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Facultad de ingenieŕıa y arquitectura.
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Abstract

In this document, a methodology is developed to test the non-linear stability of the syn-

chronous state in a power grid as well as its resilience to structural failures by applying

a percolation-inspired algorithm based in link and node removal simulations. Vulnerability

measures are defined in terms of either dynamical or topological features of the power grid

and both methods are compared. A basic analysis of the Colombian power grid is also in-

cluded and used to test the proposed algorithm.

Keywords: Kuramoto model, power grid, synchronization, non-linear dynamics, basin

stability, complex network

Resumen

En este documento, se desarrolla una metodoloǵıa para estudiar la estabilidad no lineal

del estado sincronizado en una red de potencia, aśı como la resiliencia de la misma ante

fallas estructurales aplicando un algoritmo inspirado en la percolación en simulaciones de

remoción de conexiones y nodos. Se definen medidas de vulnerabilidad en términos de las

caracteŕısticas topológicas y dinámicas del sistema de potencia y se comparan ambos méto-

dos. Se presenta además un análisis básico del sistema de transmisión de Colombia y se usa

como caso particular de estudio para desarrollar las pruebas del algoritmo propuesto.

Palabras clave: Modelo de Kuramoto, red de potencia, sincronización, dinámica no

lineal, estabilidad del dominio de atracción, redes complejas
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1. Introduction

The emergence of synchronization in systems of agents, coupled through local interactions,

is a widely studied phenomenon with multiple applications in physics, biology, and social

sciences [5, 6, 7]. In particular, the optimal functioning of a power grid, which represents one

of the most complex interacting systems in engineering, highly depends on its ability to main-

tain a synchronous operation over time despite external disturbances; losing that synchrony,

even locally, may lead to cascading failures and complete blackout of the network [8, 9, 10].

Two main concerns have motivated the discussion around dynamical analysis and design of

power grids in the last years: the first is the strong economical and social impact that a power

outage could cause in the highly electricity-dependant modern society [11]; for instance, the

blackout registered across north-east of United States in August 2003, and which affected

about 55 million people, was estimated to cost roughly 1100 million USD [12]. The second is

the slow transition to renewable energy sources that is being promoted all around the world

[13, 14], since it is known that renewable and small power producers have negligible inertia,

which imposes instability risks in the power grids [15]. It is worth mentioning that, in par-

ticular, Colombia plans to expand the renewable power generation by 2250 MW by 2022 [16].

Network science is a discipline related to statistical physics that intends to explain inter-

esting phenomena observed on large interconnected systems by analysing the fundamental

structure of those connections and the neighbour-to-neighbour dynamical interactions, and

although it has been successful in the theoretical sense, there is still a huge gap between these

approaches and the practical engineering application due to the massive simplifications that

those models usually include [17], however, it is still believed that the particular study of

power grids is a matter that transcends multiple disciplines [18]. The present work aims to

contribute to the development of network science applied to the analysis of power grids stabi-

lity, and as such, presents an oversimplified model and methodology based on computational

physics and synchronization phenomena, which could bring new insights about phenomena

observed in real systems, but that can not be considered a thorough review of the power

systems engineering literature.

Multiple models have been proposed for the analysis of synchronization in power grids, and

they differ mainly in the way loads, power generators and transmission lines are modeled

[4]. Probably the most common model is the one called synchronous motor, where both,

generators and consumers are represented by second-order synchronous machines [19]. This
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model is essentially equivalent to the celebrated Kuramoto model when inertia terms are

considered [20, 21, 22]. Self-synchronization behaviour of this model occurs when the inter-

actions between connected oscillators are sufficiently strong to overcome the dissimilarity in

the ensemble [8, 23, 24, 25].

Recently, the scientific community has put a lot of effort into trying to determine the topologi-

cal features of the network that can enhance or undermine the non-linear stability of a power

grid, that is, its capability to reject finite-size disturbances [26]. This has been approached

by energy barrier functions [27, 28, 29] and the basin stability concept [3, 30, 31, 32, 33, 34].

Some interesting findings that deserve to be mentioned, as they provide great insights about

the relationship between topology and dynamical stability include: the poor basin stability

usually detected on dead-tree arrangements [30], the strong stability found on triangle-shaped

motifs [35], the enhanced non-linear stability achieved by increasing global redundancy in

the connections [36] or by adding small cyclic motifs [29], the lower basin stability exhibited

in general by high-power generator nodes [37], the poor transient behaviour due to highly

connected nodes [3], the variation in transient excursion for finite-size disturbances depen-

ding on resistance centrality metrics [38, 39], the diminished size of the basin of attraction

as well as the appearance of solitary synchronous states when losses are considered in the

network [40] and the interplay between inertia and the correlation time of stochastic noise

that yield an escape from the basin of attraction [41].

Other studies have focused on estimating the resilience of the complex network against casca-

ding failures [10, 42, 43], the robustness in the transient behavior after localized disturbances

[44] and their diffusion through the interconnected system [15], the optimal design of weights

and frequencies [45], as well as the identification of key elements in the network that require

a control action [46].

Percolation is a theory that takes ideas from statistical physics to study the phase transition

from scattered clusters to large-scale connectivity in systems of interacting elements arranged

in either lattices or complex networks [47], focusing usually on finding the structural-based

thresholds that allow for the propagation of information throughout the system [48, 49],

which makes it suitable for the analysis of the topology of power grids [50, 51].

In the present work, a percolation-inspired method is presented in order to evaluate the

resilience of a power grid against random and focalized non-local disturbances. By defining

a vulnerability measure in terms of the dynamical properties of both, nodes and edges, it

is found that attacks that focus on the weakest components of the network can easily pro-

voke cascading failures that lead to total blackout faster than random attacks. The general

stability of the power grid is thus analysed in terms of the ability of the nodes to reject

finite-size disturbances without losing the synchronous state, as well as the load observed



4 1 Introduction

on each transmission line, which is abstracted from the phase difference between the con-

nected pair of nodes. The criterion of linear stability around the equilibrium point is also

consistently used to quickly identify whether a network topology is capable of maintaining

the synchronized state or not. Test cases chosen for this study include randomly generated

power grids and the Colombian transmission network.

A very similar work can be found in [52], where the authors use centrality measures, namely,

the node degree, clustering coefficient and betweenness centrality, to estimate the vulnerabi-

lity of a node and then proceed to remove the weakest nodes to observe the evolution of the

giant component in the network as a function of the number of remaining nodes in the whole

graph. Moreover in [53], the elimination process of transmission lines based on betweenness

centrality and a random selection are compared. This structural approach to quantify the no-

de vulnerability is considered fundamentally relevant but limited in the sense that dynamical

features of the system are ignored; resilience assessments should contemplate topology, dy-

namics and failure modelling [54]. In [55], besides performing topologically-focused attacks,

a procedure is included to account for the recovery of nodes after its failure, yet it does not

consider the state evolution through differential equations.

These topological-based methods will be also used in this work to compare the results of

removal methods based on dynamical measurements. Other relevant works have to be men-

tioned; for instance, based on the statistical physics description of networks, some basic

percolation properties for different networks have been analysed using generating functions

[56], the mean-field approach has been used to build phase diagrams of the connected and

disconnected states of networks in terms of their construction parameters [57], the lifetime

and reliability of networks has been estimated by setting some probability distributions for

node failures [58], analytical performance measures have been developed and tested over

structural and dynamical perturbations of the complex system [59], and the propagation of

cascading failures through the power transmission or communication architecture of smart

grids has also been modelled as a random percolation process [60] or as a continuous phase

transition [61]. Besides, in [62], the minimum cut-set (MCS) strategy is used to describe the

vulnerability of the components based on the power flow routing, and attacks focused on

this MCS are compared to topological vulnerability measurements.

The rest of this document is organized as follows: Chapter 2 starts defining some basic

concepts about complex network analysis, then a classical power grid model is derived and

translated to the very well-known second-order Kuramoto model, which will be used later

to analyse synchronization problems in power grids. Said chapter ends by introducing an

algorithm for the generation of graphs that represent closely the characteristics of real-world

power grids, which will allow us to construct test cases for later dynamical analysis, as well as

an algorithm for the classification of nodes in tree-like graph structures. Chapter 3 formulates



5

the problem of synchronization dynamics in the Kuramoto model and depicts some common

methods and results found in the literature to analyse linear and non-linear stability of the

frequency synchronized state in a power grid. Chapter 4 proposes an algorithm for resilience

assessment, applies it to synthetic power grids, and presents results on how the structure of

the graph and general stability changes throughout the attacking scheme. Chapter 5 then uses

the theory and methods previously introduced, to the analysis of the resilience and stability

in the Colombian power transmission network. Chapter 6 presents some concluding remarks

and future work. Finally, Appendix A elaborates on the applicability of the Kuramoto model

and Appendix B gives more detail about the numerical experiments performed.



2. A Dynamical Model for Power Grids

2.1. Abstract

This chapter introduces the simplified model used to describe the dynamical behaviour of

a power grid, which will be used in further analysis to test stability and synchronization

phenomena. The derived model will be identical to the well known second-order Kuramoto

model, vastly studied in the field of many-body physics. Power grids will be represented by

graphs and some tools from the framework of complex network analysis will be employed,

thus the first section introduces those important concepts that will be constantly cited th-

roughout this document.

2.2. Centrality in Complex Networks

Let us define a graph as a tuple G(ϑ, ε), where ϑ = {1, 2, ..., N} is a set of nodes and

ε = {(i, j), ∀i, j ∈ ϑ} ⊂ ϑ×ϑ is a set of edges with cardinality |ε| = M . It is also convenient

to define some common concepts used in the analysis of complex networks and that will be

addressed later in this document:

Adjacency matrix A: A matrix that represents the connectivity of the network; in

particular, for weighted graphs, each element aij of A will be equal to some weight

wij 6= 0 if there is an edge between the nodes i and j and 0 otherwise. Formally,

A = {aij}, A ∈ RN×N , aij ∈ R, where:

aij =

{
wij 6= 0 if (i, j) ∈ ε
0 otherwise

(2-1)

Oriented incidence matrix B: Its a matrix where each row represents a node and each
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column an edge, specifically, B = {bij}, B ∈ RN×M , bij ∈ R, with:

bij =


1 if node i incides in edge j

−1 if edge j incides in node i

0 otherwise

(2-2)

This representation applies to directed graphs, and although the graphs that will be

used in this work are undirected, it will be clear in chapter 3 that a direction for

the edge construction can still be assumed without loss of generality for our specific

application.

Laplacian matrix L: This matrix provides relevant information about the topology of

the graph, it is defined as:

L = diag(
n∑
j=1

aij)− A (2-3)

with L ∈ RN×N .

Degree centrality d
(i)
k : Amount of nodes to which node i is connected, normalized by

the maximum possible degree in the network. It can be computed as:

d
(i)
k =

d̂i
N − 1

(2-4)

where d̂i =
∑N

j aij.

Clustering coefficient c
(i)
k : Number of triangles (Ti) in which node i is involved, norma-

lized by the maximum possible amount of such triangles [63], that is:

c
(i)
k =

2Ti

d̂i(d̂i − 1)
(2-5)

Node betweenness centrality b
(i)
k : Sum of the shortest paths between every pair of nodes

(s, t) in the network that pass through node i:

b
(i)
k =

∑
s 6=t6=i∈ϑ

σs,t(i)

σs,t
(2-6)
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where σs,t is the amount of shortest paths between nodes s and t and σs,t(i) is the

number of those paths that pass through node i [64].

