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Bogotá, D.C.

July, 2020.



Categorification of Some Integer Sequences and Its
Applications

Pedro Fernando Fernández Espinosa

Thesis work to obtain the degree of
Doctor in Mathematics

Advisor
PhD. Agust́ın Moreno Cañadas
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Title

Categorification of Some Integer Sequences and Its Applications.

Abstract: Categorification of real valued sequences, and in particular of integer se-
quences is a novel line of investigation in the theory of representation of algebras. In
this theory introduced by Ringel and Fahr, numbers of a sequence are interpreted as
invariants of objects of a given category. The categorification of the Fibonacci numbers
via the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver is an example
of this kind of identifications.

In this thesis, we follow the ideas of Ringel and Fahr to categorify several integer
sequences but instead of using the 3-Kronecker quiver, we deal with a kind of algebras
introduced recently by Green and Schroll called Brauer configuration algebras. Rela-
tionships between these algebras, some matrix problems and rational knots are used to
interpret numbers in some integer sequences as invariants of indecomposable modules
over path algebras of the 2-Kronecker quiver and the four subspace quiver.

The results enable us to define the message of a Brauer Configuration and labeled
Brauer configurations in order to give an interpretation of the number of perfect match-
ings of snake graphs, the number of homological ideals of some Nakayama algebras, and
the number of k-paths linking two fixed points (associated to the Lindström problem) in
a quiver as specializations of indecomposable modules over suitable Brauer configuration
algebras. Actually, this setting can be also used to define the Gutman index of a tree
(or the trace norm of a digraph, which is a fundamental notion in the topological index
theory), magic squares, and different parameters of traffic flow models in terms of this
kind of algebras.
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Introduction

According to Ringel and Fahr [20] a categorification of a sequence of numbers means to
consider instead of these numbers suitable objects in a category (for instance, representa-
tion of quivers) so that the numbers in question occur as invariants of the objects, equality
of numbers may be visualized by isomorphisms of objects functional relations by functo-
rial ties. The notion of this kind of categorification arose from the use of suitable arrays
of numbers to obtain integer partitions of dimensions of indecomposable preprojective
modules over the 3-Kronecker algebra (see Figure (1) where it is shown the 3-Kronecker
quiver and a piece of the oriented 3-regular tree or universal covering (T,E,Ωt) as de-
scribed by Ringel and Fahr in [19]). Firstly, they noted that the vector dimension of
these kind of modules consists of even-index Fibonacci numbers (denoted fi and such that
fi = fi−1 + fi−2, for i ≥ 2, f0 = 0, f1 = 1) then they used results from the universal
covering theory developed by Gabriel and his students to identify such Fibonacci numbers
with dimensions of representations of the corresponding universal covering.

◦
1

◦
2

• •
• •• •
• •
• •
• •• •

• •

Figure 1. The 3-Kronecker quiver and an illustration of its corresponding universal covering.

For the sake of clarity, we give here a brief insight into the program of Ringel and Fahr.

First of all, we note that the road to a categorification of the Fibonacci numbers has
several stops some of them dealing with diagonal (lower) arrays of numbers of the form
D = (di,j) with 0 ≤ j ≤ i ≤ n, (columns numbered from right to the left, see Figure 2) for
some n ≥ 0 fixed and such that:

di,i = 1, for all i ≥ 0,

di,j = 0 for all j > i

d2k+i,i−1 = 0, if i ≥ 1, k ≥ 0,

d2k,0 = 3d2k−1,1 − d2(k−1),0, k ≥ 1,

di+1,j−1 = 2di,j + di,j−2 − di−1,j−1, i, j ≥ 2.

(1)

VI
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Besides, if i ≥ 4 then the following identity (hook rule) holds;

i−2∑
k=0

di+k,i−k + d2i−2,0 = d2i−1,1. (2)

Note that to each entry di,i−j it is possible to assign a weight wi,i−j such that:

wi,i−j =


3 · 22b i−j

2
c+a, if j is even, i 6= j,

0, if j is odd, i 6= j,

1, if i = j = 2h for some h ≥ 0.

Where bxc is the greatest integer number less than x, a ∈ {0,−1}, a = −1 if i is even, it
is 0 otherwise.

The first stop consists of defining partitions of the even-index Fibonacci numbers in the
following form:

f2i+2 =

i∑
j=0

(wi,i−j)(di,i−j), (3)

to do that, Ringel and Fahr interpreted weights wi,i−j as distances in a 3-regular tree
(T,E) (with T a vertex set and E a set of edges) from a fixed point x0 ∈ T to any point
y ∈ T . They define sets Tr whose points have distance r to x0, in such a case T0 = {x0},
T1 are the neighbors of x0 and so on. A given vertex y is said to be even or odd according
to this parity [19].

Any vertex y ∈ T yields a suitable reflection σy on the set of functions T → Z with finite
support, denoted Z[T ], and some reflection products denoted Φ0 and Φ1 according to the
parity of y are introduced in [19]. Then some maps at : N0 → Z ∈ Z[T ] are defined in
such a way that if a0 is the characteristic function of T0 then a0(x) = 0 unless x = x0 in
which case a0(x0) = 1, and at = (Φ0Φ1)ta0, for t ≥ 0, with at[r] = at(x), for r ∈ N0

and x ∈ Tr, these maps at give the values di,j of the array (1). The following table is an
example of such array with n = 12. Rows are giving by the values of t, Pt is a notation
for a 3-Kronecker preprojective module with dimension vector [f2t+2 f2t] (see [21]).
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Figure 2. The even-index Fibonacci partition triangle.

For example for t = 3 and t = 4, we compute f8 and f10 as follows;

21 = f8 = 0 + 3(3 · 20) + 0 + 1(3 · 22),

55 = f10 = 1 · 7 + 0 + 4(3 · 21) + 0 + 1(3 · 23),
(4)

sequences at[0] = d2i,0 and at[1] = d2i+1,1 are encoded respectively as A132262 and
A110122 in the OEIS (On-Line Encyclopedia of Integer Sequences). Actually, sequence
at[0] had not been registered in the OEIS before the publication of Ringel and Fahr.

A second stop of the trip to a categorification of Fibonacci numbers consists of giving a
generalization of the results obtained in [19]. In order to reach such a goal Ringel and
Fahr adopted in [20] a notation

∑x (
∑x) for the composition of all the reflections σy

with {x, y} ∈ E and d(x, y) being even (the composition of all reflections σy with d(x, y)
being odd). In particular, Φ0 =

∑x0 and Φ1 =
∑x0 . Some Fibonacci vectors st(x),

t ≥ 0 and rt(x, y), t ∈ Z are defined recursively as follows; s0(x) = s(x) which is a
generator associated to a vertex x of the free abelian group K0(T ) generated by T and
r0(x, y) = r(x, y) = s(x) + s(y)

st+1(x) =

{∑xst(x), if t is even,∑xst(x), if t is odd.
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rt+1(x) =

{∑xrt(x, y), if t is even,∑xrt(x, y), if t is odd.

Note that, s2t(x0) = at, s2t+1(x0) = Φ1at and

st(x)− =
∑

d(x,z)6≡t mod 2

st(x)z = f2t,

st(x)+ =
∑

d(x,z)≡t mod 2

st(x)z = f2t+2,

rt(x, y)− =
∑

d(x,z)6≡t mod 2

rt(x, y)z = f2t−1,

rt(x, y)+ =
∑

d(x,z)≡t mod 2

rt(x, y)z = f2t+1.

(5)

Ringel and Fahr [20] proved that if x ∈ T with neighbors y, y′, y′′ and for an integer
t ≥ 1 Pt(x) is an indecomposable representation of the quiver Q = (T,E,Ωx

t ) (Ωx
t is a

bipartite orientation such that x is a sink in case t is even and a source in case t is odd)
with dimension vector st(x) and Rt(x, y) is an indecomposable representation of Q with
dimension vector rt(x, y), assuming that for even t the vertex x is a sink and for t odd the
vertex x is a source then there are exact sequences:

0→ Pt−1(y)→ Pt(x)→ Rt(x, y)→ 0

0→ Pt−1(y′)→ Rt(x, y)→ Rt−1(y′′, x)→ 0.
(6)

They also proved that if x0, x1, . . . , xt is a path with x0 a sink. Then Pt(xt) has a filtration

P0(x0) ⊂ P1(x1) ⊂ · · · ⊂ Pt(xt) with factors

Pi(xi)/Pi−1 = Ri(xi, xi−1), 1 ≤ i ≤ t.
(7)

Another result regarding categorification of integer sequences found out by Ringel and
Fahr states that if x0 is a source and x−1, x0, . . . , xt, xt+1 is a path with zi a neighbor of
xi different from xi−1 and xi+1 then there is an exact sequence

0→ P0(z0)⊕ · · · ⊕ Pt(zt)→ Rt+1(xt, Xt+1)→ R0(x−1, x0). (8)

Exact sequences (6) and (8) and filtration (7) are respectively categorifications of the
identities

ft+1 = ft−1 + ft,

f2t+1 = 1 +

t∑
i=1

f2i and

f2t =
t∑
i=1

f2i−1.

(9)
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Finally, we also recall that the Auslander-Reiten sequences

0→ Pn−1 → P 3
n → Pn+1 → 0 and

0→ Rn−1,λ → E(n, λ)→ Rn+1,λ → 0
(10)

where E(n, λ) is an indecomposable module having dimension vector 3(dimR(n, λ)) are
categorifications of the identity

ft−2 + ft+2 = 3ft. (11)

In a third stop of the road to a categorification of Fibonacci numbers Ringel and Fahr [21]
named the array (1) a Fibonacci triangle and stated that its entries (nonzero entries) are
categorified by the modules Pn = Pn(x) (called Fibonacci modules) provided that such
entries give the Jordan-Hölder multiplicities of these modules.

We also remind that Ringel in [54] made a discussion regarding the role of the represen-
tation theory of representation-finite hereditary artin algebras in the categorification of
the Catalan combinatorics, which consists of all the enumerating problems whose solution
is given by the sequence of Catalan numbers with the form 1

n+1

(
2n
n

)
, for instance, if Λn

denotes the path algebra of the linearly ordered quiver of type A then the lattice of ex-
ceptional subcategories of mod Λn denoted A(mod Λn) may be identified with the lattice
of non-crossing partitions as introduced by Kreweras in [43], Fomin and Zelevinsky [22]
also observed that there is a bijection between these partitions and the number of clusters
for the cluster algebra associated to a certain orientation of a Dynkin diagram which is a
Catalan number. An axiomatic point of view of the categorification of these combinato-
rial data and additional bijections associated to Catalan objects are given respectively by
Hubery and Krause in [39] and Ingalls and Thomas in [40].

The idea of using the theory of representation of algebras to categorify Catalan numbers
goes back at least 30 years, for example Gabriel and De la Peña proved in [24] that Catalan
numbers count the number of discrete subsets contained in the set of representatives of
isoclasses of indecomposable finite-dimensional modules over Λn.

Ringel argues in [54] that formulations concerning counting of modules are meant as
a short form for counting isomorphism classes of modules. In particular he introduces
Dynkin functions, which are functions attaching to any Dynkin diagram an integer (or
more generally a real number, sometimes even a set or a sequence of real numbers).
A Dynkin function f has associated four sequences f(An), f(Bn), f(Cn), f(Dn) and five
single values f(E6), f(E7), f(E8), f(F4), and f(G2). The number r(∆n) of indecomposable
modules over hereditary artin algebras Λ of Dynkin type ∆n, c(∆n) the number of complete
exceptional sequences or tn(∆n) the number of tilting modules (multiplicity free) are
examples of Dynkin functions. Worth noting that tn(An) is the nth Catalan number,
thus tilting modules over algebras of type An categorify in the sense of Ringel and Fahr
the Catalan numbers as well. Ringel also proposes to create an On-Line Encyclopedia of
Dynkin Functions with the same purposes as the famous OEIS.

Regarding results in combinatorics, we recall that recently several mathematicians have
studied snake graphs, which are combinatorial objects arising from the research of cluster
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algebras. They allowed to Çanakçi and Schiffler to compute the Laurent expansions of the
cluster variables in cluster algebras of surface type. The terms in the Laurent polynomial
of such variables are parametrized by the perfect matchings of the associated snake graph
[53,56–61]. Such graphs were studied by Prop [53] in the context of the investigation of the
Laurent phenomenon, which is a problem of paramount importance in the theory of cluster
algebras. Prop proved that two examples of rational recurrences, the two-dimensional
frieze patterns of Conway and Coxeter and the tree of Markoff numbers-relate to one
another and to the Laurent phenomenon. In the program of Prop perfect matchings of
snake graphs derived from triangulations of polygons are linked with frieze patterns of
Conway and Coxeter.

Prop in [53] also reported an interesting connection between snake graphs and continued
fractions, according to him, work of Benjamin and Quinn in the context of the strip tiling
model, shows how combinatorial models can illuminate facts about continued fractions.
In [56–60] Çanakçi and Schiffler go beyond Prop by proving that each snake graph G

has associated a unique continued fraction whose numerator is given by the number of
perfect matchings of a suitable snake graph. They report that snake graphs provide a
new combinatorial model for continued fractions allowing to interpret the numerators and
denominators of positive continued fractions as cardinals of combinatorially defined sets.

Regarding applications of the theory of snake graphs we recall that recently Çanakçi
and Schroll [61] defined abstract string modules associating to each of such modules a
suitable snake graph, whose lattice of perfect matchings is in bijective correspondence
with the lattice of submodules of such abstract module. In this work, the number of
perfect matchings of a snake graph is interpreted as the message of a labeled Brauer
configuration. The same is done for the number of k-paths connecting two fixed points u
and v in an acyclic finite digraph.

Concerning categorification of integer sequences we follow the ideas of Ringel et al. to
categorify some integer sequences but instead of using finite-representation algebras or the
3-Kronecker algebra, we use the 2-Kronecker algebra (or simply the Kronecker algebra)
and Brauer configuration algebras (introduced recently by Green and Schroll [31]) to
obtain categorifications of sequences A005258 and A100705 in the OEIS. Such Brauer
configuration algebras are defined by configurations of some multisets called polygons.

Let us point out more clearly some differences and similarities between the work of Ringel
and Fahr and our approach. Firstly, we note that in the scenario of Ringel and Fahr, Fi-
bonacci numbers (sequence A000045 in the OEIS) are categorified by identifying informa-
tion arising from the preprojective (preinjective and regular) component of the Auslander-
Reiten quiver of the 3-Kronecker quiver with information arising from indecomposable
representations of an oriented 3-regular quiver by using the theory of universal covering,
whereas in our proposal numbers in the sequences n!( ((−1)n+2n+3)

4 ) (A052558 in the OEIS)
and n3 + (n+ 1)2 (A100705 in the OEIS) are categorified by identifying information aris-
ing from the preprojective components of the Auslander-Reiten quiver of the 2-Kronecker
quiver and the category rep P of k-linear representations of four incomparable points with
information arising from indecomposable modules over some suitable Brauer configura-
tion algebras. We recall here that the Kronecker problem is equivalent to the problem of
determining the indecomposable representations over a field k of the following quiver Q
(2-Kronecker quiver):
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Q = ◦
0

◦
1
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hh (12)

whereas to determine the indecomposable representations of four incomparable points (a
tetrad) is a very well known matrix problem named the four subspace problem (FSP).
The solution of this problem is equivalent to determine all of the indecomposable repre-
sentations of the four subspace quiver with the following form [28,49,65,74]:

◦
1

◦
2

◦
3

◦
4

◦
5

We will see that indecomposable representations of the quivers associated to Brauer con-
figuration algebras are categorifications of polygons and if to each polygon it is assigned
a number of an integer sequence then such indecomposable representations are categorifi-
cations of the corresponding numbers in the sequence. In fact, since polygons in Brauer
configuration algebras are multisets, we will often assume that such polygons consists of
words of the form

w = xf11 x
f2
2 . . . xfk−1xfkk (13)

where for each i, 1 ≤ i ≤ k, xi is an element of the polygon called vertex and fi is the
number of times that the vertex xi occurs in the polygon. In particular, if vertices xi in
a polygon V of a Brauer configuration are integer numbers then the corresponding word
w will be interpreted as a partition of an integer number nV associated to the polygon V
where it is assumed that each vertex xi is a part of the partition and fi is the number of

times that the part xi occurs in the partition and w = nV =
n∑
i=1
xfii .

Finally, we remind that in [6] Auslander, Platzeck and Todorov introduced homological
ideals or strong idempotent ideals. These ideals arise from the research of heredity ideals
and quasi-hereditary algebras. For these ideals the corresponding quotient map induces
a full and faithful functor between derived categories. Recently, homological ideals have
been studied in different contexts, for instance Gatica, Lanzilotta and Platzeck and inde-
pendently Xu and Xi established some relationships with the so called finitistic dimension
conjecture and the Igusa-Todorov functions [26]. Furthermore, De la Peña and Xi in [17]
and Armenta in [4] studied the impact of these ideals in the context of Hochschild coho-
mology and one point extensions. In this work, via the integer specialization of a suitable
Brauer configuration algebra and its corresponding message we give a categorification of
Fibonacci numbers by using homological ideals.
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As an example of the practical applications of our results, we define parameters in traffic
flow models by using, in particular, the dimension of the center of some Brauer configu-
ration algebras.

Main results, contributions, papers and conferences

This research regards the categorification of some integer sequences and its applications.

Contributions

The following are the main contributions:

1. The notions of message of a Brauer configuration and labeled Brauer configuration
are introduced.

2. It is given an explicit formula for the number of perfect matchings of snake graphs
via the message of some Brauer configurations algebras.

3. Suitable labeled Brauer configurations are used to define determinants, and as a
consequence, solutions of some very well known problems, as the paths problem
solved by Lindström, Gessel and Viennot can be interpreted as specializations of
Brauer configurations.

4. It is introduced the notion of Kronecker snake graph, these kind of snake graphs allow
us to build non-regular modules of the Kronecker algebra. Preprojective Kronecker
tangles and the group structure of the preinjective Kronecker snake graphs are also
introduced in this work.

5. A categorification in the sense of Ringel and Fahr is given to some integer sequences
arising from some matrix problems as the Kronecker problem and the four subspace
problem.

6. It is given the number of homological ideals associated to some Nakayama algebras
via the integer specialization of a suitable Brauer configuration algebra and its cor-
responding message. Moreover, we use the number of homological ideals to establish
an alternative partition formula for even-index Fibonacci numbers.

7. As a practical application, Brauer configuration algebras are used to define param-
eters of traffic flow models.

Papers

Results of this research allowed us to submit the following manuscripts for possible pub-
lication:

1. Brauer Configuration Algebras and Matrix Problems to Categorify Integer Se-
quences, 2021. Submitted.

2. On Some Relationships Between Snake Graphs and Brauer Configuration Algebras,
2020. Accepted in Algebra and Discrete Mathematics.
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3. Homological Ideals as Integer Specializations of Some Brauer Configuration Alge-
bras, 2020. Accepted in Ukrainian Mathematical Journal.

Conferences

The main results of this research have been presented in the following conferences.

1. Maurice Auslander Distinguished Lectures and International Conference, Woods
Hole Oceanographic Institute. Woods Hole MA-USA, 04-2017.

2. Coloquio Latinoamericano de Álgebra-PUCE. Quito-Ecuador, 08-2017.

3. Isfahan School and Conference on Representations of Algebras. Isfahan-Irán, 04-
2019.

4. Primer Encuentro de Estudiantes de Posgrado en Matemáticas, Medelĺın-Colombia,
02-2020.

Research stays

The author is indebted with the following institutions and academics for his warm hospi-
tality during his several research stays.

1. Bielefeld Representation Theory Group and seminar (BIREP), Faculty of Mathe-
matics, Universität Bielefeld, Bielefeld- Germany, Professor Henning Krause.

2. Algebra seminar IMERL at Instituto de Matemática y Estad́ıstica Rafael Laguardia
(IMERL), Montevideo-Uruguay, Professor Marcelo Lanzilotta Mernies.

3. Representation theory seminar at the Centro de Investigación en Matemáticas A.C.,
CIMAT, Guanajuato, México, Professor José Antonio Stephan De la Peña Mena.

4. Algebra seminar at the Instituto de Matemáticas, Universidad de Antioquia,
Medelĺın-Colombia, Professor Hernán Giraldo.

This thesis is distributed as follows:

Chapter 1 aims to present a theoretical introduction to the Brauer configuration algebras,
matrix problems, snake graphs, binomial trees and tangles, as well as, definitions and
notation to be used throughout the work.

In Chapter 2, message of a Brauer configuration and labeled Brauer configurations are
introduce. These concepts allow us to obtain an explicit formula for the number of per-
fect matchings of a snake graph and establish a connection between Brauer configuration
algebras and path problems as the Lindström problem. Besides, we introduce the notion
of Kronecker snake graphs, which are useful to describe in an alternative fashion the non-
regular Kronecker indecomposable modules. Regarding the preprojective Kronecker snake
graphs, the message of a suitable Brauer configuration algebras allow us to obtain the
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preprojective Kronecker tangles and the group structure of preinjective Kronecker snake
graphs is described as well.

In Chapter 3, some integer sequences arising from some flat matrix problems are categori-
fied, to do that, we define Brauer configuration algebras whose indecomposable projective
modules are in bijective correspondence with some solutions of these matrix problems.
In this chapter, the energy value of some preprojective trees is given via the message of
some suitable Brauer configuration algebras. Moreover, we define parameters in traffic
flow models by using the dimension of the center of some Brauer configuration algebras.

In Chapter 4, an introduction to homological ideals is presented. Besides, we prove some
combinatorial conditions which allow to establish whether an idempotent ideal in some
Nakayama algebras is homological or not. We also give the number of homological ideals
associated to these algebras via the integer specialization of a suitable Brauer configura-
tion. Moreover, we use the number of homological ideals to establish an alternative version
of the partition formula for even-index Fibonacci numbers given by Ringel and Fahr in
[19] attaining in this way a new algebraic interpretation for these numbers.

Finally, in Chapter 5 we present an application of Brauer configuration algebras in com-
binatorics. In this part of the work following the ideas described by Ringel and Fahr the
Brauer configuration algebras and some suitable specializations are used to categorify the
magic squares of order n for 3 ≤ n ≤ 9.



CHAPTER 1

Preliminaries

In this chapter, we present basic definitions and notations to be used throughout this thesis.
Section 1.1 is devoted to matrix problems, in particular we remind the Kronecker problem
and the four subspace problem. Some facts regarding quivers of finite representation
type and Brauer configuration algebras are given in sections 1.2 and 1.3, respectively.
Binomial trees, cluster algebras and snake graphs are described in sections 1.4, 1.5, 1.6.
Finally, some classical definitions and results regarding tangles are also given in section
1.7 [3, 5, 22,23,25,41,53,57,58,65].

1.1 Matrix problems

The role of matrix problems in the research of the theory of representation of algebras
has been remarkable. We recall that according to Simson [65] matrix problems were in
the road map of the solution proposed by Roiter of the second Brauer-Thrall conjecture.
Roiter’s idea consisted in transforming the original problem to a suitable matrix problem
therefore to a problem of classification of posets. Worth noting, that according to Gabriel
and Roiter [25] if a matrix involved in a classification problem is partitioned into vertical
stripes and some admissible row and column transformations are allowed between them
then the corresponding matrix problem gives rise to a representation of a poset which can
be of finite, tame or wild representation type according to the Drozd’s theorem.

We also recall that a matrix problem is a pair (G,M) formed by an underlying set M ⊂
km×n and a group G ⊂ GLm × GLn such that XAY −1 ∈ M whenever A ∈ M and
(X,Y ) ∈ G (here k is a field, km×n is the space of all m × n-matrices and GLn is the
corresponding general linear group). Among all the matrix problems there are the linear
matrix problems (G,M) where G is the group Dl of invertible elements of a subalgebra
D ⊂ km×m × kn×n. The aim of the study of a given matrix problem is classifying the
orbits of M under the action of G defined by (X,Y )A = XAY −1 [25, 65].

The Kronecker problem which consists of classifying all pairs of linear maps between two
finite-dimensional vector spaces over a field k, and the four subspace problem (FSP) of
giving a complete classification of the indecomposable representations of four incompara-
ble points (a tetrad or quadruple) over k are examples of linear matrix problems. The

1
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Kronecker problem was solved by Weierstrass in 1867 for some particular cases and by
Kronecker for the complex numbers field in 1890, whereas FSP was solved by Gelfand and
Ponomarev in 1970 for an algebraically closed field k and by Nazarova (1967-1973) for the
arbitrary case. Afterwards, in 2004, an elementary solution of this problem was given by
Medina and Zavadskij [25,28,49,50,52,74]. Zavadskij himself and Djoković found out a so-
lution of the semi-linear Kronecker problem, which consists of classifying indecomposable
pair of matrices (A,B) of rectangular matrices of equal size over a division ring k with an
automorphism σ with respect to transformations of the form (A,B)→ (X−1AY,X−1BY σ)
where X and Y are non-singular square matrices [18,76].

Another classification of matrix problems was inspired by I.M. Gelfand who in the In-
ternational Congress of Mathematicians which was held at Nice in 1970 presented the
talk, Cohomology of Infinite Dimensional Lie Algebras, Some Problems of Integral Ge-
ometry. In such a talk Gelfand proposed to obtain a description of the indecomposable
representations of the quiver;

◦
B

66 ◦
A

vv
C
(( ◦

D

hh (1.1)

AB = CD

The solution of this problem corresponds to the classification of the Harish-Chandra mod-
ules for Sl2(R). Nazarova and Roiter [51] found out a solution of (1.1) in 1973. Another
solution and generalizations of this problem were given by Bondarenko [9], to do that, he
defined a suitable flat matrix problem of type Gelfand these kind of problems are in fact of
tame representation type. Since the Kronecker problem and the FSP are flat matrix prob-
lems of type Gelfand, we can deduce that these problems are both of tame representation
type.

1.1.1 The Kronecker problem and the four subspace problem

In this section, we give detailed descriptions of the solutions of the Kronecker problem,
which consists of classifying all pairs of linear maps between two finite-dimensional vector
spaces over a field k, and the four subspace problem (FSP), which consists of giving a
complete classification of the indecomposable representations of four incomparable points
(a tetrad or quadruple) over k.

1.1.1.1 Kronecker problem

The classification of indecomposable Kronecker modules was solved by Weierstrass in 1867
for some particular cases and by Kronecker in 1890 for the complex number field case. This
flat problem of type Gelfand is equivalent to the problem of finding canonical Jordan form
of pairs (A,B) of matrices with respect to the following elementary transformations:

(i) All elementary transformations on rows of the block matrix (A,B).
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(ii) All elementary transformations made simultaneously on columns of A and B having
the same index number.

If k is an algebraically closed field then up to isomorphism every indecomposable Kronecker
module belongs to one of the following three classes:

0: In Fn

where Fn is a Frobenius matrix or companion matrix of a minimal polynomial ps(t) with
n = s∂p(t), ∂p(t) denotes the degree of the polynomial p(t).

I = I∗: (a) In Jn(0)

(b) Jn(0) In

where Jn(0) ∈ {J+
n (0), J−n (0)} and J±n (0) denotes a corresponding upper or lower Jordan

block. Whereas, I∗ denotes the dual case defined by the classification problem.

II = III∗:
→
In

←
In

III = II∗: I↑n I↓n

In this case,
→
In (

←
In, respectively) denotes an n× (n+ 1) matrix obtained from the identity

In by adding a column of zeroes in fact the last column (the first column, respectively) in

these matrices consists only of zeroes. In the same way, I↑n (I↓n, respectively) denotes an
(n+ 1)× n matrix obtained from the identity In by adding a row of zeroes.

If n = 0 then U0 = k, and V0 = 0. Cases II and III constitute the non-regular case of this
classification, whereas cases 0 and I constitute the regular case.

Figure 1.1 shows the preprojective component of the Auslander-Reiten quiver of the 2-
Kronecker quiver, which has as vertices indecomposable representations of type III. The
preinjective component has indecomposable representations of type III∗ as vertices.
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[6 5] .....

Figure 1.1. Preprojective component of the Auslander-Reiten quiver of the 2-Kronecker quiver.
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Henceforth, we let (n+1, n) ((n, n+1)) denote a representative of the class of all indecom-
posable preprojective (preinjective) Kronecker modules obtained from a representation of
type III (II) via elementary transformations of type (ii).

Remark 1. Several generalizations of the Kronecker problem have been posed and solved
throughout the years. Perhaps, the semilinear Kronecker problem is one of the most
remarkable generalizations of such a matrix problem [27,76].

1.1.1.2 Four subspace problem (FSP)

The four subspace problem is another example of a flat matrix problem of type Gelfand,
in this case a quadruple of finite-dimensional k vector spaces is a system of the form
U = (U0, U1, U2, U3, U4) where U0 is a finite- dimensional k vector space and U1, . . . , U4 is
an ordered collection of four subspaces of U0. Two quadruples are said to be isomorphic
if there exists a k-space isomorphism ϕ : U0 → V0 such that ϕ(Ui) = Vi for all i. And
a quadruple U is decomposable if (U = U ′ ⊕ U ′′) the identity Ui = (Ui ∩ U0) ⊕ (Ui ∩ U ′0)
holds for any i and direct sum U0 ⊕ U ′0.

The four subspace problem consists of classifying all indecomposable quadruples up to
isomorphism.

FSP was solved by Gelfand and Ponomarev in 1970 for k algebraically closed and by
Nazarova (1967-1973) for the arbitrary case. An advance to this problem was given
by Brenner who described the indecomposable quadruples with non-zero defect ∂(U) =

4∑
i=1

dim Ui− 2dim U0 (called non-regular) in particular she extended the results of Gelfand

and Ponomarev to the case of an arbitrary field k. Afterwards, in 2004 Medina and Zavad-
skij gave an elementary solution of this problem. According to them all the indecompos-
able matrix representations of the quadruple can be reduced up to isomorphism and block
permutations to one of the following six types of representations [10,11,28,49,50,52,74].

Representations III-V with negative defect are preprojective, whereas representations III*-
V* with positive defect are preinjective.

Regular Component

0 = 0∗

I = I∗

II = II∗
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n n n n
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�� @@
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n ≥ 0, d0 = 2n
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1.2 Quiver representations

In this section, we recall some facts regarding quivers and its representations [5].

A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets Q0 whose elements are
called vertices and Q1 whose elements are called arrows, s and t are maps s, t : Q1 → Q0

such that if α is an arrow then s(α) is called the source of α, whereas t(α) is called
the target of α [5]. A path of length l ≥ 1 with source a and target b is a sequence
(a | α1, α2, . . . , αl | b) where t(αi) = s(αi+1) for any 1 ≤ i < l. Vertices are paths of length
0 [5, 7, 65].

If Q is a quiver and k is an algebraically closed field then the path algebra kQ of Q is the
k-algebra whose underlying k-vector space has as basis the set of all paths of length l ≥ 0
in Q, the natural graph concatenation is the product of two paths [5, 7, 54].

A k-algebra A is said to be basic if it has a complete set {e1, e2, . . . , el} of primitive
orthogonal idempotents such that eiA � ejA for all i 6= j.

A relation for a quiver Q is a linear combination of paths of length ≥ 2 with same starting
points and same end points, not all coefficients being zero [5, 7, 54].
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Let Q be a finite and connected quiver. The two sided ideal of the path algebra kQ
generated by the arrows of Q is called the arrow ideal of kQ and is denoted by RQ, RlQ is
the ideal of kQ generated as a k-vector space, by the set of all paths of length ≥ l. A two
sided ideal I of the path algebra kQ is said to be admissible if there exists m ≥ 2 such
that RmQ ⊆ I ⊂ R2

Q.

If I is an admissible ideal of kQ, the pair (Q, I) is said to be a bound quiver. The quotient
algebra kQ/I is said to be a bound quiver algebra.

The following theorems regarding the classification of quivers of finite representation type
were proved by Gabriel [5]:

Theorem 1. Suppose that k is an algebraically closed field. Let A be a basic and connected
finite dimensional k-algebra. There exists an admissible ideal I of kQA such that A ∼=
kQA/I.

A k-linear representation or representation M of a quiver Q is a system of the form:

M = ((Mx, ϕα) | x ∈ Q0, α ∈ Q1),

where Mx is a k-vector space for each x ∈ Q0 and ϕ : Ma → Mb is a k-linear map
associated to each arrow α : a→ b ∈ Q1.

Theorem 2. Let Q be a finite, connected, and acyclic quiver; k be an algebraically closed
field; and A = kQ be the path k-algebra of Q.

1. The algebra A is representation-finite if and only if the underlying graph Q of Q is
one of the Dynkin diagrams An with n ≥ 2, Dn with n ≥ 4, E6,E7 and E8.

2. If Q is a Dynkin graph, then the mapping dim : M → dimM induces a bijection
between the set of isomorphism classes of indecomposable A-modules and the set of
positive roots of the quadratic form qQ of Q.

3. The number of the isomorphism classes of indecomposable A-modules equals n(n+1)
2 ,

n2 − n, 36, 63 and 120, if Q is the Dynkin graph An with n ≥ 2, Dn with n ≥ 4,
E6,E7 and E8.

1.3 Brauer configuration algebras

In this section, we recall the definition of a Brauer configuration algebra as Green and
Schroll defined in [31].

Brauer configuration algebras were introduced by Green and Schroll in [31] as a general-
ization of Brauer graph algebras, which are biserial algebras of tame representation type
and whose representation theory is encoded by some combinatorial data based on graphs.
Actually, underlying every Brauer graph algebra is a finite graph with acyclic orientation
of the edges at every vertex and a multiplicity function [61]. The construction of a Brauer
graph algebra is a special case of the construction of a Brauer configuration algebra in the
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sense that every Brauer graph is a Brauer configuration with the restriction that every
polygon is a set with two vertices. In the sequel, we give precise definitions of a Brauer
configuration and a Brauer configuration algebra.

