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Abstract

Question Answering (QA) is an active research area due to its usefulness in accessing the ever

increasing amount of data. Information needs have led to the emergence of new information

retrieval paradigms in which the user can easily access accurate information.

QA methods allow to solve queries submitted by the user in natural language concisely and

effectively, reducing the need for manual validation of large documents. In closed domains,

such the biomedical one, these methods are relevant due to the large amount of specialized

documents that make difficult the task of finding specific information as well as the usefulness

of this information to support practice and research.

In this research work, passage retrieval, which is often the final step in a question-answer

system, was particularly addressed. This task evaluates the text fragments that make up

the documents that may contain the answer to the question submitted by the user. This

evaluation carries out semantic and sometimes syntactic checks that allow to deduce if the

text passage is a valid answer, to finally return a ranked list of passages that have a higher

probability of being an answer.

In a closed domain, such as the biomedical domain, passage retrieval is particularly challeng-

ing due to the complexity of biomedical terminology and the heterogeneity of information

sources. These challenges, along with others that will be detailed throughout the document,

make it necessary to use other sources of information, such as semantic ones, which, when

used in combination with textual sources, help to manage the complexity of language.

On the other hand, the use of deep learning in this field has great interest and recently it

has become increasingly popular as an important tool to solve the task of passage retrieval,

however there are very few methods that merge the different modalities of information that

in a domain like biomedicine offer obvious advantages.

In this research work, different deep learning techniques were explored. In addition, several

methods of information fusion were evaluated to take advantage of the complementarity of

the modalities. The proposed methods were systematically evaluated in different open and

closed domain data sets. Particularly in the biomedical domain the results were outstanding,

surpassing the state of the art and demonstrating their effectiveness in the biggest global

challenge for this particular task, BioASQ.

Keywords:

Question answering, Passage retrieval, Deep Learning, Machine Learning, Biomedical infor-

mation retrieval, BioASQ.
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Esta tesis de doctorado se sustentó el 22 de 04 de 2021 a las 5:00 p.m., y fue evaluada por

los siguientes jurados:

Elizabeth León Guzmán, Phd.

Profesora Asociada

Coordinadora Curricular Ingenieŕıa de Sistemas y Computación
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1 Introduction

The exponential growth of information has also shaped the way it is searched and accessed

[148]. Every two years the volume of the textual content produced over the course of history

doubles [106], which makes the traditional ways of accessing information obsolete.

In the biomedical field, which is a closed domain example, more than 3,000 medical articles

are published every day [124], making it into one of the fields where alternatives to the

traditional paradigms of information access become more necessary. A study showed that,

with the current rate of publication, a physician would need to check over 130 scientific

journals as well as read 27 articles per day to stay updated on breast cancer alone [7].

Among the information retrieval paradigms that may contribute to alleviate this evident

need is Question Answering (QA), where a user submits a question in natural language so

that the system accurately returns the most likely answer. QA consists of many stages,

ranging from the formulation of the question, through the recovery of the documents and

finally the extraction of the answer. The extraction can occur in two ways, first returning the

text fragment that answers the question (known as answer extraction or passage retrieval)

or generating the answer directly from the fragments that support it.

Methods for passage retrieval have mainly explored textual sources which are also the most

numerous. However, in closed domains, there have been efforts to standardize the language

and to alleviate its ambiguity, which has resulted in the development of the semantic in-

formation sources or knowledge bases. Such resources unequivocally represent the domain

concepts and its relationships. Another advantageous use of semantic information resources

is when the question is too short or does not contain the most relevant terms in the target

corpus, it can be alleviated by the use of synonyms of related terms that can match the

desired passages.

Therefore, the use of these sources of information is valuable for passage retrieval task, but

it poses some challenges such as the computational representation and later fusion of each

modality to take advantage of the benefits that each one of them offers. This thesis work has

focused on the use of these complementary information sources for closed domain passage

retrieval. Through the joint use of semantic and textual information sources, we have been

able to obtain encouraging results in biomedical passage retrieval.

The chapter firstly presents the research problem together with the research questions to

later establish the objectives. At the end of the chapter, the contributions are enumerated

and the published works are listed.



4 1 Introduction

1.1 Problem Statement

Passage retrieval methods employ different approaches to identify relevant passages to a

particular question. Traditional methods address the task by adapting document retrieval

methods such as vector space model to the passage retrieval task, this is not completely

adequate since the length of the passages is much less in comparison to document length, to

mention only one of other differences between the two tasks.

Recently, as a result of the increased availability on large volumes of information, deep learn-

ing methods are becoming more predominant, which leads to better performance. Regardless

of the passage retrieval approach, most of them base their operation on textual sources ex-

clusively, as they represent 80% of the total amount of information available for the specific

task [87]. The large volume of data makes it easier to implement accurate methods, but

textual content has well-known limitations, such as ambiguity of the terms, where according

to the context, the term adopts a certain meaning.

In an effort to reduce the inherent drawbacks of language, alternative forms of knowledge

representation began to be promoted, allowing it to be unambiguous and more precise. The

initiatives to create a semantic web gave a special impulse to these projects [11, 4], which

made possible the rapid development and adoption of representation standards such as the

ontologies or knowledge graphs, among others.

Despite the fact that the semantic language representation is the remaining 20%, the ad-

vantage is that the vocabulary is controlled and the relationships between the concepts are

explicit and in a hierarchical structure. These latter properties are useful for addressing

challenges such as the lexical gap or language uncertainty. The semantic representation re-

sources are more common in the closed domains, and many efforts have been made recently

to improve the completeness.

In order to make use of the different modalities of information in a complementary way, two

important sub-tasks must be tackled: information representation and information fusion. In

the first one, different approaches have been proposed, ranging from frequency-based repre-

sentations, language models or learned distributional representations. All of them capture

semantic features of the term sequence and are a starting point, however, an aggregated rep-

resentation of the question and the passage is desired for this particular task. In the second

sub-task it is necessary to consider how to exploit the complementarities of the information

modalities. In this case it is necessary to define if the modalities will be exploited separately

and eventually combined, or if they will be merged at an earlier stage.

This thesis addresses the use of different information sources to recover text passages from

a huge data corpus. Likewise, different fusion approaches are explored in order to take

advantage of the data complementarity and, by means of the use of deep learning models

extract the features and analyze them to effectively solve the related task. The biomedical

domain was taken as a use case due to its complexity and the impact of the research in an

area that requires better approaches in information retrieval.
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This thesis has explored the following research questions:

1. How to learn a similarity measure between the queries and candidate passages that

take advantage of semantic and textual information sources?

2. How to learn a fused information representation that benefits from complementary

multimodal information sources?

3. Does the involvement of semantic knowledge enhance the closed domain question an-

swering performance?

4. How to combine deep learning text representations with structured domain knowledge?

1.2 Objectives

1.2.1 General objective

To develop a closed domain deep learning question answering method that takes advantage

of textual and semantic information sources.

1.2.2 Specific objectives

1. To design and apply different representational approaches for questions and passages,

considering both textual and semantic information sources.

2. To design and implement deep learning methods that extract question-passages simi-

larity features, based on multi-modal information fusion.

3. To systematically evaluate the performance of passage retrieval methods on closed

domain datasets.

1.3 Main Contributions

• Contribution 1: Use of semantic knowledge representation as a complement

to the textual one

Passage retrieval methods meet many of the challenges that NLP faces. Sometimes it

is hard to disambiguate textual information, fortunately semantic information sources

can provide a solution for alleviating such common language-related issues. Although

semantic information have been used over many years and these resources are extensive

in the closed domain such as the medical domain, most passage retrieval approaches

do not make use of them.
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In this work, semantic information sources were exploited to enrich the textual rep-

resentation with the identified biomedical concepts from the question and candidate

passages, in addition to expanding the key concepts of the question to increase cover-

age. The proposed approach was helpful in two main respects:

1. The disambiguation of the textual source is achieved through the use of identified

unique medical concepts using semantic structured sources such as ontologies and

terminology databases.

2. The coverage is increased by using the semantic representation and its hierarchical

relationship offered by this modality.

The contribution are described in the Chapter 4.

• Contribution 2: Enriched information representation from multimodal sources

The language representation is an important factor on which the task of passage re-

trieval relies to be solved effectively. In most of the approaches, question-passage

sequences are encoded separately.

Our approach is quite different, based on the hypothesis that the answer-passage se-

quences have a stronger semantic correlation if the passage is a valid answer than if

it is not. We address the representation by means of the semantic interactions rather

than independently. We explored similarity-based representations on vector represen-

tations, statistical co-occurrences covered in the Chapter 5 and transformer’s attention

layers based on similarity encoding discussed in the Chapter 7 .

• Contribution 3: A Multi-modal information fusion strategy based on deep

learning

To take advantage of textual and semantic representations it is essential to create a

combined representation that captures the most relevant patterns of each modality and

merges them in a complementary way.

For this purpose three fusion strategies were proposed: early fusion approach covered

in the Chapter 5, intermediate fusion and late fusion discussed in the Chapter 4.

The fusion strategies make use of different deep learning building blocks, such as:

convolutional and recurrent layers among others.

• Contribution 4: A novel deep metric learning approach for closed domain

passage retrieval

Metric learning has been widely used for image processing tasks, whereas it has not

been fully explored in passage retrieval. Inspired on the use in image-processing where

the correspondences of the images are projected in a metric space, we proposed a deep

metric learning model which encodes question-passage interactions using a siamese
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architecture but taking as in the case of triplet network, a triple input (question,

positive passage and negative passage) which enables the model to produce a metric

space where interactions are well represented.

Another important factor in the success of the model is the sampling strategy. The

proposed informative sampling strategy selects first easy samples, which refers to those

passages that are not semantically related to the question and that for the same reason

have to be located spatially far away, opposite are the hard samples that despite not

being a valid answer they are semantically related and would be located over the

border that separates positive and negative samples in the metric space. This sampling

strategy considerably improves the learning process and leads to an improvement in

the overall performance of the model, this model is proposed in Chapter 6.

• Contribution 5: State-of-the-art performance improvement in passage re-

trieval by merging information from multiple sources

The proposed models for passage retrieval as well as for document retrieval in closed

domain were systematically validated. The results obtained mainly in the biomedical

domain showed that the passage retrieval task is effectively solved by merging semantic

and textual sources. When evaluating the models in the BioASQ competition and

comparing the results with the best competition’s models, an improvement of around

20% in the official ranking metric (Mean Average Precision - MAP) was achieved [103].

Following is the list of papers that has been published during the development of this re-

search:

1. Rosso-Mateus, Andrés, Manuel Montes-y-Gómez and Fabio A. González. ”A Deep

Metric Learning Method for Biomedical Passage Retrieval” In Proceedings of the

28th International Conference on Computational Linguistics (COLING2020), In Press.

2020. [103]

2. Rosso-Mateus, Andrés, Manuel Montes-y-Gómez, Paolo Rosso, and Fabio A. González.

”Deep fusion of multiple term-similarity measures for biomedical passage retrieval.”

Journal of Intelligent & Fuzzy Systems Preprint (2020): 1-10. [99]

3. Rosso-Mateus, Andrés, Fabio A. González, and Manuel Montes. ”Mindlab neural net-

work approach at bioasq 6b.” In Proceedings of the 6th BioASQ Workshop A challenge

on large-scale biomedical semantic indexing and question answering, pp. 40-46. 2018.

[102]

4. Rosso-Mateus, Andrés, Fabio A. González, and Manuel Montes-y-Gómez. ”A Two-

Step Neural Network Approach to Passage Retrieval for Open Domain Question An-

swering.” In Iberoamerican Congress on Pattern Recognition, pp. 566-574. Springer,

Cham, 2017. [101]
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5. Rosso-Mateus, Andrés, Fabio A. González, and Manuel Montes-y-Gómez. ”A Shallow

Convolutional Neural Network Architecture for Open Domain Question Answering.”

In Colombian Conference on Computing, pp. 485-494. Springer, Cham, 2017. [100]

Also there is a collaboration work which was presented at BioASQ 7 challenge (2019):

1. Pineda-Vargas, Mónica, Andrés Rosso-Mateus, Fabio A. González, and Manuel Montes-

y-Gómez. ”A Mixed Information Source Approach for Biomedical Question Answer-

ing: MindLab at BioASQ 7B.” In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pp. 595-606. Springer, Cham, 2019. [91]

1.4 Thesis Outline

The thesis addresses three broad topics: deep representation learning, information fusion

and similarity/metric learning. The chapters relate to this topics as follows: chapter 3 is

focuses on deep representation learning, chapter 4, 5, and 7 present methods for information

fusion and chapter 6 addresses the similarity/metric learning problem. The details of each

chapter content is presented next.

• Chapter 1: Introduction —– This chapter covers the introduction of this thesis. It

includes problem statement, research objectives and motivation and significant contri-

butions of our work.

• Chapter 2: Background and Related Work —– This chapter presents the lit-

erature review in question answering (QA) field. Each stage in the QA pipeline is

described, although a more rigorous description of passage retrieval task is provided.

• Chapter 3: Pseudo-relevance feedback deep learning method for open do-

main passage retrieval —– We present our work exploring deep learning approaches

for open domain passage retrieval.

• Chapter 4: Multimodal Fusion Strategy for Biomedical Passage Retrieval

—– This chapter presents a model for biomedical passage retrieval that explores differ-

ent information fusion alternatives. It also describes our participation in the BioASQ

challenge and the results obtained.

• Chapter 5: Deep Fusion of Multiple Term-Similarity Measures For Biomed-

ical Passage Retrieval —– This chapter presents a novel approach for biomedical

passage retrieval which is able to combine different information sources using a simi-

larity matrix fusion strategy.
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• Chapter 6: A Deep Metric Learning Method For Biomedical Passage Re-

trieval —– This chapter describes a novel approach for metric learning which is able

to map the interactions between the question and the answer on a metric space built

with the semantic interactions of the text and the semantic information.

• Chapter 7: Transformers based representation for Biomedical Passage Re-

trieval —– This chapter presents a work in progress that, using Bert’s attention layers

representation capacity, takes advantage to extract features that allow to discriminate

if a passage is related to a question.

• Chapter 8: Conclusions and Future Work —– In this chapter some of the re-

search conclusions are shared in addition to the most interesting future steps in passage

retrieval task.



2 Background and Related Work

This chapter briefly discusses some of the most important definitions and concepts related

to the field of question answering, these concepts are needed for the following chapters. As

was mentioned earlier, the focus of this research work is the passage retrieval QA sub-task,

which is the most relevant and commonly assumed as the final step in question answering

systems. For this reason, most of the state-of-the-art research is dedicated to this task in

particular.

In the first part of this chapter, the question-answer problem and its component tasks are

described in detail. Furthermore, we examine open and closed domain passage retrieval in

addition to the differentiating properties they have. Since the study of passage retrieval

task on closed domains is one of the research objectives of this work, the biomedical domain

is taken as a use case which is presented along with the challenges it. Some of the most

important datasets are presented at the end of the chapter, including the relevant challenges

and the used metrics.

2.1 Question Answering

Question answering is a rapidly growing information retrieval paradigm that aims to find

short and concrete answers analyzing thousands of documents where such answers can be

found. In this paradigm, instead of returning the document that may be related to the

question, it fulfill the need for information by returning a sentence, a paragraph, a fragment

of text or even a word that is the answer to the question asked [46].

Question answering systems have to mine vast volumes of textual information in order to

gather the relevant evidence to produce an answer that satisfies the information requirement.

Most of those systems have in common a high level architecture [2] depicted in the Figure

2-1.

The standard Question answering system architecture is a pipeline of information that flows

through chained tasks, the first being 1) question processing, in this task a question posed

in natural language is transformed into a query that is used to retrieve the documents in

the following step, 2) document retrieval in this phase an information retrieval algorithm

retrieves the most related documents for the compound query, 3) passage retrieval, the

retrieved documents are analyzed in detail where each piece of text (passage) may become

a possible answer to the question posed, the result of this step is a set of passages that can

be transformed or enriched in the final step 4) answer extraction.
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Figure 2-1: Question answering stages

A detailed QA phases description is presented in the following section.

2.1.1 Question Answering Phases

Phase 1: Question Processing

Question processing is the phase in which the objective of the question is identified, the

question type is classified, and the question is reformulated into a semantically equivalent

query that is simpler and more appropriate for the document search engine.

This stage is very important because by formulating a wrong query, documents that can

answer the expected question will not be retrieved. Some sub-tasks are listed below.

• Key-word Extraction: It is important to define the key-words that will be used to

identify the relevant documents. These key-words are extracted by matching with

named entities as the case of Srihari et al. approach [115], or using a markov model

through sequence labelling as is described in Veyseh work [129].

• Query Formulation: In this task, the key-words related to the question are used to

compose a query that can be sent to the document retrieval system. There are ap-

proaches which make use of semantic information sources to expand the query, as the

approach proposed by Yang et al. [137].

• Question Classification: Question classification methods identify what is the expected

entity type for a given question, for example, people, location, time, medical concept,

etc. Question classifiers can be built by hand-writing rules [58], by supervised machine

learning [150, 41, 38], symbolic [112], or with some hybrid approach [8, 127]. A very
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exhaustive work made by the Facebook team [133] presents a taxonomy for question

type.

• Semantic Parsing: Is a task related to the mapping of natural language sentences into a

structured representation. In this task, there are supervised machine learning methods

as Berant et al propose. [10], rule-based approaches [136, 126] or machine learning as

proposed by Krishnamurthy et al. based on distant supervision relation learning [47].

