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Abstract

Let p: E — M be a principal G-bundle, over a manifold M. Assume that we can find an open cover of M
together with trivializations over them in such a way that the corresponding transition functions commute
with each other whenever they are simultaneously defined. Such data defines a transitionally commutative
(TC) structure on the principal bundle. (We make this precise in Chapter 1.)

In this thesis we developed characteristic classes for TC structures by using an algebraic-geometric method.
For this we first obtain generators of the cohomology with real coefficients of the classifying space for TC
structures over principal G-bundles, a space known as BeonG. We then show that such cohomology is in
one to one correspondence with TC characteristic classes. Next, we show how to use Chern-Weil theory to
compute the TC characteristic classes for each of these generators. This is done through what we call the k-th
associated bundle of the TC structure. After developing this theory, we illustrate in some explicit examples
how this can be applied.

Additionally, we show that BeomGLy, (R) can be obtained, up to homotopy equivalence, as a subspace of the
Grassmanians.

Keywords: principal bundles, commutative cocycles, characteristic classes, commutative Grassmanians,
Chern-Weil theory.

Resumen

Sea p : E — M un G-fibrado principal sobre una variedad M. Asumamos que se puede encontrar un
cubrimiento abierto para M, junto trivializaciones sobre sus abiertos, tal que las funciones de transicion co-
rrespondientes conmutan entre si en la interseccién de sus dominios. Esta informacién define lo que llamamos
una estructura transicionalmente conmutativa (TC) en el fibrado principal. (Detallamos esto en el Capitulo
1.)

En esta tesis desarrollamos las clases caracteristicas para las estructuras TC al usar un método algebraico-
geométrico. Para esto, primero obtenemos un conjunto de generadores de la cohomologia con coeficientes
reales del espacio clasificante para estructuras TC sobre G-fibrados principales. Este espacio es conocido
como B.o,mG. Luego mostramos como existe una correspondencia uno a uno entre dichas clases y las clases
caracteristicas TC. En seguida, mostramos como podemos usar teoria de Chern-Weil para calcular las clases
caracteristicas TC respectivas a cada uno de estos generadores. Para esto definimos los k-ésimos fibrados
asociados de la estructura TC. Después de desarrollar esta teoria, mostramos, a través de unos ejemplos
explicitos, como puede ser aplicada.

Adicionalmente, mostramos que BeomGLy, (R) puede ser obtenido, salvo equivalencia homotoépica, como
subespacio de los Grasmannianos.

Titulo en Espanol: Fibrados transicionalmente conmutativos y clases caracteristicas.

Palabras Clave: Fibrados principales, cociclos conmutativos, clases caracteristicas, grasmaniano conmuta-
tivo, teoria de Chern Weil.
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Introduction

During the 20th century, algebraic topology saw great advancements in the theory of fiber bundles. These
are onto maps p : £ — M such that each fiber is the same up to homeomorphism via local trivializations.
Fiber bundles were first introduced by H. Seifert (1907-1966) in his second PhD thesis. In it, he laid the
grounds to study Poincare’s conjecture as well as fiber bundles, by focusing on the study of the total space
E. He worked with 3-dimensional closed manifolds and defined total spaces as sets of curvatures, each having
a point over the manifolds. Later on, H. Whitney (1907-1989) switched the focus onto the base space, M,
giving rise to invariants for fiber bundles. This started a theory that would lead to important results such as
the Riemann-Roch theorem.!

A particular kind of fiber bundles are principal G-bundles, where G is a topological group. These are fiber
bundles, p : E — M, that can be seen locally as a product of an open set of M and G and have a free
G-action on the fibers. For these fiber bundles J.W. Milnor proved that they are classified, up to equivalence,
by the homotopy classes of maps from M into a space BG. This space is called the classifying space of G. For
simple cases, this allows us to obtain all the possible classes of principal G-bundles. For example, if G = Z,
BG = S and if M = S*, then all the possible principal bundles are classified by [Sl, Sl] = 7.

A key tool to distinguish between principal G-bundles, up to isomorphism, are the so called characteristic
classes. These are natural transformations between principal bundles over a base space M and its cohomology.
Therefore, characteristic classes of principal GG-bundles are in a one to one correspondence with the cohomol-
ogy groups of the classifying space BG. This is, for a principal bundle E — M and a class ¢ € H* (BG,R),
there is natural transformation given by an assignment E — c(E) € H* (M,R). Even further, when we work
on the category of smooth manifolds, one can aim to compute the characteristic classes of principal G-bundles
using tools from differential geometry. This is known as Chern-Weil theory (after Shiing-Shen Chern and
André Weil). A rather interesting result of this theory is that for compact Lie groups the homotopical and
the geometrical methods lead to the same characteristic classes.

Once again, a principal G-bundle over a manifold M can be seen locally as a product of an open set U C M
and G. Such an identification is called a trivialization. The collection of the trivializations of an open cover
{Ui},¢; determine the equivalence class of the G-bundle. In an informal way they carry the gluing information
of the patches U x G. Formally, this information is carried on the transition maps, or cocycles, obtained from
the trivializations. These are functions p : U; N U; — G satisfying what is known as the cocycle condition.
From them one can reconstruct a principal G-bundle up to equivalence. They are also important as they
allow us to construct a function M — BG classifying the bundle up to homotopy. Intrinsically they also
carry the information to determine the curvature in the case of smooth bundles.

LAn excellent recount of the history of fiber bundles can be found in “A History of Manifolds and Fibre Spaces: Tortoises and
Hares.” by John McCleary.
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We are particularly interested in principal G-bundles for which we can find local trivializations for which
the corresponding transition functions commute with each other. The motivation to study this came on
a seemingly different subject, the sets of commuting n-tuples of a Lie group, Hom (Z",G). The study of
the former, as well as some related concepts, was motivated by their connections with some quantum field
theories (see the intro of [TS]). Mathematically speaking, one can endow the family Hom (Z",G), n € N,
with the structure of a simplicial space. By seeing each Hom (Z", G) as a subspace of G", they inherit the
simplicial structure of the Bar construction for the classifying space BG. As such, it is natural to study the
geometrical realization of the simplicial space Hom (Z*, G), which is called B, G. This space has a natural
inclusion into BG.

Recently while studying the cohomology of B.omG, Alejandro Adem and Jose Manuel Gomez (see [AG])
discovered that the space Bqom G serves as a new type of classifying space. Consider a function f : M — BG
classifying a principal G-bundle. They proved that up to homotopy, there is a unique factorization

BcomG

A

M —— BG

if and only if there is an open cover of M on which the bundle is trivial over each open set and such that on
intersections the transition functions commute when they are simultaneously defined (Theorem 2.2 of [AG]).
The data consisting the bundle, the cover and the trivializations is what we call a TC structure. In [AG]
Adem and Goémez proved that B.,,G serves as a classifying space for TC structures.

In the same work, Adem and Gémez also computed the cohomology of the path connected component of
BeomG containing the class of the tuple with only the identity, (1,1,...,1). Here, we expand their results by
presenting a set of generators when G is either U (n), SU (n) or Sp (n). For these Lie groups BeomG is path
connected. In particular, we consider homomorphisms ®* : H* (BeomG,R) — H* (BeomG,R) called power
maps, and the map ¢ : H* (BG,R) - H* (BcomG,R) induced by the natural inclusion. We show that the
subset

{@*oi(c) | ce H* (BG,R),k € Z\ {0}}

generates, as an algebra, all of H* (B.omG,R). We use these results to develop the theory of characteristic
classes for TC structures, or TC characteristic classes.

Moreover, the main goal of this thesis is to extend Chern-Weil theory to TC structures when G is either
U (n), SU (n) or Sp (n).To do this we follow the scheme just presented for principal and vector bundles. We
first define TC characteristic classes, and then we use B, G to obtain TC characteristic classes through
homotopy theory; we show that they are in a one to one correspondence with H* (BcomG,R). Then we
developed the concepts necessary to use Chern-Weil theory. For a vector bundle £ — M endowed with a TC
structure we associate to it a family of bundles E* — M. These are called k-th associated bundles. Then
we consider the TC characteristic class associated to the generator ®* o ¢ (c). Its class in H* (M, R) is the
same as the class of ¢ (Ek ) This reduces the computation of the TC characteristic class to the computation
of ¢ (Ek), which can be done by using Chern-Weil theory.

Additionally, we found an alternative way to describe the classifying space for TC structures over vector
bundles. We called it the commutative Grassmannian. This is achieved by studying the construction of the
classifying function of a vector bundle, we were able to obtain the commutative Grassmannian as a subspace
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of the regular Grassmannian. This approach allowed us to adapt the ideas that make the Grassmannians a
classifying space for vector bundles to our new purpose.

This thesis is organized in 5 chapters as follows: In Chapter 1 we lay the ground concepts regarding TC
structures. We present a review of the relevant concepts of vector bundles and principal G-bundles that allow
us to define TC structures and the equivalence relations between them. In the second chapter we construct
the commutative Grassmannian. In Chapter 3 we focus on the cohomology of BeomG, for G =U (n), SU (n)
and Sp (n), as previously described. In Chapter 4 we developed the theory of characteristic classes for TC
structures over vector bundles. For this we first review characteristic classes for vector bundles as well as the
Chern-Weil theory for them. Then we show how to adapt it to TC structures through both the results of
Chapter 3 and k-th associated bundles. In the last chapter of this thesis we provide some explicit examples
of calculations of TC characteristic classes.



CHAPTER 1

Preliminaries

In this chapter we establish the basic language to talk about what we call Transitionally Commutative (TC)
structures. These structures consists of either a vector or principal bundle, with the additional property of
having transition maps that commute with each other. Thus, we lay down the definitions and basic results
of this theory.

We start this chapter with the basic definition of principal and vector bundles, paying special attention to
the transition functions. Then we move towards the definitions of Transitionally Commutative structures
and their basic properties. Here we find general results for both of this type of fiber bundles, as well as some
particular results for TC structures over vector bundles.

We remark that throughout this chapter M will denote a compact manifold and G denotes a Lie group.

1.1. Basic concepts

In this section we briefly introduce the basic notions and constructions concerning vector and principal
bundles. In such spirit we avoid proofs of the results stated here. A good source for vector bundles is the
work of Hatcher [Hatcher II|, while Hussemoller [Husemoller| is a good source for the general theory of
fiber bundles and principal bundles.

Fiber bundles generalize the idea of a Cartesian product. When F' is a topological space, the product M x F
comes naturally endowed with the projection map

m:MxF—M
(z,y) —a

which has a fixed structure on its fibers 7, (z) = {2} x F. Vector and principal bundles are examples of
fiber bundles where the fiber is a vector space and a topological group, respectively. However, they take into
consideration the extra structure of these fibers. In a sense we will make precise ahead, vector bundles over
M are equivalent to principal U (n)-bundles.

DEFINITION 1.1. A principal G-bundle is a surjective map 7 : E — M, with a free action of G on E such
that there is an open cover {U;},.; of M and homeomorphisms ¢; : 71 (U;) — U; x G. These maps are
called trivializations and satisfy the following properties:

4
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(1) There is a commutative diagram

where 1 : U; x C™ — U; is the natural projection.
(2) Every map ¢; is a G-equivariant map, where the action on U; X G is given by right multiplication
on the second component.

The space F is called the total space of the bundle, while M is referred to as the base space.

Two principal bundles over the same space M, p1 : E; — M and ps : E5 — M, are isomorphic if there exists
a G-equivariant homeomorphism f : F; — Fs such that the diagram

by 4f>E2

N

commutes.

Suppose that 7 : E — M is a principal bundle with a cover {U;}. ., and trivializations

il
{QOZ : 71'71 (Ul) — Uz X G}iEI'

By comparing two different trivializations we obtain induced maps p;; : U; N U; — G called transition

functions which are characterized by

(ij(pi_l : (U7QUJ) XG*)(U@QUJ‘) x G

(,9) = (@, pi (x) g) -
Transition functions could be interpreted as the gluing instructions which determine the bundle completely,
as they provide the information to obtain a possibly complex global structure from a locally trivial behavior.

Furthermore these functions determine completely a principal bundle as we see next. From the covering
{Ui};c; and functions {p;; : U; N U; — G} we first build the space

E::U(UiXG>/N,
iel
where two pairs (2;,v) € U; x G and (zj,w) € U; x G are related under ~ if z; = z; € U; N U;, and

pij (x)v = w. This is well defined thanks a property of transition functions called the cocycle condition:
Pij = PikPkj-
Now we consider the natural map given by the first projection 7 : £ — M. This is a principal bundle where

its trivializations are given by the natural maps U; x G < 7! (U;) which are naturally homeomorphisms.
They induce trivializations having p;; as their transition functions. Finally it is not difficult to see that E
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and E are isomorphic as principal bundles: there is a map f : E — E that makes the following diagram
commutes

Pt .p
M4
and such that f is a G-equivariat homeomorphism. The map f is induced by the natural map
|_|<pi_1:|_|Ui><G—>E
il iel
which is constant on the equivalence classes of the relation ~, since the transition functions satisfy
gpjogo;l:UiﬂUj XG—)UiﬂUj x G
(@,9) = (z,pij (x) g) -

The key observation here is that the functions {p;; : U; N U; — G} do not need to come from trivializations to
allow us the construction of E. They only need to satisfy the cocycle condition in order to induce a principal
bundle on M. In conclusion a principal bundle can be characterized from either the transition functions or
the trivializations of a given cover of the base space.

Strictly speaking vector bundles are different objects than principal bundles, since the fiber is not a group but
a vector space. When the fiber is a complex vector bundle of finite dimension, the model of the fiber is C™.This
is, we have an onto map p : E — M, where there is a cover {U;} and trivializations ¢, : 7= (U;) — U; x C",
such that the following diagram is commutative and linear on fibers.

a1 (Ul) 4><Pi U, xC"
\ \L
ust
U;
such that they are a linear bijection on each fiber. The linearity implies the compositions ¢; o ¢; L are of the
form
(pjogoi_llUiﬂUj XC”—)UZ‘HUJ‘ x C"
(z,9) = (2, pij (z) 9)

where the transition functions take the form p;; : U; NU; — GL, (C). From this we can construct the frame
bundle with structure group GL,, (C): consider the space of n-tuples of linearly independent elements,

Fg:={(e1,...,en) € E" | p(e;) =p(e1) foralliand {ey,...,e,} isLL} C E™

The set Fg is endowed with the subspace topology of E™. There is a natural surjective mapping 7 : Fg — M
by considering the image under p of the first component. Let’s see that this is a principal GL,, (C)-bundle.
The action of A € GL,, (C) on e = (eq,...,e,) € Fg is given by

n n
e - A:= E b]j@j,..., E bnd‘e]‘ s
j=1 j=1
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where A~!'=[b;;]. For the trivializations of 7, suppose the trivializations of the vector bundle have the form
wi:p ' (U;) = Uy x C"
€ (p (e) i (6)) ’

where the function h; : p~! (U;) — C" is a linear bijection over each fiber of p. If z € U; and (ey,...,e,) €
71 (x) C Fg, then {h; (e1),...,h;(e,)} is a basis of C", thus we can consider the change of basis to the
standard basis. This allow us to defined a continuous assignment 7! (U;) — U; x GL,, (C), which can be
checked to have the properties of a trivialization.

Conversely, if 7 : E — M is a principal GL,, (C)-bundle, one can obtain a vector bundle via the balanced
construction. For this consider the right action of G = GL, (C) on E x C" given for A € GL, (C) and
(e,v) € Ex C" by

(e,v) A= (e A, A1),
Consider the composition

ExCrX o p "oy,

with pr;the projection on the first component. This composition can be factored through space of orbits of
the previous action Ey := (E x C") /G, giving us a surjective map p : Eyg — M. This map can be proven
to be a vector bundle having trivializations over the same cover as the original principal bundle, and so,
they have the same transition funcitons. If we now apply the previous construction to this vector bundle we
recover the equivalence class of 7 : E — M, and the opposite is also true.

In conclusion having a vector bundle is then equivalent to having a principal GL,, (C)-bundle, or just transition
funcitons p;; : U; N U; — GL,, (C). Furthermore, when M is compact, one can endow the total space with
an euclidean metric in such a way that the trivializations are isometries on the fibers. This in turn implies
that the transition functions have values on U (n), that is we can assume p;; : U; NU; — U (n) . One can
then repeat the same constructions to see that principal U (n)-bundles are equivalent to vector bundles over
a compact space or just transition functions on U (n) for a given open cover of M.

1.2. Transitionally commutative vector and principal bundles

Here we develop the basic theory formalizing the study of vector or principal bundles with commutative
transition functions.

DEFINITION 1.2. Suppose w : E — M is a vector or principal bundle. We define a commutative triv-
ializations on 7 : £ — M as a choice of an open cover {U,},.; of M, together with trivializations,
0o o T 1 (Uy) = U, x G such that the transition functions {p,s} associated to them commute with each
other. That is if x € U, N Ug N U, N Up then

Pap (z) P~o (z) = P~o (z) Pap ().

REMARK 1.3. By the comments made at the end of the previous section, the previous definition applies as
well to vector bundles by taking U (n) or GL, (C) as the codomain of the transition functions.
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DEFINITION 1.4. Suppose 7w : E — M is a vector or principal bundle. A Transitionally Commutative
(TC) structure on 7 : E — M is a choice of a commutative trivialization for it. We denote a TC structure
as (m: B — M, {Uqa} e » Pa) or more briefly as (E,{Ua},c;,¥a) when the map and the base space M are
implicit.

REMARK 1.5. Unless stated otherwise, whenever we state a result for TC structures without specifying
whether it is on a vector or principal bundle, it means the result applies for both. We do this to avoid
unnecessary repetitions of the same argument.

EXAMPLE 1.6. Consider an open cover {U;},.; of a space M together with a collection of functions
{pij : Ui N Uj — GLn (C)}

such that they satisfy the cocycle conditions. If the functions {p;;} commute with each other then the vector
bundle constructed from them has naturally a TC structure.

