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Universidad Nacional de Colombia
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Bogotá, Colombia

2020





Dedicatoria

A mi madre y a mi hermana

Por su apoyo incondicional y consejos durante

el duro periodo que termina.





vii

Resumen

Este trabajo presenta un framework para el conteo de veh́ıculos a partir de videos, utilizando

redes neuronales profundas como detectores. El framework tiene 4 etapas: preprocesamiento,

detección y clasificación, seguimiento y post-procesamiento. Para la etapa de detección se

comparan varios detectores de objetos profundos y se proponen 3 nuevos basados en Tiny

YOLOv3.

Para el rastreo, se compara un nuevo rastreador basado en IOU con los clásicos: Boosting,

KCF, TLD, Mediaflow, MOSSE y CSRT. La comparación se hace en base a 8 métricas de

seguimiento multiobjeto sobre el conjunto de datos del Bog19.

El conjunto de datos Bog19 es una colección de videos anotados de la ciudad de Bogotá.

Las clases de objetos anotados incluyen bicicletas, autobuses, coches, motos y camiones.

Finalmente el sistema es evaluado para la tarea de contar veh́ıculos en este conjunto de

datos.

Para la tarea de conteo, las combinaciones de los detectores propuestos y los rastreadores

Medianflow y MOSSE obtienen los mejores resultados. Los detectores encontrados tienen el

mismo desempeño que los del estado del arte pero con una mayor velocidad.

Palabras clave: veh́ıculo, análisis de video, aprendizaje de maquina, visión por computador,

aprendizaje profundo, detección de objectos, rastro de objetos..
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Abstract

This work presents a framework for vehicle counting from videos, using deep neural networks

as detectors. The framework has 4 stages: preprocessing, detection and classification, tracking,

and post-processing. For the detection stage, several deep object detector are compared and

3 new ones are proposed based on Tiny YOLOv3.

For the tracking, a new tracker based on IOU is compared against the classic ones: Boosting,

KCF, TLD, Mediaflow, MOSSE and CSRT. The comparison is based on 8 multi-object

tracking metrics over the Bog19 dataset.

The Bog19 dataset is a collection of annotated videos from the city of Bogota. The annotations

include bicycles, buses, cars, motorbikes and trucks. Finally, the system is evaluated for the

task of vehicle counting on this dataset.

For the counting task, the combinations of the proposed detectors with the Medianflow and

MOSSE trackers obtain the best results. The founded detectors have the same performance

as those of the state of the art but with a higher speed.

Key words: vehicle, video analysis, machine learning, computer vision, deep learning,

object detection, object tracking.
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1 Introduction

In an urban environment, the monitoring task covers more traffic behaviors, more road users

and objects on the images increase their variety in comparison with a highway environment

[1]. Forbidden turns, heavy traffic or illegal parking can be found. The motorbikes, bicycles

and pedestrians are the most common road users and non-transport related-objects may

appear, increasing the difficulty of analyzing the urban traffic behavior.

An important traffic statistic is the quantity and direction of vehicles traveling in a determined

area. Usually, magnetic sensors have been installed on the road for counting, but at a high

cost [1]. With videos, the data extraction can be done at a lower cost, which has generated

commercial solutions like one in [2] and the development of several research works.

In 2015, the traffic authority of Bogotá city (“Secretaŕıa de Movilidad”, SDM) launched the

Traffic Management Center, which monitors and manages traffic at 350 points in the city

[3]. Its equipment includes radars, surveillance cameras and sensors on the road network for

counting. These counting sensors are few and only detect when an object passes over them

without classifying it.

The “Programa de Investigación en Tránsito” (PIT) of the Universidad Nacional de Colombia

was contracted by the SDM to carry out traffic monitoring. It takes measurements of speed,

counts, flows and occupation by direct observation of the road. This manual process rarely

used because it is very costly.

The information provided by the cameras already installed in the city would allow constant

monitoring of the traffic, even though an automatic and cost-effective method to process

the image sequences is needed. This method should overcome the challenges of working with

these sources and obtain the necessary traffic data.
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1.1. Problem identification

The process of detecting and following up vehicles using video surveillance cameras becomes

challenging due to the different angles in which these cameras are located, with respect to

the vehicles to be monitored. Therefore, detection from these videos is difficult and requires

robust methods tolerant to angle changes.

Consequently, the problem to be solved is to determine the characteristics of a robust vehicle

counting method that must be tolerant to the changes of the vehicle perspective with respect

to the camera location. For this purpose, only machine learning techniques will be used for

the detection of vehicles.

The guiding question for this work is: How to machine learning-based detection and classification

models can be adapted to the problem of counting vehicles in video sequences taken from

different perspectives?

