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Abstract 

In-silico models applied to bone remodeling are widely used to investigate bone mechanics, 

bone diseases, bone-implant interactions, and also the effect of treatments in bone 

pathologies. This work proposes a new methodology to solve the bone remodeling problem 

using one-dimensional (1D) elements to discretize trabecular structures more efficiently. First 

a concept review on the bone remodelling process and mathematical approaches, such as 

homogenization for its modelling are revised along with famous previous works on this field, 

later, in chapter two, the discrete modelling approach is validated by comparing FE simulations 

with experimental results for a cellular like material created using additive manufacturing and 

following a tessellation algorithm, and later, applying an optimization scheme based on 

maximum stiffness for a given porosity. In chapter three, an Euler integration scheme for a bone 

remodelling problem is coupled with the momentum equations to obtain the evolution of 

material density at each step. For the simulations, the equations were solved by using the finite 

element method and a direct formulation, and two benchmark tests were solved varying mesh 

parameters in two dimensions, an additional three-dimensional benchmark was addressed with 

the same methodology. Proximal femur and calcaneus bone were selected as study cases given 

the vast research available on the topology of these bones, and compared with the anatomical 

features of trabecular bone reported in the literature, the study cases were examined mainly in 

two dimensions, but the main trabecular groups for the femur were also obtained in three 

dimensions. The presented methodology has proven to be efficient in optimizing topologies of 

lattice structures; It can predict the trend in formation patterns of the main trabecular groups 

from two different cancellous bones (femur and calcaneus) using domains set up by discrete 

elements as a starting point. Preliminary results confirm that the proposed approach is suitable 

and useful in bone remodeling problems in 2D and 3D leading to a considerable computational 

cost reduction. Characteristics similar to those encountered in topological optimization 

algorithms were identified in the benchmark tests as well, showing the viability of the proposed 

approach in other applications such as bio-inspired design. Finally, in the last part of this work, 

the discrete approach developed in chapter two and three is coupled with two classic bone 

remodelling models, forming a new model that takes into account a variety of biological 



parameters such as paracrine and autocrine regulators and is able to predict different periodical 

responses in the bone remodelling process within a 2D domain with mechanical field variables. 

Keywords: bone remodeling, trabecular bone, finite element analysis, bone architecture, 

topological optimization.  
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Introduction 

In recent years, biology has gain importance for engineering as a source of inspiration  for 

developments such as robot design, bio- inspired computation, structures, actuators, material 

design, and more (Braun, Manoonpong, and Xiong, n.d.). This search for inspiration had an early 

beginning when the anatomist G.H von Meyer made a publication in 1867 where he presented 

drawings of cancellous or “spongy” bone in the proximal femur (Meyer 1867); An acquittance of 

von Meyer, a swiss structural engineer named C. Culmann noted these patterns, and realized the 

similarities between one of his designs for a crane and the topology of the femur (Cowin 1986), 

but it was Wolff in 1872 the one that first published a paper where he stated that the main 

trabecular groups tend to align to the principal stress trajectories in the femur, this last statement 

laid the basics to study bone remodelling from a mechanical point of view and established a new 

field where engineers and medical doctors could teamwork in specific fields such as prosthesis 

design, pharmaceutical treatments, among others.  

This collaboration between engineering and medicine to study bone remodelling has its main 

motivation in the research required to treat many diseases or conditions that affect bone 

remodelling. Osteoporosis, a disease found to affect bone mass density (BMD) has a prevalence 

estimated in 158 million advanced (high risk of osteoporotic facture)  cases worldwide, and this 

prediction  has been said to double by 2040 (Ström et al. 2011), this disease alone had a financial 

burden of $4.6 billion in 2016 in Canada (Hopkins et al. 2016).  Another metabolic bone disease 

with a high incidence is osteopetrosis which is linked with a positive net bone turnover (increased 

BMD), which is a rare inherited condition with 1 in 20,000 to 250,000 depending on which type 

(Owen and Reilly 2018). There are other diseases such as Paget’s disease or renal osteodystrophy 

that have an important prevalence and are investigated in the field of bone remodelling (Feng 

and McDonald 2011). 

To address the need of research in this field , various collaborations have been made between 

medical professionals, engineers, physicists, mathematicians and other disciplines that try to 

contribute at the understanding on how the bone remodelling occurs and in helping prevent and 

treat imbalances in this process (Wippert et al. 2017), as a result of  this collaboration in different 

disciplines, new fields such as mechanobiology have emerged and one of the main tools adopted 



has been mathematical modelling. This approach in bone remodelling, provides a quantitative 

tool that helps in the understanding of existing correlations between a stimulus and biological 

variables such as strain energy and turnover rate (Raggatt and Partridge 2010). 

There are various classical works on bone remodelling that use mathematical modelling as a 

research tool, for example (Weinans, Huiskes, and Grootenboer 1992) made a model that uses  

the finite element method (FEM) to calculate mechanical field variables such as energy strain and 

principal stresses and considers them as stimulus to the bone remodelling process, this model is 

able to predict the main trabecular groups in accordance to different loading conditions, such as 

normal gait and prosthesis implantation. There are more models that follow the same approach 

but use different type of stimulus, such as interstitial flows, strain energy densities, temperatures 

among others (Della Corte, Giorgio, and Scerrato 2020). Some important models will be briefly 

reviewed in the bibliographical revision. These models have been useful to study the dynamic in 

which a mechanical stimulus affects the remodelling process and evaluating its results in a spatial 

domain. There are other types of mathematical models that focus more on the dynamics of cell 

populations involved in the bone remodelling process, Komarova et al. 2003 proposes a set of 

differential equations that estimates the dynamic population of the principal cells and the bone 

mass density in a bone remodelling unit (BMU). This model takes into account the influence from 

different regulators that inhibit the cells proliferation in charge of bone formation and resorption, 

which is useful in the pharmaceutical treatment of bone disorders. 

This work builds a new modelling methodology, based on discrete modelling using the Finite 

Element Method (FEM) by applying a direct formulation which is computationally faster than 

using variational methods or weighted residuals. These discrete elements correspond to Truss 

and Frame elements (Details on this formulation on the annexes). The main goal of this study is 

to provide a novel methodology to address the bone remodelling problem that may be used by 

bone remodelling researchers to gain insight on mechanical and biological aspects on this process. 

Furthermore, engineers working in the field of cellular materials, computational mechanics, and 

bio-inspired design can use some of the results in topology given by some of the algorithms 

presented as conceptual designs, especially those shown in chapter two relating tessellations and 

chapter three regarding structures with a topology created with a bone remodelling algorithm. 



This thesis is divided into seven chapters where discrete based modelling will be explored as a 

tool to solve problems mainly regarding bone remodelling, but other applications will be 

addressed too, such as usefulness in additive manufacturing and mechanical analysis. First 

chapter will give a conceptual background where some of the main bibliographical sources will 

be presented. Second chapter will introduce the concept of discrete based modelling for an 

additive manufacturing study case, where different tessellations will be modelled and results will 

be compared experimentally. Third chapter uses the discrete based approach to solve a bone 

remodelling problem, where first its use will be validated on various classical benchmarks in bone 

remodelling and topological optimization problems, then a medical study case will be examined 

as a potential application of this approach, this implementation will be applied to 2D and 3D 

domains. In fourth chapter a new model that couples two classical bone remodelling models will 

be implemented using discrete based modelling as well, where the bone remodelling dynamics 

will be linked to the mechanical behavior in the domain. Finally, in chapter five general 

conclusions, future work and final remarks will be addressed. Finally, chapter six and seven 

correspond to references and annexes, respectively. 

 





Objectives 

➢ General objective 

To build a discrete mathematical model that integrates mechanical field variables and cellular 

mechanics in the bone remodelling process 

➢ Specific objectives 

-To build a zero-dimensional bone remodeling model that takes into account the processes of cell 

biology. 

-To propose a discrete domain finite element formulation with the constitutive equations that 

model the bone remodelling process, both biological and mechanical, and whose solution 

provides important information to establish optimal parameters. 

-Validate the model with available experimental measurements on bone remodeling in trabecular 

bone. 

 

 





1. Conceptual background 

1.1. Bone biology 

Bone is a connective tissue made up of cells embedded in a matrix that has a component of 

organic material containing type I collagen, lipids, proteoglycans, cytokines, and growth factors 

among other proteins, this amounts to the 40% of the matrix composition. The remaining 60% 

composition of inorganic material includes calcium hydroxyapatite and octacalcium phosphate 

(Gasser and Kneissel 2017). There can be found four cell types in bone: Cartilage-forming 

chondrocytes, bone-forming osteoblasts, bone-resorbing osteoclasts, and mechanotransduction 

regulatory osteocytes (Kenkre and Bassett 2018). The action of these cells along with the cellular 

matrix ensures the functioning of the skeletal system. In addition to the structural function of the 

skeleton and facilitator of locomotion, it also plays the role of  main mineral reservoir, which is 

important to level pH in other organs and achieve homeostasis (Kenkre and Bassett 2018). 

Bone can be classified as cortical or compact bone and trabecular or cancellous bone, the former 

has an increased density in comparison with the trabecular bone (between 5% and 10%), and it 

can be found mainly on the periphery of trabecular bone and on the shaft of long bones. It has 

been stated that over 80% of the total skeletal mass corresponds to cortical bone (Cowin, and 

Telega, 2003). The cancellous bone or trabecular, meaning “small beam” from Latin trabēcula, is 

made up of a rod or beam like random structure with plates, where there can be found trabecular 

groups organized accordingly to the stresses to which bone is subjected to, this is known as 

Wolff’s law, named after the anatomist and surgeon Julius Wolff who, in 1892, who first theorized 

the adaptations that bone undergoes concerning mechanical loads (Cowin 1986) . 

1.2. Modelling 

This process begins in the early skeletal formation and involves growth and shape change in bone. 

The net formation of bone is positive, whereas in bone remodelling there is an equilibrium 

between formation and resorption, and not net change in bone mass is appreciated, modelling 

occurs mainly on the uncomplete formed bone. This requires the uncoupling between formation 

and resorption of bone. An important example of bone modelling occurs in the radial growth of 



the diaphysis in long bones as well as in linear growth e.g the metaphysis below the growth plate 

where there is osteoclastic resorption in bone surface and new formation on the endosteal 

surface (Seeman 2003). 

1.3.  Bone remodelling 

The bone remodelling process is made up of a series of coupled dynamic interactions between 

various cell types and regulators such as signaling pathways and other factors that respond to 

different mechanical and biological conditions. The processes of bone formation and resorption 

are coupled to assure that there is no net loss of bone. The remodelling cycle takes place within 

the basic Multicellular Unit (BMU), and is divided into five different stages: activation, resorption, 

reversal, formation, and termination phase. Bone remodelling asynchronously occurs throughout 

the skeleton. The ultimate goal of bone remodelling is to repair the occurring damage in bone 

microstructure and maintain homeostasis of the necessary minerals. Fig. 1 shows in a comical 

manner the bone remodelling process, where the osteocytes are depicted as the orchestrators, 

allowing osteoclast and osteoblasts passage into the BMU to perform either resorption or 

formation, and the dendritic process from the osteocytes are shown. 

 

Fig. 1: Bone remodelling cartoon. 
Cartoon of the bone remodelling process, adapted from (Bahia et al. 2020). Art: Miguel T. Bahia 



1.3.1. Activation  

In this stage osteoclast precursor cells from the marrow (hematopoietic cells) are recruited to the 

bone surface where lining cells have separated from the outer part of the bone and begin to form 

Howship’s lacunae in trabecular bone or cutting cones as in cortical bone; in this zone, the BMU 

will undergo the bone remodelling process.  The first signal that sets into motion the bone 

remodelling dynamic is originated in the dendritic processes from osteocytes that make up the 

mechanosensory system and is generated given a mechanical stimulus, this could be a certain 

strain energy density that results in structural microdamage in bone’s architecture (Bullock, 

Pavalko, and Robling 2019). Another initiator may be a hormonal change due to a systemic 

adaptation to preserve homeostasis. 

A direct consequence of damage to the bone matrix or limb immobilization is osteocyte apoptosis 

and an increase in osteoclasts formation (Raggatt and Partridge 2010). This occurs because 

osteocytes secrete transforming growth factor β (TGF- β) which inhibits osteoclast formation, so 

a negative correlation exists between the population of osteocytes and osteoclasts.  

The main hormone in charge of the regulation of bone homeostasis is the calciotropic parathyroid 

hormone (PTH), secreted by parathyroid glands as a response to a decrease in serum calcium. 

PTH acts directly on kidneys and bone, and indirectly on the intestine. The binding of PTH to its 

receptors activates protein Kinases which make part of signaling pathways that induce 

transcriptional responses that regulate the secretion of molecules that recruit osteoclast 

precursors (Swarthout et al. 2002).  

1.3.2. Resorption 

In this phase that is approximately two weeks in duration, in humans, osteoblasts are activated 

similarly as in activation phase by osteocytes or by an endocrine or paracrine signal. When PTH 

induced remodelling occurs, osteoblast produces the chemoattractant MCP-1 (monocyte 

chemoattractant protein-1), a chemokine for osteoclast precursors. This also enhances the 

formation of osteoclasts due to the action of the receptor activator for nuclear factor k β (RankL). 

In this phase a “sealed zone” is created by matrix metalloproteinases (MMPs) secreted by 

osteoblasts, these MMPS degrade the portion of the osteoid that lines the bone surface. Inside 



this sealed zone, also known as Howship lacunae, Hydrogen ions are pumped, causing the 

dissolution of the mineralized matrix. The remaining organic portion of the bone matrix is 

degraded by collagenolytic enzymes (Okaji et al. 2003). 

1.3.3. Reversal 

After osteoclast resorption, a specific lineage of osteoblasts, osteomacs, remove the remaining 

demineralized collagen matrix of howships lacunae. Also, the reversal cells receive and produce 

coupling signals that finally give way to the formation stage within the BMU. After the organic 

material has been removed a cement-line composed of a non-collagenous mineralized matrix to 

increase adhesion in the next phase for osteoblastic cells. This phase has a duration of 

approximately four or five weeks in humans. 

