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Abstract

The notion of a Whitney dual for a graded partially ordered set (poset) P with a mini-

mum element 0̂ has been introduced recently by González D’León and Hallam with some

interesting connections to other areas of algebra and combinatorics. We say that two posets

are Whitney duals to each other if (the absolute value of) their Whitney numbers of the

first and second kind are interchanged between the two posets. Some families of familiar

posets such as the poset Πn of partitions of the set {1, 2, 3..., n} have Whitney duals. This

has been proved by defining a suitable edge labeling λ on the edges of the Hasse diagram

of Πn satisfying certain conditions. Such an edge labeling is called a Whitney labeling and

González D’León - Hallam proved that every graded poset that admits a Whitney labeling

has a Whitney dual.

We study the Whitney duality property for two families of operadic posets, finding Whitney

labelings and constructing combinatorial descriptions of their Whitney duals. One is known

as the family of posets of weighted partitions Πk
n, studied by González D’León and Wachs

related to the operad Comk of commutative algebras with k totally commutative products,

and the other is the family of posets of pointed partitions Π•n, studied by Chapoton and

Vallette associated to the operad Perm of Perm-algebras. We prove that a labeling, previ-

ously defined by González D’León, for Πk
n is a Whitney labeling and prove that its associated

Whitney dual is a poset of colored Lyndon forests. We also find a Whitney labeling for Π•n
and then use this labeling to show that its associated Whitney dual is a poset of pointed

Lyndon forests. For the case k = 2, it turns out that the families Π2
n and Π•n have the same

Whitney numbers of the first and second kind. Our results imply that there are multiple

non-isomorphic Whitney duals for these two families in this case.
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Resumen

T́ıtulo: Duales de Whitney de posets operádicos

González D’León y Hallam introdujeron recientemente la noción de duales de Whitney para

un conjunto parcialmente ordenado (poset) graduado P con un elemento mı́nimo 0̂ con al-

gunas conexiones interesantes a otras áreas del álgebra y la combinatoria. Decimos que dos

posets son duales de Whitney entre śı, si (el valor absoluto de) sus números de Whitney

del primer y segundo tipo se intercambian entre los dos posets. Algunas familias de posets

familiares como el poset Πn de particiones del conjunto {1, 2, 3..., n} tienen duales de Whit-

ney. Esto se ha demostrado definiendo un etiquetamiento adecuado λ en las aristas del

diagrama de Hasse de Πn que satisface ciertas condiciones. A tal etiquetamiento de aristas

se le llama etiquetamiento de Whitney y González D’León - Hallam demostraron que todo

poset graduado que admite un etiquetamiento de Whitney tiene un dual de Whitney.

Estudiamos la propiedad de dualidad de Whitney para dos familias de posets operadicos, por

medio de etiquetamientos de Whitney y de la construcción de descripciones combinatorias

de sus duales de Whitney. Una de las familias es la familia de posets de particiones con

pesos Πk
n, estudiadas por González D’León y Wachs, relacionadas con el operad Comk de

álgebras conmutativas con k productos totalmente conmutativos, y la otra es la familia de

posets de particiones punteadas Π•n, estudiadas por Chapoton y Vallette asociadas al operad

Perm de Perm-álgebras. Demostramos que un etiquetamiento, previamente definido por

González D’León, para Πk
n es un etiquetamiento de Whitney y demostramos que su dual de

Whitney asociado es un poset de bosques de Lyndon coloreados. También encontramos un

etiquetamiento de Whitney para Π•n y luego usamos este etiquetamiento para mostrar que su

dual de Whitney asociado es un poset de bosques de Lyndon punteados. Para el caso k = 2,

resulta que las familias Π2
n y Π•n tienen los mismos números de Whitney del primer y segundo

tipo. Nuestros resultados implican que hay múltiples duales de Whitney no isomórfos entre

śı para estas dos familias en este caso.
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1 Introduction

A partially ordered set or poset is a pair (P,≤) where P is a set and ≤ is a relation that is

reflexive, antisymmetric and transitive. In general, we will abuse notation and say that P is

a poset. We denote x < y whenever x, y ∈ P are such that x ≤ y but x 6= y. If x < y and

there is no z ∈ P such that x < z < y, we say that y covers x and we denote it by x l y.

A subset C of P is said to be a chain if for every pair of elements x, y ∈ C either x ≤ y or

y ≤ x (that is, x and y are comparable). We say that an element x ∈ P is minimal if there

is no z ∈ P such that z < x. If there is a unique minimal element we call it the minimum

of P and we denote it by 0̂. A maximal chain of P is a chain C in P such that for every

z ∈ P \ C the subset C ∪ {z} is not a chain. A poset whose maximal chains are all of the

same cardinality is said to be graded. It is known that in a graded poset we can define a

function ρ : P → N such that ρ(x) = 0 when x is a minimal element and ρ(y) = ρ(x) + 1

whenever x l y. We call ρ the rank function of P . In what follows we will assume that

every poset P is finite, graded with rank function ρ and has a 0̂. For undefined concepts and

notation about posets the reader could consult [16].

1.1 Whitney duals of a graded poset

The notion of a Whitney dual for a graded poset P with a minimum element 0̂ has been

introduced recently by González D’León and Hallam [7] with some interesting connections

to other areas of algebra and combinatorics.

The Möbius function is an important invariant of a poset P , defined recursively for x ≤ y

in P as

µ(x, y) =

{
1 if x = y

−
∑

x≤z<y µ(x, y) if x 6= y.

Two other important invariants of P are the k-th Whitney numbers of the first and second

kind, denoted respectively as wk(P ) and Wk(P ), and that are defined for any k ∈ N as

wk(P ) =
∑
ρ(x)=k

µ(0̂, x)

Wk(P ) =
∑
ρ(x)=k

1.

Whitney numbers play a meaningful role in many areas of mathematics. It has been proved

that Whitney numbers are equal to the coefficients of the chromatic polynomial of a finite
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graph [18] and hence they are useful in the counting of the number of acyclic orientations

of a graph [15]. Whitney number also are useful in counting the number of regions in the

complement of a hyperplane arrangement [19].

González D’León and Wachs noticed in [6] that for a pair of posets, namely the poset of

weighted partitions Π2
n introduced by Dotsenko and Khoroshkin in [5], and the poset of

spanning increasing forest SFn studied by Reiner in [13] and Sagan in [14], the Whitney

numbers of the first and second kind appeared swapped between the two posets. This

motivated the following definition in [7].

Definition 1.1.1 ([7]). Let P and Q be two graded posets with a 0̂. We say that P and Q

are Whitney duals if for all k ≥ 0

|wk(P )| = Wk(Q) and Wk(P ) = |wk(Q)|.

Some families of familiar posets, such as the poset Πn of partitions of the set [n] :=

{1, 2, 3..., n}, the poset NCn of noncrossing partitions of [n] and the poset of weighted par-

titions Π2
n have been shown in [7] to have Whitney duals. That these posets have Whitney

duals was proved by defining a suitable edge labeling λ on the edges of the Hasse diagram of

Πn satisfying certain conditions (EW-labelings). There is also a more general version in [7]

that instead of edge labelings, considers labelings of pairs (c, e) where c is a maximal chain

and e is an edge in c (CW-labelings). Any of these two types of labelings are in general

called Whitney labelings. The following is the main theorem in [7] that allows to conclude

Whitney duality for the posets mentioned above.

Theorem 1.1.2 ([7]). A finite graded poset P with a 0̂ that admits a Whitney labeling λ has

a Whitney dual. Moreover, a Whitney dual Qλ(P ) can be constructed explicitly depending

on λ.

1.2 A longstanding conjecture

Two geometric properties that the can be satisfied by a sequence of numbers are the following.

A sequence (a0, a1, . . . , an) is said to be unimodal if for some value of c we have that

a0 ≤ a1 ≤ · · · ≤ ac ≥ · · · ≥ an−1 ≥ an.

A sequence (a0, a1, . . . , an) is said to be log-concave if for all i we have that

a2i ≥ ai−1ai+1.

In sequences of positive numbers, log-concavity is a stronger property that implies unimodal-

ity.

A longstanding conjecture of Rota, Heron and Welsh (and originally of Read and Hoggar

in the case of chromatic polynomials of graphs) asserted that for any geometric lattice the
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absolute values of the Whitney numbers of the first kind form a log-concave sequence. This

conjecture was recently proved by Adiprasito, Huh and Katz [1] using a combinatorial version

of Hodge Theory. Since it was proved in [7] that geometric lattices are Whitney labelable,

in recent work of González D’León, Hallam and Samper [9] this and other conjetures have

been generalized to the realm of Whitney labelable and Whitney dualizable posets.

Conjecture 1.2.1 ([9]). The Whitney numbers of the first and second kind of a graded poset

with a 0̂ and a Whitney labeling λ are log-concave.

In order to verify this and other conjectures regarding the theory of Whitney labelings,

finding good examples to the theory becomes extremely relevant.

1.3 Partition posets associated to operads

An operad is an algebraic object that encodes types of algebras. In [12] Mendez and Yang,

and later independently Vallette in [17] defined a family of decorated partition posets as-

sociated to a set operad. In particular, in [17] the author describes a technique to prove

Koszulity of the operad by showning that the operadic partition poset is Cohen-Macaulay.

For the context in operad theory and partition posets associated to an operad the reader

could consult [10].

In [17] Vallette defined and later in [2] Chapoton and Vallette studied the family of pointed

partition posets Π•n associated to the Perm operad that models Perm-algebras. In [4]

González D’León defined and studied the family of weighted partition posets Πk
n associated

to the Comk operad of algebras with k totally commutative operations. In the case k = 1

the poset Π1
n is in fact the poset of partitions Πn, and in the case k = 2 this poset was

already defined in [5] by Dotsenko and Khoroshkin and studied in [6] by González D’León

and Wachs.

1.4 Results

In this work we study the Whitney duality property for the families Πk
n and Π•n associated to

the operads Comk and Perm. We find and describe Whitney labelings for these posets and

find combinatorial descriptions of their Whitney duals. In the case k = 2, it turns out that

the families Π2
n and Π•n have the same Whitney numbers of the first and second kind (what

we call Whitney twins). Our results imply that there are multiple non-isomorphic Whitney

duals for these two families of posets.

In [4] the author defined an edge labeling λE for the poset Πk
n. We prove the following

theorem.

Theorem 1.4.1. For every n ≥ 1 and k ≥ 1 the labeling λE is an EW-labeling. Hence, Πk
n

has a Whitney dual.
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Using Theorems 1.4.1 and 1.1.2 we follow the construction of Qλ(P ) in [7] and prove the

following theorem.

Theorem 1.4.2. For n ≥ 1 and k ≥ 1 the poset QλE(Πk
n) is isomorphic to the poset FLynn,k

of colored Lyndon forests defined in Section 3.1.2.

For the particular case k = 2 is has been already concluded in [8] that for n ≥ 3 QλE(Π2
n) 6∼=

SFn, so SFn and FLynn,2 are two non-isomorphic Whitney duals for Π2
n for n ≥ 3.

Theorem 1.4.3. For any n ≥ 1 There is an EW-labeling λP of Π•n. Hence, Π•n has a

Whitney dual.

Using Theorems 1.4.3 and 1.1.2 we also prove the following theorem.