Phase 2: Document Retrieval

Document retrieval is defined as the matching of a query built on a set of large free text

records. The objective is to find the documents which most closely coincide with the search

terms in the query. Question Answering Systems rely on document retrieval to provide the

subset of information that will be analyzed in depth, in which the answer to the question is

most likely to be found. For this reason, the effectiveness of the system is strongly influenced

by this sub-task [72].

Most frequent approaches in document retrieval are those based on TF-IDF, where the rel-

evance ranking function is based on the frequency of the query terms and documents. The

best-known implementation of this family of methods is BM25, this method ignores the

proximity of the terms, it only takes into account the occurrence, similar to a bag of words

approach [98]. Also, there is an important drawback related to the vocabulary used in the

query and the document, related documents with different words are not identified although

they carry the same information. Other Approaches based on Latent low dimensional doc-

ument representations like Latent Semantic Indexing (LSI) [28], Latent Dirichlet Allocation

(LDA) [15] are more robust to vocabulary differences using a semantical representation where

the document search is focused on concepts and not in words.

Despite the outstanding performance of neural networks (NNs) in fields like computer vision

or automatic language translation, the use of these approaches in Document Retrieval (DR)

tasks had relatively less attention. Further on, there would appear approximations based on

language models, [42, 149], which make it possible to know the probability that a document

occurs given query terms. Most of those models were based on word embeddings [33, 70, 151].

A key advantage of neural networks based models are their ability to work from raw input

data, so there is no need to extract features from the text, also those methods are not

extremely affected by vocabulary differences or terms order as classic methods do. Many

different architectures and approaches have been proposed, such as auto-encoders [49, 111],

recursive neural networks [113], recurrent neural networks [88], convolutional neural networks

[57], various embedding methods [33, 69], and deep reinforcement learning [107, 73].

This stage was not a central part of our research work, as Passage Retrieval is. However,

during the research it was noted that some datasets that were intended to be used did not

provide the relevant documents for the query, so it was necessary to explore methods to

resolve this dependency as well.
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Phase 3: Passage Retrieval

The passage retrieval task is responsible for analyzing in depth each text fragment in the

established candidate documents with the objective of finding the text sequence that answers

the question.

The passages are usually paragraphs or sentences that are semantically compared with the

question, filtered and ranked according to their semantic matching. In many QA systems

the process ends by returning these ordered passages, while other systems use this list of

passages to compose a single answer.

There are several approaches for passage retrieval, some of them employ deep learning

approaches[84, 125], symbolic approaches [142, 135] and passage filtering using question

matching keywords [85, 22]. This task was the main objective of this research work, hence

a comprehensive analysis of the most relevant methods is made at the end of the chapter.

Phase 4: Answer Extraction

Given the question Q and a subset made up of passages that probably answer the ques-

tion S(1), ..., S(N), the objective in answer extraction is to find a term or combinations of

contiguous terms that are the precise answer to Q. If the question is looking for an entity

(factual question) this entity is identified and returned as the answer.

The main sub-tasks in this stage are:

• Answer Processing: In this subtask, the goal is to process the information from the

passages to identify important pieces of information mainly based on two approaches:

1) pattern extraction using regular expression and 2) n-gram clustering sometimes

called the redundancy-based approach [19, 54], where all the unigrams, bigrams and

trigrams that appear in the snippet are extracted, weighed and finally concatenated

to produce a response fragment.

• Answer Summarizing: The answer to a given question may be supported by many

passages found in different documents. In this task, the goal is to produce a concise

representation from a fragment or a set of fragments to compose a complete answer.

Approaches to achieving that task include knowledge-based methods [65], statistical-

based [77] and so on.

Question Answering example

To motivate a brief example, consider a user trying to know the name of Lionel Messi’s

agent. With this intention in mind, let review the phases that the system must accomplish

to retrieve an answer.

• User Question: Who is Lionel Messi’s agent?
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• Phase 1. Question Processing: In this stage, the system identifies that the user is

looking for a person entity, extracts the keywords as Lionel Messi, agent, etc, and if

we want to include structured knowledge in the process, the query must be translated

into an RDF triplet (subject, predicate, object) that should be as (Lionel Messi, agent,

X?)

• Phase 2. Document Retrieval: In this stage, we must compose the query that is

going to be submitted to the document retrieval method. The query should include

keywords and query expansions terms. Then, the query is processed and the system

returns an ordered list of related documents, that can be news-sites that talk about

Lionel Messi or Messi’s Wikipedia page.

• Phase 3. Passage Retrieval: In this stage, the documents are analyzed in deep

to find the passages that could contain the desired answer. If we retrieve Messi’s

Wikipedia page, the query related passages are in the following list and the passage

with the highest score is highlighted in bold:

– Since 2008, when he was 20, Messi has been in a relationship with Antonella

Roccuzzo, a fellow native of Rosario.

– Messi and Roccuzzo have three sons: Thiago (born in 2012), Mateo (born in 2015),

and Ciro (born in 2018).

– Messi enjoys a close relationship with his immediate family members, particularly

his mother, Celia, whose face he has tattooed on his left shoulder.

– His professional affairs are largely run as a family business: his

father, Jorge, has been his agent since he was 14, and his oldest

brother, Rodrigo, handles his daily schedule and publicity.

– Since leaving for Spain at age 13, Messi has maintained close ties to his hometown

of Rosario, even preserving his distinct Rosarino accent.

• Phase 4. Answer Extraction: In this example, we knew in advance that the answer

was related to a person entity that was the name of his agent. So, for our example

the system’s answer should be: His father, Jorge, has been his agent since he

was 14.

2.2 Passage Retrieval as Question Answering Core Task

Passage retrieval is the main focus of this thesis, this task is also known as answer selection

or snippet retrieval, and is usually the final step in a question answering system. Given

the input question q and a set of passages p = p0, ......pm, the objective is to return those

passages that are a valid answer to the question q. It can be seen as the problem of learning
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a prediction function f(q, p) → a from a training data set, where a is close to zero 0 when

the passage is not a a valid answer and close to 1, when it does. Traditional models for

passage retrieval were based on Information Retrieval approaches, such as the BM25 algo-

rithm estimates the passage relevance measuring similarities in a sparse representation [98],

other including indexing meta-information on terms [26], or Query Likelihood [93] showing

similar performance in passage retrieval task using term occurrence as main representation.

A key issue in the traditional approach is that an exact match of the most important question-

answer terms is required, otherwise, a low score will be achieved. A less critical factor that

impacts the overall performance is the order in which the terms are arranged; traditional

methods do not take into account the order and it is shown to be significant to the task [13].

Lets consider the following example:

• Question: What are the symptoms of the flu?

• Answer: For most people, influenza begins with a fever and a cough.

In the related example, there are very few term coincidences because the answer is using

different synonyms for the flu and also the word symptoms is not present.

Subsequently, with the growth of the NLP field, researchers begin to use lexical, syntactical,

and linguistic relations as input features [109]. Pizzato et al. [92] research the indexing and

retrieval of annotated text using a representation based on semantic role labeling. Guo et al.

proposed a model that combines seven different features drawn from the relationships within

the texts, such as the lexical matching and page link [37]. Chen [24] employed a language

model to evaluate if two sentences have a question-answer relationship, and Surdeanu [118]

made use of semantic role tagging, syntactic dependency strings, and so on to enhance

retrieval.

NLP approaches are commonly combined with machine learning (ML) to take advantage of

the linguistic features. The work of Othman et al. combines lexical, syntactic, and semantic

features which are analyzed by a support vector machine model to predict whether the input

passage is relevant to the posed question [85]. Another ML model was proposed by Khalifa

et al. which uses a lexical-based hybrid method with a naive Bayes classifier that takes

advantage of domain knowledge by exploiting the auxiliary information (thesaurus) [45].

Most ML and NLP strategies require a heavy pre-processing stage to extract the handmade

features, in order to feed the discriminatory model. This requirement is not present in deep

learning (DL) based models, where the DL ability for automatic extraction of these features

from the representation is exploited.

Recently, researchers have been studying deep learning approaches to automatically extract

features and learn semantic correlations between questions and answers. Yu et al. [145]

present a Bigram model that using a one-dimensional CNN model and as input represen-

tation a pretrained semantic word embeddings (bag-of-words or bigram model). The work

presented by Severyb et al. [109] make use of a Siamese Convolutional Neural Network
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for learning question-answer representations patterns, in this approach QA pairs are con-

catenated together with the TF information and passed across a feed-forward network to

produce a relevance score. Wang et al. [131] propose a bidirectional neural model to encode

question-answer sentence terms, then an output layer learns the similarity patterns in the

encoded pairs. The model proposed by Tan et al. [119] implements two bidirectional long

short-term memory networks to encode questions and passages separately, and measures

their closeness by cosine similarity. Cohen et al. [27] have proposed an Hybrid CNN and

BiLSTM approach, where the input layer processes the query and candidate answer char-

acters before feeding a convolutional layer with different kernel lengths. This convolutional

layer creates abstract features that are processed by a Bidirectional Short Term Memory

(BiLSTM) layer to capture time dependencies and determine pair relevance. Recently at-

tention models become very popular in passage retrieval, the Yang et al. work was some of

the first models [138], the approach is based on a value-shared weighting scheme, they also

combine different matching signals weighted by the importance learned from an attention

mechanism.

In the biomedical field the predominant approach is deep learning. For example, [32] pro-

posed to apply a word embedding representation for question-passage sequences and then to

compute their semantic relationship employing a weighted cosine distance. Another relevant

approach, which obtained the best results in the 2018 BioASQ edition, was presented by the

auen-nlp team [20]. This approach is based on an ABCNN architecture [143], which models

pair of sentences with a convolutional neural model and an attention mechanism, and uses

a linear classification layer to produce an output relevance score. The model proposed by

Pappas et al. computes context-sensitive term embeddings with multiple CCN filter which

capture context and similarity relevance information [89]. Finally, [121] used Bert contextual

word embeddings [51] to represent question and passage pairs, and fine-tuned the model to

produce a ranking score, most recent works -not have employed pre-trained transformers

language models that are fine-tuned on the downstream classification task.

It is remarkable that although the biomedical domain is plenty of semantic knowledge as

biomedical terminology databases and ontologies, most of the approaches have not made

use of these resources [61]. An exception is the work presented by [12], where ontologies are

used to expand query terms. Semantic resources offer information that is complementary to

textual information and that can be used to alleviate problems as polysemy or synonymy

disambiguation.

Table 2-1 present some remarkable approaches to passage retrieval. As was mention most

of them are based on Deep Learning and the preferred text sequence representations are

LSTM and CNN. The latest ones are mainly based on Bert which is expected because the

remarkable performance in many NLP tasks. As was mentioned, most of these are based

on Deep Learning and the preferred text sequence representations are LSTM and CNN.

More recent models are mainly based on BERT, which is expected due to the outstanding

performance in several NLP tasks. It is predominant the use of passage retrieval methods for
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open domain, in which there is a greater number of datasets that will be enunciated later,

whereas for biomedical domain the most prominent is BioASQ.

Author (year) Approach Dataset Domain

Yu (2014) [145] DL (CNN + Bigram) TrecQA Open

Severyn (2015) [109] DL (CNN) TrecQA Open

Wang (2015) [131] DL (BiLSTM) TrecQA Open

Tan (2015) [119]
DL (BiLSTM + Co-

sine)
TrecQA Open

Yang (2016) [138]
DL (CNN + Atten-

tion)
TrecQA Open

Miller (2016) [68]
DL (Key-Value Mem-

ory Network)
WikiQA Open

He (2016) [39] DL(CNN pairwise) TrecQA / WikiQA Open

Cohen (2018) [27] DL (CNN + BiLSTM) TrecQA Open

Tay (2018) [120] DL (Hyperbolic NN) TrecQA Open

Ma (2018) [60]
Statistical (Noise Con-

trastive Estimation)
WikiQA Open

Yang (2019) [139]
DL (Residual encoder

NN)
WikiQA Open

Galko (2018) [32] DL (CNN + Bigram) BioASQ Biomedical

Brokos (2018) [20] DL (ABCNN) BioASQ Biomedical

Yoon (2019) [144]
DL (CNN + Latent-

cluster)
TrecQA / WikiQA Open

Pappas (2019) [89]
DL (CNN + context-

embedding)
BioASQ Biomedical

Telukuntla (2020) [121] DL (Bert) BioASQ Biomedical

Gard (2020) [60] DL (Bert fine-tuning) TrecQA / WikiQA Open

Table 2-1: List of most prominent passage retrieval approaches

2.2.1 Challenges in Passage Retrieval

Passage retrieval have many linguistic challenges that could affect the method precision.

Some of the most important are presented as follows.

• Vocabulary Gap: This challenge is related to the use of different words or combina-

tion of words in the query and the related document or passage. Although queries and

passages are using different words, the information contained in both elements must be
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highly correlated. Consequently, there is a vocabulary gap between concepts expressed

in different words, as for example:

– Where can I buy cheap laptops?

– Where can I purchase affordable notebooks?

• Polysemy: In the natural language there are cases in which a word is used to express

quite different meanings. The challenge is known as Polysemy, and it is also present

in the Biomedical Domain as the following example shows:

– Cold (temperature): having a lower than usual temperature.

– Cold (disease): viral infectious disease of the upper respiratory tract that primarily

affects the nose. The throat, sinuses, and larynx.

– Cold (acronym): Chronic Obstructive Lung Disease.

• Complex and elaborated queries: This challenge is especially evident in a closed

domain such as biomedical science, in which vocabulary is complex, acronyms are

constantly used, and language is highly specialized. An example of a biomedical query

is the following:

– Which markers are screened with the triple test for the detection of syndromes in

fetus?

• Use of Abbreviations: It is very common in both open and closed domains. There

are problems with the use of abbreviations, such as ambiguity when the same abbre-

viation is used in two different contexts, for example:

– TCF can refer to T Cell Factor or Tissue Culture Fluid. It causes a conflict in

the identification of the desired entity.

The use of semantic data to disambiguate textual information can mitigate some of these

challenges that prevent a better performance in QA models.

2.3 Open and Closed Domain Passage Retrieval

Open-domain passage retrieval, following the setting of the annual TREC competitions [130],

is defined as the task to find passages that answer a question in a large collection of textual

documents, for example, documents, blogs, reports, news, articles, e-mails, logs, large web

pages, and recently including large-scale structured knowledge bases, such as Freebase [17],

DBPedia [5], Google’s Knowledge Graph, YAGO2 [43], etc.

Conversely, closed domain passage retrieval refers to the restriction made over the knowledge

field to extract the answer, some example domains are music, mathematics, biology, medicine,

etc.
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In the closed domain the terminology is controlled and several semantic resources are avail-

able, e.g. ontologies, thesaurus and other terminology databases, which offers some advan-

tages such as:

1. Sharing a common understanding of the structure of information.

2. Enabling reuse of domain knowledge.

3. Making domain assumptions explicit.

4. Separating domain knowledge from the operational knowledge.

A use case of closed domain is the Biomedical one, it is explored through this research work.

2.4 Biomedical Passage Retrieval

Every day, more than 3000 new articles are published in biomedical journals [63], which

means around 2 articles are published every minute. In biomedical field, passage retrieval

plays an important role based based on the premise that clinical decision making is supported

by experience and research literature. Finding useful information in the enormous amount

of biomedical articles represents a challenge for expert users, even more so when the user is

actually a patient [62].

The biomedical domain presents the aforementioned challenges of language, such as highly

specialized queries that become more noticeable in this field, vocabulary gap, use of abbre-

viations, among others that are listed below.

• Biomedical terminology evolution: The biomedical literature employs thousands

of entity names, and every day new names are added to the list, which makes it a

challenge to keep the dictionaries and lexicons up to date [110]. For example, if we

consider only humans, the fly, the mouse and the worm, there are about 70,000 genes.

Those genes comprise more than 100,000 proteins. Furthermore, there are over a

million species, cell lines and molecules. The possible concepts that can exist is huge.

• Synonymy: This is more likely to occur in gene names. For example, the yeast

gene UBC6 is also known as DOA2. If multiple text passages coming from different

documents refer to the same gene with different names, it is hard to determine if the

passages are referring to the same entity [110].

• Variability in spelling: It happens when a term have different spelling in the same

language based on the country or region where is used. For example haematoma in

British English versus hematoma in American English.
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• Biomedical Polysemy: In biomedical science, the context has a fundamental influ-

ence on the meaning of a particular term. For example, these gene names may also

refer to protein names according to the context [110]:

– CAT1

– LacZ

– MAP kinase

– Sonic hedgehog

The use of semantic data in the biomedical domain has a great potential. Such data can

reduce uncertainty through the use of terminological or taxonomic databases that can either

disambiguate the language or reduce the mentioned lexical gap. Some of the most important

resources explored in this research work are presented below.

• Ontologies: An ontology is defined as a formal explicit description of concepts in the

domain of discourse, together with their attributes, roles, restrictions, and other defin-

ing features [83]. In biomedicine, an abundance of ontologies has been developed for

different purposes an now they play a central role in integrating the information coming

from different fields. The overwhelming importance of ontologies to biomedical research

and to clinical practice, has pull serveral organizations, professional societies, and in-

dividual laboratories to create their own onotologies but the effort has been mostly un-

coordinated, OPEN BIOMEDICAL ONTOLOGIES (OBO) is a project created with

the aim of create controlled shared vocabularies across different biological and medi-

cal domains [104]. Some of the most known biomedical ontologies are: MESH, Gene

Ontology (GO), Sequence Ontology (SO), Generic Model Organism Project (GMOD),

Functional Genomics Data (FGED), Ontology for Biomedical Investigations (OBI),

Plant Ontology Consortium (POC), an extended description of the more relevant as

follows.