A Brauer configuration Γ is a quadruple of the form Γ = (Γ0,Γ1, µ,O) where:

(B1) Γ0 is a finite set whose elements are called vertices,

(B2) Γ1 is a finite collection of multisets called polygons. In this case, if V ∈ Γ1 then the
elements of V are vertices possibly with repetitions, occ(α, V ) denotes the frequency
of the vertex α in the polygon V and the valency of α denoted val(α) is defined in
such a way that:

val(α) =
∑
V ∈Γ1

occ(α, V ). (1.2)

(B3) µ is an integer valued function such that µ : Γ0 → N where N denotes the set of
positive integers, it is called the multiplicity function,

(B4) O denotes an orientation defined on Γ1 which is a choice, for each vertex α ∈
Γ0, of a cyclic ordering of the polygons in which α occurs as a vertex, including
repetitions, we denote Sα such collection of polygons. More specifically, if Sα =

{V (α1)
1 , V

(α2)
2 , . . . , V

(αt)
t } is the collection of polygons where the vertex α occurs with

αi = occ(α, Vi) and V
(αi)
i meaning that Sα has αi copies of Vi then an orientation

O is obtained by endowing a linear order ≤ to Sα and adding a relation Vt ≤ V1, if
V1 = min Sα and Vt = max Sα,

(B5) Every vertex in Γ0 is a vertex in at least one polygon in Γ1,

(B6) Every polygon has at least two vertices,

(B7) Every polygon in Γ1 has at least one vertex α such that µ(α)val(α) > 1.

The set (Sα,≤) is called the successor sequence at the vertex α.

A vertex α ∈ Γ0 is said to be truncated if val(α)µ(α) = 1, that is, α is truncated if it
occurs exactly once in exactly one V ∈ Γ1 and µ(α) = 1. A vertex is non-truncated if it
is not truncated.

The Quiver of a Brauer Configuration Algebra

The quiver QΓ = ((QΓ)0, (QΓ)1) of a Brauer configuration algebra is defined in such a way
that the vertex set (QΓ)0 = {v1, v2, . . . , vm} of QΓ is in correspondence with the set of
polygons {V1, V2, . . . , Vm} in Γ1, noting that there is one vertex in (QΓ)0 for every polygon
in Γ1.

Arrows in QΓ are defined by the successor sequences. That is, there is an arrow vi
si−→

vi+1 ∈ (QΓ)1 provided that Vi ≤ Vi+1 in (Sα,≤)∪{Vt ≤ V1} for some non-truncated vertex
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α ∈ Γ0. In other words, for each non-truncated vertex α ∈ Γ0 and each successor V ′ of V
at α, there is an arrow from v to v′ in QΓ where v and v′ are the vertices in QΓ associated
to the polygons V and V ′ in Γ1, respectively.

The Ideal of Relations and Definition of a Brauer Configuration Algebra

Fix a polygon V ∈ Γ1 and suppose that occ(α, V ) = t ≥ 1 then there are t indices i1, . . . , it
such that V = Vij . Then the special α-cycles at v are the cycles Ci1 , Ci2 , . . . , Cit where v
is the vertex in the quiver of QΓ associated to the polygon V . If α occurs only once in V
and µ(α) = 1 then there is only one special α-cycle at v.

Let k be a field and Γ a Brauer configuration. The Brauer configuration algebra associated
to Γ is defined to be the bounded path algebra ΛΓ = kQΓ/IΓ, where QΓ is the quiver
associated to Γ and IΓ is the ideal in kQΓ generated by the following set of relations ρΓ

of type I, II and III.

1. Relations of type I. For each polygon V = {α1, . . . , αm} ∈ Γ1 and each pair of
non-truncated vertices αi and αj in V , the set of relations ρΓ contains all relations
of the form Cµ(αi)−C ′µ(αj) where C is a special αi-cycle and C ′ is a special αj-cycle.

2. Relations of type II. Relations of type II are all paths of the form Cµ(α)a where
C is a special α-cycle and a is the first arrow in C.

3. Relations of type III. These relations are quadratic monomial relations of the
form ab in kQΓ where ab is not a subpath of any special cycle unless a = b and a is
a loop associated to a vertex of valency 1 and µ(α) > 1.

As an example consider a configuration Γ = (Γ0,Γ1, µ,O) such that:

1. Γ0 = {1, 2, 3, 4},

2. Γ1 = {U = {1, 1, 4}, V = {1, 2, 2},W = {2, 3, 3}, X = {3, 4, 4}},

3. At vertex 1, it holds that; U < U < V , val(1) = 3,

4. At vertex 2, it holds that; V < V < W , val(2) = 3,

5. At vertex 3, it holds that; W < W < X, val(3) = 3,

6. At vertex 4, it holds that; X < X < U , val(4) = 3,

7. µ(α) = 1 for any vertex α.

The ideal I of the corresponding Brauer configuration algebra ΛΓ is generated by the
following relations (see Figure 1.2), for which it is assumed the following notation for the
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special cycles:

CU,11 = a1
1a

1
2a

1
3,

CU,21 = a1
2a

1
3a

1
1,

CV,11 = a1
3a

1
1a

1
2,

CV,12 = a2
1a

2
2a

2
3,

CV,22 = a2
2a

2
3a

2
1,

CW,12 = a2
3a

2
1a

2
2,

CW,13 = a3
1a

3
2a

3
3,

CW,23 = a3
2a

3
3a

3
1,

CX,13 = a3
3a

3
1a

3
2,

CX,14 = a4
1a

4
2a

4
3,

CX,24 = a4
2a

4
3a

4
1,

CU,14 = a4
3a

4
1a

4
2,

(1.3)

1. ahi a
s
r, if h 6= s, for all possible values of i and r,

2. (a1
1)2, (a2

1)2, (a3
1)2, (a4

1)2, a1
3a

1
2, a2

3a
2
2, a3

3a
3
2, a4

3a
4
2,

3. CU,ij − C
U,k
l , for all possible values of i, j, k and l,

4. CV,ij − C
V,k
l , for all possible values of i, j, k and l,

5. CW,ij − CW,kl , for all possible values of i, j, k and l,

6. CX,ij − CX,kl , for all possible values of i, j, k and l,

7. CU,ji a (CV,ji a′) , with a (a′) being the first arrow of CU,ji (CV,ji ) for all i, j,

8. CW,ji a (CX,ji a′) , with a (a′) being the first arrow of CW,ji (CX,ji ) for all i, j.

The following Figures (1.2-1.5) show the quiver QΓ associated to this configuration and
the corresponding indecomposable projective modules PU , PV , PW and PX . The corre-
sponding heart and radical square of these modules are described as well.
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X

U

W

V

a1
1 a2

1

a4
1 a3

1

a1
2

a1
3

a3
3

a3
2

a4
3a4

2 a2
2a2

3

Figure 1.2. The quiver QΓ associated to this configuration.

U

U

V

V

U

X

X

U

PU =

a1
1

a1
2

a1
3

a1
2

a1
3

a1
1

a4
3

a4
1

a4
2

V

U

U

V

W

V

W

V

PV =

a1
3

a1
1

a1
2

a2
1

a2
2

a2
3

a2
2

a2
3

a2
1

W

V

V

W

X

X

W

W

PW =

a2
3

a2
1

a2
2

a3
1

a3
2

a3
3

a3
2

a3
3

a3
1

X

W

W

X

U

X

U

X

PX =

a3
3

a3
1

a3
2

a4
2

a4
3

a4
1

a4
1

a4
2

a4
3

Figure 1.3. Indecomposable projective modules PU , PV , PW , and PX .
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U

V

V

U

X

X

Heart(PU ) =a1
2 a1

3 a4
1

U

U

V

W

W

V

Heart(PV ) =a1
1 a2

3a2
2

V

V

W

X

X

W

Heart(PW ) =a2
1 a3

2 a3
3

W

W

X

U

U

X

Heart(PX) =a3
1 a4

3a4
2

Figure 1.4. Heart of projective indecomposable modules PU , PV , PW , and PX .

V U X

U

Rad2(PU ) =

a1
3 a1

1 a4
2

U W

V

VRad2(PV ) =

a1
2 a2

3 a2
1

V X W

W

Rad2(PW ) =

a2
2 a3

3 a3
1

W U

X

XRad2(PX) =

a3
2 a4

1a4
3

Figure 1.5. Rad2 of projective modules PU , PV , PW , and PX .

The following results give some description of the structure of Brauer configuration alge-
bras [31,64].

Theorem 3. Let Λ be a Brauer configuration algebra with Brauer configuration Γ.

1. There is a bijective correspondence between the set of projective indecomposable Λ-
modules and the polygons in Γ.

2. If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ,
then rad P is a sum of r indecomposable uniserial modules, where r is the number of
(non-truncated) vertices of V and where the intersection of any two of the uniserial
modules is a simple Λ-module.

3. A Brauer configuration algebra is a multiserial algebra.

4. The number of summands in the heart of an indecomposable projective Λ-module P
such that rad2 P 6= 0 equals the number of non-truncated vertices of the polygons in
Γ corresponding to P counting repetitions.

5. If Λ′ is a Brauer configuration algebra obtained from Λ by removing a truncated
vertex of a polygon in Γ1 with d ≥ 3 vertices then Λ is isomorphic to Λ′.
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Proposition 1. Let Λ be the Brauer configuration algebra associated to the Brauer con-
figuration Γ. For each V ∈ Γ1 choose a non-truncated vertex α and exactly one special
α-cycle CV at V then

{p | p is a proper prefix of some Cµ(α) where C is a special α − cycle}
⋃
{Cµ(α) | V ∈

Γ1} is a k-basis of Λ.

Proposition 2. Let Λ be a Brauer configuration algebra associated to the Brauer configu-
ration Λ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives of special
cycles. Assume that for i = 1, . . . , t, Ci is a special αi-cycle where αi is a non-truncated
vertex in Γ. Then

dimk Λ = 2|Q0|+
∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the
αi-cycle Ci and ni = µ(αi).

Proposition 3. Let Λ be the Brauer configuration algebra associated to a connected Brauer
configuration Γ. The algebra Λ has a length grading induced from the path algebra kQ if and
only if there is an N ∈ Z>0 such that for each non-truncated vertex α ∈ Γ0 val(α)µ(α) =
N .

Sierra [64] proved the following result regarding the center of a Brauer configuration alge-
bra.

Theorem 4. Let Γ be a reduced (i.e, without truncated vertices) and connected Brauer
configuration and let Q be its induced quiver and let Λ be the induced Brauer configuration
algebra such that rad2 Λ 6= 0 then the dimension of the center of Λ denoted dimk Z(Λ) is
given by the formula:

dimk Z(Λ) = 1 +
∑
α∈Γ0

µ(α) + |Γ1| − |Γ0|+ #(Loops Q)− |CΓ|, (1.4)

where |CΓ| = {α ∈ Γ0 | val(α) = 1, and µ(α) > 1}.

As an example the following is the numerology associated to the algebra ΛΓ = kQΓ/IΓ

with QΓ as shown in Figure (1.2) and special cycles given in (1.3), (|r(QΓ)| is the number of
indecomposable projective modules, rU , rV , rW and rX denote the number of summands
in the heart of the indecomposable projective modules P (U), P (V ) , P (W ) and P (X).
Note that, |Ci| = val(i)):
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|r(QΓ)| = 4,

rU = 3, rV = 3, rW = 3, rX = 3,

|C1| = 3, |C2| = 3, |C3| = 3, |C4| = 3,∑
α∈Γ0

∑
X∈Γ1

occ(α,X) = 12, the number of special cycles,

dimk ΛΓ = 2(4) + 3(2) + 3(2) + 3(2) + 3(2) = 32,

dimk Z(ΛΓ) = 1 + 4 + (4− 4) + 4− 0 = 9.

(1.5)

Remark 2. Note that, the Brauer configuration algebra ΛΓ with quiver QΓ shown in Figure
1.2 has a length grading induced by the path algebra kQΓ as Green and Schroll describe
in [31] section 3.3.

Green and Schroll in [30] proved the following result regarding relationships between
Brauer configuration algebras, its multiplicity function and the trivial extension of almost
gentle algebras.

Corollary 1. Every symmetric special multiserial algebra with multiplicity function iden-
tically equal to one in its defining pair is a trivial extension of an almost gentle algebra.
Equivalently, we have that every Brauer configuration algebra with multiplicity function
identically equal to one is the trivial extension of an almost gentle algebra.

1.4 Binomial trees and integer partitions

In this section, we recall definitions of integer partitions and binomial trees as given in [3]
and [42].

1.4.1 Partitions

A partition of a positive integer n is a finite nonincreasing sequence of positive integers

λ1, λ2, . . . , λr such that
r∑
i=1
λi = n. The λi are called the parts of the partition [3]. Often,

n is called the weight of the partition λ and the symbol |λ| is used to denote the size of the
partition. A composition is a partition in which the order of the summands is considered.

1.4.2 Binomial trees

Binomial trees appear in many fields of the mathematics, they are binary trees with the
shape [42]:

•

T0 T1 · · · Tn−1

..............................................................................................................................
....
............

0

.................................................................................................................................. ........
....

1

................................................................................................................................................................................................................................................................................................................................................... ..........
..

n− 1



CHAPTER 1: Preliminaries 14

As an example T4 has the following form:

•

• • • •

• • • • • •

• • •

•

............................................................................................
.....
...........
.

0

................................................................................................
.
.......
.....

1

............................................................................................................................................................................. .........
...

2

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ...........
.

3

...................................................................................
.....
.......
.....

0

............................................................................................
.....
...........
.

0

................................................................................................
.
.......
.....

1

..................................................................................................................................
....
............

0

............................................................................................
.....
...........
.

1

................................................................................................
.
.......
.....

2

...................................................................................
.....
.......
.....

0

............................................................................................
.....
...........
.

0

................................................................................................
.
.......
.....

1

...................................................................................
.....
.......
.....

0

Note that, at each level T4 gives integer partitions of numbers 1, 2 and 3 (without taking
into account 0 as a part). Often, these types of trees are said to be partition trees which
can be used to store partitions of a given positive integer n or of all positive integers
≤ n [45]. In [46], P. Luschny describes partition trees for different integer numbers and
use them to define some orders on the set of integer partitions.

Remark 3. Let F(n, r) be the set of partitions λ of a fixed positive integer n into r parts,

we write λ = {λ1 ≥ λ2 · · · ≥ λr} ∈ F(n, r) with n =
r∑
i=1
λi.

F(n, r) is endowed with an order � such that if λ, λ′ ∈ F(n, r) then λ � λ′ provide that
either λi = λ′i for any i, 1 ≤ i ≤ r or there exists an index j, such that λi = λ′i for any i,
1 ≤ i < j and λj < λ′j [3, 14].

We let T(S,n) denote a partition tree whose last level contains only partitions of a positive
integer n into parts belonging to a given set S.

A subset of positive integers GS = {c1, c2, . . . , ch} is said to be a generator of a set of
partitions (S, n) of a positive integer n whose parts belong to a set S of positive integers,
if there exists a set of indexes 1 ≤ i1, i2, i3, . . . , ir ≤ h, ij = ij−1 + 1, 2 ≤ j ≤ h such that
any partition λ ∈ (S, n) can be written in the form:

λ = {c1, c2, . . . , ci1−1,

r∑
s=1

cis , cir+1 , . . . , ch}. (1.6)

Often, in order to generate restricted partitions of type F(n, r) several sums as defined
in (1.6) must be applied to the components of GS in such a way that λ is obtained by a
suitable association of the components without alter its order.
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1.5 Cluster algebras

In this section, we make a short introduction to cluster algebras, which allow to give a
categorification of Catalan numbers via the clusters associated to Dynkin diagrams of type
An [22, 23,44].

Cluster algebras were conceived by Fomin and Zelevinsky [22,23] in the spring of 2000 as a
tool for studying total positivity and dual canonical bases in Lie theory. However, the the-
ory of cluster algebras has since taken on a life of its own, as connections and applications
have been discovered to diverse areas of mathematics including quiver representations,
Teichmüller theory, tropical geometry, integrable systems, and Poisson geometry.

Let us F be a field extension of Q. Typically we have F = Q(u1, u2, . . . , un) for some
algebraically independent variables u1, u2, . . . , un. The field F is called the ambient field.

A cluster is a sequence x = (x1, x2, . . . , xn) ∈ Fn of algebraically independent elements of
length n. We refer to the elements in a cluster x ∈ Fn as cluster variables.

If x = (x1, x2, . . . , xn) ∈ Fn is a cluster, then the field F must contain the field
Q(x1, x2, . . . , xn). Thus, if we have a distinguished cluster x = (x1, x2, . . . , xn) ∈ Fn,
then the smallest possible field, namely Q(x1, x2, . . . , xn), is a natural choice of an ambi-
ent field.

A seed is a pair (x, Q) where x ∈ Fn is a cluster and Q is a quiver with vertices Q0 =
{1, 2, . . . , n} without loops and 2-cycles.

Assume that (x, Q) and (x′, Q′) are two seeds given by clusters x,x′ ∈ Fn and quivers
Q = (Q0, Q1, s, t) and Q′ = (Q′0, Q

′
1, s
′, t′). We say that the seeds are isomorphic, if there

exists a quiver isomorphism given by two bijections σ : Q0 7→ Q′0 and τ : Q1 7→ Q′1 such
that xi = x′σ(i)for all indices i ∈ {1, 2, . . . , n}. In other words, two seeds are isomorphic if
they are obtained from each other by a simultaneous reordering of cluster variables and
quiver vertices. In this case we write (x, Q) ∼= (x′, Q′). Often we identify isomorphic
seeds [44].

Let (x, Q) be a seed and k ∈ {1, 2, . . . , n} an index. The mutation of (x, Q) at k is a seed
µk(x, Q) = (µk(x), µk(Q)) where µk(Q) is the mutation of the quiver Q at vertex k and
µk(x) = (x′1, x

′
2, . . . , x

′
k) ∈ Fn is the cluster with x′l = xl if l 6= k and

x′k =
1

xk

 ∏
α:i→k

xi +
∏
β:k→j

xj

 ∈ F . (1.7)

Here the product is taken over all arrows in α ∈ Q1 that start or terminate in vertex k,
respectively, counted possibly with multiplicity. Of course, the product is understood to
be 1 if there are no such arrows.
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Let B = B(Q) is the signed adjacency matrix of the quiver Q in a seed (x, Q), then we
can rewrite equation 1.7 as

xkx
′
k =

∏
α:i→k

xi +
∏
β:k→j

xj =
∏

i∈{1,2,...,n}:bik>0

xbiki +
∏

i∈{1,2,...,n}:bik<0

x−biki (1.8)

Equation (1.8) is also called exchange relation.

It is easy to see that the mutation is well-defined, i.e. the mutation of a seed at an index
is again a seed. Moreover, mutation is involutory, i.e. for all seeds (x, Q) and all indices
k ∈ {1, 2, . . . , n} we have (µk ◦ µk)(x, Q) ∼= (x, Q).

Mutation equivalence defines an equivalence relation on the class of all quivers without
loops and 2-cycles.

We say that two seeds (x, Q) and (x′, Q′) are mutation equivalent if there exists a sequence
(k1, k2, · · · , kr) ∈ Qr0 of indices of length r ≥ 0 such that the seed (µk1 ◦µk2 ◦. . .◦µkr)(x, Q)
is isomorphic to (x′, Q′). In this case, we also write (x, Q) ∼ (x′, Q′).

Let (x, Q) be a seed. The cluster algebra A(x, Q) attached to the seed is the subalgebra
of the ambient field F generated by the set

χ(x, Q) =
⋃

(x′,Q′)∼(x,Q)

{x′1x′2, . . . , x′n},

a cluster algebra is of finite type if it has finitely many seeds. The following is the finite
type criterion as described by Fomin and Zelevinsky in [23].

Theorem 5. For a cluster algebra A the following are equivalent:

(i) A is of finite type,

(ii) The set χ of all cluster variables is finite.

(iii) For every seed (x,p, B) in A the entries of the matrix B = (bxy) satisfy the inequal-
ities | bxybyx |≤ 3, for all x, y ∈ x.

(iv) A = A(B0,p0) for some sign-skew-symmetric matrix B0 = (bij) such that A = A(B0)
and bijbik ≥ 0 for all i, j, k and p0 is a 2n-tuple of elements in P satisfying the
normalization conditions,

where if F is isomorphic to the field of rational functions (as described above) then x is
an n-element subset of F , P is a torsion-free semifield, F is a transcendence basis over
the field of fractions of ZP. p = (p±x )x∈x is a 2n-tuple of elements of P, satisfying the
normalization condition p+

x ⊕ p−x = 1 for all x ∈ x and B = (bxy)x,y∈x is an n× n-integer
matrix with rows and columns indexed by x, which is sign-skew-symmetric (i.e., for any
x, y ∈ x, either bxy = byx = 0 or bxybyx < 0).
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1.6 Snake graphs

In this section, some classical theorems (without proof) of snake graphs, continued frac-
tions and cluster variables are reminded [53,56–61].

Snake graphs are combinatorial objects arising from the research of cluster algebras, they
allowed to Çanaçi, Schiffler et al to compute the Laurent expansions of the cluster variables
in cluster algebras of surface type. The terms in the Laurent polynomial of such variables
are parametrized by the perfect matchings of the associated snake graph [53,56–61]. Such
graphs were studied by Prop [53] in the context of the investigation of the Laurent phe-
nomenon, which is a problem of paramount importance in the theory of cluster algebras,
Prop proved that two examples of rational recurrences, the two-dimensional frieze patterns
of Conway and Coxeter and the tree of Markoff numbers-relate to one another and to the
Laurent phenomenon. In the program of Prop perfect matchings of snake graphs derived
from triangulations of polygons are linked with frieze patterns of Conway and Coxeter.

Prop [53] also reported an interesting connection between snake graphs and continued
fractions, according to him, work of Benjamin and Quinn in the context of the strip tiling
model, shows how combinatorial models can illuminate facts about continued fractions.
In [56–60] Çanaçi and Schiffler go beyond Prop by proving that each snake graph G has
associated a unique continued fraction whose numerator is given by the number of perfect
matchings of a suitable snake graph. They report that snake graphs provides a new
combinatorial model for continued fractions allowing to interpret the numerators and
denominators of positive continued fractions as cardinalities of combinatorially defined
sets.

A tile G is a square in the plane whose sides are parallel or orthogonal to the elements in
the standard orthonormal basis of the plane (as in [60] in this work a tile G is considered
as a graph with four vertices and four edges in the obvious way).

A snake graph G is a connected planar graph consisting of a finite sequence of tiles
G1, G2, . . . , Gd such that Gi and Gi+1 share exactly one edge ei and this edge is either the
north edge of Gi and the south edge of Gi+1 or the east edge of Gi and the west edge of
Gi+1 [56–60].

Denote by Int(G) = {e1, e2, . . . , ed−1} the set of interior edges of the snake graph G. We
will use the natural ordering of the set of interior edges of G, so that ei is the edge shared
by tiles Gi and Gi+1.

A snake graph is called straight if all its tiles lie in one column or one row, and a snake
graph is called zigzag if no three consecutive tiles are straight. Two snake graphs are
isomorphic if they are isomorphic as graphs.

A labeled snake graph is a snake graph in which each edge and each tile carries a label or
weight. For example, for snake graphs from cluster algebras of surface type, these labels
are cluster variables. Formally, a labeled snake graph is a snake graph G together with
two functions

{tiles in G} → {edges in G} → F,

where F is a set. Throughout this document we only consider labels over the tiles.
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For positive integers n1, n2, . . . , nk, we let Gf (n1, n2, . . . , nk) denote a snake graph with
n1 ≥ 2 tiles in the first row, n2 ≥ 2 in the first column, n3 ≥ 2 tiles in the second row and
so on up to nk ≥ 2, in this case the last tile in a given row is the first tile in the next column
(if it exists) vice versa the last tile in a given column coincides with the first tile in the
next row. As an example, in Figure 1.6, it is shown the snake graph Gf (5, 3, 3, 2, 5, 4, 2).

Figure 1.6. Snake graph Gf (5, 3, 3, 2, 5, 4, 2) (left) and an example of its perfect matchings.

A perfect matching P of a graph G is a subset of the edges of G such that every vertex of G
is incident to exactly one edge in P . We denote by Match(G) the set of perfect matchings
of G.

A sign function f of a snake graph G is a map f from the set of edges of G to {+,−} such
that on every tile in G the north and the west edge have the same sign and the sign on
the north edge is opposite to the sign on the south edge.

−
− +

+
+ − +

+

−
−
−

Figure 1.7. Example of a sign function defined on the set of edges of a snake graph.

Note that, on every snake graph there are exactly two sign functions. A snake graph is
determined up to symmetry by its sequence of tiles together with a sign function on its
interior edges {e1, e2, . . . , ed−1}. Henceforth, it will be assumed the notation e0 = sw(G)
(the edge at the southwest of the first tile).

If ed ∈ ne(G) (the edge at the northeast of the last tile) the sign function can be extended
in a unique way to all edges in G and it is obtained a sign sequence

sgn(G) = {f(e0), f(e1), f(e2), . . . , f(ed−1), f(ed)} this sequence uniquely determines the
snake graph and a choice of a north east edge ed ∈ ne(G).
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R. Schiffler et al [48] obtained the following result giving a formula for cluster variables
by using perfect matchings of suitable snake graphs:

Theorem 6. If γ is an arc in a triangulated surface (S,M), the cluster variable xγ is
given by the formula:

xγ =
1

crossGγ

∑
P∈Match Gγ

x(P ). (1.9)

Where the sum runs over all perfect matchings of Gγ , x(P ) is the weight of the perfect
matching P and cross(Gγ) is the product (with multiplicities) of all initial cluster variables
whose arcs are crossed by γ.

1.6.1 Relationships between snake graphs and continued fractions

A positive finite continued fraction is a function

[a1, a2, . . . , an] = a1 +
1

a2 + 1
a3+ 1

a4+
1

...+ 1
an

(1.10)

on n variables a1, a2, . . . , an, ai ∈ Z≥1 [56, 60].

Now let [a1, a2, . . . , an] be a positive continued fraction and let d = a1 + a2 + · · ·+ an − 1
and consider the sign sequence:

(−ε, . . . ,−ε︸ ︷︷ ︸
a1

, ε, . . . , ε︸ ︷︷ ︸
a2

, . . . ,±ε, . . . ,±ε︸ ︷︷ ︸
an

)
(1.11)

where ε ∈ {+,−},

−ε =

{
+, if ε = −,
−, if ε = +

sgn(ai) =

{
−ε, if i is odd,

ε, if i is even.

Thus each integer ai corresponds to a maximal subsequence of constant sign sgn(ai) in
the sequence (1.11).

The snake graph G[a1, a2, . . . , an] of the positive continued fraction [a1, a2, . . . , an] is the
snake graph with d tiles determined by the sign sequence (1.11). In particular, G[1] is a
single edge and the continued fraction of the graph in Figure 1.7 is [2, 3, 1, 2, 3].

Schiffler et al report the following results regarding snake graphs and their relationships
with continued fractions [56–60].:
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Theorem 7. The number of snake graphs with exactly N perfect matchings is φ(N) where
φ is the totient Euler function.

Theorem 8. 1. The number of perfect matchings of G[a1, a2, . . . , an] is equal to the
numerator of the continued fraction [a1, a2, . . . , an].

2. The number of perfect matchings of G[a2, a3, . . . , an] is equal to the denominator of
the continued fraction [a1, a2, . . . , an].

3. If Match(G) denotes the number of perfect matchings of the snake graph G then

[a1, a2, . . . , an] = Match(G)[a1,a2,...,an]
Match(G)[a2,a3,...,an] .

For instance the snake graph G[2, 3, 1, 2, 3] shown in Figure 1.6 has 84 perfect matchings.
For [a1, a2, . . . , an] = [1, 1, . . . , 1] we recall that the straight snake graph G = G[1, 1, . . . , 1]
with n − 1 tiles has Fn+1 perfect matchings where Fn+1 denotes the (n + 1)st Fibonacci
number.

A continued fraction [a1, a2, . . . , an] is said to be of even length if n is even. It is called
palindromic if the sequences (a1, a2, . . . , an) and (an, an−1, . . . , a2, a1) are equal.

A snake graph G is called palindromic if it is the snake graph of a palindromic continued
fraction.

Theorem 9. Let G = G[a1, a2, . . . , an] be a snake graph and G↔ its palindromification.
Let G′ = G[a2, a3, . . . , an] then Match(G↔) = (Match(G))2 + (Match(G′))2.

Corollary 2. 1. If N = p2 + q2 with (p, q) = 1 (i.e., N is a sum of two relatively
prime squares) then there exists a palindromic snake graph of even length such that
Match(G) = N .

2. For each positive integer N , the number of ways we can write N as a sum of two
relatively prime numbers is equal to one half of the number of palindromic snake
graphs of even length with N perfect matchings.

3. For each positive integer N , the number of ways one can write N as a sum of two
relatively prime squares is equal to one half of the number of palindromic continued
fractions of even length with numerator N .

Regarding Markoff numbers we recall the following results:

A triple of positive integers (m1,m2,m3) is called a Markoff triple if it is a solution of the
markoff equation

x2 + y2 + z2 = 3xyz (1.12)

An integer is called a Markoff number if it is a member of a Markoff triple.

Frobenius conjectured that the largest number in a Markoff triple determines the other
two (1913). This is known as the uniqueness conjecture for Markoff numbers.

It is also known that every Markoff number except 1 and 2 is a sum of two relatively
prime squares. And that every Markoff number is the numerator of an even palindromic
continued fraction. And except 1, it is a sum of two relatively prime squares.
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1.7 Tangles

In this section, we recall some basic concepts regarding rational knots [16,41].

Rational knots and links, also known in the literature as four-plots, Viergeflechte and
2-bridge knots, are a class of alternating links of one or two unknotted components and
they are the easiest knots to make (also for nature). The first twenty five knots except 85,
are rational. Furthermore all knots up to ten crossings are either rational or are obtained
from rational knots by certain simple operations.

A rational tangle is the result of consecutive twists on neighbouring end points of two
trivial arcs. Rational knots are obtained by taking numerator closures of rational tangles,
which form a basis for their classification. Rational knots and rational tangles are of
fundamental importance in the study of DNA recombination.

A rational tangle is associated in a canonical manner with a unique reduced rational
number or ∞, called the fraction of the tangle.

Rational tangles are classified by their fractions by means of the following theorem

Theorem 10 (Conway, 1970). Two rational tangles are isotopic if and only if they have
the same fraction.

More than one rational tangle can yield the same or isotopic rational knots and the equiv-
alence relation between the rational tangles is reflected into an arithmetic equivalence of
their corresponding fractions. This is marked by a theorem due originally to Schubert [62]
and reformulated by Conway [16] in terms of rational tangles.

Theorem 11 (Schubert, 1956). Suppose that rational tangles with fractions p
q and p′

q′ are

given (p and q are relatively prime. Similarly for p′ and q′.) If K(pq ) and K(p
′

q′ ) denote
the corresponding rational knots obtained by taking numerator closures of these tangles,
then K(pq ) and K(p

′

q′ ) are topologically equivalent if and only if

1. p = p′ and

2. either q ≡ q′ (mod p) or qq′ ≡ 1 (mod p).

An (m,n) tangle is an embedding of a finite collection of arcs (homeomorphics [0,1]) and
circles into the three dimensional euclidean space such that the end points of the arcs go to
a specific set of m+n points on the surface of a ball B3 standard embedded in S3 so that,
the m points lie on the upper hemisphere and the n points lie in the lower hemisphere.

An (n, n)−tangle will be called an n-tangle knots and links are 0-tangles and braids on n
strands are the most well known example of n-tangles

One can define a diagram of an (m,n)- tangle to be a regular projection of the tangle in
the plane of this great circle.

Definition 1. Let t be a pair of unoriented arcs properly embedded in a 3-ball B. A 2-
tangle is rational if there exists an orientation preserving homeomorphisms of pairs

g : (B, t)←→ ((D2)× I, {x, y} × I) (a trivial tangle).
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The last definition is equivalent to saying that rational tangles can be obtained by applying
a finite number of consecutive twists of neigbouring endpoints to the elementary tangles
[0] or [∞].

[0] [∞]

Figure 1.8. The trivial tangles [0] and [∞].

If T(m,n) denote the set of all (m,n) tangles among all tangles, the class T(2,2) of 2-tangles
is particularly interesting fo various reasons. For one, it is closed under addition (+) and
start (∗) product as illustrated in Figures 1.9 and 1.10.

Addition is accomplished by placings the tangles side-by-side and attaching the NE strand
of the left tangle to the NW strand of the right tangle, while attaching the SE strand of
the left tangle to the SW strand of the right tangle (see Figure 1.9).

T + S = T S

Figure 1.9. Addition of 2-tangles.

The star (∗) product is accomplished by placing one tangle underneath the other and
attaching the upper strands of the lower tangle to the lower strands of the upper tangle
(see Figure 1.10).

T ∗ S =

T

S

Figure 1.10. Product of 2-tangles.

The mirror image of a tangle T is denoted by −T and it is obtained by switching all the
crossings in T .
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T −→ T

Figure 1.11. Inversion of 2-tangles.

A third operation illustrated is inversion accomplished by turning the tangle counter clock-
wise 90 in the plane it is denoted T i. We note that all operations in T(2,2) can be generalized
appropriately to operations in T(m,n) [41].

We defined rational tangles as being obtained by applying a finite number of consecutive
twists of neighbouring end points to the elementary tangles [0] and [∞]. Clearly the
simplest rational tangles are the [0], the [∞] the [+1] and the [−1] tangles while the next
simplest ones are:

(i) The integer tangles, denoted by [n] made of n horizontal twists, n ∈ Z.

