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Title in English

Dynkin Functions and Its Applications.

Abstract: Dynkin functions were introduced by Ringel as a tool to investigate combi-
natorial properties of hereditary artin algebras. According to Ringel, a Dynkin function
consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to
the diagrams E6, E7, E8, F4 and G2. He also proposes to create an On-line Encyclopedia
of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin
functions arise from the context of categorification of integer sequences, which according
to Ringel and Fahr it means to consider suitable objects in a category instead of numbers
of a given integer sequence. They gave a categorification of Fibonacci numbers by using
the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver
of the 3-Kronecker quiver. For instance, if Λ denotes a hereditary artin algebra associated
to a Dynkin diagram ∆n then r(∆n) the number of indecomposable modules, a(∆n) the
number of antichains in mod Λ, and tn(∆n) the number of tilting modules are Dynkin
functions. In particular, we are focused on the way that some Dynkin functions act on
Dynkin diagrams of type An.

In this work, we follow the ideas of Ringel regarding Dynkin functions by investi-
gating the number of sections in the Auslander-Reiten quiver of algebras of finite
representation type. Dyck paths categories are introduced as a combinatorial model of
the category of representations of quivers of Dynkin type An and it is shown an algebraic
interpretation of frieze patterns as a direct sum of indecomposable objects of the category
of Dyck paths. In particular, it is proved that there is a bijection between some Dyck
paths and perfect matchings of some snake graphs. The approach allows us to give
formulas for cluster variables in cluster algebras of Dynkin type An in terms of Dyck
paths. At last but not least, it is introduced some Brauer configuration algebras such
that the dimension of these algebras and its corresponding centers can be obtained via
some combinatorial properties of the Catalan triangle.

This research was partially supported by COLCIENCIAS convocatoria doctorados
nacionales 785 de 2017.

Keywords: Auslander-Reiten quiver; categorification; Brauer configuration; Brauer con-
figuration algebra; Catalan triangle; cluster algebras; Dyck paths; Dynkin algebra; Dynkin
function; frieze patterns; lattice path; mutation class; perfect matchings; poset; quiver rep-
resentation; section; triangulations.
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Introduction

Dynkin functions were introduced in 2016 by Ringel with the purpose of giving a systematic
study of the relationships between integer sequences and invariants of objects in a category
mod Λ where Λ is a hereditary artin algebra. A Dynkin function f does not depend on
orientation and consists of four sequences f(An), f(Bn), f(Cn), f(Dn) and five single
values f(E6), f(E7), f(E8), f(F4) and f(G2) [78]. If Λ is an algebra of Dynkin type ∆n =
{An,Bn,Cn,Dn,E6,E7,E8,F4,G2} then the number r(∆n) of indecomposable modules,
the number an(∆n) of exceptional antichains in mod Λ and tn(∆n) the number of tilting
modules are examples of Dynkin functions. Ringel also proposes to create an On-Line
Encyclopedia of Dynkin Functions (ODEF) with the same purposes as the famous On-
Line Encyclopedia of Integer Sequences (OEIS) which is the main tool dealing with the
research of integer sequences.

Dynkin functions are a way to categorify integer sequences. According to Ringel and Fahr
a categorification of an integer sequence means to consider instead of numbers in the se-
quence suitable invariants of objects in a category. Ringel and Fahr gave a categorification
of Fibonacci numbers by using the Gabriel's universal covering theory and the structure
of the Auslander-Reiten quiver of the 3-Kronecker quiver [49, 50]. The categorification of
generalized non-crossing partitions (in the sense of Kreweras) of a given finite set has been
studied by Hubery, Krausse, Ingalls, Ringel and Thomas amongst others mathematicians
[59, 79]. Therefore, researches regarding Dynkin functions not only impact on the theory
of representation of algebras if not another fields of the mathematics as combinatorics and
number theory, for instance, factorization of numbers associated to invariants of algebras
of Dynkin type E6, E7, and E8 seems to be very interesting as Ringel quotes in [78].

Although Ringel's ideas regarding categorification of integer sequences are so new, they
have inspired different researches of many mathematicians, we recall here works on cate-
gorification of different integer sequences obtained by the author, Cañadas, and Giraldo
et al who have used Kronecker modules, tiled orders and the theory of representation
of posets to categorify some integer sequences [27, 31–35, 41]. In this direction, we use
lattice paths connecting points of some suitable posets to investigate the number of sec-
tions S(∆n) in the Auslander-Reiten quiver of some algebras as a Dynkin function. Some
interesting integer sequences arise from this research, for instance, Fermat numbers (i.e.,
numbers of the form 22j + 1) is a subsequence of an integer sequence whose some of its
elements can be interpreted as the number of some lattice paths via the procedures used
in this work. We also give a formula partition for numbers in the sequence A049611 in
the OEIS by using sections in the Auslander-Reiten quiver of algebras of Dynkin type
An. Besides, an explicit formula for sections in the Auslander-Reiten quiver of algebras

VI



INTRODUCTION VII

of this type is given, in particular, categorifications of the integer sequences A083329 and
A000295 in the OEIS are obtained by interpreting each of its elements as the number of
sections in the Auslander-Reiten quiver of algebras of Dynkin type An [38].

Another interesting integer sequence with many interpretations in the theory of represen-
tation of algebras is the sequence of Catalan numbers, i.e., the sequence whose elements

are numbers of the form Cn =
1

n+ 1

(
2n

n

)
[92]. For instance, Gabriel and De la Peña

proved that Catalan numbers count the number of discrete subsets contained in the set of
representatives of isoclasses of indecomposable finite-dimensional modules over a Dynkin
algebra of type An (with An linearly oriented).

In the last few years, researches regarding connections between cluster algebras and differ-
ent fields of mathematics have been growing. For instance, relationships between cluster
algebras, quiver representations, combinatorics and number theory have been reported
by Fomin et al., Shiffler et al., K. Baur et al., Assem et al. amongst a great number of
mathematicians [4, 9, 19,22,52,54–56].

Perhaps the Catalan combinatorics (which consists of all the enumeration problems whose
solutions are Catalan numbers) is the most appropriate environment for the investigation
of cluster algebras of Dynkin type An. Among all these kinds of problems, for example, it
is possible to prove that the Catalan numbers count [92]:

1. The number of plane binary trees with n+ 1 endpoints (or 2n+ 1) vertices,

2. The number of ways to parenthesize a string of length n+ 1 subject to a non asso-
ciative binary operation,

3. The number of paths P in the (x, y)-plane from (0, 0) to (2n, 0) with steps (1, 1) and
(1,−1) that never pass below the x-axis. Such paths are called Dyck paths,

4. The number of triangulations of an (n+ 3) polygon,

5. The number of clusters of a cluster algebra of Dynkin type An.

Regarding integer friezes, we point out that Propp in [71] reminds that Conway and
Coxeter completely classified the frieze patterns whose entries are positive integers, and
showed that these frieze patterns constitute a manifestation of the Catalan numbers.
Specifically, that there is a natural association between positive integer frieze patterns
and triangulations of regular polygons with labelled vertices. According to Baur and
Marsh [9], a connection between cluster algebras and frieze patterns was established by
Caldero and Chapoton [18], which showed that frieze patterns can be obtained from cluster
algebras of Dynkin type An.

Another example of the use of the Catalan combinatorics as a tool to describe the structure
of cluster algebras, was given by Schiffler et al. [19, 22, 69], who found out formulas
for cluster variables based on its relations with some triangulated surfaces and perfect
matchings of snake graphs. They also proved that there is a way of obtaining the number
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of perfect matchings of a given snake graph by associating a suitable continued fraction
defined by the sign function of the graph.

Given a non-negative integer n and a triangulation T of a regular polygon with (n + 3)
vertices. Caldero, Chapoton and Schiffler [17] gave a realization of the category CC of
representations of a quiver QC associated to a cluster C of a cluster algebra in terms of
the diagonals of the (n+ 3) polygon. They proved that there is a categorical equivalence
between the categories CT and Mod QT , where CT is the category whose objects are
positive integral linear combinations of positive roots (i.e., diagonals that does not belong
to the triangulation T ), whereas Mod QT denotes the category of modules over the quiver
QT with triangular relations induced by the triangulation T .

Following the ideas of Caldero, Chapoton and Schiffler, in this work, a combinatorial model
of the category of representations of Dynkin quivers of type An with relations is developed
by using Dyck paths. This approach allows us to realize perfect matchings of snake graphs
as objects of suitable Dyck paths categories, and with this machinery a formula for cluster
variables based on Dyck paths is obtained.

We show that frieze patterns arise from Dyck paths and they can be written in terms
of Dyck path categories. We also introduce a family of Brauer configuration algebras
associated to Dyck paths. Combinatorial properties of the Catalan triangle are used to
find out formulas for the dimension of this type of algebras and its corresponding centers.

Main results, contributions, papers and conferences

This research regards the categorification of integer sequences and some applications of
Dynkin functions in representation theory of algebras and combinatorics.

Contributions

The following are the main contributions:

1. It is given a recurrence formula of the number of sections in the Auslander-Reiten
quiver of algebras of Dynkin type via lattice paths connecting minimal and maximal
points of suitable posets.

2. It is obtained a categorification of integer sequences arising from sections in the
Auslander-Reiten quiver of algebras of Dynkin type in the sense of Ringel and Fahr.

3. Dyck paths categories are introduced and it is proved that there exists an equivalence
of categories between the category of Dyck paths and the category of representations
of Dynkin quivers of type An with relations.

4. It is given a formula of the cluster variables of cluster algebras associated to quivers
of type An by using Dyck paths.

5. It is established a bijective correspondence between Dyck paths and frieze patterns,
attaining in this way a new algebraic interpretation of frieze patterns as a direct sum
of indecomposable objects of Dyck paths categories.
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6. It is defined Dyck-Brauer configuration algebras, and it is given an explicit formulas
of the dimension of these Brauer configuration algebras and its corresponding centers
in terms of the Catalan triangle.

Papers

Results of this research allowed us to publish the following papers:

1. On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type
[32].

2. Integer sequences arising from Auslander-Reiten quivers of some hereditary artin
algebras [38].

Results of this research allowed us to submit the following manuscript:

1. Dyck paths categories and its relationships with cluster algebras.

Conferences

The main results of this research have been presented in the following conferences:

1. Primer encuentro de Álgebra y Topoloǵıa Universidad Nacional de Colombia. Bo-
gotá-Colombia, 01-2018.

2. UN Encuentro de Matemáticas. Bogotá-Colombia, 06-2018.

3. Third International Colloquium on Representations of Algebras and Its Applications;
Alexander Zavadskij. Medelĺın -Colombia, 06-2018.

4. IV Jornada de Álgebra no Amazonas. Tabatinga-Brasil, 09-2019.

5. Primer Encuentro de Estudiantes de Posgrado en Matemáticas, Medelĺın -Colombia,
02-2020.

6. Fourth International Colloquium on Representations of Algebras and Its Applica-
tions; Alexander Zavadskij, Bogotá-Colombia, 11-2020.

Research stays

The author is indebted with the following institutions and academics for their warm hos-
pitality during his several research stays:

1. Bielefeld Representation Theory Group and seminar (BIREP), Faculty of Mathe-
matics, Universität Bielefeld, Bielefeld- Germany, Professor Henning Krause.

2. Algebra seminar IMERL at Instituto de Matemática y Estad́ıstica Rafael Laguardia
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This thesis is distributed as follows:

Chapter 1, aims to present a theoretical introduction of representation theory of algebras,
sections in the Auslander-Reiten quiver, representation theory of posets, Brauer configu-
ration algebras, Dyck paths, cluster algebras, cluster-tilted algebras, friezes, snake graphs,
and the category of diagonals, as well as, definitions and notations to be used throughout
the work.

In chapter 2, it is described a family of posets that allows us to find a formula of the
number of sections in the Auslander-Quiver quiver of algebras of Dynkin type An, Dn, E6,
E7 and E8. These formulas establish a categorification of some integer sequences in the
sense of Ringel and Fahr.

In chapter 3, it is introduced the category of Dyck paths as a combinatorial model of
the category of representations of a quiver of type An with relations. It is presented a
bijective correspondence between a family of words of Dyck paths and the number of
perfect matchings of a snake graph. Besides, it is described a formula of cluster variables
arising from the Dyck paths of algebras with an underlying graph of type An.

In chapter 4, it is defined a basic set called diamond which is used to build frieze patterns,
these sets are in bijective correspondence with Dyck paths and triangulations of (n + 3)
polygons, and it is presented frieze patterns by using indecomposable objects of Dyck
paths categories. Dyck-Brauer configuration algebras are introduced and it is given the
dimension of these algebras and its corresponding centers.

Finally, appendix A, contains examples of integer sequences arising from the number of
sections associated to algebras of type An and Dn. Besides, it is included examples of
family of integer sequences and pairs of matrices associated to Dyck-Brauer configuration
algebras.



CHAPTER 1

Preliminaries

In this chapter, we present a brief description and important theorems regarding quiver
representations in section 1.1. Sections in the infinite translation quiver and Brauer
configuration algebras are described in sections 1.2 and 1.3, respectively. Category of
representation of ordinary posets and some classical theorems regarding classification
of ordinary posets are introduced in section 1.4. In section 1.5 we recall Dyck paths
as a Catalan object, whereas some elementary notions of cluster algebras, category of
diagonals of an (n + 3) polygon, cluster-tilted algebras, and friezes are defined in sec-
tions 1.6, 1.7, and 1.8. Finally, some definitions and results regarding snake graphs are
given in section 1.9. Throughout the thesis, k denotes an algebraically closed field. N,
Z, R and C denote the sets natural, integer, real, and complex numbers, respectively
[2, 3, 17,19,39,43,45,54,60–62,71,80,84,92,96,99].

1.1 Representation Theory of Quivers

In this section, we present some concepts regarding representations of a quiver. We recall
theorems that describe algebras of finite and tame representation type [3, 60,80,84].

A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets: Q0 (whose elements
are called points, or vertices) and Q1 (whose elements are called arrows), and two maps
s, t : Q1 ! Q0, which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target
t(α) ∈ Q0, respectively. Figure 1.1 shows examples of quivers

d
(( d // d dood 664

5

2 1 3

dd 66
//
((
dd

(( d
a

b

c

d

e

Figure 1.1. Examples of quivers.

1
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A path of length l ≥ 1 with source a and target b is a sequence (a | α1, . . . , αl | b) where
αk ∈ Q1 for all 1 ≤ k ≤ l, and we have s(α1) = a, t(αk) = s(αk+1) for each 1 ≤ k < l, and
finally t(αl) = b. We denote by Ql the set of all paths in Q of length l. We also agree to
associate with each point a ∈ Q0 a path of length l = 0 (denoted by ea = (a||a)).

The path algebra kQ of Q is the k−algebra whose underlying k−vector space has as
its basis the set of all paths (a | α1, . . . , αl | b) of length l ≥ 0 in Q and such that the
product of two basis vectors (a | α1, . . . , αl | b) and (c | β1, . . . , βk | d) of kQ is equal to
zero if t(αl) 6= s(β1) and is equal to the composed path (a | α1, . . . , αl,β1, . . . , βk | d) if
t(αl) = s(β1).

Let Q be a finite and connected quiver. The two-sided ideal of the path algebra kQ
generated (as an ideal) by the arrows of Q is called the arrow ideal of kQ and is denoted
by RQ. In particular, for each l ≥ 1,

RlQ =
⊕
m≥l

kQm.

RlQ is an ideal of kQ. A two-sided ideal I of kQ is said to be admissible ideal if there
exists an integer m ≥ 2 such that

RmQ ⊆ I ⊆ R2
Q.

If I is an admissible ideal of kQ, the pair (Q, I) is said to be a bound quiver. The quotient
algebra kQ/I is said to be the algebra of the bound quiver (Q, I) or, simply, a bound
quiver algebra.

A relation in Q with coefficients in k is a k−linear combination of paths of length at least
two having the same source and target. Thus, a relation ρ is an element of kQ such that

ρ =

m∑
i=1

λiwi,

where the λi are scalars and the wi are paths in Q of length at least 2 such that, if i 6= j,
then the source (resp. the target ) of wi coincides with that of wj . If (ρj)j∈J is a set of
relations for a quiver Q such that the ideal they generate 〈ρj | j ∈ J〉 is admissible, we say
that the quiver Q is bounded by the relations (ρj)i∈J or by the relations ρj = 0 for all j ∈ J .

A representation M = (Mi, ϕα)i∈Q0,α∈Q1 of a quiver Q is a collection of k-vector spaces
Mi, one for each vertex i ∈ Q0, and a collection of k-linear maps ϕα : Ms(α) !Mt(α), one
for each arrow α ∈ Q1.

Let M = (Mi, ϕα), M ′ = (M ′i , ϕ
′
α) be two representations of Q. A morphism (or ho-

momorphism) of representations f : M ! M ′ is a collection (fi)i∈Q0 of linear maps

fi : Mi −!M ′i , such that for each arrow i
α
−−! j in Q1 the diagram:
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Mi
ϕα
−−−−! Mj

fi

y yfj
M ′i −−−−!

ϕ′α
M ′j

(1.1)

commutes, that is (fj ◦ ϕα)(m) = (ϕ′α ◦ fi)(m) for all m ∈ Mi. Let M = (Mi, ϕα) and
M ′ = (M ′i , ϕ

′
α) be representations of Q. Then

M ⊕M ′ =
(
Mi ⊕M ′i ,

(
ϕα 0
0 ϕ′α

))
i∈Q0,α∈Q1,

is a representation of Q called the direct sum of M and M ′.

Rep Q is the category of representations of a quiver Q, rep Q is the full subcategory
of Rep Q consisting of the finite dimensional representations. Rep Q and rep Q are
abelian k-categories. A representation M ∈ rep Q is called indecomposable if M 6= 0 and
M cannot be written as a direct sum of two nonzero representations, that is, whenever
M ' N ⊕ L with N,L ∈ rep Q, then N = 0 or L = 0. A quiver Q is said to be of
finite representation type if the number of isoclasses of indecomposable representations of
Q is finite. A quiver Q is said to be of infinite representation type if Q is not of finite
representation type [80].

Theorem 1.1. [3]. Let A = kQ/I, where Q is a finite connected quiver and I is an
admissible ideal of kQ. There exists a k−linear equivalence of categories

F : Mod A! Rep (Q, I),

that restricts to an equivalence of categories F : mod A! rep (Q, I).

Gabriel [58] and Nazarova [72] proved the following theorems, respectively.

Theorem 1.2. [3]. Let Q be a finite, connected, and acyclic quiver; k be an algebraically
closed field; and A = kQ be the path k−algebra of Q.

(a) The algebra A is representation-finite if and only if the underlying graph Q of Q is
one of the Dynkin diagrams An, Dn, E6, E7, and E8.

(b) If Q is a Dynkin graph, then the mapping dim : M ! dim M induces a bijection
between the set of isomorphism classes of indecomposable A−modules and the set
{x ∈ Nn ; qQ(x) = 1} of positive roots of the quadratic form qQ of Q.

(c) The number of the isomorphism classes of indecomposable A−modules equals 1
2n(n+

1), n2 − n, 36, 63, and 120, if Q is the Dynkin graph An, Dn, E6, E7, and E8,
respectively.

Theorem 1.3. [84]. Let Q be a connected quiver without oriented cycles and k be an
algebraically closed field. Then kQ is representation-tame if and only if the underlying
graph Q of Q is one of the extended Dynkin diagrams Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8.
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(a) An

d d · · · d d
1 2 n−1 n

n≥1

(b) Dn

dd d · · · d d
1 2 n−2 n−1

n

n≥4

(c) E6

dd d d d d
1 2 3 4 5

6

(d) E7

dd d d d d d
1 2 3 4 5 6

7

(e) E8

dd d d d d d d
1 2 3 4 5 6 7

8

(f) Ãn

dd d · · · d d
1 2 n−1 n

n+1

n≥1

(g) D̃n

d dd d · · · d d
1 2 n−2 n−1

n n+1

n≥4

(h) Ẽ6

ddd d d d d

(i) Ẽ7

dd d d d d d d
(g) Ẽ8

dd d d d d d d d
Figure 1.2. Dynkin and extended Dynkin diagrams.

1.2 Sections in the Infinite Translation Quiver

In this section, for the sake of clarity we recall the definitions of section, an orbit in an
Auslander-Reiten quiver as Assem et al. described in [3].

Let Σ = (Σ0,Σ1) be a connected and acyclic quiver. An infinite translation quiver (ZΣ, τ)
has the set (ZΣ)0 = Z × Σ0 = {(n, x) | n ∈ Z, x ∈ Σ0} as its set of vertices, and for each
arrow α : x! y ∈ Σ1 there exist two arrows

(n, α) : (n, x)! (n, y) (n, α′) : (n+ 1, y)! (n, x) in (ZΣ)1, (1.2)

and these are all the arrows in (ZΣ)1. The translation τ on ZΣ is given by the formula
τ(n, x) = (n+ 1, x), and for every (n, x) ∈ (ZΣ)0 it is defined a bijection between the set
of arrows of target (n, x) and the set of arrows of source (n+ 1, x) by the formulas:

σ(n, α) = (n, α′) and σ(n, α′) = (n+ 1, α), (1.3)

Let Σ be a quiver described in Figure 1.3.
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Figure 1.3. Quiver Σ.

Then the infinite translation quiver of Σ is given by Figure 1.4.
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Figure 1.4. Infinite translation quiver of Σ.

Let (Γ, τ) be a connected translation quiver. A connected full subquiver Σ of Γ is a section
of Γ if the following conditions are satisfied:

S(1) Σ is acyclic.

S(2) For each x ∈ Γ0, there exists a unique n ∈ Z such that τnx ∈ Σ0.

S(3) If x0 ! x1 ! · · · ! xt is a path in Γ with x0, xt ∈ Σ0, then xi ∈ Σ0 for all i such
that 0 ≤ i ≤ t.

For a translation quiver (Γ, τ), the τ -orbit of a point x ∈ Γ0 is defined to be the set of
all points of the form τnx with n ∈ Z. Thus, any section Σ meets each τ -orbit exactly once.

Arrows in a section of a translation quiver (Γ, τ) satisfy the following conditions:

1. If x! y is an arrow in Γ and x ∈ Σ0, then y ∈ Σ0 or τy ∈ Σ0.

2. If x! y is an arrow in Γ and y ∈ Σ0, then x ∈ Σ0 or τ−1x ∈ Σ0.

Sections are useful to characterize representation-finite tilted algebras. Regarding this
subject, we recall the Happel and Ringel's criterion which states that a connected
representation-finite algebra B is a tilted algebra if and only if the Auslander-Reiten
quiver of B contains a section.

Henceforth, we let Ox denote the orbit of a fixed element x ∈ Γ0. In particular, if
Γ(Mod A) = (Γ0,Γ1) is the Auslander-Reiten quiver of an algebra of Dynkin type ∆n

then each element of the τ -orbit of an indecomposable projective module will be denoted
τni , i ∈ N. We also note that in the case of representation-finite hereditary algebras A

the vertices of the Auslander-Reiten quiver ΓA corresponding to the indecomposable
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projective modules form in ΓA a section of Dynkin class.

As an example in Figure 1.5 we show an oriented quiverQ of type A3 and the corresponding
Auslander-Reiten quiver of the algebra A = kQ.

d d d-�
1 2 3

- �τ2τ1 τ3

- �τ−1
2τ−1

1 τ−1
3

...
...

...

...
...

...

...
...

...6 6 6A
A
A
AAU

�
�
�
��

Figure 1.5. Quiver Q and the Auslander-Reiten quiver of kQ.

In this case sections are S1 = {τ1, τ2, τ3}, S2 =
{
τ1, τ2, τ

−1
3

}
, S3 =

{
τ−1

1 , τ2, τ3

}
,

S4 =
{
τ−1

1 , τ2, τ
−1
3

}
and S5 =

{
τ−1

1 , τ−1
2 , τ−1

3

}
all of them of type A3.

1.3 Brauer Configuration Algebras

In 2015 Green and Schroll [61] introduced the concept of Brauer configuration algebra as
a generalization of a Brauer graph algebra. In general, these algebras are of wild repre-
sentation type. They showed that Brauer configuration algebras are finite-dimensional
symmetric, multiserial, and others. In this section, we recall definitions of Brauer
configuration and its Brauer configuration algebra, we present some properties of these
algebras [61,83].

A Brauer configuration is a tuple Γ = (Γ0,Γ1, µ,O), where:

(B1) Γ0 is a finite set whose elements are called vertices.

(B2) Γ1 is a finite collection of multisets called polygons. In this case, if V ∈ Γ1 then the
elements of V are vertices possibly with repetitions, occ(α, V ) denotes the frequency
of the vertex α in the polygon V and the valency of α denoted val(α) is defined in
such a way that:

val(α) =
∑
V ∈Γ1

occ(α, V ). (1.4)

(B3) µ is an integer valued function such that µ : Γ0 ! N where N denotes the set of
positive integers, it is called the multiplicity function.

(B4) O denotes an orientation defined on Γ1 which is a choice, for each vertex α ∈
Γ0, of a cyclic ordering of the polygons in which α occurs as a vertex, including
repetitions, we denote Sα such collection of polygons. More specifically, if Sα =

{V (α1)
1 , V

(α2)
2 , . . . , V

(αt)
t } is the collection of polygons where the vertex α occurs with

αi = occ(α, Vi) and V
(αi)
i meaning that Sα has αi copies of Vi then an orientation
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O is obtained by endowing a linear order < to Sα and adding a relation Vt < V1, if
V1 = min Sα and Vt = max Sα. According to this order the αi copies of Vi can be
ordered as V1,i < V2,i < · · · < V(αi−1),i < Vαi,i and Sα can be ordered in the form

V
(α1)

1 < V
(α2)

2 < · · · < V
(α(t−1))

(t−1) < V αt
(t) .

(B5) Every vertex in Γ0 is a vertex in at least one polygon in Γ1.

(B6) Every polygon has at least two vertices.

(B7) Every polygon in Γ1 has at least one vertex α such that µ(α)val(α) > 1.

The set (Sα, <) is called the successor sequence at the vertex α.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is, α is truncated if it
occurs exactly once in exactly one V ∈ Γ1 and µ(α) = 1. A vertex is nontruncated if it is
not truncated.

Given a Brauer configuration Γ = (Γ0,Γ1, µ,O) we say that the polygon V ∈ Γ1 is a
d−gon if the number of vertices appearing in V is d. We say that the configuration Γ is
reduced if and only if every polygon V ∈ Γ1 satisfies one of the following conditions:

(i) V ∩ FΓ = ∅,

(ii) if V ∩ FΓ 6= ∅, then V is a 2-gon with only one truncated vertex,

where FΓ = {α ∈ Γ0 | µ(α)val(α) = 1}.

The Quiver of a Brauer Configuration Algebra

The quiver QΓ = ((QΓ)0, (QΓ)1) of a Brauer configuration algebra is defined in such a way
that the vertex set (QΓ)0 = {v1, v2, . . . , vm} of QΓ is in correspondence with the set of
polygons {V1, V2, . . . , Vm} in Γ1, noting that there is one vertex in (QΓ)0 for every polygon
in Γ1.

Arrows in QΓ are defined by the successor sequences. That is, there is an arrow vi
si−!

vi+1 ∈ (QΓ)1 provided that Vi < Vi+1 in (Sα, <)∪{Vt < V1} for some nontruncated vertex
α ∈ Γ0. In other words, for each nontruncated vertex α ∈ Γ0 and each successor V ′ of V
at α, there is an arrow from v to v′ in QΓ where v and v′ are the vertices in QΓ associated
to the polygons V and V ′ in Γ1, respectively.

Ideal of Relations and Definition of a Brauer Configuration Algebra

Fix a polygon V ∈ Γ1 and suppose that occ(α, V ) = t ≥ 1 then there are t indices i1, . . . , it
such that V = Vij . Then the special α-cycles at v are the cycles Ci1 , Ci2 , . . . , Cit where v
is the vertex in the quiver of QΓ associated to the polygon V . If α occurs only once in V
and µ(α) = 1 then there is only one special α-cycle at v.
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Let k be a field and Γ a Brauer configuration. The Brauer configuration algebra associated
to Γ is defined to be the bounded path algebra ΛΓ = kQΓ/IΓ, where QΓ is the quiver
associated to Γ and IΓ is the ideal in kQΓ generated by the following set of relations ρΓ

of type I, II and III.

� Relations of type I. For each polygon V = {α1, . . . , αm} ∈ Γ1 and each pair of
nontruncated vertices αi and αj in V , ρΓ contains all relations of the form Cµ(αi) −
(C ′)µ(αj) or (C ′)µ(αj)−Cµ(αi) where C is a special αi−cycle at v and C ′ is a special
αj−cycle at v.

� Relations of type II. The type two relations are all paths of the form Cµ(α)a where
C is a special α−cycle and a is the first arrow in C.

� Relations of type III. These relations are quadratic monomial relations of the form
ab in kQΓ where ab is not a subpath of any special cycle.

For example, let Γ = (Γ0,Γ1, µ,O) be a Brauer configurations, where Γ0 = {1, 2, 3},
Γ1 = {V1 = {1, 1, 3}, V2 = {1, 2}, V3 = {2, 3, 3}}, µ(1) = µ(3) = 1 and µ(2) = 2. The
successor sequence of vertex 1 is V1 < V1 < V2, the successor sequence of vertex 2 is
V2 < V3, and the successor sequence of vertex 3 is V1 < V3 < V3. There are two special
1−cycles at v1, a1a2a3 and a2a3a1. There is only one special 3−cycle at v1, c1c2c3. There is
one special 1−cycle at v2, a3a1a2. The special 2−cycle at v2 is b1b2. The special 2−cycle
at v3 is b2b1. There are two special 3−cycles at v3, c2c3c1 and c3c1c2. The ideal IΓ is
generated by following relations in ρΓ:

a1a2a3 = a2a3a1 = c1c2c3; a3a1a2 = (b1b2)2; (b2b1)2 = c2c3c1 = c3c1c2;
a1a2a3a1; a2a3a1a2; a3a1a2a3; (b1b2)2b1;

(b2b1)2b2; c1c2c3c1; c2c3c1c2; c3c1c2c3;
a1c1; c3a1; a2b1; c3a2; a3c1; b2a3; b1c2; b1c3; c2b2; c1b2.

(1.5)

v1 v2 v3a1

a2

a3

b1

b2

c1

c3

c2

Figure 1.6. Quiver QΓ associated to the Brauer configuration Γ.

Figures 1.6 and 1.7 show the quiver associated to Γ and the indecomposable projective
modules of ΛΓ.
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v3

v2

v3
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v1

v3

b2

b1

b2

b1

c2

c3

c1

c3

c1

c2

Pv3 :

Figure 1.7. Indecomposable projective modules of ΛΓ.

The following results show some properties of Brauer configuration algebras [61].

Theorem 1.4. Let Λ be a Brauer configuration algebra with Brauer configuration Γ.

(i) A Brauer configuration algebra is a finite dimensional symmetric algebra.

(ii) Suppose Γ = Γ1 ∪ Γ2 is a decomposition of Γ into two disconnected Brauer configu-
rations Γ1 and Γ2. Then there is an algebra isomorphism ΛΓ ' ΛΓ1 × ΛΓ2 between
the associated Brauer configuration algebra.

(iii) The Brauer configuration algebra associated to a connected Brauer configuration is
an indecomposable algebra.

(iv) A Brauer graph algebra is a Brauer configuration algebra.

(v) There is a bijective correspondence between the set of indecomposable projective
Λ−modules and the polygons in Γ.

(vi) If P is an indecomposable projective Λ−module corresponding to a polygon V in Γ.
Then rad (P ) is a sum of r indecomposable uniserial modules, where r is the number
of (nontruncated) vertices of V and where the intersection of any two of the uniserial
modules is a simple Λ−module.

(vii) A Brauer configuration algebra is a multiserial algebra.

Proposition 1.1. Let Λ be a Brauer configuration algebra associated to the Brauer con-
figuration Γ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives
of special cycles. Assume that, for i = 1, . . . , t, Ci is a special αi−cycle where αi is a
nontruncated vertex in Γ. Then

dimkΛ = 2|Q0|+
∑
Ci∈C

|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the
αi−cycle Ci and ni = µ(αi).

Sierra proved the following result [83].
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Theorem 1.5. Let Λ = kQΓ/IΓ be the Brauer configuration algebra associated to the
connected and reduced Brauer configuration Γ. Then

dimkZ(Λ) = 1 +
∑
α∈Γ0

µ(α) + |Γ1| − |Γ0|+ #Loops(QΓ)− |CΓ|,

where CΓ = {γ ∈ Γ0 | val(γ) = 1 and µ(γ) > 1}.

For the case of ΛΓ in the previous example, the dimension of ΛΓ is equal to 24, and the
dimension of its center is 7.