– MESH: The National Library of Medicine (NLM) designed a medical subject

taxonomy to index PubMed and Medline documents. Each article is indexed

with one or more MeSH terms. The use of mesh concept allow to improve the

information retrieval by limiting the search space.

– GO: The Genetic Ontology (GO) is the most comprehensive knowledge base of

genetic field in the world. Such knowledge can be read by humans and machines,

providing a basis for computer analysis of large-scale genetic and molecular biology

research.

• Biomedical Terminology Databases and Systems: Terminology databases are

intended to facilitate access to medical literature as well as to support the development

of computer systems that understand biomedical language.
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To achieve these goals, the language is translated into a standardized form, i.e., the

terms used to express the same concept are unified and the relationships between

concepts are established to make navigation easier, even between resources coming

from different fields. Two are the resources most used by the scientific and academic

community: SNOMED and UMLS, which are described below.

– SNOMED CT: SNOMED Clinical Terms is a systematically organized collection

of terms, synonyms and definitions used in clinical documentation and medical

reporting. It is considered to be the most complete clinical care terminology

base in the world. The primary purpose of SNOMED CT is to encode the med-

ical concepts used in diagnosis and patient care. The comprehensive coverage of

SNOMED CT includes: clinical findings, symptoms, diagnoses, procedures, body

structures, organisms and other etiologies, substances, pharmaceuticals, devices

and samples.

– The Unified Medical Language System (UMLS) : is a compendium of many

controlled vocabularies in the biomedical sciences (created 1986) [16]. It provides

a mapping structure among these vocabularies and thus allows one to translate

among the various terminology systems; it may also be viewed as a comprehensive

thesaurus of biomedical concepts. The three main componentes os UMLS are:

∗ Metathesaurus: Comprises over 1 million biomedical concepts and 5 million

concept names from many vocabularies, including CPT, ICD-10-CM, LOINC,

MeSH, RxNorm, and SNOMED CT. Also includes Hierarchies, definitions,

and other relationships and attributes.

∗ Semantic Network: Broad categories (semantic types) and their relation-

ships (semantic relations).

∗ SPECIALIST Lexicon and Lexical Tools: A large syntactic lexicon of

biomedical and general English and tools for normalizing strings, generating

lexical variants, and creating indexes.

The focus of this research work will be biomedical passage retrieval, as a use case of

closed domain.

2.5 Passage Retrieval Evaluation Campaigns and Datasets

There are several passages retrieval benchmark datasets for the open domain and closed do-

main task evaluation of factoid question answering. Some of the most relevant are presented

as follows.
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2.5.1 TREC QA

TREC QA was a seminal campaign, and its main purpose is to perform domain-independent

answer retrieval evaluation over large and unstructured corpora [130]. Wang et al. [132]

developed a benchmark collection using the Text REtrieval Conference (TREC) 8-13 QA

data. They used the questions in TREC 8-12 for training and set aside TREC 13 questions

for development (84 questions) and testing (100 questions), the complete statistics for the

related dataset are in Table 2-2.

Split #Questions #Pairs

TRAIN ALL 1,229 53,417

TRAIN 94 4,718

DEV 82 1,148

TEST 95 1,517

Table 2-2: TrecQA dataset statistics

TREC QA data set has become one of the most widely used benchmarks for open-domain

passage retrieval. Some examples of the questions and passages contained in the dataset are

presented in the related Table 2-3

Question: How many members were in the crew of the Challenger?

Answer 1: More than 200 safety modifications followed the loss of Challenger, most

notably the redesign of the solid-fuel booster that triggered the disaster.

Answer 2: These changes, among thousands of major and minor design modifications

that were made since the shuttles started flying, included redesigned solid-fuel booster

rockets, more spacecraft sensors, and a parachute escape system for the crew.

Answer 3 (correct): On Jan 28, 1986, the space shuttle Challenger exploded 73 seconds

after liftoff from Cape Canaveral, killing all seven crew members.

Table 2-3: Sample Questions and Answer Passages in TrecQA Dataset

2.5.2 Wiki QA

This dataset was released in 2015 by Microsoft Research Group [141], which contains Question-

Answer pairs for an open domain. The Microsoft research group collected Bing Search Engine

query logs and extracts the questions the user submit from May of 2010 to July of 2011, and

the answers are sentences of Wikipedia summary page. WikiQA dataset is larger than the

previous TREC QA filtered dataset, see Table 2-4.

Examples for the dataset are in Table 2-5.
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Split #Questions #Pairs

TRAIN 2,118 20,358

DEV 296 2,716

TEST 633 6,156

Table 2-4: WikiQA dataset statistics

Question: How many players on a side for a football game ?

Answer 1: American football , known in the United States as football , is a team sport

Answer 2 (correct): It is played by two teams, eleven players to a side, who advance

an oval ball over a rectangular field that is 120 yards long by 53.3 yards wide and has

goalposts at both ends.

Answer 3: The team in possession of the ball ( the offense ) attempts to advance down

the field by running with the ball, or passing it.

Table 2-5: Sample Questions and Answer Passages in WikiQA Dataset

2.5.3 BioASQ

BioASQ challenge is focused on indexing and question answering tasks over biomedical arti-

cles [122]. BioASQ information retrieval challenge is composed of two phases, Phase A and

B.

• Phase A: Given a question the system must return relevant documents (from PubMed

articles baseline [79]), relevant snippets (extracted from articles).

• Phase B: Given a question and a set of relevant articles and snippets. The system must

provide an exact answer (e.g., named entities) and ideal answers (summaries) [122].

The available dataset consists of biomedical articles published in MEDLINE. For each article

in the dataset, title, abstract, and MESH terms are provided. The total number of articles

is close to 30 million.

Throughout this research, the BioASQ dataset will be used to test the approaches imple-

mented on biomedical passage retrieval. Because the data set consists of both questions

and positive answers only, we have gathered the negative passages which are in the same

document where the positive passages are. The obtained dataset was very unbalanced, only

18% of the total number of pairs is positive, the statistics for BioASQ dataset are presented

in Table 2-6, a sample of the dataset is in Table 2-7.
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Split #Questions #Pairs

TRAIN 2747 27,600

DEV 500 6,345

TEST 500 6,156

Table 2-6: BioASQ dataset statistics

Question: Which viruses are best known to cause myocarditis?

Answer 1: Myocarditis can occasionally lead to sudden death and in up to 10% of patients

may progress to dilated cardiomyopathy.

Answer 2: Because the initial onset is difficult to recognize clinically, and the diagnostic

tools available are unsatisfactory, new strategies to diagnose myocarditis are needed.

Answer 3 (correct): Enteroviruses (EV) are an important cause of neonatal disease,

including hepatitis, meningoencephalitis, and myocarditis that can lead to death or severe

long-term sequelae.

Table 2-7: Sample Questions and Answer Passages in BioASQ Dataset

2.5.4 SQuAD

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset. It

consists of questions and answers posed by human curators on a set of Wikipedia segments

of text that answers the questions. The dataset consists of 100,000+ question-answer pairs

on 500+ articles, up to now is the biggest dataset [95], complete statistics and a sample data

in Table 2-8 and 2-9 respectively.

Split #Questions #Pairs

TRAIN 78,713 27,600

DEV 8,886 6,345

TEST 10,570 6,156

Table 2-8: SQuAD dataset statistics
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Question: What is Nigeria’s official language?

Answer 1: Nigeria has one of the largest populations of youth in the world.

Answer 2: The country is viewed as a multinational state, as it is inhabited by over 500

ethnic groups, of which the three largest are the Hausa, Igbo, and Yoruba.

Answer 3: It is played by two teams , eleven players to a side , who advance an oval ball

over a rectangular field that is 120 yards long by 53.3 yards wide and has goalposts at

both ends.

Answer 4: These ethnic groups speak over 500 different languages and are identified with

a wide variety of cultures.

Answer 5 (correct): The official language is English.

Table 2-9: Sample Questions and Answer Passages in SQuAD Dataset

2.6 Performance Metrics for Document and Passage

Retrieval

This section describes the evaluation metrics used in the passage retrieval task, these are

the same ones used in information retrieval. Models are then evaluated on their ability to

correctly retrieve and rank answers for a given questions.

For a given set of relevant documents ’gold standard’ and a set of documents retrieved by

the system, precision and recall are defined as Equation 2-1 and 2-2 shows respectively.

Precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}| (2-1)

Recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}| (2-2)

The measure F1 is mainly a weighted harmonic mean of recall and precision, as follows in

Equation 2-3.

F1 = 2
precision · recall
precision+ recall

(2-3)

The aforementioned measures do not take into account the order of the recovered passages,

but this property is very important in the task to be solved. Given that it is required to

return the list of ordered passages the metrics presented below model the effectiveness of the

model by evaluating the returned passages ranking versus the gold standard ranking, the

Equation 2-4 describe the metric.
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Average Precision(AP ) =

∑n
k=1(P (k)×R(k))

RD
(2-4)

Where n is the total number of returned passages and RD denotes the number of relevant

passsages in the gold standard. P (k) is the precision of system when retrieved list considers

only first k relevant items and R(k) is an indicator function which is equal to 1 if the k− th
item belongs to the gold standard item set otherwise its equal to 0.

Once the AveragePrecision(AP ) is calculated over a set of queries, it is possible to calculate

the Mean Average Precision (MAP ), which is defined as follows the Equation 2-5:

Mean Average Precision (MAP ) =
1

|Q|
∑

AP (qi) (2-5)

Where AP (qi) denotes the average precision for a given query qi. The precision of the

geometric mean is equivalent to that of the MAP ; with the only difference being that the

MAP uses the arithmetic mean and the GMAP uses the geometric mean.

The equation for calculating GMAP is as follows in Equation 2-6:

GMAP = n

√√√√i=1∏
n

(APi + ε) (2-6)

The mean reciprocal rank is a statistic measure that evaluates the ranking order over a

golden raking for a given set of queries, the order is commonly a probability of correctness.

The reciprocal rank of a query response is the multiplicative inverse of the rank of the first

correct answer, as is described in Equation 2-7

Mean Reciprocal Rank (MRR) =
1

n

|Q|∑
i=1

1

ranki
(2-7)

Where n is the total number of queries and ranki is the position of gold standard element

in the retrieved list.



3 Pseudo-Relevance Feedback for Open

Domain Passage Retrieval

The matching of questions and passages relies largely on the efficiency of the representation

chosen. Thus, the representation used should be able to capture intricate semantic associ-

ations between sequences (of questions and passages). This task is related to representa-

tional learning, which can be defined as the learning of an informative representation that

is adapted to the goal task through the extraction of higher-level features. In this chapter,

we present a representation based on the interactions between the terms of the question and

passage sequences. This approach is different from the more traditional ones [67, 138], where

the question and passage sequences are separately represented to further identify in a later

step the patterns that are relevant whenever a passage becomes a valid answer employing a

discriminatory model.

The method combines a term by term cosine similarity matrix with a convolutional neural

network. The method was evaluated in an open-domain question-answering task. The work

presented in this chapter was published in the following papers.

• Rosso-Mateus, A., González, F. A., & Montes-y-Gómez, M. (2017, September). A

Shallow Convolutional Neural Network Architecture for Open Domain Question An-

swering. In Colombian Conference on Computing (pp. 485-494). Springer, Cham.

• Rosso-Mateus, A., González, F. A., & Montes-y-Gómez, M. (2017, November). A

Two-Step Neural Network Approach to Passage Retrieval for Open Domain Ques-

tion Answering. In Iberoamerican Congress on Pattern Recognition (pp. 566-574).

Springer, Cham.

The chapter is organized as follows. Section 1 introduce the proposed method, Section 2 de-

scribes the method and the proposed architecture. Section 3 depicts the experimental setup

in detail. Section 4 discusses the results achieved by the method in the two datasets selected

for evaluation, and finally, Section 5 presents the conclusions and future work directions.

3.1 Introduction

Most of the state-of-the-art approaches exhibit good performance in ranking the first candi-

date passage. That is, the first-ranked candidate passage frequently contains a valid answer
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to the posed question. Based on this observation, this model proposes a two-stage rank-

ing approach. In the first stage, the passages are ranked according to their similarity with

the question. This initial ranking is generated by a convolutional neural network, which is

applied to a matrix encoding question−passage term similarities, and returns a score that

indicates the degree of similarity between the question and the candidate passage. In the

second stage, passages are re-ranked based on their similarity with the first passage in the

initial ranking. To generate this new ranking, a convolutional neural network is also applied,

but at this time the matrix is made by first passage−other passage term to term similari-

ties. This strategy is analogous to the pseudo-relevance feedback method used in information

retrieval, where the highest-ranked results are used to expand the question-based query.

3.2 Model Description

The method proposed in this chapter is presented in Figure 3-1, each of the steps will be

detailed in the next section. The whole process consists of two stages: the training phase

where the similarity model is obtained, and the testing phase, where the calculated model is

used to rank the question-passage pairs. During training: (1) question-passage pairs (pairs)

are pre-processed, (2) the similarity matrix between pairs terms is calculated, (3) a convolu-

tional neural network model is trained to predict the relevance of the answer to the question.

Once the model is built it can be used to predict the rank order of candidate passages. At

testing time, for a particular question, the model is applied to predict the relevance score

of the set of candidate passages: (4) passages are ranked according to their scores, (5) pas-

sages are re-ranked according to their similarity with the highest-ranked passage at step (4),

producing a new ranking of the passages.

Figure 3-1: Process of ranking and re-ranking qa pairs
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3.2.1 Step 1. Pre-process Data

Questions and candidate passages are processed using: tokenization to delimit terms; low-

ercasing to standardize the terms; pos-tagging, using the nltk pos-tagger [14], to extract

syntactical information that will be used in salience weighting; and transforming terms to a

word2vec vector representation [66], to make possible their semantic similarity comparison.

3.2.2 Step 2. Calculate Similarity Matrix

The similarity matrix M represents the semantic relatedness of the i-th question term and

the j-th passage term according to a similarity measure. Each element Mi,j of this matrix

is a composition of a similarity score and a salience score as described by the Eq. 3-1.

Mi,j = scos(qi, aj) ∗ sal(qi, aj) (3-1)

Similarity Score.

The similarity score for a question-passage pair terms (qi, aj) is calculated by means of the

cosine distance between their word2vec vectors as indicated by Formula 3-2.

scos(qi, aj) = 0.5 +
qi · aj

2 ‖qi‖2 ‖aj‖2
(3-2)

In the case that it does not exist the word2vec representation for one of the terms, their

similarity is measured based on their distance in Wordnet [134]. In particular, we use

a similarity measure for the edge distance between the first common concept related to

qi and aj. If there is not a common concept between the terms, then we calculate the

Levenshtein distance between the words [52], defined as the number of operations (insertions

and eliminations of characters) needed to transform qi to aj.

Salience Weighting.

As not all terms are equally informative for measuring text similarities [56, 30], we consider

weighting the terms from the question and the answer based on part of speech functions:

verbs, nouns, and adjectives are considered to be the most relevant. We model this informa-

tion through a salience score.

The salience score is calculated as follows. If both terms are relevant then their score is 1.

If only one of the terms is important then the score is 0.6, in case none of them is relevant

the score is 0.3. The salience function is defined in the Formula 3-3.
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sal(qi, aj) =


1 if imp(qi) + imp(aj) = 2

0.6 if imp(qi) + imp(aj) = 1

0.3 if imp(qi) + imp(aj) = 0

(3-3)

Where imp(qi) and imp(aj) are the evaluation of importance weighting function for every

question and passage term. The related function returns 1 if the term is a verb, noun, or

adjective, otherwise, a 0 is returned.

Finally, we sort the calculated matrix M leaving the most related terms in the top-left cell,

and if the number of rows or columns exceeds 40, the remaining data is truncated. This step

provides an invariable representation of the similarity patterns that can be exploited by the

convolutional network.

3.2.3 Step 3. Convolutional Model

Convolutional neural networks (CNN) are a popular method for image analysis, due to their

ability to capture spatial invariant patterns. In the proposed method, they play a similar

role, but instead of receiving an input image, the CNN receives the similarity matrix M . The

hypothesis is that it will be able to identify term-similarity patterns that help to determine

the relevance of a question-answer pair. Patterns identified by CNN are sub-sampled by a

pooling layer. The output of the pooling layer feeds a fully-connected layer. Finally, the

output of the model is generated by a sigmoid unit. This output corresponds to a score,

simScore(q, a), that can be interpreted as a degree of relatedness between the question q

and the answer a.

The architecture of the convolutional model is presented in Figure 3-2.

Figure 3-2: Convolutional neural network model architecture.

3.2.4 Step 4 and 5. Two Ranking Stages

During the testing phase, a new query, along with candidate passages, are submitted to the

method. The candidate passages (a1, a2, ..., ak) are ranked using the CNN model producing
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their first rank. Based on the premise that the first candidate passage, a∗, is expected to

be highly correlated with the question q, a second score, simScore(a∗, ak), is calculated

by comparing each candidate passage with the highest-ranked passage. A new ranking is

calculated by using a new score corresponding to a linear combination of the first and second

scores as is shown in Eq. 3-4.

finalScore(q, ak) = (1− α) ∗ simScore(q, ak) + α ∗ simScore(a∗, ak) (3-4)

This strategy promotes candidate passage which share similar terms with the highest-ranked

answer. This is a strategy analogous to pseudo-relevance feedback in information retrieval

[97], where the original question-based query is extended with terms from the highest-ranked

documents.