Edge betweenness centrality e
(l)
k : In the same fashion as bk measures centrality for a

node, ek does it for an edge; it is simply defined as the number of shortest paths in the

network that include the edge l:

e
(l)
k =

∑
s 6=t∈ϑ

σs,t(l)

σs,t
, l ∈ ε (2-7)

2.3. Power Grids as Complex Networks

As a simplified model of a real-world power grid, consider a system of N interacting synchro-

nous machines arranged in a connected graph G(ϑ, ε), with a set of nodes ϑ = {1, 2, ..., N}
and a set of edges ε ⊂ ϑ×ϑ, such that the amount of edges is |ε| = M . Nodes can be labeled

as generator machines (supply energy to the grid) or consumer machines (demand energy

from the grid), thus ϑ = ϑg ∪ ϑc, being ϑg the set of generators and ϑc the set of consumers.

Let the dynamical state of each machine be represented by its phase angle φj and its phase

velocity
dφj
dt

= φ̇j, j ∈ ϑ. Under an appropriate operation of the power grid, it is expected

that every machine will be rotating at some reference frequency Ω (which by convention is

either 2π × 50 Hz or 2π × 60 Hz), so let the phase deviation of the machine j against the

reference angle Ωt be:

θj(t) = φj(t) − Ωt (2-8)

By applying the energy conservation law on each machine, the following equation for power

balance is obtained:

Pm
j = P d

j + P a
j + P t

j (2-9)

Where:

Pm
j : The power generated or consumed by the machine.

P d
j : The power dissipated by the machine.

P a
j : The power stored by the machine.
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P t
j : The power transmitted from the j-th machine to the rest of the power grid.

By introducing a constantDj as the damping torque related to the j-th synchronous machine,

dissipated power due to viscous friction can be expressed as:

P d
j = Djφ̇

2
j (2-10)

On the other hand, the accumulated power in a rotating synchronous machine with a moment

of inertia Ij is given by the change of its kinetic energy in time, thus we have:

P a
j =

Ij
2

d
(
φ̇2
j

)
dt

(2-11)

Note that from Equation (2-8), φ̇j =
dφj(t)
dt

= Ω + θ̇j(t); then going back to Equation (2-9),

we get:

Pm
j = Djφ̇

2
j +

Ij
2

d(φ̇2j)
dt

+ P t
j (2-12)

Pm
j = Dj

(
Ω + θ̇j(t)

)2

+
Ij
2

d
(
(Ω+θ̇j(t))

2
)

dt
+ P t

j (2-13)

Pm
j = DjΩ

2 + 2DjΩθ̇j(t) + θ̇2
j(t) +

Ij
2

[
2
(

Ω + θ̇j(t)

)(
Ω̇ + θ̈j(t)

)]
+ P t

j (2-14)

Under controlled operation of the power grid, the deviations of the phase velocity are ex-

pected to be small compared to the reference frequency, that is, Ω �
∣∣∣θ̇j(t)∣∣∣. With this

assumption and remembering that Ω is a fixed value (that is Ω̇ = dΩ
dt

= 0), Equation (2-14)

takes the form:

Pm
j = DjΩ

2 + 2DjΩθ̇j(t) + IjΩθ̈j(t) + P t
j (2-15)

IjΩθ̈j(t) = Pm
j −DjΩ

2 − 2DjΩθ̇j(t) − P t
j (2-16)

which is basically the so-called swing equation, a frequently used model in the field of power

systems engineering to test angular stability of synchronous machines [65, 9]. Other exten-

ded models also include the voltage dynamics among other phenomena which yield to more

complex differential-algebraic models, but those are out of the scope of this work [66].

To derive an appropriate expression for the transmitted power term P t
j , some fundamental

circuit theory is required and thus introduced in the next section.
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2.3.1. Electrical Power Transmission

A power grid is a large alternating current (AC) circuit where voltage V and current I signals

vary in time with some phases φv and φi and some fixed frequency ω. This can be summed

up in the complex representation:

V(t) = V̂ ei(ωt+φv) (2-17)

I(t) = Îei(ωt+φi) (2-18)

Being V̂ and Î the amplitude of voltage and current respectively. It can be shown that the

complex power, also known as apparent power is given by:

S = V̄ Ī∗ (2-19)

Where V̄ is the root mean square (RMS) value of V , that is V̄ = V̂√
2

and similarly Ī∗ means

the RMS value of the complex conjugate of I. By taking the real and imaginary parts of S,

active power P and reactive power Q are defined respectively as:

P = <{S} = V̂ Î
2

cos(φv − φi) (2-20)

Q = ={S} = V̂ Î
2

sin(φv − φi) (2-21)

Consider the simplest circuit possible, where two nodes with voltages Vi and Vj, respectively,

are connected by an impedance Zij through which a current Iij flows. Applying Ohm’s law,

this current can be expressed as:

Iij =
Vi − Vj
Zij

(2-22)

In a power grid it is expected that the voltage amplitude of every node (generators and

consumers) is approximately the same, that is V̂i = V̂j = V̂ , then:

Iij =
V̂ ei(ωt+φi) − V̂ ei(ωt+φj)

Zij
= V̂ eiωt

[
eiφi − eiφj

Zij

]
(2-23)

Note that, the voltage dynamics are being ignored when taking V as a constant around the

whole network; a more detailed model has to include the effects of such dynamics in a set of

differential-algebraic equations, but that is out of the scope of this work.
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Impedance Zij can be expressed as a combination of a resistance Rij and a reactance Xij as

follows:

Zij = Rij + iXij (2-24)

For simplicity, admittance Yij is introduced as the inverse of impedance, that is:

Yij≡ 1
Zij

= Gij + iBij = |Yij| eiαij (2-25)

Gij =
Rij

R2
ij+X

2
ij

(2-26)

Bij =
−Xij

R2
ij+X

2
ij

(2-27)

αij = arctan
(
Bij
Gij

)
= arctan

(
−Xij
Rij

)
(2-28)

Equation (2-23) is then turned into:

Iij = V̂ |Yij|
(
eiφi − eiφj + eiαij

)
eiωt (2-29)

Whose RMS value is simply:

Īij =
V̂ |Yij|√

2

(
eiφi − eiφj

)
eiαij (2-30)

The apparent power flowing through nodes i and j is then given by:

Sij = V̄iĪ
∗
ij =

[
V̂ eiφi√

2

] [
V̂ |Yij |√

2

(
e−i(φi+αij) − e−i(φj+αij)

)]
(2-31)

Sij =
V̂ 2|Yij |

2

(
e−iαij − ei(φi−φj−αij)

)
(2-32)

By taking the real and imaginary parts of S we have:

P = <{S} =
V̂ 2|Yij |

2
(cosαij − cos(φi − φj − αij)) (2-33)

Q = ={S} = − V̂ 2|Yij |
2

(sinαij − sin(φi − φj − αij)) (2-34)

In the following, reactive power Q will be neglected and only active power transfer P will

be considered [19], then by defining a new angle γij as:

γij ≡ αij −
π

2
(2-35)
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Equation (2-33) turns into:

P =
V̂ 2 |Yij|

2
(cosαij − sin(φi − φj − γij)) (2-36)

Note that from Equation (2-25) we have <{Yij} = Gij = |Yij| cosαij, so the electrical active

power transfered from a node i to a node j is finally expressed as:

P =
V̂ 2Gij

2
− V̂ 2 |Yij|

2
sin(φi − φj − γij) (2-37)

2.3.2. From Power Grids to the Kuramoto Model

The equation of motion derived in (2-16) is now completed by including the transmitted

power (2-37), so by accounting for every existing link (i, j) in the network, and using the

fact that the phase difference φi − φj = θi − θj, the equation of motion for the j-th machine

is transformed into:

IjΩθ̈j(t) = Pm
j −DjΩ

2 − 2DjΩθ̇j(t) −
N∑
i 6=j

[
V̂ 2Gij

2
− V̂ 2|Yij |

2
sin(θj − θi − γji)

]
(2-38)

θ̈j(t) =

2Pmj −2DjΩ
2−V̂ 2

N∑
i 6=j

Gij

2IjΩ

− (2DjΩ

IjΩ

)
θ̇j(t) + V̂ 2

2IjΩ

N∑
i 6=j
|Yij| sin(θj − θi − γji) (2-39)

Note that, by the definition of matrix Y , it follows that Gjj =
N∑
i 6=j

Gij, so we finally write:

θ̈j(t) =

(
2Pm

j − 2DjΩ
2 − V̂ 2Gjj

2IjΩ

)
−
(

2DjΩ

IjΩ

)
θ̇j(t) +

V̂ 2

2IjΩ

N∑
i 6=j

|Yij| sin(θj − θi − γji) (2-40)

This equation is simplified by defining new parameters Pj, αj and Kji as:

Pj ≡
(

2Pmj −2DjΩ
2−V̂ 2Gjj

2IjΩ

)
(2-41)

αj ≡
(

2DjΩ

IjΩ

)
(2-42)

Kji ≡ V̂ 2|Yij |
2IjΩ

(2-43)
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Here Kji are the elements of the connectivity matrix K, which gives information about the

topology of the power grid composed of N rotating machines.

θ̈j(t) = Pj − αj θ̇j(t) +
N∑
i

Kji sin(θi(t) − θj(t) − γji) (2-44)

In real-world power grids usually the resistance in the transmission lines can be neglected,

which is a common assumption in power systems engineering. This assumption can be in-

troduced in Equation (2-44) to derive a no-loss model by setting to zero the real part of the

complex admittance matrix Y , that is, Gij = 0 for all i and j. This also implies that αij = π
2

and therefore γij = 0. We get then:

θ̈j(t) = Pj − αj θ̇j(t) +
N∑
i

Kji sin(θi(t) − θj(t)) (2-45)

with:

Pj ≡
(

2Pm
j − 2DjΩ

2

2IjΩ

)
(2-46)

It can be shown that for the dynamical system described in Equation (2-44) to reach a steady

state θ̈ = θ̇ = 0, the following power balance condition has to be satisfied:

N∑
i

Pi = 0 (2-47)

That is to say, the power supplied to the network by the generators must be equal to the

power consumed by the loads [23].

Interestingly, Equation (2-44) is equivalent to the celebrated second-order Kuramoto model,

which has been widely used to describe the collective dynamics in a variety of physics, biology,

engineering and social sciences applications that involve interacting oscillatory agents [67,

68, 69, 21]. This model was originally proposed in 1975, as a way to model the behavior of an

infinite population of coupled non-linear oscillators through the set of first-order differential

equations:

θ̇j(t) = ωj +K

N∑
i

aji sin(θi(t) − θj(t)) (2-48)
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Where ωj is called the natural frequency of the j-th agent in the ensemble and aji are the

elements of the adjacency matrix A.

Note that the original Kuramoto model (2-48) only included first-order dynamics; the second

derivative of the phase angle was later added to account for inertia in some specific study

cases, leading to model (2-45). Furthermore, Equation (2-48) impossed the assumption of an

homogeneous coupling strength K for every pair of connected oscillators.

Equation (2-48) was found to exhibit some interesting and very intuitive behavior: when the

interaction between oscillators is weak, or in other words, when the coupling constant K is

small, each oscillator tends to rotate at some phase velocity close to its natural frequency ωj;

conversely, when interactions are strong, that is to say, there is a large K value, all oscillators

in the ensemble will tend to rotate at the same frequency ωs and thus synchronization of

the ensemble is achieved. This means that there exists a transition from a disordered to an

ordered phase in the system when the coupling strength K is increased beyond a certain

critical coupling value Kc [70]. As will be explained later, this phase transition also occurs

in the more general, second-order model (2-45).

