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Abstract

Let p : E → M be a principal G-bundle, over a manifold M . Assume that we can �nd an open cover of M
together with trivializations over them in such a way that the corresponding transition functions commute
with each other whenever they are simultaneously de�ned. Such data de�nes a transitionally commutative
(TC) structure on the principal bundle. (We make this precise in Chapter 1.)

In this thesis we developed characteristic classes for TC structures by using an algebraic-geometric method.
For this we �rst obtain generators of the cohomology with real coe�cients of the classifying space for TC
structures over principal G-bundles, a space known as BcomG. We then show that such cohomology is in
one to one correspondence with TC characteristic classes. Next, we show how to use Chern-Weil theory to
compute the TC characteristic classes for each of these generators. This is done through what we call the k-th
associated bundle of the TC structure. After developing this theory, we illustrate in some explicit examples
how this can be applied.

Additionally, we show that BcomGLn (R) can be obtained, up to homotopy equivalence, as a subspace of the
Grassmanians.

Keywords: principal bundles, commutative cocycles, characteristic classes, commutative Grassmanians,
Chern-Weil theory.

Resumen

Sea p : E → M un G-�brado principal sobre una variedad M . Asumamos que se puede encontrar un
cubrimiento abierto para M , junto trivializaciones sobre sus abiertos, tal que las funciones de transición co-
rrespondientes conmutan entre si en la intersección de sus dominios. Esta información de�ne lo que llamamos
una estructura transicionalmente conmutativa (TC) en el �brado principal. (Detallamos esto en el Capítulo
1.)

En esta tesis desarrollamos las clases características para las estructuras TC al usar un método algebraico-
geométrico. Para esto, primero obtenemos un conjunto de generadores de la cohomología con coe�cientes
reales del espacio clasi�cante para estructuras TC sobre G-�brados principales. Este espacio es conocido
como BcomG. Luego mostramos como existe una correspondencia uno a uno entre dichas clases y las clases
características TC. En seguida, mostramos como podemos usar teoría de Chern-Weil para calcular las clases
características TC respectivas a cada uno de estos generadores. Para esto de�nimos los k-ésimos �brados
asociados de la estructura TC. Después de desarrollar esta teoría, mostramos, a través de unos ejemplos
explicitos, como puede ser aplicada.

Adicionalmente, mostramos que BcomGLn (R) puede ser obtenido, salvo equivalencia homotópica, como
subespacio de los Grasmannianos.

Titulo en Español: Fibrados transicionalmente conmutativos y clases características.

Palabras Clave: Fibrados principales, cociclos conmutativos, clases características, grasmaniano conmuta-
tivo, teoría de Chern Weil.
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Introduction

During the 20th century, algebraic topology saw great advancements in the theory of �ber bundles. These
are onto maps p : E → M such that each �ber is the same up to homeomorphism via local trivializations.
Fiber bundles were �rst introduced by H. Seifert (1907-1966) in his second PhD thesis. In it, he laid the
grounds to study Poincare's conjecture as well as �ber bundles, by focusing on the study of the total space
E. He worked with 3-dimensional closed manifolds and de�ned total spaces as sets of curvatures, each having
a point over the manifolds. Later on, H. Whitney (1907-1989) switched the focus onto the base space, M ,
giving rise to invariants for �ber bundles. This started a theory that would lead to important results such as
the Riemann-Roch theorem.1

A particular kind of �ber bundles are principal G-bundles, where G is a topological group. These are �ber
bundles, p : E → M , that can be seen locally as a product of an open set of M and G and have a free
G-action on the �bers. For these �ber bundles J.W. Milnor proved that they are classi�ed, up to equivalence,
by the homotopy classes of maps fromM into a space BG. This space is called the classifying space of G. For
simple cases, this allows us to obtain all the possible classes of principal G-bundles. For example, if G = Z,
BG = S1 and if M = S1, then all the possible principal bundles are classi�ed by

[
S1, S1

] ∼= Z.

A key tool to distinguish between principal G-bundles, up to isomorphism, are the so called characteristic
classes. These are natural transformations between principal bundles over a base spaceM and its cohomology.
Therefore, characteristic classes of principal G-bundles are in a one to one correspondence with the cohomol-
ogy groups of the classifying space BG. This is, for a principal bundle E →M and a class c ∈ H∗ (BG,R),
there is natural transformation given by an assignment E 7→ c (E) ∈ H∗ (M,R). Even further, when we work
on the category of smooth manifolds, one can aim to compute the characteristic classes of principal G-bundles
using tools from di�erential geometry. This is known as Chern-Weil theory (after Shiing-Shen Chern and
André Weil). A rather interesting result of this theory is that for compact Lie groups the homotopical and
the geometrical methods lead to the same characteristic classes.

Once again, a principal G-bundle over a manifold M can be seen locally as a product of an open set U ⊆M
and G. Such an identi�cation is called a trivialization. The collection of the trivializations of an open cover
{Ui}i∈I determine the equivalence class of the G-bundle. In an informal way they carry the gluing information
of the patches U×G. Formally, this information is carried on the transition maps, or cocycles, obtained from
the trivializations. These are functions ρ : Ui ∩ Uj → G satisfying what is known as the cocycle condition.
From them one can reconstruct a principal G-bundle up to equivalence. They are also important as they
allow us to construct a function M → BG classifying the bundle up to homotopy. Intrinsically they also
carry the information to determine the curvature in the case of smooth bundles.

1An excellent recount of the history of �ber bundles can be found in �A History of Manifolds and Fibre Spaces: Tortoises and
Hares.� by John McCleary.
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INTRODUCTION 2

We are particularly interested in principal G-bundles for which we can �nd local trivializations for which
the corresponding transition functions commute with each other. The motivation to study this came on
a seemingly di�erent subject, the sets of commuting n-tuples of a Lie group, Hom (Zn, G). The study of
the former, as well as some related concepts, was motivated by their connections with some quantum �eld
theories (see the intro of [TS]). Mathematically speaking, one can endow the family Hom (Zn, G), n ∈ N,
with the structure of a simplicial space. By seeing each Hom (Zn, G) as a subspace of Gn, they inherit the
simplicial structure of the Bar construction for the classifying space BG. As such, it is natural to study the
geometrical realization of the simplicial space Hom (Z•, G), which is called BcomG. This space has a natural
inclusion into BG.

Recently while studying the cohomology of BcomG, Alejandro Adem and Jose Manuel Gómez (see [AG])
discovered that the space BcomG serves as a new type of classifying space. Consider a function f : M → BG
classifying a principal G-bundle. They proved that up to homotopy, there is a unique factorization

BcomG

��
M

f //

;;

BG

if and only if there is an open cover of M on which the bundle is trivial over each open set and such that on
intersections the transition functions commute when they are simultaneously de�ned (Theorem 2.2 of [AG]).
The data consisting the bundle, the cover and the trivializations is what we call a TC structure. In [AG]
Adem and Gómez proved that BcomG serves as a classifying space for TC structures.

In the same work, Adem and Gómez also computed the cohomology of the path connected component of
BcomG containing the class of the tuple with only the identity, (1, 1, . . . , 1). Here, we expand their results by
presenting a set of generators when G is either U (n), SU (n) or Sp (n). For these Lie groups BcomG is path
connected. In particular, we consider homomorphisms Φk : H∗ (BcomG,R) → H∗ (BcomG,R) called power
maps, and the map ι : H∗ (BG,R) → H∗ (BcomG,R) induced by the natural inclusion. We show that the
subset {

Φk ◦ ι (c) | c ∈ H∗ (BG,R) , k ∈ Z \ {0}
}

generates, as an algebra, all of H∗ (BcomG,R). We use these results to develop the theory of characteristic
classes for TC structures, or TC characteristic classes.

Moreover, the main goal of this thesis is to extend Chern-Weil theory to TC structures when G is either
U (n), SU (n) or Sp (n).To do this we follow the scheme just presented for principal and vector bundles. We
�rst de�ne TC characteristic classes, and then we use BcomG to obtain TC characteristic classes through
homotopy theory; we show that they are in a one to one correspondence with H∗ (BcomG,R). Then we
developed the concepts necessary to use Chern-Weil theory. For a vector bundle E →M endowed with a TC
structure we associate to it a family of bundles Ek → M . These are called k-th associated bundles. Then
we consider the TC characteristic class associated to the generator Φk ◦ ι (c). Its class in H∗ (M,R) is the
same as the class of c

(
Ek
)
. This reduces the computation of the TC characteristic class to the computation

of c
(
Ek
)
, which can be done by using Chern-Weil theory.

Additionally, we found an alternative way to describe the classifying space for TC structures over vector
bundles. We called it the commutative Grassmannian. This is achieved by studying the construction of the
classifying function of a vector bundle, we were able to obtain the commutative Grassmannian as a subspace
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of the regular Grassmannian. This approach allowed us to adapt the ideas that make the Grassmannians a
classifying space for vector bundles to our new purpose.

This thesis is organized in 5 chapters as follows: In Chapter 1 we lay the ground concepts regarding TC
structures. We present a review of the relevant concepts of vector bundles and principal G-bundles that allow
us to de�ne TC structures and the equivalence relations between them. In the second chapter we construct
the commutative Grassmannian. In Chapter 3 we focus on the cohomology of BcomG, for G = U (n) , SU (n)
and Sp (n), as previously described. In Chapter 4 we developed the theory of characteristic classes for TC
structures over vector bundles. For this we �rst review characteristic classes for vector bundles as well as the
Chern-Weil theory for them. Then we show how to adapt it to TC structures through both the results of
Chapter 3 and k-th associated bundles. In the last chapter of this thesis we provide some explicit examples
of calculations of TC characteristic classes.



CHAPTER 1

Preliminaries

In this chapter we establish the basic language to talk about what we call Transitionally Commutative (TC)
structures. These structures consists of either a vector or principal bundle, with the additional property of
having transition maps that commute with each other. Thus, we lay down the de�nitions and basic results
of this theory.

We start this chapter with the basic de�nition of principal and vector bundles, paying special attention to
the transition functions. Then we move towards the de�nitions of Transitionally Commutative structures
and their basic properties. Here we �nd general results for both of this type of �ber bundles, as well as some
particular results for TC structures over vector bundles.

We remark that throughout this chapter M will denote a compact manifold and G denotes a Lie group.

1.1. Basic concepts

In this section we brie�y introduce the basic notions and constructions concerning vector and principal
bundles. In such spirit we avoid proofs of the results stated here. A good source for vector bundles is the
work of Hatcher [Hatcher II], while Hussemoller [Husemoller] is a good source for the general theory of
�ber bundles and principal bundles.

Fiber bundles generalize the idea of a Cartesian product. When F is a topological space, the product M ×F
comes naturally endowed with the projection map

π1 : M × F →M

(x, y) 7→ x

which has a �xed structure on its �bers π−1
1 (x) = {x} × F . Vector and principal bundles are examples of

�ber bundles where the �ber is a vector space and a topological group, respectively. However, they take into
consideration the extra structure of these �bers. In a sense we will make precise ahead, vector bundles over
M are equivalent to principal U (n)-bundles.

Definition 1.1. A principal G-bundle is a surjective map π : E →M , with a free action of G on E such
that there is an open cover {Ui}i∈I of M and homeomorphisms ϕi : π−1 (Ui) → Ui × G. These maps are
called trivializations and satisfy the following properties:

4



1.1. BASIC CONCEPTS 5

(1) There is a commutative diagram

π−1 (Ui)
ϕi //

π

%%

Ui ×G

π1

��
Ui

where π1 : Ui × Cn → Ui is the natural projection.
(2) Every map ϕi is a G-equivariant map, where the action on Ui ×G is given by right multiplication

on the second component.

The space E is called the total space of the bundle, while M is referred to as the base space.

Two principal bundles over the same space M , p1 : E1 →M and p2 : E2 →M , are isomorphic if there exists
a G-equivariant homeomorphism f : E1 → E2 such that the diagram

E1
f //

p1

!!

E2

p2

��
M

commutes.

Suppose that π : E →M is a principal bundle with a cover {Ui}i∈I and trivializations{
ϕi : π−1 (Ui)→ Ui ×G

}
i∈I .

By comparing two di�erent trivializations we obtain induced maps ρij : Ui ∩ Uj → G called transition
functions which are characterized by

ϕj ◦ ϕ−1
i : (Ui ∩ Uj)×G→ (Ui ∩ Uj)×G

(x, g) 7→ (x, ρij (x) g) .

Transition functions could be interpreted as the gluing instructions which determine the bundle completely,
as they provide the information to obtain a possibly complex global structure from a locally trivial behavior.
Furthermore these functions determine completely a principal bundle as we see next. From the covering
{Ui}i∈I and functions {ρij : Ui ∩ Uj → G} we �rst build the space

Ē :=
⊔
i∈I

(Ui ×G) / ∼,

where two pairs (xi, v) ∈ Ui × G and (xj , w) ∈ Uj × G are related under ∼ if xi = xj ∈ Ui ∩ Uj , and
ρij (x) v = w. This is well de�ned thanks a property of transition functions called the cocycle condition:

ρij = ρikρkj .

Now we consider the natural map given by the �rst projection π̄ : Ē →M . This is a principal bundle where
its trivializations are given by the natural maps Ui × G ↪→ π̄−1 (Ui) which are naturally homeomorphisms.
They induce trivializations having ρij as their transition functions. Finally it is not di�cult to see that E
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and Ē are isomorphic as principal bundles: there is a map f̃ : Ē → E that makes the following diagram
commutes

Ē
f̃ //

π̄

��

E

π

��
M

Id // M

and such that f̃ is a G-equivariat homeomorphism. The map f̃ is induced by the natural map⊔
i∈I

ϕ−1
i :

⊔
i∈I

Ui ×G→ E

which is constant on the equivalence classes of the relation ∼, since the transition functions satisfy

ϕj ◦ ϕ−1
i : Ui ∩ Uj ×G→ Ui ∩ Uj ×G

(x, g) 7→ (x, ρij (x) g) .

The key observation here is that the functions {ρij : Ui ∩ Uj → G} do not need to come from trivializations to
allow us the construction of Ē. They only need to satisfy the cocycle condition in order to induce a principal
bundle on M . In conclusion a principal bundle can be characterized from either the transition functions or
the trivializations of a given cover of the base space.

Strictly speaking vector bundles are di�erent objects than principal bundles, since the �ber is not a group but
a vector space. When the �ber is a complex vector bundle of �nite dimension, the model of the �ber is Cn.This
is, we have an onto map p : E →M , where there is a cover {Ui} and trivializations ϕi : π−1 (Ui)→ Ui×Cn,
such that the following diagram is commutative and linear on �bers.

π−1 (Ui)
ϕi //

π

%%

Ui × Cn

π1

��
Ui,

such that they are a linear bijection on each �ber. The linearity implies the compositions ϕj ◦ϕ−1
i are of the

form

ϕj ◦ ϕ−1
i : Ui ∩ Uj × Cn → Ui ∩ Uj × Cn

(x, g) 7→ (x, ρij (x) g)

where the transition functions take the form ρij : Ui ∩Uj → GLn (C). From this we can construct the frame
bundle with structure group GLn (C): consider the space of n-tuples of linearly independent elements,

FE := {(e1, . . . , en) ∈ En | p (ei) = p (e1) for all i and {e1, . . . , en} is L.I.} ⊆ En.

The set FE is endowed with the subspace topology of En. There is a natural surjective mapping π : FE →M
by considering the image under p of the �rst component. Let's see that this is a principal GLn (C)-bundle.
The action of A ∈ GLn (C) on e = (e1, . . . , en) ∈ FE is given by

e ·A :=

 n∑
j=1

b1jej , . . . ,

n∑
j=1

bn,jej

 ,
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where A−1= [bij ]. For the trivializations of π, suppose the trivializations of the vector bundle have the form

ϕi : p−1 (Ui)→ Ui × Cn

e 7→ (p (e) , hi (e)) ,

where the function hi : p−1 (Ui) → Cn is a linear bijection over each �ber of p. If x ∈ Ui and (e1, . . . , en) ∈
π−1 (x) ⊆ FE , then {hi (e1) , . . . , hi (en)} is a basis of Cn, thus we can consider the change of basis to the
standard basis. This allow us to de�ned a continuous assignment π−1 (Ui) → Ui × GLn (C), which can be
checked to have the properties of a trivialization.

Conversely, if π : E → M is a principal GLn (C)-bundle, one can obtain a vector bundle via the balanced
construction. For this consider the right action of G = GLn (C) on E × Cn given for A ∈ GLn (C) and
(e, v) ∈ E × Cn by

(e, v) ·A :=
(
e ·A,A−1v

)
.

Consider the composition

E × Cn
pr1 // E

π // M,

with pr1the projection on the �rst component. This composition can be factored through space of orbits of
the previous action E0 := (E × Cn) /G, giving us a surjective map p : E0 → M . This map can be proven
to be a vector bundle having trivializations over the same cover as the original principal bundle, and so,
they have the same transition funcitons. If we now apply the previous construction to this vector bundle we
recover the equivalence class of π : E →M , and the opposite is also true.

In conclusion having a vector bundle is then equivalent to having a principalGLn (C)-bundle, or just transition
funcitons ρij : Ui ∩ Uj → GLn (C). Furthermore, when M is compact, one can endow the total space with
an euclidean metric in such a way that the trivializations are isometries on the �bers. This in turn implies
that the transition functions have values on U (n), that is we can assume ρij : Ui ∩ Uj → U (n) . One can
then repeat the same constructions to see that principal U (n)-bundles are equivalent to vector bundles over
a compact space or just transition functions on U (n) for a given open cover of M .

1.2. Transitionally commutative vector and principal bundles

Here we develop the basic theory formalizing the study of vector or principal bundles with commutative
transition functions.

Definition 1.2. Suppose π : E → M is a vector or principal bundle. We de�ne a commutative triv-
ializations on π : E → M as a choice of an open cover {Uα}α∈J of M , together with trivializations,

ϕα : π−1 (Uα) → Uα × G such that the transition functions {ραβ} associated to them commute with each
other. That is if x ∈ Uα ∩ Uβ ∩ Uγ ∩ Uθ then

ραβ (x) ργθ (x) = ργθ (x) ραβ (x) .

Remark 1.3. By the comments made at the end of the previous section, the previous de�nition applies as
well to vector bundles by taking U (n) or GLn (C) as the codomain of the transition functions.
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Definition 1.4. Suppose π : E → M is a vector or principal bundle. A Transitionally Commutative
(TC) structure on π : E → M is a choice of a commutative trivialization for it. We denote a TC structure
as
(
π : E →M, {Uα}α∈I , ϕα

)
or more brie�y as

(
E, {Uα}α∈I , ϕα

)
when the map and the base space M are

implicit.

Remark 1.5. Unless stated otherwise, whenever we state a result for TC structures without specifying
whether it is on a vector or principal bundle, it means the result applies for both. We do this to avoid
unnecessary repetitions of the same argument.

Example 1.6. Consider an open cover {Ui}i∈I of a space M together with a collection of functions

{ρij : Ui ∩ Uj → GLn (C)}

such that they satisfy the cocycle conditions. If the functions {ρij} commute with each other then the vector
bundle constructed from them has naturally a TC structure.

As we are de�ning a local condition on bundles, we need to carry this into the notion of equivalent TC
structures over the same space M .

Definition 1.7. Let
(
π1 : E1 →M, {Uα}α∈I , ϕα

)
and

(
π2 : E2 →M, {Vγ}γ∈J , φγ

)
be two TC structures

over M . We say that these two structures are equivalent if there is a TC structure on a principal G-bundle
or vector bundle π : E →M × [0, 1] accordingly,(

π : E →M × [0, 1] , {Wi}i∈K , ζi
)
,

such that:

• The cover {Wi}i∈K intersected to M × {0} is a re�nement of {Uα}α∈I and its intersecting with
M × {1} is a re�nement {Vγ}γ∈J .
• π−1 (M × {0}) = E1 and π−1 (M × {1}) = E2.
• π |π−1(M×{0})= π1 and π |π−1(M×{1})= π2.
• ζi |π−1(Wi∩M×{0})= ϕαi |π−1

1 (Wi∩M×{0}) and ζi |π−1(Wi∩M×{1})= φγi |π−1
2 (Wi∩M×{1}).

Here we are abusing notation by identifying M with M × {0} and M × {1}.

We remark that the above de�nition de�nes an equivalence relation. We denote by Vectcomn (M) to the

collection of equivalence classes of TC structures on vector bundles of dimension n overM , while BundG
TC (M)

refer to those of principal G-bundles.

Notice that this equivalence relationship has stronger requirements than the equivalence relationship for
vector and principal bundles. The extra requirements are thought to relate the data of a TC structure with
homotopical information of the base space, in a process that will be made clear ahead.

Besides the previous de�nition, there is an equivalent way to obtain a homotopical notion of TC structure.
On the work of Adem and Gómez [AG] they show there is a subspace of the classifying space of G, BG,
known as the classifying space for commutativity, BcomG. Then they showed that for a compact manifold
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M , a principal bundle E → M admits a TC structure if only if its classifying function f : M → BG admits
a lifting, up to homotopy, through BcomG,

BcomG

��
M

f̃
;;

f // BG.

It can be shown that a TC structure on a principal G- bundle or vector bundle can be de�ned in an equivalent
way as a lifting up to homotopy for its classifying function.

