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Nomenclature

We write down the principal notation of this document. We have used letters for various
concepts.

Symbols Use
A,B,C, ..., X, Y,W,Z, V... vector spaces or random variables

O zero vector space
dim (A) dimension of a vector space A

codimV (A) difference between the dimension of V and A
A alphabet
F finite field

char (F) characteristic of a field
f , g, . . . function, coding function

f̄ partition
ker (f) partition into pre-images or kernel of a function f ,

F =
(
f̄v
)
v∈V

family of partitions indexed by V
H (X) entropy

H (X | Y ) conditional entropy
I (X;Y ) mutual information

cl closure operator
M matroid
r rank of a matrix, matroid, closure operator
BMX basis of X in a matroidM
M | J matroid obtained by deletion of J

[n] {1, . . . , n}
V +W sum of vector spaces
V ⊕W direct sum of vector spaces

[n,m], (n,m),
(n,m], [n,m)

interval notation with integer numbers



Symbols Use
∇ (Ai : i ∈ X),
∆ (Ai : i ∈ X)

finite sums of entropies of Ai, i ∈ X

ϕ (n, p) the function that counts all the
powers of p less than or equal to n

ei vector with 1 in the i-component and 0 in otherwise
eS vector with 1 in the components indexed by S and 0 in otherwise

[en], {ei} {e1, . . . , en}
[en, em], (en, em),
(en, em], [en, em)

interval notation for set of vectors

B it is also used to denote a binary matrix
B′ in a binary matrix, the set {eSi

: 1 < |Si| < n}
B′′ in a binary matrix, the set {eSi

: |Si| = 1}
B′′′ {C} or ∅
Bei

in a binary matrix, the set
{
eSj

: i /∈ Sj
}

D = (V,E) digraph
N = (D, τ) network
N = (D,S, T ) multiple-unicast network
NM = (V,E∗M) index-coding network from a matroid

b optimal solution of a linear programming problem
B inverse multiplicative of b
C capacity of a network

Clinear linear capacity of a network
CAD (cl) capacity of a closure operator
σ (Σ) information ratio of a secret sharing scheme
λ (Σ) linear information ratio of a secret sharing scheme
σ (Γ) information ratio of an access structure
λ (Γ ) linear information ratio of an access structure





Abstract

Abstract:
In this work, we develop some methods for producing characteristic-dependent linear rank

inequalities and show some applications to Network Coding and Secrets Sharing. We propose
two methods that take advantage of the existence of certain binary matrices. The first
method is based on the construction of certain complementary vector spaces and has direct
applications to Network Coding. Using linear programming problems, for each finite or co-
finite set of primes P , we show as application that there exists a sequence of networks (Nt)
in which each member is linearly solvable over a finite field if and only if the characteristic
of the field is in P ; and the linear capacity over fields whose characteristic is not in P ,
→ 0 as t → ∞. The second method is based on the construction of certain spaces that
behave in a certain way as a linear secret sharing scheme and has direct applications in
Secret Sharing; we calculate lower bounds on the linear information ratios of some access
structures. Additionally, we propose an extension of the solubility problem of a closure
operator. We study the capacity of a closure operator and a class of linear programming
problems whose optimal solutions are upper bounds on this capacity; this problem is related
to the calculation of capacities of multiple-unicast networks.
Keywords: linear rank inequality, matroid, network coding, secret sharing, index coding,

complementary vector space, binary matrix.
Mathematics subject classification: 94A15, 94A60, 62B10, 94A17

Victor Bryallan Peña Macias
vbpenam@unal.edu.co
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Resumen:
En este trabajo estudiamos como construir desigualdades rango lineales dependientes de la

característica y sus aplicaciones a la Teoría de Codificación de Redes y a la Teoría de Repar-
tición de Secretos en protocolos criptográficos. Proponemos dos métodos que aprovechan
la existencia de ciertas matrices binarias. El primer método está basado en la construc-
ción de ciertos espacios vectoriales complementarios y tiene aplicaciones directas a la Teoría
de Codificación de Redes. Presentando así, entre las aplicaciones y usando problemas de
programación lineal, que para cada conjunto finito o cofinito de números primos P , existe
una sucesión de redes (Nt), en la cual cada miembro es soluble linealmente sobre un cuerpo
finito si, y sólo si, la característica del cuerpo está en P ; además, la capacidad lineal sobre
cuerpos cuya característica no está en P , tiende a 0, cuando t tiende a infinito. El segundo
método está basado en la construcción de ciertos espacios que se comportan en cierta forma
como un esquema de repartición de secretos y tiene aplicaciones directas en la Teoría de
Repartición de Secretos; calculamos cotas inferiores de radios de información lineal de al-
gunas estructuras. Adicionalmente, proponemos una extensión del problema de solubilidad
de un operador de clausura. Estudiamos la capacidad de un operador de clausura y una
serie de problemas de programación lineal cuyas soluciones son cotas superiores sobre esta
capacidad; este problema está relacionado al cálculo de capacidades de redes de uniemisión
múltiple.
Palabras clave: desigualdad rango lineal, matroide, codificación de redes, repartición de

secretos, codificación de índices, espacio vectorial complementario, matriz binaria.
Clasificación por temas según AMS: 94A15, 94A60, 62B10, 94A17



Introduction

In Linear Algebra over finite fields, a linear rank inequality is a linear inequality that is
always satisfied by ranks (dimensions) of subspaces of a vector space over any field. Infor-
mation inequalities are a sub-class of linear rank inequalities [45]. The Ingleton inequality is
an example of a linear rank inequality which is not information inequality [22], other inequal-
ities have been presented in [13, 24] among others. A characteristic-dependent linear rank
inequality is like a linear rank inequality but this is always satisfied by vector spaces over
fields of certain characteristic and does not in general hold over other characteristics [14]. In
Information Theory, especially in network coding and secret sharing, all these inequalities
are useful to calculate bounds of rates (capacities, ratios of information) that measure the
efficiency of communication [1, 4, 11, 14, 12, 17, 26]. We are interested in linear rates of
communication in these areas.
The linear rate or linear capacity of a network depends on the characteristic of the scalar

field associated to the vector space of the network codes [12, 8, 14]. Therefore, when we
study linear capacities over specific fields, characteristic-dependent linear rank inequalities
are more useful than usual linear rank inequalities. The use of characteristic-dependent
linear rank inequalities in secret sharing is to date unknown; but we do know that there
exist access structures that show efficiency in linear secret sharing schemes according to the
choice of the characteristic of the fields where the schemes are defined [23]. Some results in
secret sharing use linear rank inequalities with techniques of linear programming [17, 26];
this indicates that this type of inequality can be useful.
Characteristic-dependent linear rank inequalities have been presented in [5, 10, 18]. Dough-

erty, Freiling and Zeger have produced these inequalities used as a guide the network flow of
some matroidal networks to obtain restrictions over linear solubility; these restrictions imply
the inequalities. This technique has produced many inequalities [10, 18]: for each finite or
co-finite set of primes, it is produced an inequality that is only true over fields whose char-
acteristic is in that set. Blasiak, Kleinberg and Lubetzky have produced two inequalities
from the dependency relations of the Fano and non-Fano matroids [5]. We remark that
the technique used by Dougherty is different from the technique used by Blasiak. So we
ask ourselves, can new inequalities be obtained from other suitable representable matroids

15



or using other techniques? In this dissertation, we answer affirmatively and produce many
inequalities.
Characteristic-dependent linear rank inequalities have been used to demonstrate, among

other things, that for any finite or co-finite set of prime numbers, there are networks that
are linearly solvable over fields whose characteristic is in that set; and they are not solvable
over fields with other characteristic [18]. In [5], using these inequalities and techniques
of linear programming, there exists a sequence of networks (Nt) in which each member is
asymptotically solvable but is not linearly solvable; and the linear capacity tends to 0 as t
tends to infinity. Other related results are in [10].
Contributions. In this dissertation, we propose two methods for producing characteristic-

dependent linear rank inequalities. We show two theorems that establish how to build these
inequalities according the existence of binary matrices whose rank or determinant change
depending on the characteristic of the field where its entries are defined. Each method can
produce two types of inequalities for each n ≥ 7:

⌊
n−1

2

⌋
− 2 inequalities that are true over

finite sets of primes and other
⌊
n−1

2

⌋
− 2 inequalities that are true over co-finite sets of

primes. The two inequalities of Blasiak et al. can be obtained combining some information
inequalities with the inequality obtained by the first method and the usual representation
matrix of the Fano matroid. In the context of applying these inequalities, we help enrich
the theory. For each finite or co-finite set of primes P , we show that there exists a sequence
of networks (Nt) in which each member is linearly solvable over a field if and only if the
characteristic of the field is in P ; and the linear capacity, over fields whose characteristic is
not in P , tends to 0 as t tends to infinity. The consequences of this result improve known
results in [5, 18, 33]. The closure solvability problem of a closure operator is studied in
[19, 20, 36]; this concept is associated to the research of solvable multiple-unicast networks
and p-representable matroids (which are related to secret sharing [28, 43, 44]). We extend
that problem to the notion of (k, n)-fractional solvability problem of a closure operator. This
allows defining linear programming problems (adding inequalities) in order to study which
is the best partition solution of a closure operator over specific alphabets or finite fields.
Using multiple-unicast network coding, we give some examples in which the (k, n)-fractional
solvability problem is interesting. By last, in secret sharing, we calculate lower bounds on
the ratios of linear information over some fields of ports of some representable matroids.
Organization of the work. In Chapter 1, we introduce the basic concepts of Information

Theory, Matroids, Network Coding and Secret Sharing that are necessary to understand this
document. In Chapter 2, we show our first method for producing characteristic-dependent
linear rank inequalities; some inequalities are produced and some properties are derived. In
Chapter 3, we show our second method for producing characteristic-dependent linear rank



inequalities; some inequalities are produced and some properties are derived. In Chapter 4,
we introduce the (k, n)-solvability problem of a closure operator; a linear programming prob-
lem associated to this and some examples of application are presented. Later, we introduce
some concepts of Index Coding in the context of Network Coding; we study some properties
of the linear programming problem associated to these instances. We show some results of
application to network coding using some inequalities of the first method. By last, using
linear programming problems in Secret Sharing, we show some applications of the second
method. In Chapter 5, we give some conclusions and possible work for future research.
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1 Basics

In this chapter, we introduce some subject of Information Theory and matroids in order to
understand this thesis.

1.1 Topics in Information Theory

Definition 1.1.1. [49] An alphabet A is a finite set with at least two elements. Let X be
a discrete random variable, and let p be the probability density function of X over A. The
entropy H (X) of a random variable X is defined by

H (X) := −
∑
x∈A

p (x) log p (x) .

The joint entropy H (X1, ..., Xn) of a set of random variables X1, ..., Xn is defined by

H (X1, ..., Xn) := −
∑

x1,...xn

p (x1, ...xn) log p (x1, ...xn) .

For random variables X and Y , the conditional entropy of X given Y is defined by

H (X | Y ) := H (X, Y )− H (Y ) .

The mutual information between X and Y is denoted by

I (X;Y ) := H (X)− H (X | Y ) ,

and the conditional mutual information between X and Y given Z is denoted by

I (X;Y | Z) := H (X,Z)− H (X | Y, Z) .

Let A, B, A1, . . ., An be vector subspaces of a finite dimensional vector space V over
a finite field F. Let ∑

i∈I
Ai be the span of Ai, i ∈ I. There is a correspondence between

inequalities satisfied by dimensions of spans of vector spaces and inequalities satisfied by

21



22 Chapter 1. Basics

entropies of certain class of random variables induced by vector spaces [45, Theorem 2]. We
explain that: let f be chosen uniformly at random from the set of linear functions from V

to F. For A1, . . ., An, it is defined the random variables

X1 = f |A1 ,

...

Xn = f |An .

For I ⊆ [n] := {1, . . . , n}, we have

H (Xi : i ∈ I) = (log |F|) dim
(∑
i∈I
Ai

)
.

The random variables X1, . . ., Xn are called linear random variables over F. For simplicity,
we identify the entropy of linear random variables with the dimension of the associated
subspaces, i.e.

H (Ai : i ∈ I) := dim
(∑
i∈I
Ai

)
.

With this notation, the mutual information of A and B is given by

I (A;B) = dim (A ∩B) .

The codimension of A in V is given by

codimV (A) = dim (V )− dim (A) .

We have
H (A | B) = codimA (A ∩B) .

In a similar way, conditional mutual information is expressed.
We give the following definition in order to fix ideas about inequalities.

Definition 1.1.2. Let P be a proper subset of primes, and let I1, . . ., Ik be subsets of [n].
Let αi ∈ R, for 1 ≤ i ≤ k . Consider a linear inequality of the form

k∑
i=1

αiH (Xj : j ∈ Ii) ≥ 0.

• The inequality is called a characteristic-dependent linear rank inequality, if it holds for
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A1 A2 A3 B1 B2 B3 C 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


Figure 1.1.1: A matrix over GF (p)

all jointly distributed linear random variablesX1, . . .,Xn finite fields with characteristic
in P , and does not in general hold over other characteristics.

• The inequality is called a linear rank inequality, if it holds for all jointly distributed
linear random variables over all finite field.

• The inequality is called an information inequality, if it holds for all jointly distributed
random variables.

By definition of linear random variables, we note any information inequality is an inequal-
ity which is also satisfied by dimensions of spans of vector spaces. It is known that any
unconstrained information inequality in three or fewer random variables can be written as a
linear combination of instances of Shannon’s inequality: I (X;Y | Z) ≥ 0.

Example 1.1.3. [49] Some important inequalities:

• H (X) ≤ |X|; with equality if and only if X is an uniform distribution.

• H (X) ≤ H (Y ), if X ⊆ Y .

• H (X ∪ Y ) + H (X ∩ Y ) ≤ H (X) + H (Y ).

The following inequality is the first linear rank inequality which is not information in-
equality.

Example 1.1.4. (Ingleton’s inequality [22]) For any A1, A2, A3, A4 subspaces of a finite
dimensional vector space,

I (A1;A2) ≤ I (A1;A2 | A3) + I (A1;A2 | A4) + I (A3;A4) .

Remark 1.1.5. We can think a characteristic-dependent linear rank inequality like a linear
rank inequality that is true over some fields.

The following example shows two characteristic-dependent linear rank inequalities ob-
tained by the Dougherty’s inverse function method.
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Example 1.1.6. [14] Let A1, A2, A3, B1, B2, B3 and C be vector subspaces of a finite di-
mensional vector space V over a finite field F. The following inequalities are characteristic-
dependent linear rank inequalities:

• If char (F) 6= 2, then

2H (A1) + H (A2) + 2H (A3) ≤ H (B1) + H (B2) + H (B3) + H (C)

+2H (A1 | B1, C) + H (A2 | B2, C) + 2H (A3 | A1, B2)

+3H (B2 | B1, B3) + 3H (C | A3, B3) + 5H (B3 | A1, A2) + 5H (B1 | A2, A3)

+5 (H (A1) + H (A2) + H (A3)− H (A1, A2, A3)) .

• If char (F) = 2, then

2H (A1) + 3H (A2) + 2H (A3) ≤ H (B1) + H (B2) + H (B3) + 3H (C)

+2H (A1 | B1, C) + 3H (A2 | B2, C) + 2H (A3 | B3, C)

+2H (B3 | A1, A2) + 4H (B2 | A1, A3) + 3H (B1 | A2, A3) + 6H (C | A1, A2, A3)

+H (A3 | B1, B2, B3) + 7 (H (A1) + H (A2) + H (A3)− H (A1, A2, A3)) .

These inequalities do not in general hold over other fields whose characteristic is different to
the described characteristic. A counterexample would be in V = GF (p)3, take the generated
subspaces by the columns of the matrix in Figure 1.1.1. If p = 2, the first inequality does
not hold; and if p 6= 2, the second inequality does not hold. It is remarkable that these
inequalities are true over any field when dim (V ) ≤ 2.

The following example shows other two characteristic-dependent linear rank inequalities
obtained from Fano and non-Fano matroids.

Example 1.1.7. [5] Let A1, A2, A3, B1, B2, B3 and C be vector subspaces of a finite dimen-
sional vector space V over a finite field F. The following inequalities are characteristic-
dependent linear rank inequalities:

• If char (F) = 2, then

H (A1, C) + H (A2, C) + H (A3, C) + 4H (A1, A2, A3)

+3H (A1, A2, C) + 3H (A1, A3, C) + 3H (A2, A3, C) + H (B1, B2, B3) ≤
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2H (A1) + 2H (A2) + 3H (A3) + 11H (C) + 3H (A1, A2) + 2H (A1, A3) + 2H (A2, A3)

+H (A1, A2, B3) + H (A1, A3, B2) + H (A2, A3, B1)

+H (A1, B1, C) + H (A2, B2, C) + H (A3, B3, C) .

• If char (F) 6= 2, then

3H (A1, A2, C) + 3H (A1, A3, C) + 3H (A2A3, C) + 12H (A1, A2, A3) + 3H (A1, B1)

+3H (A2, B2) + 3H (A3B3) ≤ 3H (A1) + 3H (A2) + 9H (A3) + 6H (C) + 6H (A1, A2)

+3H (A1, A2, B3) + 3H (A1, A3, B2) + 3H (A1, B1, C) + 3H (A2, B2, C) + 3H (A3B3, C)

+3H (A2, A3, B1) + 3H (A1, A2, A3, C) + H (B1, B2, B3) .

We remark that the second inequality in previous example is slightly different to the
presented in [5]; we correct a mistake in that paper.
The following statement was independently proven in [10] and [18]; both demonstrations

used the inverse function method.

Theorem 1.1.8. For each finite or co-finite set of primes P , there exists a characteristic-
dependent linear rank inequalities which is true over fields with characteristic in P .

1.1.1 Partitions

To finish this section, we briefly describe a class of random variables determined by a par-
titions. Fixed t ∈ N, a partition of a set At is denoted by f̄ :=

{
Pi
(
f̄
)

: some i’s
}
, where

Pi
(
f̄
)
denote the i-part. The common refinement of two partitions f̄ and ḡ is given by the

partition f̄ ∧ ḡ with parts
{
Pi
(
f̄
)
∩ Pj (ḡ) : Pi

(
f̄
)
∩ Pj (ḡ) 6= φ

}
.

The collection of partitions of the set At and the operation ∧ form a bounded semilattice,
where EAt , the partition with |A|t-parts, is the minimum; y {At}, the partition with a part, is
the maximum. The partial order f̄ ≤ ḡ is induced by f̄∧ḡ = f̄ . For anyX ⊆ V = {1, . . . ,m},
the common refinement of all partition f̄v, with v ∈ X, is

f̄X :=
∧
v∈X

f̄v.

We remark f̄∅ := {At}; f̄X∪Y = f̄X ∧ f̄Y ; f̄X∪Y ≤ f̄X∩Y ; f̄Y ≤ f̄X , if X ⊆ Y .
The entropy of a partition f̄ is the entropy of the random variable Xf̄ over f̄ given by the
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Figure 1.2.1: Fano and non-Fano Matroids

probability density function

p
(
Xf̄ = i-part

)
=

∣∣∣Pi (f̄)∣∣∣
|A|t

.

The joint random variable
(
Xf̄ , Xḡ

)
is given by Xf̄∧ḡ.

When
∣∣∣f̄ ∣∣∣ ≤ |A|n, f̄ can be seen as the partition of At into pre-images under some function

f : At → An. This partition is refereed as kernel of f , and it is used the notation ker (f) := f̄ .
We will usually work with a family F̄ :=

(
f̄v
)
v∈V

of |V | = m partitions of At with at most
|A|n-parts. Therefore, the entropy of f̄X is denoted by

H (X) := H
(
f̄X
)
,

for X ⊆ V , when we fix the family F̄ .

Remark 1.1.9. When f̄ is the kernel of a linear function, this coincides with the quotient
partition of f under null space. Therefore, characteristic-dependent linear rank inequalities,
which are true over a field F, hold over a family F̄ of kernel of linear functions over F.

1.2 Matroids

A matroid is an abstract structure that captures the notion of independence that comes from
Linear Algebra.

Definition 1.2.1. A matroid M is a pair (V, I), where V is a finite set and I is a set of
subsets of V that satisfy the following properties:
(i) ∅ ∈ I .
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(ii) if I ∈ I, J ⊆ I, then J ∈ I.
(iii) if I, J ∈ I and |J |+ 1 = |I|, then there exists x ∈ I − J , such that J ∪ x ∈ I.

The sets in I are called independent sets. A subset of V that is not an independent
set is called dependent. A circuit is a minimal dependent subset. A basis is an maximal
independent set and the matroid rank is the side of any base.
The rank function of a matroid is the application rM : 2V → N, with

rM (X) = |BX | ,

where BX (or BMX ) is the largest independent set contained in X. A matroid is determined
by its rank function, we usually writeM = (V, rM) orM = (V, r).
A matroid can be characterized in terms of bases, circuits, closure operators (we formally

define it in chapter 7) and other objects [34].

Definition 1.2.2. A matroidM is representable or l-representable, if there exists a matrix
A with entries from some field F such that there is a one-to-one correspondence between the
columns of A and the ground set ofM, and it holds that a set is independent inM if and
only if the corresponding set of columns of A is linearly independent (as vectors).

Proposition 1.2.3. [34] If a matroid is l-representable over a field, then it is l-representable
over some finite field F and also over every extension E of F.

Example 1.2.4. We have a graphic representation in circuit terms of the Fano matroid in
Figure 1.2.1 and a matrix representation over fields of even characteristic in Figure 1.1.1.

Definition 1.2.5. A matroid M is partition representable (or briefly p-representable) if
and only if some of its positive multiples are entropic. In other words, there exist random
variables Yi, i ∈ V , and α > 0 such that rM (X) = αH (YX) for all X ⊆ V .

Equivalent definitions of p-representation are found in [46, 28, 29]. The notion of secret
sharing matroid (ss-representable matroid) is equivalent to partition representation [43].
A concept associated to p-representation is the following:

Definition 1.2.6. A matroid is ml-representable, if for some n ∈ N there exist subspaces
Ai, i ∈ V , of a vector space V over a field such that H (Ai : i ∈ X) = nrM (X).

If the subspaces have dimension at most 1, we have a l-representation. Obviously, ml-
representable matroids are p-representable. We have [28, 34]:

l-rep. ( ml-rep. ⊆ p-rep. = ss-rep. ( matroid ( closure operator.
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Figure 1.3.1: network coding problem of the Butterfly network.

It is an open problem to determine, if the class of ml-representable matroids is the same
that the class of p-representable matroids [46]. An counterexample suggests the existence of
a p-representable matroid that violates Ingleton inequality.

