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Teoŕıa e Investigación aplicada en ciencias Económicas
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Resumen

Esta tesis propone aplicar los pronósticos generados por la agregación de expertos como

un novedoso predictor de los rendimientos esperados a 2 estrategias de portafolio diferentes:

1) Mean-Variance como propone Markowitz (1952) y 2) contracción de la matriz de covari-

anza S como en Ledoit and Wolf (2004). Los expertos se construyeron generando pronósticos

con Quantile Regression de Generalized Random Forests y versiones automatizadas de Ex-

ponential Smoothing y ARIMA. Este estudio evalúa la precisión de los pronósticos de dos

algoritmos de agregación de expertos 1) ML-Prod y 2) ML-Poly mediante un estudio de

simulación, antes de aplicar el método superior a un portafolio diversificado. Después de

evaluar la precisión de los pronósticos, se eligió el algoritmo superior ML-Poly para pronosti-

car los rendimientos esperados y mostró resultados prometedores fuera de la muestra para los

portafolios considerados, devolviendo valores superiores para los parámetros de rendimiento

seleccionados y resultados inferiores marginales en términos de ratio de rotación. Mediante

el estudio de simulación, también se validaron los resultados de los portafolios.

Palabras clave: (Media-varianza, Shrinkage, Generalized Random Forests, árboles de

decisión, ARIMA automatizado, Exponential Smoothing, agregación de expertos, op-

timización de portafolios).

Abstract

This thesis proposes to apply forecasts produced by expert aggregation as novel predictor

of expected returns to 2 different portfolio strategies: 1) mean-variance as proposed by

Markowitz (1952) and 2) shrinkage of the covariance matrix S as in Ledoit and Wolf (2004).

Experts were built by generating forecasts with quantile regression as in generalized random

forests and automatised versions of exponential smoothing and ARIMA. This study eval-

uates the predictive performance of two forecast combination algorithms 1) ML-Prod and

2) ML-Poly using a simulation study, before applying the superior method to a portfolio

scenario. After evaluating prediction accuracy, the superior ML-Poly algorithm was chosen

to forecast expected returns and showed promising out-of-sample results for the considered

portfolios, returning superior values for the selected performance parameter and only mar-

ginal inferior results in terms of turnover ratio. Using the simulation study, the results of

the portfolios were also validated.

Keywords: (Mean-Variance, Shrinkage, generalized random forests, decision trees,

automatic ARIMA, exponential smoothing, expert aggregation, portfolio optimisa-

tion).



Contents

List of Figures xi

List of Tables xi

1. Introduction 1

2. Portfolio selection models 4

2.1. Mean-variance optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Shrinkage of the covariance matrix . . . . . . . . . . . . . . . . . . . . . . . 6

3. Estimating expected returns 7

3.1. Exponential smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2. ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3. Generalized random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1. Quantile regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4. Expert aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Methodology 17

4.1. A new combined estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1. State space framework . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2. Automatic ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.3. Quantile regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.4. Forecast combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2. Stock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. Portfolio performance parameter . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1. Sharpe ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2. Certainty equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3. Turnover ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.4. Omega ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. A simulation experiment 28

5.1. Portfolio evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1. Portfolio returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2. Sharpe ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3. Certainty equivalent return . . . . . . . . . . . . . . . . . . . . . . . 33



Contents ix

5.1.4. Turnover ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.5. Omega ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. Conclusion 37

6.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A. State space framework 40

B. Forecast error statistics 42

C. Simulation study portfolio performance 44





List of Figures

2-1. Efficient frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3-1. General process for forecasting with an ARIMA model . . . . . . . . . . . . 11

4-1. Aggregation of experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4-2. S&P500 analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-3. Dendrogram of S&P500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5-1. Box-plot forecasting performance . . . . . . . . . . . . . . . . . . . . . . . . 29

5-2. Forecasts of expert aggregation for the HollyFrontier Corporation . . . . . . 29

5-3. Weights of experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5-4. Cumulated portfolio returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5-5. Box-plot of simulated annualized returns . . . . . . . . . . . . . . . . . . . . 32

5-6. Box-plot of simulated Sharpe ratios . . . . . . . . . . . . . . . . . . . . . . . 33

5-7. Box-plot of simulated certainty equivalent return . . . . . . . . . . . . . . . 34

5-8. Monthly portfolio turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5-9. Box-plot of simulated turnover ratios . . . . . . . . . . . . . . . . . . . . . . 35

5-10.Box-plot of simulated Omega ratios . . . . . . . . . . . . . . . . . . . . . . . 36



List of Tables

3-1. ETS methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4-1. Stock choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5-1. Arithmetic means for forecast accuracy of ARIMA, ETS, ML-Prod and ML-Poly 28

5-2. Portfolio parameter summary for diversified dataset . . . . . . . . . . . . . . 31

A-1. State space equations for each model in the ETS framework . . . . . . . . . 41

B-1. Confidence intervals and means of accuracy for forecasts generated with auto-

matic ARIMA, ETS and expert aggregation algorithms for time series ob-

tained in the simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B-2. Forecast accuracy of ETS, ARIMA and expert aggregation algorithms for the

diversified dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C-1. Portfolio performance parameter generated by the simulation study . . . . . 44



1. Introduction

In modern portfolio theory one of the main problem investors face, is the effective or optimal

distribution of assets between different investments in order to achieve the highest possible

return without taking too high a risk. Markowitz (1952) paved the way for modern portfolio

theory by deriving the mean-variance optimization, which requires estimates for the mean

vector and the covariance matrix of excess returns to solve the mean-variance quadratic

optimization problem. While his work has been awarded the Nobel Price, it still revealed

weaknesses determining expected returns µ̂ and providing a stable Covariance Matrix S. To

stabilize mean-variance optimization and reduce the noise in covariance matrix estimators

Jagannathan and Ma (2003), Ledoit and Wolf (2004) proposed to shrink S.

These approaches might have improved the portfolio’s robustness, but still face challenges

when evaluating them out-of-sample. DeMiguel, Garlappi and Uppal (2009) compared the

performance of 14 different prominent portfolios to that of the 1/N strategy across seven

empirical datasets of monthly returns concluding that in summary none of the various op-

timizing models consistently delivers a Sharpe ratio or a CEQ return higher than that of the

naive portfolio, which also maintains a low turnover. Especially the estimation of µ is known

to be more difficult and to have a larger impact on the portfolio weights (Merton, 1980),

which concluding lead to a bad out-of-sample performance (Ban et al., 2018; DeMiguel,

Garlappi, Nogales et al., 2009).

Due to the growth of financial markets and computational power becoming cheaper, fore-

casting time series has gained a lot of attention in recent years, with literature producing a

variety of approaches. In this context, statistical learning is proven to be effective in improv-

ing descriptive, predictive and prescriptive analytics. Hence, it can help recognize patterns

in big data, analyse consumer behaviour or simply make better forecasts of future stock

prices (Schmidhuber, 2014). Considering estimation errors inherent in the sample expected

returns µ̂, a more accurate estimate should lead to improved portfolio results.

One of the most common class of forecasting methods are exponential smoothing algorithms,

on which some of the most successful methods are based on. Time series can be found in

many different contexts including monthly stock prices, weekly sales of a product, monthly

unemployment figures for a region, and quarterly imports of a country. These time series

are often characterized by patterns such as upward/downward trends or seasonal variations.
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Exponential smoothing algorithms exploit these patterns by estimating forecasts that are

weighted combinations of past observations, with recent observations given relatively more

weight than older observations (Hyndman et al., 2008).

Another well-known technique is ARIMA (p,d,q), which is used to forecast future equity

returns based on historical data of the considered assets. Dong et al. (2020) analysed an

automatized variation of the ARIMA algorithm and found that longer sample windows tend

to capture a more complete spectrum of the industrial and business cycle by moderating the

short-term noise and shocks in the capital market and therefore leads to satisfying forecasting

accuracies. Moreover, they found that the degree of integration is mostly 1 for the equities

and the time windows they tested, confirming the widely accepted belief that the market is

partially efficient and asset prices largely follow random walk. Also, the auto-regression’s

order was typically 1 or 2, proofing the existence of momentum. The same could be noticed

for the order moving average, showing the influence of market noise.

Also to be considered when estimating returns is their distribution, which can be exploited

using quantile regression to reflect precise information about features and different points

of their distribution function by computing various quantiles. A framework is included in

random forests, an ensemble technique proposed by Breiman (2001) that combines vari-

ous algorithms (e.g. boosting, linear models). They analyse a set of many individual base

learners and construct weights for them to forecast new data points (Biau et al., 2008).

Random forests are well suited to deal with large real-life tasks, since they can deal with

small sample sizes and high-dimensional feature spaces and can easily be parallelized. One

of the most recent algorithm known as generalized random forests proposed by Athey et al.

(2019) abandons the idea of obtaining the final forecast by averaging estimates over each

member of the ensemble and instead treats forests as adaptive nearest neighbour estimates.

While each of the aforementioned algorithms has advantages and disadvantages when ad-

apting on structural breaks in the data, expert aggregation or forecast combinations have

frequently been found to produce on average better forecasts than methods based on the

individual model. Timmermann (2006) described expert aggregation as a diversification

strategy that improves forecasting performance in the same manner as asset diversification

leads to a better portfolio performance. Empirical evidence was delivered by Makridakis and

Hibon (2000), who forecasted 3003 time series in the so-called M3-competition and found

that on average the accuracy of combinations of various methods outperform, the specific

models that are being combined.

Following the findings of Makridakis and Hibon (2000), recent expert aggregation algorithms

were developed by Gaillard et al. (2016), who established expert-dependent regret bounds

and time varying learning rates. Therefore, this thesis proposes to abandon the idea of
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using the traditional estimates for the expected returns of two different strategies 1) the

mean-variance portfolio as proposed by Markowitz (1952) and 2) an extension to the model

by shrinking the covariance matrix as in Ledoit and Wolf (2004) and replace them by a

combination of forecasts generated by the three aforementioned models to utmost improve

the out-of-sample performance.

