

El teorema de completación de Atiyah-Segal

Valentina Zapata Castro

Universidad Nacional de Colombia
Facultad de Ciencias, Escuela de Matemáticas
Medellín, Colombia
2020

El teorema de completación de Atiyah-Segal

Valentina Zapata Castro

Tesis presentada como requisito parcial para optar al título de:
 Magister en Ciencias - Matemáticas

Director:
Ph.D. José Manuel Gómez Guerra

Línea de Investigación:
Topología Algebraica

Universidad Nacional de Colombia
Facultad de Ciencias, Escuela de Matemáticas
Medellín, Colombia

Atiyah-Segal's completion theorem

Valentina Zapata Castro

Universidad Nacional de Colombia
Facultad de Ciencias, Escuela de Matemáticas
Medellín, Colombia
2020

To my father

Acknowledgements

I would like to express my gratitude towards all the people that made this journey possible. I do not think that I could have made it this far without each and every one of them.

My deep gratitude goes first to my advisor José Manuel Gómez. He has always been incredibly supportive and extremely patient. With his knowledge, teaching abilities and unconditional willingness to help, in all matters, he has inspired me beyond compare.

I would like to thank my mother. She has always been there to support me during these years and I would not be here if it were not for her constant encouragement. She has made me the best version of myself that I could be. This gratitude must be extended to my American parents, who have helped me find the value and strength that I needed to always move forward. I also want to thank Simón for his efforts on understanding my rambles, which inspired me to try and understand concepts better.

My appreciation also extends to my friends and colleagues. They all have helped me be better in their own ways. With recreation, inspiration and multiple hours of learning together, they have showed me a way to traverse the academic path without being overwhelmed. I must specially single out Tomás, I owe him much more than what I could express with words.

I owe gratitude to many professors and staff members from the math department. Specially, Fernando Morales, Camilo Arias, Alexander Quintero and Liliana Parra, who have contributed immensely to my formation and have helped me with academic matters during my master's degree and also on the steps that come after it. I admire all of them for always having the best intentions and attitude towards me.

Lastly, I want to thank my Alma Mater, Universidad Nacional de Colombia, for the opportunities given and the financial support provided, specially in conferences and tuition waivers.

Resumen

Esta tesis es sobre el teorema de completacin de Atiyah-Segal. La primera parte estudia los conceptos bsicos de fibrados vectoriales y teora de representacin. Luego, se estudia la K-teora y la K-teora equivariante. Finalmente, se construye y prueba el teorema de Atiyah-Segal, con nfasis en sistemas inversos.

Palabras claves: Atiyah-Segal, teorema, topología algebraica, completación, K-teoría, sistemas inversos.

Abstract

This dissertation is about Atiyah-Segal's theorem of completion. The first part studies the basic concepts of vector bundles and representation theory. Then we study K-theory and equivariant K theory. Lastly, we construct and prove Atiyah-Segal's theorem with emphasis on inverse systems.

Keywords: Atiyah-Segal, theorem, algebraic topology, completion, K-theory, inverse systems.

Contents

Introduction 2

1. Bundles and representations 4
1.1. Vector bundles 4
1.1.1. Pullback and inner products 6
1.2. G-maps and principal bundles 9
1.2.1. Morphisms and pullback 12
1.3. Milnor's construction 15
1.4. Balanced product and vector bundles 19
1.5. Representation theory 20
2. K-theory and Equivariant K-theory 25
2.1. K-theory 25
2.1.1. Generalized cohomology properties 28
2.2. Equivariant K-theory 33
2.2.1. Generalized equivariant cohomology properties 38
3. Atiyah-Segal's completion theorem 40
3.1. The construction 40
3.2. The theorem 43
3.3. Examples 51
A. Appendix 54
A.1. Direct and inverse limits 54
A.2. Completion 60
Bibliography 63

Introduction

K-theory is a theory initially introduced by Alexander Groethendieck in the 50's to study coherent sheaves in algebraic varieties. Sometime later, Michael Atiyah and Friedrich Hirzebruch translated these ideas to algebraic topology so they could be used in the study of vector bundles over compact topological spaces. In this way, K-theory can be defined as the ring $K(X)$ of equivalence classes of vector bundles over a topological space X. In this ring, the sum will be the Whitney sum and the product the tensor product of vector bundles. Using Bott's periodicity, one can define $K^{n}(X)$ and prove that K-theory corresponds to a generalized cohomology theory that does not satisfy the dimension axiom. We can also use Brown's representability theorem to extend the concept of K-theory to be defined also over spaces that are not necessarily compact.

From this construction, Michael Atiyah invents a theory called the equivariant K-theory, which is the equivariant cohomology version of K-theory. In this theory, we consider equivalence classes of G-vector bundles over a topological space X. Note that there are various relationships between K-theory and equivariant K-theory. One of the most common is when the group G acts freely on X. In this case, we have that $K_{G}(X) \cong K(X / G)$. Nevertheless, in general, if G does not act freely on X we do not have the previous isomorphism. To solve this problem, instead of considering quotients, we can consider homotopy quotients that are denoted by $X \times{ }_{G} E G$, where $E G$ is the total space of the universal principal G-bundle. The homotopy quotients are also known as Borel's construction.

On the other hand, given a compact Lie group G, we define the representation ring $R(G)$ as the formal differences of isomorphism classes of linear finite dimensional representations of G over \mathbb{C}. The ring structure is given by direct sum and tensor product of representations of the group G. The representation ring also comes equipped with a ring homomorphism called the augmentation map $\varepsilon: R(G) \rightarrow \mathbb{Z}$. This map sends a formal difference of representations over G to its "virtual dimension". The kernel of this map is called the augmentation ideal and is going to be denoted as
I_{G}. This ideal gives us a natural filtration of the ring $R(G)$ in the following way

$$
R(G) \supseteq I \supseteq I^{2} \supseteq \cdots \supseteq I^{n} \supseteq I^{n+1} \supseteq \cdots .
$$

We define the completion of the ring $R(G)$ with respect to the augmentation ideal as the inverse limit $R(G) \hat{I_{G}}=\varliminf_{\leftarrow} \lim _{n}\left(R(G) / I^{n}\right)$. This completion can be done with any $R(G)$-module.

Since the equivariant K-theory of a G-space X is a $R(G)$-module, we can consider its completion with respect to the augmentation ideal $K_{G}(X)_{I_{G}}=\lim _{n}\left(K_{G}(X) / I_{G}^{n} K_{G}(X)\right)$. Then, Atiyah-Segal's completion theorem tells us that the K-theory of the space $K\left(X \times_{G} E G\right)$ is isomorphic the completion of $K_{G}(X)$ with respect to the augmentation ideal I_{G}. This is done through the projection map $\pi: X \times E G \rightarrow X$. Using this theorem when $X=*$, we can find the K-theory of the classifying space $B G$ when G is a compact Lie group. It gives us that $K(B G)$ is isomorphic to the completion of the ring $R(G)$ with respect to the augmentation ideal.

Atiyah-Segal's completion theorem can be interpreted as a connection between a geometric process and an algebraic process. In this case, the geometrical process can be evidenced in the homotopy quotient of the G-space which makes the action free before passing it to the quotient, and the algebraic process is seen when completing with respect to the augmentation ideal.

This work will focus on studying the components involved in Atiyah-Segals theorem along with its demonstration. Specifically, the study is focused on Atiyah and Segal's article [4]. The proof is done by using the tools of inverse systems rather than pro-objects as done in [4]. This thesis is organized in the following way. In chapter 1, we focus on studying the concepts of bundles and representations. These concepts are key to understanding and defining non-equivariant and equivariant K-theory. In chapter 2 we define K-theory and its equivariant part. We also explore their generalized cohomology theories properties and mention how to extend K theory to non-compact spaces. Lastly, in chapter 3 we see the construction and proof of Atiyah-Segals completion theorem and some examples of the use of this theorem.

1. Bundles and representations

In this chapter we will review some prerequisite knowledge needed for this work, specifically, concepts on vector bundles, Lie groups, principal bundles and representations of Lie groups. We will go over some of the basic definitions and prove some results useful to construct the theory. This will be done in a rather concise manner. The concepts in this chapter will be required to understand Atiyah-Segal's completion theorem, which is the main focus of this work.

1.1. Vector bundles

Definition 1.1. An n-dimensional complex vector bundle is a continuous function $p: E \rightarrow B$ where $p^{-1}(b)$ is a complex vector space for all $b \in B$ such that there is an open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of B together with homeomorphisms $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{C}^{n}$ that map $p^{-1}(b)$ to $\{b\} \times \mathbb{C}^{n}$ by a vector space isomorphism for all $b \in U_{\alpha}$. The maps h_{α} are called local trivializations of the vector bundle.

In this definition, the space B is called the base space, E is called the total space and $p^{-1}(b)$ are called the fibers for all $b \in B$. This will often be denoted by E_{b} when the map is clear. We will also abbreviate the terminology sometimes and call the vector bundle itself E when the function and base space are clear. It is important to note that we can also create the notion of a real vector bundle by taking \mathbb{R} instead of \mathbb{C} for the scalar field. In this thesis we will work mostly with complex vector bundles.

Example 1.2.

1. The simplest example of a complex vector bundle can be done by taking $E=B \times \mathbb{C}^{n}$ and p as the canonical projection of $E \in B$. This is called the trivial bundle and is often used.
2. An interesing example of a real vector bundle can be constructed by taking $B=\mathbf{S}^{1}=[0,1] / \sim$ where $0 \sim 1$, and $E=([0,1] \times \mathbb{R}) / \sim$ where $(0, x) \sim(1,-x)$ for all $x \in \mathbb{R}$. We consider $p: E \rightarrow B$ the map induced by the canonical projection $\mathrm{pr}:[0,1] \times \mathbb{R} \rightarrow[0,1]$. This vector bundle also known as the Möbius band.

Definition 1.3. An isomorphism between two vector bundles $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ over the same base space B is a homeomorphism $h: E_{1} \rightarrow E_{2}$ that maps each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(b)$ by a linear isomorphism. This will also be denoted by $E_{1} \cong E_{2}$.

Definition 1.4. A section of a vector bundle $p: E \rightarrow B$ is a map $s: B \rightarrow E$ that assigns to each $b \in B$ a vector $s(b) \in p^{-1}(b)$ such that $p \circ s=\operatorname{id}_{B}$.

One can note that every vector bundle has a canonical section called the zero section, that assigns to each $b \in B$ the zero vector in the fiber $p^{-1}(b)$. We will briefly see now some results regarding vector bundles that will be important to our discussion.

Lemma 1.5. A continuous map $h: E_{1} \rightarrow E_{2}$ between vector bundles over the same base space B, is an isomorphism if it takes each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(b)$ by a linear isomorphism.

Proof. For h to be a vector bundle isomorphism it needs to be a homeomorphism. Given the hypotheses of the lemma regarding the fibers, it is clear that the function h is both injective and surjective. Therefore we only need to prove that h^{-1} is continuous.

Since B admits a covering for both fibers and the property of being continuous is local, we can restrict our analysis to an open set $U \subseteq B$ where E_{1} and E_{2} are both trivial. If we denote by $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ our vector bundles, we can construct the following commuting diagram

where $l: U \times \mathbb{C}^{n} \rightarrow U \times \mathbb{C}^{n}$ is defined by $l(x, v)=\left(x, g_{x}(v)\right)$ for all $x \in U$ and $v \in \mathbb{R}^{n}$. We then have that g_{x} can be thought of as an element of $\operatorname{GL}(n, \mathbb{C})$ that depends continuously on x. Therefore
g_{x}^{-1} also depends continuously on x since its entries can be expressed algebraically in terms of the entries of g_{x}. This proves that $l^{-1}(x, v)=\left(x, g_{x}^{-1}(v)\right)$ is continuous so h^{-1} is also continuous.

With this in mind, we can prove the following result.

Proposition 1.6. An n-dimensional bundle $p: E \rightarrow B$ is isomorphic to the trivial bundle if and only if there are n sections s_{1}, \ldots, s_{n} such that the vectors $s_{1}(b), \ldots, s_{n}(b)$ are linearly independent in each fiber $p^{-1}(b)$.

Proof. First, note that it is clear that if a vector bundle is isomorphic to the trivial bundle it must have said sections.

Suppose now that we have a vector bundle $p: E \rightarrow B$ that has n sections s_{1}, \ldots, s_{n} such that the vectors $s_{1}(b), \ldots, s_{n}(b)$ are linearly independent in each fiber $p^{-1}(b)$. Let us then define the map $h: B \times \mathbb{C}^{n} \rightarrow E$ by $h\left(b, t_{1}, \ldots, t_{n}\right)=\sum_{i=1}^{n} t_{i} s_{i}(b)$ for all $b \in B$ and all $t_{1}, \ldots, t_{n} \in \mathbb{C}$.

Note that by definition, h is a linear isomorphism in each fiber and it is a continuous function between the trivial bundle and p. By Lemma 1.5, h is a vector bundle isomorphism.

1.1.1. Pullback and inner products

We will denote by $\operatorname{Vect}_{n}(B)$ the set of isomorphism classes of n-dimensional vector bundles over B. With the following proposition we will define the pullback of a vector bundle.

Proposition 1.7. Let $f: A \rightarrow B$ be a map and $p: E \rightarrow B$ a vector bundle. Then there exists a vector bundle $p^{\prime}: E^{\prime} \rightarrow A$ together with a map $f^{\prime}: E^{\prime} \rightarrow E$ that maps E_{a}^{\prime} isomorphically to $E_{f(a)}$ for all $a \in A$. The map $p^{\prime}: E^{\prime} \rightarrow A$ is unique up to isomorphisms.

Proof. Let us begin by defining the space

$$
E^{\prime}=\{(a, v) \in A \times E: f(a)=p(v)\} \subseteq A \times E
$$

We then have the following diagram

where $p^{\prime}: E^{\prime} \rightarrow A$ and $f^{\prime}: E^{\prime} \rightarrow E$ are defined by $p^{\prime}(a, v)=a$ and $f^{\prime}(a, v)=v$ for all $(a, v) \in E^{\prime}$. Note that with these definitions we have that $f \circ p^{\prime}=p \circ f^{\prime}: E^{\prime} \rightarrow B$. Hence the previous diagram is a commutative diagram. We need to prove that $p^{\prime}: E^{\prime} \rightarrow A$ is a vector bundle. Note that

$$
\begin{aligned}
E_{a}^{\prime} & =\left\{(a, v) \in E^{\prime}: p^{\prime}(a, v)=a\right\}=\left\{(a, v) \in A \times E: p^{\prime}(a, v)=a \text { and } f(a)=p(v)\right\} \\
& =\{a\} \times\{v \in E: p(v)=f(a)\}=\{a\} \times E_{f(a)}
\end{aligned}
$$

Then E_{a}^{\prime} and $E_{f(a)}$ are isomorphic as vector spaces. This proves that $E_{a}^{\prime}=p^{\prime-1}(a)$ has a complex n-dimensional space structure for all $a \in A$.

Let $\left\{U_{\alpha}\right\}_{\alpha}$ be a covering of B with local trivializations $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{C}^{n}$. Then $f^{-1}\left(U_{\alpha}\right)$ is open in A and $\left\{f^{-1}\left(U_{\alpha}\right)\right\}_{\alpha}$ is an open cover of A. Let $h_{\alpha}^{\prime}: p^{-1}\left(f^{-1}\left(U_{\alpha}\right)\right) \rightarrow f^{-1}\left(U_{\alpha}\right) \times \mathbb{C}^{n}$ be a function defined by $h_{\alpha}^{\prime}(a, v)=\left(a, \pi_{2}\left(h_{\alpha}(v)\right)\right)$ where $\pi_{2}: U_{\alpha} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the canonical projection. Then h_{α}^{\prime} is a local trivialization making p^{\prime} a vector bundle.

Lastly, let us prove the uniqueness. Let $p^{\prime \prime}: E^{\prime \prime} \rightarrow A$ and $f^{\prime \prime}: E^{\prime \prime} \rightarrow E$ be such that $E_{a}^{\prime \prime}$ and $E_{f(a)}$ are isomorphic as vector spaces for all $a \in A$. We have the following commutative diagram

Let us define $\varphi: E^{\prime \prime} \rightarrow E$ by $\varphi\left(v^{\prime \prime}\right)=\left(p^{\prime \prime}\left(v^{\prime \prime}\right), f^{\prime \prime}\left(v^{\prime \prime}\right)\right)$ since $f\left(p^{\prime \prime}\left(v^{\prime \prime}\right)\right)=p\left(f^{\prime \prime}\left(v^{\prime \prime}\right)\right)$ the function φ is well defined and continuous. Analyzing what happens to the fibers we note that if $v^{\prime \prime} \in E_{a}^{\prime \prime}$ then $p\left(f^{\prime \prime}\left(v^{\prime \prime}\right)\right)=f\left(p^{\prime \prime}\left(v^{\prime \prime}\right)\right)=f(a)$, then $\varphi: E_{a}^{\prime \prime} \rightarrow\{a\} \times E_{f(a)}=E_{a}^{\prime}$. Hence φ is a vector space isomorphism in each fiber and, by Lemma 1.5, φ is a vector bundle isomorphism.

Since p^{\prime} in the previous lemma is unique, we can construct a function $f^{*}: \operatorname{Vect}_{n}(B) \rightarrow \operatorname{Vect}_{n}(A)$ defined by $f^{*}([E])=\left[E^{\prime}\right]$. Hence we will use the notations $f^{*}(p)$ instead of p^{\prime} and $f^{*}(E)$ instead of E^{\prime} for the map and total space of the new bundle. This will be called the pullback bundle of E by f.

Definition 1.8. A Hermitian metric on a complex vector bundle $p: E \rightarrow B$ is a continuous function $\langle\cdot, \cdot\rangle: E \otimes E \rightarrow \mathbb{C}$ that restricted to each fiber is a Hermitian product, meaning, a bilinear form
which is \mathbb{C}-anti-linear in the first input and \mathbb{C}-linear on the second.
Let us remember that a space X is paracompact if it is Hausdorff and every open cover has a partition of unity associated. With this in mind, we have the following lemma.

Lemma 1.9. If B is paracompact and $p: E \rightarrow B$ is a vector bundle then there is a Hermitian metric in E.

Proof. Let us denote $h_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{C}^{n}$ some local trivializations of the vector bundle and let $\left\{f_{\alpha}\right\}_{\alpha}$ be a partition of unity associated to $\left\{U_{\alpha}\right\}_{\alpha}$. In each subset $p^{-1}\left(U_{\alpha}\right)$ we can pullback the standard Hermitian metric in \mathbb{C}^{n} to a Hermitian metric $\langle\cdot, \cdot\rangle_{\alpha}$ on $p^{-1}\left(U_{\alpha}\right)$. We define the Hermitian metric on the vector bundle by

$$
\langle u, v\rangle=\sum_{\alpha} f_{\alpha}(p(u))\langle u, v\rangle_{\alpha}
$$

where $\langle u, v\rangle_{\alpha}=0$ when $u, v \notin p^{-1}\left(U_{\alpha}\right)$. It is easy to see that this defines a Hermitian metric on E.

