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Abstract

Study of New Compartmental Epidemiological Models with Stochastic
Infectivity and Mobility

Based on the study of recent and classical epidemiological models, we present a
susceptible-infected-recovered (SIR) epidemiological compartment model in differ-
ent regions encompassing the movement of individuals among such regions. In the
first chapter, preliminaries of stochastic analysis are presented, which are needed to
develop the theory. In the second chapter, we propose a stochastic model having
as a starting point the SIR model. The feasibility of the model is demonstrated
when assuring the existence and uniqueness of the solutions. Apart from showing
a lack of explosion in the solutions and the positivity of the solutions, it is also
shown a stability condition for the process of the sum of infected individuals in the
regions. Also, we relate this result with the deterministic case and the extinction
of the infection in a single region. In the third chapter, some numerical simulations
were conducted explaining the implemented numerical method and comparing such
solutions to the deterministic case.

Keywords: SIR epidemic model, Stochastic differential equation, transportation,multi-
region extension.
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Resumen

Estudio de nuevos modelos epidemiológicos compartiméntales con
inafectabilidad estocástica y movilidad

Basándonos en el estudio de literatura reciente y clásica de los modelos epidemio-
lógicos, presentamos un modelo epidemiológico compartimental (SIR) susceptible-
infectado-recuperado con múltiples regiones y movimiento de individuos entre dichas
regiones. En el primer capitulo se presentan los preliminares de análisis estocástico,
los cuales son necesarios para desarrollar la teoría. En el segundo capitulo propo-
nemos un modelo estocástico teniendo como punto de partida el modelo SIR. La
viabilidad del modelo se demuestra al asegurar la existencia y unicidad de las solu-
ciones. Además, de mostrar la falta de explosión de las soluciones y la positividad
de las soluciones, también se muestra una condición de estabilidad para el proceso
de la suma de los individuos infectados en las regiones. También, relacionamos este
resultado con el caso determinístico y la extinción de la infección en una sola región.
En el tercer capítulo, se presentan simulaciones numéricas, explicamos el método
numérico implementado y se comparan las soluciones con el modelo determinístico.

Palabras clave: modelo SIR epidemiologico, ecuación diferencial estocástica,
transporte, extensión multi-region.
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General Notation

a.s almost surely or with probability 1.
E(X) the expectation of the random variable X.
1A Indicator function of the set A, i.e 1A(x) = 1 if

x ∈ A or 0 otherwise.
a ∨ b the maximum of a and b.
a ∧ b the minimum of a and b
f : A→ B the mapping f from A to B.
R the set of real numbers
R+ the set of positive real numbers, i.e. R+ = (0,∞).
Rd the d-dimensional Euclidean space.
Rd

+ the positive d-dimensional cone, i.e. {x ∈ Rd :

xi > 0, 1 ≤ i ≤ d}.
Rd×m the space of real d×m-matrices
|x| the euclidean norm of a vector x.
||x||p the p-norm of a vector x.
τi the i-th stopping time τi see definition 19.
τ the stopping time τ see definition 19.
τ∞ the explosion time of a SDE, see definition 14.
Tr(A) the trace of a square matrix A = (aij)d×d, i.e.∑d

i=1 aii.
A> the transpose of the matrix or vector A.
Wt A d-dimensional Brownian motion see definition 1

and definition 2.



1. Introduction

The COVID-19 infectious process observed during the last year, which originated
in Wuhan, China, is a complex phenomenon that has been very challenging for
governments around the world. Therefore, the mathematical modeling of such a
phenomenon could help to understand how this process occurs in a given region.
Besides, it also provides an instrument to make predictions that can help stop the
infection outbreak.
One of the main objectives of modeling the behavior of an infectious disease is to
predict the evolution of the pathogen in a particular region. The SIR models are
consistent with the observations made on different diseases [ [Irwin, 2008]]. Notably,
in the COVID-19 case, the SIR models with different regions and mobility among
these regions, proposed by Luigi Brugnano and Felice Ivernaro [ [Brugnano and
Iavernaro, 2020]], have been helpful when predicting the evolution of the pathogen
in Italy. Such predictions have been useful, especially in the case of COVID-19.
Those have permitted governments to make more suitable decisions regarding the
allocation of resources to medical staff or to choose the right moment to decree
quarantines.
The stochastic modeling of epidemics is relevant when the number of infectious
individuals is small or when the variability associated with transmission, recovery,
deaths, and births affects the final result of the epidemic [ [Allen, 2017]]. This
document presents a model with different regions, and it also considers the variability
associated with the transmissibility of the pathogen similar to the works of [ [Mao
et al., 2002,Dalal et al., 2008,Gray et al., 2011,Ji et al., 2011,Xu and Li, 2018]].
In the first chapter, we present all the necessary preliminaries of the stochastic
analysis, including the definition of the Brownian motion. Kolmogorov’s extension
theorem and Kolmogorov’s continuity criterion are also included and used to prove
the existence and continuity of the Brownian motion. Subsequently, we define Itô’s
stochastic integral regarding the Brownian motion for some type of processes. We
also enunciate some useful properties of Itô’s integral. Then, we define the concept
of a stochastic differential equation (SDE). We enunciate the existence and unique-
ness theorem of the stochastic differential equations. We also present the definition
of a local solution of an SDE apart from presenting the existence and uniqueness
theorems on the existence and uniqueness of local solutions.
In the second chapter, we present some results. We have studied different deter-
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ministic and stochastic models found in the literature. Based on some deterministic
models like [Brugnano and Iavernaro, 2020], [Chen et al., 2014], and [Godio et al.,
2020], and the classical SIR model presented by [Kermack and McKendrick, 1927];
We show a deterministic extension to consider several regions. Also, based on re-
cent literature for stochastic epidemiological models [Liu et al., 2019], [Liu and
Jiang, 2019] and [Gray et al., 2011]; We propose to add stochasticity to the above-
mentioned deterministic model by considering the parameter of infectivity that it is
modeled as a stochastic process and obtaining; as a result, a new system of stochastic
differential equations. We demonstrate that the model is feasible in the sense that
we are able to show the global existence and uniqueness of solutions. Besides, we
also demonstrate that the solutions are positive. We present an asymptotic property
for some components of the solutions of the model under certain conditions for the
parameters. Also, We relate this result with the basic reproduction number for the
SIR model for a single region.
In the third chapter, we present the Wong-Zakai method for stochastic differential
equations in the sense of Stratonovich that is used as a numerical procedure to ap-
proximate the solution of the SDE. We also explain how to transform a stochastic dif-
ferential equation in Itô’s sense into a stochastic differential equation in Stratonovich’s
sense. Finally, we study some simulation results and compare the results with the
deterministic models found in the literature.



2. Preliminaries

2.1. Brownian Motion

Definition 1. A (standard, one-dimensional) Brownian motion is a continuous,
adapted, real-valued process (Wt)t≥0, defined on some filtered probability space
(Ω,F , (Ft), P ), with the following properties:

• W0 = 0 a.s.

• for 0 ≤ s < t, the increment Wt −Ws is independent of Fs

• for 0 ≤ s < t, the increment Wt−Ws is normally distributed with mean 0 and
variance t− s.

The existence of a process with such properties is guaranteed by the following the-
orems, both due to Kolmogorov.

Theorem 2.1.1 ( [Øksendal, 2003] p.p 11). (Kolmogorov’s extension theorem). For
all t1, ..., tk ∈ T , k ∈ N let Pt1,...,tk be probability measures on Rnk such that

Ptσ(1),...,tσ(k)(F1 × ...× Fk) = Pt1,...,tk(Fσ−1(1) × ...× Fσ−1(k)) (2-1)

for all permutations σ on {1, 2, ..., k} and

Pt1,...,tk(F1 × ...× Fk) = Pt1,...,tk,tk+1,...,tk+m
(F1 × ...× Fk × Rn × ...× Rn) (2-2)

for all m ∈ N . Then there exists a probability space (Ω,F , P ) and a stochastic
process (Xt)t∈T on Ω, Xt : Ω→ Rn, such that Pt1,...,tk

Pt1,...,tk(F1 × ...× Fk) = P [Xt1 ∈ F1, ..., Xtk ∈ Fk] (2-3)

for all ti ∈ T , k ∈ N and all Borel sets Fi.

Let T = [0,∞), 0 ≤ t1 ≤ t2 · · · ≤ tk note that for n = 1 a suitable probability
density function ft1,...,tk for the probability measure Pt1,...,tk on Rk is

ft1,...,tk(x1, ..., xk) =
k∏
i=1

(2π)−k/2(ti − ti−1)−1/2 exp

[
−(xi − xi−1)2

2(ti − ti−1)

]
(2-4)
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Where we define t0 = 0 and x0 = 0 and also we define P0 = δ0 the unit point
mass centered at 0. It follows that the family of probability measures Pt1,...,tk with
k ∈ N and every ti ∈ (0,∞) meet the conditions of the theorem above; consequently,
there is a process (Wt)t≥0 with the required properties but the continuity. For the
continuity of (Wt)t≥0 we have the following theorem.

Theorem 2.1.2 ( [Øksendal, 2003] p.p 14). (Kolmogorov’s continuity criterion)
Suppose that a process (Xt)t≥0 on a probability space (Ω,F , P ) satisfies the condition:
for every T > 0 there exists positive constants α,β and C such that

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T (2-5)

Then there exists a continuous modification (see definitions 18 and17) (X̃t)t≥0 of
(Xt)t≥0.

By definition, Wt−Ws is normally distributed with mean 0 and variance t−s, thus:

E
(
|Wt −Ws|4

)
= 3|t− s|2 (2-6)

As a result, the Brownian motion has a continuous modification. Henceforth if we
mention the Brownian motion, we mean the continuous version of it. Also, for
the filtration of the definition, we set Ft = σ({Ws : s ≤ t}), i.e., Ft is the σ-
algebra generated by the Brownian motion up to time t. Lastly, we will work with
a complete filtered probability space

(
Ω, F̃ , P

)
with filtration (F̃t) satisfying the

usual conditions, that is: F̃ and every F̃t contain all the P -null sets; Also, we
require that (F̃t) is a right-continuous filtration.
We set F̃ to be the P -null augmentation of F . Also, for the filtration, we set (F̃t)
to be the P -null augmentation of the filtration generated by the Brownian motion.
It is a well-known fact that the procedure described above produces a probability
space

(
Ω, F̃ , P

)
with filtration (F̃t) satisfying the usual conditions [ [Mao, 2008]

p.p 16].
From now on, we omit the tilde, and when we mention a probability space (Ω,F , P )

with filtration (Ft), we assume that it satisfies the usual conditions.

