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Abstract

This work studies the use of spectral and morphological features in the evaluation and
detection of potato late blight using very high resolution multispectral images captured by
Unmanned Aerial Vehicles (UAV). Traditional late blight detection and mapping methods
are time-consuming, require great human effort and, in many cases, are subjective. The
study of the geometric and spectral characteristics of potato plants by means of UAV can
contribute to improving the efficiency of the field detection systems that are currently used.
This research seeks to contribute to the determination of the capture, processing and analysis
methods of the data acquired through UAV in a way that provides producers with reliable
tools for the improvement and management of their crops in an agile and efficient way. The
approach of this study integrates morphological operations and evaluates the performance of
five machine learning algorithms: Random Forest (RF), Gradient Boosting classifier (GBC),
Support Vector Classifier (SVC), Linear Support Vector Classifier (LSVC) and K- Nearest
Neighbours (KNN) to detect late blight areas. The main components of the proposed approach
are: (i) radiometric and geometric correction of raw images; (ii) elimination of bare soil by
applying a thresholding technique; (iii) the generation of spectral indices; (iv) the construction
of morphological features of the plants; (v) a supervised classification procedure using ML
algorithms; and (vi) use of pre-trained models to classify a new data set. The performance
of the method is evaluated on two dates in an experimental potato field. The results showed
that the LSVC and RF classifiers performed the best in terms of accuracy and execution time
metrics. The study showed that the proposed method allows the detection of late blight with
little human intervention.
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1 Introduction

The study of the characteristic features of plants based on images has great potential in tasks
of detailed characterization, leaf segmentation or in the identification of mutations. However,
the development of capture methods and analysis techniques poses new challenges, such as
data acquisition in the field, where conditions are not controlled and the handling of large
volumes of information derived from capture processes is required (Granier and Vile, 2014).
This project evaluates the use of multispectral images of very high spatial resolution in de-
termining geometric and spectral features in a variety of potato, susceptible to Late Blight
(LB) (Phytophthora infestans), with different agronomic management. Different means of im-
age capture will be used, including an Unmanned Aerial Vehicle (UAV) to capture very high
resolution images that were subjected to a photogrammetric adjustment based on Structure
from Motion (SfM) algorithms to obtain orthomosaics, to which machine vision methods were
applied to extract differential characteristics between potato plants, in terms of spectral re-
sponses and morphological patterns. In this document, the problem under study is described,
a literature review is made, the objectives, the work method, the conducted results, the work
schedule and the project resources are described.

Precision agriculture and plant phenotyping as information and technology based fields
require incorporating new approaches into traditional monitoring and rating systems to ac-
complish different needs and challenges (Mahlein, 2016a). Assessment of diseases in crops
based on remote sensing techniques allows consistent monitoring of field crop health (Shakoor
et al., 2017). Conventional methods are based on intensive field sampling, where samples are
collected to analyse the attributes of the crop. Traditional inspection is usually performed
by trained experts according to characteristic plant disease symptoms or evident signs of a
pathogen (Mahlein, 2016a). However, a significant human effort is needed to successfully cover
a large area (EPPO, 2007). Current technological advancements, including wireless sensor
networks, proximal sensor and remote sensors, are potentially important tools for farmers
switching to environmentally friendly farming methods and cost-effective farming practices
(Srbinovska et al., 2015; Tokekar et al., 2016).

Late blight (LB), is a mayor disease in potato crops, caused by Phytopththora infestans
(Mont.) de Bary, which damages the plant foliage, leading to low productivity and economic
losses (Jiang et al., 2012; Arora et al., 2014; Kuhl et al., 2007). Significant efforts have been
made to improve potato crop resistance Śliwka et al. (2012), and implement socio-ecological-
system approaches for disease management (Pacilly et al., 2016). However, severity of the LB
seems to be increasing in different potato growing areas due to Phythoptora infestans ability
to adapt and increase tolerance to the most potent fungicides (Arora et al., 2014; Wiik, 2014).

Real time Polymerase Chain Reaction (PCR) technique for detection of Phytopththora
infestans oospores in soil have been developed (Hussain et al., 2014). This technique gives
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farmers a reliable tool for identifying the location of the pathogen and the corresponding
management strategies. While such approach is accurate, it relies on sophisticated equipment
and expertise, which are very expensive for smallholder farmers in developing countries.

Assessment of LB disease impact is usually performed by periodic surveys in the field
through visual inspection on the growing crops (EPPO, 2007). Such assessments are often
inaccurate and subjective (Sugiura et al., 2016). Traversing the entire crop field for visual
inspection of LB presence involve significant time and human effort. It requires walking in
certain patterns, searching for specific symptoms of disease in stems, leaves or roots (Forbes
et al., 2014).

The use of unmanned aerial vehicles (UAV) in agriculture poses important advantages as
they are often low cost platforms that can be equipped with RGB, multispectral, or hyper-
spectral cameras for the rapid acquisition of high resolution images for crop loss assessment
(Zhao and Jiang, 2010). UAVs have been used in agriculture for water stress assessment
(Gago et al., 2015), monitoring of NDVI index during the wheat growth (Hassan et al., 2018),
assessment of crop hail damage in potato crops (Zhou et al., 2016), diagnosis of nitrogen
status (Liu et al., 2018a) and rice lodging assessment ((Liu et al., 2018b)).

In recent years, several image-based techniques for monitoring diseases severity using
imagery from UAVs have been proposed. Sugiura et al. (2016) proposed a phenotyping
system for mapping potato LB through analysis of pixel change between consecutive periods
of image capture. Although this approach is accurate, it is necessary to have images from
at least two periods to detect affected zones. Duarte-Carvajalino et al. (2018) performed
the assessment of LB severity in potato from UAV-based high resolution multispectral images
acquired with a low-cost camera and machine learning algorithms. More recently Franceschini
et al. (2019) evaluated the feasibility of using UAV multispectral imagery for early detection
and severity assessment of late blight in potato crops, their experimental results showed that
optical data acquired at canopy level with centimetre resolution has the potential to provide
useful information for detecting late blight incidence and assessing its severity in early stages
of disease development.

Vegetation indices as well as supervised and unsupervised classification methods and
clustering such as artificial neural networks, decision trees, support vector machines or k-
means, have been used in precision agriculture and can be effective for detection, identification,
and quantification of plant diseases from sensor data (Franke and Menz, 2007; Zhang et al.,
2019; Bagheri, 2020). It is usual to separate plants from other objects when assessing plants
diseases. Threshold-based approaches have been used to separate plants from bare soil, many
colour-index based approaches for plant segmentation make use of either zero threshold or a
threshold based on Otsu’s method (Hamuda et al., 2016a).

ML methods have recently been applied in the study of LB in potato crops. Duarte-
Carvajalino et al. (2018) carried out an evaluation of the LB in 14 different potato genotypes
using multispectral images captured with UAV and ML methods, such as multi layer per-
ceptron, deep learning Convolutional Neural Networks (CNN), support vector regression, and
RF. Their results suggested that it is possible to replace the visual estimation of LB disease
severity with ML algorithms, as the Mean Absolute Error (MAE) found was 11.72%, which
was found acceptable.
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1.1 Problem statement

Kumar et al. (2015) and Singh et al. (2016), estimate that agricultural production must double
by 2025 if the demand of the world’s growing population is to be met. Genetic studies have
great potential in understanding crop yield and resistance to different types of stress through
the use of technological resources such as genotyping and sequencing, however, the success of
the application of genomics depends on the ability to accurately assess complex plant traits
(Kumar et al., 2015). Plant phenotyping is the quantitative evaluation of the traits of a gen-
otype given an environment and experiment, in terms of its scalar (plant height), multivalued
(chemical and Deoxyribonucleic acid (DNA) transcription) characteristics, even those based
on in images, which includes measurements made directly, as well as indirect measurements
(Bolger et al., 2017). Studying how phenotypes change in plants of the same species in differ-
ent environments is essential to understand their operation, this study is based on the detailed
classification of plant properties, such as the number of leaves, their arrangement, the state
of maturation or the similarity with another variety (Minervini et al., 2016).

Difficulties in the study of phenotypes in the field limit the analysis of quantitative ge-
netic characteristics, in particular those related to the resistance of plants to stress and their
yield (Araus and Cairns, 2014). Plant phenotyping has emerged in recent years due to the
advancement of high-performance sensors for image capture (Coppens et al., 2017), since its
use avoids the application of invasive or destructive study methods. Image-based plant phen-
otyping techniques have gained ground in tasks where identification is needed for detailed
categorization procedures: such as segmentation of leaves in different crops or in identifica-
tion of mutations (Minervini et al., 2016). However, the development of digital image analysis
methods and techniques in phenotyping studies poses new challenges, one of them is the hand-
ling of large volumes of information derived from data capture processes (Coppens et al., 2017).

1.2 Conceptual Approach

The study of diseases in potato crops has been of great importance in the world, in fact, the
Royal Horticultural Society, founded in 1805, was created after considerable losses in crops
between the years 1770 and 1800. Its main The purpose was to acquire wild potato varieties
from which they have been derived from the affected varieties and begin to reproduce them in
order to study the problems and suffered during that time (John Reader, 2009). The inspection
of potato crops is a highly studied subject, there are currently standards such as that of the
European and Mediterranean Plant Protection Organization (EPPO), which establishes the
inspection procedures that must be carried out in the different stages of potato cultivation:
before planting the seed, during the growth of the plants to maturity, during harvest and post-
harvest. During the growth and maturation stage of the plants in the crop, the inspection
is done visually, the phytopathologists must check the leaves, stems and tuberous roots. To
do this, they must walk the crop and follow different inspection schemes established for each
plantation (EPPO, 2007).
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Optical imaging sensors capable to measure reflectance, temperature or fluorescence have
been used for assessment of plant diseases in different crops. Those optical sensors for plant
disease assessment comprise RGB sensors, which can be found in almost every mobile phone,
computer or tablet, multispectral sensors, hyperspectral sensors, thermal sensors and fluor-
escence imaging devices. Although there are a variety of sensors available that can be used
in agriculture and plant disease detection, by now, there are no sensors capable of detecting
plant diseases by itself and most of the sensors can not measure plant physiological parameters
directly (Mahlein, 2016b), so, interpretation and development of methods for data analysis is
crucial.

Sugiura et al. (2016) developed a field phenotyping system to estimate the resistance to
LB infestations in potato crops. The developed system uses the processing of aerial images
obtained through the use of unmanned aerial vehicles to estimate the severity of infections
in plant leaves. The developed system proved to be an alternative to traditional manual
measurement methods, which can offer rapid assessments of the condition of crops. The study
showed that aerial images obtained with UAV are an effective way to capture the spatial and
temporal variability of the state of crops.

1.3 Research question

Taking into account the above, this research project aims to answer the following question:
What are the spectral and morphological features that allow estimating the severity level of
late blight (Phytophthora infestans) in potato crops from multispectral images acquired using
an UAV platform?

1.4 Objectives

1.4.1 General objective

To develop a workflow for extraction of spectral and morphological traits of potato crops from
multispectral images of high resolution acquired using unmanned aerial vehicles to assess the
severity of late blight disease.

1.4.2 Specific objectives

1. To identify and extract the spectral traits of potato plants that allow estimating the
damage caused by late blight in the potato crop.

2. To identify and extract the morphological traits of potato plants that allow estimating
the damage caused by late blight, combining techniques of computer vision and pattern
recognition.

3. To combine spectral and morphological traits of potato plants that allow estimating the
damage caused by late blight disease.
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1.5 Research importance

Improving potato crops may be the only way to combat late blight (Struik, 2010). The study
of the geometric and spectral features of potato plants by means of UAV can contribute to
improve the efficiency of field phenotyping systems currently used in potato improvement.
This research can contribute to the determination of the methods of capture, processing and
analysis of the data acquired through UAV in a way that provides producers with reliable
tools for the improvement and management of their crops in an agile and efficient way.

1.6 Scope of the study

The aim of this study is to determine which spectral and morphological traits allow the
evaluation of LB in an experimental potato crop from high resolution multispectral images
acquired by using an UAV.

1.7 Structure of the thesis

This document is organised as follows. chapter 2 presents the state of the art for this work,
chapter 3 describes the data and method used to classify LB, as well as healthy potato (HP)
plants in experimental plots. section 3.4 presents the radiometric correction, photogrammetry
processing and subset generation of the proposed method. section 3.5 presents the bare soil
removal, the training of the ML algorithms and the classification of the datasets. chapter 4
contains the results of this study. chapter 5 deploys the discussion of the proposed method.
Finally, chapter 6 presents the conclusions.

1.8 Publications
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3. Angulo-Morales, V., Rodŕıguez-Galvis, J., Lizarazo-Salcedo, I., and Gaona-Garćıa,
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2 State of the Art

2.1 Introduction

Potato (Solanum tuberosum subsp. tuberosum), is a herbaceous crop that belongs to the
Solanaceae family, which grows to a height of approximately 1 meter, with elongated pinnate
leaves and flowers that can be: white, purple, pink or bluish with fruits that can be slightly
yellow or green of approximately one inch (OECD, 1997). It is estimated that the first
potato plants were selected and cultivated between 6000 and 10,000 years. Worldwide, the
potato crop is the fourth most important after corn, rice and wheat (Namugga et al., 2017).
In Colombia, it is sown mainly in the department of Cundinamarca (45.54 %), followed by
Boyacá (25.08 %), and Nariño (19.28 %).1

Field phenotyping is one of the main components in crop breeding as the phenotype of
a plant is the expression of the interaction between genetic and environmental factors and is
reated to important yield traits and resistance to different sources of stress. (Sankaran et al.,
2015). Plant phenotyping is the quantitative evaluation of the traits of a given genotype in
a given environment or experiment, ranging from scalar (plant height), multi value (chemical
or DNA transcription), to images and include directly measured attributes and those derived
from analysis (Bolger et al., 2017).