3.3 Experimental Setup

3.3.1 Test Datasets

The proposed method was compared to baseline and state-of-the-art methods using two

information retrieval performance measures Mean Reciprocal Rank (MRR) and Mean Av-

erage Precision (MAP), the performance metrics were described in Chapter2. To evaluate

the method, TrecQA and WikiQA datasets were used, the description of the.

• TrecQA: The dataset has two partitions. In TRAIN partition the correctness of

answer was carried out manually while in TRAIN-ALL the correctness of candidate

answer sentences was identified by regular expressions against the answer, this can

induce noise in the data, the statics of the related dataset are presented in Table 3-1.

Table 3-1: TrecQA dataset

Split #Questions #Pairs

TRAIN ALL 1,229 53,417

TRAIN 94 4,718

DEV 82 1,148

TEST 95 1,517

• Wiki QA: The Microsoft research group collected Bing Search Engine query logs and

extract the questions that the user submitted from May of 2010 to July of 2011, the

answers are the sentences of Wikipedia summary page and were manually labeled by

experts, Table 3-2 presents the statistics.
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Table 3-2: WikiQA dataset

Split #Questions #Pairs

TRAIN 2,118 20,358

DEV 296 2,716

TEST 633 6,156

3.3.2 Baseline Models

Three baseline models were implemented to evaluate the performance of the proposed method.

1) Word Count, which is a word matching method that counts the number of non-stop words

that occur both in the question and in the answer sentences. 2) Weighted Word Count, a

modified approach that weighs the word counts using semantical information [141]. 3) Deep-

Mind model [146], a semantic parsing method based on similarity metric learning and latent

representations.

The list of comparative methods are the following: Word Count, Weighted Word Count,

DeepMind model [146], Paragraph Vector (PV) [49], Attention-Based Model (aNMM) [138],

Convolutional Neural Network Method (CNN) [109], Pairwise Word Interaction Model (Pair-

wise CNN) [39], and the proposed model without rerank (this work) and with rerank (This

Work Rerank).

3.4 Results

Table 3-3 summarizes the results of all the evaluated methods applied to both TrecQA and

WikiQA datasets. In the case of TrecQA two configurations were evaluated: the TRAIN

partition and the TRAIN ALL partition, which were described in Subsection 2.5.

In the TrecQA dataset, the proposed method presents the best performance of all the eval-

uated methods. This is consistent in both configurations. Also, we can observe that the use

of re-ranking improves the method performance in terms of MAP. The main reason is that,

in most cases, the first ranked passage is relevant; this can be evidenced by the high value

of the MRR measure.

In the WikiQA dataset, the best result is obtained by the Pairwise CNN method [39],

however, the proposed method has a competitive performance that outperforms the other

evaluated methods. This can be evidenced by the overall performance of all the methods,

this dataset seems to be more challenging. One difficulty with this dataset is that it contains

several questions without a valid answer in the dataset. The re-ranking strategy produces

an important improvement for the TrecQA dataset, while with the WikiQA dataset it did

not improve the performance. It can be concluded that a lower MRR in this dataset means

that the top ranked answer is less likely to be relevant and thus it has less probability of

improving the ranking of relevant answers. As we are introducing a weighting term α to
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Table 3-3: Overview of results QA answer selection task datasets. We also include the

results of the baseline models. ( ’-’ is Not Reported)

TREC TRAIN ALL TREC TRAIN WikiQA

Method MAP MRR MAP MRR MAP MRR

Baselines

Word Count 0.6402 0.7021 0.6402 0.7021 0.4891 0.4924

Weighted Word Count 0.6512 0.7223 0.6512 0.7223 0.5099 0.5132

DeepMind model 0.6531 0.6885 0.6689 0.7091 0.5908 0.5951

aNMM [138] 0.7385 0.7995 0.7334 0.8020 - -

CNN [109] 0.7459 0.8078 0.7329 0.7962 - -

Pairwise CNN [39] 0.7588 0.8219 - - 0.70900.7090 0.72340.7234

PV [49] - - - - 0.5110 0.5160

This Work 0.7644 0.84140.8414 0.7605 0.8344 0.6368 0.6614

This Work (Rerank) 0.77370.7737 0.8403 0.77500.7750 0.83500.8350 0.6351 0.6583

scale the second score, we calculated this term based on the exploration with the validation

partition, which gives 0.32 as the optimal value.

In general, we can say that the proposed method exhibits a very competitive performance

when compared to state-of-the-art methods. However, its main strength is the fact that it is

simpler than the other methods. This can be objectively measured by counting the number

of parameters that the learning algorithm has to adjust during training. Table 3-4 shows the

number of parameters for some of the evaluated methods. The proposed method has fewer

parameters than the other methods, in orders of magnitude. This has a positive impact on

the number of computational resources that are required during training and testing.

Table 3-4: Number of Parameters

Split # Of Parameters

aNMM [138] 14,000

CNN [109] 100,000

Pairwise CNN (2016)[39] 1.7 million

This Work 3,1983,198

3.5 Conclusion

This chapter presents an novel method for open domain passage retrieval based on convolu-

tional neural networks and a pseudo-relevance-feedback-inspired re-ranking strategy.

The experimental results show that the proposed method is competitive when compared
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with state-of-the-art methods by the its publishing time, despite being a simple model with

a reduced set of parameters. The second ranking improves the first one in about 2% in

the MAP metric. This observation validated our hypothesis that the first ranked passage

contains information that can help to re-rank the subsequent answers.



4 Multimodal Fusion Strategy for

Biomedical Passage Retrieval

The use of different modalities to represent question-passage interactions can bring several

advantages.

• It increases coverage when the representation is missing or noisy in some of the modal-

ities.

• It offers a natural way to model the importance of a pair of terms when similarities

are strong in several modalities.

• It provides a complementary view of how the terms in the passage and the response

interact.

In the biomedical domain, there are several semantic information sources that can be used

as additional modalities to the textual similarity representation. In this chapter, we present

a method to efficiently combine information coming from textual and semantic sources.

The approach was tested in the biomedical domain using the largest available dataset for

biomedical passage retrieval (BioASQ). Also, we show the results of our participation in the

BioASQ 6 (2018) and BioASQ 7 (2019) challenge edition.

The methods described in this chapter were published in the following papers:

• Rosso-Mateus, A., González, F. A., & Montes-y-Gómez, M. (2018). MindLab Neural

Network Approach at BioASQ 6B. In Proceedings of the 6th BioASQ Workshop A

challenge on large-scale biomedical semantic indexing and question answering (pp. 40-

46). http:www.aclweb.organthologyW18-5305

• Pineda-Vargas, M., Rosso-Mateus, A., González, F. A., & Montes-y-Gómez, M. (2019,

September). A Mixed Information Source Approach for Biomedical Question Answer-

ing: MindLab at BioASQ 7B. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases (pp. 595-606). Springer, Cham.

The remaining sections of this chapter are organized as follows: Section 1 method introduc-

tion, Section 2 describes the model architecture and the strategies used for document and

passage retrieval, Section 3 discusses the results as well as the conclusions, finally a summary

of our participation in the related challenge is presented.
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4.1 Introduction

The use of semantic information can alleviate some of the issues with the textual information.

In this chapter we present a method for biomedical passage retrieval that effectively combines

textual and semantic sources.

Our passage retrieval model is based on the hypothesis that the questions and the relevant

passages share semantic properties in each of the modalities involved (textual and semantic),

which means that by combining them we can achieve a more effective outcome. In order to

obtain the semantic information representation, we have identified the biomedical concepts

listed in the Unified Medical Language System (UMLS) thesaurus [9] and then a vector

representation for biomedical concepts is used to encode them. Finally two fusion methods

are proposed: Mixed Data Representation Intermediate Method (MIF) and Mixed Data

Representation Late Fusion (MLF) that exploit the convolutional network architecture that

was previously used.

As was mentioned earlier in BioASQ challenge is mandatory to retrieve also the relevant

documents, for this reason a document retrieval method is proposed with a re-ranking strat-

egy. The first stage involves retrieving N most relevant documents using BM25, while the

second stage consists of re-rank the N document using two methods: word mover’s distance

and document centroid.

4.2 Methods

4.2.1 Model Architecture

The model for the task is composed of two main modules as shown in Figure 4-1. A

document retrieval module searches the PubMed Baseline Repository (MBR) [79] for relevant

documents, and a fine-grained information retrieval model to identify the 10 most relevant

snippets.

We used Elastic Search (ES) engine [35] for document indexing and BM25 as relevance

ranking function [1]. With ES we retrieve the top n relevant documents given a question.

Subsequent to this, we re-rank the top n relevant documents using Word Mover’s Distance

(WMD) and Document Centroid Rerank, obtains the 10 most relevant documents.

Most related documents are analyzed in depth. We split the documents into sentences and

those sentences feed the snippet retrieval stage. We process the snippets with a Convolutional

Neural Network (CNN) to obtain a semantic similarity relevance score.

Finally, the scored snippets are sorted in descending order and the 10 with the highest scores

are selected. The documents are re-ranked based on a standardized linear combination

between Elastic Search score and the average of their snippets scores. The 10 most related

documents and snippets were submitted to BioASQ server.
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Figure 4-1: BioASQ Model Diagram

A detailed description of the model will be presented in the following sections.

4.2.2 Document Retrieval

One of the first tasks in question answering is retrieving the documents that could contain

the answer to a user’s question. This task affects the question answering task because if

a retrieval system finds irrelevant documents for a question, the later stages as snippets

retrieval, will inevitably fail.

We used Elastic Search (ES) [35] to index approximately 27 millions medical articles, us-

ing information like the title, abstract and keywords, applying standard text preprocessing

operations such as tokenization, remove stopwords and stemming.
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Step 1. Get the top n relevant documents

Okapi-BM25 is used as relevant ranking function that involves different factors including:

inverse document frequencies, term frequencies, and the length of the document and the

query. With this strategy, we return the n most relevant documents (we used 10 and 30

as n in experimentation). These documents are analyzed using two embeddings similarity

strategies that compare the question with the title and the abstract of the document.

We use multi-match query with type cross-fields 1 for the search, that first analyzes the

query and produce a set of terms, then it searches for each term in the fields that have been

specified, for this case, ”abstract”, ”title” and ”mesh-term” as shown in Figure 4-2.

Figure 4-2: Multi-match, cross-fields ES search

Step 2. Re-rank with embedding similarity

After obtaining the n most relevant documents, we re-rank using two embedding similarity

methods. As was mentioned before first ranking is based on BM-25 which only takes into

account exact term matching, to improve the results we propose a Word Mover’s Distance

and Document Centroid re-ranking strategy.

Word Mover’s Distance: The first was Word Mover’s Distance (WMD) (CITAR), a

special case of the Earth Mover’s Distance (CITAR). Is a metric for the distance between

two documents, calculating the similarity in the Word2Vec embedding space. The query and

each document are represented as a weighted point cloud of embedded words as follows in

in Figure 4-3. The distance between them is the minimum cumulative distance that words

from query need to travel to match exactly the point cloud of document.

1cross-fields Elastic Search https://www.elastic.co/guide/en/elasticsearch/reference/7.1/

query-dsl-multi-match-query.html#type-cross-fields.
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Figure 4-3: Word Mover’s Distance between two documents.

Let q be the query user , d ∈ D where D is a set of n relevant documents, and |q|, |d|
the number of distinct tokens in q and d respectively. Let TTT be a flow matrix where TTTww′

denotes how much the word w in q travels to word w′ in d and C is the transportation cost

with Cw,w′ := dist(vvvqw , vvvd′w) normally provided by their Euclidean distance in the word2vec

embedding space. Finally, we can define the WMD between the two documents as the

minimum cumulative cost required to move all words from d to q.

min
TTT≥0

n∑
w,w′

TTTww′C(w,w′) (4-1)

Finally this module returns the 10 documents with less Word Mover’s distance.

Doc Centroid Rerank: The second approach method is based in word2vec, computing

for a given query q and each document d in the top n relevant documents, the mean of

its words vectors. Then we compute the cosine similarity between the mean of the word’s

vectors of query and the mean of the word’s vectors of documents. Then, we reorder the

documents by similarity and returns the top 10.

4.2.3 Passage Retrieval

Our passage retrieval model is based on two main hypothesis: first, that question and an-

swer passages are semantically correlated term by term and concept by concept; second, that

structured and unstructured information are complementary modalities that can jointly rep-

resent, in a better way, the semantic content of questions and passages.

The proposed method has two stages as Figure 4-4 shows. The first one (training phase)

has the objective to learn the similarity patterns for question-answer pairs. In the second

stage (testing), the trained similarity model is used to obtain the ranking scores of a set of

candidate answers (snippets) for a particular question. The method uses two representations

schemes, textual and structured, for both answers and questions. Both representations are

learned from data using a convolutional neural network architecture. The representations

are combined using an intermediate fusion strategy.
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Figure 4-4: Passage Retrieval Process

The details of the process are presented next. For a given question and candidate answer pair

(qi, aj), its textual representation is denoted by (qti, atj), and for structured representation

by (qsi, asj).

• Step 1 - Extract Representation: The question and answer pairs are needed to be

transformed to feed the neural network, the process is different for each modality.

– Textual Representation: First the text is cleaned and tokenized, the gram-

matical tagging is carried out with NLTK POS-tagger to extract syntactical in-

formation that will be used in salience weighting; each term is transformed later

in a vector embedding using a pre-trained word2vec model provided by NLPLab,
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which is trained on Wikipedia and PubMed documents 2.

– Semantic Representation: To identify medical concepts we have to use Quick-

UMLS [114] which is an unsupervised biomedical concept extraction. The identi-

fied concepts are then transformed into a continuous vector representation using

a cui2vec embedding. This embedding maps medical concepts instead of words.

Concepts are referred by their concept unique identifier (CUI) from the Unified

Medical Language System (UMLS) thesaurus [9]. In contrast with the textual

representation, there are less words in the text fragments that can be embedded

in the structured representation as it is shown in Figure 4-5. This has to do with

the reduced size of the cui2vec vocabulary. To overcome this restriction (4 con-

cepts in average per question) we applied expansion to question Cui embeddings.

The followed approach was the centroid method proposed by Kuzi et al. [48].

Figure 4-5: Question Terms and Cuis distribution

• Step 2 - Calculate Similarity Matrix: Each i, j-entry of the similarity matrices

Mt and Ms, represents the semantic relatedness of the i-th question term (or concept)

and the j-th answer term (or concept) according to the embedding (nlplab or cui2vec).

– Textual Similarity Matrix Mt: In the case of textual representation the cosine

similarity between terms is weighted based on the grammatical function of the

term pair, this grammatical weighting is called a salience score sal(qti, atj). The

similarity between element i-th and j-th is calculated as Eq. 4-2 shows.

Mi,j = scos(qti, atj) ∗ sal(qti, atj) (4-2)

scos(qti, atj) = 0.5 +
qti · atj

2 ‖qti‖2 ‖atj‖2
(4-3)

2BioNLP word vector representation, trained with biomedical and general-domain texts

http://bio.nlplab.org
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sal(qti, atj) =


1 if imp(qti) + imp(atj) = 2

0.6 if imp(qti) + imp(atj) = 1

0.3 if imp(qti) + imp(atj) = 0

(4-4)

Where imp(qti) and imp(atj) are the importance weighting for every question

and answer term. The related function returns 1 if the term is a verb, noun or

adjective, otherwise, returns 0.

– Structured Similarity Matrix Ms: In the case of structured information we

calculate just the cosine similarity between cui2vec concept vectors.

Finally, both matrices (Mt, Ms) are sorted according to the similarity score to facilitate

the similarity pattern identification.

• Step 3. Convolutional Model: The architecture of the convolutional model is

shown in Figure 4-4 step 3. A convolutional layer is fed with both similarity matrices

Mt and Ms, CNN layer will identify element-similarity patterns to rank the relevance

of a question-answer pair using both knowledge representations. Patterns identified

by each CNN filter are sub-sampled by a pooling layer. The pooling layer for all the

filters is merged with two fully connected layers with 10% of dropout.

• Step 4. Multimodal fusion: The dense outputs of the modalities are merged in a

unique dense layer, which feeds another dense layer. Finally, the output score of the

model is generated by a sigmoid unit on top of the last dense layer.

• Step 5. Pair Ranking: Candidate answers (a1, a2, ..., ak) are ranked against the

query q using the trained similarity model. The model produces the final similarity

score taking into account information from both modalities.

4.3 Experimental Setup

4.3.1 Datasets

For training and testing of the proposed models, BioASQ challenge datasets have been used

as follows.

• Training dataset: We have used the BioASQ challenge dataset from versions 5 and

6 for training [123]. It consists of 2747 questions annotated manually with relevant

documents and passages by an expert panel. The relevant documents and passages for

each question are taken from the document baseline published by PubMed for 2018

[80]. By the year of BioASQ version 6, the total number of documents was 26,759,399.
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The documents are composed by the title and the abstract for the biomedical paper.

Since the dataset provides only positive passages in original, the negative passages

have to be collected by participating teams. We collected negative passages by using

these two approaches, first taking the passages which are in the relevant document

but does not answer the question and then taking the same number of passages that

were collected previously but this time they come from unrelated documents. The final

statistics for the training data set are in Table 4-1.

#Questions #Pairs #Positives #Negatives

2747 345,247 25,621 319,626

Table 4-1: BioASQ 5 & 6 training dataset with negative samples

• Test dataset: For testing, we used the test data set that was provided in the 2019

challenge Bioasq 7 version. The dataset is comprised of 5 batches, each containing

100 questions and variable candidate passages. The statistics for testing dataset are

presented in Table 4-2.