Definition 1.10. Let $p: E \rightarrow B$ be a vector bundle. A sub-vector bundle E_{0} is a subspace of E such that the intersection in each fiber of p is a sub-vector space and $p: E_{0} \rightarrow B$ is a vector bundle.

Theorem 1.11. Let $p: E \rightarrow B$ be a vector bundle with B paracompact. Then any sub-vector bundle $E_{0} \subseteq E$ has an orthogonal complement. In other words, there is a sub-vector bundle E_{0}^{\perp} of E such that $E_{0}^{\perp} \oplus E_{0} \cong E$.

Proof. By the previous lemma we know that there is a Hermitian metric in E. Let us define

$$
E_{0}^{\perp}=\left\{v:\langle v, w\rangle=0 \text { for all } w \in E_{0} \text { with } p(v)=p(w)\right\} .
$$

Let us see that E_{0}^{\perp} is a vector space. Since this is a local property, it is enough to consider the sub-vector bundle $E_{0} \subseteq B \times \mathbb{C}^{n}$. Let s_{1}, \ldots, s_{m} be the linearly independent sections of E_{0}. For any given $b \in B$, there are vectors v_{m+1}, \ldots, v_{n} such that $s_{1}(b), \ldots, s_{m}(b), v_{m+1}, \ldots v_{n}$ is a basis for \mathbb{C}^{n}. Then, there is an open neighborhood U of $b \in B$ such that the vectors $s_{1}(x), \ldots, s_{m}(x), v_{m+1}, \ldots v_{n}$ are linearly independent for all $x \in U$.

Applying the Gram-Schmidt process we can obtain orthogonal sections $s_{m+1}^{\prime}, \ldots, s_{n}^{\prime} \in U$. These are sections for E_{0}^{\perp} and with them we can define the trivializations $\varphi: U \times\left.\mathbb{C}^{n-m} \rightarrow p^{-1}\right|_{E_{0}}(U)$ by $\varphi\left(b, x_{m+1}, \ldots, x_{n}\right)=\sum_{i=m+1}^{n} x_{i} s_{i}^{\prime}(b)$.

Proposition 1.12. If $p: E \rightarrow B$ is a vector bundle and B is compact Hausdorff then there exists $p^{\prime}: E^{\prime} \rightarrow B$ such that $E \oplus E^{\prime} \cong B \times \mathbb{C}^{n}$.

Proof. If $x \in B$ then there is an open set U_{x} such that $\left.E\right|_{U_{x}}$ is trivial. Therefore we have a function $h_{x}: p^{-1}\left(U_{x}\right) \rightarrow U_{x} \times \mathbb{C}^{n}$. Since $\{x\}$ and $B \backslash U_{x}$ are closed, by Urysohn's Lemma there is a function $\varphi_{x}: B \rightarrow[0,1]$ such that $\varphi_{x}\left(B \backslash U_{x}\right)=0$ and $\varphi_{x}(x)=1$.

Then the sets $\left\{\varphi_{x}^{-1}((0,1])\right\}_{x \in B}$ cover B. Since B is compact there are U_{i} for $i=1, \ldots, m$ such that $\varphi_{i}^{-1}((0,1]) \subseteq U_{i}$ cover B. We then define $g_{i}: E \rightarrow \mathbb{C}^{n}$ by

$$
g_{i}(v)= \begin{cases}\varphi_{i}(p(v))\left(\pi_{i}\left(h_{i}(v)\right)\right) & v \in p^{-1}\left(U_{i}\right) \\ 0 & v \notin p^{-1}\left(\operatorname{Supp}\left(\varphi_{i}\right)\right)\end{cases}
$$

where $h_{i}: U_{i} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the projection to \mathbb{C}^{n}. With this definition, it is clear that $g_{i} \mid E_{b}$ is a linear injection on each fiber over $\varphi_{i}^{-1}((0,1])$. We can then define $g: E \rightarrow \mathbb{C}^{N}$ with $N=n m$ by $g(v)=\left(g_{1}(v), \ldots, g_{m}(v)\right)$ for all $v \in E$. This function is then also a linear injection on each fiber.

Let us define now the function $f: E \rightarrow B \times \mathbb{C}^{N}$ by $f(v)=(p(v), g(v))$. Then $f(E)$ can be seen as a sub-vector bundle of $B \times \mathbb{C}^{N}$. Since f is injective, $f(E) \cong E$. Therefore E is isomorphic to a sub-vector bundle of the trivial bundle $B \times \mathbb{C}^{N}$. By the previous theorem, we can construct E^{\prime} with the orthogonal complement and we can consider only the inner product of \mathbb{R}^{N} in the second component. Hence having the result.

1.2. G-maps and principal bundles

Let us remember that a Lie group G is a group with a smooth manifold structure such that the multiplication and inverse maps $\mu: G \times G \rightarrow G$ and $t: G \rightarrow G$, given by $\mu(g, h)=g h$ and by $l(g)=g^{-1}$ for all g and $h \in G$, are smooth.

Definition 1.13. A smooth left action of a Lie group G over a smooth manifold M is a smooth map $\sigma: G \times M \rightarrow M$ such that $\sigma(g, \sigma(h, p))=\sigma(g h, p)$ for all $g, h \in G$ and all $p \in M$, and $\sigma(e, p)=p$ for all $p \in M$ where $e \in G$ denotes the identify element of G.

With an action σ one can define a map $\sigma_{g}: M \rightarrow M$ for $g \in G$ where $\sigma_{g}(p)=\sigma(g, p)$ for all $p \in M$. It is easy to see that this function satisfies that $\left(\sigma_{g}\right)^{-1}=\sigma_{g^{-1}}$ and $\sigma_{g} \circ \sigma_{h}=\sigma_{g h}$. One can also define a right action $\tilde{\sigma}: M \times G \rightarrow M$ by $\tilde{\sigma}(p, g)=\sigma\left(g^{-1}, p\right)$ for all $p \in M$ and $g \in G$. We will
then say that M is a left G-space if it has a left action defined on it and a right G-space if it has a right action. To simplify notation, we will often make the identification $\sigma(g, p)=g p$ when the action is clear.

Definition 1.14. Let G be group and M a left G-space.

1. An action is transitive if $G p=M$ for all $p \in M$, in other words, an action is transitive if we have that for all p and $q \in M$ there exists $g \in G$ such that $g p=q$.
2. An action is free if for every $p \in M$ the isotropy group $\{g \in G: g p=p\}$ equals $\{e\}$, meaning, if $g \in G$ is such that $g p=p$ for some $p \in M$ then $g=e$.
3. An action is effective if the induced homomorphism $\tilde{\sigma}: G \rightarrow \operatorname{Diff}(M)$ defined by $\tilde{\sigma}(g)=\sigma_{g}$ for all $g \in G$ is injective.

Definition 1.15. Let M be a smooth manifold and G a Lie group. A principal G-bundle is a triplet (P, π, σ) where P is a smooth manifold, $\pi: P \rightarrow M$ is a surjective map and $\sigma: P \times G \rightarrow P$ is a right action of G on P such that the following conditions are true.

1. The action σ preserves the fibers of π, meaning, $\pi(p g)=\pi(p)$ for all $p \in P$ and all $g \in G$.
2. For all $m \in M$ there exists an open set $U \subseteq M$ and a diffeomorphism $\Phi: \pi^{-1}(U) \rightarrow U \times G$ such that the following diagram commutes

where $\mathrm{pr}: U \times G \rightarrow U$ is the canonical projection and $\Phi^{-1}(x, h g)=\Phi^{-1}(x, h) g$ for all $x \in U$ and all $g, h \in G$.

Similarly as for vector bundles, P is called the total space, M is called the base space and Φ is called the local trivialization. Note that the last condition implies that the function Φ has the form $\Phi(p)=(\pi(p), \varphi(p))$ where $\varphi: \pi^{-1}(U) \rightarrow G$ is a smooth map such that $\varphi(p g)=\varphi(p) g$. We will often refer to the principal G-bundle (P, π, σ) as just $\pi: P \rightarrow M$ when the action σ is clear.

Also note that the action $\sigma: P \times G \rightarrow P$ is free. This is because if we have that $p g=p$ then there
exist $x \in U$ and $h \in G$ such that $\Phi^{-1}(x, h)=p$. We can then calculate

$$
\Phi^{-1}(x, h g)=\Phi^{-1}(x, h) g=p g=p=\Phi^{-1}(x, h)
$$

Since Φ is a diffeomorphism this means that $h g=h$ hence $g=e$.
It is also possible to see that $\pi^{-1}(\pi(p)) \cong G p=\{p g: g \in G\}$. This tells us that the action is transitive on the fibers and $\pi^{-1}(x)$ is diffeomorphic to G for all $x \in M$.

Example 1.16.

1. The simplest example of a principal G-bundle can be done with $P=M \times G$ and the canonical projection pr: $M \times G \rightarrow M$ with the action $\sigma: P \times G \rightarrow P$ defined by $\sigma((x, h), g)=(x, h g)$ for all $x \in P$ and $g, h \in G$. Then (P, pr, σ) is a principal G-bundle called the trivial principal bundle.
2. Another example can be made for K a Lie subgroup of G. The subgroup K acts on G by right multiplication and we can define $\pi: G \rightarrow G / K$ the canonical projection, which happens to be a submersion. Then (G, π, μ) is a principal G-bundle.

There is an equivalent notion to trivializations that helps us define bundles in general. Suppose $\pi: P \rightarrow M$ is a principal G-bundle with trivializations $\Phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G$ for $\alpha \in \Lambda$. Then for all $\alpha, \beta \in \Lambda$ the function

$$
\Phi_{\alpha \beta}=\Phi_{\alpha} \circ \Phi_{\beta}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times G \rightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times G
$$

is a diffeomorphism that maps isomorphically $\{x\} \times G$ to itself for $x \in U_{\alpha} \cap U_{\beta}$. One can then see that the function $\Phi_{\alpha \beta}$ must be given by $\Phi_{\alpha \beta}(x, g)=\left(x, g_{\alpha \beta}(x) g\right)$ for all $x \in U_{\alpha} \cap U_{\beta}$. This map will then be determined by the function $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ and vice-versa. Since the function $\Phi_{\alpha \beta}$ is smooth, so is $g_{\alpha \beta}$. One can easily check that the maps $g_{\alpha \beta}$ satisfy the following properties for all $\alpha, \beta, \gamma \in \Lambda$.

1. $g_{\alpha \alpha}(x)=e$ for all $x \in U_{\alpha}$.
2. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$ then $g_{\alpha \beta}(x)=\left(g_{\beta \alpha}(x)\right)^{-1}$ for all $x \in U_{\alpha} \cap U_{\beta}$.
3. If $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$ then $g_{\gamma \alpha}(X)=g_{\gamma \beta}\left(g_{\beta \gamma}(x)\right)$ for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

This properties are called the co-cycle properties. We will call the functions $g_{\alpha \beta}$ the transition functions.

From a principal G-bundle $\pi: P \rightarrow M$ we can then form a collection of smooth transition maps $\left\{g_{\alpha \beta}\right\}_{\alpha, \beta \in \Lambda}$. Conversely, for a given open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of M and a collection of smooth maps $\left\{g_{\alpha \beta}\right\}_{\alpha, \beta \in \Lambda}$ that satisfy the co-cycle properties we can create a principal G-bundle $\pi^{\prime}: P^{\prime} \rightarrow M$ by defining

$$
P^{\prime}=\left(\bigsqcup_{\alpha \in \Lambda}\left(U_{\alpha} \times G\right)\right) / \sim,
$$

where $(x, g) \in U_{\alpha} \times G \sim\left(x, g_{\alpha \beta}(x) g\right) \in U_{\beta} \times G$ for all $x \in U_{\alpha} \cap U_{\beta}$, the map $\pi^{\prime}: P^{\prime} \rightarrow M$ will be induced by the natural projection to the first coordinate and the action of G in P^{\prime} will induced by the multiplication to the second coordinate.

We can see that this indeed defines a principal G-bundle with trivialization functions given by $\Phi_{\alpha}: \pi^{\prime-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G$ where $\Phi_{\alpha}^{-1}(x, g)=[(x, g)]$. We will not go into detail on how these two definitions are equivalent, this can be found in [7]. Nevertheless, we will sometimes use the fact that they can be both used to define the same bundle.

1.2.1. Morphisms and pullback

Definition 1.17.

1. If $\Phi: X \rightarrow Y$ is a map with X and $Y G$-spaces such that $\Phi(x g)=\Phi(x) g$ for all $x \in X$ and all $g \in G$ then Φ is called a G-map. We also say that Φ is G-equivariant.
2. Let $\pi: P \rightarrow B$ and $\pi^{\prime}: P^{\prime} \rightarrow B^{\prime}$ be principal G-bundles. A principal G-bundle morphism is a pair $(\tilde{f}, f): \pi^{\prime} \rightarrow \pi$ where $\tilde{f}: P^{\prime} \rightarrow P$ is a G-map that maps fibers to fibers and $f: B^{\prime} \rightarrow B$ is a continuous function such that the following diagram

commutes.
3. A principal G-bundle morphism over B is a G-map $\varphi: \pi^{\prime} \rightarrow \pi$ such that the diagram

commutes.
We will denote $\operatorname{Bund}_{G}(B)$ the set of isomorphism classes of principal G-bundles over B. There are some interesting properties about principal G-bundles that differ to the notion of maps between vector bundles. The following proposition showcases a big difference between them.

Proposition 1.18. Every principal G-bundle morphism over B is an isomorphism

Proof. Let us begin the proof by assuming that both bundles are trivial, meaning $P, P^{\prime}=B \times G$ and $\pi, \pi^{\prime}=$ pr. Therefore we have the following commutative diagram

where f is a principal G-bundle morphism over B. Since by definition we have that f is a G-map we can write $f(b, g)=(b, \tilde{\varphi}(b, g))$ where $\tilde{\varphi}: B \times G \rightarrow G$ is a continuous function. Therefore we have that $f(b, g)=f(b, e) g=(b, \tilde{\varphi}(b, e)) g$.

Define $\varphi: B \rightarrow G$ by $\varphi(b)=\tilde{\varphi}(b, e)$ for all $b \in B$. This function is continuous and we can write $f(b, g)=(b, \varphi(b) g)$. Now, define the map $h: B \times G \rightarrow B \times G$ by $h(b, g)=\left(b, \varphi(b)^{-1} g\right)$. Then for all $b \in B$ and $g \in G$ we have that

$$
h \circ f(b, g)=h(b, \varphi(b) g)=\left(b, \varphi(b)^{-1} \varphi(b) g\right)=(b, g) .
$$

Also,

$$
f \circ h(b, g)=f\left(b, \varphi(b)^{-1} g\right)=\left(b, \varphi(b) \varphi(b)^{-1} g\right)=(b, g) .
$$

Since h is a continuous G-map, h is a principal G-bundle morphism whose inverse is f.
Suppose now that we have a principal G-bundle morphism f between two arbitrary bundles π and π^{\prime}. We know that these bundles are locally trivial by definition. Since we also know that the action is free and transitive on the fibers, then the function on the fibers is injective and surjective hence we can write it globally. Therefore we have the result.

We can also prove the following proposition.

Proposition 1.19. A principal G-bundle $\pi: P \rightarrow B$ is trivial if and only if admits a section $s: B \rightarrow P$ such that $\pi \circ s=i d$.

Proof. First, suppose $\pi: P \rightarrow B$ is trivial. Then there is a principal G-bundle morphism $\varphi: \pi \rightarrow \mathrm{pr}$ such that the following diagram

commutes. We know that there is a section $f: B \rightarrow B \times G$ defined by $f(b)=(b, e)$. Then $\varphi^{-1} \circ f$ is a section for π such that $\pi \circ s=\mathrm{id}$.

Suppose now that $s: B \rightarrow P$ is a section for π, then we can define $\varphi: B \times G \rightarrow P$ by $\varphi(b, g)=s(b) g$. We then have that

$$
\pi \circ \varphi(b, g)=\pi(s(b) g)=\pi(s(b))=b=\operatorname{pr}(b, g)
$$

so the following diagram commutes

Since φ is a G-map, $\varphi: \operatorname{pr} \rightarrow \pi$ is a principal G-bundle morphism. Using the previous proposition, φ is an isomorphism.

Now, let us define the pullback of a principal G-bundle by a function. Similarly as for vector bundles, with two continuous functions $f: X \rightarrow Z$ and $P: Y \rightarrow Z$ we can define the set

$$
X \times_{Z} X=\{(x, y) \in X \times Y: f(x)=P(y)\}
$$

and the functions \tilde{f} and $f^{*} P$ as the restrictions of the projections such that the following diagram commutes

If we have a principal G-bundle $\pi: P \rightarrow B$ and a continuous function $f: B^{\prime} \rightarrow B$ we define a right action of G on the set $B^{\prime} \times{ }_{B} P$ by $\overline{\left(b^{\prime}, p\right)} g=\overline{\left(b^{\prime}, p g\right)}$. It is easy to check that this action is well defined. Denoting $P\left(f^{*} \pi\right):=B^{\prime} \times{ }_{B} P$ we have then the following commuting diagram

Since π is a principal G-bundle, there is an open covering $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ and trivialization maps $\Phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G$ such that the following diagram commutes

Let $U_{\alpha}^{\prime}:=f^{-1}\left(U_{\alpha}\right) \subseteq B^{\prime}$. We know that the function $\Phi_{\alpha}(p)=\left(\pi(p), \varphi_{\alpha}(p)\right)$, so we can define local trivializations $\widetilde{\Phi_{\alpha}}: f^{*} \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha}^{\prime} \times G$ by $\widetilde{\Phi_{\alpha}}\left(b^{\prime}, p\right)=\left(b^{\prime}, \varphi_{\alpha}(p)\right)$ for $f^{*} \pi$. Thus making $f^{*} \pi: P\left(f^{*} \pi\right) \rightarrow B$ a principal G-bundle called the pullback. Lastly, we will use the following theorem to prove some results in this chapter.

Theorem 1.20 (Homotopy). Let $\pi: P \rightarrow B$ be a principal G-bundle and $f_{0}, f_{1}: B^{\prime} \rightarrow B$ two homotopic functions. Then $f_{0}^{*} \pi$ and $f_{1}^{*} \pi$ are isomorphic.

The proof of this result can be seen in [7, Theorem 4.7].

1.3. Milnor's construction

Definition 1.21. An open cover $\left\{U_{i}\right\}_{i \in S}$ of a topological space B is numerable given that there exists a locally finite partition of unity $\left\{U_{i}\right\}_{i \in S}$ such that the closure

$$
\operatorname{cl}\left(U_{i}^{-1}((0,1])\right) \subseteq U_{i}
$$

for all $i \in S$. A principal G-bundle π over a base space B is called numerable if there is a numerable open cover of B such that $\pi_{U_{i}}$ is trivial for all $i \in S$.

Definition 1.22. A principal G-bundle $w=\left(E_{0}, p_{0}, B_{0}\right)$ is going to be called universal if its numerable and the function $\phi_{w}:\left[-, B_{0}\right] \rightarrow \operatorname{Bund}_{G}$ defined by $\phi_{w}(X):\left[X, B_{0}\right] \rightarrow \operatorname{Bund}_{G}(X)$ is an isomorphism. This means that $\phi_{w}(X)$ is a bijection for all spaces X.