Field phenotyping is gaining ground as the only approach capable of providing the re-
quired performance in terms of number of plants or populations, as well as providing an
accurate description of trait expression in real world crops. However, to date, most fieldwork-
based phenotyping systems have focused on rapid assessment of individual sets of traits, such
as vegetation indices. (White et al., 2012).

Unlike animals, which generally maintain a very similar structure regardless of the en-
vironment in which they develop, plants can show different architectures depending on the
environmental conditions in which they develop (Tardieu et al., 2017). Thus, the same gen-
otype can give rise to different phenotypes. The phenotype is defined by some ecologists
as a particular trait that a plant can present, such as the Specific Leaf Area (SLA), or as
relationships between several characteristics, such as the Leaf Area Index (LAI). However,
these definitions may be too simple since they pose a one-to-one relationship between genes
and phenotypes, when in fact the same gene can generate different phenotypic traits or a
phenotypic trait can be generated by different groups of genes. (Kumar et al., 2015).

1Source: Boletin Mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGRO-
PECUARIA. Enero 2017 – Num 15. DANE
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2.2 Crop spectral traits

2.2.1 Multispectral image

An image is a table or matrix of pixels organised in rows and columns, where each pixel is a
numerical value known as Digital Number (DN) or radiometric value, representing the average
level of energy coming from the surface of the area covered by the pixel Figure 2.1a, (Ose
et al., 2016).

(a) (b)

Figure 2.1: Multispectral image. (a) pixel inside an image, (b) multispectral image. From Ose
et al. (2016)

A multispectral image is made up of several channels or bands, in which each pixel of
the image contains information captured at different wavelengths (Figure 2.1b).

2.2.2 Radiometric correction

In an image, errors can occur in the Radiometric Values (RV) of the pixels, these errors can
come from several sources: instrumental failures, illumination or reflectance of the captured
objects that affect the accuracy of the quantitative measurements obtained. An example of
the errors found in the images is random noise, which can be produced by electronic interfer-
ence, intermittency in the transmission of the signal, data storage, among others. This type
of noise can be reduced by applying smoothing filters to the image (Jones and Vaughan, 2010;
Kamberova and Bajcsy, 2006).

Similarly, the angle of incidence of light on an object, and its reflectance, affect the
amount of energy that the sensor receives. This makes, for example, two images of the same
area captured at a different time or date look very different even though the spectral con-
ditions in the area have not changed. The effects produced by the angle of incidence of the
energy can be attenuated by dividing the value of the pixel by the cosine of the angle of
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incidence with respect to the normal. Reflectance is generally converted to reflectance at the
surface or reflectance at the satellite by implementing correction algorithms, although this
reflectance does not necessarily accurately represent the true reflectance of the object at the
time of his catch due to additional interactions (Figure 2.2) of the electromagnetic radiation
with the atmosphere (Jones and Vaughan, 2010).

Figure 2.2: Relationship between the radiance received at the sensor LS , the radiance reflected
at the surface LH and the radiance at the top of the atmosphere LTA and that
received at the surface of the object LO. Adapted from Jones and Vaughan (2010)

2.2.3 Geometric correction

In an image there are different types of distortions, caused by factors such as the orientation
of the camera at the time of capture, the variation in flight height, the relief of the capture
area, among others. These distortions can be greater as the greater the distance from the
sensor to the surface to be captured. There are two classes of geometric errors: systematic
and unsystematic, the systematic ones generally come from the capture equipment, they are
predictable and are found in all the images captured by the same sensor. Unsystematic errors
almost always occur in a single image and must be corrected individually by the user (Jones
and Vaughan, 2010).

2.2.4 Optical spectrum

According to directive 2006/25/EC of the European Parliament and Council, the optical spec-
trum is defined as a portion of radiation belonging to the electromagnetic spectrum, comprised
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between 100 nm and 1 mm of wavelength. The optical spectrum is divided into: ultraviolet
radiation, visible radiation and infrared radiation2. Jones and Vaughan (2010) define the op-
tical region as all wavelengths of the electromagnetic spectrum, from ultraviolet to near and
mid-infrared, between 250 nm and 3000 nm. On the other hand, the National Aeronautics
and Space Administration (NASA), places the optical spectrum in the region between 1021

Hz (0.0001 nm approximately) and the 100 GHz (3 mm approximately)3.

For the purposes of this project, when talking about the optical spectrum, reference will
be made to the range between 250 nm and 3000 nm, following what is proposed by Jones and
Vaughan (2010) (Figure 2.3).

Figure 2.3: Optical spectrum and visible spectrum within the electromagnetic spectrum. Ad-
apted from Jones and Vaughan (2010)

2.2.5 Spectral traits

The traits of a plant can be related to the wavelength of the reflected or absorbed energy.
How each plant reflects the energy in each of the wavelengths allows us to differentiate them.
However, in the visible and near infrared wavelengths, one of the major limitations is the
change in lighting conditions at the time of image capture, for which radiometric correction
must be performed on the acquired images. (Sankaran et al., 2015).

The interaction of electromagnetic energy with the leaves of plants depends not only on
the wavelength but on the diversity of structures of the leaves, their chemical properties, age,
thickness, water content, among others, these factors affect the spectral reflectance of the leaf

2DIRECTIVE 2006/25/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 April
2006. On the mı́nimum health and safety requirements regarding the eposure of workers to risks arising
from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article
16(1) of Directive 89/391/EEC)

3Optical Spectrum, https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_

opticalcomm.html, Last Updated: June 26, 2018, Editor: Ashley Campbell.
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(ρλ), its absorbance (αλ) and its spectral transmissivity (τλ) (Jones and Vaughan, 2010).

The reflection of energy in the leaf is a complex phenomenon because only a part of the
energy is reflected from the surface of the leaf, the greater portion of the incident energy pen-
etrates the structures of the leaf where an important portion of the visible energy is absorbed
by chloroplasts but a greater amount of energy in the infrared range is reflected or scattered
towards the leaf surface or in a wide variety of directions between cells and intercellular spaces,
as shown in Figure 2.4 (Jones and Vaughan, 2010).

Figure 2.4: Diagram of the typical cross-section of a dicotyledonous leaf, illustrating the mul-
tiple paths that electromagnetic radiation can follow in its interaction with the
leaf. Adapted from Jones and Vaughan (2010)

Crop improvement requires a new emphasis on phenotyping of specific and well-defined
physiological characteristics, which is why it requires the union of classic techniques of crop
improvement, as well as several levels of phenotyping that allow identifying which genotypes
express the desired traits for a particular crop. This is why high-yield phenotyping systems
can be very useful in this field (Ghanem et al., 2015).

The possibility of making measurements that can be reproduced over time and with dif-
ferent platforms requires standardised processes, which include: calibration of the sensors,
selection of the angles of capture, and selection of the hours of the day in which the obser-
vations should be made. For example, the Figure 2.5 shows the change in the appearance of
corn plants in the same day, when the conditions of temperature and humidity change. In the
images you can see how the change in these variables has a great impact on the appearance
of plants, from having an appearance of vigour in the morning to have an appearance of wilt
in the afternoon (Tardieu et al., 2017).
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(a) (b) (c)

Figure 2.5: Corn plant caught at two different times on the same day. (a) Image captured at
8 am, with a temperature of 11o C and a water potential in the leaf of 0 MPa, (b)
evolution of the temperature and the potential of water in the leaf during the day,
(c) Image of the same area captured at 2 pm with a temperature of 36o C and a
water potential in the leaf of -1.5 MPa, with -1.5 being a value close to the lethal
values for most of the plants. Taken from (Tardieu et al., 2017).

Sugiura et al. (2016) developed a technique to estimate the severity of disease incidence
in potato crops, specifically late blight. This technique was based on the use of RGB aerial
images acquired in the field by means of a UAV, the experimental cultivation studied in this
work consisted of 262 blocks of 0.75 m × 3 m with only one variety and the same type of
treatment. For the study, images were captured during 11 periods: July 17, July 18, July 23,
July 25, July 26, July 27, July 30, August 2, August 3, August 7 and August 15 (Figure 2.6).

The results showed that the estimate of the area affected by the disease from the RGB
aerial images in each period, with respect to the area estimated with field observations, had
a correlation of 0.77, which was acceptable for growers. The estimation method from images
acquired with a UAV turned out to be more efficient than with the conventional visual estim-
ation method.

Vegetation Indices (VIs) are a well-established method for estimating biomass (Bendig
et al., 2015), and can be good indicators of crop disease severity. Normalized Difference Ve-
getation Index (NDVI), Green normalized difference vegetation index (GNDVI), Soil adjusted
vegetation index (SAVI), Enhanced vegetation index (EVI) are considered typical VIs related
to biomass, Photosynthetically Active Radiation (PAR), and Leaf area index (LAI). Those
VIs have been used in precision agriculture tasks, proving to be very useful to detect the
severity level of crop diseases (Zhao et al., 2020).
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Figure 2.6: Progress of the damage produced by the development of late blight, the red zones
show the affected areas detected by digital processing of the aerial images acquired
for the periods: July 17, July 18, July 23, July 25, July 26, July 27, July 30, August
2, August 3, August 7 and August 15. From Sugiura et al. (2016)

2.3 Crop morphological traits

2.3.1 Computer vision

Vision is a task of processing information from images, but it is also a process of representing
that information. In the case of human vision, it is usually unlikely that we will stop to try
to understand these two aspects in depth. However, since the emergence of machines capable
of acquiring and processing images, understanding in depth not only these two aspects, but
many more of the world around us, became necessary (Marr, 1982).

It is common to find in the literature the terms: Computer vision (CV) and Machine
vision (MV) as synonyms. However, Batchelor (2012) states that Machine Vision should be
recognised as a field substantially different from CV. The author suggests that CV, Artificial
Intelligence (AI), Pattern Recognition (PR) and Digital Image Processing (DIP) contribute
together to the field of MV.

Batchelor (2012) define MV as an area that “ ... has to do with the engineering of

13



2 State of the Art

electronic, mechanical, optical and integrated software systems that allow the examination
of objects and materials, human artefacts and manufacturing processes so that defects are
detected and the quality, operational efficiency and safety of processes and products are im-
proved. It is also used in the control of machines used in the manufacturing process ... ”.
The definition specifies that MV requires various areas, such as mechanics, optics, lighting,
sensors, electronics, signal processing, digital image processing, industrial engineering, among
others.

Thus, although MV and CV are in charge of processing images within electronic devices,
in the case of CV it is explicit that the processing of images in this field takes place on a
computer while the MV allows such processing to be carried out on specialised electronic
devices or electro-optical equipment. Similarly, CV has much more general purposes, in con-
trast to MV, whose objectives are focused on the processes carried out within the industrial
sector. The objective of the CV is the identification and interpretation of the objects present
in the images, while that of the MV is not so much the identification as such of an object
but, more specifically, the determination of possible defects in the manufacture of that object
(Batchelor, 2012)

Image segmentation

It is the division of the pixels in an image into groups so that the grouped pixels share cer-
tain characteristics (Batchelor, 2012). There are different methods for image segmentation:
thresholding, Edge based, Region based, clustering based, watershed based, Partial Differ-
ential Equation (PDE), Artificial Neural Network (ANN) based (Kaur and Kaur, 2014) and
graph segmentation methods (Camilus and Govindan, 2012). In this study we used two
segmentation methods, thresholding and graph based segmentation.

• Thresholding methods

Thresholding based methods are widely used in particular in tasks of image binarisation,
where the objective is to separate objects from the background Hamuda et al. (2016b).
These methods divide the image pixels with respect to their intensity level and are used
over images having lighter objects than background. The values of thresholds can be
computed with the help of the peaks of the image histograms, or can be selected in a
manual way. These methods can also be classified into three types: global thresholding,
variable thresholding and multiple thresholding (Kaur and Kaur, 2014).

1. Global thresholding. In this method, a value L is selected and is constant for
the whole image:

s(x, y) =

{
1, if i(x, y) > L

0, if i(x, y) ≤ L
(2.1)

where, i(x, y) is the original image and s(x, y) is the segmented image.

2. Variable thresholding. In this method, the value L can vary through the image.
There are also two types of variable thresholding:
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– Local threshold. The value of L depends on the neighbourhood of x and y.

– Adaptive threshold. The value L is a function of x and y.

3. Multiple Thresholding. In this method, there are multiple threshold values like
L0 and L1. By using these output image can be computed as:

s(x, y) =


m, if i(x, y) > L1

n, if i(x, y) ≤ L1

o, if i(x, y) ≤ L0

(2.2)

• Graph based segmentation

Graph-based segmentation methods treats an image as a graph in which vertices are
composed of pixels. Each edge has a weight determined, in most cases, based on the
vertices it relates.

If we consider an image as a graph G, the idea is to find a set of sub-graphs {SG1, SG2, ...,
SGn} from G such that for all k ∈ {1, 2, ..., n},∀i, j and i 6= j, wi, wj ∈ SGk with walks
between wi and wj (Camilus and Govindan, 2012).

Felzenszwalb and Huttenlocher (2004) method is an efficient graph-based segmentation
method that uses Minimum Spanning Trees (MST), which is a subgraph that links all
the vertices of the graph and contains only a single path between two vertices. The
method assumes that edges between vertices in the same segment have low weights
than edges between vertices in different segments.