This thesis is organized highlighting modern portfolio theory in chapter 2 including the

estimation of optimal weights for both portfolio strategies. Chapter 3 details the theor-

etical framework for exponential smoothing, automatic ARIMA, quantile regression and

expert aggregation based on the ML-Prod and ML-Poly algorithm by Gaillard et al. (2016).

Chapter 4 highlights the methodology of how the forecasts are generated and applied to

the portfolios. Chapter 5 first details a simulation study to evaluate the forecasting per-

formance of the proposed expert aggregation algorithms and compares them to automatic

ARIMA and exponential smoothing, before applying the superior ML-Poly algorithm to the

simulated portfolios and a diversified dataset. Section 5.1 evaluates the out-of-sample port-

folio performance of the two traditional approaches in comparison to models applying the

chosen estimate as µ̂. For the analysis several performance parameter are determined such

as annualized returns, Sharpe ratios, certainty equivalent, turnover and Omega ratio. Each

parameter is validated using the simulation study and results are visualized with box-plots

and confidence intervals are reported in the appendix table C-1. Chapter 6 summarizes the

results obtained and discusses these findings.



2. Portfolio selection models

One of the simplest approaches to allocate wealth is investing naive throughout the portfolio.

Ignoring all available data the weights are allocated 1/N with N being the number of assets

and are then rebalanced each month. This approach is simple, but proven to outperform

many optimization approaches due to estimation errors (DeMiguel, Garlappi, Nogales et

al., 2009). Therefore, this simple but efficient investment strategy is included as additional

benchmark.

2.1. Mean-variance optimization

In modern portfolio theory one of the central objectives are the optimal distribution of cap-

ital across various investments and the investigation of investment behaviour on the capital

markets. Markowitz (1952) laid the foundation of modern portfolio theory by assuming that

investors mainly focus on returns and the associated variance/risk. Thus, he proposed to op-

timize portfolios based on individual risk aversion resulting in the Global Minimum-Variance

Portfolio (GMVP) and the Tangency Portfolios. His idea is commonly referred to as Capital

Asset Pricing Model and has been further investigated focusing on the relationship between

systematic risk and expected return by Lintner (1965), Mossin (1966), Sharpe (1970)).

One of the most discussed topics is the estimation of expected returns µ̂ and the covariance

matrix
∑̂

to optimize the portfolio. Assuming that historical returns are normally distrib-

uted Markowitz (1952) decided to use the means of historical returns to calculate µ̂ and the

maximum likelihood estimator to approximate the sample covariance matrix S resulting in

the following equations:

µ̂ =
1

T

T∑
t=1

Rt (2-1)

S =
1

T

T∑
t=1

(Rt − µ̂)(Rt − µ̂) (2-2)

These parameters are then used to optimize the desired portfolio weights. The GMVP only

requires the sample variances to estimate a vector of weights minimizing risk, which is defined

as
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wMV =

∑−1 1

1′
∑−1 1

(2-3)

In contrast, Tangency Portfolios additionally consider the investors risk aversion and max-

imize the return for a given level of risk. Their vector of weights is defined as

wT =
σ̂2
G

µ̂− rf

∑̂−1
µ̂∗ (2-4)

, where µ̂∗ = µ̂− rf .

The Portfolios then can be displayed along the efficient frontier with the turning point rep-

resenting the GMVP, which also separates the efficient from inefficient part of the portfolios.

To improve portfolio performance one might additionally introduce short sale constraints,

both options are displayed in figure 2-1.
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Figure 2-1.: Efficient frontier

Unfortunately this procedure is proven to be less reliable, since the random process that

leads to the expected returns cannot be precisely determined (DeMiguel, Garlappi, Nogales

et al., 2009). Therefore, the main challenge that portfolio optimization models face is the

approximation of estimates, which is particularly noticeable when considering a high amount

of assets (Ledoit and Wolf, 2004). Another problem is the tangency portfolio’s tendency to

assume extreme weights caused by these noisy estimates, which can have a serious impact

on the portfolio’s out-of-sample performance (DeMiguel, Garlappi and Uppal, 2009). The



6 2 Portfolio selection models

GMVP is proven to be more robust due to only considering the variance to optimize the

portfolio. Approaches to improve accuracy included constraining weights, shrinking the

covariance matrix or considering additional factors.

2.2. Shrinkage of the covariance matrix

To minimize estimation error of the covariance matrix S Ledoit and Wolf (2004) proposed

to shrink its extremes towards the centre. Their approach is designed to recognize the most

extreme positive coefficients in S and pull them down while the extremely low estimated

coefficients are pulled up. The two main questions that arise are: to which goal should one

shrink and with which intensity?

The operational shrinkage estimator is defined as:

∑̂
Shrink

= δ̂∗F + (1− δ̂∗)S (2-5)

, where δ̂∗ is the optimal shrinkage intensity, F the shrinkage target and S the sample

covariance matrix.

The shrinkage target F has to meet two requirements simultaneously. 1) It should consider

only few degrees of freedom and 2) reflect important characteristics of the parameters to

be forecasted. Ledoit and Wolf (2004) decided to use the constant-correlation model, which

states that all the (pairwise) correlations are identical. Therefore, other models should be

applied when a portfolio contains assets from different classes such as stocks and bonds.

The main challenge is to find an appropriate constant for the shrinkage intensity between

0 and 1, that minimizes the compromise of S and F . Hence, the goal is to estimate the

minimum between covariance matrix and shrinkage estimator defined as δ∗. When choosing

the optimal shrinkage intensity δ∗ it is important to consider that shrinkage estimators

analysed in (Frost and Savarino, 1986) break down when N ≥ T because their loss functions

involve the inverse of S. Ledoit and Wolf (2004) proposed to estimate the optimal shrink

intensity using a quadratic loss function based on the Frobenius norm approximating the

difference between true and sample covariance matrix.



3. Estimating expected returns

From literature arose many different machine learning algorithms to estimate expected re-

turns each with their own advantages and disadvantages, on the other hand methods that

combine experts have been found in empirical studies to produce better forecasts on aver-

age than the forecasting models considered (Timmermann, 2006). This study proposes to

combine experts applying the ML-Poly and ML-Prod algorithm by Gaillard et al. (2016)

to further improve forecast accuracy. Experts are built using the automatic ARIMA and

exponential smoothing algorithm by Hyndman and Khandakar (2008). Additionally, gener-

alized random forests as in Athey et al. (2019) are constructed and forecasts are generated

via quantile regression, where different quantiles include varying information on the distri-

bution of returns. Finally, the forecasts produced by the different algorithms are combined

to improve the overall forecast accuracy.

3.1. Exponential smoothing

Exponential smoothing describes a class of forecasting methods, on which some of the most

successful algorithms are based on. While time series arise in varying contexts and industries,

all have in common that they are often characterized by patterns such as upward/downward

trends or seasonal variations. Exponential smoothing algorithms can exploit these charac-

teristics by estimating forecasts that are weighted combinations of past observations, with

recent observations given relatively more weight than older observations (Hyndman et al.,

2008). They allow considerable flexibility in the specification of the parametric structure.

Anderson (2012), Aoki and Havenner (1991), Hannan and Deistler (2012) proposed innova-

tions formulations of the model, which are included in the Forecast package in R.

Each model, referred to as state space models, consists of a measurement equation to de-

scribe the observed data and some state equations to determine how unobserved components

or states (level, trend, seasonal) change over time (Hyndman et al., 2008). Traditionally,

exponential smoothing methods only produce point forecasts, while the underlying model

additionally provides a framework for computing prediction intervals and other properties.

In state space models the minimum mean squared error forecasts are the estimates from

exponential smoothing. For each method exists a model with additive and multiplicative

errors with similar point forecasts if the same smoothing parameter values are used, but will
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produce different prediction intervals.

Let yt denote the observation at time t, and let xt be a “state vector” containing unobserved

components that describe the level, trend and seasonality of the series. A general linear

innovations state space model can be written as

yt = w(xt−1) + r(xt−1) + εt, (3-1)

xt = F (xt−1) + g(xt−1)εt, (3-2)

where εt is a white noise series and F, g and w are coefficients. Equation 3-1 describes the

relationship between the unobserved states xt−1 and the observation yt and equation 3-2

defines the evolution of states over time. To choose the best model, Hyndman et al. (2008)

propose to use a penalized method based on the in-sample fit, since other accuracy meas-

ures such as the mean squared error (MSE) might suffer of too few out-of-sample errors.

Applications of the automatic forecasting strategy showed that the proposed methodology

is particularly good at short-term forecasting, and especially for seasonal short-term series,

outperforming the other analysed methods.

In a first step in exponential smoothing the trend component is determined, which is a

combination of a level term (`) and a growth term (b). Future trend types then are estimated

by combining the level and growth in various ways. Let Th denote the forecast trend over

the next h time periods, and let φ denote a damping parameter (0 < φ < 1) (Hyndman

et al., 2008). Concluding, the five trend types or growth patterns are defined:

None: Th = `

Additive: Th = `+ bh

Additive damped: Th = `+ (φ+ φ2 + ...+ φh)b

Multiplicative: Th = `bh

Multiplicative damped: Th = `b(φ+ φ2 + ...+ φh)

A damped trend method is appropriate when there is a trend in the time series, but one

believes that the growth rate at the end of the historical data is unlikely to continue more

than a short time into the future Hyndman et al. (2008). These equations lead to dim the

trend as the length of the forecast horizon increases, which often improves the forecasting

accuracy. After a trend is chosen, a seasonal component, either additively or multiplicatively

is introduced. Lastly, an error term is added, which is also additively or multiplicatively.

