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Abstract

Stochastic Modeling of Bioreactors
Modeling and simulation have become over time a key tool for the continuous

improvement of designs, control systems, and understanding of industrial processes,
including biotechnology. Processes that respond to the need to make use of alterna-
tive sources to those based on petroleum, for the production of consumer products of
all kinds. This is why this work focuses on modeling biotechnological processes such
as enzymatic transformation and fermentation. The modeling was investigated using
stochastic and deterministic approaches for two case studies, enzymatic reactions with
and without inhibition, as well as the xylitol bioproduction from glucose and xylose.
The deterministic approach was based on the solution of the ordinary differential equa-
tions obtained from the mass balances for a batch reactor and the chemical kinetics of
the mass action law and the Michaelis-Menten type. On the other hand, the stochastic
approximation was based on the application of the Gillespie stochastic solution algo-
rithm, from the stochastic chemical kinetics and the stochastic approximation of the
Michaelis-Menten equations. Thus, the objective of this thesis is to investigate the ap-
plication of stochastic models and evaluate the uncertainty of these systems, as well as
to re-estimate parameters for the xylitol production model.

It was found in this work that stochastic methods have the same predictive power
as deterministic ones for the most common cases of inhibition in the literature (Com-
petitive, Non-competitive, Un-competitive) and the xylitol production, but with the
advantage of being able to analyze the inherent uncertainty of biological systems (en-
zymatic reactions and fermentation). Besides, It was possible to evaluate the evolution
of the uncertainty of the stochastic model throughout the simulation and its relationship
with the relative uncertainty of the experimental measurements. The sensitivity anal-
ysis allowed making a conscious selection of the size of the system and the number
of realizations necessary to obtain a practically constant uncertainty value. Moreover,
these methods served to propose a translation of the xylitol bioproduction model into
stochastic terms, despite the lack of information on the reactions that lead to the forma-
tion of biomass and the inclusion of the mass transport model. Besides, the determinis-
tic re-adjustment of the parameters showed a better fit of the model to the experimental
data of xylitol (compound of interest). The greatest contribution, in this case, was
to illustrate how this method (ABC rejection sampler) offers greater robustness when
evaluating the uncertainty of the model and being able to optimize under uncertainty.
Therefore, this thesis includes contributions to the state of the art in Process System En-
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gineering that will provide new perspectives for the modeling and analysis of systems
under uncertainty.

Keywords: Stochastic Modeling, Gillespie Method, Bioprocess, Michaelis-Menten,
Stochastic Chemical Kinetics.
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Resumen

Modelamiento estocástico de biorreactores
El modelado y la simulación se han convertido con el tiempo en una herramienta

clave para la mejora continua de los diseños, los sistemas de control y la comprensión
de los procesos industriales, incluida la biotecnología. Procesos que responden a la
necesidad de hacer uso de fuentes alternativas a las basadas en petróleo, para la elabo-
ración de productos de consumo de todo tipo. Es por ello que este trabajo se centra en
la modelización de procesos biotecnológicos como la transformación enzimática y las
fermentaciones. El modelado se investigó utilizando enfoques estocásticos y determin-
istas para dos estudios de caso, reacciones enzimáticas con y sin inhibición, así como
la bioproducción de xilitol a partir de glucosa y xilosa. El enfoque determinista se basó
en la solución de las ecuaciones diferenciales ordinarias obtenidas de los balances de
masa para un reactor discontinuo y la cinética química de la ley de acción de masas y el
tipo de Michaelis-Menten. Por otro lado, la aproximación estocástica se basó en la apli-
cación del algoritmo de solución estocástica de Gillespie, a partir de la cinética química
estocástica y la aproximación estocástica de las ecuaciones de Michaelis-Menten. Así,
el objetivo de esta tesis es investigar la aplicación de modelos estocásticos y evaluar
la incertidumbre de estos sistemas, así como reestimar parámetros para el modelo de
producción de xilitol.

En este trabajo se encontró que los métodos estocásticos tienen el mismo poder
predictivo que los deterministas para los casos más comunes de inhibición en la liter-
atura (Competitivo, No competitivo, No competitivo) y la producción de xilitol, pero
con la ventaja de poder analizar la incertidumbre inherente a los sistemas biológicos
(reacciones enzimáticas y fermentación). Además, se pudo evaluar la evolución de la
incertidumbre del modelo estocástico a lo largo de la simulación y su relación con la in-
certidumbre relativa de las medidas experimentales. El análisis de sensibilidad permi-
tió hacer una selección consciente del tamaño del sistema y el número de realizaciones
necesarias para obtener un valor de incertidumbre prácticamente constante. Además,
estos métodos sirvieron para proponer una traducción del modelo de bioproducción de
xilitol en términos estocásticos, a pesar de la falta de información sobre las reacciones
que conducen a la formación de biomasa y la inclusión del modelo de transporte ma-
sivo. Además, el reajuste determinista de los parámetros mostró un mejor ajuste del
modelo a los datos experimentales del xilitol (compuesto de interés). El mayor aporte,
en este caso, fue ilustrar cómo este método (muestreador de rechazo ABC) ofrece una
mayor robustez a la hora de evaluar la incertidumbre del modelo y poder optimizar bajo
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incertidumbre. Por lo tanto, esta tesis incluye contribuciones al estado del arte en In-
geniería de Sistemas de Procesos que brindarán nuevas perspectivas para el modelado
y análisis de sistemas bajo incertidumbre.

Palabras clave: Modelamiento Estocástico, Método Gillespie, Bioprocesos, Michaelis-
Menten, Cinéticas Químicas Estocásticas.
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Chapter 1

Introduction

Abstract

The study of the modeling of enzymatic reactions and fermentation processes from
the beginning of the 20th century with the Michelis-Menten and Monod-based kinet-
ics. Nowadays, important advances in process monitoring and control drive the need
on proposing more robust models that allow predicting, evaluating, and understanding
the different conditions that give rise to obtain a product, thus improve industrial pro-
cesses. This chapter presents a brief review of the modeling and simulation evolution
of these systems from two approaches, deterministic and stochastic. From those, there
is a special focus on stochastic modeling of biotechnological processes since it allows
evaluating the behavior of these systems from the inherent uncertainty of biological
systems. Based on which the hypotheses and objectives of the thesis were raised. Also,
the methodology followed for the two case studies analyzed is presented: enzymatic
reactions with and without inhibition, and the xylitol bioproduction.

1.1 State of the art

According to their mode of operation, bioreactors can be classified as steady-state or
continuous (with inlet and outlet flows), batch (without inlet or outlet flows), or fed-
batch reactors (they have one or more inflows, but not outflows). batch or fed-batch is
the most widely used because they are easy to sterilize and adapt to different processes,
and also reduce the risk of genetic mutation of microorganisms, since they do not have
very long residence times (Villadsen, Nielsen, & Lidén, 2011).
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Table 1.1. Model classification for bioreactors, partially based on.

Type of equations
According to Models Stable Steady Dynamic

Input information Phenomenological
Empirical

Randomness
Deterministic Nonlinear

algebraic
ODE/PDE

Probabilistic Algebraic/difference Stochastic ODE
or Difference

Correlation
Time-space
dependence

Lumped Algebraic ODE
Distributed EPDE PPDE

Microorganism
location

Spatial
No spatial

Applicability of
superposition
principle

Linear Linear algebraic Linear ODE
Non linear Nonlinear

algebraic
Non linear ODE

Type of variable
Continuous Algebraic ODE

Discrete Difference Difference
Hybrids

ODE = Ordinary Differential Equiation, PDE = Partial Differential Equiation, EPDE = Eliptic Partial Differ-
ential Equation, PPDE = Parabolic Partial Differential Equiation. Cameron and Hangos (2001).

Classification of bioreactor models is difficult because several criteria can be ap-
plied simultaneously (see Table 1.1). In turn, bioreactor models can also be deter-
ministic or stochastic according to how the parameters and values of the variables are
defined (Dehling, Gottschalk, & Hoffmann, 2007). In deterministic models, the same
input conditions will always produce the same output conditions. Stochastic models
are based on the introduction of at least one parameter that determines probabilistic
relationships between the variables, that is, it introduces the concept of uncertainty to
the phenomenon studied, thus each run of the stochastic model will be different from
the previous one. Some spatial stochastic models take into account the interactions of
microorganisms with each other and with their environment, while others aim to study
the dynamic behavior within the microorganism (Andrews, Dinh, & Arkin, 2009). An
important part of bioreactor modeling is the study of chemical kinetics that describe
microbial growth (Figure 1.1) and enzymatic kinetics. Within this field, the kinetics of
microbial growth developed by Monod (1942) from an empirical base was the starting
point for the rest of the kinetics of this type.

Figure 1.1 shows the 4 possible combinations of mathematical models that can be
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built depending on the following approaches (González-Figueredo, Flores-Estrella, &
Rojas-Rejón, 2018; Villadsen et al., 2011):

• Unstructured: manage the population as a mono-component system.

• Structured: model the population as a multi-component system since the mi-
croorganisms are suspended in the liquid phase.

• Non-segregated: consider the average behavior of the population of microorgan-
isms.

• Segregated: describe the individual behavior of each organism of a heteroge-
neous population.

Therefore, the Monod kinetic is an un-structured and non-segregated model, since the
model treats the population of the microorganisms as one component solute and its
average behavior.

Figure 1.1. Classification of growth kinetics models.

On the other hand, in the field of enzymatic reactions, there are two main ap-
proaches to enzyme kinetics :

• Law mass action: describes the behavior of substrates, enzymes, complexes, and
products from elemental reactions. The problem with this approach is that it is
experimentally difficult to measure the concentrations of the enzyme complexes.
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Thus, there is most likely insufficient information to estimate the parameters
of the kinetic constants associated with these reactions (Enderle, 2012; Källén,
2018).

• Michaelis-Menten kinetics: describes the behavior of the substrates and the prod-
ucts from the Quasi-Steady-State Assumption (QSSA), this approach circum-
vents the need to know the concentration of complexes to represent the system
behavior (Michaelis & Menten, 2007; Rogers & Gibon, 2009; Villadsen et al.,
2011).

Both approaches have traditionally been modeled in a deterministic way solving Ordi-
nary Differential Equations (ODEs).

Bioprocesses have been known empirically since ancient times, but the introduction
of microorganism culture techniques permitted the manufacture of antibiotics, amino
acids, organic acids, vaccines, etc. Later in the 1970s and 1980s, the ascent of genetic
engineering allowed the manipulation of genes and metabolic pathways of living or-
ganisms (Ortega Quintana, Alvarez, & Botero Castro, 2017; Smith, 2002). This led to
the development of equipment such as biochemical reactors or bioreactors to manip-
ulate microorganisms by controlling the conditions of the environment (temperature,
pH, aeration, substrate, etc.) to obtain the desired products.

Deterministic modeling of bioreactors began with the growth rate equation pro-
posed by Blackman (1905). Then, Michaelis and Menten (1913) proposed a rate equa-
tion to describe the kinetic behavior of enzymes, which has been widely studied by
Murugan (2018). Monod (1942) developed a kinetic growth equation that relates the
substrate concentration with the growth rate of the microorganisms.

The Michaelis-Menten and Monod equations have served as a starting point for the
development of a large number of kinetic models applicable to bioprocesses (Ortega
Quintana et al., 2017). The first to propose phenomenological bases (based on physical
and chemical principles) for bioprocesses proposed by Konak (1974) in 1974, with an
empirical growth rate model. It was not until Button (1998) that a phenomenological
approach was achieved by defining the concept of specific affinity, demonstrating the
ability of the cell to choose a specific substrate.

Later Liu (2006) proposed a model of microbial growth based on thermodynamics,
in which he managed to relate these processes to the change in Gibbs free energy.
Even today it has not been possible to propose a completely phenomenological model,
although semi-physical models are close to that ideal (Ortega Quintana et al., 2017).

The need to represent biological processes more accurately imposes a challenge to
develop models that describe cellular metabolism and can be linked to bioprocess mod-
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els. Most of the current efforts are based on the deterministic approach, but stochastic
methods have become a suitable alternative to describe the intrinsic and extrinsic un-
certainty of these systems. Instance: in their pioneering 1979 study, Stephanopoulos,
Aris, and Fredrickson (1979) simulated the competition of two microorganisms for the
same substrate source using stochastic models. But it took a little over 25 years for
Imhof and Walcher (2005) to return to stochastic models to study the extinction or per-
sistence of a population of microorganisms in a chemostat. Thus, they were able to
demonstrate that random effects can lead to the extinction of the microorganism, while
deterministic models predict their persistence.

