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Resumen

La presente tesis pretende desarrollar un conjunto de metodoloǵıas que permitan la ex-
tracción de caracteŕısticas y la separación de fuentes ocultas, con el fin de diagnosticar los
distintos tipos de fallos en cajas de engranajes y rodamientos. Primero, se propone la imple-
mentación de algoritmos para la detección de fallas en una caja de engranajes con 10 tipos
de fallas, donde se obtuvo porcentajes de acierto por encima del 85 %, aśı, los resultados de
clasificación muestran que la metodoloǵıa empleada para la extracción de caracteŕısticas es
significativa. Segundo, se realiza un análisis de diferentes métodos de separación de fuentes
ocultas, los cuales logran resaltar las frecuencias caracteŕısticas de la falla, evidenciando que
son una herramienta útil en la identificación. Finalmente, se propone un algoritmo de Análisis
de Componentes Independientes basado en múltiples restricciones (mcICA), aprovechando
la información codificada por la envolvente de la señal para localizar la falla. Por lo tanto, la
metodoloǵıa tratada en este documento contribuye tanto a la evaluación del estado de salud
como al proceso de mantenimiento de la máquina.

Palabras clave: Rodamiento de elementos rodantes, Señales de vibración, Localiza-
ción de fallas, Análisis de componentes independientes, Extracción de caracteŕısticas,
Análisis de vibraciones .

Abstract

This thesis aims to develop a set of methodologies that allow the feature extraction and
blind source separation, to diagnose the different types of faults in gearboxes and bearings.
First, it is proposed the implementation of fault detection algorithms in a gearbox with 10
fault types, where it is obtained success percentages above 85 %. Thus, the results of the
classification show that feature extraction methodology is significant. Second, an analysis of
different methods of blind source separation is realized, which highlights the characteristic
frequencies of the fault, showing that they are a useful tool in the identification. Finally,
multiple-constrained Independent Component Analysis (mcICA) is proposed, taking advan-
tage of the information encoded by the signal envelope to fault localization. Therefore, the
methodology discussed in this document provides both the evaluation of the state of health
and the machine maintenance process.

Keywords: Rolling element bearing; Vibration signals; Fault localization; Independent
component analysis, Feature extraction, Vibration analysis
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1 Preliminaries

1.1. Introduction

1.1.1. Motivation
Continuous progress in sensing capabilities coupled with the need for monitoring processes
has changed the paradigm in the industry, where companies are migrating from traditional
preventive maintenance strategies to programming conservative maintenance tasks and incor-
porating predictive maintenance concepts, which carried out only when required. Prognosis
and health management systems in machinery are the foundation of any effective predictive
maintenance scheme and are commonly known as condition monitoring. The main objective
of this is to determine precisely the remaining useful life of the machine and its components,
to provide the maintenance engineer with sufficient time to schedule a repair and purchase
the components to be replaced before a catastrophic failure occurs, allowing to extend the
production capacity and expand system reliability. However, there are still no systematic
methodologies of how to accurately predict the remaining useful life of the machine and
support decision making in spare parts management. Then, the task falls on the knowledge
and experience of the maintenance engineer on the health of the machine. Therefore, there is
a growing need to effectively develop and improve maintenance management systems based
on automatic diagnostic and prognostic systems, that provide more reliable support to the
personnel in charge.
The industrial sector in Colombia has seen the need to implement predictive maintenance
plans to optimize the operation and lifetime of the machines and improve the safety of the
operational personnel in charge. To this end, vibration analysis for fault identification has
generated all kinds of expectations, thanks to its high cost/benefit profitability. Nevertheless,
the analysis carried out does not consider the transient states of the machine where the first
signs of damage are generated without considering that they depend mainly on the ability
of an expert to interpret the results and whose fees are quite high. For this reason, the
development of a methodology for diagnosis and prognosis of faults allows the optimization
of preventive and predictive maintenance in the industry, which in turn translates into an
increase in cost/benefit ratio and thus boost production. This optimization provides greater
competitiveness in terms of processes and products, allowing industries to generate higher
dividends in their niche market and reducing costs for unnecessary machine stops. It expects
that an improvement in production processes would increase the labor supply, as a result of
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the investment of companies in new markets and products.

1.1.2. Problem statement

Condition-based monitoring uses the information collected from the machine to recommend
maintenance decisions that are called Diagnostics, which deals with the detection, identifi-
cation, and localization of faults whenever it occurs. In a supervised system, error detection
indicates if a breakdown occurs and if it exists, fault identification determines the nature
of the damage. The vibration analysis is the most used technique in diagnostics because it
allows finding the different sources that excite the machine. However, non-stationary vibra-
tion signals generated by the changes in load and/or speed of the machine complicate the
identification of the source. At present, existing techniques that require considerable expe-
rience to achieve success in its implementation (Haidong et al., 2018). There is a need for
the development of simple approaches to diagnose the state of the machine quickly. Com-
monly, we recognize three necessary steps to fault diagnosis, such as i) fault detection that
means identifying the health state of the machine; ii) fault identification, i.e., given that the
bearing or gearbox has a fault, we due identifying the fault type, and iii) fault prognosis,
that estimate the current remaining useful life of the equipment (Jardine et al., 2006).
The differentiation of the faults is complicated since the raw signal in a time segment con-
centrates the entire vibration input of the machine. In fault detection, multiple techniques
have been developed for the characterization of the vibration signals that come from bea-
rings and gearboxes. We find many features in the time and frequency domain that allow
extracting information of the fault, but these features have different advantages and limi-
tations. For example, Root Mean Square is continuously growing with the development of
bearing failures. However, it is challenging to discover impulsive defects. At the initial stage
of fault, impulses tend to decrease with fault development are presented. In these cases, the
kurtosis factor is sensitive to such impulses, but it shows poor performance to determine
the progressive growth of fault (Shen et al., 2012). Among the characterization techniques
in the frequency domain is the Fast Fourier Transform (FFT), which differentiates the types
of faults from the amplitude and frequency of each spectral component (Atoui et al., 2013).
Nevertheless, due to the variability of machine operating conditions and non-stationarity
of signals, characterizations are used in the time-frequency domain. Wigner-Ville distribu-
tion, short-time Fourier transform, and Wavelet analysis are the time-frequency methods.
In Cerrada et al. (2019), it is proposed to use the Wavelet Packet Transform (WPT), whe-
re the characteristics are the wavelet coefficients obtained from the vibration signal. Also,
we find continuous wavelet transform (CWT) and discrete wavelet transform (DWT)that
allow decomposing the signs at several levels. However, the wavelet basis must be selected
appropriately because an inappropriate wavelet basis will directly influence the decomposi-
tion (Chen et al., 2016; Tao et al., 2019). Besides, there are statistical features in time and
frequency domain that includes statistical moments such as mean, variance, skewness, and
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kurtosis that extract more information about faults (Lei et al., 2008, 2010). In Singh and
Zhao (2016) decomposes the raw signal into intrinsic mode function (IMF) using empirical
mode decomposition (EMD) to identify fault information that can contain multiple sour-
ces of vibration and noise. This method requires a priori knowledge of the faults. However,
a broad feature set includes irrelevant or redundant features directly affecting the perfor-
mance of the classifier. Then, a feature extraction stage becomes necessary to improve the
classification accuracy. Exists different methods of feature extraction; among them, we find
Isomap, Maximum Variance Unfolding, Locally Linear Embedding, Laplacian Eigenmaps,
among other methods (Van Der Maaten et al., 2009). In Jing et al. (2017) is present the
Deep learning, also known as deep neuronal networks (DNN), its extracts information by
a hierarchical structure with multiple neural layers but the tuning for free parameters and
computational cost is complicated. In many cases, the fault characteristics are masked by a
noise or other signal components presented in the standard machine operation. Therefore, it
is important the study of latent variable models.

A latent variable is just an unobservable random variable. Thus, latent variable models allow
extracting hidden patterns that may be related to fault behavior. There are several latent
variable models. In our case, we will focus on models that will enable blind source separation
(BSS). BSS is one of the popular methods for separating sources of interest. As is explain
in Hyvärinen et al. (2004), several methods are very closely related to BSS. The most com-
monly used method is Independent Component Analysis (ICA), given that it does not need
the prior knowledge of the problem, and it is enough to assume statistical independence
between the sources. Thus, we can identify fault characteristics by source separation, whe-
re sources represent a force that influences a machine component known as a fault in the
mechanical systems (Yang and Nagarajaiah, 2014). Several ICA-based methods have been
developed. Hyvärinen and Oja (2000) proposed the FastICA algorithm, and it is based on a
fixed-point iteration scheme for finding a maximum of the non-Gaussianity. In Žvokelj et al.
(2016) has utilized Ensemble Empirical Mode Decomposition and ICA for bearing fault de-
tection, but this method requires a stage of characterization, increasing computational cost.
In Wu and Xiong (2019) presented a technique based on Cubic spline interpolation Intrinsic
Time scale Decomposition (CITD) algorithm and FastICA algorithm, where the FastICA
serves to reduce the noise of the reconstructed signal. Other authors proposed the SOBI
algorithm based on the joint approximate diagonalization of multiple time-delayed correla-
tion matrices (Belouchrani et al., 1997; Choi et al., 2002), and Cardoso (1999) developed the
JADE algorithm, which is specifically a statistic based technique. JADE uses the joint dia-
gonalization of a maximal set guarantees source identifiability. Miao et al. (2020) proposed
a fault separation method which it is base on the median filter and JADE, but the filter can
remove components from the fault and generate an error in reconstructs the characteristic
signal. Besides, Popescu (2010) presented a combination of JADE and change detection in
source signals, where the raw signals are transformed into the space of independent sources
for the reduced number of components and applied the change detection methods on the
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estimated sources. Nevertheless, ICA has two ambiguities (scaling and permutation) that
limit its usage, it means that the IC amplitudes change on each algorithm iteration, and the
appropriate IC order cannot be determined.
Mechanical signals are characterized by excessive complexity so that when using BSS met-
hods, we must take into account some difficulties such as a mixture of vibrations of the
convolutive type, an unknown number of individual sources in the mixture, among others,
that compromise their viability (Antoni, 2005). In that regard, some authors had sugges-
ted modifying the BSS paradigm into extracting a single signal or component that encloses
the bearing fault dynamic, also called blind signal extraction (Cardona-Morales et al., 2018;
Smith and Randall, 2015a). Then, BSS does not look for the sources themselves but iden-
tifies the different components excited by the different sources from a blind deconvolution
to identify the sources. In contrast, BSE seeks to separate the different components that
exhibit some behavior in the vibration signal. Among the multiple methods adopted in the
state-of-the-art related to BSE, constraint independent component analysis (cICA) or ICA
with reference (Lu and Rajapakse, 2006; Zhang, 2008) has been designed to extract a single
component (from the mixture) with a characteristic pattern. In Wang et al. (2011), the aut-
hors, using cICA for fault detection in Rolling element bearing (REB) given that it is one of
the most critical mechanisms in rotating machinery, and it is failure implies, in many cases,
substantial economic losses and catastrophic incidents in the industry. Jing et al. (2014) used
the properties of the cICA algorithm to extract the fault feature from the vibration signal
with interference noise, given that fault signal present periodic impact and a non-Gaussian
signal, and in Yang et al. (2018), cICA was employed over non-stationary vibration signals
where the machine speed is fluctuating. Other authors proposed to extract the fault feature
in a single-channel signal using cICA (Leng et al., 2018). This method is based on ensemble
empirical mode decomposition (EEMD), which meets the requirement of cICA algorithm,
but the inclusion of EEMD significantly increases signal processing time. Nonetheless, the
bearing fault localization is still an open issue that raises its relevance nowadays, since tech-
nology development allows think into sensor networks that provide simultaneous monitoring.