Theorem 1.4.4. For n ≥ 1 the poset QλP (Π•n) is isomorphic to the poset FLynn,• of pointed

Lyndon forests defined in Section 3.2.2.

We also prove the following two theorems about the relation of the new poset FLynn,• to

the two known Whitney duals of Π2
n, namely, SFn and FLynn,2.

Theorem 1.4.5. For n = 3 we have that the posets FLyn3,• and FLyn3,2 are isomorphic.

For n ≥ 4 the posets FLynn,• and FLynn,2 are not isomorphic.

Theorem 1.4.6. For n ≥ 3 the posets FLynn,• and SFn are not isomorphic.

Our results imply that the two posets Π2
n and Π•n for n ≥ 4 have three families of non-

isomorphic Whitney duals, SFn, FLynn,• and FLynn,2, illustrating the nonuniqueness of

Whitney duality. It is still an open question to determine whether uniqueness occurs in a

more restrictive setting. For example if the pair (P, λ) of graded poset P together with its

Whitney labeling λ have a unique dual pair (Q, λ∗), where Q is a Whitney dual to P and λ∗

is another labeling with characteristics yet to be determined.

1.5 Organization of this thesis

This thesis is organized as follows:

In Chapter 2 we give the preliminaries about posets, Whitney duality and operadic partition

posets that will be used in the rest of this work. In particular, we describe the theory of

Whitney labelings and Whitney duality defined by González D’León and Hallam in [7] and

give a few examples.

In Chapter 3 we study the property of Whitney duality for the families Π•n and Πk
n proving

the main theorems outlined in the previous section.

In Chapter 4 we provide some open questions and directions that we would like to undertake

in the near future.



2 Preliminaries

2.1 Partially ordered sets

A partially ordered set or poset is a pair (P,≤) where P is a set and ≤ is a relation that

satisfies:

• For every x ∈ P we have x ≤ x (reflexivity).

• For every x, y ∈ P , x ≤ y and y ≤ x implies x = y (antisymmetry).

• For every x, y, z ∈ P , x ≤ y and y ≤ z implies x ≤ z(transitivity).

In general, we will abuse notation and say that P is a poset. We denote x < y whenever

x, y ∈ P are such that x ≤ y but x 6= y. If x < y and there is no z ∈ P such that x < z < y,

we say that y covers x and we denote it by x l y. A subposet Q of P is a poset whose

element set is a subset of P and for every x, y ∈ Q we have that x ≤ y in Q if and only if

x ≤ y in P .

Given x, y ∈ P , the (closed) interval [x, y] between x and y is the subposet of P with element

set given by

[x, y] := {z ∈ P : x ≤ z ≤ y}.

Similarly we define an open interval as (x, y) := {z ∈ P : x < z < y}. A subposet C of P

is said to be a chain if for every pair of elements x, y ∈ C either x ≤ y or y ≤ x (that is, x

and y are comparable). A maximal chain of P is a chain in P such that for every z ∈ P \C
the subposet C ∪ {z} is not a chain. A maximal chain in an interval [x, y] of P is said to be

saturated.

We say that an element x ∈ P is minimal if there is no z ∈ P such that z < x. We denote

Min(P ) the set of minimal elements of P . If Min(P ) has a unique element we call it the

minimum of P and we denote it by 0̂. In a similar manner we call x ∈ P a maximal element

if there is no z ∈ P such that x < z. We denote Max(P ) the set of maximal elements of P

and if Max(P ) has a unique element we call it the maximum of P and we denote it by 1̂.

We say that the poset P is finite if the underlying set of elements of P is finite. We say

that P is graded if all its maximal chains have the same length. It is not hard to show that

when P is graded there exists a function ρ : P → N, where N is the set of natural numbers,

satisfying that ρ(x) = 0 whenever x ∈Min(P ) and if xl y then ρ(y) = ρ(x) + 1. The rank

ρ(P ) of P is defined as ρ(x) for any x ∈ Max(P ). All the posets which we will be working
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with are finite, graded (with rank function denoted ρ) and have a minimum element 0̂. So

throughout this paper P will denote such a poset.

Example 2.1.1. Let Πn be the set of all partitions of the set [n] = {1, 2, ...n}. Given a pair

of elements π, π′ ∈ Πn we say π ≤ π′ whenever every block in π is contained in a block of π′.

This order relation is known as refinement and we call the poset Πn the partition lattice. It

is not hard to show that the cover relation π l π′ will hold whenever exactly two different

blocks of π have been merged to form a block of π′ while all the other blocks remain the

same. The Hasse diagram of P is a directed graph whose vertices are the elements of P and

there is a directed edge going upward for each cover relation. In Figure 2-1 we can see an

example of the Hasse diagram for the poset Π3.

2.2 The Möbius function and the Whitney numbers of the

first and second kind

For x ≤ y in P we define the Möbius function recursively as follows:

µ(x, y) =

{
1 if x = y

−
∑

x≤z<y µ(x, y) if x 6= y.
(2-1)

The kth Whitney numbers of the first and second kind, denoted respectively as wk(P ) and

Wk(P ), are defined for any k ∈ N as

wk(P ) =
∑
ρ(x)=k

µ(0̂, x)

Wk(P ) =
∑
ρ(x)=k

1.

In Figure 2-1 the Möbius numbers µ(0̂, x) appear to the right of each element x ∈ Π3,

whereas the Whitney numbers of the first and second kind are displayed in the table.

Example 2.2.1. Let T be a tree whose vertices are labeled with distinct non-negative inte-

gers. We consider T as a rooted tree considering the smallest vertex of T as a distinguished

vertex or root. We say that T is increasing if when going along any path starting from the

root, we follow an increasing sequence of vertex labels. We call an increasing spanning forest

a set of increasing trees whose vertex labels form a partition for some [n] (n ≥ 1). Here

we will denote by ISFn the set of all increasing spanning forests on [n]. We define a cover

relation in ISFn as follows:

Let F, F ′ ∈ ISFn, we say that F l F ′ if we can obtain F ′ by connecting exactly two trees

in F when joining their roots through an edge, the root of the new tree will then be the

smallest of the two roots which were joined. See Figure 2-2 for the example of ISF3.
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Figure 2-1: Π3 and its Whitney numbers.
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Figure 2-2: ISF3 and its Whitney numbers.
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0̂

a

1̂

No Whitney dual

(a)

0̂

a b

c

1̂

No Whitney dual

(b)

0̂

1̂

Whitney self-dual

(c)

0̂

a b

Whitney self-dual

(d)

Figure 2-3: Examples of posets with or without Whitney duals.

2.3 Whitney duals and Whitney labelings

When comparing the two tables from Figure 2-1 and Figure 2-2, we see a relation between

the Whitney numbers of the first and second kind for Π3 and ISF3. We see that for each

k ranging from 0 to 2, |wk(Π3)| = Wk(ISF3) and Wk(Π3) = |wk(ISF3)|. In fact, as it is

illustrated by the authors in [7], we have that for any n ≥ 1

|wk(Πn)| = Wk(ISFn) and Wk(Πn) = |wk(ISFn)|.

This example motivates the following definition.

Definition 2.3.1 ([7] Definition 1.3). Let P and Q be two graded posets with a 0̂. We say

that P and Q are Whitney duals if for all k ≥ 0

|wk(P )| = Wk(Q) and Wk(P ) = |wk(Q)|.

Remark 2.3.2. After Definition 2.3.1 we say that Πn and ISFn are Whitney duals for any

n ≥ 1.

In general, to determine whether for a poset P there exists another poset Q satisfying

Definition 2.3.1 is not a trivial fact. Not all graded posets have a Whitney dual. For

example, the posets (a) and (b) in Figure 2-3 cannot have Whitney duals since µ(0̂, 1̂) = 0.

A poset P which is its own Whitney dual is said to be Whitney self-dual. The posets (c) and

(d) in Figure 2-3 are Whitney self-dual. In particular, an Eulerian poset is a graded poset

P such that for every x ≤ y in P it happens that µ(x, y) = (−1)ρ(y)−ρ(x). All Eulerian posets

are Whitney self-dual. The poset Bn of subsets of [n] ordered by set inclusion (known as the

boolean algebra) is one example of such Eulerian poset and hence is Whitney self-dual.

The authors in [7] found sufficient conditions that we can impose in the poset P that guar-

antees the existence of a Whitney dual Q. Their technique involves a suitable type of edge

labeling on the Hasse diagram of P , satisfying certain conditions and then using such label-

ing and a technique with quotient posets to construct a suitable Q. For concepts not defined
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here and notation the reader may refer to [7] since we will be following closely the results

contained there.

We call a map λ : E(P ) → Λ an edge labeling of P , where E(P ) is the set of edges (cover

relations of P ) of the Hasse diagram of P and Λ is a poset. We will call Λ the poset of labels.

Given an edge labeling λ of P and a saturated chain

c : (x = x0 l x1 l x2 l ....l xn = y)

in an interval [x, y] of P , we define the word of labels of c as

λ(c) := λ(x0 l x1)λ(x1 l x2)...λ(xn−1 l xn).

We say that c is an increasing chain if for i ∈ {1, 2, ...n− 2}, λ(xi l xi+1) < λ(xi+1 l xi+2).

Similarly, we say that c is an ascent-free chain if for i ∈ {1, 2, ...n− 2}, λ(xi l xi+1) ≮
λ(xi+1 l xi+2).

Remark 2.3.3. Note that in any interval [x, y] there will be increasing and ascent-free satu-

rated chains as well as other chains that are neither of those, i.e. chains that in some parts

are increasing and in other parts are not.

Definition 2.3.4. An edge labeling of P is said to be an ER-labeling if for every x, y ∈ P
such that x ≤ y, there exists a unique saturated chain in [x, y] that is increasing.

Definition 2.3.5. Let λ be an ER-labeling. We say that λ satisfies the rank two switching

property if for every pair x, y ∈ P such that ρ(y) − ρ(x) = 2, if ab is the unique increasing

word of labels in [x, y], then there exists a unique chain in [x, y] with word of labels ba.

Definition 2.3.6. Let λ : E(P ) → Λ be an ER-labeling of P . We say that λ is an EW-

labeling or a Whitney labeling if it satisfies:

• The rank two switching property.

• In each interval each ascent-free maximal chain has a unique word of labels.

Remark 2.3.7. It is worth highlighting that in [7] the authors defined a more general family

of Whitney labelings based on what is known in the literature as chain-edge labelings or

C-labelings. These labelings are more technically involved and they go beyond the scope of

this project since EW-labeling will be enough for the applications that we have in this work.

Example 2.3.8. In [7] the following labeling for Πn was shown to be EW. Let π, π′ ∈ Πn

such that π l π′, and define

λ : E(Πn) −→ [n]× [n]

(π l π′) 7−→ λ(π l π′) := (a, b),

where a < b are the minimum elements of the blocks that were merged in π to get to π′ and

the poset [n]× [n] has the lexicographic order. See Figure 2-4
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ISF3

Figure 2-4: Example of edge labelings on Π3 and ISF3.

The following is the main theorem in [7].

Theorem 2.3.9 (c.f. Theorem 1.6 in [7]). Let P be a poset with an EW-labeling. Then P

has a Whitney dual. Moreover, using λ we can explicitly construct a Whitney dual Qλ(P ).

