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Abstract

Article [I] Introducing the community to technical projects requires a deal with the social, energy and
environmental policies as well as the cultural field. To address an energy project from a socio-technical
view requires the joint analysis of both the project and the community. This work focuses on the formu-
lation of a methodology to ease the prioritization of projects and community participation. To evaluate
the community, the Human Development Index and Sustainable Development Goal Index are adjusted
to the context and available information of Nariño. The Net Present Value is used for the project evalu-
ation. The Analytic Hierarchy Process allows for the evaluation of the community and project jointly and
establishing prioritization objectives. Moreover, the co-construction methodology is the basis to for-
mulate guidelines to work with the community. This research found that there is a relationship between
the projects that seek to improve the quality of the life and education in Nariño.

Article [II] Solar irradiance is a worldwide available resource that could drive electrification processes
in regions with low socio-economic indexes. Therefore, to know solar irradiance behavior and data is
increasingly a mandatory activity. However, some interesting sites, generally socio-economic outcast
places, do not rely on solar irradiance data, and if information exists, it is not complete. Therefore,
researchers use some techniques to estimate this energy resource with information from other mete-
orological variables as temperature. Nevertheless, there is not a broad analysis of these techniques in
tropical and mountainous environments. Therefore, this research analyzes the performance of three
well-known empirical temperature-based models in tropical and mountainous environments. More-
over, this work proposes a new empirical technique that models solar irradiance in some areas better
than the three techniques mentioned. Statistical error comparison allows us to choose the best model
for each location and the data imputation model. Hargreaves and Samani’s model presented better
results in the Pacific zone, and the proposed model showed better results in the Andean and Amazon
zones. Another significant result is the linear relationship between the new empirical model constants
and the altitude 2.500 MASL.

Article [III] The solar energy potential maps are an enabler for solar energy use. However, the lack of
solar irradiance information is a barrier to elaborating on this type of decision tool. This research pro-
posed the estimation of solar irradiance using air temperature data to increase the sampled points with
the Hargreaves and Samani and a proposed empirical model. Also, the leave-one-out cross-validation is
the technique used to assess the performance of four spatial interpolation techniques in a tropical and
mountainous environment. The information came from Nariño state in Colombian that covers an area
of 33.268km2 . The proposed empirical model shows better performance in sites with an altitude above
2.500 MASL, located in the Andean and Amazon zone. Further, Ordinary Kriging was the interpolation
technique with the best behavior.

Article[IV] Accurate mechanisms for forecasting solar irradiance boost solar energy applications. There
are several techniques to forecast global solar irradiance, such as numerical weather prediction and sta-
tistical techniques. In this context, this research compare four forecasting approaches Autoregressive
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Integrated Moving Average, Single Layer Feed Forward Network, Multiple Layer Feed Forward Network,
and Long Short-Term Memory in a one-day ahead horizon using incomplete datasets measured in a
tropical and mountainous environment. The results show that the neural network-based models out-
perform the ARIMA model. Furthermore, LSTM has better performance with a low number of input data
and in cloudiness environments.

Keywords: Community participation, Rural electrification, Analytic Hierarchy Process, Multicriteria Approach,
Energy projects, Human Development Index, Sustainable Development Goal Index, Temperature based mod-
els, data imputation, Hargreaves and Samani, Spatial interpolation techniques, solar radiation mapping.
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Resumen

Artículo [I] Incluir a las comunidades en proyectos socio-técnicos require abordar aspectos sociales,
energéticos, ambientales, políticos y culturales. Dirigir un proyecto energético con un enfoque socio-
técnico require el análisis en conjunto del proyecto y la comunidad impactada. En este sentido, este
trabajo se enfoca en formular una metodología que facilite la priorización de proyectos y la participación
de la comunidad. Para evaluar a la comunidad se adpatan los índices de desarrollo humano y los índices
de los objetivos de desarrollo sustentable a la información disponible para Nariño. El valor presente
neto es la herramienta usada para la evaluación del proyecto.El proceso de análisis jerárquico permite
evaluar la comunidad y el proyecto conjuntamente y establecer objetivos de priorización. Por otra parte,
la metodología de co-costrucción es la base de la directriz propuesta para trabajo con la comunidad.
Esta investigación encontró que existe una relación entre los proyectos que buscan mejorar la calidad
de vida y la educación en Nariño.

Artículo [II] La irradiancia solar es un recurso ampliamente disponible en el planeta, que podría con-
tribuir al proceso de electrificación en lugares con bajos índices socio económicos. No obstante, en
algunos lugares, la información de este recurso no está disponible o tiene baja calidad. Para superar
este problema algunos investigadores han desarrollado técnicas para estimar la irradiancia solar. Una
de esas técnicas son los modelos empíricos basados en temperatura para estimar el recurso. Sin em-
bargo, no hay un amplio análisis del comportamiento de esas técnicas en ambientes tropicales y mon-
tañosos. Por lo tanto, esta investigación analiza el comportamiento de tres modelos empíricos basados
en temperatura y un modelo propuesto bajo estas condiciones ambientales. Los errores estadísticos
calculados permiten elegir el mejor modelo para cada punto evaluado. Con este modelo se hace la
imputación de datos con el fin de incrementar la calidad de las bases de datos analizadas. El modelo
propuesto se ajusta mejor a la zona Andina y amazónica, mientras el modelo de Hargreaves y Samani
tiene mejores resultados en la zona Pacífica. Además, el modelo propuesto presenta una relación lineal
entre las constantes empíricas y la altitud de las estaciones meteorológicas localizadas por encima de
los 2.500 msnm.

Artículo [III] Los mapas que muestran el potencial de la energía solar facilitan el uso del recurso solar.
Sin embargo, la falta de información de irradiancia solar son una barrera para elaborar este tipo de
herramientas. Este investigación propone estimar la irradiancia global solar con datos de temperatura
usando el modelo empírico de Hargreaves y Samaani y uno propuesto, para incrementar el número de
puntos muestreados. Además, se implementa la técnica de validación cruzada conocida como dejar
uno por fuera para evaluar el rendimiento de cuatro técnicas de interpolacióne espacial en un ambiente
tropical y montañoso. La información usada es del departamento de Nariño-Colombia que tiene un área
de 33.268 km2. El modelo propuesto muestra un mejor comportamiento en sitios localizado a más de
2.500 msmnl, ubicados en la zona Andina y Amazonica. Además, Kriging ordinario es la mejor técnica
de interpolación espacial.

Artículo [IV] Los modelos de pronóstico de irradiancia solar impulsan las aplicaciones que usan en-
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ergía solar. Existen varias técnicas para pronosticar la irradiancia solar global, como las númericas y
las estadísticas. En este contexto, esta investigación compara cuatro enfoques de pronóstico estadís-
tico: Promedio móvil integrado autorregresivo, red neuronal de una capa, red neuronal de multiples
capas y memoria a corto y plazo, en un horizonte de un día por delante, utilizando conjuntos de datos
incompletos medidos en un entorno tropical y montañoso. Los resultados muestran que los modelos
basados en redes neuronales superan al modelo ARIMA. Además, LSTM tiene un mejor rendimiento con
un número reducido de datos de entrada y en entornos de nubosidad.

Palabras clave: Participación comunitaria, Electrificación rural, Proceso analítico jerarquico, Proyectos en-
ergéticos, Índice de desarrollo humano, Índice de metas de desarrollo sostenible, modelos basados en tem-
peratura, iomputación d datos, Hargreaves y Samani, Técnicas de interpolación espacial, Mapeo de radiación
solar.
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1 Introduction

Renewable energies are a locally available resource with environmental and social benefits, which allow
community integration in energy projects (Dawoud et al., 2019). The proliferation of solar-powered sys-
tems has prompted studies to estimate the potential of the solar resource. Solar irradiance information
is essential in several fields, such as electricity generation, weather forecasting, agriculture, and ecology
(Moreno et al., 2011). Notably, in renewable energy applications, the well-designed power plant relies
on the availability of solar irradiance potential information. The lack or low quality of information is a
barrier to analyzing solar irradiance potential (Janjai et al., 2005; J. Li & Heap, 2014). This issue could
arise in the inadequate planning of solar energy projects, negatively impacting electricity generation’s
growth based on this renewable source.

Encouraging electricity generation with solar energy requires understanding the resource. However,
in developing countries, the solar irradiance data are not widely available because of the scarcity of
weather stations that measure this variable and the equipment calibration and maintenance require-
ments. In some cases, although the databases have an open-access, the process of getting information
might be extended (Bakirci, 2009). Therefore, in the last years, the solar irradiance studies have used
other relevant variables like temperature, sunshine, relative humidity, among others, to estimate this
variable.

The solar researchers have developed models and methods to estimate the daily or monthly solar in-
solation, from empirical models to artificial intelligence. The empirical models are usually based on
astronomical, geometrical, physical, and meteorological factors, highlighting the last (Besharat et al.,
2013). The empirical model implementation depends on the availability and consistency of the data
(Akinoglu, 2008a). In this sense, Almorox et al. recommended that the empirical model’s data should
be simultaneous and reliable in the study site (Almorox et al., 2011). Regardless of the solar insolation
estimation method used, the data collected at ground level offer information from a point source.As a
result, it needs to estimate the insolation values in the not sampled points to obtain continuous data
over the study area (J. Li & Heap, 2011). The standardization of the information from isolated measure-
ments is possible with the regional interpolation techniques by constructing a regional model (Moreno
et al., 2011). Overall, there are two categories for the interpolation techniques: non-geostatistical and
geostatistical. However, all methods share the same general estimation formula (J. Li & Heap, 2008).

Furthermore, solar energy for generating electricity drives the studies in forecasting irradiance (Reikard,
2009). Solar irradiance forecasting allows estimating the electricity generation in the long- medium-
and short-term. This information is crucial to maintain the balance between the electricity demand and
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supply (Dannecker, 2015) and minimizing costs associated with the start and shutdown of conventional
power plants (Badosa et al., 2017). These models facilitate the implementation of PV systems, both on-
grid and off-grid. Data collected in extended periods are used to understand the behavior and predict
future solar radiation values in a specific location (Suehrcke, 2000). Time series analysis examines the
recorded data over time to develop a mathematical model to describe a variable (Shumway & Stoffer,
2011). There are several approaches to forecasting solar irradiance: persistence methods, autoregres-
sive models, and soft computing techniques (Demirhan & Renwick, 2018; Diagne et al., 2013; Inman et
al., 2013). The artificial neural network, fuzzy logic, and hybrids are robust for modeling the physical
processes’ stochastic nature, like the solar irradiance, because of their capacity to compensate system-
atic errors and problematic learnable deviation (Paulescu et al., 2013). The selection of a forecasting
method depends on the desired timescale, i.e., intra-hour, intra-day, medium, and long term. Statistical
approaches usually perform well for short-term and soft computing techniques for long-term analysis
(Coimbra et al., 2013; Demirhan & Renwick, 2018)

The use of solar energy with photovoltaic (PV) technology has grown in recent years. It has taken
decades for solar energy is feasible economically in developing countries. Today, the associated costs to
this energy resource are competitive, mainly in rural areas where electricity from conventional resources
could be more expensive. Also, solar energy projects allow including the community in their planning
and execution; as a consequence, improving the project sustainability over time. When the population
is an active part of the energy projects, their development eases the interaction between the communi-
ties, the funding entities, and the project’s developers. Consequently, the joint analysis of both projects
and communities addresses energy projects from a socio-technical view. Besides, sustainable energy
projects correlate with the populations’ socio-economic development, including population growth,
urbanization, and industrialization.

Creating a value chain around the solar resource for the department of Nariño from an energy approach
is the focus of this work. This department is located in the south of Colombia, as Figure , and it is char-
acterized by its diverse population, its three environmental regions: Pacific, Andean, and Amazon, and
the need to improve the quality of life of the population that has been affected by the armed conflict. In
terms of electricity supply, the department is divided into two zones, the first receives electricity from
the National Interconnected System (SIN), and the second is called the Non-Interconnected Zone (ZNI),
which obtains electricity from local plants that use fossil fuels. The Colombian Congress enacted Law
1715 to promote electricity generation with non-conventional renewable energy sources in 2014 (El
Congreso de Colombia, 2014). This law promotes distributed generation and self-generation of elec-
tricity. Therefore, considering the regulatory framework of Colombia and the characteristics of Nariño,
this work proposes a prioritization methodology for productive projects and a community guideline
to joint work between the company and the community. Furthermore, this research assesses three
empirical temperature-based models: Hargreaves and Samani (HS), Bristow and Campbell (BC), and
Okundamiya and Nzeako (ON), to estimate solar insolation in a tropical and mountainous environment.
Finally, this study applies four state-of-the-art prediction models for global solar irradiance and in-
solation forecasting with one day ahead in tropical and mountainous environments with incomplete
datasets: i) Autoregressive Moving Average (ARIMA), ii) Single Layer Feed Forward Network (SL-FFN),
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iii) Multi-Layer Feed Forward Network (ML-FFN), and iv) Long Short-Term Memory (LSTM).

Figure 1-1. Nariño location in ColombiaFor the first part, we analyzed several
community evaluation components, such
as the Human Development Index
(HDI) and Sustainable Development
Goals Index (SDGI), and adapted those
to Nariño’s characteristics and the
available information in the national
or regional public databases. The Net
Present Value (NPV) was the measure-
ment used to project evaluation be-
cause this is a commonly used mea-
surement for cost-benefit evaluation in
PV power projects. The AHP was the
method for prioritizing projects and
communities. The method processed
six prioritization objectives to present
different perspectives for making de-
cisions. Additionally, this part of the
work proposes the community’s partic-
ipation guidelines to integrate its priorities, concerns, and interests with the stakeholders in developing
the project. In this part of the work, the authors found a relationship between the objectives that sought
to improve education and the population’s quality of life.

To estimate solar insolation potential, we analyzed three empirical models based on temperature. The
objective of these models was, on the one hand, to fill the solar insolation data gaps in the data series,
and on the other hand, to increase the number of points sampled with estimated solar insolation data to
improve the quality of solar energy potential maps. Additionally, we propose a new empirical relation-
ship based on the logistic regression model to estimate the solar insolation with the daily temperature
difference. The proposed model presents a linear relationship between the empirical constants and the
site’s altitude. The linear relationship allows calculating the empirical constants of the Conventional
Weather Stations (CWS) using their altitude. As a result, it was possible to increase the density of sam-
pled points of solar insolation in the area of Nariño. This result was relevant since the performance
of spatial interpolation techniques depends, among other things, on the density of sampled points and
their clustering.

We compare four spatial interpolation techniques in the global solar insolation mapping part: Inverse
Distance Weighted (IDW) and simple, ordinary, and universal Kriging to obtain spatially continuous
solar insolation information in the studied region. The techniques used information collected in eight
AWS, and the solar insolation estimated with temperature data, through empirical models, in sixteen
locations with CWS. Cross-validation showed that the ordinary Kriging was the best among the analyzed
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methods because it presented less bias throughout the year due to its robustness.

In the last part of this research, and mainly to encourage the use of solar energy in the on-grid areas,
we implement four forecast models on an ahead-day horizon with an hourly and daily timestamp. In
this part, the missing data imputation combines a linear interpolation of the subsequent values with the
average of past values measured at the same hour of the imputed data. The results show that neural
network-based techniques have better performance than ARIMA. The LSTM model performs better in
the Pacific area on AWS with less amount measured data. In comparison, SLP achieves the best perfor-
mance on AWS with more input data.

This thesis is organized as follows: Chapter 2 corresponds to the prioritization process of energy projects
and the community participation guide. Chapter 3 shows the results of the three empirical temperature-
based models and the proposed model based on logistic regression, which supported the imputation
of daily solar insolation data. Chapter 4 presents the daily solar insolation estimation process using the
empirical models of Hargreaves and Samani and the proposed model, and the application of four spa-
tial interpolation techniques that result in twelve daily solar insolation potential maps for each month.
Chapter 5 shows the results of applying four solar irradiance forecasting models on an ahead-day in an
hourly range. Finally, Chapter 6 collects all the conclusions of the research work.



2 A multi-criteria methodology for
prioritization of social projects and
community participation: Nariño study case

1

Abstract

The joint analysis of projects and communities allows for the possibility of addressing energy projects
from a socio-technical view. Including communities in the development of projects requires a bet-
ter understanding of their social, economic, environmental, and cultural affairs. Consequently, this
work focuses on a methodological formulation to prioritize energy projects considering community
participation. The community evaluation considered the Human Development Index and Sustainable
Development Goals and adjusted them according to the information available about Nariño, and the
project evaluation uses the Net Present Value. The Analytic Hierarchy Process evaluates communities
and projects jointly and establishes prioritization objectives. Moreover, the co-construction methodol-
ogy is the basis to formulate guidelines for community work. This research found a close relationship
between the projects for improving life quality and education in Nariño.

Keywords

Energy projects; Analytic Hierarchy Process; Rural electrification; Human Development Index; Sustain-
able Development Goal Index

2.1 Introduction

Including the community in the energy project’s planning and execution, such as rural electrification
or productive projects, improves the initiatives’ sustainability over time. When the population is an
active part of the energy projects, their development eases the interaction between the communities,
the funding entities, and the project’s developers. Consequently, the joint analysis of both projects

1This chapter is derived in part from an article published in International Journal of Sustainable Energy, 10 Feb 2021,
available online: https://doi.org/10.1080/14786451.2021.1883612
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and communities addresses energy projects from a socio-technical view. Besides, sustainable energy
projects correlate with the populations’ socio-economic development, including population growth,
urbanization, and industrialization. Renewable energies are locally available resources with environ-
mental and social benefits which allows for the community integration in energy projects (Dawoud et
al., 2019). The last aspect is relevant because the traditional approach for rural electrification has been
weak in terms of involving the communities in the development of successful projects. When there is
a gap between the community and the project development, it presents difficulties with sustainability
over time (Palma-Behnke et al., 2019). The rural electrification projects are essential because electric-
ity is a significant factor in the economy and improves the populations’ quality of life; therefore, their
sustainability over time is also relevant and should be achieved (Balbás Egea & Eguren Egiguren, 2019).
Despite this, the International Energy Agency declared that about 1,1 billion people did not have access
to electricity in 2017, and about 84 % live in rural areas (International Energy Agency, 2017).

The lack of rural electrification initiatives is faulty, especially in regions with a high population, as in
the case of Nariño’s. There, the rural population makes up 53 % of the total population. The main
advantages of rural electrification involve better lighting systems for dwellings, educational and health
centers, better working conditions for domestic activities, reduction of rural migration to cities because
of the creation of jobs through the improvement of operations related to the agricultural sector’s use of
technology, the environment preservation through using renewable sources for electricity generation,
among others (Camblong et al., 2009). Accordingly, Nariño’s government identified three proposals
in its development plan 2016-2019: Territorial peace and social equity, growth and green innovation,
and regional integration (Gobernación de Nariño, 2016a). Likewise, it established seven strategic areas
to achieve the proposals; each had an action program covering one or more objectives. One of these
programs is rural electrification to encourage other fields to develop in the state of Nariño.

The traditional approach to supplying electricity to rural or isolated populations have been through
grid enlargement, either at transmission or distribution level or with stand-alone generators that use
fossil fuels (Ubilla et al., 2014). The first approach usually requires a high capital investment making it
economically unfeasible when there are low levels of demand for electricity. The second approach, al-
though requiring low investment, results in high operational costs. Hence, the electricity cost is high in
Nariño’s off-grid zones due to the fossil fuel transportation costs from the closest harbors to the com-
munities (Universidad de Nariño et al., 2014). Another element to highlight related to using fossil fuels
for generating electricity is the greenhouse gas emissions that negatively impact the environment. As a
result, there are programs and initiatives to reduce their consumption and introduce renewable energies
for electricity generation (Opoku et al., 2020). Additionally, photovoltaic technology (PV) is a suitable
option considering the populations’ terrain, resource availability, and technology (Figueirêdo Neto &
Rossi, 2019).

The electricity generation with renewable resources at the local level allows for the community’s inclu-
sion into the project and transforms a technical project in a socio-technical project. Therefore, the long-
term objective of the Institute for Planning and Promotion of Energy Solutions for Non-Interconnected
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Areas2 (IPSE) would be to include the communities in the electricity generation projects to sustain them
over time (Rodriguez, 2011). Accordingly, IPSE should improve the projects’ implementation, adapting
it to a communities’ needs. It would reduce the gap between communities and project development
(Superintendencia de Servicios Públicos Domiciliarios SSPD, 2019). The previous statement requires
evaluating several aspects and formulating strategies to ease the work between the stakeholders, the
community, and the funding entity (Marinakis et al., 2017).Consequently, this research focuses on for-
mulating a two-part methodology to make decisions, determine budgets, and formulate public policy in
the energy sector that increases energy project’s sustainability over time. The first part consists of prior-
itizing the project development’s order using the Analytical Hierarchy Process (AHP) methodology that
processed six components from the communities and project evaluation using the Net Present Value
(NVP). The second part shows a working guideline to include the community in energy projects.

This work proposes a prioritization methodology for productive projects and a community guideline for
joint work. For the first part, the authors analyzed several community evaluation components, such as
the Human Development Index (HDI) and Sustainable Development Goals (SDG) and adapted those
to Nariño’s characteristics and the available information in the regional and national public databases.
That information is crucial to select projects with the best solutions in social, environmental, and eco-
nomic fields (Zore et al., 2018). The selected projects came from the Sustainable Rural Energization
Program3 (PERS), and the selecting criterion was the energy resource, in this case, the solar irradiance.
The Net Present Value (NPV) was the measurement used for the project evaluation because this is a
commonly used measurement for cost-benefit evaluation in PV power projects (Yang et al., 2018). The
AHP was the method for prioritizing projects and communities. The method processed six prioritization
objectives to present different perspectives for making decisions. The second part of this methodology
focuses on the community’s participation guidelines to integrate its priorities, concerns, and interests
with the stakeholders in developing the project (Aslani, 2014). The proposed criteria for the community
evaluation is a reference framework that could facilitate the project evaluation in other fields. Likewise,
the community participation guideline is a process that invites joint work between the community, the
funding entity, and the project’s developers to sustain the energy project over time. That guideline in-
cludes a process that can be modified according to the project and the community needs.

The authors found a direct correlation when the objective is to improve the education or life quality
conditions. Therefore, public policies mixing these objectives could enhance the results. It is necessary
to analyze more productive projects and to collect more information from the communities. It would
improve the characterization and include the cultural traditions in the project development. The guide-
line proposed by the authors would enhance the probability of accomplishing successful projects and
including the community as an active part of the project development. The article contains the follow-
ing sections; Section 2.2 presents the methodology used in this work; Section 2.3 describes the case
study; Section 2.4 presents the results obtained in the state of Nariño, and finally, Section 2.5 presents
the conclusions.

2IPSE by its Spanish name
3PERS by its Spanish name
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2.2 Methodology

This research work follows a methodology synthesized in two parts, as Figure 2-1 shows. TThe first
part consists of a rural projects’ prioritization process that involves both a community and projects’
assessment. The second part consists of general guidelines based on the results from the first part of
the methodology for installing energy projects in Nariño.

The rural projects'prioritization process required information from PERS, Statistical National Adminis-
trative Department4, and Planning Unit Energy Mining5, among other institutions. These entities acted
directly with the community, collecting primary information through surveys to construct databases and
draw up plans and reports. Therefore, the information used in this study reflects the living conditions
of the communities in the state of Nariño. Taking the databases into account, the authors considered
five dimensions: education, health, security, quality of life, and economy. These aspects let understand
sustainability beyond the traditional dimensions since including indicators that assess the quality of
life, cultural and institutional relationships, among others (Feleki et al., 2018). The NPV was the tool
to evaluate the projects; besides, it constituted another dimension in the information math processing
(Ubilla et al., 2014). Dimensions linked to community and the NPV evaluating projects constitute the six
dimensions analyzed under the multi-criteria approach that tries them as criteria in the evaluation pro-
cess. Multi-criteria Decision Making (MCDM) tools allow the evaluation and prioritization of complex
problems with high uncertainty, conflicting objectives, multi-interests, among others (Vaidya & Kumar,
2006). Also, the MCDM facilitates the classifying and arranging a finite number of decision alternatives
based on attributes or decision criteria, which describe different characteristics (Mary & Suganya, 2016).
In the social projects, MCDM lets distribute the budgets efficiently; therefore, the coordination and the
development of a project follow a previously established development guideline. When there is a pub-
lic investor involved, the project evaluation results could be the basis for a program, even a policy (J.
Pacheco & Contreras, 2008). The most appropriate and frequently used MCDM in the energy planning
field is the AHP, followed by PROMETHEE and ELECTRE (Abdullah & Najib, 2016; Wang et al., 2009).

The AHP has two prime advantages: the quantification and weighting of criteria regarding a given ob-
jective and different options for achieving such an objective, and the mathematical processing more un-
derstandable than other methods(P. H. Dos Santos et al., 2019). Additionally, AHP transform empirical
comparison into numerical values. AHP orders the evaluation process elements. In the first step, AHP
states the objective, in the second, it establishes the criteria and sub-criteria, and in the third, it presents
alternatives that would be selected projects from PERS. After crossing the objective, criteria, and alter-
natives, the AHP gives a list of prioritized projects (Saaty, 1990, 2008). ELECTRE III is the most common
method from the ELCTREE family used in energy planning, the objective of this method is to choose the
alternative that accomplish with most of the criteria. However, the method sometimes present difficult
to find the best alternative; therefore, becomes necessary to use a more detailed method. PROMETHEE
II is the method commonly used in the energy planning field from the PROMETHEE family. A main dif-

4DANE by their Spanish name
5UPME by their Spanish name
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ference between PROMETHEE II and ELECRTE III is the calculation procedure. For the decision makers
the first one method is easily to understand than the second one method. These types of methods,
named outranking methods, are usually used to categorize the alternatives in acceptable or unaccept-
able, but not as methods for the alternative selection (Løken, 2007). Of the three MCDM mentioned
above, the AHP has the best properties, that is why the authors chose it (Mardani et al., 2018).

The methodology's second part consists of drawing up a guideline that eases the interaction between
the community and the local government or another type of entity promoting socio-energy projects.
The guideline’s purpose is to insert the community in the project development to create a management
system according to the community’s tradition and culture and, in turn, to arouse the sustainability
of the project. It is convenient to highlight that the starting point to draw up the guidelines was the
co-construction methodology because this seeks to empower the community through the decision-
making processes to achieve sustainable solutions over time (Montedonico et al., 2018). Nevertheless,
the authors modified it, including as one of the requirements, the direct participation of community
members in the work team that execute the specific project.

The guideline must cover the community features. Accordingly, Nariño's case is relevant because this
territory has diverse population groups as African Colombians (42 collective territories corresponding
to 18,80 % of the total population), indigenous (55 indigenous reservation corresponding to 10,79 % of
the total population), and half-bred (70,41 % of the total population), changing terrain as valleys, enor-
mous mountains, and forest regions, and an economy that needs dynamism. Those aspects demonstrate
that this guideline would have a place in different environments (Ministerio de Cultura, 2020).

Figure 2-1. Methodology scheme.
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2.2.1 Community evaluation

At the community level, several indexes exist to explain the environmental, social, and economic as-
pects that justify political decision-making without a universally accepted collection of indexes for eval-
uating such populations (Feleki et al., 2018).Although some governmental policies follow the profit
maximization principle, some indexes are relevant because of their broader approach, such as System
of Environmental-Economic Accounting (SEEA), Adjusted Net Savings (ANS), Living Planet Index (LPI),
Genuine Progress Indicator (GPI), Human Development Index (HDI), Sustainable Development Goal In-
dex (SDGI), among others (Arbeláez-Arias, 2006). Even though the indicators mentioned above could
offer a whole context, the State of Nariño’s available public information was insufficient to compute
them. Consequently, the authors only used indexes from both HDI and SDGI that are applicable to the
available information (Bertelsmann Stiftung & Sustainable Development Solutions Network (SDSN),
2016; United Nations, 2018).

Considering the situation in the state of Nariño, the authors analyzed five dimensions for the community
evaluation: education, health, security, quality of life, and economy. Each dimensions has assosiated
with one or more components or social characteristics, as shown in Table 2-1.

Table 2-1. Dimensions of community evaluation.

Dimension* Components Description

Education

Literacy The older population share than 15 years that read and write.

Kindergarten Net Coverage It correspond to the ratio between population aged five years old who
attend school and the total population in this age group.

Primary Net Coverage It correspond to the ratio of the population aged between six and
ten years old who attend school and the total population in this age
group.

Secondary Net Coverage It correspond to the ratio of the population aged between eleven and
fourteen years old who attend school and the total population in this
age group.

Middle Net Coverage It correspond to the ratio of the population aged between fifteen and
sixteen years old who attend school and the total population in this
age group.

National Test Score Score reached by 11th grade students in the national test Saber 11.

Health
Social Security Coverage Percentage of the population affiliated to any health insurance.

Infant Mortality Rate Child deaths under one year old per 1.000 children born alive.

Security Armed Conflict Incidence It measures the armed actions against the State forces, homicides,
kidnapping, victims of anti-personnel mines, forced displacement,
and area with illicit crops.
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Table 2-1 continued from previous page

Dimension* Components Description

Quality of life
Housing deficit Quantitative and qualitative housing deficit. The first one estimates

the houses'number that should be built for the total families. The
second one refers to the houses’ quality, overcrowding, and public
services access.

