
A strategy based on model-to-model
transformations to evolve service-oriented
architectures to microservices architectures

Eduardo Fabio Berrio Charry

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2021

A strategy based on model-to-model
transformations to evolve service-oriented
architectures to microservices architectures

Eduardo Fabio Berrio Charry

Thesis presented as a partial requirement for the degree of:
Master in Systems Engineering and Computer Science
”Magíster en Ingeniería - Ingeniería de Sistemas y Computación”

Advised by:
Jeisson Andrés Vergara Vargas, M.Sc.
Henry Roberto Umaña Acosta, M.Sc.

Research Fields:
Software Architecture and Model-Driven Engineering

Research Group:
Colectivo de Investigación en Ingeniería de Software - ColSWE

Universidad Nacional de Colombia
Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, D. C., Colombia
2021

Dedicated to my wife and my children.

”The important thing is not to stop questioning.
Curiosity has its own reason for existing.”

- Albert Einstein

Acknowledgments

First of all, thanks to the Universidad Nacional de Colombia, it has been a pride and a pleasure to
study at this excellent institution and to contribute in some way to the research line of Software
Engineering and more specifically to Software Architecture and Model-Driven Engineering. I
also want to thank all the professors with whom I interacted during my time at the University,
who shared their knowledge and experience, and their teachings have been fundamental not
only for the development of this document but for my professional life. I want to thank in a
very special way my advisors Jeisson Andrés Vergara Vargas and Henry Roberto Umaña Acosta,
who with their guidance, dedication, expertise and excellent willingness contributed to the re-
sults obtained; it was a real teamwork.

Thanks to my wife Alba Lucía and my children Sofía and Nicolás for giving me all their love and
for supporting me during this stage of my life. Many hours and weekends were invested during
my studies at the University and in this research work. Without their patience and motivation
it would not have been possible to achieve this goal.

I want to thank all the authors cited in this document, who contributed to give me the basis for
this research work. Finally, thanks to the juries Felipe Restrepo Calle and José Joaquin Bocanegra
Garcia for sharing their knowledge and experience and for dedicating their valuable time to the
evaluation of this research work.

ix

Title in English

A strategy based on model-to-model transformations to evolve service-oriented architectures
to microservices architectures

Título en español

Una estrategia basada en transformaciones modelo a modelo para evolucionar arquitecturas ori-
entadas a servicios a arquitecturas de microservicios

x

Abstract

Microservices architecture has emerged as an architectural style which focuses on the design
and development of software systems as a set of small independent services. Althoughmicroser-
vices architecture is inspired by the Service-Oriented Architecture style (both are service-based
architectures), it presents important differences. Likewise, software architecture must evolve
as new architectural styles and software frameworks arise, and the evolution of the software
architecture is considered as a central feature of any software system. In this way, this re-
search work presents a proposed approach based on model-to-model transformations to evolve
service-oriented architectures to microservices architectures, from an architecture description
language called Sarch. To accomplish this, the Sarch language was extended to allow the mod-
eling of the two architectural styles from the component-and-connector view along with the
layered and data model views, the decomposition view was included in the Sarch language to
allow the description of a system from a functional point of view, and a set of model-to-model
transformations was created to support the evolution from service-oriented architectures to mi-
croservices architectures.

Keywords: Software Architecture, Architectures Evolution, Service-Oriented Architectures, Microser-
vices Architectures, Architectural Style, Architectural View, Architecture Description Language, Model-
Driven Engineering.

xi

Resumen

La arquitectura de microservicios ha surgido como un estilo arquitectónico que se centra en
el diseño y desarrollo de sistemas de software como un conjunto de pequeños servicios inde-
pendientes. Aunque la arquitectura de microservicios está inspirada en el estilo de Arquitectura
Orientada a Servicios (ambas son arquitecturas basadas en servicios), presenta diferencias im-
portantes. Asimismo, la arquitectura de software debe evolucionar a medida que surgen nuevos
estilos arquitectónicos y marcos de software, y la evolución de la arquitectura de software se
considera una característica central de cualquier sistema de software. De esta manera, este
trabajo de investigación presenta una propuesta con un enfoque basado en transformaciones
modelo a modelo para evolucionar arquitecturas orientadas a servicios a arquitecturas de mi-
croservicios, a partir de un lenguaje de descripción de arquitecturas llamado Sarch. Para lograr
esto, el lenguaje Sarch se extendió para permitir el modelado de los dos estilos arquitectónicos
desde la vista de componentes y conectores junto con las vistas de modelo de datos y en capas,
la vista de descomposición se incluyó en el lenguaje Sarch para permitir la descripción de un
sistema desde un punto de vista funcional, y se creó un conjunto de transformaciones modelo
a modelo para soportar la evolución de arquitecturas orientadas a servicios a arquitecturas de
microservicios.

Palabras clave: Arquitectura de Software, Evolución de Arquitecturas, Arquitecturas Orientadas a Servi-
cios, Arquitecturas deMicroservicios, Estilo Arquitectónico, Vista Arquitectónica, Lenguaje de Descrip-
ción de Arquitecturas, Ingeniería de Software Dirigida por Modelos.

xii

This Master’s Thesis was defended on June 28, 2021, and was evaluated by the following juries:

Felipe Restrepo Calle, Ph.D.
Associate Professor
Departamento de Ingeniería de Sistemas e Industrial
Facultad de Ingeniería
Universidad Nacional de Colombia

José Joaquin Bocanegra García, Ph.D.
Postdoctoral Assistant
Departamento de Ingeniería de Sistemas y Computación
Facultad de Ingeniería
Universidad de los Andes

Contents

Acknowledgments vii

Abstract x

List of Figures xv

List of Tables 1

1 Introduction 2
1.1 Problem Statement . 3
1.2 Objectives . 3

1.2.1 General Objective . 3
1.2.2 Specific Objectives . 3

1.3 Contribution . 4
1.4 Outline of the Thesis . 4

2 Background 6
2.1 Software Architecture . 6

2.1.1 Architectural Views . 7
2.1.2 Architectural Styles and Patterns . 8
2.1.3 Monolithic Architecture . 8
2.1.4 Service-Based Architectures . 9

2.2 Architectures Evolution . 13
2.3 Model-Driven Engineering . 14

3 Related Work 17
3.1 Reviews about Microservices Architectural Style 17
3.2 ADLs for Microservices Architectures . 17
3.3 ADLs for Service-Oriented Architectures . 18
3.4 Sarch Language . 18
3.5 Evolution, Transformation and Migration to MSA 19
3.6 Gaps in Previous Work . 19

4 ADL for Service-Based Architectures 21
4.1 General Architectural Schema . 22

xiv Contents

4.2 Decomposition View . 23
4.3 Data Model View . 24
4.4 Component-and-Connector (C&C) View . 26
4.5 Layered View . 34

5 Architectural Evolution Model 37
5.1 Architectural Evolution Model Overview . 37
5.2 Model-to-Model Transformations from SOA to MSA 38
5.3 Implementation in Sarch-Studio Tool . 43

6 Evaluation 48
6.1 SOA-Based System as Input . 49
6.2 Functional Decomposition in Sarch . 49
6.3 SOA-Based System Modeled in Sarch . 50
6.4 Model-to-Model Transformations . 60
6.5 Generated Model for a MSA-Based System . 66
6.6 Evolution Model Validation . 69

7 Conclusions and Future Work 79
7.1 Conclusions . 79
7.2 Future Work . 79
7.3 Academic Production . 79

Bibliography 81

List of Figures

1-1 Overall graphical representation of the thesis proposal. 5

2-1 Taxonomy of architectural views within the V&B Catalog. 7
2-2 Monolithic application example. 9
2-3 Concepts, notations, process and rules, and tools in MDE. 16

4-1 CST for Sarch: general schema of the language. 22
4-2 CST for the architectural views included in the extended Sarch language. 23
4-3 CST for the Decomposition view in the extended Sarch language. 24
4-4 CST for the Data Model view in the extended Sarch language. 27
4-5 CST for the C&C view in the extended Sarch language. 27
4-6 CST for the C&C view in the extended Sarch language: Component Element Node. 28
4-7 CST for the C&C view in the extended Sarch language: Component Port Node. . 29
4-8 CST for the C&C view in the extended Sarch language: Connector Element Node. 30
4-9 CST for the C&C view in the extended Sarch language: Relations Node. 30
4-10 CST for the Layered view in the extended Sarch language. 35
4-11 CST for the Layered view in the extended Sarch language: allowed-to-use relation. 35
4-12 CST for the Layered view in the extended Sarch language: allowed-to-use-below

relation. 35
4-13 CST for the Layered view in the extended Sarch language: contains relation. . . 35

5-1 Components and modules in Sarch-Studio. 44
5-2 Sarch grammar overview in Xtext in Grammar Module. 45
5-3 Sample of Sarch validations in Grammar Module. 46
5-4 Sample of Sarch transformations in Generator Module. 46
5-5 Sample of Editor Component. 47

6-1 Context diagram for the case study. 48
6-2 Decomposition view for the case study. 49
6-3 Data Model view for the case study designed in the SOA style - product manage-

ment data model. 50
6-4 DataModel view for the case study designed in the SOA style - sales management

data model. 51

xvi LIST OF FIGURES

6-5 Data Model view for the case study designed in the SOA style - shopping cart
data model. 51

6-6 C&C view for the case study designed in the SOA style. 52
6-7 Layered view for the case study designed in the SOA style. 52
6-8 C&C view for the case study designed in the MSA style. 53
6-9 Decomposition view for the case study using Sarch. 54
6-10 Data Model view for the case study using Sarch in the SOA style - relational data

models. 55
6-11 DataModel view for the case study using Sarch in the SOA style - interoperability

data models. 56
6-12 C&C view for the case study using Sarch in the SOA style - components. 57
6-13 C&C view for the case study using Sarch in the SOA style - connectors. 58
6-14 C&C view for the case study using Sarch in the SOA style - relations 59
6-15 Layered view for the case study using Sarch in the SOA style. 61
6-16 Data Model view generated for the case study using Sarch in the MSA style - No

SQL data models. 62
6-17 Data Model view generated for the case study using Sarch in the MSA style -

interoperability data models. 63
6-18 C&C view generated for the case study using Sarch in the MSA style - elements. 64
6-19 C&C view generated for the case study using Sarch in the MSA style - relations. . 65
6-20 Layered view generated for the case study using Sarch in the MSA style. 66
6-21 Graphical representation of the resulting Data Model view for the MSA model. . 67
6-22 Graphical representation of the resulting C&C view for the MSA model. 68
6-23 Graphical representation of the resulting Layered view for the MSA model. . . . 68
6-24 Evolution model validation - SOA source architecture. 71
6-25 Evolution model validation - SOA Modeling - part I. 72
6-26 Evolution model validation - SOA Modeling - part II. 73
6-27 Evolution model validation - SOA Modeling - part III. 74
6-28 Evolution model validation - model-to-model transformations. 75
6-29 Evolution model validation - MSA Modeling - part I. 76
6-30 Evolution model validation - MSA Modeling - part II. 77
6-31 Evolution model validation - MSA target architecture. 78

List of Tables

2-1 Differences between SOA and MSA . 13
2-2 Methods for evolution of software architectures 14

3-1 Analysis of ADLs: Languages vs. main aspects. 20

4-1 Element summary for C&C view in MSA and SOA styles 28
4-2 Properties that apply to each component type in the SOA style 29
4-3 Properties that apply to each component type in the MSA style 29
4-4 Valid attachments for the MSA style . 31
4-5 Valid attachments for the SOA style . 31

1 Introduction

Amazon, Netflix, The Guardian, and other companies have evolved their software systems to-
ward the Microservices Architectural (MSA) style [38], which is an approach to develop a soft-
ware system composed of small services, where each of the services runs in its own process and
the services communicate with each other through lightweight mechanisms (usually through in-
terfaces or HTTP-based APIs) [38]. Service-Oriented Architecture (SOA) is an architectural style
in which multiple coarse-grained distributed services collaborate to provide some capabilities
[19].

MSA derives from SOA [64] and has emerged as a better architecture approach to overcome the
drawbacks of SOA [34] by providing some benefits such as the division into small services with
low coupling and high cohesion, the application of agile practices for software development,
agile practices in testing and deployment of services, continuous deployment of services, de-
centralized data administration, decentralized government between services, better scalability
and resilience, the use of lightweight protocols for inter-service communication, and greater
suitability for containers [38], [54], [69], [32], [53], [37], [34]. MSA and SOA are both archi-
tectural styles [62], [43], and they are service-based architectures because they place a strong
emphasis on services as the primary components [54]. Using these features, it is possible to
design flexible, modular software architectures that are easy to evolve over time [20].

From the point of view of software evolution, the software systems architecture must be re-
designed and restructured as new software platforms, technologies, architectural styles and
frameworks arise [31], [15], [8], [14], [28]. The evolution of software architectures is a central
feature of any software system [8], which motivates the idea of being able to evolve a system
from one architectural style to another.

Thereby, this research work proposes an approach to evolve service-based architectures, specif-
ically from SOA to MSA. First, an Architecture Description Language (ADL) is presented, which
allows the modeling of service-based architectures, specifically SOA and MSA styles. An ADL
is a formal language for representing a software system architecture [19]. To achieve this, the
capabilities of Sarch language [66], [67] were extended to allow the modeling of software ar-
chitectures under the specific characteristics of the SOA and MSA styles using component-and-
connector (C&C), data model, layered and decomposition architectural views [19]. Second, a
set of model-to-model transformations is proposed in order to define an architectural evolution

1.1 Problem Statement 3

model from SOA to MSA. The ADL and the model-to-model transformations involve the use of
Model-Driven Engineering (MDE) techniques. MDE is a paradigm that uses models as the cor-
nerstone throughout the software engineering process, which leverages modeling languages to
describe a software system and model transformations to improve its productivity [13].

1.1 Problem Statement

According to the trend of design and implementation of software systems under the MSA style,
software architects should have a model that allows them to evolve to this architectural style,
from other architectures, particularly from Service-Oriented Architectures. This is valid consid-
ering that the MSA architectural style derives from the SOA architectural style, which makes
it possible for these two architectural styles to have comparable elements that allow finding
equivalences between the two architectural styles.

Based on the results of the literature search, there are no formal models, methods or techniques
that allow transformations between architectural elements of Service-Oriented Architectures
and Microservices Architectures.

In response to this problem, the present work strives to create an architectural evolution model
from SOA to MSA, starting from an abstraction model for each architectural style, and carrying
out a model-to-model transformation process that allows this evolution through a Model-Driven
Software Engineering approach.

The research question that is answered with the present work is the following: How can a
Service-Oriented Architecture evolve to a Microservices Architecture?

1.2 Objectives

1.2.1 General Objective

To create an evolutionmodel from service-oriented architectures tomicroservices architectures,
through a set of model-to-model transformations.

1.2.2 Specific Objectives

• To do two architectural designs for a software system, used as a case study, based on the
elements, relations and properties of the SOA and MSA architectural styles.

4 1 Introduction

• To extend the Sarch language, in order to allow the modeling of software architectures
under the specific characteristics of the SOA and MSA styles.

• To create two architectural models in Sarch language, from the architectural designs done
and the characteristics of SOA and MSA.

• To create a set of model-to-model transformations that define a model of architectural
evolution from SOA to MSA.

• To validate the resulting evolution model against the specified case study.

1.3 Contribution

The contributions of this thesis can be summarized as follows:

• An architecture description language for service-based architectures: in order to allow the
modeling of service-based architectures, an architecture description language called Sarch
is extended, incorporating in the grammar the specific rules and characteristics of each of
the SOA and MSA styles.

• An evolution model for service-based architectures: a set of model-to-model transforma-
tions is proposed to define an architectural evolution model between service-based archi-
tectures, specifically from SOA to MSA, involving Model-Driven Engineering techniques
and the use of architectural views.

Figure 1-1 shows an overview of the thesis proposal, including the Evolution Model for Service-
Based Architectures and the Architecture Description Language (ADL) for Service-Based Soft-
ware Architectures with the selected architectural views.

1.4 Outline of the Thesis

This thesis is organized as follows: Chapter 1 introduces the research work developed in the the-
sis. Chapter 2 provides background information, mainly for service-based architectures, MDE
and architecture evolution. Chapter 3 describes the related work. Chapter 4 presents the ar-
chitecture description language for service-based architectures. In Chapter 5, the architectural
evolutionmodel from SOA toMSA is presented and described. Chapter 6 explains the evaluation
of the proposed evolution model. Chapter 7 presents the conclusions and future work.

1.4 Outline of the Thesis 5

Figure 1-1: Overall graphical representation of the thesis proposal.

2 Background

This chapter gives a general overview around the most important topics that motivate this re-
search work. The topics included in this chapter are Software Architecture, Service-Based Ar-
chitectures, Model-Driven Engineering, and Architectures Evolution.

2.1 Software Architecture

Software Architecture is defined as a set of structures needed to reason about a software system,
the software elements that compose it, the relations between them [57], and their properties
[9]. Software architecture is also understood as the set of the main design decisions made on
a system [62]. Additionally, the software architecture of a system includes the principles that
guide the design of the elements and components that compose it and their evolution [33].

From the interaction of the elements and components that are part of the system, the functional-
ities and quality attributes emerge (such as security, modifiability, and performance). The larger
and more complex the system, the higher the quality attributes, and consequently the software
architecture becomes more critical and challenging [19].

Having a software architecture is important for the successful development of a software system.
From a technical perspective, software architecture is important for the following reasons [9]:

• Exhibits the quality attributes that must be considered in the software system.

• Contains the most important design decisions that allow to reason about the system and
manage changes as system evolves.

• Facilitates communication with key stakeholders.

• Defines a set of constraints that are used in the development of the system, which allows
to channel the creativity of the software developers and helps to control the complexity
of the system.

• Allows architects and project managers to reason about the cost and duration required to
implement the software system.

2.1 Software Architecture 7

2.1.1 Architectural Views

The architecture of a software system is complex, and it is difficult to capture all the design
decisions at once and represent them in a simple one-dimensional model. There is not a single
approach to describe all the aspects of a software architecture [62]. This situation justifies the
existence of architectural views to describe and document a software architecture. An architec-
tural view is a representation of a set of system elements and the relationships associated with
them [19].

In [19], Clements et al. proposed the Views & Beyond (V&B) Catalog, where views are consid-
ered as the fundamental organizing principle for architecture documentation. The V&B Catalog
describes three categories of views:

• Module views: allows to document the module structures of a software system.

• Component-and-connector (C&C) views: represents units of execution (called compo-
nents), and the pathways of interaction and protocols of their interaction (called con-
nectors).

• Allocation views: describes the allocation of software elements (from either a module
view or a C&C view) to nonsoftware elements in the environment in which the software
is deployed and executed.

The taxonomy of architectural views within the V&B Catalog is shown in Figure 2-1.

V&B Catalog

Module Views C&C Views Allocation Views

Decomposition View

Uses View

Generalization View

Layered View

Aspects View

Data Model View

Deployment View

Install View

Call-Return View

Data Flow View

Event-Based View

Repository View

Work Assignment View

Figure 2-1: Taxonomy of architectural views within the V&B Catalog.

8 2 Background

2.1.2 Architectural Styles and Patterns

An architectural style can be defined as a collection of architectural design decisions that are ap-
plicable in a given development context, restrict specific architectural decisions to a particular
system and context, and promote beneficial qualities in each resulting system [62]. An archi-
tectural pattern can be defined as named collection of architectural design decisions that are
applicable to a recurring design problem, parameterized to account for different software devel-
opment contexts in which that problem appears [62].

What is important about an architectural style is that it encapsulates key decisions about ar-
chitectural elements and emphasizes the constraints of these elements and their relations [52].
The usefulness of an architectural style is that it can be used to restrict architecture and to
facilitate cooperation between architects and developers [52]. On the other hand, architec-
tural patterns represent significant reuse of experience and reflect more domain knowledge
than architectural styles [62]. Some of the most important architectural styles are Client-Server,
Publish-Subscribe (Pub/Sub), Event-Based Architecture, Layered, REpresentational State Trans-
fer (REST), Service-Oriented Architecture (SOA), and Microservices Architecture (MSA) [62],
[55]. Some of the most important architectural patterns are State-Logic-Display (Three-Tier),
Model-View-Controller (MVC), and Monolithic Architecture [62], [56].

2.1.3 Monolithic Architecture

In the monolithic architecture, all the business functionalities are grouped into a single logical
component and built as a single unit [34]. Usually, a monolithic architecture allows the de-
velopment of different components or modules that are bundled into a single executable unit
depending on the programming language or execution platform, where the code is organized in
presentation, business logic and data access layers using the layered architectural style (known
as layeredmonolith) [55]. Figure 2-2 shows an example of amonolithic application (ormonolith),
where all the software modules are packaged into a single unit. The common characteristics of
a monolithic application can be summarized as follows [34]:

• Designed, developed, and deployed as a single unit.

• Complex and difficult to maintain and upgrade. This leads to the difficulty of adopting
new technologies and frameworks, as all functionalities must be based on homogeneous
technologies / frameworks.

• As the monolithic application grows, it may take longer to start up, which adds to the
overall cost.

2.1 Software Architecture 9

• It is difficult to scale with conflicting resource requirements (some functionalities may
require more memory or more CPU).

• One unstable service can cause the entire application to crash.

• It’s hard to practice agile development and delivery methodologies, because the applica-
tion has to be built as a single unit and most of the business capabilities that it offers may
not have their own lifecycles.

Monolithic Application

Module 1 Module 2 Module 3 Module n

Key Module Database Data consumption

Presentation layer

Business layer

Data access layer

Presentation layer

Business layer

Data access layer

Presentation layer

Business layer

Data access layer

Presentation layer

Business layer

Data access layer

Layer

Figure 2-2: Monolithic application example.

2.1.4 Service-Based Architectures

A service is a mechanism that has some business capabilities and provides a well-defined inter-
face to allow access to it [54]. Service-based architectures place a strong emphasis on services as
the primary component interfaces used to implement and fulfill functional and non-functional
requirements [54].

Both SOA and MSA are considered service-based architectures, which share common charac-
teristics such as the distributed location of their components (distributed architectures) and
modularity [54].

2.1.4.1 Service-Oriented Architectures

Service-Oriented Architecture (SOA) is an architectural style in which multiple coarse-grained
distributed services (typically known as Web services) collaborate to provide some capabilities.
SOA consists of a set of distributed components that provide or consume services. That is, the

10 2 Background

main components in SOA are service providers and service consumers, which are independent
and interoperable [19], [35], [22]. SOA is an abstraction that uses services as basic building
blocks to develop distributed systems that are independent of the protocol and the program-
ming language [24].

Another important component in SOA is the Enterprise Service Bus (ESB), which is used to in-
tegrate services, data and systems. Consumers use the composite services exposed from the
ESB component. Thus, the ESB is used as a centralized bus that connects all these services and
systems, where composite services can be built from aggregates of other services. So, the ESB
component also contains a significant portion of the business logic of the entire application [34].

Typically, services communicate with each other synchronously or asynchronously. For syn-
chronous communication, SOAP (Simple Object Access Protocol) or REST (REpresentational
State Transfer) is used, both being HTTP-based protocols. SOAP is the standard communication
protocol in Web services technology, in which service consumers and service providers interact
by exchanging request/reply XML messages. In REST, the requests rely on the four basic HTTP
verbs (post, get, put, and delete) to indicate the service provider to create, retrieve, update or
delete a resource. In asynchronous communication, providers and consumers exchange asyn-
chronous messages, usually through a messaging system [19].

Although SOA tries to approach the challenges of largemonolithic applications by segregating the
functionalities of monolithic applications into reusable, loosely coupled entities called services,
the software systems that provide these services in a SOA ecosystem are still monoliths [34].

2.1.4.2 Microservices Architectures

Microservices Architecture (MSA) is an architectural style used to develop a software system
composed of small services, each of which runs in its own process, and communicates with
each other through lightweight mechanisms such as HTTP resource API (Application Program-
ming Interface) [38] or a messaging system [34].