Remark 2.3.10. After Example 2.3.8 and Theorem 2.3.9 we conclude that Πn has a Whitney

dual.

2.4 The construction of the Whitney dual Qλ(P )

In this section we will describe, for a poset P with an EW-labeling λ, the construction of

the Whitney dual Qλ(P ).

Definition 2.4.1. An edge labeling of P is said to be an ER∗-labeling if for every x, y ∈ P
such that x ≤ y, there exists a unique saturated chain in [x, y] that is ascent-free.

Example 2.4.2. In [7] the following labeling of ISFn was shown to be an ER∗-labeling. Let

F, F ′ ∈ ISFn such that F l F ′ and define

λ∗ : E(ISFn) −→ [n]× [n]

(F l F ′) 7−→ λ∗(F l F ′) := (a, b),

where a < b are the roots of the trees which were merged in F in order to get F ′ and [n]× [n]

has the lexicographic order. See Figure 2-4.

The following Theorem of Stanley relates ER and ER∗-labelings with the computation of

the Möbius values in a poset P .
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Theorem 2.4.3 (c.f. Theorem 3.14.2 in [16]). Let P be a graded poset with an ER-labeling

(ER*-labeling). Then

µ(x, y) = (−1)ρ(y)−ρ(x)|{c|c is an ascent-free (increasing) maximal chain in [x, y]}|.

Theorem 2.4.3 shows that there is a dual role between the increasing maximal chains and

the ascent-free maximal chains according to ER and ER∗-labelings. In an ER-labeling the

increasing maximal chains from 0̂ identify the elements of the poset P (that in turn cor-

respond to the Whitney numbers of the second kind) while the ascent-free maximal chains

correspond to the Möbius values (that in turn correspond to the Whitney numbers of the first

kind). On the other hand, in an ER∗-labeling the ascent-free maximal chains from 0̂ identify

the elements of the poset P while the increasing maximal chains correspond to the Möbius

values. Following this observation, if one has two posets P and Q, with an ER-labeling λ and

an ER∗-labeling λ∗ respectively, and such that there is a label preserving bijection between

the sets of saturated chains from 0̂ of P and Q, then Theorem 2.4.3 implies that the poset

P and Q are Whitney duals. This is precisely the main idea behind the proof of Theorem

2.3.9 in [7].

To construct Qλ(P ) from P and an EW-labeling λ, the authors in [7], initially consider

the poset C(P ) whose elements are all saturated chains in P with minimum 0̂ ordered by

inclusion. Then they consider an equivalence relation ∼λ on C(P ) defined as follows. We

say that that two chains c1 and c2 in C(P ) are related by a quadratic exchange if they have

the same maximal element and they differ in one interval of rank two in which c1 has an

increasing step ab and c2 has the opposite subword ba predicted by the rank two switching

property. The relation ∼λ is then defined by saying that c1 ∼λ c2 if c1 and c2 are related by

a quadratic exchange and then the relation is extended to all saturated chains in C(P ) by

transitivity. The resulting quotient poset Qλ(P ) := C(P )/ ∼ is then shown to have an ER∗-

labeling λ∗ induced by λ and furthermore, that there is an bijection between the saturated

chains from 0̂ between P and Qλ(P ) that preserves the labels. An application of Theorem

2.4.3 then implies that P and Qλ(P ) are Whitney duals to each other. This construction is

illustrated in Figure 2-5 for the poset P = Πn. Note in this example that ISF3 ' Qλ(Π3).

2.5 Operadic partition posets

An operad is a mathematical object that models types of algebras. In an operad, we do

not focus on the elements of the algebra but instead on the relations between the operations

applied to these elements. The idea of an operad was introduced in the 70’s in work of P. May

in [11] and others, however, the idea of an operad was already present in different forms in

the existing literature. In particular, operads have appeared in different contexts. There are

set operads, topological operads, algebraic operads, etc., depending on the category where

they are defined. For a further background on the theory of operads and, in particular,

algebraic operads the reader can visit [10].
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)
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)
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)
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Qλ(Π3)

Figure 2-5: Example of the construction of Qλ(Π3).

Formally, a set operad is a monoidal functor P : B→ Set from the category B of finite sets

and bijections to the category Set of finite sets and functions, together with an associative

composition µ and a unit map η.

Méndez and Yang in [12] introduced the concept of a partition poset associated to a set

operad (monoidal species in their language). This type of poset was later discovered and

used independently by Vallette [17] in order to give a criterion to determine whether a

quadratic algebraic operad obtained as the linearization of a set operad is Koszul.

Definition 2.5.1. Given an operad P we define a P-partition of [n] as a collection α =

{p1, p2, . . . , pk} where pi ∈ P [Ai] for all i ∈ [k] and α̃ = {A1, A2, . . . , Ak} ∈ Πn is a partition

of [n]. We say that α̃ is the underlying (regular) partition of α. We denote ΠPn the set of

P-partitions of [n]. We can define an order relation in ΠPn as follows: given two P-partitions

α and β in ΠPn we say that α ≤ β whenever:

• α = {p1, p2, . . . , pk} where pi ∈ P [Ai] for all i and α̃ = {A1, A2, . . . , Ak} ∈ Πn, and

β = {q1, q2, . . . , ql} where pi ∈ P [Bi] for all i and β̃ = {B1, B2, . . . , Bl} ∈ Πn.

• α̃ ≤ β̃ in Πn.

• If Bh = Aj1 ∪ · · · ∪ Ajs then qh = µ(e; pj1 , . . . , pjs) where e ∈ P [{Aj1 , . . . , Ajs}].

• if Bh = Ai then qh = pi.

Example 2.5.2. The operad Com, that models the behaviour of commutative algebras, is

such that for any n ≥ 1 there is a unique structure ?[n] in Com[[n]]. Hence, since there is a

unique way to merge any set of blocks of a Com-partition, the poset ΠComn
∼= Πn.
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Example 2.5.3. In [4] González D’León studied the poset Πk
n of weighted partition defined

in Section 3.1. Dotsenko and Koroshkin in [5] showed that Π2
n
∼= ΠCom

2

n where Com2 is the

operad of commutative algebras with two totally commutative products. With the same

arguments given in [5] it follows that Πk
n
∼= ΠCom

k

n where Comk is the operad of commutative

algebras with k totally commutative products.

Example 2.5.4. The operad Perm was studied by Vallette in [17] where he showed that

the poset ΠPermn
∼= Π•n, where Π•n is the poset of pointed partitions defined in Section 3.2.



3 Whitney duals of some operadic posets

3.1 The poset of weighted partitions

In this section we will take a look at a family of posets Πk
n of set partitions with weights given

by integral vectors of length k. These posets were defined by González D’León in [4]. For

the case k = 1 we obtain back the poset of partitions Πn and the case k = 2 is isomorphic

to the poset of weighted partitions introduced originally by Dotsenko and Khoroshkin in [5].

There Π2
n is denoted Πw

n but in this work we will always stick to our convention above.

The authors in [6] noticed that the Whitney numbers of the first and second kind of Π2
n were

(up to sign) switched with respect to the Whitney numbers of a poset of rooted spanning

forests SFn on [n] studied initially by Reiner [13] and then by Sagan [14]. Hence, we know

that both, Π2
n and SFn are Whitney duals. Even though this was demonstrated through

direct comparison of the two pairs of sequences of Whitney numbers, González D’León and

Hallam [8] provided a different proof where they show that there is a CW-labeling λC for Π2
n,

where QλC (Π2
n) was proved to be isomorphic to SFn. In their work they also considered an

EW-labeling λE for Π2
n, originally defined in [6] by González D’León and Wachs, and they

noticed that the Whitney dual QλE(Π2
n) was not isomorphic to SFn.

A sequence µ = (µ(1), µ(2), · · · , µ(k)) of non-negative integers with |µ| :=
∑i=k

i=1 µ(i) = n is

called a weak composition of n of length k. If all µi are positive then we say (µ(1), µ(2), .., µ(k))

is a composition of n. Given n, we denote the set of all weak compositions of n of length k

as wcompn,k.

Given weak compositions µ and ν of length k, we say µ ≤ ν iff µ(i) ≤ ν(i) for i = 1, . . . , k.

Addition and subtraction between two weak compositions ν and µ of equal length k is defined

component-wise.

Definition 3.1.1. A weighted partition of [n] is a collection {Bµ1
1 , B

µ2
2 , ..., B

µl
l } where the

collection {B1, B2, ..., Bl} is a partition of [n] and µi ∈ wcomp|Bi|−1,k. Let Πk
n be the poset

whose elements are weighted partitions of [n] with weights given by compositions of length

k and with cover order relation {Aν11 , Aν22 , ..., A
νl
l }l {B

µ1
1 , B

µ2
2 , ..., B

µm
m } whenever

• {A1, A2, ..., Al}l {B1, B2, ..., Bm} ∈ Πn.

• if Bh = Ai ∪ Aj then µh − (νi + νj) = er where er = (01, ..., 0r−1, 1r, 0r+1, ..., 0k).

• if Bh = Ai then µh = νi.
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Figure 3-1: Π2
3.
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Figure 3-2: SF3 (the roots are represented by squares).

In the definition above we will say that {Bµ1
1 , B

µ2
2 , ..., B

µm
m } is obtained by r-merging the

blocks Aνii and A
νj
j of {Aν11 , Aν22 , ..., A

νl
l }.

Recall that a spanning forest of the complete graph on vertex set [n] is a graph on [n] that

is free of loops and cycles. Each of the connected components of a spanning forest is called

a spanning tree and we say that these are rooted if every tree has a unique marked vertex

called the root. Let SFn denote the poset of rooted spanning forests on [n] where the cover

relation F1 l F2 is defined whenever F2 can be attained by joining two roots {x, y} in F1

through an edge, where one of the two roots will remain as a root for the resulting tree in

F2.

Theorem 3.1.2 (González D’león-Wachs [6], González D’león-Hallam [8]). The posets Π2
n

and SFn are Whitney duals. Moreover, there exists a CW-labeling λC such that QλC (Π2
n) is

isomorphic to SFn.

In [8] González D’león-Hallam also showed that a labeling λE previously given by González

D’león-Wachs in [6] is an EW-labeling. The poset QλE(Π2
3) was also computed in [8] and it

is illustrated in Figure 3-3. It is immediately evident that the posets SF3 in Figure 3-2 and
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Figure 3-4: Poset of labels Λ3
3.

QλE(Π2
3) in Figure 3-3 are not isomorphic. Hence, the following theorem.

Theorem 3.1.3 (c.f. Theorem 5.22 in [8]). There exists a poset P and two Whitney labelings

λ1 and λ2 of P such that the posets Qλ1(P ) and Qλ2(P ) are not isomorphic.

3.1.1 A Whitney labeling for the poset of weighted partitions

Our goal now is to prove that a more general ER-labeling λE : E(Πk
n)→ Λk

n (that in fact is

also an EL-labeling) given by González D’león in [4] is an EW-labeling. The new labeling

generalizes the labeling λ that was given for Π2
n in [6] and proven to be an EW-labeling in

[7]. We will also provide a combinatorial charaterization of the Whitney dual QλE(Πk
n).

