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Abstract

An energy estimation model for a mobile robot can approximate the energy consumption of
the robot for any application. In this study, an energy estimation model that takes into account
the dynamic parameters of the motor and the robot, is proposed. The proposed model allows
us to predict the energy values for different accelerations and different payloads, unlike most
previous work. The validation of the proposed model was carried out for straight and rotational
trajectories. For straight trajectories, the mathematical estimation model can be simplified by
giving a linear estimation of the cost function. For rotational trajectories, the terms related to
inertia forces appear again in the model. The Nomad Super Scout mobile robot is used for exper-
imental tests. The experiments showed that the proposed model is able to estimate the energy
consumption of the robot accurately, reaching a success rate of 96.67 % along a straight paths
and 81.25 % along a curved paths.
The power estimation model is used to build the Hamiltonian function, that under a necessary
optimization condition, can provide the optimal velocity of the robot that minimizes the energy
consumption for a given straight path. In this study, a closed-form solution of the optimal veloc-
ity that takes into account high energy consumption and payload is presented as well. Finally,
the optimal velocity of the robot is evaluated in a typical robotic application such as the solution
of the SLAM problem.
KeyWords: Differential drive mobile robot, power estimation model, energy optimization, SLAM prob-
lem .
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Resumen

Un modelo de estimación de energía para un robot móvil puede realizar una aproximación del
consumo energético del robot para cualquier aplicación. En este estudio, se presenta un mod-
elo de estimación de energía que tiene en cuenta los parámetros dinámicos del robot y de los
motores. El modelo propuesto permite predecir los valores de energía del robot para diferentes
aceleraciones y pesos de carga, a diferencia de trabajos previos relacionados. La validación del
modelo fue realizado para trayectorias lineales y rotacionales. Para las trayectorias lineales, la
estimación matemática del modelo puede ser simplificada, entregando una función de costo a op-
timizar. Para trayectorias rotacionales, los términos relacionados con fuerzas inerciales aparecen
de nuevo en el modelo. El robot móvil Nomad Super Scout es usado para las pruebas experimen-
tales. Los experimentos muestran que el modelo propuesto puede estimar la energía consumida
por el robot con precisión, alcanzando un porcentaje de éxito de 96.67 % para trayectorias lin-
eales, y de un 81.25 % para las trayectorias curvas.
El modelo de estimación de potencia es usado para construir la función Hamiltoniana, la cual bajo
ciertas condiciones de optimización puede entregar la velocidad óptima del robot que minimiza
la energía consumida por una trayectoria lineal. En este estudio, una solución matemática de
forma cerrada de la velocidad óptima del robot es evaluada en una aplicación típica de robótica
como es la localización simultánea y mapeo (Simulaneous Location and Mapping- SLAM).
Palabras claves: Robot de guiado diferencial, modelo de estimación de potencia, optimización de en-
ergía, SLAM. .
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1. Introduction

In several robotic applications, the autonomy of the mobile robot movements can be required.
For example, in environments where the wireless communication control is deficient, or is repet-
itive and coverage tasks, like surveillance, cleanness or assembly, where the responsibility of a
supervisor can be replaced.

To achieve the mobile robot autonomy is vital developed a trajectory planning, that provides
the path and the angular velocity of the wheels desired, for a particular robot task. For mobile
robots exist typical applications such as traveling from the start point to the goal point, avoiding
an obstacle, coverage task, or mapping of the unknown environments (SLAM problem). At the
same time, the trajectory planning can minimize different kinds of variables as time travel, the
distance of the path, control effort, or energy consumption.
In the following sections, it is presented a revision of the most relevant researches, related to
the mobile robot and motor dynamic models, the power estimation model, the optimization of
the robot energy consumption, and the SLAM (Simultaneous Location and Maping) problem.

1.1. Classic Path Planning (State of art)

In recent decades, the study of trajectory planning has been a topic of great interest for re-
searchers in mobile robots. To identify the trajectory planners, the type of path and velocities,
and the amount of a priori information observed of the environment is taking into account. In-
tuitively it is said that smooth paths allow saving robot energy consumption, compared with the
non-trajectories. According to those conditions, the trajectory planners can be classified into
non-smooth global planners, smooth global planners, non-smooth local planners, smooth local
planners, and mixed planners.
The following briefly describes the main characteristics of relevant studies in each classification.

1.1.1. Global non-smooth trajectory planners

Non-smooth global planners refer to planners who have information a priori of the characteris-
tics of the environment and generate discontinuous paths in the direction and speed. A previous
stage of the planner is the representation of the environment; this stage presents a high infer-
ence in the type of trajectories generated by the planner. In the mid-’80s, the interpretation of
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the environment was simplified, representing the elements of the scene in the geometric forms.
This methodology is incorporated into the roadmap algorithm [37]. In this case, rhombuses
represent the obstacles.
Other planners based on the roadmap are the Visibility Graph and the Voronoi Diagram (Voronoi
Diagram) [57]. The difference between them is the location of the path control points. The Visi-
bility Graph Locate the points at the corners of the rhombuses. This control point location may
represent a collision risk for the mobile robot if the robot is commanded to move at high speed.
The Voronoi Diagram, locates the control points in equidistant positions, at least at three corners
of the obstacles. Although this algorithm avoids risks of collision with the obstacles, compar-
atively with the Visibility graph, more execution time in the initialization process, is needed.
A typical application of the Voronoi diagram planner is the distribution of zones for multiple
robots [62], and in algorithms that resemble ant colonies to find minimum travel distances for
the mobiles robots [85]. Figure 1-1 shows the comparison between the roadmap and the Visi-
bility Graph.
Alongside the Roadmap, a space representation technique is introduced at the beginning of the
nineties, in which you get more information about the environment, by classifying the environ-
ment in occupied and unoccupied regions. This algorithm uses a cell decomposition [93], which
consists of dividing the environment into cells and label them into free and occupied. An exam-
ple of this representation is given in Figure 1-1. The limitations of the algorithm they occurred
in old processors, where the storage of cell information, exceeded the capacity of the computer.

VISIBILITY GRAPGH VORONOI DIAGRAM REGULAR CELL DESCOMPOSITION

Figure 1-1.: Space classification techniques. Figure take it from [57]

Based on this spatial representation methodology, trajectory planners are introduced, that using
different algorithms, unite the free cells to arrive at the objective point. These algorithms employ
cost functions, that dependent on attributes given by the surrounding cells, seeking to minimize
travel costs. Between these planners are the hierarchical planner [94], the D * lite algorithm
[77, 45, 65, 32] and the Dijkstra algorithm [79].
Until that moment, the adaptability that these methods could have for dynamic environments
or repetitive tasks was questioned. In these cases, the solution was envisioned in the arrival of
methods with intelligence and learning capacity, which is introduced since 2000 with numerous
artificial intelligence techniques, applied to the decomposition of cells, among them techniques
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neural networks, genetic algorithms [2, 1, 50], probable methods, and fuzzy logic, was used. In
these algorithms, the cost function is based on distance path and collision risk. The desired path
is obtained through probabilistic methods, focused on finding local minimums of the function
cost.
As is evident, computational spending is higher in algorithms that use methods of Artificial intel-
ligence comparatively with the D * Lite algorithm. Because in adaptive algorithms, it is necessary
to find all possible paths to the target point, to choose the optimal trajectory feasibly. The use
of any of these algorithms depends on the robustness of the required solution, in a given ap-
plication. Despite reaching good adaptability to specific environments, this type of trajectories
non-smooth is not optimal for the hardware of the mobile robot. Because of the higher mechan-
ical and energy effort of inducing the robot to stops to orientate and subsequent moves.

1.1.2. Global smooth planners

In this type of classification, there is a priori information on the environment to be explored, with
the advantage of generating trajectories with continuing orientation and displacement, which
allows the mobile present less mechanical wear and energy.
The representation of space is a crucial task for these planners .because the behavior of the
previous classification influences the nature of the trajectories in the environment.
Along with the discretization of space by cells, another method of spatial representation is intro-
duced, which uses mathematical functions to generate force fields. In this representation, the
obstacles and the desired point are classified. The objective point is associated with attractive
fields towards the objective point and repulsive fields to the obstacle. The total function that the
environment represents will be the sum of the force fields attractive and repulsive. The smooth
trajectory will be generated by the path of a particle influenced by the fields. In the literature
this planner has taken names such as potential field (force fields) [3, 36, 4] or potential function
(power functions) [69, 25].
The first to talk about power functions as a path planner for a mobile robot was Khatib [40] in
1980, in his doctoral thesis. Later in 1990 [13] is introduced a spatial representation with force
fields based on Laplace equations. Two years later, a mathematical function is raised to generate
force fields, which involves normalized distances between the obstacles, the target point, and
the mobile robot [69]. This function is shown below 1-1.

φk =
∥q − qd∥2

[∥q − qd∥k + β(q)]1/k
(1-1)

Where: φk is the magnitude of force at the point q of the environment , qd is the desired point,
q is the environment point , β(q) is the representation of the obstacles , and k is the smoothing
variable of the repulsion field in the obstacles.
The obstacles β(q) are represented spherically and are defined as:
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β(q) =
∏j=0

i=M βj(q)

βo(q) = −∥q − qj∥+ ρ2o
β(q) = ∥q − qj∥2 − ρ2j

for j = 1...M
Where: qj are the coordinates of the center of the circumference of the obstacles, being j the
quantity of obstacles with a maximum of M. ρj is the radius of the obstacle j. Figure 1-2 shows
the discontinuities in the magnitudes of the force field that allow isolation of the obstacle in the
trajectory of the particle. Also, it can be observed that the local minimum force field (field in
blue) focuses on the desired objective. It can be analyzed as well that the repulsive field of the
obstacle in this planner represents an area in a circular form, as is formulated in the equation
1-1. Finally the trajectory that describes a particle in the force field is determined, having as
initial position the external limits of the environment.

FORCE FIELD (3D) FORCE FIELD (2D) PARTICLE BEHAVIOR

Figure 1-2.: Behavior of the force field, and trajectory of the particle.

There is a prevalent problem in this type of planners, which in the literature is known as goals
non-reachable with obstacles nearby(GNRON). In many implementations in real environments,
it is necessary to locate an objective point close to an obstacle. In the functions presented
above, there is a difficulty when adding repulsive and attractive fields to represent the environ-
ment. The proximity of both fields, produces a displacement of the original target point, that
in some cases is an impossible point for the mobile robot to reach. Chen in 2014 [76], shows
functions with modifications in the force fields near the target point, taking into account the
robot kinematic model, and in this way, a solution to the problem GNRON is founded.
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1.1.3. Non-smooth local planner

Local planners are characterized by not having a priori information about the environment. It
is, for this reason, that to the mobile robots, must have sensors to acquire environment infor-
mation. This type of planning is useful in unfamiliar, dynamic environments, or changing due to
extreme conditions. At the beginning of the nineties, the graph constructor is introduced [18].
In this planner, an unknown environment is explored, which response to a graph-shaped model.
The mobile robot moves by the vertices of that graph and labeling them with markers. In this
algorithm, there is no type of metric information during the scan, generating in the robot, more
intuitive movements than measured.
A family of algorithms, with a greater metric formalism, comparatively with the constructor
graphs, are introduced in1986 with a validity that continues today. They are known as algo-
rithms Bug [6, 52], and are widely used in environments similar to offices. As the name implies,
this algorithm mimics the movements of bugs, which surround the elements of a scene to reach
an objective point. Figure 1-3 shows the most representative Bug algorithms, whose method-
ological difference in the way of address and abandon the elements of the scene.

Figure 1-3.: Bug algorithm planners. Figure take it from [6]

At present, taking advantage of the heyday of vision devices, there are planners that with extra
information on the scan images, can guide the robot through the scene. This type of processing is
used in [43], where lines of images that have zero slopes (horizontal lines) are calculated through
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transformation Hough. Those lines represent that the robot is aligning to the normal of a wall.
In Figure 1-4 shows the search and subsequent detection of a line with zero slopes (Blue line).