1.3.4. Formation 

It has been stated that the EphB4 ephrin B2 signaling complex is responsible for bone formation 

activation and the inhibition of bone resorption (Raggatt and Partridge 2010). The osteocytes (the 

orchestrators) act as a mechanosensory system, in resting condition, they express sclerostin 

which binds to LRP5 (low-density lipoprotein receptor-related protein-5/6) and acts as a negative 

inhibitor of Wnt signaling, which is an inducer of bone formation (X. Li et al. 2005). When there is 

a mechanical strain on bone or PTH signaling takes place, the expression of sclerosing decreases 

allowing Wnt signaling to occur, conducing to bone formation (Raggatt and Partridge 2010).  

The secreted substances by osteoblast that conform bone consist of collagen type I which is the 

main organic constituent of bone. Other proteins such as proteoglycans, glycosylated, small 

integrin-binding ligand proteins (SIBLING) conform to the non-collagenous proteins. This entire 

process takes about four months in duration. (Eriksen et al. 1984) 

1.3.5. Termination phase 

The bone remodelling cycle ends when the portion of bone resorbed has been rebuild. This occurs 

due to the gain of sclerostin expression after osteoblastic bone formation has begun. Next, 

osteoblasts can suffer different fates, e.g. revert to a bone lining phenotype, differentiate into 

osteocytes when they have been entombed in the new bone matrix, or undergo apoptosis. 



 

Fig. 2: Bone remodelling cycle, adapted from Kenkre and Bassett 2018  

1.4. Regulation in bone remodelling 

1.4.1. -Endocrine regulation 

Endocrine regulation refers to that which occurs as part of the hormonal system, where there are 

various regulator agents of the bone remodelling process, such as the PTH, vitamin D, calcitonin, 

thyroid hormone, growth hormone, among others. These agents have as target cells the ones 

involved in bone formation and absorption, and produce a response not in the vicinity from the 

regulator was originated. The PTH has an effect on bone remodelling depending on the duration 

of exposure. It has been found that excess exposure to PTH in the BMU results in a net loss of 

bone during the remodelling cycle, this is common in hyperparathyroidism, this loss in bone 

density affects specially cortical bone (Stein et al. 2013). In case of osteoporosis an intermittent 

dosage of PTH is used as an anabolic agent. 

Vitamin D is an important agent that is in charge of the phosphate and calcium absorption in the 

intestines which provides the necessary substrates for mineralization. It also affects skeletal cells 



directly by binding to vitamin D receptors and the deletion of these receptors in osteoblast results 

in an increase of trabecular bone (Yamamoto et al. 2013). Another important agent is Calcitonin, 

which is a peptide hormone found to inhibit bone resorption and that decreases osteoclast 

population. 

Growth hormone induces the expression of Insulin-like growth factor that results in an increased 

rate of bone formation and resorption, in its absence, bone resorption period takes longer in the 

bone remodelling cycle resulting in osteoporosis.  The deficiency of Thyroid hormone lowers the 

turnover rate, resulting in an increased bone mass (Kenkre and Bassett 2018). 

1.4.2. -Paracrine regulation 

This kind of regulation occurs by the action of a molecule that targets the same type of tissue 

where is produced, therefore, acts in its vicinity. TGF- β as it has been stated before has an 

important role in signaling pathways inducing expression of the master osteoblast transcription. 

Prostaglandins are lipids that act amid  G-protein (protein family that acts as signal transductor) 

receptors and regulate bone formation and resorption. Another important group of paracrine 

regulators are cytokines that can stimulate osteoclastogenesis. In menopause, these cytokines 

play an important role in the development of osteoporosis as their imbalance is associated with 

a decoupling between resorption and formation.   

1.5. Imbalances in the bone remodelling process 

Any affection in the balance between formation and resorption that occurs in bone remodelling 

is considered a metabolic bone disease, in Fig. 3 an overview with the main imbalances is shown 

with its primary cause and prevalence. 



 

Fig. 3 Bone remodelling disorders overview. 

1.6. Mathematical models 

Numerous studies on bone remodelling have been made over the last decades. The principal 

focus in the first works was experimentation in vitro or in vivo to analyze bone biology, 

nonetheless, computer tools have gained great importance to model biological phenomena. One 

type of approach observed in bone mathematical modelling literature is to investigate cell 

population models that relate to formation and resorption in the BMU. Also, we can find models 

that use a mechanical stimulus as the main cause of bone remodelling, this stimulus can vary 

among different field variables such as strain energy density, hydrostatic pressure, temperature, 

interstitial flow, just to mention a few. Finally, multiphysical models that try to couple different 

approaches that may give insights on biological phenomenon e.g., analyzing osteoblast cell 

population given a mechanical stimulus, predicting bone formation patterns after changes in load 

condition. The main advantage of the employment of these mathematical models is that they 

provide quantitative data to help in the understanding of the existing correlations between 

different variables such as resorption and formation rate (Raggatt and Partridge 2010), which 

would be difficult to find with other kinds of experimentation, in Fig. 4(a) a schematic is shown 

on how bone remodelling literature is divided. 



 

Fig. 4: Literature distribution on Bone remodelling 

 

Cell population models have been used extensively to find how signaling pathways, regulators, 

and pharmaceuticals influence the dynamic process of bone remodelling. Among the classical 

works on bone cell population models, the one by (Komarova et al. 2003) features the influence 

of paracrine and autocrine regulators such as TGF- β in the dynamic behavior of osteoblast and 

osteoclast populations utilizing nonlinear differential equations, that also describes the bone 

mass in the BMU. This model can predict different types of response that correspond to normal 

bone remodelling function and different clinical cases such as Paget’s disease and osteoporosis, 

in Fig. 5 the dynamical behavior is described accounting for the population of osteoblasts and 

osteoclasts in the normal bone remodelling cycle. Another cell population model considered to 

be classical is that of (Pivonka et al. 2008), this model proposes a set of differential equations that 

describe the dynamic behavior of bone cells, depending on the influence of the signaling pathway 

RANK-RANKL-OPG with the addition of TGF- β. These two last models have become a classic in 

the field of bone remodelling and are widely known for its robustness. 



 

Fig. 5: Population dynamics for a normal remodelling cycle. 
 

As stated above, other type of models calculate mechanical field variables that correlate to bone 

formation and resorption. The first model to use a mechanical stimulus and relate it in a 

quantitatively manner to bone remodelling was that of Wolff in 1892 (Cowin 1986).  Among the 

classical works, (Nackenhorst 1997) proposed a model that uses the strain energy density as the 

mechanical stimuli to trigger bone remodelling, in this model, a bone density equation (Eq.1) 

depends of the energy strain at a given time step and a few constants that are found 

experimentally, in this case 𝑈𝑟𝑒𝑓 is the strain energy threshold at which remodelling occurs, and 

k is an experimental constant. It is worth noting that in each step the elastic modulus from each 

element changes accordingly to its strain energy density, conforming to an iterative process. 

𝑑𝜌

𝑑𝑡
= 𝑘 (

𝑈𝜌

𝑈𝑟𝑒𝑓
− 1) 

Eq. 1 

Nackenhorst model can predict the main trabecular groups in the epiphysis, and this information 

is used to give insights on bone remodelling after a prosthesis has been implanted, and based on 

these insights, recommendations for improved prosthesis design and surgery are given 

(Nackenhorst 1997).  

Weinans, Huiskes, and Grootenboer 1992 proposed a similar model that uses a bone density 

equation (2) that follows an objective function which achieves a preset energy strain density in 

the domain, here, B is the remodelling constant, and k the reference value that sets the threshold 



at which remodelling occurs. This model is able to predict as well the trabecular groups and is 

tested in a plate model which has become a classical benchmark test where discontinuities are 

found, similar in topology to trabecular bone. 

𝑑𝜌

𝑑𝑡
= 𝐵 (

𝑈𝜌

𝜌
− 𝑘)                      Eq. 2 

In the last two decades, there have been authors that according to experimental observations on 

bone tissue have modeled the main mechanical stimulus as an interstitial flow in the 

mechanosensory system formed by osteocytes. (Kumar, Jasiuk, and Dantzig 2011) models a 

poroelastic flow using a Biot model where a Darcy dissipation triggers bone remodelling, also with 

the addition of the Willis and Skempton coefficients that relate to change in volume under 

drained conditions.  

Σ𝑖𝑗 = 2𝜇휀𝑖𝑗 + 𝛿𝑖𝑗(𝜆𝑡𝑟(휀) − 𝛼𝑀휁)

𝑝 = −𝛼𝑀𝑡𝑟(휀) + 𝑀휁

�̇� = −
𝑘

𝜂
∇𝑝

}                      

 

Eq. 3 

Here, Σ is the stress of the solid matrix, 휀𝑖𝑗 the strain tensor, p the por pressure and 

𝜆, 𝑘, 𝜇, 𝛼, 휂, 𝑎𝑛𝑑 𝑀 are coefficients. 

The last advances in mathematical bone remodelling have had a more holistic approach, trying to 

model biological phenomenon using different variables, such as cell population and mechanical 

stimulus and its interaction at different scales and looking at the different interconnected 

phenomenon. (Rapisarda et al. 2019) proposes a set of differential equations to relate osteoblast, 

osteoclast, osteocyte population to a mechanical stimulus such as a function of porous flow. 

𝑥�̇� = −𝛽𝑏𝑋𝑏 − 𝛾𝑏𝑘𝑥𝑏Κ(𝜙) + 𝑆𝛼𝑏𝑥𝑘
𝑥�̇� = −𝛽𝑘𝑋𝑘 − 𝛾𝑏𝑘𝑥𝑏Κ(𝜙)

𝑥�̇� = −𝛽𝑐𝑋𝑐 − 𝛾𝑐𝑥𝑐Κ(𝜙) + 𝑆𝛼𝑐𝑥𝑐
�̇� = (𝑎𝑥𝑏 − 𝑏𝑥𝑐)Η(𝜙) }

 

 
 

 

Eq. 4 

Here 𝑥𝑏, 𝑥𝑐, 𝑥𝑘 are the change in population rate of osteoblasts, osteoclast, and osteocytes. �̇� is 

the change in bone mass. H and k are functions of the porous flow. S is taken as a stimulus 

function. Finally, a, b, 𝛽𝑏, 𝛽𝑘and 𝛽𝑐 are biological parameters.   



According to the recent review of (Della Corte, Giorgio, and Scerrato 2020) on mathematical 

models in bone remodelling, the main advances in this field will be related to concepts such as 

damage theory and factor signaling in bone biology (Bullock, Pavalko, and Robling 2019). Once an 

experimental observation (in vivo or in vitro) has been stated, it is possible to model this 

observation and see how their variables are interconnected by means of an in-silico model, this 

could complement in-vivo and in-vitro experimentation and reduce the number of trials which 

require resourses.  

1.7. Discrete based Modelling in FEA 

The behavior of a cellular structure on a macroscopical scale is governed by the dynamics that 

occur at the microscopic scale, a process used to study this type of materials is that of 

homogenization, which consists in modelling the macro properties of a material using as a base 

the dynamics occurring at a microscopic scale. This process is also used to simplify the analysis by 

decreasing the degrees of freedom (DOFS) in the mechanical model to be analyzed with FEM 

(Daxner 2010). In the field of bone mechanics, the homogenization technique has been used 

before to analyze failure properties of trabecular bone which is of interest in the understanding 

of bone-implant interface mechanics, see for example (Ganghoffer and Goda 2018).  

In additive manufacturing discretizing the infill of a part can be achieved using different 

tessellation algorithms, in the next chapter a few geometries obtained by different techniques 

are analyzed using a discrete approach, which may be useful to analyze parts as the one seen in 

Fig. 6.  



 

Fig. 6 Equilateral triangular tessellation 

Tessellation applied to a topological optimized geometry for additive manufacturing, credits to 

(Fahir et al. 2020) and GNUM group, Universidad Nacional de Colombia. 

When planning the design of cellular materials, there are different approaches to choose the most 

suitable unit cell depending on the requirements, a classical approach was developed by Clark 

Maxwell, who in 1864 published a paper proposing a simple equation (see Eqn. 5) that gives 

insight on the behavior of a unit cell, depending on the number of struts, b, and joints, j,(Maxwell, 

n.d.). Different configurations are shown in Fig. 7, the observations about the overall behavior of 

the structure are based on the topology of the unit cell, this is an important fact in the 

homogenization technique, and is useful to avoid the costly computational task of analyzing the 

full lattice geometry, and instead, focus on a single unit. Nonetheless, most recent designs of 

cellular materials use FEA to analyze more complex lattice structures in 2D and 3D, to further in 

the recent advances in lattice unit topology see (Chen, Zheng, and Liu 2018) and (Bhate et al. 

2019). 

𝑀 = 𝑏 − 2𝑗 + 3 (Eq. 5) 



 

Fig. 7 Maxwell, stability criterion for different structures 

 

There are many possibilities to discretize a domain and solve a problem with the finite element 

method, the use of the type of element may vary on the problem and computational resources 

available. In 2D simulations, the use of quadrilateral and triangular elements is widely used, 

depending on the desired accuracy in results these could be linear, quadratic, or higher-order 

elements. When homogenization is applied, other types of elements are used, such as 1D beams 

or surface elements. The models whose domain is composed of beam elements are often said to 

have a lattice structure, in this configuration of material, some design variables could be: length, 

cross-sectional shape or topology unit cell (Bhate et al. 2019). Surfaces such as shell finite 

elements are an alternative to beams in the formation of the unit cell lattice, in nature, some 

topologies are found to be “minimal surfaces” so shell elements are a good option to represent 

them in the sense that they can easily fit the mathematical requirements in shape to accomplish 

this energetically favorable topology (Bhate et al. 2019). A more detailed focus on cellular 

materials will be shown in chapter 2. 



 

Fig. 8: Homogenization example 

Results in topology of a bone remodelling algorithm using homogenization with a mesh 
composed by structured and unstructured sections. 