1.4 Representation Theory of Ordinary Posets

The theory of representation of posets was introduced and developed by Nazarova, Roiter
and their students in Kiev at the 1970s, one of their ideas was to used it as a way
of giving a solution of the second Brauer-Thrall conjecture regarding classification of
algebras [74, 75, 84]. The main tool to classify posets both ordinary and with additional
structures have been the algorithms of differentiation which are functors defined to reduce
dimension of the objects of the categories involved in the procedure. The first of these
algorithms of differentiation known as the algorithm with respect to a maximal point was
introduced by Nazarova and Roiter in 1972, it was used by Kleiner to obtain a criterion
to classify posets of finite representation type and by Nazarova in order to classify posets
of tame representation type in 1977 [63, 76]. In 1977 as well Zavadskij introduced the
algorithm of differentiation with respect to a suitable pair of points which was used by
him and Nazarova in 1981 to classify posets of finite growth [77, 84, 97]. We recall that
in 1991 Zavadskij introduced an apparatus of differentiation for posets consisting of the
algorithms of differentiation DI, DII, DIII, DIV and DV this apparatus was used by him
and Bondarenko to classify posets of tame and finite growth with an involution [11, 98]
(see in [39]). Particularly in Colombia, Cañadas et al. have studied applications of the
theory of representation of posets and its generalizations [24–26, 28–30, 36, 37, 39, 40, 42].
In this section, we introduce some elementary notions of the matrix problems, ordinary
posets, and classical theorems regarding classification of ordinary posets [2, 39,60,84,99].

Let Mat be a set of finite matrices with coefficients in k which is closed under direct sums
and direct summands, where for matrices A,B we set

A⊕B =

(
A 0
0 B

)
.

Suppose that G is a set of elementary transformations on rows and columns of matrices
in Mat. We say that A is G−equivalent to B (A ∼G B) if B can be obtained from A by
applying a sequence of transformations from G ∪ G−1. A class A/ ∼G represented by A in
Mat is said to be decomposable if there is a matrix B in Mat of the form B = C⊕D such
that A ∼G B. A class A/ ∼G is indecomposable if A is not G−equivalent to zero matrix
and A/ ∼G it is not decomposable. The problem of classifying the indecomposables in
the residue class set Mat/ ∼G is called a matrix problem and we denote it by (Mat,G).
This is equivalent to a reduction of any matrix in Mat to a canonical form by applying
the transformations in G ∪ G−1. The problem (Mat,G) is of finite representation type if
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the set of indecomposable G−equivalence classes of matrices in Mat is finite [84].

A poset is an ordered pair of the form (P,≤) of a set P and a binary relation ≤ contained
in P×P, called the order on P such that ≤ is reflexive, antisymmetric and transitive [46].

d��
�
�dd

d

dd
d

d1

2

3

4
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8

P =

d����d����d
d@@

@
@ dd dd

dd

a

b

c

d

e

f

g

h

i

j

Q =

Figure 1.8. Hasse diagrams of P and Q.

A representation of P over a field k is a collection U = (U0, Ux | x ∈ P), where U0 is a
finite-dimensional k−space and Ux is a subspace in U0 for each x ∈ P, such that Ux ⊆ Uy
if the relation x ≤ y holds in P. The dimension vector of a representation U is the
vector d = dim U = (d0, dx | x ∈ P) ∈ ZP where d0 = dim U0 and dx = dim Ux/Ux with

rad Ux = Ux =
∑
y<x

Uy.

A morphism ϕ : U ! V from a representation U to a representation V is any k−linear
map ϕ : U0 ! V0 with the condition ϕ(Ux) ⊆ Vx for all x ∈ P. The category of
representations of P over k is denoted by rep (P, k) = rep P. Two objects U, V are
isomorphic in rep P (U ' V ) if and only if there exists an isomorphism of k−spaces
ϕ : U0 ! V0 such that ϕ(Ux) = Vx for all x ∈ P. Denote by Ind P a complete set of
pairwise non-isomorphic indecomposable representations of P over k.

The direct sum U ⊕ V of two representations U, V ∈ P is the representation
U ⊕ V = (U0 ⊕ V0, Ux ⊕ Vx | x ∈ P). A representation U is said to be decompos-
able if there exist two representations U ′ 6= 0, U ′′ 6= 0 such that U ' U ′ ⊕U ′′. Otherwise,
U is an indecomposable representation (Krull-Schmidt category). We say that a represen-
tation U is trivial if dim U0 = 1, i.e., U0 = k.

An ordered set C is called a chain (or a totally ordered set or a linearly ordered set) if
and only if for all p, q ∈ C we have p ≤ q or q ≤ p (i.e., p and q are comparable). On
the other hand, an ordered set P is called an antichain if x ≤ y in P only if x = y. An
antichain consisting exactly of two (resp. three) points is called a dyad (resp. triad).
If some subsets X1, . . . , Xn ⊆ P do not intersect mutually (but may have comparable
points), then their union X1 ∪ · · · ∪Xn is called a sum and is denoted by X1 + · · ·+Xn.
We denote by w(P) the width of a poset P, i.e., the maximal cardinality of its antichains.
Accordingly to the known Dilworth's theorem [82], each poset of finite width n is a sum
of n chains.

For a point a ∈ P and a subset A ⊆ P, we define their up- and down-cones

aO = {x ∈ P | a ≤ x}, aM = {x ∈ P | x ≤ a}, AO =
⋃
a∈A

aO, AM =
⋃
a∈A

aM.
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For any subset A ⊆ P, we define a trivial representation k(A) = k(AO) = (k;Ux | x ∈ P)
of P where

Ux =

{
k, if x ∈ AO,
0, otherwise.

In particular, k(∅) = (k, 0, . . . , 0). We write often k(X1, . . . , Xn) instead of
k(X1 ∪ · · · ∪ Xn). For example, let P1 = {a, b, c} be the triad, i.e., three incompa-
rable points, the elements of Ind (P) are k(∅), k(a), k(b), k(c), k(a, b), k(b, c), k(a, c),
k(a, b, c) and U = (k ⊕ k, k ⊕ 0, 0⊕ k, (1, 1)k) (see [2]).

Attached to each representation U there exists its matrix representation M = MU choosing
some basis B0 in U0 and for each x ∈ P, some system Bx of linearly independent generators
of Ux modulo the radical subspace rad Ux. Then

M = Mx1 · · · Mxn ,

with entries in k, partitioned horizontally into n = |P| blocks (strips). The set of all
matrix representations of P is denoted by MatP.

If M and M ′ are matrix representations of a poset P = {xi | 1 ≤ i ≤ n} given by

M = Mx1 · · · Mxn , M ′ = M ′x1 · · · M ′xn .

then its direct sum M ⊕M ′ is given by the formula

M ⊕M ′ = Mx1 0 . . . Mxn 0

0 M ′x1 . . . 0 M ′xn
.

Two representations M and N of a poset P are isomorphic if and only if their matrix
representations can be turned into each other with help of the following admissible trans-
formations (denoted by GP):

(i) Elementary transformations of rows of the whole matrix M .

(ii) Elementary transformations of columns within each vertical strip.

(iii) Additions of columns of a strip Mi to columns of a strip Mj if i ≤ j in P.

Then we have defined a matrix problem (MatP,GP). A poset P is said to be of
representation-finite if (MatP,GP) is of finite representation type.

Remark 1.1. (MatP,GP) is a category whose objects are the matrices M in MatP and
morphisms are pairs of matrices (C,D), where C ∈ Gl(|B0|, k) and D is a matrix in
Gl(|B0| + · · · + |Bn|, k) which is a composition of elementary matrices corresponding to
admissible transformations GP (|Bi| denote the number of independent generators of Ui,
for 0 ≤ i ≤ n) [84].
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Figure 1.9 is an example of a matrix representation of the triad [60].

I 0 0 0 0 0 I 0 0 0 0 0 I 0 0 0 0 0

0 I 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0

0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a b c

Figure 1.9. Example of a matrix representation of the triad.

Kleiner presented the finite representation type criterion [63].

Theorem 1.6. [2]. Let P be a finite poset. Then P does not contain K1 = (1, 1, 1, 1),
K2 = (2, 2, 2), K3 = (1, 3, 3), K4 = (N, 4) or K5 = (1, 2, 5) as a subposet if and only if rep
P has finite representation type.

d d d d d d dd d d
d dd dd d d

ddd d dd d d
dddd dd d d d d d d d dd d d d

dd d dd d d

dd dd dd d d

dddd d dd d d

ddddd dd d d@@

@@

(a) K1 (b) K2 (c) K3 (d) K4

(e) K5 (f) N1 (g) N2 (h) N3

(i) N4 (j) N5 (k) N6

Figure 1.10. Kleiner's critical K1 −K5 and Nazarova's critical N1 −N6.

Nazarova extended the result of Kleiner and showed the tame representation type criterion
[73].

Theorem 1.7. [2]. Let P be a finite poset and k a field. Then rep P has wild representation
type if and only if P contains N1 = (1, 1, 1, 1, 1), N2 = (1, 1, 1, 2), N3 = (2, 2, 3), N4 =
(1, 3, 4), N5 = (N, 5) or N6 = (1, 2, 6) as a subposet.
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1.5 Dyck Paths

Dyck paths is an important tool in combinatorics which is in relationship with Catalan
objects as permutations, binary trees, non-decreasing parking functions, triangulations
of a regular polygon, etc [10, 92]. Dyck paths can be defined as lattice paths connecting
points in a square lattice that satisfies some conditions in the xy plane. Such Dyck paths
are also described by using some Dyck words. In this section, we present the concept of
a square lattice, lattice path, Dyck words. A connection between Dyck words and Dyck
paths is given as well [6, 12,48,92,96].

A lattice Λ = (V,E) is a mathematical model of a discrete space. It consists of two sets,
a set V ⊂ Rn of vertices and a set E ⊂ Rn × Rn of edges, with no more than two edges
between any two vertices. If two vectors are connected via an edge, we call them nearest
neighbors.

Let Λ = (V,E), an n-step lattice path or lattice walk or walk from s ∈ V to x ∈ V is a
sequence w = (w0, . . . , wn) of elements in V , such that

1. w0 = s, wn = x,

2. (wi, wi+1) ∈ E.

The length |w| of a lattice path is the number n of steps (edges) in the sequence w.

The Euclidean lattice is a lattice where V = Zd. The edges are mostly defined through a
so called step set. On this lattice an alternative definition via the step set can be used. A
step set S ⊂ Zd is the fixed and finite set of possible steps. The elements of S are called
steps. If the step set S is a subset of {−1, 0, 1}2 \ {(0, 0)} , then we say S is a set of small
steps.

Figure 1.11. Square lattice (left) and triangular lattice (right).

For the square lattice and triangular lattice in Figure 1.11, the sets of small steps are S1 =
{(1, 0), (0, 1), (−1, 0), (0,−1)} and S2 = {(1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1,−1)},
respectively.

An n−step lattice path or lattice walk or walk from s ∈ Zd to x ∈ Zd relative to S is a
sequence w = (w0, . . . , wn) of elements in Zd, such that [96]
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1. w0 = s, wn = x,

2. wi+1 − wi ∈ S

Let A be the diagonal square lattice where VA = {(x, y) ∈ Z2 | x ≥ 0, y ≥ 0} and
SA = {(1, 1), (1,−1)}, walks on the diagonal square lattice A are equivalent to walks on
the square lattice B with VB = {(x, y) ∈ Z2 | x ≥ 0, y = x} and SB = {(1, 0), (0, 1)} [12].

A Dyck path is a lattice path in Z2 with steps (1, 1) and (1,−1), such that the path starts
at (0, 0) and ends at (2n, 0) and it does not pass below the x−axis. The number of Dyck

paths of length 2n is equal to the n−th Catalan number (Cn =
1

n+ 1

(
2n

n

)
)[92].

Figure 1.12 shows the set of all lattice paths of length 6 in the square lattice B as
described above.

Figure 1.12. Lattice paths from (0, 0) to (3, 3).

Let X be an alphabet. We define the free monoid generated by X, denoted by X∗, as the
set of the finite words written with X’s letters. The product of u = u1 . . . up ∈ X∗ and
v = v1 . . . vq ∈ X∗ is defined as the concatenation of these words: uv = u1 . . . upv1 . . . vq.
The word u is called a left factor of the word w = uv. The empty word is denoted by e.
The number of occurrences of the letter a ∈ X in the word w is denoted by |w|a, and the
length of w by

|w| =
∑
a∈X
|w|a, (1.6)

The set of Dyck words is the set of words w ∈ X∗ = {U,D}∗ characterized by the following
two conditions [6]:

� for any left factor u of w, |u|U ≥ |u|D,

� |w|U = |w|D.

For example, the set of Dyck words of length 6 is

{UDUDUD,UDUUDD,UUDDUD,UUDUDD,UUUDDD}. (1.7)

The number of Dyck words of length 2n is equal to the n−th Catalan number [47].

There is a bijective correspondence between the set of Dyck paths and the set of Dyck
words [6].
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1.6 Cluster Algebras

In 2002, Fomin and Zelevinsky introduced the term of the cluster algebra [54] as a subal-
gebra of a field of rational functions generated by the set of cluster variables [52, 55, 56].
The cluster algebras are in connection with different topics as algebraic combinatorics, Lie
theory, discrete dynamical systems, tropical geometry, and others. Afterwards, Fomin,
Schiffler et al introduced cluster algebras associated to surfaces [19,52–56,69].

The definition of a cluster algebra A starts by introducing its ground ring. Let (P,⊕, ·)
be a semifield, i.e., an abelian multiplicative group endowed with a binary operation
of addition ⊕ which is commutative, associative, and distributive with respect to the
multiplication in P. The group ring ZP will be used as a field of scalars (ground ring) for A.

Let J be a finite set of labels, and let Trop (uj : j ∈ J) be an abelian group (written
multiplicatively) freely generated by the elements uj . We define the addition ⊕ in Trop
(uj ; i ∈ J) by

∏
j

u
aj
j ⊕

∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j , (1.8)

and call (Trop (uj : j ∈ J),⊕, ·) a tropical semifield. To illustrate, u2 ⊕ u2
1u
−1
2 = u−1

2 in
Trop (u1, u2). The group ring of Trop (uj : j ∈ J) is the ring of Laurent polynomials
in the variables uj . If J is empty, we obtain the trivial semifield consisting of a single
element 1.

As an ambient field for a cluster algebra A, we take a field F isomorphic to the field of
rational functions in n independent variables (here n is the rank of A), with coefficients
in QP. Note that the definition of F ignores the auxiliary addition in P.

A labeled Y−seed in P is a pair (y, B), where:

� y= (y1, . . . , yn) is an n−tuple of elements of P,

� B = (bij) is an n× n integer matrix which is skew-symmetrizable.

That is, dibij = −djbji for some positive integers d1, . . . , dn. A labeled seed in F is a triple
(x,y, B), where;

� (y, B) is a labeled Y−seed,

� x= (x1, . . . , xn) is an n−tuple of elements of F forming a free generating set.

That is, x1, . . . , xn are algebraically independent over QP, and F = QP(x1, . . . , xn).
We refer to x as the (labeled) cluster of a labeled seed (x,y, B), to the tuple y as the
coefficient tuple, and to the matrix B as the exchange matrix.
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The (unlabeled) seeds are obtained by identifying labeled seeds that differ from each
other by simultaneous permutations of the components in x and y, and of the rows and
columns of B [55].

We use the notation [x]+ = max (x, 0), [1, n] = {1, . . . , n}, and

sgn(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

Let (x,y, B) be a labeled seed in F , and let k ∈ [1, n]. The seed mutation µk in direction
k transforms (x,y, B) into the labeled seed µk(x,y, B) = (x′,y′, B) defined as follows:

� The entries of B′ = (b′ij) are given by

b′ij =

{
−bij , if i = k or j = k,

bij + sgn(bik)[bikbkj ]+, otherwise.
(1.9)

� The coefficient tuple y′ = (y′1, . . . , y
′
n) is given by

y′j =

{
y−1
k , if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj , if j 6= k.

(1.10)

� The cluster x′ = (x′1, . . . , x
′
n) is given by x′j = xj for j 6= k, whereas x′k ∈ F is

determined by the exchange relation

x′k =
yk
∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk
. (1.11)

We consider the n−regular tree Tn whose edges are labeled by the numbers 1, . . . , n, so

that the n edges emanating from each vertex receive different labels. We write t
k
−−! t′

to indicate that vertices t, t′ ∈ Tn are joined by an edge labeled by k. A cluster pattern
is an assignment of a labeled seed Σt = (xt,yt, Bt) to every vertex t ∈ Tn, such that the

seeds assigned to the endpoints of any edge t
k
−−! t′ are obtained from each other by the

seed mutation in direction k. The elements of Σt are written as follows:

xt = (x1,t, . . . , xn,t), yt = (y1,t, . . . , yn,t), Bt = (btij).

A cluster pattern is uniquely determined by each of its seeds, which can be chosen
arbitrarily.

For example (case A2, see [56]), let n = 2, then the tree T2 is an infinite chain. We denote
its vertices by . . . , t−1, t0, t1, . . . , and label its edges as follows:

. . .
2
−−! t−1

1
−−! t0

2
−−! t1

1
−−! t2

2
−−! . . .
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We denote the corresponding seeds by Σm = Σtm = (xm,ym, Bm), for m ∈ Z. Let the
initial seed Σ0 be

x0 = (x1, x2), y0 = (y1, y2), B0 =

(
0 1
−1 0

)
, (1.12)

We then recursively compute the seeds Σ1, . . . ,Σ5 as shown in Table 1.1 with B1 =(
0 −1
1 0

)
.

t Bt yt xt
0 B0 y1 y2 x1 x2

1 B1 y1(y2 ⊕ 1)
1

y2
x1

x1y2 + 1

x2(y2 ⊕ 1)

2 B0
1

y1(y2 ⊕ 1)

y1y2 ⊕ y1 + 1

y2

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

x1y2 + 1

x2(y2 ⊕ 1)

3 B1
y1 ⊕ 1

y1y2

y2

y1y2 ⊕ y1 + 1

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

y1 + x2

x1(y1 ⊕ 1)

4 B0
y1y2

y1 ⊕ 1

1

y1
x2

y1 + x2

x1(y1 ⊕ 1)
5 B1 y2 y1 x2 x1

Table 1.1. Seeds for the case A2.

Cluster Algebra

Given a cluster pattern, we denote by

X =
⋃
t∈Tn

xt = {xi,t : t ∈ Tn, 1 ≤ i ≤ n},

the union of clusters of all of the seeds in the pattern. We refer to the elements xi,t ∈ X
as cluster variables. The cluster algebra A associated with a given cluster pattern is the
ZP−subalgebra of the ambient field F generated by all cluster variables: A = ZP[X ]. We
denote A = A(x,y, B), where (x,y, B) = (xt,yt, Bt) is any labeled seed in the underlying
cluster pattern. A cluster algebra is of geometric type if the coefficient semifield P is a
tropical semifield.

We say that a cluster algebra is of finite type if it has finitely many seeds. More specifically,
we define the diagram Γ(B) associated to an n × n exchange matrix B to be a weighted
directed graph on nodes v1, . . . , vn, with vi directed towards vj if and only if bij > 0. In that
case, we label this edge by |bijbji|. Then A = A(x,y, B) is of finite type if and only if Γ(B)
is mutation-equivalent to an orientation of a finite type Dynkin diagram [55]. In this case,
we say that B and Γ(B) are of finite type. We say that a matrix B (and the corresponding
cluster algebra) has finite mutation type if its mutation equivalence class is finite, i.e.
only finitely many matrices can be obtained from B by repeated matrix mutations. A
classification of all cluster algebras of finite mutation type with skew-symmetric exchange
matrices was given by Felikson, Shapiro, and Tumarkin [51] (see [69]).



CHAPTER 1. PRELIMINARIES 19

Cluster Algebras From Quivers

For quivers, cluster algebras are defined as follows:

Fix an integer n ≥ 1. In this case, a seed (Q, u) consists of a finite quiver Q without loops
or 2-cycles with vertex set {1, . . . , n}, whereas u is a free-generating set {u1, . . . , un} of
the field Q(x1, . . . , xn).

Let (Q, u) be a seed and k a vertex of Q. The mutation µk(Q, u) of (Q, u) at k is the seed
(Q′, u′), where;

(a) Q′ is obtained from Q as follows;

(1) reverse all arrows incident with k,

(2) for all vertices i 6= j distinct from k, modify the number of arrows between i and

j, in such a way that a system of arrows of the form (i
r
−! j, i

s
−! k, k

t
−! j)

is transformed into the system (i
r+st
−! j, k

s
−! i, j

t
−! k). And the system

(i
r
−! j, j

t
−! k, k

s
−! i) is transformed into the system (i

r−st
−! j, i

s
−! k, k

t
−! j).

Where, r, s and t are non-negative integers, an arrow i
l
−! j, with l ≥ 0 means

that l arrows go from i to j and an arrow i
l
−! j, with l ≤ 0 means that −l arrows

go from j to i.

(b) u′ is obtained form u by replacing the element uk with

uk =
1

uk

∏
arrows i!k

ui +
∏

arrows k!j

uj . (1.13)

If there are no arrows from i with target k, the product is taken over the empty set and
equals 1. It is not hard to see that µk(µk(Q, u)) = (Q, u). Thus, if Q is a finite quiver
without loops or 2-cycles with vertex set {1, . . . , n}, the following interpretations have
place:

1. the clusters with respect to Q are the sets u appearing in seeds, (Q, u) obtained from
a initial seed (Q, x) by iterated mutation,

2. the cluster variables for Q are the elements of all clusters,

3. the cluster algebra A(Q) is the Q-subalgebra of the field Q(x1, . . . , xn) generated by
all the cluster variables.

As example, the cluster variables associated to the quiver Q = 1 −! 2 are:

{
x1, x2,

1 + x2

x1
,
1 + x1 + x2

x1x2
,
1 + x1

x2

}
.
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Cluster Algebra Arising from Unpunctured Surface

Let S be a connected oriented 2−dimensional Riemann surface with nonempty boundary,
and let M be a nonempty finite subset of the boundary of S, such that each boundary
component of S contains at least one point of M . The elements of M are called marked
points. The pairs (S,M) is called a bordered surface with marked points. Marked points
in the interior of S are called punctures (For technical reasons, we require that (S,M) is
not a disk with 1,2 or 3 marked points) [22].

An arc γ in (S,M) is a curve in S, considered up to isotopy, such that:

(i) the endpoints of γ are in M ,

(ii) γ does not cross itself, except that its endpoints, may coincide,

(iii) except for the endpoints, γ is disjoint from the boundary of S,

(iv) γ does not cut out a monogon or a bigon.

Curves that connect two marked points and lie entirely on the boundary of S without
passing through a third marked point are boundary segments. Note that boundary
segments are not arcs. For any two arcs γ, γ′ in S, let e(γ, γ′) be the minimal number
of crossings of arcs α and α′, where α and α′ range over all arcs isotopic to γ and γ′,
respectively. We say that arcs γ and γ′ are compatible if e(γ, γ′) = 0.

A triangulation is a maximal collection of pairwise compatible arcs (together with all
boundary segments). Triangulations are connected to each other by sequences of flips.
Each flip replaces a single arc γ in a triangulation T by a (unique) arc γ′ 6= γ that,
together with the remaining arcs in T , forms a new triangulation.

Choose any triangulation T of (S,M), and let τ1, . . . , τn be the n arcs of T . For any
triangle ∆ in T , we define a matrix B∆ = (b∆ij)1≤i≤n,1≤j≤n as follows.

� b∆ij = 1 and b∆ji = −1 if τi and τj are sides of ∆ with τj following τi in the clockwise
order,

� b∆ij = 0 otherwise.

Then define the matrix BT = (bij)1≤i≤n,1≤j≤n by bij =
∑

∆ b
∆
ij , where the sum is taken

over all triangles in T . Note that BT is skew-symmetric and each entry bij is either 0,±1,
or ±2, since every arc τ is in at most two triangles.

According to Schiffler and Canakci [22], Fomin, Shapiro and Thurston [54] associated
a cluster algebra A(S,M) to any bordered surface with marked points (S,M), and the
cluster variables of A(S,M) are in bijection with the (tagged) arcs of (S,M).

The following theorem regarding relationships between cluster algebras and surface trian-
gulations was obtained Fomin, Shapiro, and Thurston [52,53].
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Theorem 1.8. [69]. Fix a bordered surface (S,M) and let A be the cluster algebra asso-
ciated to the signed adjacency matrix of a tagged triangulation. Then the (unlabeled) seed
ΣT of A are in bijection with tagged triangulations T of (S,M), and the cluster variables
are in bijection with the tagged arcs of (S,M) (so we can denote each by xγ, where γ is a
tagged arc). Moreover, each seed in A is uniquely determined by its cluster. Furthermore,
if a tagged triangulation T ′ is obtained from another tagged triangulation T by flipping a
tagged arc γ ∈ T and obtaining γ′, then ΣT ′ is obtained from ΣT by the seed mutation
replacing xγ by xγ′.

1.7 Category of Diagonals and Cluster-tilted Algebras

In 2006 [17], Caldero, Chapoton, and Schiffler introduced the category of diagonals of a
polygon with n + 3 sides associated to a triangulation T , in this case, the diagonals are
called roots which can be classified as negative or positive, negative roots are those roots
belonging to the triangulation T [17, 80].

The combinatorial C-linear additive category CT is described as follows. The objects are
positive integral linear combinations of positive roots, and the space of morphisms from a
positive root α to a positive root α′ is a quotient of the vector space over C spanned by
pivoting paths from α to α′. The subspace which defines the quotient is spanned by the
so-called mesh relations. For any couple α, α′ of positive roots such that α is related to
α′ by two consecutive pivoting elementary moves with distinct pivots, the mesh relations
are given by the identity Pv′2Pv1 = Pv′1Pv2 , where v1, v2 (resp. v′1v

′
2) are the vertices of α

(resp. α′) such that Pv′1Pv2 = α′.

Let T be a triangulation, then one can define a planar tree tT as follows. Its vertices are
the triangles of T and the edges connect adjacent triangles. In the same way, we can define
a graph QT whose vertices are the inner edges of T and are related to each other by an
edge, if they bound the same triangle. An orientation can be defined by using graph QT ,
in such a way that a vertex i connects a vertex j (denoted i! j), if −αj can be obtained
from the diagonal −αi by rotating anticlockwise about their common vertex.

According to Caldero, Chapoton, and Schiffler [17], one can define a C−linear abelian
category Mod QT as follows. This is the category of modules over the quiver QT with the
following relations, called triangle relations:

In any triangle, the composition of two successive maps is zero.

These relations are exactly the relations prescribed by [17, Definition 1].

Figure 1.13 shows an example of the tree and the quiver associated to a triangulation.
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Figure 1.13. Tree (left) and quiver (right) associated to a triangulation of the 8-polygon.

The following results regarding the category of diagonals were given by Caldero, Chapoton,
and Schiffler in [17].

Theorem 1.9. There is an equivalence of categories between CT and Mod QT .

Corollary 1.1. There exists a bijection ϕ between Ind QT and the diagonals of the polygon
not in T . Moreover, for M in Ind QT and any vertex i of QT , the multiplicity of the
simple module Si in the module M is 1 if ϕ(M) crosses the ith diagonal of T and 0 if
not. In particular, for two isoclasses M , M ′ in Ind QT , we have M = M ′ if and only if
ni(M) = ni(M

′) for all i.

Theorem 1.10. Let T be a triangulation of the n + 3 polygon, and let CT be the corre-
sponding category, then:

(i) The irreducible morphisms of CT are direct sums of the generating morphisms given
by pivoting elementary moves.

(ii) The mesh relation of CT are the mesh relations [5] of the Auslander-Reiten quiver
of CT .

(iii) The Auslander-Reiten translate is given on diagonals by r−.

(iv) The indecomposable projective objects of CT are diagonals in r+(T ).

(v) The indecomposable injective objects of CT are diagonals in r−(T ).

with r+ (resp. r−) the elementary rotation of the polygon in the positive (resp. negative)
direction.

Theorem 1.11. Let C = {u1, . . . , un} be a cluster of a cluster algebra of type An and let
V be the set of all cluster variables of the algebra. Let QC be the quiver with relations
associated to C and Ind QC the set of isoclasses of indecomposable modules. Then there
is a bijection

Ind QC ! V \ C, α 7! wα,

such that

wα =
P (u1, . . . , un)∏n

i=1 u
ni(α)
i

,

where P is a polynomial such that none of the ui divides P (i = 1, . . . , n) and ni(α) is the
multiplicity of the simple module αi in the module α.
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The Auslander-Reiten quiver of the quiver shown in Figure 1.13 is given by Figure 1.14.

Figure 1.14. Auslander-Reiten quiver of QT .

Cluster-tilted Algebras of Type An

In this section, we recall some results regarding cluster-tilted algebras [95].

The cluster category was introduced independently in [17] for type An and in [13] for the
general case. Let Db(mod H) be the bounded derived category of the finitely generated
modules over a finite dimensional hereditary algebra H over a field k. In [13] the cluster
category was defined as the orbit category C = Db(mod H)/τ−1[1], where τ is the
Auslander-Reiten translation and [1] the suspension functor. The cluster-tilted algebras
are the algebras of the form Γ = EndC(B)op, where B is a cluster-tilting object in C [14].

Let Q be a quiver with no multiple arrows, no loops and no oriented cycles of length
two and let Q′ be a quiver obtained from Q via mutations. We say that a quiver Q is
mutation equivalent to Q′, if Q′ can be obtained from Q by a finite number of mutations.
The mutation class of Q is all quivers mutation equivalent to Q. The mutation class of a
Dynkin quiver Q is finite [55].

If Γ is a cluster-tilted algebra, then we say that Γ is of type An if it arises from the cluster
category of a path algebra of Dynkin type An. Let Q be a quiver of a cluster-tilted algebra
Γ, if Q′ is obtained from Q by a finite number of mutations, then there is a cluster-tilted
algebra Γ′ with quiver Q′. Moreover, Γ is of finite representation type if and only if Γ′ is of
finite representation type. We also have that Γ is of type An if and only if Γ′ is of type An.
We know that a cluster-tilted algebra is up to isomorphism uniquely determined by its
quiver [13–17,95]. It follows from this that to count the number of cluster-tilted algebras
of type An, it is enough to count the mutation class of any quiver with underlying graph An.
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We define mutation of a triangulation at a given diagonal, by replacing this diagonal
with another one. This can be done in one and only one way. Let QT be a quiver
corresponding to a triangulation T . Then mutation of QT at the vertex i corresponds to
mutation of T at the diagonal corresponding to i.

Let Mn be the mutation class of An, i.e. all quivers obtained by repeated mutation
from An, up to isomorphisms of quivers. Let Tn be the set of all triangulations of an
n + 3 polygon. We can define a function γ : Tn !Mn where we set γ(T ) = QT for any
triangulation T in Tn. Note that γ is surjective.

For a triangulation T of an n+ 3 polygon, let us denote by T i the triangulation obtained
from T by rotating T i steps in the clockwise direction. We define an equivalence relation
on Tn, where we let T ∼ T i for all i. We define a new function γ : (Tn\ ∼)!Mn induced
from γ.

The following results regarding cluster-tilted algebras of type An were obtained by Tork-
ildsen in [95].

Theorem 1.12. The function γ : (Tn\ ∼)!Mn is bijective for all n ≥ 2.

Corollary 1.2. The number a(n) of non-isomorphic basic cluster-tilted algebras of type
An is the number of triangulations of the disk with n diagonals, i.e.

a(n) = Cn+1/(n+ 3) + C(n+1)/2/2 + (2/3)Cn/3, (1.14)

where Ci is the i-th Catalan number and the second term is omitted if (n+ 1)/2 is not an
integer and the third term is omitted if n/3 is not an integer.

1.8 Friezes

In this section, we recall the concepts of frieze patterns, a generalization associated to
Cartan matrix, vector friezes and its connection with cluster algebras [4, 7, 43–45,62,71].

Coxeter introduced frieze patterns in [45] in the early 1970s, inspired by Gauss's penta-
gramma mirificum. A frieze pattern is a grid of positive integers, with a finite number
of infinite rows, where the top and bottom rows are bi-infinite repetition of 0s and the
second to top and the second to bottom row are bi-infinite repetitions of 1s, and every
four adjacent numbers of the following square

b

a c

d

satisfy the identity ac − bd = 1. The sequence of integers in the first non-trivial row,
(mii)i∈Z, is called quiddity sequence. This sequence completely determines the frieze pat-
tern. Each frieze pattern is also periodic, since it is invariant under glide reflection. The
order of the frieze pattern is defined to be the number of rows minus one. It follows
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that each frieze pattern of order n is n−periodic [7, 8]. Conway and Coxeter classified
completely the frieze patterns whose entries are positive integers, and show that these
frieze patterns constitute a manifestation of the Catalan numbers [43, 44]. Specifically,
there is a natural association between positive integer frieze patterns and triangulations
of regular polygons with labeled vertices. From every triangulation T of a regular n-gon
with vertices cyclically labeled 1 through n, Conway and Coxeter build an n-rowed frieze
pattern determined by the numbers a1, a2, . . . , an where ak is the number of triangles in
T incident with vertex k. Specifically [71]:

(1) the top row of the array is . . . , 0, 0, 0, . . . ;

(2) the second row (offset from the first) is . . . , 1, 1, 1, . . . ;

(3) the third row is . . . , a1, . . . , an, a1, . . . (with period n);

(4) each succeeding row (offset from the one before) is determined by the frieze recur-
rence of the four adjacent numbers given as above.

For instance, given a frieze pattern

. . . 0 0 0 0 0 . . .

. . . 1 1 1 1 . . .

. . . 2 3 1 2 3 . . .

. . . 5 2 1 5 . . .

. . . 2 3 1 2 3 . . .

. . . 1 1 1 1 . . .

. . . 0 0 0 0 0 . . .

this is in relationship with a triangulation of the form

Figure 1.15. Example of triangulation associated to a frieze pattern.