Unsatisfied Basis Needs It correspond to overcrowded households and inappropriate con-
ditions, inadequate public services, high economic dependence,
school-age children without school attendance.

Economy
Economic Importance Value added by the municipality with standard prices

Incidence of multidimen-
sional poverty in rural
zones

Illiteracy, low educational level, barriers to early childhood service
access, child labor, informal work, long-term unemployment, access
to the health system, barriers for access to care given a need, access
to freshwater and aqueducts.

*These dimensions correspond to prioritization objectives.

Source:(Departamento Administrativo Nacional de Estadísitica - DANE, 2019, 2009; Gobernación de
Nariño, 2016b)

All components are comparable because they are quantifiable; however, it is necessary to realize a nor-
malization process because each one has different measurement units. In this work, the normalization
procedure is the min-max one, as shown in Equation 2-1,

x′ =
x−min(x)

max(x)−min(x)
(2-1)

where x
′

is the index value, x is the value without normalized, max(x)is the maximum original values,
min(x) is the minimum original values.

A number between 0 and 1 represents each component. When the dimension has more than one com-
ponent, the dimension value is the average of normalized components, as shown in Equation 2-2. Al-
though some components appear in various dimensions, all of them have the same weight. The authors
decided to give the same weight for components because the DANE does not offer information thereon,

Di =
1

n

n∑
j=1

x
′

j (2-2)

where Di is the dimension i, x
′
j is the indicator j in the dimension i, n is the amount of index into the

dimension i.
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2.2.2 Project evaluation

The academic community utilizes several methods to perform economic analysis with specific charac-
teristics in their implementation. However, the principle is the same in those methods: “the capital
budgeting approach for calculating the economic return of a project a sequence of discounted cash
flow” (Žižlavský, 2014). In this research, the NPV evaluates the projects because this is an investment
appraisal analysis tool used in the energy sector projects when the costs are the primary variable (Kon-
stantin & Konstantin, 2018). The NPV is a popular and sophisticated economic evaluation technique,
which is the sum of the present values of inflows and outflows over a period and the discount rate
that introduce a risk rate (Gaspars-Wieloch, 2019). In the project evaluation, the authors considered
prioritizing the projects with the lower NPV,

NPV =
n∑

a=1

Ra

(1 + i)a
(2-3)

where Ra is the net cash inflow-outflows during a period a, i is the discount rate, n is the number of
evaluated periods, following the economic maximization approach, and implementing the maximum
number of projects. This tool is useful when the economic benefits are equal in more than one project
or not measurable. Social projects involve different variables related to welfare that are not measurable
from economic benefits (Ubilla et al., 2014). For example, the security feeling by public lighting growth
or diseases reduction by freshwater access, among other aspects,

2.2.3 Dimension weighting

The authors use the AHP methodology for weighing the dimensions. The following steps adjusted the
methodology to the specific case (Saaty, 1990, 2008):

• Define the problem and the ultimate objective. In this case, there is no expert panel to determine
the importance of one criterion over another. Therefore, the procedure starts with formulating
six prioritization objectives, named O1 to O6 (see Table 6), evaluated subsequently. Namely,
when analysis befalls on the one objective, it takes more relevance than the others that obtain
the same assessment. This procedure covers all the prioritization objectives one by one.

• Organize decisions hierarchically starting from the objective, followed by the middle levels com-
posed by the criteria, sub-criteria, and alternatives. In this case, the criteria are the dimensions
established for the community and project evaluation, and there are no sub-criteria.

• Build pairwise matrices and compare each objective with the criterion of the lower immediately
levels. In this case, there are six pairwise matrices; each one corresponds to a prioritization ob-
jective. The matrix’s upper-level elements correspondent to the objectives and the matrix’s fist
column elements correspond to the criteria. A comparison between them, keeping into account
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the Saaty scale values and recommendations presented in Table 2-2, results in a square matrix
with ones on the diagonal and prioritization values in the matrix’s other positions. This matrix
must follow the reciprocity, homogeneity, and consistency principles explained below.

Table 2-2. Saaty scale.

Value Definition Description

1 Same importance Two activities contribute equally to achieve the objective

3 Moderate importance
One activity contributes slightly more to achieve the objective

over another

5 Strong importance
One activity contributes strongly more to achieve the objective

over another

7 Very strong and demonstrate the im-
portance

One activity contributes much more to achieve the objective

over another

9 Extreme importance Absolute evidence favors an activity over another

2, 4, 6, 8 Intermediate values When needed an agreement between the parties

Reciprocal aij=1 =
1
aij

Hypothesis of the method

Source: (J. Pacheco & Contreras, 2008, p. 51)

• Use obtained prioritization results from the pairwise matrices to weigh them with the level im-
mediately below. The pairwise matrix's eigenvector gives other the priorities level; each element
of this vector corresponds to each criterion's weight to evaluate the alternatives. In other words,
eigenvector's each element evaluates the criteria that evaluated the alternatives. Finally, the al-
ternatives'prioritization order results of a sum of exponential terms where each base is the di-
mension value, and the exponent is an eigenvector's element.

The expression n(n − 1)/2 gives the amount of comparisons, where n correspond to the criteria, as
shown in Equation 2-4,

A = [aij] =


a1/a1 a1/a2 . . . a1/an

a2/a1 a2/a2 . . . a2/an
...

...
...

an/a1 an/a2 . . . an/an

 (2-4)

with:

1 ≤ i, j ≤ n (2-5)

where aij : pairwise comparison between dimensions i and j , n: number of analyzed dimensions. In this
case, as there are six criteria, the number of comparison is fifteen.

The matrix must accomplish with the reciprocity, homogeneity, and consistency properties, that means
(Aznar & Guijarro, 2012; J. Pacheco & Contreras, 2008):
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• Reciprocity: aij = x then aji = 1/x with 1/9 ≤ x ≤ 9

• Homogeneity: i and j have the same significance then aij = aji = 1

• Consistency: If aij represents the alternative's importance i over alternative j , and ajk represents
the alternative's importance j over alternative k, ideally ajk ∗ akj = aij ∀ 1 ≤ i, j, k ≤ n;
however, as there are subjective evaluations in the pairwise comparisons, the process is iterative
until the Consistency Ratio (CR) of A is smaller than 0,1.

To compute the CR, we follow the next process:

λmax = V ∗B (2-6)

whereλmax maximum eigenvalue of the pairwise comparison matrixA,V priority vector or eigen-
vector obtained from matrix A, B row vector containing the sum of column elements of matrix
A.

The last result is useful to compute the Consistency Index (CI) that represents the estimation
error's variance of aij with Equation (2-7):

CI =
λmax − n

n− 1
. (2-7)

Finally, the CR is the ratio between CI and RI, as Equation 2-8 shows

CR =
CI

RI
(2-8)

where RI is the random index given by Saaty.

The last step consists of computing the final prioritization value linking the community, project, and
weighting results by Equation 2-9. Due to different municipalities having the same kind of project, the
community dimensions'assessment is the average of all communities involved in the project,

I =

n,m∑
i,j=1

D
Vj

i (2-9)

2.2.4 Guideline to work with the community

The guideline objective is to stimulate the community's active participation in the project to develop
it without opposition, arouse the population's belongingness with technical labors, and maintain the
project on time. The guideline formulation took elements coming from the co-construction method-
ology and public entities'information of the state of Nariño. The co-construction methodology seeks
to empower the community through its role in the decision-making processes to generate a sustain-
able solution over time (Montedonico et al., 2018). It is important to remark that the population's
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distinctiveness demands to adjust the guideline. Consequently, this proposal constitutes a framework
guideline for community interaction with three steps: harmonization, integration, and sustainability.
The first one seeks to define a common purpose in the interdisciplinary team and characterize the com-
munity. The second one deals with the integration of the community, stakeholders, and work team. The
last attempts to establish a local management scheme to maintain the project over time.

Unlike the co-construction methodology, this guideline covers the work team's formation and training
to create the idea of achieving a successful project before starting the work community. This work team
must be interdisciplinary, including professionals from several studies fields. Additionally, the guideline
highlights the importance of involving local companies in the project execution, reducing the operation
and maintenance costs, and facilitating interaction with the community. Furthermore, this guideline
encourages creating a local regulation board to formulate initiatives that overcome barriers and ease
the project development. Likewise, this local board considers community cultural traditions to operate
as a regulatory entity.

2.3 Case study description

Table 2-3. Classification of localities by hour of elec-
tricity supply.

Hours Localities

0 14

1-6 438

7-12 144

13-18 1

19-23 0

24 6

Without information 36

Total 609

Source: (Arbeláez Pérez, 2019; Mossos, 2019)

The state of Nariño is in the southwestern re-
gion of Colombia. The Nariño's population
face power struggles with the troubles derived
from an armed conflict that started more than
five decades ago. Among the conflict's con-
sequences are the forced displacement that
spreads misery belts around the capital cities,
land dispossession for planting coca leaf, opium
poppy, oil palm, and illegal mining extraction,
among other damaging aspects (Ávila et al.,
2014). Those most affected population is the
rural one, causing a significant impact on the
state because 53 % of the Nariño's population
lives in rural areas. According to the DANE's
data, in 2018, Nariño's rural population had an
Unsatisfied Basic Need Rate of 26,61 %, while in
the urban areas, this rate was 16,20 % (Departamento Administrativo Nacional de Estadísitica - DANE,
2018d). Regarding the public services for the same year, 13,5 % of the families did not have electricity
service, and 29,2 % and 53,1 % of these families did not have any water system or sewage networks,
respectively. Even, in San Juan de Pasto, Nariño's capital city, there is only a partial network of nat-
ural gas covering 22,15 % of the total population, the rest of the population use LPG cylinders inside
houses endangering the families (Ministerio de Minas y Energía, 2018). The state of Nariño's infrastruc-
ture level has been classified as medium-high by the CEPAL. This categorization accounted the access
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to public services, ICTs, roads, airports, and harbors. The same institution gave a medium-low score in
competitiveness compared with other Colombian states to the state of Nariño (Ramírez J. et al., 2017).

In 2018, there were 516.398 dwellings, from which 480.134 had electricity service, and 36.264 houses
did not. From all electricity consumers, 88,4 % were on-grid users, and 11,6 % were off-grid users. From
11,6 % off-grid users, 8,4 % lived in urban areas and 91,6 % were rural users (Unidad de Planeación
Minero Energética, 2019). Urban and rural off-grid users obtain the electricity service from the munic-
ipality's power plants that use fossil fuels like diesel. Regarding the service indicators, 71,9 % of the
locations without telemetry have electricity from 1 to 6 hours per day, while in 5,9 % remaining does
not have information about electricity supply (see Table 2-3) (Arbeláez Pérez, 2019). Eight localities
with telemetry report an average of 7 hours per day of electricity supply (Mossos, 2019). Moreover, the
average electricity price is about 0,336 US$ kWh (Superintendencia de Servicios Públicos Domiciliarios
SSPD, 2019).

2.4 Results obtained

2.4.1 Project prioritization

Figure 2-2 shows the hierarchy scheme for the decision making about the alternatives in the state of
Nariño. It is convenient remember that the dimensions correspond to the criteria that evaluate six
prioritization objectives. The criteria are education, health, quality of life, security, and economy for the
community's assessment, and financial for the project's evaluation.

The solar resource as input in the electricity generation was the criterion for choosing alternatives be-
cause this research is part of a larger project that seeks to promote solar energy projects; therefore, it
is essential to offer elements to create a value chain around the solar energy in Nariño. The following
were the selected projects from PERS'alternatives:

• School electrification: electrification of 256 schools located in 11 Pacific zone municipalities
using solar PV technology. The objective of the project is to put into operation the computation
room and in the future, an ethernet network in each school. To achieve this, the project seeks to
install solar power plants with a capacity between 1,5 to 2 kW (Universidad de Nariño; Unidad de
Planeación Minero Energética; USAID; IPSE, 2014b).

• Rural electrification: electrification of El Sande rural community using solar kits. The community
is composed of 364 inhabitants who live in 54 dwellings. As the information did not let us know
if the community had a distribution network; therefore, it proposed using a 2 kW-solar kit with
a battery system offering a three days autonomy because this is an off-grid area (Universidad de
Nariño; Unidad de Planeación Minero Energética; USAID; IPSE, 2014c).

61 COP $ is equal to 0,00027 US$
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Figure 2-2. Scheme for prioritization of social projects.

Prioritization of social projects

Economy Security Education Health Life quality Financial

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Community evaluation Project evaluation

• Solar public lighting: the project proposes to install 213 solar lighting systems every 18 meters
along the streets of the municipality of San Lorenzo. Each 40 W-solar lighting system equates to 70
W-conventional light system installed. Moreover, each one has a three days autonomy through an
energy storage system (Universidad de Nariño; Unidad de Planeación Minero Energética; USAID;
IPSE, 2014d).

• Water pumping system by solar energy: water pumping systems using solar energy for irrigating
crops and providing water for the population in the municipality of Taminango. The pump moves
16 m3/day of water to cover the need for irrigation and for human being's consumption. The
number of systems considered corresponds to the number of properties between 1 and 5 hectares
reported in the institutional databases (2.304) (Universidad de Nariño; Unidad de Planeación
Minero Energética; USAID; IPSE, 2014a)

The methodology section's procedure led the authors to normalize each component of Table 2-1 values
using Equation 2-1 and calculate the dimensions'indexes using Equation 2-2. The computing deemed
information from all 64 municipalities. Table 2-4's two first rows indicate the best and worst condition
values for each dimension. For instance, the best condition for the education, health, and economy
dimensions occurs when the result is one (Oficina de planeación educativa, 2018; DANE & Banco de
la República de Colombia, 2016; Departamento Administrativo Nacional de Estadísitica - DANE, 2017,
2018b,c,e,a,d, 2016, 2005; Instituto Departamental de Salud de Nariño, 2018).

Table 2-4 shows the results from the community evaluation in the municipalities linked to the projects.
San Lorenzo has a better indicator (0,49) than Roberto Payán (0,09) in the education dimension. Con-
cerning health, Tumaco presents better conditions (0,69) than Santa Cruz (0,13). However, Tumaco has
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the worst security conditions in the state (1,00). In the life quality dimension, the population of La
Tola presents the worst situation (0,95). Tumaco has the highest score (0,53) in economic importance
because it is a harbor, and Taminango shows the worst position (0,19). These results show that the
municipalities located in the state's Pacific zone are the most affected in the evaluated dimensions.

Table 2-4. Municipalities evaluation results.

Education Health Security Quality of life Economy

Better condition 1 1 0 0 1

Worst condition 0 0 1 1 0

Municipality Education Health Security Quality of life Economy

Barbacoas 0,28 0,68 0,97 0,76 0,52

Cumbitara 0,30 0,38 0,67 0,74 0,25

El Charco 0,15 0,52 0,49 0,89 0,38

La Tola 0,19 0,49 0,22 0,95 0,36

Mosquera 0,17 0,28 0,12 0,91 0,44

Olaya Herrera 0,17 0,49 0,55 0,77 0,44

Francisco Pizarro 0,24 0,34 0,17 0,82 0,34

Policarpa 0,39 0,31 0,87 0,39 0,30

Roberto Payán 0,09 0,53 0,86 0,80 0,48

Tumaco 0,26 0,69 1,00 0,62 0,53

Santa Bárbara 0,19 0,68 0,31 0,34 0,44

Santacruz 0,23 0,13 0,11 0,67 0,22

San Lorenzo 0,49 0,44 0,04 0,53 0,22

Taminango 0,47 0,40 0,10 0,50 0,19

Best indicator

Worst indicator

Table 2-5. Normalized NPV.

Alternatives Normalized score

School electrification 0,91

Rural electrification 1,00

Solar public lighting 1,00

Solar water pumping 0,00

The NPV was the chosen criterion for the projects’ evaluation. In
this step, the authors made an economic analysis of each project,
considering all the investment costs and a discount rate of 10 %
evaluated in six years. Table 2-5 shows the normalized results of
the financial evaluation of the projects. The rural electrification and
solar public lighting projects have the same normalized value, al-
though the NPV is slightly different. It is valuable to point out that
the water pumping project using solar energy is the most expensive
because it would cover 2.304 beneficiaries, corresponding to the total rural properties.

The following step was to compute the weights for each dimension with the AHP method In this case,
since there is no expert panel to determine the importance of one dimension over another, six prioriti-
zation objectives are presented, named from O1 to O6. Each objective emphasizes one dimension over
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the others and Table 2-6 shows the results of the weights.

Table 2-6. Weighting by prioritization objec-
tive.

O1 O2 O3 O4 O5 O6

Education 0,083 0,083 0,083 0,083 0,083 0,583

Health 0,083 0,083 0,083 0,083 0,583 0,083

Security 0,083 0,083 0,083 0,583 0,083 0,083

Quality of life 0,083 0,083 0,583 0,083 0,083 0,083

Economic 0,083 0,583 0,083 0,083 0,083 0,083

Financial 0,583 0,083 0,083 0,083 0,083 0,083

Total 1,000 1,000 1,000 1,000 1,000 1,000

Table 2-7 presents the results of the projects’ prioriti-
zation by objectives. The schools'electrification is the
main alternative from the prioritization objectives re-
lated to the financial (O1), life quality (O3), security
(O4), and education (O6) objectives. The results are
coherent because the municipalities involved in this
project showed the lowest indicators in the dimen-
sions considered. If the objective is to improve life
quality, security, and education, the projects crossing
these dimensions are the school's electrification ones.
Moreover, if the available budget determines the deci-
sion, the school's electrification is also a good option because the project's normalized NPV value is the
third option, which means that the project is not the most expensive one.

The objectives related to the economic (O2) and health (O5) issues prioritize the electrification project
for the indigenous reservation. These prioritization objectives highlight the importance of the objective
population's economic and health dimensions over the other dimensions. The collected information
shows that Santacruz community has the worst health condition between the communities evolved in
the evaluated alternatives (see Table 2-4). In the economic dimension, the indicators show that the San
Lorenzo and Santacruz communities are in the same conditions; however, Santacruz had worse conditions
than San Lorenzo in security, health, and education dimensions. It let us conclude that the electrifica-
tion improves the economic and health conditions of the population. Results are consistent because
electricity powers working tools, electric devices like refrigerators to preserve meals, and technological
entertainment devices.

For all prioritization objectives, the last project in importance is the water pumping using solar energy.
As the community evaluated concerning this project has better indicators than other communities, the
results were coherent except in the economic dimension. The public lighting project using solar energy
is the third priority since the evaluated community for such a project has better conditions than some
other evaluated communities in the education and security dimensions.

Table 2-7. Projects prioritization.

Project O1 O2 O3 O4 O5 O6

Solar pumping 4,66 4,56 4,38 4,09 4,44 4,40

Rural electrification 5,74 5,63 5,57 5,18 5,67 5,62

Solar public lighting 5,58 5,47 5,32 4,97 5,34 5,32

School electrification 5,76 5,59 5,66 5,54 5,55 5,69

The first in importance are in dark gray
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The school electrification projects are a priority in four proposed prioritization objectives. The authors
did a more detailed analysis of this project to understand why this project is a priority in the state. The
school electrification project was disaggregated in the project by the municipality, and each project was
evaluated with the same weighting of Table 2-6.

The project's benefits quantification method followed the suggestions from the Manual of Benefits Eval-
uation and Quantification by the National Planning Department (Dirección de Inversiones y Finanzas
Públicas, 2006). In the manual suggests the following assumptions considered in this research:

• The school electrification increases both access to information and education quality.

• Reduction of school dropouts and a higher probability of reaching middle education level by
students.

• Increase of the future incomes of at least one legal minimum wage.

Under the last considerations, the project's benefits include at least the annual income for who finishes
the middle education level and recover about ten laptops per school that were disused because there
was no electricity.

Table 2-8 shows the project's assessment results stemmed from the NPV and Internal Return Rate (IRR)
for each municipality. The results agreed with the scale economies, since the largest project had the
highest IRR, while the smallest project had even a negative IRR. Therefore, the results presented the
break-even point with the execution of at least ten schools onwards.

Table 2-8 shows the project's assessment results stemmed from the NPV and Internal Return Rate (IRR)
for each municipality. These results agreed with the scale economies, since the largest project had
the highest IRR, while the smallest project had even a negative IRR. Likewise, the results identified the
break-even point with the execution of at least ten schools onwards. The same Table also exhibits the
prioritization objectives results for each municipality of which there is a noticeable result. The school
electrification project's analysis from all prioritization objectives identifies to the municipality of Tu-
maco because of offering the lowest results respect to other municipalities. The last is concordant with
the municipality's socioeconomic issues that put it in a better position than the others in the Pacific
zone; consequently, this project had the highest IRR, as Table 2-8 shows.

Although in the O1, the most relevant factor is the financial one, the project execution order is not
equal to the NPV standardization order. It occurs because the project evaluation includes other decision
variables as health, education, security, and others. When the economy is the leading dimension, as O2
shows, the school electrification project in Cumbitara achieves the first place because this municipality
has one of the lowest economies among the evaluated communities. Therefore, the execution of this
project would improve the economic conditions in this area. In O4, when the security dimension leads
the analysis of school electrification, the municipality of Barbacoas is a priority because it has the second
worse condition in this dimension after the municipality of Tumaco. As Tumaco has better conditions in
the other dimensions than Barbacoas, this took the first position for O4.



2.4 Results obtained 21

Table 2-8. Financial evaluation of the school electrification projects.

Project Number of
schools

Normalized
NPV

IRR O1 O2 O3 O4 O5 O6

Tumaco 53 0,00 16,77 4,782 4,487 4,577 4,782 4,377 4,648

Roberto Payán 45 0,26 16,09 5,303 5,473 5,634 5,670 5,443 5,695

Olaya Herrera 40 0,36 15,11 5,363 5,494 5,612 5,487 5,463 5,644

El Charco 24 0,69 12,19 5,626 5,587 5,732 5,504 5,503 5,716

Cumbitara 19 0,79 9,60 5,720 5,701 5,696 5,653 5,628 5,671

La Tola 17 0,83 8,11 5,664 5,560 5,728 5,290 5,485 5,653

Santa Bárbara 15 0,86 6,43 5,585 5,416 5,276 5,252 5,261 5,555

Francisco Pizarro 14 0,88 5,47 5,685 5,561 5,651 5,234 5,565 5,620

Barbacoas 11 0,94 1,85 5,764 5,503 5,668 5,779 5,397 5,647

Policarpa 10 0,96 0,32 5,790 5,652 5,461 5,741 5,642 5,599

Mosquera 8 1,00 -3,43 5,743 5,500 5,695 5,198 5,597 5,655

Table 2-9's cells contain a number meaning the same ranking in the executing order for both prioritiza-
tion objectives. This correlation matrix is a useful tool for decision-makers who should determine the
merging of objectives. Another characteristic is that the matrix's diagonal corresponds to the evaluated
municipalities. The most outstanding result is the correlation between O3 (life quality) and O6 (edu-
cation); this means that both objectives have the same ranking in executing the alternatives. In other
words, to improve education to increase life quality and vice-versa.

Table 2-9. Correlation matrix in the school elec-
trification projects by dimensions

O1 O2 O3 O4 O5 O6

O1 11 1 1 3 4 1

O2 1 11 3 2 3 4

O3 1 3 11 1 2 6

O4 3 2 1 11 2 1

O5 4 3 2 2 11 2

O6 1 4 6 1 2 11

Furthermore, when education improves, the popu-
lation's economy also progresses, as confirmed by
the correlation between O2 and O6. This result also
confirms the assumption to compute the IRR where
investments in education increase the population's
incomes. Accordingly, detailed research of these
correlations would support the sectoral initiative
formulation for the education and economy sec-
tors, impacting the life quality and boosting social
development. For future research works, it could be
interesting to insert more dimensions about com-
munities and projects to contribute to the formulation of broader socio-energy policies.

2.4.2 Guideline for community work

Taking as a basis the co-construction methodology, Nariño's population information derived from pub-
lic entities, and field research in the Huatacondo village, the authors propose a three-stage guideline
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for promoting the joint work between developers or funding entities and communities. Figure 2-3 syn-
thesizes the guideline for impelling solar PV technology projects for the electrification.

The first step in the harmonization stage focuses on forming the interdisciplinary working group to de-
fine the energy project's objective. The second step searches to standardize concepts and terms to talk
the same language among the working group's members. This step is essential because the group's
members may have different ideas about successful, sustainable, and pertinent projects, and positive
and negative impacts stemmed from them. Consequently, before designing a solution or interacting
with the community, it is crucial to clarify both the objective and the project's expected impacts. The
joint work strengthens the project because the population would know its purpose and impacts; like-
wise, it would state their concerns. The third step consists of characterizing the community from the
point of view social, economic, cultural, among others. This characterization stands out to the commu-
nity's stakeholders and recognizes the community's needs to offer suitable solutions. The first stage's
final step consists of drawing up the project's first design considering a technical, economic, and social
view. Using primary or secondary information related to the study place is vital.

The integration stage begins with the presentation of the project's design to the community. This social-
ization is essential because it arouses a dialog around the project's crucial aspects that could be trou-
bling. Those spaces should advertise the changes that eventually would re-design the project, including
opinions and proposals from people. The aim is to achieve a consensus; consequently, the process is
repetitive; namely, it occurs several times until achieving such consensus. Although it is not necessary
to hold technical debates, the community must feel that it is a fundamental part of the decision-making
process to formulate the project. The third step searches the executing company. Ideally, the company
should be local because it eases the project execution, the maintenance operations, and the relation-
ship with the community. However, when there are no local companies to develop the project, it is sug-
gested to involve a local supervisory body that may be constituted by academy members, as a university
research institution, local population, among others, to supervise impartially activities developed by
the executing company. The last step trains local staff to perform primary operations and maintenance
activities. This guideline intends to minimize the foreign staff dependence to carry out routine tasks and
reduce operation and maintenance costs.

The sustainability stage is the last. It seeks to maintain the project over time. Therefore, communication
among the funding entity, the executing company, and the community is constant. The first step con-
sists of creating a local regulation board; conveniently, this entity must be legitimate for the community
and act according to its customs and culture. In the second step, the national level's regulatory enti-
ties would help the local regulatory board establish concordant rules, rights, and obligations with the
national regulation and laws. This step is imperative because several troubles would be solved trans-
parently. The final step creates a management model for long-term operation in which the company
and the community have responsibilities because they would part of the organizational structure.
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Figure 2-3. Guideline for community work
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2.5 Discussion

This paper proposed a methodology for the selection of projects and its implementation in a commu-
nity. Additionally, the prioritization methodology evaluates relevant areas and the cost of implementing
solar-energy-based. The criteria chose for community evaluation consider the SDGI and the HDI and
the NPV results were the criteria for project evaluation. Also, the prioritization presents a combination
of those indexes, which were the criteria used in the AHP methodology to give an execution order. Fur-
thermore, the guideline for community work emphasized the integration of the community in the design
and operation of the implemented solution, providing the project with a higher probability of success.
In this case, the authors considered the characteristics of Nariño and identified relevant areas for the
community evaluation by municipalities. The dimensions chosen were education, health, quality of life,
economy, and security. However, it is convenient to include more dimensions to understand in a better
way the conditions of the population and include cultural aspects of the communities.

For the project evaluation, the authors consider the NPV, giving more importance to those with lower
costs. However, this lone indicator does not allow for the recognition of social benefits that may arise
from the project. Hence, in future work, the use of additional quantifiers that measure the economic
benefit that arose from social projects could motivate the attention of potential investors.

The alternatives evaluated with this methodology were four projects, along with the communities in-
volved. The results show that in four of six prioritization objectives, the electrification of schools is the
priority, and in two objectives, the priority was the electrification of an indigenous reservation. Given
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the above results, the authors decided to carry out a more detailed analysis of the project of electrifica-
tion of the schools. The analysis showed that if the IRR is a decision variable, it is better to implement
larger projects; in this case, more than ten. On the other hand, the results showed a correlation between
education and the quality of life because O3 and O6 have six projects in the same order of execution;
therefore, the accomplishment of education projects improves the quality of life and vice-versa. In this
sense, it would be convenient to undertake more studies that confirm this finding and thus unify efforts
in the public policies in these sectors to strengthen the results

The researchers expected that, with the implementation of this prioritization methodology, it would
be possible to identify the optimal execution order of social projects according to a given objective.
Additionally, with the guideline, the objective is to make the community an active part of the solution, to
improve the sustainability of the project and avoid or reduce the dependence on an external entity, and
thus empower the community and promote their social, economic, education and cultural development,
among other aspects. It is also essential to highlight the primary role of the local regulation board in the
success of the project. Therefore, future research should analyze aspects such as regulation, election
mechanisms of the board members, among others, deeply.