1.2. Objetives

Based on the problems mentioned above, this work is developed based on a general objective,
which is divided into three specific objectives, as follows:

1.2.1. General Objetive

Develop a fault diagnostic methodology in rotating machinery based on latent variable mo-
dels that allow failure identification and localization.
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1.2.2. Specific Objetive
Implement a methodology for multiple fault detection based on latent variable met-
hods, which includes several machine speed conditions and multi-channel data.

Analyze fault identification methods through the comparison of several types of blind
source separation techniques applied to rotating machines with multi-channel data.

Develop a methodology for fault localization by using a blind source separation tech-
nique that considers non-stationary failure patterns.

1.3. Scope and Structure of the thesis
This section provides an overview of the main terms and concepts within the framework of
vibration analysis to give the reader the limitations and scopes of this work. For the proper
development of the document, the following is the definition of some of the essential concepts.

Fault is defined as an atypical behavior of at least one characteristic property of a
variable. Therefore, the fault can cause a malfunction or system failure (Isermann,
2005).

Fault Diagnosis consists of determining the characteristics of fault, with the most
details such as the fault size, location, and time of detection, among others (Isermann,
2006).

Fault Detection determines the occurrence of a fault in the monitored system, and
it allows taking preventative action and avoiding possible system failure (Isermann,
2005).

Fault Identification determines the magnitude (size) and type of fault. We can com-
pare the nominal values with the estimated values and thus isolate the faults (Isermann,
2006).

Fault Localization is to select among a finite number of potential locations. This
problem is considering as a classification problem that precise damage localization
over infinite possible damage locations (Kopsaftopoulos and Fassois, 2013).

Multi-channel Data are mixed signals from an unknown multiple-input-multiple-
output linear system (channel) (Yellin and Weinstein, 1994).

Sources, in this case, will be vibration sources that it is generated by machine ope-
ration. These events are forces and motion such as shaft imbalance, impacts (e.g., due
to bearing faults), fluctuating forces during gear mesh (as a result of small variations
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in the load and/or speed of the machine), electromagnetic forces and pressure- and
flow-related sources (Popescu, 2010).

Blind Source Separtion consists of the recovering of the various independent sources
exciting a system given only the measurements of the outputs of that system (Popescu,
2010).

In this work is proposing several methodologies based on different latent variable models
for fault identification and localization in the rotative machine. The first approach is to
extract features using Principal Component Analysis (PCA) and Center Kernel Alignment
(CKA) on different domains (time, frequency, and time-frequency). Besides, we use the
nearest neighbor classifier to discriminate signal states normal and fault. The multiclass
classification problem seeks to differentiate between all possible faults on gear fault vibration
signals. The second approach is related to the identification of fault characteristics. Thus,
we analyze a set of independent component analysis methods to identify the presence of
a fault pattern. The third approach develops a methodology that allows identifying the
type of fault by using a multiple-constrained independent component analysis algorithm.
Additionally, we present a fault localization stage using proximity measurements to associate
the reconstructed independent component (IC) with bearing signals, which turn out to be
efficient at locating the fault.



2 Multiple fault detection based on
latent variable methods

2.1. Introduction
Diagnosis of rotatory machines and early fault detection has a significant impact on the in-
dustry because of reducing costs and accidents. Maintenance procedures should be performed
following strict preventive schedules or earlier when a fault is detected (Medina et al., 2017).
The gearboxes are components involved in mechanical transmission. Besides, they play a
crucial role in the power transmission system, as they are designed for speed and torque
conversion. These type of machines, they have complex configurations given that connecting
two or more (parallel) shafts through coupled gears with different sizes. In consequence, de-
tection and diagnosis of faults are challenging, and it usually requires analysis of vibration
signals (Jiang et al., 2018; Igba et al., 2016).
The vibration analysis is used for fault diagnosis since its possible from the vibration signals
to obtain important information on the faults. At present, existing techniques that require
considerable experience to achieve success in its implementation (Haidong et al., 2018).
There is a need for the development of simple approaches to diagnose the state of the
machine quickly. Commonly, we recognize three basic steps to fault diagnosis such as i) fault
detection, i.e., identify the health state of the machine; ii) fault classification, i.e., given that
the gearbox has a fault, to identify the type of fault, and iii) fault prognosis, i.e., to estimate
the current remaining useful life of the equipment. Therefore, we will concentrate on the
first two steps due to the high demand for reliably diagnosis techniques on the health of the
machine (Jardine et al., 2006).
For fault diagnosis, we find many features in the time, frequency, and time-frequency do-
mains (Li et al., 2015; Chen et al., 2016; Tao et al., 2019). However, a broad feature set
contains irrelevant or redundant features directly affecting the performance of the classifier.
Then, a feature extraction stage becomes necessary to improve the classification accuracy.
There are different methods of feature extraction; among them, we find Isomap, Maximum
Variance Unfolding, Locally Linear Embedding, Laplacian Eigenmaps, among other met-
hods (Van Der Maaten et al., 2009). In (Jing et al., 2017) is present the Deep learning, also
known as deep neuronal networks (DNN), its extracts information by a hierarchical struc-
ture with multiple neural layers but the tuning for free parameters and cost computational
is complex.
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This chapter discusses two methods of feature extraction on different domains (time, fre-
quency, and time-frequency) for gear fault diagnosis on vibration signals. These signals were
collected under various operating loads and different speeds. Then, we estimate a pool of
statistical features commonly used to characterize faults, and we use Principal Component
Analysis (PCA) and Center Kernel Alignment (CKA) for feature extraction. As a result, we
obtained an increase in the classification accuracy, using a k nearest neighbors classifier.
The agenda is as follows: Firstly, Section 2.2 describes the mathematical background of fea-
tures estimation in the different domains, and it presents the methods used for the feature
extraction. The developed experiments and achieved results are described in Section 4.3.
Finally, the discussion is provided in Section 2.4.

2.2. Methods

2.2.1. Feature estimation

Time-domain and frequency-domain features

In Lei et al. (2010), are generated multidimensional feature sets including time-domain
and frequency-domain to reveal gear health conditions. In gearbox, the time-domain sig-
nal usually changes when damage occurs in gear. Then, the standard gear signal may be
different both its amplitude and distribution of the fault signal (Lei et al., 2008). We calcu-
late several features in the time domain, such as the mean signal (ϕ1) is the average value
of the signal. Standard deviation (ϕ2) is the root square of the dispersion of a signal around
their reference mean value, and root mean square (ϕ4) reflects the vibration amplitude and
energy in time-domain. Moreover, we estimate the maximum values (ϕ5) that are the peak
value of the signal, skewness (ϕ6) quantifies the asymmetry behavior of signal and kurtosis
(ϕ7) quantifies the peak value of the probability density function (Tao et al., 2019). The
crest factor (ϕ8) calculates how much impact occurs, and shape factor (ϕ10) is a value that
is affected by a shape object, among others, may be used to represent the time series dis-
tribution of the signal in the time-domain (Caesarendra and Tjahjowidodo, 2017). Besides,
the frequency-domain feature extraction may contain relevant information that is not pre-
sent in the time-domain. We estimate the mean frequency (ϕ̂1) that indicates the vibration
energy. Besides, we calculate the variance frequency (ϕ̂2), skewness (ϕ̂3), kurtosis (ϕ̂4). Also,
central frequency (ϕ̂5) shows the position changes of the main frequencies, standard devia-
tion frequency (ϕ̂6) describe the convergence degree of the spectrum power and root mean
square frequency (ϕ̂7), among others statistical features in the frequency-domain (Yan and
Jia, 2018).
We estimated the suggested statistical features directly from the time series vector xlm∈RT
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where m = [1, . . . ,M ] is the register collect vibration signals from sensors installed on
gearbox, l = [1, . . . , L] is the label for the different fault conditions and T corresponds to
whole time period. In addition, we compute the features in frequency-domain by the Fourier
Transform of the time series, Ψ(k) = F{x(t)}. The estimated features are shown in Table 2-
1, being fk, (k = 1, . . . , K), the k-th frequency bin.

Table 2-1: Extracted statistical features in time (left) and frequency
domain (right), thereafter Lei et al. (2008, 2010).