(ii) The vertical tangles denoted by 1
[n] made of n vertical twists, n ∈ Z

These are the inverses of the integer tangles, see Figure 1.12. This terminology explains
the need for mirror imaging in the definition of inversion.

[−2] [−1] [0] [1] [2]

1
[−2]

1
[−1] [∞] 1

[1]
1

[2]

· · · , , , , · · ·

· · · , , , , · · ·

Figure 1.12. The elementary rational tangles.

Example 1. Figure 1.13 shows an example of a rational tangle T1, which is the sum of
the tangles W(3, 2) and W(4, 3). In Figure 1.13 on the left hand side the tangle W(3, 2) is
obtained by the start product of the integer tangles [3], [−3], [−2], [2] and [3], on the right
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hand side the tangle W(4, 3), which is obtained by the multiplication of the integer tangles
[4], [−4], [−2], [2], [4], [2] and [−6].

The general case of this example i.e. for n ≥ 1 the tangle Tn =W(3, 2) +W(4, 3) + · · ·+
W(n + 3, n + 2), where W(n + 3, n + 2) = [n + 3] ∗ [−(n + 3)] ∗ [−2] ∗ [2] ∗ [n + 3] ∗ [2] ∗
[−(n+5)]∗ [2]∗ [n+3]∗ [2]∗ [−(n+5)]∗ [2]∗ [n+3]∗ · · · with l(W(n+3, n+2)) = 2n+5 is
said to be the n-th preprojective Kronecker tangle, which can be obtained as the message
of the Brauer configuration algebra introduced in Section 2.4.1 (see Theorem 19).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

W(4, 3)W(3, 2)

Figure 1.13. Preprojective Kronecker tangle T1.
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Categorification of continued fractions and Brauer

configuration algebras

In this chapter, the notions of the message of a Brauer configuration and labeled Brauer
configurations are introduced. These concepts allow us to establish unexpected connec-
tions between different fields of mathematics and categorify some integer sequences. In
particular, in section 2.2 we show how some suitable Brauer configurations and these no-
tions can be used to give an explicit formula for the number of perfect matchings of a
snake graph. Also, in section 2.3 some relationships between Brauer configuration al-
gebras with path problems as the Lindström problem are described. In section 2.4, we
introduce Kronecker snake graphs and we use them to describe the non-regular Kronecker
indecomposable modules inspired mainly in some ideas described in [75]. Regarding the
preprojective Kronecker snake graphs in section 2.4.1 we introduce the preprojective Kro-
necker tangles as the message of a labeled Brauer configuration. Finally, in section 2.4.2
we study the group structure of preinjective Kronecker snake graphs.

2.1 Labeled Brauer configuration algebras

In this section, we give the notion of labeled Brauer configurations, which is helpful to
define suitable specializations of some Brauer configuration algebras. Besides, the message
of a Brauer configuration is introduced.

Let Γ = {Γ0,Γ1, µ,O} be a Brauer configuration and let U ∈ Γ1 be a polygon such that

U = {αf11 , α
f2
2 , . . . , α

fn
n }, where fi = occ(αi, U). The term

w(U) = αf11 α
f2
2 . . . αfnn (2.1)

is said to be the word associated to U . The sum

M(Γ) =
∑
U∈Γ1

w(U) (2.2)

is said to be the message of the Brauer configuration Γ.

25
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An integer specialization of a Brauer configuration Γ is a Brauer configuration Γe =
(Γe0,Γ

e
1, µ

e,Oe) endowed with a preserving orientation map e : Γ0 → N, such that

Γe0 = Img e ⊂ N,
Γe1 = e(Γ1), if H ∈ Γ1 then e(H) = {e(αi) | αi ∈ H} ∈ e(Γ1),

µe(e(α)) = µ(α), for any α ∈ Γ0.

(2.3)

Besides e(U) � e(V ) in Γe1 provided that U � V in Γ1.

Remark 4. A real valued sequence S = {si} is said to be built by a specialization e of a
Brauer configuration Γ, if for any si ∈ S there is a subset G ∈ Γ0 such that e(G) = si.

We let we(U) = (e(α1))f1(e(α2))f2 · · · (e(αn))fn denote the specialization under e of a
word w(U). In such a case, M(Γe) =

∑
U∈Γe1

we(U) is the specialized message of the Brauer

configuration Γ with the usual integer sum and product (in general with the sum and
product associated to Img e).

A Brauer configuration Γ = (Γ0,Γ1, µ,O) is said to be labeled if each polygon is labeled
by an element of Ns for some s ≥ 1. In such a case we write

Γ1 = {(U1, n1), (U2, n2), . . . , (Uk, nk)}, nj ∈ Ns,

with (Ui, ni) ≺ (Ui+1, ni+1), for 1 ≤ i ≤ k − 1 if Ui ≺ Ui+1 in Γ, i.e., the labeling do not
alter the orientation O.

As an example, we define the following labeled Brauer configuration K = (K0,K1, µ,O),
where:

K0 = {αiw | 1 ≤ i ≤ k,w ∈ {0, 1}k−1, k ≥ 2 fixed},
K1 = {(Uw, n) | αiw ∈ (Uw, n), n = (n1, n2, . . . , nk), fixed, nj ≥ 2}.

(2.4)

Vertices αiw ∈ (Uw, n) ∈ K1 are given by the following formula bearing in mind that w is
of the form w = (w1, w2, . . . , wk−1).

αiw = ni − g(wi−1, i)− g(wi, i) + 2, (2.5)

where g is a map g := {0, 1} × Z+ → {1, 2} defined by

g(0, i) =

{
2, if i is even;

1, if i is odd;
and g(1, i) =

{
1, if i is even;

2, if i is odd.

In particular, g(w0, 1) = g(wk, k) = 0. The definition of g can be reformulated by the rule
g(x, n) = 2− (x+ n (mod 2)).

In this case, µ(α) = 2, for any vertex α ∈ K0 and the orientation O is given by the relation
≺.
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2.2 On the number of perfect matchings of snake graphs via
Brauer configuration algebras

In this section, formulas for the number of perfect matchings of snake graphs
Gf (n1, n2, . . . , nk) are given by specializations of the labeled Brauer configuration 2.4 (the
results described in this section were obtained in a joint work with J.L. Ramı́rez, J.F.
González, J. P. Herran and A.M. Cañadas).

Firstly, we note that;

Match(Gf ((n)) = Fn+2 (2.6)

where Fn denotes the n-th Fibonacci number.

Theorem 12. Match(Gf ((n)) = Fn+2, for all integer number n ≥ 1.

Proof. For any perfect matching of Gf ((n)) there are two options: either the vertical right
edge of the last square is contained in the matching or the horizontal edges of the last
square are contained in the matching, see Figure 2.1.

n
X

X

n
X

X
X X

Figure 2.1. A perfect matching of Gf (n).

From the definition of perfect matching it is clear that the edges labelled with red X cannot
be used. Therefore we have the recurrence relation

Match(Gf (n)) = Match(Gf (n− 1)) + Match(Gf (n− 2)).

Since Match(Gf (1)) = 2 and Match(Gf (2)) = 3, we conclude that Match(Gf (n)) = Fn+2

for all n ≥ 2. �

Corollary 3. Match(Gf (n1, n2)) = Fn1+1Fn2 + Fn1Fn2+1 for all n1, n2 ≥ 2.

Proof. Let V be the vertex on the lower right corner of Gf (n1, n2). We consider the
adjacent edges to the vertex V . So, we have the following possible configurations:
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n2

V

X X

n1

X

X

n2

V

X X

n1

X

X

Therefore, it holds that

Match(Gf (n1, n2)) = Match(Gf (n1−1))Match(Gf (n2−2))+Match(Gf (n1−2))Match(G(n2−1)).

Theorem 12 allows to obtain the desired result. We are done. �

The following result corresponds to the case of a Kronecker snake graph with three straight
subsnake graphs.

Corollary 4.

Match(Gf (n1, n2, n3)) = Fn1Fn2Fn3 +Fn1+1Fn2−2Fn3+1+Fn1Fn2−1Fn3+1+Fn1+1Fn2−1Fn3

for all integer numbers n1, n2, n3 ≥ 2.

Proof. Firstly, let us suppose that n2 ≥ 4. For the cases n2 = 2, 3, we can use a similar
argument. Let V1 and V2 be the vertices in the lower right corner and the upper left
corner, respectively. By considering the adjacent edges with the vertices V1 and V2, we
obtain the following four options:

X

X
X X

X

X
X X

V1

V2

X

X
X X

X

X

X X

V1

V2

X

X
X X

X

X

X X

V1

V2

X

X
X X

X

X
X X

V1

V2
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From the above decomposition, we obtain that

Match(Gf (n1, n2, n3)) = Match(Gf (n1 − 2))Match(Gf (n2 − 2))Match(Gf (n3 − 2))

+ Match(Gf (n1 − 1))Match(Gf (n2 − 4))Match(Gf (n3 − 1))

+ Match(G(n1 − 2))Match(Gf (n2 − 3))Match(Gf (n3 − 1))

+ Match(Gf (n1 − 1))Match(Gf (n2 − 3))Match(Gf (n3 − 2)).

Theorem 12 allows us to conclude the desired result. �

The following result gives the number of perfect matchings of a snake graph of type
Gf (n1, n2, . . . , nk) as a specialized message of the Brauer configuration (2.4). In this case,
words concatenation arising from the configuration is specialized by the usual product of
natural numbers.

Theorem 13. For all integers n1, n2 . . . , nk ≥ 2, we have

Match(Gf (n1, n2, . . . , nk)) = M(Ke),

where K is the Brauer configuration given by identities (2.4) and (2.5), M(K) defined as in
(2.2). And e is an integer specialization of K with associated map e of the form e : K0 → N
such that e(αiw) = Fαiw with Fj being the j-th Fibonacci number.

Proof. The definition of the Brauer configuration K and the corresponding specialization
e allow us to infer that it suffices to see that

Match(Gf (n1, n2, . . . , nk)) =
∑

w∈{0,1}k−1

k∏
`=1

Fn`−g(w`−1,`)−g(w`,`)+2.

Note that, for l fixed a product of the form
∏
wl
Fn`−g(w`−1,`)−g(w`,`)+2 is a specialized mes-

sage we((Ul, nl)) of the labeled polygon (Ul, nl). Now, we proceed to prove the proposed
identity.

Let V1, V2, . . . , Vk−1 be the vertices on the k − 1 corners of the snake graph
Gf (n1, n2, . . . , nk), see Figure 2.2. There are 2k−1 ways to choose the adjacent edges
with the vertices V1, V2, . . . , Vk−1.

...
...

Vk−1

V3

V2

V1

Figure 2.2. Snake graph Gf (n1, n2, . . . , nk).
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Let ei be one of the incident edge with Vi, for i = 1, 2, . . . , k−1. For each Vi, there are two
options for ei: either ei is vertical or horizontal. If ei is vertical and i is odd, we have to
consider the number of perfect matchings for the snake graphs Gf (ni−1) and Gf (ni+1−2).
Note that for the first case we do not consider the last tile of the row that contains the
vertex Vi, and for the second case we do not consider the first two tiles of the column that
contains the vertex Vi. Analogously, if ei is horizontal and i is odd, we have to consider
the perfect matching for the snake graphs Gf (ni − 2) and Gf (ni+1 − 1). Similarly, for the
case when i is even.

Finally, we can encode this situation with binary words. We use 0 for vertical edges and
1 for horizontal edges. So, it is clear that the function g(x, n) encodes the subtraction of
the tiles that we must apply to each vertex Vi.

Identity (2.6), the multiplication principle and the definition of the message M(Ke) of the
Brauer configuration Ke allow us to conclude that

Match(Gf (n1, n2, . . . , nk)) =
∑

w∈{0,1}k−1

k∏
`=1

Match(Gf (n` − g(w`−1, `)− g(w`, `))

=
∑

w∈{0,1}k−1

k∏
`=1

Fn`−g(w`−1,`)−g(w`,`)+2 = M(Ke).

�

Example 2. In this example we define a Brauer configuration algebra induced by the
Brauer configuration K for k = 3 (see, (2.3), (2.4) and (2.5)). The relations defined
here can be adapted for all the distinct values of k in order to define the correspond-
ing Brauer configuration algebras, in this particular case, we have that w ∈ {0, 1}2 =
{(0, 0), (1, 0), (0, 1), (1, 1)}, n = (n1, n2, n3) and

K0 = {α1
(0,0), α

2
(0,0), α

3
(0,0), α

1
(1,0), α

2
(1,0), α

3
(1,0), α

1
(0,1), α

2
(0,1), α

3
(0,1), α

1
(1,1), α

2
(1,1), α

3
(1,1)},

K1 = {(U(0,0), n), (U(1,0), n), (U(0,1), n), (U(1,1), n), with n = (n1, n2, n3), nj ≥ 2}.

In Table 2.1 we compute all the vertices and polygons of K by using the values of i and w.

HHH
HHHi
w

(0, 0) (1, 0) (0, 1) (1, 1)

1 n1 − g(w0, 1)− g(w1, 1) + 2 n1 + 1 n1 n1 + 1 n1

2 n2 − g(w1, 2)− g(w2, 2) + 2 n2 − 2 n2 − 1 n2 − 1 n2

3 n3 − g(w2, 3)− g(w3, 3) + 2 n3 + 1 n3 + 1 n3 n3

Table 2.1. In this table entries correspond to the vertices and columns correspond to polygons
of the Brauer configuration K.

Explicitly, (U(0,0), n) = {n1+1, n2−2, n3+1}, (U(1,0), n) = {n1, n2−1, n3+1}, (U(0,1), n) =
{n1 + 1, n2 − 1, n3}, (U(1,1), n) = {n1, n2, n3} and
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w((U(0,0), n)) = n1 + 1 · n2 − 2 · n3 + 1,

w((U(1,0), n)) = n1 · n2 − 1 · n3 + 1,

w((U(0,1), n)) = n1 + 1 · n2 − 1 · n3,

w((U(1,1), n)) = n1 · n2 · n3.

(2.7)

Now, by using the specialization e(αiw) = Fαiw defined in Theorem 13 with Fj being the
j-th Fibonacci number, we have:

we((U(0,0), n)) = Fn1+1Fn2−2Fn3+1,

we((U(1,0), n)) = Fn1Fn2−1Fn3+1,

we((U(0,1), n)) = Fn1+1Fn2−1Fn3 ,

we((U(1,1), n)) = Fn1Fn2Fn3 .

(2.8)

Considering the specialized message M(Ke) =
∑
U∈Γe1

we(U) of the Brauer configuration K.

M(Ke) = Fn1+1Fn2−2Fn3+1 + Fn1Fn2−1Fn3+1 + Fn1+1Fn2−1Fn3 + Fn1Fn2Fn3

= Match(Gf (n1, n2, n3))

For k = 3, the Brauer configuration algebra associated to K is defined as follows:

1. K0 = {n1 + 1, n2 − 2, n3 + 1, n2 − 1, n1, n2, n3},

2. K1 = {(U(0,0), n), (U(1,0), n), (U(0,1), n), (U(1,1), n), with n = (n1, n2, n3)},

3. At vertex n1 + 1, it holds that; (U(0,0), n) < (U(0,1), n), val(n1 + 1) = 2,

4. At vertex n2 − 2, it holds that; (U(0,0), n), val(n2 − 2) = 1,

5. At vertex n3 + 1, it holds that; (U(0,0), n) < (U(1,0), n), val(n3 + 1) = 2,

6. At vertex n2 − 1, it holds that; (U(1,0), n) < (U(0,1), n), val(n2 − 1) = 2,

7. At vertex n1, it holds that; (U(1,0), n) < (U(1,1), n), val(n1) = 2,

8. At vertex n2, it holds that; (U(1,1), n), val(n2) = 1,

9. At vertex n3, it holds that; (U(0,1), n) < (U(1,1), n), val(n3) = 2,

10. µ(α) = 2 for any vertex α.

The ideal I of the corresponding Brauer configuration algebra ΛK is generated by the fol-
lowing relations (see Figure 2.3), for which it is assumed the following notation for the
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special cycles:

C
U(0,0),1

n1+1 = an1+1
1 an1+1

2 , C
U(0,1),1

n1+1 = an1+1
2 an1+1

1 , C
U(0,0),1

n2−2 = an2−2
1 ,

C
U(0,0),1

n3+1 = an3+1
1 an3+1

2 , C
U(1,0),1

n3+1 = an3+1
2 an3+1

1 , C
U(1,0),1

n2−1 = an2−1
1 an2−1

2 ,

C
U(0,1),1

n2−1 = an2−1
2 an2−1

1 , C
U(1,0),1
n1 = an1

1 an1
2 , C

U(1,1),1
n1 = an1

2 an1
1 ,

C
U(1,1),1
n2 = an2

1 , C
U(0,1),1
n3 = an3

1 an3
2 , C

U(1,1),1
n3 = an3

2 an3
1 ,

(2.9)

1. ahi a
s
r, if h 6= s, for all possible values of i and r,

2.
(
C
U(0,0),i

j

)2
−
(
C
U(0,0),k

l

)2
, for all possible values of i, j, k and l,

3.
(
C
U(0,1),i

j

)2
−
(
C
U(0,1),k

l

)2
, for all possible values of i, j, k and l,

4.
(
C
U(1,0),i

j

)2
−
(
C
U(1,0),k

l

)2
, for all possible values of i, j, k and l,

5.
(
C
U(1,1),i

j

)2
−
(
C
U(1,1),k

l

)2
, for all possible values of i, j, k and l,

6.
(
C
U(0,0),j

i a
)2

(
(
C
U(0,1),j

i a′
)2

) , with a (a′) being the first arrow of C
U(0,0),j

i (C
U0,1,j
i )

for all i, j,

7.
(
C
U(1,0),j

i a
)2

(
(
C
U(1,1),j

i a′
)2

) , with a (a′) being the first arrow of C
U(1,0),j

i (C
U(1,1),j

i )

for all i, j.

Figure 2.3 shows the quiver QK associated to this configuration.

U(0,1)

U(0,0)

U(1,1)

U(0,1)

a
n2−2
1

a
n2
1

a
n1+1
1

a
n1+1
2

a
n1
1

a
n1
2

a
n3+1
2a

n3+1
1

a
n3
1a

n3
2

a
n2−1
1

a
n2−1
2

Figure 2.3. The quiver QK associated to this configuration.
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The following is the numerology associated to the algebra ΛK = kQK/I with QK as shown
in Figure 2.3 and special cycles given in (2.9), (|r(QK)| is the number of indecompos-
able projective modules, rU(0,0)

, rU(0,1)
, rU(1,0)

and rU(1,1)
denote the number of summands

in the heart of the indecomposable projective modules P (U(0,0)), P (U(0,1)), P (U(1,0)) and
P (U(1,1)). Note that, |Ci| = val(i)):

|r(QK)| = 4,

rU(0,0)
= 3, rU(0,1)

= 3, rU(1,0)
= 3, rU(1,1)

= 3,

|Cn1+1| = 2, |Cn2−2| = 1, |Cn3+1| = 2, |Cn2−1| = 2,

|Cn1 | = 2, |Cn2 | = 1, |Cn3 | = 2,∑
α∈K0

∑
X∈K1

occ(α,X) = 12, the number of special cycles,

dimk ΛK = 8 + 2(3) + 1(1) + 2(3) + 2(3) + 2(3) + 1(1) + 2(3) = 40,

dimk Z(ΛK) = 1 + 14 + 4− 7 + 2− 2 = 12.

As another example of Theorem 13 consider the following snake graph of type
Gf (5, 3, 3, 2, 5, 4, 2)

Figure 2.4. The snake graph Gf (5, 3, 3, 2, 5, 4, 2).

In this case,

Match(Gf (5, 3, 3, 2, 5, 4, 2)) = 3221

= 4F3F4F5F
4
2 + 12F1F3F4F6F

3
2 + 16F1F

2
3F4F5F

2
2 + 12F 2

1F
2
3F4F6F2 + 4F 2

1F
3
3F4F5.

Note that, sequences (Fibonacci words) F3F4F5F
4
2 , F1F3F4F6F

3
2 , . . . are specialized poly-

gons of the Brauer configuration (2.4).

2.3 Determinants and paths problems via Brauer configu-
rations

In this section, we describe the way that specializations of suitable Brauer configurations
(or Brauer configuration algebras) can be used to define determinants, thus solutions
of some very well known problems, as the paths problem solved by Lindström, Gessel
and Viennot can be interpreted as a specialization of a Brauer configuration and as a



CHAPTER 2: Categorification of continued fractions and Brauer configuration algebras 34

consequence of such interpretation the message described in Theorem 13 can be viewed as
a product of specialized Brauer configurations.

Let us consider a labeled Brauer configuration D(k) = {D0(k),D1(k), ν,O} obtained from
the labeled Brauer configuration K defined by identities (2.4), and (2.5) by redefining
vertices labels and polygons as follows:

D0(k) = {αiπ = α(i,π(i)) ∈ G | 1 ≤ i ≤ k, π ∈ Sk, k > 2 fixed},
D1(k) = {(Uπ, π) | π ∈ Sk}, (Uπ, π) = {α(i,π(i)) | π ∈ Sk fixed},

ν(α(i,π(i))) = 1, for any vertex α(i,π(i)) ∈ D0(k),

(2.10)

where G is a field, π is an element of the group (Sk,�) of permutations of k elements
endowed with a linear order �, the labels in this case have the form (π(1), π(2), . . . , π(k)),
ν is a multiplicity function. And the orientation O is defined in such a way that labeled
polygons (Uπj , πj) and (Uπj+1 , πj+1) are consecutive in D1(k) provided that πj and πj+1

are consecutive in (Sk,�).

For the sake of accuracy in this case, to each word w(Uπ, π) associated to the polygon
(Uπ, π) it is defined sign(w(Uπ, π)) = sign(π) and the message M(D) of the Brauer con-
figuration D(k) is given by the identity:

M(D(k)) =
∑

(Uπ ,π)∈D1

sign(w)w(Uπ, π). (2.11)

The following result follows immediately from the definitions (2.10) and (2.11).

Theorem 14. M(D(k)) = |α(i,j)| where |α(i,j)| is the determinant with entries α(i,j) ∈
D0(k).

Now several specializations can be defined for the message (2.11).

Henceforth, we let M(Dek
F(k)) denote the specialization of the message (2.11) with an

associated function of the form ekF : D0(k)→ C such that

ekF(α(r,s)) =


i =
√
−1, if s = r + 1, r fixed, 1 ≤ r ≤ k − 1,

i, if s = r − 1, r fixed, 2 ≤ r ≤ k,
1, if s = r, 1 ≤ r ≤ k,
0, elsewhere.

Then the following result holds (see [12] for the calculus of this family of determinants).

Corollary 5. M(Dek
F(k)) = Fk+1 where Fj is the jth Fibonacci number.

Proof. M(Dek
F(k)) is a k × k-determinant whose entries are given by identities ekF(α(r,s))

then column transformations of the form C ′j+1 ↔ −
Fj
Fj+1

Cji + Cj+1, for 1 ≤ j ≤ k − 1

reduce |ekF(α(r,s))| to a determinant with entries of the form:
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T (ekF(α(r,s))) =


Fj+1

Fj
, if s = r, 1 ≤ r ≤ k,

i, if s = r − 1, r fixed, 2 ≤ r ≤ k,
0, elsewhere.

Thus, T (ekF(α(r,s))) is a diagonal determinant such that |T (ekF(α(r,s)))| =
k∏
j=1

Fj+1

Fj
= Fk+1.

�

The following result is proved by Theorem 13 and Corollary 5.

Corollary 6. For all n1, n2 . . . , nk ≥ 2, we have that Match(Gf (n1, n2, . . . , nk)) =∑
w∈{0,1}k−1

∏k
`=1M(Deh

F(k)) where h = n` − g(w`−1, `)− g(w`, `) + 1.

2.3.1 The Lindström’s theorem

Specializations of the Brauer configuration D(k) allow us to interpret the Lindström’s
theorem as a message M(D(k)). To do that, let us recall such a result as Gessel and
Viennot described in [29].

If Q is an acyclic digraph with finitely many paths between any two vertices. Let k be
a fixed positive integer. A k-vertex is a k-tuple of vertices of Q, if u = (u1, u2, . . . , uk)
and v = (v1, v2, . . . , vk) are k-vertices of Q then a k-path from u to v is a k-tuple A =
(A1, A2, . . . , Ak) such that Ai is a path from ui to vi. The k-path A is disjoint if the paths
Ai are vertex disjoint. Let Sk be the set of permutations of {1, 2, . . . , k} then for π ∈ Sk,
by π(v) we mean the k-vertex (vπ(1), vπ(2), . . . , vπ(k)).

Let us assign a weight to every edge of Q, we define the weight of a path to be the product
of the weights of its edges and the weight of a k-path to be the product of the weights of
its components.

Let P(ui, vj) be the set of paths from ui to vj and P (ui, vj) be the sum of their weights.
Define P(u, v) and P (u, v) analogously for k paths from u to v.

Let N(u, v) be the subset of P(u, v) of disjoint paths and let N(u, v) be the sum of
their weights, then it is clear that for any permutation π ∈ {1, 2, . . . , k}, it holds that

P (u, π(v)) =
k∏
i=1
P (ui, vπ(i)). Thus the specialization with associated function of the

form h : D0(k) → N such that h(α(i,π(i))) = P (ui, vπ(i)) and words defined by the
specialized polygons h(Uπ, π) = {P (ui, vπ(i)) | 1 ≤ i ≤ k, π ∈ Sk fixed} of the form
w(h(Uπ, π)) = sign(π)P (u, π(v)) build the following Brauer configuration version of the
theorem of Lindström [29].

Theorem 15. M(Dh(k)) =
∑
π∈Sk

sign(π)N(u, π(v)).
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The following results are well known consequences of Theorem 15 giving values of n ×
n, t-Catalan determinants. For which, we define specialized messages M(Dht(n)) with
P (u1+h, vj−h) = P (u1, vj) = Ct−1+j , t ≥ 1 fixed, 0 ≤ h ≤ j − 1, 1 ≤ j ≤ n, j − h > 0, and
P (uk+l, vn−l) = P (uk, vn) = Ct+n+k−2, for 2 ≤ k ≤ n and 0 ≤ l ≤ n − k, Cs denotes the
sth Catalan number.

Corollary 7. M(Dh1(k)) = 1.

Proof. Consider the infinite directed graph G with Z×Z as the set of vertices and directed
edges from (i, j) to (i + 1, j) and to (i, j + 1) for every i, j ∈ Z. Let di denote the vertex
(i, i) in G, i ∈ Z. Note that the number of directed paths in G from di to dj , with j ≥ i
is equal to the Catalan number Cj−i. Let Q1

k be the family consisting of all k pairwise
vertex disjoint directed paths (A0, A1, . . . , Ak−1) in G such that Ai joins d−i with di+1,
i = 0, 1, . . . , k− 1 then M(Dh1(k)) = |Q1

k| = 1, where |Q1
k| is the number of vertices of the

graph Q1
k, see the diagram below.

dk

d3

d2

d1

d0

d−1

d−2

d−(k−1)

�

The following is a more general result obtained via specializations M(Dht(k)) and di-
graphs Qtk (as described in the proof of Corollary 7) where the system of k-paths
(A0, A1, . . . , Ak−1) and Ai connect vertices d−i and dt+i [47].

Corollary 8. M(Dht(k)) = |Qtk|.

For example M(Dh2(k)) = k + 1 and M(Dh3(k)) = (k+1)(k+2)(2k+3)
6 .

2.3.2 On the Brauer configuration algebra ΛD(k) induced by the Brauer
configuration D(k)

Note that each vertex α(i,j) ∈ D0(k) has associated a successor sequence of the form
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S(i,j) = (Uπi1 , πi1) � (Uπi2 , πi2) � · · · � (Uπik , πik), (2.12)

(i, j) ∈ πij with πij being a k-set permutation and for any j it holds that 1 ≤ i ≤ j.
Successor sequences S(i,j) define the corresponding special cycles C(i,j). Then the following
are relations generating the admissible ideal I of ΛD(k).

1. If xi = (i, π(i)) and xj = (j, π(j)) are elements of π ∈ Sk then a relation of the form
C(i,π(i)) − C(j,π(j))) has place,

2. If a is the first arrow of a special cycle C(i,j) then a relation C(i,j)a has also place,

3. If γ is an arrow of a given special cycle C(i,j) and β is arrow of a special cycle C ′(i′,j′)
with the final vertex e(α) being the initial vertex s(β) and C(i,j) 6= C ′(i,j) then a
relation of the form αβ holds in I,

4. The Brauer quiver QD(k) has no loops.

The following is the Brauer quiver QD(3):

QD(3) =

(α1,1, α
′
1,1)

(α ′3
,3 ,
α
3
,3 )

(α′1,2, α1,2)

(α
′ 2,
1
,
α
2
,1
)

(α′1,3, α1,3)

(α ′3
,1 ,
α
3
,1 )

(α
2
,3
,
α
′ 2,
3
)

(α
3
,2 ,
α ′3

,2 )
(α

2
,2
,
α
′ 2,
2
)

For the sake of clarity any cycle of the form
••

b

a

is written as
(b, a)

Note that in this case relations of the following form have place α′(i,j)α(j+n) mod3,r and

α(i,j)α
′
(j+n) mod3,s, besides α(1,1)α(2,3), α(2,3)α(3,1), α(3,1)α(1,3), α(1,3)α(2,1), α(1,3)α(3,2),

α(3,2)α(2,3), α(2,3)α(1,2), α(2,2)α(1,3), α′(2,3)α
′
(1,1), α′(2,1)α

′
(1,3), α′(1,3)α

′
(2,2), α′(1,3)α

′
(3,1),

α′(3,1)α
′
(2,3), α

′
(3,2)α

′
(1,3), α

′
(1,2)α

′
(2,3) for all possible values of r and s. Thus in general

the following result holds:
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Theorem 16. For the Brauer configuration ΛD(k) induced by the Brauer configuration
D(k) the following statements hold:

1. ΛD(k) has k! indecomposable projective modules.

2. If α(i,j) ∈ D0(k) the val(α(i,j)) = (k − 1)!.

3. The number of summands in the heart of an indecomposable projective module given
by a polygon of the form (Uπ, π) is k.

4. dim ΛD(k) = 2(k! + k2t((k−1)!−1)) where ts denotes the sth triangular number.

5. dimk Z(ΛD(k)) = 1 + k!.

Proof. 1. The assertion follows from Theorem 3 (item 1) and the fact that |D1(k)| =
|Sk| = k!.

2. By definition of a k × k-determinant it holds that each entry-vertex α(i,π(i)) occurs
in (k − 1)! summands-polygons of the form α(1,π(1))α(2,π(2)) . . . α(k,π(k)).

3. We note that if P is an indecomposable projective ΛD(k)-module corresponding to

a polygon (Uπ, π) then rad2 P 6= 0 and the result follows bearing in mind that any
polygon (Uπ, π) has k vertices each of them occurring in (k − 1)! polygons (i.e., all
vertices in a given polygon are non-truncated).

4. Proposition 2 allows to conclude that

dimk ΛD(k) = 2k! +
∑

α(i,j)∈D0

|Cα(i,j)
|(|Cα(i,j)

| − 1)

where for each α(i,j), |Cα(i,j)
| = val(α(i,j)) = (k − 1)!. Thus, the statement holds

taking into account that for any j ≥ 2, j(j − 1) = 2tj−1.

5. Since rad2 ΛD(k) 6= 0, the statement is a consequence of Theorem 4 with ν(α(i,j)) = 1,
for all α(i,j) ∈ D0(k), |D0(k)| = k2, |D1(k)| = k!, #(Loops QD(k)) = 0 and |CD(k)| =
0.

�

Corollary 9. For n > 2 the algebra ΛD(n) associated to the Brauer configuration D(n)
has a length grading induced from the path algebra kQD(n).

Proof. Since D(n) is connected by definition, then the corollary holds as a consequence of
Proposition 3 bearing in mind that for any α(i,j) ∈ D0(n), ν(α(i,j)) = 1 and val(α(i,j)) =
(n− 1)!.

�

2.4 Kronecker snake graphs

In this section, categorification in the sense of Ringel and Fahr [19–21] is given to sequences
of continued fractions. To do that, to each non-regular indecomposable Kronecker module,
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it is associated a suitable snake graph, we named Kronecker snake graphs all those graphs
associated to the non-regular components of the Auslander-Reiten quiver of the Kronecker
algebra.

The following theorem defines Kronecker snake graphs associated to indecomposable pre-
projective Kronecker modules.

Theorem 17. For n ≥ 2 fixed, the (2n+ 1)−terms snake graph

Gpk(n+ 1, n+ 1, 2, 2, n+ 1, 2, n+ 3, 2, n+ 1, 2, n+ 3, . . .)

builds the indecomposable Kronecker preprojective module (n+ 1, n). Moreover the corre-
sponding continued fraction of Gpk has the following form

[2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

, 4,∆, 2],

where
∆ = 1, 1, . . . , 1︸ ︷︷ ︸

n−2

, 3, 1, 1, . . . , 1︸ ︷︷ ︸
n

, 3, 1, 1, . . . , 1︸ ︷︷ ︸
n−2

, 3 1, 1, . . . , 1︸ ︷︷ ︸
n

, . . .

and the length of ∆, l(∆) is

l(∆) =

{
n(n− 1)− 1, if n is odd,

n(n− 1)− 2, if n is even.