Ignoring the error component leads to the following 15 exponential smoothing methods:
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Table 3-1.: ETS methods

Trend component Seasonal Component

N A M

(None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) A,N A,A A,M

Ad (Additive damped) Ad,N Ad,A Ad,M

M (Multiplicative) M,N M,A M,M

Md (Multiplicative damped) Md,N Md,A Md,M

Cell (N,N) describes the simple exponential smoothing method, cell (A,N) describes Holt’s

linear method, and cell (Ad,N) describes the damped trend method. Holt-Winters’ addit-

ive method is given by cell (A,A), and Holt-Winters’ multiplicative method is given by cell

(A,M). The other cells correspond to less commonly used but analogous methods. Consider-

ing the two different error terms (additive, multiplicative) results in two possible state space

models for each method in 3-1. Each model gives equivalent point forecasts when applying

the same parameter values, but differs in their prediction intervals. Hence, there are 30

potential models described in this classification. The state space equations for each model

of the ETS framework are summarized in table A-1 appendix A.

3.2. ARIMA

Box and Jenkins (1970) developed the commonly known ARIMA model for forecasting,

an extrapolation method that uses historical time series data to generate a forecast. An

ARIMA model is expressed by three steps 1) identifying, 2) estimating and 3) diagnosing the

underlying model. It combines an auto regressive model (AR) in the first part of the equation

with a moving average model (MA) in its second part of the equation. The generalized form

of the Autoregressive Integrated Moving Average (ARIMA) to fit non-seasonal data is given

by

φ(B)(1−Bd)yt = c+ θ(B)εt, (3-3)

where εt denotes a white noise process with variance σ2 and a mean of zero, B is the back-

shift operator and φ(.), θ(.) are the polynomial orders of (p, q). According to Brockwell and

Davis (2006) causality and invertibility are given by assuming that φ(.), θ(.) have no roots
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for |z| < 1.

Equation 3-3 can also be described as a linear function of past values and errors, expressed

in

Yt = β0 + β1Yt−1 + β2Yt−2 + ...+ βpYt−p + εt + Θ1εt−1 + ...+ Θqεt−q, (3-4)

where Yt is the forecasted value, which is expressed as a function of its own lag variables

in the past time period along with the summation of its own random error term εt. In this

context p and q are the respective auto regressive and moving average lags. The level at

which Yt becomes stationary is referred to as I (d) indicating the integration order. Hence,

ARIMA models (p,d,q) take into account the lag of the dependent variable, the random error

arising out of the estimation and order in which the variable becomes stationary, where the

order p and q is identified by the auto correlating function (ACF) and partial autocorrelation

function (PACF).

Hyndman and Khandakar (2008) state that the main task for automatic ARIMA forecasting

is selecting an appropriate model order, that is the values p, q, d, P,Q,D. In contrast to the

traditional estimation of p and q, the Automatic ARIMA algorithm as implemented in the

Forecast package in R performs a step-wise procedure to optimize the model applying an

information criterion. That is, if d and D are known, the orders p, q, P and Q can be chosen

via an information criterion such as the AIC:

AIC = −2 log(L) + 2(p+ q + P +Q+ k), (3-5)

where k = 1 if c 6= 0 and 0 otherwise, and L denotes the maximized likelihood of the

model fitted to the differenced data (1 − Bm)D(1 − B)dyt. Unfortunately, the full model’s

likelihood yt is not defined and so the value of AIC for different levels of differencing are not

comparable. For a non-seasonal time series Hyndman and Khandakar (2008) suggested to

choose the KPSS unit-root test (Kwiatkowski et al., 1992).

1. The data is tested for a unit root

2. if the test result is significant, the differenced data is tested for a unit root

3. The procedure is stopped by when obtaining the first insignificant result

Illustration 3-1 shows the general procedure to estimate an ARIMA model on the left hand-

side and displays the application of the automatic ARIMA function in R on the right hand-

side.



3.3 Generalized random forests 11

1. Plot the data. Identify
unusual observations and

understand patterns

2. If necessary, use a
Box-Cox transformation to

stabilize the variance.

3. If necessary, difference the
data until it appears

stationary using unit-root
tests.

4. Use ACF/PACF plots of
the differenced data to

determine possible candidate
models.

5. Try the chosen models
and apply the AIC to search

for the best model.

6. Check the residuals from
the chosen model by plotting
the ACF and by performing

a portmanteau test.

7. Calculate forecasts

Use automatic ARIMA to
find the best model for the

considered time series.

Select model order
manually.

Apply automated
algorithm.

Do the residuals look
like white noise?

Yes

No

Figure 3-1.: General process for forecasting with an ARIMA model

3.3. Generalized random forests

Breiman (2001) introduced random forests an algorithm used for statistical learning, which

represents an efficient method for non-parametric conditional mean estimation. They are

used given a data-generating distribution for (Xi, Yi) ∈ X×R to estimate µ̂(x) = E[Yi|XiXi =

x]. To determine any quantity identified via local moment conditions θ(x) Breiman (1996)

defined 3-6 for given data (Xi, Oi) ∈ X ×O.

E[ψθ(x),ν(x)(Oi)|Xi = x] = 0 for all x ∈ X , (3-6)

where ψ(·) is a scoring function and ν(x) an optional nuisance parameter. The forecast

of a particular test point x is estimated by averaging forecasts across different trees (Amit

and Geman, 1997; Breiman, 1996; Dietterich, 2000; Ho, 1998). Therefore, individual trees
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are grown by recursively adding axis-aligned splits to the tree, where each split is chosen

to maximize the improvement to model fit (Breiman, 1984) also known as greedy recursive

partitioning.

The estimates and their asymptotic behaviour have been studied by various statisticians con-

sidering confidence intervals (Wager and Athey, 2018), consistency (Arlot and Genuer, 2014;

Biau, 2012; Biau et al., 2008; Denil et al., 2014; Lin and Jeon, 2006; Scornet et al., 2015;

Wager and Walther, 2015) and second-order asymptotes (Mentch and Hooker, 2016). Re-

gression forests efficiently stabilize forecasts due to their low bias, but high variance (Athey

et al., 2019; Scornet et al., 2015). They are written as the average of B noisy tree-based

estimates µ̂b(x), µ̂(x) = B−1
∑B

b=1 µ̂b(x) (Bühlmann and Yu, 2002). Since noisy solutions

are generally biased, averaging would not improve the model. Another issue of generalizing

forest-based methods is their dependency on whether the adaptive neighbourhood function

obtained by partitioning adequately captures the heterogeneity in θ(·) (Breiman, 2001).

One of the most recent approaches include generalized random forests, which were intro-

duced by Athey et al. (2019). In standard classification or regression forests as proposed

by Breiman (2001) the trees are randomized using bootstrap (or subsample) aggregation,

whereby each tree is grown on a different random subset of the training data, and each

variable is restricted by a random split selection, which is available at each step of the al-

gorithm. Athey et al., 2019 treat forests as a type of adaptive nearest neighbour estimator,

which makes the model more flexible when applying to statistical extensions and therefore,

the idea of obtaining the final forecast by averaging estimates from each member of an en-

semble as in Breiman (2001) can be abandoned.

To begin with, one has to estimate solutions for the equation 3-6, given n independent and

identically distributed samples, indexed i = 1, ..., n. The observable quantity to each sample

Oi encodes information relevant to estimating θ, along with a set of auxiliary covariates

Xi(x). For non-parametric regression, this observable is defined as Oi = {Yi} with Yi ∈ R
and just consists of an outcome, which tends to contain richer information (Athey et al.,

2019). The functions θ(x) are estimated by defining similarity weights ai(x) that determine

the relevance of fitting θ(·) at x of the training example i. The target of interest is then

fitted using the empirical refined version of estimating equation (Athey et al., 2019; Fan

et al., 1998; Newey, 1994; Staniswalis, 1989; Stone, 1977; Tibshirani and Hastie, 1987).

However, when applying a forest algorithm as proposed in Breiman (2001) one might face

computational limitations. The computation is typically intensive performing the split-

selection step, so it’s efficient implementation is crucial. Athey et al., 2019 suggested follow-

ing procedure where the splits are in contrast only solved once per node. Each split starts

with a parent node P ⊆ X ; given a sample of data J : defined as (θ̂P , ν̂P )(J ) to be the
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solution to:

(θ̂P , ν̂P )(J ) ∈ argminθ,ν =


∣∣∣∣∣
∣∣∣∣∣ ∑
i∈J :Xi∈P

vθ,ν(Oi)

∣∣∣∣∣
∣∣∣∣∣
2

 . (3-7)

P is then divided into the sub-nodes C1, C2 ⊆ X by an axis-aligned cut improving the θ-

estimates utmost possible. The goal is to minimize err(C1, C2) =
∑

j=1,2 P[X ∈ Cj|X ∈
P ]E[(θ̂Cj

(J )− θ(X))2|X ∈ Cj], where θ̂Cj
is the parent-node of Cj.

Therefore, an approximate criterion ∆̃(C1, C2) is optimized by gradient-based estimates for

θ̂C1 and θ̂C2 . For the sub-nodes C applies θ̃C ≈ θ̂C and they are estimated by 1) determining

AP as any consistent estimate for the gradient of function ψ

AP =
1

|{i : Xi ∈ P}|
∑

{i:Xi∈P}

∇vθ̂P ,ν̂P (Oi). (3-8)

The responding value is then inserted into equation 3-9, where θ̂P and ν̂P are determined by

solving 3-7 once and 2) estimating θ̃C as in:

θ̃C = θ̂P −
1

|{i : Xi ∈ C}|
∑

{i:Xi∈C}

ξ>A−1P vθ̂P ,ν̂P (Oi), (3-9)

where θ̂P and ν̂P are obtained by solving 3-6 once and ξ is a vector that chooses the θ-

coordinate from the (θ, ν) vector. To prepare the last step pseudo-outcomes are created by

estimating θ̂, ν̂ and A−1P . This step is referred to as

ρi = ξ>A−1P vθ̂P ,ν̂P (Oi) ∈ R. (3-10)

The final step is to perform a CART regression split on the pseudo-outcomes pi maximizing

the criterion ∆̃(C1, C2). After executing the regression step, the observations in each sub-

node are relabelled via 3-9 and proceed iteratively.

