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Resumen

En esta tesis proporcionamos un calculo diagramatico a orden fijo de las correcciones cuanti-
cas a la masa del boson de Higgs liviano en el modelo super-simétrico minimal con pardmetros
reales. Hemos calculado las contribuciones provenientes del sector de la QCD super-simétri-
ca con una precisién de tres-loops al orden O(aza?). El procedimiento de regularizacién
adoptado esta basado en el esquema de reducciéon dimensional con el fin de preservar la
super-simetria en todos los ordenes perturbativos. El calculo extiende la region de validez
de estudios previos al espacio completo de parametros super-simétricos. Las correcciones
a la masa del Higgs son expresadas en términos de un conjunto de integrales del vacio a
tres-loops las cuales han sido calculadas explotando las técnicas del método de dispersién
que permite realizar su evaluacion numérica para una jerarquia arbitraria de las escalas de
masa involucradas. Por otro lado, hemos realizado una comparacion numérica de nuestros
resultados con las demas predicciones tedricas encontradas en la literatura. En particular,
el cédigo FeynHiggs combina calculos a orden fijo con los calculos provenientes de la teoria
efectiva de campos cuanticos dando una prediccién confiable para la masa del boson de Higgs
hasta el orden de tres-loops. Las dos predicciones numéricas son compatibles en el escenario
donde solo hay una escala de la super-simetria que toma valores menores a 10 TeV y donde
el parametro de mezcla del quark stop se anula. Para escalas mayores a 10 TeV observamos
diferencias numéricas significativas. La diferencia crece sin acotarse al aumentar la escala de
la super-simetria debido a los efectos de los términos con logaritmos grandes en el calculo a
orden fijo que danan la perturbatividad de las correcciones cuanticas. Por lo tanto, hemos
realizado un andlisis numérico adicional donde buscamos restricciones al valor que puede
tomar la escala super-simétrica. El valor experimental combinado para la masa del boson
de Higgs obtenido por los laboratorios CMS y ATLAS y el problema de la estabilidad del
vacio en el modelo estandar son usados para derivar cotas superiores sobre esta escala. En
el escenario considerado en este trabajo, para un valor grande de la razén entre los valores
esperados en el vacio de los dos campos de Higgs pares bajo CP (tanf > 10), hemos encon-
trado que valores de la escala super-simétrica superiores a 12.5 + 1.2 TeV estan excluidos.
Para valores pequeinos de tan/3 ~ 1, una cota superior muy grande de alrededor de 10'* GeV
fue encontrada.

Abstract

In this thesis we provide a fixed-order Feynman diagrammatic computation of the quan-
tum corrections to the lightest CP-even Higgs Boson mass in the real version of the Mi-
nimal Supersymmetric Standard Model. We have computed the contributions coming from
the SUSY-QCD sector with a precision of three-loops at order O(a;a?). The adopted re-



gularization procedure is based on the dimensional reduction scheme in order to preserve
supersymmetry to all perturbative orders. The calculation extends the region of validity of
previous studies to the whole supersymmetric parameter space. The Higgs mass corrections
are expressed in terms of a set of three-loop vacuum integrals which have been computed
by exploiting dispersion relation techniques which allows their numerical evaluation for an
arbitrary hierarchy of the involved mass scales. A numerical comparison of our results with
the other predictions found in literature has been done. In particular, the code FeynHiggs
combines one- and two-loop fixed-order with the effective-field-theory calculations and gives
a reliable prediction for the same Higgs mass at three-loop level. The two numerical pre-
dictions agree considering the scenario of only one SUSY-scale and vanishing stop mixing
parameter below 10 TeV. For large scales above 10 TeV we have observed sizeable numerical
differences between the two predictions. The difference grows monotonically with the SUSY
scale due to the effects of large logarithmic terms in the fixed-order computation which
spoil the perturbativity of the corrections. Therefore, we have developed an additional nu-
merical analysis where we look for constraints on the supersymmetric scale. The combined
CMS/ATLAS Higgs mass value and the vacuum stability problem of the SM are used to
derive an upper bound on the needed SUSY scale. In the considered scenario, for a large size
of the ratio between the vacuum expectation values of the two CP-even Higgs boson fields
(tanf > 10), values above the SUSY scale 12.5 4+ 1.2 TeV are excluded. For small values of
tanf3 ~ 1, a higher upper bound of about 10'* GeV was found.

Keywords: Higgs boson mass, Supersymmetry, rMSSM, SQCD, Self-energy, Tadpole,
Vacuum integral, Dispersion method.
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1. Introduction

The discovery of the Higgs boson particle by the ATLAS and CMS experiments at the CERN
Large Hadron Collider (LHC) [4,5] and the rather precise knowledge of its mass, M;™ =
125.09+0.24 GeV [6-8], and of its couplings [6] to the other Standard Model (SM) particles
represent a significant progress in our understanding of the electroweak symmetry breaking
mechanism. The SM extrapolated up to the Planck scale (Ap = \/hc/G = 1.22 x 101 GeV)
is theoretically consistent with the inclusion of the ATLAS/CMS Higgs boson in the sense
that no Landau pole [9] emerges. However, the metastable nature of the electroweak va-
cuum [10-15] as well as the unsolved hierarchy problem [16-18], which leads to an unnatural
high amount of fine-tuning (103%) for the prediction of the Higgs boson mass at the electro-
weak scale (Agy &~ 10? GeV), arises the question whether the LHC Higgs boson is actually
the SM Higgs or a new dynamics with additional degrees of freedom beyond the Standard
Model (BSM) regulate the Higgs sector. In this thesis we focused our analysis on two working
hypotheses. The first one is the so called desert scenario [19] in which the SM is valid up
to Ap and the Higgs boson is considered as an elementary weakly coupled particle. In this
approach a precise running of the SM parameters in a well defined renormalization scheme
is mandatory. Using the LHC measured value of the Higgs mass and the combination of the
three-loop beta functions and two-loop matching conditions, the running of the relevant SM
parameters (the three gauge couplings, the top Yukawa coupling and the Higgs self-coupling)
are found to remain perturbative up to the Planck scale [20]. The Landau pole is located at
a scale much larger than Ap and therefore we can reasonably assume that no new physics
appears up to the scale where the gravitational interactions are not suppressed. The vacuum
stability analysis imposes more stringent constraints about the behaviour of the SM at large
energy scales close to Ap. Due to the borderline behaviour of the SM which lies in a near-
critical position between the absolute stability and the metastability phases, the current
status of the studies of the vacuum stability problem urges a precise definition and compu-
tation of the Higgs boson mass, the top quark mass and their corresponding uncertainties.
In this analysis the near-criticality of the Higgs boson self-coupling and its beta-function is
used as guideline to go beyond the SM [21]. These arguments assume the existence of a mul-
tiverse ruled by anthropic selection rules where the Higgs parameters found in our universe
are not at all special, in fact, they correspond to the most likely occurrence in the multiverse.
In the desert scenario, however, there are still several puzzles that remain unsolved by the
SM dynamics. The neutrino oscillation, the identification of the dark matter, the baryon
asymmetry, among others, are all left unanswered and require new BSM physics. Besides, if



one insists that naturalness would represent a real problem of the theory, then one has to
conclude that the new physics has to appear about the TeV scale in the coming experiments
at the LHC and future colliders, like the International Linear Collider (ILC) [22] and Future
Circular Collider (FCC) [23]. The above are strong physical arguments to believe that the
SM is actually a low energy effective field theory (EFT) coming from a more fundamental
model which includes new physical degrees of freedom. In this second approach deviations
from the SM in the dynamics of the Higgs are expected and can be used to obtain indirect
information about the nature of the completion of the SM at higher energy scales. The best
motivated and the most intensively studied framework of new physics, providing a widely
amount of precise predictions for experimental phenomena at the TeV scale, is formulated
as a supersymmetric extension of the SM, the Minimal Supersymmetric Standard Model
(MSSM) [24-31]. The supersymmetry (SUSY) is the only symmetry that correlates boso-
nic and fermionic degrees of freedom. One of the main motivations to introduce it is the
possibility to provide a solution to the hierarchy problem which emerges in the Standard
Model when there is a large hierarchy between the energy scale that characterizes electro-
weak symmetry breaking and the scale of new physics [32-35]. Due to the introduction of
the Higgs scalar sector into the Lagrangian of the Standard Model, the quantum correc-
tions to the Higgs boson mass contain quadratic divergences. In the scenario where new
physics appears only up to the Planck scale, it is necessary an unnatural fine-tuning of 32
significant digits in order to get the prediction of the Higgs mass at Agy,, where the Higgs
boson particle was found, from the mass evaluated at Ap. In the minimal supersymmetric
extension to the SM the radiative corrections to the Higgs boson mass with SM gauge boson
loops are also quadratically divergent. However, the contributions coming from a new kind
of particles, the supersymmetric partners of the gauge bosons (the gauginos), have the same
dependence on the cut-off scale but with opposite sign and cancel in this way the unwanted
quadratic divergences. Moreover, the inclusion of additional supersymmetric particles make
the effective potential stable, thus the MSSM can also cure the vacuum stability problem.
It is worth to mention that MSSM also provides a dark matter candidate, a mechanism to
explain the neutrino oscillations and a framework to include gravitational interactions since
supersymmetry is a fermionic extension of the Poincare space-time symmetry.

In the MSSM the Higgs sector contains two SU(2) doublets of scalar fields whose interactions
with gauge bosons and matter fermions can recover the SM-like couplings in a decoupling
limit where the 125 GeV LHC signal is associated to the lightest CP-even Higgs boson with
a mass M which is not a free input parameter but a prediction coming from the parame-
ters of the theory. The upper bound on its predicted mass at leading order (LO) is given
by the Z° gauge boson mass, Mz = 91.2 GeV, leading to the exclusion of the MSSM at
current collider experiments. Nevertheless, higher order quantum corrections to M lead to
a large shift in the upper limit (AM), ~ 40 GeV), where the bulk of the corrections comes
from the supersymmetric quantum chromo-dynamics (SQCD) sector of the Lagrangian, and
makes the MSSM Higgs whose interactions with sector compatible with the mass and the



4 1 Introduction

detected production rates of the LHC Higgs-like signal over a wide range of the parameter
space of the relevant phenomenology scenarios [36-39]. The determination of the theoretical
uncertainty associated to the Mj-prediction requires a very precise calculation. Based on the
missing higher order contributions to the Higgs self-energies, to the running of the gauge
and Yukawa couplings, and also on the renormalization scheme dependence, the theoretical
combined uncertainty associated to the determination of M) has been estimated to be about
1 to 5 GeV [40,41]. However, the experimental uncertainty is expected to reach a value of the
order of 100-200 MeV at the LHC [42] and this can go even down at future colliders, estima-
ted to roughly 50 MeV at ILC [43]. Thus, an accuracy computation of M}, is mandatory in
order to lead the theoretical uncertainty to the same order as the expected experimental one.

Our contribution follows this guideline. In this thesis we provide an alternative calculation
of the lightest Higgs boson mass in the SQCD sector of the real version of the MSSM with
a precision of three-loops at order aya?. We have followed the Feynman diagrammatic (FD)
procedure to obtain a renormalized correction in the DR scheme [44-47]. The regulariza-
tion procedure adopted is based on the dimensional reduction scheme in order to preserve
supersymmetry to all perturbative orders. Taking in mind that in the MSSM is no clear a
priori what are the hierarchies of the masses, we have avoided the application of asymptotic
expansions at the integral level and we have obtained the quantum corrections in terms of
a set of three-loop master integrals whose numerical evaluation is possible for an arbitrary
mass hierarchy thanks to the development of new calculation techniques based on the disper-
sion method [48-54]. Thus, our calculation extends the region of validity of previous studies
to the whole supersymmetric parameter space. The basis of three-loop master integrals con-
tain logarithmic terms of the form In"(Mgsysy /Apw) for n < 3 which can spoil the good
perturbative behavior of the quantum corrections when the supersymmetric scale (Mgysy)
is significantly larger than Agy (which we identify in this work with the top mass M,).
Therefore, a fixed-order computation of M, could become inadequate and the calculation
of the Higgs mass has to be reorganized in an effective field theory approach. In order to
study the effects of the large logarithmic terms we have done a numerical comparison of
our three-loop fixed-order predictions with the other fixed-order and EFT results found in
literature. We have decided to use the fixed-order and EFT hybrid calculations currently
included in the codes H3m [55] and FeynHiggs [56], which seems to give a reliable three-loop
predictions of the Higgs boson mass up to large SUSY scales, to make a cross check with our
results. In the EFT considered in FeynHiggs, the heavy SUSY particles are integrated out at
the scale Mgygy in the decoupling limit where Mgy sy > M,;, while the SM renormalization
group equations (RGEs) are used to evolve the couplings between the SUSY scale and the
EW scale in such a way that the Mj-corrections are free of large logarithmic terms. We have
assumed the same decoupling limit for the SUSY scale over our three-loop M)} predictions
in order to size the numerical effect of the logarithmic terms for large Mgy sy values. Having
in mind that the fixed-order corrections to M) contain the effects of large logarithms, it is



natural to ask how large the SUSY scale can be in order not to spoil the convergence of
the perturbative expansion. Thus, we also include in this work a phenomenological analysis
about the compatibility of the experimental observations at the LHC for the Higgs boson
mass and its combined uncertainty with the region of parameters in a specific MSSM bench-
mark scenario in order to find upper and lower bounds on the needed supersymmetric scale.
However, the bounds obtained are valid just for large values of the ratio between the vacuum
expectation values of the two CP-even Higgs bosons (tanf). For small values of tanf we will
show that the vacuum stability analysis in the Standard Model can give additional upper
bounds on Msysy as a function of Mj. The constraints on the SUSY scale can be derived
by studying the absolute stability condition of the Higgs effective potential in an approach
where the SM is a low-energy EFT of the real MSSM and the Higgs quartic self-coupling
correlates the high SUSY scale with the low scale Agy through the renormalization group
equations.

The plan of the thesis is the following. Chapter 2 contains a description of the Higgs sector
and SQCD sector of the MSSM with real parameters at tree-level. In particular, we derive
the expressions of the mass matrices for the neutral and charged MSSM Higgs bosons and we
study the electroweak symmetry breaking on the MSSM Higgs potential. The tree-level mass
matrices are used to derive a prescription for the renormalization of the neutral Higgs boson
masses. Thus, this chapter also contains a complete description of the regularization scheme
and the necessary renormalization conditions to obtain the quantum corrections to M, at
three-loop level in the gaugeless limit. We lastly review the state of art of the fixed-order
and EFT calculations of the lightest Higgs boson mass.

Chapter 3 and Chapter 4 contain the main results of our project. In Chapter 3 a detailed des-
cription of our three-loop computation of M}, is presented. We discuss the technical details to
the renormalization procedure adopted and in particular to the evaluation of the three-loop
Feynman integrals involved. The three-loop corrections contain non-local divergences that
must be removed with an additional subrenormalization procedure that will be discussed
in this chapter. A numerical analysis, where the effects of the three-loop corrections on the
pole mass M) evaluated at some kinematic limits and the study of the dependence of M,
on the SUSY parameters, is included. This comprises a comparison with the other higher
order predictions coming from the fixed-order computations implemented in the public codes
FeynHiggs and H3m.

The basis of three-loop master integrals obtained in our calculation can spoil the conver-
gence of the perturbative corrections to M, when the SUSY scale grows up to an arbitrary
large energy. We therefore provide in Chapter 4 a discussion about the effects of the large
logarithms involved in the fixed-order calculation at large SUSY scales and a phenomenolo-
gical analysis where some constraints on the needed SUSY scale coming from two sources



6 1 Introduction

are determined. First, we study the compatibility of the region of parameters in a realistic
MSSM benchmark scenario with the LHC Higgs boson mass value and its corresponding
experimental uncertainty and we derived lower and upper bounds on the SUSY scale. We
further explore the SUSY scale constraints from the vacuum stability analysis. We review
the vacuum stability problem in the SM and we use the absolute stability condition derived
from the Higgs effective potential in a low-energy EFT of the real MSSM to derive additional
upper bounds on the SUSY scale.

Finally, we give our conclusions and perspectives in Chapter 5.



2. The Higgs Bosons of the real MSSM
(rMSSM)

In this chapter we are going to review the structure of the Higgs sector of the MSSM with
real parameters (rMSSM). We review the rMSSM classical Higgs potential and discuss the
electroweak and SUSY breaking mechanisms. We also derive the expressions for the Higgs
bosons mass matrices at tree-level and we use them to formulate a prescription to renormalize
the quantum corrections to the physical Higgs boson masses in the EW gaugeless limit up to
three-loop level. Besides, we go over the supersymmetric extension of the quantum chromo-
dynamics (SQCD sector) and we describe the renormalization of the squark masses and
mixing angles up to two-loop level, which will be important when quantum corrections
to the Higgs boson masses beyond one-loop order be incorporated since two- and three-
loop diagrams contain non-local UV divergences. We have also included a discussion of the
renormalization of the gluino and the top quark masses. Finally, the current status of the
higher-order quantum corrections to the Higgs boson masses are reviewed.

2.1. The rMSSM Higgs sector at tree-level

Supersymmetry is the only fermionic generalization of the Poincaré symmetry of the space-
time which transforms fermions into bosons and vice versa. The existence of such a non-trivial
extension of the Poincaré symmetry is highly constrained by theoretical principles [57,58].
The minimal supersymmetric extension of the Standard Model consists of the fields contained
in the two-Higgs-doublet extension of the SM (2HDM) and their corresponding superpart-
ners. The field content of the MSSM is summarized in Table 2-1 [59]. The MSSM spectrum
contains three gauge supermultiplets which consist of the gluons and their gluino fermionic
superpartners and the EW gauge bosons and their gaugino superpartners. The matter super-
multiplets consist of three generations of left-handed quarks and their scalar superpartners,
the squarks. Three generations of left-handed leptons and their associated sleptons, and the
corresponding antiparticles of all the fermions. The Higgs supermultiplets consists of two
complex Higgs doublets, their higgsino fermionic superpartners and the corresponding anti-
particles. In order to guarantee the cancellation of anomalies coming from the introduction
of the higgsino superpartners and preserve supersymmetry and gauge invariance, the Higgs
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Super-Multiplet ‘ Super-field Bosons Fermions ‘ SU(3) ‘ SU(2) ‘ U(1) ‘
Vs g g 8 1 0
gauge/ino 1% W, wo W=, WO 1 3 0
v B B 1 1 0
s/lepton L (ULLJFQL) (v, €7)p 1 2 -1
E° €h s 1 1 9
Q (ﬁL, JL) (u, d), 3 2 1/3
S/ auark v i, uj 300 1 | 43
D* 1 ds 3 1 2/3
Higgs/ino i (H1+7 Hlo) o1 1 9 1
H, (3, 1) | (Hf, B 1 2 1

Table 2-1.: MSSM spectrum fields and their SU(3) x SU(2) x U(1) quantum numbers. In this
table only one generation of leptons and quarks is exhibited. For each lepton and quark
super-multiplet there is associated a corresponding multiplet of scalar superpartners,
while for the Higgs super-multiplet an anti-particle multiplet of charge-conjugated
fermions is associated.

sector of the real MSSM Lagrangian [24-31] requires the definition of at least two doublets

HY + L H
H, = PR ) and H, = 0 1 : (2-1)
H; Hy + 502
with an associated hypercharge Y; = —1 and Y5 = 41, respectively. The second Higgs

doublet is necessary, moreover, to generate mass for both up- and down-type quarks as
well as charged leptons. The complex fields H ]Q have neutral components which are vevless
scalar fields, H ]Q = qﬁ? + ix?, coming from the expansion around the minima of the Higgs
effective potential, v1 ». The components H fQ are charged scalar fields with vanishing vacuum
expectation values (vevs) to ensure that the U(1)., symmetry will not be spontaneously
broken. The Higgs sector comes from the bare Lagrangian

Ly_y = D,HID’H, + D,H)D°Hy — V(Hy, H,). (2-2)
The kinetic term contains the covariant derivative
a Y )\Ot
D, =8, + z‘g%Wﬁ +ig' 5 B, + g, -Gy, (2-3)

where ¢, g and g, are the U(1)y, SU(2), and SU(3) gauge couplings respectively. The SU(2)
Pauli matrices is represented with 7¢ while A\* stands for the SU(3) Gell-Mann matrices. The
electroweak (EW) gauge bosons are defined as

W Wi FiW? - Z) _ ([ cosbw —sinbw w3 (2-4)
. V2 " \A, sinfy  cosfy B, )’
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where the EW mixing angle, 0y, is related to the coupling constants g and ¢’ and the electric
charge, e, by
e , e

9= g = (2-5)

‘ g .
sinby coslyy

The classical Higgs potential, V (Hy, Hs), is given by
V(Hy, Hy) = (|pl* +m, ) [HW* + (|ul* + m3,) [Hs|* + b (e HT HS + h.c.)

2 1
5 (P (1l - ) (2-6)

HiH, <

12
-|—§g

The quadratic terms proportional to the higgsino mass parameter | u|2 in eq. (2-6) come from
the F-contribution to the SUSY Lagrangian, while the terms with the EW gauge couplings
(g9, ¢') come from the D-contribution; thus, from the D-terms, one obtains the four scalar
vertices, which include the quartic Higgs self-interaction terms in the Higgs potential. In
contrast to the SM, the Higgs quartic self-coupling is not a free parameter but is determined
by the coupling (¢*+ ¢*)/8. From the F-terms, one obtains also another four scalar vertices,
but they do not contribute to the Higgs potential since contain always at least two sfer-
mions. The F and D fields are auxiliary fields that do not propagate in space-time and can
be eliminated by applying the equations of motion. As supersymmetric particles have not
been observed at the electroweak scale, supersymmetry is manifestly not an exact symmetry
of the nature and therefore must be broken. Several SUSY breaking mechanisms have been
considered [60-62] but in fact there is no consensus on how to break SUSY. In phenome-
nological application, one must introduce new terms that explicitly breaks supersymmetry
and represent the low-energy effects of the unknown breaking mechanism. In eq. (2-6) the
parameters m3; , my;, and b parameterize the SUSY breaking. The SUSY-invariant Lagran-
gian cannot accommodate electroweak symmetry breaking since the terms proportional to
|p|? are positive. Thus, the SUSY-violating parameters m%h and m%b, which can of course
have either sign, are needed in order to break the EW symmetry. The b-term is the only
that depends on the phases of the fields. The parameter b is real and positive and the fields
H?Y and HY have equal and opposite phases which can be reduce both to zero through a
U(1)y gauge transformation since these fields have equal and opposite hypercharges. The
vevs, v1,2, as well as the couplings are therefore all real, which means that CP invariance is
not spontaneously broken by the classical Higgs potential of the rMSSM.

It is vital to point out that such phenomenological terms containing those SUSY breaking
parameters must be ’soft’, that is, the SUSY breaking terms must be super-renormalizable,
with mass dimension less than four, and therefore their coefficients must have positive mass
dimension. The reason is that a soft breaking term will not introduce additional divergences
into the dimensionless coupling constants which guarantee the stability of the mass hierarchy;,
the cancellation of quadratically divergent corrections to scalar masses are maintained to all
perturbative orders. Besides, it is important to emphasize that the mass terms which break
SUSY and therefore the masses of the undiscovered SUSY particles do respect the SM gauge
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symmetries. The masses of the known SM particles all arise from the spontaneous breaking
of the EW symmetry.

From eq. (2-6) we can derive the linear part of the Higgs potential in the basis ( ?, X?, H]i)
where j = 1, 2. For the fields X? and H ]i there are no contributions since the rtMSSM Higgs
potential is invariant under CP-tranformation. Thus, the linear terms read: T;¢? + T,
where the coefficients 7}, better-known as Higgs tadpoles, have the expressions

T 1
\/5111 = (Jul* +miy,) - bz—j +35 (6" +97) [of =],
1
T 1
T = (4 miy) - bz—; + 2 (9 +97) [ -] (2-7)

As the vevs v; and v, minimize the Higgs potential, the following stationary conditions are
satisfied:

ov

— =T, =0;j=1,2. (2-8)
0 J ) )
OV ) o: (7)o

From eq. (2-8) one can identify the conditions required for the stable minimum of V. First
note that along the direction |HY| = |H3| the potential will be unbounded from below and
therefore it does not have a minimum unless

2| + my;, + mj, > 2b. (2-9)

Thus (|u|* +m%,) and (1 p[> +m?2,) cannot simultaneously take negative values. This im-
plies that the point |H?| = |HY| = 0 cannot be a maximum of V. If instead both mass terms
are positive, then the origin is not a minimum but a saddle point, and the minimum occur
at non-zero vevs of H jQ , when

(MQ + miy,) (|u!2 +mj,) < b (2-10)

The rMSSM Higgs potential develops a stable minimum if the conditions of equations (2-9)
and (2-10) are met.

Turning to the bilinear part of the kinetic terms in the Lagrangian Ly _ g (eq. 2-2) the masses
of the EW gauge bosons can be derived, producing the expressions

1 1
My = 76" (v +05) 3 Mo = 7(g° + %) (v +3) 5 M5=0. (2-11)

The mass matrices of the TMSSM Higgs bosons can be identified from the bilinear part of
the classical potential,

0 0 H

(o o)ar? (5 )+ () () (o omp) o (31, e
Py X2 H,

To derive the M?¢"-matrix the relations from eqgs. (2-7) and (2-8) and the definitions

M3 =b(cotB +tanB), tanB = kel  0<p8< g, (2-13)
1
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are required. The tree-level mass matrix of the neutral gb(l)z—bosons reads

p Mzoc3 + M3s% \/_ — (M3 + M%) spes
M? = 2vy . 2-14
_ (Mf1 + MZ()) S5Cs Mgos% + MAcﬂ I3 ( )
\/51?2

We have used the short notation sg = sin(/5) and c¢g = cos(f) and we have written explicitly

the contributions of the Higgs tadpoles, which vanish at tree-level according to eq. (2-8),
because they will receive non-zero loop contributions when renormalization of the Higgs
masses will be considered. Because both v; and vy are real and positive, the upper and lower
bound on the angle g lies on the interval shown in eq. (2-13). By other side, the tree-level
mass matrices of the X%Q and HfQ components are given by

M _Misﬁcﬁ

0

Mx = o \/_m o 7 (2-15)
— SgC 2
A°BCB A ,3 \/§v2
and
T 2 12

. MA 5+\/_ ~|—2g UQ MA3505+59 V109

M = i (2-16)

M?%sscs + 3970102 Mjics + \/— + 59°01
Uy

The potential can be brought into the physical basis, where the quadratic terms in the
components of H; are diagonalized, through the rotations

(4)=re(i) (d)=-ro(%) (G)-ro(5) en

via the orthogonal transformation

D(@):( 0 59). (2-18)

—Sp Cg

In this basis the Higgs sector has five physical Higgs bosons, three of them are neutral: the
lightest (h) and heavy (H) CP-even Higgs bosons and the CP-odd Higgs boson (A). The
other two, H*, are charged and vevless. There are also three unphysical massless Goldstone
bosons, G° and G*, which are absorbed by the EW gauge fields to build up their longitudinal
components just as in the SM. The angle § is linked to the vevs through eq. (2-13) while «
can be determined from the rotation of eq. (2-14) in terms of the MSSM parameters,

M3+ M2
AT T oh<0. (2-19)

tan(2a) = tan(Qﬁ)m ) 5
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Besides of the EW boson masses of eq. (2-11), after diagonalization the rMSSM Higgs sector
is parametrized in terms of two additional parameters: tan and the mass of the CP-odd
Higgs boson m,. The masses of the charged Higgs bosons, m., are linearly dependent on
m4, they are usually used in the complex version of the MSSM. Throughout this work we
use my as input parameter. At tree-level we have:

\/_TTlvlsé + Tzwc% . omi =m4 + M, (2-20)

V20,

The tree-level masses of the CP-even Higgs boson particles, h and H, follow as predictions

mi:Mfﬁ—

1
mp g = 3 [mi + My F \/(mzA + Mgo)2 —4m4 M2, cos? (26) | . (2-21)

From the mass formulas (2-20) and (2-21) the next important inequalities can be derived:
my < Mgo; ma<mg; My<mg. (2-22)

As a consequence, the lightest Higgs boson mass is predicted to be bounded from above
by the Z°-boson mass, m;, < 91.2 GeV, modulo radiative corrections. This bound follows
from the fact that the quartic coupling of the Higgs boson fields is determined by the size of
the EW gauge couplings and therefore my, is a prediction of the model in the MSSM. The
tree-level bound on my, has already been excluded by the current experimental value of the
LHC Higgs boson mass. The other Higgs boson masses grow without boundary when the
scale my grows.

2.2. Renormalization of the rMSSM Higgs boson masses

Even if the tree-level mass of the light CP-even Higgs boson is excluded by the ATLAS/CMS
results, it is very well known that quantum corrections to my, can shift this tree-level predic-
tion by a substantial amount reaching the experimental value in a large region of the MSSM
parameters. There are three different approaches to determine higher order quantum correc-
tion to the Higgs boson masses. The first approach is based on a fixed-order calculation,
where the quantum corrections contain an explicit diagrammatic calculation of the Higgs
self-energy contributions at a given perturbative order. This procedure is invariant under
different gauge-fixing elections. The second method uses the 1PI (one-particle-irreducible)
Higgs effective potential, which is the classical potential with higher-loop radiative correc-
tions included. The renormalized Higgs boson masses are obtained here through the second
derivative of the 1PI effective potential regarding the Higgs fields evaluated at their vacuum
expectation values. Due to the potential is expanded around a constant value of the Higgs
fields, in this approach the momentum dependence of the Higgs mass corrections cannot be
taken into account. The last approach uses the EFT methods to relate the dynamics at high
energy scales with a low energy effective model of the MSSM [63]. The techniques of the
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RGEs are used here to determine the effective coupling constants where the phenomenology
is contained. We have adopted in this work the first method; therefore, we focus in this
section on the renormalization of the quantum corrections to the neutral Higgs boson mas-
ses computed following a fixed-order Feynman diagrammatic procedure. In this approach,
the renormalized CP-even Higgs boson masses are obtained by finding the zero eigenvalues
propagator matrix

(AH)—I — < p2 - m/QIi_‘_ /Z\HH /Z\hHA ) ’ (2_23)

> onm PP =mp+ >,

which is equivalent to solve the determinantal equation

{pQ —miy + EHH] {ﬁ —mj, + ihh} - {iw} — (2-24)

where mj;, and mpy denote the tree-level mass of h and H respectively, p is the external
momentum of the self-energies and

e — () —(2) —()
Zwﬂ/)j - Zwvﬂ/)j - Z’lbiwj too ZT/M"%‘ ; z/}1, 2 = h, H, (2_25)

are the corresponding Higgs self-energy corrections evaluated up to [-loop level and renor-
malized in a specific scheme. These loop corrections contain local UV divergences that have
to be removed order by order through appropriated renormalization constants according to

) (1)
Do = Dy 8 e =h H (2-26)

Zgzw]_ represents the [-loop unrenormalized Higgs self-energies while the terms with delta are
the counter-terms of the CP-even Higgs boson masses which are responsible for extracting
the infinities from the self-energies and producing finite contributions useful to get numerical
predictions. Note that the self-energies and counter-terms are in the physical basis; however,
their expressions can be derived from the unphysical one (¢? — @3 basis) after diagonalization

G " |
ZM,. +8Ya} . =D (a) (Z¢O¢O + 6(”0;%9) D@ . j=1,2 (2-27)
] R

2
¢
mixed OS/DR scheme. The abbreviation OS stands for an On-Shell renormalization while

DR refers to the renormalization by dimensional reduction with minimal subtraction.

In the following we specify the necessary conditions to obtain the constants ¢®o 40 in a
J

The UV divergences contained in the multi-loop radiative corrections are treated through
a regularization method. There are different regularization procedures, we briefly described
two of them here: the Dimensional Regularization (DREG) [64-66] and the Dimensional
Reduction (DRED) [44-47] schemes. The latter is a modification of the DREG procedure.

In order to perform calculations in the SM the method of dimensional regularization is the
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preferred option to regularize the Feynman integrals. For this purpose, the four dimensional
space-time as well as the gauge fields are analytically continued to a D-dimensional space,
where D = 4 — 2¢. The divergences are thus expressed in terms of [-order poles of the form
1/€" in the limit € — 0. Additionally, DREG preserves the gauge symmetries, but the chiral
symmetry and the supersymmetry are broken in this approach. Since additional degrees of
freedom are introduced in the analytic continuation to D dimensions, the number of bosonic
no longer coincides with the number of fermionic degrees of freedom and, as a consequen-
ce, supersymmetry is broken. In order to avoid this explicit supersymmetry breaking, the
method of dimensional reduction has been developed. In contrast to the dimensional regu-
larization, in DRED only the number of space-time dimensions are extended from 4 to D,
where D is less than 4, while the number of components of all other tensors, like metric
tensors, vector fields and v matrices, are fixed to four. Fermions, on the other hand, re-
main as four-component spinors as well. The corresponding Dirac and Lorentz algebra of
the different tensor objects in the DREG/DRED schemes will be developed in more detail
in Chapter 3 and Appendix A. In the component field language, it is convenient to split the
four dimensional vector fields V* into a D-dimensional vector V' plus a (4 — D)-dimensional
field V', where D < ¢ < 4. The (4 — D) degrees of freedom transform as scalars under
gauge transformations and are known in literature as the e-scalar fields. One can associate a
mass m, to these unphysical e-scalars; however, it is important to ensure that physical ob-
servables will be independent of this parameter after renormalization. An important feature
of supersymmetric theories is the fact that the renormalized vector and e-scalar coupling
constants must be equal, and therefore, their beta functions must be the same. To date, this
property has been explicitly proved for the SQCD vertices: gcé, 999, 9qq, §qq, qqe, gge and
gee up to three-loop level [67].

Both regularization procedures DREG and DRED introduce a new non-physical parameter
into the theory, the renormalization scale yu,., which is meant to preserve the mass dimension
of the loop integrals and the interaction couplings. A subsequent renormalization procedure
is necessary in order to eliminate this dependency on unphysical parameters and establishes
a connection between the parameters of the theory and the physical observables, like the par-
ticles masses. The result of an exact calculation, in which all orders of perturbation theory
are taken into account, is independent of the renormalization scheme. In practice, however,
only contributions up to a certain order of the perturbative series can be considered. The
dependence on the renormalization scheme of the result of such a calculation reflects the
theoretical uncertainty caused mainly by the missing higher order contributions. This work
will distinguish between four different renormalization schemes: The DR, the MS, the DR
and the On-Shell scheme.

In the DR scheme, loop integrals are regularized with DRED and the renormalization cons-
tant belonging to a parameter only absorbs the proportion of the bare parameter which is
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proportional to

% = z_ vE + Indr . (2-28)
€ €

Thus, the bar in DR is to underline that an additional factor of v4me—7# is absorbed into
the renormalization scale associated to the loop corrections, where vg =~ 0.5772156649 is
the Euler-Mascheroni constant. The DR renormalization is of particular interest in SUSY
calculations since regularization by dimensional reduction preserves supersymmetry and glo-
bal gauge invariance up to three-loop level when the EW gaugeless limit is adopted [68]. In
contrast, the method of dimensional regularization is used in the M .S scheme [69-74], usually
for calculations in the Standard Model. The M S renormalization constants are obtained also
from the extraction of the terms proportional to 1/€. In particular, at the one-loop level, the
counterterms in the DR scheme do not differ from those in the M S scheme. The finite result
of a calculation in the DR or M S scheme is dependent on the renormalization scale which
was introduced during regularization. For the complete determination of the renormaliza-
tion scheme, the specification of pu, is necessary. Both schemes have the advantage that all
UV counter-terms are polynomial in the kinematic invariants, as the external momenta and
particle masses.

The DR scheme [46,75] is a slightly modification of the DR procedure where the mass of
the € scalars completely decouples from all the anomalous dimensions, beta functions and
matching conditions between running parameters and physical observables. In the context
of a DR renormalization, also the mass m, is renormalized in the DR scheme. In the latter
case, the physical observables will depend on the unphysical e-mass and it is important to
keep m, different from zero since the renormalization group equations of the particle masses
and m, are coupled. In order to get rid of this m.-dependence, one can introduce additional
finite shifts in the renormalizations constants associated to the physical parameters. The DR
renormalization modified to introduce those additional shifts is called the DR scheme.
Finally, in the On-Shell scheme [76,77] the parameter counterterms absorb finite terms in
addition to pole parts in 1 /€. If the mass of a particle is fixed on-shell, then the corresponding
mass parameter is given by the real part of the pole of the propagator and can be interpreted
as a physical mass. The mass counter-terms then absorb all the corrections to the real part
of the propagator’s pole. If all quantities are determined on-shell, then the finite result of a
calculation no longer depends on the scale pu, introduced for regularization.

