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Resumen

En esta tesis proporcionamos un cálculo diagramático a orden fijo de las correcciones cuánti-

cas a la masa del boson de Higgs liviano en el modelo super-simétrico minimal con parámetros

reales. Hemos calculado las contribuciones provenientes del sector de la QCD super-simétri-

ca con una precisión de tres-loops al orden O(αtα
2
s). El procedimiento de regularización

adoptado esta basado en el esquema de reducción dimensional con el fin de preservar la

super-simetŕıa en todos los ordenes perturbativos. El cálculo extiende la región de validez

de estudios previos al espacio completo de parámetros super-simétricos. Las correcciones

a la masa del Higgs son expresadas en términos de un conjunto de integrales del vaćıo a

tres-loops las cuales han sido calculadas explotando las técnicas del método de dispersión

que permite realizar su evaluación numérica para una jerarqúıa arbitraria de las escalas de

masa involucradas. Por otro lado, hemos realizado una comparación numérica de nuestros

resultados con las demás predicciones teóricas encontradas en la literatura. En particular,

el código FeynHiggs combina cálculos a orden fijo con los cálculos provenientes de la teoŕıa

efectiva de campos cuánticos dando una predicción confiable para la masa del boson de Higgs

hasta el orden de tres-loops. Las dos predicciones numéricas son compatibles en el escenario

donde solo hay una escala de la super-simetŕıa que toma valores menores a 10 TeV y donde

el parámetro de mezcla del quark stop se anula. Para escalas mayores a 10 TeV observamos

diferencias numéricas significativas. La diferencia crece sin acotarse al aumentar la escala de

la super-simetŕıa debido a los efectos de los términos con logaritmos grandes en el cálculo a

orden fijo que dañan la perturbatividad de las correcciones cuánticas. Por lo tanto, hemos

realizado un análisis numérico adicional donde buscamos restricciones al valor que puede

tomar la escala super-simétrica. El valor experimental combinado para la masa del boson

de Higgs obtenido por los laboratorios CMS y ATLAS y el problema de la estabilidad del

vaćıo en el modelo estándar son usados para derivar cotas superiores sobre esta escala. En

el escenario considerado en este trabajo, para un valor grande de la razón entre los valores

esperados en el vaćıo de los dos campos de Higgs pares bajo CP (tanβ ≥ 10), hemos encon-

trado que valores de la escala super-simétrica superiores a 12.5 ± 1.2 TeV están excluidos.

Para valores pequeños de tanβ ≈ 1, una cota superior muy grande de alrededor de 1011 GeV

fue encontrada.

Abstract

In this thesis we provide a fixed-order Feynman diagrammatic computation of the quan-

tum corrections to the lightest CP-even Higgs Boson mass in the real version of the Mi-

nimal Supersymmetric Standard Model. We have computed the contributions coming from

the SUSY-QCD sector with a precision of three-loops at order O(αtα
2
s). The adopted re-



x

gularization procedure is based on the dimensional reduction scheme in order to preserve

supersymmetry to all perturbative orders. The calculation extends the region of validity of

previous studies to the whole supersymmetric parameter space. The Higgs mass corrections

are expressed in terms of a set of three-loop vacuum integrals which have been computed

by exploiting dispersion relation techniques which allows their numerical evaluation for an

arbitrary hierarchy of the involved mass scales. A numerical comparison of our results with

the other predictions found in literature has been done. In particular, the code FeynHiggs

combines one- and two-loop fixed-order with the effective-field-theory calculations and gives

a reliable prediction for the same Higgs mass at three-loop level. The two numerical pre-

dictions agree considering the scenario of only one SUSY-scale and vanishing stop mixing

parameter below 10 TeV. For large scales above 10 TeV we have observed sizeable numerical

differences between the two predictions. The difference grows monotonically with the SUSY

scale due to the effects of large logarithmic terms in the fixed-order computation which

spoil the perturbativity of the corrections. Therefore, we have developed an additional nu-

merical analysis where we look for constraints on the supersymmetric scale. The combined

CMS/ATLAS Higgs mass value and the vacuum stability problem of the SM are used to

derive an upper bound on the needed SUSY scale. In the considered scenario, for a large size

of the ratio between the vacuum expectation values of the two CP-even Higgs boson fields

(tanβ ≥ 10), values above the SUSY scale 12.5± 1.2 TeV are excluded. For small values of

tanβ ≈ 1, a higher upper bound of about 1011 GeV was found.

Keywords: Higgs boson mass, Supersymmetry, rMSSM, SQCD, Self-energy, Tadpole,

Vacuum integral, Dispersion method.
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1. Introduction

The discovery of the Higgs boson particle by the ATLAS and CMS experiments at the CERN

Large Hadron Collider (LHC) [4, 5] and the rather precise knowledge of its mass, M exp
h =

125.09± 0.24 GeV [6–8], and of its couplings [6] to the other Standard Model (SM) particles

represent a significant progress in our understanding of the electroweak symmetry breaking

mechanism. The SM extrapolated up to the Planck scale (ΛP =
√
~c/G = 1.22× 1019 GeV)

is theoretically consistent with the inclusion of the ATLAS/CMS Higgs boson in the sense

that no Landau pole [9] emerges. However, the metastable nature of the electroweak va-

cuum [10–15] as well as the unsolved hierarchy problem [16–18], which leads to an unnatural

high amount of fine-tuning (1034) for the prediction of the Higgs boson mass at the electro-

weak scale (ΛEW ≈ 102 GeV), arises the question whether the LHC Higgs boson is actually

the SM Higgs or a new dynamics with additional degrees of freedom beyond the Standard

Model (BSM) regulate the Higgs sector. In this thesis we focused our analysis on two working

hypotheses. The first one is the so called desert scenario [19] in which the SM is valid up

to ΛP and the Higgs boson is considered as an elementary weakly coupled particle. In this

approach a precise running of the SM parameters in a well defined renormalization scheme

is mandatory. Using the LHC measured value of the Higgs mass and the combination of the

three-loop beta functions and two-loop matching conditions, the running of the relevant SM

parameters (the three gauge couplings, the top Yukawa coupling and the Higgs self-coupling)

are found to remain perturbative up to the Planck scale [20]. The Landau pole is located at

a scale much larger than ΛP and therefore we can reasonably assume that no new physics

appears up to the scale where the gravitational interactions are not suppressed. The vacuum

stability analysis imposes more stringent constraints about the behaviour of the SM at large

energy scales close to ΛP . Due to the borderline behaviour of the SM which lies in a near-

critical position between the absolute stability and the metastability phases, the current

status of the studies of the vacuum stability problem urges a precise definition and compu-

tation of the Higgs boson mass, the top quark mass and their corresponding uncertainties.

In this analysis the near-criticality of the Higgs boson self-coupling and its beta-function is

used as guideline to go beyond the SM [21]. These arguments assume the existence of a mul-

tiverse ruled by anthropic selection rules where the Higgs parameters found in our universe

are not at all special, in fact, they correspond to the most likely occurrence in the multiverse.

In the desert scenario, however, there are still several puzzles that remain unsolved by the

SM dynamics. The neutrino oscillation, the identification of the dark matter, the baryon

asymmetry, among others, are all left unanswered and require new BSM physics. Besides, if
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one insists that naturalness would represent a real problem of the theory, then one has to

conclude that the new physics has to appear about the TeV scale in the coming experiments

at the LHC and future colliders, like the International Linear Collider (ILC) [22] and Future

Circular Collider (FCC) [23]. The above are strong physical arguments to believe that the

SM is actually a low energy effective field theory (EFT) coming from a more fundamental

model which includes new physical degrees of freedom. In this second approach deviations

from the SM in the dynamics of the Higgs are expected and can be used to obtain indirect

information about the nature of the completion of the SM at higher energy scales. The best

motivated and the most intensively studied framework of new physics, providing a widely

amount of precise predictions for experimental phenomena at the TeV scale, is formulated

as a supersymmetric extension of the SM, the Minimal Supersymmetric Standard Model

(MSSM) [24–31]. The supersymmetry (SUSY) is the only symmetry that correlates boso-

nic and fermionic degrees of freedom. One of the main motivations to introduce it is the

possibility to provide a solution to the hierarchy problem which emerges in the Standard

Model when there is a large hierarchy between the energy scale that characterizes electro-

weak symmetry breaking and the scale of new physics [32–35]. Due to the introduction of

the Higgs scalar sector into the Lagrangian of the Standard Model, the quantum correc-

tions to the Higgs boson mass contain quadratic divergences. In the scenario where new

physics appears only up to the Planck scale, it is necessary an unnatural fine-tuning of 32

significant digits in order to get the prediction of the Higgs mass at ΛEW , where the Higgs

boson particle was found, from the mass evaluated at ΛP . In the minimal supersymmetric

extension to the SM the radiative corrections to the Higgs boson mass with SM gauge boson

loops are also quadratically divergent. However, the contributions coming from a new kind

of particles, the supersymmetric partners of the gauge bosons (the gauginos), have the same

dependence on the cut-off scale but with opposite sign and cancel in this way the unwanted

quadratic divergences. Moreover, the inclusion of additional supersymmetric particles make

the effective potential stable, thus the MSSM can also cure the vacuum stability problem.

It is worth to mention that MSSM also provides a dark matter candidate, a mechanism to

explain the neutrino oscillations and a framework to include gravitational interactions since

supersymmetry is a fermionic extension of the Poincare space-time symmetry.

In the MSSM the Higgs sector contains two SU(2) doublets of scalar fields whose interactions

with gauge bosons and matter fermions can recover the SM-like couplings in a decoupling

limit where the 125 GeV LHC signal is associated to the lightest CP-even Higgs boson with

a mass Mh which is not a free input parameter but a prediction coming from the parame-

ters of the theory. The upper bound on its predicted mass at leading order (LO) is given

by the Z0 gauge boson mass, MZ0 = 91.2 GeV, leading to the exclusion of the MSSM at

current collider experiments. Nevertheless, higher order quantum corrections to Mh lead to

a large shift in the upper limit (∆Mh ≈ 40 GeV), where the bulk of the corrections comes

from the supersymmetric quantum chromo-dynamics (SQCD) sector of the Lagrangian, and

makes the MSSM Higgs whose interactions with sector compatible with the mass and the
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detected production rates of the LHC Higgs-like signal over a wide range of the parameter

space of the relevant phenomenology scenarios [36–39]. The determination of the theoretical

uncertainty associated to the Mh-prediction requires a very precise calculation. Based on the

missing higher order contributions to the Higgs self-energies, to the running of the gauge

and Yukawa couplings, and also on the renormalization scheme dependence, the theoretical

combined uncertainty associated to the determination of Mh has been estimated to be about

1 to 5 GeV [40,41]. However, the experimental uncertainty is expected to reach a value of the

order of 100-200 MeV at the LHC [42] and this can go even down at future colliders, estima-

ted to roughly 50 MeV at ILC [43]. Thus, an accuracy computation of Mh is mandatory in

order to lead the theoretical uncertainty to the same order as the expected experimental one.

Our contribution follows this guideline. In this thesis we provide an alternative calculation

of the lightest Higgs boson mass in the SQCD sector of the real version of the MSSM with

a precision of three-loops at order αtα
2
s. We have followed the Feynman diagrammatic (FD)

procedure to obtain a renormalized correction in the DR scheme [44–47]. The regulariza-

tion procedure adopted is based on the dimensional reduction scheme in order to preserve

supersymmetry to all perturbative orders. Taking in mind that in the MSSM is no clear a

priori what are the hierarchies of the masses, we have avoided the application of asymptotic

expansions at the integral level and we have obtained the quantum corrections in terms of

a set of three-loop master integrals whose numerical evaluation is possible for an arbitrary

mass hierarchy thanks to the development of new calculation techniques based on the disper-

sion method [48–54]. Thus, our calculation extends the region of validity of previous studies

to the whole supersymmetric parameter space. The basis of three-loop master integrals con-

tain logarithmic terms of the form lnn(MSUSY /ΛEW ) for n ≤ 3 which can spoil the good

perturbative behavior of the quantum corrections when the supersymmetric scale (MSUSY )

is significantly larger than ΛEW (which we identify in this work with the top mass Mt).

Therefore, a fixed-order computation of Mh could become inadequate and the calculation

of the Higgs mass has to be reorganized in an effective field theory approach. In order to

study the effects of the large logarithmic terms we have done a numerical comparison of

our three-loop fixed-order predictions with the other fixed-order and EFT results found in

literature. We have decided to use the fixed-order and EFT hybrid calculations currently

included in the codes H3m [55] and FeynHiggs [56], which seems to give a reliable three-loop

predictions of the Higgs boson mass up to large SUSY scales, to make a cross check with our

results. In the EFT considered in FeynHiggs, the heavy SUSY particles are integrated out at

the scale MSUSY in the decoupling limit where MSUSY �Mt, while the SM renormalization

group equations (RGEs) are used to evolve the couplings between the SUSY scale and the

EW scale in such a way that the Mh-corrections are free of large logarithmic terms. We have

assumed the same decoupling limit for the SUSY scale over our three-loop Mh predictions

in order to size the numerical effect of the logarithmic terms for large MSUSY values. Having

in mind that the fixed-order corrections to Mh contain the effects of large logarithms, it is



5

natural to ask how large the SUSY scale can be in order not to spoil the convergence of

the perturbative expansion. Thus, we also include in this work a phenomenological analysis

about the compatibility of the experimental observations at the LHC for the Higgs boson

mass and its combined uncertainty with the region of parameters in a specific MSSM bench-

mark scenario in order to find upper and lower bounds on the needed supersymmetric scale.

However, the bounds obtained are valid just for large values of the ratio between the vacuum

expectation values of the two CP-even Higgs bosons (tanβ). For small values of tanβ we will

show that the vacuum stability analysis in the Standard Model can give additional upper

bounds on MSUSY as a function of Mh. The constraints on the SUSY scale can be derived

by studying the absolute stability condition of the Higgs effective potential in an approach

where the SM is a low-energy EFT of the real MSSM and the Higgs quartic self-coupling

correlates the high SUSY scale with the low scale ΛEW through the renormalization group

equations.

The plan of the thesis is the following. Chapter 2 contains a description of the Higgs sector

and SQCD sector of the MSSM with real parameters at tree-level. In particular, we derive

the expressions of the mass matrices for the neutral and charged MSSM Higgs bosons and we

study the electroweak symmetry breaking on the MSSM Higgs potential. The tree-level mass

matrices are used to derive a prescription for the renormalization of the neutral Higgs boson

masses. Thus, this chapter also contains a complete description of the regularization scheme

and the necessary renormalization conditions to obtain the quantum corrections to Mh at

three-loop level in the gaugeless limit. We lastly review the state of art of the fixed-order

and EFT calculations of the lightest Higgs boson mass.

Chapter 3 and Chapter 4 contain the main results of our project. In Chapter 3 a detailed des-

cription of our three-loop computation of Mh is presented. We discuss the technical details to

the renormalization procedure adopted and in particular to the evaluation of the three-loop

Feynman integrals involved. The three-loop corrections contain non-local divergences that

must be removed with an additional subrenormalization procedure that will be discussed

in this chapter. A numerical analysis, where the effects of the three-loop corrections on the

pole mass Mh evaluated at some kinematic limits and the study of the dependence of Mh

on the SUSY parameters, is included. This comprises a comparison with the other higher

order predictions coming from the fixed-order computations implemented in the public codes

FeynHiggs and H3m.

The basis of three-loop master integrals obtained in our calculation can spoil the conver-

gence of the perturbative corrections to Mh when the SUSY scale grows up to an arbitrary

large energy. We therefore provide in Chapter 4 a discussion about the effects of the large

logarithms involved in the fixed-order calculation at large SUSY scales and a phenomenolo-

gical analysis where some constraints on the needed SUSY scale coming from two sources
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are determined. First, we study the compatibility of the region of parameters in a realistic

MSSM benchmark scenario with the LHC Higgs boson mass value and its corresponding

experimental uncertainty and we derived lower and upper bounds on the SUSY scale. We

further explore the SUSY scale constraints from the vacuum stability analysis. We review

the vacuum stability problem in the SM and we use the absolute stability condition derived

from the Higgs effective potential in a low-energy EFT of the real MSSM to derive additional

upper bounds on the SUSY scale.

Finally, we give our conclusions and perspectives in Chapter 5.



2. The Higgs Bosons of the real MSSM

(rMSSM)

In this chapter we are going to review the structure of the Higgs sector of the MSSM with

real parameters (rMSSM). We review the rMSSM classical Higgs potential and discuss the

electroweak and SUSY breaking mechanisms. We also derive the expressions for the Higgs

bosons mass matrices at tree-level and we use them to formulate a prescription to renormalize

the quantum corrections to the physical Higgs boson masses in the EW gaugeless limit up to

three-loop level. Besides, we go over the supersymmetric extension of the quantum chromo-

dynamics (SQCD sector) and we describe the renormalization of the squark masses and

mixing angles up to two-loop level, which will be important when quantum corrections

to the Higgs boson masses beyond one-loop order be incorporated since two- and three-

loop diagrams contain non-local UV divergences. We have also included a discussion of the

renormalization of the gluino and the top quark masses. Finally, the current status of the

higher-order quantum corrections to the Higgs boson masses are reviewed.

2.1. The rMSSM Higgs sector at tree-level

Supersymmetry is the only fermionic generalization of the Poincaré symmetry of the space-

time which transforms fermions into bosons and vice versa. The existence of such a non-trivial

extension of the Poincaré symmetry is highly constrained by theoretical principles [57, 58].

The minimal supersymmetric extension of the Standard Model consists of the fields contained

in the two-Higgs-doublet extension of the SM (2HDM) and their corresponding superpart-

ners. The field content of the MSSM is summarized in Table 2-1 [59]. The MSSM spectrum

contains three gauge supermultiplets which consist of the gluons and their gluino fermionic

superpartners and the EW gauge bosons and their gaugino superpartners. The matter super-

multiplets consist of three generations of left-handed quarks and their scalar superpartners,

the squarks. Three generations of left-handed leptons and their associated sleptons, and the

corresponding antiparticles of all the fermions. The Higgs supermultiplets consists of two

complex Higgs doublets, their higgsino fermionic superpartners and the corresponding anti-

particles. In order to guarantee the cancellation of anomalies coming from the introduction

of the higgsino superpartners and preserve supersymmetry and gauge invariance, the Higgs
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Super-Multiplet Super-field Bosons Fermions SU(3) SU(2) U(1)

gauge/ino

V̂8

V̂

V̂ ′

g

W±, W 0

B

g̃

W̃±, W̃ 0

B̃

8

1

1

1

3

1

0

0

0

s/lepton
L̂

Êc

(
ṽL, ẽ

−
L

)
ẽ+
R

(v, e−)L
ecL

1

1

2

1

−1

2

s/quark

Q̂

Û c

D̂c

(
ũL, d̃L

)
ũ∗R
d̃∗R

(u, d)L
ucL
dcL

3

3̄

3̄

2

1

1

1/3

−4/3

2/3

Higgs/ino
Ĥ1

Ĥ2

(
H0

1 , H
−
1

)(
H+

2 , H
0
2

)
(
H̃0

1 , H̃
−
1

)(
H̃+

2 , H̃
0
2

) 1

1

2

2

−1

1

Table 2-1.: MSSM spectrum fields and their SU(3) × SU(2) × U(1) quantum numbers. In this

table only one generation of leptons and quarks is exhibited. For each lepton and quark

super-multiplet there is associated a corresponding multiplet of scalar superpartners,

while for the Higgs super-multiplet an anti-particle multiplet of charge-conjugated

fermions is associated.

sector of the real MSSM Lagrangian [24–31] requires the definition of at least two doublets

H1 =

(
H0

1 + 1√
2
v1

H−1

)
and H2 =

(
H+

2

H0
2 + 1√

2
v2

)
, (2-1)

with an associated hypercharge Y1 = −1 and Y2 = +1, respectively. The second Higgs

doublet is necessary, moreover, to generate mass for both up- and down-type quarks as

well as charged leptons. The complex fields H0
j have neutral components which are vevless

scalar fields, H0
j = φ0

j + iχ0
j , coming from the expansion around the minima of the Higgs

effective potential, v1,2. The components H±1,2 are charged scalar fields with vanishing vacuum

expectation values (vevs) to ensure that the U(1)em symmetry will not be spontaneously

broken. The Higgs sector comes from the bare Lagrangian

LV−H = DσH†1DσH1 +DσH†2DσH2 − V (H1, H2). (2-2)

The kinetic term contains the covariant derivative

Dσ = ∂σ + ig
τa

2
W a
σ + ig′

Y

2
Bµ + igs

λα

2
Gα
σ , (2-3)

where g′, g and gs are the U(1)Y , SU(2)L and SU(3) gauge couplings respectively. The SU(2)

Pauli matrices is represented with τa while λα stands for the SU(3) Gell-Mann matrices. The

electroweak (EW) gauge bosons are defined as

W±
µ =

W 1
µ ∓ iW 2

µ√
2

;

(
Z0
µ

Aµ

)
=

(
cosθW −sinθW
sinθW cosθW

)(
W 3
µ

Bµ

)
, (2-4)
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where the EW mixing angle, θW , is related to the coupling constants g and g′ and the electric

charge, e, by

g =
e

sinθW
; g′ =

e

cosθW
. (2-5)

The classical Higgs potential, V (H1, H2), is given by

V (H1, H2) =
(
|µ|2 +m2

H1

)
|H1|2 +

(
|µ|2 +m2

H2

)
|H2|2 + b

(
εabH

a
1H

b
2 + h.c.

)
+

1

2
g2
∣∣∣H†1H2

∣∣∣2 +
1

8

(
g2 + g′2

) (
|H2|2 − |H1|2

)2
. (2-6)

The quadratic terms proportional to the higgsino mass parameter |µ|2 in eq. (2-6) come from

the F -contribution to the SUSY Lagrangian, while the terms with the EW gauge couplings

(g, g′) come from the D-contribution; thus, from the D-terms, one obtains the four scalar

vertices, which include the quartic Higgs self-interaction terms in the Higgs potential. In

contrast to the SM, the Higgs quartic self-coupling is not a free parameter but is determined

by the coupling (g2 +g′2)/8. From the F -terms, one obtains also another four scalar vertices,

but they do not contribute to the Higgs potential since contain always at least two sfer-

mions. The F and D fields are auxiliary fields that do not propagate in space-time and can

be eliminated by applying the equations of motion. As supersymmetric particles have not

been observed at the electroweak scale, supersymmetry is manifestly not an exact symmetry

of the nature and therefore must be broken. Several SUSY breaking mechanisms have been

considered [60–62] but in fact there is no consensus on how to break SUSY. In phenome-

nological application, one must introduce new terms that explicitly breaks supersymmetry

and represent the low-energy effects of the unknown breaking mechanism. In eq. (2-6) the

parameters m2
H1

, m2
H2

and b parameterize the SUSY breaking. The SUSY-invariant Lagran-

gian cannot accommodate electroweak symmetry breaking since the terms proportional to

|µ|2 are positive. Thus, the SUSY-violating parameters m2
H1

and m2
H2

, which can of course

have either sign, are needed in order to break the EW symmetry. The b-term is the only

that depends on the phases of the fields. The parameter b is real and positive and the fields

H0
1 and H0

2 have equal and opposite phases which can be reduce both to zero through a

U(1)Y gauge transformation since these fields have equal and opposite hypercharges. The

vevs, v1,2, as well as the couplings are therefore all real, which means that CP invariance is

not spontaneously broken by the classical Higgs potential of the rMSSM.

It is vital to point out that such phenomenological terms containing those SUSY breaking

parameters must be ’soft’, that is, the SUSY breaking terms must be super-renormalizable,

with mass dimension less than four, and therefore their coefficients must have positive mass

dimension. The reason is that a soft breaking term will not introduce additional divergences

into the dimensionless coupling constants which guarantee the stability of the mass hierarchy,

the cancellation of quadratically divergent corrections to scalar masses are maintained to all

perturbative orders. Besides, it is important to emphasize that the mass terms which break

SUSY and therefore the masses of the undiscovered SUSY particles do respect the SM gauge
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symmetries. The masses of the known SM particles all arise from the spontaneous breaking

of the EW symmetry.

From eq. (2-6) we can derive the linear part of the Higgs potential in the basis (φ0
j , χ

0
j , H

±
j )

where j = 1, 2. For the fields χ0
j and H±j there are no contributions since the rMSSM Higgs

potential is invariant under CP-tranformation. Thus, the linear terms read: T1φ
0
1 + T2φ

0
2,

where the coefficients Tj, better-known as Higgs tadpoles, have the expressions

T1√
2v1

=
(
|µ|2 +m2

H1

)
− bv2

v1

+
1

8

(
g2 + g′2

) [
v2

1 − v2
2

]
,

T2√
2v2

=
(
|µ|2 +m2

H2

)
− bv1

v2

+
1

8

(
g2 + g′2

) [
v2

2 − v2
1

]
. (2-7)

As the vevs v1 and v2 minimize the Higgs potential, the following stationary conditions are

satisfied:

∂V

∂|H0
j |

∣∣∣∣
〈H0

j 〉=0; 〈H±j 〉=0

= Tj = 0 ; j = 1, 2 . (2-8)

From eq. (2-8) one can identify the conditions required for the stable minimum of V . First

note that along the direction |H0
1 | = |H0

2 | the potential will be unbounded from below and

therefore it does not have a minimum unless

2 |µ|2 +m2
H1

+m2
H2
> 2b. (2-9)

Thus
(
|µ|2 +m2

H1

)
and

(
|µ|2 +m2

H2

)
cannot simultaneously take negative values. This im-

plies that the point |H0
1 | = |H0

2 | = 0 cannot be a maximum of V . If instead both mass terms

are positive, then the origin is not a minimum but a saddle point, and the minimum occur

at non-zero vevs of H0
j , when(

|µ|2 +m2
H1

) (
|µ|2 +m2

H2

)
< b2. (2-10)

The rMSSM Higgs potential develops a stable minimum if the conditions of equations (2-9)

and (2-10) are met.

Turning to the bilinear part of the kinetic terms in the Lagrangian LV−H (eq. 2-2) the masses

of the EW gauge bosons can be derived, producing the expressions

M2
W =

1

4
g2
(
v2

1 + v2
2

)
; M2

Z0 =
1

4
(g2 + g′2)

(
v2

1 + v2
2

)
; M2

A = 0. (2-11)

The mass matrices of the rMSSM Higgs bosons can be identified from the bilinear part of

the classical potential,(
φ0

1 φ0
2

)
Mφ0

(
φ0

1

φ0
2

)
+
(
χ0

1 χ0
2

)
Mχ0

(
χ0

1

χ0
2

)
+
(
H+

1 H+
2

)
MH±

(
H−1
H−2

)
, (2-12)

To derive the Mφ0-matrix the relations from eqs. (2-7) and (2-8) and the definitions

M2
A = b (cotβ + tanβ) , tanβ =

v2

v1

; 0 ≤ β ≤ π

2
, (2-13)
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are required. The tree-level mass matrix of the neutral φ0
1,2-bosons reads

Mφ0 =

 M2
Z0c2

β +M2
As

2
β +

T1√
2v1

−
(
M2

A +M2
Z0

)
sβcβ

−
(
M2

A +M2
Z0

)
sβcβ M2

Z0s2
β +M2

Ac
2
β +

T2√
2v2

 . (2-14)

We have used the short notation sβ = sin(β) and cβ = cos(β) and we have written explicitly

the contributions of the Higgs tadpoles, which vanish at tree-level according to eq. (2-8),

because they will receive non-zero loop contributions when renormalization of the Higgs

masses will be considered. Because both v1 and v2 are real and positive, the upper and lower

bound on the angle β lies on the interval shown in eq. (2-13). By other side, the tree-level

mass matrices of the χ0
1,2 and H±1,2 components are given by

Mχ0

=

 M2
As

2
β +

T1√
2v1

−M2
Asβcβ

−M2
Asβcβ M2

Ac
2
β +

T2√
2v2

 (2-15)

and

MH± =

 M2
As

2
β +

T1√
2v1

+ 1
2
g2v2

2 M2
Asβcβ + 1

2
g2v1v2

M2
Asβcβ + 1

2
g2v1v2 M2

Ac
2
β +

T2√
2v2

+ 1
2
g2v2

1

 . (2-16)

The potential can be brought into the physical basis, where the quadratic terms in the

components of Hj are diagonalized, through the rotations(
φ0

1

φ0
2

)
= D†(α)

(
H

h

)
,

(
χ0

1

χ0
2

)
= D†(β)

(
G0

A

)
,

(
H±1
H±2

)
= D†(β)

(
G±

H±

)
, (2-17)

via the orthogonal transformation

D(θ) =

(
cθ sθ
−sθ cθ

)
. (2-18)

In this basis the Higgs sector has five physical Higgs bosons, three of them are neutral: the

lightest (h) and heavy (H) CP-even Higgs bosons and the CP-odd Higgs boson (A). The

other two, H±, are charged and vevless. There are also three unphysical massless Goldstone

bosons, G0 and G±, which are absorbed by the EW gauge fields to build up their longitudinal

components just as in the SM. The angle β is linked to the vevs through eq. (2-13) while α

can be determined from the rotation of eq. (2-14) in terms of the MSSM parameters,

tan(2α) = tan(2β)
M2

A +M2
Z0

M2
A −M2

Z0

; −π
2
< α < 0 . (2-19)
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Besides of the EW boson masses of eq. (2-11), after diagonalization the rMSSM Higgs sector

is parametrized in terms of two additional parameters: tanβ and the mass of the CP-odd

Higgs boson mA. The masses of the charged Higgs bosons, m±, are linearly dependent on

mA, they are usually used in the complex version of the MSSM. Throughout this work we

use mA as input parameter. At tree-level we have:

m2
A = M2

A +
T1√
2v1

s2
β +

T2√
2v2

c2
β ; m2

± = m2
A +M2

W . (2-20)

The tree-level masses of the CP-even Higgs boson particles, h and H, follow as predictions

m2
h,H =

1

2

[
m2
A +M2

Z0 ∓
√(

m2
A +M2

Z0

)2 − 4m2
AM

2
Z0cos2 (2β)

]
. (2-21)

From the mass formulas (2-20) and (2-21) the next important inequalities can be derived:

mh ≤MZ0 ; mA ≤ mH ; MW ≤ m±. (2-22)

As a consequence, the lightest Higgs boson mass is predicted to be bounded from above

by the Z0-boson mass, mh ≤ 91.2 GeV, modulo radiative corrections. This bound follows

from the fact that the quartic coupling of the Higgs boson fields is determined by the size of

the EW gauge couplings and therefore mh is a prediction of the model in the MSSM. The

tree-level bound on mh has already been excluded by the current experimental value of the

LHC Higgs boson mass. The other Higgs boson masses grow without boundary when the

scale mA grows.

2.2. Renormalization of the rMSSM Higgs boson masses

Even if the tree-level mass of the light CP-even Higgs boson is excluded by the ATLAS/CMS

results, it is very well known that quantum corrections to mh can shift this tree-level predic-

tion by a substantial amount reaching the experimental value in a large region of the MSSM

parameters. There are three different approaches to determine higher order quantum correc-

tion to the Higgs boson masses. The first approach is based on a fixed-order calculation,

where the quantum corrections contain an explicit diagrammatic calculation of the Higgs

self-energy contributions at a given perturbative order. This procedure is invariant under

different gauge-fixing elections. The second method uses the 1PI (one-particle-irreducible)

Higgs effective potential, which is the classical potential with higher-loop radiative correc-

tions included. The renormalized Higgs boson masses are obtained here through the second

derivative of the 1PI effective potential regarding the Higgs fields evaluated at their vacuum

expectation values. Due to the potential is expanded around a constant value of the Higgs

fields, in this approach the momentum dependence of the Higgs mass corrections cannot be

taken into account. The last approach uses the EFT methods to relate the dynamics at high

energy scales with a low energy effective model of the MSSM [63]. The techniques of the
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RGEs are used here to determine the effective coupling constants where the phenomenology

is contained. We have adopted in this work the first method; therefore, we focus in this

section on the renormalization of the quantum corrections to the neutral Higgs boson mas-

ses computed following a fixed-order Feynman diagrammatic procedure. In this approach,

the renormalized CP-even Higgs boson masses are obtained by finding the zero eigenvalues

propagator matrix

(∆H)−1 = −i
(
p2 −m2

H +
∑̂

HH

∑̂
hH∑̂

hH p2 −m2
h +

∑̂
hh

)
, (2-23)

which is equivalent to solve the determinantal equation[
p2 −m2

H +
∑̂

HH

] [
p2 −m2

h +
∑̂

hh

]
−
[∑̂

hH

]2

= 0, (2-24)

where mh and mH denote the tree-level mass of h and H respectively, p is the external

momentum of the self-energies and∑̂
ψiψj

=
∑̂ (1)

ψiψj

+
∑̂ (2)

ψiψj

+ · · ·+
∑̂ (l)

ψiψj

; ψ1, 2 = h, H, (2-25)

are the corresponding Higgs self-energy corrections evaluated up to l-loop level and renor-

malized in a specific scheme. These loop corrections contain local UV divergences that have

to be removed order by order through appropriated renormalization constants according to∑̂ (l)

ψiψj

=
∑ (l)

ψiψj

+ δ(l)σ2
ψiψj

; ψ1, 2 = h, H. (2-26)

∑ (l)
ψiψj

represents the l-loop unrenormalized Higgs self-energies while the terms with delta are

the counter-terms of the CP-even Higgs boson masses which are responsible for extracting

the infinities from the self-energies and producing finite contributions useful to get numerical

predictions. Note that the self-energies and counter-terms are in the physical basis; however,

their expressions can be derived from the unphysical one (φ0
1−φ0

2 basis) after diagonalization∑ (l)

ψiψj

+ δ(l)σ2
ψiψj

= D (α)

(∑ (l)

φ0iφ
0
j

+ δ(l)σ2
φ0iφ

0
j

)
D (α)† ; j = 1, 2. (2-27)

In the following we specify the necessary conditions to obtain the constants δ(l)σ2
φ0iφ

0
j

in a

mixed OS/DR scheme. The abbreviation OS stands for an On-Shell renormalization while

DR refers to the renormalization by dimensional reduction with minimal subtraction.

The UV divergences contained in the multi-loop radiative corrections are treated through

a regularization method. There are different regularization procedures, we briefly described

two of them here: the Dimensional Regularization (DREG) [64–66] and the Dimensional

Reduction (DRED) [44–47] schemes. The latter is a modification of the DREG procedure.

In order to perform calculations in the SM the method of dimensional regularization is the
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preferred option to regularize the Feynman integrals. For this purpose, the four dimensional

space-time as well as the gauge fields are analytically continued to a D-dimensional space,

where D = 4− 2ε. The divergences are thus expressed in terms of l-order poles of the form

1/εl in the limit ε→ 0. Additionally, DREG preserves the gauge symmetries, but the chiral

symmetry and the supersymmetry are broken in this approach. Since additional degrees of

freedom are introduced in the analytic continuation to D dimensions, the number of bosonic

no longer coincides with the number of fermionic degrees of freedom and, as a consequen-

ce, supersymmetry is broken. In order to avoid this explicit supersymmetry breaking, the

method of dimensional reduction has been developed. In contrast to the dimensional regu-

larization, in DRED only the number of space-time dimensions are extended from 4 to D,

where D is less than 4, while the number of components of all other tensors, like metric

tensors, vector fields and γ matrices, are fixed to four. Fermions, on the other hand, re-

main as four-component spinors as well. The corresponding Dirac and Lorentz algebra of

the different tensor objects in the DREG/DRED schemes will be developed in more detail

in Chapter 3 and Appendix A. In the component field language, it is convenient to split the

four dimensional vector fields V µ into a D-dimensional vector V i plus a (4−D)-dimensional

field V σ, where D ≤ σ ≤ 4. The (4 − D) degrees of freedom transform as scalars under

gauge transformations and are known in literature as the ε-scalar fields. One can associate a

mass mε to these unphysical ε-scalars; however, it is important to ensure that physical ob-

servables will be independent of this parameter after renormalization. An important feature

of supersymmetric theories is the fact that the renormalized vector and ε-scalar coupling

constants must be equal, and therefore, their beta functions must be the same. To date, this

property has been explicitly proved for the SQCD vertices: gcc̄, ggg, gqq̃, g̃qq̃, qq̃ε, g̃g̃ε and

gεε up to three-loop level [67].

Both regularization procedures DREG and DRED introduce a new non-physical parameter

into the theory, the renormalization scale µr, which is meant to preserve the mass dimension

of the loop integrals and the interaction couplings. A subsequent renormalization procedure

is necessary in order to eliminate this dependency on unphysical parameters and establishes

a connection between the parameters of the theory and the physical observables, like the par-

ticles masses. The result of an exact calculation, in which all orders of perturbation theory

are taken into account, is independent of the renormalization scheme. In practice, however,

only contributions up to a certain order of the perturbative series can be considered. The

dependence on the renormalization scheme of the result of such a calculation reflects the

theoretical uncertainty caused mainly by the missing higher order contributions. This work

will distinguish between four different renormalization schemes: The DR, the MS, the DR
′

and the On-Shell scheme.

In the DR scheme, loop integrals are regularized with DRED and the renormalization cons-

tant belonging to a parameter only absorbs the proportion of the bare parameter which is
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proportional to

1

ε
=

2

ε
− γE + ln4π . (2-28)

Thus, the bar in DR is to underline that an additional factor of
√

4πe−γE is absorbed into

the renormalization scale associated to the loop corrections, where γE ≈ 0.5772156649 is

the Euler-Mascheroni constant. The DR renormalization is of particular interest in SUSY

calculations since regularization by dimensional reduction preserves supersymmetry and glo-

bal gauge invariance up to three-loop level when the EW gaugeless limit is adopted [68]. In

contrast, the method of dimensional regularization is used in the MS scheme [69–74], usually

for calculations in the Standard Model. The MS renormalization constants are obtained also

from the extraction of the terms proportional to 1/ε. In particular, at the one-loop level, the

counterterms in the DR scheme do not differ from those in the MS scheme. The finite result

of a calculation in the DR or MS scheme is dependent on the renormalization scale which

was introduced during regularization. For the complete determination of the renormaliza-

tion scheme, the specification of µr is necessary. Both schemes have the advantage that all

UV counter-terms are polynomial in the kinematic invariants, as the external momenta and

particle masses.

The DR
′

scheme [46, 75] is a slightly modification of the DR procedure where the mass of

the ε scalars completely decouples from all the anomalous dimensions, beta functions and

matching conditions between running parameters and physical observables. In the context

of a DR renormalization, also the mass mε is renormalized in the DR scheme. In the latter

case, the physical observables will depend on the unphysical ε-mass and it is important to

keep mε different from zero since the renormalization group equations of the particle masses

and mε are coupled. In order to get rid of this mε-dependence, one can introduce additional

finite shifts in the renormalizations constants associated to the physical parameters. The DR

renormalization modified to introduce those additional shifts is called the DR
′

scheme.

Finally, in the On-Shell scheme [76, 77] the parameter counterterms absorb finite terms in

addition to pole parts in 1/ε. If the mass of a particle is fixed on-shell, then the corresponding

mass parameter is given by the real part of the pole of the propagator and can be interpreted

as a physical mass. The mass counter-terms then absorb all the corrections to the real part

of the propagator’s pole. If all quantities are determined on-shell, then the finite result of a

calculation no longer depends on the scale µr introduced for regularization.

