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Hoy en día, los escáneres 3D se han convertido en una fuente estándar que proporciona
millones de puntos como entrada para un número creciente de áreas de aplicaciones
como: industria, entretenimiento, medicina, fotogrametría, visión por computadora etc.
La gran cantidad de puntos que se generan a partir del proceso de escaneo se denom-
ina nube de puntos y, a menudo, se vuelve complicado de manejar debido a múltiples
problemas, como el ruido producido por el proceso de escaneo, la falta de informa-
ción (agujeros) y el exceso de información (puntos), también es importante en algunas
aplicaciones detecta características sobresalientes, como bordes y valles. Todos estos
problemas se abordan en la etapa de la reconstrucción de superficies llamada preproce-
samiento de la nube de puntos.

El objetivo de esta tesis es el uso de representaciones para desarrollar algoritmos
computacionales robustos para resolver los problemas presentes en el preprocesamiento
de nubes de puntos.Las representaciones dispersas son métodos inspirados in el sistema
de visión humano, los cuales pueden ser adaptados a las características de los problemas
encontrados en el pre procesamiento de nubes de puntos.

Presentamos contribuciones sobre algunos temas fundamentales como, la eliminación
de ruido, la extracción de características finas, la simplificación de puntos y la detección
de huecos. Al usar directamente los puntos 3D, evitamos la necesidad de métodos de
reconstrucción de superficie, que son complejos y requieren mucho tiempo de proce-
samiento.

En esta tesis, se introduce un método de suavizado el cual es efectivo para eliminar
el ruido y preservar las bordes y esquinas en nubes de puntos. La capacidad de preser-
vación de características proviene de la combinación de la mediana L1 y la norma L1
para estimar las normales y la actualización de las posiciones de los puntos.

Para reducir la complejidad del muestreo de la nube, presentamos un método de
simplificación basado en saliencia. Para ello, se lleva a cabo un proceso de aprendizaje
de diccionario y codificación dispersa sobre las normales y las curvaturas para encon-
trar las saliencias. A continuación, se realiza una selección de los vectores dispersos
que representan las características con mas saliencia, llevando a cabo de esta manera la
simplificación.

Introducimos un método para detectar bordes y huecos en nubes de puntos. Primero,
construimos una matriz de covarianza a partir de la información geométrica en un
vecindario alrededor de cada punto en la nube. Luego se estiman los valores propios
de la matriz de covarianza, y se combinan para formar vectores de características, que
se utilizan como señales para llevar a cabo un aprendizaje de diccionario seguido de
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un proceso de codificación disperso. Finalmente, al imponer un umbral sobre los coe-
ficientes dispersos, detectamos las características (bordes, esquinas, valles) y agujeros.
Demostramos la utilidad de todos nuestros algoritmos en una amplia variedad de mod-
elos geométricos escaneados de diferentes tamaños, complejidad y detalles.

Palabras Claves— Nubes de puntos, escaneo 3D, Suavizado, Ruido, Detección de hue-
cos, Simplificación de puntos, Representaciones Dispersas, Aprendizaje en diccionarios,
Codificación dispersa.
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Abstract

Nowadays, 3D scanners have become a standard source that provides millions
of points as input for a growing number of applications areas such as industry, en-
tertainment, medicine, computer vision, photogrammetry, etc. The large number of
points generated by the scanning device is called point clouds. Point clouds often
become complicated to handle due to multiple problems, such as the noise pro-
duced in the scanning process, lack of information (holes), or excess of information
(points). Also, it is crucial in some applications to detect sharp features, like edges
and valleys. We addressed all these problems in a stage of surface reconstruction
called point cloud pre-processing.

The focus of this thesis is the use of sparse representations for developing ro-
bust computational algorithms to solve the problems included in the pre-processing
stage. Sparse representations are methods inspired in the human visual system,
which can be adapted to the characteristics of problems found in the pre-processing
of point clouds.

We present contributions on some fundamental topics as denoising, sharp fea-
tures extraction, hole detection, and simplification. With the direct use of the 3D
points, we avoid the need for surface reconstruction methods, which are computa-
tionally complex and time-consuming.

In this thesis, we introduce a smoothing method, which is effective in removing
noise and preserving the sharp features and corners. The features preserving capa-
bility comes from the combining L1 median and L1 norm to estimate the normals
and the point positions update.

To reduce the sampling complexity of the cloud, we present a simplification
method based on saliency. A Dictionary learning and sparse coding process are
carried out over the normals and curvatures to find the saliencies. Next, it makes a
selection of the sparse coefficients that represent the most salient features, carrying
out in this way the simplification.

We introduce a method for detecting features and holes in point clouds. First,
we build a covariance matrix from the geometric information in a neighborhood
around each point in the cloud. Then we estimate the eigenvalues of the covariance
matrix, and combining them, we build feature vectors. The feature vectors are the
signals to carry out a dictionary learning followed by a sparse coding process. At
last, Imposing a threshold over the sparse coefficients, we detect features (edges,
corners, valleys) and holes. We show the effectivity of our algorithms in a wide
range of scanned geometric models of varying sizes, complexity, and details.

Keywords— Point Clouds, 3D scanning, Smoothing, Noise, Holes detection, Points
Simplification, Sharp Features, Sparse Representations, Dictionary Learning, Sparse
Coding.
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Introduction

With the growing and development in 3D acquisition devices technology, i.e., scanners,
tomography, RMI, ultrasound, and LiDAR scanning, the digitization of real objects has
become a robust and efficient task that allows the recovering of the detailed geometry of
complex objects, getting precise computational representations. Many of the acquisition
process applications are considered a Reverse Engineering process. It has been success-
fully applied in different scientific fields and industries with different purposes, such
as medicine, entertainment, visual inspection, cultural heritage, scientific visualization,
etc. The output of the scanning process is a dense point cloud. Some 3D devices can
generate up to over 40.000 points per second (BSKH09). In this thesis, we considered
the problem of processing datasets, which result from the acquisition through 3D scan-
ning devices. We focus on datasets, which are represented as unstructured point clouds.
Unstructured point clouds mean that no connectivity information can be assumed from
the underlying topology between the points samples. In this thesis, we use synthetic
datasets for a quantitative comparison of the proposed algorithms compared with the
state-of-the-art. Figure 1.1 shows the points generated by a 3D scanning process from a
3D real object and its corresponding mesh triangulation from the point cloud.

1.1 | Surface Reconstruction and Reverse Engineering
The aim of surface reconstruction is determining a mathematical surface S’, that rep-
resent an unknown real surface S, so that S’ ≈ S, with S ∈ R3, through a set P =

{pi | i ∈ [1, n]}, with pi ∈ R3, where P is the observation set, i.e., the point clouds
(BTS+14).

Reverse engineering is the process of converting a 3D point cloud into a model
bounded by a surface, often represented in a CAD model (BMV01). The aim of reverse
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(a) (b) (c)

Figure 1.1: Stanford Bunny, (a) 3D Real object, (b) Point Cloud, (c) Mesh renderization

engineering is to obtain a model from a physical object, which can be manipulated and
modified. That is why the surface reconstruction is a reverse engineering process, which
comprises the following stages:

� Data acquisition: using a 3D capture device.

� Registration: fusion of different views from an object into the same coordinate
system.

� Pre-processing: noise removal, filtering, boundary extraction, hole filling, simpli-
fication.

� Segmentation: divide the surface into segments for a criterion.

� Surface fitting: triangulation, Radial Basis Functions, NURBS surfaces.

Each of these stages is a research field on its own. The data acquisition is carried out
through the scanning of a physical object. The scanner must be calibrated first and if it is
necessary to prepare the object, i.e., if the object surface is shiny, it must be painted with
a matt color to decrease the reflectance distortion effect. Because the scanner cannot
scan the entire object surface in a single pass, different object views must be captured.
All the partial views are joined in the same reference system, to get the point cloud; this
stage is named Registration. The pre-processing step begins with the filtering and noise
reduction of the point cloud, and if it is necessary, edges and boundaries extraction
are performed. If the point cloud contains holes, this stage fills them. Depending on
the application and if the point cloud is very dense, simplification is necessary. The
segmentation stage tries to find regions of the point cloud, which can be adjusted with a
single patch. This stage is applied when the cloud belongs to a CAD model or a regular
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geometrical model. In the surface fitting stage, a continuous surface is fitted to the entire
cloud. Different surface approximations methods as Triangular Meshes, Non-Uniform
Rational B-Spline (NURBS), Radial Basis Function (RBF), etc., are used to reconstruct
the surface. Figure 1.2 shows the pipeline of surface reconstruction.

Figure 1.2: Surface Reconstruction Pipeline

The algorithms presented in this thesis addresses some problems of the preprocess-
ing stage. In the next section, we will describe these problems.

1.2 | Research Problem
In the 3D scanning process, there are shortcomings; some of them inherently related to
the acquisition devices while others relates to human operator handling. Some typical
device-dependent problems include the noise added to the point cloud, the dependency
on the lighting condition, (for light-based scanners), holes in the dataset (because of the
occlusion of the line-of-vision), inaccessibility of the surface in complex shapes and spot
shining found in specular surfaces.

For a wide range of applications, the large number of points generated by the 3D
scanners can be a problem, e.g., if there are limitations in memory (mobile devices),
bandwidth transmission, and storage access. Also, in the 3D surface reconstruction, it
is crucial to detect sharp features (edges, corners, valleys) for segmenting and approxi-
mating 3D shapes. But identifying sharp features in point clouds is a challenging task,
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even more in noisy data sets, since it is necessary to distinguish between features and
noise in the data.

Point sampling is a common issue related to the 3D scanning device handling. Be-
cause of the continuous distance fluctuations between the scanner and the scanned sur-
face, the point sampling spacing can be variable, producing point cloud with irregular
density and different average sampling spacings, making it difficult for the dataset han-
dling. The above problems are tackled by different techniques included in the point
clouds pre-processing stage, and its aim is improving the quality of the raw data within
the surface reconstruction process.

In summary, some of the problems related to the point cloud pre-processing are
noise in data, holes in data, data simplification, and sharp features detection. The math-
ematical and statistical tools involved in the point cloud pre-processing belong to the
discipline called Digital Geometry Processing, which uses mathematical models and
algorithms for analyzing and manipulating geometric data.

Considering the above, we can conclude that point cloud pre-processing is a deci-
sive step (BBK+09) if we want to get a high-quality digital representation of the scanned
physical objects. The high number of researches on this topic, confirm the pre-processing
stage relevance for the 3D surface reconstruction process and its applications.

1.3 | Problem Description
In this section, we describe the problems related with point cloud pre-processing stage.

1.3.1 | Noise Reduction
Point cloud filtering is a fundamental step in the surface reconstruction process; the
goal of the filtering is to remove or reduce the effect of noise while preserving the most
relevant features of the model. Formally we can express the measurement model for the
noise reduction problem as:

p′i = pi + ε(pi), f or i = 1, 2, .., n.

Where pi, is the underlying but unknown point of interest at the position pi =

{xi, yi, zi}, p′i is the observation or noisy measure, and ε(pi) is the noise distribution
with zero mean and variance σ2. Usually, the normal distribution is assumed for noise.
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The problem of interest is to retrieve the complete set of samples pi, denoted by
P = {i ∈ [1, n]}, from the corresponding set of observations p′i, distinguishing between
noise and fine structures that are part of the original 3D object.

The point cloud filtering is regarded as a similar problem to image filtering since
techniques applied in the filtering of point clouds have inspiration in the image pro-
cessing field, therefore the most recent researches in this field, are also valid in point
cloud filtering (WYP+15) (LDC16) (LCS17). It has been proven that the effective restora-
tion of signals (images, point clouds) (DTB06)(PBL10)(RG14), will require methods that
model the signal using prior knowledge or learn the underlying characteristics of the
signal from given data. The above involves the use of learning methods, non-parametric
methods, or Bayesian methods for effective signal restoration.

Some of the most remarkable methods for signal filtering are those based on patches
(WRK12)(RDK13). This new generation of algorithms exploits both local and non-local
redundancy or self-similarity in the images or point cloud being treated. The Bilateral
Filter (TM98) was developed with the same idea in mind, as were other filters similar
such as the Susan filter, the normalized convolution, and Yaroslavsky filters (YBS06).
The common goal of these algorithms is to measure and use the affinities between
patches or regions of interest. Within patch-based methods, we can also include sparse
representations, as dictionary learning (XZZ+14).

Recent developments in point cloud filtering come from different areas, resulting
in a great diversity of algorithms for multidimensional data processing. The methods
developed include: Moving Least Squares (MLS) (ABCO+03)(from computer graph-
ics) Bilateral Filter (BF) (FDCO03)(JDD03) and Anisotropic diffusion (CDR00) (from
computer vision), core-based methods and spectral methods (from machine learning)
(PG01) (SSC+18), sparse representations (OF96) (VG00) (XZZ+14)(from neurosciences
and machine learning), Non-Local Mean (NLM) (DG10) (GAB12) and its variants (from
signal processing), Bregman Iterations (from applied mathematics) (SKTJ14), regression
kernel and Iterative Scaling (from statistics) (SBS05) (ZWN17). While these approaches
have different origins, they are deeply connected.

The state-of-the-art on noise filtering shows different methods, among which are
the Isotropic. The isotropic methods, filter the noise independent of the surface geome-
try, within this category are the Laplacian smoothing methods and its variants (Tau95)
(VMM99) (HS13). These methods do not preserve the sharp features of the point cloud,
also produce data shrinkage, since they use averages and are not robust to outliers.

There are also Anisotropic methods; these methods consider the surface geome-
try. Examples of anisotropic methods are the adaptations of Bilateral Filter (ZFAT11)
(WYP+15) (ZDZ+15). These methods preserve sharp features such as corners and edges,
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but if the point cloud is very noisy, these methods can fail because there is ambiguity
treating the noise as sharp features.

Interpolation-based methods such as MLS and RBF are effective smoothing and
eliminating high levels of noise, but they are not robust to outliers and fail when point
sampling density is low. Sparse-based methods are robust to noise and outliers, since
these approaches use the L0 or L1 norm, but can produce (WYL+14) (MC17) false fea-
tures and flatten the geometric textures.

Probabilistic methods, which are supported by Bayesian theory (DTB06) (JWB+06),
are also robust to outliers, but because of the use of the L2 norm, they can not preserve
the sharp features and always assume Gaussian noise.

Data-Driven Methods (WLT16) are robust to noise and outliers. They have proved
to be a suitable alternative in the state-of-the-art. Still, their drawback is, the extensive
amount of data necessary for training, since they use Neural Networks. Other disad-
vantages are the training time, which consumes computational resources, and the adap-
tation to point clouds that do not have a regular distribution as an image that has its
data arranged in a grid.

The methods based on sparse coding and dictionary learning (XZZ+14) are robust
to outliers because they are based on the L0 and L1 norm, but because of the dictionary
learning process, the problem of flattening surfaces and fine features could be overcome.
They have the disadvantage that must be trained, but unlike the neural networks, the
adaptation to point clouds is easier, and the training is less heavy.

1.3.2 | Simplification
The problem of approximate a point cloud with a less dense but geometrically faith-
ful representation is fundamental in areas such as computer graphics and geometric
processing. Given the visual complexity required to create realistic scenes, simplifica-
tion efforts can be essential for efficient and accurate representation. The considerable
demand (LWC+02) to develop practical algorithms for simplifying point clouds has be-
come necessary. A significant number of algorithms to simplify point clouds have been
proposed, and we can say that they differ in approach, efficiency, quality, and gener-
ality. Some techniques offer efficient processing but produce a simplified point cloud
that is visually undesirable. Others create more nice approaches, but they are slow and
challenging to implement. Some algorithms try to preserve the original topology of the
point cloud while others alter it arbitrarily.

Point clouds can contain millions of points, such as David’s model, in the Miguel An-
gel Digital project, in which the model already generated as a triangular mesh contains
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2000 million triangles (LPC+00). These highly complex mesh models are a challenge
in storage, processing, transmission, and rendering in real-time. However, the com-
plexity of these models is not always necessary since the computational cost of using
a model is directly related to its complexity. It is useful to have simplified versions of
such complex models. Therefore, it is necessary to simplify the models maintaining the
final appearance of the object as much as possible (LWC+02).

Regarding the simplification methods, in (PGK02) (SFC10), several techniques for
the simplification of the point clouds are presented. The methods used are based on hi-
erarchical and incremental grouping, particle simulation, interactive simplification, and
bilateral filtering. These methods use the points without meshing and use the local sur-
face variation and normals to guide the simplification process. In (XHC+18) (HHSH15),
they first detect edges to guide the simplification process and in this way preserve the
sharp features in the resulting point cloud; this is a good strategy, but it does not guaran-
tee that the original surface structure remains in the simplified cloud. In (LLB09), it uses
a genetic algorithm for simplification, producing a proper simplification result. Still, the
genetic algorithm technique is time-consuming, and it can lose some fine details.

1.3.3 | Features and Hole Detection
A significant number of methods have been developed for features and holes detection
(BPB06) (SB10) (WHH10) (NTT15) (BSK06). The proposed methods detect feature points
that belong to edges and corners of the 3D models, using the local information of the
surface.

Feature detection methods applied to point clouds are less common compared to
triangular meshes detection methods. The drawback of these point-based methods is
the lack of connectivity information between the points. Feature detection methods
applied to point clouds are more challenging tasks than mesh-based methods.

Different approaches have been proposed for feature extraction at 3D points. Be-
tween the approaches are the graph-based methods (GWM01) (PKG03); the connectiv-
ity information for the point cloud is created using graphs, to a local approximation
of the surface. These methods can distinguish between corners, edges, and line-type
features. The graph-based methods use Principal Components Analysis (PCA) to find
sharp features, but it is known that the classical PCA is not robust to noise. A multi-scale
scheme must be applied to the neighborhood, doing it more robust to noise, but with a
high time-consuming computation.

Another approach is based in region growing (DVV+06), different regions are inter-
sected in sharp features; the region growing process is guided by the normal variation.
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The problem facing this method is that an accurate normal estimate has to be made to
separate regions, in the presence of noise.

With concern to hole detection, some methods use the angle criterion. The angle
criterion considers a k-nearest neighborhood for each point pi in the cloud, and then
the neighbors are projected into the tangent plane of pi. Next, the projected samples
are sorted radially, and the angles between consecutive samples are computed. The
maximum of these gaps is used to determine the probability of pi being a point on a
boundary. These methods can fail if the point cloud is noisy due to the imprecision in
the plane estimation.

The methods for hole detection based on the computation of convex hull have been
applied to detect the boundary of a surface of 3D points set (SS07) (XXFJ08). These
methods have a high computational cost because they must estimate the convex hull
for each point in the point cloud.

1.4 | The Thesis Objectives

1.4.1 | General
To propose a methodology for pre-processing 3D point clouds based on sparse represen-
tations to address the problems of noise reduction, holes and sharp features detection,
and simplification.

1.4.2 | Specific
1. To propose a method for eliminating noise through adaptive representations ob-

tained from sparse models while maintaining the local and geometric features of
the point cloud.

2. To propose a method for detecting holes and sharp features (edges, valleys) in
point clouds, based on sparse models, using the geometric and spatial information
given by the points.

3. To propose a point cloud simplification method based on sparse models to reduce
the information according to the local surface geometry.

4. To analyze the precision of the proposed methods based on what is reported in the
state-of-the-art.
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1.5 | Goal And Overview Of This Thesis

The overall goal of this thesis is to improve some tasks in the point clouds pre-processing
stage, by combining sparse mathematical models, concepts of visual perception and
numerical optimization, to detect and preserve the most relevant features of the point
cloud in each one of tackled tasks, and in this way improve the visual representation
of the objects. In this thesis, we address the problems of noise reduction while preserv-
ing sharp features, point cloud simplification, keeping the most relevant features of the
original, and finally detecting sharp features and holes in the point cloud even in the
presence of noise. We establish a methodology oriented to identify the sparse features
in the point cloud, applying sparse representation mathematical models and analyzing
the problems involved in this research from the same point of view, unifying them in a
single framework, which is the sparsity modeling.

We are not the first to explore the idea of applying sparse modeling in geometric
processing, which has already yielded several successful methods in recent years (see,
e.g., (XWZ+15)). Still, there is a long way to go, and many unsolved problems in 3D
geometry processing that can benefit from this point of view. Throughout this thesis,
we are moving in that direction, presenting solutions to the issues involved in the point
cloud pre-processing stage.

The remainder of this thesis is structured as follows:

Chapter 2 gives an overview of concepts related to the research fields. It has focused on
point clouds, k-nearest and r-neighborhoods, Principal Component Analysis, surface
variation, and sampling conditions.

Chapter 3 we present the mathematical and statistical tools using in this research. It has
focused on inverse problems from the Bayesian point of view and the relation with the
sparse representations and Minimum Description Length principle; we introduce the
L1-median filter and the L1 norm as regularization factor and the optimization algo-
rithm for L1 norm.

Chapter 4 a feature-preserving and robust point cloud denoising algorithm is presented.
We combine the L1-median filter as the fitting term and the L1 norm as the regulariza-
tion term. The surface denoising algorithm is applied to every point in the input model,
resulting in a simple and effective algorithm for point cloud denoising.

Chapter 5 deals with point clouds saliency detection, presenting an approach to saliency
detection on point clouds from a local perspective. Using the sparse coding and the
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Minimum Description Length principle; we relate the Bayesian theory with informa-
tion theory, to state a criterion for finding saliencies in point clouds.

Chapter 6 we address the simplification problem, presenting a global approach for saliency
detection in point clouds. We use dictionary learning and sparse coding techniques to
detect the saliencies. Next, the saliency is used as a starting point for the simplification
process. In this way, the saliencies guide the simplification step preserving the most
representative features in the reduced point cloud.

Chapter 7 is devoted to sharp features extraction and hole detection in the presence
of noise, presenting a multi-scale dictionary learning algorithm. We propose a global
multi-scale edge analysis identifying which features are more relevant in the point cloud
to improve the edge and hole detection.

Chapter 8 summarizes the thesis and concludes with some directions for future re-
search.

1.6 | Contributions And Academic Products
This thesis presents contributions to the point cloud pre-processing stage focused on
denoising, simplification, and feature extraction. These goals have been achieved by
the combination of the biologically inspired tools as sparse representations and visual
perception and mathematical optimizations algorithms.

� We propose the combination of the L1-median filter with L1-norm to reach robust
normal estimation that helps to keep sharp features in the object geometry. Use
the L1-median filter made the algorithm robust to outliers and high levels of noise.

� We propose an adaptive weight strategy, which gives preference to points located
on the same side of a surface when they are near a discontinuity, helping in a
more precise estimation of the tangent plane and the normal vector near the sharp
features.

� We related the concept of the Minimum Description Length (MDL) principle with
the Bayesian formulation to establish the level of saliency in a point cloud.

� We use the level of sparsity of each input signal as clusterization radius for point
cloud simplification.
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� We use a dictionary learning algorithm to extract the most relevant sparse features
from a point cloud and, in this way, detect holes and sharp features.