In 2011 Campillo, Joannides, and Larramendy-Valverde (2011) proposed a set
of stochastic models applicable for the operation of small, medium, and large-scale
chemostats. The results of each model were compared with their respective determin-
istic solution. Subsequently, in 2015 Fritsch, Harmand, and Campillo (2015) proposed
a model that serves as a bridge between deterministic and stochastic approach, since
the system is interpreted as continuous populations of the same size (deterministic
point view) and as a set of individual organisms with random and dynamic behaviors
(stochastic point view). More recently Fontbona, Riquelme, and Silva (2017), pro-
posed a stochastic model to describe the behavior of a sequential batch reactor used in
wastewater treatment through the use of stochastic differential equation systems (Font-
bona et al., 2017; Rincón, 2006).

On the other hand, the theoretical foundations of stochastic chemical kinetics and
its simulation were given by McQuarrie (1967) and Gillespie (1977). Then, Rao
and Arkin (2003) proposed a stochastic approximation of the QSSA from the Chem-
ical Master Equation (CME) to be used in case studies that meet the conditions of
Michaelis-Menten type kinetics. Subsequently, Wilkinson (2006) presents the applica-
bility of stochastic chemical kinetics for the case of enzymatic reaction without inhibi-
tion, work that is taken up by Lecca (2013), Anderson and Kurtz (2015), and Marchetti,
Priami, and Thanh (2017). Besides, authors such as Agarwal, Adams, Castellani, and
Shouval (2012); Lawson, Petzold, and Hellander (2015); Sanft, Gillespie, and Petzold
(2011); Warne, Baker, and Simpson (2019); Wu, Vidakovic, and Voit (2011) continue
to expand the formulation of Rao and Arkin (2003); coming to Kang, KhudaBukhsh,
Koeppl, and Rempała (2019)’s work, in which they make a referral for all types of
QSSAs. The literature also includes the use of hybrid models or machine learning as
a modelling and simulation strategy of biological processes. However, in this work,
these topics are not developed, since it was focused on the advantages and applicability
of pure stochastic methods, especially in the study of the uncertainty linked to these
processes.

16



This review provides evidence of the relevance of stochastic models as another
form of evaluation and description of biological processes but from a micro approach
since the macro approach is well understood from deterministic models. Observing
a possible point of union between both types of modeling, since each one can model
a type of approach either macro or microscopic. Furthermore, after a review of the
literature, a stochastic approach to diauxic growth with inhibition, enzymatic reactions
with inhibition complemented with mass transport has not been reported in a single
particular case. Therefore, there is a substantial contribution to the case of xylitol
Bioproduction. In addition, the extension that was made for the cases of enzymatic
reactions with inhibition from the Stochastic Chemical Kinetics approaches and the
stochastic approach of the Quasi-Stable State Assumption.

1.2 Justification

Bioprocess modeling has become a relevant field of study to improve production pro-
cesses in food, chemical and pharmaceutical industries, which base their processes on
the use of microorganisms. Similarly, modeling has focused on understanding mi-
crobial growth, metabolite production, enzymatic processes, and more recently on the
interaction between the medium and the cellular material of the microorganism (Ortega
Quintana et al., 2017). Hence, the importance of modeling in the field of Process Sys-
tems Engineering (PSE). This could lead to optimal designs and operating conditions,
which in the industry translate into greater efficiency, safety, and profitability of the
processes. Thus, more and more robust models are required that are better adapted to
the particularities of the phenomena, to obtain more realistic representations.

Traditionally, the study of enzymatic kinetics has been carried out from the deter-
ministic approach. Nevertheless, there is a growing need to have models that allow
representing both the uncertainty of biological processes. Specifically, this thesis stud-
ies the modeling of enzymatic processes since enzymes are excellent natural catalysts,
which contributes to the development and obtaining of new products. The challenge
in this field focuses on the understanding and modeling of the reaction mechanisms
through which the design and optimization of industrial processes can be carried out
(Lonsdale, Harvey, & Mulholland, 2012) The work focuses on the study of reactions
through stochastic simulations since these models work at the molecular level and serve
as a complement to experimental techniques. This is particularly relevant since biotech-
nological processes imply uncertainties regarding their behavior, dynamics, and inter-
action between enzymes/cells and their environment (intrinsic noise), in addition to the
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uncertainty of experimental measurements (extrinsic noise) (Tsimrng, 2014; Uusitalo,
Lehikoinen, Helle, & Myrberg, 2015). Therefore, studying this type of modeling will
provide deeper process understanding. Besides, many of the current models do not take
into account this degree of uncertainty in the face of the random behaviors of microor-
ganisms. And this will bring new tools for better design, optimization, and control of
biotechnological systems.

Until now, the published stochastic models focus on the enzymatic reaction and
microorganisms growth from purely mathematical aspects, lacking specific application
cases (Fontbona et al., 2017; Kang et al., 2019; Wilkinson, 2018). On the other hand,
stochastic chemical kinetics has been studied for generic cases, which are not necessar-
ily centered on conditions at the industrial level. Therefore, this thesis seeks is focused
in the following aspects of stochastic modeling:

• Definition of the system volume

• Realizations number

• Relationship between experimental and stochastic model uncertainty

• Real industrial application case

The literature review has shown that most of the advances in the field of stochastic
bioprocess modelling have been carried out by researchers from the exact sciences
(mainly mathematical, physical, and chemical). Therefore, this work seeks to give
greater visibility to stochastic modelling in the field of chemical engineering, showing
its advantages for equipment design under uncertainty at an industrial level.

This work aims to improve understanding of enzymatic biological processes with
and without inhibition, as well as showing its applicability in the specific case of xylitol
bioproduction and them parameters estimation. This is achieved, through the applica-
tion of stochastic chemical kinetics as an alternative to the deterministic law of mass
action and the use of the CME to translate the ODEs of the Michaelis-Menten to esti-
mate the intrinsic uncertainty and model parameters. Thus, the industrial application
of this model would allow improving the operation, design, and control under the un-
certainty of the bioreactors.

1.3 Hypothesis and objectives

• Hypothesis
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The key idea of this project is to investigate stochastic modeling to represent enzymatic
catalysis and microbial catalysis. The project is focused on the uncertainty associated
with these simulations and their relationship with the behavior of this type of system
and experimental measurements. Therefore, the hypothesis of this thesis is:

Models based on the stochastic chemical equations or the approximation of the

differential equations to propensity functions can reproduce the uncertainty associ-

ated with the experimental measurements and the behavior of the chemical species in

biotechnological processes.

Note: Although studies on the application of stochastic modeling of bioprocesses
are presented in the literature. The hypothesis of this thesis focuses on the analysis
of uncertainty in more complex biological processes (enzymatic with inhibition and
fermentative), as well as its applicability in specific cases.

• General objective

To investigate the application of a stochastic model for the enzymatic reaction and
bioproduction of xylitol through stochastic chemical kinetics and the Stochastic Quasi-
Stable State Assumption, to provide uncertainty information and predict the behavior
of the system.

• Specific objectives

– Develop a stochastic model that can describe the dynamics of enzymatic
reactions for generic cases and xylitol bioproduction case.

– Implement an algorithm that allows solving the proposed stochastic model
for the planted cases.

– Verify the proposed stochastic model by comparing its results versus ex-
perimental data and deterministic models.

1.4 Project Methodology and thesis content

This work focuses on two case studies: enzymatic reactions with and without inhi-
bition and xylitol bioproduction modeling. The methodology is described in Figure
1.2, it starts with the phenomenological identification includes the elemental reactions
that defend the enzymatic reactions studied, as well as microbial growth, enzymatic
inhibition, and the transport of matter that participate in the bioproduction of xylitol.
In the model construction, deterministic simulation becomes based on the application
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of the law of mass action and the Michaelis-Menten kinetics, while stochastic sim-
ulation works with stochastic chemical kinetics, the stochastic approximation of the
Quasi-Stable State Assumption (stochastic QSSA), and the propensity functions. The
model implementation was done with numeric integration of differential equations and
the Gillespie method for deterministic and stochastic simulation, respectively. Then,
the structural verification was also performed for both cases through comparison with
the literature for similar cases, deterministic results and for the specific case of xylitol
with experimental data (Rao & Arkin, 2003; Sanft et al., 2011; Tochampa et al., 2005;
Wilkinson, 2018). There is a stage of parameter identification and model verification.
Notice that model validation is only performed in the case that enough experimen-
tal data are available for parameter identification and validation. This stage was only
applied to the case of xylitol bioproduction since there were experimental data that
allowed for the identification of parameters, but no validation was done since all the
experimental data were used for the estimation of parameters.
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In Chapter 2, four cases of enzymatic reactions (no inhibition, competitive in-
hibition, non-competitive and non-competitive inhibition) were studied. Each case
was studied from two kinetic approaches: the law of mass action and kinetics of the
Michaelis-Menten type. Both were simulated using deterministic and stochastic ap-
proaches. or the stochastic simulations, a sensitivity analysis was carried out to select
the size of the system and the number of realizations based on the uncertainty pro-
duced by the method. The kinetic approaches are generically described below from
deterministic and stochastic perspectives.

• Law of mass action: the deterministic approach starts from the approach of or-
dinary differential equations based on the kinetics obtained for each elemental
reaction. From the derived stochastic chemical equations, the propensity func-
tions are obtained (section 2.2.3).

• Michaelis-Menten kinetics: the deterministic approach started from the QSSA
which leads to the derivation of the Michaelis-Menten kinetics and ODEs that
describe the evolution of the substrate and the product. The stochastic approx-
imation was carried out from the mass balances, which were translated into
propensity functions through the application of the Master Chemical Equation
(SCK section), this approximation is known as stochastic QSSA (Rao & Arkin,
2003; Toral & Colet, 2014).

This chapter corresponds to the AMIDIQ conference article and oral presentation, Be-
sides, a paper submitted in the Journal of Mathematical Chemistry. On the other hand,
Chapter 3 deals with the xylitol production model proposed by Tochampa et al. (2005),
which is translated stochastic modeling using the stochastic QSSA. As a particular
characteristic, a re-estimation of parameters of the xylitol model was performed with
the deterministic method of the interior point and with the stochastic ABC rejection
sampler method. Using this approach, it was possible to make a hand-to-hand compar-
ison of both approaches for a real case from the literature.

The discussion of the case studies presented in chapters 2 and 3 focused more on the
chemical kinetics and its relationship with the uncertainty obtained from the stochastic
model, than the biological interpretation of the phenomena present in the bioreactor.
Both case studies have been widely studied in the literature from the biological point
of view, and it was wanted to give greater depth to the kinetic understanding of the
processes.
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1.5 Contributions

Papers

• Anderson Valencia Isaza, Oscar Andrés Prado-Rubio, Javier Ignacio Carrero
Mantilla. (2020). Modeling and uncertainty assessment for enzymatic reactions
through stochastic kinetic simulations. Status: submitted to ChemTexts (under
review).

• Anderson Valencia Isaza, Oscar Andrés Prado-Rubio, Javier Ignacio Carrero
Mantilla. (2020). Stochastic modeling approach and tuning for fermentation
models. Status: for submitting.

Peer reviewed conference papers

• Anderson Valencia Isaza, Oscar Andrés Prado-Rubio, Javier Ignacio Carrero
Mantilla. (2020). Modelamiento y Simulación Estocástica para Cinéticas En-
zimáticas con Inhibición. In Proceedings of “XLI Encuentro Nacional de la
AMIDIQ” (ISBN: en trámite). María del Rosario Enríquez Rosado (Editor).
Pages: BIO-117-122. Academia Mexicana de Investigación y Docencia en Inge-
niería Química (AMIDIQ).

• Anderson Valencia Isaza, Oscar Andrés Prado-Rubio, Javier Ignacio Carrero
Mantilla. (2020). Modelamiento y Simulación Estocástica para Cinéticas En-
zimáticas con Inhibición. Oral presentation at Academia Mexicana de Investi-
gación y Docencia en Ingeniería Química (AMIDIQ), 22th to 24th of October,
2020. Virtual meeting.
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Chapter 2

Modeling and uncertainty
assessment for enzymatic
reactions through stochastic
kinetic simulations

Abstract

The uncertain nature of biological systems is well known, however, it is interesting
how pure deterministic modeling approaches have been majorly used for process sys-
tem engineering. As an alternative, stochastic simulation of enzymatic kinetics can
bring more insights compared to deterministic simulation. This work investigates the
stochastic simulation for mass action and Michaelis-Menten kinetic models applied to
generic examples of four enzymatic kinetic cases, expanding previous efforts to kinet-
ics with and without inhibition. For each case, the deterministic kinetic model was
translated to a stochastic formulation based on numbers of molecules. The simulations
were performed applying the Gillespie algorithm, and the uncertainty of the results
was estimated with the standard deviation, as a function of the number of realizations
(repetitions) of the stochastic simulations. The uncertainty of the evolution of the state
is related to the number of molecules used in the simulation settings. Through a sensi-
tivity analysis, it was found a minimum number of realizations required to estimate the
standard deviation favoring the computational requirements for the simulations. Par-
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ticularly, it was found that the uncertainty of results can vary through the simulation
due to the stochastic nature of the method. The stochastic kinetic modeling approach
has shown to be a powerful tool to address biological models uncertainty alternative
to correlation analysis of linear systems or Monte-Carlo approach and thus it could be
further exploited for process system engineering design under uncertainty.