What follows next is an account of the basic properties of TC structures, some of which are equivalent to those
of principal and vector bundles. Let's begin saying that it is immediate from the de�nition that re�nements
of covers, with the corresponding restrictions of the trivializations, do not change the equivalence class of the
TC structure. Next we will see there are equivalent notions of pullbacks, as well as a criteria to determine
when a commutative square

E1

π1

��

f̃ // E2

π2

��
N

f // M

gives in fact a pullback structure over N from one on M .

Proposition 1.8. Let f : N → M be a continuous map, and
(
π : E →M, {Uα}α∈I , ϕα

)
a TC structure.

Then the pullback f∗ (E)→ N has a natural TC structure over the cover
{
f−1 (Uα)

}
α∈I .

Proof. By de�nition we have

f∗ (E) := {(x, e) ∈ N × E | f (x) = π (e)}

where the principal bundle map is given by the projection π1 (x, y) = x. Its trivializations come from those
of E: if

ϕα : π−1 (Uα)→ Uα ×G
e 7→ (π (e) , ϕ̃α (e))

is a trivialization of E, then by taking

τα : π−1
1

(
f−1 (Uα)

)
→ f−1 (Uα)×G

(x, e) 7→ (x, ϕ̃α (e))

we obtain a trivialization of f∗ (E). By direct computation we see that if ραβ : Uα∩Uβ → G are the transition
functions of ϕα, then the transition functions of τα are given by

ραβ ◦ f : f−1 (Uα) ∩ f−1 (Uβ)→ G,

which commutes in their common domains. �

Now we continue with a criteria to know when a commutative square gives a pullback of TC structures.
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Proposition 1.9. Consider a map f : N →M and TC structures(
π1 : E1 → N, {Vi}i∈I , ϕi

)
and (

π2 : E2 →M, {Uα}α∈J , φα
)
,

such that

• There is a commutative square

E1

π1

��

f̃ // E2

π2

��
N

f // M

where f̃ is G-equivariant.
• The open cover

{
f−1 (Uα)

}
α∈J is a re�nement of {Vi}i∈I satisfying that if f−1 (Uα) ⊆ Viα , for

every (x, g) ∈ f−1 (Uα)×G we have

φα

(
f̃
(
ϕ−1
iα

(x, g)
))

= (f (x) , g) .

Then
(
π1 : E1 → N, {Vi}i∈I , ϕi

)
and

(
f∗ (E2)→ N,

{
f−1 (Uα)

}
α∈J , φα

)
are equivalent TC structures.

On this result we have the extra requirement when compared to that equivalent result for regular principal
bundles, where the �rst condition is enough to obtain the same conclusion. Let us look in detailed what this
second condition is telling us. If f−1 (Uα) ⊆ Viα the last equality is equivalent to the following commuting
diagram

f−1 (Uα)×G
ϕ−1
iα //

((

π−1
1

(
f−1 (Uα)

) f̃ //

π1

��

π−1
2 (Uα)

φα //

π2

��

Uα ×G

yy
f−1 (Uα)

f // Uα.

This tells us that the restriction of the trivializations on Viα to f−1 (Uα) somehow agrees with the trivializa-
tions we would give them via the pullback structure. We make this precise in the proof.

Proof. Since re�nements of the covers preserve the equivalence class of the TC structure, the second
condition says that we can re�ne the original TC structure on π1 : E1 → N by taking Vα = f−1 (Uα).

Now, the pullback of f is given by

f∗ (E2) := {(x, y) ∈ N × E2 | f (x) = π2 (y)} .
The projection over the �rst component π : f∗ (E2) → N is the principal bundle, while the rest of the TC
structure is given by the cover

{
f−1 (Uα)

}
α∈J = {Vα}α∈J and trivializations

φα : π−1
(
f−1 (Uα)

)
→ f−1 (Uα)×G

(x, e) 7→ (x, φα2 (e)) ,
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where φα2 (e) is such that

π−1
2 (Uα)→ Uα ×G

e 7→ (π2 (e) , φα2 (e)) .

We have to show that this TC structure is equivalent to
(
π1 : E1 → N,

{
f−1 (Uα)

}
α∈J , ϕiα |f−1(Uα)

)
. For

this consider the space
E := E1 × [0, 1/2] t f∗ (E2)× [1/2, 1] / ∼

where the relation ∼ for y ∈ E1 is given by

(y, 1/2) ∼
((
π1 (y) , f̃ (y)

)
, 1/2

)
.

Then there is a natural map
F : E → N × [0, 1]

having a natural TC structure as follows: take the open cover {Vα × [0, 1]}α∈J and trivializations

Φα : F−1 (Vα × [0, 1])→ Vα × [0, 1]×G
induced by the maps

π−1
1 (Vα)× [0, 1/2]→ Vα × [0, 1/2]×G

(y, t) 7→ (π1 (y) , t, ϕα2 (y))

and

π−1 (Vα)× [1/2, 1]→ Vα × [1/2, 1]×G
((x, y) , t) 7→ (x, t, φα2 (y)) .

Here by ϕα2 and φα2 we mean the second components of ϕα and φα, respectively. The conditions Vα =
f−1 (Uα) and

φα

(
f̃
(
ϕ−1
α (x, g)

))
= (f (x) , g)

guarantee that the two previous maps indeed induce a well de�ned map F−1 (Vα × [0, 1])→ Vα × [0, 1]×G.
That last condition also tells us that if ραβ , ταβ : Vα ∩Vβ → G and are the transition functions related to the
trivializations φα and ϕα, respectively, then it follows that

ταβ = f ◦ ραβ
so it is clear that the map F : E → N × [0, 1] has a TC structure, and this de�nes the desired equivalence
between TC structures. �

Corollary 1.10. Let
(
π : E →M, {Uα}α∈I , ϕα

)
be a TC structure, and consider maps f : N → M and

g : W → N , then we have

• The pullback TC structure over the identity is equivalent to the original TC structure.

• The pullback TC structure over (g ◦ f)
∗

(E) with the cover (g ◦ f)
−1

(Uα)α∈I is equivalent to the
(double pullback) TC structure on g∗ (f∗ (E)), over the same cover.

Proposition 1.11. Let
(
π : E →M, {Ui}i∈I , ϕi

)
be a TC structure over either a principal or vector bundle,

and f1, f2 : N → M be two homotopic functions. Then the TC structures over N obtained via the pullbacks
p1 : f∗1 (E)→ N and p2 : f∗2 (E)→ N are equivalent.
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Proof. If we have a homotopy T : N × [0, 1]→M , then we have the pullback structure given by T ,{
π1 : T ∗ (E)→ N × [0, 1] ,

{
T−1 (Ui)

}
i∈I , τi

}
.

The map π1 : T ∗ (E)→ N × [0, 1] is the restriction of the projection on the �rst coordinate,

(N × [0, 1])× E → N × [0, 1] .

And if we consider π2 : (N × [0, 1])× E → E the projection on E, τi is the composition

π−1
1

(
T−1 (Ui)

) π2−→ π−1 (Ui)
ϕi−→ Ui ×K,

where K is either G or Cn depending on whether we are considering principal G-bundle or vector bundles,
respectively. The TC structure on T ∗ (E)→ N × [0, 1] de�nes an equivalence between the TC structures on
p1 : f∗1 (E)→ N and p2 : f∗2 (E)→ N . �

1.2.1. Contraction of transition functions for TC vector bundles: Next we prove another tech-
nical result we will need later on. Consider a vector bundle π : E → M with trivializations ϕi : π−1 (Vi) →
Vi × Cn where ϕi (e) = (π (e) , ϕ̃i (e)). If we have a family of functions {κi : Vi → (0, 1]}, we can consider
new trivializations

ϕ′i : π−1 (Vi)→ Vi × Cn

e 7→ (π (e) , κi (π (e)) ϕ̃i (e))

which are still trivializations; the function e 7→ κi (π (e)) ϕ̃i (e) is still a linear bijection on every �ber of π.
Even more, if ρij : Vi ∩ Vj → GLn (C) are the transition functions associated to {ϕi}, then by linearity it is
clear that

x 7→ κj (x)

κi (x)
ρij (x)

are the transition functions associated to {ϕ′i} . So if the original trivilizations gives a TC structure so does
the second one. Let's see that these structures are actually equivalent.

Proposition 1.12. Let π : E → M be a vector bundle with a TC structure over the cover {Vi}i∈I and
trivializations

ϕi : π−1 (Vi)→ Vi × Cn

e 7→ (π (e) , ϕ̃i (e)) .

If we have functions {κi : Vi → (0, 1]}, then the TC structure given by the contractions

ϕ′i : π−1 (Vi)→ Vi × Cn

e 7→ (π (e) , κi (π (e)) ϕ̃i (e))

is equivalent to the original structure.

Proof. Consider the map

p : E × I →M × I
(e, t) 7→ (π (e) , t)



1.2. TRANSITIONALLY COMMUTATIVE VECTOR AND PRINCIPAL BUNDLES 13

with the natural vector bundle structure inherited from π. Now we consider the cover {Vi × [0, 1]}i∈I with
trivializations

τi : π−1 (Vi)× [0, 1]→ Vi × [0, 1]× Cn

(e, t) 7→ (π (e) , t, (t+ (1− t)κi ◦ π (e)) ϕ̃i (e)) .

Since t+ (1− t)κi ◦ π (e) > 0 this is indeed a well de�ned trivialization. Its inverse is given by

τ−1
i (x, t, v) =

(
1

(t+ (1− t)κi (x))
ϕ−1
i (x, v) , t

)
.

So if ρij : Vi ∩ Vj → GLn (C) are the transition functions associated to the trivializations ϕi, the transition
functions of the trivializations τi are given by

(x, t) 7→ (t+ (1− t)κj (x))

(t+ (1− t)κi (x))
ρij (x) .

These last functions are commutative on their common domains.

The TC structure on p : E× [0, 1]→M × [0, 1] de�nes an equivalence between the structures de�ned by {ϕi}
and {ϕ′i}. �



CHAPTER 2

Commutative Grassmanian

The main goal of this chapter is the construction of a classifying space for TC vector bundles. We call this
space a commutative Grassmanian since it is obtained as a subspace of the classical Grassmanian. Thus the
content of this chapter is divided in two parts. The �rst one is the construction itself of the commutative
Grassmanian and a vector bundle over it endowed with a TC structure. The second part consists in showing
that they classify, up to homotopy, vector bundles endowed with a TC structure.

Throughout this chapter M denotes a compact manifold.

2.1. Commutative structure on Grassmanians

In this section we give the construction of a transitionally commutative version of the Grassmanian. This
construction is natural when you consider the proof of the universality of the Grassmanians as a classifying
space for vector bundles over compact Hausdor� spaces.

Let us recall the construction of a classifying function for a vector bundle, which gives us the ideas to obtain
the Commutative Grassmannian. Consider a vector bundle p : E →M , for M compact and Hausdor�. Now
consider the Grassmannian

Gn,3 (C) :=
{
l ⊆ C3n | l is a linear subspace of dimension n

}
and the vector bundle

En,3 (C) :=
{

(l, v) ∈ Gn,3 (C)× C3n | v ∈ l
}

with the projection over the �rst component En,k (C)→ Gn,k (C). Then there is a commutative diagram

E
g //

p

��

En,k (C)

��
M

f // Gn,k (C)

where g is linear function on the �bers of the �bers of p into the �bers of En,k (C)→ Gn,k (C). The function
f : M → Gn,k (C) is called the classifying function of p : E →M , In fact, in order to obtain f it is enough
to construct g (See Theorem 1.16 of [Hatcher II] for details.). This construction depends on an open cover
of M and trivializations over its sets for the vector bundle p : E →M . Since M is compact, we may assume
that the cover is �nite, and in fact this number determines k. Let us see this in an example in order to
motivate the de�nitions ahead.

14
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Suppose we have a �nite open cover {Uj}3j=1 ofM , with trivializations ϕj : p−1 (Uj)→ Uj×Cn for j = 1, 2, 3.

If we consider the projection over the second components, we get functions gj : p−1 (Uj) → Cn. Using a

partition of unity subordinated to the cover {Uj}3j=1, σj : M → [0, 1], we can construct a function g : E →
(Cn)

3
given by

g (e) := (σ1 (p (e)) g1 (e) , σ2 (p (e)) g2 (e) , σ3 (p (e)) g3 (e)) .

Notice that if x ∈ σ−1
1 (0, 1]∩σ−1

3 (0, 1] and σ2 (x) = 0 then for e ∈ p−1 (x)\{0} there are vectors v1 (e) , v3 (e) ∈
Cn \ {0}, with

g (e) = (v1 (e) , 0, v3 (e)) .

If ρ13 : U1 ∩ U3 → GLn (C) is the transition function of this cover, then ρ13 (x) v1 (e) = v3 (e). So if we call
ρ13 (x) = A, and take into account that g1 is a linear isomorphism on each �ber, then we get

g
(
p−1 (x)

)
=
{

(v, 0, Av) ∈ (Cn)
3 | v ∈ Cn

}
.

Under the same reasoning, if x ∈ σ−1
1 (0, 1]∩σ−1

2 (0, 1]∩σ−1
3 (0, 1], then there would be a non singular matrix

B such that

g
(
p−1 (x)

)
=
{

(v,Bv,Av) ∈ (Cn)
3 | v ∈ Cn

}
.

And if we suppose that the transition functions commute, we have that AB = BA. With this ideas in mind,
we proceed to the following de�nitions.

We start with a de�nition that comes from the properties of transition functions of a TC bundle, where the
�rst condition is no other than the cocycle condition, and the second one is the commutative condition:

Definition 2.1. We say that a family of non singular matrices {Aij}mi,j=1 ⊆ GLn (C) is a commutative

cocycle if they satisfy

(1) AijAjk = Aik.
(2) AijAkl = AklAij .

for all i, j, k and l.

Next we consider elements v ∈ (Cn)
m

as vectors of the form

v = (v1, . . . , vm)

where vk ∈ Cn. (So we are not using the identi�cation of (Cn)
m

with Cnm yet.)

Definition 2.2. Let J = (α1, . . . , αm) ∈ {0, 1}m be a set of indices, and A = {Akj}mk,j=1 be a commutative

cocycle. We say that a set of vectors {v1,v2, . . . ,vq} ⊆ (Cn)
m

are (A, J)-related if for vi = (vi1, . . . , vim)
we have that viαj = 0 if and only if αj = 0 and

(αlαj)Aljvil = vij

for every 1 ≤ i ≤ q and 1 ≤ j, l ≤ m.
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Example 2.3. Suppose A is the family of matrices where all of them are the identity I, and J = (α1, . . . , αm)
is such that αk = 1 while αt = 0 for k 6= t. Take the vectors having all the entries equal to zero except for
the k-th one,

ekq = (0, . . . , 0, eq, 0, . . . , 0)

where {e1, . . . , en} is the canonical basis of Cn.
{
ek1 , . . . , e

k
n

}
is a (A, J)-related set, since the conditions

(αkαl) Ieq =

{
eq l = k,

0 l 6= k,

tell us that each ekj is indeed a (A, J)-related vector.

Definition 2.4. An n-dimensional subspace l ⊆ (Cn)
m

is called a commutative subspace if there is a
set of binary indices J ∈ {0, 1}m and a commutative cocycle A such that there is a basis {v1, . . . ,vn} ⊂ l of
(A, J)-related vectors.

Definition 2.5. We denote Gcomn,m (C) ⊂ Gn,m (C) as the set of commutative subspaces of (Cn)
m
, endowed

with the subspace topology. Here by Gn,m (C) we mean the Grassmanians, that is the set of subspaces of
(Cn)

m
of dimension n.

Example 2.6. A trivial example of a commutative subspace are the subspaces

lk = gen
{
ek1 , . . . , e

k
n

}
as in the previous example. These spaces will play an important role ahead.

Example 2.7. To built a non trivial element of Gcomn,m (C), consider for example n = 2, and m = 3. Call

v1 =
(

(1, 0) , (0, 1) ,
(√

2
2 ,
√

2
2

))
and v2 =

((√
2

2 ,
√

2
2

)
,
(
−
√

2
2 ,
√

2
2

)
, (0, 1)

)
. If we make

T (θ) =

[
cos θ − sin θ
sin θ cos θ

]
and take A12 = T (π/2), A13 = T (π/4), we can make a commutative cocycle A := {Aij}2i,j=1 using the

cocycle conditions for the rest of the matrices. Also take J = (1, 1, 1). It is clear that v1 and v2 are (A, J)-

related. They are L.I in
(
C2
)3
, thus the space l = gen {v1, v2} is a commutative subspace of dimension

2.

Just as in the general case, we denote

Ecomn,m :=
{

(l,v) ∈ Gcomn,m × (Cn)
m | v ∈ l

}
and we get a natural map

πcom : Ecomn,m → Gcomn,m

(l,v) 7→ l

which is easily seen as the pullback from the inclusion Gcomn,m → Gn,m, thus, it is a vector bundle. We want
to show that the bundle πcom has a TC structure. But �rst we need to de�ne the trivializing cover of Gcom

n,m



2.1. COMMUTATIVE STRUCTURE ON GRASSMANIANS 17

and state some properties of it before we can prove the existence of its TC structure. To do this we mimic
the construction of the general case for Grassmanians. Consider the commutative spaces

lk = gen
{
ek1 , . . . , e

k
n

}
and take the projections

πk : (Cn)
m → lk

(v1, . . . , vn) 7→ (0, . . . , 0, vk, 0, . . . , 0) .

Then let us consider the open set of Gcomn,m given by

Uk :=
{
l ∈ Gcomn,m | πk (l) = lk

}
.

We know this set is open, since it is the intersection of an open set of Gn,m with Gcomn,m (See the proof of
Lemma 1.15 of [Hatcher II]). We trivialized the bundle over Uk in the following way: if l ∈ Uk then l is
projected isomorphically to

lk :=
〈
ek1 , e

k
2 , . . . , e

k
n

〉
via the projection πk : (Cn)

m → lk. Thus, we can use a natural linear isomorphism characterized by
µk : ekj 7→ ej ∈ Cn, where again {e1, . . . , en} is the standard basis, to get a linear map

φ̄k := µk ◦ πk : (Cn)
m → Cn

such that if l ∈ Uk, φ̄k |l is an isomorphism. We get the trivialization

φk : π−1
com (Uk)→ Uk × Cn(2.1.1)

(l, v) 7→
(
l, φ̄k (v)

)
.

Now we need to guarantee these trivializations have indeed commutative transition functions. As a �rst step
towards this we prove the following.

Proposition 2.8. An n-dimensional commutative space l ∈ Gcomn,m belongs to Uj if and only if there is a set
of indices

I = (α1, . . . , αm) ∈ {0, 1}m

with ij = 1, a commutative cocycle A and a basis of (A, J)-related vectors {v1, . . . ,vn} ⊂ l. Thus, l ∈ Uj∩Uk
if only if there is a set of indices J such that αj = αk = 1, and such that l has a basis of (A, J)-related vectors.

Proof. First assume that there is a sequence J = (α1, . . . , αm) ∈ {0, 1}m such that αj = 1, and a basis
of (A, J)-related vectors of l, {v1, . . . ,vn} ⊂ l. In particular this gives us that every vt, 1 ≤ t ≤ n, is of the
form

vt =
(
vt1, . . . , v

t
m

)
with vtj 6= 0. Since {v1, . . . ,vn} are (A, I)-related and a linearly independent set in (Cn)

m
, then

{
v1
j , . . . , v

n
j

}
is a basis for Cn as we now see: by the de�nitions, there are non singular matrices {Ajk}mk=1 and scalars
λjk ∈ {0, 1} such that

λjkAjkv
t
j = vtk

for every 1 ≤ k ≤ m and 1 ≤ t ≤ n. Now suppose there are scalars cp ∈ C such that

n∑
p=1

cpv
p
j = 0
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and so we have
n∑
p=1

cpvp =

n∑
p=1

cp (vp1 , v
p
2 , . . . , v

p
m) =

n∑
p=1

cp
(
λj1Aj1v

p
j , . . . , λjmAjmv

p
j

)
.

By linearity we obtain

n∑
p=1

cpvp =

(
λj1Aj1

(
n∑
p=1

cpv
p
j

)
, . . . , λjmAjm

(
n∑
p=1

cpv
p
j

))
= 0.

Since {v1, . . . ,vn} are linearly independent, we conclude that αp = 0 for 1 ≤ p ≤ n. So,
{
v1
j , . . . , v

n
j

}
is

linearly independent and since πj
(
vIp
)

= vpj it follows that πj (l) = lj .

The opposite implication is obtained via the de�nitions. Let us assume that πj (l) = lj . By de�nition
of commutative n-dimensional subspaces, there is a basis of (A, J)-related vectors {v1, . . . ,vn} ⊂ l, where
J = (α1, . . . , αm) ∈ {0, 1}m. Also by de�nition vtj 6= 0 if only if αj = 1 for all 1 ≤ t ≤ n, and since

πj
(
vIp
)

= vpj , we must have ij = 1.

The last statement is a consequence of the �rst equivalence. �

Proposition 2.9. Under the previous de�nitions,
{
πcom : Ecomn,m → Gcomn,m, {Ui}

m
i=1 , φi : π−1

com (Ui)→ Ui × Cn
}

is a TC structure.

