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Abstract 

Advances in the understanding of natural phenomena and the exponential 
increase of computing power over the last years have made possible the 
solution of chemical product design problems using computational ap-
proaches. In this work, a Computer Aided Molecular Design (CAMD) 
methodology is proposed and implemented for the design of environment-
friendly solvents in liquid-liquid extraction. As the proposed methodology 
aims to solve a problem of chemical industry, to ensure that the designed 
solvents can be easily acquired or synthetized, market availability criteria 
are included. 

The proposed CAMD methodology formulates and solves a multi-objective 
optimization problem where the decision variables are molecules repre-
sented as chemical graphs. In the definition of this problem, a first objective 
is the maximization of solvent power and a second objective is the minimi-
zation of environmental impact. Market availability is included in the meth-
odology as one constraint of the optimization problem.  

In optimization, molecules require specific encodings and the usage of flex-
ible methods. Hence, in the methodology proposed, the evolutionary algo-
rithm HAEA is selected to perform optimization as this algorithm allows 
flexibility in the representation of individuals and the inclusion of custom 
genetic operators. The original HAEA is intended to solve single-objective 
optimization problems, then this work proposes and implements a multi-
objective version of HAEA (MOHAEA) for the solution of the optimization 
problem contained in the CAMD methodology. In MOHAEA, Pareto opti-
mality and the NSGA-II crowding-distance are used to evaluate solutions 
and guide the evolution. In addition, a strategy for the handling of con-
straints based on Pareto front punishment is proposed in this new algo-
rithm. 

The methodology presented in this document is an extension of the CAMD 
methodology presented by Serrato in 2009. The Serrato's work is the start-
ing point of this work and many of the methods persist in the methodology 
proposed. Serrato addresses the chemical product design problem of de-
signing optimal solvents for liquid-liquid extraction using a single-objective 
optimization approach. The study case in both works is the design of opti-
mal solvents for the separation of lactic acid from an aqueous solution and 
the major improvement of the new methodology proposed is the design of 
solvents with similar solvent power, a significant reduction of environmen-
tal impact and a market availability greater than 80%. 
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1 Introduction 

 

From the early decades of chemical industry, discovering compounds with new 
features, inclusion of substances with improved performance and releasing val-
uable products to the market have been common objectives in a great part of the 
research work in this industry. The process of searching a chemical product or 
blend of chemical products that exhibits a desirable or specific behaviour is 
named Chemical Product Design [1].  

In the results of research in chemical industry along the twentieth century, there 
is a large number of products that, once released, improved the quality of life of 
people. Some of the most relevant examples are petroleum based products such 
as plastics, solvents or detergents; or products used in pharmaceutical industry 
as active compounds or as additives for enhancing performance of drugs. In that 
time, chemical industry gained more and more importance in the course of hu-
man activities, no matter that methods used in chemical product design remained 
basically untouched. There was no significant evolution, since most of the re-
search was conducted via traditional experimental approaches.  

These experimental approaches consist mostly on trial-error work in laboratory 
and this lead to inevitable limitations [2]. Namely, the limitations are the amount 
of time, financial resources and compounds availability. In addition, the regular 
set of chemical compounds that can be considered and evaluated is limited, then 
the so-called chemical design space is very narrowed compared with the theoretical 
design space.  

Nowadays, the market and the chemical industry demand for more specialised 
chemical products, mainly high value-added products whose performance is 
more important than the composition [3]. To overcome the limitations of tradi-
tional experimental approaches and meet the new requirements of industry, new 
approaches in chemical product design have emerged. In line with this reality, 
the growth of computational power and the easy access to powerful computers 
have made possible the solution of product design problems using Computer-
Aided Molecular Design (CAMD).  

CAMD is a very promising computational approach aimed to solve problems of 
chemical product design making use of methods for prediction of physical-chem-
ical properties combined with efficient algorithms to design, evaluate and select 
optimal molecules. In CAMD, product design tends to be represented as an op-
timization problem where the objective is the desired property and the decision 
variable is the composition of the chemical product. The major benefit of using 
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CAMD compared with the traditional approach is the reduction of experimental 
work and the possibility of explore a larger chemical design space. 

In the context of the discovery of more specialised products, designing chemical 
products meeting not only the desired specifications but also environmental per-
formance requirements have become a trend lately. In CAMD, a wide search 
space can lead to the design of chemical products with dangerous toxicity indi-
cators. If a product causes negative affectations to living beings or the environ-
ment, it will also lead to produce difficulties at the time of its introducing to the 
market or its inclusion in a large-scale process. Designing environment-friendly 
products in CAMD requires methodologies including more than one desired fea-
tures and multi-objective optimization algorithms. 

Professor Juan Carlos Serrato1 presents a doctoral dissertation entitled "Computa-
tional design of extraction agents for the separation of organic compounds in aqueous 
streams, application to lactic acid" [4] in 2009 at the Universidad Nacional de Co-
lombia. In that work, Serrato proposes a CAMD methodology aimed to design 
optimal solvents for the extraction of acetic acid and lactic acid from aqueous 
streams. 

The methodology of Serrato addresses the problem of designing compounds 
with optimum values for selectivity and distribution coefficient. Both properties 
are very important in liquid-liquid extraction operations. Serrato formulated an 
optimization problem where the objective function to maximize is the product 
between selectivity and distribution coefficient for the designed compounds. The 
result of that work is a java program capable of designing molecules with favour-
able values for selectivity and distribution coefficient, however none of the mol-
ecules reported by Serrato to be optimal for the separation of lactic acid are avail-
able in catalogues of the major chemical product suppliers. In addition, com-
pounds with similar structure to the designed ones, but available in the market, 
hold high levels of toxicity. 

In line with the environmental considerations mentioned above, this work pre-
sents a new Computer-Aided Molecular Design methodology, based on the pre-
vious one proposed by Serrato, but including toxicity and market availability and 
address the problem using a multi-objective optimization approach. This work 
aims to achieve the following goals: 

1. Reformulate the optimization problem contained in the CAMD proposed by 
Serrato in order to consider market availability and toxicity. 

2. Establish and implement methods to determine the market availability and 
the toxicity of a given chemical compound. 

3. Propose and implement new genetic operators and molecular construction 
methods in the CAMD methodology to perform a better exploration of the 
chemical search space. 

4. Implement a multi-objective optimization algorithm to solve the optimiza-
tion problem of the CAMD methodology. 

                                                 
1 Chemical Engineer Ph. D., associate professor in the Department of Environmental and Chemi-
cal Engineering, Universidad Nacional de Colombia 
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5. Develop a new version of the CAMD program with the new methodology. 
6. Evaluate the performance of the new CAMD methodology compared to the 

previous methodology proposed by Serrato. 

The second chapter is a conceptual review of the foundations of CAMD. The 
chapter introduces the Chemical Product Design problem, the Computer-Aided 
Molecular Design approach, methods for estimating properties in CAMD, tech-
niques used in the solution of CAMD problems, and the importance of CAMD in 
the design of environment-friendly chemical products. 

The third chapter contains the elements comprising the proposed CAMD meth-
odology. The multi-objective optimization problem is formulated. The properties 
used to evaluate the separation power and the environment performance of a 
solvent in liquid-liquid extraction, as well as the available mathematical models 
to predict those properties, are described. The strategy to assign the market avail-
ability of a compound, including the queried databases is described. And finally, 
the multi-objective optimization algorithm used to solve the CAMD problem is 
explained. 

The fourth chapter discusses the results of the new CAMD methodology. In the 
chapter, the performance of the new methodology is compared with the Serrato's 
methodology. The impact of including market availability and toxicity in the sep-
aration problem is analysed. And the performance of the new genetic operators 
is evaluated. 

Finally, the fifth chapter presents the conclusions and future work. The contribu-
tions of this work are summarized and new possible developments for this work 
are proposed. 
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2 Theoretical Background 

2.1 CHEMICAL PRODUCT DESIGN 

A chemical product is defined by Cisternas [5] as an arrangement of chemical sub-
stances which are manufactured for one or more purposes. This definition im-
plies that a chemical product requires at least one purpose, then not all chemical 
substance or mixture of substances can be considered as a chemical product. A 
common classification of chemical products is as follows [3]: 

 Commodity chemicals: the goal is to produce these products at the minimal cost, 
these are the most widely produced in the world. Ammonia and acetic acid 
are in this classification. 

 Molecular products: such as pharmaceutical products, the goal for these prod-
ucts is achieving a fast discovery and a fast introduction to the market. 

 Performance products: for these products, the goal is to develop products with 
certain functionality, regardless the chemical composition. Lubricants are an 
example of this category. 

Now, chemical product design can be defined as the entire process in which a chem-
ical product is determined. Moggridge and Cussler [6] proposed a four steps 
scheme for describing this process. Initially, the specifications that the product 
must fulfil are identified according to the customer requirements or a particular 
problem (Needs step). Next, different pictures of how this product could be are 
posed (Ideas step). Then, a mechanism for selecting the best product is designed 
according to the given ideas (Selection step). Finally, the design of the manufac-
turing process for the selected product starts (Manufacturing step). When the de-
sired product requirements cannot be met by a single component, an optimal 
mixture of chemicals must be considered [7]. 

The key in the solution of a chemical product design problem is the selection of 
the best "idea for product" (Selection step), hence the attention in the study of 
chemical product design has been focused on this aspect. One difficulty of adopt-
ing this perspective is that a chemical product design problem becomes the in-
verse of a property prediction problem. Product design identifies chemical prod-
uct candidates that match best with the desirable values for a defined set of prop-
erties [8], and as many reverse problems, the solution cannot be reached using 
direct methods. Traditional bottom-up approaches have been used in problems of 
chemical product design. These approaches consist of heuristics, experimental 
studies and expert knowledge, involving a large effort of trial-error and expen-
sive experimentation [9]. Multiple candidates are evaluated in the laboratory in 
order to check if those meet the desired product properties. L.Y. Ng [10] remarks 
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that as the chemical industry moves towards the manufacturing of more value 
added chemical products and more complex requirements. For these products, 
the bottom-up approaches are unsatisfactory in terms of effectiveness and re-
sources investment. 

The last years, Computer-Aided Molecular Design (CAMD) has gained relevance 
as a future tool for solving problems of chemical product. CAMD consists in the 
use of computational methods for predicting, estimating and designing mole-
cules starting from a set of predefined target properties in order to reduce the 
experimental effort and the usage of biased heuristics. 

2.2 COMPUTER AIDED MOLECULAR DESIGN (CAMD) 

As defined by Austin [2], Computer Aided Molecular Design (CAMD) is a com-
putational approach for the solution of chemical product design problems, the 
objective is design good or optimal molecules structures combining molecular 
modelling techniques, thermodynamics, and numerical optimization. With 
CAMD techniques is possible to identify molecules with certain properties of in-
terest without the need of performing the arduous task of synthesizing and test-
ing them experimentally [7]. 

In the traditional bottom-up approach for solving chemical product design prob-
lems, the design process consists in identifying a set of molecules and then check-
ing if those meet the final product requirements. In contrast, CAMD can be con-
sidered as a top-down approach, because as Gani describes [11], CAMD starts with 
the definition of the properties the chemical product needs to fulfil and then the 
CAMD methods searches for the molecules whose properties meet the product 
requirements. The top-down approach makes possible not only the efficiently 
identification of the desired product, but it explores a larger section of the chem-
ical design space [2]. 

A CAMD methodology for the solution of chemical product design problems 
usually consists of the steps presented in the process flow of Figure 1 [12]. Such 
steps were identified by Gani and Harper [13] and consist of: 

 Pre-design: The requirements of the desired product are stablished, this step 
includes the selection of the desired properties that must be optimal as well as 
other features that the desired product must meet, including boundaries for 
other properties and concerns related to the chemical structure of designed 
optimal product. 

 Design: The definitions from the previous step are transformed into objectives 
and constraints. Properties prediction models, molecular modelling methods 
and optimization algorithms are combined in order to design the feasible 
chemical compounds most suitable for being part of the resulting candidate 
compounds list. 

 Post-design: A detailed analysis is performed on the candidate compounds 
generated in the design step and the concerns related to the manufacturing or 
acquisition of the chemical compounds (product) are posed.  
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Figure 1. Stages in a CAMD methodology. Adapted from the Roughton [14] 

 

Regarding the design step in Figure 1, the unavailability of properties prediction 
methods and selection algorithms for candidate molecules is the reason why the 
appearance of CAMD techniques emerged just a few decades ago. The imple-
mentation of the first CAMD methodologies in the 1990's was possible thanks to 
the development of group contribution methods capable of predicting pure com-
ponent and mixture properties as well as the emergence of efficient optimization 
algorithms able to solve combinatorial problems. The initial works in CAMD con-
sisted in the identification of optimal solvents for separation operations using 
mathematical programming [15] and generate-and-search [11] algorithms for the 
selection of the best compounds. In those works, prediction of properties for the 
compounds evaluated is done by using group contribution methods. 
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2.3 PREDICTION METHODS FOR PROPERTIES IN CAMD 

CAMD can be seen as the problem of predicting chemical structures from prop-
erties. However, today there is not a known method capable to immediately re-
late certain chemical structure and its performance for certain application [16]. In 
CAMD, a large number of structures are systematically evaluated and an im-
portant computational effort is required, hence efficient methods for the quanti-
fication of properties are required for this process.  

Semi-empirical quantitative structure property relationships (QSPR) are the pre-
ferred methods for addressing the prediction of properties. QSPR methods con-
sider a chemical structure as a set of sub-structures comprising bonds and atoms, 
and use these elements to compute the desired properties. 

2.3.1 Group-contribution methods 

The group contribution (GC) approach is the most popular in CAMD for predict-
ing properties with QSPR. The estimation of a property using GC consists in list-
ing the occurrences of predefined contributions groups in the molecule structure. 
These methods are simple to apply and provide a quick and accurate prediction 
for many properties without requiring significant computational resources [17].  

The first GC methods of 1980's assume that contribution groups are independent 
entities and proximity effects among them are not considered. The result is lack 
of reliability in predictions as the complexity of the molecules increases and no 
possibilities for distinguishing isomers.  

An improved GC method is presented by Constantinou and Gani  (1994) [18]. 
This method includes molecular groups of first and second order. The first order 
groups address the basic group contributions for properties estimation, while the 
second order groups address the differentiation among isomers and in some ex-
tent interactions among the first order groups. This approach bring improve-
ments in terms of accuracy, however the application ranges are still restricted [18]. 

Years later Marrero and Gani (2001) [19] extend the above method including third 
order groups into the model. The new groups address the interactions among the 
functional groups for which the first and second order flawed in predicting [2]. 
This method, referred as the GC+ method, brings a significant improvement of 
accuracy and applicability. Today, this method is the most widely used GC 
method in CAMD. Estimation of properties using the GC+ is achieved using the 
following equation: 

Where f(X) is a function for the target property X, while w and z are binary coef-
ficients set according to the level of estimation, using first-order and second-or-
der groups, respectively; Ni, Nj and Nk are the numbers of occurrences for first, 

second, and third order groups, respectively. Ci , Cj and Ck are the contributions 

of the first, second, and third order groups, respectively. The values for Ci , Cj and 

𝐶𝑘 can be found in tables [19]. 

f(X) = ∑ NiCi

i

+ w ∑ NjCj

j

+ z ∑ NkCk

k

 
Equation 1 
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2.3.2 Topological indices 

The topological indices (TI) approach for predicting properties with QSPR is 
based on the concept of chemical graph. According to the chemical graph theory 
[20], atoms and bonds which constitute a molecule can be represented as the set 
of nodes and edges of a molecular graph. In TI, an index corresponds to a de-
scriptor for the interactions among different atoms or molecular groups inside a 
molecular graph.  

The properties of a molecule can be computed through its index. The most known 
topological indices [10] are the Wiener indices [21], the Randic's molecular con-
nectivity index [22] and the Kier's shape indices [23]. 

TI are very useful in problems where exists knowledge about some structural 
features that the desired product must have. In addition, TI is recommended in 
problems where is important to differentiate among very similar structures, like 
isomers, GC methods do not work well with most of the types of isometry. Prop-
erties prediction in pharmacological CAMD problems have been addressed suc-
cessfully with TI. 

The main drawback of TI, compared with GC, is that its incorporation in CAMD 
methodologies is more difficult. Besides, the applicability of TI is restricted to 
certain class of chemicals, then they consider only a part of the chemical search 
space [2]. 

2.3.3 Signature descriptors 

Signature descriptors (SD) emerged as the need of methods that make use of the 
advantages of group contribution methods and topological indices without re-
quiring sacrifice computational performance [24]. While GC methods divide a 
molecule into the main subgroups of atoms and TI methods are based on chemi-
cal graphs, SD conceive a molecule structure as a chemical graph [25], but it stores 
and uses all the structural and connectivity information for each atom of the mol-
ecule. 

In SD, an atom signature is the representation of its extended valences to a pre-
defined height and the signature of a molecule corresponds to the linear combi-
nation of its atomic signatures [10]. 

2.4 SOLVING THE CAMD PROBLEM 

A CAMD methodology must perform in such way that it could evaluate a large 
number of structures without a great computational effort. Each compound eval-
uated must meet not only the properties of the desired product, but it must match 
with the molecule feasibility criteria, according with the rules of chemical com-
pounds (such as the octet rule). Currently, numeric optimization is the main 
method for reaching the desired problems in CAMD, however there are more 
approaches. 
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2.4.1 Enumeration approaches  

The first methodologies proposed for the solution of CAMD problems are based 
on the enumeration approach, also known as the generate-and-test approach. 
These methods are used in cases where the computation of the desired properties 
required little computational effort. Enumeration consists in the generation of a 
large number of feasible candidate molecules followed by the evaluation of the 
properties of interest for each molecule [2]. This method uses a short chemical 
design space and even when several techniques has been developed for reducing 
systematically the number of candidate molecules such as the developed by Har-
per and Gani [16], it is strongly not recommended for problems where the chem-
ical design space is large or the desired product is expected to be a molecule 
whose properties require a relatively high computational effort. 

2.4.2 Mathematical optimization 

Mathematical optimization methods emerge to solve CAMD problems of greater 
complexity. The first formulation of a CAMD problem as an optimization is made 
by Odele and Macchietto [9]. Their problem is formulated as a mixed-integer 
nonlinear program (MINLP). The main problem with mathematical optimization 
is the bad performance in non-convex problems, in such cases reaching globally 
optimal solutions is not guaranteed. 

Maranas [26] proposed a method where the properties methods are linearized to 
allow the solution of the optimization problem using mixed-integer linear pro-
gram (MILP) techniques. An advantage of this approach is that in a CAMD prob-
lem formulated in terms of MILP the global optimal solution is guaranteed. 

The available techniques for solving optimization problems can be classified into 
stochastic optimization techniques and deterministic optimization techniques 
[10].  In stochastic techniques, solution is reached using random choices for de-
fining the search direction in each iteration of the method. In deterministic tech-
niques, there are clear procedures to define the search direction and the size of 
the steps. Afterwards, the method advances in those directions along the itera-
tions. 

