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Title in English
Dynkin Functions and Its Applications.

Abstract: Dynkin functions were introduced by Ringel as a tool to investigate combi-
natorial properties of hereditary artin algebras. According to Ringel, a Dynkin function
consists of four sequences associated to A,,, B,,, C,, D,, and five single values associated to
the diagrams Eg, E7, Eg, F4 and Gs. He also proposes to create an On-line Encyclopedia
of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin
functions arise from the context of categorification of integer sequences, which according
to Ringel and Fahr it means to consider suitable objects in a category instead of numbers
of a given integer sequence. They gave a categorification of Fibonacci numbers by using
the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver
of the 3-Kronecker quiver. For instance, if A denotes a hereditary artin algebra associated
to a Dynkin diagram A,, then 7(A,) the number of indecomposable modules, a(A,) the
number of antichains in mod A, and t,(A,) the number of tilting modules are Dynkin
functions. In particular, we are focused on the way that some Dynkin functions act on
Dynkin diagrams of type A,,.

In this work, we follow the ideas of Ringel regarding Dynkin functions by investi-
gating the number of sections in the Auslander-Reiten quiver of algebras of finite
representation type. Dyck paths categories are introduced as a combinatorial model of
the category of representations of quivers of Dynkin type A, and it is shown an algebraic
interpretation of frieze patterns as a direct sum of indecomposable objects of the category
of Dyck paths. In particular, it is proved that there is a bijection between some Dyck
paths and perfect matchings of some snake graphs. The approach allows us to give
formulas for cluster variables in cluster algebras of Dynkin type A, in terms of Dyck
paths. At last but not least, it is introduced some Brauer configuration algebras such
that the dimension of these algebras and its corresponding centers can be obtained via
some combinatorial properties of the Catalan triangle.
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Introduction

Dynkin functions were introduced in 2016 by Ringel with the purpose of giving a systematic
study of the relationships between integer sequences and invariants of objects in a category
mod A where A is a hereditary artin algebra. A Dynkin function f does not depend on
orientation and consists of four sequences f(A,), f(B,), f(C,), f(D,) and five single
values f(Eg), f(E7), f(Eg), f(F4) and f(G2) [78]. If A is an algebra of Dynkin type A,, =
{A,,B,,C,,D,,Eq, E7, Eg,Fy, Go} then the number r(A,) of indecomposable modules,
the number a, (A,) of exceptional antichains in mod A and ¢,(4,,) the number of tilting
modules are examples of Dynkin functions. Ringel also proposes to create an On-Line
Encyclopedia of Dynkin Functions (ODEF) with the same purposes as the famous On-
Line Encyclopedia of Integer Sequences (OEIS) which is the main tool dealing with the
research of integer sequences.

Dynkin functions are a way to categorify integer sequences. According to Ringel and Fahr
a categorification of an integer sequence means to consider instead of numbers in the se-
quence suitable invariants of objects in a category. Ringel and Fahr gave a categorification
of Fibonacci numbers by using the Gabriel's universal covering theory and the structure
of the Auslander-Reiten quiver of the 3-Kronecker quiver [49,/50]. The categorification of
generalized non-crossing partitions (in the sense of Kreweras) of a given finite set has been
studied by Hubery, Krausse, Ingalls, Ringel and Thomas amongst others mathematicians
[59,79]. Therefore, researches regarding Dynkin functions not only impact on the theory
of representation of algebras if not another fields of the mathematics as combinatorics and
number theory, for instance, factorization of numbers associated to invariants of algebras
of Dynkin type Eg, E7, and Eg seems to be very interesting as Ringel quotes in |78§].

Although Ringel's ideas regarding categorification of integer sequences are so new, they
have inspired different researches of many mathematicians, we recall here works on cate-
gorification of different integer sequences obtained by the author, Canadas, and Giraldo
et al who have used Kronecker modules, tiled orders and the theory of representation
of posets to categorify some integer sequences [27,131-35,41]. In this direction, we use
lattice paths connecting points of some suitable posets to investigate the number of sec-
tions S(A,,) in the Auslander-Reiten quiver of some algebras as a Dynkin function. Some
interesting integer sequences arise from this research, for instance, Fermat numbers (i.e.,
numbers of the form 2% + 1) is a subsequence of an integer sequence whose some of its
elements can be interpreted as the number of some lattice paths via the procedures used
in this work. We also give a formula partition for numbers in the sequence A049611 in
the OEIS by using sections in the Auslander-Reiten quiver of algebras of Dynkin type
A,,. Besides, an explicit formula for sections in the Auslander-Reiten quiver of algebras

VI



INTRODUCTION VII

of this type is given, in particular, categorifications of the integer sequences A083329 and
A000295 in the OEIS are obtained by interpreting each of its elements as the number of
sections in the Auslander-Reiten quiver of algebras of Dynkin type A,, |38].

Another interesting integer sequence with many interpretations in the theory of represen-
tation of algebras is the sequence of Catalan numbers, i.e., the sequence whose elements

1 /2
are numbers of the form C, = +1< n> [92]. For instance, Gabriel and De la Pena
n n

proved that Catalan numbers count the number of discrete subsets contained in the set of
representatives of isoclasses of indecomposable finite-dimensional modules over a Dynkin
algebra of type A,, (with A, linearly oriented).

In the last few years, researches regarding connections between cluster algebras and differ-
ent fields of mathematics have been growing. For instance, relationships between cluster
algebras, quiver representations, combinatorics and number theory have been reported
by Fomin et al., Shiffler et al., K. Baur et al., Assem et al. amongst a great number of
mathematicians [4,9,(19,122} 52, 54-56].

Perhaps the Catalan combinatorics (which consists of all the enumeration problems whose
solutions are Catalan numbers) is the most appropriate environment for the investigation
of cluster algebras of Dynkin type A,,. Among all these kinds of problems, for example, it
is possible to prove that the Catalan numbers count [92]:

1. The number of plane binary trees with n 4+ 1 endpoints (or 2n + 1) vertices,

2. The number of ways to parenthesize a string of length n + 1 subject to a non asso-
ciative binary operation,

3. The number of paths P in the (z,y)-plane from (0,0) to (2n,0) with steps (1,1) and
(1, —1) that never pass below the z-axis. Such paths are called Dyck paths,

4. The number of triangulations of an (n + 3) polygon,

5. The number of clusters of a cluster algebra of Dynkin type A,.

Regarding integer friezes, we point out that Propp in [71] reminds that Conway and
Coxeter completely classified the frieze patterns whose entries are positive integers, and
showed that these frieze patterns constitute a manifestation of the Catalan numbers.
Specifically, that there is a natural association between positive integer frieze patterns
and triangulations of regular polygons with labelled vertices. According to Baur and
Marsh [9], a connection between cluster algebras and frieze patterns was established by
Caldero and Chapoton [18], which showed that frieze patterns can be obtained from cluster
algebras of Dynkin type A,,.

Another example of the use of the Catalan combinatorics as a tool to describe the structure
of cluster algebras, was given by Schiffler et al. [19,[22,69], who found out formulas
for cluster variables based on its relations with some triangulated surfaces and perfect
matchings of snake graphs. They also proved that there is a way of obtaining the number
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of perfect matchings of a given snake graph by associating a suitable continued fraction
defined by the sign function of the graph.

Given a non-negative integer n and a triangulation 7' of a regular polygon with (n + 3)
vertices. Caldero, Chapoton and Schiffler [17] gave a realization of the category Cc of
representations of a quiver (¢ associated to a cluster C of a cluster algebra in terms of
the diagonals of the (n 4+ 3) polygon. They proved that there is a categorical equivalence
between the categories Cr and Mod Qr, where Cr is the category whose objects are
positive integral linear combinations of positive roots (i.e., diagonals that does not belong
to the triangulation T'), whereas Mod Qr denotes the category of modules over the quiver
Q7 with triangular relations induced by the triangulation 7.

Following the ideas of Caldero, Chapoton and Schiffler, in this work, a combinatorial model
of the category of representations of Dynkin quivers of type A,, with relations is developed
by using Dyck paths. This approach allows us to realize perfect matchings of snake graphs
as objects of suitable Dyck paths categories, and with this machinery a formula for cluster
variables based on Dyck paths is obtained.

We show that frieze patterns arise from Dyck paths and they can be written in terms
of Dyck path categories. We also introduce a family of Brauer configuration algebras
associated to Dyck paths. Combinatorial properties of the Catalan triangle are used to
find out formulas for the dimension of this type of algebras and its corresponding centers.

Main results, contributions, papers and conferences

This research regards the categorification of integer sequences and some applications of
Dynkin functions in representation theory of algebras and combinatorics.

Contributions
The following are the main contributions:

1. It is given a recurrence formula of the number of sections in the Auslander-Reiten
quiver of algebras of Dynkin type via lattice paths connecting minimal and maximal
points of suitable posets.

2. It is obtained a categorification of integer sequences arising from sections in the
Auslander-Reiten quiver of algebras of Dynkin type in the sense of Ringel and Fahr.

3. Dyck paths categories are introduced and it is proved that there exists an equivalence
of categories between the category of Dyck paths and the category of representations
of Dynkin quivers of type A,, with relations.

4. It is given a formula of the cluster variables of cluster algebras associated to quivers
of type A,, by using Dyck paths.

5. It is established a bijective correspondence between Dyck paths and frieze patterns,
attaining in this way a new algebraic interpretation of frieze patterns as a direct sum
of indecomposable objects of Dyck paths categories.
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6. It is defined Dyck-Brauer configuration algebras, and it is given an explicit formulas
of the dimension of these Brauer configuration algebras and its corresponding centers
in terms of the Catalan triangle.

Papers
Results of this research allowed us to publish the following papers:

1. On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type
[32].

2. Integer sequences arising from Auslander-Reiten quivers of some hereditary artin
algebras [38].
Results of this research allowed us to submit the following manuscript:
1. Dyck paths categories and its relationships with cluster algebras.
Conferences

The main results of this research have been presented in the following conferences:

1. Primer encuentro de Algebra y Topologfa Universidad Nacional de Colombia. Bo-
gota-Colombia, 01-2018.
2. UN Encuentro de Matemaéticas. Bogota-Colombia, 06-2018.

3. Third International Colloquium on Representations of Algebras and Its Applications;
Alexander Zavadskij. Medellin -Colombia, 06-2018.

4. IV Jornada de Algebra no Amazonas. Tabatinga-Brasil, 09-2019.

5. Primer Encuentro de Estudiantes de Posgrado en Matematicas, Medellin -Colombia,
02-2020.

6. Fourth International Colloquium on Representations of Algebras and Its Applica-
tions; Alexander Zavadskij, Bogota-Colombia, 11-2020.

Research stays

The author is indebted with the following institutions and academics for their warm hos-
pitality during his several research stays:

1. Bielefeld Representation Theory Group and seminar (BIREP), Faculty of Mathe-
matics, Universitat Bielefeld, Bielefeld- Germany, Professor Henning Krause.

2. Algebra seminar IMERL at Instituto de Matematica y Estadistica Rafael Laguardia
(IMERL), Montevideo-Uruguay, Professor Marcelo Lanzilotta Mernies.
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3. Representation theory seminar at the Centro de Investigacién en Matematicas A.C.,
CIMAT, Guanajuato, México, Professor José Antonio Stephan De la Pefia Mena.

4. Algebra seminar at the Instituto de Matematicas, Universidad de Antioquia,
Medellin-Colombia, Professor Herndn Giraldo.

This thesis is distributed as follows:

Chapter |1} aims to present a theoretical introduction of representation theory of algebras,
sections in the Auslander-Reiten quiver, representation theory of posets, Brauer configu-
ration algebras, Dyck paths, cluster algebras, cluster-tilted algebras, friezes, snake graphs,
and the category of diagonals, as well as, definitions and notations to be used throughout
the work.

In chapter [2] it is described a family of posets that allows us to find a formula of the
number of sections in the Auslander-Quiver quiver of algebras of Dynkin type A,, D,,, Eg,
E; and Eg. These formulas establish a categorification of some integer sequences in the
sense of Ringel and Fahr.

In chapter [3| it is introduced the category of Dyck paths as a combinatorial model of
the category of representations of a quiver of type A, with relations. It is presented a
bijective correspondence between a family of words of Dyck paths and the number of
perfect matchings of a snake graph. Besides, it is described a formula of cluster variables
arising from the Dyck paths of algebras with an underlying graph of type A,,.

In chapter [4] it is defined a basic set called diamond which is used to build frieze patterns,
these sets are in bijective correspondence with Dyck paths and triangulations of (n + 3)
polygons, and it is presented frieze patterns by using indecomposable objects of Dyck
paths categories. Dyck-Brauer configuration algebras are introduced and it is given the
dimension of these algebras and its corresponding centers.

Finally, appendix [A] contains examples of integer sequences arising from the number of
sections associated to algebras of type A, and D,,. Besides, it is included examples of
family of integer sequences and pairs of matrices associated to Dyck-Brauer configuration
algebras.



CHAPTER 1

Preliminaries

In this chapter, we present a brief description and important theorems regarding quiver
representations in section Sections in the infinite translation quiver and Brauer
configuration algebras are described in sections and respectively. Category of
representation of ordinary posets and some classical theorems regarding classification
of ordinary posets are introduced in section In section we recall Dyck paths
as a Catalan object, whereas some elementary notions of cluster algebras, category of
diagonals of an (n + 3) polygon, cluster-tilted algebras, and friezes are defined in sec-
tions and Finally, some definitions and results regarding snake graphs are
given in section Throughout the thesis, k denotes an algebraically closed field. N,
Z, R and C denote the sets natural, integer, real, and complex numbers, respectively
[2,3/174|19%139, 43, 45.|54)/60-62, 71,80L84) 92,196, 99].

1.1 Representation Theory of Quivers

In this section, we present some concepts regarding representations of a quiver. We recall
theorems that describe algebras of finite and tame representation type [3}60,[80%:84].

A quiver Q = (Qo,Q1,s,t) is a quadruple consisting of two sets: Qg (whose elements
are called points, or vertices) and ()1 (whose elements are called arrows), and two maps
s,t: Q1 — Qo, which associate to each arrow a € Q) its source s(a) € Qo and its target
t(a) € Qo, respectively. Figure shows examples of quivers

aO—>0c¢
\El\o
\

Oe

O Ob

4\ — s 0<~—0 /
5 1 3

(@]

5

FIGURE 1.1. Examples of quivers.



CHAPTER 1. PRELIMINARIES 2

A path of length [ > 1 with source a and target b is a sequence (a | aq,...,q; | b) where
ag € Qq for all 1 <k <, and we have s(a1) = a, t(ag) = s(agy1) for each 1 < k <, and
finally t(cy) = b. We denote by Q; the set of all paths in @ of length I. We also agree to
associate with each point a € Qo a path of length [ = 0 (denoted by e, = (al|a)).

The path algebra kQ of @ is the k—algebra whose underlying k—vector space has as
its basis the set of all paths (a | a1,...,a; | b) of length [ > 0 in @ and such that the
product of two basis vectors (a | ay,...,a; | b) and (¢ | p1,..., 0k | d) of kQ is equal to
zero if t(aq) # s(f1) and is equal to the composed path (a | a1,...,q;01,..., 0k | d) if

t(ou) = s(B1).

Let @ be a finite and connected quiver. The two-sided ideal of the path algebra kQ
generated (as an ideal) by the arrows of @ is called the arrow ideal of k@ and is denoted
by Rg. In particular, for each [ > 1,

Ry = @ kQm.

m>1

RZQ is an ideal of kQ). A two-sided ideal I of k(@ is said to be admissible ideal if there
exists an integer m > 2 such that

2
R3S C1C R,

If I is an admissible ideal of k£Q, the pair (@, I) is said to be a bound quiver. The quotient
algebra kQ/I is said to be the algebra of the bound quiver (Q,I) or, simply, a bound
quiver algebra.

A relation in Q with coefficients in k is a k—linear combination of paths of length at least
two having the same source and target. Thus, a relation p is an element of k@) such that

m
p= Z )‘iwiv
=1

where the )\; are scalars and the w; are paths in @ of length at least 2 such that, if ¢ # j,
then the source (resp. the target ) of w; coincides with that of w;. If (pj);jcs is a set of
relations for a quiver ) such that the ideal they generate (p; | j € J) is admissible, we say
that the quiver @ is bounded by the relations (p;)ics or by the relations p; = 0 for all j € J.

A representation M = (M;, ¢qa)icQo,ac@, of a quiver @ is a collection of k-vector spaces
M;, one for each vertex i € (o, and a collection of k-linear maps ¢, : M) — My, one
for each arrow o € Q.

Let M = (M;,q0), M' = (M],¢),) be two representations of Q. A morphism (or ho-
momorphism) of representations f : M — M’ is a collection (f;)icg, of linear maps
fi : M; — M, such that for each arrow ¢ 5 j in @ the diagram:
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M; -2 M;

| E (1.1)

M o M
A !
commutes, that is (fj o wa)(m) = (¢, o f;)(m) for all m € M;. Let M = (M;,¢,) and
M' = (M!,¢.,) be representations of Q. Then

o= (non (5 2)
Pa/ /icQoacqi,

is a representation of ) called the direct sum of M and M’.

Rep @ is the category of representations of a quiver @, rep @ is the full subcategory
of Rep @ consisting of the finite dimensional representations. Rep @ and rep @) are
abelian k-categories. A representation M € rep @ is called indecomposable if M # 0 and
M cannot be written as a direct sum of two nonzero representations, that is, whenever
M ~ N &L with N,L € rep @, then N = 0 or L = 0. A quiver @ is said to be of
finite representation type if the number of isoclasses of indecomposable representations of
Q is finite. A quiver @ is said to be of infinite representation type if Q) is not of finite
representation type [80].

Theorem 1.1. [3]. Let A = kQ/I, where Q is a finite connected quiver and I is an
admissible ideal of kQ). There exists a k—linear equivalence of categories

F: Mod A— Rep (Q,I),

that restricts to an equivalence of categories F': mod A — rep (Q,1).

Gabriel [58] and Nazarova |72 proved the following theorems, respectively.

Theorem 1.2. [3]. Let Q be a finite, connected, and acyclic quiver; k be an algebraically
closed field; and A = kQ be the path k—algebra of Q.

(a) The algebra A is representation-finite if and only if the underlying graph Q of Q is
one of the Dynkin diagrams A,,, D,, Eg, E7, and Eg.

(b) If Q is a Dynkin graph, then the mapping dim : M — dim M induces a bijection
between the set of isomorphism classes of indecomposable A—modules and the set
{z e N" ; qo(z) =1} of positive roots of the quadratic form qq of Q.

(¢) The number of the isomorphism classes of indecomposable A—modules equals %n(n%—
1), n? —n, 36, 63, and 120, if Q is the Dynkin graph A,, D,, Eg, E;, and Eg,
respectively.

Theorem 1.3. [84]. Let QQ be a connected quiver without oriented cycles and k be an
algebraically closed field. Then kQ is representation-tame if and only if the underlying
graph Q of Q is one of the extended Dynkin diagrams A,,, D,, Eg, E7, and Es.
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FIGURE 1.2. Dynkin and extended Dynkin diagrams.

1.2 Sections in the Infinite Translation Quiver

In this section, for the sake of clarity we recall the definitions of section, an orbit in an
Auslander-Reiten quiver as Assem et al. described in [3].

Let ¥ = (3o, X1) be a connected and acyclic quiver. An infinite translation quiver (ZX, 1)
has the set (ZX)p =7Z x 3o = {(n,z) | n € Z,z € ¥y} as its set of vertices, and for each
arrow « : & — y € X there exist two arrows

(n,a): (n,z) — (n,y) (n,a'): (n+1,y) — (n,z) in (ZX);, (1.2)
and these are all the arrows in (ZX);. The translation T on ZX is given by the formula

T(n,z) = (n+ 1,z), and for every (n,x) € (ZX)g it is defined a bijection between the set
of arrows of target (n,z) and the set of arrows of source (n + 1, z) by the formulas:

o(n,a) = (n,a’) and o(n,a)=mn+1,a), (1.3)

Let ¥ be a quiver described in Figure
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NS

FIGURE 1.3. Quiver X.

Then the infinite translation quiver of ¥ is given by Figure

FIGURE 1.4. Infinite translation quiver of 3.

Let (T', 7) be a connected translation quiver. A connected full subquiver ¥ of ' is a section
of I' if the following conditions are satisfied:

S(1) X is acyclic.
S(2) For each z € 'y, there exists a unique n € Z such that 7"z € ¥.

S3) If z9p — 21 — -+ — x4 is a path in I' with xg, ¢ € ¥o, then x; € ¥y for all ¢ such
that 0 <1¢ <t.

For a translation quiver (I',7), the T-orbit of a point x € I'y is defined to be the set of
all points of the form 7"x with n € Z. Thus, any section 3 meets each T-orbit exactly once.

Arrows in a section of a translation quiver (I, 7) satisfy the following conditions:

1. If x — y is an arrow in I and x € ¥, then y € ¥y or Ty € .

2. If x — y is an arrow in I and y € ¥, then z € ¥ or 771z € Xp.

Sections are useful to characterize representation-finite tilted algebras. Regarding this
subject, we recall the Happel and Ringel's criterion which states that a connected
representation-finite algebra B is a tilted algebra if and only if the Auslander-Reiten
quiver of B contains a section.

Henceforth, we let O, denote the orbit of a fixed element x € I'y. In particular, if
I'(Mod A) = (T'g,I'1) is the Auslander-Reiten quiver of an algebra of Dynkin type A,
then each element of the 7-orbit of an indecomposable projective module will be denoted
7', 1 € N. We also note that in the case of representation-finite hereditary algebras A
the vertices of the Auslander-Reiten quiver 'y corresponding to the indecomposable
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projective modules form in I'4 a section of Dynkin class.

As an example in Figure[I.5|we show an oriented quiver () of type Az and the corresponding
Auslander-Reiten quiver of the algebra A = kQ.

T8 %

Tl— +T2«— T3

" 1 T 1

7_1 >7-2< 7—3

FIGURE 1.5. Quiver @ and the Auslander-Reiten quiver of kQ.

In this case sections are S = {r,7,73}, Sy = {7'1,7'2,73_1}, Sy = {7'1_1,7'2,73},
Sy = {71_1,7'2,73_1} and S5 = {71_1,7'2_1,7'3_1} all of them of type As.

1.3

Brauer Configuration Algebras

In 2015 Green and Schroll [61] introduced the concept of Brauer configuration algebra as
a generalization of a Brauer graph algebra. In general, these algebras are of wild repre-
sentation type. They showed that Brauer configuration algebras are finite-dimensional
symmetric, multiserial, and others. In this section, we recall definitions of Brauer
configuration and its Brauer configuration algebra, we present some properties of these
algebras [61,[83].

A Brauer configuration is a tuple I' = (I, I'1, u, O), where:

(B1)
(B2)

I’y is a finite set whose elements are called vertices.

I'; is a finite collection of multisets called polygons. In this case, if V € I'; then the
elements of V' are vertices possibly with repetitions, occ(a, V') denotes the frequency
of the vertex « in the polygon V and the valency of o denoted val(«) is defined in
such a way that:

val(o) = > oce(a, V). (1.4)

Vel

1 is an integer valued function such that p : I'y — N where N denotes the set of
positive integers, it is called the multiplicity function.

O denotes an orientation defined on I'y which is a choice, for each vertex a €
[y, of a cyclic ordering of the polygons in which « occurs as a vertex, including
repetitions, we denote S, such collection of polygons. More specifically, if S, =
{Vl(al), VQ(O‘Q), el Vt(at)} is the collection of polygons where the vertex a occurs with

a; = occ(a, V;) and Vi(ai) meaning that S, has «; copies of V; then an orientation
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O is obtained by endowing a linear order < to S, and adding a relation V; < Vi, if
V1 = min S, and V; = max S,. According to this order the «; copies of V; can be
ordered as Vi; < Va; < -+ < Vig,—1),; < Va,,i and S, can be ordered in the form

Vl(ocl) < V2(a2) << V(Ei(i)_l)) < V(?)t'

(B5) Every vertex in I'g is a vertex in at least one polygon in I';.
(B6) Every polygon has at least two vertices.

(B7) Every polygon in I'; has at least one vertex « such that u(a)val(a) > 1.
The set (Sq, <) is called the successor sequence at the vertex a.

A vertex a € Ty is said to be truncated if val(a)u(a) = 1, that is, « is truncated if it
occurs exactly once in exactly one V € I'; and u(a) = 1. A vertex is nontruncated if it is
not truncated.

Given a Brauer configuration I' = (I'g,I'1, 4, O) we say that the polygon V € I’y is a
d—gon if the number of vertices appearing in V is d. We say that the configuration I is
reduced if and only if every polygon V € I'; satisfies one of the following conditions:

(ii) if VN Jr # 0, then V is a 2-gon with only one truncated vertex,
where §r = {a € Ty | p(a)val(a) = 1}.
The Quiver of a Brauer Configuration Algebra

The quiver Qr = ((Qr)o, (Qr)1) of a Brauer configuration algebra is defined in such a way
that the vertex set (Qr)o = {v1,v2,...,0n} of Qr is in correspondence with the set of
polygons {V1, Vs, ..., V;,} in I'q, noting that there is one vertex in (Qr)o for every polygon
in Fl.

Arrows in Qr are defined by the successor sequences. That is, there is an arrow v; ——
vi+1 € (Qr)1 provided that V; < Viy1 in (S,, <) U{V; < V1 } for some nontruncated vertex
a € T'g. In other words, for each nontruncated vertex o € I'y and each successor V' of V
at «, there is an arrow from v to v’ in Qr where v and v’ are the vertices in Qr associated
to the polygons V and V' in I'y, respectively.

Ideal of Relations and Definition of a Brauer Configuration Algebra

Fix a polygon V' € I'; and suppose that occ(c, V') =t > 1 then there are ¢ indices i1, ...,
such that V' = V;,. Then the special a-cycles at v are the cycles C;,, Cj,, ..., C;, where v
is the vertex in the quiver of Qr associated to the polygon V. If a occurs only once in V'
and p(a) = 1 then there is only one special a-cycle at v.
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Let k be a field and I'' a Brauer configuration. The Brauer configuration algebra associated
to T' is defined to be the bounded path algebra Ar = kQr/Ip, where Qr is the quiver
associated to I' and It is the ideal in kQr generated by the following set of relations pr
of type I, II and III.

e Relations of type 1. For each polygon V = {ay,...,am} € I'1 and each pair of
nontruncated vertices o; and o in V, pr contains all relations of the form cmles)
(C"yMes) or (C")Me5) — C#Me) where C is a special a;—cycle at v and C” is a special

aj—cycle at v.

e Relations of type II. The type two relations are all paths of the form C*(®q where
C is a special a—cycle and a is the first arrow in C.

o Relations of type II1. These relations are quadratic monomial relations of the form
ab in kQr where ab is not a subpath of any special cycle.

For example, let I' = (T'o,T'1, u, @) be a Brauer configurations, where I'y = {1,2,3},
o ={Vi ={1,1,3}, Vo ={1,2}, V5 ={2,3,3}}, u(1) = pu(3) = 1 and u(2) = 2. The
successor sequence of vertex 1 is Vi < Vi < Vs, the successor sequence of vertex 2 is
Vo < V3, and the successor sequence of vertex 3 is V7 < V3 < V3. There are two special
1—cycles at v1, ajazas and agaza;. There is only one special 3—cycle at vy, c1cacs. There is
one special 1—cycle at v9, agajas. The special 2—cycle at vy is b1by. The special 2—cycle
at v3 is bab;. There are two special 3—cycles at v3, cacge; and cscica. The ideal It is
generated by following relations in pr:

a1aza3 = asaza; = cicacs; azaraz = (b1b2)?; (babr)? = caczer = czcrcy;
a1azasay; asazaias; asaiasas; (bibe)?by;
(bab1)?ba; creacser; cacseica; €301C2C3;
ajci; cszay; azby; csag; ager; baasz; bica; bics; cabe; cibo.

(1.5)

C1
a b1
as by
C3

FIGURE 1.6. Quiver Qr associated to the Brauer configuration T'.

Figures [1.6] and show the quiver associated to I' and the indecomposable projective
modules of Ar.
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FIGURE 1.7. Indecomposable projective modules of Ar.

The following results show some properties of Brauer configuration algebras [61].

Theorem 1.4. Let A be a Brauer configuration algebra with Brauer configuration I.

(i) A Brauer configuration algebra is a finite dimensional symmetric algebra.