As we are defining a local condition on bundles, we need to carry this into the notion of equivalent TC
structures over the same space M.

DEFINITION 1.7. Let (771 B — M, {Ua}aep@a) and (772 : By — M, {Vv}yewgbv) be two TC structures
over M. We say that these two structures are equivalent if there is a TC structure on a principal G-bundle
or vector bundle 7 : E — M x [0, 1] accordingly,

(m:E— Mx[0,1],{Wi},crc,G)

such that:

e The cover {W;}, , intersected to M x {0} is a refinement of {U,},.; and its intersecting with
M x {1} is a refinement {V“f}weJ'

7T_1 (M X {0}) = E1 and 7T_1 (M X {1}) = Eg.

o 7 lr-1(rxqop= "1 and T [x-1(arx(1})= T2

* G lrrwinmx{oh= Pa =T (WinM x {0}) and G; [x—1(w,nmrx{1})= P,

w5 H(WinM x{1})"
Here we are abusing notation by identifying M with M x {0} and M x {1}.

We remark that the above definition defines an equivalence relation. We denote by Vect:’™ (M) to the
collection of equivalence classes of TC structures on vector bundles of dimension n over M, while Bund$, (M)
refer to those of principal G-bundles.

Notice that this equivalence relationship has stronger requirements than the equivalence relationship for
vector and principal bundles. The extra requirements are thought to relate the data of a TC structure with
homotopical information of the base space, in a process that will be made clear ahead.

Besides the previous definition, there is an equivalent way to obtain a homotopical notion of TC structure.
On the work of Adem and Gomez [AG] they show there is a subspace of the classifying space of G, BG,
known as the classifying space for commutativity, Bco,G. Then they showed that for a compact manifold
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M, a principal bundle £ — M admits a TC structure if only if its classifying function f: M — BG admits
a lifting, up to homotopy, through B.omG,

BcomG
/ \L
f
M —— BG.

It can be shown that a TC structure on a principal G- bundle or vector bundle can be defined in an equivalent
way as a lifting up to homotopy for its classifying function.

What follows next is an account of the basic properties of TC structures, some of which are equivalent to those
of principal and vector bundles. Let’s begin saying that it is immediate from the definition that refinements
of covers, with the corresponding restrictions of the trivializations, do not change the equivalence class of the
TC structure. Next we will see there are equivalent notions of pullbacks, as well as a criteria to determine
when a commutative square

E14f>E2

™1 \L ) \L
f
N—M
gives in fact a pullback structure over N from one on M.

PROPOSITION 1.8. Let f : N — M be a continuous map, and (7r :E— M, {Ua}aelv‘»@a) a TC structure.

Then the pullback f* (E) — N has a natural TC structure over the cover {f~! (U@>}ae1'

PRrROOF. By definition we have

f(E) = {(z,e) e Nx E| f(z) =7 (e)}

where the principal bundle map is given by the projection 7 (z,y) = z. Its trivializations come from those
of E: if

Yo :m H(Uy) = Uy x G
e (m(€), Pa(€))
is a trivialization of E, then by taking
To i ML (f_:l (Ua)) — YU x G
(z,€) = (z,Pa (¢))

we obtain a trivialization of f* (E). By direct computation we see that if pns : UyNUg — G are the transition
functions of ¢, then the transition functions of 7, are given by

papof:fH(Us) N1 (Us) = G,

which commutes in their common domains. O

Now we continue with a criteria to know when a commutative square gives a pullback of TC structures.
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ProrosITION 1.9. Consider a map f: N — M and TC structures
(m1: By = N AVi}ier s 00)

and
(71-2 i By — M, {Ua}aeJ ) Qj)a) >
such that
e There is a commutative square
B > By
™1 \L 7T2l
f
N—sM
where f is G- equivariant
e The open cover {f )} wey 180 refinement of {Vi},.; satisfying that if f~Y(U,) C Vi, for
every (x,g) € f~1 (U, ) x G we have
b (£ (07 <x,g>)) = (f@),9)-
Then (w1 : By — N, {V;},c;,¢:) and (f* (By) = N, {f* )}aEJ , (ba) are equivalent TC structures.

On this result we have the extra requirement when compared to that equivalent result for regular principal
bundles, where the first condition is enough to obtain the same conclusion. Let us look in detailed what this
second condition is telling us. If =1 (U,) C V;, the last equality is equivalent to the following commuting
diagram

£ (Ua) % G 25 (51 (V) L iy (V) 25 U G

I

Ua.

This tells us that the restriction of the trivializations on V;_ to f~! (U,) somehow agrees with the trivializa-
tions we would give them via the pullback structure. We make this precise in the proof.

PROOF. Since refinements of the covers preserve the equivalence class of the TC structure, the second
condition says that we can refine the original TC structure on 7 : By — N by taking V,, = f~1 (U,).

Now, the pullback of f is given by
[T (Es) = {(z,

y) EN X Esy | f(z) =m2(y)}.
The projection over the first component I

E5) — N is the principal bundle, while the rest of the TC
structure is given by the cover { f~* )}a o7 = {Va}ae, and trivializations
$o 7 ([T (Ua) = [ (Ua) x G

(Ive) (:177(25042 (6)) )
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where ¢,z () is such that
7y (Uy) = Uy x G
e (ma(e), daz (€)).

We have to show that this TC structure is equivalent to (m By = N, {f‘l (Ua)}aeJ , Qi |f—1(Ua)>- For

this consider the space
E:=FE; x[0,1/2]U f* (Es) x [1/2,1] ) ~
where the relation ~ for y € F; is given by

w:1/2)~ ((m ). ). 1/2).
Then there is a natural map
F:E— Nx[0,1]
having a natural TC structure as follows: take the open cover {V,, x [0,1]},.; and trivializations
O, FH(V, x[0,1]) = Vo, x [0,1] x G
induced by the maps
(Vo) x [0,1/2] = Vi, x [0,1/2] x G
(y,t) = (T (¥) ,, Paz (y)
and
7 (Vo) x [1/2,1] = Vi, x [1/2,1] x G
((z,9),1) = (2,t, Pa2 (y)) -

Here by @2 and ¢o2 we mean the second components of ¢, and ¢, respectively. The conditions V,, =
f~Y(U,) and

ba (F (90" (2.9))) = (f (@) .9)

guarantee that the two previous maps indeed induce a well defined map F~!(V, x [0,1]) = V, x [0,1] x G.
That last condition also tells us that if pog, Tag : Vo M Vs — G and are the transition functions related to the
trivializations ¢, and ., respectively, then it follows that

Tap = f 0 pPap
so it is clear that the map F' : E — N x [0,1] has a TC structure, and this defines the desired equivalence
between TC structures. O

COROLLARY 1.10. Let (7: E — M,{Uus},c; ¢a) be a TC structure, and consider maps f : N — M and
g: W — N, then we have

o The pullback TC structure over the identity is equivalent to the original TC structure.
e The pullback TC structure over (go f)* (E) with the cover (go f)™ " (Ua)ger is equivalent to the
(double pullback) TC structure on g* (f* (E)), over the same cover.

PROPOSITION 1.11. Let (ﬂ' cE— M AU} s <pi) be a TC structure over either a principal or vector bundle,
and f1, fo : N — M be two homotopic functions. Then the TC structures over N obtained via the pullbacks
p1: fi(E) = N and py: f5 (E) = N are equivalent.
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PROOF. If we have a homotopy T : N x [0,1] — M, then we have the pullback structure given by T,
{m LT (B) = N x [0,1] {77 (U))} ., T} :
The map m : T* (E) — N x [0, 1] is the restriction of the projection on the first coordinate,
(N x[0,1]) x E— N x [0,1].
And if we consider w3 : (N x [0,1]) x E — E the projection on E, 7; is the composition
(T ) B N () £S5 U x K,

where K is either G or C™ depending on whether we are considering principal G-bundle or vector bundles,
respectively. The TC structure on T* (E) — N x [0, 1] defines an equivalence between the TC structures on
p1: fi(E)— Nand ps: f5 (E) — N. O

1.2.1. Contraction of transition functions for TC vector bundles: Next we prove another tech-
nical result we will need later on. Consider a vector bundle 7 : E — M with trivializations ¢; : 7= (V;) —
Vi x C™ where ¢; (e) = (7 (e),@; (€)). If we have a family of functions {x; : V; — (0,1]}, we can consider
new trivializations

oot (Vi) = Vi xC?
e (m(e), i (m () i (e))

which are still trivializations; the function e — &; (7 (e)) @; (e) is still a linear bijection on every fiber of .
Even more, if p;; : V;NV; = GL, (C) are the transition functions associated to {¢;}, then by linearity it is
clear that
rj ()

i (T
ki () pij (x)
are the transition functions associated to {¢} . So if the original trivilizations gives a TC structure so does
the second one. Let’s see that these structures are actually equivalent.

T +—

PROPOSITION 1.12. Let m : E — M be a vector bundle with a TC structure over the cover {Vi},.; and
trivializations

wi:m (Vi) = VixC®
e (m(e),pile))-
If we have functions {x; : V; — (0,1]}, then the TC structure given by the contractions
o (V) =V x C"
e (m(e), ki (m(e)) @i (€))

is equivalent to the original structure.

ProoOF. Consider the map
p:EXIT—>MxI
(e,t) = (m (e) 1)
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with the natural vector bundle structure inherited from 7. Now we consider the cover {V; x [0,1]},., with
trivializations

oo (V) x [0,1] = V; x [0,1] x C"
(e,8) = (m(e),t, (t+ (1 —t) ki o (e)) i (e)) -
Since t + (1 —t) k; o w (€) > 0 this is indeed a well defined trivialization. Its inverse is given by
1
-1

T; (a?,t,v) = ((t—|— = (x))goz—l (x7’u),t> .

So if p;; : V;NV; = GL, (C) are the transition functions associated to the trivializations ;, the transition
functions of the trivializations 7; are given by
(t+ (1 —1t)k;(2))

A s P e L

These last functions are commutative on their common domains.

The TC structure on p : E' x [0,1] — M x [0, 1] defines an equivalence between the structures defined by {¢;}
and {¢}}. O



CHAPTER 2

Commutative Grassmanian

The main goal of this chapter is the construction of a classifying space for TC vector bundles. We call this
space a commutative Grassmanian since it is obtained as a subspace of the classical Grassmanian. Thus the
content of this chapter is divided in two parts. The first one is the construction itself of the commutative
Grassmanian and a vector bundle over it endowed with a TC structure. The second part consists in showing
that they classify, up to homotopy, vector bundles endowed with a TC structure.

Throughout this chapter M denotes a compact manifold.

2.1. Commutative structure on Grassmanians

In this section we give the construction of a transitionally commutative version of the Grassmanian. This
construction is natural when you consider the proof of the universality of the Grassmanians as a classifying
space for vector bundles over compact Hausdorff spaces.

Let us recall the construction of a classifying function for a vector bundle, which gives us the ideas to obtain
the Commutative Grassmannian. Consider a vector bundle p : E — M, for M compact and Hausdorff. Now
consider the Grassmannian

Ghp,3 (C) := {I C C*" | lis alinear subspace of dimension n}

and the vector bundle
E,3(C):={(l,v) €G3 (C)x C*™ |vel}

with the projection over the first component E,, 1, (C) — G, i (C). Then there is a commutative diagram

E—%E,; (C)

]

M —=G,;(C)

where ¢ is linear function on the fibers of the fibers of p into the fibers of E,, 1, (C) — G, 1 (C). The function
f:M — Gy 1 (C) is called the classifying function of p : E — M, In fact, in order to obtain f it is enough
to construct g (See Theorem 1.16 of [Hatcher II] for details.). This construction depends on an open cover
of M and trivializations over its sets for the vector bundle p : E — M. Since M is compact, we may assume
that the cover is finite, and in fact this number determines k. Let us see this in an example in order to
motivate the definitions ahead.

14
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Suppose we have a finite open cover {Uj}jle of M, with trivializations ¢; : p~! (U;) = U; xC™ for j = 1,2, 3.
If we consider the projection over the second components, we get functions g; : p~* (U;) — C™. Using a
partition of unity subordinated to the cover {U; }?:1, oj : M — [0,1], we can construct a function g : £ —
(C")? given by

g(e):=(o1(p(e))g1(e),o2(p(e)) g2 (e),05(p(e)) g3 (e)).

Notice that if 2 € o7 (0,1]No5 ' (0,1] and o5 (x) = 0 then for e € p~* (2)\{0} there are vectors v; (e) ,v3 (e) €
C™\ {0}, with

g(e) = (v1(e),0,v3(e)).
If p13 : Uy NUs — GL, (C) is the transition function of this cover, then pi3 (z) v (€) = vz (e). So if we call
p13 () = A, and take into account that g; is a linear isomorphism on each fiber, then we get

907" (@) = {(0.0,4v) € (€")* [v e C"}.
Under the same reasoning, if z € o (0,1]Noy " (0,1]No3* (0, 1], then there would be a non singular matrix
B such that

g(r' (@) = {(v,Bv, Av) € (€’ |veC}.

And if we suppose that the transition functions commute, we have that AB = BA. With this ideas in mind,
we proceed to the following definitions.

We start with a definition that comes from the properties of transition functions of a TC bundle, where the
first condition is no other than the cocycle condition, and the second one is the commutative condition:

m

DEFINITION 2.1. We say that a family of non singular matrices {4;;};";_,

cocycle if they satisfy

C GL, (C) is a commutative

(1) AijAjk = A
(2) AjjAp = A Aij.

for all 4,4, k and [.

Next we consider elements v € (C")™ as vectors of the form
v=(01,...,Um)

where vy € C". (So we are not using the identification of (C")™ with C™™ yet.)

DEFINITION 2.2. Let J = (au1,..., ) € {0,1}™ be a set of indices, and A = {Ay;};";_; be a commutative

cocycle. We say that a set of vectors {vq,va,...,v,} C (C")™ are (A, J)-related if for v; = (vi1,...,Vim)
we have that v, = 0 if and only if a; = 0 and

(uag) Aijvi = vij

forevery 1 <i<gqgand 1<j1l<m.
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EXAMPLE 2.3. Suppose A is the family of matrices where all of them are the identity I, and J = (a1,...,am)
is such that o = 1 while ay = 0 for k # t. Take the vectors having all the entries equal to zero except for
the k-th one,

k _
e; =(0,...,0,e4,0,...,0)

q
where {e1,...,e,} is the canonical basis of C". {e},...,ek} is a (A, J)-related set, since the conditions

eq L=k,

(aroy) Ieq = {0 L4k,

tell us that each e? is indeed a (A, J)-related vector.

DEFINITION 2.4. An n-dimensional subspace [ C (C")™ is called a commutative subspace if there is a
set of binary indices J € {0,1}" and a commutative cocycle A such that there is a basis {vy,...,v,} C [ of
(A, J)-related vectors.

DEFINITION 2.5. We denote G2 (C) C G, (C) as the set of commutative subspaces of (C")™, endowed
with the subspace topology. Here by G, ., (C) we mean the Grassmanians, that is the set of subspaces of
(C™)™ of dimension n.

EXAMPLE 2.6. A trivial example of a commutative subspace are the subspaces

k k
lkzgen{el,... e

rn

as in the previous example. These spaces will play an important role ahead.

EXAMPLE 2.7. To built a non trivial element of G (C), consider for example n = 2, and m = 3. Call

s

vy = ((1,0)7(0,1),<‘/§ Q)) and vg = ((@ @> , (—‘/i ﬁ) ,(0,1)). If we make

2072 202 2072

T(0) = [ cosf —sind }

sinf  cos6
and take A1 = T (7/2), A1z = T (7/4), we can make a commutative cocycle A := {Aij}?jzl using the
cocycle conditions for the rest of the matrices. Also take J = (1,1,1). It is clear that v; and vo are (A, J)-

related. They are L.I in ((C2)3, thus the space | = gen{vy,v2} is a commutative subspace of dimension
2.

Just as in the general case, we denote
Exm = {(l,v) € Gy % (cCH™|ve l}
and we get a natural map
Teom * Eplm — Golm
(l,v) =1

which is easily seen as the pullback from the inclusion G777 — Gy, m, thus, it is a vector bundle. We want

to show that the bundle 7com has a TC structure. But first we need to define the trivializing cover of G777
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and state some properties of it before we can prove the existence of its TC structure. To do this we mimic
the construction of the general case for Grassmanians. Consider the commutative spaces

k k
I =gen{ef,... e

»€n
and take the projections

e (CM)™ = U,

(v1,...,0,) = (0,...,0,0,0,...,0).
Then let us consider the open set of G7°7) given by

Uy == {l e Gem | Tk (l) = lk}

n,m
We know this set is open, since it is the intersection of an open set of G, ., with G7°7 (See the proof of

Lemma 1.15 of [Hatcher II]). We trivialized the bundle over Uy in the following way: if [ € Uy then [ is
projected isomorphically to

ly, = <elf7e§,...,eﬁ>
via the projection mp : (C")™ — Ip. Thus, we can use a natural linear isomorphism characterized by
% eg? — e; € C”, where again {ei,...,e,} is the standard basis, to get a linear map

b = promy: (C*)"™ = C"
such that if [ € Uy, ¢y, |; is an isomorphism. We get the trivialization
(2.1.1) bk : Togey (Up) = Up x C"

(Lv) = (1, ¢ (v)).

Now we need to guarantee these trivializations have indeed commutative transition functions. As a first step
towards this we prove the following.

PROPOSITION 2.8. An n-dimensional commutative space | € G711 belongs to U; if and only if there is a set
of indices

I=(ay,...,an)€{0,1}"™
with i; = 1, a commutative cocycle A and a basis of (A, J)-related vectors {v1,...,vp,} Cl. Thus, I € U;NUy
if only if there is a set of indices J such that o; = ay, = 1, and such that | has a basis of (A, J)-related vectors.

