will see that [(h(i))i∈I ] is a realization of p(x). Let ϕ(x) ∈ p(x). Since i ∈ g({ϕ(x)})
implies ϕ(x) ∈ σ(i), we have that

{i ∈ I : Mi � ϕ(h(i))} ⊇ g({ϕ(x)} ∈ D

By  Loś theorem, we can conclude that [(h(i))i∈I ] realizes p(x). �

In Theorem 1.5.5 we showed that countably incomplete ultrafilters produce ℵ1-saturated

ultraproducts. Good ultrafilters allow us to transfer the saturation of ultraproducts to any

uncountable cardinal λ.

The next result is a useful characterization of good ultrafilters via saturation of ultrapowers.

Theorem 3.2.6 ([16, Thm. 2.2, chapter VI]) Let D be an ultrafilter over I and λ be a

cardinal. The following statements are equivalent:

(i) D is λ-good.

(ii) For any family of λ-saturated models (Mt)t∈I , the ultraproduct
∏
D Mt is λ-saturated.

(iii) For every µ < λ and every elementary λ-saturated extension M of Mµ := ([µ]<ℵ0 ,⊆
, P ), with P (w)⇔ w 6= ∅, the ultrapower MI/D is λ-saturated.

Proof. (i) =⇒ (ii): Let µ < λ, let N =
∏
D Mt, let A ⊆ N such that |A| < λ and let

p(x) := {ϕα(x, aα) : α < µ} be a type overN with parameters aα := ([a1], ..., [an]) ∈ A<ω, for

α < µ. For any ϕ(x, aα) ∈ p and any w ∈ [µ]<ℵ0 , we define the following map f : [µ]<ℵ0 → D.

f(w) :=

{
t ∈ I : Mt � ∃x

(∧
α∈w

ϕα(x; aα(t))

)}
,

with aα(t) := (a1(t), ..., an(t)). Notice that f(w) is well defined by  Loś’s Theorem. Since p is

finitely satisfiable in N , then there is some cw ∈ N such that cw � {ϕα(x; aα) : α ∈ w}. Hen-

ce, we may conclude by  Loś’s Theorem that Xα
cw := {t ∈ I : Mt � ϕα(cw(t); aα(t))} ∈ D,

and therefore we have that
⋂
α∈w X

α
cw ⊆ f(w), so f(w) ∈ D.

Since D is λ-good, there is a multiplicative function g : [µ]<ℵ0 → D which refines f . For each

t ∈ I, consider the set w(t) := {α < µ : t ∈ g({α})}. Notice that for every finite subset
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u ⊆ w(t), α ∈ u implies that t ∈ g({α}) ⊆ f({α}). So,

Mt � ∃x

(∧
α∈u

ϕα(x; aα(t))

)

and since this holds for every finite u ⊆ w(t), then pt = {ϕα(x; aα(t)) : α ∈ w(t)} is finitely

satisfiable in Mt. Since Mt is λ-saturated, there is c(t) ∈ Mt such that c(t) � pt. Consider

c := [(c(t))t∈I ], and let us prove that c � p: for any α < µ < λ, we have

{t ∈ I : Mt � ϕα(c(t); aα(t))} ⊇ g({α}) ∈ D

thus {t ∈ I : Mt � ϕα(c(t); aα(t))} ∈ D, and by  Loś’s Theorem, we claim that N �
ϕα(c, aα).

(ii) =⇒ (iii): Let M be a λ-saturated extension of Mµ. Then, by hypothesis, if we consider

Mt :=M, for all t ∈ I, we have that
∏
D M =MI/D is λ-saturated.

(iii) =⇒ (i): Let µ < λ, let f : [µ]<ℵ0 → D be a monotone function and let M be a λ-

saturated extension of Mµ such that MI/D is λ-saturated. For t ∈ I and α < µ, define

aα(t) ∈M as follows: for every w ∈ [µ]<ℵ0 ,

M � ∃x

[∧
a∈w

(x ⊆ aα(t)) ∧ P (x)

]
if and only if t ∈ f(w) (3-2)

(This formula says that x is a non-empty common subset of some finitely many aα(t), which

can be chosen from Mµ. Since M is λ-saturated, then it is possible to choose all aα(t), for

all α < µ.)

Hence, let aα := [(aα(t))t∈I ] ∈ MI/D and p = {x ⊆ aα : α < µ} ∪ {P (x)} in MI/D. We

want to prove that p is finitely satisfiable inMI/D. Let q ∈ [p]<ℵ0 , then for some u ∈ [µ]<ℵ0

we have that q ⊆ {x ⊆ aα : α ∈ u} ∪ {P (x)}, and since (3-2) holds, we can claim that{
t ∈ I : M � ∃x

[∧
α∈u

x ⊆ aα(t)) ∧ P (x)

]}
= f(u) ∈ D

Therefore, by  Loś’s Theorem, MI/D � (∃x)[
∧
α∈u x ⊆ aα ∧ P (x)], and thus, p is finitely

satisfiable in MI/D. Now, by hypothesis there is a c ∈ MI/D which realizes p (because

MI/D is λ-saturated).