(ii) Suppose I' =T'1 UTy is a decomposition of T' into two disconnected Brauer configu-
rations I'1 and I'y. Then there is an algebra isomorphism Ar ~ Ar, x Ar, between
the associated Brauer configuration algebra.

(iii) The Brauer configuration algebra associated to a connected Brauer configuration is
an indecomposable algebra.

(iv) A Brauer graph algebra is a Brauer configuration algebra.

(v) There is a bijective correspondence between the set of indecomposable projective
A—modules and the polygons in T'.

(vi) If P is an indecomposable projective A—module corresponding to a polygon V in T.
Then rad (P) is a sum of r indecomposable uniserial modules, where r is the number
of (nontruncated) vertices of V' and where the intersection of any two of the uniserial
modules is a simple A—module.

(vit) A Brauer configuration algebra is a multiserial algebra.

Proposition 1.1. Let A be a Brauer configuration algebra associated to the Brauer con-
figuration ' and let C = {C4,...,C} be a full set of equivalence class representatives
of special cycles. Assume that, for i = 1,...,t, C; is a special o;—cycle where «; is a
nontruncated vertex in I'. Then

dimp A = 2Qo| + Y |Ci|(ni] Ci| — 1),
c;eC

where |Qo| denotes the number of vertices of Q, |C;| denotes the number of arrows in the
a;—cycle C; and n; = p(a;).

Sierra proved the following result [83)].
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Theorem 1.5. Let A = kQr/Ir be the Brauer configuration algebra associated to the
connected and reduced Brauer configuration I'. Then

dimpZ(A) =1+ Y p(a) + [T1| — |To| + #Loops(Qr) — |€r],

a€cly

where €0 = {y € Iy | val(y) =1 and p(y) > 1}.

For the case of Ar in the previous example, the dimension of Ar is equal to 24, and the
dimension of its center is 7.

1.4 Representation Theory of Ordinary Posets

The theory of representation of posets was introduced and developed by Nazarova, Roiter
and their students in Kiev at the 1970s, one of their ideas was to used it as a way
of giving a solution of the second Brauer-Thrall conjecture regarding classification of
algebras [74},/75,/84]. The main tool to classify posets both ordinary and with additional
structures have been the algorithms of differentiation which are functors defined to reduce
dimension of the objects of the categories involved in the procedure. The first of these
algorithms of differentiation known as the algorithm with respect to a maximal point was
introduced by Nazarova and Roiter in 1972, it was used by Kleiner to obtain a criterion
to classify posets of finite representation type and by Nazarova in order to classify posets
of tame representation type in 1977 [63,/76]. In 1977 as well Zavadskij introduced the
algorithm of differentiation with respect to a suitable pair of points which was used by
him and Nazarova in 1981 to classify posets of finite growth [77,[84,97]. We recall that
in 1991 Zavadskij introduced an apparatus of differentiation for posets consisting of the
algorithms of differentiation DI, DII, DIII, DIV and DV this apparatus was used by him
and Bondarenko to classify posets of tame and finite growth with an involution [11,98]
(see in [39]). Particularly in Colombia, Canadas et al. have studied applications of the
theory of representation of posets and its generalizations [24-26,[28-30}36,37}39,40,42].
In this section, we introduce some elementary notions of the matrix problems, ordinary
posets, and classical theorems regarding classification of ordinary posets [2}:39,60}84,99].

Let Mat be a set of finite matrices with coeflicients in k£ which is closed under direct sums
and direct summands, where for matrices A, B we set

A 0
aemo (40)
Suppose that G is a set of elementary transformations on rows and columns of matrices
in Mat. We say that A is G—equivalent to B (A ~g B) if B can be obtained from A by
applying a sequence of transformations from GU G~!. A class A/ ~g represented by A in
Mat is said to be decomposable if there is a matrix B in Mat of the form B = C & D such
that A ~g B. A class A/ ~g is indecomposable if A is not G—equivalent to zero matrix
and A/ ~g it is not decomposable. The problem of classifying the indecomposables in
the residue class set Mat/ ~g is called a matriz problem and we denote it by (Mat, G).
This is equivalent to a reduction of any matrix in Mat to a canonical form by applying
the transformations in G U G~!. The problem (Mat, G) is of finite representation type if
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the set of indecomposable G—equivalence classes of matrices in Mat is finite [84].

A poset is an ordered pair of the form (P, <) of a set P and a binary relation < contained
in P x P, called the order on P such that < is reflexive, antisymmetric and transitive [46].

4 ]
3 7 ¢ f i
7= 6 =y e h
1 5 08 a d g

FIGURE 1.8. Hasse diagrams of P and Q.

A representation of P over a field k is a collection U = (Uy,U, | = € P), where Up is a
finite-dimensional k—space and U, is a subspace in Uy for each x € P, such that U, C U,
if the relation x < y holds in P. The dimension vector of a representation U is the
vector d = dim U = (do,d, | € P) € Z¥ where dy = dim Uy and d,, = dim U, /U, with
rad U, =U, = » U,

y<z

A morphism ¢ : U — V from a representation U to a representation V is any k—linear
map ¢ : Uy — Vy with the condition p(U,) C V, for all z € P. The category of
representations of P over k is denoted by rep (P,k) = rep P. Two objects U,V are
isomorphic in rep P (U ~ V) if and only if there exists an isomorphism of k—spaces
¢ : Uy — Vy such that ¢(U,) = V,, for all z € P. Denote by Ind P a complete set of
pairwise non-isomorphic indecomposable representations of P over k.

The direct sum U @ V of two representations U,V € P is the representation
UV = (Uy® VU, ®V, | x € P). A representation U is said to be decompos-
able if there exist two representations U’ # 0, U” # 0 such that U ~ U’ @ U”. Otherwise,
U is an indecomposable representation (Krull-Schmidt category). We say that a represen-
tation U is trivial if dim Uy =1, i.e., Uy = k.

An ordered set C is called a chain (or a totally ordered set or a linearly ordered set) if
and only if for all p,q € C we have p < q or ¢ < p (i.e., p and ¢ are comparable). On
the other hand, an ordered set P is called an antichain if x < y in P only if x = y. An
antichain consisting exactly of two (resp. three) points is called a dyad (resp. triad).
If some subsets Xi,...,X, C P do not intersect mutually (but may have comparable
points), then their union X; U---U X, is called a sum and is denoted by X + --- + X,.
We denote by w(P) the width of a poset P, i.e., the maximal cardinality of its antichains.
Accordingly to the known Dilworth's theorem [82], each poset of finite width n is a sum
of n chains.

For a point @ € P and a subset A C P, we define their up- and down-cones

a" ={zePla<z}, an={r€P|x<a}, AV:LJCLV7 AA:UQA,
acA acA
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For any subset A C P, we define a trivial representation k(A) = k(AY) = (k;U, | x € P)
of P where

U — k, ifzecAY,
v 0, otherwise.

In particular, k(@) = (k,0,...,0). We write often k(Xi,...,X,) instead of
E(X;U---UX,). For example, let P; = {a,b,c} be the triad, i.e., three incompa-
rable points, the elements of Ind (P) are k(2), k(a), k(b), k(c), k(a,b), k(b,c), k(a,c),
k(a,b,c) and U = (k@ k,k® 0,08k, (1,1)k) (see [2]).

Attached to each representation U there exists its matriz representation M = My choosing
some basis By in Uy and for each « € P, some system B, of linearly independent generators
of U, modulo the radical subspace rad U,. Then

M= My [ [ M, |

with entries in k, partitioned horizontally into n = |P| blocks (strips). The set of all
matrix representations of P is denoted by Matq.

If M and M’ are matrix representations of a poset P = {z; | 1 < i < n} given by

M= [0 [ [0, ) = [ [ [0, ]

then its direct sum M @& M’ is given by the formula

M, 0 |..][M, 0

Mo M = .
© 0 M. | ... | 0 M.

Two representations M and N of a poset P are isomorphic if and only if their matrix
representations can be turned into each other with help of the following admissible trans-
formations (denoted by Gp):

(i) Elementary transformations of rows of the whole matrix M.
(ii) Elementary transformations of columns within each vertical strip.
(ili) Additions of columns of a strip M; to columns of a strip M; if i < j in P.

Then we have defined a matriz problem (Matyp,Gp). A poset P is said to be of
representation-finite if (Matp, Gp) is of finite representation type.

Remark 1.1. (Matyp, S9) is a category whose objects are the matrices M in Maty and
morphisms are pairs of matrices (C, D), where C € GI(|Byl, k) and D is a matriz in
Gl(|Bo| + - -+ + |Byl, k) which is a composition of elementary matrices corresponding to
admissible transformations Gp (|B;| denote the number of independent generators of U;,
for0<i<n)[84].
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Figure is an example of a matrix representation of the triad [60].

a b c
7 000O0O0]Z 0O0O0GOGO[]I 0O0O0TO0O
0 I 00000 O0GO0GOTO0]OOOO0O0O
0 0 I 00O0[0O0OGOTGOTGOTO]OTIOO0O0O
0 001 0O0[0O0GO0G OGO OTO0]OO0O0TO0TO0O
0 000 0[0O0O0OGO0TGOTO0]OOTIO0O0O
0000 O0O0|0O0TZIO0O0TO0O[0OO0TITO0OO0O
0 000 O0O0[0O0GOTZOGO0]O0OO0O0TI 0O
0 000 O0O0[OOGOTG OTO]OOOO0G OO
0 000 0O0[OOGOTG OGO OTO]OO0O0TO0TI O
0 000 O0O0[0O0OGOTG OGO OGO 0|]OO0O0O0TO0O

FI1GURE 1.9. Example of a matrix representation of the triad.

Kleiner presented the finite representation type criterion [63].

Theorem 1.6. [2]. Let P be a finite poset. Then P does not contain X; = (1,1,1,1),
Ko =1(2,2,2), X3 =(1,3,3), Ky = (N,4) or K5 = (1,2,5) as a subposet if and only if rep
P has finite representation type.

—0
—0
—0
= 0—0—0
0—0—0
?
—0
0—0—0—0

—~
S
N
=
=
—~
S
~
=
N
—~
s}
—

3 (d) K4

o—©O
o—0O
o—0O
o—0—=0

O 0 0 0 O 0O 0 ©
(e) X5 () N1 (9) Na (h) N3

0—0—0—0—0
0—0—0—0—0—0

1 1
@) o O
(4) Na 7) Ns (k) Ne

FiGURE 1.10. Kleiner's critical Xy — K5 and Nazarova's critical Ny — Ng.

Nazarova extended the result of Kleiner and showed the tame representation type criterion
[73].

Theorem 1.7. [2]. Let P be a finite poset and k a field. Then rep P has wild representation
type if and only if P contains N1 = (1,1,1,1,1), Ny = (1,1,1,2), N3 = (2,2,3), Ny =
(1,3,4), N5 = (N,5) or Ng = (1,2,6) as a subposet.
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1.5 Dyck Paths

Dyck paths is an important tool in combinatorics which is in relationship with Catalan
objects as permutations, binary trees, non-decreasing parking functions, triangulations
of a regular polygon, etc |10,92]. Dyck paths can be defined as lattice paths connecting
points in a square lattice that satisfies some conditions in the zy plane. Such Dyck paths
are also described by using some Dyck words. In this section, we present the concept of
a square lattice, lattice path, Dyck words. A connection between Dyck words and Dyck
paths is given as well [6,/12.|48,92.|96].

A lattice A = (V, E) is a mathematical model of a discrete space. It consists of two sets,
a set V' C R"” of vertices and a set £ C R" x R” of edges, with no more than two edges
between any two vertices. If two vectors are connected via an edge, we call them nearest
neighbors.

Let A = (V, E), an n-step lattice path or lattice walk or walk from s € V to x € V is a
sequence w = (wo, ..., wy,) of elements in V', such that

1. wg=s, w, =z,

2. (wi,wiﬂ) e FE.

The length |w| of a lattice path is the number n of steps (edges) in the sequence w.

The Euclidean lattice is a lattice where V = Z%. The edges are mostly defined through a
so called step set. On this lattice an alternative definition via the step set can be used. A
step set S C Z is the fixed and finite set of possible steps. The elements of S are called
steps. If the step set S is a subset of {—1,0,1}2\ {(0,0)} , then we say S is a set of small
steps.

FIGURE 1.11. Square lattice (left) and triangular lattice (right).

For the square lattice and triangular lattice in Figure the sets of small steps are S =

{(1,0),(0,11),(—1,0),(0,—1)} and SQ = {(170)7(031)’(_1’0)a(07_1)5(1a1)3(_17_1)}7
respectively.

An n—step lattice path or lattice walk or walk from s € Z¢ to = € Z¢ relative to S is a
sequence w = (wo, . . ., wy) of elements in Z<, such that [96]
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1. wg=s, w, =z,
2. Wi41 — W, € S
Let A be the diagonal square lattice where V4 = {(z,y) € Z* |z > 0,y > 0} and

Sa={(1,1),(1,-1)}, walks on the diagonal square lattice A are equivalent to walks on
the square lattice B with Vg = {(z,y) € Z? | # > 0,y = 2} and Sp = {(1,0),(0,1)} [12].

A Dyck path is a lattice path in Z? with steps (1,1) and (1, —1), such that the path starts
at (0,0) and ends at (2n,0) and it does not pass below the z—axis. The number of Dyck

e

Figure shows the set of all lattice paths of length 6 in the square lattice B as
described above.

paths of length 2n is equal to the n—th Catalan number (C),, =

FIGURE 1.12. Lattice paths from (0, 0) to (3, 3).

Let X be an alphabet. We define the free monoid generated by X, denoted by X*, as the
set of the finite words written with X’s letters. The product of u = u;...u, € X* and
v =101...9g € X" is defined as the concatenation of these words: uv = wuy...upv1...7,.
The word u is called a left factor of the word w = uwv. The empty word is denoted by e.
The number of occurrences of the letter a € X in the word w is denoted by |wl,, and the

length of w by
w| =" [wla, (1.6)
acX

The set of Dyck words is the set of words w € X* = {U, D}* characterized by the following
two conditions [6]:

e for any left factor u of w, |uly > |u|p,

e |wly = |w|p.

For example, the set of Dyck words of length 6 is

{UDUDUD,UDUUDD,UUDDUD,UUDUDD,UUUDDD}. (1.7)

The number of Dyck words of length 2n is equal to the n—th Catalan number [47].

There is a bijective correspondence between the set of Dyck paths and the set of Dyck
words [6].
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1.6 Cluster Algebras

In 2002, Fomin and Zelevinsky introduced the term of the cluster algebra [54] as a subal-
gebra of a field of rational functions generated by the set of cluster variables [52,/55]56].
The cluster algebras are in connection with different topics as algebraic combinatorics, Lie
theory, discrete dynamical systems, tropical geometry, and others. Afterwards, Fomin,
Schiffler et al introduced cluster algebras associated to surfaces [19,/52-56}69].

The definition of a cluster algebra A starts by introducing its ground ring. Let (P, ®,-)
be a semifield, i.e., an abelian multiplicative group endowed with a binary operation
of addition @ which is commutative, associative, and distributive with respect to the
multiplication in P. The group ring ZP will be used as a field of scalars (ground ring) for A.

Let J be a finite set of labels, and let Trop (u; : j € J) be an abelian group (written
multiplicatively) freely generated by the elements u;. We define the addition @ in Trop
(ujii € J) by

Hu?j @ Hu?j = u;-nm(aj’bj), (1.8)
J J J

and call (Trop (u; : j € J),®,-) a tropical semifield. To illustrate, ug @ u%ugl = u;l in

Trop (u1,u2). The group ring of Trop (u; : j € J) is the ring of Laurent polynomials

in the variables u;. If J is empty, we obtain the trivial semifield consisting of a single

element 1.

As an ambient field for a cluster algebra A, we take a field F isomorphic to the field of
rational functions in n independent variables (here n is the rank of A), with coefficients
in QP. Note that the definition of F ignores the auxiliary addition in P.

A labeled Y —seed in P is a pair (y, B), where:

e y=(y1,...,Yn) is an n—tuple of elements of P,

e B = (b;j) is an n x n integer matrix which is skew-symmetrizable.

That is, d;b;; = —d;b;; for some positive integers di, ..., d,. A labeled seed in F is a triple

e (y,B) is a labeled Y —seed,
e x=(x1,...,2,) is an n—tuple of elements of F forming a free generating set.
That is, x1,...,z, are algebraically independent over QP, and F = QP(z1,...,x,).

We refer to x as the (labeled) cluster of a labeled seed (x,y,B), to the tuple y as the
coefficient tuple, and to the matrix B as the exchange matriz.
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The (unlabeled) seeds are obtained by identifying labeled seeds that differ from each
other by simultaneous permutations of the components in x and y, and of the rows and
columns of B [55].

We use the notation [z]; = max (z,0), [1,n] = {1,...,n}, and
1, if x >0,
sgn(z) =<0, ifx=0,
-1, ifz <.

Let (x,y, B) be a labeled seed in F, and let k € [1,n]. The seed mutation uj in direction
k transforms (x,y, B) into the labeled seed ux(x,y, B) = (x',y’, B) defined as follows:

e The entries of B’ = (b};) are given by

b — —bij, ifi=korj=k,
C bij + sgn(bix) [bikbrj]l+, otherwise.

e The coefficient tuple y' = (v},...,),) is given by

1 e
, Y if j =k,
Y = b IS (1.10)
’ {y]y,E b (g @ 1), A R

o The cluster x' = (z,...,1;,) is given by 2/ = z; for j # k, whereas 7} € F is
determined by the exchange relation

ur T1 x[bikh +11 x[*bik]ﬁ-

xh = . 1.11
F (yr ® 1)y, (1.11)

We consider the n—regular tree T, whose edges are labeled by the numbers 1,...,n, so

that the n edges emanating from each vertex receive different labels. We write ¢ LA
to indicate that vertices ¢,t' € T,, are joined by an edge labeled by k. A cluster pattern
is an assignment of a labeled seed ¥; = (x¢,y,, Bt) to every vertex t € T, such that the

seeds assigned to the endpoints of any edge ¢ ¥ . # are obtained from each other by the
seed mutation in direction k. The elements of X; are written as follows:

Xt = (155 Tnt)s Yo = (Y165 Ynit)s B = (bf])

A cluster pattern is uniquely determined by each of its seeds, which can be chosen
arbitrarily.

For example (case Aa, see [56]), let n = 2, then the tree T3 is an infinite chain. We denote
its vertices by ...,t_1,to,t1,..., and label its edges as follows:

2t,11t02t11t22
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We denote the corresponding seeds by ¥, = X, = (Xm,¥m, Bm), for m € Z. Let the
initial seed g be

0 1
xo = (21,22), Yo = (¥1,42), Bo = <_1 0> ; (1.12)

We then recursively compute the seeds Xi,...,%5 as shown in Table with B; =

(V)

t| B Y Xy
By n Yo T T2
1 r1y2 + 1
1By | yi(ye® 1 — x1 —_—
( ) Y2 xo(y2 ® 1)
5| B 1 ny2®©y +1 T1Y1y2 + Y1 + T2 T1y2 + 1
0
y1(y2 @ 1) Y2 (2 @y ® D)zizy  x2(y2 @ 1)
5| B y1 1 Y2 T1y1Y2 + Y1 + w2 y1 + 22
1
Y1Y2 Y @yr +1 | (e @y @ Drre 21(y1 & 1)
1 +x
1| B, Y1Yy2 L - Y1 2
y1 @1 Y1 z1(y1 ®1)
5| By Y2 Y1 ) xy

TABLE 1.1. Seeds for the case A,.

Cluster Algebra
Given a cluster pattern, we denote by

X = Uxt:{xi,t:teﬁrnggign},
teT,

the union of clusters of all of the seeds in the pattern. We refer to the elements z;; € X
as cluster variables. The cluster algebra A associated with a given cluster pattern is the
ZP—subalgebra of the ambient field F generated by all cluster variables: A = ZP[X]. We
denote A = A(x,y, B), where (x,y, B) = (x¢,¥y;, Bt) is any labeled seed in the underlying
cluster pattern. A cluster algebra is of geometric type if the coefficient semifield P is a
tropical semifield.

We say that a cluster algebra is of finite type if it has finitely many seeds. More specifically,
we define the diagram I'(B) associated to an n x n exchange matrix B to be a weighted
directed graph on nodes v1, . .., vy, with v; directed towards v; if and only if b;; > 0. In that
case, we label this edge by |b;;b;;|. Then A = A(x,y, B) is of finite type if and only if I'(B)
is mutation-equivalent to an orientation of a finite type Dynkin diagram [55]. In this case,
we say that B and I'(B) are of finite type. We say that a matrix B (and the corresponding
cluster algebra) has finite mutation type if its mutation equivalence class is finite, i.e.
only finitely many matrices can be obtained from B by repeated matrix mutations. A
classification of all cluster algebras of finite mutation type with skew-symmetric exchange
matrices was given by Felikson, Shapiro, and Tumarkin [51] (see [69]).
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Cluster Algebras From Quivers
For quivers, cluster algebras are defined as follows:

Fix an integer n > 1. In this case, a seed (Q, u) consists of a finite quiver ) without loops

or 2-cycles with vertex set {1,...,n}, whereas u is a free-generating set {uy,...,u,} of
the field Q(z1,...,x,).

Let (Q,u) be a seed and k a vertex of (). The mutation pu(Q,u) of (Q,u) at k is the seed
(Ql7 ’LL/>, Where;

(a) Q' is obtained from @ as follows;

(1) reverse all arrows incident with k,

(2) for all vertices i # j distinct from k, modify the number of arrows between i and
4, in such a way that a system of arrows of the form (i — j,i — k,k R 7)
is transformed into the system (i s Gk = i t, k). And the system
(i —j,j N k,k - i) is transformed into the system (i i Gi— k. k b, 7)-
Where, r, s and ¢t are non-negative integers, an arrow ¢ LN 7, with I > 0 means

that [ arrows go from ¢ to j and an arrow ¢ LN 7, with I < 0 means that —[ arrows
go from j to i.

(b) v is obtained form wu by replacing the element uy with

1
Uk = H u; + H Uj- (1.13)

arrows i—k arrows k—j

If there are no arrows from ¢ with target k, the product is taken over the empty set and
equals 1. It is not hard to see that pg(pur(@,w)) = (Q,u). Thus, if @Q is a finite quiver
without loops or 2-cycles with vertex set {1,...,n}, the following interpretations have
place:

1. the clusters with respect to @ are the sets u appearing in seeds, (@, u) obtained from
a initial seed (Q,x) by iterated mutation,

2. the cluster variables for () are the elements of all clusters,

3. the cluster algebra A(Q) is the Q-subalgebra of the field Q(z1,...,z,) generated by

all the cluster variables.

As example, the cluster variables associated to the quiver Q =1 — 2 are:

{x . 1+20 1+21 4+ 22 1+:r1}
1) L2, ) 1Ty ) T .
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Cluster Algebra Arising from Unpunctured Surface

Let S be a connected oriented 2—dimensional Riemann surface with nonempty boundary,
and let M be a nonempty finite subset of the boundary of S, such that each boundary
component of S contains at least one point of M. The elements of M are called marked
points. The pairs (S, M) is called a bordered surface with marked points. Marked points
in the interior of S are called punctures (For technical reasons, we require that (S, M) is
not a disk with 1,2 or 3 marked points) [22].

An arc v in (S, M) is a curve in S, considered up to isotopy, such that:

(i) the endpoints of v are in M,

)
(ii) ~ does not cross itself, except that its endpoints, may coincide,
(iii) except for the endpoints, 7 is disjoint from the boundary of S,
)

(iv) 7 does not cut out a monogon or a bigon.

Curves that connect two marked points and lie entirely on the boundary of S without
passing through a third marked point are boundary segments. Note that boundary
segments are not arcs. For any two arcs v, 7/ in S, let e(v,7') be the minimal number
of crossings of arcs a and o/, where o and o' range over all arcs isotopic to v and v/,
respectively. We say that arcs v and ' are compatible if e(y,~") = 0.

A triangulation is a maximal collection of pairwise compatible arcs (together with all
boundary segments). Triangulations are connected to each other by sequences of flips.
Each flip replaces a single arc v in a triangulation T by a (unique) arc ' # ~ that,
together with the remaining arcs in 7', forms a new triangulation.

Choose any triangulation T' of (S, M), and let 7,...,7, be the n arcs of T. For any
triangle A in T, we define a matrix B® = (b?j)lgigmlgjgn as follows.

. biAj =1 and bﬁ = —1if 7; and 7; are sides of A with 7; following 7; in the clockwise
order,

° biAj = 0 otherwise.

Then define the matrix By = (bij)1<i<n,i<j<n by bij = D A biAj, where the sum is taken
over all triangles in T'. Note that By is skew-symmetric and each entry b;; is either 0, &1,
or 2, since every arc 7 is in at most two triangles.

According to Schiffler and Canakei [22], Fomin, Shapiro and Thurston [54] associated
a cluster algebra A(S, M) to any bordered surface with marked points (S, M), and the
cluster variables of A(S, M) are in bijection with the (tagged) arcs of (S, M).

The following theorem regarding relationships between cluster algebras and surface trian-
gulations was obtained Fomin, Shapiro, and Thurston [52}|53].
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Theorem 1.8. [69]. Fiz a bordered surface (S, M) and let A be the cluster algebra asso-
ciated to the signed adjacency matriz of a tagged triangulation. Then the (unlabeled) seed
Y1 of A are in bijection with tagged triangulations T of (S, M), and the cluster variables
are in bijection with the tagged arcs of (S, M) (so we can denote each by ., where v is a
tagged arc). Moreover, each seed in A is uniquely determined by its cluster. Furthermore,
if a tagged triangulation T' is obtained from another tagged triangulation T by flipping a
tagged arc v € T and obtaining +', then Y7+ is obtained from Y by the seed mutation
replacing T~ by x..

1.7 Category of Diagonals and Cluster-tilted Algebras

In 2006 [17], Caldero, Chapoton, and Schiffler introduced the category of diagonals of a
polygon with n + 3 sides associated to a triangulation 7T, in this case, the diagonals are
called roots which can be classified as negative or positive, negative roots are those roots
belonging to the triangulation 7" [17}80].

The combinatorial C-linear additive category Cr is described as follows. The objects are
positive integral linear combinations of positive roots, and the space of morphisms from a
positive root a to a positive root o/ is a quotient of the vector space over C spanned by
pivoting paths from « to o/. The subspace which defines the quotient is spanned by the
so-called mesh relations. For any couple «,a’ of positive roots such that « is related to
o' by two consecutive pivoting elementary moves with distinct pivots, the mesh relations
are given by the identity P, Py, = P, P,,, where vy, v; (resp. vjvh) are the vertices of «
(resp. o) such that Py, P, = o.

Let T be a triangulation, then one can define a planar tree tp as follows. Its vertices are
the triangles of T" and the edges connect adjacent triangles. In the same way, we can define
a graph Q7 whose vertices are the inner edges of T" and are related to each other by an
edge, if they bound the same triangle. An orientation can be defined by using graph Qr,
in such a way that a vertex i connects a vertex j (denoted ¢ — j), if —c; can be obtained
from the diagonal —a; by rotating anticlockwise about their common vertex.

According to Caldero, Chapoton, and Schiffler [17], one can define a C—linear abelian
category Mod Q7 as follows. This is the category of modules over the quiver Q7 with the
following relations, called triangle relations:

In any triangle, the composition of two successive maps is zero.
These relations are exactly the relations prescribed by |17, Definition 1].

Figure shows an example of the tree and the quiver associated to a triangulation.
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FIGURE 1.13. Tree (left) and quiver (right) associated to a triangulation of the 8-polygon.

The following results regarding the category of diagonals were given by Caldero, Chapoton,
and Schiffler in [17].

Theorem 1.9. There is an equivalence of categories between Cr and Mod Q.

Corollary 1.1. There exists a bijection ¢ between Ind Q1 and the diagonals of the polygon
not in T. Moreover, for M in Ind Qr and any vertexr i of Qr, the multiplicity of the
simple module S; in the module M is 1 if (M) crosses the i*" diagonal of T and 0 if
not. In particular, for two isoclasses M, M’ in Ind Qr, we have M = M’ if and only if
ni(M) = n;(M") for all i.

Theorem 1.10. Let T be a triangulation of the n + 3 polygon, and let Cr be the corre-
sponding category, then:
(i) The irreducible morphisms of Cp are direct sums of the generating morphisms given

by pivoting elementary moves.

(i) The mesh relation of Cr are the mesh relations [5] of the Auslander-Reiten quiver
of Cr.