1.3 Network Coding

Definition 1.3.1. A digraph is a pair D := (V,E), where E ⊆ V 2. The elements of V are
called nodes; the ordered pair of E are called edges, and they are denoted by e = uv, where
u and v are nodes.

Associated to a digraph, we have the following sets:

v− := {u ∈ V : uv ∈ E} ,

v+ := {u ∈ V : vu ∈ E} ,

and for each X ⊆ V ,
X− :=

⋃
v∈X

v−,

X+ :=
⋃
v∈X

v+.

Remark 1.3.2. For nodes u, v, s, t of a graph D, we have

• v is said to be intermediate, if v−, v+ 6= ∅;
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Figure 1.3.2: Butterfly network, left to right: a solution and its accumulation code; network
flow.

• s is said to be source, if s− = ∅;

• t is said to be terminal, if t+ = ∅.

• A path of u to v is a node sequence v1, ..., vk such that vivi+1 ∈ E, where i = 1, ..., k−1
, v1 = u y vk = v.

• A cycle is a path such that v1 = vk.

Definition 1.3.3. A digraph D is called an acyclic digraph, if it has no cycles. In this case,
there always exist source and terminal nodes; the set of sources is denoted by S, and the set
of terminals is denoted by T .

We now define the network coding model that we will use.

Definition 1.3.4. A network is a pair N = (D, τ), where D = (V,E) is an acyclic digraph
and τ : T → S is a surjective function called demand function.

Fractional solutions on a network have been studied in [11, 14] among other papers. We
now give a formalization of this concept.

Definition 1.3.5. A (k, n)-fractional code on N defined over an alphabet A (or briefly, a
(k, n)-code over A) is a collection of functions F = (fv)v∈V of the form

• fs = πs : A|S|k → Ak the canonical projection on the components indexed by s, if
v = s ∈ S;
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• fv : Im (fv−) ⊆ A|v−| → An, where Im (fv−) := Im (fv1) × · · · × Im (fvl
), v− =

{v1, ..., vl}, if v ∈ V − (S ∪ T );

• ft : Im (ft−)→ Ak , if v = t ∈ T .

A message is an element of Ak. We consider a tuple of messages x ∈ A|S|k. Each tuple of
messages can be written as

x =
(
xs1 , ..., xs|S|

)
:=
(
x1, ..., x|S|

)
, S =

{
s1, ..., s|S|

}
,

where xi = πs (x) is the message of si. The functions ft, t ∈ T , are called decoding functions.
A (k, n)-code is linear, if A is a finite field and each fv is a linear function.

Remark 1.3.6. The source s has the message xs and has no information about the messages
xs′ , with s′ 6= s.
The following concept is given as an auxiliary definition to express when a code is a

solution.

Definition 1.3.7. The accumulation code of a (k, n)-code F is a collection of functions
F∗ = (f ∗v )v∈V of the form

• f ∗s := fs , if v = s ∈ S;

• f ∗v (x) := fv (f ∗v− (x)) := fv
(
(f ∗w (x))w∈v−

)
for each x ∈ A|S|k, if v ∈ V − S.

Remark 1.3.8. Each f ∗v is defined in an inductive way from each node of v−. Also, the vector
f ∗v (x) is the message of v in the code F for the tuple of messages x.

Definition 1.3.9. A (k, n)-code over A is said to be a (k, n)-fractional solution on N defined
over A (or briefly, a (k, n)-solution over A), if for every tuple of messages x ∈ A|S|k,

f ∗t (x) = xτ(t) ∀t ∈ T.

The parameter more important in a network is the capacity:

Definition 1.3.10. The capacity of N respect to a class of codes D over A is

CAD (N ) := sup
{
k

n
: ∃ a (k, n)-solution in D

}
.

The class of codes D is usually though as the collection of all codes (denoted by C (N )), in
this case the capacity is usually refereed as non-linear coding capacity. Also D can be taken
as the collection of linear codes over determined finite fields (or over any finite field).
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The network coding problem of N consists in finding some alphabet and an efficient
solution over this alphabet; the efficiency is measured by the rate k

n
. Therefore we are

interesting in the value of CAD (N ) and solutions that can achieve this.

Remark 1.3.11. [11, 12] A network is defined to be:

• Solvable over A, if there exists a (1, 1)-solution over A; and solvable, if the network is
solvable over some A. In this case, C (N ) = CA (N ) = 1 and the capacity is achievable.

• Scalar linearly solvable over F, if there exists a (1, 1)-linear solution over F; and scalar
linearly solvable, if the network is scalar linearly solvable over some F. In this case,
C (N ) = CFscalar linear (N ) = 1 and the capacity is achievable.

• (Vector) Linearly solvable over F, if there exists a (k, k)-linear solution over F, for some
k ≥ 1; and linearly solvable, if the network is (vector) linearly solvable over some F.
In this case, C (N ) = CFlinear (N ) = CFscalar linear (N ) = 1 and the capacity is achievable.

• Asymptotically solvable over A, if for any ε > 0, there exists a (k, n)-solution over
A such that k

n
> 1 − ε; and the network is asymptotically solvable, if the network is

asymptotically solvable over some A. In this case, C (N ) = CA (N ) = 1 but we do not
know if there exists a solution with rate 1.

• Asymptotically linearly solvable over F, if for any ε > 0, there exists a (k, n)-linear
solution over F such that k

n
> 1− ε; and the network is asymptotically linearly solvable,

if the network is asymptotically linearly solvable over some F. In this case, C (N ) =
CF (N ) = 1 but we do not know if there exists a linear solution with rate 1.

A multiple-unicast network is a network N whose demand function is bijective. In such a
case, τ (ti) = si, for i = 1, . . . , r := |S|, and we simply write N := (D,S, T ). A (k, n)-code
is a solution, if for every x = (x1, ..., xr) ∈ Ar, f ∗ti (x) = xi for each i. In other words,
f ∗T = idArk . It is known that the problem of determining whether a network is solvable can
be reduced to the study of a multiple-unicast network as shows the following theorem.

Theorem 1.3.12. [15] For every network N , there exists a multiple-unicast network N ′

such that
- N is solvable over A if and only if N ′ is solvable over A.
- N is linearly solvable over F if and only if N ′ is linearly solvable over F.

We next write the solvability network coding problem in terms of partitions for multiple-
unicast network.
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Theorem 1.3.13. Let N be a multiple-unicast network. We have that N has a (k, n)-
solution over A if and only if there exists a family of partitions F̄ =

(
f̄v
)
v∈V

on Ark such
that

(i)
∣∣∣f̄v∣∣∣ = |A|k, for v = s ∈ S.

(ii)
∣∣∣f̄v∣∣∣ ≤ |A|n, for v ∈ V − (S ∪ T ).

(iii) f̄si
= f̄ti, for each i.

(iv) f̄v− ≤ f̄v, for v ∈ V − S.

(v)
∣∣∣f̄T ∣∣∣ = |A|rk.

Proof. Let F = (fv)v∈V be a (k, n)-solution over A, and define f̄v := ker (f ∗v ). We have to
show that F̄ =

(
f̄v
)
v∈V

is the desired family of partitions. (i) and (ii) are immediate from
the definition of code; (iii) and (v) are also true because the code is a solution. It remains
to prove item (iv), let xv− ∈ f ∗v−

(
Ark

)
and take y ∈ f ∗−1

v− (xv−). So, f ∗v− (y) = xv− . Since
F̄ is a code we have f ∗v (y) = fv (f ∗v− (y)) = fv (xv−). So, we can define xv := fv (xv−) to
obtain that y ∈ f ∗−1

v (xv). In other words, f ∗−1
v− (xv−) ⊆ f ∗−1

v (xv). Therefore, f̄v− ≤ f̄v.
Reciprocally, let F̄ =

(
f̄v
)
v∈V

be a family of partitions that holds the described conditions.
(i), (iii) and (v) imply that f̄v = ker (πv) for each v ∈ S ∪ T ; in these cases, we define
f ∗v := πv. (i) implies that each f̄v, v ∈ V − (S ∪ T ), is the kernel of a function f ∗v from Ark

to An. The proof is completed showing that F∗ = (f ∗v )v∈V is the accumulation code of a
(k, n)-solution over A. From (iv), for any v ∈ V −S and xv− ∈ f ∗v−

(
Ark

)
, there exists unique

xv ∈ f ∗v
(
Ark

)
such that f ∗−1

v− (xv−) ⊆ f ∗−1
v (xv). Define the function fv by fv (xv−) := xv.

Note that f ∗v (x) = fv (f ∗v− (x)) and f ∗ti (x) = πsi
(x) = xsi

, for all x ∈ Ark and i. Therefore,
F is a solution.

Example 1.3.14. [36] In Figure 1.3.1 is shown the Butterfly network. In Figure 1.3.2 (left),
there is a solution and its accumulation code over A = GF (2), where f+ is the sum function,
πi is the i-projection on GF (2)2; the functions of the solution are shown to the right of each
node, and its accumulation code is shown to the left of each node. In the same figure (right),
it is shown its flow information. One can check that the associated partitions to this solution
hold the conditions of previous theorem as presented in Figure 1.3.3.

1.4 Secret Sharing
Secret Sharing is an area of Information Theory and a useful tool that appears as a important
component in many kinds of cryptographic protocols [44, 6, 35, 17]. In a secret sharing
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Figure 1.3.3: A solution of the Butterfly network in terms of partitions

scheme, a secret value is distributed into shares among a set of participants in such a way
that only the qualified sets of participants can recover the secret value.

Definition 1.4.1. An access structure, denoted by Γ on a set of participants P , is a monotone
increasing family of subsets of P . Consider a special participant p /∈ P , called dealer. A
secret sharing scheme on P with access structure Γ is a random vector Σ := (Sx)x∈Q, where
Q = P ∪ p, such that the following properties are satisfied:

(i) H (Sp) > 0.

(ii) If A ∈ Γ, then H (Sp | SA) = 0.

(iii) If A /∈ Γ, then I (Sp;SA) = 0.

The random variable Sp is the secret value, and the shares received by the participants
are given by the random variables Sx, x ∈ P . A set of participants A is said to be qualified
or authorized, if A ∈ Γ; and it is said to be non-qualified or non-authorized, if A /∈ Γ. A
minimal qualified set is a qualified set such that any proper subset is non-qualified. It is
clear that an access structure is determined by the family min Γ of its minimal qualified sets.

Definition 1.4.2. The information ratio σ (Σ) of the secret sharing scheme Σ is given by

σ (Σ) = max
x∈P

H (Sx)
H (Sp)

.

The optimal information ratio σ (Γ) of an access structure Γ is the infimum of the infor-
mation ratios of all secret sharing schemes for Γ; the optimal information ratio, when the
random variables are linear, is denoted by λ (Γ).

Definition 1.4.3. A secret sharing scheme Σ = (Sx)x∈Q is said to be ideal, if its information
ratio is equal to 1. An access structure that admits an ideal secret sharing scheme is called
ideal access structure.
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Figure 1.4.1: Fano matroid defines a access structure on six participants

Matroids are related to secret sharing:

Definition 1.4.4. LetM = (V, r) be a matroid. The port of the matroidM at p ∈ Q := V

is the access structure on P = Q − p whose qualified sets are the sets X ⊆ P satisfying
r (X ∪ p) = r (X).

The following result connects ideal secret sharing and matroids.

Theorem 1.4.5. Let Σ = (Sx)x∈Q be an ideal secret sharing scheme on P with access
structure Γ. Then, the mapping given by f (X) = H(SX)

H(Sp) for each X ⊆ Q is the rank function
of a matroidM with ground set Q. Moreover, Γ is the port of the matroidM at p.

As a consequence, every ideal access structure is a matroid port. In fact, the matroids in
Theorem 1.4.5 are p-representable. It is known that Vámos matroid is not p-representable.
Therefore the ports of the Vámos matroid are counterexamples for the converse [43].

Example 1.4.6. [28, 23] The port of the Fano matroid at c, according Figure 1.4.1, is given
by the minimum authorized sets:

minF := {a1b1, a2b2, a3b3, a1a2a3, a1b2b3, b1a2b3, b1b2a3} .

We can check that the columns of a matrix of representation of Fano matroid define a ideal
linear secret sharing scheme over fields whose characteristic is two, and therefore the ports
of the Fano matroid are ideal. We have σ (F) = 1. It is more hard to show that λ (F) = 4

3

for fields whose characteristic is other than two.
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In this chapter, we show a method to produce characteristic-dependent linear rank inequal-
ities using as guide binary matrices whose rank is different according to the choice of the
characteristic of the field where its inputs are defined. We first introduce some important
concept about complementary vector spaces. Next, we present a particular case of the
method: we exhibit a 10 × 10 binary matrix whose rank is 8 over fields with characteristic
2; 9 over fields with characteristic 3; and 10 over fields with characteristic neither 2 nor 3.
Then, we produce three inequalities: the first is true over fields with characteristic 2; the
second is true over fields with characteristic 2 or 3; and the third is true over fields with
characteristic neither 2 nor 3. By last, we summarize the method through a theorem with a
proof that is valid for any binary matrix whose rank is as we have described; we show some
consequences and produce additional inequalities using some specific families of matrices.
We remark that this method is deeply based on the technique used by Blasiak et al. for
producing two characteristic-dependent linear rank inequalities using as a guide the Fano
and non-Fano matroids [5].

2.1 How to use a binary matrix

Definition 2.1.1. Let A and B be vector subspaces of a finite dimensional vector space V .
We say that A+B is a direct sum, denoted by A⊕B, if A ∩B = O := 〈O〉 .

In case that V = A ⊕ B, the members of this sum are called (mutually) complementary
subspaces in V . Alternatively, A1, . . ., An are mutually complementary subspaces in V , if
every vector of V has an unique representation as a sum of elements of A1, . . ., An. In this
case, πI denotes the I-projection function V �

⊕
i∈I
Ai given by

x =
n∑
i=1

xi 7→
∑
i∈I
xi.

Definition 2.1.2. Let V = A1 ⊕ · · · ⊕ An, and take a vector subspace C of V such that
A1 + · · ·+Ai−1 +C +Ai+1 + · · ·+An is a direct sum for all i. We say that (A1, . . . , An, C)

35
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is a tuple of complementary vector subspaces in V .

Example 2.1.3. In V = GF (p)6, take A1 = 〈e1, e4〉, A2 = 〈e2, e5〉, A3 = 〈e3, e6〉 and
C = 〈e1 + e2 + e3, e4 + e4 + e6〉. Then, (A1, A2, A3, C) is a tuple of complementary vector
subspaces in V .

Proposition 2.1.4. For any tuple (A1, . . . , An, C) of complementary vector subspaces in V ,
we have

H (πI (C)) = H (C) ≤ H (Ai) ,

for all i and ∅ 6= I ⊆ [n].

Proof. Let x ∈ C such that πI (x) = O. So, ∑
i∈I
xi = O. Hence, x ∈ ⊕

i/∈I
Ai. By definition of

tuple of complementary vector spaces, x = O. In other words, πI (C) and C are isomorphic
or have the same dimension. It remains the last inequality. We note

H (C) + H (A1, . . . , Ai−1, Ai+1 . . . , An) = H (A1, . . . , Ai−1, C, Ai+1 . . . , An)

≤ H (A1, A2, . . . , An)

≤ H (Ai) + H (A1, . . . , Ai−1, Ai+1 . . . , An) .

So H (C) ≤ H (A1).

Corollary 2.1.5. A non-zero c ∈ C can be uniquely written in form a1 + · · · + an where
each ai is non-zero.

Proposition 2.1.6. For any A1, . . ., An and C vector subspaces of a finite dimensional
vector space V , there exists a tuple of complementary vector subspaces

(
Ā1, . . . , Ān, C̄

)
such

that Āi ≤ Ai, C̄ ≤ C, ⊕ Āi = ∑
Ai and

H
(
Ai | Āi

)
= I

(
A[i−1];Ai

)

H
(
C | C̄

)
≤ H

(
C | A[n]

)
+

n∑
i=1

I
(
A[n]−i;C

)
.

Proof. We first build mutually complementary subspaces Ā1,..., Ān in A[n] from A1, ..., An.
Define Ā1 := A1, and for i = 2, . . ., n denote by Āi a subspace of Ai which is a complementary
subspace to A[i−1] in A[i]. Then Ā1, ..., Ān are mutually complementary and the following
equations hold:

H
(
Ai | Āi

)
= I

(
A[i−1];Ai

)
,
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where A0 = O. Second, we built a subspace C̄ of C ∩ Ā[n] such that C̄ and Ā[n]−i form a
direct sum for all i. Let C(0) := C ∩ A[n]. Recursively, for i = 1, . . ., n denote by C(i) a
subspace of C(i−1) which is a complementary subspace to Ā[n]−i in C(i−1) + Ā[n]−i. We denote
C̄ := C(n), this space satisfies the required condition and the following equation:

H
(
C | C(0)

)
≤ H

(
C | A[10]

)
,

H
(
C(0) | C̄

)
≤

10∑
i=1

I
(
A[n]−i;C

)
,

which implies,
H
(
C | C̄

)
≤ H

(
C | A[n]

)
+

n∑
i=1

I
(
A[n]−i;C

)
.

Remark 2.1.7. The tuple is not unique but we will fix one of these.

The inequalities of the following lemmas, that we will use later, are valid for linear random
variables that hold some additional conditions. We remark that we use the following notation
of intervals:

[j, k] := {i ∈ N : j ≤ i ≤ k} ,

[k] = [1, k] .

The sum Aj + · · ·+ Ak is denoted by A[j,k], and A0 := A∅ := O.

Lemma 2.1.8. For any subspaces A1, . . ., An, A′1, . . ., A′n of finite dimensional vector space
V such that A′i ≤ Ai, we have

H
(
A[n] | A′[n]

)
≤
∑
i∈[n]

H (Ai | A′i) ,

with equality if and only if Ai+1 ∩ A[i] = A′i+1 ∩ A′[i] for all i.

Proof. By induction over n. In case n = 2, we have

H
(
A[2] | A′[2]

)
= H

(
A[2]

)
− H

(
A′[2]

)
= H(A1) + H (A2 | A1)− H(A′1)− H(A′2 | A′1)

= H (A1 | A′1) + H (A2)− H(A′2)− I (A1;A2) + I (A′1;A′2)

= H (A1 | A′1) + H (A2 | A′2) + (I (A′1;A′2)− I (A1;A2))
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≤ H (A1 | A′1) + H (A2 | A′2) [because A′i ≤ Ai].

The equality holds if and only if I (A1;A2) = I (A′1;A′2). In other words, A1 ∩ A2 = A′1 ∩ A′2
because A′i ≤ Ai. Now, we suppose the case n− 1 is true. We have

H
(
A[n] | A′[n]

)
= H

(
A[n−1]∪n | A′[n−1]∪n

)
≤ H

(
A[n−1] | A′[n−1]

)
+ H (An | A′n) [from case n = 2]

≤
∑
i∈[n]

H (Ai | A′i) [from case n− 1].

The equality holds if and only if I
(
Ai+1;A[i]

)
= I

(
A′i+1;A′[i]

)
. Since A′i ≤ Ai for all i, we

have Ai+1 ∩ A[i] = A′i+1 ∩ A′[i].

Lemma 2.1.9. For any subspaces A, B , C of a finite dimensional vector space V such that
B ≤ A, we have

H (A ∩ C | B ∩ C) ≤ H (A | B) ,

with equality if and only A+ C = B + C.

Proof. We have
H (A ∩ C | B ∩ C) = H (A ∩ C)− H (B ∩ C)

= I (A;C)− I (B;C)

= H (A)− H (B)− H (A,C) + H (B,C)

≤ H (A | B) [because B ≤ A].

The equality holds if and only if H (A,C) = H (B,C). That is equivalent to A+C = B +C

since B + C ≤ A+ C.

2.1.1 A particular case

We obtain three characteristic-dependent linear rank inequalities using as a guide the matrix
in Figure 2.1.1. We only write some demonstrations because in the other section, we will
present and demonstrate stronger propositions.
Let B be the 10× 10 binary matrix in Figure 2.1.1. We calculate the rank of the matrix

B over different fields to find:

rank (B) =


8, char (F) = 2.
9, char (F) = 3.
10, otherwise.
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 1 1
1 0 1
1 1 0

O3×3 O3×4

O3×3

0 1 1
1 0 1
1 1 0

O3×4

O4×3 O4×3

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



.

Figure 2.1.1: A 10× 10 binary matrix.

We choose this matrix because it is the smallest binary matrix, which we find, whose rank
is different over at least three different finite fields.
For a column bi of B, the set

{
j : bji = 1

}
⊆ [10] is denoted by b̄i; if there is no confusion,

by abuse of notation, we identify bi and b̄i (for any binary matrix, we also make this). For
row and column vectors, the notation is the same.
The following lemma is derived of the dependence of the rank of B to the choice of the

characteristic of the finite field. We show a direct proof.

Lemma 2.1.10. If (A1, . . . , A10, C) is a tuple of complementary vector subspaces of V , then

H (πbi
(C) : i ∈ [10]) =


8H (C) , char (F) = 2.
9H (C) , char (F) = 3.
10H (C) , otherwise.

Proof. We consider the case char (F) = 2. For any v =
10∑
i=1

vi ∈ V , taking into account that
2 = 0 in F, we get πb3 (v) = πb1 (v) + πb2 (v) and πb6 (v) = πb4 (v) + πb5 (v). Hence,

πb3 (C) + πb6 (C) ≤ πb1 (C) + πb2 (C) + πb4 (C) + πb5 (C) +
10∑
i=7

πbi
(C) .

Furthermore, the subspaces of the right side form a direct sum. In effect, let vi =
10∑
j=1

vji ∈ C,

i ∈ [10]− {3, 6} such that

πb1 (v1) + πb2 (v2) + πb4 (v4) + πb5 (v5) + πb7 (v7) + πb8 (v8) + πb9 (v9) + πb10 (v10) = O,
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we have to show that vi = O for all i. From the equation, we get the system of equations:

v1
2 = v2

1 = v4
5 = v5

4 = v3
1 + v3

2 = v6
4 + v6

5 = 0,
v7

8 + v7
9 + v7

10 = v8
7 + v8

9 + v8
10 = v9

7 + v9
8 + v9

10 = v10
7 + v10

8 + v10
9 = 0.

From Corollary 2.1.5, this implies the system of equations:

v1 = v2 = v4 = v5 = v8 + v9 + v10 = v7 + v9 + v10 = v7 + v8 + v10 = v7 + v8 + v9 = 0.