Let α, α′ ∈ Πk
n such that α l α′, and α′ was obtained by merging two blocks Ax and By in

α in order to get a new block (A ∪ B)x+y+er with r ∈ [k], while all the other blocks remain

equal and min(A) < min(B).
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We define the following labeling:

λE : E(Πk
n) −→ Λk

n

(αl α′) 7−→ λE(αl α′) = (min(A),min(B))r,

where Λk
n is the poset of labels defined as follows. We consider first posets of the form

Γa for a ∈ [n − 1] with set of elements Γa = {(a, b)u : a < b ≤ n, u ∈ [k]} and partial

order (a, b)u ≤ (a, c)v if b ≤ c and u ≤ v. We then define Λk
n to be the ordinal sum

Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γn−1. See Figure 3-4 for the example of Λ3
3.

González D’León proved in [4] that λE is an ER-labeling (in fact an EL-labeling).

Theorem 3.1.4. (cf. Theorem 3.6 in [4]) The labeling λE is an ER-labeling.

We now prove that λE is an EW-labeling.

Theorem 3.1.5. The labeling λE : E(Πk
n)→ Λk

n considered above is an EW-labeling.

Proof. From the previous theorem we already know that λE is an ER-labeling. Furthermore

note that when given any set of labels which corresponds to a saturated chain from 0̂, we

can easily restore the chain itself, i.e. through the sequence of labels we uniquely determine

the chain. We need to now prove that the rank two switching property holds. We will

be contemplating all possible cases for an arbitrary rank two interval [α, α′] ∈ Πk
n. When

referring to the blocks A,B,C,D in each of the cases contemplated below we will assume

that a = min(A) < b = min(B) < c = min(C) < d = min(D).

First Case: We merge two pairs of distinct blocks {Aη, Bβ} and {Cθ, Dγ} in α in order to

obtain α′. The open interval (α, α′) is of the form {K1, K2}, where K1 = ABη+β+er1/Cθ/Dγ

and K2 = Aη/Bβ/CDθ+γ+er2 with r1, r2 ∈ [k]. The two chains which appear in our inter-

val [α, α′] will have as set of labels; (a, b)r1(c, d)r2 and (c, d)r2(a, b)r1 which is what we wanted.

Second Case: If we merge three distinct blocks {Aη, Bβ, Cθ} of α to obtain α′, so that when

merging two of the blocks, for r ∈ [k] the vector er which we add to the total weight remains

fixed. The open interval (α, α′) is of the form {K1, K2, K3} where K1 = ABη+β+er/Cθ, K2 =

Aη/BCβ+θ+er and K3 = ACη+θ+er/Bβ. We once again see that the rank two switching prop-

erty holds because of the chains c1 : α lK1 l α′ and c2 : α lK3 l α′ with word of labels

λE(c1) = (a, b)r(a, c)r and λE(c2) = (a, c)r(a, b)r respectively.

Third Case: If we merge three distinct blocks {Aη, Bβ, Cθ} of α to obtain α′, so that when

merging two of the blocks we either add er1 or er2 to the total weight and r1 < r2. The

open interval (α, α′) is of the form {K1, K2, K3, K4, K5, K6} where K1 = ABη+β+er1/Cθ,

K2 = ACη+θ+er1/Bβ, K3 = Aη/BCβ+θ+er1 , K4 = ABη+β+er2/Cθ, K3 = ACη+θ+er2/Bβ,

K6 = Aη/BCβ+θ+er2 . We see that c1 : α l K1 l α′ is an increasing chain with word of
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Aη/Bβ/Cθ/Dγ

ABη+β+er1/Cθ/Dγ Aη/Bβ/CDθ+γ+er2
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Figure 3-5: Rank two intervals in Πk
n.

labels λE(c1) = (a, b)r1(a, c)r2 and c2 : αlK5lα′ is a decreasing chain with word of labels

λE(c2) = (a, c)r2(a, b)r1 and no other pair of chains over [α, α′] satisfy this property.

Hence we have that λE has the rank two switching property.

3.1.2 A poset of colored Lyndon forests

Thus far we have seen a combinatorial description of a Whitney dual for Πn and for Π2
n

where for the former we considered the poset of increasing spanning forests ISFn and for

the latter the poset of spanning forests SFn. The authors in [7] computed the poset QλE(Π2
n)

for n = 3. This poset is shown in Figure 3-3. We will give a combinatorial characterization
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Figure 3-6: Colored Binary Tree T ∈ BT (3,3,2).

of QλE(Π2
n) for any n. In fact we will provide a general combinatorial description of QλE(Πk

n)

for any pair of positive integers n and k.

A tree is an undirected graph in which any two vertices are connected by exactly one path.

We say a tree is rooted if there is a distinguished node (the root). If in order to travel

through the unique path from a node b to the root we need to pass through node a, we say

that a is an ancestor of b. If in particular, {a, b} is an edge we say that a is the parent of b

(or equivalently, b is a child of a). Every node in a rooted tree T which has at least one child

is considered an internal node, if it has no child we say it is a leaf. A planar tree is a rooted

tree in which the set of children of each internal node comes equipped with a total order.

A binary tree is a rooted planar tree in which every internal node has two children, a left

child and a right child. All the trees we consider from now on are both rooted and planar,

so we will be referring to them (informally) as “trees” when it is clear from the context. We

say a binary tree is a colored binary tree if there is a function color that assigns to each

internal node x a number color(x) ∈ N (a color). We will depict trees graphically from top

to bottom where the root sits on top, see Figure 3-6 for an example.

If we take an element µ ∈ wcompn−1,k, we denote BT µ the set of colored binary trees with

n leaves and µ(j) internal nodes with color j for each j. We also denote

BT n,k :=
⋃

µ∈wcompn−1,k

BT µ.

We are going to be interested in colored binary trees whose set of leaf labels is a subset of

[n] for some n ≥ 1, and if we call A such subset and µ ∈ wcomp|A|−1,k, then we denote the

respective sets of colored binary trees on A as BT A,µ and BT A,k.
A linear extension of a tree T is a listing v1, v2, · · · , vn−1 of the internal nodes of T such that

each node precedes its parent.

Let T be a colored binary tree and x a node of T . We define the valency v(x) of x to be

the smallest leaf label of the subtree rooted at x. Note that, by this definition, if y is an
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Figure 3-7: Lyn3,2.

ancestor of x we have that v(x) ≥ v(y). Hence, since the set [n] is totally ordered, there is

a unique linear extension v1, v2, · · · , vn−1 of T such that

v(v1) ≥ v(v2) ≥ · · · ≥ v(vn−1). (3-1)

We will call this linear extension the reverse-minimal linear extension of the internal nodes

of T . Figure 3-8 depicts the reverse-minimal linear extension of the tree in Figure 3-7.

Let x be an internal node for a labeled binary tree T . We denote as L(x) the left child of x

and as R(x) the right child of x. We say that T is normalized if for every internal node x

we have

v(x) = v(L(x)).

Whenever T is normalized we say that an internal node x is a Lyndon node if it satisfies

v(R(L(x))) > v(R(x)). (3-2)

Let T be a normalized colored binary tree, we say that T is a colored Lyndon tree if for each

internal node x of T , if x is not a Lyndon node then

color(L(x)) > color(x). (3-3)

Given µ ∈ wcompn−1, we denote as Lynµ the set of colored Lyndon trees in BT µ, and

Lynn = ∪µ∈wcompn−1Lynµ. Moreover, it will be convenient to generalize this concept to

proper subsets A ( [n], denoting by LynA,ν the set of colored Lyndon trees in BT A,ν with

ν ∈ wcomp|A|−1.
Given that we will be also concerned with the length (or number of entries) `(µ) of the compo-

sition µ (which will represent the number of colors), we denote Lynn,k = ∪µ∈wcompn−1,kLynµ.

See the example given in Figure 3-7 for all the elements in Lyn3,2.

Given a poset P , we denote as M(P ) the set of maximal chains of P .

Definition 3.1.6. For T ∈ BT µ and t ∈ [n − 1], let Tt =: Lt ∧ Rt be the subtree of T

rooted at the t-th node listed in the reverse-minimal linear extension, where Lt and Rt are

respectively the left and right subtrees at the t-th node. The chain c(T ) ∈M([0̂, [n]µ]) is the
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123456789(3,3,2)

Figure 3-8: c(T ) ∈ M [0̂, [9](3,3,2)] for T ∈ BT (3,3,2) (internal nodes ordered with the reverse-

minimal linear extension).

one whose rank t weighted partition is obtained from the rank t − 1 weighted partition by

jt-merging the blocks A(Lt)
µ(Lt) and A(Rt)

µ(Rt), where jt is the color of the t-th node and

A(T ) is the set of leaf-labels of the colored tree T and µ(T ) is the weak composition such

that µ(T )(i) is the number of internal nodes of T of color i. See Figure 3-8 for an example.

The following theorem gives a relation between the set of colored Lyndon trees Lynµ and

the set of ascent-free maximal chains in Πk
n.

Theorem 3.1.7. (cf. Theorem 3.11 in [4]) The set {c(T )|T ∈ Lynµ} is the set of ascent-free

maximal chains of the EW-labeling of [0̂, [n]µ] given in Theorem 3.1.5.

In order to model maximal chains in an interval [0̂, α], for any α ∈ Πk
n, we will need to move

from trees to the concept of a forest and generalize to forests some of the definitions above. A

colored binary forest is a set of colored binary trees whose sets of leaf labels form a partition

for some [n]. We denote BFµ the set of colored binary forests with colors determined by µ.

If for F ∈ BFµ all trees are colored Lyndon trees we say that F is a colored Lyndon forest

and denote FLynµ the set of all such forests.

Note that for any F ∈ BFµ there exists also a unique reverse-minimal linear extension of

the internal nodes of F with the same condition as for colored trees given by equation (3-1).

We denote BFn,k the set of colored binary forests whose set of leaf labels form a partition
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Figure 3-9: Example of c(F ) for F ∈ FLyn8,2.

for some [n] and whose colors are determined by [k]. We also denote

FLynn,k := {F ∈ BFn,k | F is a colored Lyndon forest} .

Definition 3.1.8. Given F ∈ BFn,k we define π(F ) to be the weighted partition in Πk
n given

by

π(F ) = {A(T )µ(T ) | T ∈ F}.

Example 3.1.9. For the colored forest F ∈ BF8,2 of Figure 3-9 we have that π(F ) =

1234(2,1)/567(1,1)/8(0,0).

Definition 3.1.10. For F ∈ FLynµ and t ∈ [n − 1], let Tt = Lt ∧ Rt be the subtree of F

rooted at the t-th node listed in the reverse-minimal linear extension. The maximal chain

c(F ) ∈ M([0̂, π(F )]) is the one whose rank t weighted partition is obtained from the rank

t − 1 weighted partition by jt-merging the blocks π(Lt) and π(Rt), where jt is the color of

the t-th node. See Figure 3-9 for an example.

Proposition 3.1.11. For F ∈ FLynµ we have that the chain c(F ) is ascent-free according

to the EW-labeling of Πk
n given in Theorem 3.1.5.

The same proof of Theorem 3.1.7 in [4] proves the following more general theorem.