ϕ1 =
∑T

t=1 x(t)
T

ϕ̂1 =
∑K

k=1 Ψ(k)
K

ϕ2 =
√∑T

t=1(x(t)−ϕ1)2

T−1 ϕ̂2 =
∑K

k=1(Ψ(k)−ϕ̂1)2

K−1

ϕ3 =
(∑T

t=1

√
|x(t)|

T

)2
ϕ̂3 =

∑K

k=1(Ψ(k)−ϕ̂1)3

K(
√
ϕ̂2)3

ϕ4 =
√∑T

t=1(x(t))2

T
ϕ̂4 =

∑K

k=1(Ψ(k)−ϕ̂1)4

Kϕ̂2
2

ϕ5 = max |x(t)| ϕ̂5 =
∑K

k=1 fkΨ(k)∑K

k=1 Ψ(k)

ϕ6 =
∑T

t=1(x(t)−ϕ1)3

(T−1)ϕ3
2

ϕ̂6 =
√∑K

k=1(fk−ϕ̂5)2Ψ(k)
K

ϕ7 =
∑T

t=1(x(t)−ϕ1)4

(T−1)ϕ4
2

ϕ̂7 =
√∑K

k=1 f
2
k
Ψ(k)∑K

k=1 Ψ(k)

ϕ8 = ϕ5
ϕ4

ϕ̂8 =
√∑K

k=1 f
4
k
Ψ(k)∑K

k=1 f
2
k
Ψ(k)

ϕ9 = ϕ5
ϕ3

ϕ̂9 =
∑K

k=1 f
2
kΨ(k)√∑K

k=1 Ψ(k)
∑K

k=1 f
4
k
Ψ(k)

ϕ10 = ϕ4
1
T

∑T

t=1 |x(t)|
ϕ̂10 = ϕ̂6

ϕ̂5

ϕ11 = ϕ5
1
T

∑T

t=1 |x(t)|
ϕ̂11 =

∑K

k=1(fk−ϕ̂5)3Ψ(k)
Kϕ̂3

6

ϕ̂12 =
∑K

k=1(fk−ϕ̂5)4Ψ(k)
Kϕ̂4

6

ϕ̂13 =
∑K

k=1(fk−ϕ̂5)1/2Ψ(k)
K
√
ϕ̂6

Time-frequency domain features

We can consider that the vibration signal has non-stationary character, due to load and
variable speed regimes so that it is necessary to broaden the spectrum of analysis techniques.
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We seek to capture the dynamics of the vibration signal in its frequency components time-
domain; for this, we use time-frequency representations. There are different types of time-
frequency representations, which offer different interpretations. For this work, we select the
spectrogram that allows an adequate interpretation of the energy concentration based on
time and frequency. The spectrogram is a quadratic time-frequency representation that is
part of the Short-Time Fourier Transform (STFT), then defined as:

S(t, k) =
∣∣∣∣∫ ∞
−∞
x(τ)g(τ − t)e−j2πτfdτ

∣∣∣∣2 (2-1)

where g(t) represent a narrow window function centered at t = 0 and τ is the delay times in
terms of the STFT. Now, we computed the frequency-marginal to find the frequencies that
have the most energy over time (seen Eq. (2-2)).

S̃(k) = E
{
|S(t, k)|2

}
(2-2)

where S∈RK is the frequency-marginal; thus, we used the following features statistical of Ta-
ble 2-2 on the frequency-marginal, the mean (ϕ̃1), standard deviation (ϕ̃2), kurtosis (ϕ̃3)
and root mean square (ϕ̃4).

Table 2-2: Extracted statistical fea-
tures in time-frequency
domain.

ϕ̃1 =
∑K

k=1 S̃(k)
K

ϕ̃2 =
√∑K

k=1(S̃(k)−ϕ̃1)2

K−1

ϕ̃3 =
√∑K

k=1(S̃(k))2

K

ϕ̃4 =
∑K

k=1(S̃(k)−ϕ̃1)4

(K−1)ϕ̃4
2

Finally, we build a feature matrix X̃∈RM×C that holds the feature vector for all M , where
X̃ =

[
x̃1

1, . . . , x̃
l
m, . . . , x̃

L
M

]>
comprises all the concatenated estimated features vectors, such

that x̃lm = [ϕ1, . . . , ϕ11, . . . , ϕ̂1, . . . , ϕ̂13, . . . , ϕ̃1, . . . , ϕ̃4]∈RC .

2.2.2. Latent-based relevance analysis of estimation feature
Unsupervised dimension reduction

Provided a feature matrix, X̃, unsupervised linear reduction can be carried out through a
basic latent variable model that assumes an approximate decomposition of linearly uncorre-
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lated variables X̂'X̃A, where A⊂RC×C′ is the premultiplier, projecting onto an orthogonal
subspace with a lower dimensionality C ′≤C, as below:

A∗ = min
A

{
‖X̂ − X̃A‖2

2

}
= max

A

{
A>ΣXA

}
(2-3a)

solving: ΣXA = νA (2-3b)

where ΣX̃ = E
{
X̃X̃>

}
is the covariance matrix and ν⊂RC is the vector, holding all

eigenvalues retrieved from the characteristic equation of ΣX̃⊂RC×C in Eq. (2-3b) (Principal
Component Analysis – PCA). Notation ‖ · ‖p stands for Lp-norm.

Supervised dimension reduction

In this case, we assess the relevance analysis by matching of the labeled feature set {X̃ l}
and its provided label set Λ, namely, we measure the projected similarity between the co-
rresponding kernel matrices KX̃ and KΛ. Therefore, instead of using the optimizing rule
in Eqs. (2-3a) and (2-3b) that neglects the label information, the supervised transformation
matrix A∗ is computed through the kernel-based learner as developed in Alvarez-Meza et al.
(2017):

A∗ = arg max
A

log
(
µ(K̄X̃(A), K̄Λ)

)
, (2-4)

where the matching metric µ(·, ·; )∈R+ (termed Centered Kernel Alignment - CKA) is the
normalized inner product of both kernel matrices, estimated as follows:

µ(K̄X
, K̄

Λ) = 〈K̄X
, K̄

Λ〉F
/√
〈K̄X

, K̄
X〉F〈K̄

Λ
, K̄

Λ〉F (2-5)

where notation 〈·, ·〉F stands for the Frobenius-based matrix inner product, K̄ = ĨKĨ is the
centered version of the kernel matrix KΠ = [κΠ(π,π′):∀π,π′] (with Π = {X, Λ}) that
holds the pairwise similarity between vector samples π,π′⊂Π embedded in a Hilbert space,
Ĩ = I−N−11>1 is the empirical centering matrix, and 1⊂RN is the all-ones vector.

2.3. Experimental Set-Up
The purpose comprises the following stages (see Fig. 2-1): i) computing the statistical fea-
tures of measured signal vibrations; ii) estimated latent components using PCA and CKA;
And iii) classification of faults is computed through a 10-fold cross-validation procedure with
partition 80 % of training and 20 % of testing, using the k nearest neighbor (k-nn) classifier.
We use as baseline the performance obtained from the estimated features.
The proposed method is validated on a gearbox fault diagnosis test-rig fabricated by the lab
of the Universidad Politécnica Salesiana, Ecuador. The system includes a 1.1 kW motor po-
wered by three-phase 220 V at 60 Hz. The torque motion is transmitted into a gearbox, where
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X̃
Feature estimation

X̂'X̃A
Feature extraction

knn(X̂)
Classification

Figure 2-1: Proposed approach for fault classification using PCA and CKA.

several gear fault configuration are assembled. The output shaft of the gearbox was connec-
ted with an electromagnetic torque break ROSATI, 8.83 kW through a belt transmission.
The load of the torque break can be manually adjusted by a controller GEN 100-15-IS510,
which used three different load (No load, 10 V, 30 V ). Variable-frequency drive was used
to generate constant speeds (8 Hz, 12 Hz, 15 Hz) and variable speed (5-12 Hz, 12-18 Hz, 8-
15 Hz). Additionally, an accelerometer PCB ICP 353C03 was mounted on the top of the
gearbox to collect vibration signals, which were sent to a laptop via a data acquisition box
NI cDAQ-9234. The data sampling rate was adjusted to 50 kHz, and collecting one vibration
with a length of 10 second. Two spur gears (number of teeth Gear1 = 53, and Gear2 = 80)
were installed on the input and the output shafts of the gearbox (Cerrada et al., 2016). The
gearbox was configured with 10 different fault modes f1-f10 as shown in Table 2-3. For each
fault are measured 90 vibration signals.

Table 2-3: Gear fault conditions (Cerrada et al., 2019).
Label Description

f1 Healthy pinion, healthy gear
f2 Pinion tooth chaffing, healthy gear
f3 Pinion tooth wear, healthy gear
f4 25 % pinion tooth breakage, healthy gear
f5 50 % pinion tooth breakage, healthy gear
f6 100 % pinion tooth breakage, healthy gear
f7 Healthy pinion, 25 % gear crack
f8 Healthy pinion, 100 % gear crack
f9 Healthy pinion, 50 % gear chaffing
f10 25 % pinion tooth breakage, 25 % gear crack

An incipient fault is an essential condition to be diagnosed in an industrial application since
it is a fault just beginning to show symptoms (f2 and f3). Fault f1 is the normal condition, f4,
f5, f7, f9 are moderate faults, f6 and f8 are severe faults, and f10 is multiple faults (Cerrada
et al., 2016).
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To capture the intrinsic dynamics of the signal under non-stationarity conditions for load
and variable speed regimes, we use the spectrogram (Cardona-Morales, 2011). In Figs. 2-2
and 2-3 displays the time-frequency representation of downsampled version computed by
the spectrogram with a 8192 frequency bins, 50 % overlapping and a Hamming window of
512 samples for ten fault conditions with speeds variable. In the upper right is presented
to zoom on spectrogram which allows to visualize the low frequencies. In addition, the
marginal frequency is shown that reveals the changes in the amplitudes along the frequencies
considered.
A gearbox generates quite prominent peaks in the gear mesh frequency (GMF), which is the
number of teeth of the gears by the speed of rotation of the gear. In general, We note that
GMF is contaminated by the noise that can be generated by the power grid. The GMF is
Gear1 = 399.1 kHz, which is seen with greater intensity in the zoom because the constant
noise is mixed and generates a signal with greater power. It should be said that these com-
ponents are not easy to separate and can lead to errors in the fault classification. Also, the
constant noise components are present in the marginal frequency. For f3, f4 f5 and f6, the
harmonics of the gear frequency are increasingly evident because of the degradation of the
fault increases. In particular, f3 has a cyclic fault behavior because it is where a gear tooth
fault begins to occur. However, for f4 and f5 the blows fade and reappear in f6. This fault
process is particular to rolling element bearing since it presents a physical clearance that
makes the fault very noticeable when it occurs for the first time, and towards the end of the
bearing’s useful life where the damage is fatal (Smith and Randall, 2015a). Besides, f7 to
f10 present combinations of faults (gear and pinion). Nevertheless, the marginal frequency
responds directly to the behavior of the constant noise and not of the frequencies of the gears
as seen in Fig. 2-3.

In this work, we divide the experiment in #1 for the speeds constant, #2 for the speeds
variable, and #3 both speeds. We selected the number of neighbors heuristically, where we
tested the values of 3, 5, 7 and 9 neighbors for the estimated characteristics. In Table 2-4, we
show that the highest performance is achieved by k = 3. Therefore, we set-up the classifier
with 3 nearest neighbors for the development of the following experiments.

Table 2-4: Accuracy of classification for different neighbors.
Experiment ( %) k = 3 k = 5 k = 7 k = 9

#1 91.3 ±1.9 85.9 ±2.8 77.2 ±2.6 69.7 ±3.1
#2 84.9 ±4.0 82.7 ±3.2 74.2 ±3.3 70.1 ±2.4
#3 88.7 ±1.5 83.3 ±2.2 76.5 ±2.2 71.9 ±1.5

As a result, CKA-knn allows achieving the best performance for all experiments, decreasing
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Figure 2-2: Time-frequency representation (spectrogram with hamming window, 50 % over-
lap, and 8192 bins) for f1 to f6 with load 30 V and speed 8-15 Hz.



