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Abstract

The growing trend of specialty coffees brings the possibility of increased income for Colom-

bian coffee producers, who have been recurrently hit by market conditions, climate change,

supplies cost increase and aftermath of violence. A key requirement for specialty coffee,

regardless of the post-production method to use, is the exclusive use of ripe coffee fruits,

which could be red or yellow; all green fruits must be removed.

The design proposed in this thesis is the result of a financial and technical market research,

and implements a low-cost discrete color sensor and commercially available LEDs system

controlled by a high-performance Cortex-M4 core MCU, running algorithms derived from

supervised learning techniques optimized for a MCU, achieving an electrical assembly of

under US$100 when manufactured in high volumes. This work focuses on the increased dis-

criminant capacity of the sensor, achieved by examining different narrowband light source

configurations through intensive computing methods.

While multiple classifiers are studied, the resulting model achieves an accuracy over 99%

using an ensemble LDA, at a rate of more than 10 fruits per second or 72 Kg per hour in a

portable form-factor, by using only 3 discrete LEDs and a light to frequency converter.

Keywords: Coffee Fruits, On-line, Omnidirectional, Inspection, Sorting, LDA, Fea-

ture selection, Embedded processing, SVC, Random Forests, GNB, Lasso, Classifiers,

Feature extraction, Color sorting
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Resumen

La tendencia creciente de cafés especiales abre la posibilidad de generación de ingresos adi-

cionales para los productores de café Colombianos, quienes han sido golpeados recientemente

por condiciones de mercado, cambio climático, incremento de costo de suministros y resul-

tados de la violencia entre otras razones. Un requerimiento clave para cafés especiales, sin

importar el método de post-producción utilizado, es el uso exclusivo de frutos de café com-

pletamente maduros, los cuales pueden ser rojos o amarillos; todos los frutos verdes deben

ser removidos.

El diseño propuesto en esta tesis es el resultado de una investigación de mercado tanto fi-

nanciera como técnica, e implementa un sensor de color discreto de bajo costo, aśı como

LEDs disponibles comercialmente controlados por un procesador de alto desempeño de ar-

quitectura ARM Cortex-M4, ejecutando algoritmos de clasificacion derivados de técnicas

entrenamiento supervisado optimizados para micro controladores, obteniendo un ensamble

electrónico de costo inferior a US$100 en volúmenes altos. El trabajo se enfoca en la capaci-

dad discriminante aumentada del sensor, la cual se obtiene gracias al análisis de diferentes

configuraciones de fuentes de luz de banda angosta a través de métodos de computación

intensiva.

Si bien múltiples clasificadores son utilizados, el model resultante obtiene una certeza supe-

rior al 99% utilizando un clasificador LDA tipo ensamble, a una tasa de clasificación mayor

a 10 frutos por segundo o 72 Kg por hora en un factor de forma portátil, utilizando solo 3

tipos de LEDs discretos y un conversor de luz a frecuencia.

Palabras clave: Frutos de café, omnidireccional, inspección, clasificación, LDA, Se-

lección de caracteŕısticas, Procesamiento embebido, SVC, Bosques Aleatorios, GNB,

Lasso, classificadores, Extracción de caracteŕısticas, Selección por color.
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1 Introduction

1.1 Background and motivation

In Colombia, more than 600,000 families who derive their income from coffee production

are facing increasing economic pressure due to volatile market conditions [1], climate change

[37, 17] and supplies cost increase. Internationally, Colombian coffee is seen as a low-cost

option mostly used for blends. Other coffee exporting countries have managed to position

their coffees as a higher end product, thanks to the adoption of innovative growing and

post-collection techniques [36].

Specialty coffees offers a novel opportunity for growers to improve their economic output

dramatically. The first step in specialty coffee production is pure-mature coffee selection,

which currently does not take place in most Colombian farms, both due to lack of knowledge

and lack of resources. Coffee growers who supported the design of the device agree that

the design and manufacturing of an automated, low-cost coffee fruit sorting machine would

enable and speed up such processes.

In chapter 2, we outline the results of a state of the art review which shows several solutions

for dry coffee sorting, however no commercial solutions are currently available for coffee in

berry state. Patents such as US9909978, US4203522A, US4513868A and US5538142 detail

systems which can sort granular material through color measurement, splitting it in accept-

able and rejects by means of pneumatic ejection. These devices are meant to operate on dry

coffee fruits, and not on freshly picked coffee berries.

Previous works have tackled the problem of coffee fruits sorting reaching accuracies within a

79% to 99% range in a low speed set-up of less than 10 fruits per second. Among the signal

processing and machine learning approaches used we found Bayesian Classifiers and Neural

networks (Sandoval [35]), clustering algorithms (Betancur [4]) and color space transforms

SCT (Montes [25]) and HSV (Ramos [32]) with subsequent region segmentation techniques

to determine maturity. Most of the existing work does not account for the need to conduct

a complete scan of all the coffee fruit faces, now total device cost, which are mandatory

requirement to ensure no false positives are allowed.
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1.2 Objectives

Our main objective is to design a low cost coffee sorting system that can be purchased by

the average Colombian farmer, with accuracy above 99% and a sorting speed of 10 fruits per

second. Chapters 2 and 3 go into deeper detail on the system requirements:

• Low Cost as defined by a business case analysis of Chapter 2

• Over 99% sorting accuracy

• Processing speed over 10 fruits per second

• Two face fruit scan

Chapter 3 details the design decisions made to achieve the low cost objective, such as using

a discrete color sensor instead of CMOS or CCD sensor arrays or cameras, which are not

only expensive by themselves, but also require a more expensive computational platform. In

order to improve the discriminant capacity of the system we propose a multispectral light

system which in turn requires an optical integration system. The product is designed with

high volume manufacturing and patentability in mind.

This thesis describes the design process of a coffee fruit classifier which exceeds the exist-

ing systems performance and meets the product objectives by implementing a supervised

machine learning algorithm and a narrowband multispectral system to maximize the dis-

criminant capacity of a very low-cost discrete sensor and commercially available LEDs.

1.3 Materials and methods

The design process starts with a review of existing devices in order to set a starting point for

a possible complete product architecture. This exhibits common points in their construction.

We then execute a literature review which points towards color as being the best and possi-

bly sole characteristic that can be consistently used to determine maturation stage in coffee

fruits, especially minding that some coffee varieties turn yellow instead of red when fully ripe.

We split the device in three main sections: Dispensing, Capture and Sorting, with the core

of the work focusing on Capture and Sorting. First, a detailed analysis of each of the sys-

tem components takes place. We emphasize the process of selecting the LEDs based on

optimizing the system performance with the given color sensor. Several supervised learning

algorithms are used to execute and validate such selection.

To design the capture system, we built upon existing work and practical results of Montes

[26] and Tamayo [42], and develop a radially arranged set of high power and wide view angle

SMD LEDs, including a power control stage. A set of reflective optical elements are required
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to equalize the radiated power and compensate for the off-center distance of the emitters.

The result is a coherent multispectral light beam built from narrowband LEDs. The data is

acquired using a low-cost light to frequency converter. The decision of which LEDs to use

is the center of the research and discussion of chapter 4.

The development of the classification algorithm takes place in parallel with LED selection.

Multiple supervised machine learning classifiers are trained and evaluated under different

light conditions, selecting those with highest discriminant performance, measured in terms

of precision, recall and classifier certainty. Chapter 5 explores the optimization of the best

performing algorithm with aims at implementing it on a MCU platform. On the following

sections of this chapter we explain the key elements of the sorting system.

As a last step, we conduct an optimization process for the best performing algorithm, in

order to minimize the number of features or characteristics required, thus speeding up the

decision-making process and lowering the computing power required, possibly opening a door

for the use of lower cost micro-controllers.

The resulting prototype is a field-ready device which can sort coffee fruits with a classifying

accuracy over 99% by using only 3 discrete commercially available LEDs and a simple light

to frequency converter controlled by a MCU running algorithms trained by Machine Learn-

ing methods. The system exploits the maximum discriminant capacity of the modest sensor

by using narrowband spectral imaging techniques and machine learning algorithms, making

it cost efficient, portable and reliable.

The Firmware is implemented in C through various state machines and service managers

on top of STM32 Cube MX Hardware abstraction layer, making extensive use of the MCU

DMAs, Interrupt and serial peripherals.

1.4 Thesis structure

This document is divided in 5 Chapters.

• Chapters 1 and 2 introduce the problem and physical constraints.

• Chapter 3 describes the proposed system.

• Chapter 4 goes into deeper detail on the LED and Sensor selection.

• Chapter 5 discusses the optimization of the selection algorithm for MCU implementa-

tion.
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2.1 Coffee in Colombia

In Colombia, more than 600,000 families derive their income from coffee growing. The aver-

age farm size is 2 hectares [12] with average productivity of 3650 Kg per year [3], which as of

February 2020 is sold at COP 7,720 per Kg [14] representing income of US$8,000 per year.

For the last 10 years, Colombian coffee growing families have produced between 800.000

and 1.600.000 bags of 60 Kg or 48 to 96 tons of coffee per month, with more than 80%

of it being exported [13]. Despite the production numbers, farmers consistently report the

income derived from coffee growing is insufficient and unreliable; this has pushed many to

look into alternate crops, as an example, coffee growing is only the 6th in volume in Caldas [5].

2.1.1 Specialty coffees

Specialty coffees are those which preserve physical (size, shape, humidity, appearance, de-

fects), sensorial (smell, visual, taste), cultural-practical (collection, washing, drying) or final

processes characteristics (toasting, grinding, preparation). Farfan [8] mentions these charac-

teristics distinguish Specialty from common coffees and explain why customers are willing

to pay a premium price.

Within specialty coffees, those with rare varieties and special post-collection processes usu-

ally obtain the highest cupping scores, which translates to higher sell cost. Panama con-

sistently produces high quality specialty coffees, and in 2019 the most expensive coffee at

the SCAP Best of Panama bid reached USD$1029/lb [36] with several other coffees exceed-

ing USD$100/lb. These coffees undergo an aerobic natural fermentation processes prior to

pulping. A key requirement for the fermentation process is that green fruits must be fully

removed.