Theorem 3.1.12. For a given weighted partition α ∈ Πk
n, the set

{c(F )|F ∈ FLynn,k and π(F ) = α}

is the set of ascent-free maximal chains in the interval [0̂, α] according to the EW-labeling of

Πk
n given in Theorem 3.1.5.
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Definition 3.1.13. Let F ∈ FLynn,k such that π(F ) has two or more blocks (i.e. π(F ) is

not a maximal element in Πk
n) and consider two colored Lyndon trees T1, T2 ∈ F and j ∈ [k],

such that min(π(T1)) < min(π(T2)). We define the j-merge T = T1 ∧j T2 of the trees T1 and

T2 using the following recursive process:

(1) If when we merge the roots of T1 and T2 respectively using a new root x of color

color(x) = j such that Lx = T1 and Rx = T2, the resulting tree T is a colored Lyndon

tree then T1 ∧j T2 := T

(2) Otherwise, if the resulting tree T is not a colored Lyndon tree, which can only happen

because the root x of T is not a Lyndon node and color(L(x)) ≤ color(x) (condition

(3-3) is not satisfied), we define the j-merge of T1 and T2 as T1∧jT2 := (Lr∧jT2)∧color(r)
Rr where r is the root of T1 and, Lr and Rr are, respectively, the left and right subtrees

of r in T1.

Remark 3.1.14. Note that the tree obtained in step (2) of Definition 3.1.13 is also a colored

Lyndon tree since by the recursivity in the definition we have that either

• the right subtree of (Lr ∧j T2) is T2 and min(T2) > min(Rr), or

• the right subtree of (Lr ∧j T2) is RL(r) and the color of the root of (Lr ∧j T2) is

color(L(r)), and in this case the pairs (color(r), Rr) and (color(L(r)), RL(r)) already

satisfied the colored Lyndon condition in T1.

An example of a j-merge of two colored Lyndon trees is illustrated in Figure 3-10.

Definition 3.1.15 (Poset of colored Lyndon forests). From now on we will denote by

FLynn,k the poset of colored Lyndon forests with order relation given by F l F ′ when-

ever F ′ is obtained from F when exactly two trees of F are j-merged for some j ∈ [k] to

obtain one tree of F ′ while every other tree in F is also in F ′.

Figure 3-11 shows the example of FLyn3,2.

Let Λ be a poset of labels and let α = α1α2 · · ·αn−1αn be a word of labels where αi ∈ Λ

for all i ∈ [n]. If we assume that whenever αi < αi+1 we can exchange the order of the two

letters in α,

α = α1 · · ·αi−1αiαi+1αi+2 · · ·αn → α1 · · ·αi−1αi+1αiαi+2 · · ·αn

then it is easy to see that when performing all possible exchanges there will be a unique

ascent free word α′ associated to α in this demeanor. We define sort(α) = α′ this end result.

Note that if α is already an ascent free word then sort(α) = α.

Definition 3.1.16. (cf. Definition 4.3 in [7]) Let P be a poset with an EW-labeling λ. Let

Rλ(P ) be the poset whose elements are the ascent-free saturated chains from 0̂ and such

that cl c′ whenever max(c)lmax(c′) and λ(c′) = sort(λ(c)λ(c′,max(c)lmax(c′))).
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Figure 3-10: Example of 2-merging two colored Lyndon trees.
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Theorem 3.1.17 (cf. Theorem 4.5 in [7]). If λ is an EW-labeling of P , then Rλ(P ) ' Qλ(P )

Proposition 3.1.18. Let F ∈ FLynn,k such that π(F ) is not a maximal element in Πk
n. Let

T1, T2 ∈ F be such that min(T1) = t1 < t2 = min(T2) and F ′ ∈ FLynn,k be obtained from F

by j-merging T1 and T2 for some j ∈ [k], that is, F l F ′ in FLynn,k. Then we have that

λE(c(F ′)) = sort(λE(c(F ))(t1, t2)
j). (3-4)

Proof. To simplify the proof we will assume that F is a colored Lyndon forest that only

consists of the two trees T1 and T2. Indeed, recall that in c(F ), at step t we jt-merge

the blocks A(Lt)
µ(Lt) and A(Rt)

µ(Rt), and hence we get that the t-th label of λE(c(F )) is

(min(A(Lt),min(A(Rt))
jt . When we j-merge trees T1 and T2 in F to obtain F ′, we include

a new label (t1, t2)
j in the word of labels λE(c(F ′)). Note that if F is composed of s trees

T1, T2, . . . Ts, since the sets A(Ti) are all disjoint, the labels of λE(c(T1)), λE(c(T2)) and the

label (t1, t2)
j are all comparable in Λk

n with the labels in the words λE(c(Ti)) for all i 6= 1, 2.

Since λE(c(F )) and λE(c(F ′)) are ascent-free, the relative order in them among the labels

in λE(c(T1)), λE(c(T2)) and (t1, t2)
j, and the labels in the words λE(c(Ti)) for all i 6= 1, 2 is

uniquely determined.

Now if F ′ = T1 ∧j T2 ∈ FLynn,k we have that the set of labels in λE(c(F ′)) is equal to the

set of labels of λE(c(F )) together with the label (t1, t2)
j. Denote

λE(c(F )) = (a1, b1)
j1(a2, b2)

j2 · · · (ak, bk)jk

and note that ak = t1 since the k-th node in the linear extension is the root of T1. We have

one of the following two cases according to Definition 3.1.13:

(1) When joining the roots of T1 and T2 through a node x of color j and the resulting tree

is already a colored Lyndon tree. In this case, we have that either t2 = min(T2) <

min(Rk) = bk or t2 = min(T2) > min(Rk) = bk and j < jk, Both cases imply that

(ak, bk)
jk 6≤ (t1, t2)

j and it follows that

λE(c(T1 ∧j T2)) = λE(c(F ))(t1, t2)
j

= (a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j)

= sort(λE(c(F ))(t1, t2)
j).

(2) In the case where T1 ∧j T2 := (Lk ∧j T2) ∧jk Rk with t2 = min(T2) > min(Rk) = bk
and j ≥ jk, we have that (ak, bk)

jk < (t1, t2)
j and then, using an induction on the size



3.1 The poset of weighted partitions 27

of the tree T1, we have then that

λE(c(T1 ∧j T2)) = λE(c(Lk ∧j T2))(min(Lk),min(Rk))
jk

= λE(c(Lk ∧j T2))(ak, bk)jk

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(t1, t2)j)(ak, bk)jk

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j)

= sort(λE(c(F ))(t1, t2)
j).

In both cases we conclude that λE(c(T1 ∧j T2)) = sort(λE(c(F ))(t1, t2)
j) which completes

the proof.

Proposition 3.1.18 and Theorem 3.1.17 imply then the following theorem.

Theorem 3.1.19. For n ≥ 1 and k ≥ 1 we have that QλE(Πk
n) ∼= FLynn,k.

Remark 3.1.20. When k = 1 we have that Π1
n
∼= Πn and the labeling λE coincides with the

labeling λ defined on Πn in Example 2.3.8. Hence, Theorem 3.1.19 implies that ISFn ∼=
FLynn,1.
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Figure 3-11: FLyn3,2.
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3.2 The poset of pointed partitions

In this section we study the poset of pointed partitions Π•n previously introduced and studied

by Chapoton and Vallette in [2]. In [6] González D’León and Wachs showed that this poset

has the same Whitney numbers of the first and second kind than Π2
n. We define a new

EW-labeling for Π•n and construct the associated Whitney dual applying the quotient poset

technique we have already discussed in the previous sections.

3.2.1 The poset of pointed partitions

Definition 3.2.1. A pointed set is a pair (A, p) where A is a nonempty set and p ∈ A. We

will sometimes use the notation Ap to denote the pointed set (A, p). A pointed partition of

[n] is a collection {Bp1
1 , B

p2
2 , ..., B

pm
m } where {B1, B2, ..., Bm} is a partition of [n] and Bpi

i are

pointed sets. The poset of pointed partitions Π•n will be the set of all pointed partitions of

[n] and with cover order relation {Aq11 , A
q2
2 , ..., A

ql
l }l {B

p1
1 , B

p2
2 , ..., B

pm
m } whenever

• {A1, A2, ..., Al}l {B1, B2, ..., Bm} ∈ Πn.

• if Bh = Ai ∪ Aj then ph ∈ {qi, qj}.

• if Bh = Ai then ph = qi.

In the definition above, calling α = {Aq11 , A
q2
2 , ..., A

ql
l } and α′ = {Bp1

1 , B
p2
2 , ..., B

pm
m }, we will

say that α′ was obtained by j-merging the blocks Aqii and A
qj
j of α, with minAi < minAj

and where j = 1 whenever qh = pi and j = −1 whenever qh = pj.

In order to facilitate the notation, in the following we also denote {e1, . . . , ei−1, ẽi, ei+1, . . . , el}
or simply e1 · · · ei−1ẽiei+1 · · · el, a pointed set of the form {e1, . . . , el}ei , i.e., the pointed

element will be denoted using a tilde. We will also be denoting the set {1, 2, ...n, 1̃, 2̃, ...ñ}
by [n, ñ]. The example of Π•3 is illustrated in Figure 3-12.

Let us now define an edge labeling λP on Π•n which we shall prove it is an EW-labeling.

Let α, α′ ∈ Π•n such that α l α′, and assume that the two pointed blocks in α which were

j-merged to get α′ are Aq and Bp, with a = min(A) < b = min(B). We then define

λP : E(Π•n) −→ Λ•n

by

λP (αl α′) =

{
(ã, b) j = 1, i.e., if block A preserves the pointed element

(a, b̃) j = −1, i.e., if block B preserves the pointed element.
(3-5)

Where Λ•n is a poset of labels on the set {(a, b̃) | 1 ≤ a < b ≤ n}∪ {(ã, b) | 1 ≤ a < b ≤ n} ⊆
[n, ñ]× [n, ñ]. To define the order relation let Aa be the antichain (a poset where every pair

of elements are not comparable) Aa = {(a, b̃) | a < b ≤ n} and let Ca be the chain on the set
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Figure 3-12: Π•3 with its edge labeling λP .

{(ã, b) | a < b ≤ n} where (ã, b) < (ã, c) whenever b < c. Then we define Λ•n as the ordinal

sum

Λ•n = A1 ⊕ C1 ⊕ A2 ⊕ C2 ⊕ · · · ⊕ An−1 ⊕ Cn−1.

In Figure 3-12 we illustrate along each edge of the Hasse diagram the labeling λP for each

cover relation in Π•3.

Note that a label λP (α l α′) completely determines which two blocks of α merge to form

a block of α′ and what is the resulting pointed element. This means that starting in any

element α ∈ Π•n a sequence of valid labels completely determines a chain starting at α.

Proposition 3.2.2. The labeling λP of equation (3-5) is injective on saturated chains from

0̂.

Lemma 3.2.3. Let α = {Bp1
1 , . . . , B

pl
l } ∈ Π•n with minB1 < · · · < minBl and U(α) := {β ∈

Π•n | β ≥ α} the (principal) upper filter generated by α. There is an isomorphism

Φ : U(α)→ Π•{minB1,··· ,minBl}

defined on pointed sets: If A = Bj1 ∪· · ·∪Bjr with j1 < · · · < jr and q = pjs for some s ∈ [r]

we have that Φ(Aq) := {minBj1 ∪· · ·∪minBjr}minBjs , and then for any β ∈ U(α) defined as

Φ(β) := {Φ(Aq)|Aq ∈ β}. Furthermore, the isomorphism Φ preserves the labeling λP defined

in equation (3-5), i.e., for any β l β′ in U(α) we have that

λP (Φ(β)l Φ(β′)) = λP (β l β′).