In Fig. 8 a study case is shown where discretization is applied to a cantilever beam (top figure), 

and in the resulting discretized domain is applied a bone remodelling scheme that optimizes its 

topology. The lattice structure can be modeled by using truss or frame finite elements (see 

annexes to see mathematical formulation). This modelling technique has the advantage to reduce 

the computational cost, (Bhate et al. 2019) demonstrated that compared with a continuum-based 

solution (hexahedron elements), the beam-FE model achieved a 500-fold computational speed 

and a 250-fold memory gain. In addition, as will be seen in chapter 3, a comparison between the 

continuum approach and the discrete for a bone remodelling problem, will show how the use of 

finite elements such as trusses or frames (see the formulation of each one in the annexes) can 

result in easier implementations and faster simulation times.  

 

 



2. Implementing discrete based modelling and the finite 
element method for structural and biological applications 

2.1. Introduction 

The field of cellular materials has benefited from recent advances in manufacturing, specially 

additive manufacturing (AM), the recent increase of importance of cellular materials is due to 

advantages in contrast with homogeneous materials, such as the possibility of local configuration 

and adding multiple functions at component parts (Schaedler and Carter 2016). Cellular materials 

may be defined as heterogenous arrangements that have two key characteristics: A unit cell that 

conforms a certain arrangement of material and space, and repetition which indicates that the 

unit cell is reproduced along one or more dimensions, resulting in a pattern that may not be 

regular and could include many different types of unit cells (Bhate et al. 2019). In mathematics, 

tessellation refers to the portioning of a domain into smaller cells or parts, this has applications 

in many fields, e.g., robotics, structural design, biology, architecture, machine learning, among 

others. In Fig. 9 some of the possible fields of application of cellular materials are depicted. 

 

Fig. 9: Application for cellular structures adapted from (Bhate et al. 2019) 

 



There are different types of tessellations, as seen in Fig. 10, each one has different features that 

make it more suitable for a specific application, the main focus on this study will be on 

Voronoi/Delaunay stochastic and triangular periodic tessellations. Voronoi tessellations are also 

called Dirichlet tessellations, thanks to the mathematician Gustav Dirichlet in 1850 who first 

proposed an algorithm to divide the Euclidean space in such a way that over a set of points 

distributed over a domain, each polygon resulting from the division is limited by a perimeter that 

is equidistant to any neighbor points. Alfred H Thiessen (1911) used this technique to make a 

prediction climate model, being the reason why, the resulting divisions are also known as 

Thiessen polygons. Georgy Voronoi (1907) made important contributions to this algorithm as 

well, and for this reason it is widely used the term Voronoi tessellation. Other type of widely used 

type of tessellations, correspond to Delaunay triangulations, named in honor to Boris Delaunay, 

a Russian mathematician that in 1934 derived the algorithm to obtain this partition. Delaunay and 

Voronoi tessellations are classified as dual tessellations because once either one of them is 

completed, obtaining the other results in a simple procedure. 

In the field of cellular material design, the finite element method is a powerful tool to predict the 

mechanical behavior considering the homogenization principle, there are different approaches to 

model the unit cell of the lattice, in this chapter, a study on the implementation of Voronoi, 

Delaunay, and triangular tessellations on optimized topologies will be made, using the finite 

element method with a discrete based approach employing frame elements. This examination 

will also give insight on how the proposed tessellations will perform when used in additive 

manufacturing, to this purpose, various specimens with different porosities were created based 

on the tessellated geometries and printed using a stereo lithography (SLA) resin 3d printer, then, 

each specimen was subjected to a compression load until it reached failure and the results 

obtained with the discrete approach were compared to those found experimentally. 

 



 

Fig. 10: Different type of tessellations 

2.2. Methods 

In Fig. 11 are shown some of the tessellations obtained with the methodology proposed by (Fahir 

et al. 2020) using an algorithm implemented in Grasshopper (McNeel, USA), in this case applied 

to the contour of a human femur. The seed points used by the algorithm correspond to different 

overlapped random point clouds to favor the highest densities from trabecular bone (KOCH 1993). 

The algorithm features the ability to approximate the number of pores which may help to obtain 

a desired porosity as seen in Fig. 11. 

 

Fig. 11 : Delaunay and Voronoi tessellations with different porosities. 



With the aim to test a discrete based modelling, each line from the resulting tessellation will be 

modelled as a frame finite element (formulation can be seen in the annexes). The corresponding 

1D element mesh was exported from Grasshopper and the finite element formulation (direct 

formulation) was implemented and solved in ABAQUS (2017) employing the UEL solver. To better 

appreciate the reach of this methodology , it was applied to a famous optimization scheme 

proposed by (Andreassen et al. 2011) and implemented in MATLAB, so the tessellation will be 

performed on an optimal topology for stiffness as will be explained in the mathematical 

formulation from this particular optimization scheme.  

A test specimen was designed as seen in a frontal view in Fig. 12, with a rectangular portion of 

140 mm by 61.8 mm, with disk plates in the extremes with 15.6 mm in width and 140 mm in 

diameter.  This geometry was optimized in a compressed loading condition by using an 

optimization scheme adapted from (Andreassen et al. 2011)which implements a power law 

approach. The boundary conditions correspond to those shown in Fig. 12 and the blue zones were 

set as a constraint to avoid optimization. These constraints correspond to the disks where the 

compressive load will be applied. This scheme is able to find optimal material distribution by 

minimizing compliance c(x), and taking as a constraint the porosity of the material f.  In Eq. 6, 𝑈 

is the global displacement, 𝐾 is the global stiffness matrix,  𝑢𝑒 is the element displacement vector, 

𝑘0 is the element stiffness matrix, 𝐸𝑒 is the elastic modulus in each element which dependents 

on 𝑥𝑒, the assigned density to element e between 0 and 1. 

In mathematical terms the problem can be expressed as follows: 

𝑚𝑖𝑛𝑥: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝐸𝑒(𝑥𝑒)𝑢𝑒
𝑇𝑘0𝑢𝑒

𝑁

𝑒=1

 
Eq. 6 

Subjected to: 
𝑉(𝑥)

𝑉0
= 𝑓 Eq. 7 

𝐾𝑈 = 𝐹 Eq. 8 

0 ≤ 𝑥 ≤ 1 Eq. 9 



After each iteration the elastic modulus 𝐸𝑒 is updated following a power law approach where 𝐸0 

is the stiffness of the material, 𝐸𝑚𝑖𝑛 is a stiffness assigned to prevent singularities solving the 

system, p is the penalization factor, which was 3 in this case. 

𝐸𝑒 = 𝐸𝑚𝑖𝑛 + 𝑥𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛) Eq. 10 

To solve this problem, an optimality criteria method is used to find the optimum compliance 

(minimum) as a function of density (𝑥𝑒). To this purpose, the sensibilities of the objective function 

are calculated as shown in Eq. 11 and Eq. 13, so the optimality condition is met with coefficient 

𝐵𝑒 where the lagrangian multiplier 𝜆 is set to satisfy the constraints. 

𝜕𝑐

𝜕𝑥𝑒
= −𝑝𝑥𝑒

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛) 𝑢𝑒
𝑇𝑘0𝑢𝑒 

Eq. 11 

𝜕𝑉

𝜕𝑥𝑒
=  1 

Eq. 12 

𝐵𝑒 =
−
𝜕𝑐
𝜕𝑥𝑒

   𝜆
𝜕𝑉
𝜕𝑥𝑒

 

Eq. 13 

 

Fig. 12: Test specimen  



The TO algorithm from (Andreassen et al. 2011) has the feature to set a given volume fraction as 

a stop criterion, so simulations with 40 %, 60% and 80% were chosen to be analyzed. The material 

properties in the simulation were those of the post cured resin used in the SLA 3d printing process 

(GREY FLGPGR04), this is, an elastic modulus of 2.8 Gpa and a Poisson ratio of 0.3. The resultant 

topology for different fraction volumes is seen in Fig. 13. 

 

Fig. 13: Optimized topology. 

After the geometry has been optimized and then tessellated for each case, the finite element 

problem with a discrete based approach is solved with the algorithm shown in figure Fig. 14. The 

information mesh for each tessellation (nodes coordinates and connectivity files) was exported 

using grasshopper and each element corresponding to a tessellation segment was considered as 

a frame element, this type of element was chosen given its capability to bear moments which 

would represent better the physical behavior of each trabeculae like structure in the specimens. 

On the other hand, truss elements were discarded due to this lack in rotational freedom at each 

node (see annexes to see mathematical formulation) although in the next chapters some test with 

this type of element will be presented to represent other study cases. The upper and bottom 

portions of the specimen corresponding to the support plates that transfer the load to the portion 

of interest are not considered in the FEM simulations, only the domain shown in Fig. 15. 



 

Fig. 14 Finite element algorithm implemented in user subroutine solved with ABAQUS (2017) 
UEL solver. 

 

 

Fig. 15: Displacement fields in specimens using frame elements 

In total 10 specimens tessellated with random Voronoi, random Delaunay, and equilateral 

triangles with a fraction volume of 40%, 60% and 80% were 3d printed (the percentage refers to 



the volume fraction set as stop criterion with the TO algorithm), with the addition of a specimen 

with no tessellation and a 100% infill. The 3D printer used corresponds to a Formlabs-2 printing 

system (Formlabs, Somerville, Massachusetts), the thickness of each layer was set in 0.1 mm. Each 

specimen was subjected to a compressive load at a rate of 0.5mm/min, and each one was tested 

until failure by fracture. The machine used corresponds to the model AG-X plus by Shimadzu with 

a total capacity of 30 tons (300kN). 

 

 

Fig. 16: Test specimen 

Something to note is that because of the limit in resolution in the manufacturing process, some 

pores in each specimen resulted in full density zones, resulting in a porosity slightly greater than 

in the cad files used or the FE simulations. 



 

Fig. 17: Force (Kgf) vs displacement (mm) for every specimen 

In Fig. 17 the failure trajectory is shown for each specimen and the maximum force is specified. 

An apparent plastic behavior is seen, but in each specimen when the elastic linear portion ends, 

cracks start to occur in various trabeculae like elements, resulting in a plastic behavior in the 

displacement curves showed above. In the discussion section a comparison between the 

experimental results and the discrete based modelling for displacements at a load of 500 Kgf will 

be shown.  



 

Fig. 18: Specimens before and after failure. 

2.3. Discussion 

There is an appreciable error regarding the displacements obtained in the FE simulations and 

those obtained experimentally for each specimen. This error can be attributed to different 

factors, first, the 3d printed models resulted with a lower porosity than intended because of pores 

that were too small and were clogged with resin. The added material would result in an increased 

stiffness of the specimen by increasing the surface area along critical loading paths occur, in 

addition, the added material could modify the cross-sectional area of some frame elements, as 

well as its corresponding inertia. These observations, would explain why all the experimental 

displacements were smaller than in the simulations by a maximum of 40% as seen in table 1. 

Second, another possible explanation on the dissimilarities on the obtained displacements befalls 

in the type of formulation used for every discrete element, as it is seen in the annexes, for the 



frame element, the degrees of freedom for a Bernoulli-Euler beam were superposed to those of 

a truss element (resulting in a frame element). It has been stated that Bernoulli-Euler beams are 

most adequate to model long beams with lean cross-sectional areas, and in some cases in the 

tessellations obtained, rather short elements can be seen at the base of the columns, although 

this might not suppose a problem to model this specimen structure since the length of the 

element is still greater than its cross sectional length; to clarify this hypothesis an implementation 

of the Timoshenko beam might be used to superpose to the frame element, instead of the used 

here to compare the resulting displacements. 

Nevertheless, the theoretical findings have the same tendency as the experimental data, greater 

displacements for triangular, Delaunay, and Voronoi tessellations, respectively. This tendency and 

the fact that triangular tessellation had greater displacements may be because of the tessellation 

method, there are different number of elements even if the geometry has the same porosity, take 

as an example a pore in triangular tessellation and one with Voronoi, the first has 3 elements, 

while the pore with Voronoi has a variable number, ranging from three to six elements. This fact 

means that there is a slight difference in density between the simulations, product of difference 

in perimeter in pores depending on the tessellation method. Is worth emphasizing the fact that 

the percentage classification is based on the topological optimization algorithm, which changes 

once the domain has been tessellated. 

  FE (mm) 
Experimental 
(mm) 

Error (%) 

Delaunay 
60% 

1.48 1.33 15 

Voronoi 
60% 

1.39 1.29 10 

Triangular 
60% 

1.67 1.39 28 

Delaunay 
80% 

1.16 0.78 38 

Voronoi80% 1.09 0.69 40 

Triangular 
80% 

1.21 1.04 17 

Table 1: Displacement comparison 



2.4.  Conclusions 

This chapter presented an introduction to the implementation of discrete based modelling with 

the aim of modelling a mechanical problem, which consisted in finding displacements in the 

elastic range using FEA with frame elements of tessellated geometry. Voronoi, Delaunay and 

triangular tessellation was used to obtain the topology present in each test specimen and in the 

simulations, after performing topological optimization at the initial domain (as seen in Fig. 13).  

The results show how the method was able to predict the displacements with the error shown in 

table 1, and more importantly the trend of displacement among the different topologies, it 

predicted the same order of amplitude in displacements, allowing to infer that although this 

methodology might not be too precise in some cases, is able to describe correctly the overall 

mechanical behavior of a tessellated material. 

As it was said in the discussion, using a Timoshenko beam might be a better alternative in cases 

where the element is not that lean, a future work could be to test this approach. In addition, a 

manufacturing method with higher resolution could be used to avoid the clogging of the smaller 

pores. 

 



3. A simple and effective 1D-element discrete-based method 
for computational bone remodeling 

3.1. Introduction 

The bone remodeling process consists of multiple dynamic interactions between several cell types 

and signaling pathways that respond to different mechanical and biological conditions to repair 

bone damage and preserve homeostasis of needed minerals while preserving bone integrity. The 

main cells involved in the process are osteoclasts, osteoblasts, and osteocytes. Insights in the 

understanding of bone remodeling, involving the mechanisms that couple bone formation and 

resorption, specifically in pathological cases such as osteoporosis which affects more than 200 

million people (Sozen, Ozisik, and Calik Basaran 2017), have led to the development of 

mathematical models. This provides a quantitative tool to help the understanding of existing 

correlations between mechanical loads applied to a bone’s portion and biological variables in the 

remodeling process, such as resorption and formation rate (Raggatt and Partridge 2010). 

