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Abstract

Machine learning techniques have been successfully applied to support medical decision making of

cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods

have been used for early detection of abnormalities in the eye that could improve the diagnosis of

different ocular diseases, especially in developing countries, where there are major limitations to

access to specialized medical treatment. However, the early detection of clinical signs such as blood

vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three

main challenges: the ocular images can be affected by noise artifact, the features of the clinical

signs depend specifically on the acquisition source, and the combination of local signs and grading

disease label is not an easy task.

This research approaches the problem of combining local signs and global labels of different

acquisition sources of medical information as a valuable tool to support medical decision making

in ocular diseases. Different models for different eye diseases were developed. Four models were

developed using eye fundus images: for DME, it was designed a two-stages model that uses a

shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the

raw fundus image into a 4-channel array as an input of a deep convolutional neural network for

diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models.

First, it was defined a deep learning model based on three-stages that contains an initial stage for

automatically segment two binary masks containing optic disc and physiological cup segmentation,

followed by an automatic morphometric features extraction stage from previous segmentations,

and a final classification stage that supports the glaucoma diagnosis with intermediate medical

information. Two late-data-fusion methods that fused morphometric features from cartesian and

polar segmentation of the optic disc and physiological cup with features extracted from raw eye

fundus images. On the other hand, two models were defined using optical coherence tomography.

First, a customized convolutional neural network termed as OCT-NET to extract features from

OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates

images with highlighted local information about the clinical signs, and it estimates the number of

slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT

volumes as an input to estimate the retinal thickness map useful to grade AMD.

The methods were systematically evaluated using ten free public datasets. The methods were

compared and validated against other state-of-the-art algorithms and the results were also quali-

tatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition,

the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glau-

coma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging

representations. Thus, we consider that this research could be potentially a big step in building

telemedicine tools that could support medical personnel for detecting ocular diseases using eye

fundus images and optical coherence tomography.
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1 Introduction

The main aim of this thesis is to develop automatic analysis of ocular images based on deep learning

in order to support medical diagnosis in eye conditions related to diabetes. This kind of images

are an invaluable resource for the diagnosis of different eye diseases. However, the manual analysis

of these images by an ophthalmologist requires extensive training and, even for the experienced

ones, it is a cumbersome and prone to error process. Diabetes Mellitus is considered by the World

Health Organization (WHO)1 and by the International Diabetes Federation (IDF) 2 as a global

epidemic. According to the IDF diabetes atlas 2017, the worldwide associated costs to diabetes

were $727 billion (USD), 415 million people worldwide suffer diabetes, but unfortunately, only

half of these people were correctly diagnosed [1]. In Colombia, the data is not encouraging, it

was estimated that around 3, 8 million (8% of the Colombian population) people between 20 and

79 years present diabetes, a disease to which are 18, 640 deaths attributed and 1 million people

still have not been well diagnosed [1, 2]. Some patients in early stages of diabetes, have previous

symptoms such as blurred vision, slow loss of vision, floaters, shadows or areas of diminished vision

and difficulty for seeing at night [3, 4]. Unfortunately, most patients with diabetes do not show

symptoms, pain, or loss of vision, but as the disease progresses serious conditions such as: diabetic

retinopathy, glaucoma, macular edema and retinal detachment occurs leading to a partial or total

loss of vision [5–7].

The research of new techniques based on deep learning to extract local information related with

clinical signs as: microaneurysm, exudates, hemorrhages and drusen, to be combined with global

grading disease label, is the start point that justifies to focus on this doctoral research. The focus

thesis is the analysis of ocular images used to diagnose eye conditions associated with diabetes

as: diabetic retinopathy (DR), diabetic macular edema (DME), glaucoma and age-related macular

degeneration (AMD). These diseases are the leading cause of blindness worldwide in productive age

(20-69 years), with the main problem that 25% of diabetics worldwide will have visual problems

along diabetes, and without a preventive diagnosis and promptly treatment, these subjects will

suffer an irreversible blindness [1–5].

1.1 Problem statement

Eye conditions related to diabetes at productive age is a worldwide health problem with a large

amount of budget allocated by the World Health Organization [8]. In addition to this, the large

amount of available information (images, signals and clinical data) to study eye condition, and the

need of design new deep learning strategies as a support tool of different ocular diseases, make

this proposal as a doctorate challenge from the point of engineering with social responsibility to

1https://www.who.int/diabetes/goal/en/
2https://www.idf.org/aboutdiabetes/complications.html
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solve global issues in vulnerable populations. Hence, our hypothesis is that deep learning techniques

applied to ocular images may improve the diagnosis of eye conditions related to diabetes. Moreover,

the integration of local features such as blood vessel patterns, exudates, microaneurysm, drusen,

hemorrhages, abnormalities of the macula and others could improve the classification of different

eye conditions related to diabetes, but that has not been explored deeply yet.

The focus of this research is to develop deep learning models for analysis of ocular images, that

combine the detection of local labels (features) and global labels (grade of diabetes-related eye

conditions) to support medical personnel in a faster and more precise diagnosis.

The main research questions of this work are:

• ¿How to apply deep learning techniques to ocular images to improve the diagnosis of eye

conditions related to diabetes?

• ¿Could the integration of domain knowledge improve the classification of different eye condi-

tions related to diabetes?

Specifically, the guiding goals of this research are:

Main goal To develop interpretable deep learning methods for automatic analysis of ocular images

to support the diagnosis of different diabetes-related conditions.

Specific goals

• To design and implement a deep learning method for automatically identifying different eye

features (e.g. exudates, microaneurysm, blood vessel and optic disc segmentation) useful for

diagnosis of diabetes-related conditions.

• To design and implement a deep learning model to automatically classify the grade of different

diabetes-related conditions.

• To systematically evaluate the performance of the method on different dataset for diagnosis

of diabetes-related conditions.

1.2 Main contributions

This research presents novel deep learning strategies to tackle the automatic analysis of ocular

image using different sources of information. The following is the outline of the main contributions

of this work.

• A CNN that combines a patches classifier used for detecting local abnormalities (exudates)

stacked with the raw eye fundus image as a fourth-channel array for diabetic macular edema

diagnosis.

• A three-stages strategy based on deep learning methods to support glaucoma diagnosis with

relevant intermediate medical information such as: segmentations of part of the eyes and the

morphometric features that describes these parts.
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• A deep learning late fusion strategy that merges features extracted from images with polar

or cartesian morphometric features to support glaucoma diagnosis.

• A method to classify three diabetes-related conditions using optical coherence tomography

volumes based on a CNN (OCT-NET). The CNN outperformes other state-of-the-art models,

generating clinically interpretable information to support the medical diagnosis.

• The design of a deep learning method to estimate the retinal thickness map from SD-OCT

volumes.

This thesis contributed to the generation of new research products and the financial support of

four master student, one fellowship/training ophthalmologist and one doctorate student. As result,

it was listed the grants [G] and awards [A] based on this thesis:

G1 Google Research Awards for Latin America (Doctorate Student Award) by Google. Compu-

tational Learning Model for the Eye Fundus Analysis to Support Medical Diagnosis. Budget:

USD$23.400 for one year, in collaboration with: Fundación Oftalmológica Nacional and Uni-

versidad del Rosario.3

G2 Projects of Science, Technology and Innovation in Health 2018 by COLCIENCIAS. Detección

temprana de daño ocular en diabéticos usando un sistema de inteligencia artificial en imágenes

de fondo de ojo. Budget: COP$448′094.113 for two years, in collaboration with: Fundación

Oftalmológica Nacional and Haute école spécialisée de Suisse occidentale.

G3 National call for the support to projects of reserach and artistic creation by Universidad

Nacional de Colombia. Clasificación de retinopat́ıa diabética y edema macular diabético en

imágenes de fondo de ojo mediante redes neuronales convolucionales. Budget: COP$40′000.000

for 14 months, in collaboration with Fundación Oftalmológica Nacional.

G4 Global Ophthalmology Awards Program (Fellowship Award 2018) by BAYER . Neural net-

works for detection of diabetic retinopathy and diabetic macular edema. Budget: US$50.000

for one year, in collaboration with: Universidad del Rosario and Fundación Oftalmológica

Nacional.4

A1 Second place, XVI Premio Internacional de Investigación en Ciencias de la Salud, Sanitas

Internacional, November 2016.5

A2 Second place, Premio a la investigación ACOREV-ALLERGAN 2017-2018, February 2018.

A3 Second place, IX Congreso Anual de Oftalmoloǵıa, Fundación Oftalmológica Nacional -

Sociedad de Ciruǵıa Ocular, February 2018.

3https://ai.google/research/outreach/latin-america-research-awards/
4https://www.bayer-ophthalmology-awards.com/alumni
5http://www.unisanitas.edu.co/decimo-septima-edicion



1.2 Main contributions 4

The following is a list of papers that have been published during the development of this research:

JOURNAL PAPERS

1. Perdomo, Oscar and Carpio, Vanessa and Rosenstiehl, Shirley M. and González, Fabio A.,

”Deep data fusion of polar images and polar morphometric features for glaucoma detection”,

To be submitted to Plos One, (2020).

2. Pinilla, Carlos and Perdomo, Oscar and Rios, Hernán A. and Rosenstiehl, Shirley M. and

Gómez, Flor E. and González, Fabio A. and Rodŕıguez, Francisco J., ”Assessment of OCT-
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15. Rios, Hernán A. and Perdomo, Oscar and Rosenstiehl, Shirley M. and Gómez, Flor E. and
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J., ”Concordance between color photo interpretation of the optic nerve and an unsupervised

learning algorithm to determine optic nerve damage”, Investigative Ophthalmology & Visual

Science (2019) [22].

17. Pinilla, Carlos M. and Perdomo, Oscar and Rios, Hernán A. and Carpio, Vanessa and
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Other non-related work:

20. Contreras, Victor H and Lara, Juan S and Perdomo, Oscar and González, Fabio A., ”Su-
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1.3 Outline

The remainder of this document is organized as follows: Chapter 2 gives an overall background of

automatic analysis of eye fundus images to support medical diagnosis. In Chapter 3 is defined a

deep learning strategy applied to eye fundus images, to combine local information of clinical signs

with global grading label to diagnose of DME. In Chapter 4, a deep learning model that uses a late

fusion to merge features extracted from eye fundus images with polar or cartesian morphometric

features for glaucoma diagnosis. In Chapter 5, a three-stages model to classify glaucoma disease is

explained in detail. This model delivers eye’s part segmentations, morphometric features about the

segmentations, and the classification of control, suspicious and glaucoma conditions. In Chapter 6,

OCT-NET, an end-to-end deep learning method is applied to SD-OCT to the diagnosis of three

ocular diseases. This customized model learns to extract features about a volume to outperform

previous state-of-the-art results in two different databases. In Chapter 7, a 3D deep learning model

to estimate retinal thickness map is proposed. This proposed model delivers a 2D-retinal thickness

map from a SD-OCT volume. Finally, Chapter 8 summarizes the main results of this research,

discuses some relevant topics, and provides ideas for future works in deep learning analysis applied

to medical images.



2 Background and related work

This chapter presents an overview of the state-of-the-art deep learning methods used in ophthalmic

images, databases and potential challenges for ocular diagnosis. In ophthalmology, deep learning

methods have primarily been applied to eye fundus images and optical coherence tomography. On

the one hand, these methods have achieved an outstanding performance in the detection of ocular

diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related

macular degeneration. On the other hand, several worldwide challenges have shared big eye imaging

data sets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed

by experts. In addition, these methods are breaking the stigma of black-box models, with the

delivering of interpretable clinically information. This reviewed was published in the journal of

Ciencia E Ingenieŕıa Neogranadina [9].

2.1 Introduction

The diagnosis of ophthalmologic diseases is done with different kinds of clinical exams. Exams may

be non-invasive such as: slit-lamp exam, visual acuity, eye fundus image (EFI), ultrasound, optical

coherence tomography (OCT); or invasive exams as fluorescein angiography [6]. The non-invasive

clinical exams are easier to take, have no contraindications and do not affect the eye’s natural

response to external factors in comparison to the invasive exams. Therefore, EFI and OCT exams

are high patient compliance, quick and simple techniques, with the main advantages that images

can be easily saved to be analyzed at a later time, and the prognosis, diagnosis and follow-up of

diseases can be monitored over time.

The automatic analysis of EFIs and OCTs as a tool to support medical diagnosis has been an

engineering challenge in terms of achieving the best performance, the lowest computational cost

and lowest run time among the different algorithms [28–32]. Thus, the choice of the best method

to represent, analyze and make a diagnosis using ocular images is a complex computational prob-

lem [33–37]. On the other hand, deep learning techniques have been applied with some success

to several eye conditions using as evidence individual sources of information [38–40]. Some re-

searchers have studied how to support the diagnosis with different methodologies. Vandarkuhali and

Ravichandran [38] detected the retinal blood vessels with an extreme learning machine approach

and probabilistic neural networks, Gurudath et al. [28] worked with machine learning identification

from fundus images with a three layered artificial neural network and a support vector machine

to classify retinal images, and Priyadarshini et al. studied clustering and classifications with data

mining to give some useful prediction applied to diabetic retinopathy diagnosis [29]. Despite good

results, the main problem with these works is: the data sets are small and the need for labels is ex-

pensive and cumbersome work. Deep learning (DL) offers some advantages such as the capacity of

processing lots of data with the use of graphic processing units (GPUs) and tensor processing units
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(TPUs); and the ability to automatically learn the data representation from raw data. Thanks to

these features DL has been able to outperform the traditional methods in several computer vision

and image analysis tasks. This success has motivated its application to medical image analysis

including, of course, ophthalmology images.

This chapter focuses on the review and analysis of deep learning methods applied to ocular im-

ages for the diagnosis of: diabetic retinopathy (DR), glaucoma, diabetic macular edema (DME) and

age-related macular degeneration (AMD). These diseases are related with diabetes as one of the

four major types of chronic noncommunicable disease and they are the leading cause of blindness

worldwide in productive age (20-69 years), with the main problem that 25% of diabetics world-

wide will have visual problems along diabetes, and without a preventive diagnosis and treatment

promptly, these subjects will suffer irreversible blindness [1–4, 41]. The research approach of the

chapter is summarized on four main areas: an overview of the medical background about ocular

diseases and medical information sources, the free public available ocular data sets, the most com-

mon performance metrics used by deep learning methods and an overview of the main deep learning

methods for each source of medical information.

2.2 Medical background

2.2.1 Ocular diseases

Diabetic retinopathy

The diabetic retinopathy is caused by a side effect of diabetes which reduced blood supply to the

retina, including include lesions appearing on the retinal surface [42]. DR-related lesions can be

categorized into red lesions such as microaneurysms and hemorrhages and bright lesions such as

exudates and cotton-wool spots [43], as shown in Figure 2.1.

Diabetic macular edema

The diabetes macular edema is a complication of DR that occurs when the vessels of the central

part of the retina (macula) are affected by accumulation of fluid and exudate formation in different

parts of the eye [45], as depicted in Figure 2.2.

Glaucoma

The glaucoma is related to the progressive degeneration of optic nerve fibers and structural changes

of the optic nerve head [42]. Although glaucoma cannot be cured, its progression can be slowed

down by treatment. Therefore, timely diagnosis of this disease is vital to avoid blindness [48,

49]. Glaucoma diagnosis detection is based on manual assessment of the Optic Disc (OD) through

ophthalmoscopy, looking morphological parameters for the central bright zone called the optic cup

and a peripheral region called the neuroretinal rim [50], as reported in Figure 2.3.
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Figure 2.1: [Left] A color eye fundus image showing multiple microaneurysms, intraretinal hem-

orrhages, and exudation affecting the fovea in a patient with severe non-proliferative

diabetic retinopathy with severe diabetic macular edema [44], and [Right] A b-scan

OCT showing a vitreo-macular traction affecting the foveal depression [18]

.

Figure 2.2: [Left] A color eye fundus image showing multiple dot and flame hemorrhages, cotton

wool spots and macular exudation in a patient with severe nonproliferative diabetic

retinopathy with diabetic macular edema [46], and [Right] A b-scan OCT showing

multiple intraretinal hyper reflective dots and pseudo-cystic spaces in the middle retinal

layers in a patient with diabetic macular edema [47]

.
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Figure 2.3: [Left] An optic disc color image showing an absence of the neural ring with a total

excavation in a patient with advanced glaucoma [51], and [Right] A b-scan OCT showing

a thinning in the nerve fiber layer in a patient with Glaucoma [52]

.

Age-related macular degeneration

The age-related macular degeneration (AMD) causes vision loss at the central region and distortion

at the peripheral region [42]. The main symptom and clinical indicator of dry AMD is drusen. The

major symptom of wet AMD is the presence of exudates [53], as presented in Figure 2.4.

2.2.2 Medical information sources

There are different types of clinical exams for the diagnosis of ocular disease. Some researchers

documented techniques of digital signal and image processing of the eye, such as: electroocu-

logram (EOC) [7], electroretinogram (ERG) [56, 57], visual evoked potentials [58–61], dynamic

pupillometry [62, 63], among other methods [64]. The two non-invasive techniques widely used

by ophthalmologist to diagnose ocular condition are EFIs and OCT. On the one hand, the eye

fundus is represented as a 2D image of the eye that allows to check faster and easily parts of the

eyes (i.e. optic disc, blood vessels, and others), but also some retinal abnormalities (i.e. micro

aneurysms, exudates, among others). On the other hand, the OCT uses near-infrared light based

on low coherence interferometry principles to record the set of retinal layers. The OCT depicts

the information in a 3D volume with a resolution of a cross-sectional area with a defined number

of scans as shown in Figure 2.5. In the two cases, the diagnosis performed by experts depends

crucially on the clinical findings located during the exam.
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Figure 2.4: [Left] A color eye fundus image showing multiple flame hemorrhages, cotton wool spots

and macular exudation [54], and [Right] A b-scan OCT showing the presence of soft

drusen in the EPR-coriocapilar complex in a patient with Age-related Macular Degen-

eration [55]

.