Parts of this thesis are based in the following publications:

� Leal, E.; Sanchez-Torres, G.; Branch, J.W. “Sharp Feature Detection on Point Sets
via Dictionary Learning and Sparse Coding”, Conference: the 15th International
Joint Conference on Computer Graphics Theory and Applications. GRAPP, Prague,
Czech Republic, February 25-27, 2019.

� Leal, E.; Sanchez-Torres, G.; Branch, J.W. “Point Cloud Saliency Detection Via Lo-
cal Sparse Coding”. Journal Dyna rev. fac. nac. minas vol.86 no.209 Medellín
Apr./June 2019. DOI: 10.15446/dyna.v86n209.75958.

� Leal, E.; Sanchez-Torres, G.; Branch, J.W. “Sparse Regularization-Based approach
for Point Cloud Denoising and Sharp Feature Enhance”. Sensors 2020, Volume 20
Issue 11 , 3206.DOI:10.3390/s20113206.

� Leal, E.; Sanchez-Torres, G.; Branch, J.W.; Abad, F.; Leal, N. “A Saliency Based
Sparse Representation Method for Point Cloud Simplification”. Submitted IEEE
Access.

During the course of this thesis, I have contributed to the following work, which is not
included in this thesis:

� Leal, N.; Zurek, E.; Leal, E. "Non-Local SVD Denoising of MRI Based on Sparse
Representations". Sensors 2020, Volume 20 Issue 5, 1536.DOI:10.3390/s20051536.
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2

Point Cloud Fundamentals

Point clouds play the central role in this research since they are the primary data input
for the algorithms presented in this thesis. In this chapter, we give some fundamentals
concepts and algorithms for point clouds characterization used by the methods pre-
sented in the subsequence chapters of this thesis. We present definitions for local sur-
face estimation and its properties like normal vectors, surface variation, tangent planes,
eigenvalues, and eigenvectors.

2.1 | Point Clouds
A point cloud is an unordered collection of n points P = {pi ∈ [1, n]}, with pi ∈ R3,
defined by a coordinate system pi = {xi, yi, zi}, that represent the geometry of an object
that has been scanned.

Typically, the point clouds are generated by a 3D scanner device but can be created
too by software, ultrasound, stereoscopy, LiDAR, etc. (ZRP02) (GW11) (KDK+14). Tri-
angular meshes are constructed from point clouds, with meshes being the most common
presentations used in various fields of application (CAK12) (ACK13).

2.2 | Local Neighborhoods
In a discrete term, a local neighborhood is defined through spatial relations between the
sampled points. Given a point p ∈ P, a neighborhood is defined as a set of indexes
Ng(p), such that each pi, i ∈ Ng(p) satisfice specific neighborhood metric. This con-
dition should be set in such a way that the points of Ng(p) appropriately represent a
small, local surface patch around the point p. In this research, we use two approaches
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Chapter 2. Point Cloud Fundamentals 2.3. K-nearest Neighbors (K-NN)

for defining local neighborhoods of points. The first approach is based on the definition
of k-nearest neighbors. The second approach is based on r-neighborhood.

2.3 | K-nearest Neighbors (K-NN)
By k-nearest neighbors Nk

g(p), we consider the ordered set, which is sorted by increas-
ing distance, of all points in P according to their distance to the point p. As follow
{|p− p1| < |p− p2| < · · · < |p− pk|}. From this set, the first k neighbor points are
selected as Nk

g(p). The set of k-nearest neighbors is then:

Nk
g(p) = {k− nearest neighbors o f p in the set data P} (2.1)

2.4 | r- Neighborhood
The r-neighborhood is the set Nr

g(p) that contain all points, within a sphere centered at p
with radius r, the number of points contained in Nr

g(p) are variable.

Nr
g(p) = {pi | ‖p− pi‖ 6 r} (2.2)

where ‖·‖, denotes the Euclidean norm.

Usually, the two definitions produce the same result when the data point are evenly
distributed. Still, the r-neighborhood strategy perform better than k-NN, since the r-
neighborhood approach has a better performance when the points or samples are not
uniformly distributed. Because the r-neighborhood depends only on the radius of the
disk irrespective of point cloud resolution unlike the k-neighborhood. Figure 2.1 shows
two types of neighborhoods.

2.5 | Principal ComponentAnalysis andNormal Estima-
tion

Based on the above definition of neighborhood relationships, the local surface proper-
ties at a point p ∈ P can be estimated using eigenanalysis over the neighborhood of p.
The statistical tool to carry out the eigenanalysis is the Principal Component Analysis
(PCA). The PCA is a powerful method to extract principal directions of data and com-
monly used for dimensionality reduction (Jol86). Eigenanalysis over the neighborhood
using the PCA produces a covariance matrix, which is decomposed on its eigenvectors

14



Chapter 2. Point Cloud Fundamentals2.5. Principal Component Analysis and Normal Estimation

(a) (b)

Figure 2.1: Neighborhood on point clouds, (a) K-nearest neighbors, (b) r-neighbors

and eigenvalues. Eigenvector and eigenvalues are used to estimating normal vectors,
tangent planes, surface variation, and other properties in the neighborhood.

To estimate the PCA, one computes the centroid p̄ ∈ R3 of the Ng(p):

p̄ =
1
n

n

∑
i=1

pi, with n =
∣∣Ng(p)

∣∣ (2.3)

The 3x3 Covariance Matrix Cm of Ng(p) is estimated as:

Cm =
1

n− 1

n

∑
i=1

(pi − p̄) (pi − p̄)T , pi ∈ Ng(p) (2.4)

Since Cm is symmetric and positive semi-definite, all the eigenvalues λi are real-
valued. The eigenvectors vi form an orthonormal base, which shows the variation of
the greatest and least variance along the direction of the corresponding eigenvectors.

The eigenvalues satisfy the following relationship λ0 6 λ1 6 λ2. The eigenvec-
tors, v1 and v2 expand a tangent plane at the point pi, and the eigenvector v0 approx-
imates the normal np in pi. The tangent plane is the set of points pi ∈ R3 such that
nT

p (pi − p̄) = 0. The normal np is unoriented because it only shows the direction of
the smallest variance of points in the neighborhood. In consequence, the normal can
point outwards or inwards. Compute a consistently oriented normal field on a point
cloud is mandatory for surface reconstruction. Figure 2.2 illustrates the 2D geometric
interpretation of the covariance matrix Cm.
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Chapter 2. Point Cloud Fundamentals 2.6. Normal Orientation

Figure 2.2: Normal and tangent plane estimation using PCA, adapted from Pauly
(PGK02).

2.6 | Normal Orientation
A consistent orientation of the normal vectors is required for some applications. If we
know the scanner position, then the normal can be oriented regarding its position. We
compute a consistent normal field orientation via Minimum Spanning Tree (MST) of the
point cloud, as described in (HDD+92). The edge weights in the MST are then computed
from the distances between adjacent points and the deviations of their corresponding
normal directions. The normal vector of each adjacent point in the MST can then be
oriented based on the assumption that the angle of the normal vectors of adjacent points
is almost equal (Figure 2.3).

(a) (b)

Figure 2.3: Normal orientation using MST, (a) Unoriented normals, (b) the normal has
been flipped base on the assumption that the angle between normal vectors is almost
equal.
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Chapter 2. Point Cloud Fundamentals 2.7. Surface Variation

2.7 | Surface Variation
The surface variation at point p in a neighborhood is defined as

σ (p) =
λ0

λ0 + λ1 + λ2
(2.5)

Where λ0, is a measure of the variation along the normal direction, i.e., describe how
far the points deviate from the tangent plane. If the surface is locally flat, then σ (p) = 0,
but if the surface point is isotropic the variation σ (p) = 1/3. Surface variation is closely
related to the mean curvature (PGK02).

2.8 | Edge Points and Corner Points
When a set of points are on a surface discontinuity, it can be observed that λ0 will be
large compared to λ2. The quotient between the eigenvalues λ0 and λ2, can be used as
a measure of the probability that the point p will fall near a discontinuity on the surface
S. That is

λ0

λ2
> ε (2.6)

where ε is a threshold. We say that p is an edge point. On the other hand, if the
quotient

λ2 − λ0

λ2
> δ (2.7)

where δ is a threshold, we say that p is a corner point.
In a border point, the eigenvalues λ1 and λ2 obey 2λ1 ≈ λ2 and we can establish the

following criterion, to identify the point pi as border.

bp (pi) = |λ2 − 2λ1| /λ2 (2.8)

2.9 | Sampling Requirements
All the methods presented above, are based on the supposition that the k-nearest neigh-
borhood of point p, represent a small patch of the underlying surface S around p. The in-
tersection of the ball that encloses the k-nearest neighborhood with the surface S should
be a disk. The intersection must be sufficiently flat to ensure the accurate normal esti-
mation (see Figure 2.2), because we are approximating the surface S using a regression
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Chapter 2. Point Cloud Fundamentals 2.9. Sampling Requirements

plane to the k-nearest neighborhood of p. It means that the enclosing ball should not be
too large in surface regions with high curvature (PGK02).
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3

Mathematical Background

This chapter presents the fundamental theories and concepts in which are based the
algorithms in this thesis. We describe mathematical and statistical tools used for pro-
cessing the point clouds and the optimization techniques to minimize the proposed al-
gorithms. We present the concepts of inverse problems and the Bayesian theory, the
sparsity visual theory, and its mathematical representation as sparse vectors. The above
tools are the core of the methods presented in the rest of the chapters.

3.1 | Inverse Problems
Every technological and information system often works with input signals to under-
stand or process relevant information. During capturing data through a sensor, there is
some degradation of the signal being measured. This degradation is because of techno-
logical limitations, electronic noise, defective sensors, and optical distortions; these are
all typical factors that reduce the signal quality. Therefore, any measurement or capture
of information that is done, such as recording audio, taking photographs, medical exam-
inations (ultrasound, Computerized Axial Tomography, Magnetic Resonance Imaging),
3D scanning of objects, among others, often needs to be restored and improved. Recover
the original data from its degraded measurement is named an inverse problem and is
the aim of the signal processing field. Many real-world signals bring with them some
inherent structure or other characteristics that make these problems more tractable. Us-
ing this prior knowledge is what allows researches to develop successful methods for
signal processing applications (Tur15).
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Chapter 3. Mathematical Background 3.2. Pre-Processing as Inverse Problems

3.2 | Pre-Processing as Inverse Problems
Since the point cloud results from a measurement process, we have a degraded signal
that needs to be reconstructed. Then we can conclude that the problems tackled by
this research have in common that they are ill-posed problems that may have many
solutions and, therefore can be treated as an inverse problem. Inverse problems can be
solved using the Bayesian theory; this theory contributes to an approach to the solution
sought since it allows us to build models to deal with this kind of problem.

As already mentioned, in this thesis, we tackled the following three problems in-
cluded in the pre-processing stage: noise reduction, feature detection, hole detection,
and point simplification. In general, we can describe the three problems as inverse
problems, which are modeled as:

y = x + n (3.1)

Where x is the latent or unknown surface, y is the observed information (points
with noise, sharp features, holes boundary, different levels of simplification), and n is
additive random noise.

3.3 | Bayesian Inference
Bayesian inference is used in areas such as digital image processing, machine learning,
decision theory, etc. Recently it has also been incorporated into the field of surface
reconstruction (Han93) (DTB06) (JWB+06) (HBS+18). If the information observed is y,
and the latent or unknown surface is x, the goal is to compute the optimal posterior
probability using the Bayes rule.

p(x | y) =
p(y | x)p(x)

p(y)
∝ p(y | x)p(x) (3.2)

where p(y | x) is the likelihood (data, fitting error, fitting data) term and fallows a
Gaussian distribution, and p(x) denotes the a priori model in our case the knowledge
that is had or assumed of the surface. According to how the a priori model is chosen on
the surface, the problem to be solved will take different solutions. i.e., a solution method
will be more effective than another since the prior information represents the model of
how we want our solution to have the result we are looking for.
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Chapter 3. Mathematical Background 3.4. Inverse Problems Applied on Geometric Processing

3.4 | Inverse Problems Applied on Geometric Process-
ing

As mentioned before, depending on how we choose, the prior model implies how the
solution to our problem will be modeled. Equation 3.2 can also be taken to the form
of Equation 3.3 if we modeled with Gaussian distributions, and the logarithm function
applies to the equation terms

f (x) =
1
2
‖x− y‖q

2 + Pr(x) (3.3)

where the term 1
2 ‖x− y‖q

2, is the mean square error or the fitting term, when q = 2,
results in a convex optimization problem. The term Pr(x), is known as prior or regular-
ization term. This problem is solved by adopting the Maximum A-posteriori Probability
(MAP) estimator. Over the past decades, all kinds of guess have been made about the
prior information Pr(x) in problems in which the MAP is used as a solution. That is
why the a priori information has had different forms that range from the minimization
of energy with L2 norm, robust statistic models, the L1 norm of the total variation, the
use of sparse wavelets, Markov random fields, until the use sparse representations, with
the L0 and L1 norms.

3.5 | Sparse Representations
Sparse representations have a biologically inspired motivation. Recent researches (OF96)
(VG00) in the neuroscience field proved that cells of primary visual cortex, in the hu-
man brain, uses sparsity for visual recognition task to extract information from outside
sources, because the information of interest is always sparse compared with the whole
data. For example, Figure 3.1 shows different images where the human visual system
fixed the view in particular objects (red car, woman and dog, white flower, red line) that
are different respect to the background, the human brain is using sparsity to disregard
the rest of visual information in each image.

From the linear algebra point of view, the term sparsity refers to the number of non-
zero elements in a vector. One indicator to measure the sparsity of a vector α is the
l0–norm or l0–pseudonorm, which measures the dispersion, counting the number of
non-zero coefficients in the vector α. The l0–norm is defined as follows:

‖α‖0 = | {i : αi 6= 0} | (3.4)
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Chapter 3. Mathematical Background 3.6. Sparse Coding

Figure 3.1: Set of images illustrating the sparsity concept.

where | {i : αi 6= 0} | denotes the cardinality of {i : αi 6= 0}. Thus, a vector α ∈ Rn

is sparse if ‖α‖0 = k � n. Another way to approximate sparsity is using the l1–norm,
which is the sum of the absolute value of the elements in a vector α ∈ Rn, is defined as
follows:

‖α‖1 =
n

∑
i=1
|αi| (3.5)

Thus, a vector α ∈ Rn is sparse, if ‖α‖1 = k � n. If a signal can be characterized by
a few significant terms in some domain, the signal is sparse.

3.6 | Sparse Coding
The purpose of sparse coding is to approximate a feature input vector as a linear com-
bination of basis vectors, called atoms, which are selected from a dictionary learned
from the data themselves. Sparse coding provides a low-dimensional approximation of
a signal in a set of basis (OF97).

Formally, let x be a signal of dimension n, the sparse coding aims to find a dictionary
D = {d1, d2, . . . dN}, such that x can be approximated by a linear combination of the
atoms {di}N

i=1 this is x = Dα = ∑N
j=1 αjdj, (if the dictionary is overcomplete then N >

n) where most of the coefficients αj are zeros or close to zero (BJQS16). We have that
the sparse coding problem can typically be formulated as an optimization problem as
Equation (3.6) indicates:

α̂ = arg min
α
‖x−Dα‖2

2 s.t ‖α‖0 ≤ L (3.6)

In this formulation, the dictionary D is given, and L controls the sparsity of x in
D. The term ‖α‖0 measures the dispersion of the decomposition. It can be understood
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Chapter 3. Mathematical Background 3.7. Numerical Methods for L1 Norm Minimization

as the number of non-zero coefficients in α, or, sparse coefficients, to approximate the
signal x as sparse as possible. Alternatively, as (3.7):

α̂ = arg min
α
‖x−Dα‖2

2 + λ ‖α‖1 (3.7)

It is an optimization problem where the norm l0 (‖·‖0) is changed, by the norm
l1 (‖·‖1), being λ the regularization parameter. The solution to Equation (3.6) with l0
norm is an NP-hard problem; fortunately, under certain conditions, it is possible to re-
lax the problem using l1 norm and find an approximated solution using equation (3.7).

3.7 | Numerical Methods for L1 Norm Minimization
Although the l0-norm is the real measure of sparsity, the problems (3.6) become NP-
hard, for which there is no optimal algorithm except brute force. As an alternative, the
l1-norm is used as an approximation; this is called relaxation. The algorithms presented
in this research use the l1-norm, as a regularization term. There is a wide range of
numerical methods to solve problems that involve the l1-norm some of them are

� Basis Pursuit Denoising Lasso type algorithms: Least Angle Regression (LARS).

� Constraint Optimization: Gradient Projection Sparse Reconstruction (GPRS), In-
terior Point Method Based Sparse Representation, Alternated Direction Method
(ADM) Sparse Representation.

� Proximity Algorithm: Proximal Gradient Soft Thresholding or Shrinkage Opera-
tor, Iterative Shrinkage Thresholding Algorithm (ISTA), Fast Iterative Shrinkage
Thresholding Algorithm (FISTA), Augmented Lagrange Multiplier (ALM), Split
Bregman Method.

In this thesis, we use the LARS algorithm strategy for Sparse Coding and the Proxi-
mal Gradient strategy for smoothing.

3.7.1 | Least Angle Regression for Lasso - LARS Algorithm
LARS proposed by (EHJT04) is a model selection method for linear regression in high
dimensional data, with fast convergence. At each step, it finds the predictor most cor-
related with the response. When multiple predictors have equal correlation, instead
of continuing along with the same predictor, it proceeds in a direction equiangular be-
tween the predictors. LARS is summarized in Algorithm 3.1.
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Algorithm 3.1: The Least Angle Regression (LARS) Algorithm
Input: m× n matrix A, y
1: Initialize:

x = 0, S = supp(x) = φ, r = y−Ax = y

2: Select first variable:
find the predictor (column in A) most correlated with residual r :
i = arg maxiaT

i r
x̂i = maxiaT

i r
S← S ∪ {i} //update the support

3:

Move the coefficient xi from 0 towards its least-squares coefficient x̂ik ,
updating the residual r along the way, until some other predictor aj
has as much correlation with the current residual as does aj; then add
it to the support: S← S ∪ {j}

4:
Move xi and xj in the direction defined by their joint least-squares
coefficient:

δk = (AT
Sk ASk)−1AT

Sk r
of the current residual on the current support set S, until some other
predictor ak has as much correlation with the current residual; then
add it to the support: S← S ∪ {k}.

5:
Continue adding predictors for min(m− 1, n) steps, until full OLS
solution is obtained. if n < m, all predictors are now in the model.

3.7.2 | Proximal Gradient
Proximal gradient algorithms (PB14) are useful when the function to minimize is di-
vided into two parts, one of which is smooth, and the other part convex non-smooth,
and there must exist a proximal operator. i.e., It is a way of solving non-smoothing
convex problems with a composite structure.

min
x∈Rn

F(x) = f (x) + h(x) (3.8)

Where
f (x) is convex and differentiable (example f (x) = 1

2 ‖Ax− b‖2
2),

h(x) is convex, non-smooth and with an inexpensive proximal operator (example h(x) =
γ ‖x‖1)
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The proximal operator associated with the convex function h(x) is

proxh,γ(n) = arg min
z

(
h(z) +

1
2γ
‖z− n‖ 2

2

)
(3.9)

The proximal gradient descendent has an iteration with form

xk+1 = proxh,γ

(
xk − γ∇ f (xk)

)
(3.10)

Where γ > 0, is a scalar named step size that can be fixed or determined by line
search 3.10 is computed iteratively until convergence.

The proximal operator corresponding to the function h(x) and γ is the shrinkage or
soft thresholding function.

proxh,γ(xi) =


xi − γλ , if xi > γλ

0 , if |xi| ≤ γλ

xi + γλ , if xi < −γλ

(3.11)

Or equivalently proxh,γ(xi) = soft(x, γ), where

soft(x, γ) = sig(x) ∗max(|x| − γλ, 0) (3.12)

The proximal gradient is summarized in Algorithm 3.2.

Algorithm 3.2: Proximal Gradient

1. Initialize:
choose x0 ∈ Rn

L← L( f ), a Lipshitz constant of ∇f

2. Iteration step k:
Gf (xk−1)← xk−1 − 1

L∇ f (xk−1)
xk−1 ← Proxµg(Gf (xk−1))
k← k + 1

3. If a convergence is satisfied, then exit, otherwise go to step 2.
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3.8 | Dictionary Learning
Dictionary learning is the method of learning to find a set of basis vectors D represented
in a matrix called dictionary, such that we can write a signal as a linear combination of
a few columns from the matrix as possible, instead of using a pre-determined dictio-
nary D, for instance, a Wavelet basis, contourlets, curvelets, etc. which are restricted to
signal of a specific type and have a limited proficiency to make sparse the signals, the
dictionary learning, learn an effective dictionary from an overcomplete basis features. A
dictionary learning algorithm iteratively builds a dictionary from a training database of
signal instances. Some research (OF96) has shown that learn the dictionary directly from
training data rather than a pre-defined dictionary generally leads better representations,
and it is reflecting in the improvement of results in different applications.

Given a dataset of n training signals X = {x1, x2, . . . xn}, the dictionary learning
problem can be formulated as:

D̂, α̂ = arg min
D,α

n

∑
i=1

1
2
‖xi −Dαi‖2

2 + λ ‖αi‖1 (3.13)

Where α = {α1, α2, . . . αn}, are the sparse representation of the input signals X. Since
both D and α are unknown, this minimization is non-convex. An optimal local solution
is obtained using an alternating-minimization strategy; this iterate until convergence
between two optimization steps: (1) optimization respect to α, given a fixed D, and (2)
optimization respect to D, given a fixed α.

The step (1) was already explained in section 3.6, with its respective optimization
algorithm LARS for LASSO. Step (2) can be optimized using the Method of Optimal
Directions (MOD) (EAHH99) or the K-SVD algorithm. In this research, we use the K-
SVD.

3.8.1 | The K-SVD Algorithm
The K-SVD algorithm is a generalization of K-Means clustering process presented in
(AEB06). It Is used for dictionary learning to build a dictionary for sparse represen-
tations. K-SVD is an iterative method that alternates between sparse coding step and
updating the dictionary atoms to fit the data better. The K-SVD is described in Algo-
rithm 3.3.
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Algorithm 3.3: The K-SVD dictionary learning algorithm
Requires: Set of training signals Y
Ensure: Trained dictionary D
1: Initialize Dictionary: Build D(0) ∈ Rnxm

2: while ‖Y−Dα‖2
2 > ε do

3: Sparse Coding Stage: Use a pursuit algorithm to approximate the solution of
α′i = minα ‖yi −Dk−1α‖2

2 s.t. ‖α‖0 ≤ k0
obtaining sparse representations α′i for 1 ≤ i ≤ M. These form the matrix X(4)

4: K-SVD Dictionary - Update Stage:
5: for j0 = 1, 2, . . . , m do
6: Update the columns of the dictionary and obtain D(k)
7: Define the group of examples that use the atom αj0,

ωj0 = {i | 1 ≤ i ≤ M, X(k)[j0, i] 6= 0}
8: Compute the residual matrix

Ej0 = Y−∑j 6=j0 diα
T
j

where xj are the j′th rows in the matrix X(k)
9: Restrict Ej0 by choosing only the columns corresponding to ωj0, and obtain ER

j0
10: Apply SVD decomposition ER

j0 = U∆VT

11: Update the dictionary atom dj0 = u1 where u1 is the higher value of matrix U,
obtained from SVD decomposition.