We consider in this section the determination of the Higgs mass counter-terms in the EW

gaugeless limit and we derived the counter-term expressions up to three-loop level. The re-

normalized self-energies are obtained from the unrenormalized Lagrangian LV−H (eq. 2-2)

by replacing the bare parameters and fields with the renormalized ones. Each Higgs scalar

doublet of eq. (2-1) gets a multiplicative renormalization

Hi → Hi

√
Zi ; Zi = 1 +

3∑
l=1

δ(l)Zi ; i = 1, 2 . (2-29)
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The free kinetic part of LV−H yields the renormalized terms

LfreeV−H →
2∑
j=1

Zj
∣∣∂µH0

j

∣∣2 + Z1

∣∣∂µH−1 ∣∣2 + Z2

∣∣∂µH+
2

∣∣2 , (2-30)

while the mass terms of the classical Higgs potential (eq. 2-12) produce renormalized quan-

tities of the form

−
(
x1

√
Z1 x2

√
Z2

)(
Mx +

3∑
l=1

δ(l)Mx

)(
x1

√
Z1

x2

√
Z2

)
; x = φ0, χ0, H± . (2-31)

For the off-diagonals terms of the matrix Mx and its counter-terms, δ(l)Mx, the fields x1 and

x2 are mixed and an expansion of the square root becomes necessary. Keeping terms up to

three-loop order one has:√
Z1

√
Z2 = 1 +

1

2
δ(1)Z12 +

1

2
δ(2)Z12 +

1

2
δ(3)Z12 + . . . , (2-32)

where we have used the definitions

δ(1)Z12 = δ(1)Z1 + δ(1)Z2,

δ(2)Z12 = δ(2)Z11 + δ(2)Z22 +
1

2
δ(1)Z1δ

(1)Z2,

δ(3)Z12 = δ(3)Z11 + δ(3)Z22 +
1

2

(
δ(1)Z1δ

(2)Z22 + δ(1)Z2δ
(2)Z11

)
, (2-33)

with

δ(1)Zii = δ(1)Zi ; i = 1, 2 ,

δ(2)Zii = δ(2)Zi −
1

4

(
δ(1)Zi

)2
; i = 1, 2 ,

δ(3)Zii = δ(3)Zi −
1

2
δ(1)Ziδ

(2)Zi +
1

8

(
δ(1)Zi

)3
; i = 1, 2 . (2-34)

Solving the matricial product in eq. (2-31) and expanding each resulting term, as well as

the Lagrangian terms of eqs. (2-30), up to three-loop level according with the definitions of

eqs. (2-32), (2-33) and (2-34), one gets

δ(l)σ2
φ01φ

0
2

= −1

2
Mφ0

12 δ
(l)Z12 − δ(l)Mφ0

12 −
1

2
δZ12δM

φ0

12 ,

δ(l)σ2
φ0jφ

0
j

=
(
p2 −Mφ0

jj

)
δ(l)Zj − δ(l)Mφ0

jj − δZjδM
φ0

jj ; j = 1, 2, ; l = 1, 2, 3 . (2-35)

The counter-terms with the bolded delta in eq. (2-35) start giving contributions from the

two-loop level, these terms contain the sum of all the possible products of the Mx and Z

counter-terms at a given l-loop order, that is

δZδMx =
l−1∑
m=1

l−1∑
n=1

m+n=l

δ(m)Z δ(n)Mx ; l = 2, 3, . . . (2-36)
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In order to derive the explicit expressions of the matrix components δ(l)Mx
ij, we require

the renormalization of the input parameters contributing to the neutral Higgs boson mass

matrices (2-14) and (2-15):

M2
Z0 →M2

Z0 +
3∑
l=1

δ(l)M2
Z0 , (2-37)

M2
A →M2

A +
3∑
l=1

δ(l)M2
A , (2-38)

tanβ → tanβ +
3∑
l=1

δ(l)tanβ , (2-39)

Ti → Ti +
3∑
l=1

δ(l)Ti ; i = 1, 2 . (2-40)

One should also uses the Taylor series expansion related to e, MW and θW up to two-loop

level as v1 and v2 contain parametric dependences on those EW parameters,

v1 =
√

2
MW sθW

e
cβ ; v2 =

√
2
MW sθW

e
sβ. (2-41)

However, as we have adopted the gaugeless limit, all the counter-terms associated to the

EW gauge particles and their corresponding contributions are discarded. In particular the

counter-terms related to v1,2 do not make contributions in the limit of vanishing external

momentum at order αtα
2
s, as will be discussed in Chapter 3, and therefore the renormalization

of the vevs will not be explicitly considered in the following paragraphs of this section. Finally,

the renormalization of the remaining terms are performed through the parameter tanβ ≡ tβ
according to the eq. (2-39), since the angle β satisfies the conditions

δ(l)sβ = cβ
(
1− s2

β

)
δ(l)tβ ; δ(l)cβ = −c2

βsβδ
(l)tβ ; δ(l)(sβcβ) = c2

βc2βδ
(l)tβ. (2-42)

Having in mind the expressions from eq. (2-37) to eq. (2-42) and after a bit of algebra we

can derive the following φ0-mass counter-terms:

δ(l)Mφ0

11 = δ(l)M2
As

2
β + 2sβc

3
βM

2
Aδ

(l)tβ + 2sβc
3
βδM

2
Aδtβ +

δ(l)T1√
2v1

+O
(
δ(l−1)v1

)
,

δ(l)Mφ0

22 = δ(l)M2
Ac

2
β − 2sβc

3
βM

2
Aδ

(l)tβ − 2sβc
3
βδM

2
Aδtβ +

δ(l)T2√
2v2

+O
(
δ(l−1)v2

)
, (2-43)

δ(l)Mφ0

12 = −δ(l)M2
Asβcβ − c2

βc2βM
2
Aδ

(l)tβ − c2
βc2βδM

2
Aδtβ.

The terms with the bolded delta follow the same definition as in eq. (2-36). Now that we have

at hand all the necessary expressions to determine the counter-terms δ(l)σ2
φ0iφ

0
j

of eq. (2-35)

the renormalization constants entering into their definition need to be set. As we mentioned

previously, we are going to use a mixed OS/DR renormalization. Specifically, the mass MA
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φ φ φ

p p

Figure 2-1.: Left: Generic three-loop Higgs tadpole topology with φ = φ0
1,2, A. There is no

momentum dependence. Right: Generic three-loop Higgs self-energy diagram where

p is the external momentum and φ = φ0
1,2, A.

and the tadpole parameters T1,2 are renormalized using an OS procedure while the Z field

contributions and the parameter tanβ are renormalized in the DR scheme. In particular,

the mass counter-terms exhibit a momentum dependence. The tadpoles, tanβ and the Higgs

field counter-terms are independent of the external momentum p2.

Adopting an OS renormalization the tadpole contributions must vanish order by order in

the perturbative expansion, yielding the conditions

T1,2 +
∑
l

(
T

(l)
1,2 + δ(l)T1,2

)
= 0 → δ(l)T1,2 = −T (l)

1,2 , (2-44)

where T1,2 are the tree-level tadpoles, which vanish according to eq. (2-8), and T
(l)
1,2 are

the sum of all the l-loop Higgs tadpole diagrams (Figure 2-1 Left shows a schematically

representation of a generic three-loop tadpole topology). This is equivalent to impose that

the vevs v1,2 are the minima of the full effective Higgs potential. Furthermore, the mass

parameter MA is related to the CP-odd Higgs boson mass, mA, through the eq. (2-20).

Therefore, in the EW gaugeless limit the counter-terms of MA satisfies the condition

δ(l)M2
A = δ(l)m2

A −
δ(l)T1√

2v1

s2
β −

δ(l)T2√
2v2

c2
β . (2-45)

In the on-shell scheme the renormalization constant of the A-boson mass is determined in

terms of the real part of the unrenormalized A-boson self-energy with the external momen-

tum, p, evaluated at the pole mass (see Figure 2-1 Right),

δ(l)m2
A = Re

[∑ (l)

AA

(
p2 = m2

A

)]
. (2-46)

The momentum contribution of δ(l)mA is necessary to remove additional divergences coming

from the counter-terms involving tanβ in eq. (2-43) which contain a dependence on the para-

meter MA. Those terms give rise to infinities that cannot be canceled by any of the divergent

terms contained in the unrenormalized CP-even Higgs boson self-energies. In the limit of va-

nishing external momentum one can avoid dealing with these additional divergences.

On the other side, the DR renormalization constants of the Higgs fields can be obtained by

taking the derivative of the neutral CP-even Higgs self-energies (see Figure 2-1 Right) with
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respect to the external momentum squared,

δ(l)Zj = Re

[
∂

∂p2

∑̂ (l)

φ0jφ
0
j

(
p2
)
− ∂

∂p2

∑ (l)

φ0jφ
0
j

(
p2
)]

p2=0

= − Re

[
∂

∂p2

∑ (l)

φ0jφ
0
j

(
p2
)]div

p2=0

. (2-47)

A full DR renormalization is convenient because in most of the cases the momentum depen-

dence of the divergent part of the scalar self-energies is known analytically up to three-loop

order. In an on-shell scheme it is no possible to take the derivative of the loop integrals

regarding p2 in a fully analytical way since the finite part of some of those integrals at two-

loop level and beyond have no closed analytical expressions available until now. There are

other alternative choices for the renormalization of the Higgs fields and the parameter tanβ;

however, due to its technical convenience and its process independence the most convenient

choice is a DR renormalization as was discussed in [78]. The bare parameter tanβ can be

expressed in terms of the constants Z1,2 owing to its definition as the ratio of the vevs v1,2

which are renormalized in the same way as the Higgs doublets,

vj →
√
Zj (vj + δvj) ≈ vj + 1

2
δ(1)Zjjvj + 1

2
δ(2)Zjjvj + 1

2
δ(3)Zjjvj + . . . ; j = 1, 2 , (2-48)

where the definitions of eq. (2-34) are required. In eq. (2-48) the dots stands for terms

proportional to δ(l)vj. Having in mind the above equation and the eq. (2-39) we get

δ(l)tanβ = tanβ

(
1

2

(
δ(l)Z22 − δ(l)Z11

)
+
δ(l)v2

v2

− δ(l)v1

v1

+
δZ22δv2

2v2

− δZ11δv1

2v1

)
. (2-49)

If one considers the approximation where the dependence on the external momentum is disre-

garded (p2 → 0) and the limit of vanishing electroweak gauge couplings, then both the Higgs

field renormalization constants and the counter-terms of tanβ do not make contributions up

to three-loop level in the DR scheme.

2.3. The SQCD sector of the rMSSM

A particular feature of the rMSSM is the large size of the higher order quantum corrections

to masses and couplings. They can lead to a considerably large shift on the value of the Higgs

boson masses where the bulk of the corrections comes from the supersymmetric quantum

chromodynamics sector of the Lagrangian. The calculation of the SQCD corrections to mh

involves the renormalization of the top quark mass, the gluino mass and the squark mass ma-

trices and mixing angles, when the local divergences coming from a sub-loop diagram have to

be removed. An l-loop renormalization of the Higgs boson masses requires the corresponding

SQCD counter-terms up to at most (l − 1)-loop order.
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2.3.1. The squark masses and mixing angles

At tree-level the squark masses are composed of the soft SUSY breaking terms, the quadratic

D-terms and the F-terms coming from the superpotential W after symmetry breaking, where

the Higgs bosons acquire vevs. The superpotential is obtained from the Higgs-matter Yukawa

and the Higgs self-interaction parts of the rMSSM Lagrangian. It can be written as

W = huũ
†
R

(
ũLH

0
1 − d̃LH+

2

)
− hdd̃†R

(
ũLH

−
2 − d̃LH0

2

)
− µH0

1H
0
2 + . . . , (2-50)

where we have made explicit the necessary terms to derive the squark masses. Here hu/d are

the up/down Yukawa couplings. For a review of the complete expressions of all the sectors of

the rMSSM Lagrangian in terms of mass eigenstates we refer you to the references [24–31].

The mass term of the bare squark Lagrangian is given by

Lbare
m̃f

= −1

2

(
f̃ †L f̃ †R

)
M2

f̃L,R

(
f̃L
f̃R

)
, (2-51)

where

M2
ũL,R

=

(
m2
ũL

+M2
Z0cos2β

(
Iu3 −Qus

2
θW

)
+M2

u Mu (Au − µcotβ)

Mu (Au − µcotβ) m2
ũR

+M2
Z0cos2βQus

2
θW

+M2
u

)
(2-52)

for the squarks type up, f = u. An analogous expression for the squarks type down (f = d)

can be obtained just by changing cotβ → tanβ. The mass terms, mf̃L
and mf̃R

, and the

trilinear coupling between the squarks and the Higgs bosons, Af , come from the soft SUSY

breaking part of the MSSM Lagrangian. Note that SU(2) invariance requires that mũL = md̃L

for the members of each left-handed sfermion doublet. The off-diagonal terms proportional to

µcotβ come from the F-terms of the form
∣∣∂W/∂H0

1,2

∣∣2 while the diagonal terms M2
f , where

Mf represents the f -type quark mass, come from
∣∣∣∂W/∂f̃ †R∣∣∣2 and

∣∣∣∂W/∂f̃L∣∣∣2. Additionally

Qf denotes the charge and If3 the third isospin component of the f -type squark. The terms

proportional to Qf and If3 come respectively from the U(1) and SU(2) contribution to the

quadratic term in D.

The u- and d-type squark mass matrices can be rotated into the physical basis, and the

physical mass eigenstates m̃f1 and m̃f2 can be determined, through the orthogonal transfor-

mation(
f̃1

f̃2

)
= U

(
θf̃
)( f̃L

f̃R

)
; U

(
θf̃
)

=

(
cθf̃ sθf̃
−sθf̃ cθf̃

)
. (2-53)

The mixing angle θf̃ is given at tree-level and for tanβ > 1 by

sθf̃ = ∓

(
M2

f̃L,R

)
12∣∣∣(M2

f̃L,R

)
12

∣∣∣
√√√√√√

(
M2

f̃L,R

)2

12(
M2

f̃L,R

)2

12
+
((
M2

f̃L,R

)
22
− m̃2

f1

)2 , (2-54)
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where the negative and positive sign correspond to the u- and d-type squarks respectively.

The physical masses of the squarks are given by the eigenvalues:

m̃2
uj

=
1

2

[
m2
ũL

+m2
ũR

]
+

1

2
M2

Z0cos2βIu3 +M2
u + (−1)j+1

(
M2

ũL,R

)
11
−
(
M2

ũL,R

)
22∣∣∣(M2

ũL,R

)
11
−
(
M2

ũL,R

)
22

∣∣∣ ×√[
m2
ũL
−m2

ũR
+M2

Z0cos2β
(
Iu3 − 2Qfs2

θW

)]2
+ 4M2

u (Au − µcotβ)2 ; j = 1, 2 . (2-55)

For squarks type down we have to make the changes u → d and cotβ → tanβ in the above

equation. Because of the large value of the top quark mass, Mt, mixing effects in the stop

sector are expected to be relevant; however, the effects cannot become arbitrarily large to

avoid negative values of the physical stop masses. This imposes a bound on the value of the

trilinear parameter At which cannot be much greater than mt̃L
.

In order to renormalize the squark sector and derive the corresponding counter-term expres-

sions it is convenient to express the squark mass matrix in terms of the physical masses and

the squark mixing angle θf̃ as follows:

M2
ũL,R

=

(
c2
θf̃
m̃2
f1

+ s2
θf̃
m̃2
f2

sθf̃ cθf̃
(
m̃2
f1
− m̃2

f2

)
sθf̃ cθf̃

(
m̃2
f1
− m̃2

f2

)
c2
θf̃
m̃2
f2

+ s2
θf̃
m̃2
f1

)
. (2-56)

Matching the two mass matrices in eq. (2-52) and eq. (2-56) one can derive a tree-level

expression for the squark mixing term

Xf = Af − µ{cotβ, tanβ} =
sinθf̃cosθf̃

(
m̃2
f1
− m̃2

f2

)
Mf

. (2-57)

The renormalization constants of the masses, the mixing angles and the fields are then

defined via the transformations:

m̃2
fj
→ m̃2

fj
+ δm̃2

fj
; δm̃2

fj
=
∑
l

δ(l)m̃2
fj
, (2-58)

θf̃ → θf̃ + δθf̃ ; δθf̃ =
∑
l

δ(l)θf̃ , (2-59)

(
f̃1

f̃2

)
→ Zf̃12

(
f̃1

f̃2

)
; Zf̃12 =


1 + 1

2

∑
l

δ(l)Zf̃11
1
2

∑
l

δ(l)Zf̃12

1
2

∑
l

δ(l)Zf̃21 1 + 1
2

∑
l

δ(l)Zf̃22

 , (2-60)

where

δ(l)Zf̃12 = δ(l)Zf̃21 =
sθf̃ cθf̃
c2
θf̃
− s2

θf̃

(
δ(l)Zf̃22 − δ

(l)Zf̃11
)

; l = 1, 2. (2-61)

The bare Lagrangian of eq. (2-51) is therefore transformed to its renormalized version

Lren
m̃f

= −1

2

(
f̃ †1 f̃ †2

)
ZT
f̃12
M2

1,2Zf̃12

(
f̃1

f̃2

)
− 1

2

(
f̃ †1 f̃ †2

)
ZT
f̃12

∆M2
1,2Zf̃12

(
f̃1

f̃2

)
, (2-62)
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where M1,2 is the squark matrix in the physical basis at tree-level while its related counter-

term matrix, ∆M2
1,2, has the expression(

δm̃2
f1
−
(
δθf̃
)2 (

m̃2
f1
− m̃2

f2

) (
m̃2
f1
− m̃2

f2

)
δθf̃ + δθf̃

(
δm̃2

f1
− δm̃2

f2

)(
m̃2
f1
− m̃2

f2

)
δθf̃ + δθf̃

(
δm̃2

f1
− δm̃2

f2

)
δm̃2

f2
+
(
δθf̃
)2 (

m̃2
f1
− m̃2

f2

) )
. (2-63)

Collecting the counter-terms generated from eq. (2-62) and from the kinetic terms of the

squark Lagrangian, we derive the expressions of the renormalized squark self-energies, which

are given by∑̂(
p2
)

= Z†
f̃12
p2Zf̃12 − Z

†
f̃12

[
M2

1,2 + ∆M2
1,2 −

∑(
p2
)]
Zf̃12 − p

2 +M2
1,2. (2-64)

Once again we have used the symbol Σ with a hat to represent the renormalized self-energies.

Along this work we are going to consider the quantum corrections to the Higgs boson masses

up to three-loop level; therefore, the one- and two-loop SQCD counter-terms are required

in order to renormalize the non-local divergences coming from a sub-loop diagram. Thus,

keeping the terms up to two-loop order in the unrenormalized squark self-energy matrix, we

have:∑(
p2
)

=

( ∑(1)
11 +

∑(2)
11 −2δ(1)θf̃

∑ (1)
12

∑(1)
12 +

∑(2)
12 +δ(1)θf̃

(∑ (1)
11 −

∑ (1)
22

)
∑(1)

21 +
∑(2)

21 +δ(1)θf̃

(∑ (1)
11 −

∑ (1)
22

) ∑(1)
22 +

∑(2)
22 +2δ(1)θf̃

∑ (1)
12

)
. (2-65)

Using an analogous expansion over the matrix ∆M2
1,2 (eq. 2-63), one can derive the compo-

nents of the renormalized squark self-energy matrix of eq. (2-64) at one- and two-loop level,

yielding the expressions:

∑̂ (1)

ij

(
p2
)

=
∑ (1)

ij

(
p2
)

+ p2δ(1)Zf̃ij −
1

2

(
m̃2
fi

+ m̃2
fj

)
δ(1)Zf̃ij

- δ(1)m̃2
fi
δij − (−1)i+1

(
m̃2
fi
− m̃2

fj

)
δ(1)θf̃ ; i, j = 1, 2 , (2-66)

∑̂ (2)

ii

(
p2
)

=
∑ (2)

ii

(
p2
)

+ δ(1)Zf̃ii

∑ (1)

ii

(
p2
)

+ p2δ(2)Zii

− (−1)i+12δ(1)θf̃
∑ (1)

12
− m̃2

fi
δ(2)Zii − δ(2)m̃2

fi

− δ(1)m̃2
fi
δ(1)Zf̃ii − (−1)i

(
δ(1)θf̃

)2 (
m̃2
f1
− m̃2

f2

)
; i = 1, 2 , (2-67)

∑̂ (2)

12

(
p2
)

=
∑ (2)

12

(
p2
)

+
1

2

(
δ(1)Zf̃11 + δ(1)Zf̃22

)∑ (1)

12

(
p2
)

+ δ(1)θf̃

(∑ (1)

11

(
p2
)
−
∑ (1)

22

(
p2
))
−
(
m̃2
f1
− m̃2

f2

)
δ(2)θf̃

-
(
m̃2
f1
− m̃2

f2

)
δ(1)Zf̃11δ

(1)θf̃ −
(
δ(1)m̃2

f1
− δ(1)m̃2

f2

)
δ(1)θf̃ . (2-68)
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As we are working in the DR scheme, the left-handed and right-handed components of the

squark fields have the same renormalization constants. Consequently, δ(l)Zf̃11 = δ(l)Zf̃22 and

therefore we have used δ(l)Zf̃21 = 0 in the derivation of the above two-loop expressions. At

one-loop level we have imposed the conditions

Dp

[∑̂ (1)

ii

(
m̃2
fi

)]
= 0 ; i = 1, 2 , (2-69)

Dp

[∑̂ (1)

12

(
m̃2
f2

)
+
∑̂ (1)

21

(
m̃2
f1

)]
= 0 , (2-70)

Dp

[
∂

∂p2

∑̂ (1)

ii

(
m̃2
fi

)]
= 0 ; i = 1, 2 . (2-71)

The function Dp[ f ] takes the pole part (principal part of the Laurent series) of the argument

f which is computed in the DRED scheme. Using this prescription we get the one-loop

renormalization constants:

δ(1)m̃2
fi

= Dp

[∑ (1)

ii

(
m̃2
fi

)]
; i = 1, 2 , (2-72)

δ(1)θf̃ =
Dp
[∑ (1)

12

(
m̃2
f2

)
+
∑ (1)

21

(
m̃2
f1

)]
2
(
m̃2
f1
− m̃2

f2

) , (2-73)

δ(1)Zf̃ii = −Dp

[
∂

∂p2

∑ (1)

ii

(
m̃2
fi

)]
; i = 1, 2 . (2-74)

At two-loop order the renormalization conditions are derived by imposing[
p2 −M2

1,2 −
∑̂

1,2

]
fp

= 0, (2-75)

that is to say, the finite part of the inverse propagator must be zero since in the DR scheme

the counterterms have only the pole parts. Explicitly the two-loop conditions are:[∑ (2)

ii
+ δ(1)Zf̃ii

∑ (1)

ii
+
(
p2 − m̃2

fi

)
δ(2)Zii − δ(2)m̃2

fi
− δ(1)m̃2

fi
δ(1)Zf̃ii

− (−1)i+12δ(1)θf̃
∑ (1)

12
+
(
δ(1)θf̃

)2 (
m̃2
f1
− m̃2

f2

)]
fp

= 0 ; i = 1, 2 , (2-76)

[∑ (2)

12
+ δ(1)Zf̃11

∑ (1)

12
+ δ(1)θf̃

(∑ (1)

11
−
∑ (1)

22

)
−
(
m̃2
f1
− m̃2

f2

)
δ(2)θf̃

−
(
δ(1)m̃2

f1
− δ(1)m̃2

f2

)
δ(1)θf̃ −

(
m̃2
f1
− m̃2

f2

)
δ(1)Zf̃11δ

(1)θf̃
]
fp

= 0. (2-77)
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Consequently, the corresponding two-loop counter-terms in the DR scheme are:

δ(2)m̃2
fj

= Dp

[∑ (2)

jj

(
m̃2
fj

)]
− (−1)j+1

Dp
[∑ (1)

21

(
m̃2
fj

)]2(
m̃2
f1
− m̃2

f2

)
+ (−1)j+1

Dp
[∑ (1)

12

(
m̃2
f2

)
− ∑ (1)

21

(
m̃2
f1

)]2

4
(
m̃2
f1
− m̃2

f2

) ; j = 1, 2 , (2-78)

2
(
m̃2
f1
− m̃2

f2

)
δ(2)θf̃ = Dp

[∑ (2)

12

(
m̃2
f1

)]
+ Dp

[∑ (2)

12

(
m̃2
f2

)]
− Dp

[
δ(1)θf̃

]
Dp

[∑ (1)

11

(
m̃2
f2

)
−
∑ (1)

11

(
m̃2
f1

)]
− Dp

[
δ(1)θf̃

]
Dp

[∑ (1)

22

(
m̃2
f1

)
−
∑ (1)

22

(
m̃2
f2

)]
, (2-79)

δ(2)Zii = − Dp

[
∂

∂p2

∑ (2)

ii

(
m̃2
fi

)]
+ Dp

[
∂

∂p2

∑ (1)

ii

(
m̃2
fi

)]2

+ (−1)i+12Dp
[
δ(1)θf̃

]
Dp

[
∂

∂p2

∑ (1)

12

(
m̃2
fi

)]
; i = 1, 2 , (2-80)

In the limit where the light fermion masses are neglected (NLF limit) the mixing angles θq̃
with q = u, d, b, c, s are equal to zero and therefore there are no mixing counter-terms. Thus,

the pole equation (2-77) and the counter-term (2-79) do not exist for the q-type squarks.

Additionally, the equation (2-76) and the counter-terms (2-78) and (2-80) can be even further

reduced just by putting δ(1)θq̃ = 0.

2.3.2. Renormalization of the fermion masses

In the NLF limit the only fermions that can give a contribution to the Higgs mass corrections

is the gluino and the top quark. The gluino mass, Mg̃, plays an important role in the deter-

mination of the corrections coming from the SQCD sector. A gluino is a Majorana fermion,

a spin 1/2-particle whose associated 4-component spinor is even under charge-conjugation,

which is the superpartner of the gluon and therefore is a SU(3) color octect fermion that

cannot mix with any other MSSM particle. As a consequence, the only contribution to its

tree-level mass comes from the soft SUSY breaking term of the Lagrangian,

Mg̃ = M3. (2-81)

In SUSY-GUTs this mass is related to the U(1) and SU(2) gaugino masses, M1 and M2

respectively, through

M3 =
g2
s

g2
M2 ; M1 =

5

3

s2
θW

c2
θW

M2. (2-82)
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At the perturbative order considered in this work we just need a one-loop renormalization of

the gluino mass. On the other hand, we need the renormalization of the top quark mass, Mt,

up to two-loop order. We have adopted a quite simple prescription. The fermion self-energies

are decomposed into a vector, an axial-vector, a scalar and a pseudo-scalar part as

Σf

(
p2
)

= p/ΣV
f

(
p2
)

+ p/γ5ΣA
f

(
p2
)

+MfΣ
S
f

(
p2
)

+Mfγ5ΣP
f

(
p2
)
, (2-83)

where Mf is the mass of the fermion f , while p/ stands for γµp
µ with γµ the Dirac gamma

matrices. Each component can be obtained according to

ΣV
f

(
p2
)

=
1

4p2
Tr

(
p/Σf

(
p2
))

, ΣA
f

(
p2
)

=
1

4p2
Tr

(
γ5p/Σf

(
p2
))

,

ΣS
f

(
p2
)

=
1

4Mf

Tr
(
Σf

(
p2
))

, ΣP
f

(
p2
)

=
1

4Mf

Tr
(
γ5Σf

(
p2
))

. (2-84)

Up to two-loop level the top-quark and the gluino mass counter-terms are derived in the DR

scheme according with the condition:

δMf̃

Mf̃

= Dp
[
ΣV
f̃

(
M2

f̃

)
+ ΣS

f̃

(
M2

f̃

)]
. (2-85)

The one- and two-loop renormalization constants for the top quark and the gluino masses

in the DR scheme are known for long time [79,80]. We have put their explicit expression in

Appendix B.

2.3.3. Role of the top quark mass

Most of the theoretical predictions of the EW observables, as the Higgs boson mass, as well

as the stability analysis of the Higgs potential crucially depends of the specific central values

and the uncertainties assigned to Mh and Mt, being Mt the parameter with the higher uncer-

tainty. In general, the vacuum stability analysis in the SM is performed using as renormalized

mass for the top quark, the so-called pole mass, in an on-shell renormalization scheme where

the pole of the propagator is not a gauge-invariant quantity and is identified with the world

average of the Tevatron, CMS and ATLAS measurements, MMC
t = 173.34± 0.76 GeV [81].

Since the experimental error on the Higgs mass is already fairly small, the factor that can

discriminate between a stable or an unstable potential is the exact value of the top quark

mass. This identification is not straightforward, MMC
t cannot be used directly as an input

for precise NLO or NNLO theoretical predictions because all measurements included in the

world average are calibrated using Monte Carlo (MC) simulations. MMC
t is by definition the

MC top quark mass, which are not the renormalized mass appearing in the propagator of

an on-shell renormalized theory.

Theoretically, the top quark mass is a renormalized quantity of the QCD Lagrangian. The
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renormalized mass is obtained from the top self-energy diagrams, as was discussed in Sec-

tion 2.3.2. The finite contributions to the self-energies can be absorbed into the renormalized

mass and the UV divergences in a suitable counterterm. Different choices for the finite terms

define different top mass schemes. In the top quark on-shell scheme all ultraviolet (UV) and

finite contributions of the self-energy are absorbed into the mass Mpole
t including the dyna-

mics at scales below ΛQCD ∼ 1 GeV (describing the gluon exchange between quarks and

gluon radiation) where the perturbation theory breaks down. Consequently, the top quark

pole mass is plagued with an intrinsically non-perturbative ambiguity of the order of ΛQCD,

the hadronization scale, a problem known in the literature as the infrared (IR) renorma-

lon problem [82]. This ambiguity is a manifestation of the fact that the pole mass for a

quark is not well defined as quarks are not free asymptotic states due to the confinement.

The Monte Carlo mass MMC
t instead is the mass of the propagator prior to the top quark

decay. For scales below 1 GeV the partonic degrees of freedom are not used anymore and

a non-perturbative hadronization model is employed. The infrared ambiguity known from

perturbative QCD from scales below 1 GeV never arise in this context and there are also no

perturbative contributions to the mass parameter coming from this region. This already tells

that MMC
t is not identical with the top quark pole mass Mpole

t . MMC
t can be interpreted as

Mpole
t within the intrinsic ambiguity in its definition which is roughly of the order of 1 GeV.

In order to reduce the uncertainty introduced by the renormalon ambiguity, a more adequate

renormalization scheme must be used. It is well known that short distance masses, such the

one defined in the DR and MS schemes, do not suffer from the IR renormalon problem.

In those schemes only pure UV divergences are subtracted [83], as a result, the DR/MS

top mass is renormalization scale dependent. Physically, the scale dependent masses are

conceptually and numerically very far away from the notion of a physical particle mass,

the difference can amount a size as large as 10 GeV. The scale dependent mass parameter,

mt(Q), should be thought more as a coupling for a heavy quark-antiquark correlation and is

therefore a very good scheme for parametrizing the top Yukawa coupling yt. The mass mt(Q)

can be extracted directly from a measurement of the total top-pair production cross section

σexp(pp̄ → tt̄+X). Such analysis performed in [84] with NNLO accuracy with inclusion of

the full theoretical uncertainties gives rise to the following result

mt(Mt) = 163.3± 2.7 GeV , (2-86)

a value that translated in terms of pole mass gives

Mpole
t = 173.3± 2.8 GeV . (2-87)

The central value is very close to the MC value MMC
t = 173.34±0.76 GeV but the theoretical

uncertainty is much larger. To improve the current precision of the top-mass determination

one needs to consider, in addition to the QCD NNLO radiative corrections, the EW and

the mixed EW × QCD corrections. In contrast to QCD, where the mass of a quark is the

parameter of the Lagrangian, the notion of a running mass in the MSSM, as well as in the



2.3 The SQCD sector of the rMSSM 27

SM, after EW symmetry breaking is not entirely determined by the prescriptions of minimal

subtraction. It also depends on the value of the vacuum expectation value (vev) v(Q) chosen

as a parameter of the calculations so that the running mass is mt(Q) = yt(Q)v(Q)/
√

2. This

implies that the definition of a DR/MS-mass is not unique: it depends upon the definition

of the vacuum.

There are two main definitions found in the literature. The first one, called the tree-level

vev, defines the renormalized vacuum vtree as the minimum of the tree-level Higgs potential.

The advantage of a scheme with this vacuum definition is that all the physical observables

depending on it are gauge invariant quantities due to the explicit insertion of the tadpoles

diagrams. Their insertion is done not only in the diagrams with counterterms but also in the

1PI Feynman diagrams as required to have the gauge independence of renormalized scatte-

ring amplitudes according to the gauge Ward identities. However, there is a disadvantage,

the inclusion of tadpole diagrams involving the Higgs field, which have to be included in

any calculation based on vtree, include negative powers of the Higgs quartic self-coupling

leading to a parametrically slower convergence. For instance, in the computation of mt(Q)

in the SM the EW contribution is surprisingly large and has opposite sign relative to the

QCD contributions, so that the total correction is small and increases the theoretical error

by 0.5 GeV [85].

Using this definition of the vacuum, the relation between the top quark pole mass and the

MS parameters of the SM have been computed at different perturbative orders. The status

of those calculations is the following. The pure QCD contributions, which are dominant,

have been computed at one [86], two [87] (confirmed in [88, 89]), three [90], and recently

at four-loops order [91]. Besides these pure QCD contributions, the full one-loop contribu-

tions to the pole mass have been given in the references [92–94]. The 2-loop mixed O(ααs)

contributions were found in [95]. The full 2-loop contributions have been studied in the

EW gaugeless limit approximation in [13]. Most recently, a systematic approach is available

to the complete two-loop threshold corrections O(α2) of all the running parameters of the

SM [14,15]. This computation includes the masses of the W , Z0, and Higgs bosons and those

of the top and bottom quarks as well as the gauge couplings, the Higgs self-coupling, and

the top and bottom Yukawa couplings. The full two-loop results was implemented in a C++

library called mr (available for download from URL: http://apik.github.io/mr/) that allows

to calculate the values of the running parameters in the SM at high energy scales [96].

There is an alternative to the above results implemented in the public code SMDR which

can be consult in the references [97–99]. In this approach the complex pole mass of the top

quark is presented at full two-loop order in the SM, including the known four-loop QCD

contributions, in a scheme where the running MS squared masses are expressed in terms

of the vev v of the Higgs field, where v is defined to be the minimum of the full effective

potential calculated in the Landau gauge. By this definition, the sum of all Higgs tadpole

graphs, including the tree-level Higgs tadpole, vanishes identically, as is schematically re-

presented in Figure 2-2 for the Higgs self-energy, and therefore negative powers of λ and
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h

Figure 2-2.: Renormalization of the vev. The sum of the topologies in red color vanishes.

huge EW corrections are absent in the perturbative expansions of the pole masses and their

relations with the MS parameters. The vev v is in some sense a more faithful description

of the true vacuum state. However, there is also a disadvantage. If the scheme is defined in

terms of the self-energy diagrams without including the tadpole contribution, it gives rise

to radiative corrections that are dependent of the gauge-fixing procedure. As a consequen-

ce, in this framework the MS masses are gauge-dependent quantities. Nevertheless, a MS

mass is not a physical quantity nor a Lagrangian parameter and therefore the requirement

of gauge-invariance is not mandatory.

By other side, it is worth mentioning that, so far, the precise relationship between the thres-

hold corrections that relate the MS masses to the parameters in the pole scheme with the

three level vacuum vtree (the computation done by Kniehl et al. in [14]) and the alternative

computation done by Martin in [97–99] remains unclear. Recently, it has been argued that

would be preferable to avoid the use of the pole mass scheme all-together and directly relate

the Monte Carlo mass to a different short distance mass definition, where the top mass could

have a numerical value close to the pole mass but without suffering from the renormalon

ambiguities. There are several useful definitions of the top-quark mass in these so-called

threshold masses schemes that depends on the precise relation to experimental quantities.

Those include the potential-subtracted mass [100], the 1S mass [101, 102], and the MSR

mass [103].

2.4. State of art of the higher-order corrections to Mh

In most of the relevant phenomenology benchmark scenarios for MSSM Higgs boson searches,

the Higgs boson found at LHC corresponds to the lightest CP-even Higgs boson with a mass

Mh which is not a free input parameter but it is predicted in the MSSM. The upper bound

on its predicted mass at the leading order is given by MZ0 = 91.2 GeV, leading to the

exclusion of the MSSM at current collider experiments. However, the tree-level prediction

of the Higgs boson mass is strongly modified by higher-order quantum corrections making

the MSSM compatible with the measured Higgs mass of 125 GeV and consistent with the

similarities of the measured Higgs couplings to those in the SM [6].

The state of art of the corrections to the lightest Higgs boson mass in the MSSM is quite
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advanced and widely studied. At one-loop level the full quantum corrections can be found

in the references [104–107] with real parameters. The dominant contributions come from the

top-stop Yukawa corrections at zero external momentum in the EW gaugeless limit, which

are proportional to the fourth power of the top mass and to the logarithm of the physical

stop masses:

δ
(1)
t M2

h =
3GF√
2π2s2

β

M4
t ln

(
m̃t1m̃t2

M2
t

)
, (2-88)

where GF = 1.16637×10−5 GeV−2 is the Fermi constant. The source of this correction is the

soft breaking of supersymmetry which produces an incomplete cancellation between virtual

top and stop loops. In this approximation the one-loop prediction of the Higgs boson masses

can be expressed in the simple compact form:

M2
h =

1

2

[
m2
A + δ

(1)
t M2

h −
√(

m2
A + δ

(1)
t M2

h

)2

− 4m2
As

2
βδ

(1)
t M2

h

]
,

M2
H = m2

A −M2
h + δ

(1)
t M2

h ; m2
± = m2

A +M2
W . (2-89)

The Higgs mass can be also affected by a potentially large stop mixing Xt (see eq. 2-57) due

to the non-leading effects of the one-loop correction:

δ
(1)
Xt
M2

h =
3GF

2
√

2π2s2
β

M4
t X

2
t

(
2f
(
m̃2
t1
, m̃2

t2

)
+

2−
(
m̃2
t1

+ m̃2
t2

)
f
(
m̃2
t1
, m̃2

t2

)(
m̃2
t1 − m̃2

t2

)2 X2
t

)
, (2-90)

where the function f is defined as:

f (x, y) =
1

x− y ln

(
x

y

)
. (2-91)

We have drawn in Figure 2-3 the dependence of the CP-even and charged Higgs boson masses

on the parameter mA including the dominant one-loop radiative corrections in a scenario

where the soft SUSY breaking mass terms of the squarks are put at the same supersymmetric

scale, mũL,R
= md̃L,R

= MSUSY . Note that for large values of mA, independently of tanβ,

the masses of the heavy Higgs particles, MH and m±, grow linearly without boundary and

have approximately the same magnitude, MH ≈ m±. The lightest Higgs boson mass instead

approaches to an asymptotic value, showing a more regular dependence on mA for large

tanβ, where Mh ' mA for small mA while Mh ' const for large A-mass. The non-leading

effects of the stop mixing Xt allow a simple determination of an upper bound on the lightest

Higgs boson mass at one-loop level, yielding the expression:

M2
h ≤M2

Z0c2
2β + δ

(1)
t M2

hs
2
β + δ

(1)
Xt
M2

hs
2
β. (2-92)

If one considers large values of the parameter tanβ (tanβ >> 10) in the scenario of maximal

stop mixing, where the value of Xt makes Mh maximal (frequently referred in literature as
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Figure 2-3.: One-loop predictions of the Higgs boson masses Mh (solid), MH (dashed) and

m± (dotted) as a function of the CP-odd Higgs boson mass mA. We have considered

tanβ = 3 (blue) and 30 (black) in a scenario where MSUSY = 1 TeV, µ = 200 GeV

and the stop mixing parameter Xt vanishes.

the mmax
h scenario), a general upper bound given by Mh . 140 GeV is found out. Fortunately

for the MSSM, the Higgs boson was discovered at the LHC within this energy region.