∆̃(C1, C2) =
2∑
j=1

1

|{i : Xi ∈ Cj}|
(
∑

|{i:Xi∈Cj}|

ρi)
2 (3-11)

This approach includes other well-known machine learning algorithms, such as gradient

boosting Friedman (2001) and the model-based recursive partitioning algorithm of Zeileis
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et al. (2008). Empirical results by Athey et al. (2019) show that estimation error from using

the approximate criterion instead of the one proposed by Breiman (2001) are within statist-

ical tolerance.

This framework by Athey et al. (2019) provides a flexible method for non-parametric estim-

ation offering quantile regression, conditional average partial effect estimation and hetero-

geneous treatment effect estimation with instrumental variables.

3.3.1. Quantile regression

For Y a real-valued response variable and X a covariate or predictor variable. A general

objective of statistical analysis is to find relations between X and Y . Classical regression

analysis tries to estimate µ̃(x) of the conditional mean E(Y |X = x) of the response variable

Y for X = x (Meinshausen, 2006). Therefore, traditional practise of forecasting the mean

stock return assumes a squared loss function

L(et+1) = e2t+1 (3-12)

, where et+1 = rt+1 − f̃t is the forecast error and f̃t the forecast of return rt+1. Considering

this loss function, the optimal return estimate is the conditional mean. For the mean abso-

lute error loss L(e) = |e|, the optimal forecast is the conditional median.

Unfortunately, the conditional mean only reflects one aspect of the distribution of Y . The

conditional distribution function F (y|X = x) is given by the probability that, for X = x, Y

is smaller than y ∈ R, F (y|X = x) = P (Y ≤ y|X = x).

For given X = x the α-quantile for a continuous distribution function Qα(x) is defined so

that the probability of Y being smaller than Qα(x) equals exactly α (Koenker, 2005).

Qα(x) = inf{y : F (Y |X = x) ≥ α} (3-13)

Concluding, the quantiles can be applied to give more precise information about features

and distribution of the forecasting variable Y than just considering the conditional mean

Koenker (2005). To estimate the return using quantiles α ∈ (0, 1) Koenker and Bassett

(1978) proposed the tick loss function

Lα(et+1) = (α− 1{et+1 < 0})et+1. (3-14)

Following the first order condition of 3-12 including the forecast f̃t, the optimal estimate

is determined via the conditional quantile −α + F (f̃t) = 0, where F is the distribution



3.4 Expert aggregation 15

function of returns. Therefore, the optimal quantile depends on the distribution of returns

f̃t = F−1(α).

3.4. Expert aggregation

To estimate forecasts by combining experts, a learner has to make sequential forecasts over

a series of rounds by weighting each expert K (Cesa-Bianchi and Lugosi, 2006; Freund et al.,

1997; Gaillard et al., 2016; Littlestone and Warmuth, 1994; Vovk, 1998). For each round

t = 1, ..., T , the learner forecasts a value by choosing a vector p t = p1,t, ..., pK,t of positive

weights that sum up to one. In a next step the weights pk,t are assigned to each expert k

and the weighted average is forecasted.

ŷt =
∑
k

pk,txk,t (3-15)

Each expert’s k loss `k,t ∈ [a, b] is then cumulated, resulting in the learner’s loss ˆ̀
t = p>t `t =∑K

k=1 pk,t`k,t, where `t = (`1,t, ..., `K,t). The learner then minimizes its cumulative loss by

controlling his regret Rk,T against each expert k, where Rk,T =
∑

t≤T (ˆ̀
t − `k, t). In a worst

case scenario, the best bound guaranteed on the standard regret Rk,t is of order O(
√
T lnK)

(Cesa-Bianchi and Lugosi, 2006).

Cesa-Bianchi et al. (2007) succeeded in improving the algorithm by providing second-order

(variance-like) bounds on the regret, leading to two types of bounds, each with its own

advantages and disadvantages. The first formulation in the form of

Rk,t ≤
lnK

η
+ η

T∑
t=1

`2k,t (3-16)

for all experts k, where η ≤ 1/2 is a parameter of the algorithm (Gaillard et al., 2016). By

optimizing η with knowledge of the losses, one would achieve the desired bound

Rk,t = O

(√√√√lnK
T∑
t=1

`2k,t

)
, (3-17)

but there is no known method that achieves 3-17 for all experts k without mentioned hind-

sight. The second bound established by Cesa-Bianchi et al. (2007) is a uniform regret bound,

having the drawback of not reflecting that it is harder to compete with some experts than

with others. In consequence, Gaillard et al. (2016) proposed to aim for expert-dependent

regret bounds and formulated a second-order bound of the form
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Rk,t = O

(√√√√lnK
T∑
t=1

(ˆ̀
t − `k,t)2

)
, (3-18)

which holds for all experts k. Furthermore, they developed a variant of the Prod algorithm

by Cesa-Bianchi et al. (2007) with two innovations. 1) The analysis for Prod is extended to

multiple learning rates ηk similar to a variant of the Hedge algorithm with multiple learning

rates as proposed by Blum and Mansour (2007). To prevent that standard tuning techniques

for the learning rates lead to an additional O(
√
T lnK) multiplicative factor, Gaillard et al.

(2016) introduced learning rates ηk,t that vary with time to convert this factor to O(ln lnT ),

which they consider to be consistent.

Another approach is the application of polynomial potentials that can be useful to minimize

regret as illustrated in (Cesa-Bianchi and Lugosi, 2003). Gaillard et al. (2016) based their

ML-Poly algorithm on them with order p = 2. The bound is characterised by a poor

dependency on the number of experts K. The adequate dependencies might be achieved by

considering polynomial functions of arbitrary orders p (Cesa-Bianchi and Lugosi, 2003). For

all sequences of loss vectors `t ∈ [0, 1]K , the cumulative loss of algorithm 4 is determined

with learning rates defined as:

ηk,t−1 =
1

1 +
∑t−1

s=1(
ˆ̀
s − `k,s)2

(3-19)

The opera package by Gaillard et al. (2016) in R provides a wide range of combination

algorithms including other approaches. This thesis limits its investigation on applying the

ML-prod and ML-poly algorithm to aggregate experts and evaluate the results afterwards.
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The analysis is done performing a rolling window study to generate allocation weights for the

mean-variance and shrinkage portfolio. Traditionally, the data of the previous M months is

used to estimate the parameters required to implement a particular strategy. Based on a

T -month historical data set of returns an estimation window of M = 120 months is chosen

to estimate the mean and the respective covariance matrices for each month t, starting with

t = M + 1. These estimates are then applied on the respective functions to determine the

relative portfolio weights of each strategy. Using the expected returns in month t and the

portfolio weights in month M , the out-of-sample portfolio returns for month t are estimated.

This process continues for each month t+ 1 by determining the portfolio weights for month

t, adding the return for the next period t + 1 in the data set and discarding the earliest

return until the end of the data set is reached. The result is a series of monthly T −M

out-of-sample portfolio returns generated by each investment strategy applied.

4.1. A new combined estimate

As mentioned, the reliable estimation of µ̂ is quite challenging when following mean-variance

optimization, especially when trying to maximize returns at a given risk level, the estimation

error can lead to poor out-of-sample results (DeMiguel, Garlappi, Nogales et al., 2009). Es-

pecially affected by this observation is the mean-variance portfolio, which tends to produce

extreme weights due to estimation error in the covariance matrix S, which can be improved

by shrinking its extremes towards the centre as proposed by Ledoit and Wolf (2004) which

minimizes estimation error.

Before aggregating experts different forecasts for the expected return have to be generated.

The models to determine the estimate include a state space model for exponential smooth-

ing, automatic ARIMA and generalized random forests to perform quantile regression and

estimate a number of quantiles giving more information on the returns distribution and fea-

tures by applying the proposed variations (Gaillard et al., 2016) of the Prod by Cesa-Bianchi

et al. (2007) and the Poly algorithm in Cesa-Bianchi and Lugosi (2003) both with multiple

learning rates. The forecasting accuracy of both aggregation models is compared via three

statistical errors, before applying the superior estimate to a portfolio scenario.
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4.1.1. State space framework

For exponential smoothing Hyndman et al. (2008) suggest to choose the best fitting algorithm

by applying Akaike’s Information Criterion (AIC), which is based on likelihood rather than

one-step forecasts and therefore is able to select between the additive and multiplicative

error models. The AIC is defined as:

AIC = L∗(Θ̂, x̂0) + 2q, (4-1)

where q is the number of parameters in θ plus the number of free states in x0, and Θ̂ and x̂0
denote the estimates of Θ and x0. The model returning the lowest AIC is then chosen. The

resulting algorithm can be described as:

1. For each series, all appropriate models are applied, optimizing the parameters of the

model for each scenario.

2. According to AIC the best of the models is chosen.

3. Point forecasts are produced using the best model (with optimized parameters) for as

many steps ahead as required.

4. Forecasting results for the best model are obtained either using the analytical results, or

by simulating future sample paths for {yn+1, ..., yn+h} and finding the α/2 and 1−α/2
percentiles of the simulated data at each forecast horizon. If simulation is used, the

sample paths can be generated using the Gaussian distribution for errors (parametric

bootstrap) or using the resampled errors (ordinary bootstrap).

The algorithm is implemented using a rolling window of M = 90 months to estimate the

next value t + 1, repeating this process until the end of the dataset is reached. To assure

comparability between ARIMA and state space framework, the same methodology is applied

for both algorithms.

4.1.2. Automatic ARIMA

The first as expert considered model is an automatized variation of the well-known ARIMA

algorithm. Hyndman and Khandakar (2008) developed a method that automatically selects

the best fit for the respective model and additionally includes a framework for a variety of

exponential smoothing algorithms. They propose to apply a penalized method based on the

in-sample fit, since accuracy measures as the mean squared error (MSE) might face issues

creating a sufficiently large number of out-of-sample errors to draw reliable conclusions. The

automatic ARIMA method performs a step-wise procedure to select the order of (p, q)(P,Q)

by applying Akaike’s Information Criterion (AIC) and specify the degree of integration d
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and D. Instead of directly minimizing the AIC to choose all of the parameters, which might

lead to over-differencing. Hyndman and Khandakar (2008) propose to use unit root-tests to

first estimate D and d and then proceed to select the values p and q by minimizing the AIC.