In 2010 Assem, Reutenauer and Smith [4] introduced a generalization of friezes associated
to Cartan matrix (see [3] 226p.), in the following way, let C = (Ci,j)n×n be a Cartan
matrix of a connected Quiver Q, then a frieze is a collection of positive integers a(j,m),
with j ∈ {1, . . . , n} and m ∈ Z, such that

a(j,m)a(j,m+ 1) = 1 +

(∏
j!i

a(i,m)|Ci,j |
)(∏

i!j

a(i,m+ 1)|Ci,j |
)
. (1.15)
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For instance, if Q is a Dynkin diagram of type D6 with any orientation, a frieze associated
to D6 is

. . . 1 3 3 1 . . .

. . . 2 2 8 2 2 . . .

. . . 3 5 5 3 . . .

. . . 7 4 7 2 3 2 7 4 7 . . .

. . . 4 2 2 4 . . .

Many authors have studied properties of the friezes, and they have found connections
with different topics (see examples in [4,7–9,57,62,66,67,71]). In particular, Fontaine and
Plamondon [57] obtained the following results.

Theorem 1.13. The number of friezes of type Dn is
n∑

m=1
d(m)

(
2n−m−1
n−m

)
where d(m) de-

notes the number of divisors of m.

Corollary 1.3. The number of friezes in type, Bn, Cn, and G2 is
∑

m≤
√
n+1

(
2n−m2+1

n

)
,(

2n
n

)
, and 9, respectively.

Fontaine, Plamondon and Propp (in type E6) conjectured that the number of friezes in
type E6, E7, E8, and F4 is 868, 4400, 26592, and 112, respectively [57,71].

One way to define friezes is to say that they are ring homomorphisms from a cluster
algebra to the ring of integers such that all cluster variables are sent to positive integers
[57]. Let Q be a quiver without loops and 2−cycles and let A(Q) be the corresponding
cluster algebra with trivial coefficients (see [54]).

(i) A frieze of type Q is a ring homomorphism F : A(Q)! R from the cluster algebra
to an integral domain R. The frieze is called integral if R = Z.

(ii) A frieze F is said to be unitary if there exists a cluster x in A(Q) such that every
cluster variable x ∈ x is mapped by F to a unit in R.

(iii) A frieze is said to be non-zero if every cluster variable in A(Q) is mapped by F to
a non-zero element of R.

(iv) An integral frieze is said to be positive if every cluster variable in A(Q) is mapped
by F to a positive integer.

Let x= (x1, . . . , xn) be a cluster of A(Q).

(i) A vector (a1, . . . , an) ∈ Rn is called a frieze vector relative to x if the frieze F defined
by F(xi) = ai has values in R. If the frieze F is unitary we say that the frieze vector
(a1, . . . , an) is unitary.
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(ii) A vector (a1, . . . , an) ∈ Zn>0 is called a positive frieze vector relative to x if the frieze
F defined by F(xi) = ai is positive integral.

Gunawan and Schiffler proved the following result [62].

Theorem 1.14. Let Q be a quiver without loops and 2−cycles and let x = (x1, . . . , xn) be
an arbitrary cluster of A(Q). Then there is a bijection

φ : {unordered clusters in A(Q)} −! {positive unitary frieze vectors relative to x}
x′ = {x′1, . . . , x′n} 7−! φ(x′) = (a1, . . . , an).

1.9 Snake Graphs

Snake graph is a combinatorial tool that has appeared in cluster algebras. According to
Propp, given a triangulation T , we can define a graph whose n vertices correspond to the
vertices in T and n − 2 vertices corresponded to the triangular faces of T [71]. Canakci
and Schiffler have studied relationships between snake graphs and continued fractions,
introducing a calculus for cluster algebras [19–23] (see other works [68,81]). In particular,
Musiker, Schiffler, and Williams introduced a combinatorial formula for the cluster
variables of cluster algebras from surfaces by using snake graphs and its perfect matchings
[69]. In this section, we recall the definition of a snake graph, the number of perfect match-
ings associated to these graphs, and the way that these concepts can be used to find out
a formula for the cluster variables of a cluster algebra associated to a surface [19,21,22,69].

A tile G is a square of fixed side-length in the plane whose sides are parallel or orthogonal
to the fixed basis.

West

South

North

East.G

We consider a tile G as a graph with four vertices and four edges in the obvious way. A
snake graph G is a connected graph consisting of a finite sequence of tiles G1, . . . , Gd with
d ≥ 1, such that for each i = 1, . . . , d− 1

(i) Gi and Gi+1 share exactly one edge ei and this edge is either the north edge of Gi
and the south edge of Gi+1 or the east edge of Gi and the west edge of Gi+1.

(ii) Gi and Gj have no edge in common whenever |i− j| ≥ 2.

(iii) Gi and Gj are disjoint whenever |i− j| ≥ 3.

For notation, G[i, i+ t] = (Gi, . . . , Gi+t) is a subgraph of G = (G1, . . . , Gn), the d−1 edges
e1, . . . , ed−1 which are contained in two tiles are called interior edges of G and the other
edges are called boundary edges. A perfect matching P of a graph G is a subset of the
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set of edges of G such that each vertex of G is incident to exactly one edge in P . Let
Match(G) denote the set of all perfect matchings of the graph G. The following figure
presents some perfect matchings of a snake graph.

Figure 1.16. Perfect matchings of a snake graph.

Snake Graphs and Cluster Algebras

Let T be a triangulation of a surface (S,M) and let γ be an arc in (S,M) which is not
in T . Choose an orientation on γ, let s ∈ M be its starting point, and let t ∈ M be its
endpoint. Denote by s = p0, p1, . . . , pd+1 = t the ordered points of intersection of γ and
T . For j = 1, 2, . . . , d, let τij be the arc of T containing pj , and let ∆j−1 and ∆j be the
two triangles in T on either side of τij . Then, for j = 1, . . . , d − 1, the arcs τij and τij+1

form two sides of the triangle ∆j in T and we define ej to be the third arc in this triangle.

Let Gj be the quadrilateral in T that contains τij as a diagonal (a tile) whose edges are
arcs in T , thus, they are labeled edges. Define a sign function f of the edges e1, . . . , ed by

f(ej) =

{
+1, if ej lies on the right of γ when passing through ∆j ,

−1, otherwise.
(1.16)

The labeled snake graph Gγ = (G1, . . . , Gd) with tiles Gi and sign function f is called
the snake graph associated to the arc γ. Each edge e of Gγ is labeled by an arc τ(e) of
the triangulation T . Such an arc defines the weight x(e) of the edge e to be the cluster
variable associated to the arc τ(e). Thus x(e) = xτ(e).

In [69] Musiker, Schiffler, and Williams showed a combinatorial formula for cluster vari-
ables of a cluster algebra of surface type A(S,M) with principal coefficients ΣT =
(xT ,yT , BT ). In such a case, if γ is an arc, Gγ is its snake graph, and the triangula-
tion T has no self-folded triangles. Then the corresponding cluster variable xγ is given by
the identity

xγ =
1

cross(γ, T )

∑
P∈Match(Gγ)

x(P ), (1.17)

where the sum runs over all perfect matchings of Gγ , the summand x(P ) =
∏
e∈P x(e) is

the weight of the perfect matching P , and cross(T, γ) =
∏d
j=1 xτij is the product of all

initial cluster variables whose arcs cross γ.

A relationship between cluster variables and continued fractions is described by Schiffler
and Canakci in [22], who claimed that, the numerator of a continued fraction is equal
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to the number of perfect matchings of the corresponding abstract snake graph, and that
it can therefore be interpreted as the number of terms in the numerator of the Laurent
expansion of an associated cluster variable. Thus, the Laurent polynomials of the cluster
variable can be recovered from the continued fraction.

For example, let T be a triangulation, and let γ be a diagonal which is not in T .

1

2

3

4

γ

2 3

3 2

1

4

Figure 1.17. Triangulation T (left) and snake graph Gγ (right).

We can build the snake graph Gγ associated to γ (see Figure 1.17). The set of all perfect
matchings of Gγ are shown in Figure 1.18, and the cluster variable associated to xγ is given
by the identity

xγ =
x4 + x1x3x4 + x2

x2x3
.

3

1

2

4

3

1

2

4

3

1

2

4

Figure 1.18. Perfect matchings of Gγ .
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Integer Sequences Arising From Auslander-Reiten

Quivers

Ringel and Fahr called categorification of an integer sequence the process for which num-
bers in the sequence can been seen as suitable invariants of objects in a category and
proposed a categorification of Fibonacci numbers by using the Gabriel’s universal cover-
ing theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver
[49, 50]. In this chapter, we study sections in the Auslander-Reiten quiver of algebras of
Dynkin type as a tool that provides categorifications of some integer sequences in the On-
line Encyclopedia of Integer Sequences (OEIS) [85–89]. Posets of type b, d and h and some
properties of its lattice paths are introduced in section 2.1. In section 2.2 lattice paths
connecting minimal and maximal points in posets of type b, d and h are used to enumerate
sections in the Auslander-Reiten quiver of algebras of Dynkin type An, Dn, E6, E7 and E8

[32,38]. As a consequence of this chapter, we conclude that the number of sections in the
Auslander-Reiten quiver of algebras of Dynkin type is not a Dynkin function.

2.1 Posets of Type b, d, and h

In this section, we build families of posets (almost all of wild representation type), and
we present integer sequences associated to the lattices paths over these posets.

2.1.1 Posets and Lattice Paths

If P = (N2,�) is a poset where (N,≤) denotes the set of natural numbers endowed with the
usual order and (x, y) � (x′, y′) if and only if x ≤ x′ and y ≤ y′. Then, a lattice path P ⊆ P

is a sequence of points {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊆ P where (xi, yi) � (xi+1, yi+1)
for any 1 ≤ i ≤ n−1, and either xi+1 = xi+1 and yi+1 = yi or yi+1 = yi+1 and xi+1 = xi.

An order ideal of a poset (P,≤) is a subset I of P such that if x ∈ I and y ≤ x, then y ∈ I
(i.e., x covers y). We let J(P) denote the set of all order ideals of P, ordered by inclusion.
Note that, m-element antichains in P correspond to elements of J(P) that cover exactly

30
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m-elements.

Given a finite poset P with |P| = n in [93] it is defined an extension of P to a total
order or linear extension of P as an order-preserving bijection σ : P ! n. The number
of extensions of P to a total order is denoted e(P). Actually, e(P) is also equal to the
number of maximal chains of J(P).

According to Stanley [91,93] the enumeration of lattice paths is an extensively developed
subject, the point in this chapter is that certain lattice path problems are equivalent
to determining e(P) for a given poset P, or equivalent to the problem of finding
the number of sections in the Auslander-Reiten quiver of some finite-representation
algebras. In this fashion, it is possible to establish connections between the theory of
partitions, the theory of partially ordered sets and the theory of representation of algebras.

If M = 2 × n then it can be shown that the number of lattice paths from (0, 0) to
(n, n) with steps (1, 0) and (0, 1), which never rise above the main diagonal x = y of the
plane (x, y)-plane equals the number of linear extensions e(M) of the poset M and that
e(2 × n) = 1

n+1

(
2n
n

)
= Cn [91]. Figure 2.1 shows the number of lattice paths from each

point (x, y) ∈ M3 = 2 × 3 to the maximal point, note that the number of lattice paths
from the minimal to the maximal point is C3 = 5. We will make the same computations
for other types of posets in order to enumerate sections in the Auslander-Reiten quiver of
some hereditary algebras of finite-representation type.
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Figure 2.1. Number of lattice paths from each Ct to the maximal points C0 is a Catalan number.

More connections between the theory of partitions and the theory of partially ordered
sets via lattice paths have been quoted by Andrews and Stanley in [1, 93]. Firstly by
establishing an identity between inversions and p(m1,m2;n) the number of partitions of
an integer number n into at most m2 parts no greater than a given integer m1. And
secondly by using P-partitions, i.e., order-preserving maps from a partially ordered set P

to a chain with special rules specifying where equal values may occur. For instance, if P
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is a p-element chain, then a P-partition of a positive integer n is equivalent to an ordinary
partition of n into at most p parts. Some relationships between P-partitions and the
counting of chains in the set of order ideals of P ordered by inclusion are well described
by Stanley in [91, 93]. Actually, he describes in [93] the following relation between the
number of some P-partitions of a positive integer n, denoted mn, and the number e(P) of
extensions of P to a total order. In this case, we have considered that |P| = p:

mn =
e(P)np−1(1+o( 1

n
))

p!(1−p)! as n!∞.

The theory of P-partitions has been used by Petersen in [70] and Stembridge in [94] to
investigate peak algebras and descent algebras.

2.1.2 Some Integer Sequences

We will see that the following sequences {an}n≥0 and {Cnm}m≥0 are useful to enumerate
the number of sections in the Auslander-Reiten quiver of some algebras of Dynkin type.
Sequence {an} is defined as follows:

a0 = 1,

an = an−2x−1 + an−2x−1+y,
(2.1)

where x stands for the length of the binary expansion of n and y denotes the largest power
of 2 associated to a zero occurring in such expansion bearing in mind that y = 0 if the
binary expansion of n has no 0 's. The following are the first 20 terms of {an}.

{1, 2, 3, 4, 4, 6, 7, 8, 5, 8, 10, 12, 11, 14, 15, 16, 6, 10, 13, 16}.

Note that,

a2k+j = a2k−1+j + aj , for each k ≥ 2 and 0 ≤ j ≤ 2k−1 − 1. (2.2)

In particular,

a
22

(2k)−1
= 22k + 1 (a Fermat number). (2.3)

Sequence Cnm is defined in such a way for n ≥ 3 fixed it holds that:

Cnm =


0, if m = 0,

Cn−1
m + Cn−1

m−2p1−1, if 0 < m < 2n−3,

2Cn−1
m−2n−3 + a2n−2−(m−1), if 2n−3 ≤ m < 2n−2.

(2.4)

In this case, for n > 1 and m ≥ 0, p1 denotes the number of digits in the binary expansion
of the number m and a2n−2−(m−1) ∈ {an}. Besides, for m ≥ 0, C2

m = 0, further C3
1 = 1

(see Appendix, Table A.1).
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Remark 2.1. If n = {1, 2, . . . , n} is an n-point chain then C(1,n) stands for all admis-
sible subchains C of n with min C = 1 and max C = n. For instance, {1, 3, 5, 7} and
{1, 4, 6, 7} are four-point subchains contained in C(1,7). Note that, the number of admis-
sible chains in n equals 2n−2. To enumerate admissible subchains is a particular case
of another interesting problem in combinatorics which consists of finding the number of
chains contained in a poset (L,�) where � is the dominance order defined on the lattice
of integer points (a1, a2, . . . , ad) ∈ Zd. And for fixed nonnegative integers n1, n2, . . . , nd,
points (a1, a2, . . . , ad) ∈ L are defined in such a way that 0 ≤ ai ≤ ni for 1 ≤ i ≤ d.
Stanley proved that in the case d = 2 and n1, n2 share common value n then the total
number of chains in L equals 2n+1dn where dn denotes the n-th Delannoy number [92].

2.1.3 Posets of Type bi0i1...ikj0j1...jm

In this section we define the first type of poset we are interested in. Henceforth, we assume
that i0 = j0 = 0, and the set {j1, j2, . . . , jm, i1, i2, . . . , ik} is an admissible subchain where
either i1 = 1 or j1 = 1.

Given the partially ordered set P = (Z2,�) where (x, y) � (x′, y′) if and only if x ≤ x′ and
y ≤ y′, it is denoted as bi0i1...ikj0j1...jm

a subposet of P whose points i�r = (xr, yr), j
�
s = (ws, zs),

ir� = (j�r)
t = (zr, wr) and js� = (j�s)

t = (ys, xs) satisfy the following conditions:

(1) If i1 = 1 and k = m = 1,

i�1 = (x�1, y
�
1) = (n− 1, 0) and j�1 = (w�1, z

�
1) = (0, 0).

(2) If i1 = 1 and k > 1,

i�1 = (x�1, y
�
1) =

(
m∑
t=1

|it − jt|,
max {k,m}−1∑

t=1

|jt − it+1|

)
,

j�1 = (w�1, z
�
1) = (x�1 − |i1 − j1|, y�1),

i�r = (x�r, y
�
r) =

(
x�1 −

r−1∑
t=1

|it − jt|, y�1 −
r−1∑
t=1

|jt − it+1|

)
,

j�s = (w�s, z
�
s) =

(
x�1 −

s∑
t=1

|it − jt|, y�1 −
s−1∑
t=1

|jt − it+1|

)
,

for 1 < r ≤ k and 1 < s ≤ m.

The admissible subchain C = {j1, . . . , jm, i1, . . . , ik} ⊆ n must satisfy the following con-
straints for 1 ≤ r ≤ k and 1 ≤ s ≤ m:

� If i1 = 1 and k = m then i1 < j1 < · · · < ik < jm = n.

� If i1 = 1 and k = m+ 1 then i1 < j1 < · · · < ik < jm < ik = n.

� If j1 = 1 and k = m then j1 < i1 < · · · < jm < ik = n.
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� If j1 = 1 and m = k + 1 then j1 < i1 < · · · < jm < ik < jm = n.

If for s fixed, 1 ≤ s ≤ m, it is defined

Hzs =
{

(x, y) ∈ Z2 | 0 ≤ y ≤ zs, x ≥ ws, x+ y ≤ max {ik, jm} − 1
}
. (2.5)

Then

bi0i1...ikj0j1...jm
=

m⋃
s=1

Hzs . (2.6)

The following algorithm summarizes the construction of posets of type bi0i1...ikj0j1...jm
:

Algorithm 2.1. (1) If i0 = j0 = 0, then either i1 = 1 or j1 = 1,

(2) Fix k ∈ {m,m+ 1} and n,

(3) For 1 ≤ r ≤ k and 1 ≤ s ≤ m do;

� If i1 = 1 and either k = m or k = m+ 1 then the subchain C = {i1 < j1 < · · · <
ik < jm = n} or C = {i1 < j1 < . . . < ik < jm < ik = n}, respectively,

� Else

� If j1 = 1 and either m = k or m = k + 1 then the subchain C = {j1 < i1 < · · · <
jm < ik = n} or C = {j1 < i1 < · · · < jm < ik < jm = n}, respectively.

(4) For 1 ≤ s ≤ m do;

(5) i�r, j
�
s, (i�r)

t, (j�s)
t, and Hzs,

(6) Do
m⋃
s=1

Hzs.

Remark 2.2. The main problem regarding posets of type bi0i1...ikj0j1...jm
consists of finding

the number of lattice paths from (0, 0) to each point p ∈ Mb where Mb denotes the set
of maximal points contained in bi0i1...ikj0j1...jm

. Actually, points p ∈ Mb are solutions of the
following linear programming problem:

Problem 1

Maximize x+ y;
Subject to the constraints;

x ≥ ws,
y ≤ zs,
y ≤ n− x− 1,

x ≥ 0, y ≥ 0.

(2.7)

Henceforth, we let [bi0i1...ikj0j1...jm
] denote such a number and |P (x′,y′)

(x,y) | the number of lattice paths

from a point (x, y) to a point (x′, y′) in a given poset P. [A] will denote the number of
lattice paths from the set of minimal points to the set of maximal points of a subset A ⊆ P.
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The following example shows the procedure described above to construct the poset b014
025.

(1) Firstly we make, i0 = j0 = 0.

(2) Choose m = k = 2 and n = 5, thus ir, js ∈ {1, 2}.

(3) Select the admissible subchain i1 = 1 < j1 = 2 < i2 = 4 < j2 = 5 among all possible
admissible subchains in C(1,5) satisfying the constraints.

(4) Points i�r, j
�
s are given by the following identities:

i�1 = (x�1, y
�
1) = (2, 2),

j�1 = (w�1, z
�
1) = (1, 2),

i�2 = (x�2, y
�
2) = (1, 0),

j�2 = (w�2, z
�
2) = (0, 0).

(2.8)

(5) Subsets Hz1 and Hz2 are given by the identities:

Hz1 = {(1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (2, 1), (3, 1), (1, 2), (2, 2)},
Hz2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)}.

(2.9)

(6) We conclude finally that:

b014
025 = Hz1 ∪Hz2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (1, 1), (2, 1), (3, 1), (1, 2), (2, 2)}.

Figure 2.2 shows the way points in b014
025 are connected by lattice paths.

b // b
b //

OO

b //

OO

b
b // b //

OO

b //

OO

b //

OO

b
(0,0) (1,0) (2,0) (3,0) (4,0)

(1,1) (3,1)

(1,2) (2,2)

Figure 2.2. Lattice paths in poset b014
025 .

Figure 2.3 shows other examples of lattice paths in posets of type bi0i1...ikj0j1...jm
.

Remark 2.3. Let Pb be a poset of type bi0i1...ikj0j1...jm
then the derivatives ∂Pb

∂x and ∂Pb
∂y are

defined in such a way that

∂Pb
∂x

= Pb\{(n− 1, 0)M},

∂Pb
∂y

= Pb\{(0, n− 1)M}.
(2.10)
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b b
b // b b //

OO

b b // b // b b // b //

OO

b
(0,0) (1,0) (0,0) (1,0) (0,0) (1,0) (2,0) (0,0) (1,0) (2,0)

b01
02 b02

01 b01
03 b02

013

(0,1) (1,1)

b
b // b b //

OO

b
b //

OO

b //

OO

b b //

OO

b //

OO

b b // b // b // b
(0,0) (1,0) (2,0) (0,0) (1,0) (2,0) (0,0) (1,0) (2,0) (3,0)

b013
02 b03

01 b01
04

(0,1) (1,1)
(0,1)

(1,1)

(0,2)

b b // b
b // b // b //

OO

b b // b //

OO

b //

OO

b
(0,0) (1,0) (2,0) (3,0) (0,0) (1,0) (2,0) (3,0)

b02
014 b013

024

(2,1) (1,1) (2,1)

b
b
OO

// b b // b // b
b // b //

OO

b //

OO

b b //

OO

b //

OO

b //

OO

b
(0,0) (1,0) (2,0) (3,0) (0,0) (1,0) (2,0) (3,0)

b03
014 b014

03

(1,1)
(2,1) (0,1) (1,1) (2,1)

(1,2)

Figure 2.3. Examples of oriented lattice paths in posets of type bi0i1...ikj0j1...jm
.

Formulas (2.10) allow to establish the following equalities regarding the number of lattice
paths from (0, 0) to each point p ∈Mb as follows:

[Pb] =

{
[∂Pb∂x + ∂Pb

∂y ], if ik = n,

[∂Pb∂y ], otherwise.

In posets of type bi0i1...ikj0j1...jm
these identities have the following interpretations:
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Lemma 2.1. Posets bi0i1...ikj0j1...jm
satisfy the following identities:

[
bi0i1...ikj0j1...jm

]
=



[
bi0i1...ikj0j1...jm−1

]
, if 1 6 ik < n− 1,[

bi0i1...ikj0j1...jm−1

]
, if ik = n− 1,[

b
i0i1...ik−1

j0j1...jm

]
+
[
b
i0...ik−1jm
j0j1...jm−1

]
, if ik = n, jm = n− 1, |jm − ik−1| > 1,[

b
i0i1...ik−1

j0j1...jm

]
+
[
b
i0...ik−2jm
j0j1...jm−1

]
, if ik = n, jm = n− 1, |jm − ik−1| = 1,[

bi0i1...ik−1
j0j1...jm

]
+
[
b
i0...ik−1ik−1
j0j1...jm−1

]
, if ik = n, 1 < jm < n− 1, |jm − ik−1| > 1,[

bi0i1...ik−1
j0j1...jm

]
+
[
b
i0...ik−2ik−1
j0j1...jm−1

]
, if ik = n, 1 < jm < n− 1, |jm − ik−1| = 1,[

bi0n−1
j01

]
+
[
bi0n−1
j01

]
, if i1 = n, jm = 1.

The following theorem shows a connection between sequence (2.1) and the number of
lattice paths in posets of type bi0i1...ikj0j1...jm

from (0, 0) to points p ∈Mb.

Theorem 2.1. For a given poset bi0i1...ikj0j1...jm
(of type b) associated to an admissible subchain

{j1, . . . , jm, i1, . . . , ik} it holds the identity[
bi0i1...ikj0j1...jm

]
= ar,

where for n > 1

r =



k∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1, if 1 < ik < n,

k∑
t=k−m+1

2it−1 −
m∑
t=1

2jt−1, if ik = n,

0, if ik = 1.

Proof. By induction. For n = 2 we have two cases. If ik = 1 the associated poset is given

by bi02
j01 = {(0, 0), (1, 0)} and the only lattice path is (0, 0) −! (1, 0). Thus,

[
bi01
j02

]
= 1 = a0.

On the other hand, if ik = 2 the associated poset is bi02
j01 = {(0, 0), (0, 1), (1, 0)} with two

lattice paths. Since r = 1 and a1 = 1 it holds that
[
bi02
j01

]
= 2 = a1. Suppose now that the

case holds for n ≤ p with 1 ≤ ik ≤ p.

If n = p+ 1 and ik = 1 then we have that
[
bi01
j0p+1

]
=
[
bi01
j0p

]
= a1. And if 1 < ik < p then[

bi0i1...ikj0j1...p+1

]
=
[
bi0i1...ikj0j1...p

]
= ar with r =

k∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1, if ik = p we have that

jm−1 < p, thus
[
bi0i1...pj0j1...p+1

]
=
[
bi0i1...pj0j1...jm−1

]
= ar with r =

k∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1.

Now if ik = p+ 1, then the following cases hold:

Case 1. If jm = p, |jm−kk−1| > 1 and ik−1 > 1, we have that
[
bi0i1...p+1
j0j1...p

]
=
[
b
i0i1...ik−1

j0j1...p

]
+[

b
i0...ik−1p
j0j1...p−1

]
= ar + as where r =

k−1∑
t=k−m+1

2it−1 −
m−1∑
t=1

2jt−1 and s =
k−1∑

t=k−m+1

2it−1 −
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m∑
t=1

2jt−1 + 2p−2, actually, r =

k∑
t=k−m+1

2it−1 −
m∑
t=1

2jt−1 − 2p−1 and s =
k∑

t=k−m+1

2it−1 −

m∑
t=1

2jt−1 − 2p−1 + 2p−2. Note that, if w =

k∑
t=k−m+1

2it−1 −
m∑
t=1

2jt−1 then the number of

digits of w is x = p and the largest power of 2 associated to a zero in the binary expansion
of y is 2p−2 (see formula (2.1)), thus

[
bi0i1...p+1
j0j1...p

]
= aw.

Now, if ik−1 = 1 then
[
b
i01(p+1)
j0p

]
=
[
bi01
j0p

]
+
[
bi01,p
j0p−1

]
= ar + as where r = 0 and s =

2p−1 − 2p−2. Since w = 2p − 2p−1 then the number of digits of w is x = p and the largest
power of 2 associated to a zero in the binary expansion of y is again 2p−2, therefore,

[
b
i01(p+1)
j0p

]
= aw.

Case 2. If ik = p + 1, jm = p and |jm − ik−1| = 1, then
[
bi0i1...p+1
j0j1...p

]
=
[
bi0i1...p−1
j0j1...p

]
+[

b
i0...ik−2(p)
j0j1...jm−1

]
= ar +as where r =

k∑
t=k−m+1

2it−1−
m∑
t=1

2jt−1−2p−1 and s =

k∑
t=k−m+1

2it−1−

m∑
t=1

2jt−1 − 2p−1 + 2p−2, x = p and y = 2p−2, therefore

[
bi0i1...p+1
j0j1...p

]
= aw.

Case 3. If ik = p + 1, 1 < jm < p and |jm − ik−1| > 1 then
[
bi0i1...p+1
j0j1...jm

]
=
[
bi0i1...pj0j1...jm

]
+[

b
i0...ik−1(p)
j0j1...jm−1

]
= ar + aw where r =

k∑
t=k−m+1

2it−1 −
m∑
t=1

2jt−1 − 2p−1, s =

k∑
t=k−m+1

2it−1 −

m∑
t=1

2jt−1 − 2p−1 + 2jm−2, x = p and y = 2jm−2, thus

[
bi0i1...p+1
j0j1...p

]
= aw.

Case 4. If ik = p + 1, 1 < jm < p and |jm − ik−1| = 1 then
[
bi0i1...p+1
j0j1...jm

]
=
[
bi0i1...pj0j1...jm

]
+[

b
i0...ik−2(p)
j0j1...jm−1

]
= ar + aw where r =

k∑
t=k−m+1

2it−1 −
m∑
t=1

2jt−1 − 2p−1, s =

k∑
t=k−m+1

2it−1 −

m∑
t=1

2jt−1 − 2p−1 + 2jm−2, in this case, x = p and y = 2jm−2, therefore

[
bi0i1...p+1
j0j1...p

]
= aw.
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Case 5. If ik = p+ 1 and j1 = 1,
[
bi0p+1
j01

]
=
[
bi0pjo1

]
+
[
bi0pjo1

]
= ar + ar where r = 2p−1− 1,

the number of digits of w = 2p − 1 is x = p and w has no zeroes in its binary expansion,

that is, y = 0. Therefore, r = w − 2x−1 and
[
bi0p+1
j01

]
= aw. �

2.1.4 Posets of Type di0i1...ikj0j1...jm

In this section, we define another type of posets whose lattice paths will allow to enumerate
sections in Auslander-Reiten quivers of algebras of Dynkin type An.

Points i∗r = (xr, yr), j
∗
s = (xs, ys), ir∗ = (xr, yr) and jr∗ = (ws, zs) in posets of type

di0i1...ikj0j1...jm
⊂ P satisfy the following conditions:

� If i1 = 1

i∗r = (xr, yr) =

(
−

r−1∑
w=0

lw, u−
r−1∑
w=0

dw

)
,

j∗s = (ws, zs) =

(
−

s−1∑
w=0

lw, u−
s∑

w=0

dw

)
,

ir∗ = (xr, yr) =

(
r−1∑
w=0

dw,−n+ 1 + u+

r−1∑
w=0

lw

)
,

js∗ = (ws, zr) =

(
s∑

w=0

dw,−n+ 1 + u+

s−1∑
w=0

lw

)
.

� If j1 = 1

i∗r = (xr, yr) =

(
−

r∑
w=0

lw, u−
r−1∑
w=0

dw

)
,

j∗s = (ws, zs) =

(
−

s−1∑
w=0

lw, u−
s−1∑
w=0

dw

)
,

ir∗ = (xr, yr) =

(
r−1∑
w=0

dw,−n+ 1 + u+

r∑
w=0

lw

)
,

js∗ = (ws, zs) =

(
s−1∑
w=0

dw,−n+ 1 + u+

s−1∑
w=0

lw

)
.

where 1 ≤ r ≤ k and 1 ≤ s ≤ m.

In these cases;

u =



t−1∑
l=0

|ik−l − jm−l|, if 1 ≤ ik < n and t = min {k,m},

n− 1−
t−1∑
l=0

|ik−l − jm−l|, if ik = n.
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Numbers dw and lw are given by the following relations:

(1) If i1 = 1 and

� k = m = 1 then d1 = |j1 − i1| and l0 = 0.

� k = m > 1 then dr = |jr− ir| and ls = |is+1−js| for 1 ≤ r ≤ k and 1 ≤ s ≤ k−1.

� 1 < k = m + 1 then dr = |jr − ir| and ls = |is+1 − js| for 1 ≤ r ≤ k − 1 and
1 ≤ s ≤ k − 1.

If ji = 1 and

� k = m = 1 then d0 = 0 and l1 = |j1 − i1|.
� k = m > 1 then ds = |js+1− is| and lr = |jr− ir| for 1 ≤ r ≤ k−1 and 1 ≤ s ≤ k.

� 1 < k = m + 1 then ds = |js+1 − is| and lr = |jr − ir| for 1 ≤ r ≤ m − 1 and
1 ≤ s ≤ m− 1.

l0 = 0 and d0 = 0.

(2) di0i1...ikj0j1...jm
= A1 ∪A2 where

A1 =
k⋃
r=1

Hyr and A2 =
m−1⋃
s=1

Hzs ,

with
Hyr =

{
(x, y) ∈ Z2 | 0 ≤ y ≤ yr, x ≥ xr, x+ y ≤ u

}
and

Hzs =
{

(x, y) ∈ Z2 | zs ≤ y ≤ 0, x ≤ ws, x+ y ≥ −n+ 1 + u
}
.

The following algorithm summarizes the construction of posets of type di0i1...ikj0j1...jm
.

Algorithm 2.2. (1) Fix i0 = 0 = j0,

(2) Define k ∈ {m,m+ 1}, n and either i1 = 1 or j1 = 1,

(3) If i1 = 1 and k = m or k = m+ 1 then the subchain C = {i1 < j1 < i2 < j2 < · · · <
jk−1 < ik < jk} or C = {i1 < j1 < i2 < j2 < · · · < jk−2 < ik−1 < jk−1 < ik},

(4) Else j1 = 1 and m = k or m = k + 1 then the subchain C = {j1 < i1 < j2 < i2 <
· · · < ik−1 < jk < ik} or C = {j1 < i1 < j2 < i2 < · · · < ik−1 < jk < ik < jk+1},

(5) If i1 = 1 then for 1 ≤ r ≤ k and 1 ≤ s ≤ k− 1 or 1 ≤ r ≤ k− 1 and 1 ≤ s ≤ k− 1 do
dr and ls,

(6) Else j1 = 1 and for 1 ≤ r ≤ k − 1 and 1 ≤ s ≤ k or 1 ≤ r ≤ k − 1 and 1 ≤ s ≤ k − 1
do; ds and lr,

(7) Compute u,

(8) For 1 ≤ r ≤ k and 1 ≤ s ≤ m do i∗r, j
∗
s , ir∗, js∗,

(9) For 1 ≤ r ≤ k and 1 ≤ s ≤ m− 1 do Hyr , Hzs,
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(10) Compute A1, A2 and A1 ∪A2.