The contributions of eqs. (2-88) and (2-90) contain the bulk of the one-loop corrections. The

subdominant contributions coming from higher-loop corrections can essentially be reduced

to higher-order SQCD effects. The detailed results of a Feynman diagrammatic calculation of

the leading two-loop QCD corrections at order O(ααs) can be found in [108], in particular the

O(αbαs) [109] and O(αtαs) [110] contributions using the FD approach are known in the limit

where the external momentum vanishes and in the MSSM version with complex parameters.

In this limit there is an alternative procedure to compute the above corrections, the Effective

Potential (EP) approach. A comparison of the corresponding two-loop results in the FD and

EP approaches at O(ααs) can be found in [111, 112] and references therein. In contrast to

the EP method, the FD approach has the advantage that it can allow for non-vanishing ex-

ternal momentum. An evaluation of the momentum dependence of the two-loop corrections,

including all the terms involving the QCD couplings, in the modified dimensional reduction

scheme (DR) was presented in [113]. The latest status of the momentum-dependent two-loop

corrections was discussed recently in [114,115] using a hybrid on-shell-DR scheme and inclu-

ding corrections of O(p2αtαs) for the real version of the MSSM. A complete two-loop QCD

contributions to Mh in the MSSM with complex parameters including the full dependence

on the external momentum can be found in [116]. The expressions of the leading two-loop

quantum corrections to the MSSM Higgs boson mass are quite involved and have a large

amount of terms. However, all the above mentioned one- and two-loop Mh-predictions are

implemented in the public code FeynHiggs [56] and can be readily used for numerical eva-

luation purposes. Figure 2-4 Left shows the dependence of the tree-level, full one-loop and

leading QCD two-loop Mh-predictions coming from FeynHiggs as a function of the scale mA

in the maximal stop mixing scenario for tanβ = 30, MSUSY = 1 TeV and µ = 200 GeV.

In this plot one can clearly see the good behaviour of the perturbative expansion. If one
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Figure 2-4.: Left: Predictions of the lightest Higgs boson mass, Mh, at tree (dot-dashed), one-

loop (dashed) and two-loop (black solid) level as a function of the CP-odd Higgs

boson mass mA. We have considered the mmax
h scenario (Xt/MSUSY ≈ 2.4) at the

kinematical point tanβ = 30, MSUSY = 1 TeV, µ = 200 GeV and Mg̃ = 1.5 TeV.

Right: The three-loop Mh-predictions (red solid line) are included for large mA in

the maximal stop mixing scenario.

looks at the numerical difference between the dashed and the dot-dashed curve as well as

the difference between the dashed and the solid line for large mA, one can easily conclude

that the size of the one-loop corrections (estimated to be about 45 GeV) are higher than

the size of the two-loop ones (roughly 12 GeV), as expected from a perturbative quantum

field theory. Besides, the two-loop corrections give negative contributions in contrast to the

one-loop corrections which are postive.

At three-loop level there is a first diagrammatic computation performed by P. Kant and

collaborators [117–119], where the radiative corrections to Mh were computed in the SQCD

sector including non-logarithmic terms of order O(M2
t αtα

2
s). They have exploited the met-

hods of asymptotic expansion in order to provide precise approximations in the relevant mass

hierarchies. An alternative computation of the three-loop corrections to Mh at order αtα
2
s,

which extends the validity of the leading three-loop predictions to the whole SUSY para-

meter space of the rMSSM, were recently presented by our group in the reference [2]. The

details of our computation are described in the Chapter 3 of this work. In Figure 2-4 Right

we have depicted the three-loop predictions of Mh as a function of mA (red solid line) in the

mmax
h scenario. The complete Mh-prediction is built up as the sum of different contributions.

The tree-level value, which accounts for about 60 % of the renormalized mass, the one-loop

correction, which represents about 32 % of Mh, the two-loop correction, contributing with

about 6 %, and finally the three-loop contribution representing about 1 % of the total mass.

The size of the three-loop quantum corrections are of the order of 1 GeV and have an oppo-

site sign regarding the one-loop corrections.

All the fixed-order corrections shown in Figure 2-4 contain logarithmic terms which can

spoil their good perturbative behaviour when there is a large numerical difference between
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the electroweak scale ΛEW and the supersymmetric scale MSUSY . For this reason, effective

field theory (EFT) methods have been considered to resum large-logarithms in case of a

large mass hierarchy between ΛEW and MSUSY [120–126]. In particular, for values of MSUSY

above a critical point where the fixed-order and EFT combined uncertainties are equal, the

EFT computation is more accurate and therefore the usage of the SM [41] or a two-Higgs-

doublet-model (THDM) [127–129] as effective theories below the SUSY scale is preferred. In

the simplest case where the SM is the low energy EFT, the masses of the SUSY particles

are all set to a single scale MSUSY and the physics at this energy is correlated, with the

help of the RGEs, to the low scale ΛEW through just one EFT coupling: the effective Higgs

self-coupling λ(Q). The state of art currently includes full one-loop and complete two-loop

matching conditions for λ at the SUSY scale [121, 125, 130], full three-loop RGEs of all the

SM parameters [131–136] and full two-loop relations between the running SM parameters

and the physical observables including the Higgs boson mass [12, 13, 137]. With the new

results presented in [130] a full NNLL resummation of the large logarithmic contributions is

now allowed. Finally, a new hybrid computation wich includes a partial N3LL resummation

and N3LO + N3LL hybrid QCD corrections to the light CP-even Higgs boson mass are also

available [138].

Both the fixed-order and the EFT results are implemented in several publicly available co-

des. For the diagrammatic fixed-order calculations there are the programs SoftSUSY [139],

SUSPECT [140], CPSuperH [141] and H3m [55]. The results of H3m are also implemen-

ted into the C++ module Himalaya [142, 143] linked to the Mathematica generator Fle-

xibleSUSY [144, 145] in a pure DR context. Pure EFT calculations are implemented in

SUSYHD [124] and MhEFT [146]. Moreover, different hybrid methods that combine both

approaches have been recently developed in order to take profit of the features of each

one [147]. FlexibleSUSY [148], based on SARAH [149–152], implements a hybrid method

called Flexible-EFT-Higgs [40]. This approach was also included into the program SP-

heno [153, 154]. A hybrid method different from the one pursued in Flexible-EFT-Higgs

has been implemented in FeynHiggs [155, 156]. There are also in literature detailed nume-

rical comparisons between the different diagrammatic, EFT and hybrid codes. In [40] it is

discussed in details how the hybrid method Flexible-EFT-Higgs compares to the other EFT

and diagrammatic codes. Finally, several numerical comparisons of the hybrid approach im-

plemented in FeynHiggs to the pure EFT calculations have been studied in [40, 124, 154].

Those papers reported surprising non-negligible numerical differences between FeynHiggs

and pure EFT codes for the prediction of Mh at large SUSY scales. The observed differences

come mainly from three sources. The scheme conversion of input parameters from OS to DR,

which can lead to large shifts due to uncontrolled higher-order terms. Unwanted effects from

incomplete cancellations with subloop renormalization contributions in the determinations

of the Higgs propagator pole and different parametrizations of non-logarithmic terms. After

performing the corresponding corrections, FeynHiggs results are in very good agreement with

the results of SUSYHD [157].



3. The Lightest MSSM Higgs Boson

Mass (Mh) at Three-Loop Accuracy

This chapter is devoted to explain the technical details to the computation of the three-loop

corrections to the lightest Higgs boson mass in the rMSSM, starting from the generation

of the Feynman diagrams and until the numerical evaluation of the renormalized quan-

tum corrections to Mh. The first part contains the renormalization framework in which the

computation was done. The latter includes the explicit expressions of the renormalization

conditions for the CP-even Higgs boson mass counter-terms at order αtα
2
s derived from the

relations exposed in Section 2.2. We next describe the technical details related to the genera-

tion of the three-loop Higgs self-energy amplitudes and the regularization procedure applied

to the resulting Feynman integrals. In particular, we have adopted a DRED regularization

scheme in order to preserve supersymmetry at the given perturbative order. The evaluation of

the three-loop self-energy integrals obtained after regularization follows a specific treatment.

Each of them is reduced to a superposition of a set of irreducible integrals (the so-called

master integrals) with the help of the Integration by Parts (IBP) method and the covariant

decomposition, which admits either an analytical or a numerical evaluation depending on

the number of independent scales involved. When a closed analytical expression of any of

the master integrals is missing, we proceed to perform its numerical evaluation through two

different numerical techniques: the dispersion method and the method of sector decompo-

sition. Finally, the obtained results will be numerically tested in some phenomenologically

relevant benchmark scenarios by the comparison of our three-loop prediction of the lightest

Higgs boson mass with the higher-order predictions coming from the public codes FeynHiggs

and H3m for the same observable.

3.1. Renormalization of the CP-even Higgs boson masses

In Chapter 2 we have derived the necessary renormalization constants to obtain the renor-

malized CP-even Higgs boson masses in the EW gaugless limit. However, the numerical

dominant contributions to the Higgs self-energy corrections come from the SQCD sector of

the rMSSM Lagrangian in two specific limits that can reduce even more the expressions

presented in sections 2.2 and 2.3. Those approximations include:

i) The non-light fermions limit (NLF) where all the fermion masses are put to zero except
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the mass of the top quark, Mt. We have computed all the three-loop corrections at

the perturbative order αtα
2
s. Consequently, cubic vertices of the Higgs with two light

fermions are not considered in this work since the order of the corrections and the NLF

limit forbid that kind of vertices.

ii) The approximation of vanishing external momenta, where the momentum carried by

the external lines of the self-energy diagrams is disregarded. Therefore, p2 = 0, where

p is the external momentum transferred. This approximation is very well motivated.

Up to two-loop level the shift in the mass Mh due to the momentum dependence is

below 1 GeV in all scenarios studied, the bulk of the two-loop corrections comes from

the effective-potential effects which are of the order of 10 GeV [114]. A well-behaved

perturbative expansion will make this dependence even weaker at three-loop level.

In our computation we have followed the above observations to get the dominant contribu-

tions at three-loop order and therefore we have adopted the approximation of zero external

momentum and the NLF limit. Further reductions in the Higgs mass counter-terms are

obtained because of the tree-level relation

α = β − π/2 for m2
A �M2

Z0 , (3-1)

which is satisfied in the gaugeless limit, and also due to the definition of the the vevs

of the Higgs fields (v1,2) as the minima of the full effective potential, see eq. (2-44). The

latter implies that the condition
〈
Ω
∣∣H0

1,2

∣∣Ω〉 = 0 must be satisfied order by order in the

perturbative expansion of the one-point Green function and brings as an effect that just 1PI

self-energy diagrams have to be evaluated, self-energies with tadpole insertions do not make

contributions.

Taking in consideration the above restrictions the expressions in eq. (2-26) and eq. (2-27) for

the renormalized three-loop corrections to the neutral CP-even Higgs bosons are reduced to∑̂ (3)

ψiψj

=
∑ (3)

ψiψj

− δ(3)M2
ψiψj

; ψ1, 2 = h, H. (3-2)

The terms with delta, δ(3)M2
ψiψj

, are the counter-terms of the physical CP-even Higgs boson

masses whose expressions are obtained from the rotation of the mass counter-terms in the

unphysical basis (see eq. 2-43) according to

δ(3)M2
hh = δ(3)Mφ0

11 s
2
α + δ(3)Mφ0

22 c
2
α − 2δ(3)Mφ0

12 sαcα,

δ(3)M2
HH = δ(3)Mφ0

11 c
2
α + δ(3)Mφ0

22 s
2
α + 2δ(3)Mφ0

12 sαcα, (3-3)

δ(3)M2
hH = δ(3)Mφ0

12

(
c2
α − s2

α

)
−
(
δ(3)Mφ0

11 − δ(3)Mφ0

22

)
cαsα.

Some clarifications need to be done regarding the renormalization constants of the Higgs

fields and the parameter tanβ which are included in eq. (2-27) and eq. (2-35) but are not

anymore considered in the eqs. (3-2) and (3-3).
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The Higgs field renormalization constants represented with the Zj factors are obtained from

the terms proportional to p2 in the divergent part of the CP-even Higgs boson self-energies

according with the eq. (2-47). The perturbative order of the Zj counter-terms is the same

as the Higgs self-energies. Therefore, all the terms which are products of one and two -loop

counter-terms, as the products of δ(1,2)Zj counter-terms in eq. (2-34) or the bolded delta terms

in eq. (2-35), cannot match the order αtα
2
s since there is no cubic or quartic vertex with a

Higgs external line that is proportional to the strong coupling gs in the rMSSM. Besides,

the three-loop constants δ(3)Zj do not make contributions provided that the divergent part

of the three-loop Higgs self-energies do not contain an external momentum dependence at

the considered order αtα
2
s. Having that in mind, we have put

δ(l)Z1,2 = 0 for l = 1, 2, 3 , (3-4)

in the renormalization of the CP-even Higgs self-energies. As a result of eq. (3-4) the DR

renormalization of the parameter tanβ (see eq. 2-49) is determined only by the counter-

terms δ(l)v1/v1 and δ(l)v2/v2. However, as the difference δ(3)v1/v1 − δ(3)v2/v2 is UV-finite at

the order αtα
2
s, we lastly get

δ(3)tanβ = 0, (3-5)

and therefore all the terms of eq. (2-43) with a dependence on the tanβ-counterterm and also

the O(δ(l−1)vj) terms are disregarded. Considering all the above approximations the mass

counter-terms of eq. (2-43) are reduced to

δ(3)Mφ0

11 = s2
βδ

(3)m2
A −

T
(3)
1√
2v1

(
1− s4

β

)
+ s2

βc
2
β

T
(3)
2√
2v2

,

δ(3)Mφ0

22 = c2
βδ

(3)m2
A −

T
(3)
2√
2v2

(
1− c4

β

)
+ s2

βc
2
β

T
(3)
1√
2v1

, (3-6)

δ(3)Mφ0

12 = −δ(3)m2
Asβcβ − s3

βcβ
T

(3)
1√
2v1

− c3
βsβ

T
(3)
2√
2v2

,

leading to the following counter-terms in the physical basis:

δ(3)M2
ψiψj

= δ(3)m2
Ac

A
ψiψj

+

(
ht

2Mt

sβ

)(
T

(3)
h√
2
chψiψj

+
T

(3)
H√
2
cHψiψj

)
; ψ1, 2 = h, H. (3-7)

The coefficients cA,h,Hψiψj
are functions of the angles α and β and are given by the expressions

cAhh = c2
α−β; chhh =

1

4

(
5sα−β + s3(α−β)

)
; cHhh = cα−βs

2
α−β,

cAHH = s2
α−β; chHH = −c2

α−βsα−β; cHHH =
1

4

(
c3(α−β) − 5cα−β

)
, (3-8)

cAhH =
1

2
s2(α−β); chhH = −c3

α−β; cHhH = s3
α−β,
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ht is the top Yukawa coupling,(
TH
Th

)
= D (α)

(
T1

T2

)
and δ(3)m2

A = Re

[∑ (3)

AA

(
p2 = 0

)]
. (3-9)

Due to the relation (3-1), the expressions of cA,h,Hψiψj
can be further reduced. Therefore, in the

gaugeless limit but also in the decoupling limit, mA �MZ0 , only the coefficients chhh = −1,

cAHH = 1 and cHhH = −1 give a contribution.

The three-loop counter-terms described in the above expressions are useful to cancel local

UV divergences. However, the unrenormalized topologies, consisting of self-energies as well

as tadpoles of the neutral CP-even and CP-odd Higgs boson fields, can contain also non-local

divergences coming from a sub-loop in the three-loop diagrams. It is therefore necessary an

additional sub-renormalization procedure to remove these infinities. The procedure consists

in the inclusion of additional three-loop diagrams which are built from either one-loop topo-

logies with a two-loop or two one-loop counter-term insertions or two-loop topologies with

a one-loop counter-term inserted. Each of those three-loop counter-term diagrams is meant

to cancel the non-local divergences arising in a sub-loop of a given three-loop topology. At

order O(αtα
2
s) the counter-terms comes from the SQCD sector of the rMSSM Lagrangian.

Specifically, we need the O(αs)-contribution of the one-loop counter-terms coming from the

renormalization of the gluino mass, the top quark mass, the squark masses and the stop

mixing angles. In addition, we need the two-loop renormalization of the top mass, the stop

masses and stop mixing angles at order O(α2
s). We have got all the one and two-loop counter-

terms in the DR scheme, where the UV divergences are minimally subtracted. In order to

preserve supersymmetry to all perturbative orders we have used the regularization proce-

dure DRED [44–47]. The main renormalization conditions to derive the necessary one- and

two-loop SQCD counter-terms are described in Section 2.3 and their explicit expressions in

terms of fundamental functions are consigned in Appendix B.

3.2. Three-loop fixed-order calculation of Mh

In this section we are going to discuss the technical details of our three-loop diagrammatic

computation. Considering that we are interested in terms of order αtα
2
s from the perturba-

tive expansion of the Higgs mass, we have restricted the calculations to the SQCD sector

where the Higgs couples just to the top quark or its super-partner. The three-loop radiative

correction to Mh is obtained by evaluating the neutral Higgs boson self-energies (
∑

) and the

tadpoles (T ) for the fields h, H and A according with the equations (3-2) and (3-7). All the

Feynman diagrams and their corresponding amplitudes are generated with the Mathematica

package FeynArts [158]. In FeynArts one can specify the number of external lines and the

number of loops in order to create a set of topologies obtained from connecting incoming

and outgoing lines of tree-level vertices in all distinct ways. For the purposes of FeynArts,
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Internal Line

External Line

Internal V ertex

External V ertex

Figure 3-1.: Generic three-loop topology. An external vertex is a vertex joined to an external

line. An internal vertex is a vertex joined only to internal lines (propagators).

a topology is a connected diagram without the insertion of quantum fields on any of their

lines. We are interested in three-loop topologies with one (tadpoles) and two (self-energies)

external lines which are 1PI. Note that besides pure three-loop topologies, there are also

contained one-loop diagrams with first- and second-order counter-term insertions, two-loop

diagrams with first-order counter-terms and tree diagrams with third-order counter-terms,

which will be involve in the renormalization of local and non-local divergences. In Appen-

dix D we show a simple Mathematica routine that generates and draws all the three-loop

topologies needed in our calculation. The output of this code shows that there are 80 pu-

re three-loop self-energies, 63 self-energies with counter-term insertions, 15 pure three-loop

tadpoles and 16 tadpoles with counter-term insertions.

The next step consists in the introduction of the quantum fields on the lines of each topology

according with the interaction vertices of the rMSSM. We have used a modification of the mo-

del MSSMCT.mod of FeynArts where all the MSSM vertices are contained. The modifications

include the addition of the counter-term vertices of Appendix B as well as tree-level vertices

with ε-scalars into the model. The latter requires also a modification of the generic model

file Lorentz.gen where the analytical propagators and couplings are defined. In the external

lines the only fields to take into consideration are the neutral Higgs fields: h, H and A. The

internal lines (propagators) would contain the SQCD fields (heavy quarks, squarks, gluon,

gluino and ε-scalar) whose vertices lead to the generation of the amplitudes with the required

perturbative order. The needed vertices can be consulted in Appendix C. In the language of

FeynArts, the insertion of the fields can be done with the function InsertFields and it is

possible to exclude the unnecessary insertions with the help of the functions DiagramSelect,

ExcludeParticles and LastSelections. DiagramSelect is the most efficient function to

pick a selected set of diagrams because it applies a test function to every diagram, and

returns only those for which the result of the test is True. We have written a routine in Mat-

hematica, which can be consulted in Appendix E, where the test functions impose selection

rules over each topology in order to extract the desired Feynman diagrams. The selection

rules were designed according with the definitions in Figure 3-1 and the following simple

statements:
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In a renormalized QFT in four dimensions, only cubic and quartic vertices can be

considered.

There is no quartic vertex which is linear in gs or ht.

There is no vertex with a neutral Higgs field on any of their lines which is proportional

to the strong coupling constant gs.

For self-energy diagrams with two external vertices, each external vertex must be a

cubic vertex of the order of ht. In self-energies with one external vertex, the vertex

must be a quartic vertex proportional to h2
t .

Tadpole diagrams must be of the order of htg
4
s ; therefore, its external vertex must be

a cubic vertex proportional to the first power of ht.

Internal vertices must be only SQCD vertices of the order of gns with 1 ≤ n ≤ 2.

As we are assuming the limit of vanishing external momentum, only mass counter-

terms of the order of g2
s (first-order) or g4

s (second-order) inserted into the propagators

are considered. Diagrams with counter-terms insertions on the vertices are disregarded.

As a result, the 32 self-energy topologies with two quartic external vertices and the four

tadpole topologies with a quartic external vertex, drawn by the code in Appendix D, are

excluded. At order αtα
2
s, after the insertion of the fields and the application of the selection

rules, we obtain a total set of 3869 × 4 Feynman diagrams for the pure three-loop neutral

Higgs self-energies case and 3590 × 2 three-loop neutral Higgs tadpoles. The counter-term

diagrams include 523 × 2 tadpoles and 3491 × 4 self-energies. A total of 37666 diagrams

have been created. The routine in Appendix E also generates the amplitudes of the resulting

diagrams with the help of the FeynArts function CreateFeynAmp. The generated FeynArts

amplitudes have a quite involved structure, we have to deal with three-loop four-dimensional

integrals of the form

A(4)
v1v2v3v4v5v6

=
1

π12

∫∫∫
d4q1d

4q2d
4q3

P v1
1 P v2

2 P v3
3 P v4

4 P v5
5 P v6

6

N
(
qµj , p

ν , γµ, γ5, gµν , T akl, f
abc
)
, (3-10)

where the denominator contains the Feynman propagators

Pj =

(
3∑

n=1

xnj qn + yjp

)2

−m2
j ; xj, yj = 1, 0, −1, (3-11)

raised to the powers vj, which can be zero or a positive integer number. The numerator,

in turn, is a complicated combination of the tensor structures included into the parenthesis

of the function N , that is to say, the loop-momenta qµj , the external momentum pν , the

Dirac gamma matrix γµ, the chiral gamma matrix γ5, the metric tensor gµν and the SU(3)
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generators in the real (T akl) and the adjoint (fabc) representation. The resulting FeynArts

amplitudes are not regularized. The loop/external momenta, the metric tensor and the gam-

ma matrices are in four dimensions. Besides the tensor structures in the numerators are

written without taking the contractions of the Lorentz, Dirac and Color indices. With the

help of the Mathematica package FeynCalc [159] we have written a routine that implements

the regularization of the Feynman integrals by dimensional reduction. We have used the

version 9.0.1 of FeynCalc where DRED is not implemented; however, some of the FeynCalc

functions can be used in order to get the DRED regularized amplitudes. Also, the language

of FeynCalc is more convenient for calculational purposes and can be easily imported from

FeynArts trough the function FCFAConvert. There are three different but equivalent ways

to implement DRED, which differ basically in how the algebra of the Dirac matrices on

the numerators is solved. In this regularization scheme all gamma matrices coming from

a vertex with a vector field and the metric tensor in a vector propagator belong to the

quasi-four-dimensional space (Q4S) [68,160,161] while loop/external momenta coming from

a fermion propagator, and any metric tensor or gamma matrix contracted to them, remain

in the quasi-D-dimensional space (QDS). Such spaces were first postulated in [162,163] and

guarantees that all calculational rules are consistent and that all practical calculations lead

to unambiguous and well-defined results. The details of the algebra in the quasi-four, -D and

-ε-dimensional spaces can be found in Appendix A. One can regularize a loop-integral by

i) splitting each Q4S matrix in the numerator into a sum of QDS ⊕QεS matrices and the-

refore, for our purposes, splitting the four-dimensional gamma and metric tensor matrices

according with:

γµ = γµ̂ + γµ̃ ; gµν = gµ̂ν̂ + gµ̃ν̃ , (3-12)

where the indices with a hat and a tilde run the QDS and QεS spaces, respectively. Then,

one has to perform the corresponding algebra of the tensors involved, products of gamma

matrices and Dirac traces, according with the rules of each QDS and QεS spaces and solve

the resulting integrals using the usual techniques of the dimensional regularization. Note

that this procedure do not require the inclusion of additional vertices in the MSSM model

file of FeynArts, just the identification and splitting of the Q4S matrices in the amplitudes.

ii) In the second procedure, diagrams generated with the original MSSM vertices are regula-

ted in the usual DREG; however, in order to preserve supersymmetry, the diagrams with the

inclusion of the vertices involving ε-scalars (see Appendix C) coming from the split of the

vector fields (V µ = V µ̂ +V µ̃) must be added. The amplitudes of the diagrams with ε-scalars

have the same expressions as the integrals with QεS objects obtained after the splitting of

the Q4S matrices in the first approach. In this procedure the cubic and quartic vertices

involving ε-scalars must be added to the model file MSSMCT.mod of FeynArts.

iii) Finally, one can perform the regularization of the Feynman integrals directly in the Q4S

space following their calculational rules and without the introduction of additional ε-scalar

vertices. In particular, due to all traces of γ matrices can be reduced to Tr1 = 4 times metric
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tensors by applying the anticommutation relations, results of traces are formally the same

in the actual four-dimensional space and in Q4S as long as no γ5 is present; therefore, in

this approach FeynCalc functions as DiracTrace or Tr can be used to sort out traces of

gamma matrices. It is worth to mention that the Q4S algebra for diagrams which contain

the cubic vertex quark-squark-gluino requires a special treatment. This vertex introduces

the γ5 matrix in the Dirac traces. We can dealt γ5 as an anti-commuting object provided

that traces with an odd number of γ5 contain less than four gamma matrices [164]. This

γ5-regularization is allowed in our computation of the three-loop Higgs self-energies becau-

se after expanding the numerator of each three-loop integral (which contain products of

Higgs/SQCD vertices and the numerator of vector/fermion propagators) with the help of

the FeynCalc functions DiracOrder and DiracSimplify, we only find traces of a single γ5

and at most three gamma-matrices besides of traces with just γµ products. We point out,

however, that this treatment of γ5 is not valid in general. For instance, three-point three-loop

Green functions could contain non-vanishing traces with a single γ5, as is shown in [67].

Even though the three procedures are completely equivalent, in practice the third one is

the easiest to implement since we avoid the introduction of the diagrams involving ε-scalars

and the algebra in the QεS. Nevertheless, for the pure three-loop amplitudes we have im-

plemented the second and the third procedure in a Mathematica routine to cross-check the

results and for the diagrams with counter-term insertions we have used directly the second

method provided that the anomalous dimensions of the squarks contain an ε-mass depen-

dence starting from the two-loop level, as you can see in eq. (B-12). An example routine of

the regularization of three-loop self-energy integrals using the third approach is shown in

Appendix F. The code in Appendix F also applies the approximation of vanishing external

momentum and performs the sum over the Color indices of the SU(3) generators, with the

help of the package SUNSimplify of FeynCalc. In this way, after performing the Dirac and

the Color algebra, the numerator of each three-loop amplitude is expressed in terms of the

Casimir operator eigenvalues, the scalar products of loop momenta and the kinematic inva-

riants, besides of the coupling constants and the other rMSSM involved parameters.

The scalar products of loop-momenta over the numerators can be expressed in terms of scalar

propagators according to:

q2
j →

(
q2
j −m2

j

)
+m2

j , (3-13)

qi · qj →
1

2

[
(qi + qj)

2 −m2
i+j+1 −

(
q2
i −m2

i

)
−
(
q2
j −m2

j

)
+ f (mi,mj,mi+j+1)

]
,

where

f (mi,mj,mi+j+1) = m2
i+j+1 −m2

i −m2
j . (3-14)

Applying the changes defined in eqs. (3-13) and (3-14) and a further partial fractioning over

propagators with equal loop momenta but different masses,(
1

k2
i −m2

i

)(
1

k2
i −m2

j

)
→ 1

m2
i −m2

j

(
1

k2
i −m2

i

− 1

k2
i −m2

j

)
, (3-15)
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each three-loop amplitude can be expressed as a superposition of a set of scalar integrals of

the form∑
j

cjINT [{vj1 ,mj1} , {vj2 ,mj2} , {vj3 ,mj3} , {vj4 ,mj4} , {vj5 ,mj5} , {vj6 ,mj6}] , (3-16)

where the coefficients cj are functions of the Casimir operator’s eigenvalues of the non Abelian

color algebra, the coupling constants and the squared masses, while

INT [{a,m1} , {b,m2} , {c,m3} , {d,m4} , {e,m5} , {f,m6}] =〈
1

(k2
1 −m2

1)
a

1

(k2
2 −m2

2)
b

1

(k2
3 −m2

3)
c

1

(k2
4 −m2

4)
d

1

(k2
5 −m2

5)
e

1

(k2
6 −m2

6)
f

〉
3l

,

〈(. . . )〉3l =
3∏
j=1

∫
dDqj , (3-17)

with k2
1 = q2

1, k2
2 = q2

2, k2
3 = q2

3, k2
4 = (q1 +q2)2, k2

5 = (q1 +q3)2 and k2
6 = (q2 +q3)2. The powers

a, b, c, . . . can be zero, negative or positive integer numbers. Thus, the scalar integrals can

contain propagators with negative powers and therefore irreducible numerators. The total set

of pure three-loop Higgs self-energies and tadpoles can be expressed as a linear combination

of 3525 different scalar integrals (with different configuration of powers and masses).

So as to evaluate each scalar integral in terms of a general expression valid for any election

of the input masses, we have avoided the use of asymptotic expansions at the integral level.

Instead, we have exploited the fact that this set of integrals are not independent of each other

but related by the integration by parts (IBP) relations, which are obtained after working

out the differentiation in∫
dDqj

∂

∂qνj
[kµI (p1, . . . , pe, q1, . . . , ql)] = 0. (3-18)

The momentum kµ represents an arbitrary loop/external momentum. The index µ is summed

over but the index j is not. If there are l loop momenta and e independent external momenta

one can therefore build l(l+ e) equations from one seed integral. Additional relations can be

obtained from the Lorentz invariance (LI) identities,

e∑
n=1

(
pνn

∂

∂pnµ
− pµn

∂

∂pnν

)
I (p1, . . . , pe) = 0. (3-19)

The eq. (3-19) leads to e(e − 1)/2 identities, where e denotes the number of independent

external momenta. We have used the IBPs to generate a homogeneous system of linear

equations where the scalar integrals are the unknowns. The system can be reduced to a

small set of irreducible integrals, the so called Master Integrals. This is something that

cannot be done by hand because there are thousand of equations. Thus, we have used the

program Reduze [165], an implementation of the Laporta algorithm, in order to carry out
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Figure 3-2.: Basis of three-loop vacuum integrals obtained from the IBP reduction with Reduze.

this reduction. Reduze requires the definition of a set of integral families, which is a minimal

ordinary set of propagators P1, . . . , Pn with the specification of their permutation symmetries,

where any scalar product of a loop-momentum with a loop/external momentum can be

uniquely expressed as a linear combination of inverse propagators and kinematic invariants.

A selection of t propagators Pj1 , . . . , Pjt , where {j1, . . . , jk} ⊂ {1, . . . , n}, defines a sector of

a family. Each sector have an identification number defined as

ID =
t∑

k=1

2jk−1. (3-20)

In the Reduze notation an arbitrary scalar integral belongs to a sector and is expressed as:

INT [F, t, ID, r, s, {v1, . . . , vn}] , (3-21)

where F denotes the integral family, t is the number of propagators, vi is the exponent of the

propagator Pi, r is the sum of the propagator exponents which are positive, r =
∑t

i=1 ri with

{ri ∈ vi |vi > 0}, s is the sum of the propagator powers which are negative, s =
∑n−t

i=1 si with

{si ∈ vi | vi < 0}. A code devoted to change the notation of the scalar integrals from (3-17)

to (3-21) and to identify the corresponding integral families at which the scalar integrals

belong is shown in Appendix G.

We have found a basis of 32 master integrals, which correspond to different mass configura-

tions for the five vacuum diagrams depicted in Figure 3-2, where each topology can contain

at most four independent mass scales. Those integrals are independent of each other, in the

sense that they cannot be related by permutation symmetries of the propagators. Specifi-

cally, the basis includes the integrals depicted in Figure 3-3. The divergent and the finite

part as well as the evanescent terms, which are the terms of order εn with n > 0, of the

Laurent expansion of the one-loop function

A0 (m) =
eγEε

iπD/2

∫
dDq

1

q2 −m2
, (3-22)

and the two-loop function

T3(m1,m2,m3) = i
e2γEε

πD

∫ 3∏
j=1

dDqj
1

[q2
1 −m2

1]
1

[q2
2 −m2

2]
1 [

(q1 − q2)2 −m2
3

]1 , (3-23)
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m1

m2

m3

m4

Figure 3-3.: Basis of three-loop Master Integrals. The dashed line represents a massless propa-

gator. The solid lines are massive propagators, each color represent an independent

mass scale.
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have very well known analytical expressions for any configuration of masses. Furthermore,

the three-loop vacuum integrals U4, U5 and U6, are defined as:

U4 (m1,m2,m3,m4) ≡ INT [2, 1, 1, 1, 0, 0] , (3-24)

U5 (m1,m2,m3,m4,m5) ≡ INT [1, 1, 1, 1, 1, 0] , (3-25)

U6 (m1,m2,m3,m4,m5,m6) ≡ INT [1, 1, 1, 1, 1, 1] , (3-26)

with

INT [ν1, ν2, ν3, ν4, ν5, ν6] = i
e3γEε

π3D/2

∫ 3∏
j=1

dDqj
1

[q2
1 −m2

1]
ν1
[
(q1 − q2)2 −m2

2

]ν2 ×
1[

(q2 − q3)2 −m2
3

]ν3
[q2

3 −m2
4]
ν4 [q2

2 −m2
5]
ν5
[
(q1 − q3)2 −m2

6

]ν6 , (3-27)

where the indices νj are integers numbers, ε = (4−D)/2 and D is the number of the space-

time dimensions. For each of those three-loop functions it is possible to find an analytical

expression of the divergent part, which can be consulted in Appendix I, independent of the

mass configuration in the propagators. An analytical solution to all orders in ε can be obtai-

ned just for the cases where there are one or two massive propagators, the main expressions

can be consulted in Appendix J. However, when there are three or four independent mass

scales a numerical evaluation of the finite part and the evanescent terms of the three-loop

master integrals is required. In this work we have used a method based on dispersion rela-

tions, implemented in the public code TVID developed by A. Freitas [166–168], in order to

make the analysis of the convergence and get a numerical integration of the master integrals

which are unknown analytically. TVID uses the discontinuities coming from the one-loop

self-energy

B0
(
p2,m1,m2

)
=

eγEε

iπD/2

∫
dDq

1

[q2 −m2
1]
[
(q + p)2 −m2

2

] , (3-28)

and the one-loop vertex

C0
(
p2

1, p
2
2,m1,m2,m3

)
=

eγEε

iπD/2

∫
dDq

1

[q2 −m2
1]
[
(q + p1)2 −m2

2

] [
(q + p1 + p2)2 −m2

3

] , (3-29)

to produce dispersion relations that are useful in the evaluation of the U -functions in terms

of one- and two-dimensional integral representations. The four-propagator function U4 and

the five-propagator function U5 can be represented in terms of one-dimensional integrals.

In analogous way the six-propagator function U6 can be represented by a two-dimensional

numerical integral. For the case of the U4 function the representation is

U4 (m1,m2,m3,m4) = − eγEε

iπD/2

∫
dDq3

∫ ∞
0

ds
∆Idb (s)

q2
3 − s+ iε

= U4div −
∫ ∞

0

ds A0fin (s) ∆Idb,fin (s) , (3-30)
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where U4div contains the UV divergences of U4, A0fin is the finite part of the one-loop

function A0, while

∆Idb,fin(s,m2
1,m

2
2,m

2
3,m

2
4) = ∆B0,m1

(
s,m2

1,m
2
2

)
Re
[
B0
(
s,m2

3,m
2
4

)
−B0 (s, 0, 0)

]
- ∆B0,m1

(
s,m2

1, 0
)

Re
[
B0
(
s,m2

3, 0
)

+B0
(
s,m2

4, 0
)
− 2B0 (s, 0, 0)

]
+ Re

[
B0,m1

(
s,m2

1,m
2
2

)] (
∆B0

(
s,m2

3,m
2
4

)
−∆B0 (s, 0, 0)

)
- Re

[
B0,m1

(
s,m2

1, 0
)] (

∆B0
(
s,m2

3, 0
)

+ ∆B0
(
s,m2

4, 0
)
− 2∆B0 (s, 0, 0)

)
. (3-31)

∆B0 and ∆B0,mj
are the discontinuities of the scalar one-loop self-energy function, B0, and

its mass derivative, B0,mj
= ∂

∂m2
j
B0, given by

∆B0
(
s,m2

a,m
2
b

)
=

1

s
λ
(
s,m2

a,m
2
b

)
Θ
(
s− (ma +mb)

2) , (3-32)

∆B0,m1

(
s,m2

a,m
2
b

)
=

m2
a −m2

b − s
sλ (s,m2

a,m
2
b)

Θ
(
s− (ma +mb)

2) . (3-33)

Here λ(x, y, z) is the Källen function defined as

λ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx) (3-34)

and Θ is the Heaviside step function. The finite part of the vacuum integral U4 is therefore

expressed as a numerical integral of a combination of elementary functions, such a logarithms

and square roots, which can be efficiently evaluated with numerical methods for general mass

patterns without make any assumptions about the mass hierarchy of the SUSY particles.

Analogous but more complicated dispersion relations in terms of fundamental functions,

whose explicit form is too lengthy to be included here, were already obtained for the finite

part of the three-loop integrals U5 and U6 and can be consulted in [166] and the ancillary

files included in the program TVID [167,168]. In any case the dispersion relation techniques

lead to one- and two-dimensional integrals of the form∫ ∞
s0

ds
f(s)

s− s′ ± iε , (3-35)

which can be efficiently evaluated for any mass hierarchy with numerical methods. This is an

important feature that worth to point out. The three-loop corrections to Mh are expressed

in terms of a basis of master integrals which can be numerically evaluated for an arbitrary

hierarchy of the mass scales. For s′ > s0, those integrals can be split into a residuum contri-

bution and a principal value integral, yielding∫ ∞
s0

ds
f(s)

s− s′ ± iε = ∓iπf(s′) +

∫ s′

s0

ds
f(s)− f(2s′ − s)

s− s′ +

∫ ∞
2s′−s0

ds
f(s)

s− s′ . (3-36)

In the eq. (3-36), the integrand of the first remaining integral is regular at the point s = s′.