Some characteristics of the MSA style are [20]: (i) organization around business capabilities, (ii)
automated deployment [69], [16], (iii) intelligence at service access points, and (iv) decentral-
ized control (government) of languages and data [32]. Using these characteristics, it is possible
to design flexible, modular architectures that are easy to evolve over time [20].

Key benefits of using the MSA style include the following [20], [51], [6], [26], [34], [56]:

• Heterogeneity of technology: each service can be implemented with different technolo-
gies.

2.1 Software Architecture 11

• Resilience: since the services are distributed, the system can continue to operate in the
event of failure of any of them.

• Scalability: unlike monolithic applications, services can scale computational resources
independently in MSA.

• Ease of deployment: changes can be made to specific services and deployed without af-
fecting the rest of the system.

• Decentralized data management: unlike monolithic applications, each microservice may
have its own database and database schema which contributes to service independence
and loose coupling.

• Business alignment: MSA enables better alignment between software architecture and
business compared to monolithic applications.

MSA has emerged as a better architecture approach to overcome the drawbacks of SOA as well
as the monolithic application architecture. A monolithic application can be transformed into a
microservices architecture by splitting themonolithic application into independent and business
functionality oriented services (microservices). Also, the central ESB disappears by breaking its
functionalities into each microservice, so that the services take care of the inter-service com-
munication and service composition logic [34]. Because MSA does not include a global mediator
like an ESB, it is possible to create coordination services that play the role of orchestrator or
mediator, each with responsibility for invoking other microservices to achieve the desired func-
tionality [34], [55], [44].

In MSA, services communicate with each other synchronously or asynchronously. For syn-
chronous communication, HTTP-based REST (REpresentational State Transfer) or gRPC (gRPC
Remote Procedure Calls) is used. REST, which is the most common form of microservice com-
munication, uses a navigational scheme to represent objects over a network known as resources,
and get (retrieve), put (update), delete, and post (create) are the standard HTTP operations to
be performed on the resources. gRPC is an open source remote procedure call system with
messages in binary format, and enables the communication between applications built on top
of heterogeneous technologies. The asynchronous messaging between microservices is imple-
mented with the use of a lightweight message broker or channel, although it is possible to have a
brokerless-basedmessaging architecture in which services exchange messages directly [34], [56].

MSA uses services as the unit of modularity. A service has an API (Application Programming In-
terface), which is a boundary of communication with other services and clients [34]. A service’s
API is a contract between the service and its clients, and consists of operations (which clients
can invoke) and events (which are published by the service). An operation has a name, a set
of parameters, and a return type. An event has a type and a set of fields and is published to a

12 2 Background

message channel [56].

Another important component in MSA is the API gateway, which plays the role of a facade and
is the entry point into the application from external API clients. It’s responsible for request
routing, API composition, protocol translation, and other cross-cutting functions (such as au-
thentication, monitoring and rate limiting). An API gateway may provide each client with their
own API to meet the requirements of diverse clients (for example, mobile applications or Web
applications). Implementing an API gateway with a REST API that supports a diverse set of
clients is time consuming; one option is to use a graph-based API language, such as GraphQL,
that is designed to support data fetching efficiently for fulfilling queries on existing APIs [56].

Modeling services around a business domain has significant advantages for a microservice ar-
chitecture, which can be done using Domain-Driven Design (DDD). DDD presents important
concepts that aim to better represent a problem domain in software systems, among which
Bounded Contexts and Aggregates stand out [44]. A bounded context refers to a cohesive and
loosely coupled boundary in an organization, making it ideal for representing a service. A ser-
vice designed this way is self-contained and only exposes a well-defined interface (API) [43], [54],
[34]. An aggregate is a representation of a real domain concept (for example, Order, Customer,
Invoice) and may have relationships with other aggregates (for example, a Customer aggregate
can be associated with many Orders). A single microservice (and therefore a bounded context)
can handle the life cycle and data storage of one or more aggregates [44].

2.1.4.3 Comparisons between SOA and MSA

According to The Open Group [65], which is a consortium that enables the achievement of busi-
ness goals through information technology standards, MSA is a subset of SOA with additional
restrictions about service independence. Both SOA and MSA share the following architectural
principles, which facilitate interoperability between the parties:

• Location-independence: there is no preferred location for service consumers or service
providers. Services may be located within the system or in systems of different organiza-
tions, and, therefore, in different physical locations.

• Implementation-independence: there is no requirement to use specific deployment plat-
forms or technologies that service providers or service consumers must adopt.

• Protocol-independence: SOA or MSA can be built using any available communication pro-
tocol, but generally implementations choose a limited set of protocols for the messages
that are exchanged.

• Self-contained services: this means that services can be invoked based on the information
available in their description, and implies that service consumers are isolated from the

2.2 Architectures Evolution 13

service implementation details.

Table 2-1 presents the differences between MSA and SOA [38], [54], [53], [37], [34].

Table 2-1: Differences between SOA and MSA

SOA MSA
It maximizes the reuse of application ser-
vices and is based on the concept of sharing
as much as possible.

It focuses on decoupling and is based on the
concept of sharing as little as possible.

A systematic change requires changing the
monolithic application.

A systematic change implies creating a new
service.

DevOps and Continuous Delivery are being
popular, but they are not an essential part.

It has a strong focus on DevOps and Contin-
uous Delivery.

For communication it usually uses an enter-
prise service bus (ESB).

For communication it uses simple messaging
systems, known as API Layer.

It supports multiple protocols.
It uses lightweight protocols like HTTP and
REST.

It uses a common platform to deploy all ser-
vices.

It can use on-premises servers or cloud plat-
forms.

The use of containers is less popular.
Containers work very well with microser-
vices.

It uses common standards and governance. The government is decentralized.

2.2 Architectures Evolution

Evolution in software is a process where a software product is continuously updated, main-
tained, and improved, in order to remain a viable product that evolves over time. As software
systems change, it is essential that the software architecture is also updated in such a way that
it remains current with these changes [31].

Software evolution capacity is defined as the ability of a software system to adapt to future
changes in an easy way. This characteristic of the software is considered fundamental to sup-
port strategic decision making, as well as to increase the economic value of software systems.
To have long-lived software systems, it is necessary to address their ability to evolve explicitly
during their life cycle, including the evolution in the software architecture of these systems [15].

The architecture of software systems must be redesigned and restructured (that is, evolved)
as new market opportunities, platforms, technologies and software frameworks emerge, and

14 2 Background

the evolution of software architectures is seen as a central feature of all software systems [8].
Nowadays, software architects do not have sufficient techniques to plan the evolution of sys-
tem architectures, considering different solution routes and best practices in specific problem
domains [8]. In most cases, the changes are not so simple as to be carried out in one day, but
require the elaboration of evolution plans to modify both the architecture and the implementa-
tion of the system, through a series of phases or stages until reaching the target system [8].

There are several models and techniques to describe and represent the evolution of software
architectures, which are compiled in Table 2-2.

Table 2-2: Methods for evolution of software architectures

Method Description

SAEV (Software Archi-
tecture Evolution Model)
[58]

Model that helps to describe and manage the evolution of
software architectures in a homogeneous way at three levels
of abstraction: the meta level, the architecture level and the
application level. It fills in the shortcomings of ADLs in terms
of evolution.

Evolution Paths [8]
Approach to plan and reason about the evolution of software
architecture.

Meta-Evolution Style [31]

It proposes a library that is composed of various styles of
architectural evolution that correspond to different domains
and that model best practices and knowledge in the evolution
of software architectures within these specific domains.

SACCS (Software Architec-
ture Change Characteriza-
tion Scheme) [71]

It allows architects to characterize the causes and effects of
changes to software using different criteria, identifying the
characteristics of the changes that will have an impact at the
software architecture level.

TranSAT [7]
It incorporates an element to the ADL called Architectural
Aspect, which allows the description of new concepts and
concerns to integrate them into existing architectures.

2.3 Model-Driven Engineering

Model-Driven Engineering (MDE) can be defined as a set of instruments and guidelines for ap-
plying the advantages of modeling to software engineering activities. As a methodology, MDE is
comprised of concepts, notations, process and rules, and tools. In MDE, the main concepts are

2.3 Model-Driven Engineering 15

Models and Transformations [13].

MDE conceives models as first-class citizens in software engineering. Models represent realities
for a given purpose, and have become crucial in technical fields such as computer science and
computer engineering. From the MDE perspective, everything is a model [13]. Models may play
two roles in applying abstraction: reduction (where models only focus on the selected aspects of
interest) or mapping (where an original individual is taken as a prototype and then generalized
to a model). A model conforms to a metamodel, that is, a metamodel is a model that describes
models. A metamodel constitutes the definition of a modeling language [13].

Transformations are a set of rules and operations applied to a model in order to produce an-
other model [13]. They are defined at the metamodel level, and then applied at the model level.
Through transformations and as part of the MDE process, models are merged, aligned, refac-
tored, refined, or translated. There are two types of model transformations [13]:

• Model-to-Model (M2M) transformations: in this type of transformation, the input and
output parameters are models. Usually, the input is one model and the output is one
model. However, there may be situations where the input has more than one model or
the output corresponds to more than one model.

• Model-to-Text (M2T) transformations: in this type of transformation, the input is a model
and the output is a text string. Some outputs of this type of transformation could be
documentation, task lists or source code.

Both models and transformations are represented in some notations, which in MDE is done by
using modeling languages. Thus, a modeling language is used for specifying models in textual
or graphical representation depending on the capabilities of the language [13]. A modeling lan-
guage contains the structure, terms, notations, syntax, semantics, and rules that are used to
express a model [59]. A Domain-Specific Language (DSL) is a kind of modeling language of lim-
ited expressiveness focused on a particular domain [25]. An ADL is a domain-specific language
for representing a software system architecture [42], [19]

Figure 2-3 summarizes some of the concepts, notations, process and rules, and tools that are
present in the MDE methodology [13].

16 2 Background

MDE Methodology

Concepts Notations Tools

Models

Transformations

Metamodeling

DSL Tools

IDEs

Modeling Languages

DSLs

ADLs Compilers

Process and Rules

Model-Driven Process

Syntactical Validation

Model Checking

Model Debugging Interpreters

Figure 2-3: Concepts, notations, process and rules, and tools in MDE.

3 Related Work

This chapter presents a brief state of the art related to DSLs and ADLs for describing microser-
vices architectures, DSLs and ADLs for describing service-oriented architectures, and research
works on evolution, migration or transformation towards MSA.

3.1 Reviews about Microservices Architectural Style

Di Francesco et al. present a complete state of the art about microservices architectures, where
it is indicated that this architectural style is a trend that is being used in the business world
[20], [21]. Alshuqayran et al. present a systematic study on microservices architecture and the
most relevant architectural challenges, as well as the diagrams, architectural views, methods and
models used to represent microservices architectures [5].

On the other hand, there are some reviews about microservices and their use with another dis-
ciplines. For instance, there are state of the art in using microservices architectures alongside
DevOps [61], [69], [70]. Also, there are reviews of microservices decomposition strategies, high-
lighting both Model-Driven Engineering and Domain-Driven Design as approaches to support
this task [60].

3.2 ADLs for Microservices Architectures

There are several research works that propose languages for the description of MSA. In [63]
the authors proposed MicroBuilder, which is a tool used for the specification of a software ar-
chitecture that follows REST microservice design principles. MicroBuilder comprises MicroDSL
and MicroGenerator modules, where the MicroDSL module provides a domain-specific language
used for the specification of REST microservice software architectures, which supports textual
and graphical concrete syntaxes.

In [30] the authors presented MicroART, an architecture recovery approach for microservice-
based systems. As part of that research work, the authors defined a domain-specific language
for representing the architectural key aspects of a microservices-based system.

18 3 Related Work

The work in [50], [49] presented µσADL, a textual ADL which is an extension of jADL (a formal
ADL defined in [48]). µσADL was designed in order to provide to software architects and stake-
holders a formal way for describing software systems that follow the MSA style. This language
follows the C&C view in order to express the architecture of both static and dynamic software
systems.

3.3 ADLs for Service-Oriented Architectures

Different research works and specifications were found that support the description of service-
oriented architectures. In [36] the authors presented SOADL, an architecture description lan-
guage for SOA. SOADL specifies the interfaces, behavior, semantics and quality properties of
services, provides mechanisms to model and analyze the dynamic and evolving architecture,
and supports service composition. In [68] the authors expanded the capabilities of SOADL by
proposing SOADL-EH, a service-oriented software architecture description language supporting
exception handling.

π-ADL for SOA was proposed in [47] as a service-oriented architecture description language to
enable the formal development of dynamic applications. π-ADL for SOA is a member of the
π-ADL [46] family.

In [10] PIM4SOA was presented, which is a platform independent metamodel for SOA. The goal
of creating the PIM4SOA metamodel was to define a language that could be used to describe
SOA at a platform independent level. The PIM4SOA metamodel identifies four aspects where
specific concerns can be addressed: information, service, process and quality of service (QoS).

The Service-oriented architecture Modeling Language (SoaML) specification provides a meta-
model and a UML profile for the specification and design of services within a service-oriented
architecture [45].

3.4 Sarch Language

Sarch is an ADL whose main goal is to allow the design of software architectures [66], [67]. This
language is based on a set of architectural views proposed by Clements et al. in the Views & Be-
yond (V&B) Catalog [19], which allows to cover the necessary elements to support the design of
a software system. The included architectural views in Sarch are Data Model, Component-and-
Connector (C&C), Layered, and Deployment. Sarch has the capabilities to allow the description
of any software architecture in any architectural style.

3.5 Evolution, Transformation and Migration to MSA 19

Also, Sarch has the ability to support both model-to-model and model-to-text transformation
processes [67].

3.5 Evolution, Transformation and Migration to MSA

There are previous researchworks of evolution, migration and transformation towardsmicroser-
vices architectures. Most of these works refer to the evolution from monolithic applications to
microservices-based systems. These research works can be classified as follows:

• Migration from monolithic applications in specific case studies or domains: There are
researchworkswhich document the realmigration experience frommonolith applications,
in specific business domains ([6], [72], [41], [17]) or in more general purpose software
systems ([29]).

• Proposal of methods, tools, processes or techniques of evolution frommonolithic applica-
tions: Some researchworks proposemethods, techniques or tools that allow the evolution
or migration from a monolithic application to a microservices architecture ([39], [40], [18],
[4], [30], [23], [27]).

• SOA, Microservices andMDD: The research work in [53] presents the differences between
SOA andMSA, the state of the art on the application ofModel-Driven Development (MDD)
to SOA, and the implications of applying MDD to MSA taking into account metamodels,
model transformations and modeling languages.

3.6 Gaps in Previous Work

According to the literature reviewed, no previous work was found that specifically proposes a
model of evolution or transformation from SOA to MSA based on the formalization of elements,
relations and properties. Furthermore, there is a trend for the use of the MSA style within
software development and architecture practices [51], which is based on the fact that large com-
panies have evolved their software systems towards microservices architectures [38].

Regarding the reviewed ADLs, the Sarch language allows the modeling of software systems in
any architectural style from the conception of architectural views. Table 3-1 summarizes the
comparison of the reviewed languages and supports the choice of Sarch to enable modeling
of service-based architectures (SOA and MSA). However, the other languages are an important
input to identify the elements, relations and properties that are part of each SOA and MSA ar-
chitectural styles. The main aspects related in this table are: use of more than one architectural
view, support for describing software systems in the SOA style, support for describing software
systems in the MSA style, support for describing software systems in both SOA and MSA styles,

20 3 Related Work

and support of model-to-text or model-to-model transformations.

Table 3-1: Analysis of ADLs: Languages vs. main aspects.

ADL Use of more
than one ar-
chitectural

view

Support for
describing
software
systems in
the SOA
style

Support for
describing
software
systems in
the MSA
style

Support for
describing
software
systems in
both SOA
and MSA
styles

Support of
model-to-
text or

model-to-
model

transforma-
tions

MicroBuilder X X
MicroART X X
µσADL X

SOADL-EH X
π-ADL X

PIM4SOA X
SoaML X
Sarch X X X X X

In response to the problem posed, it is proposed to create an architectural evolution model that
starts from an abstraction model for each of the SOA and MSA architectural styles and, using
Model-Driven Engineering techniques, performs a model-to-model transformation process that
enables this evolution to be directed. Evolving from SOA to MSA is valid considering that the
MSA architectural style was born from the SOA architectural style, which makes it possible
for these two architectural styles to have comparable elements that allow finding architectural
equivalences and optimizations between these two styles.

4 ADL for Service-Based Architectures

Sarch is an ADL that allows the design of software architectures represented through Data
Model, Component-and-Connector (C&C), Layered, and Deployment Architectural Views [66],
[67]. Sarch has the capabilities to allow the description of any software architecture in any ar-
chitectural style.

To define an ADL for the design of service-based architectures, specifically for SOA and MSA,
it is proposed to extend the Sarch language, incorporating in the grammar the specific rules and
characteristics of each of the SOA and MSA styles. This extension was introduced in [11], in
which the main focus was on the C&C architectural view. Also, the Decomposition architectural
view was introduced in the Sarch language, which allows the description of a software system
organized as modules and submodules and shows responsibilities partitioned across them [19].

In this chapter, the proposed ADL for Service-Based Architectures is explained in detail. To
achieve this, it is important to highlight three concepts related to the design of the language
[13]:

• Grammar: defines all valid sentences and the structure of a language.

• Extended Backus–Naur Form (EBNF): it is a textual representation of the grammar and
syntax rules of a computer language.

• Concrete Syntax Tree (CST): it is a tree data structure that represents the grammar of a
computer language.

In summary, the Sarch language was extended as follows:

• The C&C view was adapted to restrict the components and connectors depending on the
architectural style (SOA or MSA).

• The Decomposition view was introduced to allow the description of a software system
from the functional point of view, without considering the specific architectural style.

• The Data Model view was extended to allow a new data model type for associating with
the operations in services.

Additionally, the Layered view is taken into account in this research work, therefore it will be
described in this chapter. In the next sections, the design of the ADL for service-based architec-
tures, based on Sarch, is described.

22 4 ADL for Service-Based Architectures

4.1 General Architectural Schema

Sarch allows the definition of a software architecture with a terminal called architecture, followed
by the software system’s name, its author, the architectural style, and the five supported archi-
tectural views. This general schema of the Sarch grammar is shown in the listing below (as EBNF
notation) and in figures 4-1 and 4-2 (as CSTs).

⟨Architecture⟩ ::= ‘architecture’ ‘{’ ⟨SoftwareSystem⟩ ⟨Author⟩ ⟨ArchitecturalStyle⟩ ⟨Views⟩ ‘}’

⟨SoftwareSystem⟩ ::= ‘software_system’ ‘:’ ⟨Id⟩ ‘;’

⟨Author⟩ ::= ‘author’ ‘:’ ⟨Id⟩ ‘;’

⟨ArchitecturalStyle⟩ ::= ‘architectural_style’ ‘:’ ⟨ArchitecturalStyleType⟩ ‘;’

⟨ArchitecturalStyleType⟩ := ‘soa’ | ‘msa’ | ⟨Id⟩

⟨Views⟩ := ‘architectural_views’ ‘{’ ⟨DecompositionView⟩ ⟨DataModelView⟩ ⟨ComponentAndConnectorView⟩
⟨LayeredView⟩ ⟨DeploymentView⟩ ‘}’

⟨Id⟩ ::= {a-zA-Z0-9,_}

Architecture

architecture

Id

Views{

software_system :

SoftwareSystem

Idauthor:

Author ArchitecturalStyle

; ;

}

…

Id

architectural_style : ;ArchitecturalStyleType

'msa'

'soa'

Figure 4-1: CST for Sarch: general schema of the language.

A key feature of the grammar is the architectural_style, which triggers the rules that are applicable
depending on the specified value as follows:

• If the specified value is soa, the language is constrained to the specific rules for a service-
oriented architecture.

4.2 Decomposition View 23

Views

architectural_views LayeredView{ DecompositionView DataModelView ComponentAndConnectorView }DeploymentView

… … … … …

Figure 4-2: CST for the architectural views included in the extended Sarch language.

• If the specified value ismsa, the language is constrained to the specific rules for a microser-
vices architecture.

• Otherwise, the Sarch language behaves as originally defined and is not constrained to a
specific architectural style.

As mentioned previously, the proposed ADL for service-based architectures focuses on the De-
composition, Data Model, C&C, and Layered architectural views in Sarch, which are highlighted
in figure 4-2.

4.2 Decomposition View

This view describes the organization of the software system as modules and submodules and
shows how system responsibilities are divided across them [19]. This view is compound of the
following elements and relations:

• Elements: subsystem, which is a system within a larger system and aggregates modules;
module, which belongs to a subsystem and encapsulates a set of functionalities; submod-
ule which is a module within a larger module; and functionality, which specifies what the
software system can do. The property of each of these elements is name.

• Relations: All decomposition relations are in the form of is_part_of; a module is part of a
subsystem, a submodule is part of a module, and a functionality is part of a module or a
submodule.

The grammar for the decomposition view is shown in the listing below (as EBNF notation) and
in figure 4-3 (as a CST).

⟨DecompositionView⟩ ::= ‘decomposition_view’ ‘::’ ⟨DecompositionElements⟩ ⟨DecompositionRelations⟩
‘::’

⟨DecompositionElements⟩ ::= ‘elements’ ‘{’ ⟨DecompositionElement⟩+ ‘}’

24 4 ADL for Service-Based Architectures

⟨DecompositionElement⟩ := ⟨Subsystem⟩ | ⟨Module⟩ | ⟨Submodule⟩ | ⟨Functionality⟩

⟨Subsystem⟩ ::= ‘subsystem’ ⟨Id⟩ ‘;’

⟨Module⟩ ::= ‘module’ ⟨Id⟩ ‘;’

⟨Submodule⟩ ::= ‘submodule’ ⟨Id⟩ ‘;’

⟨Functionality⟩ ::= ‘functionality’ ⟨Id⟩ ‘;’

⟨DecompositionRelations⟩ ::= ‘relations’ ‘{’ ⟨DecompositionRelation⟩* ‘}’

⟨DecompositionRelation⟩ := ⟨IsPartOfA⟩ | ⟨IsPartOfB⟩ | ⟨IsPartOfC⟩ | ⟨IsPartOfD⟩

⟨IsPartOfA⟩ ::= ‘m:’ [Module] ‘is_part_of’ ‘ss:’ [Subsystem] ‘;’

⟨IsPartOfB⟩ ::= ‘sm:’ [Submodule] ‘is_part_of’ ‘m:’ [Module] ‘;’

⟨IsPartOfC⟩ ::= ‘f:’ [Functionality] ‘is_part_of’ ‘m:’ [Module] ‘;’

⟨IsPartOfD⟩ ::= ‘f:’ [Functionality] ‘is_part_of’ ‘sm:’ [Submodule] ‘;’

DecompositionView

decomposition-view DecompositionRelationsDecompositionElements ::::

Subsystem Module Submodule Functionality

elements { }DecompositionElement+ relations { }DecompositionRelation*

subsystem Id ;

module Id ;

submodule Id ;

functionality Id ;

IsPartOfA

IsPartOfB IsPartOfC

IsPartOfD

m: [Module] is_part_of ss: [Subsystem]

sm: [Submodule] is_part_of m: [Module] f: [Functionality] is_part_of m: [Module]

f: [Functionality] is_part_of sm: [Submodule]

;

;

;

;

Figure 4-3: CST for the Decomposition view in the extended Sarch language.

4.3 Data Model View

This view describes the static information structure used in the system in terms of data entities
and their relationships [19]. This view is compound of the following elements and relations:

• Elements: data entity, which is an object that holds information that needs to be stored
or represented in a software system. Properties include name and data attributes.

• Relations: allow the communication between data entities. The relations can be general-
ization/specialization, logical association (one-to-one, one-to-many,many-to-one,many-
to-many or association), or aggregation (aggregation or composition).

4.3 Data Model View 25

The grammar of this view allows to define one or more data models for a software system. Each
data model has a type (relational, nosql or interoperability), a name, and its own data entities and
relationships between them. For each data entity a set of attributes can be specified, each one
with a name and a basic data type (string, byte, short, int, long, float, double, date, time, datetime, bool,
image, video, audio, file). Further, it is possible to indicate what modules (defined in the Decom-
position view) use which data entities [19].