Studies have determined that the highest quality of a coffee cup can be obtained from mature

fruits, while green fruits deteriorate the taste and aroma due to diverse defects such as

ferment and acre. Green coffee fruits have a great negative impact when their concentration

exceeds 2.5% [15]. The lowest number of coffee cup defects was found when using only ripe

fruits [23].
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2.2 Current sorting process

A limited number of coffee growers are currently producing specialty coffees. They are being

forced to implement a manual selection process (Figure 2-1).

Figure 2-1: Colombian coffee growers performing manual selection.

Ripe fruits selection is typically done manually in raised wooden beds (Figure 2-2). The

process is inefficient, error prone and time consuming.

Figure 2-2: Manual selection beds.
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2.3 Business case for a color sorting system

A typical Colombian coffee farm could produce an additional yearly income of US$1,500 by

implementing specialty coffee production methods, the cost of implementing a coffee sorting

device should not exceed this mark, as coffee growers typically struggle to get a credit ap-

proved.

Coffee growers cannot afford expensive sorting systems such as those used for tomatoes, olives

and other fruits. Previous works reached desktop prototypes for color sorting, however none

of them have been built with the objective of being easily and affordably manufactured in

high volumes. A low manufacturing cost could open a door to novel business models such

as equipment rental, a modality known and appreciated by the farmers.

2.4 Coffee fruit characteristics

2.4.1 Color

Marin [23] points that the green and red pigmentation of the coffee fruit skin is dictated by

the concentration of chlorophyll and anthocyanin. The decrease in chlorophyll concentration

is a valuable indicator of the ripening of fruits, as found by Minguez [27] in Olives. Carvajal

[18] confirms color is the most suitable variable to determine the maturation stage of fruits.

Color on coffee fruits progresses from green to yellow and red as the level of chlorophyll

content on the skin decreases. This alters the reflectance characteristics in a non-uniform

manner generating patches. It is necessary to scan the entire surface of the fruit in order to

correctly classify it, as can be seen on Figure 2-3. The maturation process is not uniform

across the fruits of a given tree (Figure 2-4). This results in pickers collecting fruits from

all maturation stages at the same time.

2.4.2 Size

Fruit size varies greatly between varieties. Robusta coffees such as Pacamara and Maragogipe

generally produce larger fruits which can exceed 20mm consistently, while typica and Caturra

have higher density beans. Size also changes with maturation stage. Alvarez [7] reported

that in average fruits grow as they become ripe; however, it is not a reliable prediction of

maturation stage by itself.This is made evident in Figure 2-5. A coffee sorting device must

be engineered to process fruits of varying sizes, regardless of their maturation stage.
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Figure 2-3: Typical mix of coffee fruits with different maturation stages present.

Figure 2-4: Left: Colombia variety coffee tree branch at peak of the season. Right: coffee

collection bucket.

Figure 2-5: Fruits of the same variety and lot, picked the same day exhibit different sizes

regardless of maturation stage.
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2.5 Color classification machine vision systems

Color spectroscopy, both reflective and transmissive, used together with linear regression

analysis have been widely used in the field of inferential metrology as a successful non-

invasive method. Fen [10] used halogen lamps with laboratory spectrometers in the 350nm

to 1000nm range to detect the presence of pesticides in vegetables by reflection, building a

classifier using a neural network derived from a Principal Component Analysis. Zhang. [24]

used a similar set-up and process to determine foliage damage. Several teams have stud-

ied fruits. Wang [45] managed to estimate the vitamin C content in chili peppers and Li

[21] determined the content of soluble solids in oranges using a spectrometer. Multispectral

imaging sensors have been used together with halogen lamps to predict fruit characteristics

such as sugar content in bananas [2], maturation stage and soluble solids in mangoes [33],

depth of impacts in guavas [28] and senescence in apples [41] and prunes [43]. Regression

methods of Partial Least Square Regression and Linear Discriminant Analysis were used in

all of the aforementioned cases.

Other studies have attempted to classify fruits by color using machine vision. Wang [47]

designed a sorting system for melon and fruit product, Putra [31] designed a fruit sorting

tool by means of color sensors using tomatoes, Sidehabi [40] developed a machine vision

system for sorting passion fruit based on ripeness by training SVMs, and Sihombing [30]

developed a laboratory proof of concept for fruit sorting using a discrete color sensor.

Color selection has been deemed as the most efficient method to define the maturation state

of coffee fruits during their development and ripening [18, 23]. Coffee fruits generally ex-

hibit homogeneous and heterogeneous color distribution patterns, as reported by Marin [23]

and Carvajal [18]. Sandoval informs in [35] that during the maturation stage of coffee it is

possible to have fruits where the color is homogeneous over the complete epidermis, while

in other stages there is a soft or steep variation in color. An important percentage of the

processing load of classifiers comes from imperfections in the image acquisition process, such

as background removal, reflection and shadow control [26].

Diverse studies have taken place with the aim of classifying and selecting fruits by maturation

stage using multispectral analysis. The algorithms used have reached selection accuracy of

85% to 97% in controlled environments and with low speeds. Sandoval [35] Obtained classifi-

cation errors between 5.43% and 7.46% using Bayesian classifiers and neural networks, with

processing rates of under 10 fruits per second, Betancur [4] reached 79% true acceptance

rates, while Montes [25] obtained a 91% effectiveness using a Bayesian classifier and Ramos

[32] reached between 94.8 and 99.6% variable efficacy. All previous work was conducted in

laboratory set-ups, none of these units were designed nor optimized for on-line real-time

sorting, and most required expensive CMOS sensor set-ups with computer or FPGA pro-
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cessing. All of the studies referenced to date only inspect one face of the coffee fruits, which

lowers the reliability.

2.6 Existing commercial sorting systems

Several coffee sorting machines can be found in the market such as the FMS2000 (Satake,

Stafford ,USA), Sortex SG1 (SG Solution Co. Ltd., Hefei, China) or HELIUS (TOMRA

Sorting, Denver, USA); however, these can only sort coffee beans (the fruit after its pulped

and dried) which makes them unsuitable for specialty coffees because selection must take

place before the fruits are dried. Other generic sorters such as Color Sorter (Zhongrui Weishi

Optoelectronic Co, Shenzhen, China) can be adapted for fruits at a very high cost. The oper-

ation principle of all devices is similar: fruits or beans fall through slanted surfaces, are then

illuminated by high power white LEDs and scanned by various types of sensors, typically

cameras. The captured frames are analyzed and pneumatic ejection takes place. Due to the

lack of feasible automated options, coffee sorting in Colombia remains a manual, expensive,

tedious, inefficient and error prone process.

2.7 Coffee sorting system requirements

Low cost

Prior research has used illumination set-ups, spectrometers or sensors and data processing

systems which are prohibitively expensive; the existing solutions in the market also greatly

exceed the yearly budget of a typical farmer. A target cost of US$500 is reasonable and

comparable with standard coffee processing tools. The ejection system requires existing off-

the-shelf compressors and electrovalves, which could sum up to US$300 to US$400 when

purchased in high volumes. As a result, the electronic assembly should be produced in

volumes of thousands of units per run for less than COP$350,000 or USD$100.

High sorting accuracy

Academic reports mention that a balanced cup tolerates a maximum rate of false positives

(green fruits classified as mature) of 2.5% [15]. Prior studies have been unable to reach this

target. Furthermore, the specialty coffee purchasers have a 0 tolerance for false positive,

while susceptibility to false negatives (mature fruits classified as green) is more relaxed. The

system is only viable if it is reliable and accurate, thus this is the main design driver. Within

the framework of this document, sorting accuracy is defined in terms of precision (rate of
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True Positive rate) and recall (rate of False Positive rate).

High processing speed

Most of the research to date has emphasized in the feasibility of color sorting, but few pro-

totypes make it to on-line test models, hence processing speed is discarded or not officially

recorded. A coffee sorting system is intended primarily for specialty coffees which are pro-

duced in small lots which must be processed within hours of having been collected. The

classifier is expected to also be used for regular (non-specialty) coffee; it is undesirable to

have a large device which can process thousands of kilograms per hour, as that would need-

lessly increase the cost of a device meant to be used only a few hours per day.

On-line portability

Due to the typical distribution of a coffee farm, it is necessary to relocate the sorting equip-

ment after use. It can also be the case that different coffee sorting locations are established

throughout the harvest period. It is a design imperative that the final device can be manu-

factured in scale, and not only used for laboratory analysis.

2.8 Coffee sorting system components

The literature review shows that most attempts at classifying coffee by maturation stages

use color and no other variables. An evaluation of existing devices shows that typical coffee

sorting systems generally follow the same construction with three main stages in the process

(Figure 2-6):

• Dispensing: Fruits are oriented and aligned with the sensor for scanning.

• Capture: Fruits are detected, illuminated and sensor data is read.

• Sorting: A classification decision is made and separation mechanisms are activated.
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Figure 2-6: High level diagram of the key components of a color sorting system



3 Design of a color inspection and

sorting system

In Chapter 2 we split the typical construction of a sorting system in 3 main parts: Dispens-

ing, Capture and Sorting. We focus our research on the Capture and Sorting, and simplify

the Dispensing stage using a free-falling construction with funnels as found in several other

devices.

3.1 Dispensing

The typical construction of sorting systems for manufacturing applications use centrifugal

alignment drums, conveyor belts or free-falling dispensing. For discrete color sensor applica-

tions, it is necessary to ensure one by one fruit scanning, where fruits are well aligned with

the light sources and the sensor scanning area.

Coffee growers are accustomed to using pulping, sorting and threshing machines which use

funnels to guide free falling fruits or beans towards the processing mechanisms. The coffee

sorting machine will also use this principle during its first iterations.