Proof. Let us recall that an indecomposable preprojective Kronecker module can be repre-
sented as a matrix block of the form U = (A,B) with n columns and n+1 rows, which can
be defined by straight subsnake graphs of Gpk in alternative fashion (horizontal, vertical,
etc). First horizontal subsnake graph corresponds to entries of the first row of the matrix
block in such a way that the first tile and the remaining interior tiles are labeled with an
entry in the first row of A, whereas the entry b1,1 = 1 is chosen to label the last tile of
this subsnake graph. Second subsnake graph is labeled by entries in the first column of
the matrix block B its last tile is labeled with the entry bn+1,1 the label of the last tile in
the next horizontal subsnake graph is an+1,n and the label of the next vertical subsnake
graph with starting tile an+1,n is an,n and so on until all the starting and final tiles of all
straight subsnake graphs are labeled by entries of the matrix block U .

Assuming natural ordering for the straight subsnake graphs, we apply to even horizontal
subsnake graphs and the first vertical subsnake graph an additional special labeling dealing
with orientation of row and columns, in this case we take into account that if the last tile
of a given row ri has not a special labeling, then the first tile of the next column ci has
not a special labeling. Moreover, these special labels determine the way that rows and
columns of a matrix block must be constructed. The procedure goes as follows:

Special labeled horizontal straight snake graphs indicates that each tile corresponds to an
entry of a row of the matrix block developed from the right to the left. Whereas, a special
labeled vertical straight snake graph indicates that the tiles correspond to the entries of a
column of the matrix block developed from the top to the bottom.

An indecomposable preprojective module (n + 1, n) is obtained from Gpk by assigning
alternatively either 0 or a 1 to the ends of the straight snake graphs constituting Gpk.
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In this case, a 0 is assigned to the first tile in the first row, then a 1 is assigned to the
corresponding last tile, which is the first tile of the next straight snake graph, which
has assigned a 0 in its last tile, and the procedure goes on. Numbers 1’s are entries of
the identities in the matrix block, which can be completed by definition. The remaining
results hold immediately from the construction described above and definitions (1.10) and
(1.11). �

The following example illustrates step by step the arguments posed in the proof of Theorem
17. Considering the labeled snake graph G presented in Figure 2.5. In Figure 2.6, 0 and
1 are assigned alternately to the ends of each straight snake subgraph, in Figure 2.7, G
is rolled up into the matrix block and finally by using the definition of a preprojective
module we complete each matrix block (see Figure 2.8).

G =

Figure 2.5. Labeled snake graph G.

0 1

0 1

0 1

0 1

Figure 2.6. Assigned a 0 or 1 to the ends of each straight snake subgraph.

0

1 0

0

1

1

1

0

Figure 2.7. The snake graph is rolled up into the matrix block.

0

1

0

1

1

0

1

0

Figure 2.8. The preprojective module is completed by definition.
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0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0

The following theorem is the preinjective version of Theorem 17.

Theorem 18. For n ≥ 3 fixed. The (2n+1)−terms snake graph Gik(3, n, 4, 2, n+2, 2, n+
4, 2, n+2, 2, n+4, . . .) defines the indecomposable Kronecker preinjective module (n+1, n).
Moreover the corresponding continued fraction of Gik has the following form

[2, 2, 1, 1, . . . , 1︸ ︷︷ ︸
n−3

, 2, 1, 3, 1, 1, . . . , 1︸ ︷︷ ︸
n−1

,∆, 2],

where ∆ = 3, 1, 1, . . . , 1︸ ︷︷ ︸
n+1

, 3, 1, 1, . . . , 1︸ ︷︷ ︸
n−1

, 3, 1, 1, . . . , 1︸ ︷︷ ︸
n+1

, 3 1, 1, . . . , 1︸ ︷︷ ︸
n−1

, . . . and the length of ∆, l(∆)

is

l(∆) =

{
n(n− 2)− 3, if n is odd;

n(n− 2)− 2, if n is even;

The snake graphs Gpk(n + 1, n + 1, 2, 2, . . .) are said to be preprojective Kronecker snake
graphs. Whereas the snake graphs Gik(3, n, 4, 2, n + 2, 2, . . .) are said to be preinjective
Kronecker snake graphs.

Regarding snake graphs Gpk and Gik, it is easy to see the following result.

Proposition 4. If l(G) denotes the length of a snake graph G, then

l(Gpk) =

{
(n+ 1)(n+ 2)− 2, if n is odd,

n(n+ 3)− 1, if n is even,

and

l(Gik) =

{
n(n+ 2)− 2, if n is odd,

n(n+ 2)− 1, if n is even.

Now, we study some interesting connections of preprojective and preinjective Kronecker
snake graphs with knot theory and Auslander algebras. On one hand, in section 2.4.1
we use the message of suitable Brauer configurations algebras to construct the rational
tangles introduced in Example 1 and a bijective correspondence between rational tangles
of type W(i+ 1, i) and preprojective Kronecker snake graphs is described as well. On the
other hand, in section 2.4.2 the set of preinjective Kronecker snake graphs is endowed of
the group structure and we proof a bijection between the elements in that group and the
full exceptional sequences of some Auslander algebras.

2.4.1 Preprojective Kronecker tangles

In this section, we describe the preprojective Kronecker tangles introduced in Example 1
as the message of the following Brauer configuration algebra.
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Let ΓTk = kQTk/M be the Brauer configuration algebra induced by the Brauer configu-
ration Tk such that for k ≥ 2 fixed, Tk = (T0,T1, µ,O) with:

1.

T0 = {(−(k + 5), k + 3) \ {−1, 0, 1}},where the interval is consider over Z
T1 = {P0, P1, P2, . . . , Pk}, where

Pi = {i+ 3,−(i+ 3),−2, 2, i+ 3, 2,−(i+ 5), 2, i+ 3, 2,−(i+ 5), 2, i+ 3, . . .},
for 0 ≤ i ≤ k and |Pi| = 2i+ 5.

2. The orientation O is defined in such a way that:

At vertex 2; P0 < P
(2)
1 < P

(3)
2 < · · · < P

(k+1)
k .

At vertex n; P
dn
2
e

n−3,with 3 ≤ n ≤ k + 3.

At vertex − 2; P0 < P1 < P2 < P3 < P4 < P5 < · · · < Pk.

At vertex − 3; P0.

At vertex − 4; P1.

At vertex − 5; P2.

At vertex − n; P
dn−3

2
e−1

(n−5) < Pn−3,with 6 ≤ n ≤ k + 3.

At vertex − n; P
dn−5

2
e

(n−5) ,with k + 4 ≤ n ≤ k + 5.

3. the multiplicity function µ is such that if k ≥ 4 then,

µ(α) =

{
2, if α = −5,−4,−3;

1, otherwise.

4. the multiplicity function µ is such that if 2 ≤ k ≤ 3 then,

µ(α) =


2, if α = −7,−6,−5,−4,−3 and k = 2,

2, if α = −7,−5,−4,−3 and k = 3,

1, otherwise.

The following is the Brauer quiver QTk associated to this configuration Tk when k ≥ 4,
for the sake of clarity we will divide the labeling of the quiver in two parts: In the first
one (Figure 2.9) we use the symbol [xj ; y] to denote that the vertex xj occurs y times
at the corresponding polygon (see identity (2.1)) and also draw the successor sequence at
the vertex 2 (in blue), at the vertex −2 (in red), at the vertex −k (in green),etc. In the
second one, aji is the set of loops at the corresponding polygon and j is the vertex. For

instance a−3
1 denotes the loop associated to the vertex −3 in the polygon P0 and a

(−k+2)
hk−3

with 1 ≤ hn ≤ dn+3
2 e denotes the set of loops associated to the vertex −(k + 2) in the

polygon Pk−3. All these labels are useful to establish relations of type I, II and III.
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P0 P1 P2 P3 P4 Pk−3 Pk−2 Pk−1 Pk· · ·

[k + 2, d k+3
2
e]

[−3, 1]

[3, 2]

[−4, 1]

[2, 2]

[4, 2]

[−5, 1]

[2, 3]

[5, 3]

[−8, 2]

[2, 4]

[6, 3]

[−9, 2]

[2, 5]

[7, 4]

[x2, y] [x3, y] [2, k]

[2, k + 1]

[k + 3, d k+3
2
e]

Figure 2.9. Quiver associated to the Brauer configuration Tk = (T0,T1, µ,O).

P0 P1 P2 P3 P4 Pk−3 Pk−2 Pk−1 Pk· · ·

a−6
1 a−7

1

a−6
2 a−7

1

a
−(k+2)⌈ k−1

2

⌉
−1

a
−(k+3)

d k
2
e

a
−(k+2)

d k−1
2
e

a−3
1

a3h0

a−4
1

a22

a4h1

a−5
1

a2i2

a5h2

a2i3

a6h3

a
−(k+2)
hk−3

a
−(k+3)
hk−2

ak+1
hk−2

a2ik−1

ak+2
hk−1

a2ik

ak+3
hk

a
−(k+5)
gk

a−2
tk+1

a2tk+1

Figure 2.10. Quiver associated to the Brauer configuration Tk = (T0,T1, µ,O) with cycles.

The ideal M of the corresponding Brauer configuration algebra ΛTk is generated by the
following relations (see Figure 2.10), for which it is assumed the following notation for the
special cycles:
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CP0,1
−3 = a−3

1 , CP1,1
−4 = a−4

1 , CP2,1
−5 = a−5

1 ,

CPi,1−2 =

{
a−2

1 · · · a
−2
k+1 if i = 0

a−2
i+1 · · · a

−2
i otherwise

,with 0 ≤ i ≤ k,

C
Pn−5,t
−n =

{
a−n1 · · · a

−n
dn−3

2
e if t = 1

a−nt · · · a
−n
t−1 otherwise

,with 6 ≤ n ≤ k + 3 and 2 ≤ t ≤
⌈n− 3

2

⌉
− 1,

C
Pn−3,1
−n = a−ndn−3

2
ea
−n
1 · · · a

−n
dn−3

2
e−1

where 6 ≤ n ≤ k + 3,

C
Pn−5,r
−n =

{
a−n1 · · · a

−n
dn−5

2
e if r = 1

a−nr · · · a−nr−1 otherwise
,with k + 4 ≤ n ≤ k + 5 and 2 ≤ r ≤

⌈n− 5

2

⌉
,

CPn−3,s
n =

{
an1 · · · and k

2
e if s = 1 and n ≥ 3

ans · · · ans−1 otherwise
,with 2 ≤ s ≤

⌈n
2

⌉
,

C
Pj ,u
2 =

{
a2

1 · · · a2
tk+1

if j = 0

a2
j+u · · · a2

j+u−1 otherwise
,with 1 ≤ u ≤ j + 1, 0 ≤ j ≤ k,

(2.13)

where tn denotes the triangular number n.

1.
(
CP0,1
−3

)2
− CP0,1

−2 , CP0,1
3 −

(
CP0,1
−3

)2
, CP0,1

2 −
(
CP0,1
−3

)2
,

2.
(
CP1,1
−4

)2
−CP1,1
−2 ,

(
CP1,1
−4

)2
−CP1,1
−6 ,

(
CP1,1
−4

)2
−CP1,u

2 ,
(
CP1,1
−4

)2
−CP1,s

4 for all possible

values of s and u,

3.
(
CP2,1
−5

)2
−CP2,1
−2 ,

(
CP2,1
−5

)2
−CP2,1
−7 ,

(
CP2,1
−5

)2
−CP2,s

5 ,
(
CP2,1
−5

)2
−CP2,u

2 for all possible

values of s and u,

4. For k ≥ 3; CPk,1−2 −C
Pk,t
−(k+5), C

Pk,1
−2 −C

Pk,s
k+3 , CPk,1−2 −C

Pk,1
−(k+3), C

Pk,1
−2 −C

Pk,u
2 , CPk,1−2 −C

Pk,r
−n

for all possible values of s, u and r,

5. (a−3
1 )2a−3

1 , (a−4
1 )2a−4

1 , (a−5
1 )2a−5

1 ,

6. CPi,1−2 a (C
Pn−5,t
−n a′), with a (a′) being the first arrow of CPi,1−2 (C

Pn−5,t
−n ) for all possible

values of i and n,

7. C
Pn−3,1
−n a (C

Pn−3,s
n a′), with a (a′) being the first arrow of C

Pn−3,1
−n (C

Pn−3,s
n ) for all

possible values of n and s,

8. CPk,1−n a (CPk,rn a′), with a (a′) being the first arrow of CPk,1−n (CPk,rn ) for all possible
values of n and r,

9. C
Pj ,u
2 a, with a being the first arrow of C

Pj ,u
2 for all possible values of j and u,

10. For 3 ≤ n ≤ k we have a
−(n+3)
dn
2
e−1 a

2
in

, a
−(n+3)
dn
2
e−1 a

2
tn+1

with tn + 1 ≤ in ≤ tn+1 − 1,

11. a
−(n+3)
dn
2
e−1 a

−2
n+1, a

−(n+3)
dn
2
e−1 a

n+3
hn

with 1 ≤ hn ≤ dn+3
2 e,
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12. a
−(n+3)
dn
2
e−1 a

−(n+5)
jn

, a
−(n+3)
dn
2
e−1 a

−(n+5)

dn+2
2
e−1

, for 1 ≤ jn ≤ dn+2
2 e − 2,

13. a−2
n a

−(n+3)
dn
2
e , a−2

n an+3
hn

, with 1 ≤ hn ≤ dn+3
2 e,

14. a−2
n a2

tn+1
, a−2

n a
−(n+5)

dn+2
2
e−1

, a−2
n a

−(n+5)
jn

, with 1 ≤ jn ≤ dn+2
2 e − 2,

15. a−2
n a2

in
, a−2

n+1a
−(n+5)

dn+2
2
e , with tn + 1 ≤ in ≤ tn+1 − 1,

16. a2
tna
−(n+3)
dn
2
e , a2

tna
2
tn+1

, a2
tna

2
in

, with tn + 2 ≤ in ≤ tn+1 − 1,

17. a2
tna

n+3
hn

, a2
tna
−2
n+1, a2

tna
−(n+5)

dn+2
2
e−1

, with 1 ≤ jn ≤ dn+2
2 e − 2,

18. a2
tna
−(n+5)
jn

, a2
tn+1

a
−(n+5)

dn+2
2
e with 1 ≤ jn ≤ dn+2

2 e − 2,

19. a2
in
a
−(n+5)
jn

, a2
in
a
−(n+5)

dn+2
2
e−1

, a2
in
a−2
n+1 with 1 ≤ jn ≤ dn+2

2 e−2 and tn+2 ≤ in ≤ tn+1−1,

20. a2
in
an+3
hn

, a2
in
a
−(n+3)
dn
2
e with 1 ≤ hn ≤ dn+3

2 e and tn + 2 ≤ in ≤ tn+1 − 1,

21. a2
in
a2
tn+1

, a
−(n+5)
jn

a
−(n+5)

dn+2
2
e−1

with 1 ≤ jn ≤ dn+2
2 e+ 3 and tn + 1 ≤ in ≤ tn+1 − 2,

22. a
−(n+5)
jn

a2
tn+1

, a
−(n+5)
jn

a−2
n+1, a

−(n+5)
jn

an+3
hn

with 1 ≤ hn ≤ dn+3
2 e and 1 ≤ jn ≤

dn+2
2 e − 2,

23. a
−(n+5)
jn

a
−(n+3)
dn
2
e , a

−(n+5)
jn

a2
in

, with 1 ≤ jn ≤ dn+2
2 e − 2 and tn + 1 ≤ in ≤ tn+1 − 1,

24. a
−(n+5)

dn+2
2
e a

n+3
hn

, a
−(n+5)

dn+2
2
e a

2
in

with 1 ≤ jn ≤ dn+2
2 e − 2 and tn + 1 ≤ in ≤ tn+1 − 1,

25. a
−(n+5)

dn+2
2
e a
−(n+3)
dn
2
e , a

−(n+5)

dn+2
2
e a
−(n+5)
jn

with 2 ≤ jn ≤ dn+2
2 e − 2,

26. a
−(n+5)

dn+2
2
e a

2
tn+1

, a
−(n+5)

dn+2
2
e a
−2
n+1,

27. an+3
hn

a−2
n+1, an+3

hn
a2
tn+1

, an+3
hn

a
−(n+5)

dn+2
2
e−1

with 1 ≤ hn ≤ dn+3
2 e,

28. an+3
hn

a
−(n+5)
jn

, an+3
hn

a2
in

, an+3
hn

a
−(n+3)
dn
2
e with 1 ≤ hn ≤ dn+3

2 e,

29. a−ngn a
2
in

, a−ngn a
2
tn+1

, a−ngn a
−2
n+1, a−ngn a

n+3
hn

, a−ngn a
−(n+5)

dn+2
2
e with 1 ≤ gn ≤ dn−5

2 e,

30. a
−(n+3)
dn
2
e−1 a

−n
gn , a−2

n a−ngn , an+3
hn

a−ngn , a2
tna
−n
gn , a2

in
a−ngn with 1 ≤ gn ≤ dn−5

2 e,

31. a−3
1 a2

1, a−3
1 a−2

1 , a−3
1 a3

h0
, a2

tk+1
a−3

1 , a3
h0
a−3

1 , a−2
k+1a

−3
1 , a−4

1 a−6
1 , a−4

1 a4
h1

,

32. a−4
1 a2

2, a−4
1 a2

3, a−4
1 a−2

2 , a−6
2 a−4

1 , a4
h1
a−4

1 , a2
1a
−4
1 , a−2

1 a−4
1 , a2

2a
−4
1 , a2

2a
−6
1 ,

33. a−6
2 a4

h1
, a−6

2 a2
2, a−6

2 a2
3, a−6

2 a−2
2 , a−5

1 a−7
1 , a−5

1 a5
h2

, a−5
1 a2

i2
, a2

1a
−6
1 , a−2

1 a−6
1 ,

34. a−5
1 a−2

3 , a2
3a
−5
1 , a2

i2
a−5

1 , a5
h2
a−5

1 , a−7
2 a−5

1 , a−2
2 a−5

1 ,a−5
1 a2

6, a4
h1
a−6

1 .
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The following result regards the Brauer configuration algebra ΛTk .

Theorem 19. For the specialization e(i) = [i] with the concatenation defined by the usual
tangle product it holds that M(Tek) = Tn (see Example 1).

Proof. For k ≥ 2 fix, we have k + 1 polygons Pi with 0 ≤ i ≤ k. According to (2.1)

w(Pi) = (i + 3)d
i+3
2
e(−(i + 5))d

i
2
e(−(i + 3))1(2)i+1(−2)1=(i + 3)(−(i + 3))(−2)(2)(i +

3)(2)(−(i+ 5))(2)(i+ 3)(2)(−(i+ 5))(2)(i+ 3) · · · where the length of w(P (i)) is equal to
2i+ 5.

Now, applying the specialization we have:

we(Pi) = [i+ 3] ∗ [−(i+ 3)] ∗ [−2] ∗ [2] ∗ [i+ 3] ∗ [2] ∗ [−(i+ 5)] ∗ [2] ∗ [i+ 3] ∗ [2] ∗ [−(i+ 5)] · · ·
=W(i+ 3, i+ 2)

Thus, the specialized message is given by the following formula

M(Tek) =

k∑
i=0

we(Pi) =

k∑
i=0

W(i+ 3, i+ 2) = Tk

�

Corollary 10. There is a bijective correspondence between rational tangles of type W(i+
1, i) and the preprojective Kronecker snake graphs.

Proof. It is enough to associate each W(i + 1, i) the corresponding representative in the
class of the helices associated to the preprojective Kronecker module (i + 1, i) defined in
[13] or in Section 3.1. The corollary holds as a consequence of Theorem 22. �

The following results are consequences of Theorem 4 and Proposition 2.

Corollary 11. For k ≥ 4 fixed,

dimk ΛTk =

{
12n4+40n3+60n2+32n+21

3 , if k = 2n,
12n4+64n3+138n2+128n+57

3 , if k = 2n+ 1.

Proof. It is enough to observe that for k ≥ 4 fixed, it holds that

val(α) =



d−α−5
2 e, if −(k + 5) ≤ α ≤ −(k + 4);

d−α−3
2 e, if −(k + 3) ≤ α ≤ −6;

1, if −5 ≤ α ≤ −3;

k + 1, if α = −2;

tk+1, if α = 2;

dα2 e, if 3 ≤ α ≤ k + 3.
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According to Proposition 2 the following identity holds:

dimkΛTk = 2(k + 1) +

−(k+4)∑
α=−(k+5)

2td−α−5
2
e−1 +

−6∑
α=−(k+3)

2td−α−3
2
e−1

+ 3 + 2tk + 2ttk+1−1 +
k+3∑
α=3

2tdα
2
e−1,

(2.14)

where tj denotes the jth triangular number. The result holds as a consequence of the
following identities:

−(k+4)∑
α=−(k+5)

2td−α−5
2
e−1 =

{
4tn−1, if k = 2n;

2tn−1 + 2tn, if k = 2n+ 1;

−6∑
α=−(k+3)

2td−α−3
2
e−1 =


2

(
n−1∑
i=1

2ti

)
= 2n(n2−1)

3 , if k = 2n;

2

(
n∑
i=1

2ti

)
− 2tn = n(n+1)(2n+1)

3 , if k = 2n+ 1;

k+3∑
α=3

2tdα
2
e−1 =


2

(
n+1∑
i=1

2ti

)
− 2tn+1 = (n+2)(2n2+5n+3)

3 , if k = 2n;

2

(
n+1∑
i=1

2ti

)
= 2(n+2)(n2+4n+3)

3 , if k = 2n+ 1.

We are done. �

Corollary 12. For k ≥ 4 fixed, it holds that:

dimk Z(ΛTk) =

{
7n2 + 2n+ 5, if k = 2n;

7n2 + 7n+ 7, if k = 2n+ 1.

Proof. Since rad2 ΛTk 6= 0, the result is a consequence of Theorem 4 with µ(−5) = µ(−4) =
µ(−3) = 2, |T0| = 2k + 6, |T1| = k + 1, |CTk | = 3, val(2) = tk and #(Loops Q) given by
the following formula:

#(Loops Q) =

{
7n2 + 3, if k = 2n;

7n2 + 5n+ 4, if k = 2n+ 1.
(2.15)

Formula (2.15) can be obtained taking into account the following identities:

k+3∑
i=3

⌈
i

2

⌉
=

{
2(2n2 − 1), if k = 2n;

2(2n2 + n− 1), if k = 2n+ 1;

−6∑
i=−(k+3)

⌈
−i− 3

2

⌉
− 2 =

{
(n− 1)(n− 2), if k = 2n;

(n− 1)2, if k = 2n+ 1;
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−(k+4)∑
i=−(k+5)

⌈
−i− 5

2

⌉
=

{
2n, if k = 2n;

2n+ 1, if k = 2n+ 1;

We are done. �

2.4.2 The group of the preinjective Kronecker snake graphs

In this section, the set Sw(n,n+1) of preinjective Kronecker snake graphs of a fixed preinjective
Kronecker module is endowed with an operation, which makes of that set a finite group.

A Kronecker snake graph G(n,n+1)k has associated a unique word whG =(
apr1qs1 bpr1qs2 , bpr2qs2apr2qs3 , apr3qs3 bpr3qs4 , . . . , lprnqsn lprnqsn+1

)
given by the correspond-

ing entries, such correspondence makes of the Kronecker graph associated to the fixed
preinjective Kronecker module (n, n+ 1) a finite group with a multiplication

∗ : Sw(n,n+1) × Sw(n,n+1) −→ Sw(n,n+1)

defined as follows for h, h′ ∈ Sw(n,n+1):

h ∗ h′ =
(
apr1qs1 bpr1qs2 , bpr2qs2apr2qs3 , apr3qs3 bpr3qs4 , . . . , lprnqsn lprnqsn+1

)
∗(

a′p′r1q
′
s1
b′p′r1q

′
s2
, b′p′r2q

′
s2
a′p′r2q

′
s3
, a′p′r3q

′
s3
b′p′r3q

′
s4
, . . . , l′p′rnq′sn

l′p′rnq′sn+1

)

h ∗ h′ =
(
lpr

p′r1
qs
p′r1
lpr

p′r1
qs
p′r1+1

∗ a′p′r1q′s1 b
′
p′r1q

′
s2
, lpr

p′r2
qs
p′r2
lpr

p′r2
qs
p′r2+1

∗ b′p′r2q′s2a
′
p′r2q

′
s3
,

)
(
. . . , lpr

p′rn
qs
p′rn

lpr
p′rn

qs
p′rn+1

∗ l′p′rnq′sn l
′
p′rnq

′
sn+1

)

h ∗ h′ =
(
a′pr

p′r1
qs1
b′pr

p′r1
qs1(∗)

, b′pr
p′r2

qs1(∗)
a′pr

p′r2
qs2(∗)

, . . . , l′pr
p′rn

qsn(∗)
l′pr

p′rn
qsn+1(∗)

)
(1)

with l′ ∈ {a, b} and prp′rn
− qsn+1(∗) = p′rn − qsn+1 or equivalently

qsn+1(∗) = prp′rn
− p′rn + qsn+1.

Theorem 20. (Sw(n,n+1), ∗) is a finite group.

Proof. Closure and associativity are trivial from (1). The identity is given by:

id(n) =

{
(a1n+1b12, b22a22, a32b34, . . . , lnn−1lnn+1) if n is odd
(a1n+1b12, b22a22, a32b34, . . . , lnnlnn) if n is even
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Finally, each helix h has an inverse h−1 uniquely determined by

h−1 =
(
a′p′r1q

′
s1
b′p′r1q

′
s2
, b′p′r2q

′
s2
a′p′r2q

′
s3
, a′p′r3q

′
s3
b′p′r3q

′
s4
, . . . , l′p′rnq′sn

l′p′rnq′sn+1

)
such that prp′ri

= i for all 1 ≤ i ≤ n. �

Example 3. The elements of the group (Sw(3,4), ∗) are the following:

h1 = (a14b12, b22a22, a32b34)

h2 = (a14b12, b32a33, a23b23)

h3 = (a24b23, b13a11, a31b34)

h4 = (a24b23, b33a33, a13b12)

h5 = (a34b34, b24a22, a12b12)

h6 = (a34b34, b14a11, a21b23) .

Some products are

h1 ∗ h2 = (a14b12, b22a22, a32b34) ∗ (a14b12, b32a33, a23b23)

= (a14b12 ∗ a14b12, a32b34 ∗ b32a33, b22a22 ∗ a23b23)

= (a14b12, b32a33, a23b23) = h2

h3 ∗ h3 = (a24b23, b13a11, a31b34) ∗ (a24b23, b13a11, a31b34)

= (b13a11 ∗ a24b23, a24b23 ∗ b13a11, a31b34 ∗ a31b34)

= (a14b12, b22a22, a32b34) = h1

h5 ∗ h3 = (a34b34, b24a22, a12b12) ∗ (a24b23, b13a11, a31b34)

= (b24a22 ∗ a24b23, a34b34 ∗ b13a11, a12b12 ∗ a31b34)

= (a24b23, b33a33, a13b12) = h4

The Cayley table of (Sw(3,4), ∗) has the following form:

* h1 h2 h3 h4 h5 h6

h1 h1 h2 h3 h4 h5 h6

h2 h2 h1 h6 h5 h4 h3

h3 h3 h4 h1 h2 h6 h5

h4 h4 h3 h5 h6 h2 h1

h5 h5 h6 h4 h3 h1 h2

h6 h6 h5 h2 h1 h3 h4

Corollary 13. (Sw(n,n+1), ∗) is isomorphic to the symmetric group (Sn, ◦).

Proof. The result follows directly from Theorem 20 and Theorem 24. �
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2.4.2.1 Auslander algebras

In this section, we present a connection between the group (Sw(n,n+1), ∗) and the full ex-

ceptional sequences of the Auslander algebras At of k[t]/(xt) [38].

In this section, we consider that the modules are left modules over a suitable Auslander
algebra, and that compositions of arrows are made from right to left. This family of finite-
dimensional algebras is well-known in representation theory. It also occurs for certain
matrix problems, i.e. actions of linear groups on flags [38].

The algebra At is defined as the path algebra of the quiver with t vertices and 2t − 2
arrows

1 2 3 · · · t− 1 t
α

β

α

β

α

β

α

β

α

β

bound by a zero relation βα = 0 at 1, and commutativity relations αβ = βα at interme-
diate vertices 2, . . . , t − 1. We emphasise that there is no relation at t, this distinguishes
At from the preprojective algebra of the At- quiver.

It is well known, At occurs as the Auslander algebra of the ring R := k[x]/(xt) [36]. This
means that R has finitely many indecomposable (finitely generated) modules, these are
M(i) := R/(Xt) = k[X]/(Xt) for i = 1, . . . , t and that At is the endomorphism algebra of
their direct sum: At = EndR(M(1)⊕ · · · ⊕M(t)).

Moreover, At also occurs as the endomorphism algebra of a very special tilting object of
geometric nature (see Appendix B in [36] and [37]).

A non-zero, indecomposable thin representation of At is a sequence of maps k
α−→ k and

k
β←− k. Therefore, it is uniquely encoded by a word in the letters α and β, together with

the last index of a non-zero vector space in the representation. For exceptional modules,
the encoding is particularly simple, since the index of the last non-zero vector space is
always t.

We will depict these modules using the following convention: we read the word in the
letters α and β from left to right, and α is drawn as a line going right and β is drawn as
a line going up. This we call a worm.

Example 4. The seven exceptional A3- modules, as representations and worms:

S(3) = ∇(1) = ∆(1) = [ 0 0 k ]

∆(2) = [ 0 k
α−→ k ] ∇(3) = [ k

β←− k
β←− k ]

∆(3) = [k
α−→ k

α−→ k ] ∇(2) = [ 0 k
β←− k ]

[k
α−→ k

β←− k ] [k
α←− k

β−→ k ]

Now, we define worm diagrams as certain collections of worms. Worms will always be
conflated with exceptional modules. We consider Z × Z as a lattice grid in the obvious
way.
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Definition 2. A worm diagram of size t is a graph with the following properties:

(1) the vertices exhaust the triangle {(m,n) ∈ Z× Z |m+ n ≤ t and m,n ≥ 1} ,

(2) the edges lie on the lattice grid,

(3) the connected components are t worms of lengths 1, 2, . . . , t , respectively.

Proposition 5. Every worm diagram of size t gives rise to a full exceptional sequence of
At-modules.

L. Hille and D. Ploog proved in [36] the following result:

Theorem 21. For fixed t ∈ N, there are bijections between the following sets:

1. Full exceptional sequences of At-modules.

2. Worm diagrams of size t.

3. The symmetric group (St, ◦).

The following result follows from Corollary 13 and Theorem 21.

Corollary 14. There is a bijection between the full exceptional sequences of At-modules
and the elements of the group Sw(n,n+1).

Proof. The assertion follows from Theorem 20 and Theorem 21. �



CHAPTER 3

Categorification via some matrix problems and

Brauer configuration algebras

In this chapter, we categorify some integer sequences arising from some matrix problems.
In section 3.1, we give an explicit formula for the number of Kronecker snake graphs de-
fined in Chapter 2, these numbers correspond to the sequence A052558 in the On-Line
Encyclopedia of Integer Sequences (OEIS). In section 3.2, we categorify the numbers of
the sequence A052558, to do that, we define Brauer configuration algebras whose indecom-
posable projective modules are in bijective correspondence with preprojective Kronecker
modules, formulas for the dimension of this type of algebras and its corresponding centers
are given as well. In section 3.3, we categorify the sequence A100705, which appears in the
context of the Bert Konstant’s game and in the four subspace problem. As in the case of
the sequence A052558, we define Brauer configuration algebras whose indecomposable pro-
jective modules are also in bijective correspondence with preprojective representations of
the tetrad via some cycles associated to these indecomposable representations. Through-
out the categorification process of the sequences A052558 and A100705 we associate some
partition trees to the preprojective solutions of its corresponding matrix problem, in sec-
tion 3.4, we introduce the general notion of a preprojective tree and the explicit value of
the energy of these kind of trees is computed by using the message of a suitable Brauer
configuration algebra.

3.1 On the number of Kronecker snake graphs

In this section, some relationships between preprojective snake graphs, trees and helices
defined by the author et al. [13] are described as well.

In accordance with the digression made in Chapter 2 Kronecker snake graphs define in-
decomposable preprojective and preinjective modules. Actually, the notion of Kronecker
snake graph can be generalized by admitting that rows and columns of a given snake graph
are given by rows and columns of a matrix Kronecker block (A,B) applying the same rules
as in the generic case, e.g., entries a1,1, . . . , a1,n and b1,1 are used to label the first row of
the snake graph, then tiles in the first column are labeled with entries b1,1, . . . , bi1,1, for
some 1 < i1 ≤ n+1, then tiles in the second row are labeled with entries bi1,1, . . . , bii1 ,i1 the

52
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second column is labeled with entries of the form bi1,i1 , . . . , bi2,i1 , for some 1 < i2 ≤ n+ 1,
(i2 /∈ {1, i1}). Tiles in the third row are labeled with entries of the form bi2,i1 , . . . , bi2,i2 ,
tiles in third column are labeled with entries of the form bi2,i2 , . . . , bi3,i2 (i3 /∈ {1, i1, i2})
and so on, bearing in mind that there is not a row in the snake graph whose tiles are
labeled by entries of the form an+1,j , j 6= n + 1, and bn+1,j , 1 ≤ j ≤ n. Thus, general-
ized Kronecker snake graphs give place to helices associated to indecomposable Kronecker
modules defined by the author et al. as follows:

An helix h defined on the set of entries of an indecomposable non-regular Kro-
necker module is a path (oriented graph) whose vertices are entries of the matrix
blocks A and B. Such that, arrows connect an alternating sequence of the form
{a1,j , b1,1, br1,1, ar1,s1 , ar2,s1 , br2,s2 , br3,s2 , ar3,s3 , . . . , lrt,st} where starting vertices are entries
in the null row of matrix A (although, starting vertices in the matrix block B can be also
considered to build a sequence according to this selection), the ri’s visit all the rows of
the indecomposable, ri 6= rj if i 6= j, ari,sj 6= ari′ ,sj , l ∈ {a, b}, and brh,sk 6= brh′ ,sk . In
particular, each horizontal arrow in a helix h visits a given row in a matrix block (A,B)
just once.