2.4.3 Metaheuristics 

In many real-world problems, such as CAMD problems, reaching the global op-
timal solution is not possible by mathematical optimization as those problems 
are too high-dimensional or non-linear. Under this scenario, heuristic search 
techniques may be used to obtain quickly a good solution. The purpose of heu-
ristics algorithms is to produce a good solution, but with low probabilities of be-
ing the optimal solution [27]. In addition, these algorithms can be easily consid-
ered as inconsistent and biased.  

Metaheuristics algorithms has been designed to overcome the problems of math-
ematical optimization and heuristics. As Glover [28] has stated, these algorithms 
consists of strategies for guiding and modifying heuristics in order to construct 
solutions beyond those that normally result in local optimality. As a result, me-
taheuristics have gained a lot of popularity due to its flexibility, efficiency and 
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ease in the implementation. Many type of problems, including CAMD, can be 
solved using these algorithms. 

2.4.3.1 Genetic Algorithms 

Genetic algorithms (GAs) are optimization methods based on the idea of natural 
selection. The concept of GA, introduced in computing by Holland in 1975, is a 
process where a population consisting of "chromosomes" evolves successively to 
a new population by the action of genetic (inspired) operators that mimic "natural 
selection" [29]. Many methods have been proposed around this idea. 

In GAs an individual is a possible solution for the problem, and it is represented 
in a "genetic" form named chromosome. During every generation of the evalua-
tive process, there is a collection of individuals, and according to the proximity 
of each individual to the target, its fitness is assigned. The value of the fitness 
guides the selection process in order to allow the best individuals (better fitness) 
to survive while the others disappear.  

In a genetic algorithm [10], a group of genetic operators are defined in order to 
transform the survivors of a population (selection process) and produce the 
members of the next generation. Crossover and Mutation have been the reference 
point for genetic operators. In crossover, two offspring chromosomes are created 
by exchanging contiguous fragments from the chromosomes of two individual 
parents. In the case of mutation, this operator modifies one or more units of a 
chromosome of one individual. The evolution process is repeated generation by 
generations until an acceptable solution is obtained according to certain criteria 
or until the algorithm reaches a predefined number of generations. 

In CAMD, the work of Venkatasubramanian [30] is the first in include GAs into 
a CAMD problem, using the design of a polymer as case study. Van Dyk and 
Nieuwoudt [31] proposes an encoding for the molecules based on the UNIFAC 
groups. QSPR methods usually are combined with genetic algorithms. 

2.4.3.2 Simulated Annealing 

Simulated Annealing (SA) is based on the analogy between problem optimiza-
tion and statistical physics. It consists on the random modification of an initial 
molecule. The transformation is aimed to transform the molecule into a new one 
with better performance. The performance is based on certain criteria stablished 
at the beginning of the problem. If the modification is successfully, the new mol-
ecule is retained for further modifications. 

Compared with other metaheuristic methods, SA has proved to increase the pos-
sibility for producing solutions near the global optimal, however the nature of 
this method make it difficult its application to problems with more than one ob-
jective.  

Simulated annealing in CAMD comes from the work of Ourique and Telles [32]. 
They applied SA in the design of refrigerants for utilization in heat pumps, and 
the selection of the best solvent in the separation of n-butanol from aqueous so-
lution. 
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2.4.3.3 Tabu search 

Tabu Search (TS) is an approach for solving combinatorial optimization problems. 
It starts proposing a pool of initial solutions. A set of operators are defined to 
alter slightly the solutions and produce a new pool. The procedure is repeated as 
long as the molecules generated do not appear in a tabu list [2]. The tabu list is 
the main feature of these approach, it consists of a list of previous solutions 
("memory") that helps to guide the search process. The advantages of TS over 
other metaheuristic methods is that it does not get easily trapped upon local op-
tima (good exploration) and is capable to identify near-optimal solutions (good 
exploitation). 

TS is introduced by first time in CAMD problems by Lin and Chavali [33] for the 
design of transition-metal catalysts. In CAMD, TS algorithms are particularly 
useful due to the tabu list can contain: number of occurrences, unfeasible mole-
cules or low fitness value ranked molecules. 

2.4.4 Decomposition methods 

Decomposition methods are employed when an optimization problem is very 
complex, and the most convenient approach to reduce difficulty is by dividing it 
into a series of optimization subproblems, each one addressing different elements 
for the solution, the subproblems share their results and are solved iteratively 
until a satisfying solution for the overall problem is reached. In CAMD, there are 
three particular types of problem where decomposition methods have been suc-
cessfully applied. 

In single molecule design, where constraints are very tight, decomposition meth-
ods have been used initially for the generation of several scenarios focused on 
different design sub-spaces [16]. Then start the search for the solution in the sub-
spaces, one by one. 

In the case of compounds mixture design problems, where the desired product 
is not a single molecule but a mixture of them, the complexity lies in the inclusion 
of the variables that affect mixture properties, mainly the composition. Besides, 
a high number of molecule-molecule interactions produces a bigger computa-
tional effort for properties prediction [7]. Decomposition methods for this prob-
lem consist in decoupling the mixture design problem into several single-com-
ponent CAMD problems [34]. The solution of every problem addresses to find a 
candidate component for the mixture solution, and the information gained with 
the solution of the sub-problems is used for producing a new series of sub-prob-
lems, and so on.  

Integrated product/process design problems are also often decomposed. These 
problems consist in defining not a set of target properties for the desired com-
pound in the optimization, but process variables considering the inclusion of the 
designed compound into a complete chemical process. The difficulty of consid-
ering a process variable lies in the complexity of the objective function due to the 
inclusion of property prediction methods and methods for modelling the process 
(material balances, conditions, equipment, etc.). Despite of difficulties, decompo-
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sition methods have been successfully used in these problems. A two-stage ap-
proach is proposes by Ede [35] consisting in the optimization of the process to 
determine the optimal properties of the desired chemical product, then identifi-
cation of the product is done by CAMD techniques. Finally, the process is up-
dated with the properties of the closest molecule found by CAMD and the pro-
cess is re-optimized. Other approaches [2] consist in finding the optimal chemical 
product and then optimizing the process, or optimize both process/product at 
the same time. 

2.5 CAMD FOR ENVIRONMENTALLY FRIENDLY CHEMICAL PRODUCTS 

In chemical product design, the objective is the identification of compounds that 
accomplishes (or gets close to) the desired product requirements and most of the 
CAMD methodologies search through an abstract chemical design space, looking 
for the compounds whose properties suit best to the desired product properties. 
Nowadays, industry is looking for products and manufacturing environment-
friendly processes [7] and CAMD is looking in that direction by adapting existing 
methodologies to make possible the design of chemical products with the desired 
properties and environment-friendly too. 

According to the mentioned above, CAMD problems needs to be seen not as the 
problem of optimizing one desirable feature, but the problem of optimize the 
physical-chemical properties of the desired product and the properties address-
ing the reduction of the environmental impact of the product.  

The first publication of a CAMD methodology considering environment-friendly 
features in the product is the design of environmentally safe refrigerants done by 
Duvedi (1996) [36]. That work uses mixed integer nonlinear programming 
(MINLP) for finding solution compounds and includes the environmental crite-
ria as constraints in the formulation of the problem (ε-constraint optimization). 
Later, in the work of Pistikopoulos and Stefanis (1998) [37], a three-step process 
is developed for designing solvents by minimising environmental impacts. These 
steps presented involve: 

 The identification of agent-based operations within the process of interest and 
specification of performance constraints. 

 At the separation task level, the determination of a list of candidate solvents 
satisfying processing and environmental constraints. 

 At the process level, the selection of an optimal solvent based on global plant-
wide process and environmental constraints. 

Buxton et al. (1999) develops a methodology for optimal solvent blends design 
with reduced environmental impact. Other works published after the mentioned 
correspond to the inclusion of known environmental criteria in different CAMD 
problems [38], including the design of metal catalysts and crystallization solvents. 

An important contribution to this matter is done by Hukkerikar et al. (2012) [39]. 
They develop a model based on GC+ to provide reliable estimations of 22 envi-
ronment-related properties of organic chemicals. This method eases the inclusion 
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of a more complete set of environmental properties into CAMD problems. A 
combination between process/product design including economic and environ-
mental criteria is used by Ng et al. (2013) [40] for the synthesis of an integrated 
biorefinery. 

In a recent work, Ooi et al. (2019) [41] aims to design solvents for the extraction 
of oil from Palm pressed fibre. In that work, solvents are designed by optimizing 
a function consisting of the weighting and the addition of nine properties, five of 
them environment-related properties. 

Addressing CAMD as the problem of optimizing two objectives can lead to a 
contradictory behavior and manufacturing companies must evaluate the trade-
off between product performance and environment impact. To handle this prob-
lem, multi-objective optimization approach has become an important tool in CAMD 
for the design of chemical products with more than one optimal feature. Below, 
several strategies used in CAMD to solve the multi-feature problem are described. 

2.5.1 Weighted sum methods 

Weighted sum methods are the most used approach in the solution of multi-ob-
jective problems in CAMD and in general. These methods consist in transforming 
the multiple objectives into a scalar objective function containing the sum of all 
the contributions made by each objective. The contribution of each objective con-
sists in the product of the objective function by weighting factor. Mathematically 
it is expressed in Equation 2 [42]:  

Aweighted sum = b1A1 + b2A2 + ⋯ + bmAm Equation 2 

Where Aweighted sum is the overall objective function. bm is the weighting factor of 
the individual objective function Am.  

The major drawback of these methods is that, in the assignment of appropriated 
weighting factors for each objective, there is no generally accepted criteria be-
yond the preferences of the decisions maker. As a result, these methods tend to 
be biased [43].  

2.5.2 Bi-level Optimization 

This approach, for multi-objective problems, consists in ordering the objectives 
of the problem into a hierarchy. The solution for the main problem is reached 
while its sub-problems are solved in hierarchical order. In this method, the deci-
sion maker must categorize the objectives into upper-level objectives and lower-
level objectives [10].  

Other type of by-level optimization is the called ε-constraint optimization. In this 
method, one objective is defined as the one to be optimized while the functions 
of the other objectives are converted into constraints by setting an upper bound 
to each of them. 
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2.5.3 A posteriori methods 

This approach for multi-objective optimization can be considered as the less bi-
ased due to there is no interaction of the decision maker until the end. These 
methods do not provide a single solution for a problem but a set of optimal solu-
tions represented as a Pareto optimal front [44]. 

In a problem of n objectives represented by the set of functions F = {F1, F2, … , Fn}, 
from a set of solutions, the selection of the solutions that conform the Pareto op-
timal front is performed according to the next definition: 

Pareto Optimal: A point x∗ ∈ X  is Pareto optimal if there is no other point, 
x ∈ X , such that F(x) ≤ F(x∗) , and Fi(x) < Fi(x∗)  for at least one objective 
function. The notation used to indicate that a solution x∗ dominates a solu-
tion x is x∗ ≺ x. 

None of the solutions in the optimal front can be considered better or worse than 
the others and the decision maker imposes preferences over these solutions. The 
generation of solutions for a multi-objective problem can be computational ex-
pensive depending of the size of the Pareto optimal front generated. 
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3 Methodology 

The aim of this work is the design of a CAMD methodology for the design of 
solvents with a good performance in the separation of liquid mixtures, a reduced 
impact on environment and available in catalogues of chemicals vendors. This 
chapter presents the decision process involved in the selection and implementa-
tion of the methods used to achieve those goals. The next sections contain the 
definition of the optimization problem, methods for computing the objective 
functions, the strategy for handling constraints, the optimization algorithm and 
details related to the program developed. 

3.1 OPTIMIZATION PROBLEM DEFINITION 

A normal approach in CAMD to address product design problems is optimiza-
tion. In this work, the optimization problem consists of designing compounds 
with an optimal performance as solvent. This section describes the features of an 
optimal solvent for CAMD and formulates an optimization problem for solvents 
design. 

3.1.1 Requirements for a good solvent in liquid-liquid extraction 

Regardless the methodology used to identify or design the optimal solvent for a 
specific application, a compound must count with the next features to be consid-
ered a good candidate solvent in liquid-liquid extraction. 

Extraction power 𝐊 

In the process of selecting a separation solvent 𝐬, the target solute 𝐭 will be recov-
ered from the problem solvent 𝐩, knowing the distribution of t between s and p 
is of great importance. The way to quantify the extraction is with the partition 
ratio of t  in the solvents 𝐏𝐭,𝐬/𝐩 [45]. In this work this feature is just named as Ex-

traction power 𝐊. 

K = Pt,s/p =
[t]s

[t]p
 Equation 3 

[t]s  and [t]p  refer to the concentration of t  in the solvent phase and problem 
phases, respectively. It must be mention that temperature 𝐓 has a strong influ-
ence over the partition ratio.  

In a system where the solute is in thermodynamic equilibrium with the solvents, 
𝐏𝐭,𝐬/𝐩 can be expressed in terms of the activity coefficients of t in s and t in p at 

infinite dilution, expressed as γs,p
∞  and γt,m

∞  respectively in the Equation 4 [46].  
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K = Pt,s/p =
γt,p

∞

γt,s
∞  Equation 4 

In mass basis terms: 

K = Pt,s/p

MWp

MWs
=

γt,p
∞

γt,s
∞ 

MWp

MWs
 Equation 5 

In the equation, MWp  and MWs  correspond the molecular weight of the com-

pound p and s, respectively. 

Selectivity 𝐒 

In a desirable scenario, the target solute moves from the problem solvent to the 
separation solvent without any other compound, in this case remains of problem 
solvent. However, in most of the cases that is not possible and another feature for 
evaluating separation solvents must be introduced, the Selectivity 𝐒. The way to 
estimate selectivity is by computing the solubility of t and p in the solvent s. 

S = Pt/p,s =
[t]s

[p]s
=

γp,s
∞

γt,s
∞  Equation 6 

In mass basis terms: 

S = Pt/p,s

MWt

MWp
=

γp,s
∞

γt,s
∞ 

MWt

MWp
 Equation 7 

Separation solvent loss 𝐒 

In a process involving extraction operations using solvents, the recovery of the 
separation solvent is mandatory. Then, a third aspect to consider in the selection 
of a solvent is related to how much of the separation solvent gets dissolved into 
the problem solvent. The name of this feature is Solvent Loss 𝐋 and it is measured 
by the solubility of s in p. Assuming a very low partial solubility of the binary 
system consisting of the problem solvent and the separation solvent, the next re-
lationship is valid [47].  

xs,p · γs,p = xs,s · γs,s ≈ 1 Equation 8 

If the concentration of the separation solvent is very close to one, the solvent loss 
can be expressed as follows. 

L = xs,p =
1

γs,p
∞ 

 Equation 9 

In mass basis terms: 

L =
1

γs,p
∞ 

MWs

MWp
 Equation 10 
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3.1.2 Feasibility properties for a solvent in CAMD 

At the moment of evaluating a solvent, the properties K, S and L presented above 
tell us how good is the solvent. However, in CAMD a candidate solvent is not 
selected for evaluation of the same way it is selected by a person in the traditional 
product design approach.  

In the traditional product design approach, a solvent is selected from a list of 
solvents, from previous knowledge or by experience, the next step is estimating 
its properties and going to the laboratory in order to evaluate the performance of 
the solvent. On the other hand, in CAMD the solvents to evaluate are not 
properly "selected" based on empiric rules, these rules for selection rely on sys-
tematic and logic algorithms and can lead to compounds that are not physically 
feasible or that cannot be real solvents. Hence, the following properties must be 
taken into account in the problem of designing solvents via CAMD. 

Standard Gibbs energy of formation, 𝐆𝐟 

The Gibbs energy indicates whether a process is spontaneous or not. The Stand-
ard Gibbs energy of formation is the energy associated to the formation reaction 
of a compound from its consistent elements in natural state [48]. It is expressed 
in kJ/mol. Thermodynamics states that the more negative is the Gf  for a com-
pound, the more spontaneous its formation reaction is and the compound is more 
likely to exist in nature. Conversely, very positives values of Gf for a compound 
means that in nature the compound spontaneously would decompose into its el-
ements. For a solvent designed by a CAMD methodology, a negative value for 
the standard Gibbs energy of formation ensures that the solvent can exist. 

Boiling point 𝐓𝐛 and Melting point 𝐓𝐦 

There is no need to present a definition of these properties. This work addresses 
a problem of liquid-liquid separation using a solvent that must be in liquid phase 
at the separation conditions. The estimation of Tb and Tm let the user know the 
phase of the solvents generated by the CAMD methodology. The temperature of 
the separation T must fall in the range between Tm and Tb. That is, greater than 
Tm and lower than Tb. 

3.1.3 Environmental concerns 

A CAMD methodology is aimed to identify candidate compounds whose prop-
erties are advantageous for certain application. However, the inclusion of a can-
didate compound in large-scale processes can be affected if it presents any toxic 
behaviour for life or the environment. In addition, the world tendency is the im-
plementation of more environment-friendly processes. To represent different ef-
fects of a compound on environment, the following properties are selected. 

Fathead Minnow 𝐋𝐂𝟓𝟎
𝐅𝐌 and Daphnia Magna 𝐋𝐂𝟓𝟎

𝐃𝐌 

The acute toxicity indicator Lethal Concentration 50 LC50 stands for the concen-

tration of a substance that is expected to be lethal to 50% of members of a tested 
population during a specific period of time [49]. It is expressed in mol/L. In this 
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work, the potential impact of a compound on the aquatic life is measured using 

the properties Fathead Minnow 96hr LC50
FM and Daphnia Magna 48hr LC50

DM.  

Oral Rat 𝐋𝐃𝟓𝟎 

The acute toxicity indicator Lethal Dose 50 LD50 stands for the single dose of a 

substance that is expected to be lethal to 50% of members of a tested population 
from a single exposure by oral route [50]. It is expressed in mol/kg. In this work, 
the potential impact of a compound on the terrestrial organisms is measured us-
ing the Oral lethal dose for rats.  

Water solubility 𝐖𝐬 

This property stands for the amount of a substance that can be dissolved in liquid 
water. Once this amount is surpassed, the excess of substance remains in a phase 
apart from the water. Water solubility can be considered as an indicator in the 
study of environmental impact, as it tells how easy a substance can contaminate 
water.  

Bioconcentration factor 𝐁𝐂𝐅 

This property refers to the ratio of the concentration of a substance in aquatic 
biota to concentration of the substance in aqueous medium at steady-state [51]. It 
can be expressed in the units {mg/kg}biota/{mg/l}aqueous = laqueous/kgbiota , or 

with no units as {mg/kg}biota/{mg/kg}aqueous = kgaqueous/kgbiota . In the same 

way as WS refers to how a substance dissolves in an aquatic medium, bioconcen-
tration factor refers to what portion of the dissolved substance is finally absorbed 
by aquatic organisms. 

Final remarks 

In the early stages of this CAMD methodology, the properties presented in the 
next list were taken into account, however accuracy of available estimation meth-
ods was not satisfactory [39]. 

 𝑬𝑹𝑨𝑪: Emission to rural air, in cases per kilogram emitted (carcinogenic). 

 𝑬𝑹𝑨𝑵𝑪: mission to rural air, in cases per kilogram emitted (non-carcinogenic). 

 𝑬𝑼𝑨𝑪: Emission to urban air, in cases per kilogram emitted (carcinogenic). 