Both versions of the Kuramoto model have been widely studied through theoretical deve-

lopments, like the mean-field theory [21, 25, 70, 71], as well as through intensive numerical

simulations [24, 35, 72, 73, 74] and a large variety of phenomena have been discovered in

both regimes.

In the framework of the Kuramoto model, it has been proposed that the loss of synchrony in

the components of a power grid, even locally, may cause a partial malfunctioning, cascading

failures and even the total blackout of the transmission network [19, 23, 75, 8, 9, 10], thus,

in the following, this document will concentrate in the study of synchronization in the model

described by Equation (2-45).

2.4. Random Growth Model for Power Grids

When the applicability of the Kuramoto model in the analysis of power systems is conside-

red, it is important to have realistic example cases that can be used to test the theoretical

approaches [76, 77]. Having that idea in mind, this section describes the algorithm proposed

in [2] which allows generating complex networks that incorporate a spatial embedding (ac-

counts for the geographic position of nodes) and that have similar structural properties to

those found in real-world power grids.
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For this algorithm, a redundancy cost function that will be subject to optimization has to

be defined as:

f(i,j,G) =
(dG(i, j) + 1)r

dS(xi, xj)
(2-49)

where dG(i, j) is the length of the shortest path between nodes i and j in the graph G,

dS(xi, xj) is the spatial distance (Euclidean distance) between the nodes positions xi and xj,

and r is a parameter that controls the cost-vs-redundancy trade-off, that is to say, how much

should the optimizer care about the spatial distance and the structural distance between a

pair of nodes.

The algorithm requires the following input parameters:

N0: An initial amount of nodes, N0 ≥ 1.

N : Final amount of nodes that the network will have N ≥ N0.

x = {x1, x2, ..., xN}: Geographical location of the initial nodes.

p, q: Probabilities of constructing additional redundancy links in the network, such

that 0 ≤ p, q ≤ 1.

s: Probability of splitting an existing line.

r: Cost-vs-redundancy trade-off parameter for Equation (2-49).

The construction algorithm is developed through two phases: initialization and growth, which

are performed as follows:

2.4.1. Initialization

1. Initialize a minimum spanning tree for the initial N0 nodes such that it optimizes the

edges that have to be built between them based on the minimum Euclidean distance

dS(xi, xj) (refer to Figure 2-1(a)). A minimum spanning tree refers to a graph that

joins all the nodes without including any cycle and with the minimum total edge weight

possible (in this construction stage, the weight of an edge is given by the Euclidean

distance between the pair of nodes it connects).

2. Let m = bN0(1− s)(p+ q)c. For each h = {1, 2, ...,m} find the pair of nodes (i, j) that

are not yet linked and for which f(i,j,G) is maximal and connect them (as illustration,

observe Figure 2-1(b)).
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(a) Minimum spanning tree initialization. (b) Addition of redundant links based on the ma-

ximum f(i,j,G).

(c) Line splitting and node addition. (d) Adding a link between the pair based on mi-

nimum dS(xi, xj).

Figure 2-1.: Some steps of the synthetic power grid generation algorithm. Green edges and

nodes represent elements to be added, while red edges represent removed lines.
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2.4.2. Growth

1. For each h = {1, 2, ..., N −N0} do:

a) Add a new node h to the graph.

b) Generate a random number ζ1. If ζ1 ≤ 1− s then:

Set the position of the new node xh.

Add a link between the new node h and the closest node j geographically,

that is, the node j for which dS(xh, xj) is minimal (see for instance, Figure

2-1(d)).

Generate a random number ζ2, if ζ2 < p add a link between the new node h

and some node l for which f(h,l,G) is maximal.

Generate a random number ζ3, if ζ3 < q draw a node h′ from the network

uniformly at random. Then find the node l′ that is not yet linked to h′ and

for whichf(h,l,G) is maximal and connect them.

c) Otherwise (if ζ1 > 1−s), select an edge (i, j) of the network uniformly at random.

The new geographic location of node h will be given by xh = (xi+xj)/2, so the edge

(i, j) is removed from the graph and then the edges (i, h) and (h, j) are added

(for reference, observe Figure 2-1(c)).

For illustration, Figure 2-2 shows some random networks generated with this algorithm for

different structural parameters, together with the resulting degree distribution.

An interesting study that has to be considered is the one reported in [36], where this random

growth model was used to test the dynamical stability and resilience to structural cascading

failures for networks with a varying value of the redundancy parameter r. It was shown that

for the constructed power grids, low values of r represent high (low) local (global) redun-

dancy, measured in terms of transitivity (which is related to the clustering coefficient); while

high values of this parameter represent a low (high) local (global) redundancy, as measured

by the second-smallest eigenvalue of the Laplacian matrix, known as the algebraic connec-

tivity. On these terms, it was concluded that a highly locally redundant grid is more robust

to cascading failures, while a highly globally redundant grid possesses a lower proportion

of critical nodes (nodes with poor dynamical stability). This implies that a trade-off has to

be considered in the design of power grids between local and global connectivity redundancy.

This algorithm will be used in the next chapter to build test cases for resilience measures.
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(a) p = 0.6, q = 0.4, r = 0, s = 0.
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(b) p = 0.6, q = 0.4, r = 1, s = 0.2.
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(c) p = 0.2, q = 0.3, r = 0.33, s = 0.1.

Figure 2-2.: Some spatially embedded power grids generated with the algorithm proposed

in [2]. The histograms show the degree distribution of the network.

It has to be mentioned that this and any other graph building algorithm is just an ideal

approximation of the real experiment, where the construction of power stations and trans-

mission lines is not performed at random; it goes through a carefully planned process that

takes into consideration geography of the region, the implementation cost, the relative loca-

tion of cities and power sources (coal, oil or water resources), among other factors [78].

2.5. Tree-like Classification of Nodes

While studying the influence of topology of the network in the non-linear stability and

survivability of the coupled oscillators, it was found in [3] that interesting patterns can be
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spotted if nodes are classified according to their location in tree-shaped arrangements. Five

categories were defined: bulk nodes, roots, inner tree nodes, proper leaves, sparse sprouts and

dense sprouts. To explain each category, some definitions are required:

A graph G(ϑ, ε) is called a tree if it is connected and has no cycles. A tree-shaped

part T ′(ϑ′, ε′) is a subgraph of G which is a tree, has the maximum possible size and

has exactly one node r ∈ ϑ′ that has at least one neighbour in the rest of the graph

G2 = G− T ′. Node r is called the root of T ′ and has a degree d̂r ≥ 3.

Any node in G that does not belong to a tree-shaped part, is called a bulk node.

Any node l ∈ T ′ that is not a root but has exactly 1 neighbour, that is d̂l = 1, is called

a leaf. However if d̂l > 1, node l is said to be an inner tree node.

The depth of a node i that belongs to a tree-shaped part i ∈ T ′, denoted by δ(i), is

the shortest path from node i to the root of T ′. Also, the height of such node H(i) is

the length of the longest path from i to a leaf of T ′.

If some leaf l has a depth δ(l) = 1, it is named a sprout. Conversely, if δ(l) > 1, it is

called a proper leaf.

Finally, a sprout s can be given the name of sparse sprouts, when the average degree

of the neighbours of s is lower than 6, and dense sprouts otherwise.

Figure 2-3 shows an example of said classification in a randomly generated network after

reproducing the classification algorithm described in the mentioned paper.

By using this classification, [3] discovered some novel asymptotic state where a machine lo-

cated in a dense sprout oscillates at a velocity different to its natural frequency while the rest

of the network is synchronized. Other important insights were extracted from this work, for

instance, inner tree nodes should be avoided since they usually have low non-linear stability

(as also confirmed by [30]). Furthermore, nodes with a high degree should also be avoided,

since they have the worst survivability and hence poor transient stability. The authors also

recommend leading the power grid design towards more regular network structures, since it

has been shown in other relevant studies that homogeneous topologies are usually easier to

synchronize than tree-shaped ones [79, 80].

2.6. Percolation

Percolation is a theory that deduces general macroscopic properties of an ensemble of inter-

connected elements in terms of the statistical description of its composition, the characte-

ristics of the individual elements, and the topological arrangements of said elements. In this
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Dense Sprout

Sparse Sprout

Proper Leaf

Root

Bulk

Inner Tree

Figure 2-3.: Tree-like classification of nodes proposed in [3].

framework, a basic characteristic ensemble is usually defined and then topological variations

are slowly applied in order to study their influence on those macroscopic properties of interest.

Two varieties of percolation are studied this work, those are bond percolation and site perco-

lation. Bond percolation refers to cases when interactions between the elements are changed,

removed or included, for instance, it aims to solve questions like: what is the maximum

fraction of links, in average, that can be removed in a network before it breaks into multiple

unconnected clusters?. Similarly, site percolation deals with problems where the elements are

changed, removed or added; for instance: what minimum concentration of metallic atoms in

an initially insulating medium have to be added in order to have electrical conductivity? [81].

In this work, as will be described in Chapter 4, percolation problems will be formulated,

where nodes or edges in the power grid will be removed sequentially, aiming to represent

element failures.



3. Synchronization Dynamics

3.1. Abstract

This chapter introduces the synchronization phenomenon, as well as some important theo-

retical tools that have been developed in the last years to analyse collective behavior in

populations of interacting oscillators.

3.2. Synchronization of Coupled Oscillators

Given the second-order Kuramoto model (2-45), the dynamical system is said to be in a

phase synchronized state if θi(t) = θj(t), ∀i, j ∈ ϑ, and in a frequency synchronized state if

θ̇i(t) = θ̇j(t) = ωs, ∀i, j ∈ ϑ, where ωs = 0 given the co-rotating reference frame Ωt used (as

mentioned in Equation (2-8)) [8].

In addition, a solution for the system (2-45) will be said to have cohesive phases if |θi−θj| < γ,

∀(i, j) ∈ ε, with 0 ≤ γ < π/2; that is, for any pair of connected oscillators, the phase diffe-

rence between them is no larger than π/2 [8].

As a way to measure the phase synchronization level in an ensemble of N interacting osci-

llators, Yoshiki Kuramoto proposed a complex valued order parameter given by:

reiΨ(t) =
1

N

N∑
i

eiθi(t) (3-1)

Here, Ψ(t) is the average phase of the oscillators at time t. If all phases θi are identical,

the magnitude of the order parameter is r(t) = 1. On the other hand, if they are equally

distributed around the unit circle the system is said to be desynchronized and r(t) = 0.

Intermediate values of r correspond to partially synchronized states [22]. Additionally, in

the case of power grids in which Equation (2-47) holds, when the system is synchronized,

the real part of the order parameter IR[r] ≈ 1, while it oscillates around zero otherwise.

