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Abstract

This thesis introduces a new approach for estimating kinematic quantities, namely the angle
the relative speed, and the acceleration from an actual single motion blur image using the
Discrete Cosine Transform (DCT). Motion blur is a common phenomenon present in images. It
is produced by the relative movement between the camera and the objects in the scene during
camera sensor exposure to light. It usually happens to image recording systems mounted in
vehicles, hand-held cameras, drones, satellites, and mobile robots. Our software-based technique
focuses on cases where the camera moves at a constant linear velocity while the background
remains unchanged. Syntactic and actual image were used to carry out the experiments. The
Mean Absolute Error (MAE) of DCT Radon method for direction estimation was 4.66◦ degrees.
Additionally, the Mean Relative Error for speed estimation of the DCT Peudo Cepstrum
was 5.15%. Our alternative DCT frequency analysis proposals were more accurate than all
competitors evaluated for velocity measurement. Also, we proposed an alternative approach
to estimate relative acceleration from an actual uniformly accelerated motion blur image using
homomorphic mapping to extract the characteristic Point Spread Function of a degraded image
to train a machine learning regression model. Ensembles of Trees, Gaussian Processes (GPR),
Linear, Support Vector Machine (SVM), Tree Regression and 19 variants were evaluated to
predict the acceleration. The bests RMSE result was 0.2547m/s2 using GPR (Matern 5/2)
with a prediction Speed of 530 observation per second. Finally, the proposed methods are valid
alternatives for the estimation of the velocity and the acceleration from a single linear motion
blur image.
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Resumen

Esta tesis presenta un nuevo enfoque para estimar cantidades cinemáticas, a saber, el ángulo
de la velocidad relativa y la aceleración de una imagen de desenfoque de movimiento único
real usando la Transformación discreta de coseno (DCT). El desenfoque de movimiento es un
fenómeno común presente en las imágenes. Se produce por el movimiento relativo entre la
cámara y los objetos en la escena durante la exposición del sensor de la cámara a la luz.
Suele ocurrir con los sistemas de grabación de imágenes montados en vehículos, cámaras de
mano, drones, satélites y robots móviles. Nuestra técnica basada en software se enfoca en casos
donde la cámara se mueve a una velocidad lineal constante mientras el fondo permanece sin
cambios. Para los experimentos de estimación de velocidad se usaron imágenes sintéticas y
reales. El error absoluto medio (MAE) del método DCT Radon para la estimación de dirección
fue de 4.66◦ grados. Además, el error relativo medio para la estimación de la velocidad del
DCT Pseudo Cepstrum fue del 5.15%. Las propuestas alternativas de análisis de frecuencia
DCT fueron más precisas que todos los competidores evaluados para la medición de velocidad.
Además, se propuso un enfoque alternativo para estimar la aceleración relativa a partir de una
imagen de desenfoque de movimiento acelerado uniformemente real usando mapeo homomór�co
para extraer la función de dispersión de puntos característica de una imagen degradada para
luego entrenar un modelo de regresión de aprendizaje automático. Se tomaron un total de
125 imágenes de desenfoque de movimiento uniformemente acelerado en un entorno controlado
con luz y distancia a 5 aceleraciones diferentes en un rango entre0.64m/s2 y2.4m/s2. Se
evaluaron Conjuntos de árboles, procesos gaussianos (GPR), Regresión Lineal, Máquinas de
Vectores de Soporte (SVM) y 19 variantes de regresión para predecir la aceleración. El mejor
resultado RMSE fue0.2553m/s2 usando regresión GPR con una velocidad de predicción de 530
observaciones por segundo. Finalmente, se concluye que los métodos propuestos son alternativas
válidas para la estimación de la velocidad y la aceleración de una sola imagen con desenfoque
de movimiento lineal invariante.

Palabras clave:

aceleración, cantidades cinemáticas, DCT, desenfoque por movimiento, velocidad, medida
basada en visión.
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Chapter 1

INTRODUCTION

Vision-based measurement (VBM) systems are starting to become popular as an a�ordable
and a capable alternative for scienti�c and engineering applications. When cameras are used as
instruments, motion blur usually emerges as a recurrent and undesirable image degradation that
deteriorates the visual image content which actually contains kinematic information dismissed.
Blur is a frequent phenomenon which occurs when the motion is relatively large compared to
the camera exposure time. It is frequently present in all images in a greater or lesser amount
depending on the imaging system.

Kinematic quantities are relevant in control [Luh et al.(1980)Luh, Walker, and Paul],
transportation [Hoberock(1977)], robotics [Lepeti£ et al.(2003)Lepeti£, Klan£ar, �krjanc,
Matko, and Poto£nik], physics [Sironi and Spitkovsky(2011)], sports biomechanics [Ohgi(2002)],
geology [Xu et al.(2013)Xu, Liu, and Li], and technical [Sawicki et al.(2003)Sawicki, Wu,
Baaklini, and Gyekenyesi] and medical [Hozumi et al.(2000)Hozumi, Yoshida, Akasaka, Asami,
Kanzaki, Ueda, Yamamuro, Takagi, and Yoshikawa] diagnostics. Position, velocity, and
acceleration are kinematic quantities that are part of the decision-making in motion systems.
One of the most classical approaches to estimate the velocity of a moving object is the Optical
Flow. Even Though this technique has shown high accuracy for velocity, and acceleration
estimation, it is also highly demanding in computer processing requirements and uses a set
of images instead of one [Stanisavljevic et al.(2000)Stanisavljevic, Kalafatic, and Ribaric,
Barron et al.(1994)Barron, Fleet, and Beauchemin, Bab-Hadiashar and Suter(1998), Ishiyama
et al.(2004)Ishiyama, Okatani, and Deguchi, Pinto et al.(2014)Pinto, Moreira, Correia, and
Costa].

As an example, one of the critical objectives for autonomous robotics is to carry out tasks
in reliable and e�cient navigation, which makes that the images captured by mounted cameras
on this have an relvant role in the decision making for navigation, detection of objects and
the ability to avoid obstacles, among others. Video captured by robots is not exempt from
blur caused by the camera or the object shake under observation. This adds an unwanted
degradation to the captured images.

Motion blur is characterized by a Point Spread Function (PSF) whose parameters are
strongly related to object and camera motion. The simplest case of motion blur is due to
spatially invariant linear distribution, which has been extensively studied, while still being
fairly complex as shown in [Su et al.(2011)Su, Lu, and Tan,Wu et al.(2012)Wu, Guan, Su, and
Zhang,Wu et al.(2011)Wu, Ling, Yu, Li, Mei, and Cheng]. The researchers of these studies, who
made object tracking under motion blurred conditions, stated that image degradation causes
problems in de�ning an object to track since movements or sudden changes in position add
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great uncertainty in the estimation of the target position. A typically used solution is �rst to
remove the blurred content and then apply tracking, but this consumes computational resources
signi�cantly. The works shown in [Wu et al.(2011)Wu, Ling, Yu, Li, Mei, and Cheng, Dai
and Wu(2008)] mention that the researchers have managed to track severely blurred targets
e�ectively without removing the blur under the so-called Blur-Driven tracker technique due to
blur can provide information on the spatial change of the object to follow.

When a picture is taken under low light conditions, the camera needs a longer exposure time
to obtain enough light to cut the image, which produces some blur on the formed picture. Digital
camera makers have introduced two types of hardware solutions to mitigate this undesired e�ect
on images. The �rst approach is to raise the camera sensitivity (ISO - International Organization
for standardization - digital still-camera �lm speed is described in 12232:2006) by amplifying
the sensor signal, which allows a faster shutter speed, but unfortunately, this decreases image
quality because of a noise occurrence. The last technique is the optical image stabilization (OIS)
[Sorel et al.(2009)Sorel, Sroubek, and Flusser,McCloskey et al.(2011)McCloskey, Muldoon, and
Venkatesha] which is made with either a moving image sensor or an optical element in order
to balance camera motion blur e�ect. Unfortunately, these solutions are more expensive and
increase weight and energy consumption, and dismiss the kinematic information.

Velocity and acceleration estimation from a single blurred image are aims in this research
due to the relevance of this topic in science and engineering. This solution for the estimation
of kinematic quantities using blur images has been roughly considered in [Yitzhaky and
Stern(2003), Yitzhaky et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika, Pérez Huerta and
Rodriguez Zurita(2005),Loce and Wolberg(1995)]. Surveillance systems, engineering solutions,
and physics research usually need the estimation of velocity and acceleration; therefore they
can bene�t from this single image method when other sources are not available.

The proposed solutions introduced in the thesis can help reduce the use of sensors and camera
speci�cations which increase the economic cost signi�cantly and make harder the development
of autonomous vision-based systems. This search introduces some computational algorithms
to extract kinematic information from usually discarded images. I propose to explore a Non-
traditional source of kinematic quantities such as motion blurred degraded images that are
implicitly rich in information. These novel approaches allow obtaining the speed and the
acceleration of an object in motion from a single linear motion blur in variant and invariant
conditions.

1.1 THEORETICAL FRAMEWORK

1.1.1 Characteristics of optical and electro-optical systems

Point Spread Function PSF is the smallest detail that can produce an imaging optical system
through its impulse response h(x, y). The PSF describes the spatial distribution of the
illumination produced by a point source in the plane of the image when the optical system
responses to a Dirac pulse [Fliegel(2004)]. Figure 1.1 shows a simpli�ed diagram with unit
ampli�cation:
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Figure 1.1: Impulse response of a two-dimensional imaging system with its Point Spread
Function.

As we can see in Figure 1.1, there is an ideal point source f(x, y) = δ(x− x′, y − y′) in the
object plane and a phase-shifted impulse response g(x, y) = h(x− x′, y− y′) in the image plane
where the relationship between the object and the image is expressed as shown in Equation 1.1:

g(x, y) = f(x, y) ∗ h(x, y) (1.1)

The object irradiance distribution f(x, y) is convolved with the impulse response h(x, y) in
the Equation 1.1. This can also be represented as a convolution integral as shown in Equation
1.2:

g(x, y) =

∫ ∫
f(α, β)h(x− α, y − β)dαdβ (1.2)

From Equation 1.2, we can see that the impulse response of an ideal image system produces
a transfer function equals the Delta Dirac hideal(x, y) = δ(x, y), which is impossible because of
the nature of light in physical systems which brings up some defocus at the edge of the formed
image [Fliegel(2004)].

While the product shown in Equation 1.1 is a convolution in the space domain, this same
corresponds to a simple multiplication in the frequency domain when the Fourier Transform has
been applied to the involved functions as shown in Equation 1.3:

G(u, v) = F (u, v)H(u, v) (1.3)

H(u, v) is the Optical Fourier Transform (OFT), which is complex in nature; its magnitude
and phase are called Modulation Transfer Function (MTF) and Phase Transfer Function (PTF),
respectively [Gunturk(2012),Fliegel(2004)].

F {h(x, y)} = H(u, v) =| H(u, v) | ejφ(u,v) → OFT

| H(u, v) |→MTF
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φ(u, v)→ PTF

1.1.2 Blur Modeling

Blur is the area of an image that can not be precisely distinguished because it has no de�ned
edge due to the little high-frequency content. The relative motion between the camera and the
observed scene, an optical system out of focus in its image formation, and optical turbulence
added by a contaminated or turbulent atmosphere can produce blur. This phenomenon is not
reserved only for the formation of optical images, since it is also present in electronic microscopes
(due to spherical electronic lens aberrations), corrupt CT scanner and X-rays which are a�ected
by forced scattering in the medium [Lin and Li(2004a),Bovik(2009)].

Figure 1.2 shows the in�uence and contribution of di�erent Modulation Transfer Functions
in an imaging system. This illustrates that Defocus MTF can have a relevant e�ect on the
overall MTF.

Figure 1.2: Example illustrating the contribution of the Modulation Transfer Function (MTF)
of an imaging system [Gunturk(2012)].

Blur is classi�ed into two types depending on its spatial distribution on the a�ected image:
Spatially Invariant Blur in which high-frequency content reduction is produced in the same way
over the entire image and Spatially Variant Blur, characterized by di�erent blur levels on the
same image as shown in Fig.1.3.
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Figure 1.3: (a) Blur-free image (b) is a Spatially Variant motion blurred image and (b) is a
Spatially Invariant motion blurred image .

Assuming a �xed distance and ignoring defocus e�ects and lens aberration, motion blur can
be modeled through Eq. 1.4 where I(x, y) is the non-degraded image, g(x, y) is the degraded
image and n(x, y) is the additive process noise in image [Rajagopalan and Chellappa(2014)].

g(x, y) =

∫ ∫
I(α, β)h(x− α, y − β)dαdβ + n(x, y) (1.4)

There is a case in which the PSF does not depend on the position of (x, y) in the image, so
that h(x − α, y − β) = h(α, β). This is called the Spatially Invariant Point Spread Function.
Conversely, if the function varies in space, it is said to be a Spatially Variant Point Spread
Function. See Eq. 1.5 [Lin and Li(2004a),Sorel and Flusser(2008)].

g(x, y) =

∫ ∫
I(α, β)h(x− α, y − β, α, β)dαdβ + n(x, y) (1.5)

Figure 1.4 illustrates the degradation block diagram of an image in Space and Frequency
Domain.

Blur can be classi�ed by its nature as: Optical, Mechanic and Medium-induced blur [Chan
and Shen(2005a)]. This research only considers the mechanic blur which occurs when the relative
velocity among the di�erent objects in a scene and the camera are relatively large compared to
the time of exposure so that the resulting image gets a distortion called motion blur [Lin and
Li(2004a),Gunturk(2012)]. The PSF h(x, y) of any blur kernel has to satisfy three constraints,
namely [Bovik(2010)]:

� h(x, y) does not take negative values because of the physics of the underlying image
formation process.

� h(x, y) is real-valued because images are real-valued.

� Energy is neither absorbed nor generated during the image formation process. For spatially
continuous blurs, h(x, y) is constrained to satisfy Equation 7.3.

+∞∫
−∞

+∞∫
−∞

h(x, y)dxdy = 1 (1.6)
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Figure 1.4: (a) Image formation model in the spatial domain (b) Image formation model in the
Fourier domain.

There are two main ways that PSF physical meaning can be interpreted: the well known
standard point of view which describes how the point sources are spread in space and the other
one is to see the PSF as a weighted convolution window [Rajagopalan and Chellappa(2014)].

1.2 GENERAL STATE OF ART

S.C Som study [Som(1971)] is one of the most outstanding theoretical researches about the
mathematical model of uniform and accelerated motion blurred images (Universite Laval Que-
bec, 1972). This work is concerned with the linear smear on photographic images taken with a
single analogical camera that uses light-sensitive emulsion �lm to save the image of the scene.
To this day, it is still the most cited study on linear motion blur analysis due to its extensive
investigation of the uniform and accelerated motion modeling. Velocity and acceleration esti-
mation from one single motion blurred image has not received in-depth research even its has
some broad uses in robotics, forensic science, engineering, and physics among other applica-
tions. Traditionally, a motion blurred image has been considered undesired due to the little
high-frequency content, refusing this one hides associated kinematic data.

Lin et al. (the National Chung Cheng University of Taiwan, 2004) [Lin and Li(2004a),
Lin(2005),Lin and Li(2005)] proposed a method to obtain the speed of a vehicle from a single
motion blurred image. Even though their paper is entirely comprehensive and full of detailed
geometric analysis, it is just intended for speed measurement of vehicles in highways, deblurring,
and recognition of license plates. They summed up that their method had an error less than 2%
compared to video-based speed estimation, but they did not collect these results in controlled
environment laboratory conditions which would have allowed them a more extensive scienti�c
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evaluation of their technique.

Some researches are based on Lin's work as seen in [Lin and Li(2004a), Lin(2005), Lin and
Li(2005)]. If motion blur length L and angle θ are estimated from the degraded image, the
instantaneous velocity can be calculated from the ratio between the motion blur length L and
the exposure time T while the speed remains constant along a linear trajectory assumption.

Perez and Rodriguez (Universidad Autónoma de Puebla in Mexico, 2005) [Pérez Huerta and
Rodriguez Zurita(2005)] performed some experiments by taking pictures of letters painted on
sliding carriage which was set on low friction air rail at a constant velocity and acceleration to
generate linear motion blur degradation. These experiments were not meant for the estimation
of velocity and acceleration; however, they presented a valid approximation to the subject of
interest.

Schuon and Diepold (Technische Universität München in Germany, 2006) [Schuon and
Diepold(2009),Deb(2005)] set up a motor-driven slider to generate and to take real-world blurred
pictures in a controlled uniform velocity environment. They stated that for more than 30 years
researchers have developed techniques for deblurring synthetic motion blurred images which
work well but fail on naturally blurred images. Their experiments allowed them to �nd out an
alternative solution to address real-world generated blurred images. They were not interested
in the calculation of the target speed, but their novel deployment was encouraging for further
researchers.

Celestino and Horikawa (Escola Politécnica of Sao Paulo University, 2008) [Celestino and
Horikawa(2008)] implemented a new non-contact method based on image analysis to estimate
the speed of a vehicle like a built-in vehicle speedometer. They calculated the Speed through
the analysis of the asphalt irregularities which produced motion blurred images while the vehicle
goes on and its mounted CCD Camera captures still images from the road surface. The authors
stated that its speed accuracy is 2.5% in a range lower than 80 kilometers per hour under a
simulated asphalt movement. Furthermore, they did not describe any automated technique to
estimate blur length in their writing.

Mohammadi, Akbari and Keshavarz (Azad University in Iran, 2010) [Mohammadi
et al.(2010)Mohammadi, Akbari, et al.] proposed a novel approach for vehicle speed estimation
based on the motion blur occurring in the image taken by a still camera. Their strategy was
based on Lin proposal in [Lin(2005), Lin and Li(2005)], but the authors only described an
alternative method for the Point Spread Function reconstruction of a uniform motion blurred
image based on Radon Transform in the frequency domain for length and direction estimation
of motion from the projection of the Fourier pattern. They were only interested in the speed
and the displacement in the interval of exposure. Mohammadi et al. stated that their proposed
method increased the accuracy of speed estimation and measurement of motion blur parameters,
with aided Radon Transform between 28% and 40%. Radon transform method was merely one
of several methods to calculate the angle of the pattern dark lines, which was related to the
direction of motion, of the 2D Fourier transform of the blurred image as shown in Figure 1.5. A
newer paper of the same researchers introduced how to estimate the speed of a spherical object
in the frequency domain in 2013 [Mohammadi and Taherkhani(2013)]. They set the case that
the moving object traveled along a direction perpendicular to the optical axis of the camera;
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hence the angle of motion direction was zero. On the other hand they calculated the distance
between lines in the Fourier spectrum to estimated the motion blur length according to the
model described in Figures 1.5 and 1.6 by collapsing the pattern along the motion axis.

Figure 1.5: (a) illustrates how to calculate the angle from the Fourier Pattern and (b) shows
the rotated pattern and its Sinc function sketch on the image.

In their paper, Olivas, Sorel, Nikzad and Ford (University of California San Diego, 2012)
[Olivas et al.(2012)Olivas, �orel, and Ford] introduced a computational imaging system that
incorporated an optical position sensing detector array and a regular camera to reconstruct
images degraded by spatially variant motion blur using a sliding platform. They built a
prototype system capable of capturing consistent motion blurred images while performing
tracking by using position detectors. Their setup was not intended to measure kinematic
quantities, but the deployment was proper for motion blur research.

Figure 1.6: (a) shows the Gate Function for spatially invariant motion blurred image system
and (b) is its frequency response. [Dobe² et al.(2010)Dobe², Machala, and Fürst]
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Nemeth and Zarandy (Hungarian Academy of Sciences in Hungary, 2016) [Nemeth and
Zarandy(2016)] proposed a method to calculate the speed of vehicles using the light trace pro-
duced on motion blur images. The suggested method estimated speed based on the saturated
regions of the image, so light conditions were a critical aspect. Finally, they indicated that
speed-accuracy was 5% in actual images.

Lee et al. (Korea Advanced Institute of Science and Technology in south Korea, 2017) [Lee
et al.(2016)Lee, Kim, and Kim,Lee(2017),Lee et al.(2017)Lee, Kim, Cho, and Kim] introduced
a method for estimating the velocity of a vehicle using a moving camera in a di�erent direction
of the car motion. They stated in their work that the inclination of the motion blur pattern line
of the single image was directly related to the resulting velocity vector of the vehicle and the
known modulation speed. Also, they denoted that the level of inclination could be measured
using line extraction methods such as the Hough transform or the Gabor �lter. They found that
the longitudinal velocity absolute error was less than 2.13km/h and that The proposed method
was independent of the exposure time. Finally, they concluded that their proposal could be
used for vehicular technology.

Jing et al. (School of Oil & Gas Engineering, Southwest Petroleum University in China,
2018) [Jing et al.(2018)Jing, Xiao, Yang, Wang, and Yu] proposed a defocus correction method
to obtain the velocity of particles a single-frame & single-exposure image (SFSEI). Their ap-
proach was based on the change of focus, size, and shape of close and far particles shot on a
single motion-blurred image. This method was con�rmed in a free-falling particle experiment.
Finally, the researchers found that the average deviation of particle velocity between measured
values and numerical solutions was 6.1%.

Matsuo et al. (Faculty of Science and Technology, Keio University, Yokohama in Japan,
2018) [Matsuo and Yakoh(2018)] showed a method to �nd the position and measure velocity
from a single motion blur by detecting the stat and the endpoint of the blur. The researches
noticed that under constant illumination environment the motion direction start and end could
not be determined. To solved this issue, they used modulated illumination adopting a red light
illumination at the beginning and blue light at the end to tag the blurred image. As a conclu-
sion, the method has not been yet used in an actual conditions.

Dwi Cahya et al. (Informatics and Computer Departments Electronic Engineering Polytech-
nic in Indonesia, 2018) [Dwicahya et al.(2018a)Dwicahya, Ramadijanti, and Basuki] presented a
method to estimate the speed of regular plain shapes based on the grayscale levels. They made
a micro-controlled prototype to rotate the object and, in this way, produce motion blur. They
stated that the identi�cation approach of blur parameters used in was in the frequency domain.
The authors did not provide detailed information about how to measure blur length. Finally,
they concluded that their method was not suitable for images of circular objects. Additionally,
they denoted that the accuracy level was 93.06%. This study is still undergoing research.

Zhou et al. (Nanjing University of Aeronautics and Astronautics in China, 2019) [Zhou
et al.(2019)Zhou, Chen, Zhang, Ye, and Tao] adopted a motion blur modeling for accurate 3D
reconstruction and speed estimation of rotating objects such as rotating helicopter blades in
wind tunnel testing. They used two synchronized and calibrated cameras to take a temporal
series of image pairs of coded targets (CTs) on the surface of blades to serve as visual features.
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This feature matching-based algorithm depends on the motion estimation between contiguous
target image pairs. In their experiments, they used a rotating fan at 120 rpm and a convolutional
neural network to recognize the CTs change of position during the known exposure time. Even
though they did not calculate the speed explicitly of the blades, they concluded that their
method bene�ts high-speed object measurement applications.

1.2.1 Strategies to estimate length and angle of motion blurred images

There are basically three strategies to estimate the angle and the blur length. One is based
on space, the other one in the frequency domain (See Figures 1.7, and 1.8) and the last one
in the Wavelet domain. The space and the frequency approaches have been widely studied
for the reconstruction of PSF and, thereafter, to do deconvolution. Even though there are
some works on the Wavelet Domain, they do not allow estimating the PSF parameters, only to
locate blur in on image [Liu et al.(2008)Liu, Li, and Jia]. Zhang and Hirakawa (University of
Dayton, 2013) [Zhang and Hirakawa(2013a),Zhang and Hirakawa(2013b)]study was one of the
few studies that involved the procedure to reconstruct the kernel and to �nd out a non-degraded
image in the Wavelet transform.

Guo, Wang and Liu (Chongqing University in China, 2013) presented a method to identify
the PSF of motion blurred images based on two-dimensional discrete Wavelet transform (2D-
DWT) and Cepstrum. The principal idea was to determine the blur length and the blur direction
by using 2D-DWT on the motion blur image, and then detecting the decomposed image with
the Cepstral analysis [Guo and Wang(2013)].

Motion Blur Orientation Angle Estimation

Space Domain

Phansalkar (College of Engineering in India, 2010) presented one of the simplest methods that
assumes a spatially invariant linear blur over the whole image and uses the Hough transform
in space. The entire image was gridded into smaller parts of the same image, and then the
Hough transform was applied to each resulting rectangle. The motion blur length and angle
were statistically estimated from the set of collected data on each grid. The author indicated
that these algorithms were not completely automatic and require user interaction at some-
time [Phansalkar(2010a)].