Batch # of questions Avg. relevant documents Avg. Relevant passages

Batch 1 100 9.4 5.5

Batch 2 100 12.4 7.5

Batch 3 100 17.3 11.28

Batch 4 100 13 8.6

Batch 5 100 8.9 4.9

Table 4-2: BioASQ 7 test dataset statistics

The experimentation process is divided in two phases, the first one focused on document

retrieval process and the second one for snippets retrieval.

Document Retrieval

We indexed the full data of 2018 PubMed baseline in ElasticSearch engine (ES) version 6.2.2

with the default configuration, this is our baseline. The number of processed files were 928

and the total number of medical articles was 26,759,399. For each article, we extracted the

title, MESH concepts and abstract to be indexed. The indexing time was around 18 hours in

an Intel Xeon processor Intel(R) at 2.60GHz with 82 GB RAM and GeForce GTX TITAN

X.

Other index that we used was Index v3 ; also generated in ElasticSearch engine but using

the parameters b and k1 for BM25.
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We proposed three experiments for document retrieval: Retrieve 10 most relevant documents

with BM25 index-v2 (our BioASQ 6 strategy), the second one is retrieve documents with

BM25 index-v3 and re-rank using Word Mover’s Distance. The last one is retrieve documents

with BM25 index-v3 and re-rank using Doc Centroid Rerank.

The experiments were implemented with the BioASQ 7 data and the results are presented

in Tables 4-3 and 4-4

Model Mean precision Recall F-Measure MAP GMAP

BM25 v2 10d 0.20784 0.47294 0.22974 0.13196 0.02574

BM25 v3 WMD 0.21204 0.481 0.23484 0.1138 0.0186

BM25 v3 centroid 0.20184 0.44906 0.22186 0.12038 0.01588

Table 4-3: Document Retrieval results for BioASQ 6 (summarized)

Batch System Mean precision Recall F-Measure MAP GMAP

6b1

BM25 v2 10d 0.212 0.5061 0.2449 0.1408 0.0284

BM25 v3 WMD 0.232 0.5322 0.2653 0.1336 0.0256

BM25 v3 centroid 0.181 0.3725 0.2004 0.1145 0.0041

6b2

BM25 v2 10d 0.2301 0.5286 0.2549 0.1569 0.0341

BM25 v3 WMD 0.2301 0.5328 0.2564 0.1218 0.0266

BM25 v3 centroid 0.2301 0.5328 0.2564 0.1334 0.0282

6b3

BM25 v2 10d 0.2551 0.5245 0.2603 0.1806 0.0576

BM25 v3 WMD 0.2571 0.5286 0.2622 0.1511 0.0326

BM25 v3 centroid 0.2571 0.5286 0.2622 0.1593 0.0369

6b4

BM25 v2 10d 0.183 0.4983 0.2127 0.0903 0.0049

BM25 v3 WMD 0.183 0.4983 0.2127 0.0903 0.0049

BM25 v3 centroid 0.183 0.4983 0.2127 0.1111 0.0061

6b5

BM25 v2 10d 0.159 0.3072 0.1759 0.0912 0.0037

BM25 v3 WMD 0.158 0.3131 0.1776 0.0722 0.0033

BM25 v3 centroid 0.158 0.3131 0.1776 0.0836 0.0041

Table 4-4: Document Retrieval results for BioASQ 6

Snippet Retrieval

For training it was observed that dataset was very unbalanced, only 8% of the total number

of pairs are labeled as a relevant answer. To balance the dataset, the sampling is carried out

using the same number of positives and negative examples, this strategy is also applied in

the validation phase.

The model training was done using RMSprop optimization algorithm with 32 samples in

mini-batch and the defined loss function is binary cross entropy. The number of maximum
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epochs was set to 50. In each epoch, we evaluate MAP and MRR, and after 5 epochs without

any improvement in MAP metric, we apply early stopping to avoid over-fitting.

Information Fusion Approaches

As we have used information that comes from textual representation and structured repre-

sentation the combination of those modalities is also a model parameter to explore. In that

way we have evaluated four different configurations to measure the performance involving

different information representation approaches:

• Approach 1: Only Textual Representation. Questions and candidate answers are rep-

resented using only the textual embedding.

• Approach 2: Only Structured Representation. Questions and candidate answers are

represented using only the concept embedding.

• Approach 3: Mixed Data Representation Intermediate Method –MIF. In this model

the fusion of textual and structured representations is carried out in an intermediate

dense layer after the textual and structured patterns are identified by the CNNs layers

4-4. The merged layer is then connected to the sigmoidal output unit with dropout as

regularization strategy.

• Approach 4: Mixed Data Representation Late Fusion –MLF. In this approach each

model (textual and structured) independently calculates a score for each question-

answer pair, score t for textual representation, and score s for structured represen-

tation. Lastly, a linear combination produces the final score f score, as shown in

Equation 4-5. The alpha value was found using cross validation with the validation

partition; it was set to 0.73.

f score(q, ak) = (1− α) ∗ scoret(q, at) + α ∗ scores(q, as) (4-5)

Model parameters

The model hyper-parameters were tuned using hyper-parameter exploration. The parameters

chosen are listed next.

• Convolution Parameters: The number of convolutional filters used are 64, width 3

and length 3, the stride used is 1 without padding.

• Convolution Activation Function: After a convolutional layer, it is useful to apply

a nonlinear layer [34]. We tested different activation functions and RELU gave us the

best performance.
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• Pooling Layers: For the pooling layer, we used max pooling.

• Dropout Layer: We add a dropout layer as a regularization strategy [116], setting

the parameter in 10%.

Finally, the number of parameters to learn in our model is not very high (5,192) compared

with other Convolution Neural approaches used in similar tasks (Question Answering) which

are in order of millions and hundreds of thousands [109, 39]

4.3.2 Model Tuning

In this section, we will describe the strategy used to improve the overall performance of our

system. The metrics were calculated over the training dataset released by BioASQ for the

6th version.

• Mesh concept indexing: Document retrieval is mainly based on Elastic Search key-word

matching evaluation with BM25 ranking function. We used a cross-fields query ap-

proach which looks for each term in the title, abstract and concepts indexed fields. Con-

sidering the retrieval of 10 most related documents, the performance using cross-fields

approach were (Recall = 0.24, MAP = 0.19) while not using this were (Recall=0.278,

MAP= 0.221).

• Word representation: The choice of a good word representation is important to generate

a semantically good model where relations between terms or sentences are more easy

to establish. We tested our system using different pre-trained word2vec models and the

best representation was the skip-gram model provided by NLPLab, which is trained

on Wikipedia and PubMed abstracts [71]. The MAP score in the snippet retrieval

sub-task improved from 0.126 to 0.142.

• Training dataset generation: The training corpus was generated with questions and

answer passages extracted from 2016, 2017 and 2018 BioASQ training datasets. We

tested different rates of negative samples (passages in related documents that does

contain the answer) in order to increase the negative sample coverage. This assumption

is based on the hypothesis that it is not easy to determine that a related snippet does

not contain the answer. With a higher negative sample generation, these cases are

more common, and the method can learn a better discriminant function. The rate

that experimentally achieved the best results considers using 10 negative samples per

1 positive sample. The MAP score in snippet retrieval sub-task, improved using 6b

training partition from 0.142 to 0.151.
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4.4 Results and Discussion

In this section, we present the results for the sixth version of BioASQ challenge in task B

phase A. The first sub-task is to retrieve the most related articles based on a question posed

in natural language. The second one is to retrieve the snippets that have more correlation

with the question in order to use them to compose an answer. The answer composition is

carried out in phase B, which was not the scope of our participation.

4.4.1 Document Retrieval

The results shown in the Table 4-5 reveal, that our ES document retrieval implementation

did not have a good performance, the recall obtained is low in all the batches. In the first

batch, we had a technical issue that corrupted the results, it also happened for snippet

retrieval. The best result was obtained in batch 3 (Recall = 0.49), the team leader in this

batch reached 0.56, an important difference. As it was mentioned before, document retrieval

is very important for snippet retrieval, it is the first information filter and it feeds the method

to rank their snippets. Despite the low recall in this step, we will see in the next section

that snippet retrieval scores are very promising.

Batch

Document Retrieval

Mean precision Recall

F-Measure MAP

1
- -

- -

2
0.1150 0.4685

0.1621 0.0709

3
0.1320 0.4984

0.1782 0.0891

4
0.1240 0.4467

0.1717 0.0846

5
0.0890 0.2961

0.1260 0.0540

Table 4-5: Document retrieval results

4.4.2 Snippet Retrieval

In this stage, we analyzed in depth the returned set of documents from the previous method,

and identify the text snippets that can answer the posed question.
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Based on the evidence shown in Table 4-6, the snippet retrieval approach obtained a good

performance. We could have had a better performance in snippet retrieval with a higher

score in document retrieval, but it was enough to reach the second position in all the batches

except the first one (due to the technical issue).

We can state that the proposed method exhibits a very competitive performance compared

with other methods.

Batch

Snippet Retrieval

Mean precision Recall

F-Measure MAP

1
- -

- -

2
0.1111 0.2426

0.1416 0.0938

3
0.1614 0.2657

0.1877 0.1344

4
0.1043 0.2180

0.1306 0.0980

5
0.0404 0.1134

0.0542 0.0475

Table 4-6: Snippet retrieval results

4.5 BioASQ 6 and 7 Participation Overview

In this section we are going to give a quick report of our participation in BioASQ 6 challenge

(2018) [76], and the edition 7 [74], in the 8 version we have not participate in all the batches.

4.5.1 BioASQ 6 Participation

For the related edition, passage retrieval task was tackled by 50 different systems, developed

by 15 teams. In this task the winner team was a collaboration between Google and Univer-

sity of Athens ”AUEB” [20]. They have used novel extensions of deep learning models for

retrieving question-relevant snippets, using a self-trained biomedical word embedding and a

DRMM model [36].

The proposed model that is described in detail in the following paper [102], achieved the

second position despite of the low performance in document retrieval step. In the figure 4-6

we can observe the averaged scores in all the five batches. The obtained results are very

competitive, regarding to official ranking metric (MAP), we are in the highest quartile.
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Figure 4-6: Snippet retrieval results in BioASQ 6 (2018), blue point is our model

4.5.2 BioASQ 7 Participation

In this edition of the shared task the number of systems were 73 different systems, developed

by 18 teams [74]. Most of the teams used Deep Learning approaches and the winner team

was the same of the previous edition, it used a different deep learning approach based on

BCNN model [143] which reach the highest MAP scores [89].

The method that was described in this chapter reached the first position in the first batch,

and the second in the remaining batches. As in version six, our proposed document retrieval

method was not as competitive as the winning team’s despite improvements made with

different re-ranking approaches described in this chapter. It also impacted the outcome in

passage retrieval in which we were beaten by a small margin by the opposing team. In the

figure 4-7 we can observe the averaged scores in all the five batches.

4.6 Conclusion

In this chapter we presented a passage retrieval method for biomedical domain that takes

advantage of multi-modal information coming from textual and semantic information sources

such as UMLS. The method takes information represented in each modality and fuses it

together using two different strategies (late and intermediate fusion), thus improving the

performance of the system compared to the single modality. The method is competitive

with state-of-the-art models for biomedical passage retrieval.

To test the effectiveness of the proposed model, we participated in the BioASQ 6 and 7

challenge, which evaluates the tasks of document and passage retrieval. The results obtained

in the 7th version for the passage retrieval were competitive, reaching the second place in

the batches (2, 3, 4, 5) and the first place in the batch 1. If we consider that the results in
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Figure 4-7: Snippet retrieval results in BioASQ 7 (2019), blue point is our model

the phase of document retrieval were not among the best, it is even more remarkable this

result in passage retrieval task.



5 Deep Fusion of Multiple

Term-Similarity Measures

The fusion method from the previous chapter combines the textual and semantic information

sources using a deep neural network architecture. Since each modality is incorporated sep-

arately in the deep neural network architecture, any relationships which can potentially be

present between modalities are not fully exploited. The approach presented in this chapter is

essentially different, although textual and semantic sources are still involved, their represen-

tations are combined into a single representation to be jointly exploited so that the modalities

complement each other. In addition, considering that the word representation does not pro-

vide full coverage for the possible sequence terms, we enhance the representation by adding

a term-to-term co-occurrence-based similarity. The experimental evaluation results obtained

are, by a wide margin, better than those obtained with the previous methods.

The methods presented in this chapter were published in the following paper:

• Rosso-Mateus, A., Montes-y-Gómez, M., Rosso, P., & González, F. A. (2020). Deep

fusion of multiple term-similarity measures for biomedical passage retrieval. Journal

of Intelligent & Fuzzy Systems, 39-2, 2239-2248.

The remainder of the chapter is organized as follows: Section 1 presents the introduction and

motivation for the proposed passage retrieval model; Section 2 shows the model architecture

and implementation details; Section 3 presents a systematic evaluation of the method; finally,

Section 4 exposes some conclusions and discusses our future work.

5.1 Introduction

Almost all passage retrieval methods calculate some sort of similarity between the query

and the passage. Some similarities are based on term-term similarities and others involve

more semantic information. Semantic similarity measures are mainly based on large corpora

where important relational patterns are extracted. Some of the approaches, as for example

probabilistic hyperspace analog to language (HAL) [6], propose a semantic window of length

K which is moved across the corpus of text.Terms contained in the window co-occur with a

strength inversely proportional to term by term distance. They reported that when window

size increases (K greater than 5), there was a diminishing on performance in information

retrieval task.
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Other approaches take into consideration the semantic and ontological relationships that

exist between words. Thus, based on this knowledge, semantic similarity can be calculated

following the minimal path between two nodes [117]. Ramage et al. have proposed a random

walk algorithm [96] that compares the random walk graph generated between two terms

to measure the semantic relatedness. They used WordNet and corpus statistics. These

approaches are efficient when the coverage of the ontology is wide; in the biomedical domain,

it is hard to have a 100% coverage.

Apart from ontological text representations, recently, authors have been working with word

embeddings. These models represent each word as an n-dimensional vector, with the property

that semantically related vectors are close to each other. Cosine similarity is one of the

similarity measures that can be applied when text is represented as vectors. Other measures

include Euclidean distance, soft-cosine similarity, and so on. Based on that, it can be said

that the similarity measure election will guarantee the success of the model.

In Mikolov’s model [67], the semantic relation strength between a pair of terms is given by

the occurrence in context windows. This parameter choice will punish distant terms that can

give important information, e.g., the following snippet of a biomedical article has two highly

related entities ”calcitonin” and ”migraine” with 20 terms separation between them:

Calcitonin gene-related peptide, the most abundant neuropeptide in primary afferent sen-

sory neurons, is strongly implicated in the pathophysiology of migraine headache, but its

role in migraine is still equivocal.

The consequence will be a low spatial correlation in the semantic vector space. However, in

some domains (such as biomedical), it is important to capture also more ’topical’ relation-

ships [55].

In this work, we propose a passage retrieval method that takes advantage of different

resources to build similarity measures. The obtained representation fits a deep learning

model to extract similarity patterns in order to improve the performance on the passage re-

trieval task. The proposed approach combines three different similarity representations: 1)

word2vec embedding cosine similarity, 2) term co-occurrence and 3) concepts co-occurrence.

These similarities, extracted from large corpora, contribute with local and topical related-

ness. The way to exploit these similarity patterns is based on a convolutional neural network.

5.2 Method

5.2.1 Overall architecture

The overall architecture is depicted in Figure 5-1. Figure swim lines indicate different stages

which are explained in the following sections.
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Figure 5-1: Passage retrieval overall architecture

Corpus Preprocessing

The first part of the process is to calculate the co-occurrence between pairs of terms and

pairs of biomedical concepts. In this stage, we take a random sample of 30.000 biomedical

documents from PubMed Baseline Repository (MBR) document set [80]. The objective is

to build the vocabulary and to calculate the co-occurrences for both terms and concepts.

For the later, we need to identify the biomedical concepts. For this task, we have used the

terminology data source UMLS Meta-thesaurus1 which contains information about over 1

million biomedical concepts and 5 million concept names. As the process to match every

term to a concept is computationally expensive, we take advantage of the QuickUMLS tool

provided by Soldani et al. that has a good performance identifying concepts in large texts

[114].

Experimentally, we have determined that the coverage of UMLS is not 100%. To over-

come this limitation, a second check is performed with the Scispacy tool [78]. This Spacy

model provides biomedical named entity recognition which increases the biomedical concept

identification coverage. Once the vocabularies of terms and concepts were built, we filter

out frequent terms and concepts which provide less information. Also, very rare terms and

concepts are not taken into account. Figure 5-2 shows the count frequency of term and

concepts.

Now we have to indicate if a word appears in a given document and if keep it in a binary

vector. The resulting matrix will have a dimension NtimesM , where N is the number of

documents and M is the vocabulary size, with value 1 when the vocabulary word appears

in the given n-th document.

1UMLS Meta-thesaurus http:umlsks.nlm.nih.gov
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Figure 5-2: Term and concept count frequency

With the document-word appearance matrix X calculated, we have to calculate the word

by word normalized co-occurrence matrix to achieve that we apply the Equation 5-1.

Tc norm = (XXT )(1/diag(XXT ) (5-1)

The produced information in this step is:

• Term vocabulary

• Term co-ocurrence matrix

• Concept vocabulary

• Concept co-occurrence matrix

The process was also applied to sentence level co-occurrence, but instead of calculating

the co-occurrence in documents, we split them into sentences and continued with the same

process. Empirically, we have stated that document level similarity matrix achieves higher

scores. Henceforth, in this paper we will understand co-occurrence similarity as document

level similarity. Once co-occurrence matrices are calculated for terms and concepts, it is time

to represent the model input data in the similarity matrices that the CNN model expects

(co-occurrence term similarity; co-occurrence concept similarity and cosine similarity).