They defined the resulting procedure as:

Step 1: Four possible models are tested to start with

• ARIMA(2, d, 2) if m = 1 and ARIMA(2, d, 2)(1, D, 1) if m > 1.

• ARIMA(0, d, 0) if m = 1 and ARIMA(0, d, 0)(0, D, 0) if m > 1.

• ARIMA(1, d, 0) if m = 1 and ARIMA(1, d, 0)(1, D, 0) if m > 1.

• ARIMA(0, d, 1) if m = 1 and ARIMA(0, d, 1)(0, D, 1) if m > 1.

If d+D ≤ 1, these models are fitted with c 6= 0, otherwise c = 0. Of these four models,

the one with the smallest AIC value is selected, referred to as “current” model. It is

denoted by ARIMA(p, d, q) if m = 1 or ARIMA(p, d, q)(P,D,Q)m if m > 1

Step 2: Up to thirteen variations on the current model are considered:

• where one of p, q, P and Q is allowed to vary by ±1 from the current model

• where p and q both vary by ±1 from the current model;

• where P and Q both vary by ±1 from the current model;

• where the constant c is included if the current model has c = 0 or excluded if the

current model has c 6= 0.

Whenever a model with lower AIC is found, it becomes the new “current” model and

the procedure is repeated. This process finishes when there cannot be found a model

close to the current model with lower AIC.

To avoid issues with convergence or near unit-roots, several constraints on the fitted models

are introduced:

• The values of p and q are not allowed to exceed the specified upper bounds of 5 in each

case.

• The values of P and Q are not allowed to exceed the specified upper bounds of 2 in

each case.

• Any model which is “close” to non-invertible or non-causal is rejected. Specifically, the

roots of φ(B)Φ(B) and θ(B)Θ(B) are estimated. If either has a root that is smaller

than 1.001 in absolute value, the model is rejected.

• If there are any errors arising in the non-linear optimization routine used for estimation,

the model is rejected, since any model that is difficult to fit is probably not a good

model for the data.
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A valid model is guaranteed to be returned, because the model space is finite and at least

one of the starting models will be accepted (the model with no AR or MA parameters). The

algorithm produces then forecasts using the selected model. For its application a window

length has to be chosen. While short windows might preserve the most recent momentum

of returns, a longer window controls short-term noise and shocks in the capital market.

Therefore, a rolling window of M = 90 Months is chosen to forecast the next value, repeating

this process until the end of the dataset is reached. Considering the extensive analysis

required to visualize the residuals of all ARIMA fits, this paper refrains from reviewing

them.

4.1.3. Quantile regression

Athey et al. (2019) proposed an innovation of random forests by Breiman (2001) that can

be used to fit any quantity of interest identified to a set of local moment equations. The

method considers a weighted set of nearby training examples, but instead of using classical

kernel weighting functions that are prone to dimensionality, an adaptive weighting function

is suggested to better account for heterogeneity. They extended the underlying framework

to develop new methods for quantile regression, conditional average partial effect estimation

and heterogeneous treatment effect estimation. Especially, quantile regression has desirable

features for making forecasts since different quantiles of interest contain more information on

features and distribution of returns. Hence, for forecast combination it is useful to consider

a range of quantiles, instead of focusing just on the mean or median.

Athey et al. (2019) described the generalized random forest algorithm, which predefines all

tuning parameters such as the number of trees B to 2000 and the sub-sampling rate s used

in Subsample as:

Algorithm 1 Generalized random forests with honesty and subsampling

Procedure: GeneralizedRandomForest (set of examples S, test point x)

weight vector α← Zeros(|S|) for b = 1 to total numbers of trees B do

set of examples I ← Subsample(S, s)

sets of examples J1,J2 ← Splitsample(I)

tree T ← GradientTree(J1,X ) B See the GradientTree algorithm 2

N ← Neighbors(x, T ,J2) B Returns those elements of J2 falling into the same leaf as x in

tree T
for all example e ∈ N do

α[e]+ = 1/|N |
output θ̂(x), the solution to the GradientTree algorithm with weights α/B

The function Zeros creates a vector of zeros of length |S|; Subsample draws a subsample of
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size ∫ from S without replacement; and SplitSample randomly divides a set into two evenly-

sized, non-overlapping halves (Athey et al., 2019).

Since the computation of growing trees is typically dominated by the split-selection step,

it is critical for this step to be designed as efficient as possible. The authors follow other

popular statistical algorithms by choosing a gradient-based approximation, that includes

gradient boosting (Friedman, 2001) and the model-based recursive partitioning algorithm

(Zeileis et al., 2008), leading to the formulation of the following gradient tree algorithm:

Algorithm 2 Gradient Tree

Gradient trees are grown as subroutines of a generalized random forest.

Procedure: GradientTree (set of examples J , domain X )

node P0 ← CreateNode(J ,X )

queue Q ← InitializeQueue P0 while NotNull(node P ← Pop(Q)) do

(θ̂P , ν̂P , AP )← SolveEstimatingEquation(P ) B Calculates equations 3-7 and 3-8.

vector RP ← GetPseudoOutcomes(θ̂P , ν̂P , AP ) B applies equation 3-10 over P .

split Σ← MakeCartSplit(P,RP ) B optimizes equation 3-11.

if SplitSucceeded(Σ) then

SetChildren(P, GetLeftChild(Σ), GetRightChild(Σ))

AddToQueue(Q GetLeftChild(Σ))

AddToQueue(Q GetRightChild(Σ))

output tree with root node P0

The function InitializeQueue initializes a queue with a single element; Pop returns and re-

moves the oldest element of a queue Q, unless Q is empty in which case it returns null.

MakeCartSplit runs a CART split on the pseudo-outcomes, and either returns two child

nodes or a failure message that no legal split is possible (Athey et al., 2019).

The generalized random forest is constructed to exploit cross-information of assets. There-

fore, the forests are constructed containing a lagged matrix of all the 40 assets initially

considered in 4-3 to explain the remaining 10 stocks in the portfolio. 9 different Quantiles

from 0.1 to 0.9 are estimated for each considered asset. A sample of M = 120 months is

chosen to train the algorithm and generate out-of-sample forecasts for 247 months.

4.1.4. Forecast combination

Lastly, the forecasts generated by ARIMA, quantile regression and the state space frame-

work are combined using the two aforementioned approaches. Figure 4-1 illustrates the

aggregation process, with expert advice as inputs to a decision maker, who in turn yields a

response.
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Figure 4-1.: Aggregation of experts

Gaillard et al. (2016) developed innovations of two forecast combination algorithms 1) the

ML-Prod by Cesa-Bianchi et al. (2007) and 2) the polynomially weighted average algorithm

in Cesa-Bianchi and Lugosi (2003). For 1) they introduce new second-order regret bounds

in terms of excess losses, which denote the differences between instantaneous losses suffered

by the algorithm and the ones passed by each model, also referred to as experts.

Algorithm 3 Prod with multiple learning rates

Parameters: a vector η = (η1, ..., ηk) of positive learning rates

Initialization: a vector ω0 = (ω1,0, ..., ωk,0) of non-negative weights that sum to 1

For each round t = 1, 2, ...

1. form the mixture p t defined component-wise by pk,t = ηkωk,t−1/η
>ωt−1

2. observe the loss vector `t and incur loss ˆ̀
t = p>t `t

3. for each expert k perform the update ωt,k = ωk,t−1(1 + ηk(ˆ̀
t − `k,t))

The second algorithm uses polynomial potentials to minimize the regret with order p = 2.

Gaillard et al. (2016) state that its bound has the same weak dependency on the number

of experts K and on T as the other algorithm. Following Cesa-Bianchi and Lugosi (2003)

the right dependencies might be achieved by considering polynomial functions of arbitrary

orders p.

Forecasts with both algorithms are generated and then compared with each other and, also

with the forecasts generated by ETS and automatic ARIMA. For their comparison various

statistical errors are included such as the mean forecast error (ME), the root-mean square

deviation (RMSE) and the mean absolute error (MAE). The better performing forecaster is

then applied on the respective portfolio strategies. Since the model’s estimates will return

noisier data than the traditional forecasts and consequently would lead to a high turnover

ratio, all the portfolios are constrained, so that their minimum allocation is 0.09 and their
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Algorithm 4 Polynomially weighted averages with multiple learning rates

Parameter: a rule to sequentially pick positive learning rates η = (η1,t, ..., ηk,t)

Initialization: the vector of regrets with each expert R0 = (0, ..., 0)

For each round t = 1, 2, ...

1. pick the learning rated ηk,t−1 according to the rule

2. form the mixture p t defined component-wise by pk,t = ηk,t−1(Rk,t)+/η
>
t−1(Rt−1)+ where

x+ denotes the vector of the non-negative parts of the components x+

3. observe the loss vector `t and incur loss ˆ̀
t = p>t `t

4. for each expert k update the regret: Rk,t = Rk,t−1 + ˆ̀
t − `k,t

maximum 0.11. The long estimation windows and the strict constraints should lead to stable

portfolio weights for all strategies K with low turnovers to minimize involved trading.

4.2. Stock selection

For an optimized scenario, assets that preferably are uncorrelated and historically perform

well should be chosen in order to assure the best possible portfolio performance. To generate

an overview of the S&P500 and be able to appropriately filter the data an analysis of the

whole index is carried out. First, the monthly data from 1990-01-01 to 2020-08-01 of all

assets included in the index is downloaded from Yahoo Finance using the quantmod package

in R.
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Figure 4-2.: S&P500 analysis

Next, to avoid generating in-sample hindsight the data is filtered for Date < 2004− 01− 01
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and each asset’s mean log return and standard deviation are determined. The results are

visualized in figure 4-2 showing the relation of risk and reward of all stocks to determine

appropriate filters to pursue an optimized stock selection. The density shows that the ma-

jority of assets finds itself with mean log returns below 0.2 and a standard deviation of below

0.125, while many having at least 120 trading months up to the selected date. Based on

these finding the data is filtered for Date < 2004 − 01 − 01, 120 minimum trading months

and a standard deviation of 0.15. Next, the assets are ranked by their mean log return and

limited to 40, leaving numerous stocks.