Solving this system of equations in characteristic two, we get vi = O for all i. Now, applying
proposition 2.1.5, we get

H (πbi
(C) : i ∈ [10]) = H (πbi

(C) : i ∈ [10]− {3, 6}) = 8H (C) .

For the rest of the cases, we can apply a similar argument: for char (F) = 3, we can get

πb10 (C) ≤
9⊕
i=1

πbi
(C) ,

and for char (F) 6= 2, 3, we can get the sum of all those subspaces is direct.

The following lemma is guided by the dependence relationship presented in the columns of
B. We omit the proof because a more general statement will be proven in the next section.

Proposition 2.1.11. Let A1, . . ., A10, B1, . . ., B10 and C vector subspaces of a finite
dimensional vector space V over a finite field F such that (A1, . . . , A10, C) is a tuple of
complementary vector spaces. Consider the following conditions:

(i) Bi ≤
3∑

j=1,j 6=i
Aj, i ∈ [3]; Bi ≤

6∑
j=4,j 6=i

Aj, i ∈ [4, 6]; Bi ≤
10∑

j=7,j 6=i
Aj, i ∈ [7, 10].

(ii) Bi ≤ C + Ai+
10∑
j=4

Aj, i ∈ [3]; Bi ≤ C + Ai+
3∑
j=1

Aj+
10∑
j=7

Aj, i ∈ [4, 6];

Bi ≤ C + Ai+
6∑
j=1

Aj, i ∈ [7, 10].

(iii) C ≤ Bi + Ai+
10∑
j=4

Aj, i ∈ [3]; C ≤ Bi + Ai+
3∑
j=1

Aj+
10∑
j=7

Aj, i ∈ [4, 6];

C ≤ Bi + Ai+
6∑
j=1

Aj, i ∈ [7, 10].

We have the following implications:
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1. If conditions (i) and (ii) hold, and the characteristic of F is 2, then H
(
B[10]

)
≤ 8H (C).

2. If conditions (i) and (ii) hold, and the characteristic of F is 3, then H
(
B[10]

)
≤ 9H (C).

3. If conditions (i) and (iii) hold, and the characteristic of F is neither 2 nor 3, then
10H (C) ≤ H

(
B[10]

)
.

Define the following values:

∆
(
A[10]

)
:= I (A1;A2) + 2I

(
A[3];A[4,10]

)
+ I

(
A[2];A[3,10]

)

+2I
(
A[6];A[7,10]

)
+ I

(
A[4];A5

)
+ I

(
A[5];A[6,10]

)
+

10∑
i=8

I
(
A[i−1];Ai

)
,

∇
(
A[10]

)
:=

∑
(j,k)∈S

k∑
i=j

[
I
(
A[j−1];A[j,i−1]

)
+I
(
A[i];A[i+1,k]

)]
,

where S is the set of the three points (1, 3), (4, 6), (7, 10). We have the following inequalities.

Theorem 2.1.12. Let A1, . . ., A10, B1, . . ., B10 and C be vector subspaces of a finite
dimensional vector space V over a finite field F. The following inequalities are characteristic-
dependent linear rank inequalities:
- If the characteristic of F is 2, then

H
(
B[10]

)
≤ 8I

(
A[10];C

)
+ H

(
B1 | A[2,3]

)
+ H (B2 | A1∪3) + H

(
B3 | A[2]

)
+H

(
B4 | A[5,6]

)
+ H (B5 | A4∪6) + H

(
B6 | A[4,5]

)
+ H

(
B7 | A[8,10]

)
+ H

(
B8 | A7∪[9,10]

)
+H

(
B9 | A[7,8]∪10

)
+ H

(
B10 | A[7,9]

)
+ H

(
B1 | A1∪[4,10], C

)
+ H

(
B2 | A2∪[4,10], C

)
+H

(
B3 | A3∪[4,10], C

)
+ H

(
B4 | A[1,3]∪4∪[7,10], C

)
+ H

(
B5 | A[1,3]∪5∪[7,10], C

)
+H

(
B6 | A[1,3]∪6∪[7,10], C

)
+ H

(
B7 | A[1,7], C

)
+ H

(
B8 | A[1,6]∪8, C

)
+ H

(
B9 | A[1,6]∪9, C

)
+H

(
B10 | A[1,6]∪10, C

)
+ 10

[
H
(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)]
+∆

(
A[10]

)
+∇

(
A[10]

)
.

- If the characteristic of F is 2 or 3, then

H
(
B[10]

)
≤ 9I

(
A[10];C

)
+ H

(
B1 | A[2,3]

)
+ H (B2 | A1∪3) + H

(
B3 | A[2]

)
+H

(
B4 | A[5,6]

)
+ H (B5 | A4∪6) + H

(
B6 | A[4,5]

)
+ H

(
B7 | A[8,10]

)
+ H

(
B8 | A7∪[9,10]

)
+H

(
B9 | A[7,8]∪10

)
+ H

(
B10 | A[7,9]

)
+ H

(
B1 | A1∪[4,10], C

)
+ H

(
B2 | A2∪[4,10], C

)
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+H
(
B3 | A3∪[4,10], C

)
+ H

(
B4 | A[1,3]∪4∪[7,10], C

)
+ H

(
B5 | A[1,3]∪5∪[7,10], C

)
+H

(
B6 | A[1,3]∪6∪[7,10], C

)
+ H

(
B7 | A[1,7], C

)
+ H

(
B8 | A[1,6]∪8, C

)
+ H

(
B9 | A[1,6]∪9, C

)
+H

(
B10 | A[1,6]∪10, C

)
+ 10

[
H
(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)]
+∆

(
A[10]

)
+∇

(
A[10]

)
.

- If the characteristic of F is neither 2 nor 3, then

H (C) ≤ 1
10H

(
B[10]

)
+ H

(
B1 | A[2,3]

)
+ H (B2 | A1∪3) + H

(
B3 | A[2]

)

+H
(
B4 | A[5,6]

)
+ H (B5 | A4∪6) + H

(
B6 | A[4,5]

)
+ H

(
B7 | A[8,10]

)
+ H

(
B8 | A7∪[9,10]

)
+H

(
B9 | A[7,8]∪10

)
+ H

(
B10 | A[7,9]

)
+ +H

(
C | A1∪[4,10], B1

)
+ H

(
C | A2∪[4,10], B2

)
+H

(
C | A3∪[4,10], B3

)
+ H

(
C | A[1,3]∪4∪[7,10], B4

)
+ H

(
C | A[1,3]∪5∪[7,10], B5

)
+H

(
C | A[1,3]∪6∪[7,10], B6

)
+ H

(
C | A[1,7], B7

)
+ H

(
C | A[1,6]∪8, B8

)
+ H

(
C | A[1,6]∪9, B9

)
+H

(
C | A[1,6]∪10, B10

)
+ H

(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)
+∆

(
A[10]

)
+∇

(
A[10]

)
.

We remark that these inequalities do not in general hold over other fields whose character-
istic is different to the described characteristic. A counterexample would be in V = GF (p)10.
Take the vector subspaces: Ai = 〈ei〉, the span of each vector of the canonical basis in V ;
Bi = 〈bi〉, the span of each column of the matrix B; and C = 〈(1 · · · 1)〉, the span of the
vector with 1 in all entries. Then, if p 6= 2, the first inequality does not hold; if p 6= 2, 3, the
second inequality does not hold; if p is equal to 2 or 3, the third inequality does not hold.

Proof. To prove the inequality 1, we take a tuple of complementary vector spaces

(
Ā1, . . . , Ā10, C̄

)
as obtained in Proposition 2.1.6. We remark the inequalities:

H
(
C | C̄

)
≤ H

(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)
,

H
(
Ai | Āi

)
= I

(
A[i−1];Ai

)
.

Applying Lemma 2.1.8 several times, we get

H
(
A[j,k] | Ā[j,k]

)
= I

(
A[1,j−1];A[j,k]

)
for all j, k,
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H
(
A[j,k]−i | Ā[j,k]−i

)
≤ I

(
A[j−1];A[j,i−1]

)
+ I

(
A[i];A[i+1,k]

)
for (j, k) ∈ S, i ∈ [j, k] ,

H
(
Ai∪[4,10] | Āi∪[4,10]

)
≤ I (Ai−1;A2) + I

(
A[3];A[4,10]

)
for i = 1, 2,

H
(
A[4]∪[7,10] | Ā[4]∪[7,10]

)
≤ I

(
A[6];A[7,10]

)
,

H
(
A5∪[3]∪[7,10] | Ā5∪[3]∪[7,10]

)
≤ I

(
A[4];A5

)
+ I

(
A[6];A[7,10]

)
,

H
(
A[3]∪[6,10] | Ā[3]∪[6,10]

)
≤ I

(
A[5];A[6,10]

)
,

H
(
Ai∪[6] | Āi∪[6]

)
≤ I

(
A[i−1];Ai

)
for i = 8, 9, 10.

One can use all these inequalities to obtain:

H
(
A1∪[4,10] | Ā1∪[4,10]

)
+ H

(
A2∪[4,10] | Ā2∪[4,10]

)
+ H

(
A[3,10] | Ā[3,10]

)
+H

(
A[1,4]∪[7,10] | Ā[1,4]∪[7,10]

)
+ H

(
A[1,3]∪5∪[7,10] | Ā[1,3]∪5∪[7,10]

)
+H

(
A[1,3]∪[6,10] | Ā[1,3]∪[6,10]

)
+ H

(
A[1,7] | Ā[1,7]

)
+ H

(
A[1,6]∪8 | Ā[1,6]∪8

)
+H

(
A[1,6]∪9 | Ā[1,6]∪9

)
+ H

(
A[1,6]∪10 | Ā[1,6]∪10

)
≤ ∆

(
A[10]

)
,

H
(
A[2,3] | Ā[2,3]

)
+ H

(
A1∪3 | Ā1∪3

)
+ H

(
A[2] | Ā[2]

)
+H

(
A[5,6] | Ā[5,6]

)
+ H

(
A4∪6 | Ā4∪6

)
+ H

(
A[4,5] | Ā[4,5]

)
H
(
A[8,10] | Ā[8,10]

)
+ H

(
A7∪[9,10] | Ā7∪[9,10]

)
+ H

(
A[7,8]∪10 | Ā[7,8]∪10

)
+H

(
A[7,9] | Ā[7,9]

)
≤ ∇

(
A[10]

)
.

Also, define
B̄i := Bi ∩ Ā[3]−i ∩

(
C̄ + Āi∪[4,10]

)
, for i ∈ [3] ;

B̄i := Bi ∩ Ā[4,6]−i ∩
(
C̄ + Āi∪[3]∪[7,10]

)
, for i ∈ [4, 6] ;

B̄i := Bi ∩ Ā[7,10]−i ∩
(
C̄ + Āi∪[6]

)
, for i ∈ [7, 10] .

We have the subspaces Ā1, . . ., Ā10, B̄1, . . ., B̄10, C̄ satisfy conditions (i), (ii) of Proposition
2.1.11, and the following inequality holds

H
(
B1 | B̄1

)
≤ H

(
B1 | Ā[2,3]

)
+ H

(
B1 | Ā1∪[4,10], C̄

)
≤ H

(
B1 | A[2,3]

)
+ H

(
B1 | A1∪[4,10], C

)
+ H

(
A1∪[4,10] | Ā1∪[4,10]

)
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+H
(
A[2,3] | Ā[2,3]

)
+ H

(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)
.

With an analogous argument, we can obtain upper bounds on H
(
Bi | B̄i

)
for each i ∈ [2, 10].

Then, using Lemma 2.1.8, we can derive an upper bound on H
(
Bi : i ∈ [10] | B̄i : i ∈ [10]

)
.

The vector subspaces Ā1, . . ., Ā10, B̄1, . . ., B̄10, C̄ satisfy Proposition 2.1.11 with condition
1 if the characteristic of the field F is 2. We have H

(
B̄[10]

)
≤ 8H

(
C̄
)
. We can note H

(
C̄
)
≤

I
(
A[10];C

)
, and derive a lower bound on H

(
B̄[10]

)
using again Lemma 2.1.8 to get the desired

inequality. The inequality 2 is obtained in a similar way; and from the inequality 1, it is
easy to note that the inequality 2 also holds over fields whose characteristic is 2. To prove
the inequality 3, define

B̂i := Bi ∩ Ā[3]−i, for i ∈ [3] ;

B̂i := Bi ∩ Ā[4,6]−i, for i ∈ [4, 6] ;

B̂i := Bi ∩ Ā[7,10]−i, for i ∈ [7, 10] ;

Ĉ := C̄ ∩
⋂
i∈[3]

(
B̂i + Āi∪[4,10]

)
∩

⋂
i∈[4,6]

(
B̂i + Āi∪[3]∪[7,10]

)
∩

⋂
i∈[7,10]

(
B̂i + Āi∪[6]

)
.

We have the subspaces Ā1, . . ., Ā10, B̂1, . . ., B̂10, Ĉ satisfy conditions (i), (iii) of Proposition
2.1.11, and the following inequality holds

H
(
C | Ĉ

)
= H

(
C | C̄

)
+ H

(
C̄ | Ĉ

)

≤ H
(
C | A[10]

)
+

10∑
i=1

I
(
A[10]−i;C

)
+ H

(
B1 | A[2,3]

)
+ H (B2 | A1∪3) + H

(
B3 | A[2]

)
+H

(
B4 | A[5,6]

)
+ H (B5 | A4∪6) + H

(
B6 | A[4,5]

)
+ H

(
B7 | A[8,10]

)
+ H

(
B8 | A7∪[9,10]

)
+H

(
B9 | A[7,8]∪10

)
+ H

(
B10 | A[7,9]

)
+ +H

(
C | A1∪[4,10], B1

)
+ H

(
C | A2∪[4,10], B2

)
+H

(
C | A3∪[4,10], B3

)
+ H

(
C | A[1,3]∪4∪[7,10], B4

)
+ H

(
C | A[1,3]∪5∪[7,10], B5

)
+H

(
C | A[1,3]∪6∪[7,10], B6

)
+ H

(
C | A[1,7], B7

)
+ H

(
C | A[1,6]∪8, B8

)
+ H

(
C | A[1,6]∪9, B9

)
+H

(
C | A[1,6]∪10, B10

)
+∆

(
A[10]

)
+∇

(
A[10]

)
.

So, the vector subspaces Ā1, . . ., Ā10, B̂1, . . ., B̂10, Ĉ satisfy Proposition 2.1.11 with condition
3 if the characteristic of the field F is neither 2 nor 3. We have 10H

(
Ĉ
)
≤ H

(
B̂[10]

)
. We

can note H
(
B̂[10]

)
≤ H

(
B[10]

)
and derive a lower bound on H

(
Ĉ
)
from the upper bound on

H
(
C | Ĉ

)
to get the desired inequality.
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2.1.2 Producing inequalities

In this section, we show the theorem that produces characteristic-dependent linear rank
inequalities using suitable binary matrices. In order to gain a better understanding, the
theorem is divided in several lemmas and propositions; we are going to show them in three
sub-subsections or steps as follow:
- Finding an equation: We specify the form of the matrices that can produce inequal-

ities.
- Conditional characteristic-dependent linear rank inequalities: We describe lin-

ear inequalities that depend on the characteristic and some conditions of the involved linear
random variables using as a guide the matrices described in previous step.
- Characteristic-dependent linear rank inequalities: We finally produce inequali-

ties.

2.1.2.1 Finding an equation

Consider any binary n×mmatrix B, with columns denoted by bi. Let πbi
be the Ii-projection

of V = A1 ⊕ · · · ⊕ An, where

Ii := b̄i =
{
j ∈ [n] : bji = 1

}
.

Take
bIi

:=
∑
j

bjIi
ej ∈ V,

where (ej)j is the canonical basis in V ; and

bjIi
:=
 1 if ej ∈ Ak for some k such that bk = 1.

0 in otherwise.

If x = ∑
j
xjej, then we have

πbi
(x) = bIi

· x :=
∑
j

bjIi
xjej.

We have the following proposition.

Lemma 2.1.13. Let V = A1 ⊕ · · · ⊕An, Ai 6= O, and let B be a n×m binary matrix. For
all i and I, we have bi = ∑

j∈I
αjbj if and only if πbi

= ∑
j∈I
αjπbj

.
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Proof. We note bi = ∑
j∈I
αjbj if and only if bIi

= ∑
j∈I
αjbIj

. Now, let bi = ∑
j∈I
αjbj. For x ∈ V ,

∑
j∈I
αjπbj

(x) =
∑
j∈I
αj
(
bIj
· x
)

=
∑
j∈I

(
αjbIj

· x
)

=
∑
j∈I
αjbIj

 · x = bIi
· x = πbi

(x) .

The other implication is obtained from

πbi
(1 · · · 1) =

∑
j∈I
αjπbj

(1 · · · 1) .

Example 2.1.14. Take

B =

b1 b2 b3
0 1 1
1 0 1
1 1 0

 .

In V = GF (2)5, we define A1 = 〈e1, e4〉, A2 = 〈e2, e5〉, A3 = 〈e3〉. We have

bI1 =



0
1
1
0
1


, bI2 =



1
0
1
1
0


, bI3 =



1
1
0
1
1


.

One can check that b1 = b2 + b3 and bI1 = bI2 + bI3 .

Theorem 2.1.15. Let (A1, . . . , An, C) be a tuple of complementary vector subspaces in V

over F with C 6= O, and let B be a n × m binary matrix with columns denoted by bi. We
have {bi}i∈I is an independent set if and only if ∑

i∈I
πbi

(C) is a direct sum.

Proof. We suppose that {bi}i∈I is a dependent set and prove that ∑
i∈I
πbi

(C) is not a direct
sum. There exists k ∈ I such that bk = ∑

i∈I−k
αibi for some αi ∈ F not all zero. By Lemma

2.1.13, we get πbk
(c) = ∑

i∈I−k
αiπbi

(c) for some c ∈ C −O. In other words, ∑
i∈I
πbi

(C) is not a
direct sum. Reciprocally, we suppose that ∑

i∈I
πbi

(C) is not a direct sum, and we prove that
{bi}i∈I is a dependent set. There exist c1, . . . , c|I| ∈ C not all zero such that ∑

i∈I
πbi

(ci) = O.
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Thus,

O =
∑
i∈I

(bIi
· ci) =

∑
i∈I

∑
j

bjIi
cjiej

 =
∑
j

(∑
i∈I
bjIi
cji

)
ej,

which implies that ∑
i∈I
bjIi
cji = 0,

for all j. By Lemma 2.1.13, ∑
i∈I
bic

j
i = 0,

for all j. Since not all ci is zero, we obtain that {bi}i∈I is a dependent set.

We have the following statement.

Corollary 2.1.16. Let B = (Bi) = (eSi
) be a n × m binary matrix over a finite field F,

m ≤ n and ti ≥ 2, for i = 1, . . . , s, m > ms > · · · > mi > · · · > m1 ≥ 1 integers. We
suppose that rank (B) = mi if char (F) divides ti, and rank (B) = m in other cases. Then,
for any tuple of complementary vector subspaces (A1, · · · , An, C) holds

H (πSi
(C) : i ∈ [m]) =



m1H (C) if char (F) | t1.
... ...

msH (C) if char (F) | ts.
mH (C) if char (F) - t = ∏

i
ti.

Proof. In case char (F) does not divide t, ∑
i∈[m]

πbi
(C) is a direct sum by Theorem 2.1.15.

Then, we have

H (πSi
(C) : i ∈ [m]) =

∑
i∈[m]

H (πSi
(C)) = mH (C) [from Proposition 2.1.4].

Fixed k, we now suppose that rankB = mk if char (F) divides tk. There exists I ( [m] such
that the rank of the submatrix BI of B is mk. Then,

H (πSi
(C) : i ∈ [m]) = H (πSi

(C) : i ∈ I) [from Theorem 2.1.15]

=
∑
i∈I

H (πSi
(C)) [from Theorem 2.1.15]

= mkH (C) [from Proposition 2.1.4].
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2.1.2.2 Conditional characteristic-dependent linear rank inequalities

Definition 2.1.17. For a binary matrix B, we denote B = (Bi) = (eSi
), with Si ={

j : B(j,i) = 1
}
, and we define the sets:

B′ := {eSi
: 1 < |Si| < n} ,

B′′ := {eSi
: |Si| = 1} ,

B′′′ :=
 {C} if there exists eSi

in B such that |Si| = n.

∅ in other case.

We assume without lost of generality that eSi
= ei if |Si| = 1.

We introduce the following notation:

[en, em] = {ei : n ≤ i ≤ m} ,

[en, em) = {ei : n ≤ i < m} ,

[en] := [e1, en] = {ei : i ≤ n} .

From now on, we consider vector subspaces indexed by the columns of some matrix B.

The described conditions in the following two lemmas are derived from the dependency
relationships of the columns of B.

Proposition 2.1.18. For each tk, let F be a finite field such that char (F) divides tk. For any
vector subspaces Ae1 , . . . , Aen , BeSj1

, . . . , BeSj|B′|
and C of a finite dimensional vector space

V over F, such that (Ae1 , . . . , Aen , C) is a tuple of complementary vector subspaces and

(i) Aei
≤ A[en]−ei

⊕ C for i such that ei ∈ B′′,

(ii) BeSi
≤ ⊕

j∈Si

Aej
for eSi

∈ B′,

(iii) BeSi
≤ ⊕

j /∈Si

Aej
⊕ C for eSi

∈ B′.

We have
H
(
Aei

, BeSj
, C : eSj

∈ B′, ei ∈ B′′, C ∈ B′′′
)
≤ mkH (C) .

Proof. Since the characteristic divides tk, applying Corollary 2.1.16, we get

H (πSi
(C) : i ∈ [m]) = mkH (C) . (2.1.1)
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On the other hand, we have

πSi
(C) =

C +
⊕
j /∈Si

Aej

 ∩
⊕
j∈Si

Aej

 , for all i. (2.1.2)

In effect, let v ∈ C such that v = ∑
i
vi, where vi ∈ Ai, and fixed j ∈ [n+ 1]. Noting that

πSj
(v) = ∑

i∈Sj

vi = v − ∑
i/∈Sj

vi, we get

πSj
(v) ∈

C +
⊕
i/∈Sj

Aei

 ∩
⊕
i∈Sj

Aei

 .