Definition 2. A d-dimensional process (Wt)t≥0 = (W 1
t , ...,W

d
t )t≥0, is called a d-

dimensional Brownian motion if every (W i
t )t≥0 is a one-dimensional Brownian mo-

tion, and (W 1
t )t≥0, ..., (W

d
t )t≥0 are independent.

2.2. Itô integral

First, we will define the class of processes for which the Itô integral is defined.
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Definition 3. Let (Ω,F , P ) a complete probability space with filtration (Ft) sat-
isfying the usual conditions. Define V([S, T ];R) be the class of processes (Xt)S≥t≥T
such that

• (t, ω) → Xt(ω) is B[S, T ] ⊗ F -measurable, where B[S, T ] denotes the Borel
σ-algebra on [S, T ].

• (Xt)S≥t≥T is (Ft)-adapted.

• E[
∫ T
S
|Xt|2dt] <∞.

For processes (Xt)S≥t≥T ∈ V([S, T ];R), we will show how to define the Itô integral

I[Xt](ω) =

∫ T

S

Xt(ω)dWt(ω) (2-7)

where Wt is a 1-dimensional Brownian motion.
The idea is natural: first, define I[φt] for a simple class of processes. Then by
some approximation procedure, show that each (Xt)S≥t≥T ∈ V([S, T ];R) can be
approximated in V([S, T ];R) by simple processes (φit)S≥t≥T . Finally, define the in-
tegral I[Xt] as the limit in L2(P ) of I[φit] as φi → Xt where the latter limit is in
L2(P × µ[S,T ]) (where µ[S,T ] is the Lebesgue measure in [S, T ]).

Definition 4. A process (φt)S≥t≥T ∈ V([S, T ];R) is called elementary or simple if
there exists a partition S = t0 < ... < tk = T of [S, T ] and random variables ei, such
that ei is

φt =
k−1∑
i=0

ei1[ti,ti+1)(t) (2-8)

Definition 5. Let (φt)S≥t≥T be an elementary process as in definition 4. The Itô
integral for (φt)S≥t≥T is defined as

∫ T

S

φtdWt =
k−1∑
i=0

ei[Bti+1
−Bti ] (2-9)

The following result is crucial for the convergence of the integrals of the elementary
processes to the Itô integral of (Xt)S≥t≥T ∈ V([S, T ];R).

Lemma 2.2.1. [ [Mao, 2008] p.p 19, [Øksendal, 2003] p.p 26](The Itô isometry for
elementary processes) If (φt)S≥t≥T ∈ V([S, T ];R, then

E

[(∫ T

S

φtdWt

)2
]

= E

(∫ T

S

φ2
tdt

)
(2-10)
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Now we are in conditions to extend definition 5 for the Itô integral from elementary
processes to arbitrary processes in V([S, T ];R). As customary, this will be made
in several steps. the details of this construction can be found in [ [Mao, 2008] p.p
20-22 [Øksendal, 2003] p.p 27-28].
Step 1. Let (gt)S≤t≤T ∈ V([S, T ];R) be bounded and (t, ω)→ gt(ω) continuous for
each ω. Then there exist a sequence of elementary processes (φnt )S≤t≤T ∈ V([S, T ];R)

such that

E

(∫ T

S

(gt − φnt )2dt

)
→ 0 as n→∞ (2-11)

Step 2. Let (ht)S≥t≥T ∈ V([S, T ];R) be bounded. Then there exist a sequence of
bounded processes (gnt )S≥t≥T ∈ V([S, T ];R) such that (t, ω) → gnt is continuous for
all ω and n, and we have

E

(∫ T

S

(ht − gnt )2dt

)
→ 0 as n→∞ (2-12)

Step 3. Let (Xt)S≤t≤T ∈ V([S, T ];R). Then there exists a sequence of processes
(hnt )S≥t≥T ∈ V([S, T ];R) such that (hnt )S≥t≥T is bounded for each n and

E

(∫ T

S

(Xt − hnt )2dt

)
→ 0 as n→∞ (2-13)

We are now in conditions to define the Itô integral

Definition 6. Let (Xt)S≤t≤T ∈ V([S, T ];R). then the Itô integral of (Xt)S≤t≤T is
defined by ∫ T

S

XtdWt = lim
n→∞

∫ T

S

φnt dWt limit in L2(P ) (2-14)

where (φnt )S≤t≤T is a sequence of elementary processes such that

E

[∫ T

S

(Xt − φnt )2dt

]
→ 0 as n→∞ (2-15)

Remark. The existence of the elementary processes (φnt )S≥t≥T converging to (Xt)S≤t≤T
is guaranteed by steps 1-3 above. Also, the existence and uniqueness of the limit
in the equation 2-14 is a consequence of the Itô isometry for elementary processes
(lemma 2.2.1) and the fact that L2(P ) and V([S, T ];R) are complete metric spaces.

For completeness purposes, we mention the Itô isometry

Corollary 2.2.1.1. (The Itô isometry) for all (Xt)S≥t≥T ∈ V([S, T ];R), then

E

[(∫ T

S

XtdWt

)2
]

= E

[∫ T

S

X2
t dt

]
(2-16)
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We now define the process (It)S≤t≤T for some integrable process (Xt)S≤t≤T

Definition 7. Let (Xt)S≤t≤T ∈ V([S, T ];R) and let S < t′ ≤ T define

It′ =

∫ t′

S

XsdWs, for S < t′ ≤ T (2-17)

where, by definition, IS =
∫ S
S
XsdWs = 0. Note that the latter defines a stochastic

process (It)S≤t≤T for every integrable process (Xt)S≤t≤T .

Now we mention some important properties of the Itô integral.

Theorem 2.2.2. [ [Mao, 2008] p.p 23] If (Xt)S≤t≤T ∈ V([S, T ];R), then the Itô
integral (It)S≤t≤T of (Xt)S≤t≤T is a square-integrable martingale with respect to the
filtration (Ft).

Theorem 2.2.3. Let (Xt)S≤t≤T , (Yt)S≤t≤T ∈ V([S, T ];R) and let S < U < T . Then

1.
∫ T
S
XtdWt =

∫ U
S
XtdWt +

∫ T
U
XtdWt a.s

2.
∫ T
S

(cXt + Yt)dWt = c
∫ T
S
XtdWt +

∫ T
S
YtdWt

3. E
(∫ T

S
XtdWt

)
= 0

4.
∫ T
S
XtdWt is FT -measurable

Definition 8. [ [Mao, 2008] p.p 25] Let (Xt)S≥t≥T ∈ V([S, T ];R), and let τ be a
stopping time such that S ≤ τ ≤ T a.s. then it follows that (1[S,τ ](t)Xt)S≤t≤T ∈
V([S, T ];R) and we define∫ τ

S

XsdWs =

∫ T

S

1[S,τ ](s)XsdWs (2-18)

Furthermore, if ρ is another stopping time with S ≤ ρ ≤ τ ≤ T a.s., we define∫ τ

ρ

XsdWs =

∫ τ

S

XsdWs −
∫ ρ

S

XsdWs (2-19)

It is easy to see from the definition and the linearity of the Itô integral that∫ τ

ρ

XsdWs =

∫ T

S

1[ρ,τ ](s)XsdWs (2-20)

Remark. Note that definition 8 agrees with the process (It)S≤t≤T defined in 7. This
means that

∫ τ
S
XsdWs = Iτ [ [Mao, 2008] p.p 26, [Nualart, 2011] p.p. 46].

We now extend the definition of the Itô integral to multidimensional processes, we
define
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Definition 9. Let V([S, T ];Rd×m)) be the class of d ×m-matrix-valued stochastic
processes (Xt)S≥t≥T such that

• (t, ω)→ Xt(ω) is B[S, T ]⊗F -measurable, where B[S, T ] denotes the Borel σ-
algebra on [S, T ].

• (Xt)S≥t≥T is (Ft)-adapted.

• E[
∫ T
S
‖Xt(ω)‖2

2dt] <∞.

where ‖σ‖2 =
√∑d

i=1

∑m
j=1 |σij|2.

Definition 10 ( [Mao, 2008] p.p 28). Let (Xt)S≥t≥T ∈ V([S, T ];Rd×m) be a d ×
m-matrix-valued stochastic process. Using matrix notation, we define the multi-
dimensional indefinite Itô integral

∫ t

S

XsdWs =

∫ t

S

X11 . . . X1m

... . . . ...
Xd1 . . . Xdm


dW 1

s
...

dWm
s

 (2-21)

to be the d-dimensional process whose ith component is the following sum of 1-
dimensional Itô integrals

m∑
j=1

∫ t

0

Xij(s)dW
j
s (2-22)

It is usual to extend the definition of the Itô integral
∫ T
S
XsdWs to processes not in

V([S, T ];Rd×m). We define:

Definition 11. DefineWp([S, T ];Rd×m) as the class of d×m-matrix-valued stochas-
tic processes (Xt)S≥t≥T such that

• (t, ω) → Xt(ω) is B([S, T ]) ⊗ F -measurable, where B[S, T ] denotes the Borel
σ- algebra on [S, T ].

• (Xt)S≥t≥T is (Ft)-adapted.

•
∫ T
S
‖Xs‖ppds <∞ a.s

where ‖σ‖p = p

√∑d
i=1

∑m
j=1 |σij|p.