Proof. So far we already know that πcom : Ecomn,m → Gcomn,m is a vector bundle, and that we have an open

cover {Ui}mi=1 of Gcomn,m with trivializations given by φi : π−1
com (Ui)→ Ui × Cn. To prove that we indeed have

a TC structure we need to �nd the transition maps associated with the trivializations φi and then show that
they commute with each other.

To �nd the transition maps, we �rst need to �nd the inverse map of

φj : π−1
com (Uj)→ Uj × Cn

(l,v) 7→
(
l, φ̄j (v)

)
.

constructed in the previous proof. By construction this in turn can be reduced to �nding the inverse on a
�ber of πj : π−1

com (Uj)→ lj . Thus, consider l to be an n-dimensional commutative subspace of (Cn)
m

with a
(A, J)-related basis {v1, . . . ,vn} ⊂ l. If J = (α1, . . . , αm) is such that αj = 1, then because of the previous
theorem we know that πj (l) = lj . Even further we can obtain the inverse map lj → l as follows. Consider
an element

w :=

n∑
k=1

cke
j
k = (0, . . . , 0, v, 0, . . . , 0) ∈ lj .

where v ∈ Cn is the j-th position.

By the previous proof we know that if
vt =

(
vt1, . . . , v

t
m

)
then

{
v1
j , . . . , v

n
j

}
is a basis of Cn and so there are scalars βi ∈ C such that

n∑
k=1

βkv
k
j = v.
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So, if we consider the vector

z = (z1, . . . , zm) :=

n∑
k=1

βkvk,

we get that

zj =

n∑
k=1

βkv
k
j = v.

So it follows that

πj

(
n∑
k=1

βkvk

)
= w.

This means that the inverse function of the projection πj : l→ lj can be described by0, . . . , 0,

n∑
k=1

βkv
j
k︸ ︷︷ ︸

jth−position

, 0, . . . , 0

 ∈ lj 7→
n∑
k=1

βkvk.

Now take 1 ≤ q ≤ n. If we call λjq = αjαq, since {v1, . . . ,vn} are (A, J)-related it follows that vkq = λAjqv
k
j ,

and so

πq

(
n∑
k=1

βkvk

)
=

n∑
k=1

βkv
k
q =

n∑
k=1

βkλjqAjqv
k
j

= λjqAjq

(
n∑
k=1

βkv
k
j

)
= λjqAjqv.

We conclude that if l ∈ Uj ∩ Us, then

φs ◦ φ−1
j : (Uj ∩ Us)× Cn → (Uj ∩ Us)× Cn

(l, v) 7→ (l, Asjv) .

This means that if ρjk : Uj ∩ Uk → GLn (C) are the transition function associated to the trivializatons
{φi}i∈N, we get

ρjk (l) = Ajk.

In conclusion πcom : Ecomn,m → Gcomn,m, {Uj}j∈N and φj : π−1
com (Uj)→ Uj ×Cn has transition functions that are

commutative, since by construction the matrices {Aij} commute with each other. �

At this point it should be clear that we are following the steps of the construction of the Grassmanians for
vector bundles of dimension n. We have achieved the construction of a commutative Grassmanian Gcomn,m
for arbitrary n,m ∈ N, where m allows to �classify� vector bundles with covers with m elements. In order
to get rid of this last parameter we consider the inclusions Gcomn,m ⊂ Gcomn,m+1 coming themselves from the
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natural inclusions (Cn)
m ⊂ (Cn)

m+1
, where (Cn)

m
is taken as the subspace of (Cn)

m+1
the (m+ 1)- vector

coordinate equal to zero. Then we use the colimit to de�ne

Gcomn,∞ := Colimm→∞G
com
n,m,

which is just the set of n-dimensional commutative subspaces of (Cn)
∞
.

Then again we get the vector bundle

πcom : Ecomn,∞ → Gcomn,∞
where

Ecomn,∞ :=
{

(l, v) ∈ Gcomn,∞ × (Cn)
∞ | v ∈ l

}
and πcom is the projection over the �rst component. Just as before, we can consider the vectors ejk ∈ (Cn)

∞

as the sequence having zero in all its entries, except in the j-th entry where it has the vector ek of the

canonical basis. Then lj is the n-dimensional subspace generated by
{
ej1, . . . , e

j
n

}
. Just as in the �nite case,

we can consider the open cover {Uj}∞j=1 where Uj is the set of commutative n-dimensional subspaces whose

projection over lj is one to one. The proof that the previous data gives rise to a TC structure uses the same
arguments as in the �nite case, since in the colimits we are consider vectors with only a �nite amount of
non-zero entries. Thus, we obtain the main result of this section, and one of the goals of this chapter:

Theorem 2.10. The projection over the �rst component πcom : Ecomn,m → Gcomn,m with 1 ≤ m ≤ ∞, together

with the open cover {Uj}mj=1 of Gcomn,m and trivializations inherited from the general Grassmanians de�ne a

transitional commutative structure.

To close this section let us show that our de�nitions are not empty. First, not every n-dimensional subspace
l ⊆ (Cn)

m
is (A, J)-related. There are clearly many examples of non commutative subspaces. For example

consider in
(
C2
)3

the 2-dimensional subspace

l := gen {(e1, 0, e2) , (e1, e2, e2)} .
By Proposition 2.8, every basis of a commutative space must be (A, J)-related for a certain J , and every non
zero entry of J must have elements giving rise to a basis of C2. This is not the case for {(e1, 0, e2) , (e1, e2, e2)},
because of the second entry. Thus this l is not a 2-dimensional commutative subspace.

Secondly, unless we have a TC structure, there might be a classifying function f : M → Gn,m (C) such that
there is x ∈M with f (x) /∈ Gcom

n,m (C). However every l = f (x) will satisfy the condition of having a basis of
(A, J)-related vectors, where the family A satis�es the cocycle condition but not necessarily the commutative
condition. We illustrate this in the following example.

Example 2.11. (Non commutative subspace)

Here we want to see that the commutativity for linear subspaces is not a void condition. Not every set of
trivializations lead to a commutative subspace. Consider the space (Cn)

3
. For θ 6= mπ with m ∈ N, and take

A12 =

[
cos θ − sin θ
sin θ cos θ

]
and

A13 =

[
0 1
1 0

]



2.2. UNIVERSALITY OF Ecomn,∞ → Gcomn,∞ 21

where the rest of the family A = {Ajk}3j,k=1 is determined by the cocycle conditions. This family is non
commutative since

A12A13 =

[
sin θ cos θ
cos θ − sin θ

]
6=
[

sin θ cos θ
cos θ − sin θ

]
= A13A12.

Now take {e1, e2} ⊂ C2 the standard basis and consider the vectors

v1 = (e1, A12e1, e2) and v2 = (e2, A12e2, e1)

which are (A, (1, 1, 1))-related. The space

l := gen {v1,v2}

is non commutative but it can be in the image of a classifying function of a vector bundle.

2.2. Universality of Ecomn,∞ → Gcomn,∞

In this section we complete the goal of the chapter by showing that the commutative Grassmanian classi�es
TC structures on vector bundles up to homotopy. That is we prove the following theorem:

Theorem 2.12. (Universality of Gcomn,∞)

Let M be a Hausdor� and compact space. The assignment

Ψ :
[
M,Gcomn,∞

]
→ Vectcomn (M)

[f ] 7→
[
f∗
(
Ecomn,∞

)]
is a well de�ned bijective map, where

[
M,Gcomn,∞

]
is the set of homotopy classes of functions from M to Gcomn,∞.

In order to prove this theorem, there are three facts needed to be checked. We need to check �rst that this
map is well de�ned, that is, we need to show that the choice of the representative of a homotopy class [f ]
does not change the class of the pullback. This is true thanks to Proposition 1.11 on page 11. The other two
facts are surjectivity and injectivity of Ψ, which we do in two separate sub sections.

2.2.1. Surjectivity of Ψ. It is worth mentioning that for this proof, it is enough to require M to be
paracompact and Hausdor�.

Given a TC structure (π : E →M, {Vj} , ϕj), we have to �nd a function f : M → Gcom
n,∞ such that the TC

structure on f∗
(
Ecomn,∞

)
→M is equivalent to the previous TC structure on M . Such function is obtained as

f (x) = g
(
π−1 (x)

)
∈ G∞n ,

where g : E → C∞ is a function constructed with the trivializations ϕj . For this purpose we may assume
that {Vj} is a locally �nite and countable open cover of M . Let us consider a partition of the unity {σj}
subordinated to the cover {Vj}. In particular we have σ−1

j ((0, 1]) ⊆ Vj , and since the support of a function

is an open set, we have a re�nement of the open cover {Vi}i∈N.
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Call g̃j : π−1 (Vj)→ Cn the composition of ϕj with the projection on the second component, Vj ×Cn → Cn.
We can now take gi : π−1 (Vi)→ (Cn)

∞
as the function whose i-th (vector) entry is g̃i, while the rest entries

are zero. We can de�ne g : E → (Cn)
∞

by

g (e) :=

∞∑
j=1

σj (π (e)) gj (e) ,

where we are using the convention that gj is zero outside π−1 (Vj). This if of course well de�ned since the
closure of the support of each σj is contained in Vj . Also note that g is a continuous function, as it has

continuous component functions. Also for a given point x ∈ σ−1
j ((0, 1]) ⊆ Vj the image of π−1 (x) under gj

is exactly

lj :=
〈
ej1, e

j
2, . . . , e

j
n

〉
where ejk have all its entries equal to zero except the j-th one, which is ek, with {ek}k∈N the standard basis
of C∞. This is true because gj is a 1-1 linear function on the �bers of π. For this reason we have that

f−1 (Uj) ⊆ Vj

for every j ∈ N.

Let's see that for every x ∈M , we have that f (x) is in Gcomn,∞. Let {j1, . . . , jp} ⊂ N be the set of indices such
that x ∈ supp (σjk). Also, let ρrs : Ujr ∩ Ujs → GLn (C) be the transition functions. De�ne

Ars := ρrs (x)

for which is clear that for v ∈ π−1 (x)

g̃js (v) = Arsg̃jr (v) .

The matrices {Ars} satisfy the relations of the de�nition of commutative cocycle. So, g (v) is in fact a
(A, J)-related vector. Since the matrices {Ars} do not depend on the vectors, but only the �ber they are
on, we conclude that f (x) := g

(
π−1 (x)

)
is in fact a commutative n-dimensional subspace of (Cn)

q
, thus

f (x) ∈ Gcomn,∞ for all x ∈ M . Notice that the continuity of f follows from the fact that it is the classifying
function of π : E →M , so when we restrict its codomain, it remains continuous since Gcom

n,∞ has the subspace
topology with respect to the regular Grassmanians.

Now we have to check that indeed the pull back structure obtained from the pullpack of f : M → Gcomn (C)
is equivalent to the original structure as TC structures. For this we are going to apply Proposition 1.9 to see
that the TC structure given by f is equivalent to the original TC structure over M , up to a contraction on
the trivializations, which we also know it does not change the TC structure class by Proposition 1.12.

We need to construct a function f̃ : E → Ecom
n which is an isomorphism on the �bers, such that we have a

commutative diagram

(2.2.1) E

π

��

f̃ // Ecom
n

πcom

��
M

f // Gcom
n .
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This function is obtained in a natural way, since we just need to de�ne

f̃ :E → Ecom
n

e 7→ (f ◦ π (e) , g (e))

which is well de�ned by construction. It is clear that it satis�es the above conditions. Next, we need to see
that the second condition of Proposition 1.9 is satis�ed, where the �rst condition of this item is already being
achieved, since we saw that f−1 (Uj) ⊆ Vj . Let us recall �rst how we get trivializations for the TC structure
πcom : Ecom

n,∞ → Gcom
n,∞. Again, if l ∈ Uj then l is projected isomorphically to

lj :=
〈
ej1, e

j
2, . . . , e

j
n

〉
via the projection πj : C∞ → lj . So we can use natural linear bijection φ̃j : ejk 7→ ek ∈ Cn, where again
{e1, . . . , en} is the standard basis, to get a linear map

φ̄j := φ̃j ◦ πj : C∞ → Cn

such that if l ∈ Uj , φ̄j |l is an isomorphism. We get the trivializations

φj : π−1
com (Uj)→ Uj × Cn

(l, v) 7→
(
l, φ̄i (v)

)
.

Applying these constructions we have that if e ∈ π−1
(
f−1 (Uj)

)
⊆ π−1 (Vj) then

φi ◦ f̃ (e) = (f (π (e)) , σi (π (e)) g̃i (e)) .

Now recall the trivialization over Vj , ϕj : π−1 (Vj)→ Vj × Cn have the form

ϕj (e) = (π (e) , g̃j (e)) ,

so we get that if (x, v) ∈ f−1 (Ui)× Cn then

φj ◦ f̃
(
ϕ−1
j (x, v)

)
= (f (x) , σj (x) v) .

Linearity over the �bers imply that

(2.2.2) φj ◦ f̃
(
ϕ−1
j

(
x, σj (x)

−1
v
))

= (f (x) , v)

and so if we replace the trivializations

ϕj : π−1 (Vj)→ Vj × Cn

e 7→ (π (e) , g̃j (e))

by

ϕ′j : π−1 (Vj)→ Vj × Cn

e 7→ (π (e) , σj (π (e)) g̃j (e))

we get that

φj ◦ f̃
(
ϕ′−1
j (x, v)

)
= (f (x) , v) .

We then apply Proposition 1.9 to see that the TC structure
(
π : E →M, {Vj}j∈N , ϕ

′
j

)
is equivalent to the

TC pullback structure given by the map f : M → Gcomn,∞ . Finally we apply Proposition 1.12 to get that said

pullback is equivalent to the original TC structure
(
π : E →M, {Vj}j∈N , ϕj

)
.
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2.2.2. Injectivity of Ψ. Suppose we have two functions f1, f2 : M → Gcomn,∞, such that their pullbacks
TC structures (

p1 : f∗1
(
Gcomn,∞

)
→M,

{
f ‘−1

1 (Uj)
}
j∈N , ϕ1j

)
and (

p2 : f∗2
(
Gcomn,∞

)
→M,

{
f ‘−1

2 (Uj)
}
j∈N , ϕ2j

)
are equivalent. We have to show that f1 and f2 are homotopic in order to conclude that Ψ is injective. Recall
that the de�nition of equivalence of TC structures implies that there is a TC structure{

p : E →M × [0, 1] , {Wk} , φ : p−1 (Wk)→Wk × Cn
}

such that

(1) f∗1
(
Gcomn,∞

)
= p−1 (M × {0}) and f∗2

(
Gcomn,∞

)
= p−1 (M × {1}).

(2) p1 = p |M×{0} and p2 = p |M×{1}.
(3) For each k ∈ N there are jk, sk ∈ N such that p−1 (Wk ∩M × {0}) ⊆ f−1

1 (Ujk), p−1 (Wk ∩M × {1}) ⊆
f−1

2 (Usk),

φ |p−1(Wk∩M×{0})= ϕ1jk |p−1
1 (Wk∩M×{0})

and φ |p−1(Wk∩M×{1})= ϕ2sk |p−1
2 (Wk∩M×{0}).

Now, using the trivializations over {Wk} we can build up a function (as we did to prove surjectivity) G : E →
(Cn)

∞
that is an injective linear map on the �bers of p, thus it induces a function F : M × [0, 1] → Gcomn,∞.

This construction is done in such a way such that the functions g1 = G |p−1(M×{0}) and g2 = G |p−1(M×{1})
could also be obtained using the trivializations ϕ1,jk |p−1

1 (Wk∩M×{0}) and ϕ2,jk |p−1
2 (Wk∩M×{0}), respectively.

This means that for f̃1 = F |M×{0} and f̃2 = F |M×{1}, the assignments f̃1 (x) = g1

(
p−1 (x, 0)

)
and

f̃2 (x) = g2

(
p−1 (x, 1)

)
also hold. Even further we have that f̃1 and f̃2 are homotopic through F . So if

we prove fi is homotopic to f̃i (i = 1, 2), it will follow that f1 is homotopic to f2, since homotopy is an
equivalence relation. Thus the proof reduces to proving that given a function f : M → Gcomn,∞, if we have

a re�nement {Vk}k∈N of
{
f−1 (Uj)

}
j∈N, and we build a function f̃ with the trivializations of f∗

(
Ecomn,∞

)
restricted to the sets of {Vk}k∈N, then f̃ is homotopic to f .

Before dealing with the construction of f̃ , let us examine both the covers and the trivialization coming from
the pullback structure of f . On one hand recall that by construction we have a �ltration in Gcomn,∞ given by

Gcomn,1 ⊆ Gcomn,2 ⊆ · · · ⊆ Gcomn,m ⊆ Gcomn,m+1 · · ·
such that Gcomn,∞ has the colimit topology with respect to this sequence. As such, any compact subset of Gcomn,∞
is contained in one of the members of this �ltration. In particular, since M is compact and f is continuous,
there is some N ∈ N such that f (M) ⊆ Gcomn,N ⊆ Gcomn,∞. This means that for every x ∈ M if v ∈ f (x), this
vector is of the form

v = (v1, . . . , vN , 0, 0, . . .)

where vi ∈ Cn.

On the other hand we have a natural function

g : f∗
(
Ecomn,∞

)
→ (Cn)

∞

(x, (l,v)) 7→ v ∈ f (x)
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which satis�es the property g
(
π−1

2 (x)
)

= f (x). In conclusion there are N functions gi, . . . , gN : f∗
(
Ecomn,∞

)
→

Cn such that
g (e) = (g1 (e) , g2 (e) , . . . , gN (e) , 0, 0, . . .) .

This also implies that
{
f−1 (Uj)

}N
j=1

is a cover of M , and that f−1 (Uj) = ∅ for j > N . Now consider the

trivializations ϕj : π−1
1

(
f−1 (Uj)

)
→ f−1 (Uj)×Cn coming with the pullback structure. By construction the

second component of ϕj is determined by the projection prj : (Cn)
∞ → lj . This means that if (x, (l,v)) ∈

π−1
1

(
f−1 (Uj)

)
, then we have the assignment

v = (v1, . . . , vN , 0, 0, . . .) ∈ l 7→ prj |l (v) = (0, . . . 0, vj , 0, 0, . . .) ∈ lj ∼= Cn.

This agrees with the de�nition of gj , that is prj |l (v) = gj (x, (l,v)).

Now suppose we have a re�nement {Vk}k∈J of
{
f−1 (Uj)

}
j∈N =

{
f−1 (Uj)

}N
j=1

. Since M is compact we can

assume that such re�nement is �nite, even more we may take it to be of the form

V = {V11, V12, . . . , V1m1
, . . . , VN1, VN2, . . . , VNmN }

where Vj,k ⊆ f−1 (Uj) for all the indices. Now we proceed with the construction of f̃ with the cover V. The
trivializations on the elements of V are given by the restrictions ϕj |Vjk : π−1

1 (Vjk)→ Vjk × Cn. Once again,
we obtain a new function g̃ : f∗

(
Ecomn,∞

)
→ (Cn)

∞
by considering the second components of the trivializations

ϕj |Vjk , which are given by gj |Vjk . We also need a partition of the unity {σjk : M → [0, 1]} such that

σ−1
jk (0, 1] ⊆ Vjk. For simplicity let us call τjk := σjk ◦ π1, then we have

g̃ = (τ11 · g1, . . . , τ1m1
· g1, τ21 · g2, . . . , τ2m2

· g2, . . . , τN1 · gN , . . . , τNmN · gN ) .

Notice that both g and g̃ map every π−1
1 (x) into (di�erent) commutative n-dimensional subspaces, for x ∈M .

In particular we can now take f̃ : M → Gcomn,∞ by de�ning

f̃ (x) = g̃
(
π−1

1 (x)
)
.

In order to construct a homotopy between f and f̃ we see �rst that g and g̃ are homotopic via

G : f∗
(
Ecomn,∞

)
× [0, 1]→ (Cn)

∞
,

satisfying that for every (x, t) ∈M× [0, 1], G
(
π−1

1 (x) , t
)
⊆ (Cn)

∞
is a n-dimensional commutative subspace,

with G (e, 0) = g (x) and G (x, 1) = g̃ (x). This way G induces a homotopy F : M × [0, 1]→ Gcomn,∞ given by

F (x, t) := G
(
π−1

1 (x) , t
)
,

such that F (x, 0) = f (x) and F (x, 1) = f̃ (x).

We built G as a composition of several homotopies. Let's see �rst that we can move the components of
g to the right leaving zeros behind the previous positions. We do this via linear homotopies moving one
component at the time

H1 (−, t) = (1− t) (g1, g2, . . . , gN , 0, . . .) + t (g1, g2, . . . , gN−1, 0, gN , 0, . . .)

= (g1, g2, . . . , gN−1, tgN , (1− t) gN , 0, . . .) .