To prove the other containment, let u ∈
(
C + ⊕

i/∈Sj

Aei

)
∩
( ⊕
i∈Sj

Aei

)
. Then, there exist

v ∈ C and vi ∈ Ai, for all i, such that u = v − ∑
i/∈Sj

vi = ∑
i∈Sj

vi. Thus v = ∑
i
vi and

u = πSi
(v) ∈ πSi

(C). It follows that equality 2.1.2 is true. Therefore, using hypothesis (ii),
we have that

Aei
≤ πSi

(C) , ei ∈B” [from hypothesis (i)],

BeSi
≤ πSi

(C) , eSi
∈B’ [from hypothesis (ii) and (iii)],

which implies ∑
ei∈B′′

Aei

+
 ∑

eSj
∈B’
Bk

+ (C)C∈B′′′ ≤
∑
i

πSi
(C) [also, note that C ≤ π1···1 (C)].

From equation (2.1.1), we get H
(
Aei

, BeSj
, C : eSj

∈ B′, ei ∈ B′′, C ∈ B′′′
)
≤ mkH (C) .

Proposition 2.1.19. Let F be a finite field such that char (F) does not divide t = ∏
i
ti. For

any vector subspaces Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C of a finite dimensional vector
space V over F, such that (Ae1 , . . . , Aen , C) is a tuple of complementary vector subspaces and
(i) BeSi

≤ ⊕
j∈Si

Aej
for eSi

∈ B′.

(ii) C ≤ ⊕
j /∈Si

Aej
+BeSi

for eSi
∈ B′.

We have
mH (C) ≤ H

(
Aei

, BeSj
, C : eSj

∈ B′, ei ∈ B′′, C ∈ B′′′
)
.

Proof. Since the characteristic does not divide t, applying Corollary 2.1.16, we get

H (πSi
(C) : i ∈ [m]) = mH(C) . (2.1.3)
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On the other hand, πSk
(C) ≤ Bk for all k such that eSk

∈ B′; πSk
(C) ≤ Aek

for all k such
that eSk

∈ B′′; π1···1 (C) ≤ C if C ∈ B′′′. The last two affirmation are trivial by definition
of projection. To prove the first affirmation, fixed k ∈ [m] and let v = ∑

i
vi ∈ C, where

vi ∈ Ai. By condition (ii), there exist aik ∈ Aek
, i ∈ [m] − Sk and bk ∈ BeSk

such that
v = ∑

i/∈Sk

aik + bk. By condition (i), there exists ai ∈ Aei
, for each i ∈ Sk, such that bk = ∑

i∈Sk

ai.

Then, v = ∑
i
vi = ∑

i∈Sk

ai + ∑
i/∈Sk

aik, but v has unique writing in terms of Ai, in particular,

ai = vi, for each i ∈ Sk. We get

πSk
(v) =

∑
i∈Sk

vi = bk ∈ BeSk
.

In other words,
πSk

(C) ≤ BeSk
.

Hence, ∑
i

πSi
(C) ≤

 ∑
ei∈B′′

Aei

+

 ∑
eSj
∈B′
BeSi

.

+ (C)in case C∈B′′′

Therefore, using equation (2.1.3) we get,

mH(C) ≤ H
(
Aei

, BeSj
, C : eSj

∈ B′, ei ∈ B′′, C ∈ B′′′
)
.

2.1.2.3 Characteristic-dependent linear rank inequalities

We now show three lemmas that will help to the demonstration of the main theorem. We
remark that for any Ae1 , . . . , Aen and C vector subspaces of a vector spaces V , by Proposition
2.1.6, there exists a tuple

(
A′e1 , . . . , A

′
en
, C̄
)
of complementary vector subspaces in Ae1 + . . .+

Aen ≤ V which holds:

H
(
Aek
| A′ek

)
= I

(
A[ek−1];Aek

)
, for all k, (2.1.4)

H
(
C | C̄

)
≤ ∇ (C) := H

(
C | A[en]

)
+

∑
ei∈[en]

I
(
A[en]−ei

;C
)
. (2.1.5)

Additionally, for T ⊆ [en], it is straightforward to take some elements ek1 , . . . , ekl
with

k1 ≤ k2 ≤ · · · ≤ kl
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such that it is possible to built a partition in intervals
[
eki
, ekj

]
, with maximum length, of

T . Using Lemma 2.1.8, we get

H (Ae : e ∈ T | A′e : e ∈ T ) ≤ ∇ (Ae : e ∈ T )

:= I
(
A[e1,ek1);A[ek1 ,ek2 ]

)
+ · · ·+ I

(
A[e1,ek1−1);A[ek1−1 ,ekl ]

)
. (2.1.6)

Lemma 2.1.20. Let Ae1 , . . . , Aen and C be vector subspaces of a vector spaces V . Define

Āek
:= A′ek

∩

C̄ +
⊕
ei /∈B′′

A′ei
+

⊕
ei∈B′′,i<k

Āei
+

⊕
ei∈B′′,i>k

A′ei

 , for ek ∈ B′′.

Āek
:= A′ek

, for ek /∈ B′′.

Then,
(
Āe1 , . . . , Āen , C̄

)
is a tuple of complementary vector subspaces that satisfies (i) in

Lemma 2.1.18 and
H
(
Āek

)
= H

(
C̄
)
, for ek ∈ B′′,

H
(
Āek

)
= H

(
Aek
| A[ek−1]

)
, for ek ∈ B′,

H
(
Aek
| Āek

)
≤ H (Aek

)− H (C) +∇ (C) , for ek ∈ B′′. (2.1.7)

Proof. We obviously have

Āek
≤ C̄ +

⊕
ei /∈B′′

A′ei
+

⊕
ei∈B′′,i<k

Āei
+

⊕
ei∈B′′,i>k

A′ei
.

Now, for any k such that ek ∈ B′′, we have

C̄ ≤
⊕
ei /∈B′′

A′ei
+

⊕
ei∈B′′,i≤k

Āei
+

⊕
ei∈B′′,i>k

A′ei
. (2.1.8)

In effect, we show case k = l := min {i : ei ∈ B′′}, i.e. we have to show that

C̄ ≤

⊕
i 6=l′
A′ei

+ Āel
.

The general case is proved by induction, we omit the proof. We note case C̄ = O is trivial.
So, we suppose that there exist c ∈ C̄ − O, then from Corollary 2.1.5, c = ∑

i
ai for some

ai ∈ A′ei
−O. Thus,

al = c−
∑
i 6=l
ai ∈

C̄ ⊕
⊕
i 6=l′
A′ei

 ∩ A′el
.
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Therefore, al ∈ Āel
, which implies c ∈

(⊕
i 6=l′
A′ei

)
+ Āel

. So, (2.1.8) is true. Taking

k = max {i : ei ∈ B′′}, we obtain that C̄ ≤ ⊕
Āei

. Hence, the described tuple is a tuple
of complementary vector subspaces that satisfies (i) in Lemma 2.1.18. We also have the
equation:

H
(
Āek

)
= I

A′ek
; C̄,

⊕
ei /∈B′′

A′ei
,

⊕
ei∈B′′,i<k

Āei
,

⊕
ei∈B′′,i>k

A′ei



= H
(
A′ek

)
−H

 ⊕
ei /∈B′′

A′ei
,

⊕
ei∈B′′,i<k

Āei
,

⊕
ei∈B′′,i≥k

A′ei

+H
C̄, ⊕

ei /∈B′′
A′ei

,
⊕

ei∈B′′,i<k
Āei

,
⊕

ei∈B′′,i>k
A′ei


[from definition of mutual information and (2.1.8)]

= H
(
C̄
)
. [definition of complementary subspaces]

This can also be used to obtain the described upper bound on H
(
Aek
| Āek

)
.

Lemma 2.1.21. Let Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C be vector subspaces of a vector
spaces V . For each eSk

∈ B′, we define

B̄eSk
:= BeSk

∩

 ⊕
ei∈Sk

Āei

 ∩
 ⊕
ei /∈Sk

Āei
⊕ C̄

 .
We have the subspaces Āe1 , . . . , Āen , B̄eSj1

, . . . , B̄eSj|B′|
and C̄ satisfy hypothesis in Lemma

2.1.18 and

H
(
BeSk

| B̄eSk

)
≤ H

(
BeSk

| Aei
: i ∈ Sk

)
+ H

(
BeSk

| Aei
, C : i /∈ Sk

)
+

∑
ei∈B′′

H (Aei
)

+∇ (Aei
: i ∈ Sk, ei /∈ B′′) +∇ (Aei

: i /∈ Sk, ei /∈ B′′) + (|B′′|+ 1)∇ (C)− |B′′|H (C)

Proof. The conditions in Lemma 2.1.18 are obviously true. To prove the inequality, we have

H
(
BeSk

| B̄eSk

)
≤ H

BeSk
|

⊕
i∈Sk

Āei

 ∩BeSk

+ H
BeSk

|

⊕
i/∈Sk

Āei
⊕ C̄

 ∩BeSk



= H
BeSk

|

⊕
i∈Sk

Aei

 ∩BeSk

+ H
BeSk

|

⊕
i/∈Sk

Aei
⊕ C

 ∩BeSk



+H
∑

i∈Sk

Aei

 ∩BeSk
|

⊕
i∈Sk

Āei

 ∩BeSk


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+H
∑

i/∈Sk

Aei
⊕ C

 ∩BeSk
|

⊕
i/∈Sk

Āei
⊕ C̄

 ∩BeSk


≤ H

(
BeSk

| Aei
: i ∈ Sk

)
+ H

(
BeSk

| C,Aei
: i /∈ Sk

)

+H
 ∑
i∈Sk,ei∈B′′

Aei
|

⊕
i∈Sk,ei∈B′′

Āei

+ H
 ∑
i∈Sk,ei /∈B′′

Aei
|

⊕
i∈Sk,ei /∈B′′

A′ei

+

H
 ∑
i/∈Sk,ei∈B′′

Aei
|

⊕
i/∈Sk,ei∈B′′

Āei

+ H
 ∑
i/∈Sk,ei /∈B′′

Aei
|

⊕
i/∈Sk,ei /∈B′′

A′ei

+ H
(
C | C̄

)

≤ H
(
BeSk

| Aei
: i ∈ Sk

)
+ H

(
BeSk

| Aei
, C : i /∈ Sk

)
+

∑
i∈Sk,ei∈B′′

H (Aei
)

+ |{ei ∈ B′′ : i ∈ Sk}| (∇ (C)− H (C)) +∇ (Aei
: i ∈ Sk, ei /∈ B′′) +

∑
i/∈Sk,ei∈B′′

H (Aei
)

+ |{ei ∈ B′′ : i /∈ Sk}| (∇ (C)− H (C)) +∇ (Aei
: i /∈ Sk, ei /∈ B′′) +∇ (C)

[from Lemmas 2.1.8 and 2.1.9, inequalities (2.1.6) and (2.1.7)].

= H
(
BeSk

| Aei
: i ∈ Sk

)
+ H

(
BeSk

| Aei
, C : i /∈ Sk

)
+

∑
ei∈B′′

H (Aei
)

+ (|B′′|+ 1)∇ (C)− |B′′|H (C) +∇ (Aei
: i ∈ Sk, ei /∈ B′′) +∇ (Aei

: i /∈ Sk, ei /∈ B′′)

Lemma 2.1.22. Let Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C be vector subspaces of a vector

spaces V . For each eSk
∈ B′, we define B̂eSk

:= BeSk
∩ ⊕
j∈Sk

A′ej
and

Ĉ := C̄
⋂
eSk

⊕
j /∈Si

A′ej
+ B̂eSk

 .
We have A′e1 , . . . , A

′
en
, B̂eSj1

, . . . , B̂eSj|B′|
and Ĉ satisfy hypothesis in Lemma 2.1.19 and

H
(
BeSk

| B̂eSk

)
≤ H

(
BeSk

| Aei
: i ∈ Sk

)
+∇ (Aei

: i ∈ Sk) , (2.1.9)

H
(
C | Ĉ

)
≤ ∇ (C) +

∑
eSk
∈B′

[
H (C | Aei

, BSk
: i /∈ Sk) + H

(
BeSk

| Aei
: i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei
: i /∈ Sk) +∇ (Aei

: i ∈ Sk)] . (2.1.10)

Proof. By definition, we remark that
(
A′e1 , . . . , A

′
en
, Ĉ
)
is also a tuple of complementary vec-
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tor subspaces and the other conditions in 2.1.19 are also true. We only show last inequality:

H
(
C | Ĉ

)
≤ H

(
C | C̄

)
+

∑
eSk
∈B′

H
C | C ∩

⊕
i/∈Sk

A′ei
+ B̂eSk



= H
(
C | C̄

)
+

∑
eSk
∈B′

H
C | C ∩

⊕
i/∈Sk

Aei
+BeSk



+
∑

eSk
∈B′

H
C ∩

∑
i/∈Sk

Aei
+BeSk

 | C ∩
⊕
i/∈Sk

A′ei
+ B̂eSk



≤ H
(
C | C̄

)
+

∑
eSk
∈B′

H
C | ⊕

i/∈Sk

Aei
+BeSk

+
∑

eSk
∈B′

H
∑
i/∈Sk

Aei
|
⊕
i/∈Sk

A′ei


+
∑

eSk
∈B′

H
(
BeSk

| B̂eSk

)
[from Lemmas 2.1.8 and 2.1.9, and inequality (2.1.9)]

≤ ∇ (C) +
∑

eSk
∈B′

[
H (C | Aei

, BSk
: i /∈ Sk) + H

(
BeSk

| Aei
: i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei
: i /∈ Sk) +∇ (Aei

: i ∈ Sk)] [from (2.1.6)]

The following theorem finally shows our first method for producing characteristic-dependent
linear rank inequalities.

Theorem 2.1.23. Let B = (Bi) = (eSi
) be a n×m binary matrix over a finite field F, m ≤ n

and ti ≥ 2, m > ms > · · · > mi > · · ·m1 ≥ 1 integers. We suppose that rank (B) = mi

if char (F) divides ti, and rank (B) = m in other cases. Let Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C be vector subspaces of a finite dimensional vector space V over a finite field F. Then

(i) For each k = 1, . . . , s, the following inequality is a characteristic-dependent linear rank
inequality over fields whose characteristic divides ∏

i≤k
ti,

H
(
Aej

, BeSi
, C : eSi

∈ B′, ej ∈ B′′, C ∈ B′′′
)

+ (|B′′| |B′|+ |B′′|) H (C) ≤ mkI
(
A[en];C

)
+
∑

eSk
∈B′

[
H
(
BeSk

| Aei
, C : i /∈ Sk

)
+ H

(
BeSk

| Aei
: i ∈ Sk

)]
+ (|B′|+ 1)

∑
ei∈B′′

H (Aei
)

+ (|B′′| |B′|+ |B′′′|+ |B′′|+ |B′|)
H

(
C | A[en]

)
+

∑
ei∈[en]

I
(
A[en]−ei

;C
)
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+
∑

eSk
∈B′

[∇ (Aei
: i ∈ Sk, ei /∈ B′′) +∇ (Aei

: i /∈ Sk, ei /∈ B′′)] .

(ii) The following inequality is a characteristic-dependent linear rank inequality over fields
whose characteristic does not divide t = ∏

i
ti,

H (C) ≤ 1
m

H
(
Aej

, BeSi
, C : eSi

∈ B′, ej ∈ B′′, C ∈ B′′′
)

+ H
(
C | A[en]

)

+
∑

ei∈[en]
I
(
A[en]−ei

;C
)

+
∑

eSk
∈B′

[
H (C | Aei

, BSk
: i /∈ Sk) + H

(
BeSk

| Aei
: i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei
: i /∈ Sk) +∇ (Aei

: i ∈ Sk)] .

The first inequality does not in general hold over vector spaces whose characteristic does
not divide t and the second inequality does not in general hold over vector spaces whose
characteristic divides t. A counterexample would be in V = GF (p)m, take the vector spaces
Aei

= 〈ei〉, i ∈ [m], BeSj
=
〈
eSj

〉
, eSj

∈ B′, and C = 〈∑ ei〉 Then, when p does not divide t,
the first inequality does not hold; and when p divides t, the second inequality does not hold.
We prove the theorem.

Proof. By Lemmas 2.1.20 and 2.1.21, the subspaces Āe1 , . . . , Āen , B̄eSj1
, . . . , B̄eSj|B′|

and C̄

satisfy hypothesis of the Proposition 2.1.18 in a finite field F whose characteristic divides tk,
we get

H
(
B̄eSi

, Āej
, C̄ : eSi

∈ B′, ej ∈ B′′, C̄ ∈ B′′′
)
≤ mkH

(
C̄
)
. (2.1.11)

On the other hand,
H
(
C̄
)
≤ I

(
A[en];C

)
[from C̄ ≤ C], (2.1.12)

H
 ∑
eSk
∈B′
BSi
|
∑

eSk
∈B′
B̄S1

 ≤ ∑
eSk
∈B′

H
(
BeSi

| B̄eSi

)
[from Lemma 2.1.8].

Therefore,

H
 ∑
eSk
∈B′
BSi

+
∑
ei∈B′′

Aei
+ C |

∑
eSk
∈B′
B̄Si

+
∑
ei∈B′′

Āei
+ C̄

 ≤ ∑
eSk
∈B′

H
(
BeSk

| Aei
: i ∈ Sk

)

+
∑

eSk
∈B′

H
(
BeSk

| Aei
, C : i /∈ Sk

)
+ (|B′|+ 1)

∑
ei∈B′′

H (Aei
)

+ (|B′′| |B′|+ |B′′|+ |B′|+ 1)∇ (C)− (|B′′| |B′|+ |B′′|)H (C)
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+
∑

eSk
∈B′

[∇ (Aei
: i ∈ Sk, ei /∈ B′′) +∇ (Aei

: i /∈ Sk, ei /∈ B′′)] .

From (2.1.11) , (2.1.12), (2.1.5) and last inequality, we can obtain that the inequality in item
(i) is true over fields whose characteristic divides tk. We can do this for any k = 1, . . . , s.
Noting that inequality (2.1.11) is also true for fields whose characteristic divides to ts with
ms < mk, we get that the inequality in item (i) is also true when ∏

i≤k
ti.

To prove the inequality in item (ii), using Lemma 2.1.22, the vector subspaces A′e1 , . . .,
A′en

, B̂eSj1
, . . ., B̂eSj|B′|

and Ĉ satisfy hypothesis of Proposition 2.1.19 in a finite field F whose
characteristic does not divide t, we get

mH
(
Ĉ
)
≤ H

(
A′ei

, B̂eSj
, Ĉ : eSj

∈ B′, ei ∈ B′′, Ĉ ∈ B′′′
)
. (2.1.13)

On the other hand,

H
(
A′ei

, B̂eSj
, Ĉ : eSj

∈ B′, ei ∈ B′′, Ĉ ∈ B′′′
)
≤ H

(
Aei

, BeSj
, C : eSj

∈ B′, ei ∈ B′′, C ∈ B′′′
)
.

(2.1.14)
From (2.1.13) , (2.1.10) and last inequality, we can derive the inequality (ii) over fields whose
characteristic does not divide t.

Corollary 2.1.24. If the dimension of vector space V is at most n − 1, then inequalities
implicated in Theorem 2.1.23 are true over any field.

Corollary 2.1.25. If some vector space in Theorem 2.1.23 is the zero space, the inequalities
implicated are linear rank inequalities.

In case that the dimension of V is at most n − 1, equation in Corollary 2.1.16 is trivial
and therefore in the demonstration above there exists some A′ei

= O and Ĉ = C̄ = O. This
implies Corollary 2.1.24. The other corollary is also obtained in a similar way.

2.2 Two classes of inequalities
Below, it is shown a class of

⌊
n−1

2

⌋
− 2 inequalities that are true over finite sets of primes

(i.e. sets of the form {p : p | t}), and another class of
⌊
n−1

2

⌋
− 2 inequalities that are true

over co-finite sets of primes (i.e. sets of the form {p : p - t}).

Example 2.2.1. Let n ≥ 7 and t integer such that 2 ≤ t ≤
⌊
n−1

2

⌋
−1 andM (n, t) = n−t−2.

In Theorem 2.1.23, we take square matrices Bt
M(n,t) as described in Figure 2.2.1 with column

vectors of the form Bi := Be[M(n,t)]−i
= c− ei, Ai := Aei

= ei, with c = ∑
j∈[M(n,t)]

ej. The rank
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B1 · · ·Bt+1At+2 · · ·AM(n,t)

0 · · · 1 0 · · · 0
1 ... 1 0 ... 0
... ... ... ... ... 0
1 ... 1 0 ... 0
1 ... 0 0 ... ...
1 ... 1 1 ... 0
1 ... ... 0 ... 0
1 ... 1 ... ... 0
1 · · · 1 0 · · · 1



Figure 2.2.1: Matrix Bt
M(n,t) whose rank is M (n, t) or M (n, t)− 1 according to the charac-

teristic.

of Bt
M(n,t) is M (n, t) when char (F) does not divide t and is M (n, t) − 1 in other case. We

have
∣∣∣∣B′Bt

M(n,t)

∣∣∣∣ = t+ 1,
∣∣∣∣B′′Bt

M(n,t)

∣∣∣∣ = M (n, t)− t− 1,
∣∣∣∣B′′′Bt

M(n,t)

∣∣∣∣ = 0 and

∇ (C) = H
(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)

∇ (Ak) = I
(
A[k−1];Ak

)
,

∇ (Ai : i ∈ [t+ 1]− k) = I
(
A[k];A[k+1,t+1]

)
,

∇ (Ai : i ∈ [M (n, t)]− k) = I
(
A[k];A[k+1,M(n,t)]

)
, for each k ∈ [t+ 1].

Then, for any A1, A2, . . ., AM(n,t), B1, B2, . . ., Bt+1 and C subspaces of a finite dimensional
vector space V over a finite field F, we have:

(a) If char (F) divides t,

H
(
B[t+1], A[t+2,M(n,t)]

)
+ (t+ 2) (M (n, t)− t− 1) H (C)

≤ (M (n, t)− 1) I
(
A[M(n,t)];C

)
+ (t+ 2)

M(n,t)∑
i=t+2

H (Ai)

+ [(t+ 2) (M (n, t)− t)− 1]
H

(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)
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+
t+1∑
i=1

(
H (Bi | Ai, C) + H

(
Bi | A[M(n,t)]−i

)
+ I

(
A[i];A[i+1,t+1]

)
+ I

(
A[i−1];Ai

))
.

(b) If char (F) does not divide t,

H (C) ≤ 1
M (n, t)H

(
B[t+1], A[t+2,M(n,t)]

)
+ H

(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)

+
t+1∑
i=1

(
H (C | Ai, Bi) + H

(
Bi | A[M(n,t)]−i

)
+ I

(
A[i];A[i+1,M(n,t)]

)
+ I

(
A[i−1];Ai

))
.