3.1.1 Fruit speed

To determine the speed requirements, the terminal speed of terminal speed of coffee fruits,

assuming an initial speed of 0, as we can expect from fruits being poured over the intake:

V =

√
(

(2 ∗W )

(C ∗ ρ ∗ A)

Where

W= weight of falling object = 2 gr

ρ= density (of air) = 1.225 kg/m3

A= projected area, of a 7mm radius object

C= drag coefficient = 0.47
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V =

√
(2 ∗ 0.002)

(0.47 ∗ 1.225 ∗ π ∗ 0.0072)
= 6.7m/s

The terminal speed of an average sized coffee fruit would reach 6.7m/s. Due to typical

construction of coffee processing equipment, fruits would see a drop of maximum 1 mt. We

find the speed after a 1 mt fall:

V =
√

2 ∗ g ∗ h

V =
√

2 ∗ 9.8 ∗ 1 = 4.4m/s

The fruits are not expected to reach terminal velocity and the maximum expected speed

is 4.4m/s. Coffee fruits of Arabica varieties range between 5mm to 25mm in diameter; a

10mm separation between fruits can be assumed. For the smallest fruit this means a total

separation of 5mm+ 10mm = 15mm; at a speed of 4.4 m/s a 5 mm fruit would be in front

of the sensor for 1.1 ms. This is a worst-case scenario. The system must be able to obtain

sufficient reads to reach a decision in less than 1ms.

3.2 Capture

3.2.1 Detection System

A fruit detection system is implemented through a contactless IR barrier sensor GP1A57HRJ00F

(SHARP, Tokyo, Japan), which is inexpensive and easy to source and implement. The bar-

rier sensor dimensions and shape can be manually altered, allowing to detect larger fruits.

Attention has been paid to the location and orientation of the IR sensor because it emits

light in the sensitive region of the sensor.

3.2.2 Color Sensor

Color is a representation of the reflectance characteristic of objects at different wavelengths.

Strictly speaking, color is a human construct, as they are simply names assigned to wave-

lengths at which the human eye is sensitive. Color sensors are typically designed to mimic

the response of the human eye to different wavelengths.

CCD or CMOS sensor arrays

Sensor arrays (cameras) capture a large amount of redundant data because the color of the

surface of the fruits typically only contains various tones of red, green or yellow, distributed in

patches. Furthermore, the problem of background and shadow removal lowers the classifiers

performance [42, 26] and increases processing time and required computational power, as they

require expensive and complex CPU or FPGA platforms for data acquisition and processing.
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Discrete color sensors

Commercial discrete color sensors are built as arrays of photodiodes which represent different

spectral regions, referred to as channels, typically red (R), green (G) and blue (B). These

channels are created using a single type of photodiode and multiple band-pass filters. The

filters present non-linearities due to the nature of the manufacturing process and materials

used, typically dyed glass or acrylates, which create uneven and overlapping spectral sensi-

tivity curves.

The use of narrowband illumination techniques can maximize the spectral responsiveness

of a sensor channel if light is emitted only or mostly in the highest sensitivity areas with

lowest inter-channel overlap. These sensitivity areas are sensor-dependent, and usually peak

around blue (450 to 470nm), green (525 to 550nm) and red (650 to 700nm), which are also

the peaks of the human eye sensitivity for different colors.

The programmable color light-to-frequency converter TCS3200 (ams AG, Styria, Austria)

features discrete channels (R, G, B) and allows for fast data acquisition below 1ms given

proper lighting conditions, while offering a varying frequency output interface that can be

read by a high-speed MCU. A custom PCBA is built with four TCS3200 ICs (Figure 3-1),

which allows for independent channel readouts in parallel, eliminating the need to capture

using TDM.

Figure 3-1: Custom made PCBA for TCS3200 implementation. Altium Designer 19

3.2.3 LED Light source arrays

The color sensors implemented feature uneven, non-linear and overlapping spectral respon-

sivity curves. We implement a multi-spectral LED array in order to operate on the spectral

regions of the sensor of higher sensitivity and lower overlap, as is further explained in Chap-

ter 4. Multiple LEDs of the same wavelength must be used in order to reach the required

radiated power. Several factors are relevant for the electro-mechanical design of the light

sources.
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Mechanical considerations

The largest mature fruits measure 20mm in average, to support fruits of this size a 22mm

conductor is used. The fruits will have displacement in two axis with respect to the center

of the sensor array, as a result a light beam greater than 25mm is created so it can fully

illuminate the fruit regardless of position.

Optical considerations

The amount of light reaching the fruit must be maximized in order to ensure highest possible

resolution of the sensor output. It is desirable to use LEDs with highest radiated power

within electrical and financial constraints. Hotspots would result on fruits being incorrectly

assessed as having a greater component of a given color. Thus, uniformity of light must be

guaranteed. This can is achieved by:

• Using multiple LEDs of the same type in symmetric arrays.

• Using of wide emission angle LEDs.

Commercial considerations

Candidate LED wavelength selection is limited by availability of commercial solutions. LED

wavelength is defined by the spectral emission properties of the semiconductors used. Gal-

lium nitride (InGaN) is used in the 395nm to 530nm, Aluminum indium gallium phosphide

(AlInGaP) is normally used in the 565nm to 645nm, and gallium arsenide (AlGaAs) on the

660nm to 680nm region [6].

Electrical considerations

Commercial LEDs operate in the voltage range of 1.5V to 4.5V. Current consumption ranges

from 0.1mA to over 1A. When the operating current rises, the rating of all components must

be increased, resulting in higher component costs. Higher power LEDs allow for greater

resolution of the sensor readings. If intensity saturates the sensors the LED luminous out-

put can be modulated using PWM to reduce their intensity, hence higher power LEDs are

preferred. High power SMD LEDs of up to 2.5W are selected for evaluation.

Light source PCBAs

Light source wavelength modifications produce different classification results, this is due to

the quantum efficiency characteristics of the sensors, and the spectral reflectance of the fruits.

A custom PCBA featuring 13 different wavelength LEDs arranged in a radially symmetric

pattern is designed using Altium Designer 19.3. and prototyped (Figure 3-2).
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The final design features 13 different wavelengths plus a white, for a total of 14 different

emitters. The PCB receives 12V external power from a commercial power supply. It fea-

tures a power driver stage (BJT + FET) which is controlled directly by the MCU connected

through the breakout board.

The LEDs are laid out in a radially symmetrical pattern in order to maximize beam uni-

formity. Even though small footprint LEDs are used, not all emitters can be concentrated

in a small enough area, which means LEDs closer to the center will radiate with higher

power to the target than those on the edges. LED selection is tightly coupled with sensor

performance; thus, the best LED configuration is found using wrapping methods of classi-

fier evaluation through supervised machine learning. Chapter 3 explores the LED selection

process in detail.

Figure 3-2: Custom PCBA for LED light source implementation. Altium Designer 19 View

Light uniformity stabilization system

Due to the size and optical characteristics of the LEDs it is not possible to guarantee an

equal irradiated power from each emitter which generates a hotspot problem as seen in figure

3-4. In order to resolve it, several constructions are studied and reflecting hemisphere and

mirror array offers the best ratio of uniformity to power loss. This configuration can be seen

in Figure 3-4. The reflective arrays were designed in PTC CREO 5.0 and 3D printed. The

internal reflective adhesive material used ensures that all beams of light hitting the target

have previously bounced in at least two surfaces. The multiple bounces lowers the irradiated

power arriving at the fruits by extending the total travel of the light beam, this goes against

the design objectives but it increases the uniformity across different light sources.

Two mirrored structures of light sources and sensors were built in order to ensure scan of

the complete fruit surface (Figures 3-5, 3-6, 3-7). Thanks to the low cost of the sensors and
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Figure 3-3: Hotspots produced by light source PCBA with reflective cone

Figure 3-4: Light source PCBA with reflective baffle and hemisphere
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light emitters it is possible to replicate the array without compromising the cost efficiency

requirements.

Figure 3-5: Light source and sensor acquisition optical system

3.2.4 MCU

The real-time and low-cost requirements can be met without compromise by 32 bit MCUs in

the market from diverse manufacturers. The high-performance ARM Cortex-M4 STM32F429

(STMicroelectronics, Geneva, Switzerland) features the required processing speed and pe-

ripherals to execute sensor captures at intervals shorter than 1ms. The MCU can exceed

100MHz and offers analog and digital input and output interfaces for diverse LED and sensor

control while executing real time data capture and transfer.

Peripherals used (Figure 3-9):

• UART and I2C Serial Interfaces: sensor communication

• USB: PC communication

• ADC: Analog sensor data acquisition

• GPIOs with Interrupts and Capture Compare: Frequency sensor data acquisition

• GPIOs with PWM: LED intensity control
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Figure 3-6: Light source and sensor acquisition optical system. Cross view

• Internal Timers: Capture compare and PWM control

• DMA: Accelerated data capture with lower CPU burden

• Floating point operation unit: Classification mathematical operations.

The illumination LEDs are controlled via internal hardware PWM peripherals so as to mini-

mize the STM32F429I load. The LED control lines are enabled by setting controlling timers.

A separate timer controls each LED so they can all operate at different clock speeds if needed.

The PWM operating frequency is set at 10,000Hz, which is the limit for the given MCU op-

erating frequency for some of the PWM clocks. The PWM duty cycle is adjusted from 0 to

100%, which in turn adjusts the brightness of the LEDs.

One MCU UART serial port is connected to an FTDI UART to USB converter cable TTL-

232R-3V3; this interface sends and receives serial data to a PC serial (COM) port.

A PC graphical user interface for hardware control and data acquisition in C++ is developed

using Embarcadero Builder C++ 10.3. It serves as a control panel which allows configura-

tion of system parameters and trigger transfer and reception of serial commands to MCU,

allows selection of LEDs to be used, receives LED and sensor data and plots the results, and

parses and saves capture data in readable text format for further analysis.
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Figure 3-7: Light source and sensor system top view
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Figure 3-8: MCU processing requirements vs. STM32F429 features

Figure 3-9: Block diagram of STM32F429I peripherals used
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The imported data is then analyzed in Python 3.7 using scikit-Learn v0.20.3 [29], which

allows for capture plotting, data mining and classifier training. The objective is to train the

classifiers to recognize specific colors, hence the fruits are selected to have uniform coloration.