If f(s) is real, the residuum contribution can be dropped provided that only the real part
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is needed in the evaluation of the three-loop vacuum functions. With the dispersion met-

hod implemented in TVID the finite part of the three-loop U -integrals can be numerically

evaluated with up to 10 digits of accuracy. Internally the program uses the Gauss-Kronrod

routine QAG from the Quadpack library [169] to evaluate the dispersion integrals. This

routine has been amended to facilitate 30 digit floating point arithmetic from the package

doubledouble [170] allowing results with at least ten digits of precision for the U4 and U5

integrals and a precision of eight digits for the U6 vacuum integral. It is possible to reach

this precision because the numerical integrations are at most 2-dimensional and therefore

there is a controlled treatment of any singularities.

The code devoted to express each three-loop amplitude as a linear combination of the in-

tegrals drawn in Figure 3-2, with coefficients that are ratios of polynomials in the masses

and the space-time dimension, is shown in Appendix H. These coefficients can contain poles

of first and second order and therefore the renormalized correction to Mh requires also the

evaluation of the evanescent terms of the master integrals up to second order, that is to say,

the terms at order O(ε) and O(ε2) in the Laurent expansion. It is no possible to evaluate

these contributions with TVID because the higher-ε terms of the real and imaginary parts of

B0 and C0 and therefore of U4, U5 and U6 are not included in the program. For this reason

we have used the code SecDec [171] which admit a numerical evaluation of the evanescent

terms.

3.2.1. Three-loop counter-term diagrams

On the other hand, we also need to generate the amplitudes for the diagrams which are

responsible for removing the non-local sub-divergences. This includes the generation and in-

sertion of the needed SQCD mass counter-terms. We have written a routine in Mathematica

that generates all the expressions for the counter-terms listed in Appendix B. The generation

of the involved regularized amplitudes was done with the help of the FeynArts and Feyn-

Calc functions. In contrast to the three-loop diagrams, the one and two-loop counter-terms

are determined from the evaluation of fermionic and scalar self-energies with the external

momentum transferred different from zero, p2 6= 0. The resulting self-energies can be further

reduced using the Tarasov method [172], that is implemented in the code TARCER [173],

to the basis of one and two -loop master integrals represented by the diagrams of Figu-

re 3-4. The one-loop counter-terms of the top quark mass, the gluino mass, the sfermion

masses and the stop mixing angles can be determined in terms of the Passarino-Veltman

functions A0 and B0. The two-loop counter-terms of the stop masses and mixing angles can

be expressed as a superposition of the eleven master integrals depicted in Figure 3-4.

In the DR scheme we just need the divergent parts of the integrals. The one-loop functions

A0 and B0 have the analytical expressions found in Appendix J. The functions Dm1m2J ,

Dm1m2m3J and D2m1m2J are finite. D2m1J has only a 1/ε divergence with coefficient

−1/2m2
1, independent of the values of m2 and m3. Dm1J has poles of one and second order,
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Figure 3-4.: Basis of one and two -loop master integrals obtained from the Tarasov method. The

dot over the internal line j represents a partial derivative of the propagator regarding

the squared mass m2
j .

its 1/ε2 divergence is 1/2, mass independent while its 1/ε divergence is 1/2− ln(m2
1/µ

2
r). The

1/ε2 divergence coefficient of J is 1/2(m2
1 +m2

2 +m2
3) while the 1/ε divergence coefficient is

3

2

(
m2

1 +m2
2 +m2

3

)
− p2

4
−

3∑
j=1

m2
j ln
(
m2
j/µ

2
r

)
. (3-37)

For the cases where one or more masses m2
j vanish in the expression (3-37) one should take

the zero order term of the Taylor expansion around m2
j = 0 to get the right expression.

The same apply for T3 but choosing the external momentum p2 equal to zero. Finally, we

need the functions F and V with at most three independent mass scales. The function

F is finite, while V [p2,m2
1,m

2
2,m

2
3,m

2
4] have a divergence 1/ε2 with coefficient 1/2 and a

1/ε divergence equal to B0fin [p2,m2
2,m

2
4] + 1/2, where B0fin refers to the finite part of the

function B0. All these analytical expressions were numerically checked with the code SecDec,

where the prefactor Exp[(−2γEε)] must be specified in order to get the correct result. In

Appendix B the counter-term expressions involved in the renormalization of the non-local

ultraviolet divergences are listed. These results can be checked with those of the review [174]

and references therein.

Once the needed mass counter-terms are generated, we need to insert their expressions into

the counter-terms diagrams, which are Higgs self-energies and tadpoles at one- and two-loop

level with counter-term insertions. The code devoted to this aim is shown in Appendix K.

A further expansion in ε is performed over the amplitudes. The coefficients of the poles are

saved by the program in a list and used to remove the sub-divergences appearing in the pure

three-loop diagrams. Besides the O(ε0) term of each counter-term diagram is also generated

and added to the finite contributions coming from the pure three-loop Higgs tadpoles and

self-energies. These cancellations and additions are performed in an automatized way with

the help of a Mathematica routine.
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Figure 3-5.: Basis of three-loop Master Integrals in the heavy SUSY limit. The dashed line re-

presents a massless propagator. The thin solid line is the propagator with a mass at

the electroweak scale Mt and the thick solid line depicts the propagator involving

the SUSY scale MSUSY .
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3.2.2. Three-loop Mh-corrections in the heavy SUSY limit

We have also considered a degenerate single-scale scenario where all the super-symmetric

masses are set equal to an effective scale MSUSY ,

ML,R = Mg̃ = MA = µ = MSUSY . (3-38)

Here µ is the Higgsino mass and ML,R are the soft SUSY-breaking masses. We have identified

the lightest Higgs boson h as the SM-like Higgs boson and therefore we have assumed the

decoupling limit, MA = MSUSY � Mt. This degenerate scenario in the decoupling limit is

known as the “heavy SUSY”limit. As a consequence, the three-loop self-energy corrections to

m2
h,H can approximately be obtained as a superposition of the 33 vacuum integrals depicted

in Figure 3-5 with coefficients that are functions of the kinematic invariants and the space-

time dimension, D. In some particular cases the coefficients can contain poles; that is to

say, terms of the form (D − 4)−1. Thus, the basis integrals could also require a numerical

evaluation of their evanescent terms. Besides, the mixed h − H self-energy contributions

vanish and therefore the propagator equation (2-24) reduces to

p2 −m2
h + Σ̂hh = 0, (3-39)

where

Σ̂hh = Σhh +
ht

2Mt

sβ
Th√

2
. (3-40)

Each diagram of the basis in Figure 3-5 represents a three-loop Master Integral of the form

Iv1...v6 = i
e3γEε

π3D/2

∫ 3∏
l=1

dDql

[
6∏
j=1

1

P
nj

j

]
, (3-41)

with

P1 = q2
1 −m2

1, P2 = (q1 − q2)2 −m2
2, P3 = (q2 − q3)2 −m2

3,

P4 = q2
3 −m2

4, P5 = q2
2 −m2

5, P6 = (q1 − q3)2 −m2
6.

There are two scales involved, the electroweak scale Mt, whose associated propagator is

represented with a thin solid line and the super-symmetric scale MSUSY represented with

a thick solid line. Massless propagators are represented with a dashed line. This basis was

obtained using the integration by parts (IBP) method implemented in the code Reduze. Main

part of the diagrams shown on Figure 3-5 have been analytically evaluated in [175–182]. The

numerical evaluation of this basis was done also with TVID and SecDec. In particular, the

integral I211100 requires a Laurent expansion up to first order in ε. The evanescent terms of

O(ε1) was numerically evaluated with the help of SecDec.
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3.3. Numerical Mh-predictions in the diagrammatic

approach

Once the local and non-local UV divergences have been subtracted from the Higgs self-

energies, we get finite three-loop corrections to the CP-even and CP-odd Higgs boson mas-

ses that are useful in the derivation of the renormalized value of Mh which is obtained as a

solution of the pole equation (2-24). Our corrections depend upon 26 parameters: the renor-

malization scale µr, the SM DR parameters ht, Mt, αs and the MSSM parameters µ, tanβ,

MA, Mg̃, θt, m̃f1,2 and Af , with f = u, d, t, b, c, s. Their values as well as the renormalization

group evolution of the SM parameters are determined with the help of the spectrum genera-

tor SoftSUSY [139]. We use the package SLAM [183] (Supersymmetry Les Houches Accord

with Mathematica) in order to export to Mathematica any needed parameter generated with

SoftSUSY. In the DR scheme the two-loop anomalous dimension of the stop mass contain a

non-physical dependence on the ε-scalar mass, mε. At order αtα
2
s a one-loop renormalization

of mε is required. In order to decouple the ε-scalar mass from the physical observables we

have renormalized mε in the on-shell scheme [91,184] and we have imposed mOS
ε → 0 at the

given perturbative order. Strictly speaking, this procedure does not coincide with a DR re-

normalization due to mε is not renormalized minimally. However, as all the other parameters

entering the two-loop counter-term of the stop mass are DR parameters and the O(αtα
2
s)

correction to Mh is independent from mε, we mantain the nomenclature ”DR scheme”.

We have performed a numerical comparison between our three-loop predictions and the ot-

her fixed-order corrections currently included in FeynHiggs [56, 155, 156] and the three-loop

results implemented in H3m [55, 117, 118] combined with the lower-order results of Feyn-

Higgs. We discuss our results in three different limits: i) the mfree
h scenario, where µr, tanβ,

MA and At are left as free input parameters. ii) The mmax
h and mmod+

h scenarios analyzed

in [37]. In these three different scenarios we do not make any specific assumptions about the

soft SUSY-breaking mechanism and we interpret the LHC signal at 125 GeV as the lightest

CP-even Higgs boson. We consider values of the SUSY scale in the region MSUSY < 1.2 TeV,

where the combined theoretical uncertainty of the fixed-order calculation is lesser than the

combined uncertainty of the effective field theory (EFT) calculation [41]. At the critical point

MSUSY = 1.2 TeV, the fixed-order and EFT combined uncertainties are equal and a hybrid

calculation should be used [128, 147, 157]. Above the critical point the EFT computation

is more accurate and therefore an EFT approach, where an effective SM is used below a

super-symmetric scale [122–125], should be preferred.

Throughout this section, we will discuss our numerical results in scenarios where a fixed-

order calculation is recommended. A numerical analysis considering large SUSY scales of the

order of MSUSY � 1.2 TeV will be the subject of the Chapter 4. In the mfree
h scenario we

fix the parameters

Mt̃L
= Mt̃R

= m̃q1,2 = MSUSY = 1 TeV, (3-42)
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Figure 3-6.: Dependence of Mh on (a) At and (b) tanβ. The dot-dashed and dashed lines are

the one and two -loop predictions of FeynHiggs. The dotted line is the three-loop

prediction of H3m and the red solid line depicts our three-loop predictions.

0 500 1000 1500 2000 2500 3000

110

115

120

125

130

Μr H GeV L

M
h

HG
eV

L

3

10

20

(a) At = 1.7 TeV, MA = 1 TeV

0 500 1000 1500 2000 2500 3000
110

115

120

125

130

Μr H GeV L

M
h

HG
eV

L

0.3 TeV

1.0 TeV

1.7 TeV

(b) tanβ = 10, MA = 1 TeV

Figure 3-7.: Dependence of Mh on µr. (a) The evolution for three different values of tanβ is

studied. We consider tanβ = 3, 10 and 20. (b) Mh is plotted for the scenarios with

At = 0.3 TeV, 1 TeV and 1.7 TeV. The inclusion of three-loop corrections reduces

the scale dependence by a factor between 1.5 - 2.0. The scale dependence is improved

when we consider lower values of tanβ and At. To draw these plots we have used

the same conventions as in the Figure 3-6.
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Mt MSUSY Xt Mg̃ µ

mmax
h 173.2 GeV 1000 GeV 2MSUSY 1500 GeV 200 GeV

mmod+
h 173.2 GeV 1000 GeV +1.5MSUSY 1500 GeV 200 GeV

Table 3-1.: Input parameters for the mmax
h and mmod+

h scenarios.

where q denotes any quark different than the top quark. We also set Mg̃ = 1500 GeV,

µ = 200 GeV and MA = 1000 GeV. Using this limit, we have studied the dependence of the

Higgs boson mass Mh on the soft-breaking parameter At (Fig-3.6(a)) on the input parameter

tanβ (Fig-3.6(b)) and on the renormalization scale µr (Fig-3.7(a) and Fig-3.7(b)).

At one- and two-loop level we have generated the Higgs mass predictions with the help of

the code FeynHiggs. These contributions are represented in the plots with the dot-dashed

and dashed curves respectively. This convention has been used in all panels. We have in-

cluded the full one and two-loop corrections (αsαt, αsαb, α
2
t , αtαb, α

2
b) in the rMSSM. The

one-loop field-renormalization constants and the one-loop tanβ counter-term are set in the

DR scheme. We do not assume any approximation for the external momentum value for the

one and two-loop corrections, i.e. we set in FeynHiggs a full determination of the propagator

matrix poles (2-23). Besides, the dotted curve represents the three-loop predictions at order

O(M2
t αtα

2
s) coming from the program H3m while the red solid line represents our three-loop

prediction evaluated at the same order. Our three-loop results shown in Figure 3-6 are quite

sizeable, amounting a size between 0.8 to 3.1 GeV compared to the two-loop corrections and

−0.373 to 0.418 GeV regarding the three-loop prediction of H3m. The relative size and sign

of the corrections depend on our election of the renormalization scheme.

Figure 3.6(b) shows a strong dependence on tanβ for small values close to tanβ = 3, while

for large values above tanβ = 10 the variation of Mh is marginal and closer to the LHC Higgs

mass value. Figure 3-7 depicts the dependence of Mh on the renormalization scale µr. In

Fig-3.7(a) the dependence is studied for three different values of tanβ, namely tanβ = 3, 10

and 20. The three-loop corrections lead to a more stable dependence of Mh with the renor-

malization scale µr than the one and two -loop predictions, reducing the scale dependence

by a factor between 1.5 and 2.0. This stability increases for lower values of tanβ in the mfree
h

scenario. Fig-3.7(b) shows the RG evolution for three values of the soft breaking parame-

ter, At = 0.3 TeV, 1 TeV and 1.7 TeV. The evolution is more stable when the three-loop

corrections are added and when the value of At decreases, reducing the scale dependence

by a factor of about 1.6 compared to the two-loop predictions. In the mmax
h and mmod+

h

scenarios the renormalization scale is set to µr = mt = 173.2 GeV, where mt represents the

combined Tevatron and LHC experimental value of the top quark mass [81]. Besides one

has to fix Mt̃L
= Mt̃R

= MSUSY , Aq = 0 and m̃q1,2 = 1500 GeV. The parameter At is fixed

through the mixing term in the squark sector, Xt = At− µcotβ, while MA and tanβ are left

as free parameters. Within the mmax
h scenario Xt is chosen in order to maximize the value

of Mh for a given election of µ and tan β. This occurs when |Xt/MSUSY | ≈ 2, where the
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Figure 3-8.: The lightest Higgs boson mass Mh as a function of MA in (a) the mmax
h limit for

tanβ = 3, 10 and (b) in the mmod+
h scenario. Our three-loop corrections are, within

theoretical uncertainties, in agreement with the predictions of H3m. The difference

can amount a size of about 0.2 GeV in mmax
h and 0.05 GeV in mmod+

h . These plots

follow the same conventions as in the Figure 3-6.

radiative corrections in the FD calculation reach to the largest positive contribution. With

this election of parameters the mass of the lightest CP-even Higgs boson is in agreement

with the LHC Higgs boson signal just in a relatively small strip in the MA-tanβ plane. A

convenient way to enlarge the region of validity is to decrease the amount of mixing in the

stop sector. The mmod+
h scenario is a modification of mmax

h where this mixing represented by

|Xt/MSUSY | is reduced. In detail we consider the input parameters shown in Table 3-1 for

each scenario. The stop mixing angle θt and the stop masses m̃t1 , m̃t2 are functions of the

parameters specified in Table 3-1.

To draw the plots in Figure 3-8 the CP-odd Higgs boson mass MA is varied in the interval:

500 GeV ≤ MA ≤ 1 TeV and we consider the values of tanβ = 3 and tanβ = 10. The

numerical values of our three loop corrections to Mh are reduced compared with the two-

loop predictions showing a good behaviour of the perturbative expansion. In both scenarios

the three-loop corrections give rise to a significant reduction of about 1 GeV to the two-

loop value of the Higgs boson mass. In addition the values of the corrections are consistent

with the results obtained with H3m. The difference can amount a size of about 0.2 GeV in

the mmax
h limit and 0.05 GeV in mmod+

h . The detailed analysis of the individual sources of

uncertainty of the three-loop fixed order DR ′ Higgs boson mass prediction of SoftSUSY,

developed recently in [41], shows a combined uncertainty for a maximal stop mixing scena-

rio who varies between 1-4 GeV depending on the SUSY scale. Our results have then very

similar numerical values to the ones obtained with H3m with differences which are within

the combined theoretical uncertainty.



4. MSUSY Constraints and Vacuum

Stability Analysis in the SM

The numerical analysis presented in the last section of Chapter 3 was done for a scenario

where the squark masses are of the order of 1 TeV; however, due to the lack of experimental

evidence of supersymmetric particles at this energy, we have to consider much larger values

for these masses. In this chapter, we are going to study the Higgs mass predictions, coming

from our three-loop fixed-order computation and the EFT hybrid calculation included in

the public code FeynHiggs, evaluated at the decoupling limit introduced in Section 3.3.

Therefore, we consider the limit where all the soft SUSY-breaking masses as well as the

CP-odd Higgs mass (mA) lie around a characteristic scale, MSUSY , and we focus on the

dependence of the Mh-predictions on this scale. The effect of the large logarithms occurring

in the fixed-order contributions, when supersymmetry is broken at some energy scale greater

than the electroweak symmetry breaking scale (MSUSY � Mt) will be also discussed. A

further phenomenological analysis, where we look for constraints on the MSUSY value coming

from the LHC measurements for the Higgs boson mass and the vacuum stability analysis in

the SM, is developed.

4.1. EFT and hybrid calculation of Mh

When there is a large mass hierarchy between the electroweak scale and the scale of the SUSY

particles, the fixed-order computations of the Higgs self-energy corrections contain large

logarithms that can spoil the convergence of the perturbative expansion and yield unreliable

predictions of the Higgs boson masses. A fixed-order computation is thus recommended for

low values of MSUSY not separated too much from Mt. There is an alternative approach to

calculate Mh which yield accurate results for high SUSY scales. This approach is based on the

EFT techniques [124,185] and allows the resummation of the large logarithmic terms and the

incorporation of higher-order contributions beyond the order of the fixed-order diagrammatic

calculations. In the heavy SUSY limit discussed in Section 3.3 the low-scale EFT below

MSUSY is the SM. In this approximation, the lightest CP-even Higgs is uniquely identified

as the combination of the original neutral Higgs fields

h =
v1H

0
1 + v2H

0
2√

v2
1 + v2

2

, (4-1)
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which yields a non-vanishing vacuum expectation value 〈h〉 = v =
√
v2

1 + v2
2 ' 174 GeV. In

terms of the light Higgs field h, the rMSSM Higgs potential (eq. 2-6) becomes

V (h) =
1

2
λ |Φ|4 − 1

2
m2 |Φ|2 ; Φ =

(
0

h/
√

2 + v

)
. (4-2)

The parameter m2 is a function of mH1 , mH2 , µ, b and v1,2 which satisfies the minimization

condition ∂V/∂h = 0 at h = v, while λ is the SM Higgs quartic coupling given at leading

order by

λ =
1

4

(
g2 + g′2

)
c2

2β. (4-3)

Here g and g′ are the running electroweak gauge couplings evaluated at MSUSY , which at

tree-level are the same in both theories: the SM and the rMSSM. The SM coupling of the

light Higgs to the top quark and the strong coupling constant at tree-level are:

yt = htsβ, gs = gs . (4-4)

Note that gs is the same in the two theories, while ht is the running top Yukawa coupling at

MSUSY in the rMSSM, which differs from the SM top Yukawa coupling yt by the factor sβ.

Solving the n-loop renormalization group equations (RGEs) for the SM couplings,

dgk
dt

= βgk , t ≡ log(Q), βgk =
1

16π2
β(1)
gk

+ · · ·+ 1

(16π2)n
β(n)
gk
, gk = λ, yt, gs, ... , (4-5)

the effective Higgs self coupling λ can correlate the high scale MSUSY with the next threshold,

the low scale Mt, and capture radiative corrections of the form

αm+n−1
j logm (MSUSY /Mt) ; j = λ, yt, gs, ..., (4-6)

into the coupling λ(Q) for m ≥ 1, where Q represents the renormalization scale. Thus, with

1, 2, . . . , n -loop RGEs a perturbative solution of λ(Mt) can extract the leading (L), next

to leading (NL), . . . , Nn−1L -logarithmic terms of a fixed-order calculation, respectively.

For a complicated set of SM beta functions, an analytical solution of λ(Mt) is typically not

possible; however, a numerical solution of the system (4-5) allows a very precise evaluation

in the EFT approach. On the other hand, in order to numerically solve the system of RGEs

it is necessary to impose boundary conditions to obtain the couplings gk(t) as a function

of gk(t̃) at the scale t̃ = log(MSUSY ). The matching conditions in eqs. (4-3) and (4-4) are

the boundaries at leading order for the dominant SM couplings. However, this matching

procedure is subject to higher-order threshold corrections from loops involving heavy fields.

In general, an n-loop RGE requires the specification of boundary conditions with (n−1)-loop

threshold corrections. For the Higgs quartic coupling λ at the SUSY scale, the state of art

now includes two-loop matching conditions which combined with the three-loop SM RGEs
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allows a full NNLL resummation of the large logarithmic corrections. The matching takes

the form

λ (Q) =
1

4

[
g2 (Q) + g′2 (Q)

]
c2

2β + ∆(1)λ+ ∆(2)λgaugeless + ∆(2)λEW-QCD . (4-7)

The complete result for the one-loop correction ∆(1)λ and a complete determination of the

two-loop correction ∆(2)λgaugeless in the limit of vanishing EW gauge couplings at order

y4
t,b,τg

2
s can be found in refs. [121, 125]. The dominant contributions comes from the terms

proportional to the fourth power of a third-family Yukawa coupling, which have the form:

∆λy
4
f =

∑
f=t,b,τ

3y4
f

(4π)2

(
ln
m̃2
fL
m̃2
fR

Q4
+ 2

X2
f

m̃fLm̃fR

[
F1(xf )−

1

12

X2
f

m̃fLm̃fR

F2(xf )

])
, (4-8)

where

F1(x) =
xlnx2

x2 − 1
, F2(x) =

6x2(2− 2x2 + (1 + x2)lnx2)

(x2 − 1)3
(4-9)

and xf = m̃fL/m̃fR . The remaining two-loop corrections, ∆(2)λEW-QCD, that involves terms

with a mixture between the EW and the strong gauge couplings at O(y2
t,bg

2g2
s), O(y2

t,bg
′2g2

s),

O(g4g2
s) and O(g′4g2

s), have been recently computed in [130]. The SM parameters in the

threshold corrections of eq. (4-7) are MS-renormalized quantities. The matching conditions

for the dominant SM parameters, yt and gs, can also be found in [121,125].

In order to get a three-loop running Higgs boson mass in the MS scheme at the scale Mt,

one has to multiply λ(Mt), which comes from the solution of the three-loop SM RGEs with

the boundary condition in eq. (4-7) evaluated at Q = MSUSY , by 2v2(Mt), where v(Mt) is

the MS vev evaluated at Mt. In turn, the physical Higgs mass requires to solve the pole

equation

p2 − 2λ(Mt)v
2(Mt) +

∏̃SM

hh

(
p2
)

= 0, (4-10)

with the SM Higgs boson self-energy,∏̃SM

hh

(
p2
)

=

[∏SM

hh

(
p2
)
− 1√

2v
T SMh

]
fin

, (4-11)

renormalized in the MS scheme but with the Higgs tadpoles renormalized to zero, i.e.

δT SMh = −T SMh . Thus, self-energy diagrams with tadpole insertions are not considered and

the vev corresponds to the minimum of the Higgs effective potential.

The procedure of matching the MSSM to a renormalizable EFT in the unbroken phase of the

EW symmetry amounts to neglecting corrections suppressed by powers of v2/M2
SUSY . Those

corrections can in fact be mapped to the effect of non-renormalizable, higher-dimensional

operators in the EFT Lagrangian. If the higher dimensional operators are not included, such

as the pure SM as EFT, the contributions suppressed by the heavy scale MSUSY are not
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considered. Consequently, the EFT calculation is less accurate than the fixed-order one for

low SUSY scales of the order of MSUSY . 1 TeV. Due to the presence of the large loga-

rithms, the fixed-order calculation loses accuracy for MSUSY above a critical SUSY mass

scale, estimated to be about MC
SUSY ≈ 1.2 TeV in [41], whereas above that scale the EFT

calculation is more accurate.

In the version 2.14 of FeynHiggs [56] both approaches, the fixed-order and the EFT approach,

are combined in order to supplement the full one-loop, leading and sub-leading two-loop dia-

grammatic results with a resummation of the leading + next to leading (LL+NLL) [120] and

next to next to leading (NNLL) [147] logarithmic contributions coming from the top/stop

sector. For the resummation of large logarithms up to NLL two-loop RGEs and one-loop mat-

ching conditions are needed, accordingly, the resummation up to NNLL requires three-loop

RGEs and two-loop matching conditions. The hybrid results obtained from the combination

of the two approaches are added into the pole equation of the full MSSM

p2 −m2
h +

∏̃
hh

(
p2
)

+ ∆log
hh = 0, (4-12)

through the shift ∆log
hh which contains the resummed large logarithms from the EFT as well

as the logarithmic terms already present in the fixed-order Higgs self-energies,

∆log
hh = −

[
2λ(Mt)v

2(Mt)
]
log
−
[∏̃

hh

(
m2
h

)]
log

. (4-13)

The subscript ”log” means that only logarithmic terms are considered. The logarithms in

the Higgs self-energy appear explicitly only after expanding in v/MSUSY . This subtraction

term ensures that the one- and two-loop logarithms, already contained in the fixed-order

FD computation, are not counted twice. In general the higher-order logarithms obtained

from the EFT and the hybrid approaches are not the same because the determination of

the poles of the propagators (eq. 4-10 and eq. 4-12) are performed in different models.

However, this difference, which comes from the momentum dependence of the two-loop

order non-SM contributions to the Higgs self-energy, cancels out with contributions coming

from the subloop renormalization in the heavy SUSY limit, as was explicitly shown in [157].

Besides the unwanted effects from incomplete cancellations in the determination of the Higgs

propagator pole, the effects due to non-logarithmic terms and its parametrization as well as

the higher-order terms coming from the scheme conversion between OS and DR parameters

are all included into FeynHiggs 2.14 [56].

4.2. Comparison of the EFT hybrid and three-loop

fixed-order calculations of Mh

In this section we present a numerical comparison of our three-loop fixed-order predictions

of Mh to the numerical predictions coming from FeynHiggs 2.14. We have chosen a DR
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Figure 4-1.: Comparison of the Mh predictions of FeynHiggs with the three-loop fixed-order

computation of Mh at O(αtα
2
s) in the heavy SUSY limit. The dot-dashed and the

dashed lines are the fixed-order results of FeynHiggs at one and two -loop level

respectively. The blue dotted line contains the NNLL resummation of the large

logarithms in FeynHiggs. The blue band corresponds to the uncertainty in the NNLL

prediction taken from FeynHiggs. The brown band is the CMS/ATLAS Higgs boson

mass, M exp
h = 125.09± 0.24 GeV. The red solid line represents our three-loop fixed-

order predictions. Left: Dependence of Mh on the super-symmetric scale MSUSY for

a vanishing stop mixing, Xt/MSUSY = 0. Right: Numerical differences between the

FeynHiggs predictions and the three-loop fixed-order predictions of Mh.

renormalization of the stop sector with the renormalization scale set to MSUSY , which is

equivalent to set Qt = −1 in FeynHiggs. The one-/two-loop fixed-order and the EFT-hybrid

FeynHiggs predictions are fixed such that the full MSSM is considered (mssmpart=4) in

its real version (higgsmix=2, tlCplxApprox=0), no approximation is taken for the one-

loop result (p2approx=4) and the O(tannβ) corrections are resummed (botResum=1). In

particular, when the resummation of the large logarithms is included, we use the full LL, NLL

and NNLL resummation (looplevel=2, loglevel=3). The top quark mass is renormalized

in the SM MS scheme at NNLO (runningMT=1) since for loglevel different from zero a DR

renormalization is not allowed. The input flags of FeynHiggs 2.14.3 are explicitly indicated,

for more details the online manual of the code can be consulted at [186]. To obtain the pole

mass Mh at three-loop level in the fixed-order approach, we have introduced the O(αtα
2
s)

corrections as constant shifts in the FeynHiggs 1-loop + 2-loop Higgs renormalized self-

energies (looplevel=2 and loglevel=0) with the help of the function FHAddSelf but in this

case we have used a DR renormalization of the top quark mass. In order to assure a correct

evaluation of the parameters αs and Mt in the DR scheme at the desired perturbative order,

we have used the program RunDec [187–189] and its supersymmetric extension, decSUSY.

We start by considering the FeynHiggs fixed-order, FeynHiggs NNLL hybrid and three-loop

O(αtα
2
s) predictions. The left plot of Figure 4-1 shows the dependence of Mh on MSUSY

for a vanishing stop mixing, Xt/MSUSY = 0, at the kinematic point Ae,µ,τ,u,d,c,s,b = 0 and
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Figure 4-2.: Numerical comparison of the Mh predictions in a scenario where Mg̃ = 1.5 TeV and

Xt/MSUSY = 0. These plots follow the same conventions as in the Figure 4-1. Left:

Evolution of Mh as a function of MSUSY . Right: Differences between the three-loop

fixed-order and the FeynHiggs predictions.

tanβ = 10, whereas the right plot shows the numerical differences between all the considered

FeynHiggs results and the O(αtα
2
s) prediction of Mh. In order to draw these plots we have

adopted the heavy SUSY limit (eq. 3-38) and we have followed the next conventions. The

one and two-loop fixed-order results of FeynHiggs are represented with the dot-dashed and

the dashed lines respectively. The blue dotted line contains, in addition, the resummation of

the large logarithms up to NNLL order. The blue band corresponds to the uncertainty in the

NNLL prediction computed with the help of the FeynHiggs function FHUncertainties for

the flag choise: mssmpart = 4, looplevel = 2, loglevel = 3, runningMT = 1. In principle

three effects are taken into account: i) the variation of the renormalization scale from Mt/2

to 2Mt, ii) the use of Mpole
t instead of M run

t in the two-loop corrections and iii) the exclusion

of higher order resummation effects in Mb. The brown band is the experimental Higgs boson

mass and its corresponding uncertainty, we have adopted the combined CMS/ATLAS result

of the RUN 1 at the LHC, M exp
h = 125.09 ± 0.24 GeV [6], since there is not yet an official

combined result for RUN 2 [7,8] observations. Finally, the red solid line contains our three-

loop fixed-order corrections.

The first thing to note here (and also in Figure 4-2) is that the higher-order large logarithms

coming from the EFT hybrid approach at NNLL level produce a growing positive shift on

the two-loop predictions reaching a size of about 20 GeV for MSUSY = 40 TeV. Additionally,

the NNLL predictions are in a very good agreement with the three-loop O(αtα
2
s) results for

MSUSY less than the value MSUSY . 10 TeV . On the right graph of Figure 4-1 one can

see that in the region 2.2 TeV . MSUSY . 7.4 TeV there is an approximately constant

difference of about 0.2 GeV between the red solid and the blue dotted line which is within

the theoretical uncertainty (blue band) estimated to be about 0.6 GeV. Below this region

the agreement is still good with a numerical difference of at most 1 GeV. However, for scales

above 10 TeV the effects of the large logarithms in the red curve start to be relevant, the
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Figure 4-3.: Numerical comparison of the Mh predictions for a non-vanishing stop mixing in the

heavy SUSY limit. The blue dashed lines are the NNLL predictions of FeynHiggs

and the red solid lines represent our three-loop fixed-order predictions. The brown

band is the CMS/ATLAS Higgs boson mass, M exp
h = 125.09± 0.24 GeV. Left: Mh

as a function of MSUSY for different stop mixing values, Xt/MSUSY = 0.2, 0.5,

0.7, 1.0, 1.5 and 2.4. Right: Absolute numerical differences between the three-loop

fixed-order predictions and the NNLO results of FeynHiggs plotted in the left figure.

difference between the two results rapidly increases up to ∼ 21 GeV when MSUSY grows

to up to 20 TeV and grows monotonically reaching 78 GeV at MSUSY = 40 TeV. This

pronounced behaviour depends crucially on our election of the input parameters Mg̃ and Xt.

Note that according with the discussion of Section 3.3, the presence of n-loop logarithms of

the form logn (MSUSY /Mt) in the master integrals of Figure 3-5, which are the basis for the

three-loop fixed-order Higgs self-energy corrections in the heavy SUSY limit, are the source

of these additional large contributions in the three-loop predictions of Mh.

In Figure 4-2 we show the numerical comparison between two results. i) Our three-loop

O(αtα
2
s) predictions of Mh (red curve), where the heavy SUSY limit has been smoothed to

include an additional SUSY scale, the gluino mass Mg̃. ii) The FeynHiggs prediction of Mh

including the resummation of the large logarithms up to NNLL order (blue dashed curve).

The effects of a gluino threshold are not included in the NNLL resummation procedure since

three-loop RGEs for an appropriate extension of the Standard Model with the gluino as

additional fermion, for instance as a singlet of the gauge group, are not included in FeynHiggs.

The NNLL resummation is thus restricted to the case Mg̃ = MSUSY . However, the numerical

effects due to a gluino threshold in the EFT computation of Mh is numerically small, about

0.2 GeV [147], and therefore can be safely neglected. The fixed-order corrections instead,

capture almost the entire effect of varying Mg̃. In [147] was shown that the diagrammatic

two-loop correction to Mh gives a sizable contribution of up to ∼ 2 GeV for the case of

maximal stop mixing. The three-loop fixed-order corrections with the added gluino can also

be sizeable, specially for large SUSY scales. We have considered a gluino mass of Mg̃ =

1.5 TeV. The inclusion of this additional scale produces significant differences between the

O(αtα
2
s) and the NNLL results. Note that the red curve includes not only the gluino effects
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Figure 4-4.: Dependence of Mh on Xt/MSUSY in the heavy SUSY limit evaluated at the same

kinematic point considered in Figure 4-3 with tanβ = 10 and MSUSY = 1 TeV,

5 TeV and 20 TeV. The blue lines represent the NNLL predictions coming from

FeynHiggs and the blue bands are their corresponding theoretical uncertainties.

but the complete dynamics, that is to say, the large logarithms of the form ln(MSUSY /Mt)

and ln(MSUSY /Mg̃) are included. For small SUSY scales below ∼ 3.5 TeV the difference is

always less than 1.3 GeV. For large SUSY scales (MSUSY > 3.5 TeV) this difference grows

to a maximum value of 4 GeV when MSUSY = 20 TeV. Nevertheless, the numerical effect of

the large logarithms in the red curve is reduced by a factor of around 5 regarding the results

shown in Figure 4-1. Lastly, we have studied the dependence of the NNLL and three-loop

Mh predictions on the stop mixing parameter Xt in the heavy SUSY limit.

In Figure 4-3 we have increased the value of Xt/MSUSY from 0.2 (thin curves) to 2.4 (thick

curves). We observe a good agreement between the two predictions for small SUSY scales up

to MSUSY = 10 TeV, which is in accordance with previous comparisons of fixed-order and

EFT calculations [138,143]. However, for high energy scales above MSUSY & 10 TeV there is

a large variation of the three-loop fixed-order curves which is observed neither in the NNLL

FeynHiggs curves nor in the three-loop EFT and hybrid results presented in [55, 138, 143]

where the resummation of the large logarithmic contributions is included. In particular,

when Xt/MSUSY is equal to 1.5, which is an inflexion point where the curvature of Mh(Xt)

changes its sign as you can visualize with the help of the Figure 4-4, the numerical differences

between the red and the blue curve remain lesser than 3 GeV up to MSUSY = 20 TeV. In

the case of maximal stop mixing, Xt/MSUSY = 2.4, where the prediction of Mh takes its

higher value (see thickest lines in Figure 4-3 and also Figure 4-4), the difference between

the two results is almost constant for large SUSY scales amounting a size of about 10 GeV.

The other considered Xt values show a numerical difference that grows without boundary as

a function of MSUSY . Due to the large variation observed in the red and green curves, it is

not possible to derive a systematic improvement of the effect of the large logarithms in the

three-loop fixed-order curves when Xt is changed.
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Figure 4-5.: Dependence of Mh on MSUSY and Xt in the heavy SUSY limit. We have used

tanβ = 10. The gray lines represent the values of MSUSY and Xt which produce the

same Higgs boson mass. The predicted value of Mh increases monotonically with

MSUSY .

4.3. Phenomenological bounds on the SUSY scale

We further explore the dependence of the Higgs boson mass on the SUSY input parameters

MSUSY , Xt and tanβ in the heavy SUSY limit. The figures 4-1 to 4-4 show that the pre-

dicted value of Mh grows when MSUSY increases and reach a maximum value at the critical

point Xt/MSUSY = 2.4, whose location is independent of MSUSY . It suggests that one can

find boundaries for the region of rMSSM parameters which put further constraints on Mh.

Figure 4-5 shows the numerical values of Xt/MSUSY and MSUSY which produce the same

Higgs mass prediction (gray curves). We have considered values of Mh from 115 GeV to

131 GeV and set tanβ = 10. We observed here that there is a minimum value of MSUSY ,

located at the maximal point Xt/MSUSY = 2.4, which is compatible with some election of

the Higgs boson mass. Moreover, in the case of non stop mixing (Xt = 0) one can find the

higher value of MSUSY compatible with a given Mh. These extrema values grow when we

consider higher values of Mh. This behaviour can also be seen at the intersection of the

brown band with the blue dashed lines in Figure 4-3 for a 125 GeV Higgs mass.

If we use the combined CMS/ATLAS measured Higgs boson mass within the actual combi-

ned uncertainties, M exp
h = 125.09± 0.24 GeV, we will be able to fix upper and lower bounds

on the SUSY scale MSUSY in the benchmark scenario considered in this work. Figure 4-6

shows the 125.09 GeV contours (gray lines) as a function of MSUSY , tanβ (Left: for values of

Xt/MSUSY from 0 to 2.4) and Xt/MSUSY (Right: for values of tanβ from 4 to 30). The blue

and the brown regions refer to the SUSY parameters compatible with M exp
h . The purple lines



4.3 Phenomenological bounds on the SUSY scale 63

5 10 15 20
0

5

10

15

20

tan Β

M
SU

SY
HT

eV
L

CMS � ATLAS

Mh
exp

= 125.09 ± 0.24 GeV

X t
s

= 0.