Corollary 2.1.25 shows that each inequality presented in Example 2.2.1 cannot be deduced
from a higher order inequality by nullifying some variables. In fact, using Corollary 2.1.24,
we can say more about the class (a) of these inequalities: for n ∈ N and p prime, the
function that counts all the powers of p less than or equal to n is denoted by ϕ (n, p). In
Example 2.2.1, for each power pi less than or equal to

⌊
n−1

2

⌋
− 1 is determined an inequality

in n variables which is true over fields whose characteristic is p. Thus, ϕ
(⌊

n−1
2

⌋
− 1, p

)
inequalities in n variables, which are true over fields whose characteristic is p, are produced.
By Corollary 2.1.24, each of these inequalities holds over any characteristic if the dimension
of V is at most n− pi − 3. Hence, inequalities implied by the inequalities determined by p,
. . ., pi−1 are true over any vector space when the dimension is at most n− pi−1− 3 while the
inequality determined by pi does not hold over vector spaces of dimension n− pi−1 − 3 and
characteristics other than p. We have the next corollary.

Corollary 2.2.2. For each n ≥ 7 and p prime. There exist ϕ
(⌊

n−1
2

⌋
− 1, p

)
characteristic-

dependent linear rank inequalities that are true over fields whose characteristic is p, such that
the inequality determined by pi is independent of all inequalities determined by pj, j < i.



3 Method II for Producing Inequalities

This method is developed with helping of the technique of the kernel presented in [23]. That
technique was used for producing lower bounds on the information ratios in linear secret shar-
ing from ports of Fano and non-Fano matroids over fields where these are not ideal. We note
that this can be improved in order to produce characteristic-dependent linear rank inequal-
ities that also imply lower bounds on the mentioned ratios. So, in this chapter as previous
one, we show a theorem that produce inequalities. Initially, using a port of the Fano matroid
as guide, we adapt some propositions of [23] in order to deduce a conditional characteristic-
dependent linear rank inequality that we later turn into characteristic-dependent linear rank
inequality; this is a particular case of the method. We then show the described theorem that
produces inequalities using as guide non-singular matrices over some fields.

3.1 How to use access structures

We start by proving.

Lemma 3.1.1. Let W , X1, . . ., Xm be vector subspaces of a finite dimensional vector space
V over a finite field F, such that
- W ≤ ∑

i
Xi,

- W ∩
(∑
i 6=k
Xi

)
= O for all k.

Then, there exist subspaces X̄i ≤ Xi, for i = 1, . . . ,m, such that

(i) X̄k ∩
(∑
i 6=k
Xi

)
= O,

(ii)
(
X̄1, . . . , X̄m,W

)
is a tuple of complementary vector subspaces,

(iii) H (W ) = H (X ′i).

Proof. In case W = O, we can take X̄i = O for all i. Otherwise, we can assume

W,X1, . . . , Xm 6= O.

59
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Let (ei) be a basis of W . We remark that each ei can be written as ∑
j
eji with eji ∈ Xi by

hypothesis. Define
X̄i =

〈
eji : j

〉
.

To prove item (i), we take x ∈ X̄k ∩
(∑
i 6=k
Xi

)
. Then x = ∑

j
αje

j
k. So,

∑
j

αjej =
∑
i

αi
∑
j

eji

=
∑
j

αje
j
k +

∑
i 6=k
αie

j
i .

Thus, ∑
j

αjej ∈ W ∩

∑
i 6=k
Xi

 ,
which implies that ∑

j
αjej = O by hypothesis. Since (ei) is a basis, αi = 0 for all i. In other

words, x = O. Hence, (i) is true. In particular, this implies that X̄k ∩
(∑
i 6=k
X̄i

)
= O, and

since by definition W ≤ ∑
i
X̄i, it follows that (ii) is true. We also note X̄i is generated by at

most H (W )-vectors; therefore, by Proposition 2.1.4 and (ii), we have (iii) is true.

Lemma 3.1.2. For any vector subspaces X1, . . . , Xn of a finite dimensional vector space V
over a finite field F, we have

∑
i

H (Xi)− I (X1; · · · ;Xn) ≤
∑
1<i

H (X1, Xi) .

Proof. The proof is by induction. The case n = 2 gives a straightforward information
identity. We suppose the case n− 1 holds, and we show the case n,

∑
i

H (Xi)− I (X1; · · · ;Xn) = H (Xn) + H (X1 ∩ · · · ∩Xn−1)

−I (X1 ∩ · · · ∩Xn−1;Xn) +
∑
i≤n−1

H (Xi)− I (X1; · · · ;Xn−1)

≤ H (X1 ∩ · · · ∩Xn−1, Xn) +
∑

1<i≤n−1
H (X1, Xi) [from cases n = 2 and n− 1]

≤ H (X1, Xn) +
∑

1<i≤n−1
H (X1, Xi)

=
∑
1<i

H (X1, Xi) .
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Remark 3.1.3. It can be used software such as Xitip to note that inequalities in previous
lemma are in fact Shannon-information inequalities; nevertheless the vector space structure
provides a simple proof in the class of linear random variables.

3.1.1 A particular case

We next define a characteristic-dependent linear rank inequalities using as guide a certain
properties of the port of the Fano matroid at c: This port is given in Example 1.4.6. The
following set is a subclass of authorized set:

{a1b1, a2b2, a3b3, a1a2a3} ;

and the following set is a subclass of non-authorized set:

{b1a2a3, a1b2a3, a1a2b3, b1b2b3} .

The following lemmas abstract these properties:

Lemma 3.1.4. Let A1, A2, A3, B1, B2, B3 and C be vector subspaces of a finite dimensional
vector space V over a finite field F, such that

(i) C is a subspace of each A[3], A1 +B1, A2 +B2, A3 +B3.

(ii) C ∩ A[2,3] = C ∩ A1∪3 = C ∩ A[2] = O,

(iii) C ∩B1 = C ∩B2 = C ∩B3 = O.

Then
4H (C) ≤ H (A1) + H (A2) + H (A3) + H (kerφ) , (3.1.1)

where the linear mapping φ : C → Ā1
Ā1∩Â1

⊕ Ā2
Ā2∩Â2

⊕ Ā3
Ā3∩Â3

is given by

φ (c) := φ (a1 + a2 + a3) = [a1]Ā1∩Â1
+ [a2]Ā′2∩Â2

+ [a3]Ā3∩Â3
,

when we take X̄i = Āi with m = 3 and Xi = Ai in Lemma 3.1.1; and we take X̄1 = Âi with
m = 2, X1 = Ai and X2 = Bi in Lemma 3.1.1, for each i.

Proof. We remark that in case C = O, the inequality is trivial and therefore φ = 0. When
some Ai or Bi is null, it is easy to prove that C = O. We thus assume that all subspaces are
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not null. So, we have the inequality

H
(

C

kerφ

)
≤ H

(
Ā1

Ā1 ∩ Â1

)
+ H

(
Ā2

Ā2 ∩ Â2

)
+ H

(
Ā3

Ā3 ∩ Â3

)
.

Then,
H (C)− H (kerφ) ≤ H

(
Ā1
)

+ H
(
Ā2
)

+ H
(
Ā3
)

−I
(
Ā1; Â1

)
− I

(
Ā2; Â2

)
− I

(
Ā3; Â3

)
.

Therefore,
4H (C)− H (kerφ) ≤ H

(
Ā1
)

+ H
(
Â1
)
− I

(
Ā1; Â1

)
+H

(
Ā2
)

+ H
(
Â2
)
− I

(
Ā2; Â2

)
+ H

(
Ā3
)

+ H
(
Â3
)
− I

(
Ā3; Â3

)
[from (iii) in Lemma 3.1.1]

4H (C)− H (kerφ) ≤ H
(
Ā1, Â1

)
+ H

(
Ā2, Â2

)
+ H

(
Ā3, Â3

)
[straightforward information equality].

Noting that H
(
Āi, Âi

)
≤ H (Ai), we get the desired inequality.

Now, we produce a conditional characteristic-dependent linear rank inequality.

Lemma 3.1.5. Let A1, A2, A3, B1, B2, B3 and C be vector subspaces of a finite dimensional
vector space V over a finite field F with characteristic other than two, such that

(i) C is a subspace of each A[3], A1 +B1, A2 +B2 and A3 +B3.

(ii) C ∩
(
A[2,3] +B1

)
= C ∩ (A1∪3 +B2) = C ∩

(
A[2] +B3

)
= O.

(iii) C ∩B[3] = O.

Then,
4H (C) ≤ H (A1) + H (A2) + H (A3) .

Proof. From (ii), we can derive

C ∩ A[2,3] = C ∩ A1∪3 = C ∩ A[2] = O

and
C ∩B1 = C ∩B2 = C ∩B3 = O.

From this and (i), Lemma 3.1.1 can be applied. Hence, the inequality 3.1.1 is true, and it is
enough to show that ker (φ) = O. We take c = a1 + a2 + a3 ∈ C such that φ (c) = O, where
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ai ∈ Āi and we check that c = O. By definition, ai ∈ Āi ∩ Âi. From (i) in Lemma 3.1.1,
there exists bi ∈ B̂i for each i = 1, 2, 3 such that ai + bi ∈ C. Hence,

a2 + a3 − b1 = c− (a1 + b1) ∈ C ∩
(
A[2,3] +B1

)
,

a1 + a3 − b2 = c− (a2 + b2) ∈ C ∩ (A1∪3 +B2) ,

a1 + a2 − b3 = c− (a3 + b3) ∈ C ∩
(
A[2] +B3

)
,

but from (ii),
a2 + a3 = b1,

a1 + a3 = b2,

a1 + a2 = b3.

Then,
b1 + b2 + b3 = (a2 + a3) + (a1 + a3) + (a1 + a2) = 2c.

From (iii), 2c = O. As the characteristic of F is other than two, it follows c = O.

We produce a characteristic-dependent linear rank inequality that is true over fields whose
characteristic is other than two.

Theorem 3.1.6. Let A1, A2, A3, B1, B2, B3 and C be vector subspaces of a finite di-
mensional vector space V over a finite field F. The following inequality is a characteristic-
dependent linear rank inequality over fields with characteristic other than 2:

H (C) ≤ 1
4 (H (A1) + H (A2) + H (A3)) + H (C | A1, A2, A3)

+I (C;B1, B2, B3) + H (C | A1, B1) + H (C | A2, B2) + H (C | A3, B3)

+I (C;A2, A3, B1) + I (C;A1, A3, B2) + I (C;A1, A2, B3) .

Proof. Let
C(0) := C ∩ A[3] ∩ (A1 +B1) ∩ (A2 +B2) ∩ (A3 +B3) ;

we have

H
(
C | C(0)

)
≤ H

(
C | A[3]

)
+ H (C | A1, B1) + H (C | A2, B2) + H (C | A3, B3) .

Recursively, define C(1), a subspace of C(0) which is a complementary subspace to A[2,3] +B1

in
C(0) +

(
A[2,3] +B1

)
,
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we also have
H
(
C(0) | C(1)

)
= I

(
C(0);A[2,3], B1

)
≤ I

(
C;A[2,3], B1

)
;

define C(2), a subspace of C(1) which is a complementary subspace to A1∪3 +B2 in

C(1) + (A1∪3 +B2) ;

we also have
H
(
C(1) | C(2)

)
= I

(
C(1);A1∪3, B2

)
≤ I (C;A1∪3, B2) ;

and define C(3), a subspace of C(2) which is a complementary subspace to A[2] +B3 in

C(2) +
(
A[2] +B3

)
;

we also have
H
(
C(2) | C(3)

)
= I

(
C(2);A[2], B3

)
≤ I

(
C;A[2], B3

)
;

Now define by Ĉ, a subspace of C(3) which is a complementary subspace to B[3] in C(3) +B[3];
we also have

H
(
C(3) | Ĉ

)
= I

(
C(3);B[3]

)
≤ I

(
C;B[3]

)
.

Using all these inequalities we can derive

H
(
C | Ĉ

)
= H

(
C | C(0)

)
+ H

(
C(0) | C(1)

)
+ H

(
C(1) | C(2)

)
+H

(
C(2) | C(3)

)
+ H

(
C(3) | Ĉ

)
[definition of Ĉ]

≤ H
(
C | A[3]

)
+ H (C | A1, B1) + H (C | A2, B2) + H (C | A3, B3)

+I
(
C;A[2,3], B1

)
+ I (C;A1∪3, B2) + I

(
C;A[2], B3

)
+ I

(
C;B[3]

)
.

By definition of Ĉ, we also have that A1, A2, A3, B1, B2, B3 and Ĉ satisfy Lemma 3.1.5.
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Hence
4H

(
Ĉ
)
≤ H (A1) + H (A2) + H (A3) .

From this and previous inequality, we obtain the desired characteristic-dependent linear rank
inequality.

We remark that inequality does not in general hold over fields with characteristic two, and
of course taking the columns of a representation matrix of the Fano matroid, we can check
it.

3.1.2 Other access structures

For a m ×m binary matrix B = (Bi) = (eSi
), with Si =

{
j : B(j,i) = 1

}
, we again use the

sets:
B′ := {eSi

: 1 < |Si| < m} ,

B′′ := {eSi
: |Si| = 1} ,

and in this charter we always take

B′′′ := {eSi
: |Si| = m} = ∅.

We suppose that |det (B)| = t > 1, for some t ∈ N.
This type of matrices can be used to define matroid ports which are ideal over some fields

(representable matroids). We consider an access structure on

P :=
{
beSj

: eSj
∈ B′

}
∪ {aei

: i ∈ [m]} ,

such that the following set is a subclass of the collection of minimal authorized sets:

{
(aei

)i/∈Sj
beSj

: eSj
∈ B′

}
∪ {ae1 · · · aem}

and the following set is a subclass of the class of non-authorized sets:

{
(aei

)i∈Sj
beSj

: eSj
∈ B′

}
.

Let PB be the subset of participants indexed by the columns of B. When we can add PB to
the subclass of minimal authorized sets or the subclass of non-authorized sets; we produce at
least two different classes of access structures. In the following sections, each participant is
associated to a vector spaces: aei

is associated to a vector subspace Aei
; bei

is associated to a
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vector subspace Bei
; the dealer p = c is associated to a vector subspace C. Then, the classes

defined above are used as a guide to determine the properties that must be satisfied by the
vector spaces in order to derive some inequalities. The following proposition is obtained using
Lemma 3.1.1. We note that it expresses the fact that ae1 · · · aem , (aei

)i/∈Sj
beSj

are minimal
authorized sets.

Proposition 3.1.7. Let Aei
, for i ∈ [m], BeSi

, for eSj
∈ B′, and C be vector subspaces of a

finite dimensional vector space V such that

- C ≤ A[em] ∩
( ∑
i/∈Sj

Aei
+BeSj

)
, for each j,

- C ∩ A[em]−ej
= C ∩

( ∑
j /∈Si,j 6=k

Aej
+BeSi

)
= O, for all j, eSi

∈ B′ and k /∈ Si .

Then, we have vector subspaces Āei
≤ Aei

, i ∈ [m]; ASj
ei ≤ Aei

for each i /∈ Sj and B̂eSi
≤ BeSi

for each eSi
∈ B′ such that

-
(
Āe1 , · · · , Āem , C

)
is a tuple of complementary vector subspaces,

-
(
A
Sj
ei , B̂eSj

, C : i /∈ Sj
)
, for each eSj

∈ B′, is a tuple of complementary vector subspaces,
- the dimension of any of these subspaces is H (C),
- these subspaces are unique except isomorphism.

3.1.2.1 A convenient linear mapping

We can ensure that the following mapping is well-defined by Proposition 3.1.7.

Definition 3.1.8. We define the following linear mapping

ϕB : C →⊕
i

Āei

(⋂Aei)∩Āei

c 7−→ ϕB (c) := ϕB

(∑
i
ai

)
= ∑

i
[ai](⋂Aei)∩Āei

,

where
Aei

:=
{
ASj
ei

: i /∈ Sj for some j
}

;

we take Aei
as {O}, in case that i ∈ Sj for all j.

Remark 3.1.9. There is a correspondence between Aei
and the subset of columns of B given

by
Bei

:=
{
eSj

: i /∈ Sj
}

;

again, we take Bei
as {O}, in case that i ∈ Sj for all j.

Lemma 3.1.10. For any vector subspaces Ae1 , . . . , Aem, BeSj1
, . . . , BeSj|B′|

and C of a finite
dimensional vector space V over a finite field F such that
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(i) C ≤ A[em] ∩
( ∑
j /∈Si

Aej
+BeSi

)
, for each eSi

∈ B′.

(ii) C ∩ A[em]−ei
= O, for each i.

(iii) C ∩
( ∑
j /∈Si,j 6=k

Aej
+BeSi

)
= O, for all eSi

∈ B′ and k /∈ Si .

Then, [
1 +

∑
i

|Bei
|
]

H (C) ≤
∑
i

|Bei
|H (Aei

) + H (ker (ϕB)) .

Proof. By definition of ϕ, we can derive the inequality

H
(

C

ker (ϕB)

)
≤
∑
i

H
(

Āei

(⋂Aei
) ∩ Āei

)
.

So
H (C)− H (ker (ϕB)) ≤

∑
i

[
H
(
Āei

)
− I

(
Āei

;
⋂
Aei

)]
then

H (C)− H (kerϕB) +
∑
i

∑
eSj
∈Bei

H
(
ASj
ei

)
≤
∑
i

H
(
Āei

)
+

∑
eSj
∈Bei

H
(
ASj
ei

)
− I

(
Āei

;
⋂
Aei

) ,
≤
∑
i

∑
eSj
∈Bei

H
(
Āei

, ASj
ei

)
, [from Lemma 3.1.2].

Since H
(
A
Sj
ei

)
= H (C), ∑

eSj
∈Bei

1 = |Bei
| and Āei

, A
Sj
ei ≤ Aei

, we get

H (C)− H (ker (ϕB)) +
∑
i

|Bei
|H (C) ≤

∑
i

|Bei
|H (Aei

) ,

which implies the desired inequality.

Lemma 3.1.11. For any vector subspaces Ae1 , . . . , Aem, BeSj1
, . . . , BeSj|B′|

and C of a finite
dimensional vector space V over a finite field F whose characteristic does not divide t, such
that

(i) C ≤ A[em] ∩
( ∑
j /∈Si

Aej
+BeSi

)
, for each eSi

∈ B′.

(ii) C ∩ A[em]−ej
= C ∩

( ∑
j∈Si

Aej
+BeSi

)
= C ∩

( ∑
j /∈Si,j 6=k

Aej
+BeSi

)
= O, for all eSi

∈ B′

and k /∈ Si .
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(iii) C ∩ B = O, where B is the sum of all vector subspaces indexed by the columns of B.

Then
ker (ϕB) = O.

Proof. We take c = ∑
i
ai ∈ C such that ϕB (c) = O, where ai ∈ Āi, and we have to show

c = O. By definition of ϕB,

ai ∈ Āei
∩

 ⋂
eSj
∈Bei

ASj
ei

 .
Hence, ai ∈ ASj

ei for all eSj
∈ Bei

, and therefore

∑
j /∈Si

aj ∈
∑
j /∈Si

ASi
ej
.

From (i) in Lemma 3.1.1, there exists bi ∈ B̂eSi
for each eSi

∈ B′ such that ∑
j /∈Si

aj + bi ∈ C.

Hence, ∑
j∈Si

aj − bi =
∑
i

ai −

∑
j /∈Si

aj + bi

 ∈ C ∩
∑
j∈Si

Aej
+BeSi

 ,
but from (ii), this implies ∑

j∈Si

aj = bi for all eSi
∈ B′.

These equations define the following matrix equation

BT


a1
...
am

 =



b1
...

b|B′|

b1

...
b|B
′′|


, (3.1.2)

where the vectors b1, . . . , b|B
′′| are omitted when B′′ is empty; in other case, bi is set to be

ai if ei ∈ B′′. Since char (F) does not divide t = |det (B)|, the matrix BT is non-singular.
Therefore, each ai can be written as a linear combination of b1, . . ., b|B′|, b1, . . ., b|B′′|, which
implies that c ∈ B. From (iii), it follows c = O.

Corollary 3.1.12. For any vector subspaces Ae1 , . . . , Aem, BeSj1
, . . . , BeSj|B′|

and C of a
finite dimensional vector space V over a finite field F, such that
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(i) C ≤ A[em] ∩
( ∑
j /∈Si

Aej
+BeSi

)
, for each eSi

∈ B′.

(ii) C ∩ A[em]−ej
= C ∩

( ∑
j∈Si

Aej
+BeSi

)
= C ∩

( ∑
j /∈Si,j 6=k

Aej
+BeSi

)
= O, for all eSi

∈ B′

and k /∈ Si.

Then, the mapping
φkB : ker (ϕB)→ BeSk

c 7−→ φkB (c) := ∑
j∈Sk

aj = bk

is an one-to-one well-defined linear function for each eSk
∈ B′. Also, if the k-column of B

is a linear combination of the columns of the submatrix of B denoted by BX , k /∈ X. Then,

φkB (ker (ϕB)) ⊆
∑

ei∈BX∩B′′
Aei

+
∑

eSi
∈BX∩B′

BeSi
.

Proof. We can follow line-by-line the proof of the previous lemma to obtain that there exists

an unique bk ∈
( ∑
j∈Sk

Āj

)
∩ B̂eSk

⊆ BeSk
. So φkB is well-defined. Since the written of each

c ∈ ker (ϕB) is unique, φkB is also an one-to-one linear mapping. Also, if the k-column of B
is a linear combination of the columns of BX , from equation (3.1.2), we have that bk is a
linear combination of (bj)j∈BX

∪ (bj)j∈BX
. Therefore, bk ∈

∑
ei∈BX∩B′′

Aei
+ ∑

eSi
∈BX∩B′

BeSi
.

3.1.2.2 Characteristic-dependent linear rank inequalities

Theorem 3.1.13. For a m×m binary matrix B such that B′′′ = ∅ and |det (B)| = t ∈ N,
t > 1. Let Ae1 , . . . , Aem, BeSj1

, . . . , BeSj|B′|
and C be vector subspaces of a finite dimensional

vector space V over F. We have

• The following inequality is a characteristic-dependent linear rank inequality over fields
whose characteristic does not divide t:

H (C) ≤ 1
1 +∑

i
|Bei
|
∑
i

|Bei
|H (Aei

)+H
(
C | A[em]

)
+I

(
C;Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)

+
∑
i

I
(
C;A[em]−ei

)
+

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

+
∑

eSi
∈B′

[
H
(
C | Aej

, BeSi
, j /∈ Si

)
+ I

(
C;Aej

, BeSi
: j ∈ Si

)]
.
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• Fixed k ∈ [m] such that eSk
∈ B′. The following inequality is a characteristic-dependent

linear rank inequality over fields whose characteristic divides t:

H (C) ≤ 1
2 +∑

i
|Bei
|

[∑
i

|Bei
|H (Aei

) + H
(
BeSk

)]
+H

(
C | Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)

+H
(
C | A[em]

)
+

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)

+
∑
i

I
(
C;A[em]−ei

)
+

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

+
∑

eSi
∈B′

I
(
C;Aej

, BeSi
: j ∈ Si

)
+
∑
i

I
(
C;Aej

, BeSi
: eSj

∈ B′, ej ∈ B′′, j 6= i
)
.