Some cases of helices are given in the following example:

Example 5. Helices associate to the Kronecker modules (3, 2), (4, 3) and (3, 4).

0 0

1 0

0 1

1 0

0 1

0 0

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0

1 0 0

0 1 0

0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Two preprojective (preinjective) Kronecker snake graphs in the same Kronecker module
are said to be equivalent. Therefore, the main problem regarding Kronecker snake graphs
consists of giving the cardinality of the corresponding equivalence classes.

The following result follows from the definition of helices and Kronecker snake graphs:

Theorem 22. For n ≥ 2 fixed, there is a bijective correspondence between preprojec-
tive snake graphs and helices associated to the indecomposable preprojective (preinjective)
Kronecker module (n+ 1, n) ((n, n+ 1)).
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Theorem 22 allows us to reinterpret Problem 1 as a labeling problem for Kronecker snake
graphs. That is, the number of helices associated to a given non-regular indecomposable
Kronecker module is equal to the number of ways that a Kronecker snake graph can be
labeled by the entries of the corresponding matrix block.

The following results solve Problem 1 for indecomposable preprojective (preinjective) Kro-
necker modules. We recall that some advances to this problem have been proposed by the
author et al. in [13].

Theorem 23. If (n + 1, n) denotes an indecomposable preprojective Kronecker module
then the number of helices associated to (n + 1, n) is hpn = n!dn2 e where dxe denotes the
smallest integer greater than or equal to x. In fact:

(n+ 1, n) ' (n′ + 1, n′) if and only if hpn = hpn′.

Proof. We note that there is only one helix associated to the indecomposable preprojective
module (2, 1) and two for the indecomposable projective module (3, 2). And the vertices
sequence of helices associated to the indecomposable (4, 3) with a1,j fixed are:

hl1 = {a1,j , b1,1, b2,1, a2,1, a3,1, b3,3, b4,3, a4,3},
hl2 = {a1,j , b1,1, b3,1, a3,2, a2,2, b2,2, b4,2, a4,3},
hl3 = {a1,j , b1,1, b4,1, a4,3, a3,3, b3,3, b2,3, a2,1},
hl4 = {a1,j , b1,1, b4,1, a4,3, a2,3, b2,2, b3,2, a3,2}.

(3.1)

The number of helices is given by the number of vertices at the last level of the following
associated tree:

(a1,j , b1,1)

b2,1 b3,1 b4,1

a2,2

a4,2

a3,1

b4,3

a3,3 a2,3

b2,3 b3,2

...............................................................................................................................................................................................
...
............

...................................................................................
.....
.......
.....

.................................................................................................................................................................................................. .........
...

...................................................................................
.....
.......
.....

............................................................................
.....
...........
.

................................................................................
.
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

(3.2)

Suppose now that the result is true for any indecomposable preprojective Kronecker mod-
ule (k+1, k), 1 ≤ k < n then we can see that in general the rooted tree Tn associated to the
indecomposable preprojective Kronecker module (n+1, n) has the following characteristics
bearing in mind that vertex b1,1 gives the root node a0

1:

(a) a0
1 has n children enumerated from the left to the right as (a1

1, a
1
2, . . . , a

1
n),
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(b) For 1 ≤ i ≤ n − 1 each vertex a1
i has n − 2 children enumerated from the left to

the right as (a1
i,1, a

1
i,2, . . . , a

1
i,n−2), whereas vertex a1

n has n − 1 children of the form

(a1
n,1, a

1
n,2, . . . , a

1
n,n−1), each children of a vertex a1

n,l1
, 1 ≤ l1 ≤ n−1 has n−2 children

a1
n,l1,l2

with 1 ≤ l2 ≤ n−2, in general for this particular tree a vertex a1
n,l1,l2,l3,...,lk

has
n− (k+ 1) children, 1 ≤ k ≤ n− 2. Note that the number of vertices at the last level
of the rooted tree T ′n with a1

n as root node is (n− 1)!,

(c) For each h, 1 ≤ h ≤ n− 2, vertex a1
i,h is a root node of the tree Tn−2.

The following diagram shows the general structure of the rooted tree Tn

n-children

(n− 2) · · · (n− 2)· · · (n− 1)

T(n−2) · · · T(n−2) · · · T(n−2) (n− 2)

...

(1)

· · · (n− 2)

...

(1)

· · · (n− 2)

...

(1)

(n− 2)-children

.....................................................................................................................
...
............

...................................................................................
.....
.......
.....

........................................................................................................................ .........
...

.................................................................................................................
....
............

...................................................................................
.....
.......
.....

..................................................................................................................... ........
....

.....................................................................................................................
....
............

...................................................................................
.....
.......
.....

......................................................................................................................... ........
....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

(3.3)

According to the rules (a)− (c) the number of vertices LTn at the last level of the tree Tn
is given by the formula

LTn = (n− 1)(n− 2)LTn−2 + L(T ′n) = (n− 1)(n− 2)
hpn−2

n− 2
+ (n− 1)!

= (n− 1)!
⌈n

2

⌉
=
hpn
n
.

(3.4)

We are done. �

Henceforth, partition trees described in the proof of Theorem 23 will be called Kronecker
trees and will be denoted T(k+1,k), in Section 3.4.1 we will give a bound for trace norm of
this kind of trees.

The number hin of helices whose starting points are entries ai(n+1) ∈ A defined in the same
way as in the case for preprojective Kronecker modules are invariants for preinjective
Kronecker modules. Thus we have the following result:

Theorem 24. If (n, n+1) denotes an indecomposable preinjective Kronecker module then
the number of helices associated to (n, n+ 1) is hin = n!. In fact:

(n, n+ 1) ' (n′, n′ + 1) if and only if hin = hin′.
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Proof. By definition, there is a bijection between the set of permutations of the no null
columns of a representation (n, n+ 1) and the set of all helices associated to it. Actually

an helix h =
(
apr1qs1 bpr1qs2 , bpr2qs2apr2qs3 , apr3qs3 bpr3qs4 , . . . , lprnqsn lprnqsn+1

)
defines the n-

elements permutation (pr1 , pr2 , pr3 , . . . , prn). Moreover, it indicates the order that the helix
follows to visit the rows of the matrix block. That is, the first row to be visited by the
helix is pr1 , the second row is pr2 , and so on. �

Example 6. In this example, we give all the elements of the equivalence class of Kronecker
snake graphs associated to the preprojective (4, 3). In the following tables we show, the he-
lix, the generic Kronecker snake graph and its corresponding number of perfect matchings.

Helices Snake Graph Perfect Matchings

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (4, 4, 2, 2, 4, 2, 6) = 2243

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (4, 4, 2, 3, 3, 2, 4) = 1146

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (4, 3, 3, 2, 4, 3, 3) = 896

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (4, 2, 4, 2, 6, 2, 4) = 2417



CHAPTHER 3: Categorification via some matrix problems and Brauer configuration algebras 57

Helices Snake Graph Perfect Matchings

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (3, 4, 2, 2, 4, 2, 6) = 1424

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (3, 4, 2, 3, 3, 2, 4) = 727

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (3, 3, 3, 2, 4, 3, 3) = 841

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (3, 2, 4, 2, 6, 2, 4) = 1551

Helices Snake Graph Perfect Matchings

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (2, 4, 2, 2, 4, 2, 6) = 819

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (2, 4, 2, 3, 3, 2, 4) = 419

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (2, 3, 3, 2, 4, 3, 3) = 492

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 0 0
Gf (2, 2, 4, 2, 6, 2, 4) = 866
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3.2 A categorification of the sequence A052558

In this section, we prove Corollary 15 which is useful to determine the number of summands
in the heart of the indecomposable projective modules over some Brauer configuration
algebras ΛKn = kQKn/I. Such result and Theorem 23 allow us to give a categorification of
the integer sequence A052558 in the OEIS via Kronecker modules and Brauer configuration
algebras [71].

For n ≥ 3 fixed, let Kn = (Kn
0 ,K

n
1 , µ,O) be a Brauer configuration such that:

1.

Kn
0 = {x1, x2},

Kn
1 = {Vk = x

(2k+2)!
1 x

((k)(2k+2)!)
2 }1≤k≤n.

(3.5)

2. The orientation O is defined in such a way that for n ≥ 1

At vertex x1; V
(4!)

1 ≤ V (6!)
2 ≤ V (8!)

3 ≤ · · · ≤ V ((2n+2)!)
n ,

At vertex x2; V
2(12)

1 ≤ V 2(720)
2 ≤ V 2(60480)

3 ≤ · · · ≤ V (((n)(2n+2)!))
n .

(3.6)

3. the multiplicity function µ is such that µ(x1) = µ(x2) = 1.

Where the symbol xji in a given polygon Vk means that occ(xi, Vk) = j.

The following is the Brauer quiver QKn associated to this configuration (numbers attached
to the loops denote the occurrence of the vertex (x1 above, x2 below) in the corresponding
polygon Vk, 1 ≤ k ≤ n):

V1 V2 V3 V4 Vn−1 Vn

c1
i1

c1
i2

c1
i3

c1
i4 c1

in

[(2n+ 2)!]

c2
j1

c2
j2

c2
j3

c2
j4

c2
jn

[(n)(2n+ 2)!]

◦ ◦ ◦ ◦ . . . ◦ ◦

α2 α3 α4 αn

βn+1

αn+1

β2 β3 β4 βn2[12]

2[720] 2[60480]

[6!] [8!] [10!]

[4!]
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The ideal I of relations is generated by the following relations (in this case, if there are
associated l1k (l2k) loops at the vertex Vk associated to x1 (associated to x2) then we let

P jk denote the product of j ≤ ltk loops, t ∈ {1, 2}), cths is a notation for a set of cycles
{cths,1 , c

t
hs,2

, . . . , cth
s,lts

, t ∈ {1, 2}, h ∈ {i, j}, s ∈ {1, 2, . . . , n}}:

1. c1
is,x
c1
is,y
− c1

is,y
c1
is,x

, for all possible values of i, s, x, y,

2. c2
js,x

c2
js,y
− c2

js,y
c2
js,x

, for all possible values of i, s, x, y,

3. c1
is,x
c2
js,y

and c2
js,x

c1
is,y

, for all possible values of i, s, x, y,

4. c1
is,x
βs+1; c2

js,y
αs+1; βsc

1
is,x

; αsc
2
js,x

, for all possible values of i, s, x, y,

5. (c1
is,x

)2; (c2
js,y

)2, for all possible values of i, s, x, y,

6. αkαk+1; αn+1α2; βkβk+1; βn+1β2; αkβk+1; βjαj+1; αn+1β2; βn+1α2, for
all possible values of j, k,

7. αiP
j
i γi+1; αn+1P

j
1γ2; βkP

h
k γk+1; βn+1P

h
1 γ2; 0 < j < l1i , 0 < h < l2k, 1 ≤ i, k ≤

n, γ ∈ {α, β},

8. For all the possible products (special cycles) of the form:

ε1
1 = αkP

l1k
k αk+1P

l1k+1

k+1 · · ·αnP
l1n
n αn+1P

l11
1 · · ·αk−1P

l1k−1

k−1 ,

ε2
1 = P jk−1αkP

l1k
k αk+1P

l1k+1

k+1 · · ·αnP
l1n
n αn+1P

l11
1 · · ·αk−1P

l1k−1−j
k−1 ,

ε3
2 = βkP

l2k
k βk+1P

l2k+1

k+1 · · ·βnP
l2n
n βn+1P

l21
1 · · ·βk−1P

l2k−1

k−1 ,

ε4
2 = P hk−1βkP

l2k
k βk+1P

l2k+1

k+1 · · ·βnP
l2n
n βn+1P

l21
1 · · ·βk−1P

l2k−1−h
k−1 ,

(3.7)

relations of the form εri − εsj , r, s ∈ {1, 2, 3, 4}, i, j ∈ {1, 2} take place. Note that,

products of the form P 0
k−1 correspond to suitable orthogonal primitive idempotents

ek, 1 ≤ k ≤ n,

9. ε1
1αk, ε

3
2βk.

The following result holds for indecomposable projective modules over the algebra ΛKn .

Corollary 15. For n ≥ 3 fixed and 1 ≤ k ≤ n, the number of summands in the heart
of the indecomposable projective representation Vk over the Brauer configuration algebra
ΛKn is equals to the number of helices associated to the preprojective Kronecker module
(2k + 3, 2k + 2), 1 ≤ k ≤ n.

Proof. Firstly, we note that for any k, rad2 Vk 6= 0. Thus according to the Theorem 3
the number of summands in the heart of any of the indecomposable projective modules

Vk equals occ(x1, Vk) + occ(x2, Vk) = (2k + 2)! + k(2k + 2)! = hp2k+2 = h
(2k+3,2k+2)
2k+2 , which

is the number of helices associated in a unique form to the indecomposable preprojective
Kronecker module (2k + 3, 2k + 2). We are done. �

The following results regard the dimension of algebras of type ΛKn .
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Corollary 16. For n ≥ 3 fixed, it holds that 1
2(dimk ΛKn) = n + tγn−1 + tδn−1, where

γn =
n∑
k=1

k(2k + 2)!, δn =
n∑
k=1

(2k + 2)!, and th denotes the hth triangular number.

Proof. Proposition 2 allows to conclude that dimk ΛKn/I = 2n +
n∑
i=1
|Ci|(|Ci| − 1) where

for each i = 1, 2, |Ci| = val(xi). The theorem holds taking into account that for any j ≥ 2,
j(j − 1) = 2tj−1. �

Corollary 17. For n ≥ 3 fixed, it holds that dimk Z(ΛKn) = −n+ 1 +
n∑
k=1

hp2k+2.

Proof. Since rad2 ΛKn 6= 0, the result is a consequence of Theorem 4 with µ(x1) = µ(x2) =
1, |Kn

0 | = 2, |Kn
1 | = n and occ(x1, Vk) + occ(x2, Vk) = hp2k+2. �

Remark 5. Similar results as in Corollaries 15-17 can be obtained for preprojective Kro-
necker modules of the form (4k + 2, 4k + 1), k ≥ 1 by considering in the original Brauer
configuration that

Kn
0 = {x1, x2},

Kn
1 = {Vk = x

(4k+1)!
1 x

2k(4k+1)!)
2 }1≤k≤n.

(3.8)

and keeping the relations in the quiver without changes (bearing in mind of course the
new occurrences of the vertices for the different products). In particular, it holds that

dimk Z(ΛKn) = n+ 1 +
n∑
k=1

hp4k+1.

3.3 A categorification of the integer sequence A100705

In this section, elements of the integer sequence hn = n3 +(n+1)2 are interpreted as poly-
gons of some Brauer configurations, such interpretation allows to categorify the number
of cycles associated to some indecomposable preprojective representations of the tetrad.

Firstly, we establish an identity between the number of some invariants associated to
indecomposable preprojective representations of type IV (see Figure 3.1) of the tetrad
and an integer number (in the sense of (2.1)) defined by the indecomposable projective
modules (polygons) over some Brauer configuration algebras. The following is the matrix
presentation of such preprojective representations where In is an n×n identity matrix. n
is said to be the order of the representation.

In+1 In+1 I↓n0

In+1 0 In+1 I↑n

Figure 3.1. Representation of type IV and order n of the tetrad.
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As in solutions of the Kronecker problem (see Section 3.1) to each indecomposable rep-
resentation of type IV it is possible to associate a finite family of directed graphs called
cycles in such a case if

Un =
A B C D

A′ B′ C ′ D′

is a representation of type IV, then it is associated to Un a unique family of cycles consti-
tuted by arrows connecting the following entries as vertices:

{a1,1, a
′
1,1, b

′
1,1, b(n+1),1, c(n+1),(n+1), c

′
i,(n+1), d

′
i,i, dj,i, cj,j , c

′
h,j , b

′
h,h, b1,h, a1,1},

h, i and j are fixed integers, 1 ≤ i ≤ n, 1 ≤ j ≤ n, h ∈ {2, 3, 4, . . . , n+ 1}. In this case, no
cycle has entries of the form d(n+1),s, 1 ≤ s ≤ n as vertices.

The following is an example of a cycle associated to a preprojective representation of the
tetrad for n = 4.

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Secondly, we note that the Brauer configuration (3.11) allows to see each polygon Vn as
a partition of the number hn into two parts of the form {n, n + 1} where n occurs (n)2

times and n+ 1 occurs n+ 1 times. Assuming the classical notation for partitions [3] each
number hn can be expressed as follows:

hn = (n)(n2)(n+ 1)(n+1), n ≥ 1. (3.9)

we let Pn denote such a partition. The partition tree TPn associated to each partition of
the form Pn is obtained by assuming the notation:

1 // • // •

2 // •
~~   

3 // •
~~ ��   

...
...

...
...

(3.10)
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In this case, TPn has a root node with n+ 1 children, n of them have n children and the
last one has n+ 1 children in such a way that in the last level of TPn , n of these children
represent a partition of the form (n)(n−1)(n+1)(1) and the last one represents a partition of
the form (n)(n)(n+ 1)(1). Partition trees of the form TPn are used in the proof of theorem
25.

Now we consider Brauer configuration algebras of the form ΛΓn = kQΓn/J induced by the
Brauer configuration Γn such that For n ≥ 2 fixed, Γn = (Γ0,Γ1, µ,O) with

1.

Γ0 = {1, 2, 3 . . . , n, n+ 1},

Γ1 = {Vk = k(k2)(k + 1)(k+1)}1≤k≤n, i.e., occ(k, Vk) = k2, occ(k + 1, Vk) = k + 1.

(3.11)

2. The orientation O is defined in such a way that

for 2 ≤ i ≤ n at vertex i, V
(i,<)
i−1 < V

(i2,<)
i , where V

(y,<)
x means that the polygon Vx

occurs y times in the successor sequence of the corresponding vertex, in particular,
Vi−1 < Vi.

3. The multiplicity function µ is such that µ(j) = 1, for any j ∈ Γ0.

The following is the quiver QΓn associated to the Brauer configuration Γn, worth noting
that there is no arrow connecting vertex 1 with any other vertex provided that it is
truncated (see Theorem 3, item 5), besides we use the symbol [xj ; yj ] to denote that the
vertex xj occurs yj times at the polygon hj = j3 + (j + 1)2 (see identity (2.1)). And cij is

a set of loops {cijy | 1 ≤ y ≤ occ(xj , hj)− 1, 2 ≤ i ≤ n+ 1}. For instance, at 17 there are

associated the loops, c2
171
, c2

172
, c2

173
and c3

171
, c3

172
.

c2
17 c3

43 c4
89 c5

161

c2
5 c3

17 c4
43 c5

89 c6
161

◦
5

◦
17

◦
43

◦
89

◦
161

. . .

α2 α3 α4 α5

β2 β3 β4 β5

[2; 2] [3; 3] [4; 4] [5; 5] [6; 6]

[2; 4] [3; 9] [4; 16] [5; 25]

The following are examples of polygons in a Brauer configuration Γn.

5 = (1) + (2 + 2) = (1)(1)(2)(2),

17 = (2 + 3) + (2 + 3) + (2 + 2 + 3) = (2)(4)(3)(3),

43 = (3 + 3 + 4) + (3 + 3 + 4) + (3 + 3 + 4) + (3 + 3 + 3 + 4) = (3)(9)4(4),

89 = (4 + 4 + 4 + 5) + (4 + 4 + 4 + 5) + (4 + 4 + 4 + 5) + (4 + 4 + 4 + 5) + (4 + 4 + 4 + 4 + 5)

... =
...

(3.12)
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The ideal J is generated by the following relations where for a fixed 2 ≤ l ≤ n+ 1, P i,lhj is

the product of i loops of type l (1 ≤ i ≤ occ(l, hj) − 1) attached to the polygon hj with
yj − 1 being the total number of such loops (yj ∈ {j2, j}):

1. cujxc
v
jy

, if u 6= v, for all the possible values of u, v, x, y and j,

2. ctjxc
t
jy

= ctjyc
t
jx

, for all the possible values of x, y, t, and j,

3. (ctjx)2 for all the possible values of j, t and x,

4. chjxαh+1; αhc
h+1
(j+1)x

chjxβh−1; βhc
h−1
(j−1)x

, αjβj for all the possible values of h, j
and x,

5. αiαi+1; βj+1βj , 2 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1,

6. If

ε1
j = P u,jhj

αjP
yj+1−1,j
hj+1

βjP
yj−(1+u),j
hj

,

ε2
j = αjP

yj+1−1,j
hj+1

βjP
yj−1,j
hj

,

ε3
j = P u,jhj+1

βjP
yj−1,j
hj

αjP
yj+1−(1+u),j
hj+1

,

ε4
j = βjP

yj−1,j
hj

αjP
yj+1−1,j
hj+1

,

ε5
j+1 = P v,j+1

hj+1
αj+1P

yj+2−1,j+1
hj+2

βj+1P
yj+1−(1+v),j+1
hj+1

,

ε6
j+1 = αj+1P

yj+2−1,j+1
hj+2

βj+1P
yj+1−1,j+1
hj+1

,

ε7
j+1 = P v,j+1

hj+2
βj+1P

yj+1−1,j+1
hj+1

αj+1P
yj+2−(1+v),j+1
hj+2

,

ε8
j+1 = βj+1P

yj+1−1,j+1
hj+1

αj+1P
yj+2−1,j+1
hj+2

,

(3.13)

then there are relations of the form εrs − εr
′
s′ where r, r′ ∈ {1, . . . , 8}, r 6= r′ and

s, s′ ∈ {j, j + 1}, for all the possible values of u, v and j,

7. ε2
jαj , ε4

jβj , ε6
j+1αj+1, ε8

jβj+1.

The following result regards the Brauer configuration algebra ΛΓn . Recall that the notation
nV (see (2.1)) is adopted for the integer number associated to the polygon V , in this case
V is interpreted as an integer partition of nV .

Theorem 25. For n ≥ 2 fixed and 2 ≤ i ≤ n the number nVi = i3 + (i + 1)2 associated
to the polygon Vi = hi ∈ Γ1 (see Figure (3.1) and formulas (3.11)) is the number of cycles
associated to the indecomposable preprojective representation of type IV and order i + 1.
And such identity defines a bijection between indecomposable projective modules over the
Brauer configuration algebra ΛΓn and preprojective representations of type IV of the tetrad.

Proof. According to Theorem 3, in order to prove that there exists the required bijection, it
suffices to find out the number of cycles associated to a given preprojective representation
of type IV. To do that, we fix a representation Un of this type of order n ≥ 2, and denote
its different blocks as follows:
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Un =
A B C D

A′ B′ C ′ D′
.

We note that all the cycles associated to Un can be seen as trees Tc(n+1),(n+1)
, which have

the entry c(n+1),(n+1) as root node with n branches whose successors are given by entries

c′1,(n+1), c
′
2,(n+1), . . . , c

′
n,(n+1).

Each entry c′i,(n+1) has n− 1 branches if i 6= n, whereas c′n,(n+1) has n branches. Besides,
all of these entries give rise to an arrow

c′i,(n+1) → dj,i,

for some entry dj,i ∈ D. Actually, dj,i is a successor root of c′i,(n+1) with (n− 1) branches

in the tree whenever j ∈ {1, . . . , n} and i 6= 1. If i = 1 then d1,j has by construction n
branches in C ′. Therefore, the structure of Tc(n+1),(n+1)

has the following shape:

c(n+1),(n+1)

c′1,(n+1) · · · c′i,(n+1) · · · c′n,(n+1)

dn,1 · · · di,1 · · · d1,1 dn,n · · · di,n · · · d1,n

...............................................................................................................
...
............

.................................................................................
.....
.......
.....

................................................................................................................. .........
...

............................................................................................................
....
............

.................................................................................
.....
.......
.....

................................................................................................................ ........
....

............................................................................................................
....
............

.................................................................................
.....
.......
.....

................................................................................................................ ........
....

(3.14)

Which corresponds to the partition tree TP(n−1)
of h(n−1) = (n − 1)3 + (n)2, thus the

correspondence TP(n−1)
→ Tc(n+1),(n+1)

is a bijection between indecomposable preprojective
representations of type IV of the tetrad and polygons of the Brauer configuration (3.11).

�

As an example the following is the diagram of Tc4,4 such that the number of vertices in
the last level gives the number of associated cycles (described in the proof of Theorem 3)
to the indecomposable representation of the tetrad U3:

c44

c′14 c′24 c′34

d31 d11 d22 d12 d33 d23 d13

• • • • • • •• • • • • • • • • • •

.............................................................................................................................................................................................................................................................................................................................................................
..

............

............................................................................................................
.....
.......
.....

............................................................................................................................................................................................................................................................................................................................................................... ..........
..

................................................
....
............

.................................................... ........
....

................................................
....
............

.................................................... ........
....

...............................................................................
...
............

.................................
.....
.......
.....

.................................................................................. .........
...

................................
.....
...........
.

....................................
.
.......
.....

................................
.....
...........
.

.................................
.....
.......
.....
....................................
.
.......
.....

................................
.....
...........
.

....................................
.
.......
.....

................................
.....
...........
.

.................................
.....
.......
.....
....................................
.
.......
.....

................................
.....
...........
.

....................................
.
.......
.....

................................
.....
...........
.

....................................
.
.......
.....

................................
.....
...........
.

.................................
.....
.......
.....
....................................
.
.......
.....
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The number of cycles associated to the indecomposable preprojective representation of the
tetrad U3 equals the second term of the integer sequence A100705. Actually, the number
of cycles associated to Un is given by h(n−1) = (n− 1)3 + (n)2, n ≥ 2, which corresponds
to the (n− 1)th term of this sequence. Black arrows denote the common part of all these
cycles.

U3 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0

0 0 1

0 1 0

1 0 0? -6
-

? -

6
�

?�

6
�

The following results are consequences of Theorems 3, 4 and Proposition 2.

Corollary 18. For n ≥ 2 fixed and 2 ≤ i ≤ n, the number of summands in the heart of
the indecomposable projective representation Vi over the algebra ΛΓn is i2 + i+ 1.

Proof. Since for any indecomposable projective representation Vi, it holds that rad2 Vi 6= 0
then the theorem follows from Theorem 3 and the definition of the polygon Vi, which has
i2 + i+ 1 non-truncated vertices counting repetitions. �

Corollary 19. For n ≥ 2 fixed, dimk ΛΓn =
n∑
k=2

(k(k+ 1))2− 1
3(n− 3)(n+ 1)(n+ 2). And

dimk ΛΓn+1 − dimk ΛΓn = 2(1− tn) + [(n+ 1)(n+ 2)]2, where for j ≥ 1, tj denotes the jth
triangular number.

Proof. It is enough to observe that for n ≥ 2 and 2 ≤ j < n+1, it holds that val(j) = j2+j,
whereas val(n+ 1) = n+ 1. The corollary holds as a consequence of Proposition 2. �

Corollary 20. For n ≥ 2 fixed, it holds that dimk Z(ΛΓn) = n(n+1)(n+2)
3 + 2.

Proof. Since rad2 ΛΓn 6= 0, the result is a consequence of Theorem 4 with µ(i) = 1, for
any 2 ≤ i ≤ n + 1, |Γ0| = n, |Γ1| = n, occ(i, hi) + occ(i + 1, hi) = i2 + i + 1, 2 ≤ i ≤ n,
and occ(2, h1) = 2. �

Remark 6. Note that Corollaries 18-20 are categorifications of the integer sequences n2 +

n + 1 (encoded in the OEIS as A002061),
n∑
k=2

(k(k + 1))2 − 1
3(n − 3)(n + 1)(n + 2), and

n(n+1)(n+2)
3 +1 (which is the sequence A064999). Elements of the sequence A064999 appear

as coefficients (in the case k = 3) of the generating polynomial of a n-twist knot with the
form Pn(x) =

∑
k≥0

an,kx
k.

Sequence
n∑
k=2

(k(k+ 1))2 =
∑

1≤i<j≤n
(j− i)3 is encoded A024166 in the OEIS. Worth noting

that sequence a(n) = 1
6(n − 3)(n + 1)(n + 2) , n ≥ 4 has the code A005586, which has

an interesting relation with Dyck paths. Regarding Catalan objects, we observe that the
sequence A005586 counts the number of walks on the square lattice and the number of left
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factors of Dyck paths from (0, 0) to (n+ 5, n− 1), e.g., a(1) = 5, UDUDUD, UDUUDD,
UUDDUD, UUDUDD and UUUDDD, where U = (1, 1) and D = (1,−1).

Remark 7. The integer sequence A100705={1, 5, 17, 43, 89, . . . , n3 + (n + 1)2} is very in-
teresting for itself, for instance it can be used to build a family of directed trees with
an explicit value of energy (see Section 3.4). Sequence A100705 can be also used to de-
fine directed graphs whose vertices are either happy or excited in the sense of the Bert
Konstant’s game. Such a game can be defined as follows [15].

Let G = (G0, G1) be a simple graph and set G0 = {1, 2, . . . , n}. For i ∈ G0, let N(i)
denote the set of neighbors of i.

Suppose now that chips will be distributed among vertices of G in such a way that for
i ∈ G0 we have ci ≥ 0 chips, the vector (ci | 1 ≤ i ≤ n) is said to be a configuration, we
say that a vertex i is:

1. Happy, if ci = 1
2

∑
j∈N(i)

cj ,

2. Excited, if ci >
1
2

∑
j∈N(i)

cj ,

3. Unhappy, if ci <
1
2

∑
j∈N(i)

cj .

Goal of the game: Make every one happy or excited

A well known result regarding the game of Bert Konstant establishes that it is finite if
and only G is a Dynkin diagram An,Dn,E6,E7,E8.

3.3.1 On the game of Bert Konstant

The game of Bert Konstant finishes for a graph G if and only if G is of finite representation
type as we recall before. Let us describe how the game is developed.

Initially no chips are present (i.e. ci = 0, for all i, and all vertices are happy).

Then we place at vertex vi0 = 1, so i0 is excited but neighbors of i0 are unhappy.

Subsequently, do the following reflection.

Pick any unhappy vertex i and replace ci −→ −ci +
∑

j∈N(i)

cj .

Now, we define an oriented version of the game described above, to do that, we say that
if an arrow α : v1 → v2 ∈ Q1 where Q1 is the set of arrows of a given quiver Q then v2 is
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a neighbor of v1, whereas v1 is not a neighbor of v2 (in other words, we are interested in
the out-degree deg+(v) of vertices v ∈ Q0).

Actually, the following result holds for the following quiver Qk:

Qk =

.. .•
v5

•
v4

•
v3

•
v2

•
v1

•
v′5

•
v′4

•
v′3

•
v′2

Theorem 26. For the quiver Qk there exist integer sequences ci(c
′
i) associated to each

vertex vi(v
′
i) ∈ (Q(Γ))0 and an integer sequence f(i) such that the transformation ci −→

ci − f(i) = c′i makes vertices vi happy and vertices v′i excited for any i ≥ 2.

Proof. It suffices to define ci as ci = i3+(i+1)2, i ≥ 1 the theorem follows if f(j) is defined
in such a way that for j ≥ 3 it holds that, f(j) = 2(p5

j − p5
j−1) and c′h = ch+1 − f(h+ 1),

for h ≥ 2, where p5
j denotes the jst pentagonal number, in this way Qk has the following

shape:

Qk =

.. .•161

•89

•43

•17

•5

•
233

•
135

•
69

•
29

�
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3.4 Energy of preprojective partition trees

The arguments in the proof of Theorems 23 and 25 includes the introduction of some
suitable partition trees associated to a preprojective Kronecker module and some inde-
composable preprojective representations of type IV of the tetrad, respectively. In section
3.4.1 we recall briefly the definition of the energy of a finite graph, we also use the concept
of the message of a Brauer configuration algebra introduced in section 2.1 in order to
compute the energy (in the sense of I. Gutman) of some suitable trees, which appear in
the context of matrix problems.

3.4.1 Energy of a graph

The definition of the energy of a finite graph G = G(V,E) as a topological index was
introduced by I. Gutman in 1978 [33]. According to him the energy of a graph E(G) of
the graph G is given by the identity:

E(G) =
∑

λ∈E(M(G))

|λ|, (3.15)

where λ denotes an eigenvalue of the adjacency matrix M(G) of the graph G and E(M)
is the corresponding characteristic space [33].

The energy can be defined for quivers by using the trace norm M(G) of the adjacency
matrix of G, also known as the Schatten 1-norm, Ky Fan norm or nuclear form defined as
follows:

||M(G)||∗ =
∑

σ∈E(M(G)Mt(G))

|σ|, (3.16)

where σ denotes a singular value of M(G).

One of the main problems in the theory of topological indexes consists of studying extremal
values of the energy of significant classes of graphs.

For instance, I. Gutman proved that for an arbitrary tree Tn with n vertices, it holds that

E(Sn) ≤ E(Tn) ≤ E(An),

where Sn is the corresponding star with n + 1 vertices and An is a Dynkin diagram. N.
Agudelo et al. in [1] have investigated extremal values of the energy of the family Ω(n, i)
consisting of trees with n vertices and i ramifications [1].

The arguments in the proof of Theorem 23 includes the introduction of some suitable
partition trees associated to a preprojective Kronecker module. In this work, we compute
the energy (in the sense of I. Gutman [33]) of some suitable trees that appear in the
context of some matrix problems.

In fact, there are many examples of matrix problems whose preprojective solutions have
associated both helices and partition trees (e.g., the four subspace problem among others).
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Henceforth we called preprojective (preinjective) partition tree of a given tree associated
to a preprojective solution of a matrix problem.