Figure 2.5: EFI and OCT volume containing cross-sectional b-scans from a healthy subject [65]

.
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2.3 Ocular image data sets

In recent years, the detection of clinical signs and the grading of ocular diseases have been con-

sidering as engineering challenging tasks. In addition, worldwide researchers have published their

methods and a set of EFIs and OCTs databases with different ocular conditions, population, ac-

quisition devices and image resolution. The available ocular data sets for each ocular disease, the

type of ocular image and the study population are presented in Table 2-1.

2.4 Methods performance

Deep learning approaches have shown astonishing results in problem domains like recognition sys-

tem, natural language processing, medical sciences, and in many other fields. Google, Facebook,

Twitter, Instagram, and other big companies use deep learning in order to provide better applica-

tions and services to their customers [94]. Deep learning approaches have active applications using

Deep Convolutional Neural Networks (DCNN) in object recognition [95–98], speech recognition [99,

100], natural language processing [101], theoretical science [102], medical science [103, 104], etc. In

medical field, some researchers apply deep learning to solve different medical problems like diabetic

retinopathy [105], detection of cancer cells in human body [106], spine imaging [107] and many

others [12, 19]. Although unsupervised learning is applicable in the field of medical science where

sufficient labeled data sets for a particular type of disease are not available. In particular, the

state-of-the-art methods in ocular images are based on supervised learning techniques.

2.4.1 Performance metrics in deep learning models

The performance comparison of deep learning methods in classification tasks is performed by the

calculation of statistical metrics. These metrics assess the agreement and disagreement between

the expert and the proposed method to grade an ocular disease [13–17, 55, 81, 93, 108–118]. The

performance metrics used in state-of-the-art works are presented in equations 2-1 to 2-7 as follows:

Area under the curve (AUC) =

∑
Rank(+)− |+ | ∗ |+|+1

2

|+ |+ | − |
(2-1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2-2)

Sensitivity =
TP

TP + FN
(2-3)

Specificity =
TN

TN + FP
(2-4)

Precision =
TP

TP + FP
(2-5)
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Ocular disease Dataset Dataset description

DR

DRIVE [66] 40 eye fundus images with resolution of images is 768×
584 pixels. The dataset contains 7 images graded by

experts as mild DR and 33 images as normal.

DIARETDB0

[67]

130 eye fundus images with 110 DR and 20 normal im-

ages. The images labelled as DR contains the segmen-

tation of clinical signs: hard exudates, soft exudates,

microaneurysms, hemorrhages and neovascularization.

DIARETDB1

[68]

89 eye fundus images where 84 images has mil DR and

5 images labelled as normal.

ROC [69] 100 digital color fundus images with microaneurysms in

all the images. This dataset was randomly split into

training and test data sets with 50 images.

CHASE-DB [70] 28 eye fundus images with blood vessel segmentations.

E-OPHTHA [71] Two subsets: a set of 47 eye fundus images with the

segmentation of exudates and 35 images without lesions

labelled as normal. The second set has 148 images with

microaneurysms and 233 images labelled as normal.

EYE PACS [72] Two subsets: the training set has 35126 and the test set

has 53576. The images were labelled as normal, mild,

moderate, severe and proliferative DR.

APTOS [73] 13000 images with normal, mild, moderate, severe and

proliferative DR.

DR,GLAUCOMA
ONHSD [74] 49 eye fundus images with the optic head segmentation

and the grading of DR and glaucoma.

HRF [75] 45 eye fundus images with 15 healthy, 15 DR and 15

glaucomatous subjects. The images have the detection

and segmentation of clinical signs provided by experts.

DR, DME
MESSIDOR [46] 1200 eye fundus images with DR and DME labels.

iDRID [44] 516 images with resolution of 4288x2848 pixels with the

grading of DME and DR performed by experts.

DR, AMD

STARE [76, 77] 400 eye fundus images and 400 black and white mask

with blood vessel annotations.

ARIA [78, 79] 143 color fundus images with resolution of 768 × 576

pixels. The images were grading as: 23 AMD, 59 DR

and 61 normal.

OCTID [80] 500 OCTs with normal, macula hole, AMD, central

serous retinopathy and DR.

GLAUCOMA
DRIONS-DB

[81]

110 color fundus images with optic nerve head segmen-

tation. The images were labelled as: 26 glaucomatous

and 84 with eye hypertension.

ORIGA650 [82] 650 eye fundus images with the classification of glau-

coma.
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Ocular disease Dataset Dataset description

GLAUCOMA

INSPIRE-AVR

[83]

40 color images with the blood vessels, optic disc and

arterio-venous reference.

RIM-ONE [51] 783 images with glaucomatous, suspicious of glaucoma

and normal conditions.

ACHIKO-K [84] 258 eye fundus images with 144 normal and 114 glauco-

matous subjects.

DRISHTI-GS

[85, 86]

101 images with optic disc and optic cup segmentations

and glaucoma condition.

RIGA [87] 760 retinal fundus images with glaucoma labels.

REFUGE [88] 1200 eye fundus images with optic disc and cup segmen-

tations with normal and glaucoma conditions.

POAG [52] 1110 scans where 263 were diagnosed as healthy and 847

with primary open angle glaucoma (POAG).

AMD

AREDS [89] 206500 eye fundus images with AMD and non-AMD

conditions.

iCHALLENGE

[54]

1200 eye fundus images with early AMD and non-AMD

conditions.

A2A SD-OCT

[55]

385 OCTs with 269 AMD and 115 normal subjects.

Each OCT volume has 100 B-scan with resolution of

512× 1000 pixels.

HEIDELBERG

[90]

15 OCT volumes with the retinal layer segmentation

performed by expert. The database was labelled with

AMD condition.

DME HEI-MED [91] 169 eye fundus images with mild, moderate and severe

DME.

DME, AMD

DUKE-45 [47] 45 OCTs with 15 AMD, 15 DME and 15 normal sub-

jects. Each OCT volume has 100 B-scan with resolution

of 512× 1000 pixels.

NOOR HOSPI-

TAL [92]

148 OCTs as follows: 50 DME, 50 normal and 48 AMD

subjects.

ZHANG LAB-

DATA [93]

109309 scans of subjects with DME, drusen, choroidal

neovascularization and normal conditions.

DME, AMD,

DR

SERI-CUHK

[18]

75 OCTs labelled as: 16 normal, 20 DME and 39 DR-

DME. The OCT volume contains 128 B-scans with res-

olution of 512× 1024 pixels.

DR, AMD,

GLAUCOMA

UK BIOBANK

[65]

231806 OCTs and eye fundus images with the labels of

glaucoma, DR and AMD.

Table 2-1: A summary of free public ocular data sets with the ocular diseases graded by experts,

the dataset name and the dataset description.
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f-score =
2 ∗ Precision ∗Recall
Precision+Recall

(2-6)

Kappa Coefficient =
po − pe
1− pe

(2-7)

where,

– TP=True positive (the ground-truth and predicted are non-control class).

– TN=True Negative (the ground-truth and predicted are control class).

– FP=False Positive (predicted as non-control class but the ground-truth is control class).

– FN=False Negative (predicted as control class but the ground-truth is non-control class).

– po=Probability of agreement or correct classification among raters.

– pe=Probability of chance agreement among the raters.

2.5 Deep learning methods for diagnosis support

2.5.1 Deep learning methods using eye fundus images

The state-of-the-art DL methods to classify ocular diseases using EFIs are focused in conventional

or vanilla CNN and multi-stage CNN. The most common vanilla CNN used with EFIs are the

pretrained inception-V1 and V3 models on ImageNet database1. The inception-V1 is a CNN that

contains different sizes of convolutions for the same input to be stacked as a unique output. Another

difference with normal CNN is that the inclusion of convolutional layers with kernel size of 1× 1 at

the middle and global average pooling at the final of its architecture [98]. On the other hand, the

inception-V3 is an improved version batch normalization and label smoothing strategies to prevent

overfitting [119].

Aujih et al. [109] used the U-Net model proposed by Ronneberger et al. [120] to segment the

retinal vessel from EFIs. Then, two new data sets were created with and without the vessels to be

used as inputs in the inception-V1. This method obtained an AUC of 0.9772 in the detection of DR

in DRIU dataset. Gulshan et al. [113] and Gao et al. [111] proposed a patch-based model composed

by pretrained inception-V3 to detect DR in EYEPAC dataset. Gulshan et al. used private dataset

with segmentations of clinical signs to classify an EFI into normal or referable DR with a sensitivity

of 93.4% and specificity of 93.9% [113]. The ensembled of four inception-V3 CNN by Gao et al.

reached an accuracy of 88.72%, a precision of 95.77% and a recall of 94.84% [111].

The multistage CNN are centered first in the detection of clinical signs to sequentially grade

the ocular disease. Yang et al. [110] located different type of lesions to integrate an imbalanced

weighting map to focus the model attention in the local signs to classify DR obtaining an AUC of

1http://www.image-net.org/
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0.9590. Quellec et al. [112] used a similar approach to generate heat maps with the detected lesion

as an attention model to grade in an image-level the DR with an AUC of 0.954. Perdomo et al. [16]

uses a four-layers CNN as a patches-based model to segment exudates and the generated exudate

mask was used to diagnose DME reporting an accuracy of 82.5% and a Kappa coefficient of 0.6 [17].

Then, Perdomo et al. [13, 15] proposes a three-stage DL model: optic and cup segmentations,

morphometric features estimation and glaucoma grading, with an accuracy of 89.4%, a sensitivity

of 89.5% and a specificity of 88.9%. Finally, Wang et al. [114] proposed a model to segment optic

disc and cup and calculate a normalized cup-disc-ratio to discriminate healthy and glaucomatous

optic nerve of EFIs. The table 2-2 presents a brief summary of DL methods in eye fundus images

used to support the ocular diagnosis using.

Ocular disease Dataset used Authors Methods Performance

DR

DRIVE
[108] Gaussian Mixture Model

with an ensemble classifier

AUC of 0.94

[109] Pre-trained Inception V1 AUC of 0.9772

EYEPACS
[110] DCNN with two stages AUC of 0.959

[111] An ensemble of 4 pre-

trained Inception V3

Acc. of 88.72%

Prec. of 95.77%

Recall of 94.84%

EYEPACS &

E-OPHTHA
[112] Two linked DCNN

AUC of 0.954

and 0.949.

EYEPACS &

MESSIDOR

& Private

dataset

[113] A pre-trained Inception V3
Sens. of 93.4%

Spec. of 93.9%

DME
MESSIDOR &

E-OPHTHA
[16, 17] DCNN with two stages

Acc. of 82.5%

Kappa of 0.6

GLAUCOMA

DRISHTI-GS

& REFUGE
[114] DCNN with two stages AUC of 0.8583

DRISHTI-GS

& RIM-ONE

[115] Classical filters and an ac-

tive disc formulation with

a local energy function

Acc. of 0.8380

and 0.8456

[15, 115] DCNN with three stages

Acc. of 89.4%

Sens. of 89.5%

Spec. of 88.9%

Kappa of 0.82

AMD AREDS [13] DCNN Acc of 75.7%

Table 2-2: An overview of the main state-of-the-art DL methods to ocular diagnosis using EFIs.

The dataset and the method used in the study, with the performance obtained by the

method.
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2.5.2 Deep learning methods using optical coherence tomography

The most representative DL methods to detect abnormalities in OCT obtained an outstanding

performance using vanilla CNN models as reported with: ResNet [55, 80], VGG-16 [121] and

Inception-V3 [122]. The VGG-16 CNN contains five-blocks of convolutional layers and max-pooling

to perform the feature extraction [97]. The final block is composed of three fully connected layers

to discriminate among a number of classes. The ResNet model contains a chain of interlaced

layers that adds the information from previous layers to future layers to learn residuals errors [123].

Gholami et al. used a pretrained ResNet to differentiate healthy OCT volumes from DR with an

accuracy of 97.55%, a precision of 94.49% and a recall of 94.33% [80]. Kamble et al. combined

the Inception and the ResNet model into a model termed as inception-ResNet-V2 [18]. This model

was able to classify DME scans with an accuracy of 100% using the SERI dataset. On the other

hand, the best DCNN model using OCT volumes as input are customized models with two or three

stages. In particular, these DL models used two or more data sets reported in Table 2-1 to perform

the feature extraction of local signs, added to a classification stage for grading the ocular diseases

as reported for OCTs in [14, 116, 117]. De Fauw et al. defined a two-stage DL method to segment

abnormalities from the OCT volume into a 3D representation [122]. The generated segmentation

was stacked with the 43 most representative cross-sectional scans from an OCT volume. This model

obtained an AUC of 0.9921 to determine the grade of AMD in private data sets. Finally, Perdomo

et al. proposed a customized DL method called OCTNET [10]. This CNN is based in four blocks

of convolutional and max-pooling layers, and a final block with two dense layers and a dropout

layer to avoid overfitting during training. In addition, the proposed model classifies in scan and

volume levels, delivering highlighted images with the most relevant areas for the model. The model

was assessed for DR and DME detection with a precision of 93%, an AUC of 0.86 and a Kappa

coefficient of agreement of 0.71. The proposed model presented a sensitivity of 99% and an AUC

of 0.99 for the classification task of OCT volumes as healthy and AMD. The table 2-3 reports an

overview of the most prominent works used to support the diagnosis of ocular conditions using

OCTs.

2.5.3 Discussion

The number of free public available data sets contributes to the design of new DL methods for

classifying eye conditions as indicated in Table 2-1. However, the use of a private data set limits the

comparison between performance metrics achieved by DL methods [93, 113, 121, 122]. Replication

of studies reported by Gulsan et at. [113] and De Fauw et al. [122] have criticized the lack of

information related to method description and the hyperparameters used as reported by [124].

The main DL methods in the detection of eye diseases by EFIs are focused on the development of

pre-trained CNNs such as Inception V1 [109] and Inception V3 [111]. In addition, pre-trained CNNs

applied to OCT performed outstandingly performance as reported with pre-trained ResNet [55,

116], VGG-16 [121], and Inception V3 [93] as presented in Tables 2-2 and 2-3. Despite the good

results obtained, these studies did not report the same performance measures on a common image

database, so performance figures are not directly comparable, making it difficult to replicate and

evaluate the true performance of these methods.

Finally, the main issues were summarized in two areas: these methods are limited to conventional
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or pretrained CNNs, the reproducibility problems of more advanced methods and the lack of domain

knowledge; in the data sets, high variability of illumination, artifact noise, resolution and quality

between images was found; different types of magnification (diopter lenses) in the same dataset and

a variable number of scans depending on the acquisition device. In this doctoral thesis we verified

our initial hypothesis that automatic analysis of eye images based on deep learning models could

help support medical diagnosis in diabetes-related eye conditions. Furthermore, the integration of

domain knowledge may improve the classification of different diabetes-related eye conditions, as

will be assessed and reported in the following sections.

Ocular disease Dataset Authors Methods Performance

DR OCTID [116] Pre-trained ResNet model

Acc. of 97.55;

Prec. of 94.49;

Recall of 94.33.

DME
SERI [55] Pretrained Inception-

ResNet-V2

Acc. of 100%

SERI +

CUHK
[14, 117] OCTNET with 16 layers,

class activation maps and

medical feedback

Precision of 93,0%;

Kappa of 0.71;

AUC of 0.86

GLAUCOMA POAG [81] A 3D-DCNN with 6 layers AUC of 0.89

AMD

A2A

SD-OCT

[118] HOG Feature Extraction

and PCA, with SVM and

Multi-Instance SVM classi-

fiers

Acc. 94,4%,

Sens. 96.8 %

Spec. 92.1%

[10, 118] OCTNET with 16 layers,

class activation maps and

medical feedback

Sens. of 99%;

AUC of 0.99

PRIVATE

DATASET

[122] DCNN with two stages by

Google

AUC of 0.9921

[121] Pretrained VGG-16 model AUC of 0.9382

[93] Pretrained Inception-V3

model

AUC of 0.9745;

Acc. of 93.45%.

Table 2-3: An overview of the main state-of-the-art DL methods to ocular diagnosis using OCTs.

The dataset and the method used in the study, with the performance obtained by the

method.



3 Two-stage deep learning for DME classification

This chapter presents a deep learning-based method to localize exudates and to grade the dia-

betic macular edema using eye fundus images. The proposed method contains two stage: first,

a deep learning stage to automatically localize exudates in eye fundus images without taking in

consideration the image size. This stage delivers a binary-mask with the segmentation of the exu-

dates. Then, another deep learning model uses a stacked binary mask with the raw RGB fundus

image as 4-channel input image for DME diagnosis. The results of the patch-based method to

localize exudates using eye fundus images were published in the 12th International Symposium on

Medical Information Processing and Analysis [16] and, the results about the two-stage method for

DME detection were published in the Proceedings of the Ophthalmic Medical Image Analysis Third

International Workshop, OMIA 2016, Held in Conjunction with MICCAI 2016 [17].

3.1 Introduction

Diabetes mellitus is one of the leading causes of death according to the World Health Organization

(WHO) and it is treated as an epidemic due to the worldwide associated costs and the number

of people that suffer it 1. Diabetic retinopathy is a condition caused by prolonged DM, causing

blindness worldwide in persons in their productive age (20-69 years) [125]. However, one of the

main problems associated to DR is that most people have no symptoms, and suffer the disease

without being diagnosed [1]. DR is defined as one of the microvascular complications of diabetes,

which affects the small vessels of the retina (the innermost eye light sensitive layer), being a major

cause of blindness [126]. Thus, an effective prognosis of DR or an early diagnosis of diabetes may

help to avoid loss of vision or an irreversible blindness [4, 5].