Mathematical morphology

Mathematical morphology comprises the study of geometric structures present in images. The
analysis of the geometric structures present in the images is carried out through the use of
set theory, in which the main operations are erosion and dilation (Conci et al., 2018).

A dilation of a binary image A = {a0, a1, a2, ..., an}, containing n foreground pixels, by a
structuring element B is given by Equation 2.3. Figure 2.7d shows an example of the dilation
of an image A by a structuring element B (Figure 2.7b).

DB(A) =
⋃
b∈B

Ab (2.3)

Erosion of a binary image is the opposite operation to dilation, defined by Equation 2.4.
Figure 2.7c shows an example of the dilation of an image A by the same structuring element
B (Figure 2.7b)

EB(A) =
⋂
b∈B

A−b (2.4)

From a combination of erosion and dilation it is possible to generate operations such as
opening (Figure 2.7e), and closing (Figure 2.7f).
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2.3.2 Morphological traits

The study of the geometric features of plants has been useful to find differences between plants
grown in different environments. Mishra et al. (2012), for example, carried out the systematic
comparison of the leaves of Arabidopsis thaliana plants, which have been cultivated both in
the laboratory and under field conditions, finding that the leaves of the plants that grew in
the laboratory, under different conditions, they shared much longer leaves than those grown
in the field.

Different authors have studied phenotypic traits based on the morphology of plants in the
laboratory, such as Leaf Length (LL), Leaf Width (LW)), Leaf Width-Lenght Ratio (LWLR),
Total Leaf Expansion (TLF), NLeaf Number (LN), Plant Area (PA), Leaf Area (LA), Plant
Height (PH), Leaf Bounding Box (LBB) and Plant Bounding Box (PBB). Mishra et al. (2012)
studied the phenotypic plasticity of Arabidopsis thaliana under different growth regimes in
climate chambers and in field conditions. Their results showed that plants grown indoors have
enlarged leaves, different leaf shapes and longer petioles, also, they found that the photoperiod
is the main determinant of leaf size and shape.

White et al. (2012) focused on the simultaneous use of proximal sensors to record spectral
reflectance, canopy temperature, and plant architecture to assess traits, such as adaptations to
water deficits or heat stress during a single diurnal cycle and quantifying stress recovery. Their
work allowed defining key criteria, experimental approaches, equipment and data analysis tools
required for robust high-throughput field-based phenotyping.

Granier and Vile (2014) review different studies and highlight the latest advances in plant
multi-trait phenotyping and discuss future needs to ensure the best use of quantitative data in
plant phenotyping. They highlight that it is necessary to take into account environmental and
temporal variations of the phenotype and its integration at different levels, such as subcellular,
cellular, tissue, organ or whole-plant level.

An et al. (2016) introduce an automated high-throughput phenotyping workflow using
low-cost imaging systems which they implemented in laboratory and in field conditions to
study the same phenotypes. They found that young leaves mainly grow by elongation, al-
though, in later developmental stages, total leaf expansion slows relative to leaf-width growth
increases.

Minervini et al. (2016) presents a collection of datasets of raw and labelled images of
rosette plants and define a set of computer vision and classification tasks for analysing their
data. Also, they show exemplary use cases and results on some tasks carried on with parts
of these data. They conclude that computer vision and machine learning are ideally suited to
help in plant phenotyping tasks.

Pradal et al. (2017) presents an infrastructure for plant phenotyping capable of measure
traits associated to the plants’ adaptation to climate change. Those traits include the leaf
appearance, duration of phenological phases, plant grow rate in terms of area and volume,
plant organ expansion and plant morphology.

Hu et al. (2018) studied a new method for plant height estimation in a sorghum breeding
trial. Their work integrated an RGB camera and an UAV to capture images that were
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processed to generate Digital Surface Models (DSMs). Three methods were used to process
those DSMs to estimate the height of the plants. Their experimental results showed that the
proposed method performed similar to the manual measurements, allowing to estimate plant
height accurately.

Recently, Li et al. (2019) carried out a study in which they estimated the emergence of
plants in a potato crop from RGB aerial images captured with a UAV. In this work, the plants
in the study area were separated from the soil by applying a combined segmentation method
using Excess Green Index (Woebbecke et al., 1995) and the Otsu’s threshold method (Otsu,
1979). In this study were also calculated 6 morphological traits from each plant and then
classified using RF to estimate the number of plants in emergence. To do this, they analysed
3 field experimental crops, and they found that UAV-based RGB images allowed to estimate
the number of plants in emergence stage with an r2 of 0.96.

Table Table 2.1 shows a summary of the morphological traits worked in these studies.
Except for Mishra et al. (2012), the other studies have been based on the use of high resolution
images.

Table 2.1: Morphological traits reported in literature.
Rasgos Morfológicos Planta Autor

LL LW LWLR LA LN TLF PA PH PP LBB PBB LPBB LWRB CA SO

• • • • • Arabidopsis thaliana Mishra et al. (2012)
• • Solanum tuberosum White et al. (2012)

• • • Arabidopsis thaliana Granier and Vile (2014)
• • • Arabidopsis thaliana An et al. (2016)

• • Arabidopsis thaliana Minervini et al. (2016)
• • No menciona Pradal et al. (2017)

• Sorghum Hu et al. (2018)
• • • • • • • • Solanum tuberosum Li et al. (2019)

LL: Leaf length PP: Plant area LWRB: Length-width bounding box ratio
LW: Leaf width PA: Plant height CA: Area of the convex hull
LWLR: Leaf width-length ratio PH: Plant perimeter SO: Convex hull area - canopy area ratio
LA: Leaf area LBB: Leaf bonding box
LN: Leaf number PBB: Plant bounding box
TLF: Total leaf area LPBB: Plant bounding box long side
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Figure 2.7: Some basic morphological operations.
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3.1 Study area

The study area is a 1920 sq.m. potato field located in Subachoque, Colombia (Figure 3.1).
This field is part of an experimental plot designed to evaluate the potato Diacol capiro variety
response to different nutrient treatments (Table 3.1). As the weather conditions favoured the
appearance of LB disease in several plots, the project had the opportunity to monitor the crop
disease development. The experimental plot was inspected every 15 days during the entire
crop life span (i.e. 120 days from planting to maturity).

Figure 3.1: Location of the study area, a potato experimental plot in Subachoque, Cund-
inamarca (Colombia): (a) Municipalities of Colombia (black colour) and main
rivers (blue colour); (b) study area (red colour), municipalities (light grey colour),
Bogota D.C. capital city of Colombia (dark grey colour) and Subachoque muni-
cipality (blue colour area). (c) The experimental potato plot area is enclosed by
the polygon highlighted in red colour.
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Table 3.1: Treatments used in the experimental potato crop.

Treatment N P K Total Kg/Ha

T1 150 200 150 840.7
T2 150 200 300 1090.7
T3 250 200 150 1058.1
T4 250 200 300 1308.1
T5* 0 0 0 0
T6 200-309-267-86(CaO)-43(MgO) 1800

3.2 Data acquisition

Eight-minute UAV flights were performed over the potato field 72 days after planting and 86
days after planting, which corresponds to the time when blackish/brown lesions with white
sporulation where clearly visible on leaves and stems of the experimental crop (Schumann
et al., 2000). Flight altitude over terrain was 40 m above ground level. A MicaSense RedEdge
camera was setup on a Tarot 680PRO hexacopter to obtain aerial images with approximately
4 cm pixel size.

Figure 3.2 shows the distribution of the experimental blocks and treatments of the ex-
perimental potato crop. T5 corresponds to the control treatment blocks and T6 corresponds
to the farmer’s usual treatment. Overall the control treatment blocks were in a growth stage
below the average growth stage of the rest of the experimental blocks.

Figure 3.2: Distribution of experimental plots and treatments. The first number indicates the
block number and “TN” indicates the treatment, where N = 1,2,... 6.

High resolution multispectral images were acquired at 40 m altitude above the ground
surface at 11:00 am local time (GMT-5). Photogrammetric flight mission, shown in Fig-
ure 3.3a, was carried on according to techniques described by Pepe et al. (2018). Photographs
overlap followed UAV photogrammetric standards suggested by Eisenbeiß et al. (2009), i.e.
mean forward overlap was 80%, and mean sidelap was 60%. MicaSense RedEdge is a non-
metric digital sensor with 4.8 mm × 3.6 mm size and 5.4 mm focal length Micasense (2018).
Each multispectral image acquired five bands as described in Table 3.2. In this work, camera
bands 4 and 5 have been reset according to the following order: Blue (B); Green (G); Red
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(R); Red edge (RE) and Near infrared (NIR).

Table 3.2: Micasense RedEdge camera band specifications.

Band Name Centre Wavelength (nm) Bandwidth (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near infrared 840 40
5 Rededge 717 10

Georeferencing was achieved by positioning eight ground control points (GCPs) through-
out the potato experimental field. The points were signalised with circle-shaped targets.
Raw GNSS measurements of GCPs were collected and stored using a Leica GPS System 500
GNSS receiver for post-mission processing. This receiver allows to calculate baselines with a
precision of up to 5-10 mm + 1ppm.

Markers comprised a yellow-coloured circle (0.10 m diameter) inside a black-coloured
circle (0.30 m diameter). Figure 3.3(a) shows the flight lines for each mission performed over
the study area. Flight path is defined by a series of way-points depicted as white markers.
After finishing the photogrammetric mission, the UAV heads to its home point (depicted
as the eleven white marker close to the lower left corner). Figure 3.3(c) illustrates markers
design, which makes them easy for GCP identification from aerial images. Interested readers
can observe photographs from fieldwork on the study area on this link: https://github.

com/jorlrodriguezg/jorlrodriguezg.github.io/tree/master/Images/field

3.3 Methods

In this work, we used a five-stage method for assessment of LB:

(i) data acquisition;

(ii) data processing for converting raw images to an orthorectified mosaic representing sur-
face reflectance;

(iii) data analysis for background removal and crop classification into healthy and diseased
categories;

(iv) model training and supervised classification stage; and

(v) use of trained models to classify a new dataset.

Figure 3.4 illustrates the workflow conducted at each stage. The following sections provide
a detailed description of every step.

Field assessment of late blight

Experimental crop area consisted of an array of 18 blocks of 12 m × 8 m inside a field of 77
m × 24 m (Figure 3.6). Each block had 9 rows arranged along the long side of the field with
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(a)

(b) (c)

Figure 3.3: Data capture: (a) Flight path (yellow lines), GCPs (red markers) and way points
(white markers). The home point is identified by way point eleven. (b) UAV used
to acquire the multispectral images. (c) Marker used for signaling GCPs.

an area of 216 sq.m.. The space between rows was 1m and each row contained approximately
30 seed tubers of the same variety.

Disease severity was evaluated as the percentage of foliage area that was infected, on a
scale from 0% to 100%, following the standard procedure described by Forbes et al. (2014),
where researchers visually estimate the percentage of total leaf area that is affected by the
disease by comparing the green and non-green portions, assuming late blight is the only or
dominant foliage disease. Although 44 zones were evaluated at plant level to be used as
training zones for the ML algorithms, severity of LB was evaluated at block level as suggested
by Forbes et al. (2014) due to the high number of plants in each block.

Different LB severity levels were observed in the blocks of the experimental plot. Four
infection levels were assessed following the severity characteristics used by Bock et al. (2010).
Figure 3.5 shows example plants from blocks at different levels of infection. Level 1 (LB1),
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Figure 3.4: Workflow of the research conducted for assessing LB from UAV-based imagery.

trace - 25% leaf area infected (Figure 3.5a); Level 2 (LB2), 26 - 50% leaf area infected
(Figure 3.5b); Level 3 (LB3), 51 - 75% leaf area infected (Figure 3.5c); Level 4 (LB4), > 75%
leaf area infected (Figure 3.5d). A Level 0 (LB0), indicates an apparently infection-free block.
Blocks in the potato experimental crop ranged between LB1 and LB4 for the two datasets.

3.4 Data pre-processing

The data pre-processing of the proposed method consist of two phases, (i) radiometric cor-
rection; and (ii) photogrammetric processing.

3.4.1 Radiometric correction

Radiometric variations of the same object can occur in an image. These variations can come
from various sources: instrumental faults, lighting changes caused by weather conditions or
reflectance of captured objects that affects the accuracy of the obtained quantitative meas-
urements (Jones and Vaughan, 2010; Kamberova and Bajcsy, 2006).

Weather conditions during the photogrammetric missions were highly unstable and small
cumulus were predominant in the sky. Moreover, winds of approximately 6 m/s created
conditions for rolling cloud cover, making illuminance suddenly change during the flights. As
a result, the study area illumination was heterogeneous and radiation received at the sensor
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Figure 3.5: Plants belonging to blocks evaluated as LB1, LB2, LB3 and LB4. (a) Potato
leaves with LB at infection level 1; (b) Potato leaves with LB at infection level 2;
(c) Potato leaves with LB at infection level 3; and (d) Potato leaves with LB at
infection level 4.

changed almost at each point of image acquisition.

According to Mamaghani and Salvaggio (2019), radiometric correction was achieved by
using parameters from the Micasense RedEdge multispectral camera and its Digital Light
Sensor (DLS). The camera sensor measures spectral radiance coming from the field surface,
while DLS measures down-welling spectral irradiance.

Spectral radiance was obtained by using Equation 3.1:

Li = Vi(x, y)
a1,i
gi

pi(x, y)− pBLi

te,i + a2,iy − a3,ite,iy
, (3.1)

where p is the normalised raw pixel value, obtained by division of the raw pixel by 2N ,
where N is the number of bits in the image; pBL is the normalised black level value; a1,i, a2,i,
a3,i are the radiometric calibration coefficients; Vi(x, y) is the vignette polynomial function for
pixel location (x, y); gi is the sensor gain setting; te,i is the image exposure time; x, y are the
pixel column and row number, respectively; and Li is the spectral radiance in W/m2/sr/nm.