Also, the grammar allows the definition of a set of operations for the data models of type inter-
operability. Each operation has a name and parameters. Each parameter has a name, a type (which
can be a basic data type or a data entity in the same data model), and a direction (in or out).

The grammar for the data model view is shown in the listing below (as EBNF notation) and in
figure 4-4 (as a CST).

⟨DataModelView⟩ ::= ‘data_model_view’ ‘::’ ⟨DataModel⟩+ ‘::’

⟨DataModel⟩ ::= ⟨DataModelType⟩ ‘data_model’ ⟨Id⟩ ‘{’ ⟨DataModelElements⟩ ⟨DataModelRelations⟩
⟨DataModelOperations⟩ ‘}’

⟨DataModelType⟩ ::= ‘relational’ | ‘nosql’ | ‘interoperability’

⟨DataModelElements⟩ ::= ‘elements’ ‘{’ ⟨DataModelElement⟩+ ‘}’

⟨DataModelElement⟩ := ⟨DataEntity⟩

⟨DataEntity⟩ ::= ‘data_entity’ ⟨Id⟩ ⟨ModuleRef⟩? ‘{’ ⟨Attributes⟩ ‘}’

⟨ModuleRef⟩ := ‘(’ ‘module’ [Module] ‘)’

⟨Attributes⟩ ::= ‘attributes’ ‘{’ ⟨Attribute⟩+ ‘}’

⟨Attribute⟩ ::= ⟨DataType⟩ ⟨Id⟩ ‘;’

⟨DataType⟩ ::= ‘string’ | ‘byte’ | ‘short’ | ‘int’ | ‘long’ | ‘float’ | ‘double’ | ‘date’ | ‘time’ |
‘datetime’ | ‘bool’ | ‘image’ | ‘video’ | ‘audio’ | ‘file’

⟨DataModelRelations⟩ ::= ‘relations’ ‘{’ ⟨DataModelRelation⟩* ‘}’

⟨DataModelRelation⟩ ::= ⟨RelationType⟩ ‘(’ ’ [DataEntity] ‘,’ ’ [DataEntity] ‘)’ ‘;’

⟨RelationType⟩ ::= ⟨OneToOne⟩ | ⟨OneToMany⟩ | ⟨ManyToOne⟩ | ⟨ManyToMany⟩ | ⟨Association⟩ | ⟨Aggregation⟩
| ⟨Composition⟩ | ⟨Generalization⟩ | ⟨Specialization⟩

⟨OneToOne⟩ ::= ‘one_to_one’

26 4 ADL for Service-Based Architectures

⟨OneToMany⟩ ::= ‘one_to_many’

⟨ManyToOne⟩ ::= ‘many_to_one’

⟨ManyToMany⟩ ::= ‘many_to_many’

⟨Association⟩ ::= ‘association’

⟨Aggregation⟩ ::= ‘aggregation’

⟨Composition⟩ ::= ‘composition’

⟨Generalization⟩ ::= ‘generalization’

⟨Specialization⟩ ::= ‘specialization’

⟨DataModelOperations⟩ ::= ‘operations’ ‘{’ ⟨DataModelOperation⟩* ‘}’

⟨DataModelOperation⟩ ::= ‘operation’ ⟨Id⟩ ‘{’ ⟨Parameters⟩ ‘}’

⟨Parameters⟩ ::= ‘parameters’ ‘{’ ⟨OperationParameter⟩* ‘}’

⟨OperationParameter⟩ ::= ⟨ParameterType⟩ ⟨Array⟩? ⟨Id⟩ ⟨ParameterDirection⟩ ‘;’

⟨ParameterType⟩ ::= ⟨DataType⟩ | [DataEntity]

⟨Array⟩ ::= ‘[’ ‘]’

⟨ParameterDirection⟩ ::= ‘in’ | ‘out’

4.4 Component-and-Connector (C&C) View

This view represents elements that have some runtime presence, plus the pathways and proto-
cols of their interaction [19]. In a general form, this view is compound of the following elements
and relations:

• Elements: component, which represents a processing unit or data store; a component has
a name and a set of ports through which it interacts with other components (via connec-
tors). And connector, which is a pathway of interaction between components; a connector
has a name and a set of roles that indicate how components can use a connector in inter-
actions.

• Relations: attachment, which associates a component port with a connector role to pro-
duce a graph of components and connectors.

4.4 Component-and-Connector (C&C) View 27

DataModelView

data_model_view DataModel+::
::

DataModelType

'relational'

'nosql'

'interoperability'

data_model Id }DataModelElements DataModelRelations

elements

{

{ }DataModelElement+ relations { }DataModelRelation*

DataEntity

data_entity Id { Attributes

DataModelOperations

}

attributes Attribute+{ }

operations DataModelOperation*{ }

DataType Id ;

'string'

'long'

'short'

'int'

'byte'

'float'

double'

'time'

'datetime'

'date'

'bool'

'image''video''audio''file'

RelationType (,) ;[DataEntity] [DataEntity]

OneToOne

OneToMany

ManyToOne

ManyToMany

Association

Aggregation

'one_to_one'

'one_to_many'

'many_to_one'

'many_to_many'

'association'

'aggregation'

'composition'

'generalization'

'specialization'

Composition

Generalization

Specialization

operation Parameters{Id }

parameters OperationParameter*{ }

ParameterType Array? Id ParameterDirection ;

DataType [DataEntity] [] 'in' 'out'

ModuleRef?

(module [Module])

Figure 4-4: CST for the Data Model view in the extended Sarch language.

The general CST for the C&C view is shown in figure 4-5. In section elements of the view, it is
possible to define programming languages, orchestration languages (only for SOA style), database
systems, and components and connectors that are used in the software system described using
Sarch.

ComponentAndConnectorView

component-and-connector-view :: ComponentAndConnectorRelations ::ComponentAndConnectorElements

elements { }ComponentAndConnectorElementContent

ProgrammingLanguages? OrchestrationLanguagesForSOA? DbSystems? ComponentAndConnectorElement

ComponentElement ConnectorElementprogramming_languages { ProgLanguage+}

Id ;

orchestration_languages { OrchLangForSOA+ }

Id ;

db_systems { DbSystem+}

Id ;

...

Figure 4-5: CST for the C&C view in the extended Sarch language.

This view presents a set of specific components and connectors that applies to SOA or MSA,
depending on the specified architectural style. Table 4-1 summarizes the components and con-
nectors for the C&C view for the MSA and SOA styles, within the extended grammar in Sarch.

Figure 4-6 shows the possible properties for describing a component in Sarch as a CST. Table 4-2
indicates the properties that apply to each component depending on its type for the SOA style,
and table 4-3 indicates the properties that apply to each component depending on its type for

28 4 ADL for Service-Based Architectures

Table 4-1: Element summary for C&C view in MSA and SOA styles

Style
C&C View

Components Connectors

MSA

Microservice
API Gateway

Web application
Mobile application
Relational database
NoSQL database

Storage

HTTP
REST
gRPC

GraphQL
Messaging
FTP access
DB access

SOA

Internal service provider
External service provider

Service consumer
Enterprise Service Bus (ESB)

Relational database

HTTP
SOAP
REST

Messaging
DB access

the MSA style.

component ComponentType

ComponentTypeForSOA ComponentTypeForMSA

ComponentElement

Id

(programming_language)[ProgLanguage] (orchestration_language)[OrchLangForSOA]

OrchestrationLanguageComp?ProgrammingLanguageComp? DataModelComp?

(db_system)[DbSystem]

DbSystemComp? {

'soa.internal_service_provider'

'soa.external_service_provider'

'soa.service_consumer'

'soa.relational_database'

'soa.esb'

(data_model)[RelationalDataModel]

RelDataModelComp

(data_model)[NoSqlDataModel]

NoSqlDataModelComp

'msa.microservice'

'msa.api_gateway'

'msa.web_application'

'msa.mobile_application'

'msa.relational_database'

'msa.nosql_database'

'msa.storage'

ComponentPort+ }

...

Figure 4-6: CST for the C&C view in the extended Sarch language: Component Element Node.

Each component has ports to indicate the services and accesses required or exposed, which is
shown in figure 4-7 as a CST. For each architectural style, there is a predefined set of port types.
The port type called provided_service has an interoperability data model (defined in the DataModel
view) and a coordination type, the latter only for components of type soa.esb. The port type called
provided_api has an interoperability data model. This allows to specify the operations and types
of information that each service can provide.

Figure 4-8 shows the possible properties for describing a connector in Sarch as a CST. Each con-

4.4 Component-and-Connector (C&C) View 29

Table 4-2: Properties that apply to each component type in the SOA style

Component type Programming
language

Orchestration
language

Relational
model

DB system

Internal service
provider

X

External service
provider

Service consumer X
ESB X

Relational database X X

Table 4-3: Properties that apply to each component type in the MSA style

Component type Programming
language

Relational
model

NoSQL model DB system

Microservice X
API Gateway

Web application X
Mobile application X
Relational database X X
NoSQL database X X

Storage

ComponentPort+

ComponentPortForSOA ComponentPortForMSA

ProvidedServicePortForSOA OtherPortForSOA

port provided_service Id

(iop_model [InteroperabilityDataModel])

InteropDMForSOA Coordination?

(coordination_type CoordinationType)

;

'orchestration'

'choreography'

port OtherPortTypeForSOA Id ;

'requested_service'

'provided_dbaccess'

'requested_dbaccess'

ProvidedApiPortForMSA OtherPortForMSA

port provided_api Id

(iop_model [InteroperabilityDataModel])

InteropDMForMSA ; port OtherPortTypeForMSA Id ;

'requested_api'

'provided_dbaccess'

'requested_dbaccess'

'provided_storage'

'requested_storage'

Figure 4-7: CST for the C&C view in the extended Sarch language: Component Port Node.

30 4 ADL for Service-Based Architectures

nector has a connector type whose value depends on the specified architectural style, and has
two roles called consumer and provider.

connector ConnectorType

ConnectorElement

Id { ConnectorRole+ }

ConnectorTypeForSOA ConnectorTypeForMSA

'soa.http'

'soa.soap'

'soa.rest'

'soa.messaging'

'soa.db_access'

ProviderRole ConsumerRole

role Id ;provider

'msa.http'

'msa.rest'

'msa.grpc'

'msa.graphql'

'msa.messaging'

role Id ;consumer

'msa.db_access'

'msa.ftp'

Figure 4-8: CST for the C&C view in the extended Sarch language: Connector Element Node.

The grammar for the supported relations in the C&C view for SOA and MSA styles is shown in
Figure 4-9. Attachments can be made only between compatible component ports and connector
roles, which also depends on the component type and the connector type. Table 4-4 contains
the attachments allowed for the MSA style and table 4-5 contains the attachments allowed for
the SOA style; for simplicity, the connector roles are omitted in these tables because they are
always the same (consumer attached to the source port and provider attached to the target port).

ComponentAndConnectorRelations

relations { }ComponentAndConnectorRelation*

AttachmentForSOA AttachmentForMSA

Attachment

attachment ([ConnectorRole] , [ComponentPortForSOA] OperationForSOA?) ;

(operation [DataModelOperation])

attachment ([ConnectorRole] , [ComponentPortForMSA] OperationForMSA?) ;

(operation [DataModelOperation])

Figure 4-9: CST for the C&C view in the extended Sarch language: Relations Node.

For both SOA and MSA, it is possible in the attachment to indicate the operation that partici-
pates in the relation, which provides a capability for a more granular definition in relations. The
specified operation belongs to the interoperability data model associated to the related compo-
nent port.

The grammar for the C&C view is also shown in the listing below as EBNF notation.

4.4 Component-and-Connector (C&C) View 31

Table 4-4: Valid attachments for the MSA style

Source
component

Source port Connector Target
component

Target port

web_application /
mobile_-

application

requested_api http / rest /
graphql

api_gateway provided_api

api_gateway /
microservice

requested_api http / rest /
grpc /

messaging

microservice provided_api

microservice requested_-
dbaccess

db_access relational_-
database

provided_-
dbaccess

microservice requested_-
dbaccess

db_access nosql_database provided_-
dbaccess

microservice requested_-
storage

ftp storage provided_storage

Table 4-5: Valid attachments for the SOA style

Source
component

Source port connector Target
component

Target port

service_consumer requested_-
service

http / soap
/ rest

internal_-
service_provider

/ external_-
service_provider

/ esb

provided_service

service_consumer requested_-
dbaccess

db_access relational_-
database

provided_-
dbaccess

esb requested_-
service

http / soap
/ rest /

messaging

internal_-
service_provider

/ external_-
service_provider

provided_service

internal_service_-
provider

requested_-
service

http / soap
/ rest /

messaging

internal_-
service_provider

provided_service

internal_service_-
provider

requested_-
dbaccess

db_access relational_-
database

provided_-
dbaccess

32 4 ADL for Service-Based Architectures

⟨ComponentAndConnectorView⟩ ::= ‘component_and_connector_view’ ‘::’ ⟨ComponentAndConnectorElements⟩
⟨ComponentAndConnectorRelations⟩ ‘::’

⟨ComponentAndConnectorElements⟩ ::= ‘elements’ ‘{’ ⟨ProgrammingLanguages⟩? ⟨OrchestrationLanguagesForSOA⟩?
⟨DbSystems⟩? ⟨ComponentAndConnectorElement⟩ ‘}’

⟨ProgrammingLanguages⟩ := ‘programming_languages’ ‘{’ ⟨ProgLanguage⟩+ ‘}’

⟨ProgLanguage⟩ := ⟨Id⟩ ‘;’

⟨OrchestrationLanguagesForSOA⟩ := ‘orchestration_languages’ ‘{’ ⟨OrchLangForSOA⟩+ ‘}’

⟨OrchLangForSOA⟩ := ⟨Id⟩ ‘;’

⟨DbSystems⟩ := ‘db_systems’ ‘{’ ⟨DbSystem⟩+ ‘}’

⟨DbSystem⟩ := ⟨Id⟩ ‘;’

⟨ComponentAndConnectorElement⟩ := ⟨ComponentElement⟩ | ⟨ConnectorElement⟩

⟨ComponentElement⟩ := ‘component’ ⟨ComponentType⟩ ⟨ProgrammingLanguageComp⟩? ⟨OrchestrationLanguageComp⟩?
⟨DataModelComp⟩? ⟨DbSystemComp⟩? ‘{’ ⟨ComponentPort⟩+ ‘}’

⟨ComponentType⟩ := ⟨ComponentTypeForSOA⟩ | ⟨ComponentTypeForMSA⟩

⟨ComponentTypeForSOA⟩ := ‘soa.internal_service_provider’ | ‘soa.external_service_provider’
| ‘soa.service_consumer’ | ‘soa.relational_database’ | ‘soa.esb’

⟨ComponentTypeForMSA⟩ := ‘msa.microservice’ | ‘msa.api_gateway’ | ‘msa.web_application’
| ‘msa.mobile_application’ | ‘msa.relational_database’ | ‘msa.nosql_database’ |
‘msa.storage’

⟨ProgrammingLanguageComp⟩ := ‘(’ ‘programming_language’ [ProgLanguage] ‘)’

⟨OrchestrationLanguageComp⟩ := ‘(’ ‘orchestration_language’ [OrchLangForSOA] ‘)’

⟨DataModelComp⟩ := ⟨RelDataModelComp⟩ | ⟨NoSqlDataModelComp⟩

⟨RelDataModelComp⟩ := ‘(’ ‘data_model’ [RelationalDataModel] ‘)’

⟨NoSqlDataModelComp⟩ := ‘(’ ‘data_model’ [NoSqlDataModel] ‘)’

⟨DbSystemComp⟩ := ‘(’ ‘db_system’ [DbSystem] ‘)’

⟨ComponentPort⟩ := ⟨ComponentPortForSOA⟩ | ⟨ComponentPortForMSA⟩

⟨ComponentPortForSOA⟩ := ⟨ProvidedServicePortForSOA⟩ | ⟨OtherPortForSOA⟩

4.4 Component-and-Connector (C&C) View 33

⟨ProvidedServicePortForSOA⟩ := ‘port’ ‘provided_service’ ⟨Id⟩ ⟨InteropDMForSOA⟩ ⟨Coordination⟩?
‘;’

⟨InteropDMForSOA⟩ := ‘(’ ‘iop_model’ [InteroperabilityDataModel] ‘)’

⟨Coordination⟩ := ‘(’ ‘coordination_type’ ⟨CoordinationTypeForSOA⟩ ‘)’

⟨CoordinationTypeForSOA⟩ := ‘orchestration’ | ‘choreography’

⟨OtherPortForSOA⟩ := ‘port’ ⟨OtherPortTypeForSOA⟩ ⟨Id⟩ ‘;’

⟨OtherPortTypeForSOA⟩ := ‘requested_service’ | ‘provided_dbaccess’ | ‘requested_dbaccess’

⟨ComponentPortForMSA⟩ := ⟨ProvidedApiPortForMSA⟩ | ⟨OtherPortForMSA⟩

⟨ProvidedApiPortForMSA⟩ := ‘port’ ‘provided_api’ ⟨Id⟩ ⟨InteropDMForMSA⟩ ‘;’

⟨InteropDMForMSA⟩ := ‘(’ ‘iop_model’ [InteroperabilityDataModel] ‘)’

⟨OtherPortForMSA⟩ := ‘port’ ⟨OtherPortTypeForMSA⟩ ⟨Id⟩ ‘;’

⟨OtherPortTypeForMSA⟩ := ‘requested_api’ | ‘provided_dbaccess’ | ‘requested_dbaccess’ |
‘provided_storage’ | ‘requested_storage’

⟨ConnectorElement⟩ := ‘connector’ ⟨ConnectorType⟩ ⟨Id⟩ ‘{’ ⟨ConnectorRole⟩+ ‘}’

⟨ConnectorType⟩ := ⟨ConnectorTypeForSOA⟩ | ⟨ConnectorTypeForMSA⟩

⟨ConnectorTypeForSOA⟩ := ‘soa.http’ | ‘soa.soap’ | ‘soa.rest’ | ‘soa.messaging’ | ‘soa.db_access’

⟨ConnectorTypeForMSA⟩ := ‘msa.http’ | ‘msa.rest’ | ‘msa.grpc’ | ‘msa.graphql’ | ‘msa.messaging’
| ‘msa.db_access’ | ‘msa.ftp’

⟨ConnectorRole⟩ := ⟨ProviderRole⟩ | ⟨ConsumerRole⟩

⟨ProviderRole⟩ := ‘role’ ‘provider’ ⟨Id⟩ ‘;’

⟨ConsumerRole⟩ := ‘role’ ‘consumer’ ⟨Id⟩ ‘;’

⟨ComponentAndConnectorRelations⟩ := ‘relations’ ‘{’ ⟨ComponentAndConnectorRelation⟩* ‘}’

⟨ComponentAndConnectorRelation⟩ := ⟨Attachment⟩

⟨Attachment⟩ := ⟨AttachmentForSOA⟩ | ⟨AttachmentForMSA⟩

⟨AttachmentForSOA⟩ := ‘attachment’ ‘(’ [ConnectorRole] ‘,’ [ComponentPortForSOA] ⟨OperationForSOA⟩?
‘)’ ‘;’

34 4 ADL for Service-Based Architectures

⟨OperationForSOA⟩ := ‘(’ ‘operation’ [DataModelOperation] ‘)’

⟨AttachmentForMSA⟩ := ‘attachment’ ‘(’ [ConnectorRole] ‘,’ [ComponentPortForMSA] ⟨OperationForMSA⟩?
‘)’ ‘;’

⟨OperationForMSA⟩ := ‘(’ ‘operation’ [DataModelOperation] ‘)’

4.5 Layered View

This view describes a division of the software into units called layers. Each layer represents a
group of modules that offer a cohesive set of services [19]. Also, this view includes the concept
of tier that allows grouping components; usually, this grouping is given for components that
share the same runtime environment or have the same runtime purpose [19].

This view is compound of the following elements and relations:

• Elements: layer, which performs a specific role within an application and provides a set of
services to other layers. layer-segment, which allows to divide a layer into a finer-grained
way; that is, a layer can be composed of layer segments. And tier, which allows to group
components that share the same runtime environment.

• Relations: allowed-to-use, which allows communication between different layers, be-
tween different layer segments, or between different tiers. The relation named allowed-
to-use-below is similar to allowed-to-use, but is more specific in the way that one element
relates to another element located just below it. The relation named contains has three
uses; the first is to represent which layer segments belongs to a layer; the second allows to
indicate which layers are applicable for specific components, that is, it allows to describe
for each component element (defined in the C&C view) which layers it contains; the third
allows to specify for each tier which components is contains.

The general CST for the Layered view is shown in figure 4-10. Figures 4-11, 4-12 and 4-13 show
the details of relations of type allowed-to-use, allowed-to-use-below and contains, respectively.

The grammar for the Layered view is shown in the listing below as EBNF notation.

4.5 Layered View 35

LayeredView

layered_view LayeredRelationsLayeredElements ::::

Layer LayerSegment

elements { }LayeredElement+ relations { }LayeredRelation*

layer Id ; layer_segment Id ;

AllowedToUse ContainsTier

tier Id ;

AllowedToUseBelow

...

Figure 4-10: CST for the Layered view in the extended Sarch language.

AllowedToUse

l:[Layer] allowed_to_use l:[Layer]

AllowedToUseLayer AllowedToUseSegment

ls:[LayerSegment] allowed_to_use ls:[LayerSegment]; ;

AllowedToUseTier

t:[Tier]allowed_to_use t:[Tier];

Figure 4-11: CST for the Layered view in the extended Sarch language: allowed-to-use relation.

AllowedToUseBelow

l:[Layer] allowed_to_use_below l:[Layer]

AllowedToUseBelowLayer AllowedToUseBelowSegment

ls:[LayerSegment] allowed_to_use_below ls:[LayerSegment]; ;

AllowedToUseBelowTier

t:[Tier]allowed_to_use_below t:[Tier];

Figure 4-12: CST for the Layered view in the extended Sarch language: allowed-to-use-below
relation.

Contains

ComponentAndLayerLayerAndLayerSegment

l:[Layer] contains ls: [LayerSegment] ; c: [ComponentElement] contains l: [Layer] ;

TierAndComponent

t: [Tier] contains c: [ComponentElement];

Figure 4-13: CST for the Layered view in the extended Sarch language: contains relation.

36 4 ADL for Service-Based Architectures

⟨LayeredView⟩ ::= ‘layered_view’ ‘::’ ⟨LayeredElements⟩ ⟨LayeredRelations⟩ ‘::’

⟨LayeredElements⟩ ::= ‘elements’ ‘{’ ⟨LayeredElement⟩+ ‘}’

⟨LayeredElement⟩ := ⟨Layer⟩ | ⟨LayerSegment⟩ | ⟨Tier⟩

⟨Layer⟩ ::= ‘layer’ ⟨Id⟩ ‘;’

⟨LayerSegment⟩ ::= ‘layer_segment’ ⟨Id⟩ ‘;’

⟨Tier⟩ ::= ‘tier’ ⟨Id⟩ ‘;’

⟨LayeredRelations⟩ ::= ‘relations’ ‘{’ ⟨LayeredRelation⟩* ‘}’

⟨LayeredRelation⟩ := ⟨AllowedToUse⟩ | ⟨AllowedToUseBelow⟩ | ⟨Contains⟩

⟨AllowedToUse⟩ := ⟨AllowedToUseLayer⟩ | ⟨AllowedToUseSegment⟩ | ⟨AllowedToUseTier⟩

⟨AllowedToUseLayer⟩ ::= ‘l:’ [Layer] ‘allowed_to_use’ ‘l:’ [Layer] ‘;’

⟨AllowedToUseSegment⟩ ::= ‘ls:’ [LayerSegment] ‘allowed_to_use’ ‘ls:’ [LayerSegment] ‘;’

⟨AllowedToUseTier⟩ ::= ‘t:’ [Tier] ‘allowed_to_use’ ‘t:’ [Tier] ‘;’

⟨AllowedToUseBelow⟩ := ⟨AllowedToUseBelowLayer⟩ | ⟨AllowedToUseBelowSegment⟩ | ⟨AllowedToUseBelowTier⟩

⟨AllowedToUseBelowLayer⟩ ::= ‘l:’ [Layer] ‘allowed_to_use_below’ ‘l:’ [Layer] ‘;’

⟨AllowedToUseBelowSegment⟩ ::= ‘ls:’ [LayerSegment] ‘allowed_to_use_below’ ‘ls:’ [LayerSeg-
ment] ‘;’

⟨AllowedToUseBelowTier⟩ ::= ‘t:’ [Tier] ‘allowed_to_use_below’ ‘t:’ [Tier] ‘;’

⟨Contains⟩ := ⟨LayerAndLayerSegment⟩ | ⟨ComponentAndLayer⟩ | ⟨TierAndComponent⟩

⟨LayerAndLayerSegment⟩ ::= ‘l:’ [Layer] ‘contains’ ‘ls:’ [LayerSegment] ‘;’

⟨ComponentAndLayer⟩ ::= ‘c:’ [ComponentElement] ‘contains’ ‘l:’ [Layer] ‘;’

⟨TierAndComponent⟩ ::= ‘t:’ [Tier] ‘contains’ ‘c:’ [ComponentElement] ‘;’

5 Architectural Evolution Model

This chapter presents the architectural evolution model for service-based architectures, specif-
ically from service-oriented architectures to microservices architectures. Also, it presents the
implementation of the ADL for service-based architectures and the model-to-model transforma-
tions from SOA to MSA in the Sarch-Studio tool.