(iii) The Auslander-Reiten translate is given on diagonals by r~.

(iv) The indecomposable projective objects of Cr are diagonals in r*(T).

(v) The indecomposable injective objects of Cr are diagonals in r—(T).
with v (resp. r~ ) the elementary rotation of the polygon in the positive (resp. megative)
direction.

Theorem 1.11. Let C = {uy,...,u,} be a cluster of a cluster algebra of type A, and let
V' be the set of all cluster variables of the algebra. Let Q¢ be the quiver with relations
associated to C' and Ind Q¢ the set of isoclasses of indecomposable modules. Then there
s a bijection

Ind Qc — V\C, a— w,,

such that
P(uy, ... up)
wa = 41_[” uni(a) )
i=1 Y
where P is a polynomial such that none of the u; divides P (i = 1,...,n) and n;(«) is the

multiplicity of the simple module «; in the module c.
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The Auslander-Reiten quiver of the quiver shown in Figure[1.13]is given by Figure [1.14]

SN O

NN TN

SN

SN NS

O S

NN TN

SENEN e

SN TN

O O C

FI1GURE 1.14. Auslander-Reiten quiver of Q7.

Cluster-tilted Algebras of Type A,

In this section, we recall some results regarding cluster-tilted algebras [95].

The cluster category was introduced independently in |17] for type A,, and in [13] for the
general case. Let D’(mod H) be the bounded derived category of the finitely generated
modules over a finite dimensional hereditary algebra H over a field k. In [13] the cluster
category was defined as the orbit category C = D’(mod H)/771[1], where 7 is the
Auslander-Reiten translation and [1] the suspension functor. The cluster-tilted algebras
are the algebras of the form I' = End¢(B)°P, where B is a cluster-tilting object in C |14].

Let @Q be a quiver with no multiple arrows, no loops and no oriented cycles of length
two and let @' be a quiver obtained from ) via mutations. We say that a quiver Q is
mutation equivalent to @', if Q" can be obtained from @ by a finite number of mutations.
The mutation class of @) is all quivers mutation equivalent to ). The mutation class of a
Dynkin quiver @ is finite [55].

If ' is a cluster-tilted algebra, then we say that I' is of type A,, if it arises from the cluster
category of a path algebra of Dynkin type A,,. Let () be a quiver of a cluster-tilted algebra
I, if Q' is obtained from @ by a finite number of mutations, then there is a cluster-tilted
algebra I with quiver )'. Moreover, I is of finite representation type if and only if I/ is of
finite representation type. We also have that I is of type A,, if and only if I is of type A,,.
We know that a cluster-tilted algebra is up to isomorphism uniquely determined by its
quiver [13H17,95]. It follows from this that to count the number of cluster-tilted algebras
of type A, it is enough to count the mutation class of any quiver with underlying graph A,,.
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We define mutation of a triangulation at a given diagonal, by replacing this diagonal
with another one. This can be done in one and only one way. Let Q1 be a quiver
corresponding to a triangulation 7. Then mutation of Q7 at the vertex i corresponds to
mutation of T at the diagonal corresponding to 1.

Let M,, be the mutation class of A,, i.e. all quivers obtained by repeated mutation
from A,, up to isomorphisms of quivers. Let 7, be the set of all triangulations of an
n + 3 polygon. We can define a function v : 7, — M,, where we set v(T') = Qr for any
triangulation 7" in 7,. Note that v is surjective.

For a triangulation 7" of an n + 3 polygon, let us denote by 7" the triangulation obtained
from T by rotating T i steps in the clockwise direction. We define an equivalence relation
on T, where we let T ~ T" for all i. We define a new function 7 : (Tn\ ~) — M,, induced
from 7.

The following results regarding cluster-tilted algebras of type A, were obtained by Tork-
ildsen in [95].

Theorem 1.12. The function 7 : (T,\ ~) — M, is bijective for all n > 2.

Corollary 1.2. The number a(n) of non-isomorphic basic cluster-tilted algebras of type
A, is the number of triangulations of the disk with n diagonals, i.e.

a(n) = Cuar/(n+3) + Cupnyja/2 + (2/3)Cls (1.14)

where C; is the i-th Catalan number and the second term is omitted if (n+1)/2 is not an
integer and the third term is omitted if n/3 is not an integer.

1.8 Friezes

In this section, we recall the concepts of frieze patterns, a generalization associated to
Cartan matrix, vector friezes and its connection with cluster algebras [4,7,43-45.|62}71].

Coxeter introduced frieze patterns in [45] in the early 1970s, inspired by Gauss's penta-
gramma mirificam. A frieze pattern is a grid of positive integers, with a finite number
of infinite rows, where the top and bottom rows are bi-infinite repetition of Os and the
second to top and the second to bottom row are bi-infinite repetitions of 1s, and every
four adjacent numbers of the following square

b

d

satisfy the identity ac — bd = 1. The sequence of integers in the first non-trivial row,
(mi;)icz, is called quiddity sequence. This sequence completely determines the frieze pat-
tern. Fach frieze pattern is also periodic, since it is invariant under glide reflection. The
order of the frieze pattern is defined to be the number of rows minus one. It follows
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that each frieze pattern of order n is n—periodic [7,8]. Conway and Coxeter classified
completely the frieze patterns whose entries are positive integers, and show that these
frieze patterns constitute a manifestation of the Catalan numbers [4344]. Specifically,
there is a natural association between positive integer frieze patterns and triangulations
of regular polygons with labeled vertices. From every triangulation T of a regular n-gon
with vertices cyclically labeled 1 through n, Conway and Coxeter build an n-rowed frieze
pattern determined by the numbers a1, as, ..., a, where aj is the number of triangles in
T incident with vertex k. Specifically [71]:

the top row of the array is ...,0,0,0,...;
the second row (offset from the first) is ..., 1,1,1,...;
the third row is ...,a1,...,ap,a1,... (with period n);

each succeeding row (offset from the one before) is determined by the frieze recur-
rence of the four adjacent numbers given as above.

For instance, given a frieze pattern

this is in relationship with a triangulation of the form

FiGURE 1.15. Example of triangulation associated to a frieze pattern.

In 2010 Assem, Reutenauer and Smith [4] introduced a generalization of friezes associated
to Cartan matrix (see [3] 226p.), in the following way, let C' = (Cjj)nxn be a Cartan
matrix of a connected Quiver @, then a frieze is a collection of positive integers a(j, m),
with j € {1,...,n} and m € Z, such that

a(j,m)a(j,m+1) =1+ < I e m)%l> < [T et,m+ 1)|Cm'|>. (1.15)

j—i i—
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For instance, if () is a Dynkin diagram of type Dg with any orientation, a frieze associated
to DG is

Many authors have studied properties of the friezes, and they have found connections
with different topics (see examples in [4}7-9,/57},62,66.,67,71]). In particular, Fontaine and
Plamondon [57] obtained the following results.

n
Theorem 1.13. The number of friezes of type Dy, is >, d(m) (2”71__";”_1) where d(m) de-
m=1
notes the number of divisors of m.

Corollary 1.3. The number of friezes in type, B,, C,, and Go is Y. (2”_’;’;2“),
m<yv/n+1
(2”), and 9, respectively.

n

Fontaine, Plamondon and Propp (in type Eg) conjectured that the number of friezes in
type Eg, E7, Eg, and Fy is 868, 4400, 26592, and 112, respectively [57}71].

One way to define friezes is to say that they are ring homomorphisms from a cluster
algebra to the ring of integers such that all cluster variables are sent to positive integers
[57]. Let @ be a quiver without loops and 2—cycles and let A(Q) be the corresponding
cluster algebra with trivial coefficients (see [54]).

(i) A frieze of type @ is a ring homomorphism F : A(Q) — R from the cluster algebra
to an integral domain R. The frieze is called integral if R = Z.

(ii) A frieze F is said to be unitary if there exists a cluster x in A(Q) such that every
cluster variable x € x is mapped by F to a unit in R.

(iii) A frieze is said to be non-zero if every cluster variable in A(Q) is mapped by F to
a non-zero element of R.

(iv) An integral frieze is said to be positive if every cluster variable in A(Q) is mapped
by F to a positive integer.

Let x= (x1,...,xy,) be a cluster of A(Q).

(i) A vector (ay,...,a,) € R"is called a frieze vector relative to x if the frieze F defined
by F(x;) = a; has values in R. If the frieze F is unitary we say that the frieze vector
(a1, ...,ay) is unitary.
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(i) A vector (ai,...,an) € ZZ is called a positive frieze vector relative to x if the frieze
F defined by F(x;) = a; is positive integral.

Gunawan and Schiffler proved the following result [62].

Theorem 1.14. Let Q be a quiver without loops and 2— cycles and let x = (z1,...,xy) be
an arbitrary cluster of A(Q). Then there is a bijection

¢ : {unordered clusters in A(Q)} — {positive unitary frieze vectors relative to x}

d={x,..., 2} — @)= (a1,...,an).

1.9 Snake Graphs

Snake graph is a combinatorial tool that has appeared in cluster algebras. According to
Propp, given a triangulation T', we can define a graph whose n vertices correspond to the
vertices in T' and n — 2 vertices corresponded to the triangular faces of 7' [71]. Canakci
and Schiffler have studied relationships between snake graphs and continued fractions,
introducing a calculus for cluster algebras [19-23] (see other works [68,[81]). In particular,
Musiker, Schiffler, and Williams introduced a combinatorial formula for the cluster
variables of cluster algebras from surfaces by using snake graphs and its perfect matchings
[69]. In this section, we recall the definition of a snake graph, the number of perfect match-
ings associated to these graphs, and the way that these concepts can be used to find out
a formula for the cluster variables of a cluster algebra associated to a surface [19,21,22,/69].

A tile G is a square of fixed side-length in the plane whose sides are parallel or orthogonal
to the fixed basis.

North

West G East.

South

We consider a tile G as a graph with four vertices and four edges in the obvious way. A
snake graph G is a connected graph consisting of a finite sequence of tiles G1, ..., G4 with
d > 1, such that foreachi=1,...,d — 1

(i) G; and Gj41 share exactly one edge e; and this edge is either the north edge of G;
and the south edge of G;4+1 or the east edge of (G; and the west edge of Gjy.
(ii) G; and G; have no edge in common whenever |i — j| > 2.
(ili) G and G are disjoint whenever |i — j| > 3.
For notation, G[i,i+t] = (Gy, ..., Giy¢) is a subgraph of G = (G1,...,Gy), the d—1 edges

e1,...,e4—1 which are contained in two tiles are called interior edges of G and the other
edges are called boundary edges. A perfect matching P of a graph G is a subset of the
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set of edges of G such that each vertex of G is incident to exactly one edge in P. Let
Match(G) denote the set of all perfect matchings of the graph G. The following figure
presents some perfect matchings of a snake graph.

FIGURE 1.16. Perfect matchings of a snake graph.

Snake Graphs and Cluster Algebras

Let T be a triangulation of a surface (S, M) and let v be an arc in (S, M) which is not
in T. Choose an orientation on -, let s € M be its starting point, and let ¢ € M be its
endpoint. Denote by s = pg,p1,...,pq+1 = t the ordered points of intersection of v and
T. For j =1,2,...,d, let 7;; be the arc of T" containing p;, and let A;_; and A; be the
two triangles in 7' on either side of 7;;. Then, for j = 1,...,d — 1, the arcs 7, and 7,
form two sides of the triangle A; in T" and we define e; to be the third arc in this triangle.

Let G; be the quadrilateral in T' that contains 7;; as a diagonal (a tile) whose edges are
arcs in 7', thus, they are labeled edges. Define a sign function f of the edges eq,...,eq by

) (1.16)
—1, otherwise.

fles) {—I—l, if e; lies on the right of v when passing through Aj,
6]' =

The labeled snake graph G, = (Gi,...,Gq) with tiles G; and sign function f is called
the snake graph associated to the arc 7. Each edge e of G, is labeled by an arc 7(e) of
the triangulation 7. Such an arc defines the weight z(e) of the edge e to be the cluster
variable associated to the arc 7(e). Thus x(e) = ().

In [69] Musiker, Schiffler, and Williams showed a combinatorial formula for cluster vari-
ables of a cluster algebra of surface type A(S, M) with principal coefficients ¥p =
(x7,¥7,Br). In such a case, if v is an arc, G, is its snake graph, and the triangula-
tion T" has no self-folded triangles. Then the corresponding cluster variable ., is given by
the identity

Ty = _ Z z(P), (1.17)

cross(vy,T) PeMatch(G-)

where the sum runs over all perfect matchings of G, the summand z(P) = []..p z(e) is

the weight of the perfect matching P, and cross(T,v) = H?Zl Tr;, is the product of all
initial cluster variables whose arcs cross 7.

A relationship between cluster variables and continued fractions is described by Schiffler
and Canakci in [22], who claimed that, the numerator of a continued fraction is equal
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to the number of perfect matchings of the corresponding abstract snake graph, and that
it can therefore be interpreted as the number of terms in the numerator of the Laurent
expansion of an associated cluster variable. Thus, the Laurent polynomials of the cluster
variable can be recovered from the continued fraction.

For example, let T" be a triangulation, and let v be a diagonal which is not in 7.

FIGURE 1.17. Triangulation T' (left) and snake graph G, (right).

We can build the snake graph G, associated to v (see Figure [1.17]). The set of all perfect
matchings of G, are shown in Figure and the cluster variable associated to x, is given
by the identity

T4+ T1T3T4 + T2
Ty = .

223

FIGURE 1.18. Perfect matchings of G,.



CHAPTER 2

Integer Sequences Arising From Auslander-Reiten
Quivers

Ringel and Fahr called categorification of an integer sequence the process for which num-
bers in the sequence can been seen as suitable invariants of objects in a category and
proposed a categorification of Fibonacci numbers by using the Gabriel’s universal cover-
ing theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver
[49./50]. In this chapter, we study sections in the Auslander-Reiten quiver of algebras of
Dynkin type as a tool that provides categorifications of some integer sequences in the On-
line Encyclopedia of Integer Sequences (OEIS) [85-89]. Posets of type b, d and h and some
properties of its lattice paths are introduced in section In section lattice paths
connecting minimal and maximal points in posets of type b, d and h are used to enumerate
sections in the Auslander-Reiten quiver of algebras of Dynkin type A,, D,, Eg, E7r and Eg
[32,38]. As a consequence of this chapter, we conclude that the number of sections in the
Auslander-Reiten quiver of algebras of Dynkin type is not a Dynkin function.

2.1 Posets of Type b, d, and h

In this section, we build families of posets (almost all of wild representation type), and
we present integer sequences associated to the lattices paths over these posets.

2.1.1 Posets and Lattice Paths

If P = (N2, <) is a poset where (N, <) denotes the set of natural numbers endowed with the
usual order and (z,y) = (2/,%/) if and only if x < 2’ and y < 3/. Then, a lattice path P C P

is a sequence of points {(z1,y1), (z2,92),..., (Tn,yn)} © P where (z;,3:) = (@it1,Yiv1)
forany 1 <14 <mn—1, and either z;4+; = ;+1 and y;41 = y; or y;41 = y;+1 and ;41 = z;.

An order ideal of a poset (P, <) is a subset I of P such that if x € I and y < x, theny € T
(i.e., z covers y). We let J(P) denote the set of all order ideals of P, ordered by inclusion.
Note that, m-element antichains in P correspond to elements of J(P) that cover exactly

30
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m-elements.

Given a finite poset P with |P| = n in [93] it is defined an extension of P to a total
order or linear extension of P as an order-preserving bijection ¢ : P — n. The number
of extensions of P to a total order is denoted e(P). Actually, e(P) is also equal to the
number of maximal chains of J(P).

According to Stanley [91|93] the enumeration of lattice paths is an extensively developed
subject, the point in this chapter is that certain lattice path problems are equivalent
to determining e(P) for a given poset P, or equivalent to the problem of finding
the number of sections in the Auslander-Reiten quiver of some finite-representation
algebras. In this fashion, it is possible to establish connections between the theory of
partitions, the theory of partially ordered sets and the theory of representation of algebras.

If M = 2 x n then it can be shown that the number of lattice paths from (0,0) to
(n,n) with steps (1,0) and (0, 1), which never rise above the main diagonal x = y of the
plane (z,y)-plane equals the number of linear extensions e(M) of the poset M and that
e(2 xn) = n%rl(i?) = C) [91]. Figure shows the number of lattice paths from each
point (z,y) € M3 = 2 x 3 to the maximal point, note that the number of lattice paths
from the minimal to the maximal point is C'5 = 5. We will make the same computations
for other types of posets in order to enumerate sections in the Auslander-Reiten quiver of

some hereditary algebras of finite-representation type.

co Cu
1
¢, Ou 1
M3 = 2 1
c, Cu 3
5
O s

FIGURE 2.1. Number of lattice paths from each C; to the maximal points Cj is a Catalan number.

More connections between the theory of partitions and the theory of partially ordered
sets via lattice paths have been quoted by Andrews and Stanley in [1,93]. Firstly by
establishing an identity between inversions and p(mq,mg;n) the number of partitions of
an integer number n into at most mo parts no greater than a given integer mi. And
secondly by using P-partitions, i.e., order-preserving maps from a partially ordered set P
to a chain with special rules specifying where equal values may occur. For instance, if P
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is a p-element chain, then a P-partition of a positive integer n is equivalent to an ordinary
partition of n into at most p parts. Some relationships between P-partitions and the
counting of chains in the set of order ideals of P ordered by inclusion are well described
by Stanley in [91,93]. Actually, he describes in [93] the following relation between the
number of some P-partitions of a positive integer n, denoted m,,, and the number e(P) of
extensions of P to a total order. In this case, we have considered that |P| = p:

e(P)nP~ ! (14o(3))

S—p)! as n — Q.

my =

The theory of P-partitions has been used by Petersen in [70] and Stembridge in [94] to
investigate peak algebras and descent algebras.

2.1.2 Some Integer Sequences

We will see that the following sequences {ay,}n>0 and {C}}, }m>0 are useful to enumerate
the number of sections in the Auslander-Reiten quiver of some algebras of Dynkin type.
Sequence {ay} is defined as follows:

apg = 1, (2 1)
(p = Qp_ge—1 + Op_ge—144,

where x stands for the length of the binary expansion of n and y denotes the largest power

of 2 associated to a zero occurring in such expansion bearing in mind that y = 0 if the
binary expansion of n has no 0 's. The following are the first 20 terms of {a,}.

{1,2,3,4,4,6,7,8,5,8,10,12,11,14, 15,16, 6, 10, 13, 16}.

Note that,
gk j = Agk-14; + aj, for each k > 2and 0 < j < ok=1 _1. (2.2)
In particular,

Qppaky_y = 22" 11 (a Fermat number). (2.3)
Sequence (7 is defined in such a way for n > 3 fixed it holds that:

0, if m =0,
C;Ln = Cg;l + 07731_712,,1717 if 0 <m< 2n73, (2'4)
20,:1__12»,7473 + a2n72_(m_1)7 if 27173 S m < 271,72‘

In this case, for n > 1 and m > 0, p; denotes the number of digits in the binary expansion
of the number m and agn—2_(,,_1y € {an}. Besides, for m > 0, C2, =0, further C} =1
(see Appendix, Table [A.1)).
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Remark 2.1. If n = {1,2,...,n} is an n-point chain then C1,n) stands for all admis-
sible subchains C of m with min € = 1 and max © = n. For instance, {1,3,5,7} and
{1,4,6,7} are four-point subchains contained in C1,7)- Note that, the number of admis-
sible chains in n equals 2"~2. To enumerate admissible subchains is a particular case
of another interesting problem in combinatorics which consists of finding the number of
chains contained in a poset (L, <) where < is the dominance order defined on the lattice
of integer points (ai,asz,...,aq) € Z%. And for fived nonnegative integers ni,na,...,ng,
points (ai,asz,...,aq) € L are defined in such a way that 0 < a; < n; for 1 < i < d.
Stanley proved that in the case d = 2 and ny,ne share common value n then the total
number of chains in L equals 2"T1d, where d,, denotes the n-th Delannoy number [92].

2.1.3 Posets of Type bjgjll j’“m

In this section we define the first type of poset we are interested in. Henceforth, we assume
that i9 = jo = 0, and the set {j1,72,. .., Jm,?1,%2,...,4x} is an admissible subchain where
either i1 =1 or j; = 1.

Given the partially ordered set P = (Z2, <) where (z,y) < (z',%/) if and only if z < 2’ and

y <y, it is denoted as b;g;llyjn a subposet of P whose points ;. = (z,,y,), 75 = (ws, 2s),

= (J;)" = (zr,wy) and js, = (j;)" = (ys, 5) satisfy the following conditions:
(1) Ifiy =1 and k =m =1,
i = (21,41) = (n = 1,0) and jj = (wi, 2) = (0,0).
(2) If iy =1 and k > 1,
m max {k,m}—1
i = (21, 91) (th]t Z |jtit+1|>7

t=1 t=1

ji = (wy, 21) = (z1 — |i —Jl| i),

r—1
Z lie — Jel, yi — Z |je — it+1!>,
S
Js = (wy, 23) Z|Zt gl vy = Z|Jt —Zt+1|>

forl<r<kandl<s<m.

b = rvyr

The admissible subchain € = {ji,...,Jm,%1,.-.,it} € n must satisfy the following con-
straints for 1 <r <kand 1 <s<m:

e Ifip=1land k=mtheni <j1 < - <1t < Jm =n.

s lfiis=1land k=m+1thenis < j1 < -+ <ip < Jm < i =n.

o If jy=1and k=m then j; <i1 <+ < jJm < i = n.
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elfji=1landm=k+1then j; <i1 < - < jm < i < Jm =n.

If for s fixed, 1 < s < m, it is defined

H,, = {(:E,y) €Z?|0<y <z, x> ws, v +y < max {ig, jm} — 1}- (2.5)
Then
. . . m
10810k
s = U 20
s=1

The following algorithm summarizes the construction of posets of type bég;llz]’jn :

Algorithm 2.1. (1) Ifip = jo =0, then either iy =1 or j1 =1,
(2) Fiz k € {m,m+ 1} and n,
(3) For 1 <r <k and1l<s<m do;
e Ifi; =1 and either k = m or k = m+1 then the subchain C = {i; < j1 <--- <
ik < jm=mn}orC={i1 <ji1 <...<ix <jm <ip =n}, respectively,
e Flse
e If j1 =1 and either m =k or m =k + 1 then the subchain C = {j; <i; <--- <
Jm <ix=n} or C={j1 <i1 <+ < Jm < ik < jm = n}, respectively.
(4) For1<s<m do;
(5) i, gi, (i)', (4", and He,,
m
(6) Do \J H.,.
s=1

Remark 2.2. The main problem regarding posets of type b;g;lllj’; consists of finding

the number of lattice paths from (0,0) to each point p € My, where My denotes the set
of mazximal points contained in b;g’jl;’“m . Actually, points p € My are solutions of the
following linear programming problem:

Problem 1
Maximize x + y;
Subject to the constraints;
T 2 Ws,
< zg,
v=s (2.7)
y<n-—xz—1,

x>0, y=>0.

Henceforth, we let [b;gzlllj’“m | denote such a number and |P((;;f)/)| the number of lattice paths

from a point (z,y) to a point (2',y") in a given poset P. [A] will denote the number of
lattice paths from the set of minimal points to the set of maximal points of a subset A C P.
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The following example shows the procedure described above to construct the poset bjis.

(1) Firstly we make, ig = jo = 0.
(2) Choose m =k =2 and n =5, thus i, js € {1,2}.

(3) Select the admissible subchain i1 = 1 < j; = 2 < i3 = 4 < jo = 5 among all possible
admissible subchains in €y 5y satisfying the constraints.

(4) Points ., j: are given by the following identities:

i = (21, 91) = (2,2),
Ji = (i) = (1, 2), (28)
iy = (2, 45) = (1,0),
Jp = (w'272.2) = (O’O)
(5) Subsets H,, and H,, are given by the identities:
H., ={(1,0),(2,0),(3,0),(4,0),(1,1),(2,1),(3,1),(1,2),(2,2)}, (2.9)

H,, = {(O’O)a (17 0)7 (27 0)7 (3a 0)7 (470)}'

(6) We conclude finally that:

bgéé = Hz1 U Hz2 = {(070)7 (170)7 (270)7 (370)7 (470)7 (17 1)7 (27 1)7 (37 1)7 (17 2)7 (272)}'

Figure shows the way points in bJi2 are connected by lattice paths.

(1,2) (2,2)

o (o]
(1,1)1%1%0(3,1)

¢] [¢]
(0,0 (1,0 (2,0) (3,0) (4,0)

FIGURE 2.2. Lattice paths in poset b33 .

Figure shows other examples of lattice paths in posets of type b;‘;ljllzj’jn .

Remark 2.3. Let P, be a poset of type b "% then the derivatives % and %—g;b are

i Joji---jm
defined in such a way that

0%,
ox
0%,
dy

= Po\(n - 1,0)4},

=P\{(0,n = 1)a}-

(2.10)
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(0,1) (1,1)

o o
o—>o0 I*)o o——>o0—>o0 OHIHO
(0,0) (1,0 (0,0 (1,0 (0,0 (1,0 (2,0 (0,0) (1,0 (2,0)

01 02 01
b02 bOl b03 b013
(0,2)

—>0

(0,1) (lél> 0,10 (101)

| |

O————>0
—_—

©0) (50 (30 (00 (150 (20)  (00) (10 (30 (50
013 03 01
B B o
(2,1) (1,1) (2,1)
T T T
©0) (0 20 30 (00 (0 (20 (30
b b013
014 024
(1,2)
O

o— >
So— > 02

0) 0)  (3,0)
b014

©0) (0 @0 (30 (
boss

b’l()’Ll

FiGURE 2.3. Examples of oriented lattice paths in posets of type Sy ]

Formulas (2.10)) allow to establish the following equalities regarding the number of lattice
paths from (0,0) to each point p € M), as follows:

[ﬂ) ] = [8?6 + 89’1,]’ if i = n,
’ [%} , otherwise.
Y

b’loll i

gt these identities have the following interpretations:

In posets of type
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Lemma 2.1. Posets b;g;lllj’jn satisfy the following identities:

( [b;gzjllzﬁljn—l]’ if 1< <n—1,
[b;g;ll ijmﬂ]’ o ' ifip=n—1,
o (BB plostdn ] i =, G == 1, [ — iket] > L
[bﬁ*ﬁﬁllﬂ = S [ ] B i i =, =0 — 1, L — i = 1,
[t ] o i = 1< <=1, i — k| >
[ ;gzlllﬁnil] * [b;%ff‘]f.ﬁ:fl_l]7 ifig=mn,1<jm<n—1, |jm—ig_1| =1,
(o] + b ifir=n, j=1.

The following theorem shows a connection between sequence ({2.1) and the number of
lattice paths in posets of type b;g;lllj’jn from (0,0) to points p € M,,.

Theorem 2.1. For a given poset b;g?l’]’jn (of type b) associated to an admissible subchain
{J1y-« s Jms 01, i} it holds the identity

1001 | _
|:bj0jl~--jm:| = ar;

where for n > 1

k m—1
Z 20—l _ Z 20l if 1 <y <,
t=k—m-+2 t=1
r= k m
o2t ifi =,
t=k—m-+1 t=1
.0 if ip = 1.

Proof. By induction. For n = 2 we have two cases. If i, = 1 the associated poset is given
by bé-oi ={(0,0), (1,0)} and the only lattice path is (0,0) — (1, 0). Thus, [b;gé] =1=ap.

0

On the other hand, if 75, = 2 the associated poset is bé(ﬁ = {(0,0),(0,1),(1,0)} with two

lattice paths. Since r = 1 and a; = 1 it holds that [b;(ﬁ] = 2 = a1. Suppose now that the
case holds for n < p with 1 <74, <p.