Each fruit sample is labeled as green, yellow and red. Some coffee varieties such as Yellow

Caturra remain yellow as they become ripe (Figure 3-10) making it confusing to implement

the commonly used terms of under mature, mature and over-mature.

Figure 3-10: Yellow Caturra variety coffee fruits, which remain yellow after being fully ripe.

3.3 Sorting

3.3.1 Classifiers training

The acquired data is imported, smoothened and filtered for outliers, as classifiers are highly

sensitive to noise. Synthetic data points are generated to accelerate the algorithm conver-

gence through the batch learning process. Feature extraction of non-linear combinations are

produced so linear regression classifiers can classify nonlinearly separable datasets.

The data is separated in a train and test subset using a 0.75 : 0.25 split, so each classifier is

cloned and trained on 75% of the data and then evaluated on the remaining 25%. Throughout

the process, dataset sizes fed to each classifier are optimized through learning curve analysis.

Different configurations of hyper parameters are tested through 5-fold cross validation using

Scikit GridSearchCV which yields the best performing configuration. The complete pipeline

is plotted on Figure 3-11

Different types of classifiers are trained, including LDA [38], Näıve Bayes, Random Forests,

Linear Regression with L1 penalty (Lasso) [44] and Support Vector Machines. Multiple
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Figure 3-11: Data acquisition and Classifier training pipeline

inter-class solution strategies are analyzed: multiclass, one vs. rest and one vs. one. LDA is

selected as the main classifier thanks to its training speed and implementation complexity.

Chapter 4 describes the classifier training process in detail.

The features used are further analyzed in order to lower the complexity of implementation,

by removing the characteristics which add the least amount of information to the decision-

making process. Two features suffice to obtain accurate classification; however, the best

overall LDA performance is achieved with 14 features. Chapter 5 describes the feature se-

lection process in detail.

A LDA classifier with one vs. one multiclass solution strategy consistently ranks high in sep-

aration accuracy. Figure 3-12 shows perfect accuracy (dashed line) throughout 30 prediction

cycles of 40 fruits per class. The colored lines show classifier certainty on the prediction of

each class.

3.3.2 Classification

After optimization, the classifiers decision making function is implemented on the STM32F429I.

When a new fruit is detected, the sensor data is obtained and filtered, the characteristics

of interest are calculated and three different classifiers (one per class) are evaluated. The

analysis and decision module compares the result and confidence of each of the classifiers
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and determines the result (Figure 3-13).

Figure 3-13: Visual inspection capture, analysis and decision flow.

3.3.3 Ejection driver system

The pneumatic electro-valve ejection system is outside the scope of this document. A a

simple BJT and FET power control stage is used to trigger a high speed valve which permits

a jet of air to re-direct sorted fruits.
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discriminant capacity

A standard color analysis set-up is comprised of a light source, which can be a multispectral

one where multiple different narrowband LEDs are activated at different time intervals, or

a wide-band one where a single white light source is kept activated, and a color sensor or

spectrometer. In the aforementioned cases, the efficiency of the system is derived from its

capacity to extract information at key wavelengths where the chemical composition of the

object being scanned presents different reflectance characteristics.

Discrete color sensors are manufactured based on a photodiode that converts light to current.

Photodiodes are designed to be sensitive in the range of wavelengths visible to the human

eye. Optical filters can be used to obtain different color channels, these filters are built

using glass or plastic elements installed in front of the photodiode, or dyes deposited on

the photodiode surface. The frequency response of the filters varies both in bandwidth and

magnitude (Figure 4-1). Furthermore, the manufacturing process has tolerances which can

produce value deviations from those referenced in the sensors literature.

Figure 4-1: TCS3200 photodiode spectral responsivity.
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A typical white LED presents asymmetric radiation peaks in several wavelengths (Figure

4-2), which can coincide with overlapping regions of the sensor channels.

Figure 4-2: CLP6B-WKW White LED luminous intensity vs Wavelength profile.

The use of narrowband LEDs allows fine tuning of specific wavelengths and bandwidths to

ensure that application-specific captures are executed while exciting only one sensor channel

at a time.

4.1 Candidate sensors

Without loss of generality and in order to simplify the data analysis and processing require-

ments complexity and time, discrete color sensors are selected instead of CMOS or CCD

arrays. Table 4.1 shows the candidate sensors.

AS72622 (ams AG, Styria, Austria) and VEML6040 (Vishay Intertechnology, Malvern, USA)

are color sensor with analog to digital conversion stages and APS5310 (Kingbright, Taipei,

Taiwan) is a color photodiode sensor with analog output, but it is TCS3200 (ams AG, Styria,

Austria) a color to frequency converter, the selected device due to capture speed. Existing

PCBAs are used for evaluation of AS7262 and VELM6040 (Figure 4-3). Custom PCBAs

are designed and prototyped for TCS3200 and APS5310 (Figure 4-4).

4.2 Candidate LEDs

Although definitions vary through different authors, a LED with spectral bandwidth of less

than 30nm is usually classified as narrowband. LED availability and die development are
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Figure 4-3: AS7262 development kit.

Figure 4-4: TCS3200 and APS5130 custom PCBAs. Altium Designer 19 View.

driven by commercial needs, which is in turn limited by the properties of the chemical compo-

sitions used to achieve emissions on specific wavelengths. A subset of available narrowband

LEDs spanning from 390 to 950 nm are initially selected for the study (Table 4.2).

A LED driver PCB is designed using discrete FET transistors where the LEDs are arranged in

a radial pattern to ensure maximum light beam collimation, reducing the effect of generated

hotspots, and a reflective structure with an integrating hemisphere are built in order to

equalize the light irradiation density of the different LEDs, producing a more even light

source beam. After initial light power and photodiode sensitivity tests, 7 LEDs are selected

for further tests (Table 4.2).

4.3 LED selection strategy

A wrapper optimization method is one where the best system configuration is assessed by

evaluating multiple set-ups and comparing the resulting classification scores. The objective

is to find the wavelength or combination of wavelengths which produce the highest accuracy

score, so it can be implemented on a MCU platform. This process is sensor-dependent. If

the color sensing system or the light sources are modified, then the process loses validity and

must be run again.
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WL Part Number Manufacturer

Optical

Power

(lm)

View

Angle

(deg)

Spectral

Bandwidth
Vf (V) I (mA)

Electr.

Power

(mW)

470 XPEBBL-L1-0000-00302
Cree Inc.

(Durham, USA)
49 135 ∼15nm 3.1 350 1085

500 L1C1-CYN1000000000
Lumileds (San

Jose, USA)
69 170 30nm 2.6 350 910

525 XPEBGR-L1-0000-00F02
Cree Inc.

(Durham, USA)
126 135 20nm 3.2 350 1120

590 XPEBAM-L1-0000-00801
Cree Inc.

(Durham, USA)
77 130 10nm 2.2 350 770

613 XPEBRO-L1-R250-00B02
Cree Inc.

(Durham, USA)
97 130 5nm 2.2 350 770

660 XPEEPR-L1-0000-00901
Cree Inc.

(Durham, USA)
36.3 130 20nm 2.1 350 735

Table 4-3: Candidate LEDs after minimum radiated power testing.

Classification algorithms will obtain different results depending on the physical conditions

of the samples, which are in turn modified by the type of light source used. A performance

scoring system must be defined to quantify the classifiers performance across different light

source set-ups, using the geometric means of precision and recall as well as the classifier level

of prediction confidence.

Captures of 120 fruits, representing 3 maturation stages are made under 127 combinations

of light sources available at maximum power. Data is imported, smoothened and filtered

for outliers. The highest value of each capture is used. Synthetic data points are generated.

This accelerates the batch learning algorithms convergence. Feature extraction combinations

are used. This enables linear regression classifiers (such as lasso) to classify non-linearly

separable datasets.Results are scored and analyzed in order to determine the light sources,

classifiers and features with greatest classifying capacity.

4.3.1 Classifiers training

A multitude of classifiers is available through state of the art software packages, and predict-

ing which of them would have the best performance through diverse datasets is not trivial.

Different classifiers are selected (Table 4.3.1) and trained (Figure 4-5) in order to maximize

the possibility of a given light configuration to provide a high accuracy separable dataset .

Näıve Bayes Classifier (GNB)

This simple yet robust classifier is used as a benchmark. Due to the Gaussian nature of

the data it is expected to obtain good separation results. A GNB is a simple to implement

probabilistic estimation, and a partial implementation using Mahalanobis distance computed
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Classifier
Training

complexity

Classifying

performance

Feature

importance

rank

MCU

implementation

complexity

GNB Low
Good with Gaussian

distributed variables
No Mid

Lasso Low
Linearly separable

only

Yes

(with

shrinkage)

Low

LDA Low Flexible Yes Low

RF High Flexible Yes High

SVC High
Good with not

linearly separable
No High

Table 4-4: Classifiers used for LED selection

from covariance matrices is trivial, which results appealing when considering the need to

implement the final algorithm on an MCU

Linear Discriminant Analysis Classifier (LDA)

The linear discriminant analysis implements space transformations that maximizes the within

class convergence and between class separation. It uses the Fisher score to assess accuracy

and can be used to compare performances for different configurations. LDA assigns weight

or importance to the coefficients (features) used during training, which permits evaluation

and reduction to simplify the final classification algorithm through feature selection.

Lasso (Linear regression with L1 penalty)

Lasso is a linear regression classifier with shrinkage, which penalizes non-contributing co-

efficients, making them zero, resulting in a feature selection process at the same time. Its

implementation complexity and feature importance are similar to those of LDA, with the

added benefit of automatic feature selection through embedded reduction.

Random forests (RF)

One of the most robust state of the art classifiers are the random search forests. It is expected

to produce close to ideal results for any given dataset. RFs are more complex to implement

and substantially more power intensive. RFs also implement coefficient importance.
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SVC

Support vector machine classifiers use various processing Kernels to achieve separation of

non-linearly-separable features in the original feature space. This makes them a flexible op-

tion, and while they are the most computer intensive to train, and their learning complexity

increases exponentially with the dataset size, they remain a high capacity classifier.