3 Assessing empirical models for estimate
global solar irradiance using air temperature
in tropical and mountainous environment.
Part I: imputation

1

Abstract

Solar irradiance is an available resource that could support electrification in regions with low socio-
economic indices. Therefore, it is increasingly necessary to understand solar irradiance behavior and
data. However, some places, especially those with low socio-economically impoverished population,
do not have solar irradiance data, and if such information exist, it is likely incomplete. Therefore, re-
searchers estimate this energy resource using information from other meteorological variables, such as
temperature. Nevertheless, a broad analysis of these techniques in tropical and mountainous environ-
ments has yet to be conducted. As such, current research analyzes the performance of three well-known
empirical temperature-based models in tropical and mountainous environments. Moreover, this work
proposes a new empirical relationship that can models solar irradiance in some areas better than the
other three models. Statistical error comparison permints the selection of the best model for each lo-
cation and the best data imputation model. Hargreaves and Samani’s model had better results in the
Pacific zone, while the proposed model demostrates better results in the Andean and Amazon zones.
Another significant result was the linear relationship between the new empirical model constants and
the altitude above 2.500 MASL.

Keywords

Solar irradiance, Data imputation, Bristow and Campbell, Hargreaves and Samani, temperature-based
empirical models.

1This article had the participation of Belizza Ruiz
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3.1 Introduction

It has taken decades before solar energy becomes economically feasible in developing countries. Today,
the associated costs of harnessing this energy resource are competitive in certain situations such as
rural and isolated electrification. Isolated and rural areas for which electricity could be supplied by
expanding electricity transport systems over areas with low-population density discourage investments
because such as expansion would require an electricity demand sufficient to turn a profit. Despite these
limitations, the State must ensure access to electricity services for its entire population, which could
be achieved via non-conventional energy sources, such as solar energy. Before doing so, however, it is
essential to understand the behaviors of such sources. In developing countries, solar irradiance data
are often not available because of the scarcity of weather stations that measure this variable, and the
insufficient or incomplete calibration and maintenance of metering equipment. In some cases, even
when open-access databases are available, the actual acquisition of such information might be difficult
(Bakirci, 2009). Therefore, in recent years, solar irradiance studies have increasingly relied on empirical
methods that incorporate relevant variables, such as temperature, sunshine, and relative humidity, to
estimate solar irradiance.

Researchers have developed models and methods, from empirical models to artificial intelligence, to
estimate solar insolation for different time frames. The simplicity, acceptance, adaptability, and low
computational cost are the advantages of the empirical models that led us to analyze them. Most em-
pirical models in this regard are based on astronomical, geometrical, physical, and, especially, meteo-
rological factors (Besharat et al., 2013). Meterological factors include temperature, sunshine duration,
and cloudiness, the latter of which is particularly important for understanding solar irradiance behavior.
Of these factors, sunshine duration and temperature are typically recorded in relevant databases (Ben-
son et al., 1984), and are consequently implemented most often to estimate solar insolation (Bakirci,
2009). As the implementation of an effective empirical model depends on data availability and consis-
tency (Akinoglu, 2008b), some researchers have recommended revising data simultaneity and reliability
at study sites (Almorox et al., 2011). Unlike temperature data, which are recorded by weather stations,
sunshine duration data are often not available. Therefore, temperature-based empirical models are a
more convenient option for estimating global solar radiation (Fan et al., 2018).

In 1982, Hargreaves and Samani presented the first temperature-based model for estimating solar inso-
lation based on daily temperature differences (Hargreaves & Samani, 1982). This was followed, in 1984,
by a temperature-based empirical model, developed by Bristow and Campbell, that focused on differ-
ence between the daily maximum and minimum temperatures (Bristow & Campbell, 1984).In 20011,
Chen et al. evaluated the performance of the temperature-based models in China, they found that sup-
port vector machine models using maximum and minimum temperatures as input and polynomial kernel
function outperform empirical models (Chen et al., 2011). In 2014, H. Li et al. presented a temperature-
based model for China that built upon the Hargreaves and Samani model (H. Li et al., 2014). Quansah
et al. evaluated temperature- and sunshine-based empirical models in Ghana (Quansah et al., 2014),
and C. M. Dos Santos et al. assessed nine temperature-based models for Brazil (C. M. Dos Santos et
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al., 2014). In 2017, Rivero et al. validated the Hargreaves and Samani model for Mexico (Rivero et al.,
2017), and Jamil & Akhtar compared empirical models for India’s subtropical and humid environments
(Jamil & Akhtar, 2017). Although several studies analyze the empirical models’ behavior in different
places globally, there is no the same amount of research analyzing the efficacy of temperature-based
models for tropical and mountainous environments.

Toward this end, the purpose of this research was to assess three empirical temperature-based models-
Hargreaves and Samani (HS), Bristow and Campbell (BC), and Okundamiya and Nzeako (ON)-with re-
spect to their capacity to estimate solar insolation in a tropical and mountainous environment. To
achieve this goal, statistical validation determines and compare the performance of the three models.
Aditionally, the authors propose a new method based on logistic regression model, to estimate solar
insolation according to daily temperature difference. The data used as input for these empirical models
came from IDEAM’s2 Automatic Weather Stations (AWS) located in the state of Nariño, which has three
environmental zones: Pacific, Andean, and Amazonian. This allowed for the evaluation of the models in
different weather and physiographic conditions. The database was randomly divided into two parts: the
first for calibrating the models, and the second for validating the models statistically. Before using the
empirical models, the data passed a quality control procedure to improve the results’ reliability. In this
regard, R-CRAN was the software used to carry out the computational process needed for the research
(R Core Team, 2020).

This work has six sections organized as follows: Section 3.2.1 presents a description of the case study.
Section 3.2.2 Data quality control for both solar irradiance and temperature data, Section 3.2.4 Em-
pirical temperature-based models, Section 3.2.5 contains the proposed model, Section 3.2.6 Statisti-
cal validation of empirical models. Section 3.3 shows the results and discussion. Finally, Section 3.4
presents the conclusions.

3.2 Materials and methods

3.2.1 Site and dataset

The use of solar energy in production processes requires precise knowledge of solar irradiance behavior
in specific locations, including weather patterns, in addition to other factors, such as orographic char-
acteristics and socio-economic population data pertinent to the potential impacts of solar energy. For
instance, Nariño’s location (00◦31′08′′N and 02◦41′08′′N latitude and 76◦51′19′′W and 79◦01′34′′W

longitude) favors the harnessing of solar energy, as the region receives considerable and consistent solar
irradiance year round, with little variation compared to other latitudes. This is notable because, once
installed, solar power systems would not need trackers to reach the maximum power point, thereby
reducing initial investment and maintenance costs and facilitating the easier installation of additional

2Institute of Hydrology, Meteorology and Environmental Studies, IDEAM by iys Spanish name
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solar power systems.

Despite having low solar irradiance variability, the State of Nariño is located in an Intertropical Conver-
gence Zone given its close proximity to the Equator, which in turn influences weather behavior, causing
unimodal or bimodal rainy seasons and increased cloud cover due to high humidity in low altitudes. The
latter occurs because the region’s mountain ranges retain the moist air masses coming from the Pacific
Ocean. More specifically, when incoming air masses collide with the western mountain range, the Pacific
foothills become more humid and tend to maintain this humidity (Instituto Geográfico Agustín Codazzi
- IGAC, 2014). Hence, it is appropriate to divide the weather and orographic conditions of Nariño into
three environmental regions: the Pacific, the Andean, and the Amazon (Martínez, 2018).

Figure 3-1. Administrative subregions of the
Nariño state.

The Pacific region covers 52 % of the total state ter-
ritory and is costituted by Telembí, Pacífico Sur, San-
quianga, and Piedemonte Costero administrative subre-
gions (see Figure 3-1). This region includes the Mira-
Mataje binational watershed, and a mangrove forest lo-
cated in the Sanquianga natural reserve. Besides, it has
two climatic zones: the Pacific flatlands and the Pa-
cific foothills. The first one has humidity higher than
80 %, temperatures higher than 26◦C , and the pre-
cipitation range is between 3.000 and 5.000 mm/year.
The second one presents a high humidity, temperature
between 18◦C to 24◦C , and precipitations between
4.000 and 6.000 mm/year. Nonetheless, there is a high
precipitation zone located between Junín and Barbacoas
localities with a 9.000 mm/year level (Gobernación de
Nariño, 2016a; Instituto Geográfico Agustín Codazzi - IGAC, 2014).

The second zone is the Andean region, constituted by La Sabana, Los Abades, Occidente, Cordillera, Centro,
Juanambú, Río Mayo, and Guambuyaco administrative subregions (see Figure 3-1). In this region, the
Andean mountain range is divided into the western and central mountain range, covering approximately
40 % of the area of the State (CORPONARIÑO, 2001; Instituto Geográfico Agustín Codazzi - IGAC, 2014).
In the western mountain range are the Chiles, Cumbal, and Azufral volcanos. In the central mountain
range are the Galeras and Doña Juana volcanos, and also, the Túquerres-Ipiales high flatlands, as well as
the Atriz Valley. This region shows a bimodal precipitation behavior, between 800 and 2.200 mm/year,
with peaks in April-May and October-November. In the Río Mayo, Juanambú, and Guaitara watershed,
there is a temperature between 16 to 24 ◦C and precipitation of 1.000 to 1.800 mm/year. In the north
zone towards Patía, the annual precipitation is less than 1.000 mm/year, with a temperature above 24
◦C (Gobernación de Nariño, 2016a).

The third region is the Nariño Amazon watershed, which takes 8 % of the territory composed by the Ex-
provincia de Obando administrative subregion. About 16,4 % of the state population lives in this area. This
region has two climate zones: the mountainous and the flatland zone. The first one, located between
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the Patía and Putumayo rivers, present temperatures between 6 ◦C to 11 ◦C , and receives precipita-
tion about 2.000 mm/year. The second one has tropical weather influenced by the cloudy jungle, and
present precipitation between 500 to 1.500 mm/year (Gobernación de Nariño, 2016a). It is convenient
to highlight that the mining activity is a significative gainful activity; in fact, about 98,38 % of the State’s
minerals come from this region (Instituto Geográfico Agustín Codazzi - IGAC, 2014).

Figure 3-2. AWS location.In the State of Nariño, eight AWS measure solar
irradiance (see Table 3-1). Figure 3-2 shows the
location of automatic and conventional weather
stations in the State. . In the Pacific region, there
are three AWS located in the State of Nariño and
one in the neighboring State of Cauca. The AWS’s
altitude range is between 16 and 512 MASL. In
the Andean region, there are five AWS with al-
titudes between 1.005 and 3.120 MASL. Finally,
in the Amazon region, there is one AWS at 3.577
MASL. The maximum altitude difference between
all AWS is 3.561 MASL. Such difference allows
evaluating the solar irradiance behavior in a wide
range of altitudes and three diverse environmen-
tal regions.

Table 3-1. Automatic Weather Stations.

Name Latitude [◦] Longitude [◦] Altitude [MASL] Period Region

Biotopo 1,41 -78,28 512 2005-2017 Pacific

Altaquer 1,56 -79,09 1.1010 2013-2014 Pacific

Granja el Mira 1,55 -78,69 16 2016-2017 Pacific

Cerro-Páramo 0,84 -77,39 3.577 2005-2017 Amazon

La Josefina 0,93 -77,48 2.449 2005-2017 Andean

Viento Libre 1,62 -77,34 1.005 2005-2017 Andean

Universidad de Nariño 1,23 -77,28 2.626 2005-2017 Andean

Botana 1,16 -77,27 2.820 2005-2017 Andean

El Paraiso 1,07 -77,63 3.120 2005-2017 Andean

3.2.2 Solar irradiance data quality control

The data quality control is a procedure intended to improve the reliability of the time series data. The
procedure includes the analysis of database structure, the comparison with fixed and flexible limits, and
time consistency. These steps have previously yielded reliable results in studies aimed at understanding
weather data quality control in Spain (Estévez et al., 2011). The quality control procedure followed in
the current research relied on guidelines presented in regulation UNE500540, which outlines successive
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analytical procedures of quality control for different weather variables (AENOR, 2004).

1. The first step consists of checking the database structure. In our case, the data exhibited the fol-
lowing structure: AWS code, weather variable code, date, hour, and value. This step only main-
tains the values with the described structure (Rivero et al., 2017).

2. The second step, the fixed-range step, UNE500540 suggests using the most restrictive condition
between the measurement device limit and the physical phenomenon limit. The physical limit is
the maximum extraterrestrial solar irradiance of each location computed with Equation 3-1:

I0 = Isc

[
1 + 0, 033cos

(
360

D − 3

365

)]
∗ sinβ (3-1)

sinβ = cosϕcosδcosωs + sinϕsinδ (3-2)

whereD is the Julian day, Isc is the solar constant (1.367 [W/m2]) representing the energy from
the Sun per unit area of the surface perpendicular to the irradiance propagation direction (Şen,
2008), I0 is the maximum extreterrestrial solar irradiance, β is the solar altitude, ϕ is the latitude
of the site, δ is the solar declination, and ωs is the hour angle. In this case of study, AWS have
pyranometers Kipp & Zonen CMP11 with an upper operation limit of 4.000W/m2 (Kipp & Zonen,
2000). The most restrictive condition is the last, the calculated global solar irradiance in the time
(AENOR, 2004). Consequently, I0 ≥ Imt, where Imt is the measured global solar irradiance at
the time t.

3. The third step, the flexible-range step, UNE500540 suggests comparing the time series with the
maximum and minimum values of a time series validated. In this case, there is no time series
previously validated; therefore, we used, as an alternative, the restriction proposed for Estévez
et al. with a modification. Namely, instead of using I0, they use the following range 0, 03Icst ≤
Imt ≤ Icst, where Imt is the measured global solar irradiance at time t, and Icst is the clear-sky
global solar irradiance at time t

Ics = I0τ. (3-3)

Considering that the clear-sky global solar irradiance Ics is equal to τ times I0 and τ is the at-
mospheric transmittance. The first step is to use the Kreith & Kreider model to estimate the
atmospheric transmittance and then calculate Ics with Equation 3-4 (Şen, 2008)

τ = 0, 56
(
e−0,65m + e−0,095m

)
(3-4)

with:

m =
1

sinβ
(3-5)

where m is the air mass.
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4. The fourth step, the time-consistency step, consists of analyzing the changing hour by hour of
the global solar irradiance. This analysis follows the restriction

∣∣Icst − Icst−1

∣∣ > ∣∣Imt − Imt−1

∣∣.
It is a useful test for detecting data storage and connection troubles in the datalogger. A high
sampling frequency, for instance, every ten minutes, would increase the effectiveness of the test.

Aside from the tests mentioned above, it is also necessary to consider the zero offset, which results
from thermal imbalances in the pyranometer. This phenomenon occurs because the sensor does not
absorb any measurable irradiance values in the pyranometer’s spectral range, resulting in erroneous
values (Kipp & Zonen, 2000). It is fundamental to offset this unbalance because neglecting it would
entail underestimated solar irradiance records between 0,7 % to 4,3 %. Despite their importance, sev-
eral environmental factors influence the measurement process, making it difficult to correct it for all
measurement instruments in all locations and environments (Serrano et al., 2015). Although various
approaches to correct the zero-offset adapted to specific environmental conditions and instruments
exist, the current research did not follow these approaches.

3.2.3 Temperature data quality control

The validation of temperature data follows the Estévez et al.; Rivero et al. recommendations. The quality
control of temperature data comprises five validation steps: structure, range, step, consistency, and
persistence.

1. The first step consists of verifying the database structure, likewise that the solar irradiance vali-
dation.

2. The second step, the range-test step, involves two evaluation methods: the sensor range method
and a data validation criteria defined by other researchers method. In this case, the sensor is
a ROTRONIC HYGROCLIP 2 RTD PT100 with a range between −40◦C and 60◦C . Rivero et al.
recommend a temperature interval of between −50◦C and 70◦C , while Estévez et al. suggested
a range of −30◦C to 50◦C . We followed the Estévez et al. recommendation because it is inside
the temperature instrument range.

3. The third step, the step test, requires the fulfillment of the following requirements: |Th − Th−1| <
4; |Th − Th−2| < 7; |Th − Th−3| < 9; |Th − Th−6| < 15; and |Th − Th−12| < 25, where Th is
the temperature at hour h. Although this evaluation does not consider other climatology aspects
that can affect temperature variation, like humidity, wind speed, cloudiness, and precipitation, we
applied these restrictions. Another fundamental requirement is that the daily step restriction ful-
fills the following condition Tmax − Tmin < 30◦C (Herrera-Grimaldi et al., 2019), where Tmax

is the maximum daily temperature, and Tmin is the minimum daily temperature.

4. The fourth step, internal-consistency test, assesses the accomplishment of the following condi-
tions: Tmax > Tmean > Tmin; Tmax (D) > Tmin (D − 1); Tmin (D) ≤ Tmax (D − 1), where
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Tmean is the mean daily temperature.

5. The fifth step, persistence test, verifies the measurement variability; therefore, the data must
accomplish the following conditions: Tmax (D) ̸= Tmax (D − 1) ̸= Tmax (D − 2),Tmin (D) ̸=
Tmin (D − 1) ̸= Tmin (D − 2).

The analysis for the step test, internal consistency test, and persistency test followed the Estévez et
al. quality control process because it offered promising results in data analysis in Spain (Estévez et al.,
2011; Herrera-Grimaldi et al., 2019).

3.2.4 Empirical temperature-based models

Although the air temperature is a standard variable in the weather stations, it was no frequent to es-
timate solar insolation using this variable. The temperature started to be relevant to estimate solar
insolations when agricultural studies modeled solar insolation to analyze the crop production rates.
Consequently, researchers from other knowledge fields as solar one paid attention to the maximum,
minimum, and mean temperature values to model their processes (Paulescu, 2008). The most tradi-
tional models using the maximum and minimum temperatures are the Hargreaves and Samani, and
Bristow and Campbell models (Besharat et al., 2013; Bristow & Campbell, 1984). Both models are
the basis of innovative approaches adapted to the location conditions.

Before presenting the empirical models, it is necessary to introduce the daily extraterrestrial solar inso-
lation on a horizontal surface H0 math expression because this is part of most empirical models:

H0

(
Wh

m2day

)
=

24

π
Isc

(
1 + 0, 033cos

(
360D

365

))
∗
(
cosϕcosδcosωs +

π

180
ωssinϕsinδ

)
(3-6)

The solar declination δ and the sunset hour angleωs are calculated with Equation 3-7 and Equation 3-8,
respectively:

δ = 23, 45sin

[
360 (D + 284)

365

]
(3-7)

ωs = cos−1 [−tan (δ) tan (ϕ)] (3-8)

Hargreaves and Samani model

Hargreaves and Samani (HS) proposed a linear relationship between the temperature difference’s square
root and the fraction between the extraterrestrial and terrestrial solar insolation for different periods
in 1982,

H

H0

= a (Tmax − Tmin)
0,5 (3-9)
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where H is the global solar insolation on a horizontal surface, and a is the empirical coefficient. This
model did not consider the effects of cloudiness, humidity, latitude, elevation, and topography, among
others, in the specific location for which the model is used (Samani, 2000; Allen, 1997) Allen stated that
the HS’s model has better behavior in a monthly time-frame than daily because the variables follow a
mean trend, resulting in a consistent relationship between Tmax − Tmin and H ⁄H0 (Allen, 1997).

Table 3-2. HS empirical coeffi-
cients.

a Region type

0,16 Arid and semi-arid

0,17 Interior regions

0,19 Coastal regions

0,10-0,09 Humid climates

Source: (Besharat et al., 2013; Har-
greaves & Samani, 1982)

The empirical coefficient a represents the change rate from
the maximum and minimum temperatures difference with the
ratio between the extraterrestrial and terrestrial solar insola-
tion. Initially, HS proposed an empirical coefficient calibrated
with an eight-year time series from Central Valley in the Davis
County (California), see Table 2 (Besharat et al., 2013; Hargreaves
& Samani, 1982). HS presented a relevant conclusion about
weather elements affecting this coefficient. They found that rel-
ative humidity above 54 % affects the empirical coefficient, and
the maximum and minimum temperatures difference is smaller
when it is nearly this percentage. As shown in Table 3-2, humid
climates have minor values than a tenth while the other regions
have higher values than a tenth (Hargreaves & Samani, 1982). A thorough process uses empirical co-
efficients according to the region under study. Accordingly, Rivero et al. pointed out that using a fixed
empirical coefficient for a large area with different regions may lead to significant errors because to-
pography influences the temperature, advective environment, and vegetation (Rivero et al., 2017).

Bristow and Campbell model

Bristow and Campbell (BC) presented a model based on two assumptions. The first one is the linear
relationship between the absorbed (net) and incoming solar insolation, and the second assumption
consists of despising the heat flux coming soil for a daily period because on average it is near zero. Sen-
sible and latent heat are components of the absorbed insolation, and the sensible heat produce diurnal
temperatures higher than during the nighttime (Bristow & Campbell, 1984). The last is understand-
able because solar irradiance heat more the air masses due to the short-wave radiation. While during
the night, there is less long-wave emission from the Earth to the atmosphere reducing the temperature
(Meza F. & Varas E., 2000). Furthermore, under ideal conditions, the temperature tend towards the dew-
point during night, and it is minimum just before sunrise, resulting in a significant difference between
daily maximum and minimum air temperature. This phenomenon allows modeling solar insolation as a
function of temperature difference (Bristow & Campbell, 1984). Under these assumptions, the authors
presented their model,

H

H0
= a

[
1− e(−b∆T c)

]
(3-10)

where a, b, and c are empirical coefficients, a represents the maximum H/H0 in the study area, b and
c determine how soon the maximum H/H0 is achieved with ∆T increases. Empirical coefficients rep-
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resent the regional characteristics from arid to humid environments (Bristow & Campbell, 1984). The
range in daily temperature extremes (∆T ) was calculated as:

∆T (D) = Tmax (D)− Tmin (D) + Tmin (D + 1)

2
(3-11)

Temperature difference depends on the daily maximum Tmax, and minimum Tmin for a day D given
in (◦C). BC concluded that the minimum temperatures average of two consecutive days reduces the
hot or chilly air masses’ effects, avoiding overestimated and underestimated solar insolation values.
Accordingly, Dos Santos et al. stated that the advection is not a common phenomenon in tropics zones;
therefore, the temperature change ∆T estimation in these regions would satisfy the Equation 3-12.
Those authors also highlighted that this equation is better for sites with high altitudes, as in the study
case (C. M. Dos Santos et al., 2014)

∆T (D) = Tmax (D)− Tmin (D) (3-12)

Another weather effect affecting the solar insolation estimation is the rain. The rainy effect decreases
setting ∆T (D) equal to 0,75 times the measured. If ∆T (D − 1) is less than ∆T (D − 2) about
(2◦C), the first is multiplied by 0,75 (Bristow & Campbell, 1984). However, when the rainy period is
long, the relation between the solar insolation and ∆T reaches an equilibrium. Therefore, it does not
require adjustments (Goodin et al., 1999).

Models implemented in a tropical environment

The knowledge of solar irradiance behavior in tropical zones is a mandatory subject for this research.
The cases analyzed belong to Africa (Nigeria Abuja, Benin City, Katsina, Lagos, Nsukka, and Yola), Brazil
(Água Branca, Pao de Azucar, Santana do Ipanema, Palmeira dos Índios, Arapicara, Maceió, Corcuripe,
Sao Jose da Laje), and Mexico. Because Nariño is in a tropical area, the results from those three cases
constitute relevant inputs for our research.

Okundamiya & Nzeako (ON) proposed a linear model represented with Equation 3-13 (Okundamiya &
Nzeako, 2011),

H

H0

= a+ bTR + cTmax (3-13)

where TR is the monthly average of the ratio between the daily minimum and maximum temperature
Tmin/Tmax, and a,b,c are empirical coefficients. The model’s statistics validation showed that the coef-
ficient of determination between 0,809 and 0,952.

Nwokolo & Ogbulezie reviewed empirical models implemented in West Africa to compute the global
solar irradiance. They found that the soft computing models have better accuracy than the empirical
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models since they can be easier to adapt to several weather conditions because they allow more inputs,
as models or variables, to strengthen their reliability (Nwokolo & Ogbulezie, 2017).

Dos Santos et al. studied the performance of the ten temperature-based models in Northeastern Brazil.
They found that the models did not show significant changes after adjusting them concerning the rainy
periods’ effects. Dos Santos and colleagues also concluded that the HS model had a better performance
in hinterlands and interior lands, and the BC model showed the best performance in humid and coastal
zones (C. M. Dos Santos et al., 2014).

Table 3-3. Daily clearness index
classification ranges.

KT range Day type

0, 00 < KT ≤ 0, 20 Cloudy/Overcast

0, 20 < KT ≤ 0, 60 Partially cloudy

0, 60 < KT ≤ 0, 75 Sunny

0, 75 < KT ≤ 1, 00 Very sunny

Source: (Rivero et al., 2017)

Rivero et al. compared the values of the original HS model’s em-
pirical coefficients with new values stemmed from that model
calibrated for Mexico with local data. A noticeable aspect of that
research consists of Mexico’s climate zones classification using
the Köppen-Geiger system. Furthermore, the authors did another
classification based on the clearness index, as shown in Table 3-
3. to support the AWS data. It is useful to remember that the
clearness index is the ratio between the terrestrial solar insola-
tion and the extraterrestrial solar insolation. A relevant conclu-
sion showed that regardless of solar irradiance peaks during the
day, it is possible to obtain similar clearness index values. Another conclusion noted that fixed empiri-
cal coefficients lead to significant error, especially in zones with a temperature difference below 15 ◦C .
The authors proposed Equation 3-14 to overcome the identified troubles derived from fixed coefficients
(Rivero et al., 2017),

aHS = a1 + a2 (∆T ) + a3 (∆T )
2 (3-14)

where aHS is the calculated empirical value used in the original HS equation, a1 and a2 are empirical
coefficients of the Rivero et al. model.

3.2.5 Proposed empirical model

The proposed model originated from observing the scatter plot between the clearness index and the
daily temperature difference in each AWS. The authors concluded that the logistic model would offer
useful results. This model has successfully studied human growth, animal and biological processes, en-
ergy use patterns, and atmospheric applications (Agami Reddy, 2011; Moon & Kim, 2020). The logistic
regression commonly describes the relationship between binary variables and a predictor (Kleinbaum &
Klein, 2010).Although the relationship between extraterrestrial and terrestrial solar insolation does not
offer binary results, it varies into a range minor than one showing similar behavior. The use of this tech-
nique “arises in estimating relationships in which the dependent variable is continuous, but is limited
in range” (Manning, 1996). Manning’s statement describes the proposed model’s relationship between
the dependent and independent variables because the relationship of solar insolations is continuous
uniquely for the range defined by the minimum and maximum temperatures. The logistic regression
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does not assume that neither variables nor predictors have a normal distribution; this affirmation was
another criterion to choose this approach (Harrenll, 2015).

The logistic regression model is part of the Generalized Linear Model (GLM), which describes the re-
lationship between the mean of the dependent and independent variables with a more complex rela-
tionship than y = a + bx. In logistic regression, which is a statistical method, the coefficients have a
similar meaning than in linear regression; namely a is the log-odds of success at x = 0, while b is the
change in the log-odds of success corresponding to a one-unit increase in x (Casella & Berger, 2002).
This regression also assumes a linear relationship between the dependent and independent variables’
log-odds (Moon & Kim, 2020).

y =
1

1 + e−z
(3-15)

The logistic model comes from the logistic function; see Equation 3-15. y is the predicted variable, z
is a linear sum a +

∑
bixi, where xi is the i independent variable x, and a and b are constants (see

Equation 3-16) (Kleinbaum & Klein, 2010).

y =
1

1 + e−(a+bx)
(3-16)

The temperature change ∆T is the predictor variable. Therefore, the proposed model is the following:

H

H0

=
1

1 + e−(a+b∆T )
(3-17)

3.2.6 Statistical validation

Statistical validation is a mandatory step that allows comparing the predictor model with the real mea-
sures to determine its suitability. There are five main validation techniques: subjective assessment,
dispersion indicators, overall performance indicators, distribution similitude indicators, and visual in-
dicators (Gueymard, 2014; Mayer & Butler, 1993). The first one consists of evaluating the model by
experts. However, these techniques are open to misinterpretation since it is a subjective test with per-
sonal bias (Mayer & Butler, 1993). The second one is appropriate when the data have the same time
framework, location, and treatment, among other characteristics. This validation technique measures
the difference between the modeled and real value. Table 3-4 shows some dispersion measured, ex-
pressed in absolute units or percentages (Mayer & Butler, 1993).

Table 3-4. Statistical error measurements

Measurement Definition Formulae2

Mean percentage er-
ror (MPE)

To indicate that is a better model when
its value is close to zero, and the ratio of
the standard deviation of the measured and
computed value is near to one.

100
n

∑n
i=1 (pi − oi) /oi
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Table 3-4 continued from previous page

Measurement Definition Formulae2

Mean absolute error
(MAE)

It is the average vertical distance between
each predicted and observed point.

1
n

∑n
i=1 |pi − oi|

Root mean square
error (RMSE)

It provides a measure of the error size and is
sensitive to outlier values because this mea-
sure gives much weight on large errors.

[
1
n

∑n
i=1 (pi − oi)

2]1/2

Mean bias error
(MBE)

This measure provides information on the
long-term performance of the model, when
the model has a systematic error that
presents overestimated or underestimated
predictors. Low values of MBE are desirable,
though it should be noted that an overesti-
mated data set will cancel another underes-
timated data set.

1
n

∑n
i=1(pi − oi)

Standard Deviation
of the residual (%)

It shows the difference between the stan-
dard deviation of the predicted and ob-
served dataset.