Co-occurrence similarity

The co-occurrence-based representation offers an additional perspective on the semantic

term-to-term relationships and therefore a representation for the question-answer pair (q, a).

To obtain this representation we take the value of the pre-calculated co-occurrence for the

pair (q, a), if q or a are not in the vocabulary then the value is equal to 0, this allows us

to align the representation of the similarity matrices in the three tensor dimensions. This

process is also followed for medical concepts identified as such.
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Cosine similarity

Cosine similarity is another question and passage data representation. Each pair (q, a), is

defined as a weighted cosine similarity score between question and passage pair words, as

described below.

• Step 1: Pre-processing: Question and answer sentences are cleaned and tokenized;

a grammatical tagging is carried out with NLTK POS-tagger to extract syntactical

information that will be used for the salience weighting; each term is transformed later

in a vector embedding using a pre-trained word2vec model provided by NLPLab, which

was trained on Wikipedia and PubMed documents 2.

• Step 2: Calculate similarity matrix (qti, atj): Each i, j-entry of the similarity

matrix Mt, represents the semantic relatedness of the i-th question term and the j-th

answer term according to their word embedding.

• Step 3: Matrix weighting Mt: as not all terms are equally informative for measuring

text similarities [56, 30], we have applied a term weighting based on the grammatical

function of the term pair ”salience score” sal(qti, atj).

The term pair similarity (qti, atj) is calculated as Eq. 5-2 shows.

Mi,j = scos(qti, atj) ∗ sal(qti, atj) (5-2)

scos(qti, atj) = 0.5 +
qti · atj

2 ‖qti‖2 ‖atj‖2
(5-3)

sal(qti, atj) =


1 if imp(qti) + imp(atj) = 2

0.6 if imp(qti) + imp(atj) = 1

0.3 if imp(qti) + imp(atj) = 0

(5-4)

The value of imp(x) function is based on the POS-tagging label. We consider verbs,

nouns, and adjectives to be ”important” [56, 30]. As a consequence imp(x) is 1 for

important label and 0 for the others, if both terms are important the imp(qti)+imp(atj)

would be 2, and therefore the weighted will be 1.

2BioNLP word vector representation, trained with biomedical and general-domain texts

http://bio.nlplab.org
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Here we can observe that the three similarity measures used in the proposed approach cap-

ture different aspects of semantic relatedness. When only using one similarity measure, the

method may fail to capture all the important aspects of the semantic relatedness. This can

be seen in the following example:

Q: Abnormality in which vertebral region is important in Bertolotti’s syndrome?

A: Patients with Bertolotti’s syndrome have characteristic lumbosacral anomalies and of-

ten have severe sciatica.

The three similarity matrices visualisation is represented with the following heat maps, see

Figure 5-3. It can be observed that the cosine similarity matrix does not have a high value

for the ”Bertolotti” term. It is because there is no vector representation for the term, but

the co-occurrence matrices for term or concept have the highest values in the related cell

values. In the same way, the ”Bertolotti” concept is highly correlated with ”syndrome” and

”lumbosacral” in the concept co-occurrence matrix which are important concepts to answer

the question. In the case of the term co-occurrence matrix, the similarity is less precise but

gives a high score for the related term ”sciatica”. As the similarity matrices show, they are

complementary to each other and they produce important patterns to rank a set of candidate

answers.

(a) Term co-occurrence simi-

larity matrix
(b) W2V cosine similarity

(c) Concept co-occurrence sim-

ilarity matrix

Figure 5-3: Example 1. Similarity matrices

Another example of how similarity measures contribute to an improved representation of the

query-passage relationship is presented in the following example:

Q: Are defects in recombination repair involved in carcinogenesis?
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(a) Term co-occurrence simi-

larity matrix
(b) W2V cosine similarity

(c) Concept co-occurrence sim-

ilarity matrix

Figure 5-4: Example 2. similarity matrices

A: Inherited mutations in genes involved in HR are associated with gene rearrangement

and may be a prerequisite for tumor development in some cancer-prone hereditary diseases

like Bloom, Werner, and Rothmund-Thomson syndromes.

We can see similarity matrices as heat maps in Figure 5-4. For this case, cosine matrix has

a high similarity score between ”recombination” and ”rearrangement”, while co-occurrence

representation score is low. All three matrices have a high score for ”carcinogenesis” in the

question and ”tumor”, ”development” and ”cancer” in the answer.

The objective with the incorporation of additional and complementary information is to feed

the neural model with meaningful features that allow the model to identify when a question

and answer pair are highly correlated. During the training phase, the CNN model has to

determine those similarities patterns that we hypothetical highlight.

Passage ranking

Convolutional Neural Nets (CNN) were originally developed for image processing, where the

important information may appear on arbitrary regions of the image, represented frequently

as a 3 channel RGB matrix. The same assumption can be applied to our similarity matrices.

Once the (q, a) pairs are represented as the three similarity matrices, we feed them to the

CNN model presented in Figure 5-5. The CNN layer will identify word-similarity patterns

in each of the three channels. The patterns are captured for the 64 filters to be then sub-

sampled by a pooling layer. The pooling layer for all the filters is merged with a fully

connected layer. Finally, an output sigmoid unit produces a similarity score based on the

evidence coded by the neural networks units activation values.
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Figure 5-5: Multiple channel convolutional neural network

5.2.2 Prediction

Once the training phase has been completed we obtain a similarity discrimination model

that is capable of measuring the semantic correlation between question and answer pairs

and produce a final score.

The next step is to use the model to rank candidate answers (a1, a2, ..., ak) against a given

query q. The candidate answers are retrieved based on the highest scores.

5.3 Experimental Evaluation

The experimentation was carried out over the BioASQ 6 challenge dataset. We evaluate

different method combinations in order to measure how important is each of the similarity

measures for the passage retrieval task. Finally, we will combine all three similarity matrices

to validate the complementary information hypothesis.

5.3.1 Data set

The training was conducted with the question and answer pairs from the 2016, 2017, and

2018 BioASQ Task B training datasets. As previously mentioned, the BioASQ dataset does

not include negative samples; we collected negative samples from both related and unrelated

documents. The complete statistics of the training dataset are described in the table 5-1.

The obtained dataset was very unbalanced, only 7% of the total number of pairs are labeled

as a relevant answer. To balance the dataset, the sample extraction in the training phase was

done with the same number of positives and negative samples, this strategy is also applied

in the validation phase.

5.3.2 Experimentation models

In order to compare the discriminative power of the proposed model using the related three

similarity feature matrices, we introduce the following model configurations: 1) using just
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#Questions #Pairs #Positives #Negatives

3295 500,248 32,944 467,304

Table 5-1: BioASQ dataset with negative samples

the term co-occurrence matrix as input to the CNN (term); 2) using just the concept

co-occurrence matrix as input to the CNN (concept); 3) combine term and concept co-

occurrence (term + concept); 4) using the cosine similarity matrix (w2v), 5) combine cosine

similarity with term co-occurrence (w2v + term); 6) combine cosine similarity with concept

co-occurrence (w2v + concept); 7) combining all three similarity measures (w2v + term +

concept). Besides these methods, we will compare the latest configuration (w2v + term

+ concept) against the proposed baseline models: a self-trained finetuning BERT model

(BERT) and the winner model from last year BioASQ challenge (aueb-nlp-5). To give a

broad definition of BERT model we are going to detail the process followed to finetune

BioBert.

Bert finetunned model baseline

Language pre-trained models have proven to be useful for universal textual representations.

One of the last pretrained models is BERT (Bidirectional Encoder Representations from

Transformers) which has achieved an important result for different NLP tasks. Recently a

pretrained BERT model over biomedical and open domain data was released by Lee et al

[50].

In order to validate state-of-the-art methods, we have finetuned BioBert to achieve the

passage retrieval task. We have followed the approach for sentence pair classification task.

The data used to finetune the model was the same to train the proposed model.

5.3.3 Results and Discussion

The results for different model configurations are reported in Table 5-2.

Results show that the most informative individual similarity measure is the cosine similarity

(w2v) with the proposed POS-tagging salience weighting. Term and concept co-occurrences

have very close scores in all the batches when used separately. The combination (term +

concept) improves significantly the scores as expected. Combining (w2v + term) and (w2v

+ concept) is quite similar, the scores are close, but when all three similarity measures are

jointly used there are important improvements in the MAP metric across all batches.

We present the following question (Q) and answer candidate (A) example extracted from

experimental data-set to show the model contribution.

Q: Does echinacea increase anaphylaxis risk?
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DFMTS (this

model)

B1 MAP B2 MAP B3 MAP B4 MAP B5 MAP

term 0.1979 0.2842 0.2626 0.1629 0.0857

concept 0.2076 0.2828 0.2617 0.1537 0.0861

term + concept 0.2106 0.3329 0.3008 0.2178 0.0987

w2v 0.1942 0.2946 0.2671 0.1581 0.0914

w2v + term 0.2145 0.3612 0.3289 0.2210 0.1019

w2v + concept 0.2191 0.3547 0.3178 0.2281 0.1101

w2v + term +

concept

0.2322 0.3838 0.3571 0.2409 0.1163

Table 5-2: Snippet retrieval results combining similarity matrices

A: Risk of anaphylaxis in complementary and alternative medicine.

The produced similarity matrices are depicted as heat maps in order to visualize the sim-

ilarity strength between terms and concepts, see Figure 5-6. In this example, the concept

similarity matrix offers higher values for co-occurrence similarity between echinacea and ana-

phylaxis allergic reaction. Verifying in the medical literature, there are documented adverse

reactions associated with echinacea which support our observations.

(a) cosine similarity matrix
(b) concept co-occurrence ma-

trix
(c) term co-occurrence matrix

Figure 5-6: Similarity matrices example where concept co-occurrence have a better perfor-

mance over the others
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Model results against baseline

We have conducted our experimentation with the test batches released for BioASQ 6b.

In order to compare our results with state-of-the-art methods, we have included last year

winner team (Athens University and Google [20]) results. Since snippet retrieval highly

depends on document retrieval, and with the objective to make a fair comparison of our

proposed method, we asked the winner team to share with us the documents obtained in the

document retrieval step. They shared the submitted files and, therefore, a snippet retrieval

isolate comparison was possible to carry out.

The scores presented in Table 5-3 for aueb-nlp-5 [20] were extracted from the BioASQ results

leader board table. This is the system that reached the highest scores. In the same way, we

reported the scores that our Bert fine-tuned model and our fusion model with three similarity

measures obtained when using the same set of documents from aueb-nlp-5.

Model B1 MAP B2 MAP B3 MAP B4 MAP B5 MAP

aueb-nlp-5 0.1684 0.3187 0.332 0.2138 0.1147

bert 0.106 0.1389 0.2021 0.1223 0.063

DFMTS (con-

cept + term +

w2v)

0.2322 0.3838 0.3571 0.2409 0.1163

Table 5-3: Snippet retrieval results using the documents provided by AUEB [20]

The proposed model scores are consistent in the five batches and the difference against the

best model from last year (aueb-nlp-5) is 3.5 percent points on average, across all the batches.

We can also see that the BERT based model is competitive, although their scores are below

those from the other two models.

The next comparison was carried out against the 15 best models from the 2018 BioASQ

challenge. In order to visualize the scores in a more friendly way, we have consolidated the

results from the leader board table in a box plot, see Figure 5-7. There is one box plot for

each batch, and the X-axis corresponds to the reported metrics in BioASQ 6 (mean precision,

F-score, recall, MAP, GMAP). The blue point is the score obtained with our model using

the documents supplied by [20].

In batch1, batch3 and batch4 we reached the best results as ilustrated in the boxplot. In

batch2, the only measure where the model is not the best is recall. Still, they are in the

highest quartile. In the last batch, the scores for all the teams are lower than in previous

batches. The result of our model is the highest in MAP and competitive according to the

other metrics.
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(a) Results batch 1 (b) Results batch 2 (c) Results batch 3

(d) Results batch 4 (e) Results batch 5
(f) Results averaged for all

batches

Figure 5-7: 15 best systems results for task 6b, blue points correspond to the proposed

model

5.4 Conclusion

In this chapter, we have presented a novel approach for biomedical passage retrieval. The

proposed method is based on different similarity measures which offer complementary infor-

mation in order to semantically match question and answer passages.

The proposed similarity measures come from concepts and term co-occurrence, in addition

to a word-embedding cosine similarity. Concepts are extracted using the UMLS terminology

data source and a biomedical-trained Scispacy model. The multiple similarity representation

is exploited by a convolutional neural network which extracts similarity-based patterns and

produces a semantic relatedness score, which is further used to rank the answer candidate

passages. We have tested different combinations of similarity measures, and the most accu-

rate was the one in which we used all three similarity measures, which validate the hypothesis

that the similarities are complementary to each other.

The proposed model was tested within BioASQ 6b dataset and the scores obtained were

compared against the best models reported for the 2018 challenge. The obtained results

showed that the proposed model outperformed all the methods used in BioASQ challenge

with a substantial difference. Motivated by the obtained results, future work will be focused

on extending the similarity representation and exploiting it with more sophisticated neural

models that better use the multiple information.



6 A Deep Metric Learning Method For

Biomedical Passage Retrieval

Deep learning-based passage retrieval methods usually approach the problem as a classi-

fication problem that attempts to discriminate relevant passages from non-relevant ones.

Training is performed by presenting random samples (positive or negative), although some

negative samples are semantically related to the answer and others are completely different.

This semantic relationship between question and passage can be modeled more naturally

using a deep-metric-learning approach, where relevant passages have a distance close to zero

to the question and non-relevant passages have a large distance.

This chapter presents a deep-metric-learning approach that employs a triplet input consisting

of (question, positive and negative passage), but unlike commonly used architectures in this

type of approach, we propose a siamese architecture instead of a triplet network, where each

sub-network captures the interactions between the question and the passage of the positive

and negative pairs respectively. In addition, a suitable sampling strategy is presented that

allows to improve the model performance by presenting first easy negative training samples

and then more difficult ones.

The method discussed in this chapter were presented in the following paper:

• Rosso-Mateus, A., González, F. A., & Montes, M. (2020, December). A Deep Met-

ric Learning Method for Biomedical Passage Retrieval. In Proceedings of the 28th

International Conference on Computational Linguistics (pp. 6229-6239).

6.1 Introduction

Metric learning has been broadly used in face identification and other image processing

tasks. This approach has a powerful and simple mathematical formulation that allows to

produce a compact representation in a metric space that can be used to identify image

correspondences. The same idea can be applied to the passage retrieval task where answer

passages should share semantic patterns with the question and this can be measured by a

metric in an appropriate metric space. This idea has not been explored in depth in the

context of passage retrieval, except for the work of [18], where a siamese network was used

for learning a metric between questions and candidate answers in an open-domain question

answering task on a proprietary dataset.
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This chapter presents a novel deep metric learning method that learns a metric between

question and passages bringing close semantically related pairs. Most of the metric learning

approaches learn to embed samples in a latent space where a metric (usually Euclidean)

captures relationships between samples. The proposed approach directly learns the metric

fusing different similarity measures through a siamese convolutional deep learning architec-

ture. Also, the chapter presents a sampling strategy that chooses easy and then hard negative

samples in the training phase, improving the overall model performance. The experimental

results show that the method is able to induce a metric between questions and passages that

helps to discriminate relevant passages from non-relevant passages.

The proposed architecture is similar to a triplet network (because of the three inputs: ques-

tion, answer passage, non-answer passage) and also to a siamese architecture because it

is composed of two convolutional neural networks with shared weights. However, different

from these, it allows to extract important semantic features from several question-passage

internal similarity measures that provide a complementary view of their relatedness. The

similarity measures include a structured view of the question and passage, incorporating

valuable information that is usually available in close domain problems.

To validate the model performance we carried out a systematic evaluation considering a

widely used domain-specific collection, the BioASQ dataset [124], and comparing it against

state-of-the-art models. The results show that the performance of the proposed model out-

performs previous approaches with a wide margin. The main contributions are the following:

• We formulate a novel deep metric learning architecture which encodes question-passage

semantic interactions improving state-of-the-art performance in biomedical passage

retrieval.

• We develop an informative sample filtering method that helps to identify easy and hard

negative samples to be used during training leading to faster convergence and better

performance.

It is important to highlight that the proposed model could be easily implemented, and the

number of its parameters is much less than in the state-of-the-art models [20], which have

in the order of millions while ours in the order of thousands.

The rest of chapter is organized as follows: Section 2 shows the details of the proposed metric

learning method; Section 3 present the sampling strategy; Section 4 presents a systematic

evaluation of the method; Section 5 discusses the results against the state of the art models;

finally, Section 6 exposes some conclusions and discusses our future work ideas.

6.2 Deep Metric Learning For Passage Retrieval (DMLPR)

The traditional deep metric learning approach is composed of two steps. First, a deep neural

model is trained to learn a mapping from a given data representation (commonly images) to
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an Euclidean space, then Euclidean distances in the learned spaces are expected to measure

the dissimilarity between objects [108, 59]. The first deep metric learning approaches used

a siamese architecture, where the model receives a pair question-answer and each compo-

nent is mapped to the Euclidean space by the same neural network. An evolution of this

architecture was the triplet network, where the model receives triplets instead of pairs. The

triplets consist of two matching examples (positive and anchor) and one non-matching sam-

ple (negative). For both siamese and triplet networks, each sample is individually mapped

to to the embedding space.