Often, preprojective (preinjective) trees are defined by a set of suitable helices, cycles
or directed graphs (digraphs). Thus, they can be described as follows: A preprojective
(preinjective) tree is a rooted tree with a fixed number of children (say n-children). Each
of these children has at most (n− 1)-children and so on until reaching a generation whose
vertices have at most two children. The following diagram shows an example of this
construction:

•

• · · · • · · · •

• · · · • · · · • • · · · • · · · •

••••• •

•

••

• •· · · · · · · · ·· · ·· · ·· · · •

• •

•

• •

• • •

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
n−1

...
...

...
...

...
...

...
...

...
...

...
...

...

max |deg vh1 | = n

max |deg vh2 | = n− 1

max |deg vh3 | = n− 2

max |deg vht−2| = 2

max |deg vht−1| = 1

max |deg vht | = 0

..........................................................................................................................................................................
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............

...................................................................................
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.......
.....

............................................................................................................................................................................. .........
...

..................................................................................................................................
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............

...................................................................................
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...................................................................................................................................... ........
....

..................................................................................................................................
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............

...................................................................................
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.......
.....

...................................................................................................................................... ........
....
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...........
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............................................................................................
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............................................................................................
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.
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............................................................................................
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.
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(3.17)

Theorem 27. If ‖M(T )‖∗ is the trace norm of a preprojective partition tree T then for
n ≥ 6:

(n− 1)(n)(4n+ 1)

6
+ d

⌊√
n
⌋
≤ ‖M(T )‖∗ ≤

2n2(n− 2)3/2 + 6
√
n

3

where n2 is the number of bifurcations of T and d = n− b
√
nc.
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Proof. By construction, we note that there is a bijection f : B → S where B is the

set of ramifications of T of the form bn =

•

•• •︸ ︷︷ ︸
n− vertices

and the set of singular values of

M(T ) given by the rule f(bn) =
√
n. Actually, the characteristic polynomial has the form

P (λ) = λn0(λ − 1)n1(λ −
√

2)n2 · · · (λ −
√
n)nk , with nk = 1. We note that the most

frequent singular values is n2 therefore

n∑
j=0

√
j = ‖M(T )‖∗ ≤ n2

(
n−2∑
i=1

√
i

)
+ 2
√
n

≤ n2
2(n− 2)3/2

3
+ 2
√
n

=
2n2(n− 2)3/2

3
+ 2
√
n

=
2n2(n− 2)3/2 + 6

√
n

3

On the other hand,

‖M(T )‖∗ ≥
n∑
j=0

√
j

=
n∑
i=1

i(2i+ 1) + d
⌊√

n
⌋

=
(n− 1)(n)(4n+ 1)

6
+ d

⌊√
n
⌋
.

And with this argument we are done. �

The following results give the explicit value of the energy of some oriented partition trees
with ((n− 1)3 + (n)2) + (n2 + 2) vertices and n2 + 2 ramifications.

Corollary 21. For each n ≥ 3, the trace norm ||M(TP(n−1)
)||∗ of a partition tree TP(n−1)

is given by the formula ||M(TP(n−1)
)||∗ = (n+ 2)

√
n+ n(n− 1)

√
n− 1.

Proof. For each n ≥ 3, TP(n−1)
∈ Ω(hn + in, in) with in = n2 + 2. Thus, for each n, TP(n−1)

has the shape:
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(n)

(n− 1) · · · (n− 1)· · · (n)

(n− 1)· · · (n− 1)· · · (n) (n− 1)· · · (n− 1)· · · (n)

........................................................................................................................................................
...
............

...................................................................................
.....
.......
.....

............................................................................................................................................................................. .........
...

.....................................................................................................................
....
............

...................................................................................
.....
.......
.....

......................................................................................................................... ........
....

.....................................................................................................................
....
............

...................................................................................
.....
.......
.....

......................................................................................................................... ........
....

(3.18)

where (x) denotes that the corresponding vertex has x children. Therefore the associated
characteristic polynomial Pn(λ) of the oriented tree has the form Pn(λ) = (λ− n)n+2(λ−
(n − 1))n(n−1)λn

3+(n+1)2 . And the corresponding singular values have the form σ1 = 0,
σ2 =

√
n and σ3 =

√
n− 1 up to multiplicities. �

There is another way to compute the energy of a partition tree TP(n−1)
as the message of

a Brauer configuration algebra (see 2.2). In this case, words concatenation arising from
the configuration is specialized by the usual sum of real numbers.

Consider the Brauer configuration algebras Γ∆k
= kQ∆k

/L induced by the Brauer config-
uration ∆k such that for n ≥ 3 fixed, ∆k = (∆0,∆1, µ,O) with

1.

∆0 = {x0, xk−1, xk},

∆1 = {P1 = {x0, xk}, P2 = {x(k−1)
k−1 , xk}, P3 = {x(k2−2k+1)

k−1 , x
(k)
k }},

(3.19)

Where the symbol x
(j)
i in a given polygon Pk means that occ(xi, Pk) = j

2. The orientation O is defined in such a way that for n ≥ 3

At vertex x0; P0,

At vertex xk−1; P
(k−1)
2 ≤ P (k2−2k+1)

3 ,

At vertex xk; P1 ≤ P2 ≤ P (k)
3 .

(3.20)

3. The multiplicity function µ is such that µ(x0) = 2 and µ(xk−1) = µ(xk) = 1.

The following is the Brauer quiver Q∆k
associated to this configuration, we use the symbol

[xj ; yj ] to denote that the vertex xj occurs yj times at the corresponding polygon Pn
with 1 ≤ n ≤ 3. We also consider the notation a

xk−1

l with 1 ≤ l ≤ k − 2, a
xk−1
m with

k ≤ m ≤ k2 − 2k − 1 and axkn with 3 ≤ n ≤ k + 1 to indicate the loops at P2 and P3.
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P1

P2
a
xk−1
lP3

a
xk−1
m

a
xk
n

a
x0
1

[xk−1, k
2 − 2k + 1]

[xk, k]

[xk−1, k − 1]

a
xk−1
k−1

a
xk−1

k2−2k

a
xk
2

a
xk
k+2 a

xk
1

Figure 3.2. Quiver associated to the Brauer configuration ∆k = (∆0,∆1, µ,O).

The ideal L of the corresponding Brauer configuration algebra Λ∆k
is generated by the

following relations (see Figure 3.2), for which it is assumed the following notation for the
special cycles:

CP1,1
x0 = ax01 ,

CP2,h
xk−1

=

{
a
xn−1

1 · · · axk−1

k2−k if h = 1

a
xk−1

h · · · axk−1

h−1 otherwise
,with 1 ≤ h ≤ k − 1,

CP3,i
xk−1

= a
xk−1

i+(k−1)a
xk−1

i+k · · · a
xk−1

i+(k−2) where 1 ≤ i ≤ k2 − 2k + 1,

CP1,1
xk

= axk1 axk2 · · · a
xk
k+2,

CP2,1
xk

= axk2 axk3 · · · a
xk
k+2a

xk
1 ,

CP3,j
xk

= axkj+2a
xk
j+3 · · · a

xk
j+1 where 1 ≤ j ≤ k.

(3.21)

1.
(
CP1,1
x0

)2
−
(
CP1,1
xk

)
, CP2,1

xk −CP2,h
xk−1 , CP3,i

xk−1 −C
P3,j
xk , for all possible values of h, i and

j.

2.
(
CP1,1
x0

)2
a (CP1,1

xn a′), with a (a′) being the first arrow of
(
CP1,1
x0

)2
(CP1,1

xn ),

3. CP2,h
xk−1a (CP2,1

xk a′), with a (a′) being the first arrow of CP2,h
xk−1 (CP2,1

xk ) for all h,

4. CP3,i
xk−1a (CP3,j

xk a′), with a (a′) being the first arrow of CP3,i
xk−1 (CP3,j

xk ) for all i, j,

5. ax01 a
xk
1 , a

xk−1

l axk2 , with 1 ≤ l ≤ k − 2,

6. a
xk−1

l a
xk−1

k−1 , with 1 ≤ l ≤ k − 3, a
xk−1
m axkk+2, with k ≤ m ≤ k2 − k,

7. a
xk−1
m axkn , for all possible values of m and n,

8. a
xk−1
m a

xk−1

k2−2k
, with k ≤ m ≤ k2 − k − 1, a

xk−1

k−1 a
xk−1

k2−2k
,
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9. a
xk−1

k−1 a
xk−1
m , k + 1 ≤ m ≤ k2 − k, a

xk−1

k−1 a
xk
n , with 3 ≤ n ≤ k + 1,

10. a
xk−1

k−1 a
xk
k+2, axk1 a

xk−1

k−1 , axk1 a
xk−1
m , with 1 ≤ m ≤ k − 2,

11. axk2 axk
k2−2k

, axk2 a
xk−1
m , with k ≤ m ≤ k2 − 2k − 1, axk2 axkk+2,

12. axk2 axkn with 4 ≤ n ≤ k + 2, axkn a
xk−1
m , for all possible values of m and n,

13. axkn a
xk−1

k2−2k
, axkn a

xk
k+2, with 3 ≤ n ≤ k,

14. axkk+2a
x0
1 .

The following result describes the way that the message associated to the Brauer config-
uration algebra Λ∆k

gives the value of the energy of a partition tree.

Theorem 28. For k fixed, the energy of a partition tree TP(k−1)
see (3.18) is given by

M(∆e
k).

Proof. It is enough to observe that for k ≥ 3, it holds that val(xk−1) = k(k − 1), whereas
val(xk) = k + 2. The theorem holds as a consequence of the specialization and Corollary
21. �

As an example consider the following Brauer configuration algebra and the specialization
described in Theorem 28.

∆3 = (∆0,∆1, µ,O)

∆0 = {x0, x2, x3}.

∆1 = {P1 = {x0, x3}; P2{x(2)
2 , x3}; P3{x(4)

2 , x3
3}}

µ(x0) = 2, µ(x2) = µ(x3) = 1

(3.22)

The orientation O is defined in such a way that:

At vertex x0; P0,

At vertex x2; P 2
2 ≤ P

(4)
3 ,

At vertex xk; P1 ≤ P2 ≤ P (3)
3 .

(3.23)

The following is the Brauer quiver Q∆k
associates to this configuration.
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P1

P2P3

ax0
1

[x2, 4]

[x3, 3]

[x2, 2]

Figure 3.3. Quiver associated to the Brauer configuration ∆3 = (∆0,∆1, µ,O).

According to 2.3 we have the following identities:

we(P1) = (
√

0)1(
√

3)1,

we(P2) = (
√

2)2(
√

3)1,

we(P3) = (
√

2)4(
√

3)3.

In accordance with the concatenation defined by the usual sum of real numbers, M(∆e
3)

is given by:

M(∆e
3) = (

√
3) + (

√
2 +
√

2 +
√

3) + (
√

2 +
√

2 +
√

2 +
√

2 +
√

3 +
√

3 +
√

3)

= 6
√

2 + 5
√

3.
(3.24)

The following results are consequences of Theorem 4 and Proposition 2.

Corollary 22. For k ≥ 3 fixed, dimk Λ∆k
= 7+2(tk2−k−1)+2(tk+1) = k4−2k3+k2+4k+9.

And dimk Λ∆k+1
− dimk Λ∆k

= 4k3 + 4, where for j ≥ 1, tj denotes the jth triangular
number.

Proof. It is enough to observe that for k ≥ 3, it holds that val(xk−1) = k(k − 1), whereas
val(xk) = k + 2. The theorem holds as a consequence of Proposition 2. �

Corollary 23. For n ≥ 3 fixed, it holds that dimk Z(Λ∆k
) = k2 + 2.

Proof. Since rad2 Λ∆k
6= 0, the result is a consequence of Theorem 4 with µ(x0) = 2,

µ(xk−1) = µ(xk) = 1, |∆0| = 3, |∆1| = 3, occ(xk−1, P2) + occ(xk−1, P3) = k2 − k,
occ(xk, P3) = k and occ(x0, P1) = 1. �

For preprojective Kronecker trees T(n+1,n) we have the following corollary:
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Corollary 24.

(n− 1)(n)(4n+ 1)

6
+ d

⌊√
n
⌋
≤
∥∥M(T(n+1,n))

∥∥
∗ ≤

(n− 1)!
⌊
n
2

⌋
(n− 2)3/2 + 6

√
n

3
(3.25)

Proof. By construction, we note that there is a bijection f : B → S where B is the

set of ramifications of T of the form bn =

•

•• •︸ ︷︷ ︸
n− vertices

and the set of singular values of

M(T(n+1,n)) given by the rule f(bn) =
√
n. Actually, the characteristic polynomial has

the form P (λ) = λn0(λ− 1)n1(λ−
√

2)n2 · · · (λ−
√
n)nk , with nk = nk−1 = 1 we note that

the coefficients in the recurrence

Tn2 = Tn−1(n− 2)(n− 1) +
√
n+ (n− 1)

√
n− 2 + Fn

where Fn =
√
n− 1+(n−1)

√
n− 2+(n−1)(n−2)

√
n− 3+. . .+(n−1)(n−2)(n−3) · · · 3

√
2,

gives the algebraic multiplicity of all singular values
{

0, 1,
√

2, . . . ,
√
n
}

. Thus, the most

frequent singular values are n0 = (n− 1)!
⌈
n
2

⌉
and n2 = (n−1)!

2

⌈
n
2

⌉
therefore

n∑
j=0

√
j =

∥∥M(T(n+1,n))
∥∥
∗ ≤

(n− 1)!
⌊
n
2

⌋
2

(
n−2∑
i=1

√
i

)
+
√
n

≤
(n− 1)!

⌊
n
2

⌋
2

2(n− 2)3/2

3
+ 2
√
n

=
(n− 1)!

⌊
n
2

⌋
(n− 2)3/2

3
+ 2
√
n

=
(n− 1)!

⌊
n
2

⌋
(n− 2)3/2 + 6

√
n

3

On the other hand,

∥∥M(T(n+1,n))
∥∥
∗ ≥

n∑
j=0

√
j

=
n∑
i=1

i(2i+ 1) + d
⌊√

n
⌋

=
(n− 1)(n)(4n+ 1)

6
+ d

⌊√
n
⌋

And with this argument we are done. �

Remark 8. We note that, although the research on topological indexes has its origin in
chemistry nowadays, researches regarding these two subjects are independent. However,
results as those given in Corollary 24 are examples of the strong connection between these
fields. Actually, it is worth noting that, the sequence in the lower bound of the inequality
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3.25 corresponds to the number of zinc sulfide (ZnS) molecules in clusters of n layers in
zinc blende crystals.

Figure 3.4. Crystal structure of zinc sulfide blende (ZnS).

Remark 9. According to Corollary 1 the Brauer configuration algebras studied in sections
3.1 and 3.3 are the trivial extension of an almost gentle algebra, whereas the algebras
studied in sections 3.4.1 and 2.4.1 are not.

3.4.2 A practical application of the theory of Brauer configuration al-
gebras; traffic flow

Nowadays one of the most important challenges faced by big cities is the control of traffic
flow. Actually, in the contemporary society people spend much time stuck in traffic jams
every day. A poor management of the vehicular flow implies serious economical problems
for the cities. On one hand, some cities have considered to discourage the use of cars
causing a minor number of taxpayers thus many problems to the sustainability of public
finances.

On the other hand some cities have decided to improve the roads investing much money
in an effort to keep countries moving and make journeys faster, better and more reliable
for all the citizens. However, it means gridlocked cities and more pollution thus more
respiratory diseases amongst the population.

Through this section we will use Brauer configuration algebras to model some aspects of
the traffic flow. We assume that the route in this model is circular.

Traffic problems have been addressed for several researches by considering issues regarding
traffic prediction. For instance, traffic speed, traffic density estimation, traffic flow, traffic
congestion, accident prone-area, etc. We recall some of these concepts briefly [63].

� Vehicular Traffic consists of various type of vehicles, i.e., performances, various sizes,
and characteristics.

� Traffic flow or volume q is the number of vehicles (n) passing some designated road-
way point in a given time interval (t); q = n

t .
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� Traffic flow data is usually collected to obtain factual data concerning the movement
of vehicles at selected points on the street, to indicate for example trends in volume.

We also have other measures in traffic prediction theory:

� Average Daily Traffic (ADT), Annual Average Daily Traffic (AADT) and
Hourly Traffic (HT), to determine peak periods, capacity deficiencies, and to
determine geometric design parameters.

� Density (D) or concentration (k) is the number of vehicles occupying a given length

(l) of a lane or roadway at a particular instant, k = n
l = q

u ; q = ufk −
uf
kf
k2, where

u is the speed.

There are two types of facilities:

- Uninterrupted flow (freeway, multilane highways, two-lane highways).

- Interrupted flow (signalized streets, un-signalized streets with stops signs, transit
lanes, pedestrian walkways).

Regarding acquisition of traffic information in real time, several big cities as Rio de Janeiro
have developed different tools to make such task.

For instance, BusesInRio [32] is a tool designed to carry out the acquisition of data arising
from trajectories generated by an active GPS device installed in vehicles, in such a way
that trajectories are understood as mobile traffic sensors.

A vehicle raw trajectory is considered as a continuous data stream generated by a GPS
device.

BusesInRio not only offers the instantaneous data if not it queries data and stores its
entries for future processing, data analysis and planning.

However, some problems have arisen from the implementation of this tool, for instance,
Nasser et al solved an acquisition data problem generated by the original tool provided
by the City Hall Web service on Dados Rio such a gap was generated due that the data
provided by the GPS service has no information about which route the bus is following at
that moment.

The authors solved the problem by considering two consecutive samples of a bus. These
consecutive positions determine a vector V , these two positions are also projected on each
route Ri respecting the route direction, to create the vectors VRi , the chosen route is that
with the smallest angle (as a kind of map matching).
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Figure 3.5. Projection vectors associated to two consecutive samples and trajectories (paths)
constructed according to the algorithm of Nasser et al. for the tool BusesInRio.

Figure 3.6. Route matching by direction analysis and data acquired by BusesInRio for two route
lines.

3.4.3 Some models

Some traffic flow models consider the following aspects and questions to construct an
accurate and reliable mirror of the real-world vehicular traffic:

� How many cars are on a road in a given time?

� How many of these cars have mechanical breakdowns?

� How much time is spent at a traffic light?

� What is the total time while driving in a given route?

� How much time does it take to complete a (e.g., circular) route?

Some of these questions can be addressed by defining the traffic flow, the average time or
the density. However, in many cases the geometry of the route generated by the trajectories
of the vehicles matter (e.g. BusesInRio).

In fact, the traffic flow defined in this way (via vehicular trajectories) describe a well
known algebraic structure called path algebra, and the restrictions (as, stop-lights, vehicles
with mechanical breakdowns or different obstacles) transform the traffic flow in a Brauer
configuration algebra.
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3.4.4 A Brauer configuration algebra defined by traffic flow

Definition 3. Traffic flow defines a Brauer configuration algebra

Φ(t) = (Φ0(t),Φ1(t), µ,O) such that:

� Φ0(t) consists of all vehicles on the road (or route) in a given time t (including
vehicles with mechanical breakdowns). We assume that the route is circular.

� Φ1(t) interprets the observation points-polygons on the road where the counting pro-
cess is carry out. In the data, each of these points gives information about the number
and classes of vehicles detected.

� µ(v) = 1, for any vehicle v.

� Observation points are numbered P0, P1, . . . , Pn = P0 according to the locations of the
points of observation in the road. It is assumed that vehicles completing the route
are non-truncated vertices and vehicles with mechanical breakdowns are truncated
vertices (these vertices can be taken out from the route without affect the behavior
the traffic flow) and that P0 is the starting point. Thus, Pi < Pi+1, 0 ≤ i ≤ n − 1,
and Pn = P0.

The Ideal Interpretation

� Relations generating the ideal of the Brauer configuration algebra ΛΦ(t) = Φ(t)/I
are defined in a natural fashion.

� For instance, if the end point of a vehicle-trajectory vi coincides with the starting
point of other vehicle trajectory wi+1, it holds that viwi+1 = 0.

� If the traffic is interrupted then it is assumed independence between two consecutive
parts of the road (because all the vehicles should be stopped at each observation point).
Thus, vivi+1 = 0 for each vehicle-trajectory vi.

� If the traffic is uninterrupted it holds that vivi+1 6= 0, for any i, and viwi+1 = 0.

� If the traffic is interrupted time spend at each observation point is represented by
loops (one loop for each suitable unit of time) in the Brauer quiver. Thus, cni,vi ∈ Pk
means that the vehicle vi was n time units at the observation point Pk. In such a

case

(
k∑

h=1

chi,vi

)
(vi+1) = 0, k < n, and viwi+1 = 0 for any other trajectory-vehicle

wi+1.

� Data arising from the trajectory-vehicles at each observation point-polygon are iden-
tified. That is, if the traffic analysis allows they are considered as a cluster.

� Fixed a time t, only data arising from non truncated vehicles in just one round are
used.

The Brauer configuration algebra ΛΦ(t) allows to give the following information:
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1. How much time (τΦ) all vehicles were stopped at the observation points in a circular
route?, we let τvi,k denote the time that the trajectory-vehicle vi remains stopped at

the observations point-polygon Pk (τΦ =
∑
vi,k

τvi,k). τΦ,vi =
∑
k

τvi,k is the time that

a trajectory-vehicle vi was stopped in the route.

2. How many vehicles were observed without mechanical breakdowns at a given obser-

vation point (vPk) or through the entire route (vφ =
n−1∑
k=0

vPk)?

Firstly, we observe that;
τΦ = dimk(Z(ΛΦ(t)))− n− 1,

where Z(ΛΦ(t)) denotes the center of ΛΦ(t).

The number of summands in the radical square of the indecomposable projective module
associated to Pk is vPk .

The following are examples of the Definition 3.

Example 7. Consider Φ(t) = (Φ0(t),Φ1(t), µ,O), such that:

1. Φ0(t) = {1, 2, 3},

2. Φ1(t) = {V1 = {1, 1, 1, 2, 3}, V2 = {1, 2, 2, 2, 3}, V3 = {1, 2, 3, 3, 3}, V4 = {1, 2, 3}},

3. At vertex 1, it holds that; V1 < V1 < V1 < V2 < V3 < V4, val(1) = 5,

4. At vertex 2, it holds that;V1 < V2 < V2 < V2 < V3 < V4, val(2) = 5,

5. At vertex 3, it holds that; V1 < V2 < V3 < V3 < V3 < V4, val(3) = 5,

6. occ(1, V1) = 3, occ(1, V2) = 1, occ(1, V3) = 1, occ(1, V4) = 1,

7. occ(2, V1) = 1, occ(2, V2) = 3, occ(2, V3) = 1, occ(2, V4) = 1,

8. occ(3, V1) = 1, occ(3, V2) = 1, occ(3, V3) = 3, occ(3, V4) = 1,

9. µ(1) = 1, µ(2) = 1, µ(3) = 1.

The ideal I of the corresponding Brauer configuration algebra Φ(t) is generated by the
following relations (see Figure 3.7), for which it is assumed the following notation
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for the special cycles:

CV1,11 = a1
1a

1
2a

1
3a

1
4a

1
5a

1
6, CV1,21 = a1

2a
1
3a

1
4a

1
5a

1
6a

1
1,

CV1,31 = a1
3a

1
4a

1
5a

1
6a

1
1a

1
2, CV2,11 = a1

4a
1
5a

1
6a

1
1a

1
2a

1
3,

CV3,11 = a1
5a

1
6a

1
1a

1
2a

1
3a

1
4, CV4,21 = a1

6a
1
1a

1
2a

1
3a

1
4a

1
5,

CV1,12 = a2
1a

2
2a

2
3a

2
4a

2
5a

2
6, CV2,12 = a2

2a
2
3a

2
4a

2
5a

2
6a

2
1,

CV2,22 = a2
3a

2
4a

2
5a

2
6a

2
1a

2
2, CV2,32 = a2

4a
2
5a

2
6a

2
1a

2
2a

2
3,

CV3,12 = a2
5a

2
6a

2
1a

2
2a

2
3a

2
4, CV4,12 = a2

6a
2
1a

2
2a

2
3a

2
4a

2
5,

CV1,13 = a3
1a

3
2a

3
3a

3
4a

3
5a

3
6, CV2,13 = a3

2a
3
3a

3
4a

3
5a

3
6a

3
1,

CV3,13 = a3
3a

3
4a

3
5a

3
6a

3
1a

3
2, CV3,23 = a3

4a
3
5a

3
6a

3
1a

3
2a

3
3,

CV3,33 = a3
5a

3
6a

3
1a

3
2a

3
3a

3
4, CV4,13 = a3

6a
3
1a

3
2a

3
3a

3
4a

3
5.

(3.26)

(a) ahi a
s
r, if h 6= s, for all possible values of i and r,

(b) CV1,ij − CV1,kl , for all possible values of i, j, k and l,

(c) CV2,ij − CV2,kl , for all possible values of i, j, k and l,

(d) CV3,ij − CV3,kl , for all possible values of i, j, k and l,

(e) CV4,ij − CV4,kl , for all possible values of i, j, k and l,

(f) CV1,ji a (CV2,ji a′) , with a (a′) being the first arrow of CV1,ji (CV2,ji ) for all i, j,

(g) CV3,ji a (CV4,ji a′) , with a (a′) being the first arrow of CV3,ji (CV4,ji ) for all i, j.

The following is the quiver associated to the Brauer configuration Φ(t), the colors means
the different special cycles associated to each vertex as follows: for vertex 1 red, for vertex
2 green, for vertex 3 blue.

U1 U2 U3 U4

Figure 3.7. Quiver associated to the Brauer configuration Φ(t).
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For this example we have three kind of vehicles on the route, four observation points, in
this case, the vehicles stopping time is given by the following formula:

τΦ = dimk(Z(ΛΦ(t)))− n− 1

= 11− 4− 1 = 6 suitable units of time (SUT).
(3.27)

In accordance with the model purpose in this work the number of vehicles observed without
mechanical breakdowns through the entire route is

vφ =

n−1∑
k=0

vPk = 5 + 5 + 5 + 3 = 18.

Example 8. We consider the Brauer configuration algebra described in section 3.3

1. Φ′0(t) = {1, 2, 3, 4, 5, 6},

2. Φ′1(t) = {V1 = {1(1), 2(2)}, V2 = {2(4), 3(3)}, V3 = {3(9), 4(4)}, V4 = {4(16), 5(5)}, V5 =
{5(25), 6(6)}},

3. At vertex 1, it holds that; V1, val(1) = 1,

4. At vertex 2, it holds that; V
(2)

1 < V
(4)

2 , val(2) = 6,

5. At vertex 3, it holds that; V
(3)

2 < V
(9)

3 , val(3) = 12,

6. At vertex 4, it holds that; V
(4)

3 < V
(16)

4 , val(4) = 20,

7. At vertex 5, it holds that; V
(5)

4 < V
(25)

5 , val(5) = 30,

8. At vertex 6, it holds that; V
(6)

5 , val(6) = 6, where V
(y)
x means that the polygon Vx

occurs y times in the successor sequence of the corresponding vertex

9. µ(j) = 1, for any j ∈ Γ0.

The ideal I of the corresponding Brauer configuration algebra Φ′(t) is generated by the
relations defined in (3.13). The following is the quiver associated to Φ′(t)

c2
17 c3

43 c4
89 c5

161

c2
5 c3

17 c4
43 c5

89 c6
161

◦
5

◦
17

◦
43

◦
89

◦
161

α2 α3 α4 α5

β2 β3 β4 β5

[2; 2] [3; 3] [4; 4] [5; 5] [6; 6]

[2; 4] [3; 9] [4; 16] [5; 25]

In this example with six kind of vehicles moving on the route and five observation points,
the corresponding vehicles stopping time can be obtained as follows:

τΦ′ = dimk(Z(ΛΦ′(t)))− n− 1

= 72− 5− 1 = 65 SUT.
(3.28)
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In accordance with the model purpose in this work the number of vehicles observed without
mechanical breakdowns through the entire route is

vΦ′ =

n−1∑
k=0

vPk = 2 + 7 + 13 + 21 + 31 = 74,

and there is only one vehicle with mechanical breakdowns.

Example 9. Consider Φ′′(t) = (Φ′′0(t),Φ′′1(t), µ,O), such that:

1. Φ′′0(t) = {x1, x2},

2. Φ′′1(t) = {V1 = {x(4!)
1 , x

(4!)
2 }, V2 = {x(6!)

1 , x
2(6!)
2 }, V3 = {x(8!)

1 , x
3(8!)
2 }, V4 =

{x(10!)
1 , x

4(10!)
2 }, V5 = {x(12!)

1 , x
5(12!)
2 }},

3. At vertex x1; V
(4!)

1 ≤ V (6!)
2 ≤ V (8!)

3 ≤ V (10!)
4 ≤ V (12!)

5 , val(x1) =
5∑

k=1

k(2k + 2)!

4. At vertex x2; V
2(12)

1 ≤ V
2(720)

2 ≤ V
2(60480)

3 ≤ V
2(10!)

4 ≤ V
2(12!)

5 , val(x2) =

5∑
k=1

(2k +

2)!,

5. µ(x1) = µ(x2) = 1.

The ideal I of the corresponding Brauer configuration algebra Φ′′(t) is generated by the
relations defined in (3.7). The following is the quiver associated to Φ′′(t)

V1 V2 V3 V4 V5

c1
i1

c1
i2

c1
i3

c1
i4

c1
in

[(12)!]

c2
j1

c2
j2

c2
j3

c2
j4

c2
jn

[(5)(12)!]

◦ ◦ ◦ ◦ ◦

α2 α3 α4 αn

βn+1

αn+1

β2 β3 β4 βn
2[12]

2[720] 2[60480] [4(10!)]

[6!] [8!] [10!]

[4!]
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In this new example with two kind of vehicles and five observation points the vehicles
stopping time is

τΦ′′ = −n+ 1 +
n∑
k=1

hp2k+2 − n− 1

= −2n+
n∑
k=1

hp2k+2

= 2892317078 SUT.

(3.29)

In accordance with the model purpose in this work the number of vehicles observed without
mechanical breakdowns through the entire route is:

vΦ′′ =

n−1∑
k=0

vPk = 48 + 2160 + 161280 + 18144000 + 2874009600

= 2892317088.

(3.30)

Remark 10. According to Corollary 1 the Brauer configuration algebras defined by traffic
flow are always the trivial extension of an almost gentle algebra.



CHAPTER 4

Categorification of Fibonacci numbers via

homological ideals and applications of Brauer

configurations algebras

In this chapter, we give combinatorial conditions to determine whether an idempotent
ideal associated to some Nakayama algebras is homological or not. We give the number of
such ideals via the integer specialization of a suitable Brauer configuration algebra and its
corresponding message. Moreover, we use the number of homological ideals to establish
a partition formula for even-index Fibonacci numbers. Some interesting sequences in the
On-line Encyclopedia of Integer Sequences (OEIS) [66] arising from these computations
are described as well.

4.1 Homological ideals

Homological ideals or strong idempotent ideals are ideals of an algebra introduced by
Auslander, Platzeck and Todorov in [6]. These ideals arise from the research of heredity
ideals and quasi-hereditary algebras. For these ideals the corresponding quotient map in-
duces a full and faithful functor between derived categories. Recently, homological ideals
have been studied in different contexts, for instance Gatica, Lanzilotta and Platzeck and
independently Xu and Xi established some relationships with the so called finitistic di-
mension conjecture and the Igusa-Todorov functions [26]. Furthermore, De la Peña and Xi
in [17] and Armenta in [4] studied the impact of these ideals in the context of Hochschild
cohomology and one point extensions.

This section deals with the combinatorial properties of homological ideals associated to
some path algebras and their relationships with the novel Brauer Configuration algebras,
which have been introduced recently by Green and Schroll in [31]. In particular, we use
the notion of the message of a Brauer configuration introduced in Section 2.1, such mes-
sages enable to compute the number of homological ideals associated to some Nakayama
algebras. Moreover, such number of ideals allow us to obtain an alternative version of the
partition formula for even-index Fibonacci numbers given by Ringel and Fahr in [19] (see
identity 3) attaining in this way a new algebraic interpretation for these numbers.

85
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For an algebra A we mean a finite dimensional basic and connected algebra over an alge-
braically closed field k. We denote the category of finite dimensional right A-modules as
mod(A), and the bounded derived category of mod(A) as Db(A). We will assume that A
is a bounded path algebra of the form kQ/I with Q a finite quiver and I an admissible
ideal.

An epimorphism of algebras φ : A → B is called homological epimorphism if it induces a
full and faithful functor

Db(φ∗) : Db(B)→ Db(A).

Let I be a two sided ideal of A. Since the quotient map π : A→ A/I is an epimorphism
then the induced functor π∗ : mod(A/I)→ mod(A) is full and faithful.

A two sided ideal I of A is homological if the quotient map π : A→ A/I is an homological
epimorphism.

The following results characterize homological ideals [6, 17].

Proposition 6. Let I be an ideal of A, then

1. I is an homological ideal of A if and only if TorAn (I, A/I) = 0 for all n ≥ 0. In this
case, I is idempotent.

2. If I is idempotent and A-projective, then I is homological.

3. If I is idempotent then I is homological if and only if ExtnA(I, A/I) = 0 for all n ≥ 0.

We denote the trace of an A-module M in an A-module N as

trM (N) :=
∑

f∈HomA(M,N)

Im(f) ⊂ N.

Remark 11. We recall that according to Auslander et al [6], if P is an A-projective module
then trP (A) is an idempotent ideal of A and one obtains all the idempotent ideals of A
this way.

Remark 12. Note that, since the homological ideals are idempotent ideals and the idem-
potent ideals are traces of projective modules over A then there is always a finite number
of homological ideals.