(
100
Om

)
1
n

[∑n
i=1 n (pi − oi)

2 −
[∑n

i=1 (pi − oi)
]2]1/2

Uncertainty at 95
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2 pi is the predicted value,oi is the observed value, Om is the mean observed value, n is the amount of data

Source: (Almorox et al., 2011; C. M. Dos Santos et al., 2014; Gueymard, 2014; J. Li & Heap, 2011; Mayer
& Butler, 1993)

The third technique, although similar to the second, evaluates different fields of study to solar energy.
This indicator gives information about the model efficiency using greater values that mean better perfor-
mance. The fourth technique compares the model cumulative frequency distribution with the reference
values; this research did not implement this technique (Gueymard, 2014). The last technique shows the
simulated and real data features using plots. It is a conventional informative method; nevertheless, the
data presentation format could lead to misinterpretations. As a result, a desirable alternative is the ob-
served vs. predicted scatter plots with the linear fit, indicating the perfect adjust. It presents “goodness
of fitting as a vertical deviation from the perfect line,” indicating some biases (Mayer & Butler, 1993). A
suitable visualization method is the Taylor diagram since it combines three dispersion indicators: Pear-
son correlation, RMSE, and standard deviation (Gueymard, 2014).

3.3 Results and discussion

The results have four subsections. The first one presents the global solar irradiance quality control
results. The second one shows the results of the temperature data validation procedure. The third one
contains the HS, BC, NO, and the proposed models’ empirical coefficients. The last subsection comprises
the imputation results and the daily solar insolation for the AWS studied.
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3.3.1 Global solar irradiance quality control

A previously step to the quality control procedure is the data adjustment stemmed from the calibration
constant. In this case, there is no calibration constant for the Biotopo AWS affecting the time series qual-
ity; likewise, this AWS had the smallest recordings amount among all AWS. The total data were 47.612
for the period studied, corresponding to 34,50 % approximately. The AWS registered information during
57,59 % of the measured period 2005-2017. Table 3-5 shows the results of the global solar irradiance
validation procedure. The first step evaluating the database structure presents 5.843 recordings on av-
erage with the incorrect structure. The AWS with more recordings with the incorrect data structure is
Viento Libre; this step confirmed that 9.715 data did not have the database structure, corresponding to
12,55 % of the total data. The AWS with fewer recordings with the incorrect data structure is Biotopo;
this step confirmed that 1.055 data did not have the database structure, corresponding to 2,22 % of the
total. The fixed range validation discards 36,71 % of data on average. Biotopo lost the most data amount
corresponding to 47,62 % of the total, and the Universidad de Nariño lost the fewest data amount about
22,09 % of the total. The flexible range test results present that there are information losses of 39,11
%. Biotopo is the AWS with the lowest losses of about 15,14 %, and Guapi has the highest losses of about
54,22 %. Although the last test is not mandatory, it is useful to point out that 44,06 % of the recordings
did not overcome this level. Considering only the mandatory steps, about 35,27 % of the data over-
come these validation steps. The Universidad de Nariño’s AWS had the most data amount approving the
validation process, and the Guapi’s AWS had the fewest data amount approving the validation process.

Table 3-5. Solar irradiance validation results
Number of Data Data Data Data

AWS Name AWS Code Data Step 1 Step 2 Step 3 Step 4

Biotopo 51025060 47.612 46.557 24.385 20.699 12.883

Viento Libre 52035040 77.424 67.709 40.777 26.835 12.311

Universidad de Nariño 52045080 98.452 93.338 72.715 37.481 21.033

Cerro Páramo 52055150 90.440 81.940 57.407 36.661 25.709

La Josefina 52055170 55.909 54.041 29.966 14.183 7.427

Botana 52055210 98.928 90.777 51.416 38.327 20.847

El Paraiso 52055220 88.408 82.135 54.371 29.033 14.394

Guapi 53045040 78.773 72.708 49.039 22.452 12.747

Average 79.493 73.651 47.510 28.208 15.519

Table 3-6 presents the amount of days classified by the number of recordings between 6:00 and 18:00.
The AWS has mainly days with 10 and 11 measurements per day. It is worth noting that on average
just 1,26 % days had complete information (13 measures per day), with a maximum of 4,25 % in Cerro
Páramo and a minimum of 0,28 % in Biotopo. Consequently, the model implementation only considered
the days with at least six recordings during the daytime period to avoid sub estimating the resource-
approximately 95,81 % of the recordings that overcome the mandatory validation levels allowed daily
aggregation. Results confirm the importance of improving the measurement instruments’ maintenance
and calibration procedures to increase the useful information amount and, in turn, raise the reliability.
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Table 3-6. Number of days classified by irradiance measures
Number of measures per day Total of

AWS Name 1 2 3 4 5 6 7 8 9 10 11 12 13 days

Biotopo 13 16 15 19 30 49 104 190 350 528 622 207 6 2.149

Viento Libre 43 50 77 86 121 175 313 444 702 654 390 119 11 3.185

Universidad de Nariño 27 42 56 73 97 173 340 403 730 1.014 778 308 63 4.104

Cerro Páramo 34 39 42 45 59 83 145 283 483 952 1.080 362 160 3.767

La Josefina 109 71 22 24 25 57 78 195 293 386 274 134 6 1.674

Botana 16 20 26 43 82 142 246 469 798 1.066 839 336 14 4.097

El Paraiso 55 83 110 137 158 205 285 364 614 787 514 149 13 3.474

Guapi 185 193 180 153 111 101 139 239 335 447 549 182 75 2.889

We considered the Rivero et al. classification and modified the item about partially cloudy days, as
shown in Table 3-7. Table 3-7 shows that on average there is about 64,70 % of partially high cloudiness
days in the analyzed AWS. As a result, there are losses between 20 % and 40 % of the extraterrestrial
solar irradiance when hitting the ground level. It is a relevant result because clouds affect global solar
irradiance, and it is a variable that is not easy to model. Consequently, the resource estimation in this
tropical and mountainous environment is more complicated than in other environments

Table 3-7. Days classification with the clearness index
Kt 0, 00 < Kt ≤ 0, 20 0, 20 < Kt ≤ 0, 40 0, 40 < Kt ≤ 0, 60 0, 60 < Kt ≤ 0, 75 0, 75 < Kt ≤ 1, 00

Number of days

Cloudy Partially high Partially low Sunny Very sunny Amount of

AWS Name cloudiness cloudiness days*

Biotopo 760 1.188 67 0 0 2.015

Viento Libre 105 1.458 1.179 0 0 2.745

Universidad de Nariño 243 2.611 846 1 0 3.701

Cerro Páramo 1.380 1.232 137 1 0 2.793

La Josefina 88 991 271 1 0 1.351

Botana 451 2.704 711 2 0 3.868

El Paraiso 167 1.859 543 1 0 2.570

Guapi 130 746 125 0 0 1.001

*Days with ∆T, TR, Tmax, Tmin, Kt complete information

3.3.2 Temperature data quality control

Table 3-8 shows the results of the temperature validation procedure. In the first step, there were infor-
mation losses of 8,64 % on average. Cerro Páramo is the most critical AWS with 16,95 % of missing data.
In the fixed range test, Guapi had data losses of about 11,62 %. In the step test, about 35,07 % of the
data did not pass the validation requirement. Taking as a base the starting values, 57,08 % of the data
overcome the quality control procedure.



40
3 Assessing empirical models for estimate global solar irradiance using air temperature in tropical

and mountainous environment. Part I: imputation

Table 3-8. Temperature validation results

Number of Data Data Data

AWS Name AWS Code Data Step 1 Step 2 Step 3

Biotopo 51025060 52.848 47.268 46.436 24.385

Viento Libre 52035040 77.424 67.969 67.962 40.777

Universidad de Nariño 52045080 100.740 94.880 92.886 72.715

Cerro Páramo 52055150 91.850 76.280 69.410 57.407

La Josefina 52055170 55.728 52.867 52.707 29.966

Botana 52055210 98.952 91.077 91.047 51.416

El Paraiso 52055220 91.699 85.713 84.792 54.371

Guapi 53045040 84.371 81.014 71.598 49.039

Table 3-9 shows the number of days by daytime temperature measurements. Results represent that
about 57,42 % of the days had 11 or 12 measured per day (88,46 % of information). Finally, from the
total data that overcome the hourly validation test, only 68,03 % was suitable for feeding the models
because just this percentage of days have equal or more than 6 measures per day.

Table 3-9. Amount of days by daily temperature measurements

Number of measures per day Total of

AWS Name 1 2 3 4 5 6 7 8 9 10 11 12 days

Biotopo 33 9 17 13 26 46 56 85 130 257 605 846 2.123

Viento Libre 79 68 91 91 94 120 124 192 264 500 873 696 3.192

Universidad de Nariño 74 26 24 31 47 71 113 198 309 599 1.170 1.379 4.041

Cerro Páramo 101 49 58 47 67 86 133 190 348 590 754 701 3.124

La Josefina 61 21 36 46 50 78 109 130 197 405 573 558 2.264

Botana 38 11 27 46 62 102 147 253 386 679 1.114 1.221 4.086

El Paraiso 74 42 65 67 92 102 155 236 373 541 915 909 3.571

Guapi 20 8 10 21 18 21 45 79 168 405 919 1.349 3.063

3.3.3 Empirical models calibration and validation

Figure 3-3 shows the relationship between the daily clearness index and daily delta of temperature for
all studied AWS. Figure 3-3 (a) and (b) show the relationship for the AWS located in the Pacific zone. In
these cases, the daily delta of temperature is between 1 to 10C◦, and the clearness index is between 0,1
to 0,5, this means that from all total global solar irradiance in a clear sky condition between 10 % to 50
% reaches the ground level. Figure 3-3 (c) to (g) show the relationship for AWS located in the Andean
zone. Universidad de Nariño and Botana have similar ranges of daily delta of temperature and clearness
index. Viento Libre has more data in the upper level of the daily delta of temperature and clearness
index. Cerro Páramo has more concentration of data in lower values of clearness index and daily delta of
temperature, this indicates high cloudiness and short daily difference of temperature.
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Table 3-10 shows the empirical coefficients of the HS, BC, ON and the proposed model. The BC model’s
a and b empirical constants showed a growing trend with the altitude, while the c empirical constant
showed the opposite behavior. The HS model’s empirical coefficients did not present a significant vari-
ation. The ON model’s empirical coefficient for the Bitopo AWS was the unique negative value. It is
necessary more studies and data to understand physically this result. In general terms, the ON model’s
c coefficients presented a standard deviation of 0,00030.

Figure 3-3. Delta of Temperature-Clearness Index

(a) Biotopo (b) Guapi (c) Viento Libre

(d) Universidad de Nariño (e) Botana (f) La Josefina

(g) Paraiso (h) Cerro Páramo

Table 3-10. Empirical coefficients

BC HS

AWS a b c a

Biotopo 0,5075 0,0735 1,1908 0,0970

Viento Libre 0,5942 0,1499 0,8655 0,1248

Cerro Páramo 0,5922 0,2595 0,6153 0,1340

Universidad de Nariño 0,4893 0,3282 0,6568 0,1263

Botana 0,6288 0,1964 0,6415 0,1169

Josefina 0,6039 0,2563 0,5350 0,1138
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Paraiso 0,5850 0,3183 0,4818 0,1199

Guapi 0,4471 0,1156 1,2478 0,1208

ON Proposed model

AWS a b c a b

Biotopo -0,1838 -0,3871 0,0264 -2,3058 0,1786

Viento Libre 0,0578 -0,2666 0,0168 -1,3499 0,0912

Cerro Páramo 0,1084 -0,1572 0,0257 -1,7914 0,1706

Universidad de Nariño 0,2679 -0,2416 0,0112 -1,2211 0,0747

Botana 0,0621 -0,1547 0,0191 -1,4489 0,0898

Josefina 0,1770 -0,1589 0,0118 -1,2299 0,0608

Paraiso 0,2617 -0,1775 0,0100 -1,1667 0,0607

Guapi 0,0717 -0,5202 0,0228 -1,8043 0,1495

Table 3-11 presents the results of seven statistical validation measurements for each AWS. Considering
the RMSE, SD, MAE,U95 and MAPE results, the proposed model has a better performance than the other
ones. BC’s model had better results for MAE and MPE. The proposed model showed better results in
AWS located at altitudes above 2.500 MASL. In contrast, the HS’s model showed better performance
at altitudes below 2.500 MASL. However, if the objective is to use a unique model to estimate solar
irradiance from temperature data in the State, the proposed model will be the best.

The RMSE results showed that the lowest value occurred in the Guapi AWS 878, 75Wh/(m2day),
and the highest value in the Cerro Páramo AWS 1.209, 76Wh/(m2day); on average, the RMSE was
1.046, 69Wh/(m2day). ON’s model presented the biggest RMSE with 1.058, 77Wh/(m2day), fol-
lowed by the BC’s model with 1.052, 96Wh/(m2day), HS’s model with 1.046, 66Wh/(m2day), and
the proposed model with 1.028, 37Wh/(m2day).

The Standard Deviation (SD) of the residual shows that Cerro Páramo presented more scattered values
than the other AWS. comparing the four models and analyzing the average SD for, the best option is the
proposed model. The MBE shows that BC’s model made an underestimation of 77,79 Wh/(m2day)

in Cerro Páramo. All models overestimate the resource in Viento Libre by 167,77 Wh/(m2day), 163,13
Wh/(m2day), 162,63 Wh/(m2day), and 160,23 Wh/(m2day), with the ON, HS, BC and Proposed
model, respectively.

The MAE results shows that the proposed model had the best performance with an average error of
821,41 Wh/(m2day). U95 results presented that, on average, the following result 2.076,49 Wh/

(m2day), 2.065,11 Wh/(m2day), 2.034,13 Wh/(m2day), 2.016,86 Wh/(m2day) for ON, BC, HS,
and proposed model, respectively. Confirming that the proposed model is better than the other ones.

The MPE results presented the BC’s model as the best one with 14,45 % on average, and the HS’s model
as the worst with 15,31 % on average. MAPE showed that proposed model as the best option, with 35,12
% on average, followed by HS and ON models. MAPE results were consistent with the other statistical
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results.

Table 3-11. Summary of the empirical model’s results

RMSE [Wh/m2day] SD %

AWS BC HS ON Proposed BC HS ON Proposed

Biotopo 1.152,62 993,64 1.155,07 1.113,48 49,90 43,11 50,08 48,29

Viento Libre 1.086,47 1.080,72 1.110,62 1.077,35 29,21 29,05 29,86 28,97

Cerro Páramo 1.194,57 1.209,76 1.196,56 1.152,72 56,04 56,77 56,15 54,08

Universidad de Nariño 1.032,45 1.083,73 1.032,24 1.019,14 31,89 33,55 31,88 31,47

Botana 1.052,42 1.070,23 1.077,17 1.042,68 34,46 35,05 35,23 34,14

Josefina 1.009,00 1.066,18 999,28 984,75 31,29 33,06 30,99 30,53

Paraiso 930,82 990,32 938,02 921,32 27,82 29,58 28,04 27,54

Guapi 965,40 878,75 961,21 915,53 31,75 28,91 31,58 30,12

MBE [Wh/m2day] MAE [Wh/m2day]

AWS BC HS ON Proposed BC HS ON Proposed

Biotopo -77,79 -2,01 -45,24 -37,29 916,08 800,52 917,96 885,10

Viento Libre 162,63 163,13 167,77 160,23 863,76 861,64 883,10 862,86

Cerro Páramo 37,90 21,29 27,22 33,37 940,46 946,29 929,90 887,34

Universidad de Nariño 90,20 62,04 93,68 93,72 845,12 884,48 841,37 833,30

Botana 48,24 42,30 71,63 47,13 866,59 881,19 888,56 860,18

Josefina 5,28 -20,58 16,92 22,18 769,70 830,06 767,58 760,43

Paraiso -23,17 -42,52 -15,89 -14,98 757,02 806,64 760,64 748,67

Guapi -36,98 -16,38 -53,45 -27,50 753,77 696,35 773,11 733,40

U95 [Wh/m2day] MPE %

AWS BC HS ON Proposed BC HS ON Proposed

Biotopo 2.261,26 1.949,37 2.266,06 2.184,48 16,22% 19,52% 17,93% 18,33%

Viento Libre 2.130,26 2.118,99 2.177,61 2.112,38 15,34% 15,32% 15,39% 15,18%

Cerro Páramo 2.343,94 2.373,74 2.347,83 2.261,82 28,77% 27,90% 27,64% 28,69%

Universidad de Nariño 2.024,57 2.125,13 2.024,17 1.998,46 13,73% 12,78% 13,82% 13,80%

Botana 2.063,85 2.098,79 2.112,40 2.044,75 14,22% 11,32% 15,08% 14,11%

Josefina 1.978,59 1.941,90 1.959,53 1.931,04 12,24% 20,51% 12,52% 12,70%

Paraiso 1.825,23 1.941,90 1.839,34 1.806,59 8,24% 7,70% 8,59% 8,51%

Guapi 1.893,21 1.723,28 1.885,00 1.795,41 6,82% 7,46% 6,11% 7,12%

MAPE %

AWS BC HS ON Proposed

Biotopo 49,13% 44,53% 49,71% 48,13%

Viento Libre 30,09% 29,99% 30,46% 29,94%

Cerro Páramo 56,68% 56,62% 55,00% 53,67%

Universidad de Nariño 31,44% 32,47% 31,26% 30,97%
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Botana 34,42% 32,58% 35,35% 34,07%

Josefina 30,83% 37,42% 30,74% 30,56%

Paraiso 26,75% 28,29% 26,91% 26,47%

Guapi 28,15% 26,14% 28,65% 27,14%

Lowest values are in bold

The proposed model’s empirical coefficients showed a relationship with altitude. Figure 3-4 presents
the empirical coefficients’ lineal adjustments for two altitude ranges covering the AWS’s locations. On
the left side, figures represent the relationship between empirical coefficients and the altitudes above
2.500 MASL, and on the right side, figures show the remaining AWS for higher altitudes. Statistics analy-
sis indicates thatR2 for the a coefficient is 0,5995 and 0,5262 in the first and second cases, respectively.
The R2 for the b coefficient is 0,8152 and 0,6069 in the first and second cases, respectively. This re-
sult is remarkable since the solar irradiance and temperature change with the altitude, the first due to
the rise of beam irradiance caused by the reduction of scattered and absorbing molecules and aerosol
(Blumthaler, 2012).

Figure 3-4. a and b empirical model-altitude relation in the proposed model

(a) (b)

(c) (d)

3.3.4 Imputation of daily solar insolation data
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Table 3-12. Number of imputed
days by AWS

AWS Name Days

Biotopo 2.241

Viento Libre 1.502

Cerro Páramo 749

Universidad de Nariño 686

Botana 585

La Josefina 2.872

Paraiso 1.369

Guapi 2.277

According to the AWS location, the imputation process to esti-
mate the daily solar insolation data followed the best empirical
model based on the research results. Table 3-12 shows the im-
puted data for each AWS. La Josefina was the AWS with the most
imputed values; it was necessary to fill 2.870 missing data. Botana
was the AWS with less imputed values, filling 572 missing data.
An average among all AWS allows concluding that about four
years had missing data; therefore, it was necessary to fill them
employing temperature data. Time series before and after the
daily solar insolation imputation process for each AWS allow us
present Figure 3-5.

Figure 3-6 shows the monthly daily average solar insolation for
all analyzed AWS. The AWS located in the Pacific zone presented
a similar behavior; namely, they registered a peak in August and
September, and the lower level in November. Viento Libre is the only AWS that recorded values close
to 4.000 Wh/(m2day) in August. The Botana and Universidad de Nariño on the Andean region showed
a peak between October and November. Cerro Páramo and Viento Libre exhibited certain energy comple-
mentarity because the lower level in the first one is to compensate with the higher level of the second
one.

3.4 Conclusions

The global solar irradiance data’s validation levels have a strong influence on the empirical variables
results. It is evident when the results present that 60,89 % overcome the mandatory validation steps.
From validated value, 95,81 %, which corresponds to the number of days with at least six recordings,
constituted the empirical model’s calibration information. However, this percentage represented, on
average, 33,90 % of the total information recorded in the AWS. Besides, the days with complete infor-
mation just reached 1,26 %. This result indicates that the time series’ quality is no optimum; therefore,
it is necessary to improve and increase the maintenance and calibration procedures.

In the State of Nariño, the AWS’s performance is a determining factor, considering the predominance
of partially high cloudiness that represents 64,7 % of the days. In other words, in Nariño, there is a high
cloud interaction that difficult the solar insolation estimation; therefore, it is fundamental to increase
the reliable measurement systems. Consequently, it is essential to regularly establish a plan to do these
procedures and follow high-quality and widely accepted standards. It was also notorious, the need for
installing more AWS to increase the sampling points.

Regarding the temperature measures, only 92,78 % was useful for the empirical calibration and imputa-
tion from the total data that overcame the hourly validation steps. Besides, the number of temperature
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Figure 3-5. Data imputation

(a) Biotopo (b) Viento Libre

(c) Cerro Páramo (d) Universidad de Nariño

(e) Botana (f) La Josefina

(g) Paraiso (h) Guapi
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Figure 3-6. Monthly daily insolation

daytime measurements presented peaks in eleven and twelve daily values; this means that most of the
days used for modeling and filling the database by the imputation process had 88,46 % of the total
information on average.

The proposed model showed a linear relationship between the empirical coefficients against the alti-
tude. R2 showed a better adjustment between the empirical constants and the altitude in sites above
2.500 MASL than sites below this altitude. This result is consistent with the temperature in tropical
zones and the global solar irradiance in high altitudes.

Results from RMSE, SD, MAE, U95 and MAPE statistics tests pointed out that the proposed model had
better performance in five of the eight evaluated cases. These cases are in the Andean and Amazon
zones, with altitudes above 2.500 MASL. The proposed model was useful to input the information in the
Andean and Amazon AWS. In the Pacific zones’ AWS, the Hargreaves and Samani’s model was the best
option, followed by this research’s proposed model. The proposed model had a stable performance
in this tropical and mountainous environment. However, it is necessary to analyze more information
coming from other places with the same characteristics. This prime requirement needs to increase AWS’s
number and the time series’ quality in the tropical and mountainous environments.
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global solar irradiance using air temperature
in tropical and mountainous environment.
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Abstract

Solar energy potential maps are enablers for making decisions about installing photovoltaic solar en-
ergy systems. However, the lack of in situ solar irradiance information recorded is a barrier to support
decision-making in this field of study. Therefore, this research increases the solar irradiance sample
points using temperature-based empirical methods such a Hargreaves and Samani and Logistic mod-
els, and use the leave-one-out cross-validation to assess the performance of four spatial interpolation
techniques in tropical and mountainous environments that cover an area of 33.268 km2. The analysis
allowed concluding that the Hargreaves and Samani model is better for Pacific zone, while Logistic is
better for Andean and Amazon zones. Also, ordinary Kriging method was the best interpolation tech-
nique because presented the lower bias.

Keywords

Temperature-based models, Hargreaves and Samani, spatial interpolation techniques, solar radiation
mapping.

4.1 Introduction

Solar irradiance information is essential in fields of study as electricity generation, weather forecast-
ing, agricultural production, and ecological behavior (Moreno et al., 2011). This research approaches
the solar electricity generation subject that requires high-quality information to design power plants
optimally. The lack of data or low-quality information is a barrier to know the solar potential and de-

1This article had the participation of Belizza Ruiz
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sign power plants. This complicated situation is deeper in isolated areas with nonexistent or deficient
road infrastructure like mountainous regions and tropical environments (Janjai et al., 2005; J. Li & Heap,
2014). Despite the above, governmental entities in charge of offering electricity service solutions in iso-
lated areas promote electrification projects using solar irradiance. Stakeholders from public and private
sectors face a lack of information affecting the successful development of projects; therefore, they use
solar energy potential maps to make decisions and avoid inadequate planning.

Academic literature and governmental reports present solar irradiance atlas for most global territory,
showing solar potential indicative values. A share of this information uses satellite data to draw maps
while others use in situ data. Ground-level data offers full information about the environment where the
weather variable records exist; however, the Automatic Weather Stations (AWS) amount is no suitable
in all cases. Therefore, it is necessary to estimate the solar irradiance values for places without solar
irradiance sensors to obtain information about the not sampled points, and obtain spatially continuous
data over the study area (J. Li & Heap, 2011). TInterpolation techniques allow designing useful regional
models to standardize recordings from isolated areas (Moreno et al., 2011). Results quality depends
on spatial density and clustering of the sample points, surface type, among other aspects (J. Li & Heap,
2011). Overall, there are two categories for the interpolation techniques: non-geostatistical and geo-
statistical. However, all methods share the same general estimation formula (J. Li & Heap, 2008).The
non-geostatistical techniques estimate no-sampled points values with adjusted mathematical functions
according to sampled points information. The geostatistical techniques establish a spatial correlation
between data (Martín & Dominguez, 2019). The sampled points number is decisive to define the infor-
mation quality because the solar irradiance value is affected not only by cloudiness, aerosols, relative
humidity, among other factors, but also by the physiography and soil type of the study site (Jeffrey et
al., 2001; Şen, 2008).

This research assesses a combination of temperature-based empirical models and spatial interpolation
techniques in a tropical and mountainous environment to elaborate monthly solar insolation maps.
Accordingly, this research uses in situ measurements of global solar irradiance collected in eight AWS
located in the State of Nariño in the Colombian southwest. The sampled points increased by implement-
ing two temperature-based empirical models to estimate global solar irradiance in sixteen locations
with Conventional Weather Stations (CWS). Likewise, this research used spatial interpolation techniques
such as Inverse Distance Weight (IDW) and Simple, Ordinary, and Universal Kriging to obtain continuous
solar insolation information in the studied region. Moreover, the leave-one-out cross-validation is the
process implemented to select the best spatial interpolation technique. R-CRAN is the software, and
gstat is the package used to realize all calculations.

The results show that the Hargreaves and Samani empirical model performs better in the Pacific zone. In
the Andean zone, the linear relationship between the empirical constants and the altitude, derived from
the logistic model, reduces the overestimation. Although this method could have adjustments stemmed
from future research works, it has presented pleasing results (Hoyos-Gómez, Ruiz, 2020). Therefore, it
estimates information for the Andean region. The Ordinary Kriging interpolation technique was the best
among the techniques analyzed because it presented less bias during all year because its robustness.
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This article had the following sections: Section 4.2 shows the description of the data. Section 4.3
presents the theoretical framework explaining the spatial interpolation techniques used in this work.
Section 4.4 contains the methodology followed in this research. Section 4.5 shows the results. Finally,
Section 4.6 presents the conclusions.

4.2 Description of the data

Figure 4-1. Location of weather stations
Table 4-1 and 4-2 list the
AWS and CWS classified by
region, respectively, and Fig-
ure 4-1 shows their location
in the State of Nariño. There
are 5 AWS and 11 CWS in
the Andean region, 3 AWS
and 4 CWS in the Pacific re-
gion, and 1 AWS and a 1 CWS
in the Amazon region. AWS
altitude ranges between 16
and 3.577 MASL, and CWS
altitude range between 1 to
3.141 MASL. The AWS mea-
sures global solar irradiance
and temperature, while the
CWS measures temperature
uniquely. The AWS den-
sity in the State of Nariño
is about 4.158km2 per sta-
tion approximately; adding
the CWS, the density improves, passing to 1.386km2 per station.