It is possible to define the Itô integral for processes inW2([S, T ];Rd×m) [ [Mao, 2008]
p.p 30, [Kloeden and Platen, 1992] p.p 90]. Clearly V([S, T ];Rd×m) ⊂ W2([S, T ];Rd×m).
This extension is advantageous because it enables us to consider the Itô integral for
all continuous (Ft)−adapted processes that might not be in V([S, T ];Rd×m) [ [Steele,
2001] p.p 95]. We finish this section by mentioning the definition of an Itô process
and the Itô formula.
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Definition 12. [ [Mao, 2008] p.p 31] Let (Ω,F , P ) be a probability space with
filtration (Ft) and let (Wt)0≤t be an m-dimensional Brownian motion on it. A d-
dimensional Itô process is an Rd valued continuous adapted process (Xt)S≤t≤T of
the form

Xt = XS +

∫ t

S

b(s)ds+

∫ t

S

σ(s)dWs (2-23)

Where b(t) ∈ W1([S, T ];Rd×1) and σ(t) ∈ W2([S, T ];Rd×m) a common notation is

dXt = b(t)dt+ σ(t)dWt (2-24)

Theorem 2.2.4. [ [Mao, 2008] p. 36](The multi-dimensional Itô formula) let
(Xt)S≤t≤T a d-dimensional Itô process, as in definition 12, i.e., satisfies equation
(2-23) or in differential form satisfies equation (2-24). Let V be a continuous real-
valued function with up to 2 partial spatial continuous derivatives and one partial
continuous derivative in t then V (Xt, t) is again an Itô process given by

V (Xt, t)− V (XS, S) =∫ t

S

∂V

∂t
(Xu, u)du+

∫ t

S

∂V

∂x
(Xu, u)b(u)du+∫ t

S

1

2
Tr(σ>(u)

∂2V

∂x2
(Xu, u)σ(u))du+

∫ t

S

∂V

∂x
(Xu, u)σ(u)dWu a.s

(2-25)

Where ∂V
∂x

is the Jacobian matrix of V (x, t) with respect to the spatial variable x; ∂2V
∂x2

is the Jacobian matrix of the function ∂V
∂x

(x, t), with respect to the spatial variable
x; Finally, the meaning of ∂V

∂t
is apparent.

We present the definition of the Stratonovich integral and the formula to change
from an SDE in Itô’s sense to an SDE in Stratonovich’s sense later in section 4.1.

2.3. Stochastic differential equations

By a stochastic differential equation, we mean an integral equation of the form

Xt = Xt0 +

∫ t

t0

b(Xs, s)ds+

∫ t

t0

σ(Xs, s)dWs (2-26)

such that b(s,Xs) and σ(s,Xs) satisfy the integrability conditions that we mention
in the following definition.

Definition 13 ( [Mao, 2008] p.p 48). Let (Ω,F , P ) be a probability space with
filtration (Ft) and let (Wt)0≤t be an m-dimensional Brownian motion on it. A solu-
tion for the stochastic differential equation 2-26 is a continuous (Ft)-adapted process
(Xt)t0≤t≤T such that b(Xt, t) ∈ W1([t0, T ];Rd×1), σ(Xt, t) ∈ W2([t0, T ];Rd×m) and
equation 2-26 holds almost surely.
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Usually, the equation (2-26) is written in differential form as

dXt = b(Xt, t)dt+ σ(Xt, t)dWt (2-27)

For stochastic differential equations, we have a similar existence and uniqueness
theorem similar to that of ordinary differential equations, which we state below

Theorem 2.3.1. [ [Mao, 2008] p.p 51] Suppose a stochastic differential equation as
in (2-26) and assume that there exist two positive constants K̃ and K such that

• (Lipschitz condition) For all x, y ∈ Rd and t ∈ [t0, T ]

|b(x, t)− b(y, t)|2 ∨ ‖σ(x, t)− σ(y, t)‖2 ≤ K|x− y|2 (2-28)

• (Linear growth condition) For all x, y ∈ Rd and t ∈ [t0, T ]

|b(x, t)|2 ∨ ‖σ(x, t)‖2 ≤ K̃(1 + |x|2) (2-29)

Then there exists a unique solution (Xt)t0≤t≤T to the SDE, and the solution is in
V([t0, T ];Rm).

Note that the linear growth condition can be implied by the Lipschitz condition
as long as we have supt0≤t≤T |b(0, t)|

2 ∨ ‖σ(0, t)‖2 < ∞. Also, we can relax the
conditions of the last theorem and still get a solution defined in [t0, T ] [ [Mao, 2008]
p.p. 56-59]. Here we are interested in the concept of local solution for a stochastic
differential equation which we state below.

Definition 14. Let (Ω,F , P ) be a probability space with filtration (Ft) and let
(Wt)0≤t be an m-dimensional Brownian motion on it. Fix Xt0 ∈ Rd. Let (Xn

t )t0≤t≤T
a sequence of stochastic processes indexed by n = 1, 2, .... We say that the sequence
(Xn

t )t0≤t≤T is a local solution if there exists a non-decreasing sequence of stopping
times τn such that

Xn
t∧τn = Xt0 +

∫ t∧τn

t0

b(Xn
s , s)ds+

∫ t∧τn

t0

σ(Xn
s , s)dWs (2-30)

We say that the solution is defined in the interval [t0, τe) where τe = limn→∞ τn.
Also, we say that the solution (Xn

t )t≥t0 is globally defined (is a global solution)
if τe =∞ a.s. [ [Mao, 1991] p. 162].

Remark. It is important to note that the sequence of processes (Xn
t )t0≤t≤T is a

consistent sequence of stochastic processes for the sequence of stopping times τn,
which means that Xn

t = Xn+1
t if t0 ≤ t ≤ τn. Because of that, we can just write

Xt = Xn
t when t0 ≤ t ≤ τn for some n, so for a local solution, we adopt the notation

(Xt)t0≤t<τe .
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We finish this section by stating the existence of local solutions for stochastic differ-
ential equations; this is a consequence of theorem 2.3.1 by performing a truncation
procedure over the coefficients of the SDE.

Theorem 2.3.2. [ [Mao, 2008] p. 57, [Arnold, 1974] p. 112, [Markus, 2012] p.
40]Suppose a stochastic differential equation as in (2-26), let Xt0 ∈ Rd and assume
that f : Rd× [t0, T ]→ Rd and σ : Rd× [t0, T ]→ Rd×m are continuous functions with
the following property:
(Local Lipschitz condition) there exists constants Kn such that, for all t ∈ [t0, T ] and
all x, y ∈ Rd with |x| ∨ |y| ≤ n

|b(x, t)− b(y, t)|2 ∨ ‖σ(x, t)− σ(y, t)‖2 ≤ Kn|x− y|2 (2-31)

Then the stochastic differential equation (2-26) admits a unique local solution (Xt)t0≤t<τe
in the stochastic interval t ∈ [t0, τe) as defined in 14.

Remark. If the requirements of theorem 2.3.1 are meet for every T ≥ t0. We will
be able to construct a solution (Xt)t0≤t≤T ∈ V([t0, T ];Rm) for every T ≥ t0. Conse-
quently, the explosion time τe =∞ a.e., which means that the solution is global.



3. Model

3.1. Model definition

We want to model the spread of an infectious disease in M regions. The spread of
the disease within each region will be modeled by a basic SIR model as proposed
by Kermack and McKendrick in [Kermack and McKendrick, 1927] hence for the
community i we get:

dSi
dt

= −βiSiIi
dIi
dt

= βiSiIi − γiIi
dRi

dt
= γiIi

(3-1)

We want to propose a model that considers the transportation of individuals from
one region into another. We begin by taking a discrete approximation of model (3-1)

∆Si = −βiSiIi∆t
∆Ii = βiSiIi∆t− γiIi∆t

∆Ri = γiIi∆t

(3-2)

We will introduce the parameters λij∆t to describe the number of individuals going
from region i to region j by unit time. Also, we assume that the proportion of
susceptible individuals going from region i to j is the same as the current proportion
of susceptibles in region i, namely Si

Ni
. Note that as customary, we denote Ni =

Si + Ii + Ri [Kermack and McKendrick, 1927]. Giving us that the total number
of susceptibles going from i to j by unit time will be λij Si

Ni
∆t the last implies that

the total number of susceptibles leaving region i by unit time will be
∑M

j=1 λij
Si

Ni
.

We use the convention λii = 0 because, in this context, transportation only makes
sense between different regions. Another consideration about the parameters λij is
that

∑M
j=1 λij =

∑M
j=1 λji. This is a reasonable approximation to the reality given

the low variability in population size for each region over a short period of time,
like days, weeks, or months. Also, we can assert that the number of Susceptibles
entering region i can be written as

∑M
j=1 λji

Sj

Nj
. A similar analysis can be made for

the infected and the recovered compartments, changing Si by Ii or Ri, respectively.
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Summing up the discrete scheme for a discrete SIR model with multiple regions with
transportation will be

∆Si = −βiSiIi∆t+
M∑
j=1

λji
Sj
Nj

∆t−
M∑
j=1

λij
Si
Ni

∆t

∆Ii = βiSiIi∆t− γiIi∆t+
M∑
j=1

λji
Ij
Nj

∆t−
M∑
j=1

λij
Ii
Ni

∆t

∆Ri = γiIi∆t+
M∑
j=1

λji
Rj

Nj

∆t−
M∑
j=1

λij
Ri

Ni

∆t

(3-3)

We assume that the change of susceptible, infected, and recovered individuals is
caused only by the city’s infectious process or individuals’ transportation from one
region to another. Taking the limit when ∆t → 0, We get from 3-3 the following
system of differential equations.

dSi
dt

= −βiSiIi +
M∑
j=1

λji
Sj
Nj

−
M∑
j=1

λij
Si
Ni

dIi
dt

= βiSiIi − γiIi +
M∑
j=1

λji
Ij
Nj

−
M∑
j=1

λij
Ii
Ni

dRi

dt
= γiIi +

M∑
j=1

λji
Rj

Nj

−
M∑
j=1

λij
Ri

Ni

(3-4)

This model is a particular case of that studied in [Chen et al., 2014], assuming
that infections do not occur during travel. Also, this procedure to include multiple
regions has been used with other compartmental models like the SEIR model in
[ [Kiran et al., 2020]]. We want to introduce randomness to the model (3-4) similar
to that presented by [Gray et al., 2011]. We let (Ω,F , (Ft), P ) a complete filtered
probability space satisfying the usual conditions (i.e., (Ft) is right continuous, and F0

contains all the P -null sets) and let (Wt)t≥0 = (W 1
t , ...,W

M
t )t≥0 be anM -dimensional

Brownian motion defined on the probability space. We rewrite the infective part of
(3-4) naturally as:

dIi =

(
βiSiIi − γI +

M∑
j=1

λji
Ij
Nj

−
M∑
j=1

λij
Ii
Ni

)
dt (3-5)