1.2. Objectives

1.2.1. General objective

To develop a system for vehicle counting that uses video sequences as input with different

perspectives and is based on computer vision and machine learning techniques.

1.2.2. Specific objectives

1. To determine the characteristics that define the robustness of a detection method when

the perspective of the vehicle changes in each video sequence.

2. To design and implement a detection method for vehicles on images from surveillance

cameras.

3. To design and implement a method for tracking vehicles in video footage taken by

surveillance cameras.

4. To develop a software system that integrates detection and tracking methods for vehicle
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counting in video sequences taken by surveillance cameras.

5. To evaluate the system on a set of videos collected from monitoring done by the

Secretaria de Movilidad of Bogotá city.
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2.1. Visual surveillance

The video sensors are an important source of data for the Intelligent Transportation Systems

(ITS) [3]. There are 4 main reasons for their use: 1) the people are used to visual information;

2) the video sequences can cover a wide information spectrum; 3) they are easily installed,

operated and maintained, and 4) the price-performance ration has improved with the time.

The obtained image quality depends on the environment, location and camera characteristics.

The traffic parameters extraction from video has 3 phases: vehicle detection and recognition,

tracking and analysis [4]. The detection phase establish if there are interesting objects on

the visible area and separates them from the image background. In the tracking phase, the

vehicle location is estimated for each frame of the video and the trajectory is build. Finally,

the result is analyzed to extract some parameters like: velocity, number of vehicles, traffic

density and accident information.

2.2. Image processing

The digital image transformations are fundamental for prepare the input for the analysis

process. Some of the most popular image processing methods are: binarization, RGB to gray

scale, noise filtering and down sampling. (Table 2-1).
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Table 2-1: Image preprocessing methods.

Method Description Advantages Disadvantages

Binarization (Black

and white)

Transforms a color

image to a black and

white only image,

with and specific

threshold.

If the threshold is

appropriate the next

image process is

greatly simplified

There is a huge loss

of information.

RGB to Gray Each frame is

converted to a gray

scale, the color

channels are merged

to one.

The variation from

the color diversity is

removed.

If the posterior

phases are based on

the image intensity,

can have difficulties

when the vehicle has

the same intensity

as the road [4].

Noise filtering Reduction of the

aleatory values in

image generated

from the capture

setup.

Down-sampled Reduction of the

image resolution [5].

Increase the speed of

processing.

Small objects may

be lost.

2.3. Object detection

The object detection problem is more general than the image classification one [7]. In the

image classification, the objective is determine the classes or categories that the entire image

or the main object in the image belongs. In object detection, a class and the location on the

image for each object is determined.

The literature about detection about object detection can grouped the according with

the approximation, bottom-up or top-down [1]. The bottom-up approximation detects and

classifies the object’s components first, then the object area in the image is identified based on

the presence of components. On the other hand, the top-down groups the pixels that represent

an object and this model is propagated by the system. Inside the top-down approximation

can be localized the methods based on movement and features.
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Figure 2-1: Detection methods.

The methods based on movement assume that the main feature of the vehicles is been moving

[4]. However, the moving object can be other than a vehicle, and the cars are not always

in movement. The methods based on features use the visual information of the object, like

color and shape, to create models. These methods are capable of detect stationary vehicles

and even recognize them.
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Table 2-2: Detection methods description, advantages and disadvantages.

Method Description Advantages Disadvantages

Featured-based

methods

Methods based on

visible features of the

vehicles like color,

texture, shape and

others calculate from

the image [6].

Can detect and

recognize moving

and parked vehicles [6].

They are suitable when

complex distortions

are present on the

background.

It’s difficult

discriminate the

features of near

vehicles.

Representative

approaches

The method use

information from the

vehicle characteristics

or its parts, like

symmetry, color, edges,

contour, texture,

shadow [6]. Some

relevant parts are the

lights, windshield or

tires.

The computational

complexity depends

on the combination of

chosen characteristics

[6].

3d Modeling

The method build

a 3D model from

the vehicle to use as

search reference [6].

Disparity map and

Inverse Perspective

Mapping (IPM) are the

main used methods.

It allows recover precise

tracks [7].

The candidate vehicle

must only be compare

with a finite set of

prototypes.

It’s difficult obtain

an exact 3D model,

specially for moving

vehicles [6]. A single

model can’t be used

for all vehicle types.

The models may be too

simple to use in high

resolution images.

Machine

learning

Use machine learning

techniques to generate a

discriminative classifier,

from training data, to

label unseen images [6].

A big dataset is

required for training

and testing.
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Continuation of Table 2-2

Method Description Advantages Disadvantages

Motion-based

methods

Exploit the moving

nature of the vehicles

for the detection task

[6]. These methods had

been frequently used in

video surveillance.