Proof. We will show first that the function Φ preserves the j-merging of two blocks j ∈
{−1, 1}. Let A1 = Bj1 ∪ · · · ∪ Bjr with j1 < j2 < · · · < jr and q1 = pjs for some s ∈ [r] and

let A2 = Bk1 ∪ · · · ∪Bkt with k1 < k2 < · · · < kt and q2 = pku for some u ∈ [t]. Without loss
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Figure 3-13: Poset of labels Λ•4.

of generality we assume j1 < k1 so minA1 < minA2. We denote Aq11 ∪j A
q2
2 = (A1 ∪A2)

q the

j-merging of the pointed blocks Aq11 and Aq22 where q = q1 if j = 1 and q = q2 if j = −1.

Φ(Aq11 ∪j A
q2
2 ) = Φ({Bj1 ∪ · · · ∪Bjr ∪Bk1 ∪ · · · ∪Bkt}

q)

= {minBj1 ∪ · · · ∪minBjr ∪minBk1 ∪ · · · ∪minBkt}
q̃

= {minBj1 ∪ · · · ∪minBjr}
minBjs ∪j {minBk1 ∪ · · · ∪minBkt}

minBku

= Φ(Aq11 ) ∪j Φ(Aq22 ),

where q̃ = minBjs if j = 1 and q̃ = minBku if j = −1. Since the blocks of α are in bijection

with the blocks of minB1| · · · |minBl and all elements of U(α) are obtained uniquely by

a sequence of j-merges of blocks of α and the elements of Π•{minB1,...,minBl} are obtained

uniquely by a sequence of j-merges of the blocks of minB1| · · · |minBl, we conclude that Φ

is a bijection in which Φ and Φ−1 preserve cover relations and hence, a poset isomorphism.

Now, to see that the labeling according to λP of equation (3-5)is preserverd, note that in a

cover relation where we j-merge the blocks Aq11 and Aq22 the label is

(minA1,minA2, j) = (minBj1 ,minBk1 , j),

that is the same obtained by j-merging the blocks Φ(Aq11 ) and Φ(Aq22 ).

Proposition 3.2.4. The labeling λP of equation (3-5) is an ER-labeling of Π•n.
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Proof. Let α, α′ ∈ Π•n such that α ≤ α′. We want to show that there is a unique increasing

saturated chain on [α, α′].

Assume first that α = 0̂ and α′ = [n]p, so [α, α′] = [0̂, [n]p] is a maximal interval. We

will construct an increasing saturated chain in [0̂, [n]p] and show that such chain is the only

increasing saturated chain in [0̂, [n]p]. The named chain c[n]p , is the one determined (see

Proposition 3.2.2)by the sequence of labels

λP (c[n]p) = (1, p̃)(1̃, 2)...(1̃, p− 1)(1̃, p+ 1)...(1̃, n), (3-6)

where in the case p = 1 we just consider (1, 1̃) and (1̃, 1) as empty labels, and our sequence

of labels would then be

λP (c[n]1) = (1̃, 2)(1̃, 3)...(1̃, n− 1)(1̃, n). (3-7)

Such chain c[n]p will merge the blocks {1̃} and {p̃} choosing p as pointed element in the

first step and then keep merging the other pointed blocks to this resulting block one by one

keeping p pointed, hence is a valid saturated chain in the interval [0̂, [n]p]. The chain is also

increasing since (1, p̃) is smaller than any element in C1 ⊆ Λ•n and the remaining values are

increasing in C1.

We now show that chain c[n]p is indeed the only increasing chain in [0̂, [n]p]. Note that if c′

is any other chain in [0̂, [n]p] it must have as final label either (1, ã) or (1̃, a) for some other

value a since in the last step the block with minimal label 1 always get involved. In order

for λP (c′) to be increasing then all labels have to be of this form, otherwise because of the

structure of Λ•n there would be a descent at some point. Hence c′ has to be constructed

by step by step merging blocks to the block that contains the element 1. Hence, the labels

in the second component will be some permutation of the elements 2, 3, . . . , n. Since p has

to be pointed we will have at some point the label (1, p̃) appearing. Note that if there is

another label of the form (1, ã) then these two labels are not comparable and c′ could not

be increasing. Hence, all other labels are of the form (1̃, a) and the only way to order them

increasingly is as in equation (3-6). Since by Proposition 3.2.2 λP is injective, we have that

c′ = c[n]p , as we wanted to show.

Now, we consider an interval of the form [0̂, α] where α ∈ Π•n and |α| ≥ 2. Let α =

{Bp1
1 , . . . , B

pl
l } where minB1 < · · · < minBl. We will consider now for each i = 1, . . . , l the

word of labels for the uniquely increasing chain cBpi
i

in [0̂, Bpi
i ], that is λP (cBpi

i
) (possibly

empty if |Bi| = 1), and let cα be the chain in [0̂, α] with word of labels

λP (cα) = λP (cBp1
1

)λP (cBp2
2

) · · ·λP (cBpl
l

).

Note that this chain is increasing because of the increasing order on minBi and is unique

because of Proposition 3.2.2. In fact, cα is the chain in [0̂, α] that first merges the elements

with labels in B1 as in cBp1
1

, then merges the elements with labels in B2 as in cBp2
2

, and so
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on. In order in to see that λP (cα) is the unique increasing chain in [0̂, α], let for any other

increasing chain c′ in this interval and for every i = 1, . . . , l, be

wi = λP (c′)j1λP (c′)j2 · · ·λP (c′)j|Bi|

the subword of λP (c′) whose labels belong to the steps in c′ where blocks with elements in

Bi were merged. Since wi is a subword of an increasing word it must also be increasing. But

by the discussion in the paragraph above we concluded that there is a unique form to do the

merges to get an increasing word and such word is λP (cBpi
i

). There is also a unique way to

have an increasing word λP (c′) with subwords λP (cBp1
1

), λP (cBp2
2

), . . . , λP (cBpl
l

), so we have

that c′ = cα.

Finally for an interval of the form [α, α′] in Π•n we have, by Lemma 3.2.3 that [α, α′] is isomor-

phic to an interval [0̂, β′] in some poset Π•{minB1,...,minBl} where this isomorphism preserves

the labels of the maximal chains. Hence by the discussion in the paragraph before we have

that there is a unique increasing chain in the interval [0̂, β′] and hence in [α, α′], completing

the proof.

Example 3.2.5. To see an example of the unique increasing maximal chain in the proof of

Proposition 3.2.4, let n = 5 and consider the interval [0̂, [5]4] ∈ Π•5. Since 4 is the pointed

element on the top element of the increasing maximal chain the word of labels associated to

c[5]4 is

λP (c[5]4) = (1, 4̃)(1̃, 2)(1̃, 3)(1̃, 5),

which corresponds to the chain

c[5]4 = (0̂l 14̃/2/3/5l 124̃/3/5l 1234̃/5l 1234̃5).

Proposition 3.2.6. The labeling λP of equation (3-5) satisfies the rank two switching prop-

erty.

Proof. Let [α, α′] be an interval of rank 2 on Π•n. In order to simplify the proof we will

conveniently refer to (ã, b) as (a, b)1 and (a, b̃) as (a, b)−1 and whenever we use the blocks

A,B,C,D we assume a = min(A) < b = min(B) < c = min(C) < d = min(D). We have

the following possible two types of intervals of rank two.

Type I: We merge two pairs of distinct blocks {ApA , BpB} and {CpC , DpD} in α in order to ob-

tain α′. The open interval (α, α′) is of the form {K1, K2}, where K1 = ABp1/CpC/DpD

for p1 ∈ {pA, pB} and K2 = ApA/BpB/CDp2 for p2 ∈ {pC , pD}. The two chains that

appear in our interval [α, α′] will have as their respective increasing and decreasing

word of labels λP (αlK1 l α′) = (a, b)j1(a, c)j2 and λP (αlK2 l α′) = (a, c)j2(a, b)j1

for j1, j2 ∈ {−1, 1}.

Type II: We merge three distinct blocks {ApA , BpB , CpC} of α to obtain α′. The open interval

(α, α′) is of the form {K1, K2, K3, K4} where K2 = ABp1/CpC for p1 ∈ {pA, pB} and
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K3 = ACp2/BpB for p2 ∈ {pA, pC}. K1 and K4 will vary upon the selection of the

pointed element as can be appreciated in Figure 3-14. The reader can easily verify

that the increasing and decreasing words of labels are λP (αlK1lα′) = (a, b)j1(a, c)j2

and λP (α l K2 l α′) = (a, c)j2(a, b)j1 where we note that if block A preserves the

pointed element, then j1 = 1 and j2 = 1, if block B preserves the pointed element,

then j1 = −1 and j2 = 1 and lastly if block C preserves the pointed element then

j1 = 1 and j2 = −1.

Hence we have that λP has the rank two switching property.

Because of Propositions 3.2.2, 3.2.4 and 3.2.6 we have that the labeling λP on Π•n satisfies

the requirement of an EW-labeling which proves our main theorem of this section.

Theorem 3.2.7. The labeling λP is an EW-labeling of Π•n.

3.2.2 Poset of pointed Lyndon trees

We are interested in giving a combinatorial description of the Whitney dual of Π•n associated

to the Whitney labeling of Theorem 3.2.7. In this case, as it was true in the section on the

poset of weighted partitions, the indexing set will be a special subset of BT n,2. We will abuse

notation in this section, for convenience on the naming conventions, and from now on we

will consider BT n,2 and BFn,2 as the sets defined in the previous section with the exception

that instead of referring as colored nodes with color 1 and 2 we will say that these nodes are

pointed or not pointed and a new function called pointed will take the place of the function

color of the previous section.

Let T be a normalized binary tree and let pointed be a function from the set of internal

nodes of T to the set {−1, 1}, where if for an internal vertex v ∈ T if pointed(v) = −1 we

will say that v is pointed and if pointed(v) = 1 we will say that v is not pointed. We say that

T is a pointed Lyndon tree if for each internal node x of T , pointed(L(x)) ≥ pointed(x),

and pointed(L(x)) = pointed(x) = 1 can only occur when

v(R(L(x))) > v(R(x)), (3-8)

that is, if both x and L(x) are not pointed then x has to be a Lyndon node.

Remark 3.2.8. Note that the set of pointed Lyndon trees where all internal nodes are not

pointed is precisely the set of classical Lyndon trees.

We denote as Lynn,• the set of pointed Lyndon trees. In Figure 3-16 we illustrate the

pointed Lyndon trees in Lyn3,•.