Then, the remaining 40 assets are hierarchical clustered into 10 groups. Due to advantages

when identifying small clusters, an agglomerative clustering algorithm known as AGNES is

applied, which includes various clustering techniques (Landau and Chis Ster, 2010).

1. Complete linkage clustering: It estimates all pairwise dissimilarities between the

elements in cluster 1 and 2, and identifies the largest value of these dissimilarities as

the distance between the two clusters. It tends to produce more compact clusters.

2. Single linkage clustering: It estimates all pairwise dissimilarities between the ele-

ments in cluster 1 and 2, and identifies the smallest of these dissimilarities as a linkage

criterion. It tends to produce long, “loose” clusters.

3. Average linkage clustering: It estimates all pairwise dissimilarities between the

elements in cluster 1 and 2, and identifies the average of these dissimilarities as the

distance between the two clusters.

4. Ward’s minimum variance method: It minimizes the total within-cluster vari-

ance. At each step the pair of clusters with the minimum between-cluster distance are

merged.

To identify which algorithm measures more accurately the dissimilarities between clusters

of observations, the agglomerative coefficient is applied to select the best clustering method.

The parameter identifies stronger clustering structures, with values closer to 1 representing a

better fit. The following table shows the coefficients returned for each clustering algorithm.

Complete Single Average Ward

0.5293 0.2625 0.4071 0.7066

The ward algorithm returns the best coefficient with 0.7066 and is therefore applied. Figure

4-3 visualizes the resulting hierarchical cluster structure for all 40 assets initially considered.

From each group the best performing stock is automatically chosen, assuring most possible

portfolio diversification.
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Figure 4-3.: Dendrogram of S&P500

The resulting portfolio of 10 assets is summarized in table 4-1, giving information on their

industry sector, rank, mean log return, standard deviation of log returns cluster group.

Table 4-1.: Stock choice

Symbol Sector Rank Mean.log.return Sd.log.return Cluster

BLL Materials 1 0.0409 0.0985 1

AOS Industrials 2 0.0401 0.1240 2

BF-B Consumer Staples 3 0.0380 0.0896 3

HFC Energy 4 0.0356 0.1090 4

JKHY Information Technology 5 0.0352 0.1330 5

NKE Consumer Discretionary 6 0.0351 0.1210 6

CSCO Information Technology 8 0.0342 0.1340 7

PFE Health care 10 0.0313 0.0841 8

MXIM Information Technology 14 0.0270 0.1320 9

GE Industrials 27 0.0245 0.0729 10

Assets of different industry sectors with levels of risk (standard deviation) varying between

0.0729 and 0.1340 are used. The best performing asset has a monthly mean return of 0.0409

and the worst 0.0245. The data available starts in 1990-02-01 and ends in 2020-08-01,

resulting in 367 monthly returns or 247 out-of-sample periods considering the 120 months

needed to estimate the parameters to optimize the traditional portfolio models.
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4.3. Portfolio performance parameter

Before analysing each portfolio’s performance, the forecasting accuracy of the proposed al-

gorithm is evaluated. For performance evaluation of each portfolio 5 indicators are computed

1) out-of-sample returns, 2) Sharpe ratio 3) certainty equivalent return, 4) Turnover and 5)

Omega Ratio. A vector for each performance parameter saves the out-of-sample results to

each strategy k.

4.3.1. Sharpe ratio

The Sharpe ratio is one of the most used parameters when evaluating the portfolio’s per-

formance, since it represents a relationship between returns and variance. The parameter is

defined as

SRk = µk − rfσk, (4-2)

where µk is the return generated by strategy k and σk its standard deviation (Sharpe, 1964).

4.3.2. Certainty equivalent

The certainty equivalent (CEQ) is a guaranteed return that an investor would accept now

instead of taking advantage of the chance of a higher but uncertain return in the future. In

other words, the security equivalent is the guaranteed amount of money that a person sees

as desirable as a risky asset (DeMiguel, Garlappi, Nogales et al., 2009). The CEQ return

is estimated as the risk-adjusted rate of return minus the risk-free rate and is defined for

strategy k as

ˆCEQk = µ̂k −
y

2
σ̂2
k, (4-3)

where µ̂k is the mean and σ̂2
k the variance of out-of-sample excess returns generated by

strategy k and y is defined as risk aversion and following common practice set to y = 1

(DeMiguel, Garlappi, Nogales et al., 2009).

4.3.3. Turnover ratio

Turnover is defined as the percentage of a portfolio that is sold in a particular month or year.

To get a feel for the amount of trading that is required to implement each portfolio strategy,

the relative turnover is calculated, i.e. the sum of the absolute value of the trading volume

multiplied by 1 by the number of months (DeMiguel, Garlappi, Nogales et al., 2009). Under
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realistic conditions a high turnover leads to high transaction costs, which is not desirable.

The turnover is defined as

Turnover =
1

T −M

T−M∑
t=1

N∑
j=1

(|W̃k,j,t+1 − W̃k,j,t|), (4-4)

where W̃k,j,t is the portfolio weight in asset j at time t before rebalancing under strategy k;

W̃k,j,t+1 is the portfolio weight after the realignment at t+ 1. For example, in the case of the

naive diversification, W̃k,j,t = W̃k,j,t+1 = 1/N , but W̃k,j,t may differ between t and t + 1 due

to changes in asset prices (DeMiguel, Garlappi, Nogales et al., 2009).

4.3.4. Omega ratio

The Omega ratio can be compared to the Sharpe ratio, but instead of considering only the

first two moments of the return distribution, it considers all given moments.

Ω(θ) =

∫∞
θ

[1− F (r)]dr∫ θ
−∞ F (r)dr

, (4-5)

where F is the cumulative probability distribution function of the returns and θ denotes the

target return threshold, defining gains vs losses. A larger ratio is interpreted as that the

portfolio provides more gains relative to losses for θ and consequently would be preferred.



5. A simulation experiment

This section highlights a simulation experiment to review the forecasting accuracy of the

considered expert aggregation algorithms and select the superior in a portfolio context.

Therefore, the data included in the S&P500 is first filtered for months > 340 and a stand-

ard deviation of < 0.15 resulting in n = 247 of 500 possible assets. The data is then randomly

sampled for 40 time series and eventual NA’s are removed to construct the generalized ran-

dom forests using 120 months as training data. Following, 10 stocks are sampled from the

remaining 40 assets to construct random portfolios, resulting in data sets of 348 months each.

This sampling procedure is repeated 50 times simulating 50 different portfolios. Next, the

previously described methodology is applied to generate forecasts with exponential smooth-

ing, automatic ARIMA and quantile regression, which are then used to aggregate experts

by applying the ML-Prod and ML-Poly algorithm. Forecasts of exponential smoothing,

ARIMA, ML-Prod and ML-Poly are then statistically evaluated and compared to provide

insight on their forecasting accuracy. After determining which algorithm performs on aver-

age the best, forecasts generated with the superior model are used to optimize the respective

portfolio strategies for each month M using the simulated portfolios and the optimal diver-

sified dataset described in section 4.2 to validate if the improved estimate leads to a better

out-of-sample portfolio performance.

Table 5-1.: Arithmetic means for forecast accuracy of ARIMA, ETS, ML-Prod and ML-Poly

Forecast Model Error statistics

ME RMSE MAE

ETS 0.0063 0.0328 0.0246

ARIMA 0.0048 0.0367 0.0245

ML-Poly 0.0008 0.0365 0.0226

ML-Prod 0.0234 0.0455 0.0364

Table 5-1 reports the arithmetic means for ME, RMSE and MAE obtained for the simulated

datasets. Exponential smoothing and automatic ARIMA perform on-par with a marginal

difference for the reported mean error statistics. The ML-Prod algorithm does not appear

to further improve forecasting accuracy, in contrast to the ML-poly algorithm, that reports

superior means for ME with 0.0008, RMSE with 0.0365 and MAE with 0.0226.
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Figure 5-1.: Box-plot forecasting performance

A more detailed insight on forecasting accuracy is visualized in the box-plot 5-1, which

reveals that for all sampled time series every considered algorithm generates precise forecasts.

As for expert aggregation with the ML-Prod algorithm forecasting accuracy is not further

improved showing inferior quartiles for all three statistics. On the other hand, polynomial

potentials appear to be well-suited for this type of expert aggregation with superior accuracy

measurements for ME and MAE when reviewing the quartiles and medians, but with a wider

interquartile range for the RMSE and superior median when compared to the ML-Prod

algorithm. Full statistics including confidence intervals are reported in the appendix B-1.
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Figure 5-2.: Forecasts of expert aggregation for the HollyFrontier Corporation
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The two graphs in figure 5-2 display the forecasts generated by the two expert aggregation

algorithms for the HollyFrontier Corporation (HFC), which has a mean log return of 0.0356

and standard deviation of 0.109. The black line shows the estimation window of asset returns

with the red line showing the out-of-sample period and each model’s forecasts are expressed

with the turquoise line.

The figures show that both algorithms improve with increasing number of iteration, which

is especially notable for the ML-Prod algorithm, which requires a longer period of time in

comparison to the polynomial potentials that seem to fit the data with high accuracy in few

iterations. Hence, both should lead to a superior portfolio performance in comparison to the

traditional estimates of expected returns.