The vignette map, is represented as

V (x, y) =
I(x, y)

ki
(3.2)

where I(x, y) is the intensity pixel value at (x, y) and ki is a correction factor
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ki = 1 + k0,iri + k1,ir
2
i + k2,ir

3
i + k3,ir

4
i + k4,ir

5
i + k5,ir

6
i (3.3)

where k0,i to k5,i are polynomial correction coefficients and ri is the distance of the pixel
to the vignette centres.

ri =
√

(x− cx,i)2 + (y − cy,i)2 (3.4)

where cx,i and cy,i represent the vignette centre and i denotes the spectral band number.

Surface reflectance was obtained by using the At-Altitude Radiance Ratio (AARR) tech-
nique, which uses information stored by the DLS

ρi =
Ls,i
DLSi

(3.5)

DLSi =
E′solar,i
π

cos(σ′)τi + L↓solar,i (3.6)

where DLSi is the downwelling light sensor radiance recorded by the MicaSense RedEdge;
ρi is the reflectance factor; Ls,i is the band effective spectral irradiance; E′solar,i is the spectral
exoatmospheric solar irradiance; σ is the solar zenith angle; τi is the spectral transmission
from space to the UAV; L↓solar,i is the solar scattered down-welling sky radiance propagating
towards the UAV and i denotes the spectral band number.

3.4.2 Photogrammetric processing

Orthomosaics for every date were obtained performing an automated procedure described by
Küng et al. (2011) which implements the following steps:

• Determination of characteristic points in each image. Then, these points go through
a matching process to find tie points between images and calculate the orientation
parameters of the camera at the time of capture.

• Point cloud densification based on estimated image orientation parameters.

• Generation of a mesh representing the surface of the surveyed area.

• Generation of the Digital Surface Model (DSM) of the surveyed area.

• Orthorectification and mosaicking of the multispectral images to generate an orthophoto
of the surveyed area.

3.5 Dataset preparation

The orthophoto in the study area contains reflectance values coming from potato plants, bare
soil and weeds present in the study area, as well as small elements such as pebbles and stones.
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At this stage we analyse the influence of these elements on images and histograms, in order to
be able to remove them from the image since, for the purpose of the study, elements different
than potato plants represent noise that affects the results.

3.5.1 Subset Generation

The generated orthophoto covered an area of 3.2 Ha, which includes the experimental plot and
a bigger area where a different variety of potato was located. This variety is a yellow potato,
which means the tuber root colour is yellow. In contrast, the potato from the experimental
plot was from one variety of white potato. The interest area was clipped using a reference
polygon (Figure 3.1).

Experimental crop area consisted of an array of 18 blocks of 12 m × 8 m inside a field
of 77 m × 24 m (Figure 3.6). Each block had 9 rows arranged along the long side of the
field with an area of 216 sq.m.. The space between rows was 1m and each row contained
approximately 30 seed tubers of the same variety.

3.6 Data analysis

3.6.1 Background Removal

Background removal is intended for deleting information corresponding to soil surface, which
is considered irrelevant for the assessment and detection of LB in the experimental plot. This
step aims to create a multispectral image with vegetative structures only. Those vegetative
structures correspond to potato leaves, stems and weed. Spectral responses of the multis-
pectral images showed clear separation between bare soil and other objects (Healthy potato
plants, LB potato plants and weeds, Figure 3.7g) in the NIR band. However, for the dataset
B separation of weeds from other objects (Healthy potato plants and LB potato plants) in
the same band was not clear, therefore, manual adjustment of the threshold was necessary to
improve the separation of potato plants from weeds.

Thresholding

A thresholding technique reduces a grey-level image into an image where objects and back-
ground are represented by two levels: a binary image (Glasbey, 1993). Due to the difference
in reflectance between the soil and the potato plants in the NIR band (Figure 3.7g), this band
was used to separate the potato plants from the bare soil.

The first step was to analyse multispectral bands of the orthomosaics by plotting their
histograms. The histograms analysed were classified into two groups: those belonging to
images without presence of weeds in the crop and those belonging to images in which the
presence of weeds was intermediate to high. Figure 3.7 shows the histogram for the NIR band
in the multispectral orthomosaic for the two categories under study, as well as ground reference
images of the two categories. G, RE and NIR bands have right-skewed bimodal histograms
in the first category. The category with weeds presence had right-skewed histogram without
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(a)

(b)

Figure 3.6: Layout of the experimental crop; (a) dataset A; (b) dataset B. The yellow lines
indicate the division of the field into 18 experimental blocks.

a clear valley (Figure 3.7f). The method used to separate vegetation from bare soil was to
apply Otsu’s thresholding algorithm (Otsu, 1979) to find an optimal value to be used for
segmentation and, then adjust the threshold value, if necessary, to improve separation of the
potato plants from bare soil as well as separation from weeds. This step required threshold
adjustment to update segmentation limit for dataset B where weeds had higher density. A
similar method was used by Li et al. (2019) to extract potato plants from images captured
with an UAV.

Image masking

Figure 3.8a shows the near infrared image before the background removing, at this stage there
is presence of soil and weeds. To remove background from original multispectral image we
multiply each band for the binary image (Figure 3.8b) obtained in the thresholding step using
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.7: Ground and aerial view of the potato experimental crop, histograms for the NIR
band and spectral responses of five objects identified in the orthophoto. (a) ground
reference for images without weeds; (b) aerial image reference for images without
weeds; (c) Near infrared histogram for images without weeds; (h) ground reference
for weeds presence; (i) aerial image reference for weeds presence; (f) Near infrared
histogram for images with weeds presence; (g) reflectance values of five objects
in the orthophoto (Healthy potato plants, LB potato plants, weeds, bare soil and
ground shade); and (h) the five objects of interest in the orthophoto.
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Equation 3.7.

Ci(x, y) = Ai(x, y)B(x, y), (3.7)

where Ci(x, y) is the resulting pixel value at position (x, y) for i band without background,
Ai(x, y) is the original pixel value at position (x, y) for i band of the multispectral image and
B(x, y) is the binary image pixel value at position (x, y) created in the thresholding process.

Figure 3.8c illustrates how looks the infrared band from the multispectral image after
the masking step. It can be seen how the bare soil surface does not appear any more in this
image.

(a) (b) (c)

Figure 3.8: Images from background removal step: (a) Original band; (b) Binary image used
as mask for ground removal; (c) band without bare soil and weeds.

3.6.2 Spectral traits

We used a three-stage method for assessment of LB using spectral traits:

(i) data processing for VIs calculation;

(ii) data analysis for model training and supervised classification stage;

(iii) use of trained models to classify a new dataset.

Figure 3.9 illustrates the workflow conducted at each stage. Eight broadband VIs where
derived from the multispectral images Table 3.3. SIX VIs, including SAVI, NDVI, GNDVI,
EVI, Two-band enhanced vegetation index (EVI2) and LAI were based on visible and NIR re-
flectance, and the other two, VIs Red-edge normalized difference vegetation index (NDVIRE)
and Red-edge Chlorophyll index (CIRE), were based on the red edge and NIR reflectance.

Traits importance for variable selection was calculated using RF. Variable selection using
RF has been used before in general classification tasks Speiser et al. (2019), to improve the land
cover classification in urbanized coastal areas, and is widely used in pattern recognition Zhang
and Yang (2020) . There are two main variable selection objectives: (i) to find important
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variables highly related to the response variable for interpretation purposes; (ii) to find a
few variables sufficient to a very good explanatory prediction of the response variable Genuer
et al. (2010). In this study we carried on variable selection for the second reason.

Figure 3.9: Workflow of the method conducted for assessing LB from UAV-based spectral traits.

Table 3.3: Vegetation indices selected in this study; NIR, RE, R and G represent the surface
reflectance of near infrared, red-edge, red and green bands of MicaSense multispec-
tral image, respectively.

Index Name Formula References

SAVI Soil adjusted vegetation index NIR−R
(NIR+R+L)(1 + L) Huete (1988)

EVI2 Two-band enhanced vegetation index 2.5 ∗ NIR−R
(NIR+2.4R+1) Jiang et al. (2008)

LAI Leaf area index −( 1k )ln(a(1− bEV I2)) Liu et al. (2012)

EVI Enhanced vegetation index 2.5 ∗ NIR−R
(NIR+6R−7.5B+1) Huete et al. (2002)

GNDVI Green normalized difference vegetation index NIR−G
NIR+G Sankaran et al. (2018)

NDVI Normalized difference vegetation index NIR−R
NIR+R Rouse J.˜W. et al. (1974)

NDV IRE Red-edge normalized difference vegetation index NIR−RE
NIR+RE Gitelson and Merzlyak (1994)

CIRE Chlorophyll index Red-edge NIR
RE − 1 Gitelson et al. (2003)
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(a) SAVI (b) EVI2

(c) LAI (d) EVI

(e) GNDVI (f) NDVI

(g) NDVIRE (h) CIRE

Figure 3.10: Vegetation indices for Dataset A.

Figure 3.10 and Figure 3.11 show the VIs derived for each dataset. It is possible to see
huge differences in the red edge based VIs for the two periods under study.

3.6.3 Morphological traits

We used a three-stage method for assessing of LB using morphological traits:

(i) data processing for morphological traits extraction;

(ii) data analysis for model training and supervised classification stage;

(iii) use of trained models to classify a new dataset.

Figure 3.12 illustrates the workflow conducted at each stage.
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(a) SAVI (b) EVI2

(c) LAI (d) EVI

(e) GNDVI (f) NDVI

(g) NDVIRE (h) CIRE

Figure 3.11: Vegetation indices for Dataset B.

Morphological traits extraction

In this work, two different segmentation methods were used, the first method was the Otsu
method, used with the objective of removing the soil (bottom) in the orthomosaics. The
second method was Felzenszwalb and Huttenlocher (2004) method, used with the aim of
performing an over-segmentation (generating superpixels from the orthomosaic from which
the background was previously removed), so that the regions found by this last method could
be used to extract morphological the features.

To be able to derive morphological traits from the multispectral images, first it was neces-
sary to create an RGB composited image, this image composition was created by enhancing
the segmented bands NIR, Red and Green of the mutispectral image. The image enhancing
consisted of an stretch to minimum and maximun reflectance values of each band. The RGB
composite was then oversegmented using Felzenswalb method. This method measures the
evidence for a boundary between two regions by comparing two quantities: one based on in-
tensity differences across the boundary, and the other based on intensity differences between
neighbouring pixels within each region.
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Figure 3.12: Workflow conducted for assessing LB from UAV-based morphological traits.

Although most of the studies presented in the chapter 2 were based on the use of images
to derive morphological traits, it should be noted that, with the exception to the study carried
on by Li et al. (2019), those studies were based on very high-resolution images captured with
proximal sensors at very short distances that allowed for the extraction of features at the leaf
level. In this study, the spatial resolution only allowed to work at the plant level, when it was
possible to separate individual plants and at the row-level where the complex overlapping of
the plants made it difficult to separate them.

We used the Felzenszwalb and Huttenlocher (2004) segmentation method available in
scikit-image libraries Van Der Walt et al. (2014) to process the image obtained after the
background removing step. This method produces an oversegmentation, also called super-
pixels, of a multi-channel image using a fast, minimum spanning tree based clustering on
the image grid. The function has a parameter called scale that sets an observation level.
Higher scale means less and larger segments. There is also a parameter called sigma that
is the diameter of a Gaussian kernel, used for smoothing the image prior to segmentation.
Segment size within an image can vary greatly depending on local contrast. For RGB images,
the algorithm computes a separate segmentation for each channel and then combines these.
The combined segmentation is the intersection of the separate segmentations on the colour
channels (Figure 3.13).
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(a) (b)

Figure 3.13: Oversegmentation of datasets A and B using Felzenszwalb and Huttenlocher
(2004) method. (a) dataset A; and (b) dataset B. Blue polygons represent the
boundaries of the segments (superpixels) found for each dataset. These super-
pixels then serve as a basis for the extraction of morphological traits.

Plant area

The amount of space enclosed by the plant boundary (Figure 3.14b) calculated using the
Equation 3.8.

PA =

N∑
i

Pig
2 (3.8)

where Pi is a pixel belonging to the plant region, N is the number of pixels in the plant
region and g is the image Ground Sample Distance (GSD).

Plant perimeter

Length of the plant boundary (red polygon in Figure 3.14a) which approximates the con-
tour as a line through the centres of border pixels using a 4-connectivity (orange polygon in
Figure 3.14c).

Plant area-perimeter ratio

The relation between the plant area and the plant perimeter in pixels.

APR =
PA

PP
(3.9)
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Convex hull area

Number of pixels of convex hull image, which is the smallest convex polygon that encloses the
region (Figure 3.14d).

Plant Solidity

Plant area over area of the convex hull area.

PS =
PA

CHA
(3.10)

Plant Orientation

Angle between the 0th axis (rows) and the major axis of the ellipse that has the same second
moments as the region, ranging from -pi/2 to pi/2 counter-clockwise.

Plant Major axis length

The length of the major axis of the ellipse that has the same normalised second central
moments as the region (orange line in Figure 3.14f).

Plant Minor axis length

The length of the minor axis of the ellipse that has the same normalised second central
moments as the region (orange line in Figure 3.14g).

Plant Minor axis length / Major axis length ratio

The relation between the minor axis length and the major axis length of the ellipse that has
the same normalised second central moments as the region.