Here [t, t + dt) is a small-time interval, and we use the notation d· for the small
change in any quantity over this time interval, in fact, dIi = I(t + dt) − I(t), and
the change in dIi for every i is described by (3-5). Consider the disease transmission
coefficient βi for the deterministic model. We can interpret this parameter as the
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rate at which each individual of the region i makes potentially infectious contacts.
A potentially infectious contact will transmit the disease if an infectious individual
makes contact with a susceptible individual. Thus from the analysis made that lead
to (3-5), we can assert that the total number of new infections for the region i in
the small-time interval [t, t+ dt) is:

βiSiIidt (3-6)

thus a single infected individual makes

Siβidt (3-7)

new infectious contacts with all the susceptible individuals in region i in the time
interval [t, t+ dt). As a result, a single infected individual makes

βidt (3-8)

Potentially infectious contacts with each susceptible individual in [t, t + dt). Now,
as in [Gray et al., 2011] suppose that some stochastic environmental factor acts
simultaneously on each individual in each region. In this case, βidt changes to a
random variable β̃i. More precisely, each individual makes

β̃i = βidt+ σidWi (3-9)

Potentially infectious contacts with each susceptible individual in [t, t+ dt). There-
fore we replace βidt in (3-5) by βidt+ σidWi we get

dIi =

(
βiSiIi − γI +

M∑
j=1

λji
Ij
Nj

−
M∑
j=1

λij
Ii
Ni

)
dt+ σiSiIidWi (3-10)

performing the same change to the susceptible compartment in each region, we get
the SDE:

dSi =

(
−βiSiIi +

M∑
j=1

λji
Sj
Nj

−
M∑
j=1

λij
Si
Ni

)
dt− σiSiIidWi

dIi =

(
βiSiIi − γIi +

M∑
j=1

λji
Ij
Nj

−
M∑
j=1

λij
Ii
Ni

)
dt+ σiSiIidWi

dRi =

(
γiIi +

M∑
j=1

λji
Rj

Nj

−
M∑
j=1

λij
Ri

Ni

)
dt

(3-11)

The last model is biologically realistic; as explained in [Gray et al., 2011], there
have been many studies for the single region model; for example, [Lin and Jiang,
2013,Xu, 2017].
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Remark. Note that Ni(t) is the population size for the region i at time t and is
defined as Ni = Si + Ii + Ri, because we are assuming that at every time each
individual belongs to the category susceptible, infected, or recovered; we can see
easily that dNi = 0, as a consequence Ni is constant a.s.

We also write the system of stochastic differential equations (3-11) as a vector SDE:

dXt = b(Xt, t)dt+ σ(Xt, t)dW

We write the system of stochastic differential equations that defines the dynamics
of susceptible infected and Recovered as a multidimensional stochastic differential
equation where:

Xt =


S1(t)

I1(t)

R1(t)
...

RM(t)

 (3-12)

b(Xt, t) =



−β1S1I1 +
∑M

j=1 λj1
Sj

Nj
−
∑M

j=1 λ1j
S1

N1

β1S1I1 − γI +
∑M

j=1 λj1
Ij
Nj
−
∑M

j=1 λ1j
I1
N1

γ1I1 +
∑M

j=1 λj1
Rj

Nj
−
∑M

j=1 λ1j
R1

N1

...
γMIM +

∑M
j=1 λjM

Rj

Nj
−
∑M

j=1 λMj
RM

NM


(3-13)

σ(Xt, t) =



−σ1S1(t)I1(t) 0 . . . 0

σ1S1(t)I1(t) 0 . . . 0

0 0 . . . 0

0 −σ2S2(t)I2(t) . . . 0

0 σ2S2(t)I2(t) . . . 0

0 0 . . . 0
...

... . . . ...
0 0 . . . −σMSM(t)IM(t)

0 0 . . . σMSM(t)IM(t)

0 0 . . . 0



(3-14)

3.2. Existence and uniqueness of the solutions

Theorem 3.2.1. For any initial value (S1(0), I1(0), R1(0), ..., RM(0)) ∈ R+
3M , there

exist a unique global solution (Xt)t≥0 for the SDE (3-11) and on t ≥ 0, the solution
remains in R+

3M with probability 1, namely Xt ∈ R3M
+ for all t ≥ 0 almost surely.
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Proof. We will give an argument similar to the one found in the literature for the
single region case [Mao et al., 2002, Dalal et al., 2008, Gray et al., 2011, Ji et al.,
2011,Xu and Li, 2018]. Let (Ω,F , P ) be a probability space with filtration (Ft) and
let (Wt)0≤t be an M -dimensional Brownian motion on it. We know from theorem
2.3.2 that for any initial values (S1(0), I1(0), R1(0), ..., RM(0)) ∈ R+

3M , there exists
a unique local solution (Xt)0≤t<τe , because the coefficients of the model (3-11) are
locally Lipschitz continuous, we need to show τe =∞ a.s to show that the solution
is globally defined on R3M

+ . First, define a sequence of stopping times by

τk = inf{t ≥ 0 : min{S1(t), I1(t), R1(t), ..., RM(t)} ≤ 1

k
or

max{S1(t), I1(t), R1(t), ..., RM(t)} ≥ k}
(3-15)

It is clear that τi ≤ τj as long as i ≤ j; let limm→∞ τm = τ∞ a.s., we have that τi ≤ τe
for every i, as a consequence τ∞ ≤ τe. We will show that τ∞ =∞ with probability
1, to get the required τe =∞ with probability 1; Also, we will have that Xt ≥ 0 for
every t ≥ 0.

The proof will be made by contradiction. Let (S1(0), I1(0), R1(0), ..., RM(0)) ∈ R+
3M

be a positive initial condition if we have P (τ∞ = ∞) 6= 1 there will be 2 constants
T y 0 < ε < 1 such that P (τ∞ ≤ T ) ≥ ε. Note also that since τk ≤ τ∞ for every k,
we have that {τ∞ ≤ T} ⊆ {τk ≤ T} as a consequence P (τk ≤ T ) ≥ ε.

Since the initial condition (S1(0), I1(0), R1(0), ..., RM(0)) is assumed positive we have
that for every k, P (τk ≥ 0) = 1. It does not matter whether the process stops at 0;
in fact, this may be the case for the first stopping times. We only require that Xt∧τk
remains positive which, is indeed the case. We make the following remark to show
that it makes sense to work with such stopping times.

Remark. Given that the initial condition is positive, there will be a constant L such
that for any k ≥ L, every component of the initial condition will be between 1/k

and k. Consequently, for every k ≥ L, we will have that P(τk > 0) = 1. Thus,
without loss of generality from now on, when we mention k it will be any arbitrary
k ≥ L.

Using the fact that the process Xt∧τk stops before any of its components become
negative, the following function is well defined for each 0 ≤ t <∞ and any tk with
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k ≥ L.

V (Xt∧τk , t ∧ τk) =

M∑
i=1

[Si(t ∧ τk)− 1− ln(Si(t ∧ τk))] +

M∑
i=1

[Ii(t ∧ τk)− 1− ln(Ii(t ∧ τk))] +

M∑
i=1

[Ri(t ∧ τk)− 1− ln(Ri(t ∧ τk))]

(3-16)

Remark. We mention some important properties of the function f(x) = x−1−ln(x).
The domain of f is the set of positive real numbers, and the range of f is the set
of non-negative real numbers. Also we have that f(0) = 0, f is decreasing in (0, 1],
limx→0 f(x) = ∞ and limx→∞ f(x) = ∞ since f is increasing in [1,∞) the later
implies that limx→∞ f(x)∧f(1/x) =∞. The verifications of these facts can be done
by simple calculations.

For 0 ≤ t < ∞ we will use the Itô formula to compute dV (Xt∧τk , t ∧ τk). Since the
function V (x, t) is continuous, real-valued of class C∞ in the spatial and temporal
variables. First, we compute the necessary derivative and jacobians needed to use
the Itô formula:

∂V

∂x
(Xt∧τk , t ∧ τk) =(

1− 1

S1(t ∧ τk)
, 1− 1

I1(t ∧ τk)
, 1− 1

R1(t ∧ τk)
, . . . , 1− 1

RM(t ∧ τk)

) (3-17)

also,

∂2V

∂x2
(Xt∧τk , t ∧ τk) =

1
S2
1(t∧τk)

0 0 . . . 0

0 1
I21 (t∧τk)

0 . . . 0

0 0 1
R2

1(t∧τk)
. . . 0

...
...

... . . . ...
0 0 0 . . . 1

R2
M (t∧τk)


(3-18)

finally
∂V

∂t
(Xt∧τk , t ∧ τk) = 0 (3-19)
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now we compute:

∂V

∂x
(Xt∧τk , t ∧ τk)b(Xt∧τk , t ∧ τk)

=
M∑
i=1

(
−βiSi(t ∧ τk)Ii(t ∧ τk) +

M∑
j=1

λji
Sj(t ∧ τk)

Nj

−
M∑
j=1

λij
Si(t ∧ τk)

Ni

)(
1− 1

Si(t ∧ τk)

)

+
M∑
i=1

(
βiSi(t ∧ τk)Ii(t ∧ τk)− γiIi(t ∧ τk) +

M∑
j=1

λji
Ij(t ∧ τk)

Nj

−
M∑
j=1

λij
Ii(t ∧ τk)

Ni

)(
1− 1

Ii(t ∧ τk)

)

+
M∑
i=1

(
γiIi(t ∧ τk) +

M∑
j=1

λji
Rj(t ∧ τk)

Nj

−
M∑
j=1

λij
Ri(t ∧ τk)

Ni

)(
1− 1

Ri(t ∧ τk)

)

=
M∑
i=1

(
−βiSi(t ∧ τk)Ii(t ∧ τk) +

M∑
j=1

λji
Sj(t ∧ τk)

Nj

−
M∑
j=1

λij
Si(t ∧ τk)

Ni

)(
− 1

Si(t ∧ τk)

)

+
M∑
i=1

(
βiSi(t ∧ τk)Ii(t ∧ τk)− γiIi(t ∧ τk) +

M∑
j=1

λji
Ij(t ∧ τk)