We consider in this section the determination of the Higgs mass counter-terms in the EW
gaugeless limit and we derived the counter-term expressions up to three-loop level. The re-
normalized self-energies are obtained from the unrenormalized Lagrangian Ly_p (eq. 2-2)
by replacing the bare parameters and fields with the renormalized ones. Each Higgs scalar
doublet of eq. (2-1) gets a multiplicative renormalization

3
Hi— HnZi;  Zi=1+)» 0VZ; i=12. (2-29)
=1
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The free kinetic part of Ly _p yields the renormalized terms
2
ree 2 —12 2
LIS = Z|0,HY)| + 21 |0,Hy | + Z2 |0, HS |, (2-30)
j=1

while the mass terms of the classical Higgs potential (eq. 2-12) produce renormalized quan-
tities of the form

3 \/7
- (a7 xzm)(M”Zé(”M“)(ﬁ; ﬁ) Cow=¢" X% HE L (231)
=1

For the off-diagonals terms of the matrix AM/* and its counter-terms, ) M?, the fields z; and
xo are mixed and an expansion of the square root becomes necessary. Keeping terms up to
three-loop order one has:

VI Dy =1+ %5“)212 + %5@)212 + %5(3)212 +..., (2-32)
where we have used the definitions

5(1)Z12 — 5(1)Z1 + (5(1)22’

0P Z1y = 6P Z1y + 6©) Zoy + %5“)215(1)22,

0P Z1y = 6 7211 + 6©) Zog + % (5(1)215(2)222 + 5(1)225(2)211) ) (2-33)
with

oWz, =Wz, i=1,2,

1
602 = 002 - £ (6Wz))" 1 i= 1,2,
1 1
692 = 692, - 5602892, + (Wz) s i=1,2. (2-34)

Solving the matricial product in eq. (2-31) and expanding each resulting term, as well as
the Lagrangian terms of eqs. (2-30), up to three-loop level according with the definitions of
eqs. (2-32), (2-33) and (2-34), one gets

]. 0 (0] 1 0
(S(Z)O'j)(l)(z)g = —§M{]§2 5(l)Z12 - 5(Z)M{b2 - 5(52125]\4?2 s
50020 = <p2 — Mﬁ) 007z, —6OMY —82,6M%  j=1,2,; 1=1,2,3. (235

The counter-terms with the bolded delta in eq. (2-35) start giving contributions from the
two-loop level, these terms contain the sum of all the possible products of the M* and Z
counter-terms at a given [-loop order, that is
-1 1-1
8Z6M* =" " smMzsmMT 1=2.3,. .. (2-36)

m=1 n=1
m~+n=l
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In order to derive the explicit expressions of the matrix components 6V MZ, we require

177
the renormalization of the input parameters contributing to the neutral Higgs boson mass

matrices (2-14) and (2-15):

3
M%o — M%O + Zé(l)Méo ) (2—37)
=1
3
M5 — Mi+> sWMy (2-38)
=1
3
tanp — tanf + Z §Otanp | (2-39)
=1
3
T, T+ > 60T i=1.2. (2-40)

=1

One should also uses the Taylor series expansion related to e, My, and Oy up to two-loop
level as v; and vy contain parametric dependences on those EW parameters,

M M,
v = \/5@05 Couy =2 W:OW sg. (2-41)

However, as we have adopted the gaugeless limit, all the counter-terms associated to the
EW gauge particles and their corresponding contributions are discarded. In particular the
counter-terms related to v; 2 do not make contributions in the limit of vanishing external
momentum at order a;a?, as will be discussed in Chapter 3, and therefore the renormalization
of the vevs will not be explicitly considered in the following paragraphs of this section. Finally,
the renormalization of the remaining terms are performed through the parameter tanf =tz
according to the eq. (2-39), since the angle ( satisfies the conditions

5(1)8,3 =Cp (1 - S%) 5(l)tﬂ X (S(l)Cﬁ = —C%S/B(S(l)t,g 3 5(1)(8565) = C%ngé(l)tﬁ. (2—42)

Having in mind the expressions from eq. (2-37) to eq. (2-42) and after a bit of algebra we
can derive the following ¢°-mass counter-terms:

sOT
SOMY = 6O M3 + 255 M3SDts + 25556 M3 + % L0 (0 V),
203
Z)T
SOMGy = 6O M3 — 2553 M3Vt — 25538 M3ty + —=— + O (60 Dw,) (2-43)

\/_UQ

5(Z)M1¢20 = —5(Z)M%8505 — C%CQﬁMié(l)tﬁ — 020255M§6t5.

The terms with the bolded delta follow the same definition as in eq. (2-36). Now that we have
at hand all the necessary expressions to determine the counter-terms 5(1)03)0 40 of eq. (2-35)
7

the renormalization constants entering into their definition need to be set. As we mentioned
previously, we are going to use a mixed OS/D R renormalization. Specifically, the mass M4
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Figure 2-1.: Left: Generic three-loop Higgs tadpole topology with ¢ = ¢(1)727 A. There is no
momentum dependence. Right: Generic three-loop Higgs self-energy diagram where
p is the external momentum and ¢ = ¢?72, A.

and the tadpole parameters 77 2 are renormalized using an OS procedure while the Z field
contributions and the parameter tanf are renormalized in the DR scheme. In particular,
the mass counter-terms exhibit a momentum dependence. The tadpoles, tan and the Higgs
field counter-terms are independent of the external momentum p?.

Adopting an OS renormalization the tadpole contributions must vanish order by order in
the perturbative expansion, yielding the conditions

)

To+ > (T +00T5) =0 = 60T, = -7(Y, (2-44)
l

where T35 are the tree-level tadpoles, which vanish according to eq. (2-8), and ng are
the sum of all the l-loop Higgs tadpole diagrams (Figure 2-1 Left shows a schematically
representation of a generic three-loop tadpole topology). This is equivalent to impose that
the vevs v 5 are the minima of the full effective Higgs potential. Furthermore, the mass
parameter M4 is related to the CP-odd Higgs boson mass, my, through the eq. (2-20).
Therefore, in the EW gaugeless limit the counter-terms of M, satisfies the condition

2 sOT, 2 6sOT, 2
4 \/§U1 g \/502 a

In the on-shell scheme the renormalization constant of the A-boson mass is determined in

WML = 6Um

(2-45)

terms of the real part of the unrenormalized A-boson self-energy with the external momen-
tum, p, evaluated at the pole mass (see Figure 2-1 Right),

6Um?% = Re [ZZ)A (p2 = mZA)} : (2-46)
The momentum contribution of §"m 4 is necessary to remove additional divergences coming
from the counter-terms involving tanf in eq. (2-43) which contain a dependence on the para-
meter M 4. Those terms give rise to infinities that cannot be canceled by any of the divergent
terms contained in the unrenormalized CP-even Higgs boson self-energies. In the limit of va-
nishing external momentum one can avoid dealing with these additional divergences.

On the other side, the DR renormalization constants of the Higgs fields can be obtained by
taking the derivative of the neutral CP-even Higgs self-energies (see Figure 2-1 Right) with
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respect to the external momentum squared,

0 = 0 O
o 2y V)~ 7 2 )
div

0 0
- e [5%§'§£:¢€¢?(p )] | (247

p?=0

6VZ; = Re

A full DR renormalization is convenient because in most of the cases the momentum depen-
dence of the divergent part of the scalar self-energies is known analytically up to three-loop
order. In an on-shell scheme it is no possible to take the derivative of the loop integrals
regarding p? in a fully analytical way since the finite part of some of those integrals at two-
loop level and beyond have no closed analytical expressions available until now. There are
other alternative choices for the renormalization of the Higgs fields and the parameter tan(;
however, due to its technical convenience and its process independence the most convenient
choice is a DR renormalization as was discussed in [78]. The bare parameter tanf can be
expressed in terms of the constants Z; o owing to its definition as the ratio of the vevs v; o
which are renormalized in the same way as the Higgs doublets,

Uj — \/Zj (Uj + (S’Uj> =~ 'Uj -+ %é(l)ijUj -+ %5(2)ijvj -+ %5(3)ijvj + ... ) ] = 1, 2 s (2—48)

where the definitions of eq. (2-34) are required. In eq. (2-48) the dots stands for terms
proportional to §)v;. Having in mind the above equation and the eq. (2-39) we get

1 Wy Wy 075000 07100
5(l)tcm,8 _ tfmﬁ - (5(l)222 . 5([)211) + 2 1 + 22002 11001 ' (2_49)
2 (%) (%1 2U2 2?]1
If one considers the approximation where the dependence on the external momentum is disre-
garded (p? — 0) and the limit of vanishing electroweak gauge couplings, then both the Higgs
field renormalization constants and the counter-terms of tanf do not make contributions up

to three-loop level in the DR scheme.

2.3. The SQCD sector of the rMSSM

A particular feature of the rMSSM is the large size of the higher order quantum corrections
to masses and couplings. They can lead to a considerably large shift on the value of the Higgs
boson masses where the bulk of the corrections comes from the supersymmetric quantum
chromodynamics sector of the Lagrangian. The calculation of the SQCD corrections to my,
involves the renormalization of the top quark mass, the gluino mass and the squark mass ma-
trices and mixing angles, when the local divergences coming from a sub-loop diagram have to
be removed. An [-loop renormalization of the Higgs boson masses requires the corresponding
SQCD counter-terms up to at most (I — 1)-loop order.
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2.3.1. The squark masses and mixing angles

At tree-level the squark masses are composed of the soft SUSY breaking terms, the quadratic
D-terms and the F-terms coming from the superpotential W after symmetry breaking, where
the Higgs bosons acquire vevs. The superpotential is obtained from the Higgs-matter Yukawa
and the Higgs self-interaction parts of the rMSSM Lagrangian. It can be written as

W = hyal, (aLH$ - CZLH;> — hadl, <ﬂLH2‘ - CZLHg) — pHCH 4 ... (2-50)

where we have made explicit the necessary terms to derive the squark masses. Here h, /4 are
the up/down Yukawa couplings. For a review of the complete expressions of all the sectors of
the rMSSM Lagrangian in terms of mass eigenstates we refer you to the references [24-31].
The mass term of the bare squark Lagrangian is given by

are 1 g 3 f
LCome=—>(JL )2, ( i ) , (2-51)
where
ME - m2 + Mzocos283 (I3 — Qusj, ) + M M, (A, — pcotB) (2.52)
ip,R M, (A, — pcotB) mg + M2,cos2B8Qus;, + M

for the squarks type up, f = u. An analogous expression for the squarks type down (f = d)
can be obtained just by changing cotf — tanf. The mass terms, my and my, , and the
trilinear coupling between the squarks and the Higgs bosons, Af, come from the soft SUSY
breaking part of the MSSM Lagrangian. Note that SU(2) invariance requires that mg, =m;,
for the members of each left-handed sfermion doublet. The off-diagonal terms proportional to
picot3 come from the F-terms of the form |0W/9H ﬂ2‘2 while the diagonal terms M7, where

2 2
and |91/ fL‘ . Additionally
Q¢ denotes the charge and I. g the third isospin component of the f-type squark. The terms

My represents the f-type quark mass, come from ‘8W/ 0 ﬂz

proportional to @ and I come respectively from the U(1) and SU(2) contribution to the
quadratic term in D.

The u- and d-type squark mass matrices can be rotated into the physical basis, and the
physical mass eigenstates my, and 7y, can be determined, through the orthogonal transfor-
mation

(2)-ver (%) U(9f>:<fi’;f Zjﬁ>' 25

The mixing angle 07 is given at tree-level and for tanf > 1 by

(143,.) )
fL,r) 19 fL.rR) 19 (2_54>

SRR e "
fr.r) 12 (MfL,R>12+ <(MfL,R>22 _mf1>
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where the negative and positive sign correspond to the u- and d-type squarks respectively.
The physical masses of the squarks are given by the eigenvalues:

2 — 2
j+1 (MﬁLvR)u (M“L’R)ﬂ
(2.),,— (2.)
UL.R /41 UL.R /99

\/[m%L —mZ + M2,cos2f3 (I3 — 2Qfsgw)]2 +4M2 (A, — peotB)’ s j=1,2. (2-55)

1 1
My = 5 (M, +mi,] + 5 MGocos2BI5 + M + (1)

Mo, = 3 X

For squarks type down we have to make the changes u — d and cot — tanf in the above
equation. Because of the large value of the top quark mass, M;, mixing effects in the stop
sector are expected to be relevant; however, the effects cannot become arbitrarily large to
avoid negative values of the physical stop masses. This imposes a bound on the value of the
trilinear parameter A; which cannot be much greater than mg, .

In order to renormalize the squark sector and derive the corresponding counter-term expres-
sions it is convenient to express the squark mass matrix in terms of the physical masses and
the squark mixing angle 6 as follows:

2 =2 2 =2 =2 ~ 2
) . Cafmfl + s@fme Sefcef (mfl - mfZ)
MﬂL,R_ (~2_~2) 2~2+ 2 2 : (2‘56)
S0:C0p \Mvyy — Mg, ) Co My, T S Mg,
Matching the two mass matrices in eq. (2-52) and eq. (2-56) one can derive a tree-level
expression for the squark mixing term
o0 (52 =2
sinf pcost; (mf1 — me)
My

The renormalization constants of the masses, the mixing angles and the fields are then

Xy =Ar — p{cotp, tanp} = (2-57)

defined via the transformations:

mi = mi +omy, ;o omy = 6Um] (2-58)
l
0 —0;+00; ; 00;=> 5"y, (2-59)
l
1 ! 1 l
( f~1 ) fl bt 526( )Zfll 526( )me
~ — Z~ ( o~ ) . Z~ — l l (2-60)
f1 ’ fi )
f2 T\ 2 32 0025, 1+3) 307,
l l
where
sOz. _s0g _ 5 sy s L —1.9 561
fi2 — fa1 Cg _ Sz ( fao fll) ) — 1, 4. ( - )
f f

The bare Lagrangian of eq. (2-51) is therefore transformed to its renormalized version

L B 1oa s j
ren __ Tt T 2 7 1 T i T 2
cr=—5 (A )meMl,zZm( ﬁ)—ﬁ(fl i) 2p,an, fn( fz), (2:62)
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where M, 5 is the squark matrix in the physical basis at tree-level while its related counter-
term matrix, AM?,, has the expression

< 5771 (50) ( my, m?‘z) (m?’ mfz) 56 +69 (577%3[ 5m3‘2) ) (2—63)
(3, — m3,) a6 -+ 007 (8, — o) om (59) (mfl m,)

Collecting the counter-terms generated from eq. (2-62) and from the kinetic terms of the
squark Lagrangian, we derive the expressions of the renormalized squark self-energies, which
are given by

—_

S P) =2 525, - 2 [ MEy+ AME = (5)] 2, — P 4 MR, (2-64)

Once again we have used the symbol ¥ with a hat to represent the renormalized self-energies.
Along this work we are going to consider the quantum corrections to the Higgs boson masses
up to three-loop level; therefore, the one- and two-loop SQCD counter-terms are required
in order to renormalize the non-local divergences coming from a sub-loop diagram. Thus,
keeping the terms up to two-loop order in the unrenormalized squark self-energy matrix, we
have:

) S22 SRR e (28 - £8)
Z (r*) = 1), @), 51) 1) 8 M 1) 1) - (2-65)
221 +221 +0 Gf (211 - 22) +222 +20 9 Z

Using an analogous expansion over the matrix AMIZ’2 (eq. 2-63), one can derive the compo-
nents of the renormalized squark self-energy matrix of eq. (2-64) at one- and two-loop level,
yielding the expressions:

5
)5“)9]; i i=1,2, (2-66)

@ (1)
— (-1 z+125 1)9fz()_mf15 Zm_(g( )mi
= 00w a0Z;, — (1) (500y)" (i, — i) i=12, (2-67)

(2) (1)
(1) (1) ~
+ a2 67 - 222 <p2>) - (i, — ) o0

- (m}, —m3,) 6WZ; 6W6; — (6WmG, — 6Wmg,) 606; . (2-68)
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As we are working in the DR scheme, the left-handed and right-handed components of the
squark fields have the same renormalization constants. Consequently, 6¢) Z = oWz 7,, and
therefore we have used 67 7, = 0 In the derivation of the above two-loop expressions. At
one-loop level we have imposed the conditions

—()

Dp | ) (m;)] =0 ; i=1,2, (2-69)
=0 S0

Dp ZIQ (me) + 221 ( fl) = 0 ) (2—70)

Dp a_pQZii (m fl)] 0 ; i=12. (2-71)

The function Dp|[ f | takes the pole part (principal part of the Laurent series) of the argument
f which is computed in the DRED scheme. Using this prescription we get the one-loop
renormalization constants:

52 = Dp [Z(l) (mi)} L i=1,2, (2-72)
D (1)
g, DP[ZH () + T8 ()| o)
d 2 (mf1 - mfz) 7
0 1, . )
5(1)2]3” =—-Dp {6}9 Z (m%)} o1 =1,2. (2-74)

At two-loop order the renormalization conditions are derived by imposing

poa-%,] - (2-75)
A fp

that is to say, the finite part of the inverse propagator must be zero since in the DR scheme
the counterterms have only the pole parts. Explicitly the two-loop conditions are:

[Z:)M(UZJFMZZE(Z )60 Z; — 6@m3 — W 61 me

— (=1)""26Wg; Z (6D05)° (m fl—mfb)} =0 ; i=1,2, (2-76)
fp

Sl emm, ot (2] - £1) - o

— (0Wmg, —6Wm3,) 6W0F — (m, —mj,) 0V 25 6We;] = 0. (2-77)

1
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Consequently, the corresponding two-loop counter-terms in the DR scheme are:

N 2
st =on [0 3] - oy 2 A )

2
Dp |1 (m3,) = 8 (73,) |

+ (—1)j+1 ; J: 1727 (2_78)

- - 2) , _ 2) ,
2, ~ ) %05 = D[S0 55)] + 0 [0 )

~ Dp ooy D | 00 () - 000 ()| (279

0 =@ . 0 0 o]
57, —— Dp {8_192 Z“ (m?)} + Dp {8_]92 Z“ (m?)l

+ (~1)*'2Dp [6M0;] Dp [a% > (m}i)] Li=12, (2-80)

In the limit where the light fermion masses are neglected (NLF limit) the mixing angles 6;
with ¢ = u,d, b, ¢, s are equal to zero and therefore there are no mixing counter-terms. Thus,
the pole equation (2-77) and the counter-term (2-79) do not exist for the ¢-type squarks.
Additionally, the equation (2-76) and the counter-terms (2-78) and (2-80) can be even further
reduced just by putting §V¢; = 0.

2.3.2. Renormalization of the fermion masses

In the NLF limit the only fermions that can give a contribution to the Higgs mass corrections
is the gluino and the top quark. The gluino mass, Mj, plays an important role in the deter-
mination of the corrections coming from the SQCD sector. A gluino is a Majorana fermion,
a spin 1/2-particle whose associated 4-component spinor is even under charge-conjugation,
which is the superpartner of the gluon and therefore is a SU(3) color octect fermion that
cannot mix with any other MSSM particle. As a consequence, the only contribution to its
tree-level mass comes from the soft SUSY breaking term of the Lagrangian,

Mg == Mg. (2—81)

In SUSY-GUTSs this mass is related to the U(1) and SU(2) gaugino masses, M; and M,
respectively, through

My = Ban o an = 2%y (2-82)
3= 1= 32 Mo

Ow
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At the perturbative order considered in this work we just need a one-loop renormalization of
the gluino mass. On the other hand, we need the renormalization of the top quark mass, M,
up to two-loop order. We have adopted a quite simple prescription. The fermion self-energies
are decomposed into a vector, an axial-vector, a scalar and a pseudo-scalar part as

S5 (%) = p=5 () + psZf (%) + MySF () + MyysEf (0%) (2-83)

where M is the mass of the fermion f, while P stands for v,p* with v, the Dirac gamma

matrices. Each component can be obtained according to

S 0) = T (2 01) 31 00) = o (e 7))
=7 () = 4]34,;& (@) . B0 = AILMfT]r (32 (p%)) - (2-84)

Up to two-loop level the top-quark and the gluino mass counter-terms are derived in the DR
scheme according with the condition:

OM ;

f_ 1% 2 S 2
The one- and two-loop renormalization constants for the top quark and the gluino masses
in the DR scheme are known for long time [79,80]. We have put their explicit expression in
Appendix B.

2.3.3. Role of the top quark mass

Most of the theoretical predictions of the EW observables, as the Higgs boson mass, as well
as the stability analysis of the Higgs potential crucially depends of the specific central values
and the uncertainties assigned to M} and M;, being M, the parameter with the higher uncer-
tainty. In general, the vacuum stability analysis in the SM is performed using as renormalized
mass for the top quark, the so-called pole mass, in an on-shell renormalization scheme where
the pole of the propagator is not a gauge-invariant quantity and is identified with the world
average of the Tevatron, CMS and ATLAS measurements, MM = 173.34 & 0.76 GeV [81].
Since the experimental error on the Higgs mass is already fairly small, the factor that can
discriminate between a stable or an unstable potential is the exact value of the top quark
mass. This identification is not straightforward, MM¢ cannot be used directly as an input
for precise NLO or NNLO theoretical predictions because all measurements included in the
world average are calibrated using Monte Carlo (MC) simulations. MM is by definition the
MC top quark mass, which are not the renormalized mass appearing in the propagator of
an on-shell renormalized theory.

Theoretically, the top quark mass is a renormalized quantity of the QCD Lagrangian. The
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renormalized mass is obtained from the top self-energy diagrams, as was discussed in Sec-
tion 2.3.2. The finite contributions to the self-energies can be absorbed into the renormalized
mass and the UV divergences in a suitable counterterm. Different choices for the finite terms
define different top mass schemes. In the top quark on-shell scheme all ultraviolet (UV) and
finite contributions of the self-energy are absorbed into the mass M} ole including the dyna-
mics at scales below Agep ~ 1 GeV (describing the gluon exchange between quarks and
gluon radiation) where the perturbation theory breaks down. Consequently, the top quark
pole mass is plagued with an intrinsically non-perturbative ambiguity of the order of Agcp,
the hadronization scale, a problem known in the literature as the infrared (IR) renorma-
lon problem [82]. This ambiguity is a manifestation of the fact that the pole mass for a
quark is not well defined as quarks are not free asymptotic states due to the confinement.
The Monte Carlo mass MM instead is the mass of the propagator prior to the top quark
decay. For scales below 1 GeV the partonic degrees of freedom are not used anymore and
a non-perturbative hadronization model is employed. The infrared ambiguity known from
perturbative QCD from scales below 1 GeV never arise in this context and there are also no
perturbative contributions to the mass parameter coming from this region. This already tells
that MM is not identical with the top quark pole mass M. MMC can be interpreted as
MP°" within the intrinsic ambiguity in its definition which is roughly of the order of 1 GeV.
In order to reduce the uncertainty introduced by the renormalon ambiguity, a more adequate
renormalization scheme must be used. It is well known that short distance masses, such the
one defined in the DR and MS schemes, do not suffer from the IR renormalon problem.
In those schemes only pure UV divergences are subtracted [83], as a result, the DR/MS
top mass is renormalization scale dependent. Physically, the scale dependent masses are
conceptually and numerically very far away from the notion of a physical particle mass,
the difference can amount a size as large as 10 GeV. The scale dependent mass parameter,
my(Q), should be thought more as a coupling for a heavy quark-antiquark correlation and is
therefore a very good scheme for parametrizing the top Yukawa coupling y;. The mass m;(Q)
can be extracted directly from a measurement of the total top-pair production cross section
oexp(pp — tt+X). Such analysis performed in [84] with NNLO accuracy with inclusion of
the full theoretical uncertainties gives rise to the following result

my(My;) = 163.3 £ 2.7 GeV (2-86)
a value that translated in terms of pole mass gives
MP® = 173.3+£2.8 GeV | (2-87)

The central value is very close to the MC value MM¢ = 173.3440.76 GeV but the theoretical
uncertainty is much larger. To improve the current precision of the top-mass determination
one needs to consider, in addition to the QCD NNLO radiative corrections, the EW and
the mixed EW x QCD corrections. In contrast to QCD, where the mass of a quark is the
parameter of the Lagrangian, the notion of a running mass in the MSSM, as well as in the
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SM, after EW symmetry breaking is not entirely determined by the prescriptions of minimal
subtraction. It also depends on the value of the vacuum expectation value (vev) v(@Q) chosen
as a parameter of the calculations so that the running mass is m(Q) = 1:(Q)v(Q)/v/2. This
implies that the definition of a DR/M S-mass is not unique: it depends upon the definition
of the vacuum.

There are two main definitions found in the literature. The first one, called the tree-level
vev, defines the renormalized vacuum ;... as the minimum of the tree-level Higgs potential.
The advantage of a scheme with this vacuum definition is that all the physical observables
depending on it are gauge invariant quantities due to the explicit insertion of the tadpoles
diagrams. Their insertion is done not only in the diagrams with counterterms but also in the
1PI Feynman diagrams as required to have the gauge independence of renormalized scatte-
ring amplitudes according to the gauge Ward identities. However, there is a disadvantage,
the inclusion of tadpole diagrams involving the Higgs field, which have to be included in
any calculation based on vy, include negative powers of the Higgs quartic self-coupling
leading to a parametrically slower convergence. For instance, in the computation of m;(Q)
in the SM the EW contribution is surprisingly large and has opposite sign relative to the
QCD contributions, so that the total correction is small and increases the theoretical error
by 0.5 GeV [85].

Using this definition of the vacuum, the relation between the top quark pole mass and the
M S parameters of the SM have been computed at different perturbative orders. The status
of those calculations is the following. The pure QCD contributions, which are dominant,
have been computed at one [86], two [87] (confirmed in [88,89]), three [90], and recently
at four-loops order [91]. Besides these pure QCD contributions, the full one-loop contribu-
tions to the pole mass have been given in the references [92-94]. The 2-loop mixed O(cay)
contributions were found in [95]. The full 2-loop contributions have been studied in the
EW gaugeless limit approximation in [13]. Most recently, a systematic approach is available
to the complete two-loop threshold corrections O(a?) of all the running parameters of the
SM [14,15]. This computation includes the masses of the W, Z° and Higgs bosons and those
of the top and bottom quarks as well as the gauge couplings, the Higgs self-coupling, and
the top and bottom Yukawa couplings. The full two-loop results was implemented in a C++
library called mr (available for download from URL: http://apik.github.io/mr/) that allows
to calculate the values of the running parameters in the SM at high energy scales [96].
There is an alternative to the above results implemented in the public code SMDR which
can be consult in the references [97-99]. In this approach the complex pole mass of the top
quark is presented at full two-loop order in the SM, including the known four-loop QCD
contributions, in a scheme where the running M S squared masses are expressed in terms
of the vev v of the Higgs field, where v is defined to be the minimum of the full effective
potential calculated in the Landau gauge. By this definition, the sum of all Higgs tadpole
graphs, including the tree-level Higgs tadpole, vanishes identically, as is schematically re-
presented in Figure 2-2 for the Higgs self-energy, and therefore negative powers of A\ and
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Figure 2-2.: Renormalization of the vev. The sum of the topologies in red color vanishes.

huge EW corrections are absent in the perturbative expansions of the pole masses and their
relations with the MS parameters. The vev v is in some sense a more faithful description
of the true vacuum state. However, there is also a disadvantage. If the scheme is defined in
terms of the self-energy diagrams without including the tadpole contribution, it gives rise
to radiative corrections that are dependent of the gauge-fixing procedure. As a consequen-
ce, in this framework the M S masses are gauge-dependent quantities. Nevertheless, a MS
mass is not a physical quantity nor a Lagrangian parameter and therefore the requirement
of gauge-invariance is not mandatory.

By other side, it is worth mentioning that, so far, the precise relationship between the thres-
hold corrections that relate the MS masses to the parameters in the pole scheme with the
three level vacuum vy, (the computation done by Kniehl et al. in [14]) and the alternative
computation done by Martin in [97-99] remains unclear. Recently, it has been argued that
would be preferable to avoid the use of the pole mass scheme all-together and directly relate
the Monte Carlo mass to a different short distance mass definition, where the top mass could
have a numerical value close to the pole mass but without suffering from the renormalon
ambiguities. There are several useful definitions of the top-quark mass in these so-called
threshold masses schemes that depends on the precise relation to experimental quantities.
Those include the potential-subtracted mass [100], the 1S mass [101,102], and the MSR
mass [103].

2.4. State of art of the higher-order corrections to M,

In most of the relevant phenomenology benchmark scenarios for MSSM Higgs boson searches,
the Higgs boson found at LHC corresponds to the lightest CP-even Higgs boson with a mass
M, which is not a free input parameter but it is predicted in the MSSM. The upper bound
on its predicted mass at the leading order is given by Mz = 91.2 GeV, leading to the
exclusion of the MSSM at current collider experiments. However, the tree-level prediction
of the Higgs boson mass is strongly modified by higher-order quantum corrections making
the MSSM compatible with the measured Higgs mass of 125 GeV and consistent with the
similarities of the measured Higgs couplings to those in the SM [6].

The state of art of the corrections to the lightest Higgs boson mass in the MSSM is quite
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advanced and widely studied. At one-loop level the full quantum corrections can be found
in the references [104-107] with real parameters. The dominant contributions come from the
top-stop Yukawa corrections at zero external momentum in the EW gaugeless limit, which
are proportional to the fourth power of the top mass and to the logarithm of the physical
stop masses:

3G Fivg, e
SN2 = M}n <— : (2-88)
Lo V2m2s3 ' M7

where G = 1.16637 x 1075 GeV 2 is the Fermi constant. The source of this correction is the

soft breaking of supersymmetry which produces an incomplete cancellation between virtual

top and stop loops. In this approximation the one-loop prediction of the Higgs boson masses
can be expressed in the simple compact form:

1
M2 =
h ™9

2
m + 60 ME — \/ (ma - 5,§”M,3) = 4m15;5§1>M,3] ,

ME =m? — M2+ 60M2 ; m? =m? + M. (2-89)

The Higgs mass can be also affected by a potentially large stop mixing X; (see eq. 2-57) due
to the non-leading effects of the one-loop correction:

Xe TR 2\/57725%

where the function f is defined as:

floy) = — m(f). (2-91)

L=y Y

2— (m% + 7’71?2) f (ma’ mé

We have drawn in Figure 2-3 the dependence of the CP-even and charged Higgs boson masses
on the parameter m, including the dominant one-loop radiative corrections in a scenario
where the soft SUSY breaking mass terms of the squarks are put at the same supersymmetric
scale, mg, , = mg, . = Msysy. Note that for large values of m 4, independently of tang,
the masses of the heavy Higgs particles, My and m, grow linearly without boundary and
have approximately the same magnitude, My ~ m.. The lightest Higgs boson mass instead
approaches to an asymptotic value, showing a more regular dependence on m, for large
tanp, where M, ~ m, for small m4 while M}, ~ const for large A-mass. The non-leading
effects of the stop mixing X; allow a simple determination of an upper bound on the lightest
Higgs boson mass at one-loop level, yielding the expression:

M2 < MZoc3g + 00 M2s% + 65 M2s2. (2-92)

If one considers large values of the parameter tanf (tanf >> 10) in the scenario of maximal
stop mixing, where the value of X; makes M), maximal (frequently referred in literature as
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Figure 2-3.: One-loop predictions of the Higgs boson masses M}, (solid), My (dashed) and
m+ (dotted) as a function of the CP-odd Higgs boson mass m 4. We have considered
tanf = 3 (blue) and 30 (black) in a scenario where Mgysy = 1 TeV, pu = 200 GeV
and the stop mixing parameter X; vanishes.

the m}"** scenario), a general upper bound given by M) < 140 GeV is found out. Fortunately
for the MSSM, the Higgs boson was discovered at the LHC within this energy region.

The contributions of egs. (2-88) and (2-90) contain the bulk of the one-loop corrections. The
subdominant contributions coming from higher-loop corrections can essentially be reduced
to higher-order SQCD effects. The detailed results of a Feynman diagrammatic calculation of
the leading two-loop QCD corrections at order O(aw) can be found in [108], in particular the
O(apais) [109] and O(ayavs) [110] contributions using the FD approach are known in the limit
where the external momentum vanishes and in the MSSM version with complex parameters.
In this limit there is an alternative procedure to compute the above corrections, the Effective
Potential (EP) approach. A comparison of the corresponding two-loop results in the FD and
EP approaches at O(aay) can be found in [111,112] and references therein. In contrast to
the EP method, the FD approach has the advantage that it can allow for non-vanishing ex-
ternal momentum. An evaluation of the momentum dependence of the two-loop corrections,
including all the terms involving the QCD couplings, in the modified dimensional reduction
scheme (DR) was presented in [113]. The latest status of the momentum-dependent two-loop
corrections was discussed recently in [114,115] using a hybrid on-shell-D R scheme and inclu-
ding corrections of O(p*a;a) for the real version of the MSSM. A complete two-loop QCD
contributions to M}, in the MSSM with complex parameters including the full dependence
on the external momentum can be found in [116]. The expressions of the leading two-loop
quantum corrections to the MSSM Higgs boson mass are quite involved and have a large
amount of terms. However, all the above mentioned one- and two-loop Mj-predictions are
implemented in the public code FeynHiggs [56] and can be readily used for numerical eva-
luation purposes. Figure 2-4 Left shows the dependence of the tree-level, full one-loop and
leading QCD two-loop Mj-predictions coming from FeynHiggs as a function of the scale my4
in the maximal stop mixing scenario for tanf = 30, Msysy = 1 TeV and p = 200 GeV.
In this plot one can clearly see the good behaviour of the perturbative expansion. If one
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Figure 2-4.: Left: Predictions of the lightest Higgs boson mass, M}, at tree (dot-dashed), one-
loop (dashed) and two-loop (black solid) level as a function of the CP-odd Higgs
boson mass m4. We have considered the m}"** scenario (X;/Msysy ~ 2.4) at the
kinematical point tanf8 = 30, Msysy = 1 TeV, p = 200 GeV and Mz = 1.5 TeV.
Right: The three-loop Mp-predictions (red solid line) are included for large m 4 in

the maximal stop mixing scenario.

looks at the numerical difference between the dashed and the dot-dashed curve as well as
the difference between the dashed and the solid line for large m 4, one can easily conclude
that the size of the one-loop corrections (estimated to be about 45 GeV) are higher than
the size of the two-loop ones (roughly 12 GeV), as expected from a perturbative quantum
field theory. Besides, the two-loop corrections give negative contributions in contrast to the
one-loop corrections which are postive.

At three-loop level there is a first diagrammatic computation performed by P. Kant and
collaborators [117-119], where the radiative corrections to M), were computed in the SQCD
sector including non-logarithmic terms of order O(MZa;a?). They have exploited the met-
hods of asymptotic expansion in order to provide precise approximations in the relevant mass
hierarchies. An alternative computation of the three-loop corrections to M, at order a;a?,
which extends the validity of the leading three-loop predictions to the whole SUSY para-
meter space of the rMSSM, were recently presented by our group in the reference [2]. The
details of our computation are described in the Chapter 3 of this work. In Figure 2-4 Right
we have depicted the three-loop predictions of M}, as a function of m,4 (red solid line) in the
my** scenario. The complete Mj-prediction is built up as the sum of different contributions.
The tree-level value, which accounts for about 60 % of the renormalized mass, the one-loop
correction, which represents about 32 % of M), the two-loop correction, contributing with
about 6 %, and finally the three-loop contribution representing about 1% of the total mass.
The size of the three-loop quantum corrections are of the order of 1 GeV and have an oppo-
site sign regarding the one-loop corrections.

All the fixed-order corrections shown in Figure 2-4 contain logarithmic terms which can
spoil their good perturbative behaviour when there is a large numerical difference between
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the electroweak scale Agy and the supersymmetric scale Mgygy. For this reason, effective
field theory (EFT) methods have been considered to resum large-logarithms in case of a
large mass hierarchy between Agy and Msygsy [120-126]. In particular, for values of Mgy sy
above a critical point where the fixed-order and EFT combined uncertainties are equal, the
EFT computation is more accurate and therefore the usage of the SM [41] or a two-Higgs-
doublet-model (THDM) [127-129] as effective theories below the SUSY scale is preferred. In
the simplest case where the SM is the low energy EFT, the masses of the SUSY particles
are all set to a single scale Mgysy and the physics at this energy is correlated, with the
help of the RGEs, to the low scale Agy, through just one EFT coupling: the effective Higgs
self-coupling A\(Q). The state of art currently includes full one-loop and complete two-loop
matching conditions for A at the SUSY scale [121,125,130], full three-loop RGEs of all the
SM parameters [131-136] and full two-loop relations between the running SM parameters
and the physical observables including the Higgs boson mass [12,13,137]. With the new
results presented in [130] a full NNLL resummation of the large logarithmic contributions is
now allowed. Finally, a new hybrid computation wich includes a partial N®LL resummation
and N3LO + N3LL hybrid QCD corrections to the light CP-even Higgs boson mass are also
available [138].

Both the fixed-order and the EFT results are implemented in several publicly available co-
des. For the diagrammatic fixed-order calculations there are the programs SoftSUSY [139],
SUSPECT [140], CPSuperH [141] and H3m [55]. The results of H3m are also implemen-
ted into the C++ module Himalaya [142,143] linked to the Mathematica generator Fle-
xibleSUSY [144, 145] in a pure DR context. Pure EFT calculations are implemented in
SUSYHD [124] and MhEFT [146]. Moreover, different hybrid methods that combine both
approaches have been recently developed in order to take profit of the features of each
one [147]. FlexibleSUSY [148], based on SARAH [149-152], implements a hybrid method
called Flexible-EFT-Higgs [40]. This approach was also included into the program SP-
heno [153, 154]. A hybrid method different from the one pursued in Flexible-EFT-Higgs
has been implemented in FeynHiggs [155, 156]. There are also in literature detailed nume-
rical comparisons between the different diagrammatic, EFT and hybrid codes. In [40] it is
discussed in details how the hybrid method Flexible-EFT-Higgs compares to the other EFT
and diagrammatic codes. Finally, several numerical comparisons of the hybrid approach im-
plemented in FeynHiggs to the pure EFT calculations have been studied in [40, 124, 154].
Those papers reported surprising non-negligible numerical differences between FeynHiggs
and pure EFT codes for the prediction of M), at large SUSY scales. The observed differences
come mainly from three sources. The scheme conversion of input parameters from OS to DR,
which can lead to large shifts due to uncontrolled higher-order terms. Unwanted effects from
incomplete cancellations with subloop renormalization contributions in the determinations
of the Higgs propagator pole and different parametrizations of non-logarithmic terms. After
performing the corresponding corrections, FeynHiggs results are in very good agreement with
the results of SUSYHD [157].



3. The Lightest MSSM Higgs Boson
Mass (M},) at Three-Loop Accuracy

This chapter is devoted to explain the technical details to the computation of the three-loop
corrections to the lightest Higgs boson mass in the rMSSM, starting from the generation
of the Feynman diagrams and until the numerical evaluation of the renormalized quan-
tum corrections to M. The first part contains the renormalization framework in which the
computation was done. The latter includes the explicit expressions of the renormalization
conditions for the CP-even Higgs boson mass counter-terms at order aya? derived from the
relations exposed in Section 2.2. We next describe the technical details related to the genera-
tion of the three-loop Higgs self-energy amplitudes and the regularization procedure applied
to the resulting Feynman integrals. In particular, we have adopted a DRED regularization
scheme in order to preserve supersymmetry at the given perturbative order. The evaluation of
the three-loop self-energy integrals obtained after regularization follows a specific treatment.
Each of them is reduced to a superposition of a set of irreducible integrals (the so-called
master integrals) with the help of the Integration by Parts (IBP) method and the covariant
decomposition, which admits either an analytical or a numerical evaluation depending on
the number of independent scales involved. When a closed analytical expression of any of
the master integrals is missing, we proceed to perform its numerical evaluation through two
different numerical techniques: the dispersion method and the method of sector decompo-
sition. Finally, the obtained results will be numerically tested in some phenomenologically
relevant benchmark scenarios by the comparison of our three-loop prediction of the lightest
Higgs boson mass with the higher-order predictions coming from the public codes FeynHiggs
and H3m for the same observable.