Plant Bounding box area

Area of the bounding box of the plant region calculated using Equation 3.11.

PBA =

N∑
i

M∑
j

Pi,jg
2 (3.11)

where Pi,j is a pixel belonging to the plant bounding box region, N is the number of rows
in the plant bounding box, M is the number of columns in the plant bounding box, and g is
the image GSD.
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Plant Eccentricity

Eccentricity of the ellipse that has the same second-moments as the region. The eccentricity
is the ratio of the focal distance (distance between focal points) over the major axis length.
The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle.

Plant Equivalent diameter

It is the diameter of the circle which have the same area of the plant region (orange line in
Figure 3.14h).

Plant extent

The plant area over bounding box area.

(a) Plant boundary (b) Plant area (c) Plant perimeter (d) Convex hull

(e) Bounding box (f) Major axis length (g) Minor axis length (h) Equivalent
diameter

Figure 3.14: Main plant morphological traits. (a) plant perimeter (red polygon); (b) convex
hull (yellow polygon); (c) Bounding box (yellow polygon); (d) Major axis length
(orange line); (e) minor axis length (orange line); and (f) equivalent diameter
(orange line).

Figure 3.15 shows the different stages necessary to derive what we called synthetic bands
of morphological traits. Once the oversegmentation of the RGB image was carried out, the
resulting image contains superpixels (Figure 3.15a), for each one of those superpixels we cal-
culated the traits presented before (i.e. area, perimeter), the result is a dictionary containing
the traits for each object (Figure 3.15c). The next step was to create new images and to assign
for each pixel of an object the value of its morphological trait (Figure 3.15d), then, each new
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image became a morphological band (Figure 3.15e) and was stacked in a n-dimensional array.
Then, traits importance for variable selection was calculated using RF similar to the method
used for spectral traits.

Figure 3.15: Construction of morphological traits bands. (a) objects image; (b) object rep-
resenting a plant; (c) morphological plant traits table; (d) assignment of table
features to each pixel; and (e) stacking of morphological bands.

Figure 3.16 and Figure 3.17 show the morphological bands derived from the multispectral
bands by using Felzenszwalb and Huttenlocher (2004) method.

3.6.4 Combined spectral and morphological traits

The major challenge when combining spectral and morphological traits is the differences
between the nature of spectral and morphological data. Spectral bands and vegetation indices
are data based on pixels while morphological bands are region-based data. However, we
tackled down this issue by creating synthetic morphological bands. This bands had the same
spatial resolution as the spectral bands, so, stacking into the same n-dimensional array was
possible. The resulting array had 20 dimensions, 8 belonging to the VIs and 12 belonging to
the morphological traits. Figure 3.18 shows the conceptual approach at the object level and
band level of the adopted strategy for combining spectral and morphological traits.

Spatial and spectral information have been combined before for dimension reduction Xu
et al. (2019). This combination is based on the idea that spatial and spectral information can
be taken into account through the spectral constraint of the superpixel regions. Superpixel
segmentation is used here to profit from the spatial neighbourhood structure as it can segment
images adaptively, matching the spatial characteristics.

3.6.5 Training data

The training zones, shown in Figure 3.19e, were vectorized from the information collected in
the field by visual inspection of the experimental crop. Zones corresponding to diseased a and
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(a) Area (b) Perimeter

(c) Area/perimeter ratio (d) Solidity

(e) Orientation (f) Major axis length

(g) Minor axis length (h) Minor/Major axes ratio

(i) Bounding box area (j) Eccentricity

(k) Equivalent diameter (l) Extent

Figure 3.16: Morphological traits dataset A.
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(a) Area (b) Perimeter

(c) Area/perimeter ratio (d) Solidity

(e) Orientation (f) Major axis length

(g) Minor axis length (h) Minor/Major axes ratio

(i) Bounding box area (j) Eccentricity

(k) Equivalent diameter (l) Extent

Figure 3.17: Morphological traits dataset B.
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Figure 3.18: Representation of combined spectral and morphological traits and bands. (a)
object level spectral and morphological traits; (b) n-dimensional array stacking
spectral and morphological traits bands.

healthy plants were identified in the field, and then the pixels belonging to those regions were
identified in the multispectral images. This process required image-enhancing techniques to
improve visualisation of the regions of interest and further confirmation based on the mean
spectral responses of those zones in the images. Figure 3.19a and Figure 3.19b show the
box-plot for each multispectral band and the mean spectral responses for the training zones.
It can be seen that regions belonging to diseased plants share similar spectral responses in the
orthophoto with a mean reflectance in the red edge and the near infrared lower than those
regions were healthy potato plants were identified. Although individual spectral responses of
healthy potato plants and LB potato plants overlapped at certain point, averaged spectral
responses of diseased and healthy plants responses showed a clear separation.

Figure 3.19c and Figure 3.19d show ground-based images of two plants, identified in
the field as a diseased and a healthy plant, respectively. In total 44 polygons were used to
build the models: 23 for plants with evidence of LB and 21 for healthy plants. The reference
polygons were then rasterized and randomly divided into two sets, a training set made up of
75% of the data and a test set made up of the remaining 25% of the data. Performance of the
classifiers during the training was evaluated through the Receiver Operating Characteristic
(ROC) curves (Omar and Ivrissimtzis, 2019). The area under the ROC curve (AUC), is a
common metric that represents the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative instance (Fawcett, 2006).

3.6.6 Classification methods

Four classification methods where tested: Random Forest (RF), Gradient Boosting Classifier
(GBC), Support Vector Classifier (SVC), LSVC and K-Nearest Neighbors Classifier (KNN).
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Figure 3.19: Spectral responses of healthy and diseased potato plants belonging to the training
zones based on field visual inspection of the experimental crop. (a) Box-plot dis-
playing the distribution of healthy and LB plants spectral responses; (b) spectral
responses of the healthy and LB plants for the five bands of the Micasense cam-
era; (c) potato plant with LB and its orthophoto view; (d) healthy potato plant
and its orthophoto view; and (e) training zones based on field visual inspection
of the experimental crop. LB zones are shown in red colour and healthy plants
in blue colour.
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Random forest

RF is a machine learning algorithm which combines hundreds of decision trees where each tree
rely upon the values of a random vector sampled independently (Breiman, 2001). Prediction
is made by aggregating the predictions of the ensemble by majority vote for classification
or averaging for regression. RF does not require values to follow a particular statistical
distribution as it is a non-parametrical method (Puissant et al., 2014; Rodriguez-Galiano
et al., 2012).

The RF trained model was based on 500 trees, the criterion for measure the quality of a
split was Gini impurity, the max depth of the trees was 4, the minimum number of samples
required to split an internal node was 2, the minimum number of samples required to be at
a leaf node was 2, the maximum number of features to consider when looking for the best
split was set as the square root of the number of features. Bootstrap samples were used when
building trees instead of the whole dataset, out-of-bag samples were used to estimate the
generalisation accuracy. Weights for each class were not used to train the model. AUC of the
RF model was 0.92.

Gradient Boosting Classifier

GBC is a decision trees-based classification method that has been used in image classification
for which it is not required to assume any distribution of the data to be classified, although
it is a highly sensitive method to training data that is incorrectly labelled or that presents
ambiguity between classes and to unbalanced datasets which can affect the classification
results (Lawrence et al., 2004).

The trained model obtained from GBC was based on 75% random samples from the entire
training dataset, the learning rate was 0.8, 500 boosting stages were performed, sub-sample
was set to 1, the minimum number of samples required to split an internal node was 4, the
minimum number of samples required to be at a leaf node was 1, maximum depth of the
individual regression estimators was 4. The AUC of the GBC model was 0.91.

C-Support Vector Classification

Support Vector Classification (SVC) is a classification method created initially for binary clas-
sification but has been extended to multi-class problems (Hsu and Lin, 2002). For multi-class
classifications, several binary classifiers must be built, which makes its execution demanding
in terms of processing capacity, making it more suitable for small datasets (Hsu and Lin, 2002;
Chang and Lin, 2011).

The main parameters of the trained model obtained from SVC were set up as follows:
regularisation parameter of 1, the Radial Basis Function (RBF) kernel was used, the gamma
value was set to 1

nσ2
n

, where σ2n is the variance of the training input samples and n is the

number of features. The AUC of the SVC model was 0.91.
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Linear SVC

In this method, a random number generator is used to select characteristics when fitting
the model. As a result, it is possible to get slightly different results for the same dataset
(Varoquaux et al., 2015). Unlike SVC, LSVC does not use a kernel for model training, a
feature that allows training with much larger data sets using a linear classifier (Fan et al.,
2008).

The main parameters of the trained model obtained from LSVC were set up as follows:
regularisation parameter of 1, tolerance for stopping criteria of 1e-4, multi-class strategy was
one-vs-rest (ovr), so if the training data contain more than two classes the training method is
one class versus the rest of classes. The maximum number of iterations was 1000. The AUC
of the LSVC model was 0.92.

K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a method of data classification that can be supervised or
unsupervised, unlike RF, GBC, SVC and LSVC, it belongs to the group of instance-based
classifiers, that is, KNN does not create a model from training data but stores instances of
those data and classifies the whole dataset by majority vote of the nearest neighbours of
each point (Lee et al., 2012; Varoquaux et al., 2015). The KNN algorithm used implements
two data structures to handle training data and compute neighbours, BallTree (Omohundro,
1989) and KDTree (Moore, 1991). It is also possible to compute neighbours by brute-force
(Varoquaux et al., 2015).

The main parameters of the trained model obtained from KNN were set up as follows:
number of neighbours of 5, all points in each neighbourhood were weighted equally, the most
appropriate KNN algorithm (BallTree, KDTree or brute-force) for the training was selected
based on the values passed to fit method, the leaf size passed to either BallTree or KDTree
algorithms in case of being selected was 30, the lower parameter for the Minkowski metric was
2 and the distance metric to use for the tree was minkowski. The AUC of the KNN model
was 0.91.

3.6.7 Classification of dataset B using pre-trained models

The RF, GBC, SVC, LSVC and KNN models trained with dataset A were stored for use in
dataset B. Dataset B was processed following the steps of the data analysis stage. After that,
the pre-trained models were loaded and image classification was performed directly without
going through the training and fitting stages of the models. This allows to establish the level
of transferability of the ML models.

Transferability of the ML models was measured by using the metric Generalisation Loss
(G-loss) introduced by Klemenjak et al. (2019). This metric links the accuracy of the classi-
fication results obtained for the ML methods applied to the datasets A and B according to
the Equation 3.12.
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G-loss =

(
1− OAb

OAa

)
100% (3.12)

where, OAa is the accuracy of the classification results of the dataset A and OAb is the
accuracy of the classification results of the dataset B.

3.6.8 Accuracy Assessment

Ground truth

The reference classifications (Figure 3.20) of the study area were provided by experts from the
research group, who prepared them based on field observations, spectral responses of healthy
and diseased plants and visual image interpretation. It should be noted that the assessment
of diseased areas based on image interpretation is a very difficult task. This is due to different
factors such as the mixture of healthy and diseased areas in the same pixel, the occlusion of
diseased areas in the lower parts of the canopy by healthy vegetation in the upper layers of
the canopy, the occurrence of subtle symptoms in plants, especially when the severity levels
are low, among others. Evaluation of the classification models in this scenario can lead to
unreliable results. To be able to compare the performance of the ML algorithms, the predicted
percentage of late blight severity on the experimental plot was obtained for each experimental
block, excluding the areas between blocks, which contained weeds that could affect the results.

Figure 3.20: Reference classifications. (a) dataset A; (b) dataset B.

Background removing quality

The quality of the segmentation results was evaluated using reference segmentation of the
experimental plot. The elaboration of the reference segmentation was carried out by manual
editing of the two data sets. In this work we use the QGIS Semi-Automatic Classification
Plugin (SCP) (Congedo, 2021) to generate polygons of interest that correspond to the areas
of bare soil and weeds, and then, with the same tool, proceed to eliminate said areas of one of
the mosaic bands until only the areas belonging to potato plants were present. Finally that
band was used to generate a binary image that was used as ground truth. The Intersection-
over-Union (IoU), also known as the Jaccard index was used (Equation 3.13). IoU is the area
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of intersection between the predicted segmentation and the reference segmentation, divided
by the joint area between the predicted segmentation and the reference segmentation (Drass
et al., 2020).

Q =
A ∩B
A ∪B

(3.13)

Thematic accuracy

Thematic quality of classification was evaluated using reference classifications of the exper-
imental plot. The confusion matrix between reference classification and each classification
result from ML methods was calculated. Based on the confusion matrix the following metrics
were derived: overall accuracy (OA) (Equation 3.14), precision (Equation 3.15), recall (Equa-
tion 3.16) and F-score (Equation 3.17), (Tharwat, 2018). Matthews correlation coefficient
(MCC) (Equation 3.18) was also calculated as it offers higher confidence whit unbalanced
data sets (Tharwat, 2018).

OA =
TP + TN

TP + TN + FP + FN
(3.14)

Precision =
TP

TP + FP
(3.15)

Recall =
TP

TP + FN
(3.16)

F − score =
2TP

FP + 2TP + FN
(3.17)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.18)

where TP , FP , TN and FN are the true positive, false positive, true negative and false
negative samples, respectively.