Diabetes macular edema is a complication of DR that occurs when the vessels of the central

part of the retina (macula) are affected by accumulation of fluid and exudate formation in different

parts of the eye [127]. DME classification is performed by experts as follows:

• Class 0: No signs of retinopathy.

• Class 1: Mild. Presence of exudates in the macula, but without affecting the central macular

area.

• Class 2: Moderate. Presence of exudates in central macular region without affecting the

fovea.

• Class 3: Severe, Retinal thickening or presence of exudates that affect the foveal area or

retinal thickening [127, 128].

1https://www.who.int/diabetes/goal/en/
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The fundus imaging is a common clinical exams that presents some advantages as: high patient

compliance, dilation not required in most cases, quick and simple technique, images can be saved

and analyzed at a later time, and progression of diseases can be monitored over time [6, 129, 130].

A faster diagnosis of the disease grade may help to a proper clinical treatment, improving the

patients quality of life. Macular exudates can be detected by examining color photographs of the

back of the eye, which is interpreted by a specialist ophthalmologist in retina. This process has some

drawbacks such as being very time consuming and repetitive for clinical personnel, depending on the

ophthalmologist’s experience, and its susceptibleness to inter-observer variability. Moreover, the

analysis of lots of images without any pathologies increases the work time, but decreases the time

of analysis to others images with pathologies. Computer-aided systems (CADx) are an interesting

alternative to tackle with these problems, CADx systems perform an automatic assessment of the

disease grade, they may increase the number of patients diagnosed and may reduce the time to

detect ocular diseases [5, 128].

Besides, the huge work-time used to analyse lots of images from a healthy population, have

repercussions in a decreasing available time to analyse pathologic images. Computer-aided systems

(CADx) are an explored alternative to tackle these problems. These systems perform an automatic

grading disease, they could increase the patients diagnosed, and may support experts and reduce

the work-time to detect ocular diseases [28]. Machine learning algorithms have been widely used

successfully to DR and DME diagnosis using eye fundus images [28–30, 38–40].

The development of automatic retinal image algorithms is the basis for the building of a screening

tool for the detection of ocular diseases. Vandarkuhali and Ravichandran [38] explored the use of

extreme learning machine and probabilistic neural network applied to the detection of blood vessels

in eye fundus images. In addition, Priyadarshini et al. [29] applied modified extreme learning ma-

chine to cluster the patients with diabetic and non-diabetic features using clinical data. Gurudath

et al. [28] worked in machine learning using a three-layers artificial neural network with a support

vector machines to classify retinal images with healthy, non-proliferative diabetic retinopathy and

proliferative diabetic retinopathy.

Other researchers have reported algorithms to detect the presence of exudates in retinal images as

a way to diagnose DME. Chanwimaluang et al, and Narasimha-Iyer et al. [131, 132] studied bayesian

models that combines area-based and feature-based methods to localize exudates and non-exudate

patches. Giancardo et al. [91] defined a set of features representing the colour, decomposition,

wavelet and automatic lesion segmentation of exudates. These features were used for training a

classifier for the automatic detection of exudates and classification of DME. Vasanthi and Banu [133]

studied an adaptive neuro-fuzzy inference system (ANFIS) combined with an extreme learning

machine to detect hard exudates for classifying DME. Akram et al. proposed method that combines

a Gaussian mixture model and support vector machine to detect exudates and classify of different

stages of diabetic macular edema [134]. Finally, Kunwar et al [135], proposed a method to combine

texture feature extraction from regions with exudates next to the macula of retinal fundus image

and it uses a SVM to grade DME.

This chapter reportes a two stage deep learning model: the first stage is a 48×48 patch classifier

based on LeNet deep learning method [136]. Our patches classifier output generates a binary

mask with the exudate segmentation in an eye fundus image. The second stage is a convolutional

neural network that combines the raw input image with the binary mask segmentation to predict
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DME class. The proposed method was assessed using two publicly available dataset and presents

outstanding results when compared to state-of-the-art methods.

3.2 A deep learning model for exudate detection-DME classification

An overall view of our method is depicted in Figure 3.1. Our method is based on two convolutional

neural networks. For successful training of deep neural networks a large number of training samples

is required, in our case we need to have enough healthy and exudate samples, nevertheless, as is

usual in many medical tasks, here the number of samples is limited and the class imbalance between

the healthy and exudate patches is important and needs to be addressed. A standard way to obtain

more samples is to rotate and flip the image, this was the data augmentation used in our experiments

and is described in more detail in Section 3.2.1.

Our method (ED-DME classification) works in two stages. In the first one, the training of an

exudate-detection model is done. This model is based on a LeNet [136] with 4 layers using the

E-ophtha database with RGB patches of 48×48 pixels as input. The second stage is the processing

of the Messidor database with 1200 images of size 512 × 512 pixels to generate a new dataset of

1200 grayscale mask images using the previous trained CNN model as predictor. The final stage

is to train a DME-detection model based on the AlexNet architecture [95], which is composed of 8

layers using the RGB eye fundus images of 512× 512 pixels plus the previous generated grayscale

masks as the 4− th input channel. One interesting aspect of our model is that it incorporates the

mask of exudates detection trained in the first stage to serve as input to the DME-detection model,

thus, giving more insights to the later model of what kind of patterns are we looking for.

Figure 3.1: Block diagram with the proposed ED-DME Classification model and the DME classifi-

cation model.
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3.2.1 A deep learning exudate detection model

An overview of the patch-classifier is depicted in Figure 3.2. The first stage contain the preprocess-

ing stages that detects and crops the input image with sizes ranging from 1440 ×960 to 2540 ×1690

pixels into non-exudate and exudate patches of 48 ×48 pixels. Then , the second stage is the LeNet

CNN of four layers that uses the generated patches as an input, followed by a two sequential blocks

of convolutional and max pooling layers to extract the features, and two fully connected layers with

a softmax classier as the output layer.

Figure 3.2: An overview of a CNN to classify patches from eye fundus images

3.2.2 Preprocessing stage

In the preprocessing stage the application of a set of transformations that helps to improve perfor-

mance in the following stages is made. The first step is to envelope the exudate in a bounding box

in order to extract the Region of Interest (RoI) from the eye fundus image of e-ophtha database

in order to train the exudate-detection model as shown in Figure 3.3. Secondly, we define an over-

sampling strategy using to get more patches and help to prevent overfitting during training, this

oversampling step showed significant improvements in our experimentation in comparison with no

doing it. Finally, the resize of all the Messidor database images to a 512×512 sized images, keeping

the aspect ratio.

Cropping

CADx systems use the previously identified RoI to classify in the whole film image. This RoI

can be drawn by a time-consuming manual segmentation by an expert or automatically detected

by an algorithm. The e-ophtha dataset contains binary masks with the manually segmentation

of exudates and microaneurysm, where we fixed the average of exudates bounding-box to RoIs of

48 × 48 pixels according to the average lesion size. In addition, the RoIs were extracted without

scaling and keeping the surrounding region. Then, these patches were cropped and labelled as an

exudate patch if the intersection between the patch and the RoI was greater than the 60% of the

RoI. Otherwise, the cropped patch was labelled as non-exudate or healthy patch. A set of 2136

patches with size of 48×48 that contain exudates information were cropped from e-ophtha dataset.
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Figure 3.3: [Top] Eye fundus image with bounding boxes (green) and exudates (black). [Bottom]

Eye fundus image with healthy and exudate patches respectively.

Data augmentation

The limitation of deep learning models comes mainly by the large number of parameters to learn.

However, the design of complex models also increases the chance of overfitting the training data.

Data augmentation strategy is a common way to tackle this issue. We apply the data augmentation

strategy to artificially generate new samples using a set of flip and rotation transformations to the

cropped patches’ image. In classification problems, the data augmentation technique makes sense

because exudates can be represented in any particular orientation. Thus, the patch-classifier model

also should be able to learn from these representations. In total, We have artificially generated

seven new label-preserving samples using a combination of the two transformations. On the other
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hand, data augmentation was applied to the raw retinal image to increase the images as follows:

5 new label-preserving samples for the classes mild (Class 1 of DME) and moderate (Class 1 of

DME) and 15 new label-preserving samples for the class severe (Class 2 of DME) to the Messidor

dataset.

3.2.3 LeNet Convolutional Network

Convolutional Neural Networks (CNN) a type of bio-inspired artificial neural network based on the

animal visual cortex. CNN are trained with the ability to respond to the variability and invariant to

the exact position of the pattern in order to detect visual patterns with minimal preprocessing. The

architecture of this CNN contains convolutional, pooling, and fully connected layers. Convolutional

layer is a set of learnable windows (filters) moving through a stride with a kernel size that represent

the receptive field. Each window is convolved computing the dot product between the filter and the

input generating an activation map of that filter. Pooling layer is a non-linear function to reduce

the size of the convolutional layer but extracting the most representative value in a windows defined

by a kernel size with a stride. Max Pooling is the used due to this choose the maximum value of

the filter. Fully-connected layer is a layer where all the neurons have full connections among all

the neurons in the previous layer. The LeNet is kind of convolutional neural network [137] with

the following structure as shown in Figure 3.2.

3.2.4 Exudate detection for DME classification model

The architecture of this model is summarized as follows. It contains five convolutional and three

dense layers. Below, we describe convolutional, pooling and fully-connected layers, but this ar-

chitecture has normalization layers proposed according bioinspired-based on inhibition schemes

presented in the brain. The activations of normalization layer applies a transformation that main-

tains the values of mean activation close to 0 keeping the activation standard deviation close to

1 [95]. In the Table 3-1, we summarized the layers, feature mas, layer size, kernel size and stride

parameters as follows:

3.3 Experimental setup

3.3.1 e-Ophtha Dataset

The e-ophtha database contains 47 color fundus images with size ranging from 1440×960 to 2540×
1690 pixels, which were segmented in order to find exudates by three ophthalmologists from the

OPHDIAT Tele-medical network under the the French Research Agency (ANR) project, specially

designed for scientific research in DR [71]. The labelled patches dataset created of 48 × 48 pixels

with exudate and healthy classes after the preprocessing steps of cropping and data augmentation.

These patches were randomly split by images where an image could only belong to a group with

the following datasets distribution: training set with 8760 patches by each class, validation set has

328 by class and test set has 986 by class, representing 87%, 3.2% and 9.8% respectively.
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Layer Feature map Layer size Kernel size Stride

Input 4 512× 512 - -

Convolutional 96 125× 125 11× 11 4 -

Batch Normalization 96 125× 125 - -

Max Pooling 96 62× 62 3× 3 2

Convolutional 256 58× 58 5× 5 1

Batch Normalization 256 58× 58 - -

Max Pooling 256 29× 29 3× 3 2

Convolutional 384 27× 27 3× 3 1

Batch Normalization 384 27× 27 - -

Convolutional 384 25× 25 3× 3 1

Batch Normalization 384 25× 52 - -

Max Pooling 384 12× 12 3× 3 2

Convolutional 256 10× 10 3× 3 1

Batch Normalization 256 10× 10 - -

Max Pooling - 5× 5 3× 3 2

Dense - 4096 - -

Dense - 2048 - -

Dense - 4 - -

Output - 4 - -

Table 3-1: Structure of CNN to classify DME with parameters used in each layer.

3.3.2 Messidor Dataset

The methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology

or Messidor database contains images of the posterior pole of eyes from subjects diagnosed with DM,

without data with respect to time of disease progression, sex or age of the subjects. Messidor is a

research program funded by the Ministry of Research and Defense of France in a program TECHNO-

VISION 2004. The database contains 1200 Messidor color photos Fundus provides information on

the posterior pole. It was acquired by three ophthalmologic departments using a 3CCD color

video camera in a retinograph TRC NW6 Topcon non-mydriatic a 45 degree field of vision. These

images were captured using 8 bits per color with images ranged among 1440 × 960, 2240 × 1488

and 2304 × 1536 pixels. 800 images were acquired with pupil dilation (with a previous drop of

tropicamide 0.5%) and 400 without dilation. The International Clinical Disease Severity Scale for

DR concerning diabetic macular edema was performed by two ophthalmologists from Fundación

Oftalmológica Nacional to classify as mild, moderate and severe according to on the distance of

the exudates and thickening from the center of the fovea and normal without any exudates.The

results after the classification of the four classes [128, 138] presented: 878, 140, 146 and 36 images

respectively. After data augmentation stage for classes 1, 2 and, 3 applied to the training dataset,

the distribution of the three sets was as follows: training dataset with 2215 images, validation

dataset has 121 by class and test dataset has 239 by class, representing 70%, 10%, and 20%

respectively.
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3.3.3 Evaluation

The three classification models (ED, DME and ED-DME) were trained using stochastic gradient

descent. The learning rate and batch size parameters were explored in a grid search manner and

their values are listed in Table 1, using 30 as the number of epochs to train the model. The results

of DME classification CNN was chosen as baseline. In this CNN, the performance was 92% in

sensitivity and 40.6% in specificity applied in a image-based experimental setup using only the

Messidor dataset. The proposed approach was implemented with Python 2.7 using GeForce GTX

TITAN X from NVIDIA. During all the experiments, training loss and validation loss, as well as

the accuracy over the validation set were monitored.

3.4 Results

3.4.1 Exudate detection

We choose the model proposed by Decencieriere et al as a baseline for the exudate detection[71].

In such work, they proposed a method based on machine learning and image processing tech-

niques to detect exudates in eye fundus images reporting specificity and sensitivity in a patchwise

experimental setup using the e-ophtha dataset.

We validated the proposed method applied to the test dataset. In Table 3-2 is reported the

accuracy,sensitivity and specificity of the proposed method compared with the baseline method.

The proposed method clearly outperforms Decencière et al. [71] in both sensitivity and specificity.

This shows that the proposed method is able to better capture the visual features that characterize

exudates.

Method Accuracy Sensitivity Specificity

Decencière et al. [71] - 90% 70%

Proposed model 99.6% 99.8% 99.6%

Table 3-2: Performance measures in the baseline model and the proposed method in exudate de-

tection task.

We assessed the ability of the ED model with the best parameters to create a mask from the test

dataset that was randomly selected. Figure 3.4 presented an eye fundus image of 1440×960 pixels,

ground truth generated by expert ophthalmologist and the mask generated using the exudate-

detection CNN to classify patches as exudates if the output of the softmax layer is above 0.75;

otherwise, it was classified as a healthy patch. The generation of the whole mask with the labeled

exudates performed in 18000 patches of 48× 48 pixels takes on average 1 minute per image.

The results of the systematic exploration are reported in Table 3-3. The best performance of the

ED model was obtained with a learning rate of 0.01 and a batch size of 64, and the best performance

of DME-classification model was obtained with a learning rate of 0.01 and a batch size of 32.
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Figure 3.4: [Right] Eye fundus image from test dataset;[Center] exudates manual label by ophthal-

mologist; [Left] exudates automatically labelled by LeNet CNN

CNN model Learning rate Batch size (train) Loss (train) Loss (val) Accuracy (val)

ED model 0.01 64 0.0034 0.0002 99.80

ED model 0.001 64 0.4550 0.4763 80.00

ED model 0.00001 64 0.5850 0.5956 70.39

DME model 0.01 32 0.85 0.78 77.00

DME model 0.001 32 0.915 0.825 73.50

DME model 0.0001 32 1.388 1.301 64.50

Table 3-3: Performance of ED and DME models with different batch size and learning rates during

training.

3.4.2 DME classification

Then, we validated the proposed method comparing the results of the DME and ED-DME classi-

fication models applied to the test dataset. In Table 3-4 is reported the the performance metrics

of sensitivity and specificity of the two methods. The proposed method clearly outperforms in

detection of classes 0, 1 and 2. This shows that the proposed method is able to better capture the

visual features that characterize exudates to classify diabetic macular edema.

3.5 Conclusion

We have presented two novel models for exudate detection and DME classification using eye fundus

which are able to detect effectively exudates and the patterns in the 4 classes of diabetic macular

edema.

The experimental results showed that the proposed method is highly effective to detect normal

subjects in eye fundus images. The results clearly improved the sensitivity and specificity results

produced by the single DME-method, thanks to the ability of the proposed method to first locate

exudates, generating information as a mask in the input layer to improve the classification of DME.

The proposed method is a good option to detect other diseases where the previous detection of

abnormalities may improve the disease classification. Other kind of images of the eye, such as,

angiography mask with the vessels segmentation may improve the performance to classify other
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Method Classes Sensitivity (%) Specificity (%)

DME model

Non-DME 87.1 56.6

Mild DME 28.1 90.8

Moderate DME 37.5 90.6

Severe DME 15.0 98.1

mean ± std 41.9 ± 31.5 84.0 ± 18.6

ED-DME model

Non-DME 94.9 87.3

Mild DME 45.8 92.0

Moderate DME 55.2 93.8

Severe DME 30.0 98.2

mean ± std 56.5 ± 27.6 92.8 ± 4.5

Table 3-4: Comparison of performance metrics for DME and ED-DME models

ophthalmological disease, such as diabetic retinopathy.

Early detection of clinical signs in macular edema may improve diagnosis of the disease and

the classification between the different stages of DME. This research is a first step in building

telemedicine tools that can support medical personnel for detecting ophthalmic diseases using

convolutional neural networks in eye fundus images.