Nj

−
M∑
j=1

λij
Ii(t ∧ τk)

Ni

)(
− 1

Ii(t ∧ τk)

)

+
M∑
i=1

(
γiIi(t ∧ τk) +

M∑
j=1

λji
Rj(t ∧ τk)

Nj

−
M∑
j=1

λij
Ri(t ∧ τk)

Ni

)(
− 1

Ri(t ∧ τk)

)

=
M∑
i=1

(
βiIi(t ∧ τk)−

M∑
j=1

λji
Sj(t ∧ τk)
NjSi(t ∧ τk)

+
M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
−βiSi(t ∧ τk) + γi −

M∑
j=1

λji
Ij(t ∧ τk)
NjIi(t ∧ τk)

+
M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
−γi

Ii(t ∧ τk)
Ri(t ∧ τk)

−
M∑
j=1

λji
Rj(t ∧ τk)
NjRi(t ∧ τk)

+
M∑
j=1

λij
1

Ni

)
(3-20)
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finally we compute:(
∂V

∂x
(Xt∧τk , t ∧ τk)σ(Xt∧τk , t ∧ τk)

)>

=


[(

1− 1
I1(t∧τk)

)
−
(

1− 1
S1(t∧τk)

)]
σ1S1(t ∧ τk)I1(t ∧ τk)

...[(
1− 1

IM (t∧τk)

)
−
(

1− 1
SM (t∧τk)

)]
σ1SM(t ∧ τk)IM(t ∧ τk)


=

 σ1I1(t ∧ τk)− σ1S1(t ∧ τk)
...

σMIM(t ∧ τk)− σMSM(t ∧ τk)


(3-21)

by the fact that Xτk∧T ≥ 0 and using (3-20), it is clear that:

∂V

∂x
(Xt∧τk , t ∧ τk)b(Xt∧τk , t ∧ τk)

≤
M∑
i=1

(
βiIi(t ∧ τk) +

M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
γi +

M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
M∑
j=1

λij
1

Ni

)

≤
M∑
i=1

(
βiNi +

M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
γi +

M∑
j=1

λij
1

Ni

)
+

M∑
i=1

(
M∑
j=1

λij
1

Ni

)

(3-22)

The last term of the inequalities in (3-22) is a constant, which we will call C1. Note
also that the latter inequalities do not depend on which k we are considering. Using
(3-14) and (3-18), we compute:

Tr

(
σ>(Xt∧τk , t ∧ τk)

∂2V

∂x2
(Xt∧τk , t ∧ τk)σ>(Xt∧τk , t ∧ τk)

)
=

M∑
i=1

σ2
i S

2
i (t ∧ τk)I2

i (t ∧ τk)
S2
i (t ∧ τk)

+
σ2
i S

2
i (t ∧ τk)I2

i (t ∧ τk)
I2
i (t ∧ τk)

=
M∑
i=1

σ2
i I

2
i (t ∧ τk) + σ2

i S
2
i (t ∧ τk)

≤2
M∑
i=1

σ2
iN

2
i

(3-23)
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The last term of the inequalities in (3-23) is a constant, which we will call C2. Note
also that the latter inequalities do not depend on which k we are considering. Also,
from (3-21), the square of each component of(

∂V

∂x
(Xt∧τk , t ∧ τk)σ(Xt∧τk , t ∧ τk)

)>
(3-24)

is bounded by 2σiNi. As a consequence the expectation of component i squared

E

((
∂V

∂x
(Xt∧τM , t ∧ τM)σ(Xt∧τM , t ∧ τM)

)2

i

)
<∞ (3-25)

which implies that for every k ≥ L∫ t∧τk

0

∂V

∂x
(Xu, u)σ(Xu, u)dWu (3-26)

is a sum of square-integrable martingales with zero expectation by theorem 2.2.2.
Thus, taking expectation at t = T , we get

E(V (XT∧τk , T ∧ τk))

≤V (X0, 0) +K1E(T ∧ τk) +
K2

2
E(T ∧ τk)

≤V (X0, 0) + (C1 +
C2

2
)T

(3-27)

Note that the last term of the inequalities in (3-27) is a constant that we will call
C, which only depends on T , C1, C2, and the initial condition X0. Also, C is
independent of k and ω. For every k, consider the set ΩT

k = {τk ≤ T}. At the
beginning of the proof, we showed that P (τk ≤ T ) = P (ΩT

k ) ≥ ε using this fact and
(3-27) we get

C ≥E(V (XT∧τk , T ∧ τk))
≥E(1ΩT

k
V (XT∧τk , T ∧ τk))

≥E
(

1ΩT
k

(
1

k
− 1− ln

1

k

)
∧ (k − 1− ln k)

)
=ε

(
1

k
− 1− ln

1

k

)
∧ (k − 1− ln k)

(3-28)

we get the last inequality from the fact that if ω ∈ ΩT
k there should be a variable

of the vector XT∧τk is either k or 1/k when k ≥ L then V (XT∧τk , T ∧ τk) is at
least ( 1

k
− 1 − ln 1

k
) ∧ (k − 1 − ln k), finally we get the contradiction ∞ > C ≥

ε
(

1
k
− 1− ln 1

k

)
∧ (k − 1− ln k) =∞ when k →∞.



22 3 Model

3.3. Stability

First, we recall some definitions from the theory of dynamical systems. Consider a
d-dimensional ordinary differential equation:

ẋ(t) = f(x(t), t) (3-29)

Assume that for every initial condition x(t0) = x0 ∈ Rd there exits a unique solution
on [t0,∞) which we denote x(t; t0, x0), assume furthermore that f(0, t) = 0 for
every t ≥ t0, the solution x(t; t0, 0) = 0 is called a trivial solution or equilibrium
position.
A trivial solution is said to be stable if for every ε > 0, there exits a δ > 0 such
that for all t ≥ t0 and every initial condition x0 such that |x0| < δ we have

|x(t; t0, x0)| ≤ ε (3-30)

Otherwise, the trivial solution is said to be unstable.
The trivial solution is said to be asymptotically stable if it is stable and there
exits a δ > 0 such that for every initial condition x0 such that |x0| < δ we have

lim
t→∞

x(t; t0, x0) = 0 (3-31)

There are several definitions for the stability of the solutions of SDE’s. More infor-
mation can be found in [ [Khasminskii, 2012]p.p 22] and in [ [Mao, 2008]p.p 110-111].
In this case, we will be interested in a definition of stability of processes due to Mao,
which we state below.

Definition 15 ( [Mao, 2008]p.p 119). Let (Xt)t≥t0 be a process; we say that (Xt)t≥t0
is almost surely exponentially stable if

lim sup
t→∞

1

t
ln(|Xt|) < 0 a.s. (3-32)

It is important to remark that almost surely exponential stability implies that the
process trajectories tend to the equilibrium exponentially fast [ [Mao, 2008]p.p. 120].
More precisely, let

lim sup
t→∞

1

t
ln(|Xt|) = −c (3-33)

where c > 0 we will have that for ε such that 0 < ε < c there exits ξ > 0 such that

|Xt| ≤ ξ exp(ε− c)t for all t ≥ tε(ω). (3-34)

Theorem 3.3.1. If βiNi

γi
< 1 for every i, then the process

(∑M
i=1 Ii(t)

)
t≥0

is almost

surely exponentially stable
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Proof. We have already proved that for every initial positive initial condition, the
solution of the SDE (3-11) will remain positive, so the function ln(Ii(t)) is well
defined for every i, note also that by the monotonicity of the function ln(·) we have
ln(Ii(t)) ≤ ln(

∑M
i=1 Ii(t)) for every i, consider the last function as a function of the

solution of the SDE as follows:

V (Xt, t) = ln

(
M∑
i=1

Ii(t)

)
(3-35)

we will use the Itô formula to calculate dV (Xt, t); first we compute:

∂V

∂x
(Xt, t) =

(
0,

1∑M
i=1 Ii(t)

, 0, 0,
1∑M

i=1 Ii(t)
, 0, . . . , 0,

1∑M
i=1 Ii(t)

, 0

)
(3-36)

∂2V

∂x2
(Xt, t) =



0 0 0 . . . 0 0

0 −1

(
∑M

i=1 Ii(t))
2 0 . . . 0 0

0 0 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . −1

(
∑M

i=1 Ii(t))
2 0

0 0 0 . . . 0 0


(3-37)

∂V

∂t
(Xt, t) = 0 (3-38)

it is clear that

∂V

∂x
(Xt, t)b(Xt, t)

=
M∑
i=1

βiSi(t)Ii(t)− γiIi(t) +
∑M

j=1 λji
Ij(t)

Nj
−
∑M

j=1 λij
Ii(t)
Ni∑M

i=1 Ii(t)


=

M∑
i=1

(
βiSi(t)Ii(t)− γiIi(t)∑M

i=1 Ii(t)

) (3-39)

we also compute

Tr

(
σ>(Xt, t)

∂2V

∂x2
(Xt, t)σ(Xt, t)

)
= −

(∑M
i=1 σiSiIi

)2

(∑M
i=1 Ii(t)

)2 (3-40)

finally
∂V

∂x
(Xt, t)σ(Xt, t) =

(
σ1S1(t)I1(t)

(
∑M

i=1 Ii(t))
. . . σMSM (t)IM (t)

(
∑M

i=1 Ii(t))

)
(3-41)
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by the Itô formula, we have that

dV (Xt, t)

=
M∑
i=1

βiSi(t)Ii(t)− γiIi∑M
i=1 Ii(t)

− (σiSi(t)Ii(t))
2

2
(∑M

i=1 Ii(t)
)2

 dt

+
M∑
i=1

σiSi(t)Ii(t) 1(∑M
i=1 Ii(t)

)dWi


(3-42)

integrating from 0 to t leads to

V (Xt, t)

=
M∑
i=1

∫ t

0

(βiSi(t)Ii(t)− γiIi(t)∑M
i=1 Ii(t)

)
− (σiSi(t)Ii(t))

2

2
(∑M

i=1 Ii(t)
)2

 du

+
M∑
i=1

∫ t

0

(
σiSi(t)Ii(t)∑M

i=1 Ii(t)
dWi

)
+ V (X0, 0)