The scikit-learn library (Varoquaux et al., 2015), was used to train the models, perform
the classification and assess accuracy in this work. A prototype of the method was implemen-
ted in python and is available at the following link: https://jorlrodriguezg.github.io/
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4 Results

4.1 Background removing

Figure 4.1a and Figure 4.1b show the orthophotos obtained for the two datasets: (a) dataset
A; (b) dataset B. Visual assessment of potato LB from orthophotos is possible, although, it
requires significant effort. It can be seen that there are important changes between the two
dates. On dataset A the crop rows are clearly defined for the entire crop even in those areas
where LB was evident. On the contrary, on dataset B only in the control block crop rows
were certainly defined while for most of the crop area rows did not have a consistent pattern.

Figure 4.1c and Figure 4.1d show the orthophotos before the background removal step.
After background removal (Figure 4.1i and Figure 4.1j), those areas affected by LB became
evident just by the identification of the erratic pattern found in the crop rows. This pattern
is produced by the loss of leaves in the potato plants caused by the disease.

4.2 Spectral traits

Figure 4.2 shows the 2D projection of the decision boundaries for the case of the red and
infrared bands. Although it should be highlighted that these projections may not appropri-
ately represent the final decision boundaries and surely vary when taking into account the 5
dimensions of the multispectral image, they do provide an approximation to the way in which
the data could be grouped into LB plants and Healthy plants.

Figure 4.3 corresponds to the classification results when using spectral traits for each
dataset under study: dataset A and dataset B. (a) dataset A, RF classification result; (b)
dataset A, GBC classification result; (c) dataset A, SVC classification result; (d) dataset
A, LSVC classification result; (e) dataset A, KNN classification result; (f) dataset B, RF
classification result; (g) dataset B, GBC classification result; (h) dataset B, SVC classification
result; (i) dataset B, LSVC classification result; (j) dataset B, KNN classification result. In
both cases it is possible to see that it appears to be an overestimation of the LB presence
within the experimental crop.

Figure 4.4 shows the variable importance measures from RF when using only spectral
traits, 5, 6, 7 and 8 corresponds to SAVI, EVI2, LAI and NIR respectively which had the
highest measures. However, the accuracy results were better when using only SAVI and EVI2
bands as input in the classification stage.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.1: RGB orthophotos obtained for each period time under study before and after
background removal. The red polygons in (a) and (b) indicate the areas shown
in higher resolution below each orthophoto. (a) dataset A, before background re-
moval; (b) dataset B, before background removal; (c) close-up of dataset A, before
background removal; (d) close-up of dataset B, before background removal; (e)
close-up of dataset A manual segmentation reference; (f) close-up of dataset B
manual segmentation reference; (g) close-up of dataset A segmentation result; (h)
close-up of dataset B segmentation result; (i) close-up of dataset A final segment-
ation result yield by (g); and (j) close-up of dataset B final segmentation result
yield by (h).

47



4 Results

(a) RF (b) GBC (c) SVC

(d) LSVC (e) KNN

Figure 4.2: 2D projection of the decision boundary plots for each classification method, here
we only consider bands red and near infrared. (a) RF; (b) GBC; (c) SVC; (d)
LSVC; and (e) KNN. The purple dots correspond to LB and the red dots to
healthy plants.

4.3 Morphological traits

Figure 4.5 corresponds to the classification results when using morphological traits for each
dataset under study: dataset A and dataset B. (a) dataset A, RF classification result; (b)
dataset A, GBC classification result; (c) dataset A, SVC classification result; (d) dataset
A, LSVC classification result; (e) dataset A, KNN classification result; (f) dataset B, RF
classification result; (g) dataset B, GBC classification result; (h) dataset B, SVC classification
result; (i) dataset B, LSVC classification result; (j) dataset B, KNN classification result. It is
difficult to the naked eye to see a coincidence with the ground truth.

Figure 4.6 shows the variable importance measures from RF when using only morpho-
logical traits. The three most important variables from this measures were area, equivalent
diameter and minor axis length. However, after repeated experiments, varying the combina-
tion of the morphological traits, we found that the morphological traits that gave the higher
accuracy results were: area, eccentricity and extent.

4.4 Combined spectral and morphological traits

Figure 4.7 corresponds to the classification results when combining spectral and morphological
traits for each dataset under study: dataset A and dataset B. (a) dataset A, RF classification
result; (b) dataset A, GBC classification result; (c) dataset A, SVC classification result; (d)
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Figure 4.3: Classification results when using spectral traits for each dataset under study: data-
set A and dataset B. (a) dataset A, RF classification result; (b) dataset A, GBC
classification result; (c) dataset A, SVC classification result; (d) dataset A, LSVC
classification result; (e) dataset A, KNN classification result; (f) dataset B, RF
classification result; (g) dataset B, GBC classification result; (h) dataset B, SVC
classification result; (i) dataset B, LSVC classification result; (j) dataset B, KNN
classification result.
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ID 0 1 2 3 4 5 6

Trait Blue Green Red Red edge NIR SAVI EVI2

ID 7 8 9 10 11 12

Trait LAI EVI GNDVI NDVI NDV IRE CIRE

Figure 4.4: Spectral traits - Variable important measures from RF for spectral traits.

dataset A, LSVC classification result; (e) dataset A, KNN classification result; (f) dataset
B, RF classification result; (g) dataset B, GBC classification result; (h) dataset B, SVC
classification result; (i) dataset B, LSVC classification result; (j) dataset B, KNN classification
result.
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Figure 4.5: Classification results when using morphological traits for each dataset under study:
dataset A and dataset B. (a) dataset A, RF classification result; (b) dataset A,
GBC classification result; (c) dataset A, SVC classification result; (d) dataset A,
LSVC classification result; (e) dataset A, KNN classification result; (f) dataset B,
RF classification result; (g) dataset B, GBC classification result; (h) dataset B,
SVC classification result; (i) dataset B, LSVC classification result; (j) dataset B,
KNN classification result.
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ID 0 1 2 3 4 5 6

Trait Area Perimeter Area/Perimeter
Convex hull
area

Solidity Orientation
Major axis
length

ID 7 8 9 10 11 12

Trait
Minor axis
length

Minor/Mayor
axis ratio

Bounding box
area

Eccentricity
Equivalent
diameter

Extent

Figure 4.6: Morphological traits - Feature importance measures from RF.
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Figure 4.7: Classification results when combining spectral and morphological traits for each
dataset under study: dataset A and dataset B. (a) dataset A, RF classification
result; (b) dataset A, GBC classification result; (c) dataset A, SVC classification
result; (d) dataset A, LSVC classification result; (e) dataset A, KNN classification
result; (f) dataset B, RF classification result; (g) dataset B, GBC classification
result; (h) dataset B, SVC classification result; (i) dataset B, LSVC classification
result; (j) dataset B, KNN classification result.
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5 Discussion

The aim of this thesis was to assess potato LB from UAV-based multispectral imagery through
the extraction of spectral and morphological traits and the use of machine learning algorithms.
Although the use of spectral traits and the combination of spectral and morphological traits
showed very promising results, there is still work to do to improve the results when only
morphological traits are used.

This chapter is organised as follows: section 5.1 contains the analysis of background
removing, section 5.2 presents the analysis of the use of spectral traits for assessing LB, sec-
tion 5.3 presents the analysis of the use of morphological traits for assessing LB, section 5.4
presents the analysis of the use of combined spectral and morphological traits for assessing
LB, section 5.5 presents the general discussion, section 5.6 summarise the accomplished ob-
jectives, section 5.7 deploys the advantages of the methodology, and section 5.8 deploys the
contributions to knowledge in Geomatics.

5.1 Background removing

Table 5.1 shows the accuracy results for the background removing step. The process of back-
ground removing was aimed at suppressing bare soil from the image and reducing “noise”
before classifying the data. However, since the background itself was not our object of in-
terest it was removed based on the Otsu’s threshold algorithm which was manually adjusted
to improve the plant separation. For dataset A, where weeds were marginal inside the exper-
imental blocks, adjusting the threshold value manually led to oversegmentation and deterior-
ation of the segmentation results. However, for dataset B emerging weeds required to adjust
the threshold obtained by Otsu’s algorithm. Although adjusting the threshold value helped
to remove most of the weeds present in the orthophoto for the two datasets, there was still
presence of weeds in the segmented result. Overall weeds remnants presence was predominant
only along a narrow zone dividing the experimental blocks where cultural management such as
hill-up was not carried on. Thus, for this study those remnants were considered negligible. In
addition, to be able to compare the performance of the ML algorithms, the predicted percent-
age of late blight severity on the experimental plot was obtained for each experimental block,
excluding the areas between blocks, which contained remnants of weeds from the background
removing step, that could affect the severity estimation results.

Applying a segmentation technique may significantly reduce the amount of data to be
processed. Furthermore, most of the soil surface may be removed by this technique leading to
an improvement in the processing time because of the filtering of less relevant data. However,
as weed presence increments inside the crop, a thresholding method becomes less efficient
and manual input is necessary to achieve the separation task between potato plants and the
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Table 5.1: Segmentation accuracy for datasets A and B.

Dataset IoU

Dataset A 97.7%
Dataset B 97.6%

background.

5.2 Spectral traits

(a) (b)

Figure 5.1: Spectral traits - Performance by classification method on the training dataset. (a)
ROC curves for RF, GBC, SVC, LSVC and KNN; and (b) processing time for the
ML algorithms.

Figure 5.1a shows the ROC curves used to measure how well the trained models fitted the
training data. It can be seen that the models had a similar behaviour, in particular, the AUC
is equal to 0.91 for RF, SVC and LSVC methods. By far the method that required the longest
processing time was SVC, the run time was approximately 539.8 seconds, by comparison, KNN
which was the second method at run time took approximately 117 seconds. RF and GBC
had shorter execution times, with 43 seconds and 24 seconds respectively. The most efficient
method in terms of execution time was LSVC with a time of 0.07 seconds (Figure 5.1b). It
can be seen in Figure 4.2, that even when data are grouped in a very similar way, that is,
red dots and purple dots are almost identical in all the plots, when it comes to the decision
boundaries for each method, there are clear differences.

Table 5.2 shows thematic accuracy metrics: the classification method that achieves the
best results, compared to the reference classifications, for the dataset A was SVC with OA
= 0.897 and MCC=0.795 and for the dataset B was RF with OA = 0.822 and MCC=0.604.
RF and SVC metrics were close enough that two decimal places did not allow to differentiate
them, so three decimal places were needed to find the highest metrics. Overall, the main
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Table 5.2: Spectral traits - F-Scores per class, overall accuracy and MCC obtained from assess-
ment of image classifications versus reference classification. Bold values correspond
to the highest OA, F-Scores and MCC.

Dataset Class RF GBC SVC LSVC KNN

category Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

Dataset A

LB 0.849 0.941 0.893 0.756 0.755 0.755 0.876 0.920 0.897 0.917 0.815 0.863 0.786 0.806 0.796
Healthy 0.937 0.840 0.886 0.765 0.767 0.766 0.919 0.875 0.897 0.840 0.930 0.882 0.809 0.790 0.799

OA 0.890 0.761 0.897 0.873 0.798

MCC 0.784 0.522 0.795 0.751 0.595

Dataset B

LB 0.822 0.923 0.870 0.795 0.708 0.749 0.824 0.895 0.858 0.833 0.829 0.831 0.810 0.759 0.784
Healthy 0.823 0.642 0.721 0.562 0.673 0.613 0.777 0.658 0.712 0.697 0.703 0.700 0.612 0.680 0.644

OA 0.822 0.695 0.810 0.784 0.731

MCC 0.604 0.369 0.576 0.531 0.43

*Here we used three decimal places because the metrics were close for various classifiers, so two decimal places did not allow to
differentiate them.

difference between RF and SVC in this study was the processing time. Precision and recall in
Table 5.2 did not show significant evidence of difference in the capability of the ML algorithms
to classify healthy plants than diseased plants for the dataset A. However, for the dataset B
those metrics suggest a better capability of the ML algorithms to classify diseased plants than
healthy plants.

Figure 5.2 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using spectral traits.
Figure 5.2a shows the correlation between infection level from classification results and visual
assessment for the Dataset A, it is possible to see that GBC and KNN showed the best
performance for the Dataset A with R2 = 0.86 and a MAE = 6.69% and R2 = 0.86 and
a MAE = 6.88% respectively. Figure 5.2b shows the correlation between infection level
from classification results and visual assessment for the Dataset B, it is possible to see that
LSVC and KNN showed the best performance for the Dataset B with R2 = 0.30 and a
MAE = 18.74% and R2 = 0.29 and a MAE = 18.34%. Even though correlation graphics
had a good MAE and R2 for RF, GBC and KNN with MAE = 8.02% and R2 = 0.77, MAE
= 6.69% and R2 = 0.86 and, MAE = 6.88% and R2 = 0.86 respectively, it should be noted
that, for our data, in all cases ML algorithms tend to overestimate the severity of late blight
disease at the low level of infection (LB1). In general, results showed a better performance of
the ML algorithms for advanced levels of infection (LB3 and LB4). Blocks with higher visual
score had similar predicted values of infection.

Table 5.3 contains the RMSE for each ML and dataset studied. It can be seen that GBC
and KNN showed the lower RMSE for the Dataset A with RMSE = 8.48 and RMSE = 8.52
respectively. Also, LSVC and KNN had the lower RMSE for the Dataset B with RMSE =
24.94 and RMSE = 25.12 respectively.

For the dataset A, SVC and LSVC overestimated the level of infection of blocks 6, 10
and 14 which corresponds to control blocks (T5) without any application of fertilisers. Those
blocks were in a stage of development earlier than all the remaining experimental blocks
and its spectral response was in average lower, in particular for dataset B, in which all the
classifiers overestimated the level of affectation of those control blocks. Visual scoring and
classification results for blocks with T6 showed the higher level of infection followed by T1,
T4, T3 and T2, this suggest a relationship between the treatment and the response of potato
plants to LB that should be further explored in future works.
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(a) Dataset A - Correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study.