As an example, we build the poset d013
025 by using the Algorithm 2.2.

(1) i0 = j0 = 0.

(2) k = m = 2, n = 5, i1 = 1.

(3) It is constructed the admissible subchain 1 < 2 < 3 < 5 with i1 = 1, j1 = 2, i2 = 3
and j2 = 5,

(4)
d1 = |j1 − i1| = 1 , d2 = |j2 − i2| = 2 and l1 = |i2 − j1| = 1,

(5) 3 = i2 < 5 and t = min {k,m} = 2

u = |i2 − j2|+ |i1 − j1| = 3,

(6) 1 ≤ r, s ≤ 2

i∗1 = (x1, y1) = (−l0, 3− d0) = (0, 3),

i∗2 = (x2, y2) = (−l1, 3− d1) = (−1, 2),

i1∗ = (x1, y1) = (d0,−1 + l0) = (0,−1),

i2∗ = (x2, y2) = (d1,−1 + l1) = (1, 0),

j∗1 = (w1, z1) = (l0, 3− d1) = (0, 2),

j∗2 = (w2, z2) = (−l1, 3− d1 − d2) = (−1, 0),

j1∗ = (w1, z1) = (d1,−1 + l0) = (1,−1),

j2∗ = (w2, z2) = (d1 + d2,−1 + l1) = (3, 0).

(7)

Hy1 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (0, 3)},

Hy2 = {(−1, 0), (0, 0), (1, 0), (2, 0), (3, 0), (−1, 1), (0, 1), (1, 1), (2, 1), (−1, 2), (0, 2), (1, 2)},

Hz1 = {(1,−1), (0,−1), (1, 0), (0, 0), (−1, 0)}.

(8) A1 = Hy1 ∪Hy2 , A2 = Hz1 , d013
025 = A1 ∪A2.

The following is the linear programming problem associated to posets of type d.

Problem 2
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Maximize (Minimize) x+ y;
Subject to the constraints;

xr ≤ x ≤ ws,
zs ≤ y ≤ yr,

−n+ 1 ≤ x+ y − u ≤ 0.

(2.11)

As for posets of type b, if Md denotes the set of minimal points in a poset of the form
di0i1...ikj0j1...jm

then the main problem for this kind of posets (of type d) consists of finding the

number [αi0i1...ikj0j1...jm
] of lattice paths from points p ∈ Md to points q ∈ Md satisfying the

following conditions:

xi ≤ x ≤ wi−1, y = yi for any 2 ≤ i ≤ k, if i1 = 1,

xi ≤ x ≤ wi, y = yi for any 1 ≤ i ≤ k, if j1 = 1.
(2.12)

Figure 2.4 shows lattice paths linking points in d013
025.

b
b // b //

OO

b
b //

OO

b //

OO

b //

OO

b
b //

OO

b //

OO

b //

OO

b //

OO

b
b //

OO

b
OO

(0,3)

(1,2)

(2,1)

(3,0)

(2,0)

(1,−1)(0,−1)

(−1,0)

(−1,2)

Figure 2.4. Lattice paths in poset of type d013
025.

Figure 2.5 below shows other examples of lattice paths in posets of type d0135
0247 and d0246

01357.
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b
b // bOO // b b // b

b // b //

OO b //

OO b //

OO b b // b //

OO b //

OO b
b //

OO b //

OO b //

OO b //

OO b //

OO b b // b //

OO b //

OO b //

OO b //

OO b
b //

OO b //

OO b //

OO b //

OO b //

OO b //

OO b b //

OO b //

OO b //

OO b //

OO b //

OO b //

OO b
b //

OO b //

OO b //

OO bOO bOO // bOO // bOO // bOO // bOO
b //

OO bOO bOO // bOO // bOO
bOO

(−2,0)

(−1,−1)

(0,−2) (1,−2)

(2,−1)

(3,0) (4,0)

(3,1)

(2,2)

(1,3)

(0,4)

(−1,3)

(−2,2)

(−3,0)

(−2,−1)

(−1,−2)

(0,−3)

(1,−2)

(2,−1)

(3,0)

(2,1)

(1,2)

(0,3)(−1,3)

(−2,2)

(−3,1)

d0135
0247 d0246

01357

Figure 2.5. Examples of oriented lattice paths in posets of type di0i1...ikj0j1...jm
.

Lemma 2.2. Numbers [αi0i1...ikj0j1...jm
] with jm = n satisfy the following identities:

[
αi0i1...ikj0j1...jm

]
=



0, if ik = 1,

1, if ik = 2,[
αi0i1...ikj0j1...jm−1

]
+
[
αi0i1...ik−1
j0j1...jm−1

]
, if 2 < ik ≤ n− 2, ik − jm−1 > 1,[

αi0i1...ikj0j1...jm−1

]
+
[
α
i0i1...ik−1

j0...jm−2jm−1

]
, if 2 < ik ≤ n− 2, ik − jm−1 = 1,

2
[
α
i0i1...ik−1

j0...jm−2jm−1

]
+
[
b
j0j1...jm−1

i0i1...ik

]
, if 2 < ik = n− 1, jm−1 = n− 2,

2
[
αi0i1...ik−1
j0j1...jm−1

]
+
[
b
j0j1...jm−1

i0i1...ik

]
, if 2 < ik = n− 1, jm−1 < n− 2.

Proof. We have the following cases:

Case 1. If ik = 1 then
[
αi01
j0n

]
= 0.

Case 2. If ik = 2 then
[
αi02
j01n

]
=
∣∣∣P (0,n−2)

(−1,0)

∣∣∣ = 1.

Case 3. If 2 < ik ≤ n− 2, ik − jm−1 > 1, A = A1 ∪A2 and B = B1 ∪B2 ∪B3 with

A1 =

k⋃
r=1

{(x, y) ∈ di0i1...ikj0j1...jm
| 1 ≤ y ≤ yr, x ≥ xr, x+ y ≤ u},

A2 =

m−1⋃
s=1

{(x, y) ∈ di0i1...ikj0j1...jm
| zs + 1 ≤ y ≤ 1, x ≤ ws, x+ y ≥ −n+ 2 + u},

B1 =
k−1⋃
r=1

{(x, y) ∈ di0i1...ikj0j1...jm
| 0 ≤ y ≤ yr, x ≥ xr, x+ y ≤ u},
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B2 = {(x, y) ∈ di0i1...ikj0j1...jm
| 0 ≤ y ≤ yk, x ≥ xk + 1, x+ y ≤ u} and

B3 =
m−1⋃
s=1

{(x, y) ∈ di0i1...ikj0j1...jm
| zs + 1 ≤ y ≤ 0, x ≤ ws, x+ y ≥ −n+ 2 + u},

then the maps g1 : di0i1...ikj0j1...jm−1 −! A and g2 : di0i1...ik−1
j0j1...jm−1 −! B such that:

g1(x, y) = (x, y + 1),

g2(x, y) = (x, y),
(2.13)

are isomorphisms.

If C = {(x, y) ∈ bi0i1...ikj0j1...jm
, |x+y = −n+1+u} then the union C∪A is a poset with relations

of type (x, y) � (x, y + 1) for (x, y) ∈ C and (x, y + 1) ∈ A. Since
∣∣∣P (e,f)

(x,y−1)

∣∣∣ =
∣∣∣P (e,f)

(x,y)

∣∣∣
where all of paths P

(e,f)
(x,y) contain at least one point satisfying conditions (2.12) and points

(x, y), (e, f) are chosen in such a way that, x + y − 1 = −n + 1 + u and e + f = u then[
C ∪A

]
=
[
αi0i1...ikj0j1...jm−1

]
.

Now, we define the poset C∪B with relations of the form (x, y) � (x+1, y) with (x, y) ∈ C
and (x+ 1, y) ∈ B. Since

∣∣∣P (e,f)
(x−1,y)

∣∣∣ =
∣∣∣P (e,f)

(x,y)

∣∣∣ then
[
C ∪B

]
=
[
αi0i1...ik−1
j0j1...jm−1

]
. Thus,[

αi0i1...ikj0j1...jm

]
=
[
C ∪A

]
+
[
C ∪B

]
= [αi0i1...ikj0j1...jm−1

]
+
[
αi0i1...ik−1
j0j1...jm−1

]
.

Case 4. If 2 < ik ≤ n − 2, ik − jm−1 = 1, (A,C described as before) and D = B1UC1

where

C1 =
m−2⋃
s=1

{(x, y) ∈ di0i1...ikj0j1...jm
| zs + 1 ≤ y ≤ 0, x ≤ ws, x+ y ≥ −n+ 2 + u},

then the maps g3 : di0i1...ikj0j1...jm−1 −! A and g4 : d
i0i1...ik−1

j0...jm−2jm−1 −! D defined as g1 and g2,
respectively are isomorphisms, sets C∪A and C∪D are posets with the same relations as in
Case 3 for points (x, y) ∈ C∪A. Whereas, relations between points (x, y) ∈ C∪D are of the

form (x, y) � (x+1, y) for (x, y) ∈ C and (x+1, y) ∈ D. Thus
[
C∪A

]
=
[
αi0i1...ikj0j1...jm−1

]
and[

C ∪D
]

=
[
α
i0i1...ik−1

j0...jm−2jm−1

]
. Therefore,

[
αi0i1...ikj0j1...jm

]
=
[
C ∪A

]
+
[
C ∪D

]
=
[
αi0i1...ikj0j1...jm−1

]
+[

α
i0i1...ik−1

j0...jm−2jm−1

]
.

Case 5. If 2 < ik = n− 1, im−1 = n− 2, D is described as before and

E = {(x, y) ∈ di0i1...ikj0j1...jm
| y ≥ yk, xk ≤ x},

then maps g4 and

g5 : b
j0j1...jm−1

i0i1...ik
−! E

(x, y) 7−!
(
x−

k∑
t=1

lt, y + 1
)
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where for each edge ((x, y), (w, z)), it holds that

g5((x, y), (w, z)) =

((
x−

k∑
t=1

lt, y + 1

)
,

(
w −

k∑
t=1

lt, z + 1

))
, (2.14)

are isomorphisms.

Now, the set C ∪ D is a poset with lattice paths induced by di0i1...ikj0j1...jm
and

∣∣∣P (e,f)
(x,y−1)

∣∣∣ +∣∣∣P (e,f)
(x−1,y)

∣∣∣ = 2
∣∣∣P (e,f)

(x,y)

∣∣∣ where paths P
(e,f)
(x,y) satisfy conditions as described in Case 3. There-

fore
[
C ∪D

]
= 2
[
α
i0i1...ik−1

j0...jm−2jm−1

]
.

The set {(−n+ 1 + u, 0)} ∪ E is a poset whose lattice paths are induced by di0i1...ikj0j1...jm
and∣∣∣P (e,f)

(−n+1+u,0)

∣∣∣ =
∣∣∣P (e,f)

(−n+1+u,1)

∣∣∣ then
[
{(−n+ 1 + u, 0)} ∪ E

]
=
[
b
j0j1...jm−1

i0i1...ik

]
. Thus,[

αi0i1...ikj0j1...jm

]
=
[
C ∪D

]
+
[
{(−n+ 1 + u, 0)} ∪ E

]
= 2
[
α
i0i1...ik−1

j0...jm−2jm−1

]
+
[
b
j0j1...jm−1

i0i1...ik

]
.

Case 6. If 2 < ik = n− 1, im−1 < n− 2, B, E, C, g2, g5 and {(−n + 1 + u, 0)} ∪ E are
described as before then the set C ∪ B is a poset with lattice paths induced by di0i1...ikj0j1...jm

.

Then
[
C ∪B

]
= 2
[
αi0i1...ik−1
j0j1...jm−1

]
. Thus,[

αi0i1...ikj0j1...jm

]
=
[
C ∪D

]
+
[
{(−n+ 1 + u, 0)} ∪ E

]
= 2
[
αi0i1...ik−1
j0j1...jm−1

]
+
[
b
j0j1...jm−1

i0i1...ik

]
.

�

If r = 0 and r = 1 are associated to numbers
[
αi01
j0n

]
and

[
αi02
j01n

]
respectively. Then

the following result shows a relationship between numbers
[
αi0i1...ikj0j1...jm

]
and elements in the

integer sequence Cnm (see formula (2.4)).

Theorem 2.2. Let di0i1...ikj0j1...jm
be a poset of type d with 2 < ik < n and jm = n then[

αi0i1...ikj0j1...jm

]
= Cjmr ,

where r =

k∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1.

Proof. (Induction). If n = 4 and 2 ≤ ik < 4 then jm−1 = 1, and
[
αi03
j014

]
= 2

[
αi02
j013

]
+[

bj01
i03

]
= 2C3

1 + a0 = C4
3 with r = 23 − 1. If jm−1 = 2

[
αi013
j024

]
= 2

[
αi01
j03

]
+
[
bj02
i013

]
=

2C3
0 + a1 = C4

2 with r = 22 − 2.

Suppose that the hypothesis holds for n ≤ p with 2 ≤ ik < p. Then if n = p + 1 the
following cases have place:
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Case 1. If 2 < ik ≤ p − 1 and |ik − jm−1| > 1 we have that
[
αi0i1...ikj0j1...jm

]
=
[
αi0i1...ikj0j1...p

]
+[

αi0i1...ik−1
j0j1...p

]
= Cpw + Cps where w =

k∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1 and s =

k−1∑
t=k−m+2

2it−1 −

m−1∑
t=1

2jt−1 +2ik−2. Since, it is easy to see that the number of digits in the binary expansion

of w = s+ 2ik−2 < 2p−2 is x = ik − 1 then we conclude that,

[
αi0i1...ikj0j1...jm

]
= Cp+1

w .

Case 2. If 2 < ik ≤ p−1 and |ik− jm−1| = 1 then we have that
[
αi0i1...ikj0j1...jm

]
=
[
αi0i1...ikj0j1...p

]
+[

α
i0i1...ik−1

j0...jm−2p

]
= Cpw+Cps , in this case, w =

k∑
t=k−m+2

2it−1−
m−1∑
t=1

2jt−1 and s =

k−1∑
t=k−m+2

2it−1−

m−2∑
t=1

2jt−1 + 2ik−2 then s = w − 2ik−2 and the number of digits in the binary expansion of

w is x = ik − 1, thus,

[
αi0i1...ikj0j1...jm

]
= Cp+1

w .

Case 3. If 2 < ik = p and im−1 = p − 1, it follows that
[
αi0i1...ikj0j1...jm

]
= 2

[
α
i0i1...ik−1

j0...jm−2p

]
+[

bj0j1...p−1
i0i1...p

]
= 2Cpw+as, in this case, if k = m then w =

k−1∑
t=k−m+2

2it−1−
m−1∑
t=1

2jt−1 = r−2p−2

and s = 2p−1 − (r + 1) with r =

k∑
t=1

2it−1 −
m−1∑
t=1

2jt−1. On the other hand, if k = m + 1

then w = r − 2p−2 and s = 2p−1 − (r + 1) with r =

k∑
t=1

2it−1 −
m−1∑
t=1

2jt−1, therefore,

[
αi0i1...ikj0j1...jm

]
= Cp+1

r .

Case 4. If 2 < ik = p and im−1 < p − 1, it holds that
[
αi0i1...ikj0j1...jm

]
= 2

[
αi0i1...ik−1
j0j1...p

]
+[

b
j0j1...jm−1

i0i1...p

]
= 2Cpw + as where w =

k−1∑
t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1 + 2p−2 = r − 2p−2 and

s =

m−1∑
t=k−m+1

2jt−1−
k−1∑
t=1

2it−1 = 2p−1− (r+ 1), with r =

k∑
t=k−m+2

2it−1−
m−1∑
t=1

2jt−1. In this

case, we also have that
[
αi0i1...ikj0j1...jm

]
= Cp+1

r . �

2.1.5 Posets of Type hi0i1...ikj0j1...jm

We let hj0j1...jmi0i1...ik
denote a poset which can be defined by following the steps:
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1. Follow steps 1-5 of Algorithm 2.1.

2. Define

G =

m⋃
s=1

{
{(x, y) ∈ Z2 | a ≤ y ≤ zs, x = ws} ∪ {(x, y) ∈ Z2 | y = zs, ws ≤ x ≤ b}

}
,

where

a =

{
zs+1, if s < m,

0, if s = m,
b =

{
ws−1, if s > 1,

x1, if s = 1.

3. hj0j1...jmi0i1...ik
=
{

(x, y) ∈ Z2 | x = w−i, y = z+i, (w, z) ∈ G
}

for 0 ≤ i ≤ max {ik, jm}.

The following are examples of lattice paths in posets of type hj0j1...jmi0i1...ik
:

b
b // b // b b // b //

OO b
b // b b //

OO b //

OO b b //

OO b //

OO b
bOO // b b //

OO b //

OO b b //

OO b //

OO b
b //

OO b b //

OO b //

OO b b //

OO bOO
(−2,2)

(−1,1)

(−1,2)

(0,0)

(0,1)

(1,0)

(−3,3)

(−2,2)

(−1,1)

(−1,3)

(0,0)

(0,2)

(1,1)

(2,0)

(−3,3)

(−2,2)

(−2,4)

(−1,1)

(−1,3)

(0,0)

(0,2)

(1,1)

(1,0)

h01
02 h01

03 h02
013

Figure 2.6. Examples of oriented lattice paths of posets of type hj0j1...jmi0i1...ik
.

Now, we intend to enumerate the number of lattice paths
∣∣∣P (e,f)

(x,y)

∣∣∣ connecting points (x, y)

and (e, f) with y = −x and e+ f = max {ik, jm}, (x, y), (e, f) ∈ hj0j1...jmi0i1...ik
, and conclude

that [
hj0j1...jmi0i1...ik

]
=
∑∣∣∣P (e,f)

(x,y)

∣∣∣.
Numbers bRt and bLr are defined as follows for cases i1 = 1, j1 = 1:

� If j1 = 1 then

bRt =

{[
bj0...jtjmi0...it−1(jt+p1)

]
, for 1 ≤ t ≤ k, 1 ≤ p1 ≤ |Rt|,[

bj0jmi01

]
, for t = 0,

bLr =

{[
b
i0...ir−1jm
j0...jr−1(ir−1+p2)

]
, for 1 ≤ r ≤ m, 1 ≤ p1 ≤ |Lm| y p2 6= |Lm|[

bi011...ik
j0j1...jm

]
, for p2 = |Lm| and r = m,

with |Rt| = |it − jt|, |R0| = 1, |Lr| = |jr − ir−1| and |L1| = 1 for 1 ≤ t ≤ k and
1 < r ≤ m.

� If i1 = 1
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bRt =
[
b
j0...jt−1jm
i0...it−1(jt−1+p1)

]
para 1 ≤ t ≤ k, 1 ≤ p1 ≤ |Rt|,

bLr =


[
bi0...irjmj0...jr−1(ir+p2)

]
, for 1 ≤ r ≤ m, 1 ≤ p1 ≤ |Lm| and p2 6= |Lm|,[

bi011...ik
j0j1...jm

]
, for p2 = |Lm| and r = m,[

bj0jmi01

]
, for r = 0,

with |Rt| = |it − jt−1|, |R1| = 1, |Lr| = |jr − ir| and |L0| = 1 for 1 ≤ t ≤ k and
1 ≤ r ≤ m.

Theorem 2.3. [
hj0j1...jmi0i1...ik

]
=
∑
t,p1

bRt +
∑
r,p1,p2

bLr .

Proof. Let hj0j1...jmi0i1...ik
be a poset with jm = n and m ≥ k, and sets bu defined in such a

way that:

bu = {(x, y) ∈ hj0j1...jmi0i1...ik
| x ≥ xm − u, y ≥ ym + u, x+ y ≤ n− 1},

with 0 ≤ u ≤ n. If j1 = 1, it is possible to build the sets Rt = {y ∈ Z|zt ≤ y < yt},
R0 = {y1}, Lr = {x ∈ Z|xr ≤ x ≤ wr−1} and L1 = {x1} for 1 ≤ t ≤ k y 1 < r ≤ m
where |Rt| = |zt − yt| = |it − jt|, |R0| = 1, |Lr| = |xr −wr−1| = |jr − ir−1| and |L1| = 1. If
k−t∑
a=0

|Rk+1−a| ≤ u <
k+1−t∑
a=0

|Rk+1−a| (|Rk+1| = 0), then there exists an isomorphism

fu : bj0...jtjmi0...it−1(jt+p1)
−! bu

(x, y) 7−! (y − u, x+ u)

with

fu
(
(x, y), (z, w)

)
=
(
((y − u, x+ u), (w − u, z + u))

)
for any edge ((x, y), (z, w)). (2.15)

For 1 ≤ p1 ≤ |Rt|, where u =

k+1∑
a=0

|Rk+1−a| then there exists an isomorphism fu : bj0jmi01 −!

bu defined as in (2.15). Similarly, if
k∓1∑
a=0

|Rk+1−a|+
r−1∑
a=0

|La| ≤ u <
k+1∑
a=0

|Rk+1−a|+
r∑

a=0

|La|

(|L0| = 0) or u = |Lm|, it is possible to define an isomorphism defined as in (2.15) with

gu : b
i0...ir−1jm
j0...jr−1(ir−1+p2) −! bu, for 1 ≤ p2 ≤ |Lr|.

The same can be done for a homomorphism

gn : bi011...ik
j0j1...jm

−! bn, if r = m and |Lm| = p2.
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Thus, [
hj0j1...jmi0i1...ik

]
=
∑
t,p1

bRt +
∑
r,p1,p2

bLr . (2.16)

If i1 = 1 then we can construct sets Rt = {y ∈ Z|zt ≤ y < yt−1}, R1 = {z1}, Lr = {x ∈
Z|xr ≤ x < wr} and L0 = {w1} for 1 < t ≤ k and 1 ≤ r ≤ m, where |Rt| = |zt − yt−1| =
|it − jt−1|, |R1|1, |Lr| = |xr − wr| = |jr − ir| and |L0| = 1.

We conclude that the theorem holds provided that isomorphisms of the following types:

fu : b
j0...jt−1jm
i0...it−1(jt−1+p1) −! bu,

gu : bj0jmi01 −! bu,

hu : bi0...irjmj0...jr−1(ir+p2) −! bu,

in : bi011...ik
j0j1...jm

−! bn

(2.17)

can be defined respectively according to the following cases for u, p1 and p2:

k−t∑
a=0

|Rk+1−a| ≤ u <
k+1−t∑
a=0

|Rk+1−a| and 1 ≤ p1 ≤ |Rt|, (2.18)

k∓1∑
a=0

|Rk+1−a|+ |L0| ≤ u <
k+1∑
a=0

|Rk+1−a|+ |L0|+ |L1|, (2.19)

k∓1∑
a=0

|Rk+1−a|+
r−1∑
a=0

|La| ≤ u <
k+1∑
a=0

|Rk+1−a|+
r∑

a=0

|La|, | and 1 ≤ p2 ≤ |Lr|, p2 6= |Lm|,

(2.20)

r = m and p2 = |Lm|. (2.21)

We are done. �

Remark 2.4. On sets {bRt} (resp. {bLm}) it is defined a partial order such that bRt < bRs
(resp. bLt < bLs) if and only if iks < ikt (resp. ikt < iks) with < the relation induced by
the usual order of natural numbers, thus elements in the set {{bRt}, {bLm}} can be written
as a vector

hj0j1...jmi0i1...ik
= (v0, . . . , vn),

where if bRt < bRs then vu = bRt and vu+1 = bRs for 0 ≤ u < |{bRt}| − 1, and if bLt < bLs
then vr = bLt and vr+1 = bLs for |{bRt}| ≤ r < |{bRt}|+ |{bLm}|.

As an example, we have the following identities:
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h02
01 =

([
b02
01

]
,
[
b02
01

]
,
[
b01
02

])
,

h03
01 =

([
b03
01

]
,
[
b03
01

]
,
[
b013
02

]
,
[
b01
03

])
,

h013
02 =

([
b013
02

]
,
[
b03
01

]
,
[
b03
01

]
,
[
b02
013

])
,

h04
01 =

([
b04
01

]
,
[
b04
01

]
,
[
b014
02

]
,
[
b014
03

]
,
[
b01
04

])
,

h014
02 =

([
b014
02

]
,
[
b04
01

]
,
[
b04
01

]
,
[
b024
013

]
,
[
b02
014

])
,

h024
013 =

([
b024
013

]
,
[
b04
01

]
,
[
b04
01

]
,
[
b014
02

]
,
[
b013
024

])
,

h014
03 =

([
b014
03

]
,
[
b014
02

]
,
[
b04
01

]
,
[
b04
01

]
,
[
b03
014

])
,

h05
01 =

([
b05
01

]
,
[
b05
01

]
,
[
b015
02

]
,
[
b015
03

]
,
[
b015
04

]
,
[
b01
05

])
,

h015
02 =

([
b015
02

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b025
013

]
,
[
b025
014

]
,
[
b02
015

])
,

h025
013 =

([
b025
013

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b015
02

]
,
[
b0135
024

]
,
[
b013
025

])
,

h015
03 =

([
b015
03

]
,
[
b015
02

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b035
014

]
,
[
b03
015

])
,

h035
014 =

([
b035
014

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b015
02

]
,
[
b015
03

]
,
[
b014
035

])
,

h0135
024 =

([
b0135
024

]
,
[
b015
02

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b025
013

]
,
[
b024
0135

])
,

h025
014 =

([
b025
014

]
,
[
b025
013

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b015
02

]
,
[
b014
025

])
,

h015
04 =

([
b015
04

]
,
[
b015
03

]
,
[
b015
02

]
,
[
b05
01

]
,
[
b05
01

]
,
[
b04
015

])
.

2.2 Sections in the Auslander-Reiten Quiver of Algebras of
Dynkin Type

In this section we use quivers of type b, d and h in order to enumerate the number of
sections in the Auslander-Reiten quiver of algebras of type An and Dn. We present the
same description for the case of E6, E7 and E8.

2.2.1 Sections in the Auslander-Reiten Quivers of Algebras of Type An

Let A = kAn be a path algebra induced by an oriented Dynkin diagram of type An
with k sinks and m sources, Γ(mod A) be the corresponding Auslander-Reiten quiver
and S

(An)
i0i1...ik
j0j1...jm

the number of sections in Γ(mod A) of these kind of algebras, where

it represents the location of a sink for 1 ≤ t ≤ k and js represents the location of a
source for 1 ≤ s ≤ m, points it and js follow conditions defined in steps 1-3 of Algorithm
2.1. If we have an algebra B with only one point then the number of sections in the
Auslander-Reiten quiver will be denoted S(A1)1−

. For vertices in Dynkin diagrams of type

An, we assume the numbering described in Figure 1.2 (Section 1.1).

If A is an algebra as described above then Γ(mod A) is isomorphic to the quiver
−−−−−!
di0i1...ikj0j1...jm

obtained from di0i1...ikj0j1...jm
by orienting each edge ((x, y), (x′, y′)) as (x, y) ! (x′, y′). Such

an isomorphism can be defined by associating to each τ−orbit of a given vertex xt ∈ Γ0

points (x, y) ∈ di0i1...ikj0j1...jm
such that x + y = u + 1 − t for 1 ≤ t ≤ n. If A is an algebra of

type An with sinks located at points {i1 . . . , ik} and sources located at points {j1, . . . , jm}
and B is an algebra of type An with sinks at {j1, . . . , jm} and sources at {i1, . . . , ik} then
there exists an isomorphism:
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ϕ : di0i1...ikj0j1...jm
−! dj0j1...jmi0i1...ik

(x, y) 7−! (−x,−y)

where ϕ
(
(x, y), (z, w)

)
=
(
(−x,−y), (−z,−w)

)
. Henceforth, a quiver of the form

−−−−−!
dj0j1...jmi0i1...ik

is said to be the conjugate quiver of
−−−−−!
di0i1...ikj0j1...jm

, and

S
(An)

i0i1...ik
j0j1...jm

=
∑
p,q

|P qp |,

where p = (a, b), q = (c, d) ∈ di0i1...ikj0j1...jm
.

Note that,
S

(An)
i0i1...ik
j0j1...jm

= S
(An)

j0j1...jm
i0i1...ik

.

The arguments described above allow us to give the following result regarding the number
of sections in algebras of Dynkin type An with ik < n.

Theorem 2.4. Let A be an algebra of type An with sinks and sources located at points of
the sets {i1, . . . , ik < n} and {j1, . . . , jm}, respectively. Then

S
(An)

i0i1...ik
j0j1...jm

=

2S
(An−1)

i0i1...ik
j0j1...(jm)−1

+
[
αi0i1...ikj0j1...jm

]
, if ik < n− 1,

2S
(An−1)

i0i1...ik
j0j1...jm−1

+
[
αi0i1...ikj0j1...jm

]
, if ik = n− 1.

Proof. Suppose that the algebra A satisfies hypothesis of the theorem then since

Γ(mod A) is isomorphic to the quiver
−−−−−!
di0i1...ikj0j1...jm

, we choose the subquiver B whose ver-
tices B0 can be written in the form B0 = B1 ∪B2 where

B1 =

k⋃
r=1

{(x, y) ∈ di0i1...ikj0j1...jm
| 0 ≤ y ≤ yr − 1, x ≥ xr, x+ y ≤ u− 1},

B2 =

m−1⋃
s=1

{(x, y) ∈ di0i1...ikj0j1...jm
| zs ≤ y ≤ 0, x ≤ ws, x+ y ≥ −n+ u}.

If |yk − 1 − zm| > 1 (ik < n − 1) then i′t = (x, y − 1) = j′s = (x, y − 1) and j′m = j∗m for

1 ≤ t ≤ k and 1 < s < m, therefore B0 = di0i1...ikj0j1...jm−1, and B =
−−−−−−−!
di0i1...ikj0j1...jm−1.

If |yk− 1− zm| = 1 (ik = n− 1) it holds that i′t = (x, y− 1) = j′s and i′k = j∗m for 1 ≤ t < k

and 1 < s < m, thus as before B0 = di0i1...ikj0j1...jm−1
and B =

−−−−−−−!
di0i1...ikj0j1...jm−1.

If C = {(x, y) ∈ di0i1...ikj0j1...jm
|x+y = u} and it is defined the quiver C∪B with arrows induced

by
−−−−−!
di0i1...ikj0j1...jm

then since
∣∣P (x,y)

(c,d)

∣∣ = 2 we have[
C ∪B

]
=
∑
a,b,x,y

∣∣P (x,y)
(a,b)

∣∣ = 2
∑
a,b,c,d

∣∣P (c,d)
(a,b)

∣∣ = 2
[
B
]
,
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where a+ b = u− n and c+ d = u− 1.

Since
∑

a,b,h,p

∣∣P (h,p)
(a,b)

∣∣ contains at least one point of (C ∪B)c for a+ b = u− n+ 1, h+ p = u

and (a, b), (h, p) ∈ ai0i1...ikj0j1...jm
then S

(An)
i0i1...ik
j0j1...jm

= 2
[
B
]

+
[
αi0i1...ikj0j1...jm

]
. �

Remark 2.5. Numbers S
(An)

i0i1...ik
j0j1...jm

with ik < n are shown in Table A.2 (see Appendix),

where rows represents values jm = n and columns are given by the identities:

r =


k∑

t=k−m+2

2it−1 −
m−1∑
t=1

2jt−1, if ik > 1,

0, if ik = 1.

(2.22)

For instance, if A is an algebra of type A7 with sinks and sources at points of the sets
{1, 4, 7} and {3, 5} respectively then it holds that S(A7)0147035

= S(A7)0350147
,

r = 24 + 22 − 23 − 1 = 11,

and

S(A7)0147035
= S(A7)0350147

= 2S(A7)0350146
+ α035

0147 = 2(64) + 17 = 145.

We recall that sections in algebras of type An with sinks and sources at sets {1, 3} and
{2, n}, respectively categorifies the sequence A176448 = {5, 12, 26, 54, 110, . . . } in the OEIS
[88].

The following corollaries dealing with oriented Dynkin diagram of type An with only sink
were reported by the author, Cañadas and Giraldo in [32]. Henceforth, we assume the
notation S(An)m−

for S(An)0m01n
.

Corollary 2.1. S(An)m−
= 2

(
S(An−1)m−

)
+

m−2∑
i=0

(
n− 2

i

)
for n ≥ 3, 1 ≤ m < n with

S(An)1−
= S(An)n−

= 2n−1.

Corollary 2.2.

S(An)m−
= S(An−1)m−1

−
+ S(An−1)m−

+ S(An−2)1−
, (2.23)

for n ≥ 3, 1 ≤ m < n.

Proof. We proceed by induction on n taking into account that S(An)1−
= S(An)n−

= 2n−1.

If n = 3 and m = 2 we have that

S(A3)2−
= 2(S(A2)2−

) + 1 = S(A2)2−
+ S(A2)1−

+ S(A1)1−
.

Suppose that the assertion is true for 3 ≤ k ≤ n and 2 ≤ m ≤ n− 1. Thus
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S(Ak)m−
= 2(S(Ak)m−

) +
m−2∑
i=0

(
k − 1

i

)
= 2(S(Ak)m−

) +
m−2∑
i=0

(
k − 2

i

)
+
m−3∑
i=0

(
k − 2

i

)
.