2.3 Experimental Set-Up 15

2 4 6 8
0

1

2

3

4

5

6

2 4 6 8

Time (s)

0

0.2

0.4

0.6

0.8

F
re

q
u
e
n
c
y
 (

k
H

z
)

(a) f7

2 4 6 8
0

1

2

3

4

5

6

2 4 6 8

Time (s)

0

0.2

0.4

0.6

0.8

F
re

q
u
e
n
c
y
 (

k
H

z
)

(b) f8

2 4 6 8
0

1

2

3

4

5

6

2 4 6 8

Time (s)

0

0.2

0.4

0.6

0.8

F
re

q
u
e
n
c
y
 (

k
H

z
)

(c) f9

2 4 6 8
0

1

2

3

4

5

6

2 4 6 8

Time (s)

0

0.2

0.4

0.6

0.8

F
re

q
u
e
n
c
y
 (

k
H

z
)

(d) f10

Figure 2-3: Time-frequency representation (spectrogram with hamming window, 50 % over-
lap, and 8192 bins) for f7 to f10 with load 30 V and speed 8-15 Hz.

the standard deviation in #1 and #2. However, note that for #3 the knn and PCA-knn
achieve comparable accuracy to CKA-knn as seen in Table 2-5. We obtained the best per-
formance for the speeds constant, assuming that the vibration signal is stationary; the time
and frequency domains provide excellent interpretation capability. In contrast, the worst
performance is presented for the experiment #2, due to the vibration signal is no-stationary.
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Table 2-5: Best accuracy of gear fault classification by avera-
ging of 10-folds for each methods.

Experiment ( %) knn PCA-knn CKA-knn

#1 91.3 ±1.9 88.4 ±2.3 94.4 ±1.7
#2 84.9 ±4.0 83.0 ±3.2 86.7 ±2.9
#3 88.7 ±1.5 86.2 ±1.3 89.9 ±2.1

In Fig. 2-4 is observing the median confusion matrices calculated on the accuracy of 10-folds.
As shown in Table 2-5, we can appreciate that CKA-knn achieves the best performance. We
note that for the experiment #1, the CKA-knn method shows high percentages of hits for
the fault f7 (100 %), in contrast to knn and PCA-knn that are prone to fail (72.2 %). On the
other hand, the experiment #2 with CKA-knn achieves acceptable sorting f7 (83.3 %), but
its performance is low for f8 (66.7 %). Furthermore, both PCA-knn (88.9 %) as CKA-knn
(94.4 %) improve performance for f10 over baseline (61.1 %) but have low accuracy in f8.
In the experiment #3, CKA-knn obtained a high performance for faults f2 (100 %) and f3
(94.4 %), such faults are important since they have an early condition of fault. Additionally,
it manages to improve the classification for f9, reaching 88.9 % of accuracy in comparison to
knn 72.2 % and PCA-knn con 69.4 %.
We calculated the relevance vector for PCA and CKA methods, as evidenced by in Fig. 2-5.
For visualization purposes, we perform normalization on the maximum relevance value for
each method. In general, we can appreciate that PCA highlights many features; however, the
performance is the lowest. Also, we note that the most relevant feature for all experiments
performed is ϕ̃3 calculated on the frequency-marginal. For its part, the CKA method high-
lights fewer features but the performance is the best in the 3 experiments (seen Table 2-5),
where the highest values correspond to ϕ10 para #2 y #3, ϕ̂2 en #1 y #2, y ϕ̂10 for all the
experiments.

2.4. Discussion
The methodology proposed in this chapter was applied to vibration signals with different
types of faults, covering the typical cases of gear faults. Besides, they allow us to verify the
robustness of the methodology because the database has variable operating conditions, such
as different loads and speeds with which the data acquisition is configured.
For each experiment carried out in the development of this work, we tested with unsupervised
learning method such as PCA and also with a supervised learning method such as CKA, as
expected the best accuracy was obtained with CKA because the targets play an essential
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Figure 2-4: Median confusion matrices of each methods.

role in the convergence of the algorithm. However, in real-world applications, labels are not
always available, and PCA showed that it could provide excellent results by obtaining an
accuracy above 80 %, taking into account that it is a multi-class problem. Regarding features
used, our proposal allows determining the distribution of relevance for each of them, this
being an important point to determine the influence of the features in time-domain, in
frequency-domain, and in the time-frequency domain. In general, for PCA, both features
the time-domain and the frequency-domain are highlighted, but the most relevant feature
for all experiments corresponds to the kurtosis calculated on the frequency-marginal, this
may be due to the frequency marginals they are strong concentrations of energy (Figs. 2-2
and 2-3). On the other hand, CKA showed that the relevant features are in time-domain
and in frequency-domain, which may be a consequence of the algorithm having the reference
of the labels; also, the difference between the characteristics is marked.
For the classification phase, we used a simple classifier as is k nearest neighbor, because
we wanted to concentrate the effort on the methods of extracting features. Additionally, we
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Figure 2-5: Features extraction for each of experiments.
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took into account that the training and evaluation data were different for each fold and thus
avoid any bias in the classifier. Finally, we found that for some types of faults, the accuracy
was low (Fig. 2-4). In general terms, the performance achieved in this work is remarkable.
In this chapter, we test statistical features on different domains. Implementing feature ex-
traction methods is important. This methods retain important features for fault detection.
In addition, we show that the characteristics relevant to classification are those calculated
in the domain of time and frequency. However, we note that some features are vulnerable to
noise making the performance of the classification low. Finally, the classification results are
acceptable because they allow to differentiate the incipient failures with great precision.



3 Fault identification by the comparison
of blind source separation methods

3.1. Introduction
Data-driven fault identification methods have become important in recent years. The growth
of complex industrial systems and the development of sensing technologies allow taking ad-
vantage of the captured signals. The main idea of data-driven methods is to use data pro-
cessing algorithms to extract useful information and latent knowledge. In recent decades,
there are methodologies for extracting and structuring information from high-dimensional,
such as data-driven multivariate statistical process monitoring methods, which have genera-
ted greater interest in industrial research and attention (Žvokelj et al., 2016). The vibration
signals collect different physical parameters of the mechanical systems. Hence, Blind source
separation (BSS) allows separating fault patterns of components polluted by environment
noise or other mechanical systems.
As is explain in Hyvärinen et al. (2004), several methods are very closely related to BSS. We
used Independent Component Analysis (ICA) given that does not need the prior knowledge
of the problem, it is enough to assume statistical independence between the sources. Thus,
we can identify fault characteristics by source separation, where sources represent a force
that influences a machine component known as a fault in the mechanical systems (Yang
and Nagarajaiah, 2014). Various ICA-based methods have been developed. Hyvärinen and
Oja (2000) proposed the FastICA algorithm, it is based on a fixed-point iteration scheme
for finding a maximum of the non-Gaussianity. In Žvokelj et al. (2016) has utilized Ensem-
ble Empirical Mode Decomposition and ICA for bearing fault detection. Besides, FastICA
had been used as fault feature extraction (Wu and Xiong, 2019). These methods, require a
stage of characterization increasing computational cost. Other authors proposed the SOBI
algorithm based on the joint approximate diagonalization of multiple time-delayed correla-
tion matrices (Belouchrani et al., 1997; Choi et al., 2002), and Cardoso (1999) developed the
JADE algorithm, which is specifically a statistic based technique. JADE uses the joint diago-
nalization of a maximal set guarantees source identifiability. In Miao et al. (2020), proposed
a fault separation method which it is based on the median filter and JADE but the filter can
remove components from the fault and generate an error in reconstructs the characteristic
signal. In this context, the chapter presents a formal comparison of three methods of the
Independent Component Analysis: FastICA, JADE, SOBI, to determinate faults in rotative
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machines and hence push for further development in this field.
The rest of the chapter is organized as follows: In Section 3.2 introduces the mathematical
background of the Independent Component and spatial distribution information of the sour-
ce. Section 3.3 demonstrates the present technique with experiments using synthetic signals
and real data. The results of the experiments are discussed in Section 3.4.

3.2. Methods of independent component analysis (ICA)
To address the work done from a theoretical perspective, we must start from the fact that
the final objective is to obtain a statistically independent representation of the vector of
measures x(t) = [x1(t), x2(t), ..., xM(t)]>, which is defined x(t) = As(t), where s(t) =
[s1(t), s2(t), ..., sN(t)]> is the vector of unknown sources, which are considered statistically
independent and A ∈ RM×N is the mixing matrix. As a restriction we have that of number of
accelerometers m∈M , is greater than or equal to the number of sources n∈N . However, the
task of sources separation consist in recovery the vector s(t) of the observation x(t) without
known A. Essentially, the task consists in finding a linear projection that will transform
the observations x(t) into statistically independent signals y(t), that according it must be a
proportional version of the sources s(t). Therefore, the linear projections mentioned before it
is can to represent basically like a matrix W ∈ RN×M (seen Eq. (3-1)) that it is denominated
as demixing matrix, such that, W = A−1 and noting that for an orthogonal matrix W−1 =
W>.

y(t) = Wx(t) = WAs(t) (3-1)

We can not determine the order of the independent components, for this reason, we can freely
change the order of the terms (Hyvärinen and Oja, 2000). On account of this, a permutation
matrix P and its inverse are introduced as x(t) = AP−1Ps(t). So, we have the original
independent variables sn(t) on the elements of Ps(t), but in other order. Additionally, the
new unknown mixing matrix AP−1 it is solved by the ICA algorithms.

3.2.1. FastICA
In FastICA, the vector x(t) is first whitened for obtaining the vector z(t) = V x(t) for which
E
{
zz>

}
= I. Thus, in the model z(t) = V x(t) = V As(t) both z(t) and s(t) are white;

z(t) because of explicit white, and s(t) by the assumptions of zero mean, unit variance, and
independence of the sources. If A were known, the sources could be directly solved from
s(t) = V A>z(t). In the FastICA algorithm, the solution is sought as:

y(t) = Wz(t) (3-2)
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The separation matrixW is found by numerical algorithms. By writing the rows ofW = w>n .
The FastICA algorithm (Hyvarinen, 1999) is an iterative method to find the local maxim of
a cost function:

JG =
N∑
n=1

E
{
G(w>n z(t))

}
(3-3)

with G a nonlinear function which is usually assumed even and symmetrical and E {·} stands
for the expectation operator. The cost function to be maximized can be negative mutual
information, likelihood, some approximation of non-Gaussianity such as higher order cumu-
lants, or some extension of these. A widely used cost function is the fourth-order cumulant
or kurtosis, defined for any random variable y as:

kurt(y) = E
{
y4
}
− 3

(
E
{
y2
})2

(3-4)

The argument yn = w>n z is restricted to have unit variance, and thus its kurtosis is E {y4}−3.
In maximization, the second term can be dropped, and the criterion becomes :

J kurt
G =

N∑
n=1

E
{

(w>n z)4
}

(3-5)

For one of the rows w>n , the FastICA algorithm for kurtosis maximization makes the basic
updating step:

w+
n = E

{
z(w>n z)

}
− 3wi (3-6)

followed by normalization of vector w+
n to unit norm.