Five phases set up the bone remodeling process: activation, resorption, reversal, formation, and 

quiescence. These processes occur continually, being key aspects in understanding bone 

remodeling. The most relevant works found in the literature address partially or totally each one 

of these phases. One of the first models to relate mechanical loads to bone remodeling was 

Wolff’s model, published in 1807. Wolff states that bone remodeling occurs in response to 

changes in the stress distribution in bone; this leads to a reorientation of the trabeculae. This new 

configuration has a topology determined by the stress field, following the principal stress 

trajectories (Cowin 1986). This first research established the foundations of the mechanics of 

modern bone remodeling, allowing for deeper research on how calcium homeostasis works, how 

local micro-damage repair occurs, and which biological factors are most important in this process 

(see for instance van Lenthe and Müller 2006 and Pivonka et al. 2008). During the mid-20th 

century several cell population models were developed; (Lemaire et al. 2004) relates the 

activation of osteoblasts and osteoclasts which depends on the RANK-RANKL-OPG signaling 

pathway; the model uses the mature and immature portion of the osteoblast population to 

control the degree of osteoclast activity. (Geris, Sloten, and Oosterwyck 2010) proposed a model 



using partial differential equations to describe bone formation; this approach uses a time-space 

scheme that varies according to cell densities and concentrations of growth factors. (Sun et al. 

2013) postulated a growth-factor diffusion model in which ordinary differential equations 

describe signaling pathways activity. Also, this model includes agents that simulate the action of 

various cell types involved in vascularized bone regeneration within a CaP scaffold loaded with 

growth factors. (Vanegas-Acosta et al. 2011) also used diffusion models to reproduce the patterns 

found in different healing processes occurring in the osseointegration of a dental implant; this 

model helps to predict the degree of acceptance and anchoring of the implant.(Komarova et al. 

2003) proposed a set of differential equations for populations of osteoclasts, osteoblasts. The 

model implements regulating factors to produce periodic solutions that adequately represent the 

biophysical process which correlates the phases of activation and resorption. The model stated 

by  (Nackenhorst 1997)  is based on strain energy as the main determinant of localized bone 

density in trabecular structures. This model proposed a set of bone remodeling differential 

equations integrated with the finite element method using 2D elements. The solution obtained 

resembles density distribution showing the formation of the main trabecular groups. It has been 

found that using the finite element analysis to find field variables such as energy strain or stress 

and considering them as biological stimuli is useful in modeling other phenomena besides bone 

remodeling, as is the case of bone growth; see (Guevara et al. 2015). Boundary-based strategies 

for bone remodeling can also be found; one of the main advantages of this approach is the 

simplicity of the discretization since only the boundary is meshed. The use of boundary integral 

methods such as the Boundary Element Method (BEM) has been proposed by (Martínez and 

Cerrolaza 2006) and (González, Cerrolaza, and González 2009). Their results show that BEM, used 

together with damage mechanics, is a powerful tool in bone remodeling and adaptation. 

Modeling techniques such as B-spline were used in BEM-based approaches to investigate 

biomedical applications (Annicchiarico, Martinez, and Cerrolaza 2007). More recently, the effects 

of piezoelectricity in bone remodeling have been modeled using BEM as reported by (González, 

Cerrolaza, and González 2009), while the behavior of vertebral discs under dynamic loading was 

also reported by (Cerrolaza, Nieto, and González 2018). 

Up to this point, bone architecture has been mainly addressed by modelling the bone trabeculae 

obtained from CT scans as 2D or 3D continuum elements or even 1D-beam elements arranged 



with different distributions (e.g. periodic honeycombs or a more random distribution). This 

implementation of 1D elements to represent bone architecture can reduce the model complexity 

thus leading to advantage from a computational point of view (Ruff1. Ruffoni, D. & Van Lenthe, 

G. H. 3.10 Finite element analysis in bone research: A computational method relating structure 

to mechanical function. Comprehensive Biomaterials II vol. 3 (Elsevier Ltd., 2017).oni and Van 

Lenthe 2017). Using this approach, a decrease in orders of magnitude of the number of nodes has 

been found, allowing a 1000-fold reduction in CPUs time in the modelling of trabecular bone 

mechanical properties (van Lenthe and Müller 2006). For this reason, we propose a 1D-element 

discrete method for the bone remodeling problem, being its main attractiveness the use of 

elements that resemble trabecular bone and its low computational cost. This procedure enables 

researchers to increase the sample size and the complexity of trabecular bone. Until now, there 

are no models using this 1D approach to solve the bone remodeling problem. Therefore, we 

present a methodology based on the approach used by (Garzón-Alvarado and Linero 2012a) 

which employs a dimensionless density that depends on the energy strain (see Eqn. 1) and uses 

different integration schemes like Heun, Euler and Runge-Kutta to solve this equation, where the 

use of one scheme or another did not lead to any appreciable difference. The change over time 

in density 𝜆 depends on variables 𝑘1 and n which are found experimentally, the energy strain U 

in each step is divided by a reference strain energy value 𝑈𝑟𝑒𝑓 that determines the limit at which 

remodeling occurs. The work of (Garzón-Alvarado and Linero 2012a) is of great importance for 

the proposed methodology since it is able to correctly model the behavior of trabecular bone 

using 2D continuous elements. 

The implemented remodeling methodology has one additional feature in comparison with the 

(Garzón-Alvarado and Linero 2012a). This chapter proposes a new approach to model the bone 

remodeling problem based on previous works with a low computational cost compared with 

methodologies using continuum domain elements (van Lenthe and Müller 2006), allowing the 

implementation of more complex structures and sample sizes in the simulation of bone 

remodeling dynamics and bio-inspired conceptual designs. 



3.2. Methods 

In this section, the bone remodeling model is presented as well as the developed algorithm. In 

addition, two benchmark tests (Valdez et al. 2017) are analyzed for validation purposes. 

3.2.1. Model description 

The proposed remodeling algorithm is shown in Fig. 19, where the constitutive elements of the 

domain correspond to either frame or truss finite elements. To create this model the coupling of 

the moment equation (Eq. 15) with the density equation (Eq. 14) is required in order to relate the 

strain energy to the element density, thus setting the bone remodeling dynamic. This modifies 

the modulus of elasticity as observed in equation (Eq. 16), where E(𝜆) is the elastic modulus, 𝜆 is 

the dimensionless density, and  n is an exponent found experimentally. In equation (Eq. 15) 𝜎 is 

the stress tensor and b the body forces vector.  

𝑑𝜆

𝑑𝑡
= 𝑘1  [𝜆

𝑛−1
𝑈

𝑈𝑟𝑒𝑓
− 1] Eq. 14 

 

Fig. 19: Proposed algorithm 



∇Tσ + b = 0 Eq. 15 

E(λ) = E0λn Eq. 16 

To find the maximum stress, superposition was used in a fiber of an element by adding both the 

stresses due to the axial load P and the stresses due to the maximum bending moment 𝑀𝑚𝑎𝑥  (see 

Eq. 19). It should be remarked that the loads and moments are applied at the corresponding 

nodes. Each element is assumed to have a circular cross-section area A, moment of inertia I and 

a vertical distance away from the neutral axis C (Eq. 17). 𝑀𝑖
𝑙𝑒𝑓𝑡

 and 𝑀𝑖
𝑟𝑖𝑔ℎ𝑡

 are the concentrated 

moments at both ends of the element (Eq. 19).  

𝜎 =
𝑃

𝐴
+
𝑀𝑚𝑎𝑥𝐶

𝐼
 

Eq. 17 

 

Similarly, deformation energy due to axial load and bending moments is expressed as: 

𝑈𝑠𝑡𝑟𝑎𝑖𝑛 =
1
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𝑑𝑥

𝐿
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+
1

2
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𝑀2(𝑥)

𝐸𝐼
𝑑𝑥

𝐿

0

 
Eq. 18  

 

Solving these integrals yields the strain energy, as stated by (Makris, Provatidis, and Rellakis 

2006), (derivation can be seen in the annexes): 

𝑈𝑠𝑡𝑟𝑎𝑖𝑛 = 
1

2
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𝑃𝑖
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𝑁
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Eq. 19 

3.2.2. Numerical implementation 

To solve the finite element equations for frame and truss elements, a user subroutine was 

programmed and attached to ABAQUS (2017). Euler’s method was used to solve equation (Eq. 

14) as shown in equation (Eq. 20) 

𝜆𝑡+1 = 𝜆𝑡 + 𝑘1  [𝜆𝑡
𝑛−1

𝑈

𝑈𝑟𝑒𝑓
− 1]𝛥𝑡 

Eq. 20 



A time step ∆t = 0.1 days was used. Constant k1 was 0.325 days -1 and 𝑛 was 2.0. The reference 

energy constant Uref,    which determines the threshold at which remodeling occurs was set to 800 

Pa, these constants are based on the previous works of  (Garzón-Alvarado and Linero 2012a) . It 

is worth mentioning that the algorithm stop condition was set to 100 days of simulation time, 

since at this time cell population dynamics have reached a quasi-steady-state (Buenzli, Pivonka, 

and Smith 2011). A general description of the algorithm in terms of the programmed subroutines 

can be seen in Fig. 20.  

 

Fig. 20 :FE algorithm implemented in ABAQUS (2017).  

3.2.3.  Unit cell topology 

Unit cells of different shapes (hexagons, squares, and triangles as shown in Fig. 21) were tested 

in two benchmark tests: the cantilever beam displayed in Fig. 22(a), and the square plate 

subjected to a distributed load shown in Fig. 22(b). According to (Luxner et al. 2009) it is expected 

that unstructured meshes resemble better the mechanical behavior of trabecular bone since a 

more disordered cellular structure prevents early crack formation, once a load has been applied. 

Finally, it was tested which formulation (truss or frame) was most suitable for the remodeling 



algorithm based on the resulting topology, and then its results compared with previous works on 

topology optimization and with the benchmark tests described in the next section. 

 

 

Fig. 21: Different unit cells  
Different unit cells tested: (a) Hexagonal or honeycomb. (b) Square cells. (c) Triangular cells. (d) 

Square Cells with two diagonals. (e) Triangle. 

 

Fig. 22: (a) Cantilever beam, (b) Square plate with distributed load 

3.2.4. Benchmark tests and model validation 

In order to test the computational model, two benchmark tests were performed. First, a 

cantilever beam was used as the initial domain that was discretized using frame and truss 

elements. The meshes reproduced were made with different aspect ratios and distributions. 

Several element lengths (h) ranging from 2.4m to 0.15m were used to see the effectiveness of the 

method in each mesh. Only elements with a density higher than one (1) unit are shown in Fig. 24 

to Fig. 28 to better appreciate some of the resultant topologies, whereas in Fig. 23 the continuous 

field of density (lambda) is shown; as the benchmark results are not the main focus, only a few 

cases are enough to evidence viability, a few more examples are shown in the annexes section.  



 

Fig. 23: Density for the cantilever beam at 100 days, element length 0.3m. 

 

 

Fig. 24: Square frame cell unit structure remodeling. 

 

 

Fig. 25: Polygon cell unit structure remodeling; frame elements. 

In Fig. 24 and Fig. 25 the resultant topologies of the discrete bone remodeling algorithm are 

shown with different element sizes and types of unit cells, while Fig. 26 depicts a triangular 

unstructured mesh. The results obtained with this methodology resemble those of a topological 

optimization algorithm for this benchmark test (Fig. 29). Examining the benchmark results, it can 



be noted that the method shows a high sensibility to the type of unit cell that sets up the initial 

domain. This can be seen in Fig. 24 and in Fig. 27 where the meshes only differ in that the square 

configuration has an extra diagonal element in their unit cell, yet the final topology is different 

since the stress distribution changes at a unit cell level. 

Finer meshes produce results that seem to be more similar to those of TO algorithms, so a rather 

fine mesh will be used in the study cases. 

 

Fig. 26: Unstructured mesh remodeling with triangular unit cells. 

 

Fig. 27: Remodeling in structured meshes, triangular unit cell. 

Fig. 28 displays a comparison between frame (three degrees of freedom: horizontal, vertical, and 

rotational displacement) and truss elements (two degrees of freedom: horizontal and vertical 

displacement). In this case, the capacity to bear moments is noted in the frame topology, since 



the final result shows a structure with longer horizontal supports, whereas in the truss case a 

structure with long diagonal supports at an angle of 45° is seen along the structure. Both results 

are structurally consistent and serve as a conceptual basis for design. It is worth noting that 

although there are different results in the topologies obtained, the strain energy found in the 

structure stays the same but concentrated along the remaining trabeculae. With the aim in mind 

to address bone remodelling problems, frame elements will be used in further cases, since they 

can bear moments, similar to trabeculae structures. 

 

Fig. 28: Comparison between results of the bone remodeling problem using frame and truss 
formulation with a mesh setup by diagonal elements. 

 

Fig. 29: Initial (left) and optimized (right) structure of a cantilever beam using a topological 
optimization algorithm (Chen et al., 2018) 

Next, a test based on the implementation proposed by (Garzón-Alvarado and Linero 2012b)is 

discussed herein to compare similarities in the resultant topology. A triangular distributed load is 

applied on a square plate with the boundary conditions shown in Fig. 30(a) a comparison was 

made between Garzón’s results using an element-based remodeling approach (using continuous, 

triangular elements) and the discrete remodeling algorithm proposed herein with frame 

elements. In this case, an increase in speed of more than 20% was found with the proposed 

methodology for meshes with 10000 nodes. The computer used had an AMD Ryzen processor 

(2.30GHZ) with 7 cores and 16GB RAM. With the continuum approach a simulation time of 100 



days was achieved in 310 (sec) whereas with the new methodology the simulation reached that 

same span in 245 (sec) wall-clock time; in this case, the proposed methodology used the unit cell 

shown in Fig. 21(b). 