Therefore

S(Ak+1)m−
= 2(S(Ak−1)m−1

−
+ S(Ak−1)m−

+ 2k−3) +
m−2∑
i=0

(
k − 2

i

)
+
m−3∑
i=0

(
k − 2

i

)
= S(Ak)m−1

−
+ S(Ak)mk

+ S(Ak−1)1−
. �

Identity (2.23) allows to give a partition-formula for numbers in the sequence A049611 or
A084851 [87].

Corollary 2.3. cn =

n∑
h=1

S(An)h−
= 2n−4(n2 + 5n+ 2), n ≥ 4.

Proof. Rows in the next table show the number of sections in the Auslander-Reiten quiver
of an algebra A associated to a Dynkin graph of type An with an unique sink allocated at
the hth position (from the left to the right), 1 ≤ h ≤ n and 1 ≤ n ≤ 7.

1

2 2

4 5 4

8 11 11 8

16 23 26 23 16

32 47 57 57 47 32

64 95 120 130 120 95 64

For instance, according to the Corollary 2.2 we see that,

95 = 16 + 32 + 47,

120 = 16 + 47 + 57,

130 = 57 + 57 + 16,

(2.24)

and

688 = 2(64) + 2(95) + 2(120) + 130

= 2(26) + 2(25) + 9(24) + 16(23) + 28(22) + 48(21) + 16(1).
(2.25)

Actually, it is easy to see that in the case n = k ≥ 4, it holds that

∑k
h=1 S(Ak)h−

= 2(2k) + 2k−3 +
k∑
j=4

((k + 2)− (k − j))2k−j .2j−3 = 2(2k) + 2k−3 +
n+2∑
i=6

i2k−3.
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Thus

∑k
h=1 S(Ak)h−

= [ (k+2)(k+3)
2 − 14]2k−3 + 2k + 2k−1 = [ (k+2)(k+3)

2 − 14]2k−3 + 3(2k−1) =

2k−4[k2 + 5k − 22 + 24] = 2k−4[k2 + 5k + 2]. Since k ≥ 4 is arbitrary we are done. �

Corollary 2.4. S(An)2−
= 3(2n−2)− 1.

Proof. S(A3)2−
= 5 = 2 + 2 + 1 and S(A4)2−

= S(A3)2−
+ (22) + (21) = 5 + (22) + (21) =

(22) + (20) + (22) + (21) = (23) + (21) + (20). Thus for any k ≥ 3 it holds that

S(Ak)2−
= S(Ak−1)2−

+ (2k−1) + (2k−2). (2.26)

Therefore

S(Ak)2−
= 2(2k−2) + 2(2k−4) + 2(2k−5) + · · ·+ 2(22) + 3(21) = (2k−1) +

k−3∑
j=0

2j

= 2k−1 + 2k−2 − 1 = 3(2k−2)− 1. �

(2.27)

Corollaries 2.2 and 2.4 allow us to establish the following result.

Corollary 2.5. S(Ak)h−
= (h+ 1)2k−2 −

bh
2
c∑

j=1
j
(
k+1
h−2j

)
.

Proof. (Induction on h) Firstly, we recall the following identities:

h
k−1∑
j=h+1

2j−2 = h(2k−2)− h2h−2,

k−3∑
j=h−2

2j = (2k−2)− 2h−2,

k−1∑
j=h+1

(
j + 1

i

)
=

(
k + 1

i+ 1

)
−
(
h+ 1

i+ 1

)
.

(2.28)

Corollaries 2.2 and 2.4 induce the following identity where S(Ah+1)h+1
−

= 2h:

S(Ak)h+1
−

=

k−1∑
j=h+1

S(Ak)h−
+

k−3∑
j=h−2

2j + S(Ah+1)h+1
−

. (2.29)

Now if we assume that the theorem is true for any fixed k, k ≥ 1 and 1 ≤ s ≤ h then the
theorem holds for s = h+1 if identities (2.28) are applied to the summands in (2.29). �

Remark 2.6. We note that

1. For n ≥ 2, the sequence an = S(An)2−
appears in the OEIS as A083329 [85].
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2. For n ≥ 3, the sequence bn = S(An)3−
appears in the OEIS as A000295 [86].

2.2.2 Sections in the Auslander-Reiten Quiver of Algebras of Type Dn

Let A be an algebra with underlying diagram of type Dn, with k sinks and m sources. We
assume the numbering for Dynkin diagrams of type Dn described in Figure 1.2 (section
1.1).

Let B be an algebra of type Dn (n ≥ 4) whose sinks and sources are located at points
of the sets {j1, . . . , jm} and {i1, . . . , ik} respectively. Then, if there exists an irreducible
morphism in Γ(mod A) of the form τ−sa −! τ−rb then there exists an irreducible morphism
in Γ(mod B) of the form τ−sb −! τ−ra for some s, r ∈ Z, B denotes the conjugate quiver
of A and the following identity has place:

S
(Dn)

i0i1...ik
j0j1...jm

= S
(Dn)

j0j1...jm
i0i1...ik

.

−−−−−!
hj0j1...jwi0i1...ir

with r ≤ k and w ≤ n is a subquiver of Γ(mod A), where each τ−orbit of a point

xt ∈ Γ0 has associated points (x, y) ∈ hi0i1...irj0j1...jw
with x + y = n − 1 − t for 1 ≤ t ≤ n − 2.

According to these arguments it suffices to consider the subquiver A′n−2 with vertices
1 . . . n − 2 a sink at the vertex n − 2. Thus, we can enumerate sections in Γ(A) via the
following three cases described in Theorem 2.5:

Theorem 2.5. Let A be an algebra of type Dn with sink and sources located at the sets
{i1, . . . , ik} and {j1, . . . , jm}. If the subquiver A′n−2 has a sink at the vertex n− 2 then:

S
(Dn)

i0i1...ik
j0j1...jm

=



4
n−3∑
s=0

vs + vn−2, if n, n− 1 are sources,

4
n−3∑
s=1

vs + 2(vn−2 + v0), if n is a source and n-1 is a sink, (viceversa),

4

n−2∑
s=1

vs + v0, if n, n− 1 are sinks,

where vp ∈ hi0i1...irj0j1...jw
with r ≤ k and w ≤ n (see Theorem 2.3 and Remark 2.4).

Proof. If the algebra A satisfies the hypothesis and the subquiver A′n−2 has a sink at the

vertex n−2. Then, we can take a subquiver B of Γ(mod A) which is isomorphic to
−−−−−!
hi0i1...irj0j1...jw

with r ≤ k and w ≤ m, we note that each orbit τ−sn−2 ∈ Γ(mod A) has associated the point

(−n− 2 + s, n− 2− s) ∈ hi0i1...irj0j1...jw
with 0 ≤ s ≤ n− 2, thus

∑∣∣∣P (a,b)
(−n−2+s,n−2−s)

∣∣∣ = vn−2−s

for a+ b = n− 3. Now, we have three cases:

� If n and n − 1 are sources for each τ−sn−2 with 1 ≤ s ≤ n − 2 then there exist

the irreducible morphisms τ
−(s−1)
n−1 −! τ−sn−2, τ

−(s−1)
n −! τ−sn−2, τ−sn−2 −! τ−sn−1, and
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τ−sn−2 −! τ−sn and for τ0
n−2 there exist two irreducible morphisms of τ0

n−2 −! τ0
n−1

and τ0
n−2 −! τ0

n, then each
∣∣∣P (a,b)

(−n−2+s,n−2−s)

∣∣∣ is multiplied by the 4 combinations of

the irreducible morphisms of the vertices n and n − 1 if 1 ≤ s ≤ n − 2 and by 1 if
s = 0, thus

S
(Dn)

i0i1...ik
j0j1...jm

= 4
n−3∑
s=0

vs + vn−2.

� If n is a source and n− 1 is a sink (or viceversa), for each τ−sn−2 with 1 ≤ s ≤ n− 3

then we can associate irreducible morphisms τ−sn−1 −! τ−sn−2, τ
−(s−1)
n −! τ−sn−2,

τ−sn−2 −! τ
−(s+1)
n−1 and τ−sn−2 −! τ−sn . Whereas, associated to the translation

τ0
n−2 there are associated irreducible morphisms τ0

n−1 −! τ0
n−2, τ0

n−2 −! τ0
n and

τ0
n−2 −! τ−1

n−1. Finally, translation τ
−(n−2)
n−2 has associated irreducible morphisms

τ
−(n−3)
n −! τ

−(n−2)
n−2 , τ

−(n−2)
n−1 −! τ

−(n−2)
n−2 and τ

−(n−2)
n−2 −! τ

−(n−1)
n−1 , then each num-

ber
∣∣∣P (a,b)

(−n−2+s,n−2−s)

∣∣∣ can be multiplied by the 4 combinations induced by the irre-

ducible morphisms of vertices n and n−1 if 1 ≤ s ≤ n−3 and for the 2 combinations
of the irreducible morphisms of vertices n and n− 1 if s = 0 or s = n− 2, thus

S
(Dn)

i0i1...ik
j0j1...jm

= 4

n−3∑
s=1

vs + 2(vn−2 + v0).

� If n and n− 1 are sinks, for each τ−sn−2 with 0 ≤ s ≤ n− 3 then there are associated

irreducible morphisms τ−sn−1 −! τ−sn−2, τ−sn −! τ−sn−2, τ−sn−2 −! τ
−(s+1)
n−1 and τ−sn−2 −!

τ
−(s+1)
n , as well as for τ

−(n−2)
n−2 there are associated irreducible morphisms τ

−(n−2)
n −!

τ
−(n−2)
n−2 and τ

−(n−2)
n−1 −! τ

−(n−2)
n−2 then each number

∣∣∣P (a,b)
(−n−2+s,n−2−s)

∣∣∣ is multiplied

for the 4 combinations of the irreducible morphisms of the vertices n and n − 1 if
0 ≤ s ≤ n− 3 and by 1 if s = n− 2, thus

S
(Dn)

i0i1...ik
j0j1...jm

= 4

n−2∑
s=1

vs + v0.

�

For example, let Q1 be a quiver of type Dn whose sinks and sources are located at points
of the sets {1, 4, 6, 7} and {3, 5} respectively, since the vertex 5 is not a sink, we take the
conjugate quiver of Q1, Formula A.1 and Table A.3 (see Appendix) establishes that r = 4
and

S(D7)01467035
= 284.

In the same way, the author, Cañadas and Giraldo showed the next recurrence formula
for algebras of Dynkin type Dn and Dn with just only one sink (by notation S(Dn)m−

=

S(Dn)0m01n−1n
) [32].

Corollary 2.6. S(Dn)m−
= S(Dn−1)m−1

−
+S(Dn−1)m−

+ 3
(
2n−3

)
for n ≥ 5, 1 ≤ m < n−2 with

S(Dn)1−
= 2n−3 (2n− 1) and S(Dn)n−2

−
= 2n−2 (n+ 1)− 3.
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Corollary 2.6 allows to build the following triangular table where the rows give the number
of sections in the Auslander-Reiten quiver of an algebra A associated to a Dynkin graph
Dn with a unique sink allocated at the hth position, 1 ≤ h ≤ n− 2:

14 17

36 43 45

88 103 112 109

208 239 263 269 253

480 543 598 628 618 573

1088 1215 133 1418 1438 1383 1277

Remark 2.7. Sequence cn = S(Dn)1−
for n ≥ 4 appears in the OEIS as A052951 [89].

2.2.3 Sections in the Auslander-Reiten Quiver of Algebras of Type E6,
E7 and E8

In order to give the number of sections in the Auslander-Reiten quiver of algebras of
Dynkin type E6,E7 and E8. Let A be a path algebra induced by an oriented Dynkin
diagram of type El (l = 6, 7, 8) with k sinks and m sources. Let Γ(mod A) be the
Auslander-Reiten quiver of A and S

(El)
i0i1...ik
j0j1...jm

is the number of section in Γ(mod A). We

assume the numbering described in Figure 1.2 (Section 1.1).

Let A′i−1 be the subgraph of the vertices {1, . . . , l − 1} of El and suppose that ik < i− 1,
we define the vectors SEl" = (v0, . . . , v2l−3−1), and SEl# = (w0, . . . , w2l−3−1) in the same
way:

SE6" = (124, 134, 136, 132, 146, 150, 146, 134),

SE6# = (124, 139, 146, 147, 136, 145, 146, 139),

SE7" = (408, 430, 436, 434, 460, 472, 468, 450, 454, 470, 470,

456, 478, 478, 466, 438),

SE7# = (412, 443, 458, 465, 448, 468, 472, 462, 452, 473, 478,

477, 452, 461, 458, 439),

SE8" = (1520, 1566, 1580, 1584, 1632, 1662, 1660, 1636, 1628,

1664, 1668, 1650, 1692, 1698, 1680, 1632, 1614, 1654,

1662, 1650, 1698, 1712, 1698, 1694, 1676, 1698, 1692,

1656, 1690, 1678, 1650, 1590),

SE8# = (1532, 1595, 1626, 1647, 1620, 1663, 1674, 1663, 1624

1676, 1696, 1694, 1652, 1673, 1670, 1637, 1616, 1673,

1698, 1703, 1664, 1694, 1696, 1748, 1653, 1693, 1702,

1681, 1632, 1637, 1626, 1583),

(2.30)
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therefore

S
(El)

i1...ik
j1...jm

=

{
vr, if l is sink,

wr, if l is source,
(2.31)

with r given by formulas 2.22.

For example, if we take an algebra A = kQ associated to Figure 2.7, then S(E6)135246
=

S(E6)246135
= v5 = 150.

d
��d doo // d doo // d

1 2 3 4 5

6

Figure 2.7. Quiver of type E6.



CHAPTER 3

Dyck Paths Categories And Its Relationships

With Cluster Algebras

In this chapter, we introduce Dyck paths categories as a combinatorial model of the
category of representations of Dynkin quivers of type An. These categories help us to find
an alternative formula of cluster variables of cluster algebras based on Dyck paths. In
Section 3.1, we define Dyck paths categories and some of its main categorical properties
are given in Section 3.2. In section 3.3, relationships between objects of the categories of
Dyck paths, perfect matchings, and cluster algebras are given.

3.1 Dyck Paths Category

In this section, we introduce the category of Dyck paths of length 2n.

3.1.1 Elementary Shifts

Let D2n be the set of all Dyck paths of length 2n and let UWD = Uw1 . . . wn−1D be a
Dyck path in D2n with wi ∈ A = {UD,DU,UU,DD} for 1 ≤ i ≤ n− 1.

The support of UWD (denoted by Supp UWD ⊆ {1, 2, . . . , n − 1} = n-1) is a set of
indices such that

Supp UWD = {q ∈ n-1 | wq = UD or wq = UU , 1 ≤ q ≤ n− 1}.

A map f : A −! A such that for any w ∈ A, it holds that f(w) = f(ab) = w−1 = ba,
a, b ∈ {U,D} is said to be a shift.

For i fixed, 1 ≤ i ≤ n− 1, a unitary shift is a map fi : D2n −! D2n such that

fi(Uw1 . . . wi−1wiwi+1 . . . wn−1D) = Uw1 . . . wi−1f(wi)wi+1 . . . wn−1D.

59
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We will denote a unitary shift by a vector of maps from D2n to itself of the form
(11, . . . , 1i−1, fi, 1i+1, . . . , 1n−1), where 1k is the identity map associated to the i-th
coordinate.

An elementary shift is a unitary shift or composition of different unitary shifts. A shift
path of length m UWD −! UW1D −! · · · −! UWmD −! UV D from UWD to UV D
is a composition of elementary shifts. The set of all Dyck paths in a shift path between
UWD and UV D will be denoted by J . For notation, we introduce the identity shift as
the elementary shift (11, . . . , 1n−1).

Irreversibility condition. Consider a relation R ⊂ D2n × D2n consisting of a set of
pairs of Dyck paths of the form (UWD,UV D), where UV D is obtained from UWD by
applying an elementary shift. Then, R is said to be an irreversible relation, if for any
(UWD,UV D) ∈ R, it holds that (UV D,UWD) /∈ R.

Henceforth, if (UWD,UV D) ∈ R then we will write UV D = R(UWD).

Shift Relation. Suppose that UWD,UW ′D,UW ′′D,UV D ∈ D2n. And that there are
elementary shifts F : UWD ! UW ′D, F ′ : UWD ! UW ′′D, G : UW ′D ! UV D,
G′ : UW ′′D ! UV D in an irreversible relation R. Then if the compositions G ◦ F and
G′ ◦F ′ are shift paths (of length 2) transforming the Dyck path UWD into the Dyck path
UV D (see the diagram below),

UWD

UW ′D

UW ′′D

UVD,

F

F ′

G

G′

with W
′ 6= W

′′
. Then G ◦F is said to be related with G′ ◦F ′ (denoted G ◦F ∼R G′ ◦F ′)

whenever G′ = F and G = F ′.

Category of Dyck paths of length 2n. As for the case of diagonals [17], we can also
define a k-linear additive category (D2n, R) based on Dyck paths, in this case, objects are
k-linear combinations of Dyck paths in D2n with space of morphisms from a Dyck path
UWD to a Dyck path UV D over an irreversible relation R being the set

Hom(D2n,R)(UWD,UV D) = 〈{g | g is a shift path over R}〉/〈∼R〉.

The vector space Hom(D2n,R)(UWD,UV D) 6= 0 if and only if there are shift paths from
UWD to UV D and

⋂
i∈J

Supp UW iD 6= ∅, (3.1)

for each shift path, with UWD and UV D in D2n.
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Figure 3.1 shows the elementary shifts over (D6, R) associated to an irreversible relation
R defined over the set of all Dyck paths of length 6. And such that,

R(UWD) =

{
f1(UWD), if w1 = UD,

f2(UWD), if w2 = DU.
(3.2)

X

Figure 3.1. Elementary shifts in (D6, R). Notice that, there is no elementary shift transforming
the Dyck path X into the others in the diagram.

3.1.2 Relations of Type Ri1...ik
j1...jm

Fix an admissible subchain C = {j1, . . . , jm, i1, . . . , ik} ⊆ n-1 (see algorithm 2.1, item (3)),
and a Dyck path UWD ∈ D2n.

Let σ : {i1, j1} ! {0, 1} be a map such that σ(i1) = 1 and σ(j1) = 0. For a ∈ {i1, j1},
we assume ir, ir+σ(a) ∈ {i1, . . . , ik} and jr+1−σ(a), jr ∈ {j1, . . . , jm}. The following indices
are defined by using intervals [ir, jr+1−σ(a)](resp. [jr, ir+σ(a)]), where for a fixed admissible
chain C, an interval I = [x, y] is a subset of n-1, for which min I = x ∈ C and max I =
y ∈ C.

� t = min{ s | ir ≤ s ≤ jr+1−σ(a), ws = UD }
(
t = max{ s | jr ≤ s ≤ ir+σ(a), ws =

UD }
)
,

� p = min{ s | t < s ≤ jr+1−σ(a), ws = DU }
(
p = max{ s | js ≤ s < t, ws = DU }

)
.

We introduce the following elementary shifts:

ES1. If ws = UD for all s ∈ [ir, jr+1−σ(a)] ( s ∈ [jr, ir+σ(a)]),

[jr−σ(a), ir][ir, jr+1−σ(a)][jr+1−σ(a), ir+1],

(resp. [ir+σ(a)−1, jr][jr, ir+σ(a)][ir+σ(a), jr+1]),

then
g(UWD) = fjr+1−σ(a) ◦ · · · ◦ fir(UWD),

if there exists s ∈ Z+ such that jr−σ(a) ≤ s ≤ ir, |s− jr| ≥ 1, wx = UD if s ≤ x ≤ ir
over [jr−σ(a), ir] and
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wy =

{
UD, if y = jr+1−σ(a),

DU, otherwise,
(3.3)

over [jr+1−σ(a), ir+1] for jr+1−σ(a) 6= n− 1 or the first condition over [jr−σ(a), ir] for
jr+1−σ(a) = n− 1. (

g(UWD) = fir+σ(a) ◦ · · · ◦ fjr(UWD),

if there exists s ∈ Z+ such that ir+σ(a) ≤ s ≤ jr+1, |s − ir+σ(a)| ≥ 1, wx = UD if
ir+σ(a) ≤ x ≤ s over [ir+σ(a), jr+1] and

wy =

{
UD, if y = jr,

DU, otherwise,
(3.4)

over [ir+σ(a)−1, jr] for jr 6= 1 or the first condition over [ir+σ(a), jr+1] for jr = 1

)
,

with ir 6= 1 (ir+σ(a) 6= n− 1).

ES2. If t = 1 or n− 1 then g(UWD) = ft(UWD). .

ES3. If ir < t < jr+1−σ(a) (jr < t < ir+σ(a)) then g(UWD) = ft(UWD).

ES4. If p = jr+1−σ(a)(jr) then

g(UWD) =

{
fir+1 ◦ · · · ◦ fjr+1−σ(a)(UWD) if jr+1−σ(a) 6= n− 1,

fjr+1−σ(a)(UWD) if jr+1−σ(a) = n− 1.(
g(UWD) =

{
fir+σ(a)−1

◦ · · · ◦ fjr(UWD) if jr 6= 1,

fjr(UWD) if jr = 1.

)

ES5. If t < p < jr+1−σ(a) (jr < p < t) then g(UWD) = fp(UWD).

For a given subchain C = {j1, . . . , jm, i1, . . . , ik} ⊆ n-1, two Dyck paths D and D′ of
length 2n are said to be related by a relation of type Ri1...ikj1...jm

if there is an elementary shift
ESi, 1 ≤ i ≤ 5 which transforms either D into D′ or D′ into D.

Henceforth, the notation wr . . . ws︸ ︷︷ ︸
XY

means that all the elements wi covered by the brace

have the same steps XY .

Proposition 3.1. The relation Ri1...ikj1...jm
is irreversible.

Proof. Suppose that there is an elementary shift fr1 ◦ · · · ◦ frt from a Dyck path UWD
to a Dyck path UV D and that there is an elementary shift fr1 ◦ · · · ◦ frt from UV D to a
UWD, then we have five cases:
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(i) If fr1 ◦ · · · ◦ frt arises from ES1 over [ir, jr+1−σ(a)]. Elementary shifts ES2, ES3
and ES5 allow to conclude that from UV D to a UWD, ft = fjr+1−σ(a) ◦ · · · ◦ fir or
fp = fjr+1−σ(a) ◦ · · · ◦ fir and this is a contradiction. If ES1 is an elementary shift
from UV D to UWD, then two cases arise: If jr+1−σ(a) 6= n− 1, thus UV D equals

Uv1 . . . vjσ(a) . . . vjs . . . vir−1︸ ︷︷ ︸
UD

vir . . . vjr+1−σ(a)︸ ︷︷ ︸
UD

(vjr+1−σ(a)+1) . . . vir+1︸ ︷︷ ︸
DU

vri+1+1 . . . vn−1D,

it turns out that fjr+1−σ(a) ◦ · · · ◦ fir(UV D) has the form

Uw1 . . . wjσ(a) . . . wjs . . . (wir − 1)︸ ︷︷ ︸
UD

wir . . . wjr+1−σ(a)︸ ︷︷ ︸
DU

(wjr+1−σ(a)+1) . . . wir+1︸ ︷︷ ︸
DU

wri+1+1 . . . vn−1D,

which is a contradiction. If jr+1−σ(a) = n− 1, UV D is equal to

Uv1 . . . vjσ(a) . . . vjs . . . vir−1︸ ︷︷ ︸
UD

vr . . . vjr+1−σ(a)︸ ︷︷ ︸
UD

D,

and fjr+1−σ(a) ◦ · · · ◦ fir(UV D) has the shape

Uw1 . . . wjσ(a) . . . wjs . . . wir−1︸ ︷︷ ︸
UD

wr . . . wjr+1−σ(a)︸ ︷︷ ︸
DU

D,

again a contradiction. We also get a contradiction if an elementary shift is done by
using ES4 from UV D to a UWD, indeed, in these cases it holds that, if jr+1−σ(a) =
n− 1, there are t and p such that p = jr+1−σ(a) < t ≤ ir+1 and UV D is equal to

Uv1 . . . vir−1 vir . . . vjr+1−σ(a)︸ ︷︷ ︸
DU

vjr+1−σ(a)+1
. . . vt︸ ︷︷ ︸

UD

vt+1 . . . vn−1D,

and fjr+1−σ(a) ◦ · · · ◦ fir(UV D) is

Uw1 . . . wir−1 wir . . . wjr+1−σ(a)︸ ︷︷ ︸
UD

wjr+1−σ(a)+1
. . . wt︸ ︷︷ ︸

UD

wt+1 . . . wn−1D.

If vjr+1−σ(a) = n− 1 fr+1−σ(a) = fr+1−σ(a) ◦ · · · ◦ fir but this is a contradiction.

(ii) If fr1 ◦ · · · ◦ frt arises from ES2 over [i1, j1] then we cannot use elementary shifts
defined in cases ES1, ES4, ES5 or ES3, provided that, i1 6= 1, t 6= p or 1 < t < j1.
Therefore, ES2 guarantees the existence of a walk from UV D to UWD such that;

U v1︸︷︷︸
UD

. . . vj1 . . . vn−1D,

and f1(UWD) has the form

U w1︸︷︷︸
DU

. . . wj1 . . . wn−1D,

which is a contradiction (if t = n− 1, the proof is dual).

(iii) If fr1 ◦ · · · ◦ frt arises from ES3 over [ir, jr+1−σ(a)], provided that, ir < t < p <
jr+1−σ(a), we conclude that it is not possible to use ES1, ES2, ES4 nor ES5. In the



CHAPTER 3. DYCK PATHS CATEGORIES AND ITS RELATIONSHIPS WITH CLUSTER ALGEBRAS 64

case of ES3 from UV D to a UWD, UV D equals

Uv1 . . . vir . . . vt−1︸ ︷︷ ︸
DU

vt︸︷︷︸
UD

. . . vjr+1−σ(a) . . . vn−1D,

and ft(UV D) has the shape

Uw1 . . . wir . . . wt︸ ︷︷ ︸
DU

wt+1 . . . wjr+1−σ(a) . . . wn−1D,

but this is a contradiction.

(iv) If fr1 ◦ · · · ◦frt arises from ES4 over [ir, jr+1−σ(a)], provided that t < p, we do not use
ES2, ES3 nor ES5. If j+1−σ(a) = n−1, we cannot use ES1. If j+1−σ(a) 6= n−1
we can use ES1 from UV D to a UWD (Note that, it is not necessary with vm = UD
for all s ∈ [jr+1−σ(a) + 1, ir+1]) UV D is equal to

Uv1 . . . vir−1 vir . . . vt . . . vp−1︸ ︷︷ ︸
DU

vpvjr+1−σ(a)+1 . . . vir+1︸ ︷︷ ︸
UD

vir+1+1 . . . vn−1D,

it turns out that g(UV D) has the form

Uw1 . . . wir−1 wir . . . wt . . . wp−1wpwjr+1−σ(a)+1 . . . wir+1︸ ︷︷ ︸
DU

wir+1+1 . . . wn−1D,

which is a contradiction. Using ES5 from UV D to UWD, if jr+1−σ(a) 6= n−1, UV D
is equal to

Uv1 . . . vir . . . vt . . . vp−1︸ ︷︷ ︸
UD

vp︸︷︷︸
DU

vjr+1−σ(a)+1 . . . vir+1vir+1+1 . . . vn−1D,

and UWD has the shape

Uw1 . . . wir . . . wt . . . wp︸ ︷︷ ︸
UD

wjr+1−σ(a)+1 . . . wir+1︸ ︷︷ ︸
f(ab)

wir+1+1 . . . wn−1D,

again a contradiction. If jr+1−σ(a) = n− 1, UV D is equal to

Uv1 . . . vir . . . vt−1 vt . . . vp−1︸ ︷︷ ︸
UD

vp︸︷︷︸
DU

D,

it turns out that UWD has the shape

Uw1 . . . wir . . . wt−1wt . . . vp︸ ︷︷ ︸
UD

D,

this is a contradiction.

(v) If fr1 ◦ · · · ◦ frt arises from ES5 over [ir, jr+1−σ(a)]. Then we cannot use ES1, ES2,
ES3 nor ES4, because fp 6= fjr+1−σ(a) ◦ · · · ◦ fir and t < p. Using ES5 from UV D to
a UWD, we observe that UV D is equal to

Uv1 . . . vir . . . vt−1 vt . . . vp−1︸ ︷︷ ︸
UD

vp︸︷︷︸
DU

. . . vjr+1−σ(a) . . . vn−1D,
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and fp(UWD) has the form

Uw1 . . . wir . . . wt−1wt . . . wp︸ ︷︷ ︸
UD

vp+1 . . . vjr+1−σ(a) . . . vn−1D,

again this is a contradiction.

Taking into account that if fr1 ◦ · · · ◦ frt arises from ES1, ES2, ES3, ES4 and ES5 over
[ir, jr+σ(a)] then same arguments as described above applied dually allow to conclude the
proposition. We are done. �

3.1.3 An−1-Dyck Paths Categories

For n ≥ 2 fixed, an An−1-Dyck paths category is a category of Dyck paths (D2n, R) where
R is a relation of type Ri1...ikj1...jm

as described before. As an example we let (D8, R
1
3) denote

the A3-Dyck paths category with the admissible subchain 1 < 3. Figure 3.2 shows all the
elementary shifts of (D8, R

1
3).

Figure 3.2. Elementary shifts in an A3-Dyck paths category.

We let S denote the set of all Dyck paths with exactly n− 1 peaks. The following propo-
sitions and lemmas describe some properties of the set S in the category (D2n, R

i1...ik
j1...jm

).

Proposition 3.2. Let UWD be a Dyck path of length 2n, then UWD ∈ S if and only if
there is a unique sequence wlwl+1 . . . wr′−1wr′ such that

wi =

{
UD, if l ≤ i ≤ r′,
DU, otherwise.

(3.5)
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Proof. Firstly, let δ be a map δ : {), (} ! {U,D} where left bracket is associated to the
letter U and right bracket is associated to the letter D, suppose UWD ∈ S, then there
exist bracket-subchains such that UWD can be written in the following form

( )(︸︷︷︸
1

)(︸︷︷︸
2

. . . )(︸︷︷︸
l−2

)(︸︷︷︸
l−1

( ( )︸︷︷︸
l

. . . ( )︸︷︷︸
r′

) )(︸︷︷︸
r′+1

. . . )(︸︷︷︸
n−2

)(︸︷︷︸
n−1

) ,

therefore wi = UD if l ≤ i ≤ r′ and wi = DU . On the other hand, suppose UWD has a
unique subsequence wlwl+1 . . . wr′−1wr′ that satisfies (3.5), then if we apply δ−1 to UWD,
the sequence

( )︸︷︷︸
1

( )︸︷︷︸
2

. . . ( )︸︷︷︸
l−1

( ( )︸︷︷︸
l

. . . ( )︸︷︷︸
r′

) ( )︸︷︷︸
r′+1

. . . ( )︸︷︷︸
n−2

( )︸︷︷︸
n−1

,

is obtained, therefore UWD ∈ S. We are done. �

Lemma 3.1. Let UWD be a Dyck path in S, and integers r′, l defined as in Proposition 3.2
with |r′ − l| > 0, then there exists an elementary shift from UWD to another Dyck path
with exactly n− 1 peaks.

Proof Let UWD be a Dyck path in S, let l and r′ be positive integers such that wm = UD
for l ≤ m ≤ r′. Let l ∈ [ir, jr+1−σ(a)], we have the following cases:

(1) If l = ir = 1, then

g(UWD) = U f(w1)︸ ︷︷ ︸
DU

w2 . . . wr′︸ ︷︷ ︸
UD

wr′+1 . . . wn−1D ∈ S.

(2) If l = ir 6= 1, then there is a p = l − 1 over [jr−σ(a), ir] such that

g(UWD) = Uw1 . . . f(wp)wl . . . wm︸ ︷︷ ︸
UD

. . . wn−1D ∈ S.

(3) If ir < l < jr+1−σ(a), then

g(UWD) = Uw1 . . . f(wl)︸ ︷︷ ︸
DU

wl+1 . . . wr′︸ ︷︷ ︸
UD

wr′+1 . . . wn−1D ∈ S.

(4) If l = jr+1−σ(a) and |l − r′| > 0, then r′ ∈ [ir1 , jr1+1−σ(a)] with |r1 − r| > 0 and the
following cases hold:

(4.1) If ir1 ≤ r′ < jr1+1−σ(a), there is a p = r′ + 1 such that, if p 6= jr1+1−σ(a) then

g(UWD) = uw1 . . . wl . . . wr′f(wp)︸ ︷︷ ︸
UD

. . . wn−1D ∈ S,

if p = jr1+1−σ(a) = n− 1, then

g(UWD) = Uw1 . . . wl . . . wr′f(wp)︸ ︷︷ ︸
UD

D ∈ S,
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or if p = jr1+1−σ(a) 6= n− 1 then

g(UWD) = Uw1 . . . wl . . . wr′f(wp) . . . f(wir1+1)︸ ︷︷ ︸
UD

. . . wn−1D ∈ S.

(4.2) If r′ = jr1+1−σ(a)

g(UWD) = Uw1 . . . wl . . . wir1−1︸ ︷︷ ︸
UD

f(wir1 ) . . . f(wr′)︸ ︷︷ ︸
DU

. . . D ∈ S.