Figure 4-5: Data acquisition, processing and classifier training pipeline

When classifiers are trained and analyzed, the individual class performance is assessed, thus

a single classifier is interpreted as 3 different classifiers, one per class.

4.3.2 Data acquisition

For the experiment, 120 coffee fruits representing and equally distributed along 3 different

maturation stage classes, are selected (Figure 4-6).

Some coffee such as Yellow Caturra and Yellow Bourbon varieties remain yellow as they

become ripe, hence the use of maturation terms (under mature, mature and over-mature) is

discouraged and instead each fruit sample is labeled as green, yellow and red.

A given combination of LEDs is turned on, and the fruits are dropped in front of the light

source and sensor arrays. As the fruits pass in front of the sensor a bell-shaped graph is

generated (Figure 4-7). The maximum values are reached when the fruit has the highest
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Figure 4-6: Sample subset of fruits used for tests.

alignment with the sensor. With proper synchronization, the timeframe of 5ms of highest

alignment can be obtained (Figure 4-8). The captures contain information on Clear, Red,

Green and Blue channels of the TCS3200 sensor. As expected, the data sets produced by

different light sources vary greatly (Figure 4-9).

Figure 4-7: Sensor capture of a coffee fruit through a 60ms interval.

4.3.3 Data Noise

Several different factors contribute to data noise.
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Figure 4-8: Sensor capture of a coffee fruit depicting the 5ms of highest alignment.

Figure 4-9: Green fruits, various sizes with ’473 500 525 590 613 625 660’ light source
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Sensor size

For the TCS3200 implementation 4 sensor intergrated circuits are used per PCB in order

to capture the 4 channels in parallel. This maximizes data acquisition speed, but yields a

total array area of 15mm x 15mm. When captures are made, the fruit will not be precisely

centered with all sensors at the same time, this results in some channels capturing higher

value readings than others.

Fruit alignment

The fruits can measure up to 22mm, this requires a large conductor. Smaller fruits (5mm

or maybe less) have a wide range of X and Y movement with respect to the sensor. While

the light source system is designed to maximize uniformity, there will still be variations

in captured values if the fruit is in the centered to the sensor, compared to the fruit being

towards the edge. This is exactly the same effect as that described on the previous subsection.

To compensate for these effects, the maximum independent value per channel is used per

capture, regardless of the moment in time when the capture was made, as it is expected to

represent the moment of highest alignment.

Fruit speed

Various factors such as fruit size, quantity, density and humidity can impact the speed of

the fruit when it passes in front of the sensor. Faster fruits (usually smaller) produce lower

intensity readings, as the sensor has less time to reach stability.

Fruit size

Fruit size not only impacts speed but also the absolute reading values, as larger fruits reflect

more light toward the sensor than smaller fruits. Fruit size is the greatest contributor to

variance in within-class readings. Different size fruits of the same class stretch over an axis

where the R, G, B, C ratios remain consistent (Figure 4-10). Noise cannot be predicted

nor fully suppressed because of its nature, but data can and must be filtered, as outliers can

severely impact classifier performance.

4.3.4 Data Filtering

Classifiers are highly sensitive to outliers either due to training corruption when outliers dis-

tort population means and covariance, or evaluation errors when outliers are used to validate

the classifier results yielding false negatives.
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Figure 4-10: Small vs Large fruits with 473 525 660 light source.

The Gaussian nature of the data implies that outlier removal filtering can be efficiently

achieved by training a robust covariance (elliptic envelope) detector before any further pro-

cessing takes place. Covariance matrices are obtained per class, then, using a contamination

factor of 5%, the samples with largest Mahalanobis distance to class centroids are removed.

4.3.5 Data Augmentation

Regression classifiers benefit from the use of synthetic data as this can speed up convergence

by compensating for the low number of class samples. Two data augmentation methods are

explored: generation of data using k-neighbors means, where a new data point is created

from the means of every 2 existing points, and Generation of data using Gaussian model,

built based on covariance matrices and random samples are generated from the distribution

obtained.

4.3.6 Feature Extraction

Additional features are generated from the initial 4 sensor channel values, obtaining a total

of 50 different features as non-lineal combinations of the base characteristics and color space

transformations (HSV, SCT, CIExy). The complete list can be seen on Table 4.3.6.
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ID Name Formula ID Name Formula

0 X max clear C 25 X n red over green R/G

1 X max red R 26 X n red over blue R/B

2 X max green G 27 X n green over red G/R

3 X max blue B 28 X n green over blue G/B

4 X max red over green R/(G+0.00001) 29 X n blue over red B/R

5 X max red over blue R/(B+0.00001) 30 X n blue over green B/G

6 X max green over red G/(R+0.00001) 31 X n red times green R*G/Cˆ2

7 X max green over blue G/(B+0.00001) 32 X n red times blue R*B/Cˆ2

8 X max blue over red B/(R+0.00001) 33 X n green times red G*R/Cˆ2

9 X max blue over green B/(G+0.00001) 34 X n green times blue G*B/Cˆ2

10 X max red times green R*G 35 X n blue times red B*R/Cˆ2

11 X max red times blue R*B 36 X n blue times green B*G/Cˆ2

12 X max green times red G*R 37 X n red squared Rˆ2/Cˆ2

13 X max green times blue G*B 38 X n green squared Gˆ2/Cˆ2

14 X max blue times red B*R 39 X n blue squared Bˆ2/Cˆ2

15 X max blue times green B*G 40 X n red cubed Rˆ3/Cˆ3

16 X max red squared Rˆ2 41 X n green cubed Gˆ3/Cˆ3

17 X max green squared Gˆ2 42 X n blue cubed Bˆ3/Cˆ3

18 X max blue squared Bˆ2 43 H HSV - H

19 X max red cubed Rˆ3 44 S HSV - S

20 X max green cubed Gˆ3 45 V HSV - V

21 X max blue cubed Bˆ3 46 Alpha SCT - Alpha

22 X n red R/C 47 Beta SCT - Beta

23 X n green G/C 48 CIE x CIE x

24 X n blue B/C 49 CIE y CIE y

Table 4-5: Features generated through extraction process.
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Figure 4-11: Original (o) and Clean (x) data before and after contamination removal pro-

cess, with removed points marked by arrows.

4.3.7 Classifier training strategy

A multiclass solution strategy refers to how the classifier should attempt to define the like-

lihood of a sample belonging to any pair of classes. Different multiclass solution strategies

increase the classifier performance, particularly in non-linearly separable cases. The solution

strategies are implemented as custom classifier class wrappers on top of the standard Scikit

methods.

• Multiclass (all vs all)

• One vs Rest (OvR)

• One v One (OvO)

In total 15 classifiers of 5 types with 3 solution strategies are trained using the K-fold

technique with 0.75 to 0.25 train to test ratio. Each classifier is cloned and trained on 75%

of the data and evaluated on the remaining 25%. The hyper-parameters are independently

tuned for each classifier and each different configuration is cross validated 5 times using

Scikit GridSearchCV, which selects the best performing classifier.

The training process described is repeated 10 times and the worst-case results are used,

which prevents over-fitting.

4.3.8 Sample size analysis (learning curve)

Training 15 different classifiers with 127 configurations of light sources over multiple data

folds and with 5 times cross validation is a resource intensive task. Furthermore, using
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synthetic data points can lead to over-fitting. To address these concerns a learning curve

analysis can be executed in parallel with classifiers training. The learning curves are analyzed

both per class and averaged. The results help in finding the optimal sample size. This

analysis shows that GNB and SVC do not benefit from data augmentation, while LDA,

Lasso and RF do.

4.4 Performance evaluation metrics

The area under the curve of a receiver operating characteristic plot score is useful in assessing

optimality a non-separable datasets and has thus gained wide approval in recent years (Figure

4-12); however, in fully separable datasets, it is common to find perfect scores.

Figure 4-12: RoC plot and AUC index for a fully separable dataset with perfect accuracy

A different performance scoring metric is proposed. Each classifier training run yields a

confusion matrix. From such confusion matrix, the geometric mean of precision and recall

(Fowlkes Mallows index, FMI) can be obtained per class. This is the FMIaccuracy.

FMIaccuracy =
TP√

(TP + FP ) ∗ (TP + FN)

Where
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FMIaccuracy= Geometric mean of precision and recall

TP= true positive count

FP= false positive count

FN= false negative count

To analyze the multiclass problem, a probability confusion matrix can be built. For each

classifier, the probability of each decision made is computed. The columns of the confusion

matrix represent the real values and the rows represent the probability of the predictions

Based on the probability confusion matrix, a FMIprobability can be obtained. This probability

represents the confidence of the predictions per class.

FMIprobability =
TPprobability√

(TPprobability + FPprobability) ∗ (TPprobability + FNprobability)

Where

FMIprobability = geometric mean of precision and recall of the probability confusion matrix

TPprobability = true positive sum of probability confusion matrix

FPprobability = false positive sum of probability confusion matrix

FNprobability = false negative sum of probability confusion matrix

The FMIweighted per class is obtained as the multiplication of the accuracy FMI score and

the FMI probability per class

FMIweighted = FMIaccuracy ∗ FMIprobability

This score captures both the accuracy (as the mean of precision and recall) and the confidence

of the classifier. In other words, it not only scores whether a classifier can label test data

accurately, but also how high the confidence is (how much margin of error exists).

4.5 Classifier performance comparison

The weighted score of the classifiers is plotted per class for every wavelength (Figure 4-13,

Table 4-6). The light configurations are sorted in descending order of performance. The

chart below shows the minimum (worst-case) weighted score across 10 different runs with

different splits over the same wavelength. A heat map matrix is used where darker tone

represents higher weighted score (accuracy). The classifiers are grouped together and results

are split per class.
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Figure 4-13: Minimum weighted score (FMI weighted) of 3 classes for 15 classifiers through

127 different light source configurations after 10 cycles. Columns from left

to right: GNB, LDA, Lasso, RF, SVC, all with Multiclass, OvO and OvR

strategies for Green, Red and Yellow.
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Light sources FMI accuracy FMI weighted

500 525 660 1.00000000 0.88301608

473 500 525 625 1.00000000 0.87022115

473 525 590 625 0.99999998 0.80164741

473 500 590 613 0.99999982 0.76443844

473 525 660 0.99999783 0.82279834

473 500 590 625 0.99999725 0.78090578

473 525 590 660 0.99996925 0.85017478

500 590 660 0.99994971 0.85564721

473 500 613 0.99993132 0.71431167

473 525 625 660 0.99987944 0.81068977

Table 4-7: Best light source configurations for all classifiers

Certain light configurations such as 525 590 625nm exhibit poor performance with the base-

line GNB classifier, but it still performs well with other classifiers; this supports the need

for multiple classifier training in order to assess overall performance.