 

 

Fig. 30: Bone remodelling benchmarks 
(a) Boundary conditions. (b) Result for bone remodeling problem using an element-based 

approach (Garzón-Alvarado and Linero 2012a)(c) Result of bone remodeling problem using 
discrete frame elements. 

To this point, two benchmark cases have been tested with the proposed methodology showing 

results similar to those obtained in previous works with continuum elements. In the plate model 

a serious of column structures are formed at the base and have ramifications at the top part. In 

the cantilever benchmark test a serious of diagonal structures are formed as seen in Fig. 28. This 

is expected in this case since the methodology follows an objective function with the purpose of 

obtaining a preset specific energy strain value per unit bone mass. Regarding the square plate, 

there are differences in the topologies obtained, but the formation of structural columns with 

branches are seen in both cases  Fig. 30(b) and Fig. 30(c); in the discrete case, the difference in 

column density might be due to lack of contact between the elements that hold the highest 

energy density. 

Given that these benchmarks showed very good agreement with previous works, two study cases 

will be examined to further study the reach of this methodology. For the following medical cases 

the geometrical properties from trabeculae were adopted from studies from (Cesar et al. 2013) 

on skeletal microarchitecture, for each bone. 



3.3. Results 

3.3.1. Implementation in 2D 

In this work two medical cases were subjected to our bone remodeling algorithm in an attempt 

to study the formation of the main trabecular groups. The first case, proximal femur, and the 

second, calcaneus cancellous bone, were considered in a specific stage of the walking gait 

according to previous studies. The resultant topologies in both cases resemble anatomical 

features found in the literature reviewed. 

In the first medical case, proximal femur, the boundary conditions try to mimic the loading history 

of this bone where the main forces correspond to both the hip reaction force and the action of 

the abductor muscle during the gait cycle. The loading cases are based on the works of (Beaupre 

and Orr 1990). The boundary conditions of the initial mesh corresponding to an unstructured 

lattice with a triangular unit cell are shown in Fig. 31(left). The resultant topology with the 

formation of the main trabecular groups (in the density field) and relevant anatomical features 

are seen as well in Fig. 31(right). The results show the formation of groups of trabeculae that 

undergo compression or tension.  

 

Fig. 31: Boundary conditions and topology obtained at t=100 days mass fraction, with 
periosteum set as a constraint. 



 

Fig. 32: Femur with low bone mass density (Osteoporosis) from (“Computer-Assisted Femoral 
Augmentation for Osteoporotic Hip Fracture Prevention” 2013) 

 

 

Fig. 33: Similarities in topologies obtained with bone remodelling 
Bone topology (a) Study case: femur contour with initial triangular mesh and frame elements. 
(b) Topology obtained without restriction on the periosteum at 100 days. (c) Femoral frontal 
section through neutral axis, showing trabecular topology from (KOCH 1993).  (d) Principal 

trabecular groups (Martín and Kochen 2011) 



An additional condition was needed to solve these medical cases since the contour corresponding 

to the periosteum seemed to be affected by the remodeling algorithm. This issue was fixed by 

applying a constraint on each element belonging to the periosteum corresponding to a constant 

elastic modulus. For comparison sake, results of the femur case restrained with this condition, in 

figure Fig. 31 can be seen, whereas in Fig. 33(b) the density field is shown without the restriction. 

Something that called our attention is that the result in Fig. 31 seemed very similar to a bone with 

osteoporosis (as the one in Fig. 32), this could result from a low energy strain reference value in 

the algorithm. In case of the topology obtained in Fig. 33(b) an increase bone mass density was 

achieved. This change in density could result due to the fact that the restriction on the periosteum 

lowers the energy density distribution within the femur, so in this case some trabeculae won’t 

reach the energy strain reference to achieve formation. The decrease in energy density is in part 

to the higher elastic modulus set on the periosteum, looking at Eq. 19 we can see that a greater 

elastic modulus means a lower strain energy for that element. 

In the second medical case, calcaneus cancellous bone, the boundary conditions were suggested 

by  (Belinha, Natal Jorge, and Dinis 2012) which represent a series of stages of the gait cycle. The 

different force values at each stage are collected in Table 1, while all boundary conditions are 

shown in Fig. 35(a). The boundary conditions in the second stage of this cycle are detailed in Fig. 

34 along with the initial mesh; results show that trabecular groups undergo, mainly, compression 

stresses. In the calcaneus case the element size was set from the low end of the spectra of the 

characteristics reported by (Cesar et al. 2013), i.e. 55 micrometers. The restriction on the 

periosteum was set in these simulations as well. 



 

Fig. 34: Boundary conditions and topology obtained at 100 days, second load case, initial mesh 
is shown. 

 

 

Fig. 35: Results of calcaneus cancellous bone remodeling at 100 days. 
 (a) boundary conditions used by (Belinha, Natal Jorge, and Dinis 2012).  (b) Trabecular patterns 

obtained with frame elements (c) calcaneus x-ray detail.  

 



Second medical case 

First load case F1 F2 F3 F4 

Force magnitude 
(N) 65 100 20 10 

Direction 90° 
Normal to 
surface 0° 5° 

Second load 
case F1 F2 F3 F4 

Force magnitude 
(N) 65 30 25 -- 

Direction 70° 90° 0° -- 

Third load case F1 F2 F3 F4 

Force magnitude 
(N) 65 15 15 100 

Direction 90° 0° 0° 
Normal to 
surface 

Table 2.  Gait cycle, boundary conditions as proposed by (Belinha, Natal Jorge, and Dinis 2012). 

3.3.2. Implementation in 3D 

As a final part in this chapter, the bone remodelling algorithm was implemented in a 3D domain, 

following the same general methodology as in the 2D cases, first the algorithm was tested with 

benchmark tests corresponding to topological optimization classical cases as the cantilever beam 

shown in Fig. 22 and bone remodelling cases as the one presented in Fig. 30. In the first 

benchmark test, the distributed load in a cube (Fig. 36), the formation of four columns is 

appreciated with an increased density, with arcs forming in each face, these results are similar in 

topology to those obtained by (Walton and Moztarzadeh 2017), allowing to infer as we did in the 

2D cases that this methodology can be applied to a medical case in which the bone density 

equation proposed first by (Nackenhorst 1997) can yield important information on the trabecular 

patterns formed for a particular set of  boundary condition. 



 

Fig. 36: a. Boundary conditions for the 3D domain. (b) Results in topology optimization for a 

domain composed of frame elements.(c) Topological optimization results from (Walton and 

Moztarzadeh 2017)  

For this implementation the frame element formulation has twelve degrees of freedom since 

each node can have three translational displacements (Along the x,y and z axes) and three 

rotational displacements around each axe (six degrees of freedom per node). The methodology 

flow chart shown in  Fig. 19 was applied to the 3D case as well, the direct formulation and same 

remodelling equation is used, yet, it is worth mentioning that in this case the strain energy per 

element takes into account terms due to torsional and additional bending moments because of 

the three dimensional nature of the problem, for this reason inertia along the Y and Z axis is 

considered, as well as the polar moment of inertia J and torsional modulus G as shown in the next 

equation. 
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Eq. 21 

 

In Fig. 37 the degrees of freedom for the 3D frame element are appreciated, where the 

superscript corresponds to each node, u,v, w  are translational displacements along the axis 

shown, and θxy, θyz, and θxz are the rotational displacements in the specified planes in the 

subscript. 

 

Fig. 37: 3D frame DOFS (degree of freedom)  

 

For the medical case, a 3d model of the femur was discretized into frame elements and subjected 

to the boundary conditions suggested by (Beaupre and Orr 1990), where an approximated pattern 

of the main trabecular groups was found. The stl model was meshed in Ansys and the process of 

discretization used a code in MATLAB to obtain the 1D frame elements. In Fig. 38 the 3D initial 

bone density is shown along with the bone remodelling results after 100 days, as in the 2D 

simulations for this medical case. The mesh composed of tetrahedral structures (i.e., the unit cell 

is a tetrahedron). The properties of each element are the same as in the case of the previous 2D 

simulations, inertias, area, and average length per element. For these simulations a restriction in 

density was set for the elements corresponding to the periosteum as in the case of Fig. 31. 



 

Fig. 38:(a) Total displacement for the loading history proposed by (Beaupre and Orr 1990),  . (b) 

Coronal section of the femur (c) Isometric view with a cut showing coronal section. 

Although the distribution obtained for the trabecular groups resembles the patterns found in 

anatomical samples, there is still a lack in formation of the secondary groups, which may be due 

to the fact that the loads of (Beaupre and Orr 1990) model better the 2D domain. 

 

3.4. Discussion 

In this work, a bone remodeling algorithm, based on the works of  (Nackenhorst 1997; Garzón-

Alvarado and Linero 2012a) is proposed with a discrete element approach to address the bone 

remodeling problem. In addition, different aspects such as mesh quality, mesh size and mesh 

distribution were tested qualitatively to see the influence on the resultant topology. 



In the first medical case, a zone with less density called Ward’s triangle (in honor to Ward, who 

first described the internal structure of the proximal femur in 1938) can be seen between the 

ogival system of the trochanteric plateau and the cervicocephalic support system. This is an 

important region because cervicotrochanteric fractures originate here in people of advanced 

age (Martín and Kochen 2011). The calcar, which extends from the posteromedial cortex in the 

femoral neck to the distal part of the lesser trochanter, is identified with a high bone density in 

the final topologies. This is an important fact since this region helps to support stems from 

implants, which need a dense cancellous bone for a proper anchorage; for this reason, 

numerous fixation methods have been proposed on this zone, see (Cha et al. 2019) and (Peng 

et al. 2020). 

Among the obtained trabecular groups, it is noted that the greater trochanter group (GTM) 

appears as a less dense zone compared with the other groups. The secondary compressive (GSC) 

and secondary tensile (GST) groups are visible too: They begin to form in the lateral portion of the 

shaft and go upward forming an arch that ends in the vicinity of the greater trochanter. As seen 

in Fig. 33(c) the secondary groups meet at right angles, starting in the proximal section of the 

shaft, becoming gradually thinner as they approach the surface of the femoral head. These last 

observations agree well with our simulations as seen in Fig. 33(b). Another key feature found in 

the simulation is that a high bone density is predominant in zones where there is a greater cortical 

thickness as seen in Fig. 33(c) and Fig. 31; this helps to maintain the strength and rigidity of the 

femur as stated by (Marco et al. 2019). 

The calcaneus bone is the largest tarsal bone and it is characterized by a cortex containing 

trabecular bone (Metcalf et al. 2018). Due to the mechanical stresses acting on the calcaneus, 

a set of trabecular groups are formed and play a crucial role in the biomechanics of this bone. 

These are important in orthopedic procedures and pathology treatments that compromise 

bone integrity such as in osteoarthritis therapy. The loading conditions were addressed as bone 

remodeling problems with the methodology proposed herein. The resulting trabecular groups 

resemble those seen in the calcaneus bone illustrated in Fig. 35(c). As in the previous medical 

case, a set of main trabecular groups have been identified as displayed in Fig. 35(b). These are 

in good agreement with anatomical studies regarding the biomechanics of calcaneus bone 

(Abboud 2018). The following trabecular motifs can be identified individually for the boundary 



conditions of (Belinha, Natal Jorge, and Dinis 2012): thalamic group (1); inferior plantar group 

(2); anterior apophyseal group (3); anterior plantar group (4); posterior achillean group (5); and 

central triangular area of refracted bone (6). An aspect that calls attention in some of these 

groups is the appearance of single lines corresponding to long trabecular groups such as the 

anterior apophyseal group or the central triangular area of refracted bone; this “thinning” could 

mean that the particular group does not play a vital structural role for that specific case load.  

Having discussed the medical cases, it can be stated that this method may be used as an 

alternative to continuous domains due to its inexpensive computational cost as stated by (van 

Lenthe and Müller 2006) where even a 1000-fold reduction in processing time can be achieved 

by using frame  elements, thus allowing to increase both the sample size and the complexity of 

the trabecular structure to analyze multiple loading configurations (Ruff1. Ruffoni, D. & Van 

Lenthe, G. H. 3.10 Finite element analysis in bone research: A computational method relating 

structure to mechanical function. Comprehensive Biomaterials II vol. 3 (Elsevier Ltd., 2017).oni 

and Van Lenthe 2017). A comparison in speed of the continuum and the proposed discrete 

methodology was briefly addressed as seen in Fig. 30(b) and Fig. 30(c): an improvement of more 

than 20% wall-clock time was achieved. Furthermore, it was found that the new bone remodeling 

approach using discrete structures have shown great potential. 

A high level of mesh structuration leads to results quite similar to those obtained in TO. 

However, the simulations obtained with the medical cases which resemble the most to 

trabecular bone were those with non-structured meshes. This can be in part due to the fact that 

trabecular bone has been more accurately modeled with non-structured meshes (Luxner et al. 

2009). This also agrees with the hypothesis given by  (Weinans, Huiskes, and Grootenboer 1992) 

that trabecular bone is chaotically ordered and can be considered as a fractal since the best 

results were obtained with a triangular non-structured mesh. 

Looking at the bone remodeling algorithm proposed, it is seen that the rule applied to each 

element is an objective function for an optimization process, relative to an external load. This 

function follows a preset value for the energy strain density; thus, it is expected that the energy 

strain, as well as the stresses, are more uniformly distributed as the steps increase. In this sense 

it can be said that this method uses a bio-inspired topology optimization. 



3.5. Additional applications 

As a proof of concept, some results from the bone remodelling algorithm were manufactured 

using a digital light processing (DLP) 3d printer. In Fig. 39(a) and Fig. 39(b) the trabeculae groups 

obtained are shown, whereas in Fig. 39(c) the topology obtained by the bone remodelling 

algorithm for the cantilever beam shown in Fig. 28 (Frame elements) is demonstrated. This shows 

that the bone remodelling algorithm may be used to optimize infill patterns to be used in additive 

manufacturing. (Wu, Wang, and Gao 2019) presented a method to design lattice structures that 

are optimized to the principal stresses, and also uses an algorithm to ensure geometrical 

consistency so the lattice model can be 3d printed. A bone remodelling algorithm that optimizes 

a lattice structure and allowing to be printed like those in figure Fig. 39 may have the advantage 

of reduced computational cost, given the use of 1D finite elements and a direct formulation in 

the finite element method. 