PROOF. First assume that there is a sequence J = (a1, ..., o) € {0,1}" such that a; = 1, and a basis
of (A, J)-related vectors of I, {vy,...,v,} C . In particular this gives us that every v;, 1 <t < n, is of the
form

v = (vf,...,vfn)

with v} # 0. Since {v1,...,v,} are (A, I)-related and a linearly independent set in (C*)™, then {vjl-, vt
is a basis for C" as we now see: by the definitions, there are non singular matrices {A;;},-, and scalars
Ajk € {0,1} such that

)\jkAij;» = U]tc
for every 1 <k <m and 1 <t <n. Now suppose there are scalars ¢, € C such that

n

p_
g cpu; =0
p=1
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and so we have
n n n
§ : _ § : D D _ E : D D
CpVp = Cp (’1)1,’()2,...,’()?”) = Cp ()‘lelej7~-~a/\ijjmvj) .
p=1 p=1 p=1

By linearity we obtain

Z CpVp = <)\j1AJ‘1 <Z Cp’U;-)> geeesy )\ijjm <Z Cp’l)?)) =0.
p=1 p=1 p=1

Since {vi,...,v,} are linearly independent, we conclude that o;, = 0 for 1 < p < n. So, {v},...,v}} is

linearly independent and since ; (v;) = of it follows that m; (I) = I;.

The opposite implication is obtained via the definitions. Let us assume that 7; (I) = [;. By definition

of commutative n-dimensional subspaces, there is a basis of (A, J)-related vectors {v1,...,v,} C [, where
J = (a1,...,am) € {0,1}". Also by definition v} # 0 if only if a; = 1 for all 1 < ¢ < n, and since
m; (v}) = v}, we must have i; = 1.

The last statement is a consequence of the first equivalence. O

PROPOSITION 2.9. Under the previous definitions, {eom : Em — Geom AU} ity , ¢ : Togm (Ui) = Uy x C}
is a TC structure.

PROOF. So far we already know that meom @ E5% — G771 is a vector bundle, and that we have an open
cover {U;};~, of G¢om with trivializations given by ¢; : mz1, (U;) — U; x C". To prove that we indeed have

a TC structure we need to find the transition maps associated with the trivializations ¢; and then show that
they commute with each other.

To find the transition maps, we first need to find the inverse map of
5t Toom (Uj) = U x C"
(Z,V) = (la¢j (V)) :
constructed in the previous proof. By construction this in turn can be reduced to finding the inverse on a

fiber of m; : m oL, (U;) — ;. Thus, consider [ to be an n-dimensional commutative subspace of (C")™ with a

(A, J)-related basis {v1,...,vp,} Cl. If J = (a1, ..., Q) is such that a; = 1, then because of the previous
theorem we know that m; (I) = I;. Even further we can obtain the inverse map [; — [ as follows. Consider
an element

n
W= chei =(0,...,0,v,0,...,0) € ;.
k=1
where v € C” is the j-th position.

By the previous proof we know that if
v = (vf,...,0})

then {v},...,v7} is a basis of C" and so there are scalars 3; € C such that

n
> furk =
k=1
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So, if we consider the vector
n
z=(21,...,2m) = E Bk Vi,
k=1

we get that
z; = Z ﬂkvf =.
k=1
So it follows that
n
Uy (Z ,Bkvk> = W.
k=1

This means that the inverse function of the projection 7; : { — I; can be described by

n n
0,050, > Brvl, ,0,...,0 | €1 > Brvie.
k=1 k=1
——
jth—position

Now take 1 < ¢ < n. If we call A\;j; = a;ay, since {v1,...,v,} are (A, J)-related it follows that vf; = )\quvé?,
and so

n

n
k k
ﬂkvq = Z ﬂk)\qujq'Uj
k=1

g (Z 5kvk> =
k=1 k=1
= NjgAjq (Z ﬁm}f) = AjgAjqu-

k=1
We conclude that if [ € U; N U, then
¢so¢;1 : (Uijs) x C" — (Uijs) x C"
(l,v) = (I, Agjv) .

This means that if p;, : U; N U, — GL, (C) are the transition function associated to the trivializatons
{i}ien, We get

pik (1) = Ajg.
In conclusion meom @ B0 — GRo0, {Uj}jEN and ¢; : m_,., (U;) — U; x C™ has transition functions that are
commutative, since by construction the matrices {A;;} commute with each other. O

At this point it should be clear that we are following the steps of the construction of the Grassmanians for
vector bundles of dimension n. We have achieved the construction of a commutative Grassmanian G777
for arbitrary n,m € N, where m allows to “classify” vector bundles with covers with m elements. In order

to get rid of this last parameter we consider the inclusions G77 C G777, coming themselves from the
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natural inclusions (C")™ c (€)™ where (C")™ is taken as the subspace of (C*)"" the (m + 1)- vector
coordinate equal to zero. Then we use the colimit to define

com ,__ . com
G o = Colimy, o G700 s

which is just the set of n-dimensional commutative subspaces of (C™)™.
Then again we get the vector bundle
Teom * Eroo = Grlos

where

Bl = {(l,v) € G0 < (CH™ |ve l}
and T, is the projection over the first component. Just as before, we can consider the vectors ei € (C")™
as the sequence having zero in all its entries, except in the j-th entry where it has the vector e, of the
canonical basis. Then [; is the n-dimensional subspace generated by {e{, . 7‘3%}- Just as in the finite case,

we can consider the open cover {U; }joil where Uj is the set of commutative n-dimensional subspaces whose
projection over I; is one to one. The proof that the previous data gives rise to a TC structure uses the same
arguments as in the finite case, since in the colimits we are consider vectors with only a finite amount of
non-zero entries. Thus, we obtain the main result of this section, and one of the goals of this chapter:

THEOREM 2.10. The projection over the first component Teom @ ER% — G2 with 1 < m < oo, together

n,m

with the open cover {Uj};.n:l of GE°™ and trivializations inherited from the general Grassmanians define a

n,m

transitional commutative structure.

To close this section let us show that our definitions are not empty. First, not every n-dimensional subspace
[ C (C™")™is (A, J)-related. There are clearly many examples of non commutative subspaces. For example

consider in ((C2)3 the 2-dimensional subspace

l:=gen{(e1,0,e2),(e1,€2,€2)}.

By Proposition 2.8, every basis of a commutative space must be (A4, J)-related for a certain .J, and every non
zero entry of J must have elements giving rise to a basis of C2. This is not the case for {(e1,0,€2), (e1, €2, e2)},
because of the second entry. Thus this [ is not a 2-dimensional commutative subspace.

Secondly, unless we have a TC structure, there might be a classifying function f : M — G, ,,, (C) such that
there is * € M with f (z) ¢ G}, (C). However every | = f (z) will satisfy the condition of having a basis of
(A, J)-related vectors, where the family A4 satisfies the cocycle condition but not necessarily the commutative
condition. We illustrate this in the following example.

EXAMPLE 2.11. (Non commutative subspace)

Here we want to see that the commutativity for linear subspaces is not a void condition. Not every set of
trivializations lead to a commutative subspace. Consider the space ((C")3. For 0 # mm with m € N, and take

cosf) —sinf
Az = [ sinf cosf }

0 1
14132{1 0]

and
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where the rest of the family A = {Ajk};).’ w—1 i determined by the cocycle conditions. This family is non
commutative since

cosf) —sind cosf) —sind

AppArs — [ sinf  cosf } ” [ sinf  cosf

:| = A13A12'

Now take {e1,ea} C C? the standard basis and consider the vectors
vy = (e1, Ajze1,e2) and vy = (eg, Ajzea,e1)
which are (A, (1,1,1))-related. The space
l:=gen{vy,va}

is non commutative but it can be in the image of a classifying function of a vector bundle.

2.2. Universality of E 7% — G770

In this section we complete the goal of the chapter by showing that the commutative Grassmanian classifies
TC structures on vector bundles up to homotopy. That is we prove the following theorem:

THEOREM 2.12. (Universality of G

n,co

Let M be a Hausdorff and compact space. The assignment
Wi [M, G0 — Vecty™™ (M)
10 [ (Er)]

is a well defined bijective map, where [M, G?L"g] is the set of homotopy classes of functions from M to G7°7L.

In order to prove this theorem, there are three facts needed to be checked. We need to check first that this
map is well defined, that is, we need to show that the choice of the representative of a homotopy class [f]
does not change the class of the pullback. This is true thanks to Proposition 1.11 on page 11. The other two
facts are surjectivity and injectivity of ¥, which we do in two separate sub sections.

2.2.1. Surjectivity of V. It is worth mentioning that for this proof, it is enough to require M to be
paracompact and Hausdorff.

Given a TC structure (7w : E — M,{V;},p;), we have to find a function f : M — G% such that the TC

n,o0
structure on f* (E°) — M is equivalent to the previous TC structure on M. Such function is obtained as

f@)=g(x " (z) e Gy,

where g : E — C* is a function constructed with the trivializations ¢;. For this purpose we may assume
that {V;} is a locally finite and countable open cover of M. Let us consider a partition of the unity {o,}
subordinated to the cover {V}}. In particular we have a{l ((0,1]) € Vj, and since the support of a function

is an open set, we have a refinement of the open cover {V;}, -
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Call g; : =1 (V;) = C™ the composition of ¢; with the projection on the second component, V; x C* — C".
We can now take g; : 71 (V;) — (C")™ as the function whose i-th (vector) entry is g;, while the rest entries
are zero. We can define g : E — (C")* by

9(e) =30, ((e) g (o).

where we are using the convention that g; is zero outside 7! (V;). This if of course well defined since the
closure of the support of each o; is contained in V;. Also note that g is a continuous function, as it has
continuous component functions. Also for a given point x € orj_l ((0,1]) C V; the image of 7! (x) under g;
is exactly

ol o ]
lj = <e1,e2,...,eﬁl>

where e{C have all its entries equal to zero except the j-th one, which is ey, with {ey}, .y the standard basis
of C*°. This is true because g; is a 1-1 linear function on the fibers of w. For this reason we have that

) cv;

for every j € N.

Let’s see that for every x € M, we have that f (z) is in GS°Z. Let {j1,...,jp} C N be the set of indices such

n,00

that = € supp (0;,). Also, let p,s : U;, NU;j, — GL,, (C) be the transition functions. Define

Ars = Prs (Z)
for which is clear that for v € 77! (z)
9. (v) = ATngT (v).
The matrices {A,s} satisfy the relations of the definition of commutative cocycle. So, g (v) is in fact a
(A, J)-related vector. Since the matrices {A,s} do not depend on the vectors, but only the fiber they are
on, we conclude that f(z) := g (7' (z)) is in fact a commutative n-dimensional subspace of (C™)?, thus
[(x) € GP% for all z € M. Notice that the continuity of f follows from the fact that it is the classifying

function of 7w : £ — M, so when we restrict its codomain, it remains continuous since G’ has the subspace
topology with respect to the regular Grassmanians.

Now we have to check that indeed the pull back structure obtained from the pullpack of f: M — G&™ (C)
is equivalent to the original structure as TC structures. For this we are going to apply Proposition 1.9 to see
that the TC structure given by f is equivalent to the original TC structure over M, up to a contraction on
the trivializations, which we also know it does not change the TC structure class by Proposition 1.12.

We need to construct a function f : E — ES°™ which is an isomorphism on the fibers, such that we have a
commutative diagram

(2.2.1) E 1. peom

\L ¥ \L

M —1s Geom,
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This function is obtained in a natural way, since we just need to define
f:E— Em
e (fom(e),g(e))

which is well defined by construction. It is clear that it satisfies the above conditions. Next, we need to see
that the second condition of Proposition 1.9 is satisfied, where the first condition of this item is already being
achieved, since we saw that f=' (U;) C V;. Let us recall first how we get trivializations for the TC structure
Teom © Epooe — G5 Again, if [ € U; then [ is projected isomorphically to

lj = <e31, e, ... ,efL>
via the projection m; : C* — [;. So we can use natural linear bijection (53» : ei — e € C™, where again
{e1,...,en} is the standard basis, to get a linear map
¢; = qgjowj :C>* - C"
such that if [ € U}, Q_Sj |; is an isomorphism. We get the trivializations
65 : T (U3) = Uy x C"
(la U) = (la ¢z (U)) .
Applying these constructions we have that if e € 7! (f~1 (U;)) € 7! (V;) then

gio fle)=(f(m(e)),0i(m(e))gi(e)).

Now recall the trivialization over V;, ¢; : =1 (V;) — V; x C" have the form
pj(e) = (m(e),;(e),

so we get that if (z,v) € f~1 (U;) x C" then

60 f (o5 (,v)) = (f (2),0 (x)v).
Linearity over the fibers imply that
(22.2) d50 (97" (w05 @) 0)) = (/ (@) )
and so if we replace the trivializations

g1 (V) >V x C"
e (m(e),g; (e)

by

@i (V) >V x C"

e (m(e),a;(m(e)) g; (e))
we get that
50 f (¢ (2,0)) = (f (2),v).

We then apply Proposition 1.9 to see that the TC structure <7r E— M, {Vj}jeN yos
TC pullback structure given by the map f: M — GS°7 . Finally we apply Proposition 1.12 to get that said

n,00

) is equivalent to the

pullback is equivalent to the original TC structure (7r tE— M, {Vj}jeN , goj).
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2.2.2. Injectivity of . Suppose we have two functions fi, fo : M — G730, such that their pullbacks
TC structures

(1 17 (Gm) = ML U} 015
and
(2 15 (Gm) = ML (U} ey 025
are equivalent. We have to show that f; and fs are homotopic in order to conclude that V¥ is injective. Recall
that the definition of equivalence of TC structures implies that there is a TC structure
{p:E— Mx[0,1],{Wi},¢:p " (Wi) = Wy x C"}
such that

(1) fr(Gme) =p~H (M x{0}) and f3 (GioR2) = p~" (M x {1}).
(2) p1 =P |mxqoy and p2 = p |arxq1}-
(3) Foreach k € N there are jy, s, € Nsuch that p~* (W, N M x {0}) C f; ' (U;), p~ (Wi, N M x {1}) C
f2 ' Us),
) |p*1(WkﬁM><{0}): Pljy ‘p;l(kaMX{o})

and ¢ |p’1(WkﬂM><{1}): P25y, ‘pgl(Wanx{O})'

Now, using the trivializations over {W}} we can build up a function (as we did to prove surjectivity) G : E —
(C™)* that is an injective linear map on the fibers of p, thus it induces a function F': M x [0,1] — G,
This construction is done in such a way such that the functions g1 = G |,~1(amrxfo}) and g2 = G |1 (arxf1})
could also be obtained using the trivializations ¢ j, |p;1(wanx{o}) and @ j, |p;1(WmMX{O}), respectively.

This means that for f; = F |arx{oy and fo=F |arx{1}, the assignments fi () = ¢ (p‘1 (x,O)) and
fo () = g2 (p’1 (z, 1)) also hold. Even further we have that f; and f, are homotopic through F. So if

we prove f; is homotopic to f; (i = 1,2), it will follow that f; is homotopic to fs, since homotopy is an
equivalence relation. Thus the proof reduces to proving that given a function f : M — G°%, if we have

a refinement {Vi}, oy of {f7! (Uj)}jeN’ and we build a function f with the trivializations of f* (Egom)

restricted to the sets of {V},cy, then f is homotopic to f.

Before dealing with the construction of f, let us examine both the covers and the trivialization coming from
the pullback structure of f. On one hand recall that by construction we have a filtration in G°7! given by

n,00
Geom C G%(:Sn c...C G;?% C Geom

n,1 nm+1"""
such that GS° has the colimit topology with respect to this sequence. As such, any compact subset of G5
is contained in one of the members of this filtration. In particular, since M is compact and f is continuoﬁs,
there is some N € N such that f (M) C G’ C G20, This means that for every x € M if v € f (), this
vector is of the form
v =(v1,...,0n,0,0,...)

where v; € C™.
On the other hand we have a natural function
g: [ (EXR) — (€)™
(z,(l,v)) = v € f(x)
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which satisfies the property g (wgl (x)) = f (z). In conclusion there are N functions g;,...,gn : f* (Effg.}) —
C" such that

gle)=1(g1(e),92(€),-..,9n(€),0,0,...).
This also implies that {ffl )}N_l is a cover of M, and that f~! (U;) = 0 for j > N. Now consider the

trivializations ¢; : 7' (71 (U;)) = f~ (U;) x C" coming with the pullback structure. By construction the
second component of ¢; is determined by the projection pr; : (C")™ . This means that if (z,(l,v)) €
7" (f~1(U;)), then we have the assignment

v =(v1,...,n,0,0,...) €l pr; |; (v) = (0,...0,v4,0,0,...) € [; = C".
This agrees with the definition of g;, that is pr; |; (v) = g; (=, (I, v)).