Adequate when the

background is relative

fixed and most of the

moving objects in the

scene are vehicles [6].

No always a vehicle is

moving and a moving

object is not always a

vehicle [6].

The stationary vehicles

can be absorbed by the

background as the time

pass [8].

(Adaptive)

Background

subtraction

It calculates the

difference pixel by

pixel between the

current image and the

background reference

image, given a dynamic

or static threshold,

to determine the

foreground. Exists

several methods to

build the background

image without prior

knowledge like:

image median, Single

Gaussian, Gaussian

mixture model (GMM),

low-pass filter, Kalman

filter and Wavelets [6].

Low computational

cost, very suitable for

real time processing [6].

It can tolerate changes

in light and weather

conditions [7].

The updating process

for the background

reference image can add

noise.

It requires a

background reference

without moving vehicles

and has problems with

occlusions [7].

Optical flow

Estimates the pixel

movement based on the

temporal changes and

their correlation in the

image sequence [6].

Obtains information

from the vehicle

movement [6].

It uses an iterative

algorithm consuming

many time and has a

poor performance when

noise is present [6].

For real time processing

needs a special

hardware setup.
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Continuation of Table 2-2

Method Description Advantages Disadvantages

Frame

differencing

It calculates the

difference between

consecutive frames

at pixel level, with a

given threshold. It’s

preferable use more

information than just

the last frame, for

example: Three-Frame

Differencing or

Multi-Frame

Differencing [6].

It’s very fast and

adequate for dynamic

changes on the

background [6].

It’s difficult detect

multiple, very fast or

very slow objects [6].

It doesn’t handle

well the noise, abrupt

changes of illumination

or periodic movements

in the background like

trees [4, 6].

Virtual coil

It set a line or region

of interest to watch.

When a object pass

through the region

and the image changes

more than a given

threshold is considered

as a vehicle [6].

The algorithm has low

computational cost and

its flexibility made it

viable for commercial

detection systems [6].

Like with the physical

coil, the information is

limited to the region of

interest, discarding the

rest of the image [6].

2.3.1. Machine learning

The feature based object detectors can be classified in 3 groups: Classic, One-stage and

Two-stage [9]. Some of the classic ones are Convolutional Neural Networks [10], Viola and

Jones [11] and HOG [12]. The sliding-window approach was the leading detection paradigm

in classic computer vision, in which a classifier is applied on each cell of a dense image grid.

If the cell is classified as containing and object, the cell becomes the bounding box for the

detected object.

Deep learning [5] is one of the latest advances in the field of object detection, thanks to

the progress of parallel computing hardware and software [13]. It’s key component is the

multilayered hierarchical data representation in the form of neural networks with more than

a few layers. The availability of large data sets, powerful hardware and training methods of
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Figure 2-2: Feature based detectors used in Machine Learning.

deep networks awoke a new interest for this area.

After the resurgence of deep learning, the two-stage object detectors came to dominate in

object detection [9]. The two-stage detectors generate a set of candidate proposals containing

all objects at the first stage, and classify the proposals into foreground or background classes

in the second one. R-CNN [14] combines the region proposals with a convolutional neural

network as feature extractor and SVMs for region classification, achieving a mAP of 53.3 %

on the VOC 2012 dataset. The Faster R-CNN framework [15] integrates the two stages of

R-CNN into a single convolution network using Region Proposal Networks (RPN).

The one-stage methods like SSD [16, 17] and YOLO [18, 19, 20] have been tuned for speed

but their accuracy is lower than the two-state ones [9]. YOLO uses a single neural network

to predict bounding boxes and class probabilities on real time, but it struggles with small or

nearby objects and has higher localization errors. It’s last version has an mAP of 57,9 % on

the COCO dataset, with an inference time of 50ms [20].

RetinaNet is a novel one-stage object detector, that uses a new loss function called focal

loss to overcome the previous one-stage and two-stage single-model detectors [9]. The main
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problem with the one-stage object detectors is that their accuracy is low compare with the

two-stage ones because the class imbalance between foreground and background. Using new

loss functions, RetinaNet improves the AP on the COCO data set for a single model.

Table 2-3: Machine learning object detectors.

Method Description Advantages Disadvantages

AdaBoost

Combines weak

classifiers into one

strong classifier. A

weight is assign for each

sample, depending on

the correctness of the

classification [6].

Only a few weak

classifiers need to be

trained.

Convolutional

Neural

Networks

(CNN)

Uses artificial neural

networks with

convolutional layers

to detect objects in

large datasets [21].

It detects and classify

the vehicle, according

with the training labels

[21].