4 Deep Late fusion for Glaucoma classification

This chapter presents two deep learning-based methods that fuse features extracted from eye fundus

images with morphometric features from the optic disc and the cup segmentation for glaucoma

classification. The two methods use cartesian and polar representations of optic nerve and cup,

as novel methodologies to support glaucoma diagnosis. The first model presents a late-fusion

strategy to merge 19 morphometric features extracted from the cartesian representation of optic

disc and cup segmentation, with features obtained from the eye fundus image using a customized

deep convolutional neural network. The second method includes the following sequential stages:

segmentation polar transformation of the optic disc and physiological cup, estimation of 448 radii

from previous segmentations, and the data fusion of polar morphometric features with features

extracted from polar fundus image using a ResNet50. The results of the first method were published

in the 13th International Symposium on Medical Information Processing and Analysis [15] and the

other results will be submitted to Plos One.

4.1 Introduction

Glaucoma is related to the progressive degeneration of optic nerve fibers and structural changes of

the optic nerve head [42]. Although glaucoma cannot be cured, its progression can be slowed down

by treatment. Therefore, timely diagnosis of this disease is vital to avoid blindness [50]. Glaucoma

diagnosis detection is based on manual assessment of the Optic Disc (OD) through ophthalmoscopy

and posterior eye fundus image analysis, looking morphological parameters for the central bright

zone called the physiologic cup and a peripheral region called the neuroretinal rim [42, 50].

The automatic cup-to-disc ratio (CDR) in eye fundus images has been used as the main phys-

iological characteristics in the diagnosis of glaucoma [139]. Some researchers have been focusing

on global and regional features such as texture, gray-scale and wavelet energy of the Optic Nerve

Head (ONH) to classify normal and glaucoma images [49]. Other study focused in texture prop-

erty computed over the total image using Haralick features combined with neural networks [140].

Deep learning architecture has been explored for other eye conditions diagnosis [17] and automated

glaucoma diagnosis using cartesian representations. Sevastopolsky used a modified U-Net CNN on

publicly available eye fundus images DRIONS-DB, RIM-ONE v3, DRISHTI-GS to do optic disc

and cup segmentation [141]. Chen et al. built a six CNN layers to get best performance of glaucoma

diagnosis [142]. Orlando et al. studied pre-trained OverFeat and VGG-S CNN from non-medical

data applied to eye fundus images in order to detect glaucoma [143]. On the other hand, the works

related with polar domain in eye fundus images is focused to segmentation task of OD and PC. Fu

et al. [144] proposed the a CNN named M-Net to segment the OD and PC jointly in a one-stage

using polar fundus images. Liu et al. [145] combined two-branch to learn translation equivariant

and rotation equivariant representations from Cartesian and polar domains respectively to segmen-
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tation task of OD and PC. Liu et al. [146] formulated the joint segmentation task of OD and PC

using a spatial-aware neural network that uses polar fundus images. Fu et al. [147]proposes the

DEnet that combines four deep hierarchical context: global image, segmentation masks, cartesian

optic disc and optic disc polar transformation. The output merges the probabilities of each output

as the final glaucoma screening result. This chapter presents two deep learning late fusion models

for automatic classification of eye fundus images to classify glaucoma condition. The first proposed

model explores the strategy of using a deep convolutional neural network architecture merged with

cup-to-disc morphological features to diagnose glaucoma. Also, the second proposed model uses

the OD and PC segmentations to estimate radii from the polar binary mask of cup-to-disc to be

merged with features obtained of polar fundus images using a DCNN for glaucoma diagnosis. The

proposed methods were assessed using two publicly available datasets, and these methods report

good performance metrics when compared to state-of-the-art methods.

4.2 Combining morphometric features and convolutional networks

fusion for glaucoma classification

The proposed data fusion model is depicted in Figure 4.1. In the first stage, 19 morphological

features are extracted using disc and cup segmentation. The second stage learns a set of features

using a DCNN. The final stage combines both, morphological and convolutional features merging

them to feed the loss function. Kappa loss function is preferred over the traditional softmax function

since, there is a relation between grades of diagnosis [16]. The model is trained jointly by applying

stochastic gradient descent.

Figure 4.1: Late data fusion of features extracted and morphometric features to classify glaucoma

condition in eye fundus images

4.2.1 Automatic extraction of cartesian morphometric features of eye fundus images

It has been shown that the eye morphometry in fundus images helps to glaucoma diagnosis [139].

This work proposed a set of 19 morphometric features based on the optic disc and physiologic cup
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segmentations. The first step is to extract the four quadrants from the image as shown in Figure 4.2.

Secondly, the cup-to-disc distance for each quadrant and the major radio and the minor radio for

Figure 4.2: Morphometric features from cartesian representation of disc and cup segmentation.

optic disc and cup were calculated. Also, geometric features such as: perimeter, area, eccentricity

were calculated for both, optic disc and cup. Additionally, 5 ratios were included in order to capture

disproportions between optic disc and cup. Table 4-1 summarizes the 19 morphometric features

proposed in this work.

Table 4-1: List of morphometric measures extracted from disc and cup segmentation.

Distance features Geometric features Ratio features

Superior distance cup-to-disc

Inferior distance cup-to-disc Area optic disc Cup-to-disc area ratio

Temporal distance cup-to-disc Area physiological disc Cup-to-disc major axis ratio

Nasal distance cup-to-disc Perimeter optic disc Cup-to-disc minor axis ratio

Major axis optic disc Perimeter physiological cup Cup-to-disc perimeter ratio

Minor axis optic disc Eccentricity optic disc Cup-to-disc eccentricity ratio

Major axis physiological cup Eccentricity physiological cup

Minor axis physiological cup

4.2.2 DCNN for features extraction of eye fundus images

The DCNN is a model designed with a big number of layers to learn a representation of data

containing spatial relations. This is the case of eye fundus images, where spatial patterns are de-

terminant to diagnose different eye diseases, e.g. glaucoma, making the DCNN a suitable approach

for image classification. DCNN learns a set of features using a minimal preprocessing while, with

the properly supervised training, may respond to distortion, variability and invariant patterns.

The DCNN is composed of 5 convolutional layers with kernel size of 3 × 3 and strides of 1 × 1, 5
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max-pooling layers with pool size of 2×2 and stride of 2×2, 4 zero-padding layers with padding of

1× 1, and 2 fully-connected layers with 512 and x-class number units as presented in Figure 4.1. A

convolutional layer is composed of a set of learnable filters that convolved with the input generating

an activation map for each filter. The convolutional layer output is the input of a max pooling

layer that is a non-linear size reducer that is applied to the activation choosing the maximum value

of a set of contiguous pixels. A zero-padding layer adds a set of pixels of value 0 to increase the

image size but without affecting the image information, these layers were applied in order to ensure

an even dimension at max-pooling layer’s output. Finally, the fully-connected layer connects all

the neurons in the previous layer to the next layer. The DCCN architecture used in this work is

described in Table 4-2.

Table 4-2: Architecture of the DCNN with values used in each layer.

N Name Channels Width Height Filter size Stride

0 Input 3 224 224 - -

1 Padding2D 3 226 226 - -

2 Conv2D 32 224 224 3× 3 1× 1

3 MaxPool2D 32 112 112 2× 2 2× 2

4 Padding2D 32 114 224 - -

5 Conv2D 64 112 112 3× 3 1× 1

6 MaxPool2D 64 56 56 2× 2 2× 2

7 Conv2D 64 54 54 3× 3 1× 1

8 Padding2D 64 56 56 - -

9 MaxPool2D 64 28 28 2× 2 2× 2

10 Padding2D 64 30 30 - -

11 Conv2D 64 28 28 3× 3 1× 1

12 MaxPool2D 64 14 14 2× 2 2× 2

13 Conv2D 64 12 12 3× 3 1× 1

14 MaxPool2D 64 6 6 2× 2 2× 2

15 Dense 512 - - - -

16 Dense Num classes - - - -

17 Kappa Loss Num classes - - - -

4.2.3 Experimental setup

RIM-ONE v3 dataset

The RIM-ONE v3 database with eye color fundus images was used in this study. The database

contains 159 images with size of 1072×1424 pixels, 85 images from healthy subjects, 35 images with

a suspected glaucoma diagnosis and 39 images with glaucoma diagnosis. The images were labeled

and two binary masks with optic disc and cup were performed by two ophthalmologist experts from

the Department of Ophthalmology at the Hospital Universitario de Canarias in Spain [51]. The first
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proposed method was evaluated in 2 setups: an unbalanced 3-class classification setup (healthy,

suspicious and glaucoma) and a binary classification setup (healthy vs. suspicious+glaucoma), this

was created to balance the classes and to assess the detection ability of models to discriminate

between healthy class vs non-healthy class. This dataset was randomly split in a patient basis

training (60%), validation (10%) and test (30%) subsets with stratified sampling.

4.2.4 Evaluation

Two configurations of the proposed model were evaluated a configuration using only the convolu-

tional network (DCNN) and a configuration that also includes the morphometric features (DCNN

+ MFs). The models were trained using stochastic gradient descent on both the 2-classes and

the 3-classes problems. The learning rate (lr) parameter was explored for each model using a grid

search strategy, the best performing values found in validation are listed in Table 3, using 200 as

the number of epochs to train the model. The 8-layers DCNN was chosen as baseline. The pro-

posed approach was implemented with Keras using GeForce GTX TITAN X from NVIDIA. The

Kappa coefficient was implemented as a cost function, and loss, precision, recall, f-score and Kappa

measures were reported for both training and test sets. Finally, SVM and RF were evaluated as

baseline methods and trained using the 19 cartesian morphometric features normalized with (mean

= 0) and (variance = 1). C parameter for the linear SVM was explored.

4.2.5 Results

Experimental results are reported in Table 4-3. The best performance of the proposed model was

obtained with a learning rate of 0.01 for two classes and a learning rate of 0.0001 for three classes

both with a batch size of 32. We evaluated the proposed model with the best parameters applied

to the test dataset. Table 4-4 presents the precision, recall, macro averaged f-score and Kappa

coefficient results of the proposed methods compared with baseline methods. The proposed method

clearly outperforms SVM and RF in Kappa coefficient that measures inter-rater agreement among

the binary classification (balanced setup) and 3-class problems (unbalanced setup) [148]. This

coefficient is widely used in medicine to compare classification performances regardless of balanced

or unbalanced setups [148]. According to [148] the Kappa presented at the two classification

problems presented good (0.60 to 0.80) and moderate (0.40 to 0.60) agreements respectively. This

showed the proposed method is able to capture the visual features and morphological features that

characterize glaucoma and combine them to improve the glaucoma diagnosis.

4.3 Deep data fusion of polar fundus images and polar morphometric

features for glaucoma detection

The CDR measures the ratio between of optic disc and physiological cup in the thinnest distance

of the rim. Althought, the CDR approach is the gold standard accepted for the most experts,

clinical application for glaucoma diagnosis, we discuss about two main problems: the detection of

the thinnest distance is not an easy and objective task in cartesian domain and, the optic disc and

the physiological cup could have more than one point with a close distance [149]. The motivation
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Method Num classes lr Precision Recall f-score Kappa

DCNN

2 Classes

0.1 0.0 0.0 0.0 0.0

0.01 0.59 0.77 0.67 0.23

0.001 0.55 0.23 0.32 0.0

0.0001 0.50 0.05 0.08 0.0

3 Classes

0.1 0.17 0.33 0.23 0.0

0.01 0.17 0.33 0.23 0.0

0.001 0.17 0.33 0.23 0.0

0.0001 0.17 0.33 0.23 0.0

DCNN + MFs

2 Classes

0.1 0.74 0.77 0.76 0.52

0.01 0.90 0.86 0.88 0.78

0.001 0.81 0.77 0.79 0.61

0.0001 0.80 0.73 0.76 0.54

3 Classes

0.1 0.47 0.47 0.47 0.27

0.01 0.42 0.40 0.41 0.08

0.001 0.49 0.54 0.51 0.39

0.0001 0.46 0.56 0.50 0.42

Table 4-3: Performance of the two models with different learning rates in validation dataset. [In

boldface] the best performance achieved at 2 setups.

Method Num classes Precision Recall f-score Kappa

SVM

2 Classes

0.74 0.77 0.75 0.52

RF 0.88 0.68 0.76 0.61

Propose method 0.90 0.86 0.88 0.78

SVM

3 Classes

0.63 0.56 0.55 0.33

RF 0.64 0.57 0.58 0.35

Propose method 0.46 0.56 0.50 0.42

Table 4-4: Performance measures in the baseline models and the proposed method in test dataset.

[In boldface] the best performance metrics achieved at binary class and three-classes

classification problems

to represent images of the fundus in another domain is based on the difficulty for humans to find

the CDR parameter in the narrowing of the edge of the asymmetric optic nerve in the Cartesian

domain [150]. Thus, the polar domain could easily and reliably represent the distance between the

optical disc and the cup in a set of radii and angles.

An overview of the method of deep data fusion using extracted polar characteristics and polar

morphometric characteristics is shown in Figure 4.3. The proposed model contains four main

stages with three deep learning-based architectures that perform segmentation, feature extraction

and regression tasks. In the first stage, it is performed a RoI detection to crop the optic disc,

and this cropped image is resized and transformed to polar coordinates. The second stage is a

customized DCNN to segment the optic disc and cup using the polar representation of the eye
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fundus image. Concurrently, a DCNN model uses previous binary masks to automatically estimate

448 radii from disc and cup, and the other stage learns a set of features using a ResNet50 DCNN

and merge both features extracted, polar morphometric and convolutional, to calculate the loss

function to grade glaucoma condition.

Figure 4.3: Late data fusion of features extracted and morphometric features to classify glaucoma

condition in eye fundus images

4.3.1 Preprocessing stage

The preprocessing stage includes the automatic RoI detection and the resizing and polar trans-

formation of cropped images. The automatic RoI detection in each fundus image is performed by

searching the brightest and roundest part of the eye. This RoI is used to calculate a bounding-box

of the optic disc and to crop the fundus image and the binary mask. The cropped images are

resized to 224× 224 keeping the aspect ratio. Then, the cartesian resized images are transformed

to a polar coordinate system (r, ϕ), where r =
√
x2 + y2 and ϕ = atan2(y, x). Based on the polar

representation, the image is unfolded in such a way that the ϕ polar coordinate corresponds to

the x Cartesian coordinate and the r polar coordinate corresponds to the y Cartesian coordinate.

This is illustrated in Figure 4.4. These polar images are used to feed the segmentation and features

extractions DCNNs.

4.3.2 Deep learning method for automatic segmentation of optic disc and
physiological cup

The second stage of the model corresponds to a DCNN that receives as input an RGB eye fundus

image and calculates a segmentation of the optic disc and the optic cup. The DCNN is based

on a deep retinal image understanding (DRIU) model using the last four sub-blocks called coarse

feature maps [151], but with two additional convolutional layers. The DRIU model contains 13

convolutional layers with different filters sizes and 4 max-pooling layers [151]. The DRIU model

is initialized with VGG weights pretrained on ImageNet. It is fine-tuned for 1,000 epochs with a

learning rate of 1e− 5, which is gradually decreased as the training process proceeds.



4.3 Deep data fusion of polar fundus images and polar morphometric features for
glaucoma detection 36

Figure 4.4: Images from a glaucomatous subjects: [a,c] Fundus and mask of optic disc and optic

cup on cartesian coordinates; [b,d] Fundus and mask of optic disc and optic cup on

polar coordinates

The coarse DRIU feature maps of the 4th, 7th, 10th and 13th convolutional layers are extracted,

stacked and up-sampled to generate a binary mask with size 224 × 224. A modification of the

original DRIU was done adding two convolutional layers in cascade with one-padding and kernels

size of 3×3 and 1×1 to improve resolution details at the optic and cup edges, without affecting the

final size. The model is trained using the combination of dice coefficient plus binary cross-entropy

as loss function with manually ground-truth masks of the OD and the PC provided by experts.

4.3.3 Automatic extraction of polar morphometric features of eye fundus images

The automatic extraction of polar radii of OD and PC was done using a customized DCNN. This

DCNN is based on VGG-16 and VGG-19 architectures with 6 sequential blocks of two convolutional

layers and a max-pooling layer with an increasing number of filters to perform the feature extraction

in the optic disc and optic cup masks [97]. The final block is composed by 6 dense layers with

LeakyReLU activations with a negative slope coefficient alpha of 0.2 to make a regressor model

which delivers the 448 radii given an image. The model is trained using mean absolute error as

loss function, with 300 as the number of epochs and Adams optimizer.

4.3.4 DCNN for features extraction of eye fundus images

The DCNN is a model designed with a big number of layers to learn a representation of data

containing spatial relations. This is the case of eye fundus images, where spatial patterns are de-

terminant to diagnose different eye diseases, e.g. glaucoma, making the DCNN a suitable approach

for image classification. DCNN learns a set of features using a minimal preprocessing while, with

the properly supervised training, may respond to distortion, variability and invariant patterns.

The DCNN is composed of 5 convolutional layers with kernel size of 3 × 3 and strides of 1 × 1, 5

max-pooling layers with pool size of 2× 2 and stride of 2× 2, 4 zero-padding layers with padding

of 1× 1, and 2 fully-connected layers with 512 and x-class number units. A convolutional layer is
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composed of a set of learnable filters that convolve the input image generating an activation map for

each filter. The convolutional layer output is the input of a max pooling layer that is a non-linear

size reducer that is applied to the activation choosing the maximum value of a set of contiguous

pixels. A zero-padding layer adds a set of pixels of value 0 to increase the image size but without

affecting the image information, these layers were applied in order to ensure an even dimension

at max-pooling layer’s output. Finally, the fully-connected layer connects all the neurons in the

previous layer to the next layer. The DCCN architecture used in this work is described in Table

4-5.

Table 4-5: Architecture of the ResNet50 with values used in each layer.