The global solar irradiance and temperature recorded in the AWS were submitted to a quality control
procedure described in (Hoyos-Gómez and Ruiz, 2020). The temperature information of the CWS was
obteined already validated. Table 4-3 and Table 4-4 present the number of days classified by the num-
ber of data items recorded. Regarding global solar irradiance the days mainly have 10 or 11 data items
recorded, while in the temperature case mainly the day have 11 to 12 data items recorded. It is impor-
tant remark that just 1,26 % of the total measured days record all the day time values of global solar
irradiance.
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Table 4-1. Automatic Weather Stations

Name Latitude [◦] Longitude[◦] Altitude MASL Period Region

Biotopo 1,41 -78,28 512 2005-2017 Pacific

Altaquer 1,56 -79,09 1.1010 2013-2014 Pacific

Granja el Mira 1,55 -78,69 16 2016-2017 Pacific

Cerro-Páramo 0,84 -77,39 3.577 2005-2017 Amazon

La Josefina 0,93 -77,48 2.449 2005-2017 Andean

Viento Libre 1,62 -77,34 1.005 2005-2017 Andean

Universidad de Nariño 1,23 -77,28 2.626 2005-2017 Andean

Botana 1,16 -77,27 2.820 2005-2017 Andean

El Paraiso 1,07 -77,63 3.120 2005-2017 Andean

Table 4-2. Conventional Weather Stations

Name Latitude[◦] Longitude[◦] Altitude MASL Period Region

CCCP del Pacífico 1,82 -78,73 1 2005-2017 Pacific

Altaquer 1,56 -79,09 1.1010 2005-20134 Pacific

Granja el Mira 1,55 -78,69 16 2005-2017 Pacific

Obonuco 1,19 -77,30 2.710 2005-2015 Andean

Apto. Antonio Nariño 1,39 -77,29 1.796 2005-2017 Andean

San Bernardo 1,53 -77,03 2.190 2005-2017 Andean

Taminango 1,55 -77,27 1.875 2005-2017 Andean

Común el antomática 0,93 -77,63 3.141 2007-2017 Andean

Apto. San Luis 0,86 -77,67 2.961 2005-2017 Andean

Bombona 1,18 -77,46 1.493 2005-2017 Andean

Tanama 1,37 -77,58 1.500 2005-2017 Andean

Sindagua 1,11 -77,39 2.800 2005-2017 Andean

Barbacoas 1,67 -78,13 32 2005-2012 Pacific

Monopamba 0,99 -77,15 2.719 2006-2016 Amazon

El Encano 1,15 -77,16 2.830 2005-2017 Andean

Chimayoy 1,26 -77,28 2.745 2005-2014 Andean

4.3 Theoretical framework

The growing solar technology use has increased the interest in information about solar potential point
by point on territories. That knowledge entails obtaining continuous spatial data of solar irradiance
that arise from the spatial interpolation processes. The spatial interpolation methods estimate solar
irradiance values in non-sampled points from measured data using spatial variability information (J. Li
& Heap, 2008). The regionalized variable theory, the semivariogram method, and the cumulative semi-
variogram are the approaches used to model the spatial variability using solar irradiance and distance
(Şen, 2008).
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Table 4-3. Amount of days classified by daily irradiance measures
Number of measures per day Total of

AWS Name 1 2 3 4 5 6 7 8 9 10 11 12 13 days

Biotopo 13 16 15 19 30 49 104 190 350 528 622 207 6 2.149

Viento Libre 43 50 77 86 121 175 313 444 702 654 390 119 11 3.185

Universidad de Nariño 27 42 56 73 97 173 340 403 730 1.014 778 308 63 4.104

Cerro Páramo 34 39 42 45 59 83 145 283 483 952 1.080 362 160 3.767

La Josefina 109 71 22 24 25 57 78 195 293 386 274 134 6 1.74

Botana 16 20 26 43 82 142 246 469 798 1.066 839 336 14 4.097

El Paraiso 55 83 110 137 158 205 285 364 614 787 514 149 13 3.474

Guapi 185 193 180 153 111 101 139 239 335 447 549 182 75 2.889

Table 4-4. Amount of days by daily temperature measures

Number of days Total of

AWS Name 1 2 3 4 5 6 7 8 9 10 11 12 days

Biotopo 33 9 17 13 26 46 56 85 130 257 605 846 2.123

Viento Libre 79 68 91 91 94 120 124 192 264 500 873 696 3.192

Universidad de Nariño 74 26 24 31 47 71 113 198 309 599 1.170 1.379 4.041

Cerro Páramo 101 49 58 47 67 86 133 190 348 590 754 701 3.124

La Josefina 61 21 36 46 50 78 109 130 197 405 573 558 2.264

Botana 38 11 27 46 62 102 147 253 386 679 1.114 1.221 4.086

El Paraiso 74 42 65 67 92 102 155 236 373 541 915 909 3.571

Guapi 20 8 10 21 18 21 45 79 168 405 919 1.349 3.063

The sampling density and spatial distribution of the points with recorded data, cluster sampling, surface
type, data variance, among other things, influence the spatial interpolation methods performance (J. Li &
Heap, 2011). There are mainly two interpolation categories: non-geostatistical and geostatistical. In the
first category, the methods partially model the spatial autocorrelation through mathematical functions;
some of these methods are Natural Neighbor (NaN), Inverse Distance Weight (IDW), Triangular Irregular
Network (TIN), Regression models, among others. In the second category, the methods simulate the
spatial data autocorrelation and evaluate the uncertainty of the results to carry out the interpolation
processes such as Kriging that which is the most commonly used method (Bhattacharjee et al., 2019;
Martín & Dominguez, 2019; Sankar et al., 2018).

All methods share the same general estimation represented by Equation 4-1:

ẑ (x0) =
n∑

i=1

λiz (xi) (4-1)

where ẑ is the estimated value in the x0 point, z is the measured value in xi point, λi is the weight of the
sampled point, and n is the number of sampled points used for the estimation (J. Li & Heap, 2008). This
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expression arose from considering that samples from close weather stations have a higher probability
of presenting similar values and behaviors than samples taken in distant weather stations with each
other (J. Li & Heap, 2008). The main objective of any method is to determine these weights as better as
possible (Şen, 2008). The following subsection presents an explanation of IDW and Kriging techniques.

4.3.1 Inverse Distance Weighted (IDW)

IDW estimates the value of non-sampled points through the linear combination of the nearby sampled
points. The inverse of the Euclidean distance allows computing the weight of a sampled point over a
non-sampled point, as Equation 4-2 indicated,

λi =
1/dpi∑n
i=1 1/d

p
i

(4-2)

where di is the distance betweenxi andx0, p is the exponent parameter, andn is the number of sampled
points used for the estimation (J. Li & Heap, 2008). This expression shows that the farthest sampled
point has the lowest contribution to the calculation (Martín & Dominguez, 2019).The main factor in-
fluencing the method accuracy is the exponent selected arbitrarily as the neighborhood size. When the
p parameter value increases, the weight value diminishes. Moreover, if the p parameter value changes,
the type of interpolation also changes. The IDW behaves as moving average interpolation when p = 0,
linear interpolation with p = 1, and weighted moving average when p is different to 1. The most com-
mon exponent is p = 2 called as Inverse Distance Squared (IDS) (J. Li & Heap, 2011; Introduction to

Spatial Analysis, 2009). For IDS λi is calculated with the following expression λi =
(

r−di
di

)2
, where r

is the radius of the search window that can be fixed or variable (Bhattacharjee et al., 2019).

4.3.2 Kriging

Kriging is a generalized least-square regression algorithm with an exceptional unbiased prediction (Ja-
maly & Kleissl, 2017). The accuracy of the Kriging depends on the variogram to obtain a minimum-
variance predictor. The variogram is estimated using the semivariance, which considers both the dis-
tance and the variation between the estimated and measured points (Introduction to Spatial Analysis,
2009). Spatial correlation analyzes the data change according to the semivariance, which is the differ-
ence between the measured and estimated point variances as Equation 4-3 presents (M. A. Oliver &
Webster, 1990),

γ̂ (xi, x0) = γ̂ (h) =
1

2n

n∑
i=1

(z (xi)− z (xi + h))2 (4-3)

where γ̂ (h) is the semivariance, which is the half of the variance between the estimation point and the
nearby measured points, n is the number of pairs of sample points separated by distance h, z (xi) is the
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sample value in the location xi, and z (xi + h) is the value at a h distance from xi. At short distances,
low h values, small semivariance values, when h increase the semivariance also increase.

Equation 4-3 allows calculate the experimental variogram that consist of semivariances at a finite set
of lags. The reliability of the experimental variogram is related to the quality of the data and their
density (A. M. Oliver & Webster, 2015). The next step is to fit a function to the experimental variogram
known as the theoretical variogram that describe the main characteristics of the sampled points. The
slope of the theoretical variogram quantifies the spatial autocorrelation between the sampling points
at lag intervals (Martín & Dominguez, 2019). There are two ways to model the theoretical variogram
unbounded and bounded. In the first case, the variogram increase indefinitely at lag increase. In the
second case, the variogram follows a second-order stationary process, it reaches an upper limit that is
the sill variance (Webster & Oliver, 2007). Additionally, the variogram has a range that determine the
limit of the spatial correlation where the autocorrelation becomes zero. Additionally, when there is a
zero distance between the estimation and measured point, the semivariogram is zero. However, if there
are measurement or scale errors in the variable or both, the semivariogram presents a nugget effect. In
other words, the semivariogram has a high value in short distances (Viera Díaz, 2002).

The variogram in the base of the Kriging methods implementation. Equation 4-4 shows the Kriging
general estimator, where µ is a stationary mean, λi is the Kriging weight,µ (x0) is the mean of samples
considered in the influence area, n is the number of sampled points (J. Li & Heap, 2008). It follows the
structure of the general estimation showed in Equation 4-1,

ẑ (x0)− µ =
n∑

i=1

λi [z (xi)− µ (x0)] (4-4)

The weights arise from a system of linear equations that accomplish with two conditions. The first one
is the following restrictionE {ẑ (x0)− z (xi)} = 0 to obtain unbiased weights. The second one is that
the weights must minimize the variance σ (xi) = V ar {ẑ (x0)− z (xi)} = 0 (Moreno et al., 2011).
Although there are several Kriging methods, there is only one objective: to estimate continuous values
for the no-sampled points (Dai et al., 2003).

Simple Kriging (SK)

SK has the most straightforward mathematical formulation among the Kriging methods. This model
assumes that the mean and covariance are previously known and constant in all locations (Martín &
Dominguez, 2019). Consequently, when the mean and covariance are different from the assumed start-
ing values, the method does not show optimal results, limiting its applicability (Olea, 1999). Equation
4-5 shows the SK estimator model,

ẑ (x0) =
n∑

i−1

λiz (xi) +

[
1−

n∑
i=1

λi

]
µ (4-5)
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where µ is a known stationary mean for the whole interpolated surface. In SK 1 −
∑n

i=1 λi is not
necessarily equal to 0; however, the second term of 4-5 ensure that the prediction are unbiased (J. Li
& Heap, 2008; A. M. Oliver & Webster, 2015). SK works with covariances, C , more than semivariances;
therefore, the weights are calculated as follows:

n∑
i=1

λiC(xi, xj) = C(x0, xj) For all j = 1, 2, . . . , n (4-6)

Ordinary Kriging (OK)

OK is the most general and widely used Kriging method that assumes that the variation is random and
spatially depend, and a constant unknown mean and a variance that depends only on lag distance, Equa-
tion 4-7 shows the estimation model of the OK

ẑ (x0) =
n∑

i−1

λiz (xi) +

[
1−

n∑
i=1

λi

]
µ (x0) (4-7)

This method follows the next restriction [1−
∑n

i=1 λi] = 0 to accomplish with the non-bias condition
(J. Li & Heap, 2008). OK aims to minimize the errors’ variance and uses lineal combinations to estimate
the data set weights reducing the bias (Kiš, 2016), as Equation 4-8 and 4-9 show

V ar [ẑ (x0)] = E
[
{ẑ (x0)− z (x0)}2

]
= 2

n∑
i=1

λiγ̂ (xi − x0)−
n∑

i=1

n∑
j=1

λiλj γ̂ (xi − xj) (4-8)

γ̂ (xi − x0) is the semivariance between the ith and jth point. The theoretical variogram must guarantee
that the variance is not negative (A. M. Oliver & Webster, 2015; Webster & Oliver, 2007)

n∑
i=1

λiγ̂ (xi − x0) + ψ (x0) = γ̂ (xi − xj) (4-9)

Following that
∑n

i=1 λi = 1,ψ(x0) is the Lagrange multiplier used to minimize the variance. In a matrix
form the weights are estimated as follow:

λ = A−1b. (4-10)

Universal Kriging (UK)

UK is a method used for spatial process with a trend or drift and a not stationary mean; therefore, this
method incorporates the mean as a local trend in function of the coordinated (X,Y ). The variation
in z(x) have a systematic component, which could be decomposed into a linear combination of deter-
ministic functions, additionally to random component expressed by z(x) = u(x) + ε(x). u(x) replace
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the mean µ, is a deterministic component that varies smoothly, ε(x) is a spatially correlated random
residual function (Bhattacharjee et al., 2019; J. Li & Heap, 2008; Olea, 1999; Kiš, 2016; A. M. Oliver &
Webster, 2015; Webster & Oliver, 2007).

As in this case there is a not stationary process, the experimental variogram does not estimated the
variogram of the random residual, ε(x), as in the two above presented methods. Consequently, the
variogram is estimated from ε(x) = z(x) − u(x). To estimate the variogram without bias, it is need
separate u(x) from ε(x); then u(x) can be expressed as follows:

u (x) =
K∑
k=0

βkfk (x) (4-11)

Where βk , with k = 0, 1, . . . , K are unknown coefficients estimated from the data, and fk (x) are
known deterministic functions of the spatial coordinates that describes the drift. For a linear trend
there are three functions f0 = 1, f1 = x1, and f2 = x2. For a quadratic trend it is need add three
functions f3 = x21, f4 = x1x2 and f5 = x22. For example, with a linear trend the equation is expressed
as follow z(x) = β0 + β1x1 + β2x2 + ε(x). Finally, with the functions to estimate u(x), and ε(x), it
is possible predict the ẑ value at any x0 point

ẑ (x0) =
n∑

i=1

λifk (xi) (4-12)

the expectation is

E[ẑ (x0)] =
K∑
k=0

n∑
i=1

βkλifk (xi) (4-13)

the estimator is unbiased if satisfied
∑n

i=1 λifk(xi) = fx(x0)For all k = 0, 1, . . . , K

4.3.3 Cross-Validation

The cross-validation assesses and compares the regional interpolation techniques. The first step con-
sists of defining a base case in which all sampled points allow estimating the no-sampled points. Af-
terward, calculations repeat to find the value of a removed sampled point and so forth until calculating
such values as sampled points (Sankar et al., 2018). The best interpolation technique stemmed from er-
ror analysis that is the average of the comparisons between results from each calculation with removed
sampled points and the base case sampled points (Berrar, 2018; Şen, 2008).

4.4 Methodology

Research development covers three stages. The first stage consists of estimating solar insolation using
empirical models. The second part arises from implementing the spatial interpolation techniques using
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the R-CRAN and the gstat package. The third part comprises the cross-validation to select the best
option that allows mapping the global solar irradiance.

The Hargreaves and Samani model is the empirical method for estimating solar insolation in the Pacific
zone. In the Andean and Amazon zones, the linear relationship between the logistic model empirical
coefficients and the AWS’s altitude is the technique proposed to estimate the empirical coefficients
associated with the CWS. Coefficients are valuable because they belong to the temperature-based em-
pirical model that estimates the global solar insolation for each CWS.

The second stage consists of mapping the global solar insolation using the spatial interpolation tech-
niques explained in 4.3.1 and 4.3.2.At the beginning of the mapping process, the authors of this research
constructed a regularly spaced grid with a resolution of 100 meters. Then, the Kriging techniques adjust
a function to the experimental variogram represented by a scatter plot between the semivariance and
the distance. The experimental variogram values allow determining the starting values with which com-
pute the theoretical variogram. In this research, the starting values fulfilled the next recommendations:
the third part of the experimental variogram maximum distances constitute the range, the mean of the
first three values of the experimental variogram forms the nugget, and the mean of the last five values of
the experimental variogram establishes the partial sill (Pebesma, 2016). The gstat package has twenty
options to determine the theoretical variogram function (Pebesma & Graeler, 2020). The authors fitted
all the available functions and chose the best option for each case.

The last stage conducted the cross-validation to determine the better interpolation technique and ob-
tain the monthly global solar insolation maps. Every interpolation technique had an associated error
analysis that consisted of calculating Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Bias Error (MBE), Standard Deviation (SD), and Mean Percentage Error (MPE). The techniques
with fewer errors indicated the best option for each month. It is convenient to highlight that the statis-
tical errors arose from the average of all results obtained by each iteration during the cross-validation
process.

4.5 Results and discussion

The Hargreaves and Samani and logistic models allowed estimating the daily solar insolation using air
temperature data to increase the number of sampled points. The Hargreaves and Samani model allowed
calculating the empirical constant with AWS data located in the Pacific region; consequently, such an
empirical constant served to estimate solar insolation using air temperature data of the CWS locations.

It is convenient to remind that there are three AWS in the Pacific zone; however, only one has a broad
time framework and coinciding with the CWS time frameworks. Consequently, weather information
from the Biotopo AWS allowed estimating the CWS solar irradiance behavior. Although Quansah et al.
suggest a maximum distance of 20 km to transpose weather information from a point to another, the
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authors of this research could not use that criterion because the time frameworks of the nearest weather
stations did not coincide. Nevertheless, it is convenient to show the distances among the weather sta-
tions. There is a distance of 30,18 km between Granja el Mira AWS and CCCP del Pacífico CWS, 67,54 km
between Biotopo AWS and CCCP del Pacífico CWS, 63,71 km between Granja el Mira AWS and Barbacoas
CWS, and 68,79 km between Biotopo AWS and Barbacoas CWS.

The linear relationship between the AWS altitude and the empirical constants of the logistic model
allowed computing the empirical constants of the CWS located in the Andean and Amazon zones. It
is a relevant find because the use of the linear relationship make ease the estimation of global solar
insolation using air temperature in the Andean and Amazon zones, that in this case does not have a
considerable amount of weather stations

a =

−2, 0565 + 0, 000357h h ≤ 2.500

0, 0910− 0, 0004932h h > 2.500
(4-14)

b =

0, 1703− 4, 566e−5h h ≤ 2.500

−0, 8 + 9, 182e−5h h > 2.500
(4-15)

where h is the altitude of the weather station. The values of the empirical coefficients are replaced in
Equation 4-16.

H

H0

=
1

1 + e−(a+b∆T )
(4-16)

where H is the daily average global solar insolation, H0 is the average daily extraterrestrial solar inso-
lation, a and b are the empirical coefficients, ∆T is the difference between the maximum and minimum
daily temperature. Table 4-5 presents the results of the empirical coefficients obtained for the CWS
using Equation 4-14 and Equation 4-15. All values of the a empirical coefficient are negative; indepen-
dently, if the CWS is located both above or below 2.500 MASL, in this case the maximum value is in
Obonuco, the minimum is in Bombona, with a standard deviation of 0,1009. In the b empirical coefficient
case, all values are positive, the maximum value is in Común el automática, and the minimum value is in
Monopamba with a standard deviation of 0,0133.

The performance calculations used the four AWS data, two of the Pacific zone and two of the Andean
zone, that had recordings of one year on average. Recorded data passed a quality control process;
subsequently, a comparison between results from empirical models and data in situ arose to compute
the statistical errors presented in Table 4-6. The bolded results are the best ones.

For Altaquer and Granja el Mira AWS located in the Pacific zone, the logistic model had a better perfor-
mance in RMSE, SD, MAE,MBE and U95 than the Hargreaves and Samani model that presented better
results in MPE, and MAPE uniquely. In the MBE, the Hargreaves and Samani model underestimated
the resource in 442,78 [Wh⁄m2day] for Granja el Mira and 333,11 [Wh⁄m2day] for Altaquer, while the
Logistic model overestimate it in 145,14 [Wh/m2day] and 76,19 [Wh⁄m2day] in Altaquer and Granja el
Mira, respectively. Even though the logistical model did not have the best behavior in all statistical error
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Table 4-5. Estimated empirical coefficients for Andean and Amazon zone.
CWS Altitude [MASL] a b

Obonuco 2.710 -1,245394 0,06885508

Apto. Antonio Nariño 1.796 -1,424296 0,08828996

San Bernardo 2.190 -1,283602 0,07029916

Común el automática 3.141 -1,457943 0,10843070

Apto. San Luis 2.961 -1,369175 0,09190260

Bombona 1.493 -1,532495 0,10212553

Tanama 1.500 -1,529995 0,10180589

Sindagua 2.800 -1,289778 0,07711913

Monopamba 2.719 -1,249832 0,06968149

El Encano 2.830 -1,304572 0,07987382

Chimayoy 2.745 -1,262654 0,07206888

Taminango 1.875 -1,396086 0,08468267

measurements, it is suitable to estimate the solar resource with air temperature data in places below
2.500 MASL.

For Ospina Perez and Sandona AWS located in the Andean zone, the logistic model showed lower errors
in all statistical measurements. Regarding the MBE results, the two empirical models overestimated
the solar resource. However, the logistical model reduced the overestimation by 181,09 [Wh/m2day]

(51,12 %) and 225,15 [Wh/m2day] (18,55 %) for Ospina Perez and Sandona, respectively. Finally, the
authors concluded that the logistical model presented better results than the Hargreaves and Samani
model in altitudes above 2.500 MASL.

Table 4-6. Comparison of the empirical models.

AWS Name N RMSE SD MAE MBE MPE MAPE U95

[Wh/m2day] % [Wh/m2day] [Wh/m2day] % % [Wh/m2day]

Altaquer - HS 390 761,09 24,49 596,88 -333,11 -4,23 % 22,30 % 1.492,51

Altaquer – Logistic 390 670,59 23,43 529,73 145,14 14,14 % 24,24 % 1.315,17

Granja el Mira - HS 305 854,87 24,81 684,98 -442,78 3,47 % 33,75 % 1.676,26

Granja el Mira - Logistic 305 781,91 25,99 596,66 76,19 20,57 % 34,81 % 1.533,40

Ospina Perez - HS 231 987,70 27,44 797,83 355,08 16,80 % 27,29 % 1.936,64

Ospina Perez - Logistic 231 934,93 27,35 736,86 173,99 11,09 % 24,43 % 1.833,25

Sandona - HS 221 1.375,84 22,83 1.249,26 1.213,27 49,93 % 50,70 % 2.697,03

Sandona - Logistic 221 1.179,92 22,69 1.034,94 988,12 41,30 % 42,32 % 2.313,07

The base case used the IDW with p = 2 as exponent because IDS is the most used IDW methods.
Implementing the Kriging methods entails determining the theoretical variograms represented by Figure
4-2 for each month. We implemented the best variogram model available in the gstat package for each
month. The wave was the option selected from gstat package to model January to June and October to
December, and Circular was the option for modelling May to September

The experimental variogram of May and December shows the lowest semivariance; their values were
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Figure 4-2. Experimental and Theoretical variogram.

(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

352.019 and 322.911, respectively, see Figure 4-2(e) and Figure 4-2(l). Therefore, it expects the low-
est statistical errors for those months. In August and September, the semivariance difference had the
highest values; their values were 847.928 and 801.113, respectively, see Figure 4-2(h) and Figure 4-
2(i).Consequently, these months could show the highest statistical errors.

Table 4-7 shows the statistical errors stemmed from using the IDW and Kriging methods. The cross-
validation leave-one-out was the technique implemented to compute the errors. Concerning the RMSE,
there was an improvement of 11,71 %, 11,94 %, and 2,07 % for OK, SK and UK, respectively, regarding
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to IDW results. Figure 4-3 confirms the RMSE results for every interpolation technique. Analyzing the
average results, the SK and OK preset the more promising result. Also, the RMSE results show that
all interpolation techniques had a similar performance throughout the year, see Figure 4-3. During
September, the RMSE reached the highest value 636,785 Wh⁄(m2day) with IDW, because the outlier
values influence the results, as the semivariance value showed. May presents the lowest RMSE value,
410,781Wh⁄(m2day) using SK. There is an reduction of the error of 14,63 % and 14,62 % with OK and
SK against the IDW results in August.

Regarding the MAE results, the OK and SK techniques improved by 3,98 % and 5,10 %, respectively, and
the UK technique reduced by 6,78 %, as Figure 4-4 presents. September shows the highest value ob-
tained with the UK technique 455,055Wh⁄(m2day), and May had the lowest value 296,33Wh⁄(m2day).
SK and OK show similar results during all year.

Concerning MBE, all Kriging methods had better results than IDW by 1,01, 0,063, and 0,022 times with
OK, SK, and UK, respectively, see Figure 4-5. The MBE results show that OK is the method with less bias;
also, this is aslo the only technique with underestimation. It is crucial in the power plant design because
the resource determines the power plant’s size to generate the needed electricity.

The SD results shows that the Kriging methods reduce the dispersion by 11,40 %, 11,97 %, and 2,10
% with OK, SK and UK, respectively, see Figure 4-6. The SD had similar results to RMSE because high
dispersion could lead to outlier values. From July to September, there is more dispersion. Therefore,
during these months, the weather in the territory is more heterogeneous than in the other months.
Finally, the MPE results showed an improvement of OK, SK and UK by 46,58 %, 16,81 % and 20,98 %,
respectively, see Figure 4-7. The MPE results show that OK had better results during all year.

Table 4-7. Spatial interpolation methods results

Month RMSE MAE MBE MPE SD EIT RMSE MAE MBE MPE SD EIT

January 525,342 330,598 45,869 4,35 16,729 IDW 465,330 342.332 -2.860 2.05 14.875 O.K

February 567,242 397,357 41,182 4,50 17,712 IDW 500,239 366.794 0.906 2.44 15.661 O.K

March 561,394 400,581 41,040 4,39 17,307 IDW 505,381 376.748 0.199 2.40 15.622 O.K

April 511,992 333,541 44,521 4,07 15,819 IDW 455,076 341.022 -4.360 1.82 14.113 O.K

May 471,550 306,39 42,209 3,97 15,319 IDW 421,250 315.984 -9.763 1.52 13.736 O.K

June 506,003 360,751 33,047 4,65 16,952 IDW 450,789 319.848 1.264 2.87 15.134 O.K

July 564,144 381,971 27,776 5,29 18,486 IDW 491,535 352.424 1.542 3.48 16.127 O.K

August 607,336 399,639 34,836 5,78 18,753 IDW 518,485 374.029 2.713 3.65 16.036 O.K

September 636,785 443,480 37,219 5,64 19,045 IDW 564,540 407.237 4.903 3.71 16.913 O.K

October 576,885 396,533 62,608 5,31 17,496 IDW 504,945 380.054 -0.427 2.33 15.405 O.K

November 539,667 352,341 70,571 5,25 17,276 IDW 472,927 336.586 4.637 2.35 15.270 O.K

December 506,778 321,878 40,389 4,10 16,692 IDW 454,732 336.019 -3.541 1.99 15.025 O.K

January 462,785 336.920 40.141 3.55 14.738 S.K 509,716 381.682 34.512 3.26 16.257 U.K

February 502,179 373.044 46.191 4,00 15.655 S.K 563,363 419.714 41.599 3.82 17.589 U.K
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March 505,895 378.639 44.025 3.87 15.578 S.K 568,021 427.894 40.631 3.75 17.513 U.K

April 450,275 327.556 34.090 3.10 13.925 S.K 517,755 386.887 42.070 3.29 16.005 U.K

May 410,781 296.330 29.787 2.89 13.363 S.K 462,906 349.814 35.557 2.97 15.054 U.K

June 446,634 309.531 34.535 4.06 14.950 S.K 487,127 343.213 47.358 3.98 16.277 U.K

July 487,870 340.342 28.128 4.41 15.980 S.K 550,103 387.010 54.272 4.80 17.960 U.K

August 518,563 368.247 41.566 4.97 15.987 S.K 592,957 416.214 59.400 5.01 18.247 U.K

September 567,399 413.525 48.972 5.19 16.936 S.K 633,792 455.055 56.646 4.86 18.912 U.K

October 508,207 384.880 52.490 4.16 15.422 S.K 564,131 427.383 41.536 3.63 17.164 U.K

November 480,752 344.644 57.366 4.26 15.412 S.K 508,971 369.595 28.939 3.12 16.408 U.K

December 448,857 325.603 31.080 3.21 14.796 S.K 479,935 360.711 23.534 2.79 15.839 U.K

Figure 4-3. RMSE results

Figure 4-4. MAE results
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Figure 4-5. MBE results

Figure 4-6. SD results

In general, Kriging methods showed better results than IDW. Withing the Kriging techniques SK had
better results in RMSE (11,94 %), MAE (5,10 %), and SD (11,97 %), and OK had better results in MBE (1,01
times), and MPE (46,58 %). Based on results, OK was the method selected to map global solar insolation
in the analyzed tropical and mountainous areas due to that it is the technique with less bias and less
percentage error. Figure 4-8 to Figure 4-9 shows the monthly daily average global solar insolation
from January until December. Comparing the obtained results in this research against the Solar Atlas
from the IDEAM, the researchers agree that the Andean zone has significant potential during all year.
However, there is a difference between the estimated potential in these two works. Overall, the IDEAM
results present a higher potential than the estimated potential in this research. For example, in the
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Figure 4-7. MPE results

Obonuco CWS, the IDEAM present potential of 3.677,5 [Wh/m2day], and this research estimate the
potential of 3.298,6 [Wh/m2day] in January. In Apto. San Luis, IDEAM estimate a potential of 3.902,6
[Wh/m2day], and this research estimate the potential of 2.194,1 [Wh/m2day] in March. Also, IDEAM
used two CWS (Obonuco and Apto. San Luis) and five AWS (La Josefina, Botana, Cerro Páramo, Viento Libre,
and Paraiso) to estimate the potential in Nariño, this research increase the number of AWS and CWS used.
Therefore, the density, which is an important factor in the interpolation techniques, increase with this
research.

From the maps, it is possible to conclude that a typical solar power plant with a 1 kW capacity, evalu-
ated in the lower and better case, located in the Andean zone could generate between 73,15 kWh and
81,24 kWh in December and October, respectively. The same power plant located in the Pacific zone
could generate between 52,44 kWh and 61,13 kWh in November and March, respectively, and in the
Amazon zone, the electricity generation is between 51,31 kWh and 62,42 kWh in June and October,
respectively.

4.6 Conclusions

Solar insolation estimation allowed confirming that the relationship between AWS altitude and logistic
model empirical coefficients had better performance in the Andean than the Pacific zones. The Harg-
reaves and Samani model had better results in the Pacific zone.