Now, let us define g : [µ]<ℵ0 → D as follows:

g(w) :=

{
t ∈ I :M �

[∧
α∈w

c(t) ⊆ aα(t) ∧ P (c(t))

]}
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We may claim that g is a multiplicative refinement of f : given u, v ∈ [µ]<ℵ0 , we have that

g(u ∪ v) =

{
t ∈ I :M �

[ ∧
α∈u∪v

c(t) ⊆ aα(t) ∧ P (c(t))

]}

=

{
t ∈ I :M �

[∧
α∈u

c(t) ⊆ aα(t) ∧ P (c(t))

]}

∩

{
t ∈ I :M �

[∧
α∈v

c(t) ⊆ aα(t) ∧ P (c(t))

]}
= g(u) ∩ g(v)

Besides, for all u ∈ [µ]<ℵ0 , we have that

g(u) =

{
t ∈ I :M �

[∧
α∈u

c(t) ⊆ aα(t) ∧ P (c(t))

]}

⊆

{
t ∈ I :M � ∃x

[∧
α∈u

x ⊆ aα(t) ∧ P (x)

]}
= f(u)

So g(u) ⊆ f(u). Hence, we have shown that D is λ-good ultrafilter over I. �

Fact 3.2.7 Consider DLO the theory of dense linear orders without first or last element.

As in Theorem 3.2.6, there is a characterization of good ultrafilters via saturated models of

DLO (this characterization is [16, Thm. 2.6, chapter VI]). If D is an ultrafilter over I and

λ > ℵ0, then the following are equivalent:

(i) D is λ-good.

(ii) For every λ-saturated model M of DLO, with M = (M,≤), MI/D is λ-saturated.

(iii) For every λ-saturated modelM of DLO, and for every set A ⊆M I/D linearly ordered

by ≤, then every 1-type p over A in MI/D, with |p| < λ, is realized in MI/D.

The proof of this fact is similar to the proof of Theorem 3.2.6 so we leave the details to the

reader (see [16, pp. 337-341]).

The following result is a characterization of the maximal theories of Keisler’s order in terms

of saturation of ultrapowers by good ultrafilters.

Theorem 3.2.8 ([9, Thm. 3.2]) A theory T is maximal in Keisler’s order if and only if

for any λ > ℵ0, any model M � T and any regular ultrafilter D over λ, the following holds

(?) Mλ/D is λ+-saturated if and only if D is λ+-good
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Proof. (⇐=) Let T ′ be a theory and N � T ′. Also, suppose that M � T . If Mλ/D is

λ+-saturated, then by htpothesis we may conclude that D is λ+-good. By theorem 3.2.5,

we conclude that N λ/D is λ+-saturated, and thus T ′ E T . Therefore, T is maximal in the

pre-order E.

(=⇒) Notice that by theorem 3.2.5, if D is a λ+-good regular ultrafilter over λ, thenMI/D
is λ+-saturated. Hence, let T be maximal, D be a ω-regular ultrafilter over λ and M � T
such thatMλ/D is λ+-saturated. By maximality of T , we have that Th ([µ]<ℵ0 ,⊆, P ))E T ,

for any µ < λ+, and then ([µ]<ℵ0)λ/D is λ+-saturated. According to Theorem 3.2.6 (iii), we

can conclude that N λ/D is λ+-saturated, for every elementary extension N of ([µ]<ℵ0 ,⊆, P ).

Therefore, by Theorem 3.2.6 (i), we may assure that the ultrafilter D is λ+-good. �

Remark 3.2.9 Let D be a regular ultrafilter over I, λ > ℵ0 and M � DLO. By fact 3.2.7,

we have that Mλ/D is λ-saturated if and only if D is λ-good. Now, by Theorem 3.2.8, we

conclude that DLO is maximal in Keisler’s order. In particular, since (Q,≤) � DLO, then we

may claim that Th (Q,≤) is maximal in Keisler’s order.

3.3. Cofinality spectrum problem associated to a regular

ultrafilter

Until now, we characterized maximality in Keisler’s order via good ultrafilters: indeed, ma-

ximal theories are those that are saturated by good ultrafiter, and we showed that DLO is

maximal in E. Now, we connect characterization of Keisler’s order given by Theorem 3.2.8

with the notion of cofinality spectrum problem, studied in chapter 2: indeed, given a regular

ultrafilter D over a non-empty set I, we may define a cofinality spectrum problem s associa-

ted to D, and in this cofinality spectrum problem we may characterize good ultrafilters via

C(s, ts).

First, we study an useful characterization of good ultrafilters via its cut spectrum (see defi-

nition 2.2.1). Essentially, good ultrafilters are those whose allow us to saturate ωλ/D with

absence of certain gaps.

Theorem 3.3.1 ([11, Fact 1.3]) Let D a regular ultrafilter over λ. Then C(D) = ∅ if and

only if D is λ+-good.

Proof. (⇐=) If D is λ+-good, then ωλ/D is λ+-saturated by theorem 3.2.5. Therefore, by

remark 2.2.10 we may conclude that C(D) = ∅.
(=⇒) Suppose that C(D) = ∅. We need to show that ωλ/D is λ+-saturated. To prove this, we

expand the language L = {<} by adding a constant symbol 0 (which will be interpreted as the

carlosadiprisco
Nota adhesiva
a useful



3.3 Cofinality spectrum problem associated to a regular ultrafilter 59

minimum element of ω) and an unary function symbol s (which will be the interpretation

of the successor function). Now, we consider the theory T of discrete linear orders with

minimum element and without maximum (see definition ??). Let p be a type in ωλ/D in the

expanded language {0, s, <} with parameters in some set A ⊆ ωλ/D of cardinality < λ+.