 𝑬𝑼𝑨𝑵𝑪: Emission to urban air, in cases per kilogram emitted (non-carcino-
genic). 

3.1.4 Market availability in CAMD 

The possibility of exploring a comprehensive space for the theoretical possible 
compounds is one of the big benefits of using CAMD methodologies in product 
design problems. In this design space, optimal compounds accomplishing the 
physical-chemical feasibility criteria and meeting the desired features for our 
product can be designed.  

A drawback of this approach is that not all the candidate compounds produced 
by CAMD are expected to be available in the market. Therefore, the designed 
compounds may be difficult to acquire, these have not been registered or there is 
no chemical pathway for the synthesis yet. In this work, the data of compounds 
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contained in several databases is included into the methodology in order to guide 
the optimization towards the design of optimal compounds available in the mar-
ket. The databases used in this work are the ZINC and EPA DSSTox databases. 

ZINC database 

ZINC, acronym of ZINC is not commercial, is a public-access database originally 
created to be used in virtual screening, it contains millions of purchasable com-
pounds with detailed information about the structure and the suppliers [52]. The 
current version of this database is ZINC15, intended to connect gene products, 
drugs and natural products with commercial availability. The easiest way to ac-
cess the data of ZINC is via a website maintained by the University of California, 
San Francisco (UCSF) and the National Institute of General Medical Sciences [53].  

From the list of categories present by in ZINC to classify the purchasability of 
compounds, Table 1 contains those used in this work. The table presents six cat-
egories, but Wait-ok, Boutique and Annotated are enough to classify a compound 
in this work. 

Table 1. ZINC categories for purchasability 

Category Description 
Acquisition 
success rate 

In-stock 
Ready to ship and expected delivery within 2 
weeks 

95% 

Procurement agent 
Available via procurement agents, delivery in 2 
weeks 

95% 

Make-on-demand Delivery typically within 8 to 10 weeks 70% 

Boutique 
The cost may be high but still likely cheaper than 
making it yourself 

70% 

Annotated In catalogues but not currently for sale -- 

Wait-ok In-stock + Agent + On-demand -- 

 

Currently ZINC counts with more than 1380 Millions of substances [54]. In this 
work, the extracted dataset consisted of the substances present in ZINC with a 
molecular weight lower than 350 Dalton and distributed as follows [55]: 

 Wait-ok: 204,460,039 compound 

 Boutique: 89,360,537 compounds 

 Annotated: 534,234 compounds 

DSSTox database 

The original Distributed Structure-Searchable Toxicity (DSSTox) is a web re-
source maintained by the United States Environmental Protection Agency (EPA). 
The purpose of DSSTox intends to be an access point to high-quality data of bio-
assay and physicochemical data of compounds and their corresponding chemical 
structures [56]. DSSTox integrates the information of the following databases [57]. 

1. The EPA Substance Registry Services (SRS) database 
2. The National Library of Medicine’s (NLM) ChemID-Plus 

http://zinc15.docking.org/
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3. Part of the PubChem database of the National Center for Biotechnology 
Information (NCBI), corresponding to approximately a dataset of 700,000 
entries. 

The last version of the DSSTox database can be accessed via the CompTox Chem-
istry Dashboard website [58]. CompTox is a curated and open-access resource 
containing more than 720,000 chemicals of relevance for environmental studies 
[59]. The number of compounds extracted for this work is of 720,839. 

Market availability category, 𝑨 

Based on the databases introduced above, the CAMD methodology of this work 
classifies the market availability of a compound as follows: 

1. Available: The compound is present either in the DSSTox database or in the 
Wait-ok subset of ZINC. 

2. Hard-to-acquire: The compound is present either in the subset Boutique or 
Annotated of ZINC. 

3. Unavailable: The compound is not present in any of the databases. 

The next section describes the strategy used by the CAMD methodology to in-
clude these categories into the solvent design process. 

3.1.5 Designing the best separation solvent 

To wrap it all up, a formal definition of the multi-objective optimization problem 
of the CAMD methodology proposed in this work is presented below. 

3.1.5.1 Objective functions 

Compared with the original CAMD methodology proposed in by Serrato, one of 
the major improvements of this work is the multi-objective approach. However, 
the original optimization function of that work [4] is still present in the method-
ology of this work as one of the objectives functions. 

1. Maximize the Solvent yield 𝒀 

max Y Equation 11 

Y = KS =
γt,p

∞

γt,s
∞ 

γp,s
∞

γt,s
∞ 

MWt

MWs
 

Equation 12 

 
2. Minimize the Environmental index 𝑬 

min E Equation 13 

E = kWS log Ws + kBCF log BFC − kLD50 log LD50 

− log LC50
FM − log LC50

DM Equation 14 

 

Regarding Equation 14, the method used to obtain the coefficients 𝑘𝑊𝑆, 𝑘𝐵𝐶𝐹 and  
𝑘𝐿𝐷50  relies on data obtained from the computation of Fathead Minnow LC50 , 
Daphnia Magna LC50, Oral Rat LD50, Bioconcentration factor and Water solubility 

https://comptox.epa.gov/dashboard
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for 50 000 compounds randomly created. Standardization factors for each prop-
erty are calculated and transformed in such a way that all properties vary within 
the same scale as Fathead Minnow LC50 and Daphnia Magna LC50 do. Section 4.1.3 
explains in detail the considerations taken into account in this process, and how 
Equation 14 is obtained. 

3.1.5.2 Constraints 

Most of the constraints related with thermo-physical properties are those defined 
in the work of Serrato [4].  

 Melting point 
During an extraction process, solvent and solute must be in liquid phase, 
then the melting point for the designed solvents must be below the operation 
conditions. The temperature in standard conditions is 25ºC (298K) and this 
work uses a slightly lower value of temperature of 20ºC (293K) as the upper 
limit for melting point. 

Tm < 293K Equation 15 

 Boiling point  
As in the case of melting point, the boiling point is intended to maintain the 
solvents in liquid phase. In addition, the boiling point must ease the later 
process of separation where the solute to be extracted is separated from the 
separation solvent and the separation solvent is recovered to be reused in a 
new separation. To cover both situations, the designed solvents in this work 
have a boiling point lower than 300ºC (573K). 

Tb < 573K Equation 16 

 Standard Gibbs energy of formation 
As previously mentioned, a compound with positive value for the Gibbs en-
ergy of formation is not thermodynamically feasible. That statement could 
lead to propose a positive value of this property as one constraint in the 
CAMD methodology. However, in nature, some compounds do not decom-
pose despite of having a small positive value of Gibbs energy of formation. 
To give these compounds a chance to be selected as candidates, the con-
straints for this property allow small positive values. 

ΔGf < 100 kJ ⁄ mol  Equation 17 

 Solvent loss2 
The maximum permissible solvent loss in this work is 10%. It means that the 
maximum acceptable concentration of the separation solvent in the problem 
solvent is of 0.1 mole fraction. 

L < 0.1 Equation 18 

 Market availability 

                                                 
2 In Section 4.3 of results, the impact of this constraint on the solvents designed by the CAMD 
methodology is discussed and the constraint is redefined. 
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According to the market availability categories introduced in section 3.1.4, a 
solvent s meets the first constraint if it is present in the available or hard-to-
acquire category. 

A = s ∈ {Cavailable ∪ Chard−to−acquire} Equation 19 

3.2 THERMO-PHYSICAL PROPERTIES 

The estimation of the thermo-physical properties introduced in section 3.1.2 and 
others included in this work is done using the group-contribution method pro-
posed by Hukkerikar [60]. In this model, properties can be predicted based on 
the first-order, second-order and third-order group contributions present in a 
molecule. In this work, only first-order and second-order contributions are con-
sidered. Third-order contributions are excluded as these contributions are in-
tended to allow the estimation of complex heterocyclic and large poly-functional 
acyclic chemicals (C=7 to 60) which are not covered in this CAMD methodology. 
In line with the mentioned considerations, the next formula is used for predicting 
thermo-physical properties. 

f(X) = ∑ NiCi

i

+ ∑ NjCj

j

 Equation 20 

In the equation, f(X) is a function for the property X to be predicted. Ni and Nj are 

the number of occurrences for the first-order and the second-order groups in a 
molecule, respectively. 𝐶𝑖 and 𝐶𝑗 are the respective contributions of the first-or-

der and second-order groups to a property. Values for 𝐶𝑖 and 𝐶𝑗 are the reported 

in the step-wise parameter tables for thermo-physical properties in the work of 
Hukkerikar [61].  

Table 2. GC equations for thermo-physical properties prediction [61] 

Property Equation, 𝐟(𝐗) Constants Units 

Standard Gibbs energy of 
formation, Gf 

exp (
Tb

Tb0

) Tb0 = 244.5165K [K] 

Normal boiling point Tb exp (
Tm

Tm0

) Tm0 = 143.5706K [K] 

Normal melting point Tf Gf − Gf0 Gf0 = −1.3385
kJ

mol
 [

kJ

mol
] 

Liquid molar volume Vm at 
298K 

Vm − Vm0 Vm0 = 0.0160
cc

kmol
 [

cc

kmol
] 

 

According to Equation 20, once all the group-contributions for a molecule are 
found to certain property X, the function f(X) allows to compute the value of the 
property. Table 2 summarizes the functions f(X) of the thermo-physical proper-
ties predicted in this work. As a complement to this table, it is worthwhile to 
mention that the density ρ of a compound can be computed using the molecular 
weight of and the liquid molar volume as follows: 



 

25 

 

ρ =
MW

Vm
 Equation 21 

3.3 ENVIRONMENT-RELATED PROPERTIES 

The estimation of the environment-related properties introduced in section 3.1.3 
and included in this work is done by using the group-contribution method pro-
posed by Hukkerikar [39]. The approach of this model is the same used for pre-
dicting of thermo-physical properties presented above and the same considera-
tions are applied in this case. That is to say, only first-order and second-order 
contributions are considered and Equation 20 can also be used to predict envi-
ronment-related properties. Values for Ci and Cj are the reported in the step-wise 

parameter tables for environment-related properties in the work of Hukkerikar 
[61].Table 3 summarizes the functions f(X) of the environment-related properties 
to be predicted in this work.  

Table 3. GC equations for environment-related properties prediction [61] 

Property Equation, 𝐟(𝐗) Constants Units 

Fathead Minnow LC503,  LC50
FM − log LC50

FM − FM0 FM0 = 2.1949 [
mol

lit
] 

Daphnia Magna LC504, LC50
DM − log LC50

DM − DM0 DM0 = 2.9717 [
mol

lit
] 

Oral Rat LD50 − log LD50 − ALD50 − BLD50MW 
ALD50 = 1.9372 

BLD50 = 0.0016 
[
mol

kg
] 

Water solubility, Ws log Ws − AWS − BWSMW 
AWS = 4.5484 

BWS = 0.3411 
[
mg

lit
] 

Bioconcentration factor, BCF log BCF - - 

3.4 MARKET AVAILABILITY 

Section 3.1.4 listed the sources used in the CAMD methodology in this work to 
assign market availability of compounds. The process of extraction, pre-pro-
cessing and insertion of the compounds data into a single database is described 
below. 

                                                 
3 In the original source, this equation is introduced as − log LC50

FM + 𝐹𝑀0, and some works uses it 
[95]. Nevertheless, in this work the equation was slightly changed to produce results more ap-
proximate to the experimental validation data. 
4 In the original source, this equation is introduced as − log LC50

DM + 𝐷𝑀0. Nevertheless, in this 
work the equation was slightly changed to produce results more approximate to the experimental 
validation data. 
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3.4.1 Database model 

A MongoDB instance is selected as the database engine to store the compounds 
queried by the CAMD methodology. MongoDB is an open-source document da-
tabase capable to store unstructured data (NoSQL) as documents inside collections 
[62]. In this CAMD methodology, a Compounds collection is created to store the 
compounds that are used to assign the market availability of the designed sol-
vents. For a compound document, the minimal fields in the database collection 
are the following: 

 Source: the source of origin defines whether the compound is Available, Hard-
to-acquire or Unavailable as defined in 3.1.4. 

 SMILES: the chemical structure according to the SMILES notation. This is the 
most important field as each compound generated in the optimization pro-
cess will use this field to query the database. 

 Id: the identifier of the compound in the original source (ZINC or DSSTox), 
this field is used to link the compound with a website containing the availa-
ble vendors. 

Simplified Molecular Input Line System, SMILES 

SMILES is a chemical notation language designed to represent molecular struc-
tures as a linear string of symbols, similar to natural language [63]. SMILES is 
intended to be easily interpreted by chemists and computer systems without am-
biguities. The advantages of using SMILES in molecule representation are the 
following: 

1. The line notation used allows the description of unique chemical graphs com-
prising nodes (atoms) and edges (bonds). 

2. The structure specification is user-friendly and the input rules can be learned 
quickly and naturally.  

3. The interpretation is a machine-friendly and machine-independent system 
capable of generating or interpreting unique structures of any complexity. 

In the SMILES notation there is no spaces. Hydrogen atoms may be omitted or 
included. SMILES encoding rules comprises specifications for the representation 
of atoms, bonds, branches, ring closures, disconnections, isomeric forms and chi-
ral centres [64].  

The flexibility of SMILES notation makes possible for a molecule to hold a large 
number of valid representations. A simple linear molecule such as ethanol (CH₃-

CH₂-OH) can be parsed either as CCO or as OCC (and of many other forms), the 
name of this encoding is Generic SMILES. In contrast, the Canonical SMILES of 
a molecule is a unique SMILES among all the valid possibilities. In software tools, 
the implementation of methods to parse molecules and map SMILES must be 
based on canonicalization algorithms. Currently there is no universally accepted 
method to canonize SMILES, a variety of canonicalization algorithms are imple-
mented in software tools and open source projects [65]. 
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3.4.2 ZINC database 

Information about the compounds registered in ZINC can be queried and down-
loaded using tranches. In ZINC, a tranche is a text file containing the locations (as 
URLs) of subsets of compounds data ready to download. The ZINC website 
counts with a Tranche Browser section where the tranches can be filtered accord-
ing to different criteria [66]. For this work, the filters used to build the market 
availability database are LogP (octanol–water partition coefficient), Purchasability 
and Molecular Weight.  

To handle market availability in this CAMD methodology, data of compounds 
with any value of LogP and a molecular weight lower than 350 Da (equivalent to 
a C14-alkane chain) are downloaded for the purchasability criteria Wait-Ok, An-
notated and Boutique. Figure 2, Figure 3 and Figure 4 display the number of com-
pounds in the tranches processed for this work, these correspond respectively to 
the purchasability criteria Wait-Ok, Annotated and Boutique. 

 
Figure 2. Wait-Ok tranches sizes. 
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Figure 3. Boutique tranches sizes. 

 

 
Figure 4. Annotated tranches sizes. 
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Importing compounds into the market availability database 

The structure of each compound of the ZINC database is encoded as SMILES 
according to the Canonical form implemented in the Open source toolkit for 
cheminformatics RDKit [67]. Once the tranches subsets are downloaded, the pre-
processing step for the compounds consists in reparsing the original ZINC Ca-
nonical SMILES to the Canonical SMILES implemented in The Chemistry Devel-
opment Kit 2.0 (CDK) [68], the parameter SmiFlavor flag in the parsing method is 
set to Absolute, this parameter defines the strategy to be used for handling stere-
ochemistry issues. Compounds with reparsed SMILES are inserted into the Com-
pounds collection of the MongoDB database. Figure 5 illustrates the process of 
importing compounds from ZINC to the Market Availability database.  

 
Figure 5. ZINC data import process. 

3.4.3 DSSTox database 

The acquisition of the DSSTox dataset is easier compared with the ZINC datasets. 
While the former has just more than is 700 thousand compounds, the latter has 
around 300 million. As mentioned in section 3.1.4, the CompTox Chemistry 
Dashboard website contains the DSSTox dataset. The version used in this work 
is the DSSTox MS Ready Mapping File of April 2018. The DSSTox dataset consists 
of several MS Excel files with the information of the compounds, each workbook 
contained 200,000 compounds. 

Importing compounds into the market availability database 

The structure of each compound of the DSSTox database is encoded as SMILES 
and as InChI. The latter corresponds to the IUPAC International Chemical Iden-
tifier [69]. Once the MS Excel workbooks with the subsets are downloaded, the 
pre-processing step consists in converting the workbooks files into Comma-Sep-
arate Values format (csv) and reparsing the SMILES of each compound to the 
Canonical SMILES implemented in The Chemistry Development Kit 2.0 (CDK) 
[68], the SmiFlavor chosen for this process is Absolute. The compounds with the 
new SMILES are inserted into the Compounds collection of the MongoDB database. 
Figure 6 illustrates the process of importing compounds from the CompTox web-
site to the Market Availability database.  

https://comptox.epa.gov/dashboard
ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/2018/April/
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Figure 6. DSSTox data import process. 

3.5 MIXTURE PROPERTIES 

The mixture properties used in this CAMD methodology correspond to the ac-
tivity coefficients required for the estimation of the properties presented in sec-
tion 3.1.1. The method used for the estimation of activity coefficients is the UNI-
FAC-Dortmund (Do) method, which is an extension of the original UNIFAC. In 
the development of this method, data from the Dortmund Data Bank, the world-
wide largest factual databank for thermo-physical properties, are used in the re-
gression of the interaction parameters [70]. However, the main difference be-
tween the UNIFAC-Do and the original UNIFAC method is that the former in-
troduces a more rigorous equation for the estimation of the temperature-depend-
ent group interaction parameters. In addition, as the UNIFAC method presents a 
poor performance for the prediction of activity coefficients at infinite dilution 
(𝛾∞), the UNIFAC- Do method took into account the activity coefficients at infi-
nite dilution of many more mixtures in the regression process of the group-group 
interaction parameters [71]. 

In UNIFAC, as in all the group-contribution methods, a mixture of molecules is 
represented as a mixture of pre-defined structural units, the so-called solution-of-
groups concept. Each structural unit is named subgroup and makes part of a func-
tional group [72] and the subgroups in a functional group keep some relationship 
(e.g. these belong to alkenes, carboxyl, ...). Computing activity coefficients using 
UNIFAC requires the identification of the functional groups and subgroups com-
prising the mixture. Figure 7 illustrates an example of this concept. 

 
Figure 7. Representation of a mixture as group-contributions. 

 

+ OH CH₃ CH₂ 

ethanol 

CH₃ CH₂ CH₂ CH₃ 

n-butane 

CH₃ 
Group 1: CH2 
Subgroup 1: CH3 
Occurrences: 3 

CH₂ 

Group 1: CH2 
Subgroup 2: CH2 
Occurrences: 3 
 

OH 
Group 5: OH 
Subgroup 14: OH(p)  
Occurrences: 1 
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The estimation of the activity coefficient for the compound i, which is part of a 
mixture of NC components, is computed as the sum of a combinatorial (C) and a 
residual (R) part [73]. 

ln γi = ln γi
C + ln γi

R Equation 22 

The combinatorial part accounts for the differences in the size and shape of the 
molecules, while the residual accounts for the contribution of intermolecular 
forces derived from the solution-of-groups to the non-ideality of the mixture. 