It doesn’t need a

pre-training stage

compared with

Autoencoder (AE) and

Restricted Boltzmann

Machine (RBM) [13]

The computational cost

is proportional to the

input image size [21].

One stage

detectors

The generation of

object proposals

locations and

classification is done by

a single network [9].

High speed on exchange

of accuracy [9].

It must process a big

quantity of object

proposal locations

and tends to be more

background samples

than true objects [9].

Two-stage

detectors

The generation of

object proposals

locations is done

by on network and the

classification is done by

another network [9].

It frequently achieves

best accuracy on

benchmarks [9].
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Continuation of Table 2-3

Method Description Advantages Disadvantages

Histogram

of Oriented

Gradients

(HOG)

It describes the

appearance and local

shape of and object

with a intensity or edge

gradient distribution

[22].

It operates on

localized cells, then

invariant to geometric

and photometric

transformations, except

object orientation

change [22].

The original HOG is

not capable of handle

images of different

size and aspect, al

alternative is SHOG

[22].

2.4. Object tracking

The tracking phase is necessary for the object counting, because with the trajectory information

the precision of the process can be improved. For example in the work of [23] the tracking

information improved the counting results with classification on low resolution images.

Figure 2-3: Tracking methods.

For this phase several methods had been developed and applied [6]. Some of the more common

are the Kalman filter [24] and particle filtering, for which no prior knowledge is required.
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Particle filtering overcomes the restriction of a single Gaussian distribution for the Kalman

filter.

The tracking of multiple components of an object, bottom-up approximation, had been done

in the work [25]. The tracking of vehicles is done with two levels of particle filtering. The

first level extracts particles from the appearance features of the components. The second

level models a posteriori probability of the constellation. The experiments were conducted

against the dataset VIVID-PETS. It reports that a dynamic adaptation of the spacial model

rigidity allows the occlusion handling, keeping the relationship between components.

Table 2-4: Machine learning object detectors.

Method Description Advantages Disadvantages

Representation

of the vehicle

The vehicle is

represented as a rigid

body, with dots, area,

contour or model [6].

Point

representation

It’s adequate for

tracking of object with

a small area on the

image [6].

Contour-based

It uses a close contour

toe represent moving

objects. The contour

can be continuously and

automatically updated

[6].

Background edges

can interfere with the

process.

Methods

based on prior

knowledge

It uses previous

information of the

image or the objects to

tracking them.

Requires prior

knowledge of the

shape or other features

of the vehicle.

Template

Match

It searches a template of

the vehicle on the image

[6].

It’s simple to

understand, with

high precision and can

recognize the vehicle

on static or dynamic

images [6].

It can take some time

for implementation

and the traditional

algorithm with a

rectangular template

with gray correlation

is computational costly

[6].
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Continuation of Table 2-4

Method Description Advantages Disadvantages

Mean Shift

Non-parametric

gradient density

estimation algorithm,

based on a general

kernel function [6].

The points with zero

probability of gradient

density can serve as

pattern points in a

spacial clustering model

[6].

Particle

Filtering

Frequently used to track

multiple objects

They can handle

non-linearities

introduced by

occlusions and

background clutter

[26].

Kalman filter

Uses a series of

measures over time,

with noise, and

produces more accurate

estimations of unknown

variables than the

ones based on a single

measure [6].

It can use simple

state variables like

position and size, and

has been heavily used

in automatic traffic

surveillance systems [7].

It uses all the historical

information and reduces

the search range over

the image, with a high

speed processing [6].

For moving vehicles,

it remains stable on

illumination changes or

occlusion [6].

The performance for

relative big vehicles

in the image is not

satisfactory [6].

Bayesian filter

Builds a posterior

density probability

from the state variables,

using a group of random

samples [6].

This approach

overcome the restriction

of a gaussian

distribution of the

Kalman filter [6].
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Continuation of Table 2-4

Method Description Advantages Disadvantages

Monte-Carlo

Particle Filter

(MCMC PF)

Uses a Markov

Chain Monte-Carlo

exploration space to

associate data and

track objects during a

period of time [26].

The quantity of

particles is a lineal

function of the number

of objects to track [26].

The reported capacity

of the algorithm is

limited to 12 vehicles in

[26].

2.5. Public datasets

Exists several public image and video dataset that can be used training and evaluation. For

the object detection task: ILSVRC [27], PASCAL VOC [28] and COCO [29].

In Multi-Object tracking the system output is the track for each object. The track has an id,

bounding boxes for each frame and the type of object. The following datasets are public for

multi vehicle tracking: UA-DETRAC [30] with 100 videos, VisDrone [31] with 288 videos,

and KITTI MOTS [32] with 21 training videos.