Following the assumption that A is a bounded quiver algebra of the form kQ/I and the
number of vertices of Q are finite for every subset {a1, ..., am} ⊂ Q0, we will assume the
following notation for every idempotent ideal generated by the trace of P (a1)⊕· · ·⊕P (am)
in A:

Ia1,...,am = tr(
P (a1)⊕···⊕P (am)

)(A).
(4.1)

In this section, we combine tools developed by Auslander et al. in [6], Xi and De la
Peña in [17] and the integer specializations of some Brauer configuration (see Section 2.1)
to establish an explicit formula for the number of homological ideals associated to some
Nakayama algebras.
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First of all, for n ≥ 4 fixed, we consider a Brauer configuration Γn = (Γ0,Γ1, µ,O) such
that:

1. Γ0 = {n− k − 1 ∈ N | 2 ≤ k ≤ n− 1} ∪ {n− 2},

2. Γ1 = {Uk = {n− 2, n− k − 1} | 2 ≤ k ≤ n− 1}.

3. The orientation O is defined in such a way that

(a) Vertex n − 2 has associated the successor sequence U2 < U3 < · · · < Un−1, in
this case, val(n− 2) = n− 2,

(b) If 2 ≤ k ≤ n − 1 then at vertex n − k − 1, it holds that the corresponding
successor sequence consists only of Uk, and for each k, val(n− k − 1) = 1.

4. µ(n− 2) = 1,

5. µ(n− k − 1) = n− 2, 2 ≤ k ≤ n− 1.

The ideal IΓn of the corresponding Brauer configuration algebra ΛΓn is generated by the
following relations (see Figure 4.1), for which it is assumed the following notation for the
special cycles:

CUkn−2 =

{
an−2

1 an−2
2 · · · an−2

k−1 , if k = 2,

an−2
k−1a

n−2
k · · · an−2

k−2 , otherwise,

CUkn−k−1 = an−k−1
1 .

(4.2)

1. ahi a
s
r, if h 6= s, for all possible values of i and r unless for the loops associated to the

vertices n− k − 1,

2. CUkn−2 −
(
CUkn−k−1

)n−2
, for all possible values of k,

3. CUkn−2a with a being the first arrow of CUkn−2 for all k,

4.
(
CUkn−k−1

)n−2
a′ with a′ being the first arrow of CUkn−k−1 for all k.

Figure 4.1 shows the quiver QΓn associated to this configuration.
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U2

U3

U4

U5

U6

. . .

Uk−1

Uk

a n−
2

1

a n−22a
n−2

3

a
n
−

2
4

a n−
2

5

a n−2k−3 a
n−2

k−2

a
n
−

2
k
−

1

an−k−1
1

an−k−1
1

an−k−1
1

an−k−1
1

an−k−1
1

an−k−1
1

an−k−1
1

Figure 4.1. The quiver QΓn defined by the Brauer configuration Γn.

As an example the following is the numerology associated to the algebra ΛΓn = kQΓn/IΓn

with QΓn as shown in Figure 4.1 and special cycles given in (4.2), (|r(QΓn)| is the number
of indecomposable projective modules. Note that, |Ci| = val(i)):

|r(QΓn)| = n− 2,

|Cn−2| = n− 2, |Cn−k−1| = 1,∑
α∈Γ0

∑
X∈Γ1

occ(α,X) = n− 1, the number of special cycles,

dimk ΛΓn = 2(n− 2) + (n− 2)(n− 3) + (n− 3)(n− 2) = 2(n− 2)2,

dimk Z(ΛΓn) = 1 + 1 + (n− 2)2 + (n− 2)− (n− 1) + (n− 2)− (n− 2) =

= n2 − 4n+ 5.

Remark 13. ΛΓn is a Brauer graph algebra and according to Proposition 3, the Brauer
configuration algebra ΛΓn with quiver QΓn shown in Figure 4.1 has a length grading
induced by the path algebra kQΓn , provided that for any α ∈ Γ0 it holds that µ(α)val(α) =
n− 2.

Example 10. For the Brauer configuration Γn whose associated quiver is shown in Figure
4.1, we define the specialization e(α) = 2α, α ∈ Γ0 with the concatenation in each word
given by the difference of the specializations of the vertices belonging to a determined
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polygon, in such a case for n fixed, we have:

w(Uk) = (n− 2)(n− k − 1), for 2 ≤ k ≤ n− 1,

we(Uk) = 2n−2 − 2n−k−1, for 2 ≤ k ≤ n− 1,

M(Γen) =
∑
Uk∈Γ1

we(Uk) =

n−1∑
k=1

2n−2 − 2n−k−1.

(4.3)

4.2 Homological ideals associated to Nakayama algebras

In this section, we prove some combinatorial conditions which allow to establish whether
an idempotent ideal in some Nakayama algebras is homological or not. We also give the
number of homological ideals associated to these algebras via the integer specialization of
the Brauer configuration Γn defined in Example 10.

Let Q be either a linearly oriented quiver with underlying graph An or a cycle Ãn with
cyclic orientation. That is, Q is one of the following quivers

1

2

3

4

5

. . .
n− 1

n

•
1

•
2

· · · •
n− 1

•
n

or

Figure 4.2. Quiver Ãn with cyclic orientation and Dynkin diagram An linearly oriented.

A quotient A of kQ by an admissible ideal I is called a Nakayama algebra [35].

In this work, for n ≥ 3 fixed, we consider the algebras AR(i,j,k)
= kQ/I where Q is a

Dynkin diagram of type An linearly oriented and I is an admissible ideal generated by
one relation R(i,j,k) of length k starting at a vertex i and ending at a vertex j of the given
quiver, 1 ≤ i < j ≤ n. The following picture shows the general structure of quivers Q
which we are focused in this section.

An = 1→ · · · → i→ i+ 1→ · · · → i+ k = j → j + 1→ · · · → n− 1→ n.

The following Lemmas 1-7 allow to determine which idempotent ideals of an algebra
AR(i,j,k)

are also homological ideals. In this case, Lemmas 1 and 2 regard the case whenever
the idempotent ideal is generated by the trace of just one projective module associated to
a vertex of the quiver.

Lemma 1. Every idempotent ideal Ir of an algebra AR(i,j,k)
(see (4.1)) with j ≤ r or r ≤ i

is homological.

Proof. For r ≤ i, we have the following cases:
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1. trP (r)(P (t)) = 0 if t > r.

2. trP (r)(P (t)) = P (r) if t ≤ r, where P (r) denotes the r-th projective module.

If r ≥ j, we consider the following cases:

1. trP (r)(P (t)) = P (r) if i < t ≤ r, where P (r) denotes the r-th projective module.

2. trP (r)(P (t)) = 0.

In all cases trP (r)(AR(i,j,k)
) = P (r)l for some l ∈ N. The result follows as a consequence of

Proposition 6, item 2. We are done. �

Lemma 2. Every idempotent ideal It of an algebra AR(i,j,k)
, with i+ 1 ≤ t ≤ j − 1 is not

homological.

Proof. Consider Lt = trP (t)P (i) = P (i)/S(i) ⊕ · · · ⊕ S(t − 1) where S(k) denote the k-
th simple module, also note that there are not morphisms from P (t) to P (j) if t 6= j
which means that Ext1

AR(i,j,k)
(Lt, P (j)) is a direct summand of Ext1

AR(i,j,k)
(It, AR(i,j,k)

/It),

provided that Lt is a direct summand of It and P (j) is a direct summand of AR(i,j,k)
/It.

Applying the functor HomAR(i,j,k)
(−, P (j)) to a projective resolution of Lt with the form

0→ P (j)→ P (t)→ Lt → 0

it is obtained the sequence

0→ HomAR(i,j,k)
(P (t), P (j))→ HomAR(i,j,k)

(P (j), P (j))→ 0.

Thus, Ext1
AR(i,j,k)

(Lt, P (j)) ∼= k and Ext1
AR(i,j,k)

(Ii, AR(i,j,k)
/Ii) 6= 0. Then the idempotent

ideal It is not an homological ideal as a consequence of Proposition 6, item 3. �

Lemma 3. If each idempotent ideal Iαw of an algebra AR(i,j,k)
is not homological then

every idempotent ideal of the form Iα1,...,αl is not homological for 2 ≤ l ≤ k − 1.

Proof. For l fixed, we start by computing Iα1,...,αl ,

Iα1,...,αl = trP (α1)⊕···⊕P (αl)(AR(i,j,k)
) =

l∑
w=1

trP (αw)(AR(i,j,k)
)

In accordance with the hypothesis αw ∈ [i+ 1, j − 1] and taking into account that

trP (αw)(AR(i,j,k)
) = Lαw︸︷︷︸

i−times

⊕ P (αw)︸ ︷︷ ︸
αw−i−times

⊕ 0︸︷︷︸
n−αw−times

(4.4)

trP (α1)⊕···⊕P (αl)(AR(i,j,k)
) = Lα1︸︷︷︸

i−times

⊕
l⊕

w=1

P (αw)⊕ 0︸︷︷︸
n−i−l−times

(4.5)
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it holds that according to the identity (4.5), P (j) is a direct summand of AR(i,j,k)
/Iα1...αl

and Lα1 has the following projective resolution

0→ P (j)→ P (α1)→ Lα1 → 0

Applying the functor HomAR(i,j,k)
(−, P (j)), we have that Ext1

AR(i,j,k)
(Lα1 , P (j)) 6= 0 and

by Proposition 6 item 3, we conclude that the idempotent ideal Iα1...αl is not an homological
ideal. �

Lemma 4. For l fixed, if each idempotent ideal Iαw of an algebra AR(i,j,k)
with 1 ≤ w ≤ l

is homological then every idempotent ideal of the form Iα1,...,αl is also homological.

Proof. It suffices to observe that trP (αw)(AR(i,j,k)
) = P (αw)l for some l ∈ N. �

Lemma 5. Every ideal Ii,t or It,j of an algebra AR(i,j,k)
is homological.

Proof. In accordance with the previous Lemma we can conclude that if It is homological
then the result holds. If it is not the case then we consider the following cases:

1. For It non homological we can compute Ii,t = trP (i)⊕P (t)(AR(i,j,k)
) (see identity (4.4))

since r ≤ i then trP (i)P (r) = P (i) therefore ideal Ii,t is projective and idempotent.
Thus for Proposition 6, item 2. We conclude that ideal Ii,t is homological.

2. We start by computing It,j as follows:

It,j = trP (t)⊕P (j)(AR(i,j,k)
) = Lt︸︷︷︸

i−times

⊕ P (t)︸︷︷︸
t−i−times

⊕ P (j)︸︷︷︸
j−t−times

⊕ 0︸︷︷︸
n−j−times

AR(i,j,k)
/It,j is given by:

AR(i,j,k)
/It,j =

P (1)⊕ P (2)⊕ · · · ⊕ P (i)⊕ · · · ⊕ P (t)⊕ · · · ⊕ P (j)⊕ · · · ⊕ P (n)

Lt ⊕ · · · ⊕ Lt ⊕ P (t)⊕ · · · ⊕ P (t)⊕ P (j)⊕ · · · ⊕ P (j)⊕ 0⊕ · · · ⊕ 0

In order to compute Ext1
AR(i,j,k)

= (It,j , AR(i,j,k)
/It,j) we consider the projective res-

olution of Lt

0→ P (j)→ P (t)→ Lt → 0.

Applying the functor HomAR(i,j,k)
(−, AR(i,j,k)

/It,j) we obtain:

0→ HomAR(i,j,k)
(P (t), AR(i,j,k)

/It,j)→ HomAR(i,j,k)
(P (j), AR(i,j,k)

/It,j)→ 0

Taking into account that
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HomAR(i,j,k)
(P (t), P (z)

Lt
) = 0 if 1 ≤ z ≤ i

HomAR(i,j,k)
(P (t), P (y)

P (t) ) = 0 if i+ 1 ≤ y ≤ t− 1

HomAR(i,j,k)
(P (t), P (v)

P (j) ) = 0 if t+ 1 ≤ v ≤ j − 1

HomAR(i,j,k)
(P (t), P (u)) = 0 if j + 1 ≤ u ≤ n

HomAR(i,j,k)
(P (j), P (z)

Lt
) = 0 if 1 ≤ z ≤ i

HomAR(i,j,k)
(P (j), P (y)

P (t) ) = 0 if i+ 1 ≤ y ≤ t− 1

HomAR(i,j,k)
(P (j), P (v)

P (j) ) = 0 if t+ 1 ≤ v ≤ j − 1

HomAR(i,j,k)
(P (j), P (u)) = 0 if j + 1 ≤ u ≤ n

We conclude that ExtnAR(i,j,k)
(It,j , AR(i,j,k)

/It,j) = 0 and that the idempotent ideal

It,j is an homological ideal as a consequence of Proposition 6, item 3.

�

Remark 14. If the non homological ideal It has the form It1,...,tn the previous Lemma 5
also holds.

Lemma 6. For 1 ≤ h ≤ i−1, 1 ≤ l ≤ k−1 and 1 ≤ m ≤ n−j fixed. Every idempotent ideal
of the form Iz1,...,zh,t1,...,tl,y1,...,ym of an algebra AR(i,j,k)

, where za ∈ [1, i−1], tb ∈ [i+1, j−1],
yc ∈ [j + 1, n] is not homological.

Proof. For h, l and m fixed, we start by computing Iz1,...,zh,t1,...,tl,y1,...,ym ,

Iz1,...,zh,t1,...,tl,y1,...,ym = trP (z1)⊕...⊕P (zh)⊕P (t1)⊕...⊕P (tl)⊕P (y1),⊕...⊕P (ym)(AR(i,j,k)
)

=
h∑
a=1

trP (za)(AR(i,j,k)
)︸ ︷︷ ︸

(1)

+

l∑
b=1

trP (tb)(AR(i,j,k)
)︸ ︷︷ ︸

(2)

+
m∑
c=1

trP (yc)(AR(i,j,k)
)︸ ︷︷ ︸

(3)

(4.6)

The traces (1), (2), (3) can be written as follows:

h∑
a=1

trP (za)(AR(i,j,k)
) =

h⊕
a=1

P (za)⊕ 0⊕ · · · ⊕ 0,

l∑
b=1

trP (tb)(AR(i,j,k)
) = Lt1︸︷︷︸

i−times

⊕
l⊕

b=1

P (tb)⊕ 0︸︷︷︸
n−i−l−times

,

m∑
c=1

trP (yc)(AR(i,j,k)
) = 0︸︷︷︸

i−times

⊕ P (y1)︸ ︷︷ ︸
j−i−times

⊕
m⊕
c=1

P (yc)⊕ 0︸︷︷︸
n−m−j−times

.

(4.7)
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Thus, the ideal Iz1,...,zh,t1,...,tl,y1,...,ym has the following form:

h⊕
a=1

P (za)⊕ Lt1︸︷︷︸
i−h−times

⊕
l⊕

b=1

P (tb)⊕ P (y1)︸ ︷︷ ︸
j−i−l−times

⊕
m⊕
c=1

P (yc)⊕ 0︸︷︷︸
n−m−j−times

(4.8)

In accordance with (4.8) we have that P (j)
P (y1) is a direct summand of the quotient

AR(i,j,k)
/Iz1,...,zh,t1,...,tl,y1,...,ym and Lt1 has the following projective resolution:

0→ P (j)→ P (t1)→ Lt1 → 0. (4.9)

Applying the functor HomAR(i,j,k)

(
−, P (j)

P (y1)

)
to the resolution (4.9) we obtain the following

exact sequence

0→ HomAR(i,j,k)

(
P (t1),

P (j)

P (y1)

)
→ HomAR(i,j,k)

(
P (j),

P (j)

P (y1)

)
→ 0

Then Ext1
AR(i,j,k)

(
Lt,

P (j)
P (y1)

)
∼= k and

Ext1
AR(i,j,k)

(Iz1,...,zh,t1,...,tl,y1,...,ym , AR(i,j,k)
/Iz1,...,zh,t1,...,tl,y1,...,ym) 6= 0

by Proposition 6, item 3, we conclude that the idempotent ideal Iz1,...,zh,t1,...,tl,y1,...,ym is
not an homological ideal. �

Lemma 7. For 1 ≤ h ≤ i−1, 1 ≤ l ≤ k−1 and 1 ≤ m ≤ n−j fixed. The idempotent ideals
Iz1,...,zh,t1,...,tl and It1,...,tl,y1,...,ym of an algebra AR(i,j,k)

where za ∈ [1, i−1], tb ∈ [i+1, j−1],
yc ∈ [j + 1, n] are not homological.

Proof. It is enough to consider in (4.6) the trace
h∑
a=1

trP (za)(AR(i,j,k)
) = 0 or the trace

m∑
c=1

trP (yc)(AR(i,j,k)
) = 0. �

4.2.1 On the number of homological ideals associated to some Nakayama
algebras

The following results allow us to compute the number of homological and non homological
ideals in a bounded algebra AR(i,j,k)

by using the integer specialization e of the Brauer
configuration Γn introduced in Example 10.

Theorem 29. For n ≥ 4 fixed and 2 ≤ k ≤ n− 1 the number |NHIkn| of non homological
ideals of an algebra AR(i,j,k)

is given by the identity |NHIkn| = we(Uk).

Proof. We note that according to Lemmas 2 and 3 there are 2k−1 − 1 non homological
ideals associated only to the vertices inside the relation R(i,j,k), by Lemma 6 there are
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additional 2n−k−1 non homological ideals arising from the combination of vertices which
are inside and outside of the relation. The theorem follows taking into account the product
rule and Example 10. �

Corollary 25. For n ≥ 4 fixed and 2 ≤ k ≤ n− 1 the number of homological ideals |HIkn|
of an algebra AR(i,j,k)

is given by the identity |HIkn| = 2n − we(Uk) = 3 · 2n−2 + 2n−k−1.

Proof. Since there are 2n idempotent ideals in AR(i,j,k)
then the result holds as a conse-

quence of Theorem 29. �

The formula obtained in Theorem 29 induces the following triangle:

Non homological triangle NHIT

n/k 2 3 4 5 6 7 8 · · ·
3 1 - - - - - - -

4 2 3 - - - - - -

5 4 6 7 - - - - -

6 8 12 14 15 - - - -

7 16 24 28 30 31 - - -

8 32 48 56 60 62 63 - -
...

...
...

...
...

...
...

...
...

Entries |NHIkn| of triangle NHIT can be calculated inductively as follows: we start by
defining |NHI2n| = 2n−3 for all n ≥ 3. Now, we assume that |NHIkn| = 0 with k ≤ 1 and for
the sake of clarity we denote the specialization under e of a word w(Uk) of the polygon
Uk in the Brauer configuration Γn as we(Unk ) (see Example 10). Then, for k ≥ 3:

we(Uk) = we(Unk ) = (we(Unk−1) + we(Un−1
k−1 ))− we(Un−1

k−2 ).

or equivalently,
|NHIkn| = (|NHIk−1

n |+ |NHIk−1
n−1|)− |NHI

k−2
n−1|.

These arguments prove the following proposition.

Proposition 7. M(Γen) equals the sum of the elements in the n-th row of the non homo-
logical triangle NHIT (see Example (10)).

Remark 15. The integer sequence generated by M(Γen) =

n−1∑
k=1

2n−2 − 2n−k−1 =

{1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, . . .} is encoded A000337 in the OEIS. Elements
of the sequence A000337 also correspond to the sums of the elements of the rows of the
Reinhard Zumkeller triangle.

Remark 16. The sum of entries in the diagonals of the non homological triangle is the
sequence A274868 in the OEIS, and it is related with the number of set partitions of
[n] into exactly four blocks such that all odd elements are in blocks with an odd index,
whereas all even elements are in blocks with an even index.

Similarly, for the homological ideals Corollary 25 induces the following triangle:
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Homological triangle HIT.

n/k 2 3 4 5 6 7 8 · · ·
3 7 - - - - - - -

4 14 13 - - - - - -

5 28 26 25 - - - - -

6 56 52 50 49 - - - -

7 112 104 100 98 97 - - -

8 224 208 200 196 194 193 - -
...

...
...

...
...

...
...

...
...

The elements of the homological triangle are closely related with the research of categori-
fication of integer sequences. Particularly, these numbers deal with the work of Ringel and
Fahr regarding categorification of Fibonacci numbers.

4.2.2 Categorification of the Fibonacci numbers

In this section, we give some relationships between the number of homological ideals of
an algebra AR(i,j,k)

and the partition formula given by Ringel and Fahr for even-index
Fibonacci numbers in [19].

We recall the array (2) mentioned in the introduction of this document, where 0 ≤ j ≤
i ≤ n, and

di,i = 1, for all i ≥ 0,

di,j = 0 for all j > i

d2k+i,i−1 = 0, if i ≥ 1, k ≥ 0,

d2k,0 = 3d2k−1,1 − d2(k−1),0, k ≥ 1,

di+1,j−1 = 2di,j + di,j−2 − di−1,j−1, i, j ≥ 2.

(4.10)

Note that to each entry di,i−j it is possible to assign a weight hi,i−j by using the numbers
in the homological triangle HIT as follows:

hi,i−j =



|HIk2s+2| − 22·s−k+1, if j is even, i is odd and i 6= j + 1,

|HIk2s+1| − 22·s−k, if j is even, i is even,

3, if i odd, j even and i = j + 1,

1, if i = j = 2h for some h ≥ 0,

0, if j is odd, i 6= j.

Where s = b i−j2 c and bxc is the greatest integer number less than x. If we consider the
multiplication of the entry di,i−j with its corresponding weight hi,i−j , we can rewrite the
identity (3) as follows:
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Theorem 30.

2t∑
j=0

(h2t,2t−j)(d2t,2t−j) =
∑
reven

|Tr| · at[r], t ≥ 0

2t−1∑
j=0

(h2t−1,2t−1−j)(d2t−1,2t−1−j) =
∑
rodd

|Tr| · at[r], t ≥ 1.

(4.11)



CHAPTER 5

Categorification of magic squares

In this chapter, we use Brauer configuration algebras to give a categorification to magic
squares of order n for 3 ≤ n ≤ 9.

5.1 Categorification of magic squares

In this section, magic squares are categorified following the ideas of Ringel and Fahr [21],
who established that all entries in the Fibonacci triangle are categorified by Fibonacci
modules, provided that such entries give the Jordan-Hölder multiplicities of these modules.
In our case magic squares will be categorified by identifying information arising from the
combinatorial properties of some Brauer configurations with the entries of magic squares
of different orders.

A magic square of order n is a square array M such that to each entry mi,j it is assigned
an integer number ni,j with 1 ≤ ni,j ≤ n2 and ni,j 6= ni′,j′ if mi,j 6= mi′,j′ . In these arrays

the magic sum S = n(n2+1)
2 of the entries along rows, columns and diagonal is the same.

The Lo Shu array is a magic square of order 3, actually this array is the only (up to
permutations and reflections) of such order, and perhaps the most known magic squares
of order 4 are the Dürer magic square and the Jaina magic square. The OEIS encodes as
A033812 , A080992 and A126710 the entries of the Lo Shu, Dürer and Jaina magic squares
respectively (see tables 5.1, 5.2 and 5.3) [67,68].

4 9 2 =15

3 5 7 =15

8 1 6 =15

15 15 15 =3(9+1)
2

Table 5.1. Lo Shu magic square.

97
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16 3 2 13 =34

5 10 11 8 =34

9 6 7 12 =34

4 15 14 1 =34

34 34 34 34 =4(16+1)
2

Table 5.2. Dürer magic square.

7 12 1 14 =34

2 13 8 11 =34

16 3 10 5 =34

9 6 15 4 =34

34 34 34 34 =4(16+1)
2

Table 5.3. Jaina magic square.

Up to date, there are several unsolved problems regarding magic squares, which have
encouraged many mathematicians both amateurs and professionals to still investigating
many of its properties. For instance, determining the number of magic squares of an
arbitrary order is an unsolved problem in number theory, besides, Guy encodes as A6 and
D15 some open problems in number theory devoted to this subject [34].

The sequence A006052 lists the number of magic and semi-magic squares of some orders
counted up to rotations and reflections and it is estimated that the number of magic squares
of order 10 is 6,5×102056 [69]. Recently, Rippatti proposed that the number of semi-magic
squares of order 6 is exactly 94,590,660,245,399,996,601,600 [55]. And also Ahmed, Stanley
et al. have used algebraic combinatorics to tackle all these problems [2, 72, 73]. On that
sense, one of the purposes of this work is looking for a categorification of magic squares
by using Brauer configurations, which after a suitable specialization allow to obtain magic
squares of different orders.

The following result gives a realization of the Lo Shu array (see Table 5.1) based on the
structure of a suitable path algebra, which we have named The Lo Shu algebra.

Theorem 31. The specialization e(bi) = i associated to the algebra B = kQlsh/I generates
the Lo Shu square in the sense of (1.6). In this case, Qlsh is the quiver shown in Figure
5.1 and the ideal I is defined in such a way that I = 〈C ⊂ Qlsh : C is an oriented cycle〉.
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b1◦

α6

��
α3

��

◦
b5

α1

��

α7

��
◦
b3

α2

HH

◦
b4

α4

��
◦
b2

α5

]]

Figure 5.1. The Lo Shu quiver Qlsh.

The Lo Shu square is built (in the sense of Remark 4) by a specialization of the following
Brauer configuration Γ = (Γ0,Γ1,O, µ);

Γ0 = {b1, b2, b3, b4, b5},
Γ1 = {U1, U2, U3, U4, U5, U6.}

The successor sequence at each vertex bi ∈ Γ0 is defined as follows:

At vertex b1; U
(1)
2 ≤ U (2)

6 ,

At vertex b2; U
(2)
2 ≤ U (2)

5 ≤ U (1)
6 ,

At vertex b3; U
(1)
2 ≤ U (2)

5 ,

At vertex b4; U
(3)
2 ≤ U (1)

5 ≤ U (1)
6 ,

At vertex b5; U
(3)
2 ≤ U (1)

1 ≤ U (2)
3 ≤ U (1)

4 ≤ U (2)
5 ≤ U (2)

6 ,

µ(bi) = 1, 1 ≤ i ≤ 5.

The ideal I of the corresponding Brauer configuration algebra ΛΓ is generated by the fol-
lowing relations (see Figure 5.2), for which it is assumed the following notation for the
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special cycles:

CU2,1
b1

= ab11 a
b1
2 a

b1
3 , CU6,1

b1
= ab12 a

b1
3 a

b1
1 , CU6,2

b1
= ab13 a

b1
1 a

b1
2 ,

CU2,1
b2

= ab21 a
b2
2 a

b2
3 a

b2
4 a

b2
5 , CU2,2

b2
= ab22 a

b2
3 a

b2
4 a

b2
5 a

b2
1 , CU5,1

b2
= ab23 a

b2
4 a

b2
5 a

b2
1 a

b2
2 ,

CU5,2
b2

= ab24 a
b2
5 a

b2
1 a

b2
2 a

b2
3 , CU6,1

b2
= ab25 a

b2
1 a

b2
2 a

b2
3 a

b2
4 ,

CU2,1
b3

= ab31 a
b3
2 a

b3
3 , CU5,1

b3
= ab32 a

b3
3 a

b3
1 , CU5,2

1 = ab33 a
b3
1 a

b3
2

CU2,1
b4

= ab41 a
b4
2 a

b4
3 a

b4
4 a

b4
5 , CU2,2

b4
= ab42 a

b4
3 a

b4
4 a

b4
5 a

b4
1 , CU2,3

b4
= ab43 a

b4
4 a

b4
5 a

b4
1 a

b4
2 ,

CU5,1
b4

= ab44 a
b4
5 a

b4
1 a

b4
2 a

b4
3 , CU6,1

b4
= ab45 a

b4
1 a

b4
2 a

b4
3 a

b4
4 ,

CU2,1
b5

= ab51 a
b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13,

CU2,2
b5

= ab52 a
b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 ,

CU2,3
b5

= ab53 a
b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 ,

CU1,1
b5

= ab54 a
b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 ,

CU1,2
b5

= ab55 a
b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 ,

CU3,1
b5

= ab56 a
b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 ,

CU3,2
b5

= ab57 a
b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 ,

CU4,1
b5

= ab58 a
b5
9 a

b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 ,

CU4,2
b5

= ab59 a
b5
10a

b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 ,

CU5,1
b5

= ab510a
b5
11a

b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 ,

CU5,2
b5

= ab511a
b5
12a

b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10,

CU6,1
b5

= ab512a
b5
13a

b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11,

CU6,2
b5

= ab513a
b5
1 a

b5
2 a

b5
3 a

b5
4 a

b5
5 a

b5
6 a

b5
7 a

b5
8 a

b5
9 a

b5
10a

b5
11a

b5
12.

(5.1)

1. ahi a
s
r, if h 6= s, for all possible values of i and r,

2. CU1,i
j − CU1,k

l , for all possible values of i, j, k and l,

3. CU2,i
j − CU2,k

l , for all possible values of i, j, k and l,

4. CU3,i
j − CU3,k

l , for all possible values of i, j, k and l,

5. CU4,i
j − CU4,k

l , for all possible values of i, j, k and l,

6. CU5,i
j − CU5,k

l , for all possible values of i, j, k and l,

7. CU6,i
j − CU6,k

l , for all possible values of i, j, k and l,

8. CU1,j
i a (CU2,j

i a′) , with a (a′) being the first arrow of CU1,j
i (CU2,j

i ) for all i, j,

9. CU3,j
i a (CU4,j

i a′) , with a (a′) being the first arrow of CU3,j
i (CU4,j

i ) for all i, j,

10. CU5,j
i a (CU6,j

i a′) , with a (a′) being the first arrow of CU5,j
i (CU6,j

i ) for all i, j.
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The following is the quiver associated to the Brauer configuration Γ, the colors means the
different special cycles associated to each vertex as follows: for vertex b1 red, for vertex b2
green, for vertex b3 magenta, for vertex b4 cyan and for vertex b5 blue.

U1

U2U6

U5

U4 U3

Figure 5.2. Quiver associated to the Brauer configuration Γ.

Proof. Since the path P5 = α1α2α3α4 ∈ B visits all vertices in the form (a5, a3, a1, a4, a2)
then the specialization bi = i defines the integer vector v = (5, 3, 1, 4, 2), which is a
generator of the Lo Shu array in the sense of Remark 3 and identity (1.6). Note that, in
this case each partition λ ∈ F(15, 3) has three distinct parts ∈ {1, 2, . . . , 9}. Thus, Lo Shu
sums are generated by bracketing coordinates of vector v as follows:

U1 = 5 + 3 + (1 + 4 + 2) = 5 + 3 + 7,

U2 = 5 + (3 + 1) + 6 = 5 + 4 + 6,

U3 = 5 + (3 + 1 + 4) + 2 = 5 + 8 + 2,

U4 = (5 + 3) + 1 + 6 = 8 + 1 + 6,

U3 = (5 + 3) + (1 + 4) + 2 = 8 + 5 + 2,

U5 = (5 + 3 + 1) + 4 + 2 = 9 + 4 + 2.

(5.2)

The Lo Shu array can be built in the following way by adding vertices, which are visited
by the corresponding path:

α2 α1α2 eb2
eb3 eb5 = α3 α3α4

α2α3 eb1 α4
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In order to construct the Brauer configuration Γ the same procedure can be done with
paths;

P1 = α6α7α4α5,

P2 = α5α2α6α7,

P3 = α2α6α7α4,

P4 = α4α5α2α6,

P ′5 = α7α4α5α2.

Each of them visits all vertices of the quiver Qlsh as follows:

P1 = (1, 5, 4, 2, 3),

P2 = (2, 3, 1, 5, 4),

P3 = (3, 1, 5, 4, 2),

P4 = (4, 2, 3, 1, 5),

P ′5 = (5, 4, 2, 3, 1).

Among all the Lo Shu sums P ′5 also generates U6 = 5 + 9 + 1. And U1, . . . , U6 are all the
sums generated by the different paths (regardless permutations of the summands).

In this case, vertices bi ∈ Γ0 are given by ordered paths Pi and polygons are the sums
generated by such paths, for instance, polygons U1, U2, U3, U4 and U5 contain all of them
the vertex b5 (see identities (5.2)). Actually, the following identifications have place:

bi = Pi, 1 ≤ i ≤ 4,

b5 = P5 + P ′5.

Polygons Ui are ordered according to the relation � defined in Remark 3, in fact, it holds
that

U2 ≺ U1 ≺ U3 ≺ U4 ≺ U5 ≺ U6.

For instance in b1 = P1, the successor sequence has a relation of the form U2 � U6. Then
the successor sequence at each vertex bi is obtained by ordering polygons via relation
�. And this is enough to define the Brauer configuration Γ where vertices are defined
by specializations bi = Pi and polygons consists of compositions of 15 generated by such
paths.

�

The following results regard categorification of magic squares.

Theorem 32. Any magic square of order n for 3 ≤ n ≤ 9 is built by a specialization of
the Brauer configuration ∆ = (∆0,∆1,O, µ) where:

∆0 = {a, bi, di, ei, gj , hj , x, y, z, w, v | 1 ≤ i ≤ 4, 0 ≤ j ≤ 2},
∆1 = {V1, V2, V3, V4, V5, V6, V7, V8, V9}.