 

Fig. 39: Additional application for the bone remodelling algorithm using discrete structures, 

bio-inspired infill pattern, resin 3d prints.  

The prints were obtained by converting the images from the bone remodelling results to gray 

scale, then by converting this data to vector image and extruding high contrast zones, using the 



software 2D Image to STL Converter (Windows) featured in thingiverse by the user BloodBight. 

Then as slicer, the software CHITUBOX © was used. 

 

3.6. Conclusions  

The results show the self-enhancing process in which denser bone attracts more strain energy 

after each iteration, resulting in an even denser bone. This methodology when applied to the 

medical cases has proven to be a valid approach given the similarity with previous works (Garzón-

Alvarado and Linero 2012b; Valdez et al. 2017) and the anatomical features found in literature 

(Martín and Kochen 2011; Marco et al. 2019). 

As first stated by (van Lenthe and Müller 2006) the use of beam-like elements properly predicts 

the anatomical distribution of trabecular groups. A modelling approach using both beam 

elements for rod-like trabeculae and shell elements for plate-like structures, characteristic in 

cancellous bone, may be used to improve this methodology. Regarding the limitations of the 

proposed methodology, one is that frame-based models alone fail to represent the plate-like 

networks, especially in certain areas where plate structures are predominant in cancellous bone; 

so, this approach is applicable only to model mechanics of trabecular bone. In cortical bone, a 

precise model would need to be coupled with continuous elements to improve representation. 

This loss in precision to represent bone architecture is compensated with a gain in model 

simplification and solution time that could be used to look into nonlinear problems, typical in 

bone remodeling, or with several spatial scales. Another shortcoming of this approach, when 

dealing with medical cases, is that the initial domains are generated randomly in a manner that 

attempts to mimic cancellous bone, but not with a specific-patient domain. In further works, a 

more clinical accurate domain may be obtained from a specific portion of cancellous bone 

retrieved from a CT scan to evaluate bone remodeling in a specific loading case, this 3D simulation 

will benefit from the improvements in speed and simplicity from this methodology.  

The work in chapters two and three may be used by design engineers as a method to generate a 

concept design for biomaterial engineering applications since trabecular bone is a natural 

material that excels for its low weight and high mechanical performance (Ruff1. Ruffoni, D. & Van 



Lenthe, G. H. 3.10 Finite element analysis in bone research: A computational method relating 

structure to mechanical function. Comprehensive Biomaterials II vol. 3). It could also be used too 

by medical researchers who are interested in the bone remodeling dynamics and the mechanical 

properties of cancellous bone with applications in bone grafts and implants. Furthermore, by 

understanding the topological optimization of bone remodeling, engineers should be inspired by 

these natural smart designs for developing sustainable and useful technologies.  

Finally, in the last part of this thesis, based on the model of (Komarova et al. 2003) and 

(Nackenhorst 1997), both being relevant works in the field of bone remodelling, the coupling of 

mechanical field variables and biological variables will be explored by means of the discrete 

modelling approach in order to relate variables such as strain energy in the BMU and the dynamic 

variations in cell populations of osteoblasts and osteoclasts by the incidence of different paracrine 

and autocrine factors that are inhibited by the mechanical stimulus perceived in the osteocyte 

mechanosensory system. This final chapter can be used as a base for researchers to look into the 

relation between two type of models that not up until recently have been integrated, but this 

time using the discrete modelling approach. 

 



4.  Unified framework of cell population dynamics and 
mechanical stimulus using a discrete approach in bone 
remodelling 

4.1. Introduction 

Among the different approaches to study bone remodelling from a mathematical point of view, 

the use of bone cell population models has its main application in the study of different biological 

factors at play in the biophysical activities of osteoblasts and osteoclast (Hambli 2014). Some of 

these models have already been reviewed in chapter one under the section of mathematical 

models. This modeling endeavor has its motivation in the need for more insight on the imbalances 

in biological factors in diseases like osteoporosis, osteopetrosis, among others, where a 

quantitative understanding in biological cell dynamics could be used to better design 

pharmaceutical and physiotherapeutic treatments.  

There are various classical works on bone population dynamics, one of the most famous is the 

one of (Komarova et al. 2003), which is important in this chapter. This model relates the 

population of osteoblast and osteoclast with bone mass density (BMD) at the  basic multicellular 

unit (BMU) in accordance to histomorphometry data of bone sections (Parfitt 1994). This model 

became of interest to the scientific community because it takes into account paracrine and 

autocrine regulators of the bone remodelling process such as TGF- β, RANKL, and others, that are 

important in treatments where there are imbalances between formation and resorption rate. 

Furthermore, the dynamic behavior accurately predicts the remodelling cycles for different 

pathological cases in good agreement with clinical literature. All this is achieved by the coupling 

of three non-linear differential equations that relate the population of osteoblasts (𝑥2), 

osteoclasts (𝑥1) and bone density. These populations follow a power law approximation for the 

growth rates of osteoblast and osteoclast as it is seen in Eq. 22 and Eq. 23 .The effects of the 

different factors influencing the bone remodelling process (PTH, TGF- β, RANKL, among others) 

are taken into account by the constants 𝑔𝑖𝑖. Finally, these cell populations determine the amount 

of bone mass density in percentage (z in Eq. 25), being 100% the steady state level of bone density 

which is in average 0.98 g/cm2 in young adults (Key 2020) for the femoral head. 



 The type of influence on the principal regulating factors of the bone remodelling process is shown 

in Table 3, where the first subscript corresponds where the regulating factor is originated, 1 for 

osteoclast and 2 for osteoblasts. 

𝑑𝑥1
𝑑𝑡

= 𝛼1𝑥1
𝑔11𝑥2

𝑔21 − 𝛽1𝑥1 
Eq. 22 

𝑑𝑥2
𝑑𝑡

= 𝛼2𝑥1
𝑔12𝑥2

𝑔22 − 𝛽2𝑥2 
Eq. 23 

𝑦𝑖 =  {
𝑥𝑖 − 𝑥�̅�  𝑠𝑠𝑖 𝑥𝑖 > 𝑥�̅�
0           𝑠𝑠𝑖  𝑥𝑖 ≤ 𝑥�̅�

 
Eq. 24 

𝑑𝑧

𝑑𝑡
= −𝑘1𝑦1 + 𝑘2𝑦2 

 Eq. 25           

Signaling type Regulating factors 𝒈𝒊𝒋 

Autocrine (Osteoclasts) RANKL, TGF- β, 𝑔11 

Paracrine (osteoclast to Osteoblast) TGF- β, IGF 𝑔12 

Paracrine (osteoblast to Osteoclast) PTH, OPG, RANKL, vitamin D3 𝑔21 

Autocrine (osteoblast) IGF 𝑔22 

Table 3: Factors 𝑔𝑖𝑗 influence on (Komarova et al. 2003) models. 

Previous stability and sensitivity analysis have been made on the model of (Komarova et al. 2003) 

e.g. (Jerez and Chen 2015) and (Fonseca-vel 2009). These works show that stability is assured for 

a rather narrow set of initial conditions and parameters, the non-linear analysis yields various 

type of responses, stable regulated oscillatory, single response, and unstable oscillations. The 

sensibility analysis can be performed varying each parameter and revising the time response using 

functional blocks as in the case of  (Fonseca-vel 2009) or analytically .  

Another famous model is that of (Pivonka et al. 2008) which in addition to the cell populations 

addressed by (Komarova et al. 2003), includes the population of precursors of osteoblasts and 

osteoclasts and incorporates the RANK-RANKL-OPG signaling pathway with the influence of TGF- 



β on bone cells. This work is built up on the model of (Lemaire et al. 2004) with a few additional 

features, it adds a rate equation for the change in bone volume depending on time, in addition, a 

rate release equation for TGF- β in the bone matrix with the inclusion of the expression of OPG 

and Rankl on osteoblastic cell lines.  

More recently, models with increased complexity have been proposed, elaborating on classical 

works such as the one of Komarova, for example (Jerez and Chen 2015) added  a term functioning 

as external regulator of the bone remodelling process, furthermore conditions for the existence 

of positive periodic simulations according to those found experimentally are derived analytically. 

(Hambli et al. 2016) developed a model which links pharmacokinetic and mechanical dynamics to 

predict the action of denosumab (monoclonal antibody) in bone remodelling by coupling the 

model of (Komarova et al. 2003) with a mechanic model which takes into account fatigue damage 

(J. Li et al. 2007), this model is able to predict bone formation as well the influence of denosumab 

in the bone mass density over time. 

In this chapter we present a model which relates a classical population model such as the one 

proposed by (Komarova et al. 2003) and the one by (Nackenhorst 1997) which has a mechanical 

focus, both classical papers in the field. This new model, could help researchers visualize how the 

bone remodelling process periodicity response relates to a mechanical stimulus in trabecular 

bone and how it affects the formation of the main trabecular groups, to this purpose the femur 

medical case that was previously addressed in chapter three will be analyzed. The model also has 

the novelty of coupling two robust models and the additional benefits of using the discrete 

modelling approach, improving on computational speed as it was seen as well in the previous 

chapter. 

4.2. Methods 

In this section, the model of (Komarova et al. 2003) will be described with a few additions 

proposed  in order to couple it  with the model of (Nackenhorst 1997) that will also be revised, 

the methodology is presented as a flow chart in Fig. 40. 



4.2.1. Model description 

The proposed model in this chapter is shown in Fig. 40, for this new model, a discretized modelling 

approach is followed as in the previous chapter. In this case, frame elements will be used as well 

(displacement and rotations at each node) to model each trabeculae mechanical behavior and 

the cell population variation at each bone multicellular unit (BMU).The same boundary conditions 

as before will be applied to the femur of (Beaupre and Orr 1990) as well as the trabeculae 

properties such as inertia, length, and area (Cesar et al. 2013). In Eq. 26, the term added to 

(Nackenhorst 1997) changes the elastic modulus accordingly to the relation between osteoblasts 

and osteoclast at the BMU following a power law as in the unchanged model with m =2 . 𝑘3 is a 

normalization constant that scales the density obtained by Nackenhorst to be added at the bone 

mass density proposed by Komarova. Constant 𝑘4 is also a normalization factor for the relation 

between osteoblasts and osteoclasts. These constants were selected to fit the behavior from the 

bone remodelling response at different cases, such as stable bone periodic response, unstable 

formation (osteopetrosis), unstable absorption (osteoporosis) and simulating the action of a 

pharmaceutical agent, affecting bone formation.  

𝐸𝑡+1 = 𝐸𝑡(𝜆
𝑛 + 𝑘5 (

𝑋2

𝑋1
)
𝑚

) Eq. 26 

𝛾1 = 0,99 + 𝜆 / 21,55 Eq. 27 

𝛾2 = 0,89 + 𝜆 / 21,55 Eq. 28 

 



 

Fig. 40 Flow chart of new model coupling bone remodelling model from (Komarova et al. 2003) 

and (Nackenhorst 1997) with the addition of  coupling terms. 

In Fig. 41 a comparison between the two models coupled is shown with the additional terms 

proposed in this work, the linking terms correspond to the dimensionless bone mass density 

lambda  (𝜆), 𝛾1, 𝛾2 and the term (𝑋2
𝑋1
)
𝑚

 in the equation which updates the elastic modulus (see Eq. 

26) 

 



Fig. 41: Equations from the models from (Komarova et al. 2003) and (Nackenhorst 1997) with 

terms added in this new model. 

The terms 𝛾1 and 𝛾2were fitted in order to maintain a stable response in the system of ordinary 

differential equations and depend on the dimensionless density calculated following the 

Nackenhorst model, these terms modify the rate at which the population of osteoblast and 

osteoclast changes without taking the system out of equilibrium. 

4.2.2. Numerical implementation 

As stated before, we coupled two classical bone remodelling models into one. As seen in Fig. 41, 

the new model is described by two groups of differential equations. The system of differential 

equations from the model of Komarova was solved using the Runge-Kutta fourth-order (RK4) 

which is based on a Taylor’s series expansion. For each differential equation (osteoclasts, the 

following scheme was followed: 

𝑥𝑖 
𝑡+1 = 𝑥𝑖 

𝑡 +
Δ𝑡

6
[𝑓1 + 2𝑓2 + 2𝑓3 + 𝑓4] 

Eq. 29 

𝑓1 = 𝑓(𝑥, 𝑡𝑘, 𝑥𝑖 
𝑡)  

𝑓2 = 𝑓(𝑥, 𝑡𝑘 +
Δ𝑡

2
, 𝜆𝑘 +

Δ𝑡

2
𝑓1)   

𝑓3 = 𝑓(𝑥, 𝑡𝑘 +
Δ𝑡

2
, 𝜆𝑘 +

Δ𝑡

2
𝑓2)   

𝑓4 = 𝑓(𝑥, 𝑡𝑘 +
Δ𝑡

2
, 𝜆𝑘 +

Δ𝑡

2
𝑓3) 

 

So, the population of osteoclasts (𝑥1), osteoblasts (𝑥2) and mass percentage (z) is determined at 

each step Δ𝑡  ,in addition with the energy strain at each element and dimensionless density 𝜆 for 

each element. To solve the finite element equations for the frame elements and the system of 

ODES a user subroutine was programmed and attached to ABAQUS, the UEL solver was used. As 

stated before Euler method was used to solve the bone density evolution (𝜆) whereas Runge-

Kutta fourth-order was programmed to solve the system of ODES corresponding to cell 

populations (see Eq. 22). A time step of 0.1 days was set as in the previous chapter. 