3.2.2. Joint approximate diagonalization of Eigenmatrices (JADE)
JADE is an algorithm based on the joint diagonalization of cumulative matrices, under
the assumption that sources have non-Gaussian distributions, using second-order statistics
to decorrelate data and fourth-order cumulant for the joint diagonalization the matrix of
mixes (Cardoso and Souloumiac, 1993). The objective is to maximize the non-Gaussianity of
the complete set of observed signals X, for obtain the mixing matrix A and the estimation
of source signals Y , as seen in Eq. (3-1). Then, we whiten the signals for obtaining the vector
z(t). Now, we calculate the fourth-order cumulants as follows:

Cz = cum(zi, zj, zk, zl)|1 ≤ i, j, k, l ≤ d (3-7)

where d is the dimension of vector z and cum is the computation of the cummulants, which
can be defined as:

cum(zi, zj, zk, zl) = E {zi, zj, zk, zl} − E {zi, zj}E {zk, zl}
− E {zi, zk}E {zj, zl} − E {zi, zl}E {zj, zk} (3-8a)
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Then, we estimate a maximal set of cumulant matrices as:

Cz(Ei) = λiEi (3-9)

where λi is the eigenvalue and Ei is the eigen-matrix. We need that the cumulant matrices
be as diagonal as possible, so, we introduce the unitary matrix Û :

Û = arg min
∑
i

off(U#Cz(Ei)U ) (3-10)

where # denotes the pseudo-inverse, off is the square of the non-diagonal elements and U
is the rotation matrix. Finally, matrix A will be computed as Û

A = ÛW# (3-11)

3.2.3. Second-order blind identification (SOBI)
Choi et al. (2002) proposed the SOBI algorithm based on the joint approximation diagona-
lization of multiple time-delayed correlation matrix. SOBI takes advantage of the temporal
structure in the observed data, assuming that are stationary sources of second-order and not
correlated mutually. Thus, we compute a set of time-delayed correlation matrices beginning
with z(t), so, Rz(τi), ∀i = 1, . . . , K. The SOBI finds an unitary transformation D such that

D>Rz(τi)D = Λi,∀i = 1, . . . , K (3-12)

where Λi is a set of diagonal matrices. Given that, SOBI employ several correlation matrices,
it reduce the probability that Rz(τi) has the same diagonal elements by some bad choice
of time-lag τi. Furthermore, the exploitation of several correlation matrices increases the
statistical efficiency. As a result, matrix A can be factored as

A = W#D (3-13)

where # denotes the Moore-Penrose pseudoinverse. For detailed description, see Belouchrani
et al. (1997).

3.3. Experimental Set-Up
The methodological development of this approach comprises the following stage: i) Estima-
tion of ICs on data using FastICA, JADE and SOBI, ii) Analysis of envelope of the signals
of vibrations captured by the accelerometer followed by the calculation of faults frequency.
The proposed approach (seen Fig. 3-1) is evaluated on synthetics data and on test rig over
a fixed machine.
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X
Raw data

Y = W>X
ICA

Ŷ = |H{Y }|2
Envelope analysis

Figure 3-1: Proposed approach for differents methods ICA.

3.3.1. Synthetic data
We consider a normal pair of gears, such that all teeth of the gear are identical and are
equally spaced, under a constant load and speed (Fan and Zuo, 2006). The behavior of the
vibration signal is presented as follows:

ψ(t) =
L∑
l=0

Ψlcos(2πlfct+ φl) (3-14)

where fc = Zfr given that, Z is the number of teeth and fr mean the frequency of the
rotating shaft. L is the number of harmonics, Ψl and φl are, the amplitude and the phase
angle of the l-th harmonic of mesh frequency, respectively. A faulty gear tooth generates a
change in vibration signature and it can yield amplitude and phase modulation. Thus, the
gear fault signal can be represented by Eq. (3-15):

g(t) =
L∑
l=0

Ψl(1 + bl(t))cos(2πlfct+ φl + cl(t)) (3-15)

where bl(t) and cl(t), respectively, are the amplitude and phase modulation functions. In
general, the types of faults on gear tooth are not identical and the faults yield a periodic
excitation (Kim and Lee, 2018). Hence, we define the modulation function as follows:

bl(t) =
L′∑
l′=1

Bll′cos(2πl′fct+ βll′) (3-16)

cl(t) =
L′∑
l′=1

Cll′cos(2πl′fct+ γll′) (3-17)

where L′ is the number of sidebands around tooth-meshing harmonics, Bll′ , Cll′ are ampli-
tudes and βll′ , γll′ are the phase at the l′-th sidebands of amplitude and phase-modulating
signals, respectively, around the l-th meshing harmonic. By introducing Eqs. (3-16) and (3-
17) into Eq. (3-15), appear additional frequency components that vary with time. Finally,
the model for a gearbox with a faulty gear tooth is given in equation Eq. (3-18)

g(t) =
L∑
l=0

Ψl

1 +
L′∑
l′=1

Bll′cos(2πl′fc(t)t+ βll′)


×cos

2πlfc(t)t+ φl +
L′∑
l′=1

Cll′cos(2πl′fc(t)t+ γll′)
 (3-18)
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In order to simulate a frequency variation phenomenon respect to time, the signal cos(2π×1560t)+
cos(2π×1600t) is modulated by frequencies of 40 and 80 Hz, where the second frequency is
established for short intervals of time along the signal. Finally, a random signal with a normal
distribution is added. This simulated signal is denoted as S1 and it is showed in Fig. 3-2.

g(t) = (1 + sin(2π40t))(cos(2π1560t) + sin(2π40t))

+


(1 + sin(2π80t))(cos(2π1600t) + sin(2π80t)), t = [0, 0.099] ,
cos(2π1600t), t = [0.1, 0.3] ,
(1 + sin(2π80t))(cos(2π1600t) + sin(2π80t)), t = [0.301, 0.5] ,

(3-19)

Besides, a synthetic signal is generated with periodic components of low frequency and
transitory components of high frequency for simulating multiple fail signals (Wang and Tse,
2012), this behavior is described by the following formula:

q1(t) = exp(−λ(tFs/fb)/Fs)×sin(2πf0t/Fs) (3-20)
q2(t) = sin(2πf1t/Fs) + 0.8sin(2πf2t/Fs) (3-21)

The fault signal is present in Eq. (3-20) where λ = 900; fb = 100 Hz is the fault characteristic
frequency and the resonant frequency is define by f0 = 3700 Hz labeled as S2. The low
frequencies are shown case-by-case due to that signal is similar to the carrier wave that is
describe in Eq. (3-21), which is denoted as S3 where f1 = 60 Hz and f2 = 90 Hz are the
components of low frequency, and the sample frequency Fs = 8192 Hz. At last, we use 4090
samples to simulate signal and we add a random signal with a normal distribution. From
synthetic signals, we generate the matrix sources such that S = [g(t); q1(t); q2(t)] we use
the notation of Matlab for concatenate. We produce a random matrix mixing A to linearly
combine the source and to simulate matrix measures X = AS as shown in Fig. 3-2 as
Mixture.
Comparing the original spectrums showed in Fig. 3-2, against the spectrums of the recons-
tructed signals shown in Fig. 3-3, we can see that the overall performance of the methods is
significant, given that the three methods separate mixed signals without mistake. Moreover,
the spatial distribution information of sources was not applied to this experiment because
the data have no spatial information.

3.3.2. Experiment in bearing fault detection
As shown in Fig. 3-4, experimental test rig includes a 2 HP electromotor Siemens with
1800 rpm maximum speed. The motor is connected to shaft by a rigid coupling and has
two supports, each one holding a ball bearing SKF-6005NR and two wheels. Drilling wells
are designed to create either static or dynamic unbalance problems. To measure machine
mechanical vibration, accelerometers are also included, which are located perpendicularly to
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the shaft horizontal plane (labeled as accelerometer location). In this experiment, just the
ACC102 accelerometer placed near the machine is employed, which has a measurement range
of 0−10 kHz and 100 mV/g of sensibility. The National Instruments USB-6009 data
acquisition card acquires vibration recordings at 20 kHz sampling frequency.

Figure 3-4: Experiment set-up for test rig.

It is selected several registers to apply the methodology described in Section 3.3. The feature
principal that it is sought in the registers was select those in which the fault inner race and
fault balls were found present in the axes horizontal and vertical of both accelerometers, we
seek to verify the performance of ICA for BSS both in fault inner race as in fault ball. In
particular, the bearing fault frequency may be approximated by the geometrical properties
of the rolling element bearings and the shaft rotational speed fr of the system (Smith and
Randall, 2015b). Thus, the bearing fault frequencies are as follows:

Table 3-1: Theoretical bearing fault frequencies, where z is the number of
rolling elements, θ is the contact angle of the load from radial
plane. and d

′ = d/D, being D and d the bearing pitch and ball
diameters, respectively.

Ball pass frequency, outer race: BPFO = zfr(1− d
′ cos θ)/2

Ball pass frequency, inner race: BPFI = zfr(1 + d
′ cos θ)/2

Ball spin frequency: BSF = Dfr(1− (d′ cos θ)2)/2d
Fundamental train frequency: FTF = fr(1− d

′ cos θ)/2

where z is the number of rolling elements, D and d are respectively the bearing pitch and
ball diameters, θ is the contact angle of the load from the radial plane. Fault frequencies
above are based on kinematic relationships assuming that there is not frequency slip, yet it
is always present having a variation from the calculated frequency of up to 1 − 2 % (Smith
and Randall, 2015b).
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The main spectral characteristics from outer race, inner race, and rolling elements, which
may be identified in the envelope spectrum according to Taylor (1994) are: i) BPFI and
harmonics, sidebands spaced at fr; And ii) BSF and harmonics (even harmonics often
dominant), sidebands spaced at FTF , harmonics of FTF .