The combinatorial part for the compound i is estimated as follows. 

ln γi
C = 1 − Vi

′ + ln V′ − 5qi (1 −
Vi

Fi
+ ln

Vi

Fi
) Equation 23 

Where Vi stands for the volume fraction ratio of the component i, Fi for the sur-
face fraction ratio of the component i and V′i is an improvement of the volume 
fraction ratio introduced by the UNIFAC-Dortmund method. 

Vi =
ri

∑ rj
NC
j xj

 
Equation 24 

Fi  =
qi

∑ qj
NC
j xj

 
Equation 25 

Vi
′ =

ri
3/4

∑ rj
3/4NC

j xj

 Equation 26 

  

The molecular van der Waals volume ri and molecular surface area qi of com-
pound i present in the equations above are calculated using the next equations. 

ri = ∑ vk
i

k

Rk 
Equation 27 

qi = ∑ vk
i

k

Qk 
Equation 28 

 In the equations, vk
i  is the number of subgroups of type k in the compound i, 

while Rk and Qk are the van der Waals volume and surface area of the subgroup 
k. In this work, the values used for Rk and Qk are taken from the Dortmund Data 
Bank, maintained and updated by the DDBST GmbH group [74]. 

On the other hand, the residual part for the compound i is estimated as follows. 

ln γi
R = ∑ vk

i (ln Γk − ln Γk
i  )

k

 Equation 29 

Where Γk stands for the residual activity of group k in a mixture with all the NG 

groups, and Γk
i stands for the residual activity of group k in a mixture containing 

only compound i. Both terms are calculated using the next equations. 

ln Γk = Qk [1 − ln (∑ θnΨnk

NG

n
) − ∑

θlΨkn

∑ θmΨmn
NG
m

NG

n
] Equation 30 

ln Γk
i = Qk [1 − ln (∑ θn

i Ψnk

NG

n
) − ∑

θn
i Ψkn

∑ θm
i Ψmn

NG
m

NG

n
] Equation 31 
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Where θn stands for the area fraction ratio of the subgroup n respect to all the 

subgroups in the mixture, while  θn
i  for the area fraction ratio of the subgroup n 

respect to the subgroups of compound i. 

θn =
QnXn

∑ QmXm
NG
m

 Equation 32 θn
i =

QlXn
i

∑ QmXm
iNG

m

 Equation 33 

Xm =
∑ vm

i xi
NC
i

∑ ∑ vn
j

xj
NG
n

NC
j

 Equation 34 
Xm

i =
QlXl

∑ ∑ vn
j

xj
NG
n

NC
j

 
Equation 35 

In the equations above, Xm is the fraction ratio of the subgroups of type m in the 

mixture, while Xm
i  is the fraction ratio of the subgroups m in the compound i. In 

the case of Ψnm, this term stands for group-group interactions. It is temperature 
dependent and is calculated using the next equation introduced in UNIFAC 
Dortmund. 

Ψnm = exp (−
anm + bnmT + cnmT2

T
) Equation 36 

In the application of this equation, user must keep in mind that the n and the m 
are not interchangeable, i.e. anm ≠ amm , bnm ≠ bmn  and cnm ≠ cmn .Parameters 
anm, bnm and cnm can be found in tables. In this work, these parameters  as well 
as Rk and Qk were taken from the Dortmund Data Bank [74].  

3.6 OPTIMIZATION STRATEGY 

The solution of a CAMD problem can be challenging, as its mathematical repre-
sentation can lead to dimensionally high or strongly non-linear models. Never-
theless, meta-heuristics approaches for optimization have proven to be useful in 
CAMD as these do not require derivative information, the implementation is rel-
atively easy and these can be adapted to a wide type of problems [75]. In addition, 
single-objective and multi-objective problems can be addressed with these meth-
ods. As a consequence, meta-heuristic approach has become popular in CAMD 
methodologies today. 

The previous sections introduced all the required methods to understand the sol-
vent design problem and the evaluation of the performance of a solvent. This 
section explains how the optimization stage is conducted.  

3.6.1 Selected optimization algorithm 

In line with the comments above, a multi-objective metaheuristic evolutionary 
algorithm has been chosen to solve the optimization problem contained in this 
CAMD methodology. The selected algorithm is a multi-objective adaptation of 
the metaheuristic evolutionary algorithm HAEA [76]. Below is presented a de-
scription of the original single-objective HAEA and the multi-objective version 
of that algorithm. 
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3.6.1.1 Hybrid Adaptive Evolutionary Algorithm (HAEA) 

HAEA is a genetic algorithm whose conception differs from traditional genetic 
algorithms. In traditional algorithms, the appearance of new offsprings depends 
of genetic operators with static rates of application over the population. Besides 
of the little flexibility, the solution of a problem using the traditional approach 
requires the time-consuming task of tuning genetic operator rates. Alternatively, 
evolution of individuals in HAEA is guided by variable genetic operator rates 
that evolve independently for each individual along the progress of the algorithm.  

In HAEA, the introduction of genetic operator rates by the user is not necessary 
as the algorithm set the operator rates for new offsprings according to the perfor-
mance of the operators applied to the parents. In the initialization of the algo-
rithm, the rate for every operator is set as one divided the number of operators 
and the rates of an individual are inherited to its offspring. An individual cannot 
produce an offspring of a size larger than one and in the case of operators with 
offspring larger than one, a tournament is performed to choose the best child. 
Finally, HAEA allows the easy inclusion of custom genetic operators adapted to 
a particular problem. Algorithm 1 is a summary of HAEA. 

Algorithm 1. Hybrid Adaptive Evolutionary Algorithm (HAEA) [76] 

HAEA ( λ, termination_condition )    input: population size λ, termination condition 
1. t0 = 0 
2. P0 = initPopulation( λ ) , 
3. while(termination_condition( t , Pt  ) is false ) do 
4.   Pt_+1 = {} 
5.    for each ind ∈  Pt do 
6.      rates = operators_rates[ind] 
7.      δ = random(0,1)      //   learning rate 
8.      oper = SELECT_OPERATOR( operators, rates ) 
9.      parents = SELECT_PARENTS( Pt , ind ) 
10.      offspring = apply( oper, parents ) 
11.      child = BEST ( offspring , ind )    // Best child according to the fitness 
12.         if( FITNESS( child ) > FITNESS( ind ) ) then 
13.           rates[oper] = (1.0 + δ) * rates[oper]    //   reward 
14.         else 

15.           rates[oper] = (1.0 - δ) * rates[oper]    //   punish 
16.      normalize rates( rates ) 
17.      operators_rates[child] = rates 
18.    Pt+1 = Pt+1 ∪ {child} 
19. t = t + 1 

 

3.6.1.2 Multi-Objective Hybrid Adaptive Evolutionary Algorithm, MOHAEA 

In the development of single-objective optimization algorithms, most of the at-
tention is focused on convergence. The one-dimensional space where individual 
fitnesses advance makes easy to estimate this metric. In this cases, the relation-
ship between the fitness and the objective function is very tight. In a single-ob-
jective optimization problem, the fitness is usually the same objective function, 
unless the problem is constrained. 
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On the other hand, the convergence in multi-objective algorithms must be meas-
ured in a n dimensional space, according to the n objective functions. In these 
cases, the introduction of Pareto dominance and the Pareto optimal front may be 
necessary if an unbiased solution is desired. One of the major challenges in the 
development of multi-objective optimization algorithms is to ensure not only 
convergence but diversity in the solutions. In the context of multi-objective opti-
mization, both are defined as follows [77]: 

 Convergence: or accuracy, refers to how distant are the optimal solutions 
found from the theoretical (or known) Pareto optimal front. 

 Diversity: it refers to how is the distribution and the spread of the solutions. 
Distribution is the relative distance between solutions, while the spread is the 
range of values covered by the solutions. 

The MOHAEA implementation proposed in this work addresses convergence 
and diversity using an approach based on the fast non-dominated sorting and 
the crowding-distance introduced for first time in the NSGA-II algorithm [78]. 
The algorithm presented below was developed in collaboration with Juan Camilo 
Castro Pinto, M.Sc. Student of Computer and Systems Engineering of the Uni-
versidad Nacional de Colombia. 

Fitness assignment 

In MOHAEA, the performance of individuals is measured using only fitness. For 
the individuals of a population, fitness assignment requires sorting the popula-
tion according to non-domination levels and computing the crowding distance 
of the individuals of each level. The fitness of an individual corresponds to the 
sum of the non-domination rank and the crowding-distance as shown below. 

FITNESS(i) = irank + idistance Equation 37 

Where i is the individual, irank and idistance are respectively the ranking and the 
crowding distance of the individual. The benefits of this approach is that pro-
duces a single measure covering convergence and diversity despite of the num-
ber of objective functions in the problem. 

Ranking assignment 

The rank of an individual is defined according to the Fast Non-Dominated Sort-
ing approach presented in the NSGA-II algorithm [78]. The detailed procedure is 
presented in Algorithm 2. The purpose of Fast Non-Dominated Sorting is to ex-
tract the different levels of non-dominance of a population. The Pareto domi-
nance operator (≺) is used to separate each front. The first level consists of the 
non-dominated individuals, the second level comprises the individuals domi-
nated only by lower level individuals, and so on. The output of Algorithm 2 is a 
list of the non-domination ranks ℱ,  each rank is a list of the individuals classified 
on the respective Pareto front. 
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Algorithm 2. Fast Non-Dominated Sorting [78] 

NON_DOMINATED_SORT( P )     input: population P 
1. ℱ = {}   
2. for each p in P do 

3.    Sp = {}    //  set of solutions dominated by p 

4.    np = 0    //  domination count, number of solutions that dominates p 

5.    for each q in P do 
6.       if p ≺ q then     // if p dominates q 

7.          Sp = Sp{q}     //  q is added to the solutions dominated by p 

8.       else if q ≺ p then 

9.          np = np + 1   //  increment in the domination counter of p 

10.    if np = 0 then 

11.       prank = 1     
12.       ℱ1 = ℱ1 ∪ {p}    //   p belongs to the Pareto front 1 

13. i = 1  //   initialization of front counter 
14. while ℱi ≠ {} 

15.    Q = {}    //  individuals of next front 
16.    for each p in ℱi 

17.       for each q in Sp   

18.          nq = nq − 1 

19.          if nq = 0 then    //  if all the members dominating q have been removed 

20.             qrank = i + 1 
21.             Q = Q ∪ {q} 
22.    i = i + 1 
23.    ℱi = Q 
24. return ℱ 

Distance assignment 

The distance contribution is assigned based on the crowding-distance diversity 
measure presented in the NSGA-II algorithm [78]. This indicator is an estimation 
of the density of solutions surrounding a particular solution in a Pareto front.  

The crowding-distance for a solution is calculated as the Manhattan distance 
formed by the solution and the nearest surrounding neighbours of the same Pa-
reto front, Figure 8 shows how are selected the neighbours of the solution i, in 
the case that there are no neighbours surrounding the solution, the distance takes 
the maximum value of 1.0 for each dimension of the objectives space. Algorithm 
3 presents the process to compute the crowding-distance of the individuals of a 
front. 

 
Figure 8. Crowding-distance calculation 

 

f₂

f₁

i 

i+
1 

i-
 

Manhattan distance 



 

36 

 

Algorithm 3. Crowding-distance assignment for a Pareto front  

ASSIGN_CROWDING_DISTANCES( ℐ )     input: Pareto front ℐ  
1. lℐ = |ℐ|    // number of individuals in ℐ 
2. for each i in ℐ do 
3.    ℐ[i]crowd−dist = 0    //  distance initialization 
4. for each m in problem_objectives do 
5.    SORT( ℐ, m )   //  sort ℐ according to objective m values 
6.    ℐ[1]crowd−dist = ℐ[1]crowd−dist + 1    //  maximum distance for the boundary points  
7.    ℐ[lℐ]crowd−dist = ℐ[lℐ]crowd−dist + 1 

8.    for i = 2 to ( l - 1 ) do 

9.       ℐ[i]crowd−dist = ℐ[i]crowd−dist + (ℐ[i + 1]. m − ℐ[i − 1]. m) / (ℐ[lℐ]. m − ℐ[1]. m) 

 

Once the crowding-distance icrowd−dist of an individual has been computed, the 
distance contribution to the fitness is calculated as shown in Equation 38. It must 
be noted that the value of idistance is always positive and lower than one. This 
feature makes possible for individuals of the same Pareto rank to have fitness 
values (Equation 37) within a well-defined range that does not overlap the ranges 
of the other Pareto ranks. 

idistance =
1

2 + icrowd−dist
 Equation 38 

Evolution 

The main loop of MOHAEA starts with the creation of an initial population 𝑃0 of 
size λ and the assignment of genetic operator rates evenly for each individual of 
the population. As well as HAEA does, an individual is evolved using a genetic 
operator selected by roulette-wheel according to the operator rates (the SE-
LECT_OPERATOR method). The selected operator is applied to the individual 
and if other individuals are required in this process, these are selected from the 
population using any selection strategy (SELECT_PARENTS method). Once the 
offspring of a parent individual has been produced, the children are included in 
the offsprings population. 

The process of selecting the operator for an individual and producing an off-
spring must be repeated for all the individuals in the population. It must be 
pointed out that according to the genetic operator used, an individual can pro-
duce more than one children, resulting in a variable size for the offsprings popu-
lation. Nevertheless, the minimum number of individuals in this population is 
the size λ of the current population. 

The selection of the individuals of the next generation starts with the combination 
of the current population and the offsprings population into a combined popula-
tion. Afterwards, fitness values are assigned for all the individuals in the com-
bined population. 

The fitness of an individual is computed using Equation 37 as shown above. The 
application of this equation requires to know the Pareto rank and the crowding-
distance of each individual. The values for both indicators are assigned using the 
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Fast Non-Dominated Sorting and Crowding-Distance procedures presented in 
Algorithm 2 and Algorithm 3, respectively. 

The next step is the selection of the λ individuals from the combined population 
that will be part of the next population. The BEST_BY_FAMILY operator is the 
method used to select these individuals. This operator iterates over the "families" 
present in the combined population and the selection of the best individual of 
each one according to the assigned fitness. A family consists of the parent that 
produced some children, the parent is an individual of the current generation 
and the children are the offspring. The individual with the best fitness in a family 
is included in the next population.  

Algorithm 4.  Selection of the best individuals 

BEST_BY_FAMILY ( families ,  operator_rates )  input: families, map of genetic operator rates  
1. new_population = {} 
2. for each f in families do 
3.    SORT( fchildren , 'fitness' )    // sorting offspring according to the fitness 
4.    best_child = fchildren[1]    //  child with the best fitness 

5.    go_rates = operators_rates[fparent]    //  genetic operator rates of the parent 

6.    oper = foperator    //  genetic operator used to generate the offspring 

7.    δ = random(0,1)      //   learning rate 
8.    best_individual = {} 

9.    if FITNESS( best_child ) < FITNESS( fparent ) then    // is the best child better? 

10.       go_rates[oper] = (1.0 + δ) *  go_rates[oper]    //   reward 
11.       best_individual = best_child 
12.    else 
13.       go_rates[oper] = (1.0 - δ) *  go_rates[oper]    //   punish 

14.       best_individual = fparent 

15.    go_rates = NORMALIZE( go_rates ) 
16.    operators_rates[ best_individual ] = ind_rates 
17.    new_population =  new_population ∪ { best_individual } 
18. return new_population 

 

The BEST_BY_FAMILY operator also updates the genetic operator rates of the 
same way HAEA does. A parameter δ with a random value between 0 and 1 is 
created and depending on whether the best individual of the family is the parent 
or one of the children the δ values is added to or subtracted from the rate of the 
genetic operator used to generate the child. If the best individual is a child δ is 
added and, conversely, if the best individual is the parent, δ is subtracted. The 
updated genetic operator rates are normalized and assigned to the best individ-
ual of the family. Algorithm 4 shows the process to apply this operator for a set 
of families. 

Once the next population has been filled out and the genetic operator rates have 
been updated, the new population replaces current generation and a new itera-
tion of the algorithm is performed again less the TERMINATION_CONDITION 
had been met. Algorithm 5 collects the methods described above and summarizes 
the proposed MOHAEA algorithm. 
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Algorithm 5. Multi-Objective Hybrid Adaptive Evolutionary Algorithm (MOHAEA) 

MOHAEA ( λ, termination_condition ) 
1. t0 = 0 
2. P0 = INIT_POPULATION( λ )  
3. while TERMINATION_CONDITION( t , Pt  ) is false do 
4.    families = {} 
5.    offsprings = {} 
6.    for each ind in Pt do 
7.       ind_rates = operators_rates[ind] 
8.       oper = SELECT_OPERATOR( operators, ind_rates ) 
9.       parents = SELECT_PARENTS( Pt ) 
10.       ind_offspring = APPLY_OPERATOR( oper , parents ) 
11.       offsprings = offsprings ∪ { ind_offspring } 
12.       f = {}    //  familiy 
13.       fchildren = ind_offspring 

14.       fparent = ind 

15.       foperator = oper 

16.       families = families ∪ { f } 
17.    combined_pop = Pt ∪ offsprings 
18.    ℱt = NON_DOMINATED_SORT( combined_pop ) 
19.    for each front in ℱt do 
20.       ASSIGN_CROWDING_ DISTANCES( front )    //  to compute fitness 
21.    Pt+1 = BEST_BY_FAMILY ( families ,  operator_rates )   
22.    t = t + 1 

Constrains handling 

In the process of designing optimal compounds using the CAMD methodology 
of this work, the most important step is the solution of the constrained multi-
objective optimization problem introduced in Section 3.1.5, hence MOHAEA 
needs a strategy to handle constrained problems. The approach selected is based 
on the constraint-domination approach introduced by the NSGA-II algorithm 
[78]. Under this approach any feasible individual has a better non-domination 
rank compared with any unfeasible individual. This approach is powerful and 
easy to apply. However, a drawback of constraint-domination is that it makes 
difficult for an individual located near to the feasibility region to participate in 
the generation of new offsprings [79].  

MOHAEA uses a variation of the constraint-domination approach in order to 
make it more flexible and provide unfeasible solutions more opportunities to 
produce feasible solutions. The new approach consists in that any unfeasible in-
dividual has a worse non-domination rank compared with the feasible individu-
als of the same Pareto rank. In terms of performance, an individual is reduced by 
one Pareto front for each violated constraint. As the next equation shows, this is 
achieved by adding one unit to the fitness value for every constraint violated. 

FITNESS(i) = irank + idistance + ∑ Wc(i)
C

c=1
 Equation 39 

Where C is the number of constraints and Wc(i) is the weight of the constraint c 
evaluated on the individual i defined as follows. 
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Wc(i) = {
0 
 

wc

     
if i does not violate the constriant c

 
if i violates the constriant c            

 Equation 40 

Where wc is the weight value defined for the constraint c. By default, the weight 
of each constraint is 1.0, corresponding to one Pareto rank in the fitness value.  

In the case of a feasible solution of the first Pareto front (rank = 1) and other 
solution of the same rank that violates one constraint, the resulting fitness of the 
first individual will be in the range {1, 2}, because the idistance is lower than one 
and the sum of constraints is zero. In the case of the second individual, the fitness 
will be in the range {2, 3} as the idistance is lower than one and the sum of con-
straints is one (assuming default weighting for the constraint). At the time of 
sorting the population and applying selection operators, the second individual 
will perform as an individual of Pareto rank 2. 