While the dependence of the order parameter with time is useful in transient analysis, we
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will focus on the steady state behaviour, so we can define the average order parameter in

steady state as [23]:

r∞ = ĺım
t1→∞

[
ĺım
t2→∞

(
1

t2

∫ t1+t2

t1

r(t)dt

)]
(3-2)

Another measure of frequency synchronization in power grids is the squared average rota-

tional speed v2
(t) defined as [23]:

v2
(t) =

1

N

N∑
i

θ̇2
i(t) (3-3)

and the associated steady state value of the speed v∞:

v∞ =

√
ĺım
t1→∞

[
ĺım
t2→∞

(
1

t2

∫ t1+t2

t1

v2
(t)dt

)]
(3-4)

3.3. Synchronization in a Simple System

Consider the simplest system composed of one generator and one consumer and let its

dynamics be described by Equation (2-45). For this two-node system, it is more convenient

to deduce the differential dynamics given by ∆θ = θ2 − θ1 and ∆χ = θ̇2 − θ̇1, thus, from

Equation (2-45), we get:

∆θ̇ = ∆χ

∆χ̇ = P2 − P1 − α∆χ− 2K sin(∆θ) (3-5)

For this system, two equilibrium points E1 = (∆χ∗1,∆θ
∗
1) and E2 = (∆χ∗2,∆θ

∗
2) can be cal-

culated analytically by setting ∆θ̇ = 0 and ∆χ̇ = 0, yielding:

E1 =

[
∆χ∗1
∆θ∗1

]
=

[
0

arcsin(P2−P1

2K
)

]
(3-6)

E2 =

[
∆χ∗2
∆θ∗2

]
=

[
0

π − arcsin(P2−P1

2K
)

]
(3-7)
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Clearly, E1 and E2 can only exist for 2K ≥ P2−P1, and, in particular, when 2K = P2−P1,

then E1 = E2 and it is a neutrally stable equilibrium. It can be proven, by extracting the

eigenvalues of the Jacobian for the system (3-5), that in the case 2K > P2 − P1, the first

equilibrium E1 has both eigenvalues with a negative real part, thus it is a locally stable

equilibrium; while the second equilibrium E2 is unstable. More precisely, it is a saddle point,

with one eigenvalue with negative real part and another eigenvalue with positive real part.

This means that the equilibrium (and by extension, a normal operation o the power grid)

can only exist for K > (P2−P1)/2. This can be tested by setting the parameters to P1 = 1,

P2 = −1 and α = 1 and studying the effect of varying the coupling constant K.
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Figure 3-1.: Phase plane for a system of one generator and one consumer for different values

of coupling strength (a) K = 0.5, (b) K = 1.1 and (c) K = 2.0.

Figure 3-1 shows the phase plane of the second order differential phase dynamics (3-5).

When the coupling is not strong enough, as in the case of K = 0.5, there exists a globally

stable limit cycle, related to an undesirable continuously varying rotating frequency on the

system; synchronization can never be achieved.

If the coupling strength is increased to K = 1.1, a locally stable equilibrium point appears

at the location given by (3-6), that is E1 ≈ (0, 1.14) while a saddle point appears at the

location (3-6), which is roughly E2 ≈ (0, 2). E1 and E2 also coexist with the locally stable

limit cycle that leads to the power outage of the network. Note that reaching exactly E2 in a
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practical experiment is impossible since any small disturbance around this point would lead

the dynamical system to either E1 or the undesired limit cycle, thus in the following, the

desired frequency synchronized state would be the stable equilibrium E1.

When K is further increased to 2.0, the limit cycle disappears and the locally stable fixed

point E1 becomes globally stable, meaning that for any given initial condition (except of

course the impractical saddle point E2), the system itself can recover the synchrony after

some transient time. For this particular value of K, the locations of the equilibrium points

are E1 ≈ (0, 0.52) and E2 ≈ (0, 2.62).

Although this is the simplest network case, this example gives important insights about

the power grid model (2-45) that can be extended to a large-N situation; loosely speaking,

it reveals that to guarantee a correct functioning on a power grid, transmission lines need

to be “strong enough”, such that they allow the existence of the frequency synchronized state.

The dynamical system described by Figure 3-1 is said to go through two bifurcation points,

in other words, the qualitative behaviour of the solutions changes when a parameter (in this

case K) is modified. The first bifurcation occurs in the transition from panel (a) to panel (b)

of the same Figure and the locally stable fixed point appears. In [82], after some algebraic

treatment of the second-order Kuramoto model, and assuming αj = α, ∀j, it was found that

the Kfp value for which this first bifurcation occurs can be computed as:

Kfp = máx
i

{
|αωs − Pi|

d̂i

}
(3-8)

where d̂i is the node degree and ωs is the synchronization frequency, which, as mentioned

before, can be assumed to be ωs = 0 [22], therefore (3-9) turns into:

Kfp = máx
i

{
|Pi|
d̂i

}
(3-9)

It means that for any K < Kfp, a synchronous state does not exist in the Kuramoto model.

For K ≥ Kfp, the synchronization manifold exists but is not necessarily globally stable.

3.4. Synchronization Depends on the Network Topology

It turns out that the transition from the disordered state (where each agent in the network

oscillates at its own frequency) to a fully synchronized state depends in a non-trivial way

on the topology of the complex network. To illustrate that, as well as to motivate further
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discussion, Figure 3-2 reproduces the results from [23], where it is shown that the transition

profile of the system changes drastically when a random, small-world or quasi-regular net-

work arrangement is considered.
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Figure 3-2.: Effect of varying coupling strength K in synchronization for different network

topologies. Top row: real part of the order parameter in steady state IR[r∞];

bottom row: average speed in steady state v∞. These results were averaged over

30 randomly initialized networks. N = 120, Pbg = 10, Psg = 2.5 and α = 0.1.

Note that, although these correspond to networks of roughly 120 nodes connected in com-

pletely different fashions, the general behaviour seen in the previous section for the two-node

case, is conserved; increasing the relationship of K/P causes the averaged steady state speed

v∞ to drop to zero and the real part of the order parameter in steady state IR[r∞] to rise from

zero to a positive value, leading thus to a synchronous state after surpassing some unknown

critical coupling Kc.

This study defines a parameter ∆p to describe the proportion of the power that is generated

by small power generators which produce just 1/4 of the power supplied by any other (large)

power generator, over the complete generated power, in other words:

∆p =
Psg

Pbg + Psg
(3-10)

where Psg is the total power supplied by small generators while Pbg is the one generated

by large power plants. As seen in Figure 3-2, the critical coupling at which synchronization

begins can change significantly when the rate of distributed power ∆p is increased, that is,
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when high-power generators are replaced by multiple low-power generators that satisfy the

same demand. An interesting takeaway from this Figure is that a more distributed power

generation (that is, a higher ∆p), causes in general an easier synchronization of the complete

network, as it requires a lower coupling strength in the transmission lines to reach the equi-

librium point.

For further details about these simulations, the reader is encouraged to review the complete

paper [23].

3.5. An Estimation for Kc

As discussed in the previous section, the topology of the complex network where the oscilla-

tors are arranged in, can significantly change the critical coupling Kc required for the system

to drive itself to the frequency synchronized state. Consider the Kuramoto model with a

simplified notation:

θ̈j(t) = Pj − αj θ̇j(t) + k
N∑
i

aji sin(θi(t) − θj(t)) (3-11)

where, as explained in the previous chapter, the elements of the adjacency matrix are aji ≥ 0

and k is the maximum power capacity of the transmission lines. In [8], by applying a linear

approximation of the system (3-11) around the equilibrium point, an approximation for Kc

was found, such that if k ≥ Kc, the model (3-11) has a unique and stable solution with

synchronized frequencies and cohesive phases.

Following the procedure in [8], it can be proven that, by applying a small-angle approxima-

tion to the model (3-11), the equilibrium phases θ∗ ∈ RN can be estimated as:

θ∗ =
1

k
L†P (3-12)

where L† is the pseudo-inverse of the Laplacian matrix of the graph. Let us then define the

phase difference between any pair of connected oscillators by:

∆θ = Bθ∗ =
1

k
BTL†P (3-13)

where B is the oriented incidence matrix. The exponentially stable fixed point from Equation

(3-12) also satisfies, for some angle γ ∈ [0, π/2), the following condition:

||∆θ||∞ ≤ sin(γ) (3-14)
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where the infinity norm operator used ||∆θ||∞ = máx(i,j)∈ε |θi−θj|, in other words, the largest

phase difference between any pair of connected nodes in the network. Then, by imposing the

phase cohesiveness condition described in section 3.2, the following expression is derived:

||∆θ||∞ < 1 (3-15)

By substituting the (3-13) into Equation (3-15), the last one can be rewritten to provide

the sufficient condition for the critical coupling Kc such that frequency synchronization can

exist:

Kc ≈ ||BTL†P ||∞ (3-16)

The synchronization concepts described by now, allow us to study the linear stability of

the system (2-45), but information about the non-linear stability is still missing and will be

described in a following section.

3.6. Braess Paradox

After seeing how the synchronization in the Kuramoto model is enhanced when K is in-

creased, it would be fairly intuitive to think that adding new transmission lines to a power

grid would have the same effect. However, as explained in [83], that is not necessarily the

case; it was proven that there could be some specific edges that, when added to the complex

network, would cause an increase of the critical coupling Kc and thus undermine and even

destroy the synchronized state. This phenomenon was related to the Braess paradox, initially

reported for traffic networks, which is produced by geometric frustration induced over the

power flow cycles formed in the grid. That is the reason why the authors also note that it

was found to occur more frequently in square lattices. This study had a lot of impact in the

analysis of the Kuramoto model and has some evident implications in the structural design

of power grids [84, 85, 86, 87, 88].

3.7. Cyclic Power Grids

As the topology of power grids is a matter of paramount relevance in its stability, the work

presented in articles like [89] and [29], regarding ring-like arrangements, have to be mentio-

ned. Specifically, it was argued in [89] that the emergence of vortex power flows in power

grids causes a zero-net power transfer from producers to consumers; all the power is dissipa-

ted ohmically. These vortex flows correspond to the situation when a closed-loop in a power



28 3 Synchronization Dynamics

grid has a winding number qα = 1
2π

∑nα
k=1 |θk+1 − θk| 6= 0, or in other words, the complex

voltage rotates in the complex plane as one goes around a loop with nα nodes. It was also

shown that, even if initially the power grid has cyclic parts with qα = 0, non-local structural

changes, as suppressing a transmission line in another section of the network, could induce

a different state with qα 6= 0 due to power redistributions. Furthermore, repairing said line

does not guarantee that the grid recovers its qα = 0 state. In the field of electrical enginee-

ring, loop flows are a very well-known phenomenon and the design methodologies of power

grids currently account for them and prevent them by installing FACTS [90].

Alternatively, in [29], the linear stability of cyclic power grids was analysed using the classic

characterization through the eigenvalues of the Jacobian and the non-linear stability was

estimated by measuring energy barriers as the difference between the potential energy in the

stable equilibrium and its closest type-1 equilibrium (the equilibrium point for which only

one unstable direction is detected in the eigenvalues framework). Through this analysis, it

was found that adding small cycles to the network (typically less than 10 nodes) improves

the stability of the synchronized state to random disturbances.

3.8. Basin Stability

Consider a multistable dynamical system that lives in the state space X and let X∗ ⊂ X be

the set of desirable attracting states. The basin of attraction of X∗, noted by β, is defined as

the set of all initial conditions x(0) that asymptotically converge to X∗ [30]. For the purpose

of this work, X∗ will be the frequency synchronization manifold of the system (2-44), that

is, the set of all frequency synchronized states as defined previously. It is worth mentioning

that, in real-life electrical systems, the synchronization at frequencies far from the set point

of 60 Hz or 50 Hz is not physically possible since most of the machines would fail and be

severely damaged in such scenarios.

Similarly, the likelihood of a randomly perturbed trajectory to return back to β, known as

the basin stability SB, can be defined as [30, 31]:

SB(β) =

∫
Γβ(x)ρ(x)dx (3-17)

where Γβ(x) is a function that indicates whether an state x belongs to the basin of attraction

of X∗ or not, that is

Γβ(x) =

{
1

0

∀x ∈ β
∀x /∈ β

(3-18)
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The function ρ(x) is the density of states to which the system can be pushed by some non-local

perturbation, such that
∫
X
ρ(x)dx = 1. Note that under this definition, the basin stability is

a number between 0 and 1, being SB = 0 when the synchronous state is unstable and SB = 1

when it is globally stable.