Experiment in ball pass frequency, inner race

In Fig. 3-5 is shown register 19, we can appreciate the signals in the time domain for each
of mixture signals collected for accelerometers denote with S1h and S1v for first support, in
the same the way S2h and S2v for the second support, where it is not visible a patron of
fault for the signals S1 and S2 in both axes.
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Figure 3-5: Signals collected of accelerometers fault inner race.

The step following is to carry out the envelope analysis and Fourier transform, additionally,
we establish the fault frequency inner race, in order to easily appreciate the fault collected
by all the accelerometers as illustrated in Fig. 3-6. Thus, it is very difficult determined in
which of the supports is found the fault given that we have a sign of fault but we can not
ensure the support it belongs to fault with absolute precision.
We evaluated three algorithms of BSS: FastICA, JADE, SOBI the results are shown in
Fig. 3-7 respectively. The signals of Fig. 3-5 make up the input mixture matrix X for ICA.
It should be borne in mind that the first dominant peak for S2h, S2v, S1v corresponds to the
rotational frequency of the shaft and its second harmonic corresponds for the first dominant
peak in S1h.
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Figure 3-6: Spectrum of envelope of accelerometers fault inner race. Harmonic cursors mul-
tiples of BPFI (164.3 Hz) and sidebands cursors multiples of BPFI ± fr
(164.3± 30 Hz) are displayed in red colour.
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Figure 3-7: Spectrum of ICs fault inner race for FastICA, JADE, SOBI. Harmonic cursors
multiples of BPFI (164.3 Hz) and sidebands cursors multiples of BPFI ± fr
(164.3± 30 Hz) are displayed in red colour.
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As evidenced in Fig. 3-7, after applying the proposed methodology is achieved to establish
the origin of the fault in S2 in both axes, however, of the three algorithms raised FastICA
and JADE are those that present a solution relevant to BSS because they are able to turn
off the component of the failure for the axes S1v, in contrast to what happens in SOBI that
keeps the components of the fault turned on for S1v. Over and above, FastICA achieves the
best performance by virtue of that highlights the fault in the accelerometer S2, both S2h
and S2v axes, contrary to the methods of JADE and SOBI, which are able to separate the
component of fault in S2h but fail to highlight the relevant information of the fault for the
axis S2v. The spatial distribution information works correctly for the association of the ICs
with the location of the sources because the measurements of the data were carried out with
a prior knowledge of the bearing that originates the fault, which in this case is recorded by
accelerometer S2 as presented in Fig. 3-7.

Experiment in ball spin frequency

Following the methodology presented in Section 3.3.2, the experiment was performed for the
ball fault, selecting the registry 59 as evidenced in Fig. 3-8 in the time domain and Fig. 3-9
in the frequency domain, where it is not visible a patron of fault for the signals S1 and S2
in both axes. Besides, it should be taken into account that for this experiment the fault is
in S1h and S1v.
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Figure 3-8: Signals collected of accelerometers fault ball.

The signals of Fig. 3-8 make up the input mixture matrix X for the methods of ICA, we
establish the fault frequency ball and shaft spin frequency given that in this type of fault is
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common for peaks to be presented in harmonic cursors multiples as illustrated in Fig. 3-9.
Thus, it is very difficult determined in which of the supports is the fault.
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Figure 3-9: Spectrum of envelope of accelerometers fault ball. Harmonic cursors multiples of
BSF (65.7 Hz) and sidebands cursors multiples of BSF±FTF (65.7±11.7 Hz)
are displayed in red colour. Harmonic cursors multiples of FTF (11.7 Hz) are
displayed in black colour.

We evaluated the algorithms of BSS: FastICA, JADE, SOBI and the results are shown
in Fig. 3-10 respectively. We find the same behavior of the Section 3.3.2, where the ICs
calculated by JADE and SOBI highlight information important of the fault for S1 in both
axes, but only attenuate the peaks of the multiple harmonics of BSF ± FTF and FTF

for S2h and not for the axis S2v, complicating the association of fault. Contrarily, FastICA
presents the best performance because it highlights the behavior of fault in S1 separating
both the first and second harmonic of fault (lines displayed in red colour) and shows multiple
harmonics of FTF that indicate the presence of fault for that accelerometer, additionally,
in S2h is shown only harmonics of FTF and there is no evidence of the fault, meanwhile,
S2v extinguishes all relevant peaks which leads us to conclude in a correct way the origin
of fault. In regard to the spatial distribution information allows us to correctly associate
the calculated ICs to the accelerometer S1 which is expected for this experiment. It should
be noted that for the support S2 in the three algorithms of ICA, presents a peak in the
frequency of 2FTF which corresponds to the frequency of rotation of the shaft and is not
representative for the identification of fault.
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Figure 3-10: Spectrum of ICs fautls ball for FastICA, JADE, SOBI. Harmonic cursors mul-
tiples of BSF (65.7 Hz) and sidebands cursors multiples of BSF ± FTF
(65.7 ± 11.7 Hz) are displayed in red colour. Harmonic cursors multiples of
FTF (11.7 Hz) are displayed in black colour.

3.4. Discussion

It was observed that for synthetic data the methods of BSS: FastICA, JADE, and SOBI
tested in this chapter, achieve the estimation of ICs for the proposed dynamics without any
error taking into account the information of the linear mixtures of the sources without any
other a priori information, in this way we validate the correct operation of the BSS methods
mentioned above. On the other hand, for our database, the best performance achieved is
FastICA followed by JADE, where the method of SOBI does not achieve a good performance
because the method takes advantage of the temporal structure of the observed data, i. e. is
based on the estimation of the components from the correlation, and as seen in Figs. 3-5
and 3-8, the data captured by the accelerometers do not offer any discriminating information
about the faults, therefore, second-order statistics are not enough to properly estimate ICs.
For its part, JADE uses fourth-order statistics and minimizes the crossing of cumulants
to achieve independence among the estimated components (Choi et al., 2002). FastICA
estimates a set of components that are maximally independent using a non-Gaussianity
measurement and therefore provides a global separation measure, while JADE uses the
measure of diagonalization for component separation that did not provide good results.
In this chapter, we test the most common methods of blind source separation in the state
of art. We develop a formal comparison of three methods of the Independent Component
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Analysis for fault identification in rotative machines. The results show that they are a useful
tool for revealing fault patterns. However, note that each of the methods employed provides
different features of failure.



4 Enhanced fault localization in rolling
element bearings using multiple
constrained ICA

4.1. Introduction
Rolling element bearing (REB) is one of the most critical mechanisms in rotating machinery,
and its failure implies in many cases substantial economic losses and catastrophic incidents
in industry. For that reason, the permanent monitoring of REB is crucial for early fault
detection (Randall and Antoni, 2011). In recent decades, the vibration signal processing ari-
ses as a useful technique to diagnose a bearing fault, where the tracking of its degradation
process could provide valuable information reducing a sudden damage (Kumar and Kumar,
2018; Cardona-Morales and Castellanos-Dominguez, 2018). For the sake of simplification, the
maintenance engineers prefer to utilize the envelope analysis, also called classical analysis,
since, by visual inspection of the envelope spectrum, it is possible relating specific frequen-
cies with the corresponding bearing failures (Taylor, 1994). Nonetheless, a false diagnostic
is feasible in machines with several REBs because it is possible to wrongly sense a broken
bearing from the other bearing location (Kass et al., 2019). Therefore, a source fault locali-
zation strategy is needed to increase the condition monitoring accuracy in complex machines
and systems.
Independent component analysis (ICA) was developed to deal with blind source separation
(BSS) tasks, in particular, instantaneous mixtures of several statistical independent com-
ponents (Hyvärinen and Oja, 2000). Nevertheless, ICA has two ambiguities (scaling and
permutation) that limit its usage, it means that the IC amplitudes change on each algo-
rithm iteration, and the appropriate IC order cannot be determined. In that regards, some
authors had been suggested to modify the BSS paradigm into extracting a single signal or
component that encloses the bearing fault dynamic, also called blind signal extraction (An-
toni, 2005; Cardona-Morales et al., 2018; Smith and Randall, 2015a). Among the multiple
methods adopted in the state-of-the-art related with BSE, constraint independent compo-
nent analysis (cICA) or ICA with reference (Lu and Rajapakse, 2006; Zhang, 2008) has been
designed to extract a single component (from the mixture) with a characteristic pattern. In
REB fault detection was utilized cICA in Wang et al. (2011); Jing et al. (2014), however,
the method was addressed to obtain a specific bearing fault, and in Yang et al. (2018), cICA
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was employed over non-stationary vibration signals where the machine speed is fluctuating.
Nonetheless, the bearing fault localization is still an open issue that increases its relevance
nowadays, since the technology development allows think into sensor networks that provide
a simultaneously monitoring.
Nonetheless, the ICA model has two ambiguities (i.e. scaling and permutation) that limit
its application. The scaling implies a mismatch between the IC and source amplitudes, yet
it is insignificant since in bearing fault identification is more relevant the waveform and its
spectral information. In change, the permutation ambiguity does not allow to establish the
correct IC order, and it affects the failure localization. This drawback could be alleviate using
the constrained ICA inasmuch it retrieves a single IC that comprises the hidden pattern.
In this chapter, we propose a REB fault diagnostic method that allows identifying and
locating the fault. Our approach is based on the extraction of a characteristic envelope
that describes the faulty process because we use as a mixture the envelope signal of several
measurements. To this end, we modify the cost function of cICA by the Kullback-Leibler
divergence, introducing multiple constraints associated with any bearing fault. Finally, we
identify and locate the faulty bearing using the Jaccard similarity computed between the
obtained IC and the envelope signals of each sensor. The mcICA algorithm is tested both
synthetic and real-world datasets, and compared against the classical analysis. The last case
is characterized by two run-to-failure tests where it is important to determine the bearing
fault and where it occurs.
The agenda is as follows: Firstly, Section 4.2 describes the mathematical background of cICA
and it is present the measures of similarity used for bearing fault localization. The develo-
ped experiments and achieved results are described in Section 4.3, respectively. Finally, the
discussion are provided in Section 4.4.