ZERO SLOPES LINE

Figure 1-4.: Detection of zero slopes line. Hough transformation. Figure take it from [43]

1.1.4. Smooth local trajectory planner

The algorithms that generate the smooth paths, comparatively with the non-smooth paths, are
more involved in the design of controllers and the mathematical formulation of trajectories. In
the literature, the most implemented methodology to generate smooth trajectories focuses on
joining control points, using non-linear equations that guarantee a low gradient in all sections
of the path. One of the issues of the smooth trajectories is the calculation of curves to surround
obstacles or to orient the robot. The curve paths can be classified into two categories: Curves
generated by functions with expressions in closed form, or parametric curves. A challenge in the
parametric curve is the joining of the partial paths. This issue produces discontinuities in the
trajectories. Researchers have developed strategies to resolve this problem in different ways.
Liscano in [49], uses spiral geometric clothoid functions, to join the arc and straight segments,
this methodology is widely used in construction on roads in civil engineering. Kanayama [39],
from a set of cubic spirals whose main feature is to have a zero curvature at the ends of the
segment, which facilitates the joining with straight sections. Finally, a better softness is shown
comparatively with the clothoid functions, when determining a lower deflexion of the normal
curvature of the cubic spiral function.
Years later, the methodology is changed to splines. Such geometric functions have the advantage
of adaptability. Forming geometric shapes with all kinds of curves can even form easily clotoids
[[15], [66]]. Finally, at present, the methodology of generating smooth trajectories, based on
Bezier curves, which retain the adaptability of splines, but incorporating computational facil-
ities in their numerical implementation, is introduced [[9], [28], [58]]. Another methodology
to generate the curve segments in the smooth paths is through closed mathematical functions.
The big difference with the parameter curves is that they don’t cause joining discontinuities,
although an increase in its level of difficulty is evident, generally using high-grade polynomials
equations [34],[61].
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1.1.5. Hybrid planners

There are planning methodologies that use hybrid planners, in this case, with complete or partial
environment information, a global planning solution is designed. Then, in the exploration, the
information given by the sensors is used locally, to adapt changes to the original planning. This
type of planning is widely used in dynamic environments, combining a large number of method-
ologies previously seen it in the global and local classification. In 1990 the first researchers in
introducing hybrid planners were Payton and Rosenblatt (P-R) [70]. This methodology is built
from two levels of control; the first is called edge tracking of the road (Track Road Edges) (Global
Planning). The second level is called Turn by Obstacle (Turn for Obstacle) is related to a set of
control decisions to evade the obstacles of the scene, based on sensory information.
Five years later, Yen in [91] continues with the P-R planning methodology but adapts it to a
fuzzy logic technique. The benefits that this adaptation of the P-R method to diffuse logic can
have are: Simplicity, high adaptability of inputs, and efficient understanding. Simplicity to have
a basic controller through a few diffuse control laws to accomplish the task. Efficient interac-
tion between sensors gives adaptability through a suitable logical inference scheme. Artificial
intelligence methods such as diffuse logic seem to adapt very well to dynamic environments,
and therefore are conducive to the construction of hybrid planners. Xiao [83] in 1997, applies
methods of genetic algorithms to implement a hybrid planner or also called in the literature,
off-line or on-line planners, to refer to global and local planners, respectively. In this algorithm,
both planners are built with evolutionary algorithms and structures in the form of chromosomes.
The advantage of using artificial intelligence methods in planning global planners, respect to the
methods of P-R, and diffuse logic, is the highest efficiency in finding optimal paths. Neverthe-
less, it requires expense important computational consumption, when considering all possible
paths, from an initial point to the point objective. This type of planning is very frequently used
in unmanned aerial vehicles (UAV,) due to the dynamic scenario, with more variables even than
the terrestrial scenarios. In 2002[27], a planning and control solution is shown, for various co-
operative UAVs, in a given scene, with known objective points and dynamic threats. In recent
years, the methodological tendency of hybrid planners has focused on using the Voronoi diagram
in global planning, and the planning method by force field functions, for local planning [23, 22],
having a better response to uncertainties obstacles in the scene.

1.2. Kinematic and dynamic model of the differential drive
mobile robot

There is a great variety of mobile robot architectures, on which its mathematical modeling de-
pends. The robot of study in this proposal, it is the differential drive mobile robot, whose
configuration is shown in Figure 1-5.
Where:
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Figure 1-5.: Differential drive mobile robot configuration

v (t) is the linear speed of the midpoint of the vehicle.
w (t) is the angular velocity of the midpoint of the vehicle.
θ̇1 (t) is the angular velocity of the right wheel.
θ̇2 is the angular velocity of the left wheel.
r is the radius of the wheel.
l is the separation distance between the middle axis of the vehicle and the drive wheel.

The angular velocity of the wheels achieves the movement of the vehicle. The position and
orientation of the robot can be described by the coordinates (x, y), which denote the position of
the midpoint of the axis that joins the two wheels, with respect to the system of reference XY,
and the angle between the axis of symmetry of the vehicle and the X axis [28]. The cinematic
model associates the coordinate position (x, y), with the angular velocities of the wheels. The
differential equations that govern this robot model are shown:

ẋ =
r

2
cosφ(θ̇1 + θ̇2) (1-2)

ẏ =
r

2
sinφ(θ̇1 + θ̇2)

φ̇ =
r

2l
(θ̇1 − θ̇2)

Studies of energy consumption based on the robot kinematic model, generally, they are linked
with formulations of mechanics and kinetic energy [51, 50], [44]. The more general mathematical
formulation of mechanical energy is E = ukmgvktk.
Where
uk is the friction of the wheels against the floor.
m is the robot mass.
g is the gravity.
vk is the robot velocity.
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tk the time during travel.
All the variables evaluated in a section of the path k.
The kinetic energy can be expressed as Ec = 1

2
mv(t)2 + 1

2
Iw(t)2, where I is the moment of

inertia of the robot.
This methodology can estimate energy consumption, but no take into account dynamic vari-
ables. For example, traction forces,or aerodynamic resistances. In this way, associate the kinetic
energy consumption of exploration, based on the dynamic model of the robot, allows a more
robust analysis, and in consequence a closer energy consumption values. The dynamic model
of the movement of a robot can be framed in different conventional methods; among them, we
have Newton’s second law and Lagrange formulations (N-L) [8]. The mathematical equation that
governs Newton’s second law is presented below [24].

m
dv
dt

= Ft −mg sinα− 1

2
ρACv2 −mgfr cosϕ (1-3)

dv
dt

is the linear acceleration of the vehicle.

m is the mass of the vehicle.
Fr is the force due to the rolling resistance of the wheels, given by: mgfr cosϕ.

Fa is the force by aerodynamic resistance, given by:
1

2
ACv2.

Fg is the strength of resistance on slopes, given by mg sinα.
Ft is the Total tensile force. g is the force of gravity.
fr is the coefficient of bearing resistance.
ϕ is the angle of the terrain inclination.
ρ is the air density.
A is the frontal area of the vehicle.
C is the coefficient of aerodynamic resistance.
v is the vehicle speed.
α is the inclination of the surface.

On the other hand, Lagrange’s formulation for the dynamic model of a mobile vehicle is given
by [90]:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + AT (q)λ (1-4)

Where:
M(q) is the matrix of inertia, symmetric, and define positive.
C(q, q̇) is the matrix of coriolis forces and centrifuge.
G(q) is the vector of gravitational pairs.
B(q) is the transfer matrix of the inputs.
τ is the dimensional vector of generalized forces.
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AT Jacobian matrix of movement restrictions.
λ is the force restriction vector.

1.3. Power Estimation Model and energy optimization

During typical applications, mobile robots may face large accelerations leading to high currents
[68], or their payloads may vary throughout the mission leading to variable energy consumption
[68, 5]. Many examples follow this behavior, such as cooperative payload transport using mo-
bile robot groups [71, 53], mobile robots equipped with a lifting mechanism that can be rigidly
attached to a desired payload [64, 14], pesticide spraying using agricultural robots [73], pay-
load transport using quadrotor Unmanned Aerial Vehicles (UAV) [81, 67, 89], inspection using
autonomous mobile robots [54, 29, 59], navigation and exploration in disaster areas [16, 7, 30],
or heavy payload transfer using military mobile robots such as the Dog-Horse [74]. In these
scenarios, an energy estimation model can approximate energy consumption values during long
term robotic activities. Such a model also estimates battery time autonomy, especially for mo-
bile robots that carry their energy sources, such as batteries [72, 33, 63]. In energy estimation
models for mobile robots, motor resistances, load torques, and load friction torques affect the
estimated energy considerably. The load torque is due to the motion of the robot, and it is
related to the acceleration and payload, i.e., the inertia, of the robot, and it can be calculated
using the dynamic model of the robot. The friction torques are due to the friction between the
wheels and surface, friction losses inside the motors, and frictional losses in the gears connect-
ing the motors to the wheels. These friction torques can be estimated using the dynamic model
of the motor and a calibration procedure. Different surfaces may cause different friction values,
changing the energy consumption considerably [60, 78].
It is well known that DC motors driving the wheels of a robot consume a significant amount
of energy [60, 78, 42, 41, 87]. Therefore, researchers use the dynamic model of a DC motor
to estimate or optimize energy consumption for mobile robots [41, 78]. Kim and Kim [42, 41]
calculate the velocity profiles that minimize energy consumption for a differential drive mobile
robot along straight and curved paths. They used the dynamic model of the motor as the cost
function, but they do not take into account the torque. For that reason, this model gives energy
estimates far from the real energy consumption. Kim and Kim describe the minimum energy
turning trajectory path using a sequence of two straight lines for translational motions and an
arc for rotational movement in between.
Tokekar and Isler [78] proposed a calibration procedure to estimate the parameters of the dy-
namic model of the motor, including the internal friction torque. They also discussed the influ-
ence of friction between the robot wheels and different kinds of surfaces on energy consump-
tion. Their estimation model uses an energy road-map scenario to obtain any path, connecting
the sequence of poses with circular arcs or straight line segments. In the results, the energy
values of the proposed curve paths and Dubin paths are compared. For the optimization of the
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robot energy consumption used a Hamiltonian function based on the dynamic motor model.
Sheta et al.[75] focus on the minimization of resistive and frictional power dissipation in a sep-
arately excited DC motor. The dynamic parameters, such as the moment of inertia and the
coefficient of friction, which depend on the load torque, were obtained using a system identifi-
cation method. Wahab [80] introduces kinetic energy and friction to the energy model based on
the motor model. Wang [82] presents an energy estimation model for an omnidirectional mo-
bile robot based on robot dynamics combining the mechanical and electrical systems. However
neither [78, 75, 80] nor [82] take the payload into account.
The dynamic robot model, based on the Lagrange formulation, has also been used to calculate
the energy consumption of mobile robots. Kozlowski [46] studied extending the kinematic con-
trol law of 4-wheel skid-steered mobile robots at the dynamic and motor levels using Lyapunov
analysis. In the process, the model is decomposed into kinematic, dynamic, and drive levels.
Bensekane et al. [5] analyzed the power consumption related to the degree of steerability, the
degree of actuator redundancy, and curvature of the trajectory for an over-actuated unmanned
vehicle.This work also presents experimental results with different load weights.
A power consumption model can be estimated entirely with a calibration procedure. Mei et al.
[86] estimate consumed power using a sixth-degree polynomial function. For this, they experi-
ment with a commercial mobile robot called Palm Pilot Robot Kit (PPRK), computing the energy
efficiency for different spiral paths. Mei et al. [56] later use a cost function to represent the
power estimation model for a differential drive mobile robot taking into account the robot mass
and payload and the friction between the wheels and floor. The experiment is performed with a
Pioneer 3D-X mobile robot for straight paths and circles. However, the power model is not able
to predict the power with varying payload or accelerations. Ramviyas and Prithvi [68] estimate
consumed energy, taking into account passive and active components of the mobile robot, such
as sensors, communication devices, motors, and payloads. They use a calibration procedure to
estimate the dynamic parameters of the model. Ramviyas and Prithvi [68] experimentally vali-
date their model using a Khepera III mobile robot moved over a square path. Conceição et al.
[11] use different estimation methods based on the least square methods to obtain dynamic pa-
rameters of the robot model such as moments of inertia and friction coefficients. However, due
to calibration, the power consumption models cannot predict consumption outside the calibra-
tion workspace. Chuy et al. [10] present a power consumption model for skid-steered wheeled
platforms in terms of linear velocity and turning radius of the robot. Nevertherless, the load
weight is not a variable of analysis.
Finally, a robot energy estimation model can be based on a friction model. Morales et al. [60]
analyze a power model based on a friction estimation of skid-steered tracked mobile robots on
rigid terrain on two different types of surfaces, marble and asphalt. The power estimation model
is evaluated on straight and spiral-like paths. Gupta et al.[31] present a dynamic power model
that can be used to predict the energy consumption along a given trajectory for skid-steered
autonomous ground vehicles (AGVs) with variation of payloads and terrains. The simulated and
experimental results consider an AGV moving at a constant forward velocity on both wood and
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asphalt surfaces under various payloads. Hou et al. [35] presented a predictive energy model,
considering three major factors: the sensor system, control system, and motion system. The
model is tested with a 4-wheel Mecanum mobile robot.Xie et al. [84] uses the same robot con-
figuration to proposed an energy model based on kinetic energy and friction. Similarly, Dogru
and Marques [17] propose a friction-based power model for skid steered wheeled platforms,
taking into account the influence of varying payload as well. The robot was driven in straight
lines, rotated in place and driven along paths of a varying radius of curvature. However, since
these works concentrate on skid-steered platforms, the proposed models do not apply to two-
wheel differential drive robots.

1.4. Simultaneous localization and mapping (SLAM)

The SLAM problem is an essential issue in robotic and receives significant attention in the
robotic researchers. Even so, there is no established methodology in the literature to accomplish
this task, but we can identify some common steps that are briefly described:
Acquisition of information and classification of the environment
The exploration of unknown environments supposes not having a priori information of the en-
vironment. In this way, the robot must acquire data from the scene in a sensory way.
This information should represent the scene to classify the seen, unseen, and the occupied areas
(obstacles) [38]. Figure 1-6 shows an example of the classification of the environment through
the decomposition of cells.

UNSEEN
NODES

SEEN
NODES

OBSTACLE

OBSTACLE
OFFSET

OCCUPIED 
NODES

ROBOT

Figure 1-6.: SLAM space classification
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1.4.1. The Next Best View (NBV)

The NBV determines the point and orientation where the robot should move, to acquire the
maximum of unknown information. Exist many criteria to find the NBV, including minimum
distances [77, 45, 65, 32], maximize information on the environment [47, 95]], energy expendi-
ture [48], among others.
The NBV, in the literature, can be obtained naturally or artificially. The natural one refers to
sensory acquire the objective points (landmarks) autonomously, and the artificial refers to in-
tentionally planting marks in the environment. In [20] to obtain the maximum information about
the environment, the landmarks (NBV) more beneficial is analyzed, to later locate them manually
in the environment, so that the robot makes minimal scrolls of exploration. This methodology
of determining landmarks in the scene, it would not be convenient in the exploration of hostile
environments. As the sensors improved over the years, the methodology of natural landmarks
was gained popularity. In 2006 Mei[55] mentions that moving with the criteria of maximizing
the information of the environment, can induce crossings of trajectories in the environment,
which It would not be efficient. One way to resolve this difficulty is to guide the robot to the
NBV sequentially clockwise. This approach is shown to be a more intuitive way than analytic.
A year later, Wang refutes that methodology [47], seeking to maximize the information of the
environment, minimizing the number of views used by the robot in exploration and travel. The
support of this methodology is purely Geometric and does not relate to the kinematic or dy-
namic modeling of the robot. Finally in 2014 [21], through global planning, focuses maximum
visibility on the landmarks, for a differential drive mobile robot, but the paths generated are not
smooth.