Proposition 1.23. A principal G-bundle w: $E_{0} \rightarrow B_{0}$ is universal if and only if the following conditions are true.

1. For all principal G-bundles π over X there is a map $f: X \rightarrow B_{0}$ such that π and $f^{*} w$ are isomorphic over X.
2. If $f, g: X \rightarrow B_{0}$ are two maps such that $f^{*} w$ and $g^{*} w$ are isomorphic over X, then f and g are homotopic.

Proof. Note that the first condition says that $\phi_{w}(X)$ is surjective and the second condition that $\phi_{w}(X)$ is injective. This proves the theorem.

Milnor's construction is going to provide us a way to construct a universal G-bundle for any given group G.

Definition 1.24. Let $I=[0,1]$ and X and Y be two topological spaces. We define the join $X * Y$ as the quotient space $X * Y=(I \times X \times Y) / \sim$ where $\left(0, x, y_{1}\right) \sim\left(0, x, y_{2}\right)$ and $\left(1, x_{1}, y\right) \sim\left(1, x_{2}, y\right)$ for all $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$.

Example 1.25. The join of any topological space X with the 0 -sphere \mathbf{S}^{0} gives us the suspension of X, in other words, $X * \mathbf{S}^{0} \cong \Sigma X$. In general, we have that the join of spheres gives us a higher dimensional sphere in the following way.

$$
\mathbf{S}^{m} * \mathbf{S}^{n} \cong \mathbf{S}^{m+n+1}
$$

Let G be a group. We define the space $E^{n} G$ as the n-th join $G * \cdots * G$. We can then define $E G$ as a direct limit

$$
E G=\underset{n}{\lim } E^{n} G
$$

More information on direct limits can be found in A.2. One can see that this can also be thought of as the infinite join $G * \cdots * G * \cdots$ where we denote an element in $E G$ by

$$
\langle x, t\rangle=\left(t_{0} x_{0}, t_{1} x_{1}, \ldots, t_{k} x_{k}, \ldots\right),
$$

with $x_{i} \in G$ and only finite nonzero $t_{i} \in[0,1]$ such that $\sum_{i} t_{i}=1$. We identify in $E G$ the element $\langle x, t\rangle$ with $\left\langle x^{\prime}, t^{\prime}\right\rangle$ if $t_{i}=t_{i}^{\prime}$ for all i and $x_{i}=x_{i}^{\prime}$ when $t_{i}>0$.

We can define a topology in $E G$ in the following way. Consider the G-equivariant function $p_{2 i}: E G \rightarrow[0,1]$ defined by $p_{2 i}(\langle x, t\rangle)=t_{i}$ and the G-invariant function $p_{1 i}: p_{2 i}^{-1}((0,1]) \rightarrow G$ defined by $p_{1 i}(\langle x, t\rangle)=x_{i}$. The topology of $E G$ will then be the weak topology generated by the structural functions $p_{1 i}$ and $p_{2 i}$, meaning, the smallest topology such that those functions are continuous.

To define an action of G on $E G$, let $\sigma: E G \times G \rightarrow E G$ be defined for $\langle x, t\rangle \in E G$ and $g \in G$ by $\sigma(\langle x, t\rangle, g)=\langle x g, t\rangle=\left(t_{0} x_{0} g, t_{1} x_{1} g, \ldots, t_{k} x_{k} g, \ldots\right)$. Note that this action is continuous by the topology given to $E G$. To see this, let us remember that if we have the weak topology, g is continuous if and only if the composition with the structural functions is. Using that, note that the following diagram commutes

where $I=[0,1]$ for all i. Since proy and $p_{2 i}$ are continuous then $p_{2 i} \circ \sigma$ is continuous. On the other hand, the following diagram also commutes

where $m: G \times G \rightarrow G$ is the Lie group multiplication function. Hence the function is continuous and is an action because it is derived from the group multiplication. One can also see that $E G$ is a contractible space and that G acts freely on it.

Definition 1.26. Let G be a group. We define the space $B G=E G / G$ which will be also called the classifying space of G. The resulting bundle $\omega_{G}: E G \rightarrow B G$ given by the projection map is known as Milnor's construction.

We want to see that ω_{G} is a universal principal G-bundle. For that we will use the following results.
Proposition 1.27. The bundle ω_{G} defines a numerable principal G-bundle.

Proof. To prove that ω_{G} is a G-bundle, we want to define transition functions. Let us we denote $U_{i}=\overline{p_{2 i}^{-1}((0,1])}$, then U_{i} is open. Firstly, it is clear that $\cup_{i \geqslant 0} U_{i} \subseteq B G$. Secondly, note that by our definition of $E G$, the element $\left(0 x_{0}, 0 x_{1}, \ldots, 0 x_{k}, \ldots\right)$ does not belong to $E G$ since we have the condition that $\sum_{i} t_{i}=1$.

If $\overline{\langle x, t\rangle} \in B G$ then we can choose a class representative $\langle x, t\rangle \in E G$ such that there is a $t_{j} \in(0,1]$ for some j. Then $\langle x, t\rangle \in p_{2 j}^{-1}((0,1])$. This proves that $B G=\cup_{i \geqslant 0} U_{i}$. Therefore, $\left\{U_{i}\right\}_{i \geqslant 0}$ is an open cover of $B G$.

Lastly, we define the transition functions $g_{i j}: U_{i} \cap U_{j} \rightarrow G$ by $g_{i j}(\langle x, t\rangle)=p_{1 i}(\langle x, t\rangle) p_{2 i}(\langle x, t\rangle)^{-1}$ for all $\langle x, t\rangle \in U_{i} \cap U_{j}$. To see that they are well defined, suppose that $\langle x, t\rangle=\langle y, s\rangle \in U_{i} \cap U_{j}$ then if $t_{i}=t_{j}$ and $t_{j}=s_{j}$ both nonzero then $x_{i}=y_{i}$ and $x_{j}=y_{j}$. Therefore we have that

$$
g_{i j}(\langle x, t\rangle)=x_{i} x_{j}^{-1}=y_{i} y_{j}^{-1}=g_{i j}(\langle y, s\rangle) .
$$

Since the $g_{i j}$ meets the cocycle conditions for all i, j then they are transition functions therefore ω_{G} is a principal G-bundle.

Let us define a locally finite partition of unity on $B G$. Let $w_{i}: B G \rightarrow[0,1]$ be a map defined for $b \in B G$ by

$$
w_{i}(b)=\max \left(0, u_{i}(b)-\sum_{j<i} u_{j}(b)\right)
$$

where $u_{i}: B G \rightarrow[0,1]$ are going to be the unique maps with the property that $u_{i} \circ p=p_{2 i}$. Note that $w_{i}^{-1}(0,1] \subseteq U_{i}$. For $b \in B G$ let m be the smallest i such that $u_{i}(b) \neq 0$ and let n be the largest. We then have that $\sum_{i} u_{i}(b)=1$. Then $u_{m}(b)=w_{m}(b)$ and $B G$ is covered by the open sets $w_{i}^{-1}(0,1]$. Since we have that $u_{i}(b)=0$ for all $i>n$, the open covering $\left\{w_{i}^{-1}(0,1]\right\}_{i}$ is locally finite. We can then consider $v_{i}=\frac{w_{i}}{\sum_{j} w_{j}}$ and we have that $\left\{v_{i}\right\}_{j \leqslant i}$ is the partition of unity on $B G$.

Lemma 1.28. Let $p: X \rightarrow B$ be a numerable G-bundle. Then there is a numerable partition of unity $\left\{u_{i}\right\}_{i \in S}$ of B such that $\left.p\right|_{u_{i}^{-1}(0,1]}$ is trivial for all $i \in S$.

Proposition 1.29. For each numerable principal G-bundle $p: E \rightarrow B$ there is a map $f: B \rightarrow B G$ such that p and $f^{*} \omega_{G}$ are isomorphic principal G bundles.

Theorem 1.30. Let $f_{0}, f_{1}: X \rightarrow B G$ be two maps such that $f_{0}^{*} \omega_{G}$ and $f_{1}^{*} \omega_{G}$ are isomorphic. Then f_{0} and f_{1} are homotopic.

The proofs of the results mentioned above can be found in [7, Proposition 12.1], [7, Theorem 12.2] and [7] Theorem 12.4] respectively. Using all of that we have that ω_{G} is then universal.

Example 1.31. Let $G=\mathbb{Z} / 2$. We know that we can make the identification $Z / 2 \cong \mathbf{S}^{0}$. Therefore we have that $E^{n} G \cong \mathbf{S}^{n-1}$ and $E G \cong \mathbf{S}^{\infty}$.

Then we have that the classifying space for $\mathbb{Z} / 2$ is

$$
B G=(E G) / G=\left(\mathbf{S}^{\infty}\right) / \mathbb{Z} / 2 \cong \mathbb{R} P^{\infty},
$$

also known as the infinite real projective space. The universal bundle given by Milnor's construction is

$$
\omega_{\mathbb{Z} / 2}: \mathbf{S}^{\infty} \rightarrow \mathbb{R} P^{\infty}
$$

1.4. Balanced product and vector bundles

Definition 1.32. Let W be a right G-space and X a left G-space. We define the balanced product denoted by $W \times{ }_{G} X$ as the quotient $W \times X / \sim$ where $(w g, x) \sim(w, g x)$ for all $w \in W, x \in X$ and $g \in G$.

Since any left G-space can be thought of as a right G-space we can just consider the action of G on $W \times X$ as the diagonal action $(w, x) g=(w g, x g)=\left(w g, g^{-1} x\right)$. Therefore $W \times{ }_{G} X=(W \times X) / G$ can be thought of as the orbit space of this action.

Example 1.33. These are some things that can be noted from the previous construction.

1. If $X=*$ then the product $W \times{ }_{G} X=W / G$.
2. If $X=G$ thought of as a left G-space by left multiplication, then the right action of G on itself makes $W \times{ }_{G} G$ a right G-space and the action induces a G-map $W \times{ }_{G} G \rightarrow W$ that is a homeomorphism.

With the previous construction we can construct a natural bijection between $\operatorname{Bund}_{\mathrm{GL}_{n}(\mathbb{C})}(B)$ and $\operatorname{Vect}_{n}(B)$ for any paracompact Hausdorff topological space B. Let us see how this construction can be done.

Let B be a paracompact Hausdorff topological space and $\pi: P \rightarrow B$ a principal G-bundle with $G=\mathrm{GL}_{n}(\mathbb{C})$. Let us denote $E=P \times{ }_{G} \mathbb{C}^{n}$. Note that the function $\pi \circ \mathrm{pr}: P \times \mathbb{C}^{n} \rightarrow B$ defined by
$\pi(\operatorname{pr}(x, z))=\pi(x)$ for all $x \in P$ and $z \in \mathbb{C}^{n}$ is continuous and respects the identifications, hence we have a function $p: E=P \times{ }_{\mathrm{GL}_{n}(\mathbb{C})} \mathbb{C}^{n} \rightarrow B$. We can see, from the construction, that for $x \in P$ the fibers $p^{-1}(x)=\pi^{-1}(x) \times{ }_{\mathrm{GL}_{n}(\mathbb{C})} \mathbb{C}^{n}$ have a vector space structure giving us that $p: E \rightarrow B$ is an n dimensional vector bundle.

Conversely, if we have an n dimensional vector bundle $p: E \rightarrow B$ we can consider the frame bundle $\operatorname{Fr}(E)$. Note that, if we fix a basis for E, the elements in $\operatorname{Fr}(E)$ can be expressed as linear combinations of the basis. Hence, having an element in $\operatorname{Fr}(E)$ is the same as having a matrix $A \in \mathrm{GL}_{n}(\mathbb{C})$. The group $G=\mathrm{GL}_{n}(\mathbb{C})$ then acts on the right of $\operatorname{Fr}(E)$ by matrix multiplication. We can also give $\operatorname{Fr}(E)$ an appropriate topology such that the map $\pi: \operatorname{Fr}(E) \rightarrow B$ is continuous. With that, we can see that $\pi: \operatorname{Fr}(E) \rightarrow B$ is a principal G-bundle over B.

We can consider the map $\phi: \operatorname{Bund}_{\mathrm{GL}_{n}(\mathbb{C})}(B) \rightarrow \operatorname{Vect}_{n}(B)$ defined by $\phi([P])=\left[P \times_{\mathrm{GL}_{n}(\mathbb{C})} \mathbb{C}^{n}\right]$ for all $[P] \in \operatorname{Bund}_{\mathrm{GL}_{n}(\mathbb{C})}(B)$. It can be proven that ϕ is well defined and also has a well defined inverse $\psi: \operatorname{Vect}_{n}(B) \rightarrow \operatorname{Bund}_{\mathrm{GL}_{n}(\mathbb{C})}(B)$ given by $\psi([E])=[\operatorname{Fr}(E)]$ for all $[E] \in \operatorname{Vect}_{n}(B)$. Therefore ϕ is an isomorphism.

Example 1.34. Let X be a compact G-space where G is a compact Lie group. We have that $B G$ is the classifying space obtained by taking the quotient of $E G$. Then we can define $X_{G}=(X \times E G) / G$. This space is also called Borel's construction.

1.5. Representation theory

Definition 1.35. A representation of a group G in a complex finite dimensional vector space V is a homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$, where $\mathrm{GL}(V)$ denotes the set of linear transformations from V to V.

This map gives V a structure of a G-module. The dimension of V is sometimes called the degree of ρ. We often refer to the representation as just V and we denote $\rho(g)(v)=g \nu$. On the other hand, note that if we have an action $\sigma: G \times V \rightarrow V$ of a compact Lie group G over a vector space V, then we can construct a representation $\rho: G \rightarrow \mathrm{GL}(V)$ defined by $\rho(g)=\sigma_{g}$. This shows that when G is a discrete group, having a representation V is equivalent to having an action of the group G over V.

Definition 1.36. A map between two G-representations V and W is a vector space map $\varphi: V \rightarrow W$
such that the following diagram commutes

for all $g \in G$. The map φ is also a G-map and when G is a Lie group, an intertwining map. When this map is bijective then we say that the representations V and W are equivalent or isomorphic.

Definition 1.37. A sub-representation of a representation V of G is a G-invariant sub-vector space $W \subseteq V$. A representation that has a proper sub-representation it is called reducible and if the only sub-representations are $\{0\}$ and V it is called irreducible.

We can create new representations from two given representations V and W such as $V \oplus W, V \otimes W$, $\Lambda^{k} V, \operatorname{Sym}^{k} V, V^{*}=\operatorname{Hom}(V, \mathbb{C}), \operatorname{Hom}(V, W)$ and \bar{V}. Nevertheless we will not go over how to do these constructions in this thesis. This can be seen in detail in [9, Definition 2.10].

Definition 1.38. Let V be a representation of G, a bilinear form $(\cdot, \cdot): V \times V \rightarrow G$ in a Lie group G is called G-invariant if $\left(g v, g v^{\prime}\right)=\left(v, v^{\prime}\right)$ for all $g \in G$ and $v, v^{\prime} \in V$. The representation is called unitary if there is a G-invariant Hermitian metric in V.

We have then the following theorem.

Theorem 1.39. Every representation for a compact Lie group is unitary
We will not go over the proof of this result, it can be found in [9, Theorem 2.15]. We will call a representation V completely irreducible if it is the direct sum of irreducible sub-modules. We have then the following corollary.

Corollary 1.40. All the finite dimensional representations over a compact Lie group are completely irreducible.

Proof. If V is a reducible representation, then there is a proper sub-representation $W \subseteq V$ and we can write $V=W \oplus W^{\perp}$ with respect to the unitary G-invariant inner product that we know exists from Theorem 1.39 . Note that W^{\perp} is also G-invariant since $\left(g w^{\prime}, w\right)=\left(w^{\prime}, g^{-1} w\right)=0$ for all $w^{\prime} \in W^{\perp}$ and $w \in W$.

Inductively, we can continue decomposing each sub-representation and since V has finite dimension this process must stop. Therefore, we have the result.

This implies that any finite dimensional representation V of a compact Lie group G can be written as

$$
V \cong \bigoplus_{i=1}^{N} n_{i} V_{i}
$$

where the irreducible representations V_{i} are inequivalent.

Corollary 1.41. If V is a finite dimensional representation of a compact Lie group G. V is irreducible if and only if $\operatorname{dimHom}_{G}(V, V)=1$.

Proof. If V is irreducible, by Schur's Lemma we know that $\operatorname{dim}_{\operatorname{Hom}_{G}}(V, V)=1$. On the other hand, suppose that V is reducible, then $V=W \oplus W^{\prime}$ for some proper sub-representations of V. Then, necessarily $\operatorname{dim} \operatorname{Hom}_{G}(V, V) \geqslant 2$ since $\pi_{1}: V \rightarrow W$ and $\pi_{2}: V \rightarrow W^{\prime}$ are two distinct G maps. Then we have the result.

Let \hat{G} be the set of equivalence classes of irreducible representations of a compact Lie group G. We will take $\left(\pi, E_{\pi}\right)$ as the class representative of the element $[\pi] \in \hat{G}$. We have then the following theorem.

Theorem 1.42 (Canonical decomposition). Let V be a finite dimensional representation of a compact Lie group G. Then there is an intertwine G-isomorphism

$$
\bigoplus_{[\pi] \in \hat{G}} \operatorname{Hom}_{G}\left(E_{\pi}, V\right) \otimes E_{\pi} \rightarrow V .
$$

The proof of this theorem can be found in [9, Theorem 2.24]. Let us denote by $\operatorname{Rep}(G)$ the set of isomorphism classes of all of the finite dimensional representations of the group G. It is easy to see that this is a commutative monoid under the direct sum of representations. Let us define now Groethendieck's group construction for an arbitrary commutative monoid.

Definition 1.43. Let M be a commutative monoid with operation denoted by the sum. We define Groethendieck's group for M a the set $K=(M \times M) / \sim$ where $\left(m_{1}, m_{2}\right) \sim\left(n_{1}, n_{2}\right)$ if there is a $k \in M$ such that $m_{1}+n_{2}+k=m_{2}+n_{1}+k$ for all $m_{1}, m_{2}, n_{1}, n_{2} \in M$. This k is not needed when the
monoid M has the cancellation property. The sum on K is defined coordinate-wise which makes K an abelian group where the identity is $[(0,0)]$ and the inverse of $\left[\left(m_{1}, m_{2}\right)\right]$ is given by $\left[\left(m_{2}, m_{1}\right)\right]$.

Definition 1.44. Let G be a group. We define the representation ring of G, denoted by $R(G)$, as Groethendieck's group for $\operatorname{Rep}(G)$.

If we denote $\left(E_{1}, F_{1}\right)=E_{1}-F_{2}$ then $R(G)$ can be thought of as the set of formal differences of isomorphism classes of finite dimensional representations over G. To see that $R(G)$ has a ring structure, we can define multiplication with the tensor product of representations over the complex numbers.

Note that if we have two compact Lie groups G and H, and a homomorphism of compact Lie groups $i: H \rightarrow G$, we can think of any G-module M as an H-module by defining $h x=i(h) x$ for all $h \in H$ and $x \in M$. This process then induces a homomorphism of rings $i^{*}: R(G) \rightarrow R(H)$ called the induced map.