Monte Carlo simulations can be performed in order to estimate SB by randomly sampling a

sufficiently high number of disturbed states IC (following a certain distribution ρ(x)) from a

representative subspace Π ⊂ X, and using them as the initial conditions for time-evolution

simulations. For this work, ρ(x) is chosen as a uniform distribution in the restricted subspace

Π, that is:

ρ(x) =

{
1
|Π|

0

∀x ∈ Π

∀x /∈ Π
(3-19)

Finally, the amount FC of simulated trajectories that are found to approach asymptotically

to the attractor is assumed to be proportional to the volume of the basin of attraction (res-

tricted to the subspace Π), thus SB is approximated by SB ≈ FC/IC.

Figure 3-3.: Phase space of a randomly chosen node i when random disturbances are applied

to θi or θ̇i. Yellow zones are initial conditions that return to the frequency

synchronized state, while the blue ones are out of the basin of attraction. The

red dashed line denotes the subspace Π from which disturbances are chosen.

This diagram was created by interpolating IC = 500 random points.

To relate the concept of basin stability to the complex system (2-44), disturbances are applied

at each node independently, in order define an indicator that provides information about the

robustness of each oscillator to large perturbations applied to it, the so-called single-node
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basin stability (SNBS) [31, 32], given by:

S
(i)
B = FC

IC
, i ∈ ϑ (3-20)

where the IC initial conditions are drawn from perturbations applied to node i.

As an illustration, Figure 3-3 shows the phase diagram of some node i in a test network,

subject to large disturbances; its SNBS is, loosely speaking, the proportion of the yellow

area with respect to the area of Π.

As it is also expected, the basin stability strongly depends on the coupling strength K. To

show that, consider a generator node connected through an infinite bus to a fixed reference

frequency θg. The state of that system is then uniquely defined by the solution of the following

second-order differential equation:

θ̈(t) = P − αθ̇(t) +K sin(θ(t) − θg) (3-21)

Aiming to reproduce part of the results shown in [31], the parameters chosen are α = 0.1,

P = 1 and K is tested in the range [0, 80]. As observed in Figure 3-4, the basin stability of

this simple system increases as K is enhanced until the synchronized state is globally stable

around K ≈ 64. So it is understood that the green markers in the plot represent initial con-

ditions that after some transient time converge to the synchronous state in the fixed point

(θ, θ̇) = (θs, 0), but, what happens with the red ones?. It turns out that they follow the same

behaviour seen in Figure 3-1(b) for intermediate values of K, there is a limit cycle coexisting

with the fixed point somewhere in the phase plane. The location of said limit cycle can be es-

timated if it is guaranteed that |P |/α2 � 1 and |P |2/α2 � K [31], with the following expression:

θ̇lc(t) ≈
P

α
+
αK

P
cos

(
P

α
t

)
(3-22)

So in Figure 3-4(a), for instance, the attracting limit cycle lives approximately in the range

9.2 ≤ θ̇ ≤ 10.8.

In general, it would be expected that increasing K would raise the basin stability in a mono-

tonic way (ignoring stochastic noise) as shown in Figure 3-4(d), but it has been proven that

it does not necessarily occur; it heavily depends in the topology of the complex network as

well as in the power distribution of the nodes in a non-trivial way that remains unexplained

[73, 88].
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(a) Phase plane for K = 8.0. (b) Phase plane for K = 40.0.

(c) Phase plane for K = 72.0.
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(d) Basin stability as a function of

K.

Figure 3-4.: Effect of varying coupling strength K in the non-linear stability of the infinite-

bus model against random disturbances. Green dots represent initial conditions

that belong to the basin of attraction, while red dots are the opposite.
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The SNBS was later extended to the multiple-node basin stability, which considers disturban-

ces applied in more than one node at the time, allowing to investigate underlying structure

in the network, but increasing heavily the computational cost of the procedure [32].

It is also worth noting that the fine structure of the basin of attraction is not captured by

this approach, and it could impose numerical problems on dynamical systems that posses

either fractal basin boundaries or riddled or intermingled basins [91].

Another way to estimate the basin of attraction of this multi-dimensional system is by using

the direct stability method of the Transient Energy Function (TEF), where a critical energy

surface is calculated, such that if the system lies below that critical level after some fault,

the system is stable; otherwise, it is unstable. This critical value of the energy is obtained

by computing the Lyapunov-like function for the closest unstable equilibrium point (UEP),

since it is assumed that the UEPs surround the stable synchronous state [27, 28, 92, 93]. This

method, however, is not always applicable, since not all power systems possess an energy

function [28], and finding all the UEPs could be a challenge [29].

Another interesting concept related to the non-linear stability of dynamical systems is the

survivability, which was recently introduced in [94] and it is the fraction of perturbed initial

conditions that evolve into trajectories that, during the desired analysed time window, never

leave a desired region of the state space, making it especially useful to study the transient

profile of the dynamical system. It was used successfully in [3] to discover interesting patterns

in the Kuramoto model; in particular, a clear relationship between the survivability and the

node degree was found, suggesting that a highly connected node is more prone to exhibit

extreme transient behaviour for any kind of disturbance.

3.9. Recovery Time

To wrap up the discussion about stability against large perturbations, the recovery time

defined in [33] is worth mentioning. Recovery time is a measure of the average time it takes for

a randomly disturbed initial condition to settle back to the desired attractor (synchronization

manifold in this particular case). It can be computed as follows:

tr =

∑IC
i=1(tl(xd(i), δ))

IC
(3-23)

where tl(xd(i), δ) is the settling time for the trajectory starting at the initial condition xd(i),

that is, the time spent by this trajectory to arrive sufficiently close to the desired attractor

(such that its distance to the attractor is less than δ), and, as before IC is the number of
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initial conditions tested. As an illustration, Figure 3-5 shows the profile of the settling time

in the phase plane for the infinite-bus model introduced in the previous section. A very intui-

tive idea can be confirmed from this picture: the trajectories that start on initial conditions

closer to the equilibrium point converge faster to it than those located farther away. The

recovery time is then, loosely speaking, the average of each coloured point in the figure.

(a) Phase plane for K = 8.0. (b) Phase plane for K = 72.0.

Figure 3-5.: Settling time for some random initial conditions sampled for the infinite-bus

model. The white regions correspond to points that were not sampled. Recovery

time would then be the average of every settling time in the plot.

Recovery time can be useful to identify slow nodes in the grid, that is to say, nodes that

would take more time to reject a disturbance and return to its normal operation, which

is crucial to diagnose since, taking a long time to recover, would cause the disturbance to

spread over the whole network and possibly yield cascading failures and blackout. A draw-

back about using this measure is that it is not evident how to choose the initial conditions

without previous and detailed knowledge of the basin of attraction.
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4.1. Abstract

This chapter proposes an algorithm to test the resilience of a power grid by applying conti-

nuous attacks that can be performed either at random or by focusing on the most vulnerable

components of the network. Vulnerability is defined in terms of structural connectivity pat-

terns of the nodes and the edges, as well as based on dynamical measures of the basin

stability and phase difference between coupled oscillators.

4.2. Percolation-inspired Algorithm for Resilience Testing

In order to assess the resilience of a power grid, we propose a percolation-based algorithm. To

do so, we will follow the capability of the network to maintain its functioning upon different

node (nodal resilience) and edge (line resilience) removal rules. In particular, the algorithm

that will be described below removes a node or an edge from the graph on each iteration by

applying a random attack, where the element to be removed is chosen uniformly at random;

or a focal attack, where the most vulnerable node or edge in the graph is removed first. Here,

the most vulnerable node is the one with the smallest basin stability (S
(i)
B ) or the highest

degree centrality (dk), clustering coefficient (ck) or node betweenness centrality (bk); while

the most vulnerable edge is the one for which phase difference (∆θ(i, j)) or edge betweenness

centrality (ek) is the highest.

The percolation-based algorithm then proceeds as such:

1. Remove a node (edge) by applying a random or a focal attack. Note that in a focal

attack, multiple nodes (edges) could share the same vulnerability level, in that case,

the attacked node is chosen randomly among them.

2. Compute the existing disconnected clusters in the new graph.

3. For each cluster, check if it contains at least one generator node and one consumer

node, if it does not, remove the whole cluster from the graph.
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4. For each remaining cluster the power has to be compensated, so as a way to simulate

a real-world power control (where the supplied power level is increased or reduced

according to the demand of the consumers), the power of all generators in the cluster

is modified uniformly such that Equation (2-47) remains true.

5. For each remaining cluster, check whether or not it is synchronizable, that is, its to-

pology satisfies the synchronization condition that K > Kc, where Kc is computed by

the approximation (3-16). If it does not, the whole cluster is removed from the graph.

6. Measure the needed observables and return to step 1 until the whole power grid has

gone to blackout.

An important remark has to be done about the algorithm, regarding node removal under

the focal attack methodology based on SNBS. Computing this vulnerability index is compu-

tationally expensive since it requires a huge amount of time-domain simulations in order to

estimate reasonably well the Equation (3-20). Thus, in the following, only a few simulations

in this regard are presented.

4.3. Test Case

To test the percolation algorithm just described, a set of synthetic power grids was genera-

ted with the random growth algorithm described in the section 2.4 and then those complex

networks were subject to node or edge removal attacks. The parameters used for the growth

model algorithm were chosen to match those used on [3], being: initial minimum spanning

tree size N0 = 1, redundancy line construction probabilities p = 1/5 and q = 3/10, redundancy-

cost trade-off exponent r = 1/3, and line-splitting probability s = 1/10. The final size of the

network is fixed to N = 102 and an equal amount of generators and consumers is placed

to reduce heterogeneity in the samples (thus, Pg = 1, ∀g ∈ ϑg and Pc = −1, ∀c ∈ ϑc). The

dynamical model of the grid is rewritten as:

θ̈j(t) = Pj − αj θ̇j(t) + k
N∑
i

aji sin(θi(t) − θj(t)) (4-1)

where aji = {0, 1} are the elements of the adjacency matrix, the damping is set to αj = 0.1

and the maximum power transfer capacity is k = 12.0 (assuming an homogeneous coupling

for every couple of connected oscillators). The order of magnitude for these parameters fo-

llows those found in the literature, where αj = 0.1 represents a decay time of 10 seconds for

electromechanical disturbances [31].
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4.3.1. Nodal Resilience

Figure 4-1(a) shows the amount of nodes in the largest cluster of the network normalized by

the original size N (called giant component of the graph and denoted by C) subject to node

removal with focal and random attacking policies. For the SNBS case, only 10 simulations

are considered due to the previously mentioned reason, while for each of the other cases, 500

simulations are performed.

Similarly, Figure 4-1(b) presents the fraction of removed nodes after each iteration with res-

pect to the original size (named removed component and denoted by (N(0)−N(I))/N(0)), which

allows to observe that the grid goes to complete blackout around the 40th removal iteration

for the case of the focal attacking on either bk and dk, around the 60th iteration for the

random and ck attacking and with the largest standard deviation, between the 50th and

70th iteration for the SB methodology.

By focusing the attacks on nodes with the highest bk or dk, the dimension of the giant com-

ponent goes down drastically during the first elimination iterations and then it goes down

with a lower rate, reaching total blackout around the 40th iteration. ck on the other hand,

produces a slower reduction of the graph size and a total blackout with the most iterations

in average, pairing with the random scheme. This is related to the tree-like structure of

the synthetic power grids; in this kind of topologies, the nodes with the higher degree and

betweenness are located at the bulk regions of the graph, and their removal likely divides

the giant component instantly into multiple smaller clusters, as also confirmed by the Figure

4-2(a), where it is shown that these methodologies produce by far, the highest amount of

operational clusters during the whole procedure.