1.4.2. Mapping and location

The information of the scene elements acquired by the sensors is used to make a representation
of the environment. The mapping can be done in several ways, among them, with geometric
shapes[6], with graphs [57], or with the decomposition of cells [93], these are the methods in
2D. For the 3D case, the most common mapping used point clouds, which represent the scene
in a discretized manner. In this case, the voxelization is used to improve the level of repre-
sentation. This method consists of discretizing the space through voxels (cubes), showing only
voxels occupied by cloud points. Figure 1-7 shows an example of mapping by different types of
voxelization.

The mapping of the environment is dependent on the current location of the mobile. This prob-
lem is known as SLAM. There are varied methods of solution, the estimation methods being,
the most used in the literature [5, 6, 7].
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Figure 1-7.: Environment 3D reconstruction.

1.5. Contributions

After the constant reviewing of the literature can be noticed that works related to the study of
the differential mobile robot and payload are few or are not reported yet. The only research with
these characteristics is [55]. But the mathematical methodology used for the power estimation
is based on calibration procedure, the disadvantage of this approach is to change the calibration
of the model every time that any variable of the experiment changes as well. Wich implies a
lack of adaptability. Taking this into account, the contributions of this work is as follows:

Power estimation model:

A novel power estimation model based on the robot and motor dynamic models is presented.
The power model can predictive accurately the energy consumption of any acceleration or pay-
load for a differential guide mobile robot configuration. In the process, it is only needed one
initial calibration procedure. A hardware validation is achieved using the Nomad Super Scout
Robot, obtaining a MAPE (Mean Absolute Percentage Error) of power estimation of 5.53%.
On the other hand, there is not evidenced so far, in the state of art, regarding energy optimiza-
tion models related to the differential guide mobile robot configuration and payload. In this
case, the other contribution is:

Energy optimization model

A mathematical closed-form energy optimization model is presented. The proposed model based
on the hamiltonian function, used as a function cost the power estimation model and takes
into account the payload of the robot. The numerical test shows a significant saving of energy,
compared with high energy consumption velocities. Also, the energy optimization model is used
in the solution of the SLAM problem, showing the same energy-saving behavior.
This study is organized as follows: Chapter 2 develops a mathematical model for energy con-
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sumption estimation. Chapter 3 presents the results of experimental validations with the Nomad
Super Scout mobile robot. In Chapter 4, the optimal velocity profile that minimizes the robot
energy consumption is shown. Finally, conclusions are drawn in Chapter 5.



2. Novel Energy Estimation Model Based on
Motor and Robot Dynamic Models

Energy consumption is an important issue for mobile robots that carry a limited energy source
like batteries, for a long period of time. A power consumption model can relate the kinematic
movements of the robot with the energy consumption values, giving an approximation of the
energy needed for the robot to fulfill a specific task. In this section, an energy model that is
based on the dynamic parameters of the mobile robot and its motors is proposed. The model
can predict the dissipated energy accurately, even when the robot carries different payloads
and performs different accelerations. The experimental validation is obtained using the Nomad
Super Scout mobile robot, shows both the accuracy of the proposed model and the influence of
acceleration and the weight of the payload to the energy consumption of the robot.

2.1. Mathematical Model

In the first section, the dynamic model of a two-wheel differential drive robot, and then the
dynamic model of a DC motor, are presented. Later, the two models are combined by matching
the load torque values. Finally, a state space realization is used to obtain the power model
formulation.

2.1.1. Simbols of the Mathematical Model

In this section, all the symbols used in this work are presented for easy reference.

x and y are the coordinates of the center of the robot (Po in Figure 2-1) in a fixed reference
coordinated frame X - Y,
ϕ is the heading angle of the mobile robot measured from the X-axis,
w is the angular velocity of the robot,
v is the linear velocity of the robot,
θ is the angular position vector of the wheels,
θ̇ is the angular velocity vector of the wheels,
θ̈ is the angular acceleration vector of the wheels,
K is the total kinetic energy of the robot,
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qi is the generalized coordinate corresponding to robot pose,
λi are the components of the vector of the Lagrange’s multipliers,
τi are the components of the vector of the load torques applied to the wheels,
aij are the elements of the constraint matrix,
l is the displacement from each of the driving wheels to the axis of symmetry,
d is the displacement from point Po to the center of mass of the mobile robot, which is assumed
to be on the axis of symmetry,
r is the radius of the driving wheels,
c is a constant that is equal to r

2l
,

mc is the mass of the mobile robot without the driving wheels and the rotors of the motors,
mw is the mass of each driving wheel plus the rotor of its motor,
mp is the mass of the payload,
m is the total mass, mc + 2mw + mp,
Ic is the moment of inertia of the mobile robot and payload without driving wheels and rotors
of the motors about a vertical axis passing through the intersection of the axis of symmetry with
the driving wheel axis,
Iw is the moment of inertia of each driving wheel and the motor rotor about the wheel axis,
Im is the moment of inertia of each driving wheel and the motor rotor about wheel diameter,
V and i are the armature voltage and current of a motor,
V = [V1 V2]

T are the armatures voltages of the motors of the robot,
i = [i1 i2]

T are the currents of the motors of the robot,
P =[P1 P2]

T are the power consumed of the motors of the robot,
P and E are the power and energy consumed by the robot,
R and L are the armature resistance and inductance,
ν is the viscous friction coefficient,
τ is the load torque applied to the motor,
Tm is the internal friction torque in the motor,
Kt is the motor torque constant,
kw is the motor voltage constant,
Is is the equivalent motor moment of inertia,
n is the gear ratio of the motor.

2.1.2. Constraint Equations

In this section, the motion and constraint equations for a differential mobile robot whose schematic
is shown in Figure 2-1 are developed. The mobile robot is driven by two actuated independent
wheels with the same dimensions.
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Figure 2-1.: Schematic of the differential drives mobile robot

The mobile robot configuration has two motion constraints:

Constraint 1: The mobile robot cannot move in the lateral direction, hence:

ẋ sinϕ− ẏ cosϕ = 0 (2-1)

Constraint 2: The wheels of the mobile robot roll but do not slip, hence:

ẋ cosϕ+ ẏ sinϕ+ lϕ̇ = rθ̇1 (2-2)

ẋ cosϕ+ ẏ sinϕ− lϕ̇ = rθ̇2 (2-3)

The holonomic constraint can be obtained by subtracting equation 2-2 from equation 2-3, giving

2lϕ̇ = r(θ̇1 − θ̇2) (2-4)

Replacing the constant c = r/2l in equation 2-4 leads to:

ϕ̇ = c(θ̇1 − θ̇2) (2-5)

Adding equations 2-2 and 2-3 yields:

ẋ cosϕ+ ẏ sinϕ =
r

2
(θ̇1 + θ̇2) (2-6)

The non-holonomic constraint equations formed by 2-1 and 2-6 can be written in matrix form
as:

[
a11 a12 a13 a14
a21 a22 a23 a24

]
ẋ

ẏ

θ̇1
θ̇2

 = 0 (2-7)

Where the elements of the constraint matrix are
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[
a11 a12 a13 a14
a21 a22 a23 a24

]
=

[
− sinϕ cosϕ 0 0

− cosϕ − sinϕ
r

2

r

2

]
(2-8)

Equation 2-7 can be expressed as

A(q)q̇ = 0 (2-9)

Where q is the generalized coordinate given by

q =


q1
q2
q3
q4

 =


x

y

θ1
θ2

 (2-10)

2.1.3. Dynamic Model of the Robot

The system of nonlinear differential equations that represent the dynamic model of the mobile
robot can be found by using the Lagrange formulation [92, 88, 26]:

∂

∂

(
∂K

∂q̇i

)
−

(
∂K

∂qi

)
= τi − λ1a1i − λ2a2i (2-11)

with i= 1, ...4,
The total kinetic energy of the mobile robot is given by

K =
1

2
m(ẋ2+ ẏ2)+mccd(θ̇1− θ̇2)(ẏ cosϕ− ẋ sinϕ)+

1

2
Iw(θ̇1

2
+ θ̇2

2
)+

1

2
Ic2(θ̇1− θ̇2)

2 (2-12)

Where I = Ic + 2mwl
2 + 2Im

Now, the derivatives of the Lagrange Formulation (2-11) can be calculated, in order to obtain
the dynamic model of the robot.
for i = 1, the differential equation calculated is:

∂

∂t

(
∂K

∂q̇1

)
− ∂K

∂q1
= τ1 − λ1a11 − λ2a21 (2-13)

The load torques τ1 and τ2 are related with the angular velocities of the wheels. In that case this
variables are evaluated when i = 3 and 4. Now, Replacing the first state variable q1 by x, along
with elements of the constraint matrix, and using the equation ϕ = c(θ1 − θ2).
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∂

∂t

(
∂K

∂ẋ

)
− ∂K

∂x
= λ1 sinϕ+ λ2 cosϕ (2-14)

By solving the derivatives of equation 2-14, it is obtained:

∂K

∂ẋ
= mẋ−mccd(θ̇1 − θ̇2) sinϕ

∂

∂t

(
∂K

∂ẋ

)
= mẍ−mcdϕ̈ sinϕ−mcdϕ̇

2 cosϕ

∂K

∂x
= 0

(2-15)

Then, replacing the results in the equation 2-14, the first equation of the mobile dynamic model
is obtained:

mẍ−mcd(ϕ̈ sinϕ+ ϕ̇2 cosϕ) = λ1sinϕ+ λ2 cosϕ (2-16)

for i = 2, the differential equation calculated is:

∂

∂t

(
∂K

∂q̇2

)
− ∂K

∂q2
= τ2 − λ1a12 − λ2a22 (2-17)

Replacing the second state variable q2 by y, along with the elements of the constraint matrix,
and using the equation ϕ = c(θ1 − θ2).

∂

∂t

(
∂K

∂ẏ

)
− ∂K

∂y
= −λ1 cosϕ+ λ2 sinϕ (2-18)

Solving the derivatives of equation 2-18. It is obtained:

∂K

∂ẏ
= mẏ +mcdϕ̇ cosϕ

∂

∂t

(
∂K

∂ẏ

)
= mÿ +mcdϕ̈ cosϕ−mcdϕ̇

2 sinϕ

∂K

∂y
= 0

(2-19)

Then, replacing the results in equation 2-18, the second equation of the mobile dynamic model
is obtained:

mÿ +mcd(ϕ̈ cosϕ− ϕ̇2 sinϕ) = −λ1 cosϕ+ λ2 sinϕ (2-20)
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for i = 3, the differential equation calculated is:

∂

∂t

(
∂K

∂q̇3

)
− ∂K

∂q3
= τ1 − λ1a13 − λ2a23 (2-21)

Replacing the third state variable q3 by θ1, along with the elements of the constraint matrix, and
using the equation ϕ = c(θ1 − θ2):

∂

∂t

(
∂K

∂θ̇1

)
− ∂K

∂θ1
= τ1 − λ2cl (2-22)

Now, solving the derivatives of the equation 2-22. It is obtained

∂K

∂θ̇1
= mccd(ẏ cosϕ− ẋ sinϕ) + Iwθ̇1 + Ic2(θ̇1 − θ̇2)

∂

∂t

(
∂K

∂θ̇1

)
= mccd(ÿ cosϕ− ẋ sinϕϕ̇− ẍ sinϕ− ẋ cosϕϕ̇) + Iw

˙̈θ1 + Ic2(θ̈1 − θ̈2)

∂K

∂θ1
= mccd(θ̇1 − θ̇2)(−ẏ sinϕ− ẋ cosϕ)

(2-23)

Then, replacing the results in equation 2-22. It is obtained:

mccd(ÿ cosϕ− ẍ sinϕ)−mccdẏ sinϕϕ̇−mccdẋ cosϕϕ̇+mccdẏ sinϕϕ̇+mccdẋ cosϕϕ̇+

θ̈1(Iw + Ic2)− θ̈2(Ic
2) = τ1 − λ2cl

(2-24)

finally, simplifying the equation 2-24, the third equation of the mobile dynamic model is ob-
tained:

mccd(ÿ cosϕ− ẍ sinϕ) + θ̈1(Iw + Ic2)− θ̈2(Ic
2) = τ1 − λ2cl (2-25)

for i = 4, the differential equation calculated is:

∂

∂t

(
∂K

∂q̇4

)
− ∂K

∂q4
= τ2 − λ1a14 − λ2a24 (2-26)

Replacing the fourth state variable q4 by θ2.