A particular example can be done when H is a Lie subgroup of a compact Lie group G. Then we have the inclusion map $t: H \rightarrow G$ that is clearly a homomorphism of compact Lie groups. It can be seen that the induced map gives us a relation between the representation rings $R(G) \subseteq R(H)$.

Example 1.45. Let us find the representation ring for some G.

1. If $G=*$ then the representations over G are going to be defined by the dimension of the vector space. Since we are taking now formal differences of those representations, then this gives us Groethendieck's group for \mathbb{N}, which is \mathbb{Z}.
2. If $G=\mathbb{Z} / 2=\{1 . \tau\}$ then one can see that there are two irreducible representations for G. One is given by the trivial representation and the other one is going to be called the sign representation, which maps τ to the sign function. We also have that the sign representation squared is going to correspond to the trivial representation.

Since all the representations are going to be linear combinations of those two irreducible representations, then we can map the trivial representation to 1 and the sign representation to x obtaining that

$$
R(G) \cong \mathbb{Z}[x] /\left\langle x^{2}-1\right\rangle
$$

3. If $G=\mathbf{S}^{1}$, we have that the standard one dimensional representation $\rho: G \rightarrow G L(\mathbb{C})$ is going to be the multiplication map $\rho(z)$ for $z \in \mathbf{S}^{1}$ where $\rho(z)(v)=z v$ for all $v \in \mathbb{C}$. We can
also consider the representation $\rho^{-1}: G \rightarrow G L(\mathbb{C})$ given by the map $\rho(z)$ for $z \in \mathbf{S}^{1}$ where $\rho^{-1}(z)(v)=z^{-1} v$ for all $v \in \mathbb{C}$. Both of this representations are irreducible.

One can see that the irreducible representations of G are going to be tensor powers of these two representations, giving us that

$$
R(G) \cong \mathbb{Z}\left[x, x^{-1}\right]
$$

2. K-theory and Equivariant K-theory

In this chapter we will study the basic concepts of K-theory and equivariant K-theory that will be important to understand Atiyah-Segal's completion theorem. In this construction, any time a vector bundle is mentioned it will be a complex vector bundle unless otherwise specified. We will also allow the fibers of vector bundles to be vector spaces of different dimensions and will denote by $\operatorname{Vect}(X)$ the set of all the vector bundles over X.

2.1. K-theory

To define the K-theory in general, we want to first define an equivalence relation between vector bundles over a fixed compact Hausdorff base space. Let us denote by $\varepsilon^{n}: X \times \mathbb{C}^{n} \rightarrow X$ the trivial n-dimensional vector bundle over X.

Definition 2.1. We say that two vector bundles E_{1} and E_{2} over X are stably isomorphic, denoted by $E_{1} \sim_{s} E_{2}$, if $E_{1} \oplus \varepsilon^{n} \cong E_{2} \oplus \varepsilon^{n}$ for some $n \in \mathbb{N}$. Similarly, we say that $E_{1} \sim E_{2}$ if $E_{1} \oplus \varepsilon^{m} \cong E_{2} \oplus \varepsilon^{n}$.

One can verify that both \sim and \sim_{s} define equivalence relations. With the relation \sim we can prove the following result.

Proposition 2.2. If X is compact Hausdorff, then the set $\widetilde{K}(X):=\operatorname{Vect}(X) / \sim$ of \sim-equivalence classes of vector bundles over X together with the direct sum forms an abelian group called the reduced K-theory of X.

Proof. Let us first verify that the direct sum is well defined. Suppose that $E_{1} \sim E_{1}^{\prime}$ and $E_{2} \sim E_{2}^{\prime}$, by definition we have that $E_{1} \oplus \varepsilon^{n_{1}} \cong E_{1}^{\prime} \oplus \varepsilon^{n_{1}^{\prime}}$ and $E_{2} \oplus \varepsilon^{n_{2}} \cong E_{2}^{\prime} \oplus \varepsilon^{n_{2}^{\prime}}$ for some $n_{1}, n_{1}^{\prime}, n_{2}, n_{2}^{\prime} \in \mathbb{N}$. This implies that $\left(E_{1} \oplus E_{2}\right) \oplus \varepsilon^{n_{1}+n_{2}} \cong\left(E_{1}^{\prime} \oplus E_{2}^{\prime}\right) \oplus \varepsilon^{n_{1}^{\prime}+n_{2}^{\prime}}$. Hence $E_{1} \oplus E_{2} \sim E_{1}^{\prime} \oplus E_{2}^{\prime}$ which proves
that the sum is well defined. Furthermore, note that the zero element is the class of ε^{0} and the associative and commutative properties are derived from the isomorphism relation.

Lastly, we must prove the existence of inverses. Let $E \in \operatorname{Vect}(X)$ and let us define, for all $i \in \mathbb{N}$ the sets $X_{i}=\left\{x \in X: \operatorname{dim}\left(E_{x}\right)=i\right\}$. Note that these sets are disjoint and open in X, and are such that $X=\bigsqcup_{i \in \mathbb{N}} X_{i}$. Since X is compact there must be only a finite amount of X_{i} 's. We then construct a bundle that, when added to E, over each X_{i} is a trivial bundle of a suitable dimension. This is given by Proposition 1.12. Therefore we have that $E \oplus E^{\prime} \cong \varepsilon^{m}$ for some m.

On the other hand, if we wanted to define a sum operation on \sim_{s}-equivalence classes in the same manner as for \sim, only the zero element could have an inverse since $E \oplus E^{\prime} \sim_{s} \varepsilon^{0}$ implies that $E \oplus E^{\prime} \oplus \varepsilon^{n} \cong \varepsilon^{n}$ for some $n \in \mathbb{N}$ which can only happen if both E and E^{\prime} are 0-dimensional. This tells us that if we want to form an abelian group $K(X)$ with this relation, we have to do a modification.

Definition 2.3. Let X be compact Hausdorff topological space. We define the K-theory of X as Groethendieck's group for the set of isomorphism classes of all vector bundles over X under the equivalence relation \sim_{s}.

Note that this definition is possible since the set of isomorphism classes of all vector bundles over X under the equivalence relation \sim_{s} is an abelian monoid under the direct sum. Also note that we have the cancellation property. It says that $E_{1} \oplus E_{2} \sim_{s} E_{1} \oplus E_{3}$ implies $E_{1} \sim E_{3}$ when E_{1}, E_{2}, E_{3} are vector bundles over a compact base space X. The last assertion is true because we know that we can add to both sides a bundle E_{1}^{\prime} such that $E_{1} \oplus E_{1}^{\prime}$ is trivial. If we denote $\left(E_{1}, E_{1}^{\prime}\right)=E_{1}-E_{1}^{\prime}$ and define the direct sum $\overline{\left(E_{1}-E_{1}^{\prime}\right)} \oplus \overline{\left(E_{2}-E_{2}^{\prime}\right)}=\overline{E_{1} \oplus E_{2}-E_{1}^{\prime} \oplus E_{2}^{\prime}}$, then it is easy to see that $K(X)$ is an abelian group.

Example 2.4. Let $X=*$. Note that the only vector bundles that can be defined over X are trivial. We can see that $K(X)=K(*) \cong \mathbb{Z}$ since the function $\Phi: K(*) \rightarrow \mathbb{Z}$ defined by $\Phi\left(\overline{\varepsilon^{n}-\mathcal{E}^{m}}\right)=n-m$ is a group isomorphism. We can also see that $\widetilde{K}(*)=\{0\}$.

A relation between K and \widetilde{K} can be made. First, note that $\overline{E-E^{\prime}}=\overline{E \oplus E^{\prime \prime}-\varepsilon^{n}}$ where $E^{\prime \prime}$ is a vector bundle such that $E^{\prime} \oplus E^{\prime \prime} \cong \varepsilon^{n}$ given by Proposition 1.12. Therefore, we can write an arbitrary element of $K(X)$ with class representative $E-\varepsilon^{n}$ for some $E \in \operatorname{Vect}(X)$ and some $n \in \mathbb{Z}$.

We have then the following proposition.
Proposition 2.5. The homomorphism $\Phi: K(X) \rightarrow \widetilde{K}(X)$ defined as $\Phi\left(\overline{E-\varepsilon^{n}}\right)=\bar{E}$ is surjective and $\operatorname{ker} \Phi=\mathbb{Z}$.

Proof. First we verify that this function is well defined. For that, consider E_{1} and E_{2} such that $E_{1}-\varepsilon^{n_{1}} \sim_{s} E_{2}-\varepsilon^{n_{2}}$. This is equivalent to saying that $E_{1} \oplus \varepsilon^{n_{2}+n} \cong E_{2} \oplus \varepsilon^{n_{1}+n}$ which means that $E_{1} \sim_{s} E_{2}$. Note that this function is a homomorphism because of the way that the sum is defined and it is surjective because $\bar{E}=\Phi\left(\overline{E-\varepsilon^{0}}\right)$.

Suppose now that $\overline{E-\varepsilon^{n}} \in \operatorname{ker} \Phi$, then we have that $\bar{E}=\Phi\left(\overline{E-\varepsilon^{n}}\right)=\overline{\varepsilon^{0}}$ which is true if and only if $E \oplus \varepsilon^{n} \cong \varepsilon^{0} \oplus \varepsilon^{m}$. This is equivalent to saying that $E \sim_{s} \varepsilon^{k}$ for some k, therefore we have that $\overline{E-\varepsilon^{n}}=\overline{\varepsilon^{k}-\varepsilon^{n}}$. Then the set

$$
\operatorname{ker} \Phi=\left\{\overline{\varepsilon^{k}-\varepsilon^{n}}: k, n \in \mathbb{Z}\right\} \cong\{k-n: k, n \in \mathbb{Z}\} \cong \mathbb{Z}
$$

Corollary 2.6. For a fixed $x_{0} \in X$ the following exact sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\imath} K(X) \xrightarrow{\Phi} \widetilde{K}(X) \longrightarrow 0,
$$

splits. By the splitting lemma we have that $K(X) \cong \tilde{K}(X) \oplus \mathbb{Z}$.
Proof. We can define a function $\Psi: K(X) \rightarrow \mathbb{Z}$ by $\Psi\left(\overline{E-\varepsilon^{n}}\right)=\overline{\left.E\right|_{x_{0}}-\left.\varepsilon^{n}\right|_{x_{0}}} \cong \overline{\varepsilon^{m}-\varepsilon^{n}}$. It is easy to see that this function is such that $\Psi \circ \imath=\mathrm{id}_{\operatorname{ker} \Phi}$. Then we have the result.

Note that a straight forward consequence of the previous corollary is that $\widetilde{K}(X)=\operatorname{ker} \Psi$ and that $\widetilde{K}(X)$ is a normal subgroup of $K(X)$. Let us define the tensor product in $K(X)$ by

$$
\overline{E_{1}-E_{1}^{\prime}} \otimes \overline{E_{2}-E_{2}^{\prime}}:=\overline{\left(E_{1} \otimes E_{2} \oplus E_{1}^{\prime} \otimes E_{2}\right)}-\overline{\left(E_{1} \otimes E_{2}^{\prime} \oplus E_{1}^{\prime} \otimes E_{2}\right)} .
$$

This product is associative, commutative and distributive. We then have that $K(X)$ is a ring with the direct sum and tensor product. Since Ψ is a homomorphism and $\widetilde{K}(X)$ is an ideal of $K(X)$, it inherits the product hence making $\widetilde{K}(X)$ also a ring with the previously mentioned operations.

We will denote CRings as the category of commutative rings and Top the category of topological spaces. We can say that K : Top \rightarrow CRings is a contravariant functor that assigns a compact Hausdorff space X the commutative ring $K(X)$, and a continuous function $f: X \rightarrow Y$ the pullback
map $f^{*}: K(Y) \rightarrow K(X)$ defined as $f^{*}\left(\overline{E-E^{\prime}}\right)=\overline{f^{*}(E)-f^{*}\left(E^{\prime}\right)}$. Note that the pullback map is a group homomorphism and satisfies the required properties for $K(X)$ to have a functorial structure. In the same way $\widetilde{K}(X)$ also has a functorial structure.

2.1.1. Generalized cohomology properties

In this subsection, we want to see that \widetilde{K} and K define reduced and non-reduced generalized cohomology theories. To do this, we need a notion of suspension and reduced suspension for a given space.

Definition 2.7. Let X be a compact topological space and let $I=[0,1]$.

1. The cone of X will be defined by $C X=(X \times I) /(X \times\{0\})$.
2. The suspension of X, denoted by $S X$, is the quotient of $X \times I$ obtained by collapsing $X \times\{0\}$ to a point and $X \times\{1\}$ to another point.
3. For a fixed $x_{0} \in X$ we have the line segment $\left\{x_{0}\right\} \times I$ in $S X$ and we can define the reduced suspension denoted by ΣX by collapsing $\left\{x_{0}\right\} \times I$ to a point.

For well behaved spaces, such as CW-complexes or, in our specific setting, topological spaces where the inclusion $\left\{x_{0}\right\} \rightarrow X$ is a cofibration, one can see that the suspension and reduced suspension of a space are homotopy equivalent. This property is also known as the point $x_{0} \in X$ not being nondegenerate. Hence we can work with either one.

Example 2.8. When $X=\mathbf{S}^{1}$ we can see that $S X$ is homeomorphic to \mathbf{S}^{2} and in general we will have that if $X=\mathbf{S}^{n}$ then $S X \cong \Sigma X \cong \mathbf{S}^{n+1}$.

We will denote by $\mathbf{C W}$ * the category of pointed CW-complexes and $\mathbf{A b}$ the category of abelian groups. Remember that for two pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ we can define the wedge sum $X \vee Y$ as $(X \sqcup Y) / \sim$ where $x_{0} \sim y_{0}$. Then we are set for the following definition.

Definition 2.9. A reduced cohomology theory is defined as a sequence of contravariant functors $\left\{\widetilde{h}^{n}: \mathbf{C W}_{*} \rightarrow \mathbf{A b}\right\}_{n \in \mathbb{Z}}$ together with natural isomorphisms $\widetilde{h}^{n}(X) \cong \widetilde{h}^{n+1}(\Sigma X)$ for all $X \in \mathbf{C W}_{*}$ such that the following axioms are true.

1. Homotopy axiom: If $f, g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ are morphisms and f is homotopic to g preserving the base points, then $f^{*}=g^{*}: \widetilde{h}^{n}(Y) \rightarrow \widetilde{h}^{n}(X)$.
2. Exactness axiom: If $X \in \mathbf{C W}_{*}$ and $A \subseteq X$ is a subcomplex, then the sequence

$$
A \xrightarrow{\imath} X \xrightarrow{\pi} X / A,
$$

where t is the inclusion and π the canonical projection, induces the exact sequence

$$
\widetilde{h}^{n}(X / A) \xrightarrow{\pi^{*}} \widetilde{h}^{n}(X) \xrightarrow{i^{*}} \widetilde{h}^{n}(A) .
$$

3. Wedge axiom: If $X=\bigvee_{\alpha \in \Lambda} V_{\alpha}$ with inclusions $\imath_{\alpha}: X_{\alpha} \rightarrow X$ for all $\alpha \in \Lambda$, then the t_{α} induce a group isomorphism $\widetilde{h}^{n}(X) \cong \Pi_{\alpha \in \Lambda} \widetilde{h}^{n}\left(X_{\alpha}\right)$.

Our goal is to see that the reduced K-theory defines a reduced generalized cohomology theory. Let X be a compact Hausdorff space. We define $\widetilde{K}^{-n}(X):=\widetilde{K}\left(\Sigma^{n} X\right)=\widetilde{K}\left(S^{n} X\right)$. By [6, Theorem 2.11] we have that $\widetilde{K}(X) \cong \widetilde{K}\left(\Sigma^{2} X\right)$. This tells us that the reduced K-theory has period 2 . We can then identify \widetilde{K}^{n} with \widetilde{K}^{n-2}. Therefore we have that $\widetilde{K}^{-n}(X) \cong \widetilde{K}^{n}(X)$ and by definition $\widetilde{K}^{n+1}(\Sigma X)=$ $\widetilde{K}^{n}(X)$.

Remember that, for a function $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $n=0$ we have an induced map called the pullback $f^{*}: \widetilde{K}^{0}(Y) \rightarrow \widetilde{K}^{0}(X)$. For $n \neq 0$ we have an induced function $\hat{f}: \Sigma X \rightarrow \Sigma Y$ that is well defined and in hand induces $\hat{f}_{n}: \Sigma^{n} X \rightarrow \Sigma^{n} Y$. By doing the pullback to \hat{f}_{n}, we have induced maps $f_{n}^{*}: \widetilde{K}^{-n}(Y) \rightarrow \widetilde{K}^{-n}(X)$. Then the reduced K-theory is a sequence of well defined functors $\left\{\widetilde{K}^{n}: \mathbf{T o p C o m p}_{*} \rightarrow \mathbf{A b}\right\}_{n \in \mathbb{Z}}$, where $\mathbf{T o p C o m p}_{*}$ denotes the category of pointed topological compact spaces. These functors then map $X \in \mathbf{T o p C o m p}_{*}$ to the abelian group $\widetilde{K}^{n}(X)$ and $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ to the pullback f_{n}^{*}.

Note that by Theorem 1.20 we can see that the reduced K-theory follows the first axiom. To prove that it follows the second axiom we will need the following lemma.

Lemma 2.10. If A is a contractible space then the quotient map $\pi: X \rightarrow X / A$ induces a bijection $\pi^{*}: \operatorname{Vect}(X / A) \rightarrow \operatorname{Vect}(X)$.

The proof of this can be found in [6, Lemma 2.10]. With that, if we denote $Y=X \cup C A$, we can construct the following diagram.

Since each cone is a contractible space, we can use the previous lemma to determine inverses in the following diagram

This tells us that we have a long exact sequence of \widetilde{K}-groups

$$
\cdots \longrightarrow \widetilde{K}(S X) \longrightarrow \widetilde{K}(S A) \longrightarrow \widetilde{K}(X / A) \longrightarrow \widetilde{K}(X) \longrightarrow \widetilde{K}(A) .
$$

This proves that the reduced K-theory follows the second axiom. Lastly, let us prove that it follows the last one. Since we are going to be working with compact topological spaces we can just consider $X=\bigvee_{k=1}^{m} X_{k}$. For that we will use the following corollary.

Corollary 2.11. Let $X, Y \in \mathbf{T o p C o m p}_{*}$. Then $\widetilde{K}^{-n}(X \vee Y) \cong \widetilde{K}^{-n}(X) \oplus \widetilde{K}^{-n}(Y)$ for all $n \geqslant 0$.
Proof. Let us define $\imath_{1}: X \rightarrow X \vee Y$ and $\iota_{2}: Y \rightarrow X \vee Y$ the inclusions and also $r_{1}: X \vee Y \rightarrow(X \vee$ $Y) / Y=X$ and $r_{2}: X \vee Y \rightarrow Y$ the projections. It is clear that $r_{1} \circ \imath_{1}=\mathrm{id}_{X}$ and $r_{2} \circ \boldsymbol{l}_{2}=\mathrm{id}_{Y}$. Then we have the following maps

$$
\widetilde{K}^{-n}(X) \oplus \widetilde{K}^{-n}(Y) \xrightarrow{r_{1}^{*}+r_{2}^{*}} \widetilde{K}^{-n}(X \vee Y) \xrightarrow{l_{1}^{*} \oplus l_{2}^{*}} \widetilde{K}^{-n}(X) \oplus \widetilde{K}^{-n}(Y),
$$

where we define $r_{1}^{*}+r_{2}^{*}(\bar{E} \oplus \bar{F})=r_{1}^{*}(\bar{E})+r_{2}^{*}(\bar{F})$ for $\bar{E} \in \widetilde{K}^{-n}(X)$ and $\bar{F} \in \widetilde{K}^{-n}(Y)$ and define $l_{1}^{*} \oplus \imath_{2}^{*}(\bar{H})=l_{1}^{*}(\bar{H}) \oplus l_{2}^{*}(\bar{H})$ for all $\bar{H} \in \widetilde{K}^{-n}(X \vee Y)$.