Correspondingly, a node with a high clustering coefficient, by definition, implies that the

neighbours that it is connected to, are also connected between them, hence, removing it is

not going to divide the graph and generate new clusters. Eventually, after multiple node

eliminations, redundant links between said neighbours will be suppressed and ck will beco-

me uniform over the whole system. That is the reason why this attacking strategy becomes

roughly the same as the random attacking one after a few iterations. The relative behaviour

of the evolution of the giant component with respect to structure-based element removals

(bk, ck and dk) is consistent with the results presented in [52].

Figure 4-2(b) plots the size of the second largest component of the graph C2, which reveals,

as expected, that the dk and bk attacking policies generate in a couple of iterations a new

cluster composed by a significant portion of nodes (peaking roughly at 40 % of the nodes),

while random, SB and ck focal methods generate smaller subgraphs.



4.3 Test Case 37

0 10 20 30 40 50 60 70 80
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
Focused on SB
Random

Focused on dk
Focused on ck
Focused on bk

(a) Giant component of the network.

0 10 20 30 40 50 60 70 80
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

N
(0

)
−
N

(I
)

N
(0

)

Focused on SB
Random

Focused on dk
Focused on ck
Focused on bk

(b) Removed component of the network.

Figure 4-1.: Evolution in the structure of the randomly grown synthetic power grids subject

to the nodal elimination algorithm. The shading accounts for the standard

deviation calculated over 10 realizations for the SB-focused methodology and

500 realizations for the other attacking schemes.
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(a) Amount of operational clusters in the network.
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Figure 4-2.: Evolution in the structure of the randomly grown synthetic power grids subject

to the nodal elimination algorithm. The shading accounts for the standard

deviation calculated over 10 realizations for the SB-focused methodology and

500 realizations for the other attacking schemes.
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Regarding the SB-focused attacking, a very similar behaviour to that of the random at-

tacks is observed, except in Figure 4-2(a), where SB attacks produce the smallest amount

of clusters. This is likely related to the observed phenomenon in [31], where nodes located

on dead-tree arrangements were found to exhibit, in general, a lower SNBS than the rest of

the nodes, being the inner tree nodes the most critical ones. As these are some of the nodes

that are more likely to be removed first under SB focal attacks, the graph does not segregate

on multiple clusters that easily.

Let us consider weak nodes as those that exhibit a SNBS lower than 0.4, then the fraction

of weak nodes can be expressed as:

ηw(I) =
Nw(I)

N(I)
(4-2)

where Nw(I) and N(I) are respectively the number of weak nodes and the total amount of

nodes in the graph at iteration I of the resilience testing algorithm. Figure 4-3 shows the

behaviour of the fraction of weak nodes ηw after each iteration for the SB-focused attacking

algorithm. From this figure, something that is not intuitive can be observed: in general, remo-

ving the most vulnerable nodes in the network is causing an overall reduction of the stability

of the whole network. This implies that, although attacking nodes with a poor SNBS will

not lead to blackout of the network faster than other strategies, it is making the whole grid

more prone to dynamical disturbances in oscillation frequency and phase angle. It is worth

noting that, results on Figure 4-3 are statistically less reliable in the last iterations due to

the fact that each power grid reaches total blackout at a different iteration value in general,

thus, last iterations are not averaging necessarily over 10 realizations as the first iterations

are.

Figure 4-4 shows the amount of generators Ng and consumers Nc after each iteration, and

it allows to see how the node elimination is working: in average, both, consumers and ge-

nerators are being eliminated at the same rate, this leads to believe that every new cluster

created in the network preserves a comparable number of both kind of nodes and that ho-

mogeneity makes the total destruction of said cluster less likely. This also explains why, in

average, the transition to blackout for the SB-method is very similar to that of the random

case on Figure 4-1(a).

Finally, for the data obtained from the SB-focused simultions, the Pearson correlation is

computed for the relationship between the S
(k)
B and the structural parameters of each node:

bk, ck, dk and the power Pk. The results of this statistical test are presented in table 4-1,

where σ is the Pearson correlation coefficient and pval is the corresponding two-tailed p-value.
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Figure 4-3.: Fraction of weak nodes on each iteration of the node removal algorithm on

synthetic power grids. The shading accounts for the standard deviation over

10 random realizations. Note that the statistical significance of the trace is

lower at the last iterations, due to each realization reaching total blackout at

different times.

Table 4-1.: Correlation between S
(k)
B and structural parameters of the synthetic power grids.

bk ck dk Pk
σ 0.037 0.004 −0.056 −0.221

pval 2.9× 10−10 4.6× 10−1 7.7× 10−22 0.0

After this testing, a small but significant negative correlation is found between the basin sta-

bility of a node and the power it produces or drains from the network with σ = −0.22 and

pval = 0.0. This suggests that a higher value of the power in a node reduces its stability to

non-local frequency disturbances. For the other structural parameters, negligible correlation

is found, so no conclusion can be extracted from this.
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Figure 4-4.: Number of consumers Nc and generators Ng existing in the graph on each

iteration of the SB-focused removal algorithm. The shading accounts for the

standard deviation over the 10 random realizations.

4.3.2. Line Resilience

Figure 4-5 presents the evolution of the graph under the edge removal procedure. The diffe-

rence between the random and focal schemes is remarkable on these simulations: by focusing

attacks on transmission lines with higher loads ∆θ(i, j), the size of the power grid goes down

rapidly and reaches total blackout faster than other attacking schemes.

By focusing on lines with a higher ek, the sparsity of the graph grows rapidly and many

small isolated but functional clusters form, as appreciated in Figure 4-6(a), where the ave-

rage number of clusters for ek can even be twice the amount seen in the random case and

almost three times the ∆θ(i, j) case.

It is also worth noting that the maximum size of C2 shown in Figure 4-6(b) is identical to

that observed in the node removal experiment in Figure 4-2(b), which is ≈ 40 %, that should

be related to the parameters used in the power grid construction algorithm, and mainly, with

the redundant link probabilities p and q and the redundancy exponent r, since they tune the

local and global redundancy of the generated graph.
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Figure 4-5.: Evolution in the structure of the randomly grown synthetic power grids sub-

ject to the edge elimination algorithm. The shading accounts for the standard

deviation calculated over 500 realizations.
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Figure 4-6.: Evolution in the structure of the randomly grown synthetic power grids sub-

ject to the edge elimination algorithm. The shading accounts for the standard

deviation calculated over 500 realizations.
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4.3.3. Phase Transitions

From the percolation-inspired procedure employed here, two “phase transitions” could be

analysed:

Transition T1: This transition occurs in the iteration when the graph is divided into

multiple functional subgraphs for the first time (turning from a connected graph to an

unconnected graph). This transition can be observed in either Figure 4-2(a) or 4-6(a)

when the second largest component switches from zero to a different value.

Transition T2: The final iteration of the algorithm, when the power grid goes to

complete blackout. As explained earlier, it can be observed in Figure 4-1(b) or 4-5(b)

when the removed component reaches 1.

For each elimination method, table 4-2 summarizes the value of T1 and T2 as computed

from the mean traces in the mentioned figures. Recall that each value is averaged over 500

simulations, except SkB which is over 10 realizations.

Table 4-2.: Average value of T1 and T2 for the resilience testing algorithm in the synthetic

power grids.

Random Node bk ck dk SkB Random Edge ek ∆θ

T1 10.20 2.35 19.58 2.50 27.00 17.48 4.61 4.14

T2 61.62 39.91 63.22 39.02 54.30 125.71 116.83 87.33

An important analysis is how the critical iterations for which these transitions occur, are

affected for the parameters in the system. In that regard, for the line resilience procedure, T1

and T2 were calculated over variations in the coupling strength k as shown in Figure 4-7. For

T1 on panel (a), no clear tendency is observed, besides the expected fact that this transition

is, in general, higher for the random method than for other elimination strategies. Panel (b)

however shows something interesting for T2: for any value of k, attacking the most vulne-

rable edges based on the dynamics (∆θ) produces the fastest transition to blackout in the

synthetic power grids, while attacking randomly produces, in general, the slowest transition.

Furthermore, this transition seems to slowly increase as k is increased, which means that

a higher coupling coefficient not only increases synchronization stability but also structural

resilience in this focused attacking framework.
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Figure 4-7.: Phase transitions T1 and T2 for the line resilience testing algorithm over the

synthetic power grids. Error bars account for the standard deviation over 20

random realizations.

The same analysis is performed for the node elimination algorithm, as shown in Figure 4-8.

It should be noted that by decreasing K below 10, T1 for the SNBS case becomes lower than

the random case on average, hinting that the effect where weaker nodes are located mainly

in inner-tree nodes is more noticeable when K is somewhat large, while for lower K, the

weak nodes are spread all around the graph. This is understandable since, in general, it can

be expected that the basin stability of a node is increased when the coupling of the network

is enhanced (this behavior however is not monotonic for all nodes, as pointed out in [73, 88]).

For the random and the topology-dependant elimination methods, no tendency is observed

for T1 when varying K.

T2 on the other hand shows an evident increase for any removal method when the coupling

strength is increased. As shown in figure 4-8(b), random and topological-based elimination

methods seem to reach a plateau when K is sufficiently high. This reduction in the variability

of T2 is because, for a higher K, the network becomes more robust to lose clusters due to

lack of synchronization (step 5 in the algorithm) and thus, clusters are removed merely by
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the lack of generators and consumers (step 3) or by single elimination (step 1 and 2). The

number of attacks required to reach blackout on either of those two cases depends mostly

on the initial construction of the network, therefore it should not vary significantly among

multiple experiments. The SNBS removal depends on the system dynamics, thus its curve

does not flat as the others for the observed range, however it is expected to behave in the

same way for a significantly higher K when the set point in any node becomes globally stable

in Π.
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Figure 4-8.: Phase transitions T1 and T2 for the node resilience testing algorithm over the

synthetic power grids. Error bars account for the standard deviation over 10

random realizations.

Some interesting elements have been brought up concerning these results, and they will be

wrapped up in the next chapter once the same procedure is performed over a real-world

power grid case, namely, the Colombian power transmission network.
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5.1. Abstract

In this chapter, the theory developed previously will be used to analyse the specific case of

the Colombian power grid topology. Weak components of the network will be identified and

the resilience of the system in general will be tested to cascade failures induced through the

percolation-inspired simulations.

5.2. General Stability of the Network

In the following, the topology of G(ϑ, ε) is taken from the Colombian National Transmission

System [95], a power grid composed of 158 edges and 102 nodes (28 of them are generators

and 74 are consumers). From those 28 generators, 17 are hydroelectric while 11 are thermoe-

lectric. In Figure 5-1, (a) it is shown the topology of the network with the tree-like node

classification introduced in section 2.5. Panels (b)-(e) present distributions for the classic

centrality measures of the graph used throughout this document: node degree, clustering

coefficient, node betweenness and edge betweenness centrality. Panels (f) and (g) display the

behaviour of θ(t) and θ̇(t) for every oscillator when the system converges from a random

state to a frequency synchronized state.

In the following analysis, the power distribution for generator machines (Pk, ∀k ∈ ϑg) and

the power line capacity of each transmission line (Kij, ∀(i, j) ∈ ε), were extracted from [95]

and expressed in [p.u.] with a base power of 100 MW. In addition, for generators, which can

be either hydroelectric or thermoelectric, a capacity factor of 60 % and 10 % was assumed,

respectively, in order to emulate normal operation conditions of the power grid. For consumer

nodes, an equal power demand was assumed, such that power balance (2-47) remains true.

Finally, damping for every node is set to αi = 0.1. Under this set-up, Figure 5-2 describes

the power distribution for power generators and transmission lines capacity in the Colombian

power grid.