(3-43)

if we divide for t > 0 and taking lim sup, we get

lim sup
t→∞

V (Xt, t)

t

= lim sup
t→∞

1

t

M∑
i=1

∫ t

0

βiSi(t)Ii(t)− γiIi(t)∑M
i=1 Ii(t)

− (σiSi(t)Ii(t))
2

2
(∑M

i=1 Ii(t)
)2

 du

+
1

t

M∑
i=1

∫ t

0

σiSi(t)Ii(t)∑M
i=1 Ii(t)

dWi +
1

t
V (X0, 0)

]

≤ lim sup
t→∞

M∑
i=1

1

t

∫ t

0

βiSi(t)Ii(t)− γiIi(t)∑M
i=1 Ii(t)

− (σiSi(t)Ii(t))
2

2
(∑M

i=1 Ii(t)
)2

 du

+ lim sup
t→∞

M∑
i=1

1

t

∫ t

0

σiSi(t)Ii(t)∑M
i=1 Ii(t)

dWi + lim sup
t→∞

1

t
V (X0, 0)

= lim sup
t→∞

M∑
i=1

1

t

∫ t

0

βiSi(t)Ii(t)− γiIi(t)∑M
i=1 Ii(t)

− (σiSi(t)Ii(t))
2

2
(∑M

i=1 Ii(t)
)2

 du

+ lim sup
t→∞

M∑
i=1

1

t

∫ t

0

σiSi(t)Ii(t)∑M
i=1 Ii(t)

dWi

(3-44)
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note that

E

( σiSiIi∑M
i=1 Ii(t)

)2
 ≤ E

(
(σiNi)

2
)

= (σiNi)
2 <∞ (3-45)

which implies that ∫ t

0

σiSi(t)Ii(t)∑M
i=1 Ii(t)

dWi (3-46)

is a martingale by theorem 2.2.2 and using the law of large numbers for local mar-
tingales [ [Mao, 2008]p.p 12]

lim
t→∞

1

t

∫ t

0

σiSiIi∑M
i=1 Ii(t)

dWi = 0 (3-47)

on the other hand

lim sup
t→∞

M∑
i=1

1

t

∫ t

0

βiSi(t)Ii(t)− γiIi(t)∑M
i=1 Ii(t)

− (σiSi(t)Ii(t))
2

2
(∑M

i=1 Ii(t)
)2

 du

≤ lim sup
t→∞

M∑
i=1

1

t

∫ t

0

(
βiSi(t)Ii(t)− γiIi(t)∑M

i=1 Ii(t)

)
du

= lim sup
t→∞

M∑
i=1

1

t

∫ t

0

(
(βiSi − γi)

(
Ii(t)∑M
i=1 Ii(t)

))
du

≤ lim sup
t→∞

M∑
i=1

1

t

∫ t

0

(
max

i∈{1,...,M}
(βiSi − γi)

(
Ii(t)∑M
i=1 Ii(t)

))
du

≤ lim sup
t→∞

M max
i∈{1,...,M}

(βiSi − γi)
1

t

∫ t

0

M∑
i=1

(
Ii(t)∑M
i=1 Ii(t)

)
du

= lim sup
t→∞

M max
i∈{1,...,M}

(βiSi − γi)
1

t

∫ t

0

1du

=M max
i∈{1,...,M}

(βiSi − γi) < 0

(3-48)

The last inequality is just the hypothesis of the theorem, if we have that for every
i = 1, . . . ,M βiNi

γi
< 1 we can rewrite those inequalities as βiNi − γi < 0 for every i

in particular maxi∈{1,...,N}(βiNi − γi) < 0.

Remark. Note that for a single region, the condition of the last theorem for stability
coincides with the condition for the extinction of the pathogen based on the basic
reproduction number βN

γ
[ [Perasso, 2018]p.p 128] from deterministic epidemiology.
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4.1. Stratonovich Integral

In order to explain the method used to approximate the paths of the model (3-11),
we have to define the Stratonovich integral in terms of the Itô integral defined in
chapter 2.

Definition 16. Assume that for i = 1, . . . ,m

dYi(t) = bi(Yi(t), t)dt+ σi(Yi(t), t)dW (4-1)

where bi(t, Yi(t)) ∈ W1([t0, T ];Rd×1) and σi(t, Yi(i)) ∈ W2([t0, T ];Rd×m). We define
the Stratonovich integral

∫ t
t0
Yt ◦ dW , where Yt is the d ×m matrix-valued process

whose i column is Yi(t), as the Rd-valued process defined as∫ t

t0

Ys ◦ dWs =

∫ t

t0

YsdWs +
1

2

∫ t

t0

m∑
i=1

(σi)ids (4-2)

where (σi)i is the i-column of σi(Yi, t).

Also, a definition of a stochastic differential equation in Stratonovich’s sense can
be made. Now we present the formula to change from an SDE in Itô’s sense to an
SDE in Stratonovich’s sense and vice versa. Assume that Xt is a global solution of
a stochastic differential equation in Itô’s sense

dXt = b(Xt, t)dt+ σ(Xt, t)dW, Xt0 = x0 (4-3)

where b(t,Xt) ∈ W1([t0, T ];Rd×1) and σ(t,Xt) ∈ W2([t0, T ];Rd×m), moreover as-
sume that each entry of the function σ(x, t) has up to 2 spatial continuous deriva-
tives and 1 partial continuous derivative in t such that we can use theorem 2.2.4 to
get d(σ(Xt, t))i for i = 1, . . . , n then using definition 16 we get that if (Xt)t0≤t≤T is
a solution of equation (4-3) in Ito’s sense, then (Xt)t0≤t≤T is also a solution of the
following SDE in Stratonovich’s sense

dXt = b̄(Xt, t)dt+ σ(Xt, t) ◦ dW, Xt0 = x0 (4-4)

where

b̄(Xt, t) = b(Xt, t)−
1

2

d∑
j=1

∂

∂xj
(Xt, t)(σ

>)j(Xt, t) (4-5)
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A similar formula can be obtained to get an SDE in Itô’s from an SDE in Statonovich’s
sense. There is also a theorem about the existence and uniqueness of the solution
for stochastic differential equations in Stratonovich’s sense, which we state below

Theorem 4.1.1. Consider the following SDE in Statonovich’s sense

dXt = b(Xt, t)ds+ σ(Xt, t) ◦ dWt Xt0 = x0 (4-6)

If b : Rn × [t0, t] → Rn is Lipschitz continuous in the spatial variable and σ :

Rn × [t0, t] → Rn×d is twice continuously differentiable in the spatial variable and
continuously differentiable in the time variable. Also assume that ||∂σ/∂xj(x, t)||2
are bounded for all j = 1, 2, ..., n then the equation has a unique solution on [t0, T ].

More information about the Stratonovich integral can be found in [ [Londoño,
2020]p.p 50] and in [ [Karatzas and Shreve, 1998]p.p 156].

4.2. The Wong-Zakai Method

Now we can describe the approximation procedure that we are going to use. We
consider the following Stratonovich SDE

dXt = b(Xt, t)ds+ σ(Xt, t) ◦ dWt Xt0 = x0 (4-7)

for this equation we will approximate the solution at points t0 < . . . < tk = T of the
interval [t0, T ] as follows, let X̂j the numerical approximation of Xtj . For X̂0 = Xt0

and for each sub interval [tj, tj+1], j = 0, . . . , k − 1, X̂j+1 will be calculated as the
solution at time tj+1 of the following initial value problem

dX̂(t)

dt
= b(X̂(t), t) +

1

∆j

σ(X̂(t))∆Wj X̂(tj) = X̂j (4-8)

where ∆j = tj+1 − tj and ∆Wj = Wtj+1
−Wtj .

The main feature of this method is that it enables us to use robust methods already
developed for ODEs. More information about this method and evaluation of its
numerical performance can be found in [ [Londoño and Villegas, 2016]].

4.3. Implementation of the Wong-Zakai Method

We first convert the Itô stochastic SDE (3-11) to Stratonovich form to implement
the numerical method described. To do that, we use equation (4-5) to get the
Stratonovich SDE:

dXt = b̄(Xt, t)dt+ σ(Xt, t) ◦ dW, Xt0 = x0 (4-9)
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where

b̄(Xt, t) =

−β1S1(t)I1(t) +
∑M

j=1 λj1
Sj(t)

Nj
−
∑M

j=1 λ1j
S1(t)
N1

+
σ2
1S

2
1(2)I1(t)−σ2

1S1(t)I21 (t)

2

β1S1(t)I1(t)− γI1(t) +
∑M

j=1 λj1
Ij(t)

Nj
−
∑M

j=1 λ1j
I1(t)
N1

+
σ2
1S1(t)I21 (t)−σ2

1S
2
1(t)I1(t)

2

γ1I1(t) +
∑M

j=1 λj1
Rj(t)

Nj
−
∑M

j=1 λ1j
R1(t)
N1

...
γMIM(t) +

∑M
j=1 λjM

Rj(t)

Nj
−
∑M

j=1 λMj
RM (t)
NM


(4-10)

σ(Xt, t) =



−σ1S1(t)I1(t) 0 . . . 0

σ1S1(t)I1(t) 0 . . . 0

0 0 . . . 0

0 −σ2S2(t)I2(t) . . . 0

0 σ2S2(t)I2(t) . . . 0

0 0 . . . 0
...

... . . . ...
0 0 . . . −σMSM(t)IM(t)

0 0 . . . σMSM(t)IM(t)

0 0 . . . 0



(4-11)

We implement the Wong-Zakai method as described in section 4.2 on the Julia
programming language [Bezanson et al., 2017] due to its performance and the avail-
ability of a robust package to solve differential equations [Rackauckas and Nie, 2017].
We also use the package Distributions [Besançon et al., 2019] to get a probability
distribution for the simulated data; finally, we use Plotly [Plotly Technologies, 2015]
to plot the trajectories of the solution. The code used can be found in appendix B.

Now we present some simulations. We will use the official reported data for the
covid-19 in France, Germany, and Italy. Also, we use parameters reported in the
literature for the SIR model, calibrated for each country, and reported tourism
data between each country for the mobility parameters. First, we perform some
deterministic simulations for the model (3-4). Then, we show the simulations for the
proposed stochastic model (3-11), for which we calculated the parameters controlling
the randomness of the model σi by choosing those that give the maximum likelihood
with respect to the reported data.