12: end for
13: end while
14: return D

3.9 | L1 Median
The L1-Median is a robust estimator related with the multivariate median, it is defined
to be the point x, which minimizes the sum of Euclidean distances to all points in the
data set

{
pj
}

j∈J

arg min
x ∑

j∈J

∥∥pj − x
∥∥ (3.14)

L1-Median is insensitive to outliers and noise, compared with the mean (LCOLTE07).
We use the L1-median as the data-fidelity term, due to these properties.

3.10 | Sparse Regularization and Fitting
Sparse regularization and fitting can be classified into two types (XWZ+15):
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� Imposing sparsity norm on the regularization term. This type of sparse regular-
ization is used to denoise and preserve sharp features. Second term (3.3)

� Imposing sparsity-based measurement in the fitting term. This type of fitting term
is used because it works very well for a dataset with noise and outliers. First-term
(3.3)

In chapter 4, we use both sparsity types for point cloud denoising, using L1−median
as the fitting term and L1 − norm as the regularization term.

3.11 | Minimum Description Length
The MDL principle (RS12) (SCMP14) (Ris78), states that given a model class M of can-
didate models, its parameter M, and its data sample x, the MDL provides a generic
solution to the model selection that minimally represent the data x. Formally, given a
set of candidate models M, and a data vector x, MDL search for the best model M̂ ∈M,
that can be used to describe x completely with the shortest length.

M̂ = arg min
M∈M

L(x, M) (3.15)

Where, L(x, M) is a coding assignment function, which gives the code length re-
quired to describe (x, M) uniquely. In this research, we use the MDL concept to estab-
lish a relationship between the length of the sparsity vector (prior term) and fitting term
(likelihood) with saliency detection on point clouds, as is described in chapter 5.
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4

Point Cloud Denoising

During the 3D scanning process it is inevitable to get a point cloud with noise and out-
liers. Denoising the point cloud is fundamental for reconstructing high quality surfaces
with details, in order to eliminate noise and outliers in the 3D scanning process. The
challenges for a denoising algorithm are noise reduction and sharp features preserva-
tion. In this chapter, we present a new sparse regularization model for reconstructing
and smoothing point clouds. The proposed approach combines the L1-median filter
with the sparse L1-norm for both denoising the normal vectors and updating the po-
sition of the points to preserve sharp features in the point cloud. The L1-median filter
is a robust estimator insensible to outliers and noise compared to the mean, and its in-
clusion in the proposed method is to find a local reference plane to estimate the normal
vector. L1 norm is a way to measure the sparsity of a solution, and applying an L1 opti-
mization to the point cloud, can measure the sparsity of sharp features, producing clean
point set surfaces with sharp features. We optimize the model recurring an alternating
optimization strategy, which involves a proximal gradient descent algorithm to solve
the L1 minimization problem. Experimental results show that our approach has advan-
tages respect to the state-of-art methods since filters out 3D models with a high level of
noise keeping their geometric features. Both visual and quantitative comparison shows
that our approach, sometimes, outperforms the competing methods.

4.1 | Introduction
With the rapid expansion of 3D scanning devices, the process of capturing and scanning
real objects has become a common task in many areas, ranging from medicine and enter-
tainment to industry and 3D printing. Despite significant development in the precision
of 3D scanning technology, the raw data produced by the scanning devices inevitably
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contains noise and outliers, caused by the inherent measurement error of 3D devices
and the digitization process. Hence the importance of denoising the point cloud in a
pre-processing step before proceeding with surface reconstruction or shape analysis.
The goal of the denoising algorithms is to suppress noise and outliers while preserving
the sharp features such as edges and corners. Unlike denoising methods focused on
triangular meshes, methods focused on point clouds do not have connectivity informa-
tion, introducing an additional challenge. Denoising point clouds with sharp features is
a complex problem as the features and noise are high frequency and therefore difficult
to distinguish.

Many point set surfaces are piecewise smooth almost everywhere except for a few
features such as corners and edges (SSW15) (ASGCO10). This means that these features
are sparse, allowing a sparsity analysis in the point clouds to be conducted to estimate
them. We can measure the sparsity of a solution using either the L0 norm or the L1 norm.
The L0 norm counts the number of non-zero elements in a vector, directly measuring the
sparsity, but it is challenging to optimize due to its non-convexity; meanwhile, the L1

norm can approximate the L0 norm. The L1 norm is convex, and under certain con-
ditions, produces sparse solutions. Some works exploit the sparsity theory on point
clouds (SSW15) (ASGCO10) (MC17) (SBV+18), and applying this theory is motivated
by the field of sparse signal reconstruction and compressed sensing (Don06) (CRT06).
These works have attempted to overcome the problems related to noisy point clouds;
the algorithms proposed in these studies perform well for feature preservation with a
certain level of noise. Still, when the noise scale is larger, or impulsive noise is present,
they usually do not do well. Although the L0 norm produces sparser solution than
the L1 norm; the application of the L0 minimization can over-flatten and over-sharpen
effects for small geometric features.

In this thesis, we propose a robust method that focuses on removing noise and out-
liers while preserving the sharp features in a point cloud. Our approach comprises two
iterative steps: (1) the normal estimation, finding a regression plane equidistant to all
heights in a local neighborhood to then calculate the normal at the plane; and (2) based
on the estimation of the normals, the position of the points is updated, using the orthog-
onal distance of the noisy point to the local regression plane, shifting the point along the
normal direction projecting it onto the plane. This two-step procedure is repeated until
a minimum error threshold is reached.

Our work is motivated by three observations: (1) L1-median filtering data-fidelity
term encourages us to find a local regression plane to approximate the input points
while discarding the noise and outliers; (2) points that belong to the same local smooth
region will have similar normals and the differences between them should be sparse,
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while large differences in values would reveal sharp features; and (3) points in a local
neighborhood must comply with a local planarity criterion, except in the sharp features.

4.1.1 | Contributions
The major contributions of this chapter are:

1. We present a two-step method that combines the L1-median filtering as a data-
fidelity term with L1 minimization strategies as a regularization term. For both
normal estimation and point position update. The method measures the sparsity
of sharp features and discriminates between noise and features.

2. An adaptive weighted strategy is employed to improve the normal estimation on
sharp features, giving more importance to neighboring points in the same surface
and discriminating neighboring points that cross sharp features, these points are
identified as outliers.

3. The method can handle point clouds with significant scale noise, outliers, impul-
sive noise, and is easy to implement.

4. The performance of our method is shown in a variety of models scanned by 3D de-
vices and synthetic point cloud as CAD models, outperforming some point clouds
denoising methods of the state-of-the-art.

4.2 | Related work
Point cloud denoising algorithms can be roughly divided into six categories: moving
least squares (MLS)-based methods, locally optimal projection (LOP)-based methods,
sparsity-based methods, non-local similarity-based method, graph-based methods, and
normal smoothing based methods. In this chapter, we are interested in point cloud
denoising coupled with features preservation.

4.2.1 | MLS-Based Methods
The MLS (ABCO+03) methods approximate a noisy input point cloud with a smooth
surface by projecting the noisy points onto the MLS surface. Three steps are required
to project each point: (1) finding a local reference domain to each point, (2) defining a
function above the reference domain by fitting a bivariate polynomial using its neigh-
boring points, (3) compute the projection by evaluating the polynomial at the origin.
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MLS methods have some drawbacks, because they are not robust to outliers. The pro-
jection procedure can be unstable in high curvature and low sampling rate and can
over-smooth the surface. Several variants to this method have been proposed to cor-
rect the cited problems and for handling sharp features; e.g., algebraic point set surfaces
(APSS) (GG07), and robust implicit MLS (RIMLS) (OGG09).

4.2.2 | LOP-Based Methods

Without the use of normal information, LOP-based methods (LCOLTE07) generate a
set of points called particles and using the L1 median and a regularization term, carry
out a iterative process to reach a clean surface. This method projects the points to an
underlying surface while enforcing a uniform distribution of points. A variation to this
method is the Weighted LOP (WLOP) (HLZ+09). This method produces more evenly
distributed points on the surface but can not handle well the sharp features. Edge Aware
Resampling (EAR)(HWG+13) or Anisotropic LOP (AWLOP), improve sharp features by
modifying LOP to use normal information as a weight function. However, LOP-based
methods can produce over-smoothing because of the use of local operators.

4.2.3 | Non-Local Similarity -Based Methods

These methods are inspired by the image processing techniques Non-Local Mean (NLM)
(BCM05) and the BM3D (DFKE07) algorithms, and they exploit the concepts of self-
similarity between small surface patches in the point cloud. The direct application of
this concept to point cloud is not straightforward, because the point clouds structure
does not exhibit the regular disposition such as the pixels in an image in their structure.
The methods based on MLN or BM3D better preserve structural features under a high
level of noise. One of the first works extending the NLM algorithm to operate in point
clouds is (DG10). This method uses the MLS surface and its polynomial coefficients as
neighborhood descriptors to find similar patches or neighborhoods. In (RDK13), [16],
the authors generalized the BM3D, searching for similar neighborhoods globally in the
point cloud using the Iterative Closest Point (ICP) algorithm. Low-rank matrix repre-
sentation is used in (Sarkar et al., 2018), wherein the authors use dictionary representa-
tion from the noisy patches to smooth 3D patches. The drawback of this method is its
computational complexity given the global point clouds search.
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4.2.4 | Graph-Based Methods
Graph-based methods treat the point cloud as a signal in a graph, and the smooth sur-
face is chosen by using graph filters. In (SPV15), the authors use the graph of the k-
nearest neighborhood to represent a point cloud as a signal, and carry out the smooth-
ing via convex optimization. The method in (DCBY18), used weighted graph Laplacian
over the normals and total variation L1-norm as the regularized term to model two
kinds of additive noise. Using a bipartite graph, establish a linear relationship between
the points and normals to proceed with the optimization (ZCN+20), , the authors pro-
posed the use of a graph Laplacian regularization and low manifold model to find self-
similarity between patches to the smooth point cloud, avoiding the direct smoothing
of point coordinates or point normals. In (DCK18), the authors compute local tangent
planes based on a graph and then reconstruct the point cloud by the weighted average
of its projections in the tangent planes.

4.2.5 | Normal Smoothing-Based Methods
Normal smoothing methods are focused on estimating noise-free normals, followed by
an updating of the position of the points based on the clean normals. In Leal (LL06),
use a robust version of Principal Component Analysis (PCA), to estimate the normal
vector, the authors propose weights factors that are inversely proportional to the sum
of the distance to the mean. The weights defined in this way make the method robust
to outliers and noise. They propose a simple solution to avoid data shrinkage using
bootstrap bias correction. The method iteratively smooths the surface and preserves
sharp features.

Zheng (ZLW+17), use the multi-normal concept to correctly estimate the normals in
edges and corners, based on the observation that points on the same side of the edges
have the same normal orientation. The first step is to detect the edges and then refine
them using the l1-skeleton algorithm (HWCO+13), , followed by an estimation of the
multi-normals, and finally, an updating of the position by optimizing a height-based
function. (ZLX+18) use the same multi-normal concept for denoising. The first step
here is the same as for (ZLW+17), but for the point position update, they introduce an
energy term to avoid point cloud deformation close to the edges. The method is robust
to the noise and preserves edges and corners. Yadav (YRS+18), use normal voting ten-
sor analysis and binary optimization to estimate noise-free normals. Next, to update
the position of points, the method classifies each point on the cloud as edge, corner, or
planar point, and based on this classification, they propose three optimization proce-
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dures for each type of point. The method is effective for denoising the point cloud and
preserves the sharp features.

4.2.6 | Sparsity-Based Methods
These methods are based on the theory of sparse representation of certain geometric
features of the point cloud. The Sparsity-based methods assume local planarity for the
optimization model. The local planarity comprises the following assumption, if two
points belong to the same smooth region, its normal vectors will be similar, therefor the
gradient should be sparse. Recently attention is being devoted to sparsity-based meth-
ods in geometry processing (XWZ+15). These methods comprise two sparse modeling
steps. The first carries out a sparse reconstruction of the normals by solving a global
minimization problem with sparse prior regularization. The prior model can be the
L0-norm or L1-norm. Based on the smoothed normals, the point positions are updated
following a second sparse global model optimization. The methods (ASGCO10) and
(SSW15) follow this strategy. Mattei (MC17), propose a method called Moving Robust
Principal Component Analysis (MRPCA), using weighted minimization of the point
deviations from a local reference plane to preserve sharp features. However, when the
noise level is high, over-smoothing or over-sharpening occurs. Our approximation be-
longs to sparsity-based methods and is in the same spirit of MRPCA, but the difference
lies in that we use sparsity in both data fitting and the prior term. Our method uses
the L1-median for the fitting term and the L1-norm for the regularization term. For the
proposed method, we apply a local sparse optimization strategy based on the proximal
gradient.

4.3 | Preliminaries
In this section, we present the main concepts related to point cloud smoothing in the
proposed algorithm.

4.3.1 | Noisy Point Clouds
Starting from a noisy and possible nonuniform input point cloud, P = {p1, p2, . . . pn} ⊂
R3, sampling from a 2D surface in a 3D space, with n ∈ N, denoting the number of
points. The goal of point cloud denoising is to recover the original point cloud P′ from
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its noisy measurement P. The point cloud denoising problem can be modeled as

P = P′ + ε (4.1)

where ε is zero-mean i.i.d noise. This is an ill-posed problem since P′ and ε are
unknown. To recovery P′, we use the L1-median, L1-norm strategy.

To every point pi ∈ P, a neighborhood Ng(pi) with radius r > 0, is defined as follow:
Ng(pi) =

{
pj |

∥∥pi − pj
∥∥ 6 r

}
, are all the points pj that have a distance to pi less or

equal than r. The neighborhood Ng(pi), is used to estimate the surface local properties.

4.3.2 | Surface Normal
We begin estimating the normal vector ni for each point pi ∈ P, getting the set of nor-
mals N = {n1, n2, . . . nn}, with ni ∈ R3, we define Ng(pi) ⊂ N, as a neighborhood of
normals around ni. There are several methods for normal estimation in the literature
(LSK+10) (MWP18) (YWG+19), the most popular is the PCA method (HDD+92). Al-
most all of these methods adjust a regression plane to the surface in a point pi, using its
k-nearest neighboring points, and take a vector perpendicular to the plane. Our method
follows a similar approach minimizing the height of points over a regression plane with
respect to the neighborhood.

4.3.2.1 | L1-Median Filter

As we mentioned in section 3.9, the L1-Median is a robust estimator related with the
multivariate median, and is defined to be the point p, which minimizes the sum of
Euclidean distances to all points in the data set I i.e. {pi}i∈I . We use the L1-Median
filter to apply sparsity in the fitting data term (section 3.10), being the proposed method
robust to outliers, and to high level of noise.

4.3.3 | L1-Sparse Regularization
The L1 regularization has been applied for feature selection (Ng04), sparse signal recon-
struction (LW16), signal processing as image decomposition (ESQD05), and basis pur-
suit (SD94). Although L0 regularization produces the sparsest solution, under certain
conditions, L1 regularization produces a sparse solution (DET06). In image processing,
L1 norm has been successfully applied to preserve fine details and edges through the
minimization of gradient (ROF92). The above is known as total-variation regularization
or TV and is used to measure the sparsity of the gradient. The proposed method uses
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TV for estimating the normal preserving the sharp features. Our approach uses the lo-
cal planarity criterion to measure the deviation of each point pi ∈ P from the regression
plane defined over its neighborhood Ng(pi) and its corresponding normal vector ni.

4.4 | Robust Point Cloud Denoising
Starting from a noisy point cloud P near a unknow surface S, the goal of the proposed
algorithm is found a noise-free point set P′, that conserve the features of the original
point cloud. We use local neighborhoods to each point pi ∈ P to approximate the surface
S. The main idea is to define a local reference tangent plane Tp to every pi in the point
cloud and determine its normal vector ni, then shift the point pi in the normal direction
to a distance τi ∈ R, obtaining a new position p′i = p + τini, p′i ∈ P′. The new position
p′i being the projection of the point pi onto the tangent plane Tp, which is the linear
approximation of the surface S at the point pi. See Figure 4.1

Figure 4.1: The point pi is projected onto the reference plane Tp. The tangent plane Tp
is a linear approximation to the surface S, around the point pi

The normal ni and the displacement τi, are computed iteratively by adjusting the
tangent plane Tp to the neighborhood Ng(pi). To estimate the tangent plane Tp, we
are looking for an equidistance height to all heights h of the points pj ∈ Ng(pi) over
Tp (Figure 4.1). To estimate the local reference tangent plane Tp, we minimize the cost
function (4.2) respect to τ and n, subject to the constraint ‖n‖ = 1.

4.4.1 | Cost Function
To denoise the noisy point cloud, we integrate L1-median height filter and L1-norm of
gradient or total variation. The normal is obtained, minimizing the following energy

36



Chapter 4. Point Cloud Denoising 4.4. Robust Point Cloud Denoising

functional.

min
τ,n

Ef + λEreg (4.2)

Where Ef is the fidelity term, Ereg is the regularization term, λ is the regularization
parameter and ‖n‖ = 1. The detailed description of the three terms is provided below.

4.4.1.1 | L1-median height Fidelity Term Ef :

The fidelity term Ef is used to fit a robust hyperplane in the neighborhood of the sam-
pled point pi, and to estimate the normal vector with respect to the hyperplane. The
estimation of the hyperplane is robust to large deviations of points pj ∈ Ng(pi). The
outliers are identified by the L1-median height filter, which penalizes points pj with
large orthogonal projections or heights hj respect to the hyperplane, see Figure 4.1. We
define our fidelity term as

Ef = ∑
pj∈Ng(pi)

∥∥hj − τi
∥∥ψ

(
hj, τi

)
θ
(∥∥pi − pj

∥∥) (4.3)

Where hj = nt
i(pi − pj), ψ

(
hj, τi

)
= e−(hj−τi)

2/σ2
h , θ

(∥∥pi − pj
∥∥) = e−d2/σ2

d

We minimize the orthogonal projections (height) of points pj ∈ Ng(pi), to the hy-
perplane with a localized version of Equation (3.14). τi is the height to be found, which
minimizes the orthogonal projections of each point pj ∈ Ng(pi) to the hyperplane, Fig-
ure 4.1

Consequently, points pj ∈ Ng(pi) with considerable heights hj are probably located
passing through the sharp features; these points are possible outliers. As such, we pro-
pose an adaptive weighting strategy, which adaptively assigns the weight of each point
as a function of the height. Thus, the weighting term ψ (·) in (4.3) adaptively encourages
the reduction of the influence of points pj ∈ Ng(pi), with large height hj values, and σh

is the height parameter which controls sensitivity to outliers. Thus, the term ψ (·), only
considers points located in the same smooth region to estimate the normal vector, the
results of including this weight function combined with the L1 total variation can be
appreciated in Figure 4.2. The weighting term θ (‖·‖)) in (4.3), is the distance weight
function and σd is the position parameter used to control the action range.

4.4.1.2 | L1 norm Regularization Term Ereg:

The regularization term Ereg is introduced as a measure of sparsity to preserve the sharp
features and to smooth the underlying surface. If a point cloud is piecewise smooth,
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Figure 4.2: Normal estimation by the proposed method. Note how the method estimate
in the right way the normals in the of sharp features. First row, the Cube model with
irregular sampling and contaminated with Gaussian noise (σ = 0.3h). Second row, the
Fandisk model with high irregular sampling and contaminated with Gaussian noise
(σ = 0.28h). Where h, is the average distance between the points.

many of the gradients in the normals field N (consistently oriented) tend to be zero; in
contrast, the large values of the gradient only indicate sharp features. This means that
normals nj ∈ Ng(ni) in a neighborhood must be similar. Then the regularization term is
formulated as a total variation.

Ereg = ∑
nj∈Ng(ni)

wi,j
∥∥ni − nj

∥∥
1 (4.4)

Where wi,j = e
−
(

1−nt
i nj

1−cos(σn)

)2

, is the normal weight function. σn is the angle parameter
that measures the similarity between normals nj ∈ Ng(ni) and ni, is typically set σn =

15◦.
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4.4.2 | Model Optimization
Once the terms of (4.2) are defined, we continue with the model optimization for ni and
τi subject to ‖n‖ = 1. Our energy minimization problem is formulated as

min
ni ,τi

∑
pj∈Ng(pi)

∥∥hj − τi
∥∥ψ

(
hj, τi

)
θ
(∥∥pi − pj

∥∥)+ λ ∑
nj∈Ng(ni)

wi,j
∥∥ni − nj

∥∥
1 (4.5)

We found the optimal values of ni and τi by an alternating optimization strategy.
This procedure is shown in Algorithm 4.1.

Algorithm 4.1: Alternating Optimization Strategy

Initialization: j← 0
repeat

τ0 ← 0
repeat

fix τk, solve for nk as minimum of Eq. 4.5
fix nk, solve for τk as minimum of Eq. 4.5
pk+1 = pk + τknk

until
∥∥pk+1 − pk

∥∥2
2 < ε

edge points correction
j← j + 1

until j > jmax

4.4.2.1 | n0 initialization

First, we estimate an initial normal set N as input in the first iteration (j = 1) of the
algorithm 4.1. The set N is an initial solution of the equation (4.5) using only the equa-
tion corresponding to the fidelity term, with τ = 0. Similar to (MVF03), we use the
constraint ‖n‖ = 1, and compose the Lagrange form of (4.3) to compute the derivative
with respect to n, obtaining:

L(n, λ) = ∑
pj∈Ng(pi)

∥∥hj
∥∥ψ

(
hj
)

θ
(∥∥pi − pj

∥∥)+ λ

2
(1− ‖ni‖)2 (4.6)

Ln(n, λ) = ∑
pj∈Ng(pi)

ωi(pi − pj)(pi − pj)
tni − λni = 0 (4.7)
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with weight ωi = ψ(hj)θ
(∥∥pi − pj

∥∥) /
∥∥hj
∥∥, as before hj = nt

i(pi − pj). The details
of the derivation is given in Appendix A.1
We can see that the term ωi(pi − pj)(pi − pj)

t on (4.7) is a symmetric and definite posi-
tive matrix (weighted covariance matrix) and we can rewrite (4.7) depending on n as:

Cm(n)n = λn (4.8)

where Cm(n) = ∑pj∈Ng(pi) ωi(pi − pj)(pi − pj)
t

Equation (4.8) is an eigensystem and can be iteratively solved as follows:

Cm(nk)nk+1 = λk+1nk+1 (4.9)

Where λk+1, is the smallest eigenvalue of Cm(nk) and nk+1 is an orthonormal eigen-
vector. We start the initialization with n0 = 0, i.e., Cm(0)n1 = λ1n1, is the first iteration.
A few iterations are necessary for obtaining good results since Equation 4.9 always con-
verges to the solution. Once we get the initial estimation of the set N, we proceed with
the optimization of (4.5).