Group-Szabo and Shibata proposal (University of Tokyo in Japan, 2009) [Grou-Szabo and
Shibata(2009a)] was based on edge detection. They asserted that blurred images had little
high-frequency content, so edges were dismissed and only motion blur lines were kept. Motion
blur angle was found by rotating the image at di�erent angles, and then an edge detector was
applied on these. The angle with the highest di�erence in edge count and its corresponding per-
pendicular angle was determined and considered to be the angle at which shifting has occurred.

There are also some machine learning methods, but they are based on the premise the orig-
inal non-degraded image is known. These methods use di�erent classi�cation techniques such
as Neural Networks [Grou-Szabo and Shibata(2009a),Aizenberg et al.(2000)Aizenberg, Aizen-
berg, Butakov, and Farberov] and Support Vector Regression [Li et al.(2007)Li, Mersereau, and
Simske].
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Chen, Yang, Wu, and Zhao (Shanghai Jiao Tong University in China and University of
Technologyin Australia, 2010) [Chen et al.(2010)Chen, Yang, Wu, and Zhao] stated on their
paper that high-frequency energy decreased signi�cantly along motion direction on a blurred
image, so the motion direction angle could be estimated by detecting the lowest directional
high-frequency energy where it was regarded as the sum of the squared derivative of the image.
They summed up that their proposed method could produce more accurate results with less
computation.

Frequency Domain

Tiwari, Shukla and Singh (Institute of Technology in India, 2013) in their review explained that
blur direction could be identi�ed using Hough Transform to detect the orientation of the line
in the log magnitude spectrum of the blurred image. They concluded that the angle of mo-
tion blur related to the Dark lines in the Fourier Frequency Domain [Tiwari et al.(2014)Tiwari,
Singh, and Shukla, Lokhande et al.(2006)Lokhande, Arya, and Gupta, Su et al.(2012)Su, Lu,
and Lim,Moghaddam and Jamzad(2007),Dobe² et al.(2010)Dobe², Machala, and Fürst].

Mughaddam and Jamzad (University of Technology in Iran, 2004) also studied an alterna-
tive technique to estimate motion blur angle to overcome some Hough transform issues. Radon
transform can be applied to the Fourier Spectrum without needing to convert the image to a
binary format as Hough methods require. It makes this approach more accessible and faster to
implement [Tiwari et al.(2014)Tiwari, Singh, and Shukla,Moghaddam and Jamzad(2007), Jia
and Wen(2013), Krahmer et al.(2006)Krahmer, Lin, McAdoo, Ott, Wang, Widemann, and
Wohlberg,Pazhoumand-Dar et al.(2010)Pazhoumand-Dar, Abolhassani, and Saeedi]. Later, Ji
and Liu (National University of Singapore, 2008) also introduced a hybrid Fourier-Radon trans-
form to estimate the parameters of the blurring kernel with improved robustness to noise [Ji
and Liu(2008)].

Rekleitis (University St in Canada, 1996) [Rekleitis(1996), Krahmer et al.(2006)Krahmer,
Lin, McAdoo, Ott, Wang, Widemann, and Wohlberg] proposed to apply a family of steerable
�lters such as Gaussian and Gabor on the log of the power spectrum image and evaluate the
highest response angle.

Krahmer et al. (Los Alamos National Laboratory in USA, 2014) [Tiwari et al.(2014)Tiwari,
Singh, and Shukla, Ji and Liu(2008),Krahmer et al.(2006)Krahmer, Lin, McAdoo, Ott, Wang,
Widemann, and Wohlberg,Tiwari and Shukla(2013)] stated in their paper that if the noise level
of the blurred image was not too high, there will be two pronounced peaks in the Cepstrum.
They proposed to draw a straight line from the origin to the �rst negative peak to estimate the
angle of motion blur. This was approximated by the inverse tangent of the slope of this line in
the Cepstral plot.

Cannon (University of Utah, 1974) [Cannon(1976)] stated in his paper that zeros of G(u, v)
are related to the zeros of F (u, v) and H(u, v), therefore, he asserted that if we have the PSF,
the parametric values of the blur can be found. This is done by tracing the zero crossing of the
frequency response of the blurred image. Motion blur has its zeros along lines perpendicular
to the direction of the blur, and they are separated each other at a regular interval 1/∆u as
seen in Fig.1.6. This technique had a low computational complexity and reliability, but failed
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when SNR was low [Kundur and Hatzinakos(1996),Dash(2012)]. Yitzhaky et al. (University of
Negev in Israel, 1998) [Yitzhaky et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika] considered
that the spectral domain zeros technique was not suitable for the study of accelerated motion
degradation and low-frequency vibrations.

Figure 1.7 sums up the techniques previously presented to estimate the motion blur angle
in space domain.

Figure 1.7: Motion blur Angle estimation techniques

Motion Blur Length Estimation

The reader can �nd out that some of the following proposed techniques to estimate motion
blur extent are based on similar methods such as those described before for motion blur angle
estimation.

Space Domain

Phansalkar (College of Engineering in India, 2010) [Phansalkar(2010a)] stated that once the
motion blur angle has been calculated, the motion blur length can be estimated. They applied
the Hough transform to the entire edge image which was gridded. They claimed that all the
lines of length above certain threshold and making an angle θ with X-axis in the counterclock-
wise direction are averaged to obtain the actual angle. After the angle had been determined,
the pixel displacement length could be estimated. Finally, they also suggested that human
intervention was needed to stop the algorithm. An edge detector was swept over the convoluted
image until the wave-patterns on the image were dissolved. When these periodic patterns were
not present, the actual length could be estimated [Grou-Szabo and Shibata(2009a)].
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Yang et al. (Guizhou University in China, 2011) [Yang et al.(2011)Yang, Liu, Liu, and Liao]
suggested that motion blur length could be estimated by measuring the ringing artifact amount
of the deblurred image. Ringing artifacts are ripples that appear near strong edges. They also
stated that the correct motion blur length caused minimum ringing artifacts on the image, so
the main ringing artifacts could be obtained by using a high-pass �lter response.

Frequency Domain

Moghaddam and Jamzad algorithm (Sharif University of Technology in Iran, 2006) was based on
the central peaks and valleys in the Fourier spectrum collapsed pattern. they used the parallel
dark lines that appeared in the Fourier spectrum of the degraded image to �nd motion length.
It could be estimated as illustrated in Figure 1.6. All valleys were candidates of dark line places
but some of them could be false. The best ones were valleys that correspond to Sinc function in
the Fourier spectrum. These valleys were located in two sides of the central peak [Moghaddam
and Jamzad(2007)] (Also review [Dobe² et al.(2010)Dobe², Machala, and Fürst] from Dobes,
Machala, and Furst in 2010 ).

Sakano, Suetake, and Uchino algorithm (Yamaguchi University, Yamaguchi in Japan, 2006)
[Moghaddam and Jamzad(2007)] found the dark lines in the Fourier spectrum pattern by a
modi�ed version of the Hough Transform. According to the authors, the algorithm could
accurately and robustly estimate the motion blur PSF even in a highly noisy case.

Figure 1.8: Motion blur length estimation techniques
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1.3 SUMMARY

This thesis is divided into six selft-contained chapters. Chapter 1 introduces in a general manner
the relevance of this study. Likewise, this chapter presents the state of the art through the
review of the scienti�c literature related to the estimation kinematic quantities from motion
blur images.

In Chapter 3, I �rstly present detailed modeling of the Point Spread Function for uniform
and accelerated motion blurred images using the Fourier Transform, and �nally the Cosine
Transform.

Chapter 4 focuses on the estimation of the Point Spread Function in synthetically motion
blurred images. In this one, I explored some of the traditional approaches for the estimation of
the linear motion blur parameters, namely, angle and length in noisy conditions. Continuedly,
I suggest an alternative approach based on the cosine transform which results highly noise
tolerant as presented.

Chapter 5 proposes an alternative to the estimation of relative velocity from a single actual
linear motion blurred image using the cosine transform for an object moving at a constant
velocity under invariant blur conditions. Certainly, the proposed alternative method overcomes
all competitors evaluated.

Chapter 6 goes further and estimates the acceleration using a single motion blur image. This
approach has not been explored in using blur as a source of kinematic information as presented
here. The suggested method evaluates some machine learning regression algorithms extensively
and uses homomorphic �ltering to extract the characteristic PSF for training.

Chapter 7 introduces proof of concept to ensure that spatially variant motion blur also
allows estimating blur length using the proposed DCT method. As mentioned in Chapter IV,
blur length L and exposure time T are needed to calculate relative motion speed in invariant
motion blur images. This is a piece of evidence that blur length estimation is possible using
only a motion blur region of the image.

Finally, on Chapter 8, we present the design and the construction of an electromechanical
slider, which is not a minor matter. It endures all the Metrologic framework needed to estimate
the accuracy of the velocity and the acceleration estimated from the linear motion blur image. It
provides ground truth values. Even though there exist some commercial sliders used in movies
and advertisements production, none gives data about its speed uncertainty and far less about
acceleration, among other issues.



Chapter 2

RESEARCH HYPOTHESIS

It is possible to estimate the acceleration from a a single uniformly accelerated motion blurred
image taken in a controlled environment, starting from the Point Spread Function model found
in space and frequency domain and the blur itself.

2.1 OBJECTIVES

2.1.1 General

To estimate fundamental kinematic quantities from a single linear motion blurred image taken
in a controlled environment in an uniformly accelerated motion, using an approximated Point
Spread Function model computed from the image. The image contains a �xed background and
a moving object whose shape and color are known. The object motion is restricted to the plane
perpendicular to the main axis of the camera.

2.1.2 Speci�c

� To model a Point Spread Function from the blur using linear uniformly accelerated motion.

� To propose a kinematic function to describe motion in time from a single linear motion
blurred image using the approximated PSF model.

� To estimate the trajectory, the speed and the acceleration of an object from a single linear
motion blurred image.
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Chapter 3

MOTION BLUR MODELING

Mathematical Modeling is a signi�cant instrument that strengthens the understanding of linear
motion blur. In this chapter, we �rstly reviewed a classical model based on the Fourier
Transform. Even though it results in a regular solution that explains the phenomenon, its
complex mathematical approach adds further elements to consider. Alternatively, we explored
the Continuous Cosine transform that simpli�es the model using only real numbers and
providing an analogous equivalent solution. Finally, as shown in a later chapter, the Discrete
Cosine Transform results more suitable when extracting the Point Spread function in motion
blur degraded images.

3.1 MOTION BLUR MODELING USING FT

Motion blur Blur degradation of an image arises mainly when relative motion between the
camera and the scene occurs during the exposure time T of imaging sensor to light. Although
the motion blurred image is considered degraded, it has some kinematic information that can
be presented concerning a function called E�ective Propagation Function. Soms in [Som(1971)]
described how to analyze the characteristics of an image to obtain information from it. As
a �rst step, He introduced a function f(x, y) , called Irradiance Distribution, that is de�ned
analytically and is square integrable in all its domain. This function is known as the relative
linear motion of the photographic image in the positive side of the x-axis, for a given time t.
Also, a continuous displacement function s(t) is assumed at all t, the total exposure time T ,
and Total E�ective Exposure Ee(x, y) is introduced as follows in Eq.3.1:

Ee(x, y) = C1

T∫
0

f [x− s(t), y] ∗ e(x, y)dt (3.1)

Where e(x, y) is the emulsion PSF, C1 is a constant that depends on the photographic material,
and ∗ means the convolution operation. if motion is only along the x-axis, then the Taylor
series of f [x − s(t), y] can be considered in a single dimension. Starting from the de�nition
shown in Eq.3.2 for Taylor's:

f(x) =
∞∑
n=0

(x− a)n

n!
f (n)(a) (3.2)

Then:

17
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f(x) =
∞∑
n=0

(x− s(t))n

n!
f (n)
x (s(t))

f(x) =
∞∑
n=0

(−s(t))n

n!
f (n)
x (x, y)

f(x) =
∞∑
n=0

(−1)n (s(t))n

n!
f (n)
x (x, y) (3.3)

Replacing Eq.3.3 in Eq.3.1:

Ee(x, y) = C1

T∫
0

[
∞∑
n=0

(−1)ns(t)n

n!
f (n)
x (x, y)

]
∗ e(x, y)dt

Later, moving the integral:

Ee(x, y) = C1

[
∞∑
n=0

(−1)n
∫ T
0
s(t)n

n!
f (n)
x (x, y)

]
∗ e(x, y)dt

De�ning An:

An =

T∫
0

s(t)ndt (3.4)

Ee(x, y) = C1

[
∞∑
n=0

(−1)nAn
n!

f (n)
x (x, y)

]
∗ e(x, y) (3.5)

Equation 3.5 is an explicit description of the actual exposure. It tells that the physical image,
in its acquisition, is described by a function proportional to the Total E�ective Exposure
(photograph processing is linear during exposure), then:

I(x, y) = C2Ee(x, y)

where C2 is a proportionality constant. Then the functions are transformed to the Fourier
Frequency domain, since the convolution operator becomes a simple point-wise multiplication
which reduces the calculations dramatically. Now, The Fourier Transform is introduced in two
dimensions to perform the �rst step, as shown in Eq.3.6:

P (u, v) =

∫ ∞
−∞

∫ ∞
−∞

p(x, y)e−2iπ(ux+vy)dxdy (3.6)

Substituting p(x, y) = fnx (x, y) into Eq.3.6, the Fourier Transform of the derivative function is
obtained in Eq.3.7:

P (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (n)
x (x, y)e−2iπ(ux+vy)dxdy = (i2πu)nF (u, v) (3.7)

Now, substituting Eq.3.7 into Eq.3.5:
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I(u, v) = C2(i2πu)nF (u, v)C1

[
∞∑
n=0

(−1)nAn
n!

]
E(u, v),

I(u, v) = C2C1F (u, v)[
∞∑
n=0

(i2πu)n(−1)nAn
n!

]E(u, v),

Letting C = C1C2

I(u, v) = CF (u, v)[
∞∑
n=0

(−i2πu)nAn
n!

]E(u, v)

Then, from Eq.3.4 :

I(u, v) = CF (u, v)E(u, v)

[
∞∑
n=0

(−i2πu)n
∫ T
0
s(t)ndt

n!

]

I(u, v) = CF (u, v)E(u, v)

T∫
0

[
∞∑
n=0

(−i2πu)ns(t)n

n!

]
dt

I(u, v) = CF (u, v)E(u, v)

T∫
0

[
∞∑
n=0

(−i2πu s(t))n

n!
]dt (3.8)

The term
∑∞

n=0
[−i2πu s(t)]n

n!
, from Eq.3.8, has the basic form of Taylor series ex :

ex =
∞∑
n=0

xn

n!

Where x = −i2πu s(t)

∞∑
n=0

[−i2πu s(t)] n

n!
= e−i2πu s(t)

I(u, v) = CF (u, v)E(u, v)

T∫
0

e−i2πu s(t)dt

L(u) =

T∫
0

∞∑
n=0

[−i2πu s(t)] n

n!
dt =

T∫
0

e−i2πu s(t)dt

I(u, v) = CF (u, v)L(u, v)E(u, v)

The functions I(u, v), F (u, v), E(u, v) are the Fourier Transforms of I(x, y), F (x, y), E(x, y),
respectively. These are considered the characteristics of the image, each of them is independent
from the other; therefore they can be calculated, separately, and superposed. For this study,
only Eq.3.9 is considered because it describes the blur in the image.



20 CHAPTER 3. MOTION BLUR MODELING

L(u) =

T∫
0

e−i2πu s(t)dt (3.9)

When there is no blur, the function must be equal to an instant time T :

L(u) = T for all u

Therefore, 3.9 is equal to:

L(u) =
1

T

T∫
0

e−i2πu s(t)dt

The displacement is called blur and dependents on time s(t). Furthermore, the speed v(t) =
d[s(t)]
dt

also relays explicitly on the displacement using Eq.3.10:

g(s(t)) = v(t) =
d [s(t)]

dt
ydt =

d [s(t)]

v(t)
(3.10)

Now, replacing Eq.3.10 into Eq.3.9 to make it depend on the speed at any time 0 < t < T .

L(u) =
1

T

T∫
0

e−i2πu s(t)

v(t)
d [s(t)]

L(u) =
1

T

T∫
0

e−i2πu s(t)

g(s)
ds

L(u) =

T∫
0

e−i2πu s(t)

Tg(s)
ds

Let
l(s) =

1

T g(s)
or l(s) =

1

T v(t)
(3.11)

L(u) =

T∫
0

l(s) e−i2πu s(t)ds (3.12)

This is the general equation for a blur s(t) at speed g(s(t)) = v(t) in the time interval 0 < t < T .

3.1.1 Uniform Velocity

Considering an uniform velocity g(s) = v = v0, the blur length is s = v0t ; therefore l(s) = 1
T v0

,
where T × v = x =constant, we can say that l(s) = 1

x
in the interval 0 < s < x and zero at any

other.



3.1. MOTION BLUR MODELING USING FT 21

L(u) =
1

x

x∫
0

e−i2πu s(t)ds (3.13)

The function in Eq.3.13 is integrated:

L(u) =
1

x

e−i2πux − e0

−2πiu

L(u) =
e−i2πux − 1

−2πiux

Grouping the common factor e−iπux :

L(u) =
e−iπux(e−iπux − eiπux)

−2πiux

L(u) = e−iπux
(e−iπux − eiπux)
−2πiux

The sine of an angle, in terms of Euler identity, is de�ned as:

sin θ =
eiθ − e−iθ

2i

It is obtained that:

L(u) = e−iπux
sin(πux)

πux

Where:

sinx

x
= Sinc(x)

L(u) = Sinc(πux)e−iπux (3.14)

The term e−iπux represents the phase of the image, as its is dimensionless, it does not a�ect the
image in its structure, only ampli�es it, so it is not considered. Di�erent displacement values
will now be used x1 = 0.05 mm, x2 = 0.1 mm, x3 = 0.5 mm, in Eq.3.14 which is an important
part of study and provides information about the blur parameters. See Figure 3.1.

3.1.2 Uniform acceleration

For the case of uniform acceleration, the speed v(t) and the blur s(t) can be found using Eq.3.15
and Eq.5.4, respectively:

s(t) = v0t+
1

2
at2 (3.15)

v(t) = v0 + at (3.16)
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Figure 3.1: The Transfer function due to linear motion blur. We have the function sinc on the
vertical axis and u = m

x
on the horizontal axis, with m = 1, 2, 3, ....

Time t is derived from Eq.3.16:

t =
v − vo
a

Then, it is replaced into Eq.3.15:

s = v0

(
v − vo
a

)
+

1

2
a

(
v − vo
a

)2

s = v0

(
v − vo
a

)
+

1

2
a

(
v2 − 2vov + v2o

a2

)

s = v0

(
v − vo
a

)
+

1

2

(
v2 − 2vov + v2o

a

)

s a = v0 (v − vo) +
1

2

(
v2 − 2vov + v2o

)
s a = v0v − v2o +

1

2
v2 − vov +

1

2
v2o

s a =
1

2
v2 − 1

2
v2o

2s a = v2 − v2o
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v2 = v2o + 2s a

g(s) = v = ±
√
v2o + 2s a (3.17)

Consequently, using Eq.3.11

l(s) =
1

T
(v20 + 2a s)−1/2 (3.18)

Assuming vo is the speed at t = 0s and a is the uniform acceleration in the interval 0 < s < x

and zero at any other. An important parameter is the ratio R = v2o
a
, which can be integrated

as l(s) = 1
T

(1 + 2s
R

)−1/2. Considering this ratio with R = (0.001, 0.01, 0.02) mm and
x1 = 0.05 mm, x2 = 0.1 mm, x3 = 0.5 mm, moving an o�set s, Fig.3.2, 3.3, 3.4 are obtained,
respectively:

Figure 3.2: Plot of the PSF l(s) of uniformly accelerated motion for with x = 0.05 mm, and
R = 0.001 mm.
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Figure 3.3: Plot of the PSF l(s) of uniformly accelerated motion for with for x = 0.1 mm, and
R = 0.01 mm.

The integral for the uniform acceleration is estimated from the general L(u) function by replacing
the acceleration function l(s) shown in Eq.3.18 into Eq.3.12:

L(u) =
1

T

x∫
0

e−i2πu s(t)

(v20 + 2as)1/2
ds

A change of variable is performed by multiplying by one the numerator using eiu(2π s+
v2oπ

a
)e−iu(2π s+

v2oπ

a
) =

1 and dividing the denominator of the integral by one using
(
π
a

)1/2 ( a
π

)1/2
= 1:

L(u) =
1

T

x∫
0

e−i2πu seiu(2π s+
v2oπ

a
)e−iu(2π s+

v2oπ

a
)

(v20 + 2as)1/2
(
π
a

)1/2 ( a
π

)1/2 ds

L(u) =
1

T

x∫
0

e−i2πu s+iu(2π s+
v2oπ

a
)e−iu(2π s+

v2oπ

a
)

(
πv20
a

+ 2π s)1/2
(
a
π

)1/2 ds

L(u) =
1

T

x∫
0

eiu
v2oπ

a e−iu(
v2oπ

a
+2π s)

(
πv20
a

+ 2π s)1/2
(
a
π

)1/2ds
The following variable changes are done:
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Figure 3.4: Plot of the PSF l(s) of uniformly accelerated motion for with for 0.5 mm, and
R = 0.02 mm.

k =
v2oπ

a
+ 2π s ; dk = 2πds

ds =
dk

2π

Then, the limits of the integral are evaluated to obtain the new limits of integration. x = 0→
K1 = v2oπ

a
and s = x→ K2 = v2oπ

a
+ 2πx so K2 = K1 + 2πx.