2.1 Introduction

The study of enzymes for specific applications using protein engineering has led to a
growing interest in the development of realistic mathematical models for enzymatic
reactions due to its application the in design, optimization, and control of industrial
bioprocesses (Chapman, Ismail, & Dinu, 2018). Commonly, enzymatic reaction evo-
lution has been simulated using mechanistic kinetics through the solution of ordinary
differential equations. The deterministic approach is limited to a phenomenological un-
derstanding of kinetics, and the process uncertainty is addressed through a correlation
analysis (linear case) or Monte-Carlo approach for non-linear models, accounting for
the experimental data uncertainty or the expected molecular noise of the system (intrin-
sic noise). In the last two decades, there has been a growing interest in the application of
stochastic approximations in biological systems. This has been motivated by the ability
of these models to describe fluctuations, internally random processes (small chemical
systems) without having any deterministic trend (Lente, 2013; Érdi & Lente, 2014;
Wilkinson, 2018). Theoretical and mathematical aspects of stochastic enzymatic ki-
netics have been studied, including the appearance of fluctuations, the functions of the
probability density, ergodicity, and approximation, inference methods, cellular noise
associated with biological processes, and the noise patterns of experimental errors have
been simulated (Kou, Cherayil, Min, English, & Xie, 2005; Qian & Elson, 2002; Sch-
noerr, Sanguinetti, & Grima, 2017; Tsimrng, 2014; Yang & Jiang, 2016). Previous
results suggest that the uncertainty of experimental measurements can be replicated by
applying stochastic methods based mainly on Gillespie’s Stochastic Simulation Algo-
rithm, or SSA, to chemical reactions (Gillespie, 1977, 2007; Lecca, 2013; Marchetti,
Priami, & Thanh, 2017). An adaptation of the SSA to the occurrence of rare events was
developed for the stiff enzyme-substrate reaction as a slow-scale SSA (Cao, Gillespie,
& Petzold, 2005; Sanft, Gillespie, & Petzold, 2011). The validity of the adaptation
of QSSA (a basis of the Michaelis-Menten model) to enzyme-catalyzed reactions has
been covered (Barik, Paul, Baumann, Cao, & Tyson, 2008; Dhatt & Banerjee, 2019;
Dóka, 2012; Kang, KhudaBukhsh, Koeppl, & Rempała, 2019; Rao & Arkin, 2003).

29



And stochastic enzyme kinetics has been included in reaction-diffusion simulations
(Basu & Mohanty, 2009; Yi & Liu, 2010). However, the literature has only focused on
the study of a single kinetic case, leaving aside very common industrial cases such as
enzyme inhibitions. Hence, the stochastic approach is not a replacement for the tradi-
tional deterministic approach, but a new proposal to incorporate random aspects of this
type of system that deterministic models cannot handle, for example, the main theme
of this work, uncertainty propagation.

In this work, we propose to use stochastic kinetic models to include the uncertainty
associated with the random behavior of the molecules in enzymatic processes allowing
a prediction of the uncertainty propagation through the model. Previous efforts model-
ing enzymatic stochastic kinetics are extended to offer a detailed implementation of the
SSA with both Law of Mass Action (LMA) or the Michaelis-Menten (MM) models,
including for each one the case without inhibition (WI) and the three common types
of enzymatic inhibition: competitive (CI), non-competitive (NCI), and un-competitive
(UCI) (J. Donoso, 2006; Rogers & Gibon, 2009). The Figure 2.1 represents the differ-
ent reaction routes from reactants, through unstable complexes until reaching products,
depending on the case of the enzymatic reaction being studied (WI, CI, NCI, or ICU).
Notice that the arrow (→) indicates a direct reaction, while the double arrow (↔) indi-
cates reversible reactions.

Figure 2.1. Chemical paths of the different cases of enzymatic reaction. Note: the
color lines are referenced in the table to indicate the direct or reversible reaction path.

Particularly, practical aspects of setting a stochastic simulation are investigated
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through a sensitivity analysis since this aspect has been overlooked in previous re-
search. This provides useful insights to get better simulation times versus the number
of runs (so-called realizations) and the selection of a system volume. Additionally, this
analysis allows having an estimation of the system uncertainty from the standard devi-
ation analysis. Notice, in literature the application of stochastic modeling is restricted
to a very small-scale (namely cell size). In this research, the proposed approach allows
using larges volumes aligned with conventional chemical systems.

The paper is structured as follows: theoretical and mathematical aspects of the de-
terministic and stochastic model are presented in section 2.2 and supplementary infor-
mation is shown in the appendix 2.5. In the results section (section 2.3), the findings of
the sensitivity analysis are addressed depicting simulation results (section 2.3.1), this is
followed by the uncertainty assessment for the four enzymatic kinetics using both MM
and LMA approaches (sections 2.3.2 and 2.3.3, respectively). Finally, the conclusions
are drawn. This work represents the efforts to present an alternative of enzymatic sys-
tems modeling that could be used for process design, control, and optimization under
uncertainty in the field of PSE, complementing the traditional vision of this type of
systems.
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Table 2.1. Nomenclature and symbols.
Greek letters
𝜉 Random number
𝜅 Reaction molecularity
𝜏 Stochastic step time
𝜈 Stoichiometric coefficient
Acronyms
CI Competitive Inhibition
E Enzyme
EI Enzyme-Inhibitor complex
EP Enzyme-Product complex
ES Enzyme-Substrate complex
EIS Enzyme-Inhibitor-Substrate
I Inhibitor
LMA Law of Mass Action
MM Michaelis-Menten
NCI Non-Competitive Inhibition
P Product
QSSA Quasi-Steady State Approximation
S Substrate
sdev Standard deviation
SSA Stochastic Simulation Algorithm
UCI Un-Competitive Inhibition
WI Without Inhibition
Variables
𝑎 Propensity
𝐾 Equilibrium constant
𝑡 Time
Subscripts
𝐶𝑖 Concentration of species 𝑖
𝑐 𝑗 Propensity constant
𝑘 𝑗 Kinetic constant, reaction 𝑗
𝑁𝑖 Number of 𝑖 molecules
𝑟 𝑗 Reaction rate

2.2 Mathematical models and methods

The deterministic simulations are based on the integration of differential equations
obtained from the mass balance for a batch reactor. For the LMA cases, the ODEs
correspond to the concentration of each participating chemical species, namely E, S,
P, I, and complexes (Table 2.1); while in the MM cases, the state corresponding to the
substrate concentration while product concentration is calculated stoichiometrically.
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In the stochastic LMA simulations (SSA-LMA) chemical kinetics are decomposed
into reaction channels that define the simulation events and their propensity functions.
For Michaelis-Menten (SSA-MM), the only reaction channel is the transformation of
the substrate into the product, and the right-hand side of the ODE defines the propensity
function. The translation of mass-action expressions and ODEs into functions of num-
bers of molecules for SSA is covered in the supplementary material (appendix 2.5) and
details of the implementation are depicted in the following sections. On the other hand,
a sensitivity analysis of the number of realizations and the initial number of molecules
was carried out, to determine the better conditions for the stochastic simulation and
thus establish the uncertainty of the model by varying these parameters.

Figure 2.2. Models and simulation methods.

2.2.1 Deterministic simulation

In the mass-action law kinetics, the mass balances of a batch reactor have the form:

𝑑𝐶𝑖

𝑑𝑡
=

∑︁
𝑗

𝜈𝑖, 𝑗𝑟 𝑗 (2.1)

where 𝑟 𝑗 is the reaction rate 𝑗 and 𝜈𝑖, 𝑗 the stoichiometric coefficient of species 𝑖 in
reaction 𝑗 . Following the law of mass action rates are proportional to the product of
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the reactant concentrations raised to their stoichiometric coefficients

𝑟 𝑗 = 𝑘 𝑗

∏
𝑖

𝐶
|𝜈𝑖, 𝑗 |
𝑖

(2.2)

where 𝑖 represents reactants. For the sake of brevity the resulting ODEs for all chemical
species (S, E, ES, I, P) are summarized in section 2.5.1.

On the other hand, the MM model applies the standard QSSA, considering chemi-
cal species and enzyme complexes transient and highly reactive in such a way that their
net reaction rates are set equal to zero (Briggs & Haldane, 1925; Rao & Arkin, 2003).
The ODEs for the four cases (WI, CI, NCI, and UCI) are summarized in appendix
2.5.2. The system of differential equations was integrated using the ode15s function of
the software Matlab 2019b due to the stiff nature of the equations.

2.2.2 Stochastic Simulation Algorithm

Originally, stochastic simulations were developed to solve the chemical master equa-
tion, an exceedingly complex procedure, since it generates an ODE for each possible
combination of reactant molecules (Gillespie, 2007). For instance, for 200 molecules,
there are a million different molecular combinations, that is, a million ODEs (Rao &
Arkin, 2003). Alternatively, the SSA is not based on ODEs. Instead, it is a stochastic
method that defines the evolution of the system one reaction event at a time in inter-
vals that depends on the propensity of the reaction, or reactions (the probability that a
reaction occurs in a determined time) (Gillespie, 2007). For example, for the reaction

E+S
𝑘1→ ES (2.3)

the numbers of molecules are upgraded at each step of the SSA according to

𝑁E→ 𝑁E−1 (2.4)

𝑁S→ 𝑁S−1 (2.5)

𝑁ES→ 𝑁ES +1 (2.6)

(see Eq. 2.20 and Table 2.4), with propensity 𝑎1 = 𝑐1𝑁E𝑁S. In general, the SSA takes
the following steps (Gillespie, 1977, 2007; Lecca, 2013):

1. Calculate the propensity 𝑎 of the event from the numbers of molecules.

34



2. Use the propensity to define the time 𝜏 to the next event

𝜏 = − ln(𝜉)
𝑎

(2.7)

where 𝜉 is a random number generated in the interval [0,1].

3. If there are multiple reactions (i.e. reaction channels) 𝑎 becomes the sum of all
propensities

𝑎 =
∑︁
𝑗

𝑎 𝑗 , (2.8)

where the subscript 𝑗 stands for each reaction. The next reaction event is chosen
according to the relative weight of the propensities, that is 𝑎𝑖/𝑎. A second ran-
dom number 𝜉2 is generated, and the index of the next reaction event corresponds
to the smallest 𝐽 such that

𝜉2 <

𝐽∑︁
𝑗=1

𝑎 𝑗

𝑎
. (2.9)

4. Update the time, i.e. 𝑡 := 𝑡 + 𝜏, and the molecule numbers.

5. Repeat until reaching the simulation final time, or running out of reactant molecules.

2.2.3 Stochastic Chemical Kinetics (SCK)

Only direct reactions (→) are allowed in the stochastic formulation of chemical kinet-
ics, but reversible reactions (⇄) are described with separate reaction channels, one for
each direction (Martínez Urreaga, Mira, & González Fernández, 2003). For example,
enzyme kinetics without inhibition,

E+S
𝑘1
⇄
𝑘2

ES
𝑘3→ E+P, (2.10)

becomes a combination of three reaction channels:
𝑘1→,

𝑘2←, and
𝑘3→.

In the SSA-LMA, the occurrence probability of a reaction event depends on the
number of possible combinations of reacting molecules, therefore the propensity func-
tion (𝑎) to implement the SSA is described as (Lecca, 2013; Wilkinson, 2018):

𝑎 𝑗 = 𝑐 𝑗

∏
𝑖

(
𝑁𝑖

𝜈𝑖, 𝑗

)
(2.11)
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where 𝑁 is the number of molecules and(
𝑁𝑖

𝜈𝑖, 𝑗

)
=

𝑁𝑖!
𝜈𝑖, 𝑗 ! · (𝑁𝑖 − 𝜈𝑖, 𝑗 )!

. (2.12)

The propensity constant 𝑐 𝑗 can be obtained from the kinetic constant 𝑘 𝑗 in Eq. (2.2)
(Lecca, 2013).

𝑐 𝑗 =
𝑘 𝑗

(𝑁Av𝑉) 𝜅−1 (2.13)

where 𝜅 is the molecularity of the reaction, 𝑁Av the Avogadro’s number, and 𝑉 the vol-
ume of the system (Lecca, 2013). It is illustrated with Eq. (2.10), for an unimolecular
reaction channel, such as ES

𝑘3→ E+P,

𝑎3 = 𝑐3𝑁ES

𝑐3 = 𝑘3,

for a bimolecular reaction channel, such as E+S
𝑘1→ ES,

𝑎1 = 𝑐1𝑁E𝑁𝑆

𝑐1 =
𝑘1

(𝑁Av𝑉)
.

Table 2.4 in Appendix 2.5 resumes the propensity, molecularity, and molecule number
changes for the nine reaction channels that appear in the reactions of the LMA model
cases.