We solve the energy minimization problem (4.5) for n, having fixed τ. Since the
minimization problem (4.5) is non-differentiable due to the regularization term Ereg we
use the proximal gradient descendent method (PB14) as the optimization strategy.

4.4.2.2 | n minimization

keeping τ and ψ(·) fixed to solve (4.5), ψ(·) is treated as a constant in the optimization,
because the problem has a complex form and fixing it, is a practical way to make it
computationally tractable. Thus, the fidelity term Ef has gradient ∇Ef :

∇Ef = ∑
pj∈Ng(pi)

ηi(hj − τi)(pi − pj)
t (4.10)

With weight ηi = ψ(hj, τi)θ
(∥∥pi − pj

∥∥) /
∥∥hj − τi

∥∥, ηi is undefined when hj = τi.
Therefore, when

∥∥hj − τi
∥∥ < 10−3, we set ηi = θ

(∥∥pi − pj
∥∥).The details of the deriva-

tion is given in Appendix A.2

Set di = ni − nj, for the regularization term Ereg, we define the proximal mapping (or
operator), associated with a convex non-differentiable function h() as follows.

proxh,γ(d) = arg min
z

(
h(z) +

1
2γ
‖z− d‖ 2

2

)
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The proximal gradient descendent has an iteration form

dk+1 = proxh,γ

(
dk − γ∇ f (nk)

)
(4.11)

Where γ > 0, is a scalar termed step size and 4.11 is computed iteratively until
convergence. The proximal operator corresponding to the L1-norm or regularization
term Ereg is the shrinkage or soft thresholding function:

proxh,γ(dic) =


dic − γλwij , if dic > γλwij

0 , if |dic| ≤ γλwij

dic + γλwij , if dic < −γλwij

(4.12)

Where dic, is each component of the normal vector di.

4.4.2.3 | τ minimization

With n fixed, we solve the equation (4.5) for τ, omitting the regularization term Ereg,
since it does not involve τ. The fidelity term Ef has gradient ∇Ef :

∇Ef = ∑
pj∈Ng(pi)

ηi(hj − τi) = 0 (4.13)

By solving ∇Ef (τ), we obtain an iterative solution, which yields the following local
update equation.

τk+1
i =

∑pj∈Ng(pi) ηihj

∑pj∈Ng(pi) ηi
(4.14)

where ηi =
ψ(hj,τi)θ(‖pi−pj‖)
‖hj−τi‖ . n and τ are iteratively optimized using (4.11) and (4.14)

until convergence, ηi is undefined when hj = τi. Therefore, when
∥∥hj − τi

∥∥ < 10−3, we
set ηi = θ

(∥∥pi − pj
∥∥). The details of the derivation is given in Appendix A.3

4.4.3 | Point Position Update and Point Border Correction
In the last stage of the denoising method, we follow the update vertex position with
a distance-based constraint proposed by (YRS+18), where the resulted filtering point
cloud P is bounded within a prescribed distance to the input point cloud.
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4.4.3.1 | Point Position Update

(YRS+18), propose a parameter provided by the user ε ∈ R+, bounding the maximum
deviation di between the initial noisy point cloud and its corresponding iteratively de-
noised version point p′i ∈ P′. The update position point p′i, for our algorithm is deter-
mined as follow:

p′i =

pi + τini , if di 6 ε

pi , if di > ε
(4.15)

Where di is computed as the difference between pi and the corresponding original point
in the noisy point cloud. The parameter ε is set to 4h. i.e., ε = 4h. Where h, is the
average spacing between the points of the point cloud.

To make our algorithm more robust against edge artifacts and blurring, we detect the
edge and corner points, and it corrects its position to obtain cleaner and more defined
borders, as is shown in Figure 4.3.

4.4.3.2 | Edge Points Detection

To detect sharp features in the point cloud, we recur to the method proposed in (ZLW+17),
who use the normals associated to each point in P, and measure the normal variability
into the neighborhood. If the variability is lower than a predefined threshold, th, is the
point labeled an edge. The similarity between normal vectors ni and nj is defined as
follow:

wn(ni, nj) = exp

(∥∥ni − nj
∥∥2

2σ2
n

)
(4.16)

Where σn is an angle threshold, using (4.16) they defined the normal variation in
Ng(ni) as follow:

Vn(i) =
1∣∣Ng(ni)

∣∣ ∑
nj∈Ng(ni)

wn(ni, nj) (4.17)

All points that satisfy Vn(i) < th, are labeled as edge points. The threshold values
used in our experiments are th = {0.2, 0.3, 0.5}.

4.4.3.3 | Edge point Correction

After edge points are detected and taking advantage of the fact that the estimated nor-
mals near the edges and corners belong to surfaces on one side or another of the sharp
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features, we propose a scheme to correct the position of points that belong to edges or
corners, which present a deviation from the corner or borderline. As shown in Figure
4.3, we find the closest point pj with normal vector vj on an opposite surface to the edge
point pi and its normal ni. Next, we project the point pi onto the plane that contains the
point pj and its normal nj. The new position is computed as:

dproj = nt
j(pi − pj) (4.18)

We only correct the point positions that meet the following criteria:

pcorr =

pi − dproj · nt
j , if δ <

∣∣dproj
∣∣ < ρh

pi , other case
(4.19)

Where h, is the average spacing between the points of the point cloud, ρ is a fixed
value that represents the percentage of maximum shift of the point pi towards the edge
line, and δ is a fixed value close to zero. The bound displacement ρ is introduced, be-
cause when the edge points are detected, also many false positives are detected. In
order not to move these points towards the position of the real edges, we established
the displacement parameter, which tells us that, if a point detected as an edge needs to
move more than x of the average distance between points h, then it is probably that it is
a point that does not belong to the edge, which indicates that is a false positive.

Figure 4.3: Edge points correction

Figure 4.4 shows how the proposed method corrects the point position (yellow point)
according to 4.19, projecting it into the edge line.
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(a) (b)

Figure 4.4: Edge artifacts, (a) the yellow point is not aligned with the edge line (b) the
yellow point is corrected using the Equation (4.15)

4.5 | Experimental Results and Discussion
The proposed method was implemented in MATLAB and run on a laptop with Intel
Core i7-2670QM CPU, 2.20 GHz processor, and 8GB RAM. We test the method using
several point clouds with sharp features and smooth surfaces including irregular sam-
pling. Also, synthetic and real scanned noisy point clouds are used to validate our
method. The synthetic models are contaminated with Gaussian noise and impulsive
noise along the normal directions or random directions. Different levels of Gaussian
noise with zero mean and standard deviation σ is applied to the models; the standard
deviation is proportional to the average distance between the points of the ground-truth
point clouds. The noise of raw scanned data is natural. We compare our method with
eight state-of-the-art denoising approaches including two MLS-based methods, APSS
(GG07) and RIMLS (OGG09); one LOP based method EAR (HWG+13); one sparsity-
based method MRPCA (MC17); one graph-based method GLR (ZCN+20); and three
normal smoothing-based methods, CNV (YRS+18), RN (ZLX+18) and GN (ZLW+17).
Methods APSS and RIMLS are implemented in MeshLab software. The GLR code and
EAR software are provided by the authors, as are the results of the MRPCA, CNV, RN
and GN methods.

4.5.1 | Parameters Selection and Tuning
Like other previous point cloud denoising methods, we need to set the parameters cor-
rectly to produce the best quality results. Our method presents seven parameters: the
sparsity parameter λ, the height sensitivity σh, the distance action range σd, the bound
displacement ρ , the low bound δ, the radius of neighborhood r and the total number of
iterations k.
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(a) Original (b) Noisy (c) APSS (d) RIMLS

(e) MRPCA (f) EAR (g) GLR (h) GN

(i) RN (j) CNV (k) Ours

Figure 4.5: The Cube model with non-uniform distribution of points, corrupted by
Gaussian noise (σ = 0.3h) along all directions, where h is the average distance between
the points of the point cloud. It can be seen that the proposed method can preserve
sharp features effectively compare to the state-of-the-art methods. The surface is recon-
structed using the ball pivoting algorithm.

The sparsity regularization parameter λ, depends on the desired gradient sparsity
level and will affect the reconstruction of sharp features and the smoothness of the point
cloud. A larger λ would yield a smoother result. To determine the optimal λ, we run the
proposed method varying the λ values into the range [0.05, 0.5] and calculate the MSE
error for each output, for several models and we found that values around 0.2 produce
the minimum error. We set λ = 0.2 for all the testing point set used in the experiments.
The displacement ρ is fixed throughout all experiments with ρ = 0.7.
The parameter δ is fixed throughout all experiments with δ = 10−4.
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(a) Original (b) Noisy (c) APSS (d) RIMLS

(e) MRPCA (f) EAR (g) GLR (h) GN

(i) RN (j) CNV (k) Ours

Figure 4.6: The Fandisk model with non-uniform distribution of points, corrupted by
Gaussian noise (σ = 0.28h). We can see that the proposed method is able to preserve
sharp features effectively when compared to the state-of-the-art methods. The surface
is reconstructed using the ball pivoting algorithm.

The parameter h is the average spacing between the points. We compute the value
of h, taking the six nearest neighbors to each point. The distance action range σd, and
the height sensitivity σh are user-defined values times the parameter h. In all the ex-
periments, the radius r of the neighborhood was set to σd. i.e. r = σd; a small value of
σd leads to faster computation because of the neighborhood Ng(pi) is small, and large
values may cross sharp features and over smooth the results. Alternatively, r = σd can
be chosen as a function of the local point density. In the results of the experiments,
we chose the values of this parameter constant, tuned to achieve visually appealing re-
sults. The height sensitivity σh, control the outliers in the point cloud; for small values
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(a) Original (b) Noisy (c) APSS (d) RIMLS (e) MRPCA (f) EAR

(g) GLR (h) GN (i) RN (j) CNV (k) Ours

Figure 4.7: The Rocker arm model corrupted by Gaussian noise (σ = 0.3h), in the nor-
mal direction. We can see that the proposed method is able to preserve sharp features
effectively when compared to the state-of-the-art methods. The surface is reconstructed
using the ball pivoting algorithm.

of σh features of the models are preserved, and for large values, only salient features are
preserved.

The values of σh and σd depend on the level of noise. The bigger the noise level, the
larger the value of these parameters should be chosen. We use σd ∈ {1.5h, 2h, 3h, 4h} and
σh ∈ {0.5h, 0.7h, 0.9h} for synthetic data and σd ∈ {1.5h, 2h} and σh ∈ {0.1h, 0.2h, 0.3h}
for real scanned point clouds. The difference of parameter values between synthetic and
real models is because the level of noise in real models is lower than synthetic models.
The number of iterations k for the best results was set k ∈ {10, 16, 20, 50}. At last, there
are only three parameters for our algorithm to tune the results (σh, σd, k).

Regarding the parameters (σh, σd, k), we established a range of values, which we
found as follow: we ran the proposed method with several models, and leave fixed two
of the parameters and the third is free to vary, then the same procedure was done with
the other parameters and in this way, we found the best values for each model.
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(a) Original (b) Noisy (c) APSS (d) RIMLS

(e) MRPCA (f) EAR (g) GLR (h) GN

(i) RN (j) CNV (k) Ours

Figure 4.8: The Octahedron model corrupted by Gaussian noise (σ = 0.3h), in the nor-
mal direction. We can see that the proposed method is able to preserve sharp features
effectively when compared to the state-of-the-art methods. The surface is reconstructed
using the ball pivoting algorithm.

In our comparison experiments, we use the following parameter set for the eight
selected state-of-the-art methods. For the methods (MC17), (ZLW+17) and (ZLX+18),
we mentioned “Default” in the parameter Table 4.1, because the corresponding smooth
models are provided by the authors; (GG07) = (sale, # of iterations, α); (OGG09)=(σr, σn);
(HWG+13)=(Default values); (YRS+18)=(τ, ρ, p) and (ZCN+20) the parameters settings
in their paper. Our method = (σh, σd, k).
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Table 4.1: Parameter setting of comparative methods for different models

Methods Cube Fandisk Rocker Arm Octhaedron

EAR Default Default Default Default
APSS (2, 45, 0.5) (4, 15, 0) (4, 15, 0.5) (2, 45, 0.5)
RIMLS (4, 0.75) (4, 1) (4, 1) (4, 0.75)
MRPCA Default Default Default Default
GLR Paper Paper Paper Paper
GN Default Default Default Default
RN Default Default Default Default
CNV (0.3, 0.95, 150) (0.3, 0.9, 150) (0.25, 0.9, 80) (0.25, 0.9, 80)
Ours (0.98h, 4h, 30) (0.7h, 3h, 16) (0.7h, 3h, 14) (0.7h, 2h, 20)

4.5.2 | Quantitative Analysis

In this section, we show the behavior of the proposed method against different levels
of noise and density point variability. We compared our method to other approaches
using three quantitative metrics, shown in Table 4.2, Table 4.3. When the number is
highlighted in bold means the best performance. To continue, we define the three met-
rics used in our quantitative analysis. To quantify feature preservation, we measure
the orientation error between the smoothed point cloud and the ground truth. Mean
angular deviation (MAD) is defined to measure the orientation error:

MAD =
1
n

n−1

∑
i=0

< (ni, n̂i) (4.20)

Where ni and n̂i are the point normals corresponding to the ground truth and the
smoothed point cloud, respectively.

To quantify the closeness between the ground truth model and the smoothing model,
we use the mean-squared-error (MSE) metric, which measures the average of the squared
Euclidean distances between the ground truth points and their closest denoised points,
and vice versa between the denoised points and their closest ground truth points. Fi-
nally the average between two measures give the MSE.

If the ground truth model and the smoothed model are P1 = {pi}i=1,..,n1
and P2 ={

qj
}

j=1,..,n2
, the point clouds can be of different sizes, i.e., n1 6= n2. The MSE is defined
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as follows.

MSE =
1

2n1
∑

pi∈P1

min
qj∈P2

∥∥pi − qj
∥∥2

2 +
1

2n2
∑

qi∈P2

min
pj∈P1

∥∥qj − pi
∥∥2

2 (4.21)

The signal-to-noise ratio (SNR) is measure in dB and is defined as follows.

SNR = 10 log
1/n2 ∑qi∈P2

∥∥qj
∥∥2

2
MSE

(4.22)

Table 4.2 shows the comparison between our method and the eight competing state-
of-the-art methods. We can observe for the Cube model, how our method can preserve
the sharp features (see Figure 4.5), it is confirmed by the low MAD value. In Table 4.2,
we can also see that the MSE and SNR metrics are the lowest values compared to all
state-of-the-art methods. For the Fandisk model, the proposed method reaches the sec-
ond position in all three metrics, only outperformed by the GN method in the MAD
metric and by the RN method in MSE and SNR metric. However, in Figure 4.6, we ob-
serve how the proposed method can reconstruct better sharp features compared to the
competing methods. For the Rocker Arm, our method outperforms the state-of-the-art
methods in the MAD metric, but with MSE and SNR, our method only is outperformed
by the APSS method. However, in Figure 4.7, it can be seen that the proposed method
keeps details that have been lost in the other methods. For the Octahedron model, our
method outperforms in all metrics the state-of-the-art methods.
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Table 4.2: Comparison of the different methods evaluated with three error metrics for
each one of 3D objects (Cube, FanDisk, Rocker Arm, Octahedron). Bold highlights indi-
cate the best results.

Methods
EAR APSS RIMLS MRPCA GLR GN RN CNV Ours

C
ub

e

MAD 4.3634 5.5588 4.4552 4.4341 6.2429 3.4878 4.4531 2.8668 2.6985
MSE 0.0183 0.0125 0.0117 0.0273 0.0336 0.0330 0.0352 0.0064 0.0046
SNR(dB) 39.438 42.613 43.272 35.749 33.936 33.920 33.305 48.394 51.418

Fa
nd

is
k MAD 4.4038 5.0465 5.6874 3.7932 7.7937 2.9186 3.1585 3.5273 2.9691

MSE 0.0073 0.0057 0.0060 0.0067 0.0257 0.0060 0.0038 0.0108 0.0039
SNR(dB) 45.105 46.168 45.965 45.525 39.653 45.963 48.006 43.410 47.833

R
oc

ke
r MAD 5.9647 4.8825 4.9493 6.0163 7.1012 7.7694 5.7894 7.1894 4.2611

MSE 0.1392 0.0468 0.0717 0.1345 0.2554 0.6141 0.5873 0.1651 0.0665
SNR(dB) 36.116 40.830 38.988 36.234 33.450 29.717 29.885 35.340 39.300

O
ct

ha

MAD 1.8779 3.9838 4.8495 4.9541 5.2574 1.3606 1.3776 1.0415 1.0196
MSE 9.5E-4 0.0014 0.0011 0.0014 0.0016 0.0074 0.0074 7.0E-4 5.6E-4
SNR(dB) 54.384 51.007 52.846 51.006 50.008 55.731 55.631 57.057 58.931

Table 4.3, We are comparing with four state-of-the-art methods, with three different
levels of noise, i.e., σ = 0.1h, σ = 0.2h, and σ = 0.3h. We can see that the MAD
grows as the noise increases. Thus, if the noise level is high, the orientation error will
be larger compared to the lower noise level. Table 4.3 shows that the proposed method
achieves the best results for the MAD metric, with all levels of noise, but for the level
of noise σ = 0.1h, RIMLS reaches the best MSE and SNR. However, for the level of
noise σ = 0.2h and σ = 0.3h, our method outperforms the competing methods. In all
the experiments, the proposed method achieves the best results on average in all three
metrics and all noise levels.

4.5.3 | Visual comparison

For visual comparison, we use the ball pivoting algorithm (BPA) (BMR+99) to recon-
struct the mesh from the smoothed point cloud. The point clouds are contaminated with
Gaussian noise along random directions and normal directions, and impulsive noise in
a random direction.
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Table 4.3: The results of the error metrics of different compared methods for Block and
Trim-star objects varying the noise levels.

Methods EAR APSS RIMLS GLR Ours

σ
=

0.
1h Bl

oc
k MAD 3.8083 4.2386 3.1723 2.9909 2.9232

MSE 0.0693 0.0641 0.0466 0.0469 0.0477
SNR(dB) 34.518 34.842 36.238 36.199 36.124

Tr
im

-s
ta

r MAD 5.0802 4.7813 4.1111 7.0203 3.6042
MSE 0.0634 0.0324 0.0408 0.1105 0.0370
SNR(dB) 29.572 32.459 31.472 27.120 31.855

σ
=

0.
2h Bl

oc
k MAD 6.2682 8.2802 4.1979 4.9876 3.5737

MSE 0.1339 0.1191 0.0688 0.0911 0.0551
SNR(dB) 31.676 32.149 34.552 33.310 35.492

Tr
im

-s
ta

r MAD 6.9177 7.0610 5.3676 8.3487 4.8816
MSE 0.1068 0.0525 0.0573 0.1456 0.0522
SNR(dB) 27.341 30.353 30.011 25.914 30.363

σ
=

0.
3h Bl

oc
k MAD 7.6707 11.629 4.6145 9.2070 4.4352

MSE 0.1573 0.1640 0.1029 0.2735 0.0784
SNR(dB) 30.980 30.753 32.816 28.488 33.955

Tr
im

-s
ta

r MAD 8.1821 10.929 6.7664 10.495 5.8392
MSE 0.0695 0.0995 0.0822 0.1828 0.0632
SNR(dB) 29.158 27.576 28.465 24.915 29.608

4.5.3.1 | Irregular Point Clouds

The Cube (Figure 4.5), the Fandisk (Figure 4.6), and the Rocker Arm (Figure 4.7) mod-
els, have non-uniform density points corrupted by Gaussian noise in a random direction
(σ = 0.28h, σ = 0.3h, and σ = 0.3h, respectively). Figure 4.5 shows that our method
can preserve sharp features and in the flat areas do not produce bumps features like
APSS (GG07), RIMLS (OGG09), and EAR (HWG+13) methods. GLR (ZCN+20), MR-
PCA (MC17), RN (ZLX+18) and GN (ZLW+17), clean the noise effectively over flat re-
gions, but there is over smoothing in the corners and edges. CNV (YRS+18), properly
reconstructs the sharp features and cleans the flat areas but small artifacts do appear in
some corners. In Figure 4.6, our method can reconstruct sharp features and shallow fea-
tures. APSS smooth around the sharp features and does not remove the noise correctly.
RIMLS and EAR, preserve sharp features but produce some bump features in the result-
ing models. MRPCA remove the noise and preserve some sharp features, but smooth
shallow areas around flat regions. GLR removes noise effectively but over smoothes the
sharp features and shallow areas. GN, RN, and CVN produce a similar output to our
method, but there are some artifacts on the borders and in corners. In Figure 4.7, the
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Rocker Arm model shows how our method smooths the noise and at the same time can
preserve sharp features and little details, that are lost in the competing algorithms.

4.5.3.2 | Dense Regular Point Clouds

In the octahedron model (Figure 4.8), our method reduces the noise while preserving
the sharp features compare to APSS, RIMLS, GLR, and EAR models. GN, RN, and CNV
have similar behavior that our method, but our method produces better quantitative
metrics.

4.5.3.3 | Different Levels of Noise

Figure 4.9 and 4.10 shows a comparison with APSS, RIMLS, EAR, and GLR, with dif-
ferent levels of noise. Our method can remove the noise from the input point cloud
effectively while preserving sharp features and smooth the surfaces. The block model
is planar everywhere except at sharp features, and the trim-star model is smooth every-
where except at sharp features.

4.5.3.4 | Impulsive Noise

Figure 4.11 shows the results of handling a corrupted point cloud adding an impulsive
noise of σ = 0.5h along the normal direction. The Twelve model has been smoothed
by the proposed method and its edges have been preserved. RIMLS, APSS, and EAR
methods are not able to smooth the noise properly and reconstruct the edges.

4.5.3.5 | Real 3D Scanned Data

We also compared these approaches on real scanned data. Figures 4.12, 4.13 and 4.14,
show the results of different methods applied to raw data scan, In Figure 4.12 from the
Rabbit model, it may seem like our method effectively removes the noise while preserv-
ing features, when compared to APSS, RIMLS, and EAR. GLR and RN preserve features,
but some fine details as the eye and grooves in the ear have been lost. GN and CNV pre-
serve more detail than any of the other methods but they lost details in the eye and nose.
MRPCA and the proposed method produce very similar results. In Figure 4.13, shows
the Ball Joint medical data. We can see that our method removes the noise, while details
and sharp features are preserved and the spherical shape is effectively smoothed. The
APSS and RIMLS methods are not able to smooth the noise properly, and the result-
ing surfaces present bumps. MRPCA, GN, RN, and GLR effectively remove the noise
component but smooth the sharp features. The EAR and CVN methods produce similar
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Figure 4.9: The Block model corrupted by Gaussian noise (σ = 0.1h, 0.2h, 0.3h), in the
normal direction. We can see that the proposed method is able to preserve sharp features
effectively when compared to the state-of-the-art methods. The surface is reconstructed
using the ball pivoting algorithm.

results preserving the sharp features and smoothing the surfaces.