Name Branch / Times Channels Width Height Filter size Stride

Input - 3 224 224 - -

Padding2D - 3 230 230 - -

Conv2D - 64 112 112 7× 7 2× 2

MaxPool2D - 64 56 56 − 2× 2

Conv2D 1 / (3x) 64 56 56 1× 1 1× 1

Conv2D 1 / (3x) 64 54 54 3× 3 1× 1

Conv2D 1 / (3x) 256 56 56 1× 1 1× 1

Conv2D 2 / (4x) 128 28 28 1× 1 2× 2

Conv2D 2 / (4x) 128 26 26 3× 3 1× 1

Conv2D 2 / (4x) 512 28 28 1× 1 1× 1

Conv2D 3 / (6x) 256 14 14 1× 1 2× 2

Conv2D 3 / (6x) 256 12 12 3× 3 1× 1

Conv2D 3 / (6x) 1024 14 14 1× 1 1× 1

Conv2D 4 / (3x) 512 7 7 1× 1 2× 2

Conv2D 4 / (3x) 512 5 5 3× 3 1× 1

Conv2D 4 / (3x) 2048 7 7 1× 1 1× 1

GlobalAveragePool2D - 2048 - - - -

Dense - 1024 - - - -

Dense - 256 - - - -

Dense - 2 - - - -

4.3.5 Experimental setup

REFUGE dataset

The REFUGE challenge database contains 1200 retinal fundus images for glaucoma diagnosis. The

images are centered at fovea with high-quality, and the macula, the optic disc and the retinal nerve

fiber layer visibles. The database was split into three equally-sized subsets with 400 images for

training, validation, and test, with 40 glaucomatous and 360 non-glaucomatous images for each

subset. The retinal images from the training set were acquired using a Zeiss Visucam 500 fundus
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camera with a resolution of 2124 × 2056 pixels. On the other hand, the validation and test set

images were acquired with a Canon CR-2 device with a resolution of 1634× 1634 pixels. The optic

disc and optic cup were manually segmented by experts from the Zhongshan Ophthalmic Center

(China). The proposed method was trained using the training and validation sets as an one dataset

with 800 images. The evaluation of the proposed method was performed using the test set.

Evaluation

The proposed approach (DCNN + polar MFs) was implemented with Keras and run in a computer

with a GeForce GTX TITAN X from NVIDIA. The binary cross entropy was used as loss function.

The accuracy, precision, recall, and f-score were reported in the test set. Three configurations of

the proposed model were evaluated: two configurations using only the cartesian and polar fundus

images applied as an input of the ResNet50 DCNN, and one configuration that fuses the cartesian

and polar morphometric features with the cartesian and polar features extracted respectively from

the ResNet50 (DCNN + Cartesian MFs) as explained in section 4.2. The previous models were

trained using Adams in all the configurations. The number of epochs to train the model was set

to 100, and the learning rate and batch size parameter were explored for each model using a grid

search strategy, the best performance metrics obtained in validation set was evaluated in test set.

In addition, five machine learning models were implemented: LR, KNN, RF, SVM and MLP were

evaluated as baseline methods and trained using the 448 polar morphometric features normalized

with (mean = 0) and (variance = 1). C parameter for the LR and the linear SVM, number of

neighbors for the KNN, number of estimators for the RF, and number of hidden layers for MLP

were explored. Moreover, the segmentation task of optic disc and optic cup was evaluated using

dice coefficient. The estimation of polar morphometric features was assessed using mean absolute

error.

4.3.6 Results

The best performance of the proposed model in the automatic segmentation of optic disc and

physiologic cup (second stage) was obtained with a learning rate of 1e − 5, a batch size of 2, a

number of samples per epoch of 400, and a number of epochs of 100. The Dice coefficient (DC)

were monitored during training (not reported here), and the best model evaluated on the test set

for optic disc segmentation with a mean of DC = 0.972, and physiologic cup segmentation with a

mean of DC = 0.886. For the third stage, the estimated radii presented a MAE during training of

2.11%, and a MAE in the test set of 2.45% compared to the ground truth radii.

We evaluated the proposed method with baseline methods as reported in Table 4-6. The table

presents the comparison between the methods, source of information and performance metrics of

sensitivity, specificity, accuracy, and AUC evaluated in the glaucoma classification task.

Finally, we compared the proposed method against the 12 best teams in the REFUGE Challenge.

The REFUGE challenge was organized by the artificial intelligence innovation business, Baidu Inc

and, it was a satellite event of the MICCAI 2018 conference in the 5th MICCAI Workshop on

Ophthalmic Medical Image Analysis (OMIA) in Granada, Spain [152]. The segmentation and

classification results are shown in Table 4-7 and Figure 4.5 respectively.
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Table 4-6: Performance metrics for baseline models and the proposed method on the test data set.

The bold values show the two best score for each performance metric.

Method Source Sensitivity Specificity Accuracy AUC

LR
Cartesian MFs 0.954 0.697 0.932 0.938

Polar MFs 0.957 0.727 0.938 0.936

KNN
Cartesian MFs 0.959 0.833 0.950 0.892

Polar MFs 0.959 0.806 0.948 0.929

RF
Cartesian MFs 0.975 0.705 0.957 0.910

Polar MFs 0.959 0.714 0.938 0.952

SVM
Cartesian MFs 0.951 0.688 0.930 0.925

Polar MFs 0.929 0.765 0.922 0.903

MLP
Cartesian MFs 0.962 0.812 0.950 0.941

Polar MFs 0.959 0.694 0.935 0.938

DCNN

Cartesian images 0.934 0.682 0.920 0.908

Polar images 0.949 0.700 0.930 0.939

Cartesian images and MFs 0.937 0.762 0.928 0.934

Polar images and MFs † 0.983 0.733 0.953 0.971

† The proposed model fusing polar images and polar MFs of OD and PC.

Figure 4.5: ROC curves of participating teams in REFUGE challenge. The legend is sorted accord-

ing highest values of AUC
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Table 4-7: Methods and performance metrics for teams on REFUGE test set. The bold values

show the three best score for each performance metric.

Team Segmentation & classification methods Mean
OD Dice

Mean

PC Dice
AUC

MindLab† Customized DCNN & late-fusion of polar

MFs and features extracted from ResNet-

50 using polar fundus images

0.9720 0.8867 0.971

CUHKMED [153] Combination of U-Net and DeepLabv3 &

CDR calculated using segmentations

0.9602 0.8826 0.9644

Masker [154] Combination of a Mask-RCNN, an U-Net

and a M-Net & Combination of CDR and

ResNet-50, 101 and 152

0.9464 0.8837 0.9524

BUCT [152] Combination of two U-Net & a Xception

using as an input grayscale images

0.9525 0.8728 0.9348

NKSG [155] The DeepLabv3 using OD area & SENet

using data augmentation

0.9488 0.8643 0.9587

VRT [152] Combination of an U-Net and a vessel-

based network CNNs & Combination of

three CNNs using semi-supervised learn-

ing approach

0.9532 0.8600 0.9885

AIML [156] Combination of dilated-ResNet & ensem-

ble of ResNet-50, 101, 152 and 38 using

the whole fundus images and local regions

around the OD

0.9505 0.8519 0.8458

Mammoth [157] A Dense U-Net & a combination of a

ResNet-18 and a CatGAN using 4-folds

0.9361 0.8667 0.9555

SMILEDeep [158] Three modified U-Net & a modified

DeepLabv3 using cross-entropy loss

0.9386 0.8367 0.9508

NightOwl [159] Two U-shaped networks ’CoarseNet’ and

’FineNet’ & 10-fold cross-validation using

FineNet encoders

0.8257 0.9487 0.9101

SDSAIRC [160] M-Net using the OD area & the fine tun-

ing of a pretrained ResNet-50 combined

with a LR for CDR estimation

0.9436 0.8315 0.9817

Cvblab [152] A two-stage model using a modified U-

Net & an ensemble of VGG19, Incep-

tionV3, ResNet-50 and Xception

0.9077 0.7728 0.8806

Winter Fell [161] Combination of a Faster R-CNN and a

ResU-Net & an ensemble of two ResNets

(101 and 152), and two DenseNets (169

and 201)

0.8772 0.6861 0.9327

† The proposed model fusing polar images and polar MFs of OD and PC.
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4.4 Discussion and conclusions

Experimental results for the first proposed model showed that the DCNN model combined with

cartesian morphological features is highly correlated with the ground truth labels for glaucoma

condition classification according to the Kappa coefficient as shown in table 4-4. In addition, our

proposed method is able to obtain a good performance for binary and three-classes classification

problems using unbalanced sets. The main advantage of the proposed method is that it uses as

input the raw image and the optic disc and physiologic cup segmentations to calculate morphologic

features merging those two sources of information in a vector to improve the glaucoma classification.

The pipeline for the second proposed method based on the deep data fusion of polar features

presented good results in the two segmentation tasks, overcoming the other methods with a mean

optic disc dice of 0.9720 and a mean physiological cup dice of 0.8867 as reported in Table 4-7. The

use of RoI of optic disc in the polar domain to perform the segmentation of optic disc and physiologic

cup was the differential compared to other methods that use cartesian representation. Additionally,

the proposed method in classification task reported good results in sensitivity, accuracy, and AUC

compared to classical machine learning approaches as reported in Table 4-6. The comparison with

the 12 best teams participating in the REFUGE challenge positions us in third place with an AUC

of 0.971 as shown in presented in Table 4-7 and Figure 4.5.

The proposed methods compared to baseline methods deliver intermediate morphometric features

in two domains that could offer additional information to expert medical decision making. In

addition, the estimated radii of optic disc and physiological cup are useful for the detection of the

thinnest area of the ring for the detection of clinical CDR parameter. The combination of DCNN

with morphometric features showed good preliminary results in glaucoma detection in two different

datasets. However, its application to other datasets will be the subject of our future work.



5 Three-stages Deep Learning for Glaucoma

Classification

This chapter presents a deep learning-based method to automatically segment optic disc and phys-

iological cup, extract morphometric features and use the features extraction and the morphometric

features extracted to grade glaucoma using eye fundus images. This method is a multi-stage deep

learning model for glaucoma diagnosis based on a three-learning-task strategy. The model is se-

quentially trained to solve incrementally difficult tasks. Our proposed model includes the following

stages: segmentation of the optic disc and physiological cup, prediction of morphometric features

from segmentations, and prediction of disease level (healthy, suspicious and glaucoma). The results

of this method were published in the Proceedings of the Ophthalmic Medical Image Analysis Fifth

International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018 [13].

5.1 Introduction

Glaucoma is one of the leading causes of vision loss and blindness worldwide [162]. It is defined as

an increment of intraocular pressure producing morphological changes in the optic disc (OD) and

physiological cup (PC) affecting the ability of the optic nerve to transmit images to the brain [163].

The main problem with glaucoma is associated with a delayed diagnosis causing an irreversible

damage to the eye [162, 163]. The examination of the optic disc, physiological cup and neuroretinal

rim structures is important for an early detection and proper treatment [162].

The ocular tonometry or measurement of intraocular pressure does not quantify the damage or

glaucoma progression [164]. Thus, a complete ophthalmoscopy examination through an eye fundus

image is widely used to grade and monitor the disease [164, 165]. Additionally, an accurate and

objective diagnosis is required to avoid the minimal damage to the eye structure [165]. Thus,

the design of computer-aided diagnosis models for automatic disease assessment is important to

improve the glaucoma detection and minimize the subjectivity in the diagnosis.

The cup-to-disc ratio (CDR) is the most typical morphometric feature used in the diagnosis

of glaucoma. However, locating and segmenting the OD or optic nerve head (ONH) and the

physiological cup are not easy tasks. Septiarini et al. proposed an automatic glaucoma detection

method extracting statistical features from the intensity in ONH: the mean, smoothness and 3rd

moment, and using a k-nearest-neighbor algorithm as a classifier [166]. Pardha et al. reported a

region-based active contour model using multiple image channels and gray level properties for optic

disc and cup segmentations [165].

Deep learning models, such as Deep Convolutional Neural Networks (DCNNs) have been ap-

plied with success to different medical image analysis tasks and, in particular, to automatically

discriminate between glaucoma and non-glaucoma patterns in eye fundus images. Al-Bander et al.
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presented an 8-layer CNN model to automatically extract features of the optic disc from the raw

images and a linear Support Vector Machine (SVM) classifier to classify the images into normal

or glaucoma subjects [167]. On the other hand, Chen et al. reported a deep learning model that

contains four convolutional layers and two fully-connected layers, where a dropout layer and data

augmentation strategies are used to improve the performance of glaucoma diagnosis [142]. In addi-

tion to this, Orlando et al. fine-tuned two deep learning approaches: OverFeat and VGG pre-trained

from non-medical data for automated glaucoma detection on the DRISHTI-GS1 dataset [143]. Sev-

astopolsky reported a DCNN for automatic OD and PC segmentations, using a modification of the

U-Net CNN tested on the DRIONS-DB, RIM-ONE v.3 and DRISHTI-GS1 database [141]. Finally,

Abbas presented an unsupervised CNN architecture to extract the features and used a deep belief

network model to select the most discriminative deep features with a softmax linear classifier to

differentiate between glaucoma and non-glaucoma retinal fundus image [168]. Despite the results

obtained, these studies have only been tested on a binary classification task, as many images are

not clear cases but in a continuum between healthy and glaucoma.

Deep convolutional neural networks have been highly successful in solving several image analysis

tasks. However, they require a large number of labeled samples for training, which is not necessarily

the case when dealing with medical images. To mitigate this problem, we devised a strategy that

trains the network in stages that solve incrementally more complex tasks [169]. The division of

the problem into subtasks allows to better train the different network modules even with a small

number of samples. The sequence of tasks is motivated by the current practice for glaucoma

diagnosis from eye fundus images by specialists who use morphometric measures estimated from

the optical disc and physiological cup segmentations. Thus, the proposed deep learning method

is composed of three stages: OD and PC segmentations, morphometric feature estimation and

glaucoma detection, which are sequentially trained using a three-stages strategy.

This chapter presents a novel deep learning model for automatic analysis of eye fundus images to

support glaucoma diagnosis. The proposed model is based on a three-stage deep learning model:

the first stage is a DCNN used for automatic segmentation of optic disc and cup, the second stage

is a DCNN for extraction of Morphometric Features (MFs), and the last stage is a multilayer

perceptron neural network used for glaucoma diagnosis. The proposed method was assessed using

three publicly available dataset and presents outstanding results when compared to state-of-the-art

methods.

5.2 Three-stages model for Glaucoma Classification

Figure 5.1 shows the architecture of the deep neural network model for automatic analysis of eye

fundus images to support glaucoma diagnosis. The model is organized in three consecutive stages

that are sequentially trained using a three-stages approach, i.e. at each stage the training process

focuses on different learning goals. This learning strategy regularizes the optimization process to

converge faster, guiding the search towards better local minima [169]. The network stages were

designed following a process analogous to the one followed by experts. The first stage performs

the segmentation of the OD and PC using a 15-layer DCCN. The second stage uses as input the

two segmentations generated by the first stage, stacking a third image mask corresponding to the
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union of the OD and PC segmentations to create a 3D-binary mask, which are fed to a 12-layers

DCNN. The goal of this stage is to calculate different morphometric features, which are generally

used by experts to diagnose glaucoma. Finally, the third stage applies a multilayer neural network

to produce the final prediction that classifies the input image into three possible classes: normal,

suspicious or glaucoma. The following subsections discuss the details of the three stages.

Figure 5.1: Block diagram used to segment binary masks (first block), to extract morphometric

features (second block), and to classify into healthy, suspicious and glaucoma classes

(third block).

DCNN for automatic segmentation of optic disc and physiological cup

The first stage of the model corresponds to a DCNN that uses as input an RGB eye fundus image

to automatically segment the OD and the PC. The DCNN is based on the DRIU model with

two additional convolutional layers as explained in detail in subsection 4.3.2.The DRIU model is

initialized with VGG weights pretrained on ImageNet. It is fine-tuned for 10,000 epochs with a

learning rate of 1e− 6, which is gradually decreased as the training process proceeds. A real time

data augmentation strategy is implemented to grow the training data. Class weights of 0.1 and

0.9 for background and foreground respectively are used to handle the imbalance of the number of

background pixels (nor disc neither cup pixels) compared to foreground pixels (disc and cup pixels).

The model is trained using binary cross-entropy as loss function with ground-truth segmentations

of the OD and the PC provided by experts.

DCNN for automatic morphometric estimation

The second stage takes as input the segmentations of the OD and the PC, along with a third image

corresponding to the union, to calculate 19 morphometric features used by Perdomo et al. [15].

The 19 morphometric features can be divided into four subsets: geometric, distances, axis and

ratio. The geometric subset contains areas and perimeters of OD and PC; the distance subset is

composed of the superior, inferior, nasal and temporal distances between the OD and PC; the axis

subset is defined by major and minor axis of the OD and the PC, finally, the ratio subset includes
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the eccentricity of the OD and PC and the five ratios between upper OD and PC parameters to

seek disproportions and relationships between optic disc and the physiologic cup [15].

The DCNN designed for automatic morphometric feature estimation is composed of five convo-

lutional, five pooling layers and two fully connected layers. The four max-pooling and the global

average pooling layers are non-linear size reducers that are applied to reduce the spatial dimensions,

to minimize overfitting and the number of parameters in the model. Finally, the first fully-connected

layer connects all the neurons obtained from the global average-pooling layer with 512 neurons to

the next fully-connected layer with the number of morphometric features to predict. The model is

trained using mean absolute error as the loss and, morphometric features directly predicted from

the OD, PC and union segmentations as ground-truth.

Multilayer perceptron for glaucoma classification from morphometric features

The final stage corresponds to a multilayer perceptron (MLP) that receives as input the 19 mor-

phometric features and classifies them into three possible classes: normal, suspicious or glaucoma.

The MLP is composed of two fully-connected layers with 64 hidden and 3 output units. The batch

size, number of epochs and initial learning rate used were explored using a grid search strategy, the

best performing parameters found experimentally were 16, 500 and 0.01 respectively.