Note that $\left(\imath_{1}^{*} \oplus l_{2}^{*}\right) \circ\left(r_{1}^{*}+r_{2}^{*}\right)=\mathrm{id}$. This tells us that $l_{1}^{*} \oplus \imath_{2}^{*}$ is surjective. We now see $l_{1}^{*} \oplus \imath_{2}^{*}$ is injective. Let $\underset{\widetilde{K}}{ } \in \operatorname{ker}\left(\imath_{1}^{*} \oplus \imath_{2}^{*}\right)$. Then $\iota_{1}^{*}(\xi)=0$ and $\iota_{2}^{*}(\xi)=0$. Since $\xi \in \operatorname{ker}\left(\imath_{2}^{*}\right)$ we know that there is a $\eta \in \widetilde{K}^{-n}(Y)$ such that $\overline{r_{2}^{*} \eta}=\xi$. This tells us that

$$
\eta=l_{2}^{*} \circ r_{2}^{*} \eta=l_{2}^{*}(\xi)=0
$$

Therefore $\xi=0$.

Inductively we have then the isomorphisms

$$
\widetilde{K}^{-n}\left(\bigvee_{k=1}^{m} X_{k}\right) \cong \bigoplus_{k=1}^{m} \widetilde{K}^{-n}\left(X_{k}\right) \cong \prod_{k=1}^{m} \widetilde{K}^{-n}\left(X_{k}\right)
$$

This shows us that the reduced K-theory defines a reduced cohomology theory. We now want to do something similar for non-reduced K-theory. Let us denote by CWPair the category of topological pairs (X, Y) formed by $X, Y \in \mathbf{C W}$ and Y a sub-complex of X.

Definition 2.12. A non-reduced generalized cohomology theory, or simply, a generalized cohomology theory, is a sequence of functors $\left\{h^{n}: \mathbf{C W P a i r} \rightarrow \mathbf{A b}\right\}_{n \in \mathbb{Z}}$ together with natural transformations $\Delta: h^{n}(A):=h^{n}(A, \emptyset) \rightarrow h^{n+1}(X, A)$ called the connection maps that satisfy the following axioms

1. Homotopy axiom: If $f, g:(X, A) \rightarrow(Y, B)$ are morphisms and f is homotopic to g preserving the base points, then $f^{*}=g^{*}: h^{n}(Y, B) \rightarrow h^{n}(X, A)$.
2. Exactness axiom: If $(X, A) \in \mathbf{C W P a i r}$, via the inclusions $\imath: A \rightarrow X$ and $j:(X, \emptyset) \rightarrow(X, A)$, we have the exact long sequence

$$
\cdots \longrightarrow h^{n}(X, A) \xrightarrow{j^{*}} h^{n}(X) \xrightarrow{i^{*}} h^{n}(A) \xrightarrow{\Delta} h^{n+1}(X, A) \xrightarrow{j^{*}} \cdots .
$$

3. Excision axiom: If X has two subcomplexes A and B such that $X=\operatorname{int}(A) \cup \operatorname{int}(B)$, then the inclusion $\imath:(A, A \cup B) \rightarrow(X, B)$ induces an isomorphism $\imath^{*}: h^{n}(X, B) \rightarrow h^{n}(A, A \cap B)$.
4. Addition axiom: If $(X, A)=\sqcup_{\alpha \in \Lambda}\left(X_{\alpha}, A_{\alpha}\right)$ then the inclusions $t_{\alpha}:\left(X_{\alpha}, A_{\alpha}\right) \rightarrow(X, A)$ for all $\alpha \in \Lambda$ induce a group isomorphism $h^{n}(X, A) \cong \Pi_{\alpha \in \Lambda} h^{n}\left(X_{\alpha}, A_{\alpha}\right)$.

To prove that the K-theory defines a cohomology theory we will use the following theorem.
Theorem 2.13. If $\left\{\widetilde{h}^{n}\right\}_{n \in \mathbb{Z}}$ defines a reduced cohomology theory then the collection $\left\{h^{n}\right\}_{n \in \mathbb{Z}}$ defined by $h^{n}(X, A)=\widetilde{h}^{n}(X / A)$ is a cohomology theory.

The proof of this result can be found in [1, Theorem 1.5]. With this in hand, we define

$$
\begin{aligned}
& K^{-n}(X, Y)=\widetilde{K}^{-n}(X / Y) \\
&=\widetilde{K}\left(\Sigma^{n}(X / Y)\right) \\
& K^{-n}(X)=K^{-n}(X, \emptyset)=\widetilde{K}\left(\Sigma^{n} X_{+}\right)
\end{aligned}
$$

where X_{+}is the disjoint union of X with a point.

One can see that this definition for the K-theory coincides with the definition that we had. Then, by the previous theorem we have that the K-theory defines a cohomology theory. One can also create a reduced cohomology theory from a generalized cohomology theory. This can be seen by the following theorem.

Theorem 2.14. From a non-reduced cohomology theory $\left\{h^{n}\right\}_{n \in \mathbb{Z}}$ we can define a reduced cohomology theory for $\left(X, x_{0}\right)$ the functor $\widetilde{h}^{n}(X)=h^{n}\left(X, x_{0}\right)$.

The proof of this result can be found in [1. Theorem 1.4]. We can also define the graded K-groups as the direct sums $K^{*}(X)=K^{0}(X) \oplus K^{1}(X)$ regarded as $\mathbb{Z} / 2$-graded groups. Under the tensor product this then makes $K^{*}(X)$ a $\mathbb{Z} / 2$-graded commutative ring.

Lastly, note that the previous construction for K-theory only lets us work with compact spaces. We will now briefly mention the homotopic representation for K-theory. For that, first let us remember that if we have two topological spaces pointed A and B with base points a and b respectively, then we can consider $\langle A, B\rangle$, which denotes the set of homotopy classes of maps from A to B that preserve the base points. We can also consider $[A, B]$, which is the set of homotopy classes of maps that don't necessarily preserve a base point. Then we can see the following result.

Theorem 2.15 (Brown representability theorem). Every reduced cohomology theory $\left\{h^{n}\right\}_{n \in \mathbb{Z}}$ on the category of pointed CW-complexes and base point-preserving maps has the form $h^{n}(X)=$ $\left\langle X, K_{n}\right\rangle$ for some Ω-spectrum $\left\{K_{n}\right\}_{n \in \mathbb{Z}}$.

The proof of this theorem can be found in [5, Theorem 4E.1]. We can use this result and prove that for reduced K-theory we have that

$$
\widetilde{K}^{0}(X) \cong\langle X, B U\rangle
$$

where $B U$ is the classifying space of $U={\underset{\longrightarrow}{\longrightarrow}}_{n \in \mathbb{N}} U(n)$ where $U(n)$ is the group of n-dimensional unitary matrices. In the same manner, since we have that $K(X) \cong \widetilde{K}(X) \times \mathbb{Z}$, then we can see that for a connected space X there is the following isomorphism

$$
K^{0}(X) \cong[X, B U] \times \mathbb{Z} \cong[X, \mathbb{Z} \times B U]
$$

We then know that we can construct K^{1} with the suspension which lets us extend this result to K^{*}. This result is important because this gives us a way to define the K-theory for a spaces that are not necessarily compact.

2.2. Equivariant K-theory

We can create a very similar theory to K-theory for spaces equipped with an action of a topological group.

Definition 2.16. Let G be a topological group and X a left G-space. A G-vector bundle over X consists of a G-space E and a G-map $p: E \rightarrow X$ such that $p: E \rightarrow X$ is a complex vector bundle and for all $g \in G$ and $x \in X$ we have that the map $g: E_{x} \rightarrow E_{g x}$ is a vector space isomomorphism. If G acts trivially on X then a G-vector bundle can be thought of as a family of representations E_{x} of G that are parametrized by the points $x \in X$ and vary continuously with x.

Definition 2.17. A section of a G-vector bundle $p: E \rightarrow X$ is a map $s: X \rightarrow E$ such that $p \circ s=\mathrm{id}$. We can form a vector space denoted ΓE of all the sections of the bundle $p: E \rightarrow X$.

If a section is additionally a G-map we call it equivariant. It can be seen that we can form a vector subspace $\Gamma^{G} E \subseteq \Gamma E$ of all the equivariant sections of a given bundle. We also have that if E and F are two G-vector bundles over X then we can also form new G-vector bundles such as $E \oplus F$, $E \otimes F$ and $\operatorname{Hom}(E, F)=E^{*} \otimes F$.

Example 2.18. If $p: E \rightarrow X$ is a vector bundle, then the tensor product of k copies of $E, E \otimes \cdots \otimes E$, is naturally a S_{k}-vector bundle over X where S_{k} is the symmetric group that permutes the factors of the product and S_{k} acts trivially on X.

Definition 2.19. A G-vector bundle homomorphism is a G-map $f: E \rightarrow F$ that induces a vector space homomorphism $f_{x}: E_{x} \rightarrow F_{x}$ for all $x \in X$.

These homomorphisms form a vector space isomorphic to $\Gamma^{G} \operatorname{Hom}(E, F)$, this can be seen with detail in [8]. Note that if $\varphi: Y \rightarrow X$ is a G-space G-map and E is a vector bundle over X, then we can form a G-vector bundle $\varphi^{*} E$ over Y such that $\left(\varphi^{*} E\right)_{y}=E_{\varphi(y)}$. This G-vector bundle is also known as the pullback. Even more, if Y is an H-space, X is a G-space, $\alpha: H \rightarrow G$ is an homomorphism and $\varphi: Y \rightarrow X$ is such that $\varphi(h y)=\alpha(h) y$, then $\varphi^{*} E$ is an H-vector bundle over Y. Particularly, if $Y \subseteq X$ and \imath is the inclusion, we will denote $\imath^{*} E$ as $\left.E\right|_{Y}$.

Let E be a G-vector bundle over a compact G-space X. We will give ΓE the compact open topology. Then G acts continuously over ΓE in the following way. For a section $s: X \rightarrow E$ in ΓE we
can define $g s: X \rightarrow E$ by $(g s)(x)=g s\left(g^{-1} x\right)$ for all $g \in G$ and $x \in X$ and this action is clearly continuous. It can also be seen that ΓE is Hausdorff, locally convex and complete.

Proposition 2.20. Let E be a G-vector bundle in a compact G-space X and A a closed G-subspace of X. Then an equivariant section of $\left.E\right|_{A}$ can be extended to an equivariant section of E.

Proof. Let $p: E \rightarrow X$ be a G-vector bundle and $\bar{s}:\left.A \rightarrow E\right|_{A}$ an equivariant section of $\left.E\right|_{A}$. Since the map $\imath^{*}(p):\left.E\right|_{A} \rightarrow A$ is locally trivial, we know that there is an open set $U_{x} \subseteq A$ containing x, such that for each $x \in A$ the map $\psi_{x}: U_{x} \times \mathbb{C}^{k} \rightarrow\left(\imath^{*}(p)\right)^{-1}\left(U_{x}\right)$ is an isomorphism. Then we have that

$$
\left.\bar{s}\right|_{U_{x}}: U_{x} \rightarrow\left(\imath^{*}(p)\right)^{-1}\left(U_{x}\right) \cong U_{x} \times \mathbb{C}^{k}
$$

By Tietze's extension theorem, we have that for all $x \in X$ there is an open set U_{x} containing x and $t_{x} \in \Gamma\left(\left.E\right|_{U_{x}}\right)$ such that t_{x} and \bar{s} coincide in $U \cap A$ and this cover is finite since X is compact. Let us denote the open cover $\left\{U_{x_{i}}\right\}_{i=1}^{m}$ and let $\left\{\phi_{x_{i}}\right\}_{i=1}^{m}$ be a partition of unity associated to the open cover. If we define

$$
s_{x}(x)= \begin{cases}\phi_{x}(x) t_{x}(x) & x \in U_{x} \\ 0 & x \notin U_{x}\end{cases}
$$

then $s=\sum_{i=1}^{m} s_{x_{i}}$ is an equivariant section over E.
Proposition 2.21. Let E be a G-vector bundle over a compact G-space X and $A \subseteq X$ a closed G-subspace. If F is a principal G-bundle over X and $f: E_{A} \rightarrow F_{A}$ is an isomorphism, then there is a G-neighborhood U of A in X and an isomorphism $f: E_{U} \rightarrow F_{U}$ that extends to f.

Proof. Note that we can see f as an equivariant section of $\left.\operatorname{Hom}(E, F)\right|_{A}$. By the previous proposition we can extend f to an equivariant section \hat{f} of $\operatorname{Hom}(E, F)$.

Let U be the subset of X consisting of all the points $x \in X$ such that $\hat{f}(x)$ is an isomorphism. Then we can see that U is a G-neighborhood of A in X and clearly $\hat{f}(U)$ gives is the wanted isomorphism.

Proposition 2.22. If $\varphi_{0}, \varphi_{1}: Y \rightarrow X$ are G-homotopic G-maps, Y is compact and E is a G-vector bundle over X then $\varphi_{0}^{*} E \cong \varphi_{1}^{*} E$.

The proof of this proposition can be found in [3, Proposition 1.3]. With the previous information we can then define the equivariant K-theory of a compact space X.

Definition 2.23. The equivariant K-theory of X, denoted $K_{G}(X)$, is the Groethendieck group of the set of isomorphism classes of G-vector bundles over X. The tensor product of G-vector bundles induces a commutative ring structure on $K_{G}(X)$.

Let $\varphi: Y \rightarrow X$ be a G-map of compact G-spaces. We know that for every G-vector bundle E we can construct a G-vector bundle $\varphi^{*} E$ over Y. In this manner we have a induced ring homomorphism $\varphi^{*}: K_{G}(X) \rightarrow K_{G}(Y)$ that assigns E the bundle $\varphi^{*} E$. Therefore we can think of K_{G} as a contravariant functor of compact G-spaces to commutative rings.

The homomorphisms $\alpha: H \rightarrow G$ induce a "restriction" homomorphism $K_{G}(X) \rightarrow K_{H}(X)$ and if $\varphi: Y \rightarrow X$ is a map from a H-space to a G-space compatible with α, meaning that $\varphi(h y)=\alpha(h) y$ for all $n \in H$ and $a \in Y$, then we get the induced map $\varphi^{*}: K_{G}(X) \rightarrow K_{H}(Y)$.

Example 2.24. Here are some interesting examples of equivariant K-theory.

1. If $G=1$ then we have that $K_{G}(X)=K(X)$.
2. Let $X=*$. Then one can see that $K_{G}(X) \cong R(G)$. In general, we can think of $K_{G}(X)$ as an algebra over $R(G)$ since there always exists a natural map $X \rightarrow *$.
3. Let us consider the co-sets $G / H=\{g H: g \in G\}$. We can determine all the G-vector bundles over G / H when H is a closed subgroup of G. There is an equivalence between the G-vector bundles over G / H and the H-modules. Then $K_{G}(G / H) \cong R(H)$.
4. Let X be a compact H-space where H is a closed subgroup of G. We can then form a new G-space $G \times_{H} X$ where G acts by $g\left(g^{\prime}, x\right)=\left(g g^{\prime}, x\right)$ for $g, g^{\prime} \in G$ and $x \in X$. Then one can see that $K_{G}\left(G \times_{H} X\right) \cong K_{H}(X)$.

Proposition 2.25. If a Lie group G acts freely over X then $\mathrm{pr}^{*}: K(X / G) \rightarrow K_{G}(X)$ induced by $\mathrm{pr}: X \rightarrow X / G$ is an isomorphism. More generally, if N is a normal subgroup of G that acts freely over X such that G / N is a Lie group. Then the induced map $\mathrm{pr}^{*}: K_{G / N}(X / N) \rightarrow K_{G}(X)$ is an isomorphism.

Proof. First, note that the map pr: $X \rightarrow X / G$ induces a map pr*: $K(X / G) \rightarrow K_{G}(X)$. This is given from the fact that if we have a vector bundle $p: E \rightarrow X / G$ then the pullback $\operatorname{pr}^{*}(E) \subseteq X \times E$ can be thought of as a G-bundle where G acts only on the first component of $X \times E$.

Let us see that it is an isomorphism. Suppose $\bar{E}, \overline{E^{\prime}} \in K(X / G)$ are such that $\overline{\mathrm{pr}^{*} E}=\overline{\mathrm{pr}^{*} E^{\prime}} \in K_{G}(X)$.

Then we have a G-vector bundle isomorphism between them. In particular, since they are vector bundles, then $\bar{E}=\overline{E^{\prime}}$.

Now, let E be a G-vector bundle over X. We can construct the following diagram

where $p^{\prime}: E / G \rightarrow X / G$ is defined by $p^{\prime}(\bar{e})=\overline{p(e)}$. We can see that this function is well defined and the diagram is commutative. Even more, this defines a vector bundle because E / G is locally trivial as long as X is a compact Lie group. This concludes that pr^{*} is an isomorphism.

Suppose now that N is a normal subgroup of G such that G / N is a Lie group. We can consider the projection pr: $X \rightarrow X / N$ that induces a map pr*: $K_{G / N}(X / N) \rightarrow K_{G}(X)$. We want to construct an inverse map to prove that it is an isomorphism.

Let E be a G-vector bundle over X. We can construct a G / N-vector bundle from E / N like this

This diagram is also commutative and gives a locally trivial G-vector bundle because it is also G-equivariant. Even more, it is a G / N-vector bundle because G / N acts over E / G by $(g N) e=g e$ and over X / N by $(g N) x=g x$. And if $g \notin N$ then

$$
p^{\prime}((g N) e)=p^{\prime}(g e)=g p^{\prime}(e)
$$

It is easy to see that this is an inverse, then $\mathrm{pr}^{*}: K_{G / N}(X / N) \rightarrow K_{G}(X)$ is an isomorphism.
Proposition 2.26. If a Lie group G acts trivially over a G-space X then the natural map

$$
\mu: R(G) \otimes K(X) \rightarrow K_{G}(X)
$$

is a ring isomorphism.

Proof. We know by Theorem 1.42 that if W is a representation of G then we have an isomorphism

$$
\bigoplus_{[\pi] \in \hat{G}} \operatorname{Hom}_{G}\left(E_{\pi}, E\right) \otimes E_{\pi} \rightarrow W
$$

The map μ is given by $\mu(\bar{v} \otimes \bar{E})=\overline{v \times X} \otimes \bar{E} \in K_{G}(X)$ for $\bar{v} \in R(G)$ and $\bar{E} \in K(X)$. This is because we have the two homomorphisms $K(X) \rightarrow K_{G}(X)$ where we think that G acts trivially and $R(G) \rightarrow K_{G}(X)$. We want to construct an inverse of this map.