Now suppose we have a refinement {Vy}, ., of {f }]EN {f }j=1‘ Since M is compact we can
assume that such refinement is finite, even more we may take it to be of the form

V={Vii,Viz,.. ., Vimys - . VN1, Vo, o, Vimn }

where V;;, C f~1 (U;) for all the indices. Now we proceed with the constructlon of f with the cover V. The
trivializations on the elements of V are given by the restrictions ¢; |v,,: 7, (V]k) — Vjr x C". Once again,
we obtain a new function § : f* (EZOO’Z) — (C™)™ by considering the second components of the trivializations
©;j |v,., which are given by g; |v,,. We also need a partition of the unity {oj,: M — [0,1]} such that
aj_kl (0, 1] C Vji. For simplicity let us call 7, := o o 71, then we have
G=(T11" 91, Tlmy " 91,721 " 92, s T2my " 925+ -, TN1 " GNs- -+ TNmy * YN) -

Notice that both g and g map every m; ! (z) into (different) commutative n-dimensional subspaces, for z € M.
In particular we can now take f M — G758 by defining

fl@)=3g (" (2)).
In order to construct a homotopy between f and f we see first that g and § are homotopic via
G:f*(Ef2) x [0,1] — (C™)™
satisfying that for every (z,t) € M x [0,1], G (7' (z),t) C (C™)* is a n-dimensional commutative subspace,
with G (e,0) = g (z) and G (z,1) = g (z). This way G induces a homotopy F : M x [0,1] — G7°7¢ given by
F(z,t) =G (m " (2),t),
such that F (x,0) = f (z) and F (z,1) = f ().
We built G as a composition of several homotopies. Let’s see first that we can move the components of

g to the right leaving zeros behind the previous positions. We do this via linear homotopies moving one
component at the time

H, (_vt) = (1_t) (glaQQa'~'7gN707"')+t(gla92a"-7gN—1aOagN70a"')
= (g17927"'39N—17tha(17t)gN707"')'

This homotopy has the desires properties. If e € f* (E%Z) then the vector g (e) is (A, J)-related for an
appropriate family of commutative cocycles A = {4;;} and set of indices J = (1,...,in,0,...). Then for
every t € (0,1), Hy (e, t) is (A’ I’)—related with I’ = (il, . iN,iN,O7 ...) and

= {Ai} 2 U{Bin G U{Biv i i U{ B}
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where B;y = tA;n, Bin+1 = (1 —t) Aijxy and Bynyy1 = %In, with I,, the identity matrix. The rest of the
matrices are given by the cocycle conditions. It is immediate that A’ is a commutative cocycle. The cases
t € {0,1} are handle in an easier manner. Using induction we see that g is homotopic through commutative
n-subspaces to a function h; with

h1: 070)"'70)913927"'739N70)07"'
———
M —times

where M := 37 _ | my.
Now we use yet another linear homotopy

H2 (_7t) :(tTll 'glv"'vtTlml '917"'7tTN1 'ng'”vtTNmN 'gN,0,0,...)

+(1_t> 0707"'707917927'"MgN7O7Oa"'
———
M

which again go through commutative n-subspaces. This is clearly a homotopy from § to hi, so we get that
g and g are homotopic through commutative n-subspaces.



CHAPTER 3

Classifying space for TC structures

On this chapter we describe the construction of the classifying space for TC structures over principal bundles,
BeomG, as well as its cohomology with real coefficients. We pay special attention to the construction of power
maps on the classifying space and their effect on the cohomology ring, as well as its relation with the regular
classifying space. This work is based on that of Adem and Gomez [AG].

In this chapter G will denote a connected Lie group.

3.1. Bar construction for TC structures

We start this section with the definition of classifying space for commutativity.

DEFINITION 3.1. We say a space B, G is a classifying space for commutativity, if there is a TC structure
(p: EcomG = BeomG,{Ui},cn» i : 0~ (Us) = U; x G) such that for every paracompact and Hausdorff space
X there is a natural bijection

Ux : [X, BeomG) = Bundg™ (X)
L] = [f (BeomG)]

where [X, B.omG] denotes the set of homotopy classes of functions f : X — By, G. Under this conditions, if
the TC structure over f* (Eo,G) is equivalent to a given TC structure, we will call f the classifying function
of the TC structure.

By naturality we mean that if g : Y — X is a continuous function, then there is a commutative diagram

X, BeomG] —2 Bund®™ (X)
S
[Y, BeomG] ——Y> Bund®™ (Y)

where the left vertical map is the postcomposition fog:Y — By, G and the right vertical map is simply
the pullback of TC structures.

Let us define a simplicial space whose n-th level is given by Hom (Z",G), which is the subspace of G™
consisting of all commuting n-tuples. This is (g1,...,gn) such that g;g; = g;g; for every 1 < 4,j. < n. Its

27



3.1. BAR CONSTRUCTION FOR TC STRUCTURES 28

face maps &; : Hom (Z",G) — Hom (Z"~!, G) are

(927---7gn) ZZO)
0i (91, +59n) = S (9155, Gi=1,GiGi41: Git2s-- -, gn) 1<i<n—1,
(9151 9n-1) i=n,

and the degeneracies s; : Hom (2", G) — Hom (Z"H, G) are given by

Si (gla" 79%) = (917"'Mgialag’i-‘rla"-agn)'
It is routine to see they satisfy the simplicial identities. It is also important to mention that for this con-

struction the fat realization is homotopically equivalent to the geometrical realization. Thus, we work with
the former. The following theorem is proved in [AG].

THEOREM 3.2. The fat realization of the previous simplicial space. i.e.
BeomG = ||Hom (Z°*, G)||

has a TC structure on it making it a classifying space for TC structures over finite CW-spaces.

In fact the above theorem holds in general for any CW complex or in general for any paracompact and
Hausdorff space. Also it is worth pointing out that in case G = GL,, (C), BeomG is homotopically equivalent
to the commutative grassmannian, G7°0.. This is true since both of them are classifying spaces, there are

functions f : BeomG — G750 and g : G700 — BeomG such that fog and go f are homotopic to the identity
on G773 and the identity on Beom G, respectively.

o0

In what follows we need to define a subspace of B.om G, obtained by considering the connected component of
Hom (Z™, G) containing the element (1,1,...,1). We denote this by Hom (Z™,G),. It is clear that we can
restrict the face and degeneracy maps to obtain a simplicial space Hom (Z*,G),.

DEFINITION 3.3. The fat realization of the simplicial space Hom (Z*, G), is denoted by BeomG1.

This distinction makes it clear that Hom (Z™,G) is in general not path connected. However Adem and
Cohen showed in Corollary 2.4 of [AC] that Hom (Z™, G) is path connected when G is either U (n), SU (n)
or Sp(n). It is also worth mentioning that when Hom (Z™, @) is path connected, then every m-th tuple is
contained in a maximal torus. (See Lemma 4.2 of [Baird].)

3.1.1. The classifying function: For our purposes besides Theorem 3.2 itself, we need to examine the
construction of the classifying function of a TC structure (7 : E — X, {U;}\", ,¢;) on a finite CW-complex
X. Assume U := {U;};", is a good cover and we have the transition functions p;; : U; N U; — G. Then we

consider the construction of the nerve of the cover:
N, =] |, 0Ty, .
Then we have a simplicial function f; : N (i), — Hom (Z',U (n)) given by

fl ($) = (loioil (l‘) ) Pigis (q;) e Pig_qig (.’IJ)) .
This induces a function f : N (U) — BeomG, where N (U) := [N (U),]| is the nerve of the cover. Since U
is a good cover, X and N (U) are homotopy equivalent (See [Hatcher|, Corollary 4G.3). Thus, there is a
bijection
NV (U), BeomG] = [X, Beom ],
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which allows us to construct the classifying function from the nerve instead of X. As we mentioned before,
Adem and Goémez also showed that if F' : X — BG is the classifying function for the principal bundle
m: E — X, this is if we ignore the TC structure as whole, the following diagram commutes up to homotopy

X *f> BcomG

N

where the vertical map is the natural inclusion.

3.2. Power maps and cohomology of B.,,,G1

In this section we explain both the construction of the power maps as well as the reasoning behind the
computation of H* (B.omG1, R) made in [AG]. We tackle them together since our main objective is to show
the effect of the power maps on cohomology. Thus we track such effect in every step of the computation. To
make notation simpler, we assume By G1 = Beom G, which is true when G is either U (n), SU (n) or Sp (n),
as mentioned before. We also fix a maximal torus T'C G with Weyl group W and we write H* (Y") to refer
to the cohomology of Y with real coefficients.

First let us introduced the construction of power maps. Consider once again the space of commutative
m-tuples of G, Hom (Z™, G). For each k € Z we define maps
@k . Hom (Z™,G) — Hom (Z™, G)
(g1, 9m) — (gf,...,gfn).
This map is well defined since the power of commuting elements is still commutative. Commutativity is
needed in order for them to induce simplicial maps. By this we mean maps commuting with the face and
degeneracy maps. More precisely we need the equality
k
(9igi+1) nggfﬂ
to hold. Thus, only for commuting tuples we guarantee the existence of the k-th power map ®* : B.,,,G —
BeomG. In the general Bar construction for G, the power maps do not necessarily induced simplicial maps.

On Section 7 of [AG] they proved that for a maximal torus T" of G with Weyl group W we have
H* (BeomG) = (H" (BT) © H (BT))" /J,
where J is the ideal generated by the set
{f(z)®1e H* (BT)® H* (BT) | fis of positive degree polynomial and n - f (z) = f (z) foralln € W}.

In order to reach the description of the induced power maps ®* on cohomology, we need to consider some
auxiliary maps that are used in [AG] to compute the cohomology with real coefficients of BeomG. In this
process we will see what their relationship with the power maps. First, since all the tuples of T™ have
commuting elements, we can consider the power maps for the torus * : H* (BT) — H* (BT). This is the
map induced in the m-level the by

@k . Hom (Z™,T) — Hom (Z™, T)
(gla'”agm) — (gllcaagfn) .
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Also consider
Om : GxT™ — Hom (Z™,G)
(gvtlv ... 7t’n) = (gtlg_17 R 7gtmg_1) .

Because Hom (Z™, GG) is path connected, an m-tuple (g1, .. ., g»n) has commuting elements if and only if there
is a maximal tori containing all g; (See Lemma 4.2 of [Baird]). Since every maximal tori is conjugated to
T, the previous map is surjective. We also have an action of the normalizer of T in G, Ng (T), on G x T™,
where for 1 € N¢ (T) we have

N (gt tm) = (gn " ntin™ .ty ™).

On the other hand, consider the Flag variety G/T'. It is easy to verify that the maps ¢, factor through the
product G/T x T™ giving us a commutative diagram

G x T™ —" Hom (Z™, G)

|

G/T x T™

9

such that the diagonal map is also surjective. We call it ¢, as well. These family of maps give rise to a
simplicial map

e : G/Ty x T* — Hom (Z°,G).
Here G/T, is the trivial simplicial space with G/T on every level, and T is the simplicial space obtained by
the Bar construction for the classifying space applied to T

Furthermore using representatives of the Weyl group [n] € W = Ng (T) /T, we have a well define action on
G/T x T™ given by

[77] ' ([9] 1y atm) = ([97771] antlnilv s 777757an71) :
Tt is easy to see that this action makes ¢, W-invariant. Also we can construct a simplicial space, G/T xXw T®,
having the space of orbits G/T xy T™ on the m-th level. Where the simplicial structure is inherit form
G/Te x T*, giving us a simplicial map 7, : G/Te x T®* — G /T Xw T* where on each level we have the natural
quotient map. Then we have a commuting diagram

G/Ty x T* —2*> Hom (Z*,G),
-
G/T Xw T
where ¢, : G/T xyw T™ — Hom (Z™, G) is the induced map. Finally, we have maps
Pr . G/TxT™ = G/T xT™
(l9] t1, oo tm) = ([g] £}, th)

By direct computation it can be seen that these maps are compatible with the simplicial structure. They are
also W-equivariant, that is

] Pl (9.t twm) = PE (0] (9,1, - tm)) »

This is true since, (ntnfl)k =ntbp~tfort € T.
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PROPOSITION 3.4. If G is a compact connected Lie group such that Hom (Z™,G) is path connected for every
non negative integer m. Then for the cohomology with real coefficients we have a commutative diagram

*
P

(3.2.1) H* (Hom (Z™,G)) —"> H* (G/T x T™)"

<<1>:;>*l |y
H* (Hom (2™, G)) -2

Pm

s H(GJT x T™)W .

where the horizontal maps are isomorphisms.

PROOF. Under this setting, Theorem 3.3 of [Baird] is applied to conclude that we have the following
natural isomorphisms

= *

(3.2.2) H* (Hom (Z™,G)) C2 g (G/T xw T™) T g Q)T xT™)"W .
Now let us see how the power maps are related to this constructions so far. We have maps
Pk .G/TxT™ = G/T xT™
(l9] t1, oo tm) = ([g] £}, ... th)

By direct computation it can be seen that these maps are compatible with the simplicial structure. They are
also W-equivariant, that is

[n]ijL (gatlv---atnl) :Prﬁ([n](gvtlyatmna

This is true since, (ntnfl)k = nt*n~! for t € T. Thus, they induced a well define map P* : G/T xyw T™ —
G/T xw T™, and we get the following commuting diagram

*

H* (G/T xw T™) = H* (G/T x T™)

|y |

*

H* (G/T xw T™) = H* (G/T x T™).

We know that the homomorphism 7* : H* (G/T xw T™) — H* (G/T x T™) actually has image equal to
H* (G)T x T™"Y , since H* (G/T xyy T™) ~ (G/T x T™)" . Thus, we actually have the diagram

H* (G)T xw T™) ——= H* (G/T x T™)"

l(P::;)* ipk

H* (GT xw T™) ——= H* (G/T x Tp)" .
where the horizontal maps are isomorphism. This implies that (P¥)" preserves W-invariance:

(PEY" (H (G/T x Tm)W) c B (G)TxT™" .
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Also, by direct computation form the definitions and the fact that (gtg_l)k = gt*g~1, it follows that ¢,, o
Pk = ®F o, holds. And since (P¥)” preserves W-invariance, we obtain the following commuting diagram

H* (Hom (Z™, G)) —22> H* (GT x T™W
<<1>z;>*l |y

H* (Hom (Z™,G)) —=> H* (G/T x T™)"V .
Here the horizontal maps are isomorphism as they can be factored by the isomorphisms
@y H* (Hom (Z™,G)) —» H* (G/T xw T™)
and
™ H* (G/T xw T™) — H* (G/T x T™)"V .
U

PROPOSITION 3.5. Let X, and Y, be two simplicial spaces with a simplicial map f : X¢ — Yo. Suppose also
that there is a finite group K with an action on every level X, compatible with the simplicial structure, such

that there is an isomorphism HP (C* (Xq))K =~ HP (C* (Yy)) induce on every level by the maps of f. Then
there is natural isomorphism

LI B (1Y) = B (XD

where | X|| and ||Y|| are the fat realizations.

PROOF. For this consider the bimodule
CP1(X,) :=CP(X,),

where C? (X,) are the p-cochains of the space n-th level of the simplicial space X,. Then call C* (X,) the
total complex of this bimodule. Then by Theorem 5.15 of [Dupont], there is a natural isomorphism

H (| X)) = H* (C™ (X))

Naturality means that if f, : Xo — Y, is a simplicial map, then there is a commutative diagram

e (v —2 s B )

l |

H* (O (V) L% 1 (07 (x4)),

where (f,)* is the map induce on the total cohomology by fe and || f|*is the map induce on cohomology by
the realization map || f||.

Since there are isomorphims H? (C* (Xq))K ~ H? (C* (Y,)) induced by the level maps of f,, then Theorem
1.19 of [Dupont], implies that

(fo)": H* (C* (Ya)) —» H* (C* (X.))"
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is an isomorphims. Naturality then implies that we have a commutative diagram

H (] —2=

|

H* (C* (V) —2L B (07 (X)),

H (| X])"

where the vertical maps and the bottom map are isomorphism. This implies that || f|" : H* (]|]Y]) —
H* (|| X|)¥ is a natural isomorphism. O

PROPOSITION 3.6. If G is a compact connected Lie group such that Hom (Z™,G) is path connected for every
non negative integer m. Then for the cohomology with real coefficients we have a commutative diagram

(3.2.3) H* (BeomG) Ll H* (|(G/T), x BT.|))"
o lpk
H* (BeomG) T H* ((G/T), x BT.|)",

where the horizontal maps are isomorphisms. Here we are abusing notation by using the same names for the
power map and its induce map on cohomology.

PROOF. Because of Proposition 3.4 the conditions of Proposition 3.5 can be applied to conclude that
7 H* (BeomG) — H* (|(G/T), x BT.||)W is an isomorphism. Then Diagram 3.2.1 implies that Diagram
3.2.3 commutes. ]

THEOREM 3.7. If G is a compact connected Lie group such that Hom (Z™, G) is path connected for every non
negative integer m. Then for the cohomology with real coefficients we have a commutative diagram

H* (BoomG) —= (H* (BT) @ H* (BT))" /J

l@c lmw

H* (Beom@) — (H* (BT) ® H* (BT))" /J,
where the horizontal maps are the same isomorphism given above, and ®* are the power maps on cohomology.

REMARK 3.8. Adem and Gomez proved in [AG] that H* (BomG) is isomorphic to (H* (BT) @ H* (BT))" /.J.
Here we go through their proof to show that the previous commutative diagram also holds. This will allow
us to compute the effect of the power maps.

PROOF. Here we continue the results of Proposition 3.6. The realization of the simplicial product are
naturally isomorphic to the product of the realizations of each of the simplicial spaces involved (see Theorem
14.3 of [May]). This is, we have a natural isomorphism

I(G/T), x BT.|| = [(G/T),|| x BT.
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Now recall that we have a map
Id x 9" |(G/T),|| x BT = |(G/T),|| x BT

where ¢* : BT — BT is the natural power map on BT. From this we can use the naturality of the Kunneth
formulas to obtain the following commutative diagram

H* (|G/T. x BT.|)"Y —=> (H* (G/T) @ H* (BT))"

lpk ild@d)k

H*(|G/Ts x BT.|))"Y —= (H* (G/T) @ H* (BT))" .
Combining this diagram Diagram 3.2.3 we obtain the following commutative diagram

(3.2.4) H* (BeomG) — (H* (G/T) ® H* (BT))"

lqﬂ lld@)w’“

H* (BeomG) — (H* (G/T) @ H* (BT))"

where the horizontal maps are still isomorphisms.