Ifn=p-+1and iz = 1 then we have that [bj,g; +1] - [bj,g;] — a;. And if 1 < iy < p then

k m—1
[bi.oil“'i’“ } = [biloil'“i’“} = a, with r = Z 2=l _ Z 27t=1 if i, = p we have that
=1

Joji.--p+1 Joji---p
t=k—m+2
k m—1
. 20%1...p . i0%1...p o . _ it—1 Je—1
Jm—1 < p, thus |:bj0j1~--p+1i| = |:bj0j1'~~jm—li| = a, with r = E 2 E 2 .
t=k—m-+2 t=1

Now if i, = p+ 1, then the following cases hold:

Case 1. If j,, = p, |jm —kik—1] > 1 and ix_1 > 1, we have that [bi-oil'”pﬂ} = [bioil'”ik_l] +

Joji---p Joji---p
o k—1 m—1 k—1
{b;?)jllk;_pl} = a, + as where r = g git—1 _ g 21t~ and s = g gu—1 _
t=k—m-+1 t=1 t=k—m+1
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m k m k
STty r? actually, r = Y 20N ol oorland s = Y 2kl
t=1 t=k—m+1 t=1 t=k—m+1

m k m

Z 2it=1 _op=1 4 9p=2  Note that, if w = Z git=1 _ Z 27t~ then the number of
t=1 t=k—m-1 t=1

digits of w is z = p and the largest power of 2 associated to a zero in the binary expansion
of 3 is 2P=2 (see formula (2.1))), thus

i0t1...p+1|
] = e

Now, if i1 = 1 then {b;g;(pﬂ)} = {b;gﬂ + {b;g;’fl} = a, + as; where r = 0 and s =

2p—1 _ 2P=2_ Since w = 2P — 2P~! then the number of digits of w is = p and the largest
power of 2 associated to a zero in the binary expansion of y is again 2P~2, therefore,

iol(p+1)| _
] =
. . . . joi1..p+1 ioiy..p—1
Case 2. If iy = p+ 1, j; = p and |j;m — ix_1| = 1, then [b;‘;?l]:r ] = {b;g?l]; ] +
. . k . m . k .
{b;‘;jll’“;:fﬂ = a, +as where r = Z PR Z 27—l _9P=1 and s = Z PR
t=k—m+1 t=1 t=k—m+1

m
Z ofe=l _op=l 4 9P=2 4 — pand y = 272, therefore
=1

i0t1...p+1|
] = aw

Case 3. iy = p+1,1 < ju < pand [jm — ig1| > 1 then [po2-7H) — [ploii-r |4

Joji...dm Joj1---Jm
io..ig—1(p) | _ _ ii—1 ji—1 _ op—1 . _ Z i—1
|:bj0j1~-j7n—1:| = a, + a,, where r = g 2 E 2 2P74 s = 2
t=k—m+1 t=1 t=k—m-+1

m
Z 2jt—1 _ 2]7—1 + 2jm_2’ T=7p and Y= 2jm_2, thus
t=1

i0t1...p+1|
[bjojl---p } = Ow-

Case 4. If iy =p+ 1,1 < j, < p and |jm — ix—1| = 1 then [bipil”'pﬂ} = [bioil“'p } +

Joj1---Jm J0J1---Jm
o ) k m k
20...2—2(P _ _ it—l _ jt—l _ p—l _ it—l _
[bjojl...jm—l} = a, + a,, where r = E 2 E 2 2P~ s = 2
t=k—m+1 t=1 t=k—m+1

m
Z 27t~ — 2P=1 4 2Jm=2 'ip this case, = p and y = 2/m 2, therefore
t=1

i0%1...p+1 —
Joji---p we
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Jol Jol Jol
the number of digits of w = 2P — 1 is = p and w has no zeroes in its binary expansion,

that is, y = 0. Therefore, r = w — 2~ and [bzgqﬂ} =a,. O

Case 5. If i, = p+1and j; = 1, [bi.op“] - [bzﬁop} + [b’lop} — 4y +a, where r = 201 _ 1,

2.1.4 Posets of Type d '

J0J1--Jm

In this section, we define another type of posets whose lattice paths will allow to enumerate
sections in Auslander-Reiten quivers of algebras of Dynkin type A,,.

Points @ = (zr,yr), j¥ = (xs,Ys), ire = (Tr,7r) and jr. = (Ws,7%5) in posets of type

d;gzjll Z]’“ C P satisfy the following conditions:
o Ifi1 =1
r—1 r—1
Zr—(l'rayr):<_ lw,u—Zdw>,
w=0 w=0
s—1 s
]5—(w3azs):<_ lunu_zdw)a
w=0 w=0
r—1
ire = (Zr,7r) <Zdw,—n+1+u+21w>
w=0
S s—1
Jse = (Ws,77) = (Zdw,—n+1+u+le>.
w=0 w=0
o Ifj1 =1

r—1
i zdw),
w=0

‘ < >

Js = (ws, 25) ( z Olw,u Zd)
d
(£

lps = xr; yr

Zdw,—n+1—|—u+2l )
w: w=0
>

Jsx = ws; Zs

s—1
Ao, n+1+u+Zl )

w=0 w=0

where 1 <r<kand1l<s<m.

In these cases;

t—1
Z lik—1 — Jm—1l, if 1 <ix <n and t=min {k,m},
=0

t—1

n—=1=> like = jmal, if i =n.
=0
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Numbers d,, and [,, are given by the following relations:

(1) If i = 1 and

L] k;:mzlthend1:|j1—i1|andlon.
e k=m > 1thend, = |j, —i,| and ls = |isy1 —js|for Il <r < kand 1 <s<k-—1.

e 1 <k=m+1then d, = |j, —iy| and ls = |isy1 — js| for 1 < r < k — 1 and
1<s<k-—1.

Ifjizland
e k=m=1then dy =0 and I; = [j; — i1].

e k=m > 1thends = |js41—is| and l, = |jp —ip|for 1 <r <k—Tland1<s<k.

e 1 <k=m+1then ds = |jsy1 — is| and I, = |jp —ip| for 1 <r < m —1 and
1<s<m-—1.

lozoanddozo.

(2) dP% = Ay U Ay where

k m—1
A1 = U Hyr and A2 = U HZ?

r=1 s=1
with

Hy, ={(2,9) €22 |0 <y <y, 0> 0y, 5+ y < uf and

He={(@y) €2 | %<y <00 <, aty>—n+1+u}.

The following algorithm summarizes the construction of posets of type dzg?l’]’jn .
Algorithm 2.2. (1) Fiz iy =0 = jp,
(2) Define k € {m,m + 1}, n and either iy =1 or j; =1,

(3) If iy =1 and k = m or k = m + 1 then the subchain C = {i; < j1 <ia <ja <--- <
jk_1<ik<jk} 0T@={i1 <1<t <o < < Jpog < i1 <jk_1<ik},

(4) Else j1 =1 and m = k or m = k + 1 then the subchain C = {j1 < i1 < jo < iz <
ce <y < gk <idg} oor C={j1 <i1 < Jo <idp < <dpoy < ik <ip < Jit1)s

(5) If iy =1 then for l <r<kandl1 <s<k—1lorl<r<k—1landl<s<k-—1do
d, and lg,

seji=1land forl <r<k—1an <s<korl<r<k—1an <s<k-1
6) El 1 and f k dl k 1 k—1and1l k
do; ds and I,

(7) Compute u,
(8) For 1 <r<kandl<s<m doi, jk, ir, js,

(9) For1<r<kandl<s<m-—1doH,, 6 Hz,
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(10) Compute Ay, Ay and A1 U As.
As an example, we build the poset dgég by using the Algorithm
(1) io = jo = 0.

(2) k=m=2,n=05,4 =1

(3) It is constructed the admissible subchain 1 < 2 < 3 <5 with i3 =1, j;1 = 2,99 = 3
and jo = 5,

(4)
di=|j1 —i1| =1, d2 = |jo —i2| =2 and Iy = [ia — j1| = 1,

(5) 3=1iy <5 and t = min {k,m} =2
u = lig — jo| + i1 — 1| = 3,
(6) 1<r,s<2
i1 = (z1,y1) = (—lo, 3 — do) = (0,3),
iy = (v2,y2) = (—1,3 —d1) = (—1,2),
i1 = (T1,51) = (do, =1 + o) = (0, 1),
iox = (T2,72) = (d1,—1+11) = (1,0),
i = (w1, 21) = (lo,3 — d1) = (0,2),
J3 = (w2, 22) = (=l1,3 — d1 — d2) = (—1,0),
J1s = (W1, 21) = (d1, =1 +1o) = (1,-1),

Jox = (W2, 22) = (dy + d2, =1 +11) = (3,0).

Hy1 = {(070)7 (170)7 (27 0)7 (37 0)7 (Oa 1)7 (17 1)7 (27 1)? (07 2)7 (17 2)7 (073)}7
Hy2 = {(_17 0)7 (07 0)7 (1, 0)7 (270)7 (370), (—1, 1)7 (07 1)7 (17 1), (27 1)7 (_17 2)7 (07 2), (17 2)}7
HH = {(17 _1)7 (07 _1>7 (170)a (070)7 (_LO)}'

(8) A = ffy1 U Hy2, Ay = Hg, dg%g = A; U A,.

The following is the linear programming problem associated to posets of type d.

Problem 2
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Maximize (Minimize) x + y;
Subject to the constraints;

T, <z < W,

zs <y <Yy, (2.11)
—n+1<z+y—u<0.

As for posets of type b, if M @ denotes the set of minimal points in a poset of the form
d’?** "t then the main problem for this kind of posets (of type d) consists of finding the

Jogie-gm U
number [a2 "¢ | of lattice paths from points p € M 4 to points ¢ € My satisfying the
following conditions:

v <w <wio, y=y; forany 2 <i <k, ifi; =1, (2.12)
v, <x<w;, y=y foranyl <i<k, if j; = 1. '

Figure shows lattice paths linking points in d9i3.

(0,3)
o

T (3,0)
o

0,-1)  (1,-1)

FIGURE 2.4. Lattice paths in poset of type d)ss.

Figure below shows other examples of lattice paths in posets of type dgéi? and d8%§g7.
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(064)
( 163)‘> ‘;1,3) ( 10,3) (0,3)
(=2,2) T (2,2) (—=2,2)

—>0——>0
o~
OE&
-
Z
|

0135
d0247

g

o——>o%

A
S
o
£
|
w
2

0—=>0
(=1,-2)

o
(0,-3)

0246
d01357

FIGURE 2.5. Examples of oriented lattice paths in posets of type d2021

Lemma 2.2. Numbers [«

Goi1.in |
|:aj0j1~~-jm:| -

Proof. We have

G0i1..ik
jOjl ]m

0,

L,
(oo ] + oo T,

101 1
[a;(())zllzljn_l] + [ ](()) 1]mk 2.177n_1]
9 O[Z.Oll.:.lkilA B + J0J1-+-Jm—1
2%0;811]77;’;3]{”] _15 [bJ([JfOZ;mZkl] ]’

Joj1---jm—1 001Uk ’

the following cases:

Case 1. If i, = 1 then [o/“’l] =0.

Jon

Case 2. If ij, = 2 then [ zg } ’P(On 2)’ _1

JoJji--

| with jm = n satisfy the following identities:

if i =1,
if iy =2,
2 <ip<m—2ip — jmoa > 1,
if2<ip<n—2,ip — jm_1 =1,

if2<ip=n—1jm1=n—2,

if2<ip=n

Case 3. If 2 < i, <m—2, 40 — -1 >1, A= A1 UAy and B = By U By, U Bg with

Ay =

Ay =

k—1
B, = |J{(
r=1

m—1
GRERNE

dZOZl

JoJji--

(z,y) €

Joj1.-

x,y = J0J1--

|1<y<yr7$>xrax+y<u}

e doi ““ T+ 1<y <L, o<W, v +y>—n+2+ul,

dzozl lk |0<y<yr7$>{[‘r,x+y<u}

— 1, jm—1 <n—2.
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By={(w,y) edp |0<y<ypx>w,+1 2+y<u}and

m
B3 = U{(a;,y d;g;ll Zj‘“ | Zs+1<y<0,z<wW;, v +y>-n+2+u},
s=1

1
then the maps g : d;gzjll Z]’“m _, — Aand g9 d;‘;zjll Zj’“ ~, — B such that:

gi(z,y) = (x,y+ 1),
a2(e,y) = (2.1), (2.13)

are isomorphisms.

IfC ={(z,y) € b;gljll l]km |z+y = —n—+1+u} then the union CUA is a poset with relations

of type (z,y) < (z,y + 1) for (z,y) € C and (x,y + 1) € A. Since ‘P(e’g)_ )’ = ‘ny)‘

where all of paths P(( 5 )) contain at least one point satisfying conditions (2.12) and points

(z,y), (e, f) are chosen in such a way that, z +y— 1= —n+1+wu and e + f = u then
ol <)

Yjojr . gm—1
Now, we define the poset CUB with relations of the form (z,y) < (z+1,y) with (z,y) € C
and (z 4 1,y) € B. Since ’P( ef) ‘ = ’P(ef ’ then [CUB} [ ;‘;311 Zj’“m_ll] Thus,

1021 ...1 2021 ..-1 10%1... 1 —1
[a]gjll Jk } - [CUA} T [CUB] = [ - 1] + |:aJ(D)J11 e 1}

Case 4. If 2 < iy <n—2, i — jm—1 = 1, (A, C described as before) and D = BiUC}
where

Cr=J{(z,y) edd |5 +1<y<0,2<w;, a+y> —n+2+u},

then the maps g3 : d;g;ll ZJ’“ 4, — Aand g4 : d;(;lljri':;m_l — D defined as g1 and g,
respectively are isomorphisms, sets CUA and CUD are posets with the same relations as in

Case 3 for points (z,y) € CUA. Whereas, relations between points (z,y) € CUD are of the

form (z,y) < (z+1,y) for (z,y) € C and (z+1,y) € D. Thus [CUA} = [0432311 Z]’“ 71} and

{CUD} = [a;gzljnik_;szl} Therefore, [a;g?l;’jn } = [C’UA] + {CUD} = [a;g?l;’jﬂ ,1} +

108111
[ajomjm—zjm*l] :
Case 5. If 2 < i =n—1, i;_1 =n — 2, D is described as before and

E={(z,y) € dV " |y >y, o < 3},

then maps g4 and

JO]I ]'m 1
gs : bzoll Ak E

e (-t 1)
t=1
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where for each edge ((z,vy), (w, 2)), it holds that

k
t=1

are isomorphisms.

Now, the set C'U D is a poset with lattice paths induced by d”"* and ’P(e ) ‘ +

Joji---jm
‘P(; f) 1.9) ‘ = 2’P(e | where paths P(( et )) satisfy conditions as described in Case 3. There-

1081 lk 1
fore [CUD} = [ Yo...m—2jm—1"

The set {(—n+1+u,0)} U E is a poset whose lattice paths are induced by d;g;ll ZJ’“ and

(e.f _ | ples _ -
BT o] = [P | then [{-n+ 14w 00} U E] = [12d-2m4] Thus,

[am” ¥ } = [CUD} + [{(—n—i— 14 u,0)} UE} = 2{&0“':'“** } + [b]‘”l Jme 1]

J0J1---Jm J0---Jm—2Jm—1 10181 .1k

Case 6. If 2 <ip=n—1,ip1 <n—2,B,E,C, g2, g5 and {(—n + 1 + u, O)}UEare
described as before then the set C'U B is a poset with lattice paths induced by d:°%!~'*

g1
Then [C U B} = [aégzilfm jl} Thus,

{a?oi.l---i!c ] = [C’UD} + [{(—n—l— 1+u,0)} UE] = z{a?oi.l---i!«—l } [bml Jm— 1]

JoJi---Jm Jjoji---jm—1 10011k

O

If r =0 and r = 1 are associated to numbers [a;gﬂ and { ]ﬁn} respectively. Then
108711

G041 Gm ] and elements in the

the following result shows a relationship between numbers [a
integer sequence C7 (see formula (2.4))).

Theorem 2.2. Let d° " pe g poset of type d with 2 < ix, < n and jm = n then

JoJ1---Jm
10%1... 1k _ Vim
[aﬂﬂlmjm} _'CL ’
k m—1
where r = E Qi1 _ g oit=1,
t=k—m+2 t=1

Proof. (Induction). If n =4 and 2 < 4} < 4 then j,,—1 = 1, and [a%i} = 2[ ;(ﬁg} +
W] = 208 +ag = O with r = 2 — 1 1 oy = 2 [aloh] = 2[a] + [00%] =

103

2C8 + a1 = Cy with r = 22 — 2.

Suppose that the hypothesis holds for n < p with 2 < i, < p. Then if n = p + 1 the
following cases have place:
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Case 1. If 2 < iy < p—1and |ix — jm-1| > 1 we have that [aioil”'i’“ ] = [aioil'”ik} +

Joj1---Jm Joj1---p
k m—1 k—1
[a;gzll'.'.‘;f*l] = CP + C? where w = g i1 _ g 27t=1 and s = E git—1 _
t=k—m-+2 t=1 t=k—m-+2
m—1

Z 27t~ 4 9% =2 Gince, it is easy to see that the number of digits in the binary expansion
t=1
of w=s542%"2 <2772 is x = 4, — 1 then we conclude that,

1001 .1k _ rp+1
[O‘jojl...jm} =Gy

Case 2. If 2 < i, < p—1and |if — jm—1| = 1 then we have that [o/oil”'ik ] = [aioil"'i’“] +

J0J1---Jm Joj1.--p
o k m—1 k—1
01 ... — . . 1y — P P
[ajg”l.jm’;;} = CE+4C?, in this case, w = E oit—1_ g 27t~ and s = g oit—l_
t=k—m+2 t=1 t=k—m+2
m—2

Z 27t~ 4 9%=2 then s = w — 2%*~2 and the number of digits in the binary expansion of
t=1
w is x = i — 1, thus,

1001 .1k _ rp+1
[O‘jojl‘..jm} =G

Case 3. If 2 < i = p and 4p,—1 = p — 1, it follows that [O/Oil”'i’“ } = Z[Qioil"'ik*} +

JoJ1---Jm Jo---jm—2p
L k—1 m—1
[b{ggf.':'ﬁ_l} = 2C% +as, in this case, if k = m then w = Z git—1_ Z 2Jt=1 — p_op=2
t=k—m+2 t=1
k m—1
and s = 271 — (r 4+ 1) with r = 22“_1 — Z 29t=1 On the other hand, if k = m + 1
t=1 t=1
k m—1
then w =7 —2P~2 and s = 2P~ — (r + 1) with r = Z 2=l Z 29t=1 therefore,
t=1 t=1
1001 ..-1k _ o+l
|:aj0j1~--jm:| =CP.

Case 4. If 2 < i = p and i;,—1 < p — 1, it holds that [aioil“'if“ } = 2[ai°i1'”i’“_1] +

jOjl-n]w1 jOjl-np
o ) k-1 m—1
[bgggll_""';m*l} = 2CP + a5 where w = Z oi—l _ Z 2dt=1 4 op=2 — . 9P=2 and
t=k—m+2 t=1
m—1 k—1 k m—1
s= 2t ortloopl(pp 1), withr = ) 2471 =" 2% In this
t=k—m+1 t=1 t=k—m+2 t=1
o )
case, we also have that [a;g?llj’jn ] =t O

2.1.5 Posets of Type hj?)jll......ﬁn

We let h7%719m denote a poset which can be defined by following the steps:

Zoil‘“ik
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1. Follow steps 1-5 of Algorithm

2. Define
m
G = U{{(:L‘,y)EZ2 ‘ aSySZS)xZMS}U{(x7y)EZ2 | Y= zs, wsSbe}}a
s=1
where
0 {zs+1, if s <m, b {w5_1, if s > 1,
0, if s =m, 1, if s =1.

3. plodr-dm — {(z,y) €Z?® |z =w—i, y=2+i, (w,2) € G} for 0 < i < max {ik, jim}.

10810k

) . . 301 gm .
The following are examples of lattice paths in posets of type hlgllllk :

(=2,4)
o
(—1,3) T (—1,3)
O—=>0—>0 oO—=>=0—>0
(—3,3) (=3,3)
(-1,2) T T (0,2) T T (0,2)
o—>o0 o—>o0—>o0 o—>=o0—>0
(=2,2) T (=2,2) T T (=2,2) T T
04;061) o—>c>—>(1é1> o—>o—>(151>
(=1,1) T (=1,1) T T (=1,1) T T
oO—>0 O—>0—>0 oO—>0
(0,00 (1,0 (0,0 (2,0) (0,0)  (1,0)
01 01 02

FIGURE 2.6. Examples of oriented lattice paths of posets of type hJ%/! /™.

Now, we intend to enumerate the number of lattice paths ‘P((j’g ))‘ connecting points (z,y)

and (e, f) with y = —z and e + f = max {ig,jm}, (z,v), (e, f) € h{gljlll];”, and conclude
that - )
Jogiegm | _ e,
[h’igill--.ik } - Z ‘P(:v,y) )
Numbers bg, and by, are defined as follows for cases i; =1, 51 = 1:

e If j; =1 then

i‘o.:.itfl(
(o129, for t =0,

il

e, — {[bjo...Jtijt+pl)]7 for 1 <t <k, 1<p <|Ry,

_ { VY s Tor LS Sm 1< py < Ll y p2 # | Ll

171...
o dun for py = |Lum| and 7 = m,

with |Ry| = |it — ji|, |Ro| = 1, |Ly| = |jr —ir—1] and |L1] = 1 for 1 < ¢ < k and
1<r<m.

L] If21:1
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_ [3J0---Jt—1Jm
br, = [big...i:_ll(jt_l—s—pl)} para 1 <t <k, 1<p; <|Ry,
[b}g'iﬁ1§:1";(ir+p2)], for 1 <r <m, 1< p; <|Lp| and py # |Lp|,
br, = [b;g]i;’:n], for po = |Ly| and r = m,
[bfg{m], for r =0,
with |R¢| = |iz — je—1], |[R1| = 1, |Ly| = |jr —ir| and |Lo| = 1 for 1 < ¢ < k and

1<r<m.

Theorem 2.3.

i ] = >+ Y b

t,p1 ™P1,P2

Proof. Let hfgfll f):“ be a poset with j,, = n and m > k, and sets b, defined in such a
way that:

by ={(z,y) € WL | 2> 2 —u, y > ym +u, s +y <n—1},
with 0 < w < n. If j; = 1, it is possible to build the sets R, = {y € Z|z < y < w},
Ry={n}, Lr={z € Z|z, <z <w,_1}and L1 = {1} for 1<t <kyl<r<m
where ‘Rt| = |Zt —yt| = |Zt —jt|, |R0| = 1, |Lr| = |IL‘7~ —’LUT,1| = |]r —Z'r,1| and |L1’ =1.1If
k—t krl—t

Z |Rit1-al <u< Z |Rk+1-al (|Rk+1] = 0), then there exists an isomorphism
a=0 a=0

. 0---JtJm
f’u . bgo...it_l(jt+p1)—) bu
(@y) T (y—wrtu)

with

fu((x, Y), (2, w)) = (((y —u,x+u), (w—u,z+ u))) for any edge ((z,y), (z,w)). (2.15)

k+1
For 1 < p; < |Ry|, where u = Z | Ri+1-a then there exists an isomorphism f, : b]){™ —
a=0

kF1 kt+1
b, defined as in (2.15)). Similarly, if Z |Ri+1—al + Z |Lo| <u < Z |Rk+1—al + Z |Lq|

(|Lo| = 0) or u = |Ly,|, it is possible to define an 1somorphlsm deﬁned as in w1th

. Z'O~--7;'r‘—1j7n
Ju * bjo...jrfl(’ir71+p2) by, for1<py < ’LT"

The same can be done for a homomorphism

bzoll K

gn bR = by, i =m and [Ly,| = p2
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Thus,

o] =S b+ Y b (2.16)

t,p1 ™P1,P2

If 49 = 1 then we can construct sets Ry = {y € Z|z; <y < y—1}, R ={z1}, L, = {z €
Zlz, <z <wy}and Lo ={w;} for 1 <t <k and 1 <r <m, where |R;| = |z — y1—1| =
it — je—1ls |R1|1, |Ly| = |2r — wr| = |jr — ir| and |Lo| = 1.

We conclude that the theorem holds provided that isomorphisms of the following types:

. 7.J0--Jt—1Jm
Ju bio dem1(je—14p1) bu,
. b]O.jm SN b ,
o DT (2.17)
hu - b]o dre1(irp2) — bu,
. 3i0ly..2
tn - b]?ui ]I:n — bn
can be defined respectively according to the following cases for u, p; and ps:
k—t k1t
> Rigi-al Su< Y [Rigi—aland 1 <py <Ry, (2.18)
a=0 a=0
EF1 k+1
> |Rit1-al + Lol <u <D [Riaal + Lol + | Lal, (2.19)
a=0 a=0
ET1 r—1 k+1
D [Rigi-al D |Lal Su <D | Rpsa- a|+Z|Lay |and 1 < po < |Ly|, p2 # | Liml,
a=0 a=0 a=0 a=0
(2.20)
r=mand p2 = | L. (2.21)

We are done. 0O

Remark 2.4. On sets {bg,} (resp. {br,,}) it is defined a partial order such that br, < bg,
(resp. br, < br.) if and only if iy, < i, (resp. ix, < ir,) with < the relation induced by
the usual order of natural numbers, thus elements in the set {{bg,},{br,,}} can be written

as a vector
JoJ1---Jm _
hzozl i (Uo, ce ,’l)n)7

where if br, < br, then v, = by, and vy41 = br, for 0 < u < |{br,}| — 1, and if by, < by,
then v, = by, and vy,41 = by, for [{br,}| <r < |{br,}| + [{bL,. }|-

As an example, we have the following identities:
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= (D D ),

= (], D8] D, DY),

= (0] ], [, D)),

= (b, DA D51, DAL, D)
= (O ] R, DR, ),
(0 NN )

M = (R, BT, ], o], D,

HE = (). DA D D, 8], D)
i = (] ] ok, D), D), ),
C NN NG N N )
5 = (A1, [RY, [], [08E, DR, DAL,
AT = (. ), ) ), 0. L))
HEE = (D), DA, . . . DAL,
W = (o] ) ). o). DAY, AR,
WP = (PRY], DR, R, 681, o), DA

2.2 Sections in the Auslander-Reiten Quiver of Algebras of
Dynkin Type

In this section we use quivers of type b,d and h in order to enumerate the number of
sections in the Auslander-Reiten quiver of algebras of type A, and D,,. We present the
same description for the case of Eg, E7 and Eg.

2.2.1 Sections in the Auslander-Reiten Quivers of Algebras of Type A,

Let A = kA, be a path algebra induced by an oriented Dynkin diagram of type A,
with k sinks and m sources, I'(mod A) be the corresponding Auslander-Reiten quiver

and S ()07 the number of sections in I'(mod A) of these kind of algebras, where
"/jod1---dm
1¢ represents the location of a sink for 1 < t < k and js represents the location of a

source for 1 < s < m, points i; and js follow conditions defined in steps 1-3 of Algorithm
If we have an algebra B with only one point then the number of sections in the
Auslander-Reiten quiver will be denoted S, y1 . For vertices in Dynkin diagrams of type

A, we assume the numbering described in Fiéure (Section .

—_
If A is an algebra as described above then I'(mod A) is isomorphic to the quiver d;g;ll Z]’jn
obtained from d?“'% by orienting each edge ((z,y), (z',y)) as (z,y) — («/,3'). Such

an isomorphism jgglln {)e defined by associating to each T—orbit of a given vertex x; € ['g
points (z,y) € d;gzjll zj’“ such that z +y =u+1—1t for 1 <t < n. If A is an algebra of
type A,, with sinks located at points {i; ...,i;} and sources located at points {ji,...,Jm}
and B is an algebra of type A,, with sinks at {ji,...,jm} and sources at {iy,..., i} then

there exists an isomorphism:
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1071 -0k SN JOJ1---Jm
e di i1 ik

(l’,y) — (_‘T7 _y)

where ¢((z,y), (z,w)) = ((—=z, —y), (—2, —w)). Henceforth, a quiver of the form a7/ /"
is said to be the conjugate quiver of d;g?l;’jn , and
S yioi-in = D IBHl,
JoJ1---Im P.q

where p = (a,b),q = (¢,d) € d;gzjll’]’in

Note that,

S(A )ioilmik = S(A )_?'0_.7'1“"]'7”.
n)j0d1---dm n)igiy..ig

The arguments described above allow us to give the following result regarding the number
of sections in algebras of Dynkin type A,, with i < n.