Irregular Surface Sampling

Figure 4.14 The Gargoyle model is a point cloud with irregular sampling points. The
model is a raw data scanning with natural noise. Our method removes noise and keep
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Figure 4.10: The Trim-Star model corrupted by Gaussian noise (σ = 0.1h, 0.2h, 0.3h),
in the normal direction. We can see that the proposed method is able to preserve sharp
features effectively when compared to the state-of-the-art methods. The surface is re-
constructed using the ball pivoting algorithm.

fine details and sharp features; compared to the competing methods, APSS, RIMLS,
GLR, EAR, and CNV.
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(a) Original (b) Noisy (c) APSS (d) RIMLS (e) EAR (f) Our

Figure 4.11: The Twelve model corrupted by Impulsive noise (σ = 0.5h), in the normal
direction. We can see that the proposed method is able to preserve sharp features ef-
fectively when compared to the state-of-the-art methods. The surface is reconstructed
using the ball pivoting algorithm.

(a) Original (b) APSS (c) RIMLS (d) MRPCA (e) EAR

(f) GLR (g) GN (h) RN (i) CNV (j) Ours

Figure 4.12: The Rabbit model, with natural noise. We can see that the proposed method
is able to preserve sharp features effectively when compared to the state-of-the-art meth-
ods. The surface is reconstructed using the ball pivoting algorithm.

4.5.3.6 | Convergence

Figure 4.15 shows the convergence rate of the proposed method. We can appreciate
how our approach has a better convergence rate compared with the GLR (ZCN+20)
method. We observe that after eight iterations, the proposed method is almost stable.
Combining the L1-median and L1-norm in the optimization process not only helps to
preserve features but also improves the convergence rate of the method.
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(a) Original (b) APSS (c) RIMLS (d) MRPCA (e) EAR

(f) GLR (g) GN (h) RN (i) CNV (j) Ours

Figure 4.13: The Ball Joint model, with with natural noise. We can see that the proposed
method is able to preserve sharp features effectively when compared to the state-of-the-
art methods. The surface is reconstructed using the ball pivoting algorithm.

(a) Original (b) APSS (c) RIMLS (d) EAR

(e) GLR (f) CNV (g) Ours

Figure 4.14: The Gargoyle model, with natural noise. The surface is reconstructed using
the ball pivoting algorithm.
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Figure 4.15: Convergence plot comparison between the proposed method and the
GLR (ZCN+20) method. The MSE error metric is computed for the Fandisk model.
The convergence rate of the proposed method is better than GLR method.

(a) Original (b) Our

Figure 4.16: The Fandisk model. Contaminated with Gaussian noise (σ = 0.7h) It can
be seen that the proposed method cannot preserve sharp features in point clouds with
a high level of noise.

4.6 | Conclusion
In this chapter, we propose combining the L1-median filter and the L1-norm regular-
ization for a point cloud denoising algorithm that preserves the sharp features. The
algorithm uses double sparsity modeling both in the fitting term and in the regular-
ization term. The L1-median is insensitive to outliers and noise, while the L1-norm,
preserves the sharp features and smooths the surface. The combined L1-median and
L1-norm cost function were optimized with an alternating minimization strategy using
proximal gradient and a descendent iterative schema, allowing the implementation of a
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simple algorithm. The proposed method can handle models contaminated with Gaus-
sian and impulse noise. High noise level could produce erroneous results as they affect
the normals estimation (see Figure 4.16). Another issue is the concern with irregular
point sampling models. While the irregular sampling remains low, the output of our al-
gorithm produces good results; but when the point cloud density is highly irregular, the
output quality decreases. To recover the sharp features, we introduce a border correc-
tion procedure that helps to correct edges and corners, preserving the models’ original
sharp features.

Experimental results reveal that our proposal can preserve sharp features when com-
pared to previous point cloud denoising methods, and the algorithm is robust in denois-
ing both synthetic and raw point scans.
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5

Saliency Detection

The human visual system (HVS) can process large quantities of visual information in-
stantly. Visual saliency perception is the process of locating and identifying regions with
a high degree of saliency from a visual standpoint. Mesh saliency detection has been
studied extensively in recent years, but few studies have focused on 3D point cloud
saliency detection. The estimation of visual saliency is important for computer graphics
tasks such as simplification, segmentation, shape matching, and resizing. In this chap-
ter, we present a local method for the direct detection of saliency on unorganized point
clouds. First, our method computes a set of overlapping neighborhoods and estimates
a descriptor vector for each point inside it. Then, the descriptor vectors are used as a
natural dictionary to apply a sparse coding process. Finally, we estimate a saliency map
of the point neighborhoods based on the Minimum Description Length (MDL) princi-
ple. Experiment results show that the proposed method achieves similar results to those
from the literature review and, in some cases, even improves on them. It captures the
geometry of the point clouds without using any topological information and achieves
acceptable performance. The effectiveness and robustness of our approach are shown
by comparing it to previous studies in the literature review.

5.1 | Introduction
The human visual system (HVS) can process large amounts of visual information in-
stantly and can locate objects of interest and distinguish them from complex background
scenes. Research shows that HVS pays more attention to infrequent features and sup-
presses repetitive ones (JZLZ14) (Wol94). Visual saliency plays a vital role in the process
in which HSV identifies scenes and detects objects. It is also concerned with the way
the biological system perceives the environment. For example, every time we look at
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a specific place, we pay more attention to regions distinct from the surrounding area.
Visual saliency is an active research field in areas such as psychology (Wol94), neuro-
science (KP99), computer vision (SCMP14) (KAD16) and computer graphics (KVJG10)
(LDS+16). There are many computational methods for simulating the HVS and visual
saliency, but it nonetheless remains an unexplored field because of the difficulty of de-
signing algorithms to simulate this process (Kim et al., 2010). As for computer graph-
ics, while the concept of visual saliency has been explored for mesh saliency (KVJG10),
(JS17; KVJG10; LKF16; LML16; LTC+16; NCL15; SLME16; SLMR14; TCL+15; WLL+15;
WSZL13; ZLW+16), few studies have explored visual saliency in point clouds (GWX17)
(TKD15) (SLT13) (AJ10). Visual saliency is an important topic for 3D surface study and
has important applications in 3D geometry processing such as resizing (JZLZ14), sim-
plification (YWC+12) (AWK16), smoothing (DBBB14), segmentation (JWQ18), shape
matching and retrieval (TKD16b) (GCO06), 3D printing (WCT+15), and so forth. Be-
cause of the develop of 3D data scanning technology, current scanners generate thou-
sands of points for every scanned object. Therefore, for rendering, point clouds have
become an alternative to triangular meshes. A common way to process a point cloud is
to reconstruct the surface using methods such as triangular mesh, NURBS representa-
tion, and Radial Basis Functions. However, because of many points, different sampling
densities, and the inherent noise produced by the scanning process, reconstruction is an
expensive and challenging computational task. For these reasons, it is necessary to de-
velop geometry processing algorithms that operate directly on the point sets. Applying
existing saliency detection techniques to point clouds is not a trivial task; this is due to
the absence of topological information, which is not a problem for mesh-based meth-
ods. The method we propose here is inspired by Li et al. (LZX+09), and we made it fit
for general use supported by the Minimum Description Length (MDL) principle. In this
way, we use MDL as a criterion for distinguishing regions in the point clouds.

5.1.1 | Contribution
The main contributions of this chapter are:

1. A method for saliency detection without topological information using only the
raw point sets.

2. The use of the MDL principle for defining saliency measurements, extended to
sparse coding representation to get saliency maps of point clouds.
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Experimental results show that the proposed algorithm improves in the capture of
the geometry of the point clouds using no topological information and achieves an ac-
ceptable performance when compared to previous approaches.

5.2 | Related work
Visual saliency detection has its origin in computer vision, specifically in 2D images.
Inspired by this research, visual saliency detection has been applied successfully to 3D
meshes and point clouds. In recent years, much research has tried to develop methods
for visual saliency on 3D surfaces (LTC+16) (TCL+15) (Tao et al., 2015) (SLMR14) (JS17)
(GGCJ17) (TKD15) (SLT13) (LVJ05).

Early advances in mesh saliency used 2D projections for 3D applications. While
such works often ignored (or could not exploit) the importance of depth in the human
perception, they set a basis for further research by highlighting the importance of human
perception in image analysis (Song et al., 2016). Some of the first researchers to exploit
saliency for 3D mesh processing were Lee et al. (LVJ05). The authors introduced the
concept of mesh saliency and computed it using a Gaussian-weighted center-surround
mechanism. Results were used to implement algorithms for mesh simplification and
point-of-view selection.

Wu et al. (WSZL13) presented an approach based on the principles of local contrast
and global rarity. This method has applications for mesh smoothing, simplification, and
sampling. Leifman et al. (LST12) propose a method for detecting a region of interest
on surfaces where they capture the distinctness of the vertex descriptor, characterizing
the local geometry around it. The method is applied to viewpoint selection and shape
similarity. Tao et al. (TCL+15) put forward a mesh saliency detection approach that
reached state-of-the-art performance even when handling noisy models.

The manifold ranking was employed in a descriptor space to imitate human atten-
tion. Then descriptor vectors were built for each over-segmented patch on the mesh, us-
ing Zernike coefficients and center-surround operators. Afterward, background patches
were selected as queries to transfer saliency, helping the method to handle noise bet-
ter. An approach for mesh saliency detection based on a Markov Chain is proposed by
Liu (LTC+16); the input mesh was partitioned into segments using Neuts algorithms
and then over-segmented into patches using Zernike coefficients. Instead of employing
center-surround operators, background patches were selected by determining feature
variance to separate the insignificant regions. Limper et al. (LKF16) applied the con-
cept of Shannon entropy, which is defined as the expected information value within a
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message, for 3D mesh processing. Here, the curvature is established to be the primary
source of information in the mesh.

Song et al. (SLME16) argued for the benefits of using not only local but also global
criteria for mesh saliency detection. Their method comprised computing local saliency
features while considering the later computation of global saliency using a statistic
Laplacian-based algorithm, which captures salient features at multiple scales. Recently,
point saliency detection-based methods have been introduced. Shtrom et al. (SLT13)
propose a multi-level approach to find distinct points, basing their approach on the
context-aware method for image processing. Tasse et al. (TKD15) propose a cluster-
based approach; the method decomposed the point cloud into the small clusters using
an adaptive fuzzy clustering algorithm and is applied in the detection of key-points.
Guo et al. (GGCJ17) propose a saliency detection method based on a covariance de-
scriptor to capture the local geometry information. They use a sigma set descriptor to
transform the covariance descriptor from a Riemannian space to a Euclidian space to fa-
cilitate apply Principal Component Analysis for the inner structure analysis to whether
or not a point is salient.

5.3 | Point Cloud Saliency Detection

Figure 5.1: Processing pipeline of our sparse coding-based saliency detection method.

In Figure 5.1 we show the saliency detection framework based on sparse coding.
The input point cloud is represented in sparse form, and the saliency is estimated by
a center-surround hypothesis (IKN98) (IK01), which states that a region is salient if it
is distinct from its surrounding regions. Taking a point cloud as input, we estimate a
neighborhood with radius r for each point in the cloud, then select some of its boundary
points. We estimate a neighborhood with radius r around each selected point, allowing
overlapping between neighborhoods to capture the structure of the cloud. Then, for
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each point in the neighborhood, we compute a set of basic features to build a descriptor
vector and finally; we estimate the mean of the feature vectors to build only one descrip-
tor vector per neighborhood. We do the same with the neighborhoods surrounding the
central one. Afterward, we construct a dictionary D, using the feature vectors from
the surrounding neighborhoods, and then a sparse coding is carried out using the fea-
ture vector of the central neighborhood and by searching for a sparse representation for
it with the basis in the dictionary D. Finally, we compute the neighborhood saliency
using the MDL principle based on the sparse representation measure of vector x, and
the residual of the sparse reconstruction measure. The final saliency map is computed
fusing both measures.

5.3.1 | Minimum Description Length principle (MDL)
As we stated in chapter 3, the Minimum Description Length principle searches for the
best model M̂ ∈M that can be used to describe x in its entirety with the shortest length.
In (BT05), a method based on information theory was introduced for image saliency de-
tection. This method measures the saliency concerning the likelihood of a patch given
the patches that surround it. The method measures the self-information using the neg-
ative log-likelihood. Defining x as an image and p(x) as the probability of occurrence
of the patch x, given its surrounding neighborhood patches, the saliency measure of the
patch is defined as −logp(x), that is, the self-information characterizes the raw likeli-
hood of the n-dimensional vector values given by x.

Based on (RS12), (SCMP14) (BT05), we use the MDL principle to propose a method
for salience detection in point clouds based on sparse coding. The coding assignment
function L(x, M) can be defined in terms of probability assignment P(x, M), based on
the Ideal Shannon Codelength Assignment (RS12), that is, L(x, M) = −logP(x, M).
Using Bayes theorem, we can establish P(x, M) as P(x, M) = P(x | M)P(M) and then
by applying maximum a posteriori (MAP), the penalized likelihood form of the coding
model is formulated thus:

M̂ = arg min
M∈M
−logP(x | M)− logP(M) (5.1)

where −logP(x | M) is the term that describes how well the model adjusts the data
x and −logP(M) defines the model complexity, model cost, or prior term.

Once M̂ is estimated, the terms in Equation 5.1 can be interpreted as follows:

� P(M̂) is the description length or code length of the model; and
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� P(x | M̂) is the description length or code length of the data encoded using the
model.

The standard Gaussian is assumed to be coding assignment function L, and assum-
ing that x can be represented sparsely given a basis dictionary D and a sparse vector α,
the probability distribution of the reconstruction error follows a Gaussian distribution
P (x | Dα) ∼ N

(
Dα, σ2), with known variance σ2. The term −logP(x | M)− logP(M)

in 5.1 becomes−logP (x | Dα) = 1
2σ2 ‖x− Dα‖2

2, and the term−logP(M) in 5.1, assum-
ing sparsity constraint, becomes −logP(M) = ‖α‖0.

The sparsity condition and the sparse reconstruction error conform to the MDL prin-
ciple if we set the estimation parameter M̂ = α̂ and evaluate it with the prior term P(α̂),
and with the likelihood term P(x | α̂), and so ‖α‖0 and ‖x−Dα‖2

2 are obtained respec-
tively. We conclude that the sparsity of the vector α̂ is the codelength of the model, and
the residual of the sparse reconstruction error is the codelength of the data given the
model.

The MDL principle selects the best model that produces the shortest description of
the data. The more regularity that is presented in the data, the shorter the description
the model will produce. If a neighborhood is equal or slightly different to its surround-
ings in terms of information, it means these signals (neighborhoods) are redundant and
can be represented sparsely with a suitable basis dictionary, meaning that its descrip-
tion length (the sparsity of a vector α̂ i.e., ‖α‖0) will be short, and we can conclude that
this neighborhood is not salient; on the other hand, if the neighborhood is very different
from its surroundings, its description length will be longer. In other words, it cannot
be represented sparsely by the basis dictionary, and we can conclude that the neighbor-
hood is salient.

If the sparse reconstruction error (i.e., ‖x−Dα‖2
2) produces a high residual, it means

that its description length will be longer, and this implies that the neighborhood is dis-
similar from its surroundings and, therefore, more salient. On the other hand, if the
sparse reconstruction error produces a low residual, its description length will be short,
and this implies that the neighborhood is similar to its surroundings and, consequently,
less salient. Based on these saliency measurements, we describe our point cloud saliency
detection method below.

5.3.2 | Sparse Coding Saliency Detection
Unlike some saliency detection methods for point clouds compiled in the literature re-
view, our method does not estimate saliency using individual points directly; instead, a
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neighborhood is used to determine its saliency.

5.3.2.1 | Feature Vector

Given the point set P =
{

pi ∈ R3} , i = 1, 2, . . . ,N., and a neighborhood Ng(pi). (See
Figure 5.1) To differentiate when a neighborhood is different from its surroundings;
first, it is essential to characterize it by a descriptor, of which there are several which
describe low-level features for each pi, for example, normal, curvatures, shape index,
etc. In this method, the normal and Gaussian curvatures are selected; these features are
rotationally invariant. A third feature, di, is also selected. With the features defined,
a five-dimensional feature vector Fi is formed for every point pi of Ng(pi), i.e., Fi =

(nxi, nyi, nzi, ki, di), where nxi, nyi, nzi are the three components of the normal vector ni;
ki is the Gaussian curvature and di is the fifth component coordinate of Fi, which will be
defined below. It is necessary to have a single descriptor vector for each neighborhood,
so the mean of the characteristic vectors belonging to the neighborhood is estimated as
follows:

Fi =
1

|Ng(pi)|

ki

∑
j=1

Fj (5.2)

where ki = |Ng(pi)| is the cardinality of Ng(pi).
di is a global measure, which establishes the difference between the feature vector

of each neighborhood F′i and the global mean F′i (5.3) of all the feature vectors of the
point cloud, that is:

Fg =
1
N

N

∑
j=1

Fj (5.3)

di =
∥∥Fi − Fg

∥∥ (5.4)

5.3.2.2 | Surrounding Neighborhoods

Once the neighborhood descriptor is established, the next step is to find the surrounding
neighborhoods to each Ng(pi). To find these neighborhoods, first, the 3x3 covariance
matrix of Ng(pi) is computed as:

Cmi =
1

ki − 1

ki

∑
j=1

(pi − p̄) (pi − p̄)T (5.5)

where p̄ is the mean of Ng(pi) and ki =
∣∣Ng(p)

∣∣.
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After the covariance matrix Cmi has been estimated, we will use its two largest eigen-
values with its corresponding eigenvectors that follow the x and y axes, which expand
the tangent plane Ti to Ng(pi) at the point pi. Next, the points within Ng(pi) are pro-
jected onto the 2D plane Ti as shown in Figure 5.2(a). Before projecting the points within
Ng(pi), we establish the area of the surrounding neighborhoods as the n-ring, as can be
seen in Figure 5.2(b), that is, the 1-ring corresponds to radius r, the 2-ring corresponds to
2r, and so on. In these experiments, we used the 1-ring. Then, we proceed to trace a set
of radii, separated by an θ angle, from the center of the projected neighborhood in Fig-
ure 5.2(b); the length of radii is n-ring. In each of the radii, we mark points (green dots)
depending on if we have used the 1-ring, 2-ring, or n-ring, as shown in Figure 5.2(b).
Then, we find the nearest point to each marked point within the projected neighbor-
hood and find its corresponding point within the 3D neighborhood; then, we estimate
a neighborhood for each of the 3D points with radius r, as seen in Figure 5.2(c). Finally,
a feature vector is estimated for each surrounding neighborhood, in the same way as in
the previous section.

Figure 5.2: Surroundings neighborhood selection. (a) Projecting the 3d Points to 2D, (b)
mark points and n-ring area, (c) selecting surrounding neighborhoods.

5.3.2.3 | Dictionary Construction and Sparse Coding Model

It can be observed that the surrounding feature vectors Fj are a natural over complete
basis dictionary D, i.e., D =

{
F1, F2, . . . , FN

}
and the central feature vector Fi acts as the

sparse linear combination of these basis or atoms, i.e., Fi = Dα = ∑N
j=1 αjFj. Now we

can write the sparse model as:

α̂ = argmin
α

∥∥F−Dα
∥∥2

2 + λ ‖α‖1 (5.6)

68



Chapter 5. Saliency Detection 5.3. Point Cloud Saliency Detection

Equation 5.6 is a linear regression problem optimization for estimating α̂, known as
Lasso. The LARS algorithm gives the solution.

5.3.2.4 | Saliency Detection

Previously, in the Feature Vector Section, di was mentioned as being the fifth component
of the feature vectors Fi, and it was estimated using (5.4). This component was added
because often, a local neighborhood has similar surroundings, but the local and sur-
roundings are globally distinct over the entire point cloud. Using only normal vectors
and Gaussian curvature can produce areas in the cloud that have saliency, but the cen-
ter of these areas can be empty. Adding di solves this difficulty. When a sparse solution
to (5.6) is achieved, the code length for the neighborhoods is established, as was laid
out in Section 5.2.2. Our model is based on the MDL principle, therefore, the saliency
of each neighborhood Ng(pi) is proportional to ‖α‖0 and

∥∥F−Dα
∥∥

1. We replaced the
L2-norm with the L1-norm in the residual error because it is more discriminative and
robust to outliers. Next, following the instructions in Borji and Itti (BI12), we rewrote
the equations ‖α‖0 and

∥∥F−Dα
∥∥

1 = Sl(Ng(pi)) and ‖α‖0 = SM(Ng(pi)), both saliency
measurements are then normalized and combined.

ST(Ng(pi)) = N(SM) ◦N(Sl) (5.7)

where SM(·) is the saliency produced by the sparse reconstruction error, Sl(·) is the
saliency produced by the sparse coefficient and ST is the combination of both saliency
measurements; N(·) normalizes the saliency measurements for better fusion. The sym-
bol ◦ in 5.7, is an integration scheme {∗,+, max, min} (LZX+09); see Figure 5.3. The
best results in all experiments were produced using the ∗ operator. Since overlapping
is allowed between neighborhoods, the total saliency map is got by accumulating the
saliency by neighborhood. Our method differs from that proposed in (LZX+09), since
it only uses the dispersion vector (i.e., ‖α̂‖0) as a measure of saliency, while our method
also takes into account the reconstruction error or residual (i.e., ‖x−Dα‖1) as an addi-
tional measure of saliency; finally when these measurements are combined, we obtain
a better saliency map. Our method can be seen as a generalization of the framework
presented in Li et al. (LZX+09), improving the final result of the saliency map. Fig-
ure 5.4 shows the result of residuals performing as a weighting factor to measure the
rarity given by the dispersion vector.
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Figure 5.3: Saliency maps generated by different operators function ◦, according to
equation (11). (a) Using ∗ operator, (b) Using + operator, (c) Using min operator and
(d) Using max operator.

Figure 5.4: Saliency maps results, (a) Using only the dispersion vector ‖α̂‖0 as saliency
measurement (b) Using the dispersion vector and residual error ‖x−Dα‖1 ∗ ‖α̂‖0 as
saliency measurement (b).

5.4 | Experimental results and discussion
In this section, we test the proposed method on a set of objects and compare it against
3D model saliency detection approaches outlined in the literature review, considering
methods based on point clouds and meshes. The object shapes were obtained from
the Watertight Models of SHREC 2007 and the Stanford 3D Scanning Repository. Our
method is compared to three point cloud-based methods from the literature review:
Tasse et al. (TKD15), Shtrom et al. (SLT13) and Guo et al. (GGCJ17), and six mesh-
based methods from the literature review: Lee et al. (LVJ05), Wu et al. (WSZL13),
Leifman et al. (LST12), Tao et al. (TCL+15), Song et al. (SLMR14), Liu et al. (LTC+16)
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and Jeon et al.(JS17). It is also compared to the pseudo-ground truth (CSPF12). All the
experiments were run on a PC with an Intel Core i7-2670QM CPU@2.20 GHz and 8GB
RAM. As an example, for the model of a girl in Figure 5.8, with 15.5 K vertices, the
saliency computation cost of our method was 81.7s, being slower than Tasse (TKD15)
and Guo (GWX17), but if a language like C++ is used, performance will improve.