Finally, the weight values of the constraints can be modified by the user accord-
ing of how strictly the rank of an unfeasible solution must increase. One con-
straint of low importance can have a wc value of wc = 1.0 or lower, while an-
other constraint with high importance can have a wc value of wc = 2.0 or higher. 

3.6.2 The molecule individual 

To reach the target in a CAMD problem via genetic algorithms is necessary to 
represent chemical compounds as individuals of a population under evolution. 
A molecule individual must be easy to modify without losing the physical-chem-
ical feasibility. This section explains the strategy to encode compounds. 

To represent a molecule as a modifiable object capable of being modified by the 
genetic operators of an evolutionary algorithm, the most compliant form is 
through a molecular graph [80]. A molecular graph represents constitutional com-
ponents of a molecule as a chemical graph where the vertices (nodes) are the at-
oms and the edges are the chemical bonds between them.  

A variant of molecular graphs are hydrogen-suppressed graphs, where the hydro-
gen nodes are neglected, these graphs are not ambiguous, although these might 
appear to be so. Figure 9 and Figure 10 are examples of molecular and hydrogen 
suppressed graphs, respectively. 

 
Figure 9. Molecular graph for propane. 

 

 

 

 

Figure 10. Hydrogen-supressed graph for butane. 

This work uses graphs representation for molecules, however the approach se-
lected is more practical and adapted to the properties estimation methods ex-
plained above. A molecule individual consists of a graph whose nodes are UNI-
FAC functional subgroups [81], and the edges are single bonds between those 
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groups. The CAMD methodology of this work uses the codes for each functional 
subgroup defined by the UNIFAC Consortium [82], then the mapping of a chem-
ical structure from the subgroups of a graph is done using the cited list of groups.  
Figure 12 presents the corresponding UNIFAC subgroups graph and the UNI-
FAC subgroup codes graph for 2-Hydroxybutyric acid (Figure 11). 

  
Figure 11. 2-Hydroxybutyric acid, 2D structure. 

 

(a) 

 

 

(c) 

 

 

 

(b) 

 

 

 

(a) UNIFAC subgroups graph, (b) UNIFAC subgroups codes graph and (c) Groups and subgroups lists 

Figure 12. 2-Hydroxybutyric acid in different representations. 
 

3.6.2.1 Molecule construction rules 

In the process of building an individual molecule, the molecule graph formed 
must meet the following rules: 

 The number of bond edges of each functional subgroup node must be equal 
to the valence of the subgroup. For example, the number of bonds of a CH₃ 
(1) subgroup must be one, as that is the respective valence, while the sub-
group CH=CH (6) must have two bonds. 

 The CAMD methodology allows to set the maximum number of functional 
group nodes per molecule, no individual can contain more functional groups 
than the allowed number. The default maximum nodes per molecule is ten. 

 The number of strong subgroup nodes should not exceed a maximum per-
mitted of three. A subgroup is strong if it does not belong to the alkyl or 
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alkenyl groups. The alkyl group refers to the alkanes of the main group 1 
(subgroups 1 to 4) and the alkenyl group refers to the alkenes of the main 
group 2 (subgroups 5 to 8). 

3.6.3 Genetic operators 

In an evolutionary algorithm, each offspring is generated by the application of 
genetic operators over the parent population. The most common operators are 
single-point crossover and single-point mutation. Both are included in optimiza-
tion problem of this work and new ones are introduced. The complete list of ge-
netic operators implemented in the CAMD methodology are described below. 

3.6.3.1 Mutation 

Mutation consists in the selection of one molecule individual from the population, 
then a subgroup node of the individual is replaced by another subgroup of the 
same valence selected randomly from the UNIFAC subgroups list.  If the number 
of strong subgroups of the molecule to mutate is equal to the maximum allowed, 
the selected subgroup is replaced by a not-strong subgroup. Figure 13 is an ex-
ample of this operator. 

 
Figure 13. Mutation of a molecule individual. 

3.6.3.2 Cross-over 

Cross-over consists in the selection of two molecule individuals from the popu-
lation, then each molecule is split in two parts and those parts are rejoined to 
produce two different new molecules. One part of the origin molecules is present 
in each one of the resulting molecules. If any of the resulting molecules is com-
posed only by strong groups, an alkyl group is added between the two parts used 
to build the molecule.  

Figure 14 is an example of this operator. 
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Figure 14. Cross-over of a pair of molecule individuals. 

 

3.6.3.3 Group removal 

Group removal consists in the selection of one molecule individual, then an alkyl 
subgroup node of the individual is selected and one contiguous subgroup of va-
lence one is removed from it. Being n the valence of the selected alkyl subgroup, 
this subgroup is replaced by an alkyl subgroup of valence of n - 1 in order to meet 
the rule which states that a subgroup node must be bonded to a number of other 
nodes equals to its valence. Figure 15 is an example of this operator. 

 
Figure 15. Group removal of a molecule individual. 

3.6.3.4 Chain extension 

Chain extension consists in the selection of one molecule individual from the 
population, then the molecule is split in two and then rejoined with an extra CH₂ 

subgroup between the parts. Figure 16 is an example of this operator. 

 
Figure 16. Chain extension of a molecule individual. 

3.6.3.5 Chain closure 

Chain closure consists in the selection of one molecule individual from the pop-
ulation, the molecule is split in two, one of the parts is discarded and the other is 
joined with a subgroup randomly selected from the UNIFAC subgroups list.  If 
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the number of strong subgroups of the resulting molecule is equal to the maxi-
mum allowed, the selected subgroup is replaced by an alkyl CH₃ subgroup. Figure 
17 is an example of this operator. 

 
Figure 17. Chain closure of a molecule individual. 

 

3.6.3.6 Chain replacement 

Chain replacement consists in the selection of one molecule individual from the 
population, another molecule is randomly generated according to the rules de-
fined in section 3.6.2, and a cross-over operation is applied to both molecules as 
explained in section 3.6.3.2. One of the resulting individuals is discarded and the 
other is the result of the operation. Figure 18 is an example of this operator. 

 
Figure 18. Chain closure of a molecule individual. 

3.6.4 Selection mechanism 

Each of the genetic operators requires the selection of certain number of individ-
uals from the population. The selection of individuals is done by Tournament. In 
this CAMD methodology, tournament consists in the selection of four molecule 
individuals from the population, then the individual with best fitness is selected. 
If a genetic operator requires the selection of n individuals from the population, 
n tournaments are performed. 

3.6.5 Constraints weights 

As described in section 3.6.1, constraints handling in the MOHAEA algorithm is 
based on the constraint-domination approach. Under this approach all the con-
straints have a weight of 1.0 by default. Table 4 contains the weights of the con-
straints presented in section 3.1.5.2. 

Table 4. Constraint weights. 
Constraint name Weight 

Melting point 1.0 

Boiling point  1.0 

Standard Gibbs energy of formation 1.0 

OH 

CH₂ CH CH₃ COOH 

OH 

CH CH₃ CHCl₂ 

OH 

CH₂ CH CH₃ COOH 

CH₃ 

CH CH=CH₂ 

OH 

CH CH₃ 



 

44 

 

Solvent loss5 1.0 

Market Availability 1.0 

3.7 IMPLEMENTATION OF THE CAMD METHODOLOGY 

The thermo-physical, the environmental-related and the mixture properties esti-
mation methods are implemented in java as well as the MOHAEA algorithm, the 
genetic operators and the interface of the CAMD program. In the case of market 
availability, the compounds used to query candidate solvents are stored in a 
MongoDB instance. The source code of the CAMD program is stored in a public 
repository of github [83]. Anyone is free to view, pull and execute the program. 

3.7.1 Program input 

The user interface of the program allows the introduction of the next parameters. 

 Compound to separate (solute problem) 

 Solvent to separate from (solvent problem) 

 Separation temperature 

 Number of generations for the evolution 

 Number of individuals of the first generation 

 Number of strong groups 

 Functional group families to include in the molecule individuals 

3.7.1.1 Molecule input 

The molecules introduced to the program must meet the following rules. 

 Atoms of the molecule are not directly introduced. UNIFAC-Dortmund 
subgroups as these are defined by the DDBST GmbH [74] must be intro-
duced. For example, the representation of water is '16' as it is the UNI-
FAC-Do subgroup for this compound. 

 A dot '.' represents the single bond joining two subgroups. Double and 
triple bonds must be represented as the UNIFAC-Do subgroups defined 
for that. The representation for ethanol is '1.2.14', as the numbers repre-
sent the CH3, the CH2 and the OH groups, respectively. Propylene is rep-
resented as '5.1', being 5 the number for the CH2=CH subgroup 

 For branched subgroups, a substructure in parenthesis indicates that it 
corresponds to a branch emerging from the previous subgroup. In the case 
of isobutanol the configuration is '1.3(1).2.14'. The (1) substructure is a 
branch emerging from of the subgroup 3. 

3.7.2 Program output 

Once the program has designed a set of optimal solvents, the candidate solvents 
are displayed in the left side bar of the program window. In this side bar, the 
structure of each compound is shown and below a table with the next properties. 

                                                 
5 In Section 4.3 of results, the impact of this constraint on the solvents designed by the CAMD 
methodology is discussed and the constraint weight is redefined. 

https://github.com/kadriand/solvents-camd
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 Market availability  

 Smiles representation 

 Molecule configuration (UNIFAC groups) 

 Yield KS 

 Environmental Index 

 Number of violated constraints 

 Number of individuals with the same structure in the end of the last gen-
eration. 

 Molecular weight. 

In the path output/ respect to the location of the program the next files are created: 

 A file with the detailed thermo-physical and environment-related proper-
ties of the individuals of the last generation  

 Images of the structure of each molecule individual of the last generation. 

 Images with the Pareto best front for each generation. 
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4 Results and discussion 

This chapter presents the results of the proposed CAMD methodology for the 
design of optimal solvents for the separation of lactic acid from an aqueous solu-
tion under different conditions. Firstly, results of the property estimation meth-
ods for preselected datasets of compounds are presented. Then, results of execu-
tions of the program at different conditions are presented and analysed. Finally, 
to remark the improvements this work, results for the proposed CAMD method-
ology are compared to the results obtained in the methodology of Serrato [4]. 

4.1 PROPERTIES ESTIMATION  

In the evaluation of the property estimation methods, different datasets of refer-
ence compounds were used according to the type of properties. Thermo-physical, 
environment-related and mixture properties are the types of properties present 
in this work. Each dataset consists of a list of representative compounds with 
experimental values of the target properties. 

4.1.1 Thermo-physical properties 

Accuracy of the estimation methods for these properties is evaluated against a 
dataset of 108 compounds. Appendix 1 presents the experimental values and the 
computed values for the dataset. The compounds are a selection of the most com-
mon chemical groups distributed as follows. 

Table 5. Distribution of the thermo-physical properties dataset. 
Chemical group Number of Compounds 

Alkane 12 

Alkene 3 

Alcohol 24 

Aldehyde 5 

Ketone 11 

Esther 8 

Amines 6 

Amides 2 

Nitrile 3 

Ether 6 

Carboxylic acids 19 

Alkyl halide 9 
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For the compounds in the dataset, the experimental values for the properties nor-
mal melting point, normal boiling point and density are obtained using the Tox-
icity Estimation Software Tool (T.E.S.T. [84]) developed by the United States En-
vironmental Protection Agency, EPA.  The sources of this software tool are the 
EPI Suite of the U.S. EPA [85]. In the case of standard Gibbs energy of formation, 
the data used is the contained in the work of Serrato and the Perry's Chemical 
Engineers' Handbook [86]. 

4.1.1.1 Normal melting point 𝐓𝒎 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method [60], adopted by 
the CAMD methodology of this work, are represented in Figure 19. 

 
Figure 19. Experimental and predicted values for normal melting point. 

 

In the figure, the data points are distributed in a region around the diagonal, that 
is an indicator that the prediction model works. The carboxylic acid is the chem-
ical group with the greatest number of compounds distant from the diagonal, 
while esther compounds lay very close to the diagonal. The indicator used to cal-
culate the error is the Average Relative Error (ARE), which is defined as the mean 

value of data values' relative error [87]. In Equation 41, Xj
exp

 and Xj
pred

 are the ex-

perimental and predicted values of the element j = {1,2, … , n}. 

ARE =
1

n
∑

|Xj
exp

− Xj
pred

 |

Xj
exp × 100

j

 Equation 41 
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Figure 20. Relative error for melting point. 

 

The average relative error of the predicted data is of 12.12%, very far from the 
5.07% that literature reports for the normal melting point method of Hukkerikar. 
A reason for the regular performance in the prediction of this property can be 
related to the dependency of melting point of intermolecular interactions and 
molecular symmetry [88], and as group contribution methods do not consider 
stereometric factors, providing a very good estimation is difficult. Figure 20 
shows that the error is normally higher at low molecular weight, this behavior 
occurs as most of the compounds with high molecular weight are linear, then 
molecular shape does not have a strong influence on this property. 

4.1.1.2 Normal boiling point 𝐓𝐛 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method [60] are pre-
sented in Figure 21. The figure shows a good estimation for normal boiling point 
as the major part of data points lay on the diagonal. The average relative error of 
the predicted data is of 3.13%, a value above the 1.44% reported in literature for 
the normal boiling point method of Hukkerikar, that value is still very good for 
a contribution groups method. 

Some of the alcohol compounds' points are distant from the diagonal, the exper-
imental boiling point of these compounds is higher than the predicted. The alco-
hols with this feature correspond to compounds with more than one hydroxyl 
group in their structure. Generally, alcohol molecules have high boiling point as 
these form strong hydrogen bonds in liquid phase and the more hydroxyl groups 
a compound contains, the higher the boiling point is. Hence a reason for the be-
havior of this compounds can be that the contribution groups method used to 
predict this property does not address well the effect of hydrogen bonds caused 
by the presence of more than one hydroxyl group in a molecule.  
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Figure 21. Experimental and predicted values for normal melting point. 

4.1.1.3 Standard Gibbs energy of formation, 𝐆𝐟 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method [60] are pre-
sented in Figure 22. The figure shows an excellent estimation for Standard Gibbs 
energy of formation as almost all data points lay on the diagonal. 

 
Figure 22. Experimental and predicted values for standard Gibbs energy of formation. 

 

One alcohol and one carboxylic acid are the only compounds that presents values 
outside the diagonal and anyway these are still close to that line. This property is 
based in a relative scale, hence applying the average relative error metric is not 
correct in this case. Then the metric used for standard Gibbs energy of formation 

is the Average Absolute Error (AAE). In Equation 42, Xj
exp

 and Xj
pred

 are the ex-

perimental and predicted values of the element j = {1,2, … , n}. 
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AAE =
1

n
∑ |Xj

exp
− Xj

pred
 | × 100

j

 
Equation 42 

The average absolute error of the predicted data is of 5.25 kJ/mol, a value that is 
practically the same as the 5.24 kJ/mol reported in literature for the standard 
Gibbs energy of formation of Hukkerikar. This result is impressive, due to the 
value in literature corresponds to the error for the dataset used to generate the 
prediction model. 

4.1.1.4 Density 𝝆 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method [60] are pre-
sented in Figure 23. The figure shows a good estimation for density in most of 
the chemical groups. The average relative error of the predicted data is of 3.92%, 
a value above the 2.03% reported in literature for the density method of Hukkeri-
kar, that error is still good. 

 
Figure 23. Experimental and predicted values for standard Gibbs energy of formation. 

 

Carboxylic acids is the only group with a significant number of compounds dis-
tant from the diagonal. An explanation for this behavior may be related to the 
formation of strong hydrogen bonds exhibited by carboxylic acids. Hydrogen 
bonds reduce the intermolecular distance and decrease the molar volume of a 
compound [89]. Density is the inverse of molar volume. 

4.1.2 Environment-related properties 

Accuracy of estimation methods for these properties is evaluated against the 
same dataset of 108 compounds used above for evaluating thermo-physical prop-
erties methods. Appendix 2 presents the experimental values and the computed 
values for the dataset and Table 5 summarizes the distribution of the dataset. 
These properties were computed as logarithms values. 
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For the compounds in the dataset, the experimental values for the properties Fat-
head Minnow LC50, Daphnia Magna LC50, Oral Rat LD50, Bioconcentration factor 
and Water solubility were obtained using the Toxicity Estimation Software Tool 
(T.E.S.T. [84]) developed by the United States Environmental Protection Agency, 
EPA. The sources of this software tool are listed in the table below. 

Table 6. Sources for environment-related properties. 

Property Source 
Fathead Minnow LC50 ECOTOX aquatic toxicity da-

tabase [90] Daphnia Magna LC50 

Oral Rat LD50 ChemIDplus database [91] 

Bioconcentration factor Arnot, J. A. [92]; EURAS [93] 

Water solubility EPI Suite [85] 

 

Due to the lack of experimental data for many of the compounds of the dataset, 
the missing values were replaced with predictions done by the T.E.S.T software 
using the consensus strategy which consists in the average of five QSAR predic-
tion methods implemented in this tool [94]. These methods are: Hierarchical 
method, FDA method, Single-model method, Nearest neighbour method and 
Group contribution method. 

4.1.2.1 Fathead Minnow 𝑳𝑪𝟓𝟎
𝑭𝑴 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method, implemented 
in the CAMD methodology of this work, are presented in Figure 24. In the figure, 
the data points are distributed in a region around the diagonal and there is no 
remarkable feature related to any chemical group. The absolute average error for 
the data is of 0.57, relatively close to the 0.48 value reported in literature for the 
Hukkerikar estimation method [61]. 

 
Figure 24. Experimental and predicted values for Fathead Minnow LC50. 
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4.1.2.2 Daphnia Magna 𝑳𝑪𝟓𝟎
𝑫𝑴 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method are presented in 
Figure 25. In the figure, the data points are more scattered in comparison with 
the LC50 Fathead Minnow plot. There are no remarkable features related to any 
chemical group. The absolute average error for the data is of 0.84, a very distant 
value respect to the 0.49 value reported in literature for the Hukkerikar estima-
tion method [61].  

 
Figure 25. Experimental and predicted values for LC50 Daphnia Magna. 

4.1.2.3 Oral Rat 𝑳𝑫𝟓𝟎 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method are presented in 
Figure 26.  

 
Figure 26. Experimental and predicted values for Rat LD50. 
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Data points in the figure look scattered. There is no remarkable feature related to 
any chemical group and the absolute average error for the data is of 0.49, which 
is not very far respect to the 0.35 value reported in literature for the Hukkerikar 
estimation method [61].  According to literature, the Oral Rat LD50 prediction 
model is fairly good [39], however that is hard to conclude from the Figure 26. 

 

4.1.2.4 Water solubility 𝑾𝒔 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method are presented in 
Figure 27. In the figure, most of the data points lay over the diagonal line. The 
compounds whose prediction are far from the diagonal belong mainly to the al-
kane chemical group. This method is reliable for predicting water solubility of 
non-alkane compounds, UNIFAC method presents the same problem prediction 
this property. The absolute average error for the data is of 0.86, not very far from 
the 0.71 value reported in literature for the Hukkerikar estimation method for 
this property [61].  