The authors estimated solar insolation with the HS model in the Pacific zone, and results presented an
underestimated resource by 442,78 [Wh⁄(m2)day] and 333,11 [Wh⁄(m2)day] for Granja el Mira and
Altaquer, respectively. It is essential to increase the AWS number on the territory to improve the results.
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Figure 4-8. First semester solar insolation

(a) January (b) February

(c) March (d) April

(e) May (f) June
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Figure 4-9. Second semester solar insolation

(a) July (b) August

(c) September (d) October

(e) November (f) December
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The authors estimated the solar insolation in the Andean zone with the logistic model proposed at the
beginning of this work. The comparison between measured and estimated values showed an overesti-
mation in Sandona and Ospina Perez. However, regarding the HS model, the estimation is reduced 51,81
% and 18,55 % for Ospina Perez and Sandona, respectively. In global terms, the logistical model had better
performance than HS model in altitudes above 2.500 MASL.

Comparing between IDW and the Kriging methods, OK presented an improvement in the statistical er-
rors. The following figures confirms that conclusion: RMSE 11,71 %, MAE 3,98 %, MBE 1,01 times, SD
11,40 % and MPE 46,58 %. Although SK showed better results in MAE, SD, and RMSE than OK, the bias
with OK is lower. Therefore, OK was the technique selected for mapping the solar insolation potential.
UK was the technique that presented lower improvements against the IDW, even in MAE, which reduced
the 6,78 % of the accuracy.

From the maps, it is possible to conclude that the obtained estimation is lower than the presented in the
IDEAM solar radiation maps over the whole Nariño territory. However, it is also possible to determine
the existence of a zone with a high potential for electricity generation with solar PV power plants.



5 Short-term forecasting of global solar
irradiance and insolation in tropical
environments with incomplete data

1

Abstract

Accurate mechanisms for forecasting solar irradiance and insolation boost solar energy applications.
There are several techniques to forecast global solar irradiance, such as numerical weather prediction
and statistical techniques. In this context, this research compares four forecasting approaches Autore-
gressive Integrated Moving Average, Single Layer Feed Forward Network (SL-FNN), Multiple Layer Feed
Forward Network (ML-FNN), and Long Short-Term Memory (LSTM) in a one-day ahead horizon using
incomplete datasets measured in a tropical and mountainous environment. The results show that the
neural network-based models outperform the ARIMA model. Furthermore, LSTM has better perfor-
mance with a low number of input data and in cloudiness environments.

5.1 Introduction

The proliferation of solar power generation systems has promoted the interest in solar irradiance and
insolation forecasting models. Accurate systems allow estimating the electricity generation in the long-
medium- and short-term. This information is crucial to maintain the balance between energy demand
and supply (Dannecker, 2015), as well as minimize costs associated with start and shutdown of con-
ventional power plants (Badosa et al., 2017). The solar irradiance is the amount of solar energy on an
specific area during a specific time interval, in this case solar irradiance refers to the solar energy in a
hourly interval [Wh/m2]. Solar insolation measures the cumulative solar energy on a surface, in this
case solar insolation is the solar energy in a daily interval [W/m2day] (Sandia National Laboratories,
2021)

Time series analysis is the process of examining recorded data over time in order to develop a mathe-
matical model (Shumway & Stoffer, 2011). These models facilitate the implementation of photo-voltaic

1This article had the participation of Belizza Ruiz and Francisco Ruiz
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(PV) systems, both on-grid and off-grid. Data recorded in extended periods of time is used to under-
stand the behavior and predict future solar irradiance values in a specific location (Suehrcke, 2000).
Furthermore, the study of solar irradiance becomes an important subject due to local or global laws
seeking to reduce greenhouse gas (GHG) emissions.

The solar irradiance is a time-dependent phenomenon composed of a deterministic and stochastic part
(Boland, 2008). Mathematical models allow predicting the exact future value of the deterministic part.
On the other hand, the stochastic part outputs a future value between two limits with a confidence in-
terval (Box et al., 2016). The forecasting accuracy relies on the stochastic component ability to model
the solar radiation changes induced by the clouds (Inman et al., 2013). There are several approaches
to forecast the solar radiation such as persistence methods that assume that the value at time t + 1 is
equal to value at time t (Diagne et al., 2013), autoregressive models, e.g., autoregressive moving aver-
age (ARMA), and autoregressive integrated moving average (ARIMA), which allow modeling stationary
and non-stationary variations and describing complex nonlinear atmospheric phenomena (Inman et al.,
2013), and soft computing techniques, e.g., support vector machine (SVM), artificial neural network
(ANN), and fuzzy and genetic algorithms (GA) (Demirhan & Renwick, 2018). The ANN, fuzzy logic, and
hybrids are robust for modeling the physical processes’ stochastic nature, like the solar irradiance be-
cause of their capacity to compensate systematic errors and problematic learnable deviation (Paulescu
et al., 2013).

The selection of a forecasting method depends on the desired timescale, e.g., intra-hour (15 min to 2
h), intra-day (1h to 6h) and day ahead (1 day to 3 days) (Diagne et al., 2013). Statistical approaches
usually perform well for short-term forecasting, such as ARIMA and ANN. For long-term analysis, soft
computing techniques are frequently preferred (Coimbra et al., 2013; Demirhan & Renwick, 2018). The
autoregressive models describe the characteristics and behavior of the time series using an autoregres-
sion process (Antonanzas et al., 2016; Dannecker, 2015). ARIMA is an extension of the ARMA model,
which models non-stationary time series. The motivation for using these forecasting models is their
robustness to random errors and outliers (Diagne et al., 2013; Sobri et al., 2018). An ANN is a statisti-
cal model that establishes a relationship between the input and output data during a training process
through layers formed by interconnected nodes of inputs, outputs, hidden layers, and activation func-
tions. It has become one of the most popular solar power forecasting technique (Mazorra-Aguiar &
Díaz, 2018; Antonanzas et al., 2016). Long Short-Term Memory (LSTM) network is an advanced Recur-
rent Neural Network (RNN), which has been recently used in the renewable energy field (Chandola et
al., 2020). LSTM learns the dependence between successive data (Ghimire, Deo, Downs, & Raj, 2019).
Some studies suggest that LSTM outperforms other state-of-the-art models in forecasting day-ahead
solar irradiance (Husein & Chung, 2019).

The implementation of these forecasting techniques requires historical data sets. The datasets used
in this study were collected by the Colombian Institute of Hydrology, Meteorology, and Environmental
Studies (IDEAM) in 12 Automatic Weather Stations (AWS) located in the Nariño - Colombia. This region
is situated in the tropic between the 0◦21

′
54

′′
and 2◦41

′
10

′′
latitudes and −79◦0

′
43

′′
to −76◦50

′
13

′′

longitude. The altitude of the AWS ranges from 16 to 3.577 MASL. This location has three geographical



70 5 Short-term forecasting of global solar radiation in tropical environments

subregions, called the Pacific, Andean and Amazonia zones. As usual in solar irradiance measurements,
these datasets have a considerable amount of missing data. To overcome this problem, Layanun et
al. proposed a data-missing imputation technique for a seasonal ARIMA-based forecasting method in
Bangkok in Thailand that averages the data classified by weather type determined with temperature
and humidity information (Layanun et al., 2017). Likewise, Rodríguez-Rivero et al. applied an average
smoothing technique to fill the time series’s missing data to short-term forecasting. Ogunsola & Song
used three approaches to solar irradiance data imputation Singular Spectral Analysis (SSA), Statistically
Adjusted Solar Radiation (SASR), and Temperature-based Approach (TBA). They recommend using dif-
ferent imputation techniques based on the gap length (Ogunsola & Song, 2014). In our experiments,
we implement an imputation technique that replaces the missing data with a value estimated from the
existing data (Demirhan & Renwick, 2018; Moritz & Bartz-Beielstein, 2017).

This study applies four state-of-the-art prediction models for global solar irradiance and insolation one
day-ahead forecasting in tropical and mountainous environments with incomplete data: i) ARIMA, ii)
Single Layer Feedforward Neural Network (SL-FNN), iii) Multi-Layer Feedforward Neural Network (ML-
FNN), iv) and Long Short-Term Memory (LSTM). In the irradiance case, the models forecast the hourly
irradiance values one day ahead. For the insolation, which in this case is the sum of the irradiance hourly
values, the models forecast the insolation one day ahead. The missing data imputation combines a linear
interpolation of the subsequent values with the average of past values measured at the same hour of
the imputed data for hourly data, and a TBA for daily data. To remove the deterministic effect, it is
the clearness index used instead of the global solar irradiance values directly. The results show that
the NN-based techniques outperform ARIMA. LSTM model has a better performance in AWS with less
amount of data in the Pacific zone. SL-FNN achieve the best behavior in the AWS when more data is
available.

5.2 Materials and Methods

This section contains the description of four forecasting models (the autoregressive statistical method
ARIMA, and three models based on neural network architectures: SL-FNN, ML-FNN, and LSTM).

Figure 5-1 describes our forecasting methodology. As a preprocessing step, we perform “quality con-
trol” on the input data by removing anomalous data. After that, we fill the time series gaps (missing
data). In the model selection step, we consider four options: ARIMA, SL-FNN, ML-FNN and LSTM. In
the training step, the model’s parameters are computed in such a way that fit the training data. To eval-
uate the model, we use the parameter values updated until the t-th day to predict the irradiance or
insolation in the t+ 1-th day. We use the performance measures to tune the hyperparameters.
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Figure 5-1. This diagram shows the stages for training the forecasting models and hyperparameter tun-
ing where TS, TS’, FC, and GT stand for input time series, imputed time series, forecasting
(model output), and ground-truth (value provided by the AWS), respectively.

5.2.1 ARIMA

ARIMA consists of three components: i) autoregression (AR), ii) integration (I), and iii) moving average
(MA). AR and MA deal with the stochastic elements, and I renders the time series stationarity. ARIMA
is denoted as ARIMA (p, d, q), where p and q are the AR and MA order, respectively, and d is the number
of derivatives applied to the time series (e.g., d = 0 means that the time series is already stationary,
and d = 2 means that two derivatives are needed to make the data stationary) (Agami Reddy, 2011).
ARIMA (p, d, q) is defined by:

Φp (B)∆dxt = θq (B)ut, ut ∼ WN (0, σ2) (5-1)

or (
1−

p∑
i=1

ΦiB
i

)
(1−B)d xt =

(
1 +

q∑
i=1

θiB
q

)
ut (5-2)

whereB is the backward shift operator that may be treat as a complex number, ∆ = 1−B is the back-
ward difference, Φp and θq are polynomials of order p and q respectively. (1−B)d xt is the responsible
to transform the non-stationary time series in a stationary one. After applying this transformation, it
is possible to use any forecasting strategy for stationary data (Montgomery et al., 2008; Shumway &
Stoffer, 2011).

AR describes the past behavior of the time series and series residual at the actual time as a weighted
linear combination of values of a dataset of a stochastic process xt (Dannecker, 2015) and a white noise
ut as follows

xt = Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + ut =

p∑
i=1

Φixt−i + ut. (5-3)

Using the backshift operator the equation 5-3 is expressed as follows:

ut =

(
1−

p∑
i=1

ΦiB
i

)
xt. (5-4)
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MA describes the time-series’ random perturbations by a weighted linear combination of previous val-
ues of a white noise error. Thus, the time series is represented as a set of uncorrelated and normal-
distributed random variables, as follows:

xt = θ1ut−1 + θ2ut−2 + · · ·+ θqut−q =

(
1−

p∑
i=1

θiB
q

)
ut. (5-5)

5.2.2 Feedforward Neural Networks (FNN)

An FNN is an ensemble of units, known as neurons, connected by synaptic joints each one with a weight
coefficient (Blaga et al., 2019). An FNN can be divided into three parts: input, hidden layers, and output.
The first part receives the input data. The hidden layers connect the input and output. The output
layer outcomes the computed values (Premalatha & Valan Arasu, 2016). The FNN training requires an
iterative backpropagation procedure that learns an input-output mapping. This process has four steps:
i) forward propagation of the training pattern input, ii) error calculation by a loss function that compares
estimated and reference values, iii) backpropagation of the error to recompute each weight ∆wij from
the output to the hidden layer, and iv) weight’swij updating: wnew

ij = wold
ij +λ∆wij , where λ is known

as learning rate (Blaga et al., 2019).

During forward propagation, the inputs xi−1 are multiplied by the weights w, the individual results are
summed-up, and a bias b is added to the results as an offset value as follows

z(i)n =

Ni−1∑
k=1

w
(i)
nkx

i−1
k + b(i)n

where i is the current layer (if i = 1, x0 is the input), n is the n-th neuron in the current layer, k is the
k-th neuron in the previous layer, and Ni−1 is the number of neurons in the previous layer. This result
is passed through a so-called activation function (Ghimire, Deo, Raj, & Mi, 2019) such that

x(i) = f(z(i))

where xi is the current layer’s output, and f(·) is typically used to bound the signal or induce non-linear
interactions. In this way, the signal passes all the layers until reaching the output. The weights are
initialized with random values. Both weights and bias are iteratively updated until a stopping criterion
is fulfilled (Munawar & Wang, 2020).

In this study, we consider two FNN architectures: a Single Layer FNN (SL-FNN) that links directly input
and outputs without activation functions, and a multi-layer FNN (ML-FNN) with two hidden layers and
ReLU activation functions between them. Note that our SL-NN and ML-NN architectures learn a linear
and non-linear mapping, respectively. Figure 5-2 illustrates both of them.
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Figure 5-2. Architecture FNN

(a) FNN with a single hidden layer (b) FNN with multiple hidden layers

5.2.3 LSTM

In addition to the FNN models described above, we consider a recurrent neural network (RNN) architec-
ture. RNN is an efficient tool to deal with temporal patterns due to the capacity of remember previous
data (Chandola et al., 2020). However, training a RNN is usually difficult due to the vanishing gradient
problem (Husein & Chung, 2019). Given an input xt−1 = x1, x2, xn, the output xt in a RNN is given by:

xt = whxtht + bxt

ht = H(whxt−1xt−1 + whhht−1 + bh)
(5-6)

where whxt−1 , whh, whxt are input-hidden, hidden-hidden and hidden-output weight matrices, bh, and
bxt are hidden and output bias vectors, respectively. H term is the hidden layer activation function.

LSTM is an advanced RNN that resolves the gradient problem including an explicit memory to the net-
work. LSTM has an input, forget gate, output gate, and a cell unit that serves as memory for a defined
time interval (see Figure 5-4a). The gates control the flow of information that enter and leave the cell
unit, see Figure 5-4b (Husein & Chung, 2019). The forget gate ft determine the influence of the previ-
ous state on the current state. The input gate it receives the new information to update the cell state.
The output gate ot provide the information based on the cell state. The sigmoid function σ adjust the
output values of these gates to a value between 0 to 1, that are interpreted as a probability (Kwon et
al., 2020).

The explicit memory of the LSTM makes this technique appropriate for a short-term, near real-time
forecast model (Ghimire, Deo, Downs, & Raj, 2019). The LSTM unit has three operation states: 1) Input
gate activate: the cell memory accumulates new information. 2) Forget gate activate: the cell erases the
accumulated information. 3) Output gate activate: the final output propagates to the ultimate state.
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Figure 5-3. RNN

(a) RNN Structure

(b) LSTM architecture

In the LSTM forward propagation the forget gate computes

ft = σ(wxfxt + whfht−1 + bf ) (5-7)

where ht−1 represents the last previous state, and σ(·) is the logistic sigmoid function. The LSTM cell
internal status is updated with a conditional self-loop weight ft as follows:

ct = ftct−1 + it tanh(wxcxt + whcht−1 + bc). (5-8)

The cell unit ct is a linear self-loop controlled by the forget gate unit ft that determines the forward
contribution of ct−1. Then, the external input unit it is calculated similarly to the forget gate with its
own parameters:

it = σ(wxixt + whiht−1 + bi). (5-9)

The output ht of the LSTM cell can also be shut off, via the output gate ot, which also uses a sigmoid
unit for gating:

ht = ot tanh(ct) (5-10)

where ot = σ(wxoxt + whoht−1 + bo), and i, f, o and c are the input, forget, output gate and cell,
respectively. Note that i, f, o and c have the same size as the hidden vector h.
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5.2.4 Quality control data

To reduce the risk of biases induced by inaccurate data, we apply a quality control process that consist
of three stages: i) Data completeness checking: samples that lack essential information (station code,
variable code, date and time, and data value) are removed from the data set. ii) anomaly detection based
on fixed limits: to avoid over estimate the resource, we discard the samples that exceed the maximum
hourly extraterrestrial solar irradiance value (I0). Therefore, it is required that I0 ≥ Imt where Imt is
the measured global solar irradiance at time t, and I0 is

Isc

[
1 + 0, 033cos

(
360

D − 3

365

)]
∗ sinβ (5-11)

where D is the Julian day, Isc is the solar constant (1.367 [W/m2]) representing the energy from the
Sun per unit area of the surface perpendicular to the irradiance propagation direction (Şen, 2008) and
sinβ = cosϕcosδcosωs + sinϕsinδ. iii) anomaly detection based on hourly limits: to avoid underes-
timate the resource, we use as lower bound the 3% of the clear-sky global solar irradiance (Icst), where
Icst = I0τ . We consider the samples under the lower bound as anomalous values and remove them
from the dataset.

To estimate the atmospheric transmittance τ and Icst, we implement the Kreith & Kreider model (Şen,
2008):

τ = 0, 56
(
e−0,65/ sinβ + e−0,095/ sinβ.

)
(5-12)

The procedure above follows the UNE500540 regulation (AENOR, 2004), and the recommendations in
(Estévez et al., 2011), which applied quality control to solar irradiance data in Spain.

5.2.5 Data imputation

Data imputation is the process of completing the missing data with reasonable values. In this case, the
authors use the clearness index Kt, which is the ratio between the solar irradiance at ground level and
the clear sky global solar irradiance, computed with the Kreith & Kreider model, instead of dealing with
the solar irradiance data directly.

In our experiments, for hourly data we filled out the missing data on the first day with a value of 1.
Afterward, the technique considers three cases: if the missing data is at i) 6, ii) 18, or iii) between 7 to
17 hours. In the first case, the missing data is the average between the value at the same hour of the day
before with the clearness index value of the 7 hours of the current day. On the second case, the value
is the result of the average between the data at 17 hours of the current day and the value at 18 hours
of the day before. In the third case, the imputed value corresponds to the average between the value
at the same hour the day before and the value of the immediately previous and following hours. If the
immediately next value is missed, it is not considered in the calculation.
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For daily data imputation, we used empirical temperature-based models such as Hargreaves and Samani
(Hargreaves & Samani, 1982),

H

H0

= a (Tmax − Tmin)
0,5 (5-13)

where H is the daily global solar insolation, H0 is the daily extraterrestrial global solar insolation, a
is an empirical coefficient computed from each dataset, Tmax is the maximum daily temperature, and
Tmin is the daily minimum temperature, and a new approach based on logistic regression,

H

H0

=
1

1 + e−(a+b(Tmax−Tmin))
(5-14)

where a and b are empirical coefficient computed from each dataset. These models estimate the solar
insolation from the difference between the daily maximum and minimum temperature.

5.2.6 Model performance criteria

We use statistical validation to measure the forecasting performance. Table 5-1 shows the computed
errors. For MAE and RMSE, the lower the better, and for MBE, the closer to zero the better (Abreu et
al., 2018). The performance evaluation only considers the measure data, since the imputed data is used
exclusively for training. Therefore, the amount of days for the error estimation is different from each
AWS’s total amount of data.

Table 5-1. Statistical errors

Measurement Definition Formula∗

Mean absolute error (MAE) It is the average vertical distance between each predicted and
observed point. This measure quantifies the error with more
emphasis on the mean and less on individual extreme events.

1
n

∑n
i=1 |pi − oi|

Root mean square error (RMSE) It provides a measure of the error size and is sensitive to outlier
values because this measure gives much weight on large errors.
It captures variability rather than the overall trend.

[
1
n

∑n
i=1 (pi − oi)

2]1/2

Mean bias error (MBE) This measure provides information on the long-term perfor-
mance of the model, when the model has a systematic er-
ror that presents overestimated or underestimated predictors.
Low values of MBE are desirable, though it should be noted
that an overestimated data set will cancel another underesti-
mated data set.

1
n

∑n
i=1(pi − oi)

∗ pi is the predicted value,oi is the observed value, n is the amount of data

Source: (Almorox et al., 2011; C. M. Dos Santos et al., 2014; Gueymard, 2014; J. Li & Heap, 2011; Mayer
& Butler, 1993; Blaga et al., 2019)



5.3 Experimental set-up 77

5.3 Experimental set-up

5.3.1 Location and dataset

Figure 5-4. Location of weather stationsIn this study, we use irradiance
data from twelve AWS (see Table
5-2) located in Nariño, Colombia,
as shown in Figure 5-4. This re-
gion is located in the Intertropi-
cal Convergence Zone, where the
Andean mountain range splits into
two mountain ranges. This zone
is formed by three sub-regions, the
Pacific, Andean, and Amazon. The
altitude of all the AWS ranges from
42 to 3.577 MASL. These geograph-
ical characteristics allow assessing
the studied forecasting techniques
on different physio-graphic and en-
vironmental conditions.

Table 5-2. Automatic Weather Stations

Name Latitude Longitude Altitude Period Region

Biotopo 1,41 -78,28 512 2005-2017 Pacific

Altaquer 1,56 -79,09 1.1010 2013-2014 Pacific

Granja el Mira 1,55 -78,69 16 2016-2017 Pacific

Guapi 2,57 -77,89 42 2005-2017 Pacific

Cerro-Páramo 0,84 -77,39 3.577 2005-2017 Amazon

La Josefina 0,93 -77,48 2.449 2005-2017 Andean

Viento Libre 1,62 -77,34 1.005 2005-2017 Andean

Universidad de Nariño 1,23 -77,28 2.626 2005-2017 Andean

Botana 1,16 -77,27 2.820 2005-2017 Andean

El Paraiso 1,07 -77,63 3.120 2005-2017 Andean

Sandona 1,30 -77,46 1.838 2013-2017 Andean

Ospina Perez 1,25 -77,48 1.619 2013-2017 Andean

Figure 5-5 shows the global solar radiation data grouped by the clearness index Kt, based on the
following categories (Rivero et al., 2017): cloudy days 0, 0 < Kt ≤ 0, 2, partially high cloudiness
0, 2 < Kt ≤ 0, 4, partially low cloudiness 0, 4 < Kt ≤ 0, 6, sunny 0, 6 < Kt ≤ 0, 75, very sunny
0, 75 < Kt ≤ 1, 0. Note that Biotopo and Cerro Páramo have mostly cloudy days, and the others have
mostly partially high cloudy days.
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Figure 5-5. Days classification with clearness index

(a) Biotopo (b) Viento Libre (c) Cerro Páramo

(d) Universidad de Nariño (e) Botana (f) La Josefina

(g) Paraiso (h) Guapi (i) Altaquer

(j) Granja el Mira (k) Ospina Perez (l) Sandona

5.3.2 Data pre-processing

Forecasting methods aim to model the global solar irradiance’s stochastic component. Therefore, in the
pre-processing stage, we remove the time series’ trend to reduce the deterministic effect. To this end,
we use the clearness index Kt (Benali et al., 2019; Diagne et al., 2013). The Kt ranges between 0 to
1 and indicates the amount of solar irradiance in a clear sky that reaches the Earth surface. Therefore,
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Kt = 0 is obtained on an completely overcast day, while Kt = 1 is achieved on a very sunny day.

5.3.3 Forecasting models’ architectures

We use the forecasting models for the one-day ahead prediction of solar irradiance and insolation. We
grouped the neural network architectures into SL-FNN, ML-FNN, and LSTM, and design two architec-
tures per group (for irradiance and insolation forecasting in each case). Each architecture outputs a
vector ∈ R13 and R, respectively. In SL-FNN, the input directly feeds the output, so, the size of the
input is 130 for solar irradiance forecasting (13 values per day), and 10 for insolation (1 value per day),
and the ouput is 13 and 1, respectively. Our ML-FNN consists of two hidden layers with 130, and 10 neu-
ron per hidden layer for irradiance and insolation, respectively, and ReLU activation functions between
them. In LSTM, we use a a hidden layer (memory) with the same size as the input (130 or 10 accordingly)
and a fully connected layer between this layer and the output. Note that there is not activation function
that bounds the output in any of the neural network models.

5.3.4 Training

For training ARIMA, we use a sliding window of 10 days. We move the window one day at a time and fit
the model each shift. For tuning the hyperparamters p, d, and q (see (5-1)), we carry out an exhaustive
search in p ∈ {1, 2, 3}, d ∈ {0, 1, 2}, and q ∈ {1, 2, 3}, and choose the best (p, d, q) each step accord-
ing to the Akaike information criterion (AIC). Likewise, the neural network models use the 10-day sliding
window as input and forecast the next day data. For tuning the learning rate, we randomly choose an
AWS (Biotopo), and select the one that outputs the lowest RMSE in λ ∈ {1, 10−1, 10−2, 10−3, 10−4}.
We set λ = 10−2 then. For updating the network parameters (weights and biases), we use batches
of 10 consecutive windows paired with their corresponding next-day data. As loss function, we use
the mean square error (MSE) that compares the next day prediction and ground-truth. We do not intro-
duce additional regularization terms to the loss function such as dropouts. We compute the forecasting
performance progressively each step before updating the networks’ parameters disregarding imputed
outputs. In our experiments, we use the built-in ARIMA algorithm of the Python module “statsmodel
0.11.1,” and the deep-learning framework “Pytorch 1.4.0” for implementing the neural network models.

5.4 Results and discussion

This section contains the results and analyses of the application of imputation methods and forecasting
models on irradiance and insolation data.
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5.4.1 Imputation results

For the irradiance data analyses, our time frame of interest is from 6:00 to 18:00. Therefore, the col-
lected data of a day is complete when the dataset contains 13 data values in this interval (one per hour).
On average (for all the 12 AWS), 69, 26% of training data was imputed. Table 5-3 contains the imputa-
tion details (total number of measured and missing values on the left, and number of missing data per
time series quarter on the right). For instance, in Biotopo, there are 10.971 missing values in the first
quarter (data collected between 2005/11/26 and 2008/11/04).

Table 5-3. Details of the hourly data used in the forecasting experiments.

Time series details Missing values per quarter

AWS Name Time frame # of measured # of missing % of missing Total 1sdquarter 2ndquarter 3thquarter 4thquarter

values values values # of data # of data # of data # of data

Biotopo 2005/11/26-2017/08/31 12.811 43.050 77, 1% 55.861 10.971 10.710 12.755 8.614

Altaquer 2013/05/31-2014/08/10 2.576 3.105 54, 7% 5.681 698 922 723 762

Granja el Mira 2016/07/29-2017/08/31 1.723 3.464 66, 8% 5.187 819 805 1.044 796

Guapi 2005/10/09-2017/08/30 13.247 43.225 76, 5% 56.472 10.347 10.565 13.040 9.273

Cerro Páramo 2005/11/25-2017/08/31 22.072 33.802 60, 5% 55.835 9.204 7.959 8.209 8.430

Viento Libre 2005/11/13-2017/08/31 16.288 39.742 70, 9% 56.030 12.450 9.485 8.494 9.313

Universidad de Nariño 2005/05/12-2017/08/31 21.375 37.060 63, 4% 58.435 9.467 9.655 9.300 8.638

La Josefina 2005/11/28-2017/08/31 8.815 47.020 84, 2% 55.835 12.146 13.880 11.576 9.418

Botana 2005/05/12-2017/08/31 23.036 35.399 60, 6% 58.435 8.577 9.666 8.242 8.914

Paraiso 2005/11/23-2017/08/31 17.551 38.349 68, 6% 55.900 11.259 9.540 9.530 8.020

Ospina Perez 2016/06/18-2017/08/17 1.449 4.128 74, 0% 5.577 747 1.392 1.162 827

Sandona 2016/06/16-2017/08/17 1.454 4.110 73, 9% 5.564 713 1.391 1.162 844

La Josefina is the AWS with most missing data. For training the forecasting models with this station,
84,2 % data needs to be estimated. Most of its missing values are in the second quarter of the time
series with 13.880 missing values (29, 5%). The longest gap with consecutive missing values is 12.999,
approximately 2,7 years, and the one-size gap (one missed value between two known values) occurs
2.242 times. During 2010 there is not any register, therefore, for training the models, all values during
that period were refilled. Figure 5-6 shows the imputation process in a five-day time frame. As it can
be seen, the imputed values follow the trend of the actual values. The statistical error shows that, in
this case, the imputation process underestimates the resource by −15, 53[Wh/m2] (see Table 5-4).