5.1 Architectural Evolution Model Overview

The proposed evolutionmodel for service-based architectures includes the extended Sarch gram-
mar described previously (the ADL for service-based architectures) and performs a set of model-
to-model transformations based on the grammar for SOA andMSA. Thesemodel-to-model trans-
formations go from a SOA model to an MSA model, where both models are described using the
extended Sarch language.

In [11] an evolution model for service-based architectures was introduced, in which the main
focus was on the C&C architectural view for SOA and MSA. However, the present research work
proposes an evolution model in greater depth and uses other architectural views of the extended
Sarch language.

As illustrated in figure 1-1, the evolution model for service-based architectures consists of the
following steps:

• The architecture of a software system designed under the SOA style is taken as input.

• A functional decomposition of the software system is carried out using the Decomposition
view in Sarch.

• The SOA-based system is modeled using Sarch, specifically with the C&C, Data Model, and
Layered views.

• A set of model-to-model transformations are applied for the SOA-based system described
in Sarch, generating a model that conforms to the grammar defined in Sarch for the MSA
style.

• The resulting model would be used as a starting point to represent the software system
using the MSA style.

38 5 Architectural Evolution Model

5.2 Model-to-Model Transformations from SOA to MSA

There are key aspects of the Sarch language that are used in the model-to-model transformations
from SOA to MSA, which are listed as follows:

• From a functional point of view, a module in the Decomposition view can be seen as
a bounded context used in domain-driven design, which groups a set of functionalities
from a business domain perspective.

• According to the previous item, and taking into account that it is a good practice to rep-
resent a microservice as a bounded context, it can be established that a microservice can
contain the functionality of a module defined in the Decomposition view.

• A data entity in the Data Model view can belong to a module in the Decomposition view.
Therefore, a data entity can be seen as an aggregate that belongs to a bounded context
(that is, a microservice). As stated previously, a microservice can handle the lifecycle of
aggregates, which can be represented in its API with operations to create, read, update
and delete these domain objects.

• Each service in SOA is represented by a port, which contains a set of cohesive and func-
tionally related operations to meet a business need. For this reason, each port of type
provided_service of components of type internal_service_provider in SOA is a good candidate
to become a microservice. Additionally, component ports play an important role in dis-
tributed architectures such as SOA and MSA that allow communication between them,
and they become a common point between the two architectural styles.

For the proposed evolution model, elements and relations are taken from the Decomposition
view, the Data Model view, the C&C view, and the Layered view. Specifically, a transformation
function is proposed that receives an element or relation that belongs with the SOA architectural
style and an element from the Decomposition view, and returns a list of elements or relations
that belong with the MSA architectural style.

Furthermore, the proposed transformation function has the following assumptions regarding the
SOA architectural style:

• Service consumers and internal service providers, which are component types in the C&C
view, are monolithic applications.

• Each monolithic application is compound of the presentation, business logic, and data
access layers.

• A monolithic application in the C&C view is equivalent to a subsystem in the decomposi-
tion view.

5.2 Model-to-Model Transformations from SOA to MSA 39

A high-level transformation function was introduced in [11], with emphasis in the elements and
relations described in the C&C view and the Decomposition view. Algorithm 1 provides the
definition of the model-to-model transformation function for service-based architectures in a
rigorous and formal way, specifically to transform a software system designed in the SOA ar-
chitectural style into a software system designed under the MSA architectural style, using the
Decomposition, Data Model, C&C and Layered views as part of the Sarch grammar.

To achieve this, a formal and rigorous analysis was done of the elements, relations and proper-
ties of each architectural style and a formal mapping between the SOA elements and the MSA
elements, so that from the concept of component it can be done an architecturally clean transfor-
mation. This ensures that the characteristics of the service-based architectures are being used to
do a transformation in two different architectural styles but that they start from the concept of
services and that it is leveraged in terms of the characteristics and properties of the components.

Additionally, the modules in the decomposition view play a vital role in the proposed transfor-
mation process by allowing the generation of a microservice for each module and covering the
full functionality of the system. Ports and roles are also important in the transformation process,
which allow to connect the components in distributed architectures such as SOA and MSA, and
also each port that provides a service in SOA is transformed into a microservice in MSA to meet
the needs of interaction between components.

The model-to-model transformation process receives the SOA model described in Sarch, as well
as the following input parameters:

• database_system, which represents the default database system for the database compo-
nents that will be generated.

• database_type, which represents the default database type (msa.relational_database ormsa.nosql_-
database) for the database components that will be generated.

• ms_programming_language, which represents the default programming language for the
microservice components that will be generated.

• web_application_name, which is the name of the web application component that will be
generated.

• web_programming_language, which represents the default programming language for the
web application component that will be generated.

Based on the previous definitions and assumptions, as well as on the specific characteristics
of the SOA and MSA architectural styles that can be represented in the ADL for service-based
architectures (Sarch), the following are the model-to-model transformations to evolve from a
SOA model to a MSA model:

40 5 Architectural Evolution Model

Algorithm 1 SOA to MSA Transformation Algorithm
Overall Declarations
e← architecturalElement

r ← architecturalRelation

p← architecturalProperty

cp← component

cn← connector

ss← subsystem

m← module

sm← submodule

f ← functionality

dm← dataModel

de← dataEntity

architecturalStyle← {cp, cn, dm}
SOAComponents← A

SOAConnectors← B

MSAComponents← C

MSAConnectors← D

relationalDataModels← E

noSQLDataModels← F

interopDataModels← G

monolith← {internalServiceProvider, serviceConsumer}
monolith = dataAccess+ businessLogic+ presentation

SOA← {cp, cn, dm : cp ∈ A, cn ∈ B dm ∈ E ∨ dm ∈ G}
MSA← {cp, cn, dm : cp ∈ C, cn ∈ Ddm ∈ E ∨ dm ∈ F ∨ dm ∈ G}
architecturalV iew ← {e, r, p}
c&cV iew ← {e, r, p : e = cp ∨ e = cn, r = attachment, p = c&cProperty}
c&cV iewForSOA← {e, r, p : e = cp ∨ e = cn, r = attachment, p = c&cProperty; cp ∈ A, cn ∈ B}
c&cV iewForMSA← {e, r, p : e = cp ∨ e = cn, r = attachment, p = c&cProperty; cp ∈ C, cn ∈ D}
decompositionV iew ← {e, r, p : e = ss ∨ e = m ∨ e = sm ∨ e = f, r = isPartOf, p = decompositionProperty}
dataModelV iew ← {e, r, p : e = de, r = dataModelRelation, p = dataModelProperty}

Transformation Function

F : SOA→MSA

F (x, z, w) = y; {x ∈ SOA, y ∈MSA, x ∈ c&cV iewForSOA, y ∈ c&cV iewForMSA, z ∈ decompositionV iew}
function F(monolith, subsystem, SOADataModels)

y ← ∅
y.microservices← ∅
y.attachments← ∅
y.databases← ∅
y.datamodels← ∅
ms← ∅
form ∈ subsystem.module_set do

ms ⇐= (monolith.dataAccess,monolith.businessLogic,m)

y.microservices ⇐= y.microservices ∪ms

dm ⇐= (SOADataModels,m)

db ⇐= (database,m)

y.databases← y.databases ∪ db

y.datamodels← y.datamodels ∪ dm

y.attachments← y.attachments ∪ attach(ms, db)

y.apiGateway ⇐= (monolith.businessLogic, subsystem)

y.attachments← y.attachments ∪ attach(y.apiGateway, y.microservices)

y.webApplication ⇐= (monolith.presentation, subsystem)

y.attachments← y.attachments ∪ attach(y.webApplication, y.apiGateway)

return y

function F(esb, subsystem)
y ← ∅
y.apiGateway ⇐= esb

return y

function F(storage, subsystem)
y ← ∅
y.storage ⇐= storage

return y

function F(soapConnector, subsystem)
y ← ∅
y.restConnector ⇐= soapConnector

return y

function F(ftpConnector, subsystem)
y ← ∅
y.ftpConnector ⇐= ftpConnector

return y

5.2 Model-to-Model Transformations from SOA to MSA 41

• Preserve the Decomposition view because it represents the functional decomposition of
the software system regardless of the architectural style.

• Generate the Layered view that includes the following:

– Generate the presentation, business logic and data access layers.

– Generate a relation of type allowed_to_use from the presentation layer to the business
logic layer, and from the business logic layer to the data access layer.

– Generate the presentation, logic and data tiers.

– Generate a relation of type allowed_to_use from the presentation tier to the logic tier,
and from the logic tier to the data tier.

• Generate the Data Model view that includes the following:

– Generate a data model of type interoperability for each set of data entities that belong
to each module. In each of these generated data models, generate a set of operations
(create, read, update and delete) for each data entity to allow managing its lifecycle.

– Generate a data model of type relational or nosql for each set of data entities that
belong to each module, according to the input parameter database_type.

• Generate the C&C view that includes the following:

– Include the programming languages specified in the input parametersms_programming_-
language and web_programming_language.

– Include the database system specified in the input parameter database_system.

– Generate a component of type msa.microservice for each module of each subsystem in
the decomposition view. Also, generate a port of type provided_api for each microser-
vice component with the respective interoperability data model generated previously
for the module in the data model view.

– Generate a component of type msa.relational_database or msa.nosql_database (according
to the input parameter database_type) for each microservice component generated
in the previous step, with the respective relational or nosql data model generated
previously for the module in the data model view.

– Generate a component of typemsa.web_application to represent the presentation logic
of each monolithic application, with a name equal to that specified in the input pa-
rameter web_application_name.

– Generate a component of type msa.api_gateway to represent the APIs exposed to the
Web application component.

– Generate a component of type msa.microservice for each port of type provided_service
of each component of type soa.internal_service_provider in the SOA model; if there is a

42 5 Architectural Evolution Model

microservice that can supply the functionality of the microservice that needs to be
generated (based on the microservice’s name), a new microservice is not generated
and the existing one is used to supply the functionality. Also, generate a port of
type provided_api for each microservice component generated in this step with the
respective interoperability data model (which is generated or complemented by the
operations and data entities involved).

– Generate a component of type msa.relational_database or msa.nosql_database (according
to the input parameter database_type) for each microservice component generated
in the previous step.

– Generate a port of type requested_dbaccess for each microservice component generated
so far.

– Generate a port of type provided_dbaccess for each database component generated so
far.

– Generate a connector of typemsa.db_access for each pair of microservice and database
components. This connector has two roles: src to connect the microservice compo-
nent and tgt to connect the database component.

– Generate two attachments for each connector generated in the previous step. One
attachment is for the relation between the src role of the connector and the port
of type requested_dbaccess of the microservice component, and another attachment is
for the relation between the role tgt of the connector and the port of type provided_-
dbaccess of the database component.

– Generate a component of typemsa.microservice for each port of type provided_service and
coordination of type orchestration of each component of type soa.esb in the SOAmodel.
Generate a port of type provided_api for each microservice component generated in
this step with the respective interoperability data model (which is generated with the
operations and data entities involved). Also, determine the microservices that are
related to each microservice component generated in this step, and generate the
respective ports of type requested_api, connectors of type msa.rest and attachments.

– Generate a port of type requested_api in the web application component for each port
of type requested_service of each component of type soa.service_consumer in the SOA
model.

– Generate a port of type provided_api in the API gateway component for each port
that is attached to the ports of each component of type soa.service_consumer in the
SOA model, with the respective interoperability data model (which is generated or
complemented by the operations and data entities involved). Also, generate a port
of type requested_api in the API gateway component for each port of type provided_api
in this component.

5.3 Implementation in Sarch-Studio Tool 43

– Generate a port of type provided_api in the API gateway component for each port
that is attached to the ports of each component of type soa.service_consumer in the
SOA model, with the respective interoperability data model (which is generated or
complemented by the operations and data entities involved).

– Generate a port of type requested_api in the API gateway component for each port of
type provided_api in this component.

– Generate the respective connectors of type msa.rest and attachments to establish the
relations between the API gateway component and the corresponding microservice
components.

• In the Layered view, generate the following:

– A relation of type contains for the Web application component and the presentation
layer.

– A relation of type contains for each microservice component and business and data
access layers.

– A relation of type contains for the presentation tier and the Web application compo-
nent.

– A relation of type contains for the logic tier and each microservice component.

– A relation of type contains for the logic tier and the API gateway component.

– A relation of type contains for the data tier and each database component.

5.3 Implementation in Sarch-Studio Tool

Sarch-Studio is a tool that allows the definition of software architectures using the grammar
rules defined in Sarch. Also, Sarch-Studio offers a model-driven environment to automate the
generation of other models through model transformations [67].

Because the Sarch language was extended in the present work to allow the definition of service-
based architectures (specifically SOA and MSA), Sarch-Studio was enriched to support the new
features of the Sarch language. Likewise, the set of model-to-model transformations that allow
the evolution of a SOA model to an MSA model was implemented in Sarch-Studio. A represen-
tation of the tool is shown in figure 5-1, which summarizes the components and modules that
are part of the tool [67].

The technologies on which the Sarch-Studio tool is built are the following:

44 5 Architectural Evolution Model

Sarch-Studio

Editor Component

Core Component

Grammar Module

Sarch.xtext

Generator Module

SarchGenerator.xtend

Eclipse Application

SarchValidator.xtend

Metamodel Module

Sarch.ecore

Sarch.genmodel

Figure 5-1: Components and modules in Sarch-Studio.

• Xtext: is a framework for developing programming languages and DSLs. Xtext has a pow-
erful set of features for defining the grammar language, including a parser, a linker, a type
checker, a compiler and a textual editor for Eclipse [3].

• Eclipse Modeling Framework (EMF): it is a modeling framework and code generation facil-
ity for building tools and other applications based on a structured data model. Xtext uses
EMF models as the in-memory representation of any parsed text files, that is, the grammar
defined in Xtext [1].

• Xtend: it is an expressive dialect of Java programming language that is mainly used for
code generation [2] [12].

Sarch-Studio tool has two components:

• Core Component: this component integrates the grammar design, the metamodel, and the
model transformations. These responsibilities are divided into three modules, which are
described below along with the modifications and extensions made in this research work:

– Grammar Module: this module, which is implemented using Xtext, contains the
Sarch grammar. This module was updated with the grammar rules that was described
in chapter 4 to allow the definition of an ADL for the design of service-based archi-
tectures, specifically for the SOA and MSA architectural styles. Figure 5-2 shows an
overview of the Sarch grammar represented in Xtext, and figure 5-3 shows a sample
of the validation rules implemented through the custom validation mechanism pro-
vided by Xtext in order to restrict the properties that apply to each of the elements
and relations according to the architectural views and the architectural styles.

– Generator Module: this module, which is implemented using Xtend, contains the
model transformations rules implemented for model-driven processes. This module

5.3 Implementation in Sarch-Studio Tool 45

was extended to include the transformations described in section 5.2, that is, the
model-to-model transformations to evolve a SOA model to a MSA model. Figure 5-4
shows a sample of the transformations implemented in this module.

– Metamodel Module: this module, which is implemented using EMF, contains the
metamodel of Sarch grammar in terms of objects. This object representation of the
Sarch language is used in both the Sarch validation of the grammar module and the
model-to-model transformations of the generator module.

• Editor Component: this component is an Eclipse application that allows the description
of software architectures using the Sarch language. Based on the grammar and valida-
tions implemented in the grammar module, the editor activates the elements, relations
and properties depending on the architectural style that is specified. The editor has a
set of usability features like syntax coloring, autocompletion and validation of grammar
elements. Figure 5-5 shows a screenshot of the editor component.

Figure 5-2: Sarch grammar overview in Xtext in Grammar Module.

46 5 Architectural Evolution Model

Figure 5-3: Sample of Sarch validations in Grammar Module.

Figure 5-4: Sample of Sarch transformations in Generator Module.

5.3 Implementation in Sarch-Studio Tool 47

Figure 5-5: Sample of Editor Component.

6 Evaluation

This chapter presents the evaluation of the proposed strategy based on model-to-model trans-
formations to evolve service-oriented architectures to microservices architectures. In order to
achieve this, a case study is presented.

The case study consists of an online shop application, which is a well-known and common soft-
ware system in different business and engineering fields. Through this online shop application
a customer authenticates, searches for products, adds or removes products from the shopping
cart, and finally places the purchase order. The purchase order involves checking the available
inventory, saving the purchase order, managing the inventory, destroying the current shopping
cart for the order, and returning the order information to the customer. Figure 6-1 shows the
context diagram for the case study, with the Online Shop Subsystem under consideration and
its boundaries with the Sales Management Subsystem, the Customer Management Subsystem,
the Sales Management Subsystem, and the Shopping Cart Database.

Online Shop Subsystem

Product Management
Subsystem

Customer Management
Subsystem

Sales Management
Subsystem

Customers

Shopping Cart
Database

Figure 6-1: Context diagram for the case study.

To perform the evaluation, the steps described in section 5.1 will be followed to evolve a service-
oriented architecture to a microservices architecture applied to the selected case study.

6.1 SOA-Based System as Input 49

6.1 SOA-Based System as Input

To do this, a reference implementation was created for a simplified online shop application.
Based on this reference implementation, the case study is described by the Decomposition,
Data Model, C&C and Layered views. Figure 6-2 shows the Decomposition view with the sub-
systems, modules and submodules that are part of the system. Figures 6-3, 6-4 and 6-5 show
the data models that are part of the Data Model view for the case study designed in the SOA
style. Figure 6-6 shows the C&C view for the case study designed in the SOA style. Figure 6-7
shows the Layered view for the case study designed in the SOA style.

Case Study
System

Product
Management

Products

Product
Configuration

Product Analysis

Inventory

Inventory
Management

Inventory
Tracking

Shipments

Shipment
Preparation

Shipment
Tracking

External
Transport

Companies

Customer
Management

User Account

Customer
Information

Sales
Management

Order Handling

Quotations

Orders

Invoicing

Accounting
Transactions

Account
Configuration

Transaction
Registration

Accounting

Reports

Online Shop

User Profile

Product Catalog

Shopping Cart

Key Subsystem Module Submodule

Figure 6-2: Decomposition view for the case study.

Also, the same software system was designed in the MSA style using the C&C view, which is
shown in figure 6-8. This representation will be used later to validate the MSA model resulting
from the model-to-model transformations.

6.2 Functional Decomposition in Sarch

In this step, the Sarch-Studio tool is used to describe the case study using the Decomposition
view. Figure 6-9 shows the Decomposition view for the case study, where the subsystems,
modules and submodules indicated in the first step have been included, plus the functionalities
that belong to each submodule or module.

50 6 Evaluation

Key
Data entity Many-to-one

product

id : int
name : string
description : string
sku : string
price : float
stock_quantity : int
active : bool
created_at : datetime
updated_at : datetime

inventory_reservation

id : int
product_id : int
quantity : int
order_id : int
active : bool
created_at : datetime
updated_at : datetime

historical_product

id : int
product_id : int
price : float
valid_from : datetime
valid_to : datetime
created_at : datetime
updated_at : datetime

product_location

id : int
product_id : int
location : string
created_at : datetime
updated_at : datetime

inventory_movement_type

id : int
name : string
created_at : datetime
updated_at : datetime

inventory_movement

id : int
product_id : int
order_id : int
inventory_movement_type_id : int
quantity : int
active : bool
created_at : datetime
updated_at : datetime

transportation_company

id : int
name : string
address : string
phone : string
email : string
active : bool
created_at : datetime
updated_at : datetime

shipment

id : int
order_id : int
address : string
transportation_company_id : int
cost : float
received : datetime
prepared : datetime
assigned : datetime
delivered : datetime
created_at : datetime
updated_at : datetime

One-to-many One-to-one

Figure 6-3: Data Model view for the case study designed in the SOA style - product management
data model.

6.3 SOA-Based System Modeled in Sarch

In this step, the SOA-based system for the case study is modeled using the Sarch-Studio tool,
specifically with the Data Model, C&C, and Layered views.

The most important aspects for modeling the Data Model view for the case study are described
below:

• This view has three data models of type relational, one for each database component. For
each data entity of the Data Model view, it is indicated to which module in the Decom-
position view it belongs. Figure 6-10 shows the relational data models included in this
view.

• This view has four datamodels of type interoperability, one for each internal service provider
(three for the case study) and another for the ESB component, which allow defining the
data exposed by the services as well as the operations they provide. Figure 6-11 shows
the interoperability data models included in this view.

The most important aspects for modeling the C&C view for the case study are described below:

6.3 SOA-Based System Modeled in Sarch 51

Key
Data entity Many-to-one

role_def

id : int
name : string
created_at : datetime
updated_at : datetime

user

id : int
email : string
password : string
active : bool
created_at : datetime
updated_at : datetime

user_role

id : int
user_id : int
role_id : int
active : bool
created_at : datetime
updated_at : datetime

customer

id : int
first_name : string
last_name : string
phone : string
address : string
user_id : int
created_at : datetime
updated_at : datetime

quotation

id : int
number : string
customer_id : int
total : float
created_at : datetime
updated_at : datetime

quotation_line_item

id : int
quotation_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

order

id : int
number : string
customer_id : int
ship_to_address : string
ordered : datetime
shipped : datetime
delivered : datetime
total : float
created_at : datetime
updated_at : datetime

order_line_item

id : int
order_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

invoice

id : int
number : string
customer_id : int
address : string
total : float
created_at : datetime
updated_at : datetime

invoice_line_item

id : int
invoice_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

credit_note

id : int
number : string
invoice_id : int
product_id : int
amount : float
created_at : datetime
updated_at : datetime

account_type

id : int
name : string
created_at : datetime
updated_at : datetime

account

id : int
name : string
account_type_id : int
created_at : datetime
updated_at : datetime

transaction

id : int
description : string
created_at : datetime
updated_at : datetime

transaction_detail

id : int
transaction_id : int
account_id : int
amount : float
created_at : datetime
updated_at : datetime

account_hierarchy

id : int
parent_account_id : int
child_account_id : int
created_at : datetime
updated_at : datetime

One-to-many One-to-one

customer_summary

id : int
customer_id : int
preferred_product_id : int
last_order_at : datetime
amount_of_orders : int
created_at : datetime
updated_at : datetime

Figure 6-4: Data Model view for the case study designed in the SOA style - sales management
data model.

Key

Data entity

shopping_carts

id : int
customer_id : int
ship_to_address : string
total : float
created_at : datetime
updated_at : datetime

line_items

id : int
shopping_cart_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

One-to-many

Figure 6-5: Data Model view for the case study designed in the SOA style - shopping cart data
model.