(4.3) Now, if |r1 − r| > 1 or r1 = r + 1 and r′ > ir+1 + 2 then

g(UWD) = Uw1 . . . f(wl) . . . f(wir+1)︸ ︷︷ ︸
DU

wir+1+1 . . . wr′︸ ︷︷ ︸
UD

. . . D ∈ S.

For r′ ∈ [jr1+1−σ(a), ir1+1] with |r1 − r| ≥ 0 we have that:

(4.4) If s = t = ir1+1 = n− 1, then

g(UWD) = Uw1 . . . wl . . . wr′−1︸ ︷︷ ︸
UD

f(wr′)︸ ︷︷ ︸
DU

D ∈ S.

On the other hand, if s = t = ir1+1 6= n−1, then there is a p ∈ [ir1+1, jr1+2−σ(a)]
satisfying first condition of (4.1). Thus, if jr1+1−σ(a) < s < ir1+1, it holds that

g(UWD) = Uw1 . . . wl . . . wr′−1︸ ︷︷ ︸
UD

f(wr′)︸ ︷︷ ︸
DU

. . . wn−1D ∈ S.

(4.5) If s = jr1+1−σ(a) then |r1 − r| > 0 (If |r1 − r| = 0, |l − f | = 0 which is a
contradiction)

g(UWD) = Uw1 . . . wl . . . wir1−1︸ ︷︷ ︸
UD

f(wir1 ) . . . f(wr′)︸ ︷︷ ︸
DU

wr′+1 . . . wn−1D ∈ S.

(4.6) Now, suppose that in UWD |r1 − r| > 0, then it satisfies the first condition in
(4.3).

In case that l ∈ [jr, ir+σ(a)], we have the following cases:

(5) If jr < l ≤ ir + σ(a), then there exists p = l + 1 such that, if p 6= jr then

g(UWD) = Uw1 . . . wjr . . . f(wp)wl . . . wr′︸ ︷︷ ︸
UD

. . . wn−1D ∈ S.

Note that, if p = jr = 1 then

g(UWD) = U f(wp)wl . . . wr′︸ ︷︷ ︸
UD

. . . wn−1D ∈ S,
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or if p = jr 6= 1, then

g(UWD) = Uw1 . . . f(wir−1+σ(a)) . . . f(wp)wl . . . wr′︸ ︷︷ ︸
UD

. . . wn−1D ∈ S.

(6) If l = jr and |l − r′| > 0, then r′ ∈ [jr1 , ir1+σ(a)] with |r1 − r| ≥ 0, then the following
cases hold:

(6.1) If jr1 + 2 ≤ r′ ≤ ir1+σ(a), then there exists p satisfying (4.4).

(6.2) If jr1 ≤ r′ < jr1 + 2, then |r1− r| > 0 and if r = jr1+1 satisfies (6.1), or if r = jr1
then UWD satisfies (4.5).

(6.3) Now, if |r1 − r| > 0 then

g(UWD) = U . . . f(wl) . . . f(wir+σ(a))︸ ︷︷ ︸
DU

wir+σ(a)+1 . . . ws︸ ︷︷ ︸
UD

. . . D ∈ S,

or r′ ∈ [ir1+σ(a), jr1+1] with |r1 − 1| ≥ 0 satisfies conditions (4.1), (4.2) and (4.3) for
ir1+σ(a) ≤ r′ ≤ jr1+1.

Same arguments are used for the cases r′ ∈ [ir, jr+1−σ(a)]([jr, ir+σ(a)]) to conclude the
lemma. We are done. �

Lemma 3.2. Suppose that UWD is a Dyck path in S and that integers l and r′ as defined
in Proposition 3.2 are such that l = r′, then the following statements hold:

(a) If l /∈ {js} then there is an elementary shift to a Dyck path with exactly n− 1 peaks.

(b) If l ∈ {js} then there is an elementary shift from a Dyck path with exactly n − 1
peaks to UWD.

Proof. Let UWD be a Dyck path in S, and positive integers l and r′ with l = r′.

(a) Suppose l /∈ {js} and l ∈ [ir, jr+1−σ(a)]. If ir ≤ l < jr+1−σ(a), then UWD satisfies
(4.1) and (4.2) of Lemma 3.1. In particular, if l = ir 6= 1 there is a p′ = l − 1
in [jr−σ(a), ir] that satisfies the first condition of (5) of Lemma 3.1. The case l ∈
[jr, ir+σ(a)] is dual.

(b) Suppose l = jr+1−σ(a), we have the following cases:

(i) If |ir − jr+1−σ(a)| = 1 (or |ir+1 − jr+1−σ(a)| = 1) and ir = 1 (or ir+1 = n − 1),
then there is a UV D which is equal to

U w1︸︷︷︸
UD

wl . . . D ∈ S (or U . . . wl wn−1︸ ︷︷ ︸
UD

D ∈ S),

and
Uf(w1)wl . . . D = UWD (or U . . . wlf(wn−1)D = UWD).
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(ii) If |ir−jr+1−σ(a)| = 1 (or |ir+1−jr+1−σ(a)| = 1) and ir 6= 1 (or ir+1 6= n−1) then
there is a l′ = jr−σ(a) and r′′ = jr+1−σ(a) (or l′ = jr+1−σ(a) and r′′ = jr+2−σ(a))
such that UV D is equal to

U . . . wl′ . . . wr′′−1wl︸ ︷︷ ︸
UD

. . . D (or U . . . wlwl′+1 . . . wr′′︸ ︷︷ ︸
UD

. . . D) ∈ S,

and

U . . . f(wl′) . . . f(wr′′−1)wl . . . D (or U . . . wlf(wl′+1) . . . f(wr′′) . . . D) = UWD.

(iii) If |ir − jr+1−σ(a)| > 1 (or |ir+1 − jr+1−σ(a)| > 1) then there is a UV D which is
equal to

U . . . wl−1︸︷︷︸
UD

wl . . . D (or U . . . wl wl+1︸︷︷︸
UD

. . . D ∈ S),

and

U . . . f(wl−1)wl . . . D = UWD (or U . . . wlf(wl+1) . . . D = UWD).

Similar arguments dually applied can be used to obtain the lemma in the case l = jr. We
are done. �

Remark 3.1. Note that, in general there is an elementary leftshift and an elementary
rightshift over S, and these elementary shifts are disjoint, i.e. if fp1 ◦ · · · ◦ fpq and fp′1 ◦
· · · ◦ fp′

q′
are elementary left and right shifts, respectively. Then

{p1, . . . , pq} ∩ {p′1, . . . , p′q′} = ∅,

these elementary shifts are unique according to Lemma 3.1 and Lemma 3.2. If F p =
fp1 ◦ · · · ◦ fpq is an elementary leftshift (rightshift) we write F pl (F pr ).

Proposition 3.3. Let C = {i1, . . . ik, j1, . . . jm} be an admissible subchain, then all Dyck
paths of S constitute a connected quiver Q whose set of vertices is in correspondence with
the set of all Dyck paths in S and there is an arrow from UWD ∈ S to UV D ∈ S if there
is an elementary shift transforming UWD into UV D.

Proof. It suffices to prove that Q is connected, to do that, consider Dyck paths UWD
and UV D of S. Thus, if there is a shift path between UWD and UV D then they are
connected. Otherwise, Lemmas 3.1 and 3.2 allow to define a Dyck path UW (1)D and a

shift path F (1) = F
(1)
p1 ◦ · · · ◦ F

(1)
1 with F

(1)
m = f

(1)
m1 ◦ · · · ◦ f

(1)
mq1

such that

UWD
F

(1)
1−−−! . . .

F
(1)
p1−−−! UW (1)D,

and if there is a shift path from UV D to a UW (1)D then they are connected. If there is
not a shift path from UV D to UW (1)D, then there is a Dyck path UW (2)D and a shift

path F (2) = F
(2)
p2 ◦ · · · ◦ F

(2)
1 with F

(2)
m = f

(1)
m1 ◦ · · · ◦ f

(2)
mq2

such that

UW (2)D
F

(2)
1−−−! . . .

F
(2)
p2−−−! UW (1)D

F
(1)
p1 −−− . . .

F
(1)
1 −−− UWD,
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again, if there is a shift path from UW (2)D to a UV D then they are connected. Since S
is finite, the procedure ends in such a way that UWD and UV D are connected and with
this argument we are done. �

Henceforth, we let C2n denote the full subcategory of (D2n, R
i1...ik
j1...jm

) whose objects are
k−linear combinations of Dyck paths of S. Lemma 3.3 and Proposition 3.4 give some
properties of the Hom-spaces of this category.

Lemma 3.3. Let UWD, UW ′D, UW ′′D and UV D be Dyck paths in C2n and let F =

F 1
l ◦ F 2

r (resp. F 1
r ◦ F 2

l ) be a shift path UWD
F 2
r−−! UW ′D

F 1
l−−! UV D (resp. UWD

F 2
l−−!

UW ′D
F 1
r−−! UV D), if there is another shift path G = G1 ◦ G2 such that UWD

G2

−−!

UW ′′D
G1

−−! UW ′′D with UW ′D 6= UW ′′D then G2 = F 1
l and G1 = F 2

r (resp. G2 = F 1
r

and G1 = F 2
l ).

Proof. Let F = F 1
l ◦ F 2

r be a shift path such that

U . . . wl1 . . . wr1 . . . D
F 2
r−−! U . . . w′l2 . . . w

′
r2 . . . D

F 1
l−−! U . . . vl3 . . . vr3 . . . D,

with l1 = l2 and r2 = r3 and suppose that there is another shift path G = G1 ◦ G2 such
that

U . . . wl1 . . . wr1 . . . D
G2

−−! U . . . w′′l4 . . . w
′′
r4 . . . D

G1

−−! U . . . vl3 . . . vr3 . . . D,

with UW ′D 6= UW ′′D. Given the elementary rightshift F 2
r , then since G 6= F 2

r , it holds
that UWD satisfies the conditions of UW ′D in order to apply the same elementary leftshift
F 2
l , i.e., F 2

l = G2 and l3 = l4. Since r1 = r4, UWD and UW ′′D satisfy the conditions to
apply the same elementary rightshift, i.e., F 1

r = G1. Case F 1
r ◦ F 2

l is obtained via a dual
argument. �

Proposition 3.4. If HomC2n(UWD,UV D) 6= 0 then dimk HomC2n(UWD,UV D) = 1.

Proof. Suppose that HomC2n(UWD,UV D) 6= 0, then there is a shift path F of the form

UWD
F 0
x0−−! . . .

F i−1
xi−1
−−−−! UW i−1D

F i−1
xi−1
−−−−! UW iD

F ixi−−! UW i+1D
F i+1
xi+1
−−−! . . .

Fmxm−−−! UV D,

with xi ∈ {l, r} and for some m ∈ Z+. Now, for each pair F ixi ◦ F
i−1
xi−1

with xi−1 = l and
xi = r (xi−1 = r and xi = l) that satisfies conditions described in Lemma 3.3 there is
another shift path F ′ of the form

UWD
F 0
x0−−! . . .

F i−1
xi−1
−−−−! UW i−1D

F ixi−−! UW i′D
F i−1
xi−1
−−−−! UW i+1D

F i+1
xi+1
−−−! . . .

Fmxm−−−! UV D,

transforming UWD and UV D. Thus F ∼
R
i1...ik
j1...jm

F ′. �

3.2 A Categorical Equivalence

In this section, we establish an equivalence between the full category C2n and the category
of representations of a quiver of Dynkin type An.
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3.2.1 The Θ Functor

Given an admissible subchain C = {j1, . . . , jm, i1, . . . , ik}, C2n the full subcategory of
(D2n, R

i1...ik
j1...jm

) and Q a quiver of type An−1 with {i1, . . . , ik} and {j1, . . . , jm} being the
sets of sinks and sources, respectively. Then the k-linear additive functor Θ : C2n −! rep Q
is defined in such a way that, for an object UWD ∈ C2n, it holds that,

Θ(UWD) = (Θ(wi), ϕΘ(wi,wi+1)),

where

Θ(wi) =

{
k, if wi = UD,

0, if wi = DU .
(3.6)

If i, i + 1 ∈ [ir, jr+1−σ(a)]
(
[jr, ir+σ(a)]

)
then s(Θ(wi, wi+1)) = i + 1, is the starting

point of the corresponding arrow, whereas t(Θ(wi, wi+1)) = i is the ending vertex of the
corresponding arrow

(
s(Θ(wi, wi+1)) = i, t(Θ(wi, wi+1)) = i+ 1

)
and,

ϕΘ(wi,wi+1) : Θ(ws(Θ(wi,wi+1))) −! Θ(wt(Θ(wi,wi+1))),

ϕΘ(wi,wi+1) =

{
1k, if wi = UD = wi+1,

0, if wi = DU or wi+1 = DU .
(3.7)

Functor Θ acts on morphisms as follows;

Let
fq2 ◦ · · · ◦ fq1 = (11, . . . , 1q1−1, fq1 , . . . , fq2 , 1q2+1, . . . 1n−1),

be an elementary shift between UWD and UV D, then:

Θ((11, . . . , 1q1−1, fq1 , . . . , fq2 , 1q2+1, . . . 1n−1)),

(Θ(11), . . . ,Θ(1q1−1),Θ(fq1), . . . ,Θ(fq2),Θ(1q2+1), . . . ,Θ(1n−1)),

where Θ(fm) = 0 and,

Θ(1m1) =

{
1k, if wm1 = UD = vm1 ,

0, otherwise,
(3.8)

for 1 ≤ m1 ≤ q1 − 1, q1 ≤ m ≤ q2 and q2 + 1 ≤ m1 ≤ n− 1.

Remark 3.2. Note that, it is easy to see that Θ is an additive covariant functor.

Lemma 3.4. Let UWD and UV D be Dyck paths of C2n. If HomC2n(UWD,UV D) 6= 0
then Homrep Q(Θ(UWD),Θ(UV D)) 6= 0.

Proof. Suppose HomC2n(UWD,UV D) 6= 0, and let F be a shift path UW 0D
F 0

−−!

UW 1D
F 1

−−! . . .
Fm−2

−−−−! UWm−1D
Fm−1

−−−−! UWmD from UWD = UW 0D to UV D =
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UWmD for some m ∈ Z+, then there exist q1 and q2 such that

{q1, q1 + 1, . . . , q2 − 1, q2} =
⋂
i∈J

Supp UW iD,

applying Θ we obtain the following diagram:

· · · Θ(w0
q1−1)

a0q1−1

c0q1−1

��

k
1

1

��

· · · 1
k

1

��

Θ(w0
q2+1)

a0q2

d0q2+1

��

· · ·

· · · Θ(w1
q1−1)

a1q1−1

c1q1−1 ��

k

1��

1 · · · 1
k

1 ��

Θ(w1
q2+1)

a1q2

d1q2+1��

· · ·

...

cm−2
q1−1

��

...

1

��

...

1

��

...

dm−2
q2+1

��
· · · Θ(wm−1

q1−1)
am−1
q1−1

cm−1
q1−1

��

k
1

1

��

· · · 1
k

1

��

Θ(wm−1
q2+1)

am−1
q2

dm−1
q2+1

��

· · ·

· · · Θ(wmq1−1)
am+1
q1−1

k
1 · · · 1

k Θ(wmq2+1)
amq2 · · ·

Diagram 1.

where ciq1 − 1, aiq1−1, a
i
q2 , d

i
q2+1 ∈ {0, k}, squares in the diagram are commutative between

q1 and q2 (independently of the chosen orientation). For the sub-shift path F (x,y) to F

with 0 ≤ x ≤ y ≤ m− 1 there exist positive integers q
(x,y)
1 and q

(x,y)
2 such that

S(x,y) = {q(x,y)
1 , q

(x,y)
1 + 1, . . . , q

(x,y)
2 − 1, q

(x,y)
2 } =

⋂
i∈J(x,y)

Supp UW iD,

and for the diagrams

Θ(wx
q
(x,y)
1 −1

)

ax
q
(x,y)
1 −1

0

��

k

1

��
Θ(wy

q
(x,y)
1 −1

)

ay

q
(x,y)
1 −1

k

and k

1

��

Θ(wx
q
(x,y)
2 +1

)

ax
q
(x,y)
2

0

��
k Θ(wy

q
(x,y)
2 +1

)

ay

q
(x,y)
2

Diagram 2. Diagram 3.

we have the following cases:

(1) If q
(x,y)
1 ∈ [ir, jr+1−σ(a)] (ir < q

(x,y)
1 ≤ jr+1−σ(a)) four cases must be considered.

(1.1) If Θ(wx
q
(x,y)
1 −1

) = k and Θ(wy
q
(x,y)
1 −1

) = k, q
(x,y)
1 belong to S(x,y), which is a

contradiction.

(1.2) If Θ(wx
q
(x,y)
1 −1

) = k and Θ(wy
q
(x,y)
1 −1

) = 0, then the Diagram 2 commutes.
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(1.3) If Θ(wx
q
(x,y)
1 −1

) = 0 and Θ(wy
q
(x,y)
1 −1

) = k, then there is an elementary shift f
q
(x,y)
1 −1

on the interval and this is again a contradiction.

(1.4) If Θ(wx
q
(x,y)
1 −1

) = 0 and Θ(wy
q
(x,y)
1 −1

) = 0, then the Diagram 2 commutes.

(2) If q
(x,y)
1 ∈ [jr+1−σ(a), ir+1] (jr+1−σ(a) < q

(x,y)
1 ≤ ir+1), the conditions (1.1)-(1.4) are

satisfied on the interval.

(2.1) If Θ(wx
q
(x,y)
1 −1

) = k and Θ(wy
q
(x,y)
1 −1

) = 0, then they satisfy condition (1.3).

(2.2) If Θ(wx
q
(x,y)
1 −1

) = 0 and Θ(wy
q
(x,y)
1 −1

) = k, then they satisfy condition (1.2).

(3) Case q
(x,y)
2 ∈ [ir, jr+1−σ(a)] is similar to case (2) for the Diagram 3.

(4) Case q
(x,y)
2 ∈ [jr+1−σ(a), ir+1] is similar to case (1) for the Diagram 3.

therefore the Diagram 1 commutes. Since the cases over [jr, ir+σ(a)] can be showed by
using dual arguments. We are done. �

Lemma 3.5. Functor Θ is faithful and full.

Proof. Let φ be the map

φ : HomC2n(UWD,UV D)! Hom rep Q(Θ(UWD),Θ(UV D)),

such that φ(λF ) = λΘ(F ) with F = (11, . . . , 1q1−1, fq1 , . . . fq2 , 1q2+1, . . . , 1n−1), for some
1 ≤ q1, q2 ≤ n− 1 and λ ∈ k. Note, φ is well defined and Lemma 3.4 allows us to observe
that the image of a non-zero morphism in C2n is a non-zero morphism in rep Q. Thus, φ
is surjective and injective. �

Theorem 3.1. Functor Θ is a categorical equivalence between the categories C2n and
rep Q.

Proof. Lemma 3.5 implies that functor Θ is faithful and full. Now, let (Mi, ϕα)i∈Q0,α∈Q1

be an indecomposable representation in rep Q of the form

0 · · · k
1

k
1 · · · 1

k
1

k · · · 0

q1︷︸︸︷ q2︷︸︸︷
with {i1, . . . , ik} and {j1, . . . , jm} the sets of sinks and sources respectively. Let ϕ1 :
{0, k} ! {DU,UD} be a map such that ϕ1(k) = UD and ϕ1(0) = DU . Define the Dyck
path UWD such that

UWD = U w1 . . . wq1−1︸ ︷︷ ︸
DU

wq1 . . . wq2︸ ︷︷ ︸
UD

wq2+1 . . . wn−1︸ ︷︷ ︸
DU

D.

Proposition 3.2 allows us to observe that UWD has n−1 peaks over {j1, . . . , jm, i1, . . . , ik}
and Θ(UWD) = (Mi, ϕα)i∈Q0,α∈Q1 . Thus, Θ is essentially surjective. �

Corollary 3.1. There exists a bijection ϕ between the set of representatives of indecom-
posable representations of rep Q and the set of Dyck paths of length 2n with exactly n− 1
peaks.
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Proof. The Narayana number with exactly n− 1 peaks over all Dyck paths of length 2n
is the triangular number Tn−1 = (n−1)(n)

2 , which is equal to the number of indecomposable
representations of rep Q, then we define ϕ : S ! Ind (rep Q) such that ϕ(UWD) =
Θ(UWD). �

Corollary 3.2. The category C2n is an abelian category.

3.2.2 Properties of the Category C2n

In this section, we introduce some properties of C2n regarding simple, projective and injec-
tive indecomposable objects, we also construct the Auslander-Reiten quiver for algebras
of Dynkin type An−1. Some conditions for morphisms between objects of the category are
introduced as well.

Theorem 3.2. Let C = {j1, . . . , jm, i1, . . . , ik} be an admissible subchain, and let C2n be
the corresponding category, then

(i) Indecomposable simple objects of C2n are objects of the form

S(x) = US(wx1 ) . . . S(wxn)D,

where

S(wxy ) =

{
UD, if x = y,

DU, otherwise.
(3.9)

(ii) Indecomposable projective objects of C2n have the form P (x) = UP (wx1 ) . . . P (wxn)D
where

P (wyx) =

{
UD, if x, y ∈ [ir, jr+1−σ(a)] ([jr, ir+σ(a)) and y ≤ x (x ≤ y),

DU, otherwise.
(3.10)

(iii) Indecomposable injective objects of C2n have the form I(i) = UI(wx1 ) . . . I(wxn)D
where

I(wyx) =

{
UD, if x, y ∈ [ir, jr+1−σ(a)] ([jr, ir+σ(a)]) and x ≤ y (y ≤ x),

DU, otherwise.
(3.11)

Proof. (i) Let S(x) = (S(x)y, ϕα) be an indecomposable simple object of rep Q such that
S(x)y = k if x = y and S(x)y = 0 if x 6= y. Functor Θ allows us to observe that, there is
a UWD ∈ C2n satisfying the required conditions.

(ii) Let P (x) = (P (x)y, ϕα) be an indecomposable projective object of rep Q, if P (x)y = k
then there is a path from x to y, as well as, a source jr+1−σ(a) (jr) and a sink ir (ir+σ(a))
such that ir ≤ y ≤ x ≤ jr+1−σ(a) (jr ≤ x ≤ y ≤ ir+σ(a)), and P (x)y = 0. Thus, there
is not a path between x and y, then functor Θ determines an object UWD of C2n with
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i1, . . . ik, j1, . . . jm being an admissible subchain satisfying the required conditions. Case
(iii) follows by dually applying the arguments used in the case (ii). �

Corollary 3.3. The indecomposable simple objects of C2n have exactly a subsequence
UUDD.

Proof. Let S(x) be an indecomposable simple object of C2n, then the identity

S(x) = U . . . S(wxx−1)S(wxx)S(wxx+1) . . . D = U . . .DU . . . DU︸︷︷︸
x−1

UD︸︷︷︸
x

DU︸︷︷︸
x+1

. . . DU . . .D

has place as a consequence of Theorem 3.2. �

Remark 3.3. The Auslander-Reiten translate can be obtained by using the Coxeter trans-
formation and the dimension vector associated to the support of a Dyck path in C2n.

Figure 3.3 describes the Auslander-Reiten quiver of rep Q of the quiver Q given by Figure
1.13.

Figure 3.3. Quiver Q and the Auslander-Reiten quiver of rep Q.

Morphisms in C2n also have the following properties.

Let UWD be a Dyck path of C2n, then

� pUWD = t and bUWD = max {s | ir ≤ s ≤ jr+1−σ(a), ws = UD} over [ir, jr+1−σ(a)],

� pUWD = min {s | jr ≤ s ≤ ir+σ(a), ws = UD} and bUWD = t over [jr, ir+σ(a)].

Theorem 3.3. The vector space HomC2n(UWD,UV D) 6= 0 if and only if
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(i) Supp(UWD) ∩ Supp(UV D) 6= ∅,

(ii) pUWD ≤ pUV D and bUWD ≤ bUV D over [ir, jr+1−σ(a)],

(iii) pUWD ≥ pUV D and bUWD ≥ bUV D over [jr, ir+σ(a)],

for all [ir, jr+1−σ(a)], [jr, ir+σ(a)] such that ir ≤ q ≤ jr+1−σ(a) and jr ≤ q ≤ ir+σ(a) with
q ∈ Supp(UWD) ∩ Supp(UV D).

Proof. The result follows as a consequence of the definition of the functor Θ and the
construction of Lemma 3.1. �

3.2.3 A Relationship with Some Nakayama Algebras

In [65] Marczinzik, Rubey and Stump presented a connection between the Auslander-
Reiten quiver of Nakayama algebras and Dyck paths. In such a work for a Nakayama
algebra A, they associated the vector space dimension of the indecomposable projective
modules eiA to a Dyck path, this vector is called the Kupisch series. If we take a Nakayama
algebra A = kQ/I, with I = 〈x3x4, x1x2x3〉,

d // d // d // d // dx1 x2 x3 x4

1 2 3 4 5

Figure 3.4. Quiver Q of type A5.

then the Kupisch series of kQ/I is [3, 3, 2, 2, 1], and the Auslander-Reiten quiver of kQ/I
has the shape described in Figure 3.5.

Figure 3.5. Dyck path associated to kQ/I.

Let C2(n+1) be the category with the admissible subchain 1 < n, j1 = 1 and i1 = n, and
let Di be the sets

D1 = {X ∈ Ob(C2(n+1)) | w1 = UD},

Di = {X ∈ Ob(C2(n+1)) | wm = DU, 1 ≤ m ≤ i− 1},
(3.12)

for 1 < i ≤ n. Then, we take the subset Di,j ⊆ Di,

Di,ji = {Y ∈ Di | i ≤ rY ≤ m(i, ji) + i− 1}, (3.13)
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such that the vector v = (n− (m(i, ji) + i− 1))ni=1 constitutes an integer partition with n
parts. Now, let Nv be the subcategory of C2(n+1) whose objects are k−linear combinations
of the Dyck paths in the following set

L =

n⋃
i=1

Di,ji , (3.14)

and morphisms defined by the category C2n(n+1).

We assume the following numbering and orientation for a quiver Q associated to a
Nakayama algebra

d // d // · · · // d // d
1 2 n−1 n

x1 x2 xn−2 xn−1

Figure 3.6. Quiver Q of type An.

The functor Θ′ between the category Nv and the category of representations of (Q, I)
where kQ/I is a Nakayama algebra with Kupisch series [m(1, j1), . . . ,m(n, jn)] is defined
in such a way that, Θ′(UWD) = Θ(UWD) and Θ′(F ) = Θ(F ) for UWD ∈ L and F
being an elementary shift in Nv.

Corollary 3.4. The functor Θ′ is an equivalence of categories.

Proof. It is a direct consequence of Theorem 3.1. �

As an example, Figure 3.7 shows the Auslander-Reiten quiver of the Nakayama algebra
A = kQ/I associated to the quiver Q shown in Figure 3.4 with I = 〈x3x4, x1x2x3〉.

Figure 3.7. Auslander-Reiten quiver of mod kQ/I.

3.3 Cluster Variables Associated to Dyck Paths

In this section, we construct an alphabet associated to Dyck paths. And it is given a
formula for cluster variables of cluster algebras associated to Dynkin diagrams of type An.
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3.3.1 An Alphabet for Dyck Paths

For n > 2, let U i1 = u1 . . . u2n and U i2 = u′1 . . . u
′
2n be Dyck paths in D2n with the following

form:

uj =

{
U, if 1 ≤ j ≤ i+ 1 or j = 2(i+ 1) + k ≤ 2n,

D, if i+ 2 ≤ j ≤ 2(i+ 1) or j = 2(i+ 1 + k) ≤ 2n,
(3.15)

and

u′j =

{
U, if 2i < j ≤ i+ n or j = 1 + 2k ≤ 2i,

D, if i+ n < j ≤ 2n or j = 2k ≤ 2n,
(3.16)

for k > 0 and i ≤ n − 2. The alphabet Hn is the union of the set
{U jr | r = 1, 2 and 1 ≤ i ≤ n − 2} and the Dyck path with exactly one peak in
D2n (denoted En). Figure 3.8 shows the alphabet H3.

(a) U1
1 (b) U1

2 (c) E3

Figure 3.8. Alphabet H3.

Let C = {i1, . . . , ik, j1, . . . , jm} be an admissible subchain of n-1. We fix two different
relations of concatenation ϑ1 and ϑ2 over Hn such that

ϑ1(Vi) =


En, if Vi = En or Vi = U i1,

U i+1
2 , if Vi = En or Vi = U i1,

U i+1
1 , if Vi = U i2,

(3.17)

and

ϑ2(Vi) =


En, if Vi = U i2,

U i+1
1 , if Vi = En or Vi = U i1,

U i+1
2 , if Vi = U i2.

(3.18)

Then, we take the set of words V = V1 . . . Vn−2 in H∗n such that

Vi =

{
ϑ1(Vi−1), if i /∈ C,

ϑ2(Vi−1), if i ∈ C− {1, n− 1},
(3.19)

for 1 < i ≤ n− 2, n ≥ 4. This set is denoted by XC, in particular case X{1,2} = H3.
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3.3.2 Dyck Words and Perfect Matchings

Let G = (G1, . . . , Gn−1) be a snake graph, then we can associate to G an admissible
subchain C of n-1 in the following way:

If Gi−1, Gi and Gi+1 denote tiles of the following snake graph

Gi−1 Gi Gi+1

then, i ∈ C for 1 < i < n− 1. For example, for the snake graph G shown in Figure 3.9

G1 G2

G3

G4 G5

Figure 3.9. Snake graph G.

it holds that the corresponding admissible subchain is given by the identity {1, 3, 5} =
{i1, j1, i2} = {j1, i1, j2}. By notation, G can be written as GC.

The following result establishes a relationship between the alphabet XC and perfect match-
ings of snake graphs.

Lemma 3.6. Let C = {i1, . . . , ik, j1, . . . , jm} be an admissible subchain of n-1. Then,
there is a bijective correspondence between the set XC and the perfect matchings of GC.

Proof. Let C be an admissible subchain of n-1, XC be a set of words, and GC be a snake
graph associated to C. Assume a numbering over the edges of GC in the following way:

For boundary edges of Gi, we have the following four possibilities

Gi−1 Gi Gi+1

U i−1
1 U i−1

2

U i1

Gi−1 Gi Gi+1

U i−1
1 U i−1

2

U i1

Gi−1 Gi

Gi+1

U i−1
1 U i−1

2

U i1 Gi−1 Gi

Gi+1
U i−1
1

U i−1
2

U i1
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with 1 < i < n− 1 (labeling is given by recurrence). The other edges are labeled with the
letter En. Now, a perfect matching P of GC can be written as a vector v = (v1, . . . , vn),
where each vi corresponds to an edge of GC (this vector is unique up to permutation).
Define a map f : XC ! Match(GC) such that f(V1 . . . Vn−2) = (En, V1, . . . , Vn−2, En).
Firstly, we will prove that f is well defined by induction over n. To start note that for
n = 3, we have the following three cases:

(I) If V1 = E3, it turns out that F (V1) = (E3, E3, E3), which is given by

G1 G2

(II) If V1 = U1
1 , it holds that f(U1

1 ) = (E3, U
1
1 , E3), which is equal to

G1 G2

(III) If V1 = U1
2 , then f(U1

2 ) = (E3, U
1
2 , E3), which is of the form

G1 G2

Suppose that the result holds for n = k. Let n = k + 1, by hypothesis (Ek+1, V1, . . . Vk)
are disjoint sets containing all the previous tiles in GC, then there are two possibilities for
k.

(I) for k ∈ C− {1, k + 1}, we have the following conditions:

(1.1) If Vk−1 = Ek+1, then f(V1 . . . Ek+1Ek+1) = (Ek+1, V1, . . . , Ek+1, Ek+1, Ek+1)
and f(V1 . . . Ek+1U

k
2 ) = (Ek+1, V1, . . . , Ek+1, U

k
2 , Ek+1), which are given by

Gk−1 Gk Gk+1 Gk−1 Gk Gk+1and

(1.2) If Vk−1 = Uk−1
1 , then f(V1 . . . U

k−1
1 Ek+1) = (Ek+1, V1, . . . , U

k−1
1 , Ek+1, Ek+1)

and f(V1 . . . U
k−1
1 Uk2 ) = (Ek+1, V1, . . . , U

k−1
1 , Uk2 , Ek+1), which are equal to

Gk−1 Gk Gk+1 Gk−1 Gk Gk+1and

(1.3) If Vk−1 = Uk−1
2 , then f(V1 . . . U

k−1
2 Uk1 ) = (Ek+1, V1, . . . , U

k−1
2 , Uk1 , Ek+1) which

is of the form

Gk−1 Gk Gk+1

(II) for k /∈ C, there are the following cases:
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(2.1) If Vk−1 = Ek+1, then f(V1 . . . Ek+1U
k
1 ) = (Ek+1, V1, . . . , Ek+1, U

k
1 , Ek+1), which

is given by

Gk−1 Gk

Gk+1

(2.2) If Vk−1 = Uk−1
1 , then f(V1 . . . U

k−1
1 Uk1 ) = (Ek+1, V1, . . . , U

k−1
1 , Uk1 , Ek+1), which

is equal to

Gk−1 Gk

Gk+1

(2.3) If Vk−1 = Uk−1
2 , then f(V1 . . . U

k−1
2 Ek+1) = (Ek+1, V1, . . . , U

k−1
2 , Ek+1, Ek+1)

and f(V1 . . . U
k−1
2 Uk2 ) = (Ek+1, V1, . . . , U

k−1
2 , Uk2 , Ek+1), which are of the form

Gk−1 Gk

Gk+1

Gk−1 Gk

Gk+1

Dual arguments prove the result for the other labelings. We also note that by definition
map f is injective and surjective. �

Remark 3.4. Each perfect matching of GC is in correspondence with just only one
object of the An−1−Dyck paths category associated to the admissible subchain C =
{i1, . . . , ik, j1, . . . , jm}.