Since T has quantifier elimination (see Theorem 1.4.13), we may suppose that p(x) only

contains atomic formulas with parameters in A.

Fix A1 := {a ∈ A : (x > a) ∈ p} and A2 := {a ∈ A : (x < a) ∈ p}, and we have to consider

the following cases:

(i) There are a ∈ A1 and n ∈ ω such that {sn(a) = x} ∈ p. Then we can see that p is

realized by sn(a). (if a ∈ A2, then p is realized by s−n(a)).

(ii) There are a ∈ A2 and n ∈ ω such that {sn(x) = a} ∈ p. Then we can see that p is

realized by s−n(a).

(iii) If both A1 and A2 are infinite: suppose that |A1| = λ1, |A2| = λ and λ1 + λ2 ≤ λ. We

consider two cases here:

(a) Both λ1, λ2 are regular. Since C(D) = ∅, then it is possible to find a realization b

of p.

(b) If λ1 is not regular, consider a cofinal sequence 〈a1
α : α < cof (λ1)〉 in A1. It

is clear that cof (λ1) is regular and cof (λ1) < λ1, then it is possible to find a

realization b of p, since C(D) = ∅.

(c) If λ1 is not regular, we conclude as in (b).

(iv) If A1 is finite and A2 is infinite: by cases (i) and (ii), we may assume that there is

a ∈ A1∪A2 and n ∈ ω such that neither (sn(a) = x) ∈ p(x) or sn(x) = a) ∈ p(x). Thus,

let a1 ∈ A1 be its maximum. Since C(D) = ∅, then (〈sn(a1) : n ∈ ω〉, 〈a2 : a2 ∈ A2〉
does not represent a gap, hence there is a b ∈ ωI/D such that sn(a1) < b < a2 for all

n ∈ ω and a2 ∈ A2. Then b realizes p.

(v) If A1 is infinite and A2 is finite, we conclude as in (iv).

In any case, we can find a realization of p in ωλ/D. Therefore, we conclude that ωλ/D is

λ+-saturated. �

The following lemma gives us a clue of the form of the orders in the cofinality spectrum

problem we want to define later in this section.

Lemma 3.3.2 ([11, Claim 10.17]) Let D be a regular ultrafilter on I, with |I| = λ. For

any n < ω, let <n denote the usual order on ω restricted to the set {0, 1, ..., n−1}. Then there

is a sequence n = n(D) = 〈nt : t ∈ I〉 ∈ ωI such that for all regular cardinals κ1, κ2 ≤ λ,

the following are equivalent:
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(i) (κ1, κ2) ∈ C(D).

(ii) The linear order
∏
D (nt, <nt) has a (κ1, κ2)-gaps.

Proof. Note that it is enough to prove (i) =⇒ (ii).

Let X = {Xi : i < λ} be a λ-regularizing family for D, and fix nt := |{i < λ : t ∈ X}|+ 1,

for some X ∈ X . Since D is λ-regular, then nt ∈ ω, for all t ∈ I. Now suppose that

(〈aα : α < κ1〉, 〈bβ : β < κ2〉) represent a (κ1, κ2)-gap in ωλ/D. Since κ1 + κ2 ≤ λ, we have

an injective function

d : (κ1 × {0}) ∪ (κ2 × {1})→ D

such that for all t ∈ I, we have that |{x ∈ dom (d) : t ∈ d(x)}| < nt, since D is regular.

Now consider

Yt := {aα(t) : t ∈ d((α, 0))} ∪ {bβ(t) : t ∈ d((β, 1))}

we can notice that |Yt| < nt. If we denote <Yt the restriction of the linear order on ω to Yt,

then we are able to choose an injective map ht : (Yt, <Yt)→ (nt, <nt) such that its image is

an interval of nt and ht preserves the order. Consider

h :=
∏
t∈I

ht :
∏
t∈I

(Yt, <Yt)→
∏
t∈I

(nt, <nt),

and let us show that (〈h(aα) : α < κ1〉, 〈h(bβ) : β < κ2〉) represent a (κ1, κ2)-cut in∏
D (nt, <nt). If γ < α < κ1, note that

{t ∈ I : ht(aγ(t)) < ht(aα(t))} ⊇ d((α, 0)) ∩ d((γ, 0)) ∩ {t ∈ I : aγ(t) < aα(t)} ∈ D.

Therefore, the sequence (h(aα)α<κ1) is increasing in
∏
D (nt, <nt). A similar argument will

show that the sequence (h(bβ)β<κ2) is decreasing in
∏
D (nt, <nt). Since h preserves the order,

the we can conclude that (〈h(aα) : α < κ1〉, 〈h(bβ) : β < κ2〉) represent a (κ1, κ2)-gap in∏
D (nt, <nt); otherwise, it would be possible to find d ∈ ωI/D such that aα < d < bβ, for all

α < κ1 and β < κ2, contradicting the fact that (〈aα : α < κ1〉, 〈bβ : β < κ2〉) represent a

(κ1, κ2)-gap in ωλ/D. �

Definition 3.3.3 ([11, Def. 10.18]) Let D be a regular ultrafilter on I, M a model ex-

tending (ω,<). If 〈nt : t ∈ I〉 ∈ ωI is a sequence satisfying lemma 3.3.2 for D and

(X,<X) ⊆M I/D is given by

(X,<X) =
∏
t∈I

(nt, <nt)/D
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then we say (X,<X) captures pseudofinite gaps.