Next, the on experts allocated weights by each forecast combination algorithms for the

optimized dataset are visualized in figure 5-3, with the left graph displaying weights over

time generated by the ML-Prod algorithm and the other illustrating weights estimated with

polynomial potentials.
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Figure 5-3.: Weights of experts

Lines named q0.x denote the weights on forecasts produced by the different quantiles, arima

and ets refer to the automatised versions of these models. Both plots show that the al-

gorithms mainly apply weights on the forecasts produced by automatic ARIMA and exponen-

tial smoothing. While the ML-Prod algorithm over time decreases the weights on quantiles,
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the ML-Poly algorithm is more straightforward but with heavier fluctuating weights on the

experts. In this study the superior model is applied to the portfolio strategies, which is

following this analysis the ML-Poly algorithm. Additionally, the statistical errors for the 10

time series included in the optimal diversified dataset are reported in table B-2 appendix B.

5.1. Portfolio evaluation

After evaluating the forecasting performance of each algorithm, the rolling window study

previously described is applied, to optimize the presented optimizations strategies K and

the results are saved in a data frame of portfolio returns. Using this data, annualized returns,

Sharpe ratios, CEQ, turnover and Omega ratios of each strategy K are calculated. Table

5-2 reports the returned parameters for the optimal diversified dataset, where Tang denotes

the classical mean-variance portfolio and Shrink its extension by shrinking the covariance

matrix. Portfolios ending with .comb are the innovations that implement the proposed

forecast combination as expected return. A first look at the table indicates a superior

performance for models that include the proposed aggregated expert as µ̂ in terms of returns,

Sharpe ratio, CEQ and Omega ratio.

Table 5-2.: Portfolio parameter summary for diversified dataset

Portfolio Cumulated

return

Annualized

return

Sharpe

ratio

CEQ

return

Turnover

ratio

Omega

ratio

Naive 2.6171 0.1200 0.1307 0.0095 0.0526 1.8123

Tang 2.6484 0.1218 0.1322 0.0096 0.0532 1.8261

Shrink 2.6349 0.1211 0.1318 0.0096 0.0528 1.8237

MV.comb 3.0237 0.1411 0.1478 0.0111 0.0684 1.9385

Shr.comb 3.0307 0.1415 0.1481 0.0111 0.0682 1.9407

Although, the turnover ratios for .comb-models are marginal higher and therefore hypothet-

ically involve more transaction costs, one can argue that their superior returns outweigh the

additional expenses. Results from the simulation study are summarized in appendix C table

C-1 including confidence intervals and medians.

5.1.1. Portfolio returns

A first impression of each portfolio’s performance is provided by the cumulative returns of

each strategy, which are shown in figure 5-4. The graph clearly shows that the proposed

forecaster leads to an improvement in comparison to the returns generated by the tradi-

tional portfolios. Introduced constraints on the portfolio weights and the diversification
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performed to obtain the dataset stabilise both traditional optimization approaches, so that

they achieve similar returns when compared to the naive portfolio and furthermore, react

well to capital market shocks. In this context, the mean-variance based strategies generate

marginal superior annualized returns than the naive portfolio which generates 0.1200.
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Figure 5-4.: Cumulated portfolio returns

On the other hand, the proposed combined expert leads to an improved performance for

both considered portfolios. Comparing them mean-variance and shrinkage portfolio seem to

perform equally differing only marginal in their generated returns. In detail, the MV.comb

with 0.1411 is marginally outperformed by the shrinkage with 0.1415.
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Figure 5-5.: Box-plot of simulated annualized returns

Simulation study results are displayed in the box-plot 5-5, which confirms previous findings,

that the portfolios generate greater portfolio returns with the proposed forecaster as estimate.
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5.1.2. Sharpe ratio

The lowest value for the Sharpe ratio is returned by the naive diversification with 0.1307

and is outperformed by the tangency portfolio with 0.1322 and shrinkage with 0.1318, which

differ only marginal in their performance, which is less surprising considering the slight

differences in returns generated. The proposed estimate leads to superior Sharpe ratios for

both, reporting 0.1478 for the mean-variance and 0.1481 in case of the shrinkage portfolio.
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Figure 5-6.: Box-plot of simulated Sharpe ratios

These results are confirmed via confidence intervals of the simulation study and can be

accessed in appendix C table C-1. The box-plot 5-6 of Sharpe ratios visually confirms that

traditional strategies perform on-par and applying the proposed estimate leads to superior

values for both strategies in comparison to their base models considering their median, first

and third quartile.

5.1.3. Certainty equivalent return

The previously obtained results for Sharpe ratio and cumulated returns are also confirmed

for the CEQ return. Reporting a value of 0.0096 for the tangency portfolio, for Shrinkage

0.0096 and the naive diversification 0.0095, which concluding perform quite similar in an

optimal scenario. When including the combined forecast as expected return both strategies

are improved reporting 0.0111 for the mean-variance and shrinkage portfolio.

Figure 5-7 shows that upper and lower quartiles as well as medians for the improved

strategies both are superior in comparison to their base models and confirm the first observa-

tion of superior certainty equivalent returns for models that include the combined forecaster.

Among the group of strategies using expert aggregation only marginal differences are notable

when comparing them to each other with the shrinkage slightly outperforming the tangency

portfolio.
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Figure 5-7.: Box-plot of simulated certainty equivalent return

5.1.4. Turnover ratio

Revisiting the turnover ratios in table 5-2, it can be noted that the strict allocation rules

lead to low turnovers for all optimization strategies. Due to price changes in the value of

assets, the naive portfolio has to be rebalanced monthly so that its turnover ratio amounts to

0.0526, which is the lowest of all investment strategies. The tangency portfolio with 0.0532

and the related shrinkage approach with 0.0528 return respectively low turnovers due to

the stringent allocation rule and the long estimation windows of the covariance matrix and

expected returns, leading to stable estimates and portfolio weights.
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Figure 5-8.: Monthly portfolio turnover
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Figure 5-8 displays the monthly turnover of each strategy K. During economic crisis like in

2000 or 2008 all portfolios react and augment their trading. Naive, tangency and shrinkage

portfolio all involve marginal less trading over the whole period than models with the com-

bined forecaster. Both strategies with aggregated experts as expected return experienced

the same effect during crisis, but with lower peaks in comparison to their average turnover,

indicating overall more trading.

The proposed estimator by combining forecasts is quite noisy (see figure 5-2) and therefore

leads to more fluctuating portfolio weights that would produce undesired turnover ratios, if

not constrained, which indicates the strong influence of the expected returns on the weights

allocated. Due to the allocation constraints introduced, resulting portfolio weights are ro-

bust but still vary more than strategies that include the traditional estimates. For the

mean-variance portfolio with combined forecaster the turnover ratio is 0.0684, and is less

surprising marginal higher than that of the shrinkage portfolio with 0.0682, showing the

effect of shrinking the covariance matrix S.
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Figure 5-9.: Box-plot of simulated turnover ratios

Figure 5-9 shows that traditional strategies return comparable turnover ratios when con-

sidering the first and third quartile, with a marginal greater median for mean-variance and

shrinkage optimization. The naive portfolio and traditional approaches are characterised by

less turnover than models using the combined forecaster, which leads to a more extensive

turnover ratio for the considered models. As demonstrated by the theory, a high portfolio

turnover may result in correspondingly high transaction costs. Since these are treated very

differently on the financial markets, no assumption was made in this regard.

5.1.5. Omega ratio

The Omega ratios in table 5-2 show that the naive portfolio returns the lowest value with

1.8123, marginally followed by the shrinkage approach with 1.8237 and the tangency portfo-
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lio with 1.8261. As for other performance parameters observed, both models with combined

forecaster return also in terms of Omega ratio superior values. In detail the proposed estim-

ate leads to improved Omega ratios returning 1.9385 for the mean-variance and 1.9407 for

the shrinkage portfolio.
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Figure 5-10.: Box-plot of simulated Omega ratios

Omega ratios of the simulated portfolios are displayed in figure 5-10. Each strategy shows

various upward outliers. Naive, tangency and shrinkage portfolio all seem to perform on par,

with similar outliers, while both strategies that implement the proposed estimate return su-

perior quartiles and medians in comparison to their base models. Full statistics are reported

in appendix C.



6. Conclusion

DeMiguel, Garlappi, Nogales et al. (2009) showed that estimation errors hamper portfolio

performance for numerous investment strategies. Especially the erroneous determination of

expected returns has a great impact on the portfolio weights, which in conclusion are con-

structed badly and lead to poor out-of-sample performances. Recent research has therefore

focused on relations between assets such as their correlations to optimize portfolios (López

de Prado, 2016). In contrast, this study’s main objective was to introduce a novel robust

estimate of expected returns via expert aggregation to replace the traditional estimates of µ̂

for the tangency and shrinkage portfolio, referred to as base models. Additionally, the naive

strategy was included as benchmark, since it is associated with little effort and historically

performs well in terms of returns and turnover ratio.

To construct the experts popular forecasting algorithms such as exponential smoothing,

ARIMA and quantile regression were applied and afterwards aggregated to construct an

improved estimate. Due to the amount of data considered, automatised versions of the first

two algorithms were applied. They determine optimal model fits for each rolling window of

the time series to forecast the next value. Hyndman and Khandakar (2008) state that linear

exponential smoothing methods are all special cases of ARIMA models, while non-linear ex-

ponential smoothing do not have equivalent ARIMA counterparts. Both models fit well for

linear and non-linear data, and also embrace deterministic trends and stochastic components

of the data. Additionally, they include drifts and are able to incorporate random walks.

Gaillard et al. (2016) proposed various expert aggregation methods that improve weights

of each forecaster over time. Thus, forecasts were created applying the 1) ML-Prod and 2)

ML-Poly algorithm, and after carrying out a simulation study to evaluate the forecasting

performance of each model the superior ML-Poly was selected as expected return for portfo-

lio optimization. Due to the noisy estimate, which in consequence would lead to undesired

high turnover ratios and to assure comparability between the strategies, all portfolio weights

were similarly constrained to a minimum allocation of 0.09 and maximum of 0.11.