X t
s

= 0.8

X t
s

= 1.2

X t
s

= 1.5

X t
s

= 2.4

X t
s

= X t � MSUSY

- 3 - 2 - 1 0 1 2 3
0

5

10

15

20

Xt � MSUSY
M

SU
SY

HT
eV

L

CMS � ATLAS

Mh
exp

= 125.09 ± 0.24 GeV

t Β = 30

t Β = 10

t Β = 5

t Β = 4

Figure 4-6.: Region of rMSSM parameters in the heavy SUSY limit which is compatible with

the central value and the combined uncertainty of the CMS/ATLAS Higgs boson

mass, M exp
h = 125.09 ± 0.24 GeV. Left: Gray lines represent the points (MSUSY ,

tanβ) compatible with a 125.09 GeV Higgs mass for different values of the stop

mixing parameter, Xt/MSUSY = 0, 0.8, 1.2, 1.5, 2.4. The purple line represents

the combined uncertainty for the case of zero stop mixing. Right: Gray lines are the

125.09 GeV contours as a function of MSUSY and Xt/MSUSY for different values of

the parameter tanβ, tanβ = 4, 5, 10, 30. The purple lines are the points compatible

with the combined uncertainty for the lowest value of tanβ considered.

represent the combined uncertainty for the cases enclosed inside. Notice that if tanβ ≤ 10

then MSUSY strongly depends on tanβ, moreover the parameter region of tanβ . 3 is in-

compatible with the LHC observations of the Higgs boson mass if one considers SUSY scales

below 20 TeV. For values above 10, the dependence is marginal and the curves flatten. As

a consequence, at low tanβ values, independent of the election of Xt, it is not possible to

find upper bounds on the required SUSY scale from the CMS/ATLAS Higgs mass value.

However, for higher values (tanβ & 10), due to the curves are almost constant, one can

identify a lower bound for Xt/MSUSY = 2.4 and an upper bound for a vanishing stop mixing

parameter (Xt = 0). When tanβ = 10, which is the point considered in all the above plots

of this section, we find that MSUSY must be at most 12.5± 1.2 TeV (see purple line in left

plot) in order to be in agreement with the CMS/ATLAS Higgs mass value. Besides, the

upper bound on MSUSY can be reduced up to 9.6 TeV for tanβ = 30 and Xt = 0. One can

significantly lower the required value of MSUSY to 1.2 TeV when |Xt/MSUSY | increases up

to 2.4 and for tanβ = 30.

The region MSUSY > 12.5 ± 1.2 TeV, where the three-loop fixed-order results blow up, is

excluded by the combined CMS/ATLAS Higgs mass value in the simple scenario consider
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here where tanβ takes large values. The coming combined result for RUN 2 by ATLAS and

CMS will reduce the current uncertainty and therefore the upper bound on the SUSY scale

could be reduced even more.

4.4. Vacuum stability problem

In the previous section we have been able to find an upper bound on the SUSY scale in a

scenario where tanβ is large; however, for small tanβ values such an upper bound is missing.

There is still the possibility to use the vacuum stability of the Higgs potential to find a

global upper bound on MSUSY including the region tanβ < 10, as was discussed in [41]. The

estimated bound obtained in this work is of the order of 1011 GeV; nevertheless, this result is

not conclusive because it was derived without including the full MSSM Higgs potential and

is valid in the DR
′
scheme, where mε is minimally renormalized and its dependence is deco-

upled from the observables through appropriated shifts of the physical parameters [46,75]. A

phenomenological analysis in the DR scheme including small tan β values and the SM-like

Higgs effective potential in the heavy SUSY limit will be the subject of discussion in this

section. We start by describing the vacuum stability problem in the SM and then we use

this analysis to derive the required MSUSY upper bounds.

The stability of the SM vacuum is determined from the 1PI Higgs effective potential. This

potential contains all the SM dynamics and allows obtaining the vacuum expectation value

from the electroweak phase transition. Although the effective potential is gauge and scheme

dependent, its value at any stationary point is gauge and scheme invariant, as can be seen

from the Nielsen identity [190]. Correspondingly, the vev of the Higgs field can be calculated

at any particular gauge. The Higgs effective potential in the SM is completely known up to

two-loop order [191] while at three [192] and four [193] -loop level it is known in the appro-

ximation where the strong and top-Yukawa coupling are large compared to all the other SM

parameters. The analysis of the stability must be obtained from a renormalization group

improved (RGI) version of the effective potential and requires the study of the renormali-

zation group equations of all the SM couplings (gk = λ, yt, g, g
′, gs, etc) that includes

the determination of the matching relations between the running coupling constants and

the values of the SM observables [194], a sort of boundary conditions for those RGEs which

can include the effects of a heavy SUSY threshold according to eq. (4-7) when the SM is

considered as a low-energy EFT of the rMSSM. For large values of the Higgs classical field,

hc � v where v is the EW minimum, the effective potential of eq. (4-2) improved by the

RGEs approximates to

V (hc)
RGI ≈ λ(Q)

4
h4
c(Q). (4-14)

The stability of the potential translates to the study of the evolution of the Higgs self-

coupling λ(Q) as a function of the scale Q, more precisely to its positivity at large scales.
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As was discussed in Section 4.1, the running of λ(Q) is obtained by numerically solving

the system of non-linear ordinary differential equations defined by the beta functions of the

SM couplings (see eq. 4-5) while the boundary conditions are determined from the relations

between the parameters in the MS scheme and the physical masses of the particles (Mk)

according to

gk(Q) = ci
GF√

2
M2

k + ∆gi(Q), (4-15)

where GF is the Fermi coupling constant which is related to the Higgs vev as v = 2−1/4

G
1/2
F

,

ci are normalization constants and ∆gi(Q) are the threshold corrections to the matching

conditions. Currently, the vacuum stability analysis is done at next to next to leading order

(NNLO) involving the state-of-the-art computations for the running couplings, i.e. three-loop

beta functions and two-loop matching conditions. The three-loop beta functions have been

completely computed. For the EW gauge couplings g, g′ and the strong gauge coupling gs
the beta functions can be found in [131,132]. The beta function of the top Yukawa coupling

was fully computed in [133] and finally the RGEs of the quartic coupling λ and the quadratic

parameter m2 up to three-loop level was obtained in [134, 135]. In the context of the pure

SM, that is without including the SUSY effects, the two-loop threshold corrections of all the

relevant SM couplings are found in [10], where the NNLO corrections of λ(Q) was computed

in the EW gaugeless limit. The full NNLO computation for λ, m2 and yt is found in [12].

An implementation of the three-loop SM beta functions and anomalous dimensions as well

as the corresponding two-loop matching conditions can be found in the public codes mr [96]

and SMDR [97–99]. The main references containing the threshold corrections in the heavy

SUSY limit of the rMSSM were given in Section 4.1. It is worth mentioning that the three-

loop threshold corrections are not relevant in the NNLO stability analysis as was proved

in [195, 196]. The L-loop effective potential improved by (L+1)-loop RGEs resums all the

Lth-to-leading logarithm contributions. Therefore, for the L-loop vacuum stability analysis,

the L-loop threshold corrections to the matching conditions are sufficient.

If one makes the bold assumption that there is no new physics up to very high energies, the

parameter λ(Q) remains weak from the EW scale until the Planck scale and runs negative

at an intermediate scale of the order of ΛI = 1010 GeV for the central values of the top mass

(Mt ≈ 173.3 GeV) and the Higgs mass (Mh ≈ 125.09 GeV) as is shown in Figure 4-7 Left.

The trouble with λ becoming negative at a scale lower than ΛP is that it will cause an

instability in the Higgs effective potential at the scale ΛI . The instability occurs due to the

effects of the top quark corrections. For instance in the one-loop RGI potential and therefore

in λ(Q) they contribute as − 3y4t
16π2 2Γ, being Γ the integral of the Higgs anomalous dimension.

For small values of λ this is the term dominating the evolution and λ is going to evolve

towards smaller values eventually crossing zero. Consequently, at high energy scales the RGI

potential is either not bounded from below or it develops a second minimum that can be

deeper than the EW one. In both cases the idea that the SM can be considered as a valid
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Figure 4-7.: Left: Evolution of the Higgs quartic self-coupling λ as a function of the renormali-

zation scale Q. Right: Beta function of the Higgs self-coupling. We have included

the uncertainties in Mt and Mh as is indicated. The plots were drawn with the help

of the program SMDR.

theory up to ΛP is in trouble because v is no longer the true minimum of the potential and

there is a tunnelling probability between the false vacuum v and the true vacuum at high

field values.

The requirement of new physics appearing below the instability scale to cure the instability

of the SM potential is mandatory if the lifetime of EW vacuum is shorter than the life of the

universe. In other case, we can accept a metastable SM vacuum. In fact, the Figure 4-7 Left

shows that λ does become negative but never too negative, it is bounded from below with a

bound higher than λ0 = −0.025, its evolution is slowing down and is bounded at high energy

because its beta function at high energy becomes very small, vanishing close to ΛP as can

be seen in Figure 4-7 Right. This implies a total probability for vacuum decay,

℘ ∼ τ 4
UΛ4

Be
−S(ΛB) ; S (ΛB) =

8π2

3|λ(ΛB)| , (4-16)

extremely small, less than 10−100, or a lifetime of the EW vacuum much larger than the age

of the universe τU ≈ 14 × 109 years, stating that our vacuum is metastable. In Eq. (4-16)

ΛB is determined as the scale at which ℘ is maximized [197].

The metastability condition is generally presented with the help of a phase diagram in the

Mh−Mt plane. Neglecting the presence of new interactions up to ΛP , the zero-temperature

meta-stability analysis provides the graph given by Figure 4-8. This phase diagram is divided

into three different sectors. An absolute stability region where the effective potential evalua-

ted in the EW minimum v is lower than the effective potential evaluated at the new minimum

v′, VRGI(v) < VRGI(v
′). A meta-stability region where the effective potential at the new mini-

mum is lower than the effective potential at the electroweak minimum, VRGI(v
′) < VRGI(v),

but with the life-time of the EW vacuum larger than the age of the universe, τ > τU . An

instability region where VRGI(v
′) < VRGI(v) but the life-time of the EW vacuum is lower

than the age of the universe, τ < τU . The phase diagram also has two division lines. The
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Figure 4-8.: SM vacuum stability phase diagram in terms of the Higgs and top quark masses.

The region plotted shows the dominant experimental range of Mh and Mt.

stability line separates the stability and the meta-stability regions, this line is obtained when

VRGI(v) = VRGI(v
′). Whereas, the instability line separates the metastability and the ins-

tability regions, this line is obtained when the life-time of the electroweak vacuum is equal

to the age of the universe, τ = τU . Finally, the red dot-dashed lines along the borders in-

dicate the uncertainty from αs = 0.1184 ± 0.0007 GeV and from theoretical errors. The

measured values of Mh and Mt appear to be rather special, the SM vacuum is at the border

between stability and metastability regions. When its experimental and perturbative errors

are taken into account, represented with the 1σ, 2σ and 3σ ellipses in Figure 4-8, the SM

could be sitting on the stability region, i.e. it could reach and even cross the stability line,

this scenario is known as the near-criticality. Including the two-loop threshold corrections

of all SM parameters, the estimated overall theory error on Mh ± 1.0 GeV combined with

the experimental errors on Mt and αs gives as result that vacuum stability of the SM up

to the Planck scale is excluded at 2.5σ (99.3 % C.L. one sided) [10]. There is no conclusive

result about the state of the SM vacuum, however the metastability is the preferred option

with 99.3 % of probability. As a consequence, owing to an intriguing conspiracy of the SM

particles masses, it is likely that the higgs potential develops a second minimum as deep as

the one corresponding to the electroweak vev.

4.4.1. Vacuum stability constraints on the SUSY scale

In this section we are going to see that it is possible to derive upper bounds over MSUSY

for small tanβ values if we impose the positivity of the running Higgs self-coupling λ(Q)

from the EW scale until the next threshold, Q = MSUSY , which is equivalent to impose the

stability of the SM renormalization group improved Higgs effective potential (see eq. 4-14)

up to the scale where supersymmetry is supposed to appear. The SM is considered here as

a low-energy EFT of the rMSSM valid in the heavy SUSY limit, where we integrate out all
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SQCD particles at the scale MSUSY , and therefore the RGEs correspond to the three-loop

SM beta functions while the threshold corrections to the boundary condition for the Higgs

quartic coupling (see eq. 4-7) takes the form:

∆(1)λ = ∆(1)λreg + ∆(1)λφ + ∆(1)λχ
1

+ ∆(1)λχ
2

. (4-17)

Note that the effects of the SUSY parameters affects only the boundary conditions. Those

parameters are renormalized in the MS scheme, for this reason it is necessary to include the

term ∆(1)λreg which accounts for the conversion from the DR, where the SUSY parameters

are defined, to the MS scheme, usually used in the SM:

(4π)2∆(1)λreg = −1

4
g′4 − 1

2
g2g′2 −

(
3

4
−
c2

2β

6

)
g4 . (4-18)

On the other hand, the term ∆(1)λφ in eq. (4-17) represents the one-loop threshold corrections

coming from the heavy scalars contributions. Considering only the terms involving the top

Yukawa coupling, the correction ∆(1)λφ is reduced to the form:

(4π)2∆(1)λφ =

3y2
t

[
y2
t +

1

2

(
g2 − g′2

3

)
c2β

]
ln

(
m2
t̃L

M2
SUSY

)
+ 3y2

t

[
y2
t +

2

3
g′2c2β

]
ln

(
m2
t̃R

M2
SUSY

)

+
c2

2β

300

3∑
i=1

[
3

(
25

9
g′4 + 25g4

)
ln

(
m2
ũiL

M2
SUSY

)
+

200

3
g′4ln

(
m2
ũiR

M2
SUSY

)

+
50

3
g′4ln

(
m2
d̃iR

M2
SUSY

)
+
(
25g′4 + 25g4

)
ln

(
m2
li

M2
SUSY

)
+ 50g′4ln

(
m2
ei

M2
SUSY

)]
+

1

4800

[
725g′4 + 1050g′2g2 + 1325g4 − 4c4β

(
25g′4 + 150g′2g2 + 175g4

)
− 9c8β

(
5g′2 + 5g2

)2
]
ln

(
m2
A

M2
SUSY

)
− 3

16

(
g′2 + g2

)2
s2

4β

+ 6y4
t X̃t

[
F1 (xt)−

X̃t

12
F2 (xt)

]
+

3

4
y2
t X̃tc2β

[
g′2 F3 (xt) + g2 F4 (xt)

]
− 1

4
y2
t X̃tc

2
2β

(
g′2 + g2

)
F5 (xt) . (4-19)

Here X̃t = X2
t /(mt̃L

mt̃R
) and xt = mt̃L

/mt̃R
. In the heavy SUSY limit, where all of the soft

breaking masses have a common value MSUSY , the first, second and third lines of eq. (4-

19) vanish, leaving only the contribution of the heavy Higgs doublet and the corrections

controlled by Xt. Besides the functions Fj with j = 1, . . . , 5 become equal to one. The

definition of the functions Fj can be consulted in Appendix L. Finally, the terms ∆(1)λχ
1

and ∆(1)λχ
2

come from the higgsino-gaugino contributions. The first one contains the proper
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threshold corrections to the Higgs quartic coupling:

(4π)2∆(1)λχ
1

=

1

2
β̃λ ln

(
µ2

M2
SUSY

)
+

[
− 7

12
f1(r1)

(
g′4c4

β + g′4s4
β

)
− 9

4
f2(r2)

(
g4c4

β + g4s4
β

)
− 3

2
f3(r1)g′4s2

βc
2
β −

7

2
f4(r2)g4s2

βc
2
β −

8

3
f5(r1, r2)g2g′2s2

βc
2
β

− 7

6
f6(r1, r2)g2g′2

(
c4
β + s4

β

)
− 1

3
f7(r1, r2)g2g′2c2

βs
2
β −

8

3
f8(r1, r2)g2g′2sβcβ

+
2

3
f (r1) g′2sβcβ

[
λ− 2g′2

]
+ 2f (r2) g2sβcβ

[
λ− 2g2

]
+

1

3
G (r1)λg′2 +G (r2) λg2

]
, (4-20)

where rj = Mj/µ, with Mj the masses of the gauginos, and

β̃λ = 2λ
(
g′2 + 3g2

)
− g′4

(
c4
β + s4

β

)
− 5g4

(
c4
β + s4

β

)
− 4g2g′2s2

βc
2
β − 2

(
g′2c2

β + g2s2
β

) (
g′2s2

β + g2c2
β

)
. (4-21)

Here λ must be expressed in terms of β and the EW gauge couplings according with the

eq. (4-3). The definition of the functions fj, f and G are written in Appendix L. The second

higgsino-gaugino contribution emerges in the heavy SUSY limit from the fact that the tree-

level part of the matching condition for λ is a function of the EW gauge couplings. The

expression is quite simple:

(4π)2∆(1)λχ
2

= −1

6
c2

2β

[
2g2ln

(
M2

2

M2
SUSY

)
+
(
g2 + g′2

)
ln

(
µ2

M2
SUSY

)]
. (4-22)

For the two-loop threshold corrections, on the other hand, the formula of ∆(2)λgaugeless with

the full dependence on the SQCD masses is too lengthy to be included here. The derivation

of the terms including all contributions controlled by the strong gauge coupling and by the

third-family Yukawa couplings can be consulted in [121, 125]. However, in the decoupling

limit discussed in this section, the dominant threshold correction at order g2
sy

4
t can be re-

covered directly from the O(g2
sy

4
tM

2
t ) correction to the lightest MSSM Higgs boson mass.

In particular, it is sufficient to subtract the top-quark contribution from the full MSSM

correction, as the given in eq. (21) of [198]. The derived expression is the following:

∆(2)λgaugeless ≈ g2
sy

4
t

96π4

[
−12

Xt

MSUSY

− 6
X2
t

M2
SUSY

+ 14
X3
t

M3
SUSY

+
1

2

X4
t

M4
SUSY

− X5
t

M5
SUSY

]
. (4-23)
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Figure 4-9.: Higgs boson mass predictions as a function of the SUSY scale and the stop mixing

parameter in the DR scheme. The light blue regions correspond to the points com-

patible with M exp
h = 125.09±5.0 GeV for tanβ = 1, 4, 10 and 30. The gray lines are

the contours for the central value of the CMS/ATLAS Higgs mass. The red regions

represent the values of Xt and MSUSY where λ(MSUSY ) becomes negative while the

red lines display the parameter space which have λ(MSUSY ) = 0.
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Finally, the full expression for the sub-dominant contribution of ∆(2)λEW×QCD can be con-

sulted in [130], we put here only the terms proportional to the top Yukawa coupling:

(16π2)2∆(2)λEW×QCD =

4g2
sy

2
t

{
c2

2β(g2 + g′2)

[
−11

8
− 3

2
ln
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SUSY

Q2

)
− 1

2
ln2
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+
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− X2

t

12M2
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t

6M3
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+

3
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2M2
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(
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(
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+

X3
t

2M3
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]}
. (4-24)

Considering the threshold corrections in eqs. (4-18) - (4-24), the requirement of the positivity

of the running Higgs quartic coupling λ can allow an estimation of additional upper bounds

for the SUSY scale in a given kinematical point of the supersymmetric parameter space.

With this objective, we have studied the dependence of the Higgs boson mass on the SUSY

scale, MSUSY , and the stop mixing parameter, Xt, for a given tanβ between 1 and 30.

The Higgs mass is extracted from the hybrid approach of FeynHiggs 2.14 with the large

logarithms resummed at NNLL in the MS scheme. We have used the same benchmark

scenario considered in sections 4.2 and 4.3 to be consistent with the results of Figure 4-6,

but this time we let MSUSY evolve up to 1017 GeV and we span values of Xt/MSUSY from

−5 to 5. We have also identified, in a phase diagram Xt vs MSUSY , the values for which λ

gets negative.

In Figure 4-9 we show the region of SUSY parameters which are compatible with a Higgs

boson mass of M exp
h = 125.09 ± 5.0 GeV (light blue regions) for different values of tanβ:

tanβ = 1, 4, 10 and 30. The gray lines correspond to the 125.09 GeV contours. We have

pictured the region where the quartic Higgs self-coupling is negative at the SUSY scale,

λ(MSUSY ) < 0, leading to an unstable electroweak vacuum (see the red regions). If one

demands the stability of the EW vacuum, then the parameter space in the red region are

excluded and the intersection of the red border line with the blue region could give us

constrains on the MSUSY value as a function of Mh. Note that the region of exclusion occurs

in general around |Xt/MSUSY | ≈ 0 and for large values of Xt, |Xt/MSUSY | & 3. When

Xt is close to zero, the dominant contributions to λ(MSUSY ) come from the Higgsinos and

EW gauginos terms of eqs. (4-20) and (4-22) which are negative; however, for slightly large

values, |Xt| & 0.5MSUSY , the positive stop contribution in eq. (4-19) becomes dominant. In

particular, for large stop mixing, the stop contribution gets negative, due to the negative

terms in eqs. (4-19) and (4-23) are dominant, leading λ(MSUSY ) to negative values as well.

On the other hand, we can see that for smaller values of tanβ the required MSUSY compatible

withM exp
h increases. Thus, the left-top plot of Figure 4-9, with tanβ = 1, contains the highest

upper bound of the SUSY scale derived from the vacuum instability region. Specifically, for
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a 125.09 GeV Higgs boson mass and a stop mixing of |Xt/MSUSY | = 1.2, the intersection of

the gray curve with the blue line provides the bound MSUSY < 8.34 × 109 GeV. Assuming

an uncertainty of ±5 GeV on the Higgs boson mass, this bound can reach a maximum value

of MSUSY < 2.39× 1011 GeV for |Xt/MSUSY | = 1.4. This result is not very encouraging, the

bounds obtained from the positivity of λ for small tanβ values are very far away from the

MSUSY bounds derived in Section 4.3, where tanβ was taken to be large.



5. Conclusions and Perspectives

The main contribution of this thesis is the determination of UV finite expressions for the

renormalized three-loop corrections to the neutral CP-even and CP-odd Higgs boson masses

of the rMSSM following the Feynman diagrammatic approach at the fixed-order O(αtα
2
s).

We have computed only the dominant contributions coming from the EW gaugeless and the

non-light-fermions limits and the approximation of vanishing external momentum transferred

in the calculation of the involved self-energy functions. The DRED procedure was adopted

to regularize the Feynman amplitudes associated to the Higgs self-energies. Besides, a pre-

cise prescription of a mixed DR/OS scheme was developed in order to renormalize the local

and non-local UV divergences from the three-loop corrections. In particular, the non-local

infinities contained in sub-loop diagrams require an additional treatment which includes the

evaluation of two-loop SQCD counter-term insertions computed in the DR scheme. After

regularization, we have reduced the three-loop corrections, using the integration-by-parts

recurrence relations, to a small set of master integrals which are different realizations of five

three-loop vacuum topologies with at most four independent mass scales. Their numerical

evaluation is possible thanks to the dispersion relation techniques. The three-loop vacuum

topologies are expressed in terms of one and two-dimensional numerical integrals of elemen-

tary functions which can be efficiently evaluated for a general mass pattern. In this way we

avoided the asymptotic expansions on the amplitudes at the integral level in the realistic

mass hierarchies proposed in [118]. Thus, our work represents an independent check of the

results implemented in H3m but also provides a numerical evaluation of the three-loop co-

rrections in the whole supersymmetric parameter space without any assumption about the

mass hierarchy.

We have studied the numerical impact of our three-loop corrections in the value of the pole

mass Mh for three different benchmark limits: the mfree
h , mmax

h and mmod+
h scenarios. We ha-

ve considered scenarios with the SUSY scale MSUSY lower than 1.2 TeV, where a fixed-order

calculation have a combined theoretical uncertainty better than the estimated uncertainty

from an EFT calculation [41] since the effects of the large logarithmic terms are not relevant

when the sparticle masses have values close to Mt. We have investigated the dependence of

Mh on the ratio between the vacuum expectation values of the two CP-even Higgs bosons,

tanβ, the soft-breaking trilinear parameter At, the renormalization scale µr and the CP-odd

Higgs boson mass mA. The three-loop corrections show a good perturbative behaviour, their

numerical size is about ten times lesser that the two-loop predictions and the dependence

on the renormalization scale is reduced by around a factor two. The contributions yield a
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shift in the value of the lightest Higgs boson mass of the order of 1 GeV compared with

the two-loop results of FeynHiggs and a shift between −0.4 and 0.4 GeV compared with the

three-loop predictions of H3m combined with the lower-order contributions of FeynHiggs.

Our results are in agreement within the theoretical composited uncertainty with the predic-

tions of Mh obtained from H3m if the same kinematical limits of the SQCD mass spectrum

are employed.

The three-loop fixed-order computation of the lightest rMSSM Higgs boson mass [2] is in a

very good agreement with the results of H3m [55] for low SUSY scales (MSUSY . 1.2 TeV).

However, for large MSUSY values significant differences are expected and therefore a numeri-

cal comparison with the available codes for large SUSY scales was included in this work. We

have decided to check our computation of Mh with the three-loop results coming from the

EFT hybrid approach implemented in FeynHiggs 2.14 [56] for the same observable. Feyn-

Higgs includes a hybrid procedure which uses an EFT in order to perform a resummation

of the large logarithms at high SUSY scales. Their numerical predictions are in a very good

agreement with the other fixed-order and EFT codes found in literature. This allowed us to

compare our results with a reliable three-loop Mh-prediction for MSUSY up to scales of the

order of 40 TeV. We focused on a single SUSY scale scenario in the decoupling limit (heavy

SUSY limit) where the heavy particles are integrated out at the scale MSUSY which can take

values considerably larger than the EW scale. This limit is considered in order to compare

our three-loop results with the hybrid corrections included in FeynHiggs where the SM is

the low-energy EFT. Moreover, the region of free SUSY parameters is significantly reduced

to just three: tanβ, Xt and MSUSY , which is convenient from the phenomenological point of

view. We specifically contrasted our O(αtα
2
s) and the FeynHiggs NNLL predictions of Mh at

the kinematical point Ae,µ,τ,u,d,c,s,b = 0 and tanβ = 10. The stop sector was renormalized in

the DR scheme with the renormalization scale set to = MSUSY . We find a very good agree-

ment between the two results for SUSY scales below 10 TeV in the case of vanishing stop

mixing (Xt = 0). The difference is estimated to be in the range 0.2 GeV . ∆Mh . 1 GeV

for the region MSUSY . 10 TeV. Above MSUSY = 10 TeV we have observed meaningful

differences that increase monotonically with MSUSY . Such a behaviour is expected for high

SUSY scales since the O(αtα
2
s) computation contains now the effects of the large logarith-

mic contributions. The numerical differences can be reduced through the introduction of an

additional SUSY scale, the gluino mass Mg̃. The variation of the stop mixing parameter

Xt instead does not produce a systematic improvement of the large logarithm effects in the

three-loop fixed-order corrections.

A phenomenological analysis where the LHC results are used to study the compatibi-

lity of the SUSY parameters space with the combined CMS/ATLAS Higgs boson mass,

M exp
h = 125.09 ± 0.24 GeV, shows that the region where the contributions of the large lo-

garithms blow up, is actually excluded. However, this exclusion is valid just for large tanβ

values, tanβ & 10, where we have derived an upper bound on the needed SUSY scale. For

values above tanβ = 10 the region MSUSY > 12.5± 1.2 TeV is ruled out, independent of the
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election of the stop mixing value. A global upper bound valid also for any value of tanβ can-

not be derived from the experimental Higgs mass value. Nevertheless, there is the possibility

to use the stability of the SM Higgs effective potential, which translates to the positivity of

the running Higgs self-coupling λ(Q), to derive upper bounds for the required SUSY scale

as a function of Mh for small tanβ values. In this case the SM is considered as a low-energy

EFT of the rMSSM in the heavy SUSY limit. Thus, λ(Q) is numerically obtained from the

solution of the system of RGEs of the SM parameters at three-loop order, where the boun-

dary conditions are matching relations that relates the running couplings to the physical

observables with two-loop threshold corrections which includes the effects of the rMSSM

particles. The bound obtained was far less restrictive. Imposing the stability of the EW va-

cuum, the instability region λ(MSUSY ) < 0 excludes values above MSUSY = 8.34× 109 GeV

for Mh = 125.09 GeV. Accepting an uncertainty of ±5 GeV on the Higgs boson mass, the

upper bound can reach a maximum value of MSUSY < 2.39× 1011 GeV.

As a result of this thesis new perspectives for future research projects are opened. The co-

rrections presented along this work were computed without taking any assumption about

the soft SUSY-breaking mechanism so that a direct comparison with the H3m results in the

MSUGRA scenarios requires a reparametrization of our expressions and therefore is beyond

the scope of this work. Moreover, there is still missing an estimation of the theoretical un-

certainties in the fixed-order determination of Mh at three-loop level and the corresponding

numerical comparison, including these uncertainties, with the other three-loop contributions

currently found in literature, namely the pure DR three-loop results recently presented

in [142] and implemented in FlexibleSUSY+Himalaya, the EFT calculations implemented

in HSSUSY [40], the hybrid implementations in FlexibleSUSY [148], SPheno [153,154], etc.

In this work we have studied the effects of the large logarithmic terms; however, an analysis

of the effects of the non-logarithmic terms is still missing. There is a complication to separate

these contributions. All the three-loop corrections were computed in terms of the finite part

of three-loop vacuum integrals which are expressed in terms of one- and two-dimensional in-

tegral representations. For master integrals where there are three or four independent mass

scales, an analytical expression of the finite parts in terms of special functions, as the polylo-

garithms, are usually not possible. Yet, it is possible to find a more adequate basis to isolate

the non-logarithmic terms and measure their numerical effects.

A more technical issue related with the basis of master integrals are also left open. In this

work we have used SecDec in order to evaluate the evanescent terms of the three-loop vacuum

integrals. However, the evaluation could be done in a more efficiently way with the dispersion

method if one finds integral representations for those contributions in terms of fundamen-

tal functions. Examples of three-loop vacuum integrals which have never been published

are: U5(m1,m2,m1,m2,m3), U5(m1, 0,m2,m3,m4) or U5(m1,m2,m2,m3,m4). Recently, a

version 2.0 of the program TVID was released [168]. This could allow a better election of

the basis of master integrals, but also can be used to estimate the size of the momentum

dependence contribution to the fixed-order three-loop Mh-corrections.



A. DRED: Notation and Technical Setup

In this appendix we show the needed gamma algebra and tensor relations for a practical

calculation regularized in the dimensional reduction scheme, where momenta are continued

from 4 toD dimensions, while gauge fields and γ-matrices remain as four-dimensional objects.

We have implemented DRED by introducing the quasi-four, -D and -ε dimensional spaces:

Q4S, QDS and QεS, where D = 4− 2ε,

Q4S = QDS ∪QεS and QDS ∩QεS = 0. (A-1)

The spaceQ4 retains the essential 4-dimensional properties but is in fact an infinite-dimensional

space which contain the QDS. The complement of the D-dimensional space is a (4 − D)-

dimensional space, QεS. The four-dimensional quantities live in Q4S with metric tensor gµν

while the D-dimensional and ε-dimensional objects live in QDS and QεS with metric tensors

gµ̂ν̂ and gµ̃ν̃ , respectively. Those metric tensors satisfy

gµν = gµ̂ν̂ + gµ̃ν̃ , gµ̂σ̂gν̃σ̃ = gµ̂ν̃ = 0, gµµ = 4, gµ̂µ̂ = D, gµ̃µ̃ = 2ε. (A-2)

In Q4S, QDS and QεS, gamma-matrices satisfy the usual Dirac algebra:

{γµ, γν} = 2gµν ,
{
γµ̂, γ ν̂

}
= 2gµ̂ν̂ ,

{
γµ̃, γ ν̃

}
= 2gµ̃ν̃ ,

{
γµ̂, γ ν̃

}
= 0. (A-3)

For any vector v ∈ Q4S the following relation is satisfied:

vµ = vµ̂ + vµ̃ (A-4)

vµ̂ and vµ̃ denote the projection of vµ to the subspaces QDS and QεS according to

vµ̂ = gµ̂ν̂vν ; vµ̃ = gµ̃ν̃vν . (A-5)

Provided that QDS is a subspace of Q4S the next identities are satisfied:

pµ̂γµ̂ =
(
pµ̂ 0

)( γµ̂
0

)
=
(
pµ̂ 0

)( γµ̂
γµ̃

)
= pµ̂γµ = pνγ

ν̂ . (A-6)

In particular, the relation

p/p/ =
1

2
pµ̂pν̂ {γµ, γν} = pµ̂pν̂gµν = p̂2, (A-7)
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appearing in the fermion propagators, holds for a D-dimensional momenta p̂.

Concerning the chiral matrix γ5, we have used the usual definition in DRED, that is, we

have defined γ5 as an object that anticommutes with all infinitely many γµ,

{γ5, γ
µ} = 0 →

{
γ5, γ

µ̂
}

=
{
γ5, γ

µ̃
}

= 0, (A-8)

and holds the properties

(γ5)2 = 1, γ†5 = γ5 . (A-9)

The relations (A-2) to (A-9) together with the constraint Tr1 = 4 in Q4S allow the evaluation

of fermion traces in the following way:

Trγµ = Trγµ̂ = Trγµ̃ = 0,

Tr (γµγν) = 4gµν , Tr (γµ̂γν̂) = 4gµ̂ν̂ , Tr (γµ̃γν̃) = 4gµ̃ν̃ ,

Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr (γµ̂γν̂γρ̂γσ̂) = 4 (gµ̂ν̂gρ̂σ̂ − gµ̂ρ̂gν̂σ̂ + gµ̂σ̂gν̂ρ̂) , (A-10)

Tr (γµ̃γν̃γρ̃γσ̃) = 4 (gµ̃ν̃gρ̃σ̃ − gµ̃ρ̃gν̃σ̃ + gµ̃σ̃gν̃ρ̃) ,

Tr (γµ̂ . . . γσ̂γµ̃ . . . γσ̃) =
1

4
Tr (γµ̂ . . . γσ̂) Tr (γµ̃ . . . γσ̃) ,

Tr
(
γ5

(
arbitrary number of γµj

))
= 0.

Further relations of the gamma-matrices can also be obtained:

γµγ
µ = 4, γµ̂γ

µ̂ = D, γµ̃γ
µ̃ = 2ε,

γµγ
νγµ = −2γν , γµ̂γ

ν̂γµ̂ = −(D − 2)γ ν̂ , γµ̃γ
ν̃γµ̃ = −2εγ ν̃ . (A-11)



B. DRED Renormalization Constants

In this appendix we are going to list the relevant counter-terms involved in the three-loop

calculation of the Lightest CP-even Higgs boson mass at order αtα
2
s. The next listed counter-

terms were computed using the renormalization scheme DRED with minimal subtraction.

Their explicit expressions are required in the analysis presented in Chapters 3 and 4.

The one-loop counter-term of the top quark mass in the DR scheme is:

Mtδ
(1)Mt =

αs
6π

Dp
[
A0 (m̃t1) + A0 (m̃t2)− 2A0 (Mg̃)− 2A0 (Mt)− 4M2

t B0
(
M2

t ,Mt, 0
)

+
(
M2

g̃ +M2
t − m̃2

t1

)
B0
(
M2

t , m̃t1 ,Mg̃

)
+
(
M2

g̃ +M2
t − m̃2

t2

)
B0
(
M2

t , m̃t2 ,Mg̃

)
+ 2Mg̃Mts2θt̃

(
B0
(
M2

t , m̃t2 ,Mg̃

)
−B0

(
M2

t , m̃t1 ,Mg̃

))]
. (B-1)

Using the analytical expression of the one-loop functions A0 and B0, which can be consulted

in Appendix J, and the definitions of the SU(3) group invariants:

b = 1, N = 3, CA = bN = 3, CR = b
N2 − 1

2N
=

4

3
, I2 (R) =

b

2
=

1

2
,

nq = 5, nt = 1, nf = nq + nt = 6, Tf = nfI2 (R) = 3, (B-2)

we have

δ(1)Mt = −αs
2π
MtCR

1

ε
. (B-3)

The gluino mass counter-term at one-loop order is:

Mg̃δ
(1)Mg̃ =

αs
8π

Dp

[∑
f

2∑
j=1

A0
(
m̃fj

)
− 6A0 (Mg̃)− 2A0 (Mt)− 12M2

g̃B0
(
M2

g̃ ,Mg̃, 0
)

+

∑
f

2∑
j=1

(
M2

g̃ +M2
f − m̃2

fj
− 2Mg̃Mfs2θf̃

)
B0
(
M2

g̃ , m̃fj ,Mf

)]
; f = u, d, t, b, c, s . (B-4)

Explicitly we have:

δ(1)Mg̃ =
αs
4π
Mg̃ (−3CA + 2Tf )

1

ε
. (B-5)
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In the NLF limit Mq = 0 where q = u, d, b, c, s. From now on we are going to preserve the

definitions of the indices f and q. The one-loop counter-terms of the squark sector are:

δ(1)m̃2
f1

=
αs
3π

Dp
[
A0 (m̃f1) c

2
2θf̃

+ A0 (m̃f2) s
2
2θf̃

+ A0 (m̃f1)− 4m̃2
f1
B0
(
m̃2
f1
, m̃f1 , 0

)]
- 2

αs
3π

Dp
[(
M2

g̃ +M2
f − m̃2

f1
+ (−1)12Mg̃Mfs2θf̃

)
B0
(
m̃2
f1
,Mf ,Mg̃

)]
(B-6)

- 2
αs
3π

Dp [A0 (Mg̃) + A0 (Mf )] ,

which leads to

δ(1)m̃2
f1

=
αs
π
CR

(
−M2

g̃ −M2
f +Mg̃Mfs2θf +

m̃2
f1
− m̃2

f1

4
s2
θf

)
1

ε
. (B-7)

The expression for δ(1)m̃2
f2

is obtained by interchanging 1↔ 2 in the above equation. Besides

δ(1)θt̃ =
{

4
αs
3π
Mg̃Mt

(
c2

2θt̃
− s2

2θt̃

)
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[
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+B0

(
m̃2
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− αs

3π
Dp [A0 (m̃t1)− A0 (m̃t2)] s4θt̃

}/
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m̃2
t1
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)
, (B-8)

that yields(
m̃2
t1
− m̃2

t2

)
δ(1)θt̃ = CRc2θt

(
Mg̃Mt −

m̃2
t1
− m̃2

t2

4
s2θt

)
1

ε
, (B-9)

and

δ(1)Zf̃jj =
αs
3π

Dp

[
2
(
M2

g̃ +M2
f − m̃2

fj
+ (−1)j2Mg̃Mfs2θf̃

) ∂

∂p2
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(
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(B-10)

−2B0
(
m̃2
fj
,Mf ,Mg̃
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+ 4m̃2

fj

∂

∂p2
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p2, m̃fj , 0

)
+ 2B0

(
m̃2
fj
, m̃fj , 0

)]∣∣∣∣
p2=m̃2

fj

; j = 1, 2 .