5.4.1 | Parameter selection
The only parameter in our method is λ, the regularization parameter. It produces
smoother results as value increases in the range (0, 1); its visual effect can be seen in
Figure 5.5. We found that, on average, a value of λ near 0.9 generates the best qualitative
and quantitative results, therefore in all our experiments, we fix λ = 0.9. We calculate
the size of the neighborhood according to the local characteristics (density, curvature)
of points. To estimate the size of the neighborhood, we use the method proposed in
(MN03). This method estimates the size of the neighborhood, taking into account the
local characteristics named.

Figure 5.5: Saliency map produced by our method with different values of λ. From left
to right λ = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9

5.4.2 | Qualitative Evaluation
We compare our method with the state-of-the-art, both mesh-based and point cloud-
based. In Figure 5.6, we compare the point-based methods, including Shtrom et al.
(SLT13), Tasse et al. (TKD15), and Guo et al. (GWX17). The method in Shtrom et al.
can get a reasonable saliency result and highlights a relevant saliency region on the
Max Planck model, but there are also extensive areas with noise around the principal
saliency features. In the method proposed by Tasse et al., less noise is perceived, but
there are large regions around the features with higher saliency. In the result of the Guo
et al. method, we observe a clean saliency map concentrated on the most representative
saliency features, however, our method, besides achieving the same, highlights areas
such as eyes, the lower part of the nose, ears, and lips with greater saliency. Regarding
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the dragon model, there was a similar result as with the Max Planck model. The pro-
posed method produces a clean saliency map compared to Shtrom et al. and Tasse et al.
The saliency map produced by Guo et al. is very similar to ours, which only highlights
some of the finer details such as eyes and ridges.

Figure 5.6: Point-based methods saliency comparison. (a) Shtrom et al. (SLT13). (b)
Tasse et al. (TKD15). (c) Guo et al. (GGCJ17), and (d) proposed

We also compare our results with mesh-based methods, shown in Figure 5.7, with
those of Lee et al. (LVJ05), Wu et al. (WSZL13), Leifman et al. (LST12), and Tao et al.
(TCL+15). It can be observed that the local changes in the curvature had less influence
when using the proposed method, as seen in Lee et al. (LVJ05). In the bunny and dragon
models, the saliency map is not correct because of the variation of the level of saliency
in different areas. The dragon, for example, has lost some fine details like crests and
ridges.

The method of Wu et al. produces a better saliency map than that of Lee et al., but
some salient areas are missing, as in the case of the dragon. The method proposed by
Leifman et al. produces a reliable saliency map for the dragon model, but in the case of
the bunny, the feet are missing in the final saliency map. For the Tao et al. method, in
the dragon model, some areas are shown to be salient where they are not. In the visual
comparisons, our method achieves better results than the other four methods.

Figure 5.8 compares our results with (TCL+15), (LTC+16), (SLME16) and shows that
how our method detects saliency more coherently, as it identifies small salient regions,
such as the ears and the little tie, and the facial regions like the eyes and mouth of the
bust of the girl. The hair (bun and braids) show up better with the pseudo-ground truth
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Figure 5.7: Mesh-based methods saliency comparison. (a) Lee et al. (LVJ05). (b) Wu et
al. (WSZL13). (c) Leifman et al. (LST12), Tao et al. (TCL+15) (d). and (e) proposed.

(CSPF12), compared to the other four methods. We observe, about the bird model, how
our method detects the saliency points in the wings, tail, beak, and finally, the light area
of saliency between the wings compared to the pseudo-ground truth bird model.

Figure 5.8: Mesh saliency results of Tao et al. (TCL+15) (a), Liu et al. (LTC+16) (b), Song
et al. (SLME16) (c), our method (d), and the pseudo-ground truth. (CSPF12) (e).

Figure 5.9 compares our results with (JS17) and (LTC+16). Note that the proposed
method captures the hair, nose, eyes, and mouth of the Venus closer to pseudo-ground
truth that competing methods. In the girl bust model, our method produces a clean
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saliency map; it observes that the method of Jeon et al. produces a saliency map with
highlighting no saliency region. The method of Liu et al. (LTC+16) produces a better
saliency map, but compared with the pseudo-ground truth; our method is closer.

Figure 5.9: Saliency results by our method (third column) and the competing mesh-
based methods including, Jeon et al. (JS17) (first row), Liu et al. (LTC+16) (second row),
and the pseudo-ground truth. (fourth column) (CSPF12).

Figure 5.10 compares our results with (LTC+16), (TCL+15), (SLMR14), (WSZL13),
(LVJ05), (LST12). Our method identifies the facial features of the Max Planck, and the
antennae and legs of the ant, compare to pseudo-ground truth (CSPF12), while they
are dimly captured by (LTC+16), (TCL+15), (LVJ05) and not captured by (WSZL13). In
general, our method achieves better results than the other five methods compared with
(CSPF12).

Figure 5.11, shows the comparison of our method with the pseudo-ground truth
Chen et al. (CSPF12). Our results are more consistent, but we can appreciate that our
method cannot detect the saliency in the wings of the duck model. These are misses
in our saliency map because of low density in this area of the point cloud. Low den-
sity implies less information; therefore, there are not enough neighborhoods around to
estimate a correct saliency map.

Figure 5.12, shows the results when the input is a noisy point cloud. It can be seen
that our method is more robust against noise compared to with three mesh-based meth-
ods (TCL+15), (WSZL13) and (LVJ05). We add 30% (relative to the average of the nearest
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Figure 5.10: Mesh saliency results of Lee et al. (LVJ05) (a), Leifman et al. (LST12) (b), Wu
et al. (WSZL13) (c), Song et al.(SLMR14) (d), Tao et al. (TCL+15) (e), Liu et al. (LTC+16)
(f), proposed (g), and the pseudo-ground truth (CSPF12) (h).

Figure 5.11: Results of point-based saliency. On the top part is shown the saliency pro-
duced by our method, and the bottom part is shown the corresponding pseudo-ground
truth Chen et al. (CSPF12). The models were taken from the Watertight Models of
SHREC 2007.

distance of each point) random noise to perturb points coordinates. We observe that the
method proposed by Lee et al. is not robust because the noise affects the curvature. To
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solve this problem, it must use a robust curvature algorithm in the presence of noise.
In the wings of the gargoyle, we can observe that our method is more consistent for
detecting salient features, both in the clean and noise model, in comparison with Lee et
al. (LVJ05), Wu et al.(WSZL13) and Tao et al.(TCL+15).

5.4.3 | Quantitative Evaluation
We carried out a quantitative evaluation of the 400 watertight models of SHREC 2007,
using the distribution of Schelling points provided by Chen et al. (CSPF12) as the
ground truth. To test the performance, we used the metrics proposed by Tasse et al.
(TKD16a); they propose three metrics that adapt 2D image saliency metrics to 3D saliency.
These metrics are: Area Under the ROC curve (AUC), Normalized Scanpath Saliency
(NSS) and Linear Correlation Coefficient (LCC). In the AUC metric, the ideal saliency
model has a score of 1.0, AUC disregards regions with no saliency, and focuses on the
ordering of saliency values. The NSS metric measures the saliency values selecting the
users as fixation points. The LCC metric has values of between -1 and 1, with values
closer to 0 implying weak correlation. This metric compares the saliency map under
consideration with the ground-truth saliency map (Schelling distributions). For compar-
ison, we selected three methods from the literature review, two based on point clouds
and one based on meshes, these methods are: the clustering method (CS) (TKD15), the
point-wise method (PW) (GWX17) and the spectral analysis method (SS) (SLMR14).
Also, as a reference score, we incorporated the human performance score (HS), pro-
vided by Tasse et al. (TKD16a).

Table 5.1 shows the AUC score values of the selected methods; our method com-
petes with the CS and PW methods, as the final average shows. The SS method per-
forms poorly compared to our method and the CS and PW methods. The same is true
regarding the HS method, which outperforms the SS method. Table 5.1 shows that for
the classes glasses, ant, octopus, bird, and bearing, our method obtained the best re-
sults, while for the classes hand, fish, spring, mechanic, airplane, and vase, our method
equals the PW and CS methods. The above shows that the proposed method achieves
the same results in comparison with the state-of-the-art techniques and, in some cases,
even improves them.

Figure 5.13 shows NSS and LCC metrics and confirms that the performance of our
method is similar to CS and PW, and outperforms SS, but HS outperforms all methods
presented.
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Figure 5.12: Saliency results on Gargoyle model. Our method (bottom row), Lee et al.
(LVJ05) (first row), Wu et al. (WSZL13) (second row) and Tao et al. (TCL+15) (third
row). The first two columns are front and back view of saliency results from Gargoyle
model. The second two columns are the same view results but with 30% random noise
relative to the average of the nearest distance of each point.
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Table 5.1: AUC performance per shape class in SHREC 2007.

Class SS CS PW Ours HS (1 v. all)
human 0.57 0.57 0.59 0.59 0.58
cup 0.59 0.60 0.64 0.62 0.57
glasses 0.53 0.52 0.53 0.55 0.56
airplane 0.62 0.62 0.60 0.62 0.60
aant 0.57 0.60 0.59 0.61 0.60
chair 0.55 0.57 0.59 0.58 0.62
octopus 0.53 0.54 0.56 0.59 0.60
table 0.58 0.63 0.65 0.60 0.61
teddy 0.55 0.56 0.57 0.56 0.60
hand 0.58 0.61 0.61 0.61 0.58
plier 0.56 0.59 0.59 0.58 0.56
fish 0.63 0.66 0.66 0.66 0.61
bird 0.56 0.60 0.59 0.61 0.57
spring 0.55 0.55 0.55 0.55 0.54
armadillo 0.60 0.65 0.66 0.65 0.62
bust 0.56 0.62 0.63 0.62 0.59
mechanic 0.53 0.68 0.70 0.70 0.64
bearing 0.50 0.60 0.62 0.63 0.55
vase 0.61 0.62 0.63 0.63 0.58
four-legs 0.60 0.60 0.61 0.60 0.59
average 0.57 0.60 0.61 0.61 0.59

Figure 5.13: Saliency performance evaluation under the metrics NSS (left) and LCC
(Right).

5.5 | Conclusion
This chapter presents a novel and simple method for point cloud saliency detection via
sparse coding. Based on the MDL principle, the proposed method uses a sparse coding
representation to find the minimum code length to establish when a neighborhood is
salient or not regarding its surrounding neighborhoods. It is robust against noise since
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it takes the mean of the feature vectors of the neighborhood as a unique feature vector.
Our approach produces feasible and even faithful results on a variety of models, giving
convincing results. We have compared our results to the most recent approaches found
in the literature review, and we found that the proposed method competes with and,
in several cases, significantly outperforms these approaches, using the pseudo-ground
truth provided by Chen et al. (CSPF12) as a reference.
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6

Surface Simplification

High-resolution 3D scanning devices produce high-density point clouds, which require
a large capacity of storage and time consuming post-processing algorithms. As a pre-
processing stage, it is common to apply surface simplification algorithms for simplifying
the subsequent geometric processing. The goal of point cloud simplification algorithms
is to reduce the volume of data while preserving the most relevant features of the orig-
inal point cloud. In this chapter, we present a new point cloud feature-preserving sim-
plification algorithm. We use a global approach to detect saliencies on a given point
cloud. Our method estimates a feature vector for each point in the cloud. The com-
ponents of the feature vector are the normal vector coordinates, the point coordinates,
and the surface curvature at each point. Feature vectors are used as basis signals to
carry out a dictionary learning process, producing a trained dictionary. We perform
the corresponding sparse coding process in order to produce a sparse matrix. To detect
the saliencies, the proposed method uses two measures, the first of which takes into
account the quantity of nonzero elements in each column vector of the sparse matrix
and the second the reconstruction error of each signal. These measures are then com-
bined to produce the final saliency value for each point in the cloud. Next, we proceed
with the simplification of the point cloud, guided by the detected saliency and using
the saliency values of each point as a dynamic clusterization radius. We validate the
proposed method by comparing it with a set of state-of-the-art methods, demonstrating
the effectiveness of the simplification method.

6.1 | Introduction
Point clouds have become a standard data input tool for many fields, including scien-
tific visualization, photogrammetry, and medical applications. For data acquisition of
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3D shapes, modern 3D scanning devices can produce a vast amount of data, reaching
millions of points (LPC+00). This amount of data creates challenges in several fronts,
like large storage requirements and increased data transmission and rendering times. In
order to reduce the complexity of such point clouds and make the subsequent geomet-
ric processing algorithms more efficient, it is common to simplify the point cloud. The
main requirement for point cloud simplification algorithms is that they should maintain
the global shape, the sharp features and the curvatures of the original cloud. For the last
of these, transitions between planar and curved areas should be preserved (CY16). It is
important to preserve the representative points and the sampling density in order to ap-
proximate faithfully the original point cloud both geometrically and topologically. The
simplified point cloud must be dense around the sharp features (corners, edges, and cur-
vatures) to preserve the global topology, and sparse in flatten regions (low or zero curva-
ture). The original point cloud data only contains the coordinates of the points with no
topological information. In order to extract the implicit geometric information (normal
vectors, surface variation, curvatures), the point-based simplification algorithms use the
local information around each point in the cloud. Usually, the k-nearest neighbor algo-
rithm is used to estimate such geometric information. For each point in the cloud, the
proposed method uses the coordinates of the normal vector, the coordinates of the point
and the curvature as a feature vector to identify potential saliency points. The feature
vectors of each data point are the training signals for a dictionary learning process. With
the dictionary trained, a sparse coding process is carried out to identify the most salient
regions in the point cloud. Finally, the proposed method simplifies the point cloud by
using the sparse vectors as a clusterization radius.

We can define the point cloud simplification problem in two ways. Problem 1: how
to distribute the points on the simplified surface, and Problem 2: geometrically speak-
ing, in the case of an error bound, how far is the simplified surface from the original
one?.
Formally, we define the problem of point cloud simplification as follows: Given a sur-
face S defined by a point cloud P and a target sampling rate N < |P| the goal is to find a
point cloud P′ with |P′| = N such that the distance ε of the surface S′ to the original sur-
face S is minimal (PGK02). A related problem is finding a point cloud with a minimum
sampling rate given a maximum distance ε. Symbolically we write the above as:

P→ P′, where

1. |P′| = N < |P| and
∥∥P− P′

∥∥ is minimum

2.
∥∥P− P′

∥∥ < ε and |P′| is minimum
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Where | · |, is the point cloud cardinality, ‖·‖ is the Euclidean distance. Problem 1
seeks to reduce the error between the original point cloud P and the simplified P′ when
a size restriction in the simplified point cloud is given. Problem 2 uses an error limit ε

to minimize the size of the point cloud P such that no point in the simplified cloud P′ is
further than the distance ε of the original model.

6.1.1 | Contribution
The contributions of this chapter are:

� A point cloud simplification method based on dictionary learning and sparse cod-
ing that maintains a balance between sharp features and the density of points dis-
tribution.

� The proposed method downsizes the point cloud very efficiently due to its inher-
ent perceptual nature, which selects important points based on their saliency.

� The saliency-based simplification provides an important criterion to preserve the
most important geometric features.

� Our method is simple and easy to implement, is time-efficient, and does not need
complicated data structures to achieve simplification.

� Experimental results confirm the effectiveness of our algorithm, making it compa-
rable to the state-of-the-art alternatives.

6.2 | Related Work
In recent decades,a considerable amount of research has been conducted on point cloud
simplification. Point cloud simplification algorithms can be roughly divided into four
categories: particle simulation-based methods, Iteration-based methods, Formulation-
based methods, and clustering-based methods.

6.2.1 | Particle simulation-based methods
Pauly et al. (PGK02) present a particle simulation method. The proposed algorithm
distributes a set of points called particles evenly onto a surface, producing point clouds
with low approximation error to the original point cloud. Collections of particle simulation-
based methods are called LOP-based methods (Local Optimal Projection) (LCOLTE07).
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These methods project a set of points over an underlying surface using a localized ver-
sion of the L1 median filter regularized by a repulsion potential. Huang et al. (HLZ+09),
propose a correction over the original LOP algorithm, comprise distributing the point
evenly over the underlying surface. Huang et al. (HWG+13) and Liao et al. (LXJF13),
aim to integrate the vector normal to each projected point, in order to preserve sharp
features on the point cloud. These methods produce good results for surface simpli-
fication but are expensive in computational time. Futhermore, the original points are
replaced by the particles, losing the original data sets.

6.2.2 | Clustering-based methods
These methods divide the point cloud into clusters, applying some criteria and then re-
placing the cluster points by the centroid. Pauly et al. (PGK02), present two algorithms,
uniform incremental clustering, and hierarchical clustering. These methods are mem-
ory and computational time-efficient but produce high average approximation errors
with respect to the original surface. Shi et al. (SLL11) present an adaptive method for
simplifying point clouds. They apply a recursive subdivision scheme in which the al-
gorithm selects representative points and removes redundant ones. They use k-means
clustering to group similar spatial points and apply the maximum normal vector de-
viation measure to subdivide the clusters. The algorithm can handle boundaries and
produce uniform density in flat regions and high density in curved regions. In Mah-
daoui et al. (MBMHS17), present a comparison between two simplification algorithms
using k-means and fuzzy c-means algorithms. The method proposes using a metric
based on entropy estimation for clustering the point cloud. Liu et al. (LLR+20) present
an edge-sensitive feature detail preserving algorithm; they use two clustering schemas
to split the point cloud in the geometric and spatial domains. These methods can pre-
serve global structures of the point clouds, and some of them preserve sharp features,
but because of the clustering process they are computational time-consuming.

6.2.3 | Formulation-based methods
These methods are based on mathematically modeled optimality. Leal et al. (LLG17),
propose a three-step method. In the first step, they apply a clusterization algorithm.
The second step involves the identification of points with high curvature to be pre-
served. The last step, uses a linear programming model to simplify the point cloud,
maintaining a density equivalent to the original point cloud. Chen at al. (CTF+18) em-
ploy a resampling strategy based on a graph that selects representative points while
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preserving features. The minimization of the point cloud is carried out by a proposed
reconstruction error based on a feature extraction operator. In (QHG19) Qi et al. pro-
pose an optimization strategy for maintaining the balance between finding the sharp
features and preserving density in the point cloud, The optimization is represented us-
ing a graph filter. The proposed method are superior to some methods state-of-the-art.

6.2.4 | Iteration-based methods

Pauly et al. (PGK02), propose an iterative simplification method using quadric error
metrics, this algorithm produces point clouds with low approximation errors, but they
are expensive in computational time. Alexa et al. (ABCO+03) propose a decimation
process based on the Moving Least Square (MLS) method. The proposed method re-
moves redundant information using a surface error metric. The global result of the
algorithm is good, but it can produce uneven sampling distributions because the sub-
sampling unnecessarily restricts the potential sampling position. Zang et al. (ZYLX18),
present a method based on a multi-level strategy for point cloud simplification, which
adaptively determines the optimal level of points. For each level, the method extracts
the points based on a measure of importance given by a 3D Gaussian method. Zhu et
al. (ZKV+19), propose a multi-view method for point cloud simplification. They project
the points onto the three orthographic planes getting the object edges. The edges are
merged to produce 3D edges object, and the points with less importance are separated
from the point cloud. Shoaib et al. (SCKC19) propose a method called fractal bubble
to simplify point clouds, selecting important data points through the expansion of a
recursive generation of self-similar 2D bubbles until contact is made with a point. Ji
et.al. (JLFL19), present a detailed feature points simplified algorithm (DFPSA). They
propose estimating the importance of each point using a four-characteristic operator,
which involves estimating normal curvature distance between the points and projection
distance, to each point on the point cloud. Finally, a threshold is used to decide whether
each point may be classified as a feature point or not. The non-feature points are sim-
plified using an innovative step through an octree structure to avoid creating regions
with holes. Zhang et al. (ZQW+19) presents a feature preserved point cloud simplifica-
tion (FPPS); for the simplification, an entropy measure is defined, which quantifies the
geometric features hidden in the point cloud. The key points are selected, based on the
entropy.
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Figure 6.1: Steps involved in the proposed method to simplify a point cloud.

6.3 | Point Cloud Simplification
Our proposed method is based on dictionary learning and sparse coding. The input
point set is analyzed using the covariance matrix to extract the local features; then, using
the dictionary and the sparse representation matrix, the point set is analyzed globally
to identify the sharp features. Finally we used the saliencies to sample the point cloud,
keeping the most representative points. Figure 6.1, shows the pipeline of the proposed
method.

6.3.1 | Low-level Features Estimation
To characterize the point set, we estimate as the descriptor for each point pi: the normal
vector, the total variation of surface (curvature), and the point coordinate. The normal
vector in the surface is related to the tangent plane; if two points are on the same tangent
plane, the normal vectors are the same. On the other hand, if two points are on different
planes (non-parallel), their respective normal vectors are different. Therefore, a large
difference between the normals means that the surface at the point is more curved, i.e., is
likely to be a feature point. The surface curvature at a point shows the surface variation
at that point. High curvatures reflect large variations of the surface at the point, showing
that is part of a feature. The point coordinates reflect the spatial relationship between
the points. In a point cloud (without noise), when the spatial distance of a point and its
neighboring points is large is possible that the point is in sharp feature, or the sampling
density is nonuniform near the point. In the surface reconstruction process, holes can
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appear in low-density areas, which means the point should be preserved.

A common way to estimate low-level features in a point set is to apply the PCA
method locally to each neighborhood Ng(pi). Specifically, we use a weighted version of
PCA, with a covariance matrix Cmi, established in Equation (6.1).

Cmi =
1

ki − 1

ki

∑
i=1

wi (pi − p̄) (pi − p̄)T (6.1)

where p̄ = 1
|Ng(p)| ∑ki

i=1 pj, is the centroid of Ng(pi) and ki =
∣∣Ng(pi)

∣∣, is the cardinal-

ity of Ng(pi). wi is a weight estimated by wi = exp(− d2

k2
i
), d = ‖pi − p̄‖, is the Euclidean

distance. Next, we analyze the eigenvalues λ0 ≤ λ1 ≤ λ2 and eigenvectors v0, v1, v2 of
the covariance matrix Cmi.

The eigenvector v0 corresponding to the smallest eigenvalue λ0 is the normal vector
ni at point pi. Pauly et al. (PGK02) (PKG03) proved that the total variation is equivalent
to the surface curvature. Hence, it is defined in Equation (6.2).

σ(pi) = λ0/(λ0 + λ1 + λ2) (6.2)

ni = (nx, ny, nz) (6.3)

pi = (px, py, pz) (6.4)

Once the low-level features are defined, we build a seven-dimensional feature vector
Fi, for each point pi ∈ P where Fi = (nx, ny, nz, σ, px, py, pz).