All classifiers exhibit much better separation of Green compared to Yellow and Red. The

best wavelengths are those that maximize Red and Yellow separation. Overall LDA classi-

fiers perform above average.

Some independent white spots suggest that at least one of the training runs had very poor

performance, which can be explained by noise or data corruption. Larger patches can expose

real low performance problems.

4.5.1 Best overall light source configurations

Light source configuration scores per class are averaged and sorted. An average score of 1,000

shows the classifier is able to perfectly separate all 3 classes. The second sorting parameter

is the weighted score which allows to sort the light configuration by the level of certainty of

their predictions (Table 4-7).

Only two light source configurations obtained perfect separation results with at least one of

their classifiers for all three classes, however several configurations are very close to being

perfect, in these circumstances the FMI weighted index can offer more information about

their confidence. Derivations of the best light sources do not always produce better results,

which suggests that including additional light sources is destructive, as expected due to the

overlapping nature of the sensor channels.
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Light sources FMI accuracy

473 500 525 625 0.929

500 525 660 0.913

500 525 590 613 0.906

Table 4-8: Best light sources for GNB.

Light sources FMI accuracy

500 525 660 0.929

473 525 590 660 0.919

473 500 525 625 0.918

Table 4-9: Best light sources for LDA.

4.5.2 Best wavelength per classifier

The light source configurations produce diverse data distributions which favors different clas-

sifiers. The best overall light configuration is always in the top 3 of all classifiers, confirming

the notion that feature selection trough filtering should not take place before classifier train-

ing. Tables 4-8, 4-9, 4-10, 4-11, 4-12 show the best wavelengths per classifier.

4.5.3 Best wavelength per class

A similar analysis can be conducted per class. Here we see again that the best overall

classifiers are those that perform better at separating Red and Yellow, as Green separation is

easily achieved in multiple datasets. Tables 4-13, 4-14 and 4-15 show the best wavelengths

per class.

4.5.4 Number of wavelengths used and performance

The TCS3200 sensor is unable to produce separable datasets using only one wavelength,

however two wavelengths suffice, as can be seen with 525 660, but the best results are ob-

tained with several 3 to 4 wavelength conditions and multiple configurations can achieve this.

Light sources FMI accuracy

500 590 660 0.84

525 590 660 0.788

525 660 0.782

Table 4-10: Best light sources for Lasso.
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Light sources FMI accuracy

525 660 0.936

500 525 660 0.93

473 500 525 625 0.925

Table 4-11: Best light sources for RF.

Light sources FMI accuracy

473 500 525 625 0.899

500 525 660 0.892

525 660 0.851

Table 4-12: Best light sources for SVC.

Light sources FMI accuracy

525 660 0.923

525 590 660 0.92

473 500 525 625 0.912

Table 4-13: Best light sources for Green Fruits.

Light sources FMI accuracy

500 525 660 0.887

500 590 660 0.85

473 500 525 625 0.848

Table 4-14: Best light sources for Red Fruits.

Light sources FMI accuracy

500 525 660 0.856

473 500 525 625 0.85

525 660 0.831

Table 4-15: Best light sources for Yellow Fruits.
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The inclusion of more light sources (more than 4) ensures more stable results which per-

forms reasonably across the board, but it also does not offer better performance than other

combinations with less light sources. This implies the additional lights do not add more

information, but do operate on overlapping regions of the sensors. Each new light source

spreads the dataset in one, two or three axes, as can be seen on Figure 4-14 where one

wavelength is added at a time. These additions can be destructive, for example adding 473

to 500 525 660 generates overlaps in the previously separable red and yellow (Figure 4-15).

4.6 Analysis of classifiers using best light source datasets

A more detailed analysis is conducted over 30 cycles with all 45 classifiers on the 500 525

660 and 473 500 525 625 datasets (Figure 4-16, 4-17, 4-18).Using the best two light source

configurations GNB, LDA and Random Forests show highest accuracy, with LDA recurrently

obtaining perfect results. The OvR and OvO variants of the classifiers always obtain better

results than the standard multiclass scenario, which confirms the expected better perfor-

mance of ensemble classifiers. We found no perceivable advantage in classifier performance

by using synthetically generated data points.
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Figure 4-14: RGBC plots for 500, 500 525 and 500 525 660 light source configurations.
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Figure 4-15: 500 525 660 and 473 500 525 660 datasets.
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Figure 4-16: FMI weighted over 30 cycles.
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Figure 4-17: FMI accuracy over 30 cycles.
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Figure 4-18: Classifier performance comparison (FMI accuracy).



5 MCU Algorithm optimization through

feature selection

A color classifier has been trained using machine learning methods as part of the visual

inspection unit of the coffee sorting system. Such classifier must be implemented on a

STM32F429 MCU for real time classification and sorting in under 5ms, making it desirable

to minimize the processing time and resources, which can be achieved through a feature

selection process where the number of inputs used is reduced.

5.1 Classifier MCU implementation complexity

Different classification algorithms have been trained to obtain high accuracy in prediction

results. We analyze their implementation complexity.

5.1.1 GNB

GNB prediction is based on the estimation of the joint log likelihood. Class priori information

is equal (33% for the 3 class problem), thus it reduces to:

JLI = []

for i in range(np.size(self.classes_)):

JLI = - 0.5*np.sum(np.log(2. * np.pi * self.sigma_[i, :]))

JLI -= 0.5*np.sum(((X - self.theta_[i, :])**2)/(self.sigma_[i, :]), 1)

5.1.2 LDA

The LDA classifier class of scikit-learn is built upon a linear regressor whose prediction result

is derived from the minimum distance of a given sample to the decision or boundary hyper-

plane. This operation is a dot product between the weight vector and the input (features)

values. The following section explains in greater detail.

scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_

class = argmax(X . Wt)
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5.1.3 Lasso

Lasso classifier is also built as a linear regressor, the prediction decision function is based on

the distance to a hyperplane. This is also calculated as a dot product between the weight

vector coefficient and the input (feature) values, as is for LDA.

scores = safe_sparse_dot(X, self.coef_.T,dense_output=True) + self.intercept_

5.1.4 RF

RForest must implement and store in memory hundreds of individual estimators. These

estimators independently calculate the probability of each sample belonging to a given class.

An averaged probability is produced for the complete classifier. The forests trained during

the research used 100 estimators and 16 decision nodes.

5.1.5 SVC

The prediction is based on the decision function of SVC, which consists of the execution of

the decision function used by the Kernel for each sample. The implementation complexity

derives from the specific kernel, which changes depending on the best result obtained through

cross validation.

5.2 LDA mathematical framework

The Linear Discriminant Analysis is originally a feature space reduction transform tech-

nique through eigenvalue decomposition, which allows analysis of components importance

by projecting a dataset onto a new space composed by linearly independent combinations

of features. In the case where class densities are multivariate normal with equal covariance

matrices the samples fall in clusters of equal size and shape. [38]

However, Scikit-learn also implements a classifier based on the underlying mathematical

construct which it also calls a Linear Discriminant Analysis. This LDA classifier has a linear

decision boundary generated using Bayes’ rule to fit class conditional densities, assuming

the classes follow a normal distribution and share the same covariance matrix. The knowl-

edge of a covariance matrix allows us to calculate the dispersion of data in any direction

or subspace.The specific configuration of the LDA classifier used does not optimize the cost

function using eigenvalue decopmosition (which yields the fisher scores), instead it uses least

squares optimization to find a weight vector and intercept. This implementation results in

a simpler and faster decision function comprised of a dot product and an addition.[29]
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We can analyze the Linear Discriminant Classifier starting from Bayes’ minmum-error-rate

classification discriminant function:

gi(x) = ln p(x|wi) + lnP (wi)

For multivariate normal densities, when covariance matrices are identical and class priors

are the same it reduces to:

gi(x) = −1

2
(x− µi)

tΣ−1(x− µi)

Expanding the term and eliminating the i independent terms we get the discriminant func-

tion:

gi(x) = wt
ix + wi

Where the weight vector of the cost function can be solved by multiple methods. Using

the standard eigenvalue decomposition requires computation of with class and between class

scatter matrices, which yields the criterion function known as the Rayleigh quotient. A

second method is least squares optimization, where the resulting cost function is similar but

avoids the computation of scatter matrices, this makes it a more efficient method for training

at the expense of not being able to execute space state transforms. The weight vector is

calculated as:

wi = Σ−1µi

and the intercept as

wi0 = −1

2
µt
iΣ
−1µi + lnP (wi)

which yields the aforementioned decision function

y = argmax(Wtx + w0)

The python implementation of uses a single dot product plus an addition. The C implemen-

tation uses a recursive loop for each of the characteristics, executing a multiplication and an

addition per characteristic.



56 5 MCU Algorithm optimization through feature selection

5.3 Feature selection for MCU implementation

The result of the feature selection process is a rank of characteristics which contribute the

most to the decision functions of the classifiers. This analysis can be interpreted as the min-

imum number of features which yield comparatively similar results, by discovering features

which can be eliminated with no accuracy loss. The reduction of the required number of

features to consider directly impacts the amount of mathematical operations to be executed,

speeding up the real-time decision making process.