In the Biotopo time series, the largest percentage of missing data corresponds to the third quarter
(29, 6%), between the position 27.933 to 41.898. The longest gap with missing values is 7.252, and
the one-size gap occurs 2.560 times. In Guapi, there are 13.040 (30, 2%) missing values during the third
quarter of the time series, the longest gap size with missing values is 3.913, and the one-size gap oc-
curs 2.582 times. In the second quarter of the Ospina Perez time series, there are 1.392 missing values
(33, 7%), the longest gap size with missing values is 1.813, and the one-size gap occurs 564 times. San-
dona does not register any data during the second quarter, reaching 1.391 missing values (33, 8%) then,
the longest gap size with missing values is 1.808, and the one-size gap occurs 456 times. Viento Libre
lacks 12.450 values (31, 3%) during the first quarter of the time series, the longest gap size is 7.325,
and the one-size gap occurs 4.944 times. Paraiso lacks 11.259 values (29, 4%) in the first quarter of the
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Figure 5-6. Data imputation La Josefina in 2015

time series, the longest gap size values is 3.856, and the one-size gap occurs 4.475 times. Granja el Mira
has 1.044 missing values (30, 1%) in the third quarter, the longest gap size is 621, and the one-size gap
occurs 513 times. In Universidad de Nariño, the most critical case is the second quarter that lacks 9.655
values (26, 1%), the longest gap size is 914, and the one-size gap occurs 4.612 times. Botana has 9.666
missing values (27, 3%) in the second quarter, the longest gap size is 1.661, and the one-size gap occurs
5.791 times. Cerro Páramo has 9.204 missing values (27, 2%) during the first quarter, the longest gap
size is 1.150, and the one-size gap occurs 3.151 times. In Altaquer, the most critical section is the second
quarter with 922 missing values (29, 7%), the longest gap size is 445, and the one-size gap occurs 632
times.

Viento Libre, Cerro Páramo and Paraiso lack the largest number of items in the first quarter of the time se-
ries, with an average of (29, 3%). In the Altaquer, Universidad de Nariño, La Josefina, Botana, Ospina Perez and
Sandona, the second quarter of the time series presents the largest percentage of missing data (30, 0%
on average). In Sandona, there is not any registered data during that time frame. In the third quarter of
the time series, Biotopo, Granja el Mira and Guapi lack (30, 0%) of the data on average, being the quarter
with the largest percentage of missing values.

Table 5-4 shows the error estimates of the imputation process in the irradiance data. According to
MAE, Cerro Páramo exhibits less extreme events. Consequently, the imputed values follow the mean
trend. The RMSE shows that Sandona and Granja el Mira have more variability and outlier values. The
average RMSE is 118,15 [Wh/m2]. In the AWS located in Pacific, the RMSE is 115,84 [Wh/m2], 127,63
[Wh/m2] in the Andean zone, and 103,69 [Wh/m2] in the Amazon zone. The MBE shows that in all
AWS the resource was underestimated by 12, 83[Wh/m2] on average, with a minimum in Ospina Perez
of 2, 78[Wh/m2] and a maximum in Guapi of 16, 79[Wh/m2]. Likewise, the MAE is 81,07 [Wh/m2]

on average. In the Pacific zone, MAE is 76,75 [Wh/m2], 85,92 [Wh/m2] in the Andean zone, and 64,45
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[Wh/m2] in the Amazon zone.

Table 5-4. Statistical errors in the imputation process for solar irradiance forecasting

Regions AWS Names MAE [W/m2] RMSE[W/m2] MBE[W/m2]

Pacific

Biotopo 69,46 104,16 -14,72

Altaquer 68,24 107,37 -15,82

Granja el Mira 92,22 134,83 -16,18

Guapi 77,09 117,00 -16,79

Amazon Cerro Páramo 64,45 103,69 -15,07

Andean

Viento Libre 80,41 118,04 -11,28

Universidad de Nariño 85,41 125,66 -9,81

La Josefina 83,06 126,03 -15,53

Botana 89,84 131,31 -13,83

Paraiso 86,46 123,44 -10,2

Ospina Perez 89,95 132,07 -2,78

Sandona 86,34 136,88 -11,94

Average 81,07 118,15 -12,82

Table 5-5 shows the errors of the imputation of insolation data. The RSME shows that the Logistic
model outperform Hargreaves and Samani model in the Andean and Amazon zones, and in the Pacific
zone in the AWS with lower measured data such as Altaquer and Granja el Mira. In the Andean zone,
The average RMSE of the logistic model is 1.022, 86[Wh/m2day], and Sandona and Viento Libre show
more variability than the other AWS located in this zone. The average MAE of the logistic model is
833, 89[Wh/m2day]. In the Pacific zone, the average RMSE with logistic model is870, 38[Wh/m2day]

and with Hargreaves and Samani model is 933, 50[Wh/m2day]. The average MAE of the logistic model
is 686, 22[Wh/m2day] and with the Hargreaves and Samani model is 737, 93[Wh/m2day]. In this
zone, the logistic model outperform Hargreaves and Samani model in the AWS with lower amount of
data (Altaquer and Granja el Mira). The MBE does not follow a patter as the RMSE and MAE; therefore,
this error should be analyzed for each particular case.

5.4.2 Irradiance forecasting

After applying the data imputation process, we train and test the four forecasting models: ARIMA, SL-
FNN, ML-FNN, and LSTM. In total, we train 96 forecasting models (8 models for each AWS) in an hourly
and daily timestamp. In order to remove the deterministic part of the time series, we use the clear-
ness index instead of solar irradiance or insolation data directly. To quantify the forecasting models’
performance, we calculate the MAE, RMSE, and MBE error measures for each AWS.

During 2007, 2008, and 2010, rainfall increased in Colombia because of La Niña. This weather pattern
was stronger in 2010 from June to December, with a peak in October and November that registered an
Oceanic Niño Index (ONI) of -1,7. Likewise, in 2009, 2015 and 2016, temperature increased because of
El Niño. The ONI reached an intensity of 2,6 in December 2015, being the highest value registered by
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Table 5-5. Statistical errors in the imputation process for insolation forecasting. Lowest values are in
bold for each empirical model

RMSE [Wh/m2day] MBE [Wh/m2day] MAE [Wh/m2day]

Regions AWS Names HS Logistic HS Logistic HS Logistic

Pacific

Biotopo 993,64 1.113,48 -2,01 -37,29 800,52 885,10

Altaquer 761,09 670,59 -333,11 145,14 596,88 529,73

Granja el Mira 854,87 781,91 -442,78 76,19 684,98 596,66

Guapi 878,75 915,53 -16,38 -27,50 696,35 733,40

Amazon Cerro Páramo 1.209,76 1.152,72 21,29 33,37 946,29 887,34

Andean

Viento Libre 1.080,72 1.077,35 163,13 160,23 861,64 862,86

Universidad de Nariño 1.083,73 1.019,14 62,04 93,72 884,48 833,30

Botana 1.070,23 1.042,68 42,30 47,13 881,19 860,18

Josefina 1.066,18 984,75 -20,58 22,18 830,06 760,43

Paraiso 990,32 921,32 -42,52 -14,98 806,64 748,67

Ospina perez 987,70 934,93 355,08 173,99 797,83 736,86

Sandona 1.375,84 1.179,92 1.213,27 988,12 1.249,26 1.034,94

the National Oceanic and Atmospheric Administration (NOAA) since 1950. These natural phenomenons
affect the performance of the forecasting techniques due to changes in the cloudiness (National Oceanic
and Atmospheric Administration, 2020).

Figure 5-7 contains the hourly measured and predicted data (10-day average) in Biotopo. Figure 5-7 (a)
shows the time series in the complete interval of acquisition. In this experiment, ARIMA, SL-FNN and
ML-FNN adapt better to fast changes than LSTM, which exhibits a delayed response on these cases.
To better understand the models’ behavior, Figures 5-7 (b) and (c) show the eight-month starting and
ending time intervals. ARIMA outperforms the others in the first part of the time series prediction. We
attribute this observation to the large number of parameters in neural networks, which require more
training data than ARIMA. On the other hand, Fig. 5-7 (c) shows that the neural network-based models
output a more accurate prediction when observed more data.

Figure 5-8 shows Altaquer results. Figure 5-8 (a) shows the time series in the complete interval of
acquisition. Figure 5-8 (a) shows that ML-FNN and LSTM do not have enough data inputs to adjust
their weights. Figure 5-8 (b) shows that ARIMA outperform the neural network-based models at the
beginning; however, SL-FNN outperform ARIMA when there is six month of measures as input data on
average. Figure 5-8 (c) confirms that SL-FNN model outperform the others when trained with enough
data.

Table 5-6 contains the errors for the complete time series and errors by quarters of the time series. In
Biotopo, the MAE of the complete time series show that ARIMA is the best model, followed by SL-FNN,
LSTM, and ML-FNN. We observe that ARIMA, SL-FNN, and LSTM follow a mean trend better than ML-
FNN, and that using these models instead of ML-FNN improves the results in 25,54 %, 21,11 %, and 6,62
% respectively. Analyzing the MAE result by quarters, ARIMA is the best model in the first quarter, as
Figure 5-7 (b) shows. However, SL-FNN and LSTM outperform ARIMA in the next two quarters, and in



84 5 Short-term forecasting of global solar radiation in tropical environments

Figure 5-7. Irradiance forecasting results in Biotopo

(a) Complete

(b) Starting (c) Ending

the final quarter, ARIMA has the most significant error, as shown in Figure 5-7 (c). The RMSE shows that
in the complete time series analysis SL-FNN is the best model followed by LSTM, ML-FNN and ARIMA.
Considering that RMSE is sensitive to outliers, these results show that LSTM is the model that forecasts
less atypical values. In the first quarter, ARIMA is the best model, in comparison with ML-FNN, LSTM
and SL-FNN there is an error reduction of 41,73 %, 32,43 % and 12,68 % respectively. Nevertheless,
in the final quarter, ML-FNN, SL-FNN and LSTM outperform ARIMA by 49,35 %, 47,42 %, and 45,05 %.
Finally, regarding the model bias measured with MBE, LSTM is the least biased followed by ML-FNN,
SL-FNN and ARIMA.
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Figure 5-8. Irradiance forecasting results in Altaquer

(a) Complete

(b) Starting (c) Ending

In Altaquer, MAE shows that LSTM is the best model, followed by ARIMA, SL-FNN, and ML-FNN. In the
first, second, and third quarters, ARIMA is the best model since the neural network-based models do
not have enough information to adjust their parameters. However, in the second and third quarters,
LSTM reduces the MAE difference with respect to ARIMA, and in the final quarter, LSTM outperforms
ARIMA by 13,28 %. RMSE and MAE behave similarly for this AWS. ARIMA is the best model in the first
three quarters outperforming LSTM by 14,92 %, 5,8 % and 0,92 %, SL-FNN by 13,63 %, 46,45 % and
38,62 %, and ML-FNN by 21,87 %, 39,62 %, 30,03 %. LSTM and SL-FNN outperform ARIMA in the final
quarter by 10,83 %, and 8,87 % respectively. As a result, LSTM is the best model in the complete time
series, followed by ARIMA, SL-FNN and ML-FNN. MBE shows that LSTM is the model with less bias
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outperforming SL-FNN, ARIMA, and ML-FNN by 40,27 %, 64,11 % and 98,07 %, respectively.

In Granja el Mira, MAE and RSME show that ARIMA is the best model for the complete time series.
However, ARIMA is also the most biased model. Analyzing the models by quarters, ARIMA exhibits the
best MAE and RMSE in the first three quarters. In the final quarter, SL-FNN is the best model. Regarding
the MBE, ARIMA exhibits less bias in the first three quarters, and SL-FNN in the final quarter. However,
the MBE in the complete time series shows ML-FNN as the least biased model. MBE is a measure that
in long-term could compensate overestimation and underestimation periods, as shown in Table 5-1.

In Viento Libre, the AWS located in the Andean zone with less cloudiness (see Figure 5-5), SL-FNN has
the lowest MAE and RMSE, followed by ARIMA, ML-FNN, and LSTM in the complete time series. In the
first three-quarters, ARIMA is the best model, and in the final quarter, this model has the highest error.
In the first quarter, ARIMA and SL-FNN have similar RMSE values, and in the second and third quarters,
ARIMA outperforms the others. Nevertheless, in the final quarter, the neural network-based models
outperform ARIMA. ARIMA is less biased during the first three quarters. However, LSTM outperforms
ARIMA by 99,49 % in the last quarter.

In Universidad de Nariño, MAE shows that the neural network-based models outperform ARIMA in the
complete time series. However, in the analysis by quarters, ARIMA outperforms neural-network-based
models during the first three quarters. Regarding the RMSE, in the complete time series analysis, the
neural network-based models outperform ARIMA. Nevertheless, the difference between ARIMA and
LSTM is approximately 0,81 %. In the first three quarters, ARIMA has a lower error than the neural
network-based models. The MBE shows LSTM as the least biased model in the complete time series.
Besides, LSTM has the lowest bias in the first and fourth quarters.

Cerro Páramo is the only AWS located in the Amazonia zone. Also, it is the AWS with more cloudiness
and the highest altitude, 3.577 MASL. In the complete time series analysis, MAE and RSME show that
SL-FNN is the best model, followed by ML-FNN, LSTM, and ARIMA. The neural network-based models
outperform ARIMA in the first quarter. This result is opposite to the ones obtained with all the AWS
analyzed above, where ARIMA outperforms the neural network-based models during the first three
quarters. The cloud cover amount of Cerro Páramo could explain these results. SL-FNN is the least
biased model, followed by LSTM, ML-FNN, and ARIMA.

La Josefina is a critical case regarding the percentage of missing data (almost 80 % of the time series).
MAE shows that SL-FNN better fits the mean trend of the measured data in the complete time series,
followed by LSTM, ARIMA, and ML-FNN. ARIMA is the model with the highest RMSE. By using SL-FNN,
LSTM and ML-FNN, RMSE reduces by 90,19 %, 88,29 % and 87,82 % respectively. MBE shows that LSTM
is less biased in the complete time series. In the first quarter, ARIMA is the best model regarding MAE,
and SL-FNN is the best model in the second, third, and fourth quarters. The RMSE shows that SL-FNN
has the lowest error in all four quarters.

In Botana, the neural network-based models exhibit lower MAE and RMSE than ARIMA in the complete
time series analysis. The MBE shows that ML-FNN is the most biased model, and LSTM, SL-FNN, and
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ARIMA reduce the bias by 96,83 %, 77,55 %, and 77,25 %, respectively. MAE shows that ARIMA is the
best model in the first three quarters, and SL-FNN is the best in the fourth quarter. ARIMA, SL-FNN, and
ML-FNN have a similar RMSE with a difference of 0,06 % on average in the first quarter. In the following
two quarters, ARIMA is the best model. SL-FNN is the best model in the fourth quarter. MBE shows that
ML-FNN is more biased than LSTM, SL-FNN and ARIMA by 96,83 %, 77,55 % and 77,25 % respectively.

In Paraiso SL-FNN has the lowest MAE and RMSE values in the complete time series analysis. ARIMA
exhibits the lowest MAE and RMSE error in the first three quarters. In the last quarter, SL-FNN is the best
model, followed by ML-FNN, LSTM, and ARIMA. MBE presents that LSTM has the lowest bias, followed
by SL-FNN, ML-FNN, and ARIMA.

In Ospina Perez, MAE and RSME show that ARIMA is the best model, and ML-FNN is the worst model
in the complete time series. In the first quarter, SL-FNN has the lowest MAE. From the second to the
fourth quarter, LSTM has the lowest MAE. The RMSE present that ARIMA is the best model in the first
quarter and LSTM is the best model from the second to the fourth quarter. Additionally, LSTM is the
less biased model followed by SL-FNN, ARIMA, and ML-FNN in the complete time series. In Sandona,
MAE and RMSE show that ARIMA is the best in the complete time series and quarters analysis. The
MBE indicates that LSTM is the less biased model, followed by ARIMA. Also, the percentage difference
between these models is 0,8 %.

In Guapi, SL-FNN exhibits the lowest error in the complete time series regarding MAE and RMSE followed
by ARIMA, ML-FNN, and LSTM. In the first and fourth quarters, SL-FNN shows the lowest MAE and RMSE
error.ARIMA is the best option in the second and third quarters. Regarding the bias, SL-FNN shows the
lowest value, followed by LSTM, ML-FNN, and ARIMA.

Universidad de Nariño and Botana are located closer to each other, as illustrated in Figure 5-4, and the
altitude difference is 194 MASL. However, Botana present more cloudiness, see Figure 5-5. Therefore,
this condition could affect the performance of the forecasting models. In Universidad de Nariño the MPE is
23,53 %, 19,52 %, 17,77 % and 12,84 % for ARIMA, ML-FNN, LSTM and SL-FNN respectively. In Botana,
MPE is 41,88 %, 29,61 %, 26,34 %, and 23,21 % for ARIMA, ML-FNN, LSTM and SL-FNN respectively.
These results show that cloudy conditions increase the statistical errors. ARIMA present the biggest
increase with 18,35 %, followed by SL-FNN (10,37 %), ML-FNN (10,09 %), and LSTM (8,57 %).

MAE shows that ARIMA and SL-FNN follow the mean trend in the Pacific zone and have lowest errors.
Additionally, MAE exhibits that ML-FNN has the lowest performance in Biotopo and Altaquer. The RMSE
shows that ARIMA and SL-FNN have less variability than ML-FNN and LSTM. MBE shows that LSTM
forecasts the future values with less bias. However, the MPE in the Pacific Zone shows that in Biotopo
and Guapi, which have more than one year of measurements, LSTM is the best model, and in Altaquer and
Granja el Mira, with one year of measurements on average, SL-FNN is the best option. SL-FNN is the best
model in Cerro Páramo because it has the lowest variability, as shown by its MAE and RMSE, and has less
bias. MPE shows that SL-FNN has an error of 27,29 %, LSTM of 34,96 %, ML-FNN of 39,65 %, and ARIMA
of 96,96 %. Therefore, in cloudy environments, the neural network-based models outperform ARIMA,
as shown by the statistical error measurements. In the AWS with more than one year of measurements
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located in the Andean zone, SL-FNN is the model with less MAE error, followed by ML-FNN, LSTM, and
ARIMA in the AWS located above 2.000 MASL.

In Viento Libre, with an altitude below 2.000 MASL, SL-FNN is the best model, followed by ARIMA, ML-
FNN, and LSTM. The RMSE shows that SL-FNN and ML-FNN predict future values with less variability.
Additionally, RSME shows that ARIMA has a lower performance in AWS located above 2.000 MASL.
Regarding the bias, LSTM is the best model in all AWS located in the Andean zone. In the AWS with
one year of measurements located in the Andean zone, ARIMA outperforms the neural network-based
models in MAE and RMSE. In this case, ML-FNN has the most significant error. The short length of the
time series could explain this result. ML-FNN might suffer overfitting since it exhibits poor performance
when there is not enough training data.

In the Pacific zone there is not a clear model that has the best performance in all AWS. In Altaquer, which
has 54,7 % of missing data and prevalence of partially high cloudiness, LSTM outperform the other
models. SL-FNN is the best model in Guapi; this AWS has 76,5 % of missing data and mainly partially
high cloudiness. In Granja el Mira and Biotopo there is not a model that has the best performance in all
error measures. Considering RMSE and MAE, ARIMA is the best model for Granja el Mira. Biotopo, which
contains 77,1 % of missing data and prevalent cloudy days, considering all errors, SL-FNN is the best
model.

In the Andean zone, RMSE and MAE show that SL-FNN is the best option for all AWS with more than one
year of measures, independently of the missing data percentage and cloud cover amount, while ARIMA
is the best model in AWS with one year of measures on average. LSTM is the model with less bias in
all AWS.For Cerro Páramo, the only AWS located in the Amazon zone with mainly cloudy days, SL-FNN
outperforms the other model in all errors.
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Complete MAE [Kt] RMSE[Kt] MBE[Kt]

AWS Model MAE [Kt] MBE [Kt] RMSE [Kt] Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Bi
ot

op
o

ARIMA 0.093 0.014 0.193 0.392 0.566 0.829 0.151 0.325 0.411 0.496 0.306 -0.025 -0.558 -0.812 0.044

SL-FNN 0.098 -0.003 0.153 0.523 0.527 0.828 0.119 0.396 0.402 0.522 0.161 -0.105 -0.509 -0.793 0.002

LSTM 0.116 0.002 0.179 0.659 0.520 0.746 0.129 0.506 0.393 0.473 0.168 0.016 -0.494 -0.695 0.001

ML-FNN 0.125 -0.002 0.184 0.858 0.944 1.351 0.116 0.558 0.693 0.820 0.155 0.041 -0.898 -1.259 -0.001

Al
ta

qu
er

ARIMA 0.182 0.058 0.228 0.733 0.338 0.590 0.199 0.449 0.284 0.392 0.240 0.236 0.072 0.057 0.042

SL-FNN 0.186 0.037 0.232 0.860 0.684 0.978 0.177 0.527 0.530 0.639 0.219 0.413 0.557 0.723 -0.033

LSTM 0.175 -0.002 0.223 0.844 0.411 0.624 0.172 0.534 0.314 0.398 0.214 0.175 0.265 0.330 -0.063

ML-FNN 0.216 0.088 0.259 0.978 0.670 0.957 0.200 0.574 0.493 0.584 0.241 0.433 0.383 0.384 0.016

G
ra

nj
a

el

M
ira

ARIMA 0.169 -0.013 0.219 0.603 0.135 0.177 0.184 0.412 0.107 0.119 0.227 -0.048 -0.126 -0.156 -0.029

SL-FNN 0.177 0.011 0.228 0.924 0.926 1.267 0.153 0.572 0.699 0.797 0.194 0.205 0.922 1.258 -0.010

LSTM 0.268 -0.007 0.351 1.343 0.686 1.027 0.265 0.858 0.495 0.608 0.371 -0.277 0.672 0.998 0.082

ML-FNN 0.217 0.003 0.272 1.033 0.442 0.790 0.189 0.638 0.397 0.555 0.234 0.181 0.439 0.786 -0.049

G
ua

pi

ARIMA 0.130 0.010 0.205 0.490 0.255 0.354 0.177 0.357 0.205 0.244 0.251 0.088 0.162 0.168 0.014

SL-FNN 0.106 0.000 0.157 0.479 0.488 0.647 0.140 0.331 0.386 0.434 0.193 -0.004 -0.393 -0.456 -0.004

LSTM 0.197 0.002 0.336 0.550 0.320 0.581 0.273 0.386 0.280 0.392 0.379 0.016 -0.265 -0.471 0.072

ML-FNN 0.152 -0.003 0.215 0.752 0.413 0.731 0.156 0.480 0.399 0.556 0.209 0.131 -0.193 -0.482 0.003

Vi
en

to

Li
br

e

ARIMA 0.145 -0.014 0.206 0.182 0.147 0.231 0.176 0.205 0.149 0.201 0.226 0.004 0.093 0.125 -0.024

SL-FNN 0.117 -0.004 0.164 0.273 0.284 0.485 0.124 0.243 0.252 0.347 0.164 -0.026 -0.183 -0.283 -0.002

LSTM 0.156 0.000 0.247 0.513 0.424 0.633 0.152 0.652 0.329 0.412 0.196 0.041 -0.344 -0.474 0.000

ML-FNN 0.153 -0.007 0.203 0.647 0.758 0.976 0.138 0.465 0.600 0.655 0.176 -0.126 -0.614 -0.689 -0.008

U
ni

ve
rs

id
ad

de
N

ar
iñ

o

ARIMA 0.173 -0.015 0.228 0.484 0.125 0.199 0.195 0.319 0.117 0.158 0.241 -0.035 -0.084 -0.116 -0.014

SL-FNN 0.144 -0.008 0.194 0.511 0.613 0.977 0.136 0.334 0.469 0.614 0.178 -0.045 -0.591 -0.934 -0.004

LSTM 0.169 0.000 0.226 0.560 0.495 0.758 0.147 0.389 0.359 0.452 0.188 -0.022 -0.484 -0.735 0.000

ML-FNN 0.158 0.000 0.209 0.519 0.311 0.521 0.141 0.343 0.280 0.382 0.183 -0.126 -0.220 -0.339 -0.006

Jo
se

fin
a

ARIMA 0.091 -0.016 1.294 0.299 0.160 0.218 0.163 0.293 0.134 0.159 0.218 0.007 -0.138 -0.173 -0.019

SL-FNN 0.074 0.003 0.127 0.365 0.083 0.152 0.124 0.286 0.099 0.140 0.168 0.048 -0.006 -0.026 0.002

LSTM 0.089 0.000 0.151 0.370 0.259 0.337 0.156 0.302 0.210 0.237 0.205 -0.005 -0.181 -0.181 -0.003
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Complete MAE [Kt] RMSE[Kt] MBE[Kt]

ML-FNN 0.103 0.018 0.158 0.640 0.274 0.441 0.134 0.412 0.220 0.292 0.174 0.239 -0.008 0.091 -0.004

Bo
ta

na

ARIMA 0.178 -0.003 0.228 0.681 0.125 0.210 0.183 0.433 0.112 0.154 0.234 0.000 -0.015 0.009 -0.007

SL-FNN 0.149 -0.003 0.194 0.682 0.455 0.707 0.136 0.433 0.344 0.443 0.178 -0.017 -0.032 -0.268 -0.002

LSTM 0.162 0.000 0.211 0.715 0.268 0.461 0.153 0.479 0.226 0.311 0.194 -0.009 -0.254 -0.434 0.000

ML-FNN 0.153 0.012 0.196 0.684 0.179 0.251 0.142 0.433 0.150 0.183 0.181 0.160 -0.141 -0.173 -0.001

Pa
ra

is
o

ARIMA 0.156 -0.022 1.578 0.286 0.114 0.207 0.189 0.245 0.106 0.148 0.238 -0.037 0.014 0.050 -0.010

SL-FNN 0.123 -0.004 0.172 0.318 0.375 0.534 0.141 0.254 0.282 0.335 0.184 -0.030 -0.344 -0.472 -0.003

LSTM 0.138 -0.001 0.192 0.329 0.426 0.626 0.167 0.261 0.311 0.377 0.216 -0.014 -0.400 -0.574 -0.004

ML-FNN 0.137 -0.009 0.186 0.419 0.317 0.550 0.148 0.321 0.302 0.418 0.190 -0.176 -0.116 -0.317 -0.008

O
sp

in
a

Pe
re

z

ARIMA 0.123 -0.033 0.193 0.841 0.353 0.530 0.180 0.519 0.261 0.325 0.240 -0.223 -0.162 -0.148 -0.045

SL-FNN 0.163 -0.026 0.219 0.839 0.288 0.504 0.171 0.524 0.294 0.411 0.225 -0.317 0.046 0.163 0.062

LSTM 0.169 -0.015 0.236 0.924 0.200 0.381 0.166 0.588 0.207 0.292 0.217 -0.022 0.002 0.021 -0.070

ML-FNN 0.213 -0.129 0.267 0.842 0.418 0.585 0.175 0.536 0.315 0.367 0.225 -0.441 -0.314 -0.379 -0.041

Sa
nd

on
a

ARIMA 0.132 -0.015 0.199 0.817 0.303 0.536 0.158 0.503 0.275 0.382 0.205 -0.128 -0.088 -0.108 0.005

SL-FNN 0.284 -0.159 0.394 0.875 0.317 0.595 0.162 0.545 0.312 0.443 0.210 -0.168 0.028 0.098 -0.027

LSTM 0.259 -0.013 0.328 1.124 0.308 0.572 0.213 0.711 0.295 0.414 0.255 -0.006 0.011 0.069 0.064

ML-FNN 0.328 -0.150 0.410 0.894 0.619 0.879 0.198 0.556 0.484 0.581 0.244 -0.087 0.434 0.507 0.062

Ce
rr

o

Pá
ra

m
o

ARIMA 0.210 0.074 0.349 0.822 0.129 0.188 0.213 1.026 0.103 0.128 0.296 0.254 -0.111 -0.151 0.069

SL-FNN 0.136 0.001 0.186 0.614 0.494 0.774 0.131 0.409 0.388 0.506 0.185 0.009 -0.485 -0.758 -0.005

LSTM 0.177 0.002 0.277 0.677 0.362 0.560 0.260 0.454 0.266 0.338 0.430 0.018 -0.349 -0.536 0.001

ML-FNN 0.156 0.003 0.214 0.756 0.512 0.801 0.162 0.469 0.391 0.507 0.249 0.149 -0.496 -0.770 -0.024

Table 5-6. Irradiance statistical errors of the one day-ahead forecasting process
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5.4.3 Insolation forecasting

In this study, we also apply the forecasting models for the one-ahead day prediction of daily solar in-
solation. The daily solar insolation is the sum of hourly irradiances measured between 6:00 and 18:00
hours. Table 5-7 shows the errors for a daily time stamp.

In Biotopo, MAE shows that LSTM is the best option for daily global solar irradiance forecasting, followed
by ML-FNN, ARIMA, and SL-FNN. It indicates that LSTM fits the time series’ mean trend better than ML-
FNN, ARIMA, and SL-FNN. As a result, using LSTM reduces the MAE error by 6,41 %, 17,73 %, and 20,23
% in comparison with ML-FNN, ARIMA and SL-FNN. Analyzing the MAE by quarters, LSTM outperforms
the other models in the first and fourth quarters, and ARIMA is the best model in the second and third
quarters. The RMSE shows that LSTM is the model with the lowest variability, followed by ML-FNN,
ARIMA, and SL-FNN. When using LSTM, ML-FNN or ARIMA instead of SL-FNN, the RMSE decreases by
23,33 %, 16,41 % and 9,07 %, correspondingly. Furthermore, LSTM presents less bias than the other
models and reduces the bias by 89,98 %, 44,88 %, and 33,47 % in comparison with SL-FNN, ARIMA, and
ML-FNN.