In the proof of Proposition 7.1 of [AG] they show that there is an isomorphism
H* (G/T) = H" (BT) [ Jo,
where Jy is the ideal generated by the elements of positive degree in the image of the map induced by the
inclusion H* (BG) — H* (BT). Now using the natural projection we have a commutative diagram
H* (BT)® H* (BT) —™> H* (BT) /.Jo ® H* (BT)
J{Id@@k lld@d)k’
H* (BT)® H* (BT) —"= H* (BT) /Jo ® H* (BT)

where the horizontal maps are of course surjective. This in turn gives us a commutative diagram with exact

rows

0— 1 —> H* (BT)® H* (BT) —2X H* (BT) /Jo ® H* (BT) — 0

l J{Id®<1>k lld@d)k

0—=T— H* (BT)® H* (BT) —2£ H* (BT) /Jo ® H* (BT) —= 0

where [ is the kernel of the map 7®1d : H* (BT)® H* (BT) — H* (BT) /Jo® H* (BT) and the first vertical
map is the restriction of the middle vertical map. Furthermore the exactness of the rows is preserved for

W-invariance and thus, if we take J = IV we get
* * w  7®ld * * w
0— > J— (H* (BT) ® H* (BT)" 2% (5 (BT) /Jy ® H* (BT))"Y ——0
lm@@’w lld@@k ild@d;’“

0—>J — (H* (BT) ® H* (BT "X (5* (BT) /Jo © H* (BT))"Y —0
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which we can combine with Diagram 3.2.4 to get

H* (BoomG) — (H* (BT) @ H* (BT /J

lq’k lmw

H* (BeomG) — (H* (BT) @ H* (BT))" /J

where by Id ® ¥* we mean the induced map for the quotients, giving us the desired conclusion. O

3.2.1. Power maps on the torus: The last result is important since it tell us that in order to obtain
the effect of power maps on cohomology of BeomG!, we need to understand their effect when the Lie group
is a torus, T' = (S’l)n. We now explore this.

THEOREM 3.9. Consider the k-th power map
OF T T
(t1, .. tn) = (tF,.. . t0).
Then by identifying H* (BT) 2 R [x1,...,2y,], the induced k-th power map is characterized by

Riz1,...,xn] = Rz, ..., z,]
.T,’il—>]€$i.

PROOF. On a circle the k-th power of its elements induces the multiplication by &£ on the fundamental
group: if
St={zeC||z|=1}
then the k-th power map is given by
n:St— st
2 2P
which is know to be a map of degree k. This means that if identify m; (S') = Z then the k-th power maps
induces multiplication by k£ on the fundamental group.
Consider the projections
;i (S 1)n — St
(21, 2n) ¥ 2.

It is well known that the map ¢ : 71 ((S)") — m (S*)" given by

q([e]) :==([preal,...,[pnoal)

When Hom (Z™, G) is path connected for every m.
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is an isomoprihsm, since S' is path connected. Since the power map 1* : T — T considers the k-th power
component wise, it follows that we have a commutative diagram

1 (T) *q>7'r1 (Sl)n

lwi’ il_[ 7
T (T) 4q> T (Sl)n .

Since the horizontal maps are isomorphisms, this implies that
vE (T) — m (T)

a— ka

where we see a = (o, ...,q,) € Z", and ka = (kay, ..., kay,).

Now let us consider the fiber sequence of the classifying space of the torus
T — ET — BT.
This induces a exact sequence on homotopy
o T (ET) = 7w (BT) = 71 (T) — -+ -m (ET) — m (BT) —
— 7o (T) = 7o (ET) = 7o (BT) — 0
but since ET in null homotopic, we get an isomorphism 7, (BT) — m,,—1 (T). In particular we get
7" m=2,
0  otherwise.

m (BT) = {

Since the exact sequence is natural, we get that the power map on BT induces the multiplication by k
on the second homotopy group. Furthermore since BT is simply connected, by Hurewicz’s theorem we
get that Ho (BT,Z) = 79 (BT), and once again because of naturality the effect on the second homology is
multiplication by k.

We now apply the universal coefficients theorem to get that
H? (BT) = Hom (H, (BT, Z) ,R) = R".

Naturality allow us to conclude that the effect of the k-th power map is once again multiplication by k.
Finally it is known that the real cohomology of BT is the polynomial ring R [z1, ..., z,] where x; € H? (BT)
for 1 < i < n (see [Dupont]|, Proposition 8.11). Since we know that the effect of the k power map is
multiplication by k on the z;, this determines the effect on the whole cohomology ring. O

As corollary of Theorem 3.7 and Theorem 3.9 we obtain the following:
THEOREM 3.10. By identifying the real cohomology ring of an n-Torus with R [x1,...,x,], we get that if G
is a Lie group such that Hom (Z™,G) = Hom (Z™,G), for every m, then

H' (Boom@G) = Rler,...2a] ©R[ys, ., al)” /).

Where J is the ideal generated by the invariant polynomials of positive degree on the x; under the action
of the Weyl group, W. Further, the power maps ® : H* (BeomG, F) — H” (BeomG, F) are induced by the
homomorphism characterized by sending x; — x; and y; — ky; for every 1 < i < n.
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Next we are going to examine particular cases of Lie groups satisfying the stated property. From this we see
that possible differences between the different cases depend entirely on the Weyl group and its action on the
cohomology of BT.

3.3. Generators of H* (B, G,R) for G = U (n),Sp (n) and SU (n)

If BeomG1 = BeomG we know that
H" (BoomG,R) = (R[z1, ..., 20 @R [y1, ..., yn])"" /J.
While in general it is known that for a compact and connected Lie group G
H* (BGaR) = R[Zh' . 'azn]Wa
where W is its Weil group. It action is induced by adjunction. That is, if g is the Lie algebra of G,
R[z1,...,2,] can be identified as the polynomial algebra of g. An element [n] € W = Ng (T') /T has a well
defined action given by adjunction, ad (n) : g — g. This in turn induces an action of W on R [z1,. .., 2,].
There is a natural inclusion Beoy, G — BG , inducing a map
t: H (BG,R) = H" (BeomG,R).

In terms of the previous identifications, ¢ is induced by the homomorphism ([Gritschacher|, Corollary A.2.)

Riz1,. - y2n] 2 Rz, ..., 2, @R[y, ..., yn]

Additionally we saw in the previous section that the power maps, ®* : H" (BoomG,R) = H" (BeomG, R) are
induced by the map characterized by sending z; — x; and y; — ky; for every 1 <i < n.

DEFINITION 3.11. We call the subalgebra generated by {®* (Im:) | k € Z\ {0}} C H" (Beom G, R) by
S = (" (Imu) | k€ Z\ {0}).

On this section we use the previous maps to see that if G = U (n),Sp(n) and SU (n) then S is all of
H* (BeomG,R). We do this by dealing with the explicit descriptions of their actions and the specific Weyl
groups on each case.

Before dealing with each individual case, it is worth proving

LeEMMA 3.12. The subalgebra S is closed under the power maps.

PROOF. This is true since ®* is a R-homomorphism of algebras, and also ®* o & = ®*, This last
statement comes from

Dk o @ (x5 + y;) = BF (w5 + lyi) = i + kly; = O (2 + i) .
This implies that for ¢; € R{z1,...,2,], oj € R

" <Z%“I”” ° L(f]j)) =Y @ ou(g) es.
=1 I=1
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3.3.1. Generators of H* (B, U (n),R): For this case recall that the Weyl group of U (n) is isomor-
phic to the symmetric group S,. By the previous section we know that
H* (BeomU () ,R) = (Rz1,...,2,] @R[y1, ..., y.])" /7

where S, acts diagonally on the tensor product, permuting the variables of each factor. J is the ideal
generated by the symmetric polynomials of positive degree on the x;. It is also known that

H* (BU (n),R) = (R[z1,...,2,])°",

where the action is once again by permuting variables. H* (BU (n),R) is generated by the power polynomials
Pm =27 + 25+ + 2

which are clearly invariant under the action of S,,. These polynomials have their counterparts on two variables
polynomials in the form of

Puy (n) = afyy +a3ys + -+ xqy,,
where 1 < a4+ b < n. These generate the algebra (R[z1,...,2,) @ R[y1,...,yn])”" (See [Vaccarino],
Theorem 1). Thus to prove that S is all of H* (BeomU (1), R) it is enough to see that the multisymmetric
polynomials (modulo J) are in fact in S. To see it, we first need a couple of lemmas.

Sn

LEMMA 3.13. For everyn € N and 1 < a +b < n with a,b > 0 we have ®* (P, (n)) = k* P, (n).

PRrROOF. Since ®* is a homomorphism of algebras, we have
% (Pop (n)) = O (z§y + a5y + -+ 22yh) = Z O (zfy?).
i=1
But we have
a a b a
ot (xz yf) =" &) " (vi) = kbzi ’yf

Where the last equality is true since we already saw that ®* (z;) = z; and ®* (x;) = ky; for every 1 < i <
n.

OJ

To prove the goal of this subsection, we illustrate explicitly the cases n =2 and n = 3.

e Suppose first that n = 2.
We want to show that the following multisymmetric polynomials are indeed in S
= Po1(2) =y1 + v,
— P11 (2) = 2191 + 72y2 and
— P2 (2) =y7 + 3.
We ignore P o (2) = x1 + x2 since this is zero modulo J. For this first observe that
(214 22) = (21 +y1) + (22 +y2) = (21 + 22) + (Y1 +42) = Pro(2) + Fo1 (2)
clearly belongs to S. Since P; o (2) = 0mod J we are done. For P; ; (2) and P2 (2) notice that the
total degree (the sum of the power of each term) is 2, thus we have to consider ¢ (p2):
(2 +23) = (21 + Y1) + (22 + y2)”
= (27 +23) + 2 (@191 + z2y2) + (v7 +v3) -
This can be rewritten as
L(2+23) =Pio(2)+2P11(2)+ Py (2).
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Then we consider
o1 (L (zf + zg)) = (x% + z%) —2(z1y1 + w2y2) + (y% + y%)
giving us that
L (z% + zg) + o1 (L (zf + z%)) =2 (yf + y%) mod J

meaning that Py (2) € S, since S is a subalgebra closed under power maps. Finally modulo J we
get
(224 22) — Pyo (2
P1,1(2): (1 2)2 : @
which finishes the proof for n = 2.
Suppose now that n = 3.

The arguments used in the case n = 2 can be used to obtained the first two of the next equalities,
where once again they are taken to be modulo J:
(1) Poa(3)=1t(z1+ 22+ 23) .
(2) Poo(3) =12 (t(zi4+23+23) + @71 (o (27 + 23 + 23))).
(3) P1,1 (3) = % (L (Z% + Z% + Zg) — PO’Q).
We are left to obtain P, (3) such that a + b = 3. For this we can reorder to see that

€S

V(#4284 2) = (e + )’ + (2 )’ + (25 +ys)°

= (1’? + x§ + x%) +3 (x%yl + x%yg + :L'?,)yg)

+3 (2192 + 7092 + w32) + (2 + 2 + o)
which amounts to

v (2 4 25 + 25) = 3Py1 + 3Py 2 + Py 3mod J.
We use the power maps to get that
' (u (zi’ + 25 + zg’)) = —3P1 + 3P 2 — Py 3modJ.

By adding the last two equalities we get

1
Py smodJ = G (@' (L(+25+23)) +e (28 +25+23)) €S.
Thus we have ¢ (2§ + 23 + 23) — 3P 2 mod J € S, and by closure under power maps we obtain
8Py zmodJ = &2 (v (zf + 25+ zg) —3P15) —6(¢ (zf + 25+ zg) —3Pp) €S
from we conclude that Py 3modJ € S. We finally have

Py = % (¢ (2 + 25 + 25) — 3P1o — Py 3) modJ

)

which finishes the case n = 3.

In the previous two examples we see that for non negative numbers a and b, we proved that P, ; (n) belongs
to S using induction on the value a 4+ b. This was done in such a way that the induction process did not
depend on n. These arguments can be generalized more methodically to obtain.

THEOREM 3.14. The algebra H* (BeomU (1) ;R) is equal to the subalgebra

S = (0" (Imu) | k € Z\ {0}).
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ProOOF. For this proof we will be working modulo J. Also, for an arbitrary n consider a fixed m €
{1,2,...,n}. Now take
Pm =21 25 4+ 2y

An easy reordering gives us

(3.3.1) = i (T) Pnjj(n) = i T) P (n),

where the last equality holds because we are working modulo J. From this point we will use the power maps
@k to obtain the various P,,_;,; (n). First we use the following recursion to get first Py, (n) from 3.3.1: Let

AO ::L(pm)a
Ay =0 (Ao)—QAozj;(?J_?) ( j)Pmm ()
and
Ag = 9% (Ay) — 324, = 3 21 —2) (37 — 32 m Prnjj(n).
S (7)

In general for 1 < k < m — 1 we define
Ap = 0P (A_y) — (k+ 1" 4y

Notice that every Ay has non zero coefficients only for P,,_;;(n) for k+1 < j < m. Since Ay € S by
definition and every Ay is defined in terms of the power maps and Aj_1, induction implies that Ay € S for
every 1 <k <m — 1. Some easy calculations allow us to obtain that

m -1
Pom (n) = (H (k™ — kkl)) Am-1 €S.
k=2
And thus we obtain that
m—1 m
[’(pm) - PO,m (n) = Z <j>ij,j (TL) €S.
j=1

Then we can apply a new recursion to conclude that P; ,,—1 (n) € S. By continuing with this backwards
recursion we obtain that P, ; (n) € S for all positive a, b such that a+b = m. Since we picked m € {1,2,...,n}
arbitrarily, this finishes the proof. O
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3.3.2. Generators of H* (B.,,, SU (n);R): To obtain that
H* (BeomSU (n) ,R) = (®* (Inu) | k € Z )\ {0}),

we use a different presentation of H* (BT,R). A maximal torus of SU (n) is the set of diagonal matrices with
entries in S' C C, such that their product equals one. Under such presentation it is routine to show that

H* (BT,R) 2 (Rlz1,...,2n] /{21 + -+ 21))
where the Weyl group is then S, acting by permutation. This implies that
H* (BSU (n) ,R) = (R[z1,...,2n) / (z1 + - + za))"",
but since p; := 21 + - - - + 2, is already invariant, the previous ring is isomorphic to
H* (BSU (n),R) & R [z1,..., 2] [ {21 + - + 2) .

Shn

Since R [21,...,2,]"" is itself a polynomial algebra on p; = zi + --- + 2! (see [Humphrey]|, Chapter 3.5:
Chevalley’s Theorem), we finally get that

H*(BSU (n) ,R) =R p1,....pn] / (p1) =R [p2,....pn].

We will use this to conclude the following

THEOREM 3.15. The real cohomology of BeomSU (n) can be given by
H' (BoomSU (n),R) = (R, 2] @ Ry, .., ya))* /],
where J is the ideal generated by it +2l,1<i<nandyl +- - +yi.

PRrooF. We saw in Theorem 3.7 that
H™ (BeomSU (n) ,R) = (H* (BT) ® H* (BT))*" /J,

where J is the ideal generated by the S,-invariants on the first component. The previous reasoning then
gives us

H (BeomSU (n) ,R) E(R[azl,...,xn]/<x1+---+zn>®R[y1,...,yn]/<y1+-"+yn>)s" /J.

Notice that this is well defined since the S, -invariance of 1 + --- + x3 and y; + - - - + y» allow us to have a
well define action of .S,, on

R::R[xla""xn]/<x1+"'+$n>®R[y1a---7yn]/<y1+"'+yn>-
Consider first the map
p:R[z1,..., 2, @R [y1,...,yn] = R,
which is induced by the projection
Rilzy, .. yxn] XRy1, .. yyn] 2 Rlzy, .. yzn] /{1 + -+ 2n) X Ry, oo yn] /(y1 + -+ yn) -
The map p is naturally S,-equivariant, thus it induces a map
piR[21, . 2a] OR[y1, .. ya])™" — R

Also, since p is surjective, and the action is diagonal, we have that p is also onto. We can further consider
the composition with the quotient by J to obtain a surjective map

q(R[xh,l'n}@R[yl,,ynDS"%(R)Sn/J

It is easy to see that the kernel of this map is what we called J, so the result follows. 0



3.3. GENERATORS OF H* (BeomG,R) FOR G = U (n),Sp (n) and SU (n) 42

Even further, since the map
Rlz1,.-yzn] = Rizy, ..., 2, @R [y1, ..., yn]

induces the map ¢ : H* (BSU (n),R) — H" (BeomSU (n),R), we still have the same characterization under
the identifications given above. That is, ¢+ can be seen as the map

iRz, 2] [z 4 2) = Rz, an] @R[y, yn)) /T

induce by z; — x; + y;. The k-th power maps on (R[z1,..., 2, @R[y, ..., ya])°" /J is also still induce by
the assignment z; — x; and y; — ky;. Thus, with slight changes we can still apply the arguments given in
the proof of Theorem 3.14, to obtain the main result.

THEOREM 3.16. The algebra H* (BeomSU (n);R) is equal to the subalgebra
S = (®" (Imu) | k € Z\ {0}),

where ®F is the k-th power map.

3.3.3. Generators of H* (B.,mSp(n);R): In this section Zy will denote the multiplicative group

{~1,1}.

The Weyl group, W, of the simplectic group Sp (n) is isomorphic to the semidirect product Z% x S,,, where
o €S, acts on (ay,...,a,) € ZY by
[ (al, ce ,an) = (CLU(I), e 70'0(71)) .

Under these identifications, if f € R{zy,...,z,] =2 H*(T) and g = ((a1,...,ay),0) € Z% x S, we have

g-f(x1,...;zn)=f (alxa(l), .. ,an:cg(n)) .
Recall that
H* (BeomSp (n) i R) = (Rz1,...,@0] R [y1,...,ya])" /J
where W acts diagonally: for n € W and p (z) ® ¢ (y) € R[z1,...,2,) @ R[y1,...,yn] we have

n-(p(r)®@qy):=n-p)n- q)).

J is the ideal generated by the symmetric polynomials on the variables x?

i

For brevity, let us call R :=
(Rz1,..., 20 @R [y1, ... 7yn])W the signed multisymmetric polynomials.