52 6 Evaluation

product_search order_placementuser_session

ws_authentication ws_order_placement

ss_online_shop

enterprise_service_bus

Key
Service consumer

ESB

Internal service provider italic

Relational database

Component port

Normal Connector

ss_product_management ss_customer_management ss_sales_management

SOAP SOAP

product_management_db sales_management_db

ws_customer_mgmt

authentication_req

ws_inventory_mgmtws_product_catalog

DB access
DB access

DB access

ws_order_mgmt

SOAP

SOAP SOAP

order_placement _req

shopping_cart_db

DB access

inventory_mgmt_req

SOAP

Figure 6-6: C&C view for the case study designed in the SOA style.

Key
Component Layer Tier

Application

ss_online_shop

Presentation layer

Business logic layer

Data

product_management_db sales_management_db

Data access layer

ss_product_management

Presentation layer

Business logic layer

Data access layer

ss_customer_management

Presentation layer

Business logic layer

Data access layer

ss_sales_management

Presentation layer

Business logic layer

Data access layer

enterprise_service_bus

Business logic layer

shopping_cart_db

Figure 6-7: Layered view for the case study designed in the SOA style.

6.3 SOA-Based System Modeled in Sarch 53

user_session order_placement shopping_cartproduct_search

onlineshop_wa

api_gw

product_catalog_ms customer_mgmt_ms inventory_mgmt_ms order_mgmt_ms shopping_cart_ms

blob_storage_st product_catalog_db shopping_cart_dborder_mgmt_dbinventory_mgmt_dbcustomer_mgmt_db

REST REST

REST

REST

REST

REST

REST REST REST REST

FTP access DB access DB access DB access DB access DB access

Key
Web application

API Gateway

Microservice

NoSQL database

Relational database

Storage

Component port

ConnectorNormal

italic

search_engine_req authentication_req order_placement_req shopping_cart_req

search_engine_api authentication_api order_placement_api shopping_cart_api

api api api api api

order_placement_ms

REST

api

Figure 6-8: C&C view for the case study designed in the MSA style.

• For the port named ws_order placement of the enterprise service bus, the coordination_-
type property was indicated with a value equal to orchestration, considering that placing an
order in the system involves several operations with business logic.

• Each port of type provided_service has the respective interoperability data model defined in
the Data Model view.

Figures 6-12, 6-13 and 6-14 show the components, connectors and relations included in the
C&C view, respectively.

Figure 6-15 shows the Layered view for the case study, which includes the following:

• The presentation, business logic and data access layers.

• The application and data tiers.

• The relation of type allowed_to_use between the presentation layer and the business logic
layer and between the business logic layer and the data access layer.

• The relation of type allowed_to_use between the application tier and the data tier.

• A relation of type contains between each service consumer (ss_online_shop) and each layer.

54 6 Evaluation

Decomposition View

decomposition_view ::
elements {
subsystem product_management;
module products;
submodule product_configuration;
submodule product_analysis;
module inventory;
submodule inventory_management;
submodule inventory_tracking;
module shipments;
submodule shipment_preparation;
submodule shipment_tracking;
submodule external_transport_companies;
subsystem customer_management;
module user_account;
module customer_information;
subsystem sales_management;
module order_handling;
submodule quotations;
submodule orders;
submodule invoicing;
module accounting_transactions;
submodule account_configuration;
submodule transaction_registration;
submodule accounting_reports;
subsystem online_shop;
module user_profile;
module product_catalog;
module shopping_cart;

}
relations {
m: products is_part_of ss: product_management;
sm: product_configuration is_part_of m: products;
sm: product_analysis is_part_of m: products;
m: inventory is_part_of ss: product_management;
sm: inventory_management is_part_of m: inventory;
sm: inventory_tracking is_part_of m: inventory;
m: shipments is_part_of ss: product_management;
sm: shipment_preparation is_part_of m: shipments;
sm: shipment_tracking is_part_of m: shipments;
sm: external_transport_companies is_part_of m: shipments;
m: user_account is_part_of ss: customer_management;
m: customer_information is_part_of ss: customer_management;
m: order_handling is_part_of ss: sales_management;
sm: quotations is_part_of m: order_handling;
sm: orders is_part_of m: order_handling;
sm: invoicing is_part_of m: order_handling;
m: accounting_transactions is_part_of ss: sales_management;
sm: account_configuration is_part_of m: accounting_transactions;
sm: transaction_registration is_part_of m: accounting_transactions;
sm: accounting_reports is_part_of m: accounting_transactions;
m: user_profile is_part_of ss: online_shop;
m: product_catalog is_part_of ss: online_shop;
m: shopping_cart is_part_of ss: online_shop;

}
::

Grammar in Sarch

DecompositionView:
'decomposition_view' '::’
'elements' '{‘
(decompositionElement += DecompositionElement)+

'}’
'relations' '{‘
(decompositionRelation += DecompositionRelation)*

'}’
'::'

;

DecompositionElement:
Subsystem | Module | Submodule | Functionality

;

DecompositionRelation:
IsPartOfA | IsPartOfB | IsPartOfC | IsPartOfD

;

IsPartOfA:
'm:' module=[Module] 'is_part_of' 'ss:' subsystem=[Subsystem] ';'

;

IsPartOfB:
'sm:' submodule=[Submodule] 'is_part_of' 'm:' module=[Module] ';'

;

IsPartOfC:
'f:' functionality=[Functionality] 'is_part_of' 'm:' module=[Module] ';'

;

IsPartOfD:
'f:' functionality=[Functionality] 'is_part_of' 'sm:'

submodule=[Submodule] ';'
;

Figure 6-9: Decomposition view for the case study using Sarch.

6.3 SOA-Based System Modeled in Sarch 55

Relational Data Models

data_model_view ::
relational data_model product_management_dm {
elements {
data_entity product (module products) { ... }
data_entity inventory_reservation (module inventory) { ... }
data_entity historical_product (module products) { ... }
data_entity product_location (module products) { ... }
data_entity inventory_movement_type (module inventory) { ... }
data_entity inventory_movement (module inventory) { ... }
data_entity transportation_company (module shipments) { ... }
data_entity shipment (module shipments) { ... }

}
relations {
one_to_many (product, historical_product);
one_to_many (product, product_location);
many_to_one (inventory_reservation, product);
many_to_one (inventory_movement, product);
many_to_one (inventory_movement, inventory_movement_type);
many_to_one (shipment, transportation_company);

}
}
relational data_model sales_management_dm {
elements {
data_entity role_def (module user_account) { ... }
data_entity user (module user_account) { ... }
data_entity user_role (module user_account) { ... }
data_entity customer (module customer_information) { ... }
data_entity customer_summary (module customer_information) { ... }
data_entity quotation (module order_handling) { ... }
data_entity quotation_line_item (module order_handling) { ... }
data_entity order (module order_handling) { ... }
data_entity order_line_item (module order_handling) { ... }
data_entity invoice (module order_handling) { ... }
data_entity invoice_line_item (module order_handling) { ... }
data_entity credit_note (module order_handling) { ... }
data_entity account_type (module accounting_transactions) { ... }
data_entity account (module accounting_transactions) { ... }
data_entity transaction (module accounting_transactions) { ... }
data_entity transaction_detail (module accounting_transactions) { ... }
data_entity account_hierarchy (module accounting_transactions) { ... }

}
relations {
many_to_one (user_role, role_def);
many_to_one (user_role, user);
one_to_one (customer, user);
one_to_one (customer_summary, customer);
many_to_one (quotation, customer);
one_to_many (quotation, quotation_line_item);
many_to_one (quotation_line_item, product);
many_to_one (order, customer);
one_to_many (order, shipment);
one_to_many (order, inventory_reservation);
one_to_many (order, inventory_movement);
one_to_many (order, order_line_item);
many_to_one (order_line_item, product);
many_to_one (invoice, customer);
one_to_many (invoice, invoice_line_item);
many_to_one (invoice_line_item, product);
one_to_many (invoice, credit_note);
many_to_one (credit_note, product);
many_to_one (account, account_type);
many_to_one (account_hierarchy, account);
one_to_many (transaction, transaction_detail);
many_to_one (transaction_detail, account);

}
}
relational data_model shopping_cart_dm {
elements {
data_entity shopping_carts (module shopping_cart) { ... }
data_entity line_items (module shopping_cart) { ... }

}
relations {
one_to_many (shopping_carts, line_items);

}
}

Grammar in Sarch

DataModelView:
'data_model_view' '::’
(dataModel += DataModel)+

'::'
;

DataModel:
RelationalDataModel | NoSqlDataModel | InteroperabilityDataModel

;

RelationalDataModel:
dataModelType='relational' 'data_model' name=ID '{‘
'elements' '{‘
(dataModelElement += DataModelElement)+

'}’
('relations' '{‘
(dataModelRelation += DataModelRelation)*

'}’)?
'}'

;

NoSqlDataModel:
dataModelType='nosql' 'data_model' name=ID '{‘
'elements' '{‘
(dataModelElement += DataModelElement)+

'}’
('relations' '{‘
(dataModelRelation += DataModelRelation)*

'}’)?
'}'

;

DataModelElement:
DataEntity

;

DataEntity:
'data_entity' name=ID ('(' 'module' module=[Module] ')')? '{‘
'attributes' '{‘
(attribute += Attribute)+

'}’
'}'

;

Attribute:
dataType=DataType name=ID ';'

;

DataModelRelation:
relationType=RelationType '(' sourceDataEntity=[DataEntity] ',’

targetDataEntity=[DataEntity] ')' ';'
;

RelationType:
OneToOne | OneToMany | ManyToOne | ManyToMany | Association

| Aggregation | Composition | Generalization | Specialization
;

Figure 6-10: Data Model view for the case study using Sarch in the SOA style - relational data
models.

56 6 Evaluation

Interoperability Data Models

data_model_view ::
interoperability data_model product_management_iopm {
elements {
data_entity product_summary {
attributes {
int id;
string name;
string description;
double price;

}
}
data_entity item { ... }

}
operations {
operation search_products {
parameters {
string filter in;
double min_price in;
double max_price in;
product_summary[] result out;

}
}
operation check_inventory { ... }
operation manage_inventory { ... }
operation update_inventory { ... }

}
}
interoperability data_model customer_management_iopm {
elements {
data_entity customer { ... }

}
operations {
operation authenticate { ... }
operation get_customer { ... }

}
}
interoperability data_model sales_management_iopm {

elements {
data_entity item { ... }
data_entity order { ... }

}
operations {
operation register_order { ... }
operation get_order { ... }
operation get_customer_orders { ... }
operation get_order_items { ... }

}
}
interoperability data_model online_shop_esb_iopm {
elements {
data_entity customer { ... }
data_entity item { ... }

}
operations {
operation authenticate { ... }
operation make_order { ... }

}
}

::

Grammar in Sarch

DataModelView:
'data_model_view' '::’
(dataModel += DataModel)+

'::'
;

DataModel:
RelationalDataModel | NoSqlDataModel | InteroperabilityDataModel

;

InteroperabilityDataModel:
dataModelType='interoperability' 'data_model' name=ID '{‘
'elements' '{‘
(dataModelElement += DataModelElement)*

'}’
('relations' '{‘
(dataModelRelation += DataModelRelation)*

'}’)?
('operations' '{‘
(dataModelOperation += DataModelOperation)*

'}’)?
'}’

;

DataModelOperation:
'operation' name=ID '{‘
'parameters' '{‘
(parameter += OperationParameter)*

'}’
'}'

;

OperationParameter:
dataType=ParameterType (array=Array)? name=ID

direction=ParameterDirection ';'
;

ParameterType:
basic=DataType | kind=[DataEntity]

;

Array:
'[' ']'

;

enum ParameterDirection:
IN='in' | OUT='out'

;

Figure 6-11: Data Model view for the case study using Sarch in the SOA style - interoperability
data models.

6.3 SOA-Based System Modeled in Sarch 57

Component Elements

component_and_connector_view ::
elements {
programming_languages {
j2ee;

}
orchestration_languages {
bpel;

}
db_systems {
mysql;
oracle;

}
component soa.service_consumer ss_online_shop

(programming_language j2ee) {
port requested_service user_session;
port requested_service product_search;
port requested_service order_placement;
port requested_dbaccess req_db_access;

}
component soa.esb enterprise_service_bus

(orchestration_language bpel) {
port provided_service ws_authentication

(iop_model online_shop_esb_iopm)
(coordination_type none);

port provided_service ws_order_placement
(iop_model online_shop_esb_iopm)
(coordination_type orchestration);

port requested_service authentication_req;
port requested_service order_placement_req;

}
component soa.internal_service_provider ss_product_management

(programming_language j2ee) {
port provided_service ws_product_catalog

(iop_model product_management_iopm);
port provided_service ws_inventory_mgmt

(iop_model product_management_iopm);
port requested_dbaccess req_db_access;

}
component soa.internal_service_provider ss_customer_management

(programming_language j2ee) {
port provided_service ws_customer_mgmt

(iop_model customer_management_iopm);
port requested_dbaccess req_db_access;

}
component soa.internal_service_provider ss_sales_management

(programming_language j2ee) {
port provided_service ws_order_mgmt

(iop_model sales_management_iopm);
port requested_service inventory_mgmt_req;
port requested_dbaccess req_db_access;

}
component soa.relational_database shopping_cart_db

(data_model shopping_cart_dm) (db_system mysql) {
port provided_dbaccess provided_access;

}
component soa.relational_database product_management_db

(data_model product_management_dm) (db_system oracle) {
port provided_dbaccess provided_access;

}
component soa.relational_database sales_management_db

(data_model sales_management_dm) (db_system oracle) {
port provided_dbaccess provided_access;

}

Grammar in Sarch

ComponentAndConnectorViewForSOA:
'component_and_connector_view' '::’
'elements' '{‘
('programming_languages' '{‘
(programmingLanguage += ProgrammingLanguage)+

'}’)?
('orchestration_languages' '{‘
(orchestrationLanguage += OrchestrationLanguage)+

'}’)?
('db_systems' '{‘
(dbSystem += DbSystem)+

'}’)?
(componentAndConnectorElement += ComponentAndConnectorElementForSOA)+

'}’
'relations' '{‘
(componentAndConnectorRelation += ComponentAndConnectorRelationForSOA)*

'}'
'::'
;
OrchestrationLanguage:
name=ID ';'

;
ComponentAndConnectorElementForSOA:
ComponentElementForSOA | ConnectorElementForSOA

;

ComponentElementForSOA:
'component' componentType=ComponentTypeForSOA name=ID ('('

'programming_language' programmingLanguage=[ProgrammingLanguage] ')')? ('('
'orchestration_language' orchestrationLanguage=[OrchestrationLanguage] ')')?
('(' 'data_model' dataModel=([RelationalDataModel]) ')')? ('(' 'db_system'
dbSystem=[DbSystem] ')')? '{'
(port += ComponentPortForSOA)+
'}'
;
enum ComponentTypeForSOA:
INTERNAL_SERVICE_PROVIDER='soa.internal_service_provider’ |
EXTERNAL_SERVICE_PROVIDER='soa.external_service_provider’ |
SERVICE_CONSUMER='soa.service_consumer’ |
RELATIONAL_DATABASE='soa.relational_database’ |
ENTERPRISE_SERVICE_BUS='soa.esb'

;

ComponentPortForSOA:
ProvidedServicePortForSOA | RequestedServicePortForSOA |
ProvidedDBAccessPortForSOA | RequestedDBAccessPortForSOA

;

ProvidedServicePortForSOA:
'port' 'provided_service' name=ID ('(' 'iop_model’

iopModel=[InteroperabilityDataModel] ')') ('(' 'coordination_type’
coordinationType=CoordinationTypeForSOA ')')? ';'

;
enum CoordinationTypeForSOA:
NONE='none' | ORCHESTRATION='orchestration' | CHOREOGRAPHY='choreography'

;

RequestedServicePortForSOA:
'port' 'requested_service' name=ID ';'

;
ProvidedDBAccessPortForSOA:
'port' 'provided_dbaccess' name=ID ';'

;
RequestedDBAccessPortForSOA:
'port' 'requested_dbaccess' name=ID ';'

;

Figure 6-12: C&C view for the case study using Sarch in the SOA style - components.

58 6 Evaluation

Grammar in Sarch

ComponentAndConnectorViewForSOA:
'component_and_connector_view' '::’

'elements' '{‘
('programming_languages' '{‘

(programmingLanguage += ProgrammingLanguage)+
'}’)?
('orchestration_languages' '{‘

(orchestrationLanguage += OrchestrationLanguage)+
'}’)?
('db_systems' '{‘

(dbSystem += DbSystem)+
'}’)?
(componentAndConnectorElement +=

ComponentAndConnectorElementForSOA)+
'}’
'relations' '{‘

(componentAndConnectorRelation +=
ComponentAndConnectorRelationForSOA)*
'}'

'::'
;
ComponentAndConnectorElementForSOA:

ComponentElementForSOA | ConnectorElementForSOA
;

ConnectorElementForSOA:
'connector' connectorType=ConnectorTypeForSOA name=ID '{‘

(role += ConnectorRoleForSOA)+
'}'
;

enum ConnectorTypeForSOA:
HTTP='soa.http' | SOAP='soa.soap' | REST='soa.rest’ |
MESSAGING='soa.messaging' | DB_ACCESS='soa.db_access'

;

ConnectorRoleForSOA:
ProviderRoleForSOA | ConsumerRoleForSOA

;

ProviderRoleForSOA:
'role' 'provider' name=ID ';'

;

ConsumerRoleForSOA:
'role' 'consumer' name=ID ';'

;

Connector Elements

component_and_connector_view ::
elements {

connector soa.soap ols_usersession_soap {
role consumer source;
role provider target_service;

}
connector soa.soap ols_productsearch_soap {

role consumer source;
role provider target_service;

}
connector soa.soap ols_orderplacement_soap {

role consumer source;
role provider target_service;

}
connector soa.soap esb_authentication_soap {

role consumer source;
role provider target_service;

}
connector soa.soap esb_orderplacement_soap {

role consumer source;
role provider target_service;

}
connector soa.soap salesmgmt_inventorymgmt_soap {

role consumer source;
role provider target_service;

}
connector soa.db_access ols_ss_db {

role consumer source;
role provider target_db;

}
connector soa.db_access product_management_ss_db {

role consumer source;
role provider target_db;

}
connector soa.db_access customer_management_ss_db {

role consumer source;
role provider target_db;

}
connector soa.db_access sales_management_ss_db {

role consumer source;
role provider target_db;

}
}

Figure 6-13: C&C view for the case study using Sarch in the SOA style - connectors.

6.3 SOA-Based System Modeled in Sarch 59

Attachment Relations

component_and_connector_view ::
relations {
// Services consumed from online application, provided by the ESB
attachment (ols_usersession_soap.source, ss_online_shop.user_session);
attachment (ols_usersession_soap.target_service,
enterprise_service_bus.ws_authentication
(operation online_shop_esb_iopm.authenticate));

attachment (ols_orderplacement_soap.source,
ss_online_shop.order_placement);

attachment (ols_orderplacement_soap.target_service,
enterprise_service_bus.ws_order_placement
(operation online_shop_esb_iopm.make_order));

// Services consumed from online application, provided by the
// ss_product_management
attachment (ols_productsearch_soap.source,
ss_online_shop.product_search);

attachment (ols_productsearch_soap.target_service,
ss_product_management.ws_product_catalog
(operation product_management_iopm.search_products));

// Services consumed from the ESB
attachment (esb_authentication_soap.source,
enterprise_service_bus.authentication_req
(operation online_shop_esb_iopm.authenticate));

attachment (esb_authentication_soap.target_service,
ss_customer_management.ws_customer_mgmt
(operation customer_management_iopm.authenticate));

// These attachments represent the relationships required to place an
// order, from the ESB to the appropiate service providers (subsystems)
attachment (esb_orderplacement_soap.source,
enterprise_service_bus.order_placement_req
(operation online_shop_esb_iopm.make_order));

attachment (esb_orderplacement_soap.target_service,
ss_product_management.ws_inventory_mgmt
(operation product_management_iopm.check_inventory));

attachment (esb_orderplacement_soap.target_service,
ss_sales_management.ws_order_mgmt
(operation sales_management_iopm.register_order));

attachment (esb_orderplacement_soap.target_service,
ss_product_management.ws_inventory_mgmt
(operation product_management_iopm.manage_inventory));

attachment (esb_orderplacement_soap.target_service,
ss_sales_management.ws_order_mgmt
(operation sales_management_iopm.get_order));

// Services consumed from ss_sales_management, provided by
// ss_product_management
attachment (salesmgmt_inventorymgmt_soap.source,
ss_sales_management.inventory_mgmt_req);

attachment (salesmgmt_inventorymgmt_soap.target_service,
ss_product_management.ws_inventory_mgmt
(operation product_management_iopm.update_inventory));

// Database access from subsystems
attachment (ols_ss_db.source, ss_online_shop.req_db_access);
attachment (ols_ss_db.target_db, shopping_cart_db.provided_access);
attachment (product_management_ss_db.source,
ss_product_management.req_db_access);

attachment (product_management_ss_db.target_db,
product_management_db.provided_access);

attachment (customer_management_ss_db.source,
ss_customer_management.req_db_access);

attachment (customer_management_ss_db.target_db,
sales_management_db.provided_access);

attachment (sales_management_ss_db.source,
ss_sales_management.req_db_access);

attachment (sales_management_ss_db.target_db,
sales_management_db.provided_access);

}
::

Grammar in Sarch

ComponentAndConnectorViewForSOA:
'component_and_connector_view' '::’
'elements' '{‘
('programming_languages' '{‘
(programmingLanguage += ProgrammingLanguage)+

'}’)?
('orchestration_languages' '{‘
(orchestrationLanguage += OrchestrationLanguage)+

'}’)?
('db_systems' '{‘
(dbSystem += DbSystem)+

'}’)?
(componentAndConnectorElement +=

ComponentAndConnectorElementForSOA)+
'}’
'relations' '{‘
(componentAndConnectorRelation +=

ComponentAndConnectorRelationForSOA)*
'}'

'::’
;

ComponentAndConnectorRelationForSOA:
AttachmentForSOA

;

AttachmentForSOA:
'attachment' '(' role=[ConnectorRoleForSOA | QualifiedName]

',’ port=[ComponentPortForSOA | QualifiedName] ('(‘
'operation’ operation=[DataModelOperation |
QualifiedName] ')')? ')' ';'

;

Figure 6-14: C&C view for the case study using Sarch in the SOA style - relations

60 6 Evaluation

• A relation of type contains between each internal service provider (ss_product_manage-
ment, ss_customer_management and ss_sales_management) and each layer.

• A relation of type contains between the application tier and each service consumer (ss_-
online_shop).

• A relation of type contains between the application tier and each internal service provider
(ss_product_management, ss_customer_management and ss_sales_management).

• A relation of type contains between the application tier and the enterprise service bus.

• A relation of type contains between the data tier and each database (shopping_cart_db,
product_management_db and sales_management_db).

6.4 Model-to-Model Transformations

In this step, the model-model transformations were applied to the SOA model in order to gen-
erate a new model that follows the specific characteristics of the MSA style. This section shows
the different architectural views generated in Sarch for the new model in the MSA style.

The model-to-model transformation process receives as input the SOA model defined in Sarch
as well as the following parameters:

• database_system: mongodb

• database_type: msa.nosql_database

• ms_programming_language: java

• web_application_name: onlineshop_wa

• web_programming_language: javascript

The model-to-model transformation process produces a MSA model as output, which is de-
scribed using the Decomposition, Data Model, C&C and Layered views in the Sarch language.
When the generated MSA model is opened in the editor module of Sarch-Studio, the model
conforms to the grammar rules defined in Sarch for the MSA architectural style.

As described in section 5.2, the Decomposition view is preserved from the original SOA model,
so this view is not shown here.