Theorem 2.4. Let A be an algebra of type A, with sinks and sources located at points of
the sets {i1,...,ix < n} and {ji,...,Jm}, respectively. Then

25 Qi1 .-, + [aioil"'ik ], if iy <n—1,

S iQiy.iy  — (Anfl)jojl_,_(jm>,1 'J'Ojl-'..]m
A, )01 S 10%1...0% L
( n)]0.71<.4jm QS(An_l)’_OZ_l..A% + [ajojl...jm]a lf iy =m— 1
JoJ1--Im—1

Proof. Suppose that the algebra A satisfies hypothesis of the theorem then since
—_

I'(mod A) is isomorphic to the quiver d;gljlllj"m , we choose the subquiver B whose ver-

tices By can be written in the form By = B U By where

k
Bi=|J{w,y) edi |0<y<y,—1, 2>z, x+y<u-—1}
r=1

m—1
By= | J{(x,y) €dli" |z <y<0,2<wW;,x+y>—n+u}
s=1

If lyp — 1 —2zm| > 1 (ip <n—1) then i} = (z,y — 1) = j. = (z,y — 1) and j/,, = j7, for
AL AN

 igin..ip itk
1 <t<kandl1<s<m, therefore By = djojl...jm—I’ and B = djojl...jm—l‘

If |y —1 —2n| =1 (ix, = n—1) it holds that 4} = (z,y —1) = j, and i} = j;, for 1 <t <k
-

_ ioiy..ig _ ioit...iy
and 1 < s <m, thus as before By =d;)// "+ and B=d; "+ ;.

IfC={(x,y) € d;g;llzj’jn |x+y = u} and it is defined the quiver C'U B with arrows induced
_

by d0" then since ‘Pg%” = 2 we have

J0J1--Jm
[cuB)= IR =2 3 1P =2[)

a,b,x,y a,b,c,d
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wherea+b=u—nandc+d=u—1.

Since ) ‘ (a b) ‘ contains at least one point of (CUB) fora+b=u—n+1, h+p=u
7b7h7p

and (a,b),(h,p) € a ;((’)311 ’jk then S(An)i_oi_l...i_k

- 2[3} n [0/0“ i } 0
30d1---dm Joju---Jm

Remark 2.5. Numbers S igiy...p with ix <n are shown in Table|A.2 (see Appendiz),

(A”)Jon Jm
where rows represents values j, =n and columns are given by the identities:

k m—1
d o2t N ifi > 1,
(A P = (2.22)
0, if ip = 1.

For instance, if A is an algebra of type A; with sinks and sources at points of the sets
{1,4,7} and {3,5} respectively then it holds that S(ar)tar = S(ap)03

0147
r=2t4922_-923_1=11,

and

S(angum = Sanus, = 25 ms. + Q3. = 2(64) + 17 = 145.

035

We recall that sections in algebras of type A, with sinks and sources at sets {1,3} and
{2,n}, respectively categorifies the sequence A176448 = {5,12,26,54,110,...} in the OFIS
[88].

The following corollaries dealing with oriented Dynkin diagram of type A,, with only sink
were reported by the author, Canadas and Giraldo in [32]. Henceforth, we assume the
notation Sy, )m for Siy, yom

m—2
—2
Corollary 2.1. Sis,m = 2 (S, n) + <” , ) forn >3, 1<m < n with
- - 1
=0
Saayt = Sanyn =277
Corollary 2.2.

Stanym = Sia,_yym=1 +Sa,_)m T 5@, o)t (2.23)

formn>3,1<m<n.

Proof. We proceed by induction on n taking into account that S( AL = S = on—l,
If n =3 and m = 2 we have that

S(A5)% — Q(S(AQ)E) —|— 1 = S(Az)% + S(A2)£ + S(Al)l,

Suppose that the assertion is true for 3 < k <mn and 2 <m <n — 1. Thus
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[\

m—

k—1
S(Ak)'_” = 2(S(Ak)T) + Z < i >
=0
m—2 m—3
k—2 k—2
= 2(S(Ak)7j‘) + < ; ) + ( ; )
=0 =0

Therefore

-2\ k-2
S(Ak+1)T = Q(S(Ak_l)l”_l +S(Ak—1)T +2k_3) Z < i ) + Z < i >

_|_
=0 =0
=Sum-t TSmyr + S,y U

Identity (2.23)) allows to give a partition-formula for numbers in the sequence A049611 or
A084851 [87].

Corollary 2.3. ¢, = Z S = 2" 4 (n? +5n +2), n > 4.
h=1

Proof. Rows in the next table show the number of sections in the Auslander-Reiten quiver
of an algebra A associated to a Dynkin graph of type A, with an unique sink allocated at
the hth position (from the left to the right), 1 <h <nand 1 <n <7.

1
2 2
4 5) 4
8 11 11 8
16 23 26 23 16
32 47 o7 o7 47 32

64 95 120 130 120 95 64

For instance, according to the Corollary [2.2] we see that,

95 = 16 + 32 + 47,
120 = 16 + 47 + 57, (2.24)
130 = 57 4 57 + 16,

and

688 = 2(64) + 2(95) + 2(120) + 130

— 2(2) 4 2(25) + 9(2%) + 16(2%) + 28(22) + 48(2") + 16(1). (2.25)

Actually, it is easy to see that in the case n = k > 4, it holds that

k o n+2
Shor Sagn = 2029 + 270 S ((k+2) — (k= )29.2770 = 2(26) 4270+ ik,
j= =
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Thus

Shor Sy =[RS _ qa)oh=3 4 ok 1 oh— — [ERHS) _q)9k=3 4 3(9k—1) =

2k=4[k? + 5k — 22 + 24] = 2¥=4[k? + 5k + 2]. Since k > 4 is arbitrary we are done.

Corollary 2.4. 5, )2 = 3(2n72) — 1.

Proof. S(Ad)% =5=242+1 and S(A4)3 = S(Ag)% + (22) + (21) =54+ (22) +

(22) + (29) + (22) + (21 = (2%) + (21) + (2%). Thus for any k > 3 it holds that

S(Ak)% = S(Ak—l)% + (2k71) + (2k72)‘

Therefore
k=3
Sz =225 4202 ) 422" F) 4+ 220 +32) = (@) + )Y
j=0
=of=l pok=2 1 =302 1. O
Corollaries [2.2] and [2.4) allow us to establish the following result.
h
L3 ]
Corollary 2.5. 5, y» = (h+ 1)2F2 — Zj(:j;j).
i =
Proof. (Induction on h) Firstly, we recall the following identities:
k—1
h 2172 = p(2F2) — h2h 2,
j=h+1
k—3
2 — (2k—2) 2h—27
j=h—2
k—1
Z <]+1> _ (k—l-l) _ <h+1>
Pt AN 1+ 1 1+ 1
Corollaries and induce the following identity where S( Ay )it = 2h.

Wit = ZS(Akh+ ZQJ—I—S D

j=h+1 j=h—2

O

(2') =

(2.26)

(2.28)

(2.29)

Now if we assume that the theorem is true for any fixed k, £ > 1 and 1 < s < h then the
theorem holds for s = h+1 if identities (2.28)) are applied to the summands in (2.29). O

Remark 2.6. We note that

1. Formn > 2, the sequence ap, = Sy )2 appears in the OEIS as A083329 [85)].
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2. Forn > 3, the sequence b, = S,y appears in the OELS as A000295 [36).

2.2.2 Sections in the Auslander-Reiten Quiver of Algebras of Type D,

Let A be an algebra with underlying diagram of type D,,, with k sinks and m sources. We
assume the numbering for Dynkin diagrams of type D, described in Figure (section

L).

Let B be an algebra of type D,, (n > 4) whose sinks and sources are located at points
of the sets {j1,...,Jm} and {i1,...,ix} respectively. Then, if there exists an irreducible
morphism in I'(mod A) of the form 7,° — 7,7" then there exists an irreducible morphism
in I'(mod B) of the form 7,"° — 7, for some s,r € Z, B denotes the conjugate quiver
of A and the following identity has place:

S(D )i0i1~“ik — S(D )j0j1~~j7n’
n)jod1---dm nigig ..

_

hzgfllfrw with 7 < k and w < n is a subquiver of I'(mod A), where each T—orbit of a point

xy € T'g has associated points (x,y) € h;gl]llsz withz+y=n—-1—tforl <t<n-2.
According to these arguments it suffices to consider the subquiver A’, o with vertices
1...n — 2 a sink at the vertex n — 2. Thus, we can enumerate sections in I'(A) via the

following three cases described in Theorem

Theorem 2.5. Let A be an algebra of type D, with sink and sources located at the sets
{i1,... ik} and {j1,...,jm}. If the subquiver A',,_o has a sink at the vertex n — 2 then:

( n—3
4 Z Vs + Up_9, if n,n — 1 are sources,
s=0
n—3
S, iy =1 4 Z Vs + 2(vp—2 +vo), ifnis a source and n-1is a sink, (viceversa),

(D")jojl-“jm =

n—2
4 g Vs + Vo, if n,n — 1 are sinks,
s=1

\
where v, € h;gzjllzj”w with r <k and w < n (see Theorem and Remark .

Proof. If the algebra A satisfies the hypothesis and the subquiver A’,,_5 has a sink at the

—_

vertex n—2. Then, we can take a subquiver B of I'(mod A) which is isomorphic to h;‘;zll’fw

with r < k and w < m, we note that each orbit 7, °, € I'(mod A) has associated the point

1001l o (a,b)
(—n—2+4s,n—2—s) € R0 with0<s<n-—2 thus ) ’P(_n_2+s’n_2_s)
for a +b=mn — 3. Now, we have three cases:

= Un—2—s

e If n and n — 1 are sources for each 7,°% with 1 < s < n — 2 then there exist

. . . —(s—1 — —(s—1 — — —
the irreducible morphisms Tn_(l ) 7,59, Tn( ) T 29, Thig — T, 1, and
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$ and for 7¥_, there exist two irreducible morphisms of 79 , — 79,

(a,b)
P(fnf2+s,n727s)

the irreducible morphisms of the vertices n and n —1if 1 < s <n —2 and by 1 if

_s _
Th—2 Tn

and 70_, — 70, then each ‘ is multiplied by the 4 combinations of

s = 0, thus
n—3
S(ID) )i‘oitl.”i'k. =4 E Vg + Vp—2.
"/jod1---dm 5—0

e If n is a source and n — 1 is a sink (or viceversa), for each 7, °, with 1 <s <n —3
—(s—1)

then we can associate irreducible morphisms 7,,°, — 7,°%, 7, — 7, °

n—2 n—=2°

T, 9 — Tn__(i—’—l) and 7,°% — 7,° Whereas, associated to the translation

79, there are associated irreducible morphisms 70 ; — 79 . 79 , — 79 and

0, — Tn__ll. Finally, translation Tn__(g_z) has associated irreducible morphisms
—(n—3) —(n—2) _—(n—-2) —(n—2) —(n—2) —(n—1)

Tn, — To_9 y Tpoy | = T and 7, — 7,1  ,then each num-

ber |P(%Y) can be multiplied by the 4 combinations induced by the irre-

(—n—24s,n—2—3s)
ducible morphisms of vertices n and n—1if 1 < s < n—3 and for the 2 combinations
of the irreducible morphisms of vertices n and n — 1 if s =0 or s = n — 2, thus

n—3
S igir.iy, =4 Z Vs + 2(1),172 + Uo).

(D”)jojl'-‘jm —1

e If n and n — 1 are sinks, for each 7'n__82 with 0 < s < n — 3 then there are associated

: : : —s —s —s —s —s —(s+1) —s

irreducible morphisms 7, %, — 7, %, 7,% — 7, %, 7,59 — T,,_} and 7, % —
—(s+1 —(n—2 . . . . —(n—2

Tn (s+ ), as well as for Tn_(Q ) there are associated irreducible morphisms 7, (n=2) _,

77:_(3_2) and 7'7:_(711_2) — T;_(Z_m then each number ‘P(((—l;l;)—zﬁ n—2—s)
for the 4 combinations of the irreducible morphisms of the vertices n and n — 1 if

0<s<n-—3and byl if s =n — 2, thus

is multiplied

n—2

S(Dn)ioilmik =4 Z Vg + V.

3017
071 Jm s=1

O

For example, let Q1 be a quiver of type ID,, whose sinks and sources are located at points
of the sets {1,4,6,7} and {3,5} respectively, since the vertex 5 is not a sink, we take the
conjugate quiver of J1, Formula and Table (see Appendix) establishes that r = 4
and

S(]D)7)8§‘§67 = 284.

In the same way, the author, Canadas and Giraldo showed the next recurrence formula
for algebras of Dynkin type D, and D, with just only one sink (by notation Sy, ym =

S(Dn)8%71n> ’32] ’

Corollary 2.6. Sp,m = S(Dn—l)’,_n71 +Sm,_ym +3 (2”*3) forn>51<m<n—2 with
Syt = 2773 (2n — 1) and Sp,yn-2 = 202 (n+1) — 3.
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Corollary allows to build the following triangular table where the rows give the number
of sections in the Auslander-Reiten quiver of an algebra A associated to a Dynkin graph
D,, with a unique sink allocated at the hth position, 1 < h <n — 2:

14 17
36 43 45
88 103 112 109
208 239 263 269 253
480 543 598 628 618 273

1088 1215 133 1418 1438 1383 1277

Remark 2.7. Sequence ¢, = Sip, 1 for n > 4 appears in the OELS as A052951 [89).

2.2.3 Sections in the Auslander-Reiten Quiver of Algebras of Type Eg,
]E7 and Eg

In order to give the number of sections in the Auslander-Reiten quiver of algebras of
Dynkin type Eg,E7 and Eg. Let A be a path algebra induced by an oriented Dynkin
diagram of type E; (I = 6,7,8) with k sinks and m sources. Let I'(mod A) be the

Auslander-Reiten quiver of A and S ()01 is the number of section in I'(mod A). We
Jod1---dm

assume the numbering described in Figure (Section .

Let A}, be the subgraph of the vertices {1,...,l — 1} of E; and suppose that i < i — 1,
we define the vectors Sg,1 = (vo,...,vy-3_;), and Sg,| = (wo, ..., wy-3_;) in the same
way:

Sk = (124,134,136,132, 146, 150, 146, 134),

Sky = (124,139, 146,147,136, 145, 146, 139),

Sk, = (408, 430,436,434, 460, 472, 468, 450, 454, 470, 470,
456,478, 478, 466, 438),

Sk, = (412,443, 458,465, 448, 468, 472, 462, 452, 473, 478,
477,452,461, 458, 439),

S = (1520, 1566, 1580, 1584, 1632, 1662, 1660, 1636, 1628,
1664, 1668, 1650, 1692, 1698, 1680, 1632, 1614, 1654,
1662, 1650, 1698, 1712, 1698, 1694, 1676, 1698, 1692,
1656, 1690, 1678, 1650, 1590),

Sgy| = (1532,1595, 1626, 1647, 1620, 1663, 1674, 1663, 1624
1676, 1696, 1694, 1652, 1673, 1670, 1637, 1616, 1673,
1698, 1703, 1664, 1694, 1696, 1748, 1653, 1693, 1702,
1681, 1632, 1637, 1626, 1583),

(2.30)
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therefore

S, iy

~Jop,if 1 s sink, (2.31)
(El)jlmjm ’

wy, if [ is source,

with 7 given by formulas [2.22]

For example, if we take an algebra A = k@ associated to Figure then S(]Eg)
S(E@-)%gg = v5 = 150.

135 —
246

@)
0 O
wO<—~0Oo
&~ O
o O

FIGURE 2.7. Quiver of type Eg.



CHAPTER 3

Dyck Paths Categories And Its Relationships
With Cluster Algebras

In this chapter, we introduce Dyck paths categories as a combinatorial model of the
category of representations of Dynkin quivers of type A,,. These categories help us to find
an alternative formula of cluster variables of cluster algebras based on Dyck paths. In
Section (3.1} we define Dyck paths categories and some of its main categorical properties
are given in Section In section relationships between objects of the categories of
Dyck paths, perfect matchings, and cluster algebras are given.

3.1 Dyck Paths Category

In this section, we introduce the category of Dyck paths of length 2n.

3.1.1 Elementary Shifts

Let ®9, be the set of all Dyck paths of length 2n and let UWD = Uw; ... w,_1D be a
Dyck path in D9, with w; € A={UD,DU,UU,DD} for 1 <i<n-—1.

The support of UW D (denoted by Supp UWD C {1,2,...,n — 1} = n-1) is a set of
indices such that

SuppUWD ={¢gen-1|w,=UD or wy=UU,1<qg<n-—1}

A map f: A — A such that for any w € A, it holds that f(w) = f(ab) = w™! = ba,
a,b € {U, D} is said to be a shift.

For i fixed, 1 < i <n —1, a unitary shift is a map f; : D9, —> Do, such that

filUwy ... wi—jwjwitq ... wp—1D) = Uwy ... wi—1 f(w;)wis1 ... wp—1D.

99
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We will denote a unitary shift by a vector of maps from s, to itself of the form
(L1,...,Li—1, fiy Liv1,. .., 1—1), where 1y is the identity map associated to the i-th
coordinate.

An elementary shift is a unitary shift or composition of different unitary shifts. A shift
path of length m UWD — UW1D — -+ — UW,,D — UV D from UWD to UV D
is a composition of elementary shifts. The set of all Dyck paths in a shift path between
UWD and UV D will be denoted by J. For notation, we introduce the identity shift as
the elementary shift (11,...,1,-1).

Irreversibility condition. Consider a relation R C 9, X ®q, consisting of a set of
pairs of Dyck paths of the form (UW D,UV D), where UV D is obtained from UW D by
applying an elementary shift. Then, R is said to be an irreversible relation, if for any
(UWD,UV D) € R, it holds that (UVD,UWD) ¢ R.

Henceforth, if (UWD,UV D) € R then we will write UV D = R(UW D).

Shift Relation. Suppose that UW D, UW'D,UW"D,UV D € ®s,. And that there are
elementary shifts I : UWD — UW'D, F' : UWD — UW"D, G : UW'D — UVD,
G' : UW"D — UV D in an irreversible relation R. Then if the compositions G o F' and
G’ o F' are shift paths (of length 2) transforming the Dyck path UW D into the Dyck path
UV D (see the diagram below),

/FY UW'D \G\
UWD UVD,
T~ —

UW"D

with W' # W". Then G o F is said to be related with G’ o F’ (denoted G o F ~r G’ o F)
whenever G/ = F and G = F".

Category of Dyck paths of length 2n. As for the case of diagonals |17], we can also
define a k-linear additive category (D2, R) based on Dyck paths, in this case, objects are
k-linear combinations of Dyck paths in ®9, with space of morphisms from a Dyck path
UWD to a Dyck path UV D over an irreversible relation R being the set

Hom g, g (UWD,UVD) = ({g | gis a shift path over R})/(~rg).
The vector space Hom(g,, p)(UWD,UV D) # 0 if and only if there are shift paths from
UWD to UVD and
m Supp UW'D + &, (3.1)
i€J

for each shift path, with UW D and UV D in D,.
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Figure shows the elementary shifts over (D¢, R) associated to an irreversible relation
R defined over the set of all Dyck paths of length 6. And such that,

UWD if =UD
rwwp) = IUWD) T =D, (3.2)
fo(UWD), if we = DU.
X
o i T
, — k,/:// 7:/
7z ’ <; [l ’

FIGURE 3.1. Elementary shifts in (Dg, R). Notice that, there is no elementary shift transforming
the Dyck path X into the others in the diagram.

3.1.2 Relations of Type R;llzl;

Fix an admissible subchain € = {j1,...,Jm,1,-..,ik} C n-1 (see algorithm item (3)),
and a Dyck path UWD € Do,

Let o : {i1,71} — {0,1} be a map such that o(i1) = 1 and o(j1) = 0. For a € {i1, 51},
wWe assume iy, i, 4g(q) € {41, -, %} and Jry1_g(a); Jr € {J15- -+, Jm}. The following indices
are defined by using intervals [i;, j, 41— (a)](r€SP. [jr,ir40(a)]); Where for a fixed admissible
chain €, an interval I = [x,y] is a subset of n-1, for which min I = z € € and max I =
y € C.

ot = IIlll’l{ s | ip <5 < jTJrlfcr(a)va = UD} (t = maX{ S ’ Jr <8< ir+a(a)7ws =
UD }),

e p=min{ s |t <5< jry1_g(a),ws = DU } (p:max{ s|js <s<tws=DU}).
We introduce the following elementary shifts:

ES1. If wys =UD for all s € [ir,j,qu,g(a)] ( S € I:jr,ir+o-(a):|)7
[j'r—o’(a)v ir] [im jr—l—l—a(a)] [jr+1—a(a)7 iT+l]a

(resp. [iT+U(a)—1’jT][jT’i’f’-‘y—O’(a)Hi'f—&-o‘(a)vaJrl])’
then
g(UWD) = fjr«rlfo'(a) ©--+0 fZT(UW‘D)7

if there exists s € Z* such that j,_,q) < s <y, [s—j,| > 1, w, =UD if s <z < /i,
over [fy_q(a) ir] and
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UD, ify=j.1_
wy = , LY ‘7.r+1 o(a)s (33)
DU, otherwise,

OVer [f,41—g(a)s tr+1] fOr jri1_g(a) 7 n — 1 or the first condition over [j,_y(q), ir] for
jr+170'(a) =n—1

(9(UWD) = firiow © 0 [, (UWD),

if there exists s € ZT such that i,4,4) < 8 < Jri1, [S = fryo@| > 1, we = UD if
Irto(a) < T <8 OVer [iy4q(q), Jr+1] and

UD, ify=j,,
wy:{  RY=d (3.4)

DU, otherwise,

over [iyqs(a)—1,Jr] for jr # 1 or the first condition over [i,;y(q),jr+1] for jr = 1),
With iy # 1 (ip () #1 — 1),

ES2. If t =1 or n — 1 then g(UWD) = fy(UWD). .

ES3. If iy <t < fri1-0(a) (r <t < irio(a)) then g(UWD) = f(UWD).

ES4. It p = errlfU(a) (]r) then

g(UWD) — fir+1 ©:--0 fj'r+lfo-(a)(UWD) lf j:T'—‘,—l—g(a) # n — 1,
fjr+l—a(a) (UWD) if Jr+1—c(a) =M — 1.

(g(UWD) — {fir+a<a>—1 o---o f; (UWD) ?f ]:7, £1, )
ij (UWD) if Jr = 1.

ES5. If t < p < jri1 o( (r <p <t) then g(UWD) = f,(UWD).

For a given subchain C = {ji,...,jm,1,...,ik} € n-1, two Dyck paths D and D’ of
length 2n are said to be related by a relation of type R "'F if there is an elementary shift
ESi, 1 <4 <5 which transforms either D into D’ or D’ into D.

Henceforth, the notation w, ...ws means that all the elements w; covered by the brace
——

XY
have the same steps XY

Proposition 3.1. The relation R;i;’; is irreversible.

Proof. Suppose that there is an elementary shift f,, o---o f,, from a Dyck path UW D
to a Dyck path UV D and that there is an elementary shift f,, o---o f;, from UV D to a
UW D, then we have five cases:
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(i) If fry o --- o f arises from ESI over [ir,j,41—_g(q)]- Elementary shifts ES2, ES3
and ES5 allow to conclude that from UV D to a UWD, f; = ij+1_0(&) o---0f; or
Jo = Jiri1_o@ © - © fi, and this is a contradiction. If ES1 is an elementary shift
from UV D to UW D, then two cases arise: If j,1_,(q) # n — 1, thus UV D equals

Uvt . Vi (a) «+ Yja + o+ Vip—1 Vip V1 0 (’UjT+1—(r(a)+1) C Vi Uriga41 e Un—1D,
N~ —

ubD UD DU

it turns out that f; ., _ . o-- o f; (UVD) has the form

Uwy ... wj_(q) - Wiy - (ws,, — 1) wy,. .. W1 o) (wj7'+lfo(a)+1) C Wi Wy 41 - Up—1 D,

ubD DU DU

which is a contradiction. If j. i_s) =n—1, UVD is equal to
Uvi...vj, (a) - Vjg -+ Vip—1Vp ... Vi1 o(a) D,
UD UD

and fj,.ﬂ,a(a) o---o f; (UV D) has the shape

Wi i1 o(a) D,

UD DU

Uwi ... wj_(q)-- Wjs -+ Wip.—1 Wr
—_—————

again a contradiction. We also get a contradiction if an elementary shift is done by
using ES4 from UV D to a UW D, indeed, in these cases it holds that, if j, 1 ;) =
n — 1, there are t and p such that p = j.11_5(q) <t < ipq1 and UV D is equal to

Uvy...v5.—1v;, .. vp—1D,

“Viri1—o(a) Yirt1—o(a)t1 - -Vt V41 -

DU UD

and fj,,_, ., © o fi,(UVD)is

Uwy ... w;,. 1wy, L WE Wi - Wo—1D.

Wit o(a) Wird1—o(a)+1

UD UD
v,y g =7—1 fri1-0(a) = fre1-0(a) © - -+ © fi, but this is a contradiction.

(i) If f,, o--- o fp, arises from ES2 over [i1,j1] then we cannot use elementary shifts
defined in cases ES1, ES4, ES5 or ES3, provided that, i1 # 1, t Zpor 1 <t < ji.
Therefore, ES2 guarantees the existence of a walk from UV D to UW D such that;

U v ... V5 ...Unle,
~—~
UD

and f1(UW D) has the form

Uw ...wj ... w,1D,
~~
DU

which is a contradiction (if t = n — 1, the proof is dual).

(iii) If fr, o--- o f;, arises from ES3 over [i, j,11_y(q)], Provided that, i, <t < p <
Jr+1-o(a)> We conclude that it is not possible to use ES1, ES2, ES4 nor ES5. In the
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case of ES3 from UV D to a UWD, UV D equals

Uvi...v ...v—1 v .. Vi1 —o(ay - Un-1D,
DU UD
and f;(UV D) has the shape
Uwy...w;, ... wweyq ... W),y e - cWp_1D,
———

DU

but this is a contradiction.

(iv) If fr 0-- -0 fy, arises from ES4 over [iy, j.41_q(a)], Provided that t < p, we do not use
ES2, ES3 nor ES5. If j+1—0(a) =n—1, we cannot use ES1. If j+1—o0(a) #n—1
we can use ES1 from UV D to a UW D (Note that, it is not necessary with vy, = UD
for all s € [j,41—g(a) + 1,4r+1]) UV D is equal to

Uvi... .05, -1, ... Vt...Vp_1 VpUj, i1 g(aytl -+ Vippy Vipyr+1 - .. vn-1D,
| —

DU UD
it turns out that g(UV D) has the form

Uwy ... w1 Wi, . Wi - Wp—1WpWj, 1 )+l Wippq Wiy +1 -+ Wp—1D,

DU

which is a contradiction. Using ES5 from UV D to UW D, if j. 1_g@) #n—1, UVD
is equal to

U?}l e Vg e Vg Up—l 'Up vjr+1—a(a)+1 . o Uir+1vir+1+1 oo ’Un_l_D,
N e~
UD DU

and UW D has the shape

U’LU1 s Wiy o WE L Wp ij+1_O_(a)+1 e wir+1 wir+1+1 N U}nle,
———

ub f(ab)
again a contradiction. If j,1_,) =n — 1, UVD is equal to

Uvi...vj, ... 0—10...0p—1 vp D,
—_————
UD DU

it turns out that UW D has the shape

Uwy...wj, ... wi—qwg...vp D,
——
UD

this is a contradiction.

(v) If fry 0+ o0 fr, arises from ES5 over [ir, j,41—o(a)]- Then we cannot use ES1, ES2,
ES3 nor ES4, because fp # fj, ., , . © - © fi, and ¢ <p. Using ES5 from UV D to
a UW D, we observe that UV D is equal to

.. ’Un_lD,

Uvi...vj, oo o010 Vp—1 Up Vi e ¢
~—_—————

UD DU



CHAPTER 3. DYCK PATHS CATEGORIES AND ITS RELATIONSHIPS WITH CLUSTER ALGEBRAS 65

and f,(UW D) has the form

Uwy...wi, ... w—q Wy ... WpUp41 . . Up1 D,
N——

o /Ujr+lfo(a) :
UD

again this is a contradiction.

Taking into account that if f,, o---o f;, arises from ES1, ES2, £S3, ES4 and ES5 over
[ir, jr+0(a)] then same arguments as described above applied dually allow to conclude the
proposition. We are done. (]

3.1.3 A, _;-Dyck Paths Categories

For n > 2 fixed, an A, _1-Dyck paths category is a category of Dyck paths (D2, R) where
R is a relation of type R;ll'."';-’:n as described before. As an example we let (Dg, R3) denote
the Az-Dyck paths category with the admissible subchain 1 < 3. Figure shows all the

elementary shifts of (Ds, R}).