∂

∂t

(
∂K

∂θ̇2

)
− ∂K

∂θ2
= τ2 − λ2cl (2-27)

Now, solving the derivatives of equation 2-27, and using equation ϕ = c(θ1 − θ2).
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∂K

∂θ̇2
= −mccd(ẏ cosϕ− ẋ sinϕ) + Iw(θ̇2)− Ic2(θ̇1 − θ̇2)

∂

∂t

(
∂K

∂θ̇2

)
= −mccd(ÿ cosϕ− ẏ sinϕϕ̇− ẍ sinϕ− ẋ cosϕϕ̇) + Iw(ϕ̈)− Ic2(θ̈1 − θ̈2)

∂K

∂θ2
= −mccdϕ̇(sinϕẏ + cosϕẋ)

(2-28)
Then, replacing the results in equation 2-27. It is obtained:

−mccd(ÿ cosϕ− ẍ sinϕ) +mccdẏ sinϕϕ̇+mccdẋ cosϕϕ̇−mccdẏ sinϕϕ̇

−mccdẋ cosϕϕ̇−+Iw(θ̈2)− Ic2(θ̈1 − θ̈2) = τ2 − λ2cl
(2-29)

Simplifying the equation 2-28, the fourth equation of the mobile dynamic model is obtained:

−mccd(ÿ cos(ϕ)− ẍ sin(ϕ))− θ̈1(Ic
2) + θ̈2(Iw + Ic2) = τ2 − λ2cl (2-30)

The nonlinear differential system of equations representing the dynamic model of the mobile
robot is conformed as:

λ1 sinϕ+ λ2 cosϕ = mẍ−mcd(ϕ̈ sinϕ+ ϕ̇2 cosϕ)

−λ1 cosϕ+ λ2 sinϕ = mÿ +mcd(ϕ̈ cosϕ− ϕ̇2 sinϕ)

τ1 − λ2cl = mccd(ÿ cosϕ− ẍ sinϕ) + (Ic2 + Iw)θ̈1 − Ic2θ̈2

τ2 − λ2cl =−mccd(ÿ cosϕ− ẍ sinϕ)− Ic2θ̈1 + (Ic2 + Iw)θ̈2

(2-31)

2.1.4. Dynamic Model of the Motor

In this work, the model described in [19] for energy consumption in a brushed DC motor is used.
This detailed model considers the energy dissipated in the resistive winding, the energy required
to overcome internal and load friction and the mechanical power delivered to the output shaft.
The dynamic model of a DC motor can be expressed by the following system of differential
equations [19]:

Li̇+Ri+Kwnθ̇ =V

Ktni− Isθ̈ − νθ̇ =τ + Tm

(2-32)
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The first expression in equation 2-32 is the voltage equation for a DC motor, and the second
expression reflects the torque of the DC motor. In several studies, such as [41, 42], the torque
variable is neglected, which is unrealistic for a real robot. In the proposed model, the load torque
value of a dynamic DC motor model is calculated using a mobile robot dynamic model. On the
other hand, a calibration procedure is used to estimate the internal friction torque value.
A reduced order model can be achieved for the dynamic behavior of the motor. The electrical re-
sponse is generally much faster than the mechanical response, in such a way that the inductance
of the armature circuit can be ignored. Hence, the first equation yields:

i =
V −Kwnθ̇

R
(2-33)

Equation 2-33 can be used in the second part of equation 2-32 to obtain the torque τ

τ =
Ktn

R
V − Isθ̈ −

(
KtKwn

2

R
+ ν

)
θ̇ − Tm (2-34)

2.1.5. Combination of the Dynamic Models

In order to achieve the energy consumption model, the dynamic models of the robot and the
DC motor are combined. The equation for the load torque of the DC motor model, (2-34), can
be used in the system of equations for the dynamic robot model, ( equation 2-31). Also, ϕ̇ =

c(θ̇1 − θ̇2), which is calculated from the subtraction of equations 2-2 and 2-3, can be used for
re-ordering and writing the resulting combination of the dynamic models in the following matrix
equation:

M(q)q̈ + F q̇ + C(q, q̇) = TV− A(q)λ (2-35)

Where:

M(q) =


m 0 −α1 α1

0 m α2 −α2

−α1 α2 Ic2 + Iw + Is −Ic2

α1 −α2 −Ic2 Ic2 + Iw + Is


α1 = mccd sinϕ

α2 = mccd cosϕ

F =


0 0 0 0

0 0 0 0

0 0
KtKwn

2

R
+ ν 0

0 0 0
KtKwn

2

R
+ ν


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C(q, q̇) =


−mcdϕ̇

2 cosϕ
−mcdϕ̇

2 sinϕ

Tm

Tm

 T =


0 0

0 0
Ktn

R
0

0
Ktn

R



A(q) =


− sinϕ − cosϕ
cosϕ − sinϕ

0 cl

0 cl

 (2-36)

2.1.6. Energy Consumption Model

In this section, a state space realization from [92] is used to transform the nonlinear differential
equation system representing the combination of the dynamic models into an ordinary differ-
ential equation system. In the process, the size of the state space is increased, and the Lagrange
multipliers are simplified, using the null space S(q) of the constraint matrix A(q).
Let η represent vector of the new variables, then A(q)S(q)η = 0, and using equation (2-9), it
may also be said that q̇ = S(q)η.
Vector η was chosen as:

η = θ̇ where, θ̇ = [θ̇1 θ̇2]. (2-37)

Being S(q)

[
S(q)

]
=

[
s1(q) s2(q)

]
=


cl cos(ϕ) cl cos(ϕ)
cl sin(ϕ) cl sin(ϕ)

1 0

0 1


Now, multiplying both sides of equation (2-35) by ST (q), and using the result ST (q)A(q) = 0,
turns into:

ST (q)M(q)q̈ + ST (q)F q̇ + ST (q)C(q, q̇) =ST (q)TV− ST (q)A(q)λ (2-38)

Taking the derivative of q̇ = S(q)η again, the term q̈ is obtained as:

q̈ = S(q)η̇ + ˙S(q)η (2-39)

Replacing q̇ and q̈ in equation 2-38.
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STM(Sη̇ + Ṡη) + STF (Sη) + STC = STTV (2-40)

Isolating η̇ from equation 2-40

STMSη̇ =STTV− STC − STFSη − STMṠη

η̇ =(STMS)−1(STTV − STC − STFSη − STMṠη) (2-41)

Then, the dynamic model can be represented with a new set of state variables.

x =



x

y

θ1
θ2
θ̇1
θ̇2


=

[
q

η

]

(2-42)

Equation 2-41 and equation q̇ = S(q)η may be represented in the state space form as

ẋ = f(x) + g(x)V (2-43)

where:

f(x) =

[
S(q)η

−(STMS)−1(STC + STFSη + STMṠη)

]

g(x) =

[
0

(STMS)−1STT

]
(2-44)

The voltage variable can be obtained by isolating V from equation (2-40).

V = (STT )−1(STMSη̇ + STMṠη + STFSη + STC) (2-45)

The power estimation model can be calculated with the multiplication of the voltage (equation
2-45) and the current equation (2-33).

P (t) = VT (t) i(t) (2-46)

Finally, the energy consumption model can be calculated with the integral of the power estima-
tion model (equation 2-46).

E(t) =

∫ t

0

P (t) dt (2-47)
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2.2. Simulation Results

This section is presented the simulation results of the combination of the dynamic models, for
several typical robotic tests. Finally, the energy values of the proposed model are compared
with the typical motor energy model, using as input a trapezoidal velocity profile.

2.2.1. Simulation of the Dynamic Model Combination

A set of simulations were implemented in Matlab/Simulink, whose results were compared with
simulations carried out using Robot Operating System (ROS).
To set up the combination of the dynamic models in Matlab/Simulink, represented by the equa-
tion 2-43, the robot and motor parameters of the P3-DX mobile platform presented in Kim’s
work [41] were used. These parameters are shown in tables ( 2-1 2-2). Also, the P3-DX robot
online ROS packages were used to replicate the same experiment in the ROS/Stage simulator.

Table 2-1.: Robot parameters of the P3-DX.

Robot parameters r l d mc mw

Value 0.095 m 0.165 m 0 6.04 Kg 1.48 Kg

Table 2-2.: Motor parameters of the WMR, P3-DX

Motor parameters R ν Is Kw Kt

Value 0.7 Ω 0.035
Nm
/(rad/s)

0.0713
Kg m2

0.88
(rad/s)/V

0.88
Nm/A

Two different kinds of tests were used for testing the combination of the dynamic models nu-
merically. Failure of any of those tests represents an accumulative error in the mathematical
modeling, in the numerical estimation, or the calibration of the dynamic parameters.

Straight path simulation

In the first test, in the Matlab/Simulink simulator, two positive or negative constant voltages
were used, with the same amplitude as an input of the motor voltages. It was expected that the
center of mass (COM) of the robot would describe a linear movement with the same orientation
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Figure 2-2.: Response of the dynamic model combination to constant 5 V inputs in both motors,
with a simulation time of 10 s, with initial conditions equal to zero. The robot
describes a linear movement on the x-axis of 5.14 meters. (a) Path of the robot
COM. (b) Angular velocities of the wheels. After bet the internal friction of the
motors, the wheels present a constant velocity. (c) Linear velocities on the x and y

axis. (d) Path of the robot COM in ROS/Stage simulator
.
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of the initial condition. A deviation of this orientation can represent a failure in the calculation
of the angular velocity of the wheels. The failure can be produced by an accumulative error in
the numerical approximation of the solution of the differential equations, in the mathematical
modeling, or in the initial condition.
Then, the linear velocity of the robot resulting from the Matlab/Simulink simulation was used
as input of the ROS/Stage simulation.
In figure 2-2 one simulation result is shown, in this case, the voltage input in both robot mo-
tors is 5 V, in a simulation time of 10 s. The final position of the robot in the Matlab/Simulink
simulation was 5.14 m, and in ROS/Stage simulation was 4.94 m, giving an error of 0.2 m, and a
relative error of 3.8%. In that case, the test presents successful results.
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Figure 2-3.: The response of the dynamic model combination to constant 5 V inputs to the left
motor, and zero in the other, with a simulation time of 10 s with initial conditions
equal to zero. The COM of the robot describes a circumference with a radius of
0.165 m (constant b). (a) path of the robot COM and control points. (b) Angular
velocities of the wheels. After bet the internal friction of the motors, the wheels
present a constant velocity. (c) Linear velocities along x and y-axis
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(a) (b)

(c) (d)

(e) (f)

Figure 2-4.: Simulation results in Stage/ROS simulator using as input the linear and angular ve-
locities of the robot, given by the Matlab/Simulink simulator. The radius of the
circumference is the distance between the wheels and the axis. (a) Start of the sim-
ulation with an orientation of the robot equal to 0 rad. (b) Robot orientation equal
to 0. Top view. (c) Robot orientation equal to π/4. (d) Robot orientation equal
to π/2. d) Robot orientation equal to 3π/2. (e) The end of the simulation. Robot
orientation again to 0 rad. (f) Robot orientation equal to 0 rad. Diagonal view.
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Figure 2-5.: Adapted Gaussian path

Curved path simulations

For the curvature path, a path planning from previous work, based on the Gaussian function, is
proposed. In this case, a cube is selected as an obstacle; a circumference delimited the base of
the cube. When the mobile robot moves from an initial point to a goal point and has to avoid
the obstacle, a Gaussian function is adapted to pass through the circumference, as shown in the
Figure 2-5. The equation that represents the Gaussian function is:

yd = ae
−(xd−f)2

2h2 (2-48)

Where xd and yd represents the desired path, f is the position of the center of the peak, and
a is the height of the curve’s peak. The Gaussian function is adapted to the circumference, if
f is the same center of the circumference, and a is the same radius of the circumference. The
variable h is the standard deviation that controls the width of the bell. The correct estimation
of this variable prevents the desired path from passing through the circumference area.
Once the curvature path is obtained, the angular velocities of the wheels can be calculated using
the kinematic inverse of the mobile robot, which is represented by the following matrix:

[
θ̇1
θ̇2

]
=

cosϕ
r

sinϕ

r

2l

r
cosϕ
r

sinϕ

r
−2l

r


ẋd

ẏd
ϕ̇

 (2-49)

2.3. SIMULATION AND FINAL RESULTS

The energy consumption of the mixed energy model represented by Equation (2-47) and the
motor energy model [41, 78] is compared, when the mobile robot travels on straight and curva-
ture paths, a path planning usually has these two kinds of paths. In order to set up both energy
models, the robot and motor parameters of the P3-DX mobile platform present in Kim’s work,
were used. These parameters are shown in tables 2-1, 2-2.
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2.3.1. Simulations of the Energy Estimation Models

Simulations were performed to test the energy estimation model, based on the dynamic model
combination using the dynamic parameters contained in tables 2-1, 2-2. Energy consumption
was compared between the proposed energy model and the motor energy model, with the com-
monly used trapezoidal velocity profile as the angular velocity of the wheels. First, the angular
velocity in both wheels is the same, to the mobile robot following a linear path. Different trape-
zoidal velocity profiles with a fixed path distance and different load weights are used as input
to the models. In figure 2-6, the input velocities and the COM of the robot are shown.
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Figure 2-6.: (a) Trapezoidal profile velocities for a linear distance of 10 meters, The velocities
increase until the P3-DX robot is at maximum velocity (1.2 m/s). (b) Mass center of
the robot with the trapezoidal velocity profile as input, with final times of 11, 15
and 20 seconds.

.

Figure 2-7 shows the energy consumption of the proposed energy estimation model, as com-
pared to the motor energy model. In this case, the robot mobile follows a linear path of 10 m, at
the maximum trapezoidal velocity (1.2 m/s), with the maximum load weight (7.6 Kg) allowed by
the P3-DX mobile robot, and a fixed robot weight of 6.04 Kg. Figure 2-7 also shows that, during
the acceleration, the power and energy consumption increase faster in the values given by the
combination energy model, but are the same when the velocity profile remains at the maximum
value. During the deceleration, a certain amount of energy is regenerated and stored in the
batteries. The recovered energy allows the balancing of the higher initial energy consumption
values in the proposed energy model. The energy regenerated is equal to 1.05 J for the motor
energy model, and 9.07 J for the combination energy model. The total energy consumption in
the motor energy model is the 98.84 J, and the proposed energy model is 104.3 J. But, during
acceleration, the difference of maximum energy consumed in both models, it is even higher.
The energy consumption in the motor energy model is equal to 22.03 J, and in the proposed
energy model, 36.74 J.
Table 2-3 shows the energy consumption values given by the energy models when the robot
follows a linear path of 10 m, with a payload of 3.76 kg, and with different maximum set velocities
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Figure 2-7.: Simulation with a maximum trapezoidal velocity (1.2 m/s), maximum load weight
carried by the mobile robot (7.6 Kg), and a robot weight of 6,04 Kg, for a linear
distance of 10 meters. (a) Power consumption given by the energy models. (b)
Energy consumption given by the energy models
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Figure 2-8.: Simulation with a Gaussian function adapted to a circumference that delimited the
obstacle, maximum load weight carried by the mobile robot (7.6 kg), and a mobile
robot weight of 6,04 kg. (a) Linear acceleration of the wheels for the circumference
radius of 0.5 m, 0.75 m, and 1 m. (b) Power consumption is given by the energy
models for a radius circumference of 0.5 m. (c) Energy consumption provided by
the energy models for a radius circumference of 0.5 m.
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of the trapezoidal profile. Energy consumption in both energy models increases as the velocity
rise because both models depend on the kinematic robot model and the dynamic motor model.
Energy values are higher in the proposed energy model because only this model depends on
the dynamic parameters of the robot as a payload and robot weights, as well as moments of
inertia. It is for this reason that, in Table 2-4, when the trapezoidal velocity is 0.88 m/s and the
payload increases, only the proposed model is considerably affected. The distance in the testing
cases is fixed, because any change of distance with a constant simulation time affects the angular
velocity of the wheels. These cases are already studied in the results, with different trapezoidal
velocity profiles.