For each Dyck path Y = y1 . . . y2n with n − 1 peaks, we construct a family of words
Y ∩ XC ∈ H∗n such that:

Y ∩ XC = {Y ∩ V z | V z ∈ XC}, (3.20)

where

Y ∩ V z =

{
V z, if there exists j such that yj = vzj for 1 < j < 2n,

En, otherwise,
(3.21)

with V z = vz1 . . . v
z
2n in XC. For the set Y ∩ XC, it can be defined a relation v such that

Y ∩ V z1 v Y ∩ V z2 if and only if Y ∩ V z1 and Y ∩ V z2 are the same word. (3.22)

In this case, v is an equivalence relation and (Y ∩XC)/ v is denoted by [Y ∩XC]. Also, we
remind that a Dyck path Y can be written as the word UWD = Uw1, . . . wn−1D, where
y1 = U , y2n = D and, wi = y2iy2i+1.
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Lemma 3.7. Let C = {i1, . . . , ik, j1, . . . , jm} be an admissible subchain of n-1 and let Y a
Dyck path of length 2n with exactly n− 1 peaks. Then, there is a bijective correspondence
between the set [Y ∩ XC] and the set of perfect matchings of the snake graph belonging to
GC and induced by the words wt = UD in Y .

Proof. Let C be an admissible subchain of n-1 and Y = UWD be a Dyck path in S,
then by Proposition 3.2 there are l, r ∈ Z>0 with 1 ≤ l ≤ r ≤ n − 1 such that wt = UD
for l ≤ t ≤ r and wt = DU otherwise. Now, let GCl,r = G[l, d] be a snake graph belonging
to GC induced by Y . Define a map g : [Y ∩ XC]! Match(GCl,r) such that:

(I) If 1 < l ≤ r < n − 1, then g([Y ∩ V i]) = g(En . . . EnV
i
l−1 . . . V

i
rEn . . . En) =

(V i
l−1, . . . , V

i
r ).

(II) If l = 1 and 1 = l ≤ r < n − 1, then g([Y ∩ V i]) = g(V i
1 . . . V

i
rEn . . . En) =

(En, V
i
l , . . . , V

i
r ).

(III) If r = n − 1 and 1 < l ≤ r = n − 1, then g([Y ∩ V i]) = g(En . . . EnV
i
l−1 . . . V

i
n−2) =

(V i
l−1, . . . , V

i
n−2, En).

(IV) If l = 1 and r = n− 1, then g = f .

Since in the four cases g is a restriction of f . It follows that g is a bijection as a consequence
of Lemma 3.6. �

3.3.3 Cluster Variables Formula Based on Dyck Paths Categories

In this section, Dyck paths categories are used to give a formula for cluster variables of
cluster algebras of Dynkin type An, to do that, we use the category of Dyck paths asso-
ciated to an admissible subchain. We also present a connection between cluster variables
of algebras of type An−1 and Dyck paths with n− 1 peaks.

Let C = {i1, . . . ik, j1, . . . jm} be an admissible subchain of n-1 and let Y = UWD be a
Dyck path in S, then we define the monomials

ηY =
∏

UD=wi∈Y
xi, (3.23)

and

XV =
∏

m∈MV

xm, (3.24)

with MV being the set of indices m such that

m =


i+ 1, if U i1 ∈ V,
i, if U i2 ∈ V,
0, if En ∈ V,

(3.25)
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V ∈ [Y ∩ XC]. For this case x0 = 1.

The following theorem gives the cluster variable associated to a Dyck path in the set S
and its connection with cluster algebras of type An−1.

Theorem 3.4. Let C = {i1, . . . , ik, j1, . . . , jm} be an admissible subchain of n-1, Y =
UWD a Dyck path with n−1 peaks and M the set of all cluster variables of a cluster algebra
of type An−1 with {i1, . . . , ik} and {j1, . . . , jm} the sets of sinks and sources, respectively.
Then:

(i) The cluster variable associated to Y in the category C2n is given by

XY = (ηY )−1

( ∑
V ∈[Y ∩XC]

XV

)
. (3.26)

(ii) There exists a bijective correspondence between Dyck paths with n− 1 peaks and the
set M \ x0 with x0 the initial seed.

Proof. Let C = {i1, . . . , ik, j1, . . . , jm} be an admissible subchain of n-1, and let TC be
the triangulation of the polygon with n+ 2 vertices given by C.

j1

i1

j2

... ...

im

jm

im−1
...

...

...

j1

i1

j2

... ...

jm

im−1

jm−1... ...

...

i1

j1

i2

...
...

jk

ik

jk−1... ...

...

i1

j1

i2

...
...

ik

jk−1

ik−1... ...

...

Let αl,r be a diagonal that is not in TC that cuts the diagonals αl, . . . αr ∈ TC. We define
a functor χ : CTC ! C2n such that χ(αl,r) = UWl,rD, where

wj =

{
UD, if l ≤ j ≤ r,
DU, otherwise,

(3.27)

and for any pivoting elementary move E : αr,l ! α′r′,l′ , χ(E) is the elementary shift
F = ft1 ◦ · · · ◦ ftk from UWl,rD to UWl′,r′D. Theorems 1.9 and 3.1 allow us to establish
the following sequence of equivalences:

CTC w Mod QTC w C2n, (3.28)

therefore χ is a categorical equivalence. Thus,

(i) Functor χ and Lemma 3.7, allow to establish that xγ = XY .

(ii) The map ψ : S ! M \ x0 such that ψ(Y ) = XY is a bijection as a consequence of
Theorem 1.8 and the definition of functor χ. We are done. �
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For instance, let C = {j1 = 1, i1 = 2, j2 = 4} be an admissible subchain of 4, the set XC is
in correspondence with the objects of C10 shown in Figure 3.10.

⊕ ⊕
(a) E5

⊕
E5

⊕
U3
1

⊕ ⊕
(b) E5

⊕
U2
2

⊕
E5

⊕ ⊕
(c) E5

⊕
U2
2

⊕
U3
2

⊕ ⊕
(d) U1

1

⊕
E5

⊕
U3
1

⊕ ⊕
(e) U1

1

⊕
U2
2

⊕
E5

⊕ ⊕
(f) U1

1

⊕
U2
2

⊕
U3
2

⊕ ⊕
(g) U1

2

⊕
U2
1

⊕
U3
1

Figure 3.10. Objects in C10.

Then, for Y = UDUUDUDDUD, we define the set Y ∩ XC such that

[Y ∩ XC] = {E5E5U
3
1 , E5U

2
2E5, U

1
2U

2
1U

3
1 }. (3.29)

Thus, identities (3.23), (3.24) and (3.25) define the polynomials

ηY = x2x3, XE5E5U3
1

= x0x0x4, XE5U2
2E5

= x0x2x0, XU1
2U

2
1U

3
1

= x3x1x4, (3.30)

therefore, the cluster variable associated to the Dyck path Y is given by the expression

XY =
x4 + x2 + x3x1x4

x2x3
. (3.31)



CHAPTER 4

Some Applications Of Catalan Numbers

In this chapter, we describe the way that Dyck paths are used in different kind of algebraic
structures. In section 4.1, we prove that frieze patterns arise from Dyck paths, to do that,
diamonds of An are introduced, in particular, we prove that some new diamonds are in
bijective correspondence with Dyck paths, triangulations of an (n + 3) polygon, and a
family of frieze vectors. This approach allows us to write frieze patterns as a direct sum of
indecomposable objects of the category of Dyck paths and it is also given a categorification
of the Catalan triangle in the sense of Ringel and Fahr [90]. In section 4.2, we define
Brauer configuration algebras whose indecomposable projective modules are in bijective
correspondence with Dyck paths, some combinatorial properties of the Catalan triangle
allow us to establish formulas for the dimension of these algebras and its corresponding
centers.

4.1 Frieze Patterns Arising from Dyck Paths

In this section, we introduce a basic set called diamond which is used to build frieze
patterns associated to triangulations of a polygon.

4.1.1 Diamonds of An

Let R be an integral domain, a diamond A = (ai,j) of An is an array

a2,0

a1,1 a2,1

a1,2 . . .

. . .
a2,n−1

a1,n a2,n

a1,n+1

that satisfies the following conditions:

85
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(D1) a2,0 = a1,n+1 = 1,

(D2) a1,ja2,j − a2,j−1a1,j+1 = 1 for 1 ≤ j ≤ n,

with ai,j ∈ R and 1 the identity element of R.

If R = Z, A is called integral diamond, if it also satisfies

(D3) a1,1 = a (or a1,1 = a + ma), a2,1 = a + ma (or a2,1 = a) and a1,2 = a2 + ama − 1,
with 1 ≤ a ≤ bn+2

2 c, 1 ≤ m1 ≤ n and 0 ≤ ma ≤ n+ 2(1− a) if a > 1,

A is called positive integral diamond.

Two diamonds A and B of An are a couple if and only if a2,j = b1,j for 1 ≤ j ≤ n (denoted
by A |= B). A set {At}t≥0 is an An−sequence of couples of An if and only if Ar |= Ar+1

for r ≥ 0. An An−sequence of couples {At}t≥0 is a p−cycle if there is a p ∈ N such that
At = At+p.

For example, let R = Z, the sets {At}t≥0 and {Bt}t≥0 are A1−sequences of couples which
are 2−cycles with A2k = B2k+1 = A, A2k+1 = B2k = B and k ≥ 0.

1

1 2

1

1

2 1

1

A = B =

In general, it can be written an An−sequence of couples {At}t≥0 as an An−array CAt =
(ci,j) such that ct+1,j = at1,j and ct+1,0 = ct+1,n+1 = 1, for t ≥ 0. For the previous example,

1 1 1 . . .

1 2 1 2 . . .

1 1 1 . . .

1 1 1 . . .

2 1 2 1 . . .

1 1 1 . . .

CAt = CBt =

CAt and CBt are A1−arrays associated to {At}t≥0 and {Bt}t≥0, respectively.

If the An−sequence of couples is finite of length m, it can be associated an infinity
An−array, CmAt = (cmi,j) such that

cm(t+1)+km,j = at1,j , c
m
(t+1)+km,0 = cm(t+1)+km,n+1 = 1, (4.1)

for k ∈ Z. For any An−sequence of couples {At}t≥0, we can take an An−subsequence
{Bz}z≥0 for Bz = Ax+z and some x ≥ t. In particular, if {At}t≥0 is a p−cycle , we take
the subsequence {Bs0}0≤s0≤p−1 such that Bs0 = At. This subsequence is called minimal
p−cycle of {At}t≥0.

Henceforth, we present main results regarding diamonds of An.
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Proposition 4.1. Let {At}t≥0 be a p−cycle and let B = {Bs0}0≤s0≤p−1 be its minimal
p−cycle . Then, the CpB is a frieze pattern of order n+ 3. In particular, p divides n+ 3.

Proof. Let CpB = (cpij) be the infinity An−array associated to {Bs0}0≤s0≤p−1, identity
(4.1) implies that

cp(s0+1)+kp,j = as01,j , c
p
(s0+1)+kp,0 = cp(s0+1)+kp,n+1 = 1,

for k ∈ Z, given that {At}t≥0 is a p−cycle, then, CpB is a frieze pattern. �

Proposition 4.2. Let {At}t≥0 be a p−cycle of length 2p, then the subsequences
{Bsi}0≤si≤p−1 generate the same frieze pattern of order n + 3, for 0 ≤ i ≤ p − 1, and
Bsi = Ai+si.

Proof. Let {At}t≥0 be a p−cycle of length 2p, let CpA = (cpij) and CpB = (cp
′

ij) be
the infinity arrays of the subsequences A = {Bsi}0≤si≤p−1 and B = {Bsi′}0≤si′≤p−1

of {At}t≥0 for 0 ≤ i < i′ ≤ p − 1. Applying the translation si′ = si − |i′ − i|,
cpsi′+1+kp,j = a

si′+i
′

1j = a
si−|i′−i|+i′
1j = asi+iij = cpsi+1+kp,j . We are done. �

Lemma 4.1. Let {At}t≥0 be a sequence of couples, then {At}t≥0 is generated by A0. In
particular, A0 generates a p−cycle for some p > 0.

Proof. Let {At}t≥0 be a sequence of couples, then

ax2,j =
1 + (ax2,j−1)(ax−1

2,j+1)

ax−1
2,j

, (4.2)

for 1 ≤ j ≤ n, and x ≥ t, then ax2,j can be written by using the set {a0
2,j}1≤j≤n for

x > 0. In particular, the set {a0
2,1, . . . , a

0
2,n} is a seed of the cluster algebra associated to

the quiver shown in Figure 3.6. Since the cluster variables are finite in the case An, then
there is p = n+ 3 (in some cases, it is not minimal) such that A0 = An+3. �

Theorem 4.1. Let A be a diamond of An, then A generates a frieze pattern.

Proof. It is a direct consequence of Lemma 4.1, and Proposition 4.1. �

For instance, the diamonds A and B generate the following frieze pattern.

. . . 1 1 1 1 1 . . .

. . . 1 2 1 2 . . .

. . . 1 1 1 1 1 . . .

4.1.2 Seed Vectors

In this section, we give an algorithm to build a family of positive integral frieze vectors
associated to the quiver shown in Figure 3.6. These vectors help to find a connection
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between the positive integral diamonds of An, triangulations, and Dyck paths.

Let A be a diamond of An, we can write the first column as a vector vA = (a1, . . . , an)
where aj = a1,j .

Proposition 4.3. If v = (a1, . . . , an) is a vector associated to a positive integral diamond
of An with an = 1, then the vector v′ = (a1, . . . , ai, ai + ai+1, ai+1, . . . , an−1) generates a
positive integral diamond of An, for 1 ≤ i < n.

Proof. Let vA = (a1, . . . , an) be a vector associated to a positive integral diamond
A = (aj,m) of An, we take the vector vA+i = (a1, . . . , ai, ai + ai+1, ai+1, . . . , an−1) and the
array A+ i of the following form:

b1,m =


a1,m, if m ≤ i,
a1,i + a1,i+1, if m = i+ 1,

a1,m−1, if m > i+ 1,

(4.3)

and

b2,m =


a2,m, if m ≤ i− 1,

a2,i−1 + a2,i, if m = i,

a2,m−1, if m ≥ i+ 1,

(4.4)

then b1,mb2,m − b2,m−1b2,m+1 = 1, for 1 ≤ m ≤ n and 1 ≤ i < n. Therefore A + i is a
positive integral diamond of An. �

Proposition 4.4. The vector vn,z = (a1, . . . , an) with

ai =

{
z + 1− i, if i < z,

1, if i ≥ z,
(4.5)

is in bijective correspondence with a positive integral diamond of An, for z ∈ {1, . . . , n+1}.

Proof. Let vn,z be a vector and let z be a natural number between 1 and n+ 1, we define
a positive integral diamond A with a1,i = ai and a2,i = bi where

bi =

{
1, if i < z,

i+ 2− z, if i ≥ z,
(4.6)

then a1,ia2,i − a2,i−1a2,i+1 = 1 for 1 ≤ i ≤ n. �

Remark 4.1. vn,z is called a seed vector. The vector vn,z = (b1, . . . , bn) defines a positive
integral diamond B of An such that b2,i satisfies the following identity

b2,i =


i− 1, if i < z − 1,

(b1,i + 1)z − 1, if z − 2 < i < n,

z, if i = n,

(4.7)

and bi = b1,i is defined as in 4.6.
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Proposition 4.5. The positive integral diamonds A and B generated by vn,z and vn,z

respectively are a couple.

Proof. It is a direct consequence of Proposition 4.4 and Lemma 4.1. �

The number of ways of applying recursively Proposition 4.3 to a vector wA =
(a1, . . . , az−1, 1, . . . , 1) ∈ Nn is given by the next identity (denoted by fn,z),

fn,z =

{∑n
i=z−1 fn−1,i, if z > 1,∑n
i=1 fn−1,i, if z = 1,

(4.8)

where it is included the trivial move wA+0 = wA, for n > 1, and any z ∈ {1, . . . , n + 1}.
In fact, we represent these numbers by the following triangle

f1,2 f1,1

f2,3 f2,2 f2,1

f3,4 f3,3 f3,2 f3,1

f4,5 f4,4 f4,3 f4,2 f4,1
...

. . .

(4.9)

for any vector as before. Since the first possibilities are v1,1 = (1) and v1,2 = (2), then
f1,1 = 1 and f1,2 = 1. The previous triangle appears in the OEIS as A009766 (Catalan
triangle [90]). In particular, we generate all positive integral diamonds of An via the seed
vectors vn,z. For example, for n = 3, all vectors that generate positive integral diamonds
of A3 are:

(1, 1, 1) (2, 1, 1) (3, 2, 1) (4, 3, 2)

(1, 1, 2) (2, 1, 2) (3, 2, 3)

(1, 2, 1) (2, 3, 1) (3, 5, 2)

(1, 2, 3) (2, 3, 4)

(1, 3, 2) (2, 5, 3)

Let G = UD . . . UD . . . be a Dyck path of length 2n and let mi be the number of U 's
before of i-th D in G, then, G can be written as a vector vG = (v1, . . . , vn−1) where
vi = mi − i + 1. If G is the Dyck path shown in Figure 4.1 then G has associated the
vector vG = (5, 4, 3, 3, 5, 4, 3, 2).
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Figure 4.1. Dyck path of length 18.

If we take the case n = 3, all the vectors are

(1, 1, 1) (2, 1, 1) (3, 2, 1) (4, 3, 2)

(1, 1, 2) (2, 1, 2) (3, 2, 2)

(1, 2, 1) (2, 2, 1) (3, 3, 2)

(1, 2, 2) (2, 2, 2)

(1, 3, 2) (2, 3, 2)

Note that, the number of generating vectors is given by the Catalan numbers.

In what follows, it is defined a map between the vectors associated to positive integral
diamonds of An and Dyck paths by using a relation over the coordinates of a vector
u = (a1, . . . , am). The map Ti is defined in such a way that, Ti : Nm ! N and:

� If ai − ak > 0 for some k ∈ {1, . . . , i}, we take max {k} and we write r1 = ai − ak.
Again, we take max {k} such that r1−ak > 0 and we write r2 = r1−ak, this process
ends when there is no a k such that rt − ak > 0, then, Ti(u) = rt + t. for some t.

� If ai − ak ≤ 0 for all k ∈ {1, . . . , i}, then Ti(u) = ai.

For instance, we take a vector u = (14, 52, 4, 23, 9, 2), then T1(u) = 14, T2(u) = 13,
T3(u) = 4, T4(u) = 8, T5(u) = 3, and T6(u) = 2.

Proposition 4.6. Let vn,z be a seed vector, then (T1(vn,z), . . . , Tn(vn,z)) describes a Dyck
path of length 2(n+ 1).

Proof. For any z ∈ {1, . . . , n+1}, Ti(vn,z) = ai with ai given by identity (4.5), then there
is a word Gvn,z = w1 . . . w2(n+1) ∈ {U,D}∗ such that

Gvn,z = U . . . U︸ ︷︷ ︸
z−1

D . . .D︸ ︷︷ ︸
z−1

UDUD . . . UDUD, (4.10)

for any left factor us in Gvn,z of length s ∈ {1, . . . , 2(n + 1)}, 0 ≤ |us|U − |us|D ≤ z − 1,
therefore Gvn,z ∈ D2(n+1). �
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Proposition 4.7. Let vA = (a1, . . . , an) be a vector associated to a positive integral di-
amond A of An with an = 1, such that (T1(vA), . . . , Tn(vA)) describes a Dyck path in
D2(n+1). Then (T1(vA+i), . . . , Tn(vA+i)) describes a Dyck path in D2(n+1).

Proof. Let vA = (a1, . . . , an) be a vector associated to a positive integral diamond A
with an = 1, then there exists a Dyck path GvA ∈ D2(n+1) such that any left factor us of
length s satisfies |us|U ≥ |us|D for 1 ≤ s ≤ 2(n + 1). Let vA+i be a vector associated to
the positive integral diamond A+ i with

Tm(vA+i) =


Tm(vA), if 1 ≤ m ≤ i,
Tm(vA) + 1, if m = i+ 1,

Tm−1(vA), if m > i+ 1,

(4.11)

then there is a word GA+i = w′1, . . . , w
′
2(n+1) in {U,D}∗, we take the index m1 of the i-th

D in GA+i, any left factor u′s in GA+i satisfies the identities

|u′s|U =


|us|U , if 1 ≤ s ≤ m1,

|um1 |U + 1, if s = m1 + 1,

|us−2|U + 1, if s ≥ m1 + 2,

(4.12)

and

|u′s|D =


|us|D, if 1 ≤ s ≤ m1,

|um1 |D, if s = m1 + 1,

|us−2|U + 1, if s ≥ m1 + 2,

(4.13)

then, we have the following possibilities:

� If 1 ≤ s ≤ m1, |u′s|U = |us|U ≥ |us|D = |u′s|D.

� If s = m1 + 1, |u′m1+1|U = |um1 |U + 1 > |um1 |D = |u′m1+1|D.

� If m1 + 2 ≤ s ≤ 2(n+ 1), |u′s|U = |us−2|U + 1 ≥ |us−2|D + 1 = |u′s|D.

Therefore, GA+i ∈ D2(n+1). �

Lemma 4.2. There is a bijective correspondence between the set of all vectors associated
to positive integral diamonds of An and the set of all Dyck paths of length 2(n+ 1).

Proof. Let DAn be the set of all vectors associated to positive integral diamonds of
An and let D2(n+1) be the set of all Dyck paths of length 2(n + 1), then, we define a
map f : DAn ! D2(n+1) with f(uA) =

(
T1(uA), . . . , Tn(uA)

)
, Propositions 4.6 and 4.7

allow us to establish that f is well defined. We should prove that the map f is one to
one. Suppose that uA different from vB, we take the minimum k such that uk 6= vk. If
k = 1 then T1(uA) 6= T1(vB). If k > 1, uk = m(uk−1) + a and vk = m′(uk−1) + a with
m 6= m′ is a consequence of Proposition 4.3 then rtuk 6= rtvk , therefore Tk(uA) 6= Tk(vB). �

Figure 4.2 shows a positive integral diamond of A4 and its corresponding Dyck path.
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1

3 3

8 2

5 1

2 1

1

Figure 4.2. Diamond (left) and its corresponding Dyck path (right).

An alternative way of writing a Dyck path G ∈ D2(n+1) can be defined by using a vector
λG = (λ1, . . . , λn) where λi is the number of D's before of (n+2−i)-th U in G (see [64,92]),
for example, Dyck path of Figure 4.2 has associated the following vector λG = (1, 1, 0, 0).
In the case n = 3, all vectors are

(3, 2, 1) (3, 2, 0) (3, 0, 0) (0, 0, 0)

(2, 2, 1) (2, 2, 0) (2, 0, 0)

(3, 1, 1) (3, 1, 0) (1, 0, 0)

(2, 1, 1) (2, 1, 0)

(1, 1, 1) (1, 1, 0)

Let λ be a vector associated to a Dyck path of length 2(n+ 1), a triangulation of an n+ 3
polygon can be defined through the use of λ as follows:

� Fix a labeling in the vertices of polygon Kn+3
0 = (vn+3

0 , . . . , vn+3
n+2) with vn+3

i = i, for
0 ≤ i ≤ n+ 2.

� For λi, we draw a diagonal lλii between λi and λi + 2. After that, we label the last
polygon with n+ 3− i vertices Kn+3−i

i = (vn+3−i
0 , . . . , vn+3−i

n+2−i), and

vn+3−i
j =

{
v
n+3−(i−1)
j , if j ≤ λi,
v
n+3−(i−1)
j+1 − 1, if j > λi,

for i = 1, . . . , n.

2 1

54

3 0l21

2 1

43

0l21 l22

2 1

3

0l21 l22 l13−! −!

Figure 4.3. Triangulation of an hexagon.
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The previous algorithm describes that if lλii is a diagonal then it does not cross the diag-

onals lλ11 , . . . , l
λi−1

i−1 for 1 ≤ i ≤ n. For instance, let λG = (2, 2, 1) be the vector associated
to G = UDUDUUDD, then the triangulation of λG is shown in Figure 4.3.

If we fix a labeling K over all vertices of a polygon with n+ 3 vertices, a triangulation T
is written as a sequence T = (lv11 , . . . , l

vn
n ), where vi belongs to the set of vertices.

Lemma 4.3. There is a bijective correspondence between the set of all triangulations of
a polygon with n+ 3 vertices and the set of all Dyck paths of length 2(n+ 1).

Proof. Let Tn be the set of all triangulations of a polygon with n + 3 vertices, then, we
can define a map g : D2(n+1) ! Tn with g(λ) = Tλ. We should prove that g is one to

one. Fix a labeling K and suppose g(λG) = g(σG′), then (lλ11 , . . . , lλnn ) = (lσ11 , . . . , lσnn ),

provided that l
λj
j = l

σj
j , there are diagonals λj ! (λj + 2) and σj ! (σj + 2), therefore

λj = σj for j = 1, . . . , n. �

The next theorem presents the main result regarding the positive integral diamonds of An
and the triangulations of an n+ 3 polygon.

Theorem 4.2. There is a bijective correspondence between the set of all vectors associated
to positive integral diamonds of An and triangulations of a polygon with n+ 3 vertices.

Proof. We fix a labeling K in a polygon with n + 3 vertices, the map F : DAn ! Tn
defined by F (vA) = (g ◦ f)(vA) is a bijection (Lemmas 4.2 and 4.3). �

Figure 4.4 presents the bijective correspondence between a positive integral diamond of
A4, a Dyck path of length 10, and a triangulation of a polygon with 7 vertices.

1

2 2

3 3

4 1

1 2

1

-

�
�
�
�	@

@
@
@I

Figure 4.4. Connection via the map F .
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4.1.3 Frieze Patterns and Dyck Paths

In this section, we describe an algebraic interpretation of frieze patterns as a direct sum
of Dyck Paths.

Lemma 4.4. The vectors vn,z and vn,z generate the same triangulation except for one
anti-clockwise rotation.

Proof. Let vn,z and vn,z be frieze vectors, fixed a labeling K1 in an n+3 polygon, applying
map F

1

z

n+ 1

(a) f(vn,z) (b) f(vn,z)

F (vn,z) = ( n︸︷︷︸
1

, . . . , z︸︷︷︸
n−z

, 0︸︷︷︸
n−z+1

, . . . , 0︸︷︷︸
n

) and F (vn,z) = (n− 1︸ ︷︷ ︸
1

, . . . , z − 1︸ ︷︷ ︸
n−z

, z − 1︸ ︷︷ ︸
n−z+1

, . . . 1︸︷︷︸
n

),

if we change K1 by K2 in the following way:

� the vertex k ∈ K1 is k − 1 ∈ K2 for 1 ≤ k ≤ n+ 2,

� the vertex 0 ∈ K1 is n+ 2 ∈ K2,

the diagonals from 0 to r1 in K1 are diagonals from r1 − 1 to n + 2 in K2, and the
diagonals from r2 in K1 are diagonals from r2 − 1 in K2, for 0 ≤ r1 ≤ z ≤ r2 ≤ n.
Therefore F (vn,z) ∈ K1 is equal to F (vn,z) ∈ K2. �

Note that, there exists a permutation

σ =

(
1 2 . . . n− z − 1 n− z n− z + 1 n− z + 2 . . . n− 1 n
1 2 . . . n− z − 1 n− z n n− 1 . . . n− z + 2 n− z + 1

)
,

in Sn that describes a bijection between the coordinates of the vector F (vn,z) =
(u1, . . . , un) and the vector F (vn,z) = (u′1, . . . , u

′
n) such that σ(F (vn,z)) =

(uσ(1), . . . , uσ(n)) = (u′1, . . . , u
′
n) = F (vn,z) in K2. In general, if v and w generate the

same triangulation except for one anti-clockwise rotation, then there exists a permutation
σ′ ∈ Sn such that σ′(F (v)) = F (w) in K2.
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Lemma 4.5. Let A and B be positive integral diamonds of An, A and B are a couple,
and vA = (a1, . . . , az, . . . , an) with at = 1 for z ≤ t ≤ n. If vA and vB generate the same
triangulation except for one anti-clockwise rotation. Then vA+i = (a1, . . . , ai−1, ai−1 +
ai, ai+1, . . . , an−1) and vB+i−1 = (b1, . . . , bi−2, bi−2+bi−1, bi−1, . . . , bn−1) generate the same
triangulation except for one anti-clockwise rotation for z − 1 ≤ i ≤ n, i ≥ 2.

Proof. Let vA and vB are vectors, since vA and vB generate the same triangulation
except for one anti-clockwise rotation, then, there exists a permutation σ ∈ Sn such that
σ(F (vA)) = F (vB) in K2. The following options arise from the map f , such that:

(1) If i > z ≥ 1, f(vA) = (. . . , 1︸︷︷︸
i−1

, 1︸︷︷︸
i

, . . . ), and f(vB) = (. . . , d︸︷︷︸
i−2

, 2︸︷︷︸
i−1

, 2︸︷︷︸
i

, . . . ) (see

Figure 4.5)

(1.1) If d = 1, F (vA) = (. . . , i︸︷︷︸
n−i

, i− 1︸︷︷︸
n+1−i

, . . . ), F (vB) = (. . . , i− 1︸︷︷︸
n−i

, i− 2︸︷︷︸
n+1−i

, . . . ), and σ

satisfies the expression,

σ(r) =

{
r, if r ≤ n+ 1− i,
m, otherwise,

(4.14)

for some m > n+ 1− i. Applying F to vA+i and vB+i−1,

F (vA+i) = (. . . , i− 1︸︷︷︸
n−i

, i− 1︸︷︷︸
n+1−i

, . . . ), and F (vB+i−1) = (. . . , i− 2︸︷︷︸
n−i

, i− 2︸︷︷︸
n+1−i

, . . . ),

then there exits σ′ ∈ Sn such that σ′ = σ and σ′(F (vA+i)) = F (vB+i−1) in K2

(see Figure 4.6).

iii

n+1−i

d=1 d=2

Figure 4.5. Dyck paths associated to vA and vB for i > z.

(1.2) If d = 2, this case is equal to the previous case.

(1.3) If d = 3, A and B do not generate the same triangulation.

Note that, if z = 1, this case satisfies the condition (1.1) and (1.2) without d.

(2) If i = z ≥ 2, f(vA) = (. . . , 2︸︷︷︸
i−1

, 1︸︷︷︸
i

, . . . ) and f(vB) = (. . . , b︸︷︷︸
i−2

, a︸︷︷︸
i−1

, 2︸︷︷︸
i

, . . . ) (see

Figure 4.7).

(2.1) If a = 1 and b = 1, F (vA) = (. . . , i︸︷︷︸
n−i

, . . . ), F (vB) = (. . . , i− 1︸︷︷︸
n−i

, i− 1︸︷︷︸
n+1−i

, . . . ) and

σ1 is equal to
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iii

n+1−i

d=1 d=2

Figure 4.6. Dyck paths associated to vA+i and vB+i−1 for i > z.

σ1(r) =


r, if r ≤ n− i,
n+ 1− i, if r = n,

m, otherwise,

(4.15)

for some m > n+ 1− i. Applying F , we take

F (vA+i) = (. . . , i− 1︸︷︷︸
n−i

, . . . ) and F (vB+i−1) = (. . . , i︸︷︷︸
n−i

, i− 2︸︷︷︸
n+1−i

, . . . ),

then there exits σ′1 ∈ Sn that satisfies

σ′1(r) =


n− i, if r = n,

n+ 1− i, if r = n− i,
σ1(r), otherwise,

(4.16)

therefore σ′1(F (vA+i)) = F (vB+i−1) in K2 (see Figure 4.8).

iiii

n+1−i

a=1

b=1

a=1

b=2

a=2

b=3

Figure 4.7. Dyck paths associated to vA and vB for i = z.

(2.2) If a = 1 and b = 2, this case satisfies the conditions of (2.1).

(2.3) If a = 2 and b = 1 or b = 2, these cases are contradictions.

(2.4) If a = 2 and b = 3, F (vB) = (. . . , i− 1︸︷︷︸
n−i

, . . . ) and σ2 = σ. Applying F to vB+i−1,

it holds that F (vB+i−1) = (. . . , i− 2︸︷︷︸
n−i

, . . . ) then there exits σ′2 ∈ Sn such that

σ′2 = σ and σ′2(F (vA+i)) = F (vB+i−1) in K2 (see Figure 4.8).

(2.5) If a = 3 and b = 1, 2, 3, these cases are equal to case (2.3).
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iiii

n+1−i

a=1

b=1

a=1

b=2

a=2

b=3

Figure 4.8. Dyck paths associated to vA+i and vB+i−1 for i = z.

Note that, if z = 2, this case satisfies the same conditions for a = 1, 2 without b.

(3) If i = z − 1 ≥ 3, f(vA) = (. . . , 2︸︷︷︸
i

, 1︸︷︷︸
i+1

, . . . ) and f(vB) = (. . . , b︸︷︷︸
i−1

, a︸︷︷︸
i

, 2︸︷︷︸
i+1

, . . . )

(see Figure 4.9).