In Altaquer, with one year of measurements on average, LSTM outperforms the other models. MAE shows
that LSTM and ARIMA are the best options. LSTM improves the results by 58,43 %, 48,43 % and 6,75 % in
comparison with SL-FNN, ML-FNN and ARIMA. Also, the analysis by quarters shows that LSTM has the
best behavior. RSME shows LSTM as the best option, followed by ARIMA, ML-FNN, and SL-FNN. LSTM
reduces the RMSE in 60,01 %, 53,85 %, and 8,18 % in comparison with SL-FNN, ML-FNN and ARIMA,
respectively. LSTM is the less biased model followed by ARIMA, ML-FNN, and SL-FNN. MAPE shows
that LSTM has an error of 32,63 %, ARIMA of 38,47 %, ML-FNN of 65,95 % and SL-FNN of 72,53 %.
The large proportion of missing data and short length of the time series might explain the large errors
obtained in this case.

LSTM is the best model in Granja el Mira considering MAE, RMSE, and MBE. MAE shows that LSTM
improves the performance by 27,71 %, 13,55 %, and 11,60 % in comparison with SL-FNN, ARIMA and
ML-FNN. RMSE shows that LSTM has less variability than ML-FNN, ARIMA, and SL-FNN by 12 %, 17,75
% and 30,61 %. The analysis by quarters shows that MAE and RMSE have similar results. LSTM is the
less biased model followed by ARIMA, ML-FNN, and SL-FNN. MAPE shows that LSTM has an error of
26,16 %, ML-FNN of 29,10 %, ARIMA of 30,75 % and SL-FNN of 35,71 %.

In Viento Libre, the statistical errors show ML-FNN as the model with less MAE, RMSE, and MBE errors,
followed by LSTM, SL-FNN, and ARIMA. MAE shows that ML-FNN and LSTM have a similar error with a
difference of 0,16 %. Considering RMSE, ARIMA model exhibits the largest errors, and using ML-FNN,
LSTM or SL-FNN reduce the error by 19,13 %, 18,94 % or 2,52 % respectively. MBE shows that the
models with less bias are ML-FNN and LSTM. These models reduce the bias by 77,95 % and 99,11 %
compared to SL-FNN and ARIMA. Therefore, ML-FNN and LSTM reduce the bias in comparison with
SL-FNN and ARIMA. MAPE shows that on average LSTM has an error of 19,11 %, ML-FNN of 19,25 %,
SL-FNN of 21,95 % and ARIMA of 23,11 %.
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In Universidad de Nariño, ML-FNN and SL-FNN outperform the other models. MAE shows that ML-FNN
has the lowest error in both, the complete time series, and quarters analysis, followed by SL-FNN. RSME
shows that using ML-FNN instead of SL-FNN, ARIMA and LSTM reduces the outliers by 1,9 %, 18,11 %,
and 25,4 %, respectively. MBE presents the neural network-based models as the models with less bias.
MAPE shows that ARIMA has an error of 28,21 %, LSTM of 24,89 %, SL-FNN of 23,64 % and ML-FNN of
23,49 %.

In Cerro Páramo the MAE, RMSE and MBE shows SL-FNN as the best option for daily solar insolation.
Using SL-FNN instead ML-FNN, ARIMA and LSTM improve MAE in 5,84 %, 10,55 % and 10,82 %. In the
analysis by quarters, SL-FNN is the best option, followed by ARIMA in the three first quarters and by
ML-FNN in the last quarter. RSME shows that the SL-FNN model reduces the variability 6,26 %, 9,96
%, and 16,69 % in comparison with ML-FNN, LSTM, and ARIMA models respectively. MBE result shows
that ARIMA has more bias than ML-FNN, LSTM, and SL-FNN, increasing the error on average by 65,56 %,
88,80 %, and 92,50 %, respectively. MAPE shows that SL-FNN is the best model with an error of 38,03
% followed by ML-FNN with 39,52 %, ARIMA with 40,90 % and LSTM with 42,75 %.

In La Josefina, the MAE, RMSE, and MBE show that LSTM is the best models followed by ML-FNN, ARIMA,
and SL-FNN. Using LSTM instead ML-FNN, ARIMA and SL-FNN reduce the MAE in 5,54 %, 17,62 % and
23,34 % respectively. Considering RMSE, LSTM, ML-FNN and ARIMA improve the results by 33,42 %,
31,43 %, and 17,30 % in comparison with SL-FNN. LSTM has the lower bias, followed by ML-FNN, ARIMA,
and SL-FNN. MAPE shows that LSTM with an error of 14,39 %, ML-FNN of 15,42 %, ARIMA of 17,52 %
and SL-FNN of 19,06 %. MAPE values are lower than 20 %; however, the amount of missing and imputed
data of this AWS is considerable, which could affect the error measurements.

In Botana, the MAE and RMSE show that ML-FNN is the best model. ML-FNN reduces the MAE error,
in comparison with SL-FNN, LSTM and ARIMA, in 2,02 %, 3,54 % and 19,28 % respectively. RMSE shows
that ML-FNN has less variability than SL-FNN, LSTM and ARIMA reduce the error by 1,70 %, 6,78 % and
19,80 % respectively. In Botana, LSTM is less biased than SL-FNN, ML-FNN and ARIMA. MAPE shows that
on average ML-FNN has an error of 27,23 %, SL-FNN of 27,65 %, LSTM of 28,21 % and ARIMA of 33,52 %.
The neural network-based models outperform the ARIMA model. Furthermore, in Universidad de Nariño
and Botana, which are AWS located close to each other, the MAE and MBE have similar values with
the four forecasting models. However, RMSE shows that in cloudy environments, the neural network-
based models’ variability is lower than ARIMA. Additionally, MAPE shows that the neural network-based
models have an error lower than 20 % on average.

In Paraiso, the neural network-based models outperform ARIMA. MAE shows that LSTM is the best
model, followed by ML-FNN, SL-FNN, and ARIMA. Also, LSTM reduces the MAE by 3,20 %, 4 %, and
19,59 % in comparison with ML-FNN, SL-FNN and ARIMA. Considering RMSE, the LSTM model is the
best, followed by ML-FNN, SL-FNN, and ARIMA. Also, LSTM improves the result by 2,22 % SL-FNN 4,63
% and 19,88 % in comparison with ML-FNN, SL-FNN and ARIMA models. Additionally, LSTM is the
model with the lowest bias, followed by SL-FNN, ML-FNN, and ARIMA. Also, the neural network-based
model reduces the bias on average by 82,52 % in comparison with ARIMA. MAPE shows that on average
the error of LSTM is 19,84 %, ML-FNN of 20,71 %, SL-FNN of 20,86 & and ARIMA of 24,63 %. In this
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case, LSTM is the only model with average error below 20 %.

In Ospina Perez, ML-FNN has the largest error due to the low amount of training data. Also, this AWS
has a high amount of imputed values resulting in a low amount of data for statistical errors measures
calculation. Considering the MAE and RMSE, SL-FNN is the best forecasting model, followed by ARIMA
and LSTM. The improvement obtained with using SL-FNN, ARIMA, or LSMT instead of ML-FNN model
is 59,53 % in MAE and 55,28 % in RSME on average. Regarding the MBE, the model with less bias is
SL-FNN followed by LSTM. SL-FNN reduces the bias by 2,66 %, 8,83 % and 98,85 % in comparison with
LSTM, ARIMA and ML-FNN. The MAPE shows that SL-FNN has the lowest error with 13,95 %, followed
by ARIMA with 16,30 %, LSTM with 20,92 % and ML-FNN with 43,14 %.

In Sandona, ML-FNN has the largest MAE, RMSE, and MBE values. This AWS has one year of measure-
ments on average, as Ospina Perez. Therefore, in the Andean zone, ML-FNN needs as input more than
one year of measurements to describe the variability of this zone’s global solar insolation. MAE shows
that LSTM is the best option, followed by SL-FNN, ARIMA, and ML-FNN. The RMSE presents the LSTM
model as the best forecasting option reducing the error by 4,61 % in comparison with SL-FNN, 12,47 %
in comparison with ARIMA, and 33,02 % in comparison with ML-FNN. Regarding the bias, the SL-FNN
and LSTM have the lowest bias. MAPE shows that LSTM has an average error of 19,38 %, SL-FNN of
21,52 %, ARIMA of 23,58 % and ML-FNN of 30,07 %.

In Guapi, the MAE, RSME, and MBE show that the neural network-based models outperform ARIMA.
Contrasting these models with the ARIMA model, the MAE error is reduced by 19,73 %, 15,07 % and
14,12 % with LSTM, SL-FNN and ML-FNN respectively. RMSE shows that LSTM is the best model, fol-
lowed by SL-FNN, ML-FNN, and ARIMA. LSTM reduces the RMSE value by 1,15 %, 2,09 % and 20,85 %
in comparison with SL-FNN, ML-FNN and ARIMA respectively. The MBE results shows that LSTM is the
less biased model, followed by SL-FNN, ML-FNN, and ARIMA. Therefore, the statistical errors show that
the neural network-based models outperform ARIMA.
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Complete MAE[Kt] RMSE [Kt] MBE [Kt]

AWS Model MAE[Kt] MBE[Kt] RMSE [Kt] Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Bi
ot

op
o

ARIMA 0.061 0.004 0.081 0.246 0.109 0.156 0.072 0.163 0.085 0.103 0.093 0.023 -0.050 -0.037 0.006

SL-FNN 0.062 0.008 0.089 0.349 0.943 1.394 0.062 0.260 0.672 0.814 0.080 0.099 0.942 1.391 0.001

LSTM 0.050 0.001 0.067 0.205 0.669 0.985 0.058 0.144 0.490 0.597 0.074 0.015 0.656 0.959 0.000

ML-FNN 0.054 0.003 0.075 0.266 0.726 1.096 0.061 0.195 0.519 0.643 0.078 0.044 0.722 1.088 0.000

Al
ta

qu
er

ARIMA 0.087 0.007 0.112 0.293 0.230 0.343 0.100 0.192 0.179 0.224 0.129 0.023 -0.082 -0.034 0.008

SL-FNN 0.180 0.088 0.234 1.524 0.909 1.435 0.112 0.804 0.660 0.848 0.133 1.524 0.909 1.433 -0.065

LSTM 0.075 0.002 0.093 0.308 0.192 0.313 0.093 0.189 0.157 0.210 0.112 0.031 0.016 0.107 -0.003

ML-FNN 0.162 0.076 0.219 1.432 0.942 1.491 0.087 0.773 0.686 0.886 0.105 1.428 0.942 1.491 0.035

G
ra

nj
a

el

M
ira

ARIMA 0.079 0.007 0.104 0.297 0.079 0.162 0.082 0.189 0.087 0.127 0.106 0.005 0.027 0.067 0.005

SL-FNN 0.092 -0.018 0.119 0.542 0.612 0.909 0.070 0.330 0.450 0.552 0.088 -0.441 -0.612 -0.905 -0.007

LSTM 0.066 0.002 0.082 0.282 0.195 0.313 0.065 0.167 0.151 0.199 0.081 0.043 0.184 0.287 0.002

ML-FNN 0.077 0.010 0.097 0.380 0.375 0.591 0.061 0.239 0.278 0.359 0.077 0.182 0.375 0.585 0.019

Vi
en

to

Li
br

e

ARIMA 0.075 0.013 0.100 0.233 0.803 0.848 0.080 0.160 0.759 0.761 0.105 0.037 -0.774 -0.790 0.013

SL-FNN 0.071 0.010 0.097 0.325 1.162 1.625 0.064 0.247 0.846 0.971 0.081 0.131 1.162 1.623 0.002

LSTM 0.062 0.000 0.081 0.187 0.127 0.178 0.067 0.125 0.104 0.126 0.084 -0.004 0.064 0.052 0.000

ML-FNN 0.062 0.000 0.081 0.185 0.376 0.516 0.068 0.124 0.283 0.323 0.086 0.004 0.366 0.497 0.002

U
ni

ve
rs

id
ad

de
N

ar
iñ

o

ARIMA 0.080 0.012 0.105 0.326 0.337 0.493 0.083 0.209 0.253 0.309 0.104 0.053 0.242 0.303 0.011

SL-FNN 0.068 -0.001 0.087 0.310 0.234 0.329 0.063 0.194 0.176 0.206 0.079 -0.010 -0.175 -0.212 0.000

LSTM 0.072 0.000 0.114 0.366 0.462 0.738 0.065 0.349 0.403 0.539 0.080 0.002 0.343 0.503 0.000

ML-FNN 0.068 0.000 0.085 0.273 0.128 0.231 0.062 0.170 0.125 0.175 0.078 0.002 0.066 0.107 0.000

Ce
rr

o

Pá
ra

m
o

ARIMA 0.074 0.009 0.105 0.297 0.417 0.509 0.069 0.203 0.340 0.356 0.094 0.034 0.319 0.315 0.008

SL-FNN 0.066 -0.001 0.087 0.278 0.200 0.343 0.059 0.186 0.176 0.242 0.079 -0.014 -0.192 -0.328 0.000

LSTM 0.074 0.001 0.098 0.312 0.824 1.186 0.066 0.210 0.608 0.725 0.087 0.013 0.807 1.152 0.000

ML-FNN 0.071 0.003 0.094 0.343 0.761 1.142 0.061 0.230 0.548 0.675 0.080 0.024 0.755 1.130 0.002

Jo
se

fin
a

ARIMA 0.052 0.005 0.074 0.200 0.133 0.191 0.076 0.142 0.110 0.135 0.101 0.015 0.082 0.088 0.011

SL-FNN 0.056 0.011 0.090 0.352 0.949 1.425 0.062 0.289 0.677 0.832 0.081 0.150 0.948 1.423 0.002

LSTM 0.043 0.000 0.060 0.168 0.444 0.652 0.060 0.120 0.324 0.394 0.078 0.010 0.432 0.628 0.000
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Complete MAE[Kt] RMSE [Kt] MBE [Kt]

ML-FNN 0.046 0.001 0.062 0.177 0.263 0.385 0.060 0.125 0.195 0.236 0.078 0.012 0.258 0.375 0.000

Bo
ta

na

ARIMA 0.089 0.012 0.114 0.364 0.212 0.341 0.085 0.229 0.180 0.240 0.108 0.052 0.152 0.220 0.012

SL-FNN 0.074 -0.001 0.093 0.334 0.259 0.380 0.065 0.207 0.206 0.256 0.082 -0.014 -0.255 -0.371 0.000

LSTM 0.075 0.000 0.099 0.350 0.966 1.415 0.066 0.241 0.695 0.835 0.084 -0.002 -0.866 -1.215 0.000

ML-FNN 0.072 0.002 0.091 0.328 0.471 0.718 0.065 0.205 0.343 0.431 0.082 0.027 0.468 0.713 0.001

Pa
ra

is
o

ARIMA 0.072 0.009 0.096 0.222 0.322 0.382 0.084 0.165 0.273 0.282 0.106 0.032 -0.232 -0.199 0.012

SL-FNN 0.061 0.002 0.081 0.237 0.525 0.808 0.067 0.175 0.380 0.480 0.085 0.026 0.522 0.803 -0.001

LSTM 0.058 0.001 0.077 0.195 0.562 0.830 0.067 0.145 0.410 0.501 0.084 0.012 0.547 0.801 -0.001

ML-FNN 0.060 0.003 0.079 0.231 0.414 0.625 0.069 0.162 0.296 0.367 0.087 0.044 0.412 0.621 0.000

O
sp

in
a

Pe
re

z

ARIMA 0.051 0.006 0.085 0.334 0.255 0.417 0.081 0.222 0.222 0.301 0.107 0.037 -0.131 -0.162 0.008

SL-FNN 0.045 -0.001 0.069 0.315 0.147 0.254 0.063 0.198 0.128 0.176 0.080 -0.024 0.106 0.178 -0.009

LSTM 0.067 -0.002 0.099 0.500 0.336 0.505 0.087 0.302 0.264 0.334 0.108 -0.024 -0.299 -0.420 -0.003

ML-FNN 0.134 0.065 0.188 1.269 0.945 1.414 0.067 0.688 0.682 0.837 0.086 1.269 0.945 1.413 0.034

Sa
nd

on
a

ARIMA 0.062 0.007 0.084 0.305 0.577 0.653 0.073 0.206 0.505 0.511 0.096 0.024 -0.495 -0.488 0.012

SLP 0.058 -0.004 0.075 0.264 0.203 0.255 0.056 0.168 0.167 0.180 0.078 -0.023 -0.124 -0.095 -0.020

LSTM 0.052 0.005 0.070 0.302 0.239 0.409 0.053 0.196 0.198 0.271 0.073 0.085 0.232 0.392 -0.005

ML-FNN 0.079 0.021 0.105 0.556 0.373 0.612 0.055 0.337 0.282 0.374 0.071 0.473 0.373 0.609 -0.007

G
ua

pi

ARIMA 0.062 0.005 0.086 0.261 0.157 0.246 0.079 0.173 0.130 0.170 0.104 0.022 -0.023 0.023 0.005

SL-FNN 0.053 0.000 0.069 0.224 0.118 0.183 0.059 0.145 0.094 0.122 0.077 0.002 -0.069 -0.085 0.000

LSTM 0.050 0.000 0.068 0.229 0.230 0.326 0.058 0.151 0.174 0.207 0.076 0.004 -0.197 -0.259 0.000

ML-FNN 0.054 0.001 0.070 0.231 0.379 0.580 0.059 0.151 0.278 0.350 0.077 0.006 0.371 0.566 0.001

Table 5-7. Insolation statistical errors of the one day-ahead forecasting process
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The AWS used to compare the forecasting models are located in an Intertropical Convergence Zone,
which implies there is high cloud cover amount and precipitation. This situation could affect the models’
accuracy because it increases the variability of the global solar irradiance and the forecasting error.
Additionally, the significant amount of missing data might also affect the forecasting accuracy.

In the Pacific zone, Biotopo and Altaquer (located in the Pacific foothill) face high humidity and a rainy
environment. Consequently, MPE and MAPE show that the forecasting models have a large error in the
irradiance and insolation. In this case, only LSTM has an error close to 30 %. In the other AWS of the
Pacific zone, SL-FNN is the best option in the irradiance forecasting for the AWS with more than one
year of measurements. LSTM is the best option for all the AWS in a insolation forecasting. As future
work, changes in the memory of LSTM could be introduced to analyze the capability of this to follow
the clearness index variability of the global solar irradiance.

In the Andean zone, SL-FNN is the best model considering MAE, RMSE, and MPE in five of the seven
AWS in the irradiance forecasting. However, LSTM is the less biased model in all cases. In the insolation
forecasting, the neural network-based models outperform ARIMA. In Cerro Páramo that is located in the
Amazon zone and is the most cloudy AWS, SL-FNN is the best option in the irradiance and insolation
forecasting. The neural network-based models outperform ARIMA in the irradiance forecasting. In
conclusion, SL-FNN is the best forecasting model for a cloudy environment for global solar irradiance.

5.5 Conclusions

In this work, we implemented four forecasting models: ARIMA, SL-FNN, ML-FNN, and LSTM for fore-
casting global solar irradiance with one-day ahead horizons in an hourly timestamp and global solar
insolation with one-day ahead horizons in an daily timestamp. One of the challenges we tackled was
the handling of missing data for which we implemented an imputation process. The training process
required the imputation of more than 50 % of the time series values. Altaquer that provided the most
complete time series, required the imputation of 54,7 % of the data, and La Josefina was the most critical
case and required the imputation of 84,2 % of the data. The statistical errors of the solar irradiance
imputation showed that the resource was underestimated. The RMSE and MAE result showed that the
Andean zone the error is bigger than in the Pacific zone. For the solar irradiance imputation, we use the
empirical temperature-based models such as Hargreaves and Samani and Logistic, the first one for the
Pacific zone and the second one for the Andean and Amazon zones. To reduce the statistical errors, it
would be worth exploring alternative imputation techniques for solar irradiance and insolation data.

In the hourly forecasting, in almost all cases, the SL-FNN, ML-FNN and LSTM outperformed ARIMA. In
Pacific zone, LSTM was the best model when training with the shortest time series (Altaquer), and SLP
when training with longer ones (Biotopo and Guapi). Also, the neural network-based models showed a
better performance in cloudy conditions in this zone (Biotopo and Altaquer). This result indicates that
the solar irradiance variability induced by the cloud motion might be better modeled by neural network-
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based models.

In the Andean zone, SL-FNN presents better results in the MAE and RMSE error measurement when
the time series is longer i.e. in Viento Libre, Botana, La Josefina, Paraiso, and Universidad de Nariño cases.
When the time series is shorter (Ospina Perez and Sandona), ARIMA is the model with less RMSE and MAE
error. Therefore, for the Andean zone one year of measurements on average was not enough for training
the neural network-based models. As a result, in such cases ARIMA is a better option. The MBE error
measurement shows LSTM as the model with less bias in all AWS of this zone. In the Amazonian zone,
the Cerro Páramo AWS, SL-FNN is the best model in all error measurements. Overall, the SL-FNN model
outperforms the other models in global solar irradiance in a one-day ahead horizon with an hourly
frequency. As a conclusion, SL-FNN is the best option for sites with high altitude and cloudiness.

The statistical error measurements of the global solar insolation forecasting in a daily timestamp show
that LSTM is the best option in the Pacific zone regardless the time series length. In the Andean zone,
the neural network-based model exhibit lower statistical errors. However, the model performance is
dependent on the amount of training input data. For example in the shorter time series LSTM and SL-
FNN are the better models, while ML-FNN is the model with lower performance. The results presented
in this study do not exhibit a clear pattern that indicates that there is one forecasting technique that
outperforms the others overall in the Andean zone. As observed in other studies (Dannecker, 2015), we
found that the performance of each forecasting model depends on the specific task.
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This thesis proposed a methodology for the selection of projects and its implementation in a commu-
nity. Additionally, the prioritization methodology evaluates relevant areas and the cost of implementing
solar-energy-based. The criteria chose for community evaluation consider the SDGI and the HDI and
the NPV results were the criteria for project evaluation. Also, the prioritization presents a combination
of those indexes, which were the criteria used in the AHP methodology to give an execution order. Fur-
thermore, the guideline for community work emphasized the integration of the community in the design
and operation of the implemented solution, providing the project with a higher probability of success.
In this case, the authors considered the characteristics of Nariño and identified relevant areas for the
community evaluation by municipalities. The dimensions chosen were education, health, quality of life,
economy, and security.

The alternatives evaluated with this methodology were four projects, along with the communities in-
volved. The results show that in four of six prioritization objectives, the electrification of schools is the
priority, and in two objectives, the priority was the electrification of an indigenous reservation. Given
the above results, the authors decided to carry out a more detailed analysis of the project of electrifica-
tion of the schools. The analysis showed that if the IRR is a decision variable, it is better to implement
larger projects; in this case, more than ten. On the other hand, the results showed a correlation between
education and the quality of life because O3 and O6 have six projects in the same order of execution;
therefore, the accomplishment of education projects improves the quality of life and vice-versa. In this
sense, it would be convenient to undertake more studies that confirm this finding and thus unify efforts
in the public policies in these sectors to strengthen the results

The researchers expected that, with the implementation of this prioritization methodology, it would
be possible to identify the optimal execution order of social projects according to a given objective.
Additionally, with the guideline, the objective is to make the community an active part of the solution, to
improve the sustainability of the project and avoid or reduce the dependence on an external entity, and
thus empower the community and promote their social, economic, education and cultural development,
among other aspects. It is also essential to highlight the primary role of the local regulation board in the
success of the project. Therefore, future research should analyze aspects such as regulation, election
mechanisms of the board members, among others, deeply.

The validation levels of global solar irradiance data have a strong influence on the results of the empiri-
cal variables. Considering all the recorded information, just 60,89 % overcome the mandatory validation
steps proposed. From that value, 95,81 %, which corresponds to the number of days with at least six
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values measured, was the information used in the empirical models calibration. However, this percent-
age represent on average 33,90 % of the total information recorded in the AWS. Besides, the days with
complete information just reached 1,26 %. This result indicates the quality of the time series and the
necessity to improve and increase the maintenance and calibration procedures.

In the Nariño state, the performance of the AWS is a determining factor, considering the predominance
of partially high cloudiness days that represent 64,7 % of the days. In other words, in Nariño, there is
a high cloud interaction that difficult the solar insolation estimation; therefore, the need for reliable
measures increases.

Regarding the temperature measures, from the amount of data that overcome the hourly validation
steps, a 92,78 % were taken for the empirical calibration and imputation. Besides, the number of tem-
perature daytime measurements present peaks in eleven and twelve daily values; this means that most
of the days taken for modelling and filling the database by the imputation process, have the 88,46 % of
the total information on average.

The proposed model showed a linear relationship between the empirical coefficients against the altitude
of the study site. The empirical coefficients were classified between those above and below 2.500 MASL
The lineal adjust for cases below 2.500 MSSL shows anR2 of 0.5995 and 0.5262 for a and b respectively.
The lineal adjustment for cases above 2.500 MASL presents an R2 of 0,8182 and 0,6069 for a and b
respectively. This result is consistent with the behavior of the temperature in tropical zones and the
global solar irradiance in high altitudes.

When the RMSE, SD, MAE,U95 and MAPE were considered, the proposed model had better performance
in five out of the eight evaluated cases. These cases are in the Andean and Amazon zone, with altitudes
above 2.500 MASL As a result, the proposed model is used to input the information in the Andean and
Amazon AWS. For the AWS located in the Pacific zones, the HS model was the best option, followed by
the proposed model in this research.

In the Pacific zone, HS is the applied model to estimate solar insolation. However, the statistical error
results show that the resource is underestimated by 442,78 [Wh/m2day] and 333,11 [Wh/m2day]

for Granja el Mira and Altaquer. Consequently, to improve this zone’s results, it is needed to increase
the weather station network’s density.

The proposed model was the model used to estimate the solar insolation in the Andean zone. The
comparison between measured and estimated values showed an overestimation. However, regarding
the HS model, the estimation is reduced 51,81 % and 18,55 % for Ospina Perez and Sandona, respectively.
The proposed model has better performance than HS model in altitudes above 2.500 MASL.

Comparing IDW to the Kriging techniques, OK presented an improvement in the statistical errors as fol-
low: RMSE 11,71 %, MAE 3,98 %, MBE 100,92 %, SD 11,40 % and MPE 46,58 %. Although SK showed
better results in MAE, SD, and RMSE than OK, the bias with OK is lower. Therefore, OK was the tech-
nique selected for mapping the solar insolation potential. UK was the technique that presented lower
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improvements against the IDW, even in MAE, which reduced the 6,78 % of the accuracy.

From the maps, it is possible to conclude that the obtained estimation is lower than the presented in
the IDEAM solar radiation maps over the whole Nariño territory. It is also possible to determine the
existence of a zone with a high potential for electricity generation with solar PV power plants.

The errors measurements of the forecasting models, present that the neural network-based models out-
perform ARIMA model. In the AWS which have longer time series, the SLP was the best model followed
by MLP. In the AWS with shorter the LSTM was the best model. Also, in the Pacific zone in cloudy en-
vironments the LSTM model outperforms the others. It is a valuable result due to the variability in the
solar irradiance induced by the cloud motion is better described with this models. Therefore, in cloudy
environment, the LSTM is the recommended model to forecasting global solar irradiance. In the Andean
zone, the neural network-based forecasting models present better results in the MAE and RMSE error
measurement when the time series is longer i.e. in Viento Libre, Botana, La Josefina, and Paraiso cases.
The MBE error measurement present the SLP as the model with less bias. Unlike to the Pacific zone, in
this zone the LSTM was the model with more bias, regardless the cloudy level. In the Ospina Perez and
Sandona, which are shorter time series, SLP is better in cloudy environments. In the Amazonian zone,
the Cerro Páramo AWS shows that SLP is the best model in all error measurements. Moreover, the time
series plot allows conclude that ARIMA model predict the future values following a mean trend, more
than describing the variability of the time series. In overall, the SLP model outperforms the other model
in global solar irradiance in a one-day ahead horizon with a hourly frequency.

The global solar insolation forecasting model’s statistical error measurements in a daily timestamp show
that in the AWS located in the Pacific zone with more than one year of measures, the mean error is similar
with all the forecasting models. However, the ARIMA model has a bigger variance. While in the AWS
located in the Pacific zone with one year of measures on average, the SLP model presents the biggest
errors due to the low training input data. Overall in the AWS located in the Andean zone with more
than one year of measurements, the neural network-based models have better performance than the
ARIMA model. However, in the AWS with one year of measures on average located in the Andean zone,
the MLP model presents the biggest errors. Therefore, in the Andean zone, the neural network-based
model presents lower statistical errors. However, the model performance is dependent on the amount
of training input data.

Recommendations

It is convenient to include more dimensions to understand in a better way the conditions of the popula-
tion and include cultural aspects of the communities. For the project evaluation, the authors consider
the NPV, giving more importance to those with lower costs. However, this lone indicator does not allow
for the recognition of social benefits that may arise from the project. Hence, in future work, the use of
additional quantifiers that measure the economic benefit that arose from social projects could motivate
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the attention of potential investors.

Due to the quality control results, it is important to establish a plan to do calibration and maintenance
procedures regularly and to follow high-quality and widely accepted standards. It was also notorious,
the need for installing more AWS to increase the sampling points.

The proposed empirical model had a good performance in this tropical and mountainous environment.
However, it is necessary to analyze more information coming from other places with the same charac-
teristics. To achieve this, the prime requirement is to increase the number of AWS and the quality of the
time series in the tropical and mountainous environments.
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