Table 2-3.: Simulation results of the energy models. Different kinds of maximum velocities in
the trapezoidal profile, and a fixed load and robot weight were used.

Trapezoidal velocity Energy consumption
Maximum velocity Motor energy model Proposed energy model

0.66 m/s 53.65 J 54.51 J
0.88 m/s 71.89 J 73.68 J
1.21 m/s 98.85 J 102.9 J

Table 2-4.: Simulation results of the energy models with different load weights, with a fixed
robot weight 6.04 Kg, and with a fixed velocity of 0.88 m/s.

Robot parameter energy consumption
Load and robot weight Motor energy model Proposed energy model

6.04 Kg 71.9 J 73.15 J
9.8 Kg 71.89 J 73.68 J

13.64 Kg 71.88 J 74.25 J

For the study of energy consumption when a mobile robot travels on a curvature path, an initial
and goal position for the desired path is (xd = 6, yd = 4), the position of the circumference center
is (xc = 3, yc = 2), the edge length of the obstacle cube is 0.7 meters. The only variable that
changes for this study’s proposes is the circumference radius that delimited the obstacle. In the
Figure 2-8(a) is shows that the linear acceleration of the mobile robot is inversely related to the
circumference radius, because a smaller radius represents a narrow bell of the adapted Gaussian
function, forcing the mobile robot to accelerate to reach the peak. Is for that reason that in the
table 2-5 with a smaller circumference radius, power and energy consumption is higher, despite
the facts that, in the other cases, the travel distance is greater. Finally, in the Figure 2-8 the
behavior of the energy models when travels on a curvature path remains the same as on the
straight path, the mixed energy model increases its energy values compared to the motor energy
model, when the mobile robot accelerate, because the dynamic parameters of the robot, are
taken into consideration in the energy model proposed.
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Table 2-5.: Energy consumption of the models when the radius circumference of the adapted
Gaussian function changing.

Parameters Energy consumption
Radius Distance Motor Mixed
0.5 m 7.06 m 51.26 J 56.96 J
0.75 m 7,17 m 50.13 J 52.04 J
1 m 7.28 m 50.74 J 51.66 J

In this chapter, an energy model that takes the robot and motor dynamic parameters into account
is proposed. The energy consumption of the combined energy model was compared to a typical
motor energy model. The angular velocities of the wheels for traveling on straight and curvature
paths are used as input of the models. The simulation results show that the highest percentage
of energy consumption came from the motors. However, during mobile robot acceleration, the
dynamic parameters of the robot, such as inertia moments, robot weight, or load weight, also
influenced total energy consumption. It is for that reason that the energy values in figure 2-7
(b),(c), 2-8 (b), (c), and in tables 2-3, 2-4, 2-5 are higher in the mixed energy model than those
of the DC motor energy model, because the proposed model consider the DC motor and the
mobile robot dynamic models. However, in the deceleration phase, a certain amount of energy
was regenerated and stored in the batteries. This behavior allows for the reduction of the total
difference in energy consumption between energy models. A good estimation of power and
energy consumption, as presented, can be more easily related to the real-time autonomy of
mobile robots, which carry their energy source.



3. Hardware Validation of the Proposed
Energy Model

The hardware validation of the proposed model was obtained using the Nomad Super Scout
differential drive mobile robot test platform, property of Coimbra University of Portugal.
The energy consumption model was implemented in MATLAB/Simulink. In the model, the dy-
namic parameters of the robot (Table 3-1), and the dynamic parameters of the DC motors (Table
3-2), were used.

Table 3-1.: Parameters of the Nomad Super Scout Robot
Parameter Value Parameter Value

r [m] 0.1 mc [kg] 21.2
l [m] 0.165 mw [kg] 1.39
d [m] 0

Table 3-2.: Motor parameters of the Nomad Super Scout Robot. Reference: PITTMAN GM14900
Parameter Value Parameter Value

R [Ω] 2.74 Kw [(rad/s)/v] 0.069
ν [Nm/(rad/s)] 0.0017 Kt [Nm/A] 0.069

The robot is controlled using the built-in Motorola 68332 embedded robot controller and an
Orange Pi Pc Plus single-board computer. The robot Operating System (ROS) was used on the
Orange Pi to send the desired velocities to the robot and to receive odometry values from the
encoders, as well as the power values of the motors from a custom power measurement circuit.
Three batteries with weights of 5.7 kg, 2.55 kg and 2.25 kg were used as payloads for the robot.
The batteries were fixed on top of the robot in various combinations to achieve payload weights
of 2.5 kg, 5.7 kg, 8.25 kg and 10.5 kg (figure 3-1).

3.1. Calibration Procedure

A calibration procedure was carried out to estimate the internal friction torque of the motors.
The internal friction torque is related to opposing forces applied to the robot, e.g. the friction
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(a)

2.25 kg 2.55 kg5.7 kg

(b)

Figure 3-1.: (a) The Nomad Super Scout mobile robot used in this work. (b) Top view of the
robot, showing all the batteries that were used to vary the payload.

of the wheels with the floor and the friction in the gears. However, the load torque is related to
the acceleration, mass of the robot, and the payload, and it is calculated using the dynamic robot
model. Therefore, the dynamic motor model can be used for calibration. The friction torque of
the motor can be found by assuming no acceleration. In this case, the model can be written as:

i(t) = b1 + b2 θ̇

V (t) = c1 + c2 θ̇
(3-1)

where:

b1 =
Tm

Ktn
b2 =

ν

Ktn

c1 =
RTm

Ktn
c2 =

Rν

Ktn
+ Kw n

Then, the averages of the current and voltage were calculated using the power values from the
measurement circuit, when the robot reaches and stays in a constant linear velocity. In the
experiment, constant velocities ranging between 0.1 m/s and 0.9 m/s were used. In Figure 3-2,
current (3-2(a)) and voltage (3-2(b)) for a constant velocity of 0.8 m/s are shown. The shaded
section represented the acceleration and deceleration of the robot and, is thus excluded from the
calibration procedure. Finally, the energy consumed by the robot was calculated using equation
(2-47).

The experiment for the calibration procedure was performed without payload, on a marble floor,
along a fixed 20 m straight path. The estimate of the friction torque is obtained using least
squares fitting. The friction torque values for the motors were found out to be 0.3728 Nm and
0.346 Nm. In figure 3-3, both the energy consumed by the robot and the energy estimated by
the model are shown.
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Figure 3-2.: Calibration procedure experiment for a constant velocity of 0.8 m/s. The robot
moves in a straight path on marble floor without payload. The acceleration and
deceleration of the robot are not taken into account (shaded section): (a) odometry
values from encoders (maximum velocity 0.8 m/s). (b) The current of the left motor
and average value. (c) The voltage of the left motor and average value.
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Figure 3-3.: Estimated and measured energy consumption values for different velocities tested
in the calibration procedure experiments.
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3.2. Experimental Validation of the Proposed Model

For the validation of the proposed power estimation model, the Nomad Super Scout mobile
robot was used. A set of experiments were performed to verify the fitness of the power model
for a typical mobile robot usage scenario, such as carrying various payloads or moving with
different accelerations along straight and curved paths.

3.2.1. Straight Path Validation

In the experiments for the straight path validation, the mobile robot was commanded to cover
a distance of 10 m, on a straight path, on a marble floor, with and without payload. A constant
acceleration was applied to the robot for 4 s until it reached the desired distance. This test
was repeated several times for each acceleration. The weights of the payloads were 2.55 kg,
5.7 kg, 8.25 kg and 10.5 kg, and the various accelerations were 0.125 m/s2, 0.15 m/s2, 0.175
m/s2, 0.2 m/s2, 0.225, m/s2 and 0.25 m/s2. During validation along straight paths, the angular
velocity and acceleration of the wheels were the same. This behavior allows us to simplify the
mathematical model into a cost function that can be used for the optimization procedure. The
simplified power model depends on the angular velocity and acceleration of the wheels, as well
as the payloads. The power model equation representing the experimental setup was calculated
using equation 2-46 and the robot and motor parameters from Tables 3-1 and 3-2 and it is given
by

P1 = 0.0203θ̈1
2
+ 0.148θ̈1θ̇1 + 0.0014θ̈1

2
mp + 0.102θ̈1 + 0.0017θ̇1

2
+ 0.005θ̈1θ̇1mp (3-2)

+0.373θ̇1 + 0.0034θ̈1mp + 0.129;

P2 = 0.0203θ̈2
2
+ 0.148θ̈2θ̇2 + 0.0014θ̈2

2
mp + 0.0949θ̈2 + 0.0017θ̇2

2
+ 0.005θ̈2θ̇2mp (3-3)

+0.346θ̇2 + 0.0032θ̈2mp + 0.111;

In Figure 3-4, the results of a medium acceleration as the robot was carrying 5.7 kg are shown.
In the Figure 3-4(b), it can be seen that the power estimation model predicts the average power
consumed by the motor closely.
Measured and estimated energy consumptions for various accelerations is shown in Tables 3-3
and 3-4. The accelerations were applied to the robot, first without payload, and then with a
payload of 8.25 kg. The Tables show a change in the robot’s energy consumption when the ac-
celerations of the robot increase. By comparing the results in Tables 3-3 and 3-4, it is evident
that the energy consumption of the robot increases when the robot carries 8.25 kg of payload.

In Figure 3-5, the experimental results for three different accelerations and the various pay-
loads are summarized. The Figure also shows that no matter the acceleration when the payload
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Figure 3-4.: Validation experiment for accelerations of 0.2 m/s2: (a) The linear velocity of the
robot (odometry data). (b) Measured and estimated power values.

.

increases, the energy consumption of the robot increases as well. The highest energy consump-
tion of the robot happens at maximum acceleration with maximum payload (162.7 J). Figure
3-5 also shows that maximum acceleration with any payload can generate more robot energy
consumption than the lowest accelerations with the same payload.
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Figure 3-5.: Energy consumption values of the robot with several accelerations and payloads,
along a straight path.

Finally, the error percentages between the measured and predicted energy values for different
payloads and accelerations are shown in Table 3-5. The results show the fitness of the power
model evaluated along straight paths. It is important to note a successful result of the experi-
ment is attained when the error between the energy estimation and the measured energy values
is less than 10% (state-of-the-art good performance [10]). The experiment with 0.225 m/s2 of ac-
celeration and without payload was the only one with a relative error higher than 10%. However,
in almost all other experiments, the error falls below 8%,; in most cases, it falls below 5%. The
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Table 3-3.: Energy values of the robot and the estimated model, for the experiment without
payload

Energy values - Without payload
Robot data (Joules) Model value (Joules)

Accelerations Left motor Right motor Left motor Right motor
0.125 m/s2 56.25 53.67 60.48 57.6
0.15 m/s2 58.91 56.92 60.99 58.47

0.175 m/s2 60.26 56.33 63.57 60.28
0.2 m/s2 61.26 57.69 64.9 62.77

0.225 m/s2 60.76 56.78 66.13 64.18
0.255 m/s2 61.37 57.61 65.14 64.31

Table 3-4.: Measured and estimated energy consumptions with payload along straight paths

Energy values - Payload 8.25 kg
Robot data (Joules) Model value (Joules)

Accelerations Left motor Right motor Left motor Right motor
0.125 m/s2 67.56 64.81 65.11 62.2
0.15 m/s2 69 67.8 67.16 64.59

0.175 m/s2 70.4 66.38 70.02 67.7
0.2 m/s2 74.66 70.17 72.97 70.78

0.225 m/s2 70.9 66.62 74.34 72.4
0.255 m/s2 74.7 70.18 78.06 76.26
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table shows that the best performance of the power model is at the middle of the validation set
of accelerations for medium and high payloads. In this scenario, 29 out of 30 total experiments
were successful. The percentage of fitness of the predicted energy consumption compared with
the robot energy consumption can be calculated using equation 3-4.

fitness(%) =
Successful test

total test
× 100 (3-4)

In that case, the percentage of fitness for the experiment along the straight path equals 96.67%.
Overall, test results show that the model is accurate by the standars of the state of the art.