6.4 Model-to-Model Transformations 61

Layered View

layered_view ::
elements {
layer presentation;
layer business_logic;
layer data_access;
tier application;
tier data;

}
relations {
l:presentation allowed_to_use l:business_logic;
l:business_logic allowed_to_use l:data_access;
t: application allowed_to_use t: data;
c:ss_online_shop contains l:presentation;
c:ss_online_shop contains l:business_logic;
c:ss_online_shop contains l:data_access;
c:ss_product_management contains l:presentation;
c:ss_product_management contains l:business_logic;
c:ss_product_management contains l:data_access;
c:ss_customer_management contains l:presentation;
c:ss_customer_management contains l:business_logic;
c:ss_customer_management contains l:data_access;
c:ss_sales_management contains l:presentation;
c:ss_sales_management contains l:business_logic;
c:ss_sales_management contains l:data_access;
c:enterprise_service_bus contains l:business_logic;
t: application contains c: ss_online_shop;
t: application contains c: ss_product_management;
t: application contains c: ss_customer_management;
t: application contains c: ss_sales_management;
t: application contains c: enterprise_service_bus;
t: data contains c: shopping_cart_db;
t: data contains c: product_management_db;
t: data contains c: sales_management_db;

}
::

Grammar in Sarch

LayeredViewForSOA:
'layered_view' '::’
'elements' '{‘
(layeredElement += LayeredElement)+

'}’
'relations' '{‘
(layeredRelation += LayeredRelationForSOA)*

'}’
'::’

;

LayeredElement:
Layer | Tier | LayerSegment

;

LayeredRelationForSOA:
AllowedToUse | AllowedToUseBelow | ContainsAForSOA

;

AllowedToUse:
AllowedToUseTier | AllowedToUseLayer | AllowedToUseSegment

;

AllowedToUseTier:
't:' sourceTier=[Tier] 'allowed_to_use' 't:' targetTier=[Tier] ';'

;

AllowedToUseLayer:
'l:' sourceLayer=[Layer] 'allowed_to_use' 'l:' targetLayer=[Layer] ';'

;

AllowedToUseSegment:
'ls:' sourceLayerSegment=[LayerSegment] 'allowed_to_use' 'ls:’

targetLayerSegment=[LayerSegment] ';'
;

AllowedToUseBelow:
AllowedToUseBelowTier | AllowedToUseBelowLayer | AllowedToUseBelowSegment

;

AllowedToUseBelowTier:
't:' sourceTier=[Tier] 'allowed_to_use_below' 't:' targetTier=[Tier] ';'

;

AllowedToUseBelowLayer:
'l:' sourceLayer=[Layer] 'allowed_to_use_below' 'l:' targetLayer=[Layer] ';'

;

AllowedToUseBelowSegment:
'ls:' sourceLayerSegment=[LayerSegment] 'allowed_to_use_below' 'ls:’

targetLayerSegment=[LayerSegment] ';'
;

ContainsAForSOA:
TierAndComponentForSOA | ComponentAndLayerForSOA | LayerAndLayerSegment

;

TierAndComponentForSOA:
't:' tier=[Tier] 'contains' 'c:' componentElement=[ComponentElementForSOA]

';'
;

ComponentAndLayerForSOA:
'c:' componentElement=[ComponentElementForSOA] 'contains' 'l:’

layer=[Layer] ';'
;

Figure 6-15: Layered view for the case study using Sarch in the SOA style.

62 6 Evaluation

Regarding the Data Model view, the relational data models were disaggregated depending on the
modules to which the data entities belong. Additionally, the interoperability data models were
divided according to the operations and data entities associated with each generated microser-
vice and API gateway. Figure 6-16 shows a sample of the No SQL data models generated in this
view for the MSA model, and Figure 6-17 shows a sample of the interoperability data models
generated in this view for the MSA model.

data_model_view ::
nosql data_model products_dm {
elements {
data_entity product {
attributes {
int id;
string name;
string description;
string sku;
float price;
int stock_quantity;
bool active;
datetime created_at;
datetime updated_at;

}
}
data_entity historical_product { ... }
data_entity product_location { ... }

}
relations {
one_to_many (product, historical_product);
one_to_many (product, product_location);

}
}
nosql data_model customer_information_dm {
elements {
data_entity customer { ... }
data_entity customer_summary { ... }

}
relations {
one_to_one (customer_summary, customer);

}
}
nosql data_model user_account_dm {
elements {
data_entity role_def { ... }
data_entity user { ... }
data_entity user_role { ... }

}
relations {
many_to_one (user_role, role_def);
many_to_one (user_role, user);

}
}
nosql data_model shopping_cart_dm {
elements {
data_entity shopping_carts { ... }
data_entity line_items { ... }

}
relations {
one_to_many (shopping_carts, line_items);

}
}

nosql data_model accounting_transactions_dm {
elements {
data_entity account_type { ... }
data_entity account { ... }
data_entity transaction { ... }
data_entity transaction_detail { ... }
data_entity account_hierarchy { ... }

}
relations {
many_to_one (account, account_type);
many_to_one (account_hierarchy, account);
one_to_many (transaction, transaction_detail);
many_to_one (transaction_detail, account);

}
}
nosql data_model order_handling_dm {
elements {
data_entity quotation { ... }
data_entity quotation_line_item { ... }
data_entity order { ... }
data_entity order_line_item { ... }
data_entity invoice { ... }
data_entity invoice_line_item { ... }
data_entity credit_note { ... }

}
relations {
one_to_many (quotation, quotation_line_item);
one_to_many (order, order_line_item);
one_to_many (invoice, invoice_line_item);
one_to_many (invoice, credit_note);

}
}
nosql data_model inventory_dm {
elements {
data_entity inventory_reservation { ... }
data_entity inventory_movement_type { ... }
data_entity inventory_movement { ... }

}
relations {
many_to_one (inventory_movement, inventory_movement_type);

}
}
nosql data_model shipments_dm {
elements {
data_entity transportation_company { ... }
data_entity shipment { ... }

}
relations {
many_to_one (shipment, transportation_company);

}
}

::

Figure 6-16: Data Model view generated for the case study using Sarch in the MSA style - No
SQL data models.

Regarding the C&C view, a microservice and a database were generated for each module in the
Decomposition view, with the respective interoperability and No SQL data models. Also, a Web
application and an API gateway were generated. Figure 6-18 shows a sample of the elements

6.4 Model-to-Model Transformations 63

operations {
...
operation check_inventory { ... }
operation manage_inventory { ... }
operation update_inventory { ... }

}
}
interoperability data_model order_handling_iopm {
elements {
data_entity quotation { ... }
data_entity quotation_line_item { ... }
data_entity order { ... }
data_entity order_line_item { ... }
data_entity invoice { ... }
data_entity invoice_line_item { ... }
data_entity credit_note { ... }
data_entity item { ... }

}
relations { ... }
operations {
...
operation register_order {}
operation get_order { ... }

}
}
interoperability data_model shipments_iopm {
elements {
data_entity transportation_company { ... }
data_entity shipment { ... }

}
relations { ... }
operations { ... }

}
interoperability data_model accounting_transactions_iopm {
elements {
data_entity account_type { ... }
data_entity account { ... }
data_entity transaction { ... }
data_entity transaction_detail { ... }
data_entity account_hierarchy { ... }

}
relations { ... }
operations { ... }

}
interoperability data_model api_gw_iopm {
elements {
data_entity customer { ... }
data_entity product_summary { ... }
data_entity item { ... }

}
relations { ... }
operations {
operation authenticate { ... }
operation search_products { ... }
operation make_order { ... }

}
}
interoperability data_model order_placement_iopm {
elements {
data_entity item { ... }

}
relations {}
operations {
operation make_order { ... }

}
}

::

data_model_view ::
interoperability data_model products_iopm {
elements {
data_entity product {
attributes {
int id;
string name;
string description;
string sku;
float price;
...

}
}
data_entity historical_product { ... }
data_entity product_location { ... }
data_entity product_summary { ... }

}
relations {
one_to_many (product, historical_product);
one_to_many (product, product_location);

}
operations {
operation createProduct { ... }
operation readProduct { ... }
operation updateProduct { ... }
operation deleteProduct { ... }
...
operation search_products { ... }

}
interoperability data_model customer_information_iopm {
elements {
data_entity customer { ... }
data_entity customer_summary { ... }

}
relations { ... }
operations {
...
operation authenticate { ... }

}
}
interoperability data_model user_account_iopm {
elements {
data_entity role_def { ... }
data_entity user { ... }
data_entity user_role { ... }

}
relations { ... }
operations { ... }

}
interoperability data_model shopping_cart_iopm {
elements {
data_entity shopping_carts { ... }
data_entity line_items { ... }

}
relations { ... }
operations { ... }

}
interoperability data_model inventory_iopm {
elements {
data_entity inventory_reservation { ... }
data_entity inventory_movement_type { ... }
data_entity inventory_movement { ... }
data_entity item { ... }

}
relations { ... }

Figure 6-17: Data Model view generated for the case study using Sarch in the MSA style - inter-
operability data models.

64 6 Evaluation

(components and connectors) generated in this view for the MSA model, and Figure 6-19 shows
a sample of the relations (attachments) generated in this view for the MSA model.

component_and_connector_view ::
elements {
programming_languages {
java;
javascript;

}
db_systems {
mongodb;

}
component msa.microservice products_ms (programming_language java) {
port provided_api api (iop_model products_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database products_db (nosql_data_model products_dm)

(db_system mongodb) {
port provided_dbaccess dbprov;

}
connector msa.db_access products_ms_db {
role consumer src;
role provider tgt;

}
component msa.microservice inventory_ms (programming_language java) {
port provided_api api (iop_model inventory_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database inventory_db (nosql_data_model

inventory_dm) (db_system mongodb) { ... }
connector msa.db_access inventory_ms_db { ... }
component msa.microservice shipments_ms (programming_language java) {
port provided_api api (iop_model shipments_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database shipments_db (nosql_data_model shipments_dm)

(db_system mongodb) { ... }
connector msa.db_access shipments_ms_db { ... }
component msa.microservice user_account_ms (programming_language java) {
port provided_api api;
port requested_dbaccess dbreq;

}
component msa.nosql_database user_account_db (db_system mongodb) { ... }
connector msa.db_access user_account_ms_db { ... }
component msa.microservice customer_information_ms (programming_language

java) {
port provided_api api (iop_model customer_information_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database customer_information_db (nosql_data_model

customer_information_dm) (db_system mongodb) { ... }
connector msa.db_access customer_information_ms_db { ... }
component msa.microservice order_handling_ms (programming_language java) {
port provided_api api (iop_model order_handling_iopm);
port requested_dbaccess dbreq;
port requested_api apireq;

}
connector msa.rest order_handling_inventory_mgmt_rest {
role consumer src;
role provider tgt;

}
component msa.nosql_database order_handling_db (nosql_data_model

order_handling_dm) (db_system mongodb) { ... }
connector msa.db_access order_handling_ms_db { ... }
component msa.microservice accounting_transactions_ms (programming_language

java) {
port provided_api api (iop_model accounting_transactions_iopm);
port requested_dbaccess dbreq;

}

component msa.nosql_database accounting_transactions_db (nosql_data_model
accounting_transactions_dm) (db_system mongodb) { ... }

connector msa.db_access accounting_transactions_ms_db { ... }
component msa.microservice shopping_cart_ms (programming_language java) {
port provided_api api (iop_model shopping_cart_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database shopping_cart_db (nosql_data_model

shopping_cart_dm) (db_system mongodb) {
port provided_dbaccess dbprov;

}
connector msa.db_access shopping_cart_ms_db { ... }
component msa.web_application onlineshop_wa (programming_language

javascript) {
port requested_api user_session;
port requested_api product_search;
port requested_api order_placement;
port requested_api shopping_cart;

}
component msa.api_gateway api_gw {
port provided_api authentication_api (iop_model api_gw_iopm);
port requested_api authentication_req;
port provided_api product_catalog_api (iop_model api_gw_iopm);
port requested_api product_catalog_req;
port provided_api order_placement_api (iop_model api_gw_iopm);
port requested_api order_placement_req;
port provided_api shopping_cart_api (iop_model api_gw_iopm);
port requested_api shopping_cart_req;
port provided_api accounting_transactions_api (iop_model api_gw_iopm);
port requested_api accounting_transactions_req;
port provided_api user_account_api (iop_model api_gw_iopm);
port requested_api user_account_req;
port provided_api shipments_api (iop_model api_gw_iopm);
port requested_api shipments_req;

}
component msa.microservice order_placement_ms (programming_language java) {
port provided_api api (iop_model order_placement_iopm);
port requested_api apireq;

}
connector msa.rest order_placement_inventory_mgmt_rest {
role consumer src;
role provider tgt;

}
connector msa.rest order_placement_order_mgmt_rest {
role consumer src;
role provider tgt;

}
connector msa.rest wa_ag_authentication_rest {
role consumer src;
role provider tgt;

}
connector msa.rest ag_customer_information_ms_rest {
role consumer src;
role provider tgt;

}
connector msa.rest wa_ag_product_catalog_rest { ... }
connector msa.rest ag_products_ms_rest { ... }
connector msa.rest wa_ag_order_placement_rest { ... }
connector msa.rest ag_order_placement_ms_rest { ... }
connector msa.rest wa_ag_shopping_cart_rest { ... }
connector msa.rest ag_shopping_cart_ms_rest { ... }
connector msa.rest ag_accounting_transactions_ms_rest { ... }
connector msa.rest ag_user_account_ms_rest { ... }
connector msa.rest ag_shipments_ms_rest { ... }

}

Figure 6-18: C&C view generated for the case study using Sarch in the MSA style - elements.

Figure 6-20 shows the Layered view generated for the MSA model, according to the transforma-
tion rules defined.

6.4 Model-to-Model Transformations 65

relations {
attachment (products_ms_db.src, products_ms.dbreq);
attachment (products_ms_db.tgt, products_db.dbprov);
attachment (inventory_ms_db.src, inventory_ms.dbreq);
attachment (inventory_ms_db.tgt, inventory_db.dbprov);
attachment (shipments_ms_db.src, shipments_ms.dbreq);
attachment (shipments_ms_db.tgt, shipments_db.dbprov);
attachment (user_account_ms_db.src, user_account_ms.dbreq);
attachment (user_account_ms_db.tgt, user_account_db.dbprov);
attachment (customer_information_ms_db.src, customer_information_ms.dbreq);
attachment (customer_information_ms_db.tgt, customer_information_db.dbprov);
attachment (order_handling_ms_db.src, order_handling_ms.dbreq);
attachment (order_handling_ms_db.tgt, order_handling_db.dbprov);
attachment (order_handling_inventory_mgmt_rest.src, order_handling_ms.apireq);
attachment (order_handling_inventory_mgmt_rest.tgt, inventory_ms.api (operation inventory_iopm.update_inventory));
attachment (accounting_transactions_ms_db.src, accounting_transactions_ms.dbreq);
attachment (accounting_transactions_ms_db.tgt, accounting_transactions_db.dbprov);
attachment (shopping_cart_ms_db.src, shopping_cart_ms.dbreq);
attachment (shopping_cart_ms_db.tgt, shopping_cart_db.dbprov);
attachment (order_placement_inventory_mgmt_rest.src, order_placement_ms.apireq);
attachment (order_placement_inventory_mgmt_rest.tgt, inventory_ms.api (operation inventory_iopm.check_inventory));
attachment (order_placement_order_mgmt_rest.src, order_placement_ms.apireq);
attachment (order_placement_order_mgmt_rest.tgt, order_handling_ms.api (operation order_handling_iopm.register_order));
attachment (order_placement_inventory_mgmt_rest.tgt, inventory_ms.api (operation inventory_iopm.manage_inventory));
attachment (order_placement_order_mgmt_rest.tgt, order_handling_ms.api (operation order_handling_iopm.get_order));
attachment (wa_ag_authentication_rest.src, onlineshop_wa.user_session);
attachment (wa_ag_authentication_rest.tgt, api_gw.authentication_api (operation api_gw_iopm.authenticate));
attachment (ag_customer_information_ms_rest.src, api_gw.authentication_req);
attachment (ag_customer_information_ms_rest.tgt, customer_information_ms.customer_information_api (operation

customer_information_iopm.authenticate));
attachment (wa_ag_product_catalog_rest.src, onlineshop_wa.product_search);
attachment (wa_ag_product_catalog_rest.tgt, api_gw.product_catalog_api (operation api_gw_iopm.search_products));
attachment (ag_products_ms_rest.src, api_gw.product_catalog_req);
attachment (ag_products_ms_rest.tgt, products_ms.products_api (operation products_iopm.search_products));
attachment (wa_ag_order_placement_rest.src, onlineshop_wa.order_placement);
attachment (wa_ag_order_placement_rest.tgt, api_gw.order_placement_api (operation api_gw_iopm.make_order));
attachment (ag_order_placement_ms_rest.src, api_gw.order_placement_req);
attachment (ag_order_placement_ms_rest.tgt, order_placement_ms.order_placement_api (operation order_placement_iopm.make_order));
attachment (wa_ag_shopping_cart_rest.src, onlineshop_wa.shopping_cart);
attachment (wa_ag_shopping_cart_rest.tgt, api_gw.shopping_cart_api);
attachment (ag_shopping_cart_ms_rest.src, api_gw.shopping_cart_req);
attachment (ag_shopping_cart_ms_rest.tgt, shopping_cart_ms.shopping_cart_api);
attachment (ag_accounting_transactions_ms_rest.src, api_gw.accounting_transactions_req);
attachment (ag_accounting_transactions_ms_rest.tgt, accounting_transactions_ms.accounting_transactions_api);
attachment (ag_user_account_ms_rest.src, api_gw.user_account_req);
attachment (ag_user_account_ms_rest.tgt, user_account_ms.user_account_api);
attachment (ag_shipments_ms_rest.src, api_gw.shipments_req);
attachment (ag_shipments_ms_rest.tgt, shipments_ms.shipments_api);

}
::

Figure 6-19: C&C view generated for the case study using Sarch in the MSA style - relations.

66 6 Evaluation

c: accounting_transactions_ms contains l:business_logic;
c: accounting_transactions_ms contains l:data_access;
c: shopping_cart_ms contains l: business_logic;
c: shopping_cart_ms contains l: data_access;
c: order_placement_ms contains l: business_logic;
c: order_placement_ms contains l: data_access;
t: presentation contains c: onlineshop_wa;
t: logic contains c: products_ms;
t: logic contains c: inventory_ms;
t: logic contains c: shipments_ms;
t: logic contains c: user_account_ms;
t: logic contains c: customer_information_ms;
t: logic contains c: order_handling_ms;
t: logic contains c: accounting_transactions_ms;
t: logic contains c: shopping_cart_ms;
t: logic contains c: order_placement_ms;
t: logic contains c: api_gw;
t: data contains c: products_db;
t: data contains c: inventory_db;
t: data contains c: shipments_db;
t: data contains c: user_account_db;
t: data contains c: customer_information_db;
t: data contains c: order_handling_db;
t: data contains c: accounting_transactions_db;
t: data contains c: shopping_cart_db;

}
::

layered_view ::
elements {
layer presentation;
layer business_logic;
layer data_access;
tier presentation;
tier logic;
tier data;

}
relations {
l: presentation allowed_to_use l: business_logic;
l: business_logic allowed_to_use l: data_access;
t: presentation allowed_to_use t: logic;
t: logic allowed_to_use t: data;
c: onlineshop_wa contains l: presentation;
c: api_gw contains l: business_logic;
c: products_ms contains l: business_logic;
c: products_ms contains l: data_access;
c: inventory_ms contains l: business_logic;
c: inventory_ms contains l: data_access;
c: shipments_ms contains l: business_logic;
c: shipments_ms contains l: data_access;
c: user_account_ms contains l: business_logic;
c: user_account_ms contains l: data_access;
c: customer_information_ms contains l: business_logic;
c: customer_information_ms contains l: data_access;
c: order_handling_ms contains l: business_logic;
c: order_handling_ms contains l: data_access;

Figure 6-20: Layered view generated for the case study using Sarch in the MSA style.

6.5 Generated Model for a MSA-Based System

Based on the MSA model resulting from applying the model-to-model transformations from the
SOA model, in this step the system is graphically designed under the MSA architectural style.
Figure 6-21 shows the Data Model view with the resulting No SQL data models. Figure 6-22
shows the C&C view with the resulting components, connectors, and relations; for simplicity,
this diagram does not show the details of the associated interoperability data models and oper-
ations. Figure 6-23 shows the Layered view.

Additional refinements may be performed from this starting point with respect to the architec-
tural design done for the case study in the MSA style illustrated in figure 6-8:

• Change the type of some databases to relational.

• Change the type of some connectors according to specific communication requirements.

• Use the component of type msa.storage to fulfill specific object storage needs.

• Create relations between order_placement_ms and shopping_cart_ms to complement or-
der placement requirements, which involves defining the necessary connectors and attach-
ments as well as creating the operations in the respective interoperability data model.

• Create specific operations in the respective interoperability data models associated with
the providedAPI ports for shipments_ms, accounting_transactions_ms and user_account_-
ms.

6.5 Generated Model for a MSA-Based System 67

Key
Data entity Many-to-one

role_def

id : int
name : string
created_at : datetime
updated_at : datetime

user

id : int
email : string
password : string
active : bool
created_at : datetime
updated_at : datetime

user_role

id : int
user_id : int
role_id : int
active : bool
created_at : datetime
updated_at : datetime

quotation

id : int
number : string
customer_id : int
total : float
created_at : datetime
updated_at : datetime

quotation_line_item

id : int
quotation_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

order

id : int
number : string
customer_id : int
ship_to_address : string
ordered : datetime
shipped : datetime
delivered : datetime
total : float
created_at : datetime
updated_at : datetime

order_line_item

id : int
order_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

invoice

id : int
number : string
customer_id : int
address : string
total : float
created_at : datetime
updated_at : datetime

invoice_line_item

id : int
invoice_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

credit_note

id : int
number : string
invoice_id : int
product_id : int
amount : float
created_at : datetime
updated_at : datetime

account_type

id : int
name : string
created_at : datetime
updated_at : datetime

account

id : int
name : string
account_type_id : int
created_at : datetime
updated_at : datetime

transaction

id : int
description : string
created_at : datetime
updated_at : datetime

transaction_detail

id : int
transaction_id : int
account_id : int
amount : float
created_at : datetime
updated_at : datetime

account_hierarchy

id : int
parent_account_id : int
child_account_id : int
created_at : datetime
updated_at : datetime

product

id : int
name : string
description : string
sku : string
price : float
stock_quantity : int
active : bool
created_at : datetime
updated_at : datetime

inventory_reservation

id : int
product_id : int
quantity : int
order_id : int
active : bool
created_at : datetime
updated_at : datetime

historical_product

id : int
product_id : int
price : float
valid_from : datetime
valid_to : datetime
created_at : datetime
updated_at : datetime

product_location

id : int
product_id : int
location : string
created_at : datetime
updated_at : datetime

inventory_movement_type

id : int
name : string
created_at : datetime
updated_at : datetime

inventory_movement

id : int
product_id : int
order_id : int
inventory_movement_type_id : int
quantity : int
active : bool
created_at : datetime
updated_at : datetime

transportation_company

id : int
name : string
address : string
phone : string
email : string
active : bool
created_at : datetime
updated_at : datetime

shipment

id : int
order_id : int
address : string
transportation_company_id : int
cost : float
received : datetime
prepared : datetime
assigned : datetime
delivered : datetime
created_at : datetime
updated_at : datetime

One-to-many One-to-one

Products Data Model

User Account Data Model

shopping_carts

id : int
customer_id : int
ship_to_address : string
total : float
created_at : datetime
updated_at : datetime

line_items

id : int
shopping_cart_id : int
product_id : int
quantity : int
unit_price : float
created_at : datetime
updated_at : datetime

Shopping Cart Data Model

Accounting Transactions Data Model

Order Handling Data Model

Shipments Data Model

Inventory Data Model

Data model

customer

id : int
first_name : string
last_name : string
phone : string
address : string
user_id : int
created_at : datetime
updated_at : datetime

Customer Information Data Model

customer_summary

id : int
customer_id : int
preferred_product_id : int
last_order_at : datetime
amount_of_orders : int
created_at : datetime
updated_at : datetime

Figure 6-21: Graphical representation of the resulting Data Model view for the MSA model.