At two-loop level we need the DR counter-terms:

δ(2)M2
t =

(αs
4π

)2

M2
t

[
68

9

1

ε2
− 4

9

1

ε

]
, (B-11)

δ(2)m̃2
t1

=
(αs
π
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1

ε
. (B-12)
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The expression for δ(2)m̃t2 can be derived from (B-12) by interchanging the indices 1 ↔ 2

and changing the sign of θt̃. Furthermore, in the DR scheme the two-loop counter-terms of

the stop masses have a dependence on the ε-scalar mass mε. This dependence must cancel in

the final result of the three-loop correction to Mh. At the perturbative order considered in

this work, just a one-loop renormalization of mε is required. Three different approaches with

equivalent results can be used. i) If one renormalizes the ε-scalar mass in the DR scheme, it

is enough to consider the simple DR counter-term

δ(1)m2
ε =

αs
π
m2
ε

{
−3

4
+

[
−3

2
M2

g̃ +
1

2

∑
f

2∑
j=1

m̃2
fj
−M2

t

]
1

2m2
ε

}
1

ε
. (B-13)

and appropriated shifts over the stop quark masses. ii) Instead, if one considers an on-shell

renormalization and chooses mε 6= 0, one has to consider the one-loop counter-term

− π

αs
δ(1)m2

ε =

[
CA
4

(
3m2

ε + 2M2
g̃

)
− nq

4

(
m2
ε + 2m̃2

q

)
− nt

2

(
m2
ε + m̃2

t1
+ m̃2

t2
− 2M2

t

)] 1

ε

+
CA
4

[(
6 + 4ln

(
µ2

m2
ε

)
− ln

(
µ2

M2
g̃

))
m2
ε + 2

(
1 + ln

(
µ2

M2
g̃

))
M2

g̃

]
− nq

4

[(
2 + ln

(
µ2

m2
ε

))
m2
ε + 2

(
1 + ln

(
µ2

m̃2
q

))
m̃2
q

]
(B-14)

− nt
4

[
ln

(
µ2

M2
t

)
m2
ε +

2∑
j=1

(
1 + ln

(
µ2

m̃2
tj

))
m̃2
tj
− 2

(
1 + ln

(
µ2

M2
t

))
M2

t

]
.

accompanied by the corresponding shifts over the stop masses. iii) If we assume mε 6= 0

in the on-shell scheme, no finite counter-term is needed at all. This is the best choice for

practical calculations. Finally, we need the two-loop counter-term of the stop mixing angle:(
m̃2
t1
− m̃2

t2

)
δ(2)θt̃ =

(αs
π

)2
{(

1

8
s2θt̃

c2θt̃
− 1

9

(
s2

2θt̃
− c2

2θt̃

))
s2θt̃

(
m̃2
t1
− m̃2

t2

)
+(

8

9
c2θt̃

(
s2

2θt̃
− c2

2θt̃

)
− c2θt̃

)
Mg̃Mt −

32

9
s2θt̃

c2θt̃

M2
g̃M

2
t(

m̃2
t1 − m̃2

t2

)} 1

ε2

+
(αs
π

)2
{

1

9
c2θt̃

Mg̃Mt −
1

72
s2θt̃

c2θt̃

(
m̃2
t1
− m̃2

t2

)} 1

ε
. (B-15)



C. Feynman Rules in the SQCD Sector

Index Type Range Particles

ji Generation 1 . . . 3

si Sfermion 1 . . . 2 φk = h, H, A

oi Colour 1 . . . 3 q = u, d

gi Gluon 1 . . . 8 q̃ = ũ, d̃

(µi, µ̂i, µ̃i) Lorentz (4, D, 4−D)

Table C-1.: Index labels and ranges included in the Feynman rules of the vertex diagrams.

This appendix contains the needed rMSSM vertices for the computation of the Higgs mass

Mh at order αtα
2
s. The notation of Table C-1 for the index labels and ranges are used to

draw the vertex diagrams and derive their corresponding Feynman rules. For cubic vertices

we have the rules:

qj1 (o1)

q̃s2 †j2 (o2)

g̃ (g1, µ1)
= C(g̃, qj1, q̃

s2 †
j2 )

q̄j1 (o1)

q̃s2j2 (o2)

g̃ (g1, µ1)
= C(g̃, q̄j1, q̃

s2
j2 )

g̃ (g2)

g̃ (g1)

g (g3, µ3)
= C(g̃, g̃, g)

q̄j2 (o2)

qj1 (o1)

φk = C(qj1, q̄j2, φk)

q̃s1j1 (o1)

q̃s2 †j2 (o2)

φk = C(q̃s1j1 , q̃
s2 †
j2 , φk)

qj2 (o2)

q̄j1 (o1)

g (g1, µ1)
= C(q̄j1, qj2, g)
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q̃s1j1 (o1)

q̃s2 †j2 (o2)

g (g1, µ1)
= C(q̃s1j1 , q̃

s2 †
j2 , g)

g (g2, µ2)

g (g1, µ1)

g (g3, µ3)
= C(g, g, g)

p1

p2

p1

p2 p3

where

C(uj1 , ūj2 , h) = −i ecα
2sβMW sθW

muj1
δj1j2δo1o2

C(dj1 , d̄j2 , h) = i
esα

2cβMW sθW
mdj1

δj1j2δo1o2

C(uj1 , ūj2 , H) = −i esα
2sβMW sθW

muj1
δj1j2δo1o2

C(dj1 , d̄j2 , H) = −i ecα
2cβMW sθW

mdj1
δj1j2δo1o2

C(uj1 , ūj2 , A) = − eγ5

2tβMW sθW
muj1

δj1j2δo1o2

C(dj1 , d̄j2 , A) = − etβγ
5

2MW sθW
mdj1

δj1j2δo1o2

C(ũs1j1 , ũ
s2 †
j2

, h) = −i e

6sθW cθWMW sβ
δj1j2


U ũ, j1s1, 1

U ũ, j1s2, 2
3cθWmuj1

(
Auj1j1cα + µsα

)
+

U ũ, j1s1, 1
U ũ, j1s2, 1

(
6cθW cαm

2
uj1
−MWMZsα+βsβ

(
3− 4s2θW

))
+

U ũ, j1s1, 2
U ũ, j1s2, 2

(
6cθW cαm

2
uj1
− 4MWMZsα+βsβs

2
θW

)
+

U ũ, j1s1, 2
U ũ, j1s2, 1

3cθWmuj1

(
Auj1j1cα + µsα

)



C(d̃s1j1 , d̃
s2 †
j2

, h) = i
e

6sθW cθWMW cβ
δj1j2


U d̃, j1s1, 1

U d̃, j1s2, 2
3cθWmdj1

(
Adj1j1sα + µcα

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
6cθW sαm

2
dj1
−MWMZsα+βcβ

(
3− 2s2θW

))
+

U d̃, j1s1, 2
U d̃, j1s2, 2

(
6cθW sαm

2
dj1
− 2MWMZsα+βcβs

2
θW

)
+

U d̃, j1s1, 2
U d̃, j1s2, 1

3cθWmdj1

(
Auj1j1sα + µcα

)



C(ũs1j1 , ũ
s2 †
j2

, H) = i
e

6sθW cθWMW sβ
δj1j2


U ũ, j1s1, 1

U ũ, j1s2, 2
3cθWmuj1

(
µcα −Auj1j1sα

)
−

U ũ, j1s1, 1
U ũ, j1s2, 1

(
6cθW sαm

2
uj1

+MWMZcα+βsβ
(
3− 4s2θW

))
−

U ũ, j1s1, 2
U ũ, j1s2, 2

(
6cθW sαm

2
uj1

+ 4MWMZcα+βsβs
2
θW

)
−

U ũ, j1s1, 2
U ũ, j1s2, 1

3cθWmuj1

(
µcα −Auj1j1sα

)



C(d̃s1j1 , d̃
s2 †
j2

, H) = −i e

6sθW cθWMW cβ
δj1j2


U d̃, j1s1, 1

U d̃, j1s2, 2
3cθWmdj1

(
Adj1j1cα − µsα

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
6cθW cαm

2
dj1
−MWMZcα+βcβ

(
3− 2s2θW

))
+

U d̃, j1s1, 2
U d̃, j1s2, 2

(
6cθW cαm

2
dj1
− 2MWMZcα+βcβs

2
θW

)
+

U d̃, j1s1, 2
U d̃, j1s2, 1

3cθWmdj1

(
Adj1j1cα − µsα

)


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C(ũs1j1 , ũ
s2 †
j2

, A) =
e

2sθWMW tβ
δj1j2

{
U ũ, j1s1, 1

U ũ, j1s2, 2
muj1

(
Auj1j1 + µtβ

)
−

U ũ, j1s1, 2
U ũ, j1s2, 1

muj1

(
Auj1j1 + µtβ

) }

C(d̃s1j1 , d̃
s2 †
j2

, A) =
e

2sθWMW
δj1j2

{
U d̃, j1s1, 1

U d̃, j1s2, 2
mdj1

(
Adj1j1tβ + µ

)
−

U d̃, j1s1, 2
U d̃, j1s2, 1

mdj1

(
Adj1j1tβ + µ

) }

C(g̃, ūj1 , ũ
s2
j2

) = i
√

2gsδj1j2T
g1
o1o2

(
U ũ, j1s2, 2

γ6 − U ũ, j1s2, 1
γ7
)

C(g̃, d̄j1 , d̃
s2
j2

) = i
√

2gsδj1j2T
g1
o1o2

(
U d̃, j1s2, 2

γ6 − U d̃, j1s2, 1
γ7
)

C(g̃, uj1 , ũ
s2 †
j2

) = −i
√

2gsδj1j2T
g1
o2o1

(
U ũ, j1s2, 1

γ6 − U ũ, j1s2, 2
γ7
)

C(g̃, dj1 , d̃
s2 †
j2

) = −i
√

2gsδj1j2T
g1
o2o1

(
U d̃, j1s2, 1

γ6 − U d̃, j1s2, 2
γ7
)

C(q̄j1 , qj2 , g) = −igsδj1j2T g1o1o2γµ1

C(g̃, g̃, g) = −gsfg1g2g3γµ3

C(q̃s1j1 , q̃
s2 †
j2

, g) = −igsδj1j2δo1o2T g1o1o2 (p2 − p1)
µ1

C(g, g, g) = −gsfg1g2g3 (gµ1µ3 (p1 + p3)
µ2 + gµ2µ3 (p2 − p3)

µ1 − gµ1µ2 (p1 + p2)
µ3) .

In the above expressions we have used the definitions γ6 = (1 + γ5)/2 and γ7 = (1− γ5)/2.

Besides, pi represents the momentum carried by the line i, while U q̃, ji
s1, s2

is the s1s2-component

of the squark mixing matrix (see eq. 2-53) associated to the squark type q̃ji .

For the quartic vertices the Feynman rules are:

q̃s2j2 (o2)

q̃s1 †j1 (o1)

= C(q̃s1 †j1 , q̃s2j2 , φk1, φk2)

φk2

φk1

g (g1, µ1)

g (g2, µ2)

= C(g, g, g, g)

g (g4, µ4)

g (g3, µ3)

q̃s2 †j2 (o2)

q̃s1j1 (o1)

= C(q̃s1j1 , q̃
s2 †
j2 , q̃s3j3 , q̃

s4 †
j4 )

q̃s4 †j4 (o4)

q̃s3j3 (o3)

q̃s2 †j2 (o2)

q̃s1j1 (o1)

= C(q̃s1j1 , q̃
s2 †
j2 , g, g)

g (g1, µ1)

g (g2, µ2)
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where

C(ũs1 †
j1

, ũs2j2 , h, h) = −i e2

12s2θW c
2
θW
M2
W s

2
β

δj1j2

 2U ũ, j1s1, 2
U ũ, j1s2, 2

(
3c2θW c

2
αm

2
uj1
− 2M2

W c2αs
2
βs

2
θW

)
+

U ũ, j1s1, 1
U ũ, j1s2, 1

(
6c2θW c

2
αm

2
uj1
−M2

W c2αs
2
β

(
3− 4s2θW

))


C(d̃s1 †
j1

, d̃s2j2 , h, h) = −i e2

12s2θW c
2
θW
M2
W c

2
β

δj1j2

 2U d̃, j1s1, 2
U d̃, j1s2, 2

(
3c2θW s

2
αm

2
dj1

+M2
W c2αc

2
βs

2
θW

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
6c2θW s

2
αm

2
dj1

+M2
W c2αc

2
β

(
3− 2s2θW

))


C(ũs1 †
j1

, ũs2j2 , H, H) = −i e2

12s2θW c
2
θW
M2
W s

2
β

δj1j2

 2U ũ, j1s1, 2
U ũ, j1s2, 2

(
3c2θW s

2
αm

2
uj1

+ 2M2
W c2αs

2
βs

2
θW

)
+

U ũ, j1s1, 1
U ũ, j1s2, 1

(
6c2θW s

2
αm

2
uj1

+M2
W c2αs

2
β

(
3− 4s2θW

))


C(d̃s1 †
j1

, d̃s2j2 , H, H) = −i e2

12s2θW c
2
θW
M2
W c

2
β

δj1j2

 2U d̃, j1s1, 2
U d̃, j1s2, 2

(
3c2θW c

2
αm

2
dj1
−M2

W c2αc
2
βs

2
θW

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
6c2θW c

2
αm

2
dj1
−M2

W c2αc
2
β

(
3− 2s2θW

))


C(ũs1 †
j1

, ũs2j2 , A, A) = −i e2

12s2θW c
2
θW
M2
W t

2
β

δj1j2

 2U ũ, j1s1, 2
U ũ, j1s2, 2

(
3c2θWm

2
uj1
− 2M2

W c2βt
2
βs

2
θW

)
+

U ũ, j1s1, 1
U ũ, j1s2, 1

(
6c2θWm

2
uj1
−M2

W c2βt
2
β

(
3− 4s2θW

))


C(d̃s1 †
j1

, d̃s2j2 , A, A) = −i e2

12s2θW c
2
θW
M2
W

δj1j2

 2U d̃, j1s1, 2
U d̃, j1s2, 2

(
3c2θW t

2
βm

2
dj1

+M2
W c2βs

2
θW

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
6c2θW t

2
βm

2
dj1

+M2
W c2β

(
3− 2s2θW

))


C(ũs1 †
j1

, ũs2j2 , H, h) = −i e2s2α
12s2θW c

2
θW
M2
W s

2
β

δj1j2

 U ũ, j1s1, 2
U ũ, j1s2, 2

(
3c2θWm

2
uj1
− 4M2

W s
2
βs

2
θW

)
+

U ũ, j1s1, 1
U ũ, j1s2, 1

(
3c2θWm

2
uj1
−M2

W s
2
β

(
3− 4s2θW

))


C(d̃s1 †
j1

, d̃s2j2 , H, h) = i
e2s2α

12s2θW c
2
θW
M2
W c

2
β

δj1j2

 U d̃, j1s1, 2
U d̃, j1s2, 2

(
3c2θWm

2
dj1
− 2M2

W c
2
βs

2
θW

)
+

U d̃, j1s1, 1
U d̃, j1s2, 1

(
3c2θWm

2
dj1
−M2

W c
2
β

(
3− 2s2θW

))


C(ũs1j1 , ũ
s2 †
j2

, ũs3j3 , ũ
s4 †
j4

) =
ig2sT

x
o2o3T

x
o1o4

(
U ũ, j2s2, 1

U ũ, j2s3, 1
− U ũ, j2s2, 2

U ũ, j2s3, 2

)(
U ũ, j1s1, 1

U ũ, j1s4, 1
− U ũ, j1s1, 2

U ũ, j1s4, 2

)
δj1j4δj2j3 +

ig2sT
x
o1o2T

x
o4o3

(
U ũ, j1s1, 1

U ũ, j1s2, 1
− U ũ, j1s1, 2

U ũ, j1s2, 2

)(
U ũ, j3s3, 1

U ũ, j3s4, 1
− U ũ, j3s3, 2

U ũ, j3s4, 2

)
δj1j2δj3j4

C(d̃s1j1 , d̃
s2 †
j2

, d̃s3j3 , d̃
s4 †
j4

) =
ig2sT

x
o2o3T

x
o1o4

(
U d̃, j2s2, 1

U d̃, j2s3, 1
− U d̃, j2s2, 2

U d̃, j2s3, 2

)(
U d̃, j1s1, 1

U d̃, j1s4, 1
− U d̃, j1s1, 2

U d̃, j1s4, 2

)
δj1j4δj2j3 +

ig2sT
x
o1o2T

x
o4o3

(
U d̃, j1s1, 1

U d̃, j1s2, 1
− U d̃, j1s1, 2

U d̃, j1s2, 2

)(
U d̃, j3s3, 1

U d̃, j3s4, 1
− U d̃, j3s3, 2

U d̃, j3s4, 2

)
δj1j2δj3j4

C(d̃s1j1 , d̃
s2 †
j2

, ũs3j3 , ũ
s4 †
j4

) = ig2sT
x
o2o1T

x
o4o3

(
U d̃, j1s1, 1

U d̃, j1s2, 1
− U d̃, j1s1, 2

U d̃, j1s2, 2

)(
U ũ, j3s3, 1

U ũ, j3s4, 1
− U ũ, j3s3, 2

U ũ, j3s4, 2

)
δj1j2δj3j4

C(q̃s1j1 , q̃
s2 †
j2

, g, g) = −ig2sδj1j2δs1s2
(
(T g1T g2)o1o2 + (T g2T g1)o1o2

)
gµ1µ2

C(g, g, g, g) = −ig2s


gµ1µ4gµ2µ3 (fg1g2xfxg3g4 + fg1g3xfxg2g4)−
gµ1µ2gµ3µ4 (fg1g3xfxg2g4 + fg1g4xfxg2g3)−
gµ1µ3gµ2µ4 (fg1g2xfxg3g4 − fg1g4xfxg2g3)

 .

The Lorentz indices of all the above diagrams are supposed to be in Q4S; however, when

ε-scalars are included in the regularization of Feynman amplitudes, those Lorentz indices

have to be changed from Q4S to QDS, according to µ → µ̂, and the following additional

cubic and quartic vertices involving ε-scalars have to be considered:
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q̄j1 (o1)

qj2 (o2)

ǫ (g1, µ̃1)
= C(q̄j1, qj2, ǫ)

g̃ (g1)

g̃ (g2)

ǫ (g3, µ̃3)
= C(g̃, g̃, ǫ)

ǫ (g2, µ̃2)

ǫ (g1, µ̃1)

g (g3, µ̂3)
= C(ǫ, ǫ, g)

q̃s1j1 (o1)

q̃s2 †j2 (o2)

ǫ (g1, µ1) = C(q̃s1j1 , q̃
s2 †
j2 , ǫ)

p1

p2

p1

p2

with

C(q̄j1 , qj2 , ε) = −igsδj1j2T g1o1o2γµ̃1
C(g̃, g̃, ε) = −gsf g1g2g3γµ̃3
C(g, ε, ε) = gsf

g1g2g3gµ̃1µ̃2 (p1 + p2)µ̂3

C(q̃s1j1 , q̃
s2 †
j2
, ε) = −igsδj1j2δo1o2T g1o1o2 (p2 − p1)µ̃1

and

g (g1, µ̂1)

g (g2, µ̂2)

= C(g, g, ǫ, ǫ)

ǫ (g4, µ̃4)

ǫ (g3, µ̃3)

q̃s2 †j2 (o2)

q̃s1j1 (o1)

= C(q̃s1j1 , q̃
s2 †
j2 , ǫ, ǫ)

ǫ (g2, µ̃2)

ǫ (g1, µ̃1)

ǫ (g1, µ̃1)

ǫ (g2, µ̃2)

= C(ǫ, ǫ, ǫ, ǫ)

ǫ (g4, µ̃4)

ǫ (g3, µ̃3)

where

C(g, g, ε, ε) = ig2
sg

µ̂1µ̂2gµ̃3µ̃4 (f g1g3xfxg2g4 + f g1g4xfxg2g3)

C(q̃s1j1 , q̃
s2 †
j2
, ε, ε) = −ig2

sδj1j2δs1s2
(
(T g1T g2)o1o2 + (T g2T g1)o1o2

)
gµ̃1µ̃2

C(ε, ε, ε, ε) = −ig2
s


gµ̃1µ̃4gµ̃2µ̃3 (f g1g2xfxg3g4 + f g1g3xfxg2g4)−
gµ̃1µ̃2gµ̃3µ̃4 (f g1g3xfxg2g4 + f g1g4xfxg2g3)−
gµ̃1µ̃3gµ̃2µ̃4 (f g1g2xfxg3g4 − f g1g4xfxg2g3)

 .



D. Three-loop 1PI Topologies

This appendix contains a Mathematica package for the generation of the three-loop 1PI
Topologies with FeynArts. The code and their outputs are shown below.

PrependTo[$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];

$LoadFeynArts = True;

Get["FeynCalc.m"];

Off[Paint::nolevel]

SETP=CreateTopologies[3, 1 -> 1, ExcludeTopologies -> Internal];

CTSE=CreateCTTopologies[3, 1 -> 1, ExcludeTopologies -> Internal];

TPTP=CreateTopologies[3, 1 -> 0, ExcludeTopologies -> Internal];

CTTP=CreateCTTopologies[3, 1 -> 0, ExcludeTopologies -> Internal];

(*****************************************************************)

(**** Drawing the Three-loop Topologies and Exporting to *.ps ****)

(*****************************************************************)

TempDirName=ToFileName[{"Directory","to","save","files"}];

If[!DirectoryQ[ToFileName[{TempDirName,ToString[TOP]}]],

CreateDirectory[ToFileName[{TempDirName,ToString[TOP]}]]];

Paint[SETP,FieldNumbers->True,ColumnsXRows->{5,5},

Numbering-> Simple, SheetHeader-> "Topologies for the Self-energies",

DisplayFunction->(Export[ToFileName[{TempDirName,"TOP"},"HiggsSETop"<>".ps"],#]&)];

Paint[CTSE,FieldNumbers->True,ColumnsXRows->{8,8}, Numbering-> Simple,

SheetHeader-> "Topologies for the Renormalization of Subdivergences of Self-Energies",

DisplayFunction->(Export[ToFileName[{TempDirName,"TOP"},"HiggsCTSETop"<>".ps"],#]&)];

Paint[TPTP,FieldNumbers->True,ColumnsXRows->{3,5},

Numbering-> Simple, SheetHeader-> "Topologies for the Tadpoles",

DisplayFunction->(Export[ToFileName[{TempDirName,"TOP"},"HiggsTPTop"<>".ps"],#]&)];

Paint[CTTP,FieldNumbers->True,ColumnsXRows->{4,4}, Numbering-> Simple,

SheetHeader-> "Topologies for the Renormalization of Subdivergences of Tadpoles",

DisplayFunction->(Export[ToFileName[{TempDirName,"TOP"},"HiggsCTTPTop"<>".ps"],#]&)];

Quit[];
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E. Generation of Amplitudes at O(αtα
2
s)

In this appendix we show an example routine to generate the amplitudes of the three-loop

neutral Higgs self-energies at order αtα
2
s in the MSSM. The routine includes a set of test

functions to select only the needed diagrams at the given order. We include also the selection

rules for the tadpole topologies and the diagrams with counter-term insertions.

E.1. Three-loop Higgs self-energies at O(αtα2
s)

PrependTo[$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];

$LoadFeynArts = True;

Get["FeynCalc.m"];

Off[Paint::nolevel]

LaunchKernels[ ]; Print["Number of Kernels: ", Length[ Kernels[] ] ]

ParallelEvaluate[

PrependTo[$Path, ToFileName[{"Directory","to","FeynCalc901","FeynCalc"}]];

$LoadFeynArts = True;

Get["FeynCalc.m"]

Off[Paint::nolevel]

];

(********************************************************)

(*** Generation of diagrams: creation of topologies, ***)

(*** definition and insertion of fields. ***)

(********************************************************)

TP=CreateTopologies[3, 1 -> 1, ExcludeTopologies -> Internal];

Print["Number of Topologies = ",Length[TP]]

CPHiggsF={S[1],S[2],S[3]};

$short1=Length[CPHiggsF];

InsFTP[topol_,field1_,field2_,selfields_,excludefields_] := InsertFields[topol,

field1->field2, Model->"MSSMCT", InsertionLevel->Particles,

ExcludeParticles -> excludefields, LastSelections -> selfields];

DistributeDefinitions[InsFTP]
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selfields={};

excludefields={F[1, _], F[2, _], F[11, _], F[12, _], S[1], S[2], S[3], S[4], S[5],

S[6], S[11, _], S[12, _], V[1], V[2], V[3], V[6], U[1 | 2 | 3 | 4]};

(*****************************)

(*** Patterns definitions ***)

(*****************************)

upatt = F[3, {1, _}] | -F[3, {1, _}];

supatt = S[13, {_, 1, _}] | -S[13, {_, 1, _}];

dpatt = F[4, {1, _}] | -F[4, {1, _}];

sdpatt = S[14, {_, 1, _}] | -S[14, {_, 1, _}];

cpatt = F[3, {2, _}] | -F[3, {2, _}];

scpatt = S[13, {_, 2, _}] | -S[13, {_, 2, _}];

spatt = F[4, {2, _}] | -F[4, {2, _}];

sspatt = S[14, {_, 2, _}] | -S[14, {_, 2, _}];

tpatt = F[3, {3, _}] | -F[3, {3, _}];

stpatt = S[13, {_, 3, _}] | -S[13, {_, 3, _}];

bpatt = F[4, {3, _}] | -F[4, {3, _}];

sbpatt = S[14, {_, 3, _}] | -S[14, {_, 3, _}];

gpatt = V[5, {_}] | F[15, {_}] | V[6, {_}];

ghpatt = U[15, {_}];

tstpatt= Flatten[stpatt | tpatt];

sfgpatt = Flatten[supatt | sdpatt | scpatt | sspatt | stpatt | sbpatt | gpatt];

(*************************************************************************************)

(* Selection rules for 3L Higgs Self-Energy diagrams at order \alpha_s^2\alpha_t, *)

(* There is a selection rule for each self-energy topology, e.g. there are 80 rules. *)

(*************************************************************************************)

SESelRules = {

(*1*) (MemberQ[#, Field[8] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

MemberQ[#, Field[4] -> Flatten[tpatt | stpatt | gpatt]])&,

(*2*) (MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[4] -> tstpatt])&,

(*3*) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|7] -> gpatt])&,

(*4*) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|8|7] -> tpatt])&,

(*5*) (MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[3|5|8] -> tpatt])&,

(*6*) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|7] -> gpatt])&,

(*7*) (MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[4|8|7] -> tpatt])&,

(*8*) (MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[3|5|8] -> tpatt])&,

(*9*) (MemberQ[#, Field[8] -> tpatt] && MemberQ[#, Field[6|7] -> tpatt])&,

(*10*)(MemberQ[#, Field[6|8] -> stpatt] && MemberQ[#, Field[3|7] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*11*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[4] -> stpatt] &&

MemberQ[#, Field[9] -> stpatt])&,

(*12*)(MemberQ[#, Field[4] -> tstpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[9] -> stpatt])&,

(*13*)(MemberQ[#, Field[8] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&
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MemberQ[#, Field[5] -> gpatt])&,

(*14*)(MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[4] -> stpatt] &&

MemberQ[#, Field[5|8] -> gpatt])&,

(*15*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&

MemberQ[#, Field[5|9] -> gpatt])&,

(*16*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] ->

Flatten[tpatt | stpatt | gpatt]] && MemberQ[#, Field[9] -> stpatt])&,

(*17*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*18*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*19*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*20*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*21*)(MemberQ[#, Field[7] -> tpatt] && MemberQ[#, Field[8|9] -> gpatt])&,

(*22*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*23*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*24*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*25*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*26*)(MemberQ[#, Field[9] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*27*)(MemberQ[#, Field[7] -> tstpatt] && MemberQ[#, Field[9] -> tstpatt] &&

MemberQ[#, Field[8] -> gpatt])&,

(*28*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] -> tstpatt] &&

MemberQ[#, Field[4|9] -> Flatten[tpatt | stpatt | gpatt]])&,

(*29*)(MemberQ[#, Field[10] -> tstpatt] && MemberQ[#, Field[4] -> tstpatt] &&

MemberQ[#, Field[5] -> gpatt])&,

(*30*)(MemberQ[#, Field[4] -> tstpatt] && MemberQ[#, Field[10] -> tstpatt])&,

(*31*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[5] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*32*)(MemberQ[#, Field[5] -> tpatt] && MemberQ[#, Field[6] -> tpatt])&,

(*33*)(MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[7] -> tpatt])&,

(*34*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&

MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[8] -> stpatt])&,

(*35*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[7] -> stpatt] &&

MemberQ[#, Field[6|8] -> sfgpatt])&,

(*36*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&

MemberQ[#, Field[8] -> stpatt])&,

(*37*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt])&,

(*38*)(MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[7] -> stpatt])&,

(*39*)(MemberQ[#, Field[4] -> tpatt] && MemberQ[#, Field[5|7] -> gpatt])&,

(*40*)(MemberQ[#, Field[6] -> tpatt] && MemberQ[#, Field[7|8] -> gpatt])&,

(*41*)(MemberQ[#, Field[3|5|6] -> tpatt])&,

(*42*)(MemberQ[#, Field[8|5|6] -> tpatt])&,

(*43*)(MemberQ[#, Field[4|5|7] -> tpatt])&,

(*44*)(MemberQ[#, Field[6|7|8] -> tpatt])&,

(*45*)(MemberQ[#, Field[3|5|6] -> tpatt])&,

(*46*)(MemberQ[#, Field[8|5|6] -> tpatt])&,

(*47*)(MemberQ[#, Field[8|5|7] -> tpatt])&,
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(*48*)(MemberQ[#, Field[4|5|8] -> tpatt])&,

(*49*)(MemberQ[#, Field[5|7|8] -> tpatt])&,

(*50*)(MemberQ[#, Field[5] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

MemberQ[#, Field[8] -> stpatt] && MemberQ[#, Field[3|4] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*51*)(MemberQ[#, Field[4] -> stpatt] && MemberQ[#, Field[8] -> stpatt] &&

MemberQ[#, Field[3|5|7] -> Flatten[tpatt | stpatt | gpatt]])&,

(*52*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

MemberQ[#, Field[9] -> stpatt] && MemberQ[#, Field[4|5] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*53*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

MemberQ[#, Field[4|5] -> Flatten[tpatt | stpatt | gpatt]])&,

(*54*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[7] -> stpatt] &&

MemberQ[#, Field[8] -> stpatt])&,

(*55*)(MemberQ[#, Field[6] -> tstpatt] && MemberQ[#, Field[7] -> tstpatt] &&

MemberQ[#, Field[9] -> stpatt] && MemberQ[#, Field[5] -> gpatt] &&

MemberQ[#, Field[8]->gpatt])&,

(*56*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

MemberQ[#, Field[5|6] -> Flatten[tpatt | stpatt | gpatt]])&,

(*57*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5|6] -> gpatt] &&

MemberQ[#, Field[8|9] -> gpatt])&,

(*58*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[9] -> stpatt] &&

MemberQ[#, Field[6|7] -> Flatten[tpatt | stpatt | gpatt]])&,

(*59*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[8|9] -> sfgpatt])&,

(*60*)(MemberQ[#, Field[5] -> stpatt] && MemberQ[#, Field[4] -> stpatt] &&

MemberQ[#, Field[6|7] -> Flatten[tpatt | stpatt | gpatt]])&,

(*61*)(MemberQ[#, Field[7] -> tstpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[6] -> Flatten[tpatt | stpatt | gpatt]])&,

(*62*)(MemberQ[#, Field[7|8|9] -> tpatt])&,

(*63*)(MemberQ[#, Field[6|8|9] -> tpatt])&,

(*64*)(MemberQ[#, Field[7|8|9] -> tpatt])&,

(*65*)(MemberQ[#, Field[6|8|9] -> tpatt])&,

(*66*)(MemberQ[#, Field[8|9] -> stpatt] && MemberQ[#, Field[3|4|5] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*67*)(MemberQ[#, Field[6|9] -> stpatt] && MemberQ[#, Field[4|7] ->

Flatten[tpatt | stpatt | gpatt]])&,

(*68*)(MemberQ[#, Field[7] -> tstpatt] && MemberQ[#, Field[5] -> tstpatt] &&

MemberQ[#, Field[4|8] -> Flatten[tpatt | stpatt | gpatt]])&,

(*69*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[4] -> tstpatt] &&

MemberQ[#, Field[5] -> gpatt] && MemberQ[#, Field[8] -> gpatt])&,

(*70*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[7] -> tstpatt] &&

MemberQ[#, Field[5|6] -> Flatten[tpatt | stpatt | gpatt]] &&

MemberQ[#, Field[8|9]->Flatten[tpatt | stpatt | gpatt]])&,

(*71*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6|7|8] -> sfgpatt])&,

(*72*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&

MemberQ[#, Field[4] -> stpatt] && MemberQ[#, Field[6] -> stpatt])&,

(*73*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

MemberQ[#, Field[5|7] -> sfgpatt])&,
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(*74*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[5] -> stpatt] &&

MemberQ[#, Field[7] -> stpatt] && MemberQ[#, Field[8] -> stpatt])&,

(*75*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[6] -> stpatt] &&

MemberQ[#, Field[7|8] -> sfgpatt])&,

(*76*)(MemberQ[#, Field[7] -> stpatt] && MemberQ[#, Field[5|6] -> sfgpatt])&,

(*77*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[4|5] ->

Flatten[tpatt | stpatt | gpatt]] &&

MemberQ[#, Field[7|8] -> Flatten[tpatt | stpatt | gpatt]])&,

(*78*)(MemberQ[#, Field[6] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[4|5] -> Flatten[tpatt | stpatt | gpatt]] &&

MemberQ[#, Field[7|8] -> Flatten[tpatt | stpatt | gpatt]])&,

(*79*)(MemberQ[#, Field[3] -> tstpatt] && MemberQ[#, Field[6] -> tstpatt] &&

MemberQ[#, Field[4|5] -> Flatten[tpatt | stpatt | gpatt]] &&

MemberQ[#, Field[8|9] -> Flatten[tpatt | stpatt | gpatt]])&,

(*80*)(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[4|5|6] -> sfgpatt])&};

(***********************************************************************************)

(* Choosing the diagrams for which the function InsFTP[__] with the given criteria *)

(* in "SESelRules" yields True. *)

(***********************************************************************************)

DiagSelHiggsSE[i_] := Parallelize[ MapThread[ DiagramSelect[

InsFTP[Take[TP,{#1}],CPHiggsF[[i]],CPHiggsF[[i]],selfields, excludefields],#2]&,

{Range[Length[TP]],SESelRules}]];

HiggsSE = Array[ DiagSelHiggsSE, $short1];

Print["Number of Higgs SE = ", Length[HiggsSE[[1]]]]

DistributeDefinitions[HiggsSE]

(**************************************************************)

(*** Drawing the self-energy diagrams and exporting to *.ps ***)

(**************************************************************)

TempDirName=ToFileName[{"Directory","to","save","files"}];

Table[ If[!DirectoryQ[ ToFileName[{ TempDirName,

ToString[CPHiggsF[[j]]]<>ToString[CPHiggsF[[j]]],

StringJoin[ToString[Top],ToString[l]]}]],

CreateDirectory[ ToFileName[{ TempDirName,

ToString[CPHiggsF[[j]]]<>ToString[CPHiggsF[[j]]],

StringJoin[ToString[Top],ToString[l]]}]]],

{j,3,3}, {l,1,Length[SESelRules]}];

PaintHiggsSE[dir1_,dir2_,dir3_,name_,top_,level_, tittle_] := Paint[ top,

PaintLevel -> level, FieldNumbers -> True, ColumnsXRows -> {10,10},

Numbering -> Simple, SheetHeader -> tittle,

DisplayFunction -> (Export[ToFileName[{dir1,dir2,dir3},StringJoin[dir2,name]],#]&)];



E.2 Selection rules for Higgs tadpole topologies 97

DistributeDefinitions[PaintHiggsSE];

Table[ Parallelize[ MapThread[ PaintHiggsSE[ TempDirName,

ToString[CPHiggsF[[j]]]<>ToString[CPHiggsF[[j]]],

StringJoin[ToString[Top],ToString[#1]],"HiggsSE"<>ToString[#1]<>".ps",#2,Particles,

"Selfenergy Diagrams at O(\[Alpha]_t(\[Alpha]_s)^2)"]&,

{Range[Length[SESelRules]], HiggsSE[[j]] }]],{j,3,3}];

(***************************************************************************)

(*** Generation of the Amplitudes. The amplitudes are saved in txt files ***)

(*** with the name S[?]S[?]Amps. ***)

(***************************************************************************)

TxtFile[dir1_,dir2_, dir3_, Amp_, name_] := Put[ Amp,

ToFileName[{dir1,dir2,dir3},StringJoin[dir2,name]]];

DistributeDefinitions[TxtFile];

Table[ Parallelize[ MapThread[

TxtFile[ TempDirName, ToString[CPHiggsF[[j]]]<>ToString[CPHiggsF[[j]]],

StringJoin[ToString[Top],ToString[#1] ],

CreateFeynAmp[#2, AmplitudeLevel -> {Particles}],ToString[Amps]<>ToString[#1]]&,

{Range[Length[SESelRules]],HiggsSE[[j]]}] ], {j,3,3}];

CloseKernels[];

Quit[];

E.2. Selection rules for Higgs tadpole topologies

(********************************************************************************)

(*** Patterns defined here correspond to the diagrams at order O(h_t g_s^4) ***)

(********************************************************************************)

t[n_] := MemberQ[#, Field[n] -> tpatt]&;

st[n_] := MemberQ[#, Field[n] -> stpatt]&;

g[n_] := MemberQ[#, Field[n] -> gpatt]&;

stg[n_] := MemberQ[#, Field[n] -> Flatten[tpatt | stpatt | gpatt]]&;

tst[n_] := MemberQ[#, Field[n] -> tstpatt]&;

sfg[n_] := MemberQ[#, Field[n] -> sfgpatt]&;

Nog[n_] := FreeQ[#, Field[n]-> gpatt]&;

(*********************************************************************)

(*** Selection rules for 3L Higgs tadpole diagrams at O(h_t g_s^4) ***)
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(*********************************************************************)

TPSelRules={

(*1*) tst[2],

(*2*) t[2],

(*3*) t[2],

(*4*) (MemberQ[#, Field[2] -> stpatt] && FreeQ[#, Field[7] -> gpatt])&,

(*5*) (MemberQ[#, Field[2] -> tstpatt] && FreeQ[#, Field[7] -> gpatt])&,

(*6*) t[7],

(*7*) tst[2],

(*8*) tst[2],

(*9*) t[5],

(*10*)(MemberQ[#, Field[2] -> tstpatt] && FreeQ[#, Field[6] -> gpatt] &&

FreeQ[#, Field[4]-> gpatt])&,

(*11*)(MemberQ[#, Field[2] -> stpatt] && FreeQ[#, Field[5] -> gpatt])&,

(*12*)tst[2],

(*13*)st[2],

(*14*)tst[2],

(*15*)st[2]};

E.3. Selection rules for counter-term diagrams

(**********************************************************************************)

(*** Patterns defined here correspond to the CT at order O(\alpha_s^2\alpha_t) ***)

(**********************************************************************************)

t[n_] := MemberQ[#, Field[n] -> tpatt]&;

st[n_] := MemberQ[#, Field[n] -> stpatt]&;

g[n_] := MemberQ[#, Field[n] -> gpatt]&;

stg[n_] := MemberQ[#, Field[n] -> Flatten[tpatt | stpatt | gpatt]]&;

tst[n_] := MemberQ[#, Field[n] -> tstpatt]&;

sfg[n_] := MemberQ[#, Field[n] -> sfgpatt]&;

Aux[n_] := FreeQ[#, Field[n]-> tpatt]&;

(***********************************************************************************)

(* Selection rules for self-energy counter-terms to renormalize the subdivergences *)

(***********************************************************************************)

CTSelRules={

Aux[1], tst[5], tst[5], tst[5], st[3], tst[3], st[3],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[4] -> tstpatt])&,

tst[3], st[3], st[4],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[6] -> tstpatt])&,

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[6] -> tstpatt])&,

(MemberQ[#, Field[5] -> tstpatt]&&MemberQ[#, Field[6] -> tstpatt])&,
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(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[5] -> gpatt])&,

t[7], t[7], tst[8],

(MemberQ[#, Field[7] -> tstpatt]&&MemberQ[#, Field[6] -> gpatt])&,

(MemberQ[#, Field[7] -> tstpatt]&&MemberQ[#, Field[6] -> gpatt])&,

(FreeQ[#, Field[6]->gpatt]&&MemberQ[#, Field[3]-> tstpatt])&,

t[6], (FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,

t[6], t[6], t[6], t[6],

(FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[5]->stpatt])&,

st[5], (FreeQ[#, Field[6]->gpatt]&&MemberQ[#,Field[3]->stpatt])&,

t[6], t[6], tst[3], tst[3],

(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,

(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[5]->tstpatt])&,

(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[7] -> stpatt])&,

(FreeQ[#, Field[7]->gpatt]&&MemberQ[#,Field[3]->tstpatt])&,

(MemberQ[#, Field[6] -> stpatt]&&MemberQ[#,Field[7] -> stpatt])&,

tst[5], t[7], t[4],

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[5] -> gpatt])&,

tst[3], t[7], t[4], tst[7], tst[7],

(MemberQ[#, Field[4] -> tstpatt]&&MemberQ[#, Field[5] -> gpatt])&,

tst[3], tst[8], tst[8], tst[5], tst[8],

(FreeQ[#, Field[5]->gpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[4] -> stpatt])&,

(FreeQ[#, Field[5]->gpatt] && MemberQ[#, Field[3] -> stpatt] &&

MemberQ[#, Field[4] -> stpatt])&,

(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])&,

(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])&,

(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])&,

(MemberQ[#, Field[3] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])&,

(MemberQ[#, Field[5] -> stpatt]&&MemberQ[#, Field[6] -> stpatt])&,

t[4], t[4]};

(*******************************************************************************)

(* Selection rules for tadpole counter-terms to renormalize the subdivergences *)

(*******************************************************************************)

CTTPSelRules={

Aux[1], tst[2], tst[2],

(MemberQ[#, Field[2] -> tstpatt]&&MemberQ[#, Field[3] -> tstpatt])&,

(MemberQ[#, Field[3] -> tstpatt]&&MemberQ[#, Field[2] -> tstpatt])&,

(MemberQ[#, Field[2] -> tstpatt])&,

(MemberQ[#, Field[2] -> stpatt] && MemberQ[#, Field[3] -> stpatt] &&

FreeQ[#, Field[5]->gpatt])&,

t[4], (MemberQ[#, Field[5] -> tstpatt])&,

(MemberQ[#, Field[6] -> tstpatt]&&MemberQ[#, Field[3] -> tstpatt])&,

(MemberQ[#, Field[3]->stpatt]&&FreeQ[#, Field[4]->gpatt])&,

(MemberQ[#, Field[3] -> stpatt] && MemberQ[#, Field[2] -> stpatt] &&

FreeQ[#, Field[4]->gpatt])&,

st[5], (MemberQ[#, Field[2] -> tstpatt])&, t[3], t[3]};



F. Regularization of Three-Loop

Integrals in DRED

This appendix contain a simple routine where the three-loop self-energy amplitudes generated with FeynArts

(see Appendix E) are regularized using DRED. Besides, the sum over the color indices and, in general, the

color algebra of the SU(3) generators are performed.