3.1. Renormalization of the CP-even Higgs boson masses

In Chapter 2 we have derived the necessary renormalization constants to obtain the renor-
malized CP-even Higgs boson masses in the EW gaugless limit. However, the numerical
dominant contributions to the Higgs self-energy corrections come from the SQCD sector of
the TtMSSM Lagrangian in two specific limits that can reduce even more the expressions
presented in sections 2.2 and 2.3. Those approximations include:

i) The non-light fermions limit (NLF') where all the fermion masses are put to zero except
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the mass of the top quark, M;. We have computed all the three-loop corrections at
the perturbative order a;a?. Consequently, cubic vertices of the Higgs with two light
fermions are not considered in this work since the order of the corrections and the NLF
limit forbid that kind of vertices.

ii) The approximation of vanishing external momenta, where the momentum carried by
the external lines of the self-energy diagrams is disregarded. Therefore, p*> = 0, where
p is the external momentum transferred. This approximation is very well motivated.
Up to two-loop level the shift in the mass M), due to the momentum dependence is
below 1 GeV in all scenarios studied, the bulk of the two-loop corrections comes from
the effective-potential effects which are of the order of 10 GeV [114]. A well-behaved
perturbative expansion will make this dependence even weaker at three-loop level.

In our computation we have followed the above observations to get the dominant contribu-
tions at three-loop order and therefore we have adopted the approximation of zero external
momentum and the NLF limit. Further reductions in the Higgs mass counter-terms are
obtained because of the tree-level relation

a=p-7/2 for m% > Mz, (3-1)

which is satisfied in the gaugeless limit, and also due to the definition of the the vevs
of the Higgs fields (v12) as the minima of the full effective potential, see eq. (2-44). The
latter implies that the condition <Q ’H ?’2‘ Q> = 0 must be satisfied order by order in the
perturbative expansion of the one-point Green function and brings as an effect that just 1PI
self-energy diagrams have to be evaluated, self-energies with tadpole insertions do not make
contributions.

Taking in consideration the above restrictions the expressions in eq. (2-26) and eq. (2-27) for
the renormalized three-loop corrections to the neutral CP-even Higgs bosons are reduced to

—3) (3)

Z o wa B 5(3)Miwj ; 1/}17 2 =h, H. (3—2)

The terms with delta, 0 (3)Mii%, are the counter-terms of the physical CP-even Higgs boson
masses whose expressions are obtained from the rotation of the mass counter-terms in the
unphysical basis (see eq. 2-43) according to

SBIME, = 5(3)Mf5103i + 5(3)M§;ci - 2(5(3)Mf’;saca,
SOM2 = 6O ME 2 + 6@ ML s2 + 26®) ME) sqca, (3-3)
SO ME, = 5(3)Mf520 (2 —s2) — <(5(3)Mf’10 — 6(3)M2¢;> CaSa-

[0

Some clarifications need to be done regarding the renormalization constants of the Higgs
fields and the parameter tanf which are included in eq. (2-27) and eq. (2-35) but are not
anymore considered in the egs. (3-2) and (3-3).
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The Higgs field renormalization constants represented with the Z; factors are obtained from
the terms proportional to p? in the divergent part of the CP-even Higgs boson self-energies
according with the eq. (2-47). The perturbative order of the Z; counter-terms is the same
as the Higgs self-energies. Therefore, all the terms which are products of one and two -loop
counter-terms, as the products of 6(1:?) Z; counter-terms in eq. (2-34) or the bolded delta terms
in eq. (2-35), cannot match the order cya? since there is no cubic or quartic vertex with a
Higgs external line that is proportional to the strong coupling g, in the rMSSM. Besides,
the three-loop constants §¢) Z; do not make contributions provided that the divergent part
of the three-loop Higgs self-energies do not contain an external momentum dependence at
the considered order aya?. Having that in mind, we have put

6WZ,=0 for 1=1,2,3, (3-4)

in the renormalization of the CP-even Higgs self-energies. As a result of eq. (3-4) the DR
renormalization of the parameter tanf (see eq. 2-49) is determined only by the counter-
terms 6(Vv; /vy and 6Ww, /vy However, as the difference 6 v, /vy — §®)vy /vy is UV-finite at

the order oz, we lastly get
§®tans = 0, (3-5)

and therefore all the terms of eq. (2-43) with a dependence on the tan/-counterterm and also
the O(0""Yv;) terms are disregarded. Considering all the above approximations the mass
counter-terms of eq. (2-43) are reduced to
T1(3) 4 2 2 T2(3)
(1= s5) + 5565 N
TQ(S) 4 2 2 T1(3)
1 —cy) + szc5——,
( 5) BB V20,
(3) (3)
S PR S D
\/51)1 \/5712

leading to the following counter-terms in the physical basis:

5(3)Mf’10 = 325(3)77%31 —

(3) 272 3,2 A hy T;ES) h TI(;’) H ,
5 szw] - (5 mAcdjiwj + Q_MSB ECW%‘ + ﬁcﬂii%‘ y d]l’ 2 — h, H (3-7)

h,H

The coefficients ci’% are functions of the angles o and  and are given by the expressions

1
2 h . H 2
€hnn = Ca-p> Chh T 3 (55a—ﬁ + 33(04—6)) 1 Chh = Ca—pfSa—p>
1
A 2 . h 2 . H
Cnn = Sa-pr CuH = ~Ca—pSa=py  CHH T (63(04*,8) - 560‘7/8) ’ (3-8)
A _ _ 3 _
Chi = 552(a-8)s Chag = —Ca-py  ChH = Sa—p>
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h; is the top Yukawa coupling,
TH o Tl (3) 2 . (3) 2 -
( T, ) =D («a) ( i ) and 0“/m%5 = Re ZAA (p*=0)]. (3-9)

Due to the relation (3-1), the expressions of cﬁZJH can be further reduced. Therefore, in the

gaugeless limit but also in the decoupling limit, m4 > Mo, only the coefficients ¢!, = —1,
cap =1 and ¢}, = —1 give a contribution.

The three-loop counter-terms described in the above expressions are useful to cancel local
UV divergences. However, the unrenormalized topologies, consisting of self-energies as well
as tadpoles of the neutral CP-even and CP-odd Higgs boson fields, can contain also non-local
divergences coming from a sub-loop in the three-loop diagrams. It is therefore necessary an
additional sub-renormalization procedure to remove these infinities. The procedure consists
in the inclusion of additional three-loop diagrams which are built from either one-loop topo-
logies with a two-loop or two one-loop counter-term insertions or two-loop topologies with
a one-loop counter-term inserted. Each of those three-loop counter-term diagrams is meant
to cancel the non-local divergences arising in a sub-loop of a given three-loop topology. At
order O(a;a?) the counter-terms comes from the SQCD sector of the rMSSM Lagrangian.
Specifically, we need the O(ay)-contribution of the one-loop counter-terms coming from the
renormalization of the gluino mass, the top quark mass, the squark masses and the stop
mixing angles. In addition, we need the two-loop renormalization of the top mass, the stop
masses and stop mixing angles at order O(a?). We have got all the one and two-loop counter-
terms in the DR scheme, where the UV divergences are minimally subtracted. In order to
preserve supersymmetry to all perturbative orders we have used the regularization proce-
dure DRED [44-47]. The main renormalization conditions to derive the necessary one- and
two-loop SQCD counter-terms are described in Section 2.3 and their explicit expressions in
terms of fundamental functions are consigned in Appendix B.

3.2. Three-loop fixed-order calculation of )/,

In this section we are going to discuss the technical details of our three-loop diagrammatic
computation. Considering that we are interested in terms of order aza? from the perturba-
tive expansion of the Higgs mass, we have restricted the calculations to the SQCD sector
where the Higgs couples just to the top quark or its super-partner. The three-loop radiative
correction to M), is obtained by evaluating the neutral Higgs boson self-energies (> ) and the
tadpoles (T) for the fields h, H and A according with the equations (3-2) and (3-7). All the
Feynman diagrams and their corresponding amplitudes are generated with the Mathematica
package FeynArts [158]. In FeynArts one can specify the number of external lines and the
number of loops in order to create a set of topologies obtained from connecting incoming
and outgoing lines of tree-level vertices in all distinct ways. For the purposes of FeynArts,
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Figure 3-1.: Generic three-loop topology. An external vertex is a vertex joined to an external

line. An internal vertex is a vertex joined only to internal lines (propagators).

a topology is a connected diagram without the insertion of quantum fields on any of their
lines. We are interested in three-loop topologies with one (tadpoles) and two (self-energies)
external lines which are 1PI. Note that besides pure three-loop topologies, there are also
contained one-loop diagrams with first- and second-order counter-term insertions, two-loop
diagrams with first-order counter-terms and tree diagrams with third-order counter-terms,
which will be involve in the renormalization of local and non-local divergences. In Appen-
dix D we show a simple Mathematica routine that generates and draws all the three-loop
topologies needed in our calculation. The output of this code shows that there are 80 pu-
re three-loop self-energies, 63 self-energies with counter-term insertions, 15 pure three-loop
tadpoles and 16 tadpoles with counter-term insertions.

The next step consists in the introduction of the quantum fields on the lines of each topology
according with the interaction vertices of the rMSSM. We have used a modification of the mo-
del MSSMCT .mod of FeynArts where all the MSSM vertices are contained. The modifications
include the addition of the counter-term vertices of Appendix B as well as tree-level vertices
with e-scalars into the model. The latter requires also a modification of the generic model
file Lorentz.gen where the analytical propagators and couplings are defined. In the external
lines the only fields to take into consideration are the neutral Higgs fields: h, H and A. The
internal lines (propagators) would contain the SQCD fields (heavy quarks, squarks, gluon,
gluino and e-scalar) whose vertices lead to the generation of the amplitudes with the required
perturbative order. The needed vertices can be consulted in Appendix C. In the language of
FeynArts, the insertion of the fields can be done with the function InsertFields and it is
possible to exclude the unnecessary insertions with the help of the functions DiagramSelect,
ExcludeParticles and LastSelections. DiagramSelect is the most efficient function to
pick a selected set of diagrams because it applies a test function to every diagram, and
returns only those for which the result of the test is True. We have written a routine in Mat-
hematica, which can be consulted in Appendix E, where the test functions impose selection
rules over each topology in order to extract the desired Feynman diagrams. The selection
rules were designed according with the definitions in Figure 3-1 and the following simple
statements:
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= In a renormalized QFT in four dimensions, only cubic and quartic vertices can be
considered.

= There is no quartic vertex which is linear in g, or h;.

= There is no vertex with a neutral Higgs field on any of their lines which is proportional
to the strong coupling constant g;.

= For self-energy diagrams with two external vertices, each external vertex must be a
cubic vertex of the order of h;. In self-energies with one external vertex, the vertex
must be a quartic vertex proportional to hZ.

» Tadpole diagrams must be of the order of h;g?; therefore, its external vertex must be
a cubic vertex proportional to the first power of h;.

» Internal vertices must be only SQCD vertices of the order of g} with 1 <n < 2.

= As we are assuming the limit of vanishing external momentum, only mass counter-
terms of the order of g2 (first-order) or g? (second-order) inserted into the propagators
are considered. Diagrams with counter-terms insertions on the vertices are disregarded.

As a result, the 32 self-energy topologies with two quartic external vertices and the four
tadpole topologies with a quartic external vertex, drawn by the code in Appendix D, are
excluded. At order aya?; after the insertion of the fields and the application of the selection
rules, we obtain a total set of 3869 x 4 Feynman diagrams for the pure three-loop neutral
Higgs self-energies case and 3590 x 2 three-loop neutral Higgs tadpoles. The counter-term
diagrams include 523 x 2 tadpoles and 3491 x 4 self-energies. A total of 37666 diagrams
have been created. The routine in Appendix E also generates the amplitudes of the resulting
diagrams with the help of the FeynArts function CreateFeynAmp. The generated FeynArts
amplitudes have a quite involved structure, we have to deal with three-loop four-dimensional
integrals of the form

1 d*qd*qod?
4(4) - 104 q20 g3 v 5 v Ta abc
V1 V2VU3V4V5 V6 2 ﬁ/ P11)1p2va§)3PZ4P;5P6vGN (qf, D, ’yu’ 7 gﬂ > Sk f ) ) (3_10)

where the denominator contains the Feynman propagators

3 2
by = (Zx?Qn+yjp> _m§ ;oox, ;=10 =1, (3-11)
n=1

raised to the powers v;, which can be zero or a positive integer number. The numerator,
in turn, is a complicated combination of the tensor structures included into the parenthesis
of the function N, that is to say, the loop-momenta qf , the external momentum p”, the
Dirac gamma matrix y*, the chiral gamma matrix 7°, the metric tensor ¢g*” and the SU(3)
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generators in the real (7%) and the adjoint () representation. The resulting FeynArts
amplitudes are not regularized. The loop/external momenta, the metric tensor and the gam-
ma matrices are in four dimensions. Besides the tensor structures in the numerators are
written without taking the contractions of the Lorentz, Dirac and Color indices. With the
help of the Mathematica package FeynCalc [159] we have written a routine that implements
the regularization of the Feynman integrals by dimensional reduction. We have used the
version 9.0.1 of FeynCalc where DRED is not implemented; however, some of the FeynCalc
functions can be used in order to get the DRED regularized amplitudes. Also, the language
of FeynCalc is more convenient for calculational purposes and can be easily imported from
FeynArts trough the function FCFAConvert. There are three different but equivalent ways
to implement DRED, which differ basically in how the algebra of the Dirac matrices on
the numerators is solved. In this regularization scheme all gamma matrices coming from
a vertex with a vector field and the metric tensor in a vector propagator belong to the
quasi-four-dimensional space (Q45S) [68,160,161] while loop/external momenta coming from
a fermion propagator, and any metric tensor or gamma matrix contracted to them, remain
in the quasi- D-dimensional space (QD.S). Such spaces were first postulated in [162,163] and
guarantees that all calculational rules are consistent and that all practical calculations lead
to unambiguous and well-defined results. The details of the algebra in the quasi-four, -D and
-e-dimensional spaces can be found in Appendix A. One can regularize a loop-integral by

i) splitting each 4S5 matrix in the numerator into a sum of QDS @ QeS matrices and the-
refore, for our purposes, splitting the four-dimensional gamma and metric tensor matrices
according with:

Yo=Y +Y ; Yu = Gis + Giv (3-12)

where the indices with a hat and a tilde run the QDS and QeS spaces, respectively. Then,
one has to perform the corresponding algebra of the tensors involved, products of gamma
matrices and Dirac traces, according with the rules of each QDS and QeS spaces and solve
the resulting integrals using the usual techniques of the dimensional regularization. Note
that this procedure do not require the inclusion of additional vertices in the MSSM model
file of FeynArts, just the identification and splitting of the Q4.5 matrices in the amplitudes.
ii) In the second procedure, diagrams generated with the original MSSM vertices are regula-
ted in the usual DREG; however, in order to preserve supersymmetry, the diagrams with the
inclusion of the vertices involving e-scalars (see Appendix C) coming from the split of the
vector fields (V# = V£ + V#) must be added. The amplitudes of the diagrams with e-scalars
have the same expressions as the integrals with QeS objects obtained after the splitting of
the Q4S5 matrices in the first approach. In this procedure the cubic and quartic vertices
involving e-scalars must be added to the model file MSSMCT .mod of FeynArts.

iii) Finally, one can perform the regularization of the Feynman integrals directly in the Q45
space following their calculational rules and without the introduction of additional e-scalar
vertices. In particular, due to all traces of v matrices can be reduced to Trl = 4 times metric
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tensors by applying the anticommutation relations, results of traces are formally the same
in the actual four-dimensional space and in Q4S5 as long as no 7° is present; therefore, in
this approach FeynCalc functions as DiracTrace or Tr can be used to sort out traces of
gamma matrices. It is worth to mention that the Q4S algebra for diagrams which contain
the cubic vertex quark-squark-gluino requires a special treatment. This vertex introduces
the 5 matrix in the Dirac traces. We can dealt 5 as an anti-commuting object provided
that traces with an odd number of 75 contain less than four gamma matrices [164]. This
~P-regularization is allowed in our computation of the three-loop Higgs self-energies becau-
se after expanding the numerator of each three-loop integral (which contain products of
Higgs/SQCD vertices and the numerator of vector/fermion propagators) with the help of
the FeynCalc functions DiracOrder and DiracSimplify, we only find traces of a single s
and at most three gamma-matrices besides of traces with just v* products. We point out,
however, that this treatment of 7° is not valid in general. For instance, three-point three-loop
Green functions could contain non-vanishing traces with a single 7°, as is shown in [67].
Even though the three procedures are completely equivalent, in practice the third one is
the easiest to implement since we avoid the introduction of the diagrams involving e-scalars
and the algebra in the QQe¢S. Nevertheless, for the pure three-loop amplitudes we have im-
plemented the second and the third procedure in a Mathematica routine to cross-check the
results and for the diagrams with counter-term insertions we have used directly the second
method provided that the anomalous dimensions of the squarks contain an e-mass depen-
dence starting from the two-loop level, as you can see in eq. (B-12). An example routine of
the regularization of three-loop self-energy integrals using the third approach is shown in
Appendix F. The code in Appendix F also applies the approximation of vanishing external
momentum and performs the sum over the Color indices of the SU(3) generators, with the
help of the package SUNSimplify of FeynCalc. In this way, after performing the Dirac and
the Color algebra, the numerator of each three-loop amplitude is expressed in terms of the
Casimir operator eigenvalues, the scalar products of loop momenta and the kinematic inva-
riants, besides of the coupling constants and the other rMSSM involved parameters.

The scalar products of loop-momenta over the numerators can be expressed in terms of scalar
propagators according to:

¢ = (@7 —m3) +m3, (3-13)
- q; — % (g + 4;)° = mi i — (@7 —m?) — (¢ —m3) + f (mi,my,migse)]

where
fma,my,mig i) = miy o —mi —mi. (3-14)

Applying the changes defined in eqs. (3-13) and (3-14) and a further partial fractioning over
propagators with equal loop momenta but different masses,

1 1 o 1 1 _ 1 (315)
k? —m? k:f—m? m?—m? k? —m? k:?—m? ’ i
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each three-loop amplitude can be expressed as a superposition of a set of scalar integrals of
the form

Z CjINT [{Uj17mj1} ) {ij m]é} ) {Uj37 mjs} ) {Uj47 mj4} ) {Uj57 mjs} ) {Uje‘a mjs}] ) (3’16>

J

where the coefficients c¢; are functions of the Casimir operator’s eigenvalues of the non Abelian
color algebra, the coupling constants and the squared masses, while

INT [{a,mi},{b,ma},{c,ms},{d,mys},{e,ms},{f, me}] =

1 1 1 1 1 1
(Kt = m?)" (k3 —m3)" (k3 —m3)" (k3 — m3)* (B —m3)" (kg —m3)" /)"
(=11 [ . 317)

with k2 = ¢, k2 = 3, k2 = @2, k2 = (1 + @)%, k2 = (1 +¢3)? and k2 = (¢2+¢3)?. The powers
a, b, ¢, ... can be zero, negative or positive integer numbers. Thus, the scalar integrals can
contain propagators with negative powers and therefore irreducible numerators. The total set
of pure three-loop Higgs self-energies and tadpoles can be expressed as a linear combination
of 3525 different scalar integrals (with different configuration of powers and masses).

So as to evaluate each scalar integral in terms of a general expression valid for any election
of the input masses, we have avoided the use of asymptotic expansions at the integral level.
Instead, we have exploited the fact that this set of integrals are not independent of each other
but related by the integration by parts (IBP) relations, which are obtained after working
out the differentiation in

0
/dDQJaqy [kNI (p17 <oy Perqiy - 7QZ)] =0. (3_18>
J

The momentum k* represents an arbitrary loop/external momentum. The index p is summed
over but the index 7 is not. If there are [ loop momenta and e independent external momenta
one can therefore build /(I + e) equations from one seed integral. Additional relations can be
obtained from the Lorentz invariance (LI) identities,

- 0 0
E v_Y _ :
(pn apn# pn apny) I (pla ] 7pe) 0 (3 19)

n=1

The eq. (3-19) leads to e(e — 1)/2 identities, where e denotes the number of independent
external momenta. We have used the IBPs to generate a homogeneous system of linear
equations where the scalar integrals are the unknowns. The system can be reduced to a
small set of irreducible integrals, the so called Master Integrals. This is something that
cannot be done by hand because there are thousand of equations. Thus, we have used the
program Reduze [165], an implementation of the Laporta algorithm, in order to carry out
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Figure 3-2.: Basis of three-loop vacuum integrals obtained from the IBP reduction with Reduze.

this reduction. Reduze requires the definition of a set of integral families, which is a minimal
ordinary set of propagators Py, ..., P, with the specification of their permutation symmetries,
where any scalar product of a loop-momentum with a loop/external momentum can be
uniquely expressed as a linear combination of inverse propagators and kinematic invariants.
A selection of t propagators Pj,, ..., P;,, where {j1,...,jx} C {1,...,n}, defines a sector of
a family. Fach sector have an identlﬁcatlon number defined as

t
ID =Y 2", (3-20)
k=1

In the Reduze notation an arbitrary scalar integral belongs to a sector and is expressed as:
INT[F,t,ID,r s, {vi,..., v}, (3-21)

where F' denotes the integral family, ¢ is the number of propagators, v; is the exponent of the
propagator P;, r is the sum of the propagator exponents which are positive, r = 22:1 r; with
{r; € v;|v; > 0}, s is the sum of the propagator powers which are negative, s = S"I'/s; with
{si € v; | v; < 0}. A code devoted to change the notation of the scalar integrals from (3-17)
to (3-21) and to identify the corresponding integral families at which the scalar integrals
belong is shown in Appendix G.

We have found a basis of 32 master integrals, which correspond to different mass configura-
tions for the five vacuum diagrams depicted in Figure 3-2, where each topology can contain
at most four independent mass scales. Those integrals are independent of each other, in the
sense that they cannot be related by permutation symmetries of the propagators. Specifi-
cally, the basis includes the integrals depicted in Figure 3-3. The divergent and the finite
part as well as the evanescent terms, which are the terms of order €” with n > 0, of the
Laurent expansion of the one-loop function

A eree D 1
0(m) =55 [ d L (3-22)

and the two-loop function

2"/EE

1
T3(mq, mg, ms) /HquJ ; I g 5 ; (3-23)

¢ —m¥' (@3 —m3' [ —a)? —m3]"
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Figure 3-3.: Basis of three-loop Master Integrals. The dashed line represents a massless propa-
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have very well known analytical expressions for any configuration of masses. Furthermore,
the three-loop vacuum integrals U4, U5 and U6, are defined as:

U4 (ml,mg,mg,m4) =INT [2,1,1,1,0,0], (3—24)
Ub (ml,mg,mg,m4,m5) =INT [171,1,1,1,0] (3—25)
U6 (mlam27m37m4>m57m6) INT [LLLLLH (3_26)
with
edee 1
INT [V17V27V37V47V57V6 / qu 7y X
3D/2 H ] —m ] [(fh . q2> o mg] 2

1
[(Q2 - Q3)2 - m?,,} ” lg3 — m3]™ [¢5 — m3]” [(Q1 - Q3)2 - m%} ”

where the indices v; are integers numbers, € = (4 — D)/2 and D is the number of the space-

(3-27)

time dimensions. For each of those three-loop functions it is possible to find an analytical
expression of the divergent part, which can be consulted in Appendix I, independent of the
mass configuration in the propagators. An analytical solution to all orders in € can be obtai-
ned just for the cases where there are one or two massive propagators, the main expressions
can be consulted in Appendix J. However, when there are three or four independent mass
scales a numerical evaluation of the finite part and the evanescent terms of the three-loop
master integrals is required. In this work we have used a method based on dispersion rela-
tions, implemented in the public code TVID developed by A. Freitas [166-168], in order to
make the analysis of the convergence and get a numerical integration of the master integrals
which are unknown analytically. TVID uses the discontinuities coming from the one-loop
self-energy

eVee 1
BO (p*,my,ma) = —575 / d’q : (3-28)
)= om [¢2 —m3] [(q+p)* — m3]
and the one-loop vertex

co (pip%a my, ma, m3) =
o / P ! (3-29)
. q ) -
imP/? [¢> = m3] [(q+p1)* — m3] [(q+ p1 + p2)” — m3]

to produce dispersion relations that are useful in the evaluation of the U-functions in terms
of one- and two-dimensional integral representations. The four-propagator function U4 and
the five-propagator function U5 can be represented in terms of one-dimensional integrals.
In analogous way the six-propagator function U6 can be represented by a two-dimensional
numerical integral. For the case of the U4 function the representation is

e’YEE AI
U4 (m1,m2,m37m4) = Z7TD/2 /dD / q —dz’ + 1€
3

- U4dw _/ ds Aofzn( ) A]db,fzn< )a (3_30)
0
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where U4, contains the UV divergences of U4, AQy, is the finite part of the one-loop
function A0, while

Al pin(s,mi, m3, m3,m3) = ABq, (s,m},m3) Re [BO (s,m3,m3) — B0(s,0,0)]
- ABym, (s,mf,0) Re [BO (s,m3,0) + BO (s,m3,0) — 2B0 (s,0,0)]

+ Re [Bom, (s,mi,m3)] (ABO (s, m3,mj) — ABO(s,0,0))

)

- Re [Bom, (s,m3,0)] (ABO (s, m3,0) + ABO (s,mj3,0) — 2AB0(s,0,0) (3-31)

AB0 and ABy,,, are the discontinuities of the scalar one-loop self-energy function, B0, and
its mass derivative, By, = %BO, given by
J

ABO (s, m2, mi) = A (5,2, m3) © (s — (ma -+ my)?) (3:32)
2 2
ABom, (s,m2,m2) = =2~ 0" 2.0 (5 — (mg +my)?) . (3-33)

s\ (s,m2,m?)

Here A(z,y, z) is the Kéllen function defined as

Aoy, 2) = /22 + P + 22 — 2y + yz + 21) (3-34)

and O is the Heaviside step function. The finite part of the vacuum integral U4 is therefore
expressed as a numerical integral of a combination of elementary functions, such a logarithms
and square roots, which can be efficiently evaluated with numerical methods for general mass
patterns without make any assumptions about the mass hierarchy of the SUSY particles.
Analogous but more complicated dispersion relations in terms of fundamental functions,
whose explicit form is too lengthy to be included here, were already obtained for the finite
part of the three-loop integrals U5 and U6 and can be consulted in [166] and the ancillary
files included in the program TVID [167,168]. In any case the dispersion relation techniques
lead to one- and two-dimensional integrals of the form

/ TS : (3-35)

s — 8 +ae

which can be efficiently evaluated for any mass hierarchy with numerical methods. This is an
important feature that worth to point out. The three-loop corrections to M, are expressed
in terms of a basis of master integrals which can be numerically evaluated for an arbitrary
hierarchy of the mass scales. For s’ > s, those integrals can be split into a residuum contri-
bution and a principal value integral, yielding

/mdsL)_:$i7rf(s’)+/s a5 1) 125~ 9) +/200 as LEL (56

s —8 % so 5—38 s—sy S8

In the eq. (3-36), the integrand of the first remaining integral is regular at the point s = 5.
If f(s) is real, the residuum contribution can be dropped provided that only the real part
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is needed in the evaluation of the three-loop vacuum functions. With the dispersion met-
hod implemented in TVID the finite part of the three-loop U-integrals can be numerically
evaluated with up to 10 digits of accuracy. Internally the program uses the Gauss-Kronrod
routine QAG from the Quadpack library [169] to evaluate the dispersion integrals. This
routine has been amended to facilitate 30 digit floating point arithmetic from the package
doubledouble [170] allowing results with at least ten digits of precision for the U4 and U5
integrals and a precision of eight digits for the U6 vacuum integral. It is possible to reach
this precision because the numerical integrations are at most 2-dimensional and therefore
there is a controlled treatment of any singularities.

The code devoted to express each three-loop amplitude as a linear combination of the in-
tegrals drawn in Figure 3-2, with coefficients that are ratios of polynomials in the masses
and the space-time dimension, is shown in Appendix H. These coefficients can contain poles
of first and second order and therefore the renormalized correction to M), requires also the
evaluation of the evanescent terms of the master integrals up to second order, that is to say,
the terms at order O(e) and O(e?) in the Laurent expansion. It is no possible to evaluate
these contributions with TVID because the higher-e terms of the real and imaginary parts of
B0 and C'0 and therefore of U4, U5 and U6 are not included in the program. For this reason
we have used the code SecDec [171] which admit a numerical evaluation of the evanescent
terms.

3.2.1. Three-loop counter-term diagrams

On the other hand, we also need to generate the amplitudes for the diagrams which are
responsible for removing the non-local sub-divergences. This includes the generation and in-
sertion of the needed SQCD mass counter-terms. We have written a routine in Mathematica
that generates all the expressions for the counter-terms listed in Appendix B. The generation
of the involved regularized amplitudes was done with the help of the FeynArts and Feyn-
Calc functions. In contrast to the three-loop diagrams, the one and two-loop counter-terms
are determined from the evaluation of fermionic and scalar self-energies with the external
momentum transferred different from zero, p* # 0. The resulting self-energies can be further
reduced using the Tarasov method [172], that is implemented in the code TARCER [173],
to the basis of one and two -loop master integrals represented by the diagrams of Figu-
re 3-4. The one-loop counter-terms of the top quark mass, the gluino mass, the sfermion
masses and the stop mixing angles can be determined in terms of the Passarino-Veltman
functions A0 and B0. The two-loop counter-terms of the stop masses and mixing angles can
be expressed as a superposition of the eleven master integrals depicted in Figure 3-4.

In the DR scheme we just need the divergent parts of the integrals. The one-loop functions
A0 and B0 have the analytical expressions found in Appendix J. The functions Dmims.J,
DmymomsJ and D2mymsyJ are finite. D2mJ has only a 1/e divergence with coefficient
—1/2m?, independent of the values of my and ms. DmyJ has poles of one and second order,
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Figure 3-4.: Basis of one and two -loop master integrals obtained from the Tarasov method. The
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dot over the internal line j represents a partial derivative of the propagator regarding

the squared mass mj2

its 1/€? divergence is 1/2, mass independent while its 1/¢ divergence is 1/2 —in(m?/u?). The
1/€* divergence coefficient of J is 1/2(m? + m3 + m3) while the 1/e divergence coefficient is

2 3
(mi+m3+m3) — % - Z m3in (m5/p7) . (3-37)

Jj=1

[\CRGV]

For the cases where one or more masses m; vanish in the expression (3-37) one should take
the zero order term of the Taylor expansion around m? = 0 to get the right expression.
The same apply for T3 but choosing the external momentum p? equal to zero. Finally, we
need the functions F' and V' with at most three independent mass scales. The function
F is finite, while V [p?, m?, m3, m2, m3] have a divergence 1/¢* with coefficient 1/2 and a
1/e divergence equal to B0y, [p?, m3, m3i] + 1/2, where B0y, refers to the finite part of the
function B0. All these analytical expressions were numerically checked with the code SecDec,
where the prefactor Exp[(—2yge)] must be specified in order to get the correct result. In
Appendix B the counter-term expressions involved in the renormalization of the non-local
ultraviolet divergences are listed. These results can be checked with those of the review [174]
and references therein.

Once the needed mass counter-terms are generated, we need to insert their expressions into
the counter-terms diagrams, which are Higgs self-energies and tadpoles at one- and two-loop
level with counter-term insertions. The code devoted to this aim is shown in Appendix K.
A further expansion in € is performed over the amplitudes. The coefficients of the poles are
saved by the program in a list and used to remove the sub-divergences appearing in the pure
three-loop diagrams. Besides the O(e°) term of each counter-term diagram is also generated
and added to the finite contributions coming from the pure three-loop Higgs tadpoles and
self-energies. These cancellations and additions are performed in an automatized way with
the help of a Mathematica routine.
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Figure 3-5.: Basis of three-loop Master Integrals in the heavy SUSY limit. The dashed line re-
presents a massless propagator. The thin solid line is the propagator with a mass at

the electroweak scale M; and the thick solid line depicts the propagator involving
the SUSY scale MSUSY-
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3.2.2. Three-loop Mj-corrections in the heavy SUSY limit

We have also considered a degenerate single-scale scenario where all the super-symmetric
masses are set equal to an effective scale Mgygy,

Mpr= Mzg= My = p= Msysy. (3-38)

Here 41 is the Higgsino mass and M, r are the soft SUSY-breaking masses. We have identified
the lightest Higgs boson h as the SM-like Higgs boson and therefore we have assumed the
decoupling limit, M4 = Mgsysy > M,. This degenerate scenario in the decoupling limit is
known as the “heavy SUSY”limit. As a consequence, the three-loop self-energy corrections to
mi’ 5 can approximately be obtained as a superposition of the 33 vacuum integrals depicted
in Figure 3-5 with coefficients that are functions of the kinematic invariants and the space-
time dimension, D. In some particular cases the coefficients can contain poles; that is to
say, terms of the form (D — 4)~!. Thus, the basis integrals could also require a numerical
evaluation of their evanescent terms. Besides, the mixed h — H self-energy contributions
vanish and therefore the propagator equation (2-24) reduces to

PP —mi + S =0, (3-39)
where
~ h, T
Ypp = 2 ——Sg——. 3-40
hh hh T+ 5N, Sg NG ( )

Each diagram of the basis in Figure 3-5 represents a three-loop Master Integral of the form

6

I”Ul.A.UG — Zm/Hd q HE ) (3_41>
=1

j=1"17
with

2 2

Pi=qgi—-mi, Po=(q—q) —m3, Py=(@p—q) —mj,
2

Py = q3 —mj, Ps = q5 —mé, Ps = (q1 — q3)” — m§.

There are two scales involved, the electroweak scale M;, whose associated propagator is
represented with a thin solid line and the super-symmetric scale Mgysy represented with
a thick solid line. Massless propagators are represented with a dashed line. This basis was
obtained using the integration by parts (IBP) method implemented in the code Reduze. Main
part of the diagrams shown on Figure 3-5 have been analytically evaluated in [175-182]. The
numerical evaluation of this basis was done also with TVID and SecDec. In particular, the
integral 11100 requires a Laurent expansion up to first order in €. The evanescent terms of
O(€') was numerically evaluated with the help of SecDec.



50 3 The Lightest MSSM Higgs Boson Mass (M;,) at Three-Loop Accuracy

3.3. Numerical M,-predictions in the diagrammatic
approach

Once the local and non-local UV divergences have been subtracted from the Higgs self-
energies, we get finite three-loop corrections to the CP-even and CP-odd Higgs boson mas-
ses that are useful in the derivation of the renormalized value of M, which is obtained as a
solution of the pole equation (2-24). Our corrections depend upon 26 parameters: the renor-
malization scale 1i,, the SM DR parameters hy, M,, o, and the MSSM parameters 1, tans,
My, Mg, 0;, my, , and Ay, with f =wu,d,t,b,c, s. Their values as well as the renormalization
group evolution of the SM parameters are determined with the help of the spectrum genera-
tor SoftSUSY [139]. We use the package SLAM [183] (Supersymmetry Les Houches Accord
with Mathematica) in order to export to Mathematica any needed parameter generated with

SoftSUSY. In the DR scheme the two-loop anomalous dimension of the stop mass contain a

2
s

of m, is required. In order to decouple the e-scalar mass from the physical observables we

non-physical dependence on the e-scalar mass, m.. At order aya a one-loop renormalization
have renormalized m, in the on-shell scheme [91,184] and we have imposed m?% — 0 at the
given perturbative order. Strictly speaking, this procedure does not coincide with a DR re-
normalization due to m, is not renormalized minimally. However, as all the other parameters
entering the two-loop counter-term of the stop mass are DR parameters and the O(aya?)
correction to M), is independent from m., we mantain the nomenclature ” DR scheme”.

We have performed a numerical comparison between our three-loop predictions and the ot-
her fixed-order corrections currently included in FeynHiggs [56,155,156] and the three-loop
results implemented in H3m [55,117, 118] combined with the lower-order results of Feyn-
Higgs. We discuss our results in three different limits: i) the m£r66 scenario, where .., tanf3,
My, and A; are left as free input parameters. ii) The m}*%® and m)"*** scenarios analyzed
in [37]. In these three different scenarios we do not make any specific assumptions about the
soft SUSY-breaking mechanism and we interpret the LHC signal at 125 GeV as the lightest
CP-even Higgs boson. We consider values of the SUSY scale in the region Mgysy < 1.2 TeV,
where the combined theoretical uncertainty of the fixed-order calculation is lesser than the
combined uncertainty of the effective field theory (EFT) calculation [41]. At the critical point
Msysy = 1.2 TeV, the fixed-order and EFT combined uncertainties are equal and a hybrid
calculation should be used [128,147,157]. Above the critical point the EFT computation
is more accurate and therefore an EFT approach, where an effective SM is used below a
super-symmetric scale [122-125], should be preferred.

Throughout this section, we will discuss our numerical results in scenarios where a fixed-
order calculation is recommended. A numerical analysis considering large SUSY scales of the
order of Mgygy > 1.2 TeV will be the subject of the Chapter 4. In the mime scenario we
fix the parameters

M, = M;, = mg,, = Msusy =1 TeV, (3-42)
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Figure 3-6.: Dependence of M} on (a) A; and (b) tanS. The dot-dashed and dashed lines are
the one and two -loop predictions of FeynHiggs. The dotted line is the three-loop
prediction of H3m and the red solid line depicts our three-loop predictions.
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Figure 3-7.: Dependence of My on p,. (a) The evolution for three different values of tanf is
studied. We consider tan3 = 3, 10 and 20. (b) Mj, is plotted for the scenarios with
A; = 0.3 TeV, 1 TeV and 1.7 TeV. The inclusion of three-loop corrections reduces
the scale dependence by a factor between 1.5 - 2.0. The scale dependence is improved
when we consider lower values of tanf and A;. To draw these plots we have used

the same conventions as in the Figure 3-6.
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M, Msusy Xy M 0
mp® | 173.2 GeV | 1000 GeV 2Msysy 1500 GeV | 200 GeV
m;bm’d"' 173.2 GeV | 1000 GeV | +1.5Mgygsy | 1500 GeV | 200 GeV

Table 3-1.: Input parameters for the m;*** and medJr scenarios.

where ¢ denotes any quark different than the top quark. We also set M; = 1500 GeV,
=200 GeV and M4 = 1000 GeV. Using this limit, we have studied the dependence of the
Higgs boson mass M), on the soft-breaking parameter A; (Fig-3.6(a)) on the input parameter
tanp (Fig-3.6(b)) and on the renormalization scale p, (Fig-3.7(a) and Fig-3.7(b)).