68 6 Evaluation

product_search order_placement shopping_cartuser_session

onlineshop_wa

api_gw

customer_information_ms products_ms inventory_ms order_handling_ms shopping_cart_ms

customer_information_db shopping_cart_dborder_handling_dbinventory_dbproducts_db

REST REST

REST

REST

REST

REST

REST REST REST REST

DB access DB access DB access DB access DB access

Key
Web application

API Gateway

Microservice

NoSQL database

Relational database

Storage

Component port

ConnectorNormal

italic

authentication_req product_catalog_req order_placement_req shopping_cart_req

authentication_api product_catalog_api order_placement_api shopping_cart_api

api api api api api

order_placement_ms

api

dbreq

dbprov

dbreq

dbprov

dbreq

dbprov

dbreq

dbprov

dbreq

dbprov

shipments_ms

shipments_db

DB access

api

dbreq

dbprov

apireq

accounting_transactions_ms

accounting_transactions_db

DB access

api

dbreq

dbprov

user_account_ms

user_account_db

DB access

api

dbreq

dbprov

accounting_transactions_api

accounting_transactions_reqshipments_req

shipments_api

user_account_req

user_account_api

RESTREST

apireq

REST

Figure 6-22: Graphical representation of the resulting C&C view for the MSA model.

Key
Component Layer Tier

Presentation

onlineshop_wa

Presentation layer

Logic

products_ms

Business logic layer

Data access layer

inventory_ms

Business logic layer

Data access layer

shipments_ms

Business logic layer

Data access layer

customer_information_ms

Business logic layer

Data access layer

order_handling_ms

Business logic layer

Data access layer

accounting_transactions_ms

Business logic layer

Data access layer

user_account_ms

Business logic layer

Data access layer

shopping_cart_ms

Business logic layer

Data access layer

order_placement_ms

Business logic layer

Data access layer

api_gw

Business logic layer

Data

products_db inventory_db shipments_db customer_information_db

order_handling_db accounting_transactions_db user_account_db shopping_cart_db

Figure 6-23: Graphical representation of the resulting Layered view for the MSA model.

6.6 Evolution Model Validation 69

6.6 Evolution Model Validation

As shown through the case study, the evolution model generated a valid architectural represen-
tation in Sarch of an MSA-based system from the architecture of a SOA-based system, which
complies with the elements, relations and properties of the MSA architectural style.

Next, the evolution model will be validated based on the architecture of a generic system, which
is described as follows:

1. Figure 6-24 shows the SOA source architecture of a generic system, which is represented
using the decomposition view and the C&C view.

2. The architecture of the source system is modeled using Sarch, which is shown in figures
6-25, 6-26, and 6-27, using the decomposition and C&C views.

3. The transformation rules are applied to generate an MSA model that is valid from the
point of view of the architectural style. Some of these model-to-model transformations
are shown in figure 6-28.

4. Figures 6-29 and 6-30 show the elements and relations that are part of the C&C view, for
the MSA model generated after applying the transformation rules. The generated MSA
model is represented in the Sarch language and complies with the grammar defined for
the architectural style.

5. Finally, the system is graphically represented under the MSA architectural style, based
on the MSA model resulting from applying the model-to-model transformations from the
SOA model, which is shown in figure 6-31 and represents the MSA target architecture in
the evolution model.

For the transformation process, there is a formal and rigorous mapping between the elements,
the relations and the properties of each architectural style. This allows to have a more closed
target set for the MSA architectural style where microservices architectures can be generated
from service-oriented architectures, taking into account that the result in MSA formally com-
plies with all the characteristics from the point of view of the architectural style. This ensures
that the transformation model works for any service-oriented architecture and that it provides
the foundation for an MSA-based system. Additionally, the model generated in MSA supplies
the complete functionality of the system by generating a microservice for each of the subsystem
modules present in the Decomposition view, as well as a microservice for each service provided
in the SOA model based on the component ports.

It is important to bear in mind that the result of the transformation process is a base architecture
for MSA, but that this base architecture will allow or require the addition of new architectural

70 6 Evaluation

features to meet all the characteristics and needs of the system.

The proposed evolution model is based on two fields of Software Engineering, on the one hand
there are aspects related to Software Architecture, and on the other handMDE is being used as a
paradigm for the automation of the model-to-model transformation. The core of the validation
is given from the point of view of the internal process that is being done at the language level to
be able to convert an input into an output, where the input is the formal elements of the SOA
architectural style and the output is the formal elements MSA architectural style.

6.6 Evolution Model Validation 71

Key Subsystem Module Submodule

Subsystem1

Module11

Submodule111

Submodule112

Module12

Submodule121

Submodule122

Subsystem2

Module21

Submodule211

Submodule212

Module22

Submodule221

Submodule222

Subsystem3

Module31 Module32

Decomposition View

request_1 request_3request_2

ws_esb_srv1 ws_esb_srv2

ss_consumer

esb_main

Key Service consumer

ESB

Internal service provider italic

Relational database

Component port

Normal Connector

ss_provider_1 ss_provider_2 ss_provider_3

db_enterprise

ws_pr2_srv1

esb_srv1_req

ws_module12ws_pr1_srv1

db_access1 db_access2 db_access3

ws_module31

soap1

soap5 soap7

esb_srv2_req

db_consumer

db_access4

soap8

ws_module22

module31_req

soap4
soap6

dbreq dbreq dbreq

dbreq

dbprov

dbprov
soap2 soap3

C&C View

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

Figure 6-24: Evolution model validation - SOA source architecture.

72 6 Evaluation

relations {
m: module11 is_part_of ss: subsystem1;
sm: submodule111 is_part_of m: module11;
sm: submodule112 is_part_of m: module11;
m: module12 is_part_of ss: subsystem1;
sm: submodule121 is_part_of m: module12;
sm: submodule122 is_part_of m: module12;
m: module21 is_part_of ss: subsystem2;
sm: submodule211 is_part_of m: module21;
sm: submodule212 is_part_of m: module21;
m: module22 is_part_of ss: subsystem2;
sm: submodule221 is_part_of m: module22;
sm: submodule222 is_part_of m: module22;
m: module31 is_part_of ss: subsystem3;
m: module32 is_part_of ss: subsystem3;

}
::

decomposition_view ::
elements {

subsystem subsystem1;
module module11;
submodule submodule111;
submodule submodule112;
module module12;
submodule submodule121;
submodule submodule122;
subsystem subsystem2;
module module21;
submodule submodule211;
submodule submodule212;
module module22;
submodule submodule221;
submodule submodule222;
subsystem subsystem3;
module module31;
module module32;

}

Decomposition View

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

Figure 6-25: Evolution model validation - SOA Modeling - part I.

6.6 Evolution Model Validation 73

component soa.internal_service_provider ss_provider_3
(programming_language j2ee) {

port provided_service ws_module31
(iop_model ss_prov_3_iopm);

port requested_service module31_req;
port requested_dbaccess dbreq;

}
component soa.relational_database db_consumer

(data_model ss_cons_rm) (db_system sqlserver) {
port provided_dbaccess dbprov;

}
component soa.relational_database db_enterprise

(data_model ss_global_rm) (db_system oracle) {
port provided_dbaccess dbprov;

}

connector soa.soap soap1 {
role consumer src;
role provider tgt;

}
connector soa.soap soap2 { ... }
connector soa.soap soap3 { ... }
connector soa.soap soap4 { ... }
connector soa.soap soap5 { ... }
connector soa.soap soap6 { ... }
connector soa.soap soap7 { ... }
connector soa.soap soap8 { ... }
connector soa.db_access db_access1 { ... }
connector soa.db_access db_access2 { ... }
connector soa.db_access db_access3 { ... }
connector soa.db_access db_access4 { ... }

}

component_and_connector_view ::
elements {

programming_languages {
j2ee;
dotnet;

}
orchestration_languages {

bpel;
}
db_systems {

sqlserver;
oracle;

}
component soa.service_consumer ss_consumer

(programming_language dotnet) {
port requested_service request1;
port requested_service request2;
port requested_service request3;
port requested_dbaccess dbreq;

}
component soa.esb esb_main (orchestration_language bpel) {
port provided_service ws_esb_srv1 (iop_model esb_iopm)
(coordination_type orchestration);

port requested_service esb_srv1_req;
port provided_service ws_esb_srv2 (iop_model esb_iopm)
(coordination_type orchestration);

port requested_service esb_srv2_req;
}
component soa.internal_service_provider ss_provider_1

(programming_language j2ee) {
port provided_service ws_pr1_srv1 (iop_model ss_prov_1_iopm);
port provided_service ws_module12 (iop_model ss_prov_1_iopm);
port requested_dbaccess dbreq;

}
component soa.internal_service_provider ss_provider_2

(programming_language j2ee) {
port provided_service ws_pr2_srv1 (iop_model ss_prov_1_iopm);
port provided_service ws_module22 (iop_model ss_prov_2_iopm);
port requested_dbaccess dbreq;

}

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

C&C View - Elements

Figure 6-26: Evolution model validation - SOA Modeling - part II.

74 6 Evaluation

relations {
attachment (soap1.src, ss_consumer.request1);
attachment (soap1.tgt, ss_provider_1.ws_pr1_srv1 (operation ss_prov_1_iopm.op_1));
attachment (soap2.src, ss_consumer.request2);
attachment (soap2.tgt, esb_main.ws_esb_srv1 (operation esb_iopm.op_1));
attachment (soap3.src, ss_consumer.request3);
attachment (soap3.tgt, esb_main.ws_esb_srv2 (operation esb_iopm.op_2));
attachment (soap4.src, esb_main.esb_srv1_req);
attachment (soap4.tgt, ss_provider_1.ws_module12 (operation ss_prov_1_iopm.op_2));
attachment (soap4.tgt, ss_provider_1.ws_module12 (operation ss_prov_1_iopm.op_3));
attachment (soap5.src, esb_main.esb_srv1_req);
attachment (soap5.tgt, ss_provider_2.ws_pr2_srv1 (operation ss_prov_2_iopm.op_1));
attachment (soap5.tgt, ss_provider_2.ws_pr2_srv1 (operation ss_prov_2_iopm.op_2));
attachment (soap6.src, esb_main.esb_srv2_req);
attachment (soap6.tgt, ss_provider_2.ws_module22 (operation ss_prov_2_iopm.op_3));
attachment (soap7.src, esb_main.esb_srv2_req);
attachment (soap7.tgt, ss_provider_3.ws_module31 (operation ss_prov_3_iopm.op_1));
attachment (soap7.tgt, ss_provider_3.ws_module31 (operation ss_prov_3_iopm.op_2));
attachment (soap8.src, ss_provider_3.module31_req);
attachment (soap8.tgt, ss_provider_2.ws_module22 (operation ss_prov_1_iopm.op_4));
attachment (db_access1.src, ss_provider_1.dbreq);
attachment (db_access1.tgt, db_enterprise.dbprov);
attachment (db_access2.src, ss_provider_2.dbreq);
attachment (db_access2.tgt, db_enterprise.dbprov);
attachment (db_access3.src, ss_provider_3.dbreq);
attachment (db_access3.tgt, db_enterprise.dbprov);
attachment (db_access4.src, ss_consumer.dbreq);
attachment (db_access4.tgt, db_consumer.dbprov);

}
::

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

C&C View - Relations

Figure 6-27: Evolution model validation - SOA Modeling - part III.

6.6 Evolution Model Validation 75

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

Source SOA Model

ModuleN

Key
Web application

API Gateway

Microservice

NoSQL database

Relational database

Component port

ConnectorNormal

italic

Module

Target MSA Model

moduleN_ms

moduleN_db

DB access

dbreq

dbprov

api

ws_esb_srv1

esb_main

ss_provider_1 ss_provider_2

ws_pr2_srv1ws_module12

soap5soap4

Internal service provider

Source SOA Model

request1 request3request2

ss_consumer

Source SOA Model

request1 request3request2

webapp

Target MSA Model

esb_srv1_req

api_gw

pr2_srv1_ms module12_ms

pr2_srv2_db

DB access

esb_srv1_req

esb_srv1_api

api api

dbreq

dbprov

esb_srv1_ms

api

apireq
rest rest

rest

Target MSA Model

Service consumer

Figure 6-28: Evolution model validation - model-to-model transformations.

76 6 Evaluation

component_and_connector_view ::
elements {

programming_languages {
java;
react;

}
db_systems {

mongodb;
}
component msa.microservice module11_ms (programming_language java) {

port provided_api api (iop_model module11_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module11_db (nosql_data_model module11_dm)

(db_system mongodb) {
port provided_dbaccess dbprov;

}
connector msa.db_access module11_ms_db {

role consumer src;
role provider tgt;

}
component msa.microservice module12_ms (programming_language java) {

port provided_api api (iop_model module12_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module12_db (nosql_data_model module12_dm)

(db_system mongodb) { ... }
connector msa.db_access module12_ms_db { ... }
component msa.microservice module21_ms (programming_language java) {

port provided_api api (iop_model module21_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module21_db (nosql_data_model module21_dm)

(db_system mongodb) { ... }
connector msa.db_access module21_ms_db { ... }
component msa.microservice module22_ms (programming_language java) {
port provided_api api (iop_model module22_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module22_db (nosql_data_model module22_dm)

(db_system mongodb) { ... }
connector msa.db_access module22_ms_db { ... }
component msa.microservice module31_ms (programming_language java) {

port provided_api api (iop_model module31_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module31_db (nosql_data_model module31_dm)

(db_system mongodb) { ... }
connector msa.db_access module31_ms_db { ... }
component msa.microservice module32_ms (programming_language java) {

port provided_api api (iop_model module32_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database module32_db (nosql_data_model module32_dm)

(db_system mongodb) { ... }
connector msa.db_access module32_ms_db { ... }

component msa.web_application webapp (programming_language react) {
port requested_api request1;
port requested_api request2;
port requested_api request3;

}
component msa.api_gateway api_gw {

port provided_api pr1_srv1_api (iop_model api_gw_iopm);
port requested_api pr1_srv1_req;
port provided_api esb_srv1_api (iop_model api_gw_iopm);
port requested_api esb_srv1_req;
port provided_api esb_srv2_api (iop_model api_gw_iopm);
port requested_api esb_srv2_req;
port provided_api module21_api (iop_model api_gw_iopm);
port requested_api module21_req;
port provided_api module32_api (iop_model api_gw_iopm);
port requested_api module32_req;
port provided_api module11_api (iop_model api_gw_iopm);
port requested_api module11_req;

}
component msa.microservice pr1_srv1_ms (programming_language java) {

port provided_api api (iop_model pr1_srv1_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database pr1_srv1_db (db_system mongodb) { ... }
connector msa.db_access pr1_srv1_ms_db { ... }
component msa.microservice pr2_srv1_ms (programming_language java) {

port provided_api api (iop_model pr2_srv1_iopm);
port requested_dbaccess dbreq;

}
component msa.nosql_database pr2_srv1_db (db_system mongodb) { ... }
connector msa.db_access pr2_srv1_ms_db { ... }
component msa.microservice esb_srv1_ms (programming_language java) {

port provided_api esb_srv1_api (iop_model esb_srv1_iopm);
port requested_api esb_srv1_req;

}
connector msa.rest esb_srv1_module12_rest { ... }
connector msa.rest esb_srv1_pr2_srv1_rest { ... }
component msa.microservice esb_srv2_ms (programming_language java) {

port provided_api esb_srv2_api (iop_model esb_srv2_iopm);
port requested_api esb_srv2_req;

}
connector msa.rest esb_srv2_module22_rest { ... }
connector msa.rest esb_srv2_module31_rest { ... }
connector msa.rest wa_ag_pr1_srv1_rest { ... }
connector msa.rest ag_pr1_srv1_ms_rest { ... }
connector msa.rest wa_ag_esb_srv1_rest { ... }
connector msa.rest ag_esb_srv1_ms_rest { ... }
connector msa.rest wa_ag_esb_srv2_rest { ... }
connector msa.rest ag_esb_srv2_ms_rest { ... }
connector msa.rest ag_module21_ms_rest { ... }
connector msa.rest ag_module32_ms_rest { ... }
connector msa.rest ag_module11_ms_rest { ... }
connector msa.rest ag_module22_ms_rest { ... }

}

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

C&C View - Elements

Figure 6-29: Evolution model validation - MSA Modeling - part I.

6.6 Evolution Model Validation 77

relations {
attachment (module11_ms_db.src, module11_ms.dbreq);
attachment (module11_ms_db.tgt, module11_db.dbprov);
attachment (module12_ms_db.src, module12_ms.dbreq);
attachment (module12_ms_db.tgt, module12_db.dbprov);
attachment (module21_ms_db.src, module21_ms.dbreq);
attachment (module21_ms_db.tgt, module21_db.dbprov);
attachment (module22_ms_db.src, module22_ms.dbreq);
attachment (module22_ms_db.tgt, module22_db.dbprov);
attachment (module31_ms_db.src, module31_ms.dbreq);
attachment (module31_ms_db.tgt, module31_db.dbprov);
attachment (module32_ms_db.src, module32_ms.dbreq);
attachment (module32_ms_db.tgt, module32_db.dbprov);
attachment (pr1_srv1_ms_db.src, pr1_srv1_ms.dbreq);
attachment (pr1_srv1_ms_db.tgt, pr1_srv1_db.dbprov);
attachment (pr2_srv1_ms_db.src, pr2_srv1_ms.dbreq);
attachment (pr2_srv1_ms_db.tgt, pr2_srv1_db.dbprov);
attachment (esb_srv1_module12_rest.src, esb_srv1_ms.esb_srv1_req);
attachment (esb_srv1_module12_rest.tgt, module12_ms.api (operation module12_iopm.op_2));
attachment (esb_srv1_module12_rest.tgt, module12_ms.api (operation module12_iopm.op_3));
attachment (esb_srv1_pr2_srv1_rest.src, esb_srv1_ms.esb_srv1_req);
attachment (esb_srv1_pr2_srv1_rest.tgt, pr2_srv1_ms.api (operation pr2_srv1_iopm.op_1));
attachment (esb_srv1_pr2_srv1_rest.tgt, pr2_srv1_ms.api (operation pr2_srv1_iopm.op_2));
attachment (esb_srv2_module22_rest.src, esb_srv2_ms.esb_srv2_req);
attachment (esb_srv2_module22_rest.tgt, module22_ms.api (operation module22_iopm.op_3));
attachment (esb_srv2_module31_rest.src, esb_srv2_ms.esb_srv2_req);
attachment (esb_srv2_module31_rest.tgt, module31_ms.api (operation module31_iopm.op_1));
attachment (esb_srv2_module31_rest.tgt, module31_ms.api (operation module31_iopm.op_2));
attachment (wa_ag_pr1_srv1_rest.src, webapp.request1);
attachment (wa_ag_pr1_srv1_rest.tgt, api_gw.pr1_srv1_api (operation api_gw_iopm.op_1));
attachment (ag_pr1_srv1_ms_rest.src, api_gw.pr1_srv1_req);
attachment (ag_pr1_srv1_ms_rest.tgt, pr1_srv1_ms.api (operation pr1_srv1_iopm.op_1));
attachment (wa_ag_esb_srv1_rest.src, webapp.request2);
attachment (wa_ag_esb_srv1_rest.tgt, api_gw.esb_srv1_api (operation api_gw_iopm.op_1));
attachment (ag_esb_srv1_ms_rest.src, api_gw.esb_srv1_req);
attachment (ag_esb_srv1_ms_rest.tgt, esb_srv1_ms.esb_srv1_api (operation

esb_srv1_iopm.op_1));
attachment (wa_ag_esb_srv2_rest.src, webapp.request3);
attachment (wa_ag_esb_srv2_rest.tgt, api_gw.esb_srv2_api (operation api_gw_iopm.op_2));
attachment (ag_esb_srv2_ms_rest.src, api_gw.esb_srv2_req);
attachment (ag_esb_srv2_ms_rest.tgt, esb_srv2_ms.esb_srv2_api (operation

esb_srv2_iopm.op_2));
attachment (ag_module21_ms_rest.src, api_gw.module21_req);
attachment (ag_module21_ms_rest.tgt, module21_ms.api);
attachment (ag_module32_ms_rest.src, api_gw.module32_req);
attachment (ag_module32_ms_rest.tgt, module32_ms.api);
attachment (ag_module11_ms_rest.src, api_gw.module11_req);
attachment (ag_module11_ms_rest.tgt, module11_ms.api);

}
::

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

C&C View - Relations

Figure 6-30: Evolution model validation - MSA Modeling - part II.

78 6 Evaluation

request2 request3request1

webapp

api_gw

pr1_srv1_ms pr2_srv1_ms module11_msmodule12_ms

pr1_srv1_db module12_db module11_dbpr2_srv1_db

rest rest rest

DB access DB access DB accessDB access

Key
Web application

API Gateway

Microservice

NoSQL database

Relational database

Storage

Component port

ConnectorNormal

italic

pr1_srv1_req esb_srv1_req esb_srv2_req module11_req

pr1_srv1_api esb_srv1_api esb_srv2_api module11_api

api api apiapi

dbreq

dbprov

dbreq

dbprov

dbreq

dbprov

dbreq

dbprov

module21_ms

module21_db

DB access

api

dbreq

dbprov

module22_ms

module22_db

DB access

api

dbreq

dbprov

module31_ms

module31_db

DB access

api

dbreq

dbprov

module32_api

module32_reqmodule21_req

module21_api

rest

module32_ms

module32_db

DB access

api

dbreq

dbprov

esb_srv1_ms

api

apireq

esb_srv2_ms

api

apireq

rest restrest

restrest

rest

rest rest

rest

C&C View

SOA Source
Architecture

SOA
Modeling

Model-to-Model
Transformation

MSA Target
Architecture

MSA
Modeling

Evolution Model

Figure 6-31: Evolution model validation - MSA target architecture.

7 Conclusions and Future Work

7.1 Conclusions

In this work, a new strategy has been proposed to evolve service-based architectures, specifically
from service-oriented architectures to microservices architectures. First, a rigorous and formal
analysis of the elements, relations and properties of each SOA and MSA architectural style was
done, and the Decomposition, Data Model, C&C and Layered views were used to represent soft-
ware system architectures for SOA and MSA. As a result, the Sarch language was complemented
as an ADL for service-based architectures, specifically incorporating the grammar rules neces-
sary to represent software architectures in the SOA and MSA styles. On the other hand, a formal
mapping was done between the elements, relations and properties of the SOA and MSA styles,
which allowed defining a set of model-to-model transformations that receives an SOA model as
input and generates an MSA model as a result. Thanks to this formal process, it is possible to
generate a microservices architecture from any service-oriented architecture, which guarantees
the effectiveness of the evolution model proposed from the elements, relations and properties
of each architectural style.

7.2 Future Work

As future work, it is proposed to include the use of quality attributes in the model-to-model
transformation process that the architecture of the target software system must meet. On the
other hand, include transformation processes that allow to generate architectural models rep-
resented in Sarch from source code. Additionally, continue the extension of the Sarch language
to allow the description of software architectures with architectural styles in a specific way, as
well as to incorporate other architectural views. Finally, extend the Sarch-Studio tool to allow
the graphical representation of each of the architectural views that are part of Sarch.

7.3 Academic Production

The academic production derived from this research, so far, includes:

• Conference paper entitled “A Component-Based Evolution Model for Service-Based Soft-
ware Architectures” in the 2020 11th IEEE International Conference on Software Engineering and

80 7 Conclusions and Future Work

Service Science (ICSESS 2020). https://doi.org/10.1109/ICSESS49938.2020.9237747. In this
paper, a first version of the evolutionmodel was proposedwithmain emphasis on component-
and-connector and decomposition architectural views.