#!/path/to/MathematicaScript -script

$LoadFeynArts = True;

Get["/path/to/FeynCalc901/FeynCalc/FeynCalc.m"];

PrependTo[$Path, ToFileName[{"Directory","of","external","routines"}]];

Off[DeleteFile::nffil];

Off[ParallelCombine::nopar1];

Off[Simplify::time];

(****************************************************************************)

(** We have used the package "SimplificationDefinitions" to Simplify **)

(** algebraic expressions. This package can be found into the installation **)

(** folders of FeynHiggs: ~/FeynHiggs/gen/tlsp/packages/ **)

(****************************************************************************)

<< SimplificationDefinitions‘;

LaunchKernels[20];

ParallelEvaluate[

$LoadFeynArts = True;

Get["/path/to/FeynCalc901/FeynCalc/FeynCalc.m"];

PrependTo[$Path, ToFileName[{"Directory","of","external","routines"}]];

Off[DeleteFile::nffil];

Off[ParallelCombine::nopar1];

Off[Simplify::time];

<< SimplificationDefinitions‘;

];
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CPEHiggsF={S[1], S[2], S[3]};

$short1=Length[CPEHiggsF];

TempDirName=ToFileName[{"/Directory","where","FeynArts","amplitudes","were","saved"}];

(*************************************)

(** Calling the FeynArts amplitudes **)

(*************************************)

Amp[n_, m_, l_] := Get[ToString[

CPEHiggsF[[n]]]<>ToString[CPEHiggsF[[m]]]<>"Amps"<>ToString[l],

Path -> { ToFileName[{ TempDirName,

ToString[CPEHiggsF[[n]]]<>ToString[CPEHiggsF[[m]]],

ToString[Top]<>ToString[l]}]}];

(*******************************************************************************)

(** We have used FeynCalc patched with FeynArts in order to perform the Dirac **)

(** and the Color algebra with the Feyncalc tools. For this reason we have **)

(** made the next changes over the amplitudes. CA -> ca means that cos(alpha) **)

(** is changed to avoid the conflict of notation with the FC casimir CA. **)

(*******************************************************************************)

changesFAFC = { CA -> ca, SumOver[__]-> 1,

FASUNT[Index[Gluon,g1_],Index[Gluon,g2_],Index[Colour,o2_],Index[Colour, o1_]]

:> FASUNT[Index[Gluon,g1], Index[Colour,o2], c].FASUNT[ Index[Gluon,g2], c,

Index[Colour,o1]],

FASUNTSum[Index[Colour,o2_],Index[Colour,o1_],Index[Colour,o4_],Index[Colour,o3_]]

:> FASUNT[ x, Index[Colour,o2], Index[Colour,o1]].FASUNT[ x, Index[Colour,o4],

Index[Colour,o3]] };

(* Assuming NLF limit *)

changesNLF = {MB -> 0, MC -> 0, MD -> 0, MS -> 0, MU -> 0, MZ -> MW/CW}

(**************************************************************************)

(** Changes also include the substitutions to compute the amplitudes in **)

(** the real MSSM. **)

(**************************************************************************)

changesreal = { SqrtEGl -> 1, USf[a__][b__] :> USf[b, a],

Conjugate[USf[a__][b__]] :> USf[b, a], Conjugate[UCha[a__]] :> UChaC[a],

Conjugate[VCha[a__]]:>VChaC[a], Conjugate[Af[a__]]:>Af[a], Conjugate[MUE]->MUE};

(*******************************************************************************)

(** The function FCFAConvert transforms the amplitude from FeynArts notation **)

(** to FeynCalc notation. We identified the external momentum with the letter **)
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(** "p" and then we have asummed the limit of vanishing external momentum **)

(*******************************************************************************)

SetOptions[FCFAConvert,UndoChiralSplittings-> True];

SetOptions[DiracSimplify,DiracSubstitute67-> True,Expanding-> True,Factoring-> True];

ParallelEvaluate[

SetOptions[FCFAConvert,UndoChiralSplittings-> True];

SetOptions[DiracSimplify,DiracSubstitute67-> True,Expanding-> True,Factoring-> True];

];

SEFC[n_, m_, l_] := FCFAConvert[Amp[n,m,l] //. changesFAFC //. changesNLF //. changesreal,

IncomingMomenta -> {p}, OutgoingMomenta -> {p},

LoopMomenta-> {q1,q2,q3}] /. {p -> 0} ;

(*******************************************************************************)

(** The next functions performs the DRED regularization of the three-loop **)

(** amplitudes using the Q4S algebra. **)

(*******************************************************************************)

Regul[n_,m_,l_] := ParallelMap[ DiracSimplify[

DiracSimplify[SEFC[n,m,l][[#]]] /. {DiracGamma[5]->0}]&,

Range[Length[SEFC[n,m,l]]] ];

TxtFile[dir1_,dir2_, dir3_, Amp_, name_] := Put[Amp,

ToFileName[{dir1,dir2,dir3},StringJoin[dir2,name]]];

Table[ Map[ TxtFile[ TempDirName,

ToString[CPEHiggsF[[i]]]<>ToString[CPEHiggsF[[j]]],StringJoin[ToString[Top],ToString[#]],

Regul[i,j,#],ToString[RAmpsFC]<>ToString[#]]&, Range[1,48] ], {i,1,1}, {j,1,1} ];

SetOptions[DiracTrace,DiracTraceEvaluate-> True];

SetOptions[SUNSimplify,SUNTrace-> True];

Off[DotSimplify::argrx]

ParallelEvaluate[

SetOptions[DiracTrace,DiracTraceEvaluate-> True];

SetOptions[SUNSimplify,SUNTrace-> True];

Off[DotSimplify::argrx]

];

RegAmp[n_, m_, j_] := Get[

ToString[CPEHiggsF[[n]]]<>ToString[CPEHiggsF[[m]]]<>"RAmpsFC"<>ToString[j],

Path -> { ToFileName[{ TempDirName,

ToString[CPEHiggsF[[n]]]<>ToString[CPEHiggsF[[m]]],
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ToString[Top]<>ToString[j]}]} ];

(*******************************************************************************)

(** The next functions performs the Color algebra on the SU(3) generators **)

(** in the numerators of the amplitudes. **)

(*******************************************************************************)

SUNSAmp[a_,b_,c_] := ParallelMap[ MagicSimplify[ Calc[ SUNSimplify[

Expand[ Contract[ RegAmp[a,b,c][[#]] ]]] /. False -> True ],

Feedback->False ]&, Range[Length[RegAmp[a,b,c]]] ];

Map[ Table[

TxtFile[ TempDirName, ToString[CPEHiggsF[[i]]]<>ToString[CPEHiggsF[[j]]],

StringJoin[ToString[Top],ToString[#]], SUNSAmp[i,j,#],

ToString[AlgebraAmps]<>ToString[#]],

{i, 1, 1}, {j, 1, 1}]&, Range[1, 48] ];

Print["The End!"]

CloseKernels[];

Quit[];

We next show the outputs of the functions defined in the above routine for the amplitude of

the diagram pictured in Fig. F-1.

h h

g̃

g̃

t̃ t̃

t

t

t

t

Figure F-1.: Generic three-loop Higgs self-energy diagram. The field h stands for the lightest

higgs boson, t is the top quark field, t̃ is the stop and g̃ represents the gluino field.



The amplitude Amp[1,1,13][[5]] of the diagram in Fig. F-1 is one of the amplitudes that have the most compli-
cated  numerator  structure.  The  vertex  expressions  were  simplified  taking  into  account  the  unitarity  of  the
sfermion mixing matrix and disregarding the electroweak gauge couplings. 

Amp@1, 1, 13D@@5DD

FAFeynAmp GraphIDH Topology� 1, Generic � 2 , Classes � 2 , Particles� 1, Number � 5 L ,

Integral@ q1, q 2 , q 3D ,
1

4096 Π 12

ä FAFeynAmpDenominator
1

H q1L 2 - MT2
,

1

H q 2 L 2 - MGl2
,

1

H q 2 - q1L 2 - MSf H 1, 3 , 3 L 2
,

1

H q 3 L 2 - MT2
,

1

H q 2 + q 3 L 2 - MSf H 1, 3 , 3 L 2
,

1

H q 3 - k1L 2 - MT2
,

1

H k1 + q1L 2 - MT2
,

1

H k1 + q 2 L 2 - MGl2

tr Γ × I - k1 - q 2 M + MGl, - ä 2 FAGS I Γ 6 USf H 1, 1, 3 , 3 L - Γ 7 USf H 1, 2 , 3 , 3 L M

FASUNTH Glu4 , Col4 , Col5 L , Γ × I q 3 - k1M + MT, -

ä ca ht I Γ 6 + Γ 7 M

2
, Γ × q 3 + MT,

- ä 2 FAGS I Γ 7 USf H 1, 1, 3 , 3 L - Γ 6 USf H 1, 2 , 3 , 3 L M FASUNTH Glu3 , Col5 , Col4 L ,

MGl - Γ × q 2 , - ä 2 FAGS I Γ 7 USf H 1, 1, 3 , 3 L - Γ 6 USf H 1, 2 , 3 , 3 L M

FASUNTH Glu3 , Col6 , Col3 L , MT - Γ × q1, -

ä ca ht I Γ 6 + Γ 7 M

2
, Γ × I - k1 - q1M + MT,

- ä 2 FAGS I Γ 6 USf H 1, 1, 3 , 3 L - Γ 7 USf H 1, 2 , 3 , 3 L M FASUNTH Glu4 , Col3 , Col6 L

Note that the gammas and the loop momenta in the numerators are defined in four dimensions (the quanti-
ties with a bar) whereas the momenta in the denominators are defined in D dimensions. There are two rea-
sons to define the numerators in four dimensions: i) Even if we know that in DRED all the momenta are in the
QDS, they appear in the numerators contracted with the gammas, which by definition are in the Q4S. We are
assumming a subtlety of DRED, the scalar product of a QDS momentum with a Q4S gamma is equivalent to
the  product  of  a  Q4S  momentum  (where  the  epsilon-components  remain  to  be  zero)  and  a  Q4S  gamma.
Besides, this product is equivalent to the product of a QDS momentum and a QDS gamma too. The gamma
matrices coming from the fermion propagators (together with the momentum) or the gammas in the kinetic
term of the Lagrangian (together with the spacial derivative) are in D-dim. But, due to the above identities in
DRED,  all  gammas  on  the  numerator  are  put  in  Q4S.   ii)  In  FeynCalc  DRED  is  not  implemented,  so  that
products of a gamma with a momentum of different dimensions cannot be solved; however, the Dirac algebra
in the Q4S is the same algebra of the actual four-dimensional space (except for the cases involving \gamma_
5). The definition of a Q4S momentum does not affect the final result because they are expressed as a superpo-
sition of scalar products of the loop momenta. If the epsilon-components are zero, we will recover the origi-
nal D-dimensional momenta.

Using the function FCFAConvert, the amplitude transforms to:



SEFC @1, 1, 13D@@5DD

ä tr I MGl - Γ × q2M . - ä 2 g s I Γ 6 USf H 1, 1, 3 , 3 L - Γ 7 USf H 1, 2 , 3 , 3 L M TCol4 Col5
Glu4 .

I Γ × q3 + MTM . -

ä ca ht I Γ 6 + Γ 7 M

2
.I Γ × q3 + MTM .

- ä 2 g s I Γ 7 USf H 1, 1, 3 , 3 L - Γ 6 USf H 1, 2 , 3 , 3 L M TCol5 Col4
Glu3 .

I MGl - Γ × q2M . - ä 2 g s I Γ 7 USf H 1, 1, 3 , 3 L - Γ 6 USf H 1, 2 , 3 , 3 L M TCol6 Col3
Glu3 .

I MT - Γ × q1M . -

ä ca ht I Γ 6 + Γ 7 M

2
.I MT - Γ × q1M .

- ä 2 g s I Γ 6 USf H 1, 1, 3 , 3 L - Γ 7 USf H 1, 2 , 3 , 3 L M TCol3 Col6
Glu4 �

I 4096 Π 12 I q12 - MT2 M .I q22 - MGl2 M .I H q2 - q1L 2 - MSf H 1, 3 , 3 L 2 M .I q32 - MT2 M .

I H q2 + q3L 2 - MSf H 1, 3 , 3 L 2 M .I q32 - MT2 M .I q12 - MT2 M .I q22 - MGl2 M M

Now we expand the  product  of  terms inside  the  Dirac  trace  in  such a  way that  terms with  the  product  of  a
\gamma_ 5 and any number of \gamma_{mu} appear explicitly:

SetOptions @ DiracSimplify , DiracSubstitute67 -> True , Expanding -> True , Factoring -> True D
8 DiracCanonical® False, DiracSigmaExplicit® True, DiracSimpCombine® False, DiracSubstitute67® True,

Expanding ® True, Factoring® True, SirlinRelations® True, FeynCalcInternal® False, InsideDiracTrace® False<

DiracSimplify @ SEFC @1, 1, 13D@@5DDD

J ä tr J 2 ca2 g s
4 ht2 TCol5 Col4

Glu3 TCol6 Col3
Glu3 TCol3 Col6

Glu4 TCol4 Col5
Glu4

J - MGl Γ × q2 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT4 + MGl I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L

USf H 1, 2 , 3 , 3 L 3 MT4 - MGl2 USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT4 -

q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT4 - MGl Γ × q2 USf H 1, 1, 3 , 3 L 3

USf H 1, 2 , 3 , 3 L MT4 - MGl I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT4 +

MGl2 Γ × q1 USf H 1, 1, 3 , 3 L 4 MT3 + MGl2 I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L 4 MT3 +

MGl2 Γ × q1 USf H 1, 2 , 3 , 3 L 4 MT3 - MGl2 I Γ × q1M . Γ 5 USf H 1, 2 , 3 , 3 L 4 MT3 +

MGl I Γ × q1M .I Γ × q2M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 +

MGl I Γ × q2M .I Γ × q1M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 -

MGl I Γ × q2M .I Γ × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 -

MGl I Γ × q3M .I Γ × q2M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 +

MGl I Γ × q1M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 -

MGl I Γ × q2M .I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 -

MGl I Γ × q2M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 +

MGl I Γ × q3M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT3 -

2 MGl2 Γ × q3 USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT3 +

4 Γ × q2 I q1 × q2M USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT3 -

-
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4 Γ × q2 I q1 × q2M USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT3 -

2 Γ × q1 q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT3 - 2 Γ × q3 q2
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 MT3 + MGl I Γ × q1M .I Γ × q2M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 +

MGl I Γ × q2M .I Γ × q1M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 -

MGl I Γ × q2M .I Γ × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 -

MGl I Γ × q3M .I Γ × q2M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 -

MGl I Γ × q1M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 +

MGl I Γ × q2M .I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 +

MGl I Γ × q2M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 -

MGl I Γ × q3M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT3 +

MGl2 I Γ × q1M .I Γ × q3M USf H 1, 1, 3 , 3 L 4 MT2 + MGl2 I Γ × q3M .I Γ × q1M USf H 1, 1, 3 , 3 L 4 MT2 -

MGl2 I Γ × q1M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L 4 MT2 +

MGl2 I Γ × q3M .I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L 4 MT2 +

MGl2 I Γ × q1M .I Γ × q3M USf H 1, 2 , 3 , 3 L 4 MT2 + MGl2 I Γ × q3M .I Γ × q1M USf H 1, 2 , 3 , 3 L 4 MT2 +

MGl2 I Γ × q1M .I Γ × q3M . Γ 5 USf H 1, 2 , 3 , 3 L 4 MT2 - MGl2 I Γ × q3M .I Γ × q1M . Γ 5 USf H 1, 2 , 3 , 3 L 4

MT2 + MGl I Γ × q1M .I Γ × q2M .I Γ × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q2M .I Γ × q1M .I Γ × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q3M .I Γ × q1M .I Γ × q2M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q3M .I Γ × q2M .I Γ × q1M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

MGl I Γ × q1M .I Γ × q2M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q2M .I Γ × q1M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q3M .I Γ × q1M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

MGl I Γ × q3M .I Γ × q2M .I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

MGl Γ × q2 q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q2M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

2 MGl Γ × q3 I q2 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

2 MGl I Γ × q3M . Γ 5 I q2 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl Γ × q2 q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 +

MGl I Γ × q2M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT2 -

MGl2 q1
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 +

4 I Γ × q2M .I Γ × q3M I q1 × q2M USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 +

4 I Γ × q3M .I Γ × q2M I q1 × q2M USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 -

2 I Γ × q1M .I Γ × q3M q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 -

2 I Γ × q3M .I Γ × q1M q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 -

q1
2

q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 - MGl2 q3
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 MT2 - q2
2

q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT2 +

MGl I Γ × q1M .I Γ × q2M .I Γ × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl I Γ × q2M .I Γ × q1M .I Γ × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl I Γ × q3M .I Γ × q1M .I Γ × q2M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl I Γ × q3M .I Γ × q2M .I Γ × q1M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl I Γ × q1M .I Γ × q2M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

MGl I Γ × q2M .I Γ × q1M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

+
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MGl I Γ × q2M .I Γ × q1M .I Γ × q3M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

MGl I Γ × q3M .I Γ × q1M .I Γ × q2M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl I Γ × q3M .I Γ × q2M .I Γ × q1M . Γ 5 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

MGl Γ × q2 q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

MGl I Γ × q2M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 -

2 MGl Γ × q3 I q2 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

2 MGl I Γ × q3M . Γ 5 I q2 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 +

MGl Γ × q2 q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 - MGl I Γ × q2M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT2 + 2 MGl2 Γ × q3 I q1 × q3M USf H 1, 1, 3 , 3 L 4 MT -

2 MGl2 I Γ × q3M . Γ 5 I q1 × q3M USf H 1, 1, 3 , 3 L 4 MT - MGl2 Γ × q1 q3
2

USf H 1, 1, 3 , 3 L 4 MT +

MGl2 I Γ × q1M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L 4 MT + 2 MGl2 Γ × q3 I q1 × q3M USf H 1, 2 , 3 , 3 L 4 MT +

2 MGl2 I Γ × q3M . Γ 5 I q1 × q3M USf H 1, 2 , 3 , 3 L 4 MT -

MGl2 Γ × q1 q3
2

USf H 1, 2 , 3 , 3 L 4 MT - MGl2 I Γ × q1M . Γ 5 q3
2

USf H 1, 2 , 3 , 3 L 4 MT -

MGl I Γ × q2M .I Γ × q3M q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT -

MGl I Γ × q3M .I Γ × q2M q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT -

MGl I Γ × q2M .I Γ × q3M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT +

MGl I Γ × q3M .I Γ × q2M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT -

4 MGl I Γ × q2M .I Γ × q3M . Γ 5 I q1 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT +

4 MGl I Γ × q1M .I Γ × q3M . Γ 5 I q2 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT +

MGl I Γ × q1M .I Γ × q2M q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT +

MGl I Γ × q2M .I Γ × q1M q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT -

MGl I Γ × q1M .I Γ × q2M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT +

MGl I Γ × q2M .I Γ × q1M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 MT -

2 MGl2 Γ × q3 q1
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT -

2 Γ × q3 q1
2

q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT -

4 Γ × q3 I q1 × q3M q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT +

8 Γ × q3 I q1 × q2M I q2 × q3M USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT -

4 Γ × q2 I q1 × q2M q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT +

2 Γ × q1 q2
2

q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 MT -

MGl I Γ × q2M .I Γ × q3M q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

MGl I Γ × q3M .I Γ × q2M q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT +

MGl I Γ × q2M .I Γ × q3M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

MGl I Γ × q3M .I Γ × q2M . Γ 5 q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT +

4 MGl I Γ × q2M .I Γ × q3M . Γ 5 I q1 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

4 MGl I Γ × q1M .I Γ × q3M . Γ 5 I q2 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT +

MGl I Γ × q1M .I Γ × q2M q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT +

MGl I Γ × q2M .I Γ × q1M q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT +

MGl I Γ × q1M .I Γ × q2M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

MGl I Γ × q2M .I Γ × q1M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

-
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MGl I Γ × q2M .I Γ × q1M . Γ 5 q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L MT -

2 MGl Γ × q3 q1
2 I q2 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 -

2 MGl I Γ × q3M . Γ 5 q1
2 I q2 × q3M USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 +

MGl Γ × q2 q1
2

q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 +

MGl I Γ × q2M . Γ 5 q1
2

q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 -

MGl2 q1
2

q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 - q1
2

q2
2

q3
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 - 2 MGl Γ × q3 q1
2 I q2 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L +

2 MGl I Γ × q3M . Γ 5 q1
2 I q2 × q3M USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L +

MGl Γ × q2 q1
2

q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L -

MGl I Γ × q2M . Γ 5 q1
2

q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L N N N �

I 4096 Π 12 I q12 - MT2 M .I q22 - MGl2 M .I H q2 - q1L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I H q2 + q3L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I q12 - MT2 M .

I q22 - MGl2 M M

Regul@1, 1, 13D@@5DD = DiracSimplify @ DiracSimplify @ SEFC @1, 1, 13D@@5DDD �. 8DiracGamma @5D ® 0<D

J ä tr J 2 ca2 ht2 g s
4 TCol6 Col3

Glu3 TCol3 Col6
Glu4 TCol5 Col4

Glu3 TCol4 Col5
Glu4

J 2 MGl2 MT2 USf H 1, 1, 3 , 3 L 4 I q1 × q3M + 2 MGl2 MT2 USf H 1, 2 , 3 , 3 L 4 I q1 × q3M -

MGl2 MT2 q1
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 - MGl2 MT2 q3
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 - MGl2 q1
2

q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 +

2 MGl MT3 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 I q1 × q2M + 2 MGl MT3 USf H 1, 1, 3 , 3 L 3

USf H 1, 2 , 3 , 3 L I q1 × q2M - 2 MGl MT3 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 I q2 × q3M -

2 MGl MT3 USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L I q2 × q3M - 2 MGl MT q1
2

USf H 1, 1, 3 , 3 L

USf H 1, 2 , 3 , 3 L 3 I q2 × q3M + 2 MGl MT q3
2

USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L 3 I q1 × q2M -

2 MGl MT q1
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L I q2 × q3M +

2 MGl MT q3
2

USf H 1, 1, 3 , 3 L 3 USf H 1, 2 , 3 , 3 L I q1 × q2M - MT4 q2
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 - 4 MT2 q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 I q1 × q3M +

8 MT2 USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 I q1 × q2M I q2 × q3M -

MT2 q1
2

q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 -

MT2 q2
2

q3
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 - q1
2

q2
2

q3
2

USf H 1, 1, 3 , 3 L 2

USf H 1, 2 , 3 , 3 L 2 - MGl2 MT4 USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 N N N �

I 4096 Π 12 I q12 - MT2 M .I q22 - MGl2 M .I H q2 - q1L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I H q2 + q3L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .I q12 - MT2 M .

I q22 - MGl2 M M

According  with  DRED,  if  we  define  \gamma_  5  as  a  totally  anticommuting  object,   the  trace  of  a  single
\gamma_  5  and  an  arbitrary  number  of  gamma  matrices  vanishes  in  contrast  to  the  four-dimensional  case
where for four gamma matrices and a single \gamma_5 the trace is different from zero. However, as we men-
tioned above, DRED is not implemented in FeynCalc, FeynCalc performs this kind of traces only in 4-dim, so
we must not take the traces with FeynCalc, instead we should disregard the terms with a single gamma_ 5:
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According  with  DRED,  if  we  define  \gamma_  5  as  a  totally  anticommuting  object,   the  trace  of  a  single
\gamma_  5  and  an  arbitrary  number  of  gamma  matrices  vanishes  in  contrast  to  the  four-dimensional  case
where for four gamma matrices and a single \gamma_5 the trace is different from zero. However, as we men-
tioned above, DRED is not implemented in FeynCalc, FeynCalc performs this kind of traces only in 4-dim, so
we must not take the traces with FeynCalc, instead we should disregard the terms with a single gamma_ 5:

Once the \gamma_ 5 terms are disregarded one can proceed to perform the Dirac trace with FeynCalc, here
the Q4S algebra is the same as the actual 4-dimensional algebra.

SetOptions @ DiracTrace , DiracTraceEvaluate ® True DSetOptions @ DiracTrace , DiracTraceEvaluate ® True D

8 EpsContract® False, Factoring® Automatic, FeynCalcExternal® False,
Mandelstam® 8< , PairCollect® True, DiracTraceEvaluate® True, Schouten® 0 ,
LeviCivitaSign¦ $LeviCivitaSign, TraceOfOne® 4 , FCVerbose® False<

Simplify @ Tr @ Regul@1, 1, 13D@@13DDDD

-J ä ca2 ht2 g s
4 TCol6 Col3

Glu3 TCol3 Col6
Glu4 TCol5 Col4

Glu3 TCol4 Col5
Glu4

J USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L J J q1
2

+ MT2 N J USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L J q2
2

+ MGl2 N

J q3
2

+ MT2 N + 2 MGl MT I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M I q2 × q3M N -

2 MT I q1 × q2M J MT I 4 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L I q2 × q3M + MGl

MT I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M M +

MGl q3
2 I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M N N -

2 MT2 I q1 × q3M J MGl2 I USf H 1, 1, 3 , 3 L 4 + USf H 1, 2 , 3 , 3 L 4 M -

2 q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 N N N �

I 512 Π 12 I q12 - MT2 M .I q22 - MGl2 M .I H q2 - q1L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I H q2 + q3L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I q12 - MT2 M .I q22 - MGl2 M M

We now perform the Colour algebra:

SetOptions @ SUNSimplify , SUNTrace ® True D

8 Expanding ® False, Explicit® False, Factoring® False,
SUNIndexRename® True, SUNFJacobi® False, SUNNToCACF® True, SUNTrace ® True<

SUNSAmp @1, 1, 13D@@5DD

6   Amp11(13)5.nb



-J ä ca2 ht2 C A CF g s
4

J USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L J J q1
2

+ MT2 N J USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L J q2
2

+ MGl2 N

J q3
2

+ MT2 N + 2 MGl MT I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M I q2 × q3M N -

2 MT I q1 × q2M J MT I 4 USf H 1, 1, 3 , 3 L USf H 1, 2 , 3 , 3 L I q2 × q3M + MGl

MT I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M M +

MGl q3
2 I USf H 1, 1, 3 , 3 L 2 + USf H 1, 2 , 3 , 3 L 2 M N N -

2 MT2 I q1 × q3M J MGl2 I USf H 1, 1, 3 , 3 L 4 + USf H 1, 2 , 3 , 3 L 4 M -

2 q2
2

USf H 1, 1, 3 , 3 L 2 USf H 1, 2 , 3 , 3 L 2 N N N �

I 1024 Π 12 I q12 - MT2 M .I q22 - MGl2 M .I H q2 - q1L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I H q2 + q3L 2 - MSf H 1, 3 , 3 L 2 M .

I q32 - MT2 M .

I q12 - MT2 M .I q22 - MGl2 M M

Nota  that  the  numerator  of  the  resulting  amplitude  is  a  superposition  of  scalar  products  of  the  loop-
momenta,  which  in  this  case  are  in  the  Q4S,  but  according  with  the  above  statements  the  epsilon-compo-
nents are zero so actually they are in the QDS. The next step consists in express these scalar products in terms
of the propagators and rewrite all the expression in the Reduze notation to perform the IBP reduction.
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G. Scalar Integrals in Reduze

In this appendix we show a set of functions developed with the aim of write a three-loop

scalar vacuum integral in the notation of Reduze and to identify the integral families which

the scalar integral belongs.

(****************************************************************************)

(** This function joins the elements of a list into a string of characters **)

(****************************************************************************)

nstring[k__] := StringJoin[ToString[k[[#]]] & /@ Range[Length[k]]]

(************************************************************)

(** The next functions write a 3L scalar integral: **)

(** INT[{a, i}, {b, j}, {c, k}, {d, l}, {e, m}, {f, n}], **)

(** in the notation of Reduze. **)

(************************************************************)

NameChanges = {

{{}, {}, {}, k__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k],

{{}, {}, k__, l__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k]

<>ToString[-m2]<>ToString[_]<>nstring[l],

{{}, k__, l__, m__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k]

<>ToString[-m2]<>ToString[_]<>nstring[l]<>ToString[-m3]

<>ToString[_]<>nstring[m],

{k__, j__, l__, r__} :> ToString[INT]<>ToString[-m1]<>ToString[_]<>nstring[k]

<>ToString[-m2]<>ToString[_]<>nstring[j]<>ToString[-m3]

<>ToString[_]<>nstring[l]<>ToString[-m4]<>ToString[_]

<>nstring[r]

};

FamDiff[i_, j_, k_, l_, m_, n_] :=

Drop[Sort[{Position[{i, j, k, l, m, n}, MGl][[All, 1]],

Position[{i, j, k, l, m, n}, MT][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[1, 3, 1]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[1, 3, 2]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[1, 3, 3]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 3, 1]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 3, 2]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 3, 3]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[1, 4, 1]][[All, 1]],



112 G Scalar Integrals in Reduze

Position[{i, j, k, l, m, n}, MSf[1, 4, 2]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[1, 4, 3]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 4, 1]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 4, 2]][[All, 1]],

Position[{i, j, k, l, m, n}, MSf[2, 4, 3]][[All, 1]]}], {1,10}] ;

INToReduze = {

INT[{a_, i_}, {b_, j_ }, {c_, k_}, {d_, l_}, {e_, m_}, {f_, n_}] :>

MRULES @@ PadRight[ DeleteDuplicates[ Flatten[

Table[Pick[{i, j, k, l, m, n}, {1, 2, 3, 4, 5, 6},

Flatten[FamDiff[i, j, k, l, m, n]][[h]] ],

{h, 1, Length[Flatten[FamDiff[i, j, k, l, m, n]]]}]]], 4]*(INT @@ {

FamDiff[i, j, k, l, m, n] /. NameChanges,

Length[Cases[{a, b, c, d, e, f}, p_ /; Positive[p], Infinity]],

Sum[Power[2, Flatten[Position[Sign[{a, b, c, d, e, f}], 1]][[q]] - 1],

{q, 1, Length[Position[Sign[{a, b, c, d, e, f}], 1]]}],

Sum[Cases[{a, b, c, d, e, f}, p_ /; Positive[p], Infinity][[q]],

{q, 1, Length[Cases[{a, b, c, d, e, f}, p_ /; Positive[p], Infinity]]}],

Abs[ Sum[Cases[{a, b, c, d, e, f}, p_ /; Negative[p], Infinity][[q]],

{q, 1, Length[Cases[{a, b, c, d, e, f}, p_ /; Negative[p], Infinity]]}]],

{a, b, c, d, e, f, 0, 0, 0}})

};

The output for an arbitrary three-loop scalar integral would be of the form:

In[1]:= INT[{0, 0}, {1, MT}, {1, MT}, {1, 0}, {1, 0}, {1, 0}] /. INToReduze

Out[1]:= INT["INT-m1_23", 5, 62, 5, 0, {0, 1, 1, 1, 1, 1, 0, 0, 0}]*MRULES[MT, 0, 0, 0]



H. Amplitudes of the Three-Loop

Diagrams

This chapter contains a Mathematica code that performs the evaluation of the three-loop
amplitudes in terms of the set of the master integrals depicted in Figure 3-3. Besides, the
divergent and the finite contributions are extracted from the amplitudes.