At one- and two-loop level we have generated the Higgs mass predictions with the help of
the code FeynHiggs. These contributions are represented in the plots with the dot-dashed
and dashed curves respectively. This convention has been used in all panels. We have in-
cluded the full one and two-loop corrections (v, asan, 2, aay, of) in the rMSSM. The
one-loop field-renormalization constants and the one-loop tanf counter-term are set in the
DR scheme. We do not assume any approximation for the external momentum value for the
one and two-loop corrections, i.e. we set in FeynHiggs a full determination of the propagator
matrix poles (2-23). Besides, the dotted curve represents the three-loop predictions at order
O(M?a;a?) coming from the program H3m while the red solid line represents our three-loop
prediction evaluated at the same order. Our three-loop results shown in Figure 3-6 are quite
sizeable, amounting a size between 0.8 to 3.1 GeV compared to the two-loop corrections and
—0.373 to 0.418 GeV regarding the three-loop prediction of H3m. The relative size and sign
of the corrections depend on our election of the renormalization scheme.

Figure 3.6(b) shows a strong dependence on tanf for small values close to tanf = 3, while
for large values above tanf3 = 10 the variation of M} is marginal and closer to the LHC Higgs
mass value. Figure 3-7 depicts the dependence of Mj on the renormalization scale p,.. In
Fig-3.7(a) the dependence is studied for three different values of tang, namely tanf = 3,10
and 20. The three-loop corrections lead to a more stable dependence of M), with the renor-
malization scale p, than the one and two -loop predictions, reducing the scale dependence
by a factor between 1.5 and 2.0. This stability increases for lower values of tan in the m; "™
scenario. Fig-3.7(b) shows the RG evolution for three values of the soft breaking parame-
ter, Ay, = 0.3 TeV,1 TeV and 1.7 TeV. The evolution is more stable when the three-loop
corrections are added and when the value of A; decreases, reducing the scale dependence
by a factor of about 1.6 compared to the two-loop predictions. In the mj"** and m?f"‘”
scenarios the renormalization scale is set to p, = m; = 173.2 GeV, where m; represents the
combined Tevatron and LHC experimental value of the top quark mass [81]. Besides one
has to fix M;, = M;, = Msysy, Ag = 0 and my, , = 1500 GeV. The parameter A; is fixed
through the mixing term in the squark sector, X; = A; — ucot3, while M4 and tanf are left

as free parameters. Within the m}'** scenario X; is chosen in order to maximize the value
of M), for a given election of p and tan . This occurs when |X;/Mgsysy| &~ 2, where the
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Figure 3-8.: The lightest Higgs boson mass M), as a function of My in (a) the m}*** limit for
tanf = 3,10 and (b) in the mznOdJ“ scenario. Our three-loop corrections are, within
theoretical uncertainties, in agreement with the predictions of H3m. The difference
can amount a size of about 0.2 GeV in mj** and 0.05 GeV in mZnOdJ“. These plots

follow the same conventions as in the Figure 3-6.

radiative corrections in the FD calculation reach to the largest positive contribution. With
this election of parameters the mass of the lightest CP-even Higgs boson is in agreement
with the LHC Higgs boson signal just in a relatively small strip in the M4-tang plane. A
convenient way to enlarge the region of validity is to decrease the amount of mixing in the
stop sector. The mzw‘” scenario is a modification of m}'* where this mixing represented by
| X /Msusy| is reduced. In detail we consider the input parameters shown in Table 3-1 for
each scenario. The stop mixing angle 6; and the stop masses m;,, m;, are functions of the
parameters specified in Table 3-1.

To draw the plots in Figure 3-8 the CP-odd Higgs boson mass M4 is varied in the interval:
500 GeV < My < 1 TeV and we consider the values of tanf = 3 and tanf = 10. The
numerical values of our three loop corrections to Mj, are reduced compared with the two-
loop predictions showing a good behaviour of the perturbative expansion. In both scenarios
the three-loop corrections give rise to a significant reduction of about 1 GeV to the two-
loop value of the Higgs boson mass. In addition the values of the corrections are consistent
with the results obtained with H3m. The difference can amount a size of about 0.2 GeV in
the my"* limit and 0.05 GeV in m}"***. The detailed analysis of the individual sources of
uncertainty of the three-loop fixed order DR’ Higgs boson mass prediction of SoftSUSY,
developed recently in [41], shows a combined uncertainty for a maximal stop mixing scena-
rio who varies between 1-4 GeV depending on the SUSY scale. Our results have then very
similar numerical values to the ones obtained with H3m with differences which are within
the combined theoretical uncertainty.



4. Mgrrgy Constraints and Vacuum
Stability Analysis in the SM

The numerical analysis presented in the last section of Chapter 3 was done for a scenario
where the squark masses are of the order of 1 TeV; however, due to the lack of experimental
evidence of supersymmetric particles at this energy, we have to consider much larger values
for these masses. In this chapter, we are going to study the Higgs mass predictions, coming
from our three-loop fixed-order computation and the EFT hybrid calculation included in
the public code FeynHiggs, evaluated at the decoupling limit introduced in Section 3.3.
Therefore, we consider the limit where all the soft SUSY-breaking masses as well as the
CP-odd Higgs mass (my) lie around a characteristic scale, Mgygsy, and we focus on the
dependence of the Mj-predictions on this scale. The effect of the large logarithms occurring
in the fixed-order contributions, when supersymmetry is broken at some energy scale greater
than the electroweak symmetry breaking scale (Mgsysy > M;) will be also discussed. A
further phenomenological analysis, where we look for constraints on the Mgy gy value coming
from the LHC measurements for the Higgs boson mass and the vacuum stability analysis in
the SM, is developed.

4.1. EFT and hybrid calculation of M),

When there is a large mass hierarchy between the electroweak scale and the scale of the SUSY
particles, the fixed-order computations of the Higgs self-energy corrections contain large
logarithms that can spoil the convergence of the perturbative expansion and yield unreliable
predictions of the Higgs boson masses. A fixed-order computation is thus recommended for
low values of Mgysy not separated too much from M;. There is an alternative approach to
calculate M}, which yield accurate results for high SUSY scales. This approach is based on the
EFT techniques [124,185] and allows the resummation of the large logarithmic terms and the
incorporation of higher-order contributions beyond the order of the fixed-order diagrammatic
calculations. In the heavy SUSY limit discussed in Section 3.3 the low-scale EFT below
Msysy is the SM. In this approximation, the lightest CP-even Higgs is uniquely identified
as the combination of the original neutral Higgs fields

’Ulfv{iJ + UQHS

2 2
V] + V3

h = (4-1)
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which yields a non-vanishing vacuum expectation value (h) = v = y/v? + v3 ~ 174 GeV. In
terms of the light Higgs field h, the rMSSM Higgs potential (eq. 2-6) becomes

1 1
V(R = pALB[ — L? (0 <1>=( (42)

0
Mﬂ+u>'
The parameter m? is a function of my,, mg,, i, b and v1,2 which satisfies the minimization
condition dV/0h = 0 at h = v, while A is the SM Higgs quartic coupling given at leading
order by

Lo oy o

A= 1 (9% +97) 5. (4-3)
Here g and ¢’ are the running electroweak gauge couplings evaluated at Mgygy, which at
tree-level are the same in both theories: the SM and the rMSSM. The SM coupling of the
light Higgs to the top quark and the strong coupling constant at tree-level are:

Yo = husp,  gs=9s. (4-4)

Note that g, is the same in the two theories, while h; is the running top Yukawa coupling at
Msysy in the tMSSM, which differs from the SM top Yukawa coupling v by the factor sg.
Solving the n-loop renormalization group equations (RGEs) for the SM couplings,

1
E — ng’ t = lOQ(Q)a 5% = 1672

(16m2)n

5&)_{_...4_

655:)’ 9k = )‘7ytagsy sy (4—5)

the effective Higgs self coupling A can correlate the high scale Mgy sy with the next threshold,
the low scale M;, and capture radiative corrections of the form

o og™ (Msysy [My) 5 § = A yts G, s (4-6)

into the coupling A(Q) for m > 1, where @ represents the renormalization scale. Thus, with
1,2, ..., n-loop RGEs a perturbative solution of A\(M,) can extract the leading (L), next
to leading (NL), ..., N*"!L -logarithmic terms of a fixed-order calculation, respectively.
For a complicated set of SM beta functions, an analytical solution of A(M;) is typically not
possible; however, a numerical solution of the system (4-5) allows a very precise evaluation
in the EFT approach. On the other hand, in order to numerically solve the system of RGEs
it is necessary to impose boundary conditions to obtain the couplings gx(t) as a function
of gr(f) at the scale t = log(Msysy). The matching conditions in eqs. (4-3) and (4-4) are
the boundaries at leading order for the dominant SM couplings. However, this matching
procedure is subject to higher-order threshold corrections from loops involving heavy fields.
In general, an n-loop RGE requires the specification of boundary conditions with (n—1)-loop
threshold corrections. For the Higgs quartic coupling A at the SUSY scale, the state of art
now includes two-loop matching conditions which combined with the three-loop SM RGEs
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allows a full NNLL resummation of the large logarithmic corrections. The matching takes
the form

1 3
A (Q) _ Z [92 (Q) + g/2 (Q)} C%B + A(l))\ + A(Z)/\gaugeless + A(2)/\EW QCD ) (4_7>
The complete result for the one-loop correction AM X and a complete determination of the
two-loop correction A(?) )\s2ugeless in the limit of vanishing EW gauge couplings at order
Yip-92 can be found in refs. [121,125]. The dominant contributions comes from the terms

proportional to the fourth power of a third-family Yukawa coupling, which have the form:

3y4 m2 mQ X2 1 X2
AN — ! (m Lo Jn 9 " R (z) - —%Fg(xf)}) , (4-8)
f:zt;,r (47)2 Q4 Mg Mg 12 Mg Mg
where
rlnx? 622(2 — 222 + (1 + 2?)Inz?)
Fio)= 5, F@)= 1)y (4-9)

and x; = 1y, /My,. The remaining two-loop corrections, AGNEW-QCD " that involves terms
with a mixture between the EW and the strong gauge couplings at O(y7,9°92), O(y;,9”92),
O(g*g?) and O(g"g?), have been recently computed in [130]. The SM parameters in the
threshold corrections of eq. (4-7) are M S-renormalized quantities. The matching conditions
for the dominant SM parameters, y; and g, can also be found in [121,125].

In order to get a three-loop running Higgs boson mass in the AMS scheme at the scale M,,
one has to multiply A(M;), which comes from the solution of the three-loop SM RGEs with
the boundary condition in eq. (4-7) evaluated at Q@ = Msysy, by 2v*(M,), where v(M;) is
the MS vev evaluated at M,. In turn, the physical Higgs mass requires to solve the pole
equation

P — 2X(M)v* (M) + ﬁhh (p*) =0, (4-10)

with the SM Higgs boson self-energy;,

—~ SM

II, @)= {H;ﬂf ) —ﬁ 5M] " (4-11)

renormalized in the MS scheme but with the Higgs tadpoles renormalized to zero, i.e.
STPM = —TM . Thus, self-energy diagrams with tadpole insertions are not considered and
the vev corresponds to the minimum of the Higgs effective potential.

The procedure of matching the MSSM to a renormalizable EFT in the unbroken phase of the
EW symmetry amounts to neglecting corrections suppressed by powers of v? /M2,y . Those
corrections can in fact be mapped to the effect of non-renormalizable, higher-dimensional
operators in the EFT Lagrangian. If the higher dimensional operators are not included, such
as the pure SM as EFT, the contributions suppressed by the heavy scale Mgygy are not
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considered. Consequently, the EFT calculation is less accurate than the fixed-order one for
low SUSY scales of the order of Mgysy < 1 TeV. Due to the presence of the large loga-
rithms, the fixed-order calculation loses accuracy for Mgysy above a critical SUSY mass
scale, estimated to be about M§;, ¢ &~ 1.2 TeV in [41], whereas above that scale the EFT
calculation is more accurate.

In the version 2.14 of FeynHiggs [56] both approaches, the fixed-order and the EFT approach,
are combined in order to supplement the full one-loop, leading and sub-leading two-loop dia-
grammatic results with a resummation of the leading + next to leading (LL+NLL) [120] and
next to next to leading (NNLL) [147] logarithmic contributions coming from the top/stop
sector. For the resummation of large logarithms up to NLL two-loop RGEs and one-loop mat-
ching conditions are needed, accordingly, the resummation up to NNLL requires three-loop
RGEs and two-loop matching conditions. The hybrid results obtained from the combination
of the two approaches are added into the pole equation of the full MSSM

p*—mi+ ], (%) + a5 =0, (4-12)

through the shift Ag’,f which contains the resummed large logarithms from the EFT as well
as the logarithmic terms already present in the fixed-order Higgs self-energies,

A = — [2A(My)v*(M,)] o~ {ﬁhh (mi)]l : (4-13)

The subscript ”log” means that only logarithmic terms are considered. The logarithms in
the Higgs self-energy appear explicitly only after expanding in v/Mgsygy. This subtraction
term ensures that the one- and two-loop logarithms, already contained in the fixed-order
FD computation, are not counted twice. In general the higher-order logarithms obtained
from the EFT and the hybrid approaches are not the same because the determination of
the poles of the propagators (eq. 4-10 and eq. 4-12) are performed in different models.
However, this difference, which comes from the momentum dependence of the two-loop
order non-SM contributions to the Higgs self-energy, cancels out with contributions coming
from the subloop renormalization in the heavy SUSY limit, as was explicitly shown in [157].
Besides the unwanted effects from incomplete cancellations in the determination of the Higgs
propagator pole, the effects due to non-logarithmic terms and its parametrization as well as
the higher-order terms coming from the scheme conversion between OS and DR parameters
are all included into FeynHiggs 2.14 [56].

4.2. Comparison of the EFT hybrid and three-loop
fixed-order calculations of 1/,

In this section we present a numerical comparison of our three-loop fixed-order predictions
of Mj, to the numerical predictions coming from FeynHiggs 2.14. We have chosen a DR
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Figure 4-1.: Comparison of the M) predictions of FeynHiggs with the three-loop fixed-order
computation of M at O(a;a?) in the heavy SUSY limit. The dot-dashed and the
dashed lines are the fixed-order results of FeynHiggs at one and two -loop level
respectively. The blue dotted line contains the NNLL resummation of the large
logarithms in FeynHiggs. The blue band corresponds to the uncertainty in the NNLL
prediction taken from FeynHiggs. The brown band is the CMS/ATLAS Higgs boson
mass, M;"" =125.0940.24 GeV. The red solid line represents our three-loop fixed-
order predictions. Left: Dependence of M}, on the super-symmetric scale Mgy gy for
a vanishing stop mixing, X;/Mgysy = 0. Right: Numerical differences between the
FeynHiggs predictions and the three-loop fixed-order predictions of Mj,.

renormalization of the stop sector with the renormalization scale set to Mgygy, which is
equivalent to set Q; = —1 in FeynHiggs. The one-/two-loop fixed-order and the EFT-hybrid
FeynHiggs predictions are fixed such that the full MSSM is considered (mssmpart=4) in
its real version (higgsmix=2, t1CplxApprox=0), no approximation is taken for the one-
loop result (p2approx=4) and the O(tan™() corrections are resummed (botResum=1). In
particular, when the resummation of the large logarithms is included, we use the full LL, NLL
and NNLL resummation (looplevel=2, loglevel=3). The top quark mass is renormalized
in the SM M S scheme at NNLO (runningMT=1) since for loglevel different from zero a DR
renormalization is not allowed. The input flags of FeynHiggs 2.14.3 are explicitly indicated,
for more details the online manual of the code can be consulted at [186]. To obtain the pole
mass M, at three-loop level in the fixed-order approach, we have introduced the O(a;a?)
corrections as constant shifts in the FeynHiggs 1-loop + 2-loop Higgs renormalized self-
energies (Looplevel=2 and loglevel=0) with the help of the function FHAddSelf but in this
case we have used a DR renormalization of the top quark mass. In order to assure a correct
evaluation of the parameters o, and M, in the DR scheme at the desired perturbative order,
we have used the program RunDec [187-189] and its supersymmetric extension, decSUSY.
We start by considering the FeynHiggs fixed-order, FeynHiggs NNLL hybrid and three-loop
O(a;a?) predictions. The left plot of Figure 4-1 shows the dependence of Mj on Msysy
for a vanishing stop mixing, X;/Mgsysy = 0, at the kinematic point Ac 7y dcsp = 0 and
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Figure 4-2.: Numerical comparison of the M}, predictions in a scenario where M; = 1.5 TeV and
Xi/Msysy = 0. These plots follow the same conventions as in the Figure 4-1. Left:
Evolution of M}, as a function of Mgy sy . Right: Differences between the three-loop
fixed-order and the FeynHiggs predictions.

tanf = 10, whereas the right plot shows the numerical differences between all the considered
FeynHiggs results and the O(aza?) prediction of Mj,. In order to draw these plots we have
adopted the heavy SUSY limit (eq. 3-38) and we have followed the next conventions. The
one and two-loop fixed-order results of FeynHiggs are represented with the dot-dashed and
the dashed lines respectively. The blue dotted line contains, in addition, the resummation of
the large logarithms up to NNLL order. The blue band corresponds to the uncertainty in the
NNLL prediction computed with the help of the FeynHiggs function FHUncertainties for
the flag choise: mssmpart = 4, looplevel = 2 loglevel = 3, runningMT = 1. In principle
three effects are taken into account: i) the variation of the renormalization scale from M;/2
to 2M,, ii) the use of MP instead of MI*" in the two-loop corrections and iii) the exclusion
of higher order resummation effects in M. The brown band is the experimental Higgs boson
mass and its corresponding uncertainty, we have adopted the combined CMS/ATLAS result
of the RUN 1 at the LHC, M;™ = 125.09 &+ 0.24 GeV [6], since there is not yet an official
combined result for RUN 2 [7,8] observations. Finally, the red solid line contains our three-
loop fixed-order corrections.

The first thing to note here (and also in Figure 4-2) is that the higher-order large logarithms
coming from the EFT hybrid approach at NNLL level produce a growing positive shift on
the two-loop predictions reaching a size of about 20 GeV for Mgysy = 40 TeV. Additionally,
the NNLL predictions are in a very good agreement with the three-loop O(a;a?) results for
Mgysy less than the value Mgpsy < 10 TeV. On the right graph of Figure 4-1 one can
see that in the region 2.2 TeV < Mgygsy < 7.4 TeV there is an approximately constant
difference of about 0.2 GeV between the red solid and the blue dotted line which is within
the theoretical uncertainty (blue band) estimated to be about 0.6 GeV. Below this region
the agreement is still good with a numerical difference of at most 1 GeV. However, for scales
above 10 TeV the effects of the large logarithms in the red curve start to be relevant, the
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Figure 4-3.: Numerical comparison of the M}, predictions for a non-vanishing stop mixing in the
heavy SUSY limit. The blue dashed lines are the NNLL predictions of FeynHiggs
and the red solid lines represent our three-loop fixed-order predictions. The brown
band is the CMS/ATLAS Higgs boson mass, M;"" = 125.09 + 0.24 GeV. Left: M,
as a function of Mgygy for different stop mixing values, X;/Msysy = 0.2, 0.5,
0.7, 1.0, 1.5 and 2.4. Right: Absolute numerical differences between the three-loop
fixed-order predictions and the NNLO results of FeynHiggs plotted in the left figure.

difference between the two results rapidly increases up to ~ 21 GeV when Mgysy grows
to up to 20 TeV and grows monotonically reaching 78 GeV at Mgysy = 40 TeV. This
pronounced behaviour depends crucially on our election of the input parameters M and X.
Note that according with the discussion of Section 3.3, the presence of n-loop logarithms of
the form log" (Msysy /M;) in the master integrals of Figure 3-5, which are the basis for the
three-loop fixed-order Higgs self-energy corrections in the heavy SUSY limit, are the source
of these additional large contributions in the three-loop predictions of Mj,.

In Figure 4-2 we show the numerical comparison between two results. i) Our three-loop
O(aza?) predictions of Mj, (red curve), where the heavy SUSY limit has been smoothed to
include an additional SUSY scale, the gluino mass Mj. ii) The FeynHiggs prediction of M},
including the resummation of the large logarithms up to NNLL order (blue dashed curve).
The effects of a gluino threshold are not included in the NNLL resummation procedure since
three-loop RGEs for an appropriate extension of the Standard Model with the gluino as
additional fermion, for instance as a singlet of the gauge group, are not included in FeynHiggs.
The NNLL resummation is thus restricted to the case Mz = Mgy sy. However, the numerical
effects due to a gluino threshold in the EFT computation of M) is numerically small, about
0.2 GeV [147], and therefore can be safely neglected. The fixed-order corrections instead,
capture almost the entire effect of varying Mj. In [147] was shown that the diagrammatic
two-loop correction to M), gives a sizable contribution of up to ~ 2 GeV for the case of
maximal stop mixing. The three-loop fixed-order corrections with the added gluino can also
be sizeable, specially for large SUSY scales. We have considered a gluino mass of M; =
1.5 TeV. The inclusion of this additional scale produces significant differences between the
O(aya?) and the NNLL results. Note that the red curve includes not only the gluino effects
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Figure 4-4.: Dependence of M}, on X;/Mgygy in the heavy SUSY limit evaluated at the same
kinematic point considered in Figure 4-3 with tanf = 10 and Mgysy = 1 TeV,
5 TeV and 20 TeV. The blue lines represent the NNLL predictions coming from
FeynHiggs and the blue bands are their corresponding theoretical uncertainties.

but the complete dynamics, that is to say, the large logarithms of the form In(Mgsysy /M)
and In(Mgysy /Mj) are included. For small SUSY scales below ~ 3.5 TeV the difference is
always less than 1.3 GeV. For large SUSY scales (Msysy > 3.5 TeV) this difference grows
to a maximum value of 4 GeV when Mgygy = 20 TeV. Nevertheless, the numerical effect of
the large logarithms in the red curve is reduced by a factor of around 5 regarding the results
shown in Figure 4-1. Lastly, we have studied the dependence of the NNLL and three-loop
M, predictions on the stop mixing parameter X; in the heavy SUSY limit.

In Figure 4-3 we have increased the value of X;/Mgspysy from 0.2 (thin curves) to 2.4 (thick
curves). We observe a good agreement between the two predictions for small SUSY scales up
to Msysy = 10 TeV, which is in accordance with previous comparisons of fixed-order and
EFT calculations [138,143]. However, for high energy scales above Mgysy 2 10 TeV there is
a large variation of the three-loop fixed-order curves which is observed neither in the NNLL
FeynHiggs curves nor in the three-loop EFT and hybrid results presented in [55, 138, 143]
where the resummation of the large logarithmic contributions is included. In particular,
when X;/Mgysy is equal to 1.5, which is an inflexion point where the curvature of M;(X;)
changes its sign as you can visualize with the help of the Figure 4-4, the numerical differences
between the red and the blue curve remain lesser than 3 GeV up to Mgysy = 20 TeV. In
the case of maximal stop mixing, X;/Mgsysy = 2.4, where the prediction of M, takes its
higher value (see thickest lines in Figure 4-3 and also Figure 4-4), the difference between
the two results is almost constant for large SUSY scales amounting a size of about 10 GeV.
The other considered X; values show a numerical difference that grows without boundary as
a function of Mgysy. Due to the large variation observed in the red and green curves, it is
not possible to derive a systematic improvement of the effect of the large logarithms in the
three-loop fixed-order curves when X; is changed.
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Figure 4-5.: Dependence of M;, on Mgysy and X; in the heavy SUSY limit. We have used
tanf = 10. The gray lines represent the values of Mgygy and X; which produce the
same Higgs boson mass. The predicted value of M} increases monotonically with

Msysy .

4.3. Phenomenological bounds on the SUSY scale

We further explore the dependence of the Higgs boson mass on the SUSY input parameters
Msysy, X; and tanf in the heavy SUSY limit. The figures 4-1 to 4-4 show that the pre-
dicted value of Mj, grows when Mgysy increases and reach a maximum value at the critical
point X;/Mgsysy = 2.4, whose location is independent of Mgysy. It suggests that one can
find boundaries for the region of rMSSM parameters which put further constraints on M.
Figure 4-5 shows the numerical values of X;/Mgysy and Mgysy which produce the same
Higgs mass prediction (gray curves). We have considered values of M, from 115 GeV to
131 GeV and set tanfS = 10. We observed here that there is a minimum value of Mgygy,
located at the maximal point X;/Mgysy = 2.4, which is compatible with some election of
the Higgs boson mass. Moreover, in the case of non stop mixing (X; = 0) one can find the
higher value of Mgysy compatible with a given M. These extrema values grow when we
consider higher values of Mj. This behaviour can also be seen at the intersection of the
brown band with the blue dashed lines in Figure 4-3 for a 125 GeV Higgs mass.

If we use the combined CMS/ATLAS measured Higgs boson mass within the actual combi-
ned uncertainties, M;™" = 125.09 £ 0.24 GeV, we will be able to fix upper and lower bounds
on the SUSY scale Mgysy in the benchmark scenario considered in this work. Figure 4-6
shows the 125.09 GeV contours (gray lines) as a function of Mgysy, tan/ (Left: for values of
X;/Msysy from 0 to 2.4) and X;/Mgsysy (Right: for values of tanf from 4 to 30). The blue
and the brown regions refer to the SUSY parameters compatible with M;*". The purple lines
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Figure 4-6.: Region of rMSSM parameters in the heavy SUSY limit which is compatible with
the central value and the combined uncertainty of the CMS/ATLAS Higgs boson
mass, M, = 125.09 £ 0.24 GeV. Left: Gray lines represent the points (Msysy,
tanf) compatible with a 125.09 GeV Higgs mass for different values of the stop
mixing parameter, X;/Msysy = 0, 0.8, 1.2, 1.5, 2.4. The purple line represents
the combined uncertainty for the case of zero stop mixing. Right: Gray lines are the
125.09 GeV contours as a function of Mgysy and X;/Mgysy for different values of
the parameter tang, tanf = 4, 5, 10, 30. The purple lines are the points compatible
with the combined uncertainty for the lowest value of tang considered.

represent the combined uncertainty for the cases enclosed inside. Notice that if tans < 10
then Mgygy strongly depends on tan, moreover the parameter region of tanf < 3 is in-
compatible with the LHC observations of the Higgs boson mass if one considers SUSY scales
below 20 TeV. For values above 10, the dependence is marginal and the curves flatten. As
a consequence, at low tanf values, independent of the election of X;, it is not possible to
find upper bounds on the required SUSY scale from the CMS/ATLAS Higgs mass value.
However, for higher values (tanf 2 10), due to the curves are almost constant, one can
identify a lower bound for X;/Mgysy = 2.4 and an upper bound for a vanishing stop mixing
parameter (X; = 0). When tanf8 = 10, which is the point considered in all the above plots
of this section, we find that Mgygy must be at most 12.5 + 1.2 TeV (see purple line in left
plot) in order to be in agreement with the CMS/ATLAS Higgs mass value. Besides, the
upper bound on Mgysy can be reduced up to 9.6 TeV for tanf = 30 and X; = 0. One can
significantly lower the required value of Mgygy to 1.2 TeV when |X;/Mgysy| increases up
to 2.4 and for tanp = 30.

The region Mgsysy > 12.5 £ 1.2 TeV, where the three-loop fixed-order results blow up, is
excluded by the combined CMS/ATLAS Higgs mass value in the simple scenario consider
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here where tanf takes large values. The coming combined result for RUN 2 by ATLAS and
CMS will reduce the current uncertainty and therefore the upper bound on the SUSY scale
could be reduced even more.

4.4. Vacuum stability problem

In the previous section we have been able to find an upper bound on the SUSY scale in a
scenario where tanf is large; however, for small tan values such an upper bound is missing.
There is still the possibility to use the vacuum stability of the Higgs potential to find a
global upper bound on Mgysy including the region tanf < 10, as was discussed in [41]. The
estimated bound obtained in this work is of the order of 10*! GeV; nevertheless, this result is
not conclusive because it was derived without including the full MSSM Higgs potential and
is valid in the DR’ scheme, where m, is minimally renormalized and its dependence is deco-
upled from the observables through appropriated shifts of the physical parameters [46,75]. A
phenomenological analysis in the DR scheme including small tan 8 values and the SM-like
Higgs effective potential in the heavy SUSY limit will be the subject of discussion in this
section. We start by describing the vacuum stability problem in the SM and then we use
this analysis to derive the required Mgysy upper bounds.

The stability of the SM vacuum is determined from the 1PI Higgs effective potential. This
potential contains all the SM dynamics and allows obtaining the vacuum expectation value
from the electroweak phase transition. Although the effective potential is gauge and scheme
dependent, its value at any stationary point is gauge and scheme invariant, as can be seen
from the Nielsen identity [190]. Correspondingly, the vev of the Higgs field can be calculated
at any particular gauge. The Higgs effective potential in the SM is completely known up to
two-loop order [191] while at three [192] and four [193] -loop level it is known in the appro-
ximation where the strong and top-Yukawa coupling are large compared to all the other SM
parameters. The analysis of the stability must be obtained from a renormalization group
improved (RGI) version of the effective potential and requires the study of the renormali-
zation group equations of all the SM couplings (g = A, ¥, ¢, ¢, gs, etc) that includes
the determination of the matching relations between the running coupling constants and
the values of the SM observables [194], a sort of boundary conditions for those RGEs which
can include the effects of a heavy SUSY threshold according to eq. (4-7) when the SM is
considered as a low-energy EFT of the rMSSM. For large values of the Higgs classical field,
he > v where v is the EW minimum, the effective potential of eq. (4-2) improved by the
RGEs approximates to

vin)e ~ i) (414)
The stability of the potential translates to the study of the evolution of the Higgs self-
coupling A\(Q)) as a function of the scale ), more precisely to its positivity at large scales.
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As was discussed in Section 4.1, the running of A\(Q) is obtained by numerically solving
the system of non-linear ordinary differential equations defined by the beta functions of the
SM couplings (see eq. 4-5) while the boundary conditions are determined from the relations
between the parameters in the MS scheme and the physical masses of the particles (M},)
according to

G
gk(Q) = CZTZM/?‘ + Agi(Q), (4-15)
9—1/4

where G is the Fermi coupling constant which is related to the Higgs vev as v = VPR
F

¢; are normalization constants and Ag;(Q) are the threshold corrections to the matching
conditions. Currently, the vacuum stability analysis is done at next to next to leading order
(NNLO) involving the state-of-the-art computations for the running couplings, i.e. three-loop
beta functions and two-loop matching conditions. The three-loop beta functions have been
completely computed. For the EW gauge couplings g, ¢’ and the strong gauge coupling g
the beta functions can be found in [131,132]. The beta function of the top Yukawa coupling
was fully computed in [133] and finally the RGEs of the quartic coupling A and the quadratic
parameter m? up to three-loop level was obtained in [134,135]. In the context of the pure
SM, that is without including the SUSY effects, the two-loop threshold corrections of all the
relevant SM couplings are found in [10], where the NNLO corrections of A(Q)) was computed
in the EW gaugeless limit. The full NNLO computation for A, m? and y; is found in [12].
An implementation of the three-loop SM beta functions and anomalous dimensions as well
as the corresponding two-loop matching conditions can be found in the public codes mr [96]
and SMDR [97-99]. The main references containing the threshold corrections in the heavy
SUSY limit of the TMSSM were given in Section 4.1. It is worth mentioning that the three-
loop threshold corrections are not relevant in the NNLO stability analysis as was proved
in [195,196]. The L-loop effective potential improved by (L+1)-loop RGEs resums all the
Lth-to-leading logarithm contributions. Therefore, for the L-loop vacuum stability analysis,
the L-loop threshold corrections to the matching conditions are sufficient.

If one makes the bold assumption that there is no new physics up to very high energies, the
parameter \(()) remains weak from the EW scale until the Planck scale and runs negative
at an intermediate scale of the order of A; = 10! GeV for the central values of the top mass
(M, ~ 173.3 GeV) and the Higgs mass (M), ~ 125.09 GeV) as is shown in Figure 4-7 Left.
The trouble with A becoming negative at a scale lower than Ap is that it will cause an
instability in the Higgs effective potential at the scale A;. The instability occurs due to the
effects of the top quark corrections. For instance in the one-loop RGI potential and therefore
in A\(Q) they contribute as —%H‘, being I' the integral of the Higgs anomalous dimension.
For small values of A this is the term dominating the evolution and A is going to evolve
towards smaller values eventually crossing zero. Consequently, at high energy scales the RGI
potential is either not bounded from below or it develops a second minimum that can be
deeper than the EW one. In both cases the idea that the SM can be considered as a valid
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Figure 4-7.: Left: Evolution of the Higgs quartic self-coupling A as a function of the renormali-
zation scale ). Right: Beta function of the Higgs self-coupling. We have included
the uncertainties in M; and M}, as is indicated. The plots were drawn with the help
of the program SMDR.

theory up to Ap is in trouble because v is no longer the true minimum of the potential and
there is a tunnelling probability between the false vacuum v and the true vacuum at high
field values.

The requirement of new physics appearing below the instability scale to cure the instability
of the SM potential is mandatory if the lifetime of EW vacuum is shorter than the life of the
universe. In other case, we can accept a metastable SM vacuum. In fact, the Figure 4-7 Left
shows that A\ does become negative but never too negative, it is bounded from below with a
bound higher than Ay = —0.025, its evolution is slowing down and is bounded at high energy
because its beta function at high energy becomes very small, vanishing close to Ap as can
be seen in Figure 4-7 Right. This implies a total probability for vacuum decay,

82
~TpApe ) S (Ap) = 4-16
% u\Be ) ( B) 3’)\(AB)|’ ( )

extremely small, less than 1071%, or a lifetime of the EW vacuum much larger than the age

of the universe 7y & 14 x 10% years, stating that our vacuum is metastable. In Eq. (4-16)
Ap is determined as the scale at which g is maximized [197].

The metastability condition is generally presented with the help of a phase diagram in the
M;, — M, plane. Neglecting the presence of new interactions up to Ap, the zero-temperature
meta-stability analysis provides the graph given by Figure 4-8. This phase diagram is divided
into three different sectors. An absolute stability region where the effective potential evalua-
ted in the EW minimum v is lower than the effective potential evaluated at the new minimum
V', Vear(v) < Vger(v'). A meta-stability region where the effective potential at the new mini-
mum is lower than the effective potential at the electroweak minimum, Vggr(v') < Vgrar(v),
but with the life-time of the EW vacuum larger than the age of the universe, 7 > 7;. An
instability region where Vzgr(v') < Vrar(v) but the life-time of the EW vacuum is lower
than the age of the universe, 7 < 7. The phase diagram also has two division lines. The
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Figure 4-8.: SM vacuum stability phase diagram in terms of the Higgs and top quark masses.

The region plotted shows the dominant experimental range of M}, and M;.

stability line separates the stability and the meta-stability regions, this line is obtained when
Vrer(v) = Vrar(v'). Whereas, the instability line separates the metastability and the ins-
tability regions, this line is obtained when the life-time of the electroweak vacuum is equal
to the age of the universe, 7 = 7y. Finally, the red dot-dashed lines along the borders in-
dicate the uncertainty from a, = 0.1184 4+ 0.0007 GeV and from theoretical errors. The
measured values of M, and M, appear to be rather special, the SM vacuum is at the border
between stability and metastability regions. When its experimental and perturbative errors
are taken into account, represented with the 1o, 20 and 30 ellipses in Figure 4-8, the SM
could be sitting on the stability region, i.e. it could reach and even cross the stability line,
this scenario is known as the near-criticality. Including the two-loop threshold corrections
of all SM parameters, the estimated overall theory error on M), 4+ 1.0 GeV combined with
the experimental errors on M; and a; gives as result that vacuum stability of the SM up
to the Planck scale is excluded at 2.50 (99.3 % C.L. one sided) [10]. There is no conclusive
result about the state of the SM vacuum, however the metastability is the preferred option
with 99.3 % of probability. As a consequence, owing to an intriguing conspiracy of the SM
particles masses, it is likely that the higgs potential develops a second minimum as deep as
the one corresponding to the electroweak vev.