For this particular example, let us write the second-order Kuramoto model with a slight
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Figure 5-1.: Colombian Power Grid: (a) Topology of the network with N = 102 and

M = 158. Generating nodes Ng = 28 (plus symbols) and Nc = 74 consumer

nodes (circle symbols). (b)-(e) Distribution of the node degree dk, clustering

coefficient ck, node betweenness centrality bk and edge betweenness centrality

ek. (f)-(g) Time trace of the phases and phase velocities of each oscillator when

the grid converges to a frequency synchronized state (red lines: generators, blue

lines: consumers).
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Figure 5-2.: Distribution of parameters Pi for power generators and Kij for the edges in

the Colombian power grid.
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Figure 5-3.: Synchronization profile for the Colombian power grid with real power parame-

ters. Red dashed vertical line marks the critical coupling as estimated through

Equation (3-16).

adjustment in notation as:

θ̈j(t) = Pj − αj θ̇j(t) + k
N∑
i

Kji sin(θi(t) − θj(t)) (5-1)

Where just a constant k was introduced to allow the investigation of the critical coupling

of the Colombian power grid. Figure 5-3 does precisely that by plotting the real part of the

order parameter and the average speed of the ensemble as a function of k. It is found that

given the parameters chosen, the critical coupling is found around kc ≈ 1.412 as estimated

through Equation (3-16) and which perfectly matches the simulated trace. For this discus-

sion, the coupling strength will be set to k = 1.5 to guarantee that the system operates

inside the synchronized regime.

Finally, let us define the load for a transmission line that connects node j to i as:

Fij =
N∑
i

Kji sin(θi(t) − θj(t)) (5-2)

The power grid is then analysed by inspecting the load in the transmission lines, as well

as the basin stability and the recovery time for the nodes in Figure 5-4. On this specific

example, SNBS and recovery time was estimated with IC = 500 and IC = 100, respectively.

Those nodes for which 100 stable trajectories to compute tr could not be found are black

coloured in Figure 5-4(c), and thus excluded from the recovery time analysis.
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Figure 5-4.: Dynamical characteristics of the nodes and edges in the Colombian power grid,

modeled with realistic parameters for P and K.
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Some key features about the Colombian power grid can be observed in this Figure:

From Figure 5-4(a), it can be seen that most of the transmission lines have a low

load level, but there are some exceptions, some critical links that should be taken into

consideration since their high load levels imply that a random perturbation in the

locally demanded or supplied power could lead to the line outage and potentially to

cascading failures that would affect the network non-locally. As observed, those heavily

loaded lines are mainly located in the eastern side of the network, in the regions of

Boyacá, Santander and Norte de Santander. A shorter line in Antioquia has to be

mentioned too.

Synchronous machines located on the north-eastern side of the power grid are extremely

susceptible to random disturbances, as appreciated in Figure 5-4(b); this includes

Boyacá, Santander, Norte de Santander and Arauca. Two significantly weak clusters

are also distinguishable, one by the southwest, including Cauca, Nariño and Huila; the

other is by the north, spanning through Córdoba, Sucre, Atlántico and Magdalena.

There are also some interesting elements in the network which are marked by a dotted

magenta circle. Those 4 regions include dead-tree topologies, which were discussed in

[31], and the authors found that inner tree nodes usually had a lower SNBS than the

proper leafs at the extreme of the tree, as clearly occurs here in the Colombian power

grid too.

In Figure 5-4(c) it is reported that most of the nodes suppress large dynamical distur-

bances in 130 ∼ 140 time units, but a cluster of slow nodes is formed in the center of

the grid, including the regions of Caldas, Quind́ıo, Tolima and Antioquia. A definite

relationship between tr and the topology of the complex network is currently an open

research problem in the state of the art.

5.3. Resilience Assessment

Now that the basic properties of the network have been described, the discussion is turned

to how resilient to cascading failures the Colombian power grid actually is.

For the following numerical experiment, we only care about the topology of the network

itself, thus homogeneous coupling will be assumed for every link in the network (in other

words, Kij takes values 1 or 0), power supplied by generators is set to Pk = 1.0, ∀k ∈ ϑg,
and the power drained by consumers is chosen such that there is a power balance in the net-

work (Equation (2-47)). Under these assumptions, the new critical coupling of the network

is estimated to kc ≈ 1.51, as illustrated in Figure 5-5. In the following, k = 12.0 to allow for



52 5 Colombian Power Grid

0.5 1.0 1.5 2.0 2.5 3.0
K

0.0

0.2

0.4

0.6

0.8

1.0

IR
[r
∞

]

Kc ≈ 1.51

(a)

t
0.3

0.0

0.3
IR[r(t)]

t
0.88

0.89

0.90
IR[r(t)]

(a) Real part of the order parameter.

0.5 1.0 1.5 2.0 2.5 3.0
K

0

1

2

3

4

5

6

v ∞ Kc ≈ 1.51

(b)

t
0.0

3.5

7.0

v(t)

t
0.0000

0.0035

0.0070

v(t)

(b) Average speed.

Figure 5-5.: Synchronization profile for the Colombian power grid with simplified parame-

ters. Red dashed vertical line marks the critical coupling as estimated through

Equation (3-16).

a synchronized state to exist.

5.3.1. Nodal Resilience

Figure 5-6 illustrates the algorithm for nodal resilience measurement under SB-focused at-

tacks. The transition from the frame (a) to (b) shows the formation of 2 independent clusters

after removing one node. Note that in the frame (c) there is only one generator in the nort-

hern cluster, and interestingly, it has a very poor basin stability level, so when that node is

removed from (c) to (d), the whole northern cluster goes to blackout. A different realization

is presented in panels (e)-(h); note that from (g) to (h) it suffices to remove one node to

bring the bigger cluster to blackout even though there would remain connected subgraphs

with both generators and consumers. This occurs because the remaining cluster would ha-

ve a topology that does not satisfy the synchronization condition (3-14) and thus it vanishes.

Results for the node percolation algorithm are presented in Figures 5-7 and 5-8. It is surpri-

sing that besides the narrower standard deviation in every trace (which was to be expected

considering that a lot of the randomness is reduced here when using a fixed complex network

structure), every other behaviour related to the elimination based on bk, ck, dk and even the

random attacking method is identical to that observed in the randomly grown synthetic

power grids from Figures 4-1 and 4-2.
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Figure 5-6.: Node removal algorithm under the focal attacking scheme. Circle nodes in-

dicate consumers while crosses mean generators. Node color is mapped with

the S
(i)
B and the size of the node is proportional to the power Pi. The red

arrow indicates the node that is going to be suppressed. Also, the inset shows

the histogram of the basin stability for the whole network. One realization is

presented in panels (a)-(d) and a different one in panels (e)-(h) in order to

visualize two different mechanisms of cluster vanishing.
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Figure 5-7.: Evolution in the structure of the Colombian power grid subject to the nodal

elimination algorithm. The shading accounts for the standard deviation calcu-

lated over 5 realizations for the SB-focused methodology and 500 realizations

for the other attacking schemes.
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Figure 5-8.: Evolution in the structure of the Colombian power grid subject to the nodal

elimination algorithm. The shading accounts for the standard deviation calcu-

lated over 5 realizations for the SB-focused methodology and 500 realizations

for the other attacking schemes.
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This confirms the fact that the algorithm proposed in [35] is indeed capable of reproducing

real-world examples of networked power systems, but also reveals that an heterogeneous po-

wer distribution did not have, on average, a significant impact in the transition to blackout

profile for these specific attacking schemes.

However, a major difference is observed when attacks are applied to the most vulnerable

nodes based on SB, which for the Colombian power grid produces a faster transition to the

total blackout state of the network than just removing nodes at random, implying that the-

re is indeed a relationship between the resilience of a node against dynamical disturbances

(related to the SNBS) and the structural connectivity of the graph, at least for this specific

network; a relationship that can not be easily extended to any other system.

Interestingly, as it is evident from Figure 5-8(a), the transition to an unconnected graph

composed of multiple functioning clusters (T1) for the SB percolation case, takes several ite-

rations (about 15 iterations) and it occurs significantly closer to the total blackout transition

(T2 - about 30 iterations) than any other methodology. This behaviour is further comple-

mented with Figure 5-8(b), where the amount of independent clusters (subgraphs) in the

network is also observed. For the case of ck, the amount of clusters remain constant at 1 for

roughly 21 iterations, and this is then followed by a behaviour very similar to that of the

random elimination, once the clustering coefficient is roughly uniform for the whole network.

Figure 5-9 reveals that the behaviour observed for the synthetic networks, where the pro-

portion of vulnerable nodes ηw in the grid increases after some node eliminations based on

SB also occurs for the Colombian case, which supports the idea of using this strategy for

focal attacks as a way to reduce the general stability of the power grid.

On the other hand, from Figure 5-10 the rate at which consumers and generators are being

eliminated from the grid and when compared with Figure 4-4 for synthetic power grids,

a very different behaviour is observed. While for the random synthetic power grids it was

observed that Ng and Nc go down at the same rate, for the Colombian power grid the decrea-

sing slope for Ng is faster than that of Nc for the first iterations. Since the initial amount of

generators is lower than the initial amount of consumers after some of the nodes in the former

group have been removed from the graph, the resulting clusters are more likely to be con-

sumers isolated without a connected generator, subsequently, these clusters go to blackout.

This implies that the main reason why clusters are being suppressed from the Colombian

grid is the absence of generators in them, and explains why the transition to total blackout

in the SB-focused method is the fastest in Figure 5-7(b).
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Figure 5-9.: Fraction of weak nodes on each iteration of the node removal algorithm on

the Colombian power grid. The shading accounts for the standard deviation

over 10 random realizations. Note that the statistical significance of the trace

is lower at the last iterations, due to each realization reaching total blackout

at different times.

Following the procedure described in section 4.3.1, it was calculated the Pearson correlation

between the SNBS and the structure of the network and the results are described in Table

5-1. Again, a significant negative correlation is found against the power parameter with

σ = −0.605 and a pval = 0. More analysis in this regard will be provided in section 5.4.

Table 5-1.: Correlation between S
(k)
B and structural parameters of the Colombian power

grid.

bk ck dk Pk
σ 0.027 −0.038 −0.005 −0.605

pval 3.5× 10−5 1.4× 10−8 4.3× 10−1 0.0
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Figure 5-10.: Number of consumers Nc and generators Ng existing in the graph on each

iteration of the SB-focused removal algorithm. The shading accounts for the

standard deviation over the 10 random realizations.

5.3.2. Line Resilience

Similarly, Figure 5-11 shows the edge removal algorithm in action under ∆θ-focused attacks.

In the transition from panel (b) to (c), it can be appreciated that, after suppressing a very

vulnerable transmission line, a significant cluster of isolated consumers in the east side of

the network vanishes.

Figures 5-12 and 5-13 show the evolution of the structure of the Colombian graph subject

to transmission line attacks. It is very surprising that the traces in these figures fit perfectly

inside the standard deviations to those traces found for the synthetic power grids (Figures

4-5 and 4-6). This implies that the Colombian power grid acts as a particular example of

the synthetic power grids generation algorithm and more importantly, the fact that the Co-

lombian case has a way lower number of generators than consumers, did not have an impact

in the location of transitions T1 and T2 for the edge removal algorithm. On average then, the

dynamical parameter ∆θ seems to be unrelated to the power distribution in the nodes.

Table 5-2 summarizes the average value of the transitions for the removal algorithm applied

to the Colombian power grid.
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Figure 5-11.: Edge removal algorithm under the focal attacking scheme. Edge color is map-

ped with the ∆θ of the nodes it connects. The red arrow indicates the edge

that is going to be suppressed. Also, the inset shows the histogram of the

phase differences for the whole network.