4.2. Methods

4.2.1. Constrained Independent component analysis (cICA)
Independent Component Analysis (ICA) aims at separating a multivariate vibration signal
x̂(t) = {xm(t) : m∈M}, where x̂(t) ∈ L2(t), going along with the signal x(t), lasting T∈R
and measured from M accelerometers, into N additive hidden patterns (or sources) that are
assumed to be non-Gaussian and independent from each other. Based on their underlying
higher-order statistical structures, the unknown components are linearly combined, that is
x̂(t) = As(t), through the full rank matrix A∈RM×N that is unknown also. Therefore, the
ICA approaches estimate a de-mixing vector w∈WN×M , such that, W = A−1 and noting
that for an orthogonal matrix W−1 = W>, thus, y = w>As, using a two-step optimizing
procedure: A linear whitening transformation is applied to the measured time series to get a
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set of uncorrelated random signals set, each one having unit variance. Next, the optimization
objective function of ICA is defined, according to a selected high-order statistical maximum
criterion.
In fault vibration analysis, however, only an small source subset is of interest, from which
some properties or a priori available information can be incorporated into the cost function,
using constraints regarding the closeness g(y) and scale h(y) and resulting in the constrained
ICA algorithm (cICA):

J (y) ≈ ρ
(
E {G(y)} − E {G(ν)}

)2
, (4-1a)

s.t.: g(w) = ε(y, r)− ξ; h(w) = E
{
y2
}
− 1 = 0,E

{
r2
}
− 1 = 0 (4-1b)

where E {·} stands for the expectation operator, ρ∈R+ is a positive-definite constant, ν∈RM×1

is a Gaussian variable having zero mean and unit variance, G(·) is any non-quadratic fun-
ction, ε is the similarity measure between the independent component y and the reference
signal r∈RM×1, and ξ∈R+ is a certain similarity threshold.
Nevertheless, cICA performs the cost function minimization in Eq. (4-1a) to reduce to the
smallest possible amount the difference between acquired data and the reference signal for
computing the optimum de-mixing vector, w∗. Instead, we propose to minimize the distance
DY R between the spectral power estimates of sources y and multiple references {rp : p ∈ P},
as follows:

w∗ = min
∀p

arg min
w

DY R(Y (k)||Rp(k)). (4-2)

where Y (k) andR(k) are the spectral density of the time series Y (k) = F{y(t)} = F{w>x̂(t)}
and Rp(k) = F{rp(t)}. Notation F{·} stands for the Fourier Transform.
On the other hand, the widely-known mean squared error (MSE) is frequently applied as the
distance DY R, when assuming the stationarity of acquired data. Since the presence of faults
induces non-stationarities, we introduce the use of Kullback-Leibler divergence to measure
the discrepancy between a wide range of fault-derived distributions. Therefore, relying on
Eq. (4-2), we devise a multiple-contrained ICA (termed mcICA) as follows:

max
n,p

ρ
(
E
{
G(w>x̂)

}
− E {G(ν)}

)2
− λDY R(F{w>x̂}||Rp) (4-3a)

s. t. : E
{

(w>x̂)2
}

= 1, E
{
r2
p

}
= 1 ∀p (4-3b)

Under the equality restrictions in Eq. (4-3b), the contrained optimization problem of Eq. (4-
3a) is solved by the corresponding augmented Lagrangian function through a Newton-like
learning algorithm as detailed in Huang and Mi (2007).
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4.2.2. Bearing fault identification and localization

We propose a methodology for the bearing fault identification and localization that described
in Fig. 4-1.

X̂ = |H{X}|2
Raw data

y = (w∗)>X̂
mcICA

φ(x̂q,m,yq)
Bearing localization

Figure 4-1: Proposed approach for fault localization using multiple constrained ICA.

Regarding the bearing fault identification, we fix a threshold to thres = µ + 6σ, where the
mean and the standard deviation of the machine vibration level are computed using the
RMS or kurtosis values of the first two hundred recordings (Abboud et al., 2019). Thereby,
a bearing fault exists when the vibration level indicator exceeds the threshold. Also, an
indicator associated with each p-th reference signal is obtained which allows us to determine
the type of fault. Therefore, a fault localization stage is required since it is unknown where
the failure occurs.
With the purpose to perform the bearing fault localization, we compare the measures of simi-
larity exhibited in Table 4-1. We estimate Cross-correlation Power Spectral Density (CPSD)
that is an extension of the correlation coefficient. CPSD searchs powerful components locally
concentrated in the spectral density of signal (Sierra-Alonso et al., 2014). For its parts, Jac-
card is a measure of similarity between finite sets (Giusti and Batista, 2013). Further, we
use Mean Squared Error (MSE) and Cross-correlation.

Table 4-1: Measures of similarity

CPSD 1
2LFTF

∑L
l=1 Y (k)|α

Jaccard
∑T

t=1(y(t)−x(t))2∑T

t=1(y2(t)+x̂2(t)−y(t)x̂(t))2

MSE 1
T

∑T
t=1(y(t)− x̂(t))2

Cross-correlation E
{
y(t)x̂>(t)

}

where Y = F{E
{
y(t)x̂>(t)

}
}, L is de number of harmonics, α ∈ fi ± FTF , fi is BPFO or

BPFI. For all measures, we calculate the similarity between yq(t) and x̂q,m(t) where q∈Q
represent the register that exceeds the threshold, Q is the number total of the registers and
m is each of the accelerometers. Finally, we estimate the percent of accuracy accj for the
j-th measures of similarity as seen in Algorithm 1.
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Algorithm 1 Weighted accuracy of bearing fault localization.

1. To find the register q that exceeds the threshold γ.

for q to Q:

2. To compute the signal reconstructed by mcICA from the record (fault identification):

yq = (w∗)>X̂q

3. To calculate proximity measures for each of the accelerometers m, where
m = [1, . . . ,M ] (fault localization):

φm(x̂q,m,yq))

4. To assign a vote for bearing with the maximum index of dm:

lq,m = max(φm(x̂q,m,yq)) where lq,m = [1, . . . ,M ]

end for

5. To estimate the performance of the proposed method:

accm = E {lq,m} ∀m

4.3. Experimental Set-Up

For evaluation purposes, the mcICA algorithm comprises the following stages (see Fig. 4-1):
i) computing the envelope of measured signal vibrations using the Hilbert transform; ii)
Data-driven mcICA decomposition, using a probabilistic distance-based cost function; And
iii) identification and localization of faults, measuring the similarity between the bearing
signals and their estimated latent components.

The proposed mcICA algorithm is validated on two different datasets. First, a set of synthetic
signals to demonstrate the blind separability, and second, a run-to-failure test of rolling
element bearings acquired from a test rig to early localization of a bearing fault.
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4.3.1. Synthetic separable data

Several simulated faulty signals are generated by mixing three vibration sources, adding
noise with zero-mean and unit-variance as follows:

s1 = sin(2πf1t+ cos(2πf2t))
s2 = cos(2πf3t)
s3 = η(t), Nη(0, 1)
s4 = ∑M

i=1(A cos(2πfrt+ αA) + C)
exp(−B(t− iTb − τ)) cos(2πfn(t− iTb − τ) + αw)

(4-4)

where s1 is a frequency-modulated signal, s2 is a plain cosine, s3 is a random Gaussian noise,
and s4 is a simulated rolling element bearing signal with inner race fault that emulates a
surface deterioration such as spalling fatigue and abrasive wear, rolling element random
slip, tolerance, and amplitude modulation (Randall et al., 2001). In this case, the following
parameter values are fixed: f1 = 610 Hz, f2 = 540 Hz, f3 = 280 Hz, fr = 33.33 Hz is the
rotary frequency, which is generally equated to the rotating speed of the shaft; fb = 296 Hz
is the fault frequency associated to a bearing effect; fn = 2000 Hz is the natural frequency
associated to system or bearing; A = 3 is the resonance intensity; B = 800 is the system
resonance damping coefficient; Tb is the attenuated damping oscillation with mean impulse
period Tb = 1/fb; τ = 0.01 is an small fluctuation around Tb due to the presence of slip.
For the sake of simplicity, the phase parameters are a zero-valued constant: C = 0, αA = 0,
αw = 0.
The validating signal set is generated using 20480 samples at a sampling frequency 20 kHz,
including the multiple channels to simulate the tested faults and holding non-stationary
behavior as shown by spectrograms in Fig. 4-2.
During testing of synthetic data, the multiple references and simulated signal are fed into
the mcICA algorithm. Since the reference signal is a crucial point to perform an accurate IC
reconstruction, a square pulse train is employed, having the characteristic fault frequency as
suggested in Wang et al. (2011); Lu and Rajapakse (2006). Using the Jaccard dissimilarity,
the extracted IC component is s4 that matches the simulated bearing source with inner race
fault as shown in Fig. 4-3, reaching a high value of similarity (correlation index close to
0.999).

4.3.2. Bearing fault localization on real-world data

The used bearing data were obtained from Prognostics Center Excellence through the prog-
nostic data repository provided by Intelligent Maintenance System (IMS), which holds a
test-to-failure experiment performed on a bearing test rig, including four Rexnord ZA-2115
double-row bearings on one shaft driven by an AC motor and coupled by rub belts (Qiu
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Figure 4-2: Mixing source signals generated by the synthetic data. It is shown the signal in
time domain and its time-frequency representation (spectrogram with hamming
window, 50 % overlap, and 2048 bins)

Figure 4-3: IC reconstruction obtained using our mcICA algorithm. Jaccard index is 1 and
correlation index is 0.9993
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et al., 2006). During the experiment, the rotation speed remained constant at 2000 r/min,
and each bearing had 16 rollers per row, a diameter of 2.815 in, roller diameter of 0.331 in,
and a tapered contact angle of 15.17◦. A PCB 353B33 High Sensitivity Quartz ICP Acce-
lerometer was installed on each bearing housing. The data sampling rate was adjusted to
20 kHz, and collecting one vibration record every 10 min.
In this work, the test #2 and #3 are used for validation, holding an outer race defect in the
bearings labeled as #1 and #3, respectively. The bearing fault frequencies are approximated
by the geometrical properties of the rolling element bearings and shaft rotational speed fr as
shown in Table 3-1. Therefore, we build a set of four square pulse trains based on the expected
fault frequencies as follows: BPFO = 236.4 Hz, BPFI = 296.9 Hz, BSF = 139.9 Hz, and
FTF = 14.7 Hz. It is worth noting that the frequencies mentioned above may present a
frequency slip up to 1− 2 % (Smith and Randall, 2015a).
To characterize the machine health state on real-world data, we feed the signal envelope
of each bearing and the multiple references into the mcICA algorithm, extracting the IC
reconstruction that holds the dominant fault pattern. Then, we assess the machine vibration
level using the kurtosis value over the obtained IC spectrum, namely, on the frequency
bands associated with the bearing fault frequencies described in Table 3-1 . For the sake of
comparison, we also carry out the classical envelope analysis, for which the RMS value is
the indicator of vibration level.
In order to localize the damaged bearing, different similarity measures are estimated because
it is possible that several rolling element bearings evince as the lowest Jaccard dissimilarity
value computed between the IC and signal envelope for each bearing. Therefore, the accuracy
provided by the mcICA approach is estimated from the recordings that exceed the threshold,
such as show in Algorithm 1.