The inequalities do not in general hold over fields whose characteristic is different to the
mentioned. As in Theorem 2.1.12, a counterexample would be in V = GF (p)m, take the
vector spaces Aei

= 〈ei〉, ei ∈ [em], BeSj
=
〈
eSj

〉
, eSj

∈ B′, and C = 〈∑ ei〉 Then, when
p divides t, the first inequality does not hold; and when p does not divide t, the second
inequality does not hold.

Proof. To prove the first inequality: let F be a finite field whose characteristic does not
divide t. Let

C〈0〉 := C ∩ A[em] ∩

 ⋂
eSi
∈B′

∑
j /∈Si

Aej
+BeSi

 .
We have

H
(
C | C〈0〉

)
≤ H

(
C | A[em]

)
+

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)
.

Recursively, for i ∈ [m], denote by C〈i〉, a subspace of C〈i−1〉 which is a complementary
subspace to ∑

j 6=i
Aej

in

C〈i−1〉 +
∑
j 6=i
Aej

.

We have
H
(
C〈i−1〉 | C〈i〉

)
≤ I

(
C;Aej

: j 6= i
)
.

Let C [0]
eSj1

= C〈m〉 and recursively, for each i /∈ Sj1 ., denote by C [i]
eSj1

, a subspace of C [i−1]
eSj1

which is a complementary subspace to ∑
j /∈Sj1 ,j 6=i

Aej
+BeSj1

in

C [i−1]
eSj1

+
∑

j /∈Sj1 ,j 6=i
Aej

+BeSj1
.
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We have
H
(
C [i−1]
eSj1
| C [i]

eSj1

)
≤ I

(
C;Aej

, BeSj1
: j /∈ Sj1 , j 6= i

)
.

In a similar way, we define C [0]
eSj2

= C [m]
eSj1

, . . ., C [0]
eSj|B′|

= C [m]
eSj|B′|−1

until to find a subspace

C(0) := C [m]
eSj|B′|

that holds

H
(
C〈m〉 | C(0)

)
≤

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)
.

Recursively, for i, with eSi
∈ B′, denote by C(i), a subspace of C(i−1) which is a complemen-

tary subspace to ∑
j∈Si

Aej
+BeSi

in

C(i−1) +
∑
j∈Si

Aej
+BeSi

 .
We also have

H
(
C(i−1) | C(i)

)
≤ I

(
C(i−1);Aej

, BeSi
: j ∈ Si

)
.

Define by Ĉ, a subspace of C(|B′|) which is a complementary subspace to

B =
 ∑
eSi
∈B′
BeSi

+
 ∑
ei∈B′′

Aei


in

C(|B′|) + B.

We have
H
(
C(|B′|) | Ĉ

)
≤ I

(
C;Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)
.

Hence,
H
(
C | Ĉ

)
= H

(
C | C〈0〉

)
+ H

(
C〈0〉 | C〈m〉

)
+ H

(
C〈m〉 | C(0)

)
+H

(
C(0) | C(|B′|)

)
+ H

(
C(|B′|) | Ĉ

)
≤ H

(
C | A[em]

)
+

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)

+
∑
i

I
(
C;A[em]−ei

)
+

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

+
∑

eSi
∈B′

I
(
C;Aej

, BeSi
: j ∈ Si

)
+ I

(
C;Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)
.
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Since Ae1 , . . . , Aem , BeSj1
, . . . , BeSj|B′|

and Ĉ satisfy hypothesis in Lemma 3.1.11, we have
ker (ϕB) = O. Therefore, as these spaces also satisfy hypothesis in Lemma 3.1.10, it follows

[
1 +

∑
i

|Bei
|
]

H
(
Ĉ
)
≤
∑
i

|Bei
|H (Aei

) .

Using the last two inequalities, we can obtain the described inequality:

H (C)− H
(
C | A[em]

)
−

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)

−
∑
i∈[m]

I
(
C;A[em]−ei

)
−

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

−
∑

eSi
∈B′

I
(
C;Aej

, BeSi
: j ∈ Si

)
− I

(
C;Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)
≤ H

(
Ĉ
)

≤ 1
1 +∑

i
|Bei
|
∑
i

|Bei
|H (Aei

) .

To prove the second inequality, let k ∈ [m] such that eSk
∈ B′ and let F be a finite field

whose characteristic divides t. Let

C [0] := C ∩ B ∩ A[en] ∩

 ⋂
eSi
∈B′

∑
j /∈Si

Aej
+BeSi

 .
We can apply to C [0] the same argument applied to space C〈0〉 in the proof of the previous
inequality, we therefore obtain a subspace C{0} := C(|B′|). Recursively, for i ∈ [m], we denote
by C{i}, a subspace of C{i−1} which is a complementary subspace to ∑

eSj
∈B′,j 6=i

BeSj

+
 ∑
ej∈B′′,j 6=i

Aej


in

C{i−1} +

 ∑
eSj
∈B′,j 6=i

BeSj

+
 ∑
ej∈B′′,j 6=i

Aej

 ;

we have
H
(
C{i−1} | C{i}

)
≤ I

(
C;Aej

, BeSi
: eSj

∈ B′, ej ∈ B′′, j 6= i
)

We define C̃ := C{m}. We note that C̃ ≤ B and C̃ ∩ BY = O, for all BY (where BY is the
sum of all vector subspaces indexed by the columns of the submatrix BY of B), and the
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following inequality is true

H
(
C | C̃

)
= H

(
C | C{0}

)
+ H

(
C{0} | C̃

)
≤ H

(
C | Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)

+ H
(
C | A[em]

)
+

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)

+
∑
i

I
(
C;A[em]−ei

)
+

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

+
∑

eSi
∈B′

I
(
C;Aej

, BeSi
: j ∈ Si

)
+
∑
i

I
(
C;Aej

, BeSi
: eSj

∈ B′, ej ∈ B′′, j 6= i
)
. (3.1.3)

The vector subspaces Ae1 , . . . , Aem , BeSj1
, . . . , BeSj|B′|

and C̃ satisfy hypothesis in Lemma
3.1.10. Thus, [

1 +
∑
i

|Bei
|
]

H
(
C̃
)
≤
∑
i

|Bei
|H (Aei

) + H (ker (ϕB)) . (3.1.4)

On the other hand, as B is singular over fields whose characteristic divides t, without loss
generality, we suppose that there exists a submatrix BX such that eSk

is a linear combination
of the columns of BX . So, from Corollary 3.1.12,

H (ker (ϕB)) ≤ I
(
BeSk

;Aei
, BeSi

: ei ∈ BX ∩ B′′, eSi
∈ BX ∩ B′

)
.

From Lemma 3.1.1 taking W = C̃, Xi = Aei
or Xi = BeSi

according to ei ∈ BX ∩ B′′ or
eSi
∈ BX ∩ B′, we obtain

H
(
C̃
)

+I
(
BeSk

;Aei
, BeSi

: ei ∈ B′′, eSi
∈ B′, i 6= k

)
≤ H

(
BeSk

)
[we note that X ′k ∩ BX = O]

which implies

H
(
C̃
)

+ I
(
BeSk

;Aei
, BeSi

: ei ∈ BX ∩ B′′, eSi
∈ BX ∩ B′

)
≤ H

(
BeSk

)
.

Hence, we have the inequality

H
(
C̃
)

+ H (ker (ϕB)) ≤ H
(
BeSk

)
.

Therefore, from inequality (3.1.4),
[
2 +

∑
i

|Bei
|
]

H
(
C̃
)
≤
∑
i

|Bei
|H (Aei

) + H
(
BeSk

)
.
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From this and inequality (3.1.3), we obtain the desired inequality:

H (C)−H
(
C | A[em]

)
−

∑
eSi
∈B′

H
(
C | Aej

, BeSi
: j /∈ Si

)
−H

(
C | Aei

, BeSj
: ei ∈ B′′, eSj

∈ B′
)

−
∑
i

I
(
C;A[em]−ei

)
−

∑
eSh
∈B′,i/∈Sh.

I
(
C;Aej

, BeSh
: j /∈ Sh, j 6= i

)

−
∑

eSi
∈B′

I
(
C;Aej

, BeSi
: j ∈ Si

)
−
∑
i

I
(
C;Aej

, BeSi
: eSj

∈ B′, ej ∈ B′′, j 6= i
)

≤ H
(
C̃
)
≤ 1

2 +∑
i
|Bei
|

(∑
i

|Bei
|H (Aei

) + H
(
BeSk

))
.

In case that there exists i such that Aei
= O or BeSi

= O, then Ĉ = C̃ = O. We can use
this to obtain that the inequalities are trivial.

Corollary 3.1.14. If some vector space in Theorem 3.1.2 is the zero space, the inequalities
implicated are linear rank inequalities.

3.2 Two classes of inequalities

Example 3.2.1. Let n ≥ 7 and t integer such that 2 ≤ t ≤
⌊
n−1

2

⌋
−1 andM (n, t) = n−t−2.

We remark that the determinant of the Matrix Bt
M(n,t) in Figure 2.2.1 is ±t. So, in Theorem

3.1.13, we take square matrices Bt
M(n,t) with column vectors of the form Bi := Be[M(n,t)]−i

=
c− ei, Ai := Aei

= ei, with c = ∑
j∈[M(n,t)]

ej. We have:

-
∣∣∣det

(
Bt
M(n,t)

)∣∣∣ = t,

-
∣∣∣∣B′Bt

M(n,t)

∣∣∣∣ = t+ 1,

-
∣∣∣∣B′′Bt

M(n,t)

∣∣∣∣ = M (n, t)− t− 1,
- |Bei

| = 1 for i ∈ [t+ 1] and |Bei
| = 0 for i ∈ [t+ 2,M (n, t)].

Therefore, let A1, A2, . . ., AM(n,t), B1, B2, . . ., Bt+1 and C be vector subspaces of a finite
dimensional vector space V over a finite field F. We have

• The following inequality is a characteristic-dependent linear rank inequality over fields
whose characteristic does not divide t:

H (C) ≤ 1
t+ 2

∑
i∈[t+1]

H (Ai) + I
(
C;B[t+1], A[t+2,M(n,t)]

)
+ H

(
C | A[M(n,t)]

)
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+
∑

i∈[M(n,t)]
I
(
C;A[M(n,t)]−i

)
+

∑
i∈[t+1]

[
I (C;Bi) + H (C | Ai, Bi) + I

(
C;A[M(n,t)]−i, Bi

)]
.

• The following inequality is a characteristic-dependent linear rank inequality over fields
whose characteristic divides t:

H (C) ≤ 1
t+ 3

 ∑
i∈[t+1]

H (Ai) + H (B1)
+ H

(
C | B[t+1], A[t+2,M(n,t)]

)
+ H

(
C | A[M(n,t)]

)

+
∑

i∈[M(n,t)]
I
(
C;A[M(n,t)]−i

)
+

∑
i∈[t+1]

[
I (C;Bi) + H (C | Ai, Bi) + I

(
C;A[M(n,t)]−i, Bi

)]

+
∑

i∈[t+1]
I
(
C;B[t+1]−i, A[t+2,M(n,t)]

)
+

∑
i∈[t+2,M(n,t)]

I
(
C;B[t+1], A[t+2,M(n,t)]−i

)
.

Remark 3.2.2. As previous chapter, we again produce a class of
⌊
n−1

2

⌋
− 2 inequalities that

are true over finite sets of primes and another class of
⌊
n−1

2

⌋
− 2 inequalities that are true

over co-finite sets of primes.





4 Applications

In this chapter, we study some linear programming problems associated to closure operators,
networks and access structures. We show some application results of the inequalities obtained
by the methods presented in the previous chapters.

4.1 (k, n)-Solvability problem in closure operators

Closure operators are well known in the literature. They appear in Algebra: in Group Theory
as the subgroup generated by a set of elements in a group, the span of a set of vectors in
Linear Algebra; in Topology as topological closure; among others [7].

Definition 4.1.1. A closure operator on V is a function cl : 2V → 2V that satisfies, for all
X, Y ⊆ V :

• X ⊆ cl (X).

• If X ⊆ Y , then cl (X) ⊆ cl (Y ).

• cl (cl (X)) = cl (X).

The rank of cl is rcl := min {|X| : cl (X) = V }. If there is no confusion, we write r. A
basis B is a subset of size r whose closure is V , and a subset B that contains a basis is called
spanning set.
A matroid can be thought like a closure operator which satisfies the following property:

• For any u, v ∈ V and X ⊆ V , if u ∈ cl (X ∪ v)− cl (X), then v ∈ cl (X ∪ u).

The closure operator of a matroid can be written in terms of its rank function as follows

clM (X) := {v : rM (X) = rM (X ∪ v)} .

It can be proven that clM satisfies the property mentioned above, and any closure operator,
that holds the described property, defines a matroid.

77
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Closure solvability for network coding was initially studied in [19, 20]. In [36], we study
these papers. In the following, we propose a generalization or extension of the solvability
problem of a closure operator. Our propose presents a problem of solvability of a closure
operator on a largest class of partitions; it captures closure solvability as a particular case and
can be connected to the problem of construction of fractional solutions in network coding
and the problem of determining lower bounds on linear information ratios in ideal secret
sharing.

Definition 4.1.2. Let B be a spanning set of cl. A (k, n)-fractional partition solution
of cl related to B over A (or briefly, a (k, n)-partition solution related to B) is a family
F̄ =

(
f̄v
)
v∈V

of partitions on Ark, such that

-
∣∣∣f̄v∣∣∣ = |A|k, if v ∈ B.

-
∣∣∣f̄v∣∣∣ ≤ |A|n, if v ∈ V −B.

-
∣∣∣f̄cl(X)

∣∣∣ =
∣∣∣f̄X ∣∣∣ , for all X ⊆ V .

-
∣∣∣f̄V ∣∣∣ = |A|rk.

A basis is also a spanning set. In case that there exists a (1, 1)-solution over A related to
some basis B, we say that cl is a solvable closure operator over A, see [42, 19, 20, 36].

Definition 4.1.3. The capacity of cl (over A related to B) respect a class of partitions D
is given by

CAD (cl)B := sup
{
k

n
: there exists a (k, n)-solution in D over A related to B

}
.

We omit the subscript B when there is no confusion. The class D is usually taken as the
class of all partitions over a power of A, in such a case the capacity is denoted by CA (cl);
we omit the superscript if there is no confusion. The class D can be also taken as the class
of all kernels of linear functions over a finite field F; in such a case, we denote CFlinear (cl).
Some inequalities:

CAD (cl) ≤ CD (cl) ≤ C (cl) .

Remark 4.1.4. The entropy function of a (k, n)-fractional partition solution satisfies:

• H (v) = k, for all v ∈ B.

• H (v) ≤ n, for all v ∈ V −B.
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• H (X) = H (cl (X)) , for all X ⊆ V .

• H (V ) = rk.

Example 4.1.5. Consider the closure operator on V = [3] given by

U2,3 (X) =
 X, if |X| ≤ 2.

[3] otherwise.

In A = {0, 1}, take F̄ , the three partitions in Example 1.3.14. We have that F̄ is a (1, 1)-
partition solution related to any of its spanning sets. Hence, U2,3 is solvable.

The following is a partial order: cl1 ≤ cl2 if and only if cl1 (X) ⊆ cl2 (X) for all X ⊆ V .
We have other version of Proposition 2 in [19].

Proposition 4.1.6. Let cl1 and cl2 be r-rank closure operators on V . If cl1 ≤ cl2 and cl2
has a (k, n)-partition solution related to B, then cl1 has the same partition solution.

Proof. For any (k, n)-partition solution of cl2, we have f̄X ≥ f̄cl1(X) ≥ f̄cl2(X) = f̄X and
thereby f̄cl1(X) = f̄X . It is easy to note that this family of partitions also holds the other
conditions of a (k, n)-partition solution of cl1.

As shows the following theorem, solvable closure operator extends the concept of secret
sharing matroid; not all solvable closure operator is obtained from a matroid, an example is
shown in [36].

Theorem 4.1.7. [19, Teorema 2] clM is solvable over A if and only ifM is a p-representable
matroid over A.

4.1.1 Linear programming problems in closure operators

Let cl be a closure operator on V . We show a class of linear programming problems whose
optimal solutions are upper bounds on capacities of cl. For simplicity, we write Af ≥ 0 to
mean a list A of constraints that are satisfied by a vector f . Obviously, A can be seen as a
matrix.

Problem 4.1.8. The linear programming problem of a closure operator cl (related to B)
with constraint matrix A is to determine max (f (V )) for tuples of non-negative real numbers
(f (X))X⊆V such that

(i) f (v) = 1
r
f (V ) for all v ∈ B.
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(ii) f (v) ≤ 1
r

for all v ∈ V − B.

(iii) f (X) = f (cl (X)) for all X.

(iv) Af ≥ 0

The optimal solution is denoted by BA (cl)B.

We are interested in adding many constraints to the matrix A in order to get better bounds.
When F̄ is a (k, n)-partition solution of cl and the matrix A enumerates the constraints given
by information inequalities, we can check that

f (X) := 1
rn

H (X)

is a feasible solution of the linear programming problem (see Remark 4.1.4). Therefore, as
f (V ) = k

n
we have

C (cl) ≤ B (cl)B := Binformation inequalities (cl)B .

Proposition 4.1.9. Let cl be a closure operator on V . We suppose that there exist two
different basis B1 and B2 such that B1 ∩B2 6= ∅. Then, CAD (cl)B1

≤ 1.

Proof. Let f be a feasible solution of linear programming problem 4.1.8 with constraints
given by information inequalities. From

∑
v∈B1∩B2

f (v) +
∑

v∈B1−B2

f (v) = f (B1) = f (B2) ≤
∑

v∈B1∩B2

f (v) +
∑

v∈B2−B1

f (v) ,

we have
|B1 −B2|

r
f (V ) ≤ |B2 −B1|

r
.

As this works for any feasible solution and |B1 −B2| = |B2 −B1|, it follows that

CAD (cl)B1
≤ BAinformation inequalities (cl)B1

≤ 1.

In case of matroids, we have the following propositions.

Corollary 4.1.10. IfM is a p-representable matroid over A, then

CA (M) = BA (M)B = BA (M) = 1,

and this capacity is achieved by a p-representation ofM over A.
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Before continuing, we use this notation:

• f (X | Y ) = f (X ∪ Y )− f (Y );

• f (X;Y ) = f (X) + f (Y )− f (X ∪ Y ).

Example 4.1.11. For any index set {A1, A2, A3, B1, B2, B3, C}, consider the following three
constraints:
constraint (a):

2f (A1) + f (A2) + 2f (A3) ≤ f (B1) + f (B2) + f (B3) + f (C)

+2f (A1 | B1, C) + f (A2 | B2, C) + 2f (A3 | A1, B2)

+3f (B2 | B1, B3) + 3f (C | A3, B3) + 5f (B3 | A1, A2) + 5f (B1 | A2, A3)

+5 (f (A1) + f (A2) + f (A3)− f (A1, A2, A3)) ;

constraint (b):

f (C) ≤ 1
3f (B1, B2, B3) + f (C | A1, A2, A3) + f (A2, A3;C)

+f (A1, A3;C) + f (A1, A2;C) + f (C | A1, B1) + f (C | A2, B2)

+f (C | A3, B3) + f (B1 | A2, A3) + f (B2 | A1, A3) + f (B3 | A1, A2)

+ f (A1;A2, A3) + 2f (A1, A2;A3) + f (A1;A2) ; (4.1.1)

constraint (c):

f (C) ≤ 1
4 (f (A1) + f (A2) + f (A3)) + f (C | A1, A2, A3)

+f (C;B1, B2, B3) + f (C | A1, B1) + f (C | A2, B2) + f (C | A3, B3)

+f (C;A2, A3, B1) + f (C;A1, A3, B2) + f (C;A1, A2, B3) .

From Example 1.1.6, Example 2.2.1 and Theorem 3.1.6, these constraints are true when
f is the entropy function and A1, A2, A3, B1, B2, B3 and C are vector subspaces of a finite
dimensional vector space V over a finite field F with characteristic other than 2. If we add to
the matrix A of the linear programming problem 4.1.8, constraints given by characteristic-
dependent linear rank inequalities over fields whose characteristic is 2, then we obtain a linear
programming problem in which the optimal solution, denoted by Bchar(F)=2

lineal (cl) is an upper
bound of Cchar(F)=2

lineal (cl). In analogous way, if we add the constraints given by characteristic-
dependent linear rank inequalities over fields whose characteristic is other than 2 (as the
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Figure 4.1.1: Fano network.

constraints (a), (b) and (c)), we obtain a linear programming problem in which the optimal
solution, denoted by Bchar(F) 6=2

lineal (cl), is an upper bound of Cchar(F)6=2
lineal (cl).

4.1.2 Applications to multiple-unicast network coding

Definition 4.1.12. Let N = (D,S, T ) be a multiple-unicast network. The D̄-digraph of N
is a digraph D̄ =

(
V̄ , Ē

)
, where V̄ = V and Ē = E ∪ {tisi : i = 1, . . . , r}.

The closure operator associated to the class of multiple-unicast networks is defined as
follows.

Definition 4.1.13. Let N = (D,S, T ) be a multiple-unicast network. For each X ⊆ V , let

c0
N (X) := X,

c1
N (X) := X ∪

{
v ∈ V | v− ⊆ X in D̄

}
,

...

ciN (X) := c1
N

(
ci−1
N (X)

)
for 1 < i ≤ |V | ,

and define clN (X) := cmN (X). The application clN : 2V → 2V , that assigns X ⊆ V to
clN (X), is a closure operator on V , called the closure operator of N .

Consider the solvability problem of an operator of the form clN . In [36], we define the
D∗digraph associated to a network deleting r-nodes of V and creating some additional edges.
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Figure 4.1.2: D̄-digraph of the Fano network.

We then define a closure operator, denoted by clD∗ . In [36, Definition 4.21], it was also given
a reduction of clD∗ denoted by cl∗D∗ . It is straightforward to show that cl∗D∗ = cl∗N . So, clN
is solvable if and only if clD∗ is solvable. The following theorem is a stronger version about
(k, n)-solvability.