Let $p: E \rightarrow X$ be a G-vector bundle. Since X is a trivial G-space, we can think of the fibers of E a representations of G. Let V_{ρ} be an irreducible representation of G. We can construct the G-vector bundle $V_{\rho} \times X$ over X. Since $\operatorname{Hom}_{G}\left(V_{\rho} \times X, E\right)$ is a G-vector bundle whose fibers are $\operatorname{Hom}_{G}\left(V_{\rho}, E_{x}\right)$ and they are vector spaces with dimension equal to the number of times the representation V_{ρ} is in E_{x}, we obtain that $V_{\rho} \times X \otimes \operatorname{Hom}_{G}\left(V_{\rho}, E\right)$ is a G-vector bundle. By Theorem 1.42 we have the isomorphism

$$
\alpha: E \rightarrow \bigoplus_{\rho \in \hat{G}} \operatorname{Hom}_{G}\left(V_{\rho} \times X, E\right) \otimes\left(V_{\rho} \times X\right)
$$

We also have that $\bigoplus_{\rho \in \hat{G}}\left(V_{\rho} \times X\right) \cong R(G)$ and $\bigoplus_{\rho \in \hat{G}} \operatorname{Hom}_{G}\left(V_{\rho} \times X, E\right) \cong K(X)$. Then, for all $e \in E$ we have that $\alpha(e) \in R(G) \otimes K(X)$ and this gives us an inverse for μ.

Example 2.27. We know that if E is a vector bundle over X we can construct a S_{k}-vector bundle $E^{\otimes k}=E \otimes \cdots \otimes E \rightarrow X$ thinking of X as a trivial S_{k}-space and S_{k} acts over $E^{\otimes K}$ permuting the coordinates. Then the map $E \rightarrow E^{\otimes k}$ induces a natural transformation $K(X) \rightarrow K_{S_{k}}(X)$.

Let us recall the following result.
Theorem 2.28 (Peter-Weyl). Let Γ be a topological locally convex Hausdorff complete vector space. If G acts continuously over Γ and Γ_{α}, the image of Γ under the cannonical injection

$$
\bigoplus_{[\mu \in \hat{G}]}\left(M \otimes \operatorname{Hom}_{G}(\mu, \Gamma) \rightarrow \Gamma,\right.
$$

is the union of the invariant finite dimensional subspaces of Γ. Then Γ_{α} is dense in Γ.
This result can be found in [8, Theorem 2.5]. With the previous theorem one can see the following proposition.

Proposition 2.29. Let E be a G-vector bundle over X. Then there is a G-module M and a G-vector bundle E^{\perp} such that $E \oplus E^{\perp} \cong M \times X$.

Proof. By using Peter-Weyl's Theorem 2.28, it is enough to find the G-module M. This is because we can embbed E in M and with that, we can choose a Hermitian inner product in M such that E^{\perp} is the orthogonal complement.

Let $\Gamma=\Gamma E$ be the Banach section space of E. For each $x \in X$ we can choose a finite number of sections of E, namely σ_{x}, such that $\{s(x)\}_{s \in \sigma_{x}}$ generates E_{x}.

Since we know that Γ_{α} is dense in Γ and the evaluating map $\Gamma \rightarrow E_{x}$, defined by mapping s to $s(x)$, is continuous, we can suppose that $\sigma_{x} \subseteq \Gamma_{\alpha}$. The set $\{s(y)\}_{s \in \sigma_{x}}$ then generates E_{y} for all $y \in U_{x}$ some neighborhood of x.

Suppose $U_{x_{1}}, \ldots, U_{x_{n}}$ covers X. We define $\sigma=\bigcup_{i=1}^{n} \sigma_{x_{i}}$ and M the finite dimensional G-subspace of Γ generated by σ. Then the evaluating map $\alpha: X \times M \rightarrow E$ defined by $\alpha(x, s)=s(x)$ is sujective and we choose $E^{\perp}=\operatorname{ker} \alpha$.

Definition 2.30. Two G-vector bundles E and E^{\prime} are said to be equivalent if there exist two G modules M and M^{\prime} such that

$$
E \oplus(M \times X) \cong E^{\prime} \oplus\left(M^{\prime} \times X\right)
$$

The previous proposition implies that with this equivalence relation, we can form an abelian group unter the direct sum. We will call this group the reduced equivariant K-theory of X denoted by $\widetilde{K}_{G}(X)$ and can be seen as a quotient group of $K_{G}(X)$.

2.2.1. Generalized equivariant cohomology properties

Just as for cohomology theories, we have certain axioms that define a generalized equivariant cohomology theory. We say that two functions f and g are G-homotopic if the homotopy between them is a G-map.

A generalized equivariant cohomology theory, very similarly to what we had in the non-equivariant case, can be seen as a collection of functors $\left\{h^{n}: G-\mathbf{C W P a i r} \rightarrow \mathbf{A b}\right\}_{n \in \mathbb{Z}}$ together with natural transformations $\Delta: h_{G}^{n}(A):=h_{G}^{n}(A, \emptyset) \rightarrow h_{G}^{n+1}(X, A)$ called the connection maps that satisfy the following axioms.

1. Homotopy axiom: If $f, g:(X, A) \rightarrow(Y, B)$ are morphisms and f is G-homotopic to g, then $f^{*}=g^{*}: h_{G}^{n}(Y, B) \rightarrow h_{G}^{n}(X, A)$.
2. Exactness axiom: If we have a pair $(X, A) \in G-\mathbf{C W P a i r}$, via the inclusions $\imath: A \rightarrow X$ and $j:(X, \emptyset) \rightarrow(X, A)$, we have the long exact sequence

$$
\cdots \longrightarrow h_{G}^{n}(X, A) \xrightarrow{j^{*}} h_{G}^{n}(X) \xrightarrow{i^{*}} h_{G}^{n}(A) \xrightarrow{\Delta} h_{G}^{n+1}(X, A) \xrightarrow{j^{*}} \cdots .
$$

3. Addition axiom: If $X=\vee_{\alpha \in \Lambda} X_{\alpha}$ then the inclusions $t_{\alpha}: X_{\alpha} \rightarrow X$ for all $\alpha \in \Lambda$ induce a group isomorphism $h_{G}^{n}(X) \cong \Pi_{\alpha \in \Lambda} h_{G}^{n}\left(X_{\alpha}\right)$.

We then define $K_{G}^{n}(X)=K_{G}\left(\Sigma^{n} X_{+}\right)$and with this it can be seen that the equivariant K-theory of a space is a generalized equivariant cohomology theory.

In general, if H is a generalized cohomology theory, for example singular cohomology with coefficients in \mathbb{R}, one can define a generalized G-equivariant cohomology theory from it by defining $H_{G}^{n}(X)=H^{n}\left(X_{G}\right)$. Nevertheless, in our specific case of K-theory, that construction will not correspond to the equivariant K-theory of a space. We will see more on that in the next chapter.

Lastly, just as it happened in the case of K-theory, we can represent homotopically the equivariant K-theory in the following way

$$
K_{G}^{0}(X) \cong\left[X, \mathbb{Z} \times B_{G} U\right]_{G}
$$

In this case, now we have that $B_{G} U$ is the G-equivariant version of $B U$ and $[-,-]_{G}$ will correspond to G-equivariant homotopy classes of maps. Hence giving us a way to define equivariant K-theory for non-compact spaces.

3. Atiyah-Segal's completion theorem

We previously mentioned that an equivariant cohomology theory could be defined from a cohomology theory using Borel's construction. On the other hand, we have equivariant K-theory which is constructed out of equivariant bundles. Those two constructions do not coincide in the case of K-theory. Nevertheless, Atiyah and Segal provided a way to relate these two constructions. They stated that the completion with respect to the augmentation ideal of the equivariant K-theory of a topological G-space X and the equivariant K-theory of the space $X \times E G$ are isomorphic. This theorem then gives us an alternative way to find the K-theory of a given topological G-space. This will be particularly useful in the case where $X=*$ and shall be discussed later in this chapter.

3.1. The construction

We know that if X is a compact G-space we have Borel's construction X_{G} which is not necessarily compact. In this chapter, however, we will assume that X_{G} is compact. Note that we can think of X_{G} as a space fibered over $B G$ with fiber X.

Let $p: F \rightarrow X$ be a G-vector bundle over X. Then we can construct a vector bundle over X_{G} with total space $F_{G}=(F \times E G) / G$. This tells us that the map $F \rightarrow(F \times E G) / G$, has the induced homomorphism $\alpha: K_{G}(X) \rightarrow K\left(X_{G}\right)$ defined by $\alpha([F])=[(F \times E G) / G]$ for all $[F] \in K_{G}(X)$. Let us verify that this induced homomorphism is well defined. Suppose $[E]=[F] \in K_{G}(X)$, then there is a bijective G-map $\phi: F \rightarrow E$ such that $\phi_{x}: F_{x} \rightarrow E_{x}$ is a linear isomorphism for all $x \in X$. We can then define the function $\psi: F_{G} \rightarrow E_{G}$ by $\psi\left([(f, e)]=[(\phi(f), e)]\right.$ for all $[(f, e)] \in F_{G}$. This function is continuous and bijective by definition. It is also well defined since for $[(f, e)]=\left[\left(f^{\prime}, e^{\prime}\right)\right]$ there is a $g \in G$ such that

$$
\psi\left(\left[\left(f^{\prime}, e^{\prime}\right)\right]\right)=\left[\left(\phi\left(f^{\prime}\right), e^{\prime}\right)\right]=\left[\left(\phi(f) g, g^{-1} e\right)\right]=[(\phi(f), e)]=\psi([(f, e)])
$$

Lastly, it can be seen that ψ_{x} is linear by noting that $\psi_{x}=\operatorname{pr}\left(\phi_{x} \times \mathrm{id}\right)$.

Now, we would like to give $K_{G}(X)$ and $K\left(X_{G}\right)$ appropriate topologies such that the induced homomorphism α is continuous, $K\left(X_{G}\right)$ is complete and α induces a homeomorphism from the completion $K_{G}(X)_{I_{G}}$ to $K\left(X_{G}\right)$. We know that G acts freely on $X \times E G$, hence, by Proposition 2.25, we have that

$$
K_{G}(X \times E G) \cong K((X \times E G) / G)=K\left(X_{G}\right)
$$

Then α becomes the ring homomorphism $\alpha: K_{G}(X) \rightarrow K_{G}(X \times E G)$ induced by the projection $X \times E G \rightarrow X$.

Let us denote $B G^{n}=E G^{n} / G$ and let $x_{0} \in X$ be a fixed point. We know that the inclusion $t: x_{0} \rightarrow X$ induces a map in K-theory $\iota^{*}: K(X) \rightarrow K\left(x_{0}\right) \cong \mathbb{Z}$. The map ι^{*} is called the augmentation map in K-theory. We also know, by Corollary 2.6, that $\tilde{K}(X)=\operatorname{ker} \imath^{*}$ so if we set $X=B G^{n}$ we have that $\tilde{K}\left(B G^{n}\right)=\operatorname{ker}\left(\imath^{*}: K\left(B G^{n}\right) \rightarrow \mathbb{Z}\right)$.

On the other hand, we can consider the map $E G^{n} \rightarrow *$. With this map, we obtain the equivariant K-theory induced map

$$
\alpha_{n}: K_{G}(*) \cong R(G) \rightarrow K_{G}\left(E G^{n}\right) .
$$

Since G acts freely on $E G^{n}$ we once more have, by Proposition 2.25, that

$$
K_{G}\left(E G^{n}\right) \cong K\left(E G^{n} / G\right)=K\left(B G^{n}\right)
$$

Let us consider the composition $\imath^{*} \circ \alpha_{n}: R(G) \rightarrow \mathbb{Z}$. From the definition of the composition $\imath^{*} \circ$ α_{n}, it can be verified that this map corresponds to the augmentation map $\varepsilon: R(G) \rightarrow \mathbb{Z}$ for the representation ring defined by $\varepsilon([V]-[W])=\operatorname{dim} V-\operatorname{dim} W$ for all $[V],[W] \in R(G)$. Let us denote $I_{G}=\operatorname{ker}(\varepsilon: R(G) \rightarrow \mathbb{Z})$. Then we know that α_{n} factors through $R(G) / I_{G}^{n}$.

Note that $B G^{n}=\bigcup_{i=1}^{n} U_{i}$ where each U_{i} is the set where the i-th join coordinate does not vanish. This shows then that the product of n elements in $\widetilde{K}\left(B G^{n}\right)$ is zero because we have the following commutative diagram

This tells us that $I_{G}^{n} \subseteq \operatorname{ker} \alpha_{n}$ so the map α_{n} factors through $R(G) / I_{G}^{n}$. We denote the factored map $\tilde{\alpha_{n}}: R(G) / I_{G}^{n} \rightarrow K_{G}\left(E G^{n}\right)$. Since we also have that for any G-space $X, K_{G}(X)$ is a $R(G)$ module, we can consider the set $I_{G}^{n} K_{G}(X)$.

On the other hand, we have the projection map pr: $X \times E G^{n} \rightarrow *$. This map is such that the following diagram commutes

We can then consider the induced map $\mathrm{pr}^{*}: K_{G}(*) \rightarrow K_{G}\left(X \times E G^{n}\right)$. Note that this map is such that the following diagram commutes

Since pr^{*} is natural, it factors, which gives us the map

$$
\beta_{n}: \frac{K_{G}(X)}{I_{G}^{n} K_{G}(X)} \longrightarrow K_{G}\left(X \times E G^{n}\right)
$$

If $[F] \in K_{G}(X)$ then we will denote by $\overline{[F]}$ an element of $\frac{K_{G}(X)}{I_{G}^{n} K_{G}(X)}$. The main result of the theorem we will prove in the next section will then be that the homomorphisms β_{n} induce an inverse limit isomorphism $\beta: K_{G}(X)_{I_{G}} \rightarrow \underset{\rightleftarrows}{\lim } K_{G}\left(X \times E G^{n}\right)$.

Before we move on to the statement of the theorem and its proof, we have two special cases worth mentioning.

Firstly, suppose G acts freely over X. Then X_{G} is fibered over X / G. In this case, the theorem is reduced to proving that

$$
K_{G}(X) \cong K(X / G)
$$

Secondly, if G acts trivially over X then

$$
X_{G}=(X \times E G) / G=X \times E G / G=X \times B G
$$

Since we also have that

$$
K_{G}(X) \cong K(X) \otimes R(G)
$$

then the theorem is a composition of the Küneth formula $K(X \times B G) \cong K(X) \otimes K(B G)$ and the isomorphism $K(B G) \cong R(G)_{I_{G}}$.

3.2. The theorem

The main result of this thesis is then the following theorem.
Theorem 3.1 (Atiyah-Segal's completion theorem). Let X be a compact G-space such that $K_{G}(X)$ is finite as a module over $R(G)$. Then the homomorphisms

$$
\alpha_{n}: \frac{K_{G}(X)}{I_{G}^{n} K_{G}(X)} \rightarrow K_{G}\left(X \times E G^{n}\right)
$$

induce an inverse limit isomorphism.
To prove this theorem, we will first prove a result that will help us for the case when the group is $T=\mathbf{S}^{1}$, then with T^{m} and lastly with the unitary group $U(m)$. Finally, we will finish the proof with a compact Lie group G in general, by embedding it in a sufficiently big unitary group and that will finish the proof.

Suppose E is a G-vector bundle over a compact G-space X. Let us denote by φ the metric of E. This means that we have a metric on each fiber E_{x} that varies continuously with $x \in X$. We can consider the unit disk bundle $D(E)$, which is the set of points $e \in E$ such that $\varphi(e, e) \leqslant 1$ in each fiber. We can also consider the unit sphere bundle $S(E)$, which is the set of points $e \in E$ such that $\varphi(e, e)=1$ in each fiber. Then we have the following definition.

Definition 3.2. Let E be a G-vector bundle over a compact G-space X. Then the Thom space $T(E)$ is the quotient space $D(E) / S(E)$.

Note that, since X is a compact space, this definition can also be regarded as the one-point compactification of E. Using this space, let us recall the following technical result.

Theorem 3.3. Thom's homomorphism

$$
\varphi: K_{G}^{*}(X) \rightarrow K_{G}^{*}(T(E))
$$

is an isomorphism for all G-vector bundles E in a compact G-space X.
The proof of this result can be found in [8, Proposition 3.3]. Now, let us see the following lemma.

Lemma 3.4. Let G be a compact Lie group and X a compact G-space such that $K_{G}(X)$ is finite as a module over $R(G)$. Denote $T=\mathbf{S}^{1}$ and let $\theta: G \rightarrow T$ be a homomorphism so that G acts over $E T$. Then the homomorphisms

$$
\delta_{n}: \frac{K_{G}(X)}{I_{T}^{n} K_{G}(X)} \rightarrow K_{G}\left(X \times E T^{n}\right)
$$

induced by the projections $X \times E_{T}^{n} \rightarrow X$, induce an inverse limit isomorphism.
Proof. Consider the projection $X \times E T^{n} \rightarrow X$ which induces the map pr*: $K_{G}(X) \rightarrow K_{G}\left(X \times E T^{n}\right)$.
Note that through the map $\theta: G \rightarrow T$ we can see $K_{G}(X)$ as a $R(T)$-module. This is because if we have a representation $\rho: T \rightarrow \mathrm{GL}(V)$ of T, we can construct a representation of G by doing $\rho \circ \theta$. This shows that we can consider $I_{T}^{n} K_{G}(X)$. Even more, $I_{T}^{n} K_{G}(X) \subseteq \operatorname{ker}\left(\mathrm{pr}^{*}\right)$ and the map $\delta_{n}: \frac{K_{G}(X)}{I_{T}^{n} K_{G}(X)} \rightarrow K_{G}\left(X \times E T^{n}\right)$ is well defined since the following diagram commutes.

Let us form the inverse system $A_{n}=\left\{\frac{K_{G}(X)}{I_{T}^{n} K_{G}(X)}\right\}_{n \in \mathbb{N}}$ with structural maps $a_{n}: \frac{K_{G}(X)}{I_{T}^{K} K_{G}(X)} \rightarrow \frac{K_{G}(X)}{I_{T}^{n-1} K_{G}(X)}$ defined by $a_{n}(\overline{[E]})=\overline{[E]}$. Let us also form the inverse system $B_{n}=\left\{K_{G}\left(X \times E T^{n}\right)\right\}_{n \in \mathbb{N}}$ with structural maps $b_{n}: K_{G}\left(X \times E T^{n}\right) \rightarrow K_{G}\left(X \times E T^{n-1}\right)$. These maps are induced by the inclusion maps $\widetilde{b_{n}}: X \times E T^{n-1} \rightarrow X \times E T^{n}$ defined by $\widetilde{b_{n}}\left(\left(x,\left(y_{0} t_{0}, \ldots, y_{n-2} t_{n-2}\right)\right)\right)=\left(x,\left(y_{0} t_{0}, \ldots, y_{n-2} t_{n-2}, 0\right)\right)$ for all $\left(x,\left(y_{0} t_{0}, \ldots, y_{n-2} t_{n-2}\right)\right) \in X \times E T^{n-1}$.