In contrast to the classic metric learning approach, which learns a metric embedding space

for individual samples, our approach learns a combined question-passage embedding that

codifies the pair relatedness. The proposed architecture is describe in detail in the following

sections.

6.2.1 Model Architecture

Our model architecture is presented in Figure 6-1. The model accepts three text sequences:

the question, a passage that answers the posed question (referred as positive), and a passage

that does not contain a valid answer (referred as negative). In the first step of the model, the

relatedness of question and passages is calculated using different term-level question-passage

similarity measures. This similarities are represented as matrices for the positive (q, p+) and

negative (q, p−) pairs. These matrices feed a siamese convolutional model which identifies the

internal patterns of the interactions between question and passages. The internal patterns

are then used to calculate a measure of semantic relatedness, these are noted as dis(q,p+) and

dis(q,p−) for the positive and negative pairs respectively. The model is trained by minimizing

the loss function from Equation 6-1, the distances for positive pairs are encouraged to be

close to 0, while negatives pairs should have a distance greater than a margin α.

1

N

N∑
i

[dis(q, p+)− dis(q, p−) + α] (6-1)

The two main blocks of this model, the input layer and convolutional layer, are described in

the following subsections. The model implementation is publicity available with download-

able source code in Github 1.

6.2.2 Input layer: Similarity Measures Calculation

Input training samples are composed of a question and two passages, one positive and the

other negative. A question-passage pair is represented by its internal semantic interactions,

which are extracted analyzing the term-by-term semantic similarity using three different

1DMLPR source code https://github.com/****/***
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Figure 6-1: Overall model architecture; the input is composed of a question and a positive

and negative passages, it includes a convolutional layer and a loss function that

compares the distances between the positive and negative pairs.

similarity measures: 1) a word embedding cosine similarity, 2) a term co-occurrence measure,

and 3) a concept co-occurrence measure. This representation was presented in a previous

work [99], where the internal interactions are defined by three similarity matrices comparing

each term in the question qi against each term in the candidate passage pj. A brief description

of these matrices is presented below.

Cosine similarity: it captures the relatedness of terms using the BioNLP pre-trained word

embeddings2. After representing terms in the embedded space, their cosine similarity is

measured cos sim(~qi, ~pj) and weighted by its grammatical importance, giving emphasis to

verbs, nouns, and adjectives [56, 30].

Term and concept co-occurrence measures: they capture statistical term by term

coincidences at sentence level. Concept co-occurrence gives special attention to biomedical

concepts discarding common words. In both cases co-occurrence matrices are pre-calculated

extracting sentences from 30,000 PubMed biomedical documents3. In the case of concept

identification, each term is compared against UMLS Meta-thesaurus4 using the QuickUMLS

tool [114]. To increase the concept identification coverage, a second check was done with the

Scispacy tool [78].

2The BioNLP word vector representation was trained with biomedical and general-domain texts http:

//bio.nlplab.org
3NIH PubMed Baseline Repository https://mbr.nlm.nih.gov/Download/Baselines/2018
4UMLS Meta-thesaurus http://umlsks.nlm.nih.gov
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To visualize the information captured with the three similarity matrices and to emphasize

their complementariness, Figure 6-2 shows some heat maps that indicate the different inter-

actions between a question and a related passage.

Q: Does echinacea increase anaphylaxis risk?

A: Risk of anaphylaxis in complementary and alternative medicine.

In the presented example, the concept similarity matrix offers higher semantic similarity

values for question row term ’echinacea’ and the related answer passages ’complementary’,

’alternative’, ’medicine’, and ’anaphylaxis’ highlighting important relationships. Cosine sim-

ilarity gives higher values to ’increase’ question term and its related row. Term co-occurrence

has a similar behaviour to concept co-occurrence, but the last has more focus over important

terms. The more informative modality in this example is concept co-occurrence highlighting

an important relationship between ’echinace’ and the set of terms: ’anaphylaxis’, ’alterna-

tive’ and ’medicine’. This relationships reveal that echinacea has adverse anaphylaxis allergic

reactions associated, as is documented in medical literature.

(a) cosine similarity matrix
(b) concept co-occurrence

matrix

(c) term co-occurrence ma-

trix

Figure 6-2: An example of the similarity matrices for a given question (rows) and passage

(columns), aiming to visualize the sequences internal interactions.

6.2.3 Convolutional Neural Model

The result of the question-passage similarity calculation is a tensor with three similarity

channels. This bi-dimensional multi-channel representation is analogous to that used with

images. Convolutional neural networks (CNN) are an effective way of extracting patterns

from this kind of representation, and, therefore, we employed a CNN to learn an enhanced

representation of the question-passage interactions.
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The proposed model has a siamese architecture; each subnet processes a negative or positive

input sample pair respectively. The weights of the subnets are shared as it is usual in this

kind of architectures. The output of each subnet corresponds to an estimation of the distance

for the corresponding input pair as it is depicted in Figure 6-3.

Figure 6-3: Convolutional model used in siamese architecture, each sub-net employ this

architecture

The first layer of each subnet is composed of 256 3x3 convolutional filters with a Relu

activation function. This layer acts as a feature extraction layer analyzing similarity patters

in three dimensions. The identified patterns are then summarized by a global max-pooling

layer which is connected to a fully connected layer with 128 units and Relu activation.

Finally, a sigmoid unit outputs the estimated distance measure.

6.3 Informative Negative Passage Identification

Selecting informative training samples is very important in deep metric learning, as it is

described in previous works [21, 44]. Our approach discriminate hard negative samples

based on the semantic relatedness of question and passage pairs using the cosine similarity

over BiosentVec sentence embeddings [23]. During training, we first feed the model with

easy negative samples, and then with hard negative samples that are more challenging to

classify. The process to filter hard and easy training samples is as follows:

1. Represent samples in an embedded space: question and passage text sequences,

qi and pj, are transformed to its BioSentVec embedding representation [23]; the vectors

(~qi, ~pj) are obtained.

2. Calculate the similarity between question and passage: we employed the cosine

similarity to measure the semantic relatedness between each question and candidate

passage, cos sim(~qi, ~pj).

3. Estimate the densities for negative and positive samples: based on the obtained

similarity scores, we calculated the density for positive and negative samples; refer to

Figure 6-4.
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4. Filter hard negative samples: for each negative sample x, we determined whether

it is hard or easy by comparing p(x ∈ positive) and p(x ∈ negative); if the sample is

more likely to be positive, then it is considered ’hard’, otherwise it is labeled as ’easy’.

Figure 6-4: Cosine similarity density distribution for BioASQ negative and positive sample

pairs

6.4 Experimental Evaluation

6.4.1 Experimental Setup

We evaluated the proposed metric learning model on the BioASQ biomedical challenge

dataset; the description of the dataset, as well as the implementation details are presented

below.

BioASQ Challenge Dataset

The BioASQ challenge dataset only provides positive passages, while negative examples

should be individually collected by the participating teams.

For our experiments, we took the BioASQ training sets from the 2016, 2017 and 2018 editions.

From them, we filtered out positive passages and selected negative passages from the relevant

documents taking into account the following conditions:

1. Removal of repeated positive passages: As there are a significant number of re-

peated passages, duplicated passages were removed based on the Levenshtein Distance

[147], as implemented in the FuzzyWuzzy tool5.

5FuzzyWuzzy approximate string match library https://github.com/seatgeek/fuzzywuzzy
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2. Removal of outliers: Few passages contain 1 or more than 400 words. To have a

more homogeneous training dataset, we removed outliers using the Median Absolute

Deviation (MAD) robust statistic [53].

3. Selection of homogeneous negative passages: Positive and negative passages

should have similar lengths. We have identified that 95% of the positive passages have

length between 13 and 55 terms, therefore, we selected the negative passages that

allowed a distribution similar to that of the positive ones.

Table 6-1 presents the statistics of the BioASQ training dataset after filtering out positive

and adding negatives examples using the strategy discussed in Section 6.3 6.

#Questions #Pairs #Positives #Negatives #Hard Neg. #Easy Neg

3295 500,248 32,944 467,304 108,130 359,174

Table 6-1: BioASQ dataset with negative samples

For testing, we used the test dataset provided in the 2018 version of the challenge. This

dataset is composed of 5 batches each one with 100 questions and different number of can-

didate answer passages 7

Baselines

• Bert fine-tuned model: We used Bert model pretrained on biomedical texts (BioBert,

[50]) and it was fine-tuned using question-passage pairs. It was trained with the same

training set as the proposed model.

• Siamese model: This is vanilla siamese model that receives a question and a passage

[31]. Both text sequences were represented with BioNLP word embeddings 8.

• Triplet network w2v-rep: This is a conventional triplet network [108] that receives

three sequences a question (the anchor), a positive passage and a negative passage.

The input sequences are represented with BioNLP word embeddings.

• Triplet network sim-rep: This combines a conventional triplet network with the

multi-similarity representation proposed in this paper. Instead of sequences, the model

receives three tensors representing the similarities between three different question-

answer pairs. The purpose of this method was to explore whether the gains obtained

6The derived training dataset is publicly-available at https://github.com/****/****
7The number of candidate passages per batch in the BioASQ 6b test dataset are 957, 1137, 1283, 789 and

895 respectively.
8BioNLP word vector representation, trained with biomedical and general-domain texts

http://bio.nlplab.org
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by the DMLPR could by matched by a conventional triplet network using the same

representation.

Implementation Details

The proposed model was developed in TensorFlow v.2 within the Keras framework. The

number of epochs was set to a maximum of 10, with a batch size of 32 samples. It was

observed that a balanced sample batch has an important effect on the method’s convergence,

hence training samples were equally balanced between positive and negative. The number

of parameters for the DMLPR model was 40,193, which is much lower than in other deep

learning approaches, for example, Aueb-nlp5 has 1.5 million of parameters [20].

6.4.2 Experimental Results

Ablation Study

The following results aim to evaluate and compare the different model configurations, varying

the sampling method and input representation. The reported results correspond to the Mean

Average Precision (MAP) averaged over the five batches of the BioASQ 6b test dataset.

Table 6-3 presents the analysis of the contribution of the different similarity measures. It

shows the results using each of the similarity representations separately and together (i.e.,

word2vec cosine similarity, term co-occurrence and concept co-occurrence). The Word2vec

cosine similarity is the most informative single representation, nevertheless, the combination

of the three representations considerably improves the isolated representation. It can be

concluded that these three representations are complementary to each other.

Regarding the negative sampling strategy, we evaluated four different scenarios: hard, only

hard negative samples are used for training; easy, only easy negative samples are used;

easy-hard the model is first trained with easy negative samples and after this with hard

negative samples; and random, were there is not distinction between easy and hard negative

samples.

Table 6-2 presents the results for the four sampling strategies. As it can be observed random

sampling produces higher scores than only easy or hard sampling. However, the best

results were obtained in the easy-hard scenario, were the model is warmed-up with the

easy negative samples, which prepares it better to take advantage of the hard negative

samples.

To further understand the contribution of the negative sampling strategy, we visualized the

space of characteristics that is generated in the dense layer of 128 units of the proposed archi-

tecture. Figure 6-5 shows a two-dimension projection of the the positive, easy negative, and

hard negative samples generated by tSNE. As it can be observed, a geometrical distribution

based on semantic relatedness is kept in the feature space; hard negative samples are closer

to positive passages than easy negative samples.
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Sampling MAP

easy-hard 0.294

random 0.238

hard 0.227

easy 0.098

Table 6-2: MAP score averaged over 5

batches with different sam-

pling strategies.

Modality MAP

all 0.294

w2vcos 0.146

terms 0.138

concepts 0.129

Table 6-3: MAP score averaged over 5

batches using different repre-

sentation modalities.

BioASQ Challenge Results

The results of the passage retrieval task largely depends on the performance obtained in

the document retrieval stage. To have a fair comparison of the different passage retrieval

approaches, we used in all experiments the same set of documents, which were retrieved

by AUEB-NLP, the winning document-retrieval strategy of BioASQ 6 [20]. Thanks to the

fact that the winning team of version 6 AUEB-NLP [20], shared the documents retrieved by

them, we can make a fair comparison using the same set of documents. BioASQ ranks winner

teams using Mean Average Precision metric, We report results averaging official metrics over

the 5 batches, the reported metrics are: Mean Average Precision (MAP), Mean Precision,

Recall, F-Measure, and G-MAP.

Table 6-4 presents the obtained results. The proposed method outperformed all baselines

methods according to the averaged MAP score. With respect to the winning method of the

BioASQ version 6 (AUEB-NLP), an average increase of 25% in MAP was observed, while a

10% improvement was achieved with regard to the Triplet loss metric sim-rep. It is also

notable that the representation using multiple similarities as input is considerably better

than using the sequences without interaction between them, since it exceeds the Siamese

model and Triplet loss metric w2v-rep by about 65%. The Bert model has moderate

performance scores, and the margin with respect to the proposed model is wide.

We also compared the results of the DLMPR method against the top 15 models in the

BioASQ 2018 challenge. Their results were taken from the BioASQ 6b leader board9 and

averaged over the five batches. Figure 6-6 shows a boxplot with these results. The x-axis

corresponds to reported metrics in BioASQ 6 (mean precision, recall, f-score, MAP, GMAP),

the bluepoint indicates the average results of DMLPR in the five batches. It is noticed that

DMLPR improved the recall, f-score, MAP, and GMAP of all participating teams by a wide

margin. The Mean Precision score is in the higher quartile close to the best result.

9BioASQ portal https://www.bioasq.org
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Figure 6-5: Visualization for the generated metric space using 2D tSNE dimensional reduc-

tion, points are BioASQ positive, hard-negative and easy-negative test-partition

samples.

6.4.3 Results Discussion

The results obtained show that the proposed method has a significant improvement over the

state-of-the-art methods as well as over the baselines. The good performance of the DMLPR

model depends on different factors.

The representation based on the three similarity matrices is, by a wide margin, more effective

to capture the semantic relatedness of the question and answer sequences than taking inde-

pendent representations. Most of the current state-of-the-art works exclusively used learned

representation for text. The results of the ablation study show that using domain knowledge

to identify important concepts in the text and using them to calculate a complementary

similarity enriched the question-passage representation.

Another factor, and a distinctive characteristic of this work, is the combination of a metric

learning approach with a CNN applied over text-similarity matrices. The results show that

it successfully captures the question-passage interactions. Finally, the negative sampling

strategy that identify easy and hard negative samples was very important for successfully

train the model. This is not a common strategy in passage retrieval methods, and the present

work shows that it could have a very positive impact.
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Method Mean precision Recall F-Measure MAP GMAP

Bert 0.172 0.191 0.186 0.144 0.010

Siamese 0.119 0.156 0.131 0.129 0.002

Triplet loss sim-rep 0.226 0.262 0.241 0.266 0.021

Triplet loss w2v-rep 0.107 0.169 0.122 0.131 0.001

AUEB-NLP 0.215 0.229 0.180 0.231 0.015

USTB 0.188 0.292 0.178 0.138 0.011

DMLPR 0.243 0.358 0.231 0.294 0.030

Table 6-4: Passage retrieval results for the proposed baselines and the best models in

BioASQ challenge 6b task [75]

Figure 6-6: 15 best systems results for BioASQ task 6b, blue points correspond to the

DMLPR model.

6.5 Conclusion

We present a novel deep-metric learning approach for biomedical passages retrieval that

surpasses previous approaches evaluated in the BioASQ dataset. The model presents inno-

vations in terms of the architecture that combines multi-similarity representation, a CNN,
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and a siamese design, as well as in terms of the training strategy that identify hard and easy

negative samples which are used to gradually train the model.



7 BERT Attention-based representation

for Biomedical Passage Retrieval

In the previous chapters, we have introduced representations for question-answer sequences

based on different similarity representations, such as the cosine or the co-occurrence simi-

larity matrix. Those representations have been shown to be effective in capturing semantic

correlations between candidate passages and the question. In an earlier chapter, we exploited

these representations using a new deep metric learning architecture, which was shown to be

more effective at analyzing the input representation than previously explored models. In

this chapter, we present a novel input representation based on transformers-based attention

similarity. Large-scale pre-trained neural networks such as BERT are successful in NLP

tasks, most of the proposed implementations of such models focus on using the outputs of

the network as input features for a classification layer [82, 140].

In this chapter, we propose a different approach, since, as noted in previous work, the head

attention layers encode important semantic and syntactic relations [25], therefore we have

used the attention weights as the input representation of the question-passage, in addition

to previously explored representations. Bert’s attention-based representation offers comple-

mentary views of co-occurrence and cosine similarity, providing enriched features that can

be exploited by the deep metric learning model. We structure up this chapter as follows: the

first section presents a quick overview of Bert’s model, then a description of Bert’s attention

mechanism is provided to further explore the properties that Bert’s attention-based repre-

sentation can offer to address the task of passage retrieval. This is followed by a description

of the architecture of the proposed model for experimentation and results. Some conclusions

are discussed at the end of the chapter.

7.1 Introduction

Neural pre-trained language models such as ELMo [90], OpenAI GPT [94], and BERT [29]

have achieved stunning results in NLP tasks ranging from natural language inference to

question answering. One of those popular model, BERT, has recently been applied to docu-

ment retrieval and question answering tasks in several published works, most of them work

over open domain data [81, 82, 64, 140]. Furthermore, for the biomedical domain, Bert’s

alternatives have been proposed, which have been trained on large volumes of data composed

of scientific papers and clinical notes, some of which are BioBert [51] and Clinical BERT [3].
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For text classification tasks with BERT, the common approach is to use the hidden state h

of the final layer over the special token [CLS], which would be the full representation of the

input sequences. On top of this, a classifier (softmax) is placed to predict the probability

given the hidden state representation. This is known as fine tuning, in which it is possible

to leave the weights of the BERT model fixed or allow certain layers to be adjusted along

with the classification ones. Passage-retrieval can me modeled as a classification task that

can be approached in this way, some of the most relevant papers that have implemented the

related approach are [105, 40, 86, 121].