Feature selection can be implemented by embedded, wrapper or filter methods Li [19] sums

them up in detail. Embedded methods perform feature elimination during the training pro-

cess, such as in linear regression with L1 penalty (Lasso). This method is not applicable for

other classifiers such as LDA. In wrapper methods, the characteristics are added / removed

and then evaluated assessing classifiers performance, making them the most accurate alter-

native as they are evidence-based, but are substantially more computationally intensive as

they are NP-Hard. Filter methods attempt to reduce the characteristics by evaluating indices

which predict individual or collective performance. Filter methods are classifier independent,

instead they evaluate the dataset characteristics.

5.3.1 Feature selection by filter methods

We studied multiple filter methods, but only those with best performance results were in-

cluded on the report.

Pearson correlation index

In general, it is desired to preserve features that are highly correlated to class labels, while

at the same time are not correlated with other features as these add little or no information

to the final decision function.

A Pearson correlation analysis is conducted. The objective is to find and eliminate the

features with highest correlation to each other. The class is added as a column on the

features matrix, and a correlation plot is built (Figure 5-1).

A filter is designed to remove features with a Pearson correlation score greater than 0.9999.

37 features remaining after Pearson filter: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18,

19, 20, 21, 22, 23, 24, 31, 32, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49.

Similarity based methods

Similarity based methods analyze the between-class and within-class data similarity in order

to obtain discriminant scores. We analyze Fisher score [34], trace ratio [9], relief [39] for the
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Figure 5-1: Feature correlation coefficient chart.
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dataset (Table 5-1).

Fisher score selects the features such that variation within class is small, and variation

between classes is large. The trace ratio criterion evaluates the ratio of the traces of within

and between scatter matrices, thus providing a measure of within class similarity and between

class dissimilarity. ReliefF attempts to find the best inter-class separation features.

Information theoretical based methods

Information theoretical based methods attempt to find the features which maximize the mu-

tual information of features with regards to class label. Most information theoretical based

methods derive from Shannon information equation for conditional information gain, and

attempt to find the terms which add more novel data, maximizing the relationship to the

label, and minimizing the correlation to other variables.

JCMI(Xk) = I(Xk : Y )− β
∑
Xj∈S

I(Xj : Xk) + λ
∑
Xj∈S

I(Xj;Xk|Y )

Where JCMI denotes the common mutual information between a given feature and the label,

and α and β are penalty terms for feature correlation and inter-class correlation.

Within the methods analyzed, the highest scores are obtained using MIM (Mutual Informa-

tion Maximization) [20], CIFE (Conditional Infomax Feature Extraction) [22] and CMIM

(Conditional Mutual Information Maximization) [11] (Table 5-2).

Statistical based methods

Statistical based methods attempt to find the features which can generate a statistical dif-

ference in classification. We calculate F-score [46] and GINI [16] (Table 5-3). F-score tests

whether a subset of samples is able to separate classes by evaluating the distance between

the means and the ratio of the variances for a multiclass problem. GINI Index also attempts

to find whether a feature is able to separate instances from different classes.

Analysis of filter methods

The methods utilized yield characteristic ranks. An iterative process is proposed, where

the classifier is evaluated eliminating the worst ranked characteristic while monitoring the

accuracy; the objective is to find at which point the accuracy stops being perfect. This

would become the cutoff point for the least number of features that could be used.
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rank fisher trace ratio reliefF rank fisher trace ratio reliefF

1 30 30 30 26 26 26 24

2 9 9 9 27 5 5 39

3 22 22 43 28 31 31 31

4 7 37 32 29 33 33 33

5 28 43 35 30 3 3 42

6 43 7 7 31 8 8 16

7 37 28 28 32 29 29 41

8 40 40 22 33 16 16 2

9 25 25 37 34 36 36 11

10 4 4 40 35 34 34 14

11 46 46 25 36 14 11 34

12 49 49 4 37 11 14 36

13 47 47 49 38 18 18 18

14 44 44 46 39 10 10 26

15 6 6 47 40 12 12 5

16 27 27 44 41 13 19 10

17 35 35 6 42 15 13 12

18 32 32 27 43 19 15 8

19 48 48 48 44 2 21 29

20 23 23 23 45 21 2 15

21 38 38 1 46 17 17 13

22 1 1 45 47 20 20 19

23 45 45 0 48 24 24 17

24 41 41 3 49 39 39 21

25 0 0 38 50 42 42 20

Table 5-1: Characteristic rank by similarity based methods score
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rank MIM CIFE CMIM rank MIM CIFE CMIM

1 43 43 43 26 31 5 12

2 6 4 4 27 33 21 14

3 27 24 34 28 5 35 15

4 47 2 45 29 26 26 16

5 7 45 46 30 8 0 17

6 28 10 0 31 29 34 18

7 9 39 2 32 3 36 19

8 30 17 3 33 18 46 20

9 4 13 5 34 21 23 21

10 25 42 22 35 11 38 25

11 44 20 23 36 14 41 26

12 49 11 24 37 1 48 27

13 22 12 31 38 16 22 28

14 37 8 32 39 19 37 29

15 40 1 10 40 13 40 30

16 48 15 11 41 15 49 33

17 23 3 13 42 45 44 35

18 38 31 48 43 10 25 36

19 41 16 9 44 12 9 37

20 34 14 1 45 2 30 38

21 36 29 49 46 17 7 39

22 46 33 47 47 20 28 40

23 0 18 7 48 24 6 41

24 32 19 6 49 39 27 42

25 35 32 8 50 42 47 44

Table 5-2: Characteristic rank by information theoretical based methods score
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rank fscore gini rank fscore gini

1 30 22 26 26 47

2 9 46 27 5 27

3 22 37 28 31 48

4 7 40 29 33 0

5 28 49 30 3 14

6 43 23 31 8 11

7 37 30 32 29 21

8 40 28 33 16 18

9 25 41 34 36 3

10 4 43 35 34 34

11 46 38 36 14 36

12 49 7 37 11 12

13 47 9 38 18 10

14 44 35 39 10 29

15 6 32 40 12 5

16 27 19 41 13 8

17 35 45 42 15 26

18 32 16 43 19 2

19 48 1 44 2 39

20 23 33 45 21 13

21 38 31 46 17 15

22 1 25 47 20 17

23 45 44 48 24 20

24 41 4 49 39 42

25 0 6 50 42 24

Table 5-3: Characteristic rank by statistical analysis based methods score
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Rank Coef Rank Coef Rank Coef Rank Coef Rank Coef

1 30 13 41 25 14 37 15 49 34

2 46 14 25 26 29 38 18 50 42

3 7 15 17 27 33 39 3

4 9 16 16 28 45 40 44

5 22 17 5 29 11 41 6

6 20 18 37 30 32 42 24

7 19 19 0 31 38 43 27

8 28 20 21 32 31 44 10

9 26 21 35 33 1 45 12

10 4 22 8 34 47 46 48

11 40 23 49 35 13 47 39

12 43 24 2 36 23 48 36

Table 5-4: Characteristic rank by one out reduction based on feature importance

5.3.2 Feature importance by wrapper methods

Different wrapper algorithms are designed and implemented. These algorithms attempt

to systematically reduce or increase the number of features used, evaluating the resulting

classifier performance on every step.

Feature selection by one out reduction based on feature importance

LDA classifier implements a feature importance or coefficient weight property, after fitting,

the classifiers report the weight or cumulative weight of each of the coefficients used; in other

words, how much does a given characteristic contribute to the decision made. To implement

a wrapper method by one out reduction, the steps below are followed.

• Start with 50 features.

• Classifier is trained through 30 cycles.

• Scores are averaged.

• The least contributing feature (lowest feature importance or coefficient weight) is elim-

inated.

• Repeat until 2 features are left.

The results are plotted on Figure 5-2. The best averaged FMI score per class produces a

ranked list of coefficient performance (Table 5-4).
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Rank Coef Rank Coef Rank Coef Rank Coef Rank Coef

1 9 13 5 25 13 37 6 49 45

2 3 14 41 26 19 38 21 50 46

3 29 15 23 27 12 39 31

4 30 16 14 28 10 40 43

5 20 17 48 29 0 41 42

6 33 18 8 30 38 42 39

7 16 19 11 31 28 43 24

8 1 20 36 32 7 44 35

9 17 21 34 33 49 45 40

10 4 22 18 34 44 46 32

11 26 23 2 35 47 47 37

12 25 24 15 36 27 48 22

Table 5-5: Characteristic rank by one out reduction based on classifier performance.

Feature selection by one out reduction based on classifier performance

An alternate route is to train the classifier through an intensive computing procedure where

each of the features are eliminated; the configuration with best performance is preserved and

the process is repeated.

• Start with 50 features

• Classifier is trained eliminating one feature at a time, until all 50 combinations of 49

features are tested

• The highest score set of remaining features is selected

• Repeat until 2 features are left.

The results are plotted on Figure 5-3. The best averaged FMI score per class and average

produces a ranked list of coefficient performance (Table 5-5).

Feature selection by one addition based on classifier performance

It is also possible to run a constructive process where features are added instead of removed.

This is also an intensive computing process where all possibilities are evaluated. The results

are ploted on Figure 5-4.

• Start with 0 features

• Classifier is trained adding one feature at a time, until all 50 combinations of 1 feature

are tested
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rank Coef rank Coef rank Coef rank Coef rank Coef

1 43 13 29 25 3 37 12 49 37

2 31 14 20 26 44 38 0 50 22

3 9 15 19 27 21 39 2

4 8 16 1 28 47 40 27

5 46 17 16 29 49 41 6

6 30 18 17 30 18 42 45

7 41 19 23 31 4 43 42

8 33 20 11 32 13 44 39

9 48 21 14 33 15 45 24

10 7 22 5 34 34 46 40

11 38 23 25 35 36 47 32

12 28 24 26 36 10 48 35

Table 5-6: Characteristic rank by addition based on classifier performance.

• The highest score set of remaining features is selected

• Repeat until 50 features are left.

The best averaged FMI score per class and average produces a ranked list of coefficient

performance (Table 5-6)

Feature selection by addition and reduction based on classifier performance

A dual approach is evaluated by adding and removing features on the same evaluation cycle.