We will now see that $\delta_{n}: A_{n} \rightarrow B_{n}$ satisfies the hypotheses of Lemma A.5. This means that we will see that the following diagram commutes

Let $\overline{[F]} \in A_{n}=\frac{K_{G}(X)}{I_{T} K_{G}(X)}$. We know that $\delta_{n}(\overline{[F]})=\left[F \times E T^{n}\right]$. Then $b_{n}\left(\delta_{n}(\overline{[F]})\right)=\left[\tilde{b}_{n}{ }^{*}\left(F \times E T^{n}\right)\right]$, where ${\widetilde{b_{n}}}^{*}\left(F \times E T^{n}\right)$ is the pullback determined by the following commutative diagram

On the other hand, note that $\delta_{n-1}\left(a_{n}(\overline{[F]})\right)=\delta_{n-1}(\overline{[F]})=\left[F \times E T^{n-1}\right]$. It can be seen, from the definition of the pullback, that $\left[F \times E T^{n-1}\right]=\left[\widetilde{b_{n}}{ }^{*}\left(F \times E T^{n}\right)\right]$. Hence we have that $\delta_{n}: A_{n} \rightarrow B_{n}$ is an inverse system homomorphism.

We now have to construct the map $g_{n}: B_{k(n)+n} \rightarrow A_{n}$ as in the hypotheses for Lemma A.5. For this, note that $E T^{n}=T * \cdots * T$ can be identified with $\mathbf{S}^{2 n-1}$, which is the unit sphere in \mathbb{C}^{n}. Since $\mathbf{D}^{2 n}$ is contractible we have that $X \times \mathbf{D}^{2 n}$ is homotopic to X, hence $K_{G}\left(X \times \mathbf{D}^{2 n}\right) \cong K_{G}(X)$. On the other hand, we can consider Thom's associated space for $E=X \times \mathbb{C}^{n}$ given by

$$
T(E)=\left(X \times \mathbf{D}^{n}\right) /\left(X \times \mathbf{S}^{n-1}\right) \cong\left(X \times \mathbb{C}^{n}\right)^{+} \cong\left(X \times \mathbf{S}^{n}\right) /(X \times\{\infty\})=\Sigma^{n}\left(X_{+}\right)
$$

By Thom's isomorphism from Theorem 3.3 we have that $K_{G}\left(X \times \mathbf{D}^{2 n}, X \times \mathbf{S}^{2 n-1}\right) \cong K_{G}(X)$. Then, if we consider the following long exact sequence

$$
\cdots \longrightarrow K_{G}\left(X \times \mathbf{D}^{2 n}, X \times \mathbf{S}^{2 n-1}\right) \longrightarrow K_{G}\left(X \times \mathbf{D}^{2 n}\right) \longrightarrow K_{G}\left(X \times \mathbf{S}^{2 n-1}\right) \longrightarrow,
$$

the map $K_{G}\left(X \times \mathbf{D}^{2 n}, X \times \mathbf{S}^{2 n-1}\right) \rightarrow K_{G}\left(X \times \mathbf{D}^{2 n}\right)$ can be identified with the map $K_{G}(X) \rightarrow K_{G}(X)$ given by multiplication by $\xi^{n}=(1-\rho)^{n}$ where ρ is the standard one dimensional representation of T. Since ξ generates I_{T}^{n} then ξ^{n} generates I_{T}^{n} and we can construct the following short exact sequence

$$
0 \longrightarrow K_{G}(X) /\left(\xi^{n} K_{G}(X)\right) \longrightarrow K_{G}\left(X \times \mathbf{S}^{2 n-1}\right) \longrightarrow K_{n} \longrightarrow 0
$$

where we denote $K_{n}=\left\{x \in K_{G}(X): \xi^{n} x=0\right\}$. Since $K_{G}(X)$ is a finitely generated ring and $R(G)$ is Noetherian, there is a k such that $K_{k}=K_{k+1}=K_{k+2}=\cdots$. Therefore $\xi^{k} K_{n+k}=0$ for all $n \in \mathbb{N}$ and we have the following commutative diagram

that is also exact in the rows. Then by Lemma A.5 we have the result.

Now, for T^{m} we will do some inductive reasoning. Let G be a compact Lie group and X a compact G-space such that $K_{G}(X)^{*}$ is finite over $R(G)$.

Lemma 3.5. Let $\theta: G \rightarrow T^{m}$ be a homomorphism so that G acts over $E T^{m}$. Then the homomorphisms

$$
\gamma_{n}: \frac{K_{G}(X)}{I_{T^{m}}^{n} K_{G}(X)} \rightarrow K_{G}\left(X \times\left(E T^{m}\right)^{n}\right)
$$

induce an inverse limit isomorphism.
Proof. We will prove this result using induction. First, note that when $m=1$ we have the result by Lemma 3.4

Suppose now that the result is true for T^{k} with $k<m$. Let us write $T^{m}=T \times H$ where $H=T^{m-1}$. If we consider the projections $\mathrm{pr}_{1}: T \times H \rightarrow H$ and $\mathrm{pr}_{2}: T \times H \rightarrow H$, then with the compositions $\mathrm{pr}_{1} \circ \rho$ and $\mathrm{pr}_{2} \circ \rho$ we can see G acting over both $E T$ and $E H$. Note that $E T \times E H$ is also a contractible space where T^{m} acts freely, so we can consider $E T \times E H$ for the total space $E T^{m}$. We also have that $E T \times E H$ has a natural filtration of the form $\left\{E T^{n} \times E H^{l}\right\}_{n, l \in \mathbb{N}}$. Hence we can consider the map that induces the same inverse limit as γ_{n} as follows

$$
\gamma_{n, l}: \frac{K_{G}(X)}{I_{T^{m}}^{n} K_{G}(X)} \rightarrow K_{G}\left(X \times E T^{n} \times E H^{l}\right)
$$

On the other hand, note that both $R(T)$ and $R(H)$ can be included in $R\left(T^{m}\right)$ in the following way. If $\rho: T \rightarrow \mathrm{GL}(V)$ is a representation of T, then we have that $\rho \circ \mathrm{pr}_{1}: T \times H \rightarrow \mathrm{GL}(V)$ is a representation of $T \times H$. Similarly for a representation of H using the map pr_{2}. Then we have that $I_{T}, I_{H} \subseteq R\left(T^{m}\right)$.

Now, let a and b be the ideals generated by I_{T} and I_{H} in $R\left(T^{m}\right)$ respectively. Let $\left[V_{1}\right]-\left[V_{2}\right] \in I_{T^{m}}$ with maps $\rho_{1}: T \times H \rightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: T \times H \rightarrow \mathrm{GL}\left(V_{2}\right)$ for the class representatives. Then we necessarily have that $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$. Let $\imath_{1}: T \rightarrow T \times H$ and $\imath_{2}: H \rightarrow T \times H$ be the inclusions in T^{m} of T and H respectively. Then $\rho_{1}=\rho_{1} \circ \boldsymbol{l}_{1}+\rho_{1} \circ \boldsymbol{l}_{2}$ and $\rho_{2}=\rho_{2} \circ \boldsymbol{l}_{1}+\rho_{2} \circ \boldsymbol{l}_{2}$ from the definition of a homomorphism. Also, note that $\overline{\rho_{1} \circ l_{1}}+\overline{\rho_{2} \circ l_{1}} \in a$ and $\overline{\rho_{1} \circ l_{2}}+\overline{\rho_{2} \circ l_{2}} \in b$, therefore we have that $\left[V_{1}\right]-\left[V_{2}\right] \in a+b$ thus $I_{T^{m}} \subseteq a+b$. On the other hand, since $a, b \subseteq I_{T^{m}}$ we have that $a+b \subseteq I_{T^{m}}$. This then concludes that $I_{T^{m}}=a+b$.

Note that $I_{T^{m}}$ can be filtered through $\left\{I_{T^{m}}^{n}\right\}_{n \in \mathbb{N}}$ and $a+b$ through $\left\{a^{n}+b^{n}\right\}_{n \in \mathbb{N}}$. This gives both $I_{T^{m}}$ and $a+b$ an inverse system structure where the structural maps are defined by the canonical projections. On one hand, we have that $a^{n}+b^{n} \subseteq I_{T^{m}}^{n}$, so we can define the following quotient map

$$
f_{n}: \frac{K_{G}(X)}{\left(a^{n}+b^{n}\right) K_{G}(X)} \rightarrow \frac{K_{G}(X)}{I_{T^{m}}^{n} K_{G}(X)}
$$

This is then an inverse system morphism and is well defined. On the other hand, we have that $(a+b)^{2 n-1} \subseteq a^{n}+b^{n}$. Then, we can also define the following quotient map

$$
g_{n}: \frac{K_{G}(X)}{I_{T^{m}}^{2 n-1} K_{G}(X)} \rightarrow \frac{K_{G}(X)}{\left(a^{n}+b^{n}\right) K_{G}(X)}
$$

This map is well defined and is also an inverse system morphism. Since the following diagram commutes

we have that both filtrations induce isomorphic inverse limits. This means that we can use the filtration $\left\{a^{n}+b^{n}\right\}_{n \in \mathbb{N}}$ in $\gamma_{n, l}$. Even more, we can use Lemma A. 7 to prove that the filtrations given by $\left\{K_{G}(X) /\left(a^{n}+b^{n}\right) K_{G}(X)\right\}_{n \in \mathbb{N}}$ and $\left\{K_{G}(X) /\left(a^{n}+a^{l}\right) K_{G}(X)\right\}_{n, l \in \mathbb{N}}$ induce isomorphic inverse limits, therefore we will use the latter.
We then have the map $\delta_{n, l}: \frac{K_{G}(X)}{\left(a^{n}+b^{l}\right) K_{G}(X)} \rightarrow K_{G}\left(X \times E T^{n} \times E H^{l}\right)$ which induces the same inverse limit map as the map γ_{n}. Since we know that $E T^{n} \cong \mathbf{S}^{2 n-1}$ we can construct the short exact sequence

$$
0 \longrightarrow \frac{K_{G}(X)}{\xi^{n} K_{G}(X)} \longrightarrow K_{G}\left(X \times \mathbf{S}^{2 n-1}\right) \longrightarrow K_{n} \longrightarrow 0
$$

from the proof of Lemma 3.4, where $K_{n}=\left\{x \in K_{G}(X): \xi^{n} x=0\right\}$ with $\xi^{n}=(1-\rho)^{n}$ and ρ the standard one dimensional representation. Since we have that $K_{G}(X)$ is Noetherian, then both $\frac{K_{G}(X)}{\xi^{n} K_{G}(X)}$ and K_{n} are finitely generated. Even more, since the previous sequence is exact, we have that $K_{G}\left(X \times \mathbf{S}^{2 n-1}\right)=K_{G}\left(X \times E T^{n}\right)$ is finitely generated over $R(G)$.

We also know that for any R-module A we have an isomorphism $\omega_{A}: A / I A \rightarrow A \otimes_{R} R / I$, where I is an ideal of R. Since the map $\delta_{n, l}$ is induced by the projection $X \times E T^{n} \times E T^{l} \rightarrow X$, and this projection can be factored as $X \times E T^{n} \times E H^{l} \rightarrow X \times E T^{n} \rightarrow X$ we then have that the map $\delta_{n, l}$ can be factored in the following way

where δ_{n} is given by Lemma 3.4 and γ_{l} by the induction step. Therefore, since the previous diagram is commutative, we have that $\delta_{n, l}$ induces an isomorphism in the inverse limits.

By using holomorphic induction we obtain the following general result.

Theorem 3.6. Let us consider $j: T \rightarrow U$ the inclusion of the maximal torus T in the unitary group $U=U(m)$. For every compact U-space X let $j^{*}: K_{U}(X) \rightarrow K_{T}(X)$ be the induced map by j. Then there is a functorial homomorphism of $K_{U}(X)$-modules

$$
j_{*}: K_{T}(X) \rightarrow K_{U}(X)
$$

that is a left inverse of J^{*}.

The proof of this theorem can be found in [2, Proposition 4.9]. Note that if we replace X with ΣX we can extend this proposition to K^{*}.

We know that $K_{G}(X)$ is a natural direct sumand of $K_{T}(X)$. We can then construct the following diagram

$$
\begin{aligned}
& \frac{K_{G}(X)}{I_{G}^{K_{G}(X)}} \xrightarrow{\alpha_{n}} K_{G}\left(X \times E G^{n}\right) \\
& j_{*} \uparrow_{j^{*}} \quad j_{*} \uparrow j^{*} \\
& \frac{K_{T}(X)}{I_{G}^{n} K_{T}(X)} \xrightarrow{\eta_{n}} K_{T}\left(X \times E G^{n}\right) \text {. }
\end{aligned}
$$

We can also construct the following diagram

By the inductive reasoning, λ_{n} defines an isomorphism since the I_{G} and I_{T}-adic topologies coincide in any $R(T)$-module. We also have that $E G^{n}$ and $E T^{n}$ can both be seen as T-spaces and they define the same inverse limit, hence ρ_{n} defines an isomorphism. Hence, since a_{n} defines an isomorphism by Lemma 3.5, the commutative diagram gives us that η_{n} also defines an isomorphism. This tells us that there is a map γ_{n} such that the following diagram commutes

for some $k \in \mathbb{Z}$. Note that we can form the following diagram

We denote the map $\beta_{n}=j_{*} \circ \gamma_{n} \circ j^{*}: K_{G}\left(X \times E G^{n+k}\right) \rightarrow \frac{K_{G}(X)}{I_{G}^{n} K_{G}(X)}$. Given that $j^{*} \circ j_{*}=$ id then it is easy to see that α_{n} and β_{n} satifiy the conditions of Lemma A.5, therefore we have that α_{n} induces an inverse limit isomorphism.

With this in hand, now we can finally see the proof of the theorem.
Proof. Theorem 3.1. Let G be a compact Lie group and X a compact G-space. We know that we can embed G in a sufficiently large unitary group U. Then $U \times{ }_{G} X$ is a compact U-space. We then have that

$$
K_{U}\left(U \times_{G} X\right) \cong K_{G}(X),
$$

as $R(U)$ modules if and only if $K_{G}(X)$ is finite over $R(G)$ since $R(G)$ is finite over $R(U)$.
Then we have from the previous Lemma that the following function defines isomorphic inverse limits

And then the result follows.

Lastly, we want to see what is the relation between $\lim _{\curvearrowleft} K_{G}\left(X \times E G^{n}\right)$ and $K_{G}(X \times E G)$. For that, we have the following proposition.

Proposition 3.7. If the space X is the limit of an expanding sequence of compact subspaces X_{n} then there is a natural sequence

$$
0 \longrightarrow{\underset{\varliminf}{<}}^{1} K_{G}^{q-1}\left(X_{n}\right) \longrightarrow K_{G}^{q}(X) \longrightarrow \lim _{\longleftarrow} K_{G}^{q}\left(X_{n}\right) \longrightarrow 0
$$

The proof of this result can be found in [4, Proposition 4.1].
Note that in our case we have $X_{n}=X \times E G^{n}$, which is an expanding sequence of compact subspaces, and $X=X \times E G$ is its direct limit. Then by the previous proposition we have that there is a natural sequence

$$
0 \longrightarrow \lim _{\longleftarrow}^{1} K_{G}^{q-1}\left(X \times E G^{n}\right) \longrightarrow K_{G}^{q}(X \times E G) \longrightarrow \lim _{\longleftarrow} K_{G}^{q}\left(X \times E G^{n}\right) \longrightarrow 0
$$

Since the structure maps for the inverse system in Theorem 3.1

$$
a_{n}: \frac{K_{G}(X)}{I_{G}^{n} K_{G}(X)} \longrightarrow \frac{K_{G}(X)}{I_{G}^{n-1} K_{G}(X)},
$$

are surjective, by Lemma A. 6 we have that the system $K_{G}\left(X \times E G^{n}\right)$ satisfies the Mittag-Leffler condition. This then gives us that $\lim ^{1} K^{*}\left(X \times E G^{n}\right)=0$. From the natural sequence we then get the isomorphism

$$
K_{G}(X \times E G) \cong \lim _{\rightleftarrows} K_{G}\left(X \times E G^{n}\right)
$$

With this result we then have that, when G acts freely on $X, K_{G}(X)$ is complete and Hausdorff.

3.3. Examples

Now we will dedicate the remaining of this chapter to explore some applications of the previous theorem when the base space is $X=*$. We have seen that for a compact Lie group G we have the identification $K_{G}(*) \cong R(G)$. Also, note that $K_{G}(* \times E G) \cong K(E G / G) \cong K(B G)$. Therefore, Atiyah-Segal's completion theorem states that

$$
K^{*}(B G) \cong R(G) \hat{I_{G}}
$$

Example 3.8. Let us then see what happens for specific compact Lie groups G.

1. Let $G=*$. Then we have that $K_{G}^{*}(X) \cong R(G) \cong \mathbb{Z}$. We also have that the augmentation ideal $I=\{0\}$ since the augmentation map is an isomorphism. Note that when we take $E G^{n}$, in
this case we get a contractible space. It is easy to see that the limit $E G$ is also a contractible space. Then we have that $K_{G}^{*}(X \times E G)=K^{*}(X \times E G) \cong K^{*}(X)$. Therefore the theorem in this case tells us that

$$
K^{*}(X) \cong \mathbb{Z}
$$

which is a result that we already had.
2. Let $G=\mathbb{Z} / 2$. We saw before that $B G=\mathbb{R} P^{\infty}$. We also know that $R(G) \cong \mathbb{Z}[x] /\left\langle x^{2}-1\right\rangle$. Then the theorem establishes that

$$
K^{*}\left(\mathbb{R} P^{\infty}\right) \cong\left(\mathbb{Z}[x] /\left\langle x^{2}-1\right\rangle\right) \hat{I_{G}} .
$$

Note that in $R(G)$, both irreducible representations are one dimensional, hence both x and 1 are mapped by the augmentation map to 1 . It is then easy to see that $I_{G}=\langle x-1\rangle$.