On the other hand, the stochastic version of the MM kinetics includes only the reac-
tion channel S→ P, implying that each step of the SSA algorithm updates the numbers
of product and substrate molecules as 𝑁P→ 𝑁P + 1 and 𝑁S→ 𝑁S − 1. Unfortunately,
the propensity cannot be obtained from Eq. (2.11) as it does not follow the law of mass
action. This issue was addressed by Rao and Arkin applying the CME to translate the
ODE of the WI case

𝑑𝐶S
𝑑𝑡

= −
𝑘3𝐶E,0𝐶S

𝐶S +𝐾ES
(2.14)

into an equivalent propensity (Rao & Arkin, 2003). They proposed the same trans-
lation for the competitive inhibition (CI) case, and the translation of kinetic ODEs
into propensities has become common in subsequent studies of stochastic Michaelis-
Menten-QSSA (Agarwal, Adams, Castellani, & Shouval, 2012; Kang et al., 2019; Law-
son, Petzold, & Hellander, 2015; Rao & Arkin, 2003; Sanft et al., 2011; Warne, Baker,
& Simpson, 2019; Wu, Vidakovic, & Voit, 2011). Herein, this approach was applied
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using the fact that the system volume is constant to replace the concentrations with the
numbers of molecules by doing

𝐶𝑖 = 𝑁𝑖

(
𝐶S,0

𝑁S,0

)
(2.15)

where 𝐶S,0 and 𝑁S,0 are substrate’s initial concentration and number of molecules,
respectively. In this way, Eq. (2.24) becomes

𝑑𝑁S
𝑑𝑡

= −𝑘3
𝑁E,0𝑁S

𝑁S +𝐾ES

(
𝑁S,0
𝐶S,0

)
which leads to the propensity for Michaelis-Menten kinetics without inhibition

𝑎WI = 𝑘3
𝑁E,0𝑁S

𝑁S +𝐾𝑁ES
(2.16)

where
𝐾𝑁ES = 𝐾ES

(
𝑁S,0

𝐶S,0

)
.

The same transformation leads to the propensities for all cases, WI, CI, NCI, and UCI;
see Sec. 2.5.2.
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Table 2.2. Parameters and initial conditions for LMA examples .
Parameter Value Parameter Value

𝑘1 106 (M ·h)−1 𝑘9 5 ·10−5h−1

𝑘2 10−4h−1 𝐶S,0 5 ·10−7M
𝑘3 0.1h−1 𝐶E,0 2 ·10−7M
𝑘4 105 (M ·h)−1 𝐶I,0 2 ·10−7M
𝑘5 10−5h−1 𝑁S,0 300
𝑘6 5 ·105 (M ·h)−1 𝑁E,0 120
𝑘7 5 ·10−5h−1 𝑁I,0 120
𝑘8 5 ·105 (M ·h)−1 𝑉 10−15L

1 M=1 mol/L. Wilkinson (2018)

Table 2.3. Parameters and initial conditions for Michaelis-Menten simulations.
Parameter Value Parameter Value Parameter Value

𝑘3 1h−1 𝐶S,0 10M 𝑁S,0 1000
𝐾ES 11M 𝐶E,0 1M 𝑁E,0 100
𝐾EI 1M 𝐶I,0 1M 𝑁I,0 100

1 M=1 mol/L. Sanft et al. (2011).

It is worth mentioning that this conversion has been published before in such a way
that the 𝐾ES value becomes the same in the kinetic ODE and the propensity (Rao &
Arkin, 2003; Sanft et al., 2011; Wu et al., 2011). It is achieved by setting (𝑁Av𝑉) =
1L/mol, however, this fixed unitary value of 𝑁Av𝑉 is not a requisite of the procedure.

2.2.4 Simulation settings

Initial conditions for deterministic simulations are conventionally known from the ex-
perimental setup. However, stochastic simulations are based on numbers of molecules
and given that

𝑁Av𝑉 =
𝑁𝑖,0

𝐶𝑖,0
(2.17)

(being 𝑉 the system volume and 𝑁Av Avogadro’s number). It is possible to either
define the simulation volume and an initial concentration (𝑉 , 𝐶𝑖,0) to get the numbers
of molecules, or an initial number of molecules and concentration (𝑁𝑖,0, 𝐶𝑖,0) to set the
value of (𝑁Av𝑉).

The settings for the LMA stochastic simulations were adapted from available exam-
ples calculating the initial numbers of molecules from the initial concentration values
with a fixed volume of 𝑉 = 10−15L, see Table 2.2, Eq. (2.17) (Wilkinson, 2018). These
settings aim to represent a microorganism’s volume, a diluted system with very low ini-
tial concentrations of the species. However, our purpose is to illustrate the numerical
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simulation methods rather than simulate a living organism, for this reason, the volume
of a specific microorganism was not used. Readers interested in molecular and cell
biology simulations can use the BioNumbers database, which includes parameters for
specific microorganisms (Milo, Jorgensen, Moran, Weber, & Springer, 2010).

In the Michaelis-Menten stochastic simulations, the initial state of the system was
defined with the numbers of molecules and initial concentrations listed in Table 2.3.
This indirectly sets the volume of the system through Eq. (2.17), although the value
of 𝑉 is not necessary for the stochastic simulations. Also, parameters were chosen
considering that the QSSA is only suitable when the initial concentration of the enzyme
is almost negligible compared to the sum of the initial concentration of substrate plus
the equilibrium constant, i.e. 𝐶E,0 << 𝐶S,0 +𝐾ES, or

𝑁E,0 << 𝑁S,0 +𝐾𝑁ES (2.18)

because the stochastic MM becomes accurate when the same deterministic validity
conditions are fulfilled (Kang et al., 2019; Lawson et al., 2015; Sanft et al., 2011;
Segel, 1988; Segel & Slemrod, 1989).

The simulations were run in the software Matlab 2019b on a laptop with an Intel
Core i5 processor and 4Gb of RAM, with which an execution time of less than one
hour was obtained for the most demanding case with 50000 realizations of the MM-
WI model and 100000 initial molecules.

2.3 Results

2.3.1 Sensitivity analysis

Notice that for each stochastic simulation result, a so-called “realization”, is differ-
ent, although the path dictated by the kinetics through the reaction propensity is the
same in the stochastic simulation algorithm. Due to this, and in the same way that
concentration measurements have a relative uncertainty Δ𝐶/𝐶, the SSA carries an in-
herent uncertainty due to the change of the number of molecules (𝑁𝑖) at each step of
the Gillespie algorithm. For example, if the number of 𝑖 molecules is reduced by one
the relative change is 1/𝑁𝑖 . Thus, given that the simulation volume is constant, Eq.
(2.17) leads to

Δ𝐶𝑖

𝐶𝑖
=

1
𝑁𝑖
, (2.19)

Note: The ability of stochastic models to simulate extrinsic and intrinsic uncer-
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tainty has already been validated for biological processes (Székely Jr & Burrage, 2014;
Tsimrng, 2014). Therefore, it is proposed to make use of the relationship between the
relative experimental uncertainty to calculate the number of initial molecules to define
the size of the system (Eq. 2.19).

implying that the SSA can emulate the order of magnitude of concentration uncer-
tainty by setting the (initial) numbers of molecules. This is illustrated in Figure 2.3
when the integration of the kinetic differential equation for the enzymatic reaction with
non-competitive inhibition is superimposed within several realizations of the SSA.

The analogy between experimentation and stochastic simulation indicates that statis-
tic measurements, mean and standard deviation can be obtained from SSA realizations.
However, literature has not addressed how to define the numbers of molecules (sys-
tem volume) and realizations without taking advantage of the uncertainty given by the
stochastic model Romero-Severson, Ribeiro, and Castro (2018). In previous research,
the number of realizations has been arbitrarily selected between 100 and 10000 (Agar-
wal et al., 2012; Rao & Arkin, 2003; Sanft et al., 2011; Wu et al., 2011), to assess
the effects of system size on stochastic Michaelis-Menten simulations and stochastic
solutions of population balances (Lawson et al., 2015; Zhou, Jiang, & Chan, 2020).
But even so, it is not clear how to systematically define those two parameters. To an-
swer this question a sensitivity analysis is proposed to study the influence of the initial
number of molecules and realizations.

Results shown in Figure 2.4, indicate that the logarithm of the standard deviation
of the concentration decreases linearly with the initial number of substrate molecules
(𝑁S,0). It corresponds to the fact that the stochastic simulation becomes a better approx-
imation of the real system with higher values of 𝑁 and converges to the deterministic
solution when 𝑁 →∞ (Hahl & Kremling, 2016; Lawson et al., 2015; Marchetti et al.,
2017; Menz, 2013). Despite that, the emulation of large-scale chemical systems with a
huge 𝑁 value would lead to an unrealistic small uncertainty in Eq. (2.19). The selec-
tion of the volume of the system can be made based on: replicating the experimental
uncertainty of the process (Eq. 2.19), the uncertainty around the experimental data,
or even, a simulation volume equal to the volume of the microorganism in the case
fermentation.

Regarding the number of realizations (𝑅), the results in Figure 2.5 show that stan-
dard deviation converges to a stable value after 500 realizations for all 𝑁S,0 values
investigated. It implies that the probability distribution function becomes constant,
in agreement with the full probability distribution corresponds to the limit 𝑅 → ∞
(Székely Jr & Burrage, 2014).

The results for the law of mass action model were analogous, so for both mod-
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els, MM and LMA the statistics were calculated for 𝑅 = 1000 realizations. Also, it
is confirmed that the initial numbers of molecules proposed in Tables 2.2-2.3 are true,
acceptable. It is worth mentioning a technical detail, given that Gillespie’s algorithm
produces results at random times generated by the propensities in Eq. (2.7), the av-
erages and standard deviations were calculated from SSA results interpolated to 1 h
intervals.
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Figure 2.3. Deterministic (ODE based) and stochastic (SSA) simulations of Michaelis-
Menten kinetics with non-competitive inhibition (MM-NCI, Eq. 2.28).
Black solid lines: substrate (S) and product (P) concentrations obtained from ode in-
tegration. Staircase lines: stochastic results, 100 realizations of Gillespie algorithm.
Concentrations are calculated from the numbers of molecules using Eq. 2.15.
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Figure 2.4. Standard deviation of concentration for different 𝑁S,0 values (initial num-
bers of substrate molecules).
MM-WI kinetics with 1000 realizations.Values are shown for 𝑡 = 40h, results for other
times and number of realizations are similar.
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Figure 2.5. Standard deviation of concentration for different numbers of realizations.
Initial numbers of substrate molecules for MM-WI kinetics (each marker is a different
𝑁S,0, i.e. ’×’ =100, ’∗’=1000, ’+’=10000, ’,’=100000). Values are shown for 𝑡 = 40h,
results for other times are similar.
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2.3.2 Michaelis-Menten stochastic and deterministic simulations

A comparison of stochastic and deterministic simulations for the four enzymatic kinet-
ics are depicted in Figure 2.6 with the mean value and standard deviations calculated
from the SSA, shown at 5 h intervals. The small standard deviation values suggest that
the system is big enough to be statistically homogeneous (see Figure 2.7).

Despite not evident to the naked eye, uncertainty (sdev) is not constant through
the simulation. It is null in the initial time because all realizations start from the same
state, and tend to be zero in the final point where the molecules are depleted because
each realization tends to this state at a similar 𝑡 value. Figure 2.7, illustrates how sdev
reaches a maximum at times in which the realizations present a greater dispersion of
the value of 𝑁 . A more detailed analysis is presented in the description of the Figure
2.7.

45



0 20 40 60 80 100

Time [h]

0

2

4

6

8

10

S
ub

st
ra

te
 c

on
ce

nt
ra

tio
n 

[m
ol

/L
]

WI
CI
NCI
UCI

Figure 2.6. Stochastic and deterministic trajectories of substrate concentration with
Michaelis-Menten kinetics.
Solid lines: deterministic model (ODE) results. Markers: average and standard devia-
tion from stochastic simulation (SSA). Without inhibition the substrate depletes faster
and the slope of 𝐶 (𝑡) is higher for the WI simulation.
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Figure 2.7 shows that in the beginning of the simulations, before the maximum, the
results of the inhibited cases produce standard deviations lower than sdev for the WI
case. It comes from the fact that inhibited reactions proceed at a slower rates (slopes in
Figure 2.3) than the WI case. The small propensities associated to inhibition increase
the times 𝜏 to the next reaction in the SSA, therefore few different states of the system,
i.e. 𝑁 values, correspond to each sampled time which leads to a lower variance (see
𝜏, Eq. (2.7), and the term 1+𝑁I/𝐾𝑁EI in the equations for 𝑎 in Section 2.5.2). On the
contrary, the order of sdev values becomes reversed in the long term because the WI
propensity becomes smaller due to the substrate depletion. The transition between the
two propensity regimes induces the maximum that appears in the figure
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Figure 2.7. Concentration standard deviation from SSA simulations of Michaelis-
Menten kinetics for S→ P.
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2.3.3 Law of mass action stochastic and deterministic simulations

Simulations of the four cases WI, CI, NI, and UCI, with both deterministic and stochas-
tic methods (ODE integration and SSA), are shown in Figure 2.8-2.11. Mean and the
standard deviation were calculated at 1 h intervals from the results of 1000 realiza-
tions. Although the plots of the stochastic simulation algorithm results are illustrated
with a single realization for clarity purposes, also the plots include the ± one-standard-
deviation intervals, which encloses the deterministic solution and gives an estimation
of the uncertainty of the simulation provided by the stochastic model. For all cases,
the simulation results were homogeneous, in the sense that the stochastic (Gillespie’s
predictions) results follow the deterministic concentration profiles. In the description
of Fig. 2.8 - 2.11, the analysis are presented in the figures caption.