This can yield better results than only implementing addition or removal. The path of

characteristics added and removed is volatile and thus difficult to plot. A ranked list is

shown on Table 5-7

• Start with 0 features.

• Classifier is trained adding one feature at a time, until all 50 combinations of 1 feature

are tested.

• The highest score set of remaining features is selected.

• Classifier is trained removing one feature at a time, until all 50 combinations of 1

feature are tested.

• The highest score set of remaining features is selected.

• Repeat until no further improvement is possible.
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W score Accuracy Coefficients

0.46213171 0.6587414 0,

0.99795175 1.0000000 0, 30,

0.99870013 1.0000000 0, 30, 46,

0.99924284 1.0000000 0, 30, 46, 8,

0.99959991 1.0000000 30, 46, 8, 9,

0.99974261 1.0000000 30, 46, 8, 9, 37,

0.99978305 1.0000000 30, 46, 8, 9, 37, 4,

0.99980347 1.0000000 30, 46, 8, 9, 37, 4, 29,

0.99981928 1.0000000 30, 46, 8, 9, 37, 4, 29, 25,

0.99982509 1.0000000 30, 46, 8, 9, 37, 4, 29, 25, 48,

0.99982933 1.0000000 30, 46, 8, 9, 37, 4, 29, 25, 48, 26,

0.99983073 1.0000000 30, 46, 8, 9, 37, 4, 29, 25, 48, 26, 5

Table 5-7: Classifier progression through addition and reduction cycles, features used and

performance.

Feature selection by combination of 2 features

An intensive computing brute force approach combination of two features at a time. This

yields 50!/(2! ∗ 48!) = 1225 combinations. For every pair we run 30 cycles with different

train and test samples.The colors of the matrix represent the average FMI. A perfect score

(100% FMI accuracy) is marked with a black dot (Figure 5-5). Table 5-8 allows performance

comparison of different pairs of features by weighted score. At least 22 pairs of features can

preserve a perfect classification score. A high correlation between coefficient 9 and coefficient

30 exists (as their formulas are almost identical), so in practice only half of the pairs (11)

achieve perfect accuracy.

5.4 Feature selection results

5.4.1 Filter methods

All filter methods implemented can predict most of the features which yield the best results

with larger number of samples. However, none of them predict the best performers when a

minimum number of features is desired. The minimum number of features to preserve 100%

accuracy is 3. A comparative plot is seen on Figure 5-6

5.4.2 Wrapper methods

Some wrapper methods manage to achieve perfect score with only 2 features (Figure 5-7).

Minimum number of features that preserve 100% accuracy:
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Figure 5-5: Classifier performance by intensive computing of pairs of characteristics. Black

dots represent combinations which achieve 100% accuracy. The dotted cross
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Feature 1 Feature 2 Accuracy Feature 1 Feature 2 Accuracy

9 0 1.0000 30 0 1.0000

9 1 1.0000 30 1 1.0000

9 2 1.0000 30 2 1.0000

9 3 1.0000 30 3 1.0000

9 10 1.0000 30 10 1.0000

9 12 1.0000 30 12 1.0000

9 13 1.0000 30 13 1.0000

9 15 1.0000 30 15 1.0000

9 17 1.0000 30 17 1.0000

9 45 1.0000 30 45 1.0000

9 46 1.0000 30 46 1.0000

Table 5-8: Pairs of coefficients which achieve a perfect selection accuracy score.

Figure 5-6: Filter methods performance progression as less features are used. Accuracy

remains perfect for all methods.
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Figure 5-7: Wrapper methods performance progression as less features are used. Accuracy

remains perfect for all methods.

• Reduction by Feature importance: 30, 46

• Reduction by Classifier performance: 9, 3

• Addition by Classifier performance: 43, 31, 9, 8

The addition and reduction algorithm allows to find a set of the most efficient 11 features,

two of which allow perfect scores (Figure 5-8).

5.4.3 Overall results

A brute force search finds all combinations of 2 which preserve 100% accuracy. We rank them

by weighted score to realize that feature reduction and performance addition + reduction

methods obtain what appear to be the highest weighted scores for 2 features (Table 5-9).

Two features suffice to obtain a perfect accuracy score, and reasonably high weighted score,

with superior performance than all features.The best weighted score was found using a re-

cursive addition and reduction algorithm evaluated by classifier performance 0.9998387, with

11 coefficients: 30, 46, 8, 9, 37, 4, 29, 25, 48, 26, 5. The original weighted score with 50

coefficients was 0.9980616, which shows that feature elimination improves the classifier per-

formance. The best weighted score that can be achieved using only 2 features is 0.9983633,

obtained using 9 and 46, and can be found through feature reduction or performance addi-

tion and reduction.
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Features Accuracy Weighted Score Method(s)

9,46 1.00000 0.9983633 feature reduction, performance addition + reduction

30,46 1.00000 0.9983633 feature reduction, performance addition + reduction

9,45 1.00000 0.99808698 Brute force only

30,45 1.00000 0.99808698 Brute force only

9,1 1.00000 0.99798986 Brute force only

30,1 1.00000 0.99798986 Brute force only

9,0 1.00000 0.99795175 Brute force only

30,0 1.00000 0.99795175 performance addition + reduction

9,3 1.00000 0.99764584 performance reduction

30,3 1.00000 0.99764584 Brute force only

9,2 1.00000 0.99703991 Brute force only

30,2 1.00000 0.99703991 Brute force only

9,10 1.00000 0.99606363 Brute force only

9,12 1.00000 0.99606363 Brute force only

30,10 1.00000 0.99606363 Brute force only

30,12 1.00000 0.99606363 Brute force only

9,17 1.00000 0.99601202 Brute force only

30,17 1.00000 0.99601202 Brute force only

9,13 1.00000 0.99597521 Brute force only

9,15 1.00000 0.99597521 Brute force only

30,13 1.00000 0.99597521 Brute force only

30,15 1.00000 0.99597521 Brute force only

Table 5-9: Best performing pairs of coefficients and methods used to discover them
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Figure 5-8: Wrapper methods by addition and reduction performance progression as less

features are used.

The feature selection process allowed us to find the least number of features that could pre-

serve perfect accuracy without significantly jeopardizing classifier certainty. It also exposed

the maximum expected performance, and demonstrated that several combinations perform

better than the original set of 50 characteristics. For the on-line device, two configurations

will be further tested:

• Highest weighted FMI: 11 features: 30, 46, 8, 9, 37, 4, 29, 25, 48, 26, 5.

• Fastest calculation: 2 features: 9,46.



6 Conclusions

The main objective of the research has been met through the design and prototyping of a

high speed sorting system using low cost TCS3200 and AP5130 discrete color sensors and 3

different types of LEDs driven by a STM32F429I. The estimated total cost of the electronic

assembly was kept under US$100 in 1000 production volumes, with accuracy superior to

those obtained using CMOS sensors and higher cost CPU or FPGA computing platforms.

The system implements a cost effective reflective hemisphere and cone construction which al-

lows high light uniformity, lowering errors due to hotspots, avoiding the use of focusing lenses.

The core classification algorithms and highest performance system set-up were obtained and

tuned through a PC based training process where fruit data was captured using different

light source combinations. After filtering and data augmentation a feature extraction process

generates 50 different features. Further study into these characteristics by means of feature

selection techniques shows that only a subset of these 50 features are necessary to preserve

the accuracy of the system.

The classifiers were implemented on the MCU platform by means of finite state machines

and peripheral managers in C using Atollic Truestudio and STM32CubeIDE on top of a

hardware abstraction layer of ST Microelectronics. The portable on-line system obtains an

accuracy of over 99% using LDA during early laboratory testing, at an average rate of 10

fruits per second (72Kg per hour). The high discriminant capacity system is possible thanks

to the coupling of the discrete low-cost sensor and the narrowband LEDs in wavelengths

which exploit the areas of maximum sensitivity and lower inter-channel overlap for the spe-

cific colors of interest, which are superior to the 94% accuracy obtained with white light.

In many cases a couple of LEDs could suffice to obtain separable datasets. A systematic

method of LED selection has been validated.

The best performance was found using 3 discrete LEDs in 500, 525 and 660 nm wavelengths

and a One vs One Ensemble LDA classifier. The resulting implementation complexity is sub-

stantially lower than that of typically higher performance algorithms such as RF and SVC,

showing that classifier performance is sensor and LED dependent, and general assumptions

should not be madeThis is to say, feature selection processes should only take place after

classifier training has taken place.
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The main products of the executed work were a functional prototype capable of real time

sorting, a patent grant which is in process of preliminary revision and an article which will

be submitted by the time this document is published.

6.1 Future work

The sensor array used implements four discrete TCS3200 devices; while this allows for par-

allel data capture it introduces positional noise, as not all sensors are equally aligned and at

the same distance from the fruit. Further research should be conducted on alternate sensors

which solve this shortcoming.

The system can easily distinguish different maturation stages through reflectance spec-

troscopy; other work has shown it is possible to detect other characteristics and defects

in fruits.

Thanks to the features selection process, the decision-making stage can take place with a

limited number of simple mathematical operations, which opens the door to implementing

the existing code in even more modest MCUs, further simplifying the system and lowering

the total unit cost.

The recent trend of low cost and high processing power computing platforms which can run

full featured operating systems such as embedded distributions of Linux make it possible to

consider a similarly low costed device which implements CCD or CMOS modules, opening

the door for more advanced machine vision techniques without compromising on simplicity

and economy.
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(Coffea arabica L. var Colombia). In: Cenicafe (2003), S. 208–225

Minghua Zhang, Eike L. Adam Hale H. Adam Hale: Feasibility of using remote sensing

techniques to detect spider mite damage in stone fruit orchards. In: IEEE (2008)

Montes, N.: La visión artificial aplicada al proceso de producción de café. Universidad
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medicion de color. In: Cenicafe (2010), S. 315–326

Rangkuti ; Saputro ; Imawan: Prediction of soluble solid contents mapping on averrhoa

carambola using hyperspectral Imaging. In: IEEE (2017)

Richard O Duda, Peter E H. ; Stork, David G.: Pattern classification. John Wiley &

Sons, 2012
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