3 State of art

For the problem of vehicle counting, it has been installed magnetic sensors on the road and

cameras on poles [1]. The magnetic sensors are intrusive and come at a high maintenance

cost. With videos the information extraction can be done at a lower cost, witch has inspired

the realization of several research works and commercial solutions.

There has been an increasing interest for automatic computer vision based analysis of urban

traffic activity from videos [1]. The automatic extraction of relevant information can aid

human operators observing traffic behavior from video data. The availability of monocular

road-side cameras in urban environments, the increasing computer power and development of

computer vision algorithms has enabled new applications for Intelligent Transport Systems

(ITS).

The traffic parameters extraction from video has 3 phases: vehicle detection and recognition,

tracking and analysis [6]. In the detection phase, its established if there are objects of interest

on the visible area and are separated from the image background. In the tracking phase, the

vehicle location is estimated for each of the video frames and its trajectory is build. Finally,

the result is analyzed to extract parameters as: velocity, number of vehicles, traffic density

and accident information.

3.1. Vehicle detection

Detection methods can be divided in 2 groups: based on features and movement detection

[6]. The motion based methods are usually used on surveillance of scenes where the main

nature of the vehicle is moving and are adequate when the background is stationary.

The methods based on features relies on usually on color, texture, shape or other features

extracted of the vehicle. These methods can detect stationary cars, recognize the vehicle and

are adequate when complex perturbations exists on the background [6]. The methods like

HOG [12], Viola Jones [11] and Deep Neural Network [5] are in this group.
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The idea of HOG is that object appearance and shape in an image can be described by

the distribution of intensity gradients. But HOG is not capable of handle variable size and

aspect ratio cars on images, so a method called SHOG was proposed [22].

After the resurgence of deep learning, the CNN came to dominate in computer vision. The

works of [33] and [13] present reviews of these algorithms in vision tasks and have shown

the best performing experimental results among moderns models. The SSD [16, 17], YOLO

[18, 19, 20] and RetinaNet [9] are the top rated single model for object detection.

3.2. Vehicle tracking

Exists two main approaches for establishing the trajectory of an object over time, tracking

[34]. The first uses the initial detection and the information of previous frames to estimate

the correspondence between object instances, and the second one tracks by object detection

on each frame.

In tracking by detection first a object detector is applied on each video frame and the tracker

associates these detections to tracks. The quality of the results are limited by the detector

performance and the tracker capacity to handle missing detections, false positives and ID

switches. The work of [35] reviews the use of deep learning for the Multiple Object Tracking

(MOT) task.

The IOU tracker achieves high speed on the UA-DETRAC dataset, assuming that the

detections of an object on consecutive frames have high IOU and without using visual

information [36]. Extending the IOU tracker with a visual tracker used when no detection

satisfies the IOU threshold, reduces the ID switches and fragmentations on the UA-DETRAC

and VisDrone datasets [37].

3.3. Visual vehicle counting

The work of [38] was one of the first using image processing to estimate traffic parameters.

From captured images with television cameras, mounted in posts, the background is subtracted

to detect the vehicles and a signature from the image segment is created when the object

passes over the detection line. The trajectory is determined searching the signature on the

next frames. It reports that the field test were successful for a lane of traffic.
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The work of [39] makes the vehicle counting through the background subtraction and the

tracking with the Kalman filter. The background separation is made based on characteristics,

taking in account the shadows and the object occlusions. For this, presents a new characteristic

called “linearity”, to classify the vehicles according to their size and velocity.



4 Robustness characteristics

In situations involving image recognition, it’s required an insensible system to background,

position, orientation, illumination and near objects variations, respect to the object of

interest [40].

4.1. Scenes

A more robust method is needed to deal with complex traffic scenes such as these.

Table 4-1: Scene types.

Scene Description Papers

On-road The camera is located on or inside the vehicle. Only the

nearest objects are visible, at the road level.

[22]

Highway surveillance A multi-lane roadway is visible, with vehicles only.

Traveling in one or several directions. It’s a fixed top

view of the vehicles, usually far from the camera.

Lane surveillance All the visible vehicles travel in the same direction, and

the visible roadway is straight.

[4, 41]

Urban Several vehicles and other objects are visible. [21]

Night The recording is at night. [4]

4.2. Camera

Among the challenges that must be overcome to achieve automatic visual vehicle counting the

camera location, type, movement and calibration. Although cameras are usually monocular

and static, until an operator takes control, the perspective of the vehicle may change as it

moves.
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Table 4-2: Camera.

Property Description Papers

Len type
Monocular The camera has a single lens. This

is the most common type.