4.4.1. Vacuum stability constraints on the SUSY scale

In this section we are going to see that it is possible to derive upper bounds over Mgy gy
for small tanf values if we impose the positivity of the running Higgs self-coupling A\(Q)
from the EW scale until the next threshold, () = Mgy gy, which is equivalent to impose the
stability of the SM renormalization group improved Higgs effective potential (see eq. 4-14)
up to the scale where supersymmetry is supposed to appear. The SM is considered here as
a low-energy EFT of the rMSSM valid in the heavy SUSY limit, where we integrate out all
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SQCD particles at the scale Mgygy, and therefore the RGEs correspond to the three-loop
SM beta functions while the threshold corrections to the boundary condition for the Higgs
quartic coupling (see eq. 4-7) takes the form:

AW = AWxres 1 AD NG L ALY L AW, (4-17)

Note that the effects of the SUSY parameters affects only the boundary conditions. Those
parameters are renormalized in the MS scheme, for this reason it is necessary to include the
term AW A9 which accounts for the conversion from the DR, where the SUSY parameters
are defined, to the M S scheme, usually used in the SM:

1 1 3
ATVZAMNres — 4 22 (2 28 4 4-1
(47) 29 399 176 )Y (4-18)

On the other hand, the term A®M\? in eq. (4-17) represents the one-loop threshold corrections
coming from the heavy scalars contributions. Considering only the terms involving the top
Yukawa coupling, the correction AMA? is reduced to the form:
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Here X, = X?2/(mg,m;, ) and z, = m;, /m;,. In the heavy SUSY limit, where all of the soft
breaking masses have a common value Mgygsy, the first, second and third lines of eq. (4-
19) vanish, leaving only the contribution of the heavy Higgs doublet and the corrections
controlled by X;. Besides the functions F; with 7 = 1,...,5 become equal to one. The
definition of the functions F}; can be consulted in Appendix L. Finally, the terms A\
and AMN come from the higgsino-gaugino contributions. The first one contains the proper
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threshold corrections to the Higgs quartic coupling:
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where r; = M;/p, with M; the masses of the gauginos, and

By = 2\ (9/2 + 392) —g" (c‘é + S%) — 5¢* (cé + 52)
— 4g%g"”s5c5 — 2 (g% + 97s3) (97s5+ 9°ch) - (4-21)

Here A\ must be expressed in terms of 5 and the EW gauge couplings according with the
eq. (4-3). The definition of the functions f;, f and G are written in Appendix L. The second
higgsino-gaugino contribution emerges in the heavy SUSY limit from the fact that the tree-
level part of the matching condition for A is a function of the EW gauge couplings. The
expression is quite simple:

2 1 M2 ,u2
(4m)2 AW NE = —6036 [2g2ln ( 2 ) + (¢ +9¢%)In ( 5 )] . (4-22)

2
MSUSY MSUSY

For the two-loop threshold corrections, on the other hand, the formula of A(?) )\gaugeless with
the full dependence on the SQCD masses is too lengthy to be included here. The derivation
of the terms including all contributions controlled by the strong gauge coupling and by the
third-family Yukawa couplings can be consulted in [121, 125]. However, in the decoupling

2y can be re-

limit discussed in this section, the dominant threshold correction at order g:
covered directly from the O(g?yfM?) correction to the lightest MSSM Higgs boson mass.
In particular, it is sufficient to subtract the top-quark contribution from the full MSSM

correction, as the given in eq. (21) of [198]. The derived expression is the following:

A(2) /\gaugeless ~ ggyf 19 Xy _6 Xt2 14
967 Msysy — Mgygy M2, 5y

S N (4-23)
2 M2 M? ’
SUSY SUSY




70 4 Mgysy Constraints and Vacuum Stability Analysis in the SM

> >
3 3
o 4]
3 3
= =
& &
S) S
3 |
> >
3 3
) )
3 3
= =
S S
<) S)
3 |

X%/ Mgysy X/ Mgysy

Figure 4-9.: Higgs boson mass predictions as a function of the SUSY scale and the stop mixing
parameter in the DR scheme. The light blue regions correspond to the points com-
patible with M, ;xp = 125.09+5.0 GeV for tanB = 1, 4, 10 and 30. The gray lines are
the contours for the central value of the CMS/ATLAS Higgs mass. The red regions
represent the values of X; and Mgysy where A\(Mgysy ) becomes negative while the
red lines display the parameter space which have A(Mgysy) = 0.
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) \EWxQCD

Finally, the full expression for the sub-dominant contribution of A(? can be con-

sulted in [130], we put here only the terms proportional to the top Yukawa coupling:
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Considering the threshold corrections in eqs. (4-18) - (4-24), the requirement of the positivity

of the running Higgs quartic coupling A\ can allow an estimation of additional upper bounds
for the SUSY scale in a given kinematical point of the supersymmetric parameter space.
With this objective, we have studied the dependence of the Higgs boson mass on the SUSY
scale, Msysy, and the stop mixing parameter, X;, for a given tanf between 1 and 30.
The Higgs mass is extracted from the hybrid approach of FeynHiggs 2.14 with the large
logarithms resummed at NNLL in the MS scheme. We have used the same benchmark
scenario considered in sections 4.2 and 4.3 to be consistent with the results of Figure 4-6,
but this time we let Mgysy evolve up to 1017 GeV and we span values of X;/Mgsysy from
—5 to 5. We have also identified, in a phase diagram X; vs Mgygy, the values for which A
gets negative.

In Figure 4-9 we show the region of SUSY parameters which are compatible with a Higgs
boson mass of M;™ = 125.09 £ 5.0 GeV (light blue regions) for different values of tang:
tanp = 1, 4, 10 and 30. The gray lines correspond to the 125.09 GeV contours. We have
pictured the region where the quartic Higgs self-coupling is negative at the SUSY scale,
AMMspysy) < 0, leading to an unstable electroweak vacuum (see the red regions). If one
demands the stability of the EW vacuum, then the parameter space in the red region are
excluded and the intersection of the red border line with the blue region could give us
constrains on the Mgysy value as a function of Mj,. Note that the region of exclusion occurs
in general around |X;/Mgysy| ~ 0 and for large values of X;, |X;/Msysy| 2 3. When
X, is close to zero, the dominant contributions to A(Mgysy) come from the Higgsinos and
EW gauginos terms of eqs. (4-20) and (4-22) which are negative; however, for slightly large
values, | X¢| 2 0.5Mgpysy, the positive stop contribution in eq. (4-19) becomes dominant. In
particular, for large stop mixing, the stop contribution gets negative, due to the negative
terms in eqs. (4-19) and (4-23) are dominant, leading A(Mgysy) to negative values as well.
On the other hand, we can see that for smaller values of tanf the required Mgy sy compatible
with M, increases. Thus, the left-top plot of Figure 4-9, with tanf = 1, contains the highest
upper bound of the SUSY scale derived from the vacuum instability region. Specifically, for



72 4 Mgsysy Constraints and Vacuum Stability Analysis in the SM

a 125.09 GeV Higgs boson mass and a stop mixing of | X;/Msygsy| = 1.2, the intersection of
the gray curve with the blue line provides the bound Mgysy < 8.34 x 109 GeV. Assuming
an uncertainty of £5 GeV on the Higgs boson mass, this bound can reach a maximum value
of Msysy < 2.39 x 101 GeV for |X;/Msysy| = 1.4. This result is not very encouraging, the
bounds obtained from the positivity of A for small tanf values are very far away from the
Msysy bounds derived in Section 4.3, where tan(3 was taken to be large.



5. Conclusions and Perspectives

The main contribution of this thesis is the determination of UV finite expressions for the
renormalized three-loop corrections to the neutral CP-even and CP-odd Higgs boson masses
of the rMSSM following the Feynman diagrammatic approach at the fixed-order O(c;a?).
We have computed only the dominant contributions coming from the EW gaugeless and the
non-light-fermions limits and the approximation of vanishing external momentum transferred
in the calculation of the involved self-energy functions. The DRED procedure was adopted
to regularize the Feynman amplitudes associated to the Higgs self-energies. Besides, a pre-
cise prescription of a mixed DR/OS scheme was developed in order to renormalize the local
and non-local UV divergences from the three-loop corrections. In particular, the non-local
infinities contained in sub-loop diagrams require an additional treatment which includes the
evaluation of two-loop SQCD counter-term insertions computed in the DR scheme. After
regularization, we have reduced the three-loop corrections, using the integration-by-parts
recurrence relations, to a small set of master integrals which are different realizations of five
three-loop vacuum topologies with at most four independent mass scales. Their numerical
evaluation is possible thanks to the dispersion relation techniques. The three-loop vacuum
topologies are expressed in terms of one and two-dimensional numerical integrals of elemen-
tary functions which can be efficiently evaluated for a general mass pattern. In this way we
avoided the asymptotic expansions on the amplitudes at the integral level in the realistic
mass hierarchies proposed in [118]. Thus, our work represents an independent check of the
results implemented in H3m but also provides a numerical evaluation of the three-loop co-
rrections in the whole supersymmetric parameter space without any assumption about the
mass hierarchy.

We have studied the numerical impact of our three-loop corrections in the value of the pole

mod—+

"¢, mpre® and my“" scenarios. We ha-

mass M, for three different benchmark limits: the m; ™, mj}
ve considered scenarios with the SUSY scale Mgy gy lower than 1.2 TeV, where a fixed-order
calculation have a combined theoretical uncertainty better than the estimated uncertainty
from an EFT calculation [41] since the effects of the large logarithmic terms are not relevant
when the sparticle masses have values close to M;. We have investigated the dependence of
M), on the ratio between the vacuum expectation values of the two CP-even Higgs bosons,
tan, the soft-breaking trilinear parameter A;, the renormalization scale p, and the CP-odd
Higgs boson mass m 4. The three-loop corrections show a good perturbative behaviour, their
numerical size is about ten times lesser that the two-loop predictions and the dependence
on the renormalization scale is reduced by around a factor two. The contributions yield a
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shift in the value of the lightest Higgs boson mass of the order of 1 GeV compared with
the two-loop results of FeynHiggs and a shift between —0.4 and 0.4 GeV compared with the
three-loop predictions of H3m combined with the lower-order contributions of FeynHiggs.
Our results are in agreement within the theoretical composited uncertainty with the predic-
tions of M), obtained from H3m if the same kinematical limits of the SQCD mass spectrum
are employed.

The three-loop fixed-order computation of the lightest rMSSM Higgs boson mass [2] is in a
very good agreement with the results of H3m [55] for low SUSY scales (Msysy < 1.2 TeV).
However, for large Mgy sy values significant differences are expected and therefore a numeri-
cal comparison with the available codes for large SUSY scales was included in this work. We
have decided to check our computation of M}, with the three-loop results coming from the
EFT hybrid approach implemented in FeynHiggs 2.14 [56] for the same observable. Feyn-
Higgs includes a hybrid procedure which uses an EFT in order to perform a resummation
of the large logarithms at high SUSY scales. Their numerical predictions are in a very good
agreement with the other fixed-order and EFT codes found in literature. This allowed us to
compare our results with a reliable three-loop Mj-prediction for Mgygy up to scales of the
order of 40 TeV. We focused on a single SUSY scale scenario in the decoupling limit (heavy
SUSY limit) where the heavy particles are integrated out at the scale Mgy gy which can take
values considerably larger than the EW scale. This limit is considered in order to compare
our three-loop results with the hybrid corrections included in FeynHiggs where the SM is
the low-energy EFT. Moreover, the region of free SUSY parameters is significantly reduced
to just three: tanf, X; and Mgygsy, which is convenient from the phenomenological point of
view. We specifically contrasted our O(aya?) and the FeynHiggs NNLL predictions of M, at
the kinematical point A¢ - u.d.cs5 = 0 and tanB = 10. The stop sector was renormalized in
the DR scheme with the renormalization scale set to = Mgygy. We find a very good agree-
ment between the two results for SUSY scales below 10 TeV in the case of vanishing stop
mixing (X; = 0). The difference is estimated to be in the range 0.2 GeV < AM;, S 1 GeV
for the region Mgysy < 10 TeV. Above Mgysy = 10 TeV we have observed meaningful
differences that increase monotonically with Mgy sy. Such a behaviour is expected for high
SUSY scales since the O(aza?) computation contains now the effects of the large logarith-
mic contributions. The numerical differences can be reduced through the introduction of an
additional SUSY scale, the gluino mass Mj. The variation of the stop mixing parameter
X, instead does not produce a systematic improvement of the large logarithm effects in the
three-loop fixed-order corrections.

A phenomenological analysis where the LHC results are used to study the compatibi-
lity of the SUSY parameters space with the combined CMS/ATLAS Higgs boson mass,
M;™ = 125.09 £ 0.24 GeV, shows that the region where the contributions of the large lo-
garithms blow up, is actually excluded. However, this exclusion is valid just for large tang
values, tanf 2 10, where we have derived an upper bound on the needed SUSY scale. For
values above tanf = 10 the region Mgygy > 12.5+ 1.2 TeV is ruled out, independent of the
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election of the stop mixing value. A global upper bound valid also for any value of tanf can-
not be derived from the experimental Higgs mass value. Nevertheless, there is the possibility
to use the stability of the SM Higgs effective potential, which translates to the positivity of
the running Higgs self-coupling A\(Q), to derive upper bounds for the required SUSY scale
as a function of M, for small tanf values. In this case the SM is considered as a low-energy
EFT of the rMSSM in the heavy SUSY limit. Thus, A(Q) is numerically obtained from the
solution of the system of RGEs of the SM parameters at three-loop order, where the boun-
dary conditions are matching relations that relates the running couplings to the physical
observables with two-loop threshold corrections which includes the effects of the rMSSM
particles. The bound obtained was far less restrictive. Imposing the stability of the EW va-
cuum, the instability region A(Mgsysy) < 0 excludes values above Mgy = 8.34 x 109 GeV
for M;, = 125.09 GeV. Accepting an uncertainty of £5 GeV on the Higgs boson mass, the
upper bound can reach a maximum value of Mgygy < 2.39 x 101 GeV.

As a result of this thesis new perspectives for future research projects are opened. The co-
rrections presented along this work were computed without taking any assumption about
the soft SUSY-breaking mechanism so that a direct comparison with the H3m results in the
MSUGRA scenarios requires a reparametrization of our expressions and therefore is beyond
the scope of this work. Moreover, there is still missing an estimation of the theoretical un-
certainties in the fixed-order determination of M) at three-loop level and the corresponding
numerical comparison, including these uncertainties, with the other three-loop contributions
currently found in literature, namely the pure DR three-loop results recently presented
in [142] and implemented in FlexibleSUSY+Himalaya, the EFT calculations implemented
in HSSUSY [40], the hybrid implementations in FlexibleSUSY [148], SPheno [153,154], etc.
In this work we have studied the effects of the large logarithmic terms; however, an analysis
of the effects of the non-logarithmic terms is still missing. There is a complication to separate
these contributions. All the three-loop corrections were computed in terms of the finite part
of three-loop vacuum integrals which are expressed in terms of one- and two-dimensional in-
tegral representations. For master integrals where there are three or four independent mass
scales, an analytical expression of the finite parts in terms of special functions, as the polylo-
garithms, are usually not possible. Yet, it is possible to find a more adequate basis to isolate
the non-logarithmic terms and measure their numerical effects.

A more technical issue related with the basis of master integrals are also left open. In this
work we have used SecDec in order to evaluate the evanescent terms of the three-loop vacuum
integrals. However, the evaluation could be done in a more efficiently way with the dispersion
method if one finds integral representations for those contributions in terms of fundamen-
tal functions. Examples of three-loop vacuum integrals which have never been published
are: U5(my, mg, my, ma, mg), Ub(mq,0, mg, mg, my) or US(my, ma, ma, m3, my). Recently, a
version 2.0 of the program TVID was released [168]. This could allow a better election of
the basis of master integrals, but also can be used to estimate the size of the momentum
dependence contribution to the fixed-order three-loop Mj-corrections.



A. DRED: Notation and Technical Setup

In this appendix we show the needed gamma algebra and tensor relations for a practical
calculation regularized in the dimensional reduction scheme, where momenta are continued
from 4 to D dimensions, while gauge fields and y-matrices remain as four-dimensional objects.
We have implemented DRED by introducing the quasi-four, -D and -e dimensional spaces:
Q4S, QDS and QeS, where D = 4 — 2e,

Q4S8 = QDSUQeS and QDS N QeS = 0. (A-1)

The space Q4 retains the essential 4-dimensional properties but is in fact an infinite-dimensional
space which contain the @DS. The complement of the D-dimensional space is a (4 — D)-
dimensional space, QeS. The four-dimensional quantities live in ()45 with metric tensor g"”
while the D-dimensional and e-dimensional objects live in Q D.S and Q¢S with metric tensors
g™ and ¢"” respectively. Those metric tensors satisfy

g =g" + 9", gl =g" =0, gi=4, gi=D, g-=2e (A-2)
In Q4S, QDS and QeS, gamma-matrices satisfy the usual Dirac algebra:

(" =29 A" =20 (07 =207 {7 =0 (A-3)
For any vector v € Q4S5 the following relation is satisfied:

vt = vt o (A-4)
v# and v” denote the projection of v to the subspaces QDS and QeS according to

vt =g, o WF = g, (A-5)

Provided that QDS is a subspace of Q4.5 the next identities are satisfied:

Py = (p* 0)(?)2(17‘1 0)(1’:‘)=pﬂwzpwﬁ- (A-6)

m

In particular, the relation

L g s i, 0 -
pp =50 L W = PP g = 1, (A-7)
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appearing in the fermion propagators, holds for a D-dimensional momenta p.
Concerning the chiral matrix 5, we have used the usual definition in DRED, that is, we
have defined 5 as an object that anticommutes with all infinitely many ~*,

{757 Vﬂ} =0 — {757 7'&} = {757 7'&} = 07 (A_8>
and holds the properties
() =1, H=r. (A-9)

The relations (A-2) to (A-9) together with the constraint Trl = 4 in Q4S5 allow the evaluation
of fermion traces in the following way:

Trvy, = Try, = Try =0,
Tr (vuw) =49,  Tr(vavs) = 4950,  Tr(va75) = 4950,

Tr (Y0 Yo) = 4 (9w Ipo = GupGvo + GuoGup) »
Tr (%2%%37&) =4 (g[u?gﬁfr — 9apYos T gﬂ&gf/p) ) (A-10)
Tr (vie575) = 4 (9an9p6 — 9updos + Gis9os)
1
Tr(va- v%Ya---7) = -Tr(va-..v) Tr(va--.75),

4
Tr (75 (arbitrary number o f 7“].)) =0.

Further relations of the gamma-matrices can also be obtained:

Y =4, =D, =2,
VYV = =297, v = —(D = 2)y", vyt = 26y (A-11)



B. DRED Renormalization Constants

In this appendix we are going to list the relevant counter-terms involved in the three-loop
calculation of the Lightest CP-even Higgs boson mass at order aya. The next listed counter-
terms were computed using the renormalization scheme DRED with minimal subtraction.
Their explicit expressions are required in the analysis presented in Chapters 3 and 4.

The one-loop counter-term of the top quark mass in the DR scheme is:

MW M, = 6—Dp [AO (174,) + A0 (1ing,) — 240 (M) — 2A0 (M) — 4M2BO (M7, M, 0)
+ (M2 4 M — i) BO(MZ, iy, , M) 4+ (M + M} —1ng,) BO (M, 1iv,, M)
+  2M5M,; 09, (BO (M}, vy, Mz) — BO (M7, iy, My))] (B-1)

Using the analytical expression of the one-loop functions A0 and B0, which can be consulted
in Appendix J, and the definitions of the SU(3) group invariants:

N?—-1 4 b 1
=1, N=3, Ca=bN=3 Cgr=0> =—, L(R)==-==
b ) ) A ) R IN 37 2( ) 9 9’
ng=>5 mn=1 ng=n,+n =6 Tr=nsly(R)=3, (B-2)
we have
s 1
SOM, = — 25 M, Cp= (B-3)
2 €
The gluino mass counter-term at one-loop order is:
MzoW M, = —Dp ZZAO — 6A0 (M) — 240 (M,) — 12M2B0 (M2, M;,0) +
;=1

2

3 (Mg + M2 -2 — 2Mng329f> BO (M2, 1ny,, Mf)] f=udtbes. (Bd)
F o=l

Explicitly we have:

\ 1
SO, = Z—WME (~3Ca+217) . (B-5)
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In the NLF' limit M, = 0 where ¢ = u,d, b, ¢, s. From now on we are going to preserve the
definitions of the indices f and q. The one-loop counter-terms of the squark sector are:

0V, = S5Dp | A0 () ¢y + AO (1) sy, + A0 () — 4, BO (1%, 1, 0) |

220Dy [(M2 + ME — i+ (—1)12M;Mysa, ) BO (22, My, M) | (B-6)
- 222 Dp [A0 (M) + A0 (M;)].
which leads to

2o oo
sOm2 = Yo (a2 - M2 MM LM T M 1 B-7
h = VR g f g 520, 1 S, P (B-7)

The expression for § (I)fn?2 is obtained by interchanging 1 <+ 2 in the above equation. Besides

606y = {452 M;M, (35, — 53y, ) Dp [BO (10, M, My) + BO (1, M, Mj)]

Qg .
— §Dp [AO (7, ) — AO (171,)] Sa0; }/2 (mf —m}) , (B-8)
that yields
~ 2 ~ 2\ ¢(1) ml%l — m?z 1
(mtl — th) 0 9{ = CRCQQt Mth — T.Sggt E, (B—9)
and
oWz ==Dp|2 <M2+M + (—1)72M;M;s )iBo( 2, My, My) (B-10)
fjj_37r f f g f5205 ap? D, My, Mg
0
98B0 (mf ,M;, Mg) + 4 Ll (p2,7y,,0) + 2B0 <m§j,mfj, 0)} =12
pQZﬁﬁj
At two-loop level we need the DR counter-terms:
2 681 41
5 M2 = (O‘—> M2 2o B-11
t 4 19e 9 ( )
s@m2 — 16 , M2M2 1 1+ 2 LN o o 5
My = <?> 9 Ca0, m 19 ( + Cz@-) T3 ) S (5, — 1y,
25 3 8 1
=+ 1—8M2 + 2M2 (§ <1 + C%9£> + 1) SQQ{Mth} 6_2
Qg 1, . . . 7
(%) {G 2 ) = gy (8, — ) = S
2
7 1 1 ., 1 o1
= M7+ gea MMy + gzq:;mqj —§me}z. (B-12)
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The expression for §®y, can be derived from (B-12) by interchanging the indices 1 > 2
and changing the sign of ;. Furthermore, in the DR scheme the two-loop counter-terms of
the stop masses have a dependence on the e-scalar mass m.. This dependence must cancel in
the final result of the three-loop correction to Mj. At the perturbative order considered in
this work, just a one-loop renormalization of m, is required. Three different approaches with
equivalent results can be used. i) If one renormalizes the e-scalar mass in the DR scheme, it
is enough to consider the simple DR counter-term

__M2+ ZZ ] 2:”2}%, (B-13)

s 3
5(1)m2:—a m; {———i—
foJ=1

¢ 4

and appropriated shifts over the stop quark masses. ii) Instead, if one considers an on-shell
renormalization and chooses m. # 0, one has to consider the one-loop counter-term

Uz

L 52 {% (3m? -+ 202) — "2 (m? 4 22) _5(m3+m31+m§2_m3)]

n % [(6+41n (;f;) ~In (ﬂ—}))m%z (l—i-ln (ﬂ—})) Mg}
ffrn())soon ()
N % lln (Aﬁ‘;)m +Z <1+ln (ﬂ'ﬁ))mf —2(1+ln (AiQ))Mz]

7j=1

1
€

accompanied by the corresponding shifts over the stop masses. iii) If we assume m. # 0
in the on-shell scheme, no finite counter-term is needed at all. This is the best choice for
practical calculations. Finally, we need the two-loop counter-term of the stop mixing angle:

2 s ? 1 Lo 2 ~2 =2
(mf, —mi,) 6?p; = ( ) g520:C20; — 5 <529{ — 029{) sa0, (Mg —mmy,) +

™

8 2 2 ) 32 MgMQ .
8. _ — cag, | MgMy — = 820,020, 75—~ ( 3
(902(% (529£ Coo, czet) gt = =57 520;C20; (m3, —mi) | €

a\2 [ 1 1 . o)1
+ (?> §CQQEM§Mt - 5829502%~ (mtl - mtz) g . (B—15)



C. Feynman Rules in the SQCD Sector

’ Index Type Range ‘ Particles
Ji Generation 1...3
S Sfermion 1...2 or=nh, H, A
0; Colour 1...3 qg=u,d
i Gluon 1...8 G=1a,d
(i, f1i, f1;) | Lorentz | (4, D, 4 — D)

Table C-1.: Index labels and ranges included in the Feynman rules of the vertex diagrams.

This appendix contains the needed rMSSM vertices for the computation of the Higgs mass

M,, at order aza?. The notation of Table C-1 for the index labels and ranges are used to

draw the vertex diagrams and derive their corresponding Feynman rules. For cubic vertices

we have the rules:

C@v CL‘“ d;;)

C((jjl » Qja> Q)

9 (g1, m)

@, ', o)

(g, a1
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~5
q]11 (01) 9 (g1, p1)
pl"
N R g (g1, 1) o g (g3, 13)
e OO0 C(qh, s 9) = C(9, 9, 9)
P21/
L%t
,/ q]z (02)
where
_ ) ec
C(“’jl’ Wjs s h) =1 QSﬁMV(:/'SQ Moy, 6j1j260102
w
- . es
C(dj,, dj,, h) = medh%‘ljﬂoloz
w
_ ) es
C(“’jl’ Ujss H) =1 QSgMVl:é/Sg Moy, 6j1j260102
w
- . ec
C(djl7 dj27 H) = *medn 5j1j250102
w
_ ev®
C(U’jl? Ujiz s A) = _mm“h 6j1j250102
w
7 ety
C(djN de’ A) = —2MW39 May, 6j1j260102
w
[]Su;,jl1 Uu jl?)Cngu] (A.?ljl Ca + 'usa) +
U, J1770,J 2 2
Cl ~52T h) = e 5 U UGN (6coy camy, — MwMzsaypss (3- 456w)) +
J1 659WC¢9WMW55 1J2 Usu1 J21Uu yJ1 Gngcam? - 4MWMZSQ+58585W) +
:17]21 :27]11369Wm“j1 (A]L?lca + ,usa)
Ud’]lUd’”SceWmd (A4 sa + pca) +
d,jiyrd,j 2 2
o(ds, d2, n) = f— 0j1j US3’11US?’11 Ocow sama, — MwMzsa+scs (8- 289"‘/)) +
b b 172 . .
10 % 656y, Coy, Mwcp Usdljg Ui”ﬂzl 609Wsamflh - 2MWMZsa+g058§W> +
d,jiyrd,j
USl,JQl U527j11369Wmdj1 (A?le Sa + IJ’CG‘)
U:l Jf U“ JlEiceWmu]1 (pea — A]msa) —
@, j1 778, j 2 2
C@, a2t o) =i e » U HUG T (6coy samy, + MwMzcaqpss (3- 459W)) -
) ) 1J2 T T
e 650y Coy Mw s o2 Ug s 6c(<)Wsoﬂnfle + 4MWMan+ﬂsﬂs§W> —
U;’,]Ql U;Jz’,]ll 309Wmu_7.1 ('U’CO‘ - A.?ljl SO‘)
d,j177d,j d
U51J11 U, ]21309V[,mdj1 (AJ1J1 — Usa) +
o, @t ) e ) USAULE (6cowcami, - MwMzcaraen (3-253,) ) +
o Gy H) = —te 01 j § irord '
17 “j2 639,y Coy M cg Usfj21 U92321 6cgwcam§j1 - ZMWManJrﬁc/gng) +
d d d
Usljé Us; Ji3c‘9wmdj1 (Ajm — USa)
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c@, et Ay — ¢y ) U iU am, (A5, +nts) =
) ) u, u,
J1 J2 250WMWtﬁ e US],JQI USz,]llmuh (Ayljl +Mtﬁ)
d,j177d,j d
C(Czs.l d?’ff A) — _c N { Usgvjll Usgajémdn (Aj1j1t5 + 'u) B }
j10 g 9 1J2 d, j d,j
! 2 250y, M Us1,J21 U82,Jllmdj1 (A;lljltﬁ + ’u)

CG. sy, @52) = V29,051, T8, (US54 = ULAYT)
CG, iy, d2) = iv/29:01,5, T8, (UE4A° — ULIYT)
C(G, uj,s @32 1) = ~iV20.05, 5T, (UL = ULEY)
C(G, dj,, 432 1) = ~iv20,8,5, T, (ULS2® = ULAT)
Cl@51s @as 9) = —19505,5. T80, 7"

CG, G, g) = —go fr290y05

~s2t

C(G;), @52 " 9) = —195941420010, T30, (P2 — p1)™

C(g, g, 9) = —gs[T929% (g" 7 (p1 + p3)™ + g2 (p2 — p3)!™* — g"'#2 (p1 +p2)™°) .

In the above expressions we have used the definitions 4® = (1 ++°)/2 and 7" = (1 — ~5)/2.
Besides, p; represents the momentum carried by the line ¢, while U s‘fl’ ’j;z is the s1s9-component
of the squark mixing matrix (see eq. 2-53) associated to the squark type §j,.

For the quartic vertices the Feynman rules are:

2 i
AN q;f (02) Pk~ \qu (02)  js (0a).
\\‘\ . - \A\ "' I
\:'/\/ = O((j;lﬁ’ (EZZ’ ¢k17 ¢k2) \:":’ = 0(6;111 q~]322 I: QJS; qv;jT)
v RN & N
”Nl?lT » ~ '~’ ~8- N
e P G o) B e
\d;zz (02) 9 (g1 m) 9 (grm) 9 (g4, pa)
\*\ |
T = C(d;ll (j;s; lv 9, _(]) = 0(97 9, 9, g)

’/(Ef (01) 9 (g2, p2) 9 (g2, 112) 9 (g3, 13)
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where
cant i ) = i 2 5 2U“’]1 32]21 (SCzwcimih - 2M€VCQQS%S§W) +
j1 2 2 2 2 Yd1j2 ;
J1 125, ¢p,, My 55 U:f,]ll U:;Jf (6C§W cimih — MI%VCQQS% (3 — 483‘”))
st . €2 Ud led J1 (309 szmﬁ + M cancsg,, )—|—
C<dji ) d]; h, h) =1 1252 2 M2.c2 6j1j2 d, j17:d, 1 9
Sty Coy Mv Cs U, U, (609 s2 2y, +MWc2a05 (3 250W))
C(NS” @2, H, H) . e2 5 2Uu ) J1 Uu J1 (3c3w simih + 2M5V62a8%sgw) +
Uiy ) =1 J1J
g Yha 1285 cg Mg s3 71 :1]11 :2311 (GCzwsimih + Mg cansh (3 — 453W))
ot 3 o2 2Ud “Ud’J1 (309 camy, — gvczac?,szw) +
Cld;; djj’ H, H) = _i12 2 2 N2 7 0j1ja d, jirrd, j1 2.2 2 2 2
Sow Con M Cp Ui 1Ug ((chwcamdj1 — My caacy (3 - 259W)>
o e A) = —i e2 5 2Uu ) J1 Uu ) J1 (Sngm%h — QM%/CQ[gt%.Sgw) +
i1 0 Vg2 4D - 2 2 2 Yj1j2
g1 Jo 1239W Cow M t U;:Jll Ug}f (Gng mijl — M%,cmt% (3 — 453W))
d, j177d,
C(ds1T dsz A A) e? S s 2U hU ¢ (369wtﬁmd + MWCQBSGW) +
T, g U“ Ud’” (602 Bm3, -+ Mpcap (3-253,))
C(fﬁ” i H By = i 2500 5 U:lﬁleu I3 SCzwmih — 4M§V32B33W) +
g1 Yhas 4 1283WC§WM3VS% j152 U:hh Uu ,J1 3cgwmih — M%Vs% (3 — 452W)>
d,j177d, ]
. 255, U UL 303Wm§j1 - 2M5VC%S§W> +
Cldj, ', dj3, H, h) = 125 2 MZ,c2 7 0juso djiprdigi (9.2 2 M2, 2 2
ow Con M € U TUGH (3cs,ma, — M cj (3—2s3)

x x U, J2 ujz_ UJ2 qu U, J1 uh 77, g1 uh Y

ng T0203T0104 Usz, 1 U 52 2 U Usl, 1 U Usl, 2 U 6]1]46J2J3 +
x x U, 1778, J1 U, J177U, ]1 U, J3 7 7Us ]3 U, j377U, J3 s

ng T0102T0403 s1,1 Vs, 1 Ual 2 U Ubg 1 U T Ys3,2Ysy4,2 6]1.725]3J4

~s1 ~s2f ~s3 ~safy _
C(ujl’ jo 0 Wiz Ujy )7

<

x d, jo d]2 d, jo dj2 d, j177d, 51 d, j1 d]l
T U U - U U U U4 1 Ul 2U 5j1j46j2j3 +

C(ngl CZS?T dgs d54 T) lgs 0203 0104 s2,1 S2,2 s1,1%Ys s Sq4,2
J1? T2 J3? T4 2T9: Tz UdJlUd yJ1 UdJlUd ,J1 UdJSUd ,J3 Ud7]3Ud ,J3 i 8
010270403 s1,1 s1,2 s3, 1 83,2 54,2 J1J2¥7334

7s1 3s2f ~s3 ~saf 2 T T d, j177d, j1 d, j177d, 51 U, j3 74, J3 U, j3 77U, J3 s
C(d ’djz » Ujys Uy ) T T (Ul,lUsz,l_Usl,ZUSQ,Q US3,1U _U53,2U54,2 5]1]25J3]4

J1 Jj3? “ja 020170403 s

CW@, @1, g, 9) = —i920),j,0s,s (T9T92), |+ (T92T9Y), ) g2

glt1M4gM2M3 (fg19290fE9394 + fg193$f$9294) _

C(g, g, 9, g) = —igg gHie ghsia (fg1g3xfﬂcgzg4 + fglgwcfxgaga) _
gH1#3g#2#4 (f91921f909394 _ f919490f179293)

The Lorentz indices of all the above diagrams are supposed to be in QQ4.5; however, when
e-scalars are included in the regularization of Feynman amplitudes, those Lorentz indices
have to be changed from Q4S5 to DS, according to p© — i, and the following additional
cubic and quartic vertices involving e-scalars have to be considered:
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€( ) _ € (gs, fi3)
e R C(qj17 Qjy ) 173/3
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., ~ ~sl
...~..,...6(917ﬁ1) \\qjl (01)
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D1 q (gg,ﬂg) \\\ € (017 l‘«l)
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O(q_u djy, € €) = 298531J2T01027
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C(ga g, € 6) = igggﬂ1ﬂ29ﬂ3ﬂ4 (f9193xfx9294 + f91g4xfa:g2g3>
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D. Three-loop 1Pl Topologies

This appendix contains a Mathematica package for the generation of the three-loop 1PI
Topologies with FeynArts. The code and their outputs are shown below.

PrependTo [$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];
$LoadFeynArts = True;

Get ["FeynCalc.m"];

0ff [Paint: :nolevel]

SETP=CreateTopologies[3, 1 -> 1, ExcludeTopologies -> Internall;
CTSE=CreateCTTopologies[3, 1 -> 1, ExcludeTopologies -> Internall;
TPTP=CreateTopologies[3, 1 -> 0, ExcludeTopologies -> Internall;
CTTP=CreateCTTopologies[3, 1 -> 0, ExcludeTopologies -> Internall;

(*****************************************************************)

(*x** Drawing the Three-loop Topologies and Exporting to *.ps **x*x*)
(rsrksksksksk sk sk sk sk o o ke ofeof ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ke ofe ok ok sk sk sk sk sk sk sk sk sk ok ok sk ok ke skeokok ok sk sk sk sk sk sk sk sk sk ok ok )

TempDirName=ToFileName [{"Directory","to","save","files"}];

If[!'DirectoryQ[ToFileName [{TempDirName,ToString[TOP]}]],
CreateDirectory[ToFileName [{TempDirName,ToString [TOP]1}]1];

Paint [SETP,FieldNumbers->True,ColumnsXRows->{5,5%},
Numbering-> Simple, SheetHeader-> "Topologies for the Self-energies",
DisplayFunction->(Export [ToFileName [{TempDirName, "TOP"}, "HiggsSETop"<>".ps"],#]1&)1;

Paint [CTSE,FieldNumbers->True,ColumnsXRows->{8,8}, Numbering-> Simple,
SheetHeader-> "Topologies for the Renormalization of Subdivergences of Self-Energies",
DisplayFunction->(Export [ToFileName [{TempDirName, "TOP"}, "HiggsCTSETop"<>".ps"],#1&)];

Paint [TPTP,FieldNumbers->True,ColumnsXRows->{3,5},
Numbering-> Simple, SheetHeader-> "Topologies for the Tadpoles",
DisplayFunction->(Export [ToFileName [{TempDirName, "TOP"}, "HiggsTPTop"<>".ps"],#1&)];

Paint [CTTP,FieldNumbers->True,ColumnsXRows->{4,4}, Numbering-> Simple,
SheetHeader-> "Topologies for the Renormalization of Subdivergences of Tadpoles",

DisplayFunction->(Export [ToFileName [{TempDirName, "TOP"},"HiggsCTTPTop"<>".ps"],#]1&)];

Quit(];
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E. Generation of Amplitudes at O(atag)

In this appendix we show an example routine to generate the amplitudes of the three-loop
neutral Higgs self-energies at order a;a? in the MSSM. The routine includes a set of test
functions to select only the needed diagrams at the given order. We include also the selection
rules for the tadpole topologies and the diagrams with counter-term insertions.

E.1. Three-loop Higgs self-energies at O(«;a?)