Once again we want to see that S := (®* (Ime) | k € Z\ {0}) is equal to all of H* (BeomSp (n) ; R). For this
let us see first that the set

{Pap(n)|a,b>0anda+be 2Z}
generates all of the signed multisymmetric polynomials as an algebra. This will allow us to use the same

arguments used in the case of U (n) to obtain that S = H* (BeomSp (n) ; R). We need the following lemmas,
where the first has a straightforward proof.
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LEMMA 3.17. Let p: Rz, ..., 2] @ R[y1,...,ys] = R be the operator defined as
1
p(f)===> g-f
Wl &

This is a well defined R-linear map, where |W | is the cardinality of the Weyl group. We call this operator the
symmetrization operator.

LEMMA 3.18. If f€e R and h € R[z1,...,2,) QR [y1,. .., Yn], then p(f) = f and p(fh) = f - p(h).

PROOF. Since f is invariant, we have that g - f = f for all g € W, thus

o pes L
u(f)—‘mg;vgf ! =

Also, since by definition g - (fh) = (g- f) (g h) for every g € W and f,h € R[zq,...,2,] QR [y1,...,¥n]. In
particular if f is invariant it follows that

1 f
p(fh) = ngvy(fh)—lmggvg%—fw(h)-
O

In order to prove our objective we need to analyze the summands (or monomials) of a signed multisymmetric
polynomials first. For this consider sets of indices I = (i1,...,i,),J = (J1,-..,Jn) € N" (including zero as a
natural number) and let us denote

I J . i1 s in . 1 j
T Y =TTy XY Yy

DEFINITION 3.19. We say a pair of multi indices (I,J) € N* x N” is odd if there if 1 < k < n such that
ix + jx is odd. Such a pair is even if it is not odd.

LEMMA 3.20. If a pair of multi indices (I,J) is odd, then p (z'y”) = 0.
Proo¥. Let (I,J) = ((i1,..-,n), (J1,---,Jn)) and let’s assume ix + ji, is odd. Let

b= (1,...,1, -1 ,1,....1].,e]| ew,
~—

k—position

where e is the identity permutation. Denote by H C W the subgroup generated by h; and the partition by
right cosets {Hg1, ..., Hgm} of W. Since hy, has order 2

W={g1,---,gmt U{hrg1,. .., higm}
and thus

1 m
w(a'y?)y = — (qx"y” + hi (gi2"y”)) .
(W1
=1

Notice that in general if g = ((a1,...,a,),0), then since i + ji is odd we get
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ol Ty t1+J1 | intgn .01 L tn Ji .., dn

Ry, (g 'y ) = hy <a1 an (1) Lo(n)Yo(1) ya(n))

— (_1\tR IR Jiitd L intdn 0 L dn o010 o dn
(-1) ay Un " T51) " Tom) Yo 1) T Yo (n)

_ o uti | intin 0 .. pln

=—a; a;

J R
1) Loy o) Yaln)

—g-a'y’.
This implies that
1 m
p(a'y’) = 7 > (gi'y” —giz'y”) = 0.
=1
O

THEOREM 3.21. If a polynomial is signed multisymmetric then its monomials have all even multi indices.

PROOF. An element f € R(xy,...,2,] ® R[y1,...,ys] can be uniquely written as

m

I, J

f:coJrE crr Py,
k=1

Where ¢y € R and for k > 0, ¢ € R\ {0}, I and J; are multi indices of n variables, not all of them zero. If
f is signed multisymmetric,

f=n(f)=cot+ Y erp(zy’).
k=1

These two last expressions for f imply that
(3.3.2) Z cpxlty’e = Z e (zy7r) .
k=1 k=1

But by the previous lemma, we know that if (I, J;) is odd for a given ¢, then (xlty‘]t) = 0. Since p (xl’fy‘]k)
is itself a sum of monomials, the expression

m
Z cep (zhy7r)
=1

must have only monomials with an even set of multi indices. Since all the coefficients in

m

k=1
are non zero, the last equality and the uniqueness of the expression for non zero coefficients of a polynomial,
allow us to conclude that (I, Ji) is even for every 1 < k < m. O

In particular this proof allows us to obtain
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COROLLARY 3.22. FEwvery signed multisymmetric polynomial can be written in the form
m
f=co+ Y exp(aly’),
k=1
where (I, Ji) is even for every 1 <k <m.

If a multisymmetric polynomial has monomials with even multi indices, such polynomial is signed symmetric,
meaning that is invariant under the action of elements of the form ((ay,...,a,),e) € W. In particular we
can now conclude:

THEOREM 3.23. A multisymmetric polynomial is signed symmetric if only if all its monomials have even
multi indices.

This result grant us the frame work to obtain generators for the algebra H* (BomSp (n);R). Recall that
multisymmetric are generated by the power polynomials

n

. a, b

Pa,b = E LiY;-
=1

On the other hand, due to the last result we know P, ; is signed multi symmetric if and only if a + b is even.
Let’s see that they in fact generate all of the signed multisymmetric polynomials.

])ZELMS” is generated as an algebra by the set

THEOREM 3.24. (R[zy,...,2,] @ Ry1,...,yn

n
G:= {Pa,b ::foyf? | OSa,banda—!—beZZ}.
i=1

PROOF. By Corollary 3.22 is enough to show that for even multi indices (I, .J), p (z'y”) € genG. To see
this, note that any permutation of the set of indices have the same symmetrization. This is, for k1,...,kp €
{1,...,n} all mutually different, p < n, we have

L (x?l x;;yill yiz:)) =pu (lel ...x;py{l ...y]JD‘p) ,
So it is enough to show that
" (331 gyl yé) € geng,
where of course i + ji is even for every 1 < k < p. We do it using induction on p. The cases p = 1 is

immediate, since in this case p (zly']) is a scalar multiple of even power polynomials of the form P, o, Py
or Py p.

ip, J1

Next, assume we know p <le1 Xy YL y,{”) € geng for 1 < p < k. By reordering we have

i1, J1 io Tk+1, Jo Je+1) _ i1 ikt1, j1 Jk+1
M(% Yi )M(% T Y2 "'yk+1) =cp (xl T Y1 "'yk+1>
k+1
io ity tht1, j2 Jr4i1 Jk+1
+E Crﬂ(‘rZ”'wrr T Y2 Yy "'yk+1)
r=2
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where cg, ..., cx41 are integers, and c is a non zero integer. This implies that
(ot sttt sl) = L (sl o st o)
= ' 4
—2D o (ﬂf ey Ty eyl -yik) '
r=2
By the induction hypothesis all of the terms in the right are in genG, which implies that
" (mil gl '?J?fff)

belongs to geng. O

With the last result at hand we can imitate the reasoning in the proof of Theorem 3.14 to obtain the main
result of this part.
THEOREM 3.25. The algebra H* (BeomSp (1) ;R) is equal to the subalgebra

S:=(®" (Imu) | k € Z\ {0}).

Where ®* are the power maps and ¢+ : H* (BSp (n);R) — H* (BeomSp (n) ;R) is the map induced by the
homomorphism

Riz1,. - y2n] > Rz, ..., 2] @R[y, ..., yn]

Proor. Take once again
pm :ZT+Z7QW++Z;T GR[Zla"'azn]

for m even. We also work modulo J, the ideal generated by the x?. Recall that

L) = i ()P .

Since (m — j) + j = m, all of the power polynomials P,,_; ; (n) are even. Now we use recursion to get first
Py, (n) from the last equality: for this we name Ag := ¢ (py,), then we take

Ay =% (Ag) —240 =) (27 —2) (?) Pr—jj (n)

=2
and
AQ = CI)S (Al) - 32A1 = Z (2J - 2) (3‘7 - 32) (T;L) mej,j (n) .
=3
In general for 1 < k < m — 1 we define

Aj = prtl (Ag-1) — (B + l)k Ag—1.
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Notice that every Aj has non zero coefficients only for P,,_;; (n) for k+1 < j < m. Since Ay € S by
definition and every Ay is defined in terms of the power maps and Ax_1, induction implies that A; € S for
every 1 <k <m — 1. In particular we have

m -1
Py (n) = <H (k™ — k’“)) An_1€S.

k=2

We now can apply a similar procedure to
m—1

o) = Pa () = 3 () Py ) € S

j=1
to conclude that if m = 2k, and P, is such that a +b=m then P,; € S. O



CHAPTER 4

Chern-Weil theory for TC structures

In this chapter we achive the main objective of this thesis, the development of characteristic classes for TC
structures on principal bundles. Our central goal is to obtain characteristic classes for TC structures using
Chern-Weil theory. Specifically, we will develop this for TC structures over vector bundles whose structural
group is either U (n) or SU (n).

The structure of this chapter is as follows: we start with a review of the theory of characteristic classes for
vector bundles, including both the homotopy and geometrical points of view, and see how they relate to each
other. Then we define the characteristic classes for TC structrues, develop first the homotopic construction
and then the geometrical one.

In this chapter we write H* (—) to denote the cohomology with real coefficients.

4.1. Characteristic Classes for Vector Bundles

In this section we review the basic theory of characteristic classes for vector bundles. Consider a manifold
M. Let Vect,, (M) be the set of equivalence classes of complex vector bundles of dimension n over M. This
defines a contravariant functor from the category of manifolds to the category of sets. Also, H* (—) is a
functor from the category of manifods to the category of algebras.

It is also important to mention that developing characteristic classes for vector bundles with structural group
GL, (C) is the same as with structural group U (n). This is true since U (n) is homotopy equivalent to
GL, (C). Even more this theory can also be applied to vector bundles whose structure group is SU (n).
Thus, for brevity, in this section G will denote U (n) or SU (n) unless otherwise stated.

DEFINITION 4.1. A characteristic class for vector bundles is a natural transformation n : Vect, (=) —
H* (—).

Characteristic classes are equivalent to the cohomology classes of H* (BG). This is done in a constructive
way, so we recall its proof.

THEOREM 4.2. Let EG — BG be the classifying vector bundle of dimension n. A natural transformation 7 :
Vect,, (=) = H* (=) is determined uniquely by n ([EG]) € H* (BG), and every class of H* (BG) determines
a natural transformation.

48
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PROOF. Let ¢:= 1 ([EG]) € H* (BG). Recall there is a natural bijection
¢ : [M, BG] — Vect,, (M)
[f] = [ (EG)],

between the set of homotopy classes of functions from M to BG, [M, BG], and the set of equivalence classes
of vector bundles. Here f* (EG) refers to the pullback vector bundle.

Now take [E] € Vect,, (M) and ¢! ([E]) = [f]. Since 7 is a natural transformation we obtain that

f(n((EGD) = n([f* (EG))).
But since [E] = [f* (EG)], and by definition f* (¢) = f* (n ([EG])) it follows that

() =n([E]) e H* (M).

Since the class f* (¢) € H* (M) depends only on the homotopy class of f and the class ¢, we obtain in turn
that f* (c) is uniquely determined by [E] and c.

On the other hand it also follows that given a class ¢ € H* (BG), the assignment
Vect, (M) — H* (M)
[E] = [f* ()],

where ! ([E]) = [f], defines a natural transformation. O

From this proof we see that given a vector bundle £ — M and a natural transformation 7, to determined
n ([E)) is equivalent to find the homotopy class classifying E, ¢! ([E]) = [f]. This method is thus known as
the homotopic method to determine characteristic classes.

4.1.1. Chern-Weil theory: When we work on the smooth category, there is a geometrical way to
obtain characteristic classes. Here we give a small review of this construction for vector bundles (see Chapter
5 of [Morita] for details). For this, let p : E — M be a smooth vector bundle over a manifold. Also let " (E)
be the set of smooth sections of p, and X (M) the set of vector fields over M.

DEFINITION 4.3. Let p: E — M be a smooth vector bundle over a manifold. A connection for E is smooth
map V : X (M) x ' (E) — T (F) satistying the following conditions: for X,Y € X (M), s,s' € T'(F) and
f e C> (M) we have

® Vixiy (s) = fVx (s)+ Vy (s).
e Vx(s+5')=Vx(s)+Vx(s).
o Vx (fs)=fVx(s)+X(f)s.

The existence of a connection can always be guaranteed. In particular consider a trivial bundle M x C" — M
and the sections s; : M — M x C™ given by s; (z) = (z,¢;), where {ey,...,e,} is the standard basis. Then
we have a trivial connection given by Vxs; =0 for 1 <i < n and every X € X (M). For any other section
s, consider that they can be written as

s =i fisi
where f; € C* (M). With the second condition of the definition we obtain that

Vxs=Vx (ZiL,fisi:) = 82, Vx (fisi),



4.1. CHARACTERISTIC CLASSES FOR VECTOR BUNDLES 50

and then by the third condition we have

Vx (fisi) =Vxsi + X (fi)si = X (fi) si-
Thus, we obtain that
(4.1.1) Vxs=X"1X(fi)si.

Now consider an arbitrary vector bundle p : E — M with an open cover {U;} of M and trivializations
i : p~ 1 (U;) = U; x C™. We can obtain linearly independent sections over U;, s; (x) := (pi_l (z,e;),1 <i<n.
Following the previous construction, we can define a connection over U;, V¢ by the previous equation. Then,
by taking a partition of the unity subordinated to {U;}, {g;}, we define a connection over all M by

Vxs:=gVis|u, .

This can be easily checked to be a well defined connection.

Let us go back to the trivial connection over the trivial bundle, M x C™ — M. Notice that for every section
s it follows that for the Lie bracket of two vector fields X and Y, [X, Y], we have

vays — VyVXS — V[Xy]s =0.

This equality does not hold for every connection of an arbitrary vector bundle.

DEFINITION 4.4. Consider a smooth vector bundle £ — M with a connection V. The curvature of the
connection is the smooth map R : X (M) x I' (E) — I' (E) given by

R(X7y)s = vays — Vyvxs — V[X7y}8,
for (X,Y) e X(M)* and s € I (E).

Now consider an open cover {Ui}ieN with trivializations and transition functions p;; : U; NU; — G associated
to these trivializations. The curvature R can be expressed locally in every U; as a matrix ¢, where every
entry is an a differential 2-form over M. The relation between this local forms on the intersection U; N Uj is
given by the formula
O = p;jlgzp”

Now consider the Lie algebra g of G. Let p be an invariant polynomial under matrix conjugation of the
polynomial algebra of g. Since p (p;leipZ-j) =p (Ql), p () is a well defined two form of M. In fact, Chern-
Weil theory guarantees that this gives us a well define characteristic class. See Propositions 5.27, 5.28 and
5.29 of [Morita).

PROPOSITION 4.5. The form p(QQ) is a closed form of M. This endows us with a well defined natural
transformation
Vect,, (M) — H* (M)
[E] = [p ()]

Also, the class [p (Q)] is independent of the choice of connection and its curvature.

This construction is related to the homotopical construction via the Chern-Weil homomorphism. That is
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THEOREM 4.6. Let G be either U (n) or SU (n). Also let I(g) be the algebra of invariant polynomials under
conjugation of the polynomial algebra of the Lie algebra of G, g. Then there exists an isomorphism,

U:I(g) —» H"(BG)
called the Chern-Weil isomomophism. Even further let ) be the curvature of a vector bundle E — M and

c = U (p) be the class given by an invariant polynomial p € I(g). Then if n. is the characteristic class
defined by c, then we have the equality

Finally let’s consider the polynomials o; on the entries of a n X n matrix X characterized by the equality
det (I —tX) =1+toy (X) + 202 (X) 4+ + "0, (X).

It is easy to see that the polynomial o; are invariant under matrix conjugation. Even further, 0;, 1 <i <n
are generators (as an algebra) of the whole algebra of invariant polynomials over matrices both with complex
or real coefficients. (See Theorem 5.26 of [Morita]) In fact it is well known that the class of the closed forms

given by (ﬁ)l o; (Q) have integer values.
DEFINITION 4.7. The characteristic class given by the polynomial ¢; = (ﬁ)Z o, is called the i-th Chern class.

Chern classes are important since they generate the rest of the classes as an algebra. This means that the
rest of the classes can be obtained as linear combinations of products of Chern classes.

4.2. Characteristic classes for TC structures

In this section we first define characteristic classes for TC structures. Then we adapt the homotopy construc-
tion to show how H* (BeomG,R) is in one to one correspondence with them. We only consider here vector
bundles with structure group SU (n) or U (n).

In this section G will denote U (n) or SU (n).

DEFINITION 4.8. A characteristic class for a TC structure or TC characteristic class is natural
transformation between the functors Top — BundZ™ (—) and Top — H* (—,R).

While this definition does not require further restrictions, we are interested in working only with manifolds.
The classifying space for commutativity gives us a natural way to construct characteristic classes:

PROPOSITION 4.9. There is a one to one correspondence between classes p € H* (B.om G, R) and characteristic
classes n, for TC structures on principal G-bundles over a manifold.

PRrROOF. For brevity let us call & the TC structure of B, G making it a classifying space for TC
structures themselves. Also, suppose we have a natural transformation 7 : Bund@™ (=) — H* (—), and take
c:=nU) € H* (BeomG,R).
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If M is a manifold there is a natural bijection

[M, Beom G] — Bund@™ (M)
[l = [f @)
This means that for an equivalence class £ € Bundg™ (M) there is a unique classifying function f : M —

Beom G, up to homotopy, that represents that given structure. That is, the pullback f* (/) is in the class .
This implies, by naturality, that 7 (£) = f* (n(d)) = f* (¢). Here we are abusing notation by also calling

f* H (BeomG,R) = H* (M,R)

the induced map on cohomology. In conclusion ¢ determines completely the characteristic class 7.