Bibliography

[1] Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/

[2] Xtend. https://www.eclipse.org/xtend/

[3] Xtext. https://www.eclipse.org/Xtext/

[4] ACEVEDO, Cesar Augusto J. ; GOMEZ Y JORGE, Juan P. ; PATINO, Ivan R.: Methodology to
transform a monolithic software into a microservice architecture. In: 2017 6th International
Conference on Software Process Improvement (CIMPS), IEEE, oct 2017. – ISBN 978–1–5386–3230–
7, 1–6

[5] ALSHUQAYRAN, Nuha ; ALI, Nour ; EVANS, Roger: A Systematic Mapping Study in Microser-
vice Architecture. In: 2016 IEEE 9th International Conference on Service-Oriented Computing and
Applications (SOCA), IEEE, nov 2016. – ISBN 978–1–5090–4781–9, 44–51

[6] BALALAIE, Armin ; HEYDARNOORI, Abbas ; JAMSHIDI, Pooyan: Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture. In: IEEE Software 33 (2016), may,
Nr. 3, 42–52. http://dx.doi.org/10.1109/MS.2016.64. – DOI 10.1109/MS.2016.64

[7] BARAIS, Olivier ; LE MEUR, Anne F. ; DUCHIEN, Laurence ; LAWALL, Julia: Software Architec-
ture Evolution. Version: 2008. http://dx.doi.org/10.1007/978-3-540-76440-3_10.
In: Software Evolution. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. – DOI
10.1007/978–3–540–76440–3_10, 233–262

[8] BARNES, Jeffrey M. ; GARLAN, David ; SCHMERL, Bradley: Evolution styles: foundations
and models for software architecture evolution. In: Software & Systems Modeling 13 (2014),
may, Nr. 2, S. 649–678. http://dx.doi.org/10.1007/s10270-012-0301-9. – DOI
10.1007/s10270–012–0301–9

[9] BASS, Len. ; CLEMENTS, Paul ; KAZMAN, Rick.: Software architecture in practice. Addison-Wesley,
2013. – 589 S. – ISBN 9780321815736

[10] BENGURIA, Gorka ; LARRUCEA, Xabier ; ELVESÆTER, Brian ; NEPLE, Tor ; BEARDSMORE, An-
thony ; FRIESS, Michael: A Platform Independent Model for Service Oriented Archi-
tectures. In: Enterprise Interoperability (2007), S. 23–32. http://dx.doi.org/10.1007/
978-1-84628-714-5_3. – DOI 10.1007/978–1–84628–714–5_3

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1007/978-3-540-76440-3_10
http://dx.doi.org/10.1007/s10270-012-0301-9
http://dx.doi.org/10.1007/978-1-84628-714-5_3
http://dx.doi.org/10.1007/978-1-84628-714-5_3

82 Bibliography

[11] BERRIO-CHARRY, Eduardo ; VERGARA-VARGAS, Jeisson ; UMANA-ACOSTA, Henry: A
Component-Based Evolution Model for Service-Based Software Architectures. In: 2020
IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), IEEE, oct
2020. – ISBN 978–1–7281–6578–3, 111–115

[12] BETTINI, Lorenzo: Implementing Domain-Specific Languages with Xtext and Xtend. 2nd Editio.
Packt Publishing, 2016. – ISBN 978–1–78646–496–5

[13] BRAMBILLA, Marco ; CABOT, Jordi ; WIMMER, Manuel: Model-Driven Software Engineering in
Practice. Second. 2017. http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004.
http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004. – ISBN 9781627059886

[14] BREIVOLD, Hongyu P. ; CRNKOVIC, Ivica ; ERIKSSON, Peter J.: Analyzing Software Evolvability.
In: 2008 32ndAnnual IEEE International Computer Software and Applications Conference, IEEE, 2008.
– ISBN 978–0–7695–3262–2, 327–330

[15] BREIVOLD, Hongyu P. ; CRNKOVIC, Ivica ; LARSSON, Magnus: A systematic review of soft-
ware architecture evolution research. In: Information and Software Technology 54 (2012),
jan, Nr. 1, 16–40. http://dx.doi.org/10.1016/j.infsof.2011.06.002. – DOI
10.1016/j.infsof.2011.06.002

[16] BRITTO, Ricardo ; SMITE, Darja ; DAMM, Lars-Ola: Software Architects in Large-Scale Dis-
tributed Projects: An Ericsson Case Study. In: IEEE Software 33 (2016), nov, Nr. 6, 48–55.
http://dx.doi.org/10.1109/MS.2016.146. – DOI 10.1109/MS.2016.146. – ISSN 0740–
7459

[17] BUCCHIARONE, Antonio ; DRAGONI, Nicola ; DUSTDAR, Schahram ; LARSEN, Stephan T. ; MAZ-
ZARA, Manuel: From Monolithic to Microservices: An Experience Report from the Banking
Domain. In: IEEE Software 35 (2018), may, Nr. 3, 50–55. http://dx.doi.org/10.1109/
MS.2018.2141026. – DOI 10.1109/MS.2018.2141026. – ISSN 0740–7459

[18] CHEN, Rui ; LI, Shanshan ; LI, Zheng: From Monolith to Microservices: A Dataflow-Driven
Approach. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE, dec 2017. –
ISBN 978–1–5386–3681–7, 466–475

[19] CLEMENTS, P. ; BACHMANN, F. ; BASS, L. ; GARLAN, D. ; IVERS, J. ; LITTLE, R. ; NORD, R. ;
STAFFORD, J.: Documenting software architectures: views and beyond. Addison-Wesley, 2011. –
582 S. http://dx.doi.org/10.1109/icse.2003.1201264. http://dx.doi.org/10.
1109/icse.2003.1201264. – ISBN 0321552687

[20] DI FRANCESCO, P. ; MALAVOLTA, I. ; LAGO, P.: Research on Architecting Microservices:
Trends, Focus, and Potential for Industrial Adoption. In: Proceedings - 2017 IEEE International
Conference on Software Architecture, ICSA 2017, 2017. – ISBN 9781509057290, S. 21–30

http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004
http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://dx.doi.org/10.1109/MS.2016.146
http://dx.doi.org/10.1109/MS.2018.2141026
http://dx.doi.org/10.1109/MS.2018.2141026
http://dx.doi.org/10.1109/icse.2003.1201264
http://dx.doi.org/10.1109/icse.2003.1201264
http://dx.doi.org/10.1109/icse.2003.1201264

83

[21] DI FRANCESCO, Paolo ; LAGO, Patricia ; MALAVOLTA, Ivano: Architecting with microservices:
A systematic mapping study. In: Journal of Systems and Software 150 (2019), apr, S. 77–97.
http://dx.doi.org/10.1016/j.jss.2019.01.001. – DOI 10.1016/j.jss.2019.01.001. –
ISSN 01641212

[22] ERL, Thomas.: Service-oriented architecture : concepts, technology, and design. Prentice Hall Profes-
sional Technical Reference, 2005. – 760 S. https://www.oreilly.com/library/view/
service-oriented-architecture-concepts/0131858580/. – ISBN 0131858580

[23] FAN, Chen-Yuan ; MA, Shang-Pin: Migrating Monolithic Mobile Application toMicroservice
Architecture: An Experiment Report. In: 2017 IEEE International Conference on AI & Mobile
Services (AIMS), IEEE, jun 2017. – ISBN 978–1–5386–1999–5, 109–112

[24] FERNANDO, Erick ; TOURIANO, Derist ; RICO: Impact of Service-Oriented Architecture adop-
tion in information system. In: 2015 2nd International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE), IEEE, oct 2015. – ISBN 978–1–4799–9861–6,
52–55

[25] FOWLER, Martin ; PARSONS, Rebecca: Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010. – ISBN 978–0321712943

[26] FRANCESCO, Paolo D.: Architecting Microservices. In: 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), IEEE, apr 2017. – ISBN 978–1–5090–4793–2, 224–
229

[27] FURDA, Andrei ; FIDGE, Colin ; ZIMMERMANN, Olaf ; KELLY, Wayne ; BARROS, Alistair: Migrat-
ing Enterprise Legacy Source Code to Microservices: On Multitenancy, Statefulness, and
Data Consistency. In: IEEE Software 35 (2018), may, Nr. 3, 63–72. http://dx.doi.org/
10.1109/MS.2017.440134612. – DOI 10.1109/MS.2017.440134612. – ISSN 0740–7459

[28] GODFREY, Michael W. ; GERMAN, Daniel M.: The past, present, and future of software
evolution. In: 2008 Frontiers of Software Maintenance, IEEE, sep 2008. – ISBN 978–1–4244–
2654–6, 129–138

[29] GOUIGOUX, Jean-Philippe ; TAMZALIT, Dalila: From Monolith to Microservices: Lessons
Learned on an Industrial Migration to a Web Oriented Architecture. In: 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW), IEEE, apr 2017. – ISBN 978–1–
5090–4793–2, 62–65

[30] GRANCHELLI, Giona ; CARDARELLI, Mario ; FRANCESCO, Paolo D. ; MALAVOLTA, Ivano ;
IOVINO, Ludovico ; SALLE, Amleto D.: Towards recovering the software architecture of
microservice-based systems. In: Proceedings - 2017 IEEE International Conference on Software Ar-
chitecture Workshops, ICSAW 2017: Side Track Proceedings, Institute of Electrical and Electronics
Engineers Inc., jun 2017. – ISBN 9781509047932, S. 46–53

http://dx.doi.org/10.1016/j.jss.2019.01.001
https://www.oreilly.com/library/view/service-oriented-architecture-concepts/0131858580/
https://www.oreilly.com/library/view/service-oriented-architecture-concepts/0131858580/
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612

84 Bibliography

[31] HASSAN, Adel ; OUSSALAH, Mourad: Meta-Evolution Style for Software Architecture Evo-
lution. Version: 2016. http://dx.doi.org/10.1007/978-3-662-49192-8_39. 2016. –
DOI 10.1007/978–3–662–49192–8_39, S. 478–489

[32] HASSAN, Sara ; ALI, Nour ; BAHSOON, Rami: Microservice Ambients: An Architectural Meta-
Modelling Approach for Microservice Granularity. In: 2017 IEEE International Conference on
Software Architecture (ICSA), IEEE, apr 2017. – ISBN 978–1–5090–5729–0, S. 1–10

[33] IEEE COMPUTER SOCIETY. SOFTWARE ENGINEERING STANDARDS COMMITTEE. ; INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS. ; IEEE-SA STANDARDS BOARD.: IEEE recommended
practice for architectural description of software-intensive systems. Institute of Electrical and Elec-
tronics Engineers, 2000. – 23 S. https://ieeexplore-ieee-org.ezproxy.unal.edu.
co/document/875998. – ISBN 0738125180

[34] INDRASIRI, Kasun ; SIRIWARDENA, Prabath: Microservices for the Enterprise. 1st Editio. Berkeley,
CA : Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3858-5. http://dx.
doi.org/10.1007/978-1-4842-3858-5. – ISBN 978–1–4842–3857–8

[35] JAMMES, F. ; SMIT, H.: Service-Oriented Paradigms in Industrial Automation. In: IEEE
Transactions on Industrial Informatics 1 (2005), feb, Nr. 1, 62–70. http://dx.doi.org/10.
1109/TII.2005.844419. – DOI 10.1109/TII.2005.844419. – ISSN 1551–3203

[36] JIA, Xiangyang ; YING, Shi ; ZHANG, Tao ; CAO, Honghua ; XIE, Dan: A new architecture
description language for service-oriented architecture. In: Proceedings of the 6th International
Conference on Grid and Cooperative Computing, GCC 2007, 2007. – ISBN 0769528716, S. 96–103

[37] LARRUCEA, Xabier ; SANTAMARIA, Izaskun ; COLOMO-PALACIOS, Ricardo ; EBERT, Christof:
Microservices. In: IEEE Software 35 (2018), may, Nr. 3, 96–100. http://dx.doi.org/10.
1109/MS.2018.2141030. – DOI 10.1109/MS.2018.2141030. – ISSN 0740–7459

[38] LEWIS, James ; FOWLER, Martin: Microservices. https://martinfowler.com/articles/
microservices.html. Version: 2014

[39] LIN, Jyhjong ; LIN, Lendy C. ; HUANG, Shiche: Migrating web applications to clouds with mi-
croservice architectures. In: 2016 International Conference on Applied System Innovation (ICASI),
IEEE, may 2016. – ISBN 978–1–4673–9888–6, 1–4

[40] MAZLAMI, G. ; CITO, J. ; LEITNER, P.: Extraction of Microservices from Monolithic Software
Architectures. In: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS
2017, 2017. – ISBN 9781538607527, S. 524–531

[41] MAZZARA, Manuel ; DRAGONI, Nicola ; BUCCHIARONE, Antonio ; GIARETTA, Alberto ; LARSEN,
Stephan T. ; DUSTDAR, Schahram: Microservices: Migration of a Mission Critical System.
In: IEEE Transactions on Services Computing (2018), 1–1. http://dx.doi.org/10.1109/TSC.
2018.2889087. – DOI 10.1109/TSC.2018.2889087. – ISSN 1939–1374

http://dx.doi.org/10.1007/978-3-662-49192-8_39
https://ieeexplore-ieee-org.ezproxy.unal.edu.co/document/875998
https://ieeexplore-ieee-org.ezproxy.unal.edu.co/document/875998
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://dx.doi.org/10.1007/978-1-4842-3858-5
http://dx.doi.org/10.1109/TII.2005.844419
http://dx.doi.org/10.1109/TII.2005.844419
http://dx.doi.org/10.1109/MS.2018.2141030
http://dx.doi.org/10.1109/MS.2018.2141030
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1109/TSC.2018.2889087
http://dx.doi.org/10.1109/TSC.2018.2889087

85

[42] MEDVIDOVIC, N. ; TAYLOR, R.N.: A classification and comparison framework for software
architecture description languages. In: IEEE Transactions on Software Engineering 26 (2000), Nr.
1, 70–93. http://dx.doi.org/10.1109/32.825767. – DOI 10.1109/32.825767

[43] NEWMAN, Sam: Building microservices : designing fine-grained systems. 2015. – ISBN
9781491950357

[44] NEWMAN, Sam ; O’REILLY MEDIA (Hrsg.): Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith. 1st Editio. 2019. – 272 S. – ISBN 978–1492047841

[45] OMG: Service oriented architecture Modeling Language (SoaML) Specification. In: Language
(2012), Nr. March, S. 1–144

[46] OQUENDO, Flavio: π-ADL: An Architecture Description Language based on the Higher-
Order Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures. In:
ACM SIGSOFT Software Engineering Notes 29 (2004), Nr. 3, S. 1. http://dx.doi.org/10.
1145/986710.986728. – DOI 10.1145/986710.986728. – ISSN 01635948

[47] OQUENDO, Flavio: Formal approach for the development of business processes in terms
of Service-Oriented Architectures using π-ADL. In: Proceedings of the 4th IEEE International
Symposium on Service-Oriented System Engineering (2008), Nr. i, S. 154–159. http://dx.doi.
org/10.1109/SOSE.2008.38. – DOI 10.1109/SOSE.2008.38. ISBN 9780769534992

[48] PAPAPOSTOLU, Anastasios ; BIROV, Dimitar: Structured component and connector com-
munication. In: ACM International Conference Proceeding Series Part F1309 (2017). http:
//dx.doi.org/10.1145/3136273.3136291. – DOI 10.1145/3136273.3136291. ISBN
9781450352857

[49] PAPAPOSTOLU, Tasos: µσADL: An Architecture Description Language for MicroServices. In:
TAIAR R., COLSON S., CHOPLIN A., Ahram T. (Hrsg.): 1st International Conference on Human Inter-
action and Emerging Technologies, IHIET 2019, Springer Verlag, 2020. – ISBN 978–303025628–9,
S. 885–889

[50] PAPAPOSTOLU, Tasos ; BIROV, Dimitar: Towards a Methodology for Designing Micro-
service Architectures Using µσADL. In: Lecture Notes in Business Information Processing Bd.
319, Springer Verlag, 2018. – ISBN 9783319942131, S. 421–431

[51] PAUTASSO, Cesare ; ZIMMERMANN, Olaf ; AMUNDSEN, Mike ; LEWIS, James ; JOSUTTIS, Nico-
lai: Microservices in Practice, Part 1: Reality Check and Service Design. In: IEEE Soft-
ware 34 (2017), jan, Nr. 1, 91–98. http://dx.doi.org/10.1109/MS.2017.24. – DOI
10.1109/MS.2017.24. – ISSN 0740–7459

[52] PERRY, Dewayne E. ; WOLF, Alexander L.: Foundations for the study of software archi-
tecture. In: ACM SIGSOFT Software Engineering Notes 17 (1992), oct, Nr. 4, 40–52. http:
//dx.doi.org/10.1145/141874.141884. – DOI 10.1145/141874.141884

http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1145/986710.986728
http://dx.doi.org/10.1145/986710.986728
http://dx.doi.org/10.1109/SOSE.2008.38
http://dx.doi.org/10.1109/SOSE.2008.38
http://dx.doi.org/10.1145/3136273.3136291
http://dx.doi.org/10.1145/3136273.3136291
http://dx.doi.org/10.1109/MS.2017.24
http://dx.doi.org/10.1145/141874.141884
http://dx.doi.org/10.1145/141874.141884

86 Bibliography

[53] RADEMACHER, Florian ; SACHWEH, Sabine ; ZUNDORF, Albert: Differences between Model-
Driven Development of Service-Oriented and Microservice Architecture. In: 2017 IEEE
International Conference on Software ArchitectureWorkshops (ICSAW), IEEE, apr 2017. – ISBN 978–
1–5090–4793–2, 38–45

[54] RICHARDS, Mark.: Microservices vs. Service-Oriented Architecture. First Edit. O’Reilly Media, Inc,
2016. – 57 S. – ISBN 9781491975657

[55] RICHARDS, Mark ; FORD, Neal ; MEDIA, O’Reilly (Hrsg.): Fundamentals of Software Architecture:
An Engineering Approach. 1st Editio. 2020. – 432 S. – ISBN 978–1492043454

[56] RICHARDSON, Chris: Microservices Patterns. Manning, 2019. – ISBN 9781617294549

[57] ROZANSKI, Nick. ; WOODS, Eoin.: Software systems architecture : working with stakeholders using
viewpoints and perspectives. Addison-Wesley, 2005. – 546 S. – ISBN 0321112296

[58] SADOU, N. ; TAMZALIT, D. ; OUSSALAH, M.: A unified Approach for Software Architecture
Evolution at different abstraction levels. In: Eighth International Workshop on Principles of
Software Evolution (IWPSE’05), IEEE. – ISBN 0–7695–2349–8, 65–70

[59] SCHALLES, Christian: Usability evaluation of modeling languages: An empirical research study, Diss.,
2013. http://dx.doi.org/10.1007/978-3-658-00051-6. – DOI 10.1007/978–3–658–
00051–6. – 1–181 S

[60] SCHMIDT, Roger A. ; THIRY, Marcello: Microservices identification strategies : A review
focused on Model-Driven Engineering and Domain Driven Design approaches. In: Iberian
Conference on Information Systems and Technologies, CISTI Bd. 2020-June, IEEE Computer Society,
jun 2020. – ISBN 9789895465903

[61] TAIBI, Davide ; LENARDUZZI, Valentina ; PAHL, Claus: Continuous architecting with mi-
croservices and DevOps: A systematic mapping study. In: Communications in Computer and
Information Science Bd. 1073, Springer Verlag, 2019. – ISBN 9783030291921, S. 126–151

[62] TAYLOR, Richard N. ; MEDVIDOVIÇ, Nenad. ; DASHOFY, Eric M. (Eric M.: Software architecture :
foundations, theory, and practice. Wiley, 2010. – 712 S. – ISBN 0470167742

[63] TERZIÇ, Branko ; DIMITRIESKI, Vladimir ; KORDIÇ, Slavica ; MILOSAVLJEVIÇ, Gordana ;
LUKOVIÇ, Ivan: Development and evaluation of MicroBuilder: a Model-Driven tool for
the specification of REST Microservice Software Architectures. In: Enterprise Information
Systems 12 (2018), oct, Nr. 8-9, S. 1034–1057. http://dx.doi.org/10.1080/17517575.
2018.1460766. – DOI 10.1080/17517575.2018.1460766. – ISSN 17517583

[64] THE OPEN GROUP: Microservices Architecture – SOA and MSA. http://www.opengroup.org/
soa/source-book/msawp/p3.htm

http://dx.doi.org/10.1007/978-3-658-00051-6
http://dx.doi.org/10.1080/17517575.2018.1460766
http://dx.doi.org/10.1080/17517575.2018.1460766
http://www.opengroup.org/soa/source-book/msawp/p3.htm
http://www.opengroup.org/soa/source-book/msawp/p3.htm

87

[65] THE OPEN GROUP: Microservices Architecture – SOA and MSA. http://www.opengroup.org/
soa/source-book/msawp/p3.htm

[66] VERGARA-VARGAS, Jeisson ; UMANA-ACOSTA, Henry: A model-driven deployment approach
for scaling distributed software architectures on a cloud computing platform. In: Proceedings
of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS Bd. 2017-
Novem, IEEE Computer Society, apr 2018. – ISBN 9781538645703, S. 99–103

[67] VERGARA-VARGAS, Jeisson A.: Amodel-driven deployment approach for applying the performance and
scalability perspective from a set of software architecture styles, Universidad Nacional de Colombia,
Diss., 2017. http://bdigital.unal.edu.co/61128/

[68] WANG, Quanyu ; YING, Shi ; JIA, Xiangyang ; LV, Guobin ; SHUAI, Yun: SOADL-EH:
Service-oriented architecture description language supporting exception handling. In: Ad-
vanced Materials Research 433-440 (2012), S. 3500–3509. http://dx.doi.org/10.4028/
www.scientific.net/AMR.433-440.3500. – DOI 10.4028/www.scientific.net/AMR.433–
440.3500. – ISBN 9783037853191

[69] WASEEM, Muhammad ; LIANG, Peng: Microservices Architecture in DevOps. In: 2017 24th
Asia-Pacific Software Engineering Conference Workshops (APSECW), IEEE, dec 2017. – ISBN 978–
1–5386–2649–8, S. 13–14

[70] WASEEM, Muhammad ; LIANG, Peng ; SHAHIN, Mojtaba: A Systematic Mapping Study on
Microservices Architecture in DevOps. In: Journal of Systems and Software 170 (2020), dec.
http://dx.doi.org/10.1016/j.jss.2020.110798. – DOI 10.1016/j.jss.2020.110798. –
ISSN 01641212

[71] WILLIAMS, Byron J. ; CARVER, Jeffrey C.: Characterizing software architecture changes: A
systematic review. In: Information and Software Technology 52 (2010), jan, Nr. 1, 31–51. http:
//dx.doi.org/10.1016/j.infsof.2009.07.002. – DOI 10.1016/j.infsof.2009.07.002

[72] YUGOPUSPITO, Pujianto ; PANDUWINATA, Frans ; SUTRISNO, Sutrisno: Microservices archi-
tecture: Case on the migration of reservation-based parking system. In: 2017 IEEE 17th
International Conference on Communication Technology (ICCT), IEEE, oct 2017. – ISBN 978–1–
5090–3944–9, 1827–1831

http://www.opengroup.org/soa/source-book/msawp/p3.htm
http://www.opengroup.org/soa/source-book/msawp/p3.htm
http://bdigital.unal.edu.co/61128/
http://dx.doi.org/10.4028/www.scientific.net/AMR.433-440.3500
http://dx.doi.org/10.4028/www.scientific.net/AMR.433-440.3500
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.infsof.2009.07.002
http://dx.doi.org/10.1016/j.infsof.2009.07.002

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Objectives
	General Objective
	Specific Objectives

	Contribution
	Outline of the Thesis

	Background
	Software Architecture
	Architectural Views
	Architectural Styles and Patterns
	Monolithic Architecture
	Service-Based Architectures

	Architectures Evolution
	Model-Driven Engineering

	Related Work
	Reviews about Microservices Architectural Style
	ADLs for Microservices Architectures
	ADLs for Service-Oriented Architectures
	Sarch Language
	Evolution, Transformation and Migration to MSA
	Gaps in Previous Work

	ADL for Service-Based Architectures
	General Architectural Schema
	Decomposition View
	Data Model View
	Component-and-Connector (C&C) View
	Layered View

	Architectural Evolution Model
	Architectural Evolution Model Overview
	Model-to-Model Transformations from SOA to MSA
	Implementation in Sarch-Studio Tool

	Evaluation
	SOA-Based System as Input
	Functional Decomposition in Sarch
	SOA-Based System Modeled in Sarch
	Model-to-Model Transformations
	Generated Model for a MSA-Based System
	Evolution Model Validation

	Conclusions and Future Work
	Conclusions
	Future Work
	Academic Production

	Bibliography