5.3 Experimental setup

5.3.1 Eye fundus image databases for glaucoma detection

The DRISHTI-GS1, RIM-ONE v1 and RIM-ONE v3 databases are used in this study [51, 85]. The

DRISHTI-GS1 dataset has been acquired and labeled as healthy and glaucomatous by Aravind Eye

Hospital (India), and it contains 101 color fundus images distributed in two subsets: 50 images for

training, and the 51 remaining for the testing subset [170]. RIM-ONE v1 and RIM-ONE v3 focus on

optic nerve head segmentation for glaucoma detection with manual reference segmentations as gold

standard with 455 and 159 images respectively, created by ophthalmologists from the Department of

Ophthalmology at the Hospital Universitario de Canarias in Spain [51]. The RIM-ONE v1 dataset

was labeled according to a binary classification (healthy vs. glaucomatous), and RIM-ONE v3 was

labeled as a 3-class classification problem (healthy, suspicious and glaucoma).

The proposed method was evaluated in 2 setups: binary-classification task (DRISHTI-GS and

RIM-ONE v1) and 3-class classification (RIM-ONE v3). Additionally, the proposed method used

a stratified sampling to randomly divide two RIM-ONE datasets into three subsets with 60%, 10%

and 30% for each class that correspond to training, validation and test sets respectively.

5.3.2 Evaluation

The proposed method used several performance metrics in each stage. The OD and PC segmen-

tations stage were assessed with the Jaccard index and the Dice coefficient. The MF estimation

stage was evaluated using the Mean Average Percentage Error (MAPE) among all the predicted

MFs. Moreover, the MFs calculated from the OD and PC segmentations by the experts called Real

Morphometric Features (RMFs) were compared to the Estimated Morphometric Features (EMFs)



5.4 Results 46

or the MFs calculated from the OD and PC segmentations by the first stage as reported in Table 5-

1. Finally, the complete proposed method for glaucoma detection was evaluated using accuracy,

sensitivity, specificity, Area Under the Curve (AUC), precision, recall, f-score, Kappa coefficient,

and Overall Accuracy (OA) performance metrics reported on the test sets.

For the binary task, a combination of an 8-layer CNN model and a linear SVM applied to RIM-

ONE v1 [167], and a fine-tuning of VGG pre-trained on ImageNet applied to DRISHTI-GS1 [143]

were chosen as binary-classification baseline models, as reported for the test set in Table 5-2. The

deep learning data-fusion model that combines raw color fundus images and RMFs was chosen as

the 3-class classification baseline [15] on the RIM-ONE v3 dataset. Furthermore, a DCNN feeding

with color fundus images and a 3D-binary mask described in Section 4.2.2 was compared to the

proposed method. The proposed approach was implemented with Keras1 using a GeForce GTX

TITAN X from NVIDIA.

5.4 Results

The best performance of the proposed model for OD and PC segmentations (first stage) was

obtained with a learning rate of 1e−6, a batch size of 2, a number of samples per epoch of 300, and

a number of epochs of 10.000. The Jaccard index (JI) and Dice coefficient (DC) were monitored

during training in the first stage (not reported here), and these parameters were evaluated on the

test set for OD segmentation with of JI = 0.9975 and DC = 0.9987 of, and PC segmentation with

JI = 0.9983 and DC = 0.9991 respectively.

For the second stage, it was assessed the EMFs compared with RMFs, the EMFs presented

a MAPE during training of 3.57%, and a MAPE in the test set of 6.30% compared to RMFs.

Table 5-1 presents a comparison between Real Morphometric Features (RMFs) and Estimated

Morphometric Features (EMFs) for 3-class classification on the RIM-ONE v3 dataset using SVM

and Random Forest (RF) classifiers as reported in [15].

Table 5-1: Performance measures for the RMFs and EMFs on the test RIM-ONE v3 dataset, bold

values show the best score for each performance metric.

Method Source Precision Recall f-score Kappa OA

SVM [15] RMFs 0.63 0.56 0.55 0.35 0.66

RF [15] RMFs 0.64 0.57 0.58 0.37 0.65

SVM EMFs 0.54 0.41 0.39 0.23 0.57

RF EMFs 0.60 0.64 0.61 0.35 0.64

Finally, we evaluated the proposed method with baseline methods for binary and 3-class clas-

sifications (third stage) as reported in Tables 5-2 and 5-3 respectively. These tables present the

comparison between the methods, information sources and performance metrics evaluated in clas-

sification tasks for the two experimental setups respectively.

1http://keras.io
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Table 5-2: Binary-classification performance metrics for baseline models and the proposed method

on the test data set. The bold values show the best score for each performance metric.

Method Source Accuracy Sensitivity Specificity AUC

Al-Bander et al. [167] RGB 0.882 0.85 0.908 –

Orlando et al. [143] RGB – – – 0.763

Proposed method RGB 0.894 0.895 0.889 0.82

Table 5-3: Comparison of performance metrics for 3-class classification for baseline models and the

proposed method on the test dataset. The bold values show the best score for each

performance metric.

Method Source Precision Recall f-score Kappa OA

DCNN RGB 0.48 0.55 0.51 0.20 0.55

DCNN OD -PC-Union 0.60 0.60 0.59 0.29 0.60

Data fusion model [15] RMF,RGB 0.46 0.56 0.50 0.42 0.68

Three-stages model RGB 0.76 0.72 0.69 0.48 0.70

5.5 Discussion and conclusions

We present a novel method for automatic glaucoma assessment from eye fundus images based on

DCNNs. The results show that the three-stages model for glaucoma classification is competitive

with the best results reported for each dataset: RIM-ONE-v1 accuracy of 89.4% vs. 88.2% reported

by [167], and DRISHTI-GS AUC of 0.82 vs 0.76 reported by [143], as shown in Table 5-2.

The most remarkable characteristic of this model is its architecture and training strategy. The

model is organized in stages that follow a conventional process for glaucoma diagnosis based on the

calculus of morphometric features. The multistage architecture allows us to train the model using

a three-stages approach, which gradually trains the model to accomplish subtasks with increasing

complexity. This approach allows training a complex deep learning model with a reduced set of

training samples, resulting in an improved performance of the model as corroborated in section 5.4.

In particular, the experimental results showed that the multistage architecture along with the

sequential training, produces better results than conventional DCNNs, as reported in Table 5-3.

As the resulting model is a three-stage model, it is capable of directly producing a prediction

from the input image without the need for the manual intermediate segmentation required by the

conventional diagnostic protocol from images of the fundus.

The work shows that it is possible to involve domain knowledge in deep learning models. Addi-

tionally, intermediate results produced by the model (segmentations and morphometric features)

can help the interpretability of the model predictions, making them more useful in support of the

diagnosis process. We hypothesize that this approach can be extended to other medical image

analysis applications and exploring this hypothesis will be the focus of our future work.



6 Deep learning for ocular diseases detection

using OCT volumes

This chapter presents a new deep learning model, OCT-NET, which is a customized convolutional

neural network for processing scans extracted from optical coherence tomography volumes. OCT-

NET is applied to the classification of three conditions seen in SD-OCT volumes. Additionally,

the proposed model includes a feedback stage that highlights the areas of the scans to support the

interpretation of the results. This information is potentially useful for a medical specialist while

assessing the prediction produced by the model. The architecture of OCT-NET was reported and

published in the IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) [14].

In addition, the OCT-NET model was tested on two public data sets containing different ocular

conditions and producing interpretable clinical information in the form of highlighting of the regions

of the image that most contribute to the classifier decision. This results was published in the Journal

of Computer Methods and Programs in Biomedicine Volume 178, September 2019 [10].

6.1 Introduction

Ophthalmic diseases related to Diabetes Mellitus are characterized by a vascular permeability of

retinal vessels with fluid accumulating in retinal layers [171]. Diabetic retinopathy and diabetic

macular edema are two non-exclusive complications that affect the visual field [172]. The diagnosis

of these complications is not an easy task, since edema can occur in subjects with and without DM

at any stage of DR, with similar symptoms but with different treatment strategies and associated

costs [173]. Age-related Macular Degeneration is linked to macular changes derived from non-

modifiable and modifiable risk factors. The diagnosis is based on typical changes related to aging

and visual loss and prognosis is related to the severity of the either geographic atrophy or choroidal

neovascular membrane [174].

The Spectral Domain Optical Coherence Tomography (SD-OCT) is a widely accepted noninvasive

imaging approach that contains images of the depth of the retina through a set of B-scan (2D

images) used to detect abnormalities among the ten retinal layers with an accurate diagnosis of

retinal disorders [175]. A typical ophthalmological examination of the retina may include an analysis

of eye fundus images and in some cases SD-OCT to locate retinal vascular damage and changes in

choroidal thickness [42]. The DR and DME diagnoses are performed by looking for the presence

of microaneurysms, intraretinal hemorrhages, exudates and edema [176–178]. The evaluation of

the thickness of the neurosensory retina, retinal pigment epithelium, and choroid are analyzed

independently for the AMD diagnosis [179, 180].

Automatic image analysis methods based on machine learning have shown to be a valuable tool

to support medical decision making [181, 182]. In particular, deep neural network methods have
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been explored in several medical domains exhibiting promising results. The results of deep neural

networks include: the detection of red lesions in fundus images [183], prediction of breast, lung and

stomach cancers using RNA-sequence data [184], early diagnosis of Alzheimer’s disease using CT

brain images [185] and the recognition of emotions using multimodal physiological signals [186].

Deep learning methods applied to SD-OCT presented outstanding results in automatic segmen-

tation and disease classification tasks. For a segmentation task, the state of the art presents an

overall Dice coefficient (mean of all tissues) ranging between 0.90 and 0.95 using known architec-

tures such as VGG [121], U-Net [187–190] or DenseNet [191, 192]. The classification of SD-OCT

volumes has mainly focused on two approaches: (1) the manual or automatic feature extraction

combined with ensemble classifiers, and (2) the use of end-to-end deep learning models.

This paper presents a deep learning-based method with a feedback stage for automatic classifi-

cation of B-scans inside a volume for three retinal diseases. The method is able to automatically

identify visual patterns associated with several pathologies and use them to make accurate predic-

tions. The model has the ability to highlight the patterns in the input image, allowing the expert

to better understand the model prediction. The remainder of this article is organized as follows: in

Section 6.2 the main work for retinal disease classification using SD-OCT volumes is summarized.

Then, the volume preprocessing and the convolutional neural network-based model architecture

are presented in Section 6.3. The data sets and baseline models used are described in Section 6.4.

The experimental results are reported in Section 6.5. Finally, Section 6.6 discusses the outcomes

and finishes with conclusions.

6.2 Related work

The end-to-end OCT-NET model was tested on a data set that contains 32 SD-OCT volumes with

healthy and DME patients commonly known as the SERI (Singapore Eye Research Institute) data

set as explained in details in subsection 6.4.1. In this previous work, the OCT-NET model obtained

an outstanding performance using a leave-one-patient-out evaluation methodology with an accuracy

of 93.75±3.125% and a sensitivity and a specificity of 93.75% [14]. This paper presents an extended

version that addresses three main challenges: (1) the qualitative evaluation of B-scans to highlight

medical findings using a visualization stage; (2) the quantitative evaluation of SD-OCT volumes

with three retinal diseases from two OCT scanners, and (3) the medical feedback of quantitative

and qualitative evaluations to validate the usefulness of the methodology.

The main work reported on the SERI data set is characterized by using deep learning archi-

tectures pre-trained on ImageNet1 combined with ensemble classifiers. First, Awais et al. [193]

presented a method that used block-matching and 3D filtering (BM3D) for removing the speckle

noise in SD-OCT. The new filtered volumes fed a pre-trained VGG-16 with a k-Nearest Neighbors

(kNN) algorithm to classify features from the three dense layers with an accuracy, sensitivity, and

specificity of 93%, 87% and 100% respectively. In a similar way, Chan et al. [194] designed a

method that applies a BM3D filter and saturation removal. The processed volumes are then used

as input of three pre-trained architectures known as Alexnet, VGG and GoogleNet. The last con-

volutional layers of each model are fused and a feature space reduction is performed using Principal

1http://www.image-net.org/
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Component Analysis. The volumes are classified using a Support Vector Machine with a precision,

sensitivity and specificity of 93.75%. Finally, Kamble et al. [18] proposed the fusion of residual

connections with an inception architecture termed as inception-ResNet-v2. This model used as an

input filtered volumes with a BM3D filter stage and presented a performance of 100% in accuracy,

specificity and sensitivity.

The most representative work classifying SD-OCT volumes on the A2A SD-OCT data set is

mainly reported in three papers [118, 195, 196]. Sun et al. [118] manually cropped patches based

on the annotation of interest points to calculate a Histograms of Oriented Gradient (HOG) and

merged them as the training set. Then, Principal Component Analysis (PCA) was performed for

reducing the length of the HOG features. Finally, a multiple instance SVM classifier was trained

with the PCA-transformed patch representation and tested to classify volumes on the test data set

obtaining an accuracy, sensitivity and specificity of 94.4%, 96.8% and 92.1% respectively.

Venhuizen et al. [195] developed an unsupervised clustering stage to extract interest points in 31

B-scans per volume centered at the fovea of 284 SD-OCT volumes as the training data set. The

number of 9 × 9 patches is reduced by the application of a uniform subsampling by a factor of 8.

Then, the patches are normalized to zero mean and unit variance before the extraction of 9 principal

components through PCA. A bag of words is created using k-means clustering with an experimental

value of k = 100 on the total set of PCA-transformed patches. Finally, the unsupervised clustering

is combined with a supervised training stage that uses a random forest classifier with a number of

trees set to 100 trained to differentiate healthy subjects from AMD subjects. The performance on

the test data set after classifying 50 AMD and 50 healthy subjects was an AUC of 0.984.

Chakravarty et al. [196] designed a two-stage retinal atlas for macular SD-OCT volumes that

comprises a pre-processing and a classification stages. First, the pre-processing step resized the

images to a pixel dimensions of 3.6 µm by 8.6 µm. A denoising and intensity standardization is

applied to reduce the speckle noise in the volumes. Moreover, a retinal curvature flattening of

the SD-OCT volumes is performed, where each B-scan is flattened and aligned across the volume.

Finally, the Region of Interest (RoI) by SD-OCT volume is defined to a set of 31 B-scans with the

108 axial scans centered at the macula, where the histogram is calculated and concatenated across

all the RoIs. The binary classification stage is done using a linear SVM presenting an accuracy and

an AUC of 98% and 0.996 respectively for AMD classification.

The state of the art for classifying real-world scans is mainly focused in three deep learning

approaches. De Fauw et al. [122] trained with two private data sets a two-stage deep learning-

based pipeline: a deep segmentation network with a three-dimensional U-Net architecture and a

deep classification network to predict the diagnosis probability and the referral suggestions using the

segmentation. The deep segmentation network was trained using 877 SD-OCT volumes acquired

by Moorfields Eye Hospital with a Topcon 3D OCT device, where the three most representative

slices were manually segmented in a detailed tissue-segmentation map with 15 classes including

anatomy, pathology and image artifacts. The classification network was trained using the 43

most representative slices of 14, 884 SD-OCT volumes obtained from 7, 621 patients referred by

the experts as subjects with symptoms suggestive of macular pathology. The model was tested

with 997 patients obtaining an area under the ROC curve of 99.21%. Lee et al. [121] used a

VGG-16 convolutional neural network applied on a private data set for the classification of normal

and AMD. The deep learning model receives as an input a scan with a size of 192 × 124 and
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performed 13 convolutional layers with an incremental number of filters and 3 dense layer to

classify the two classes. The image database was acquired using a Heidelberg Spectralis OCT

device with 80, 839 images in the training set and the test set contains 20, 163 images. The results

at image level presented an area under the ROC curve of 92.78% with an accuracy of 87.63%, a

sensitivity of 84.63% and a specificity of 91.54%. Additionally, an occlusion test identified the RoIs

with the areas contributing most to the deep neural network’s probability. Finally, Kermany et

al. [93] used a pretrained Inception V3 from ImageNet to predict four classes: Normal, Choroidal

Neovascularization (CNV), DME and Drusen. The method was trained using a public data set

acquired by Heidelberg Spectralis OCT device with 108, 312 images for training and tested in 1, 000

with 250 per class. The best results on the test set presented an accuracy of 96.6%, a sensitivity

of 97.8%, and a specificity of 97.4%. In addition, a sliding window of 20 × 20 was systematically

moved across 491 images to record the probabilities of the disease.

Although previous work reported very good results in the classification task, the performance of

these methods is crucially dependent of the manual extraction of RoIs and in some case limiting the

number of scans from the SD-OCT volumes. The proposed model provides the highlighted areas

in all scans into volumes with a validation performed by two ophthalmology experts. Distinctively

from previous work, our approach automatically classifies AMD but also produces useful medical

information at qualitative and quantitative levels inside an SD-OCT volume to support medical

decision making in the diagnosis of AMD.

6.3 Methods

This section presents the details of the SD-OCT classification model based on deep neural networks

and more specifically OCT-NET. The method comprises six stages as shown in Figure 6.1 and it

is available in a repository of Github2. The first stage (1) receives a raw SD-OCT volume with

speckle noise that hinders layers and abnormalities among the layers as an input. Then, the

volume preprocessing stage (2) makes the detection of the Internal Limiting Membrane (ILM) and

the Retinal Pigment Epithelium (RPE) layers, to resize the volumes in order to crop the relevant

raw pixels into the volumes as presented in subsection 6.3.1. Furthermore, the OCT-NET CNN

(3) performs the feature extraction and classification of each B-scan from a SD-OCT volume as

healthy or non-healthy. Simultaneously, the disease classification stage (4) based on the number

of images calculates with a majority rule the prediction for the SD-OCT volume as explained in

detail in subsection 6.3.2. Then, the Class Activation Map (CAM) visualization stage (5) allows

to highlight the relevant zones of the scans used by the OCT-NET model to classify a specific

retinal disease as reported in subsection 6.3.3. Finally, the expert feedback stage (6) evaluates the

provided information in the disease classification and the CAM visualization stages to qualitatively

validate the obtained results.