PrependTo [$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];
$LoadFeynArts = True;

Get ["FeynCalc.m"];

0ff [Paint: :nolevel]

LaunchKernels[ ]; Print["Number of Kernels: ", Length[ Kernels[] ] ]

ParallelEvaluate[

PrependTo [$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];
$LoadFeynArts = True;

Get ["FeynCalc.m"]

0ff [Paint: :nolevel]

1;

(ki koo sk sk stk ko sk ok ok ko st stk kb ok sk sk stk stk sk ok ok sk ko )
(*#** Generation of diagrams: creation of topologies, **x)

(*%** definition and insertion of fields. *okk)
(ke sk ks o e ok sk o s ok sk o s sk o s ok s e ok sk o s ok sk o s o sk ok sk ook sk sk ok skok ok o )

TP=CreateTopologies[3, 1 -> 1, ExcludeTopologies -> Internall;
Print ["Number of Topologies = ",Length[TP]]

CPHiggsF={S[1],8[2],S[3]};
$shorti=Length [CPHiggsF];

InsFTP[topol_,fieldl_,field2_,selfields_,excludefields_] := InsertFields[topol,
fieldl->field2, Model->"MSSMCT", InsertionLevel->Particles,

ExcludeParticles —-> excludefields, LastSelections -> selfields];

DistributeDefinitions [InsFTP]
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selfields={};
excludefields={F[1, _], F[2, _1, F[11, _1, F[12, _1, S[11, s[21, s[3], S[4], s[&],
slel, sf11, _1, s[12, _1, v[11, v[2], v[3], v[e]l, U[1 | 2 | 3 | 41};

(*****************************)

(*x* Patterns definitions *x*x)
(skskokokokok sk ok sk sk ok ook sk skokokskok ok sk ok ok ook ok ok ok )

upatt = F[3, {1, _}] | -FI[3, {1, _}1;

supatt = S[13, {_, 1, _}I | -s[13, {_, 1, _3}]1;
dpatt = F[4, {1, _} | -F[4, {1, _}]1;

sdpatt = S[14, {_, 1, _}1 | -s[14, {_, 1, _}]1;
cpatt = F[3, {2, _}] | -F[3, {2, _}];

scpatt = S[13, {_, 2, _}] | -s[13, {_, 2, _}];
spatt = F[4, {2, _}] | -F[4, {2, _}];

sspatt = S[14, {_, 2, _}]1 | -s[14, {_, 2, _}1;
tpatt = F[3, {3, _}] | -F[3, {3, _}1;

stpatt = S[13, {_, 3, _}]1 | -s[13, {_, 3, _}1;
bpatt = F[4, {3, _}] | -F[4, {3, _}1;

sbpatt = S[14, {_, 3, _}I | -s[14, {_, 3, _}1;
gpatt = V[5, {_}] | F[15, {_}] | vi6, {_}]1;
ghpatt = U[15, {_}];

tstpatt= Flatten[stpatt | tpatt];

sfgpatt = Flatten[supatt | sdpatt | scpatt | sspatt | stpatt | sbpatt | gpatt];

(ko ok kK ok kKooK KKK KKK KKK KK KKK KK KoK KoK oK oK KoK oK K ok ok K ok ok oK ok ok K ok ok K ok kK ok ok K ok KK ok KK ok oK ok KK oK KKK KK KK KoK )
(* Selection rules for 3L Higgs Self-Energy diagrams at order \alpha_s”2\alpha_t, *)

(* There is a selection rule for each self-energy topology, e.g. there are 80 rules. *)
(ko ke ok sk ok ok sk ok o ook sk o ok sk sk sk ok ok sk sk e ok sksk o s ok sk sk sk ok sk sk ok sksksk sk ok sk sk sk ok sk ok skskok s ok skskok sk ok sksksk ok sk sk sk sk ook )

SESelRules = {

(*x1x) (MemberQ[#, Field[8] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&
MemberQ[#, Field[4] -> Flatten[tpatt | stpatt | gpattll)&,

(*2x) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[4] -> tstpattl)é,

(x3%) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|7] -> gpattl)&,

(*4%) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[418]7] -> tpattl)é&,

(*x56x) (MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[3|5(|8] -> tpattl)é,

(*x6x) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|7] -> gpattl])&,

(x7%) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|8|7] -> tpattl)é&,

(*8%) (MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[3]5]8] -> tpattl)&,

(¥9%) (MemberQ[#, Field[8] -> tpatt] && MemberQ[#, Field[6]7] -> tpatt])&,

(*10%) (MemberQ[#, Field[6|8] -> stpatt] && MemberQ[#, Field[3]7] ->

Flatten[tpatt | stpatt | gpattll)&,

(*11%) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[4] -> stpatt] &&
MemberQ[#, Field[9] -> stpattl])&,

(*12%) (MemberQ[#, Field[4] -> tstpatt] && MemberQ[#, Field[3] -> stpatt] &%
MemberQ[#, Field[9] -> stpattl)é&,

(*13%) (MemberQ[#, Field[8] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&
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MemberQ[#, Field[5] -> gpattl)&,
(*14%) (MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[4] -> stpatt] &&
MemberQ[#, Field[5]8] -> gpattl)é&,
(*15%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&
MemberQ[#, Field[5|9] -> gpattl)&,
(*16%) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] ->
Flatten[tpatt | stpatt | gpattl] && MemberQ[#, Field[9] -> stpattl])&,
(*17%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] ->
Flatten[tpatt | stpatt | gpattll)&,
(*18%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] ->
Flatten[tpatt | stpatt | gpattll)&,
(*19%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7(8] -> gpattl)&,
(¥20%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[78] -> gpattl)&,
(*21%) (MemberQ[#, Field[7] -> tpatt] && MemberQ[#, Field[8]9] -> gpattl])&,
(*22%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[718] -> gpattl)&,
(*23%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[718] -> gpattl)&,
(*24%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7(8] -> gpattl)&,
(%25%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7]8] -> gpattl)&,
(*26%) (MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[718] -> gpattl])&,
(*27%) (MemberQ[#, Field[7] -> tstpatt] && MemberQ[#, Field[9] -> tstpatt] &&
MemberQ[#, Field[8] -> gpattl)&,
(*28%) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] -> tstpatt] &&
MemberQ[#, Field[4]9] -> Flatten[tpatt | stpatt | gpattll)&,
(*29%) (MemberQ[#, Field[10] -> tstpatt] && MemberQ[#, Field[4] -> tstpatt] &&
MemberQ[#, Field[5] -> gpattl)&,
(*30%) (MemberQ[#, Field[4] -> tstpatt] && MemberQ[#, Field[10] -> tstpattl])&,
(*31%) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] ->
Flatten[tpatt | stpatt | gpattll)é&,
(*32%) (MemberQ[#, Field[5] -> tpatt] && MemberQ[#, Field[6] -> tpattl)é&,
(*33%) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[7] -> tpattl)é&,
(*34%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&
MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[8] -> stpattl])&,
(*35%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&
MemberQ[#, Field[6]8] -> sfgpatt]l)é&,
(*36%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&
MemberQ[#, Field[8] -> stpattl)é&,
(*37*) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpattl])&,
(*38%) (MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&
MemberQ[#, Field[7] -> stpattl)é&,
(*39%) (MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[5|7] -> gpattl)&,
(*40%) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[7(8] -> gpattl)&,
(*41%) (MemberQ[#, Field[3|5|6] -> tpattl)&,
(¥42%) (MemberQ[#, Field[8|5/6] -> tpattl)&,
(*43%) (MemberQ[#, Field[4|517] -> tpattl)&,
(*44%) (MemberQ [#, Field[6/718] -> tpattl)é&,
(*45%) (MemberQ[#, Field[3|5|6] -> tpattl)&,
(%46%) (MemberQ[#, Field[8|516] -> tpattl)&,
(%47%) (MemberQ[#, Field[8|5]|7] -> tpattl)&,
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(*48%) (MemberQ [#,
(*49%) (MemberQ [#,
(%50%) (MemberQ [#,

MemberQ[#,

(*x51%) (MemberQ[#,
MemberQ [#,
(%52%) (MemberQ [#,
MemberQ [#,

(x53%) (MemberQ [#,
MemberQ [#,
(*%54%) (MemberQ [#,
MemberQ [#,
(*x55%) (MemberQ [#,
MemberQ [#,
MemberQ [#,
(%56%*) (MemberQ [#,
MemberQ [#,
(*x57%) (MemberQ [#,
MemberQ [#,
(*58%) (MemberQ [#,
MemberQ [#,
(*x59%) (MemberQ [#,
(%60%*) (MemberQ [#,
MemberQ[#,
(x61%) (MemberQ [#,
MemberQ [#,
(*x62%) (MemberQ [#,
(%63%*) (MemberQ [#,
(*%64%) (MemberQ [#,
(*%65%) (MemberQ [#,
(%66%*) (MemberQ [#,

(x67*) (MemberQ [#,

(%68%) (MemberQ [#,
MemberQ [#,
(*69%) (MemberQ [#,
MemberQ[#,
(*x70%) (MemberQ [#,
MemberQ [#,
MemberQ [#,
(*x71%) (MemberQ [#,
(*x72%) (MemberQ[#,
MemberQ [#,
(*%73%) (MemberQ [#,
MemberQ [#,

Field[4]5/8] -> tpattl)&,

Field[5/718] -> tpattl)&,

Field[5] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

Field[8] -> stpatt] && MemberQ[#, Field[3[4] ->
Flatten[tpatt | stpatt | gpattll)é,

Field[4] -> stpatt] && MemberQ[#, Field[8] -> stpatt] &&

Field[3|5|7] -> Flatten[tpatt | stpatt | gpatt]l)&,

Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

Field[9] -> stpatt] && MemberQ[#, Field[4|5] ->
Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

Field[4|5] -> Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> tstpatt] && MemberQ[#, Field[7] -> stpatt] &&

Field[8] -> stpattl)&,

Field[6] -> tstpatt] && MemberQ[#, Field[7] -> tstpatt] &&

Field[9] -> stpatt] && MemberQ[#, Field[5] -> gpatt] &%

Field[8]->gpatt])&,

Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

Field[5]6] -> Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> stpatt] && MemberQ[#, Field[5]6] -> gpatt] &&

Field[8]9] -> gpatt])&,

Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

Field[6]7] -> Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> stpatt] && MemberQ[#, Field[8|9] -> sfgpattl)&,

Field[5] -> stpatt] && MemberQ[#, Field[4] -> stpatt] &&

Field[6]7] -> Flatten[tpatt | stpatt | gpattll)&,

Field[7] -> tstpatt] && MemberQ[#, Field[3] -> stpatt] &&

Field[6] -> Flatten[tpatt | stpatt | gpattll)&,

Field[7[819] -> tpattl)&,

Field[61819] -> tpattl)&,

Field[71819] -> tpattl)&,

Field[61819] -> tpattl)&,

Field[8|9] -> stpatt] && MemberQ[#, Field[3]4]5] ->

Flatten[tpatt | stpatt | gpattll)&,
Field[6/9] -> stpatt] && MemberQ[#, Field[4|7] ->
Flatten[tpatt | stpatt | gpattll)&,

Field[7] -> tstpatt] && MemberQ[#, Field[5] -> tstpatt] &&

Field[4]8] -> Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> tstpatt] && MemberQ[#, Field[4] -> tstpatt] &&

Field[5] -> gpatt] && MemberQ[#, Field[8] -> gpattl)é&,

Field[3] -> tstpatt] && MemberQ[#, Field[7] -> tstpatt] &&

Field[5]6] -> Flatten[tpatt | stpatt | gpatt]] &&

Field[8|9]->Flatten[tpatt | stpatt | gpattll)&,

Field[3] -> stpatt] && MemberQ[#, Field[6|718] -> sfgpattl)&,

Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&
Field[4] -> stpatt] && MemberQ[#, Field[6] -> stpatt])&,
Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&
Field[517] -> sfgpattl)&,
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(*74%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&
MemberQ[#, Field[7] -> stpatt] && MemberQ[#, Field[8] -> stpattl])&,

(*x75%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&
MemberQ[#, Field[718] -> sfgpattl)&,

(x76%) (MemberQ[#, Field[7] -> stpatt] && MemberQ[#, Field[5|6] -> sfgpatt])&,

(*77%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[4|5] ->

Flatten[tpatt | stpatt | gpattl] &&
MemberQ[#, Field[718] -> Flatten[tpatt | stpatt | gpattll)&,

(*x78%) (MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&
MemberQ[#, Field[4|5] -> Flatten[tpatt | stpatt | gpattl] &&
MemberQ[#, Field[718] -> Flatten[tpatt | stpatt | gpattll)&,

(*x79%) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[6] -> tstpatt] &&
MemberQ[#, Field[4|5] -> Flatten[tpatt | stpatt | gpatt]l] &&
MemberQ[#, Field[8|9] -> Flatten[tpatt | stpatt | gpatt]l)é,

(*80%) (MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[4|5]|6] -> sfgpatt])&l};

(ko ok ok kKoK Kok K oK KK KK oK KKK KKK K ok KSR K KKK ok KKK KKK oK K ok KKK KKK ok KoK KKKk kKKK K K )
(* Choosing the diagrams for which the function InsFTP[__] with the given criteria *)

(* in "SESelRules" yields True. *)
(ko ok Kok ok ook oK ook oK ok oK ook oK o oK K ok K ok ok oK oK oK oK ok oK ok ok oK oK K ok K ok ok ook oK ok o ok ok ok ok oK oK o ok Kok ok ook oK ok ok Kok ok ok K )

DiagSelHiggsSE[i_] := Parallelize[ MapThread[ DiagramSelect[
InsFTP[Take [TP,{#1}] ,CPHiggsF[[i]] ,CPHiggsF[[i]],selfields, excludefields],#2]&,
{Range [Length[TP]],SESelRules}]];

HiggsSE = Array[ DiagSelHiggsSE, $shortil];
Print ["Number of Higgs SE = ", Length[HiggsSE[[1]]]]
DistributeDefinitions[HiggsSE]

(**************************************************************)

(*x* Drawing the self-energy diagrams and exporting to *.ps **x)
(ks ok st ok sk o s ks ok o sk ok sk ok sk sk ok stk sk ok sk sk sk ook sk sk ok stk ok ok skeokok sk ok skok ok )

TempDirName=ToFileName [{"Directory","to","save","files"}];

Table[ If[!DirectoryQ[ ToFileName[{ TempDirName,
ToString[CPHiggsF[[j]1]11<>ToString [CPHiggsF[[j1]1],
StringJoin[ToString[Top],ToString[1]11}]1],
CreateDirectory[ ToFileName[{ TempDirName,
ToString [CPHiggsF[[j1]1<>ToString[CPHiggsF[[j1]1],
StringJoin[ToString[Top] ,ToString[1]11}]1]1],
{j,3,3}, {1,1,Length[SESelRules]}];

PaintHiggsSE[dirl_,dir2_,dir3_,name_,top_,level_, tittle_] := Paint[ top,

PaintLevel -> level, FieldNumbers -> True, ColumnsXRows -> {10,10},

Numbering -> Simple, SheetHeader -> tittle,

DisplayFunction -> (Export[ToFileName[{dirl,dir2,dir3},StringJoin[dir2,name]],#]&)];
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DistributeDefinitions[PaintHiggsSE];

Table[ Parallelize[ MapThread[ PaintHiggsSE[ TempDirName,

ToString [CPHiggsF[[j]111<>ToString [CPHiggsF[[j11],

StringJoin[ToString[Top] ,ToString[#1]],"HiggsSE"<>ToString[#1]<>".ps",#2,Particles,
"Selfenergy Diagrams at O(\[Alpha]_t(\[Alpha]_s)"2)"]&,

{Range [Length[SESelRules]], HiggsSE[[j1]1 }11,{j,3,3}];

(kskskskokok ok ok ok sk o o o ok ok sk sk sk sk sk sk ok ok ok ok ok ok ok o o o ok sk sk sk sk sk sk sk sk ok ok sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk sk ok sk sk ok ok sk sk sk ok ok ok ok ok )
(**x Generation of the Amplitudes. The amplitudes are saved in txt files *x*x*)
(*** with the name S[?7]S[?]Amps. *%%)
(KKK ok ok ok ok ok ok ok ok o o o K K KoK oK 3K oK oK oK oK oK ok oK ok o o o o K K K KKK oK oK oK oK oK ok ok ok o o o o K K K K KoK oK oK oK oK ok ok ok ok o R K K K Kok oK )

TxtFile[dirl_,dir2_, dir3_, Amp_, name_] := Put[ Amp,
ToFileName [{dirl,dir2,dir3},StringJoin[dir2,name]]];
DistributeDefinitions[TxtFile];

Table[ Parallelize[ MapThread[

TxtFile[ TempDirName, ToString[CPHiggsF[[j]111<>ToString[CPHiggsF[[j11],
StringJoin[ToString[Top],ToString[#1] ],

CreateFeynAmp [#2, AmplitudeLevel -> {Particles}],ToString[Amps]<>ToString[#1]]&,

{Range [Length[SESelRules]] ,HiggsSE[[j11}] 1, {j,3,3}];

CloseKernels|[];

Quit[];

E.2. Selection rules for Higgs tadpole topologies

(********************************************************************************)

(*x*x Patterns defined here correspond to the diagrams at order 0(h_t g_s~4) *x*x*)
(Gskkok ok ok ok ook ook ook K ok ok ok ok ok ook K ok oK ok ok ok ook K ok K ok ok ook ok o oK K ok oK ok ok ok oK ok oK ok ok ook ok ok K ok ok ok ok ok ok ok oK ok ok ok )

t[n_] := MemberQ[#, Field[n] -> tpattl&;
st[n_] := MemberQ[#, Field[n] -> stpattl&;
gln_] := MemberQ[#, Field[n] -> gpattl&;

stgln_] := MemberQ[#, Field[n] -> Flatten[tpatt | stpatt | gpattll&;
tst[n_] := MemberQ[#, Field[n] -> tstpattl&;

sfgln_] := MemberQ[#, Field[n] -> sfgpattl]&;

Nog[n_] := FreeQ[#, Field[n]-> gpattl&;

(*********************************************************************)

(*x* Selection rules for 3L Higgs tadpole diagrams at 0(h_t g_s"4) *x*x*)
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(*********************************************************************)

TPSelRules={

(x1%) tst[2],

(x2%) t[2],

(x3%) t[2],

(*4%) (MemberQ[#, Field[2] -> stpatt] && FreeQ[#, Field[7] -> gpattl)é&,

(x5%) (MemberQ[#, Field[2] -> tstpatt] && FreeQ[#, Field[7] -> gpattl)&,

(x6%) t[7],

(x7%) tst[2],

(x8%) tst[2],

(x9%) t[5],

(*10%) (MemberQ[#, Field[2] -> tstpatt] && FreeQ[#, Field[6] -> gpatt] &&
FreeQ[#, Field[4]-> gpattl)&,

(*11%) (MemberQ[#, Field[2] -> stpatt] && FreeQ[#, Field[5] -> gpattl)&,

(x12%)tst[2],

(x13%)st[2],

(x14%)tst[2],

(x15%) st [2]};

E.3. Selection rules for counter-term diagrams

(**********************************************************************************)

(x*x Patterns defined here correspond to the CT at order 0(\alpha_s”2\alpha_t) **x)
(**********************************************************************************)

t[n_] := MemberQ[#, Field[n] -> tpattl&;
st[n_] := MemberQ[#, Field[n] -> stpattl&;
gln_] := MemberQ[#, Field[n] -> gpattl&;

stgln_] := MemberQ[#, Field[n] -> Flatten[tpatt | stpatt | gpattll&;
tst[n_] := MemberQ[#, Field[n] -> tstpattlé&;

sfgn_] := MemberQ[#, Field[n] -> sfgpattl]&;

Aux[n_] := FreeQ[#, Field[n]-> tpattl&;

(***********************************************************************************)

(* Selection rules for self-energy counter-terms to renormalize the subdivergences x*)
(ko ok sk ok ok sk sk ok e sk sk ok s sk sk sk sk ke ok sk sk e ok sksk o s ok ok sk sk ok sk ok e ok sksk sk s ok sk o ke ok sksk sk e ok sk sk sk sk ke sk sk sk sk ke ok sk sk sk ke ok sk sk ok ok )

CTSelRules={

Aux[1], tst[5], tst[5], tst([5], st[3], tst[3], st[3],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[4] -> tstpatt])&,
tst[3], st[3], st[4],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[6] -> tstpattl)&,
(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[6] -> tstpattl])&,
(MemberQ[#, Field[5] -> tstpatt]&&MemberQ[#, Field[6] -> tstpatt])&,
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(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[5] -> gpattl)&,
t[7], t[7], tst[8],

(MemberQ[#, Field[7] -> tstpatt]&&MemberQ[#, Field[6] -> gpattl)&,
(MemberQ[#, Field[7] -> tstpatt]&&MemberQ[#, Field[6] -> gpattl)&,
(FreeQ[#, Field[6]->gpatt]&&MemberQ[#, Field[3]-> tstpattl)&,
t[6], (FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,
t[6], t[6], t[6], t[6],

(FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[5]->stpatt])&,

st[5], (FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[3]->stpatt])&,
t[6], t[6], tst[3], tst[3],

(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,
(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[5]->tstpatt])&,
(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[7] -> stpattl)é&,
(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,
(MemberQ[#, Field[6] -> stpatt]&&MemberQ[#,Field[7] -> stpattl)é&,
tst[6], t[7], t[4],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[5] -> gpatt])&,
tst[3], t[7], tl[4], tstl7], tst[7],

(MemberQ[#, Field[4] -> tstpatt]&&MemberQ[#, Field[5] -> gpattl)é&,
tst[3], tst[8], tst[8], tst[5], tst[8],

(FreeQ[#, Field[5]->gpatt] && MemberQ[#, Field[3] -> stpatt] &&
MemberQ[#, Field[4] -> stpattl])&,

(FreeQ[#, Field[5]->gpatt] && MemberQ[#, Field[3] -> stpatt] &&
MemberQ[#, Field[4] -> stpatt])é&,

(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpattl)é&,
(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpattl)é&,
(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])é&,
(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])é&,
(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[6] -> stpattl)é&,

t[4], t[4]};

(*******************************************************************************)

(* Selection rules for tadpole counter-terms to renormalize the subdivergences *)
(skkok ok ok ok ook ook o ok oK ok ok ook oK o ok K ok ok ok ok oK oK K ok oK ok ok ok oK o ok K ok ok ook ok o ok K ok ok ook ok ok oK ok ok ok ok ok ok ok Kok ok ok K )

CTTPSelRules={

Aux[1], tst[2], tst[2],

(MemberQ[#, Field[2] -> tstpatt]&&MemberQ[#, Field[3] -> tstpatt])i,
(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[2] -> tstpattl)&,
(MemberQ [#, Field[2] -> tstpattl)&,

(MemberQ[#, Field[2] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&
FreeQ[#, Field[5]->gpatt])&,

t[4], (MemberQ[#, Field[5] -> tstpattl)&,

(MemberQ[#, Field[6] -> tstpatt]&&MemberQ[#, Field[3] -> tstpattl)&,
(MemberQ[#, Field[3]->stpatt]&&FreeQ[#, Field[4]->gpatt])&,
(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[2] -> stpatt] &&
FreeQ[#, Field[4]->gpatt])&,

st[5], (MemberQ[#, Field[2] -> tstpattl)&, t[3], t[31};



F. Regularization of Three-Loop
Integrals in DRED

This appendix contain a simple routine where the three-loop self-energy amplitudes generated with FeynArts
(see Appendix E) are regularized using DRED. Besides, the sum over the color indices and, in general, the
color algebra of the SU(3) generators are performed.

#!/path/to/MathematicaScript -script

$LoadFeynArts = True;
Get ["/path/to/FeynCalc901/FeynCalc/FeynCalc.m"];

PrependTo [$Path, ToFileName[{"Directory","of","external","routines"}]];

0ff [DeleteFile::nffil];
0ff [ParallelCombine: :noparil];
0ff [Simplify::time];

(ke o o s s o ok ok ook ok sk sk sk sk sk sk s o o o s sk e ook ok ok sk sk sk sk sk sk s s o s s koo ok ok sk sk sk sk sk sk ok ok s sk s ook ok ok ok sk sk sk ok ok )
(** We have used the package "SimplificationDefinitions" to Simplify *%)
(*x algebraic expressions. This package can be found into the installation *x*)
(x* folders of FeynHiggs: ~/FeynHiggs/gen/tlsp/packages/ *%)
(rskakaksksk ok ok sk s s e ok ok ook ok sk sk sk sk sk sk sk sk sk o s s ke koo ok ok sk sk sk sk sk sk sk s sk sk sk s ok ke ofe ok ok ok sk sk sk sk sksksk sk sk sk sk ok ofok ok ok sk sk sk ok ok )

<< SimplificationDefinitions‘;

LaunchKernels[20] ;

ParallelEvaluate[

$LoadFeynArts = True;

Get["/path/to/FeynCalc901/FeynCalc/FeynCalc.m"];

PrependTo [$Path, ToFileName[{"Directory","of","external","routines"}]];
0ff [DeleteFile::nffil];

0ff [ParallelCombine: :noparl];

0ff [Simplify::time];

<< SimplificationDefinitions‘;

1;
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CPEHiggsF={S[1], S[2], S[31};
$shorti=Length [CPEHiggsF] ;

TempDirName=ToFileName [{"/Directory","where","FeynArts","amplitudes","were","saved"}];

(*************************************)

(** Calling the FeynArts amplitudes **)
(skkok ok Kok sk ook ok ook oK ok ok ok ok KoK ok ok Kok ok ok oK ok Kok )

Amp[n_, m_, 1_] := Get[ToStringl[
CPEHiggsF[[n]]]<>ToString [CPEHiggsF [[m]]]<>"Amps"<>ToString[1],
Path -> { ToFileName[{ TempDirName,
ToString [CPEHiggsF [[n]]11<>ToString [CPEHiggsF[[m]]1],
ToString[Top] <>ToString[1]1}]1}];

(ko ok sk ok ok sk sk ok o ok sk sk ok o sk sk ok sk ke ok sk sk sk ke ok sksk o s ok sk sk o sk ok sk sk ke ok sksk sk e ok sk sk sk ke ok sk sk ok sksk sk ok sk skok sk ok sk sk ok sk ok )
(** We have used FeynCalc patched with FeynArts in order to perform the Dirac *x)

(** and the Color algebra with the Feyncalc tools. For this reason we have *%)
(** made the next changes over the amplitudes. CA -> ca means that cos(alpha) **)
(** is changed to avoid the conflict of notation with the FC casimir CA. *%)

(*******************************************************************************)

changesFAFC = { CA -> ca, SumOver[__]1-> 1,

FASUNT [Index [Gluon,gl_],Index[Gluon,g2_],Index[Colour,02_],Index[Colour, o1_]]

:> FASUNT [Index[Gluon,gl], Index[Colour,02], c].FASUNT[ Index[Gluon,g2], c,
Index[Colour,o1]l],

FASUNTSum[Index [Colour,o02_],Index[Colour,ol_],Index[Colour,o04_],Index[Colour,o03_]]

:> FASUNT[ x, Index[Colour,o02], Index[Colour,o1]].FASUNT[ x, Index[Colour,o4],
Index[Colour,03]] 7};

(* Assuming NLF limit *)
changesNLF = {MB -> 0, MC -> 0, MD -> 0, MS -> 0, MU -> 0, MZ -> MW/CW}

(ko ok sk ok ok ook ok ok ok ook o K ok ok ook ook ok Kok ok oK ok Kk ok o sk oK ok ok ok ok ok Kok ok oK ok Kok ok KKKk ok ok )
(** Changes also include the substitutions to compute the amplitudes in *%*)
(*x* the real MSSM. *%)
(G kok sk ok ok ok ook ook ok Kok oK ok KoK Kok K oK K oK KK ok Kok K oK KoK Kok K ok o ok K ok Kok K ok ok ok Kok o ok Kok Kok K ok ok Kok K ok ok )

changesreal = { SqrtEGl -> 1, USfla__l[b__] :> USf[b, al,
Conjugate[USfla__][b__]] :> USf[b, al, Conjugate[UChala__]] :> UChaCl[al,
Conjugate[VChala__]]:>VChaC[a]l, Conjugate[Af[a__]]:>Af[al, Conjugate[MUE]->MUE};

(ks ek sk ok o ks sk ok o sk sk ok o sk sk ok s o ki ok sk o sk sk sk o sk sk ok s o sk sk ok sk o ok sk sk sk o ok sk sk ok o o ok sk ok sk o sk sk ok ok o sk sk sk ok o sk ok ok sk ok )
(** The function FCFAConvert transforms the amplitude from FeynArts notation *%)
(** to FeynCalc notation. We identified the external momentum with the letter *x)
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(x* "p" and then we have asummed the limit of vanishing external momentum *%)
(*******************************************************************************)

SetOptions [FCFAConvert,UndoChiralSplittings—-> Truel;
SetOptions[DiracSimplify,DiracSubstitute67-> True,Expanding-> True,Factoring-> True];

ParallelEvaluate[
SetOptions [FCFAConvert,UndoChiralSplittings—-> True];
SetOptions[DiracSimplify,DiracSubstitute67-> True,Expanding-> True,Factoring-> True];

1;

SEFC[n_, m_, 1_] := FCFAConvert[Amp[n,m,1] //. changesFAFC //. changesNLF //. changesreal,
IncomingMomenta -> {p}, OutgoingMomenta -> {p},
LoopMomenta-> {q1,q92,q3}] /. {p -> 0} ;

(ks kst ok stk ootk sk sk o sksk sk sk ok stk sk ok stk sk ok ki sk sk ok sk sk sk ok stk s ok sksksk sk ook sksk ok ok skskok ok skskok sk ok skoksk sk ok )
(** The next functions performs the DRED regularization of the three-loop *%)

(** amplitudes using the Q4S algebra. *%)
(eskkok ok ok ok sk ok ook o ok ok ok ok ook ook o ok K ok ok ook ok o ok K ok ok ook ok ok K ok oK ok ok ok ok o ok Kok ok ook ok ok K ok ok ook ok ok ok Kok ok ok oK )

Regul[n_,m_,1_] := ParallelMap[ DiracSimplifyl[
DiracSimplify[SEFC[n,m,1] [[#]]] /. {DiracGamma[5]->0}]%,
Range [Length[SEFC[n,m,1]]] 1;

TxtFile[dirl_,dir2_, dir3_, Amp_, name_] := Put[Amp,
ToFileName [{dirl,dir2,dir3},StringJoin[dir2,name]]];

Table[ Map[ TxtFile[ TempDirName,
ToString [CPEHiggsF[[i]]]1<>ToString [CPEHiggsF[[j1]],StringJoin[ToString[Top],ToString[#]],
Regul[i,j,#],ToString [RAmpsFC]<>ToString[#]]&, Range[1,48] 1, {i,1,1}, {j,1,1} 1;

SetOptions[DiracTrace,DiracTraceEvaluate-> True];
SetOptions [SUNSimplify,SUNTrace-> Truel;
0ff [DotSimplify: :argrx]

ParallelEvaluate[

SetOptions[DiracTrace,DiracTraceEvaluate-> True];
SetOptions [SUNSimplify,SUNTrace-> True];
0ff [DotSimplify: :argrx]

1;

RegAmp[n_, m_, j_] := Get[
ToString [CPEHiggsF [[n]]]<>ToString [CPEHiggsF [ [m]]]<>"RAmpsFC"<>ToString[j],
Path -> { ToFileName[{ TempDirName,
ToString [CPEHiggsF [[n]]]1<>ToString [CPEHiggsF[[m]]1],
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ToString[Topl<>ToString[jI1}]1} 1;

(ks ok ok ook ook ook K ok KKK R oK K ok KKK KoK K oK oK KKK K ok K o KKK K ok KoK KKK ok K oK oK KoK ok Kok Kk K )
(** The next functions performs the Color algebra on the SU(3) generators *%)

(** in the numerators of the amplitudes. *%)
(skkok ok Kok sk ok oK ook Kok oK o oK oK o ok oK ok oK o oK oK oK ook K ok oK oK oK ook K ok oK oK oK o ok Kok oK ook oK ok ook oK ok ok oK ok ok K ok ok oK K )

SUNSAmp[a_,b_,c_] := ParallelMap[ MagicSimplify[ Calc[ SUNSimplify[
Expand[ Contract[ RegAmpl[a,b,c][[#]] 111 /. False -> True ],
Feedback->False ]&, Range[Length[RegAmp[a,b,c]]] 1;

Map[ Table[

TxtFile[ TempDirName, ToString[CPEHiggsF[[i]]]<>ToString[CPEHiggsF[[j1]1],
StringJoin[ToString[Top] ,,ToString[#]], SUNSAmpl[i,j,#],
ToString[AlgebraAmps]<>ToString[#]],

{i, 1, 1}, {j, 1, 1}]&, Rangel[1, 48] 1;

Print ["The End!"]

CloseKernels|[];

Quit[];

We next show the outputs of the functions defined in the above routine for the amplitude of
the diagram pictured in Fig. F-1.

Figure F-1.: Generic three-loop Higgs self-energy diagram. The field h stands for the lightest
higgs boson, t is the top quark field, ¢ is the stop and § represents the gluino field.



The amplitude Amp(1,1,13][[5]] of the diagram in Fig. F-1is one of the amplitudes that have the most compli-
cated numerator structure. The vertex expressions were simplified taking into account the unitarity of the
sfermion mixing matrix and disregarding the electroweak gauge couplings.

Awm[l, 1, 13][[5]]

FAFeynAm;[GraphII:(TopoIogy:1, Generic= 2, Classes= 2, Particles=1, Number=15),

Integrall q1, q2, 93], ——
4096 712

1 1 1 1

i FAFeynAmpDenominatL{r , , ) )
(qD)2-MT2 (g2)2-MGRP (g2-q1)2-MS(1, 3,3)2 (q3)2-MT?

1 1 1 1 ]
(g2 +q3)%2 - MS(1, 3, 3)2 (g3 -kD2-MT2 (KL+ql)2-MT2 (k1+q2)2- MGR

tr[?-(—ﬁ—q_Z) +MGI, —i+/2 FAGS(7® USi(1, 1, 3, 3) - ¥/ USi(1, 2, 3, 3))

o icaht(y®+y7)
FASUNT( Glu4, Col4, Col5), ¥ -(q3 - k1) + MT, - —————, ¥ -

NG

—i+f2 FAGS(y’ USi(1, 1, 3, 3) - ¥® US(1, 2, 3, 3)) FASUNT(Glu3, Col5, Col4),

3 + MT,

o

MGl - 7-q2, —i /2 FAGS(77 USK(L, 1, 3, 3) - ¥® USI(L, 2, 3, 3))

_ icaht(y®+7%7) .
FASUNT Glu3, Col6, Col3), MT - 7 g1, - —————— 5 -(-k1-ql) + MT,

Ney

—if2 FAGS(y® USi(1, 1, 3, 3) - 7 USi(1, 2, 3, 3)) FASUNT(Glu4, Col3, CoIG))J

Note that the gammas and the loop momenta in the numerators are defined in four dimensions (the quanti-
ties with a bar) whereas the momenta in the denominators are defined in D dimensions. There are two rea-
sonsto define the numeratorsin four dimensions: i) Even if we know that in DRED all the momenta arein the
QDS, they appear in the numerators contracted with the gammas, which by definition are in the Q4S. We are
assumming a subtlety of DRED, the scalar product of a QDS momentum with a Q4S gamma is equivalent to
the product of a Q4S momentum (where the epsilon-components remain to be zero) and a Q4S gamma.
Besides, this product is equivalent to the product of a QDS momentum and a QDS gamma too. The gamma
matrices coming from the fermion propagators (together with the momentum) or the gammas in the kinetic
term of the Lagrangian (together with the spacial derivative) are in D-dim. But, due to the above identitiesin
DRED, all gammas on the numerator are put in Q4S. ii) In FeynCalc DRED is not implemented, so that
products of agammawith a momentum of different dimensions cannot be solved; however, the Dirac algebra
in the Q4Sisthe same algebra of the actual four-dimensional space (except for the cases involving\gamma_
5). The definition of aQ4Smomentum does not affect the final result because they are expressed as a superpo-
sition of scalar products of the loop momenta. If the epsilon-components are zero, we will recover the origi-
nal D-dimensional momenta.

Using the function FCFAConvert, the amplitude transformsto:
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SEHC[1, 1, 131[[5]11
[i tr((MGI— )7-q_2).(—i V2 gs (70 US(L, 1, 3,3) -y  USK(Y, 2, 3, 3)) Tc%'d“cms)-

o icaht(y®+%7 o
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NE
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NS (MT-7-qI).