6.3.2 | Dictionary Construction and Sparse Coding Model
Using the feature vectors defined in section 6.3.1, as data vectors Fi ∈ Rn×1, with n = 7
(number of low-level features). We construct the data matrix F = {F1, F2, . . . , FK} ∈
Rn×k, where K = |P| is the number of feature vectors. A sparse coding matrix α ∈ RS×K

and a dictionary D ∈ Rn×S are defined using sparse coding theory. S is the number
of atoms of the dictionary (in our experiment, we set S = 200, for all the models). The
Equation (3.13) is solved using the K-SVD algorithm (AEB06) obtaining the estimation
of α and D. Now F can be reconstructed as F = Dα, obtaining the sparse representation
of data matrix F in the dictionary D. Now we are able to find the saliency points by
analyzing the sparse matrix α.
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6.3.3 | Relating the MDL Principle to Sparse Coding
Following the idea presented in section 5.2.1 and 5.2.2; a similar approach is followed in
this chapter for the global saliency model. Starting from the Bayes theorem and apply-
ing MAP. We establish: −logP(x | M), is the fitting data and −logP(M), is the prior

� P(M̂) is the description length or code length of the model; and

� P(x | M̂) is the description length or code length of the data encoded using the
model.

if we set the estimation parameter M̂ = α̂ and evaluate it on the prior term P(α̂),
and on the likelihood term P(x | α̂), we have P(M̂) = ‖α̂‖1 and P(x | α̂) = ‖x−Dα̂‖2,
We conclude that the sparsity of the vector α̂ is the codelength of the model, and the
residual of the sparse reconstruction error is the codelength of the data given the model.

The MDL principle selects the best model that produces the shortest description of
the data. The more regularity that is presented in the data, the shorter the description
the model will produce.

6.3.4 | Detecting Saliency Points
Once the sparse coding matrix α, has been obtained, we analyze what vectors corre-
spond to the saliencies. Let αj, Fj, be two column vectors of the matrices α and F,
respectively. A feature vector of a point is considered salient if its sparse represen-
tation

∥∥αj
∥∥

1 has many nonzero elements, implying that linear combination of many
atoms is required to represent the point correctly; and if its sparse reconstruction error∥∥Fj −Dαj

∥∥
2 produces a high residual. On the other hand, a feature vector of a point is

not considered salient, if its sparse representation
∥∥αj
∥∥

1 has few nonzero elements. That
is, if it can be represented by the linear combination of only a few atoms and its sparse
reconstruction error

∥∥Fj −Dαj
∥∥

2 produces a low residual.

On this basis, we sum the nonzero elements of each column of the matrix α, Equation
(6.5). And a score vector with these sums is built.

f (αj) =
s

∑
p=1

h(αp,j) ∀j = 1, 2, . . . , S (6.5)

h(αp,j) =

1 , ∀αp,j 6= 0

0 , otherwise
(6.6)
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And regarding the sparse reconstruction error, we sum the residuals resulting from
the difference between each signal Fj and its respective reconstruction Dαj. i.e. rj =∥∥Fj −Dαj

∥∥
2. Equation (6.7). A score vector with these sums is built.

g(Fj) = rj ∀j = 1, 2, . . . , S (6.7)

Now we normalize the score vectors f (αj) and g(Fj), divide each vector component
by the highest value.

f (αj) = f (αj)/max(f (αj)) ∀j = 1, 2, . . . , S (6.8)

g(Fj) = g(Fj)/max(g(Fj)) ∀j = 1, 2, . . . , S (6.9)

Next, both score vectors are integrated into a unique score vector as follow:

Sf (i) = f (αi) ∗ g(Fi) ∀i = 1, 2, . . . , S (6.10)

We use the vector score Sf , as a metric for the simplification process. Figure 6.2
shows the saliency levels founded into the vector Sf , when different threshold values T
are applied.

Figure 6.2: The bunny model, different levels of saliency produced by the thresholding
of the vector Sf , with different values (left to right) T = 0.9, T = 0.8, T = 0.7 and T = 0.6.
Red points are high saliency, green points are low saliency.

6.3.5 | Simplification based on saliency
The saliency points characterize the most relevant features in the point cloud. These
points must be retained in the simplification process. On the other hand, points with
low saliency are redundant and have less importance for representing the surface to be
simplified. Using the vector score defined by (Equation 6.10), we establish a dynamic
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ratio of influence that depends on the importance of the saliency of each point in the
entire cloud. If point pi is salient, the radius of influence will be small and few points
will be removed. If, however, it is not salient, the ratio of influence will be large, and
more points will be removed (see Figure 6.3).

Figure 6.3: Dynamic ratio. The simplification radius is large in regions with low saliency
(flatten regions ) and small in regions with high saliency (sharp features).

To proceed with the simplification, as a first step, the vector score Sf (i) is sorted
by the absolute value of its components. In the second step, we calculate the ratio of
influence as follows.

ρi = δ · 1
Sf (i)

(6.11)

According to (6.11), the dynamic ratio ρi is determined by 1
Sf (i) . Therefore, in points

with high saliency the ratio is small, while in points with low saliency, the ratio is large
as shown in Figure 6.3. Where δ, is a user defined scale parameter that controls the
number of points to be simplified.

6.4 | Results and Discussion
We have evaluated the proposed method using a set of models namely, the Max Plank,
data set (50,112 points, few detail features), the Fandisk data set (6,475 points, high sharp
features), the Asian dragon data set (3,609,600 points, many detail features), the Bunny
data set (35,947 points, few detail features), the Elephant data set (24,955 points, many
detail features), the Horse data set (48,485 points, few detail features), Gargoyle data set
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(25,038 points, many detail features) and the Nicolo data set (50,419 points, few detail
features).

We also compare the results of our method to other approaches. For quantitative
comparison, our method, which we named Saliency Dictionary Based Simplification
(SDBS), is compared to three point based methods, the Curvature based method (CV),
implemented by Geomagic Studio, Simplification on Graph (FPUC) (QHG19), Fast Re-
sampling via Graphs (FRGR) (CTF+18), and one mesh-based method, namely Poison
sampled disk (PSD), implemented by Meshlab. For visual comparison, we replicate
the same experiment carried out in (JLFL19), and we use the results to compare the
proposed algorithm with six state-of-the-art simplification methods: Grid Simplifica-
tion (GRID), from CGAL library, Hierarchical Clustering Simplification (HCS) (PGK02),
Weighted LOP (WLOP) (HLZ+09), Simplification on Graph (FPUC) (QHG19), Fast Re-
sampling via Graphs (FRGR) (CTF+18) and detail feature points simplified algorithm
(DFPSA) (JLFL19).

All the experiments were run on a PC with Intel Core i7-2670QM CPU@2.20 GHz
and 8GB RAM. For implementing the proposed method, we use Matlab R2016b pro-
gramming environment.

Figures 6.4, 6.5, and 6.6 are an example of the effectivity of the proposed simplifi-
cation method in different types of point clouds (free-form surfaces and surfaces with
sharp edges and corners). ). It is clear that the proposed method is capable of preserving
the global structure of the clouds as the simplification rate increases in all cloud types,
since the needed information is integrated into the dictionary training. In Figure 6.4,
shows the Fandisk model, the edges and corners are preserved as the simplification rate
increase, and in flat regions, the method tries to distribute the points evenly.

Figure 6.4: The Fandisk model (a) original 6,475 points (b) simplified to 1,465 points and
(c) simplified to 738 points.

Figure 6.5 shows how the Asian dragon model is simplified from millions of points
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(3,609,600) to thousands of points (1,502). The proposed method preserves the global
structure and the most relevant details of the original point cloud.

Figure 6.5: The Asian dragon model (a) original 3,609,600 points, (b) simplified to
410,208 points, (c) simplified 78,268 points, (d) simplified to 30,487 points (e) simplified
to 12,621 points (f) simplified to 8,196 points, (g) simplified to 5,758 points, (h) simplified
to 3,307 points, (i) simplified to 1,502 points.

In Figure 6.6 shows how the Max Plank model is simplified from 50,112 to 1,502
points. The proposed method preserves the global structure, and some of the details of
the original point set. The Max Plank model; is a free form surface, showing that our
method operates efficiently over these types of models.

6.4.1 | Parameters Selection
There are three parameters in our method: the regularization parameter λ Equation 3.7,
dictionary size S, and the scale of points number to be simplified δ. The parameter λ

is the balance between the data-fidelity and the regularization term. Small values can
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Figure 6.6: The Max Plank model (a) original 50,112 points, (b) simplified to 40,108
points, (c) simplified to 26,387 points, (d) simplified to 20,105 points (e) simplified to
12,761 points (f) simplified to 8,898 points, (g) simplified to 6,588 points, (h) simplified
to 5,108 points, (i) simplified to 4,100 points.

produce a simplification with few details, points, and features, while large values can
result in more details, points, and features. This may be observed in Figure 6.7. In all
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our tests, we set λ = 0.5, which obtain the best results since this value maintains the
balance between the number of points and the features.

Figure 6.7: Variation of the parameter λ, with the parameter δ = 1.8 fixed.

We establish the size S of the dictionary based on Figure 6.8. It shows the Mean
Square Error (MSE) variation as the dictionary size increases. If the size of the dictionary
increases, the MSE is low, but processing time increases. On the other hand, when the
dictionary size is reduced, the MSE increases, but the processing time decreases. Our
goal is to find a balance between a suitable dictionary size and low processing time.

Figure 6.8: MSE variation vs. Dictionary size.

We plot the MSE of three different point clouds. Figure 6.8 shows that in the range
of values between 200 and 400 the MSEs are low, and the size of the dictionary is not
significant. In all the experiments, we fix the dictionary size S = 200, producing good
results. The scale parameter δ is the only free user-defined parameter, and it is used for
tuning the number of points to be removed.
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6.4.2 | Quantitative Analysis
We choose the geometric error between the original and the simplified point cloud as a
metric to evaluate the quality of the proposed simplification method, following Pauly
et al. (PGK02). Similarly, we measure the maximum error distance and the average
error distance between the original point cloud P, and the simplified point cloud, P’.
We denote the surface of P as S, and the surface of P’ as S’. The simplification error
is estimated using the maximum error (Equation 6.12) and the average error (Equation
6.13) as follows:

∆max
(
S, S′

)
= max

pi∈S
|d(pi, S′)| (6.12)

∆avg
(
S, S′

)
=

1
‖S‖ ∑

pi∈S
|d(pi, S′)| (6.13)

For each point pi ∈ S, the geometric error d(pi, S’), is defined as the Euclidean dis-
tance between the sampled point pi and its projection point p̄i on the simplified surface
approximation S’. The metric is a variant of the Hausdorff distance. Since our method
is mesh-free, we approximate the simplified surface S’ using a least squares plane (LSP).
To estimate the LSP, we select a set of neighboring points NHi in P’ closest to pi, using a
Kd-tree data structure, while for points NHi, we perform a PCA regression plane (LNHi ),
which represents the local approximation S’. i.e., d (pi, S’) ∼= d (pi, LNHi) (See Figure 6.9).

Figure 6.9: Local surface approximation and error computation as the distance from pi
to LNHi .

Table 6.1, shows the test models with the original numbers of points and the sampled
points with different sampling rates (the value shown is the arithmetic average of the
number of points resulting from the different methods for each simplification rate.). Ta-
ble 6.2, shows the quantitative comparison between our method and the state-of-the-art
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methods. Table 6.2 shows four simplification rates i.e. 5%, 10%, 20% and 50%. All five
methods reduce the original number of points to a similar number of simplified points.
Our method provides the most accurate simplification result of the five algorithms with
respect to the average error metric ∆avg. But taking into account the maximum error
metric ∆max, the Poisson disk mesh-based method is the best closely followed by our
method.

Table 6.1: Test models with the original number of points and the sampling results at
different simplification rates.

Models
Original
Points

Sampled
points 5%

Sampled
points 10%

Sampled
points 20%

Sampled
points 50%

Bunny 35947 1797 3610 7186 17976
Elephant 24955 1246 2489 4991 12478
Gargoyle 25038 1253 2496 5008 12522
Horse 48485 2428 4872 9693 24247
MaxPlank 50112 2459 4892 9826 24569
Nicolo 50419 2519 5053 10082 25213
Fandisk 25894 1249 2480 4974 12437

As shown in Table 6.2, the CV, FRG and PSD methods produce similar results in
terms of average surface error. The PSD method achieved relatively better results in
terms of maximum surface error; however, a mesh structure must be used in the simpli-
fication. In some practical applications, only the 3D coordinate information is available,
which limits the application of the PSD sampling method. The SGR method and our
SDBS method achieved the best results in terms of average surface error, but the SDBS
outperforms all other methods.

We compare the SDBS method with the other methods in accuracy and running
time. Table 6.3 shows the running time and the number of preserved points of the
proposed approach compared to six state-of-the-art methods. We simplify all the point
clouds at similar simplification rate with all the algorithms. We run each method 10
times on each point cloud, and the average execution time is shown in Table 6.3. The
programming language is also showed. It is worth noting that the simplification rate
of our method is the lowest in the study (the bunny model was simplified from 35945
points to 4517 points, and the Elephant model was simplified from 24955 points to 2154).
The SDBS keeps the balance between the sharp features and the point density in the
data set. Although our method is implemented in MATLAB, Table 6.3 shows that it is
computationally efficient compared to methods implemented in C++.
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Chapter 6. Surface Simplification 6.4. Results and Discussion

Table 6.3: Comparison of simplification time and preserved number of points.

Method

Preserved
number of

points
(Bunny)

Preserved
number of

points
(Elephant)

Bunny
running
time (s)

Elephant
running
time (s)

Language

SDBS 4517 2154 21.223 15.186 MATLAB
DFPSA 4566 2872 56.156 26.220 - - -
FPUC 4644 2165 38.094 29.503 MATLAB
FRGR 4638 2164 9.5740 1.0030 MATLAB
WLOP 4572 2438 16.678 10.879 C/C++
GRID 4562 2154 0.6920 0.5170 C/C++
HCS 4644 2184 4.4590 3.1470 C/C++

6.4.3 | Visual Comparison

In order to compare visually the result of the studied algorithms, we simplify the models
to approximately the same number of points with all methods. 6.10 10 shows the sim-
plified results of the Bunny data set by different algorithms. The surface reconstruction
results was computed using the Geomagic Studio software.

Figure 6.10 (b, c, e, f, g) shows how more points are retained in curved parts, while
few points are kept in smooth parts. The simplification results of Figure 6.10d is uni-
form. All the methods present good reconstruction results but cannot reconstruct nar-
row features such as ears, with the exception of the DFPSA method, which shows only
a small hole. The proposed method (Figure 6.10h) retained the most relevant features
and details of the model, and the reconstruction does not present the problems observed
with the other algorithms.

Figure 6.11 shows the simplification result for the Elephant data set with a high
simplification rate. In Figure 6.11 (c, d, g) the GRID, WLOP, and DFPSA simplification
methods preserve few points in smooth regions, and more points in feature regions such
as legs, ears, trunk and tusks. The HCS, FRGR and FPUC simplification methods in
Figure 6.11 (b, e, f), present problems to retain the global structure of its respective point
clouds. Our method also preserves more points in feature areas, but it distributes the
points evenly in smooth regions. Due to the high simplification rate, all the algorithm
present failures, but our method is the best preserving the overall structure of the data
set.
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Chapter 6. Surface Simplification 6.4. Results and Discussion

Figure 6.10: Point cloud simplification of the Bunny model. (a) The original data set, number of
points = 35947, (b) HCS method, number of points = 4644, (c) GRID method, number of points =
4562, (d) WLOP method, number of points = 4572, (e) FRGR method, number of points = 4638,
(f) FPUC method, number of points = 4644, (g) DFPSA method, number of points = 4566, (h)
Proposed SDBS method, number of points = 4517. The image g is taken from (JLFL19).

Figure 6.11: Point cloud simplification by different algorithms of elephant model. (a) The orig-
inal data set, number of points = 24,955, (b) HCS method, number of points = 2184, (c) GRID
method, number of points = 2154, (d) WLOP method, number of points = 2438, (e) FRGR
method, number of points = 2164, (f) FPUC method, number of points = 2165, (g) DFPSA
method, number of points = 2872, (h) Proposed SDBS method, number of points = 2154. The
image g is taken from (JLFL19).
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Chapter 6. Surface Simplification 6.5. Conclusion

6.5 | Conclusion
In this chapter, we have presented a new method for point cloud simplification based
on dictionary learning and sparse coding. The proposed method preserves the sharp
features and produces evenly distributed points which are according to the geometry
and surface appearance information. Our method uses the normal vector, curvature,
and the position of the points as a component of a feature vector. The feature vectors of
each point of the cloud are the input for a dictionary learning and sparse coding process
for saliency detection. Compared to the method proposed in chapter 5, this method is a
global and a generalized approach to the problem of saliency detection on point clouds.
The proposed method uses the MDL principle to find the minimum code length to es-
tablish when a point is salient or not concerning the entire point cloud. i.e., one point is
considered a salient point if its feature vector is reconstructed with many atoms from the
dictionary. On the other hand, if the feature vector is reconstructed with few atoms, the
point is not considered a saliency. The simplification is guided by global saliency using
the sparse vectors resulting from the sparse coding process; we use its code length as an
adaptive simplification ratio in different regions. The proposed method produces low
simplification rates in saliency regions (borders, corners, high curvatures, valleys) and
high simplification rates in relatively planar regions but keeping an appropriate density
through the even distribution of points.
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7

Feature Detection

In this chapter, we present a novel approach for detecting sharp features on point clouds.
Detecting sharp features is an essential stage for structuring point sets as a previous step
for feature lines reconstruction, surface estimation, and non-photorealistic rendering.
Detecting sharp features in a point sets is not a simple task, because, without topolog-
ical information that connects the points between them, only the intrinsic information
brought by the raw points as discrete geometric properties is available to carry out the
feature detection. The proposed algorithm estimates a neighborhood to each point in
the cloud to compute a covariance matrix and uses the eigenvalues to estimate the sur-
face variation and the sphericity. Next, using the smallest eigenvector as normal, we
compute the orthogonal distance of each point to the neighborhood regression plane.
Using the surface variation, the sphericity and the orthogonal distance, we construct a
feature vector to every point in the cloud. We use the feature vectors as basis signals
to carry out a dictionary learning process to get a trained dictionary; then, we perform
the corresponding sparse coding process to get the sparse matrix. Finally, analyzing the
sparse matrix, it is determined which feature vectors correspond to points that are can-
didates to be selected as sharp features. We show the robustness of our method on 3D
objects with and without noise.

7.1 | Introduction
In recent years, 3D digital scanning devices have had significant development; these
devices produce point clouds with thousands and even millions of 3D point. 3D point
sets have been used for point-based graphics, surface reconstruction, geometry mod-
eling, non-photorealistic rendering, remote sensing, photogrammetry, etc. Sharp fea-
tures detection is a low-level computer vision process, which is the starting point for
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Chapter 7. Feature Detection 7.1. Introduction

help to understand and identify the primitive shapes and basic geometry from ob-
jects. Detecting sharp features is an essential step for scene understanding in robotic
(LHLD18; SYC+18), surface segmentation (XZW+15), noise filtering (WCL+12), and
surface reconstruction and simplification (DCSA+14). A sharp feature is the intersec-
tion of two or more surfaces, which is visualized as edge, valley, corner, or crest. In
the absence of topological information that connects the points, detect sharp features in
point sets is a non-trivial task; therefore, we use the intrinsic geometric properties given
by the same points, to carry out the feature detection. The estimation of differential ge-
ometric properties is hard, even more, when the point set is contaminated with noise.
Sharp feature detection is a significant challenge when the point set is noisy; this is be-
cause surface regions with a high level of noise can be confused with sharp features. In
this chapter, we present a novel method for detecting sharp features on point sets with
no topological connectivity. The pipeline of our method is shown in Figure 7.1. The
proposed method is based on dictionary learning and sparse coding. First, to detect
sharp features from 3D point sets, we analyze the geometrical properties of neighbor-
hoods using the covariance matrix; we estimate the following features: normal, surface
variation, and orthogonal projection to each point. Next, we associate with each point
a vector with this feature. We construct a dictionary with the feature vectors and train
the dictionary. Next, a sparse coding process is performed to find the most represen-
tative atoms that best reconstruct each feature vector, and analyzing the sparse matrix,
we determine which feature vectors are candidates to be selected as sharp features. The
proposed method has low computational complexity, is easy to implement, and is ro-
bust to noise.

7.1.1 | Contribution
We summarize the contributions of the proposed method as follows:

� The proposed method is easy to implement and fast, even with large point clouds.

� Our approach explores multiple scales to extract sharp features with certain levels
of noise. In most cases, the detected features are one-point wide.

� Accurate and robust results are achieved by the method even for noisy data and
objects with complex geometry.
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Chapter 7. Feature Detection 7.2. Related Work

7.2 | Related Work
In this section, we present the state-of-the-art methods to estimate features in mesh and
point clouds. Feature detection is a fundamental problem that has been studied in the
graphics and vision communities over the last decades and presents significant numbers
of challenges to its solution. To continue, we present a brief review of feature detection
methods.

7.2.1 | Mesh-based Methods
There have been many works for detecting sharp features on triangular meshes. In
Xu et al. (XZW+15), surface segmentation and edge feature detection are presented.
The method works on fractured fragment scanned from relics. The method extracts
edges and feature lines from triangular meshes using a novel integral invariant to com-
pute the surface roughness. Wang et al. (WCL+12) propose a robust method based
on normal tensor voting to feature detection; the method can operate on noisy meshes.
Wang (Wan06), aims to use bilateral filtering for recovering sharp edges. The proposed
method is robust to noise, and no normal information is required, detecting the sharp
edges by its dihedral angle. The method prevents shrinkage in regions without sharp
features. Attene et al. (AFRS05) proposed a method called Sharpen&Bend to identify
chamfer on triangular meshes to reconstruct sharp edges, by splitting the chamfer edges
and then shifting the new vertices towards the intersections of planes. The algorithm
does not recover sharp features in noisy models. Ohtake et al. (OBS04) use supported
radial basis functions for global smoothing. They use differential geometry properties
as the curvature tensor and its derivatives to characterize the sharp features. Then, pro-
jecting the mesh vertices onto the surface identifies the sharp features. The principal
curvatures and directions classify the vertices of the mesh in edges and valleys.