Table 3-5.: Error between the predicted and measured energy. Straight path experiment.
accel/payl 0 kg 2.5 kg 5.7 kg 8.25 kg 10.5 kg
0.125 m/s2 7.42 % 5.29 % 3.82 % 7.89 9.25%
0.15 m/s2 3.13% 0.13% 3.69% 5.11 % 8.46%

0.175 m/s2 5.99% 6.7 % 0.69 % 0.53% 2.85%
0.2 m/s2 7.33 % 7.2 % 0.75 % 0.2 % 1.92%

0.225 m/s2 10.86% 8.1 % 6.7 % 5.33 % 0.17%
0.25 m/s2 8.8% 9.85% 6.52% 7.94 % 5.04 %

3.2.2. Curve path validation

In this experiment, the fitness of the power estimation model along curved paths is evaluated.
For this, the mobile robot was moved along third order Bézier curves on the marble surface.
The accelerations, payloads, and directions of the robot were varied. The payloads used were
5.7 kg, 8.25 kg, and 10.5 kg. The equation of the third order Bezier curve that was used in this
experiment is given by

B(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3 (3-5)

where B is the Bézier curve, t is the parametric variable (0 < t < 1), and p0, p1, p2, p3 are the
curvature control points.
The control points were chosen taking into account the dimensions of the hall where the ex-
periment were conducted, leading to p0 = 0, p1 = 2.7, p2 = 2.7 and p3 = 2.7. The robot was
commanded to follow the Bézier’s curve. The linear and angular velocities of the robot were re-
ceived from the encoders. In Figure 3-6, the linear velocity of the robot giving by the odometry
along a right bending Bezier’s curve with no payload can be seen.
In Figure 3-7, the pose and linear velocities of the robot at different accelerations are shown (sec-
ond shaded section) when the robot follows the Bézier curve path. The accelerations are equal to
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0.15 m/s2, 0.18 m/s2, 0.2 m/s2, and 0.22 m/s2. The first acceleration in the figure (first shaded sec-
tion) corresponds to the acceleration applied by the robot controller in order to reach a desired
maximum velocity before taking the Bézier curve path. This acceleration is equal to 0.5 m/s2.
The odometry values given by the encoders are the linear velocity of the robot and the quater-
nion orientation values. But, the variables needed as an input of the proposed estimation energy
model are the angular velocities of the wheels, which can be calculated with the equation 3-6
based on the robot kinematic equations.

θ̇1 =
2v + lw

2r

θ̇2 =
2v − lw

2r

(3-6)

The only variable remaining is the angular velocity of the robot, which can be calculated using
the quaternion orientation provided for the odometry data.
A unit quaternion can be described as:

Q = [qw qx qy qz] (3-7)

The quaternion can be transformed into a roll, pitch, and yaw representation, but in this case,
only the yaw representation is needed (angular position of the robot ϕ). The equation that
transforms the quaternion to yaw representation is shown below:

ϕ = atan
(

2(qwqz + qxqy)

q2w + q2x − q2y − q2z

)
(3-8)

The angular velocity of the robot is calculated by applying the derivative of the angular position
of the robot (Figure 3-6). Figure 3-8 shows the orientation of the robot and the angular velocities
of the wheels calculated using the encoder values for the experiment with an acceleration of
0.15 m/s2. In this case, the angular velocities of the two-wheels are different around t= 4s,
which was necessary to change the direction of the robot.
Finally, the energy consumed by the robot is estimated with the proposed power model, using
the angular velocities of the wheels and different payloads as input. These estimated energy
values were compared to the energy measured with the power measurement circuit on the robot.
In Figure 3-9, the measured and estimated power values for a no-payload experiment with
0.18 m/s2 of acceleration, left direction is shown. The measured energy consumption in the
left motor was 24.1 J and in the right motor 22.86 J. The estimated energy consumption of the
left motor was 26.56 J and of the right motor 24.42 J, giving an error percentage of 9.26% for the
left motor, 6.39% for the right motor, and 8.56% for the total.
As evidenced by the data, the proposed power model overestimated the power in the initial
acceleration of the robot. This behavior appears because the load torque was calculated with
the dynamic robot model, which may be overestimated as well. Nevertheless, this procedure
allows the prediction of energy consumption with different accelerations and payloads.
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Figure 3-8.: Measured and estimated power consumptions during a Bézier curve with 0.18 m/s2

of acceleration, without any payload, along a Bézier curve, left direction. (a) Power
of the left motor (b) Power of the right motor.
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Figure 3-9.: Measured and estimated power consumptions during a Bézier curve with 0.18 m/s2

of acceleration, without any payload, along a Bézier curve, left direction. (a) Power
of the left motor (b) Power of the right motor.
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Figure 3-10.: Measured power robot data compared with the estimation power value. In an
experiment with 0.18 m/s2 of acceleration, with 10.5 kg of payload, along a Bézier
curve, left direction. (a) Left power motor (b) Right power motor.
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On the other hand, the overestimated behavior of the proposed model starts to decrease as the
payload increases. The experiment result with payload presents a better estimation in the initial
acceleration of the robot, as shown in Figure 3-10. In the Figure, the estimated power shows an
underestimated behavior at the start of the second acceleration phase.

In Tables 3-6, the results of the measurement and predictive energy consumption values of the
robot are shown. The behavior of the robot along a Bézier curve is similar to its behavior along
a straight path. A small change in the acceleration changes the energy consumption slightly. For
example, the Table shows that without payload, the difference in the energy consumed between
0.15 m/s2 and 0.22 m/s2 is almost 3 J for the left motor and barely change for the right one. As
evidenced in Table 3-7, substantial changes in payload cause significant changes in consumed
energy. For example, a 10.5 kg payload causes the robot to consume almost 12 J more in the left
motor and almost 7 J more in the right.
In Figure 3-11, the behavior of the energy consumed by the robot for three accelerations and
various payloads is presented. The Figure also shows the maximum energy consumption of the
experiment was 66.97 J, with a medium acceleration at maximum payload. At medium payloads,
the energy consumption of the robot increases as the acceleration increases.
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Figure 3-11.: Energy consumption values of the robot with several accelerations and payloads,
on Bezier curve path.

Finally, in Table 3-8, the fitness of the proposed power and energy estimation model along Bézier
curve is evaluated for different accelerations and payloads. The error percentages between the
measured and predicted energy consumptions in both the right and left directions are shown.
Without payload and high velocities, the error percentages are significant. The Table demon-
strates that the best performance of the power model is located throughout the set of validation
accelerations for medium payloads. The error percentages between the predictive and measured
values fall below 5%.
The results show that the fitness of the energy estimation model compared with the measured



3.2 Experimental Validation of the Proposed Model 47

Table 3-6.: Measured and estimated energy consumption, for a Bézier’s curve experiment with-
out payload, right direction

Energy values - Without payload
Robot data (Joules) Model value (Joules)

Accelerations Left motor Right motor Left motor Right motor
0.15 m/s2 21.96 22.77 26.65 22.57
0.18 m/s2 22.84 22.47 23 22.69
0.2 m/s2 22.02 22.02 25.6 24.72

0.22 m/s2 22.53 22.53 26.19 24.68

Table 3-7.: Measured and estimated energy consumption, for a Bézier’s curve experiment with
payload, right direction

Energy values - Payload 8.25 kg
Robot data (Joules) Model value (Joules)

Accelerations Left motor Right motor Left motor Right motor
0.15 m/s2 34.24 30.73 28.47 27.51
0.18 m/s2 35.33 31.64 31.67 30.89
0.2 m/s2 36.28 36.62 32.3 30.45

0.22 m/s2 33.02 29.58 31.39 29.58
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values given by the robot is equal to 81.25 % (using equation 3-4) for a Bézier curve path in
both directions. The results also present that 26 out of 32 experiments accurately estimated the
energy consumption of the robot.

Table 3-8.: The error between the predicted and measured energy, in the Bézier curve path ex-
periment, right direction.

accel\payl 0 kg kg 5.7 kg 8.25 kg 10.5 kg
0.15 m/s2 1.1 % 4.57 % 6.19 % 13.84 %
0.18 m/s2 0.84% 8.31% 5.06% 5.31%
0.2 m/s2 10.79% 1.07 % 2.64 % 9.45%

0.22 m/s2 10.45% 1.14 % 0.41 % 2.6 %

Table 3-9.: The error between the predicted and measured energy, in the Bézier curve path ex-
periment, left direction.

accel\payl 0 kg kg 5.7 kg 8.25 kg 10.5 kg
0.15 m/s2 6.28 % 1.32 % 8.17 % 14.01 %
0.18 m/s2 8.56% 1.02% 4.79% 8.98 %
0.2 m/s2 13.43% 0.85 % 3.74 % 8.85%

0.22 m/s2 13.36% 2.64 % 0.26 % 5.61 %

Finally, the MAPE (Mean Absolute Percentage Error) of the power estimation model can be cal-
culated with the mathematical formula:

MAPE =
1

n

n∑
i=1

(
Pmeasuredi − Pestimatedi

Pmeasuredi

)
Where:
Pestimatedi is the power estimation values.
Pmeasuredi is the power measured values.
n is the number of experiments.

The MAPE of the straight path experiments was 5.25%, for the curved path was 5.08%, and for
all the experiments was 5.53%.
To validate the proposed model is necessary to compare the MAPE result with others in the state
of art.
It was difficult to find any important research focus on the differential guide mobile robot con-
figuration, or at least that presents the MAPE value of his experiments. On the other hand, in
the literature can be found very important works focus on the skid steering robot configuration.
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For example, Chuy in his experiments show a MAPE result of 7.55%, and Gupta a MAPE of 19.87%.
In that case, our MAPE of 5.53% validates the proposed power estimation model.

3.3. Summary

In this chapter, a power and energy estimation model that takes into account the robot and
motor dynamic parameters was proposed. The internal friction torque of the motors was esti-
mated using a calibration procedure. In the dynamic motor model, the load torque is directly
proportional to the input current, the mass (including the payload), and the acceleration. This
behavior allows the proposed power model to predict the power and energy consumption for
different payloads and accelerations, evaluated for straight and Bézier curve paths.
The proposed model was experimentally validated using a two-wheel drive mobile robot, namely
the Nomad Super Scout. The results show that, when the accelerations of the robot increases the
consumed energy increases. Similarly, increasing the payload increases the consumed energy as
well. The fitness of the predictive power and energy estimation model compared with the energy
consumed by the robot was equal to 81.25% for the Bézier curve path experiments and 96.67%
for the straight path experiments. Also, the MAPE value was 5.53%, validating the proposed
power estimation model. The straight path results suggest that the simplification carried out
in the model is still valid, and the resulting expressions represent the dynamic behavior of the
actual system.



4. Trajectory Planning for a Differential
drive Mobile Robot

For mobile robots that carry their energy source, such as batteries, it is crucial that they optimize
their energy consumprion in order to fulfill long-term tasks.
In this chapter, a closed-form trajectory planning solution for differential drive mobile robots,
which provides the angular velocities of the wheels that optimize the energy consumption, on a
given straight path, is calculated. In this case, the Hamiltonian function is employed, based on
the proposed power estimation model and the Lagrange constraints.
Energy optimization can be beneficial in long-term robotic applications, including covered paths
or SLAM outdoor solutions.  

4.1. Function cost of the trajectory planning for a straight path

In this section, the cost function used in trajectory planning is depicted. When the mobile robot
moves along a straight path, the angular velocities of the wheels are the same, which permits
the simplification of the proposed power estimation model. The function that represents robot
and motor power (adding equations 3-2 and 3-3) is as follow:

P = 0.0406θ̈2 + 0.296θ̈θ̇ + 0.0028θ̈2mp + 0.197θ̈ + 0.0034θ̇2 + 0.01θ̈θ̇mp + 0.719θ̇

+0.0066θ̈mp + 0.24;

(4-1)

where:

θ̇ is the angular velocity of the wheels.
θ̈ is the angular accelerations of the wheels.
mp is the payload mass.

Subsequently, the Lagrange multipliers are added to the power estimation model, in order to
obtain the Hamiltonian function of the motors. Variable change is also proposed.
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H(aθ, vθ, λ1, λ2) = 0.0406a2θ + 0.296aθvθ + 0.0028a2θmp + 0.197aθ + 0.0034v2θ

+0.01aθvθmp + 0.719vθ + 0.0066aθmp + 0.24 + λ1vθ + λ2aθ;
(4-2)

Where:
aθ is θ̈,
vθ is θ̇
λ1,λ2 are the Lagrange multipliers.

In this case, the Hamiltonian is the cost function for optimization. Under certain conditions,
it is possible to obtain a closed-form solution may be obtained for the angular velocities of the
wheels that minimize robot energy consumption. The optimization conditions are presented in
the next section.

4.2. Hamiltonian function optimization

The conditions necessary to optimize the Hamiltonian function at all times t ∈ [0, tf ], are those
show below:

θ̇1 =
∂H1

∂λ1

λ̇1 = −∂H1

∂θ1

˙vθ1 =
∂H1

∂λ2

λ̇2 = −∂H1

∂vθ1

0 =
∂H1

∂aθ1

Partial derivative development yields:

vθ1 = θ̇1 aθ1 = ˙vθ1 λ̇1 = 0

λ̇2 = −0.296aθ − 2(0.0034)vθ − 0.01aθmp − 0.719− λ1 (4-3)

0 = 2(0.0406)aθ + 0.296vθ + 2(0.0028)aθmp + 0.197 + 0.01vθmp + 0.0066mp + λ2 (4-4)

Then, by differentiating equation 4-4, and isolating λ̇2:

λ̇2 = −2(0.0406)ȧθ − 0.296v̇θ − 2(0.0028)ȧθmp − 0.01aθ1mp (4-5)

The corresponding formulation for λ̇2, from equation 4-5, is then replaced in equation 4-3:
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−2(0.0406)ȧθ − 0.296aθ − 2(0.0028)ȧθmp − 0.01aθmp = −0.296aθ − 2(0.0034)vθ1

−0.01aθ1mp − 0.719− λ1

(4-6)

The simplification of similar terms and equation re-ordering produces the below equation:

2ȧθ(−0.0406− 0.0028mp) + 2vθ0.0034 + 0.719 + λ1 = 0 (4-7)

The differential equation that results from changing ȧθ = variables is:

c1v̈θ − c2vθ −
c3 + λ1

2
= 0 (4-8)

Where:
˙aθ1 = v̈θ1
c1 = 0.0406 + 0.0028mp

c2 = 0.0034
c3 = 0.719
Finally, the solution of the differential equation is found to be:

v∗θ1 = s1e
tk + s2e

−tk − c3 + λ1

2c2
(4-9)

Where:

k =
√

c2
c1

Equation 4-9 represents the optimal angular velocity profile that minimizes the energy consump-
tion, for a given straight path. In order to calculate the optimal angular acceleration profile, the
equation 4-9 is integrated. In the same way, to calculate the optimal angular wheel pose, equa-
tion 4-9 is derived.