Now we are ready to define the cofinality spectrum problem in which we will work on to

determine the sufficient conditions of a theory to be in the maximum class in Keisler’s order.

Definition 3.3.3 gives us a main property of the orders of this cofinality spectrum problem.

Fact 3.3.4 Let D be a regular ultrafilter on I, with |I| = λ. Let M expand (ω,<) and

let M1 = M I/D. Then there exist expansions M+,M+
1 of M,M1 respectively such that

M+
1 = (M+)I/D and a set of formulas ∆ ⊇ {x < y < z} of the language of M such that

(1) s = (M,M1,M
+,M+

1 , (Th (M+))M ,∆) is a cofinality spectrum problem.

(2) some nontrivial a ∈ Or (s) captures pseudofinite gaps in the sense of definition 3.3.3.

Proof. Since ultrapowers commute with reducts (see [11, Thm. A, p. 274]), for (1) we can

choose any expansion M+ of M which codifies sufficient set theory for trees in the sense of

definition 2.2.5, e.g. an expansion to a model of (H(χ),∈), for some sufficiently large χ such

that M ∈ H(χ). Also, we can consider M+
1 = (M+)I/D.

For (2), let 〈nt : t ∈ I〉 be given by lemma 3.3.2. By the way this sequence is built, the

linear order
∏

t∈I (nt, <nt)/D is ∆-definable in M1 and captures pseudofinite gaps (see proof

of lemma 3.3.2). It will correspond to some nontrivial a ∈ Or (s), and for this order we can

choose da to not be a natural number. �

Observation 3.3.5 In [11, p. 277], the theory of the cofinality spectrum problem defined in

fact 3.3.4 requires that T = Th (M+). But by remark 2.2.7, considering the whole theory of

the expansion of M leads us to a contradiction. Because of that, we take T := (Th (M+))M .

The following results characterizes the κ-treetops (see definition 2.2.3) in the cofinality spec-

trum problem s defined in fact 3.3.4.

Lemma 3.3.6 ([11, Claim 10.22]) Let D be a regular ultrafilter over I, with |I| = λ, M
expanding (ω,<) and M1 = MI/D. Let s be the cofinality spectrum problem given by fact

3.3.4. Given κ = cf (κ) ≤ λ, the following are equivalent:

(i) D has κ+-treetops.

(ii) κ+ ≤ ts.
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Proof. For definition of ts, it is immediate that (i) =⇒ (ii).

To prove (ii) =⇒ (i), we prove the contrapositive. Let (T ,ET ) be a given tree (not necessarily

in Tr (s) definable in M+, and let c = 〈cα : α < κ〉 be an increasing sequence in T with

no upper bound. Since D is regular, then for each κ ≤ λ there is a function d : κ → D
whose image is a regularizing family. So, by  Loś’s Theorem, we may assume that there

is a sequence of finite trees (Tt,EtT ) for t ∈ I such that
∏

t∈I (Tt,EtT )/D is a subtree of

(T ,ET )M
+
1 := (T ,ET )I/D which includes the sequence c. Thus, let a ∈ Or (s) be given by

fact 3.3.4.

As in the proof of lemma 3.3.2, we may choose at every (or almost every) t ∈ I a function

ft : (TtEtT )→ (T M+

a ,EM
+

a ) with the following property (?): “ft is injective and respects the

partial ordering, i.e. for x, y ∈ dom (ft) we have that xEtT y if and only if ft(x)EM
+

a ft(y)”.

Now let f := [(ft)t∈I ] and suppose by contradiction that 〈bα := f(cα) : α < κ〉 has an upper

bound in Ta, call it b∗. Consider the map

d0 : κ −→ D

α 7−→ d(α) ∩ {t ∈ I : bα(t)E b∗(t)} ∩ {t ∈ I : ft satisfies (?)}

Notice that for each t ∈ I, the set Bt := {bα(t) : α < κ and t ∈ d0(α)} is finite and linearly

ordered by E, because of the way we chose b∗. For each t ∈ I, let bt be the maximal element

of Bt under this linear ordering. Then by  Loś’s Theorem and the choice of the functions ft,

we have that the element c∗ := [(f−1
t (bt))t∈I ] is well defined. By  Loś’s Theorem, we claim that

c∗ ∈ T M
+
1 , and c∗ is an upper bound for the sequence c in T M+

1 , which is a contradiction.

Hence, we showed that 〈bα : α < κ〉 is an increasing sequence in Ta with no upper bound.

Here concludes the proof. �

The κ-treetops property allows us to prove the goodness of a given ultrafilter.

Theorem 3.3.7 ([11, Thm. 10.1]) Let D be a regular ultrafilter over I, where |I| = λ ≤
ℵ0. If D has λ+-treetops, then D is λ+-good.

Proof. Consider the cofinality spectrum problem given by fact 3.3.4, associated to D.