L(u) =
1

2T
√
aπ

K2∫
K1

eiuK1e−iuk

(k)1/2
dk

L(u) =
eiuK1

2T
√
aπ

K2∫
K1

e−iuk

(k)1/2
dk

According to Euler's identity e±iθ = cos θ ± i sin θ, then:

e−iuk = cosuk − i sinuk
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L(u) =
eiuK1

2T
√
aπ

K2∫
K1

cosuk − i sinuk

(k)1/2
dk (3.19)

L(u) =
eiuK1

2T
√
aπ

 K2∫
K1

cosuk

(k)1/2
dk − i

K2∫
K1

sinuk

(k)1/2
dk

 (3.20)

From the de�nition of Bessel functions:

K2∫
K1

cosuk dk

(k)1/2
= (2π)

1/2
∞∑
n=1

J2n+ 1
2
(uK2)− J2n+ 1

2
(uK1) (3.21)

K2∫
K1

sinuk dk

(k)1/2
= (2π)

1/2
∞∑
n=1

J2n+1+ 1
2
(uK2)− J2n+1+ 1

2
(uK1) (3.22)

Substituting Bessels functions shown in Eq.3.21 and Eq.3.22 into Eq.3.20:

L(u) =
eiuK1

√
2π

2T
√
aπ

{
∞∑
n=1

[
J2n+ 1

2
(uK2)− J2n+ 1

2
(uK1)

]
− i

∞∑
n=1

[
J2n+1+ 1

2
(uK2)− J2n+1+ 1

2
(uK1)

]}

L(u) =
eiuK1

T
√

2a

{
∞∑
n=1

[
J2n+ 1

2
(uK2)− J2n+ 1

2
(uK1)

]
− i

∞∑
n=1

[
J2n+1+ 1

2
(uK2)− J2n+1+ 1

2
(uK1)

]}

L(u) =
eiuK1

T
√

2a

{
∞∑
n=1

[
J2n+ 1

2
(uK2)− iJ2n+1+ 1

2
(uK2)

]
−
∞∑
n=1

[
J2n+ 1

2
(uK1)− iJ2n+1+ 1

2
(uK1)

]}

L(u) =
eiuK1

√
2

{
1

T

(
1

a

)1/2 ∞∑
n=1

[
J2n+ 1

2
(uK2)− iJ2n+1+ 1

2
(uK2)

]}

−e
iuK1

√
2

{
1

T

(
1

a

)1/2 ∞∑
n=1

[
J2n+ 1

2
(uK1)− iJ2n+1+ 1

2
(uK1)

]}
Considering that:

jN(x) =

√
π

2x
JN+ 1

2
(x) ; JN+ 1

2
(x) =

√
2x

π
jN(x)

L(u) =
eiuK1

√
2

{
1

T

(
1

a

)1/2 ∞∑
n=1

[
J(2n+ 1

2)(uK2)− iJ(2n+ 1
2)+1(uK2)

]}
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− eiuK1

√
2

{
1

T

(
1

a

)1/2 ∞∑
n=1

[
J(2n+ 1

2)(uK1)− iJ(2n+ 1
2)+1(uK1)

]}
(3.23)

For this case N = 2n:

j2n(x) =

√
π

2x
J2n+ 1

2
(x) ; J2n+ 1

2
(x) =

√
2x

π
j2n(x) (3.24)

Substituting Eq.3.22 into 3.23 :

L(u) =
eiuK1

√
2

{
1

T

(
2K1

πa

)1/2 ∞∑
n=1

[j2n(uK2)− ij2n+1(uK2)]−
1

T

(
2K2

πa

)1/2 ∞∑
n=1

[j2n(uK1)− ij2n+1(uK1)]

}

L(u) = eiuK1

{
1

T

(
K1

πa

)1/2 ∞∑
n=1

[j2n(uK2)− ij2n+1(uK2)]−
1

T

(
K2

πa

)1/2 ∞∑
n=1

[j2n(uK1)− ij2n+1(uK1)]

}

Normalizing u = 0, L(0) = 1 for all x:

L(0) =
1

T

[(
K1

πa

)1/2

− 1

T

(
K2

πa

)1/2
]

L(u) =
eiuK1

L(0)

{
1

T

(
K1

πa

)1/2 ∞∑
n=1

[j2n(uK2)− ij2n+1(uK2)]−
1

T

(
K2

πa

)1/2 ∞∑
n=1

[j2n(uK1)− ij2n+1(uK1)]

}

The function L(u) is complex, so it has a magnitude M(u) and a phase θ(u):

M(u) =
1

L(0)

{
1

T

(
K1

πa

)1/2 ∞∑
n=1

[j2n(uK2)− ij2n+1(uK2)]−
1

T

(
K2

πa

)1/2 ∞∑
n=1

[j2n(uK1)− ij2n+1(uK1)]

}

θ(u) = eiuK1

Finally:

L(u) = θ(u)M(u)

Evaluating once again the same values x1 = 0.05 mm, x2 = 0.1 mm, x3 = 0.5 mm. It starts
from x1 = 0.05 mm , the following parameters are calculated:

R = 0.001 mm, a = 1000 mm/s2, R =
v2o
a

v2o = R a = (0.001 mm)(1000 mm/s2) = 1 mm2/s2, T = 0.5 s
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K1 =
v2oπ

a
=

1mm2/s2 × π
1000mm/s2

= 0.0031415 mm

= K1 + 2πx = 0.0031415 mm + 2π0.05 mm = 0.31730 mm

L(0) = 0.180998

The same calculations are done for R = (0.01, 0.02, 0.2, 0.008, 0.001) mm and x1 =
0.05 mm, 0.1 mm, 0.5 mm. The results are shown in Fig.3.5, 3.6, 3.7, respectively.

Figure 3.5: Plot of the PSF magnitude M(u) for x1 = 0.05 mm and R =
(0.01, 0.02, 0.2, 0.008, 0.001)mm.
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Figure 3.6: Plot of the PSF magnitude M(u) for x1 = 0.1 mm and R =
(0.01, 0.02, 0.2, 0.008, 0.001) mm.

3.2 MOTION BLUR MODELING USING CT

A new method is proposed to model the blur with uniform velocity and acceleration, using
the Cosine Transform, without neglecting that Fourier transform method has been extensively
studied. The proposed alternative method, based on Cosine Transform, has some advantages
when compared to classic Fourier Transform. These will be discussed in the further applications
on this thesis.

P (ω) =

∞∫
−∞

f(x)e−iωxdx

eiθ = cos(θ) + i sin(θ)

P (ω) =

∞∫
−∞

f(x) (cos(ωx)− i sin(ωx)) dx
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Figure 3.7: Plot of the PSF magnitude M(u) for x1 = 0.5 mm and R =
(0.01, 0.02, 0.2, 0.008, 0.001) mm.

P (ω) =

∞∫
−∞

f(x) cos(ωx)dx− i
∞∫

−∞

f(x) sin(ωx)dx

P1(ω) =

∞∫
−∞

f(x) cos(ωx)dx

P2(ω) = −i
∞∫

−∞

f(x) sin(ωx)dx

For this study only P1(ω) is used. It is considered the Continuous Cosine Transform as shown
in Eq.3.25:

F (ω) =

∞∫
−∞

f(x) cos(ωx)dx (3.25)



3.2. MOTION BLUR MODELING USING CT 31

3.2.1 Uniform Velocity

For the case of speed f(x) = b is a constant, which is replaced in (3.25):

F (ω) =

L∫
0

b cos(ωx)dx (3.26)

Solving the integral:

F (ω) =

[
b

ω
sin(ωx)

]L
0

(3.27)

Evaluating the integral:

F (ω) =
b

ω
sin(ωL) (3.28)

All the equation is multiplied and divided by L:

F (ω) =
Lb

Lω
sin(ωL) (3.29)

Replacing $ = ωL:

F (ω) = Lb
sin($)

$
(3.30)

Finally:

F (ω) = Lb sinc(ωL) (3.31)

Figure 3.8 depicts a Plot curve of F (ω) using L = 0.5 mm and b = 1 mm/s.

3.2.2 Uniform acceleration

The PSF for the case of acceleration is given by f(x) =
(

1√
v2+2ax

)
, Which is replaced in (3.25):

F (ω) =

L∫
0

cos(ωx)√
v2 + 2ax

dx (3.32)

Substituting u:

u =
√

2ax+ v2 (3.33)

du

dx
=

a√
2ax+ v2

(3.34)

x is obtained from Eq.3.33 by squaring both sides:

x =
u2 − v2

2a
(3.35)

Substituting Eq.3.33, 3.34, and 3.35 into Eq.3.32:
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10ω

Sinc(lω)
1.0

0.5

-0.5

-1.0

2 4 6 8

Figure 3.8: function F (ω) using L = 0.5 mm and uniform velocity b = 1mm/s

L∫
0

cos

[
ω

(
u2 − v2

2a

)]
du (3.36)

Using the double angle identity:

cos(α− β) = cosα cos β + sinα sin β

Hence:

L∫
0

cos

(
ωu2 − ωv2

2a

)
du =

L∫
0

cos

(
ωu2

2a
− ωv2

2a

)
du =

L∫
0

(
sin

(
ωv2

2a

)
sin

(
ωu2

2a

)
+ cos

(
ωv2

2a

)
cos

(
ωu2

2a

))
du (3.37)

Reorganizing:

sin

(
ωv2

2a

) L∫
0

sin

(
ωu2

2a

)
du+ cos

(
ωv2

2a

) L∫
0

cos

(
ωu2

2a

)
du (3.38)
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Solving the �rst integral from Eq.3.38:

L∫
0

sin

(
ωu2

2a

)
du (3.39)

Now, multiplying and dividing the cosine argument by π:

L∫
0

sin

(
ωu2

2a

π

π

)
du (3.40)

Let:

y2 =

(
ωu2

πa

)
(3.41)

y =

√
ω

πa
u (3.42)

dy

du
=

√
ω

πa
(3.43)

Then, replacing Eq.3.42) and 3.43 into Eq.3.40:

√
ω

πa

L∫
0

sin

(
πy2

2

)
dy (3.44)

Equation 3.44 is similar to Fresnel integrals de�nition:

S(y) =

L∫
0

sin

(
πy2

2

)
dy (3.45)

C(y) =

L∫
0

cos

(
πy2

2

)
dy (3.46)

These are known as the integrals of Fresnel S(y) and C(y) respectively. Using Eq.3.45 in Eq.3.44:√
ω

πa
S(y) (3.47)

Substituting y from Eq.3.42: √
ω

πa
S

(√
ω

πa
u

)
(3.48)

Now, repeating the same procedure with the second integral in Eq.3.38:
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L∫
0

cos

(
ωu2

2a

)
du (3.49)

Multiplying and dividing the cosine argument by π:

L∫
0

cos

(
ωu2

2a

π

π

)
du (3.50)

Then, substituting Eq.3.42 and Eq.3.43 in Eq.3.50:

√
ω

πa

L∫
0

cos

(
πy2

2

)
dy (3.51)

Eq.3.51 is also similar to C(y) shown in Eq.3.46, therefore Eq.3.51 can be rewritten as shown
in Eq.3.52: √

ω

πa
C(y) (3.52)

Once again, y can be obtained from Eq.3.42:√
ω

πa
C

(√
ω

πa
u

)
(3.53)

Substituting Eq.3.48, and Eq.3.53 in Eq.3.38:

F (ω) =

[√
ω

πa
sin

(
ωv2

2a

)
S

(√
ω

πa
u

)
+

√
ω

πa
cos

(
ωv2

2a

)
C

(√
ω

πa
u

)]L
0

(3.54)

and u from Eq.3.33:

F (ω) =

{√
ω

πa
sin

(
ωv2

2a

)
S

[√( ω
πa

)
(2ax+ v2)

]
+

√
ω

πa
cos

(
ωv2

2a

)
C

[√( ω
πa

)
(2ax+ v2)

]}L
0

(3.55)
Finally, Evaluating the solution integral:

F (ω) =

{√
ω

πa
sin

(
ωv2

2a

)
S

{√( ω
πa

)
(2aL+ v2)

}
+

√
ω

πa
cos

(
ωv2

2a

)
C

[√( ω
πa

)
(2aL+ v2)

]}
−

{√
ω

πa
sin

(
ωv2

2a

)
S

[√( ω
πa

)
(v2)

]
+

√
ω

πa
cos

(
ωv2

2a

)
C

[√( ω
πa

)
(v2)

]}
(3.56)

The plot solutions shown in Fig.3.9 are at a = 1000mm/s2, a = 100mm/s2, a = 50mm/s2,
initial speed v = 1 m/s, and x = 0.5mm respectively.
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Figure 3.9: Function F (ω) with x=0.5mm, v0 = 1 mm/s and uniform acceleration a =
1000 mm/s2, a = 100 mm/s2., and a = 50 mm/s2 .

3.3 CONCLUSIONS

As presented in this chapter, it is possible to model linear motion blur using the Discrete Cosine
Transform obtaining similar results. The alternative proposal introduces some advantages that
are widely discussed in this thesis based on experiments performed on synthetic and actual
images. Additionally, CT modeling is more straightforward because it does not use complex
numbers.





Chapter 4

ESTIMATION OF THE PSF

PARAMETERS

111
This chapter presents an alternative approach of Discrete Cosine Transform (DCT) for the

estimation of the angle and length parameters of the Point Spread Function (PSF) in motion blur
images. Motion degradation is a frequent issue in surveillance, tra�c-camera ticket, and robotics
systems. Its parameters can help image restoration and, besides, to calculate motion direction
and relative speed of an object. Our technique addresses the case of spatially invariant uniform
linear motion blur occurrences when the camera moves at constant velocity, and the background
does not change. Several algorithms have been introduced to estimate the parameters of the
PSF, but they fail when using noisy images. Twenty test images were synthetically degraded
with motion blur and Additive White Gaussian Noise (AWGN) to be used for both angle and
length estimation in these experiments. The proposed DCT Radon approach to the Point spread
Function parameters estimation of invariant uniform linear motion blurred images has shown to
be a suitable alternative for its reconstruction even in the presence of Gaussian noise in a signal-
to-noise ratio ranging between 20dB and 36dB. Its mean absolute error for angle estimation was
0.66° degrees and 7.78° degrees for noise-free and noisy images, respectively. Similarly, our DCT
Pseudo Cepstrum had the lowest mean error of 0.99 pixels and 7.78 pixels for noise-free and
noisy images, respectively.

4.1 INTRODUCTION

Blur in digital images can be produced by the relative motion between the camera and the
observed scene by an optical system out of focus during image formation or by optical turbulence
added by a particle-loaded or turbulent atmosphere, among others. Said phenomena cause a
reduction of high-frequency contents in the images, perceivable in the direction of the distortion.
Blur is not unique to the formation of optical images since it is also present in data coming from
electronic microscopes (due to spherical electronic lens aberrations), corrupt CT scanners, and
X-rays a�ected by forced scattering in the medium [Bovik(2009),Bovik(2010)].

As mention earlier, blur can be classi�ed, according to its nature, in three categories: optical,
mechanic, and medium induction blur [Gunturk and Li(2012)]. This chapter only considers
mechanic blur, which occurs when the relative velocity between di�erent objects in the scene
and the camera are signi�cant, in comparison to the exposure time, and blur is invariant at every

37
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spatial location, resulting in a motion-blurred image [Lin and Li(2004a), �Sorel et al.(2009)�Sorel,
�Sroubek, and Flusser].

Motion blur can be classi�ed into two types, depending on its distribution in the degraded
image: spatially invariant blur, in which the distortion degrades the image uniformly; and
spatially variant blur, characterized by di�erent blurring levels in the same image. The �rst
type is produced by either mechanical vibration or handshaking during image formation, which
results in a uniformly blurred image. When the camera stays still in a 3D scene, induced motion
blur is typically not uniform, as it captures objects moving at di�erent speeds and in di�erent
directions on the image plane [Pretto et al.(2009)Pretto, Menegatti, Bennewitz, Burgard, and
Pagello,Chan and Shen(2005b),Potmesil and Chakravarty(1983)].

Though this chapter does not deal with kinematic quantities estimation, such as motion
direction and relative speed at a constant rate of a moving object using a single linear
motion blur image, it results in helping to calculate them [Lin and Li(2004a), Celestino
and Horikawa(2008),Kawamura et al.(2002)Kawamura, Kondo, Konishi, and Ishlgakl,Xu and
Zhao(2010),Rezvankhah et al.(2012)Rezvankhah, Bagherzadeh, Moradi, and Member].

In the present chapter of this research thesis, we focus on computing the main parameters
of linear motion blur, namely length and angle. These parameters can be used to estimate
kinematic quantities related to the movement that causes distortion [Pretto et al.(2009)Pretto,
Menegatti, Bennewitz, Burgard, and Pagello,Zhang and Hirakawa(2015)]. The proposed blind
approach is much more challenging, as the PSF and its non-degraded image are unknown.
Blind deconvolution of motion blur images is a practical and helpful research area in a variety of
disciplines, including, but not limited to, image processing, computer vision, physics, astronomy,
and medical imaging [Rajagopalan and Chellappa(2014)].

4.2 LINEAR MOTION BLUR

This occurs when there is relative motion between the camera and the object being captured.
If we can identify the angle θ with respect to the camera and the length L of the blur, the
PSF can be reconstructed. When the camera moves over a certain distance L during exposure
time T, every point in the captured image frame is mapped onto several pixels of the resulting
degraded image, producing a photograph that is blurred along the direction of motion [Brusius
et al.(2011)Brusius, Schwanecke, and Barth]. Fig. 4.1(b) shows length and angle of the linear
motion blur kernel h(x, y).

PSF length L equals the distance that one pixel is moved by the motion, and its angle θ
is the direction of motion with respect to the x-axis. Equation 4.1 is derived from Eq.1.4 and
models the space invariant motion blur where I(x, y) is the non-degraded original image, h(x, y)
is the blurring Point Spread Function, n(x, y) is usually Gaussian white noise, and g(x, y) is the
degraded image.

g(x, y) = I(x, y) ∗ h(x, y) + n(x, y) (4.1)

Finding the blur kernel angle and length allows for the reconstruction of the image prior to
degradation. With the proper estimated PSF, an undistorted image can be obtained using the
inverse Fourier Transform, in a process which is called Inverse Filtering. This is possible under
ideal conditions, but more di�cult to attain in actual images due to the presence of additive
noise, which permeates the result in inverse �ltering [Brusius et al.(2011)Brusius, Schwanecke,
and Barth].
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Figure 4.1: Convolution steps. (a) Two pixels no degraded image. (b) Point Spread Function
and (c) Motion blur degraded image.

h(x, y) =

{
1
L

0

0 ≤ x ≤ L cos θ ; y = L sin θ

otherwise
(4.2)

If we assume that motion is along the x-axis, that is to say θ = 0, then Eq.4.2 can be
simpli�ed and expressed, as seen in Eq.4.3:

h(x, y) =

{
1
L

0

0 ≤ x ≤ L ; y = 0

otherwise
(4.3)

Figure 4.1 illustrates the convolution process of a non-degraded image (two pixels) with a
linear motion blur kernel (with a length of 4 and a 45° degrees angle).

4.2.1 Strategies to estimate length and angle

There are three common strategies used to estimate the angle and its blur length: space,
frequency and wavelet domain approaches. Space and frequency have been widely studied for the
reconstruction of PSF and, after that, for deconvolution. Although there are some investigations
regarding wavelet domain, most of them do not allow for the estimation of PSF parameters, but
instead for the location of blur in space in an image [Chan and Shen(2005a), Lu(2006), Zhang
and Hirakawa(2015)]. Zhang and Hirakawa (University of Dayton, 2013) reconstruct kernel to
�nd a non-degraded image in the Wavelet domain [Zhang and Hirakawa(2013b), Zhang and
Hirakawa(2015)]. Guo, Wang and Liu (Chongqing University, China, 2013) presented a method
to identify the PSF of a motion blurred image, based on two-dimensional discrete Wavelet
Transform (2D-DWT) and Cepstrum. The key idea was to estimate blur length and blur
direction by employing 2D-DWT on a motion blurred image, then detecting the decomposed
image with Cepstrum analysis [GUO et al.(2013)GUO, WANG, and LIU].

Space Domain Approaches for Angle Estimation

Yitzhaky, Mor, Lanzman, and Kopeika (University of Negev, Israel, 1998) proposed a space
domain method to estimate the motion blur angle. They used, in their approach, a tangential
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directional derivative kernel. This had to be convoluted with the motion blurred image at
angles between 0° and 90° degrees to estimate its response at each angle. The motion direction
was then the direction in which the total energy response was the lowest. Unfortunately, their
method fails when the angle is bigger than 45° degrees [Yitzhaky and Kopeika(1997),Yitzhaky
et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika]. The Szabo and Shibata Group's proposal
(University of Tokyo, Japan, 2009) is based on edge detection and count. Blurred images have
little high-frequency content, so edges are dismissed somehow, and only motion blur lines are
kept. The motion blur angle is found by rotating the image to di�erent angles and applying an
edge detector. The angle with the highest di�erence in edge count is determined and considered
to be the angle at which shifting occurred [Grou-Szabo and Shibata(2009b)]. Phansalkar
(College of Engineering, India, 2010) presented one of the simplest methods, which assumes
a spatially invariant linear blur over the entire image, and uses the Hough Transform in space.
The entire image is gridded into smaller parts of the same image, and the Hough Transform is
applied to each resulting rectangle. The motion blur length and angle are statistically estimated
from the set of collected data on each grid. The author indicates that these algorithms
are not completely automatic and require user interaction [Phansalkar(2010a)]. Chen et al.
(Shanghai Jiao Tong University, China, and University of Technology, Australia, 2010) stated
in their publication that high-frequency energy decreases signi�cantly along motion direction
in a blurred image, so the motion direction angle can be estimated by detecting the lowest
directional high-frequency energy, where energy is regarded as the sum of the squared image
derivative. They conclude by stating that their proposed method can produce more accurate
results with less computation [Chen et al.(2010)Chen, Yang, Wu, and Zhao].

Frequency Domain Approaches for Angle Estimation

Rekleitis (University St, Canada, 1996) proposed the application of a family of steerable �lters
such as Gaussian and Gabor on the power spectrum image log, and evaluate the highest
response angle, but they have a large amount of error in angle detection, even with no
noise [Rekleitis(1996), Krahmer et al.(2006)Krahmer, Lin, McAdoo, Ott, Wang, Widemann,
and Wohlberg]. Tiwari, Shukla and Singh (Institute of Technology, India, 2013) explained in
their review that blur direction can be identi�ed using the Hough Transform to detect the
position of a line in the log magnitude spectrum of the blurred image. Dark lines in the
Fourier Frequency Domain are related to the motion blur angle [Tiwari et al.(2014)Tiwari,
Singh, and Shukla, Lokhande et al.(2006)Lokhande, Arya, and Gupta, Su et al.(2012)Su,
Lu, and Lim,Moghaddam and Jamzad(2004), Dobe² et al.(2010)Dobe², Machala, and Fürst].
Mughaddam and Jamzad (University of Technology, Iran, 2004) also reviewed an alternative
technique to estimate motion blur angle to overcome Hough Transform issues. Radon Transform
can be applied to the Fourier Spectrum, without needing to convert the image to binary
format, as required by the Hough methods. This makes the approach easier and faster
to implement [Krahmer et al.(2006)Krahmer, Lin, McAdoo, Ott, Wang, Widemann, and
Wohlberg, Tiwari et al.(2014)Tiwari, Singh, and Shukla, Dobe² et al.(2010)Dobe², Machala,
and Fürst, Jia and Wen(2013), Pazhoumand-Dar et al.(2010)Pazhoumand-Dar, Abolhassani,
and Saeedi]. Ji and Liu (National University of Singapore, Singapore, 2008) introduced a
hybrid Fourier-Radon Transform to estimate the parameters of the blurring kernel with improved
robustness to noise [Ji and Liu(2008)]. Krahmer, Lin, McAdoo, Ott, Wang and Widemann (Los
Alamos National Laboratory, USA, 2014) stated that if the noise level of the blurred image
is not too high, there are two pronounced peaks in the Cepstrum of the one dimension (1D)
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collapsed power spectrum from the motion blurred image. To estimate the angle of motion blur,
they proposed drawing a straight line from the origin to the �rst negative peak. The Cepstral
method breaks down in the presence of noise [Krahmer et al.(2006)Krahmer, Lin, McAdoo,
Ott, Wang, Widemann, and Wohlberg]. The angle of motion blur is approximated using the
inverse tangent of the slope of this line in the Cepstral plot [Krahmer et al.(2006)Krahmer, Lin,
McAdoo, Ott, Wang, Widemann, and Wohlberg]. This is a technique that has been widely
used in signal processing [Tiwari et al.(2014)Tiwari, Singh, and Shukla, Ji and Liu(2008),Qi
et al.(2005)Qi, Zhang, and Tan,Tiwari and Shukla(2013),Schuon and Diepold(2009)].

Space Domain Approaches for Length Estimation

Phansalkar (College of Engineering, India, 2010) stated that once the motion blur angle has
been calculated, the motion blur length can be estimated. The Hough Transform is applied
to the entire gridded image edge, and all the lines with length above a certain threshold
at a certain angle are averaged, to obtain the right length [Phansalkar(2010b)]. Grou-Szabo
and Shibata (University of Tokyo, Japan, 2009) presented a technique, based on the iterative
restoration process. An edge detector is swept over the convoluted image until wave-patterns
on the image are dissolved. The precise length is estimated, when these periodic patterns are
vanished [Grou-Szabo and Shibata(2009a)]. Yang, Liu, and Liu (Guizhou University, China,
2011) expressed that motion blur length can be estimated by measuring the ringing artifact
amount of a deblurred image. Ringing artifacts are ripples that appear near strong edges.
The correct motion blur length causes minimal ringing artifacts on the image, so the main
ringing artifacts can be obtained by using a high-pass �lter response [Yang et al.(2011)Yang,
Liu, Liu, and Liao]. There are also several machine learning techniques to estimate the PSF
parameters n the scienti�c literature, but they consider that some training samples are needed,
as shown in [Grou-Szabo and Shibata(2009b), Aizenberg et al.(2000)Aizenberg, Aizenberg,
Butakov, and Farberov], and [Cannon(1976)] which used Neural Networks and and Support
Vector Regression, respectively.