 
Figure 27. Experimental and predicted values for Water Solubility. 

4.1.2.5 Bioconcentration factor 𝑩𝑪𝑭 

For the compounds of the dataset, experimental values of this property and val-
ues computed using the Hukkerikar contribution-group method are presented in 
Figure 28. In the figure, the data points are distributed in a region around the 
diagonal and the trend for most of the chemical groups is to have all the com-
pounds laying slightly below or slightly above the diagonal. The absolute aver-
age error for the data is of 0.60, above the 0.44 value reported in literature for the 
Hukkerikar estimation method [61]. 
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Figure 28. Experimental and predicted values for Bioconcentration factor. 

4.1.3 Environmental Index parameters 

Now that the estimation methods for environment-related properties are 
properly described. This section describes the procedure followed to obtain the 
parameters of the Environmental Index equation in section 3.1.5.1.  

The solvents designed using the CAMD methodology of this work must count 
with advantageous values for the environment-related properties listed in sec-
tion 3.1.3. The multi-objective optimization approach followed consists in the 
definition of an optimization function comprising those properties, the first 
shape of that equation is: 

E = kWS log Ws + kBCF log BFC − kLD50 log LD50 

−kLC50FM log LC50
FM − kLC50DM log LC50

DM 
Equation 43 

Where kLC50FM, kLC50DM, kWS, kBCF and  kLD50  stand for adjustment coefficients 
for Fathead Minnow LC50, Daphnia Magna LC50, Oral Rat LD50, Bioconcentration 
factor and Water solubility, respectively. Five coefficients to be obtained. 

A total of 50 000 random compounds are generated following the rules described 
in section 3.6.2.1 and environment-related properties are computed for each one. 
The properties of all the compounds are reported as logarithm values. Statistical 
indicators of each property are presented in the next table. 

Table 7. Statistical indicators of environment-related properties of 50 000 compounds. 

Property Mean Standard 
deviation 

Min Max 

Fathead Minnow LC50 (log) -3.726 1.395 -10.762 0.307 

Daphnia Magna LC50 (log) -3.167 1.328 -12.882 2.078 

Oral Rat LD50 (log) -2.287 0.520 -5.037 -0.920 

Water solubility (log) -3.848 2.141 -25.179 3.459 

Bioconcentration factor (log) 0.938 0.983 -3.664 5.577 
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Assignment of values for the adjustment coefficients is based on Z-score normal-
ization [95], this technique is used to transform a dataset into a new one with a 
mean of zero and a standard deviation of one. In this case, this method is used to 
make the data comparable. A simple way to use Z-score for the assignment of the 
five adjustment coefficients of Equation 43 is by setting each coefficient as the 
inverse of the standard deviation of the respective property. This makes possible 
to control the differences in scale among the properties. However, taking into 
account that Fathead Minnow LC50 and Daphnia Magna LC50 represent a similar 
environmental issue, which is the impact of a chemical compound on the mortal-
ity of aquatic life, the reduction of the scale of both properties by two is a reason-
able measure. That is done by dividing the coefficients of the properties by two. 
Furthermore, both properties have very similar values for standard deviation. 
Based on the mentioned considerations, the coefficients can be obtained as fol-
lows: 

kLC50FM =
1

2

1

SDLC50FM
≈

1

SDLC50FM + SDLC50DM
 

kLC50DM =
1

2

1

SDLC50DM
≈

1

SDLC50FM + SDLC50DM
 

Equation 
44 

SDLC50FM ≈ SDLC50DM kLD50 =
1

SDLD50
 kWS =

1

SDWS
 kBCF =

1

SDBCF
 

The number of coefficients can be reduced if we have in mind that in this optimi-
zation problem the scale of the objective function is not relevant, then the next 
transformations can be performed. 

kLC50FM = 1 

kLC50DM = 1 

kLD50 =
SDLC50FM + SDLC50DM

SDLD50
 

kWS =
SDLC50FM + SDLC50DM

SDWS
 

kBCF =
SDLC50FM + SDLC50DM

SDBCF
 

Equation 45 

The results are only three coefficients, below Equation 43 is transformed into 
Equation 14 and the coefficients can be computed. 

E = kWS log Ws + kBCF log BFC − kLD50 log LD50 

− log LC50
FM − log LC50

DM 
Equation 14  

Finally, the values of the adjustment coefficients are the following. 

kLD50 = 5.235 kWS = 1.272 kBCF = 2.771 Equation 46 
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4.1.4 Mixture properties 

The mixture properties in this work comprises only Infinite Dilution Activity Co-
efficients in Aqueous Solution, γ∞. Accuracy of the estimation method for this 
property is evaluated against a dataset of 111 compounds whose experimental 
values for activity coefficient were obtained from the work of Serrato [4] and the 
values reported by Mitchell [96]. Appendix 3 present the experimental values 
and the computed values for the dataset and Table 5 summarizes the distribution.  

Table 8. Compounds distribution in mixture properties dataset. 
Chemical group Number of Compounds 

Alkane 13 

Alkene 8 

Alcohol 32 

Aldehyde 8 

Ketone 12 

Esther 8 

Amine 8 

Amide 2 

Nitrile 5 

Ether 10 

Carboxylic acid 4 

Sulfide 1 

 

For the compounds of the dataset, Figure 29 shows the natural logarithm of this 
property (ln 𝛾∞) applied to experimental values and predicted values computed 
using the UNIFAC Dortmund method implemented in the CAMD methodology 
of this work.  

 
Figure 29. Experimental and predicted values for activity coefficient. 
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diagonal, these belong to alkane, alkene and alcohol groups. The poor perfor-
mance of UNIFAC predicting activity coefficients at infinite dilution in water for 
alkanes and alkenes is widely known [97]. 

Figure 30 shows the absolute error against the molecular weight of the com-
pounds. It can be noted that error increases with molecular weight. The reason 
for this behavior is that larger compounds tend to be similar to alkanes. In the 
case of alcohol group, this is the group with more compounds in the dataset (Ta-
ble 8) and the largest compounds of the dataset belong to it. 

 
Figure 30. Absolute error for activity coefficient. 

4.2 MOLECULES EVOLUTION  

The evaluation of the evolution process consisted in inspecting the values of the 
objective functions and the genetic operator rates along the evolution. For the 
initial experiments, the generation of results is done by executing 50 times the 
CAMD program introducing the same separation problem and the same evolu-
tion parameters. Table 9 summarizes the configuration of the program executions. 
In addition to the table, in the construction of molecules and the application of 
genetic operators, all the functional groups are used except aromatic, sulphur, 
cyclic, heterocyclic and aromatics. 

Table 9. CAMD program initial execution details. 
Number of executions 50 

Solute to separate Lactic acid 

Problem solvent Water 

Separation temperature 298K 

Number of individuals per generation 50 

Number of generations 50 

Max functional groups per molecule 10 

Max active strong per molecule (not alkane) 3 
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4.2.1 Convergence 

The convergence of the MOHAEA algorithm implemented in the CAMD meth-
odology of this work is evaluated by extracting the molecule individual's values 
for the objectives Yield KS and Environmental Index, for each generation along 
the evolution in 50 executions of the CAMD program using the configuration 
mentioned above. The average and the standard deviation of the objective values 
of every generation are computed for the executions. Figure 31 and Figure 32 
show the progress of the average and the standard deviation of the optimization 
objectives values. 

 
Figure 31. Average for Yield KS and Environmental Index. 

 
Figure 32. Standard deviation for Yield KS and Environmental Index. 

 

In Figure 31, the average of the optimization objectives are computed to inspect 
how population obtained, generation by generation, better values for the objec-
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to an optimal average value. On the other hand, in the case of Yield KS, 50 gen-
erations are not enough to converge to an optimal value as in all generation there 
is an increase in the average of this objective function. 

In Figure 32, the standard deviations for the optimization objectives are com-
puted generation by generation to inspect in what extent the solutions were 
spread over the solutions space. In the case of Environmental Index, a conver-
gence point is reached by the same generation the average does. In the case of 
Yield KS, there is an increase along all generations. 

For the purpose of finding a convergence point for the KS objective, a new exper-
iment using the same configuration of the last experiment is performed with 150 
generations instead of 50. Figure 33 and Figure 34 contain the progress of the 
average and the standard deviation of the optimization objectives values.  

 
Figure 33. Average for Yield KS and Environmental Index, 150 generations. 

 
Figure 34. Standard deviation for Yield KS and Environmental Index, 150 generations.  

 

10

11

12

13

14

15

16

17

18

19

50

150

250

350

450

550

650

750

850

950

0 20 40 60 80 100 120 140

E
n

v
. 

In
d

e
x
  a

v
e
ra

g
e

Y
ie

ld
 K

S
 a

v
e

ra
g

e

Generation
Yield KS Environmental Index

0

1

2

3

4

5

6

7

8

9

10

50

250

450

650

850

1050

1250

1450

1650

0 20 40 60 80 100 120 140

E
n

v
. 
In

d
e

x
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

K
S

 s
ta

n
d

a
rd

 d
e
v

ia
ti

o
n

Generation
Yield KS Environmental Index



 

60 

 

Both figures show that after 150 generations Yield KS does not reach a conver-
gence point yet, the graph presents only a slight reduction in the growth rate. 
This behavior indicates that there is no convergence point for Yield KS and later 
analysis in Section 4.3.1 will show that the solutions with the greatest values for 
this objective do not meet the constraints of the problem and the solutions meet-
ing all the constraints lay in ranges of very low values. Even so, 150 generations 
is the reference for the analyses of the next sections. 

A final experiment, under the same conditions of the last one, is conducted in 
order to inspect the evolution of the solutions that meet all the constraints. In this 
experiment, only the values of the objective functions of feasible solutions are 
considered. Figure 35 shows the progress of the average of the optimization ob-
jectives values. It can be pointed out how the scale of the Yield KS is reduced 
radically and in the case of the Environmental Index, the scale remains practically 
untouched. The behavior of both objectives indicates that the constraints of the 
problem influence strongly the evolution of Yield KS while the affectation over 
the evolution of the Environmental Index is minimal. 

 
Figure 35. Average for Yield KS and Environmental Index of feasible solutions, 150 generations. 

4.2.2 Operators performance 

The six genetic operators implemented in the CAMD methodology of this work 
are evaluated by extracting the application rates of the genetic operator of each 
generation along the evolution in 50 executions of the CAMD program using the 
configuration mentioned above. The average of the application rates of each op-
erator, each generation, are computed for those executions.  

Figure 36 shows the average of the application rates of the genetic operators, gen-
eration by generation, due to the noise in the results, the experiment is performed 
again with 150 executions. Figure 37 contains the results of the new experiment, 
it is the average of the application rates of the genetic operators, generation by 
generation. In the figure, noise is reduced, but it is still present. 
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Figure 36. Average of genetic operator rates along the evolution 

 
The main features of Figure 37 are as follows. In the early stages of the evolution, 
the most outstanding operator is Chain extension, whose rate increases in the first 
generations while the rates of the other operators decrease. Chain extension 
peaks in the 10th generation, then a decline starts towards a convergence point. 
In the case of Group removal, in the early stages the application rate of this opera-
tor decreases and around the 15th generation it rises towards the highest conver-
gence point. In the case of Chain closure and Mutation, the behaviour of both is the 
same, the rates of these operators decline slightly along the evolution with some 
fluctuations, and toward the lowest convergence points. In the case of Cross-over, 
this operator fluctuates along the evolution and there are no meaningful peaks in 
their progress. In the case of the Chain replacement operator, the rate of this oper-
ator decline strongly in the first stages of the evolution and then it increases 
slightly till a low convergence point. 

 
Figure 37. Average of genetic operator rates along the evolution 
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The behaviours described above can be explained as follows. On the whole, the 
number of generations is not enough to present a common converge point for the 
operators. As it mentioned in Section 4.2.1, the Yield KS objective function does 
not converge in 150 generations. At the early stages, Mutation and Group re-
moval present a bad performance due to these operators are intended to promote 
exploitation, and during the first generations the promotion of exploration is 
more important as the initial pool of solutions are not expected to be located near 
any optimal. 

The Chain replacement operator is the only one that presented a poor perfor-
mance overall, as the rate of this operator remains at the lowest values along the 
evolution, and the convergence point is one of the lowest. A reason for this be-
haviour is related to the fact that this is the strongest operators, as once applied 
it adds and unknown random chain to a molecule individual, causing a hard-to-
predict impact over the spread of a molecule parent. The performance of this op-
erator shows that molecule individuals are very sensitive.  

In the case of the Chain extension operator, its success is due to this operator is 
not strong as it changes the size of a molecule in a very controlled way. When a 
good molecule individual is affected by this operator, the resulting molecules can 
keep the strong features of the original molecule. 

4.3 SOLVENTS DESIGN 

The evaluation of the compounds designed by the CAMD methodology of this 
work consists in running the program several times and analyse the designed 
solvents taking into account separation power, environmental performance and 
market availability. 

4.3.1 Base experiment 

In an initial experiment, the generation of results is done by executing 50 times 
the CAMD program introducing the separation problem and the evolution pa-
rameters summarized in Table 9 in all executions. The result of the first experi-
ment is summarized in Table 10. 

Table 10. CAMD program results summary, first experiment. 
Best solvents designed 318 

Unique best solvents designed 157 

Solvents meeting all constraints 12 

Unique solvents meeting all constraints 6 

 

The table does not show a good performance for the CAMD methodology, as 
only four compounds meet the constraints of the problem. Table 11 and Figure 
38 present the constraints of the problem and the number of compounds that 
meet the constraints.  
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Table 11. Constraints in the best solutions, first experiment. 

Constraint name Compounds Percentage 

Melting point 234 73.58% 

Boiling point  313 98.43% 

Standard Gibbs energy 318 100.00% 

Solvent loss 21 6.60% 

Market availability 285 89.62% 

 

 
Figure 38. Number of solutions meeting each constraint, first experiment. 

 
Not many compounds meet the Solvent loss constraint, while for the other con-
straints the number of compounds is acceptable. A reason for the low number of 
compounds meeting the Solvent loss constraint is due to this property does not 
depend exclusively of the nature of the compound, but mostly of the interactions 
between the compound and the problem solvent. These interactions make this 
property hard to control and the associated constraint hard to meet. 

To make that more compounds meet the Solvent loss constraint, the constrain 
definition is softened and the constraint weight increased. The new constraint is 
defined in Equation 47 and the new weights of the problem are in the Table 4. 

L < 0.15 Equation 47 

 

Table 12. Modified constraint weights 
Constraint name Weight 

Melting point 1.0 

Boiling point  1.0 

Standard Gibbs energy of formation 1.0 

Solvent loss 2.0 

Market Availability 1.0 

 

Using these new parameters, a second experiment is conducted where results are 
generated again by executing 50 times the CAMD program with the same sepa-
ration problem and the same evolution parameters presented above. The results 
of the executions are summarized in Table 13. 
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Table 13. CAMD program results, second experiment. 

Best solvents designed 318 

Unique best solvents designed 156 

Solvents meeting all constraints 40 

Unique solvents meeting all constraints 16 

 

The table shows a significant improvement respect the results of the first experi-
ment, as now 40 solvents meet the constraints of the problem. Table 14 and Figure 
39 present the individual improvement for each constraint. In this case, a larger 
number of compounds meet the Solvent loss constraint, while the number of 
compounds meeting the other constraints slightly decreases in all cases.  

Table 14. Constraints in the best solutions, second experiment. 

Constraint name Compounds Percentage 
Melting point 230 72.33% 

Boiling point  310 97.48% 

Standard Gibbs energy 318 100.00% 

Solvent loss 74 23.27% 

Market availability 272 85.53% 

 

 
Figure 39. Number of solutions meeting each constraint, second experiment. 
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Table 15. CAMD program definitive execution summary. 
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Using these definitive configuration, a third experiment is conducted. Results are 
generated again and a summary of the executions is presented in Table 15. The 
table shows that in this experiment better solvents are designed and there are 
more solvents meeting all constraints compared to the two previous experiment, 
however the results of the experiments are not comparable as the number of ex-
ecutions and generations is different in this experiment. This experiment has 
been named as the base experiment for the rest of this chapter. 

Table 16. CAMD program execution summary, third experiment. 
Best solvents designed 668 

Unique best solvents designed 276 

Solvents meeting all constraints 71 

Unique solvents meeting all constraints 28 

 

Table 17 and Figure 40 present the percentage of solvents meeting each constraint. 
The percentages for this experiment are similar to the reported for the second 
experiment in Table 14. 

Table 17. Constraints in the best solutions, third experiment. 

Constraint name Compounds Percentage 
Melting point 495 74.10% 

Boiling point  641 95.96% 

Standard Gibbs energy 667 99.85% 

Solvent loss 169 25.30% 

Market availability 538 80.54% 

 

 
Figure 40. Number of solutions meeting each constraint, third experiment. 

 

The solutions that appear the most in the best solvent sets produced by the exe-
cutions are the shown in Figure 41. Carbonyl compounds are reluctant to be part 
of the best solvents set and only two compounds meet the problem constraints, 
these are the 4-Oxobutyl acetate (SMILES: CC(=O)OCCCC=O) and the 3,3-Dichlo-
ropropanal (SMILES: C(C=O)C(Cl)Cl). The rest of the compounds do not meet the 
solvent loss constraint. 
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Figure 41. Most frequent compounds in the executions. 

 

The selection of the best solutions among the 276 unique candidates is done by 
the identification of the Pareto best front. Figure 42 shows the resulting distribu-
tion of solutions and the best front. In the figure, the shape of the Pareto best front 
indicates that effectively a trade-off exists between the solvent power and the en-
vironmental impact of a solvent. In addition, for the decision makers the selection 
of a good solvent is not an easy task, as the best designed solvents are distributed 
in a concave Pareto front. The issue of multi-objective problems with concave 
Pareto fronts is that the best solutions tend to be located in the extremes [98]. 

 
Figure 42. Best Pareto front and dominated solutions. 
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the number of constrains violated by each one. Most of the best compounds vio-
late more than one constraint. An inspection of the constraints violated shows 
that the most violated constraint is the market availability constraint, as the 11 
compounds violate this constraint. 

Table 18. Pareto best compounds. 

Solvent SMILES 
Runs 

presence 
KS E 

violated 
constraints 

C(CC(=O)CCCO)CC(=O)C=O 1 5.9 -0.76 3 

C(CC=O)CN(CC=O)C=O 1 7002.8 10.82 2 

C(CCC(=O)CC=O)CC=O 2 53.8 5.82 2 

C(CCC=O)CCC(=O)C=O 1 53.8 5.82 2 

C=C(C)C=CC(=O)CCN(CCC=O)C=O 1 22.7 4.25 3 

C=C(CC=CCC(=O)CN(CCC=O)C=O)CC=O 1 94.8 6.43 3 

CC(=O)C(=O)CCN(C)C(=O)CC(=O)N 1 250.0 7.04 5 

CC(=O)CCCCC(=O)CC(=O)C 1 2.2 -1.73 2 

CCC(=O)N(CO)CO 1 47.1 4.99 3 

CCN(C)C(=O)CC(=O)N(C)CO 1 807.8 8.16 3 

CN(CO)C(=O)COC 1 1061.8 8.21 2 

 

To produce a better set of best compounds, a new set of Pareto best front are 
obtained using only the designed compounds that met all the constraints. Figure 
43 shows the resulting distribution of solutions and the Pareto best front.  Table 
19 shows the Pareto best compounds. 