Figure 5.2: Spectral traits - Correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study. (a) Correlation
between infection level from image processing and visual assessment for the Dataset
A; and (b) Correlation between infection level from classification results and visual
assessment for the Dataset B. The solid red line shows the regression line. GBC
and KNN showed the best performance for the Dataset A with R2 = 0.86 and
a MAE = 6.69% and R2 = 0.86 and a MAE = 6.88% respectively. LSVC
and KNN showed the best performance for the Dataset B with R2 = 0.30 and a
MAE = 18.74% and R2 = 0.29 and a MAE = 18.34%.
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Table 5.3: Spectral traits - Mean absolute error, root mean squared error and coefficient of
determination obtained from assessment of image classifications versus visual as-
sessment.

ML algorithm Dataset

A B

MAE 8.02 19.13
RF RMSE 10.84 25.33

R2 0.77 0.28

MAE 6.69 20.33
GBC RMSE 8.48 26.73

R2 0.86 0.19

MAE 12.87 20.95
SVC RMSE 18.23 26.98

R2 0.37 0.18

MAE 10.10 18.74
LSVC RMSE 13.99 24.94

R2 0.63 0.30

MAE 6.88 18.34
KNN RMSE 8.52 25.12

R2 0.86 0.29

5.3 Morphological traits

Figure 5.3a shows the ROC curves used to measure how well the trained models fitted the
training data. It can be seen that the models had a different behaviour, it can be seen that
GBC and KNN had an Area Under the Curve (AUC) equal to one, which suggest over-fitting
issues. By far the method that required the longest processing time was SVC, the run time
was approximately 1100 seconds, by comparison, KNN which was the second method at run
time took approximately 150 seconds. RF and GBC had shorter execution times, with 43
seconds and 24 seconds respectively. The most efficient method in terms of execution time
was LSVC with a time of 0.1 seconds.

In this study, when using only morphological traits, we experimented varying the number
of selected variables to be used to train the model. When using the first 6 bands found with
RF, the AUC for random forest rose to 0.97 and for LSVC to 0.96, the validation against the
reference classification also increased, although to a greater extent for LSVC than for random
forest. When using the first 5 bands found with RF, the AUC for random forest fell to 0.96
and for LSVC to 0.92. In contrast, the validation against the reference classification improved,
finding: Accuracy: 0.745 and MCC: 0.506 for RF and Accuracy: 0.816 and MCC: 0.653 for
LSVC. When using the first 4 bands found with RF, the AUC for random forest dropped
to 0.95 and for LSVC to 0.91. In contrast, the validation against the reference classification
improved, finding: Accuracy: 0.749 and MCC: 0.517 for RF and Accuracy: 0.839 and MCC:
0.692 for LSVC.
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(a) (b)

Figure 5.3: Morphological traits - Performance by classification method on the training data-
set. (a) ROC curves for RF, GBC, SVC, LSVC and KNN; (b) Execution time for
each classifier.

Table 5.4 contains the RMSE for each ML and dataset studied. It can be seen that KNN
showed the lower RMSE for the Dataset A with RMSE = 12.98. Also, RF had the lower
RMSE for the Dataset B with RMSE = 19.78.

Table 5.5 shows thematic accuracy metrics when using morphological traits: the classi-
fication method that achieves the best results, compared to the reference classifications, for
the two datasets was LSVC with OA = 0.681 and MCC=0.375 for the dataset A and OA
= 0.612 and MCC = 0.165. Although precision and recall did not show significant evidence
of difference in the capability of the ML algorithms to classify healthy plants than diseased
plants for the dataset A for the dataset B those metrics suggest a better capability of the ML
algorithms to classify diseased plants than healthy plants, similar to the findings when using
only spectral traits.

Figure 5.4 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using morphological
traits. Figure 5.4a shows the correlation between infection level from classification results
and visual assessment for the Dataset A, it is possible to see that KNN showed the best
performance for the Dataset A with R2 = 0.69 and a MAE = 9.47%. Figure 5.4b shows
the correlation between infection level from classification results and visual assessment for the
Dataset B, it is possible to see that RF showed the best performance for the Dataset B with
R2 = 0.25 and a MAE = 17.56%.

Experiments showed that by working with the most important variables calculated from
RF the performance of the classification results versus the ground truth and the visual scoring
were lower than the performance achieved using other morphological traits. Thus, variable
importance measures from RF can be unreliable when working with morphological traits only.
This results seems to agree with the reported bias in importance measures from RF by Strobl
et al. (2007).
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(a) Dataset A - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

Figure 5.4: Morphological traits - Correlation between infection level from classification results
and visual assessment methods for each ML algorithm under study. (a) Correlation
between infection level from image processing and visual assessment for the Dataset
A; and (b) Correlation between infection level from classification results and visual
assessment for the Dataset B. The solid red line shows the regression line. KNN
showed the best performance for the Dataset A with R2 = 0.69 and a MAE =
9.47%. RF showed the best performance for the Dataset B with R2 = 0.25 and a
MAE = 17.56%.

60



5 Discussion

Table 5.4: Morphological traits - Mean absolute error, root mean squared error and coefficient
of determination obtained from assessment of image classifications versus visual
assessment when using morphological traits.

ML algorithm Dataset

A B

MAE 11.21 17.56
RF RMSE 12.98 19.78

R2 0.68 0.25

MAE 12.75 18.53
GBC RMSE 15.65 20.33

R2 0.52 0.01

MAE 16.12 16.95
SVC RMSE 20.68 21.65

R2 0.19 0.10

MAE 13.57 17.70
LSVC RMSE 17.01 20.99

R2 0.45 0.16

MAE 9.47 18.14
KNN RMSE 12.73 20.81

R2 0.69 0.17

Table 5.5: Morphological traits - F-Scores per class, overall accuracy and MCC obtained from
assessment of image classifications versus reference classification. Bold values cor-
respond to the highest OA, F-Scores and MCC.

Dataset Class RF GBC SVC LSVC KNN

category Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

Dataset A

LB 0.499 0.585 0.539 0.534 0.482 0.506 0.542 0.590 0.565 0.642 0.788 0.707 0.545 0.470 0.505
Healthy 0.525 0.439 0.478 0.546 0.597 0.570 0.571 0.521 0.545 0.740 0.579 0.650 0.552 0.625 0.586

OA 0.510 0.541 0.555 0.681 0.549

MCC 0.024 0.079 0.112 0.375 0.096

Dataset B

LB 0.666 0.655 0.661 0.659 0.478 0.554 0.683 0.690 0.686 0.703 0.683 0.693 0.668 0.480 0.559
Healthy 0.400 0.411 0.405 0.373 0.557 0.447 0.433 0.425 0.429 0.460 0.484 0.472 0.381 0.573 0.458

OA 0.568 0.506 0.595 0.612 0.513

MCC 0.066 0.033 0.115 0.165 0.051

*Here we used three decimal places because the metrics were close for various classifiers, so two decimal places did not allow to
differentiate them.

5.4 Combined spectral and morphological traits

Figure 5.5a shows the ROC curves used to measure how well the trained models fitted the
training data. It can be seen that the models had a similar behaviour, in particular, the
AUC is greater than 0.8 for RF, SVC and LSVC methods. The highest AUC was 0.83 for RF,
followed by SVC and LSVC with an AUC of 0.82. By far the method that required the longest
processing time was SVC, the run time was approximately 1414.14 seconds, by comparison,
KNN which was the second method at run time took approximately 127.10 seconds. RF and
GBC had shorter execution times, with 46.77 seconds and 27.69 seconds respectively. The
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most efficient method in terms of execution time was LSVC with a time of 0.09 seconds. The
curve shape and the AUC also suggest that there were over-fitting issues for GBC.

(a) (b)

Figure 5.5: Combined spectral and morphological traits - Performance by classification
method on the training dataset. (a) ROC curves for RF, GBC, SVC, LSVC and
KNN; (b) Execution time for each classifier.

Table 5.6 shows mean absolute error, root mean squared error and coefficient of determ-
ination obtained from assessment of image classifications versus visual assessment when using
combined spectral and morphological traits. It should be noted that even though the coeffi-
cients R2 are lower than those obtained when using only spectral traits, the MAE and Root
Mean Squared Error (RMSE) are significantly better in this approach. Furthermore, The
difference between the dataset A and the dataset B decrease to close values for RF, GBC and
LSVC.

Table 5.7 shows thematic accuracy metrics when using combined spectral and morpholo-
gical traits: the classification method that achieves the best results, compared to the reference
classifications, for the two datasets was SVC with OA = 0.885 and MCC=0.785 for the dataset
A and OA = 0.817 and MCC = 0.598. Precision and recall did not show significant evidence
of difference in the capability of the ML algorithms to classify healthy plants than diseased
plants for the two datasets.

Figure 5.6 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using combined spectral
and morphological traits. Figure 5.6a shows the correlation between infection level from
classification results and visual assessment for the Dataset A, it is possible to see that LSVC
showed the best performance for the Dataset A with an R2 = 0.57 and a MAE = 11.53%.
Figure 5.6b shows the correlation between infection level from classification results and visual
assessment for the Dataset B, it is possible to see that KNN showed the best performance for
the Dataset B with an R2 = 0.32 and a MAE = 20.83%.
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(a) Dataset A - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

Figure 5.6: Combined spectral and morphological traits - Correlation between infection level
from classification results and visual assessment methods for each ML algorithm
under study. (a) Correlation between infection level from image processing and
visual assessment for the Dataset A; and (b) Correlation between infection level
from classification results and visual assessment for the Dataset B. The solid red
line shows the regression line. LSVC showed the best performance for the Dataset
A with a R2 = 0.57 and a MAE = 11.53%. KNN showed the best performance
for the Dataset B with a R2 = 0.32 and a MAE = 20.83%.
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Table 5.6: Combined spectral and morphological traits - Mean absolute error, root mean
squared error and coefficient of determination obtained from assessment of image
classifications versus visual assessment.

ML algorithm Dataset

A B

MAE 5.89 7.08
RF RMSE 7.89 9.39

R2 0.74 0.79

MAE 9.16 9.95
GBC RMSE 10.52 11.66

R2 0.50 0.67

MAE 5.54 18.18
SVC RMSE 7.79 19.70

R2 0.75 0.02

MAE 5.09 6.39
LSVC RMSE 6.48 8.58

R2 0.81 0.82

MAE 5.62 17.30
KNN RMSE 7.57 18.92

R2 0.75 0.11

Table 5.7: Combined spectral and morphological traits - F-Scores per class, overall accuracy
and MCC obtained from assessment of image classifications versus reference classi-
fication. Bold values correspond to the highest OA, F-Scores and MCC.

Dataset Class RF GBC SVC LSVC KNN

category Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

Dataset A

LB 0.805 0.907 0.853 0.496 0.475 0.485 0.819 0.981 0.893 0.813 0.983 0.890 0.733 0.826 0.777
Healthy 0.899 0.790 0.841 0.516 0.536 0.526 0.978 0.792 0.875 0.980 0.784 0.871 0.811 0.712 0.758

OA 0.847 0.507 0.885 0.881 0.768

MCC 0.701 0.012 0.785 0.780 0.541

Dataset B

LB 0.836 0.779 0.807 0.663 0.458 0.542 0.849 0.870 0.859 0.871 0.799 0.833 0.835 0.670 0.773
Healthy 0.647 0.727 0.685 0.375 0.583 0.456 0.756 0.722 0.738 0.686 0.788 0.734 0.563 0.763 0.648

OA 0.760 0.503 0.817 0.795 0.703

MCC 0.495 0.040 0.598 0.572 0.415

*Here we used three decimal places because the metrics were close for various classifiers, so two decimal places did not allow to
differentiate them.

5.5 General discussion

One of the most difficult tasks was to separate each plant within the rows of the crop, the initial
objective was to find a method that would allow, in the most approximate way possible, the
identification and separation of each plant. Initially, the Quickshift segmentation (Figure 5.7a)
method was used, whose segmentation results seem to fit well to the contour of the plants.
However, the results in terms of accuracy of the classification using this type of segmentation
were not satisfactory. Contrary to expectations, the segmentation that allowed the best results
was Felzenswalb (Figure 5.7b). Although this method produces regions that do not necessarily
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correspond to individual plants, these regions seem to better represent the changes between
healthy vegetation and diseased vegetation.

(a) (b)

Figure 5.7: Plant segmentation method comparison. (a) Quickshift; and (b) Felzenswalb.

5.5.1 Influence of the control blocks in the results

The potato experimental crop consisted of an array of blocks with different nutrient treat-
ments. Three out of eighteen blocks were established as control blocks. Those blocks of
the experimental plot were in a state of development behind the other blocks, their spectral
response in general was also below the other blocks even though the severity of the disease
in those blocks was low. In general, in the 3 approaches of this study, these blocks strongly
influenced the accuracy results, particularly in the comparison of classification results versus
visual assessment.

When comparing the results of classification versus visual evaluation without taking into
account the control blocks, it is possible to see that in all 3 cases the relationship improves.
Even though the relationships improve, there is still low performance when using only mor-
phological traits.

Figure 5.8 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using spectral traits
without taking into account the control blocks. Figure 5.8a shows the correlation between
infection level from classification results and visual assessment for the Dataset A, it is possible
to see that RF showed the best performance for the Dataset A with an R2 = 0.83 and a
MAE = 4.75%. Figure 5.8b shows the correlation between infection level from classification
results and visual assessment for the Dataset B, it is possible to see that LSVC showed the
best performance for the Dataset B with an R2 = 0.77 and a MAE = 6.76%.