By Theorem 2.4.5, C(s, ts) = ∅, and by lemma 3.3.6 and λ+-treetops hypothesis, we have

that C(s, |I|+) = ∅. Therefore, C(D) = ∅, and by Theorem 3.3.1, we can conclude that D is

λ+-good. �

Lemma 3.3.8 ([11, Lemma 10.24]) Let D be a regular ultrafilter over I, with |I| = λ.

Then the following are equivalent:

(i) κ = cf (κ) ≤ λ implies (κ, κ) /∈ C(D).

(ii) D has λ+-treetops.
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Proof. (ii) =⇒ (i): If D has λ+-treetops, then by Theorem 3.3.7 D is λ+-good, and by

Theorem 3.3.1, we have that C(D) = ∅.

(i) =⇒ (ii): Consider the cofinality spectrum problem given by fact 3.3.4. Since D has no

λ+-treetops, then there is a tree Ta ∈ Tr (s) which contains a branch of length κ with no

upper bound. By remark 2.2.10 (ii), we can take κ = ts and hence we can find a definable

(in M+
1 ) linear order which has a (κ, κ)-gap. Therefore, (κ, κ) ∈ C(D). �

Now we can put together all the information about treetops and good ultrafilters in the

following theorem.

Theorem 3.3.9 ([11, Main Theorem 10.25]) Let D be a regular ultrafilter over I, with

|I| = λ. Then the following are equivalent:

(i) D is λ+-good.

(ii) D has λ+-treetops.

(iii) For every κ ≤ λ, (κ, κ) /∈ C(D).

(iv) C(D) = ∅.

Proof. (ii) ⇐⇒ (iii): Lemma 3.3.8.

(iv) =⇒ (iii): Immediate: if C(D) = ∅, then in particular C(D) does not contain symmetric

gaps, for all κ ≤ λ.

(ii) =⇒ (i): Theorem 3.3.7.

(i) ⇐⇒ (iv): Theorem 3.3.1. �

Remark 3.3.10 Although we give a characterization of maximality in Keisler’s order in the

cofinality spectrum problem s defined in fact 3.3.4 (by characterizing the good ultrafilters

in s), this characterization does not give us too much information about maximality of

SOP2-theories (see [11, Def. 11.1, p. 280]). Actually, the model-theoretical techniques used

by showing that SOP-theories are quite far from the interests of this thesis. References such

as [11, 16, 17] have a complete analysis of the model-theoretical tools developped for proving

maximality of SOP-theories and SOP2-theories in Keisler’s order.



4 p = t and some applications in

Topology

In this chapter, we study the proof given by Malliaris-Shelah [11] of p = t by using the tool

of cofinality spectrum problems (studied in chapter 2).

In section 4.1, we review the proof of p = t. For this purpose, we define a convenient cofina-

lity spectrum problem and we use many of the properties of the forcing ([N]ℵ0 ,⊆∗).

In section 4.2, we focus on some applications about p and t. In particular, we give a positive

answer to an open question asked by Todorčević and Veličković [20] about the existence of

forcings of size p without precaliber p.

4.1. p = t

We focus on the problem p = t. We already defined these cardinal invariants in chapter 1

(see Definition 1.1.11) and we showed that ℵ1 ≤ p ≤ t ≤ c (see proposition 1.1.12).

Definition 4.1.1 ([11, Def. 14.3]) Let V a countable transitive model of ZFC. In this sec-

tion, we fix the following conventions:

1. Let M = (H(ℵ1)V ,∈).

2. Let P = ((P(ω)/fin) ∩ V,⊆∗) ∈ V (see section 1.2).

3. Let G be a generic subset of P over V (this set G exists since V is countable), and let

Ġ := {(Ǎ, A) : A ∈ (P(ω)/fin) ∩ V } be its canonical P-name.

4. For f ∈ V , we denote by f̌ the P-name for f .

Having in mind the previous conventions and remark 1.2.12 (i), we define a generic ultra-

power in the extension V [G] as follows:

5. By the generic ultrapower Mω/G in V [G] we will mean the model N ∈ V [G] with

universe {f/G : f ∈ (Mω)V } such that

X N � “f1/G = f2/G ” if and only if {n : f1(n) = f2(n)} ∈ G.
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X N � “f1/G ∈ f2/G ” if and only if {n : f1(n) ∈ f2(n)} ∈ G.

6. In V , we consider the P-name Ñ of the generic ultrapower Mω/Ǧ.

Observation 4.1.2 Let us make a few comments about Definition 4.1.1.

1. Since P is a < ℵ1-closed, by remark 1.2.12, we have that (Mω)V [G] = (Mω)V . This is

important, as we will be moving between V and V [G] when necessary.

2. Since P is < t-complete and p ≤ t, by lemma 1.2.13, moving from V to V [G] will not

affect the analysis of p < t. Concretely, by lemma 1.2.13 we have that pV [G] = pV and

tV [G] = tV .

3. Notice that P “Ġ is a non-principal ultrafilter ” (see proposition 1.2.14).

Now we are able to build the cofinality spectrum problem in V [G], where we will work

from now. Following the conventions fixed above, we consider M = M+ = (H(ℵ1),∈) and

M1 = M+
1 = N = Mω/G. Also, by  Loś theorem, let j be an elementary embedding from M

into N .

Definition 4.1.3 ([11, Def. 14.4]) Working in V [G], let M,N be as in Definition 4.1.1.