(—i A2 g (78 US(L, 1, 8, 3) -y USK(1, 2, 3, 3)) Tc%'%“cme)))/

(4096 712 (q1% - MT?).(g2% - MGF).((g2 - q)? - MSi(1, 3, 3)?).(q3% - MT?).
((g2+03)2 - MS(1, 3, 3)2).(q3% - MT?).(q1? - MT?).( 2% - MGP))

(MT—y-q_l).[—

Now we expand the product of terms inside the Dirac trace in such a way that terms with the product of a
\gamma_5and any number of \gamma_{mu} appear explicitly:

Setptions [ DracSnplify , DracSubstitute67 -> True, Expanding -> True, Factoring -> True]
{ DiracCanonical— False, DiracSgmaExplicit> True, DiracSmpCombine- False, DiracSubstitute67 True,

Expanding— True, Factoring— True, SrlinRelations— True, FeynCalclnternal> False, InsideDiracTrace- False}

DracSnplify [ SEFC[1, 1, 131[[5]11]

( i ”( 2 ca? g ht? TG coia Tcols cota Tcols cols Toold Cols
(—MG|7.q2 USi(1, 1, 3, 3) USF(1, 2, 3, 3)° MT* + MGI(¥-q2).7° USi(1, 1, 3, 3)
Usi(1, 2, 3, 3)3 MT* - MGP USi(1, 1, 3, 3)2US(1, 2, 3, 3)2MT* -
92° USi(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT4 MGl 7-q2 US(1, 1, 3, 3)3
USi(1, 2, 3, 3) MT* - MGI(7-02).7° US(1, 1, 3, 3)° USi(1, 2, 3, 3) MT* +
MGP y-qlUS(1, 1, 3, 3)* MT® + MGP (¥ -q1).y° USi(1, 1, 3, 3)* MT® +
MGP ¥-qlUSi(1, 2, 3, 3)* MT® - MGP (¥ -q1).7° US(1, 2, 3, 3)* MT® +

MGI(7-q1).(¥-92) US(1, 1, 3, 3) USK(1, 2, 3, 3)° MT® +
MGI(7-92).(¥-q1) USK(1, 1, 3, 3) USi(1, 2, 3, 3)3 MT® -
MGI(¥-92).(¥-93) USi(1, 1, 3, 3) USi(1, 2, 3, 3)3 MT® -
MGI(7-03).(¥-92) USi(1, 1, 3, 3) USK(1, 2, 3, 3)° MT® +
MGI(7-q1).(¥-92).y° US(1, 1, 8, 3) USK(1, 2, 3, 3)° MT® -
MGI(7-92).(¥-q1).7° US(1, 1, 3, 3) US(1, 2, 3, 3)° MT® -
MGI(7-92).(¥-93).7° US(1, 1, 3, 3) USK(1, 2, 3, 3)° MT® +
MGI(7-03).(¥-92).¥° USK(1, 1, 3, 3) USK(1, 2, 3, 3)3 MT® -
2MGR ¥.q3 USi(1, 1, 3, 3)2 US(1, 2, 3,3)2MT3 +
4%-92(ql-q2) USK(1, 1, 3, 3)2US(1, 2, 3, 3)2MT® -
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27.91g2° US(1, 1, 3, 3)2USK(1, 2, 3, 3)2MT® - 2 7.q3 q2° USI(1, 1, 3, 3)2
USi(1, 2, 3, 3)2MT® + MGI(¥-q1).(7-92) USi(1, 1, 3, 3)® US(1, 2, 3, 3) MT® +

MGI(7-92).(¥-q1) USK(1, 1, 3, 3)° USK(1, 2, 3, 3) MT® -

MGI(¥-92).(¥-93) USi(1, 1, 3, 3)° USi(1, 2, 3, 3) MT® -

MGI(7-03).(¥-92) USi(1, 1, 3, 3)® US(1, 2, 3, 3) MT® -

MGI(7-q1).(¥-92).y° US(1, 1, 8, 3)° USi(1, 2, 3, 3) MT® +

MGI(7-92).(7-91).7% USK(L, 1, 3, 3)3 USK(L, 2, 3, 3) MT® +

MGI(7-92).(¥-93).7° US(1, 1, 3, 3)3 USi(1, 2, 3, 3) MT® -

MGI(7-03).(¥-92).¥° USK(1, 1, 3, 3)° USi(1, 2, 3, 3) MT® +

MGR (7-q1).(¥-g3) USi(1, 1, 3, 3)* MT2 + MGP (¥-g3).(¥-ql) US(L, 1, 3, 3)* MT? -
MGP (7-q1).(7-93).7° US(L, 1, 3, 3)* MT? +

MGP (¥ -93).(¥-q1).y° USi(1, 1, 3, 3)* MT? +

MGR (7-ql).(7-93) US(1, 2, 3, 3)* MT2 + MGP (7-93).(7-ql) US(1, 2, 3, 3)* MT2 +
MGR (7-q1).(¥-g3).7° USi(1, 2, 3, 3)* MT?2 - MGP (¥-q3).(7-q1).¥° USK(1, 2, 3, 3)*
MT? + MGI(¥-q1).(¥-92).(¥-g3) USi(1, 1, 3, 3) USi(1, 2, 3, 3)° MT? +

MGI(¥-92).(¥-91).(¥-03) USi(1, 1, 3, 3) US(1, 2, 3, 3)° MT? +

MGI(7-03).(¥-91).(¥-g2) USH(1, 1, 3, 3) USi(1, 2, 3, 3)° MT? +

MGI(7-93).(¥-02).(¥-q1) USi(1, 1, 3, 3) US(L, 2, 3, 3)° MT? -

MGI(7-91).(¥-92).(¥-03).7° US(1, 1, 3, 3) USK(1, 2, 3, 3)® MT? +

MGI(7-92).(¥-91).(¥-03).7° US(1, 1, 3, 3) USK(1, 2, 3, 3)® MT? +

MGI(7-03).(¥-91).(¥-92).7° USi(1, 1, 3, 3) USK(1, 2, 3, 3)° MT? -

MGI(7-03).(7-92).(¥-q2).7° USi(1, 1, 3, 3) USK(1, 2, 3, 3)° MT? -

MGl 7-q2 ql° US(1, 1, 3, 3) US(1, 2, 3, 3)3 MT? +

MGI(7-q2).7° gl USK(1, 1, 3, 3) USH(L, 2, 3, 3)3 MT? —

2MGly-q3(qg2-q3) US(1, 1, 3, 3) USK(1, 2, 3, 3)° MT? -

2 MGI(7-93).7° (g2 - q3) USi(1, 1, 3, 3) US(1, 2, 3, 3)° MT? +

MGI?-q_Zq_?)ZUS‘(l 1, 3, 3) USK(L, 2, 3, 3)3MT? +

MGI(¥-q2).7 5g3° USK(1, 1, 3, 3) USH(L, 2, 3, 3)3 MT? -

M GP ql US(1, 1, 3, 3)2US(1, 2, 3, 3)2MT? +
4(¥-92).(7-03)(al-q2) US(1, 1, 3, 3)2US(1, 2, 3, 3)2MT? +
(y 93).(7-02) (ql-g2) USF(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT? -
(7-91).(7-93) 92> USK(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT? -
(y-q3).(y-q1) 92° US(1, 1, 3, 3)2 USH(1, 2, 3, 3)2 MT? -

ql’ q2° USK(1, 1, 3, 3)2 USK(L, 2, 3, 3)2 MT2 - MGR q3° US(1, 1, 3, 3)2
USH(1, 2, 3, 3)2MT2 - q2° q3° USH(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT? +

MGI(7-q1).(7-a2).(¥-a3) USK(L, 1, 3, 3)3 USi(L, 2, 3, 3) MT? +
MGI(7~q2).(7_) (¥-93) USK(L, 1, 3, 3)3 USK(L, 2, 3, 3) MT? +
MGI(7-03).(7-91).(¥7-02) USK(L, 1, 3, 3)3 USi(L, 2, 3, 3) MT? +
MGI(7-03).(7-92).(¥-ql) USK(1, 1, 3, 3)° USI(L, 2, 3, 3) MT? +
MGl (¥-q1).(¥-92).(¥-a3). y5us‘(1 1, 3, 3)3 USI(1, 2, 3, 3) MT? -
MGI(7-92).(¥-91).(¥-03).7° US(1, 1, 3, 3)3 USi(L, 2, 3, 3) MT? -



4

Amp11(13)5.nb

MGl (7-a3).(¥-91).(¥-q2). 75u3‘(1 1, 3,33 US(1, 2,3,3) MT2 +
MGI(7-03).(7-92).(¥-a1).7° USi(1, 1, 3, 3)® US(1, 2, 3, 3) MT? -
MGl 7-q2 ql° US(1, 1, 3, 3)3 USH(1, 2, 3, 3) MT? —
MGl (¥ -q2).y 591 USH(1, 1, 3, 3)3 USK(L, 2, 3, 3) MT? —
2MGly-q3(qg2-q3) US(1, 1, 3, 3)° USi(1, 2, 3, 3) MT? +
2 MGI(7-93).¥°(q2-g3) USi(1, 1, 3, 3)% USi(1, 2, 3, 3) MT? +
MGy g2 q3° USK(1, 1, 3, 3)3 USI(L, 2, 3, 3) MT2 - MGI(7-q2).7° q3°
USi(1, 1, 3, 3)% USi(1, 2, 3, 3) MT2 + 2 MGP ¥ -3 (ql- q3) US(1, 1, 3, 3)* MT -
2 MGP (¥-93).7° (ql-g3) USK(1, 1, 3, 3)* MT - MGR 7.q1g3° US(1, 1, 3, 3)* MT +
MGR (7-q1).7° q3° USH(1, 1, 3, 3)* MT + 2 MGP .93 (ql- q3) USF(1, 2, 3, 3)* MT +
2 MGP (- q3) ®(ql-qg3) USi(1, 2, 3, 3)* MT -
MGR y-q193° USI(1, 2, 3, 3)* MT - MG (7-q1).7° g3° USI(1, 2, 3, 3)* MT -
MGI(¥-92).(¥-q3) ql’ USK(1, 1, 3, 3) USK(L, 2, 3, 3)3 MT -
(7 )q1 US(1, 1, 3, 3) US(1, 2, 3, 3)3MT -
(7-a3). 75 ql° USH(1, 1, 3, 3) USK(L, 2, 3, 3)3 MT +
( ).¥5 1 USi(1, 1, 3, 3) USK(L, 2, 3, 3)3 MT -
7% (al-g3) USK(1, 1, 3, 3) US(L, 2, 3, 3)° MT +
) 93).7°(92 - g3) US(1, 1, 3, 3) USK(1, 2, 3, 3)° MT +
(v-a2) 932 USK(1, 1, 3, 3) USH(L, 2, 3, 3)3 MT +
MGI(7-92).(¥-al) g3° USI(L, 1, 3, 3) USK(L, 2, 3, 3)3 MT -
MGI(7-q1).(7-92).7° q3° USK(1, 1, 3, 3) USK(L, 2, 3, 3)3 MT +
MGI(7-92).(¥-q1).¥° q3° USK(1, 1, 3, 3) USK(L, 2, 3, 3)3 MT -
2 MGP ¥ q3q1 USi(1, 1, 3, 3)2US(1, 2, 3, 3)2MT -
27-93qL° gq2° USK(1, 1, 3, 3)2 US(1, 2, 3, 3)2MT -
47-93(91l-93) q2° USK(1, 1, 3, 3)2 USK(L, 2, 3, 3)2 MT +
87-93(ql-qg2)(qg2-qg3) US(1, 1, 3, 3)2US(L, 2, 3, 3)2MT -
47-92(ql-92) g3° USK(L, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT +
27-9q192° q3° USK(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 MT -
MGI(7-92).(¥-q3) a1’ USi(1, 1, 3, 3)3 USK(L, 2, 3, 3) MT -

)
MGI(7-93).(¥-q )q1 USi(1, 1, 3, 3)3 USi(1, 2, 3, 3) MT +
MGI(7-92).(¥-q3).¥ 1 USi(1, 1, 3, 3)3 US(1, 2, 3, 3) MT -
MGI(7-a3).(7-92).7° g1’ USi(1, 1, 3, 3)3 USK(1, 2, 3, 3) MT +
4 MGI(7-92).(7-93).7°(ql-q3) US(1, 1, 3, 3)° USI(1, 2, 3, 3) MT -
4 MGI(y-91).(¥-93).7° (92 - q3) US(1, 1, 3, 3)° US(1, 2, 3, 3) MT +
MGI(¥-q1).(7-q )q3 USi(1,1, 3, 3)3US(1, 2, 3, 3) MT +

MGI(y-a2).(¥-ql) 93° US(1, 1, 3, 3)3 USH(1, 2, 3, 3) MT +
).¥5 a3% USi(1, 1, 3, 3)3 USK(1, 2, 3, 3) MT -
).¥5 g3% USi(1, 1, 3, 3)3 USK(1, 2, 3, 3) MT -
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2 MGI?-q_Sq_lz(q_Z-q_3) USi(1, 1, 3, 3) US(1, 2, 3, 3)3 -
2 MGI(7-q3).7° q_12(q_2.q_3) USi(1, 1, 3, 3) US(1, 2, 3, 3)%+
MGl ¥ -2 q1° q3° US(1, 1, 3, 3) USK(1, 2, 3, 3)% +
MGI(7-92).7° q1° g3° USI(L, 1, 3, 3) USK(1, 2, 3, 3)% -
MGR q1° q3° USH(1, 1, 3, 3)2 USK(1, 2, 3, 3)2 — q1° q2° q3° US(1, 1, 3, 3)2
USi(1, 2, 3, 3)2-2 MGI)Tq_Sq_lZ(q_Z‘q_S) USi(1, 1, 3, 3)3US(1, 2, 3, 3) +
2 MGI(7-q3).7° q_12(q_2.q_3) USi(1, 1, 3, 3)3US(1, 2, 3, 3) +
MGl 7-g2 q1° q3° US(1, 1, 3, 3)3 USH(1, 2, 3, 3) -
MGI(7-a2).7° a1l” g3° USI(1, 1, 3, 3)° USK(L, 2, 3, 3)))) /
(4096 72 (q1% - MT?).(g22 - MGP).((g2 - qD? - MSi(1, 3, 3)?).
(93% - MT?).
((g2+03)2 - MS(1, 3, 3)?).
(93% - MT?).
(q1% - MT?).
(922 - MGP))

Regul [1, 1, 13]1[[5]1]=DracSnplify [ DracSnplify [ SEC[1, 1, 13][[5]1]1] /. {DracGma [5] -» O0}]

( i ”( 2 ca? ht? g TGP cors TGS cole Tcals cola Toal cols
(2 MGP MT2 USi(1, 1, 3, 3)*(ql-g3) + 2 MGP MT? USI(1, 2, 3, 3)*(ql-q3) -
MG MT2 q1° US(1, 1, 3, 3)2 USH(L, 2, 3, 3)2 - MGR MT2 g3° US(1, 1, 3, 3)2
US(1, 2, 3, 3)2 - MGR q1° q3° USH(1, 1, 3, 3)2 USi(1, 2, 3, 3)% +
2 MGIMT® USi(1, 1, 3, 3) USK(1, 2, 3, 3)%(ql-q2) + 2 MGIMT® US(1, 1, 3, 3)3
USi(1, 2, 3, 3)(al-q2) - 2 MGIMT® US(1, 1, 3, 3) USi(1, 2, 3, 3)%(q2-q3) -
2 MGIMT® USi(1, 1, 3, 3)3 USi(1, 2, 3, 3)(g2-g3) - 2 MGl MT ql° USH(1, 1, 3, 3)
USi(1, 2, 3,3)%(g2-93) + 2 MGIMT q3° USH(1, 1, 3, 3) USK(Z, 2, 3, 3)°(al-q2) -
2 MGIMT gq1° USK(1, 1, 3, 3)3 USH(1, 2, 3, 3)(92-q3) +
2 MGIMT g3° USK(1, 1, 3, 3)3 US(1, 2, 3, 3) (al-q2) - MT* 92> US(1, 1, 3, 3)2
USH(L, 2, 3, 3)2 -4 MT2 q2° USF(1, 1, 3, 3)2 USK(4, 2, 3, 3)2(ql- g3) +
8 MT2 USi(1, 1, 3, 3)2 USI(1, 2, 3, 3)?(ql-q2)(q2-q3) -
MT2 q1° g2° US(1, 1, 3, 3)2 USH(1, 2, 3, 3)2 —
MT2 q2° g3° US(1, 1, 3, 3)2 USH(1, 2, 3, 3)2 - ql° g2° g3 USH(1, 1, 3, 3)2
USi(L, 2, 3, 3)2 - MGR MT* USF(1, 1, 3, 3)2 US(1, 2, 3, 3)2)))/
(4096 72 (q1% - MT?).(g22 - MGP).((g2 - q)? - MSf(1, 3, 3)?).
(93% - MT?).
((92+g3)? - MSi(1, 3, 3)2).
(93?2 - MT?).(q1% - MT?).
(922 - MGPR))

According with DRED, if we define \gamma_ 5 as a totally anticommuting object, the trace of a single
\gamma_ 5 and an arbitrary number of gamma matrices vanishes in contrast to the four-dimensional case



6| Ampll(13)5.nb

where for four gamma matrices and a single \gamma_5 the trace is different from zero. However, as we men-
tioned above, DRED is not implemented in FeynCalc, FeynCalc performs this kind of traces only in 4-dim, so
we must not take the traces with FeynCalc, instead we should disregard the termswith asingle gamma_ 5:

Once the\gamma_ 5 terms are disregarded one can proceed to perform the Dirac trace with FeynCalc, here
the Q4Salgebraisthe same asthe actual 4-dimensional algebra.

Setptions [ DracTrace , DracTraceBEval uate - True]

{ EpsContract— False, Factoring— Automatic, FeynCalcExternab False,
Mandelstam— {}, PairCollect—» True, DiracTraceEvaluate> True, Schouten— 0,
LeviCivitaSign~ $LeviCivitaSgn TraceOfOne— 4, FCVerbose— False}

Smplify [ Tr [ Regul [1, 1, 13][[13]1]]1]
_( i ca ht? o TG cors Tcals cols Tcols cola Toald Cols
(USf(l, 1, 3, 3) USK(1, 2, 3, 3)((q_12 + MT2) (us‘(1, 1, 3, 3) USK(1, 2, 3, 3) (q_z2 + MG|2)
(q_32 + MTZ) +2MGIMT(US(L, 1, 3, 3)2 + USK(L, 2, 3, 3)2)(q_2~q_3)) -
2MT(al- q2) (MT(4 US(1, 1, 3, 3) USK(1, 2, 3, 3) (g2 q3) + MGI
MT(US(1, 1, 3, 3)2 + USi(1, 2, 3, 3)?)) +
MGl g3° (USI(1, 1, 3, 3)% + USK(1, 2, 3, 3)2))) -
2 MTz(q_l-q_3)(MGI2(USf(1, 1,3, 3)%+USK(L, 2, 3, 3)%) -
2q2° USK(1, 1, 3, 3)2 USH(1, 2, 3, 3)2)))/
(512 72 (1% - MT?).(g22 - MGP).((g2 - qD)? - MS(1, 3, 3)?).
(93?2 - MT?).
((a2+g3)? - MSi(1, 3, 3)?).
(g3% - MT?).
(q1? - MT?).(g22 - MGF))

We now perform the Colour algebra:

Setptions [ SNSnplify , SUNTrace - True]

{ Expanding— False, Explicit— False, Factoring— False,
SUNIndexRename— True, SUNFJacobi—» False, SUNNToCACF- True, SUNTrace— True}

SUNSAp [1, 1, 13][[5]1]



Ampl11(13)5.nb |7

—(zf ca? ht? C, Cg g
(Usr(l, 1, 3, 3) USK(1, 2, 3, 3) ((q_12 + MTZ) (US‘(l, 1, 3, 3) US(1, 2, 3, 3) (q_z2 + MGIZ)
(q_32 + MTZ) +2MGIMT(USI(L, 1, 3, 3)% + USK(L, 2, 3, 3)2)(q_2-q_3)) -
2MT(gl-q2) (MT(4US(1, 1,3, 3) USK(L, 2, 3, 3) (42 - q3) + MG
MT(USH(1, 1, 3, 3)2 + USI(1, 2, 3, 3)?)) +
MGI g3 (USI(1, 1, 3, 3)2 + USI(L, 2, 3, 3)2))) -
2 MTZ(q_l-q_S)(MGIZ(USf(l, 1,3, 3)* + US(1, 2, 3, 3)%) -

2g2° US(1, 1, 3, 3)2 USK(1, 2, 3, 3)2)))/
(1024 72 (g1? - MT?).( 2% - MGP).((g2 - gD ? - MSi(1, 3, 3)?).
(g3% - MT?).
((a2+@3)2 - MS(1, 3, 3)?).
(93?2 - MT?).

(91 - MT?).( 922 - MGP))

Nota that the numerator of the resulting amplitude is a superposition of scalar products of the loop-
momenta, which in this case are in the Q4S, but according with the above statements the epsilon-compo-
nents are zero so actually they are in the QDS. The next step consistsin express these scalar productsin terms
of the propagators and rewrite all the expression in the Reduze notation to perform the IBP reduction.
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In this appendix we show a set of functions developed with the aim of write a three-loop
scalar vacuum integral in the notation of Reduze and to identify the integral families which
the scalar integral belongs.

(****************************************************************************)

(** This function joins the elements of a list into a string of characters *x)
(skkok ok ok ok ook ook o ok oK ok oK ok ok ok o oK K ok oK ok ok ook oK oK K ok ok ok ok ook oK K ok oK ok ok ok ok ok ok oK ok ok ok ok ook ok ok ok Kok ok ok ok oK )

nstring[k__] := StringJoin[ToString[k[[#]]] & /@ Range[Length[k]]]

(************************************************************)

(** The next functions write a 3L scalar integral: *%)
(k% INT[{a, i}, {b, j}, {c, k}, {d, 1}, {e, m}, {f, n}], *x)
(** in the notation of Reduze. *%)

(************************************************************)

NameChanges = {

{3}, {3, {}, k__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k],

>, {3, k__, 1__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k]

<>ToString[-m2]<>ToString[_l<>nstring[1],

{{}, k__, 1__, m__} :> ToString[INT]<>ToString[-m1]<>ToString[_]l<>nstring[k]
<>ToString[-m2] <>ToString[_]l<>nstring[1]<>ToString[-m3]
<>ToString[_l<>nstring[m],

{k__, j__, 1__, r__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k]
<>ToString[-m2]<>ToString[_]<>nstring[j]1<>ToString[-m3]
<>ToString[_l<>nstring[1]<>ToString[-m4]<>ToStringl[_]
<>nstring[r]

};

FamDiff[i_, j_, k_, 1_, m_, n_] :=
Drop[Sort [{Position[{i, j, k, 1, m, n}, MG1][[All, 117,
Position[{i, j, k, 1, m, n}, MT][[Al1l, 111,
Position[{i, j, , m, ny, MSf[1, 1171 [[A11, 111,
, m, n}, MSf[1, 211 [[A11, 117,
, m, n}, MSf[1, 311 [[A11, 111,

3,
Position[{i, j, 3,
3,

, ny, MSf[2, 3, 1]1]1[[A11, 111,
3,
3,
4,

k, 1
k, 1
Position[{i, j, k, 1
Position[{i, j, k, 1, m
k, 1, m, n}, MSf[2, 211 [[A11, 117,
k, 1, m 311 [[A11, 111,
k, 1, m

11100A11, 1171,

Position[{i, j,
, ny, MSf[2,
, n}, MSf[1,

Position[{i, j,
Position[{i, j,
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, n}, MSf[1, 4, 2]]1([[A11, 117,
, n}, MSf[1, 4, 3]1([[A11, 117,

Position[{i, j, 4
4

n}, MSf[2, 4, 1]]1[[A11, 117,
4
4

-

Position[{i, j,

, nr, MSf[2, 4, 2]]1[[Al1, 111,
, n}, Msf[2, 4, 3]11[[A11, 111}, {1,10}] ;

Position[{i, j,
Position[{i, j,

T
8 B B B B

-

k
k
Position[{i, j, k,
k
k

INToReduze = {
INT[{a_, i_}, {b_, j_ }, {c_, k_.}, {d_, 1.}, {e_, m_}, {f_, n_}] :>
MRULES @@ PadRight[ DeleteDuplicates[ Flatten[
Table[Pick[{i, j, k, 1, m, n}, {1, 2, 3, 4, 5, 6},
Flatten[FamDiff[i, j, k, 1, m, n]1[[h]] 1,
{h, 1, Length[Flatten[FamDiff[i, j, k, 1, m, n]]11}]1]1], 41*(INT @@ {
FamDiff[i, j, k, 1, m, n] /. NameChanges,
Length[Cases[{a, b, ¢, d, e, f}, p_ /; Positive[p], Infinity]],
Sum[Power[2, Flatten[Position[Sign[{a, b, ¢, d, e, £}], 111[[ql] - 1],
{q, 1, Length[Position[Sign[{a, b, ¢, d, e, £}], 111}],
Sum[Cases[{a, b, ¢, d, e, f}, p_ /; Positive[p], Infinity][[ql],
{q, 1, Length[Cases[{a, b, ¢, d, e, £}, p_ /; Positive[p], Infinityl]}],
Abs[ Sum[Cases[{a, b, ¢, d, e, £}, p_ /; Negative[p], Infinity] [[q]],
{q, 1, Length[Cases[{a, b, ¢, d, e, f}, p_ /; Negativelp], Infinityll}1],
{a, b, c, d, e, £, 0, 0, O}})
};

The output for an arbitrary three-loop scalar integral would be of the form:

In[1]:= INT[{O0, O}, {1, MT}, {1, MT}, {1, o}, {1, 0}, {1, 0}] /. INToReduze

Qut[1]:= INT["INT-mi_23", 5, 62, 5, 0, {0, 1, 1, 1, 1, 1, O, O, O}]*MRULES[MT, 0, 0, O]



H. Amplitudes of the Three-Loop
Diagrams

This chapter contains a Mathematica code that performs the evaluation of the three-loop
amplitudes in terms of the set of the master integrals depicted in Figure 3-3. Besides, the
divergent and the finite contributions are extracted from the amplitudes.

#!/path/to/MathematicaScript -script

nofk = ToExpression[$ScriptCommandLine[[2]]];

(ko ok sk ok e ok sk sk ok o sk sk ok sk ke ok sk sk sk ke ok sk sk sk e ok sk sk o sk ok sk ok sk e ok sksk sk e ok sk sk sk ok sksk ok ek sk sk ok sk ok sk skok sk ok )
(** In order to read this package it is necessary to run the codes: *x)
(** i) SimplificationDefinitions *ok)
(% ii) TVID k)
(ko ek sk ok e sk sk sk ok o sk sk ok sk ke ok sk sk sk e ok sk sk sk e ok sksk o s e ok sk ok sk e ok sk ok e ok sk sk ok s ok sksk ok ek sk sk ok sk sk sk ok sk ok )

PrependTo[$Path, ToFileName[{"/path","to","SimplificationDefinitions","code"}]1];
<< SimplificationDefinitions‘;

PrependTo [$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas programx)
Get["i3.m"];

$Directory = ToFileName[{"/path", "to","tvid"}];

LaunchKernels [nofk] ;

ParallelEvaluate[

PrependTo [$Path, ToFileName[{"/path","to","SimplificationDefinitions","code"}]1];
<< SimplificationDefinitions‘;

PrependTo [$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas programx)
Get["i3.m"];

$Directory = ToFileName[{"/path", "to","tvid"}];
y p

1;

TempDirName = ToFileName[{"/directory","where","outputs","are","saved"}];
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(* Load a regularized three-loop amplitude *)
AmpShifts = Get["ReduzeAmp", Path -> {ToFileName [{TempDirNamel}];

$Lamp = Length[AmpShifts];
Put [$Lamp, ToFileName[{TempDirName}, "Lamp" 1];

(*******************************************************************************)

(x* A list of rules, where each scalar integral is changed by its IBP *%)
(** reduction in terms of a set of MI is contained in the file "preferreduc". *x)
(x* The list contain 3525 rules of the form: *k)
(%% *%)
(e INT["INT-m1_12", 4, 51, 6, O, {3, 1, 0, O, 1, 1, O, O, 0O}] —> k)
(kx -((-8 + 3%d)*(-40 + 22%d - 3*d"2)*INT["INT-mi1_12", 4, 51, 4, O, *%)
(% {1, 1, 0, 0, 1, 1, 0, O, 0}1)/(16%(-7 + 2*d)*m1~2), *%)
(k% *%)

(** obtained with the program Reduze, and is so large that cannot be included **)
(** in this work (the file have about 200000 lines). *%)
(ke sk ok sk ke ok sk o sk sk ok sk s ok ok sk 5 ok K 3k ok 3 ok sk 3 ok K 3k ok ok sk 3 ok K 3k ok 3 ok sk 3 ok 3 3k ok 3 ok sk 3 ok 3 3k ok 3 ok sk 3 ok 3k ok ok ok sk 3 ok 3 ok ok ok sk 3k ok 3k koK )

preferreduc = Get["preferreduc"];
DistributeDefinitions[preferreduc];

(*******************************************************************************)

(** The list "basispref" changes the notation of the master integrals from  **x)

(xx Reduze to TVID notation. For instance: *%%)
(€33 *kk )
(** INT["INT-m1_1-m2_2", 5, 59, 5, 0, {1, 1, 0, 1, 1, 1, 0, 0, 0}] -> *H%)
(*x  U5[m1,m2,0,0,0], *%%)
(k% *%k)
(** and so on for the other master integrals. *kk)

(*******************************************************************************)

basispref = Get["basispref"]
DistributeDefinitions[basispref];

(******************************************************************************)

(** Applying the changes in "preferreduc" and "basispref" to each amplitude. **)
(ks otk o e sk sk sk ok e sk sk ok s ok sk ok sk e ok sk sk sk e ok sk sk o s e ok sk sk e ok sk ok e ok sk sk sk s e ok sk sk sk e ok sk sk sk s sk sk ok sk ke ok sk sk sk ek sk ok ok ok )

ParallelMap[
If['FileExistsQ[FileNameJoin[{TempDirName, "AmpsTVID"<>ToString[#]}1] ,
Put[ Expand[ Part[AmpShifts, #] ] /. preferreduc /. basispref,
ToFileName [{TempDirName}, "AmpsTVID"<>ToString[#]]] 1& , Range[$Lampl];
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ClearAll [AmpShifts,preferreduc,basispref];
ParallelEvaluate[

ClearAll [AmpShifts,preferreduc,basispref];
1;

AmpsTVID[1_] := Get["AmpsTVID"<>ToString[l], Path -> {ToFileName [{TempDirName}]}]
$factor = (-I)*x(Pi~(6)); (* changing Reduze notation to Ayres Freytas notation *)

rules[amp_] := Union@Cases [amp,
MRULES[a_, b_, c_, d_] :> Level[MRULES[a, b, c, d], 1],Infinity]

amptest [amp_] := Coefficient[amp, Union@Cases[amp, MRULES[__], Infinity]];

replacements3[amp_] := Plus @@ MapThread[
$factorx(#1 /. {m1 -> Part[#2, 1]°2, m2 -> Part[#2, 2]°2,
m3 -> Part[#2, 3]°2, m4 -> Part[#2, 4] 2})&,
{amptest [amp], rules[amp]l} ]

DistributeDefinitions[$factor,rules,amptest,replacements3];
ParallelMap[

Put [replacements3 [AmpsTVID [#]],

ToFileName [{TempDirName}, "AmpsTVIDMOD"<>ToString [#]]1]&,

Range [$Lamp] 1;

Print["Preferred basis applied and backup saved"];

(**********************************************************************)

(¥* 1) Reduction of the function M[ml1,m2,m3,m4] in terms of U4. *%)
(** 2) Rules for some reductions taking into account the unitarity — **)
(xx of the sfermion matrices *%)

(**********************************************************************)

Mredu = { M[mi_,m2_,m3_,m4_] :> (2/(3xd - 8))x*(
m1*U4 [m1,m2,m3,m4]
+ m2*xU4[m2,m3,m4,m1] + m3*U4[m3,m4,m1,m2]
+ m4*U4[m4,m1,m2,m3] ) };

AmpShifts[m_]

AmpShifts[m] = Get["AmpsTVIDMOD" <> ToString[m],
Path->{ToFileName [{TempDirName}]}];

Normal@Series|[
AmpShifts[m] /. Mredu /. {d -> 4-2*$eps}, {$eps,0, 3}]

Amplitude[m_]
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stopmixing = {
USfli_, 1, 3, 3172 + USf[i_, 2,

3, 3172 > 1,

Usfl1, i_, 3, 3]1°2 + USf[2, i_, 3, 3172 -> 1,
usfl1, 1, 3, 31«Usf[1, 2, 3, 3] + UsSf[2, 1, 3, 3]xUSf[2, 2, 3, 3] -> O,
usf[1, 1, 3, 3]xUsf[2, 1, 3, 3] + USf[1, 2, 3, 3]*USf[2, 2, 3, 3] -> O,
Usf[1, 1, 3, 3]1xUsSf[2, 2, 3, 3] - USf[1, 2, 3, 3]1*xUSf[2, 1, 3, 3] -> 1 };
USFchanges = {
Usf[1, 1, 3, 3]->Cos[tht], USf[1, 2, 3, 3]->Sin[tht], USf[2, 1, 3, 3]->-Sin[tht],
Usf[2, 2, 3, 3]->Cos[tht], USf[1, 1, 3, 1]->1, USf[1, 2, 3, 11->0,
uUsf[2, 1, 3, 1]1->0, USf[2, 2, 3, 1]1->1, USf[1, 1, 3, 2]->1, USf[1, 2, 3, 2]->0,
usf[2, 1, 3, 2]->0, USf[2, 2, 3, 2]->1, USfI[1, 1, 4, 1]->1, USf[1, 2, 4, 1]1->0,
usf[(2, 1, 4, 11->0, USf[2, 2, 4, 1]->1, USf[1, 1, 4, 2]->1, USf[1, 2, 4, 2]->0,
usf[(2, 1, 4, 2]1->0, USf[2, 2, 4, 2]->1, USf[1, 1, 4, 3]->1, USf[1, 2, 4, 3]1->0,
Usf(2, 1, 4, 31->0, USf[2, 2, 4, 3]->1 };
stopmixingB = {
UCSf[i_, j_, 3, 3] :> Cos[tht] 2*KroneckerDeltal[i, j]
+ Sin[tht] 2% (KroneckerDeltal[i+1l, j]
+ KroneckerDeltali-1, jl) /; !(i===3)&&!(j===3),
UCSfl[a_, b_, 3, 1] :> KroneckerDeltala, bl /; !(a===3)&&!(b===3),
UCSfla_, b_, 3, 2] :> KroneckerDeltala, b] /; !'(a===3)&&! (b===3),
UcSfla_, b_, 4, c_] :> KroneckerDeltal[a, bl /; !(a===3)&&!(b===3),
UCSfla_, 3, 3, 3] :> Sin[tht]*Cos[tht]*KroneckerDeltala, 1]
- Sin[tht]*Cos[tht]*KroneckerDeltala, 2] /; !(a===3),
UcSfla_, 3, 3, c_] :> 0 /; !(a===3)&&!(c===3), UCSfla_, 3, 4, c_] :> 0 /; !(a===3),
UCSf[3, a_, 3, 3] :> Sin[tht]*Cos[tht]*KroneckerDeltala, 2]
- Sin[tht]*Cos[tht]*KroneckerDeltala, 1] /; !(a===3)&&! (a===4),
UCSf[3, a_, 3, c_] :> 0 /; !'(a===3)&&! (a===4)&&!' (c===3),
UCSf[3, a_, 4, c_] :> 0 /; '(a===3)&&!(a===4),
UCsf[3, 3, 3, a_] :> 1 /; !'(a===3), UCSf[3, 4, 3, a_] :> 0 /; !'(a===3),
ucsf[3, 3, 3, 3] -> Cos[tht]~2, UCSf[3, 4, 3, 3] -> -Sin[tht] "2,

UCsSf[3, 3, 4, a_] -> 1, UCSf[3, 4, 4, a_] -> 0, Cos[tht]"2 + Sin[tht] 2 -> 1,
Cos[tht]*Sin[tht] -> Sin[2*tht]/2, Cos[tht]~2 - Sin[tht] "2 -> Cos[2*tht],

Sin[tht] "2 - Cos[tht]"2 -> -Cos[2*tht] I};
DistributeDefinitions[stopmixing, USFchanges, stopmixingB];

Print[" Amps Loaded and Replacement of M[] Done! "];

(*********************************************************************************)

(*x* The following functions extract the coefficient of each master integral

(** contained in a three-loop amplitude.

*3%)
*%)

(*********************************************************************************)
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ListAO [num_]
ListT3 [num_]

Union@Cases [Amplitude [num], AO[__], Infinity]

Union@Cases [Amplitude [num], T3[__], Infinity]

ListU4 [num_] Union@Cases [Amplitude[num], U4[__], Infinity]

ListU5 [num_] Union@Cases [Amplitude[num], U5[__], Infinity]

ListU6[num_] := Union@Cases[Amplitude[num], U6[__], Infinity]

ListAOT3[num_] := Union@Map[(Times @@ #)&, Tuples[{ListAO[num], ListT3[num]}]]
ListAOAOAO[num_] := Union@Map[(Times @@ #)&,

Tuples [{ListAO [num] ,ListAO [num] ,ListAO [num]}]]

ListAll[num_] := Union[
ListU4 [num] ,ListU5[num] ,ListU6 [num] ,ListAOT3 [num],ListAOAOAO [num]
1;

ParallelMap[
Put [ListAl1[#], ToFileName [{TempDirName},"ListA11"<>ToStringl[#]]1]&,
Range [$Lamp] 1;

amptest [func_, m_] := func*Plus@@ParallelMapl[
FactorSquareFree[

Coefficient[ #, func] //. stopmixing //. USFchanges //. stopmixingBl&,
Amplitude[m] ]

Table[

MapThread [

If[!FileExistsQ[FileNameJoin[{TempDirName, "Amptest"<>ToString [#2]1}]] ,

Print ["Amptest_"<>ToString[#2]]

Put [amptest [#1, m], ToFileName[{TempDirName},
"Amptest"<>ToString[m]<>ToString[#2]111]&,

{ ListAl1[m], Rangel[Length[ListAl1[m]]1]} 1, {m, 1, $Lampl} 1;

(********************************************************************)

(**x  Laurent expansion around d = 4 in terms of $eps = (4-d)/2 **x*)
(skkok ok Kok sk ook oK ook Kok ok ook oK ok Kok oK ook oK ok ook oK ok ok oK oK o ok K ok ok oK oK o ok Kok ok ook oK ok ok K ook )

funcexpans = {

A0[a_I*AO[b_1#A0[c_] :> Sum[ AO[a, b, c, jl*$eps~(j), {j, -3, 231,
A0[a_]1"2%A0[c_] :> Sum[ AO[a, a, c, jl*$eps~(j), {j, -3, 23],

AO[c_]1"3 :> Sum[ AO[c, c, c, jl*$eps~(j), {j, -3, 2}],

AO[a_]*T3[b_, c_, d_1 :> Sum[ AT[a, b, c, d, jl*$eps~(j), {j, -3, 23}]1,

U4la_, b_, c_, d_1 :> Sum[ U4[a, b, c, d, jl*$eps~(j), {j, -3, 2}1,

Usla_, b_, c_, d_, e_]l :> Sum[ U5[a, b, c, d, e, jl*$eps~(j), {j, -3, 231,

Uéla_, b_, c_, d_, e_, £f_1 :> Sum[ U6[a, b, c, d, e, £, jl*$eps~(j), {j, -3, 2}1 };

DistributeDefinitions[funcexpans];
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AmpSimp[m_,k_] := Get["Amptest"<>ToString[m]<>ToStringl[k],
Path->{ToFileName [{TempDirName}]}];

AmpLexp[num_,i_] := Sum[ $eps” (-m)*Coefficient[
Collect[
ListAll [num] [[i]]*Collect[
Numerator [Coefficient [AmpSimp [num,i] ,ListAll [num] [[i]1]1]],{eps}]
/ Denominator [AmpSimp [num,i]] /. funcexpans, {eps}], $eps, -m],
{m, 0, 3}]

coeffeps[num_,j_,1_] := Coefficient[ AmpLexp[num,1], $eps, -j]
ampeps [num_,m_] := $eps”(-m)*(Plus@@Table[coeffeps[num,m,1],{1,1,Length[ListAll [num]]}])

epsamps = Flatten[
ParallelTablel[
ampeps [num, j1, {num, 1, $Lampl},{j, O, 3}]
1;

(sksksksksksk ok ok sk sk ok o ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok o o o sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk o e ke sk sk ok sk sk sk sk sk sk sk sk sk ok sk o ke ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok )
(*x* Explicit evaluation of the divergent and the finite part of the amplitudes **x*)

(*x*x in terms of special functions, log(), Polylog(), etc. *kk)
(ko ok ok ok ok ook ook o ok oK ok ok ok ok ok o oK K ok oK ok ok ok oK ok oK ok ok ok ok ok oK K ok oK ok ok ook oK ok oK ok ok ok ok ook oK ok oK ok ok ook ok ok ok Kok ok ok K )

i3changes = {

AO[a_,b_,c_,x_] :> PrepIntMod[ AO[a]*AO[b]*AO[c], x],
AT[a_,b_,c_,d_,x_] :> PrepIntMod[ AO[a]l*T3[b,c,d], x],
U4la_,b_,c_,d_,x_] :> PrepIntMod[ U4[a,b,c,d], x],
Usla_,b_,c_,d_,e_,x_] :> PrepIntMod[ U5[a,b,c,d,el, x],
U6la_,b_,c_,d_,e_,f_,x_] :> PrepIntMod[ U6[a,b,c,d,e,f], x] };

—sU_

DistributeDefinitions[i3changes];

coeffepsi3[j_,1_] := Part[
Coefficient [$eps”(-1)*epsamps, $eps~(-j)], 1] /. i3changes;

ampepsi3[m_] := $eps”(1-m)*(Plus @@ Table[ coeffepsi3[m,1],
{1, 1, Length[epsamps] 1}1)

epsampsi3 = Flatten[ParallelMap[ampepsi3[#]&, Range[4]1]1];
Print["epsampsi3 Loaded!"]
Put[ epsampsi3, ToFileName [{TempDirName}, "i3AmpsEps"]];

CloseKernels[];

Quit[];



|. Divergent Parts of the Three-loop
Master Integrals

In this appendix we present the analytical results for the divergent part of the three-loop
master integral basis depicted in Figure 3-2. For the vacuum function U4, we have:

4
U4 2 9 9 9y 1 mzz
div(m1’m27m37m4) T3 3
i=2

2

+Z ( logm 1ogm§)]

1 1 72 3
+ = m%( 1+ ogm1>+z ( +——10gm ——logmf
2 9, L. o9 9 2 2
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4 4
1 m? 2 logm?
U4 wO ) ) ) : (-2 -
w0, ) = 5 ST+ 53 o (5 )
1o 4 72
+ p; Z 2<3+ﬂ—logm —i—Zlog m; ) —TSfm(mg,mg,mi)]. (I-2)
i=2

For the U5 three-loop function we have:

4
1 m2 m2
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Zm? (1 - Ongz) + m3 (5 — logmg)]
i=1

25 72 1
Zm2<6 +ﬂ—310gm +4log2m?)
+7T2 51 2_'_]‘1 2 2

— —blogm; + - log”m
19 gms 9 g ms

_I_
UTSI\')
/\ :
wlg



120 I Divergent Parts of the Three-loop Master Integrals

+ % ((m3 +m3 — m3) logm7 logmj + cycl(125))

+ % ((m3 +mi — m2) logm3 logmj + cycl(345))

+ A12s (%2 - %log ﬂng log Z—g + log 125 log v125 — Li w125 — Lip 0125)

+ s (%2 - % log %‘g log :Z—g‘ + log usys log v — Lis uges — Lis 1)345)] . (I-3)
5 5

where the function cycl(ijk) refers to the cyclic permutations of the set {m;, m;, m;} and

ik = \/mg1 +mj +my — 2(mim3 +mimg +m3img) (I-4)
1
Uij = 2—m2(mz2 - m? + mi — Aijk), (I-5)
k
1
k

Finally, the divergent part of the U6 functions is independent of the particle masses and
have a quite simple form,

1
U6div(m%,m§,m§,mi,mg,m§) = ZQC(Z&), (I-7)

where ((x) is the Riemann zeta function.