Figure 5.9 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using morphological traits
without taking into account the control blocks. Figure 5.9a shows the correlation between
infection level from classification results and visual assessment for the Dataset A, it is possible
to see that GBC showed the best performance for the Dataset A with an R2 = 0.7 and a
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(a) Dataset A - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

Figure 5.8: Spectral traits, no control blocks - Correlation between infection level from clas-
sification results and visual assessment methods for each ML algorithm under
study excluding control blocks. (a) Correlation between infection level from image
processing and visual assessment for the Dataset A; and (b) Correlation between
infection level from classification results and visual assessment for the Dataset B.
The solid red line shows the regression line. RF showed the best performance for
the Dataset A with a R2 = 0.83 and a MAE = 4.75%. LSVC showed the best
performance for the Dataset B with a R2 = 0.77 and a MAE = 6.76%.
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MAE = 7.64%. Figure 5.9b shows the correlation between infection level from classification
results and visual assessment for the Dataset B, it is possible to see that KNN showed the
best performance for the Dataset B with an R2 = 0.48 and a MAE = 10.31%.

Figure 5.10 shows the correlation between infection level from classification results and
visual assessment methods for each ML algorithm under study when using combined spectral
and morphological traits without taking into account the control blocks. Figure 5.10a shows
the correlation between infection level from classification results and visual assessment for the
Dataset A, it is possible to see that LSVC showed the best performance for the Dataset A with
an R2 = 0.81 and a MAE = 5.09%. Figure 5.10b shows the correlation between infection
level from classification results and visual assessment for the Dataset B, it is possible to
see that LSVC showed the best performance for the Dataset B with an R2 = 0.82 and a
MAE = 6.39%.

Two out of three of similar studies summarised in Table 5.8 did not implemented ML
algorithms for assessing of potato diseases (Sugiura et al., 2016; Gibson-Poole et al., 2017).
In the remaining study Duarte-Carvajalino et al. (2018) carried out an evaluation of the LB
in 14 different potato genotypes using multispectral images captured with an UAV and ML
methods such as multi-layer perceptron, deep learning CNN, support vector regression, and
RF. The method proposed by Duarte-Carvajalino et al. (2018) requires that the user performs
the manual extraction of each subset used for model training, which is time consuming and
may introduce bias in the process. The method proposed here requires less time since the
longest task is the creation of training polygons and once the training models are created,
it is possible to reuse them to perform the classification of new datasets. With an OA of
87.8%, MCC equal to 0.768 and F-scores for LB and HP of 88.4% and 86.3% respectively, the
proposed method can be considered satisfactory for the evaluation of LB in potato crops when
the trained models are fitted using training data from the same date. Although more studies
are required to ensure that models are transferable to a later date, the results obtained, OA
of 79.9%, MCC equal to 0.556 and F-scores for LB and HP of 86.0% and 64.0% respectively,
seems to be promising.

Table 5.8: Comparative table of similar studies on potato with respect to the proposed method.

Reference Disease
Machine learning/
Deep Learning
algorithm used

Issues
Performace
(Best algorithm)

Sugiura et al. (2016) LB
Machine learning algorithms
were not used.

Sparse acquisition of images caused
a slight decline in correlation
between the AUDPCs from the
image processing and
visual assessment

RMSE =14.7 %
R2 = 0.77

Gibson-Poole et al. (2017) Blackleg
Machine learning algorithms
were not used.

High covariance when processing the
digital surface model due to lack of
GCP.

User accuracy = 65%
Producer accuracy = 73%
OA =87%
Kappa = 0.61

Duarte-Carvajalino et al. (2018) LB
Multilayer perceptron,
Support vector regression,
CNN and RF.

It is required that the user
manually cut images from
each plot to train the algorithms

MAE = 11.72%

Proposed method LB
RF, GBC, SVC, LSVC
and KNN

Find an appropriate adjustment
value for threshold to allow
accurate separation between the
background and potato plants
when weed presence increase
inside the crop.

OA = 89.7 %
MCC = 79.5 %
F-score LB = 0.897
F-score HP = 0.897
R2 = 0.83
MAE = 4.75%
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(a) Dataset A - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

Figure 5.9: Morphological traits, no control blocks - Correlation between infection level from
classification results using only morphological traits and visual assessment methods
for each ML algorithm under study excluding control blocks. (a) Correlation
between infection level from image processing and visual assessment for the Dataset
A; and (b) Correlation between infection level from classification results and visual
assessment for the Dataset B. The solid red line shows the regression line. GBC
showed the best performance for the dataset A with a R2 = 0.7 and MAE =
7.64%.
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(a) Dataset A - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

(b) Dataset B - Correlation between infection level from classification results and visual
assessment methods for each ML algorithm under study.

Figure 5.10: Combined spectral and morphological traits, no control blocks - Correlation
between infection level from classification results using only morphological traits
and visual assessment methods for each ML algorithm under study excluding
control blocks. (a) Correlation between infection level from image processing and
visual assessment for the Dataset A; and (b) Correlation between infection level
from classification results and visual assessment for the Dataset B. The solid red
line shows the regression line. LSVC showed the best performance for datasets
A and B with a R2 = 0.81 and MAE = 5.09% and R2 = 0.82 and MAE = 6.39%
respectively. 69
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An important limitation of this study was the lack of data for low levels of infection
beyond the control blocks. As mentioned above the first acquisition of multispectral images
was carried on several days after first symptoms were identified in the experimental crop and
the disease rapidly spread over the field, so, at the time of the first field data capture was
done, most of the experimental blocks had reached infection level LB2 and above and LB1 was
present only in the control blocks. Even though there was a lack of data for LB1, blocks 5, 8,
7, and 15 in dataset A were in an LB2 stage and predicted values by ML algorithms RF, GBC,
and KNN were similar to the visual scoring, although slightly higher. This suggests a good
capability to differentiate LB potato plants from healthy potato plants when the infection
level reached LB2 or above.

5.5.2 Transferability of the ML models

Table 5.9 shows the generalisation loss calculated for each approach and ML method evaluated
in this study. When using only morphological traits the performance of the ML methods is
low, so it is possible to see negative G-loss percentages caused by higher accuracy values in the
performance of the dataset B, which can be misleading. However, it can be seen that, when
using only spectral traits, G-loss is higher (8.9%) compared to the G-loss when using combined
spectral and morphological traits (7.4%). This suggests that there is a slight improvement in
the performance of the classifiers when including combined traits.

Table 5.9: G-loss (%) calculated for each approach and ML method studied.

Approach
ML method

Mean
RF GBC SVC LSVC KNN

Spectral traits 7.6 8.7 9.7 10.2 8.4 8.9
Morphological traits -11.4 6.5 -7.2 10.1 6.6 0.9
Combined traits 10.3 0.8 7.7 9.8 8.5 7.4

5.6 Accomplishment of the objectives

The aim of this project was to respond to the research question: What are the spectral and
morphological features that allow estimating the severity level of late blight (Phytophthora
infestans) in potato crops from multispectral images acquired using an UAV platform?

In chapter 4, we presented the variable importance measures for spectral traits and
morphological traits. According to those results:

5.6.1 Spectral traits that allow estimating the severity level of LB

The experimental results and the selection of variables carried out with the data obtained in
this work allowed us to find the spectral features that are most important in the evaluation
of LB in potato crops. Finding the most important features can make information processing
more efficient since the number of variables to be included in demanding processes such as
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those in which machine learning methods are applied is reduced. In addition, the vegetation
indices are easy and quick to calculate. In this work, the spectral features found to be most
important were:

1. SAVI.

2. EVI2.

3. LAI.

Note: responds to specific objective 1.

5.6.2 Morphological traits that allow estimating the severity level of LB

The most important morphological features found in this work, according to the experimental
results were:

1. Area.

2. Equivalent diameter.

3. Minor axis length.

We found that the area is an important factor in our data since those affected areas
present defoliation, this makes that when removing the soil in the images, these areas look
fragmented. That is, the superpixels calculated in the zones with disease tend to be smaller
than in the zones of healthy plants as it can be seen in Figure 3.13 In the case of the equivalent
diameter, this can be related to the area, areas that have a smaller equivalent diameter could
be related to the presence of the disease. In the case of the length of the minor axis, we found
that those over-segmented areas corresponding to areas with the presence of the disease were
characterized by a very irregular geometry (very elongated areas), which means that there is
a significant difference in the length of the axes of the approximate ellipse to these regions.

Note: responds to specific objective 2.

5.6.3 Combined spectral and morphological traits

• Slight improvement in the accuracy of the classification results vs ground truth and
visual scoring. The experimental results showed that the evaluation of the accuracy of
the classification results, when combined features were used, improved in particular in
dataset B.

• Significant improvement in the transferability of the ML models. The experimental
results showed that the G-loss metric improved from 8.9% when only spectral features
were used to 7.4% when spectral and morphological features were used combined.

Note: responds to specific objective 3.
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5 Discussion

5.7 Advantages and limitations of the methodology

5.7.1 Advantages

1. Allows repetitive coverage of an agricultural field. Besides the field inspection of the
potato crop, in this work, labours related to the acquisition of the multispectral images
showed to be efficient as the time necessary to set up the UAV for flight was as short
as 15 minutes and the use of rechargeable batteries made easy to repeat the missions in
the event of an unforeseen event.

2. Allows for easy collection of data. In this work, using a UAV to acquire multispectral
images showed to be an efficient method of data acquisition as each flight mission covered
3.2 Ha in approximately eight minutes, and with a spatial resolution of approximately
3.2 cm pixel size proving to have huge potential in crop scouting tasks.

3. Improve transferability of the ML models. G-loss metric showed that there was an
improvement in the classification results when we used combined spectral and morpho-
logical traits.

5.7.2 Disadvantages

• Large amount of data to be processed. The multispectral images acquired with UAV
for each flight of 1 hectare to 40 meters above the ground can have an approximate
weight of 5 Gb with the sensor used in this study and the processed files (i.e. DSM,
orthomosaic) can have an approximate weight of 3Gb.

• Requires high-performance computing. The raw images acquired in the field must go
through a photogrammetric adjustment process that allows the derivation of products
such as digital surface models or orthomosaics. Furthermore, they must be post-
processed using machine learning methods. These processes require high computing
capacity and the use of graphic accelerators that not all computers have.

• Need to finding an appropriate adjustment value for the threshold to allow accurate
separation between the background and the potato plants when weed presence increase
inside the crop.

5.8 Contributions to knowledge in Geomatics

This thesis contributes to the knowledge in Geomatics in the following aspects:

• It integrates concepts and techniques used in computer vision in the processing of multis-
pectral images acquired through remote sensors that can serve as a basement for other
investigations.

• It implements and evaluates a computational workflow for the processing and analysis of
optical data acquired from UAV platforms to assess the severity of LB in potato crops,
published in a public repository and available to be used in other projects.
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5 Discussion

• It evaluates the level of complementary between multispectral traits, widely used in
remote sensing studies, and morphological traits, widely used in computer vision studies,
to determine the presence of a disease affecting an important crop in Colombia.
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6 Conclusions

In this study, experimental results showed that the ML algorithms which gave the best results,
according two the accuracy metrics were SVC and RF. For LSVC algorithm, overall accuracy
and Matthews correlation coefficient for the dataset A were 0.897 and 0.795 respectively and
for the dataset B Overall accuracy and Matthews correlation coefficient were 0.799 and 0.556
respectively and for RF algorithm, overall accuracy and Matthews correlation coefficient for
the dataset A were 0.890 and 0.784 respectively and for the dataset B Overall accuracy and
Matthews correlation coefficient were 0.786 and 0.520 respectively. Although the results in
terms of accuracy metrics for dataset B are not as good as those for dataset A, the results
are promising when considering that the models used for the classification of this dataset
were pre-trained with data acquired in a different date under dissimilar lighting and weather
conditions.

When using spectral traits only the bands which allow better accuracy results were SAVI,
EVI2 and LAI. When using morphological traits only the bands which allow better accuracy
results were area, equivalent diameter and minor axis lenght. However, when using combined
spectral and morphological traits, accuracy results improved when all the bands were used
in he classification stage. This suggest that there is still work to do to understand the
contribution of the traits to the correct identification of diseased plants when working with
combined morphological and spectral traits.

Combination of spectral and morphological traits demonstrate to achieve the better the
lower MAE for both dataset A and dataset B, in contrast, when using only spectral traits
the results are good only for the dataset A. This suggest that morphological traits have the
potential to improve transferability of the ML models trained, however, further experiments
should be carried on.

Main limitation of the proposed approach relates to the need of finding an appropriate
adjustment value for the threshold which allows accurate separation between the background
and potato plants when weed presence increase inside the crop. In this study, there was no
need to adjust the threshold in the dataset A, where the presence of weeds was marginal as
the Otsu’s threshold algorithm was able to find the appropriate value for separation of plants
from bare soil. However, as weed presence increased in the dataset B, it was necessary to use
Otsu’s algorithm with and adjusted threshold to allow accurate separation. Although adjust-
ing the threshold value helped to remove most of the weeds present in the orthophoto for the
two datasets, there was still the presence of weeds in the segmented result. However, weeds
remnants presence were predominant between the experimental blocks where cultural man-
agement such as hill-up was not carried on, so, for this study those remnants were considered
negligible, even though, additional experiments need to be conducted to better understand the
influence of weed presence into the quality of background removal from images and accuracy
of the infection level.
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Rojas, A. E., and Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops
using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10).

Eisenbeiß, H., Zurich, E. T. H., Eisenbeiß, H., and Zürich, E. T. H. (2009). UAV photogram-
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