Frequency Domain for Length Estimation

Cannon (University of Utah, USA, 1974) stated in his investigation that zeroes of G(u, v) are
related to the zeroes of I(u, v) and H(u, v); therefore, if we have a parametric form of the Point
Spread Function, the parametric values can be found [Cannon(1976)]. This is done by looking
for the zero crossing of the blur system frequency response. Motion blur has its zeroes along lines
perpendicular to the direction of the blur and are separated from each other at a regular interval
1/L. This technique has low computational complexity, and is reliable, but fails when SNR is
low [Kundur and Hatzinakos(1996),Dash(2012)]. Yoshida, Horiike and Fujita (Department of
Electronics and information Science Japan,1993) used the DCT to estimate motion blur length,
and radius of out-of -focus blur, but their length estimation procedure was completely manual,
using the DCT plotted curve of the collapsed DCT spectrum. They stated that the DCT
approach was better than DFT [Yoshida et al.(1993)Yoshida, Horiike, and Fujita]. Yitzhaky,
Mor, Lanzman, and Kopeika (University of Negev, Israel, 1998) considered that the spectral
domain zeros technique was not suitable for accelerated motion degradation or low frequency
vibrations [Yitzhaky et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika]. The Moghaddam
and Jamzad algorithm (Sharif University of Technology, Iran, 2006) is based on the central
peaks and valleys in the Fourier spectrum collapsed pattern. To �nd motion length, they used
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the parallel dark lines that appear in the Fourier spectrum of the degraded image. All valleys are
candidates for dark line places, but some of them may be false. The best ones are valleys that
correspond to the SINC function in the Fourier spectrum. These valleys are on both sides of the
central peak [Moghaddam and Jamzad(2007)] (Also review [Dobe² et al.(2010)Dobe², Machala,
and Fürst] from Dobes, Machala and Furst, 2010). Sakano, Suetake, and Uchino's algorithm
(Yamaguchi University, Yamaguchi, Japan, 2006) [Sakano et al.(2006)Sakano, Suetake, and
Uchino] found the dark lines in the Fourier spectrum pattern, using a modi�ed version of the
Hough Transform, concerning gradient vectors, which can accurately and robustly estimate the
motion blur PSF even in highly noisy cases.

Blind Deconvolution

Blind deconvolution is the restoration of a �ne copy of a blurred picture when the kernel is
untold or partially known. It needs an initial hypothetical estimation, or it can not withdraw a
suitable deblur solution. This iterative approach, for the reconstruction of motion blur images,
was considered as a possible solution to realize the PSF. The algorithm converged to a solution in
a proof of concept test carried out in the laboratory. Its response was far from the actual PSF in
terms of angle and length. However, the deblurred image was accurate [Levin et al.(2011)Levin,
Weiss, Durand, and Freeman,Perrone and Favaro(2016),Lam and Goodman(2000)].

4.2.2 Motion Blur Length Estimation using Continuous Cosine
Transform

The mathematical framework that supports DCT approach to the estimation of blur length is
introduced in 3.2. That section explains widely both cases for constant velocity and acceleration.
It is highly recommended to review the full chapter 3 if needed further details.

Uniform motion blur can be modeled as an even Gate function of amplitude b and length L
as seen in Fig.4.2 and Eq.4.4.

f(x) =

{
b

0

−L
2
≤ x ≤ L

2

otherwise
(4.4)

Introducing the Continuous Cosine Transform in Eq. 4.5:

+∞∫
−∞

f(x) cos(ωx)dx (4.5)

solving this integral for the Gate function in Fig.4.3:

Fc(ω) = 2

L
2∫

0

f(x) cos(ωx)dx

Fc(ω) =
2b

ω
sin

(
ωL

2

)
Finally, we obtain Eq. 4.6:
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Figure 4.2: Motion blur Gate model. L represents the length of the blur in the image during
the exposure time T.

Fc(ω) =

(
ωL

2

)
2b

ω

sin
(
ωL
2

)
ωL
2

Fc(ω) = bLsinc
(
ωL

2

)
(4.6)

If it is necessary to �nd motion blur length L, it is possible to do so from the cosine spectrum,
using the valley points where the sinc function is zero:

bLsinc
(
ωL

2

)
= 0

Therefore, motion blur length L can be calculated with Eq.4.7 :

L =
2πn

ωn
(4.7)

Where n = 1, 2, 3, ...
Figure 4.3 plots the regular curve of the Power Spectrum of Cosine Transform.

4.2.3 Motion Blur Angle Estimation using Continuous Cosine Trans-
form

DFT spectrum of a motion blurred image has an anisotropic nature due to the predominant
presence of motion lines in space. Besides, the spectrum is oriented in a direction perpendicular
to the motion. It allows for the discovery of the motion blur angle just by estimating the relative
position of either the dark or bright zones of the rippling pattern (See Fig.4.4), but this needs to
be windowed to soften the rapid change in the image's edges, which produce undesired brighter
lines along the center of the power spectrum pattern.

On the other hand, the DCT power spectrum is also positioned perpendicular to the motion,
so its energy is more concentrated in the left upper corner (See Fig.4.5).
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Figure 4.3: Power Spectrum of Continuous Cosine Transform for The Gate Function.

Figure 4.4: Angle estimation of Baboon image at several motion blur angles. (a) Non-blurred
Baboon image. - (b) Motion blurred Baboon image at 0º degrees. - (c) Motion blurred Baboon
image at 45º degrees. - (d) DFT Power spectrum of image (a). - (e) DFT Power spectrum of
image (b). - (f) DFT Power spectrum of image (c). This images has not been windowed.
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Figure 4.5: Angle estimation of Baboon image at several motion blur angles. (a) Non-blurred
Baboon image. - (b) Motion blurred Baboon image at 0º degrees. - (c) Motion blurred Baboon
image at 45º degrees. - (d) DCT Power spectrum of image (a). - (e) DCT Power spectrum of
image (b). - (f) DCT Power spectrum of image (c).

4.3 DISCRETE COSINE TRANSFORM PROPOSAL

4.3.1 The Discrete Cosine Transform

One of the main advantages of 2D DCT is its removal property of redundancy between
neighboring pixels, called decorrelation characteristic, which leads to superior energy compaction
in just a few coe�cients for highly correlated images. Usually, neighbor pixels are correlated,
if surfaces are smooth. Even though DCT algorithms can have slightly longer run-times, today
several fast algorithms are being developed, that use only real arithmetic. These have helped
reduce hardware implementations dramatically. Moreover, the DCT divides all frequencies of
the signal by two, due to this, they are more densely distributed than in the DFT spectrum
causing a double frequency resolution in the DCT spectrum [Burger et al.(2009)Burger, Burge,
Burge, and Burge]. Equation 4.8 is a 2D de�nition of the DCT.

G(n,m) =
2√
MN

M−1∑
u=0

N−1∑
v=0

[
g(u, v)DM

m (u)DN
n (v)

]
(4.8)

Where:

DM
m (u) = Cm cos

(
π(2u+ 1)m

2M

)
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and

DN
n (v) = Cn cos

(
π(2v + 1)n

2N

)

Cm =

{
1√
2

for m = 0

1 otherwise
Cn =

{
1√
2

for n = 0

1 otherwise

For 0 ≤ m < M and 0 ≤ n < N DCT spectrum has the same image size.

4.3.2 Cepstral and Pseudocepstral Analysis

The Cepstrum can be de�ned in di�erent ways [Benesty et al.(2007)Benesty, Sondhi, and
Huang,Whittaker and Shives(1983), Randall(2013)], but the �rst paper on Cepstral analysis
(Ceps) introduced it as �the power spectrum of the logarithm of the power spectrum�. In our
study, it is the Fourier Transform of the log power spectrum for image I(x, y) [Bogert(1963)].
See Eq.4.9.

Ceps = DFT {log | DFT {I(x, y)} |} (4.9)

Similarly, the pseudo Cepstrum (Pceps) can be introduced as shown in Eq.4.10. Instead of
using the DFT, the proposed pseudo cepstral analysis uses the Discrete Cosine Transform. Not
only did it not degrade the information contained in the general cepstrum, but it also improved
the signal's energy compaction and resolution [Hassanein and Rudko(1984)].

PCeps = DCT {log | DCT {I(x, y)} |} (4.10)

4.3.3 Peak Signal Noise Ratio

It is suitable to introduce the Peak Signal to Noise Ratio (PSNR) due to the fact that there are
several de�nitions in the scienti�c literature. In this thesis, PSNR is calculated with Eq.4.11
in decibels [Sung et al.(2002)Sung, Kim, Kim, Kwak, Yoo, and Yoo]:

PSNR = 10 log10

R2

MSR
(4.11)

Mean Square Error (MSE) is similarly de�ned in Eq.4.12:

MSE =
1

N ×M

N∑
i=1

M∑
j=1

[I(i, j)− In(i, j)]2 (4.12)

Where I is the reference grayscale image, In is the noisy grayscale image, and R is the
highest pixel value in the reference image.

4.3.4 Radon Transform

Radon Transform is the collapse of a 2D f(x, y) function, along an arbitrary line, at an angle θk.
In other words, it is the sum of parallel rays along line ρj, which is actually a line integral. Its
geometry and Sinogram are introduced in Fig.4.6(a) and Fig.4.6(b), respectively. The Radon
Transform is presented in Eq.4.13.
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g(ρ, θ) =

+∞∫
−∞

+∞∫
−∞

f(x, y)δ(x sin θ + y cos θ − ρ)dxdy (4.13)

4.3.5 Proposal of Algorithms

We have proposed two alternative algorithms to estimate motion blur angle and length for the
reconstruction of the PSF. These are shown in Alg. 5.1 and 5.2, respectively. Figure 4.7 presents
the process to calculate motion blur length using our DCT Pseudo Cepstrum.

Algorithm 4.1 Algorithm for the estimation of motion blur Angle.
1: Convert motion blurred image to Grayscale.
2: Apply 2D Discrete Cosine Transform to Motion blurred image .
3: Obtain logarithm of 2D DCT spectrum obtained in (2).
4: Binarize DCT Spectrum image (3) using a 0.9 threshold.
5: Apply Radon Transform to thresholded DCT spectrum (4).
6: Locate maximum Radon peak to �nd motion blur angle.

Algorithm 4.2 Algorithm for the estimation of motion blur Length.
1: Convert motion blurred image to Grayscale.
2: Rotate motion blurred image (1) using estimated motion blurred angle.
3: Apply 2D Discrete Cosine Transform to rotated image (2).
4: Obtain logarithm of 2D DCT spectrum (3).
5: Collapse and average 2D DCT spectrum (4) along 1D X axis.
6: Obtain logarithm of 1D collapsed 2D DCT spectrum (5).
7: Apply 1D Discrete Cosine Transform to (6).
8: Motion blur length is the lowest peak location in (7).

4.4 MATERIALS AND METHODS

The USC-SIPI image database (University of Southern California - Signal and Image Processing
Institute) [sip(2017)] was used in this research. Although it was �rst Published in 1977, all
its images have become standards for an image processing algorithm benchmark. We used
a set of 20 color and grayscale images for this study. The image size selected was 512×512
pixels with 8 bits/pixel depth. Some of the color images were converted to grayscale following
recommendation 601 from the International Telecommunication Union [bt6(2017)] (See Fig.5.6).
Additionally, Matlab 2015b and its image processing toolbox were used to code angle and length
estimation algorithms.

4.4.1 Noise robustness

The Gabor Steerable �lter in space [Rekleitis(1996), Krahmer et al.(2006)Krahmer, Lin,
McAdoo, Ott, Wang, Widemann, and Wohlberg], the Hough in frequency [Tiwari
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Figure 4.6: (a) Radon Transform Geometry and (b) Sinogram.
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Figure 4.7: DCT Pseudo Cepstrum for length estimation. (a) Motion blur image. (b) 2D DCT
power spectrum of motion blur image. (c) DCT Pseudo Cepstrum of collapsed Spectrum. (d)
Colapsed spectrum of 2D DCT of motion blur image.

et al.(2014)Tiwari, Singh, and Shukla], the 2D Cepstrum [Krahmer et al.(2006)Krahmer, Lin,
McAdoo, Ott, Wang, Widemann, and Wohlberg,Shah et al.(2014)Shah, Dalal, Deshpande, and
Patnaik], Radon in frequency [Deshpande and Patnaik(2012)] algorithms, and our DCT-Radon
proposal were implemented to carry out the angle experiments in order to estimate the mean
absolute error of each method. Nowadays, this is a representative set of the most notable meth-
ods used in scienti�c literature to estimate motion blur angle. All 20 images were synthetically
degraded at di�erent angles from 0º to 90º, increasing one degree at the time, with 55 pixel
motion blur length.

Furthermore, the Auto-correlation Function (ACF) in space [Yitzhaky and Kopeika(1997),
Yitzhaky and Stern(2003)], DFT 1D Cepstrum [Krahmer et al.(2006)Krahmer, Lin, McAdoo,
Ott, Wang, Widemann, and Wohlberg,Shah et al.(2014)Shah, Dalal, Deshpande, and Patnaik],
DFT Radon [Dobe² et al.(2010)Dobe², Machala, and Fürst], and our novel DCT proposal of
modi�ed Pseudo Cepstrum were tested using the same 20 images from USC-SIPI database.
This was also done for angle estimation. All 20 images were synthetically motion blur degraded
with lengths between �ve and 95 pixels, in one pixel intervals, at zero angle.

In addition, test Images were synthetically noise degraded for both the angle and the length
estimation, by adding white Gaussian noise (AWGN) to produce a Peak Signal Noise Ratio
range (PSNR) between 20dB and 36dB. Once again, all algorithms for the angle and the length
estimation were assessed with each AWGN value to appraise their noise robustness.

4.4.2 Runtime comparison

To evaluate the runtime of each approach, only one noise-free image (Lenna) was used (See
Fig.4.8(d)). Each algorithm was run 100 times to calculate its mean runtime.
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4.5 EXPERIMENTAL RESULTS

Angle Estimation Results

The proposed DCT Radon had the lowest mean absolute error (0.66° degrees) for angle
estimation for noise-free motion blurred images as seen in Fig.4.9 and Table 4.1. On the other
hand, the DFT Gabor method mean value (0.90° degrees) was also close to DCT Radon, but the
DFT Gabor had the longest runtime (≈ 2.92 s) and a broad spread of data. The DCT Radon
proposal was not the fastest method (≈ 0.68 s); however, its runtime was average as shown in
Fig.4.12 and Table 4.3.
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Figure 4.9: Mean Absolute Error comparison for angle estimation of noise-free motion blurred
images. The boxplot chart shows the distribution of data based on minimum, �rst quartile Q1,
mean, third quartile Q3, and maximum.

In contrast, regarding angle estimation, the DCT Radon approach was more tolerant of noise
than all other evaluated methods. The DCT Radon mean absolute error for angle estimation
was 1.70° degrees. Moreover, its worst estimation value was below 2.59° degrees for all cases,
with a PSNR between 36 dB and 20 dB, which makes this method more noise robust. See the
boxplot in Fig.4.10, the lowest solid line in Fig.4.11, and Table 4.2 for detailed information.

Length Estimation Results

From the bars in Fig.4.14 and Table 4.4, we can see that proposed DCT Pseudo Cepstrum has
the lowest error (0.99 pixels) for noise-free motion blur length estimation.

Furthermore, our DCT Pseudo Cepstrum approach for length estimation is more tolerant
than all the other evaluated methods. The error of the proposed DCT was always lower than
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Figure 4.8: Sample images from USC-SIPI database used to carry out the experiments. (a)Car
and APCs, (b)House, (c)Elaine, (d)Lenna, (e)Splash, (f)Truck, (g) Airplane, (h)Tank, (i)Stream
and bridge, (j)Mandrill, (k)Airplane F-16, (l)Peppers, (m)Car and APCs (n)Truck and APCs,
(o)Truck and APCs, (p)Tank, (q)APC, (r)Tank, (s)Sailboat on lake and (t)Ti�any.
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Method Min Q1 Mean Q3 Max

DFT Radon 0.57 1.00 1.00 1.00 26.29

DFT 2D Cepstrum 0.43 1.00 1.55 1.00 51.29

DFT Gabor 0.10 0.11 0.90 1.00 2.43

DFT Hough 0.10 1.00 1.08 1.00 3.14

DCT Radon 0.21 0.43 0.66 0.71 2.29

Table 4.1: Mean Absolute Error in degrees for Angle Estimation of noise-free Motion Blurred
Images. It shows the distribution of data based on minimum, �rst quartile Q1, mean, third
quartile Q3, and maximum.
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Figure 4.10: Mean Absolute Error for Angle Estimation of Noisy Motion Blurred Images. The
boxplot chart shows the distribution of data based on minimum, �rst quartileQ1, mean, third
quartile Q3, and maximum.

Min Q1 Mean Q3 Max

DFT Radon 1.20 6.23 17.52 29.12 33.15

DFT 2D Cepstrum 1.48 2.03 10.01 16.00 30.88

DFT Gabor 0.85 19.14 19.87 22.41 33.30

DFT Hough 1.13 6.57 21.75 35.82 39.04

DCT Radon 0.93 1.34 1.70 2.01 2.59

Table 4.2: Mean Absolute Error for Angle Estimation of Noisy Images. The Table shows
the distribution of data based on minimum, �rst quartile Q1, mean, third quartile Q3, and
maximum.
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Figure 4.11: Mean absolute errors between actual and predicted blur angles.
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Figure 4.12: Mean runtime for angle estimation methods in seconds.

Method Runtime (s)

DFT Radon 0.600± 0.0000332

DFT 2D Cepstrum 0.041± 0.0000076

DFT Gabor 2.920± 0.0006673

DFT Hough 0.018± 0.0000035

DCT Radon 0.680± 0.0000318

Table 4.3: Mean runtime for angle estimation methods in seconds.
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Figure 4.13: Runtime vs Mean Error for Angle in noisy images. DCT radon is the method that
is closer to the zero in terms of both variables.
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Figure 4.14: Mean Absolute Error Comparison for length estimation of the methods evaluated
for noise-free motion blurred images. The boxplot shows the distribution of data based on
minimum, �rst quartile Q1, mean, third quartile Q3, and maximum.
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Method Min Q1 Mean Q3 Max

Spatial ACF 8.10 19.63 26.78 35.85 39.70

DFT 1D Cepstrum 1.00 1.00 8.04 5.60 61.85

DFT Radon 0.95 3.32 11.53 15.84 42.66

DCT Pseudo Cepstrum 0.80 1.00 0.99 1.00 1.00

Table 4.4: Mean Absolute Error in pixels for Length Estimation of noise-free Images. The Table
shows the distribution of data based on minimum, �rst quartile Q1, mean, third quartile Q3,
and maximum.

Method Min Q1 Mean Q3 Max

Spatial ACF 26.78 47.27 45.78 48.50 48.50

DFT 1D Cepstrum 8.04 43.08 39.75 43.42 43.48

DFT Radon 9.32 11.89 18.21 24.71 28.69

DCT Pseudo Cepstrum 0.99 2.71 7.78 11.63 19.13

Table 4.5: Mean Absolute Error in Pixels for Length Estimation of Noisy Images. The Table
shows the distribution of data based on minimum, �rst quartileQ1, mean, third quartile Q3,
and maximum.

19.3 pixels. In the worst scenario, and it also had a mean error of 7.78 pixels in the presence of
AWGN, as seen in the boxplot chart in Fig.4.15 and Table 4.5.

Although a shorter runtime is desirable, the results have shown that our DCT Pseudo
Cepstrum is close to the DFT Radon method for length estimation. See Fig.4.17 and Table 4.6.
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Figure 4.15: Mean Absolute Error in Pixels for Length Estimation of Noisy Images. The boxplot
shows the distribution of data based on minimum, �rst quartile Q1, mean, third quartile Q3,
and maximum.
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Figure 4.17: Mean runtime for Length estimation.

When Mean Error and Runtime are plotted simultaneously, it is possible to �nd a more
suitable approach in terms of both variables. DCT radon and DCT Pseudo Cepstrum for angle
and length estimation are the best as shown in Fig. 4.13, and Fig. 4.18, respectively.



4.6. DISCUSSION 57

Unaltered 36dB 34dB 32dB 30dB 28dB 26dB 24dB 22dB 20dB
PSNR dB

100

101

A
bs
ol
ut
e
E
rr
or
(P
ix
el
s)

Absolute Error for Length EstimationMethods of Noisy Images

DCT 1DPseudoCepstrum Spatial ACF DFT 1DCepstrum DFT Radon

Figure 4.16: Mean absolute error between actual and predicted blur length.

Method Runtime (s)

Spatial ACF 0.0581467± 0.0000018

DFT 1D Cepstrum 0.0186817± 0.0000022

DFT Radon 0.0002700± 0.0000021

DCT Pseudo Cepstrum 0.0389605± 0.0000026

Table 4.6: Mean runtime for angle estimation methods in seconds.

4.6 DISCUSSION

The Yoshida, Horiike and Fujita method [Yoshida et al.(1993)Yoshida, Horiike, and Fujita] also
used the DCT to only estimate motion blur length, but their approach was completely manual,
as mentioned earlier. On the other hand, they used their DCT approach only to estimate
motion blur length, and our proposed DCT methods were used to measure the length and the
angle with no human intervention even in the presence of AWGN. The solid red line in Fig.4.16
shows that the DCT proposal for our DCT Pseudo Cepstrum has a lower mean absolute error
for motion blur length estimation. This novel DCT Pseudo Cepstrum proposal is much more
robust against noise than the other evaluated methods, but its runtime of less than 0.03 seconds
is not as fast as the other methods evaluated. See bars in Fig.4.17 and Table 4.6. These DCT
approaches can be easily implemented to restore linear motion blur images using some well-
known deconvolution algorithms, such as the Richardson�Lucy [Richardson(1972),Lucy(1974)]
or the Wiener algorithms, among other applications. It is not considered in this thesis.
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Figure 4.18: Runtime vs Mean Error for length in noisy images. DCT radon is the method that
is closer to the zero in terms of both variables.

4.7 CONCLUSIONS

Our DCT approaches to the Point spread Function parameters estimation of invariant uniform
linear motion blurred images has shown to be a suitable alternative for its reconstruction even
in the presence of Gaussian noise in a signal-to-noise ratio ranging between 20 dB and 36 dB.
Its mean absolute error for angle estimation was 0.66° degrees and 7.78° degrees for noise-free
and noisy images, respectively. Regarding to runtime of angle estimation, it took 0.68 seconds.
Furthermore, with respect to length estimation, our DCT Pseudo Cepstrum had the lowest
mean error of 0.99 pixels and 7.78 pixels for noise-free and noisy images, respectively. Its
mean runtime for length estimation was 0.04 seconds. Runtime for length and angle estimation
are suitable to consider these methods for real time application. ITM Journal published, in
Spanish, a portion of the comparison results introduced in this chapter for the reconstruction of
the point spread function as shown in [Cortés-Osorio et al.(2018)Cortés-Osorio, López-Robayo,
and Hernández-Betancourt]. This paper did not include the DCT proposal which succeeded the
other alternatives evaluated.



Chapter 5

VELOCITY ESTIMATION

This chapter introduces a new approach for estimating kinematic quantities, namely the angle
and the relative speed, from an actual single motion blur image using the Discrete Cosine
Transform (DCT). Motion blur is a common phenomenon present in images. It is produced by
the relative movement between the camera and the objects in the scene during camera sensor
exposure to light. It usually happens to image recording systems mounted in vehicles, hand-held
cameras, drones, satellites, and mobile robots. Today, this source of kinematic data is mostly
dismissed in favor of image restoration. Our software-based technique focuses on cases where
the camera moves at a constant linear velocity while the background remains unchanged. We
took 2250 motion blur pictures for the angle experiments and 500 for the speed experiments, in
a light and distance controlled environment, using a belt driven motor slider at angles between 0
and 90 and 10 preset speeds. The DCT Hough and DCT Radon results were compared to DFT
Hough and DFT Radon algorithms for angle estimation. The Mean Absolute Error (MAE)
of DCT Radon method for direction estimation was 4.66° degrees. Additionally, the Mean
Relative Error for speed estimation of the DCT Peudo Cepstrum was 5.15%. Our alternative
DCT frequency analysis proposals were more accurate than all competitors evaluated for the
reconstruction of the Point Spread Function (PSF) that enable calculation of relative velocity
and motion direction.

5.1 INTRODUCTION

Classic speed measurement methods can be divided in hardware-based and software-based
methods. Some examples for hadware-based methods are magnetic and capacitive sensors,
lasers, and radars. The software-based methods use video images to measure some variables.
Usually, hardware-based solutions for velocity are invasive, more expensive and bulky [Pelegri
et al.(2002)Pelegri, Alberola, and Llario, Li et al.(2011)Li, Dong, Jia, Xu, and Qin, Odat
et al.(2017)Odat, Shamma, and Claudel,Cheung et al.(2005)Cheung, Ergen, and Varaiya]. This
research focuses on a software-based solution that proposes the use of a single motion-blurred
image to calculate velocity, although other multi-frame video strategies were used in [Luvizon
et al.(2017)Luvizon, Nassu, and Minetto,Wang(2016),Kruger et al.(1995)Kruger, Enkelmann,
and Rossle, Litzenberger et al.(2006)Litzenberger, Kohn, Belbachir, Donath, Gritsch, Garn,
Posch, and Schraml].