Let ∆psf be the set of all first-order formulas ϕ(x, y, z) in the vocabulary of M (i.e., {∈,=})
such that if c ∈M `(z) then ϕ(x, y, c) is a linear order on the set AMϕ,c := {a : M � ϕ(a, a, c)},
denoted by ≤ϕ,c. Moreover, we demand that, in M , AMϕ,c is finite.

Fact 4.1.4 ([11, Obs. 14.5]) Let M,N be as in definition 4.1.1 and ϕ ∈ ∆psf . Then, by

 Loś’s theorem.

(a) for each c ∈ N `(z), ϕ(x, y, c) is a discrete linear order on the set {a ∈ N : N �
ϕ(a, a, c)}.

(b) each non-empty N -definable subset of ANϕ,c has a first and last element.

(c) in N , we can identify (ANϕ,c,≤ϕ,c) with the ultraproduct

〈(AMϕ,cn ,≤ϕ,cn), : n ∈ ω〉/G

where each AMϕ,cn is finite and linearly ordered by ≤ϕ,cn.

Definition 4.1.3 and fact 4.1.4 give us the structure of the orders of the cofinality spectrum

problem we are working on: essentially, an order in this cofinality spectrum problem can be

seen as an ultraproduct (modulo G) of finite linear orderings. The following theorem gives

us the structure of the trees of this cofinality spectrum problem.

Theorem 4.1.5 ([11, Claim 14.6]) Working in V [G], s := (M,N ,Th (M),∆psf) is a co-

finality spectrum problem.
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Proof. It is clear that conditions (1)-(3) of definition 2.2.6 hold, so we prove that ∆psf

has ESTT, in sense of definition 2.2.5. Notice that definition 4.1.3 and fact 4.1.4 give us the

conditions (1)-(4) in definition 2.2.5; the only remaining data we have to specify is that each

da is the maximum element of (Xa,≤a).

Let us see that s is closed under finite Cartesian products: let a,b ∈ Or(s), with Xa = {a :

N � ϕ1(a, a, c1)} and Xb = {a : N � ϕ2(a, a, c2)}, where ϕ1, ϕ2 ∈ ∆psf . When a = b, let

θ(x1y1, x2y2, c1
_ c2) be the formula which says that x1, x2 ∈ Xa, y1, y2 ∈ Xb and

(max {x1, y1} < max {x2, y2}) ∨
[(max {x1, y1} = max {x2, y2}) ∧ (x1 < x2 ∨ (x1 = x2 ∧ y1 < y2))]

i.e first we order (x1, x2), (y1, y2) by maximum (i.e max {x1, x2} ≤ max {y1, y2}), then lexico-

graphically; if a 6= b, then θ is just declared as the lexicographic order. In any case, we can

see that θ describes a linear order in Xa×Xb, thus θ(x1y1, x2y2, z1z2) ∈ ∆psf . This allows us

to conclude that (5)-(6) in definition 2.2.5 hold.

Finally, let a ∈ Or(s) given and let ϕa = ϕ(x, y, z). Let ψa(η, c) be the formula which says

that η is a function of domain {x ∈ Xa : x ≤a x0}, for some x0 ∈ Xa with x0 <a da, such

that η(x) ∈ Xa for all x ≤a x0 in Xa. Now, for each c ∈ M lg(z) we have that T Mϕ,c := {η :

M � ψ(η, c)} is the set of finite sequences of members of AMϕ,c = {a : M � ϕ(a, a, c)} of

length ≤ maxAMϕ,c, and let

E := {(η, ν) : η, ν ∈ T Mϕ,c and η is an initial segment of ν}.

We can define the functions lg (the length of a sequence in T Mϕ,c) and val (the evaluation

function) as usual. Hence, by  Loś’s theorem, we can extend these definitions to N , and they

will have the same behaviour as in M . This gives us the structure of the trees in s. �

Now we are ready to analyze the proof of p = t. Recall that we have p ≤ t (this is immediate

from proposition 1.1.12). So, we will assume that V � p < t, and this will lead us to a

contradiction. From the rest of this section, s will denote the cofinality spectrum problem

described in theorem 4.1.5.

Theorem 4.1.6 ([11, Claim 14.7]) In V [G], t ≤ ts, i.e., if a ∈ Or(s), then any decreasing

sequence of cofinality κ < t in (Ta,Ea)N has an upper bound.

Proof. Working in V , let θ = cf (θ) < t be given and let B ∈ P (B ∈ G) be such that

B Q “〈ḟα/Ġ : α < θ〉 is an increasing sequence in (ω<ω,E)Ñ ”

Since the forcing P adds no new sequences of length < t, without loss of generality we can

claim that there is some 〈fα : α < θ〉 such that B P “ḟα = f̌α” for all α < θ and moreover,

we assume that B ⊆∗ {n ∈ N : fα(n)E fβ(n)} for all α < β < θ.
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Why can we work in the tree (ω<ω,E)? Recalling definition 4.1.3 and fact 4.1.4, each order

a = (Xa, <a) in s is an ultraproduct of some finite linear orders 〈(Xn, <n) : n < ω〉 in M ,

and each Ta = (Ta,Ea) is the ultraproduct of the corresponding trees of finite sequences

〈(Tn,En) : n < ω〉 of each Xn in N . Thus, by  Loś’s theorem, we may claim that Xa is a

linear order in N and Ta is the corresponding tree of finite sequences of Xa.