- v
7/ 7
&
7/ e
v v
; ;
7/ 7/
&
7/ 7/
iz iz
7/ 7/
iz
; 7
7’ 7’ 7 |
¥ 4
’ J// 7’ 1 !
e e 7/ 77
v v
; 7 L 7 ;
7 | \//
7 \T/;
A Ty
v
7 ;
| 1// | \// 7’ J//
77 77 I 7/ I 7/
L v [ — _v
e e j/ j/
v v v

FI1GURE 3.2. Elementary shifts in an As-Dyck paths category.

We let S denote the set of all Dyck paths with exactly n — 1 peaks. The following propo-

sitions and lemmas describe some properties of the set S in the category (Day, R;llzj’; ).

Proposition 3.2. Let UW D be a Dyck path of length 2n, then UW D € S if and only if
there is a unique sequence wWiwWyyq ... Wy _1 Wy Such that

D, ifi<i<y’
wi—{U s afl <a <7 (3.5)

DU, otherwise.
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Proof. Firstly, let 6 be a map 9§ : {), (} — {U, D} where left bracket is associated to the
letter U and right bracket is associated to the letter D, suppose UW D € S, then there
exist bracket-subchains such that UW D can be written in the following form

(000 )0 C O - () ) 0. )0 ) ),
~ P N ~— =~ ~ N~
1 2 -2 1-1 l r! r’4+1 n—2 n—1

therefore w; = UD if | < i < r’ and w; = DU. On the other hand, suppose UW D has a
unique subsequence wywy; 1 . . . wy_jw, that satisfies (3.5)), then if we apply 6! to UW D,
the sequence

() O -0 O ..0) 0 -..0) (),
—~ ~— = ~— =~ —~
1 2 -1 l r! r'+1 n—2 n—1
is obtained, therefore UW D € S. We are done. [l

Lemma 3.1. Let UW D be a Dyck path in S, and integers ', 1 defined as in Proposition [3.2]
with |r" — 1| > 0, then there exists an elementary shift from UW D to another Dyck path
with exactly n — 1 peaks.

Proof Let UW D be a Dyck path in S, let [ and 7’ be positive integers such that w,, = UD
for I <m <v'. Let I € [ir, jr11-0(a)], We have the following cases:
(1) If i =i, = 1, then

g(UWD)=U f(wy)wy ... wp w41 ... wy—1D € S.
——
DU UD

(2) If I =i, # 1, then there is a p =1 — 1 over [j,_,(q),%r] such that

g{UWD) =Uw ... f(wp)w; ... wp, ... wp—1D € 8.

[ Sy ——
UD

(3) Ifip << jry1-0(a), then

gUWD)=Uw; ... flw) w1 ... W Wyrgq ... wu—1D € S.
DU UD

(4) Il = jr41-0(a) and [l — 7’| > 0, then v’ € [ir), jy, 41-0(a)) With |11 —7[ > 0 and the
following cases hold:

(4.1) i, < 7" < oy 41-0(a), there is a p =" + 1 such that, if p # j,, 11_g(q) then

gUWD) =vwy ... wp...wyf(wy)...wp—1D €S,
—_——
UD
ifp=Jr41-0(a) =n—1, then

g(UWD) :le...wl...wr/f(wp)D €S,
—_—

UD
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orif p=j, 11-o(a) #n — 1 then

gUWD) =Uwi...wp...wpf(wp) ... f(wi, ). .wp—1D € S.

UD

(42) If v/ = jr1+1—0'(a)

g(UWD) =Uwi...w;.. s Wiy f(’w”l) .. .f(wr/) ...Des.

UD DU

(4.3) Now, if |[ry — 7| >1orr =7+ 1 and r' > 4,41 + 2 then

g(UWD) :le...f(wl)...f(wirﬂ)wirﬂﬂ...wrf...D € s.

DU UD

For " € [j,, 41-0(a)» iry +1] With [r1 — 7] > 0 we have that:
(44) If s=t=14p,4+1 =n — 1, then
gUWD)=Uw;...w;...wp_1 f(wn)D € S.
—
UD DU

On the other hand, if s =t = i,, 11 # n—1, then there is a p € [ir, 41, jr, +2-o(a)]
satisfying first condition of (4.1). Thus, if j, 11_y(a) < 8 < ir, 41, it holds that

gUWD)=Uw;...w;...wp_1 f(wp)...wp—1D € 8S.
N ——

UD DU

(4.5) If s = jr 41-g(a) then [r1 — 7| > 0 (If |ry — 7| = 0, [l = f[ = 0 which is a
contradiction)

gUWD) =Uws...wy...wi,  f(wi,)...f(w)wrir.. . wp_1D €S

UD DU

(4.6) Now, suppose that in UWD |r; —r| > 0, then it satisfies the first condition in
(4.3).

In case that [ € [jr,i,14(q)], We have the following cases:

(5) If j, <1<, + o(a), then there exists p = [ 4+ 1 such that, if p # j, then

g(UWD) = le...ij...f(wp)wl...wT/...wnle €S.
N —
UD

Note that, if p = j,. = 1 then

g(UWD) = Uf(wp)wl e Wyt o Wp—1D €S,
~———

UD
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or if p = j, # 1, then

g(UWD)=Uw;... f(wiT,1+g(a)) R f(wp)wl e Wy oWy D €S,

UD

(6) If I = j, and |l — 7’| > 0, then " € [jr,, iy, yo(a)] With [r1 —7] > 0, then the following
cases hold:

(6.1) If jr, +2 < 7" <y 4o(a), then there exists p satisfying (4.4).

(6.2) If jp, <7' < jp, +2, then |ry —7| > 0 and if r = j,, 41 satisfies (6.1), or if r = j,,
then UW D satisfies (4.5).

(6.3) Now, if |ry —r| > 0 then

g(UWD) =U... f(wl) . f(wir_‘_g(a)) Wi to(a)+l - Ws--- Des,
DU UD

or 7" € [iy, yo(a), Jri+1] With [r1 — 1| > 0 satisfies conditions (4.1), (4.2) and (4.3) for
iT1+o‘(a) S T, S j?"1+1'

Same arguments are used for the cases 1’ € [ir, jy11—0(a)]([Jrs Ir4o(a)]) to conclude the
lemma. We are done. O

Lemma 3.2. Suppose that UW D is a Dyck path in S and that integers | and v’ as defined
in Proposition [3:2] are such that | = 1’, then the following statements hold:

(a) If L ¢ {js} then there is an elementary shift to a Dyck path with exactly n — 1 peaks.

(b) If | € {js} then there is an elementary shift from a Dyck path with exactly n — 1
peaks to UW D.

Proof. Let UW D be a Dyck path in S, and positive integers [ and ' with [ = r/.

(a) Suppose I ¢ {js} and | € [ir, jry1—o(@)]- f ir <1 < jry1-0(a), then UWD satisfies
(4.1) and (4.2) of Lemma In particular, if [ = i, # 1 thereisa p’ =1—1
in [jy_y(a), %] that satisfies the first condition of (5) of Lemma The case | €
[Jrs ir4o(a)] is dual.

(b) Suppose I = j,1_q(a), We have the following cases:

(i) If ”ir — jr+1,g(a)’ =1 (OI‘ |’ir+1 — jr+lfa(a)’ = 1) and ir =1 (OI‘ ir+1 =N — 1),
then there is a UV D which is equal to

Uw w...DeS(orU...wywp—1 D €S),
~— ~——
UD UD

and
Uf(wi)w;...D=UWD (or U...wf(wp,—1)D =UWD).
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(ii) If [ir —Jrs1—o(a)) = 1 (0T |irt1—Jr1-0(a)] = 1) and 4 # 1 (o1 i1 # n—1) then
there is a I’ = jr—o(a) and 7" = jr—i—l—a(a) (Or I'= jr+1—o(a) and 7" = jr+2—a(a))
such that UV D is equal to

U...wp... wpn_qwy...D (OI‘ U...wlwl/+1...wT//...D) GS,
—_—— —
UD UD

and
U... f(wl/) cen f(wrn_l)wl ...D (Ol" U.. .wlf(wl/H) e f(wru) v D) =UWD.

(iil) I iy — Jrg1—o(a)l > 1 (O |ir41 — Jrg1—o(a)l > 1) then there is a UV D which is

equal to
U...wjqwp...D (or U...wywpyy...D €5),
~— —~—
UD UD
and

U...flwi—i)wy...D=UWD (or U...wif(wy1)...D=UWD,).

Similar arguments dually applied can be used to obtain the lemma in the case [ = j.. We
are done. N

Remark 3.1. Note that, in general there is an elementary leftshift and an elementary
rightshift over S, and these elementary shifts are disjoint, i.e. if fp, oo fp, and fy o
-+ o fy, are elementary left and right shifts, respectively. Then

q

{p17"')pq}ﬂ{p/17"°7p:]’} :®7

these elementary shifts are unique according to Lemma |3.1] and Lemma |3.4. If FP =
fpr 00 fp, is an elementary leftshift (rightshift) we write F' (FF).

Proposition 3.3. Let C = {i1,.. .0k, J1,-.-Jm} be an admissible subchain, then all Dyck
paths of S constitute a connected quiver Q whose set of vertices is in correspondence with
the set of all Dyck paths in S and there is an arrow from UWD € S to UV D € S if there
is an elementary shift transforming UW D into UV D.

Proof. It suffices to prove that @ is connected, to do that, consider Dyck paths UW D
and UV D of S. Thus, if there is a shift path between UW D and UV D then they are
connected. Otherwise, Lemmas and allow to define a Dyck path UW®M D and a
shift path FO) = FIS}) 0---0 Fl(l) with le = fr(,}l) 0---0 7(,21 such that

Jas) 2
UWD —— ... 2 ywWp,

and if there is a shift path from UV D to a UWM D then they are connected. If there is
not a shift path from UV D to UWM D, then there is a Dyck path UW®) D and a shift
path F(2) = FZSS) 0---0 F1(2) with Fﬁf) = f1§zl1) 0---0 fﬁfgg such that

(2) (2) (1) (1)
ow®p i e pyop oA pyp
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again, if there is a shift path from UW®D to a UV D then they are connected. Since S
is finite, the procedure ends in such a way that UW D and UV D are connected and with
this argument we are done. (Il

Henceforth, we let &€,, denote the full subcategory of (QQn,Rj'll:::?:n ) whose objects are
k—linear combinations of Dyck paths of S. Lemma and Proposition give some
properties of the Hom-spaces of this category.

Lemma 3.3. Let UWD, UW'D, UW"”D and UV D be Dyck paths in €,, and let F' =
Flo F? (resp. F}o F?) be a shift path UW D =, UW'D F—ll> UVD (resp. UWD F—12>
UW'D F.Tl> UV D), if there is another shift path G = G' o G? such that UW D <,
UW"D £~ UW"D with UW'D # UW"D then G*> = F}! and G' = F? (resp. G* =
and G = F?).

Proof. Let F' = F}! o F? be a shift path such that

F2 F!
U...wll...wrl...D—T>U...w22...w;2...D—l>U...vlS...vm...D,

with I; =l and 79 = r3 and suppose that there is another shift path G = G' o G? such
that

G? Gt
U...wll...wrl...D—>U...wfi...w;’4...D—>U...vl3...vr3...D,

with UW’'D # UW"D. Given the elementary rightshift F2, then since G # F?, it holds
that UW D satisfies the conditions of UW’D in order to apply the same elementary leftshift
Fl , L.e. Fl G? and I3 = l4. Since 71 = r4, UWD and UW" D satisfy the conditions to
apply the same elementary rightshift, i.e., F! = G1. Case F! o Fl2 is obtained via a dual
argument. (Il

Proposition 3.4. If Home, (UWD,UV D) # 0 then dim; Home, (UWD,UV D) = 1.

Proof. Suppose that Homg, (UW D,UV D) # 0, then there is a shift path F' of the form

0 i—1 21 i+1

FT Faﬁz x’L Fz F‘Zn
owp o, e gwicip Dy gwip D gy p Do .. UVD,

with z; € {l,7} and for some m € Z*. Now, for each pair F o F. ! with z;_; =1 and
x; = r (ri—1 = r and x; = [) that satisfies conditions described in Lemma there is

another shift path F’ of the form

0 7—1 7—1 141

Fz Ti_ F1 Fz Ff;n
owp 2o s gwicip B pwi p L ywitip 2 I VD,

transforming UWD and UV D. Thus F' ~ i .4, F'. O

J1---dm

3.2 A Categorical Equivalence

In this section, we establish an equivalence between the full category €,, and the category
of representations of a quiver of Dynkin type A,,.
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3.2.1 The © Functor

Given an admissible subchain € = {ji,...,7m,%1,...,0k}, Copn the full subcategory of

(CD%,RE ;’“ ) and Q a quiver of type A, 1 with {i1,...,ix} and {j1,...,7m} being the

sets of sinks and sources, respectively. Then the k-linear additive functor © : €, — rep @
is defined in such a way that, for an object UW D € &, it holds that,

G(UWD) = (G(wl)a Qp@(wi,wi+1))a

where

O(w;) k, itw;, =UD, (3.6)
w;) = .
0, ifw; = DU.

If i,i +1 € [ir,Jri1-0(a) (Jrrirto(@)] ) then s(O(ws,wiy1)) = i + 1, is the starting
point of the corresponding arrow, whereas t(0(w;, w;4+1)) = i is the ending vertex of the
corresponding arrow (s(O(w;, wi+1)) =4, t(O(wi, wi+1)) =i+ 1) and,

PO (wiwirr) * OWs@wiwis)) — OWyO(wswist)))s

o _ lk, if w; = UD = Wi+1, (3 7)
O(wi,wit1) 0, if w; = DU or w41 = DU. '

Functor © acts on morphisms as follows;

Let
Jpo-ofa =00, g1, fgs s faos Lgotts - - In1)s
be an elementary shift between UW D and UV D, then:

@((11,---,1 1—17fQ17"'7fQ2’1Q2+17"'1n—1))7
(9(11)" 6( q1— 1) (fth) (f(J2)a@(1QQ+1)""v@(lnfl))v

where O(f,,) = 0 and,

O(1,n) = lg, it wpy, =UD =vp,, (3.8)
e 0, otherwise, '

for1<mi <qg -1, gg<m<gpandgp+1<m <n-1

Remark 3.2. Note that, it is easy to see that © is an additive covariant functor.
Lemma 3.4. Let UWD and UV D be Dyck paths of €,,. If Home, (UWD,UVD) # 0
then Hom,.ep, o(©(UWD),©(UV D)) # 0.

Proof. Suppose Homg, (UWD,UVD) # 0, and let F be a shift path UW°D £,

1 Fl Fm— 2 mel
UW'D — ... —— UW™ D “—— UW™D from UWD = UW'D to UVD =
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UW™D for some m € Z™, then there exist ¢; and g2 such that

{a,n+1,... ;00— 1,2} = ﬂ Supp UW'D,

iceJ
applying © we obtain the following diagram:
a? a9
0 q1—1 1 1 92 0
...7@(wq1_1) k k @(wq2+1)7
oy -1 1 1 dg, 11
al al
1 q1—1 1 1 a2 1
7@(wq1_1) k k G(wq2+1)
1 1
Cqy—1 1 1 dqg+1
-2 -2
c;’;_l 1 1 d:;;-u
a1 1 1 agy |
m—1y 91— 92 m—1
——O(w]) k k o) —
—1 —1
02?71 1 1 d:;;ﬂ
a’m+11 1 am
m 91— 1 92 m
O ) T e, ) ——
Diagram 1.

where cfh -1, afzrl’ afm,déQ +1 € {0,k}, squares in the diagram are commutative between
¢1 and g2 (independently of the chosen orientation). For the sub-shift path F @Y) to F
with 0 < x <y < m — 1 there exist positive integers qu’y) and qém’y) such that
S(:Evy) — {qu,y)’ q§$,y) + 1’ L ’qéw,y) _ 1’ q21':y)} — ﬂ Supp UWID,
ieJ@y)

and for the diagrams

x
@ () 1

x i x
@(wqr,y)_l) k and G(wqéw’?”ﬂ)

k
ol 1 1[ io
Yy Y
RN o)
1
k

Yy 2 Yy
@( ) k G(wqéx,y)+1)

w
qﬁx,y)_l

x
a
xT
qé \Y)

Diagram 2. Diagram 3.
we have the following cases:

(1) If qu,y) € [irs Jri1-o(a) (ir < qu’y) < Jr41-0(a)) four cases must be considered.

(1.1) If ©(w”,, 1) = k and O(v’, 1) =k, qu’y) belong to S@¥) which is a
q1 - aqq -

contradiction.
(1.2) If ©(w”, 1) = kand O(w’, 1) =0, then the Diagram 2 commutes.
q1 - q1 =
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(1.3) If G)(w;ﬂ(m’y)il) = 0and @(wjj(w)_l) = k, then there is an elementary shift qu“*y)—l
1 1
on the interval and this is again a contradiction.
(1.4) 1f @(w;w’w_l) =0 and G(wggw)_1) = 0, then the Diagram 2 commutes.

(2) If qu,y) € [r1—o(a)s ir+1] (Jrri—o(a) < qu,y) < ir4+1), the conditions (1.1)-(1.4) are

satisfied on the interval.
(2.1) If ©(w*, ,, 1) = kand O(w’, 1) = 0, then they satisfy condition (1.3).
q T — Q" —

2.2) If O(w?” =0 and ©(w"” = k, then they satisfy condition (1.2).
(@) _q (@) _q
q T — q 7 —

(3) Case qégc’y) € [ir, Jr+1-0(a)] is similar to case (2) for the Diagram 3.

(4) Case qéx’y) € [Jr+1-0(a), ir+1] is similar to case (1) for the Diagram 3.
therefore the Diagram 1 commutes. Since the cases over [jr,4,,(q)] can be showed by
using dual arguments. We are done. O

Lemma 3.5. Functor © is faithful and full.

Proof. Let ¢ be the map
¢ : Home, (UWD,UV D) — Hom ¢, o(©(UWD),0(UV D)),

such that ¢(AF') = AO(F) with F = (11,..., 191, fqrs- - - fgo> Lgot1s - - - In—1), for some
1<q1,92<n—1and X € k. Note, ¢ is well defined and Lemma [3.4] allows us to observe
that the image of a non-zero morphism in &,, is a non-zero morphism in rep (). Thus, ¢
is surjective and injective. O

Theorem 3.1. Functor © is a categorical equivalence between the categories Cap and

rep .

Proof. Lemma implies that functor © is faithful and full. Now, let (M;, ©a)icQy,acQ:
be an indecomposable representation in rep @ of the form

@ %
0 k——k— L k& 0
with {i1,...,9} and {j1,...,7m} the sets of sinks and sources respectively. Let ¢ :

{0,k} — {DU,UD} be a map such that ¢1(k) = UD and ¢1(0) = DU. Define the Dyck
path UW D such that

UWD =Uw; ... wg—1Wq o Wgy Wap 1 -+ - W1 D.

DU UD DU

Propositionallows us to observe that UW D has n—1 peaks over {j1,..., Jm,01,-..,0k}
and O(UW D) = (M;, ¢a)icQo,ac@,- Thus, © is essentially surjective. O

Corollary 3.1. There exists a bijection ¢ between the set of representatives of indecom-
posable representations of rep QQ and the set of Dyck paths of length 2n with exactly n — 1
peaks.
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Proof. The Narayana number W(ith e)zii%ctly n — 1 peaks over all Dyck paths of length 2n
_ (n—1)(n

is the triangular number 75, 1 = “——~—, which is equal to the number of indecomposable
representations of rep ), then we define ¢ : S — Ind (rep Q) such that (UWD) =
O(UWD). O

Corollary 3.2. The category €ay, is an abelian category.

3.2.2 Properties of the Category ¢,

In this section, we introduce some properties of €s, regarding simple, projective and injec-
tive indecomposable objects, we also construct the Auslander-Reiten quiver for algebras
of Dynkin type A,,_1. Some conditions for morphisms between objects of the category are
introduced as well.

Theorem 3.2. Let C = {j1,...,Jm,01,--.,ik} be an admissible subchain, and let €y, be
the corresponding category, then

(i) Indecomposable simple objects of €ay, are objects of the form

S(z) =US(wy)...S(w:)D,

n

where

v (3.9)

S(w) UD, ifxz=y,
wy) =
DU, otherwise.

(i) Indecomposable projective objects of €ay have the form P(x) = UP(wY)...P(w})D
where

P(wY) =

xT

{UD7 if v,y € [irajr—l—l—a(a)] ([jhir—i-a(a)) andy < x (ZL' < y)a (3 10)

DU, otherwise.

(#ii) Indecomposable injective objects of €op have the form I(i) = Ul(wy)...I(w})D
where

(3.11)

xT

I(wy) _ UD, fo7y € [imjr—l—l—a(a)] ([jrair—i—a(a)]) and x <y (y < .CU),
DU, otherwise.

Proof. (i) Let S(z) = (S(x)y, o) be an indecomposable simple object of rep @) such that
S(xz)y =k if x =y and S(z), = 0 if  # y. Functor © allows us to observe that, there is
a UWD € €,, satisfying the required conditions.

(ii) Let P(x) = (P(x)y, o) be an indecomposable projective object of rep Q, if P(x), = k
then there is a path from x to y, as well as, a source j,41_y(q) (jr) and a sink i, (i,4.q(q))
such that i, <y <2 < jj1-0@) (Ur <7 <y < driy(e)), and P(x), = 0. Thus, there
is not a path between x and y, then functor © determines an object UW D of €5, with
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i1,...1k,J1, - - - jm being an admissible subchain satisfying the required conditions. Case
(iii) follows by dually applying the arguments used in the case (ii). O

Corollary 3.3. The indecomposable simple objects of €op have exactly a subsequence
UUDD.

Proof. Let S(x) be an indecomposable simple object of €g,, then the identity

S(;v):U...S(wgc_l)S(wx)S(me)...D:U...DU...DUI UD DE...DU...D

has place as a consequence of Theorem [l

Remark 3.3. The Auslander-Reiten translate can be obtained by using the Cozeter trans-
formation and the dimension vector associated to the support of a Dyck path in Coy.

Figure describes the Auslander-Reiten quiver of rep ) of the quiver ) given by Figure
INE;!

F1cURE 3.3. Quiver @ and the Auslander-Reiten quiver of rep Q.

Morphisms in €s, also have the following properties.
Let UWD be a Dyck path of €y,, then

e pywp =t and bywp = max {5 | i <8< errlfU(a)’ Ws = UD} over [i’l’aerrlfo(a)]v

o p"WP —min {5 | j, <s< irto(a), Ws = UD} and BUWD — t over [rs trto(a))-

Theorem 3.3. The vector space Homg, (UWD,UV D) # 0 if and only if
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(i) Supp(UW D) N Supp(UV D) # &,
(i) puwp < puvp and bywp < byvp over [ir, jri1—o(a)ls
(iii) p""P > pUVP and bVWP > bUVD over [jr iy ()],

for all [ir, jry1-o(a))s Ursirto(@) such that ir < q < jri1—o(e) ond jr < q < dpgg(q) with
q € Supp(UW D) N Supp(UV D).

Proof. The result follows as a consequence of the definition of the functor © and the
construction of Lemma 3.1. [

3.2.3 A Relationship with Some Nakayama Algebras

In [65] Marczinzik, Rubey and Stump presented a connection between the Auslander-
Reiten quiver of Nakayama algebras and Dyck paths. In such a work for a Nakayama
algebra A, they associated the vector space dimension of the indecomposable projective
modules e; A to a Dyck path, this vector is called the Kupisch series. If we take a Nakayama
algebra A = kQ/I, with I = (x3x4, x17223),

1 T2 T3 T4
o (@] @] @] ©)
1 2 3 4 5

FIGURE 3.4. Quiver @ of type As.

then the Kupisch series of kQ/I is [3,3,2,2,1], and the Auslander-Reiten quiver of kQ/I
has the shape described in Figure |3.5

FIGURE 3.5. Dyck path associated to kQ/I.

Let €y(,41) be the category with the admissible subchain 1 < n, j1 =1 and iy = n, and
let D; be the sets

Dy ={X¢€ Ob(€2(n+1)) | w1 =UD},
(3.12)
Di = {X S Ob(e:g(n+1)) | W, = DU7 1<m<i— 1}7

for 1 <4 < mn. Then, we take the subset D;; C D,

Dij, ={Y € D; | i <ry <m(i,j;) +i—1}, (3.13)
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such that the vector v = (n — (m(4, j;) +4 — 1)), constitutes an integer partition with n
parts. Now, let 0N, be the subcategory of €;(,,;1) whose objects are k—linear combinations
of the Dyck paths in the following set

L =D, (3.14)

and morphisms defined by the category €y, (1)

We assume the following numbering and orientation for a quiver @) associated to a
Nakayama algebra

x1 2 Tn—2 Tn—1
@] @] e O O
1 2 n

FIGURE 3.6. Quiver @ of type A,,.

The functor ©’ between the category 9, and the category of representations of (Q, 1)
where kQ/I is a Nakayama algebra with Kupisch series [m(1, j1),...,m(n, j,)] is defined
in such a way that, ' (UWD) = ©(UWD) and ©'(F) = O(F) for UWD € L and F
being an elementary shift in 91,.

Corollary 3.4. The functor © is an equivalence of categories.

Proof. It is a direct consequence of Theorem O

As an example, Figure shows the Auslander-Reiten quiver of the Nakayama algebra
A = kQ/I associated to the quiver ) shown in Figure with I = (z3xy4, T12973).

7
P
LA A

FIGURE 3.7. Auslander-Reiten quiver of mod kQ/I.

3.3 Cluster Variables Associated to Dyck Paths

In this section, we construct an alphabet associated to Dyck paths. And it is given a
formula for cluster variables of cluster algebras associated to Dynkin diagrams of type A,,.
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3.3.1 An Alphabet for Dyck Paths

For n > 2, let U{ = uy ... us, and U} = u] ... ub, be Dyck paths in Dg, with the following
form:

{U, if1<j<i+lorj=26+1)+k<2n,
Uj:
D,

ifi+2<j<20Gi+1)orj=2(i+1+k)<2n,
and

(3.15)

U, if2i<j<i+norj=1+2k<2i
'u/A:
J D, ifi+n<j<2norj=2k<2n,

(3.16)
for ¥ > 0 and

' The alphabet H, is the union of the set
{UL | r

<
1,2and 1 < ¢ < n — 2} and the Dyck path with exactly one peak in
Doy, (denoted E,). Figure shows the alphabet Hs.

n — 2.

(@) Uf

(b) U3

(c) B3

FIGURE 3.8. Alphabet Hj.

Let C = {il,...,ik,jl,...

,Jm} be an admissible subchain of n-1. We fix two different
relations of concatenation 91 and ¥y over H,, such that

E,, if V; = E, or V; = U},
91 (V;) Uittt it V; = E, or V; = Uj, (3.17)
Uittt if v = U,
and
E,, if V; = US,
9o(Vi) = U if V; = E, or V; = Uj, (3.18)
Uytt, if V; = Ui

Then, we take the set of words V =V ...V,,_2 in H} such that

W (Viy), ifi¢eC,
Ba(Viy), ifieC—{l,n—1},

‘/;,_

(3.19)
for 1 <i<n—2,n>4. This set is denoted by X¢, in particular case X 5y = Hs.
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3.3.2 Dyck Words and Perfect Matchings

Let G = (G1,...,Gr—1) be a snake graph, then we can associate to G an admissible
subchain € of n-1 in the following way:

If G;—1, G; and G;41 denote tiles of the following snake graph

Gi—1| G; |Git1

then, 7 € € for 1 < i < n — 1. For example, for the snake graph G shown in Figure 3.9

Gy Gs

Gs

G1 G2

FIGURE 3.9. Snake graph G.

it holds that the corresponding admissible subchain is given by the identity {1,3,5} =
{i1, 71,92} = {Jj1,71,J2}. By notation, G can be written as Ge.

The following result establishes a relationship between the alphabet Xe and perfect match-
ings of snake graphs.

Lemma 3.6. Let C = {iy,... ik, J1,---,Jm} be an admissible subchain of n-1. Then,
there is a bijective correspondence between the set Xe and the perfect matchings of Ge.