Now we present the parameters used for the simulations
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Table 4-1.: Parameters for the infectious process for Italy, Germany, and France
before the first lockdown as reported by [Simha et al., 2020].

Country N β γ

Italy 6.055× 107 4.5× 10−9 0.04
Germany 8.28× 107 4.6× 10−9 0.005
France 6.7× 107 4.4× 10−9 0.04

Table 4-2.: Transition parameters calculated from the total number of tourists
between countries [DIRECTION GÉNÉRALE DES ENTREPRISES,
2018,Sistema statistico nazionale Istituto nazionale di Statistica, 2019,
WORLD TOURISM ORGANIZATION, 2021].

Italy Germany France

Italy 0 44227 32157
Germany 44227 0 43776
France 32157 43776 0

Table 4-3.: Initial conditions at t = 0, which represents the date 24-02-20 as re-
ported by [Johns Hopkins University of Medicine, 2020].

Country S0 I0 R0

Italy 60549771 220 9
Germany 82799987 2 11
France 66999991 1 8

We used subscripts to maintain the usual notation for stochastic processes. Thus
I0 represents the initial value of infectives for each region. Also, R0 denotes the
number of individuals who are no longer infective to other individuals; this includes
the recovered and dead individuals as in [ [Simha et al., 2020]]; in this case, do
not confuse R0 with the basic reproductive number for the infection in each region.
Finally, S0 is the initial value for the susceptible individuals, calculated as S0 =

N − I0 − R0 where N total number of individuals as reported by [ [Simha et al.,
2020]].

First, we show the deterministic simulations. It is important to note that we plot the
natural logarithm of the solutions given by the numerical method, and we compare
it with the natural logarithm of the reported data to compensate for the exponential
nature of the solutions.
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Figure 4-1.: Graphs of the natural logarithm of the deterministic case σ1 = σ2 =

σ3 = 0 orange dots represent the natural logarithm of the observed
data [Johns Hopkins University of Medicine, 2020].

Figure 4-2.: Graph of the natural logarithm of the deterministic case for Italy.
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Figure 4-3.: Graph of the natural logarithm of the deterministic case for Germany.

Figure 4-4.: Graph of the natural logarithm of the deterministic case for France.

Note that in figures 4-1,4-2,4-3 and 4-4, the observed data and the simulations go
in different directions at t = 25, which is the date 20-03-20; one explanation for that
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phenomenon is that the measures taken by the government started to be noticeable
by those days. The first lockdown in Italy took place on the 9th of March; in France,
it was on the 17th of March; in Germany, it was decreed on the 23rd of March. As
a result, the parameters βi have to be modified for each region to compensate for
the lockdowns [Karnakov et al., 2020,Godio et al., 2020].
Now we present some simulations for the stochastic model, the parameters for mo-
bility between countries are the same as in table 4-2, and initial conditions are the
same as in table 4-3. We keep the recovery rates γi and infection rates βi the same
as in the deterministic case; we estimate the parameters σi, using the simulated
maximum likelihood procedure described in [ [Hurn et al., 2003]]. Also, we include
the code used to estimate those parameters in appendix B.

Table 4-4.: Parameters for the infectious process for Italy, Germany, and France
used for the stochastic model.

Country N β γ σ

Italy 6.055× 107 4.5× 10−9 0.04 2× 10−9

Germany 8.28× 107 4.6× 10−9 0.005 4× 10−9

France 6.7× 107 4.4× 10−9 0.04 2× 10−9

Figure 4-5.: Graphs of the natural logarithm of the stochastic case with parameters
as in table 4-4 orange dots represent the natural logarithm of the
observed data [Johns Hopkins University of Medicine, 2020].
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Figure 4-6.: Graph of the natural logarithm of the stochastic case for Italy.

Figure 4-7.: Graph of the natural logarithm of the stochastic case for Germany.
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Figure 4-8.: Graph of the natural logarithm of the stochastic case for France.
Figures 4-5, 4-6, 4-7, and 4-8 show the natural logarithm of the sample paths for
multiple simulations using the Wong-Zakai method described in section 4.2. We
highlighted the mean value of the natural logarithm of the simulated trajectories.
Also, we plotted in red the mean value of the trajectories plus and minus the standard
deviation of the natural logarithm of the sample phats. Note that most of the
observations are located between the mean plus and minus the standard deviation
of the sample phats. If we want to make predictions with this model, we can make
various simulations to obtain a probability density for the values of the solution at
a given time.
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Figure 4-9.: Histogram for the number of active infections in Italy on the 30th
March 2020

Figure 4-10.: Histogram for the number of active infections in Germany on the
30th March 2020
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Figure 4-11.: Histogram for the number of active infections in France on the 30th
March 2020
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We use information from 4-9, 4-10, and 4-11 to fit a normal random variable for the
number of infected individuals in each country. This information could be helpful
to make predictions based on this model.

Figure 4-12.: Fitted PDF for Italy with parameters µ=724823.108, σ=515918.925

Figure 4-13.: Fitted PDF for Germany with parameters µ=1210347.391,
σ=3099983.360
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Figure 4-14.: Fitted PDF for France with parameters µ=33203.205, σ=23772.842



5. Conclusions

This study proposed a new epidemiological stochastic model on multiple regions with
transport. We have demonstrated the feasibility of the model by demonstrating
the existence, uniqueness, and positivity of the solution. Also, we presented an
asymptotic property for the number of infected individuals in each region, and we
related that result with the basic reproduction number in the single region case.
Moreover, deterministic models found in the literature were compared. Likewise,
from the simulations, it was possible to achieve a probability density function for the
process variables, which can be used to make future predictions about the variables
of the process when we calibrate with real data.
For further research, it is recommended to refine the condition of almost asymptotic
stability of theorem 3.3.1, for instance, by providing a condition that considers the
parameters controlling the randomness of the model. Furthermore, we recommend
studying the stochastic extension of the deterministic model with different incidence
rates like those presented in [ [Kiran et al., 2020, Irwin, 2008]]. It is also suggested
to continue the extension to several regions from previous studies conducted with
stochastic models for a single region, e.g., including the compartments for individuals
in quarantine and asymptomatic as mentioned in [ [Liu et al., 2019,Aràndiga et al.,
2020]], considering different age groups inside the same region with a similar model
as proposed by [ [Ji et al., 2011,Liu and Jiang, 2019,Cao et al., 2020]]. It may also
be recommended to include dynamics of life such as births and deaths as presented
in [ [Anqi Miao et al., 2018]].



A. Additional Definitions

Definition 17. Let (Xt)t≥0 be a stochastic process on (Ω,F , P ). Then we say that
(Xt)t≥0 is continuous in probability if

P ({ω : lim
s→t
|Xs −Xt| = 0}) = 1 for all t (A-1)

Definition 18. Suppose that (Xt)t≥0 and (Yt)t≥0 are stochastic processes on (Ω,F , P ).
Then we say that (Xt)t≥0 is a version of (or a modification of) (Yt)t≥0 if

P ({ω : Xt(ω) = Yt(ω)}) = 1 for all t (A-2)

Definition 19. Consider a probability space (Ω,F , P ) with a filtration (Ft) let T
be the index set for the time and T its closure on [−∞,∞] we say that a random
variable τ with values in T is called a stopping time if for each t ∈ T the event
{τ ≤ t} ∈ Ft



B. Code Listings

gen-sim.jl
1 using DifferentialEquations
2 using Plots
3 include("fun-sim.jl")
4 tin = 0.0 #initial time
5 tfi = 30 #final time
6 delt = 0.001 #internal delta
7 delm = 0.01 #sampling delta
8
9 #initial condition vector S1,I1,R1,S2,I2,R2,S3,I3,R3

10 u0 = [60549771,220,9,82799987,2,11,66999991,1,8]
11 # model parameters
12 # beta1,gamma1,sigma1,lambda12,lambda21,
13 # beta2,gamma2,sigma2,lambda23,lambda32,
14 # beta3,gamma3,sigma3,lambda13,lambda31
15 Par = [0.0000000045,0.04,0.000000001,44227,44227,
16 0.0000000046,0.005,0.000000001,43776,43776,
17 0.0000000044,0.04,0.000000001,32157,32157]
18 times,solution = simul(tin,tfi,delt,delm,u0,Par)
19
20
21 plotly() # Using the Plotly backend
22
23 ps1=plot(times,solution[:,1])
24 pi1=plot(times,solution[:,2])
25 pr1=plot(times,solution[:,3])
26
27 ps2=plot(times,solution[:,4])
28 pi2=plot(times,solution[:,5])
29 pr2=plot(times,solution[:,6])
30
31 ps3=plot(times,solution[:,7])
32 pi3=plot(times,solution[:,8])
33 pr3=plot(times,solution[:,9])
34
35 l = @layout [
36 grid(3,1) grid(3,1) grid(3,1)
37 ]
38 plot(ps1,pi1,pr1,ps2,pi2,pr2,ps3,pi3,pr3,linewidth=1,xaxis=" ",legend=
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false,title=["S1" "I1" "R1" "S2" "I2" "R2" "S3" "I3" "R3"],layout=l
)

gen-stats.jl
1 using DifferentialEquations
2 using Plots
3 using Distributions
4 include("fun-sim.jl")
5 tin = 0.0 #initial time
6 tfi = 30.0 #final time
7 delt = 0.001 #internal delta
8 delm = 0.01 #sampling delta
9 Ntra = 1000 #number of simulations