Let T be a pointed Lyndon tree. For a node x of T we define its pointed valency υ̃(x) as its

label if x is a leaf or if x is internal

υ̃(x) =

{
υ̃(L(x)) if pointed(x) = 1

υ̃(R(x)) if pointed(x) = −1.
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First Case

Second Case

ApA/BpB/CpC/DpD

ABp1/CpC/DpD ApA/BpB/CDp2

ABp1/CDp2

(a,b) j1 (c,
d)
j 2

(c,
d)
j 2 (a,b) j1

ApA/BpB/CpC

BCpB/ApA ABpA/CpC ACpA/BpB BCpC/ApA

ABCpA

(b,c)1
(a,b) 1

(a
,c)
1

(b,c)
−1

(a,b)
1

(a
,c
)
1

(a,b) 1
(a,b)−1

ApA/BpB/CpC

ACpA/BpB ABpB/CpC ACpA/BpB ACpC/BpB

ABCpB

(a,c)1
(a,b) −

1 (a
,c)
1

(a,c)
−1

(a,b)
−1

(a
,c
)
1

(a,b) −
1

(a,b)−1

ApA/BpB/CpC

ABpA/CpC ACpC/BpB ABpA/CpC ABpB/CpC

ABCpC

(a,b)1
(a,c) −

1 (a
,b)
1

(a,b)
−1

(a,c)
−1

(a
,b
)
1

(a,c) −
1

(a,c)−1

Figure 3-14: Rank two intervals in Π•3.
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0̂

(1̃,2) (1,2̃)(1̃,3)(1,3̃)(2̃,3) (2,3̃)

(1̃,2)(1̃,3)(2̃,3)(1̃,2) (2,3̃)(1̃,2)(1,2̃)(1̃,3)(1,3̃)(1,2̃)(2̃,3)(1,2̃) (1̃,2)(1,3̃) (1,2̃)(1,3̃) (2,3̃)(1,2̃)

Figure 3-15: QλP (Π•3).

1̃

2 3

1̃

2 3

2

1̃ 3

1

2̃ 3

2̃

1 3

2̃

1 3

1

2 3̃

3̃

1 2

3̃

1 2

Lyn3,1,•

Lyn3,2,•

Lyn3,3,•

Pointed

Not pointed

Figure 3-16: Lyn3,•.
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Remark 3.2.9. Note that for trees without pointed internal vertices υ̃ = υ.

The pointed valency υ̃(T ) of T is defined as the pointed valency of the root of T . We denote

Lynn,p,• := {T ∈ Lynn,• | υ̃(T ) = p}.

In Figure 3-16 the pointed valency of each tree has been indicated by a “tilde” over the leaf

with the same label.

If for F ∈ BFn,2 all trees are pointed Lyndon trees we say that F is a pointed Lyndon forest

and denote FLynn,• the set of all such forests.

Definition 3.2.10. Given F ∈ BFn,2 we define π(F ) to be the pointed partition in Π•n given

by

π(F ) = {A(T )υ̃(T ) | T ∈ F}.

Example 3.2.11. For the pointed Lyndon forest F ∈ BF8,2 of Figure 3-17 we have that

π(F ) = 12̃34/56̃7/8̃.

Definition 3.2.12. For F ∈ BFn,2 and t ∈ [n− 1] and a linear extension τ of the internal

nodes, let Tt = Lt ∧ Rt be the subtree of F rooted at the t-th node listed according to τ .

The chain c(F, τ) ∈M([0̂, π(F )]), is the one whose rank t pointed partition is obtained from

the rank t − 1 pointed partition by jt-merging the blocks A(Lt)
υ̃(Lt) and A(Rt)

υ̃(Rt), where

jt = pointed(t) and A(T ) is the set of leaf-labels of the pointed tree T and υ̃(T ) is the

pointed valency of T . In particular, if τRM is the reverse-minimal linear extension of F we

denote c(F ) := c(F, τRM). See Figure 3-17 for an example.

The following theorem gives a relation between the set of pointed Lyndon forests FLynn,•
and the set of ascent-free maximal chains in the EW-labeling of of Π•n given in Theorem

3.2.7. In order to simplify the writing of the labels, we will use the notation (a, b̃) = (a, b)−1

and (ã, b) = (a, b)1.

Theorem 3.2.13. For a given pointed partition α ∈ Π•n, the set

{c(F )|F ∈ FLynn,• and π(F ) = α}

is the set of ascent-free maximal chains in the interval [0̂, α] according to the EW-labeling of

Π•n given in Theorem 3.2.7.

Proof. We will first prove that if F ∈ FLynn,• then c = c(F ) is ascent-free. We will denote

by xk the k−th internal node listed in the reverse-minimal linear extension, then by definition

v(x1) ≥ v(x2) ≥ · · · ≥ v(xn−r), (3-9)

where r is the number of trees in F . Since each tree of F is normalized, v(L(xk)) = v(xk).
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Let λP (c)k denote the k−th letter in the word of labels of λP (c), i.e.,

λP (c)k = (v(L(xk)), v(R(xk)))
jk = (v(xk), v(R(xk)))

jk

If we assume that there exists an ascent at λ(c)kλ(c)k+1, then

(v(xk), v(R(xk)))
jk < (v(xk+1), v(R(xk+1)))

jk+1 (3-10)

We know that v(xk) = v(xk+1) because of (3-9). This equality of valencies imply that

xk = L(xk+1) and therefore, expression (3-10) will occur if jk = −1 < 1 = jk+1 or if

jk = jk+1 = 1 and v(R(xk)) < v(R(xk+1)). If the former case occurs, then

−1 = pointed(xk) = pointed(L(xk+1)) < pointed(xk+1) = 1

which contradicts that F is a pointed Lyndon forest. If the latter case occurs, then

pointed(L(xk+1)) = pointed(xk+1) = 1 and v(R(L(xk+1))) < v(R(xk+1)),

which violates condition (3-8), therefore F cannot be a pointed Lyndon forests which is also

a contradiction.

Now lets assume that c is an ascent-free maximal chain in [0̂, α] for some α ∈ Π•n. It is not

difficult to see that any such chain is of the form c = c(F, τ) for some F ∈ BFn,2 and some

linear extension τ of the internal nodes of F . We can also assume that F is normalized (since

the normalization condition is just a way to consider any leaf-labeled binary tree as a planar

tree) and given that c is ascent-free, condition (3-9) must also hold. Suppose that F is not

a pointed Lyndon forest. So there must be a tree T of F that is not a pointed Lyndon tree.

The following cases can happen then:

Case I: There is an internal node xk such that −1 = pointed(L(xk)) < pointed(xk) = 1.

Given that T is normalized and τ satisfies (3-9) we get that xk−1 = L(xk). We then

have that v(xk−1) = v(L(xk−1)) = v(L(xk)) and therefore

(v(L(xk−1)), v(R(xk−1)))
−1 < (v(L(xk)), v(R(xk)))

1,

i.e. there would be an ascent in λP (c) at k.

Case II: There is an internal node xk such that pointed(L(xk)) = pointed(xk) = 1 and

v(R(L(xk))) < v(R(xk)). As in Case I we have that xk−1 = L(xk). Then v(R(xk−1)) <

v(R(xk)) so we see that at k there is an ascent in λP (c) given by

(v(L(xk−1)), v(R(xk−1)))
1(v(L(xk)), v(R(xk)))

1.

In any of the cases above we have that λP (c) would not be an ascent-free chain, that is a

contradiction. Hence, F has to be a pointed Lyndon forest.
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2̃ 3

4

1 4

T1

2

6̃1

5 7

T2
8̃
T3

F ∈ FLyn8,•

1̃/2̃/3̃/4̃/5̃/6̃/7̃/8̃

1̃/2̃/3̃/4̃/5̃7/6̃/8̃

1̃/2̃/3̃/4̃/56̃7/8̃

1̃/2̃3/4̃/56̃7/8̃

1̃4/2̃3/56̃7/8̃

12̃34/56̃7/8̃

c(F )

Figure 3-17: c(F ) for F ∈ FLyn8,•.

Remark 3.2.14. If in Theorem 3.2.13 we consider intervals of the form [0̂, [n]p] in Π•n, that is

α = [n]p, the set of forests that index the ascent-free maximal chains are actually pointed

Lyndon trees in Lyn•n,p.

Definition 3.2.15. Let F ∈ FLynn,• such that π(F ) has two or more blocks (i.e. π(F ) is

not a maximal element in Π•n) and consider two pointed Lyndon trees T1, T2 ∈ F , such that

min(π(T1)) < min(π(T2)), and j ∈ {−1, 1}. We define the j-merge T = T1 ∧j T2 of the trees

T1 and T2 using the following recursive process:

(1) If when we merge the roots of T1 and T2 respectively using a new root x with pointed(x) =

j such that Lx = T1 and Rx = T2, the resulting tree T is a pointed Lyndon tree then

T1 ∧j T2 := T .

(2) Otherwise, if the resulting tree T is not a pointed Lyndon tree, which can only hap-

pen because −1 = pointed(L(x)) < pointed(x) = 1 or 1 = pointed(L(x)) =

pointed(x) and v(R(L(x)) < v(R(x)), we define the j-merge of T1 and T2 as T1∧jT2 :=

(Lr ∧j T2)∧pointed(r) Rr where r is the root of T1 and, Lr and Rr are, respectively, the

left and right subtrees of r in T1.

An example of a j−merge of two pointed Lyndon trees is illustrated in Figure 3-18.

Definition 3.2.16 (Poset of pointed Lyndon forests). From now on we will denote FLynn,•
the poset of pointed Lyndon forests with order relation given for F, F ′ ∈ FLynn,• we say

that F l F ′ whenever F ′ is obtained from F when exactly two trees of F are j-merged for

some j ∈ {−1, 1} to obtain one tree of F ′ while every other tree in F is also in F ′.

We illustrate the example of FLyn3,• in Figure 3-19 .



40 3 Whitney duals of some operadic posets

2̃ 31 4

T1

6̃

5 7

T2
8̃
T3

F ∈ FLyn8,•

↓

x

2 31 4

6

5 7
8
T3

↓

x

2 3

1 4 6

5 7

8
T3

↓

2̃ 34x

1

5 7

6
8̃
T3

T1 ∧1 T2

Figure 3-18: F ′ ∈ FLyn8,• obtained by a 1−merge of T1 and T2, both pointed Lyndon trees

in F .
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Proposition 3.2.17. Let F ∈ FLynn,• such that π(F ) is not a maximal element in Π•n. Let

T1, T2 ∈ F be such that min(T1) = t1 < t2 = min(T2) and F ′ ∈ FLynn,• be obtained from

F by j-merging T1 and T2 for some j ∈ {−1, 1}, that is, F l F ′ in FLynn,•. Then we have

that

λP (c(F ′)) = sort(λP (c(F ))(t1, t2)
j). (3-11)

Proof. To simplify the proof we will assume that F is a pointed Lyndon forest that only

consists of the two trees T1 and T2. Indeed, a similar reasoning as the one used in Proposition

3.1.18 can easily be given to justify this fact.

Now if F ′ = T1 ∧j T2 ∈ FLynn,• we have that the set of labels in λP (c(F ′)) is equal to the

set of labels of λP (c(F )) together with the label (t1, t2)
j. Denote

λP (c(F )) = (a1, b1)
j1(a2, b2)

j2 · · · (ak, bk)jk

and note that ak = t1 since the k-th node in the linear extension is the root of T1. We have

one of the following two cases according to Definition 3.2.15:

(1) When joining the roots of T1 and T2 through a node x such that pointed(x) = j the

resulting tree is already a pointed Lyndon tree. This happens if either j = −1, or jk =

j = 1 and bk = min(Rk) > min(T2) = t2. Both cases imply that (ak, bk)
jk 6≤ (t1, t2)

j

and it follows that

λP (c(T1 ∧j T2)) = λP (c(F ))(t1, t2)
j

= (a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j)

= sort(λP (c(F ))(t1, t2)
j).