#!/path/to/MathematicaScript -script

nofk = ToExpression[$ScriptCommandLine[[2]]];

(*********************************************************************)

(** In order to read this package it is necessary to run the codes: **)

(** i) SimplificationDefinitions **)

(** ii) TVID **)

(*********************************************************************)

PrependTo[$Path, ToFileName[{"/path","to","SimplificationDefinitions","code"}]];

<< SimplificationDefinitions‘;

PrependTo[$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas program*)

Get["i3.m"];

$Directory = ToFileName[{"/path", "to","tvid"}];

LaunchKernels[nofk];

ParallelEvaluate[

PrependTo[$Path, ToFileName[{"/path","to","SimplificationDefinitions","code"}]];

<< SimplificationDefinitions‘;

PrependTo[$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas program*)

Get["i3.m"];

$Directory = ToFileName[{"/path", "to","tvid"}];

];

TempDirName = ToFileName[{"/directory","where","outputs","are","saved"}];
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(* Load a regularized three-loop amplitude *)

AmpShifts = Get["ReduzeAmp", Path -> {ToFileName[{TempDirName}];

$Lamp = Length[AmpShifts];

Put[$Lamp, ToFileName[{TempDirName}, "Lamp" ]];

(*******************************************************************************)

(** A list of rules, where each scalar integral is changed by its IBP **)

(** reduction in terms of a set of MI is contained in the file "preferreduc". **)

(** The list contain 3525 rules of the form: **)

(** **)

(** INT["INT-m1_12", 4, 51, 6, 0, {3, 1, 0, 0, 1, 1, 0, 0, 0}] -> **)

(** -((-8 + 3*d)*(-40 + 22*d - 3*d^2)*INT["INT-m1_12", 4, 51, 4, 0, **)

(** {1, 1, 0, 0, 1, 1, 0, 0, 0}])/(16*(-7 + 2*d)*m1^2), **)

(** **)

(** obtained with the program Reduze, and is so large that cannot be included **)

(** in this work (the file have about 200000 lines). **)

(*******************************************************************************)

preferreduc = Get["preferreduc"];

DistributeDefinitions[preferreduc];

(*******************************************************************************)

(** The list "basispref" changes the notation of the master integrals from ***)

(** Reduze to TVID notation. For instance: ***)

(** ***)

(** INT["INT-m1_1-m2_2", 5, 59, 5, 0, {1, 1, 0, 1, 1, 1, 0, 0, 0}] -> ***)

(** U5[m1,m2,0,0,0], ***)

(** ***)

(** and so on for the other master integrals. ***)

(*******************************************************************************)

basispref = Get["basispref"]

DistributeDefinitions[basispref];

(******************************************************************************)

(** Applying the changes in "preferreduc" and "basispref" to each amplitude. **)

(******************************************************************************)

ParallelMap[

If[!FileExistsQ[FileNameJoin[{TempDirName, "AmpsTVID"<>ToString[#]}]] ,

Put[ Expand[ Part[AmpShifts, #] ] /. preferreduc /. basispref,

ToFileName[{TempDirName}, "AmpsTVID"<>ToString[#]]] ]& , Range[$Lamp]];
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ClearAll[AmpShifts,preferreduc,basispref];

ParallelEvaluate[

ClearAll[AmpShifts,preferreduc,basispref];

];

AmpsTVID[l_] := Get["AmpsTVID"<>ToString[l], Path -> {ToFileName[{TempDirName}]}]

$factor = (-I)*(Pi^(6)); (* changing Reduze notation to Ayres Freytas notation *)

rules[amp_] := Union@Cases[amp,

MRULES[a_, b_, c_, d_] :> Level[MRULES[a, b, c, d], 1],Infinity]

amptest[amp_] := Coefficient[amp, Union@Cases[amp, MRULES[__], Infinity]];

replacements3[amp_] := Plus @@ MapThread[

$factor*(#1 /. {m1 -> Part[#2, 1]^2, m2 -> Part[#2, 2]^2,

m3 -> Part[#2, 3]^2, m4 -> Part[#2, 4]^2})&,

{amptest[amp], rules[amp]} ]

DistributeDefinitions[$factor,rules,amptest,replacements3];

ParallelMap[

Put[replacements3[AmpsTVID[#]],

ToFileName[{TempDirName},"AmpsTVIDMOD"<>ToString[#]]]&,

Range[$Lamp] ];

Print["Preferred basis applied and backup saved"];

(**********************************************************************)

(** 1) Reduction of the function M[m1,m2,m3,m4] in terms of U4. **)

(** 2) Rules for some reductions taking into account the unitarity **)

(** of the sfermion matrices **)

(**********************************************************************)

Mredu = { M[m1_,m2_,m3_,m4_] :> (2/(3*d - 8))*(

m1*U4[m1,m2,m3,m4]

+ m2*U4[m2,m3,m4,m1] + m3*U4[m3,m4,m1,m2]

+ m4*U4[m4,m1,m2,m3] ) };

AmpShifts[m_] := AmpShifts[m] = Get["AmpsTVIDMOD" <> ToString[m],

Path->{ToFileName[{TempDirName}]}];

Amplitude[m_] := Normal@Series[

AmpShifts[m] /. Mredu /. {d -> 4-2*$eps}, {$eps,0, 3}]
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stopmixing = {

USf[i_, 1, 3, 3]^2 + USf[i_, 2, 3, 3]^2 -> 1,

USf[1, i_, 3, 3]^2 + USf[2, i_, 3, 3]^2 -> 1,

USf[1, 1, 3, 3]*USf[1, 2, 3, 3] + USf[2, 1, 3, 3]*USf[2, 2, 3, 3] -> 0,

USf[1, 1, 3, 3]*USf[2, 1, 3, 3] + USf[1, 2, 3, 3]*USf[2, 2, 3, 3] -> 0,

USf[1, 1, 3, 3]*USf[2, 2, 3, 3] - USf[1, 2, 3, 3]*USf[2, 1, 3, 3] -> 1 };

USFchanges = {

USf[1, 1, 3, 3]->Cos[tht], USf[1, 2, 3, 3]->Sin[tht], USf[2, 1, 3, 3]->-Sin[tht],

USf[2, 2, 3, 3]->Cos[tht], USf[1, 1, 3, 1]->1, USf[1, 2, 3, 1]->0,

USf[2, 1, 3, 1]->0, USf[2, 2, 3, 1]->1, USf[1, 1, 3, 2]->1, USf[1, 2, 3, 2]->0,

USf[2, 1, 3, 2]->0, USf[2, 2, 3, 2]->1, USf[1, 1, 4, 1]->1, USf[1, 2, 4, 1]->0,

USf[2, 1, 4, 1]->0, USf[2, 2, 4, 1]->1, USf[1, 1, 4, 2]->1, USf[1, 2, 4, 2]->0,

USf[2, 1, 4, 2]->0, USf[2, 2, 4, 2]->1, USf[1, 1, 4, 3]->1, USf[1, 2, 4, 3]->0,

USf[2, 1, 4, 3]->0, USf[2, 2, 4, 3]->1 };

stopmixingB = {

UCSf[i_, j_, 3, 3] :> Cos[tht]^2*KroneckerDelta[i, j]

+ Sin[tht]^2*(KroneckerDelta[i+1, j]

+ KroneckerDelta[i-1, j]) /; !(i===3)&&!(j===3),

UCSf[a_, b_, 3, 1] :> KroneckerDelta[a, b] /; !(a===3)&&!(b===3),

UCSf[a_, b_, 3, 2] :> KroneckerDelta[a, b] /; !(a===3)&&!(b===3),

UCSf[a_, b_, 4, c_] :> KroneckerDelta[a, b] /; !(a===3)&&!(b===3),

UCSf[a_, 3, 3, 3] :> Sin[tht]*Cos[tht]*KroneckerDelta[a, 1]

- Sin[tht]*Cos[tht]*KroneckerDelta[a, 2] /; !(a===3),

UCSf[a_, 3, 3, c_] :> 0 /; !(a===3)&&!(c===3), UCSf[a_, 3, 4, c_] :> 0 /; !(a===3),

UCSf[3, a_, 3, 3] :> Sin[tht]*Cos[tht]*KroneckerDelta[a, 2]

- Sin[tht]*Cos[tht]*KroneckerDelta[a, 1] /; !(a===3)&&!(a===4),

UCSf[3, a_, 3, c_] :> 0 /; !(a===3)&&!(a===4)&&!(c===3),

UCSf[3, a_, 4, c_] :> 0 /; !(a===3)&&!(a===4),

UCSf[3, 3, 3, a_] :> 1 /; !(a===3), UCSf[3, 4, 3, a_] :> 0 /; !(a===3),

UCSf[3, 3, 3, 3] -> Cos[tht]^2, UCSf[3, 4, 3, 3] -> -Sin[tht]^2,

UCSf[3, 3, 4, a_] -> 1, UCSf[3, 4, 4, a_] -> 0, Cos[tht]^2 + Sin[tht]^2 -> 1,

Cos[tht]*Sin[tht] -> Sin[2*tht]/2, Cos[tht]^2 - Sin[tht]^2 -> Cos[2*tht],

Sin[tht]^2 - Cos[tht]^2 -> -Cos[2*tht] };

DistributeDefinitions[stopmixing, USFchanges, stopmixingB];

Print[" Amps Loaded and Replacement of M[] Done! "];

(*********************************************************************************)

(** The following functions extract the coefficient of each master integral **)

(** contained in a three-loop amplitude. **)

(*********************************************************************************)
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ListA0[num_] := Union@Cases[Amplitude[num], A0[__], Infinity]

ListT3[num_] := Union@Cases[Amplitude[num], T3[__], Infinity]

ListU4[num_] := Union@Cases[Amplitude[num], U4[__], Infinity]

ListU5[num_] := Union@Cases[Amplitude[num], U5[__], Infinity]

ListU6[num_] := Union@Cases[Amplitude[num], U6[__], Infinity]

ListA0T3[num_] := Union@Map[(Times @@ #)&, Tuples[{ListA0[num], ListT3[num]}]]

ListA0A0A0[num_] := Union@Map[(Times @@ #)&,

Tuples[{ListA0[num],ListA0[num],ListA0[num]}]]

ListAll[num_] := Union[

ListU4[num],ListU5[num],ListU6[num],ListA0T3[num],ListA0A0A0[num]

];

ParallelMap[

Put[ListAll[#], ToFileName[{TempDirName},"ListAll"<>ToString[#]]]&,

Range[$Lamp] ];

amptest[func_, m_] := func*Plus@@ParallelMap[

FactorSquareFree[

Coefficient[ #, func] //. stopmixing //. USFchanges //. stopmixingB]&,

Amplitude[m] ]

Table[

MapThread[

If[!FileExistsQ[FileNameJoin[{TempDirName,"Amptest"<>ToString[#2]}]] ,

Print["Amptest_"<>ToString[#2]]

Put[amptest[#1, m], ToFileName[{TempDirName},

"Amptest"<>ToString[m]<>ToString[#2]]]]&,

{ ListAll[m], Range[Length[ListAll[m]]]} ], {m, 1, $Lamp} ];

(********************************************************************)

(*** Laurent expansion around d = 4 in terms of $eps = (4-d)/2 ***)

(********************************************************************)

funcexpans = {

A0[a_]*A0[b_]*A0[c_] :> Sum[ A0[a, b, c, j]*$eps^(j), {j, -3, 2}],

A0[a_]^2*A0[c_] :> Sum[ A0[a, a, c, j]*$eps^(j), {j, -3, 2}],

A0[c_]^3 :> Sum[ A0[c, c, c, j]*$eps^(j), {j, -3, 2}],

A0[a_]*T3[b_, c_, d_] :> Sum[ AT[a, b, c, d, j]*$eps^(j), {j, -3, 2}],

U4[a_, b_, c_, d_] :> Sum[ U4[a, b, c, d, j]*$eps^(j), {j, -3, 2}],

U5[a_, b_, c_, d_, e_] :> Sum[ U5[a, b, c, d, e, j]*$eps^(j), {j, -3, 2}],

U6[a_, b_, c_, d_, e_, f_] :> Sum[ U6[a, b, c, d, e, f, j]*$eps^(j), {j, -3, 2}] };

DistributeDefinitions[funcexpans];
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AmpSimp[m_,k_] := Get["Amptest"<>ToString[m]<>ToString[k],

Path->{ToFileName[{TempDirName}]}];

AmpLexp[num_,i_] := Sum[ $eps^(-m)*Coefficient[

Collect[

ListAll[num][[i]]*Collect[

Numerator[Coefficient[AmpSimp[num,i],ListAll[num][[i]]]],{eps}]

/ Denominator[AmpSimp[num,i]] /. funcexpans, {eps}], $eps, -m],

{m, 0, 3}]

coeffeps[num_,j_,l_] := Coefficient[ AmpLexp[num,l], $eps, -j]

ampeps[num_,m_] := $eps^(-m)*(Plus@@Table[coeffeps[num,m,l],{l,1,Length[ListAll[num]]}])

epsamps = Flatten[

ParallelTable[

ampeps[num,j], {num, 1, $Lamp},{j, 0, 3}]

];

(***********************************************************************************)

(*** Explicit evaluation of the divergent and the finite part of the amplitudes ***)

(*** in terms of special functions, log(), Polylog(), etc. ***)

(***********************************************************************************)

i3changes = {

A0[a_,b_,c_,x_] :> PrepIntMod[ A0[a]*A0[b]*A0[c], x],

AT[a_,b_,c_,d_,x_] :> PrepIntMod[ A0[a]*T3[b,c,d], x],

U4[a_,b_,c_,d_,x_] :> PrepIntMod[ U4[a,b,c,d], x],

U5[a_,b_,c_,d_,e_,x_] :> PrepIntMod[ U5[a,b,c,d,e], x],

U6[a_,b_,c_,d_,e_,f_,x_] :> PrepIntMod[ U6[a,b,c,d,e,f], x] };

DistributeDefinitions[i3changes];

coeffepsi3[j_,l_] := Part[

Coefficient[$eps^(-1)*epsamps, $eps^(-j)], l] /. i3changes;

ampepsi3[m_] := $eps^(1-m)*(Plus @@ Table[ coeffepsi3[m,l],

{l, 1, Length[epsamps] ]}])

epsampsi3 = Flatten[ParallelMap[ampepsi3[#]&, Range[4]]];

Print["epsampsi3 Loaded!"]

Put[ epsampsi3, ToFileName[{TempDirName}, "i3AmpsEps"]];

CloseKernels[];

Quit[];



I. Divergent Parts of the Three-loop

Master Integrals

In this appendix we present the analytical results for the divergent part of the three-loop

master integral basis depicted in Figure 3-2. For the vacuum function U4, we have:
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For the U5 three-loop function we have:
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where the function cycl(ijk) refers to the cyclic permutations of the set {mi,mj,mj} and

λijk =
√
m4
i +m4

j +m4
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2
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im
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Finally, the divergent part of the U6 functions is independent of the particle masses and

have a quite simple form,

U6div(m
2
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2
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2
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2
6) =

1

ε
2ζ(3), (I-7)

where ζ(x) is the Riemann zeta function.



J. Known Analytical Expressions of

Master Integrals

In this appendix we show the expressions of the master integrals involved in this work, plotted

in Figures 3-2 and 3-4, which can be computed analytically to all orders in ε. This includes

the one-loop functions A0 and B0, the two-loop function T3 and some special cases of the

three-loop integrals U4 and U5 with one and two independent mass scales. The one-loop

Passarino-Veltman functions A0 and B0 have the Laurent expansions:

A0 (m) = −eγEε
(
m2
)1−ε

Γ (−1 + ε) , (J-1)

and
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+O (ε) ,

where λ(x, y, z) is the Källen function. For a complex number z the logarithm is defined as

Log(z) = ln|z|+ iφ, where φ ∈ (−π, π]. Using the definitions given by:
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x

u
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v
− 1, (J-8)
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the analytical expression of the two-loop vacuum integral can be written as:
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,

For the case of the three-loop integrals with one non-zero mass scale we have:
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and

U5(0, 0, 0, 0,m) = (m2)1−3ε e3γEε
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Three-loop master integrals with two independent mass scales have the expressions:
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where we have defined

c =
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1
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. (J-15)

Further analytical expressions with at most two independent mass scales and including just

terms up to O(ε0) can be consulted in [166, 182] and references therein.The analytical unk-

nown three-loop master integrals, which contain at least three independent mass scales, are

numerically evaluated with the program TVID [167,168] based on the dispersion method.



K. Amplitudes of the Counter-term

Diagrams

The insertion of the SQCD mass renormalization constants into the counter-term diagrams
(one- and two-loop Higgs self-energies and tadpoles) responsible for the removal of the non-
local sub-divergences are performed with the code presented below. The code takes each
DRED regularized amplitude of a counter-term diagram, written in the FeynCalc notation,
and inserts the mass renormalization constants listed in Appendix B. Additionally, it per-
forms a Laurent expansion of the resulting amplitude, keeping terms up to O(ε0) and putting
the coefficient of the poles ε−n in a list.

(* You must call the next packages in order to run this code: *)

PrependTo[$Path, ToFileName[{"/path","to","SimplificationDefinitions"}]];

<< SimplificationDefinitions‘;

PrependTo[$Path, ToFileName[{"/path","to","tvid"}]]; (* A. Freitas program*)

Get["i3.m"];

$Directory = ToFileName[{"/path", "to","tvid"}];

$LoadTARCER = True; (* This is to call TARCER from FeynCalc*)

PrependTo[$Path, ToFileName[{"/path","to","FeynCalc901","FeynCalc"}]];

Get["FeynCalc‘"];

(***************************************************************************************)

(** Functions devoted to perform the reduction in terms of TARCER master integrlas, **)

(** and also to take the gaugeless limit over the SQCD vertices at the desired order. **)

(***************************************************************************************)

changesmom = { Momentum[a_] :> Momentum[a, D],

FAScalarProduct[a_,b_] :> Pair[ Momentum[a,D], Momentum[b,D]]};

Reduonetwol[amp_] := Block[ {amptfi,listA,listB,listrules},

amptfi = ToTFI[amp //. changesmom, q1, q2, p];

listA = Union@Cases[amptfi, (TAI | TBI | TJI | TFI)[__], Infinity];

listB = TarcerRecurse[listA];

listrules = Map[ listA[[#]] -> listB[[#]] &, Range[Length[listA]]];

Return[ MagicSimplify[ amptfi /. listrules , Feedback->False] ]; ];
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Gaugeless[amp_] := Sum[ SeriesCoefficient[ amp, {MW, 0, -j}]*(ht/MT)^(j),

{j,0,4}] /. ht -> ht Sqrt[2] SB SW/EL

(***********************************************************************************)

(*** Call a list of DRED regularized amplitudes. Here the color and the Dirac ***)

(*** algebra should have been already performed. Then apply the TARCER reduction ***)

(*** and the gaugeless limit over each amplitude. ***)

(***********************************************************************************)

Amplitudes = Get["Regularized"<>"Amplitudes"<>"Path"];

TempDirName = ToFileName[{"/path","to","save","your","outputs"}];

ParallelTable[

If[ FreeQ[Amplitudes[[l]],Gstrong] ,

Print["Top1L_"<>ToString[l]];

Put[ ht^2* Reduonetwol[

Reduonetwol[ Coefficient[Collect[ Gaugeless[ Amplitudes[[l]] ],{ht}],ht^2]]],

ToFileName[{TempDirName}, "Reduamp_"<>ToString[l]] ]; ,

Print["Top2L_"<>ToString[l]];

Put[ ht^2*Gstrong^2* Reduonetwol[

Reduonetwol[ Coefficient[Collect[ Gaugeless[ Amplitudes[[l]] ],

{ht,Gstrong}], Gstrong^2*ht^2] ]],

ToFileName[{TempDirName}, "Reduamp_"<>ToString[l]]];

],

{l,1,Length[Amplitudes]}];

Reduampse[n_] := Get["Reduamp_"<>ToString[n], Path->{ToFileName[{TempDirName}]}];

reduamps = DeleteCases[ ParallelMap[ Reduampse[#]&, Range[Length[Amplitudes]]], 0, 1];

Put[reduamps, ToFileName[{TempDirName}, "ReduAmps" ] ]; (*save a backup!*)

(**************************************************************************************)

(*** The next functions perform an epsilon-expansion over the amplitudes. Here the ***)

(*** insertion of the mass counter-terms is still missing. ***)

(**************************************************************************************)

i3CTbasis[amp_] := Block[ {m, m1, m2, m3, $factor1L, $factor2L},

(* Q[L] = (4 Pi E^(-EulerGamma) mu^2)^(L $eps) *)

$factor1L = I*Pi^2 ;

$factor2L = -Pi^4 ;
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i3basisfunc = {

B0[0,m1_,m2_] :> (A0[m1]-A0[m2])/(m1 - m2) /; !(m1===m2) && !(m1===0) && !(m2===0) ,

B0[0,m_,m_] :> (D-2)*A0[m]/(2*m) /; !(m===0) ,

B0[0,0,m_] :> A0[m]/m /; !(m===0) ,

B0[0,m_,0] :> B0[0,0,m] /; !(m===0) ,

B0[0,0,0] -> 0 ,

C0[0,0,0,m1_,m2_,m3_] :> (1/(m1 - m2))*(((A0[m1]-A0[m3])/(m1-m3)) -

((A0[m2]-A0[m3])/(m2 - m3))) /; !(m1===m2) && !(m2===m3)

&& !PossibleZeroQ[m1*m2*m3],

C0[0,0,0,m_,m_,m_] :> (D-4)*(D-2)A0[m]/(8*m^2) /; !(m===0) ,

C0[0,0,0,m1_,m1_,m2_] :> ( (1/(m1 - m2))*((D-2)*A0[m1]/(2*m1)) +

(1/(m1 - m2)^2)*(A0[m2]-A0[m1])) ; !PossibleZeroQ[m1*m2]

&& !(m1===m2) ,

C0[0,0,0,m1_,m2_,m2_] :> C0[0,0,0,m2,m2,m1] /; !PossibleZeroQ[m1*m2] && !(m1===m2) ,

C0[0,0,0,m1_,m2_,m1_] :> C0[0,0,0,m1,m1,m2] /; !PossibleZeroQ[m1*m2] && !(m1===m2) ,

C0[0,0,0,m1_,m2_,0]:> (1/(m1-m2))*(A0[m1]/m1-A0[m2]/m2)

/; !PossibleZeroQ[m1*m2]&&!(m1===m2),

C0[0,0,0,0,m1_,m2_] :> C0[0,0,0,m1,m2,0] /; !PossibleZeroQ[m1*m2] && !(m1===m2) ,

C0[0,0,0,m1_,0,m2_] :> C0[0,0,0,m1,m2,0] /; !PossibleZeroQ[m1*m2] && !(m1===m2) ,

C0[0,0,0,m_,m_,0] :> (A0[m]/(2*m^2))*(D-4) /; !(m===0) ,

C0[0,0,0,0,m_,m_] :> C0[0,0,0,m,m,0] /; !(m===0) ,

C0[0,0,0,m_,0,m_] :> C0[0,0,0,m,m,0] /; !(m===0) ,

C0[0,0,0,0,0,m_] :> (A0[m]/m^2) /; !(m===0) ,

C0[0,0,0,m_,0,0] :> C0[0,0,0,0,0,m] /; !(m===0) ,

C0[0,0,0,0,m_,0] :> C0[0,0,0,0,0,m] /; !(m===0) ,

C0[0,0,0,0,0,0] -> 0,

TAI[D, 0, {{1, m_}}] :> $factor1L*A0[m^2] ,

TBI[D, 0, {{1, m1_}, {1, m2_}}] :> (I*Pi^2)*B0[0,m1^2,m2^2] ,

TJI[D, 0, {{1, m1_}, {1, m2_}, {1, m3_}}] :> $factor2L*T3[m1^2,m3^2,m2^2],

A0[m1_] :> A0div[m1]/$eps + A0fin[m1] + A0evn[m1]*$eps + A0evn2[m1]*$eps^2,

B0[p_,m1_,m2_] :> B0div[p,m1,m2]/$eps + B0fin[p,m1,m2] + B0evn1[p,m1,m2]*$eps

+ B0evn2[p,m1,m2]*$eps^2,

T3[m1_,m2_,m3_] :> T3div2[m1,m2,m3]/($eps^2) + T3div1[m1,m2,m3]/$eps

+ T3fin[m1,m2,m3] + T3evn[m1,m2,m3]*$eps

};

Return[ amp //. i3basisfunc ];

];

(* This is a function of TVID *)

PrepIntMod[expr_,n_] := Module[{expre},

expre = expr /. usort //. urepl2 /. urepl /. usort //. urepl2 /. urepl

//. trepl /. $D -> 4-2*$eps;
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expre = Map[Simplify, expre];

Return[SeriesCoefficient[expre, {$eps,0,n}]]

];

epsexpans[amp_, o_] := PrepIntMod[ Collect[

i3CTbasis[amp] /. {D -> 4 - 2*$eps, SUNIndex[a_]:>a,

SUNFIndex[b_]:>b}, {$eps}], o]

(* Performing the expansion *)

ParallelMap[

If[ FreeQ[reduamps[[#]], Gstrong],

Print["ampexp1l_"<>ToString[#]]

Put[Sum[ $eps^(j)*epsexpans[reduamps[[#]],j], {j,-1,2}],

ToFileName[{TempDirName}, "epsamp_"<>ToString[#]] ],

Print["ampexp2l_"<>ToString[#]]

Put[Sum[ $eps^(j)*epsexpans[reduamps[[#]],j], {j,-2,1}],

ToFileName[{TempDirName}, "epsamp_"<>ToString[#]] ] ]&,

Range[Length[reduamps]] ];

epsampse[n_] := Get["epsamp_"<>ToString[n],Path->{ToFileName[{TempDirName}]}];

epsamps = ParallelMap[ epsampse[#]&, Range[Length[reduamps]] ];

$Lamp=Length[epsamps];

Put[epsamps, ToFileName[{TempDirName}, "EpsAmps" ] ]; (* Save a backup! *)

(*************************************************************************)

(** Now we define the mass counter-terms and perform the corresponding **)

(** insertions over the counter-term diagrams. An additional **)

(** eps-expansion up to O(eps^0) is performed. **)

(*************************************************************************)

T[n_] := n*(1/2) ;

DRRenConst[const_] := Block[ {s1,s2,ji,j2,o1,o2,g1,g2},

(* Notation of the counter-terms are the same of the MSSMCT.mod file of FeynArts *)

changesDRbar={

d1tteA->0, d1tteB->0, d2tteA->0, d2tteB->0, d1bbeA->0, d1bbeB->0, d2bbeA->0, d2bbeB->0,

d1ggeA->0, d2ggeA->0, d1ggeB->0, d2ggeB->0, d1susuee->0, d2susuee->0, d1sdsdee->0,

d2sdsdee->0, d1ttAA -> 0, d2ttAA -> 0, d1ttAB -> 0, d2ttAB -> 0, d1ttHA -> 0, d2ttHA -> 0,
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d1ttHB -> 0, d2ttHB -> 0, d1Asusu -> 0, d2Asusu -> 0, d1hsusu -> 0, d2hsusu -> 0,

d1Hsusu -> 0, d2Hsusu -> 0, d1sdsdsusu -> 0, d1susususu -> 0, d1ttgA -> 0, d1ttgB -> 0,

d1susug -> 0, d1gltstA -> 0, d1gltstB -> 0, d1gltstcgA -> 0, d1gltstcgB -> 0,

d1ststglgl -> 0, d1tthA -> 0, d2tthA -> 0, d1tthB -> 0, d2tthB -> 0, d1AAsusu[__]->0,

d2AAsusu[__]->0, d1hhsusu[__]->0, d2hhsusu[__]->0

};

expression = {

(*------- gluino - gluino --------*)

dZGlA[g1_,g2_] :> 0,

dZGlB[g1_,g2_] :> 0,

dZGlC[g1_,g2_] :>(-I/2)*SUNDelta[g1, g2]*(Gstrong^2/(16*Pi^2))*( -3 )*MGl/$eps,

dZGlD[g1_,g2_] :> (-I/2)*SUNDelta[g1, g2]*(Gstrong^2/(16*Pi^2))*( -3 )*MGl/$eps,

(*------ squark down - squark down -------*)

dZsdA[s1_,s2_,j1_,j2_,o1_,o2_] :> 0,

dZsdB[s1_,s1_,j1_,j2_,o1_,o2_] :> (-I)*(Gstrong^2/(12*Pi^2))*SUNFDelta[o1, o2]

*(-4*MGl^2)*(1/$eps),

dZsdB[ 1, 2, j1_,j2_,o1_,o2_] :> 0,

dZsdB[ 2, 1, j1_,j2_,o1_,o2_] :> 0,

(*------ squark up - squark up ---------*)

dZsuA1[s1_,s2_,j1_,j2_,o1_,o2_] :> 0,

dZsuA2[s1_,s2_,j1_,j2_,o1_,o2_] :> 0,

dZsuB1[s1_, s1_, 1, j2_, o1_, o2_] :> (-I)*(Gstrong^2/(12*Pi^2))*SUNFDelta[o1, o2]

*(-4*MGl^2)*(1/$eps) ,

dZsuB1[1, 2, 1, j2_, o1_, o2_] :> 0,

dZsuB1[2, 1, 1, j2_, o1_, o2_] :> 0,

dZsuB1[s1_, s1_, 2, j2_, o1_, o2_] :> (-I)*(Gstrong^2/(12*Pi^2))*SUNFDelta[o1, o2]

*(-4*MGl^2)*(1/$eps) ,

dZsuB1[1, 2, 2, 2, o1_, o2_] :> 0,

dZsuB1[2, 1, 2, 2, o1_, o2_] :> 0,

dZsuB1[s1_, s1_, 3, 1, o1_, o2_] :> (-I)*(Gstrong^2/(12*Pi^2))*SUNFDelta[o1, o2]

*(-4*MGl^2)*(1/$eps) ,

dZsuB1[s1_, s1_, 3, 2, o1_, o2_] :> (-I)*(Gstrong^2/(12*Pi^2))*SUNFDelta[o1, o2]

*(-4*MGl^2)*(1/$eps) ,

dZsuB1[1, 2, 3, 1, o1_, o2_] :> 0,

dZsuB1[2, 1, 3, 1, o1_, o2_] :> 0,

dZsuB1[1, 2, 3, 2, o1_, o2_] :> 0,

dZsuB1[2, 1, 3, 2, o1_, o2_] :> 0,

dZsuB1[1, 1, 3, 3, o1_, o2_] :> (-I)*(Gstrong^2/(4*Pi^2))*SUNFDelta[o1, o2]*

CF*( -MGl^2 - MT^2 + MGl*MT*Sin[2*tht]
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+ Sin[2*tht]^2*(MSf[2, 3, 3]^2 - MSf[1, 3, 3]^2)/4 )*1/$eps,

dZsuB1[2, 2, 3, 3, o1_, o2_] :> (-I)*(Gstrong^2/(4*Pi^2))*SUNFDelta[o1, o2]*

CF*( -MGl^2 - MT^2 - MGl*MT*Sin[2*tht]

+ Sin[2*tht]^2*(MSf[1, 3, 3]^2 - MSf[2, 3, 3]^2)/4 )*1/$eps,

dZsuB1[1, 2, 3, 3, o1_, o2_] :> (-I)*(Gstrong^2/(4*Pi^2))*SUNFDelta[o1, o2]*

CF*Cos[2*tht]*( MGl*MT

- Sin[2*tht]*(MSf[1, 3, 3]^2 - MSf[2, 3, 3]^2)/4)*1/$eps,

dZsuB1[2, 1, 3, 3, o1_, o2_] :> dZsuB1[1, 2, 3, 3, o1, o2],

dZsuB2[1, 1, 3, 3, o1_, o2_] :> (-I)*( (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*

(CF^2*( Cos[2*tht]^2*MGl^2*MT^2/(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ ((1+Cos[2*tht]^2)*Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ 8*MT^2)/16 - (1+Cos[2*tht]^2)*MGl*MT*Sin[2*tht]/2 )

+ CA*CF*( 9*MGl^2/8 + 3*(Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ 4*MT^2)/32 - 3*MGl*MT*Sin[2*tht]/4 )

+ CF*T[6]*( -3*MGl^2/4 - (Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ 4*MT^2)/16 + MGl*MT*Sin[2*tht]/2 ) )*(1/$eps^2)

+ (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*( CF^2*( 3*MGl^2/4

+ (Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)+4*MT^2)/16

- MGl*MT*Sin[2*tht]/2)

+ CA*CF*( -11*MGl^2/8 - 3*(Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ 4*MT^2)/32 + 3*MGl*MT*Sin[2*tht]/4)

+ CF*T[5]*( 3*MGl^2/4 + (Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

+ 4*MT^2+8*MSq^2)/16 - MGl*MT*Sin[2*tht]/2)

+ CF*T[1]*( 3*MGl^2/4 + (Sin[2*tht]^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)

- 4*MT^2+4*MSf[1, 3, 3]^2+4MSf[2, 3, 3]^2)/16 - MGl*MT*Sin[2*tht]/2)

)*(1/$eps) + (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*

Meps^2*(- CA*CF*3/8 + CF*T[6]*1/4)*(1/$eps)

- (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)^(-1)*CF^2*Cos[2*tht]^2*( MGl*MT -

Sin[2*tht]*(MSf[1, 3, 3]^2 - MSf[2, 3, 3]^2)/4)^2*(1/$eps^2) ),

dZsuB2[2, 2, 3, 3, o1_, o2_] :> (-I)*( (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*(

CF^2*( Cos[2*tht]^2*MGl^2*MT^2/(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)

+ ((1+Cos[2*tht]^2)*Sin[2*tht]^2*(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)+8*MT^2)/16

+ (1+Cos[2*tht]^2)*MGl*MT*Sin[2*tht]/2 )

+ CA*CF*( 9*MGl^2/8 + 3*(Sin[2*tht]^2*(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)

+ 4*MT^2)/32 + 3*MGl*MT*Sin[2*tht]/4 )

+ CF*T[6]*( -3*MGl^2/4 - (Sin[2*tht]^2*(MSf[2, 3, 3]^2

- MSf[1, 3, 3]^2)+4*MT^2)/16 - MGl*MT*Sin[2*tht]/2 ) )*(1/$eps^2)

+ (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*( CF^2*( 3*MGl^2/4

+ (Sin[2*tht]^2*(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)+4*MT^2)/16

+ MGl*MT*Sin[2*tht]/2)

+ CA*CF*( -11*MGl^2/8 - 3*(Sin[2*tht]^2*(MSf[2, 3, 3]^2

- MSf[1, 3, 3]^2)+4*MT^2)/32 - 3*MGl*MT*Sin[2*tht]/4)
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+ CF*T[5]*( 3*MGl^2/4 + (Sin[2*tht]^2*(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)

+ 4*MT^2+8*MSq^2)/16 + MGl*MT*Sin[2*tht]/2)

+ CF*T[1]*( 3*MGl^2/4 + (Sin[2*tht]^2*(MSf[2, 3, 3]^2-MSf[1, 3, 3]^2)

- 4*MT^2+4*MSf[2, 3, 3]^2+4MSf[1, 3, 3]^2)/16 + MGl*MT*Sin[2*tht]/2)

)*(1/$eps) + (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*Meps^2*(- CA*CF*3/8

+ CF*T[6]*1/4)*(1/$eps)

+ (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)^(-1)*CF^2*Cos[2*tht]^2*( MGl*MT -

Sin[2*tht]*(MSf[1, 3, 3]^2 - MSf[2, 3, 3]^2)/4)^2*(1/$eps^2) ),

dZsuB2[1, 2, 3, 3, o1_, o2_] :> (-I)*( (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*(

CF^2*Cos[2*tht]*((Sin[2*tht]^2-Cos[2*tht]^2)*(MGl*MT/2

- Sin[2*tht]*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)/16)

- 2*Sin[2*tht]*MGl^2*MT^2*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)^(-1) )

+ CF*CA*Cos[2*tht]*(-3*MGl*MT/4 + 3*Sin[2*tht]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)/32)

+ CF*T[6]*Cos[2*tht]*(MGl*MT/2 - Sin[2*tht]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)/16) )*(1/$eps^2)

+ (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*( CF^2*Cos[2*tht]*( -MGl*MT/2

+ Sin[2*tht]*(MSf[1, 3, 3]^2-MSf[2, 3, 3]^2)/16 )

+ CF*CA*Cos[2*tht]*( 3*MGl*MT/4 - 3*Sin[2*tht]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)/32)

+ CF*T[6]*Cos[2*tht]*(-MGl*MT/2 + Sin[2*tht]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)/16) )*(1/$eps)

+ (Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)^(-1)*CF*Cos[2*tht]*( MGl*MT -

Sin[2*tht]*(MSf[1, 3, 3]^2 - MSf[2, 3, 3]^2)/4)*( CF*( -MGl^2 - MT^2

+ MGl*MT*Sin[2*tht] + Sin[2*tht]^2*(MSf[2, 3, 3]^2 - MSf[1, 3, 3]^2)/4)

- CF*(-MGl^2-MT^2-MGl*MT*Sin[2*tht]+Sin[2*tht]^2*(MSf[1, 3, 3]^2

- MSf[2, 3, 3]^2)/4) )*(1/$eps^2) ),

dZsuB2[2, 1, 3, 3, o1_, o2_] :> dZsuB2[1, 2, 3, 3, o1, o2],

(*------ quark up - quark up -------*)

dZquA1[j1_,j2_,o1_,o2_] :> 0,

dZquB1[j1_,j2_,o1_,o2_] :> 0,

dZquC1[3, 3,o1_,o2_] :> (-I/2)*( -(Gstrong^2/(4*Pi^2))

*SUNFDelta[o1, o2]*(2*CF*MT)*(1/$eps) ),

dZquD1[3, 3,o1_,o2_] :> (-I/2)*(-(Gstrong^2/(4*Pi^2))

*SUNFDelta[o1, o2]*(2*CF*MT)*(1/$eps) ),

dZquA2[j1_,j2_,o1_,o2_] :> 0,

dZquB2[j1_,j2_,o1_,o2_] :> 0,

dZquC2[3, 3,o1_,o2_] :> (-I/2)*(Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]

*(((1/$eps^2)*(3*CA*CF+2*CF^2-2*CF*T[6])+(1/$eps)*(-3*CA*CF+2*CF^2+2*CF*T[6]))*MT),

dZquD2[3, 3,o1_,o2_] :> (-I/2)*(Gstrong^2/(4*Pi^2))^2*SUNFDelta[o1, o2]

*(((1/$eps^2)*(3*CA*CF+2*CF^2-2*CF*T[6])+(1/$eps)*(-3*CA*CF+2*CF^2+2*CF*T[6]))*MT),
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(*--------- gluon - gluon -------------*)

dZGG1 -> 0

};

Return[ MagicSimplify[const /. changesDRbar //. expression, Feedback->False] ];

];

(* Inserting the mass counter-terms and expanding in epsilon *)

coeffeps[j_,l_] := Coefficient[ DRRenConst[epsampse[l]], $eps, -j]

ampepsB[m_] := $eps^(1-m)*(Plus @@ ParallelTable[ coeffeps[m-1,l], {l,1,$Lamp}])

ampLexp = Map[ampepsB[#]&, Range[6]];

Put[ampLexp, ToFileName[{TempDirName}, "AmpLexp"]]; (* Save a backup! *)

Clear[ampLexp, epsamps, reduamps];

ParallelEvaluate[

Clear[ampLexp, epsamps, reduamps];

];

Print["The End!"]

CloseKernels[];

Quit[];



L. EFT loop functions

This appendix contains a list of loop-functions that appears in the stop and the gaugino-

higgsino contributions to the threshold corrections of the Higgs quartic coupling λ [121]

introduced in the vacuum stability analysis described in Section 4.4.

F1(x) =
xlnx2

x2 − 1
, (L-1)

F2(x) =
6x2 [2− 2x2 + (1 + x2)lnx2]

(x2 − 1)3
, (L-2)

F3(x) =
2x[5(1− x2) + (1 + 4x2)lnx2]

3(x2 − 1)2
, (L-3)

F4(x) =
2x(x2 − 1− lnx2)

(x2 − 1)2
, (L-4)

F5(x) =
3x(1− x4 + 2x2lnx2)

(1− x2)3
. (L-5)

F6(x) =
x2 − 3

4 (1− x2)
+
x2 (x2 − 2)

2 (1− x2)2
lnx2 , (L-6)

F7(x) =
−3 (x4 − 6x2 + 1)

2 (x2 − 1)2
+

3x4 (x2 − 3)

(x2 − 1)3
lnx2 , (L-7)

F8 (x1, x2) = −2 +
2

x2
1 − x2

2

(
x4

1

x2
1 − 1

lnx2
1 −

x4
2

x2
2 − 1

lnx2
2

)
, (L-8)

F9 (x1, x2) =
2

x2
1 − x2

2

(
x2

1

x2
1 − 1

lnx2
1 −

x2
2

x2
2 − 1

lnx2
2

)
. (L-9)

f(r) = F5(r) , G(r) = F7(r) , (L-10)

f1(r) =
6 (r2 + 3) r2

7 (r2 − 1)2 +
6 (r2 − 5) r4lnr2

7 (r2 − 1)3 , (L-11)

f2(r) =
2 (r2 + 11) r2

9 (r2 − 1)2 +
2 (5r2 − 17) r4lnr2

9 (r2 − 1)3 , (L-12)

f3(r) =
2 (r4 + 9r2 + 2)

3 (r2 − 1)2 +
2 (r4 − 7r2 − 6) r2lnr2

3 (r2 − 1)3 , (L-13)

f4(r) =
2 (5r4 + 25r2 + 6)

7 (r2 − 1)2 +
2 (r4 − 19r2 − 18) r2lnr2

7 (r2 − 1)3 , (L-14)
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4

3
f5(r1, r2) =

1 + (r1 + r2)2 − r2
1r

2
2

(r2
1 − 1) (r2

2 − 1)
+

r3
1 (r2

1 + 1) lnr2
1

(r2
1 − 1) 2 (r1 − r2)

− r3
2 (r2

2 + 1) lnr2
2

(r1 − r2) (r2
2 − 1) 2

, (L-15)

7

6
f6(r1, r2) =

r2
1 + r2

2 + r1r2 − r2
1r

2
2

(r2
1 − 1) (r2

2 − 1)
+

r5
1lnr2

1

(r2
1 − 1) 2 (r1 − r2)

− r5
2lnr2

2

(r1 − r2) (r2
2 − 1) 2

, (L-16)

1

6
f7(r1, r2) =

1 + r1r2

(r2
1 − 1) (r2

2 − 1)
+

r3
1lnr2

1

(r2
1 − 1) 2 (r1 − r2)

− r3
2lnr2

2

(r1 − r2) (r2
2 − 1) 2

, (L-17)

2

3
f8(r1, r2) =

r1 + r2

(r2
1 − 1) (r2

2 − 1)
+

r4
1lnr2

1

(r2
1 − 1) 2 (r1 − r2)

− r4
2lnr2

2

(r1 − r2) (r2
2 − 1) 2

. (L-18)

All the above functions are equal to 1 when their arguments approach to unity, with the

exception of F6 which tends to 0.
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