This homotopy has the desires properties. If e ∈ f∗
(
Ecomn,∞

)
then the vector g (e) is (A, J)-related for an

appropriate family of commutative cocycles A = {Aij} and set of indices J = (i1, . . . , iN , 0, . . .). Then for
every t ∈ (0, 1), H1 (e, t) is (A′, I ′)-related with I ′ = (i1, . . . , iN , iN , 0, . . .) and

A′ = {Aij}N−1
i,j=1 ∪ {BiN}

N−1
i=1 ∪ {BiN+1}N−1

i=1 ∪ {BNN+1}
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where BiN = tAiN , BiN+1 = (1− t)AiN and BNN+1 = 1−t
t In, with In the identity matrix. The rest of the

matrices are given by the cocycle conditions. It is immediate that A′ is a commutative cocycle. The cases
t ∈ {0, 1} are handle in an easier manner. Using induction we see that g is homotopic through commutative
n-subspaces to a function h1 with

h1 =

0, 0, . . . , 0︸ ︷︷ ︸
M−times

, g1, g2, . . . , , gN , 0, 0, . . .


where M :=

∑j
k=1mk.

Now we use yet another linear homotopy

H2 (−, t) = (tτ11 · g1, . . . , tτ1m1
· g1, . . . , tτN1 · gN , . . . , tτNmN · gN , 0, 0, . . .)

+ (1− t)

0, 0, . . . , 0︸ ︷︷ ︸
M

, g1, g2, . . . , , gN , 0, 0, . . .


which again go through commutative n-subspaces. This is clearly a homotopy from g̃ to h1, so we get that
g and g̃ are homotopic through commutative n-subspaces.



CHAPTER 3

Classifying space for TC structures

On this chapter we describe the construction of the classifying space for TC structures over principal bundles,
BcomG, as well as its cohomology with real coe�cients. We pay special attention to the construction of power
maps on the classifying space and their e�ect on the cohomology ring, as well as its relation with the regular
classifying space. This work is based on that of Adem and Gómez [AG].

In this chapter G will denote a connected Lie group.

3.1. Bar construction for TC structures

We start this section with the de�nition of classifying space for commutativity.

Definition 3.1. We say a space BcomG is a classifying space for commutativity, if there is a TC structure(
p : EcomG→ BcomG, {Ui}i∈N , ϕi : p−1 (Ui)→ Ui ×G

)
such that for every paracompact and Hausdor� space

X there is a natural bijection

ΨX : [X,BcomG]→ BundcomG (X)

[f ] 7→ [f∗ (EcomG)]

where [X,BcomG] denotes the set of homotopy classes of functions f : X → BcomG. Under this conditions, if
the TC structure over f∗ (EcomG) is equivalent to a given TC structure, we will call f the classifying function
of the TC structure.

By naturality we mean that if g : Y → X is a continuous function, then there is a commutative diagram

[X,BcomG]
ΨX //

g∗

��

BundcomG (X)

g∗

��
[Y,BcomG]

ΨY // BundcomG (Y )

where the left vertical map is the postcomposition f ◦ g : Y → BcomG and the right vertical map is simply
the pullback of TC structures.

Let us de�ne a simplicial space whose n-th level is given by Hom (Zn, G), which is the subspace of Gn

consisting of all commuting n-tuples. This is (g1, . . . , gn) such that gigj = gjgi for every 1 ≤ i, j. ≤ n. Its

27
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face maps δi : Hom (Zn, G)→ Hom
(
Zn−1, G

)
are

δi (g1, . . . , gn) :=


(g2, . . . , gn) i = 0,

(g1, . . . , , gi−1, gigi+1, gi+2, . . . , gn) 1 ≤ i ≤ n− 1,

(g1, . . . , gn−1) i = n,

and the degeneracies si : Hom (Zn, G)→ Hom
(
Zn+1, G

)
are given by

si (g1, . . . , gn) = (g1, . . . , , gi, 1, gi+1, . . . , gn) .

It is routine to see they satisfy the simplicial identities. It is also important to mention that for this con-
struction the fat realization is homotopically equivalent to the geometrical realization. Thus, we work with
the former. The following theorem is proved in [AG].

Theorem 3.2. The fat realization of the previous simplicial space. i.e.

BcomG := ‖Hom (Z•, G)‖
has a TC structure on it making it a classifying space for TC structures over �nite CW-spaces.

In fact the above theorem holds in general for any CW complex or in general for any paracompact and
Hausdor� space. Also it is worth pointing out that in case G = GLn (C), BcomG is homotopically equivalent
to the commutative grassmannian, Gcomn,∞. This is true since both of them are classifying spaces, there are
functions f : BcomG→ Gcomn,∞ and g : Gcomn,∞ → BcomG such that f ◦ g and g ◦ f are homotopic to the identity
on Gcomn,∞ and the identity on BcomG, respectively.

In what follows we need to de�ne a subspace of BcomG, obtained by considering the connected component of
Hom (Zm, G) containing the element (1, 1, . . . , 1). We denote this by Hom (Zm, G)1. It is clear that we can
restrict the face and degeneracy maps to obtain a simplicial space Hom (Z•, G)1.

Definition 3.3. The fat realization of the simplicial space Hom (Z•, G)1 is denoted by BcomG1.

This distinction makes it clear that Hom (Zm, G) is in general not path connected. However Adem and
Cohen showed in Corollary 2.4 of [AC] that Hom (Zm, G) is path connected when G is either U (n), SU (n)
or Sp (n). It is also worth mentioning that when Hom (Zm, G) is path connected, then every m-th tuple is
contained in a maximal torus. (See Lemma 4.2 of [Baird].)

3.1.1. The classifying function: For our purposes besides Theorem 3.2 itself, we need to examine the
construction of the classifying function of a TC structure (π : E → X, {Ui}mi=1 , ϕi) on a �nite CW-complex
X. Assume U := {Ui}mi=1 is a good cover and we have the transition functions ρij : Ui ∩ Uj → G. Then we
consider the construction of the nerve of the cover:

N (U)l =
⊔

(Ui0 ∩ Ui1 · · · ∩ Uil) .

Then we have a simplicial function fl : N (U)l → Hom
(
Zl, U (n)

)
given by

fl (x) :=
(
ρi0i1 (x) , ρi2i3 (x) , . . . , ρil−1il (x)

)
.

This induces a function f : N (U) → BcomG, where N (U) := ‖N (U)•‖ is the nerve of the cover. Since U
is a good cover, X and N (U) are homotopy equivalent (See [Hatcher], Corollary 4G.3). Thus, there is a
bijection

[N (U) , BcomG] ∼= [X,BcomG] ,
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which allows us to construct the classifying function from the nerve instead of X. As we mentioned before,
Adem and Gómez also showed that if F : X → BG is the classifying function for the principal bundle
π : E → X, this is if we ignore the TC structure as whole, the following diagram commutes up to homotopy

X
f //

F

##

BcomG

��
BG,

where the vertical map is the natural inclusion.

3.2. Power maps and cohomology of BcomG1

In this section we explain both the construction of the power maps as well as the reasoning behind the
computation of H∗ (BcomG1,R) made in [AG]. We tackle them together since our main objective is to show
the e�ect of the power maps on cohomology. Thus we track such e�ect in every step of the computation. To
make notation simpler, we assume BcomG1 = BcomG, which is true when G is either U (n), SU (n) or Sp (n),
as mentioned before. We also �x a maximal torus T ⊆ G with Weyl group W and we write H∗ (Y ) to refer
to the cohomology of Y with real coe�cients.

First let us introduced the construction of power maps. Consider once again the space of commutative
m-tuples of G, Hom (Zm, G). For each k ∈ Z we de�ne maps

Φkm : Hom (Zm, G)→ Hom (Zm, G)

(g1, . . . , gm) 7→
(
gk1 , . . . , g

k
m

)
.

This map is well de�ned since the power of commuting elements is still commutative. Commutativity is
needed in order for them to induce simplicial maps. By this we mean maps commuting with the face and
degeneracy maps. More precisely we need the equality

(gigi+1)
k

= gki g
k
i+1

to hold. Thus, only for commuting tuples we guarantee the existence of the k-th power map Φk : BcomG→
BcomG. In the general Bar construction for G, the power maps do not necessarily induced simplicial maps.

On Section 7 of [AG] they proved that for a maximal torus T of G with Weyl group W we have

H∗ (BcomG) ∼= (H∗ (BT )⊗H∗ (BT ))
W
/J,

where J is the ideal generated by the set

{f (x)⊗ 1 ∈ H∗ (BT )⊗H∗ (BT ) | f is of positive degree polynomial and n · f (x) = f (x) for all n ∈W} .
In order to reach the description of the induced power maps Φk on cohomology, we need to consider some
auxiliary maps that are used in [AG] to compute the cohomology with real coe�cients of BcomG. In this
process we will see what their relationship with the power maps. First, since all the tuples of Tm have
commuting elements, we can consider the power maps for the torus ψk : H∗ (BT ) → H∗ (BT ). This is the
map induced in the m-level the by

Φkm : Hom (Zm, T )→ Hom (Zm, T )

(g1, . . . , gm) 7→
(
gk1 , . . . , g

k
m

)
.
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Also consider

ϕm : G× Tm → Hom (Zm, G)

(g, t1, . . . , tn) 7→
(
gt1g

−1, . . . , gtmg
−1
)
.

Because Hom (Zm, G) is path connected, an m-tuple (g1, . . . , gm) has commuting elements if and only if there
is a maximal tori containing all gi (See Lemma 4.2 of [Baird]). Since every maximal tori is conjugated to
T , the previous map is surjective. We also have an action of the normalizer of T in G, NG (T ), on G× Tm,
where for η ∈ NG (T ) we have

η · (g, t1, . . . , tm) =
(
gη−1, ηt1η

−1, . . . , ηtmη
−1
)
.

On the other hand, consider the Flag variety G/T . It is easy to verify that the maps ϕm factor through the
product G/T × Tm giving us a commutative diagram

G× Tm
ϕm //

��

Hom (Zm, G)

G/T × Tm

77
,

such that the diagonal map is also surjective. We call it ϕm as well. These family of maps give rise to a
simplicial map

ϕ• : G/T• × T • → Hom (Z•, G) .

Here G/T• is the trivial simplicial space with G/T on every level, and T • is the simplicial space obtained by
the Bar construction for the classifying space applied to T .

Furthermore using representatives of the Weyl group [η] ∈ W = NG (T ) /T , we have a well de�ne action on
G/T × Tm given by

[η] · ([g] , t1, . . . , tm) =
([
gη−1

]
, ηt1η

−1, . . . , ηtmη
−1
)
.

It is easy to see that this action makes ϕm W -invariant. Also we can construct a simplicial space, G/T×W T •,
having the space of orbits G/T ×W Tm on the m-th level. Where the simplicial structure is inherit form
G/T•×T •, giving us a simplicial map π• : G/T•×T • → G/T ×W T • where on each level we have the natural
quotient map. Then we have a commuting diagram

G/T• × T •
ϕ• //

π•

��

Hom (Z•, G) ,

G/T ×W T •

ϕ̄•
66

where ϕ̄m : G/T ×W Tm → Hom (Zm, G) is the induced map. Finally, we have maps

P km : G/T × Tm → G/T × Tm

([g] , t1, . . . , tm) 7→
(
[g] , tk1 , . . . , t

k
m

)
.

By direct computation it can be seen that these maps are compatible with the simplicial structure. They are
also W -equivariant, that is

[η] · P km (g, t1, . . . , tm) = P km ([η] · (g, t1, . . . , tm)) ,

This is true since,
(
ηtη−1

)k
= ηtkη−1 for t ∈ T .
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Proposition 3.4. If G is a compact connected Lie group such that Hom (Zm, G) is path connected for every
non negative integer m. Then for the cohomology with real coe�cients we have a commutative diagram

(3.2.1) H∗ (Hom (Zm, G))
ϕ∗m //

(Φkm)
∗

��

H∗ (G/T × Tm)
W

(Pkm)
∗

��
H∗ (Hom (Zm, G))

ϕ∗m // H∗ (G/T × Tm)
W
.

where the horizontal maps are isomorphisms.

Proof. Under this setting, Theorem 3.3 of [Baird] is applied to conclude that we have the following
natural isomorphisms

(3.2.2) H∗ (Hom (Zm, G))
(ϕ̄m)∗∼= H∗ (G/T ×W Tm)

π∗∼= H∗ (G/T × Tm)
W
.

Now let us see how the power maps are related to this constructions so far. We have maps

P km : G/T × Tm → G/T × Tm

([g] , t1, . . . , tm) 7→
(
[g] , tk1 , . . . , t

k
m

)
.

By direct computation it can be seen that these maps are compatible with the simplicial structure. They are
also W -equivariant, that is

[η] · P km (g, t1, . . . , tm) = P km ([η] · (g, t1, . . . , tm)) ,

This is true since,
(
ηtη−1

)k
= ηtkη−1 for t ∈ T . Thus, they induced a well de�ne map P̄ km : G/T ×W Tm →

G/T ×W Tm, and we get the following commuting diagram

H∗ (G/T ×W Tm)
π∗ //

(P̄km)
∗

��

H∗ (G/T × Tm)

Pk

��
H∗ (G/T ×W Tm)

π∗ // H∗ (G/T × Tm) .

We know that the homomorphism π∗ : H∗ (G/T ×W Tm) → H∗ (G/T × Tm) actually has image equal to

H∗ (G/T × Tm)
W
, since H∗ (G/T ×W Tm)

π∗∼= H∗ (G/T × Tm)
W
. Thus, we actually have the diagram

H∗ (G/T ×W Tm)
π∗ //

(P̄km)
∗

��

H∗ (G/T × Tm)
W

Pk

��
H∗ (G/T ×W Tm)

π∗ // H∗ (G/T × Tm)
W
.

where the horizontal maps are isomorphism. This implies that
(
P km
)∗

preserves W -invariance:(
P km
)∗ (

H∗ (G/T × Tm)
W
)
⊆ H∗ (G/T × Tm)

W
.
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Also, by direct computation form the de�nitions and the fact that
(
gtg−1

)k
= gtkg−1, it follows that ϕm ◦

P km = Φkm ◦ϕm holds. And since
(
P km
)∗

preserves W -invariance, we obtain the following commuting diagram

H∗ (Hom (Zm, G))
ϕ∗m //

(Φkm)
∗

��

H∗ (G/T × Tm)
W

(Pkm)
∗

��
H∗ (Hom (Zm, G))

ϕ∗m // H∗ (G/T × Tm)
W
.

Here the horizontal maps are isomorphism as they can be factored by the isomorphisms

ϕ̄∗m : H∗ (Hom (Zm, G))→ H∗ (G/T ×W Tm)

and

π∗ : H∗ (G/T ×W Tm)→ H∗ (G/T × Tm)
W
.

�

Proposition 3.5. Let X• and Y• be two simplicial spaces with a simplicial map f : X• → Y•. Suppose also
that there is a �nite group K with an action on every level Xq compatible with the simplicial structure, such

that there is an isomorphism Hp (C∗ (Xq))
K ∼= Hp (C∗ (Yq)) induce on every level by the maps of f . Then

there is natural isomorphism

‖f‖∗ : H∗ (‖Y ‖)→ H∗ (‖X‖)K ,
where ‖X‖ and ‖Y ‖ are the fat realizations.

Proof. For this consider the bimodule

Cp,q (X•) := Cp (Xq) ,

where Cp (Xq) are the p-cochains of the space n-th level of the simplicial space X•. Then call C∗ (X•) the
total complex of this bimodule. Then by Theorem 5.15 of [Dupont], there is a natural isomorphism

H∗ (‖X‖) ∼= H∗ (C∗ (X•)) .

Naturality means that if f• : X• → Y• is a simplicial map, then there is a commutative diagram

H∗ (‖Y ‖)
‖f‖∗ //

��

H∗ (‖X‖)

��
H∗ (C∗ (Y•))

(f•)
∗
// H∗ (C∗ (X•)) ,

where (f•)
∗
is the map induce on the total cohomology by f• and ‖f‖∗is the map induce on cohomology by

the realization map ‖f‖.

Since there are isomorphims Hp (C∗ (Xq))
K ∼= Hp (C∗ (Yq)) induced by the level maps of f•, then Theorem

1.19 of [Dupont], implies that

(f•)
∗

: H∗ (C∗ (Y•))→ H∗ (C∗ (X•))
K
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is an isomorphims. Naturality then implies that we have a commutative diagram

H∗ (‖Y ‖)
‖f‖∗ //

��

H∗ (‖X‖)K

��
H∗ (C∗ (Y•))

(f•)
∗
// H∗ (C∗ (X•))

K
,

where the vertical maps and the bottom map are isomorphism. This implies that ‖f‖∗ : H∗ (‖Y ‖) →
H∗ (‖X‖)K is a natural isomorphism. �

Proposition 3.6. If G is a compact connected Lie group such that Hom (Zm, G) is path connected for every
non negative integer m. Then for the cohomology with real coe�cients we have a commutative diagram

(3.2.3) H∗ (BcomG)
π∗ //

Φk

��

H∗ (‖(G/T )• ×BT•‖)
W

Pk

��
H∗ (BcomG)

π∗ // H∗ (‖(G/T )• ×BT•‖)
W
,

where the horizontal maps are isomorphisms. Here we are abusing notation by using the same names for the
power map and its induce map on cohomology.

Proof. Because of Proposition 3.4 the conditions of Proposition 3.5 can be applied to conclude that

π∗ : H∗ (BcomG) → H∗ (‖(G/T )• ×BT•‖)
W

is an isomorphism. Then Diagram 3.2.1 implies that Diagram
3.2.3 commutes. �

Theorem 3.7. If G is a compact connected Lie group such that Hom (Zm, G) is path connected for every non
negative integer m. Then for the cohomology with real coe�cients we have a commutative diagram

H∗ (BcomG) //

Φk

��

(H∗ (BT )⊗H∗ (BT ))
W
/J

Id⊗ψk
��

H∗ (BcomG) // (H∗ (BT )⊗H∗ (BT ))
W
/J,

where the horizontal maps are the same isomorphism given above, and Φk are the power maps on cohomology.

Remark 3.8. Adem and Gomez proved in [AG] thatH∗ (BcomG) is isomorphic to (H∗ (BT )⊗H∗ (BT ))
W
/J .

Here we go through their proof to show that the previous commutative diagram also holds. This will allow
us to compute the e�ect of the power maps.

Proof. Here we continue the results of Proposition 3.6. The realization of the simplicial product are
naturally isomorphic to the product of the realizations of each of the simplicial spaces involved (see Theorem
14.3 of [May]). This is, we have a natural isomorphism

‖(G/T )• ×BT•‖ ∼= ‖(G/T )•‖ ×BT.
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Now recall that we have a map

Id× ψk : ‖(G/T )•‖ ×BT → ‖(G/T )•‖ ×BT

where ψk : BT → BT is the natural power map on BT . From this we can use the naturality of the Kunneth
formulas to obtain the following commutative diagram

H∗ (‖G/T• ×BT•‖)W
π∗ //

Pk

��

(H∗ (G/T )⊗H∗ (BT ))
W

Id⊗ψk
��

H∗ (‖G/T• ×BT•‖)W
π∗ // (H∗ (G/T )⊗H∗ (BT ))

W
.

Combining this diagram Diagram 3.2.3 we obtain the following commutative diagram

(3.2.4) H∗ (BcomG) //

Φk

��

(H∗ (G/T )⊗H∗ (BT ))
W

Id⊗ψk
��

H∗ (BcomG) // (H∗ (G/T )⊗H∗ (BT ))
W
,

where the horizontal maps are still isomorphisms.

In the proof of Proposition 7.1 of [AG] they show that there is an isomorphism

H∗ (G/T ) ∼= H∗ (BT ) /J0,

where J0 is the ideal generated by the elements of positive degree in the image of the map induced by the
inclusion H∗ (BG)→ H∗ (BT ). Now using the natural projection we have a commutative diagram

H∗ (BT )⊗H∗ (BT )
π //

Id⊗Φk

��

H∗ (BT ) /J0 ⊗H∗ (BT )

Id⊗ψk

��
H∗ (BT )⊗H∗ (BT )

π // H∗ (BT ) /J0 ⊗H∗ (BT )

where the horizontal maps are of course surjective. This in turn gives us a commutative diagram with exact
rows

0 // I //

��

H∗ (BT )⊗H∗ (BT )
π⊗Id//

Id⊗Φk

��

H∗ (BT ) /J0 ⊗H∗ (BT )

Id⊗ψk

��

// 0

0 // I // H∗ (BT )⊗H∗ (BT )
π⊗Id// H∗ (BT ) /J0 ⊗H∗ (BT ) // 0

where I is the kernel of the map π⊗ Id : H∗ (BT )⊗H∗ (BT )→ H∗ (BT ) /J0⊗H∗ (BT ) and the �rst vertical
map is the restriction of the middle vertical map. Furthermore the exactness of the rows is preserved for
W -invariance and thus, if we take J = IW we get

0 // J //

Id⊗Φk|
��

(H∗ (BT )⊗H∗ (BT ))
W π⊗Id//

Id⊗Φk

��

(H∗ (BT ) /J0 ⊗H∗ (BT ))
W

Id⊗ψk
��

// 0

0 // J // (H∗ (BT )⊗H∗ (BT ))
W π⊗Id// (H∗ (BT ) /J0 ⊗H∗ (BT ))

W // 0
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which we can combine with Diagram 3.2.4 to get

H∗ (BcomG) //

Φk

��

(H∗ (BT )⊗H∗ (BT ))
W
/J

Id⊗ψk
��

H∗ (BcomG) // (H∗ (BT )⊗H∗ (BT ))
W
/J

where by Id⊗ ψk we mean the induced map for the quotients, giving us the desired conclusion. �

3.2.1. Power maps on the torus: The last result is important since it tell us that in order to obtain
the e�ect of power maps on cohomology of BcomG

1, we need to understand their e�ect when the Lie group
is a torus, T =

(
S1
)n
. We now explore this.