Proof. Let C be an admissible subchain of n-1, Xe be a set of words, and Ge be a snake
graph associated to €. Assume a numbering over the edges of Ge in the following way:

For boundary edges of GG;, we have the following four possibilities

ui o o

Gi—1| G; | Gita Gi—1| G; | Git1
Ui-t it Ui
Git1 pi-t Git1

Gi—1 G; (]I Gi_1 G; U?

uitt uit? Ui!
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with 1 < i < n—1 (labeling is given by recurrence). The other edges are labeled with the
letter E,. Now, a perfect matching P of Ge can be written as a vector v = (vy,...,v,),
where each v; corresponds to an edge of Ge (this vector is unique up to permutation).
Define a map f : Xe — Match(Ge) such that f(Vi...Vy—2) = (En, Vi,..., Va2, Ey).
Firstly, we will prove that f is well defined by induction over n. To start note that for
n = 3, we have the following three cases:

(I) If Vi = E3s, it turns out that F'(V1) = (E3, Es, E3), which is given by

Gt G2

(IT) If V3 = Ui, it holds that f(U}) = (Es3,U{, E3), which is equal to

(IIT) If V; = U, then f(U3) = (E3,Us, E3), which is of the form

G1 G2

Suppose that the result holds for n = k. Let n = k + 1, by hypothesis (Ex11,V1,... V)
are disjoint sets containing all the previous tiles in Ge, then there are two possibilities for
k.

(I) for k € € — {1,k + 1}, we have the following conditions:

(1.1) If Vko1 = Egya, then f(Vi... Exy1Exi1) = (Bki1, Vi Bty B, Erg)
and f(V7... EkHUQk) = (Fr+1, Vi, ..oy Eggq, Ué“, Ej1), which are given by

Gr-1| Gi |Grk41 and Gr-1| Gy |Gr41

(1.2) If Vooy = UFL then f(Vi...UF ' Ery) = (Bryr, Vi, oo, UFY Ery, Erg)
and f(Vy...UF'UY) = (Epy1, Vi, ..., UFL U, Exy 1), which are equal to

Gr—1| Gi |Gr+1 and Gr—1| Gp |Gr41

(1.3) If Vouy = USY, then f(Vi ... UST'UF) = (Bp1, Vi, ..., US"1 UF, By ) which
is of the form

Gi—1| Gi |Gr+1

(IT) for k ¢ C, there are the following cases:
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(2.1) If Vj_1 = Ejyq, then f(Vi ... B UF) = (Exi1, V4, - -, Ery1, UF, Exq1), which
is given by

Gri1

kal Gk

(2.2) I Vp_y = UFL then f(Vi ... UFUF) = (Bp1, Vi, ..., UFY UF, Ej11), which
is equal to

Gry1

Gk—l Gk

(2.3) If Vioy = US™ then f(Vi...US 'Epy1) = (Bpyr, Vi, ..., US ™Y By, Ery)
and f(V7... UQI‘:_IU;) = (Egt1, Vi, -,y Uéc_l, U}, Ejy1), which are of the form

Gk+1 Gk+1

Gr_1| Gg Gr_1| Gg

Dual arguments prove the result for the other labelings. We also note that by definition
map f is injective and surjective. O

Remark 3.4. Fach perfect matching of Ge is in correspondence with just only one
object of the A,_1—Dyck paths category associated to the admissible subchain C =

{i17"')ik7j17" 7.]m}

For each Dyck path Y = y;1...y92, with n — 1 peaks, we construct a family of words
Y NXe € H} such that:

YNXe={YNV*|V*eXe}, (3.20)

where

YAV — {VZ, if there exists j such that y; = v7 for 1 < j < 2n, (3.21)

E,, otherwise,

with V* =7 ... 03, in Xe. For the set Y N Xe, it can be defined a relation «~ such that

YNV ~YNV*ifand only if Y N V* and Y N'V* are the same word. (3.22)

In this case, « is an equivalence relation and (Y NXe)/ « is denoted by [Y NXe]. Also, we
remind that a Dyck path Y can be written as the word UW D = Uwn,...w,_1D, where

y1 = U, Y2, = D and, w; = y2;y2i+1-
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Lemma 3.7. Let C = {i1,..., ik, j1,---,Jm} be an admissible subchain of n-1 and letY a
Dyck path of length 2n with exactly n — 1 peaks. Then, there is a bijective correspondence
between the set [Y N Xe] and the set of perfect matchings of the snake graph belonging to
Ge and induced by the words wy =UD inY.

Proof. Let C be an admissible subchain of n-1 and Y = UWD be a Dyck path in S,
then by Proposition there are [,r € Z~g with 1 <[ <r <n —1 such that w, = UD
for | <t <r and wy; = DU otherwise. Now, let Gei,» = G[l,d] be a snake graph belonging
to Ge induced by Y. Define a map g : [Y N Xe] — Match(Ger,») such that:

M1 <l <r<n—1, thn g(Y NV)) = g(Bp... BV ... V/Ey.. . Ey) =
(Viip-- V).

(I Ifl =1land 1 =1 <7 <n-—1, then g(Y NVY]) = g(V{...ViE,...E,) =
(En, Vi, ... VD).

(II) fr=n—-land 1 <l<r=n-1, then g([Y NVY)) = g(E, ... B,V ... Vi ,) =
(Vi ys o Vg, Ep).

(IV) If il=1and r =n — 1, then g = f.

Since in the four cases g is a restriction of f. It follows that g is a bijection as a consequence
of Lemma [3.6 O

3.3.3 Cluster Variables Formula Based on Dyck Paths Categories

In this section, Dyck paths categories are used to give a formula for cluster variables of
cluster algebras of Dynkin type A,, to do that, we use the category of Dyck paths asso-
ciated to an admissible subchain. We also present a connection between cluster variables
of algebras of type A,,_1 and Dyck paths with n — 1 peaks.

Let € = {i1,...1k,J1,-.-Jm} be an admissible subchain of n-1 and let Y = UWD be a
Dyck path in S, then we define the monomials

w= J[ = (3.23)
UD=w; €Y
and
Xyv= ][] 2m (3.24)
me My

i+1, ifUleV,
m =<1, ifUL eV, (3.25)
0, if £, eV,
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V € [Y NXe]. For this case zy = 1.
The following theorem gives the cluster variable associated to a Dyck path in the set S
and its connection with cluster algebras of type A,_1.

Theorem 3.4. Let C = {iy,... ik, J1,---,Jm} be an admissible subchain of n-1, Y =
UW D a Dyck path with n—1 peaks and M the set of all cluster variables of a cluster algebra
of type Ap_1 with {i1,..., i} and {ji,...,Jm} the sets of sinks and sources, respectively.
Then:

(i) The cluster variable associated to'Y in the category €ay, is given by

XY:(UY)1< > XV)- (3.26)
ve

Y nXe]

(i) There exists a bijective correspondence between Dyck paths with n — 1 peaks and the
set M \ @y with xy the initial seed.

Proof. Let C = {i1,... ik, j1,--.,Jm} be an admissible subchain of n-1, and let Tp be
the triangulation of the polygon with n + 2 vertices given by C.

ﬁﬁﬁﬁ

Let oq, be a diagonal that is not in T¢ that cuts the diagonals oy, ...a;, € Te. We define
a functor x : Cr, — Ca, such that x(oy,) = UW,, D, where

UD, ifl<j<r,
j = =7 = (3.27)
DU, otherwise,
and for any pivoting elementary move E : op; — o, , x(E) is the elementary shift

F = fy,o0--0f from UW;,D to UWy .D. Theorems and [3.1] allow us to establish
the following sequence of equivalences:

CT@ « Mod QT@ e Q:Qn, (328)
therefore x is a categorical equivalence. Thus,

(i) Functor x and Lemma allow to establish that z, = Xy

(ii) The map ¢ : S — M \ x¢ such that ¥/(Y) = Xy is a bijection as a consequence of
Theorem and the definition of functor x. We are done. O
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For instance, let € = {j1 = 1,41 = 2, jo = 4} be an admissible subchain of 4, the set X¢ is
in correspondence with the objects of €19 shown in Figure [3.10

T T T » LI ] 7 LI 7 T z T 7’
Fr++4 r+ 4 r+ 4 + 7 r+ 4
L Js P P g 1% s
HEEEN S R D < I I <> @[y
- v [ - L4
L7 yid yid 17 ’ 17
7 7 7 7

(a) B5s @ B D U? (b) Es D U3 D Es
T / / /
*r+49 e+
[ J/ 4 7 Js
e T [V
57 Ju , 57
) Bs DU P U3 (d) Uf @ Es DU
M #)
J/ P g
L}/
37
o) Ul DU Es ) UL DU D US

[ ’
#J/ f—*/J/
L)
)/

(e) U; U DU

FiGURE 3.10. Objects in €.

Then, for Y = UDUUDUDDU D, we define the set Y N Xe such that

Y N Xe] = {E5E5UY, EsUs Es, Uy UFUT Y. (3.29)

Thus, identities (3.23)), (3.24) and (3.25)) define the polynomials

Ny = X213, XE5E5U13 = ToToT4, XE5U22E5 = ToT2TQ, XU%U%U? = T3T1T4, (3.30)
therefore, the cluster variable associated to the Dyck path Y is given by the expression

Xy = T4+ T2 + x3x1x4. (3.31)

223




CHAPTER 4

Some Applications Of Catalan Numbers

In this chapter, we describe the way that Dyck paths are used in different kind of algebraic
structures. In section we prove that frieze patterns arise from Dyck paths, to do that,
diamonds of A,, are introduced, in particular, we prove that some new diamonds are in
bijective correspondence with Dyck paths, triangulations of an (n 4+ 3) polygon, and a
family of frieze vectors. This approach allows us to write frieze patterns as a direct sum of
indecomposable objects of the category of Dyck paths and it is also given a categorification
of the Catalan triangle in the sense of Ringel and Fahr [90]. In section we define
Brauer configuration algebras whose indecomposable projective modules are in bijective
correspondence with Dyck paths, some combinatorial properties of the Catalan triangle
allow us to establish formulas for the dimension of these algebras and its corresponding
centers.

4.1 Frieze Patterns Arising from Dyck Paths

In this section, we introduce a basic set called diamond which is used to build frieze
patterns associated to triangulations of a polygon.

4.1.1 Diamonds of A,

Let R be an integral domain, a diamond A = (a; ;) of A,, is an array

az2,0

a1 a1

a2

a2 n—1

al,n a2 n

al,n+1
that satisfies the following conditions:

85
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(Dl) a270 = a17n+1 = 1,

(D2) ay jasj —azj—1a1;4+1 =1for 1 <j<m,

with a; ; € R and 1 the identity element of R.

If R =7, A is called integral diamond, if it also satisfies

(D3) a11 =a (or a11 = a+my), az1 = a+m, (or agy = a) and ay 2 = a® + am, — 1,
WithlgagL”T*QJ,1§m1SnandOgma§n+2(1—a)ifa>1,

A is called positive integral diamond.

Two diamonds A and B of A,, are a couple if and only if ag j = by ; for 1 < j < n (denoted
by A B). A set {A'}i>0 is an A, —sequence of couples of A, if and only if A” | A"
for r > 0. An A,,—sequence of couples {A'};>¢ is a p—cycle if there is a p € N such that
At = Attp.

For example, let R = Z, the sets {A'};>0 and {B!};>( are Aj—sequences of couples which
are 2—cycles with A%¢ = B2kl = A A%+l = B2 — B and k > 0.

In general, it can be written an A,,—sequence of couples {A'};>¢ as an A, —array Cy¢ =
(Ci,j) such that ¢;y1; = a’ij and ¢;41,0 = Ci41,n+1 = 1, for t > 0. For the previous example,

Cp=1 2 1 2 Cgt= 2 1 2 1

C 4+ and Cpe are Aj—arrays associated to {A'};>0 and {B!};>¢, respectively.

If the A,—sequence of couples is finite of length m, it can be associated an infinity
Ay —array, Cfy = (¢];) such that

t
07(71?+1)+km,j = ay 4, C?Z+1)+km,0 = C@+1)+km,n+1 =1, (4.1)
for k € Z. For any A,—sequence of couples {A'};>0, we can take an A,,—subsequence
{B?},>0 for B* = A""# and some z > t. In particular, if {A'};>¢ is a p—cycle , we take
the subsequence {B* }o<s,<p—1 such that B® = A'. This subsequence is called minimal

p—cycle of {At}>0.

Henceforth, we present main results regarding diamonds of A,,.
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Proposition 4.1. Let {A'};>¢ be a p—cycle and let B = {B* }o<s,<p—1 be its minimal
p—cycle . Then, the C% is a frieze pattern of order n+ 3. In particular, p divides n + 3.

Proof. Let Cj; = (c};) be the infinity A, —array associated to {B® }o<sy<p-1, identity
(4.1) implies that

_ S0 _ _
C€So+1)+kp,j = Q15 C€50+1)+kp,0 - CZ()80+1)+kp,n+1 =1,

for k € Z, given that {A'};>¢ is a p—cycle, then, C% is a frieze pattern. O

Proposition 4.2. Let {A'}i>0 be a p—cycle of length 2p, then the subsequences
{B*}o<s;<p—1 generate the same frieze pattern of order n+ 3, for 0 < i < p—1, and
Bsi = Avsi,

Proof. Let {A'};>0 be a p—cycle of length 2p, let C% = (c};) and Cf = (cf]/) be
the infinity arrays of the subsequences A = {B*}o<s;<p-1 and B = {B;, }o<s,<p-1
of {A'}i>p for 0 < i < i/ < p — 1. Applying the translation sy = s; — |i’ — i,

s s =i st
Cgi/—‘rl—‘rkp,j =01, = Ay, =a; = C§i+1+kp,j' We are done. N

Lemma 4.1. Let {A'}i>0 be a sequence of couples, then {A}>o is generated by A°. In
particular, A generates a p—cycle for some p > 0.

Proof. Let {A'};>0 be a sequence of couples, then

1+ (a3 ;_1)(a3 1)
a3 ;= I ST (4.2)

a3,j

for 1 < j < mn, and z > ¢, then a3 ; can be written by using the set {ag,j}lgjén for
x > 0. In particular, the set {ag’l, ces ag,n} is a seed of the cluster algebra associated to
the quiver shown in Figure Since the cluster variables are finite in the case A, then
there is p = n + 3 (in some cases, it is not minimal) such that A° = A"*3, O

Theorem 4.1. Let A be a diamond of A,,, then A generates a frieze pattern.

Proof. It is a direct consequence of Lemma and Proposition O

For instance, the diamonds A and B generate the following frieze pattern.

4.1.2 Seed Vectors

In this section, we give an algorithm to build a family of positive integral frieze vectors
associated to the quiver shown in Figure |3.6, These vectors help to find a connection
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between the positive integral diamonds of A, triangulations, and Dyck paths.

Let A be a diamond of A,,, we can write the first column as a vector v4 = (ai,...,an)
where a; = a1 ;.

Proposition 4.3. Ifv = (ay,...,ay) s a vector associated to a positive integral diamond
of Ay, with a, = 1, then the vector v = (a1, ..., a;,a; + ait1, 041, - .,0n_1) generates a
positive integral diamond of A, for 1 <i < n.

Proof. Let vq4 = (a1,...,a,) be a vector associated to a positive integral diamond
A = (ajm) of A,, we take the vector vay; = (a1,...,ai, a4 + Git1,0i41,...,an—1) and the
array A + ¢ of the following form:

a1,m, if m <1,
bl,m =401+ a15+1, ifm=1+1, (4-3)
a1,m—1, ifm>1+1,
and
az,m, ifm<i-—1,
bom = { agi—1+az;, ifm=ri, (4.4)
a,m—1, ifm>1+41,

then by mbam — bom—1b2my1 =1, for 1 <m < n and 1 < i < n. Therefore A +iis a

positive integral diamond of A,,. O
Proposition 4.4. The vector vy, = (a1, ..., a,) with
z+1—1, ifi<z
@ = ERAR (4.5)
1, ifi >z,
is in bijective correspondence with a positive integral diamond of A, for z € {1,...,n+1}.

Proof. Let v, , be a vector and let z be a natural number between 1 and n 4+ 1, we define
a positive integral diamond A with a1; = a; and as; = b; where

1, ifi < z,
b=+« e (4.6)

i1+2—2z, ifi>z,
then ai;a2; — as;—1a2,41 =1 for 1 <i < n. O
Remark 4.1. v, . is called a seed vector. The vector v"* = (by,...,b,) defines a positive

integral diamond B of A, such that by ; satisfies the following identity

1 —1, ifi<z—1,
brai=qi+1)z—1, ifz—2<i<mn, (4.7)
z, ifi=mn,

and b; = by ; is defined as in[{.6
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Proposition 4.5. The positive integral diamonds A and B generated by v, , and v™?
respectively are a couple.

Proof. It is a direct consequence of Proposition and Lemma (I

The number of ways of applying recursively Proposition to a vector wy =
(a1,...,a,-1,1,...,1) € N" is given by the next identity (denoted by fy, ),

. 14, ifz>1,
o =  Timet Jomt (48)
zizl fn—l,i: if z = 17
where it is included the trivial move wq+9 = wy, for n > 1, and any z € {1,...,n+ 1}.
In fact, we represent these numbers by the following triangle
fiz fin (4.9)
J23 fa2 fon

f3.4 f33 f32 f31
fas faa fa3 fa2 fax

for any vector as before. Since the first possibilities are v1; = (1) and vy 2 = (2), then
fii =1and fi2 = 1. The previous triangle appears in the OEIS as A009766 (Catalan
triangle [90]). In particular, we generate all positive integral diamonds of A,, via the seed
vectors vy, ,. For example, for n = 3, all vectors that generate positive integral diamonds
of Ag are:

717

Y

1,1
1,1,
1,2,

Y

) )

1
2
1

9 )

( ) (2,1,1)
( ) (2,1,2)
( ) (2,3,1) (3,5,2)
(1,2,3) (2,3,4)
(1,3,2) (2,5,3)

I 7 i

Let G =UD...UD... be a Dyck path of length 2n and let m; be the number of U's
before of i-th D in G, then, G can be written as a vector vg = (v1,...,v,—1) where
v; = m; — 1+ 1. If G is the Dyck path shown in Figure then G has associated the
vector vg = (5,4,3,3,5,4,3,2).
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FIGURE 4.1. Dyck path of length 18.

If we take the case n = 3, all the vectors are

(1,1,1) (2,1,1) (3,2,1) (4,3,2)
(1,1,2) (2,1,2) (3,2,2)
(1,2,1) (2,2,1) (3,3,2)
(1,2,2) (2,2,2)

(1,3,2) (2,3,2)

Note that, the number of generating vectors is given by the Catalan numbers.

In what follows, it is defined a map between the vectors associated to positive integral
diamonds of A, and Dyck paths by using a relation over the coordinates of a vector
u=(ai,...,an). The map T; is defined in such a way that, 7; : N — N and:

e If a; —ap > 0 for some k € {1,...,i}, we take max {k} and we write r; = a; — ay.
Again, we take max {k} such that r; —a; > 0 and we write ro = r; — ag, this process
ends when there is no a k such that r, — a > 0, then, T;(u) = r; + ¢. for some t.

e If a; —a <O0forall ke {1,...,i}, then T;(u) = a;.

For instance, we take a vector u = (14,52,4,23,9,2), then T)(u) = 14, Ts(u) = 13,
Tg(u) = 4, T4(’LL) = 8, T5(u) = 3, and T6(u) = 2.

Proposition 4.6. Let v, . be a seed vector, then (T1(vy z), ..., Th(vn,z)) describes a Dyck
path of length 2(n + 1).

Proof. For any z € {1,...,n+1}, T;(v, ) = a; with a; given by identity (4.5]), then there
is a word Gy, . = w1 ... Wamy1) € {U, D}* such that

Un,z

G,,.=U...UD...DUDUD...UDUD, (4.10)
’ \“_/1—/\“:1—/
for any left factor us in G, . of length s € {1,...,2(n+ 1)}, 0 < |us|ly — |us|p < 2z — 1,

therefore G, , € Do(41)- O
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Proposition 4.7. Let vqa = (ai,...,a,) be a vector associated to a positive integral di-
amond A of A, with a, = 1, such that (T1(va),...,Tn(va)) describes a Dyck path in
Domr1)- Then (Tr(vayi), .-, Tn(vati)) describes a Dyck path in Doy 1y -

Proof. Let vy = (ai,...,ay,) be a vector associated to a positive integral diamond A
with an, =1, then there exists a Dyck path G,, € Dy(,,41) such that any left factor us of
length s satisfies |us|y > |us|p for 1 < s < 2(n+1). Let va4; be a vector associated to
the positive integral diamond A + i with

Tin(va), if 1 <m <i,
Tm(vayi) =< Tin(va) +1, ifm=1i+1, (4.11)
T—1(va), ifm>i+1,

then there is a word Ga4; = wf,. .. ’wl2(n+1) in {U, D}*, we take the index m; of the i-th

D in G g4, any left factor u/, in G 44, satisfies the identities

lus|u, if 1 <s<my,
lullo = < |um, o +1, if s =mq +1, (4.12)
lus—2|ly +1, if s >mq + 2,
and
lus|D, if1 <s<my,
lul|p = |tm, | D, if s=mq+1, (4.13)

lus—2|r + 1, if s >my + 2,

then, we have the following possibilities:

o If 1 <s<my, |uj|lu = |uslu > |us|p = |u}|p.
o Ifs=m1+1, ‘“/m1+1|U = |tm,|v + 1> |um, D = |u;m+1‘D'

e Ifmy +2<s<2(n+1), |ul|lv =|us—2lv +1> |us—2|p +1=|u|p.

Therefore, Gati € Da(n41)- |

Lemma 4.2. There is a bijective correspondence between the set of all vectors associated
to positive integral diamonds of A,, and the set of all Dyck paths of length 2(n + 1).

Proof. Let Dy, be the set of all vectors associated to positive integral diamonds of
A, and let Dy(,11) be the set of all Dyck paths of length 2(n + 1), then, we define a
map f : Da, — Doy with f(ua) = (T1(ua),...,Tn(ua)), Propositions and
allow us to establish that f is well defined. We should prove that the map f is one to
one. Suppose that u, different from vp, we take the minimum k such that up # vg. If
k=1 then Ty (ua) # Ti(vg). If k> 1, up = m(ug_1) + a and vy = m/(up_1) + a with
m # m/ is a consequence of Propositionthen Tt,, 7 Tt,, , therefore Ty(ua) # Ty (vp). O

Figure shows a positive integral diamond of A4 and its corresponding Dyck path.
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FIGURE 4.2. Diamond (left) and its corresponding Dyck path (right).

An alternative way of writing a Dyck path G € Dy, 1 1) can be defined by using a vector
A = (A1, ..., \n) where \; is the number of D's before of (n+2—1i)-th U in G (see [64,92]),
for example, Dyck path of Figure has associated the following vector A\g = (1, 1,0,0).
In the case n = 3, all vectors are

(3,2,1) (3,2,0) (3,0,0) (0,0,0)
(2,2,1) (2,2,0) (2,0,0)

(3,1,1) (3,1,0) (1,0,0)

(2,1,1) (2,1,0)

(1,1,1) (1,1,0)

Let A be a vector associated to a Dyck path of length 2(n + 1), a triangulation of an n + 3
polygon can be defined through the use of A\ as follows:

o Fix a labeling in the vertices of polygon K™% = (vg™3,... ,’UZIS) with v

0<i<n+2

n+3

.0 =1, for

e For )\;, we draw a diagonal lf‘ ¢ between \; and A\; + 2. After that, we label the last

polygon with n + 3 — i vertices K" ~" = (v0 37, ... ,vgi;”:f), and
I U;L+3_(li_1)a ifj <A,
J O i >
fori=1,...,n
4 ) 3 4 3
3 12 0 — 3 /i3 0 — 2 /12 1k o
2 1 2 1 2 1

F1GURE 4.3. Triangulation of an hexagon.
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The previous algorithm describes that if li)‘i is a diagonal then it does not cross the diag-
onals l’\l7 .. ,l;\i_ll for 1 < ¢ < n. For instance, let Aq = (2,2,1) be the vector associated

to G = UDUDUUDD, then the triangulation of \g is shown in Figure

If we fix a labeling K over all vertices of a polygon with n + 3 vertices, a triangulation T
is written as a sequence T' = (I7*,..., '), where v; belongs to the set of vertices.

Lemma 4.3. There is a bijective correspondence between the set of all triangulations of
a polygon with n + 3 vertices and the set of all Dyck paths of length 2(n + 1).

Proof. Let T, be the set of all triangulations of a polygon with n + 3 vertices, then, we
can define a map g : Dy(,41) — Tn with g(A) = T\. We should prove that g is one to
one. Fix a labeling K and suppose g(Ag) = g(oer), then (IM,... M) = (IS*,...,19%),
provided that l;‘j = l;-fj , there are diagonals A; — (\; +2) and 0; — (0; + 2), therefore
Aj=ojforj=1,...,n. O

The next theorem presents the main result regarding the positive integral diamonds of A,
and the triangulations of an n + 3 polygon.

Theorem 4.2. There is a bijective correspondence between the set of all vectors associated
to positive integral diamonds of A, and triangulations of a polygon with n 4+ 3 vertices.

Proof. We fix a labeling K in a polygon with n + 3 vertices, the map F' : Dy, — 7T,
defined by F(v4) = (go f)(va) is a bijection (Lemmas and [4.3)). O

Figure presents the bijective correspondence between a positive integral diamond of
Ay, a Dyck path of length 10, and a triangulation of a polygon with 7 vertices.

[\
[\

FIGURE 4.4. Connection via the map F.
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4.1.3 Frieze Patterns and Dyck Paths

In this section, we describe an algebraic interpretation of frieze patterns as a direct sum
of Dyck Paths.

Lemma 4.4. The vectors v, . and v generate the same triangulation except for one
anti-clockwise rotation.

Proof. Let v, , and v™7 be frieze vectors, fixed a labeling K in an n+3 polygon, applying
map F

n+1]

(@) f(vn.z) (b) f(v")
Flop.)=(n ,....,.z , 0 ..., 0 yand F(v™*)=(n—1,...,2—1,z—1,... 1),
’ —~— N =~~~ N~~~ N~ N N~ S~~~
1 n—z n—z+1 n 1 n—z n—z+1 n

if we change K7 by K5 in the following way:

e thevertex ke Kijisk—1e Ky forl1 <k<n-+2,

e the vertex 0 € Kj isn+ 2 € Ko,

the diagonals from 0 to r; in K7 are diagonals from r; — 1 to n 4+ 2 in K5, and the
diagonals from ro in K; are diagonals from 7o — 1 in Ko, for 0 < r; < 2z < ry < n.
Therefore F(v, ) € K; is equal to F(v™?) € K». O

Note that, there exists a permutation

(1 2 ... n—z—-1 n—2z n—z+1 n—z+2 ... n—1 n
77\1 2 . on—2-1 n—=z n n—1 .o m—2z4+2 n—z+1)°

in S, that describes a bijection between the coordinates of the vector F(v,.) =
(u1,...,u,) and the vector F(v™*) = (u},...,u,) such that o(F(v,.)) =
(Ug(1)s -+ s Uo(n)) = (u],...,up) = F(u™?) in Ko. In general, if v and w generate the
same triangulation except for one anti-clockwise rotation, then there exists a permutation
o' € S, such that ¢/(F(v)) = F(w) in Ka.
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Lemma 4.5. Let A and B be positive integral diamonds of A,, A and B are a couple,

and vg = (a1,...,05,...,ay) with a; =1 for z <t <n. Ifvs and vp generate the same
triangulation except for one anti-clockwise rotation. Then vaiy; = (ai,...,a;—1,a;—1 +
@iy @ity -y ap—1) and vpyi—1 = (b1,...,bi—2,b;—2+bj—1,bi—1,...,by—1) generate the same

triangulation except for one anti-clockwise rotation for z—1<i<mn, i > 2.

Proof. Let v4 and vp are vectors, since v4a and vp generate the same triangulation
except for one anti-clockwise rotation, then, there exists a permutation o € S,, such that
o(F(vaq)) = F(vp) in Ka. The following options arise from the map f, such that:

) > = (... = (...
(1) Ifi>z>1, f(va) = ( < L ), and f(vg) = (..., L 2 ) (see
11— (2 11— 11— (2
Figure
1.1) Ifd=1, F =(.., 1 ,i—1,...), F =(..,i—1,71—2,... d
( ) ) (UA) ( N ‘,7 ? ) )7 (UB) ( b )y 2 > )7 and o
n—i n4+1—i n—i n+l—i
satisfies the expression,
if r < 1—1
o(ry=4" BrsnTAeh (4.14)
m, otherwise,

for some m >n + 1 —14. Applying F to va4+; and vp4i—1,

F(UA+Z‘):(...,i—1,i—l,...),andF(’UB_H‘_l):(...,i—?,’i—Q,...),

n—i n+l—i n—i n+l—i

then there exits o’ € S,, such that ¢/ = o and o/(F(vay;)) = F(vp4i—1) in Ko

(see Figure [4.6)).