(2) In the case where T1 ∧j T2 := (Lk ∧j T2) ∧jk Rk we have that either jk = −1 < 1 = j

or jk = j = 1 and t2 = min(T2) > min(Rk) = bk, thus (ak, bk)
jk < (t1, t2)

j and then,

using an induction on the size of the tree T1, we have then that

λP (c(T1 ∧j T2)) = λP (c(Lk ∧j T2))(min(Lk),min(Rk))
jk

= λP (c(Lk ∧j T2))(ak, bk)jk

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(t1, t2)j)(ak, bk)jk

= sort((a1, b1)
j1(a2, b2)

j2 · · · (ak−1, bk−1)k−1(ak, bk)jk(t1, t2)
j)

= sort(λP (c(F ))(t1, t2)
j).

In both cases we conclude that λP (c(T1 ∧j T2)) = sort(λP (c(F ))(t1, t2)
j) which proves the

theorem.

Proposition 3.2.17 and Theorem 3.1.17 imply then the following theorem.

Theorem 3.2.18. For n ≥ 1 we have that QλP (Π•n) ∼= FLynn,•.
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Figure 3-19: FLyn3,•.



3.3 Whitney twins: a discussion 43

3.3 Whitney twins: a discussion

The authors in [6] proved that the Whitney numbers of the first and second kind for Π•n are

identical to the ones for Π2
n. This motivates the following definition.

Definition 3.3.1. Two graded posets P and Q with a 0̂ are said to be Whitney twins if

their Whitney numbers of the first and second kind are the same, i.e., they satisfy

wk(P ) = wk(Q) and Wk(P ) = Wk(Q).

Theorem 3.3.2 ([6]). For all n ≥ 1, the posets Π•n and Π2
n are Whitney twins.

In [8] González D’León and Hallam show that SFn and Lynn,2 are two different (non-

isomorphic for n ≥ 3) Whitney duals for Π2
n. Hence, because of Definitions 2.3.1 and 3.3.1

we conclude that SFn and FLynn,2 are also Whitney duals for Π•n. With the new EW-

labeling of Π•n of Theorem 3.2.7 found in this section we face the relevant question on how

this new Whitney dual FLynn,• compares to SFn and FLynn,2.
Note that the Whitney dual QλP (Π•3) in Figure 3-15 is isomorphic to the Whitney dual

QλE(Π2
3) in Figure 3-3. However the corresponding posets Π•3 and Π2

3 are not isomorphic,

and their corresponding EW-labelings λP and λE even have two non-isomorphic posets of

labels. We summarize this conclusion as a theorem about Whitney labelings.

Theorem 3.3.3. There exists two non-isomorphic posets Π•3 and Π2
3 each with a Whitney

labeling λP and λE respectively, with non-isomorphic posets of labels and such that their

Whitney duals QλP (Π•3) and QλE(Π2
3) are isomorphic.

Theorem 3.3.4. For n ≥ 4, FLynn,2 and FLynn,• are not isomoprhic.

Proof. Note first that there are natural copies of FLyn4,• in FLynn,• and of FLyn4,2 in

FLynn,2 for n ≥ 5. Indeed, we just need to restrict to the subposets that involve merges

using only four particular elements in [n].

We will prove that no rank three interval from the bottom 0̂ in FLynn,• for n ≥ 4 is

isomorphic to the rank three maximal interval I = [0̂, T ] in FLyn4,2 shown in Figure 3-20.

It is not difficult to show that for F = {T1, T2, · · · , Tk} ∈ FLynn,• we have the isomorphism

[0̂, F ] ∼= [0̂, T1]×· · ·× [0̂, Tk], where [0̂, Ti] is a maximal interval in FLynA(Ti),• for all i ∈ [k].

Let I ′ be a bottom interval in FLynn,• isomorphic to I. Note that the interval shown in

Figure 3-20 is not a product of two non trivial posets, hence if, for some n ≥ 4, there is

an isomorphism f : FLynn,2 → FLynn,•, the image f(I ′) cannot be a product and hence

must be isomorphic to a maximal interval in FLyn4,•. We will show then that there is no

maximal interval in FLyn4,• isomorphic to I.

Suppose that in FLyn4,• there is a maximal interval [0̂, T ′] isomorphic to I. Note that since

FLyn4,• ∼= QλP (Π•4), any maximal chain in an interval of the form [0̂, T ′] has the same set

of labels according to the induced labeling λ∗P in QλP (Π•n) (see the construction of Qλ(P )
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Figure 3-20: An interval of rank 3 in FLyn4,2.

in [7]). It is not difficult to see that in QλP (Π•n) the labeling λ∗P is given as follows: if

F lF ′, that is, F ′ was obtained by j-merging two pointed Lyndon trees T1 and T2 of F with

minA(T1) < minA(T2), then we have that

λ∗P (F l F ′) = (minA(T1),minA(T2)))
j. (3-12)

Since [0̂, T ′] has rank three, let us assume that the labels are aja , bjb , cjc with a = (a1, a2),

b = (b1, b2) and c = (c1, c2) as is depicted in Figure 3-21. Because the labels b and c are in

the top, in fact we have that b1 = c1 = 1, and it is not difficult to show that this will also

imply that a1 = 1, otherwise, one of the labels b or c would involve elements of [4] that are

completely disjoint to the ones in a which will imply that there is another element of rank

1 in the interval different to A. We conclude that the labels are of the form a = (1, a2),

b = (1, b2) and c = (1, c2).

The maximal chains FA l FB l T ′ and FA l FC l T ′ have words of labels (1, b2)
jb(1, c2)

jc

and (1, c2)
jc(1, b2)

jb according to the labeling λ∗P induced on QλP (Π•n). Since this labeling λ∗P
is an ER∗-labeling, we have that in the interval [FA, T

′] can only be exactly one ascent-free

chain. This implies that the two labels (1, b2)
jb and (1, c2)

jc must be comparable in Λ•n,

otherwise there would be two ascent-free chains in [FA, T
′]. This in turn, implies that the

two values jb and jc cannot be −1 at the same time (for the labels to be comparable in Λ•n).

Assume then that (1, b2)
jb < (1, c2)

jc and so jc = 1.
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0̂
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FB FC
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b c

j c
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j c b j

b

Figure 3-21: Rank 3 interval used in the proof of Theorem 3.3.4.

Since in each interval from 0̂ of QλP (Π•n) there must be a unique ascent-free chain according

to the labeling λ∗P (see the construction of Qλ(P ) in [7]) then we must have that (1, a2)
ja 6≤

(1, c2)
1. This implies that ja = 1 and a2 > c2. Note that chains of labels (1, c2)

1(1, a2)
1

and (1, a2)
1(1, c2)

1 both take us to the same element FC in FLyn4,• which is a contradiction

since our supposition involves only one saturated chain from 0̂ to FC .

Theorem 3.3.5. For n ≥ 3, FLynn,• and SFn are not isomoprhic.

Proof. Note first that SFn is an uniform graded poset according to the definition in [4], that

is, if F ∈ SFn is an element of rank ρ(F ) = i then the filter U(F ) in SFn is isomorphic to

SFn−i. Indeed, the rules of merging in the filter U(F ) are only dependent on the roots of F

and any F ∈ SFn of rank ρ(F ) = i has n− i roots.

When n = 3, the posets SF3 and FLyn3,• are clearly non-isomorphic as can be appreciated

from Figures 3-2 and 3-16, so let us assume that n ≥ 4. Consider the pointed Lyndon forest

F of Figure 3-22. It is not hard to see, since the root of the nontrivial tree in F is a Lyndon

node with minimal element of the right subtree 4 that is larger than 2 and 3, that the filter

U(F ) in FLynn,• is isomorphic to FLyn3,•.

Now, if there is an isomorphism f : FLynn,• → SFn, this induces an isomorphism U(F ) ∼=
U(f(F )) ∼= SF3 since the element f(F ) has rank n− 3, but this is a contradiction.

Remark 3.3.6. Theorems 3.3.4 and 3.3.5, together with the fact that SFn and FLynn,2 are

not isomorphic for n ≥ 3, imply that the Whitney twins Π2
n and Π•n have at least three

non-isomorphic Whitney duals for n ≥ 4, SFn, FLynn,2 and FLynn,•, which are at the

same time Whitney twins to each other.
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Figure 3-22: Pointed Lyndon forest in the proof of Theorem 3.3.5.



4 Open questions and future work

In the previous sections some interesting observations have awaken our curiosity and we will

leave some open questions that are yet to be answered.

4.1 On the necessity of Whitney labelings

González D’León and Hallam in [7] developed a method to construct Whitney duals of

posets that have an associated Whitney labeling. The first question that naturally arises

is whether Whitney labelings can be omitted to provide a more general characterization of

Whitney duals. In particular, there are examples of Whitney dualizable posets that do not

have a Whitney dual. The poset given in Figure 4-1 is one of these examples. This poset is

Whitney self-dual, but if it had a Whitney labeling, in particular the interval [a, f ] of rank

2 would not satisfy the rank two switching property. There exists however, a poset with the

same Whitney numbers as the poset of Figure 4-1 with an EW-labeling. Indeed, the poset

P in Figure 4-2 is at the same time a Whitney twin and a Whitney dual of the poset in

Figure 4-1 and the labeling depicted in Figure 4-2 is a Whitney labeling. In the figure we

have that λ(a, b) = λ(a, d) = λ(c, e) = λ(c, f) = 1 and λ(a, c) = λ(b, e) = λ(d, f) = 2 and

our poset of labels is such that 1 < 2.

Question 4.1.1. Is there a way to characterize Whitney duals without the need of a Whitney

labeling?

Question 4.1.2. Is there a Whitney twin replacement that is Whitney labelable for every

Whitney dualizable poset?

e

b c d

f

a

+2

-1 -1 -1

0

+1

Figure 4-1: A Whitney dualizable poset without Whitney labeling.
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e

b c d

f

a

+1 +1

-1 -1 -1

+1

1 2 1

2 1 21

Figure 4-2: Example of a Whitney labelable poset that is a Whitney twin of the poset of

Figure 4-1.

4.2 On the uniqueness of Whitney duals and other

examples

Given that in chapter 3 we noticed that QλE(Π2
n) and QλP (Π•n) are isomorphic for n = 3 but

not for n ≥ 4. We would like to know if there are labelings for these two families of posets

that in fact yield isomorphic Whitney duals.

Question 4.2.1. Could there be two Whitney labelings λ1 and λ2 for Π2
n and Π•n respectively

such that QλE(Π2
n) ' QλP (Π•n) for all n?

We have observed some other intriguing posets that are a variant of the poset of pointed

partitions Π•n such as the poset of semi-pointed partitions Π̂n,p studied by Bérénice Delcroix-

Oger in [3] and the poset of multi-pointed partitions ΠB
n studied by Chapoton and Vallette

in [2]. Since both happen to be a small variant of Π•n the following question arises.

Question 4.2.2. Are there Whitney labelings defined on the poset of semi-pointed partitions

Π̂n,p and on the poset of multi-pointed partitions ΠB
n ?
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