θ∗1(t) =
s1
k
ekt − s2

k
e−kt − λ1 + c3

2c2
t+ s3 (4-10)

a∗θ1(t) = s1ke
kt − s2ke

−kt (4-11)

4.2.1. Optimization Constraint Equations

The s1, s2, s3 and λ1 variables are unknown, but may be determinated through the use of the
initial and final conditions of velocity and acceleration condition as optimization problem con-
straints. To determine these terms, the constraints equations are given by:

θ1(0) = 0 vθ1(0) = vo θ1(tf ) = θf vθ1(tf ) = vf
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Where
vo and vf are the initial and final angular velocities of the wheels.

θf is the total angular position, when the robot moves forward.

A non-linear equation system is obtained by replacement of the initial and final conditions in
equations (2-41) and (4-10).

s1
k

− s2
k

+ s3 = 0

s1 + s2 −
λ1 + c3
2 c2

= vo

s1
k
ek tf − s2

k
e−k tf − λ1 + c3

2 c2
tf + s3 = θf

s1 e
k tf + s2 e

−k tf − λ1 + c3
2 c2

= vf

(4-12)

The system solution gives a mathematical expression for the unknown variables, in terms of the
final time tf .

s1 =
vf − vo + θfk − δ1 + δ2 − vfktf − δ3 + δ4

δ13

s2 =
vf − vo − θfk − δ5 + δ6 + vfktf + δ7 − δ8

δ13

λ1 = −a− b

where:

a =
2c3e

ktf − 4vfc2 − 4voc2 − 4c3 + 2c3e
−ktf + 2vfc2e

ktf

δ13

b =
2vfc2e

−ktf + δ9 + δ10 − δ11 + δ12 − c3ktfe
ktf + c3ktfe

−ktf

δ13
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δ1 = vfe
−ktf δ2 = voe

−ktf

δ3 = θfke
−ktf δ4 = voktfe

−ktf

δ5 = vfe
ktf δ6 = voe

ktf

δ7 = θfke
ktf δ8 = voktfe

ktf

δ9 = 2voc2e
ktf δ10 = 2voc2e

−ktf

δ11 = 2c2θfke
ktf δ12 = 2c2θfke

−ktf

δ14 = 2ektf δ15 = 2e−ktf

δ16 = ktfe
ktf δ17 = ktfe

−ktf

δ13 = δ14 + δ15 − δ16 + δ17 − 4

The tf values is calculated using the additional boundary condition known as the transversality
condition. A detection event program is used to solve the equation.

H1(aθ(tf ), vθ(tf ), λ1(tf ), λ2(tf )) = 0; (4-13)

where:

0.0406a2θ(tf ) + 0.296aθ(tf )vf + 0.0028a2θ(tf )mp + 0.197aθ(tf ) + 0.0034v2f

+0.01aθ(tf )vfmp + 0.719vf + 0.0066aθ(tf )mp + 0.24 + λ1(tf )vf + λ2(tf )aθ(tf ) = 0;
(4-14)

4.3. Simulation and numerical validation

In this section, simulations which test the optimal velocity profile that minimizes robot energy
consumption, for different parameters are presented. The mobile robot Nomad Super Scout
was commanded to follow various straight path distances, with payloads of 5.7 kg and 10.5 kg,
and with different initial and final velocities. The robot energy consumption with the optimal
velocity profile was compared to a typical triangular and trapezoidal velocity profile.

4.3.1. Simulation set-up

Maximum trapezoidal velocities 0.35 m/s, 0.5 m/s and 0.65 m/s were used. The experiment time
for each signal phase (acceleration, constant velocity, and deceleration) was 5 s. In triangular
velocity profile case, the maximum linear velocities totaled 0.6 m/s, 0.8 m/s and 1.0 m/s, with
an experimental time for the acceleration phase of 4 s.
The mobile robot was commanded to move, following a triangular velocity profile, with different
initial and final velocities, as well. The payloads chosen for the tests were 5.7 kg and 10.5 kg.



4.3 Simulation and numerical validation 55

0 2 4 6 8 10 12 14 16
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TRAPEZOIDAL VELOCITY PROFILES

TIME(s)

V
E

L
O

C
IT

Y
(m

/s
)

(a)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TRIANGULAR VELOCITY PROFILE

TIME(s)
V

E
L

O
C

IT
Y

(m
/s

)

(b)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TRIANGULAR VELOCITY PROFILE

TIME(s)

V
E

L
O

C
IT

Y
(m

/s
)

(c)

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TRIANGULAR VELOCITY PROFILE

TIME(s)

V
E

L
O

C
IT

Y
(m

/s
)

(d)

Figure 4-1.: Odometry values received from the encoders of the trapezoidal and triangular ve-
locity profiles. (a) Trapezoidal velocity profiles with different maximum velocities.
(b) Triangular velocity profile with a maximum velocity of 0.6 m/s (c.) Triangular
velocity profiles with two accelerations, with a maximum velocity of 0.8 m/s, and
initial velocity of 0.2 m/s. (d) Triangular velocity profile, with three accelerations.
with a maximum velocity of 1.0 m/s, with an initial velocity of 0.3 m/s, and a final
velocity of 0.2 m/s.
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In Figure 4-1, the trapezoidal and triangular velocity profiles received from the encoders are
shown.

On the other hand, Figure 4-2 shows the optimal velocity profiles that minimize the energy
consumption for a mobile robots that travels along a straight path. Figure 4-2(a) and 4-2(b)
present the optimal velocity profiles with varying distances and payloads. Changes in these
variables influence the optimal times and maximum velocities.

In Figure 4-2(c) and 4-2(d), the optimal velocity profiles with different initial and final veloci-
ties, are depicted. In these cases, the optimal time avries, but the maximum velocity changes
minimally.
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Figure 4-2.: Optimal velocity profiles. (a) Optimal velocity profiles with various distance (1.0 m,
4.0 m, 7.0 m and 10.0 m). (b) Optimal velocity profiles with payload changes (0.0 kg,
5.7 kg and 10.5 kg). (c.) Optimal velocity profiles with different initial velocities
(0.0 m/s, 2.0 m/s and 4.0 m/s). (d) Optimal velocity profiles with various final veloc-
ities (0.0 m/s, 2.0 m/s, and 4.0 m/s).
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4.3.2. Energy optimization for a trapezoidal velocity profile

In this test, the mobile robot was commanded to follow a straight path with a trapezoidal velocity
profile that demanded high energy consumption. Then, the mobile robot moved along the same
path as the optimal velocity profile. The distances traveled in the experiment totaled 1.92 m,
5 m, and 8.1 m. The energy consumption for both velocity profiles was compared, showing the
significance of robot energy saving. For the length of 1.92 m, without payload, robot energy
consumption was measured at 28.19 J, and the optimal energy consumption was 16.03 J. At a
maximum distance and payload, the measured energy value was 93.95 J, and the optimal energy
value was 64.53 J. In Figure 4-3, the measured and optimal power values are compared. Figure
also shows that, with an increase in distance and payload, the energy consumption increases as
well. It is evident that, use of optimal velocity profile to move the robot with the same distance
that as that of trapezoidal velocity, decreases the energy consumption considerably. This energy-
saving behavior for different velocities and payloads is shown in Table 4-1. Finally, the optimal
velocity-time approached trapezoidal velocity-time as the distance and payload increased.

Table 4-1.: Measured and optimal energy, with different trapezoidal profiles and payloads.
Payloads 0 kg 5.7 kg 10.5 kg
Max Vel Measured Optimal Measured Optimal Measured Optimal
0.2 m/s 28.19 J 16.03 J 27.63 J 16.28 J 33.96 J 16.44 J
0.5 m/s 49.89 J 40.08 J 56.1 J 40.33 J 63.32 J 40.53 J
0.8 m/s 64.3 J 52.06 J 85.94 J 64.31 J 93.95 J 64.53 J

4.3.3. Energy Optimization of a Triangular Velocity Profile

The Nomad Super Scout robot was commanded to follow a straight path with a different triangu-
lar velocity profile that generated high robot energy consumption. Also, a payload change s and
different initial and final velocities were presented in the test. The robot moved along the same
path as the optimal velocity profile. Robot energy consumption, with both velocity profiles, was
then compared, which showed significant robot energy savings .
In Figure 4-4, a triangular velocity and an optimal velocity profiles, for a distance of 1.57 m,
are shown. Figure 4-4 also indicates measured power consumption, as compared to the optimal
power estimation. In this test, the energy measured was 17.55 J, and the optimal energy totaled
13.34 J. Table 4-2 shows the measured and optimal energy consumption for a triangular and
optimal velocity profiles, without payload, and at a distance of 1.57 m, 4.2 m, and 7.5 m.
Table 4-3, indicates the energy measured from the triangular velocity profile, with two acceler-
ations, with a final velocity of 0.2 m/s (Figure 4-1(c)) and a payload of 5.7 kg are shown. The
different triangular accelerations represent the case in which the robot reaches several check-
points, and consumes a significant amount of energy. It also shows robot energy optimization.
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Figure 4-3.: Trapezoidal and optimal velocities. Measured and optimal power. (a) Trapezoidal
and optimal velocities, without payload and a distance of 1.91 m. (b) Measured
and optimal power, without payload and a distance of 1.91 m. (c.) Trapezoidal and
optimal velocities, with 10.5 kg of payload and a distance of 8.1 m. (d) Measured
and optimal power, with 10.5 kg of payload and a distance of 8.1 m.

Table 4-2.: Triangular and optimal power consumption without payload.
Max vel 0.6 m/s 0.8 m/s 1 m/s
Measured 17.55 J 50.61 J 83.44 J
Optimal 13.34 J 35.58 J 59.79 J
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Figure 4-4.: Triangular and optimal velocities. Measured and optimal power. (a) Triangular and
optimal velocities, without payload, and at a distance of 1.57 m. (b) Measured and
optimal power, without payload, and at a distance of 1.51 m.

.

Table 4-3.: Triangular and optimal power consumption with a payload of 5.7 kg. Triangular ve-
locity profile with two accelerations, and final velocity of 0.2 m/s.

Max vel 0.6 m/s 0.8 m/s 1 m/s
Measured 42.17 J 62.07 J 80.89 J
Optimal 27.12 J 38.03 J 48.85 J

In this final test, the optimal velocity profile, a triangular velocity with three accelerations, an
initial and final velocity, and a payload of 10.5 kg was utilized. In Figure 4-5, the triangular
velocity profile employed, and the optimal velocity profile is shown. In Figure 4-5, the power of
the triangular and optimal velocity is shown as well. Measured energy totaled 68.26 J, and the
optimal energy was 36.18 J.

In figure 4-6,the robot energy consumption calculated with the triangular experimental time
and with the optimal time are compared. The measured energy was 68.26 J, estimated energy
with the experimental time was 41.81 J, and the optimal energy with the optimal time was
36.18 J. Notice that, with the optimal velocity profile calculated with the optimal time, the robot
consumes less energy.

The table presentes the same experiments with different maximum triangular velocity profiles,
and the same energy-saving behavior.
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Figure 4-5.: (a) Triangular and optimal velocities calculated with optimal time. (b) Measured and
optimal power m.
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Figure 4-6.: (a) Triangular and optimal velocities calculated with experimental time. (b) Mea-
sured and optimal power.
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Table 4-4.: Energy consumption for a triangular velocity, experimetal and optimal velocity
Max vel 0.6 m/s 0.8 m/s 1 m/s
Measured 68.26 J 97.36 J 135.53 J
Triangular time 41.81 J 65.19 J 96.78 J
Optimal time 36.18 J 51.53 J 71.7 J

The proposed energy optimization model allows to calculated velocity profiles that minimize the
amount of energy a mobile robot must carry to complete a predefined task before deployment
and deviations in the predefined estimate due to unexpected changes in the payload in real-
time. This allows charge optimization and scheduling not only for a single load-carrying robot
but also for multiple load-carrying robots operating in warehouses with a limited number of
charge stations.
In the next chapter, the energy optimization model is applied in a typical robotic problem such
as in SLAM examples.



5. Simultaneous Localization and Mapping
(SLAM) Simulation

In this chapter, the proposed optimal velocity profile, which minimizes robot energy consump-
tion, is tested in a typical mobile robot problem, such as the SLAM. As resolution of the the
SLAM problem is not the main goal of this study, the focus of the present chapter is to offer a
path and optimal velocity solution to the SLAM problem. In this case, the accumulative error
that the sensors are permitted is not considered, avoiding an estimation of the robot pose, using
typical state of the art solution such as Kalman filters.

The methodology employed is as follows: first, the environment is classified into seen, unseen,
and occupied nodes. Then, a Next Best View (NBV) point is calculated, so as to guarantee the
maximum visual range of the unseen nodes. Finally the path planning Dist Bug is used to com-
mand the mobile robot to reach the NBV, until the environment is fully explored.

5.1. SLAM simulation set up

The simulation was performed in Matlab. The environment was limited 20 m in the x-axis and
y-axis. This distance is similar to Nomad Super Scout mobile robot hardware validation scenario.
Two square obstacles were placed in the environment, and occupied an area of 16 m2 each one.
The mobile robot is represented by a circle with a radius of 1 m, this dimension is large than the
radius of the Nomad Super Scout robot, which is 0.165 m. The offset guarantees robot safety.
In the circle, there is a point that represents the mobile robot orientation. In the simulation,
there is a sensor with a visual range of 90 degrees, with which the robot can explore360 degrees
from its current position, in four rotations.