On the other hand, it is clear that every element of ¢ € H* (B.omG,R) gives rise to a characteristic class
for TC structures. This is, the assignment & € Bundg™ (M) — f*(c¢) € H* (M) is natural. where f is the
classifying function of &. O

Now let’s see how we can use the results of Chapter 3 to obtain TC characteristic classes through the ordinary
characteristic classes. Each of the elements of the algebra H* (B.om G, R) represents a TC characteristic class,
thanks to the previous theorem. However, we saw that these algebras can be generated by a smaller generating
set (as an algebra). Recall that we have the k-th power maps ®* : H* (BeomG) — H* (BeomG), and a natural
inclusion ¢ : H* (BG) — H* (BeomG). So if we consider

S:={(®"0i(c) | ce H(BG),k € Z\ {0}),

the algebra of classes generated by the images of ®* o1, k € Z, we already proved in Chapter 3 that

THEOREM 4.10. For G equal to U (n) or SU (n), then H* (BeomG) = S.

This means that given a class in H* (BeomG), it can be written as a sum of finite products of elements of the
form ® o1 (c), c € H*(BG),k € Z\ {0}.

4.3. Chern-Weil theory for TC structures

Here we show how to expand Chern-Weil theory to TC characteristic classes. Even further, we will see that
this can be done without introducing new geometrical concepts, thanks to the commutative property of the
transition functions. We only consider TC structures over vector bundles whose structure group G is U (n)
or SU (n).
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4.3.1. The k-th associated bundles: Let (p B — M {Us} ey gpa) be a TC structure with structure
group G and transition functions {pag}. By definition if z € Uyg N U, then

Pap () Pn (v) = Pn () Pap ().

These transition functions satisfy the cocycle condition as well, that is,
Paxy (z) = Pap (z) PBy ().
In particular these two properties imply that for & € Z we have
k k k k
Pary ()" = (pap (x) ppy (2))" = pap ()" psy (z)

This tell us that the collection of functions p’;ﬁ 1 Uppg — G defined as

k k

Pap () = pap (2)

also satisfy the cocycle condition. Thus we can construct a new principal bundle p (k) : E¥ — M with

trivializations over the same open cover {Ua},; (See Chapter 1). We call it the k-th associated bundle
of E.

THEOREM 4.11. (Classifying functions for k- th associated bundles)

If f: M — BeomG is a bundle with a TC structure, and f* : M — By, G is the classifying function of the
k-th associated bundle, then the following map diagram commutes

(4.3.1) M—'-B,,.G
fX{ l‘bk
BeomG.

Where ®F : BoomG — BeomG are the power maps.

PRrROOF. As it was explained before, to obtain the classifying functions for the k-th associated bundle
p(k) : E¥ — M we need to consider a simplicial map ff : N' (), — Hom (Z',G). The components of this

function are given by the transition functions: if x € U;, NUy, N---N U, ,, we take

@) = (ol @)t @) = (pioia @i (@))

This can be rewritten using the power functions as

fF=aFof.

The desired result is obtained after passing to the geometrical realization. 0
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4.3.2. Chern-Weil theory for TC structures: We finally are able to reach our main goal of devel-
oping a theory that uses Chern-Weil theory to obtain characteristic classes. For this, we develop an algebraic
and geometrical method that uses the fact the every TC characteristic class is uniquely represented by an
element of H* (BeomG, R).

For the rest of this chapter let e € Vect; ™ (M) be an equivalence class with an underlying smooth vector
bundle F — M and structure group U (n) or SU (n). For an element p € H* (BeomG,R) we denote by
p(e) € H* (M) the value of the TC characteristic class on the TC equivalence class €. Also, recall that via
the Chern-Weil isomorphism, if g is the Lie algebra of G, then H* (BG) = I (g). Here I (g) is the subalgebra
of invariant polynomials under conjugation of the polynomial algebra of g. Under this identification, every
characteristic class for vector bundles -having G as its structure group- can be identify with a polynomial
ceI(g).

Now recall that for a smooth vector bundle F — M with curvature €2, the value on F of the characteristic
class associated to c¢ is equal to ¢(2) € H* (M). Under these terms, we are now able to compute the TC
characteristic classes associated to the set of generators of H* (BeomG), {®* 01 (c) |1 <i <n,k € Z\{0}}.
Here, we take ¢ to be a map from I (g) to H* (BeomG)-

THEOREM 4.12. Consider ¢ € Vect;"™ (M) an equivalence class with an underlying smooth vector bundle

E — M, and structure group U (n) or SU (n). Also let 2, be the curvature of E*, the k-th associated bundle
of E. Then for c € I(g) and p = ®* o1 (c) € H* (BeomG), the TC characteristic class p () has same class
in H* (M) as the characteristic class for vector bundles ¢ (Ek) This implies that

p(e)=c(Q) € H (M).

ProoOF. This is straight forward. First, by Theorem 4.11 we know that if f and fj the the classifying
functions for TC structures over E — M and E¥ — M, respectively, then there is the following commuting
diagram

H* (BeomG) > H* (M)
‘I’kT i
H* (BeomG) -
This means that for ¢ € H* (BG) we have the identity f* (®% o (c)) = f7 (v (c)) in H* (M).

In turn, since the composition f; o is a classifying function for the vector bundle E* — M, we can apply
the Chern-Weil isomorphism. That is, we can consider the curvature €2 of E} to obtain that

fr (e(e)) = e ().

The conclusion of the theorem then follows by transitivity. O

THEOREM 4.13. (Chern-Weil theory for TC structures)

Consider € € Vect;"™ (M) an equivalence class with an underlying smooth vector bundle E — M, and
structure group U (n) or SU (n). Also let Q. be the curvature of E¥, the k-th associated bundle of E. Then
every TC characteristic class can be obtained as a linear combinations of products of the form

51 (le) © 82 (ka) cSm (ka) € H” (M)v
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where s; € H* (BG) and k; € Z. Each s; (Q,) is the characteristic class of the vector bundle E¥ — M
computed using its curvature.

PROOF. Recall that if we set S as the subalgebra of H* (B.omG) generated by
{@For(s)|1<i<nkeZ\{0},se H (BG)}

then we have S = H* (BeomG). Thus, every element of H* (Beom(G) can be written as a linear combination
of products of the form

M (1 (s1)) - @M (1 (s2)) - D (e (5m)) -
Then we can apply the previous theorem to obtain ®% (1 (s;)) = s; (Q,)- O

As suggested by the name of the theorem, we are now able to compute TC characteristic classes by us-
ing Chern-Weil theory. This is done in a three steps process for a class in s € H* (BomG) and a TC
structure £ over a vector bundle E — M: first we need to decompose s in terms of the generators in
{®%o1(c)| 1 <i<n,keZ\{0}}. Secondly, for each of the generators ® o . (c) in the decomposition of s
we use the curvature of the k-th associated bundle, ), to compute the characteristic class associated to it,
c(Q) € H* (M) (this class is equal to the TC class given by (®* 0. (c)) (€)). Finally we replace the values
of each (®* 01 (c)) (€) to obtain s (£) € H* (M).

Recall from Chapter 3 that when G is equal to U (n), then
H* (BeomGyR) = (R 21, .., 0] @R [y1, ..., ya])*" /J

where S,, acts by permutation on their indexes and J is the ideal generated by the invariant polynomials of
positive degree on the ;. When G is SU (n) is the same description for H* (BeomG, R) except J is generated
by the invariant polynomials of positive degree on z; and the polynomial y; + - - - 4.

We also have the identifications
H*(BU (n),R) 2Rz, ..., 2"
and
H* (BSU (n),R) 2R z1,..., 20" /(21 4+ 2).
Then we have that the polynomials
pi=2 4+ 2 €ER[z, ., 2]

generated all of H* (BG,R), when G is U (n) or SU (n). Even further for a,b € NU {0} such that 0 <a+b
then

Py (n) = Z 2%y mod J.
i=1

generated all of H* (BeomG, R) as an algebra. We also saw in the proof of Theorem 3.14 there every P, (n)
can be obtain, via a recursive procedure, as a linear combination of elements of the form ®* (. (p;)). With that
recursive procedure and the previous theorem, we can compute the TC characteristic classes corresponding
to each P, p (n).

Recall that another set of generators for H* (BG,R), when G is U (n) or SU (n) is given by the polynomials
o, characterized by the equation
det (I —tX) =1+to; (X) +t%00 (X) 4+ - +t"0, (X).

These generators are more commonly used instead of the p;, as o; are used in the definition of Chern classes.
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EXAMPLE 4.14. In Chapter 3 we saw that for G = U (3) we have the equalities

(1) y1 +y2+ys =t (21 + 22+ 23).
2 B+ + =50 +28+23)+0 1 (L(22+23+23))).
(3) miyr + woyz +agys = § (L (zE+ 28 +23) — @7 (L (23 + 23 + 23))).

Now consider a TC strcutrure ¢ with underlying vector bundle £ — M, with curvature 2 and £ is the
curvature of the k-th associated bundle. Now since we have that p; = o and that

2
p2 = 0] — 209

we obtain that

(1) (1 +y2 +y3) (§) =01 (Q).
@) (B + 13 +13) () = 1 (01 () +01 Q1)) = (02 (@) + 02 (1)),
(3) (@191 + 2o +2333) (€) = & (01 (° = o1 (2 1>) L (02(2-1) — 02 ().

For G = U (n) we know that H* (BG) is a polynomial algebra generated by the Chern classes ¢;, 1 <14 <n.
Thus it follows that S is generated by the set {®* o1 (¢;) |1 <i < n, ke Z\ {0}}.

DEFINITION 4.15. We call the classes of the form c¥ := ®* 01 (c) € H* (BeomU (n)) the TC Chern classes.
Also, for a TC structure € with underlying vector bundle E — M we call

cF(e):=f* (Cf) e H* (M)
the TC (i, k)-Chern class. Here f : M — BeonU (n) is the classifying function of the TC structure.

From the previous theorem we have the immediate following corollary:

COROLLARY 4.16. Let E — M by the underlying bundle of a TC structure structure €, and let ) be the
curvature of the k-th associated bundle. Then ck(e) = c; ().

It is immediate from our results that {c} | k € Z, i € N} generates all of BeonU (n) as an algebra. That is,
every class in H* (BcomU (n)) can be written in the form

m
5= ZajC]
=1
where a; € R and

C; —Hclﬂ,

where k;; € Z and i+ € N. Then it follows that if £ is a TC structure with underlying vector bundle £ — M,
with curvature its £ and j the curvature of the k-th associated bundle, then

- Zaj (H Cij (ka)> € H"(M).
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At this point it is worth mentioning that H* (B.omG) is in general not a polynomial algebra. For example
when G = U (n), the TC Chern classes are not algebraically independent. However, the relationships gov-
erning them are rather complicated. As such, their values in a given TC structure can vary significantly. We
see an example of this in the next chapter.

REMARK 4.17. The concepts developed in this chapter can also be applied to vector bundles on the quater-
nions. In this case, the structural group is the simplectic group Sp (n). The main ideas we needed to developed
TC characteristic classes also hold for this group. As we saw in Chapter 3 we also have power maps on coho-
mology, and H* (BeomSp (1) ,R) is also generated by as an algebra by {®% o (c;) |1 <i<n,keZ\{0}}.
Where again ¢ : H* (BSp (n) ,R) = H* (BeomSp (n),R) is induced by the natural inclusion BeomSp (n) —
BSp (n). Also, since Sp (n) is a compact group, the Chern-Weil homomorphism is in fact an isomorphism.
Thus, most of the ideas we used through out this chapter can be used.



CHAPTER 5

Examples

In this final chapter we exhibit explicit calculations of examples using Chern-Weil theory to compute TC
characteristic classes. In particular we show there is a TC structure ¢ such that ¢; (§) = 0 for every i € N
while ¢; ! (€) # 0. This shows that a TC Chern class ¢ does not necessarily determines another TC Chern
class ¢!, if m # n. This confirms that the underlying vector bundle of a TC structure does not determine

7 )

completely the TC structure.

In this chapter we present two examples, both of which are TC structures over spheres with a two sets open
cover with trivializations. As such, we start with the most general calculations to continue considering the
more specific conditions our examples need. The first example is the computation of the TC Chern classes
for the tautological linear bundle over the sphere. This follows the first general calculations. The second
example is the one mentioned previously, consisting of a non trivial TC structure over a trivial vector bundle.

This treatment is based on the concepts presented as in [Morita], Chapter 5. A small review is presented in
the first section of Chapter 4.

5.1. Connection for a vector bundle with a two sets cover with trivializations

Let 7 : E — M denote a smooth vector bundle over C of dimension n, with M a closed manifold. Assume
we can find an open cover {Uy,Us} of M together with trivializations

(piiﬂ'_l (Ul) — U; x C"
e (mw(e),h;(e)).

Suppose these trivializations have structure group a Lie group of matrices G. This is, we have a function
p: Ui NUs — G C GL, (C) characterized by

w00t U NUy x C* = Uy NUy x C?
(z,v) = (z,p(z)v).
These trivializations induce smooth sections
845 Uy — 7 ()
z e o7 (x,€5),

58
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where ¢; is the j-th vector of the standard basis of C", and 7 = 1,2. This setting implies that for € U;the
set {si1 (z),8i2(x),...,80m ()} C 71 (x) is a basis. Under these conditions, for a point z € U; N Uy it
follows that

n

(5.1.1) sk (x) = Zplk () 591 ()
I=1

where we take p = [pik]). ;-

Now let {f1, fo} be a partition of the unity subordinated to {Uy, Uz}, as well as the trivial connections over
each U;, V' (See Section 1 of Chapter 4 for details). We can now define the connection

Vxs:= fiVis+ faVis.

This means that for a vector field X and a section s, we consider their restriction to U; in order to evaluate
Vi . That is, we need first to consider the decomposition of s in terms of the basis {s;1,..., S}, which
means that there are smooth functions af : U; — C such that for x € U;

n
v (@) =)o (2) 545 ().

Jj=1

S

Then, applying the product rule and the definition, we have
VXs = Z sz (CK;) Sij-
]

Recall that with n-linearly independent sections {si,...,s,} we have the local expressions for both the
connection and the curvature, R : X (M) x X (M) — T' (E). There exists 1-forms w;; and two forms €2,; such
that we can write

VXsl' = Zwij (X) .Sj
and
R(X,Y)(s:) = > Qi (X,Y)s,
J
which gives rise to the local connection and curvature matrices
w = |w;;] and Q := [Q;;] .

These local forms are related to the transition function in the following way. From Equality 5.1.1 we get that
Vs = Zf2X (i (2)) 52 () -
1=1

From differential geometry we know that for a function f : M — R, X (f) = df (X) holds, where d is the
external derivation. Thus we get the expression

Vxsu =Y fod (o () (X) 521 (),

=1
which allow us to write

Vo =3 fad (o () 521 (2).

=1
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By the properties of cocycles we also know that
n
s (x) =Y py* (2) 51 (@),
t=1

where by p;llwe mean the components of the matrix p~!. Thus, we can write

Vs = z; <f2 (lz; Pt_zl (z) d (pik (a:)))) S1¢-

t=
By comparing this expression with the local form, we conclude that

(5.1.2) w! = fop~tdp.

Our next step is to obtain the local form of the curvature. For this we use the structural equation (see
[Morita] Theorem 5.21.) 4 4 4 .

Q' =dw' +w' Aw'.
Consider the equality p~!p = I. An application of the product rule allow us to write:

0=dl=d (p_l) p+ p~tdp.
This in turn implies that
d(p~")p=—ptdp=d(p~") =—p " (dp)p~".

Since dd = 0, we obtain d (p~*dp) = d (p~') Ad(p), which allow us to conclude that

dw' = ((df2) p~"dp — fop~"dp A p~"dp) .

On the other hand

wh AWl = (fap~tdp) A (fap~tdp) = f3p~ dp A p~tdp,
which finally gives us
(5.1.3) Q' = ((df2) p~'dp— fop~'dp A p~ dp) + f3p~ dp A p~ dp.

Observe that in a point z ¢ Uy N Us, Q! is zero since the closure of the support of fo is contained in Us.
Similarly, an analogue formula can be deduce for the local form of the curvature in U, and deduced that it
is also zero outside U; N Us. Thus, we can conclude that

PROPOSITION 5.1. Let w: E — M be a smooth vector bundle with {Uy,Us} an open cover of M, both having
trivializations of E, @1 and @z, respectively. Let {f1, fo} be a partition of unity associated to {Uy,Us},
respectively. If p is the transition function associated to ps ngl_l, then the curvature Qg of the k-th associated
bundle is given by

(). = (QF), zeUinUs.
ko O IE¢U1QU2.

Where
(5.1.4) O = (df2) p"d (p") + (f5 — f2) p"d (p*) A p~"d (p*)

is the local expression on U;.

PROOF. Since the k-th associated vector bundle has the same cover associated to its TC structure, with
transition functions equal to p¥, the previous discussion provides a proof of the theorem. O
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It is worth mentioning that it is possible to deduce a similar formula to 5.1.3 for a arbitrary number of sets
in an open cover, but we will not need this.

5.2. Calculations over the spheres

5.2.1. TC Chern classes of the tautological vector bundle over the sphere. As a simple illustra-
tion and fist example, we compute the TC Chern Classes for the Tautological vector bundle over CP! =2 §2,
Here we can consider the vector bundle as a TC structure since the structure group, C* ~ S, is abelian.
This implies that BeomS' = BS!. So, by the homotopy classification of TC structures and vector bundles we
obtain that every vector bundle with this structure group is a TC structure. In this case the TC equivalence
class is independent of the open cover and its trivializations.

Consider the set
T = {([21,22] (w1, ws)) € CPY x C? | (w1, ws) € [21,22] or (wy,wsy) = O}

and the map 7 : 7 — CP! given by the projection on the first component. We have an open covering given
by Uy = {[2,1] € CP' | 2 € C} and U, = {[1,2] € CP' | z € C}. It is routine to check that the functions

o1:7 H(U) = Uy xC
([z, 1], (w1, w2)) = ([2,1] ,w2)
and
w7 N (U) = U xC
([1, 2], (wi,w2)) = ([1, 2] ,w1)

are well defined trivializations. Also it is easy to check that Uy N Uz = {[z,1] € CP' | z # 0}, where every
class can be uniquely be represented by a pair [z, 1] with z # 0. Under these conditions we get that

oot UINU; xC— U NU; xC
([z,1,2) = ([z,1], 24)
which implies that the transition function is given by
p:UNU; = C*
[z,1] = 2.
Since we are dealing with one dimensional matrices, the expression p~*d (p¥) A p=*d (p*) has commuting

terms. This means that

7 (o) np7hd (04) = (p7F) d (o) A d (¥) = 0.