Table 5-2.: Average value of T1 and T2 for the resilience testing algorithm in the Colombian

power grid.

Random Node bk ck dk SkB Random Edge ek ∆θ

T1 14.41 3.00 28.77 3.18 20.60 29.12 3.00 7.00

T2 61.92 40.85 65.03 40.54 29.80 131.14 117.91 77.00

5.4. Basin Stability in Generators

As mentioned in the percolation algorithm, the power supplied by each generator is modi-

fied during the execution in order to maintain the power balance in the grid. Figure 5-14

shows the SNBS of each generator node in the complex network as a function of its power

parameter. This figure is complemented by the results obtained in Tables 5-1 and 4-1 where

a clear negative correlation was found between these two quantities for both experiments.

For both study cases: the Colombian power grid or the randomly grown synthetic power

grids, it can be observed that, as the power of the node increases, its stability diminishes;

this comes from the fact that P acts as a measure of the “stress” in the node, that is, the

energy demand that it needs to satisfy. Having to provide energy for a higher amount of

consumer nodes, a generator becomes then more susceptible to random perturbations, as

indicated by the reduction on S
(i)
B . This can be contrasted with the results presented in [23],

where it was found that, by distributing the demand among multiple small power genera-

tors, instead of a few big power plants, the value of the critical coupling Kc diminishes, thus

synchronization is favoured, but for disturbances applied to power consumption, the most ro-

bust performance was found when there is a mixture of both, small and big power generators.
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Figure 5-12.: Evolution in the structure of the Colombian power grid subject to the ed-

ge elimination algorithm. The shading accounts for the standard deviation

calculated over 500 realizations.
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Figure 5-13.: Evolution in the structure of the Colombian power grid subject to the ed-

ge elimination algorithm. The shading accounts for the standard deviation

calculated over 500 realizations.
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Figure 5-14.: SNBS of each generator node as a function of the power it supplies to the

network. Red dashed line marks the initial set power P = 1.0.



6. Conclusions

In this document, an algorithm was proposed to test the resilience of power grids against

structural failures. Our approach differs from others found in the literature since it takes into

consideration dynamical stability against random non-local disturbances to describe nodal

vulnerability, as well as linear stability of phase differences to compute edge vulnerability.

The sequential elimination of elements in the network based on these dynamical vulnerabili-

ties was also compared with the same procedure applied to structural vulnerabilities, which

were defined in terms of connectivity patterns in the topology of the graph. This allowed

extracting some interesting findings which will be discussed in the following.

First of all, focusing nodal attacks on redundantly connected nodes, such as those with the

highest clustering coefficient, is obviously the least efficient strategy, pairing with the random

removal; the blackout transition T2 for both is always the highest, meaning that they require

more attacks in order to destroy the whole network. Similarly, the giant component of the

graph reduces at the slowest rate, since dividing the graph into multiple operational clusters

is not likely until the redundant links are removed from the network. Eventually, both met-

hods become essentially the same, once the clustering coefficient for the whole grid is uniform.

The most efficient way to reduce the size of the giant component of the network is, as expec-

ted, to attack the most central nodes, either those with the highest degree or betweenness;

when these bulk nodes are removed, the graph rapidly segregates into multiple perfectly

operational clusters. In other words, the transition to an unconnected graph T1 is always the

lowest for these methods.

For the case of node elimination based on basin stability, it was found that the transition

to blackout T2 in the randomly grown synthetic power grids did not differ significantly to

that found for the random removal approach. However, in the specific case of the Colom-

bian power grid, this method proved to be the most efficient to bring the whole network to

total blackout. Other experiments based on the structure of the network exhibited the same

behaviour for both, the synthetic grids and the Colombian case, suggesting that the only key

difference between both test cases is the power distribution: for the synthetic grids the power

was initially distributed uniformly, with an equal number of generators and consumers, but

for the Colombian case only 27 % of the initial nodes are generators, and the rest consumers.
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This power homogeneity in the synthetic grids then is enhancing the resilience of the graph,

and this was confirmed when it was observed that for the Colombian grid, the first nodes

to be removed are generators, leading to higher stress in the remaining power plants: a few

generators will have to increase drastically the power they produce in order to balance the

demand. In addition, this power increase in the generators will reduce their basin stability,

that is, it will make them more prone to dynamical random disturbances in oscillatory fre-

quency, as noted in the last chapter. This is an important finding, no correlation has yet

been reported between the single node basin stability and the power supplied or drained by

the node in the literature.

Interestingly, the number of weak nodes in the power grid (nodes with a low basin stability

level), was found to increase during the node removal procedure focused on basin stability for

both test cases. This implies that this attacking strategy is useful to undermine the general

dynamical stability of the power grid and make it more prone to frequency disturbances,

even though, it does not necessarily propagate structural failures to larger proportions of the

network (it depends on the number of generators, as explained in the previous item).

Regarding the line resilience testing performed, it was found that for either the Colombian

power grid or the synthetic power grids, attacking highly central edges, as those with a high

edge betweenness centrality, the graph segregates rapidly into multiple clusters and the giant

component reduces abruptly. The transition to blackout, however, is not faster than random

elimination. It is, as expected, a very similar behaviour to that found in node elimination

through node betweenness. The elimination based on the dynamical measure of phase diffe-

rence (∆θ) was found to be the most efficient in order to bring the whole network to blackout,

and remarkably, this behaviour can be observed for any value tested of the maximum transfer

capacity in transmission lines.

A parallel study in this work included a basic analysis of the topology for the Colombian

power grid with more realistic parameters. From this analysis, some key features were ex-

tracted and should be considered for future work:

Heavily loaded transmission lines were found in the eastern part of the power grid. Those

lines should be reinforced to increase their maximum power capacity or the topology around

them should be reconsidered in order to reduce the risk of breaking synchronization.

In addition, an extremely weak cluster of nodes was found in the eastern part of the grid,

and two significantly weak by the south-west and the north, respectively. Those nodes are

highly vulnerable to random frequency disturbances; it is recommended to include more re-

gular connection topologies in this region and small cycles in order to raise the general basin

stability.
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Finally, a cluster of nodes at the center of the grid exhibit slow responses when rejecting

random disturbances, this should be observed in more detail since a slow node allows dis-

turbances to propagate to the rest of the network even in a non-local way.

This work provides some ideas and an analysis framework that could lead to the design of

future power grids, aiming for robust and resilient systems. In order to achieve that, some

work is still left open to research such as further exploring the hidden causes that are yielding

the reduction of non-linear stability due to heterogeneous power distribution. Similarly, a

more detailed study on the phase transitions T1 and T2, as well as the influence of structural

parameters in these critical points, could potentially point in the right direction to design

the most appropriate connectivity in a graph and parameter distribution such that resilien-

ce against cascading failures is optimized. More dynamical measures of vulnerability could

also be incorporated in the removal algorithm; a particularly interesting one would be the

multi-node basin stability [32] computed over the nearest-neighbours, as it would include

information about the most vulnerable clusters, rather than individual elements. This would

however impose a higher computational effort on a task that is already computationally

expensive. Diffusivity of perturbations is also a promising feature to measure vulnerability

to failure propagation [15].

To improve the analysis of the Colombian power grid, more information about the real world

parameters could be introduced, like more precise capacity factors and demanded power by

consumers. Extending the whole framework of synchronization to power grids where ohmic

loss can’t be neglected is also an open research problem in the current state of the art.
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A. About the Practical Use of the

Kuramoto Model

This work has presented a simplified model of a power grid that is very popular in the physics

community, which focuses on the study of emerging collective behaviour of oscillators and

subsequently ignores some of the practical insights of the power system itself. This appendix

summarizes some important details found in [4].

In particular, the dynamical model of equation (2-45) can be expressed in a more general

form:

2Hj

Ω
θ̈j(t) +

Dj

Ω
θ̇j(t) = P̂j +

N∑
i

Kji sin(θi(t) − θj(t) − γij) (A-1)

where Hj and Dj are the inertia and damping constants that describe each machine, respec-

tively. Three distinct models can be defined, all of them describe the dynamics in generators

as the second-order oscillators in equation (A-1) but they differ on how the loads are modeled:

Synchronous motor model (SM): Loads are also described as second-order osci-

llators. In the final topology of the network, every node is connected to every other

node.

Structure-preserving model (SP): Loads are described by first-order oscillators

(Hj = 0) and generators have an additional node connecting it to the rest of the

network.

Effective network (EN): Loads are described by constant impedances. This model

focuses then just in synchronization of generators.

In [4] a complete algorithm is described to transform a circuit representation of a power

system into a graph with either the SM, SP or EN model, which can then be analysed in

the synchronization framework.
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Figure A-1.: Nine-bus power system and its graph equivalent through the algorithm pre-

sented in [4].
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Figure A-2.: Synchronization in the nine-bus system based on the three reduced models

assuming no ohmic loss.

As an example, consider the classic nine-bus system from [65]. Figure A-1 shows the circuit

of the power system and the corresponding graph for either of the three models mentioned.

Figure A-2 shows the results of synchronization for variations in the coupling strength in the

nine-bus system with no ohmic loss. It is shown that the EN model could not be studied in

the same way as the others, this is to be expected since the only oscillators in the graph are

generators, thus equation (2-47) for power balance is not satisfied and the synchronized state

can’t be assumed to be on zero frequency. Interestingly, both SP and SM models exhibit the

transition to synchronization in roughly the same critical point.

The approach taken in this work, and the one which is usually employed in the physics

community is the one described in chapter 2, where both, consumers and producers are

second-order oscillators as in the SM model, but the structure of the graph is conserved as

in the SP model.

nice



B. About Numerical Set Up

B.1. Basin Stability Computation

Computing the single-node basin stability is a computationally intensive task, so to reduce

simulation time, virtual machines with multiple CPU cores were used. Operating in parallel,

each core calculates the SNBS for one node in the network, thus it runs sequentially multi-

ple time-domain simulations, which are solved through the variable-coefficient ODE solver

(VODE) using the backward differentiation formulas (BDF) method, implemented in scipy.

Time-domain simulations are performed in a time span of 200 time units and the initial 90 %

of them are assumed to be transient dynamics and thus discarded. A trajectory is considered

to belong to the basin of attraction if ‖
∑N

i θ̇i‖2 ≤ 0.01. All these numerical parameters were

carefully tuned to allow a fast and sufficiently precise computation.
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Figure B-1.: Resilience testing algorithm based on single node basin stability.

The resilience assessment algorithm based on SNBS is even more time-consuming since it

requires to calculate the SNBS for (almost) every node in every removal iteration. For a

clearer interpretation, figure B-1 shows the basic functioning of the algorithm. These simu-

lations were thus performed on just 50 initial conditions for the time-domain runs. Note that,
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randomly sampling points inside or outside the basin of attraction is a repeated Bernoulli

experiment [30] and thus follows an absolute standard error E =
√
SB(1−SB)/

√
IC; which in

this case, yields an acceptable maximum error margin of E ≈ 0.071.

For the detailed analysis of the Colombian power grid shown in section 5.2, 500 initial con-

ditions were executed for each node, leading to an error of E ≈ 0.022.

On github.com/ccgalindog, open source Python implementations for the following algo-

rithms can be found:

Random growth model for synthetic power grids (section 2.4).

Tree-like node classification (section 2.5).

Synchronization tests on regular, random and small-world graphs (section 3.4).

Single-node basin stability and recovery time calculation (section 5.2).

Resilience assessment (section 4.2).

Transformation of PyPower / MatPower cases into SM, SP or EN graphs (appendix

A).
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