Blurring can be generated by relative motion between a camera and observed scene
when there is a long exposure time. It causes a reduction of high-frequency content in

59
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the image, perceivable in the direction of motion. This study only considers the estimation
of relative velocity from a single mechanical motion blurred image, which occurs when
the relative velocity between the di�erent objects in the scene and the camera is high, in
comparison to the exposure time [Lin and Li(2004a), �Sorel et al.(2009)�Sorel, �Sroubek, and
Flusser, Bovik(2009), Bovik(2010), Pretto et al.(2009)Pretto, Menegatti, Bennewitz, Burgard,
and Pagello,Chan and Shen(2005b),Potmesil and Chakravarty(1983)]. Motion blur is common
in surveillance, speeding ticket and laboratory cameras. It happens when either people, vehicles,
or cameras move with respect to one another. All of this usually produces a degradation of the
image. Researchers have been actively developing techniques that restore the parts of the image
that are masked by motion blur [Arashloo and Ahmadyfard(2007), Jia and Wen(2013), Gal
et al.(2014)Gal, Kiryati, and Sochen]; however, there is also the possibility of harnessing the
information provided by the distortion itself in order to analyze the movement that produced
the blur in the �rst place.

Analyzing the nature of motion blur in images captured with mobile robots allows us to have
implicit information which provides an overview of the kinematics of the observed object or the
robot itself. In some of image processing and robotics studies, blur is eliminated from images
and videos, in turn neglecting the implicit kinematic information blur can provide [Dai and
Wu(2008),Joshi et al.(2010)Joshi, Kang, Zitnick, and Szeliski,Li et al.(2012)Li, Zhang, Fu, and
Meng,Wu et al.(2011)Wu, Ling, Yu, Li, Mei, and Cheng,Sorel and Flusser(2008),Rajagopalan
and Chellappa(2014)].

Today, mobile robots play an increasingly important role in places where direct human
intervention has a high risk: nuclear power plants, contaminated areas, places of natural
disasters, mine�elds, and terrorist attacks. Traditional robotic hardware systems are large,
unwieldy and, in some cases, limited to remote-controlled systems [Rizo et al.(2003)Rizo,
Coronado, Campo, Forero, Otalora, Devy, and Parra,Rajasekharan and Kambhampati(2003),
Nagatani et al.(2013)Nagatani, Kiribayashi, Okada, Otake, Yoshida, Tadokoro, Nishimura,
Yoshida, Koyanagi, Fukushima, et al.,Yamamoto(1992),Murphy et al.(2008)Murphy, Tadokoro,
Nardi, Jaco�, Fiorini, Choset, and Erkmen,Casper and Murphy(2003)]. The proposed single
image solution to estimate velocity can help reduce the use of external additional sensors and
camera speci�cations. This study introduces a computational algorithm based on the Discrete
Cosine Transform to extract valuable image information from unwanted motion blur images.
These images are actually rich in kinematic quantities and can support decision-making at the
scene without having to stop the robot camera to capture a new frame to avoid blur.

Motion blur has been recently used to estimate kinematic quantities that describe the motion
captured in an image. Lin, Huei-yung and Li [Lin and Li(2004a),Lin and Li(2004b),Lin(2005)]
proposed a method to estimate the speed of moving vehicles from single still images based
on motion blur analysis for the purpose of tra�c law enforcement. The speed of a moving
vehicle is calculated according to imaging geometry, camera parameters, and the estimated blur
parameters. They took a picture of a turntable with known constant angular velocity to verify
the accuracy of their method as a reference measurement. They reported results of less than
10% error for highway vehicle speed detection. Kawamura, Satoshi and Kondo [Kawamura
et al.(2002)Kawamura, Kondo, Konishi, and Ishlgakl] proposed an algorithm to estimate the
optical �ow of a moving object with the motion blur in a scene using Cepstral analysis. The
authors stated that accuracy in both velocity and orientation estimation was improved if the
speed increased. They did not provide any reference of how they estimated speed error in
their research. Alternatively, Xu and Zhao's proposal [Xu and Zhao(2010)] performed object
speed measurement with uniformly accelerated/retarded motion, by using a single interlaced
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scanned CCD image. They used a video sequence approach to calculate the actual motion
speed to estimate its margin of error. Celestino and Horikawa [Celestino and Horikawa(2008)]
gathered elements for the study and analysis of principal problems and di�culties inherent
in the implementation of a device used for the inspection of motor vehicle speedometers, to
meet anticipated Brazilian legislation requirements. Speed information was then determined
by analyzing the uniformities contained in the dynamic image due to the blur e�ect. They
compared the motion blur estimated speed to the actual speed by using a toothed wheel, a
hall sensor, and an oscilloscope. Song et al. [Song et al.(2009)Song, Peng, Lu, Yang, and Yan]
introduced a digital imaging-based method for measuring the velocity of pneumatically conveyed
particles. By controlling exposure time blurred images of moving particles were captured, which
contained particle velocity information. In order to improve the robustness of the system to
noise in the acquired particle images, the traveling wave Equation (TWE) method was used
to estimate motion blur length, and subsequently deduce particle velocity. Rezvankhah et
al. [Rezvankhah et al.(2012)Rezvankhah, Bagherzadeh, Moradi, and Member] described an
air hockey puck velocity estimation technique based on motion blur images. The proposed
approach was implemented with an actual air hockey table, using two di�erent cameras.
They did not provide information about error estimation in their method. Taherkhani and
Mohammadi [Mohammadi and Taherkhani(2013)] presented a speed measurement method of
spherical objects using a single motion blur image taken in front of a still background. They
estimated their method error by comparing it to a video-based approach. The actual speed
was calculated by measuring the distance traveled between two �xed locations divided by the
time di�erence. They reported the estimation error was lower than 4%. Pazhoumand-dar et
al. [Pazhoumand-Dar et al.(2010)Pazhoumand-Dar, Abolhassani, and Saeedi] carried out their
experiments for speed estimation using a toy car. They stated, in their paper, that the actual
speed of the vehicle was an approximation. They did not provided any information about
the calibration method to guarantee a measurement within an acceptable range. Furthermore,
according to their report, only about 10 images were used to evaluate their proposed algorithm.

These are some remarkable studies regarding the estimation of kinematic quantities from
single motion blur images. However, a great deal of work remains to be done on this topic.

In this chapter we mainly focus on computing the parameters of the linear motion blur
kernel, namely length L and angle θ. These variables are used to estimate some kinematic
quantities [Pretto et al.(2009)Pretto, Menegatti, Bennewitz, Burgard, and Pagello, Zhang and
Hirakawa(2015)].

5.1.1 Motion Blur Length Estimation using Continuous Cosine
Transform

The mathematical framework that supports DCT approach to the estimation of blur length is
introduced in 3.2. That section explains widely both cases for constant velocity and acceleration.
It is highly recommended to review the full chapter 3 if needed further details.

5.1.2 Motion Blur Angle Estimation using Discrete Cosine Transform
(DCT)

The DFT spectrum of a motion blurred image has anisotropic nature due to the predominant
presence of motion lines in space. Moreover, the spectrum is positioned in a direction
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Figure 5.1: Angle estimation of a building image at several motion blur angles. (a) No blurred
building image. - (b) Motion blurred building image at 0. - (c) Motion blurred building image
at 45. - (d) DFT Power spectrum of image (a). - (e) DFT Power spectrum of image (b). - (f)
DFT Power spectrum of image (c). This images has not been windowed.

perpendicular to the motion. It enables us to �nd the motion blur angle by estimating the
relative position of either the dark or bright zones of the rippling pattern, but this needs to be
windowed to soften the rapid change in image's edges, which produces undesired brighter lines
along the center of the power spectrum pattern as seen in Fig.5.1. In contrast, the DCT power
spectrum is also positioned perpendicular to the motion, but its energy is more concentrated
than DFT as shown in Fig.5.2(e) and 5.1(e), respectively. DCT ripples are better de�ned and
easier to trace in frequency.

5.1.3 Velocity from Linear Motion Blur

Our proposal to calculate the relative velocity of a moving object from a single linear motion
blur image is based on the pinhole camera model introduced in [Lin and Li(2004a), Lin and
Li(2004b),Lin(2005)] (See Fig.5.3).

Assuming that the angle between the image plane (1) and the motion direction (2) is θ, the
displacement of the point object (3) is d in a exposure time interval T , we can obtain Eq.5.1
and 5.2 from the lower and upper triangle depicted in Fig.5.3:
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Figure 5.2: Angle estimation of a building image at several motion blur angles. (a) No blurred
building image. - (b) Motion blurred building image at 0. - (c) Motion blurred building image
at 45. - (d) DCT Power spectrum of image (a). - (e) DCT Power spectrum of image (b). - (f)
DCT Power spectrum of image (c).
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If

Figure 5.3: Upper view of camera model for point object speed estimation using blur length.

f

p+ l
=
d sin(θ)

m
(5.1)

d cos(θ)−m
l

=
s

f
(5.2)

Where l is the length of the Motion blur (4) on the image plane and d represents the distance
from axis Y to the �nal position. Additionally, n is the perpendicular distance from the Pinhole
(5) to the starting point of the Moving object, and f is the camera focal length. In order to
eliminate the emerging variable m, we plug Eq.5.1 into 5.2 and solve d as shown in Eq.5.3 (See
Fig.5.3).

d =
nl

f cos(θ)− (p+ l) sin(θ)
(5.3)

Assuming the motion velocity of the point object is constant along the trajectory, we can
state Eq.5.4:

v =
d

T
(5.4)

v =
nl

T [f cos(θ)− (p+ l) sin(θ)]
(5.5)

Now writing Eq.5.5 in terms of the pixel size Sx of the digital camera, which can be obtained
from the camera speci�cations or the camera calibration process, to obtain Eq.5.6:
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v =
nLSx

T [f cos(θ)− Sx(P + L) sin(θ)]
(5.6)

P and L, in capital letters, are the distances from the vertical axis, both measured in pixels.

If the image plane and the motion direction are parallel, then θ = 0. In this case, Eq.5.6
can be simpli�ed to Eq.5.7:

v = k
L

T
(5.7)

The term k = nSx
f

is a scaling factor that can be obtained using the Zhang calibration
method [Zhang(2000),Strobl et al.(2006)Strobl, Sepp, Fuchs, Paredes, and Arbter].

5.2 DISCRETE COSINE TRANSFORM PROPOSAL

We used the principle introduced in 4.3.2 for velocity estimation. Therefore, in this case, we
used the DCT instead of the DFT as shown in Eq.5.8. The proposed pseudo-Cepstral analysis
(PCeps) improved the signal's energy compaction and increased noise tolerance [Hassanein and
Rudko(1984)].

PCeps = DCT {log | DCT {I(x, y)} |} (5.8)

Even though this method was used before only form length estimation of the PSF, we
extended its usability as part of the variables used to calculate velocity.

5.2.1 DCT Algorithms

As mentioned earlier, these algorithms �rst were introduced in 4.3.5 for length and angle
estimation. Algorithm 5.1 and Algorithm 5.2 are the modi�ed versions for angle and speed
estimation using actual motion blurred images, respectively.

Algorithm 5.1 Algorithm for direction estimation.
1. Set camera exposure time T .
2. Convert motion blurred image to Grayscale if needed.
3. Apply 2D Discrete Cosine Transform to Motion blurred image .
4. Calculate logarithm of 2D DCT spectrum obtained in (3).
5. Binarize DCT Spectrum image (4) using a 0.9 threshold.
6. Apply Radon Transform to thresholded DCT spectrum in (5).
7. Locate maximum Radon peak to �nd Velocity Direction Angle.
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Algorithm 5.2 Algorithm for speed estimation.
1. Set camera exposure time T .
2. Take a single picture from a �xed parallel distance.
3. Convert motion blurred image to Grayscale, if needed.
4. Rotate motion blurred image (3) using estimated motion blur angle.
5. Apply 2D Discrete Cosine Transform to rotated image in (4).
6. Obtain logarithm of 2D DCT spectrum (5).
7. Collapse and average 2D DCT spectrum (6) along 1D X axis.
8. Obtain 1D logarithm of collapsed 2D DCT spectrum (7).
9. Apply 1D Discrete Cosine Transform to (8).
10 Motion blur length L is the lowest peak location in (9).
11. Perform camera calibration to �nd the scaling factor k.
12. Calculate speed using v = k L

T
.

5.3 MATERIALS AND METHODS

5.3.1 Complete Rig set-up

The slider and camera set-up to take the pictures were employed in a controlled environment,
so ambient light, distance to pattern poster, minimum and maximum exposure time of camera,
slider velocity, camera aperture, platform tilt, and belt driven motor slider angle were known.
The images were taken from a point of view parallel to the pattern poster and the camera slider
motion line. An adjustment arm was used to set the camera angle (See Fig.5.4). Angle and
Length of the PSF allow calculation of the relative velocity of the camera system as described
later.

5.3.2 The Camera

We used a Color Basler acA2000-165um USB 3.0 camera with the CMOSIS CMV2000 CMOS
sensor at 2 MP resolution for the experiments [Basler(2017)]. This camera permitted control
of the image resolution, the external hardware trigger, the exposure time, the gain, while
providing us with precise speci�cations of focal length, pixel size, and sensor size. Furthermore,
it has interchangeable C- mount lenses. All these are needed to ensure laboratory controlled
conditions. Even though the camera can capture up to 165 frames per second, we only used
one frame to evaluate velocity.

5.3.3 The lens

The camera did not have any built-in lens, so we decided to use a Ricoh lens FL-CC0814A-
2M [Ric(2017)]. Some of its main characteristics are: C-mount, 2/3" image circle, F1.4 - F16.0
iris, and a 100 mm working distance. It is usually used for classic machine vision applications.

5.3.4 Camera calibration

We performed a camera calibration process to compute the scaling factor k. Some variables,
such as the perpendicular distance n from camera to poster, the pixel size Sx and the focal
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Figure 5.4: Complete rig setup to capture motion blur images using the Motor Belt Driven
Camera Slider. (1) Pattern Posters, (2) Two Leveling Rubber Feet, (3) Bubble Level, (4)
Digital Pitch Gauge, (5) Camera Sliding Carriage Platform, (6) Camera, (7) Remote control,
(8) The Controller, (9) PWM Driven Motor, (10) Stainless Steel Rods, (11) Low Friction Linear
Bearings, (12) Laser-Cut Toothed Steel Sheet, (13) Camera Trigger, (14) Limit switch, (15)
Image Capture Computer, and (16) Data Analysis Computer.

length f , are needed to calculate the relative speed of the camera using Eq.5.6. We decided
to try a di�erent approach. Instead of measuring the values proposed by Lin et al. [Lin and
Li(2004a), Lin(2005), Lin and Li(2004b)] and Mohammadi and Taherkhanil [Mohammadi and
Taherkhani(2013)], the proposed technique required the camera to take only once 20 reference
digital pictures of a planar like-checkerboard pattern, shown at a few di�erent positions, to
obtain the intrinsic and the extrinsic camera parameters. As previously mentioned, this strategy
is based on the Zhang's calibration method [Zhang(2000),Strobl et al.(2006)Strobl, Sepp, Fuchs,
Paredes, and Arbter].

5.3.5 The slider

We made our own 185cm long Motor Belt driven camera slider. Most of its parts are made
of aluminum. Figure 5.4 presents all the parts included to operate the capture system. Also,
we used �ve di�erent Pattern Posters (1) located at a 121-cm �xed parallel distance from the
rig. Figure 5.6 shows all �ve pattern posters used to carry out the experiments. Two Leveling
Rubber Feet (2) with threaded studs were set under each one of the two-rod insertion supports.
Additionally, a Bubble Level (3) and a Digital Pitch Gauge (4) were mounted on the Camera
Sliding Carriage Platform (5) as well as the Camera (6), respectively, to measure any needed
angle. We set the constant speed of the Sliding Carriage Platform, using a Remote control
(7), among 10 possible preset speeds. The Controller (8), powered the PWM (Pulse-Width
Modulation) Driven Motor (9), which drove a toothed belt to pull the camera platform. Pitch,
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(a) Camera . (b) Complete Rig Setup.

Figure 5.5: Rig setup to take the actual motion blur images at ten di�erent preset velocities.

yaw, and roll rotations were considered to achieve linear motion and set the Camera position.
After this, the Platform slipped on the two oiled stainless Steel Rods (10) which lay on four
Low Friction Linear Bearings (11). The Sliding Platform also had an Laser-Cut Toothed Steel
Sheet attached (12) to it, used to to take a single picture when its �rst tooth reached the Slotted
Optical Switch Sensor of the Camera Trigger (13), so as to measure and send the obstruction
time per each tooth to the Controller. The Limit switch (14) is an emergency stop that halts
the Sliding Platform, also it can be done by using the built-in remote control.

When the camera is shot by the the Camera Trigger, the digital image (snapshot) is sent to
the Image Capture Computer (15) through the wiring.

Finally, we compared the results obtained from a single motion blur image to the actual
speed value calculated by the wireless (Bluetooth) Data Analysis Computer (16). Figure 5.5
presents the actual rig setup used to carry out the experiments to generate spatially invariant
motion blur images in the laboratory.

5.3.6 The images

We used a set of �ve images taken from �ve di�erent posters for this study as shown in Fig.5.6.
All color pictures were taken from a �xed distance (121cm), cropped at 512×512 pixels for image
size, then converted to 8-bit grayscale following recommendation 601 from the International
Telecommunication Union [bt6(2017)].

5.3.7 Direction estimation method

The Hough in frequency (DFT Hough) [Tiwari et al.(2014)Tiwari, Singh, and Shukla], Radon
in frequency (DFT Radon) [Deshpande and Patnaik(2012)], and our DCT-Radon and DCT
Hough proposed algorithms were implemented to carry out the angle experiments to estimate
the Mean Absolute Error of each method. All �ve images were actual motion blur degraded
at di�erent angles from 0° to 90°, at a one-degree interval, with the same V 9 preset speed (See
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(a) University. (b) Bus. (c) UTP. (d) City. (e) Flag.

Figure 5.6: Pattern posters used to carry out the direction and speed experiments.

Table 5.1 ). We took �ve pictures for each angle to obtain a total of 2250 sample motion blur
images (90 angles × 5 images per angle × 5 posters) for angle estimation experiments.

5.3.8 Speed estimation method

The Autocorrelation Function (ACF) in space [Yitzhaky and Kopeika(1997), Yitzhaky and
Stern(2003)], 1D Cepstrum [Krahmer et al.(2006)Krahmer, Lin, McAdoo, Ott, Wang,
Widemann, and Wohlberg, Tiwari and Shukla(2013), Tiwari et al.(2014)Tiwari, Singh, and
Shukla] and our DCT proposal of a modi�ed Pseudo Cepstrum were tested using the �ve
pattern posters to estimate motion blur length L in laboratory conditions.

The exposure time T and the camera aperture of the lens' diaphragm were set at 100 ms
and F/4, respectively. We calculated the speed using Eq.5.7. with a scaling factor k =
0.7789mm/pixel. The slider and the camera were �at across the surface, presenting zero degrees
of tilt.

As mentioned before, the slider had 10 di�erent preset speeds listed in Table 5.1. Even
though the slider speeds are repeatable and close to the those shown in Table 5.1, we used each
individual reading of the Controller to assess the error between its actual value and the image
based value.

We took 10 pictures for each preset speed, to obtain a total of 500 sample motion blur images
(10 speeds×10 images per speed×5 images) for speed estimation experiments.

Index Speed (m/s)

V0 0,2243

V1 0,2871

V2 0,3454

V3 0,3935

V4 0,4303

Index Speed (m/s)

V5 0,4674

V6 0,5109

V7 0,5329

V8 0,5444

V9 0,6021

Table 5.1: Preset Speeds of the Motor Belt Driven Camera Slider.



70 CHAPTER 5. VELOCITY ESTIMATION

5.4 EXPERIMENTAL RESULTS

5.4.1 Angle Estimation Results

Initially, we calculated angle (Motion direction) using a classic DFT Hough approach and our
alternative DCT Hough. Mean Absolute Error for angle estimation was plotted for both Hough
methods as seen in Fig.5.7. DCT Hough Mean Absolute Error was lower than DFT Hough MAE
for the majority of angles plotted. In addition, Fig.5.9 revealed that data dispersion around
its mean value for DCT Hough method was smaller than the DFT Hough approach for angle
estimation.
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Figure 5.7: Mean Absolute Error for Angle Estimation of All posters using DFT and DCT
Hough Approaches.

However, as seen in Fig.5.8, our DCT radon method was even better than the DFT Radon
method for angle estimation. DCT approaches for angle estimation had smaller MAE than its
DFT competitors.

We plotted only the DCT approaches for angle estimation to compare them. Figure 5.9
shows that the DCT Radon method for angle estimation was almost always under the DCT
Hough curve.
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Figure 5.8: Mean Absolute Error for Angle Estimation of All posters using DFT and DCT
Radon Approaches.
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Figure 5.9: Mean Absolute Error for Angle Estimation of All posters using using DCT Hough
and Radon approaches.

Finally, the boxplot chart in Fig.5.10 and Table5.2 sum up the result of all methods used
for angle estimation. Each box presents minimum, percentile 0.25, mean, percentile 0.75 and
maximum value. The shortest column is the DCT Radon method, among all angle estimation
methods. The DCT method also had a narrower data dispersion between 1.65° and 9.9° degrees,
and a smaller mean absolute angle error of 4.65° degrees.

Figure 5.10: Boxplot: Absolute Error for Angle Estimation Methods of DFT Hough, DCT
Hough, DFT Radon and our DCT Radon.

5.4.2 Speed Estimation Results

Every pattern poster from Fig.5.6 was located at 121cm from the camera, the same we did for
angle estimation. Figure 5.14 shows the results we obtained using all posters shown in Fig.5.6.
We can see that the DCT Radon approach to estimate the relative speed of the camera had the
lowest Mean Relative Error compared to all the other methods tested.

Finally, we obtained a mean plot for all �ve posters used to perform the experiments at each
speed, as seen in Fig.5.14, for all methods evaluated. The DCT Pseudo Cepstrum approach is
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Method Min Q1 Mean Q3 Max

DFT Hough [Tiwari et al.(2014)Tiwari, Singh, and Shukla] 3.4 5.03 12.86 7.05 122.95

DFT Radon [Deshpande and Patnaik(2012)] 1.10 10.25 14.36 16.83 78.25

DCT Radon 1.65 3.83 4.69 5.43 9.09

DCT Hough 0.65 3.36 4.88 5.39 24.45

Table 5.2: Absolute Error for Angle Estimation Methods in Actual Images in degrees.

Method Min Q1 Mean Q3 Max

Spatial ACF [Yitzhaky and Stern(2003)] 77.39 77.75 83.27 84.36 106.14

DFT 1D Ceps [Tiwari and Shukla(2013)] 78.97 87.00 88.29 91.15 92.21

DFT Radon [Deshpande and Patnaik(2012)] 52.48 57.88 100.79 131.01 209.15

DCT PseudoCeps 2.69 4.37 5.15 5.37 9.03

Table 5.3: Relative Error speed Estimation Methods in Actual Images (Percentual).

lower at all speeds and its absolute mean error is always below 9.03%. The boxplot chart in
Fig.5.11 and its Table 5.3 sum up the results obtained in speed experiments. As seen in the box
for the DCT method to calculate the speed, this approach has less data dispersion (between
2.69% and 9.03%) in its Relative Error.

Figure 5.11: Boxplot: Relative Error for Speed Estimation Methods of ACF, DFT Cepstrum,
DFT Radon, and our DCT Pseudo Cepstrum.
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5.4.3 Correlation evaluation

The correlation matrix was evaluated to �nd the relationship between the error and some
image characteristics such as energy, entropy, homogeneity, contrast, brightness, and correlation.
These were plotted using all the actual poster images. As seen in the results shown in Fig.5.12,
error is inversely proportional to the entropy and the brightness of the image. On the other
hand, as presented the Pearson coe�cient, there exists a strong correlation between the speed
and the error.

(a) (b)

(c) (d)

Figure 5.12: Correlation matrix for (a) City, (b) Bus, (c) Flag, and (d) University. All plots
show a strong relationship between the Error and the image Entropy.

5.4.4 Repeatability and Reproducibility Analysis

Repeatability is the change that is perceived when the same operator measures the same
component many times, using the same measurement system, under the same conditions. A
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Repeatability 

Figure 5.13: Repeatability analysis for each velocity measurement. All they had small variantion
as shown in their histograms.

small variability of measurements is an assured sign of the repeatability. Also, Reproducibility
is the variation that is observed when di�erent operators measure the same part many times,
using the same measurement system, under the same conditions [Zanobini et al.(2016)Zanobini,
Sereni, Catelani, and Ciani]. In this research, Repeatability analysis was carried out for each
velocity under the same condition as described earlier. The result are presented in Fig.5.13. All
10 repeated measurements for each out of 10 velocities had a small variation in their standard
deviation. Additionally, Fig.5.10 and Fig.5.11 provide more information about the repeatability
for all methods evaluated, including DCT Radon and DCT PseduCepstrum approaches.