6.3.1 SD-OCT volume preprocessing

A spectral domain optical coherence tomography is a volumetric array V (n, a, b) that can be defined

as a set n of 2D-images called B-scans or cross-sectional scans I ∈ IR a×b, with a corresponding

2https://github.com/Ojperdomoc/OCT-NET.git
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Figure 6.1: Overview of the six-stage proposed deep learning model for retinal disease classification.

(1) The raw SD-OCT volume for a database; (2) The volume preprocessing stage to

resize and crop to an input size; (3) the OCT-NET model to extract features from

all the scans in a volume; and the interpretability three-stage (4,5,6) to classify and

evaluate qualitative and quantitative the scans and the SD-OCT volumes.

label l ⊂ Healthy, DME, DR-DME and AMD. The input for the customized OCT-NET was set for

scans with size of 224×224×1 as described in subsection 6.3.2. Therefore, a set of transformations

are needed for automatically extracting a RoI per scan in the SD-OCT volume.

A median filter was applied to SD-OCT scans with a threshold to differentiate speckle noise from

retinal layers as reported in [14, 197]. First, the RoI was automatically detected using a median

filter with a kernel size of 3× 3 and a threshold of 0.5 to highlight the top layer (ILM) and bottom

layer (RPE) in the volume as shown in stage (2) of Figure 6.1.

Each image cropped without scaling in such a way that the resulting image fully contains the RoI.

This is independently done for each B-scan hence that the process is not affected by a pronounced

tilt. Finally, these cropped images are resized keeping aspect ratio to ensure the relevant information

in a volume dimension of Vinput ∈ IR n×224×224.

6.3.2 OCT-NET model

OCT-NET is a customized Convolutional Neural Network (CNN) inspired by the VGG model

reported by Simonyan and Zisserman [97]. The proposed model is based on the combination

of convolutional and max-pooling layers in four sub-blocks that are responsible for the feature

extraction in the CNN and the remaining layers conforming the classification sub-block to classify

a scan from an OCT-volume. In summary, the OCT-NET model contains 10 convolutional layers,

4 max-pooling layer, 2 fully connected layers, and 1 dropout layer as shown in detail in Table 6-1.

The input layer receives an image with a size of 224 × 224 × 1 as reported in subsection 6.3.1.

The number of filters of the convolutional layers in the four sub-blocks is inspired by the VGG

model [97], with the difference that OCT-NET has a number of filters fn defined by an arithmetic
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Table 6-1: Structure of OCT-NET with the parameter layer, output shape and trainable parame-

ters of each layer.

N Layer Output shape Number of parameters

0 Input 224× 224× 1 0

1 Conv2D (kernel size = 3× 3) 222× 222× 32 320

2 Conv2D (kernel size = 3× 3) 220× 220× 32 9248

3 Conv2D (kernel size = 3× 3) 218× 218× 32 9248

4 MaxPooling2D (pool size = 2× 2) 109× 109× 32 0

5 Conv2D (kernel size = 3× 3) 107× 107× 64 18496

6 Conv2D (kernel size = 3× 3) 105× 105× 64 36928

7 MaxPooling2D (pool size = 2× 2) 52× 52× 64 0

8 Conv2D (kernel size = 3× 3) 50× 50× 128 73856

9 Conv2D (kernel size = 3× 3) 48× 48× 128 147584

10 MaxPooling2D (pool size = 2× 2) 24× 24× 128 0

11 Conv2D (kernel size = 3× 3) 22× 22× 256 295168

12 Conv2D (kernel size = 3× 3) 20× 20× 256 590080

13 Conv2D (kernel size = 3× 3) 18× 18× 256 590080

14 MaxPooling2D (pool size = 2× 2) 9× 9× 256 0

15 Dense 4096 84938752

16 Dropout (rate = 0.5) 4096 0

17 Dense number of classes 8194

series, as described in Eq. (6-1) as follows:

fn = f0 + 32 ∗ (n− 1) (6-1)

where the parameter f0 = 32 and n is the number of sub-blocks with 1 ≤ n ≤ 4. The cascading

of four blocks of convolutional and max-pooling layers provides a translation invariance and a

reduction of dimensionality: by applying a set of fn learned filters with kernel size of 3 × 3 and

stride of 1× 1 and eliminating non-maximal values with pool size of 2× 2 and stride of 2× 2.

The classification sub-block is composed of three layers: one fully-connected layer with 4096

neurons, one dropout layer with a fraction of deactivation of units during training of 0.5, and a

final fully-connected layer with number of classes as the number of neurons. The dropout layer

allows to learn with different neurons the same information improving the generalization of the

model and the number of neurons for the final fully-connected layer is set to 2 or 3 for binary and

three-class data sets respectively. Additionally, the disease classification of one SD-OCT volume

was determined using a majority rule, as such the volume was affected by the class that was the

most preponderant among the B-scans as reported in [193].
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6.3.3 Class activation map

The Class Activation Map (CAM) is defined as the sum of the weighted activation maps generated

for each image at different spatial locations. The main use of a CAM focuses on the validation of

a CNN model that indicates the discriminative image regions for a particular category. Thus, the

CAM block adds a Global Average Pooling (GAP) after the last convolutional layer in the CNN

model for obtaining an accurate discriminative localization as reported by Bolei et al. [198] and

Selvaraju et al. [199]. The CAM highlights the magnitude of the activation at the spatial grid (x,

y) to classify an image to class c. The CAM for class c is defined by wc
k as the weight corresponding

to class c for unit k applied to an input image fk(x, y) described in Equation 6-2 as follows [198]:

Mc(x, y) =
∑
k

wc
kfk(x, y) (6-2)

6.4 Experimental evaluation

6.4.1 SERI+CUHK dataset

The Singapore Eye Research Institute (SERI) database contains 32 SD-OCT volumes with 16

control and 16 DME SD-OCT volumes. Similarly, the Chinese University of Hong Kong (CUHK)

database contains 43 SD-OCT volumes with 4 DME and 39 DR-DME SD-OCT volumes. The two

data sets were combined into one three-class data set termed in this paper as SERI+CUHK data

set. The SERI-CUHK data set was acquired with a CIRRUS SD-OCT device 3 and labeled by

certified expert graders as control, DME and DR-DME volumes, according to findings among the

retinal layers as shown in Fig 6.2.

The inclusion criterion was the presence of abnormal retinal thickening, hard exudates, intrareti-

nal cystoid space formation and subretinal fluid among the retinal layers of working-age adult

subjects. Finally, each SD-OCT volume contains 128 cross-sectional scans with a resolution of

512×1, 024 pixels. The data set was cropped and resized (keeping the aspect ratio) to a dimension

of 128× 224× 224 as discussed in subsection 6.3.1.

6.4.2 A2A SD-OCT data set

The A2A SD-OCT is a binary data set from the Age-Related Eye Disease Study 2 (AREDS2) also

known as Duke data set [55]. The images from the A2A SD-OCT study obtained the informed

consent from all subjects and it was approved by the institutional review boards of the 4 A2A

SD-OCT clinics: Devers Eye Institute, Duke Eye Center, Emory Eye Center, and National Eye

Institute.

The Duke data set was acquired using imaging systems from Bioptigen, Inc (Research Triangle

Park, NC) as shown in Fig. 6.2. The classification of each volume was done by certified SD-OCT

readers. The inclusion criteria were defined as subjects between 50 and 85 years of age, exhibiting

intermediate AMD with large drusen (> 125mm) in both eyes or large drusen in one eligible eye

and advanced AMD in the fellow eye, with no history of vitreoretinal surgery or ophthalmic surgery.

The Duke data set contains 384 SD-OCT volumes: 269 AMD and 115 control or normal eyes, with

3https://www.zeiss.com/meditec/int/products/oct-optical-coherence-tomography.html
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Figure 6.2: [Top-left] DME SD-OCT scan with hyper-reflective material in the middle layers of

the retina, likely by exudates, and [Top-right] DR-DME SD-OCT scan with a retinal

pigment epithelium detachment.[Bottom-left] Normal SD-OCT scan and [Bottom-right]

AMD SD-OCT scan with a drusenoid detachment with migration of pigment to the

inner layers of the retina.

100 B-scans per volume and a resolution of 1, 000 × 512. The data set was resized to a volume

dimension of 100× 224× 224 as reported in subsection 6.3.1.

6.4.3 Experimental setup

The OCT-NET model was trained with random initialization weights using the Adam optimizer.

The batch size, learning rate and number of epochs were experimentally set to 16, 1e − 5 and 10

respectively for all experiments as reported in a previous article [14]. Moreover, the classification

of one SD-OCT volume was determined using a majority rule as explained in subsection 6.3.2.

The SERI+CUHK data set was randomly split in a stratified way into three independent data sets

with 60%, 10% and 30% for training, validation and testing respectively as presented in Table 6-2.

On the other hand, the Duke data set was randomly split into 3 independent data sets with 67%

and 10% for training and validation respectively. The remaining 23% corresponds to the test data

set, with 50 AMD and 50 Healthy volumes as reported in Table 6-2.

6.4.4 Baseline models and performance metrics

The work proposed by Venhuizen et al. [195], Chakravarty et al. [196] and Kermany et al. [93]

were chosen as baseline models applied on the Duke data set as explained in Section 6.2. In
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Table 6-2: Retinal disease data sets used for training, validation and testing in the experimental

evaluation.

Data set Training Validation Test

SERI+CUHK 45 SD-OCT 8 SD-OCT 22 SD-OCT

Duke 246 SD-OCT 38 SD-OCT 100 SD-OCT

addition, the methods reported by Awais et al. [193] and Kermany et al. [93] were chosen as baseline

models for the SERI-CUHK data set. Additionally, we performed a qualitative evaluation for the

interpretability stage according to the ability of the proposed model to highlight medical findings in

the scans. In this test, 40 SD-OCT volumes from the Duke test data set were randomly split with

20 healthy and 20 AMD samples. Two retina specialists from Fundación Oftalmológica Nacional

manually labeled each B-scan of this subset without taking into account the given volume label.

Finally, the two experts assessed the generated CAM visualizations plus the individual prediction

from each scan individually from a SD-OCT volume.

The proposed model was implemented with Keras using a theano backend on a GeForce GTX

TITAN X from NVIDIA. The loss and accuracy metrics were monitored on the training and val-

idation data, and the best performance in the validation set was assessed on the test data set

presented in Tables 6-3 and 6-4. OCT-NET was evaluated on the test set of the Duke data us-

ing accuracy, sensitivity, specificity as performance metrics. In addition, the AUC was calculated

according to the probability that our classifier will rank a randomly selected positive case higher

than a randomly chosen negative case.

OCT-NET was evaluated on the SERI+CUHK test data set using precision, f-score (macro)

and Kappa coefficient as multi-class performance metrics. Recall was another performance metric

evaluated on the SERI+CUHK test data set. These performance measures were chosen so that the

results can be compared with those reported by the state of the art.

6.5 Results

6.5.1 Volume classification performance

The performance classification was reported for the Duke and the SERI+CUHK databases ex-

plained in detail in Section 6.4. Moreover, we tested the performance metrics of the OCT-NET

model using the hyper-parameters and monitoring the loss and the accuracy during training as

shown in Figure 6.3. The training was set to 10 epochs as it obtained high accuracy while limiting

the training time that is on average to 60 minutes per epoch. The computational time to evaluate

a single B-scan of the test set from Duke was 0.33 ms, and 0.28 ms in SERI+CUHK.

For the Duke database, the performance of OCT-NET applied on the test data set is reported

in Table 6-3. Additionally, the performance of the proposed method was compared with the main

related works using this database as presented in subsection 6.4.3. The OCT-NET was modified

into three architectures with different values in Dropout (DO) layer and the last dense (D2) layer.
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Figure 6.3: The monitoring of the accuracy and loss during training for the two experiments: [Left]

SERI+CUHK, and [Right] Duke data sets. The blue solid and the green dashed lines

represent the training and validation sets respectively.

The OCT-NET presented a similar AUC metric that method proposed by Chakravarty et

al. [196], but outperforms baseline methods in sensitivity, specificity and accuracy as reported

in Table 6-3.

Table 6-3: Performance measures of the baseline methods and the proposed method on the test

data (Duke), bold values show the best score for each architecture.

Model Sensitivity Specificity Accuracy AUC

Venhuizen et al. [195] 0.96 0.92 0.94 0.984

Chakravarty et al.[196] 0.97 0.98 0.98 0.99

Kermany et al.[93] 0.98 0.89 0.94 0.94

OCT-NET 0.99 0.99 0.99 0.99

OCT-NET with DO=0.25 0.89 0.89 0.89 0.89

OCT-NET without DO 0.90 0.88 0.88 0.88

OCT-NET with D2=2048 0.95 0.95 0.95 0.95

The precision, recall, f-score Kappa coefficient and AUC were calculated to assess the performance

of the proposed model applied to the SERI+CUHK data set, as reported in Table 6-4. For the

SERI+CUHK data set, the best performance of the proposed model on the test data is reported

in Table 6-4. Furthermore, we compared the performance of the baseline model reported by [93]

and [193] using the three output dense layers (D1, D2 and D3) with three different ensemble

classifiers: Decision Trees (DT), and KNNs with K = 1 and K = 3 applied on the test set.

The OCT-NET architecture presented the best performance and it outperforms baseline methods

in precision, recall, f-score and Kappa coefficient as shown in Table 6-4.
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Table 6-4: Performance metrics of OCT-NET on the test data (SERI+CUHK).

Model Precision Recall f-score (macro) Kappa coefficient AUC

D1 with DT (depth=100) [193] 0.69 0.70 0.69 0.42 0.5

D2 with KNN (K=1)[193] 0.62 0.65 0.63 0.27 0.5

D3 with KNN (K=3)[193] 0.62 0.65 0.63 0.27 0.57

Kermany et al.[93] 0.91 0.78 0.74 0.59 0.86

OCT-NET 0.93 0.83 0.85 0.71 0.86

6.5.2 Qualitative analysis of CAM

The CAM visualization stage for the proposed model was validated according to the ability of

locating medical findings that allow to highlight different retinal disorders as reported in subsec-

tion 6.3.3. The CAM output of the proposed model for the AMD class was highlighted in red with

the corresponding medical findings of the ophthalmologist outlined in green as shown in Figure 6.4.

Besides this, the ability of the proposed model to predict the condition of individual scans belonging

to an AMD SD-OCT volume, compared with the diagnosis performed by an ophthalmology expert

is presented in Figure 6.5.

Figure 6.4: SD-OCT scans for subjects with AMD. [left] three large lesions on the outer layers and,

[right] a drusenoid detachment with migration of pigment to the inner layers of the

retina.

6.5.3 Individual B-scan classification

The SD-OCT data sets are commonly labeled to a volume level despite the retinal disease is present

in a range of B-scans. This challenge motivated the evaluation of the proposed model to detect

healthy and non-healthy scans regardless of the global labels of the volumes. Thus, the proposed

method was validated with a subset of 4000 labeled B-scans annotated by the experts from Fun-

dación Oftalmológica Nacional as presented in subsection 6.4.3. Table 6-5 presents the confusion
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Figure 6.5: [Top] Classification of B-scans from an SD-OCT volume of an AMD subject by an

ophthalmologist and predictions by the proposed model. [Left] False positive or a

misclassified B-scan as AMD class due to an RPE layer presenting hyperreflectivity in

these areas (green circles). This results in the proposed method incorrectly highlighting

the areas like drusen or an RPE elevation. [Right] False negative or a misclassified

B-scan as healthy class due to the RPE elevation not having enough hyperreflectivity

(green circles); probably the proposed method is not able to detect these tiny drusen.

matrix for the 40 SD-OCT volumes from the Duke test data set as explained in Section 6.4. The

major diagonal is equivalent to the agreements in the classification of the two classes. Otherwise,

the sub-diagonal represents the erroneous classification of the proposed model. The overall accu-

racy in the prediction of the two classes was of 89% with a precision of 93% in the detection of

AMD scans.

6.6 Discussion and conclusion

OCT-NET outperforms the state of the art methods for AMD diagnosis reported in [195, 196] in

sensitivity, specificity, accuracy but it presents a similar AUC compared to the model proposed by

Chakravarty et al. [196] as shown in Table 6-3. The main two advantages of the proposed model
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Table 6-5: Confusion matrix describing the agreement in the predictions for healthy and AMD

classes with true negatives (TN) and true positives (TP) respectively. The disagreement

between the two classes is measured with false positives (FP) and false negatives (FN).

Prediction by model

Healthy AMD

Healthy TN=2001 FP=332

G
ro

u
n

d
T

ru
th

AMD FN=125 TP=1542

compared to the two-stage method [195] and the retinal atlas [196] are the automatic classification

of raw scans without manual annotation of interest points or regions and the generation of quali-

tative and quantitative information to support medical decision making in a diagnosis of AMD as

presented in Figure 6.4.

The experimental results of OCT-NET on the SERI+CUHK data set overcome the performance

of the approach presented by Kermany et al. [93] in precision, recall, f-score and Kappa coefficient

as reported in Table 6-4. The proposed method shows an outstanding performance compared to

the Inception-v3 pretrained with weights from ImageNet [93] without requiring a large database for

training or selecting a limited numbers of scans with the condition by a patient. Finally, the Kappa

coefficient or inter-rater agreement presented a substantial level of agreement of 0.71 between the

model and the expert for the classification of healthy, DME and DR-DME SD-OCT volumes as

reported in Section 6.5.