[4, 41, 22]

Stereo The camera has two lenses. [21]

Camera location
On infrastructure The camera is anchored in the

infrastructure and fixed looking at

the traffic.

[4, 41]

On the vehicle The camera is mounted inside or

on top of the vehicle, captures the

vehicles in front.

[21, 22]

Camera movement
Environmental The camera moves because of the

present natural elements, like the

wind, without leaving its position.

It may loose focus.

[21, 4, 22]

Automatic The camera has an automatic

movement to cover a wide area.

Human directed A human operator moves the

camera to see an area of interest.

None [41]

4.3. Image quality

The chosen properties and changes in the image, due to weather or illumination, can have a

severe impact on the object detection results.

Table 4-3: Image quality.

Property Value Papers

Color scale

Color [22]

Gray [4, 41]

Color and gray [21]

Image resolution

1280x1024 [22]

1242x375 [21]

320x240 [41]

Unspecified [4]
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4.4. Object Occlusion

The occlusion is one of the main problems to solve of visual object tracking. It’s common

in the urban scenes and introduces ambiguity in the vehicle detection, this causes erroneous

estimations of traffic parameters [42]. The occlusion can be mitigated with cameras installed

at higher poles [1], the extra height provides a better viewing angle.

Regardless of the method, occlusion is one of the problems to be considered in the detection

phase. For example, in the work of [41] a system was built for the control of traffic-light

intersections using a Haar classifier and the Adaboost algorithm for vehicle detection. Although

the system was tested using simulations, it was shown that the proposed detection algorithm

is sensitive to occlusions greater than 10 % of the visible area of the object.



5 Vehicle counting system

The system has 4 phases: image preprocessing, vehicle detection, tracking and post-processing.

In the first phase, each of the video frame is read and scaled. In the object detection phase,

a object detector is passed over the frame. The detection results are used as the input for a

tracking algorithm. The bounding box for each track are plotted over the frame and saved

on a new video. The figure 5-1 shows the described system workflow.

The system follows the top-down approximation for traffic analysis systems described in [1].

The vehicle counting results are calculated based on the tracks. For each active track on the

frame an unit is added to the total count by vehicle type.

5.1. Image preprocessing

The input frame is scaled to reduce the number of pixels to process. The target resolution has

a minimum side of 600 pixels keeping almost the same aspect ratio, for example a 1920x1080

image will be reduced to 1066x600. The objective with this transformation is control the

speed of the system, as the image size has a great impact on object detection performance.

5.2. Vehicle detection

For vehicle detection 4 pretrained object detectors and 3 custom models are used to infer

the bounding boxes and class probabilities. The pretrainned detectors are Faster R-CNN

architecture with the resnet50 model [15], YOLOv3 [20], Tiny YOLO and RetinaNet [9].

YOLO uses a single CNN to predict class probabilities and bounding boxes [18, 19]. YOLOv3

version has reported an mAP of 57,9 % on the COCO dataset, with an inference time of 50ms

[20]. Tiny YOLO is an architecture designed for embedded devices.
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Figure 5-1: System workflow.

The 3 new custom networks VVC1, VVC2 and VVC3, are based on Tiny YOLOv3. The

networks are has DarknetConv2D_BN_Leaky layers, witch represent a Convolutional 2D layer

followed by a Batch Normalization layer and a Leaky ReLU layer with alpha 0,1. At the

end of the networks a lambda layer, with no trainable weights, is used for the YOLO loss

calculation.

The VVC1 architecture, in the figure 5-2, was obtained adding a DarknetConv2D_BN_Leaky

layer at the beginning of Tiny YOLOv3. The expected result is an increase in the abstraction

of features from the image.

The VVC2 has a Dropout layer, with a rate of 0.2, after the first max pooling layer, as

shown in the figure 5-3. An increased generalization capability is the expected result of this

modification.
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The VVC3 replaces the first and second DarknetConv2D_BN_Leaky layers with regular

convolutional layers, and removes the second max pooling layer and third DarknetConv2D_BN_Leaky

layer, shown in the figure 5-4.

A subset of the COCO dataset, called COCOv, is used for training and validation. The new

dataset has only images with bicycles, cars, motorbikes, buses or trucks, from the original

training and validation sets.

The VVC networks were trained during 10 epochs using the COCOv dataset. The YOLO

loss of the networks for each epoch of training and validation is shown in the figure 5-5 and

5-6 respectively.

5.3. Vehicle tracking

A custom tracker based on the IOU tracker [36] is used to build the tracks. The Patient

IOU Tracker keeps the tracks that don’t satisfied the detection threshold and the minimum

track length as inactive tracks. The inactive tracks are not considered as results of the

tracking algorithm, but can become active if a detection is assigned to the track based on

the IOU threshold. If a track remains inactive for more than p frames the track is discarded,

p represents the patience of tracker.