Unfortunately, the experiments used only one camera, so reproducibility could not be
evaluated as expected.

5.5 DISCUSSION

Even though Yoshida et al. worked earlier with DCT to estimate blur parameters, they did
not estimate either angle or speed from a single linear motion blur. These are quite di�erent
from our Pseudo Cepstral proposal for length estimation and the proposed DCT Radon for
angle estimation. Furthermore, even though other researchers have studied the way to calculate
velocity from a single linear motion blur image, the aforementioned reviewed studies have not
reported the use of a controlled environment and Type B standard uncertainty estimation for
the velocity evaluation.
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Figure 5.14: Mean Relative Error for all Posters using di�erent methods to estimate speed at
121cm from the camera.

5.6 CONCLUSIONS

Our DCT Radon for angle estimation and DCT Pseudo Cepstrum for length estimation are the
best methods to calculate the relative velocity of a camera. Mean Absolute Error for DCT Radon
was narrower than evaluated competitors to estimate motion direction. Its Absolute Errors for
angle were between 1.6° degrees and 9.06° degrees and its mean value was 4.66° degrees. Note
that its closest rival was also DCT Hough (See Fig.5.10). Moreover, for speed estimation, the
DCT Pseudo Cepstrum was once again the winner. Its Relative Error was between2.69% and
9.06% , and its Mean Relative Error was 5.15. Though ACF also had good results, its Relative
Error was more disperse than the DCT approach for Speed estimation (See Fig.5.11). The
DCT approach for velocity estimation is more accurate than the classic DFT method. IEEE
Transactions on Instrumentation and Measurement published the results of this chapter as
shown in [Cortes-Osorio et al.(2018)Cortes-Osorio, Gomez-Mendoza, and Riano-Rojas].





Chapter 6

ACCELERATION ESTIMATION

Vision-based measurement (VBM) systems are starting to become popular as an a�ordable
and a capable alternative for scienti�c and engineering applications. When cameras are used
as instruments, motion blur usually emerges as a recurrent and undesirable image degradation
which actually contains kinematic information dismissed. This chapter presents an alternative
approach to estimate relative acceleration from an actual uniformly accelerated motion blur
image using homomorphic mapping to extract the characteristic Point Spread Function of
a degraded image to train a machine learning regression model. A total of 125 uniformly
accelerated motion blur pictures were taken in light and distance controlled environment at 5
di�erent accelerations in a range between 0.64m/s2 and 2.4m/s2. Ensembles of Trees, Gaussian
Processes (GPR), Linear, Support Vector Machine (SVM), and Tree Regression and 19 variants
were evaluated to predict the acceleration. The bests RMSE result was 0.2553m/s2 using Linear
regression with a Prediction Speed of 470 observation per second. Finally, the proposed method
is a valid alternative for the estimation of the acceleration for invariant motion blur when
additive noise is not dominant.

6.1 INTRODUCTION

Vision-based measurement (VBM) systems use cameras as an instrument [Shirmohammadi and
Ferrero(2014)]. This emerging trend is starting to become popular as an a�ordable and a
capable alternative for many applications such on-road vehicle detection, tracking, and behavior
understanding [Beauchemin et al.(2012)Beauchemin, Bauer, Kowsari, and Cho], robotics
[Motta et al.(2001)Motta, de Carvalho, and McMaster], physics [Wahbeh et al.(2003)Wahbeh,
Ca�rey, and Masri], biology [Karimirad et al.(2014)Karimirad, Chauhan, and Shirinzadeh] and
engineering [Park et al.(2010)Park, Lee, Jung, and Myung].

The present work introduces a method to calculate acceleration from an actual uniformly
accelerated motion blur image using homomorphic mapping to extract the characteristic Point
Spread Function of the degraded image to train a machine learning regression model with a set
of known instances and responses. It considers the motion angle equal to zero, even though
the constant acceleration is obtained from an inclined slider. Acceleration measurements are
highly used in control [Luh et al.(1980)Luh, Walker, and Paul], transportation [Hoberock(1977)],
robotics [Lepeti£ et al.(2003)Lepeti£, Klan£ar, �krjanc, Matko, and Poto£nik], physics [Sironi
and Spitkovsky(2011)], sports bio-mechanics [Ohgi(2002)], geology [Xu et al.(2013)Xu, Liu, and
Li], and technical [Sawicki et al.(2003)Sawicki, Wu, Baaklini, and Gyekenyesi] and medical

77
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[Hozumi et al.(2000)Hozumi, Yoshida, Akasaka, Asami, Kanzaki, Ueda, Yamamuro, Takagi,
and Yoshikawa] diagnostics.

Displacement, velocity, and acceleration are kinematics quantities related through time. It
means that it is possible to obtain one from the other one just by integration or di�erentiation .
The di�erential of displacement is called velocity, and the di�erential of velocity is acceleration.
Conversely, the integral of acceleration is velocity and, if velocity is integrated, displacement
is obtained [Vijayachitra and Krishnaswamy(2005)]. In a real-world application, integration is
widely used due to bene�cial noise attenuation. Di�erentiation, on the contrary, ampli�es noise.
Consequently, this makes acceleration all the more suitable to obtain other kinematic quantities
when initial conditions are known.

There are fundamentally two classes of acceleration measurement techniques: direct and
indirect measurements. The �rst one uses sensors, such as accelerometers, and the second one
calculates acceleration from other variables, such as speed and position, using a di�erentiator
circuit or a computational algorithm [Ovaska and Valiviita(1998)]. The ongoing proposal is,
therefore, an indirect measurement approach.

6.1.1 Acceleration model for linear motion blur

The Point Spread Function (PSF) has a relevant role in the image formation theory. All optical
systems have a speci�c PSF which intrinsically describes the degradation process of the image
during its formation. For this reason, the nature of the PSF can contain information about the
acceleration process.

Its nature can classify blur as Optical, Mechanic and Medium Induction blur [Chan and
Shen(2005b)]. This study only considers the mechanic blur which occurs when the relative
velocity among the di�erent objects in the scene and the camera are relatively large compared
to the exposure time of light sensors, so that the resulting recorded image is distorted [Lin and
Li(2004a),Gunturk(2012)].

There are some approaches to obtain the PSF from a linear motion blur image. Som
[Som(1971)] introduced a formulation for the Point Spread Function in the presence of
accelerated motion. Even though this was actually research about image formation on light-
sensitive emulsion �lm during its exposure, it has been a reference for some modern research
due to its visionary usability in digital image processing.

Some authors have concluded that uniform acceleration causes less degradation to image
compared to uniform velocity [Qi et al.(2005)Qi, Zhang, and Tan,Yitzhaky and Stern(2003),
Yitzhaky et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika]. Partially, for this reason, it is
more di�cult to estimate the acceleration than the speed. Fig.6.2 shows the degradation process
for both cases.

Equation 6.1 is the Point Spread Function model of linear uniformly accelerated motion:

h(x) =

{
1

T (v20+2 a x)
1
2

0

0 ≤| x |≤ L

otherwise
(6.1)

Where a, vo, x and T are the values of the uniform acceleration, the initial velocity, the
displacement and the exposure time interval, respectively. Figure 6.1a shows the Point Spread
Function for constant velocity, and Fig.6.1b for constant acceleration. Notice that Eq.6.1
becomes into Eq: 6.2 when a = 0 which corresponds to uniform velocity. The product Tvo
is equal to L, the blur length. Additionally, the Fourier Transform of both PSFs are depicted
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(a) (b)

(c) (d)

Figure 6.1: Point Spread Function for: (a) uniform velocity and (b) uniformly accelerated
motion. Fourier Transform of : (c) the PSF of Uniform velocity shown in (a) and (d) Fourier
Transform of uniformly accelerated motion shown in (b). These are only ilustrative examples.

in Fig.6.1c and Fig.6.1d, respectively. Notice that constant acceleration causes some blurring
of the Fourier Transform of the PSF that makes di�cult its extraction due to the decrement of
zeros.

h(x) =

{
1
Tvo

0

0 ≤| x |≤ L

otherwise
(6.2)

6.1.2 PSF extraction for linear motion blur

Cannon [Cannon(1974)] introduced a method to restore a blurred image using nonlinear
homomorphic �ltering. It had the constraint of needing a set of statistically similar images
to the blurred image under consideration. Finally, they concluded that their method was not
wholly fruitful restoring all classes of blurred images and had some constraints. This method
was not used to estimate any kinematic quantities, but it is widely related due to its usability
to extract the Point Spread Function as an implicit source of characteristics.

Chen et al. [Chen et al.(1996)Chen, Nandhakumar, and Martin] pointed out in their paper
that motion blur is an important visual cue for motion perception, but the usability of motion
blur has been in widely neglected in image analysis research. In their study, they established
a computational model that estimated image motion from motion blur information using both
simulated and real blur. In their actual experiments, they used a camera mounted on an rail.
They concluded that motion-from-blur was an additional tool for motion estimation, although
they emphasized that a rigorous general proof was not presented in their study.
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Yitzhaky and Kopeika [Yitzhaky and Kopeika(1997)] proposed a method to identify motion
blur parameters which characterize the Point Spread Function (PSF). Their identi�cation
approach was based on the idea that image characteristics along the direction of motion are
di�erent from those in any other directions. They carried our experiments using blurred images
that were generated by vibrating a chemical shaker horizontally and manually by the motion of
the camera.

Yitzhaky and Stern [Yitzhaky et al.(1998)Yitzhaky, Mor, Lantzman, and Kopeika] proposed
a method to estimate the Point Spread Function from a single interlaced frame from a video
image. They denoted that when relative motion between the interlacing camera and the scene
occurs during imaging, two distortion types degrade the image: the edge �staircase e�ect� due
to shifted appearances of objects in successive �elds, and blur due to scene motion during
each interlaced �eld exposure. They assumed that the motion in each interlaced �eld was
spatially invariant. Their method proposed to estimate the Point Spread Function of each �eld
independently assuming constant velocity or acceleration for restoration. Even though this
approach was promising, it demanded interlaced recorded images.

Yitzhaky et al. [Yitzhaky et al.(1999)Yitzhaky, Milberg, Yohaev, and Kopeika] analyzed
and compared some direct methods such as homomorphic �ltering for the restoration of
motion blurred images. They claimed that the basic homomorphic concept is to convert
the convolution process into addition and treat the transformed problem with conventional
linear �ltering techniques. Their approach was used to restore original uniformly accelerated
motion blurred images. They concluded that due to the direct methods are relatively fast
and easy to implement, they have practical importance in digital image restoration. Other
authors have also used homomorphic �ltering for image restoration recently as shown in
[Benameur et al.(2012)Benameur, Mignotte, and Lavoie,Mattausch and Goksel(2016), Janwale
and Lomte(2017)].

Perez and Rodriguez [Pérez Huerta and Rodriguez Zurita(2005)] presented the mathematical
modeling for the restoration of motion blur images at constant velocity and acceleration. Also,
they carried out actual experiments by using an air-rail carrier in the laboratory. One small
white point painted beside a black letter, stuck on the carrier, was used to trace the Point
Spread Function for its reconstruction.

Raskar [Raskar et al.(2006)Raskar, Agrawal, and Tumblin] proposed a method using a
pseudo-random binary sequence so that the motion blur itself preserved decodable details of the
moving object. They stated that their method simpli�ed the corresponding image deblurring
process, even though it is not fully automatic as users must specify the motion by roughly
outlining this modi�ed blurred region. They used an external liquid-crystal shutter on the lens
of the digital camera for on-o� control of light and exposure code. The authors concluded that
the coded sequence is easy to implement, but requires camera manufacturers implement the
binary switching feature directly on a sensing chip because it is not still available in any camera
as a primary feature.

6.1.3 Kinematic quantities from vision-based approaches

Lin et al. [Lin and Li(2004a),Lin(2005)] proposed a method to estimate the speed of moving
vehicles from single still images based on motion blur analysis for tra�c law enforcement. The
speed of the moving vehicle was calculated according to imaging geometry, camera parameters,
and the estimated blur parameters. They reported results of less than 10% error for highway
vehicle speed detection.
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Celestino and Horikawa [Celestino and Horikawa(2008)] suggested an approach to measure
the speed of a vehicle using a motion blur analysis. It was intended for inspection of a
speedometer of automotive vehicles. The speed was determined by analyzing the characteristics
and regularities contained in a single blurred image of a simulated road surface. They reported
results of less than 10% error. They compared the image analysis results to ground truth values
using a toothed wheel, a hall sensor, and an oscilloscope.

Pazhoumand-dar et al. [Pazhoumand-Dar et al.(2010)Pazhoumand-Dar, Abolhassani, and
Saeedi] carried out their experiments for speed estimation using a toy car. They stated, in their
paper, that the actual speed of the vehicle was an approximation. Furthermore, according to
their report, only 10 images were used to evaluate their proposed algorithm.

Rezvankhah et al. [Rezvankhah et al.(2012)Rezvankhah, Bagherzadeh, Moradi, and Member]
described a velocity estimation technique based on motion blur images using an air hockey puck.
The proposed approach was implemented with an actual air hockey table, using two di�erent
cameras.

Taherkhani and Mohammadi [Mohammadi and Taherkhani(2013)] presented a speed
measurement method of spherical objects using a single motion blur image taken in front of a
still background. They estimated their method error by comparing it to a video-based approach.
The actual speed was calculated by measuring the distance traveled between two �xed locations
divided by the time di�erence. Other multi-frame video strategies have been used in [Luvizon
et al.(2017)Luvizon, Nassu, and Minetto,Wang(2016),Kruger et al.(1995)Kruger, Enkelmann,
and Rossle, Litzenberger et al.(2006)Litzenberger, Kohn, Belbachir, Donath, Gritsch, Garn,
Posch, and Schraml].

Cortés-Osorio et al. [Cortes-Osorio et al.(2018)Cortes-Osorio, Gomez-Mendoza, and Riano-
Rojas] presented in a previous study an alternative method for the estimation of velocity from
a single linear motion blurred image. They used the Discrete Cosine transform to extract the
PSF of the actual motion blur images as a basis to measure the blue extent L which is related
to actual displacement. It was used in combination with the exposure time T to estimate the
speed.

Li et al. [Li et al.(2008)Li, Du, Zhang, and Wang] introduced a cell segmentation and
competitive survival model (CSS) merged with and into the standard techniques of particle
image velocimetry (PIV). They used the algorithm with real and synthetic particle images and
compared to particle correlation velocimetry and recursive PIV approaches.

Alternatively, Sederman et al. [Sederman et al.(2004)Sederman, Mantle, Buckley, and
Gladden] introduced a magnetic resonance imaging (MRI) technique for measurement of velocity
vectors and acceleration in a turbulent �ow.

McCloskey et al. [McCloskey et al.(2012)McCloskey, Ding, and Yu] used code exposure for
accurate reconstruction of motion blur images. They used statistical blur estimation providing
accurate motion estimates for constant velocity, constant acceleration, and harmonic rotation in
real images. They captured accelerated motion images using a toy car on an tilted track, where
gravity provided acceleration. The camera was rotated so that the motion turned up almost
horizontal. They validated their motion estimation method by the quality of the deblurred
results. Their study was based on [Agrawal et al.(2009)Agrawal, Xu, and Raskar].

Weems et al. [Leifer et al.(2011)Leifer, Weems, Kienle, and Sims] evaluated the feasibility
of multi-point, non-contact, acceleration measurement, a high-speed, precision videogrammetry
system assembled from commercially available components and software. They used three scan
CCD cameras at 200 frames per second to carried out the measurements. Finally, they concluded
that their results are comparable to those obtained using accelerometers. In addition, Liu and
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Figure 6.2: Di�erences between a degraded image with uniform motion blur and uniformly
accelerated motion blur. (a) Invariant Motion blurred image due to constant velocity. Blur
is evident. (b) Invariant Motion blurred image due to constant acceleration. Blur is minor.
(c) Modulation Transfer Function of image shown in (a). (d) Modulation Transfer Function of
image shown in (b). (e) Collapsed MTF on u-axis of (c). (f) Collapsed MTF on u-axis of (d).

Katz [Liu and Katz(2006)] described a non-intrusive technique for measuring the instantaneous
spatial pressure distribution over a sample area in a �ow �eld using Particle Image Velocity
(PIV). This is a well-known vision-based method for speed and acceleration estimation based on
optical �ow method using two images taken at a high frame rate. Some additional studies in PIV
for acceleration measurement are introduced in [Chu et al.(2018)Chu, Wolfe, and Wang,Chen
et al.(2016)Chen, Li, Zhao, Huang, and Guo].

6.1.4 Related machine learning works

Dong et al. [Dong et al.(2010)Dong, Song, Wang, Zeng, and Wu] used Support vector machines
(SVM) regression to predict water �ow velocity based on an improved hydrodynamic model.
They stated, in their paper, that no publications were available regarding using SVM to predict
marine environment elements related to hydrodynamic. Even though they asserted that their
approach was not completely successful as expected, it was promising and useful for future
research.

Genc et al. [Genç and Da§(2016)] suggested a method for the determination of velocity
pro�le in small streams by employing powerful machine learning algorithms such as arti�cial
neural networks (ANNs), support vector machines (SVMs), and k-nearest neighbor algorithms
(k-NN). These comparative results revealed that k-NN algorithms overcome the other regression
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alternatives evaluated.
We organized the remainder of this chapter as follows. Section 6.2 introduces the proposal to

acceleration estimation using Machine Learning and the PSF as a source if characteristics. Then,
Section 6.3 presents the rig set-up, and the experiments carried out to estimate the acceleration
from a single uniformly accelerated motion blur image. After, Section 6.4 depicts the results
obtained in the experiments by comparing di�erent regression approaches and metrics. Finally,
Section 6.5 contrast the results with previous authors and tells about the constraints and bene�ts
of this proposal. Finally, in Section 6.6, draws the most remarkable conclusions.

6.2 ACCELERATION ESTIMATION PROPOSAL

Firstly, G(x, y) is the degraded blur image, I(x, y) is the blur-free image, and H(x, y) repre-
sents the degradation kernel (PSF). If noise of any kind is not added and the blur system, it is
considered linear and stationary, then the process can be described as seen Eq.6.3:

G(x, y) = I(x, y) ∗H(x, y) (6.3)

The product ∗ is the convolution in two dimensions. Additionally, image convolution from
Eq.6.3 can be also represented as an integral as shown in 6.4:

I(x, y) ∗H(x, y) =

∫ +∞

−∞

∫ +∞

−∞
I(x′, y′)H(x− x′, y − y′)dx′dy′ (6.4)

Since it is always about �nite blur images in space, Eq.(6.4) is de�ned in the interval
[x2 − x1 , y2 − y1] and in the rest of its domain is zero. It should be noted that the convolution
interval must be much larger than the PSF interval of the blur.
Now, the Discrete Fourier Transform (DFT) is applied on both sides of Eq.6.3 to obtain Eq.6.5
which represents a point-wise multiplication in frequency instead of a convolution in space.

G(u, v) = I(u, v)H(u, v) (6.5)

Equation 6.5 is complex in nature, so it can also be written in polar coordinates using magnitude
and angle as seen in Eq.6.6.

| G(u, v) | ej∠G(u,v) =| I(u, v) | ej∠I(u,v) | H(u, v) | ej∠H(u,v) (6.6)

The preceding relation can be split into magnitude and phase components as shown in Eq.6.7
and Eq.6.8, respectively.

| G(u, v) |=| I(u, v) || H(u, v) | (6.7)

ej∠G(u,v) = ej∠I(u,v)ej∠H(u,v) (6.8)

log | G(u, v) |= log | I(u, v)H(u, v) |

Only the log magnitude portion of the complex logarithm of the Discrete Fourier transform
is used. See Eq.6.9.
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Figure 6.3: Process to estimate acceleration using homomorphic method to extract the PSF
and machine learning regression.

log | G(u, v) |= log | I(u, v) | + log | H(u, v) | (6.9)

Although some images can be clearly very di�erent in space, their average log spectrum
in frequency usually are very much alike and almost indistinguishable to the naked eye from
each other. This allows to use some hypothetical images I(x, y)k to estimate the prototype
clear blur-free image [Cannon(1974)]. Then, it can be written as seen in Eq.6.10. Additionally,
the average of the log spectrum for all Q non-degraded background images is used to have an
hypothetical blur-free image.

log | P |= 1

Q

Q∑
k=1

log | I(u, v)k | (6.10)

and consequently,

| H(u, v) |≈ exp

[
log | G(u, v) | − 1

Q

Q∑
k=1

log | I(u, v)k |

]
(6.11)

| H(u, v) |≈ exp [log | G(u, v) | − log | P |] (6.12)

where | H(u, v) | is the Modulation Transfer Function (MTF) of an arbitrary blur. It can
be estimated without knowledge of the image using a set of reference images to generate a
prototype average log spectrum.

Finally, we can �nd the Inverse Fourier Transform (iDFT ) of H(u, v) to obtain H(x, y), the
PSF .

h(x, y) = iDFT (H(u, v)) (6.13)
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Even though the classic approach for the PSF estimation of an image uses images statistically
close to generate the Prototype average log spectrum, this research used 5 still background
images that can be used as the clear image to estimate the MTF.

Figure 6.3 presents the proposed method for the estimation of the acceleration using
homomorphic �ltering and machine learning regression. Five blur-free images I(x, y)k are taken
to the �xed background with the camera at rest. it helps reduce additive noise in some way,
subtracting the average of a set of hypothetical blur-free images. Consecutively, the (MTF)
is obtained for each of the 5 images and then averaged, summing and dividing them by 5.
It generates a prototypeblur-free background log | P | which is subtracted from the MTF of
the motion blurred image log | G(u, v) | to obtain the output S(u, v). Later, the exponential
function is used to remove the logarithm. It allows to obtain the Optical Fourier Transform
H(u, v) of the blurred image that leads to the Point Spread Function H(x, y) in two-dimensions
using the inverse Fourier Transform. Due to the motion is only in the horizontal axis, the actual
PSF is also in one dimension H(x) can be obtained from the central horizontal line of the PSF
H(x, y). Prior to training, the instances are space-reduced using PCA to avoid redundancy.
Finally, a set of uniformly accelerated motion blur images of known acceleration is used for
training.

6.3 MATERIALS AND METHODS

The experiments presented in this section were carried out to estimate acceleration from a single
uniformly accelerated motion blur image using homomorphic �ltering to extract the PSF, and
machine learning to predict the actual Response. Firstly, all parts of the rig set-up are introduced
to give a more precise description of the procedure. Then, an overview of the machine learning
methods used is presented, and �nally, the evaluation metrics are described for the regression
methods assessed.

6.3.1 The Rig set-up parts

Here describes the materials and the laboratory equipment needed in the experiments. Some of
these were speci�cally constructed for this study.

6.3.2 The slider

A 185-cm-long aluminum slider was constructed for previous speed experiments, as shown
in [Cortes-Osorio et al.(2018)Cortes-Osorio, Gomez-Mendoza, and Riano-Rojas], and slightly
modi�ed for acceleration. Figure 6.5 presents all the parts included to operate the capture
system. Five di�erent pattern Posters (1) were used (one at a time), located at a 171-cm
�xed parallel distance from the rig. Figure 6.4 shows all �ve pattern posters used to carry
out these acceleration experiments. Two Leveling Rubber Feet (2) with threaded studs were
set under each one of the two-rod insertion supports. Additionally, a Digital Pitch Gauge (3)
was mounted on the Camera Sliding Carriage Platform (4), to measure the tilt angle, as well
as the Camera (5), respectively, to measure any needed angle. Constant acceleration of the
Sliding Carriage Platform was set by raising an end of the slider to one of the 8 possible preset
angles of acceleration marked on the Lifting Base (6), however, only �ve were used (A1, A2,
A4, A5, and A7) listed in Table 6.1. The Controller (7) read the date from sensor in (11). The
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(a) University. (b) Bus. (c) UTP. (d) City. (e) Flag.