5.1.1. Study cases

Five study cases were chosen for the simulation test. These cases are representative scenarios,
which may reveal several visual occlusions between the obstacles and different robot position.
In Table 5-1, the centroid of the obstacle (px1, py1, px2, py2), the initial robot position (Rx, Ry),
and the initial robot orientation (ϕ) is shown.
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Table 5-1.: Different SLAM cases of study
PARAMETERS CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

Rx (m) 10 10 10 10 5
Ry (m) 3 3 10 10 16
Px1 (m) 15 5 5 5 12
Py1 (m) 5 15 10 5 11
Px2 (m) 7 7 15 15 15
Py2 (m) 10 10 12 6 6
ϕ (rad) π/4 π/4 π/2 π/2 π

5.2. Clasification of the environment

In this section, the classification of the environment is presented. Nodes are located to dis-
cretized the space. They are classified as either seen or unseen nodes. The nodes in the same
area from those obstacles labeled occupied nodes. Those nodes that are seen depend upon the
the robot sensors visual range, and the unseen nodes are related to the visual occlusions that
depend on both the robot and obstacle poses. Figure 5-1, shows the space classification for each
of the five cases.
It also shows, the seen nodes (green), unseen nodes (gray), occupied zone (brown), the obstacles
(blue), the obstacle offset (red), the robot (red circle) and its orientation (black point).
Figure 5-2 display the first robot exploration 360 degrees, after four rotations in the same posi-
tion.

5.3. Next Best View (NBV)

The NBV allows the robot to move to the point of maximum exploration, assuring the check
of more quantity of unseen nodes. In the state of the art, many approaches are presented.
The algorithm chosen is based on the algorithm used in Connolly (Visual sphere)[12]. A visual
circumference is drawn around the unseen nodes. Then, NVB candidates are chosen from the
visual circle every 45 degrees.
In Figure 5-3, the NBV calculations for different robot exploration are shown. Therein, when
one candidate is located outside of the workspace, it is relocated to a point perpendicular to an
environment axis limit. Should the NBV candidates pose be the same as the unseen nodes or
occupied zone, they are eliminated.
The NBV candidate with the most observed unsen nodes is the winner. In Tables 5-2 and 5-2 the
number of unseen nodes reached by all the NBV candidates in two SLAM examples is revealed.
In Figure 5-3, in the first example of the SLAM problem, the NBV winner is Candidate 6, with 76
unseen nodes observed. In the second example, the NBV winner is Candidate 1, with 73 unseen
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Figure 5-1.: Studied SLAM cases. Classification of the space. (a) Case 1. (b) Case 2. (c) Case 3.
(d) Case 4. (e) Case 5.
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Figure 5-2.: Robot exploration (360 degrees) in the same pose. (a) First rotation. (b) Second
rotation. (c) Third rotation. (d) Fourth rotation.
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Figure 5-3.: Next Best View (NBV) calculation. (a) NBV example 1. (b) NBV example 2.
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Table 5-2.: Unseen nodes observed for all the NBV candidates for the SLAM example 1.
NBV candidates NBV1 NBV2 NBV3 NBV4 NBV5 NBV6
Unseen nodes

observed
59 59 75 71 1 76

Table 5-3.: Unseen nodes observed for all the NBV candidates for the SLAM example 2.
NBV candidates NBV1 NBV2 NBV3 NBV4
Unseen nodes

observed
73 73 54 61

nodes observed.

5.4. Path planning methodology

Path planning allows the mobile robot to reach the NBV from its current position. The path
planning calculates a secure route, in order to avoid collisions with the obstacles, and unseen
nodes.

In the state of the art, many approaches are presented. In this study, however, Bug path planning
was chosen, more specifically the DistBug. This path plan better suits the numerical environment
in Matlab (squares obstacles). The DistBug reaches the NBV, and surrounds the obstacles, if
necessary.

In Figure 5-4, path planning based on DistBug is shown. First, the mobile robot is commanded to
reach the NBV (red node 1), but the path is blocked, owing to collision risk. Then, the corners of
the obstacle offsets (red), are listed in ascending order, based on their closeness to NBV. In Figure
5-4 shows that, for the robot, from its current position, it is impossible to reach the corners 2,3,4
and 5, because of the collision risk. For that reason, that the robot moves to the Corner 6. This
behavior is repeated until it reaches the NBV. In the example contained in Figure 5-4, the robot
follows the corner sequences of 6,5,3 and 1. In this case, the mobile robot orientation is always
aligned with the DistBug path node winner.

In Figure 5-5, the algorithm diagram for the SLAM solution is shown. The stop limit for explo-
ration finalization was fixed in 15 nodes, representing an error of less than of 0.2% In Figure 5-6,
the solution of the SLAM problem, case 1, is shown. Overall all the cases present successful
results. The total number of unobserved unseen nodes without observation in the first case was
9 nodes, in the second was 2 nodes, in the third was 7 nodes, in the fourth was 5 nodes and in
the fifth was 4 nodes. In this case, the exploration error was close to 0.2%.
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Figure 5-4.: DistBug path planning. (a) Distbug first phase. (b) Distbug second phase. (c) Distbug
third phase. (d) Distbug fourth phase. (e) Distbug fifth phase. (f) Distbug sixth phase.
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(a)

Figure 5-5.: SLAM solution algorithm scheme
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Figure 5-6.: SLAM solution case 1. (a) First robot exploration. (b) Reaching the first NBV. (c) Dis-
tBug path planning. (d) Second robot exploration. (e) Second DistBug path planning.
(f) End of exploration
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5.5. Trajectory path planning for the SLAM solution

In this section, a set of optimal velocities, which minimizes the energy consumption of the
robot, based on the path that solves the SLAM problem is presented. The robot is commanded
to follow a set of straight paths and turns in the same position. This behavior is repeated until to
accomplishing the exploration of the unknown environment. For the straight path, a triangular
velocity profile with a maximum velocity of 1 m/s was used. For the rotations, a constant velocity
positive and negative with the same amplitude was calculated. As shown in Figure 5-7, at the
time of robot rotation, the linear velocity thereof was zero, and when the robot moved forward,
the angular velocity was zero.
In Figure 5-8, the optimal linear velocity and the angular robot velocities, which satisfy the SLAM
solution in the first case, are shown. The angular velocity for both figures is the same because
the optimization was calculated for the straight path. Optimal velocity presents a reduction of
the simulation time and the maximum velocities, compared to the triangular velocity. In Figure
5-9, robot power consumption, with a triangular velocity profile, is indicated. Also, in Figure
5-10, robot power consumption, with the optimal velocity profile, is presented as well. Energy
consumption with the triangular velocity totaled 505.88 J, and the energy consumption with
the optimal velocity was 165.44 J. These results show a significant robot energy consumption
savings in the first SLAM example.

ANGULAR VELOCITY OF THE WHEELS (SLAM)

Figure 5-7.: Linear and angular velocities that satisfy the SLAM solution in the first case.
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ANGULAR VELOCITY OF THE WHEELS (SLAM)

Figure 5-8.: Optimal linear velocity and angular velocities that satisfy the SLAM solution of the
first case.
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Figure 5-9.: Power consumption of the robot with the triangular and constant velocity profiles
that satisfy the SLAM solution in the first case.

Robot energy consumption depends on the total distance of the path, as well as, the number
of rotations. It is for that reason that the SLAM cases in which the robot used the Dist-Bug to
avoid an obstacle and reach the NBV are those cases with high energy consumption.
For example, the energy consumption with the triangular velocity was 378.65 J and with the



72 5 Simultaneous Localization and Mapping (SLAM) Simulation

OPTIMAL POWER (SLAM-CASE 1)

TIME(s)

P
O

W
E

R
(W

)

Figure 5-10.: Power consumption of the robot with the optimal velocity profiles that satisfy the
SLAM solution of the first case.

optimal velocity, it totaled 112.87 J, in the second SLAM case. Comparison of robot energy
consumption between the first and second cases demonstrates higher energy consumption in
the first case. In Figure 5-11 the triangular velocity of the robot, which satisfies the SLAM
solution in the second case, is shown. Also, in Figure 5-12, robot optimal velocity that satisfies
the SLAM solution in the second case is presented as well. In Figures 5-13 and 5-14, robot
power consumption, with triangular and optimal velocities, is depicted.

Table 5-4.: Energy consumption results of all the simulation cases, for different payloads

.

Robot energy consumption
Payload Triangular Optimal

Case 1 0 kg 505.88 J 165.44 J
5.7 kg 505.75 J 166.98 J

10.5 kg 505.65 J 168.61 J
Case 2 0 kg 378.65 J 112.87 J

5.7 kg 378.51 J 113.73 J
10.5 kg 378.48 J 114.67 J

Case 3 0 kg 360.94 J 114.87 J
5.7 kg 360.46 J 115.93 J

10.5 kg 360.08 J 117.69 J
Case 4 0 kg 543.98 J 159.18 J

5.7 kg 543.83 J 160.57 J
10.5 kg 543.69 J 162.15 J

Case 5 0 kg 290.99 103.81
5.7 kg 290.9 105.59

10.5 kg 290.82 105.46
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Figure 5-11.: Linear and angular velocities that satisfy the SLAM solution in the second case.
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Figure 5-12.: Optimal linear velocity and angular velocities that satisfy the SLAM solution in the
second case.
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Figure 5-13.: Robot power consumption with the triangular and constant velocity profiles that
satisfy the SLAM solution in the second case.
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Figure 5-14.: Robot power consumption with the optimal velocity profiles that satisfy the SLAM
solution in the second case.

In Table 5-4, the robot energy consumption for al the SLAM cases is shown. It can be seen that
the payload doesn’t affect the energy consumption with triangular velocity, and barely change
for energy consumption with optimal velocity. Cases 3 and 5 present the lowest energy con-
sumption. It can be noticed that those cases don’t have to avoid obstacles to reach the NBV.
Finally, in all the study cases, the robot energy consumption with the optimal velocity profile,
save a significant amount of energy, compared with the energy with a triangular velocity profile.
This saving-energy behavior can be necessary for long-term robot applications, when the robot
carries their energy source, such as batteries.



6. Conclusions and Future Work

• A power and energy estimation model that takes into account the robot and motor dy-
namic parameters was proposed. The internal friction torque of the motors was estimated
using a calibration procedure. In the dynamic motor model, the load torque is directly pro-
portional to the input current, the mass (including the payload), and the acceleration. A
contribution of this study based on the power model proposed is to predict the power and
energy consumption for different payloads and accelerations, evaluated for straight and
Bezier curve paths.

The proposed model was experimentally validated using a two-wheel drive mobile robot,
namely the Nomad Super Scout. The results show that when the accelerations of the robot
increases, the consumed energy increases. Similarly, increasing the payload increases the
consumed energy as well. The fitness of the predictive power and energy estimation model
compared with the energy consumed by the robot was equal to 81.25% for the Bézier curve
path experiments and 96.67% for the straight path experiments. The straight path results
suggest that the simplification carried out in the model is still valid, and the resulting
expressions represent the dynamic behavior of the actual system.

• Another contribution of this work is to present a closed-form solution for an optimal ve-
locity profile that minimizes the robot energy consumption, for a given straight path, that
takes into account the payload. A hamiltonian function is used as a cost function to op-
timize based on the power estimation model. This function allows calculating an optimal
velocity profile that minimizes the robot energy consumption. The main contribution to
this topic is to introduce the payload as a parameter of the optimization function. In the
validation, the robot energy consumption evaluated with the optimal velocity, and with
different triangular and trapezoidal velocity is compared. The results present a significant
energy-saving of robot energy consumption. This behavior may be necessary for long-term
applications, when it carries their energy source, such as batteries. Finally, the optimal ve-
locity profile is compared with a triangular velocity profile when the robot follows a path
that solves various SLAM cases solutions. In the results, the energy-saving behavior of the
optimal velocity profile remains.

• For future works, to improve the results of the Bezier’s curve validation of the proposed
power estimation model, the calculation of the internal motor friction and the friction of
the wheels against the floor remains. Also, a closed-form solution of the optimal veloc-
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ity that minimizes the robot energy consumption evaluated for a curved path for future
research is proposed.



A. Anexo: Publications

The following papers were published in an international robotic journal and conferences using
the results presented in this thesis:

• International Conference on Information in Control Automation and Robotics (ICINCO
2018).
Paper: Mixed Energy Model for a Differential Guide Mobile Robot Evaluated with Straight
and Curvature Paths.
Authors: Mauricio F. Jaramillo Morales (Corresponding author) y Juan Bernardo Gómez
Mendoza.
Location: Porto (Portugal).
Date: 29-31 July 2018.
Modality : Oral presentation.
DOI:10.5220/0006912004730479
Corpus ID: 116304525
SciTePress 2018, ISBN 978-989-758-321-6
Volume 2.

• ·International Conference on Methods and Models in Automation and Robotics (MMAR
2018).
paper: Mixed Energy Model for a Differential Guide Mobile Robot.
authors: Mauricio F. Jaramillo Morales (Corresponding author) y Juan Bernardo Gómez
Mendoza.
Location: Miedzyzdroje (Poland).
Date: 27-30 August 2018.
Modality: Oral presentation.
Pages: 114-119
Electronic ISBN: 978-1-5386-4325-9
USB ISBN: 978-1-5386-4324-2
Print on Demand(PoD) ISBN: 978-1-5386-4326-6.
*Nominated as best paper by PhD students.
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• IEEE International Conference on Robotic Computing (ICR 2019).
Paper: Predictive Power Estimation for a Differential Drive Mobile Robot Based on Motor
and Robot Dynamic Models.
Autores: Mauricio F. Jaramillo Morales (Autor principal), Sedat Dogru, Juan Bernardo
Gómez Mendoza y Lino Marques.
Location: Nápoles(Italia).
date: 25-27 January 2019.
Modality: Oral presentation.
Pages: 301-307.
Electronic ISBN: 978-1-5386-9245-5.
Print on Demand(PoD) ISBN: 978-1-5386-9246-2.
INSPEC Accession Number: 18548205.
Acceptance rate 27.77% .

• International Journal of Advanced Robotic Systems.
Paper: Energy estimation for differential drive mobile robots on straight and rotational
trajectories.
Authors: Mauricio F. Jaramillo Morales (Autor principal), Sedat Dogru, Juan Bernardo
Gómez Mendoza y Lino Marques.
Publication date: 1 April 2020.
Category: American journal Q2.
https://doi.org/10.1177/1729881420909654
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