Theorem 4.1.14. Let N = (D,S, T ) be a multiple-unicast network whose closure is a r-rank
closure operator. Then, N has a (k, n)-fractional solution over A if and only if clN has a
(k, n)-partition solution related to S ∪ T over A.

Proof. With helping of Theorem 1.3.13, we can follow an analogous argument to that pre-
sented in the proof of theorem 4.22 in [36].

As a consequence of the previous theorem:

Corollary 4.1.15. Let N = (D,S, T ) be a multiple-unicast network whose closure is a r-
rank closure operator. Then, N has a (k, n)-fractional solution over A if and only if cl∗N has
a (k, n)-partition solution related to S over A.

The optimal solution of the linear programming problem 4.1.8 for a closure operator of a
multiple-unicast network is an upper bound on the capacity of the network over codes that
hold (v):

Corollary 4.1.16. Let N = (D,S, T ) be a multiple-unicast network that holds the hypothesis
of previous theorem. Then, CD (N ) ≤ BA (clN ), where D is the class of codes that holds
constraint of A.



84 Chapter 4. Applications

Figure 4.1.3: D∗-digraph of the Fano network.

The following proposition was proven in [11, Lemma II.1]. Here we show a proof using
closure operators.

Corollary 4.1.17. Let N = (D,S, T ) be a multiple-unicast network such that there exists
an unique path form some source si to receiver ti. Then, CD (N ) ≤ 1.

Proof. Let vj be an member different to si and ti of the mentioned path. It is enough to
take B1 = S, B2 = (S − si) ∪ vj and cl = clN in Proposition 4.1.9. We emphasize that the
uniqueness of the path guarantees that si ∈ cl (B2).

We show some examples in which we use some characteristic-dependent linear rank in-
equalities. The main purpose is to show that the problem of fractional solvability of a closure
operator is not trivial and future research can be generated.

Example 4.1.18. Consider the Fano network, Figure 4.1.1. In Figure 4.1.2 is shown its D̄-
digraph and in Figure 4.1.3 is shown itsD∗-digraph. It is known that Cchar(F)=2

linear (Fano network)
= C (Fano network) = 1, Cchar(F)6=2

linear (Fano network) = 4
5 , and all these capacities are achieved

by suitable solutions. We remark that Characteristic-dependent linear rank inequality, over
fields whose characteristic is not 2, in Example 1.1.6 implies directly the upper bound 4

5

on the linear capacity of the Fano network over fields whose characteristic is other than
2 [14]. In [11] is shown a (4, 5)-linear solution over field whose characteristic is different
to 2. Using Theorem 4.1.14, we have Cchar(F)=2

linear (clFano network)B = C (clFano network)B = 1,
Cchar(F)6=2

linear (clFano network)B = 4
5 , when we consider the basis B = {A1, A2, A3}. We also remark

that we can use the linear programming problem 4.1.8 associated to the basis {A1, A2, A3}
with the constraint (a) in Example 4.1.11 to get directly the upper bound 4

5 , and this bound
is not imply directly by this constraint if we change the basis of problem of fractional solvabil-
ity. In effect, f (A1) = f (A2) = f (A3) = 1

3f (A1, A2, A3) = 1
3f (A1, A2, A3, B1, B2, B3, C),

f (B1) , f (B2) , f (B3) , f (C) ≤ 1
3 , f (A1 | B1, C) = f (A2 | B2, C) = f (A3 | A1, B2) = 0,

f (B2 | B1, B3) = f (C | A3, B3) = f (B3 | A1, A2) = f (B1 | A2, A3) = 0, then substituting
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these values in constraint (a), we have the inequality 5
3f (A1, A2, A3, B1, B2, B3, C) ≤ 4

3 .
Hence, Bchar(F)6=2

linear (clFano network) ≤ 4
5 . Therefore, we have a non-trivial fractional partition so-

lution of a closure operator and our linear programming problem can prove that this solution
is achievable.

We study the capacity of the Fano matroid (as closure operator) over fields where it is not
representable:

Example 4.1.19. We remark that clFanonetwork � clFanomatroid. We have the equations
C (clFanomatroid)B = Cchar(F)=2

lineal (clFanomatroid)B = 1, where B = {A1, A2, A3}, because the
Fano matroid is p-representable over fields with characteristic 2. We can ask the value
Cchar(F)6=2

lineal (clFanomatroid)B. As Fano matroid also satisfied the constraints of the Fano network,
we have that Cchar(F)6=2

lineal (clFanomatroid) ≤ 4
5 . We note that the (4, 5)-partition solution that was

mentioned in above example does not work for the solvability problem of the Fano matroid.
In effect, a reason is that the accumulation functions f ∗A1 and f ∗B1 cannot determine the
accumulation function f ∗C (in other words, the message of C does not be derived from the
messages of A1and B1). This implies that f̄A1,B1 6= f̄cl(A1,B1). We want to recall that using
constraints (b) and (c) in Example 4.1.11 , we get the upper bounds 8

9 and 20
21 , respectively;

they are not obviously achievable. A lower bound on Cchar(F) 6=2
lineal (clFanomatroid) is 1

3 and this is
obtained by a suitable repetition code of the Fano network (it works in this case).

4.2 Parameters in index coding and network coding

Definition 4.2.1. Let m be a natural number. A m-index coding-network is a network with
sources S and receivers T and a collection [m] of m-intermediate nodes called m-block such
that S × [m],[m]× T⊆ E.

The network in case m = 1 is simply called index coding-network and corresponds to the
index coding instance studied in [4, 2]. In this case, the set of messages indexed by nodes
of t− ∩ S is known as the additional information of t. The message carried on intermediate
node is called broadcast message. In Figure 4.2.1 is shown a general model of the digraph
of an index-coding network. We remark that the network is completely determined by
(S,E∗), where E∗ := {(τ (t) , t− ∩ S) ∈ E : t ∈ T}. To refer to these networks, we write
N = (S,E∗). From this, it is easy to obtain other m-index coding network N [m] = (S,E),
letting E = (S × [m])∪([m]× T )∪E∗. The relationship between N and N [m] is established
by the following lemma.
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Figure 4.2.1: Index coding-network model.

Lemma 4.2.2. Let m ∈ N. A (k, n)-solution of index coding-network N , implies a (mk, n)-
solution of N [m]. Indeed, CD (N [m]) = mCD (N ), where D can be the collection of all the
codes or linear codes.

The broadcast rate for an index coding instance is defined in [2]; this parameter is used
as measure of efficiency of transitions in index coding. It is known that it coincides with the
inverse multiplicative of the capacity of the index coding network associated to the instance.
In the following, we show some results from [5] in our network coding context.

Definition 4.2.3. Let N be an index coding-network, the following is a closure operator on
S associated to N , for each Z ⊆ S,

c0 (Z) := Z,

c1 (Z) := Z ∪ {s ∈ S : ∃ (s, Y ) ∈ E∗, Y ⊆ Z} ,
...

ci (Z) := c1
(
ci−1 (Z)

)
for 1 < i ≤ |S| ,

we define cl (Z) := c|S| (Z).

Example 4.2.4. The butterfly network (Figure 1.3.1) is an index coding network. Its closure
operator cl is equal to U1,2; we note that the closure operator in previous section is different
and equals to U2,3 because these constructions are not the same.



4.2. Parameters in index coding and network coding 87

4.2.1 Linear programming problems in index coding-networks

We use the following linear program problems [5]: Let N = (S,E∗) be an index coding-
network. Consider a (k, n)-solution of N over A. Let X1, . . ., X|S| be independent uniformly
distributed random variables (associated to messages) over Ak and P be a random variable
(associated to broadcast message) over An. Take the base of the entropy function as |A|k.
We have that the following conditions hold:

(i) H
(
X1, . . . , X|S|, P

)
= |S|,

(ii) H (Xi : i ∈ Y | Xj, P : j ∈ Z) ≤ |Y − cl (Z)|, for all Y ⊆ Z.

Therefore, the entropic vector (H (XY , P ))(f(Y )) is a feasible solution of the following linear
programming problem associated to N .

Problem 4.2.5. The linear programming problem of an index coding-network N is to de-
termine minf (∅) for tuples of non-negative real numbers (f (Y ))Y⊆S such that

(i) f (S) = |S|,

(ii) ∀Z ⊆ Y f (Y )− f (Z) ≤ |Y − cl (Z)|,

(iii) f (Y ∪ Z) + f (Y ∩ Z) ≤ f (Y ) + f (Z) for all Y, Z.

The optimal solution is denoted by b (N ). The inverse multiplicative of this value is denoted1

by B (N ).

We have that B is an upper bound on the capacity of N because f (∅) ≤ H (P ) ≤ n
k
,

yielding C (N ) ≤ B (N ). When we study the network coding problem of a network on a
determined class of codes, we can modify the linear programming problem to obtain bounds
on the capacity of the network over those codes. We are interesting in the class of linear codes
over specific fields. So, we can add constraints associated to (characteristic-dependent) linear
rank inequalities in the item (iii) of the linear programming problem 4.2.5. For simplicity,
we again write Af ≥ 0 to mean a list A of constraints that are satisfied by the vector f .

Problem 4.2.6. The linear programming problem with constraint matrix A of an index
coding-networkN is to determine minf (∅) for tuples of non-negative real numbers (f (Y ))Y⊆S
such that

(i) f (S) = |S|,
1in case b = 0, B =∞.
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(ii) ∀Z ⊆ Y f (Y )− f (Z) ≤ |Y − cl (Z)|,

(iii) Af ≥ 0.

The optimal solution is denoted by bA (N ). The inverse multiplicative of this value is denoted
by BA (N ).

We remark that when A enumerates the constraints correspond to (Shannon or non-
Shannon) information inequalities, BA is an upper bound on the capacity of N ; when A

enumerates the constraints correspond to (characteristic-dependent) linear rank inequalities,
BA is an upper bound on the linear capacity of N over the alphabets in which the linear
rank inequalities are valid.

Definition 4.2.7. A linear inequality
k∑
i=1

αivIi
≥ 0, Ii ⊆ [n], is said to be tight, if for all j,

we have ∑
j∈Ii

αi =
k∑
i=1

αi = 0.

For any linear inequality
k∑
i=1

αivIi
≥ 0, let rj be the jth residual weight, ∑

j∈Ii

αi, and rw

be the residual weight,
k∑
i=1

αi. By definition, a tight information inequality is a balanced
information inequality (rj = 0, for all j) [9]. The proof of the following theorem is a
combination of the proofs of [5, Lemma 6.3] and [9, Theorem 1].

Theorem 4.2.8. An inequality of the form

k∑
i=1

αiH (Xj : j ∈ Ii) ≥ 0 (4.2.1)

is a characteristic-dependent (or characteristic-independent) linear rank inequality if and
only if the inequality

k∑
i=1

αiH (Xj : j ∈ Ii | P )−
∑
i

riH (Xi | Xj, P : j ∈ [n]− i) ≥ 0 (4.2.2)

is a tight characteristic-dependent (or characteristic-independent) linear rank inequality and
rj, rw ≥ 0 for all j.

Proof. Let F be a finite field. We suppose that the inequality (4.2.2) is true over F. As
rj ≥ 0, we get ∑

i
riH (Xi | Xj, P : j ∈ [n]− i) ≥ 0. Therefore,

k∑
i=1

αiH (Xj : j ∈ Ii | P ) ≥ 0
and taking P = O, this implies that the inequality (4.2.1) is true over F. Reciprocally, we



4.2. Parameters in index coding and network coding 89

suppose that the inequality (4.2.1) is true over F. Then, it is not hard to show that the
inequality is tight. Also, fixed h, when we take n vector spaces of the form

Xi :=
 〈1〉 , i = h.

O, otherwise.

We have

H (Xj : j ∈ Ii) =
 1, h ∈ Ii.

0, otherwise.

Therefore, from inequality (4.2.1), we obtain that

rh =
∑
h∈Ii

αi ≥ 0.

When we take Xi := 〈1〉 for all i, we obtain that rw =
k∑
i=1

αi ≥ 0. It remains to prove that
the inequality (4.2.2) is true. In [5, Lemma 6.3], it is given a linear mapping

B : R2[n+1] → R2[n]

vJ 7→ vI

with the property that each linear entropic vector in n + 1 variables over F is assigned to
a linear entropic vector in n variables over F. Let α be the vector of coefficients of the
inequality (4.2.1), we remark that

0 ≤ αTBvJ =
(
BTα

)T
vJ =: βTvJ ,

i.e. the vector β gives the coefficients of a linear inequality in n + 1 variables over F. We
affirm that β coincides with the coefficients of the inequality (4.2.2). For commodity, we
describe BT as follows BT = Bn+1Bn · · ·B1, where

(Bi)ST :=



1, S = T ( [n] .
1, S = [n]− i and i ∈ T.
−1, S = [n] and i ∈ T.
0, otherwise.

and

(Bn+1)ST :=


1, S = T ∪ n+ 1.
−1, S = n+ 1.
0, otherwise.
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We note that B1α gives the inequality:

k∑
i=1

αiH (Xj : j ∈ Ii)− r1H (X1 | Xj : j ∈ [2, n]) ≥ 0.

By induction, after applying Bn, we get the inequality:

k∑
i=1

αiH (Xj : j ∈ Ii)−
∑
i

riH (Xi | Xj : j ∈ [n]− i) ≥ 0.

By last, we applying Bn+1 to get the desired inequality.

Definition 4.2.9. The lexicographic product of index coding networks N1 and N2, denoted
by N1 •N2, is a index coding network whose source set is S1×S2. Each receiver t is indexed
by a pair (t1, t2) of receivers of N1 and N2 such that τ (t) = (τ (t1) , τ (t2)) and

t− ∩ (S1 × S2) =
[(
t−1 ∩ S1

)
× S2

]
∪
[
τ (t1)×

(
t−2 ∩ S2

)]
.

The k-fold lexicographic power of N is denoted by N •k.

The broadcast rate in index coding is sub-multiplicative under lexicographic product [5,
Theorem 2.2]. So, we have that the capacity of index coding-networks is super-multiplicative.

Proposition 4.2.10. The capacity of index coding-networks is super-multiplicative under
lexicographic product, i.e., C (N1) C (N2) ≤ C (N1 • N2).

From [5, Theorem 1.1], as the optimal solution bA is super-multiplicative under the lexi-
cographic products, BA is sub-multiplicative:

Theorem 4.2.11. Add in the item (iii) of the linear programming problem 4.2.6 constraints
given by tight characteristic dependent (or characteristic-independent) linear rank inequali-
ties. Then, the optimal solution BA is sub-multiplicative under lexicographic products.

Example 4.2.12. [5] The submodular inequality can be replaced by the following tight
inequality f (A ∪B ∪ C) + f (C) ≤ f (A ∪ C) + f (B ∪ C). The optimal solution B is sub-
multiplicative under lexicographic products i.e., B (N1 • N2) ≤ B (N1) B (N2).

Remark 4.2.13. Let t ∈ N, t ≥ 2. In Example 2.2.1, taking n = 2t+ 3, we have the following
two classes of characteristic-dependent linear rank inequalities:
(a) If char (F) divides t,

H
(
B[t+1]

)
≤ tI

(
A[t+1];C

)
+ [t+ 1]

(
H
(
C | A[t+1]

)
+

t+1∑
i=1

I
(
A[t+1]−i;C

))
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+
t+1∑
i=1

(
H (Bi | Ai, C) + H

(
Bi | A[t+1]−i

)
+ I

(
A[i];A[i+1,t+1]

)
+ I

(
A[i−1];Ai

))
.

(b) If char (F) does not divide t,

H (C) ≤ 1
t+ 1H

(
B[t+1]

)
+ H

(
C | A[t+1]

)
+

t+1∑
i=1

I
(
A[t+1]−i;C

)

+
t+1∑
i=1

(
H (C | Ai, Bi) + H

(
Bi | A[t+1]−i

)
+ I

(
A[i];A[i+1,t+1]

)
+ I

(
A[i−1];Ai

))
.

We want to define linear programming problems, using these inequalities, whose solutions
behave super-multiplicatively under lexicographic products. We apply theorem 4.2.8 to get
two tight characteristic-dependent linear rank inequalities:

Proposition 4.2.14. For any A1, A2, . . ., At+1, B1, B2, . . ., Bt+1, C and P vector subspaces
of V , we get

H
(
B[t+1] | P

)
+

t+1∑
i=1

H
(
Bi | A[t+1], B[t+1]−i, C, P

)
+ (t+ 1) H

(
C | A[t+1], B[t+1], P

)

≤ tI
(
A[t+1];C | P

)
+ [t+ 1]

(
H
(
C | A[t+1], P

)
+

t+1∑
i=1

I
(
A[t+1]−i;C | P

))

+
t+1∑
i=1

(
H (Bi | Ai, C, P ) + H

(
Bi | A[t+1]−i, P

)
+ I

(
A[i];A[t+1]−[i] | P

)
+ I

(
A[i−1];Ai | P

))
(4.2.3)

when char (F) divides t;

H (C | P ) + (t+ 1) H
(
C | A[t+1], B[t+1], P

)
+ t+ 2
t+ 1

t+1∑
i=1

H
(
Bi | A[t+1], B[t+1]−i, C, P

)

≤ 1
t+ 1H

(
B[t+1] | P

)
+ H

(
C | A[t+1], P

)
+

t+1∑
i=1

I
(
A[t+1]−i;C | P

)

+
t+1∑
i=1

(
H (C | Ai, Bi, P ) + H

(
Bi | A[t+1]−i, P

)
+ I

(
A[i];A[t+1]−[i] | P

)
+ I

(
A[i−1];Ai | P

))
(4.2.4)

when char (F) does not divide t.

Proof. Fixed t, we apply Theorem 4.2.8 to the two inequalities in previous remark. We
note that rAi

= 0 for all i, rBi
= 1 for all i, rC = t + 1 and rw = t2 + 5t + 2 in the
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first inequality; and rAi
= 0 for all i, rBi

= t+2
t+1 for all i, rC = t + 1 and rw = 3t2+5t+3

t+1

in the second inequality. In Theorem 4.2.8, an expression of the form H (Xj : j ∈ I) in a
inequality is turned in a expression of the form H (Xj, P : j ∈ I) in the inequality (4.2.2).
Noting that for any X, Y and P vector subspaces, the following identities hold I (X;Y | P ) =
H (X | P ) + H (Y | P )−H (X, Y | P ) and H (X | Y, P ) = H (X, Y | P )−H (Y | P ), we have
that an expression of the form H (Xj : j ∈ I | Xj : j ∈ J) is turned in a expression of the form
H (Xj : j ∈ I | Xj, P : j ∈ J), and an expression of the form I (Xj : j ∈ I;Xj : j ∈ J | P ) is
turned in a expression of the form H (Xj : j ∈ I;Xj, P : j ∈ J). With this in mind, it is
straightforward to verify that the described inequalities in this corollary coincide with the
tight forms of the mentioned inequalities.

We use these inequalities to define two new linear programming problems adding the
constraints imply by each one of theses inequalities to the matrix A of LP with constraint
matrix given by submodular inequality. The linear programming problem which use the first
inequality, we shall call LP-At, and the linear programming problem which use the second
inequality, we shall call LP-Bt. The optimal solutions are denoted by bAt and bBt .

Corollary 4.2.15. The following inequality is a constraint which is satisfied by LP-At, this
is obtained from inequality (4.2.3) and Theorem 4.2.8,

[
t2 + 5t+ 2

]
f (∅) + [t+ 2] f

(
A[t+1]

)
+ (t+ 1)

t+1∑
i=1

f
(
A[t+1]−i, C

)
+ f

(
B[t+1]

)

+2 (t+ 1) f
(
A[t+1], B[t+1], C

)
+

t+1∑
i=1

f (Ai, C) ≤ (t+ 1) f
(
A[t+1], B[t+1]

)
+ f

(
A[t+1], C

)

+t
t+1∑
i=1

f
(
A[t+1]−i

)
+
(
t2 + 3t+ 1

)
f (C) +

t+1∑
i=1

[
f (Bi, Ai, C) + f

(
Bi, A[t+1]−i

)
+ f

(
A[t+1]−[i]

)]

+
t+1∑
i=1

[
f
(
A[i−1]

)
+ f (Ai) + f

(
A[t+1], B[t+1]−i, C

)]
; (4.2.5)

in analogous way, the following inequality is a constraint which is satisfied by LP-Bt, this is
obtained from inequality (4.2.4) and Theorem 4.2.8,

3t2 + 5t+ 3
t+ 1 f (∅) + (2t+ 3) f

(
C,A[t+1], B[t+1]

)
+

t+1∑
i=1

f
(
A[t+1]−i, C

)
+ (t+ 2) f

(
A[t+1]

)

+
t+1∑
i=1

f (Ai, Bi) ≤ (t+ 1) f
(
A[t+1], B[t+1]

)
+ t+ 2
t+ 1

t+1∑
i=1

f
(
A[t+1], B[t+1]−i, C

)
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Figure 4.2.2: Index coding-network from matroid U2,3.

+ 1
t+ 1f

(
B[t+1]

)
+ f

(
C,A[t+1]

)
+ tf (C) +

t+1∑
i=1

[
f (C,Ai, Bi) + f

(
Bi, A[t+1]−i

)]

+
t+1∑
i=1

[
f
(
A[t+1]−[i]

)
+ f

(
A[i−1]

)
+ f (Ai)

]
. (4.2.6)

Also, the optimal solutions of our LP-problems are super-multiplicative under lexicographic
products.

Proof. By Theorem 4.2.11, the optimal solutions of these problems are super-multiplicative
under lexicographic products. Taking P = ∅ in item (iii) of each linear programming prob-
lem, the two described constraints are implicated .

4.2.2 A family of index coding-networks

Let M = (S, r) be a matroid and let J be the set of coloops of M (each element is in
no circuit). Consider the matroid obtained by deletion of J , M | J = (S − J, r |J). The
index coding network associated to M is an index coding-network, denoted by NM, with
source set S − J and E∗M := {(s, C − s) : C is a circuit inM | J, s ∈ C} .This construction
is a modification of the construction given by Blasiak et al. [5, Definition 5.1]. Our network
has a smaller number of sources and receivers because it is completely determined by the
circuits of the matroid. In Figure 4.2.2, it is show an example of the index coding-network
from matroid U2,3. We introduce the following definition in order to study the properties of
these networks.