Figure 6.4: Pattern posters used to carry out the acceleration experiments.

camera Platform was pulled manually to the upper position of Lifting Base and then released
to slip freely on the two oiled stainless Steel Rods (8) which lay on four Low Friction Linear
Bearings (9). The Sliding Platform also had an Laser-Cut Toothed Steel Sheet attached (10),
used to to take a single picture when its �rst tooth reached the Slotted Optical Switch Sensor
of the Camera Trigger (11), to measure and send the obstruction time per each tooth to the
Controller (7). When the camera was activated by the Camera Trigger pulse, the digital image
(snapshot) was sent to the Image Capture Computer (12) through the USB 2.0 wiring. Finally,
the result obtained from a single motion blur image were compared to the actual acceleration
value estimated by the wireless (Bluetooth) Data Analysis Computer (13). Figure 6.6 presents
the actual rig setup used to carry out the experiments to generate uniformly accelerated motion
blur images in the laboratory.

6.3.3 The computers

The motion blur image capture and processing computer was a 64 bit desktop computer, Core
I3 processor, 2GB of RAM. Additionally, a 64 bit laptop computer, AMD A3 processor, 2GB
of RAM was used for data analysis of acceleration received from the controller system. Both
had Windows 7 operating system and were running Matlab 2017b.

6.3.4 The images

The experiments were carried out in a controlled environment. A digital scienti�c camera (Basler
acA2000-165um USB 3.0) [Basler(2017)] was used to take the pictures, the Arti�cial white light
from led panel lamps was about 255 Lux, the distance to pattern poster was set at 171 cm, the
maximum exposure time of camera was 100ms, the slider acceleration was between 0.6m/s2and
2.40m/s2, and the aperture of the lens' diaphragm (Ricoh lens FL-CC0814A-2M) [Ric(2017)]
was set at F/4.

The images were taken for �ve di�erent pattern posters as shown in Fig.6.4. Then, they
were cropped at 512×512 pixels for image size and converted to 8-bit grayscale following
recommendation 601 from the International Telecommunication Union [bt6(2017)]. The posters
were shot from a point of view parallel to the pattern poster and the camera slider motion line.
This experiments considered the angle of motion at zero degrees. Although the camera slided
on inclined plane platform, motion blur was horizontal with respect to the camera angle. The
pattern posters were not rotated, so at naked eye, these looked crooked. See Fig.6.5 to �nd each
element described.
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Figure 6.5: Complete rig setup model to capture uniformly accelerated motion blur images. (1)
Pattern Poster, (2) Leveling Rubber Feet, (3) Digital Pitch Gauge, (4) Camera Sliding Carriage
Platform, (5) Camera, (6) Lifting Base, (7) Controller, (8) Stainless Steel Rods, (9) Low Friction
Linear Bearings, (10) Laser-Cut Toothed Steel Sheet, (11), Camera Trigger, (12) Image Capture
Computer, and (13) Data Analysis Computer.

6.3.5 PCA feature extraction

Feature extraction is a relevant topic in signal processing mostly due to the high dimensionality
of data and its redundancy [Izquierdo-Verdiguier et al.(2014)Izquierdo-Verdiguier, Gomez-
Chova, Bruzzone, and Camps-Valls]. Principal Component Analysis (PCA) is a classical
statistical approach widely used for feature extraction in pattern recognition and computer
vision [Bouwmans et al.(2018)Bouwmans, Javed, Zhang, Lin, and Otazo]. In this study,
PCA feature extraction is used to reduce redundant data from the extracted PSF. The
multidimensional space was transformed from 125 to 76 characteristics.

6.3.6 Machine Learning Regression

Five di�erent approaches were used to predict the acceleration from the Point Spread Function
data of actual motion blurred images observed. Ensembles of Trees, Gaussian Processes (GPR),
Linear, Support Vector Machine (SVM), Tree Regression and their variations were evaluated as
presented in Table 6.2.

6.3.7 Regression Model Evaluation

The metrics used to evaluate the regressions were Root Mean Square Error (RMSE), R-Squared,
Mean Squared Error (MSE), Mean Absolute Error (MAE), Prediction Speed in observation per
second, Training Time in seconds, and R-Squared (Coe�cient of Determination). Also Predicted
vs Actual, Residuals Plot, and Response Plot were employed for the best three approaches.
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(a) (b)

Figure 6.6: Actual rig setup to generate uniformly accelerated motion blur images.

6.4 EXPERIMENTAL RESULTS

Five pictures were taken for each preset accelerations, to obtain a total of 125 sample motion
blur images (5 accelerations × 5 images per acceleration × 5 image poster) for acceleration
estimation experiments using machine learning.

Index Angle (Degree) Acceleration (m/s2)

A0 15° 2.4630 ±0,0285
A1 13.3° 2.1782 ±0,0233
A2 10.1° 1.5416 ±0,0161
A3 7.9° 1.2292 ±0,0130
A4 4.5° 0.6448 ±0,0074

Table 6.1: Preset accelerations of the camera slider with its uncertainty.

Even though the slider accelerations were repeatable and close to the those shown in Table
6.1, we used each individual reading of the Controller to assess the error between its actual
value and the vision-based value.

6.4.1 The instrument calibration

The system of uniformly accelerated motion had an Arduino Nano microcontroller, which was
responsible for measuring the time it took to block each of the teeth of the Toothed Steel Sheet
used. Its operation consisted of allowing to slide the Camera Carriage Platform on the Steel
Rods at �ve di�erent angles, which produced di�erent accelerations depending on the height.
The angles and their accelerations in Table 6.1.

The calibration was performed by measuring the acceleration with both the controller system
and with the Phywe Cobra4 Sensor-Unit 3D-Acceleration (±2g and Resolution of 1mg) standard
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instrument using the Cobra4 Wireless-Link [GmbH(2018)] to transmit the acceleration data.
The combined uncertainty and the sensitivity coe�cients of the variables were calculated to
obtain the total expanded uncertainty of the measurements.

6.4.2 The data acquisition results

Five folds were used for the validation of all regression models proposed. Table 6.2 shows the
results for the basic evaluated regression models and their variants. Even though only �ve
di�erent main approaches were evaluated, each one had a subset of variants, for a total of
19. The bests RMSE results were GPR (Matern 5/2) and Linear (Linear) with 0.2547 m/s2

and 0.2553 m/s2, respectively. On the other hand, Linear regression is simpler to code and
faster, in terms of observation per second, than its closer competitors. Linear regression, GPR
(Matern 5/2) and SVM (Quadratic) were able to perform 470 obs/s, 530 obs/s and S 540 obs/s,
respectively. See table 6.2.

Additionally, Predicted vs Actual Plot, Residuals Plot, and Response Plot were plotted for
the best �ve RMSE results of each regression model. Residuals Plot for GPR (Matern 5/2),
Linear (Linear), and SVM (Quadratic) in Figs.6.7b, 6.8b, and 6.9b, respectively, allowed to �nd
out that the acceleration residuals trend to change their sign value, from negative to positive,
when acceleration is upper 1.4 m/s2.
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Figure 6.7: Matern 5/2 Gaussian Process Regression Results. (a) Predicted vs Actual Plot for
Gaussian Process Regression Matern 5/2, (b) Residuals Plot for Gaussian Process Regression
Matern 5/2, and (c) Response Plot for Gaussian Process Regression Matern 5/2.

In addition, Acceleration Residuals are smaller in all cases when acceleration is above
1.0 m/s2. In consequence, this makes linear regression more suitable for real-time applications.
Finally, it can be seen that all plots for Gaussian Process Regression (Mater 5/2), in Fig.6.7,
and Linear Regression, in Fig.6.8, are almost identical.

Boosted Trees method was the best approach for Ensembles of trees. However, its results are
not the best when compared to the other approaches. See Fig.6.10. Similarly, Trees method,
and its variant called Medium, did not give satisfactory results as shown in Fig.6.11 and Table
6.2.
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Regression Models RMSE (m/s2) R-Squared MSE (m/s2)2 MAE(m/s2) Prediction

Speed

(Obs/s)

Training

Time

(s)

Ensembles of Trees
Bagged Trees 0.4124 0.60 0.1701 0.3396 420 1.7598

Boosted Trees 0.3507 0.71 0.1230 0.2452 480 1.8514

GPR

Exponential 0.3187 0.76 0.1016 0.2501 460 1.4044

Matern 5/2 0.2547 0.85 0.0649 0.1921 530 1.373

Rational Quadratic 0.2553 0.85 0.0652 0.1924 530 1.6424

Squared Exponential 0.2553 0.85 0.052 0.1924 470 1.5473

Linear

Interactions Linear 0.3371 0.74 0.1136 0.2378 65 12.716

Linear 0.2553 0.85 0.0652 0.1978 470 1.5175

Robust Linear 0.2558 0.85 0.0654 0.1993 470 1.7325

Stepwise Linear 0.2956 0.80 0.0874 0.2251 490 17933

SVM

Coarse Gaussian 0.6607 -0.02 0.4366 0.5669 510 1.0678

Cubic 0.3256 0.75 0.106 0.2764 540 1.0563

Fine Gaussian 0.4611 0.51 0.2126 0.3532 480 1.0486

Medium Gaussian 0.5243 0.36 0.2749 0.4265 500 1.0921

Linear 0.3747 0.67 0.1404 0.3043 500 1.0779

Quadratic 0.2843 0.80 0.0866 0.2446 540 1.804

Trees

Coarse tree 0.6327 0.07 0.4003 0.5279 570 0.9837

Fine tree 0.4915 0.44 0.2416 0.3202 540 1.0379

Medium tree 0.4604 0.51 0.2112 0.3416 540 1.0037

Table 6.2: Machine learning results using Ensembles of Trees, Gaussian Processes (GPR),
Linear, Support Vector Machine (SVM), and Tree Regression and their variants.
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Figure 6.8: Linear Regression Results. (a) Predicted vs Actual Plot for Linear Regression, (b)
Residuals Plot for Linear Regression, and (c) Response Plot for Linear Regression.
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Figure 6.9: Quadratic Regression SVM Results. (a) Predicted vs Actual Plot for SVM Quadratic

Regression, (b) Residuals Plot for SVM Quadratic Regression, and Response Plot for SVM Quadratic

Regression.
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Figure 6.10: Boosted Ensembles of Trees Regression Results. (a) Predicted vs Actual Plot for
Boosted Tree Regression, (b) Residuals Plot for Boosted Tree Regression, and (c) Response
Plot for Boosted Tree Regression.
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Figure 6.11: Medium Tree Regression Results. (a) Predicted vs Actual Plot for Medium Tree
Regression, (b) Residuals Plot for Medium Tree Regression, and Response Plot for Medium
Tree Regression.

6.5 DISCUSSION

Even though there are some studies to estimate the speed using vision-based measurement
(VBM), only a few of them are for the measurement of acceleration, as we could determine in
published scienti�c literature consulted. Likewise, there is no evidence of similar studies that
estimate acceleration from a motion blurred image.

Some approaches have been introduced to measure the acceleration, and all they need at least
two consecutive image frames to calculate it [Li et al.(2008)Li, Du, Zhang, and Wang,Sederman
et al.(2004)Sederman, Mantle, Buckley, and Gladden,Liu and Katz(2006)]. Additionally, others
also use high speed or multiple cameras [Komiya et al.(2011)Komiya, Kurihara, and Ando,Leifer
et al.(2011)Leifer, Weems, Kienle, and Sims]. These make classical solutions more expensive
and bulky.

This alternative method based on blur has bene�ts. Motion blur is usually an undesirable
degradation that occurs, but it is possible to take advantage of it. It allows to use degraded
images instead of dismissing them to calculate the acceleration. Besides, this approach can be
used with low-cost cameras, instead of high-speed cameras that are more expensive.

Likewise, the proposed method has some constraints. One is it needs a set of blur-free
images, however, in some cases, it is easy to obtain from the �xed background. Noise is another
limitation in this proposal. When the noise is dominant instead of the blur, the extraction of
the PSF can fail and therefore the estimation of the acceleration.

6.6 CONCLUSIONS

Machine learning model successfully estimates with some degree of accuracy relative acceleration
from a single motion blurred image using homomorphic �ltering to extract the characteristics of
the Point Spread Function (PSF) which depends on initial velocity, acceleration and exposure
time parameters as shown in Eq.6.1.

The proposed method is a valid alternative for the estimation of the acceleration for invariant
motion blur. The best machine learning methods were GPR (Matern 5/2) and Linear (Linear)
with 0.2547 m/s2 and 0.2553 m/s2 absolute error, respectively. GPR (Matern 5/2) and Linear
regression were able to perform 530 obs/s and S 470 obs/s, respectively. Finally, the best
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results are obtained when acceleration is above 1.0m/s2. It makes these method an alternative
approach that can be used in real-time applications.





Chapter 7

LENGTH ESTIMATION IN

SPACE-VARIANT BLUR

7.1 INTRODUCTION

In this chapter, we introduce a proof of concept to ensure that spatially variant motion blur also
allows estimating blur length using the proposed DCT method. As mentioned in the previous
chapter 5, blur length L and exposure time T are needed to calculate relative speed from
invariant motion blur images. To perform length estimation only the appropriate segmentation
of the motion blurred area is required. However, there exist some constraints to consider.

Variant motion blur occurs when the camera is located in a �xed place, the background is
sharp, and an object is moving in front of the camera during the exposure time. When all that
happens, the central problem is how to estimate the speed of a single object using a partially
blurred image. We introduce a set of synthetic experiments to evaluate the tolerance of the
proposed DCT method to estimate blur length using a partial linear motion blurred image.

7.1.1 Variant Blur

As mentioned earlier, blur is the image region that is not completely distinguished due to the
signi�cative vanishing of sharp details and edges. This can be seen through the reduction of
high frequency content in the image.

Motion blur can also be classi�ed into two categories depending on spatial distribution on
image: spatially invariant motion blur, in which the trace is generated in the same direction and
length over the full image, and spatially variant motion blur, characterized by di�erent motion
blur directions and lengths on the image (See Fig.7.1).

95
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Figure 7.1: (a) Blur-free image (b) is a spatially variant motion blurred image and (b) is a
spatially invariant motion blurred image .

Assuming a static and a distant scene, and ignoring the e�ects of defocus and lens aberration
at each point, Motion blur can be modeled through Eq.7.1, where I(x, y) is the blur-free
image, g(x, y) is the blur image and n(x, y) is the additive process noise present on the
image [Rajagopalan and Chellappa(2014)].

g(x, y) =

∫ ∫
I(α, β)h(x− α, y − β)dαdβ + n(x, y) (7.1)

From Eq.7.1, the case when the PSF does not change at each position in the entire image, so
that h(x−α, y−β) = h(α, β), it is called spatially Invariant Point Spread Function. Conversely,
if the function varies in space, then it is called a spatially Variant Point Spread Function [Lin
and Li(2004b),�orel and Flu(2008)] ( See Eq.7.2).

g(x, y) =

∫ ∫
f(α, β)h(x− α, y − β, α, β)dαdβ + n(x, y) (7.2)

This work only considers the mechanic blur that happens when the corresponding speed
among the distinctive elements in the setting and the camera are relatively large compared to
the exposure time. Then, the distortion acquired by the image is called motion blur [Lin and
Li(2004a),Gunturk(2012)] [Chan and Shen(2005a)]. The Point Spread Function h(x, y) of any
blur kernel has to satisfy three constraints, namely [Bovik(2010)]:

� h(x, y) cannot take negative values due to the physics of the underlying image formation
process.

� h(x, y) is real-valued because images are real-valued.

� Energy is neither absorbed nor generated during the image formation process. For spatially
continuous blurs, h(x, y) is constrained to satisfy Eq.7.3.

+∞∫
−∞

+∞∫
−∞

h(x, y)dxdy = 1 (7.3)
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(a) (b)

Figure 7.2: Segmentation for real images based on Zhou algorithm [Zhou and Zhang(2018)].
(a) Variant motion blur image with �xed background and vehicles in motion. (b) Segmentation
result of image shown in (a).

7.1.2 Segmentation Approaches

There are some approaches to segmenting spatially-varying blur images whose background scene
is sharp, and the front object is moving. Some methods are based on optical �ow, such as [Sengar
and Mukhopadhyay(2017)], and others in features [Liu et al.(2008)Liu, Li, and Jia, Zhou and
Zhang(2018)]. These are not discussed extensively in this work because it is not the core part
of the study. Nonetheless this, we introduce some aspects that have to be considered when
segmenting spatially variant motion blur in an image to estimate the relative speed of the
moving object. Fig.7.2 depicts an example of motion blur segmentation using the algorithm
proposed by [Zhou and Zhang(2018)]. Note that segmentation edge of the window is sharp.

When a speci�c motion blurred area is segmented, appears undesirable artifacts such as lines
at the center of the MFT of the image due to the sharp cuto� of the window in space. This
segmentation window has correctly de�ned edges that also introduce leakage. Unfortunately,
these artifacts cannot be removed entirely, but reduced by applying an appropriate window
function to the full image or the segmented blurred area edges. This e�ect is perfectly visible in
the Cosine Transform domain as shown in Fig.7.3. We highlight that all segmentation methods,
in the scienti�c literature we reviewed, do not consider smoothed �lter edges.

7.2 MATERIALS AND METHODS

These synthetic experiments evaluated how tolerant was the proposed DCT method to estimate
length using a variant motion blur image. In this case, the background was assumed to be
sharp, and the moving object was synthetically blurred at a constant linear speed. The Baboon
image was used from The USC-SIPI image database (University of Southern California - Signal
and Image Processing Institute) [sip(2017)]. Additionally, the image size selected was 256×256
pixels with 8 bits/pixel depth and converted to grayscale following recommendation 601 from
the International Telecommunication Union [bt6(2017)]. Matlab 2018b and its image processing



98 CHAPTER 7. LENGTH ESTIMATION IN SPACE-VARIANT BLUR

Figure 7.3: Simulation of motion blur image segmented using a sharp and smoothed window.
(a) blur-free image, (b) Uniformly motion blur image, (c ) Sharp windowed image, (d) DCT of
sharp windowed image, (e) Smoothed windowed image using Hanning and (f) DCT of smoothed
windowed image.

toolbox were used to carry out the experiments. Baboon was synthetically linear motion blurred
with the length of 5 to 90 pixels at zero degrees (horizontally).

Subsequently, the image was segmented using a Hanning window of 256 × 256 pixels and
consecutively, the height was reduced in steps at values of 128, 64, 32, 16, 8, and 2 pixels. The
width was �xed to 256 long in all cases.

7.3 EXPERIMENTAL RESULTS

Figure 7.3 depicts the simulation results of the motion blur Baboon segmented using a sharp and
a smoothed window. Additionally, Fig.7.3(a) and 7.3(b) present a blur-free image and a blurred
image, respectively. Similarly, Fig.7.3(c) is a sharp circular windowed image of 256× 256 pixels
and its Discrete Cosine Transform is shown in 7.3(d). Notice this one does not have the lines
that usually motion blur adds to the transformation whose separation is inversely proportional
to the blur length. In contrast, Fig.7.3(e) shows the Baboon image applying a Hanning window
of the same size. Conversely, the results are much better. In this case, the Cosine Transform
pattern is clearer and �ner. The lines added by motion blur motion are visible to the eyes as
seen in Fig.7.3(f).

When the length of blur was evaluated using the sharp segmentation window, the results
were the worst. In all cases, the Relative Error was above 100% as shown in Fig.7.4.

On the other hand, when the Hanning window was used, the Relative error results were
below 2%, as as it is evident in Fig.7.5.
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Figure 7.4: Blur segmentation with a 256x256 sharp cut-o� window. The Relative Error is
plotted between 5 to 90 pixel long.
-

Figure 7.5: Blur segmentation with a 256x256 Hanning window. The Relative error is plotted
between 5 to 90 pixel long.
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Figure 7.6: Blur segmentation with a 128x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the. proposed DCT algorithm.

Figure 7.7: Blur segmentation with a 64x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the proposed DCT algorithm.

As a conceptual reference, Fig.7.6, Fig.7.7, Fig.7.8, Fig.7.9, Fig.7.10, Fig.7.11, and Fig.7.12
show the Baboon image segmented with some Hanning windows of di�erent sizes from 128 to 2
pixel height assuming a constant width of 256 pixels. In all these �gures the line pattern added
by the linear motion blur is easily visible.

Figure 7.13, from Table 7.1, plots the relative Error when the Hanning window was set at
a 256 width, and its height was in the range from 128 to 2 pixels. Notice that the height of
the window did not a�ect signi�cantly the Relative Error. Even the windows were narrow, the
motion blur length was estimated accurately. We obtained the best results when the height of
the window was above 16 pixels; in these cases, the relative Error was below 6.75%.

In addition, we also evaluated the e�ect of the window width concerning the relative error.
We set the window height at 256 pixels and then, the window width was modi�ed from 10 to
250 in steps of 10 pixels using �xed blur lengths from 10 to 90 in steps of 10 pixels. Figure 7.14,
Fig.7.15, and Fig.7.16 show the bar chart for L = 90, L = 60, and L = 30 pixels as examples.
These bar charts were made for all blur length given in Table 7.2.

Figure 7.17 plots Table 7.2. This curve depicts the relation between the blur length and the
minimum window width. We applied curve �tting using a line equation. The result displayed
that the error was tolerant while the width of the window was twice the blur length.
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Figure 7.8: Blur segmentation with a 32x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the . proposed DCT algorithm.

Figure 7.9: Blur segmentation with a 16x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the. proposed DCT algorithm.

Figure 7.10: Blur segmentation with a 8x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the. proposed DCT algorithm.
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Figure 7.11: Blur segmentation with a 4x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the. proposed DCT algorithm.

Figure 7.12: Blur segmentation with a 2x256 Hanning window. The �gures were captured at
15 pixels blur length. (a) windowed image, (b) Discrete Cosine Transform of Windowed image
shown in (a), (c) 1D collapsed version of the Discrete Cosine Transform shown in (b), and the
blur length estimation using the. proposed DCT algorithm.

Window height (Pixels) Relative Error (%)

256 0.09

128 0.10

64 1.95

32 2.10

16 6.75

8 14.41

4 30.14

2 33.29

Table 7.1: Mean error vs pixel height. The error increases as the window height decreases.
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Figure 7.13: Blur segmentation with a variable height window. The relative error curve is
plotted using a �xed 30 pixels blur length.

Figure 7.14: Relative error vs a variable window width for a blur length of L=90 pixels. The
minimum error of 1% is obtained when the window width is 180 pixels. Notice that the minimum
error occurs at 180 pixels.

Figure 7.17: Window width that produces minimum error. The window width must be at least
the double of the of the blur length.
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Blur length (Pixels) Minimum window width (Pixels) Relative Error (%)

90 180 1

80 160 0

70 130 1

60 120 0

50 100 0

40 40 0

30 60 0

20 40 0

10 20 0

Table 7.2: Window width that produces minimum error for from 90 to 10 blur-length.

Figure 7.15: Relative Error vs a variable window width for a blur length of L=60 pixels. The
limit error of 0% is obtained when the window width is 130 pixels. Notice that the minimum
error occurs in 120 pixels.

Figure 7.16: Relative Error vs a variable window width for a blur length of L=30 pixels. The
minimum error of 0% is obtained when the window width is 60 pixels. Notice that the minimum
error occurs in 60 pixels.
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7.4 DISCUSSION

Even though other authors have studied blur segmentation, we did not �nd anyone intended for
the estimation of kinematic quantities such as velocity and acceleration. From this perspective,
this proof of concept is promising and novel, although it needs further research to be entirely
conclusive since until now it has been used only for the estimation of the PSF parameters.

7.5 CONCLUSIONS

The use of a smoothed segmentation window is a viable solution to estimate the blur length
when blur is space-variant. Even though these experiments are not entirely conclusive, they
provide some hints about how to implement it. There are some well-known algorithms for
blur segmentation, but all they need to be modi�ed to eliminate its sharp cut-o� edges that
add artifacts to the Discrete Fourier pattern (MFT). This proof of concept only considered the
Hanning window to smooth the edges of the segmentation window, but we must explore some
supplementary alternatives. Additionally, it is worth to notice that the segmentation window is
usually an irregular shape which, introduces another challenge to �t the smoothed window in
an irregular shape.

It is evident that the smoothed segmentation window in space must be longer (at least twice)
than the blur length to estimate the length successfully. As far as we evaluated it, this proposal
is only valid for uniformly linear motion blur images, that is to say, images blurred at a constant
speed. Also, we have found that the height of the segmentation window is not a critical aspect,
as long as the blur length is completely covered.

This proof of concept considered the motion direction at zero degrees. Consequently, angle
estimation must be also evaluated using a similar approach.