The global label of an SD-OCT volume is used without questioning local labels for each scan or

the specific range of scans that contain the retinal disorder. We evaluated the prediction of B-scans

belonging to an SD-OCT volume inspired in the manual classification performed by an ophthalmol-

ogy expert as presented in subsection 6.5.3. The experimental results shown an agreement of 92.5%

for AMD and 85.8% for healthy scans of a total of 4000 scans compared to the manually labeled

scans, as reported in Table 6-5. In addition, the range of scans with the retinal disorder in the

volume, and the highlighted areas by CAM stage present a strong agreement with the delineations

of the ophthalmologists as shown in subsection 6.5.2. This suggests that the information provided

by the model could potentially be useful to deal with the lack of interpretability in deep learning

models applied to medical images.

Despite the very good results for the SD-OCT volume AMD classification as reported in subsec-

tion 6.5.1, the evaluation of the qualitative analysis of CAM and the individual B-scan classification

provided useful feedback about the medical findings in scans classified as false positives and false

negatives as presented in subsection 6.5.2 and 6.5.3 respectively. The false positives were misclassi-

fied mainly in non-centered scans or poor resolution among the scans, which means that the layers

are not defined in some scans inside the volume as shown in the scan [B] of Figure 6.5. On the

other hand, false negatives could be due to the presence of subtle findings in some images. We

hypothesized that the tiny drusen may be misleading the proposed method to classify these images

as healthy as presented in scan [C] of Figure 6.5.

The speckle noise in images from medical devices was different among the SD-OCT volumes.
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The OCT-NET model was trained with random weights presenting a better model generalization

in classification tasks without being affected by the speckle noise. Finally, we want to emphasize

that our approach was assessed with SD-OCT volumes acquired from different devices, with a

different populations and several retinal diseases. However, these datasets are relatively small and

our study lacks an evaluation over larger datasets, this will be part of our future work.



7 Deep learning for predicting neurosensory

retinal thickness map using OCT volumes

Age-related macular degeneration is a common cause of vision loss in people aging 55 and older.

The condition affects the light-sensing cells in the macula limiting the sharp and central vision. On

the other hand, Spectral Domain Optical Coherence Tomography allow highlighting abnormalities

and thickness in the retinal layers which are useful for age-related macular degeneration diagnosis

and follow up. The Neurosensory Retina (NSR) map is defined as the thickness between the inner

limiting membrane layer and the inner aspect of the retinal pigment epithelium complex. Addi-

tionally, the NSR map has been used to differentiate between healthy and subjects with macular

problems, but the plotting of the retinal thickness map depends critically on additional manu-

facturer interpretation software to automatically drawing. Therefore, this paper presents a deep

learning model based on a 3D convolutional neural network to automatically extract nine thickness

mean values to draw the NSR map from an SD-OCT. The results of these method were published

in the 14th International Symposium on Medical Information Processing and Analysis [12].

7.1 Introduction

The eye normal condition can be evaluated with different non-invasive clinical exams. Spectral

Domain Optical Coherence Tomography has become one of the most popular non-invasive exams

for allowing qualitative and quantitative measurement of the macula [200]. The main advantage of

SD-OCT technique lies in the accuracy to visualize the structure among all retinal layers. Therefore,

ophthalmologists use SD-OCT to record and analyze the follow-up of diseases over time [201].

Age-related macular degeneration is the first cause of vision loss and irreversible blindness in

developed countries [202]. Although AMD cannot be cured, the progression can be slowed down

by an early detection and a proper treatment. The SD-OCT volumes have been widely recorded to

locate retinal and subretinal changes in the first stage of AMD. [202, 203] Moreover, an SD-OCT

volume can be represented into a 2D-image NSR map that presents thickness values in the fovea

region and distances of 1mm, 3mm, and 6mm from the macular region [203].

The development of algorithms involving SD-OCT have been focused on two main tasks: ocu-

lar disease classification and nine-retinal layers segmentation. For disease classification, Lee et al.

presented a model based on the VGG16 convolutional neural network that classifies OCT macula

scans as normal or AMD scan [121]. Additionally, Rasti et al. devised a method based on on

multiple-scale sub-images ensemble model to identify normal retina, dry age-related macular de-

generation, and diabetic macular edema [92]. In contrast, Arabi at al. classified OCT images by

automatically extracting and counting the white pixels in retinal pigmented epithelium layer of the

images using a decision rule with a threshold value to classify the number of pixels [204]. Finally,
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Perdomo et al. designed a deep learning model composed of a 12 layer CNN termed OCT-NET to

classify an OCT volume using 2D-scans with a majority rule [14]. In retinal semgmentation task,

Fang et al. combined CNN to extract features of all retinal layers with graph search methods,

using probabilities maps to estimate the boundaries of the nine layers on SD-OCT images [205].

On the other hand, Roy et al. proposed an end-to-end CNN architecture based on encoders and

decoders for semantic segmentation called RelayNet to highlight the retinal layers and fluid masses

in OCT scans [206]. Despite the outstanding results obtained for each task, we have no knowledge

of models for automatically plotting of the retinal thickness map from an SD-OCT volume.

The aim of the present work is to devise a deep learning model based on a 3D Deep Convolutional

Neural Network (3D-DCNN) architecture to draw the NSR thickness map from an SD-OCT volume.

The remainder of this paper is organized as follows: First, in Section 2, we give an overview of

the proposed method including the parameters and layers of the 3D-DCNN. Then, in Section 3 we

define the experimental setup describing the dataset and the evaluation performed. In Section 4,

the results are presented and discussed. Finally, Section 5 presents conclusions and future work.

7.2 Methods

The proposed method is depicted in Figure 7.1. The model is composed by two branches, where

each branch decomposes one dimension of the SD-OCT volume to create a set of 2D-images: the

first branch contains the features from temporal-nasal plane, and the other branch represents for

the superior-inferior plane. Next, these two three-dimensional tensors are reduced with a global-

average-pooling layer in order to extract the nine parameters as explained in detail as follows.

Figure 7.1: Block diagram used to estimate the nine-region values from an SD-OCT volume
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7.2.1 Preprocessing stage to define the mean NSR thickness map

The interpretation of a NSR map is not an easy task, due to it contains a thousand values that

represent the thickness as shown in Figure 2 (a). The interpretation is eased with a manufacturer

visualization mechanism that draws a summary version to represent the mean of the nine regions.

The regions are defined as: inner superior (I3), outer inferior (I6), fovea (F), inner nasal (N3), inner

temporal (T3), outer nasal (N6) and outer temporal (T6) as presented in Figure 2(b). The nine

regions of the NSR thickness map are obtained of drawing four equal parts with 90 degrees, and

two concentric circles inside the NSR image. Finally, the mean in each region X is calculated using

the equation 1, where xi represents a pixel and, n the amount of pixels inside a region as shown

in Figure 7.2. The mean NSR thickness map is plotted as presented in Figure 7.2 (c), where the

lowest value is always located in fovea as reported by Farsiu et al. [55]

X =

∑n
i=1 xi
n

(7-1)

Figure 7.2: (a) Raw NSR thickness map; (b) Nine regions of the retinal thickness map; (c) Calcu-

lated mean NSR thickness map

7.2.2 3D Deep Convolutional Neural Network for drawing thickness map

The proposed model is based on a 3D-DCNN designed to learn a representation of data, and it

predicts nine pixel-values between two planes of a SD-OCT volume. The first stage of the 3D-

DCNN contains twenty-five 3D-Convolutional (Conv3D), two 2D-Convolutional (Conv2D), seven

3D-Max-Pooling (MaxPool3D) with kernel and pool sizes of 2 to perform the feature extraction

among the two planes. Thus, two Global Average Pooling-2D (GAP-2D), and four Fully Connected

(FC) layers with linear activations are used to predict the nine-regions mean values to plot the NSR

thickness map.

The first branch to extract the four parameters from the temporal-nasal plane is described by 21

layers as follows: thirteen Conv3D, one Conv2D, four MaxPool3D, one GAP-2D and 2 FC layers

with an output of 4 neurons that represents T6, T3, N3 and N6 as described in Figure 2 (b).

On the other hand, the second branch can be described by 18 layers with: twelve Conv3D, one
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Conv2D, three MaxPool3D and 2 FC layers with an the remaining 5 estimated parameters that

corresponding to the superior-inferior plane named S6, S3, F, I3 and I6 as shown in Figure 7.2 (b).

Finally, the two branches outputs are merged to create a calculated NSR thickness map containing

the nine regions values as showed in Figure 7.2 (c). The 3D-DCNN architecture used in this work

is described in details in Table 7-1.

1st branch Output1 - Ch x W x H x D 2nd branch Output2 - Ch x W x H x D

Input 1× 224× 224× 100 Input 1× 224× 224× 100

4 Conv3D 16× 224× 216× 100 4 Conv3D 16× 224× 224× 92

1 MaxPool3D 16× 224× 108× 100 1 MaxPool3D 16× 224× 224× 46

2 Conv3D 32× 226× 106× 102 2 Conv3D 32× 226× 226× 44

1 MaxPool3D 32× 226× 53× 102 1 MaxPool3D 32× 226× 226× 22

1 Conv3D 64× 226× 51× 102 1 Conv3D 64× 226× 226× 20

1 MaxPool3D 64× 226× 25× 102 1 MaxPool3D 64× 226× 226× 10

4 Conv3D 128× 226× 17× 102 5 Conv3D 128× 226× 226× 2

1 MaxPool3D 128× 226× 8× 102 1 Conv2D 256× 224× 224

2 Conv3D 128× 226× 2× 102 1 GAP-2D 256

1 Conv2D 256× 224× 100 1 FC 512 units

1 GAP-2D 256 1 FC 5 units

1 FC 512 units — —

1 FC 4 units — —

Final Output [9× 1]

Table 7-1: The architecture of the 3D-DCNN with output size in each sub-block, described as

Channels (Ch) x Width (W) x Height (H) x Depth (D).

7.3 Experimental setup

7.3.1 A2A SD-OCT dataset

The dataset from the A2A SD-OCT study was approved by the institutional review boards of the

4 A2A SD-OCT clinics (Devers Eye Institute, Duke Eye Center, Emory Eye Center, and National

Eye Institute). Moreover,the study follows the Declaration of Helsinki for ethical requirements,

where the informed consents were obtained from all subjects [55].

The A2A SD-OCT study contains 384 SD-OCT of subjects aging 50 and 85 years of age, di-

agnosed with an intermediate AMD with large drusen (> 125 µm) in both eyes or large drusen

in one eligible eye, with no history of vitreoretinal surgery or ophthalmologic diseases that affect

sharp vision in eyes. The SD-OCT volumes were acquired by imaging systems from Bioptigen,

Inc (Research Triangle Park, NC), using a rectangular area of (6.7mm × 6.7mm) by scan. The

SD-OCT volumes were centered at the fovea with 1000 A-scans per B-scan and 100 B-scans per

volume for both eyes. The expert SD-OCT readers assessed the scan quality for each volume and

labeled 269 with intermediate AMD and 115 control (normal) eyes [55]. Finally, the dataset was
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randomly split using a stratified sampling method as follows: training set (70%) with 268 SD-OCT

volumes, validation set (10%) with 39 SD-OCT volumes, and the remaining (20%) for test subset.

The data distribution of the nine regions for the NSR thickness map for the A2A SD-OCT dataset

is presented in Figure 7.3 as follows:

Figure 7.3: Data distributions for control (blue boxes) and AMD (red boxes) conditions in the nine

regions for the NSR thickness map.

7.3.2 Evaluation

The proposed model was trained using stochastic gradient descent. The learning rate and the

number of samples per epoch parameters were explored using a grid search strategy (results not

reported). The best performance of the proposed model was obtained experimentally in validation

with a learning rate of 0.001, a number of samples per epoch of 134 and a number of epochs of 10.

The proposed approach was implemented with Keras framework 1 using GeForce GTX TITAN X

from NVIDIA. The Mean Absolute Percentage Error (MAPE) rate between predicted and ground-

truth thickness map was implemented as loss function. Additionally, MAPE loss and accuracy

measures are monitored for both training and validation datasets.

7.4 Results

The preprocessing stage defined to obtain the mean NSR thickness maps was applied to all the

three subsets of A2A SD-OCT dataset. The figure 3 depicts the box plot that summarizes the

difference of values between control and AMD conditions for the nine regions.

The experimental results presented a MAPE for training and validation datasets of 11.30 and

15.58 respectively. We evaluated the proposed model with the best parameters applied to the test

1http://keras.io
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dataset. The predicted NSR thickness maps from a Normal and AMD SD-OCT volumes of test

dataset are presented in Figure 7.4.

Figure 7.4: [Left] (a) Ground-truth of Normal NSR and (b) predicted NSR thickness maps; [Right]

(c) ground-truth of AMD NSR, (d) predicted NSR thickness maps

7.5 Discussion and conclusion

Experimental results showed that the proposed model is highly effective to draw NSR thickness map

from SD-OCT volume. The main advantage of the proposed method is the use of 3D convolutional

neural network to extract features in the two planes of a volume (Superior-Inferior and Nasal-

Temporal) useful to estimate the nine regions’ mean of a 2D-image retinal map as shown in Figure

4.

The automatic extraction of thickness values from a SD-OCT volume could be useful for the

AMD diagnosis, without the need of an additional manufacturer software to analyze the volumes.

Its application to other datasets from another manufacturer, and other diseases are the subject of

our future work.



8 Conclusions and future work

This thesis presented different new deep learning methods for automatically identifying different

local eye features and predicting the grading of different diabetes-related conditions. The local

information of these clinical findings as well as the characterization of parts of the eye deliver

relevant information to improve the global classification task compared to other automatic analysis

methods. Besides, the proposed methods were systematically evaluated with experts from the

Fundación Oftalmológica Nacional on different datasets for diagnosis of diabetes-related conditions.

The main five contributions of the thesis to the state-of-the-art are summarized as follows: (1)

the combination of an exudates-patch classifier with raw eye fundus image as a fourth-channel

array for feeding a CNN for DME diagnosis. (2) A three-stages strategy inspired in the clinical

routine performed by experts that deliver intermediate medical information to diagnose glaucoma.

(3) A deep learning late fusion strategy that merges features extracted from CNN with polar

or cartesian morphometric features to support glaucoma diagnosis. (4) A DL method termed

OCT-NET that uses OCT volumes to classify DME, DR-DME and AMD delivering clinically

interpretable information to support the ocular medical diagnosis. (5) The design of a 3D deep

learning method to estimate the NSR thickness map from SD-OCT volumes. The proposed methods

obtained outstanding results in the grading task of different diabetes-related conditions such as

glaucoma, diabetic macular edema, age-related macular degeneration, and diabetic retinopathy.

When the research work of this thesis started, there were only a handful of works that applied deep

learning methods to eye image analysis. This thesis contributed to show that deep learning is an

effective approach for automatically finding patterns that support the diagnosis of eye diseases. One

important conclusion of this work is that a straightforward application of deep learning methods to

eye images does not produce the best results. It is important to take into account the particularities

of eye images and to adapt the methods consequently to get the best of them.

The thesis generated different impacts during the last four years. The thesis research work was

the basis for formulating projects with social impact such as the support of eye screening sessions

in rural zones, academic impact with articles (overall, the thesis papers have got more than 80

citations), and interdisciplinary collaborative work with experts from Fundación Oftalmológica

Nacional in the validation of the proposed models. The funding of these projects provided support

for four master students, one ophthalmology fellow and one doctorate student.

The main issues found in this thesis and that constitute opportunities for future works are:

• In the medical context, new devices such as Optical Coherence Tomography-Angiography

(OCTA) require new models to represent and extract features that supports the prognosis,

diagnosis and follow-up of ocular diseases. Hence, the design of deep learning methods that

use multimodal information such as: clinical reports, physiological data and other medical

images is still an important issue.
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• The validation of DL methods in clinical environment with real-word datasets and images

acquired using low-cost devices could improve the social impact of the methods developed.

Despite the outstanding results, there are some open challenges with these methods related

with the interpretability and the feedback of medical personnel to the models. In addition,

the application of DL models in medical centers could potentially increase the number of

subjects diagnosed with the consequent improvement on the quality of life of the population.

Realizing the potential of these techniques requires a coordinate, interdisciplinary effort of

engineers and ophthalmologists focused on the patient to optimize the medical diagnosis time

and costs.

• The number of free public available datasets contributes to the design of new DL method-

ologies to classify ocular conditions as reported in Table 2-1. However, the use of private

dataset limits the comparison among performance metrics reached by DL methods [93, 113,

121, 122]. The replication of studies reported by [113] and [122] have been criticized for the

lack of information related with the description of the method and the hyperparameters used

by them [124]. The use of public repositories as GitHub1 to share datasets and codes is still

a need.

• Nowadays, the growing interest of big technologies companies and medical centers to create

open challenges has increased the number of ocular dataset such as: The DR detection by

Kaggle [72, 105], the blindness detection by the Asia Pacific Tele-Ophthalmology Society

(APTOS) [73] and iChallenge for AMD detection by Baidu [54]. These new datasets contain

diverse information related to acquisition devices, image resolution and worldwide population.

Moreover, DL techniques are leveraging the new data to the design of new robust approaches

with outstanding performances as reported in Tables 2-2 and 2-3.

• The lack of validation of DCNN models with real-world scans or fundus images is still a

problem. We found a couple of methods validated with ocular images from medical centers [10,

111, 118, 121, 122]. However, the number of free public real-world ocular images is limited to

five set of images [51, 65, 72, 73, 93]. The clinical acceptation of the proposed DCCN models

depends critically of the validation in clinical studies and real-world datasets.

1https://github.com/
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