Theorem 3.9. Consider the k-th power map

ψk : T → T

(t1, . . . , tn) 7→
(
tk1 , . . . , t

k
n

)
.

Then by identifying H∗ (BT ) ∼= R [x1, . . . , xn], the induced k-th power map is characterized by

R [x1, . . . , xn]→ R [x1, . . . , xn]

xi 7→ kxi.

Proof. On a circle the k-th power of its elements induces the multiplication by k on the fundamental
group: if

S1 = {z ∈ C | |z| = 1}
then the k-th power map is given by

η : S1 → S1

z 7→ zk

which is know to be a map of degree k. This means that if identify π1

(
S1
) ∼= Z then the k-th power maps

induces multiplication by k on the fundamental group.

Consider the projections

pi :
(
S1
)n → S1

(z1, . . . , zn) 7→ zi.

It is well known that the map q : π1

((
S1
)n)→ π1

(
S1
)n

given by

q ([α]) := ([p1 ◦ α] , . . . , [pn ◦ α])

1When Hom(Zm, G) is path connected for every m.
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is an isomoprihsm, since S1 is path connected. Since the power map ψk : T → T considers the k-th power
component wise, it follows that we have a commutative diagram

π1 (T )
q //

ψk∗

��

π1

(
S1
)n

∏
η∗

��
π1 (T )

q // π1

(
S1
)n
.

Since the horizontal maps are isomorphisms, this implies that

ψk∗ : π1 (T )→ π1 (T )

α 7→ kα

where we see α = (α1, . . . , αn) ∈ Zn, and kα = (kα1, . . . , kαn).

Now let us consider the �ber sequence of the classifying space of the torus

T → ET → BT.

This induces a exact sequence on homotopy

· · ·πm (ET )→ πm (BT )→ πm−1 (T )→ · · ·π1 (ET )→ π1 (BT )→

→ π0 (T )→ π0 (ET )→ π0 (BT )→ 0

but since ET in null homotopic, we get an isomorphism πm (BT )→ πm−1 (T ). In particular we get

πm (BT )=

{
Zn m = 2,

0 otherwise.

Since the exact sequence is natural, we get that the power map on BT induces the multiplication by k
on the second homotopy group. Furthermore since BT is simply connected, by Hurewicz´s theorem we
get that H2 (BT,Z) ∼= π2 (BT ), and once again because of naturality the e�ect on the second homology is
multiplication by k.

We now apply the universal coe�cients theorem to get that

H2 (BT ) ∼= Hom (H2 (BT,Z) ,R) ∼= Rn.
Naturality allow us to conclude that the e�ect of the k-th power map is once again multiplication by k.
Finally it is known that the real cohomology of BT is the polynomial ring R [x1, . . . , xn] where xi ∈ H2 (BT )
for 1 ≤ i ≤ n (see [Dupont], Proposition 8.11). Since we know that the e�ect of the k power map is
multiplication by k on the xi, this determines the e�ect on the whole cohomology ring. �

As corollary of Theorem 3.7 and Theorem 3.9 we obtain the following:

Theorem 3.10. By identifying the real cohomology ring of an n-Torus with R [x1, . . . , xn], we get that if G
is a Lie group such that Hom (Zm, G) = Hom (Zm, G)1 for every m, then

H* (BcomG) ∼= (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
W
/J.

Where J is the ideal generated by the invariant polynomials of positive degree on the xi under the action
of the Weyl group, W . Further, the power maps Φk : H* (BcomG,F ) → H* (BcomG,F ) are induced by the
homomorphism characterized by sending xi 7→ xi and yi 7→ kyi for every 1 ≤ i ≤ n.
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Next we are going to examine particular cases of Lie groups satisfying the stated property. From this we see
that possible di�erences between the di�erent cases depend entirely on the Weyl group and its action on the
cohomology of BT .

3.3. Generators of H∗ (BcomG,R) for G = U (n) ,Sp (n) and SU (n)

If BcomG1 = BcomG we know that

H* (BcomG,R) ∼= (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
W
/J.

While in general it is known that for a compact and connected Lie group G

H* (BG,R) ∼= R [z1, . . . , zn]
W
,

where W is its Weil group. It action is induced by adjunction. That is, if g is the Lie algebra of G,
R [z1, . . . , zn] can be identi�ed as the polynomial algebra of g. An element [n] ∈ W ∼= NG (T ) /T has a well
de�ned action given by adjunction, ad (n) : g→ g. This in turn induces an action of W on R [z1, . . . , zn].

There is a natural inclusion BcomG ↪→ BG , inducing a map

ι : H* (BG,R)→ H* (BcomG,R) .

In terms of the previous identi�cations, ι is induced by the homomorphism ([Gritschacher], Corollary A.2.)

R [z1, . . . , zn]→ R [x1, . . . , xn]⊗ R [y1, . . . , yn]

zi 7→ xi + yi.

Additionally we saw in the previous section that the power maps, Φk : H* (BcomG,R)→ H* (BcomG,R) are
induced by the map characterized by sending xi 7→ xi and yi 7→ kyi for every 1 ≤ i ≤ n.

Definition 3.11. We call the subalgebra generated by
{

Φk (Imι) | k ∈ Z \ {0}
}
⊂ H* (BcomG,R) by

S :=
〈
Φk (Imι) | k ∈ Z \ {0}

〉
.

On this section we use the previous maps to see that if G = U (n) ,Sp (n) and SU (n) then S is all of
H∗ (BcomG,R). We do this by dealing with the explicit descriptions of their actions and the speci�c Weyl
groups on each case.

Before dealing with each individual case, it is worth proving

Lemma 3.12. The subalgebra S is closed under the power maps.

Proof. This is true since Φk is a R-homomorphism of algebras, and also Φk ◦ Φl = Φkl. This last
statement comes from

Φk ◦ Φl (xi + yi) = Φk (xi + lyi) = xi + klyi = Φkl (xi + yi) .

This implies that for qj ∈ R [z1, . . . , zn], αj ∈ R

Φk

(
s∑
l=1

αjΦ
kj ◦ ι (qj)

)
=

s∑
l=1

αjΦ
kkj ◦ ι (qj) ∈ S.

�
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3.3.1. Generators of H∗ (BcomU (n) ,R): For this case recall that the Weyl group of U (n) is isomor-
phic to the symmetric group Sn. By the previous section we know that

H∗ (BcomU (n) ,R) = (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn /J

where Sn acts diagonally on the tensor product, permuting the variables of each factor. J is the ideal
generated by the symmetric polynomials of positive degree on the xi. It is also known that

H∗ (BU (n) ,R) = (R [x1, . . . , xn])
Sn ,

where the action is once again by permuting variables. H∗ (BU (n) ,R) is generated by the power polynomials

pm := zm1 + zm2 + · · ·+ zmn ,

which are clearly invariant under the action of Sn. These polynomials have their counterparts on two variables
polynomials in the form of

Pa,b (n) := xa1y
b
1 + xa2y

b
2 + · · ·+ xany

b
n,

where 1 ≤ a + b ≤ n. These generate the algebra (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn (See [Vaccarino],

Theorem 1). Thus to prove that S is all of H∗ (BcomU (n) ,R) it is enough to see that the multisymmetric
polynomials (modulo J) are in fact in S. To see it, we �rst need a couple of lemmas.

Lemma 3.13. For every n ∈ N and 1 ≤ a+ b ≤ n with a, b ≥ 0 we have Φk (Pa,b (n)) = kbPa,b (n).

Proof. Since Φk is a homomorphism of algebras, we have

Φk (Pa,b (n)) = Φk
(
xa1y

b
1 + xa2y

b
2 + · · ·+ xany

b
n

)
=

n∑
i=1

Φk
(
xai y

b
i

)
.

But we have
Φk
(
xai y

b
i

)
= Φk (xi)

a
Φk (yi)

b
= kbxai y

b
i .

Where the last equality is true since we already saw that Φk (xi) = xi and Φk (xi) = kyi for every 1 ≤ i ≤
n. �

To prove the goal of this subsection, we illustrate explicitly the cases n = 2 and n = 3.

• Suppose �rst that n = 2.
We want to show that the following multisymmetric polynomials are indeed in S

� P0,1 (2) = y1 + y2,
� P1,1 (2) = x1y1 + x2y2 and
� P0,2 (2) = y2

1 + y2
2 .

We ignore P1,0 (2) = x1 + x2 since this is zero modulo J . For this �rst observe that

ι (z1 + z2) = (x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2) = P1,0 (2) + P0,1 (2)

clearly belongs to S. Since P1,0 (2) = 0 mod J we are done. For P1,1 (2) and P0,2 (2) notice that the
total degree (the sum of the power of each term) is 2, thus we have to consider ι (p2):

ι
(
z2

1 + z2
2

)
= (x1 + y1)

2
+ (x2 + y2)

2

=
(
x2

1 + x2
2

)
+ 2 (x1y1 + x2y2) +

(
y2

1 + y2
2

)
.

This can be rewritten as

ι
(
z2

1 + z2
2

)
= P1,0 (2) + 2P1,1 (2) + P0,2 (2) .
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Then we consider

Φ−1
(
ι
(
z2

1 + z2
2

))
=
(
x2

1 + x2
2

)
− 2 (x1y1 + x2y2) +

(
y2

1 + y2
2

)
giving us that

ι
(
z2

1 + z2
2

)
+ Φ−1

(
ι
(
z2

1 + z2
2

))
= 2

(
y2

1 + y2
2

)
mod J

meaning that P0,2 (2) ∈ S, since S is a subalgebra closed under power maps. Finally modulo J we
get

P1,1 (2) =
ι
(
z2

1 + z2
2

)
− P0,2 (2)

2
∈ S

which �nishes the proof for n = 2.
• Suppose now that n = 3.

The arguments used in the case n = 2 can be used to obtained the �rst two of the next equalities,
where once again they are taken to be modulo J :
(1) P0,1 (3) = ι (z1 + z2 + z3) .
(2) P0,2 (3) = 1

2

(
ι
(
z2

1 + z2
2 + z2

3

)
+ Φ−1

(
ι
(
z2

1 + z2
2 + z2

3

)))
.

(3) P1,1 (3) = 1
2

(
ι
(
z2

1 + z2
2 + z2

3

)
− P0,2

)
.

We are left to obtain Pa,b (3) such that a+ b = 3. For this we can reorder to see that

ι
(
z3

1 + z3
2 + z3

3

)
= (x1 + y1)

3
+ (x2 + y2)

3
+ (x3 + y3)

3

=
(
x3

1 + x3
2 + x3

3

)
+ 3

(
x2

1y1 + x2
2y2 + x2

3y3

)
+ 3

(
x1y

2
1 + x2y

2
2 + x3y

2
3

)
+
(
y2

1 + y2
2 + y3

3

)
which amounts to

ι
(
z3

1 + z3
2 + z3

3

)
= 3P2,1 + 3P1,2 + P0,3 mod J.

We use the power maps to get that

Φ−1
(
ι
(
z3

1 + z3
2 + z3

3

))
= −3P2,1 + 3P1,2 − P0,3 modJ.

By adding the last two equalities we get

P1,2modJ =
1

6

(
Φ−1

(
ι
(
z3

1 + z3
2 + z3

3

))
+ ι
(
z3

1 + z3
2 + z3

3

))
∈ S.

Thus we have ι
(
z3

1 + z3
2 + z3

3

)
− 3P1,2 mod J ∈ S, and by closure under power maps we obtain

8P0,3modJ = Φ2
(
ι
(
z3

1 + z3
2 + z3

3

)
− 3P1,2

)
− 6

(
ι
(
z3

1 + z3
2 + z3

3

)
− 3P1,2

)
∈ S

from we conclude that P0,3 mod J ∈ S. We �nally have

P2,1 =
1

3

(
ι
(
z3

1 + z3
2 + z3

3

)
− 3P1,2 − P0,3

)
modJ

which �nishes the case n = 3.

In the previous two examples we see that for non negative numbers a and b, we proved that Pa,b (n) belongs
to S using induction on the value a + b. This was done in such a way that the induction process did not
depend on n. These arguments can be generalized more methodically to obtain.

Theorem 3.14. The algebra H∗ (BcomU (n) ;R) is equal to the subalgebra

S :=
〈
Φk (Imι) | k ∈ Z \ {0}

〉
.
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Proof. For this proof we will be working modulo J . Also, for an arbitrary n consider a �xed m ∈
{1, 2, . . . , n}. Now take

pm := zm1 + zm2 + · · ·+ zmn .

An easy reordering gives us

ι (pm) =

(
n∑
i=1

(xi + yi)
m

)
=

n∑
i=1

m∑
j=0

(
m

j

)
xm−ji yji

=

m∑
j=0

(
m

j

)
Pm−j,j (n) =

m∑
j=1

(
m

j

)
Pm−j,j (n) ,(3.3.1)

where the last equality holds because we are working modulo J . From this point we will use the power maps
Φk to obtain the various Pm−j ,j (n). First we use the following recursion to get �rst P0,m (n) from 3.3.1: Let
A0 := ι (pm),

A1 := Φ2 (A0)− 2A0 =

m∑
j=2

(
2j − 2

)(m
j

)
Pm−j,j (n)

and

A2 := Φ3 (A1)− 32A1 =

m∑
j=3

(
2j − 2

) (
3j − 32

)(m
j

)
Pm−j,j (n) .

In general for 1 ≤ k ≤ m− 1 we de�ne

Ak := Φk+1 (Ak−1)− (k + 1)
k
Ak−1.

Notice that every Ak has non zero coe�cients only for Pm−j,j (n) for k + 1 ≤ j ≤ m. Since A0 ∈ S by
de�nition and every Ak is de�ned in terms of the power maps and Ak−1, induction implies that Ak ∈ S for
every 1 ≤ k ≤ m− 1. Some easy calculations allow us to obtain that

P0,m (n) =

(
m∏
k=2

(
km − kk−1

))−1

Am−1 ∈ S.

And thus we obtain that

ι (pm)− P0,m (n) =

m−1∑
j=1

(
m

j

)
Pm−j,j (n) ∈ S.

Then we can apply a new recursion to conclude that P1,m−1 (n) ∈ S. By continuing with this backwards
recursion we obtain that Pa,b (n) ∈ S for all positive a, b such that a+b = m. Since we pickedm ∈ {1, 2, . . . , n}
arbitrarily, this �nishes the proof. �
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3.3.2. Generators of H∗ (BcomSU (n) ;R): To obtain that

H∗ (BcomSU (n) ,R) =
〈
Φk (Imι) | k ∈ Z \ {0}

〉
,

we use a di�erent presentation of H∗ (BT,R). A maximal torus of SU (n) is the set of diagonal matrices with
entries in S1 ⊆ C, such that their product equals one. Under such presentation it is routine to show that

H∗ (BT,R) ∼= (R [z1, . . . , zn] / 〈z1 + · · ·+ zn〉)
where the Weyl group is then Sn acting by permutation. This implies that

H∗ (BSU (n) ,R) ∼= (R [z1, . . . , zn] / 〈z1 + · · ·+ zn〉)Sn ,
but since p1 := z1 + · · ·+ zn is already invariant, the previous ring is isomorphic to

H∗ (BSU (n) ,R) ∼= R [z1, . . . , zn]
Sn / 〈z1 + · · ·+ zn〉 .

Since R [z1, . . . , zn]
Sn is itself a polynomial algebra on pi = zi1 + · · · + zin, (see [Humphrey], Chapter 3.5:

Chevalley's Theorem), we �nally get that

H∗ (BSU (n) ,R) ∼= R [p1, . . . , pn] / 〈p1〉 ∼= R [p2, . . . , pn] .

We will use this to conclude the following

Theorem 3.15. The real cohomology of BcomSU (n) can be given by

H* (BcomSU (n) ,R) ∼= (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn /J̃,

where J̃ is the ideal generated by xi1 + · · ·+ xin, 1 ≤ i ≤ n and y1
1 + · · ·+ y1

n.

Proof. We saw in Theorem 3.7 that

H* (BcomSU (n) ,R) ∼= (H∗ (BT )⊗H∗ (BT ))
Sn /J,

where J is the ideal generated by the Sn-invariants on the �rst component. The previous reasoning then
gives us

H* (BcomSU (n) ,R) ∼= (R [x1, . . . , xn] / 〈x1 + · · ·+ xn〉 ⊗ R [y1, . . . , yn] / 〈y1 + · · ·+ yn〉)Sn /J.
Notice that this is well de�ned since the Sn-invariance of x1 + · · ·+ x2 and y1 + · · ·+ y2 allow us to have a
well de�ne action of Sn on

R := R [x1, . . . , xn] / 〈x1 + · · ·+ xn〉 ⊗ R [y1, . . . , yn] / 〈y1 + · · ·+ yn〉 .
Consider �rst the map

p : R [x1, . . . , xn]⊗ R [y1, . . . , yn]→ R,

which is induced by the projection

R [x1, . . . , xn]× R [y1, . . . , yn]→ R [x1, . . . , xn] / 〈x1 + · · ·+ xn〉 × R [y1, . . . , yn] / 〈y1 + · · ·+ yn〉 .
The map p is naturally Sn-equivariant, thus it induces a map

p̃ : (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn → RSn .

Also, since p is surjective, and the action is diagonal, we have that p̃ is also onto. We can further consider
the composition with the quotient by J to obtain a surjective map

q : (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn → (R)

Sn /J.

It is easy to see that the kernel of this map is what we called J̃ , so the result follows. �
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Even further, since the map

R [z1, . . . , zn]→ R [x1, . . . , xn]⊗ R [y1, . . . , yn]

zi 7→ xi + yi.

induces the map ι : H* (BSU (n) ,R)→ H* (BcomSU (n) ,R), we still have the same characterization under
the identi�cations given above. That is, ι can be seen as the map

ι : (R [z1, . . . , zn] / 〈z1 + · · ·+ zn〉)Sn → (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn /J̃

induce by zi 7→ xi + yi. The k-th power maps on (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn /J̃ is also still induce by

the assignment xi 7→ xi and yi 7→ kyi. Thus, with slight changes we can still apply the arguments given in
the proof of Theorem 3.14, to obtain the main result.

Theorem 3.16. The algebra H∗ (BcomSU (n) ;R) is equal to the subalgebra

S :=
〈
Φk (Imι) | k ∈ Z \ {0}

〉
,

where Φk is the k-th power map.

3.3.3. Generators of H∗ (BcomSp (n) ;R): In this section Z2 will denote the multiplicative group
{−1, 1}.

The Weyl group, W , of the simplectic group Sp (n) is isomorphic to the semidirect product Zn2 o Sn, where
σ ∈ Sn acts on (a1, . . . , an) ∈ Zn2 by

σ · (a1, . . . , an) =
(
aσ(1), . . . , aσ(n)

)
.

Under these identi�cations, if f ∈ R [x1, . . . , xn] ∼= H∗(T ) and g = ((a1, . . . , an) , σ) ∈ Zn2 o Sn we have

g · f (x1, . . . , xn) = f
(
a1xσ(1), . . . , anxσ(n)

)
.

Recall that

H∗ (BcomSp (n) ;R) ∼= (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
W
/J

where W acts diagonally: for n ∈W and p (x)⊗ q (y) ∈ R [x1, . . . , xn]⊗ R [y1, . . . , yn] we have

n · (p (x)⊗ q (y)) := (n · p (x))⊗ (n · q (y)) .

J is the ideal generated by the symmetric polynomials on the variables x2
i . For brevity, let us call R :=

(R [x1, . . . , xn]⊗ R [y1, . . . , yn])
W

the signed multisymmetric polynomials.

Once again we want to see that S :=
〈
Φk (Imι) | k ∈ Z \ {0}

〉
is equal to all of H∗ (BcomSp (n) ;R). For this

let us see �rst that the set

{Pa,b (n) | a, b ≥ 0 and a+ b ∈ 2Z}
generates all of the signed multisymmetric polynomials as an algebra. This will allow us to use the same
arguments used in the case of U (n) to obtain that S = H∗ (BcomSp (n) ;R). We need the following lemmas,
where the �rst has a straightforward proof.
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Lemma 3.17. Let µ : R [x1, . . . , xn]⊗ R [y1, . . . , yn]→ R be the operator de�ned as

µ (f) =
1

|W |
∑
g∈W

g · f.

This is a well de�ned R-linear map, where |W | is the cardinality of the Weyl group. We call this operator the
symmetrization operator.

Lemma 3.18. If f ∈ R and h ∈ R [x1, . . . , xn]⊗ R [y1, . . . , yn], then µ (f) = f and µ (fh) = f · µ (h).

Proof. Since f is invariant, we have that g · f = f for all g ∈W , thus

µ (f) =
1

|W |
∑
g∈W

g · f =
|W |
|W |

f = f.

Also, since by de�nition g · (fh) = (g · f) (g · h) for every g ∈W and f, h ∈ R [x1, . . . , xn]⊗R [y1, . . . , yn]. In
particular if f is invariant it follows that

µ (fh) =
1

|W |
∑
g∈W

g · (fh) =
f

|W |
∑
g∈W

g · h = f · µ (h) .