10 #initial condition vector S1,I1,R1,S2,I2,R2,S3,I3,R3
11 u0 = [60549771,220,9,82799987,2,11,66999991,1,8]
12 # model parameters
13 # beta1,gamma1,sigma1,lambda12,lambda21,
14 # beta2,gamma2,sigma2,lambda23,lambda32,
15 # beta3,gamma3,sigma3,lambda13,lambda31
16 Par = [0.0000000045,0.04,0.000000002,44227,44227,
17 0.0000000046,0.005,0.000000004,43776,43776,
18 0.0000000044,0.04,0.000000002,32157,32157]
19
20 Finalsize = Array{Float64,2}(undef,3,Ntra)
21 for i=1:Ntra
22 times,solution = simul(tin,tfi,delt,delm,u0,Par)
23 Finalsize[1,i]=solution[Int(((tfi-tin)/delm)+1),:][3]
24 Finalsize[2,i]=solution[Int(((tfi-tin)/delm)+1),:][6]
25 Finalsize[3,i]=solution[Int(((tfi-tin)/delm)+1),:][9]
26 end
27 plotly()
28 histogram(Finalsize[1,:], label=false, title="Italy")
29 histogram(Finalsize[2,:], label=false, title="Germany")
30 histogram(Finalsize[3,:], label=false, title="France")
31 dit=fit_mle(Normal, Finalsize[1,:])
32 dge=fit_mle(Normal, Finalsize[2,:])
33 dfr=fit_mle(Normal, Finalsize[3,:])
34 pit=plot([x -> pdf(dit, x)],30000, 55000, title="Probability density

function", label=false)
35 pge=plot([x -> pdf(dge, x)],30000, 55000, title="Probability density

function", label=false)
36 pfr=plot([x -> pdf(dfr, x)],30000, 55000, title="Probability density

function", label=false)

parameter-fit.jl
1 tin = 0.0 #initial time
2 tfi = 1 #final time
3 delt = 0.001 #internal delta
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4 delm = 1 #sampling delta
5
6 Nit = 60550000
7 it =[220,310,455,593,822,1049,1578,1837,2265,2709,3299,
8 3919,5064,6391,7991,8518,10593,12842,14958,17753,
9 20607,23077,26066,28711,33191,37859,42672,46625,

10 50396,53995,57469,61956,66352,69997,73806,75444]
11
12 reit = [9,13,15,62,67,79,124,201,239,383,562,720,822,989,
13 1188,1638,1876,2280,2712,3416,4155,4920,5458,7021,
14 7865,9185,10926,12533,13545,15186,16910,18625,20136,
15 22464,23870,26279]
16
17 Nge = 82800000
18 ge = [2,3,11,32,58,63,114,149,187,246,528,652,782,1022,
19 1204,1545,1938,2714,3621,4544,5754,7188,9274,12194,
20 15161,19600,22071,24513,28480,29542,33570,37998,43862,
21 48781,52683,52740]
22
23 rege = [11,12,12,13,13,13,13,13,13,13,14,15,15,15,17,
24 17,25,28,51,52,56,81,90,130,156,245,290,357,573,
25 3446,3750,5937,7006,8911,9749,14142]
26
27 Nfr = 67000000
28 fr = [1,2,5,24,42,80,107,162,181,248,371,578,840,1073,
29 1247,1582,2019,2546,3242,3991,4795,5874,6254,7442,
30 8332,9431,10997,11689,14991,15894,17706,19857,
31 22268,26140,26708,29542]
32
33 refr = [8,8,9,9,9,10,10,11,12,12,15,17,24,27,38,41,56,
34 69,87,99,135,156,773,862,1663,2033,2145,2870,
35 3056,4377,5227,6640,7691,8010,9804,10947]
36
37
38 simulations = 1000
39 Finalsize = Array{Float64,2}(undef,(3,simulations))
40 Finalsum = 0
41 paramit = 0
42 paramge = 0
43 paramfr = 0
44 previoussum = -Inf
45 #loop for the parameters
46 for i in 1:9
47 print(i)
48 print("\n")
49 for g in 1:9
50 for f in 1:9
51 si = i/1000000000
52 sg = g/1000000000
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53 sf = f/1000000000
54 # model parameters
55 # beta1,gamma1,sigma1,lambda12,lambda21,
56 # beta2,gamma2,sigma2,lambda23,lambda32,
57 # beta3,gamma3,sigma3,lambda13,lambda31
58 Par = [0.0000000045,0.04,si,44227,44227,
59 0.0000000046,0.005,sg,43776,43776,
60 0.0000000044,0.04,sf,32157,32157];
61 Finalsum = 0
62 #loop for the times
63 for tiemp in 1:25
64 #initialcondition vector
65 #S1,I1,R1,S2,I2,R2,S3,I3,R3
66 u0 = [60550000-it[tiemp]-reit[tiemp],it[tiemp],reit[

tiemp],82800000-ge[tiemp]-rege[tiemp],ge[tiemp],rege[
tiemp],67000000-fr[tiemp]-refr[tiemp],fr[tiemp],refr[
tiemp]];

67 #for para las simulaciones
68 for simulation in 1:simulations
69 times,solution = simul(tin,tfi,delt,delm,u0,Par);
70 Finalsize[:,simulation] = [solution[end,2],solution[

end,5],solution[end,8]]
71 end
72 d = kde!(Finalsize)
73 current = log(d(reshape(float([it[tiemp+1],ge[tiemp+1],

fr[tiemp+1]]),3,1))[1])
74 if current == -Inf
75 Finalsum = Finalsum - 1000
76 else
77 Finalsum = Finalsum + log(d(reshape(float([it[tiemp

+1],ge[tiemp+1],fr[tiemp+1]]),3,1))[1])
78 end
79 end
80 if Finalsum > previoussum
81 previoussum = Finalsum
82 paramit = i
83 paramge = g
84 paramfr = f
85 end
86 end
87 end
88 end
89 print(paramit)
90 print(paramge)
91 print(paramfr)

fun-sim.jl
1 function simul(tin,tfi,delt,delm,u0,Par)
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2 times = Array(tin:delm:tfi)
3 solution = Array{Float64,2}(undef,Int(((tfi-tin)/delm)+1),9)
4 solution[1,:] = u0
5 p=Array{Float64,1}(undef,19)
6 p[1:16] = [Par[1],Par[2],Par[3],Par[4],Par[5],Par[6],Par[7],Par[8],
7 Par[9],Par[10],Par[11],Par[12],Par[13],Par[14],Par[15],

delt]
8 k = 2
9 for j in tin:delm:tfi-delt

10 for i in 0:delt:delm-delt
11 p[17:19] = randn(3)
12 tspan=(j+i,j+i+delt)
13 prob = ODEProblem(f,u0,tspan,p)
14 sol = solve(prob,Feagin14())#Here we can change the solver for the

package differential equations
15 u0=last(sol)
16 end
17 solution[k,:] = u0
18 k = k+1
19 end
20 return times,solution
21 end
22 function f(du,u,p,t)
23 S1,I1,R1,S2,I2,R2,S3,I3,R3 = u
24 beta1,gamma1,sigma1,lambda12,lambda21,beta2,gamma2,sigma2,lambda23,

lambda32,beta3,gamma3,sigma3,lambda13,lambda31,delt,Nor1,Nor2,
Nor3 = p

25
26 du[1]=(I1*S1^2*sigma1^2)/2 - (I1^2*S1*sigma1^2)/2 - I1*S1*beta1 - (

S1*lambda12)/(I1 + R1 + S1) - (S1*lambda13)/(I1 + R1 + S1) + (S2
*lambda21)/(I2 + R2 + S2) + (S3*lambda31)/(I3 + R3 + S3) - (I1*
Nor1*S1*sigma1)/delt^(1/2)

27 du[2]=(I1^2*S1*sigma1^2)/2 - (I1*S1^2*sigma1^2)/2 - I1*gamma1 + I1*
S1*beta1 - (I1*lambda12)/(I1 + R1 + S1) - (I1*lambda13)/(I1 + R1
+ S1) + (I2*lambda21)/(I2 + R2 + S2) + (I3*lambda31)/(I3 + R3 +
S3) + (I1*Nor1*S1*sigma1)/delt^(1/2)

28 du[3]=I1*gamma1 - (R1*lambda12)/(I1 + R1 + S1) - (R1*lambda13)/(I1
+ R1 + S1) + (R2*lambda21)/(I2 + R2 + S2) + (R3*lambda31)/(I3 +
R3 + S3)

29 du[4]=(I2*S2^2*sigma2^2)/2 - (I2^2*S2*sigma2^2)/2 - I2*S2*beta2 + (
S1*lambda12)/(I1 + R1 + S1) - (S2*lambda21)/(I2 + R2 + S2) - (S2
*lambda23)/(I2 + R2 + S2) + (S3*lambda32)/(I3 + R3 + S3) - (I2*
Nor2*S2*sigma2)/delt^(1/2)

30 du[5]=(I2^2*S2*sigma2^2)/2 - (I2*S2^2*sigma2^2)/2 - I2*gamma2 + I2*
S2*beta2 + (I1*lambda12)/(I1 + R1 + S1) - (I2*lambda21)/(I2 + R2
+ S2) - (I2*lambda23)/(I2 + R2 + S2) + (I3*lambda32)/(I3 + R3 +
S3) + (I2*Nor2*S2*sigma2)/delt^(1/2)

31 du[6]=I2*gamma2 + (R1*lambda12)/(I1 + R1 + S1) - (R2*lambda21)/(I2
+ R2 + S2) - (R2*lambda23)/(I2 + R2 + S2) + (R3*lambda32)/(I3 +
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R3 + S3)
32 du[7]=(I3*S3^2*sigma3^2)/2 - (I3^2*S3*sigma3^2)/2 - I3*S3*beta3 + (

S1*lambda13)/(I1 + R1 + S1) + (S2*lambda23)/(I2 + R2 + S2) - (S3
*lambda31)/(I3 + R3 + S3) - (S3*lambda32)/(I3 + R3 + S3) - (I3*
Nor3*S3*sigma3)/delt^(1/2)

33 du[8]=(I3^2*S3*sigma3^2)/2 - (I3*S3^2*sigma3^2)/2 - I3*gamma3 + I3*
S3*beta3 + (I1*lambda13)/(I1 + R1 + S1) + (I2*lambda23)/(I2 + R2
+ S2) - (I3*lambda31)/(I3 + R3 + S3) - (I3*lambda32)/(I3 + R3 +
S3) + (I3*Nor3*S3*sigma3)/delt^(1/2)

34 du[9]=I3*gamma3 + (R1*lambda13)/(I1 + R1 + S1) + (R2*lambda23)/(I2
+ R2 + S2) - (R3*lambda31)/(I3 + R3 + S3) - (R3*lambda32)/(I3 +
R3 + S3)

35
36 end
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