Chapter 8

ELECTROMECHANICAL SLIDER

This chapter introduces the design and the construction of an electromechanical slider that
allows obtaining the instantaneous speed and acceleration of a platform that holds a scienti�c
camera to take photos for the study of linear motion-blurred images. The system was
calibrated concerning a standard instrument for the estimation of the uncertainty and the
error. The development of the system is split into the following steps: the design and
construction of an aluminum electromechanical slider built with a mobile platform that moves
at constant speed, the speed calibration of the mobile platform using the Guide for estimation
of measurement uncertainty, the design and construction of the electromechanical aluminum
slider with a mobile platform that slides at constant acceleration and its calibration also
applying the Guide for estimation of measurement uncertainty. The maximum uncertainties
were 0.031m/s and 0.029m/s2 for speed and acceleration, respectively. The developed system
is an electromechanical apparatus that allows moving a platform along with a pair of parallel
stainless rods. Its low uncertainty permits the measurement of the instantaneous speed and the
acceleration for the study of motion blurred images in a controlled environment.

8.1 INTRODUCTION

In the area of digital image processing, it is common to �nd di�erent types of degradations
that a�ect its analysis, such as lens aberrations, light di�raction, atmospheric disturbances and
motion blurring (Motion Blur). The latter is caused by the relative movement between the
camera and observed object, the hand's tremor, or the displacement of the capture system
during the exposure time. One of the areas of study of motion blurring is the estimation of its
point spread function (PSF) in order to reconstruct the image. This PSF is known as the transfer
function of the optical system and is responsible for blurring [Cortés-Osorio et al.(2018)Cortés-
Osorio, López-Robayo, and Hernández-Betancourt].

In the paper presented by Klyuvak et al. in [Klyuvak et al.(2018)Klyuvak, Kliuva, and
Skrynkovskyy], they carried out the estimation of the PSF of an object and its background to
then perform a reconstruction of the image. On the other hand, in [Zhang et al.(2018)Zhang,
Zhu, Sun, Wang, and Zhang], they carried out a method for the estimation of the PSF from their
parametric modeling. The authors used it to reconstruct the original images with few �artifacts�.
The fundamental problem of this type of work is that motion blurring was done synthetically,
that is, that a mathematical function was used to generate it. Those mentioned above causes
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the lack of some real optical phenomena on the captured images such as noise and other lens
light distortion. Another area of study of motion blurring is the estimation of speed from an
image using the PSF parameters. Lin and Li in [Lin and Li(2004a)] and [Lin and Li(2005)]
presented a methodology to calculate the speed of a moving object from a single blurred image.
The authors stated that they obtained results of less than 10% for speed. However, they did not
mention additional information about the system they used to capture and measure the speed of
the moving object. Based on the work of Lin and Li, in [Mohammadi et al.(2010)Mohammadi,
Akbari, et al.] Mohammadi et al. used the frequency domain to know the PSF and thus estimate
the blur parameters. In this way, the researchers reported an error in the estimation of the speed
below 8.5%. Unlike Lin and Li in [Lin and Li(2004a)], Mohammadi used an actual vehicle that
ran at 40 km/h. The problem with this approach was that the authors did not provide any
evidence of meteorological analysis to rely on the real speed of the car. Due to the above, it
is evident that, in state of the art, the estimates of kinematic quantities from motion-blurred
images is a trending topic, but the reviewed proposals of the di�erent researchers fail to provide
certainty of their results since they were not explicit regarding the metrological procedures used.

Although today there are already systems that allow knowing the speed and acceleration
of objects, there is no commercial system capable of capturing images and at the same time
making known their speed or acceleration values due to the lack of a comprehensive capture
and measurement system for the study of blurry images. This work shows the design and
construction of a mechatronic slider for capturing images with spatial invariant blur that allows
knowing the instantaneous speed and acceleration at the point where the image is taken.

Mechatronic systems or robotic systems are used today both in industry and academia for the
development of new technologies. In 2013 R. Jiménez, F.A. Espinosa and D. Amaya [Moreno
et al.(2013)Moreno, Valcárcel, and Hurtado] of the Military University Nueva Granada, in
Colombia, implemented the control of a humanoid robot using machine vision that replicated
human movements. in that reseach they used an anthropomorphic motion capture system based
on the Kinect device to perform the movement imitative of a Bioloid robot. In [Contreras Parada
et al.(2014)Contreras Parada, Peña Cortés, and Riaño Jaimes], Contreras et al. designed and
built a robotic module for the classi�cation of some fruits, using a robotic arm with 5 degrees
of freedom and arti�cial vision for the recognition of the fruits. Subsequently, Gallo et al. from
the University of Ibagué they carried out the design and construction of an electromechanical
prototype that allowed emulating the movements of the human arm with a total of 13 degrees
of freedom. The �nal prototype had �ve �ngers with two degrees of freedom each, wrist turning
movement, elbow �exion, and full shoulder movement [Gallo Sánchez et al.(2016)Gallo Sánchez,
Guerrero Ramírez, Vásquez Salcedo, and Alonso Castro]. In 2017 Londoño, Cortés (Author of
this tesis) and Fernandez [Londoño et al.(2017)Londoño, Cortes, and Fernández] built a low-
cost electromechanical system for teaching rectilinear movement in a laboratory environment.
These previous works are evidence that electromechanical systems have essential applications
in academia for the teaching of fundamental physics and research.

In the market, there are di�erent slider systems with constant speed for image capture.
In [Slider(2017.)], [EVO.(2017)] there are two motorized sliders with belt and stepper motors.
Hhowever, these systems do not have repeatability for di�erent speeds because they are usually
controlled through a potentiometer, its range of speeds is limited and the maximum speed
reached is not su�cient for the study of the present work. Therefore, some authors have
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developed their systems for the study of images with uniform blur. In 2005 J. Pérez and G.
Rodríguez [Pérez Huerta and Rodriguez Zurita(2005)] presented a study of the restoration of
images blurrred by uniform linear motion and uniformly accelerated motion; in their work they
reported the use of a frictionless air-rail to capture the images. Schuon and Diepold [Schuon and
Diepold(2009)] conducted a study that compared algorithms for restoring synthetically blurred
images and images with real blur. In order to test the algorithms in unfocused images, they
built a capture prototype. They used a rail to guide the movement and a stepper motor. When
the camera reached a constant speed, images were captured with a constant exposure time of
100ms. In 2010 Y. Ding, S. McCloskey, and J. Yu [Ding et al.(2010)Ding, McCloskey, and
Yu] investigated the analysis of the blur with Flutter Shutter camera for nonlinear motion; in
their research, they used of a motion system to capture images. In their paper, they stated
that the camera and the captured image were �xed. They also mention that they used several
speeds controlled by changes in the voltage. For constant accelerations they made use of gravity,
throwing an object that pulled the mobile. Dwicahya et al. in [Dwicahya et al.(2018b)Dwicahya,
Ramadijanti, and Basuki] they proposed a method to detect the speed of a moving object, for
this they developed their device and compared the theoretical results with the values given by the
system for speed. The mechanism developed by the researchers attained speeds of up to 33km/h,
but they did not perform any calibration. They were not clear regarding the methodology they
used to build the instrument and had problems with the regular use of the model. Finally, it
is noteworthy that the researchers who have designed the equipment developed in the scienti�c
literature did not estimate its uncertainty and its error. The present manuscript di�ers, among
other aspects, by the severity in the calibration for the estimation of the uncertainty, error
measurements, and little dispersion of speed and acceleration data of the constructed system.

Kinematics is the study of motion without taking into account the condition that causes
it. Some kinematic quantities are displacement, trajectory, speed, and acceleration, among
others [Beggs(1983)]. The assembled prototype allowed us to estimate the kinematic quantities
that were present during the motion.

8.2 METHODOLOGY

Due to there are no devices on the market that allow knowing the speed and acceleration
of the moving camera, there was a need to construct a controlled slider for the study of
uniformly motion blur images. In every electromechanical system, it is necessary to have a
set of requirements for the mechanical system, since it is capable of supporting the mass of
the camera, the displacements, the e�orts and other physical factors that occur with the whole
system. For the development of this, the following design requirements were taken into account:

� It must reach speeds up to 0.65m/s.

� Its Fraction should be minimum.

� The slider platform must support, at least the mass, of the Basler acA2000-165 um
scienti�c camera.

� It must have, at lest, ten di�erent speeds and �ve accelerations.

� The speeds and accelerations must be constant and repeatable.
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For a better understanding to the reader about the development of the electromechanical system,
the information will be presented as follows: mechanical system design, electronic system design,
and speed system calibration, then presented, in the same order, for the design corresponding
to acceleration.

8.2.1 Electromechanical design for speed

The principle of a linear encoder was used for speed estimation. It is possible to estimate the
speed at each instant, knowing each change between the position and the time interval. For this,
the instrument has a set of tooth strips made using laser cutting, which was called encoders.
Each one has a quantity of 13 teeth of equal width. Thanks to the known width of each tooth
(4x), it is possible to determine the displacement of the moving object in an interval with the
sum of all 4x. Additionally, the system saves the time it took for each tooth to pass over the
barrier sensor (4t). Like displacement, the sum of all 4t determines the time it took for the
object to pass over the entire measured interval. Finally, if the relationship between x and t is
directly proportional, the points generate a straight line, the slope of this line being the velocity
of the object in the measured interval. The relationship between 4t and 4xcan be seen in
Fig.8.1 .

Figure 8.1: Time versus distance plot for constant speed.

Mechanical design

While it was possible to build magnetic or pneumatic levitators to reduce friction, they added
instability in the axes of rotation of the mobile platform where the camera was located.
Additionally, they were also out of the economic reach of the present work. Finally, a mechanical
assembly of two 12mm diameter robs with linear bearings with reduced friction, and a toothed
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belt driven by a DC motor with 10 preset speeds was proposed. Based on the above, the design
is shown in Fig. 8.2.

Figure 8.2: Mobile platform on the 12mm rods with the encoder support.

For the selection of the DC motor, two aspects were taken into account; the linear speed and
needed torque to move the mobile platform. Starting from the required linear speed of 0.650m/s,
the radius of the pinion of 0.012m and using Eq.8.1 the requiered rpm were calculated.

rpm =
v

r

60

2π
(8.1)

rpm =
0.65m/s

0.012m

60

2π
= 517.253 rpm

Where v is the speed and r is the radius of the pinion. The engine selected was the Pololu
37Dx68L, this has a maximum torque of 6 kg - cm and 500 RPM , which is enough to pull the
camera mass and to support the aluminum platform. Although the selected mmotor does not
reach the revolutions calculated, it was used because, at the time of the development of this
work, it was the closest to the calculated value and no other motors were found, of recognized
and reliable brands, over 500 RPM with the needed torque.

Electronic design

This section introduces the electronic design of the control, measurement, and trigger stages.
Fig.8.3 depics the schematic diagram of the general slider control unit.
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Figure 8.3: Schematic diagram of the general control system.

Speed control system

To control the di�erent speeds, an ATmega 328P was used. It was programmed through the
Arduino environment. This microcontroller was chosen to perform speed control because it
has counters and timers assisted by a Quarzo crystal that provides high accuracy, in addition
to its agile programming. The system accepts commands through a remote control through
an infrared sensor; once the command arrives, the microcontroller generated a PWM (Pulse-
Width Modulation) value for each of the speeds, which in turn connected with the L298N power
controller, that was responsible for sending the pulse to the motor. The principle of a linear
encoder was used for speed estimation. It was possible to calculate the speed at each instant,
knowing each change between the position and the time interval. For this, the instrument had a
set of tooth strips made using laser cutting, which was called encoders. Each one had 13 teeth
of same widt. Additionally, the microcontroller displayed on a 16 × 2 LCD (Liquid Crystal
Display) the ID identi�er of each of the speeds.When the system detected that the mobile
platform passed through the limit switch, it deactivated the PWM signal immediately to slow
down the advance and prevent the camera from colliding with the end of the system.

Time measurement system

A circuit was designed with the barrier sensor "SHARP GP1A57HRJ00F", in order to perform
the time measurement. The sensor was selected due to its rapid response time to the change of
state (Low-High and High-Low), which is 0.5us. Additionally, it had a 10mm slot, which allowed
the encoder to pass without this collision with the horseshoe-shaped sensor. To measure the time
it took for each tooth on the barrier sensor (Low output) and the time that was not covered (High
output), the ATmega 328P microcontroller was used again, taking advantage of the simplicity
of timer programming and precision in the time concerning other microcontrollers evaluated. It
should be noted that the use of this second microcontroller facilitates programming and avoids
errors in time reading without representing a signi�cant increase in the cost of implementation.
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The microcontroller in the control unit was responsible for measuring the time (in microseconds)
that each tooth took in high and low. At the end of the measurement, the time value was sent via
the Bluetooth module (HC- 05) towards the computer system to perform the speed estimation.
When the horseshoe sensor detected an encoder tooth (Low Output), the output went to the
camera's trigger to capture the image. An identical stop control circuit was implemented at the
end of the run. Fig. 8.4 shows the schematic diagram of the tooth detection circuit.

Figure 8.4: Schematic diagram of the pin detection circuit.

User interface

The system was responsible for controlling the speeds, sending the pulse to the camera's trigger
and measuring the time it took for each encoder tooth to pass through the horseshoe sensor.
Up to this point, estimation of the speed of the object has not been carried out; this was done
in order not to overload the microcontroller with tasks that could prevent a correct recording
of time. A GUIDE (graphical user interface) was designed in MATLAB 2016a to estimate the
speed of the object. This program recorded the time data sent by the control unit and computed
them with the distance information of each of the teeth that had been previously calibrated.
Fig. 8.5 shows the interface in MATLAB 2016a.
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Figure 8.5: Matlab Interface for speed estimation.

As the distance of each encoder tooth was known and the time it took to pass each tooth
through the horseshoe sensor, the speed was calculated from a linear regression of the set of
points (t, x). The result of the linear regression generated the equation of the line, in the end,
the slope was the estimated average velocity of the moving platform, as explained in the section
�Electromechanical design for speed�.

Speed calibration

The mobile platform that holds the camera represents a fundamental part of the system since
its speed is the aim of the study when working with motion blurred-images. For this reason, a
calibration procedure was developed, in order to know the uncertainties of the system speeds
through an indirect measurement procedure.

Distance calibration

It is necessary to know the distance of the teeth because the encoder represents the displacement
of the object over the measured interval. For this, the calibration was performed in order to
�nd the corresponding width uncertainty of each tooth (4x). The width of each tooth and the
width of each slit of each encoder were measured with the 6-inch digital vernier caliper �RM813
Ubermann�. The procedure was performed 20 times for each encoder. Fig. 8.6. shows the
encoder set of the measuring system.
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Figure 8.6: Set de encoder del sistema de medida.

The uncertainty was estimated through direct measurements, taking into account the
required steps to be followed by the GUM (Guide for estimation of measurement uncertainty)
[Schmid et al.(2000)Schmid, Lazos, et al.]. Therefore, the sources of uncertainty shown in Fig.
8.7 were identi�ed.

Figure 8.7: Sources of measurement uncertainty in the calibration process.

Type A uncertainty for distance was then estimated from Eq.8.2:

UA =
σ√
N

(8.2)

Where σ is the standard deviation of the data set and N the number of measurements. Then
the type B1 uncertainty was calculated using Eq.8.3.
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UB1 =
clase exactitud × lectura instrumento

2
√

3
(8.3)

The datasheet delivers the accuracy class of the manufacturer of the digital vernier caliper.
Next, type B2 uncertainty was calculated from Eq.8.4.

UB2 =
Resolución del equipo

2
√

3
(8.4)

The resolution of the equipment is given by the datasheet of the manufacturer of the digital
vernier caliper. Then, the combined uncertainty was calculated from Eq.8.5.

Uc =
√
U2
A + U2

B1 + U2
B2 (8.5)

Finally, the expanded uncertainty was estimated from Eq.8.6 with a coverage factor of k = 1.65
with a rectangular distribution.

UE = kUc (8.6)

Speed calibration

The procedure for this calibration was carried out through the calculation of uncertainty
for indirect measurements recommended by the GUM. Since the indirect measurement to be
analyzed is speed (x/t), the variables of distance and time are available. Due to the time
consuming that took to calibrate each speed with each encoder independently, a calibration
tooth with a 25.2 mm width was designed for the distance measurement (∆x). Then the
distance calibration procedure was performed for the calibration tooth of Fig. 8.8.

Figure 8.8: Calibration slit for time.

Two sensors were used For the measurement of time (∆t). The system recorded 20
measurements of the time it took to cross the calibration tooth through the sensors for each
of the ten speeds. Finally, a comparison was made between the standard instrument �Digital
timer with Infra-Red (IR) barrier Pasco - ME-9215B� (sensor 1) and the system measurement
(sensor 2). Fig.8.9. shows the general outline of the calibration in the laboratory.
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Figure 8.9: Time measurement with the standard instrument and the designed system.

Firstly, the speed calibration procedure was performed. First, type A uncertainty was
estimated for the time from Eq.8.2. Next, type B1 uncertainty was calculated using Eq.8.3.
Unlike distance calibration, the accuracy class is expressed by 8.7.

accuracy class =
(Ec − Ep)

Ep
100 (8.7)

Where Ec is the equipment reading and Ep is the reading of the standard instrument.
Then the type B2 uncertainty was estimated from Eq.8.4 with a resolution of the equipment
= 1 × 10−6since the system delivers time measurements of the order of microseconds. Then
the combined uncertainty was estimated using Eq.8.5. As the speed calibration was performed
through indirect measurements, the sensitivity coe�cients presented in Eq.8.9 and Eq.8.10 were
estimated for each of the ten preset speeds. These coe�cients were estimated from the function
of uniform rectilinear motion velocity presented in Eq.8.8.

v =
x

t
(8.8)

Where x is the distance, t is the time, and v is the speed.

Ct =
∂f

∂t
=

∂

∂t

(x
t

)
= − x

t2
(8.9)

Cx =
∂f

∂x
=

∂

∂x

(x
t

)
=

1

t
(8.10)

Then the total uncertainty was estimated from Eq.8.11 with the sensitivity coe�cients and
the combined uncertainty of the distance (u2c(x))and the time (u2c(t)) of each velocity with the
tooth of calibration.
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Uc(t) =
√
C2
t u

2
c(t) + C2

xu
2
c(x) (8.11)

Once the total uncertainty was estimated, the dominant distribution criterion was used; in
this case, U1 was called the standard uncertainty for time, and UR was the combination of the
remaining uncertainties as shown in Eq.8.12 and Eq.8.13.

U1 =
√
C2
t u

2
c(t) (8.12)

UR =
√
C2
xu

2
c(x) (8.13)

As shown, Eq.8.14 is the relationship between U1 and UR, which determines the type of
distribution. A ratio of less than 0.3 was obtained; therefore, the procedure was followed with
a rectangular distribution.

UR
U1

=

√
C2
xu

2
c(x)√

C2
t u

2
c(t)

(8.14)

Finally, the expanded uncertainty was estimated from Eq.8.6 with a coverage factor of
k = 1.65 with a rectangular distribution.

8.2.2 Electronic design for acceleration

Mechanical design

With a few modi�cations in the mechanical system, it was possible to go from constant speed
to constant acceleration using the inclined plane principle. The main idea was to raise one end
and let the mobile platform move freely along the rails. The belt and engine were decoupled so
as not to exert forces on the mobile platform. In order to raise one of the ends of the mechanical
system, the lifting support shown in Fig. 8.10 was designed, which allowed changing the angle
of inclination of the system, ranging between 2.9◦and 15◦.
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Figure 8.10: View of the lifting support.

When raising the entire system, there was an inconvenience to measure the pulses. the
sensor boxes laid down on the laboratory table, so an L-pro�le was needed to hold the pulse
measurement system boxes. Fig. 8.11 shows the �nal design, and an L-shaped pro�le is visible
from end to end.

Figure 8.11: Final design of the constant acceleration mechanical system.
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Electronic design

A new design of the pulse circuit was made decreasing its size, making it lighter to be attached
to the L-pro�le. Therefore, only a change in the size of the printed circuit is perceived as seen
in Fig. 8.12, leaving 6 cm of high by 6 cm wide.

Figure 8.12: Tooth and slit width detector circuit for acceleration measurement.

User interface

The graphical user interface was modi�ed, allowing us to choose in which way to work, speed,
or acceleration. In the case of acceleration, a polynomial regression of order two is performed
in which the term that accompanies the variable squared corresponds to 1/2 of the acceleration
of the mobile platform and the term that accompanies to t is the initial system speed as seen
in Fig. 8.13.

Figure 8.13: User interface for acceleration estimation in MATLAB.
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Acceleration calibration

Two sensors were used to take acceleration measurements, which took 20 acceleration
measurements according to the angle of inclination (from 2.9◦ to 15◦). Subsequently, a
comparison was made between the standard instrument �Phywe Cobra 4 Acceleration� (sensor
1) and the system measurement (sensor 2). Finally, the same direct measurement calibration
procedure was performed with a standard instrument seen in the �Distance calibration� section.

8.3 RESULTS

Las Fig. 8.14 y 8.15 show the system in machined aluminum for the platforms, pinions, and
fasteners, in addition to 12mm 1045 calibrated steel for the displacement shafts. All printed
circuit boards were made in the laboratory with a CNC prototyping machine. Similarly, the
acrylic boxes were designed using SolidWorks and cut using a laser. A toothed belt with a
0.2-inch neoprene pitch with �berglass reinforcement cords was used for the traction system.
The sprockets used were 16 teeth with the same belt pitch and a diameter of 1.25 in.

Figure 8.14: Actual electromechanical speed system.
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Figure 8.15: Actual alectromechanical acceleration system.

Table 8.1 shows the �rst 5 teeth and indentations of encoder 5 with their respective average
measurements and uncertainties.

Indicador X = x± UE[mm]

tooth 1 3.174±0.035
Slit 1 4.893±0.038
tooth 2 3.067±0.035
Slit 2 4.908±0.036
tooth 3 3.091±0.035
Slit 3 4.908±0.035
tooth 4 3.108±0.036
Slit 4 4.897±0.037
tooth 5 3.164±0.107
Slit 5 4.903±0.036

Table 8.1: Value of some encoder pins with their corresponding uncertainty.

Table 8.2 shows the results of the calibration for each of the 10 speeds.
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Index V = V ± UE[m/s]

0 0.173±0.012
1 0.229±0.016
2 0.324±0.019
3 0.395±0.022
4 0.457±0.023
5 0.500±0.025
6 0.533±0.027
7 0.573±0.028
8 0.591±0.028
9 0.666±0.031

Table 8.2: Speed value with its corresponding uncertainty.

The results of the calibration of each of the 8 accelerations are shown in the Table 8.3.

Indicador Ángulo a = a± UE[m/s2]

1 15° 2.463± 0.029
2 13.3° 2.178± 0.023
3 11.5° 1.863± 0.012
4 10.1° 1.541± 0.016
5 7.9° 1.229 ±0.013
6 6.1° 0.942± 0.009
7 4.5° 0.644± 0.007
8 2.9° 0.351± 0.004

Table 8.3: Acceleration value with corresponding uncertainty.

8.4 CONCLUSIONS

The developed system corresponds to an electromechanical system that allows moving a platform
along with a pair of parallel steel rods that support a digital camera. The calibrated slider was
assembled to take motion blur photos used to estimate velocity and acceleration from a single
image as part of a this study. The �nal construction of the system was calibrated resulting in
uncertainties of 0.173±0.012m/s and 0.351±0.004m/s2 for speed and acceleration, respectively.
The system is reliable for the study of uniform and accelerated linear motion. The system can
measure instantaneous speed and acceleration through encoders and sensors, it can also be
used for the teaching uniform rectilinear motion and the inclined plane. In the study carried
out in [Cortés-Osorio et al.(2018)Cortés-Osorio, López-Robayo, and Hernández-Betancourt], it
was possible to take images with uniform blurring with this instrument, and consistent results
were obtained in terms of the estimated velocity values. In summary, the speeds in the study
using digital image processing were consistent (error less than 5%) with those thrown by the
electromechanical system. The results of use are evidenced in the work presented by Cortés
Osorio et al. in [Cortes-Osorio et al.(2018)Cortes-Osorio, Gomez-Mendoza, and Riano-Rojas]
where it was used to evaluate a novel method for estimating the speed of an object from a single
linear motion blur image. It is proposed as future work, increase the maximum speed of the
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mobile platform up to 1.5m/s and expand the range of speeds to 20; this is achieved by changing
the motor and increasing the length of the rods, mainlly. This brings new challenges, such as
the implementation of the braking system and the heat treatment of the steal rods to reduce
buckling. This chapter was published by IngeCuc Journal and it is available in [Cortes-Osorio
et al.(2020)Cortes-Osorio, Muñoz Acosta, and López Robayo]
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