7.2.2 | Point-based Methods
Zhang et al. (ZCL+18), use normal estimation to identify feature points, allowing to
feature points to have multiple normals. This method is robust to noise and can handle
point cloud with variations in the sampling density. Wang et al. (WWC+18) analyze the
covariance matrix of normal vectors to find feature points. The feature points guide the
segmentation of point clouds of industrial parts; they use the RANSAC algorithm to es-
timate tangent planes to different segmented surfaces; the method is robust to noise. Ni
et al. (NLN+16), use the RANSAC algorithm, to calculate tangent planes and normal to
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Chapter 7. Feature Detection 7.3. Sharp Feature Detection

each point, then analyze the geometry properties of neighborhoods, to detect 3D edges
and then trace feature lines. Cao et al. (CJXH17), extract sharp features from RGB-D
images; the method is robust to noise and uses depth information and color to detect
normal vectors and ridges/valleys sharp features. Bazazian et al. (BCRH15), analyze
the eigenvalues of the covariance matrix to identify sharp edges. They use an agglomer-
ative clustering algorithm to clustering the normals of the k nearest neighborhood and
then estimate the final normal. Tran et al. (TCN+14), propose an automatic method for
sharp feature detection. The algorithm can handle both meshes and point clouds; they
use the projection distance of each point or vertex to the regression plane at the neigh-
borhood to classify if a point is a sharp feature or not; The Otsu’s method from image
processing is applied to find an automatic threshold. Cao et al. (CWY+12), use tensor
voting to smooth and oriented the normal vector, next use the orthogonal projection of
difference between the central point of the neighborhood and the weighted average po-
sition of the points belonging to the neighborhood to classify when a point belongs to a
sharp feature or not.

7.3 | Sharp Feature Detection
The proposed method is based on dictionary learning and sparse coding, as shown in
Figure 7.1. We analyze the input point set using the covariance matrix to extract the
local features; then, using the dictionary and the sparse representation matrix, the point
set is analyzed globally to identify the sharp features.

7.3.1 | Low-level Features Estimation
To characterize the point set, we compute a descriptor for each point pi. There are
several low-level features for each pi, for example, normals, curvatures, shape index,
etc. In our method, we select the sphericity, total variation of surface, and the orthogonal
distance. We choose these descriptors because they are related to the saliency features
in the point cloud. The sphericity identifies corners, the total variation is related to the
mean curvature and the orthogonal distance detect feature lines.

The classic way to estimate low-level features in a point set is through the local PCA,
applied to each neighborhood Ng(pi). We use a weighted version of PCA, with a covari-
ance matrix Cmi, established in Equation 7.1.

Cmi =
1

ki − 1

ki

∑
i=1

wi (pi − p̄) (pi − p̄)T (7.1)
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Chapter 7. Feature Detection 7.3. Sharp Feature Detection

Figure 7.1: Pipeline of the proposed method.

where p̄ = 1
|Ng(p)| ∑ki

i=1 pj, is the centroid of Ng(pi) and ki =
∣∣Ng(pi)

∣∣, is the cardinal-

ity of Ng(pi). wi is a weight estimated by wi = exp(− d2

k2
i
), d = ‖pi − p̄‖, is the Euclidian

distance. Next, we analyzed the eigenvalues λ0 ≤ λ1 ≤ λ2 and eigenvectors v0, v1, v2

of the covariance matrix Cmi.

The eigenvector v0, corresponding to the smallest eigenvalue λ0, is the normal vector
ni at point pi. The total variation (PGK02), (PKG03) is defined in the Equation 7.2, the
sphericity is defined in the Equation 7.3, and the projected distance (CWY+12; TCN+14)
is defined in the Equation 7.4. We add the eigenvalue λ0, to identify flat areas.

σ(pi) = λ0/(λ0 + λ1 + λ2) (7.2)

Sp(pi) = λ0/λ2 (7.3)

Pd(pi) = abs((pi − p̄i) · ni) (7.4)

With these features defined, we build a four-dimensional feature vector Fi, for every
point pi ∈ P where Fi = (λ0, Sp, σ, Pd).

We select the following low-level features for hole detection: the eigenvalues vari-
ation near edge points, defined in the Equation (7.5), the local density, defined in the
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Chapter 7. Feature Detection 7.3. Sharp Feature Detection

Equation (7.6), and the centroid difference, defined in the Equation (7.7).

epv(pi) = |λ2 − 2λ1|/λ2 (7.5)

Lp(pi) = ki/(pi · r2) (7.6)

Cd(pi) = ‖p̄− pi‖ (7.7)

Where r = max
pj∈Ng(pi)

(∥∥pj − p̄
∥∥), with these features, we build a three-dimensional

feature vector Fi, for every pi ∈ P where Fi = (epv, Lp, Cd). We choose these descrip-
tors because they are related to the border points in the point cloud. In the case of a
border point, the eigenvalues relation in Equation 7.5, obey λ2 ≈ 2λ1; the local den-
sity (Equation 7.6) is low compare to points far away from a border and the centroid
difference (Equation 7.7) has a high value compared to a point far away from a border.

7.3.2 | Dictionary Construction and Sparse Coding Model
Using the feature vectors defined in section 7.3.1, as data vectors Fi ∈ Rn×1, with n = 4
(number of low-level features for edges) and n = 3 (number of low-level features for
holes). We construct the data matrix F = {F1, F2, . . . , FK} ∈ Rn×K, where K = |P| is the
number of feature vectors. According to sparse coding theory, a sparse coding matrix
α ∈ RS×K and a dictionary D ∈ Rn×S are defined. S is the number of atoms of the
dictionary. Equation (3.13) is solved using the K-SVD algorithm (AEB06), getting the
estimation of α and D. Now F can be reconstructed as F = Dα, obtaining the sparse
representation of the data matrix F in the dictionary D. Now we can find the sharp
feature or hole points analyzing the sparse matrix α. It is noteworthy that the dictio-
nary training process to both sharp feature detection and hole detection is carried out
separately.

7.3.3 | Detecting Sharp Feature Points
Once we have the sparse coding matrix α, we analyze what vectors correspond to sharp
features. Let αj, Fj, be two column vectors of the matrices α and F, respectively. A
feature vector of a point is considered a sharp feature if its sparse representation

∥∥αj
∥∥

1
has many non-zero elements, which implies that is necessary the linear combination
of many atoms for representing this point correctly, and its sparse reconstruction error∥∥Fj − αj

∥∥
2 produce a high residual. On the other hand, a feature vector of a point is
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not considered a sharp feature, if its sparse representation
∥∥αj
∥∥

1 has a few non-zero
elements, this is, it can be represented by the linear combination of a few atoms and the
sparse reconstruction error

∥∥Fj − αj
∥∥

2 produce a low residual.

With the stated previously, the first step is to sum the non-zero elements of each
column of the matrix α, Equation (7.8). A score vector with these sums is built.

f (αj) =
s

∑
p=1

h(αp,j) ∀j = 1, 2, . . . , S (7.8)

h(αp,j) =

1 , ∀αp,j 6= 0

0 , otherwise
(7.9)

Now it is necessary to establish a threshold value for f (αj), to decide if a point is
located or not on a sharp feature. The threshold T is the maximum value in f (αj), Equa-
tion (7.10). T is the value of the feature vector with most rarity; we define a rarity as the
highest number of non-zero elements in each column of the matrix α.

T = max(f (α)) ∗ β (7.10)

In the Equation (7.10), β ∈ [0, 1] indicates the level of rarity established as a threshold
value to classify points as belonging to a sharp feature or not. When T is estimated, we
proceed to extract the sharp features Sf using the Equation 7.11.

Sf (i) =
{

pi | f (αj) > T, pi ∈ P
}

(7.11)

7.3.4 | Detecting Hole Contour Points
The same analysis carried out in the previous section is carried out in this one; the only
difference lies in the threshold choice, instead of choosing the maximum value in f (α),
we select the minimum value i.e.

T = min(f (α)) ∗ β (7.12)

In the Equation (7.12), β ∈ [0, 1] indicates the level of rarity established as a threshold
value to classify points as belonging to a sharp feature or not. When T is estimated, we
proceed to extract the contour points of the hole, Chp using the Equation 7.13.

Chp(i) =
{

pi | f (αj) < T, pi ∈ P
}

(7.13)
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Table 7.1: Detection time of the proposed method for different models.

Models Points Time (s)
Trim-Star 5192 2.22
Smooth-Feature 6220 2.54
Fandisk 6475 2.75
Block 8771 3.12
Sharp-Sphere 10443 3.19
Fish 14223 3.61
OctaFlower 17641 6.40
Twirl 26282 7.42
Blade 29275 7.78
Daratech 114983 89.68

7.3.5 | Multiscale Processing

In this section, we propose a multi-scale method to detect sharp features at multiple
scales. In a single scale, the presence of noise in the point set can lead to identifying
false features. We use multi-scale processing for reducing the number of false features,
as it is shown in Figure 7.4. The feature vectors are estimated at multiple scales (k =

1, 2, . . . , 10), varying the neighborhood size (Figure 7.1). Next, we build a new feature
vector with these scales. The new vector Sf i has dimension k ∗ Fi, and finally, we proceed
in the same way as in section 7.3.2.

7.4 | Results and Discussion
We have evaluated the proposed method on a set of models corrupted with different
levels of noise. The results of our method are compared against other approaches con-
sidering methods based on point clouds and meshes. Our method is compared with
point-based methods as surface variation (PKG03), mean curvature (WB01), normal vec-
tor (HG01), and projected distance (TCN+14)and with mesh-based method (OBS04). All
the experiments are run on a PC with Intel Core i7-2670QM CPU@2.20 GHz and 8GB
RAM. For the implementation of the proposed method, we use Matlab R2016b program-
ming environment. Table 7.1 shows the computation time of the proposed method for
different models.
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7.4.1 | Parameters Selection
There are three parameters in our method: the regularization parameter λ Equation
(3.7), dictionary size S, and the threshold level of rarity β. The parameter λ, is the bal-
ancing between the data-fidelity and the regularization term, small values can produce
more detailed edge points. In contrast, large values can cause loss of details; we can
observe this in Figure 7.2. In all our tests, we set λ = 0.01.

Figure 7.2: Variation of the parameter λ, with the parameter β = 0.02 fixed.

We establish the size S of the dictionary based on the analysis carried out in section
6.4.1 in chapter 6. In our tests, we found that setting the parameter S = 100, produced
good results. The rarity parameter β, is the only free user-defined parameter that we use,
but if we normalize the histogram of f (αj) vector, it is possible to obtain an automatic
method described in (TCN+14).

7.4.2 | Visual Comparison
The sharp features can be identified when there is a discontinuity between the normals
(HG01) or the surface curvature (PKG03) (WB01). We select three methods based on
this features to compare with the proposed method. The three methods are normal
difference, the mean curvature variation, and surface variation, the fourth method is
based on projected distance (TCN+14). We can observe the results of these methods in
Figure 7.3.

The three methods shown in Figure 7.3(a), 7.3(b), and 7.3(c), present similar per-
formance; the edges are thick and detect points that do not belong to sharp features;
this is because the normal and the curvature present problems to identify these types of
features in contrast with the combination of features presented in the proposed method.
Our method and the projected distance method have similar performance (Figure 7.3(d)
and 7.3(e) because both include the projected distance. Still, we can observe that our
method outperforms the projected distance method, detecting edges that projected dis-
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Figure 7.3: Sharp features extraction using different methods for the Fandisk model. (a)
Normal. (b) Mean curvature. (c) Surface variation. (d) Projected distance. (e) Proposed
method.

Figure 7.4: Block noisy model, contaminated with noise 5% of the mean distance be-
tween the points. (a)-(c)-(e) Projected distance. (b)-(d)-(f) Proposed method.

tance cannot detect. The performance of our method is better than the projected dis-
tance when it operates on noisy models, it can be seen in Figure 7.4. The multi-scale
strategy proposed in our method, overcome the multi-scale projected distance method.
Our method outperforms the projected distance method when both use only one scale
(k = 1), as we can appreciate in Figure 7.4(a) vs. Figure 7.4(b). After k=10 scales, our
method continues to outperforming the projected distant method, Figure 7.4(c) vs. Fig-
ure 7.4(d). Finally, our method reaches a good denoising result after k = 10 scales
Figure 7.4(f), but the projected distance method reaches acceptable results after k = 33
scales Figure 7.4(e); our method continues to overcome the projected distance method.
We compare our method with the mesh-based method proposed by Ohtake (OBS04),
first-row in Figure 7.5. We observe how some sharp features are missing by the method
proposed by Ohtake; on the other hand, our method detects the sharp features as it is
shown second-row in Figure 7.5.
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Figure 7.5: Block model, first row, Ohtake method. Second row, our method.

Figure 7.6 illustrates the sharp feature detection results with different free-form point
sets. The subtle details and sharp features are faithfully recovered.

Figure 7.6: Results of Free-form object sharp feature detection using the proposed
method.
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7.4.3 | Robust to Noise
To show the robustness of the proposed method to different levels of noise, we show
in Figure 7.7(b), (c) and (d) columns, the pyramid model contaminated with Gaussian
noise with zero mean and standard deviation of 2%, 3% and 5% of the mean distance
between the points, respectively. We observe how the proposed method keeps the sharp
features in the pyramid model, despite the noise levels. Incorporating a multi-scale
schema in our algorithm contributes significantly to detect the sharp features in the
presence of noise.

Figure 7.7: Pyramid model contaminated with noise 3% (b), 4% (c), and 5% (d) of mean
distance between the points, first row. Clean model first column (a). Feature detection
(a)-(d), second row.

Figure 7.8 illustrates our feature extraction results for point sets with 5% of noise.
We observe the robustness of the proposed multi-scale scheme to detect sharp features
in different noisy models.

In Figure 7.9, a set of mechanical models shows the results of applying the proposed
method. The method performs well on shapes with sharp features.

7.4.4 | Hole Detection
We applied the proposed method to a variety of free-form surfaces. Figure 7.10 illus-
trates our hole detection results for the Bunny, Bimba, and Armadillo point sets. The
holes in the models were created artificially, erasing points over different regions. A
point belongs to a boundary if none of its neighbors are included inside the surface. In
such a setting, boundary points, therefore, correspond either to the peripheral points of
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Figure 7.8: Sharp features extracted by the proposed method. Point sets with noise level
5% of the mean distance between the points.

Figure 7.9: Sharp features extracted by the proposed method, over mechanical parts.

an open surface or to the boundary of holes. The proposed method can handle large
point clouds as the Armadillo model with 172,387 points. We can observe how the pro-
posed method detects the hole contour faithfully.
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Figure 7.10: Hole contour extracted by the proposed method, over free form surfaces.

7.5 | Conclusion
In this chapter, we have presented a novel method for detection sharp features on 3D
point sets based on dictionary learning and sparse coding. The dictionary is built at
multiple scales to do the method robust to different levels of noise. We compute the
neighborhood at different sizes to estimate the scales. The main contribution of our
work is to use the sparse matrix to analyze the structure of the point set and determine
what feature vectors correspond to sharp feature points. One point is considered be-
longing to a sharp feature if its feature vector is reconstructed with many atoms from
the dictionary; on the other hand, if the feature vector is reconstructed with few atoms,
the point is not considered a sharp feature. The previous is carried out counting the
number of non-zero elements of each column of the sparse matrix and verifying if this
count exceeds a threshold. The proposed method is simple to implement and relatively
fast, is robust to different levels of noise, due to the dictionary learning process and the
multi-scale scheme, outperforming other methods of the state-of-the-art.
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8

Conclusions And Future Work

This thesis made several contributions to solving the existing problems in the different
stages of the point cloud pre-processing. We have focused on sparsity-based modeling
applied to 3d point clouds to tackle the problems presented in this work using the same
solution framework. The thesis is divided into four parts, and we will show the con-
clusion and contributions to each part separately. Apart from specific conclusions, our
overall conclusion is that we believe that sparse modeling is still a valuable tool that
has shown great potential in the field of geometry processing, and can contribute to the
development of techniques and algorithms in the surface reconstruction pipeline. It has
proved to be versatile for modeling different problems involved in the point cloud pre-
processing stages. Its robustness to outliers and noise, and the ability to describe and
keep sharp features are attractive for many types of research in the field of geometric
processing. Applying sparse models directly to point cloud is difficult due to the lack
of topological information between the points, which makes it a challenging task; find
the right representation for each problem in this thesis was the key to the success of the
proposed methods. Using sparsity in the geometric processing field has been reflected
in the increasing number of works that aim at enhancing it. We believe that our work
can help to inspire solutions to other problems.

For specific conclusions, we compile a summary of each as follows. Using disper-
sion in both fidelity and regularization terms shows the capability of the sparse mod-
eling to deal with sharp features and outliers in a unique solution. Combining the L1
median – L1 norm and its solution with the alternating minimization strategy using the
proximal gradient algorithm, show convergence and stability, besides a simple imple-
mentation. Integrating both point positions and point normals, into the L1 median – L1
norm minimization framework, allow decoupling features from noise giving robustness
to the method. Our method can operate over irregular surface sampling and can handle
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impulsive noise achieving better results than the competing methods. The method de-
pends on some empirical parameters σh and σd defined by the user, and which we tuned
manually to obtain the desired results. How to determine these parameters continues to
be a challenge and is a direction we are going to investigate in our future research. The
implementation of a global solution for the cost function is another issue to be examined
in future work.

We present a novel saliency detection method, relating the Minimum Description
Length principle with the level of sparsity and the measure of the residual error. Based
on the sparse representation length of the spatial patches, we use the code length as a
metric of sparsity determining when a patch is salient or not respect to its surround-
ings patches. The proposed method detects saliency assuming the parsimony of data
representation and establishing a relation between Information theory and the visual
perception theory. For future studies, we plan to investigate how the incorporation of
high-level information in the form of semantic cues into the point cloud saliency detec-
tion allows us to identify salience globally on the point cloud.

In point cloud simplification and feature detection, one of the main contributions of
our work is to use the sparse matrix to analyze the structure of point set to gather evi-
dence from local geometry to infer global properties about the objects. When the point
cloud representation is very sparse, it means the current point cloud model has found
the intrinsic structure in the input point cloud. In the context of point cloud simplifica-
tion and feature detection, it means the model can help with better-sampling points and
edges detection (removing distortions). Since sharp features are often sparse, sparsity
formulations capture this observation well, reflecting in a versatile tool for modeling
these types of problems. As future work, we propose examining ways determine auto-
matically the choice of the regularization parameter λ and the size of the dictionary S.
As future work, we plan to consider the automation of our method without user inter-
vention to set the rarity parameter β. Furthermore, we will focus on using our method
as a previous step to find feature lines on point sets and point cloud denoising.

116



A

Cost Function Derivatives in the
Optimization

In this appendix we go through the mathematical expressions of the two terms of the
cost function described in Section 4.4.2 and shown in Equation 4.5.

In Equation 4.5, the weighting factor ψ(·) is left out of this derivation for the sake of
simplicity since it is just taken as a constant both in the objective function term and in
its derivatives

A.1 | Fidelity Term Derivative for n0

The term Ef , as shown in Equation 4.3 when τ = 0, and imposing the constraint ‖n‖ = 1,
we get

Ef = ∑
pj∈Ng(pi)

∥∥∥nT(pi − pj)
∥∥∥ψ(nT(pi − pj))θ(

∥∥pi − pj
∥∥) (A.1)

Now, using the constraint ‖n‖ = 1, we compose the Lagrange form of Ef , and taking
the derivative with respect to n, we can obtain:

∂Ef

∂n
=

∂

∂n

 ∑
pj∈Ng(pi)

∥∥∥nT(pi − pj)
∥∥∥ψ(nT(pi − pj))θ(

∥∥pi − pj
∥∥) + λ

2
(1− ‖n‖2)


(A.2)

setting ∂Ef
∂n = 0 we get,

∑
pj∈Ng(pi)

ψ(nT(pi − pj))θ(
∥∥pi − pj

∥∥)∥∥nT(pi − pj)
∥∥ (pi − pj)(pi − pj)

Tn− λn = 0
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Setting wi =
ψ(nT(pi−pj))θ(‖pi−pj‖)
‖nT(pi−pj)‖ ,

∑
pj∈Ng(pi)

wi(pi − pj)(pi − pj)
Tn = λn (A.3)

Cm(n)n = λn

Where Cm = ∑pj∈Ng(pi) wi(pi − pj)(pi − pj)
T

A.2 | Cost Function Derivative for ni

The Ef term in the cost function, as shown in Equation 4.5 is as follow and taking the
derivative with respect to n, we can obtain:

∂Ef

∂ni
=

∂

∂ni

 ∑
pj∈Ng(pi)

∥∥∥nT
i (pi − pj)− τ

∥∥∥ψ(nT
i (pi − pj)− τ)θ(

∥∥pi − pj
∥∥)
 (A.4)

∑
pj∈Ng(pi)

(
nT

i (pi − pj)− τ
) (

pi − pj
)T ψ(nT

i (pi − pj)− τ)θ(
∥∥pi − pj

∥∥)∥∥nT
i (pi − pj)− τ

∥∥
Setting ηi =

ψ(nT
i (pi−pj)−τ)θ(‖pi−pj‖)
‖nT

i (pi−pj)−τ‖ , we have

∇Ef (ni) = ∑
pj∈Ng(pi)

ηi

(
nT

i (pi − pj)− τ
) (

pi − pj
)T (A.5)

The Ereg term in the cost function as shown in Equation 4.5, its derivative was calcu-
lated in section 4.4.2.2 using the Equation 4.11

A.3 | Cost Function Derivative for τi

The Ef term in the cost function, as shown in Equation 4.5 is as follow and taking the
derivative with respect to τ, we can obtain:

∂Ef

∂τi
=

∂

∂τi

 ∑
pj∈Ng(pi)

∥∥∥nT(pi − pj)− τi

∥∥∥ψ(nT(pi − pj)− τi)θ(
∥∥pi − pj

∥∥)
 (A.6)

setting ∂Ef
∂τ = 0 we get,

− ∑
pj∈Ng(pi)

(
nT(pi − pj)− τi

) ψ(nT(pi − pj)− τi)θ(
∥∥pi − pj

∥∥)∥∥nT(pi − pj)− τi
∥∥ = 0⇒

118



Appendix A. Cost Function Derivatives in the Optimization A.3. Cost Function Derivative for τi

− ∑
pj∈Ng(pi)

nT(pi − pj)
ψ(nT(pi − pj)− τi)θ(

∥∥pi − pj
∥∥)∥∥nT(pi − pj)− τi

∥∥
+ ∑

pj∈Ng(pi)

τi
ψ(nT(pi − pj)− τi)θ(

∥∥pi − pj
∥∥)∥∥nT(pi − pj)− τi

∥∥ = 0⇒

Solving this equation for τk+1
i yields the following recurrence equation

τi ∑
pj∈Ng(pi)

ψ(nT(pi − pj)− τi)θ(
∥∥pi − pj

∥∥)∥∥nT(pi − pj)− τi
∥∥ =

∑
pj∈Ng(pi)

nT(pi − pj)
ψ(nT(pi − pj)− τi)θ(

∥∥pi − pj
∥∥)∥∥nT(pi − pj)− τi

∥∥ ⇒

τk+1
i =

∑pj∈Ng(pi)
ψ(nT(pi−pj)−τk

i )θ(‖pi−pj‖)(nT(pi−pj))

‖nT(pi−pj)−τk
i ‖

∑pj∈Ng(pi)
ψ(nT(pi−pj)−τk

i )θ(‖pi−pj‖)
‖nT(pi−pj)−τk

i ‖

Setting ηi =
ψ(nT(pi−pj)−τk

i )θ(‖pi−pj‖)
‖nT(pi−pj)−τk

i ‖
and hj = nT(pi − pj), we have

τk+1
i =

∑pj∈Ng(pi) ηihj

∑pj∈Ng(pi) ηi
(A.7)
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