To find the completion with respect to the augmentation ideal of $R(G)$, let us do a change of variables with $t=x-1$. Then we have that $R(G) \cong \frac{\mathbb{Z}[t]}{\left\langle t^{2}+2 t\right\rangle}$. Let us denote $R=\frac{\mathbb{Z}[t]}{\left\langle t^{2}+2 t\right\rangle}$. Note that R is a Noetherian ring. By example A. 13 from the appendix, we have that

$$
\hat{R_{I_{G}}} \cong \frac{R \llbracket y \rrbracket}{\langle y-t\rangle} \cong \frac{\mathbb{Z} \llbracket t \rrbracket}{\left\langle t^{2}+2 t\right\rangle} .
$$

Hence,

$$
K^{*}\left(\mathbb{R} P^{\infty}\right) \cong \frac{\mathbb{Z} \llbracket t \rrbracket}{\left\langle t^{2}+2 t\right\rangle}
$$

3. Let $G=\mathbf{S}^{1}$. Then we know that $R(G) \cong \mathbb{Z}\left[x, x^{-1}\right]$. In this case, we also have that the augmentation ideal is $I=\langle x-1\rangle$. By making the same change of variable as in the previous example we have that $R(G) \cong \mathbb{Z}\left[t,(t+1)^{-1}\right]$ and the augmentation ideal is generated by t. Then, we have that the completion is going to be given by

$$
\mathbb{Z}\left[t,(t+1)^{-1}\right] \llbracket y \rrbracket /\langle y-t\rangle .
$$

To see this completion, let us consider the map $f: \mathbb{Z} \llbracket t \rrbracket \rightarrow \mathbb{Z}\left[t,(t+1)^{-1}\right] \llbracket y \rrbracket /\langle y-t\rangle$ defined by sending t to \bar{y}. It is clear that this function is well defined. Now, let us define the function $\widetilde{g}: \mathbb{Z}\left[t,(t+1)^{-1}\right\rfloor \llbracket y \rrbracket \rightarrow \mathbb{Z} \llbracket t \rrbracket$ by sending t to $t,(t+1)^{-1}$ to $(t+1)^{-1}$ and y to t. Since $(t+1)^{-1}$ is a power series this function is well defined. Also note that this map, by definition, factors in the following way

Hence we have the well defined map $g: \mathbb{Z}\left[t,(t+1)^{-1}\right] \llbracket y \rrbracket /\langle y-t\rangle \rightarrow \mathbb{Z} \llbracket t \rrbracket$. It is easy to verify that $f \circ g=\mathrm{id}_{\mathbb{Z} \llbracket x \rrbracket}$ and $g \circ f=\mathrm{id}_{\left.\mathbb{Z}\left[t,(t+1)^{-1}\right] \llbracket y\right] /\langle y-t\rangle}$. Hence we have that

$$
R(G)_{I_{G}} \cong \mathbb{Z} \llbracket t \rrbracket .
$$

On the other hand, we have seen that $E G^{n} \cong \mathbf{S}^{2 n-1}$. Then, we have that $E G \cong \mathbf{S}^{\infty}$ thus giving us $B G=E G / G \cong \mathbf{S}^{\infty} / \mathbf{S}^{1} \cong \mathbb{C} P^{\infty}$. Therefore, Atiyah-Segal's theorem tells us that

$$
K^{*}\left(\mathbb{C} P^{\infty}\right) \cong \mathbb{Z} \llbracket t \rrbracket .
$$

A. Appendix

In this appendix, we will see some basic concepts on direct limits, inverse limits and completion. These concepts were mentioned and used in the previous chapters. More specifically, the concepts of inverse limits were used in the proof of Atiyah-Segal's theorem as an alternate way than the one proposed in [4] using pro-objects.

A.1. Direct and inverse limits

Definition A.1. Let I be an indexing set and $\left(A_{i}\right)_{i \in I}$ a group family. Suppose there exists a homomorphism family $f_{i j}: A_{i} \rightarrow A_{j}$ for all $i \leqslant j$ called the bonding maps, such that

1. For all i we have that the map $f_{i i}=\operatorname{id}_{A_{i}}$.
2. For all $i \leqslant j \leqslant k$ the maps $f_{i k}=f_{i j} \circ f_{j k}$.

Then the pair $\left(\left\{A_{i}\right\}_{i \in I},\left\{f_{i j}\right\}_{i \leqslant j \in I}\right)$ is called a direct system of groups and morphisms over I. We also call $f_{i j}$ the transition maps of the system.

Definition A.2. Let $\left(\left\{A_{i}\right\}_{i \in I},\left\{f_{i j}\right\}_{i \leqslant j \in I}\right)$ be a direct system of groups over I. The direct limit, also known as the colimit, is defined by

$$
\underset{i \in I}{\lim _{i}} A_{i}=\bigsqcup_{i} A_{i} / \sim,
$$

where $x_{i} \sim x_{j}$ for $x_{i} \in A_{i}$ and $x_{j} \in A_{j}$ if and only if there is some $k \in I$ with $i \leqslant K$ and $j \leqslant k$ such that $f_{i k}\left(x_{i}\right)=f_{j k}\left(x_{j}\right)$.

The direct limit can then be also thought as two elements in the disjoint union are equivalent if and only if they eventually become the same in the direct system.

Definition A.3. Let I be an indexing set and $\left(A_{i}\right)_{i \in I}$ a group family. Suppose there exists a homomorphism family $f_{i j}: A_{j} \rightarrow A_{i}$ for all $i \leqslant j$ called the bonding maps, such that

1. For all i the map $f_{i i}=\mathrm{id}_{A_{i}}$.
2. For all $i \leqslant j \leqslant k$ the maps $f_{i k}=f_{i j} \circ f_{j k}$.

Then the pair $\left(\left\{A_{i}\right\}_{i \in I},\left\{f_{i j}\right\}_{i \leqslant j \in I}\right)$ is called an inverse system of groups and morphisms over I. We also call $f_{i j}$ the structure maps of the system.

Definition A.4. Let $\left(\left\{A_{i}\right\}_{i \in I},\left\{f_{i j}\right\}_{i \leqslant j \in I}\right)$ be an inverse system. The inverse limit, also known as limit, is a particular subgroup of the direct product of all the A_{i} 's in the following way.

$$
A={\underset{\lim }{i \in I}}^{A_{i}}=\left\{\overline{a_{i}} \in \prod_{i \in I} A_{i}: a_{i}=f_{i j}\left(a_{j}\right) \quad \text { for all } \quad i \leqslant j \in I\right\} .
$$

This set comes equipped with natural projections $\pi_{j}: A \rightarrow A_{j}$ that satisfy a universal property.
In general, if we have an inverse system $\left(X_{i}, f_{i j}\right)$ of objects and morphisms in a category \mathscr{C} where $i, j \in I$, with I a well ordered indexing set. This means that the maps $f_{i j}: X_{j} \rightarrow X_{i}$ have the properties $f_{i i}=\operatorname{id}_{X_{i}}$ and $f_{i k}=f_{i j} \circ f_{j k}$ for all $i \leqslant j \leqslant k$. The inverse limit of this system is an object X in \mathscr{C} together with morphisms $\pi_{i}: X \rightarrow X_{i}$ called the projections such that for all $i \leqslant j$ we have

$$
\pi_{i}=f_{i j} \circ \pi_{j}
$$

The pair $\left(X, \pi_{i}\right)$ is universal. This means, if there is another pair $\left(Y, \psi_{i}\right)$ such that $\psi_{i}: Y \rightarrow X_{i}$ satisfies that $\psi_{i}=f_{i j} \circ \psi_{j}$ for all $i \leqslant j$, then there is a unique morphism $U: Y \rightarrow X$ such that the following diagram commutes

Lemma A.5. Suppose that $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ are inverse systems. Suppose that $f_{n}: A_{n} \rightarrow B_{n}$ is a group homomorphism such that the following diagram commutes for all $n \geqslant 1$.

Moreover, suppose that we have a map $g_{n}: B_{k(n)+n} \rightarrow A_{n}$ such that for every $n \in \mathbb{N}$ there is a $l>\max \{k(n)+n, k(n-1)+n-1\}$ such that the following diagram commutes

If the following diagram commutes for all $n \geqslant 0$

where a_{*} and b_{*} denote the appropriate composition of the structure maps. Then the induced map $f: \varliminf_{\longleftarrow} A_{n} \rightarrow \underset{\longleftarrow}{\lim } B_{n}$ is an isomorphism.

Proof. Note that the map induced by f_{n} in the inverse limit $f: \lim _{\leftarrow} A_{n} \rightarrow \underset{\leftarrow}{\lim } B_{n}$ is given by $f\left(\overline{\left(x_{n}\right)}\right)=\overline{\left(f_{n}\left(x_{n}\right)\right)}$ for $\overline{x_{n}} \in \lim _{\rightleftarrows} A_{n}$ and the inverse limit map $g: \lim _{\rightleftarrows} B_{n} \rightarrow \underset{\rightleftarrows}{\lim } A_{n}$ induced by g_{n} is given by $g\left(\overline{\left(y_{n}\right)}\right)=\overline{\left(g_{n}\left(y_{k(n)+n}\right)\right)}$ for $\overline{y_{n}} \in \varliminf_{\longleftarrow} B_{n}$. Let us verify that they are inverses of each other. On one hand, for $\overline{y_{n}} \in \lim _{\rightleftarrows} B_{n}$ we have that

$$
f \circ g\left(\overline{y_{n}}\right)=f\left(\overline{\left(g_{n}\left(y_{k(n)+n}\right)\right)}\right)=\overline{\left(f_{n} \circ g_{n}\left(y_{k(n)+n}\right)\right)}=\overline{\left(b_{*}\left(y_{k(n)+n}\right)\right)}=\overline{\left(y_{n}\right)} .
$$

On the other hand, for $\overline{\left(x_{n}\right)} \in \varliminf_{\rightleftarrows}^{\lim } A_{n}$ we have that

$$
g \circ f\left(\overline{x_{n}}\right)=g\left(\overline{f_{n}\left(x_{n}\right)}\right)=\overline{\left(g_{n} \circ f_{n}\left(x_{n}\right)\right)}=\overline{\left(a_{*}\left(x_{k(n)+n}\right)\right.}=\overline{\left(x_{n}\right)} .
$$

Then f is an isomorphism.

Lemma A.6. If $\left\{A_{n}\right\}_{n}$ is an inverse system such that the structure maps $a_{n}: A_{n} \rightarrow A_{n-1}$ are surjective and both $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ satisfy the hypotheses of Lemma A.5 then $\left\{B_{n}\right\}$ satisfies MittagLeffler's condition.

Proof. We want to see that $\left\{B_{n}\right\}_{n}$ satisfies the Mittag-Leffler's condition. This means that for all n there is a m such that $b\left(B_{m}\right)=b\left(B_{k}\right) \subseteq B_{n}$ for all $k \geqslant m$.

If $k \geqslant m$ we know that $b\left(B_{k}\right) \subseteq b\left(B_{m}\right)$. If we make $m=k(n)+n$ then we have the following commutative diagram for all $i>0$.

We know that $\operatorname{Im}\left(B_{k(n)+n+i}\right) \subseteq \operatorname{Im}\left(B_{k(n)+n}\right)$, now let us see that $\operatorname{Im}\left(B_{k(n)+n}\right) \subseteq \operatorname{Im}\left(B_{k(n)+n+i}\right)$. Let $x \in \operatorname{Im}\left(B_{k(n)+n}\right) \subseteq B_{n}$, this means there exists a $y \in B_{k(n)+n}$ such that $b_{*}(y)=x$ where we denote $b_{*}=b_{n+1} \circ b_{n+2} \circ \cdots \circ b_{k(n)+n}$. Let $b=g_{n}(y) \in A_{n}$. Since the structural maps are surjective we know that there is a $c \in A_{k(n)+n+i}$ such that $a_{*}(c)=b$ where $a_{*}=a_{n+1} \circ a_{n+2} \circ \cdots \circ a_{k(n)+n+i}$. Hence we have that

$$
f_{n}\left(a_{*}(c)\right)=f_{n}(b)=f_{n}\left(g_{n}(y)\right)=b_{*}(y)=x
$$

On the other hand, let $z=f_{k(n)+n+i}(c) \in B_{k(n)+n+i}$. Note that

$$
b_{*}^{\prime}(z)=b_{*}^{\prime}\left(f_{k(n)+n+i}(c)\right)=f_{n}\left(a_{*}(c)\right)=x
$$

Hence $x \in \operatorname{Im}\left(B_{k(n)+n+i}\right)$. This proves the result.
Lemma A.7. Let $\left\{A_{n m}\right\}_{n, m \in \mathbb{N}}$ be an inverse system with double index. Then the following inverse limits are isomorphic

$$
\begin{aligned}
& L={\underset{\pi}{n, m}}_{\lim _{n}} A_{n m} \\
& D=\underset{{ }_{n}}{\lim } A_{n n} \\
& H_{1}=\underset{n}{\lim } \underset{m}{\underset{m}{\gtrless}} A_{n m}
\end{aligned}
$$

$$
H_{2}={\underset{\zeta}{m}}_{\lim }^{\lim _{n}} A_{n m}
$$

Proof. We will denote by $\pi^{L}, \pi^{D}, \pi^{1}, \pi^{2}$ and π the natural projections of L, D, H_{1}, H_{2} and $\lim _{\varlimsup_{n}} A_{n}$ respectively, that satisfy the universal property. Let us start by proving that $D \cong H_{1}$. For that, remember that we have maps for H_{1} in the following way

Hence we can make the following commuting diagram

which gives us the unique morphism $H_{1} \rightarrow D$ by the universal property. On the other hand, we can also construct the following diagram

where $M=\max \{i, j\}$ and $N=\max \{i, j-1\}$. Therefore we can construct the following diagram

Therefore $D \cong H_{1}$. In the same manner one can prove that $D \cong H_{2}$. Lastly, let us prove that $D \cong L$. For that, note that we can construct the following commutative diagrams

where $m=\max i, j$ and $M^{\prime}=\max i^{\prime}, j^{\prime}$, and

Therefore $L \cong D$ and we have the result.

Corollary A.8. Let $f:\left\{A_{n m}\right\}_{n, m \in \mathbb{N}} \rightarrow\left\{B_{n m}\right\}_{n, m \in \mathbb{N}}$ be an inverse system morphism such that for all fixed n the function $f_{n}:\left\{A_{n m}\right\}_{m \in \mathbb{N}} \rightarrow\left\{B_{n m}\right\}_{m \in \mathbb{N}}$ induces isomorphic inverse limits, then f induces isomorphic inverse limits.

A.2. Completion

Now, let us explore the concept of completion. Let G be an abelian topological group. We first want to see that the topology of the group G is uniquely determined by the neighborhoods of $0 \in G$. For that we need the following lemma.

Lemma A.9. Let H be the intersection of all the neighborhoods of $0 \in G$. Then

1. H is a subgroup.
2. H is the closure of $\{0\}$.
3. G / H is Hausdorff.
4. G is Hausdorff if and only if $H=0$.

Proof.

1. This follows from the continuity of the group operations.
2. Let U be a neighborhood of $0 \in G$. If $a \in H$ then $0 \in a-U=\{a-x: x \in U\}$. In other words, $\{0\} \cap(a-U) \neq \emptyset$. Therefore $V \cap\{0\} \neq \emptyset$ for all neighborhoods V of a. Thus $a \in \overline{\{0\}}$.
3. By (2) we know that H is closed. Hence $a+H=\{a+h: h \in H\}=\{\bar{a}\}$ is also closed. Then G / H is Hausdorff.
4. By (3), if $H=0$ then G is Hausdorff. On the other hand, if G is Hausdorff then by definition $H=\{0\}$.

Definition A.10. A Cauchy sequence in G is a sequence $\left(x_{n}\right)$ in G such that for every neighborhood U of 0 there is an integer s_{U} such that $x_{n}-x_{m} \in U$ for all $n, m \geqslant s_{U}$. Two Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are called equivalent if $x_{n}-y_{n}$ tends to 0 in G.

We will denote by \tilde{G} the set of equivalence classes of Cauchy sequences in G. Note that \tilde{G} is an abelian group defining $\left(x_{n}\right)+\left(y_{n}\right)=\left(x_{n}+y_{n}\right)$. We can also define $\phi: G \rightarrow \tilde{G}$ by $\phi(x)=(x)$ and we have an abelian group homomorphism. The $\operatorname{ker} \phi=\cap U$ for all U neighborhood of 0 .

Let H be another topological group and $f: G \rightarrow H$ an continuous homomorphism. Then f induces a homomorphism $\tilde{f}: \tilde{G} \rightarrow \tilde{H}$ that assigns each term of a sequence its image under f. Since f is
continuous, this is well defined. Even more, if $f: G \rightarrow H$ and $g: H \rightarrow K$ are continuous then $\widetilde{g \circ f}=\tilde{g} \circ \tilde{f}$.

Suppose now that the fundamental system of neighborhoods of $0 \in G$ consists of subgroups. Then we have a subgroup sequence

$$
G=G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{n} \supseteq \cdots
$$

If $g \in G_{n}$ then $g+G_{n}$ is a neighborhood of g because $g+G_{n} \subseteq G_{n}$ and then G_{n} is open. Then $h+G_{n}$ is open and the set

$$
\bigcup_{h \notin G_{n}} h+G_{n},
$$

is also open. Then the compement of G_{n} is closed.
Let $\left(x_{m}\right)$ be a Cauchy sequence on G. The projection of $\left(x_{m}\right)$ into G / G_{n} is eventually constant, let's say ξ_{n}. If we pass from $n+1$ to n it is clear that ξ_{n+1} tends to ξ_{n} under

$$
\theta_{n+1}: G / G_{n+1} \rightarrow G / G_{n}
$$

Then $\left(x_{m}\right)$ defines a coherent sequence $\left(\xi_{n}\right)$, meaning, $\theta_{n+1}\left(\xi_{n+1}\right)=\xi_{n}$ for all n and this does not depend on the class representatives.

Then, \tilde{G} can be defined as the set of coherent sequences $\left(\xi_{n}\right)$ with the obvious group structure. This is also called the inverse limit of the system hence $\tilde{G} \cong \lim G / G_{n}$.

Definition A.11. If M is an R-module and I is an ideal from R then the I-adic completion of M is defined by

$$
\hat{M_{I}}=\lim _{\check{n}_{n}} \frac{M}{I^{n} M}
$$

This is also known as the completion by the ideal I.

Example A.12. Let us see the completion of $\mathbb{Z}[x]$ by the ideal $\langle x\rangle$. For that, we are going to define the following map $p: Z \llbracket x \rrbracket \rightarrow \varliminf_{\varliminf_{n}} \mathbb{Z}[x] /\left\langle x^{n}\right\rangle$ by

$$
p\left(\sum a_{i} x^{i}\right)=\overline{\left(\sum_{i=1}^{n} a_{i} x^{i}\right)}
$$

for $\sum a_{i} x^{i} \in \mathbb{Z} \llbracket x \rrbracket$. It can be readily seen that this map is injective, we can also easily verify that it is surjective by recursively choosing appropriate representatives which are partial sums of a power series. Then we have that

Example A.13. More generally, given a Noetherian ring R and an ideal $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle$, the completion of R with respect to I can be seen as the quotient $R \llbracket x_{1}, \ldots, x_{n} \rrbracket /\left\langle x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right\rangle$.

Bibliography

[1] Aguirre, L., Teorías generalizadas de cohomología, Universidad Nacional de Colombia, 2017.
[2] Atiyah, M., Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford, pages 113-140,1968.
[3] Atiyah, M., Bott, R., On the periodicity theorem for complex vector bundles, Acta Mathematica, Vol. 112, 1964.
[4] Atiyah, M., Segal, G., Equivariant K-theory and completion, Journal of Differential Geometry, Vol. 3(1-2): 1-18, 1969.
[5] Hatcher, A., Algebraic Topology, Cambridge University Press, 2002.
[6] Hatcher, A., Vector Bundles \& K-theory, http://pi.math.cornell.edu/ hatcher/, Version 2.2, November 2017.
[7] Husemoller, D., Fibre Bundles, Springer Verlag, 3 edition, 1966.
[8] Segal, G., Equivariant K-theory, Publications Mathematiques de L.I.H.E.S., Vol. 34, pages 129-151, 1968.
[9] Sepanski, M., Compact Lie Groups, Springer Science \& Business Media, 2007.