Now, it is possible to find an isomorphism between each Tn and a definable downward closed

subset of (ω<ω,E)M . So, all these isomorphisms induce an isomorphism of Ta onto a definable

downward closed subset of (ω<ω,E)N .

Since t ≤ b by proposition 1.1.12, we can find an increasing function g ∈ ωω such that for

each α < θ there is an nα ∈ ω such that if n ≥ nα, then

g(n) > lg (fα(n)) +
∑
{fα(n)(i) : i < lg (fα(n))}

Now, consider s = 〈sn : n < ω〉, where sn denotes the tree g(n)≤ g(n). First, note that

X each sn is a finite non-empty subset of ω<ω.

X if α < θ, for all but finitely many n, we have that fα(n) ∈ sn, since fα(n) and its length

are dominated by g(n).

Now we will build a convenient tower: for each α < θ, define 〈Yα : α < θ〉 as follows

Yα :=
⋃ {

{n} ×
(
sn ∩ (ω<ω)[fα(n)]

)
: n ∈ B

}
where (ω<ω)[ν] := {η ∈ ω<ω : ν E η} is the cone above ν (The set Yα is a disjoint union of

cones in sn above fα(n)). Also, define Y∗ :=
⋃
{{n} × sn : n ∈ B}. It is clear that Yα ⊆ Y∗

for all α < θ, and Yα is a countably infinite subset of B×ω<ω. Moreover, Yβ ⊆∗ Yα if α < β:

since for α < β, fα(n) E fβ(n) for all but finitely many n ∈ B. Therefore, we have that

(ω<ω)[fβ(n)] ⊆ (ω<ω)[fα(n)] for all but finitely many n ∈ B.

Since θ < t, we can find a pseudo-intersection Z of 〈Yα : α < θ〉 such that Z ⊆ Y∗, and

since each sn is finite, B1 = {n ∈ B : Z ∩ ({n} × sn) 6= ∅} must be infinite. For n ∈ B1,

choose any element νn such that (n, νn) ∈ Z ∩ ({n} × sn); otherwise, choose νn = 〈0〉 for

n ∈ NrB. Since we choose νn ∈ Z, then we can notice that fα(n)Eνn(n) for all but finitely

many n ∈ B1, and hence, we have shown that

B1 P “〈νn : n ∈ ω〉/Ġ is an upper bound for 〈fα/Ġ : α < θ〉 in (ω<ω,E)N ”.

This completes the proof. �

Corollary 4.1.7 ([11, Conclusion 14.9]) Working in V [G], let s be the cofinality spec-

trum problem defined in definition 4.1.5. Then C(s, t) = ∅.
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Proof. Immediate from theorems 2.4.4 and 4.1.6. �

Now we connect the possibility of performing peculiar cuts with the context of cofinality

spectrum problems. In section 2.1, we ruled out some peculiar cuts. Shelah [18] showed

that, assuming p < t, then it is possible to find a regular cardinal κ such that there is a

(κ, p)-peculiar gap in ωω, with ℵ1 ≤ κ < p (see theorem 2.1.5). The following result claims

that, assuming p < t, it is possible to find a distinguished order in s where we can detect a

(κ, p)-gap.

Theorem 4.1.8 ([11, Claim 14.13]) In V , suppose p < t. Then for some regular κ with

ℵ1 ≤ κ < p, we have that V [G] � (κ, p) ∈ C(s, t).

Proof. By theorem 2.1.5, if we assume p < t, then there is a (κ, p)-peculiar gap in ωω,

with ℵ1 ≤ κ < p. Now, we will show that this gap can be found in some Xa in N . So, let

(〈gα : α < κ〉, 〈fβ : β < p〉) be a (κ, p)-peculiar gap, with ℵ1 ≤ κ < p. Since fβ ≤∗ f0, for

all β < p, let us consider

I =
∏
n<ω

[0, f0(n)]/G

Notice that I is an ultraproduct of some finite linear orders, then by construction of s, we

can identify I = Xa for some a ∈ Or(s). Then the peculiar gap forms a pre-gap (possibly,

a gap) in I. Suppose that this pre-gap is not a gap, i.e., there are an infinite B ∈ G and

h ∈ ωω such that, in V ,

B P “gα/Ġ ≤ h/Ġ ≤ fβ/Ġ for all α < κ, β < p ”.

Since P is < t-closed, there is some B′ ∈ G such that B′ ⊆∗ B and B′ ⊆∗ {n : gα(n) ≤ h(n)}
for all α < κ and B′ ⊆∗ {n : h(n) < fβ(n)} for all β < p, but this contradicts the definition

of peculiar cut: if we consider the function h∗ defined by h∗(n) = h(n) for n ∈ B′; and

h∗(n) = f0(n) for n /∈ B′, we can notice that h∗ ≥∗ gα for each α < κ, but it is not the case

that h∗ ≥∗ fβ for some β < p, because B′ is infinite. �

We can now state the main result of this chapter.

Theorem 4.1.9 ([11, Thm. 14.1]) p = t.