 
Figure 43. Pareto best front with feasible compounds, solutions. 
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Table 19. Best feasible solutions. 

SMILES 
Runs 

 presence 
KS EI 

CC(=O)OCCCC=O 12 23.5 9.65 

C(C(Cl)Cl)O 7 12.0 9.25 

C(CCC=O)CC=O 6 78.5 10.41 

CCCC(=O)OO 2 11.2 9.17 

CC(=O)CCCOC(=O)C 1 0.8 5.86 

CC=CC=CCCC(=O)C 1 0.3 3.11 

CCCCCC(=O)C=O 1 9.1 6.71 

 

This time, the resulting Pareto best front comprises 7 Pareto best compounds. 
Comparing these best feasible solvents with the unfeasible solvents obtained in-
cluding all compounds (Figure 42), the major difference is not only the size of the 
solutions set, but also the range of the objective functions. Table 20 summarizes 
these ranges. 

Table 20. Ranges of Pareto best fronts. 

Best compounds 
Solvent yield, KS Environmental index, E 

min max min max 

Unfeasible compounds 2.16 7002.8 -1.73 10.82 

Feasible compounds 0.27 78.5 3.11 10.41 

 

The ranges of the unfeasible Pareto best solvents are much wider compared with 
the ranges of the feasible best solvents. The large reduction of the range for the 
Yield KS objective and the continuous increase of this objective along the evolu-
tion shown in Figure 33 indicate that this objective does not have an optimal con-
verge point and the constraints of the problem keeps the best feasible solutions 
remains in stable range, despite of the growth of this objective function caused 
by unfeasible solutions. 

The next sections will inspect the feasible solvents of Figure 43. Table 21 and Ta-
ble 22 show their chemical identifier and structure, respectively. More detailed 
tables are presented in the next sections. 
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Table 21. Best feasible solvents identifiers. 

# CAS Name SMILES 

1 6564-95-0 4-Oxobutyl acetate CC(=O)OCCCC=O 

2 598-38-9 2,2-Dichloroethan-1-ol C(C(Cl)Cl)O 

3 1072-21-5 Hexanedial C(CCC=O)CC=O 

4 13122-71-9 Butaneperoxoic Acid CCCC(=O)OO 

5 5185-97-7 4-Oxopentyl acetate CC(=O)CCCOC(=O)C 

6 62765-21-3 Nona-5,7-dien-2-one CC=CC=CCCC(=O)C 

7 2363-85-1 2-oxoheptanal CCCCCC(=O)C=O 

8 14538-09-1 3,3-Dichloropropanal C(C=O)C(Cl)Cl 

9 159433-58-6 4,4-dichlorobutan-1-ol C(CC(Cl)Cl)CO 

10 83682-72-8 3,3-Dichloropropan-1-ol C(CO)C(Cl)Cl 

11 3973-43-1 4-methylpent-4-enal C=C(C)CCC=O 

12 101257-10-7 4,4-dichlorobutanal C(CC(Cl)Cl)C=O 

13 7307-02-0 Heptane-2,4-dione CCCC(=O)CC(=O)C 

14 53185-69-6 Heptanedial C(CCC=O)CCC=O 

15 78450-84-7 2-(4-Chlorobutoxy)ethan-1-ol C(CCOCCO)CCl 

16 64825-78-1 5-methylhex-5-enal C=C(C)CCCC=O 

17 13505-34-5 Heptane-2,6-dione CC(=O)CCCC(=O)C 

18 19480-04-7 6-Oxoheptanal CC(=O)CCCCC=O 

19 185678-49-3 Oct-6-en-4-one CC=CCC(=O)CCC 

20 445423-02-9 3-methylidenepentanal CCC(=C)CC=O 

21 50360-62-8 3-methylidenehept-1-en-4-one CCCC(=O)C(=C)C=C 

22 - 
N-(2,2-dichloroethyl)-N-methyl-
butanamide 

CCCC(=O)N(C)CC(Cl)Cl 

23 41718-50-7 2,2-Dichloropentanal CCCC(C=O)(Cl)Cl 

24 591-78-6 Hexan-2-one CCCCC(=O)C 

25 96-04-8 Heptane-2,3-dione CCCCC(=O)C(=O)C 

26 624-24-8 Methyl pentanoate CCCCC(=O)OC 

27 925-57-5 Methyl 4-hydroxybutanoate COC(=O)CCCO 

28 6149-41-3 Methyl 3-hydroxypropanoate COC(=O)CCO 
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Table 22. Feasible best solvents structures. 
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4.3.2 Representative solvent candidates 

The strategy used in this work to evaluate the designed solvents generated by the 
CAMD methodology is based on the strategy used by Serrato [4], where the pro-
gram is executed a certain number of times, the resulting optimal solvents from 
the executions are merged and the best solvent candidates are reported and in-
spected. This approach is valid when the goal of the research is the solution of a 
specific chemical product design problem, however in this work is important to 
evaluate the quality of the method used to design solvents and ensure that the 
solution of another problem requires only a few executions of the problem and 
not the 50 or the 100 executions performed in the last section.  

Evaluating the quality of the method requires the extraction and inspection of a 
set of designed solvents representing a typical single execution of the CAMD 
program. The extraction is done by extracting the different Pareto dominance 
fronts from the set of designed solvents obtained in the base experiment (Table 
17) and locating the Pareto front that covers the half of the solution solvents. The 
selection of the representative solutions among the 668 solvent candidates pro-
duced a subset of 72 where 22 were unique compounds. 

Figure 44 shows the resulting solutions of the experiment, the representative Pa-
reto front and the most frequent solutions. In the figure, the representative front 
split the solutions by half, hence the frequency of the designed solvents is well 
distributed along the results of the experiment and there are no regions with ac-
cumulation of repeated solvents. Regarding the most frequent designed solvents, 
Figure 44 displays the solutions with presence in at least 10 executions of the 
program in the experiment (Figure 41). Such solutions are not concentrated but 
distributed in the solution space, and these form a line covering a wider range of 
objective values than the representative Pareto front. 

 
Figure 44. Representative Pareto front and experiment solutions. 
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4.3.3 Separation of lactic acid from an aqueous solution 

The properties of importance to evaluate the separation power of the candidate 
feasible solvents are tabulated in Table 23.  The table comprises the feasible com-
pounds as explained above, hence all the properties meet the solvent require-
ments.  

Table 23. Feasible candidate solvents, thermo-physical properties. 

# 
Melting 

Point 
Boiling 
Point 

Density 
Gibbs   
Energy 

Solvent 
Loss 

KS 

1 264.4 457.4 0.939 -416.7 0.124 23.46 

2 259.5 415.6 1.234 -199.6 0.128 12.04 

3 282.9 463.6 0.865 -202.3 0.141 78.54 

4 261.0 432.2 0.925 -458.8 0.148 11.23 

5 270.3 464.0 0.908 -442.6 0.066 0.79 

6 270.9 469.2 0.776 38.9 0.036 0.27 

7 288.4 469.1 0.844 -228.0 0.083 9.07 

8 252.7 416.9 1.198 -155.1 0.046 73.56 

9 273.0 462.8 1.124 -183.4 0.035 11.88 

10 266.4 440.3 1.169 -191.5 0.075 11.31 

11 229.2 402.4 0.722 -29.5 0.134 16.69 

12 259.9 441.5 1.146 -147.0 0.020 52.84 

13 287.7 454.3 0.925 -262.1 0.043 1.21 

14 288.8 484.1 0.863 -194.2 0.069 38.55 

15 282.3 499.1 0.984 -273.4 0.038 6.06 

16 237.7 428.4 0.738 -21.4 0.051 8.35 

17 285.1 465.7 0.836 -258.3 0.130 2.08 

18 285.4 480.8 0.854 -224.5 0.134 10.13 

19 252.2 441.5 0.733 -39.5 0.025 0.15 

20 226.6 401.9 0.724 -29.5 0.134 16.69 

21 251.8 439.8 0.771 30.8 0.132 1.09 

22 255.2 383.6 1.560 -44.6 0.023 32.20 

23 291.5 454.0 1.567 -116.2 0.010 17.49 

24 225.8 392.4 0.682 -134.1 0.049 0.12 

25 285.5 464.7 0.837 -258.1 0.130 2.08 

26 249.9 422.8 0.784 -227.9 0.119 1.23 

27 267.9 455.3 0.914 -450.7 0.070 11.05 

28 261.0 432.2 0.925 -458.8 0.148 11.23 

 

Besides Yield KS, Solvent loss is the most important property of the table. A low 
value for solvent loss is a desirable feature as in the design of a chemical process, 
the costs of the inputs as well as the steps and equipment of the separation train 
are heavily influenced by this property. In the table, there is a high variability 
among the solvents, the range varies from 2% to 14.6%, covering almost all the 
feasibility range of the constraint for this property. 

With the aim of evaluating the relationship between solvent loss and KS, Figure 
45 is a plot this property against Yield KS. In the figure, there are solutions with 
good values for both yield and solvent loss, therefore there is no visible trade-off 
between both properties.  
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Figure 45. Solvent loss and Yield. 

4.3.4 Environmental performance of candidate solvents 

The properties of importance to evaluate the environment performance of the 
feasible candidate solvents are tabulated in Table 24. Reviewing the ranges of the 
properties in the table, water solubility is the property with the largest range, 
hence the selection of solvents with very low water solubility is possible. This is 
advantageous not only for the environment but also for the reduction of solvent 
loss in the case that the solute to separate is in aqueous solution, the impact of 
this reduction in a process is discussed above.  

Table 24. Feasible candidate solvents, environment-related properties. 

# log(LC50FM) log(LC50DM) log(LD50) log(WS) log(BFC) Env. Index, E 

1 -4.10 -3.58 -1.51 -5.38 0.33 9.65 

2 -2.44 -2.59 -1.87 -5.40 0.48 9.25 

3 -4.55 -5.16 -1.60 -5.31 -0.33 10.41 

4 -2.67 -3.70 -1.63 -5.18 0.30 9.17 

5 -2.68 -2.83 -1.64 -5.97 -0.23 5.86 

6 -2.43 -1.85 -1.93 -8.16 -0.33 3.11 

7 -3.21 -4.20 -1.81 -6.04 -0.89 6.71 

8 -3.65 -4.22 -1.91 -5.53 0.15 11.26 

9 -3.02 -2.93 -1.87 -6.08 0.66 9.83 

10 -2.73 -2.76 -1.87 -5.74 0.57 9.53 

11 -4.00 -3.21 -1.70 -5.92 0.60 10.24 

12 -3.94 -4.39 -1.91 -5.87 0.25 11.55 

13 -1.50 -3.28 -1.91 -1.56 -1.54 8.53 

14 -4.84 -5.33 -1.60 -5.65 -0.24 10.69 

15 -3.14 -2.84 -2.10 -6.08 0.64 11.00 

16 -4.29 -3.38 -1.70 -6.28 0.70 10.51 

17 -2.33 -2.09 -1.82 -5.75 0.04 6.73 

18 -3.96 -3.22 -1.61 -5.36 0.69 10.71 

19 -2.79 -1.60 -1.87 -7.15 0.28 5.84 

20 -3.78 -4.75 -1.75 -5.88 0.39 11.31 

21 -3.22 -4.30 -2.24 -7.64 -0.60 7.85 

22 -3.44 -3.60 -1.88 -6.19 1.27 12.52 

23 -4.22 -4.03 -1.49 -5.58 1.35 12.70 

24 -2.34 -3.45 -1.81 -6.15 0.04 7.54 

25 -2.40 -1.87 -1.90 -5.89 0.04 6.83 

26 -1.80 -4.07 -1.91 -5.82 -0.38 7.43 

27 -2.96 -3.88 -1.63 -5.53 0.40 9.45 

28 -2.67 -3.70 -1.63 -5.18 0.30 9.17 
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To identify relations among the properties, a correlation matrix is made using the 
five properties and the Environment Index E objective function. Table 25 shows 
this matrix. The near-zero values in most of the non-diagonal items in the matrix 
show that there is no strong linear relation among the environment-related prop-
erties or the environment objective function.  

The correlation with a nearest value to the unit is the correlation between Fathead 

Minnow logLC50
FM and Daphnia Magna logLC50

DM with a correlation value of 0.569. 
This correlation can be expected, as both properties measure the same environ-
mental issue, the impact of compounds on aquatic biota. 

Table 25. Correlation matrix, environment-related properties. 

 log(LC50FM) log(LC50DM) log(LD50) log(WS) log(BFC) E 

log(LC50FM) 1.000      

log(LC50DM) 0.569 1.000     

log(LD50) -0.452 -0.270 1.000    

log(WS) 0.172 -0.202 0.277 1.000   

log(BFC) -0.397 0.117 0.284 -0.272 1.000  

E -0.633 -0.568 0.266 0.315 0.574 1.000 

 

4.3.5 Market availability 

The impact of market availability on the results of the CAMD methodology is 
evaluated by comparing the best solvents obtained in the base experiment to the 
best solvents obtained from experiments excluding the Market Availability con-
straint. The best solvents of the base experiment are the shown in Figure 43 ob-
tained by the configuration shown in Table 15 where all constraints are included 
(Table 12). On the other hand, the other best solvents are obtained by an experi-
ment consisting in executing the CAMD program with the configuration of Table 
15 and the constraint weights shown in Table 26. The results of this experiment 
are summarized in Table 27. 

Table 26. Constraint weights, no market availability. 
Constraint name Weight 

Melting point 1.0 

Boiling point  1.0 

Standard Gibbs energy of formation 1.0 

Solvent loss 2.0 

Market Availability 0.0 

 

Table 27. CAMD without Market Availability program execution summary. 
Best solvents designed 699 

Unique best solvents designed 370 

Solvents meeting the constraints 74 

Unique solvents meeting the constraints 40 

Solvents meeting the constraints and market available 33 

Unique solvents meeting the constraints and market available 12 
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Comparing the results of this experiment with the results of the base experiment 
shown  in Table 16, the number of best Pareto solvents meeting the problem con-
straints slightly increases from 70 to 74, and the number of unique best solvents 
meeting the problem constraints significantly increases, changing from 28 to 40.  

Inspecting the market availability of the best solvents of this experiment, the 
number of solvents meeting the problem constraints and available in the market 
is 33. In this set, 12 solvents are unique, which is a very small number compared 
with the 28 unique feasible best solvents of the base experiment. Table 28 sum-
marizes those feasible solvents for the experiment. 

Table 28. Pareto best solvents, experiment. 

SMILES 
KS E 

Market 
availability 

CC(=O)OCCC=CCC=O 16.0 8.95 no 

CC(=O)OC=CCCCC=O 16.0 8.95 no 

C=C(C=CCOC(=O)C)OC(=O)C 2.0 6.58 no 

CC=CC(=C)CCC=O 12.1 7.87 no 

CC=CCN(CCCC=O)C=O 216.7 10.40 no 

CC(=O)OCCCOOC(=O)C 39.9 9.13 no 

CCCCCC(=O)C=O 9.1 6.71 yes 

CCCCCN(CC=O)C=O 270.6 12.31 no 

CCCCN(CCC=O)C=O 270.6 12.31 no 

CCCN(CCCC=O)C=O 270.6 12.31 no 

CCN(CCCCC=O)C=O 270.6 12.31 no 

 

Figure 46 shows the best feasible solvents of this experiment and the best feasible 
solvents of the base experiment. In the figure, the range of the Yield KS objective 
in the Pareto best front for this experiment is wider compared to the range of the 
same best solvents for the base experiment. On the other hand, the range of the 
Environmental Index (E) objective in the Pareto best front of the base experiment 
is wider compared to the range of the best solvents of this experiment. 

On the whole, the best solvents resulting from this experiment have higher val-
ues for KS and slightly lower value for Environmental Index. In addition, most 
of the solvents generated in this experiment are not available in the market, and 
the only one available is one of the few solvents with a good value for the Envi-
ronmental Index in this experiment. 

These results suggest that here is a trade-off between solvent power and market 
availability that does not exist between environment performance and market 
availability. For the solvents of this experiment located in the middle of the Pa-
reto best front, these are not far from the Pareto best front of the base experiment 
and there is one common solvent in the fronts of both experiments, it is the 2-
oxoheptanal (SMILES: CCCCCC(=O)C=O). 

 



 

76 

 

 
Figure 46. Pareto feasible solutions for the base experiment and the no-availability experiment. 

4.4 THE PREVIOUS AND THE NEW METHODOLOGY 

The starting point of the CAMD methodology developed in this work is the 
methodology proposed by Serrato in 2009 [4]. This section is intended to compare 
the results obtained by the two methodologies and remark the improvements 
introduced in this work.  

First of all, it must be pointed out that the results of the two methodologies are 
not comparable as the optimization problem formulated in the methodology of 
Serrato is intended to design solvents with optimal solvent power and the opti-
mization problem in this work is intended to design solvents with optimal sol-
vent power, environment-friendly and available in the market. In other words, 
while the methodology of Serrato addressed a chemical product design problem 
of one desirable features, the methodology of this work addressed a chemical 
product design of three desirable features. 

The comparison done is based on the best designed solvents for the separation of 
lactic acid from an aqueous solution. For the solution of this problem Serrato re-
ported a list of the 52 best solvents designed by executing 60 times the CAMD 
methodology proposed in his work. Table 29 present the original data reported 
and the SMILES representation of each solvent to make easier to identify the 
chemical structure. His reported solvents does not contain information about the 
solvent loss, then Table 30 contains the solvent loss of those solvents computed 
using the methods used in this work. This table also reports computed values of 
environmental-related properties, Environmental Index, the number of violated 
constraints and market availability for the solvents. 
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Table 29. Original set of optimal solvents, Serrato [4]. 