Figure 2.8 shows that substrate and product concentrations follow the same pattern
observed in MM kinetics. Concentrations of enzyme and enzyme-substrate complex
(E, EI) behave in opposite ways due to the initial consumption of enzyme to produce
enzyme-substrate complex, which later decomposes to generate the product, recovering
the enzyme concentration. The SSA reproduces correctly the behavior predicted by
integration of the ODEs, including substrate’s uptake, product’s output, and E and EI
concentrations.
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Figure 2.8. Law of mass action kinetics without inhibition (LMA-WI). Black solid
line: deterministic model results. Staircase red line: results from a single realization of
the SSA. Gray dashed lines: one-standard-deviation envelope, 𝑥± sdev (𝑥).
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In Figure 2.9, enzyme concentration initially decreases due to the formation of
enzyme-substrate and enzyme-inhibitor complexes, however it later increases and peaks
close to 𝑡 = 60 due to the decomposition of the ES complex. Also it can be observed
how after 60 hours the behavior of the system is governed by the inhibitor through
enzyme consumption to form EI complex until the end of the simulation. On the other
hand the inhibitor concentration decreases with time for the entire simulation due to
the formation of the enzyme-inhibtor complex (EI), whose concentration increases in
consequence. Standard deviations of substrate and product were smaller than the ones
of the other species, perhaps due to the inhibition reducing the effect of the enzyme.
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Figure 2.9. Law of mass action kinetics with competitive inhibition (LMA-CI). Solid
line: deterministic model results. Staircase red line: results from a single realization of
the SSA. Gray dashed lines are the one-standard-deviation envelope, 𝑥± sdev (𝑥).
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Figure 2.10. Law of mass action, non-competitive inhibition enzyme kinetics (LMA-
NCI). Black solid line: deterministic model results. Staircase red line: results from a
single realization of the SSA. Gray dashed lines are the one-standard-deviation enve-
lope, 𝑥± sdev (𝑥).
.
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The most remarkable feature in the results presented in Figure 2.11 is that the stan-
dard deviation of the inhibitor species (I, EIS) increases with time to maximum values,
contrary to the results in Figure 2.7. However, it can be explained by the fact that SSA
realizations were terminated just before the 𝑁I and 𝑁EIS became invariant, causing each
realization to end with a different value which increases sdev.
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Figure 2.11. Law of mass action un-competitive inhibition enzyme kinetics (LMA-
UCI). Black solid line: deterministic model results. Staircase red line: results from a
single realization of the SSA. Gray dashed lines are the one-standard-deviation enve-
lope, 𝑥± sdev (𝑥).
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In summary, the sensitivity analysis allowed it to make an optimal selection of the
initial number of molecules, as well as of the realizations to obtain a more precise value
of the uncertainty found from the stochastic simulations. Besides, the results of the
stochastic approaches in comparison with the deterministic ones for both cases (LMA
and MM), not only describe in the same way the behavior of the species involved but
also provide information on the level of uncertainty of the systems and the variation of
this throughout the simulation.

2.4 Conclusion

This work shows that the uncertainty of concentrations enzyme kinetics can be es-
timated with repeated realizations of the SSA stochastic simulation, in models based
either on the law of mass action or the Michaelis-Menten kinetics and with and without
inhibition. It is also possible to emulate the relative uncertainty of experimental mea-
surements by setting the number of molecules. In this sense the SSA can be a useful
complement of ODE-based simulations of enzyme kinetics, however, it should be con-
sidered that this simulated uncertainty varies with time, it tends to be higher when the
variable is changing quickly, making it advisable to calculate it for the whole extension
of the simulation. Furthermore, uncertainty estimation can be executed in reasonable
times in a common computer, as the standard deviation results converge after a small
number of realizations. We envision that in future works stochastic simulation could
be applied to design and control processes under conditions of uncertainty.
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2.5 Appendix: detailed models

2.5.1 Law of mass action

Differential equations for each case are shown first, while reactions channels for stochas-
tic simulation are summarized in Table 2.4. Some reactions are repeated for clarity.
Sources: (J. Donoso, 2006; Rogers & Gibon, 2009).

• Without inhibition (WI)

E+S
𝑘1
⇄
𝑘2

ES
𝑘3→ E+P (2.20)

Species (𝑖) 𝑑𝐶𝑖/𝑑𝑡 = · · ·

E −𝑘1𝐶E𝐶S + (𝑘2 + 𝑘3)𝐶ES

S −𝑘1𝐶E𝐶S + 𝑘2𝐶ES

ES 𝑘1𝐶E𝐶S− (𝑘2 + 𝑘3)𝐶ES

P 𝑘3𝐶ES

• Competitive inhibition (CI)

As in the previous case

E+S
𝑘1
⇄
𝑘2

ES
𝑘3→ E+P

but an inhibitor is included
E+ I

𝑘4
⇄
𝑘5

EI. (2.21)

the ODEs for substrate and product remain the same as in the kinetics without inhi-
bition, but the inhibitor reaction changes 𝑑𝐶E/𝑑𝑡 and requires two new differential
equations for I and the complex enzyme-inhibitor (EI)

Species (𝑖) 𝑑𝐶𝑖/𝑑𝑡 = · · ·

E −𝑘1𝐶E𝐶S + (𝑘2 + 𝑘3)𝐶ES− 𝑘4𝐶E𝐶I + 𝑘5𝐶EI

S −𝑘1𝐶E𝐶S + 𝑘2𝐶ES

ES 𝑘1𝐶E𝐶S− (𝑘2 + 𝑘3)𝐶ES

P 𝑘3𝐶ES

I −𝑘4𝐶E𝐶I + 𝑘5𝐶EI

EI 𝑘4𝐶E𝐶I− 𝑘5𝐶EI
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• Non-competitive inhibition (NCI)

This case includes the product, inhibitor reactions (Eqs. 2.20-2.21)

E+S
𝑘1
⇄
𝑘2

ES
𝑘3→ E+P

E+ I
𝑘4
⇄
𝑘5

EI

and EIS (enzyme-inhibitor-substrate) complex reactions

EI+S
𝑘6
⇄
𝑘7

EIS (2.22)

ES+ I
𝑘8
⇄
𝑘9

EIS. (2.23)

The additional EIS reactions lead to

Species (𝑖) 𝑑𝐶𝑖/𝑑𝑡 = · · ·

E −𝑘1𝐶E𝐶S + (𝑘2 + 𝑘3)𝐶ES− 𝑘4𝐶E𝐶I + 𝑘5𝐶EI

S −𝑘1𝐶E𝐶S + 𝑘2𝐶ES− 𝑘6𝐶EI𝐶S + 𝑘7𝐶EIS

ES 𝑘1𝐶E𝐶S− (𝑘2 + 𝑘3)𝐶ES− 𝑘8𝐶ES𝐶I + 𝑘9𝐶EIS

P 𝑘3𝐶ES

I −𝑘4𝐶E𝐶I + 𝑘5𝐶EI + 𝑘8𝐶ES𝐶I− 𝑘9𝐶EIS

EI 𝑘4𝐶E𝐶I− 𝑘5𝐶EI− 𝑘6𝐶EI𝐶S + 𝑘7𝐶EIS

EIS 𝑘6𝐶EI𝐶S− 𝑘7𝐶EIS + 𝑘8𝐶ES𝐶I− 𝑘9𝐶EIS

• Un-competitive inhibition (UCI)

Product comes only from Eq. (2.20), while the reaction between complex ES and I is
shown in Eq. (2.23).

E+S
𝑘1
⇄
𝑘2

ES
𝑘3→ E+P

ES+ I
𝑘8
⇄
𝑘9

EIS
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Species (𝑖) 𝑑𝐶𝑖/𝑑𝑡 = · · ·

E −𝑘1𝐶E𝐶S + (𝑘2 + 𝑘3)𝐶ES

S −𝑘1𝐶E𝐶S + 𝑘2𝐶ES

ES 𝑘1𝐶E𝐶S− (𝑘2 + 𝑘3)𝐶ES− 𝑘8𝐶ES𝐶I + 𝑘9𝐶EIS

P 𝑘3𝐶ES

I −𝑘8𝐶ES𝐶I + 𝑘9𝐶EIS

EIS 𝑘8𝐶ES𝐶I− 𝑘9𝐶EIS

Stochastic kinetics for the law of mass action cases is reduced to the reaction chan-
nels in Table (2.4). It includes the propensities and molecule number changes.

Table 2.4. Propensities, reaction molecularities (𝐾), and molecule number changes of
reaction channels in the law of mass action examples. Channels necessary for each
case: WI 1-3, CI 1-5, NCI 1-9, UCI 1-3 and 8-9.

Channel 𝑗 Reaction channel 𝑎 𝑗 𝐾 E I P S EI EP ES EIS

1 E+S
𝑘1→ ES 𝑐1𝑁E𝑁S 2 -1 -1 +1

2 ES
𝑘2→ E+S 𝑐2𝑁ES 1 +1 +1 -1

3 ES
𝑘3→ E+P 𝑐3𝑁ES 1 +1 +1 -1

4 E+ I
𝑘4→ EI 𝑐4𝑁E𝑁I 2 -1 -1 +1

5 EI
𝑘5→ E+ I 𝑐5𝑁EI 1 +1 +1 -1

6 EI+S
𝑘6→ EIS 𝑐6𝑁EI𝑁S 2 -1 -1 +1

7 EIS
𝑘7→ EI+S 𝑐7𝑁EIS 1 +1 +1 -1

8 ES+ I
𝑘8→ EIS 𝑐8𝑁ES𝑁I 2 -1 -1 +1

9 EIS
𝑘9→ ES+ I 𝑐9𝑁EIS 1 +1 +1 -1

2.5.2 Michaelis-Menten

Differential equations for substrate concentration (𝐶S), from refs. (Rogers & Gibon,
2009; Villadsen, Nielsen, & Lidén, 2011). Propensities come from the procedure de-
scribed in Sec. 2.2.3. Some equations are repeated here for clarity:
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• Without Inhibition (WI)

d𝐶S
d𝑡

= −
𝑘3𝐶E,0𝐶S

𝐶S +𝐾ES
(2.24)

𝑎WI = 𝑘3
𝑁E,0𝑁S

𝑁S +𝐾𝑁ES
(2.25)

where
𝐾𝑁ES = 𝐾ES

(
𝑁S,0

𝐶S,0

)
• Competitive Inhibition (CI)

d𝐶S
d𝑡

= −
𝑘3𝐶E,0𝐶S

𝐶S +𝐾ES

(
1+ 𝐶I

𝐾EI

) (2.26)

𝑎CI =
𝑘3𝑁E,0𝑁S

𝑁S +𝐾𝑁ES

(
1+ 𝑁I

𝐾𝑁
EI

) (2.27)

where
𝐾𝑁EI = 𝐾EI

(
𝑁S,0

𝐶S,0

)
• Non-Competitive Inhibition

d𝐶S
d𝑡

= −
(
𝑘3𝐶E,0𝐶S

𝐶S +𝐾ES

)
×

(
1+ 𝐶I

𝐾EI

)−1
(2.28)

𝑎NCI =
𝑘3𝑁E,0𝑁S

𝑁S +𝐾𝑁ES

(
1+ 𝑁I

𝐾𝑁EI

)−1

(2.29)

• Un-Competitive Inhibition

d𝐶S
d𝑡

= −
𝑘3𝐶E,0𝐶S

𝐾ES +
(
1+ 𝐶I

𝐾EI

)
𝐶S

(2.30)

𝑎UCI =
𝑘3𝑁E,0𝑁S

𝐾𝑁ES +
(
1+ 𝑁I

𝐾𝑁
EI

)
𝑁S

(2.31)
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Chapter 3

Stochastic modeling approach
and tuning for fermentation
models

Abstract

The study and application of bioprocesses at an industrial level, such as the production
of xylitol, makes it necessary to develop mathematical models that fit, increasingly
predict the behavior of systems, as well as the possibility of evaluating their inherent
uncertainty. It is precisely in the study of uncertainty and its application to biologi-
cal systems where stochastic modeling has its greatest contribution and relevance. In
this work, a significant contribution is made, since it is the first case in the litera-
ture in which a stochastic model is proposed in which enzymatic kinetic phenomena
with inhibition, microbial growth, and mass transport are included in the same case.
Herein, it is presented the modeling, simulation, and re-estimation of both deterministic
and stochastic parameters of the xylitol production model from two substrate sources.
Model calibration for the deterministic model was performed with the interior-point
algorithm and, in turn, for the stochastic model was performed through the Approxi-
mate Bayesian Computation rejection sampler method. The re-estimation of parame-
ters of the deterministic model showed a substantial improvement in experimental data
reproduction, especially for xylitol. The stochastic simulation was carried out with
Gillespie’s Stochastic Simulation Algorithm. The stochastic model results were able to
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reproduce the behavior of the different chemical species in the system, evaluate the un-
certainty associated with the model through the standard deviation and apply a method
of parameter estimation to a stochastic model of this type.