The naive tracker use IoU for the association of each detection with the previous one. The

algorithm search for each bounding box the closest track based on the IoU metric. If no

track is found, then a new track is started for the type of vehicle. The tracks with no new

detections in the last 5 frames are finished.

The parameters for the Patient IOU tracker were determined using a grid-based search

as described is table 5-1. From the 560 parameter combinations, the best is σIOU = 0,5,

σh = 0,8, tmin = 4 and p = 2, with a MOTA=-193 % and MOTP=0.28 on the BOG18

dataset using the RetinaNet detector.
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Table 5-1: Ranges for Patient IOU tracker

parameter grid search.

Variable Min value Max value Step

σIOU 0.3 0.7 0.1

σh 0.5 0.8 0.1

tmin 1 4 1

p 2 8 1

5.4. Image post-processing

The system draws the bounding boxes and track id over the scaled frame and it writes

an output video. The bounding boxes come from the tracking phase and the track id is a

composition with the vehicle type and the number of track.
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Figure 5-2: Architecture of the VVC1 network.
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Figure 5-3: Architecture of the VVC2 network.
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Figure 5-4: Architecture of the VVC3 network.
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Figure 5-5: Training YOLO loss of the VVC networks with the COCOv dataset.

Figure 5-6: Validation YOLO loss of the VVC networks with the COCOv dataset.



6 System evaluation on surveillance

videos

For the final evaluation of the counting system the Bog19 Dataset was used. The dataset

was labeled with the CVAT tool introduced in [43] annotation tool. The ground truth is in a

xml file with the tracks for each vehicle, including passengers in the case of motorbikes, the

bounding boxes and a flag for occluded objects. The videos were captured with a smarphone

camera at 30fps with a 1920x1080 resolution. Table 6-1 describes the dataset.

Table 6-1: Sumary of the Bog19 dataset.

Videos Frames Object boxes Bicycles Buses Cars Motorbikes Trucks

2 2037 10196 3 2 32 11 1

The experiments run a desktop computer with a high end GPU for domestic use. The used

GPU is the Nvidia Geforce 1080Ti with 11GB of VRAM, a CPU Ryzen 5 3600 and 16GB

of RAM. The computer has Debian 10 GNU/Linux as operative system, with the 430.64

version of the Nvidia driver installed.

6.1. Tracking metrics

Eight metrics were chosen to evaluate the performance: Mostly Tracked targets (MT), Mostly

Lost targets (ML), False Positives (FP), False Negatives (FN), Identity switches (IDs),

Fragmentations (FM), Multi-Object Tracking Accuracy (MOTA) and Multi-Object Tracking

Precision (MOTP).

In the figure 6-1, the best MOTA value is for the VVC models with the Medianflow or

MOSSE tracker. The Multiple Object Tracking Accuracy (MOTA) integrates the results for

FN, FP, and IDs.
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Figure 6-1: MOTA vs fps on the Bog19 dataset.

The MOTP metrics reflects the tracking precision based on the TP metric. In the figure

6-2, the VVC models have the highest MOTP by fps. The RetinaNet networks achieve high

MOTP but with more time cost.

The MT metric represents the number of correctly tracked ground truth trajectories in at

least 80 % of the frames. In the figure 6-3, the MT is divided by the number of ground

truth trajectories, no combination of detector and tracker has a good MT value. This result

indicates that the vehicles are track for a short periods of time.

The ML metric represents the number of correctly tracked ground truth trajectories in less

than 20 % of the frames. In the figure 6-4, the slower combinations track some vehicles,

instead the faster ones lost many vehicle trajectories.

The IDs metric represents the vehicle is tracked but an incorrect ID is assigned to the

trajectory. In the figure 6-5, the VVC detectors with the Medianflow or MOSSE trackers
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Figure 6-2: MOTP vs fps on the Bog19 dataset.

assign the correct trajectory ID with a speed higher than 20 fps.

The FM metrics represents the number of times a ground truth trajectory is interrupted and

resumed. In the figure 6-6, the Tiny YOLO and VVC networks has the lower fragmentations,

but the VVC ones with the Medianflow or MOSSE trackers has the best speed.

The FN metric represents the number of ground truth bounding boxes no associate with a

hypothesis bounding boxes. In the figure the 6-7, most of the combinations fail to find the

same group of bounding boxes.

The FP metric represents the number of hypothesis bounding boxes no associate with a

real bounding boxes. In the figure 6-8, most of the combinations can retrieve real bounding

boxes. In particular the VVC detectors with Meandflow or MOSSE tracker achieve a good

value at high speed.
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Figure 6-3: Mostly tracked objects (MT) vs fps on the Bog19 dataset.