4.3. Results 

In this section some conditions for bone remodelling are considered to test the model proposed, 

among them, we consider the normal bone remodelling cycle (no net gain or loss in bone 

turnover) with the time evolution given some initial conditions (see Table 4),pathologies like 

osteoporosis where there is a decrease in bone mass density, osteopetrosis, where an increased 

density is found in trabecular bone, finally, a case where a pharmaceutical agent has been 

administered, affecting bone remodelling regulators like IGF. 

4.3.1. Normal bone remodelling cycle 

In figure Fig. 42 the variation in cell population for osteoblasts and osteoclasts can be seen 

according to the model of (Komarova et al. 2003), there is an equilibrium between formation and 

absorption, resulting in no net bone mass addition in the BMU. In Fig. 43 the bone mass density 

variation is shown for the same case, in addition, the system stability can be seen in the phase 

portrait where only one orbital is seen.  The parameters from the model in this particular case are 

shown in Table 4. 

Parameters Stable oscillations 

𝑥1(at time 0) 11.0607 

𝑥2 (at time 0) 212.1320 

𝛼1  3 cells day-1 

𝛼2 4 day-1 

𝛽1 0.2 day-1 

𝛽2 

𝑔12, 𝑔21,𝑔22 

 

0.02 day-1 

𝑘1 0.093 % cell-1 day-1 

𝑘2 0.008% cell-1 day-1 

𝑘3 0.001% cell-1 day-1 

𝑘4 4.439e-4  

𝑔11 1.1 

𝑔12 1.0 

𝑔21 -0.5 

𝑔22 0.0 

Table 4: Parameters used in the normal bone remodelling cycle. 



 

Fig. 42: Osteoclast and osteoblast population at the BMU 

 

Fig. 43: Bone mass percentage at the BMU (top) and phase portrait (bottom) of osteoblast and 

osteoclast dynamic. 

The bone remodelling cycle with periodical stable oscillations is shown in Fig. 44, this process 

starts asynchronously thorough the domain, as can be seen in day 1, only few elements start the 

remodelling process. After day one, more elements initiate the process, and at day ten, there is a 

heterogenous bone density due to the fact that each element is at a different stage of the bone 

remodelling cycle, but even though each BMU follows a different part of the cycle, a noted 

increment along the main trabecular groups starts to notice in the following weeks. After day 50, 

these patterns are quite visible. When the trabecular groups have been formed, the overall bone 

mass density distribution fluctuates due to the periodic oscillations, yet, these patterns conserve 

an increased density in comparison with its surroundings. It is worth noting that the main 

trabecular groups still have a periodic response but the average value is greater than elements 



with a lower energy strain. The higher density is found at 300 days with a percentage of 140% 

which would be about 1.372 g/cm2. 

 

Fig. 44: Bone mass density evolution, asynchronous bone remodelling occurring at each BMU 

and conserving mass along main trabecular paths (normal bone remodelling).  



 

Fig. 45: Bone remodelling asynchronous variation in each element for osteoclast (top) and 

osteoblast (bottom). 

4.3.2. Osteoporosis 

In this pathology an overall loss in bone mass density is suffered in trabecular bone, as seen in 

Fig. 46, the bone loss reaches 90% in the low energy strain zones, at 50 days there is a loss of 

more than 30% in density compared to the normal case. This simulation was carried out with the 

factor 𝑔12 = 0.9 (10% less than in the normal case). The remodelling cycle has the same period 

as in the previous case but the oscillations are not stable anymore, as shown in Fig. 46. 



 

Fig. 46: Decreased overall density due to the action of IGF (decreased factor 𝑔12) at 50 days. 

 

Fig. 47: Unstable oscillations, example of osteoporosis. 

For an average BMU in the domain there is an ongoing loss in density as depicted in Fig. 47, in 

1000 days the density suffers a loss of almost 20%. It is worth noting, that although the main 

trabecular groups remain visible and attract denser bone, these groups possess a density lower 

when compared with the previous case. 

4.3.3. Osteopetrosis 

Fig. 48 shows an increased density all over the domain that goes up to three times the normal 

density of bone (3.117 g/cm^2) at 100 days. In this particular case factor 𝑔22 was set to 0.1, 

meaning that the autocrine regulation of IGF was considered within the BMU. 



 

Fig. 48: Increased overall density due to the action of IGF (increased factor 𝑔22) at 100 days. 

4.3.4. Pharmaceutical agent action 

For this particular case we simulated a pharmaceutical agent that increases the factor  

𝑔11 which affects the action of RANKL and TGF- β. In this simulation,  𝑔11 was increased by 1.8% 

at 700 days over a period of 50 days resulting in the populations seen in Fig. 49. An increase in 

the population of osteoblasts and osteoclasts is appreciated, which is reflected in the bone mass 

density as seen in Fig. 50 with the presence of unstable oscillations that tend to increase the mark 

of 100% mass. 

 



Fig. 49: Osteoclast and osteoblast population at the BMU with the action of a pharmaceutical 

agent influencing RANKL or TGF- β at 700 days. 

 

Fig. 50: Bone mass percentage at the BMU with the action of a pharmaceutical agent influencing 

RANKL or TGF- β. 

Additionally, a simulation with the factor 𝛽1 = 0.23 was carried out to test a case shown in the 

paper of (Komarova et al. 2003) that yields an increase in bone formation, in this case  the highest 

density value was 150%, which is 1.47g/cm2 according to (Cesar et al. 2013). 

 

Fig. 51: Increased density due to pharmaceutical agent, 𝛽1 = 0.23 . 

4.4. Discussion and conclusions 

In this paper, a bone remodelling model based on the works of (Nackenhorst 1997; Garzón-

Alvarado and Linero 2012a) and (Komarova et al. 2003) is proposed using the discrete element 



approach to address the bone remodelling problem in such a way that mechanical and biological 

factors are taken into account. Some cases of bone remodelling are addressed, such as normal 

bone remodelling with no change in bone turnover and other scenarios such as pathologies like 

osteoporosis and osteopetrosis. Finally, the action of some pharmaceutical agents is investigated 

based on the model proposed. 

In Fig. 44 the normal bone remodeling case results show great similarity with others  works in 

bone remodelling, see for example (Hambli et al. 2016) and (Peyroteo et al. 2019)  after the 

system has reached a steady state (marginally stable due to the oscillations from Komarova’s 

model) , this oscillations are asynchronous as seen in Fig. 45.Furthermore the main trabecular 

groups and low density zones such as the ward’s triangle can be seen to some extent. In both 

pathological cases these structural patterns are identified as well. Overall, the structural patterns 

have great similarity with those found in the previous chapter. 

In the pathological cases, a good correlation with literature on the role of different regulating 

factors was achieved. For the osteoporotic case, factor 𝑔12 was reduced to 0.9, resulting in a 

decrement for the overall bone mass density in the domain, yet the trabecular groups still are 

notable, for lower values the density drops drastically and the periodic response becomes 

unstable. In case of osteopetrosis, an increased in 𝑔22 corresponds to the action of IGF as 

autocrine regulator for osteoblasts, which ends up in a higher bone mass density as stated by (Niu 

and Rosen 2005), the increased proportion was triple along the trabecular groups. 

As a final study case, the action of a pharmaceutical agent was simulated with an increase in factor  

𝑔11 of 1.8%, meaning a positive inhibition in RANKL and TGF- β. This results in increased 

populations of osteoblasts and osteoclasts with an increase in formation as seen in Fig. 50. This 

impulse was maintained over an interval of 50 days, then 𝑔11 returned to the value of normal 

bone remodelling oscillations stated in Table 4. It is worth noting that over a period of 2000 days 

the system did not returned to the previous state, the higher peaks remained over 14 cells in case 

of osteoclasts and 850 cells for osteoblasts, whereas in the normal case were of 12 osteoclasts 

and 800 osteoblasts. Next simulation addressed a case where osteoclast recruiting is inhibited, in 

order to model this inhibition factor 𝛽1 was set to 0.23 and the simulations show an increase in 

BMD which is expected since osteoclast activity is reduced. 



Regarding some of the limitations of this new model we can see that each BMU has been 

approximated to a full element or trabeculae, we know that in reality a basic multicellular unit 

has a diameter of roughly 200μm, so we have simplified the BMU into one element that has a 

length in average of 800μm and 254μm as in the previous chapter according to (Cesar et al. 2013), 

this approximation should still capture the mechanical response that occurs in trabecular bone. 

Another simplification which comes from the model proposed by Komarova is that each BMU is 

independent from each other, so the regulating factors act only within the same BMU. In addition, 

the parameters set for the normal bone remodelling cycle were adapted from (Komarova et al. 

2003) and correspond to those a young adult. 

Despite the simplifications addressed, this bone remodelling model is able to replicate the 

trabecular structures accordingly with anatomical literature and the behavior in the system after 

tweaking some factors representing regulators in bone remodelling, which end up in pathological 

cases such as osteoporosis or osteopetrosis.   

The results show the new model can relate the mechanical field variables such as energy strain 

with the bone mass density at a specific location in the domain, and the cell population dynamics 

in various cases: Normal bone remodelling with periodic stable oscillations, osteoporosis, 

osteopetrosis and the action of a pharmaceutical agent. This work sets the ground for a future 

work, where more complex cases can be addressed, such as load frequency, dose frequency of a 

pharmaceutical agent and pathological cases in which regulating factors vary.  

Furthermore, the discrete modelling approach has proven to be effective in more complex models 

and corroborated on the fact that topology of bone can be approximated to discrete structures 

in order to simplify some bone remodeling problems yielding promising results.  In the future, a 

more complex model can be implemented that uses both discrete and continuum elements to 

better model the mechanical behavior of trabecular and compact bone. 

Finally, some general conclusions from this thesis are presented in the next chapter with 

additional recommendations and future work. 

 

 





5. General conclusions and recommendations 

5.1. General conclusions 

In this work, a new, discrete based methodology has been proposed, in order to model different 

aspects of the bone remodelling phenomenon, such as the mechanics involved (mechanical 

stimulus, such as strain energy) and how they affect the turnover rate at a discrete site in a 

domain. 

In the first chapter of this work, various biological aspects of the bone remodelling process are 

reviewed and the concept of discrete modelling is introduced as a possible approach to different 

problems in cellular materials and in fields such as additive manufacturing, various mathematical 

models are introduced to show an overview of the current state the art of mathematical 

moedelling of bone remodelling. In the second chapter, the discrete FE modelling approach is 

applied to an optimized cellular like material obtained employing additive manufacturing. The 

results obtained in the simulations for the displacement fields show error around 30% in 

comparison to those obtained experimentally, nonetheless the FE simulations showed the overall 

trend in behavior for the maximum displacement in all tessellations (maximum displacements 

magnitude from the largest to the smallest: Triangular, Delaunay, Voronoi), which could imply 

that the source of error lies in 3d printed defects such as clogged pores. As a future work, the 

implementation of the Timoshenko beam is proposed to check if this would yield better results, 

especially for short trabeculae. 

In third chapter, the discrete modelling approach was implemented specially for the solution of a 

bone remodelling problem, where first, it was validated on different benchmark tests taken from 

previous topology optimization and bone remodelling works, then this methodology was applied 

in two study cases. This new approach allows for the correlation of mechanical and biological 

variables in a simpler and more efficient way, as it was found, given certain load condition in a 

cancellous bone, the algorithm predicts the formation of trabecular groups depending on the 

energy strain field in the particular cancellous bone, using as biological input the strain energy 

threshold at which remodelling occurs.  



This accomplishes the initial objective of building a discrete mathematical model that couples 

constituent laws of both mechanical and biological nature in order to gain insight on possible 

correlations, in this particular case, the correlation between energy density and bone formation. 

5.2. Products 

As part of this work, there is one paper in process of publication (GCMB-2021-0082) in the journal 

of Computer Methods in Biomechanics and Biomedical Engineering titled: a simple and effective 

1D-element discrete-based method for computational bone remodeling, which proposes a new 

method for addressing bone remodelling phenomenon, with the advantages that have been 

previously mentioned, this paper corresponds to chapter 3. 

Chapter four is in its first round of peer review as well with a paper titled: Unified framework of 

cell population dynamics and mechanical stimulus using a discrete approach in bone remodelling. 

5.3. Future work 

The different chapters presented in this work, give a conceptual base and understanding for 

diving deeper into certain applications and further research such as: 

• Test whether a direct formulation using Timoshenko’s beam theory is useful to model 

cellular materials, such as bone. 

• Applying the bone remodelling discrete approach to a more complex bone remodelling 

model, such as the model of(Pivonka et al. 2008), examining as well, aspects such as load 

frequency, and pharmacokinetics, allowing for a multi-scale model of the bone 

remodelling process. 

• Examine as conceptual designs, the different results in topology for engineering 

applications, given different unit cells in the domain, for different applications, such as 

topological optimization in structural design. 

• The resultant topologies obtained with the bone remodelling algorithm in chapter 3 could 

be used in the field of additive manufacturing as infill for a part, where the resultant 

topology is obtained specifically for the part mechanical needs. A specific software could 

be developed for this purpose, this will streamline the process of design optimization in 



industry. The bone density equation proposed in chapter three with the discrete approach 

shows great application given its low computational cost. 
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7. ANNEXES 
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Fig. 52: Neutral axis in discrete element. 
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Solving the integral of the energy term due to the function moment M(x): 

 

Fig. 53:Moment function along the element. 
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So the total energy strain for each element is: 

𝑈𝑠𝑡𝑟𝑎𝑖𝑛 = 
1

2
∑ [

𝑃𝑖
2𝐿𝑖

𝐸𝑖𝐴
+
1

3
∙
(𝑀𝑖

𝑙𝑒𝑓𝑡
)2+(𝑀𝑖

𝑟𝑖𝑔ℎ𝑡
)2+𝑀𝑖

𝑙𝑒𝑓𝑡
∙𝑀𝑖

𝑟𝑖𝑔ℎ𝑡

𝐸𝑖𝐼
∙ 𝐿𝑖]

𝑁
𝑖=1   (frame element)  

𝑈𝑠𝑡𝑟𝑎𝑖𝑛 = 
1

2
∑ [

𝑃𝑖
2𝐿𝑖

𝐸𝑖𝐴
]𝑁

𝑖=1  (truss element) 

 

 

Fig. 54: Element formulation 2D, frame (left) and truss (right). 