# SMILES 
Boiling 
Point 

Melting 
point 

Gibbs 
Energy 

Density KS 

1 CC(C=O)(C=O)C=O 462.8 290.5 -309.8 1.21 1831.5 

2 CC(CC=O)(C=O)C=O 481.5 295.9 -301.58 1.16 1622.76 

3 C(C=O)C=O 386.5 230.7 -222.31 1.03 1658.81 

4 CC(CCC=O)(C=O)C(=O)O 543.6 321.4 -532.78 1.24 578.37 

5 CC(=O)OC(C)(C=O)C=O 474 292.1 -526.78 1.2 766.8 

6 CC(=O)OCC(C)(C=O)C=O 469.5 287.8 -299.49 1.09 796.2 

7 CC(C)(CCC(C)(CC=O)C=O)C=O 545.9 318.4 -263.204 1.04 558.12 

8 CC(=O)OC(C)(CC=O)C=O 496.1 294.7 -512.341 1.16 791.5 

9 CCCOC(=O)CC(C)(CCCC=O)C=O 562.4 313.7 -460.02 1.05 471.58 

10 CC(=O)OCC(C)(CC(C)(C)C=O)C=O 540.5 315.4 -488.4 1.07 469.04 

11 CC(=O)OC(C)(CCC(C)(C)C=O)CC=O 554.96 309.9 -478.811 1.06 458.22 

12 CC(C=O)C=O 400.3 249.8 -220.085 1 833.5 

13 CC(=O)OC(C)(CC(=O)O)C=O 541.6 316.2 -751.773 1.27 359.2 

14 CC(CCC=O)(C=O)OC 487.7 293.3 -291.26 1.06 790.6 

15 CC(C=O)(C=O)C(=O)O 515.4 312.9 -549.25 1.36 534.33 

16 CC(=O)OC(C)(CCC=O)C(=O)O 554.5 320.5 -743.542 1.23 389.3 

17 CCCOCC(C)(CCCC=O)OC(=O)C 549.1 305.3 -481.1 1.01 384.5 

18 CCCCC(C)(CCOCC=O)OC(=O)C 550.6 294 -479.8 1.01 384.54 

19 CC(CC=O)C=O 425.3 257.7 -211.854 0.98 697.3 

20 CC(C)(CCC(C)(CC=O)C=O)OC 537.3 311.96 -261.113 1.01 437.1 

21 CCCOC(=O)CC(C)(CCCC=O)OC(=O)C 572.3 312.7 -670.77 1.06 366.4 

22 CCCNC(=O)OC(=O)C 546.4 338.7 -418.2 1.43 286.8 

23 CC(=O)OCC(C)(CCC(C)(C)OC)C=O 548.5 310.9 -471.871 1.03 343.4 

24 C=CCCC(C=O)(C(C)CC=O)OC 548.8 317.9 -182.45 1.09 334.6 

25 COC(C=O)C=O 436.2 269.7 -317.8 1.16 759.93 

26 CC(C)(CC(C)(CC=O)C=O)C=O 530.8 323.5 -272.8 1.06 584.5 

27 CC(=O)OC(C)(C)CCCC(=O)OC=O 532.7 289.2 -700.319 1.11 307.83 

28 CCCOCC(C)(CCCOC(=O)C)OC(=O)C 558 295.6 -696.76 1.02 304.3 

29 CO(C)(C)(C=O)COC(=O)CC(=O)O 564.5 310.5 -722.785 1.19 304.8 

30 CC(C)(CCC(C)(CC(=O)O)C=O)OC 577.1 342.4 -502.694 1.08 295.6 

31 CCCCC(=O)OC(C)(CCCOC(=O)C)OC(=O)C 580.3 303.7 -886.38 1.07 293.3 

32 CCCCC(C)(C)OCCOC(=O)CC=O 545.2 300 -469.98 1 290.3 

33 CC(=O)NCCOC(=O)C 546.4 174.1 -418.2 1.43 286.8 

34 CCC(C)(CCC(=O)OC(C)(C)OC(=O)C)C=O 563.4 311.8 -673.553 1.07 285.2 

35 CCCCC(C)(COCCOC)OC(=O)C 542.1 285.7 -477.7 0.98 313.43 

36 COCC=O 367.1 214.8 -220.222 0.95 517.8 

37 CC(C)(C=O)C=O 416.2 264.4 -209.99 0.99 516.1 

38 CC(C)(CCC(C)(C=O)CO)OC 541.9 301.9 -287.502 1.03 138.4 

39 CC(C)(CC(C)(CC(=O)O)C=O)C=O 571.2 332.3 -510.867 1.14 347 

40 CC(C=O)(C=O)O 470.3 286.2 -360.5 1.5 386.6 

41 CC(C=O)(C=O)OC 449.7 281.9 -307.72 1.13 774.1 

42 CC(C)(CCC(C)(C=O)CO)C=O 542.6 308.5 -311.844 1.09 195.27 

43 CC(=O)OC(C)(C)CNC(=O)CCC(=O)O 634.2 290 -727.286 1.45 265.98 

44 CC(C=O)(OC)OC 435.6 272.5 -305.6 1.06 470.1 

45 CC(=O)NCCCCOC(=O)C 570.9 203.9 -401.7 1.29 328.08 

46 CCCOCC(C)(CCCO)OC(=O)C 555.5 289.9 -530.52 1.08 262.36 

47 CC(=O)OC(C)(CC(=O)O)CC(C)(C)C=O 579.2 324.9 -726.47 1.15 310.9 

48 CC(C=O)(C=O)O 470.3 286.2 -360.54 1.5 386.6 

49 CCCC(=O)NCOC(=O)C 559 190 -409.94 1.35 314.3 

50 CC(=O)OC(C)(CC(C)(C)C=O)CO 547.2 301.5 -537.773 1.17 263.7 

51 CCC(C)(CCOC(C)(C)C=O)C(=O)O 568.3 315.8 -511.2 1.06 240.02 

52 CCC(C)(CC(=O)NCC(C)(C)OC(=O)C)OC(=O)C 632.2 281.7 -682.9 1.24 285.5 
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Table 30. Extra properties computed for Serrato optimal solvents. 

# 
LC50FM 

(log) 
LC50DM 

(log) 
LD50 
(log) 

Water  
Solubilty 

(log) 

BFC 
(log) 

Solvent 
Loss 

Environ-
mental 
Index 

Penal-
ties 

Market 
Available 

1 -4.14 -5.66 -1.55 -0.50 -1.32 0.24 13.64 1 no 

2 -4.29 -5.83 -1.55 -0.52 -1.22 0.16 14.17 2 no 

3 -3.69 -4.65 -1.58 0.48 -0.62 0.56 15.48 1 yes 

4 -3.07 -4.85 -1.81 -0.21 -1.91 0.12 11.82 2 no 

5 -3.80 -4.24 -1.56 -0.40 -0.56 0.09 14.14 0 no 

6 -4.13 -4.41 -1.46 -0.91 -0.47 0.05 13.74 0 no 

7 -4.68 -6.56 -1.60 -2.06 -0.61 0.00 15.27 1 no 

8 -3.95 -4.41 -1.55 -0.41 -0.47 0.05 14.69 1 no 

9 -4.98 -6.12 -1.50 -2.20 0.42 0.00 17.30 1 no 

10 -4.23 -4.97 -1.51 -2.10 0.05 0.00 14.55 1 no 

11 -4.34 -5.14 -1.60 -1.91 0.14 0.00 15.82 1 no 

12 -4.02 -4.27 -1.60 -0.52 -0.44 0.33 14.78 1 yes 

13 -3.24 -3.26 -1.69 -0.47 -0.99 0.09 12.02 1 no 

14 -3.31 -6.04 -1.65 -0.66 -0.52 0.06 15.72 1 no 

15 -2.64 -4.51 -1.81 0.13 -2.10 0.45 10.97 2 no 

16 -2.73 -3.43 -1.81 -0.08 -1.16 0.05 12.35 1 no 

17 -4.24 -4.54 -1.68 -1.77 0.83 0.00 17.63 1 no 

18 -4.24 -4.54 -1.68 -1.77 0.83 0.00 17.63 1 no 

19 -4.17 -4.44 -1.59 -0.56 -0.34 0.16 15.30 1 yes 

20 -3.41 -6.60 -1.70 -1.86 0.00 0.00 16.52 1 no 

21 -4.64 -4.71 -1.50 -2.04 1.17 0.00 17.86 1 no 

22 -3.92 -6.19 -1.62 -0.68 -0.61 1.29 16.06 2 no 

23 -3.25 -5.18 -1.61 -2.22 0.75 0.00 16.13 1 no 

24 -4.65 -6.37 -1.81 -1.95 -0.02 0.01 17.93 1 no 

25 -3.41 -5.11 -1.62 -0.05 -0.85 0.63 14.57 1 yes 

26 -4.39 -6.39 -1.60 -1.74 -0.71 0.00 14.96 1 no 

27 -3.77 -4.19 -1.50 -1.11 0.89 0.00 16.89 0 no 

28 -4.08 -3.13 -1.59 -2.12 1.58 0.00 17.24 1 no 

29 -2.83 -4.61 -1.32 0.24 0.68 0.04 16.52 1 no 

30 -2.70 -5.44 -1.84 -1.91 -0.53 0.00 13.87 2 no 

31 -4.48 -3.29 -1.42 -2.39 1.93 0.00 17.48 2 no 

32 -3.83 -5.39 -1.63 -1.97 1.24 0.00 18.66 1 no 

33 -3.92 -6.19 -1.62 -0.68 -0.61 1.29 16.06 1 yes 

34 -3.73 -4.58 -1.56 -2.28 1.31 0.00 17.17 1 no 

35 -3.12 -4.58 -1.79 -1.88 1.44 0.00 18.64 0 no 

36 -2.56 -4.69 -1.68 0.35 -0.01 0.57 16.48 1 yes 

37 -3.50 -4.86 -1.63 -0.79 -0.29 0.14 15.08 1 yes 

38 -2.20 -4.96 -1.66 -1.75 0.32 0.00 14.48 1 no 

39 -3.68 -5.23 -1.74 -1.80 -1.24 0.01 12.30 1 no 

40 -2.85 -4.02 -1.60 0.66 -1.17 0.38 12.83 1 no 

41 -2.88 -5.70 -1.65 -0.31 -0.71 0.33 14.88 1 no 

42 -3.46 -4.92 -1.55 -1.95 -0.29 0.00 13.23 1 no 

43 -3.78 -6.39 -1.83 -1.12 -1.64 0.09 13.75 1 no 

44 -1.61 -5.74 -1.76 -0.11 -0.10 0.25 16.13 1 yes 

45 -4.50 -6.54 -1.62 -1.33 -0.42 0.28 16.68 1 yes 

46 -3.03 -2.91 -1.64 -1.67 1.15 0.00 15.58 0 no 

47 -3.34 -3.82 -1.74 -1.65 -0.48 0.01 12.85 2 no 

48 -2.85 -4.02 -1.60 0.66 -1.17 0.38 12.83 1 no 

49 -4.21 -6.37 -1.62 -1.01 -0.51 0.57 16.37 1 no 

50 -2.84 -3.34 -1.56 -1.49 0.37 0.01 13.46 1 no 

51 -2.16 -4.68 -1.99 -1.49 -0.58 0.00 13.75 1 no 

52 -4.11 -6.52 -1.74 -2.08 0.05 0.00 17.26 1 no 
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The most remarkable feature of Table 30 is that only five compounds meet the 
original constraints of the problem and none of them are available in the mar-
ket. The five compounds are highlighted in the table. 

For the purpose of inspecting the effect of including environmental issues and 
market availability in the design of optimal solvents by CAMD,  Figure 47 shows 
the distribution of the Yield KS for the solvents designed by Serrato and the sol-
vents designed by the methodology of this work (those shown in Figure 42). The 
average of the solvents of this work is lower compared to the average of the sol-
vents of Serrato, therefore the inclusion of environment-related objectives and 
market availability in the optimization has a negative impact over the solvent 
power of the designed solvents.  

The standard deviation of the Yield KS of the designed solvents in this work is 
larger than the standard deviation of the solvents designed by Serrato. This 
causes that Yield KS looks more spread for the solvents designed in this work. 
This behaviour is a consequence of optimizing environment-related issues at the 
same time Yield KS is being optimized. 

 
Figure 47. Distribution of Yield for Serrato and this work best solvents. 

 

Regarding the environmental performance of the solvents designed by both 
methodologies, Figure 48 shows the distribution of the Environmental Index 
computed for the solvents designed by Serrato and the distribution of the sol-
vents designed by the methodology of this work (those shown in Figure 42). As 
expected, the average of the solvents of this work is lower compared to the aver-
age of the solvents designed by Serrato. In addition, the standard deviation of the 
solvents of this work is larger than the standard deviation of the solvents of Ser-
rato. As a consequence, the Environmental Index is more spread for the solvents 
designed in this work and the selection of solvents in the bounds with good en-
vironment-friendly features is possible. 
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Figure 48. Distribution of Environment index for Serrato and this work best solvents. 
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5 Conclusions and future work 

5.1 CONCLUSIONS  

In this work, the design of liquid-liquid extraction solvents with environment-
friendly features and availability in the market is successfully achieved. A novel 
CAMD methodology based on multi-objective optimization is proposed and im-
plemented. The study case is the separation of lactic acid from an aqueous solu-
tion. 

The environment-related objective is easy to reach in the presented CAMD meth-
odology. In contrast, there are no optimal values for the solvent-power objective 
and the continuous growth of this objective is only limited by the constraints of 
the optimization problem. 

Accuracy of methods for estimating environment-related properties can lead to 
reduce the confidence of environmental objectives in a CAMD methodology. Pre-
diction of environment-related properties is still a matter that requires develop-
ment of more rigorous methods, as most of the available methods do not count 
with very good accuracy. The reported values of absolute error for the environ-
ment-related estimation methods used in this work lie near 0.4-0.5 in logarithmic 
scale, which is significant. 

Chemical product design of compounds with multiple desirable properties in-
cluding mixture properties is difficult. Handling these properties can be chal-
lenging as those depend not only on the candidate compound but also on its in-
teractions with the medium. In the case of solvent loss, a greater weight for the 
constraint related to this property is necessary to reach an acceptable number of 
feasible solvents designed. 

Market availability favours the design of environment-friendly solvents. In addi-
tion, there is a trade-off between market availability and solvent-power. 

Regarding the design of solvents for the separation of lactic acid from an aqueous 
solution, the task of the decision maker is difficult. The executions of the CAMD 
program produces a concave Pareto best front for this problem, which is an un-
favourable result as it reduces the number of solutions with a good balance 
among the optimization objectives.  

Designing environment-friendly solvents without significantly reducing the sep-
aration power is possible. Compared to the solvents designed by the CAMD 
methodology of Serrato, the solvents designed by the methodology of this work 
present a notorious improvement for the environmental performance. In the case 
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of solvent-power, the solvents designed by Serrato present better values for this 
property, however the difference is not great. 

Molecules are sensitive systems and modifications involving more than one func-
tional group can lead to radical changes in the properties. The CAMD methodol-
ogy of this work includes six genetic operators to evolve molecules and the best 
performance was shown by the less strong operators. Namely, the chain exten-
sion operator and the group removal operator presents the mentioned best per-
formance. On the other hand, very strong genetic operators present poor perfor-
mance. In the case of the Chain replacement operator, the strongest genetic oper-
ator, it presented the worst performance.  

To conduct the process of designing optimal solvents, the Multi-Objective Hybrid 
Adaptive Evolutionary Algorithm (MOHAEA) is proposed and implemented in 
this work. In this algorithm, genetic operators count with variable application 
rates as well as the original HAEA. The fitness of each individual is compute by 
combining Pareto dominance ranks and crowding-distance. The constraints han-
dling is done by a list of weights where the punishment for an unfeasible solution 
consists in reducing the Pareto dominance of the solution.  

The usage of Pareto dominance in the evaluation of the solutions reduces the bias 
of the optimization. Furthermore, the proposed weighting system for the con-
straints in MOHAEA eases the handling of constraints, as each weight does not 
depend on the numerical nature of the constraint but on the importance of each 
constraint. If all constraints are equally important, the default value of 1.0 is a 
good choice. 

A comprehensive evaluation of MOHAEA is not possible in this work, as it re-
quires testing the algorithm on many optimization problems and that is out of 
the scope. Moreover, the proposed CAMD methodology addresses a combinato-
rial problem of not known solution where one of the objectives does not have a 
convergence range. No general conclusions can result from a problem with those 
features. 
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5.2 FUTURE WORK 

The CAMD methodology proposed in this work produces satisfactory results for 
the design of environment-friendly separation solvents. However, further oppor-
tunities for improving the quality of the results and increasing the capabilities of 
the program are listed in this section. The most important recommendations for 
further work are presented as follows: 

 The inclusion of aromatic and cyclic functional groups. The new methodol-
ogy presented as well as the methodology of Serrato excludes those groups from 
the molecule search space, although many compounds containing these groups 
are of importance in industry. 

 A more rigorous study of the constraints. Currently the majority of the de-
signed solvents are not feasible and the optimization of one objective function 
depends on the constraints. A parametric analysis of the constraint weights can 
be worthwhile for the reduction of unfeasible solutions.  

 Experimental validation of the results. Solvents with market availability were 
designed in this work, then the experimental validation is possible. Laboratory 
work was never included in the scope of this work. 

 A comprehensive evaluation of the MOHAEA algorithm. In this work, the 
original HAEA algorithm was modified in order to address multi-objective opti-
mization problems and a complete study of the capabilities of the new algorithm 
has not been performed. 

 Testing the CAMD methodology in more solvents design problems. This 
work only used as study case the separation of lactic acid from an aqueous solu-
tion, which is a valid case, but it would be interesting to check the performance 
of the new methodology in more separation problems.  

 Evaluation of new objective functions. One of the objective functions in the 
proposed CAMD methodology does not count with a convergence point, making 
very difficult the definition of optimal solutions and the study of the optimization 
method, hence the evaluation of new objective functions able to represent the 
solvent power may lead to define a friendlier optimization problem. 
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Nomenclature 

𝑠  Separation agent, solvent to design 
𝑡  Target solute, compound to separate 
𝑝  Problem solvent containing the target solute 
𝑃ï,𝛼/𝛽  Partition coefficient of the compound 𝑖 in the phases 𝛼 and 𝛽  

𝛾𝑖,𝑗
∞  Activity coefficient of 𝑖 the phase 𝑗 at infinite dilution 

𝑀𝑊𝑖  Molecular weight of the compound 𝑖 
𝑥𝑖,𝑗  Mole fraction of 𝑖 dissolved in the phase 𝑗 

𝐾  Extraction power 
𝑆  Selectivity 
Δ𝐺𝑓  Standard Gibbs energy of formation 

𝑇𝑏  Normal boiling point 
𝑇𝑚  Normal melting point 
𝑉𝑚  Liquid molar volume 
𝜌  Density 
𝑇  Temperature 
𝐿𝐶50  Lethal Concentration 
𝐿𝐶50

𝐹𝑀   Fathead Minnow 96hr lethal concentration 

𝐿𝐶50
𝐷𝑀  Daphnia Magna 48hr lethal concentration 

𝐿𝐷50  Oral rat lethal dose  
𝑊𝑠  Water solubility 
𝐵𝐶𝐹   Bioconcentration factor 
𝑘𝐿𝐷50  Environmental index constant for 𝐿𝐷50 
𝑘𝑊𝑆  Environmental index constant for WS 
𝑘𝐵𝐶𝐹  Environmental index constant for BCF 
𝐴  Market availability category 

𝑌  Solvent yield 
𝐸  Environmental index 
𝑁𝑖  Number of occurrences of first-order groups 
𝑁𝑗   Number of occurrences of second-order groups  

𝐶𝑖  Contribution of first-order groups to a property. 
𝐶𝑗  Contribution of second-order groups to a property. 

𝐴𝑅𝐸  Average Relative Error 
𝐴𝐴𝐸  Average Absolute Error 
𝑆𝐷  Standard deviation 
𝑖𝑐𝑟𝑜𝑤𝑑−𝑑𝑖𝑠𝑡 Crowding distance measure for the individual i 
𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 Diversity distance component for the individual i 
irank  Pareto rank of the individual i 
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