The formula for the curvature of the k-th associated bundle gives us Qi = (df2) p~%d (p*), where {f1, fo} is

a partition of the unity subordinated to {U;, Us}, respectively. Now, since we can parameterize U; N Uy = C*

via polar coordinates, (r,6) — e, we get p* (r,0) = r¥e*%", Thus

d (pk) = krF =1k qr + ikr* ek qp
and so
1
pFd (o) =k (dr + z‘de) .
T
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Informally if we think of CP! as the sphere, each U;and Us are the whole sphere minus one point. These two
points are antipodal, so we can think of them as the north and south poles. Then, it is easy to see that the
partition of the unity can be made to depend only on latitude lines. This means that in the parameterization
of Uy NU;y we are considering, fs depends only on r, its value must be 0 in a neighborhood around r = 0 and
its constant and equal to 1 from certain given value r, > 0. This give us that

df2
d = —==d do
(f2) = 5 -dr+0
and ~ ot
i Sodr= lim f>(z) = f2(0) = 1.
Then we conclude that 9
Q. = (df2) p~*d (p*) = kia—‘?dr A do,

and so the first Chern class is given by

. . e} 27
S o T i/ / ki 22 dgar — .
27'(' 27T 0 0 8T

In particular the first Chern class of the tautological line bundle is equal to -1, as it is well known. In
conclusion we have that
c’f (1) = —k.

5.2.2. Second Chern class for clutching functions with values on SU (2). Suppose that we have
a vector bundle p : E — M in such a way that we can find an open cover {Uy,Us} of M together with a
transition function p : Uy N Uy — SU (2). First, we are going to compute the determinant of the curvature
form in terms of the components of the matrices in SU (2),

SU@ =1 o o |HEP+hf =1,
e 7 !

w

So let us take

for which we want to compute the curvature
Q= (dfs) p~'d(p) + (fZ = f2) p~ d(p) N p~ d (p).
Since zZ + ww = 1, we get by differentiating that
0 = (zdz + wdw) + (2dz + wdw) = zdz + wdw = — (Zdz + wdw)

and so we have

— 1y — zZdz + wdw wdz — zdw
TP T _wdz 4 zdw — (zdz + wdw)
Now take 6 := p~Ydp A p~Ldp. Using that 153 = —711 and |z|* + |w|> = 1 we get that
o (wdz — zdw) A (—wdz + zdw) 2dz A dw
B —2dz A dw — (wdz — zdw) N (—wdz + zdw)

which is the same as expressing it as

9 — T12 A\ T21 012
021 —Ti2 AT21 |’
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Now, by making f := fo and g := (f — 1) f we may express the curvature as

df i1 + gTi2 A T21 df iz + gb12

Q=d 0=
fr+g df o1 + 9021 —(df 11 + 9712 A T21)
and its determinant is then given by

det (2) = — (df 111 + gT12 A T21) A (df 11 + 9712 A To1) — (df 21 + g021) A (df 112 + gb12) -

In order to reduce this expression, we recall that the wedge product of a one form with itself is zero. Also,
one forms commute with two forms, so we get:

det (Q) = 792912 A 921 — gdf A (7'12 A 021 —+ T21 A 012 —+ 27’11 A T12 A\ Tgl) .

By recalling that 711 A 712 = dZ A dw we get:
T11 A T12 A To1 = — (wdzdzZdw + zdzZdwdw) ,
T12 A 021 = 2 (Zdzdwdw + wdzdzdw)

and
To1 A O12 = =2 (zdZdwdw + wdzdzZdw) .
Now take
A =719 ANOs1 + 791 A O1o + 2711 A T2 A To1
then

A = 2][(Zdzdwdw + wdzdzdw) — (zdzZdwdw + wdzdzdw) — (wdzdzZdw + zdzZdwdw)]
which gives us
A =2 (zZdzdwdw + wdzdzdw — 2 (zdzdwdw + wdzdzdw))
which we can now replace to have

(5.2.1) det (Q) = 4 (f, — 1)° f2dzdzdwdiw — (fy — 1) fodfs A A.

Now we are going to use this formula to find the second Chern class in terms of a smooth Clutching function
8% — SU (2) (see [Hatcher II], Chapter 1). Consider the sets

St = {x: (x1,...,25) €R® | ||Ix|| = 1},

D, = {(xl,...,x5) e st ‘ x5 ZO},

D_ = {(371,...,1‘5) 654 |£U5 SO}
and the open set

V= {(1'1,...,$5) S S4 ‘ —1/3 < x5 < 1/3}

Also let Uy := D, UV, Uy := D_ UV and identify S® with the equator {(xl, coo,xs) €8 | a5 = O}.
Using "bump" functions we can obtain a partition of the unity fi, f> : S* — [0, 1] such that they depend
only on the "height" x5 and f; [y,\v= 1. Also the clutching function ¢ : S$3 — SU (2) can be composed with

a smooth "perpendicular" retraction of V to S3, to obtain a transition function p : V' — SU (2) independent
of T5-

Under this conditions is clear that

o dfy = %2dr, and
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e

any four form depending on z,Z, w and w is zero, since these functions depend only on three
variables.

o If

g

We are in position to apply the previous results to obtain that
det (Q) =4 (fo — 1) f2dzdzdwd® — (fo — 1) fodfs A A.
Where A = 2(zZdzdwdw + wdzdzdw — 2 (zdZdwdw + wdzdzdw)). However, by construction we have that

dzdzdwdw = 0 and so ) of
_ _ vJ2
/S4det(Q)—(/_1((1 fg)f28r>dr)/sgA.

First, notice that by construction it follows that

! dfa 1
[1 <(1 — f2) f287"> d?" = 76.

Finally since the second Chern class in this case is the determinant of the curvature times (i){ we get

PROPOSITION 5.2. The second Chern class associated to a clutching function o : S — SU (2) is given by

1
= — A
27 42 /Sg
Here A is a 3-form given by
2 (Zdzdwdw + wdzdzdw — 2 (zdZdwdw + wdzdzdw))

and the functions z,w : S* — SU (2) are determined by the clutching function, ¢ = { Z _Zw } .

5.3. A non trivial TC structure over a trivial vector bundle

It is already known that there are trivial vector bundles with non trivial TC structures over them. In this
section we are going to use such a structure to show that:

THEOREM 5.3. There ezists a TC structure £ = {E — S* {Uy,Us,Us}, pij : U;NU; — SU (2)} such that
E — S* is a trivial bundle, and such that 62_1 (&) = —1, implying that the TC structure is non trivial.

This in particular highlights how the TC characteristic classes depends on the TC structure and not on the
equivalence class of their underlying bundle.

Now, to prove this theorem we are based on the construction made by D. Ramras and B. Villareal ([RV],
Chapter 3). In what follows, we first define the vector bundle by defining an open cover on S* and transition
functions on them. This defines a TC structure

§={E— S {U1,Us,Us}, pi; : Ui NU; — SU(2)} .

Then by considering the (—1)-powers of these transition functions we also obtain the (—1)-th associated
bundle, E~1.
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D.
< |

[ D
D,

FI1GURE 5.3.1. Retraction r: D_ — D3

Next we are going to use Lemma 3.1 of [RV] to show that both vector bundles obtained can be described, up
to isomorphism, by a given clutching functions. Then on one hand by showing that the clutching function
associated to F is trivial, we conclude that F is trivial. On the other hand, we use the clutching function
associated to E~! together with the formulas of the previous sections, to conclude that cgl (&) =-1.

5.3.1. Description of the TC structure: We outline how their initial construction can be made in
the smooth category, which allows us to reduce the problem of computing the Chern class by using Clutching
functions.

We are constructing a TC structure on a vector bundle defined over S* in terms of a triple open cover
{U;,Us,Us} and transition functions between them. These transition functions themselves will be described
in terms of two functions

P1,pP2 : D3 — SU(Q),

where D3 is the 3-dimensional closed disk of radius 1.
For this, take
St = {x: (x1,...,25) €R® | ||Ix|| = 1}
and for 1/5 > € > 0 consider the triple open cover
U, .= {(x17...,I5) S 54 ‘ xr5 > —6},

Us := {(1’1,...,%5) € st | x5 < 0,14 > 76}
and

Us := {(xl,...,.’bs) S 54 | r5 < 0,14 < 6}.
Also call D_ = {(z1,...,25) € S* | 25 < 0} and identify the closed 3-dimensional disk with

D3 = {(xl,...,z5) € S4 ‘ x5 < 0,14 :0}

There is a natural retraction r : D_ — D3 leaving Dj fixed (See Figure 5.3.1). This is a smooth function
almost everywhere.

Take V' = D3 NU;. Then we get that
V= {(131,...,:]55) € D3 ‘ T > 71/3}
Now suppose that the functions pi, pa : D3 — SU (2) are smooth functions such that:

e They are independent of the radius in D3 in V.
e They are commutative in the closure of V.
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We define the transition functions p;; : U; N U; — SU (2) by

® P12 = pP1orT.
® po3i=poOT.
e p13:=(pror)(pzor).

Since r (U; N Uz NUs) C V by construction, the previous cocycles commute with each other in their common
domain U; N Uy N Us. This transition functions allow us to construct a smooth vector bundle £ — 5%, and
so we have constructed a TC structure

¢={E — S*" {U,Us,Us},pij : U;NU; — SU (2) }.

5.3.2. Associated clutching functions: Before dealing with the result we need, it is important to
highlight the following. Suppose F1 — M and E5 — M are smooth vector bundles with classifying functions
fi: M — BSU (n), i = 1,2. If there is a (non necessarily continous) homotopy between f; and fo2, and there
is class ¢ € H* (BSU (n)), it follows that f; (¢) = f5 (¢) € H* (M). Now consider the curvatures €; and {2y
for Ey and Es, respectively. By the Chern-Weil isomorphism, we get that ¢ (1) = f7 (¢) and ¢ (Q2) = f5 (¢),
and thus ¢(Q1) = ¢(Q2). In particular if there is a continuous (but not smooth) isomorphism of vector
bundles between F; and F», their classifying functions will be homotopic and their characteristic classes will
coincide.

Now consider the closed sets
C(1 = {(xly"'ax5) ES4|1’5 20}7
Cy = {({El,...,fbg,) € 54 | r5 < 0,24 > 0}

and
Cy = {(ajl,...,x5) ES4|375 < 0,74 SO}

It is clear that there is a retraction r; : U; — C; leaving Cifixed, for ¢ = 1,2,3. Notice that by applying
on Us NUs 7y first and then r3, we obtain a retraction ro3 : Us N Us — Co N C5 leaving Co N C3 fixed. For
U; NUs we apply first ro and then r3, we obtain a retraction r15 : Uy N Us — C1 N Cy leaving Cy N Cy, fixed,
and similarly we obtain 713 : Uy N Us — C1 N C3 leaving Cy N C fixed. Via this restrictions of p;; we obtain
transition functions for the closed cover {C1, Cs, Cs}:

,BUCZHCJ—MS’UQ)

This new transition functions are clearly homotopic to p;; via the retractions r;;. Thus, they characterized
vector bundles over S* whose classifying functions are homotopic.

Consider the identification S3 =2 {(xl, coo,xs) €8t | a5 = 0}. This setting allow us to apply Lemma 3.1 of
[RV]. There they show that the bundle induced by these three cocycles is isomorphic to the vector bundle
with clutching function ¢ : S3 — SU (2) defined for x = (x1,...,25) by

o) e dPr X)) pa(r(x) x4 >0.
209 {Pl (r(x)) p2(r(x)) xz4<0.

The function ¢ can clearly be extended continuously to the whole disk D_, since we defined r on D_. This
implies that ¢ is null homotopic, and thus, the vector bundle given by these cocycles is trivial.
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Now lets consider the same construction but using the cocycles given by o;; = p;jl. They give rise to the
(—1)-th associated bundle by definition. Once again allow us to use Lemma 3.1 of [RV]. We conclude that
this bundle can be obtain, up to isomorphims, by the clutching function given by

et r(®)pyt (r(x)) x4 >0
o) {pf(r(x))pﬁ(r(x)) 24 < 0.

In this case this function cannot be extended continuously to D_ if p; and ps do not commute everywhere
in D3. So ¢ is not necessarily null homotopic.

5.3.3. Existence of a non trivial TC structure: From the previous part, we need to show that it is
possible to obtain a non null homotopic clutching function ¢. For this it is enought to display two functions
p1, p2 : D3 — SU (2) such that they commute in D3 = S3, giving us a non zero Chern class for the bundle
with clutching function ¢ : S® — SU (2).

We can describe ¢ in terms of the northern and southern hemispheres of S3, D, and D_, respectively. Each
of them can be identify with the 3-dimensional disc D3. Then we get that

1 -1 .

pL P inD,y,
¢(y) = 171 271 . -

Py p inD_.

For brevity allow us to write the matrices of SU (2) as
a —b
(a,b) := [ b G ] .

PROPOSITION 5.4. Consider D3 under spherical coordinates and take

o (sin (%r) e’ cos (gr)) , 0<g<m/2.
prla,Byr) = {(sin (rB) ', cos (rﬂ)) m/2 < B <.

. (—cos (mr) €2 sin (77)), 0< B < 7/2.
pa (@ for): {(cos (7r) ,sin (77)) /2 < B <.
then the second Chern class of ¢ is c3 (¢p) = —1.

ProOOF. Recalled from the previous section that if we make ¢ = (z,w), the second Chern class of ¢ is

then given by
1
= —— A.
27 42 /Sg
Where A is a three form given by
2 (zZdzdwdw + wdzdzdw — 2 (z2dzdwdw + wdzdzdw)) .

We can split this integral as
/ A= / A+ A.

Now, call pflp2 = (21, wy) and py P1 (z2,w2). Because of orientations, we get

[ e
S3 D3 D3 D3
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where
A =2 (Eldzld’uhd’lfh + widz1dz1dw; — 2 (Zldildw1d’lf)1 + w1d21d51d1f)1))
Ay =2 (ZQdZQd’LUQd’LTJQ + WodzodZodwsy — 2 (ngigdwgdﬂ}g + wgdZQdEQd’IDQ)) .

From this we have for 0 < 8 < 7/2 that
(22, w2) = py tpyt = (— sin (%") cos () e~ (@20 _gin (7r) cos (gr) ,
cos (7r) cos (gr) e _ sin (1) sin (gr) e*ia)
r) cos () e~ (@20 _gin (7r) cos (gr> ,

cos (gr) e 2% _sin (nr) sin (gr> eia) ,

o] 3

(z1,w1) = py 'yt = (* sin (
)

while for 7/2 < 8 < 7w we have
(20,w2) = py ' p1! = (sin (rB) cos (wr) e~ — sin (77) cos (rB),

—sin (7r) sin (rB8) e '™ — cos (77) cos (r3))

(z1,01) = py ' p3 " = (sin () cos (7r) e~ — sin (77) cos (rf3)
— sin (7r) sin (rB) €'* — cos (77) cos (rf3)) .
Observe that in both cases we have that z; = z3 y w1 = ws. Then we have to integrate the form

Ay — Ay =4 (221d51 - Zldzl) dwydwy +6 (U}ld’(ﬂl - ﬁildwl) dz1dzy .

Bl BZ

Now consider the decomposition z; = z = x + yi and w; = w = u+ vi, where x,y,u and v are real functions.
Then it follows that

(221dz — Z1dz1) = (xdx + ydy) + 3 (ydx — xdy) i,
dwidw; = —2idu A dv,
(widw; — widw) = 2 (vdu — udv) i
and dzdz = —2idx A dy. This gives us
By = 6 (ydx — xdy) du A dv — 2i (xdx + ydy) du A dv
and
By = 4 (vdu — udv) dz A dy.

Since we only need to compute the real part of the first form, we consider the form 6 (ydx — xdy) du A dv
instead of all of B;. Then by definition we get

([ Ox oy ox Oox or dy
ydxxdy(yaa xaa)doﬂr(yaﬁ x86>dﬂ+<y87“ x@r)dT’
ou ov ou Oz ou v
Ud'LL*Ud'U— (’l}aoé Ua(l) dOl+ <Uaﬁ Uaﬂ) dﬂ‘i’ <Ua7" 'U/a’r> d'r,

Ooudv Ov Ou Oudv Ov ou Ooudv Ovou
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and

dx Ndy = <3:E8y — E)g/c'?x) dadp + (Z?:ray - 3y8x> dadr + (&an — (%3y) dpBdr.

dadf Oadp Oda dr  Oa Or apor 0B Or
Now call J; := (ydx — xdy) du A dv and J5 := (ydx — xdy) du A dv. Then we have

Joe | (0% _ G0y (Oudv _Ovouy ( Ox  Or\ (Oudv Ovou
Y7 1\Y0a " 0a ) \0Bor 98 0r Yo~ "9p) \dadr  daor
or dy Ou dv  Ov du
ou v Ozx 0y Ox Jy ou ox Oudv  Ov du
S=lr——1v— ||l == |- v==—tu— || = — ——
da da apor 9B Or ap ap da dr Oa Or
+< ou E)v) (ax Oy Oy ox

v U Oaaﬁaaaﬂﬂ doo AdB Adr.

Then by replacing we get Ay — Ay = 24 (J; + J2), and even further
1
02((;5): ﬁ/(gh-i-Jg).

Where by using computational software we obtain that [ (J; + J2) = —72, giving us ¢z (¢) =-1.

We conclude that 02_1 (&) = —1 for our TC structure, implying that the TC structure is non trivial.
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