’Vl+1—Z //

FI1GURE 4.5. Dyck paths associated to v4 and vp for i > z.

(1.2) If d = 2, this case is equal to the previous case.

(1.3) If d = 3, A and B do not generate the same triangulation.

Note that, if z = 1, this case satisfies the condition (1.1) and (1.2) without d.

(2) Ifi =2 > 2, f(va) (...,'1, 1 ,...)and f(vp) (...,4b2,4a1, 2 y...) (see
Figure.
(21) fa=1land b=1, F(va) = (..., i',...),F(UB):(...,i—l,z'—l,...)and
n—i n—i n+l-—i

o1 is equal to
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n+1—i e

FI1GURE 4.6. Dyck paths associated to va4; and vgy;_1 for i > z.

T, if r <mn—1,
oi(r)=¢n+1—1i, ifr=mn, (4.15)
m, otherwise,

for some m > n+ 1 —i. Applying F, we take

Floas) = (i1, ) and Flogss 1) = (vv i ,i—2,...),
n—i n—i nt+l—g

then there exits o] € S, that satisfies

n—i, ifr=mn,
oi(r)y=<{n+1—i, ifr=n—i (4.16)
o1(r), otherwise,

therefore o (F(va+i)) = F(vp+i—1) in Ky (see Figure [4.8]).

n+1—1

b=1 b=2 b=3

FIGURE 4.7. Dyck paths associated to v4 and vp for i = z.

(2.2) If a =1 and b = 2, this case satisfies the conditions of (2.1).
(2.3) If a=2 and b=1 or b = 2, these cases are contradictions.
(24) fa=2and b=3, F(vg) =(...,i—1,...) and 09 = 0. Applying F' to vpyi_1,
n—i
it holds that F(vp4i—1) = (...,i—2,...) then there exits o} € S, such that

n—
oy =0 and 04 (F(vati)) = F(vpti—1) in Ky (see Figure [4.8).
(2.5) If a =3 and b = 1,2, 3, these cases are equal to case (2.3).
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n+1l—1 |

FI1GURE 4.8. Dyck paths associated to v44; and vpy;—1 for i = z.

Note that, if z = 2, this case satisfies the same conditions for a = 1, 2 without b.

L, =z —12> = (... = (...
(3) i=z—1>3 foa)= (.., 2, 1. and f(vg) = (.., b, a_ 2 ...)
i it i—1 i i+l
(see Figure [4.9).
3.1) If = 1 d b = 1, F = R el I F =
( ) a an 5 ('UA) ( 7Z+ 3 )7 (UB)
n—i—1
(cooy i, 4 ,i—1,...),and
—~ I~
n—i—1 n—i n+l—i
T, ifr<m-—i-—1,
n—1 ifr=n
oa(r) = ’ ’ 4.17
3(r) n+1—i, ifr=n-—1, ( )
m, otherwise,

for some m > n + 1 — i. Provided that

Foar)) = (.. i—1,...)and Flogyi1) = (.., i+1, i ,i—2,...),

n—i—1 n—i—1 n—i nt+l—i

then, there exits of € S, such that

n—i—1, ifr=n,

o () = n—1, ifr=n-—1, (4.18)
n+l—i, fr=n—i—1,
os(r), otherwise,

then o4 (F(vayi)) = F(vpti—1) in Ko (see Figure |4.10)).
(3.2) Ifa = 1 and b = 2. Applying F to vp, it holds that F(vg) = (..., _ 1 i),
o4 is described by

T, ifr<n-—1i-—1,
0’4(7‘) =dqn—1, ifr=n, (4.19)

m, otherwise,
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n+1—:

b=1 b=2

FIGURE 4.9. Dyck paths associated to v4 and vp for i — 1 = z.

for some m > n —i. Applying F to vpiyi—1, F(vpti—1) = (..., i+ 1,0—2,...),

then there exist ol with

n—i—1, ifr <n,

ay(ry =< n—1i, ifr=n—1i-1,

oa(r), otherwise,

~—— N~

n—i—1 mn—i

(4.20)

therefore o (F(vayi)) = F(vpti—1) in Ky (see Figure [4.10)).

(33) fa=2and b=3. F(vg)=(..., i ,...), since o5 is

n—i—1

(r) r, ifr<n-—i-—1,
o5\T) = .
m, otherwise,

(4.21)

for some m > n —i. Applying F to vp4i—1, F(vp4i—1) = (..., i —2,...), and

n—i—1

there exits of = o5 such that of (F(va4,)) = F(vp4i—1) in K» (see Figure 4.10).

—
[ I,

-k -V

s

| 1 I,
1 -k -V

n+1—i e

-V

s

’

!
[
|
[
|
v
l
(

7 |

FIGURE 4.10. Dyck paths associated to v44; and vpy;—1 fori —1 = z.

Same arguments are used for the remaining cases (see item (2) of this proof). O

Proposition 4.8. Two positive integral diamonds of A, are in the same minimal p— cycle

if their triangulations are in the same mutation class.

Proof. It is a direct consequence of Theorem Proposition Lemmas [4.4] and

4.5)

O
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The following result shows a way to build frieze patterns.

Theorem 4.3. Let A° be a positive integral diamond of A,, and let {At}ogtgp_l be the
minimal p—cycle generated by A°. Then:

(i) A and F(v0) generate the same frieze pattern.

(ii) {A'}o<i<p—1 is in surjective correspondence with a direct sum of p indecomposable
objects of a Dyck paths category.

Proof. Let Dy, be the set of all vectors associated to positive integral diamonds of A,
let A° be a positive integral diamond of A,,, and let {A"}o<t<p—1 be the minimal p—cycle
generated by A°.

(i) Let K be a labeling of an (n + 3) polygon, Theorem {4.2| implies that

Fugp) = g((afy, Ta(vgo), -, Tu(v0)))
= 9GO, To(v 40), T (v.40)))
= g(()‘lﬁ"">\n+1fa?1’0""70)) (422)

0
ar;

v
_ <lvl I nt1-afy 70 ZO)
17"'7n+1_a(1)17n_a(1)17"'7n7

then, there are af; — 1 diagonals from the vertex 0 to other vertices, i.e., there are
a9 triangles incident with vertex 0. Proposition allows us to establish that al,
is the number of triangles incident with the vertex ¢, for 1 <i <n 43, ¢ = pm and
1<m<p| (n+3). Therefore A° and F(v40) generate the same frieze pattern.

(ii) Let (Da(n41), R) be any Dyck paths category, we take objects of (Dy,41), 1) defined
by the following identity

Ob (Dan, R) = { P a;

Gi€D2n

gd(Ag,) and g(Ag,) are in the same mutation class},

(4.23)
we define the map ¢ : Dy, — Ob (Day,, R), such that

poa0) = f(va0) @ -~ D fluar-1),

with {A'}o<i<p—1, ¢ is surjective as a consequence of Theorem and Proposition
K8l O

For example, let D be an object of any Dyck paths category (@2(n+1), R) shown in Figure

11}

FIGURE 4.11. Examples of objects in a Dyck paths category.
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then, D has associated the following frieze pattern

4.2 Dyck-Brauer Configuration Algebras

In this section, we present a Brauer configuration and its Brauer configuration algebra
whose indecomposable projective modules are in bijective correspondence with Dyck paths.

4.2.1 Brauer Configuration and its Brauer Configuration Algebra Asso-
ciated to Dyck Paths

For n ﬁxed, let Mn = {aﬁf }Ognlgnfl, ni<na<n and Nn = {BZIQ}Ognlgnfl, ni<na<n be the
sets of letters, we define an alphabet I'j such that

6=4{0]1d€ M,ordeN,}. (4.24)

For I'j, we define a concatenation c in the following way:

JHl e s ]
a; 7, ifd=aj,

I ifd=al
c(6) = {7 4.25
@) offy, ifs=4p], (425

J e s _
Biyr, 6 =0,

for some t, and j. We take the set of the words V = §;...0d9, where §; = a(l) and
d; = ¢(0j—1) (this set is denoted by I'?). We will say that V <o V' if and only if there
exist r € Z~¢ such that

Ny =Ny if0<rg <,

N(/g > N‘C", if rg =, (4.26)

where N‘Cg is the number of alpha words before of the rg-beta word in V' ((T'1, <o)
is a linear order. For notation, the words V in I'; are labeling respect to <o, i.e.,
Vi=ah...apBy... .00, Va=aob...ad e tappy ... B0, etc.

Let I';, = (I'y, 'Y, i, O) be a Brauer configuration, where I'j, I'? as before, O is induced
by (I'1, <o), and the multiplicity function u is defined as follows:
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w: T'p— N
1, ifval 1
s u(é)z{’ if val(5) > 1, (4.27)

2, ifwval(d) =1,

for 6 € Tp. T’y is called a Dyck-Brauer configuration. The occurrence of § = ap?
(resp. 6 = f3;2) in a polygon V is given by the row n(ni) + ng in the recurrence matrix
Ap = (ay,,) (resp. B, = (b)) of T, X fn2 where Ay = (1) (resp. By = (1)) and A,

(resp. B,) is described in Table (see identity |A.2]).

We define paths a’ ...a} (resp. b;’/ ...bj.l, ) where {j1,...,jr} (vesp. {ji,....J.}) are
1 k!

indices of the matrix A, (resp. B,) such that a;j =1 (resp. by = 1) with j. < jr41

(resp. ., < j1’n ) for 1 < jr(resp. jl) < fa2and 1 <@ < T,,. If val(d) = 1, the path is

equal to a (resp b b ) Paths aé-l ...at and b, ...bY, induce special d;-cycles v; at

Jk " Ty
v in such a Way that:
ak.. ;k ;1...a§_1, if al =1 and 6 € M,
v; = { bl b;k/b; Lbiy, ifbi=1and § € N, (4.28)
0, otherwise.

In the same way, the relations in pr, are described by the following cases:

e Relations of type I.

i1 i1 01 i1 — .. =gl it it it
Js1 7T kg J1 7T Tdsi—1 7/ Jsg ]kt J1° 'l Jsp—17
it it it it _ 1 1 1 1
atl ..al al...an =b, bbb
Jst e 1 Jse=1 7 ey J1 Ty — 1’ (4.29)
b 1 b 1 b 1 b 1 — — b h b h bzh b h
]zl ]k/ 31 ]xl 1 ]zh ch’ ]1 th 1’
e . y . . .y y
lf ]31 = e = .]St - ]Il == = th fOI‘ 1 S ,781 S fn,27 {7'17"'7%7217"‘7’5}1} €
{1,...,7,} and t, h € Z~y.
e Relations of type II.
i i ir u zr
a]sl a]kl a]l .751 1 ]sl (4 30)
b ; b ’ b ; b ’ b ‘,’ ) '
xq jk/ jl j:cl 1 jzl
. . SN y
for some i, € {i1,... it} (i, € {i},...,in})
e Relations of type III.
¥ a’? | b b gl ol (4.31)

js Qg Qs Ot0 O Qg 0510515

for all possible combinations.

Ir, is generated by pr, and Dyck-Brauer configuration algebra Ar, is defined by kQr, /I, .
For instance, let I's = (T'3,T%,1,0) be the Dyck-Brauer configuration where 'y =
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{a[l)aa%7a%76[%75[2)76%} and Fl == {Vl = {a[l)7a%75375%}7 V2 = {aévﬂ(%?a%wB%}} with
V1 <o Va. Since the matrices Ay and Bg are

1 1 01
AQZ 1 0 BQZ 1 0 )
01 1 1

then fo) = w(B?) =1 and u(8) = 2 for § € {ad,a?, 3,8} Vi <o Va is the successor
sequence of vertex oz(l), Vi <o V4 is the successor sequence of vertex 87, V; (resp. Vb) is
the successor sequence of vertices a% and 68 (resp. a% and ﬁé). Figure shows the
quiver Qr,.

3

aj a% as
1

2 as 1

bl b2

FIGURE 4.12. Quiver of Dyck-Brauer configuration algebra Ar,.

Identities , , and induce the following relations,
ajay = (af)® = (b])* = bib, azay = (a5)° = (b)) = bibj,
a%a%a&? ( 2) (b2)3 b3b3b17 a2a1a%7 ( ) ) (b%):gv bgb?b%a
a%a%, a%a%, a%a%, alal, b3bQ, bib3, b3bl, bIb3, (4.32)
b2, a1b2, a2b2, a2b2, a2b1, a2b b2b1, alb
bia3, blal, bla3, blal, b3a?, bal, b2a?, biai.

Dyck-Brauer configuration algebra Ar, is defined in such a way that Ar, = kQr,/Ir, with
Ir, = {pr,). Figure shows the indecomposable projective Ap,-modules.

V1 V2
a2 % b \b? a3/ ab | b3 b
Pi: V1 (%) V2 U1 Py: V2 U1 U1 ()
@ \ b /b A\ ot | o !
J
U1 V2

FIGURE 4.13. Indecomposable projective Ap,-modules of Dyck-Brauer configuration algebra.
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4.2.2 Dimension of a Dyck-Brauer Configuration Algebra and the Di-
mension of its Center

We define a family of integer sequences that are in relationship with the Catalan

triangle. We also show that the Catalan triangle allows us to establish the dimension of
Dyck-Brauer configuration algebras and the dimension of its corresponding centers.

Let t; be the integer numbers such that

ti; =1,

. = " hifn > 1,

I Z;,“ (4.33)
r—s=i1—j
n—1<r<s

= 0if j <0,

fori > n—1and j < i+ 1. For example, Table shows integer sequences th for
n=2,...,5 (see Appendix).

The following results describe some properties of the integer numbers ti; and the Catalan
triangle.

1

Proposition 4.9. 7, =7, | + tff__Lj, fori>1, j<i,andl <n<i+1.

Proof. By induction. If : = 1, til = té,l + tio = 1. Suppose that the proposition holds
fori=kandl<n<k+1 Thenfori=k+1,ifn=2,

2 _ 1 _ . _ 1 1 42 1
lpt1,j = Z ts=k—j)+1= Z brs Tl = U1 j—1 T U jo
k+1—j=r—s k—j=r—s
1<r<k+1 1<r<k+1

suppose that the assertion is true for n = p—1 < k+ 1, then

p _ p—1
By = 2 th

k+1—j=r—s
p—1<r<k+1
— § : p—1 E ' p—2
- tr,s + tr,s
k+2—j=r—s k—j=r—s
p—1<r<k+1 p—2<r<k

_ 4P p—1
= tpp1-1 T,

Proposition 4.10. t7, ., =t;, fori>1and1 <n <i+1.

)

Proof. We proceed by induction. If i =1, t%g =1= til. Suppose that the assertion is
true fori=kand 1 <n<k+1. Thenfori=k+1,ifn=2,

2 _ 1 _ 1 _ 42
tk+17k+2 - E : tr,s - Z tr,s - tk—i—l,k-‘,—l?

—1l=r—s 0=r—s
1<r<k+1 1<r<k+1
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suppose that the property is true for n =p — 1 < k + 2, then

p § : p—1 _ E : p—1 __ 4p
tk+1 k+2 — tr,s - tr,s tk:—i-l k+1°
l=r—s O=r—s
p—1<r<k+1 p—1<r<k+1

n
Lemma 4.6. f, n11-m = Ztgll’j, form>1,1<m<n.
i=1

Proof. By induction. If n =1, fi1 =1 = t(l)vl. Suppose that satisfies for n = k and

k+1
1<m<k. Thenforn=%k+1,ifm=1, Ztk,j =k +1= frpt1x+1, suppose that the
j=1
property holds for m =p —1 < k + 1, then
k+1
1y -1
2ty = 2 e )
j=1 r—s=k—1
p—1<r<k p— 1<r<k

k+1

= Y el D t5’751+2#’1

r—s=k—1 r—s=1
p 1<r<k-—1 p—1<r<k—1
k+1

- Ztk Lj th :

= fk,kJrl*p + fk+1,k+37p

ki1
= frk+1—p+ Z fri
i=k+2—p
kt1
= > fri = ferthiop-
i=k+1—p

Proposition 4.11. f,, 11— = tn 1 form>1and1 <m <n.

Proof. We proceed by induction. If n =1, fi1 =1= tiz. Suppose that the assertion is

true forn=kand 1 <m < k. Thenforn=k+1,if m=1,

1 2
feti g1 =k+1= E by = o1 kt2s
—l=r—s
1<r<k+1

suppose that the property holds for m =p — 1 < k+ 1, then



CHAPTER 4. SOME APPLICATIONS OF CATALAN NUMBERS 105

k+1
f = ty
k+1k4+2—p = k,j
j=1

= T oatees 3o
r—s=1

r—s=k—1 —s=
p—1<r<k p—1<r<k
k+1 p

_ p=1 p—1

= Doty e
j=1 j=1

= ferigript o+ fp1 (Lemma [4.6))
p p
izt T lppn

— tp+1
= Uktikt2
O
C1 m
Given a matrix C' = (¢; ;) of n x m, M(C) is the column vector | : | where ¢; = Z Cij-
Cn J=1
a
0 if1<j<
Also, M(C); is the column vector [ : | such that ¢f = ¢~ 1 =7 = 7,4’ and
. cj, ifr+1<j5<n,
Cn
— “ ) if1<j<n,
M(C), is the column vector | @ | with ¢} = T T For example,
T Cj—r, ifr+1<j<n.
Cn
2 0 0
M(A2)0 = 1 y M(Ag)l = 1 s and M(A2)1 = 2. (434)
1 1 1

Henceforth, we introduce a formula for the valency of the vertices of Dyck-Brauer config-
uration I'), via the vectors M (A,) and M (B,), in the following way:

Lemma 4.7. Let A, and By, be the matrices given by Table[A.5. Then

M(Ay), ifi =0,
(Z) M(A;zfn,i+l) _ M(A:L_Lfn,i)l7 ifi —1,
M(A;—l,fn,i)i + M(A:L—_Ql,f(n—l,i—l))n’ ’Lf2 <i<mn-— 17
. M(B,), ifi=0 ori=—1,
(i) (g < MDY
M(Bn 3 n,l+1)i + M(Bn_l’ nfl,z)n7 Zf 1 S Z S n— 17

forn > 0.

Proof. (i) Let A, = (a}},,) be the matrix of T;, X f, 2, and let Al = (ait,) be the
matrix of T, X fp;+1 such that satisfying identity

. 0, fn1 o . ,
(1.1) If i = 0, AYT1 is a matrix with fn,1 columns, since f,1 = fn2, apy, = Qs then
n,0

Ay = ay for 1 <u <T,.
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. Lifnz - o .
(1.2) If i = 1, An’f 2 is a matrix with f, 2 columns, aﬁj}u = Ay, for 2 <u < T, ie,
a! = aq, for 2 < u < T,, and a?’l =0.

(13) If2<i<n-1, Af{f”’i“ is a matrix with f, ;41 columns, this matrix is equal to

matrix Ai;l’f ™" by removing the row i — 1 and the columns between f, ;11 and f i,

matrix A, implies that in these columns the elements between the rows n + 1 and
=2, fn—1,i-1

T, are given by the matrix A, 7 , L.e.,
fn,i fnfl,ifl
ng _ nyi—1 n—1,-2 _ ni-1 n—1,i—2
a," = g Qi — Uyl = =y
j=1 j=1

forn+1<u<T, and a® = 0 otherwise.

The case (i7) is similar to case (7). O

Proposition 4.12. Let A,, and B, be the matrices given by Table[A.5. Then:

. ng __ n+l—k .
(i) au” = fk,l-i-u_(Tn_Tk)tn—k—i—u—(Tn—Tk—f—l),n—k—s—u—(Tn—Tk—i—l)—(i—l)’ forO<i<n-—1,

(i) bp' = fk—1,u—(Tn—Tk)tZi—II€1ﬁ7(Tn7Tk),nfk (i Jor 1< i<n—1,
with Ty, — Ty, <u<T,—Tp_1 for 1 <k<n, andn > 1.
Proof. (i) (Induction) For n = 2. If i = 0, by Lemma M(Ag’f“) = M(A3), then

20 _ o _ 1
a% 0 =2= f2,2t0,17
b — _ 1
a% 0 =1= f273t1,27
b J— R 2
a3 — 1 — f172t1’2.

If i =1, by Lemma M(A;’fz’z) = M(Az2)1, then

P 1
a% . =0= f2,2t0,0a
b JR— — 1
a% L 1= f1,2t1,1a
b PR— — 2
az” =1= fiatyy,

(see identity [4.34]). Suppose that the assertion is true for n = m and 0 < i < m. Then for
n=m+1if i =0, M(AN"Y) = M(Ayp) (Lemmald7), it 0 < w < m+ 1,

m+1,0 _ _ 1
Ay, = fmtLitu = o1 ituly—1u-

For the rows between m + 2 and T},41,

m—1

m+1,0 _ Z f tm+17k

u - k1+u—(m41)—(Tm—Tk) “m—k4u—(m+1)—(Trn =Tk —1+1),;m—k+u—(m~+1)— (T =Ty — 1 +1)— (i—1)
i=0

m—1
= Jk1tu—(Tmt1—T) m—k4u—(Tpy1—Tp_14+1),m—k+u—(Trmp1—Th_1+1)—(i—1)
i=0

= fk,l+u—(Tm+1 —Tx) fm—k+u—(Tm+1—Tk),u—(Tm+1 —Tx) (Lemma

— m+2—k "
= f’“l*“*(TmH*Tk)tmkaruf(TmHka),mfmuf(TmeTk)H (Proposition |4.11)),
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with 1 < k <m.

It i = 1, M(A?) = MADAY)) (Lemma 7). then, af ™! = 0= finj12t o, and

1,1 1,0
aLnJr ) — aLnJr
_ f tm+2—k
- k71+u_(Tm+1_Tk) m7k+uf(Tm+17Tk),mfk+uf(Tm+17Tk)+l

— m+2—k oys
= Skt u— (T 1=T) bt s (T s 1~ Tt (T s 1—T) (Proposition ,

for T41 — Tk <u < Tpyp — Tk—1 withu # 1, and 1 <k <m+ 1.

Suppose that the property is true for i = p — 1 < m, then for ¢ = p, then M =
_ —2
(Ai;iwiﬂ,pﬂ) _ M(Ail_&ifmﬂ,p)p + ]\4(1421 ,f(m,p—l))m_i_l (Lemma ’ for 1<u<p

m+1lp _ 0 _ 1
Qa,, P = 0= fm+1,1+utu—1,u—p7

forp+1<u<m+1

m+1p _  m+1lp—1 __ 1 _ 1
Ay, =y, - fm+1,1+utu71,u+lfp = fm+1,1+utu71,ufp)

for u>m+1,

m+1lp f tm+2—k

u = JEI+u—(Tms1—Tk) "mA1—k+tu—(Tnp1 — T +1) ;mA+1—k+u—(Trny1 —Ti+1)— (p—2)
k

+1-
_fk,i"‘“‘(m"‘l)_(Tm—Tk)tsz+uf(m+1)f(Tmka+1),mkaruf(erl)f(Tmek+1)7(p73)’

a

Proposition 4.9 implies that

aerl,p _ f ) tm+2—k‘
u = Jkjitu—(m+1)—(Tm—Tk) "m+-1—k+u—(Tmg 1 —Tp+1),m+1—k+u—(Tmg1—Te+1)—(p—1)°
for 1 <k < m. The case (i1) is similar to case (7). O

For notation w : N — {1,2} is a map where

1, ifn#2,
w(n) = .
2, ifn=2

The following result regards dimension of Ar, and its corresponding center.

Theorem 4.4. Let Ar, be a Dyck-Brauver configuration algebra. Then

T,
(i) dimy,(Ar,) = 2(Cp +w(n)) + Y (ai®)? + (0°)? — (al” + b0,

u=1

(i1) dimp(Z(Ar,)) =1+ 2w(n) + Cp,
forn > 0.

Proof. (i) Firstly, we note that the number of vertices in Qr, is the n—th Catalan

number. Secondly, we note that val(ap?) (resp. val(f?)) is given by aZ’(?m i, (TESD.
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27(?11) +ny)- As a consequence of Proposition (4.12 we have that ar® =1 = 2" for any
n. In particular case, when n = 2, also, ag’l = bg’l = 1. Finally, recall that identity
describes the multiplicity function. (ii) The number of loops in Qr,, is equal to the

number of elements in the set Cr, . u

a

2,0 2,0 20 _ 20 _ ;20 _ 32,0 _
For example, for n =2, a7 =2 =103, and a3 = a3" =b]" = b, =1, then

dimk(AFQ) (Cg + w(2)) +12 -8

=2
—2(2+2)+4=12

and
dim(Z(Ar,)) =14+2w(2)+Cy =T.
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Appendix
n\m|0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18
2 0
3 0 1
4 01 2 3
5 01 2 4 45 6 7
6 |01 25 4 6 8 11 8 9 10 12 12 13 14 15
7 |01 2 6 4 7 10 16 8 10 12 17 16 19 22 26 16 17 18
TABLE A.1. Elements of the sequence C).
n\r| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1
2 2
3 4 5
4 8 11 12 11
5 |16 23 26 26 26 29 28 23
6 |32 47 54 57 56 64 64 57 54 65 68 64 64 65 60 47
7 |64 95 110 120 116 135 138 130 116 140 148 145 144 149 142 120
TABLE A.2. Number of sections in the case A,,.
Table [A.2

(A”)

The number S, Jigi;.i,, (see, formula and Remark of sections in the

JoJ1---dm

Auslander-Reiten quiver of the path algebra kA,, where A,, is an oriented Dynkin diagram
of type A,, with 7, < n sinks.

109
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n and n-1 are sources

n\ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 17

5 45 46

6 109 118 119 112

7 253 278 287 284 284 290 283 260

8 573 630 659 664 660 686 683 652 649 684 690 668 671 670 643 588
n is a source and n-1 is a sink (viceversa)

4 14

5 38 42

6 94 106 110 108

7 222 250 262 266 264 276 274 258

8 510 570 602 616 608 642 646 628 606 648 660 650 650 656 638 592

n and n-1 are sinks

4 14

5) 36 43

6 88 103 110 112

7 208 239 254 263 260 278 280 269

8 480 543 5HT78 H98 H8 629 638 628 592 642 660 659 656 670 658 618

TABLE A.3. Number of sections in the case I, .

Table Rows give the value of n and columns give the location of the underlying
graph A/, o, with

TABLE A.4. Examples of integer numbers ¢7' .

w r—1
=l N o=l e g S,
2k . (A1)
0, if j, = 0.
nli\j|1 2 3 4 5 6|n[l 2 3 4 5 6
2111 1 4
2 (1 2 2
31123 3 13 5 5
411 2 3 4 4 1 4 9 14 14
511 23 4 5 5 1 4 10 19 28 28
2 11 2 2
31135 5
41136 9 9 1 4 9 14 14
511 3 6 10 14 14 1 5 14 28 42 42
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“r

“

T—u

I—u

I—u I—u I—u I—u
:J\ivk:‘_ﬂ\m. Amrﬁ\ﬁvkxom AH\.NJ\\SV.\:M\.@m. ?J\Qv.\."m\wm AH\\:J\CV\;N\QM Aﬁrﬁ\ﬁvkwm\ﬁm
T
T !
T T
1 T
T T
T T
N"Q.\. mb:‘\‘ .\tﬁwﬁ HLI::\. ﬁr:.\. Tfiﬁ.\.
I—u I—u I—u I—u TI—u
Qilﬁv.\;O@\ ANJI:.V.\.J@\ Aﬁlﬁﬁltv.\.rmlwv\ Qilﬁvkgﬂ|w¢\ :I:JI:V.\;N|§@\
!
T T T
T T T T T
1 S I S I S 1
[ I S I I I S I
T T T T A T A ! T A | T
N?C.\. MTS.\. .s_:.\. ﬂAI“ﬁ.\. :hﬁ.\. ﬁ+§,§,\.

TABLE A.5. Matrix A, (left) and matrix B, (right).

w)) is a matrix of T;, X fp ;41 (resp.

-3

1

~
by
£
o
NS
Q

S,

wn

)

o
S~—
—~

2
<3
S

I
+=>
o ®
+ =
I =

<
< g
<SR u
<< @
N
Sl Es
e
QO

=
2 X
© e
H &~

(A.2)

)

if u > 1,
ifu<i

Ay, (resp. byw)

|

7,7
u,W

(resp. b

n,%
Ay
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for0<i<n—1(resp. -1 <i<n-1), A, = (au’w)Tanm2 (resp. B, = (busw) T x f2)-
The number f; ; belongs to the triangle described in (4.9) with fo1 = 1.
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