4.3.3. Case 1: Slow-growing of bearing fault

In the test #2, Fig. 4-4 shows that the classical analysis, as well as mcICA approach, detect
the fault at recording 539 exceeding the threshold. Yet, the former analysis demands the
knowledge about the bearing that will fail, and this situation is far from being normal. On
the opposite, the proposed algorithm neglects this requirement since it runs over all bearings
simultaneously. Note that the detected active fault is an outer race defect as reported in the
database description.
For visual inspection, Fig. 4-5 displays the squared envelope spectrum computed for all
bearings at the record 539, clearly showing that the characteristic bearing fault frequency
(BPFO) is present in the bearing #1. Nonetheless, the bearing #2 also has some fault signs
like the sidebands of the BPFO harmonics, and hence, a classical analysis could generate a
false alarm concerning the faulty bearing. In contrast, the reconstructed IC obtained using
our approach allows identifying the outer race defect selecting the proper damaged bearing.
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Figure 4-4: Bearing fault trending of the test #2, using classical analysis (top), cICA (midd-
le) and mcICA (bottom).

Table 4-2: Weighted accuracy of bearing fault localization for test #2.
Measures ( %) Bearing #1 Bearing #2 Bearing #3 Bearing #4

CPSD 95.74 0.45 2.24 1.57
Jaccard 69.51 3.81 26.23 0.45

MSE 66.59 4.71 28.25 0.45
Cross-correlation 32.51 20.63 37.44 9.42

4.3.4. Case 2: Fast-growing of bearing fault

In the experiment in test #3, as it is evinced in Fig. 4-6, the BPFI, BSF , and FTF fault
holds inactive whereas outer race fault is activated. Particularly, the RMS analysis reaches
the threshold at the record 5977, and it remains stable until the record 6071, where it is
present a growing degradation process. In change, our approach exceeds the threshold at the
record 6068, showing an accelerate increment in the damaged bearing.
Additionally, we perform the analysis of the envelope spectrum of the bearing #3 for the
records 5977, 6068 and 6071 using both the classical analysis and our mcICA approach, since
those records exceed the threshold (see Fig. 4-7). It is possible to observe in Fig. 4-7a that
the record 5977 does not exhibit a clear outer race fault pattern, which could be considered
a false alarm. Nevertheless, at the record 6068 reported by our algorithm, the IC presents
significant sidebands of BPFO, indicating an early faulty process (see Fig. 4-7b). Finally,
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Figure 4-5: Squared envelope spectrum for all bearings and IC by the record 539 of the test
#2. Adjusted harmonic cursors multiples of BPFO (230.5 Hz) and sideband
cursors multiples of BPFO ± fr (230.5± 33.3 Hz) are displayed in red color.

the record 6071 showed in Fig. 4-7c exhibits a dominant spectral component at BPFO for
both approaches.
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Figure 4-6: Bearing fault trending of the test #3, using classical analysis (top), cICA (midd-
le) and mcICA (bottom).

Table 4-3: Weighted accuracy of bearing fault localization for test #3.
Measures ( %) Bearing #1 Bearing #2 Bearing #3 Bearing #4

CPSD 1.56 0.78 26.85 72.82
Jaccard 7.00 14.40 78.21 0.39

MSE 7.78 15.18 74.71 2.33
Cross-correlation 21.40 23.74 26.85 28.02

Fig. 4-8 illustrates the achieved localization performance in the case of 6180, at which the
fault reaches steady behavior. Due to the fault is present at all sensors, its localization maybe
not simple using the proximity measurements computed from the signal envelopes.

4.4. Discussion
The introduced mcICA algorithm applied to real-world data allows highlighting some aspects
related to its performance to detect a machine degradation process, to identify the type of
bearing fault and to spatially locate the damaged bearing.
Regarding the degradation process, in the test #2 showed in Fig. 4-4, our approach holds a
trending that continually increases until it reaches a maximum at the record 941, where the
vibration level decreases due to that the fault surface has extended during the degradation
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Figure 4-7: Squared envelope spectrum for bearing #3 both RMS (left) and IC (right)
analysis in the test #3. Adjusted harmonic cursors multiples of BPFO (231.5
Hz) and sideband cursors multiples of BPFO ± fr (231.5 ± 33.3 Hz) are dis-
played in red color.

process. Hence, it smooths the impulsive excitation (Abboud et al., 2019). In change, the
classical analysis evinces a slow-growing process that rapidly grows up until the record #700,
which could be catastrophic for the machine because it does not provide enough time for the
maintenance. Besides, when the failure moves forward, i.e., around the record 790, the low
vibration level hides the actual degradation stage. A similar dynamic is presented in the test
#3 (Fig. 4-6), where our approach provides a growing trend, while RMS detection holds
constant for several records on the threshold value, displaying a clear degradation process
172 records from the first fault detection flag. Therefore, the obtained outcome of the record
5977 could be considered as an outlier since it does not present a clear fault pattern.



46
4 Enhanced fault localization in rolling element bearings using multiple

constrained ICA

Frequency [Hz]
0 100 200 300 400 500 600

×10−3

0

0.5

1

1.5

2

(a) Bearing #1
Frequency [Hz]

0 100 200 300 400 500 600

×10−3

0

0.5

1

1.5

2

2.5

3

(b) Bearing #2

Frequency [Hz]
0 100 200 300 400 500 600

×10−2

0

0.5

1

1.5

(c) Bearing #3
Frequency [Hz]

0 100 200 300 400 500 600

×10−3

0

2

4

6

(d) Bearing #4

Figure 4-8: Squared envelope spectrum for all bearings by the record 6180 of the test #3.
Adjusted harmonic cursors multiples of BPFO (231.5 Hz) and sideband cursors
multiples of BPFO ± fr (231.5± 33.3 Hz) are displayed in red color.

Concerning the fault identification task, in the test #2, an outer race bearing fault is found
using both the classical and mcICA approaches, while cICA does not correctly identify the
failure. Nonetheless, the traditional analysis needs carrying out an envelope analysis and
visual inspection to distinguish the type of fault, yet our approach matches the proper
reference to automatically identifying it. Therefore, it allows optimizing the diagnostic time
in the maintenance task. Additionally, it is worth noting that the proposed mcICA algorithm
has a low time consumption since it utilizes optimized procedures like Fast-ICA and KL-
divergence instead of MSE cost function. This change allows comparing the power spectral
densities of the reference signals and the IC reconstruction, highlighting the characteristic
fault frequencies and achieving a better algorithm performance. In contrast, conventional
cICA presents several limitations such as i) taking into account only one reference signal
that makes the selection more complex and ii) requiring a priori knowledge about the source
to be retrieved.
With respect to fault localization, the employed measures show acceptable behavior in both
tests. In the test #2, it should be noted that the success rate of the CPSD measure is the best
(95.74 %), determining the bearing location where the damage takes place. However, that
measure does not reach the same performance in the test #3, since the bearing degradation
arises rapidly, and it is observed at nearby sensors, as shown in Fig. 4-8. Therefore, CPSD
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performance is affected due to the high similarity between the power spectral densities.
Nevertheless, the measure determines that the fault is in bearing #3 or #4 with success
rate of 26.85 % and 72.82 %, respectively, which discards the bearings #1 with 1.56 % and
#2 with 0.78 %. In particular, JI is best for test #3 since, as a measure of sets, it takes
advantage of the join and intersection of the data to associate the reconstructed IC with
the bearing #3. Finally, CC fails to determine in any case the origin of the fault due to the
vibration signals are highly correlated in time-domain, as evidenced in the closeness of the
percentages obtained ( Tables 4-2 and 4-3).
In this chapter, we propose an algorithm for fault localization in rolling element bearings.
We modified the cost function of the traditional cICA, in order to take advantage of the
characteristics of faults in the frequency space. Besides, we introduce multiple references that
help with the fault identification. Thus, the reconstructed IC contains clear fault patterns,
facilitating the association with the vibration signal coming from the bearings. Therefore, it
is necessary to look for a measure of similarity that allows the location of the fault. Finally,
the proposed measures show a high performance in the location of the fault.



5 Conclusion and Future Work

5.1. Conclusion

Firstly, feature extraction based on unsupervised and supervised learning methods to diagno-
se gearbox faults is presented. This model employed different features from the time-domain,
the frequency-domain, and the time-frequency domain to extract the gear health conditions.
The classifier based on k nearest neighbor classification algorithm to construct a reliable
and accurate fault diagnosis method. The data were collected from the gears under diffe-
rent loads and motor speeds to generate typical cases of gear faults. The analysis results on
the gear data show that the proposed methodology enables the classification of gear damage.

Secondly, it was proposed an application of ICA methods for multi-fault rotating systems
getting essential results in the separation of faults signals acquired by accelerometers, pro-
viding relevant information on the discrimination of faults in different supports. The three
algorithms showed a performance acceptable for the task of BSS. However, the algorithm
FastICA showed a top performance about the others, the support S2 indicate very clearly
the presence of faults in both axis, horizontal and vertical for fault inner race and the support
S1 for fault ball, as well as we note that the algorithm powers the information of the fault
being a fundamental part because it allows us to find the support to which the fault corres-
ponds. Moreover, for fault ball pass frequency, out race, charges no importance to apply the
methodology proposal because it was only recorded by the support S1, which means that no
mixture of the fault signals was presented; therefore we have no problem of BSS to analyze
with the algorithms implemented in this document.

Thirdly, a fault localization method in machines or systems with rolling element bearings
is presented. The methodology is based on an improved version of the constrained ICA al-
gorithm, where multiple constraints are fed into the optimization problem. The change of
the cost function by a divergence measure allows inferring that our approach could provi-
de relevant information under non-stationary operating conditions. Utilizing a dissimilarity
measure was feasibly detecting the faulty bearing among the multiple measurements, which
holds open the blind source separation issue for industrial applications.
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5.2. Future Work
The proposed methodologies perform well for the databases under consideration. However,
validation of these with other types of signals would allow determining the capacity of the
methodology to extrapolate its operation to other rotary machine configurations.

The fault localization method provides us detail information spacial about the machine. This
permits us to have a complete panorama of the phenomena that can affect the correct fun-
ctioning of the elements present in the bearings, also provides us with a tool to diagnose the
health of the machine. Therefore, we propose to test our mcICA approach in the monitoring
of different industrial applications since it is promising in fault detection and localization.

Finally, it is proposed as future work to test different classifiers, since there are more ad-
vanced classification techniques (such as neural networks among others), which can take
better advantage of the extraction of features performed previously. Besides, it is proposed
to make a feature selection based on the relevances obtained in the development of this work.
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