J. Known Analytical Expressions of
Master Integrals

In this appendix we show the expressions of the master integrals involved in this work, plotted
in Figures 3-2 and 3-4, which can be computed analytically to all orders in €. This includes
the one-loop functions A0 and B0, the two-loop function 73 and some special cases of the
three-loop integrals U4 and U5 with one and two independent mass scales. The one-loop
Passarino-Veltman functions A0 and B0 have the Laurent expansions:

A0 (m) = —e7¢ (m?)' T (=1 +¢), (J-1)
and

BO (p27m17m2) =

_[1 mym m? —m? m2 m2 m?2
(pQ) {Z+2—Log( 12 2) + 5 2 Log (—g) + A (1,—21,—22) X (J-2)
p p m3 b D
2 2 2 4\ (1. m2 /2. m2 /2
(Log (mzlj;ﬂa) —Log (p ml m2 +2p<2 7m1/p >m2/p )) —|—Z7T):| —|—O(€),

where \(x,y, z) is the Kéllen function. For a complex number z the logarithm is defined as
Log(z) = In|z| + i¢, where ¢ € (—m,x|. Using the definitions given by:

u—%[i#—x—y—lf)\(l,:v,y)], (J-4)
v=3[1—-z+y+X1,z,9)], (J-5)
w:<g—1> <§—1), (J-6)

=(1-w), V=201-w), (3-7)
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the analytical expression of the two-loop vacuum integral can be written as:

T3(my, mg, m3) = e2ee (mg

['(1+e€)? 1+x+ 2
)y (L+e) { y (zlogz + ylogy)

2(1 —¢€)(1 — 2¢) 2
+ (xlog2x+ylog2y— (1—xz—y)logxzlogy

€ €

2
+ M1, z,y) (210gu10gv —logxlogy — 2Lisu — 2Liy v + %))

— € (% log® x + %log?’y — # log z logy log(zy)

1 4
+ A1, z,y) {5 log zlog y log(zy) + 3 log®(1 — w)

+ 2log?(1 — w) (log(xy) — logw) (J-9)
22 9 4. 4 2>
+ log(1 — w) T—l—log (zy) +§log W—l—?logW

4 2 272
— glog3U+210g2U logv—2 —logU (%—Hogzy)
Y

2 2
— é10g3V+210g2V logu— —logV (QL +log2x)
3 x? 3
u? v?
— 2logx Lig; —2logy Ligz + 2log(zy) Lis w
u? v?
+ 2Ly 2Lk — 2Liy w — Lig(1 — )

+ 4LisU +4Lis V = 2¢(3)}) + O(¢*)] ,
For the case of the three-loop integrals with one non-zero mass scale we have:

U4(m,0,0,0) = (m?)' 2 ¥ 2% (1 — )T(=2 + 26)T'(—1 + 3e)
1 1 100+ 572

_ 2\1—3¢ . - _
=— (m°) = + ; + —51 + Ofe), (J-10)

and

%)l (1 — €)T'(2 — 36)T'(—1 + 3¢)
['(2 —€)I2(2 — 2¢)

1 5 1 (17 5x? 49 2572 5((3)
o 2\1-3¢ | _— = — | == - = - A"/ -
= (m) [3e3+3e2+e(3+12)+<3+12 3 )] + 0. (H1)

U5(0,0,0,0,m) = (m?)'~3 e

Three-loop master integrals with two independent mass scales have the expressions:
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P(1—P*(=1+20T(=2+3¢)

U4(my,m2,0,0) = (mg)l_36 e3me

(-2 + 4e)
[D(e) ™€ aFi(e, =1 + 26, =2 + 46,1 — ¢)
I'(1
— 2(_—2:) e 2F1(26,1+6,—1+46;1—c)]
1 1 /5—c 1
_ 2\1-3e
= (mj3) {@+e_2( 5 —§logc)
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24 24 24 8
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1 og”c— 5 log’e
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x ¢ 9 (1 +€,2¢,4¢;1 — )

s |14+ 1 (2(1+c c
==y [T (M e

1 /52 2
+ - (5 i;ﬁ (1—|—c)—QClogc—i—iloch—l—(1—c)LiQ(1—c))
€
4 2 1 — 472 + 1572
(T B gz gy o W0 AT F b (J-13)
6 6 24
2¢ — (1 —3c¢)log(1l —¢)

log? ¢ — 1—02 log® ¢

2
+ [4(1 —¢) — (1 — 2¢)log c] Lis(1 — ¢)

— 4(1 —¢)Li3(1 — ¢) — (1 — 3¢) Liz(c))] + O(e)

L(e)T'(1 — e)T?(2¢)T(—1 + 3¢)
(1 —¢e)(1—2¢)I'(4e)
X 7o (14 €,26,4¢;1 — )

U5(m1,ms,0,0,0) = — (m3)t—3 e¥ee



124 J Known Analytical Expressions of Master Integrals

g |1+ 1 c
= (m2)® [w+6_2<1+c—§logc>

1 /100 + =2 c. 5 )
- (T(l +¢) — 3clogc + Zlog ¢+ (1 —c¢)Liy(1 — c))
2 —4 2 1 2
60+ ) o4 S8 (g5 gy - B0e—dm +15me (J-14)
4 6 24
3c—(1—=3c)log(l —c¢), o c .
+ 5 log c—ﬁlog c
+ [6(1 —¢) — (1 —2¢)log c] Lix(1 — ¢)
— 4(1 —¢)Li3(1 — ¢) — (1 — 3¢) Liz(c))] + O(e) ,
where we have defined
2
m
=1 J-15
¢ m3 (J-15)

Further analytical expressions with at most two independent mass scales and including just
terms up to O(€”) can be consulted in [166,182] and references therein.The analytical unk-
nown three-loop master integrals, which contain at least three independent mass scales, are
numerically evaluated with the program TVID [167,168] based on the dispersion method.



K. Amplitudes of the Counter-term
Diagrams

The insertion of the SQCD mass renormalization constants into the counter-term diagrams
(one- and two-loop Higgs self-energies and tadpoles) responsible for the removal of the non-
local sub-divergences are performed with the code presented below. The code takes each
DRED regularized amplitude of a counter-term diagram, written in the FeynCalc notation,
and inserts the mass renormalization constants listed in Appendix B. Additionally, it per-
forms a Laurent expansion of the resulting amplitude, keeping terms up to O(e’) and putting
the coefficient of the poles ¢ in a list.

(* You must call the next packages in order to run this code: *)

PrependTo [$Path, ToFileName[{"/path","to","SimplificationDefinitions"}]];
<< SimplificationDefinitions‘;

PrependTo [$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas programx)
Get["i3.m"];
$Directory = ToFileName[{"/path", "to","tvid"}];

$LoadTARCER = True; (* This is to call TARCER from FeynCalcx*)
PrependTo [$Path, ToFileName[{"/path","to","FeynCalc901","FeynCalc"}]];
Get ["FeynCalc‘"];

(ks ek sk o o ks s ok o sk sk ok o sk sk ok s o sk sk ok sk o ok sk ok sk o ok sk sk sk s o ok sk o sk o ok sk o sk e ok sk sk sk e ok sk sk ok s ok ok sk sk ok o sk sk sk sk o sk sk sk ok o sk sk ok sk ke kok ok ok )
(** Functions devoted to perform the reduction in terms of TARCER master integrlas, *%)

(** and also to take the gaugeless limit over the SQCD vertices at the desired order. *x*)
(ko ok sk ok sk o ok skskok ok sk sk sk ok sksk sk ok ok sksksk o ok sksk ok sk ok ok sk sk ok ok stk ok skesksk sk ok sksksk sk ok sk ok skskok ok sk sksk sk sk sksk sk ok sk sk ok )

changesmom = { Momentum[a_] :> Momentum[a, D],
FAScalarProduct[a_,b_] :> Pair[ Momentum[a,D], Momentum[b,D]]};

Reduonetwol [amp_] := Block[ {amptfi,listA,listB,listrules},

amptfi = ToTFI[amp //. changesmom, ql, g2, pl;

listA = Union@Cases[amptfi, (TAI | TBI | TJI | TFI)[__], Infinity];
1listB = TarcerRecurse[listAl;

listrules = Map[ 1listA[[#]] -> listB[[#]] &, Range[Length[listA]]l];

Return[ MagicSimplify[ amptfi /. listrules , Feedback->False] ]; 1;
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Gaugeless[amp_] := Sum[ SeriesCoefficient[ amp, {MW, 0, -j}]*(ht/MT)"(j),
{j,0,4}] /. ht -> ht Sqrt[2] SB SW/EL

(st ok o o s s o ok ook ok ok sk sk sk sk sk sk o o o o s s ok ook ok sk sk sk sk sk sk sk sk o sk sk e ke ook ok sk sk sk sk sk sk s sk o o s s ok ook ok sk sk sk sk sk sk sk sk sk sk ke ok )
(**x Call a list of DRED regularized amplitudes. Here the color and the Dirac *okok)
(#x* algebra should have been already performed. Then apply the TARCER reduction **x)
(x*x and the gaugeless limit over each amplitude. *%k)
(koo ok ok sk s s o ok ook ok ok sk sk sk sksk sk sk sk o o sk s ko ook ok sk sk sk sk sk sk sk sk sk sk s s ke ok ok ok sk sk sk sk sk sk sk sk sk o sk s ok ook ok sk sk sk sk sk sksk sk sk sk sk sk ok ok )

Amplitudes = Get["Regularized"<>"Amplitudes"<>"Path"];

TempDirName = ToFileName[{"/path","to","save","your","outputs"}];
ParallelTable[
If[ FreeQ[Amplitudes[[1]],Gstrong] ,

Print["ToplL_"<>ToString[11];

Put[ ht"2* Reduonetwoll[
Reduonetwol[ Coefficient[Collect[ Gaugeless[ Amplitudes[[1]] ]1,{ht}],ht"2]111],
ToFileName [{TempDirName}, "Reduamp_"<>ToString[1]] 1; ,

Print["Top2L_"<>ToString[11];
Put[ ht"2*Gstrong~2* Reduonetwoll[
Reduonetwol[ Coefficient[Collect[ Gaugeless[ Amplitudes[[1]] ],
{ht,Gstrong}], Gstrong~2*ht~2] 1],
ToFileName [{TempDirName}, "Reduamp_"<>ToString[1]]];
1,
{1,1,Length[Amplitudes]}];

Reduampse[n_] := Get["Reduamp_"<>ToString[n], Path->{ToFileName[{TempDirName}]}];
reduamps = DeleteCases[ ParallelMap[ Reduampse[#]&, Range[Length[Amplitudes]]], 0, 1];

Put [reduamps, ToFileName[{TempDirName}, "ReduAmps" ] ]; (*save a backup!*)

(koo ok ok ook ook oK ok K ok KK KK oK K o KK KKK SR K oK K o KKK K KoK K o KK KK ok K ok KKK oK K ok K o KKK oK K ok KoK ok ok K o )
(**x The next functions perform an epsilon-expansion over the amplitudes. Here the *xx*)

(**x insertion of the mass counter-terms is still missing. *3kk)
(ko kst ootk sk ootk sk ok sk sk ok stk sk s ok sk sk ok stk sk ok skesksk sk ook sksk ok ok stk s ok sksksk sk ke sksksksk ok skskosk ok sksksk sk ok ok sksksk ok ok )

i3CTbasis[amp_] := Block[ {m, ml, m2, m3, $factoril, $factor2l},

(x QIL] = (4 Pi E"(-EulerGamma) mu~2) (L $eps) *)

$factoril
$factor2l

I*Pi~2 ;
-Pi~4 ;
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i3basisfunc = {

BO[O,m1_,m2_] :> (AO[m1]-A0[m2])/(ml - m2) /; !'(ml===m2) && ! (ml1===0) && !'(m2===0) ,
BO[O,m_,m_] :> (D-2) *A0 [m] / (2*m) /; !(m===0) ,
BO[0,0,m_] :> AO[m]l/m /; !(m===0) ,
BO[O,m_,0] :> B0[0,0,m] /; !(m===0) ,
B0[0,0,0] -> 0 ,
C0[0,0,0,m1_,m2_,m3_] :> (1/(m1 - m2))*(((A0[m1]-A0[m3])/(m1-m3)) -

((A0O[m2]-A0[m3])/(m2 - m3))) /; !'(ml===m2) && !(m2===m3)

&& !'PossibleZeroQ[m1*m2+m3] ,
€0[0,0,0,m_,m_,m_] :> (D-4)*(D-2)A0[m]/(8*m"~2) /; !(m===0) ,
C0[0,0,0,m1_,m1_,m2_] :> ( (1/(ml1 - m2))*((D-2)*A0[m1]/(2*m1)) +
(1/(m1 - m2)"2)*(A0[m2]-A0[m1])) ; 'PossibleZeroQ[ml1*m2]
&& ' (mi===m2) ,
C0[0,0,0,m1_,m2_,m2_] :> C0[0,0,0,m2,m2,m1] /; !PossibleZeroQ[mi1*m2] && !(mi===m2) ,
C0[0,0,0,m1_,m2_,m1_] :> C0[0,0,0,m1,ml1,m2] /; !PossibleZeroQ[mi1*m2] && !(ml===m2) ,
C0[0,0,0,m1_,m2_,0]:> (1/(m1-m2))*(A0[m1]/m1-A0 [m2] /m2)
/; 'PossibleZeroQ[m1*m2]&&! (m1===m2) ,

Cc0[0,0,0,0,m1_,m2_] :> C0[0,0,0,m1,m2,0] /; !'PossibleZeroQ[mi1*m2] && ! (ml===m2) ,
co0[0,0,0,m1_,0,m2_] :> C0[0,0,0,m1,m2,0] /; !'PossibleZeroQ[mi*m2] && !(mi===m2) ,
C0[0,0,0,m_,m_,0] :> (AO[m]/(2*m~2))*(D-4) /; !'(m===0) ,
€0[0,0,0,0,m_,m_] :> C0[0,0,0,m,m,0] /; !(m===0) ,
€0[0,0,0,m_,0,m_] :> C0[0,0,0,m,m,0] /; !(m===0) ,
€c0[0,0,0,0,0,m_] :> (AO[m]/m~2) /; !'(m===0) ,
c0[0,0,0,m_,0,0] :> €0[0,0,0,0,0,m] /; !(m===0) ,
€0[0,0,0,0,m_,0] :> €0[0,0,0,0,0,m] /; !(m===0) ,
c0[0,0,0,0,0,0] —> 0,

TAI[D, 0, {{1, m_}}] :> $factoril*AO[m~2] ,
TBI[D, 0, {{1, mi_}, {1, m2_}}] :> (I*Pi~2)*BO[0,m1°2,m2"2] ,
TJI[D, 0, {{1, m1_}, {1, m2_3}, {1, m3_3}}] :> $factor2L*T3[m1°2,m3°2,m2"2],

AO[m1_] :> AOdiv[m1]/$eps + AOfin[ml] + AOevn[ml]*$eps + AOevn2[ml]*$eps~2,
BO[p_,m1_,m2_] :> BOdiv[p,ml,m2]/$eps + BOfin[p,ml,m2] + BOevnl[p,ml,m2]*$eps
+ BOevn2[p,ml1,m2]*$eps~2,
T3[m1_,m2_,m3_] :> T3div2[ml,m2,m3]/($eps~2) + T3divl[ml,m2,m3]/$eps
+ T3fin[m1,m2,m3] + T3evn[ml,m2,m3]*$eps
};

Return[ amp //. i3basisfunc ];

1;

(* This is a function of TVID *)
PrepIntMod[expr_,n_] := Module[{expre},

expre = expr /. usort //. urepl2 /. urepl /. usort //. urepl2 /. urepl
//. trepl /. $D -> 4-2*$eps;
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expre = Map[Simplify, exprel;
Return[SeriesCoefficient [expre, {$eps,0,n}]]
1;

epsexpans [amp_, o_] := PrepIntMod[ Collect[
i3CTbasis[amp] /. {D -> 4 - 2*$eps, SUNIndex[a_]:>a,
SUNFIndex[b_]:>b}, {$eps}], o]

(* Performing the expansion *)

ParallelMap[

If[ FreeQ[reduamps[[#]], Gstrong],

Print ["ampexpll_"<>ToString[#]]

Put [Sum[ $eps~(j)*epsexpans[reduamps[[#]1]1,3], {j,-1,2}],
ToFileName [{TempDirName}, "epsamp_"<>ToString[#]] 1],

Print ["ampexp2l_"<>ToString[#]]

Put [Sum[ $eps”(j)*epsexpans[reduamps[[#]1]1,j], {j,-2,1}],
ToFileName [{TempDirName}, "epsamp_"<>ToString[#]] 1 1%,

Range [Length[reduamps]] 1;
epsampse[n_] := Get["epsamp_"<>ToString[n],Path->{ToFileName [{TempDirName}]}];
epsamps = ParallelMap[ epsampse[#]&, Range[Length[reduamps]] ];
$Lamp=Length [epsamps] ;

Put [epsamps, ToFileName[{TempDirName}, "EpsAmps" ] ]; (* Save a backup! *)

(koo ook ok ook oK ok K ok K o KKK K oK K oK KKK KSR K oK o KKK K oK K ok KK Kok K ok KKKk ok Kok Kok ok )

(** Now we define the mass counter-terms and perform the corresponding #*x*)

(** insertions over the counter-term diagrams. An additional *%)

(** eps-expansion up to 0(eps~0) is performed. *%k)
(*************************************************************************)

Tln_] := nx(1/2) ;

DRRenConst [const_] := Block[ {s1,s2,ji,j2,01,02,g1,g2},

(* Notation of the counter-terms are the same of the MSSMCT.mod file of FeynArts *)
changesDRbar={

ditteA->0, ditteB->0, d2tteA->0, d2tteB->0, dilbbeA->0, dlbbeB->0, d2bbeA->0, d2bbeB->0,

dlggeA->0, d2ggeA->0, dlggeB->0, d2ggeB->0, dlsusuee->0, d2susuee->0, dlsdsdee->0,
d2sdsdee->0, dittAA -> 0, d2ttAA -> 0, d1ttAB -> 0, d2ttAB -> 0, dittHA -> 0, d2ttHA -> O,



129

dittHB -> 0, d2ttHB -> 0, diAsusu -> 0, d2Asusu -> 0, dilhsusu -> 0, d2hsusu -> O,
diHsusu -> 0, d2Hsusu -> 0, dlsdsdsusu -> 0, dlsusususu -> 0, dittgA -> 0, dittgB -> O,
dlsusug -> 0, digltstA -> 0, digltstB -> 0, digltstcgA -> 0, dlgltstcgB -> O,
diststglgl -> 0, ditthA -> 0, d2tthA -> 0, ditthB -> 0, d2tthB -> 0, dlAAsusul[__]->0,
d2AAsusul[__]1->0, dihhsusul[__]->0, d2hhsusul__]->0

};

expression = {

dZGlA[gl_,g2_]1 :> 0,
dzG1lBlgl_,g2_1 :> 0,
dZGlC[gl_,g2_1 :>(-I/2)*SUNDeltalgl, g2]*(Gstrong~2/(16*Pi~2))*( -3 )*MGl/$eps,
dZG1D[gl_,g2_]1 :> (-I/2)*SUNDeltalgl, g2]*(Gstrong~2/(16xPi~2))*( -3 )*MG1l/$eps,

dZsdA[s1_,s2_,j1_,j2_,01_,02_]1 :> O,
dZsdB[s1_,s1_,j1_,j2_,01_,02_]1 :> (-I)*(Gstrong~2/(12*Pi~2))*SUNFDeltalol, 02]
* (-4*MG1"2) *(1/$eps),
dZsdB[ 1, 2, j1_,j2_,01_,02_] :> O,
dzsdB[ 2, 1, ji_,j2_,01_,02_1 :> 0,

dZsuA1[s1_,s2_,j1_,j2_,01_,02_]1 :> O,
dZsuA2([s1_,s2_,j1_,j2_,01_,02_]1 :> O,
dZsuB1[s1_, s1_, 1, j2_, ol_, 02_]1 :> (-I)*(Gstrong~2/(12%Pi~2))*SUNFDeltal[ol, o02]
*x(-4*MG1"2) *(1/$eps) ,
dZsuB1[1, 2, 1, j2_, ol_, 02_] :> 0,
dZsuB1[2, 1, 1, j2_, ol_, 02_]1 :> O,
dZsuB1[s1_, s1_, 2, j2_, ol_, 02_] :> (-I)*(Gstrong~2/(12%Pi~2))*SUNFDeltal[ol, o02]
* (-4*MG1"2)*(1/$eps) ,
dZsuB1[1, 2, 2, 2, ol_, 02_]1 :> 0,
dZsuB1[2, 1, 2, 2, ol_, 02_] :> 0,

dZsuB1[s1_, s1_, 3, 1, ol_, 02_] :> (-I)*(Gstrong~2/(12xPi~2))*SUNFDeltalol, o02]
*(-4*MG1"2) *(1/$eps) ,

dZsuB1[s1_, si_, 3, 2, ol_, 02_] :> (-I)*(Gstrong~2/(12%Pi~2))*SUNFDeltal[ol, o02]
*(-4*MG1"2) *(1/$eps) ,

dZsuB1[1, 2, 3, 1, ol_, 02_] :> 0,
dZsuB1[2, 1, 3, 1, ol_, 02_] :> 0,
dZsuB1[1, 2, 3, 2, ol_, 02_] :> 0,
dZsuB1[2, 1, 3, 2, ol_, 02_] :> 0,
dZsuB1[1, 1, 3, 3, ol_, 02_] :> (-I)*(Gstrong~2/(4*Pi~2))*SUNFDelta[ol, o02]*

CFx( -MG1"2 - MT"2 + MGl*MT*Sin[2*tht]
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+ Sin[2*tht] "2« (MSf[2, 3, 3]°2 - MSf[1, 3, 3]172)/4 )*1/$eps,

dZsuB1[2, 2, 3, 3, ol_, 02_] :> (-I)*(Gstrong~2/(4*Pi~2))*SUNFDeltalol, 02]%*

CF*( -MG1"2 - MT"2 - MGl*MT*Sin[2*tht]
+ Sin[2*tht]"2«(MSf[1, 3, 3]°2 - MSf[2, 3, 3]172)/4 )*1/3$eps,

dZsuB1[1, 2, 3, 3, ol_, 02_] :> (-I)*(Gstrong~2/(4*Pi~2))*SUNFDeltal[ol, 02]*

CF*Cos [2*tht] *( MG1*MT
- Sin[2*tht]*(MSf[1, 3, 3]°2 - MSf[2, 3, 3]1°2)/4)*1/$eps,

dZsuB1[2, 1, 3, 3, ol_, 02_] :> dZsuBi[1, 2, 3, 3, o1, o02],

dZsuB2[1, 1, 3, 3, ol_, 02_] :> (-I)*( (Gstrong~2/(4*Pi~2)) 2*SUNFDeltal[ol, o02]*

(CF"2%( Cos[2+tht] ~2«MG1~2*MT"2/(MSf[1, 3, 3]°2-MSf[2, 3, 3]172)
((1+Cos [2*tht] "2)*Sin[2*tht] "2+« (MSf[1, 3, 3]"2-MSf[2, 3, 3]72)
8+MT"2) /16 - (1+Cos[2*tht]~2)*MGL*MT*Sin[2*tht]/2 )

CA*CF*( 9*MG1"2/8 + 3*(Sin[2*tht] 2% (MSf[1, 3, 3]"2-MSf[2, 3, 3]°2)
4*MT~2) /32 - 3*MG1*MT*Sin[2*tht]/4 )

CF*T[6]*( -3*MG1"2/4 - (Sin[2*tht]~2x(MSf[1, 3, 3]"2-MSf[2, 3, 3]"2)
4+MT~2)/16 + MGL*MT*Sin[2*%tht]/2 ) )*(1/$eps~2)
(Gstrong~2/(4%Pi~2)) "2*SUNFDeltal[ol, 02]*( CF~2*( 3*MGl~2/4
(Sin[2*tht] "2x(MSf[1, 3, 3]1°2-MSf[2, 3, 3]72)+4*MT"2)/16

MG1*MT*Sin [2*tht]/2)

CA*CF*( -11*MG1"2/8 - 3x(Sin[2*tht]~2x(MSf[1, 3, 3]"2-MSf[2, 3, 3]72)
4*MT"2) /32 + 3*MG1*MT*Sin[2*tht]/4)

CF*T[5]*( 3*MG1"2/4 + (Sin[2*tht] 2*(MSf[1, 3, 3]"2-MSf[2, 3, 3]°2)
4xMT"2+8%MSq~2) /16 - MG1*MT*Sin[2*tht]/2)

CF*T[1]*( 3*MG1~2/4 + (Sin[2*tht] 2x(MSf[1, 3, 3]"2-MSf[2, 3, 3]172)
- 4AxMT~2+4*MSf [1, 3, 3]"2+4MSf[2, 3, 3]172)/16 - MGl*MT*Sin[2*tht]/2)
)*(1/$eps) + (Gstrong~2/(4*Pi~2)) 2xSUNFDeltal[ol, o02]*

Meps~2*x (- CA*xCF*3/8 + CFxT[6]*1/4)*(1/$eps)

- (Gstrong~2/(4%Pi~2)) ~2*SUNFDeltal[ol, o2]*(MSf[1, 3, 3]"2

- MSf[2, 3, 3]172)"(-1)*CF~2#*Cos[2*tht] "2*( MG1*MT -

Sin[2*tht]*(MSf[1, 3, 3172 - MSf[2, 3, 3]1°2)/4)"2x(1/$eps~2) ),

o+ o+ o+ o+ o+ A+ o+

+ o+ o+ o+ +

dZsuB2[2, 2, 3, 3, ol_, 02_] :> (-I)*( (Gstrong~2/(4*Pi~2)) "2xSUNFDeltalol, 02]*(

o+ o+ o+ + o+

+ o+ o+ o+

CF~2*( Cos[2*tht] "2*MG1~2*MT"2/(MSf[2, 3, 3]"2-MSf[1, 3, 3]1°2)
((1+Cos[2*tht] "2)*Sin[2*tht] ~2* (MSf[2, 3, 3]"2-MSf[1, 3, 3]"2)+8*MT"2)/16
(1+Cos [2*tht] ~2) *MG1*MT*Sin [2*tht] /2 )

CA*CF*( 9*MG1~2/8 + 3*(Sin[2*tht] 2*x(MSf[2, 3, 3]"2-MSf[1, 3, 3]°2)
4%MT~2) /32 + 3*MGL*MT*Sin[2*tht]/4 )

CFxT[6]*( -3*MG1~2/4 - (Sin[2*tht] 2*x(MSf[2, 3, 3]°2

MSf[1, 3, 3]1°2)+4*MT~2)/16 - MG1*MT*Sin[2+tht]/2 ) )*(1/$eps~2)
(Gstrong~2/(4*Pi~2)) "2xSUNFDeltal[ol, 02]*( CF~2x( 3*MG1"2/4
(Sin[2*tht] "2* (MSf[2, 3, 3]"2-MSf[1, 3, 3]"2)+4*MT"2)/16
MG1*MT*Sin[2*tht]/2)

CA*CF*( -11%MG1~2/8 - 3*(Sin[2*tht] "2*x(MSf[2, 3, 3]°2

MSf[1, 3, 3]172)+4*MT"2)/32 - 3*MG1*MT*Sin[2*tht]/4)



131

CFxT[5]*( 3*MG1~2/4 + (Sin[2*tht] 2*x(MSf[2, 3, 3]"2-MSf[1, 3, 3]°2)
4+MT"2+8%MSq~2) /16 + MGL*MT*Sin[2*tht]/2)

CF*T[1]*( 3*MG1~2/4 + (Sin[2*tht] 2+« (MSf[2, 3, 3]"2-MSf[1, 3, 3]172)
4+MT"2+4xMSf [2, 3, 3]"2+4MSf[1, 3, 3]172)/16 + MGL*xMT*Sin[2*tht]/2)
)*(1/$eps) + (Gstrong~2/(4*Pi~2)) "2xSUNFDeltal[ol, 02]*Meps~2x(- CA*xCFx3/8
+ CF*T[6]*1/4)*(1/$eps)

+ (Gstrong~2/(4*Pi~2)) ~"2xSUNFDeltalol, o2]*x(MSf[1, 3, 3]"2

- MSf[2, 3, 3]172)"(-1)*CF~2*Cos [2*tht] "2*( MGL1*MT -

Sin[2*tht]*(MSf[1, 3, 3172 - MSf[2, 3, 3172)/4)"2x(1/$eps~2) ),

+ o+ o+

dZsuB2[1, 2, 3, 3, ol_, 02_] :> (-I)*( (Gstrong~2/(4*Pi~2)) 2*SUNFDeltalol, 02]*(
CF~2%Cos[2*tht]*((Sin[2*tht] ~2-Cos [2*tht] ~2) * (MG1*MT/2
- Sin[2*tht]*(MSf[1, 3, 3]°2-MSf[2, 3, 3]°2)/16)
- 2xSin[2*tht] *MG1~2*MT~2*x(MSf [1, 3, 3] 2-MSf[2, 3, 3]"2)"(-1) )
+ CF*CA*Cos[2*tht]* (-3*MG1*MT/4 + 3*Sin[2*xtht]*(MSf[1, 3, 3]°2
- MSf[2, 3, 3]°2)/32)
+ CF*T[6]*Cos[2*tht]*(MG1*MT/2 - Sin[2*tht]*(MSf[1, 3, 3]"2
- MSf[2, 3, 3]72)/16) )*(1/$eps~2)
+ (Gstrong~2/(4*Pi~2)) "2xSUNFDeltal[ol, 02]*( CF~2xCos[2xtht]*( -MG1*MT/2
+ Sin[2*tht]*(MSf[1, 3, 3]"2-MSf[2, 3, 3]°2)/16 )
+ CF*CA*Cos[2*tht]*( 3*MG1*MT/4 - 3*Sin[2*tht]*(MSf[1, 3, 3]°2
- MSf[2, 3, 3]°2)/32)
+ CF*T[6]*Cos[2*tht]*(-MG1*MT/2 + Sin[2*tht]*(MSf[1, 3, 3]°2
- MSf[2, 3, 3]172)/16) )*(1/$eps)
+ (Gstrong"Q/(4*Pi“2))”2*SUNFDe1ta[01, 02]*(MSf[1, 3, 3]°2
- MSf[2, 3, 3]°2)"(-1)*CF*Cos[2*%tht]*( MG1*MT -
Sin[2*xtht]*(MSf[1, 3, 3]°2 - MSf[2, 3, 3]1°2)/4)*( CFx( -MG1~"2 - MT"2
+ MG1*MT*Sin[2*tht] + Sin[2*tht]"2*(MSf[2, 3, 3]1°2 - MSf[1, 3, 3]1°2)/4)
CF* (-MG1~2-MT~2-MG1*MT*Sin[2*tht]+Sin [2*tht] "2*x(MSf[1, 3, 3]"2
MSf[2, 3, 3172)/4) )*(1/$eps~2) ),

dZsuB2[2, 1, 3, 3, ol_, 02_] :> dZsuB2[1, 2, 3, 3, ol, 02],

dZquAl[j1_,j2_,01_,02_] :> O,
dZquB1[j1_,j2_,01_,02_] :> O,
dZquC1[3, 3,01_,02_] :> (-I/2)*( -(Gstrong~2/(4*Pi"~2))
xSUNFDeltal[ol, 02]*(2*CF*MT)=*(1/$eps) ),
dZquD1[3, 3,01_,02_] :> (-I/2)*(-(Gstrong~2/(4*Pi"2))
*SUNFDeltal[ol, 02]*(2*CF*MT)*(1/$eps) ),
dZquA2[j1_,j2_,01_,02_] :> O,
dZquB2[j1_,j2_,01_,02_] :> O,
dZquC2[3, 3,01_,02_] :> (-I/2)*(Gstrong~2/(4*Pi~2)) "2*SUNFDeltalol, 02]
*(((1/$eps™2) * (3xCA*CF+2*CF~2-2*CF*T [6] )+ (1/$eps) * (-3*xCA*CF+2*CF~2+2*CF*T [6] ) ) *MT) ,
dZquD2([3, 3,01_,02_] :> (-I/2)*(Gstrong~2/(4+¥Pi~2)) "2+SUNFDeltalol, 02]
*(((1/$eps™2) * (3xCA*CF+2*CF~2-2*CF*T [6] ) + (1/$eps) * (-3*CA*CF+2xCF ~2+2*CF*T [6] ) ) *MT) ,
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dZGG1 -> 0
s
Return[ MagicSimplify[const /. changesDRbar //. expression, Feedback->False] ];

1;

(* Inserting the mass counter-terms and expanding in epsilon *)

coeffeps[j_,1_] := Coefficient[ DRRenConst[epsampse[1]], $eps, -j]
ampepsB[m_] := $eps”(1-m)*(Plus @@ ParallelTable[ coeffeps[m-1,1], {1,1,$Lamp}])

ampLexp = Map [ampepsB[#]&, Range[6]];

Put [ampLexp, ToFileName [{TempDirName}, "AmpLexp"]]; (* Save a backup! *)
Clear [ampLexp, epsamps, reduamps];

ParallelEvaluate[

Clear [ampLexp, epsamps, reduamps];

1;

Print["The End!"]

CloseKernels|[];

Quit([];



L. EFT loop functions

This appendix contains a list of loop-functions that appears in the stop and the gaugino-
higgsino contributions to the threshold corrections of the Higgs quartic coupling A\ [121]
introduced in the vacuum stability analysis described in Section 4.4.

xlnz?

Rx) = 5, (L-1)
Fyz) = 62%[2— 2(22 4_— (11)3—1— x*)Inz?| | (1-2)
Fyz) — 2z[5(1 — a;)(l:—_(ll; 4x*)Inx?] ’ (L-3)
Fy(z) = Zﬂigi;?xﬁ (L-4)
Fiz) = 3z(1 —(lx_—i;j)i Inz?) (L-5)
Ro) = 228 Lr@=2 . (L-6)

10— " 20 2p
—3(z* —62>+1)  3az*(2?—3)

F(z) = 2 GZ 1) + @ 1) Inz?, (L-7)
Fy(z1,29) = -2 + P 3 2 <I;E 1lnx% — %lnxg) , (L-8)
Fy(z1,29) = pe i p (x%xi 1lnx% — %lnzg) . (L-9)
fr) = Kl(r), G(r) = Fx(r), (L-10)
e o
L) = 2572;}—_111))27‘2 N 2 (57:(;2 1_7)17;1n7“2 | (L-12)
L) = 2 (;4(:-2 9_7“21; 2) L 2 (r —3(777:22 _— 16))37"21n7"2 | (L13)
A = 2 (5r + 2512 +6) N 2(rt — 1972 — 18) T21n7’27 (L-14)

7(r2 —1)° 7(r2 —1)°
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14 (ry +19)? —rir2

r3(r? + 1) Inr?

r3 (rs + 1) Inr3

4
4 _ . (L-15
R 1 R N e L PRy R e e A
7 2 412 4+ riry — r2r2 rolnr? r2lnr2
~fo(ri,ra) = = : 22 ~ 3 12 . - i 5, (L-16)
6 (ri =1)(r3 = 1) (ri=1)2(ri —12)  (r1—mr)(r3 —1)
1 1+rire ri”lm’f r%lnr%
1 _ _ (117
g /1) (=131 (=120 —m) (r1—r2)(r3—1)2 A7
2 _ r1+ 7o rinr? ralnrs (L-15)

§f8(r17 7“2)

(rf =1 (3 - 1)

(ri =1)2(r1 — o)

RCESICEDE

All the above functions are equal to 1 when their arguments approach to unity, with the

exception of Fy which tends to 0.
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