Definition 4.2.16. An index coding network N ′ = (S,E∗N ′) is called an index coding-
subnetwork of N , if E∗N ′ ⊆ E∗N and there exists a collection {(s, Ss)}s∈S of elements of E∗N ′
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Figure 4.2.3: Fano index coding-network

such that T := ⋃
s∈S Ss is a minimum subset of S, with the property that for all s ∈ S,

(s, Ts) ∈ E∗N , for some Ts ⊆ T .

Proposition 4.2.17. N ′ is a index coding-subnetwork of N if and only if clN ′ ≤ clN and
rclN′ = rclN .

The definition of subnetwork guarantees that the network flow of a subnetwork behaves
like the network flow of the network. Specifically, a solution of N is a solution of N ′ and
b (N ′) ≤ b (N ). Furthermore, the index coding network of a matroidM is an index coding-
subnetwork of the index coding-network obtained from the index coding instance associated
to the matroid M | J of Blasiak et al. With this in mind, the following proposition (and
proof) is a rewriting of [5, Proposition 5.2 and Theorem 5.4].

Proposition 4.2.18. LetM = (S, r) be a matroid. For any index coding-subnetwork N of
the index coding network NM,

B (N ) = 1
|S| − rM

.

Also, ifM is representable over some F, then

C (N ) = CFlinear (N ) = 1
|S| − rM

and this capacity is achieved by a (1, |S| − rM)-linear solution over F.
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4.2.2.1 Applications to network coding

B1 · · ·Bt+1

0 · · · 1
1 ... 1
... ... ...
1 ... 1
1 · · · 0



Figure 4.2.4: Matrix Bt
M(2t+3,t) .

We use index coding-networks from matroids for proving the main theorem of this section.
Fixed t and a finite field F. The matrix Lt in Figure 4.2.4, with entries in F, induces a
representable matroidM (Lt) with ground set

S := {A1, . . . , At+1, B1, . . . , Bt+1, C} ,

some of these are known in [25] for n prime. If we change the field, it is possible that
the vector matroid changed. However, these matroids have some properties in common.
Specifically, certain subsets of the ground set ofM (Lt) are always circuits according to the
characteristic of F divides or does not t. We classify them in two types: The collection

At :=
{
A[t+1]C,A[t+1]−iBi, AiBiC,B[t+1] : i ∈ [t+ 1]

}
is a subclass of circuits in anyM (Lt) over F, when char (F) divides t; and the collection

Bt :=
{
A[t+1]C,A[t+1]−iBi, AiBiC,B[t+1]C : i ∈ [t+ 1]

}
is a subclass of circuits in anyM (Lt) over F, when char (F) does not divide t.

Definition 4.2.19. We define NAt as the index coding with the source set S and

E∗At
:= {(s, C − s) : C ∈ At, s ∈ C} ;

and NBt as the index coding with the source set S and

E∗Bt
:= {(s, C − s) : C ∈ Bt, s ∈ C} .

Example 4.2.20. In Figure 4.2.3, the Fano index-coding network NA2 is illustrated. In



96 Chapter 4. Applications

Figure 4.2.5: Solvable Fano 4-index coding-network

Figure 4.2.5, it is illustrated the network NA2 [4] obtained from NA2 .

Before continuing, the following statements are useful.

Lemma 4.2.21. For any N1 and N2. If N1 has a (n,m)-linear solution and N2 has a
(k, n)-linear solution both over the same field, then N1 • N2 has a (k,m)-linear solution.

Proof. Let f be the function on the intermediate node and ft1 be the decoding function
on a receiver t1 of the desired (n,m)-linear solution of N1, and let g be the function on the
intermediate node and gt2 be the decoding function on a receiver t2 of the desired (k, n)-linear
solution of N2. Define

g′ (x) := (g (xs1×S2))s1∈S1
, for x ∈ Fk|S1×S2|,

and let h = fg′ be the function on the intermediate node in N1•N2. We obtain the broadcast
message h (x) ∈ Fm. Let t be a receiver in N1 • N2 such that τ (t) = (τ (t1) , τ (t2)) and

t− ∩ (S1 × S2) =
[(
t−1 ∩ S1

)
× S2

]
∪
[
τ (t1)×

(
t−2 ∩ S2

)]
.

We have

ft1
(
h (x) , (g (xs1×S2))s1∈t−1 ∩S1

)
= ft1

(
f
(
(g (xs1×S2))s1∈S1

)
, (g (xs1×S2))s1∈t−1 ∩S1

)
= g

(
xτ(t1)×S2

)
.
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Then,
gt2

(
g
(
xτ(t1)×S2

)
, xτ(t1)×(t−2 ∩S2)

)
= x(τ(t1),τ(t2)).

These equations and h define a (k,m)-linear solution of N1 • N2.

Lemma 4.2.22. For k ∈ N. If N has a (1, n)-linear solution, then N •k has a
(
1, nk

)
-linear

solution.

Proof. By induction, case k = 2, take N1 = N2 = N in Lemma 4.2.21 and note that N2

has a (n, n2)-linear solution by repetition of the given solution of N . We get a (1, n2)-linear
solution of N •2. Now, we suppose that case k − 1 holds i.e. N •k−1 has a

(
1, nk−1

)
-linear

solution. Take N1 = N , N2 = N •k−1 in Lemma 4.2.21 and note that N1 has a
(
nk−1, nk

)
-

linear solution by repetition of the given solution of N . Then, N •k has a
(
1, nk

)
-linear

solution.

Theorem 4.2.23. For any k, t ∈ N, t ≥ 2. We have,
(i) N •kAt

[
(t+ 2)k

]
is linearly solvable over a field F if and only if char (F) divides t. Also,

when char (F) - t,

(
t+ 2
t+ 3

)k
≤ CFlinear

(
N •kAt

[
(t+ 2)k

])
≤
(

2t3 + 9t2 + 13t+ 6
2t3 + 9t2 + 13t+ 7

)k
.

(ii) N •kBt

[
(t+ 2)k

]
is linearly solvable over a field F if and only if char (F) does not divide

t. Also, when char (F) | t,

(
t+ 2
t+ 3

)k
≤ CFlinear

(
N •kBt

[
(t+ 2)k

])
≤
(
t3 + 5t2 + 9t+ 6
t3 + 5t2 + 9t+ 7

)k
.

Proof. To prove (i), we have that NAt is an index coding-subnetwork of any NM(Lt) when
char (F) divides t. Using Lemma 4.2.18, we have

C (NAt) = CFlinear (NAt) = 1
t+ 2 ,

when char (F) divides t and this capacity is achieved by a (1, t+ 2)-linear solution over F.
By Lemma 4.2.22 with N = NAt , N •kAt

has a
(
1, (t+ 2)k

)
-linear solution over F. Finally, by

Lemma 4.2.2, N •kAt

[
(t+ 2)k

]
has a

(
(t+ 2)k , (t+ 2)k

)
-linear solution over F which implies

that N •kAt

[
(t+ 2)k

]
is linearly solvable over a field F whose char (F) divides t. We estimate an

upper bound on CFlinear (NAt) when char (F) does not divide t, using the LP-Bt: Let (zS)S⊆V
be a solution of LP-Bt for NAt . From definition of NAt , we have:
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(a) If X is a dependent set in eachM (Lt) (char (F) divides t), then

f (X) ≤ f
(
BM(Lt)
X

)
≤ f (∅) + rM(Lt) (X) .

(b) If X is an independent set in eachM (Lt) (char (F) divides t), then

|X|+ t+ 2 ≤ f (X) ≤ f (∅) + |X| .

(c) If X contains a basis, then

2t+ 3 ≤ f (X) ≤ f (BX) ≤ f (∅) + t+ 1.

We can use constraints implied by these conditions along with the constraint 4.2.6 to get

3t2 + 5t+ 3
t+ 1 f (∅) + (2t+ 3)2 ≤ f (∅) + t+ 1

+ 1
t+ 1 (f (∅) + t) + t (f (∅) + 1) + (t+ 1) (f (∅) + t) + (t+ 1) [3f (∅) + t+ 1] .

Simplifying,
f (∅) ≥ 2t3 + 9t2 + 13t+ 7

2t2 + 5t+ 3 ,

which implies that
bBt (NAt) ≥

2t3 + 9t2 + 13t+ 7
2t2 + 5t+ 3 .

Using super-multiplicative of bBt under lexicographic products,

bBt

(
N •kAt

)
≥
(

2t3 + 9t2 + 13t+ 7
2t2 + 5t+ 3

)k
.

Then

CFlinear

(
N •kAt

)
≤
(

2t2 + 5t+ 3
2t3 + 9t2 + 13t+ 7

)k
.

Hence, using Lemma 4.2.2 with m = (t+ 2)k,

CFlinear

(
N •kAt

(
(t+ 2)k

))
≤
(

2t3 + 9t2 + 13t+ 6
2t3 + 9t2 + 13t+ 7

)k
< 1,

when char (F) does not divide t. To prove item (ii), we have that NBt is an index coding-
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subnetwork of any NM(Lt) when char (F) does not divide t. Using Lemma 4.2.18, we have

C (NBt) = CFlinear (NBt) = 1
t+ 2 ,

when char (F) does not divide t and this capacity is achieved by a (1, t+ 2)-linear solu-
tion over F. Then, we apply an argument as in (i) to get the required linear solution of
N •kBt

[
(t+ 2)k

]
. We estimate an upper bound on CFlinear (NBt) when char (F) divides t using

the LP-At: Let (zS)S⊆V be a solution of LP-At for NBt . From definition of NBt , we have that
this network satisfies conditions (a)-(c) of part (i) when the matroidM (Lt) is taken over a
field F whose char (F) does not divide t. We can use constraints implied by these conditions
along with the constraint 4.2.5 to get

[
t2 + 5t+ 2

]
f (∅) + t (t+ 1) (2t+ 3) + (2t+ 3) + 2 (t+ 1) (2t+ 3) ≤

t (t+ 1) (f (∅) + t) +
(
t2 + 3t+ 1

)
(f (∅) + 1) + (t+ 1) [4f (∅) + 2t+ 1] .

Simplifying,
f (∅) ≥ t3 + 5t2 + 9t+ 7

t2 + 3t+ 3 ,

which implies that
bAt (NBt) ≥

t3 + 5t2 + 9t+ 7
t2 + 3t+ 3 .

Then, using super-multiplicative of bAt under lexicographic products,

bAt

(
N •kBt

)
≥
(
t3 + 5t2 + 9t+ 7
t2 + 3t+ 3

)k
.

Thus,

CFlinear

(
N •kBt

)
≤
(

t2 + 3t+ 3
t3 + 5t2 + 9t+ 7

)k
,

when char (F) divide t. Hence, using Lemma 4.2.2 with m = (t+ 2)k,

CFlinear

(
N •kBt

(
(t+ 2)k

))
≤
(
t3 + 5t2 + 9t+ 6
t3 + 5t2 + 9t+ 7

)k
< 1,

when char (F) divides t.

To prove the lower bounds on the linear capacities over fields in which the networks are
not linearly solvable, we use the network topology in common of NAt and NBt : We add
the message of C to the broadcast message of the (1, t+ 2)-linear solution of NBt over F
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when char (F) does not divide t to obtain a (1, t+ 3)-linear code which is a linear solution
of NAt over this field. Then, the solution is extended to a

(
(t+ 2)k , (t+ 3)k

)
-linear solution

of N •kAt

[
(t+ 2)k

]
yielding

(
t+ 2
t+ 3

)k
≤ CFlinear

(
N •kAt

[
(t+ 2)k

])
.

In an analogous way, we get the respective lower bound on CFlinear

(
N •kBt

[
(t+ 2)k

])
, when

char (F) divides t.

Corollary 4.2.24. Let P be a finite or co-finite set of primes. There exists a sequence of
networks

(
N k
P

)
k
in which each member is linearly solvable over a field F if and only if the

characteristic of F is in P . Furthermore, when char (F) is not in P , CFlinear

(
N k
P

)
→ 0 as

k →∞.

Proof. In the previous theorem, take t = ∏
p∈P

P if P is finite and t = ∏
p/∈P

P if P is co-finite.

The following corollary is a straightforward consequence of the theorem 4.2.23, and it is a
generalization of [5, Theorem 1.2]. The proof is followed taking:

Nt = NAt • NBt ,

and for all k ∈ N,
N k
t := N •kt

[
(t+ 2)2k

]
.

Then, we apply an argument as in the proof of the previous theorem.

Corollary 4.2.25. There exists a infinite collection of sequences of networks

{(
N k
t

)
k

: t ∈ N, t ≥ 2
}

in which each member of each sequence is asymptotically solvable but is not asymptotically
linearly solvable and the linear capacity → 0 as k →∞ in each sequence.

The network coding gain is equal to the coding capacity divided by the routing capacity. In
[18, 33], there are two sequences of networks Ni (k) (i = 1, 2) such that the coding gain→∞
as k →∞. The routing capacities of N k

P and N k
t are

(
t+2
2t+3

)k
and

(
t2+2t+4

4t2+12t+9

)k
, respectively.

Hence, any sequence of networks presented previously satisfies this property.

Corollary 4.2.26. The network coding gain of the sequences
(
N k
P

)
k
and

(
N k
t

)
k
→ ∞ as

k →∞.
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4.3 Linear programming problems in secret sharing

Let Γ be an access structure on a set P with leader p /∈ P . Given a secret sharing scheme

Σ = (Sx)x∈Q=P∪p ,

with access structure Γ, consider the random vector (Sx)x∈Q,

h (X) := H (SX) ,

for every X ⊆ Q. Take
α = 1

h (p) ,

and the polymatroid (Q, f), with
f = αh.

The function f can be seen as a vector (f (X))X⊆Q in RP(Q) that satisfies the following
constraints:

(i) f (p) = 1,

(ii) f (X ∪ p) = f (X) for each X ⊆ P with X ∈ Γ,

(iii) f (X ∪ p) = f (X) + 1 for each X ⊆ P with X /∈ Γ,

(iv) information inequalities.

Therefore, f is a feasible solution of the following linear programming problem.

Problem 4.3.1. [17, 35] For any access structure Γ on a set P with leader p /∈ P , κ (Γ) is
the optimal solution of the linear programming problem is to calculate min (v) such that

(i) v ≥ f (x) for each x ∈ P ,

(ii) f (X ∪ p) = f (X) for each X ⊆ P with X ∈ Γ,

(iii) f (X ∪ p) = f (X) + 1 for each X ⊆ P with X /∈ Γ,

(iv) information inequalities.

We have
κ (Γ) ≤ σ (Γ) .
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If we add linear rank inequalities in (iv), we have a linear programming problem whose
optimal solution, denoted by κ∗ (Γ), holds

κ∗ (Γ) ≤ λ (Γ) .

If we add characteristic-dependent linear rank inequalities, the Problem 4.3.1 gives a optimal
solution that is a lower bound of λ (Γ) of linear secret sharing schemes over specific fields; we
denote this lower bounds by κ∗char(F) (Γ), and the optimal information ratio of these schemes
by λ∗char(F) (Γ).
A known result about κ and matroids is as follows.

Theorem 4.3.2. [26] Let Γ be an access structure. Then, Γ is a matroid port if and only if
κ (Γ) = 1. Moreover, κ (Γ) ≥ 3

2 if Γ is not a matroid port.

Example 4.3.3. In any port Γ of the Fano matroid, we have κ (Γ) = κ∗char(F)=2 (Γ) =
λ∗char(F)=2 (Γ) = 1. They are ideal, see Example 1.4.1. Using the constraint (c) in Example
4.1.11 (this is obtained by the characteristic-dependent linear rank inequality over fields
whose characteristic is different to 2 in Theorem 3.1.6), we directly get λ∗char(F) 6=2 (Γ) =
κ∗char(F)6=2 (Γ) = 4

3 ; this value is achievable by a linear secret sharing scheme [23].

4.3.1 A class of ideal access structures

a1 · · · at+1 b1 · · · bt+1 c

1 · · · 0 0 · · · 1 1
0 ... ... 1 ... 1 ...
... ... ... ... ... ... ...
0 ... 0 1 ... 1 ...
0 · · · 1 1 · · · 0 1



Figure 4.3.1: Family of matrices used to define access structures.

Let t ∈ N, t > 1 and let F be a finite field. We use the port at c of the representable matroid
obtained from the matrix in Figure 4.3.1; the set of participants is P = {a1, . . . , at+1, b1, . . . , bt+1},
with dealer p = c.
When char (F) divides t, the following set is a subclass of the minimal authorized set of

this matroid port:

{a1b1, . . . , at+1bt+1, a1 · · · at+1, a1b2 · · · bt+1, b1a2b3 · · · bt+1, . . . , b1 · · · btat+1}
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and the following set is a subclass of the non-authorized set:

{b1a2 · · · at+1, a1b2a3 · · · at+1, . . . , a1 · · · atbt+1} ∪ {b1 · · · bt+1} .

When char (F) does not divide t, the following set is a subclass of the minimal authorized
set:

{a1b1, . . . , at+1bt+1, a1 · · · at+1, a1b2 · · · bt+1, b1a2b3 · · · bt+1, . . . , b1 · · · btat+1} ∪ {b1 · · · bt+1}

and the following set is a subclass of the non-authorized set:

{b1a2 · · · at+1, a1b2a3 · · · at+1, . . . , a1 · · · atbt+1} .

So, we have defined two types of access structures using matroid ports. Let Ft be an access
structure of the first type and let Nt be an access structure of the second type. We have the
following proposition.

Proposition 4.3.4. σ (Ft) = λchar(F)|t (Ft) = κ (Ft) = κ∗char(F)|t (Ft) = 1 and σ (Nt) =
λchar(F)-t (Nt) = κ (Nt) = κ∗char(F)-t (Nt) = 1.

4.3.1.1 Applications to secret sharing

We now show as some the characteristic-dependent linear rank inequalities presented in
Chapter 6 are used to imply lower bounds on the linear information ratio over specific fields
of the access structures previously defined.

Remark 4.3.5. Taking n = 2t+ 3 in Example 3.2.1, we remark that the following inequality
is a constraint that must be satisfied by linear secret sharing schemes over fields whose
characteristic does not divide t

f (C) ≤ 1
t+ 2

∑
i∈[t+1]

f (Ai) + f
(
C | A[t+1]

)
+ f

(
C;B[t+1]

)
∑

i∈[t+1]

[
f
(
C;A[t+1]−i

)
+ f (C;Bi) + f (C | Ai, Bi) + f

(
C;A[t+1]−i, Bi

)]
;

and the following inequality is a constraint that must be satisfied by linear secret sharing
schemes over fields whose characteristic divides t

f (C) ≤ 1
t+ 3

 ∑
i∈[t+1]

f (Ai) + f (B1)
+ f

(
C | B[t+1]

)
+ f

(
C | A[t+1]

)
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+
∑

i∈[t+1]

[
f
(
C;A[t+1]−i

)
+ f (C;Bi) + f (C | Ai, Bi) + f

(
C;A[t+1]−i, Bi

)
+ I

(
C;B[t+1]−i

)]
.

Theorem 4.3.6. Let Ft and Nt be the access structures previously defined. Then,

λchar(F)-t (Ft) ≥ κ∗char(F)-t (Ft) ≥
t+ 2
t+ 1

and
λchar(F)|t (Nt) ≥ κ∗char(F)|t (Nt) ≥

t+ 3
t+ 2 .

Proof. Taking Ai = ai, Bi = bi and C = c in the linear programming problem 4.3.1 with
the constraints valid over fields whose characteristic does not divide t, The access structure
Ft holds that f (ai) ≤ v, f (ai) ≤ v, f (∅) = 0, f (c) = 1, f

(
c | a[t+1]

)
= f (c | ai, bi) =

f
(
c; a[t+1]−i, bi

)
= f (c; bi) = f

(
c; a[t+1]−i

)
= f (c | ai, bi) = f

(
c; a[t+1]−i, bi

)
= 0. Thus, from

the mentioned inequality, we get

1 = f (c) ≤ 1
t+ 2

∑
i∈[t+1]

f (ai) ≤
t+ 1
t+ 2v.

Therefore, κ∗char(F)-t (Ft) ≥ v ≥ t+2
t+1 . In a similar way, the other inequalities are obtained.

Remark 4.3.7. From [23], λchar(F)-2 (F2) = κ∗char(F)-2 (F2) = λchar(F)|2 (N2) = κ∗char(F)|2 (N2) = 4
3 .

So, in previous theorem, the bound on F2 is tight but the bound on N2 is not tight.
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
Bp1
M(n1,p1) O O

O Bp1
M(n1,p1) O

O O Bp2
M(n2,p2)


Figure 5.0.1: Matrix such that rankp1 = 2M (n1, p1) +M (n2, p2)− 2, rankp2 = 2M (n1, p1) +

M (n2, p2)− 1 and rankp 6=p1,p2 = 2M (n1, p1) +M (n2, p2).

In this dissertation we study two methods for producing characteristic-dependent linear
rank inequalities and show some applications. We explicitly calculate some of them. We
remark that these inequalities are non-Shannon information inequalities. We make the fol-
lowing observations:

1. In the case of the first method, we derive some properties of the inequalities produced.
In Example 2.2.1 are shown some inequalities but we remark that it did not show
all inequalities that the method can produce because there are many suitable binary
matrices that were not included; for example, in Figure 5.0.1 is shown a matrix that
can be used to produce inequalities (the case p1 = 2, p2 = 3, n1 = 3, n2 = 4 produces
the inequality in 21 variables that was shown in Chapter 2). We cannot ensure that
the inequalities are independent of each other; this can be very complicated, in this
direction, Corollary 2.2.2 showed a partial result. In future work, we can study its
independence or dependence.

2. In the case of the second method, we think that the method can still reach a higher
level of presentation for producing more inequalities. A clue can be found in [23];
studying other inequalities obtained by secret sharing schemes. We can also study the
dependence or independence of these inequalities.

3. Future work can be found studying other properties of (k, n)-solvability problem of a
closure operator. A clue can be found by studying that other propositions of [19, 20]
are valid in this context.

105
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4. The linear programming problems studied in this document are used to calculate ca-
pacities or radios of information from networks, closure operators or access structures.
A computer implementation (adding the inequalities presented in this document) can
be very useful; even with the networks and access structures that we have studied. The
importance of such implementation in the classification of access structures on a small
number of participants is remarkable in [3, 17].

5. It would be interesting to construct some linear secret sharing schemes that can achieve
the bounds on the information ratios of the matroid ports in Theorem 4.3.6. The cases
F2 andN2 were fully described in [23]. The technique presented to achieve these bounds
cannot be extended in general to achieve other bounds in theorem 4.3.6 because these
matroids do not have suitable hyperplane circuits; nevertheless, we think that the
(λ, ω)-decomposition for secret sharing schemes in [47, 48] can be useful.
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