3.1 Introduction

Xylitol is a five-carbon sugar alcohol, currently used as a sweetener in the pharma-
ceutical, nutraceutical, food, beverage industries among others (Edelstein et al., 2007;
Maguire & Rugg-Gunn, 2003). Xylitol has become a healthier and more ecological
alternative to sucrose, as it has an equivalent relative sweetness, with lower "energy
content". Besides, it can be obtained from natural sources such as agro-industrial
waste (Dasgupta, Bandhu, Adhikari, & Ghosh, 2017). In recent decades, it has be-
come a feasible replacement of production by chemical synthesis, given the need for
more environmentally friendly processes (Dasgupta et al., 2017; Park, Sang, Park, &
Park, 2005). Despite interesting, this bioproduction faces technical and economic lim-
itations which have delayed its implementation at a large scale. Therefore, there is a
need for process optimization which translates into the need for mathematical mod-
els that facilitate process design, control, optimization, and scaling up bioproduction
processes.

Tochampa et al. (2005) were the first to introduce a mathematical model of fer-
mentation with Candida mogii, which took into account the inhibition generated by the
presence of glucose in the system (a very common sugar in agro-industrial waste).
Since then, other authors have adapted this model for fed-batch processes, immo-
bilized cells, and different microorganisms, among many improvements (Dorantes-
Landa, Cocotle-Ronzón, Morales-Cabrera, & Hernández-Martínez, 2020; Nguyen, Le,
& Boontawan, 2020; Prado-Rubio, Hernández-Escoto, Rodriguez-Gomez, Sirisansa-
neeyakul, & Morales-Rodriguez, 2015; Sirisansaneeyakul, Wannawilai, & Chisti, 2013).
Also, the xylitol model proposed by Tochampa et al. (2015) for a fed-batch reactor has
been applied in process stochastic optimization, improving the productivity of xylitol
from the ratio of the feed flow to the bioreactor (Koop, Corazza, Voll, & Bonilla-
Petriciolet, 2017).

On the other hand, (Rao & Arkin, 2003) were the first to apply the stochastic ap-
proach of QSSA for the case of enzymatic reaction without inhibition. Barik, Paul,
Baumann, Cao, and Tyson (2008) proposed how to improve the time and efficiency of
the stochastic simulation when there are different time scales between the reactions.
(Dóka, 2012) determine the regions in the parameter space for which stochastic kinetic
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approach is unavoidable and (Kang, KhudaBukhsh, Koeppl, & Rempała, 2019) makes
a complete stochastic derivation for the different types of QSSA, indicating the appli-
cability criteria of the same in comparison with the deterministic version. Based on
the state of the art, there are still no reported examples on modeling microbial kinetics
with enzymatic reactions from the stochastic approach.Therefore, this work aims to
present the complete translation of a complex fermentation model (including microbial
growth, competitive inhibition, and mass transport) to propensities and to propose a
simulation methodology of the SSA from the ODEs, when the elemental reactions are
not known, nor the stoichiometry associated with them. On the other hand, a param-
eter re-estimation was made from the deterministic approach with the interior-point
algorithm and with the Approximate Bayesian Computation rejection Sampler (ABC
rejection sampler) method to have a better fit of the model, as well as having more
limited and realistic uncertainty of the system (Liu & Gunawan, 2017; Soize, 2013).
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Table 3.1. Nomenclature symbols.

Greek letters
𝛾cell Reductance degree of biomass -
𝛾xit Reductance degree of xylitol -
𝜂 Energy yield coefficient for biomass production -
𝜇xit Specific growth rate on xylitol h−1

𝜇𝑚𝑎𝑥
𝑔𝑙𝑐

Maximum specific growth rate on glucose h−1

𝜇𝑚𝑎𝑥
𝑥𝑖𝑡

Maximum specific growth rate on xylose h−1

𝜌x yeast cell density gDCW/L
𝜎cell Weight fraction of carbon in biomass g atom-C g DCW−1

𝜎xit Weight fraction of carbon in xylitol g atom-C g DCW−1

Variables
𝑎cell Specific surface area of the cell, m2/gDCW
𝐶x Biomass concentration g Biomass/L
𝐶glc Glucose concentration g Glucose/L
𝐶xyl Xylose concentration g Xylose/L
𝐶 in

xit Intracellular xylitol concentration g Xyilitol/L
𝐶ex

xit Extracellular xylitol concentration g Xyilitol/L
𝑘𝑖,𝑔𝑙𝑐 Glucose inhibition constant gglucoseL−1

𝑘𝑖,𝑥𝑦𝑙 Xylose inhibition constant gxyloseL−1

𝐾𝑟 Repression constant by glucose gglucoseL−1

𝐾𝑠,𝑔𝑙𝑐 Saturation constant based on glucose gglucoseL−1

𝐾𝑠,𝑥𝑦𝑙 Saturation constant based on xylose gxyloseL−1

𝐾𝑠,𝑥𝑖𝑡 Saturation constant based on xylitol gxylitolL−1

𝑁𝐴𝑣 Avogadro’s number mol−1

𝑃𝑥𝑖𝑡 Permeability coefficient of xylitol ms−1

𝑞𝑚𝑎𝑥
𝑔𝑙𝑐

Specific rate of maximum glucose consumption gglucose ·gDCW−1h−1

𝑞𝑚𝑎𝑥
𝑥𝑦𝑙

Specific rate of maximum xylose consumption gxylose ·gDCW−1h−1

𝑟f,xit Specific formation rate of xylitol, gxylitolgDCW−1 h−1

𝑟t,xit Mass flow of xylitol on a cell dry basis gxylitolgDCW−1 h−1

𝑟u,xit Intracellular xylitol consumption rate gxylitolgDCW−1 h−1

𝑉 Volume L
𝑌x/xit Biomass-xylitol yield gDCW/gxylitol
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3.2 Methods

Figure 3.1 shows the two methodologies followed to simulate and re-estimate the xyl-
itol production model proposed by Tochampa et al. (2005):

• Using a deterministic approach of the model by Tochampa et al. (2005) through
the interior-point algorithm coupled with the function fmincon of Matlab 2020a.
The right branch of Figure 3.1 shows the methodology (Section 3.2.3) traveled
from the deterministic approach of the model formulated by Tochampa et al.
(2005) (the system of differential equations that describe the concentration pro-
files over time for biomass, glucose, xylose, and xylitol) until the new parameter
values are obtained.

• Applying the Stochastic Simulation Algorithm in the ABC rejection sampler.
This approach was simulated, taking the ODEs to propensity functions (Sections
2.2.3 and 2.5.2), with which the SSA is applied (Section 2.2.2) (Gillespie, 2007;
Rao & Arkin, 2003). This second option of parameter estimation was carried out
to find finding a substantial improvement in the fit of the model to the experi-
mental data, especially for xylitol, which is the compound of interest.
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Figure 3.1. Metodological flowsheet.

3.2.1 Deterministic approach

The mathematical model proposed by Tochampa et al. (2005) yields the mass concen-
tration of biomass (x, Candida moggi), glucose (glc), xylose (xyl), intra and extracel-
lular xylitol (xit); in a batch reactor as a function of time. It takes into account the
transport of xylitol outside the cell and competitive inhibition between glucose and xy-
lose. The nomenclature and units for each parameter are presented in Table 3.1. The
deterministic reactor mass balances and kinetic models are described below:

• The microbial growth rate was modeled with an auto-catalytic growth equation,
which takes into account the growth of biomass in two substrates (xylose and
glucose) with a term of inhibition of growth in xylose by glucose.

d𝐶x
d𝑡

= 𝜇 ·𝐶x (3.1)

𝜇 = 𝜇max
glc

𝐶glc

𝐾s,glc +𝐶glc
+ 𝜇max

xit
𝐶 in

xit

𝐾s,xi𝑡 +𝐶𝑖𝑛xit
· 𝐾r
𝐾r +𝐶glc

(3.2)
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• The glucose consumption rate was modeled as a function of the specific glucose
consumption rate (𝑞glc), where the 𝑞glc corresponds an enzymatic kinetic with
competitive inhibition, that is, that the same active site of the enzyme can be
attacked by both the glucose and xylose. In this case, the xylose is taken as the
inhibitor.

d𝐶glc

d𝑡
= −𝑞glc ·𝐶x (3.3)

𝑞glc = 𝑞
max
glc

𝐶glc

𝐶glc +𝐾s,gl𝑐

(
1+ 𝐶xy𝑙

𝑘i,xyl

) (3.4)

• The xylose consumption rate was modeled as a function of the specific xylose
consumption rate (𝑞xyl). Also, the 𝑞xyl represents the competitive inhibition gen-
erated by the glucose.

d𝐶xyl

d𝑡
= −𝑞xyl ·𝐶x (3.5)

𝑞xyl = 𝑞
max
xyl

𝐶xyl

𝐶xyl +𝐾s,xyl

(
1+ 𝐶glc

𝑘i,glc

) (3.6)

• The rate of change in intracellular xylitol concentration. This involves the gen-
eration of xylitol within the cell and its transport across the cell membrane.

d𝐶 in
xi𝑡

d𝑡
= 𝜌x

(
𝑟f,xit− 𝑟u,xit− 𝑟t,xit

)
− 𝜇 ·𝐶𝑖nxit (3.7)

𝑟f,xi𝑡 =
(mw)xit
(mw)xyl

· 𝑞xyl (3.8)

Where (mw)xitand (mw)xyl are the molecular masses of xylitol and xylose, re-
spectively.

𝑟u,xit =
𝜇xit
𝑌x/xit

(3.9)

𝑌x/xit = 𝜂
𝜎xit𝛾xit
𝜎cell𝛾cell

(3.10)

𝑟t,xit = 3.6×106𝑃 · 𝑎cell

(
𝐶 in

xit−𝐶
ex
xit

)
(3.11)

• The rate of change in the concentration of extracellular xylitol, which is a func-
tion of 𝑟t,xitand 𝐶x.

d𝐶ex
xit

d𝑡
= 𝑟t,xit ·𝐶x (3.12)

Table 3.2 shows the constant parameters and initial conditions for the deterministic and
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stochastic model.

Table 3.2. Constant parameters for xylitol model.

Parameter Value Parameter Value
𝜂 0.58 𝑎cell 7.6
𝜎xit 0.39 𝜌𝑥 120
𝜎cell 0.49 𝐶x,0 5.0655
𝛾cell 4.19 𝐶glc,0 4.2795
𝛾xit 4.4 𝐶xyl,0 31.0044
(mw)xyl 150.13 𝐶 in

xit,0 0
(mw)xit 152.15 𝐶ex

xit,0 0

DCW = Dry Cell Weight, the units of each parameter are presented in Table 3.1. (Tochampa et al.,
2005).

3.2.2 Stochastic approach

The propensity functions for the stochastic model were derived from the deterministic
model through the application of the CME to translate the ODEs (see Section 2.2.3 and
Eqs. 3.1, 3.3, 3.5, 3.7 and 3.12) into their equivalent propensities (Rao & Arkin, 2003).

The following is the procedure performed to convert each differential equation of
the xylitol model to its propensity function. The easiest case is when the same concen-
trations appears in both sides, e.g.

d𝐶x
d𝑡

= 𝜇𝐶x (3.13)

𝐶𝑖 =
𝑁𝑖 (mw)𝑖
𝑁𝐴𝑣𝑉

(3.14)

Replacing Eq. 3.14 into Eq. 3.13, it is obtained

d𝑁x
d𝑡

= 𝜇𝑁x (3.15)

The propensity function is equal of the right side of the Eq. 3.15.

𝑎x = 𝜇𝑁x (3.16)

In the same way, the propensities for Eqs. 3.3 and 3.5 are

𝑎glc =

[
(mw)𝑥
(mw)glc

]
𝑞glc𝑁x (3.17)
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𝑎xyl =

[
(mw)𝑥
(mw)xyl

]
𝑞xyl𝑁x (3.18)

Then, the conversion from concentration to number of molecules of 𝜇, 𝑞glc and 𝑞xyl is
made from Eqs. (3.2), (3.4) and (3.6) respectively, as presented below.