Proof. It is immediate that p ≤ t. Now suppose that p < t. Then it is possible to find a

countable transitive model V of (a large finite fragment of) ZFC such that V � p < t. Now,

in V [G], let s be the cofinality spectrum problem from definition 4.1.5. By Corollary 4.1.7,

which does not assume p < t, we have that C(s, ts) = ∅. But by theorem 4.1.8, which does
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assume p < t, we have that C(s, ts) 6= ∅, a contradiction. �

4.2. Some applications of p = t

Now we explore some interesting consequences of theorem 4.1.9. Two of the applications pre-

sented here are some topological results. Also, we give an affirmative answer to a question

about σ-linked posets, asked by Todorčević and Veličković in [20].

In theorem 1.3.7 we presented Bell’s theorem (see [2]), which claims that p is the smallest

cardinal such that MAP(κ) is false for some σ-centred forcing P. In topological language, this

means that there is no separable compact Hausdorff space X which can be covered by fewer

than p-many closed nowhere dense sets (see observation 1.3.8). According to theorems 1.3.7

and 4.1.9, we can give the following characterization of t.

Theorem 4.2.1 mσ = t.

Proof. Immediate from theorems 1.3.7 and 4.1.9. �

Now, for the next application of p = t let us give some definitions, which can be found in

[21]. Unless otherwise stated, all topological spaces consider from now are Hausdorff spaces.

Definition 4.2.2 Let X be a topological space, A ⊆ X and x ∈ X.

1. We say that A converges to x if each neighbourhood of x contains all but finitely

many points of A. We denote this by A→ x.

2. We say that X is countably compact if each countable infinite subset of X has an

accumulation point.

3. We say that X is sequentially compact if each countable infinite set has an infinite

subset which converges to some point of X.

It is clear from the definition that sequentially compact spaces are countably compact. The

next result gives us a partial reciprocal: we recall that a local base at x ∈ X is a collection

Bx of open neighbourhoods of x such that for all open set U with x ∈ U there is a B ∈ Bx
such that x ∈ B ⊆ U ; the minimal cardinality of a local base at x is called the character

of X at x, and is denoted by χ(x,X).

Theorem 4.2.3 ([1, Thm. 2.5]) Let X be a countably compact topological with χ(x,X) <

p for all x ∈ X. Then X is sequentially compact.
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Proof. Suppose that S is an countable infinite subset in X, and let x ∈ X be a proper

accumulation point of S. Let B = {Uα : α < λ} be a local base of open sets at x, where

λ < p. Then the family B ∩ S := {Uα ∩ S : α < p} is a family of subsets of S with the

strong finite intersection property. By the definition of p, there is an infinite subset T ⊆ S

such that T ⊆∗ Uα for each α < p. Hence, we have that T → x. �

Corollary 4.2.4 Let X be a countably compact topological with χ(x,X) < t for all x ∈ X.

Then X is sequentially compact.

Proof. Immediate from theorems 4.1.9 and 4.2.3. �

Now we study an interesting result about σ-linked posets. We recall that given a poset P
and L ⊆ P , we say that L is linked if and only if p1 6⊥ p2, for all p1, p2 ∈ L. Besides, we say

that P is σ-linked if P is a countable union of linked subsets.

Theorem 4.2.5 ([20, Thm. 1.3]) There is a σ-linked poset P of size t without centred

subsets of size t.

Proof. Let {aξ : ξ < t} be a tower. For x, y ⊆ N distinct, define ∆(x, y) := min (x∆y)

(the least point in the symmetric difference of x and y). Define the poset P as follows:

F ∈ P if and only if F ∈ [t]<ℵ0 and |aF ∩ k| ≥ |∆F ∩ k|, for all k < ω, where ∆F :=

{∆(aξ, aη) : ξ, η ∈ F, ξ 6= η} and aF :=
⋂
{aξ : ξ ∈ F}. The order is reverse inclusion.

Then P is σ-linked and has no centred subsets of size t (we leave the details to the reader). �

According to theorems 4.1.9 and 4.2.5, we give a proof of the following result.

Theorem 4.2.6 ([20, Thm. 1.5]) There is a poset P of size p which is σ-linked but not

σ-centred.

Proof. Consider the poset P described in theorem 4.2.5. By theorem 4.1.9, then P has

size t, and by theorem 4.2.5 we may assure that P has no centred subsets of size t. By theo-

rem 4.1.9, P has size p and it has no centred subsets of size p, and thus P is not σ-centred. �

In [20, Question 1.6], it remained the open question to determine the existence of a σ-linked

poset without precaliber p (we recall that an infinite cardinal κ is a precaliber for a poset

P if and only if whenever pα ∈ P , for α < κ, there is a B ∈ [κ]κ such that {pα : α ∈ B} is

centred). We give a positive answer to this question.

Theorem 4.2.7 There is a σ-linked poset P without precaliber p.
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Proof. By Theorems 4.1.9 and 4.2.5, there is a σ-linked poset P of size p without centred

subsets of size p. �

Observation 4.2.8 The topological applications studied in this dissertation can be consi-

dered as trivial: given a topological space with a combinatorial property in terms of p (e.g.

character less than p), then we just change p for t and we obtain the same combinatorial

property but in terms of t and viceversa. Until now, we have not found non-trivial topological

consequences of p = t yet. Following [21, 11] and other references, the problem p = t was

one of the most important problems on cardinal invariants of the continuum. However, we

are still on the survey of interesting applications of p = t in General Topology.
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