�

In order to prove our objective we need to analyze the summands (or monomials) of a signed multisymmetric
polynomials �rst. For this consider sets of indices I = (i1, . . . , in) , J = (j1, . . . , jn) ∈ Nn (including zero as a
natural number) and let us denote

xIyJ := xi11 x
i2
2 · · ·xinn y

j1
1 · · · yjnn .

Definition 3.19. We say a pair of multi indices (I, J) ∈ Nn × Nn is odd if there if 1 ≤ k ≤ n such that
ik + jk is odd. Such a pair is even if it is not odd.

Lemma 3.20. If a pair of multi indices (I, J) is odd, then µ
(
xIyJ

)
= 0.

Proof. Let (I, J) = ((i1, . . . , in) , (j1, . . . , jn)) and let's assume ik + jk is odd. Let

hk :=

1, . . . , 1, −1︸︷︷︸
k−position

, 1, . . . , 1

 , e

 ∈W,
where e is the identity permutation. Denote by H ⊆ W the subgroup generated by hk and the partition by
right cosets {Hg1, . . . ,Hgm} of W. Since hk has order 2

W = {g1, . . . , gm} ∪ {hkg1, . . . , hkgm}
and thus

µ
(
xIyJ

)
=

1

|W |

m∑
l=1

(
glx

IyJ + hk
(
glx

IyJ
))
.

Notice that in general if g = ((a1, . . . , an) , σ), then since ik + jk is odd we get
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hk
(
g · xIyJ

)
= hk

(
ai1+j1

1 · · · ain+jn
n xi1σ(1) · · ·x

in
σ(n)y

j1
σ(1) · · · y

jn
σ(n)

)
= (−1)

ik+jk ai1+j1
1 · · · ain+jn

n xi1σ(1) · · ·x
in
σ(n)y

j1
σ(1) · · · y

jn
σ(n)

= −ai1+j1
1 · · · ain+jn

n xi1σ(1) · · ·x
in
σ(n)y

j1
σ(1) · · · y

jn
σ(n)

= −g · xIyJ .

This implies that

µ
(
xIyJ

)
=

1

|W |

m∑
l=1

(
glx

IyJ − glxIyJ
)

= 0.

�

Theorem 3.21. If a polynomial is signed multisymmetric then its monomials have all even multi indices.

Proof. An element f ∈ R [x1, . . . , xn]⊗ R [y1, . . . , yn] can be uniquely written as

f = c0 +

m∑
k=1

ckx
IkyJk .

Where c0 ∈ R and for k > 0, ck ∈ R \ {0}, Ik and Jk are multi indices of n variables, not all of them zero. If
f is signed multisymmetric,

f = µ (f) = c0 +

m∑
k=1

ckµ
(
xIkyJk

)
.

These two last expressions for f imply that

(3.3.2)

m∑
k=1

ckx
IkyJk =

m∑
k=1

ckµ
(
xIkyJk

)
.

But by the previous lemma, we know that if (It, Jt) is odd for a given t, then µ
(
xItyJt

)
= 0. Since µ

(
xIkyJk

)
is itself a sum of monomials, the expression

m∑
k=1

ckµ
(
xIkyJk

)
must have only monomials with an even set of multi indices. Since all the coe�cients in

m∑
k=1

ckx
IkyJk

are non zero, the last equality and the uniqueness of the expression for non zero coe�cients of a polynomial,
allow us to conclude that (Ik, Jk) is even for every 1 ≤ k ≤ m. �

In particular this proof allows us to obtain
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Corollary 3.22. Every signed multisymmetric polynomial can be written in the form

f = c0 +

m∑
k=1

ckµ
(
xIkyJk

)
,

where (Ik, Jk) is even for every 1 ≤ k ≤ m.

If a multisymmetric polynomial has monomials with even multi indices, such polynomial is signed symmetric,
meaning that is invariant under the action of elements of the form ((a1, . . . , an) , e) ∈ W . In particular we
can now conclude:

Theorem 3.23. A multisymmetric polynomial is signed symmetric if only if all its monomials have even
multi indices.

This result grant us the frame work to obtain generators for the algebra H∗ (BcomSp (n) ;R). Recall that
multisymmetric are generated by the power polynomials

Pa,b :=

n∑
i=1

xai y
b
i .

On the other hand, due to the last result we know Pa,b is signed multi symmetric if and only if a+ b is even.
Let's see that they in fact generate all of the signed multisymmetric polynomials.

Theorem 3.24. (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Zn2 oSn is generated as an algebra by the set

G :=

{
Pa,b :=

n∑
i=1

xai y
b
i | 0 ≤ a, b and a+ b ∈ 2Z

}
.

Proof. By Corollary 3.22 is enough to show that for even multi indices (I, J), µ
(
xIyJ

)
∈ genG. To see

this, note that any permutation of the set of indices have the same symmetrization. This is, for k1, . . . , kp ∈
{1, . . . , n} all mutually di�erent, p ≤ n, we have

µ
(
xi1k1 · · ·x

ip
kp
yj1k1 · · · y

jp
kp

)
= µ

(
xi11 · · ·xipp y

j1
1 · · · yjpp

)
.

So it is enough to show that

µ
(
xi11 · · ·xipp y

j1
1 · · · yjpp

)
∈ genG,

where of course ik + jk is even for every 1 ≤ k ≤ p. We do it using induction on p. The cases p = 1 is
immediate, since in this case µ

(
xIyJ

)
is a scalar multiple of even power polynomials of the form Pa,0, P0,b

or Pa,b.

Next, assume we know µ
(
xi11 · · ·x

ip
p y

j1
1 · · · y

jp
p

)
∈ genG for 1 ≤ p ≤ k. By reordering we have

µ
(
xi11 y

j1
1

)
µ
(
xi22 · · ·x

ik+1

k+1 y
j2
2 · · · y

jk+1

k+1

)
= cµ

(
xi11 · · ·x

ik+1

k+1 y
j1
1 · · · y

jk+1

k+1

)
+

k+1∑
r=2

crµ
(
xi22 · · ·xir+i1

r · · ·xik+1

k+1 y
j2
2 · · · yjr+j1

r · · · yjk+1

k+1

)
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where c2, . . . , ck+1 are integers, and c is a non zero integer. This implies that

µ
(
xi11 · · ·x

ik+1

k+1 y
j1
1 · · · y

jk+1

k+1

)
=

1

c
µ
(
xi11 y

j1
1

)
µ
(
xi22 · · ·x

ik
k y

j2
2 · · · y

jk
k

)
− 1

c

k+1∑
r=2

crµ
(
xi22 · · ·xir+i1

r · · ·xikk y
j2
2 · · · yjr+j1

r · · · yjkk
)
.

By the induction hypothesis all of the terms in the right are in genG, which implies that

µ
(
xi11 · · ·x

ik+1

k+1 y
j1
1 · · · y

jk+1

k+1

)
belongs to genG. �

With the last result at hand we can imitate the reasoning in the proof of Theorem 3.14 to obtain the main
result of this part.

Theorem 3.25. The algebra H∗ (BcomSp (n) ;R) is equal to the subalgebra

S :=
〈
Φk (Imι) | k ∈ Z \ {0}

〉
.

Where Φk are the power maps and ι : H∗ (BSp (n) ;R) → H∗ (BcomSp (n) ;R) is the map induced by the
homomorphism

R [z1, . . . , zn]→ R [x1, . . . , xn]⊗ R [y1, . . . , yn]

zi 7→ xi + yi.

Proof. Take once again

pm = zm1 + zm2 + · · ·+ zmn ∈ R [z1, . . . , zn]

for m even. We also work modulo J , the ideal generated by the x2
i . Recall that

ι (pm) =

m∑
j=1

(
m

j

)
Pm−j,j (n) .

Since (m− j) + j = m, all of the power polynomials Pm−j,j (n) are even. Now we use recursion to get �rst
P0,m (n) from the last equality: for this we name A0 := ι (pm), then we take

A1 := Φ2 (A0)− 2A0 =

m∑
j=2

(
2j − 2

)(m
j

)
Pm−j,j (n)

and

A2 := Φ3 (A1)− 32A1 =

m∑
j=3

(
2j − 2

) (
3j − 32

)(m
j

)
Pm−j,j (n) .

In general for 1 ≤ k ≤ m− 1 we de�ne

Ak := Φk+1 (Ak−1)− (k + 1)
k
Ak−1.
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Notice that every Ak has non zero coe�cients only for Pm−j,j (n) for k + 1 ≤ j ≤ m. Since A0 ∈ S by
de�nition and every Ak is de�ned in terms of the power maps and Ak−1, induction implies that Ak ∈ S for
every 1 ≤ k ≤ m− 1. In particular we have

P0,m (n) =

(
m∏
k=2

(
km − kk−1

))−1

Am−1 ∈ S.

We now can apply a similar procedure to

ι (pm)− P0,m (n) =

m−1∑
j=1

(
m

j

)
Pm−j,j (n) ∈ S

to conclude that if m = 2k, and Pa,b is such that a+ b = m then Pa,b ∈ S. �



CHAPTER 4

Chern-Weil theory for TC structures

In this chapter we achive the main objective of this thesis, the development of characteristic classes for TC
structures on principal bundles. Our central goal is to obtain characteristic classes for TC structures using
Chern-Weil theory. Speci�cally, we will develop this for TC structures over vector bundles whose structural
group is either U (n) or SU (n).

The structure of this chapter is as follows: we start with a review of the theory of characteristic classes for
vector bundles, including both the homotopy and geometrical points of view, and see how they relate to each
other. Then we de�ne the characteristic classes for TC structrues, develop �rst the homotopic construction
and then the geometrical one.

In this chapter we write H∗ (−) to denote the cohomology with real coe�cients.

4.1. Characteristic Classes for Vector Bundles

In this section we review the basic theory of characteristic classes for vector bundles. Consider a manifold
M . Let Vectn (M) be the set of equivalence classes of complex vector bundles of dimension n over M . This
de�nes a contravariant functor from the category of manifolds to the category of sets. Also, H∗ (−) is a
functor from the category of manifods to the category of algebras.

It is also important to mention that developing characteristic classes for vector bundles with structural group
GLn (C) is the same as with structural group U (n). This is true since U (n) is homotopy equivalent to
GLn (C). Even more this theory can also be applied to vector bundles whose structure group is SU (n).
Thus, for brevity, in this section G will denote U (n) or SU (n) unless otherwise stated.

Definition 4.1. A characteristic class for vector bundles is a natural transformation η : Vectn (−) →
H∗ (−).

Characteristic classes are equivalent to the cohomology classes of H∗ (BG). This is done in a constructive
way, so we recall its proof.

Theorem 4.2. Let EG→ BG be the classifying vector bundle of dimension n. A natural transformation η :
Vectn (−)→ H∗ (−) is determined uniquely by η ([EG]) ∈ H∗ (BG), and every class of H∗ (BG) determines
a natural transformation.

48
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Proof. Let c := η ([EG]) ∈ H∗ (BG). Recall there is a natural bijection

ϕ : [M,BG]→ Vectn (M)

[f ] 7→ [f∗ (EG)] ,

between the set of homotopy classes of functions from M to BG, [M,BG], and the set of equivalence classes
of vector bundles. Here f∗ (EG) refers to the pullback vector bundle.

Now take [E] ∈ Vectn (M) and ϕ−1 ([E]) = [f ]. Since η is a natural transformation we obtain that

f∗ (η ([EG])) = η ([f∗ (EG)]) .

But since [E] = [f∗ (EG)], and by de�nition f∗ (c) = f∗ (η ([EG])) it follows that

f∗ (c) = η ([E]) ∈ H∗ (M) .

Since the class f∗ (c) ∈ H∗ (M) depends only on the homotopy class of f and the class c, we obtain in turn
that f∗ (c) is uniquely determined by [E] and c.

On the other hand it also follows that given a class c̃ ∈ H∗ (BG), the assignment

Vectn (M)→ H∗ (M)

[E] 7→ [f∗ (c̃)] ,

where ϕ−1 ([E]) = [f ], de�nes a natural transformation. �

From this proof we see that given a vector bundle E → M and a natural transformation η, to determined
η ([E]) is equivalent to �nd the homotopy class classifying E, ϕ−1 ([E]) = [f ]. This method is thus known as
the homotopic method to determine characteristic classes.

4.1.1. Chern-Weil theory: When we work on the smooth category, there is a geometrical way to
obtain characteristic classes. Here we give a small review of this construction for vector bundles (see Chapter
5 of [Morita] for details). For this, let p : E →M be a smooth vector bundle over a manifold. Also let Γ (E)
be the set of smooth sections of p, and X (M) the set of vector �elds over M .

Definition 4.3. Let p : E →M be a smooth vector bundle over a manifold. A connection for E is smooth
map ∇ : X (M) × Γ (E) → Γ (E) satisfying the following conditions: for X,Y ∈ X (M), s, s′ ∈ Γ (E) and
f ∈ C∞ (M) we have

• ∇fX+Y (s) = f∇X (s) +∇Y (s).
• ∇X (s+ s′) = ∇X (s) +∇X (s′).
• ∇X (fs) = f∇X (s) +X (f) s.

The existence of a connection can always be guaranteed. In particular consider a trivial bundleM×Cn →M
and the sections si : M → M × Cn given by si (x) = (x, ei), where {e1, . . . , en} is the standard basis. Then
we have a trivial connection given by ∇Xsi = 0 for 1 ≤ i ≤ n and every X ∈ X (M). For any other section
s, consider that they can be written as

s = Σni=1fisi

where fi ∈ C∞ (M). With the second condition of the de�nition we obtain that

∇Xs = ∇X (Σni=1fisi) = Σni=1∇X (fisi) ,
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and then by the third condition we have

∇X (fisi) = ∇Xsi +X (fi) si = X (fi) si.

Thus, we obtain that

(4.1.1) ∇Xs = Σni=1X (fi) si.

Now consider an arbitrary vector bundle p : E → M with an open cover {Ui} of M and trivializations
ϕi : p−1 (Ui)→ Ui×Cn. We can obtain linearly independent sections over Ui, si (x) := ϕ−1

i (x, ei), 1 ≤ i ≤ n.
Following the previous construction, we can de�ne a connection over Ui, ∇i by the previous equation. Then,
by taking a partition of the unity subordinated to {Ui}, {gi}, we de�ne a connection over all M by

∇Xs := gi∇iXs |Ui .

This can be easily checked to be a well de�ned connection.

Let us go back to the trivial connection over the trivial bundle, M ×Cn →M . Notice that for every section
s it follows that for the Lie bracket of two vector �elds X and Y , [X,Y ], we have

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s = 0.

This equality does not hold for every connection of an arbitrary vector bundle.

Definition 4.4. Consider a smooth vector bundle E → M with a connection ∇. The curvature of the
connection is the smooth map R : X (M)

2 × Γ (E)→ Γ (E) given by

R(X,Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s,

for (X,Y ) ∈ X (M)
2
and s ∈ Γ (E).

Now consider an open cover {Ui}i∈N with trivializations and transition functions ρij : Ui∩Uj → G associated

to these trivializations. The curvature R can be expressed locally in every Ui as a matrix Ωi, where every
entry is an a di�erential 2-form over M . The relation between this local forms on the intersection Ui ∩ Uj is
given by the formula

Ωj = ρ−1
ij Ωiρij .

Now consider the Lie algebra g of G. Let p be an invariant polynomial under matrix conjugation of the
polynomial algebra of g. Since p

(
ρ−1
ij Ωiρij

)
= p

(
Ωi
)
, p (Ω) is a well de�ned two form of M . In fact, Chern-

Weil theory guarantees that this gives us a well de�ne characteristic class. See Propositions 5.27, 5.28 and
5.29 of [Morita].

Proposition 4.5. The form p (Ω) is a closed form of M . This endows us with a well de�ned natural
transformation

Vectn (M)→ H∗ (M)

[E] 7→ [p (Ω)] .

Also, the class [p (Ω)] is independent of the choice of connection and its curvature.

This construction is related to the homotopical construction via the Chern-Weil homomorphism. That is
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Theorem 4.6. Let G be either U (n) or SU (n). Also let I (g) be the algebra of invariant polynomials under
conjugation of the polynomial algebra of the Lie algebra of G, g. Then there exists an isomorphism,

Ψ : I (g)→ H∗ (BG)

called the Chern-Weil isomomophism. Even further let Ω be the curvature of a vector bundle E → M and
c := Ψ (p) be the class given by an invariant polynomial p ∈ I (g). Then if ηc is the characteristic class
de�ned by c, then we have the equality

ηc (E) = [p (Ω)] .

Finally let's consider the polynomials σi on the entries of a n× n matrix X characterized by the equality

det (I − tX) = 1 + tσ1 (X) + t2σ2 (X) + · · ·+ tnσn (X) .

It is easy to see that the polynomial σi are invariant under matrix conjugation. Even further, σi, 1 ≤ i ≤ n
are generators (as an algebra) of the whole algebra of invariant polynomials over matrices both with complex
or real coe�cients. (See Theorem 5.26 of [Morita]) In fact it is well known that the class of the closed forms

given by
(
i

2π

)i
σi (Ω) have integer values.

Definition 4.7. The characteristic class given by the polynomial ci =
(
i

2π

)i
σi is called the i-th Chern class.

Chern classes are important since they generate the rest of the classes as an algebra. This means that the
rest of the classes can be obtained as linear combinations of products of Chern classes.

4.2. Characteristic classes for TC structures

In this section we �rst de�ne characteristic classes for TC structures. Then we adapt the homotopy construc-
tion to show how H∗ (BcomG,R) is in one to one correspondence with them. We only consider here vector
bundles with structure group SU (n) or U (n).

In this section G will denote U (n) or SU (n).

Definition 4.8. A characteristic class for a TC structure or TC characteristic class is natural
transformation between the functors Top→ BundcomG (−) and Top→ H∗ (−,R) .

While this de�nition does not require further restrictions, we are interested in working only with manifolds.
The classifying space for commutativity gives us a natural way to construct characteristic classes:

Proposition 4.9. There is a one to one correspondence between classes p ∈ H∗ (BcomG,R) and characteristic
classes ηp for TC structures on principal G-bundles over a manifold.

Proof. For brevity let us call U the TC structure of BcomG making it a classifying space for TC
structures themselves. Also, suppose we have a natural transformation η : BundcomG (−)→ H∗ (−), and take
c := η (U) ∈ H∗ (BcomG,R).
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If M is a manifold there is a natural bijection

[M,BcomG]→ BundcomG (M)

[f ] 7→ [f∗ (U)] .

This means that for an equivalence class ξ ∈ BundcomG (M) there is a unique classifying function f : M →
BcomG, up to homotopy, that represents that given structure. That is, the pullback f∗ (U) is in the class ξ.
This implies, by naturality, that η (ξ) = f∗ (η(U)) = f∗ (c). Here we are abusing notation by also calling

f∗ : H∗ (BcomG,R)→ H∗ (M,R)

the induced map on cohomology. In conclusion c determines completely the characteristic class η.

On the other hand, it is clear that every element of c ∈ H∗ (BcomG,R) gives rise to a characteristic class
for TC structures. This is, the assignment ξ ∈ BundcomG (M) → f∗ (c) ∈ H∗ (M) is natural. where f is the
classifying function of ξ. �

Now let's see how we can use the results of Chapter 3 to obtain TC characteristic classes through the ordinary
characteristic classes. Each of the elements of the algebra H∗ (BcomG,R) represents a TC characteristic class,
thanks to the previous theorem. However, we saw that these algebras can be generated by a smaller generating
set (as an algebra). Recall that we have the k-th power maps Φk : H∗ (BcomG)→ H∗ (BcomG), and a natural
inclusion ι : H∗ (BG)→ H∗ (BcomG). So if we consider

S :=
〈
Φk ◦ ι (c) | c ∈ H∗(BG), k ∈ Z \ {0}

〉
,

the algebra of classes generated by the images of Φk ◦ ι, k ∈ Z, we already proved in Chapter 3 that

Theorem 4.10. For G equal to U (n) or SU (n), then H∗ (BcomG) = S.

This means that given a class in H∗ (BcomG), it can be written as a sum of �nite products of elements of the
form Φk ◦ ι (c), c ∈ H∗(BG), k ∈ Z \ {0}.

4.3. Chern-Weil theory for TC structures

Here we show how to expand Chern-Weil theory to TC characteristic classes. Even further, we will see that
this can be done without introducing new geometrical concepts, thanks to the commutative property of the
transition functions. We only consider TC structures over vector bundles whose structure group G is U (n)
or SU (n).
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4.3.1. The k-th associated bundles: Let
(
p : E →M, {Uα}α∈J , ϕα

)
be a TC structure with structure

group G and transition functions {ραβ}. By de�nition if x ∈ Uαβ ∩ Uγη then

ραβ (x) ργη (x) = ργη (x) ραβ (x) .

These transition functions satisfy the cocycle condition as well, that is,

ραγ (x) = ραβ (x) ρβγ (x) .

In particular these two properties imply that for k ∈ Z we have

ραγ (x)
k

= (ραβ (x) ρβγ (x))
k

= ραβ (x)
k
ρβγ (x)

k
.

This tell us that the collection of functions ρkαβ : Uαβ → G de�ned as

ρkαβ (x) := ραβ (x)
k

also satisfy the cocycle condition. Thus we can construct a new principal bundle p (k) : Ek → M with
trivializations over the same open cover {Uα}α∈J (See Chapter 1). We call it the k-th associated bundle
of E.