𝜇 = 𝜇glc + 𝜇xit (3.19)

where
𝜇glc = 𝜇

max
glc

𝐶glc

𝐾s,glc +𝐶glc
(3.20)

When replacing Eq. 3.48 into Eq. 3.20, it is obtained:

𝜇glc = 𝜇
max
glc

𝑁glc (mw)glc
(𝑁Av𝑉)

𝐾s,glc +
𝑁glc (mw)glc
(𝑁Av𝑉)

(3.21)

Then, it is taken a common factor (mw)glc/(𝑁𝐴𝑣𝑉) in the denominator of the fraction
and it is canceled in the numerator and denominator to obtain:

𝜇glc = 𝜇
max
glc

𝑁glc

𝐾s,glc
(𝑁Av𝑉)
(mw)glc

+𝑁glc
(3.22)

𝐾𝑁s,glc = 𝐾s,glc
(𝑁Av𝑉)
(mw)glc

(3.23)

And finally, Eq. 3.20 is rewritten as

𝜇glc = 𝜇
max
glc

𝑁glc

𝐾𝑁s,glc +𝑁glc
(3.24)

An analogous procedure is now followed for 𝜇𝑥𝑖𝑡

𝜇xit = 𝜇
max
xit

𝐶xit
𝐾s,xit +𝐶xit

· 𝐾r
𝐾r +𝐶glc

(3.25)

After the translation process:

𝜇xit = 𝜇
max
xit

𝑁xit

𝐾𝑁s,xit +𝑁xit
· 𝐾𝑁r

𝐾𝑁r +𝑁glc
(3.26)

𝐾𝑁s,xit = 𝐾s,xit
(𝑁Av𝑉)
(mw)xit

(3.27)
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𝐾𝑁r = 𝐾r
(𝑁Av𝑉)
(mw)glc

(3.28)

For the specific glucose and xylose consumption rates (see Eqs. 3.43.6), an analogous
procedure is applied.

𝑞𝑔𝑙𝑐 = 𝑞
max
glc

𝑁glc

𝑁glc +𝐾𝑁S,glc

(
1+ 𝑁xyl

𝐾𝑁
i,xyl

) (3.29)

𝑞xyl = 𝑞
max
xyl

𝑁xyl

𝑁xyl +𝐾𝑁S,xyl

(
1+ 𝑁glc

𝐾𝑁
i,glc

) (3.30)

𝐾𝑁i,xyl = 𝐾i,xyl
(𝑁Av𝑉)
(mw)xyl

(3.31)

𝐾𝑁i,glc = 𝐾i,glc
(𝑁Av𝑉)
(mw)glc

(3.32)

𝐾𝑁s,xyl = 𝐾s,xyl
(𝑁Av𝑉)
(mw)xyl

(3.33)

Finally, for Eqs. 3.7 and 3.12 that correspond to the intra and extracellular xylitol, the
following expressions are obtained:

𝑎in
xit =
(𝑁Av𝑉)
(mw)xit

· 𝜌x
(
𝑟f,xit− 𝑟u,xit− 𝑟t,xit

)
− 𝜇 ·𝑁 in

xit (3.34)

𝑎ex
xit = 𝑟t,xit

(mw)x
(mw)xit

·𝑁x (3.35)

where 𝑟f,xit, 𝑟u,xi𝑡 and 𝑟t,xi𝑡 are defined as

𝑟f,xit =
(mw)xit
(mw)xyl

𝑞xyl (3.36)

𝑟u,xit =
𝜇xit
𝑌𝑥/xit

(3.37)

𝑟t,xit = 3.6×106 𝑃xit𝑎cell (mw)xit
(𝑁Av𝑉)

(
𝑁 in

xit−𝑁
ex
xit

)
(3.38)

A stochastic simulation of this model was complex since Gillespie’s algorithm re-
quires

• The set of reactions that takes place.
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• The stoichiometry is associated with each reaction to define the consumption or
production of each species.

For example, in the SSA for two reactions.

A→ B (3.39)

2B→ C (3.40)

a reaction channel must be selected at each time step, and after that, the numbers of
molecules are updated. If the selected channel was 2B→ C, then one molecule of C is
produced and two of B are consumed. However, a stochastic simulation of the xylitol
model is difficult because only the mass balances (ODE’s) are known, but he reactions
that give rise to microbial growth are unknown, which leads to a lack of knowledge
of their stoichiometry. To overcome this obstacle, the SSA formulation of the S→ P
Michelis-Menten enzymatic kinetics in Section 2.2.3 was followed, assuming that each
propensity function obtained from each ODE (Eqs. 3.16 - 3.35), corresponds to an
independent reaction channel with a 1 to 1 stoichiometry, even for biomass (J. Donoso,
2006; Rogers & Gibon, 2009; Villadsen, Nielsen, & Lidén, 2011). Hence, 5 reaction
channels are obtained, 1 channel for each species (i.e. biomass, glucose, xylose, intra,
and extracellular xylitol). Therefore, the right side of 𝑎x is interpreted as increase of
biomass molecules

𝑁x→ 𝑁x +1, (3.41)

given the positive sing of the Eq. 3.1, which represents species production. On the other
hand, the 𝑎glc and 𝑎xyl are interpreted as a decrease of glucose and xylose molecules,
respectively. Notice in Eqs. 3.3 and 3.5, the negative sign which represent species
consumption.

𝑁glc→ 𝑁gl𝑐 −1 (3.42)

𝑁xyl→ 𝑁xyl−1 (3.43)

The situation for the intra and extra xylitol propensities (𝑎in
xit and 𝑎𝑒𝑥

𝑥𝑖𝑡
) is particu-

lar, since they should always be positive. However in this case, the propensities can
take negative and positive values given the interaction between the terms of the ODEs
defining xylitol consumption, production and transport. Therefore, the questions to be
solved are:
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1. How to decide if xylitol is produced or consumed?

2. How to calculate the probability intervals associated with each reaction channel
and the step time? Since neither times nor negative probabilities can be obtained
(see Section 2.2.2)

The first question was solved to assign the channel based on the sign of the propensity
value, following the convention for chemical reactions that the negative sign indicates
consumption and the positive sign production. Thus, if 𝑎in

xit is positive

𝑁 in
xit→ 𝑁 in

xit +1 (3.44)

and if it is negative

𝑁 in
xit→ 𝑁 in

xit−1 (3.45)

On the other hand, if 𝑎ex
xit is positive

𝑁ex
xit→ 𝑁ex

xit +1 (3.46)

and if it is negative

𝑁ex
xit→ 𝑁ex

xit−1 (3.47)

And the second question was solved taking the absolute value of |𝑎in
xit | and |𝑎ex

xit| since
to define the probability intervals and the time step, only the value of each propensity is
required but not the sign. The mean and standard deviations were calculated from 1000
simulation runs based on an analogous sensitivity analysis presented in Section 2.2.4.
The simulation results were interpolated at the same times read from the experimental
results presented by Tochampa et al. (2005).

The simulation volume (see Table 3.3) was chosen with a preliminary sensitivity
analysis, for each tested 𝑉 the initial numbers of molecules were determined as

𝑁𝑖 =
𝐶𝑖𝑁𝐴𝑣𝑉

(mw)𝑖
, (3.48)

and the 𝑁𝑖 (𝑡) profiles were generated with the SSA. This process was repeated until
the uncertainty generated by the stochastic method concerning the mean value covered
all the experimental data for xylitol since it is the substance of interest (see Figure 3.4).
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Note: the molecular weight of the biomass is estimated as

(mw)𝑥 = (mw)C +1.79(mw)H +0.5(mw)O +0.2(mw)N (3.49)

where C is carbon, H is hydrogen, O is oxygen and N is Nitrogen (Tochampa et al.,
2005).

Table 3.3. Initial conditions for stochastic model.

Parameter Value Parameter Value
𝑁x,0 62 𝑁 𝑖𝑛

𝑥𝑖𝑡 ,0 0
𝑁glc,0 7 𝑁𝑒𝑥

𝑥𝑖𝑡 ,0 0
𝑁xyl,0 62 𝑉 5×10−22 L

3.2.3 Parameter estimation

The estimated parameters were: 𝜇max
glc , 𝜇max

xit , 𝑞max
xyl , 𝑞max

glc , 𝐾s,xyl, 𝐾s,glc, 𝐾s,xit, 𝐾i,xyl,
𝐾i,glc, 𝐾r, 𝑃xit. These were estimated both with the deterministic model and the interior
point method, as well as with the stochastic model and the ABC rejection Sampler
method. The experimental data were obtained from Tochampa et al. (2005), in which
to report the concentrations of biomass, glucose, xylose and extracellular xylitol for a
batch reactor. The parameter estimation was made for a set of 28 experimental data for
each chemical species. The objective function was

𝐹obj =

𝑀∑︁
𝑖=1

𝑊𝑖

𝑂∑︁
𝑗=1

(
𝑦̂𝑖, 𝑗 − 𝑦𝑖, 𝑗

)2 (3.50)

𝑊𝑖 =
1

max(𝑦𝑖, 𝑗 )
(3.51)

where 𝑀 is the number of experimentally observable species variables (i.e. concen-
trations of biomass, glucose, xylose, and xylitol concentration; subscript 𝑖), 𝑂 is the
total number of sampling points of concentration for each the species (subscript 𝑗),
𝑊𝑖 is the weighting coefficient (a constant value for each species 𝑖), 𝑦𝑖, 𝑗 and 𝑦̂𝑖, 𝑗 are
experimental and model-predicted concentrations, respectively. The minimization of
the objective function was performed with the interior-point algorithm as implemented
in the function fmincon of Matlab2020a. This gradient-based numerical method cal-
culates the minimum of a nonlinear model where the function and the constraints are
continuous, creating a succession of points on a curve within the feasible region (Ruiz
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Paredes, 2019).
Also, the confidence intervals for the parameters were estimated with a 95% confi-

dence level using an asymptotic normal distribution for the parameter estimate through
the nlparci function of Matlab 2020a. The confidence intervals of the predictor (con-
centration) were analyzed using the Jacobian matrix (𝑱) for the deterministic model
(Englezos & Kalogerakis, 2000; Myers, Montgomery, Vining, & Robinson, 2012),

𝑦̂𝑚± 𝑡𝑠𝑡
√︃
𝜎2 (

1+Jm (J′J)−1J′
m
)

(3.52)

where 𝑡𝑠𝑡 corresponds to Student’s t for a 95% confidence interval, the subscript 𝑚
refers to the m-th row (i.e. m-th experimental concentration value) of the Jacobian
matrix, The variance (𝜎2) is calculated as

𝜎2 =
𝐹𝑣𝑎𝑙

(𝑂 ·𝑀) −𝑛𝑝
(3.53)

where 𝐹𝑣𝑎𝑙 is the value of the objective function evaluated with the definitive set of
parameters reached in the estimation and 𝑛𝑝 is the number of estimated parameters.

The parameter estimation of the stochastic model was done to compare with the
deterministic approach. It was carried out through the ABC method since it is a pa-
rameter estimation method applicable to stochastic models (Warne, Baker, & Simpson,
2019). This method estimates the parameters through the generation of random val-
ues for each parameter within a previously defined interval, then it is measured the
"distance" between the experimental data and the stochastic model results (a metric
discrepancy, 𝜌(𝑦, 𝑦̂))

𝜌(𝑦, 𝑦̂) =

𝑂∑︁
𝑗=1

(
𝑦 𝑗 − 𝑦 𝑗

)2


1/2

, (3.54)

for a candidate parameter set and then it is accepted or rejected based on a tolerance
(discrepancy threshold, 𝜖) (Gupta, 2013).

As a feasible region for the search for parameters, ± 50% of the values found with
the new parameters settings (Table 3.5). Therefore, it was decided that the total number
of accepted parameter sets (𝑚) should be 100 since which generate a standard deviation
lower than one. This indicates a homogeneous distribution between the different sets
of parameters found. In addition, it was taken a value of 𝜖 equal to 2.5, based on
Warne et al. (2019)’s work and that when the value 𝜖 decreases, the estimate becomes
longer and longer. Also, the volume was set for a value of 1× 10−20 L, which yields
initial 𝑁𝑖𝑠 values in the range of thousands, which narrows the interval of the SSA
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results improving their precision. It comes from the fact that the stochastic simulation
becomes a better approximation of the real system with higher values of 𝑁 (𝑁 →∞),
at which point it reaches the thermodynamic limit (Hahl & Kremling, 2016; Lawson,
Petzold, & Hellander, 2015; Marchetti, Priami, & Thanh, 2017; Menz, 2013).