 

Fig. 55: Element formulation 3D 

Finite element, direct formulation Beam elements. 

For a beam element the stiffness matrix is: 

[𝐾]𝐿𝑜𝑐𝑎𝑙 =

[
 
 
 
 
 
 
 
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
−12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿

−6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
−12𝐸𝐼

𝐿3
−6𝐸𝐼

𝐿2
12𝐸𝐼

𝐿3
−6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿

−6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 

 



This local system can be seen in global form using the rotation matrix as follows: 

[𝐾]𝑔𝑙𝑜𝑏𝑎𝑙=  [𝑇]𝑡[𝐾]𝑙𝑜𝑐𝑎𝑙[𝑇] 

where 

[𝑇] = (
cos (휃) sin (휃)
−sin (휃) cos (휃)

) 

The global system of equations is given by: 

[𝐹] = [𝐾]𝑔𝑙𝑜𝑏𝑎𝑙[𝑢]  Eq. 3 

Finite element, direct formulation truss elements. 

 For a truss element the stiffness matrix is: 

[𝐾]𝐿𝑜𝑐𝑎𝑙 = (

𝐸𝐴

𝐿

−𝐸𝐴

𝐿
−𝐸𝐴

𝐿

𝐸𝐴

𝐿

) 

 

Finite element, direct formulation Frame elements. 

The stiffness matrix can be obtained by superposition of the truss and beam elements, resulting in the 

following: 

 

[𝐾]𝐿𝑜𝑐𝑎𝑙 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐴𝐸

𝐿
0 0

−𝐴𝐸

𝐿
0 0

0
12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
0

−12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿
0

−6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
−𝐴𝐸

𝐿
0 0

𝐴𝐸

𝐿
0 0

0
−12𝐸𝐼

𝐿3
−6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
0

−6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

For a formulation using local coordinates as seen in Fig. 54, the following transformation can be used: 



[𝐾]𝑔𝑙𝑜𝑏𝑎𝑙=  [𝑇]𝑡[𝐾]𝑙𝑜𝑐𝑎𝑙[𝑇]  

Where  

[𝑇] =

[
 
 
 
 
 
cos (휃) sin (휃) 0 0 0 0
−sin (휃) cos (휃) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos (휃) sin (휃) 0
0 0 0 −sin (휃) cos (휃) 0
0 0 0 0 0 1]

 
 
 
 
 

 

Continuum Elements 

An overview on how the finite element method (FEM) is used to solve the elasticity equations is shown 

in this section for the continuum elements, for triangular elements. 

 

Fig. 56: Stress element. 

Considering a differential stress element as seen in Fig. 56, the equilibrium equations are: 

∑𝐹𝑥 → (𝜎𝑥)𝑥+𝑑𝑥𝑡 𝑑𝑦 − (𝜎𝑥)𝑥𝑡 𝑑𝑦 + (𝜏𝑥𝑦)𝑦+𝑑𝑦𝑡 𝑑𝑥 − (𝜏𝑥𝑦)𝑦𝑡 𝑑𝑥 + 𝑋𝑡𝑑𝑥𝑑𝑦 = 0                      

∑𝐹𝑦 → (𝜎𝑦)𝑦+𝑑𝑦𝑡 𝑑𝑥 − (𝜎𝑦)𝑦𝑡 𝑑𝑥 + (𝜏𝑥𝑦)𝑥+𝑑𝑥𝑡 𝑑𝑦 − (𝜏𝑥𝑦)𝑥𝑡 𝑑𝑦 + 𝑌𝑡𝑑𝑥𝑑𝑦 = 0                      

 

Which yields the following differential equations: 

𝜕𝜎𝑥

𝜕𝑥
+
𝜕𝜎𝑦

𝜕𝑦
+ 𝑋 = 0          

𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑦
+ 𝑌 = 0         



The information provided by the boundary conditions is included as the following equilibrium 

equations, according to Fig. 57: 

 

Fig. 57: Boundary element. 

𝜎𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦 − 𝑏𝑥 = 0 

𝜏𝑥𝑦𝑛𝑥 + 𝜎𝑦𝑛𝑦 − 𝑏𝑦=0 

Plane strain 

[𝐷] =
𝐸

(1 − 2𝜈)(1 + 𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1

2
− 𝜈

] 

Plane stress 

[𝐷] =
𝐸

(1 − 𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] 

Postprocessing: 

[𝜎] = [𝐷] [휀]                 

[𝜎] = [𝐷] 𝐿 [𝑈]                

Where L is a differential operator: 

Rearranging the following system of PDEs can be obtained. 

𝐷11
𝜕2𝑢

𝜕 𝑥2 
+ 𝐷12

𝜕2𝑣

𝜕 𝑥𝜕𝑦 
+ 𝐷33

𝜕2𝑢

𝜕 𝑦2 
+ 𝐷33

𝜕2𝑣

𝜕 𝑥𝜕𝑦
+ �̅� =0            

𝐷21
𝜕2𝑢

𝜕 𝑥𝜕𝑦 
+ 𝐷22

𝜕2𝑣

𝜕 𝑦2 
+ 𝐷33

𝜕2𝑢

𝜕 𝑥𝜕𝑦 
+ 𝐷33

𝜕2𝑣

𝜕 𝑥2
+ �̅� = 0            



The finite element formulation will start using the Galerkin method to obtain a weak form of this 

system of equations. This process will be shown for equation for the first equation of the two. 

∫ 𝑊(𝐷11
𝜕2𝑢

𝜕 𝑥2 
+ 𝐷33

𝜕2𝑢

𝜕 𝑦2 
) 𝑑Ω +

Ω

∫ 𝑊(𝐷12
𝜕2𝑢

𝜕 𝑥𝜕𝑦
+ 𝐷33

𝜕2𝑢

𝜕 𝑥𝜕𝑦 
) 𝑑Ω + ∫𝑊�̅�𝑑Ω

Ω

= 0
Ω

 

The weak form can be obtained by applying integration by parts (divergence theorem) as follows: 

∫ (𝐷11
𝜕𝑊

𝜕𝑥

𝜕�̂�

𝜕𝑥
+ 𝐷33

𝜕𝑊

𝜕𝑦

𝜕�̂�

𝜕𝑦
) 𝑑Ω +

Ω

∫ (𝐷12
𝜕𝑊

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 𝐷33

𝜕𝑊

𝜕𝑦

𝜕𝑣

𝜕𝑥
) 𝑑Ω  

Ω

 

−∫𝑊(𝐷11
𝜕�̂�

𝜕𝑥
𝑛𝑥 + 𝐷33

𝜕�̂�

𝜕𝑦
𝑛𝑦) 𝑑Γ − ∫𝑊 (𝐷12

𝜕𝑣

𝜕𝑦
𝑛𝑥 + 𝐷33

𝜕𝑣

𝜕𝑥
𝑛𝑦) 𝑑Γ −

ΓΓ

∫𝑊�̅�𝑑Ω
Ω

= 0 

Is noted that the boundary conditions are added after applying integration by parts. Also, is useful to 

note that these terms can be expressed as: 

∫𝑊 (𝐷11
𝜕�̂�

𝜕𝑥
𝑛𝑥 + 𝐷33

𝜕�̂�

𝜕𝑦
𝑛𝑦) 𝑑Γ + ∫𝑊 (𝐷12

𝜕𝑣

𝜕𝑦
𝑛𝑥 + 𝐷33

𝜕𝑣

𝜕𝑥
𝑛𝑦) 𝑑Γ

ΓΓ

= ∫𝑊(𝜎𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦)𝑑Γ = ∫𝑊𝑓𝑥𝑑Γ
ΓΓ

 

Using this expression, the weak formulation yields: 

∫ (𝐷11
𝜕𝑊

𝜕𝑥

𝜕�̂�

𝜕𝑥
+ 𝐷12

𝜕𝑊

𝜕𝑥

𝜕𝑣

𝜕𝑦
) 𝑑Ω +

Ω

∫ (𝐷33
𝜕𝑊

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝐷33

𝜕𝑊

𝜕𝑦

𝜕𝑣

𝜕𝑥
) 𝑑Ω = ∫𝑊�̅�𝑑Ω

Ω

+∫𝑊𝑓𝑥𝑑Γ
ΓΩ

 

Analogously the weak form of equation 11 is: 

∫ (𝐷33
𝜕𝑊

𝜕𝑥

𝜕�̂�

𝜕𝑥
+ 𝐷33

𝜕𝑊

𝜕𝑥

𝜕𝑣

𝜕𝑦
) 𝑑Ω +

Ω

∫ (𝐷21
𝜕𝑊

𝜕𝑦

𝜕𝑣

𝜕𝑦
+ 𝐷22

𝜕𝑊

𝜕𝑦

𝜕𝑣

𝜕𝑥
) 𝑑Ω = ∫𝑊�̅�𝑑Ω

Ω

+∫𝑊𝑓𝑦𝑑Γ
ΓΩ

 

By using Voight notation this can be expressed as: 

∫ (𝐿(𝑊)𝑇[𝐷]𝐿[𝑈])𝑑Ω = ∫ 𝑊�̅�𝑑Ω + ∫ 𝑊𝐹𝑑Γ
ΓΩΩ

        

Where: 

[𝑊] = [
𝑊 0
0 𝑊

]    [𝑈] = [𝑢
𝑣
]    [𝑋] = [𝑥

𝑦
]    [𝐹] = [𝐹𝑥

𝐹𝑦
]   

�̂�𝑒(𝑥) = ∑ 𝑢𝑚𝑁𝑚(𝑥)

𝑀

𝑚=1

 



The next step is to discretize the domain so an approximation in an element will be: 

𝑡 ∫ (𝐿(𝑊)𝑇[𝐷]𝐿[𝑈])𝑑Ω𝑒 = ∫ 𝑊�̅�𝑑Ω𝑒 + t∫ 𝑊𝐹𝑑Γ𝑒

Γ𝑒Ω𝑒Ω𝑒
 

Eq. 30   

In this form we can appreciate the problem in a simplified way as: 

[𝐾𝑒][𝑈𝑚] = [𝐹
𝑒]        

Where each term corresponds to those in Eq. 30. 

Given that the domain discretization gives place to irregular elements, a mapping of the domain is 

performed in each element that will facilitate numerical integration, in this case gaussian integration 

as seen Fig. 58. 

 

Fig. 58: Mapping to perform gaussian integration. 

Using a local coordinate system (ξ,η) the elemental formulation yields: 

𝐿( ) =  

[
 
 
 
 
 
𝜕( )

𝜕𝑥
0

0
𝜕( )

𝜕𝑥
𝜕( )

𝜕𝑥

𝜕()

𝜕𝑥 ]
 
 
 
 
 

=
1

|𝐽|

[
 
 
 
 
 
 
𝜕𝑦

𝜕η

𝜕( )

𝜕ξ
−
𝜕𝑦

𝜕ξ

𝜕( )

𝜕η
0

0
𝜕𝑥

𝜕ξ

𝜕( )

𝜕η
−
𝜕𝑦

𝜕η

𝜕( )

𝜕ξ
𝜕𝑥

𝜕ξ

𝜕( )

𝜕η
−
𝜕𝑦

𝜕η

𝜕( )

𝜕ξ

𝜕𝑦

𝜕η

𝜕( )

𝜕ξ
−
𝜕𝑦

𝜕ξ

𝜕( )

𝜕η ]
 
 
 
 
 
 

=
1

|𝐽|
𝐿∗( ) 

And the shape functions for a triangular linear node are: 

𝑁𝑖 = 𝜉, 𝑁𝑗 = 휂,  𝑁𝑘 = 1 − 𝜉 − 휂   

These shape functions will be used approximate the displacement at each node, and the stiffness term 

[𝐾𝑙𝑚] will be: 

[𝐾𝑙𝑚] =
𝑡

|𝐽|
(𝐿∗[𝑊])𝑇[𝐷]( 𝐿∗[𝑁𝑚])∫𝑑ξd

Ω

η 

The load vector can finally be expressed as the sum of both body and surface forces as: 

[𝐹𝑙] = ∫ 𝑊�̅�𝑑Ω𝑒 + t∫ 𝑊𝐹𝑑Γ𝑒
Γ𝑒Ω𝑒

      



Density equation 

The energy density is: 

𝑊(𝜌) =
1

2𝜌
𝜆𝑛휀𝑇𝐶0휀 =

𝜆𝑛

𝜌
[
휀𝑇𝐶0휀

2
] =

𝜆𝑛

𝜌
𝑈 

The evolution density equation as stated by (Nackenhorst 1997)  is: 

𝑑𝜌

𝑑𝑡
= 𝑘 [

𝑊𝜌

𝑊𝑟𝑒𝑓
− 1] Error! Reference source not found. 

Because 𝜆 =
𝜌

𝜌0
 we can rearrange Eq. 1into:  

 

𝑑𝜆

𝑑𝑡
= 𝐾𝜌0  [

𝜌0
𝜌0

𝜆𝑛𝑈

𝜌𝑊𝑟𝑒𝑓
− 1] = 𝐾𝜌0  [[

𝜌0
𝜌
]
𝜆𝑛𝑈

𝜌0𝑊𝑟𝑒𝑓
− 1] = 𝐾𝜌0  [𝜆

𝑛−1
𝑈

𝜌0𝑊𝑟𝑒𝑓
− 1] 

And making:  

𝑘1 = 𝐾𝜌0 and  𝜌0𝑊𝑟𝑒𝑓 = 𝑈𝑟𝑒𝑓 

The dimensionless form of the evolution density equation can be written as: 

𝑑𝜆

𝑑𝑡
= 𝑘1  [𝜆

𝑛−1 𝑈

𝑈𝑟𝑒𝑓
− 1]  

Additional benchmark test for the bone remodelling algorithm 

 

Fig. 59: Topology result in Messerschmitt-Bolkow-Blohm (Mbb) beam, after the bone remodelling 
algorithm. 

 



 

 

Fig. 60: Optimization for beam in tension 

 

 

Fig. 61: Optimization for a vertical beam with distributed load. 

 