(3.1) If a = 1 and b = 1, F (vA) = (. . . , i+ 1︸︷︷︸
n−i−1

, . . . ), F (vB) =

(. . . , i︸︷︷︸
n−i−1

, i︸︷︷︸
n−i

, i− 1︸︷︷︸
n+1−i

, . . . ), and

σ3(r) =


r, if r ≤ n− i− 1,

n− i, if r = n,

n+ 1− i, if r = n− 1,

m, otherwise,

(4.17)

for some m > n+ 1− i. Provided that

F (vA+i) = (. . . , i− 1︸︷︷︸
n−i−1

, . . . ) and F (vB+i−1) = (. . . , i+ 1︸︷︷︸
n−i−1

, i︸︷︷︸
n−i

, i− 2︸︷︷︸
n+1−i

, . . . ),

then, there exits σ′3 ∈ Sn such that

σ′3(r) =


n− i− 1, if r = n,

n− i, if r = n− 1,

n+ 1− i, if r = n− i− 1,

σ3(r), otherwise,

(4.18)

then σ′3(F (vA+i)) = F (vB+i−1) in K2 (see Figure 4.10).

(3.2) If a = 1 and b = 2. Applying F to vB, it holds that F (vB) = (. . . , i︸︷︷︸
n−i−1

, i︸︷︷︸
n−i

, . . . ),

σ4 is described by

σ4(r) =


r, if r ≤ n− i− 1,

n− i, if r = n,

m, otherwise,

(4.19)
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iiii

n+1−i

a=1

b=1

a=1

b=2

a=2

b=3

Figure 4.9. Dyck paths associated to vA and vB for i− 1 = z.

for some m > n− i. Applying F to vB+i−1, F (vB+i−1) = (. . . , i+ 1︸︷︷︸
n−i−1

, i− 2︸︷︷︸
n−i

, . . . ),

then there exist σ′4 with

σ′4(r) =


n− i− 1, if r ≤ n,

n− i, if r = n− i− 1,

σ4(r), otherwise,

(4.20)

therefore σ′4(F (vA+i)) = F (vB+i−1) in K2 (see Figure 4.10).

(3.3) If a = 2 and b = 3. F (vB) = (. . . , i︸︷︷︸
n−i−1

, . . . ), since σ5 is

σ5(r) =

{
r, if r ≤ n− i− 1,

m, otherwise,
(4.21)

for some m > n − i. Applying F to vB+i−1, F (vB+i−1) = (. . . , i− 2︸︷︷︸
n−i−1

, . . . ), and

there exits σ′5 = σ5 such that σ′5(F (vA+i)) = F (vB+i−1) in K2 (see Figure 4.10).

iiii

n+1−i

a=1

b=1

a=1

b=2

a=2

b=3

Figure 4.10. Dyck paths associated to vA+i and vB+i−1 for i− 1 = z.

Same arguments are used for the remaining cases (see item (2) of this proof). �

Proposition 4.8. Two positive integral diamonds of An are in the same minimal p−cycle
if their triangulations are in the same mutation class.

Proof. It is a direct consequence of Theorem 1.12, Proposition 4.3, Lemmas 4.4 and
4.5 �
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The following result shows a way to build frieze patterns.

Theorem 4.3. Let A0 be a positive integral diamond of An and let {At}0≤t≤p−1 be the
minimal p−cycle generated by A0. Then:

(i) A0 and F (vA0) generate the same frieze pattern.

(ii) {At}0≤t≤p−1 is in surjective correspondence with a direct sum of p indecomposable
objects of a Dyck paths category.

Proof. Let DAn be the set of all vectors associated to positive integral diamonds of An,
let A0 be a positive integral diamond of An, and let {At}0≤t≤p−1 be the minimal p−cycle
generated by A0.

(i) Let K be a labeling of an (n+ 3) polygon, Theorem 4.2 implies that

F (vA0) = g((a0
11, T2(vA0), . . . , Tn(vA0)))

= g(λ(a011,T2(vA0 ),...,Tn(vA0 )))

= g((λ1, . . . , λn+1−a011 , 0, . . . , 0︸ ︷︷ ︸
a011

))

= (lv11 , . . . , l
v
n+1−a011
n+1−a011

, l0
n−a011

, . . . , l0n),

(4.22)

then, there are a0
11 − 1 diagonals from the vertex 0 to other vertices, i.e., there are

a0
11 triangles incident with vertex 0. Proposition 4.8 allows us to establish that ai11

is the number of triangles incident with the vertex i, for 1 ≤ i ≤ n+ 3, i = pm and
1 ≤ m ≤ p | (n+ 3). Therefore A0 and F (vA0) generate the same frieze pattern.

(ii) Let (D2(n+1), R) be any Dyck paths category, we take objects of (D2(n+1), R) defined
by the following identity

Ob (D2n, R) =

{ ⊕
Gi∈D2n

Gi

∣∣∣∣ g(λGi) and g(λGj ) are in the same mutation class

}
,

(4.23)

we define the map ϕ : DAn ! Ob (D2n, R), such that

ϕ(vA0) = f(vA0)⊕ · · · ⊕ f(vAp−1),

with {At}0≤t≤p−1, ϕ is surjective as a consequence of Theorem 4.2 and Proposition
4.8. �

For example, let D be an object of any Dyck paths category (D2(n+1), R) shown in Figure
4.11,

⊕ ⊕

Figure 4.11. Examples of objects in a Dyck paths category.
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then, D has associated the following frieze pattern

. . . 1 1 1 1 1 . . .

. . . 1 3 2 1 3 2 . . .

. . . 2 5 1 2 5 . . .

. . . 1 3 2 1 3 2 . . .

. . . 1 1 1 1 1 . . .

4.2 Dyck-Brauer Configuration Algebras

In this section, we present a Brauer configuration and its Brauer configuration algebra
whose indecomposable projective modules are in bijective correspondence with Dyck paths.

4.2.1 Brauer Configuration and its Brauer Configuration Algebra Asso-
ciated to Dyck Paths

For n fixed, let Mn = {αn2
n1
}0≤n1≤n−1, n1<n2≤n and Nn = {βn2

n1
}0≤n1≤n−1, n1<n2≤n be the

sets of letters, we define an alphabet Γn0 such that

Γn0 = {δ | δ ∈Mn or δ ∈ Nn}. (4.24)

For Γn0 , we define a concatenation c in the following way:

c(δ) =


αj+1
i , if δ = αji ,

βji , if δ = αji ,

αj+1
i+1 , if δ = βji ,

βji+1, if δ = βji ,

(4.25)

for some t,i and j. We take the set of the words V = δ1 . . . δ2n where δ1 = α1
0 and

δj = c(δj−1) (this set is denoted by Γn1 ). We will say that V <O V ′ if and only if there
exist r ∈ Z>0 such that

N
rg
V = N

rg
V ′ if 0 < rg < r,

N
rg
V > N

rg
V ′ if rg = r,

(4.26)

where N
rg
V is the number of alpha words before of the rg-beta word in V ((Γ1, <O)

is a linear order. For notation, the words V in Γ1 are labeling respect to <O, i.e.,
V1 = α1

0 . . . α
n
0β

n
0 . . . β

n
n−1, V2 = α1

0 . . . α
n−1
0 βn−1

0 αn1β
n
2 . . . β

n
n−1, etc.

Let Γn = (Γn0 ,Γ
n
1 , µ,O) be a Brauer configuration, where Γn0 , Γn1 as before, O is induced

by (Γ1, <O), and the multiplicity function µ is defined as follows:
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µ : Γ0 −! N

δ 7−! µ(δ) =

{
1, if val(δ) > 1,

2, if val(δ) = 1,

(4.27)

for δ ∈ Γ0. Γn is called a Dyck-Brauer configuration. The occurrence of δ = αn2
n1

(resp. δ = βn2
n1

) in a polygon V is given by the row n(n1) + n2 in the recurrence matrix
An = (anu,w) (resp. Bn = (bnu,w)) of Tn × fn,2 where A1 = (1) (resp. B1 = (1)) and An
(resp. Bn) is described in Table A.5 (see identity A.2).

We define paths aij1 . . . a
i
jk

(resp. bi
′

j′1
. . . bi

′

j′
k′

) where {j1, . . . , jk} (resp. {j′1, . . . , j′k′}) are

indices of the matrix An (resp. Bn) such that ai,jr = 1 (resp. bi′,j′
r′

= 1) with jr < jr+1

(resp. j′r′ < j′r′+1) for 1 ≤ jr(resp. j′r′) ≤ fn,2 and 1 ≤ i ≤ Tn. If val(δ) = 1, the path is

equal to aija
i
j (resp. bi

′
j′b

i′
j′). Paths aij1 . . . a

i
jk

and bi
′

j′1
. . . bi

′

j′
k′

induce special δi-cycles νi at

vt in such a way that:

νi =


ait . . . a

i
jk
aij1 . . . a

i
t−1, if ait = 1 and δ ∈Mn,

bit . . . b
i
j′
k′
bij′1

. . . bit−1, if bit = 1 and δ ∈ Nn,

0, otherwise.

(4.28)

In the same way, the relations in ρΓn are described by the following cases:

� Relations of type I.

ai1js1
. . . ai1jk1

ai1j1 . . . a
i1
js1−1

= · · · = aitjst
. . . aitjkt

aitj1 . . . a
it
jst−1

,

aitjst
. . . aitjkt

aitj1 . . . a
it
jst−1

= b
i′1
j′x1

. . . b
i′1
j′
k′1

b
i′1
j′1
. . . b

i′1
j′x1−1

,

b
i′1
j′x1

. . . b
i′1
j′
k′1

b
i′1
j′1
. . . b

i′1
j′x1−1

= · · · = b
i′h
j′xh

. . . b
i′h
j′
k′
h

bih
j′1
. . . b

i′h
j′xh−1

,

(4.29)

if js1 = · · · = jst = j′x1 = · · · = j′xh for 1 ≤ js1 ≤ fn,2, {i1, . . . , it, i′1, . . . , i′h} ∈
{1, . . . , Tn} and t, h ∈ Z>0.

� Relations of type II.

airjs1
. . . airjk1

airj1 . . . a
ir
js1−1

airjs1
,

b
i′p
j′x1

. . . b
i′p
j′
k′1

b
i′p
j′1
. . . b

i′p
j′x1−1

b
i′p
j′x1
,

(4.30)

for some ir ∈ {i1, . . . , it} (i′p ∈ {i′1, . . . , ih})

� Relations of type III.

airjsa
ip
jx

, airjsb
i′p
j′x

, b
i′p
j′x
airjs , b

i′r
j′s
b
i′p
j′s
, (4.31)

for all possible combinations.

IΓn is generated by ρΓn and Dyck-Brauer configuration algebra ΛΓn is defined by kQΓn/IΓn .
For instance, let Γ2 = (Γ2

0,Γ
2
1, µ,O) be the Dyck-Brauer configuration where Γ0 =
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{α1
0, α

2
0, α

2
1, β

1
0 , β

2
0 , β

2
1} and Γ1 = {V1 = {α1

0, α
2
0, β

2
0 , β

2
1}, V2 = {α1

0, β
1
0 , α

2
1, β

2
1}} with

V1 <O V2. Since the matrices A2 and B2 are

A2 =

1 1
1 0
0 1

 B2 =

0 1
1 0
1 1

,

then µα1
0

= µ(β2
1) = 1 and µ(δ) = 2 for δ ∈ {α2

0, α
2
1, β

1
0 , β

2
0}. V1 <O V2 is the successor

sequence of vertex α1
0, V2 <O V1 is the successor sequence of vertex β2

1 , V1 (resp. V2) is
the successor sequence of vertices α2

0 and β2
0 (resp. α2

1 and β1
0). Figure 4.12 shows the

quiver QΓ2 .

v1 v2

a2
1

b21

a3
2

b12

a1
1

a1
2

b31

b32

Figure 4.12. Quiver of Dyck-Brauer configuration algebra ΛΓ2
.

Identities (4.29), (4.30), and (4.31) induce the following relations,

a1
1a

1
2 = (a2

1)2 = (b21)2 = b31b
3
2, a

1
2a

1
1 = (a3

2)2 = (b12)2 = b32b
3
1,

a1
1a

1
2a

1
1, (a2

1)3, (b21)3, b31b
3
2b

3
1, a

1
2a

1
1a

1
2, (a3

2)3, (b12)3, b32b
3
1b3

2,
a1

1a
3
2, a

3
2a

1
2, a

1
2a

2
1, a

2
1a

1
1, b

3
1b

1
2, b

1
2b

3
2, b

3
2b

2
1, b

2
1b

3
1,

a1
1b

1
2, a

1
1b

3
2, a

3
2b

1
2, a

3
2b

3
2, a

1
2b

2
1, a

1
2b

3
1, b

2
1b

2
1, a

2
1b

3
2,

b31a
3
2, b

3
1a

1
2, b

1
2a

3
2, b

2
1a

1
2, b

3
2a

2
1, b

3
2a

1
1, b

2
1a

2
1, b

2
1a

1
1.

(4.32)

Dyck-Brauer configuration algebra ΛΓ2 is defined in such a way that ΛΓ2 = kQΓ2/IΓ2 with
IΓ2 = 〈ρΓ2〉. Figure 4.13 shows the indecomposable projective ΛΓ2-modules.

v1

v1

v1

v2 v2 v1

a21 a11 b31 b21

a21 a12 b32 b21

P1:

v2

v2

v2

v1v1v2

b12b32a12a32

b12b31a11a32

P2:

Figure 4.13. Indecomposable projective ΛΓ2
-modules of Dyck-Brauer configuration algebra.
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4.2.2 Dimension of a Dyck-Brauer Configuration Algebra and the Di-
mension of its Center

We define a family of integer sequences that are in relationship with the Catalan
triangle. We also show that the Catalan triangle allows us to establish the dimension of
Dyck-Brauer configuration algebras and the dimension of its corresponding centers.

Let tni,j be the integer numbers such that

t1i,j = 1,

tni,j =
∑

r−s=i−j
n−1≤r≤i

tn−1
r,s if n > 1,

tni,j = 0 if j ≤ 0,

(4.33)

for i ≥ n − 1 and j ≤ i + 1. For example, Table A.4 shows integer sequences tni,j for
n = 2, . . . , 5 (see Appendix).

The following results describe some properties of the integer numbers tni,j and the Catalan
triangle.

Proposition 4.9. tni,j = tni,j−1 + tn−1
i−1,j, for i ≥ 1, j ≤ i, and 1 < n < i+ 1.

Proof. By induction. If i = 1, t21,1 = t10,1 + t21,0 = 1. Suppose that the proposition holds
for i = k and 1 < n < k + 1. Then for i = k + 1, if n = 2,

t2k+1,j =
∑

k+1−j=r−s
1≤r≤k+1

t1r,s = (k − j) + 1 =
∑

k−j=r−s
1≤r≤k+1

t1r,s + t1k,j = t2k+1,j−1 + t1k,j ,

suppose that the assertion is true for n = p− 1 < k + 1, then

tpk+1,j =
∑

k+1−j=r−s
p−1≤r≤k+1

tp−1
r,s

=
∑

k+2−j=r−s
p−1≤r≤k+1

tp−1
r,s +

∑
k−j=r−s
p−2≤r≤k

tp−2
r,s

= tpk+1,j−1 + tp−1
k,j .

�

Proposition 4.10. tni,i+1 = tni,i, for i ≥ 1 and 1 < n ≤ i+ 1.

Proof. We proceed by induction. If i = 1, t21,2 = 1 = t21,1. Suppose that the assertion is
true for i = k and 1 < n < k + 1. Then for i = k + 1, if n = 2,

t2k+1,k+2 =
∑
−1=r−s

1≤r≤k+1

t1r,s =
∑

0=r−s
1≤r≤k+1

t1r,s = t2k+1,k+1,
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suppose that the property is true for n = p− 1 < k + 2, then

tpk+1,k+2 =
∑

1=r−s
p−1≤r≤k+1

tp−1
r,s =

∑
0=r−s

p−1≤r≤k+1

tp−1
r,s = tpk+1,k+1.

�

Lemma 4.6. fn,n+1−m =
n∑
j=1

tmn−1,j, for n ≥ 1, 1 ≤ m ≤ n.

Proof. By induction. If n = 1, f1,1 = 1 = t10,1. Suppose that satisfies for n = k and

1 ≤ m ≤ k. Then for n = k + 1, if m = 1,
k+1∑
j=1

t1k,j = k + 1 = fk+1,k+1, suppose that the

property holds for m = p− 1 < k + 1, then

k+1∑
j=1

tpk,j =
∑

r−s=k−1
p−1≤r≤k

tp−1
r,s + · · ·+

∑
r−s=1

p−1≤r≤k

tp−1
r,s

=
∑

r−s=k−1
p−1≤r≤k−1

tp−1
r,s + · · ·+

∑
r−s=1

p−1≤r≤k−1

tp−1
r,s +

k+1∑
j=1

tp−1
k,j

=
k∑
j=1

tpk−1,j +
k+1∑
j=1

tp−1
k,j

= fk,k+1−p + fk+1,k+3−p

= fk,k+1−p +

k+1∑
i=k+2−p

fk,i

=
k+1∑

i=k+1−p
fk,i = fk+1,k+2−p.

�

Proposition 4.11. fn,n+1−m = t1+m
n,n+1, for n ≥ 1 and 1 ≤ m ≤ n.

Proof. We proceed by induction. If n = 1, f1,1 = 1 = t21,2. Suppose that the assertion is
true for n = k and 1 ≤ m ≤ k. Then for n = k + 1, if m = 1,

fk+1,k+1 = k + 1 =
∑
−1=r−s

1≤r≤k+1

t1r,s = t2k+1,k+2,

suppose that the property holds for m = p− 1 < k + 1, then
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fk+1,k+2−p =
k+1∑
j=1

tpk,j

=
∑

r−s=k−1
p−1≤r≤k

tp−1
r,s + · · ·+

∑
r−s=1

p−1≤r≤k

tp−1
r,s

=
k+1∑
j=1

tp−1
k,j + · · ·+

p∑
j=1

tp−1
p−1,j

= fk+1,k+1−p + · · ·+ fp,1 (Lemma 4.6)
= tpk+1,k+2 + · · ·+ tpp,p+1

= tp+1
k+1,k+2.

�

Given a matrix C = (ci,j) of n×m, M(C) is the column vector

c1
...
cn

 where ci =

m∑
j=1

ci,j .

Also, M(C)r is the column vector

c
r
1
...
crn

 such that crj =

{
0, if 1 ≤ j ≤ r,
cj , if r + 1 ≤ j ≤ n,

and

M(C)r is the column vector

c
r
1
...
crn

 with crj =

{
0, if 1 ≤ j ≤ r,
cj−r, if r + 1 ≤ j ≤ n.

For example,

M(A2)0 =

2
1
1

 , M(A2)1 =

0
1
1

 , and M(A2)1 =

0
2
1

 . (4.34)

Henceforth, we introduce a formula for the valency of the vertices of Dyck-Brauer config-
uration Γn via the vectors M(An) and M(Bn), in the following way:

Lemma 4.7. Let An and Bn be the matrices given by Table A.5. Then

(i) M(A
i,fn,i+1
n ) =


M(An), if i = 0,

M(A
i−1,fn,i
n )1, if i = 1,

M(A
i−1,fn,i
n )i +M(A

i−2,f(n−1,i−1)

n−1 )
n
, if 2 ≤ i ≤ n− 1,

(ii) M(B
i,fn,i+2
n ) =

{
M(Bn), if i = 0 or i = −1,

M(B
i−1,fn,i+1
n )i +M(B

i−2,fn−1,i

n−1 )
n
, if 1 ≤ i ≤ n− 1,

for n > 0.

Proof. (i) Let An = (anu,w) be the matrix of Tn × fn,2, and let A
i,fn,i+1
n = (an,iu,w) be the

matrix of Tn × fn,i+1 such that satisfying identity A.2:

(1.1) If i = 0, A
0,fn,1
n is a matrix with fn,1 columns, since fn,1 = fn,2, an,0u,w = anu,w, then

an,0u = au for 1 ≤ u ≤ Tn.
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(1.2) If i = 1, A
1,fn,2
n is a matrix with fn,2 columns, an,1u,w = anu,w for 2 ≤ u ≤ Tn, i.e.,

an,1u = au for 2 ≤ u ≤ Tn, and an,11 = 0.

(1.3) If 2 ≤ i ≤ n − 1, A
i,fn,i+1
n is a matrix with fn,i+1 columns, this matrix is equal to

matrix A
i−1,fn,i
n by removing the row i− 1 and the columns between fn,i+1 and fn,i,

matrix An implies that in these columns the elements between the rows n + 1 and

Tn are given by the matrix A
i−2,fn−1,i−1

n−1 , i.e.,

an,iu =

fn,i∑
j=1

an,i−1
u,j −

fn−1,i−1∑
j=1

an−1,i−2
u−n,j = an,i−1

u − an−1,i−2
u−j ,

for n+ 1 ≤ u ≤ Tn and an,iu = 0 otherwise.

The case (ii) is similar to case (i). �

Proposition 4.12. Let An and Bn be the matrices given by Table A.5. Then:

(i) an,iu = fk,1+u−(Tn−Tk)t
n+1−k
n−k+u−(Tn−Tk+1),n−k+u−(Tn−Tk+1)−(i−1), for 0 ≤ i ≤ n− 1,

(ii) bn,iu = fk−1,u−(Tn−Tk)t
n+1−k
n−k+u−(Tn−Tk),n−k+u−(Tn−Tk)−i, for −1 ≤ i ≤ n− 1,

with Tn − Tk ≤ u ≤ Tn − Tk−1 for 1 ≤ k ≤ n, and n > 1.

Proof. (i) (Induction) For n = 2. If i = 0, by Lemma 4.7, M(A
0,f2,1
2 ) = M(A2), then

a2,0
1 = 2 = f2,2t

1
0,1,

a2,0
2 = 1 = f2,3t

1
1,2,

a2,0
3 = 1 = f1,2t

2
1,2.

If i = 1, by Lemma 4.7, M(A
1,f2,2
2 ) = M(A2)1, then

a2,1
1 = 0 = f2,2t

1
0,0,

a2,1
2 = 1 = f1,2t

1
1,1,

a2,1
3 = 1 = f1,2t

2
1,1,

(see identity 4.34). Suppose that the assertion is true for n = m and 0 ≤ i ≤ m. Then for

n = m+ 1, if i = 0, M(A
0,fm+1,1

m+1 ) = M(Am+1) (Lemma 4.7), if 0 < u < m+ 1,

am+1,0
u = fm+1,i+u = fm+1,i+ut

1
u−1,u.

For the rows between m+ 2 and Tm+1,

am+1,0
u =

m−1∑
i=0

fk,1+u−(m+1)−(Tm−Tk)t
m+1−k
m−k+u−(m+1)−(Tm−Tk−1+1),m−k+u−(m+1)−(Tm−Tk−1+1)−(i−1)

= fk,1+u−(Tm+1−Tk)

m−1∑
i=0

tm+1−k
m−k+u−(Tm+1−Tk−1+1),m−k+u−(Tm+1−Tk−1+1)−(i−1)

= fk,1+u−(Tm+1−Tk)fm−k+u−(Tm+1−Tk),u−(Tm+1−Tk) (Lemma 4.6)

= fk,1+u−(Tm+1−Tk)t
m+2−k
m−k+u−(Tm+1−Tk),m−k+u−(Tm+1−Tk)+1 (Proposition 4.11),
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with 1 ≤ k ≤ m.

If i = 1, M(A
1,fm+1,2
m+1 ) = M(A

0,fm,1
m+1 )1 (Lemma 4.7), then, am+1,1

1 = 0 = fm+1,2t
1
0,0, and

am+1,1
u = am+1,0

u

= fk,1+u−(Tm+1−Tk)t
m+2−k
m−k+u−(Tm+1−Tk),m−k+u−(Tm+1−Tk)+1

= fk,1+u−(Tm+1−Tk)t
m+2−k
m−k+u−(Tm+1−Tk),m−k+u−(Tm+1−Tk) (Proposition 4.10),

for Tm+1 − Tk < u ≤ Tm+1 − Tk−1 with u 6= 1, and 1 ≤ k ≤ m+ 1.

Suppose that the property is true for i = p − 1 < m, then for i = p, then M =

(A
p,fm+1,p+1

m+1 ) = M(A
p−1,fm+1,p

m+1 )p +M(A
p−2,f(m,p−1)
m )m+1 (Lemma 4.7), for 1 ≤ u ≤ p

am+1,p
u = 0 = fm+1,1+ut

1
u−1,u−p,

for p+ 1 ≤ u ≤ m+ 1

am+1,p
u = am+1,p−1

u = fm+1,1+ut
1
u−1,u+1−p = fm+1,1+ut

1
u−1,u−p,

for u ≥ m+ 1,

am+1,p
u = fk,1+u−(Tm+1−Tk)t

m+2−k
m+1−k+u−(Tm+1−Tk+1),m+1−k+u−(Tm+1−Tk+1)−(p−2)

−fk,i+u−(m+1)−(Tm−Tk)t
m+1−k
m−k+u−(m+1)−(Tm−Tk+1),m−k+u−(m+1)−(Tm−Tk+1)−(p−3),

Proposition 4.9 implies that

am+1,p
u = fk,i+u−(m+1)−(Tm−Tk)t

m+2−k
m+1−k+u−(Tm+1−Tk+1),m+1−k+u−(Tm+1−Tk+1)−(p−1),

for 1 ≤ k ≤ m. The case (ii) is similar to case (i). �

For notation ω : N! {1, 2} is a map where

ω(n) =

{
1, if n 6= 2,

2, if n = 2.

The following result regards dimension of ΛΓn and its corresponding center.

Theorem 4.4. Let ΛΓn be a Dyck-Brauer configuration algebra. Then

(i) dimk(ΛΓn) = 2(Cn + ω(n)) +

Tn∑
u=1

(an,0u )2 + (bn,0u )2 − (an,0u + bn,0u ),

(ii) dimk(Z(ΛΓn)) = 1 + 2ω(n) + Cn,

for n > 0.

Proof. (i) Firstly, we note that the number of vertices in QΓn is the n−th Catalan
number. Secondly, we note that val(αn2

n1
) (resp. val(βn2

n1
)) is given by an,0n(n1)+n2

(resp.
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an,0n(n1)+n2
). As a consequence of Proposition 4.12, we have that an,0n = 1 = b0,nn for any

n. In particular case, when n = 2, also, a0,1
2 = b0,12 = 1. Finally, recall that identity

4.27 describes the multiplicity function. (ii) The number of loops in QΓn is equal to the
number of elements in the set CΓn . �

For example, for n = 2, a2,0
1 = 2 = b2,03 , and a2,0

2 = a2,0
3 = b2,01 = b2,02 = 1, then

dimk(ΛΓ2) = 2(C2 + ω(2)) + 12− 8
= 2(2 + 2) + 4 = 12,

and
dim(Z(ΛΓ2)) = 1 + 2ω(2) + C2 = 7.
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Appendix

n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0

3 0 1

4 0 1 2 3

5 0 1 2 4 4 5 6 7

6 0 1 2 5 4 6 8 11 8 9 10 12 12 13 14 15

7 0 1 2 6 4 7 10 16 8 10 12 17 16 19 22 26 16 17 18

Table A.1. Elements of the sequence Cmn .

n\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1
2 2
3 4 5
4 8 11 12 11
5 16 23 26 26 26 29 28 23
6 32 47 54 57 56 64 64 57 54 65 68 64 64 65 60 47
7 64 95 110 120 116 135 138 130 116 140 148 145 144 149 142 120

Table A.2. Number of sections in the case An.

Table A.2. The number S
(An)

i0i1...ik
j0j1...jm

(see, formula 2.4 and Remark 2.5) of sections in the

Auslander-Reiten quiver of the path algebra k
−!
An where

−!
An is an oriented Dynkin diagram

of type An with ir < n sinks.
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n and n-1 are sources
n \ r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 17
5 45 46
6 109 118 119 112
7 253 278 287 284 284 290 283 260
8 573 630 659 664 660 686 683 652 649 684 690 668 671 670 643 588

n is a source and n-1 is a sink (viceversa)
4 14
5 38 42
6 94 106 110 108
7 222 250 262 266 264 276 274 258
8 510 570 602 616 608 642 646 628 606 648 660 650 650 656 638 592

n and n-1 are sinks
4 14
5 36 43
6 88 103 110 112
7 208 239 254 263 260 278 280 269
8 480 543 578 598 588 629 638 628 592 642 660 659 656 670 658 618

Table A.3. Number of sections in the case Dn .

Table A.3. Rows give the value of n and columns give the location of the underlying
graph A′n−2, with

r =


w∑

t=w−r+2

2jt−1 −
r−1∑
t=1

2it−1, if jw > 1,

0, if jw = 0.

(A.1)

n i\j 1 2 3 4 5 6 n 1 2 3 4 5 6

2 1 1 1 4
2 1 2 2
3 1 2 3 3 1 3 5 5
4 1 2 3 4 4 1 4 9 14 14
5 1 2 3 4 5 5 1 4 10 19 28 28

3 2 1 2 2 5
3 1 3 5 5
4 1 3 6 9 9 1 4 9 14 14
5 1 3 6 10 14 14 1 5 14 28 42 42

Table A.4. Examples of integer numbers tni,j .
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Table A.5. Matrix An (left) and matrix Bn (right).

Table A.5. A
i,f(n,i+1)
n = (a′u,w) (resp. B

i,f(n,i+2)
n = (b′u,w)) is a matrix of Tn × fn,i+1 (resp.

Tn × fn,i+2) such that

an,iu,w (resp. bn,iu,w) =

{
au,w (resp. bu,w) if u > i,

0 if u ≤ i,
(A.2)
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for 0 ≤ i ≤ n − 1 (resp. −1 ≤ i ≤ n − 1), An = (au,w)Tn×fn,2 (resp. Bn = (bu,w)Tn×fn,2).
The number fi,j belongs to the triangle described in (4.9) with f0,1 = 1.
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[32] A.M. Cañadas, H. Giraldo, and G.B. Rios, On the number of sections in the Auslander-Reiten quiver
of algebras of Dynkin type, FJMS 101 (2017), no. 8, 1631-1654.

[33] , An algebraic approach to the number of some antichains in the powerset 2n, JPANTA 38
(2016), no. 1, 45-62.
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[35] A.M. Cañadas, H. Giraldo, and V. C Vargas, Categorification of some integer sequences and Higher
Dimensional Partitions, FJMS 93 (2014), no. 2, 133-149.
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categorification, 30, 52

category
Mod QT , 21
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of representation of (Q, I), 77
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chain, 11
cluster

-tilted algebras, 23
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diamond, 85, 88, 89, 93, 98
dimension vector, 11
direct sum

of representations of a poset, 11
of representations of a quiver, 3

Dyck
-Brauer configuration algebra, 101
path with exactly n− 1 peaks, 66
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leftshift, 69
rightshift, 69
shift, 60, 66, 69, 71, 77, 83

empty word, 15
Euclidean lattice, 14
extended Dynkin diagrams, 3

finite
representation type, 3, 10, 12
type, 18

frieze
patterns, 24, 87, 99
vector, 26, 87

functor
χ, 83
Θ, 71
Θ′, 77

ideal of a Brauer configuration algebra,
7, 101
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injective objects, 22, 74
modules, 22
projective ΛΓ2-modules, 102
projective module, 76
projective objects, 22, 74
representations of a poset, 11
representations of a quiver, 3
simple objects, 74

infinite
representation type, 3
translation quiver, 4

interior edges, 27
irreducible morphism, 22, 55
irreversible relation, 60

Kleiner's critical posets, 13
Kupisch serie, 76, 77

labeled
Y−seed, 16
seed, 16

lattice, 14
path, 14, 30, 31, 34, 42

left factor, 15

matrix
problem, 10, 12
representation, 12

maximal point, 31, 34

mesh relations, 21, 22
minimal point, 31, 34, 42
morphism

in C2n, 75
of representation of a poset, 11
of representation of a quiver, 2

mutation, 23
-equivalent, 18
class, 24, 98
over quiver, 19

Nakayama algebra, 76, 77
Narayana numbers, 74
Nazarova's critical posets, 13

OEIS, 52–54, 57, 89
order ideal, 30

path
algebra, 2, 50
of length l, 2

perfect matching, 27, 79, 81, 82
planar tree, 21
polygon, 83, 92
poset, 11, 30

of type bi0i1...ikj0j1...jm
, 34

of type di0i1...ikj0j1...jm
, 40

of type hj0j1...jmi0i1...ik
, 47

quiddity sequence, 24
quiver, 1

reduced, 7
regular tree, 17
relation in a quiver, 2
representation

of a poset, 11
of a quiver, 2

sections
in Auslander-Reiter quiver of

algebras of type An, 50, 53
in Auslander-Reiter quiver of

algebras of type Dn, 55, 56
in Auslander-Reiter quiver of

algebras of type E6,E7 and E8,
57

of a connected translation quiver, 5
seed

mutation, 17
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sequence of couples, 86

shift

path, 60

relation, 60

sinks, 50, 51, 55, 71, 83

snake graph, 27, 79, 82

sources, 50, 51, 55, 71, 83

special α−cycle, 7

subcategory C2n, 70, 73

successor sequence, 102

support, 59

tame representation type, 13
tile, 27
total order, 31
translation, 4
triangle relations, 21
triangulation, 20, 24, 25, 83, 88, 93, 98
tropical semifield, 16
truncated vertex, 7
two-sided ideal, 2

unitary shift, 59

width, 11
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