However, we propose a different approach, where BERT’s pre-trained attention maps are used

as a semantic representation of the question-passage pair which is then used by a deep metric

learning-based model in conjunction with other representations (cosine and co-occurrences)

to discriminate between answer and non-answer passages. The use of this representation is

therefore appropriate since attention maps can be seen as the weight that a term has when

calculating the representation of any other term, that is, as the more semantically correlated

this weight is greater.

We will experimentally test later the use of this attention-based representation for the prob-

lem of passage retrieval. Each attention layer will be evaluated separately, as well as the

combination of them. The representation will be combined with other representations that

have been presented in previous chapters.

The results obtained demonstrate that Bert’s attention layers are a rich representation mode

that can be exploited for passage retrieval tasks. According to the results, this representation

combined with others improves the performance of the models already discussed.

7.2 Background: Bert Attention Mechanism

In his seminal work ”Attention is all you need” Vaswani et al. [128] successfully reproduce

the attention mechanism without employing a recurrent network which incorporates context.

In order to do so, they propose the ”transformer” model that is totally based on self-attention

mechanisms. The attention in deep learning can be interpreted in general terms as a weight-

ing vector of significance for predicting or inferring an element. The attention vector is

employed to estimate the strength of the current element’s correlation or ” attendance ” to

other elements.

BERT comprise multiple layers where each one contains multiple attentions heads. While

our methods are applicable for any model which employs an attention mechanism, here we

use BERT [29]. According to Devlin et al. description of Bert’s attention mechanism, each

of the heads in each layer will calculate the weight of ”attention” between two word pairs,

using standardized softmax point products. The output of the attention head is a weighted

sum of the vector values. On the last of these layers the output is connected to the ’[CLS]’

token that is used to perform the classification task typically. Therefore, as you will see

below, the model goes layer by layer focusing its attention on the answer terms that are
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most correlated with the key question terms.

Acording to Clark et al. [25] the first layers capture relatively simple linguistic features-such

as the syntactic function of a word in a sentence-and the upper levels help classify more

complex features, such as the way words combine to make up meaning. BERT’s attention

layers encode the semantic relationships that exist in the text sequences, with this in mind

we propose the hypothesis that BERT’s attention mechanisms can effectively represent the

interactions between the question and the passages terms, these interactions are a valuable

source of information that added to the previous representation ways are useful for passage

retrieval task.

7.3 Bert Attention as Similarity Representation

In the proposed model the question q is used as the first sequence in Bert and the passage

p is the second sequence separated by the special token ’[SEP]’. Since Bert encodes terms

as tokens, where a word can be composed of several tokens, the maximum token sequence

size of the question and the passage is specified as 512. Once codified the input sequences

in Bert we extract the attention layer values that will feed the deep metric learning model.

As Clark et Al. explains [25], it is highly likely that attention heads in the same layer tend

to have similar behavior. This would enable us to reduce the 12 attention heads per layer to

1 per layer, a fair statistic to achieve this is the average. In order to see the representation

properties offered by BERT’s attention layers, the existing attention weights between the

question and the passage will be visualized. Since the terms were split in tokens, we also need

to recombine the tokens to have term attention values. Therefore, we collapsed the tokens

that make up a term as suggested by [25]: for the attention of a split word, we summed up

the attention weights on its tokens. For the attention of a split word, we take the average of

the attention weights on its tokens. The model that we have employ to extract the attention

values is BioBert, which is a biomedical pretrained bert trained with scientific papers and

clinical notes [50]). This model was fine-tuned for passage retrieval task as is sugested by

Devlin et al. [29]

Suppose you have the following question-passage pair:

• Question: What causes Katayama Fever?

• Answer: Schistosomiasis is a helminthic infection that is endemic in tropical and

subtropical regions.

In the visualization 7-1, 7-2, 7-3, the attention maps layer by layer is presented. The

darkness of a line indicates the strength of the attention weight.
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Figure 7-1: Attention between question and passage terms for 1, 2, 3, 4 layers

Figure 7-2: Attention between question and passage terms for 5, 6, 7, 8 layers

Figure 7-3: Attention between question and passage terms for 9, 10, 11, 12 layers

As it can be observed in the first layers (1,2,3,4) the attention between the terms is more uni-

form compared to the last layer (9,10,11,12), the last ones have strong relations of attention
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between the following terms: fever-Schistosomiasis, Katayama-helminthiasis and Katayama-

Schistosomiasis among others. This behavior has also been reported by Clark et al. [25],

who found that the lower layers of attention have a very broad attention span. Whereas the

latter layers are a kind of aggregation of attention that focuses more on those relevant terms

related to the end results.

To simplify the analysis of which term in the attention mechanism is focusing layer by layer,

the figure 7-4 presents the average of the attention received by each term in each Bert layer.

It is interesting to note that the term that has the highest semantic relationship with the

question ”Schistosomiasis” receives the most attention in the last 3 layers, this term is a key

term to answer the question.

Figure 7-4: Average received attention in each BERT for all answer terms

7.4 Methods

Our model architecture is presented in Figure 7-5. The diagram presents the training and

testing phases.

• Training: In the training phase the first step is to obtain the input representation

for the question-answer pairs. As the proposed deep metric learning model expects a

positive (q, p+) and a negative (q, p−) pair for the same question, a tensor calculation

using three different term-level similarity measures will be carried out S. For BERT

attention-based representation, we calculated the head-averaged attention for the 12

BioBert layers. For the other representations: cosine similarity, term co-occurrence and

concept co-occurrence are obtained in the same way as was presented in the previous

chapter, finally the 15 similarity matrices are aligned and appended in a similarity

tensor S ∈ R15×40×40, where 40 is the maximum sequence length for question and

passages. Once the representation S is calculated, it feeds the deep metric learning

model presented also in the previous chapter. The siamese CNN model is used to

calculate a measure of semantic distance between question and the passage, these are

noted as dis(q,p+) and dis(q,p−) for the positive and negative pairs respectively. The

model is trained by minimizing the loss function from Equation 7-1, the distances for
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positive pairs are encouraged to be close to 0, while negatives pairs should have a

distance greater than a margin α, N is the batch size.

• Testing: Once the model has been trained, it is used to produce predictions for the

incoming question-passage pairs. First the pair is represented as expected in a tensor

shape and then is evaluated by the model. The model output is a semantic distance

between question and passage, if the distance is greater than the margin α then the

passage is not considered as valid answer.

Figure 7-5: Passage retrieval model architecture

1

N

N∑
i

[dis(q, p+)− dis(q, p−) + α] (7-1)

The details for cosine similarity, term co-occurrence and concept term co-occurrence question-

passage representation calculation in addition to the convolutional model and the sampling

strategy was presented in the Chapter 6. For this reason we are not going to extend the

related discussion.

7.5 Experimental Evaluation

7.5.1 Data-set and Training

Model training was conducted with the question-and-answer pairs from the 2016, 2017,

and 2018 BioASQ Task B training datasets. In this dataset the samples were labeled as
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hard or easy negatives based on the semantic relatedness between the question and passage

using cosine similarity over the BiosentVec sentence embedding. As explained in the earlier

chapter, we first fed the model with easy negative samples, and then with hard negative

samples that are more difficult to classify. With this informative sampling the model is

warmed-up with the easy negative samples, which better prepares it to take advantage of

the hard negative samples.

The resulting statistics of the dataset are presented in Table 7-1.

#Questions #Pairs #Positives #Negatives #Hard Neg. #Easy Neg

3295 500,248 32,944 467,304 108,130 359,174

Table 7-1: BioASQ dataset with negative samples

The proposed model was developed in TensorFlow v.2 within the Keras framework. The

number of epochs was set to a maximum of 10, with a batch size of 32 samples. For testing

purpose we have used the test batches released for BioASQ 6b as was done in the previous

chapters, as testing dataset is composed of five batches score metrics are averaged.

Ablation Study

To compare the discriminative power in the proposed model as well as in each of the attention

layers, the following configurations of the model will be evaluated, 1) using only the head-

averaged attention for individual layers 2) averaging across the heads and layers 3) using the

12 head-averaged attention layers.

Figure 7-6 presents the related scenarios, each bar shows the MAP score over the five

batches using only a specific layer, averaging them and using all layers. The results support

our previous observations related with the effectiveness of higher layers to capture semantic

properties. The score obtained for the last layer compared with the first one, is 37% higher,

a similar improvement is observed in layers 8, 9, 10 and 11. In the same way averaging the

head attention is less effective that use all the 12 attention layers as input representation.
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Figure 7-6: MAP averaged scores over 5 batches

Model results against baselines

In order to compare and contrast our method we have conducted the experimentation using

as baselines previous chapters models. The set of documents used to retrieve the passages

is the same for all the methods in the evaluation. A description of the baseline models is

presented as follows.

• Bert fine-tuned model: We used Bert model pretrained on biomedical texts (BioBERT,

[50]) and it was fine-tuned using question-passage pairs. It was trained with the same

training set as the proposed model.

• DFMTS: This approach was the one presented in Chapter 5, that presents a deep

fusion strategy for multiple term similarity measure.

• DMLPR: This is the deep metric learning presented in Chapter 6, the model has three

similarity representation matrices (cosine, term co-occurence, concept co-ocurrence).

7.5.2 Results

In addition to the previous presented baselines we have included the results from the the

winning team of BioASQ in the same challenge edition [20], this method use also the same

set of relevant documents.

As can be observed in Table 7-2, the proposed method DMLPR(BERT+W+TC+CC)

outperformed all baselines methods according to the averaged MAP score. Two versions are

presented DMLPR(BERT+W+TC+CC) and DMLPR(BERT), using only attention-based
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representation and combining it with the previously obtained representations (cosine similar-

ity, term co-occurrence and concept co-occurrence) respectively. The last one is remarkably

more effective than the first which use only attention-base representation, with an improve-

ment of 20% in MAP metric. With respect to the winning method of the BioASQ version 6

(AUEB-NLP), an average increase of 52% in MAP was observed.

Method Mean prec. Recall F-Measure MAP GMAP

AUEB-NLP 0.215 0.229 0.181 0.231 0.015

DFMTS 0.237 0.259 0.219 0.276 0.024

DMLPR (W+TC+CC) 0.243 0.358 0.231 0.294 0.033

DMLPR (BERT) 0.209 0.342 0.213 0.279 0.021

DMLPR (BERT+W+TC+CC) 0.279 0.370 0.251 0.355 0.034

Table 7-2: Passage retrieval results for the proposed model DMLPR(Bert) and baselines

in BioASQ challenge 6b task [75]

7.6 Conclusion

This chapter presented a new model that uses BERT’s attention layers as a representation

of the semantic interactions between a question and a passage. This representation proved

to be effective in capturing relevant patterns that enable a proper discrimination for a pas-

sage that conforms a valid answer to the question. This new representation was combined

with the other representations introduced in previous chapters and is demonstrated to offer

an alternative and complementary perspective to the other involved representations. The

method proposed was compared against the previously described methods, as well as against

the state of the art models. By far, this model surpasses the state of the art models and by

about 20% to the previously proposed models.
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We have proposed several representations for questions and passages based on their interac-

tions that have proved to be highly effective in passage retrieval task. The first was based on

the semantic similarity between the terms of the question and the answer given their vector

representation. Later on, the representation based on co-occurrences was proposed, which

is complementary to the previous one. This is easier to see when there are terms out of the

vocabulary which have no representation in the embedding space and also when the terms

are not well represented due to the training parameters, eg. the size of the window used

in word2vec. The subsequent representation was based on the Bert’s attention mechanism,

which allows to know the significance of a term in the context of another term, establishing

a semantic relationship by means of attention values. The last two representations are novel

for the task of passage retrieval; there is no similar work that uses Bert’s attention layers or

co-occurrences as a method of representation.

The present thesis has proposed several information fusion methods, such as early, inter-

mediate and late fusion. Depending on the approach, the fusion models took textual and

semantic information that allowed discriminating the passages that were a valid answer to

the question and thus considerably improved the final result of the task.

The use of mixed information sources (textual and semantic) fused into a single representa-

tion, provides the following benefits: 1) the representation produced is unambiguous thanks

to the semantic information sources that have a single representation and meaning, 2) the

representation based on question-passage interaction comprises multiple similarity dimen-

sions that provides more supporting arguments to identify the correct answer to a particular

question. The captured semantic interactions are complementary, as demonstrated in the

ablation studies conducted.

One approach that was effective by far in modeling the passage retrieval task was the met-

ric learning approach, in which a metric is induced to model the semantic interactions of

question-passage pairs. The described method processes a triple input composed of (ques-

tion, negative and positive passage), but, unlike triple networks, the architecture is based on

a siamese neural model. This approach allows to process simultaneously the pairs of ques-

tions and negative and positive answers obtained from the same question. The objective is

to have a metric space that closely locates the question-passage pairs that are a valid answer

and keep away the ones that are not. Another factor that influences model performance

is the sampling strategy, which selects easy and hard negative samples based on semantic

similarity to the question.
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8.1 Future Research

This research answered several research questions but open new ones that will guide our

future research efforts.

• What additional mechanisms different to the ones explored in this thesis

can be used to represent the interactions between question and passages?

The semantic correlation between question and passage terms does not always occur

directly or is not efficiently captured by the defined representation. This drawback can

be alleviated by including new representation strategies that enable a complementary

view of the question and the passage interactions.

Complementarity in the representation has driven the incorporation of different sim-

ilarity measures such as word and concept co-occurrences or BERT’s attention maps

similarity. However, there are others that can be useful such as: diffusion kernels,

robust distributional word similarities or knowledge graphs.

• Can other deep neural model approach or architecture discriminate better

if a passage is a valid answer or not?

We have mainly explored convolutional neural networks to take advantage of similarity-

based representation. But this decision is motivated by the mechanism of represen-

tation in which question-passage interactions are summarized in a term-by-term sim-

ilarity tensor. However, other models or architectures can take advantage of such

representation or any other.

Instead of representing the question-passage by its term-level interactions, we can use

the complete text sequence and employ a BiLSTM model to capture information at

context level. Another option is to explore Deep Adversarial Metric Learning, where

the negative samples are generated automatically and following the negative statistical

data distribution.

• Can additional steps appended to passage retrieval pipeline improve the

overall performance?

As it was possible to verify, the approaches proposed are effective in finding the most

relevant passages, likewise the final ranking is completely based on the similarity score

provided by the output layer of the deep model. However, even if there is a high

semantic similarity between the question-passage pair, this passage may not be a valid

answer to the question.

There are two additional tasks in the passage retrieval pipeline that may alleviate

this challenge. The first one is to filter the candidate passages based on the expected

entities or medical concepts expected as answers. Second, to perform a reordering of

the passages based on a model trained over a subset of positive and negative passages,
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but the latter being difficult to discriminate as such, that would allow to have a fine

discrimination model that being combined with the base model would improve the

total performance of the system.
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[102] Rosso-Mateus, Andrés ; González, Fabio A. ; Montes, Manuel: Mindlab neural

network approach at bioasq 6b. In: Proceedings of the 6th BioASQ Workshop A

challenge on large-scale biomedical semantic indexing and question answering, 2018,

S. 40–46

[103] Rosso-Mateus Andrés, Fabio A. G.: A Deep Metric Learning Method for Biomed-

ical Passage Retrieval. (2020)

[104] Rubin, Daniel L. ; Lewis, Suzanna E. ; Mungall, Chris J. ; Misra, Sima ; Wester-

field, Monte ; Ashburner, Michael ; Sim, Ida ; Chute, Christopher G. ; Storey,

Margaret-Anne ; Smith, Barry [u. a.]: National center for biomedical ontology:

advancing biomedicine through structured organization of scientific knowledge. In:

Omics: a journal of integrative biology 10 (2006), Nr. 2, S. 185–198

[105] Rybinski, Maciej ; Xu, Jerry ; Karimi, Sarvnaz: Clinical trial search: Using biomed-

ical language understanding models for re-ranking. In: Journal of Biomedical Infor-

matics 109 (2020), S. 103530

[106] Rydning, David Reinsel-John Gantz-John: The digitization of the world from edge

to core. In: Framingham: International Data Corporation (2018)

[107] Salakhutdinov, Ruslan ; Hinton, Geoffrey: Semantic hashing. In: International

Journal of Approximate Reasoning 50 (2009), Nr. 7, S. 969–978

[108] Schroff, Florian ; Kalenichenko, Dmitry ; Philbin, James: Facenet: A unified

embedding for face recognition and clustering. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, S. 815–823



98 Bibliography

[109] Severyn, Aliaksei ; Moschitti, Alessandro: Learning to rank short text pairs with

convolutional deep neural networks. In: Proceedings of the 38th international ACM

SIGIR conference on research and development in information retrieval, 2015, S. 373–

382

[110] SHATKAY, HAGIT ; FELDMAN, RONEN: Mining the Biomedical Literature in

the Genomic Era: An Overview. In: JOURNAL OF COMPUTATIONAL BIOLOGY

10 (2003), Nr. 6

[111] Shen, Yelong ; He, Xiaodong ; Gao, Jianfeng ; Deng, Li ; Mesnil, Grégoire: A la-
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