On the other hand, the confidence intervals for the parameters were calculated from

𝐼𝑃 = 𝑃± 𝑡𝑠
𝜎
√
𝑍

(3.55)

where 𝜎 is the standard deviation of 100 accepted parameter set, 𝐼𝑃 is the confidence
interval value by each parameter and 𝑃 symbolizes the value of each parameter. The
Student’s t (𝑡𝑠) was calculated with the Matlab 2020a tinv function for a probability of
95% and degrees of freedom equal to (𝑂 ·𝑀) −𝑛𝑝 .

The methods for estimating parameters were compared using three statistical tools
Montgomery, Peck, and Vining (2021):

• Mean square error (MSE): measures the average of the squared errors between
the model results and the experimental data.

𝑀𝑆𝐸 =
1

𝑂 ·𝑀

𝑀∑︁
𝑖=1

𝑂∑︁
𝑗=1

(
𝑦̂𝑖, 𝑗 − 𝑦𝑖, 𝑗

)2 (3.56)

• Determination coefficient (𝑟2): quantify the percentage of the experimental re-
sults that are explained by the model output.

• Parity diagram: plot model output versus experimental data. Then, the model
quality is evidenced in how close the point is closer to the 45° line.
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3.3 Results

Table 3.4 presents the comparison between the original model proposed by Tochampa
et al. (2005) (ORI), the re-calibrated deterministic model (IP) and an the stochastic
model calibration. It is also worth noting that the value of total 𝑟2 (i.e. all models)
is very close to one, which indicates that the model can be linearized. The results
of both the MSE and 𝑟2 show a significant improvement in the model predictions for
biomass and xylose. However the most relevant improvement is for xylitol increasing
from a 𝑟2 of 0.78 for ORI to 0.98 with IP. As xylitol is the product of interest, this new
set of parameters allows optimization of the production process. On the other hand,
when comparing the results between the IP and ABC, basically approaches have the
same data reproduction power. Given the high computational demand of the stochastic
method (22 h) compared with the 4 min of the deterministic one, the latter is the best
estimation method for this particular case. Therefore, the results of both the stochastic
and deterministic models will be performed with the data set obtained from the interior-
point algorithm.

Table 3.4. Fit of experimental data with three models.

ORI IP ABC
MSE 𝑟2 MSE 𝑟2 MSE 𝑟2

Biomass 2.5257 0.8819 1.4293 0.9252 1.3532 0.9274
Glucose 0.0627 0.9473 0.0671 0.9381 0.0677 0.9375
Xylose 2.7740 0.9798 1.9048 0.9860 1.9306 0.9857
Xylitol 2.2640 0.7898 0.1601 0.9814 0.1893 0.9790
Total 1.9066 0.9794 0.8903 0.9900 0.8852 0.9900

ORI: original parameters from Tochampa et al. (2005). IP: deterministic model re-fiting with the interior
point algorithm. ABC: parameters from this work, fitted using the stochastic results with the ABC method.
The variable in each case is the concentration (𝑉 = 1×10−20 L). The units of each parameter are presented
in Table 3.1.

Figure 3.2 shows the parity results of the model calibration process. The results
indicate that the new values estimated by both the interior point method and the ABC,
improved the model predictive power, having most of the predictions an error below
15%. Also, it should be noted that the xylitol concentration adjustment was signifi-
cantly improved compared to the original (ORI).
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Figure 3.2. Parity diagrams for the concentrations of Biomass, Glucose, Xylose, and
Xylitol. Gray dashed lines represent an error of 15% concerning the 45 ° line.

Table 3.5 shows a comparison between the values of the parameters estimated
by (Tochampa et al., 2005) and the estimated in this using the deterministic method
(interior-point) with 95% confidence interval, where the deviation percentage corre-
sponds to the relative difference of the re-calibrated parameter and its confidence in-
terval. Among the most notable differences is that the re-estimated 𝐾s,xit is practically
zero, which indicates that cell growth is governed by glucose concentration, maximum
specific growth rate (𝜇max

glc ) and the repression constant (𝐾r). Unlike that reported by au-
thors such as Tochampa et al. (2005), Tochampa et al. (2015), and Hernández-Escoto,
Prado-Rubio, and Morales-Rodriguez (2016), where their results show that 𝐾s,xit has
an important incidence within microbial growth. However, this situation can be gen-
erated by the multiple combinations of parameters that could be obtained due to the
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non-convex nature of the problem.
On the other hand, the confidence intervals for the parameters show that for 7

of them (𝜇max
glc , 𝑞max

glc , 𝐾s,glc, 𝐾s,xit, 𝑘 i,xyl, 𝐾r, 𝑃xit) they have CI/IP percentages above
100%, which implies that the parameters could take negative values. This means that
the degree of correlation between them is very large and its effect could be offset by
changes in the other variables. Therefore, these cannot be reliably identified from
the experimental data. This same problem had already been identified by Hernández-
Escoto et al. (2016). Besides, there are parameters with very large confidence intervals
(𝐾s,xit, 𝑘 i,glc, among others), which show an over-parameterization of the model.

Table 3.5. Model parameters, original (ORI), re-estimated using a interior-point algo-
rithm (IP), 95% confidence interval (±95% CI) and relative deviation.

Parameter ORI IP ±95% CI CI/IP (%)
𝜇max

glc 0.662 0.044 2.3932 5465.76
𝜇max

xit 0.189 0.059 0.0035 5.94
𝑞ma𝑥

xyl 0.342 0.315 0.0854 27.07
𝑞max

glc 3.276 6.380 328.1336 5142.77
𝐾s,xyl 11.761 8.219 5.7057 69.42
𝐾s,glc 9.998 15.992 953.4967 5962.33
𝐾s,xit 16.068 2.443 ·10−5 6.8550 ·10−5 280.58
𝑘𝑖,𝑥𝑦𝑙 14.780 15.167 2.3061 ·103 15204.11
𝑘𝑖,glc 0.1 0.219 0.2124 96.69
𝐾𝑟 0.1 20 80.7648 403.82
𝑃xit 7.591 ·10−9 1.262 ·10−6 5.1968 ·10−5 4118.20

ORI: original model parameters obtained by Tochampa et al. (2005). IP: Parameter values obtained from the
interior-pint algorithm for deterministic model. The units of each parameter are presented in Table 3.1.

Figure 3.3 shows the predictions of the xylitol model readjusted with the confi-
dence intervals of the predictor, predictions of the original model, and the experimen-
tal data. It can be seen that there is a good fit between the deterministic model and the
experimental data, which are within the confidence interval of the model predictions
for glucose and xylitol. However, the biomass and xylitol prediction leaves the experi-
mental data at the limit or even outside the limit. This shows that the numerical method
loses precision when it comes to representing the behavior of xylose and biomass, but
it fits very well with the compound of interest. The results are in agreement with the
analysis of the confidence intervals that show an over-parameterization of the model,
implying that several parameters can be compensated by others and therefore improve
the adjustment of some substances while sacrificing that of others.
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Figure 3.3. Concentration profiles of Biomass (∗), Glucose (⃝), Xylose (♦), and Xyli-
tol (�). The solid red line represents deterministic model results with the re-estimated
parameters. The solid blue line represents the deterministic model results by Tochampa
et al. (2005). Gray dashed lines: predictor confidence intervals and markers represent
the experimental data for each species.

Table 3.6 presents the values found for the kinetic parameters from the ABC method.
The values are very similar to those found with the deterministic method. Being the
𝑘𝑖,𝑥𝑦𝑙 , the parameter with the highest percentage of difference (10%) between the val-
ues estimated by both methods. Besides, the confidence intervals (uncertainty) are
small and with practically homogeneous deviation percentages between the different
parameters, compared to those calculated for the deterministic method. This shows
that the stochastic method offers greater robustness and reliability when estimating the
uncertainty of the model, compared to the deterministic method that presents very large
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and therefore unrealistic uncertainties (Liu & Gunawan, 2017; Soize, 2013).

Table 3.6. Estimated parameters calculated from ABC rejection sampler method and
stochastic model.

Parameter SP ±95% CI CI/IP (%)
𝜇max

glc 0.044 0.0020 4.56
𝜇max

xit 0.060 2.8293 ·10−4 0.47
𝑞ma𝑥

xyl 0.309 0.0054 1.74
𝑞max

glc 6.788 0.2777 4.09
𝐾s,xyl 7.785 0.3821 4.91
𝐾s,glc 15.463 0.6407 4.14
𝐾s,xit 2.466 ·10−5 1.1831 ·10−6 4.80
𝑘𝑖,𝑥𝑦𝑙 16.696 0.6893 4.13
𝑘𝑖,glc 0.227 0.0106 4.65
𝐾𝑟 21.008 0.9645 4.59
𝑃xit 1.294 ·10−6 5.8511 ·10−8 4.52

SP: parameter values obtained from the ABC rejection sampler method (𝑉 = 1×10−20 L). The units of each
parameter are presented in Table 3.1.

Figure 3.4 presents the mean behavior as well as the uncertainty associated with
each of the states of the system from the stochastic simulation results. The parameter
values correspond to those presented in column DP of Table 3.5 and the initial condi-
tions presented in Table 3.3. When comparing the deterministic model predictions with
the re-estimated parameters versus the stochastic model, it is observed that the greatest
difference is for xylitol concentration. This is because the simulation was run with a
system volume of 5 ·10−22 L to increase the uncertainty of the method until containing
the experimental data. In this way, the model allows evaluating the different scenarios
on which the concentrations of the species could move, as well as determining the most
probable behavior of the system from the average.
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Figure 3.4. Concentration profiles of Biomass (∗), Glucose (⃝), Xylose (♦), and Xyl-
itol (�). The solid red line represents deterministic model results. Gray dashed lines:
one-standard deviation envelope, 𝑥 ± 𝑠𝑑𝑒𝑣(𝑥), and markers represent the experimental
data for each species.

3.4 Conclusions

Through this research, it was possible to Translate a semi-empirical model lacking el-
ementary chemical reactions for microbial growth, to a stochastic simulation. This
was made through the selection and calculation of the probability intervals of the reac-
tion channels for intra and extracellular xylitol based on the sign and the evaluation of
the absolute value of the propensity, respectively. Simulation results show the predic-
tive power of the stochastic approach to correctly describe the evolution of the species
based on the experimental data as well as the range of uncertainty over which the model
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moves. This is a test of the validity of the assumptions made in this work to apply the
stochastic QSSA and although the unique result is lost, since each simulation is differ-
ent, the uncertainty estimate is gained.

On the other hand, it was possible to improve the fit of the deterministic model
compared to the results previously reported in the literature and even the parameters
can be re-estimated from stochastic simulation. Although the parameter estimation
ABC method is slower than the deterministic method, the gain of its execution lies in
the possibility of analyzing the uncertainty of the model more realistically. Therefore,
this work leaves the doors open to simulate and optimize processes under uncertainty
from purely stochastic models.
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Chapter 4

Conclusions and perspectives

In this research, it was possible to develop a stochastic model based on the SSA and to
demonstrate the ability of these to predict the behavior of enzymatic systems with and
without inhibition from the kinetic mass action law and Michaelis-Menten kinetics.
Through, it was established that the size of the system would directly determine the
uncertainty of the model and therefore the ability to reproduce or not the uncertainty
of experimental measurements. Besides, it was determined that the uncertainty of the
model tends to remain constant after a certain number of realizations, which allows
optimizing the execution time of the stochastic model.

The stochastic model of xylitol production shows that despite the lack of knowl-
edge of the elemental reactions that define microbial growth, it is possible to apply the
stochastic QSSA method and the SSA to simulate this process. The results show the
same predictive power of the deterministic model, besides, to provide information on
the uncertainty of the model for the different system states. On the other hand, the
parameter re-estimation for the deterministic model with the interior-point algorithm
allowed to obtain better predictions of xylitol and thus increase model predictive power.
From the stochastic calibration method was possible to obtain a more robust descrip-
tion of the uncertainty of the model by providing reliable confidence intervals for the
parameters, compared to the deterministic calibration method.

Among the major contributions of this work are the extension of the stochastic
chemical kinetics and stochastic QSSA methods for the cases of enzymatic reactions
with inhibition. As well as, the uncertainty analyzes obtained from the modeling for
each state of the system and its relationship with the relative uncertainty of the exper-
imental measurements. Another contribution of this work was to adapt the stochastic
QSSA methodology to a highly complex case such as xylitol bioproduction and couple
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it with a stochastic parameter estimation method. It is noteworthy that to date only
applications of these methodologies appear in the literature for generic cases or with
the kinetics of enzymatic reactions without inhibition.

This work is encouraging to continue delving into the application of stochastic
methods for cases in specific bioprocesses in the area of enzymatic reactions with mi-
crobial growth, which also include inhibition and mass transport processes. By mod-
eling the system directly with a method of random nature, the modeling and optimiza-
tion of these systems under uncertainty is possible, also because the applicability of
Bayesian methods (ABC) for parameter estimation was shown.
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