(5.3)
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At each vertex the successor sequence has the form;

At vertex x; V
(4)

1 ≤ V (3)
2 ≤ V (4)

3 ≤ V (5)
4 ≤ V (6)

5 ≤ V (4)
6 ≤ V (4)

7 ≤ V (5)
8 ≤ V (4)

9 ,

At vertex y; V
(2)

1 ≤ V (2)
2 ≤ V (2)

3 ≤ V (1)
4 ≤ V (2)

5 ≤ V (2)
6 ≤ V (2)

7 ≤ V (2)
8 ≤ V (2)

9 ,

At vertex z; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
8 ≤ V (1)

9 ,

At vertex w; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
8 ≤ V (1)

9 ,

At vertex v; V
(2)

1 ≤ V (2)
2 ≤ V (2)

3 ≤ V (2)
4 ≤ V (2)

5 ≤ V (2)
6 ≤ V (2)

7 ≤ V (2)
8 ≤ V (2)

9 ,

At vertex a; V
(8)

1 ≤ V (7)
2 ≤ V (7)

3 ≤ V (7)
4 ≤ V (10)

5 ≤ V (8)
6 ≤ V (7)

7 ≤ V (9)
8 ≤ V (8)

9 ,

At vertex b1; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

8 ,

At vertex b2; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

8 ≤ V (1)
9 ,

At vertex b3; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
8 ,

At vertex b4; V
(1)

1 ≤ V (1)
4 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
8 ,

At vertex d1; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
9 ,

At vertex d2; V
(1)

1 ≤ V (1)
4 ≤ V (1)

6 ≤ V (1)
7 ≤ V (1)

8 ≤ V (1)
9 ,

At vertex d3; V
(1)

5 ,

At vertex d4; V
(1)

5 ,

At vertex e1; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
7 ≤ V (1)

9 ,

At vertex e2; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
4 ≤ V (1)

6 ≤ V (1)
8 ≤ V (1)

9 ,

At vertex e3; V
(1)

1 ≤ V (1)
3 ≤ V (1)

4 ≤ V (1)
7 ≤ V (1)

8 ,

At vertex e4; V
(1)

5 ,

At vertex g0; V
(1)

5 ,

At vertex g1; V
(1)

4 ≤ V (1)
8 ,

At vertex g2; V
(1)

1 ≤ V (1)
2 ≤ V (1)

3 ≤ V (1)
6 ≤ V (1)

7 ≤ V (1)
9 ,

At vertex h0; V
(1)

1 ≤ V (1)
2 ≤ V (1)

5 ≤ V (1)
6 ≤ V (1)

8 ≤ V (1)
9 ,

At vertex h1; V
(1)

4 ,

At vertex h2; V
(1)

3 ≤ V (1)
7 ,

µ(α) = 1, for any vertex α ∈ ∆0,

Actually, such integer arrays are given by specializations of elements of a suitable path
algebra kQ with Q induced by polygons V1, . . . , V9.

Proof. Brauer configuration (5.3) can be specialized by defining a set a words whose letters
belong to sets A = {x, y, z, w, v} and B = {a, bi, di, ei, gm, hm}. Then polygons are set of
words of the form ABABABABA . . . , where elements of the set B connect letters of the
set A in such a way that to each element of A follows an element of B and that any word
should be ended with an element of A. We follow the syntactic rules (i)− (viii) in order
to connect letters x, y, z, w and v.
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(i) Letters x are always connected in the form xaxaxa . . . . In this case a linear num-
bering is defined on the set of letters x, assign a 1 to the first x appearing in a word,
2 to the second x and so on.

(ii) ybix and xeky are the only ways to connect letters x and y, where bi and ek denotes
which copy of a letter x is connected with y via symbols b and d respectively.

(iii) yay is the only way to connect letters y.

(iv) waz, zay, zbix, xekz and zdlx are the ways to connect a letter z with other letters,
dl is defined as bi and ek, 1 ≤ i, j, k, l ≤ 4.

(v) wbjx, wdlx, and vaw are the other ways to connect letter w with other letters.

(vi) vbjx, vdlx, and vav are the other ways to connect letter v.

(vii) Since by definition a letter v appears in the first place in a word containing it then
gm is a shift function specifying which letter of a word W containing letters only in
the set {v, w, z, y} connect the first letter of a sequence S = xaxa . . . , in this case,
gm(S) means that the first letter x in S must be connected with the mth letter of
W , with 0 ≤ m ≤ 2, in particular, g0(S) means that the first letter of S is connected
with the first letter of W .

(viii) Symbols hm, 0 ≤ m ≤ 2 are connection-maps, in this case, given a word X we have
that h0(X) means that X must contain a word of the form zayay, whereas h1(X)
means that X does not contain zay as subword. Finally, h2(X) means that there is
not a sequence of the form yay in X.

If we define an specialization of the form:

x = 1, y = 4, z = 7, w = 16, v = 35, a =→, b =↑, d =↗, e =↘ . (5.4)

then polygons V1 − V9 ∈ ∆1 defined by configuration (5.3) have the following shapes by
applying rules (i)− (viii):

V1 = V1,9 =
1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦ α4 //

γ4

��

1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

δ2

OO

β2

@@

ε2
// ◦
7

δ3

OO

ε3
// ◦
4

δ4

OO

ε4
// ◦
4

δ5

OO

V2 = V2,9 =
1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

δ2

OO

ε2
// ◦
7

δ3

OO

ε3
// ◦
4

δ4

OO

ε4
// ◦
4
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V3 = V3,9 =
1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦ α4 //

γ4

��

1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

δ2

OO

ε2
// ◦
7

δ3

OO

ε3
// ◦
4

δ4

OO

◦
4

V4 = V4,9 =
1◦ α1 // 1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦ α4 // 1◦

◦
35 ε0

// ◦
35

δ1

OO

β1

@@

ε1
// ◦
16

δ2

OO

ε2
// ◦
7

δ3

OO

◦
4

δ4

OO

V5 = V5,9 =
1◦ α0 // 1◦ α1 // 1◦ α2 // 1◦ α3 //

γ3

��

1◦ α4 // 1◦

◦
35

δ0

OO

ε0
// ◦
35

β1

@@

ε1
// ◦
16

δ2

OO

β2

@@

ε2
// ◦
7

δ3

OO

ε3
// ◦
4 ε4

// ◦
4

V6 = V6,9 =
1◦ α2 // 1◦ α3 //

γ3

��

1◦ α4 // 1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

δ2

OO

β2

@@

ε2
// ◦
7 ε3

// ◦
4

δ4

OO

ε4
// ◦
4

δ5

OO

V7 = V7,9 =
1◦ α2 //

γ2

��

1◦ α3 // 1◦ α4 //

γ4

��

1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

β2

@@

ε2
// ◦
7 ε3

// ◦
4

δ4

OO

◦
4

δ5

OO
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V8 = V8,9 =
1◦ α1 // 1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦ α4 // 1◦

◦
35 ε0

// ◦
35

δ1

OO

β1

@@

ε1
// ◦
16

δ2

OO

ε2
// ◦
7

δ3

OO

ε3
// ◦
4

δ4

OO

ε4
// ◦
4

V9 = V9,9 =
1◦ α2 //

γ2

��

1◦ α3 //

γ3

��

1◦ α4 // 1◦

◦
35 ε0

// ◦
35

β1

@@

ε1
// ◦
16

β2

@@

ε2
// ◦
7

δ3

OO

ε3
// ◦
4 ε4

// ◦
4

The following quiver Q is obtained by putting all polygons together:

Q =
a0◦ α0 // a1◦ α1 // a2◦ α2 //

γ2

��

a3◦ α3 //

γ3

��

a4◦ α4 //

γ4

��

a5◦

◦
a′0

δ0

OO

ε0
// ◦
a′1

δ1

OO

β1

@@

ε1
// ◦
a′2

δ2

OO

β2

@@

ε2
// ◦
a′3

δ3

OO

ε3
// ◦
a′4

δ4

OO

ε4
// ◦
a′5

δ5

OO (5.5)

Therefore, each polygon defines a magic sum of order 9 by using corresponding basic
elements as follows:

V1 = {ε2δ3α3α4, β1, β1α2, β1γ2ε3, ε1β2γ3δ4, ε1ε2ε3ε4δ5, ε3ε4δ5, ε0β1α2γ3δ4, α2γ3},
V2 = {ε0β1γ2, ε1δ2γ2δ3γ3ε4, ε1ε2, β1γ2δ3γ3, β1α2α3, ε2ε3, ε2ε3δ4, δ2, ea′3},
V3 = {ε0β1γ2δ3, ε1δ2γ2δ3γ3δ4γ4, β1γ2δ3γ3δ4, β1α2α3α4, ε2ε3δ4α4, ε1ε2δ3, δ2α2α3, δ2α2, δ3},
V4 = {ε0β1γ2δ3α3, ε0, ε1ε2δ3α3, β1γ2δ3γ3δ4α4, δ1α1α2α3α4, ε2δ3γ3δ4α4, δ2α2α3α4, δ3α3α4, δ3α3},
V5 = {ε0β1γ2δ3α3α4, ε1ε2δ3α3α4, ε0β1, ε1, δ0α0α1α2α3α4, ε2ε3ε4, β2γ3, ε3, ea5},
V6 = {ε0β1α2α3, ε0β1α2, ε1ε2ε3, ε1δ2, β1α2γ3δ4, ε2ε3ε4δ5, β2γ3δ4, ε3δ4, α4},
V7 = {ε0β1α2α3α4, ε1ε2ε3δ4α4, ε1ε2ε3δ4, ε1β2α3, β1γ2, ε2ε3δ4γ4δ5, ε2, ε3δ4α4, α3α4},
V8 = {ε0δ1α1α2α3α4, ε1δ2α2α3α4, ε1δ2α2α3, β1γ2δ3, δ2γ2δ3γ3ε4δ5, ε2δ3, δ3γ3δ4α4, ε1ε2δ3γ3δ4α4, ea′5},
V9 = {ε0β1α2γ3, ε1ε2ε3ε4, ε1β2γ3, β1γ2δ3α3α4, ea′0 , ε2δ3α3, ε3ε4, γ3, β1γ2δ3α3}.

(5.6)
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Via the specialization (5.4) with a = b = c = d = e = +, we obtain the following integer
sequences which are columns of a magic square of order 9:

V1 = {37, 6, 47, 16, 57, 26, 67, 36, 77},
V2 = {78, 38, 7, 48, 17, 58, 27, 68, 28},
V3 = {29, 79, 39, 8, 49, 18, 59, 19, 69},
V4 = {70, 30, 80, 40, 9, 50, 10, 60, 20},
V5 = {21, 71, 31, 81, 41, 1, 51, 11, 61},
V6 = {62, 22, 72, 32, 73, 42, 2, 52, 12},
V7 = {13, 63, 23, 64, 33, 74, 43, 3, 53},
V8 = {54, 14, 55, 24, 65, 34, 75, 44, 4},
V9 = {5, 46, 15, 56, 25, 66, 35, 76, 45}.

(5.7)

The following are magic sums of order 8 according to the Brauer configuration ∆:

V1,8 = {ε1ε2ε3δ4α4, β1γ2δ3γ3δ4, δ3, β1α2γ3, ε2δ3γ3ε4, δ1α1α2α3α4, δ2, γ3ε4},
V2,8 = {ε1ε2, ε3ε4, ε2, δ2γ2δ3γ3ε4δ5, δ2γ2δ3α3, β1γ2ε3, ε1δ2α2α3α4, α4},
V3,8 = {ε1ε2δ3, δ3γ3δ4α4, β2γ3δ4, ea′1 , ε2ε3, β1γ2δ3α3α4, ε1β2α3α4, α3α4},
V4,8 = {δ4, ε1δ2, β1γ2δ3, δ2γ2ε3δ4, β1α2, δ2α2α3α4, ε3δ4, ε1ε2δ3α3α4},
V5,8 = {α2α3α4, ε1δ2α2, β1γ2δ3α3, ε2ε3δ4, β1, β2γ3, γ2δ3γ3, ε1ε2δ3α3},
V6,8 = {ε1ε2ε3, ε3, δ2α2α3, β1α2α3, δ2γ2δ3γ3δ4, β1γ2, ε1, γ3δ4},
V7,8 = {ε1ε2ε3δ4, β1γ2δ3γ3δ4α4, β1α2γ3δ4, β1α2α3α4, δ2α2, δ3α3α4, α2α3γ4, ε2ε3ε4},
V8,8 = {ε1δ2α2γ3, ε1β2γ3, δ2γ2δ3, δ2γ2δ3γ3ε4, ε2δ3, δ3γ3ε4, ea2 , β1γ2ε3δ4}.

(5.8)

In this case,

V1,8 = {8, 49, 41, 32, 40, 17, 9, 64},
V2,8 = {58, 15, 23, 34, 26, 47, 55, 2},
V3,8 = {59, 14, 22, 35, 27, 46, 54, 3},
V4,8 = {5, 52, 44, 29, 37, 20, 12, 61},
V5,8 = {4, 53, 45, 28, 36, 21, 13, 60},
V6,8 = {62, 11, 19, 38, 30, 43, 51, 6},
V7,8 = {63, 10, 18, 39, 31, 42, 50, 7},
V8,8 = {1, 56, 48, 25, 33, 24, 16, 57}.

(5.9)
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Magic sums of order 7 can be obtained via the following basic elements:

V1,7 = {β2γ3δ4, δ4, ε2δ3γ3δ4α4, δ3γ3δ4, β1α2α3, β2γ3, β1α2γ3} = {22, 5, 30, 13, 38, 21, 46},
V2,7 = {β1γ2ε3, ε2, δ4α4, ε2ε3ε4, γ2ε3δ4α4, β1α2α3α4, ε3ε4} = {47, 23, 6, 31, 14, 39, 15},
V3,7 = {ea′2 , β1γ2ε3δ4, ε2δ3, ea′3 , δ2γ2ε3ε4, ε4, δ1α1α2α3α4} = {16, 48, 24, 7, 32, 8, 40},
V4,7 = {β1α2γ3, δ2, β1γ2ε3δ4α4, δ2γ2δ3, ea5 , δ2γ2ε3ε4δ5, γ3ε4} = {41, 17, 49, 25, 1, 33, 9},
V5,7 = {γ2δ3α3, β1α2γ3δ4, δ2α2, β1γ2, δ2γ2δ3α3, α2, δ2γ2δ3γ3ε4δ5} = {10, 42, 18, 43, 26, 2, 34},
V6,7 = {ea′1 , ε3, β1, δ2α2α3, β1γ2δ3, ε2ε3, α2α3} = {35, 11, 36, 19, 44, 27, 3},
V7,7 = {α2α3α4, δ2γ2ε3δ4, ε3δ4, β1α2, δ2α2α3α4, β1γ2δ3α3, ε2ε3δ4} = {4, 29, 12, 37, 20, 45, 28}.

(5.10)

The following are magic sums of order 6:

V1,6 = {α3γ4, α2α3γ4, δ2α2α3, δ2α2, ε2δ3α3, β1} = {6, 7, 19, 18, 25, 36},
V2,6 = {ε2δ3γ3ε4, ε3, δ3γ3δ4γ4, δ2α2α3α4, ε2ε3δ4α4, δ4} = {32, 11, 14, 20, 29, 5},
V3,6 = {α3α4, ε2ε3, δ3γ3ε4, β2γ3δ4, δ3α3α4, ε2δ3γ3ε4δ5} = {3, 27, 16, 22, 10, 33},
V4,6 = {ε2δ3γ3δ4γ4δ5, ε2ε3δ4, ε3ε4, β2γ3, γ3ε4, ea′4} = {34, 28, 15, 21, 9, 4},
V5,6 = {ea′1 , γ2, ε2, δ2, ε2δ3α3α4, α4} = {35, 8, 23, 17, 26, 2},
V6,6 = {ea5 , ε2δ3γ3δ4α4, ε2δ3, ε3δ4α4, ε3δ4, ε2ε3ε4} = {1, 30, 24, 13, 12, 31}.

(5.11)

Magic sums of order 5 are given by the following elements in kQ:

V1,5 = {ε3, ea′4 , β2, δ3α2α3, ε3} = {11, 4, 17, 10, 23},
V2,5 = {ε3δ3, δ3γ3, δ4, β2α3, α3γ4} = {24, 12, 5, 18, 6},
V3,5 = {ea′3 , ε3δ3α3, δ3γ3δ4, ea4,δ2α2α3} = {7, 25, 13, 1, 19},
V4,5 = {δ2α2α3α4, δ3, β2γ3, δ3γ3δ4α4, α4} = {20, 8, 21, 14, 2},
V5,5 = {α3α4, δ3γ3ε4, γ3ε4, δ2α2γ3, ε3ε4} = {3, 16, 9, 22, 15}.

(5.12)

The following is a description of magic sums of order 4:

V1,4 = {δ3γ3ε4, γ3, γ3ε4, ea′5} = {16, 5, 9, 4},
V2,4 = {α3α4, δ3α3α4, α3γ4, ε3ε4} = {3, 10, 6, 15},
V3,4 = {α3, ε3, ea′3 , δ3γ3δ4α4} = {2, 11, 7, 14},
V4,4 = {ε3δ4α4, ε4, ε3δ4, ea5} = {13, 8, 12, 1}.

(5.13)

The Lo Shu magic square has the following interpretation in kQ:
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V1,3 = {ea′5 , α3α4, ε4} = {4, 3, 8},
V2,3 = {ε4δ5 = δ4γ4, δ5 = δ4, ea5} = {9, 5, 1},
V3,3 = {α3, α3γ4δ5, α3γ4} = {2, 7, 6}.

(5.14)

Note that, polygons (5.6) show that every summand of a magic sum can be partitioned
into parts in the set {1, 4, 7, 16, 35}. Since the underlying graph built by the corresponding
paths is connected then identities (5.6-5.14) prove the Theorem 32. We are done.

�

The following result is a direct consequence of the definition of the specialization given in
Theorem 32.

Corollary 26. If Q is the quiver defined in Theorem 32 then any partition of a positive
integer n into parts ≤ 100 is a specialization of an element of kQ.

Proof. It suffices to observe that the following specialized quiver generates numbers 82 to
100.

Q =
a0◦ α0 // a1◦ α1 // a2◦ α2 //

γ2

��

a3◦ α3 //

γ3

��

a4◦ α4 //

γ4

��

a5◦

◦
a′0

δ0

OO

ε0
// ◦
a′1

δ1

OO

β1

@@

ε1
// ◦
a′2

δ2

OO

β2

@@

ε2
// ◦
a′3

δ3

OO

ε3
// ◦
a′4

δ4

OO

ε4
// ◦
a′5

δ5

OO

In particular, factors of paths ε0ε1ε2δ3γ3δ4α4 and ε0β1γ2ε3ε4δ5 are specialized by numbers
82, 86, 87, 93, 94, 98, 99 and 100 as follows:

82 = ε0β1γ2ε3,

86 = ε0β1γ2ε3ε4,

87 = ε0β1γ2ε3ε4δ5,

93 = ε0ε1ε2,

94 = ε0ε1ε2δ3,

98 = ε0ε1ε2δ3γ3,

99 = ε0ε1ε2δ3γ3δ4,

100 = ε0ε1ε2δ3γ3δ4α4.

�

The following result holds as a direct consequence of Corollary 26.
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Corollary 27. Any partition of a positive integer n into parts ≤ 100 can be rewritten as
a partition P = {p1, p2, . . . , pn} whose parts pj have the form

pj = (35)(t1)(16)(t2)(7)(t3)(4)(t4)(1)(t5),

where (x)(y) means that the part x occurs y times in pj and ti is a nonnegative integer,
0 ≤ t1, t4 ≤ 2, 0 ≤ t2, t3 ≤ 1, 0 ≤ t5 ≤ 6.

The following is a version of Theorem 32 for the case n = 3.

Corollary 28. Let ∆3 be a Brauer configuration such that ∆3 = (∆0,3,∆1,3,O, µ) with;

∆0,3 = {a, ci, x, y | 1 ≤ i ≤ 3},
∆1,3 = {U1, U2, U3}.

At each vertex the successor sequence has the form:

At vertex x; U
(2)
1 ≤ U (3)

2 ≤ U (2)
3 ,

At vertex y; U
(2)
1 ≤ U (1)

2 ≤ U (2)
3 ,

At vertex a; U
(2)
1 ≤ U (2)

2 ≤ U (2)
3 ,

At vertex c1; U
(1)
1 ,

At vertex c2; U
(1)
3 ,

At vertex c3; U
(1)
2 ,

µ(α) = 1, for α = a, x and y,

µ(α) = 2, for α = ci.

Then a specialization of ∆3 builds the Lo Shu square. The ideal I of the corresponding
Brauer configuration algebra Λ∆ is generated by the following relations (see Figure 5.3),
for which it is assumed the following notation for the special cycles:

CU1,1
x = ax1a

x
2a
x
3a
x
4a
x
5a
x
6a
x
7 , CU1,2

x = ax2a
x
3a
x
4a
x
5a
x
6a
x
7a
x
1 ,

CU2,1
x = ax3a

x
4a
x
5a
x
6a
x
7a
x
1a
x
2 , CU2,2

x = ax4a
x
5a
x
6a
x
7a
x
1a
x
2a
x
3 ,

CU2,3
x = ax5a

x
6a
x
7a
x
1a
x
2a
x
3a
x
4 , CU3,1

x = ax6a
x
7a
x
1a
x
2a
x
3a
x
4a
x
5 ,

CU3,2
x = ax7a

x
1a
x
2a
x
3a
x
4a
x
5a
x
6 , CU1,1

y = ay1a
y
2a
y
3a
y
4a
y
5,

CU1,2
y = ay2a

y
3a
y
4a
y
5a
y
1, CU2,1

y = ay3a
y
4a
y
5a
y
1a
y
2

CU3,1
y = ay4a

y
5a
y
1a
y
2a
y
3, CU3,2

y = ay5a
y
1a
y
2a
y
3a
y
4,

CU1,1
a = aa1a

a
2a
a
3a
a
4a
a
5a
a
6, CU1,2

a = aa2a
a
3a
a
4a
a
5a
a
6a
a
1,

CU2,1
a = aa3a

a
4a
a
5a
a
6a
a
1a
a
2, CU2,2

a = aa4a
a
5a
a
6a
a
1a
a
2a
a
3,

CU3,1
a = aa5a

a
6a
a
1a
a
2a
a
3a
a
4, CU3,2

a = aa6a
a
1a
a
2a
a
3a
a
4a
a
5,

CU1,1
c1 = ac11 , CU3,1

c2 = ac21 , CU2,1
c3 = ac31 .

(5.15)

1. ahi a
s
r, if h 6= s, for all possible values of i and r,

2. CU1,i
j − CU1,k

l , for all possible values of i, j, k and l,
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3. CU2,i
j − CU2,k

l , for all possible values of i, j, k and l,

4. CU3,i
j − CU3,k

l , for all possible values of i, j, k and l,

5. CU1,j
i a (CU2,j

i a′) , with a (a′) being the first arrow of CU1,j
i (CU2,j

i ) for all i, j.

6. CU3,j
i a, with a being the first arrow of CU3,j

i for all i, j.

The following is the quiver associated to the Brauer configuration Γ, the colors means the
different special cycles associated to each vertex as follows: for vertex b1 red, for vertex b2
green, for vertex b3 magenta, for vertex b4 cyan and for vertex b5 blue.

The following is the quiver associated to the configuration ∆3:

U1

U2

U3

Figure 5.3. Quiver associated to the Brauer configuration ∆.

Proof. Polygons of the Brauer configuration ∆3 consists of words whose letters are ele-
ments A = {x, y} ⊂ ∆0,3 connected by symbols B = {a, ci} ⊂ ∆0,3 ci is defined as bi in
Theorem 32 where xciy is the only way to connect letters x and y and more than one
letter y are connected. Thus, if we define the specialization a =→, c =↓ then polygons in
∆3 have the following shapes:
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x◦

δ′4

��

α4 // x◦

◦
y ε4

// ◦
y

x◦ α3 // x◦ α4 // x◦

δ′5

��
◦
y

x◦ α3 // x◦

δ′4

��
◦
y ε4

// ◦
y

The following are factors of polygons U1, U2 and U3:

U1 = { x → x ,
x
↓
y → y

, y },

U2 = { x → x → x ,
x
↓
y
,
x → x → x

↓
y
},

U3 = { x ,
x → x

↓
y
, y → y }.

Putting it all together, it is obtained the following subquiver Q3 ⊂ Q (see Figure (5.5) by
replacing x = 1, y = 4:

Q3 =
1◦ α3 // 1◦ α4 //

δ′4

��

1◦

δ′5

��
◦
4 ε4

// ◦
4

In this case, polygons U1, U2 and U3 can be described as follows (→=↓= +):
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U1 = {2, 9, 4},
U2 = {3, 5, 7},
U3 = {1, 6, 8}.

which are up to permutations the rows of the Lo Shu square. Actually, factors of α3δ
′
4ε4

and α3α4δ
′
5 in kQ3 generate the complete array as follows (see Figure (5.5)):

{α3, δ
′
4, ε4} = {2, 5, 8},

{α3δ
′
4, δ
′
4, ea′4} = {4, 5, 6},

{α3, ea′4 , δ
′
4ε4} = {2, 4, 9},

{α3α4, δ
′
5, α3α4δ

′
5} = {3, 5, 7},

{ea3 , α3δ
′
4, ε4} = {1, 6, 8},

{ea3 , δ′4, δ′4ε4} = {1, 5, 9},
{α3, α4δ

′
5, α3α4δ

′
5} = {2, 6, 7}.

�

Corollary 29. Let ∆ = ∆4 ∪∆′4 be a disconnected Brauer configuration such that ∆4 =
(∆0,4,∆1,4,O, µ), ∆′4 = (∆′0,4,∆

′
1,4,O′, µ′) with:

∆0,4 = {a, bi, cj , gk, hl, x, y, z | i = 1, 3; j = 2, 3; k = 0, 2; l = 0, 2},
∆′0,4 = {a′, b′i, c′j , g′k, h′l, x′, y′, z′ | i = 1, 2; j = 1, 2, 3; k = 0; l = 0, 1},
∆1,4 = {U1, U2, U3, U4},
∆′1,4 = {U ′1, U ′2, U ′3}.

At each vertex the successor sequences have the form:

At vertex x; U
(1)
1 ≤ U (3)

2 ≤ U (3)
3 ≤ U (3)

4 ; x′;U
′(2)
1 ≤ U ′(3)

2 ≤ U ′(3)
3 ,

At vertex y; U
(2)
1 ≤ U (2)

2 ≤ U (2)
3 ≤ U (1)

4 ; y′;U
′(2)
1 ≤ U ′(1)

2 ≤ U ′(2)
3 ,

At vertex z; U
(1)
1 ≤ U (1)

2 ≤ U (1)
3 ≤ U (1)

4 ; z′;U
′(1)
1 ≤ U ′(1)

2 ≤ U ′(1)
3 ,

At vertex a; U
(2)
1 ≤ U (4)

2 ≤ U (3)
3 ≤ U (3)

4 ; a′;U
′(3)
1 ≤ U ′(3)

2 ≤ U ′(3)
3 ,

At vertex b1; U
(1)
1 ≤ U (1)

2 ≤ U (1)
3 ; b′1;U

′(1)
3 ,

At vertex b3; U
(1)
4 ; b′2;U

′(1)
2 ,

At vertex c2; U
(1)
4 ; c′1;U

′(1)
1 ,

At vertex c3; U
(1)
3 ; c′2;U

′(1)
1 ,

At vertex g0; U
(1)
1 ≤ U (1)

2 ≤ U (1)
3 ; c′3;U

′(1)
3 ,

At vertex g2; U
(1)
1 ; g′0;U

′(1)
1 ≤ U ′(1)

2 ≤ U ′(1)
3 ,

At vertex h0; U
(1)
1 ≤ U (1)

2 ≤ U (1)
4 ; h′0;U

′(1)
1 ≤ U ′(1)

2 ,

At vertex h2; U
(1)
3 ; h′1;U

′(1)
3 ,

µ(α) = µ′(α′) = 1, for vertices α ∈ ∆0,4, α
′ ∈ ∆′0,4.
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Then a specialization of ∆ builds any magic sum of order 4. In particular, a specialization
of ∆4 builds the Dürer magic square, whereas a specialization of ∆′4 builds the Jaina magic
square.

Proof. As in the previous case, we build a quiver Q4 and a suitable specialization such
that any magic sum of order 4 can be expressed by a specialization of a linear combination
of paths in Q4. Firstly, we construct the quiver induced by the Brauer configurations ∆4

and ∆′4 by applying the previous substitutions for the corresponding vertices. In this case,
letters z and y are always connected in the form zay. Therefore h0(X) means that X
contains subwords of the form yay. Whereas h2(X) means that X does not contain this
type of sequence. Thus the polygons U1, . . . , U4 and U ′1, . . . , U

′
3 have the following shapes:

U1 =
x◦

◦
z ε3

// ◦
y ε4

// ◦
y

δ5

OO

U2 =
x◦ α3 // x◦ α4 // x◦

◦
z

δ3

OO

ε3
// ◦
y ε4

// ◦
y

U3 =
x◦ α3 // x◦ α4 // x◦

δ′5

��
◦
z ε3

//

δ3

OO

◦
y

◦
y

U4 =
x◦ α3 // x◦ α4 //

δ′4

��

x◦

◦
z ε4

// ◦
y

δ5

OO
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U ′1 =
x◦ α3 //

δ′3

��

x◦

δ′4

��
◦
z ε3

// ◦
y ε4

// ◦
y

U ′2 =
x◦ α3 // x◦ α4 // x◦

◦
z ε3

// ◦
y

δ4

OO

U ′3 =
x◦ α3 // x◦ α4 // x◦

δ′5

��
◦
z

δ3

OO

◦
y ε4

// ◦
y

The following are factors of polygons U1, . . . , U4 and U ′1, . . . , U
′
3 = U ′4:
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U1 = {
x
↑

z → y → y
,
x
↑
y
,

x
↑

y → y
, y},

U2 = { x → x → x ,
x → x → x
↑
z

,
x → x
↑
y

, z → y → y },

U3 = { x → x , z → y , z,
x → x → x
↑ ↓
z y

},

U4 = {
x → x

↓
z → y

,
x
↓
z
,

x
↑

z → y
, x},

U ′1 = {z, x → x ,
x
↓
z → y → y

,
x
↓
y → y

},

U ′2 = { x → x → x ,
x
↑

z → y
,

x → x
↑

z → y
,

x → x
↑
y

},

U ′3 = {x,
x
↓
z
,
x → x

↓
y → y

, z → y → y },

U ′4 = {
x → x → x
↑ ↓
z y

, z → y ,
x
↓
y
, y}

We obtain the following quiver Q4 putting it all together and by applying the substitution
x = 1, y = 4, z = 7:

Q4 =
1◦ α3 //

δ′3

��

1◦ α4 //

δ′4

��

1◦

δ′5

��
◦
7 ε3

//

δ3

OO

◦
4 ε4

//

δ4

OO

◦
4

δ5

OO

Magic squares of order 4 can be obtained as linear combinations of factors of the different
paths constituting polygons U1, . . . , U4 or U ′1, . . . , U

′
3 and by substituting x = 1, y = 4 and

z = 7 with δiδ
′
i = 0. Thus, this specialization allows to see polygons Ui and U ′i as follows:
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U1 = {16, 5, 9, 4},
U2 = {3, 10, 6, 15},
U3 = {2, 11, 7, 14},
U4 = {13, 8, 12, 1}.

Which are the columns of the Dürer’s magic square, whereas polygons

U ′1 = {7, 2, 16, 9},
U ′2 = {12, 13, 3, 6},
U ′3 = {1, 8, 10, 15},
U ′4 = {14, 11, 5, 4}.

are columns of the Jaina magic square. Any other magic sum of order 4 can be obtained
by associating the corresponding linear combination of paths in Q4. �

Remark 17. Theorem 32 and Corollary 26 deal with the research of magic labelings which
have been studied with great detail by Ahmed, Stanley and Stewart [2,72,73]. According
to Ahmed [2], a labeling of a graph G is an assignment of a nonnegative integer to each
edge of G. A magic labeling of magic sum r of G is a labeling such that for each vertex
v of G the sum of the labels of all edges incident to v is r (loops are counted as incident
once). Graphs with a magic labeling are also called magic graphs.

A magic labeling for a quiver Q is an assignment of a nonnegative integer to each arrow
of Q1 such that for each vertex vi ∈ Q0, the sum of the labels of all arrows with vi as the
initial vertex is r, and the sum of the labels of all arrows with vi as the terminal vertex is
also r. Cayley digraphs of order n are examples of quivers with magic sum n(n−1)

2 .

Since according to Ahmed [2] magic squares constitute a cone, then in order to obtain
formulas for the number of magic squares of a given order, she considered to use a Hilbert
basis HB(C), which is a finite set of points such that each element of the semigroup
SC = C ∩ Zn is a linear combination of elements from HB(C) with nonnegative integer
coefficients. In this case, an integral point of a cone C is irreducible if it is not a linear
combination with integer coefficients of other integral points. For instance, the following
is a linear combination for the Jaina magic square in terms of a Hilbert basis associated
to magic squares of order 4.

1 1 0 0

0 1 1 0

0 0 0 2

1 0 1 0

+ 2

1 0 0 1

0 0 1 1

1 0 1 0

0 2 0 0

+

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

+ 2

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

+ 8

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

+

0 0 1 1

0 1 1 0

2 0 0 0

0 1 0 1

+

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

+ 11

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

+

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

=

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4
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In this work similar results are obtained but instead of Hilbert basis we use the basis of a
suitable path algebra kQ with Q induced by the configuration (5.3).

We note that there are interesting relationships between magic labelings, perfect matchings
and cluster variables. Indeed, if an n-matching of G is a magic labeling of G with magic
sum at most n and labels extracted from the set {0, 1, 2, . . . , n} then a perfect matching
of G is a 1-matching of G with magic sum 1.

The following result describes a relationship between Hilbert bases and perfect match-
ings [2]:

Proposition 8. The perfect matchings of a graph G are the elements of the minimal
Hilbert basis of CG of magic sum 1 and the number of perfect matchings of G is HG(1).

where HG(r) denotes the number of magic labelings of G of magic sum r. We also recall
that Stanley computed HK5(r) where Kn is the complete general graph on n vertices [72].
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