To build an optimal diversified portfolio an analysis of the S&P500 was carried out based on

hierarchical clustering and ranking assets using their mean log return. In addition, a simula-

tion study was used to confirm all observations made with the optimized dataset. Therefore,

the 5 resulting portfolios were tested on their cumulated and annualized returns, Sharpe
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ratios, CEQ, turnover and Omega ratios. Strategies that included the proposed estimate

experienced an improvement in their performance when comparing them to their respective

base models, delivering superior statistics for all performance parameter except turnover.

Since assumptions regarding resulting transaction costs were not made, one can only ar-

gue that the superior returns of the improved models lead to outweigh additional expenses.

Differences in performance for the strategies with expert aggregation, can be explained by

their covariance matrix estimation, which was kept traditional. When applying the proposed

forecast combination the shrinkage portfolio slightly outperformed the mean-variance optim-

ization considering all performance parameter. These observations were also confirmed in

the simulation study.

6.1. Discussion

This thesis showed an innovative application of two expert aggregation algorithms in order

to minimize estimation errors of return estimates for two in the literature proposed portfo-

lios and improve each one’s performance. The results indicated that strategies implementing

the improved expected return dominate their respective base models. Combining forecasts

showed promising results, however there is still no consensus on how to best combine indi-

vidual forecasts or which experts to consider. This problematic has been subject to discus-

sions in literature suggesting a mixture of statistical models and expert aggregation when

data is sparse and evolving. Despite the time and effort it takes to elicit expert-generated

data, the wide range of applications and new methods show general research interest.

For ARIMA forecasting the two major issues are the model estimation and the choice of data-

set. First off, there is no clear selection order between different ARIMA models in terms of

the lagged values of the AR process and the MA process. Secondly, it is still wildly discussed

whether ARIMA forecasting should adopt a time series with a longer estimation window or

a shorter one. These challenges can hamper forecasting accuracy and may lead forecasters

to incorrectly conclude that the ARIMA model is inferior to other forecasting techniques.

Thus, it is improbable that large estimation errors that sometimes are generated by ARIMA

models are caused by their inherent weaknesses, but rather by the incorrect determination of

appropriate parameters for an ARIMA forecasting model and, as a consequence, the ARIMA

models are not trained with the correct data set. Dong et al. (2020) tested the automatic

ARIMA algorithm for different rolling windows and found that a long estimation window

and a low forecast horizon perform exceptionally well for forecasting purposes. Therefore,

the rolling window was chosen to be 90 months and the forecast horizon was limited to just

one.

Based on these findings future studies might focus on two aspects. Firstly, one could further
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improve the experts considered by testing different window lengths for the automatic expo-

nential smoothing algorithm or by including macroeconomic factors to the random forest as

predicting variables. Additionally, one might choose to consider additional experts, such as

neural networks to further improve forecasting accuracy of the aggregated expert. Due to

the amount of time needed to generate experts, research opportunities can also be found in

collecting data from experts that are unbiased and in a less-time consuming manner.

Secondly, only few studies focused on rigorously comparing combination forecasting models.

Hence, further investigation is required to analyse experts and statistical forecasts to confirm

the added value of expert judgement. McAndrew et al. (2019) found that the majority of

articles measured success on whether or not the combination scheme could produce a forecast

and visually inspected the results. Latter was used due to the lag of ground truth data, but

in this case, a simulation study should generate hindsight of the forecasting performance of

a novel combination method. Therefore, future research on expert aggregation still needs

to find an appropriate parameter to measure forecast accuracy and develop experiments to

evaluate novel combination algorithms in comparison to existing methods.

Combining experts to produce forecasts can outperform statistical ensembles when data is

sparse, or rapidly evolving. Expert aggregation algorithms are able to gain insight on how

forecasts are made and ultimately how to best use the information each expert provides to

make crucial decisions about future forecasts.



A. State space framework

Appendix A details the statistical models that underlie the exponential smoothing methods.

To distinguish between models with additive and multiplicative errors, a third letter is added

to the classification in table 3-1. Each state space model is labelled ETS(·, ·, ·) for (Error,

Trend, Seasonal), leaving the following possibilities for each component: Error = {A,M},
Trend = {N,A,Ad} and Seasonal = {N,A,M}.

For simple exponential smoothing (A,N,N) with additive errors the forecast equation can

be written as yt = `t−1 + et, so that each observation can be determined by the previous

level plus an error term. To convert given equation into a state space model, the probability

distribution et has to be specified. For a model with additive errors, Hyndman et al., 2008

assume that the one-step training errors (residuals) are normally distributed white noise with

mean 0 and variance σ2, which can be formulated as et = εt ∼ NID(0, σ2). Concluding, the

equations of simple exponential smoothing can be written as:

yt = `t−1 + εt

`t = `t−1 + αεt

(A-1a)

(A-1b)

Together with the statistical distribution of the errors, they form the innovations state space

model underlying simple exponential smoothing. A-1a is referred to as measurement equa-

tion and shows the relationship between the observations and unobserved states. For simple

exponential smoothing observation yt is a linear function of the level `t−1 with a predictable

and unpredictable part of yt and the error εt. Formula A-1b describes the state equation,

which illustrates the evolution of the state through time where α governs the amount of

change in successive levels. High values of α leads to rapid changes in level, whereas low

values of α allow only smoother changes.

In the same manner, the models with multiplicative errors can be specified by writing the

one-step-ahead training errors as relative errors:

εt =
yt − ŷt|t−1
ŷt|t−1

(A-2)

where et = εt ∼ NID(0, σ2). All resulting state space equations are listed in A-1.
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B. Forecast error statistics

Table B-1.: Confidence intervals and means of accuracy for forecasts generated with auto-

matic ARIMA, ETS and expert aggregation algorithms for time series obtained

in the simulation study

Error statistic ARIMA ETS ML-Poly ML-Prod

ME

CI 5% -0.0026 -0.0036 -0.0055 0.0124

Mean 0.0048 0.0063 0.0008 0.0234

CI 95% 0.0143 0.0171 0.0052 0.0318

RMSE

CI 5% 0.0102 0.0085 0.0139 0.0278

Mean 0.0367 0.0328 0.0365 0.0455

CI 95% 0.1008 0.0985 0.0965 0.0990

MAE

CI 5% 0.0049 0.0066 0.0054 0.0215

Mean 0.0245 0.0246 0.0226 0.0364

CI 95% 0.0754 0.0749 0.0743 0.0727
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Table B-2.: Forecast accuracy of ETS, ARIMA and expert aggregation algorithms for the

diversified dataset

Error statistics

Forecast model ARIMA ETS

Ticker ME RMSE MAE ME RMSE MAE

AOS 0.0148 0.0195 0.0162 0.0183 0.0197 0.0191

BF-B 0.0183 0.0263 0.0218 0.0189 0.0221 0.0199

BLL 0.0205 0.0622 0.0389 0.0195 0.0367 0.0246

CSCO 0.0008 0.0243 0.0105 0.0006 0.0267 0.0130

GE -0.0043 0.0374 0.0195 -0.0054 0.0256 0.0140

HFC 0.0256 0.0563 0.0346 0.0281 0.0564 0.0382

JKHY 0.0194 0.0180 0.0118 0.0131 0.0166 0.0141

MXIM 0.0105 0.0281 0.0138 0.0085 0.0158 0.0122

NKE 0.0154 0.0254 0.0206 0.0166 0.0182 0.0176

PFE 0.0045 0.0132 0.0082 0.0023 0.0128 0.0095

Error statistics

Forecast model ML-Poly ML-Prod

Ticker ME RMSE MAE ME RMSE MAE

AOS 0.0046 0.0147 0.0099 0.0045 0.0452 0.0308

BF-B 0.0029 0.0182 0.0104 0.0000 0.0386 0.0285

BLL 0.0049 0.0362 0.0199 0.0025 0.0562 0.0335

CSCO 0.0005 0.0275 0.0110 -0.0040 0.0478 0.0258

GE -0.0026 0.0286 0.0159 -0.0101 0.0463 0.0323

HFC 0.0077 0.0451 0.0265 0.0063 0.0604 0.0389

JKHY 0.0021 0.0160 0.0074 0.0004 0.0419 0.0266

MXIM 0.0036 0.0211 0.0096 -0.0009 0.0459 0.0272

NKE 0.0032 0.0288 0.0115 0.0027 0.0452 0.0269

PFE 0.0007 0.0137 0.0066 -0.0040 0.0381 0.0291



C. Simulation study portfolio

performance

Table C-1.: Portfolio performance parameter generated by the simulation study

Portfolio Naive Tang Shrink Mv.comb Shr.comb

Annualized return 0.1200 0.1218 0.1211 0.1411 0.1415

CI 5% 0.0470 0.0470 0.0470 0.0613 0.0618

Median 0.0750 0.0750 0.0750 0.0911 0.0920

CI 95% 0.1087 0.1086 0.1087 0.1269 0.1271

Sharpe ratio 0.1307 0.1322 0.1318 0.1478 0.1481

CI 5% 0.0592 0.0592 0.0592 0.0659 0.0661

Median 0.0876 0.0876 0.0876 0.0991 0.0992

CI 95% 0.1488 0.1490 0.1488 0.1649 0.1651

CEQ return 0.0095 0.0096 0.0096 0.0111 0.0111

CI 5% 0.0039 0.0039 0.0039 0.0050 0.0051

Median 0.0061 0.0061 0.0061 0.0073 0.0074

CI 95% 0.0087 0.0086 0.0086 0.0100 0.0100

Turnover ratio 0.0526 0.0532 0.0528 0.0684 0.0682

CI 5% 0.0411 0.0414 0.0413 0.0598 0.0599

Median 0.0489 0.0489 0.0489 0.0640 0.0639

CI 95% 0.0550 0.0550 0.0550 0.0689 0.0687

Omega ratio 1.8123 1.8261 1.8237 1.9385 1.9407

CI 5% 1.3164 1.3164 1.3164 1.3722 1.3740

Median 1.4616 1.4616 1.4616 1.5545 1.5562

CI 95% 1.7878 1.7892 1.7882 1.9120 1.9137
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