Theorem 4.11. (Classifying functions for k- th associated bundles)

If f : M → BcomG is a bundle with a TC structure, and fk : M → BcomG is the classifying function of the
k-th associated bundle, then the following map diagram commutes

(4.3.1) M
f //

fk ##

BcomG

Φk

��
BcomG.

Where Φk : BcomG→ BcomG are the power maps.

Proof. As it was explained before, to obtain the classifying functions for the k-th associated bundle
p (k) : Ek → M we need to consider a simplicial map fkl : N (U)l → Hom

(
Zl, G

)
. The components of this

function are given by the transition functions: if x ∈ Ui1 ∩ Ui2 ∩ · · · ∩ Uil+1
, we take

fkl (x) =
(
ρki0i1 (x) , . . . , ρkil−1il

(x)
)

=
(
ρi0i1 (x)

k
, . . . , ρil−1il (x)

k
)
.

This can be rewritten using the power functions as

fkl = Φkl ◦ fl.

The desired result is obtained after passing to the geometrical realization. �
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4.3.2. Chern-Weil theory for TC structures: We �nally are able to reach our main goal of devel-
oping a theory that uses Chern-Weil theory to obtain characteristic classes. For this, we develop an algebraic
and geometrical method that uses the fact the every TC characteristic class is uniquely represented by an
element of H∗ (BcomG,R).

For the rest of this chapter let ε ∈ Vectcom
n (M) be an equivalence class with an underlying smooth vector

bundle E → M and structure group U (n) or SU (n). For an element p ∈ H∗ (BcomG,R) we denote by
p (ε) ∈ H∗ (M) the value of the TC characteristic class on the TC equivalence class ε. Also, recall that via
the Chern-Weil isomorphism, if g is the Lie algebra of G, then H∗ (BG) ∼= I (g). Here I (g) is the subalgebra
of invariant polynomials under conjugation of the polynomial algebra of g. Under this identi�cation, every
characteristic class for vector bundles -having G as its structure group- can be identify with a polynomial
c ∈ I (g).

Now recall that for a smooth vector bundle F → M with curvature Ω, the value on F of the characteristic
class associated to c is equal to c (Ω) ∈ H∗ (M). Under these terms, we are now able to compute the TC
characteristic classes associated to the set of generators of H∗ (BcomG),

{
Φk ◦ ι (c) | 1 ≤ i ≤ n, k ∈ Z \ {0}

}
.

Here, we take ι to be a map from I (g) to H∗ (BcomG).

Theorem 4.12. Consider ε ∈ Vectcom
n (M) an equivalence class with an underlying smooth vector bundle

E →M , and structure group U (n) or SU (n). Also let Ωk be the curvature of Ek, the k-th associated bundle
of E. Then for c ∈ I (g) and p = Φk ◦ ι (c) ∈ H∗ (BcomG), the TC characteristic class p (ε) has same class
in H∗ (M) as the characteristic class for vector bundles c

(
Ek
)
. This implies that

p (ε) = c (Ωk) ∈ H∗ (M) .

Proof. This is straight forward. First, by Theorem 4.11 we know that if f and fk the the classifying
functions for TC structures over E → M and Ek → M , respectively, then there is the following commuting
diagram

H∗ (BcomG)
f∗ // H∗ (M)

H∗ (BcomG) .

f∗k

77

Φk

OO

This means that for c ∈ H∗ (BG) we have the identity f∗
(
Φk ◦ ι (c)

)
= f∗k (ι (c)) in H∗ (M).

In turn, since the composition f∗k ◦ ι is a classifying function for the vector bundle Ek → M , we can apply
the Chern-Weil isomorphism. That is, we can consider the curvature Ωk of Ek to obtain that

f∗k (ι (c)) = c (Ωk) .

The conclusion of the theorem then follows by transitivity. �

Theorem 4.13. (Chern-Weil theory for TC structures)

Consider ε ∈ Vectcom
n (M) an equivalence class with an underlying smooth vector bundle E → M , and

structure group U (n) or SU (n). Also let Ωk be the curvature of Ek, the k-th associated bundle of E. Then
every TC characteristic class can be obtained as a linear combinations of products of the form

s1 (Ωk1) · s2 (Ωk2) · · · sm (Ωkm) ∈ H∗ (M) ,
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where si ∈ H∗ (BG) and ki ∈ Z. Each si (Ωk1) is the characteristic class of the vector bundle Ek → M
computed using its curvature.

Proof. Recall that if we set S as the subalgebra of H∗ (BcomG) generated by{
Φk ◦ ι (s) | 1 ≤ i ≤ n, k ∈ Z \ {0} , s ∈ H∗ (BG)

}
then we have S = H∗ (BcomG). Thus, every element of H∗ (BcomG) can be written as a linear combination
of products of the form

Φk1 (ι (s1)) · Φkm (ι (s2)) · · ·Φkm (ι (sm)) .

Then we can apply the previous theorem to obtain Φki (ι (si)) = si (Ωki). �

As suggested by the name of the theorem, we are now able to compute TC characteristic classes by us-
ing Chern-Weil theory. This is done in a three steps process for a class in s ∈ H∗ (BcomG) and a TC
structure ξ over a vector bundle E → M : �rst we need to decompose s in terms of the generators in{

Φk ◦ ι (c) | 1 ≤ i ≤ n, k ∈ Z \ {0}
}
. Secondly, for each of the generators Φk ◦ ι (c) in the decomposition of s

we use the curvature of the k-th associated bundle, Ωk, to compute the characteristic class associated to it,
c (Ωk) ∈ H∗ (M) (this class is equal to the TC class given by

(
Φk ◦ ι (c)

)
(ξ)). Finally we replace the values

of each
(
Φk ◦ ι (c)

)
(ξ) to obtain s (ξ) ∈ H∗ (M).

Recall from Chapter 3 that when G is equal to U (n), then

H∗ (BcomG,R) ∼= (R [x1, . . . , xn]⊗ R [y1, . . . , yn])
Sn /J

where Sn acts by permutation on their indexes and J is the ideal generated by the invariant polynomials of
positive degree on the xi. When G is SU (n) is the same description for H∗ (BcomG,R) except J is generated
by the invariant polynomials of positive degree on xi and the polynomial y1 + · · · yn.

We also have the identi�cations
H∗ (BU (n) ,R) ∼= R [z1, . . . , zn]

Sn

and
H∗ (BSU (n) ,R) ∼= R [z1, . . . , zn]

Sn / 〈z1 + · · ·+ zn〉 .
Then we have that the polynomials

pi = zi1 + · · ·+ zin ∈ R [z1, . . . , zn]

generated all of H∗ (BG,R), when G is U (n) or SU (n). Even further for a, b ∈ N ∪ {0} such that 0 < a+ b
then

Pa,b (n) :=

n∑
i=1

xayb mod J.

generated all of H∗ (BcomG,R) as an algebra. We also saw in the proof of Theorem 3.14 there every Pa,b (n)
can be obtain, via a recursive procedure, as a linear combination of elements of the form Φk (ι (pi)). With that
recursive procedure and the previous theorem, we can compute the TC characteristic classes corresponding
to each Pa,b (n).

Recall that another set of generators for H∗ (BG,R), when G is U (n) or SU (n) is given by the polynomials
σi, characterized by the equation

det (I − tX) = 1 + tσ1 (X) + t2σ2 (X) + · · ·+ tnσn (X) .

These generators are more commonly used instead of the pi, as σi are used in the de�nition of Chern classes.
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Example 4.14. In Chapter 3 we saw that for G = U (3) we have the equalities

(1) y1 + y2 + y3 = ι (z1 + z2 + z3).
(2) y2

1 + y2
2 + y2

3 = 1
2

(
ι
(
z2

1 + z2
2 + z2

3

)
+ Φ−1

(
ι
(
z2

1 + z2
2 + z2

3

)))
.

(3) x1y1 + x2y2 + x3y3 = 1
4

(
ι
(
z2

1 + z2
2 + z2

3

)
− Φ−1

(
ι
(
z2

1 + z2
2 + z2

3

)))
.

Now consider a TC strcutrure ξ with underlying vector bundle E → M , with curvature Ω and Ωk is the
curvature of the k-th associated bundle. Now since we have that p1 = σ1 and that

p2 = σ2
1 − 2σ2

we obtain that

(1) (y1 + y2 + y3) (ξ) = σ1 (Ω).

(2)
(
y2

1 + y2
2 + y2

3

)
(ξ) = 1

2

(
σ1 (Ω)

2
+ σ1 (Ω−1)

2
)
− (σ2 (Ω) + σ2 (Ω−1)).

(3) (x1y1 + x2y2 + x3y3) (ξ) = 1
4

(
σ1 (Ω)

2 − σ1 (Ω−1)
2
)

+ 1
2 (σ2 (Ω−1)− σ2 (Ω)).

For G = U (n) we know that H∗ (BG) is a polynomial algebra generated by the Chern classes ci, 1 ≤ i ≤ n.
Thus it follows that S is generated by the set

{
Φk ◦ ι (ci) | 1 ≤ i ≤ n, k ∈ Z \ {0}

}
.

Definition 4.15. We call the classes of the form cki := Φk ◦ ι (c) ∈ H∗ (BcomU (n)) the TC Chern classes.
Also, for a TC structure ε with underlying vector bundle E →M we call

cki (ε) := f∗
(
cki
)
∈ H∗ (M)

the TC (i, k)-Chern class. Here f : M → BcomU (n) is the classifying function of the TC structure.

From the previous theorem we have the immediate following corollary:

Corollary 4.16. Let E → M by the underlying bundle of a TC structure structure ε, and let Ωk be the
curvature of the k-th associated bundle. Then cki (ε) = ci (Ωk).

It is immediate from our results that
{
cki | k ∈ Z, i ∈ N

}
generates all of BcomU (n) as an algebra. That is,

every class in H∗ (BcomU (n)) can be written in the form

s =

m∑
j=1

αjCj

where αj ∈ R and

Cj =

mj∏
t=1

c
kj,t
ij,t

,

where kj,t ∈ Z and ij,t ∈ N. Then it follows that if ξ is a TC structure with underlying vector bundle E →M ,
with curvature its Ω and Ωk the curvature of the k-th associated bundle, then

s (ξ) =

m∑
j=1

αj

(
mj∏
t=1

cij,t
(
Ωkj,t

))
∈ H∗ (M) .



4.3. CHERN-WEIL THEORY FOR TC STRUCTURES 57

At this point it is worth mentioning that H∗ (BcomG) is in general not a polynomial algebra. For example
when G = U (n), the TC Chern classes are not algebraically independent. However, the relationships gov-
erning them are rather complicated. As such, their values in a given TC structure can vary signi�cantly. We
see an example of this in the next chapter.

Remark 4.17. The concepts developed in this chapter can also be applied to vector bundles on the quater-
nions. In this case, the structural group is the simplectic group Sp (n). The main ideas we needed to developed
TC characteristic classes also hold for this group. As we saw in Chapter 3 we also have power maps on coho-
mology, and H∗ (BcomSp (n) ,R) is also generated by as an algebra by

{
Φk ◦ ι (ci) | 1 ≤ i ≤ n, k ∈ Z \ {0}

}
.

Where again ι : H∗ (BSp (n) ,R) → H∗ (BcomSp (n) ,R) is induced by the natural inclusion BcomSp (n) →
BSp (n). Also, since Sp (n) is a compact group, the Chern-Weil homomorphism is in fact an isomorphism.
Thus, most of the ideas we used through out this chapter can be used.



CHAPTER 5

Examples

In this �nal chapter we exhibit explicit calculations of examples using Chern-Weil theory to compute TC
characteristic classes. In particular we show there is a TC structure ξ such that ci (ξ) = 0 for every i ∈ N
while c−1

2 (ξ) 6= 0. This shows that a TC Chern class cni does not necessarily determines another TC Chern
class cmi , if m 6= n. This con�rms that the underlying vector bundle of a TC structure does not determine
completely the TC structure.

In this chapter we present two examples, both of which are TC structures over spheres with a two sets open
cover with trivializations. As such, we start with the most general calculations to continue considering the
more speci�c conditions our examples need. The �rst example is the computation of the TC Chern classes
for the tautological linear bundle over the sphere. This follows the �rst general calculations. The second
example is the one mentioned previously, consisting of a non trivial TC structure over a trivial vector bundle.

This treatment is based on the concepts presented as in [Morita], Chapter 5. A small review is presented in
the �rst section of Chapter 4.

5.1. Connection for a vector bundle with a two sets cover with trivializations

Let π : E → M denote a smooth vector bundle over C of dimension n, with M a closed manifold. Assume
we can �nd an open cover {U1, U2} of M together with trivializations

ϕi : π−1 (Ui)→ Ui × Cn

e 7→ (π (e) , hi (e)) .

Suppose these trivializations have structure group a Lie group of matrices G. This is, we have a function
ρ : U1 ∩ U2 → G ⊆ GLn (C) characterized by

ϕ2 ◦ ϕ−1
1 : U1 ∩ U2 × Cn → U1 ∩ U2 × Cn

(x, v) 7→ (x, ρ (x) v) .

These trivializations induce smooth sections

sij : Ui → π−1 (Ui)

x 7→ ϕ−1
j (x, ej) ,

58
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where ej is the j-th vector of the standard basis of Cn, and i = 1, 2. This setting implies that for x ∈ Uithe
set {si1 (x) , si2 (x) , . . . , sin (x)} ⊂ π−1 (x) is a basis. Under these conditions, for a point x ∈ U1 ∩ U2 it
follows that

(5.1.1) s1k (x) =

n∑
l=1

ρlk (x) s2l (x)

where we take ρ = [ρlk]
n
k,l=1.

Now let {f1, f2} be a partition of the unity subordinated to {U1, U2}, as well as the trivial connections over
each Ui, ∇i (See Section 1 of Chapter 4 for details). We can now de�ne the connection

∇Xs := f1∇1
Xs+ f2∇2

Xs.

This means that for a vector �eld X and a section s, we consider their restriction to Ui in order to evaluate
∇iX . That is, we need �rst to consider the decomposition of s in terms of the basis {si1, . . . , sin}, which
means that there are smooth functions αji : Ui → C such that for x ∈ Ui

s |Ui (x) =

n∑
j=1

αij (x) sij (x) .

Then, applying the product rule and the de�nition, we have

∇Xs :=
∑
i,j

fiX
(
αij
)
sij .

Recall that with n-linearly independent sections {s1, . . . , sn} we have the local expressions for both the
connection and the curvature, R : X (M)×X (M)→ Γ (E). There exists 1-forms ωij and two forms Ωij such
that we can write

∇Xsi =
∑
i

ωij (X) sj

and

R (X,Y ) (si) =
∑
j

Ωij (X,Y ) sj

which gives rise to the local connection and curvature matrices

ω := [ωij ] and Ω := [Ωij ] .

These local forms are related to the transition function in the following way. From Equality 5.1.1 we get that

∇Xs1k =

n∑
l=1

f2X (ρlk (x)) s2l (x) .

From di�erential geometry we know that for a function f : M → R, X (f) = df (X) holds, where d is the
external derivation. Thus we get the expression

∇Xs1k =

n∑
l=1

f2d (ρlk (x)) (X) s2l (x) ,

which allow us to write

∇s1k =

n∑
l=1

f2d (ρlk (x)) s2l (x) .
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By the properties of cocycles we also know that

s2l (x) =

n∑
t=1

ρ−1
tl (x) s1t (x) ,

where by ρ−1
tl we mean the components of the matrix ρ−1. Thus, we can write

∇s1k =

n∑
t=1

(
f2

(
n∑
l=1

ρ−1
tl (x) d (ρlk (x))

))
s1t.

By comparing this expression with the local form, we conclude that

(5.1.2) ω1 = f2ρ
−1dρ.

Our next step is to obtain the local form of the curvature. For this we use the structural equation (see
[Morita] Theorem 5.21.)

Ωi = dωi + ωi ∧ ωi.
Consider the equality ρ−1ρ = I. An application of the product rule allow us to write:

0 = dI = d
(
ρ−1

)
ρ+ ρ−1dρ.

This in turn implies that
d
(
ρ−1

)
ρ = −ρ−1dρ⇒ d

(
ρ−1

)
= −ρ−1 (dρ) ρ−1.

Since dd = 0, we obtain d
(
ρ−1dρ

)
= d

(
ρ−1

)
∧ d (ρ), which allow us to conclude that

dω1 =
(
(df2) ρ−1dρ− f2ρ

−1dρ ∧ ρ−1dρ
)
.

On the other hand
ω1 ∧ ω1 =

(
f2ρ
−1dρ

)
∧
(
f2ρ
−1dρ

)
= f2

2 ρ
−1dρ ∧ ρ−1dρ,

which �nally gives us

(5.1.3) Ω1 =
(
(df2) ρ−1dρ− f2ρ

−1dρ ∧ ρ−1dρ
)

+ f2
2 ρ
−1dρ ∧ ρ−1dρ.

Observe that in a point x /∈ U1 ∩ U2, Ω1 is zero since the closure of the support of f2 is contained in U2.
Similarly, an analogue formula can be deduce for the local form of the curvature in U2, and deduced that it
is also zero outside U1 ∩ U2. Thus, we can conclude that

Proposition 5.1. Let π : E →M be a smooth vector bundle with {U1, U2} an open cover of M , both having
trivializations of E, ϕ1 and ϕ2, respectively. Let {f1, f2} be a partition of unity associated to {U1, U2},
respectively. If ρ is the transition function associated to ϕ2 ◦ϕ−1

1 , then the curvature Ωk of the k-th associated
bundle is given by

(Ωk)x =

{(
Ω1
k

)
x

x ∈ U1 ∩ U2.

0 x /∈ U1 ∩ U2.

Where

(5.1.4) Ω1
k = (df2) ρ−kd

(
ρk
)

+
(
f2

2 − f2

)
ρ−kd

(
ρk
)
∧ ρ−kd

(
ρk
)

is the local expression on U1.

Proof. Since the k-th associated vector bundle has the same cover associated to its TC structure, with
transition functions equal to ρk, the previous discussion provides a proof of the theorem. �
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It is worth mentioning that it is possible to deduce a similar formula to 5.1.3 for a arbitrary number of sets
in an open cover, but we will not need this.

5.2. Calculations over the spheres

5.2.1. TC Chern classes of the tautological vector bundle over the sphere. As a simple illustra-
tion and �st example, we compute the TC Chern Classes for the Tautological vector bundle over CP 1 ∼= S2.
Here we can consider the vector bundle as a TC structure since the structure group, C∗ ' S1, is abelian.
This implies that BcomS

1 = BS1. So, by the homotopy classi�cation of TC structures and vector bundles we
obtain that every vector bundle with this structure group is a TC structure. In this case the TC equivalence
class is independent of the open cover and its trivializations.

Consider the set

τ :=
{

([z1, z2] , (w1, w2)) ∈ CP 1 × C2 | (w1, w2) ∈ [z1, z2] or (w1, w2) = 0
}

and the map π : τ → CP 1 given by the projection on the �rst component. We have an open covering given
by U1 =

{
[z, 1] ∈ CP 1 | z ∈ C

}
and U2 =

{
[1, z] ∈ CP 1 | z ∈ C

}
. It is routine to check that the functions

ϕ1 : τ−1 (U1)→ U1 × C
([z, 1] , (w1, w2)) 7→ ([z, 1] , w2)

and

ϕ2 : τ−1 (U1)→ U1 × C
([1, z] , (w1, w2)) 7→ ([1, z] , w1)

are well de�ned trivializations. Also it is easy to check that U1 ∩ U2 =
{

[z, 1] ∈ CP 1 | z 6= 0
}
, where every

class can be uniquely be represented by a pair [z, 1] with z 6= 0. Under these conditions we get that

ϕ2 ◦ ϕ−1
1 : U1 ∩ U2 × C→ U1 ∩ U2 × C

([z, 1] , λ) 7→ ([z, 1] , zλ) ,

which implies that the transition function is given by

ρ : U1 ∩ U2 → C∗

[z, 1] 7→ z.

Since we are dealing with one dimensional matrices, the expression ρ−kd
(
ρk
)
∧ ρ−kd

(
ρk
)
has commuting

terms. This means that

ρ−kd
(
ρk
)
∧ ρ−kd

(
ρk
)

=
(
ρ−k

)2
d
(
ρk
)
∧ d
(
ρk
)

= 0.

The formula for the curvature of the k-th associated bundle gives us Ωk = (df2) ρ−kd
(
ρk
)
, where {f1, f2} is

a partition of the unity subordinated to {U1, U2}, respectively. Now, since we can parameterize U1∩U2
∼= C∗

via polar coordinates, (r, θ) 7→ reθi, we get ρk (r, θ) = rkekθi. Thus

d
(
ρk
)

= krk−1ekθidr + ikrkekθidθ

and so

ρ−kd
(
ρk
)

= k

(
1

r
dr + idθ

)
.
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Informally if we think of CP 1 as the sphere, each U1and U2 are the whole sphere minus one point. These two
points are antipodal, so we can think of them as the north and south poles. Then, it is easy to see that the
partition of the unity can be made to depend only on latitude lines. This means that in the parameterization
of U1 ∩U2 we are considering, f2 depends only on r, its value must be 0 in a neighborhood around r = 0 and
its constant and equal to 1 from certain given value ro > 0. This give us that

d (f2) =
∂f2

∂r
dr + 0dθ

and ∫ ∞
0

∂f2

∂r
dr = lim

x→∞
f2 (x)− f2 (0) = 1.