6.2. Vehicle counting

A comparison of the system using different deep learning object detectors is made. The Faster

R-CNN architecture with the resnet50 model, YOLOv3 and Tiny YOLO, and a version with

transfer learning for each one, are compared keeping the same other phase configuration.

The videos used for training and evaluation are recordings of 3 of the main streets of Bogota,

and had a resolution of 1090x1080. They were taken during the day from cameras installed

over the streets at 30 fps. A manual process of tagging was made for the bicycle, car,

motorbike, bus, and truck classes. The annotations include the visible faces of the vehicle

and a flag for object occlusion.

The counting precision is defined as the average of correct identified vehicles on each frame.

The absolute difference between the expected and predicted counts by class over the expected
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Figure 6-4: Mostly lost targets (ML) vs fps on the Bog19 dataset.

is the measurement used. The figure 6-9 shows that the pre-trained models as Faster R-CNN

and YOLOv3 have the higher average counting precision for buses and motorbikes.

Of the 4 phases, the detection one consumes most of the time. In the figure 6-11 the average

frame time of each phase is plotted. The tracking phase has almost zero time because the

simple tracking algorithm only uses the bounding boxes of the previous phase and make no

image processing.

The figure 6-12 shows that at 1066x600 resolution Tiny YOLO with transfer learning is the

fastest one. The fps are highly dependent on the input resolution and speed of the detector.

The re-trained models are faster than the pre-trained versions, because the small number of

classes to predict.
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Figure 6-5: Identity switches vs fps on the Bog19 dataset.
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Figure 6-6: Fragmentations vs fps on the Bog19 dataset.
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Figure 6-7: False negatives vs fps on the Bog19 dataset.
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Figure 6-8: False positives vs fps on the Bog19 dataset.
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Figure 6-9: Average counting precision.

Figure 6-10: Average counting precision.
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Figure 6-11: Average frame time by phase.

Figure 6-12: Average FPS using different detectors.
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Figure 6-13: Average FPS using different detectors.



7 Conclusions and recommendations

7.1. Conclusions

In this work, we presented the desired properties of a robust object detection method, 3 new

vehicle detectors, 1 new vehicle tracker, the development of a system for visual counting,

and the performance of the system in a custom dataset. The following characteristics of

a robust detection method were described. tolerance to variable scenes, camera location,

camera movement, image color, image resolution and the most challenging, object occlusion.

The VVC detectors are CNN based on Tiny YOLOv3, with modifications on the first layers

of the original network. The modifications include aggregation, removal and alteration of

the layer hyper-parameters. The Patient IOU tracker is an extension of the IOU tracker

introduced by Bochinski [36]. The new tracker can reactivate the tracks if a detection match

the last seen bounding box of the trajectory.

A software system was developed to integrate known and new detectors and trackers. The

evaluation of the system is based on the MOT metrics using the Bog19 dataset. The Bog19

dataset is a collection of annotated videos obtained from the traffic authority of Bogotá

city. The best performing combination is the VVC3 network with the Medianflow tracker,

followed by the same network with MOSSE tracker.

The counting performance is highly dependent on the quality of the findings of the vehicle

detection phase. If the vehicles are not detected, then there is no effective tracking and

counting. The counting results with the VVC detectors are similar to detectors of the state

of the art but with higher speed.

The detection phase consumes most of the processing time. Consequently, a faster algorithm

for detection allows the use of the system for real time jobs. The information obtained can

be disseminated to road users, potentially reducing congestion and improving traffic safety.

For example, traffic density on major roads can be estimated and less congested routes and

shorter travel times can be calculated and transmitted to drivers.
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The counting results can be used as input to traffic models and urban planning process for

the Bogotá city. Using automatic systems for vehicle detection, tracking and traffic analysis

would be very useful for the city’s ITS. The system reduces costs by not having to install

new sensors and, improves the frecuency and processing time of the current manual couting.

The information of the project and source code are available online 1.

7.2. Recommendations

The following recommendations for future work arise from the present research:

Use and compare the SSD object detector and others for the task of vehicle detection

to increase the spectrum of detectors for the system.

Increase the available training dataset and time to improve the detection performance

of the VVC networks.

Search for Automated Machine Learning (AutoML) techniques to automatically find

specialized networks and build pipelines from training to deployment.

Use tracking algorithms based on deep networks and evaluate the possibility of using

a single network for detection and tracking of vehicles.

Evaluate the system capacity to operate with the input from multiple surveillance

cameras at the same time.

1https://vvc-unal.github.io
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