Then we conclude that

Ωk = (df2) ρ−kd
(
ρk
)

= ki
∂f2

∂r
dr ∧ dθ,

and so the �rst Chern class is given by

i

2π

∫
Ωk =

i

2π

∫ ∞
0

∫ 2π

0

ki
∂f2

∂r
dθdr = −k.

In particular the �rst Chern class of the tautological line bundle is equal to -1, as it is well known. In
conclusion we have that

ck1 (τ) = −k.

5.2.2. Second Chern class for clutching functions with values on SU (2). Suppose that we have
a vector bundle p : E → M in such a way that we can �nd an open cover {U1, U2} of M together with a
transition function ρ : U1 ∩ U2 → SU (2). First, we are going to compute the determinant of the curvature
form in terms of the components of the matrices in SU (2),

SU (2) :=

{[
z −w̄
w z̄

]
| |z|2 + |w|2 = 1

}
.

So let us take

ρ =

[
z −w̄
w z̄

]
,

for which we want to compute the curvature

Ω = (df2) ρ−1d (ρ) +
(
f2

2 − f2

)
ρ−1d (ρ) ∧ ρ−1d (ρ) .

Since zz̄ + ww̄ = 1, we get by di�erentiating that

0 = (z̄dz + w̄dw) + (zdz̄ + wdw̄)⇒ zdz̄ + wdw̄ = − (z̄dz + w̄dw)

and so we have

τ := ρ−1dρ =

[
z̄dz + w̄dw w̄dz̄ − z̄dw̄
−wdz + zdw − (z̄dz + w̄dw)

]
.

Now take θ := ρ−1dρ ∧ ρ−1dρ. Using that τ22 = −τ11 and |z|2 + |w|2 = 1 we get that

θ =

[
(w̄dz̄ − z̄dw̄) ∧ (−wdz + zdw) 2dz̄ ∧ dw̄

−2dz ∧ dw − (w̄dz̄ − z̄dw̄) ∧ (−wdz + zdw)

]
.

which is the same as expressing it as

θ =

[
τ12 ∧ τ21 θ12

θ21 −τ12 ∧ τ21

]
.
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Now, by making f := f2 and g := (f − 1) f we may express the curvature as

Ω = dfτ + gθ =

[
dfτ11 + gτ12 ∧ τ21 dfτ12 + gθ12

dfτ21 + gθ21 − (dfτ11 + gτ12 ∧ τ21)

]
,

and its determinant is then given by

det (Ω) = − (dfτ11 + gτ12 ∧ τ21) ∧ (dfτ11 + gτ12 ∧ τ21)− (dfτ21 + gθ21) ∧ (dfτ12 + gθ12) .

In order to reduce this expression, we recall that the wedge product of a one form with itself is zero. Also,
one forms commute with two forms, so we get:

det (Ω) = −g2θ12 ∧ θ21 − gdf ∧ (τ12 ∧ θ21 + τ21 ∧ θ12 + 2τ11 ∧ τ12 ∧ τ21) .

By recalling that τ11 ∧ τ12 = dz̄ ∧ dw̄ we get:

τ11 ∧ τ12 ∧ τ21 = − (wdzdz̄dw̄ + zdz̄dwdw̄) ,

τ12 ∧ θ21 = 2 (z̄dzdwdw̄ + w̄dzdz̄dw)

and
τ21 ∧ θ12 = −2 (zdz̄dwdw̄ + wdzdz̄dw̄) .

Now take
A := τ12 ∧ θ21 + τ21 ∧ θ12 + 2τ11 ∧ τ12 ∧ τ21

then
A = 2 [(z̄dzdwdw̄ + w̄dzdz̄dw)− (zdz̄dwdw̄ + wdzdz̄dw̄)− (wdzdz̄dw̄ + zdz̄dwdw̄)]

which gives us
A = 2 (z̄dzdwdw̄ + w̄dzdz̄dw − 2 (zdz̄dwdw̄ + wdzdz̄dw̄))

which we can now replace to have

(5.2.1) det (Ω) = 4 (f2 − 1)
2
f2

2 dzdz̄dwdw̄ − (f2 − 1) f2df2 ∧A.

Now we are going to use this formula to �nd the second Chern class in terms of a smooth Clutching function
ϕ : S3 → SU (2) (see [Hatcher II], Chapter 1). Consider the sets

S4 =
{
x = (x1, . . . , x5) ∈ R5 | ‖x‖ = 1

}
,

D+ =
{

(x1, . . . , x5) ∈ S4 | x5 ≥ 0
}
,

D− =
{

(x1, . . . , x5) ∈ S4 | x5 ≤ 0
}

and the open set
V =

{
(x1, . . . , x5) ∈ S4 | −1/3 < x5 < 1/3

}
.

Also let U1 := D+ ∪ V , U2 := D− ∪ V and identify S3 with the equator
{

(x1, . . . , x5) ∈ S4 | x5 = 0
}
.

Using "bump" functions we can obtain a partition of the unity f1, f2 : S4 → [0, 1] such that they depend
only on the "height" x5 and fi |Ui\V≡ 1. Also the clutching function ϕ : S3 → SU (2) can be composed with

a smooth "perpendicular" retraction of V to S3, to obtain a transition function ρ : V → SU (2) independent
of x5.

Under this conditions is clear that

• df2 = ∂f2
∂r dr, and
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• If

ρ =

[
z −w̄
w z̄

]
any four form depending on z,z̄, w and w̄ is zero, since these functions depend only on three
variables.

We are in position to apply the previous results to obtain that

det (Ω) = 4 (f2 − 1)
2
f2

2 dzdz̄dwdw̄ − (f2 − 1) f2df2 ∧A.
Where A = 2 (z̄dzdwdw̄ + w̄dzdz̄dw − 2 (zdz̄dwdw̄ + wdzdz̄dw̄)). However, by construction we have that
dzdz̄dwdw̄ = 0 and so ∫

S4

det (Ω) =

(∫ 1

−1

(
(1− f2) f2

∂f2

∂r

)
dr

)∫
S3

A.

First, notice that by construction it follows that∫ 1

−1

(
(1− f2) f2

∂f2

∂r

)
dr = −1

6
.

Finally since the second Chern class in this case is the determinant of the curvature times
(
i

2π

)2
, we get

Proposition 5.2. The second Chern class associated to a clutching function ϕ : S3 → SU (2) is given by

c2 =
1

24π2

∫
S3

A.

Here A is a 3-form given by

2 (z̄dzdwdw̄ + w̄dzdz̄dw − 2 (zdz̄dwdw̄ + wdzdz̄dw̄))

and the functions z, w : S3 → SU (2) are determined by the clutching function, ϕ =

[
z −w̄
w z̄

]
.

5.3. A non trivial TC structure over a trivial vector bundle

It is already known that there are trivial vector bundles with non trivial TC structures over them. In this
section we are going to use such a structure to show that:

Theorem 5.3. There exists a TC structure ξ =
{
E → S4, {U1, U2, U3} , ρij : Ui ∩ Uj → SU (2)

}
such that

E → S4 is a trivial bundle, and such that c−1
2 (ξ) = −1, implying that the TC structure is non trivial.

This in particular highlights how the TC characteristic classes depends on the TC structure and not on the
equivalence class of their underlying bundle.

Now, to prove this theorem we are based on the construction made by D. Ramras and B. Villareal ([RV],
Chapter 3). In what follows, we �rst de�ne the vector bundle by de�ning an open cover on S4 and transition
functions on them. This de�nes a TC structure

ξ =
{
E → S4, {U1, U2, U3} , ρij : Ui ∩ Uj → SU (2)

}
.

Then by considering the (−1)-powers of these transition functions we also obtain the (−1)-th associated
bundle, E−1.
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Figure 5.3.1. Retraction r : D− → D3

Next we are going to use Lemma 3.1 of [RV] to show that both vector bundles obtained can be described, up
to isomorphism, by a given clutching functions. Then on one hand by showing that the clutching function
associated to E is trivial, we conclude that E is trivial. On the other hand, we use the clutching function
associated to E−1 together with the formulas of the previous sections, to conclude that c−1

2 (ξ) = −1.

5.3.1. Description of the TC structure: We outline how their initial construction can be made in
the smooth category, which allows us to reduce the problem of computing the Chern class by using Clutching
functions.

We are constructing a TC structure on a vector bundle de�ned over S4 in terms of a triple open cover
{U1, U2, U3} and transition functions between them. These transition functions themselves will be described
in terms of two functions

ρ1, ρ2 : D3 → SU (2) ,

where D3 is the 3-dimensional closed disk of radius 1.

For this, take
S4 =

{
x = (x1, . . . , x5) ∈ R5 | ‖x‖ = 1

}
and for 1/5 > ε > 0 consider the triple open cover

U1 :=
{

(x1, . . . , x5) ∈ S4 | x5 > −ε
}
,

U2 :=
{

(x1, . . . , x5) ∈ S4 | x5 < 0, x4 > −ε
}

and
U3 :=

{
(x1, . . . , x5) ∈ S4 | x5 < 0, x4 < ε

}
.

Also call D− =
{

(x1, . . . , x5) ∈ S4 | x5 ≤ 0
}
and identify the closed 3-dimensional disk with

D3 =
{

(x1, . . . , x5) ∈ S4 | x5 ≤ 0, x4 = 0
}
.

There is a natural retraction r : D− → D3 leaving D3 �xed (See Figure 5.3.1). This is a smooth function
almost everywhere.

Take V = D3 ∩ U1. Then we get that

V = {(x1, . . . , x5) ∈ D3 | x5 > −1/3} .
Now suppose that the functions ρ1, ρ2 : D3 → SU (2) are smooth functions such that:

• They are independent of the radius in D3 in V .
• They are commutative in the closure of V .
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We de�ne the transition functions ρij : Ui ∩ Uj → SU (2) by

• ρ12 := ρ1 ◦ r.
• ρ23 := ρ2 ◦ r.
• ρ13 := (ρ1 ◦ r) (ρ2 ◦ r) .

Since r (U1 ∩ U2 ∩ U3) ⊆ V by construction, the previous cocycles commute with each other in their common
domain U1 ∩ U2 ∩ U3. This transition functions allow us to construct a smooth vector bundle E → S4, and
so we have constructed a TC structure

ξ =
{
E → S4, {U1, U2, U3} , ρij : Ui ∩ Uj → SU (2)

}
.

5.3.2. Associated clutching functions: Before dealing with the result we need, it is important to
highlight the following. Suppose E1 →M and E2 →M are smooth vector bundles with classifying functions
fi : M → BSU (n), i = 1, 2. If there is a (non necessarily continous) homotopy between f1 and f2, and there
is class c ∈ H∗ (BSU (n)), it follows that f∗1 (c) = f∗2 (c) ∈ H∗ (M). Now consider the curvatures Ω1 and Ω2

for E1 and E2, respectively. By the Chern-Weil isomorphism, we get that c (Ω1) = f∗1 (c) and c (Ω2) = f∗2 (c),
and thus c (Ω1) = c (Ω2). In particular if there is a continuous (but not smooth) isomorphism of vector
bundles between E1 and E2, their classifying functions will be homotopic and their characteristic classes will
coincide.

Now consider the closed sets

C1 :=
{

(x1, . . . , x5) ∈ S4 | x5 ≥ 0
}
,

C2 :=
{

(x1, . . . , x5) ∈ S4 | x5 ≤ 0, x4 ≥ 0
}

and

C2 :=
{

(x1, . . . , x5) ∈ S4 | x5 ≤ 0, x4 ≤ 0
}
.

It is clear that there is a retraction ri : Ui → Ci leaving Ci�xed, for i = 1, 2, 3. Notice that by applying
on U2 ∩ U3 r2 �rst and then r3, we obtain a retraction r23 : U2 ∩ U3 → C2 ∩ C3 leaving C2 ∩ C3 �xed. For
U1 ∩ U2 we apply �rst r2 and then r3, we obtain a retraction r12 : U1 ∩ U2 → C1 ∩C2 leaving C1 ∩C2 �xed,
and similarly we obtain r13 : U1 ∩ U3 → C1 ∩C3 leaving C1 ∩C3 �xed. Via this restrictions of ρij we obtain
transition functions for the closed cover {C1, C2, C3}:

ρ̃ij : Ci ∩ Cj → SU (2) .

This new transition functions are clearly homotopic to ρij via the retractions rij . Thus, they characterized
vector bundles over S4 whose classifying functions are homotopic.

Consider the identi�cation S3 ∼=
{

(x1, . . . , x5) ∈ S4 | x5 = 0
}
. This setting allow us to apply Lemma 3.1 of

[RV]. There they show that the bundle induced by these three cocycles is isomorphic to the vector bundle
with clutching function ϕ : S3 → SU (2) de�ned for x = (x1, . . . , x5) by

ϕ (x) :=

{
ρ1 (r (x)) ρ2 (r (x)) x4 ≥ 0.

ρ1 (r (x)) ρ2 (r (x)) x4 ≤ 0.

The function ϕ can clearly be extended continuously to the whole disk D−, since we de�ned r on D−. This
implies that ϕ is null homotopic, and thus, the vector bundle given by these cocycles is trivial.
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Now lets consider the same construction but using the cocycles given by σij = ρ−1
ij . They give rise to the

(−1)-th associated bundle by de�nition. Once again allow us to use Lemma 3.1 of [RV]. We conclude that
this bundle can be obtain, up to isomorphims, by the clutching function given by

φ (y) :=

{
ρ−1

1 (r (x)) ρ−1
2 (r (x)) x4 ≥ 0.

ρ−1
2 (r (x)) ρ−1

1 (r (x)) x4 ≤ 0.

In this case this function cannot be extended continuously to D− if ρ1 and ρ2 do not commute everywhere
in D3. So φ is not necessarily null homotopic.

5.3.3. Existence of a non trivial TC structure: From the previous part, we need to show that it is
possible to obtain a non null homotopic clutching function φ. For this it is enought to display two functions
ρ1, ρ2 : D3 → SU (2) such that they commute in ∂D3

∼= S3, giving us a non zero Chern class for the bundle
with clutching function φ : S3 → SU (2).

We can describe φ in terms of the northern and southern hemispheres of S3, D+ and D−, respectively. Each
of them can be identify with the 3-dimensional disc D3. Then we get that

φ (y) :=

{
ρ−1

1 ρ−1
2 inD+,

ρ−1
2 ρ−1

1 inD−.

For brevity allow us to write the matrices of SU (2) as

(a, b) :=

[
a −b̄
b ā

]
.

Proposition 5.4. Consider D3 under spherical coordinates and take

ρ1 (α, β, r) :=

{(
sin
(
π
2 r
)
eiα, cos

(
π
2 r
))
, 0 ≤ β ≤ π/2.(

sin (rβ) eiα, cos (rβ)
)

π/2 ≤ β ≤ π.

ρ2 (α, β, r) :=

{(
− cos (πr) e2iβ , sin (πr)

)
, 0 ≤ β ≤ π/2.

(cos (πr) , sin (πr)) π/2 ≤ β ≤ π.
then the second Chern class of φ is c2 (φ) = −1.

Proof. Recalled from the previous section that if we make φ = (z, w), the second Chern class of φ is
then given by

c2 =
1

24π2

∫
S3

A.

Where A is a three form given by

2 (z̄dzdwdw̄ + w̄dzdz̄dw − 2 (zdz̄dwdw̄ + wdzdz̄dw̄)) .

We can split this integral as ∫
S3

A =

∫
D−

A+

∫
D+

A.

Now, call ρ−1
1 ρ−1

2 = (z1, w1) and ρ−1
2 ρ−1

1 = (z2, w2). Because of orientations, we get∫
S3

A =

∫
D3

A2 −
∫
D3

A1 =

∫
D3

(A2 −A1)
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where

A1 = 2 (z̄1dz1dw1dw̄1 + w̄1dz1dz̄1dw1 − 2 (z1dz̄1dw1dw̄1 + w1dz1dz̄1dw̄1))

A2 = 2 (z̄2dz2dw2dw̄2 + w̄2dz2dz̄2dw2 − 2 (z2dz̄2dw2dw̄2 + w2dz2dz̄2dw̄2)) .

From this we have for 0 ≤ β ≤ π/2 that

(z2, w2) = ρ−1
2 ρ−1

1 =
(
− sin

(π
2
r
)

cos (πr) e−(α+2β)i − sin (πr) cos
(π

2
r
)
,

cos (πr) cos
(π

2
r
)
e2iβ − sin (πr) sin

(π
2
r
)
e−iα

)
(z1, w1) = ρ−1

1 ρ−1
2 =

(
− sin

(π
2
r
)

cos (πr) e−(α+2β)i − sin (πr) cos
(π

2
r
)
,

cos (πr) cos
(π

2
r
)
e−2iβ − sin (πr) sin

(π
2
r
)
eiα
)
,

while for π/2 ≤ β ≤ π we have

(z2, w2) = ρ−1
2 ρ−1

1 =
(
sin (rβ) cos (πr) e−αi − sin (πr) cos (rβ) ,

− sin (πr) sin (rβ) e−iα − cos (πr) cos (rβ)
)

(z1, w1) = ρ−1
1 ρ−1

2 =
(
sin (rβ) cos (πr) e−αi − sin (πr) cos (rβ) ,

− sin (πr) sin (rβ) eiα − cos (πr) cos (rβ)
)
.

Observe that in both cases we have that z1 = z2 y w1 = w̄2. Then we have to integrate the form

A2 −A1 = 4 (2z1dz̄1 − z̄1dz1) dw1dw̄1︸ ︷︷ ︸
B1

+6 (w1dw̄1 − w̄1dw1) dz1dz̄1︸ ︷︷ ︸
B2

.

Now consider the decomposition z1 = z = x+ yi and w1 = w = u+ vi, where x, y, u and v are real functions.
Then it follows that

(2z1dz̄1 − z̄1dz1) = (xdx+ ydy) + 3 (ydx− xdy) i,

dw1dw̄1 = −2idu ∧ dv,
(w1dw̄1 − w̄1dw1) = 2 (vdu− udv) i

and dzdz̄ = −2idx ∧ dy. This gives us
B1 = 6 (ydx− xdy) du ∧ dv − 2i (xdx+ ydy) du ∧ dv

and

B2 = 4 (vdu− udv) dx ∧ dy.

Since we only need to compute the real part of the �rst form, we consider the form 6 (ydx− xdy) du ∧ dv
instead of all of B1. Then by de�nition we get

ydx− xdy =

(
y
∂x

∂α
− x ∂y

∂α

)
dα+

(
y
∂x

∂β
− x∂x

∂β

)
dβ +

(
y
∂x

∂r
− x∂y

∂r

)
dr,

vdu− udv =

(
v
∂u

∂α
− u ∂v

∂α

)
dα+

(
v
∂u

∂β
− u∂x

∂β

)
dβ +

(
v
∂u

∂r
− u∂v

∂r

)
dr,

du ∧ dv =

(
∂u

∂α

∂v

∂β
− ∂v

∂α

∂u

∂β

)
dαdβ +

(
∂u

∂α

∂v

∂r
− ∂v

∂α

∂u

∂r

)
dαdr +

(
∂u

∂β

∂v

∂r
− ∂v

∂β

∂u

∂r

)
dβdr
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and

dx ∧ dy =

(
∂x

∂α

∂y

∂β
− ∂y

∂α

∂x

∂β

)
dαdβ +

(
∂x

∂α

∂y

∂r
− ∂y

∂α

∂x

∂r

)
dαdr +

(
∂x

∂β

∂y

∂r
− ∂x

∂β

∂y

∂r

)
dβdr.

Now call J1 := (ydx− xdy) du ∧ dv and J2 := (ydx− xdy) du ∧ dv. Then we have

J1 =

[(
y
∂x

∂α
− x ∂y

∂α

)(
∂u

∂β

∂v

∂r
− ∂v

∂β

∂u

∂r

)
−
(
y
∂x

∂β
− x∂x

∂β

)(
∂u

∂α

∂v

∂r
− ∂v

∂α

∂u

∂r

)
+

(
y
∂x

∂r
− x∂y

∂r

)(
∂u

∂α

∂v

∂β
− ∂v

∂α

∂u

∂β

)]
dα ∧ dβ ∧ dr,

J2 =

[(
v
∂u

∂α
− u ∂v

∂α

)(
∂x

∂β

∂y

∂r
− ∂x

∂β

∂y

∂r

)
−
(
v
∂u

∂β
− u∂x

∂β

)(
∂u

∂α

∂v

∂r
− ∂v

∂α

∂u

∂r

)
+

(
v
∂u

∂r
− u∂v

∂r

)(
∂x

∂α

∂y

∂β
− ∂y

∂α

∂x

∂β

)]
dα ∧ dβ ∧ dr.

Then by replacing we get A2 −A1 = 24 (J1 + J2) , and even further

c2 (φ) =
1

π2

∫
(J1 + J2) .

Where by using computational software we obtain that
∫

(J1 + J2) = −π2, giving us c2 (φ) =-1.

We conclude that c−1
2 (ξ) = −1 for our TC structure, implying that the TC structure is non trivial. �
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