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For my beloved mother and sister, who were
always there to support me.
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the labors of other men, living and dead, and
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Resumen

Esta tesis propone aplicar los prondsticos generados por la agregacién de expertos como
un novedoso predictor de los rendimientos esperados a 2 estrategias de portafolio diferentes:
1) Mean-Variance como propone Markowitz (1952) y 2) contraccién de la matriz de covari-
anza S como en Ledoit and Wolf (2004). Los expertos se construyeron generando prondsticos
con Quantile Regression de Generalized Random Forests y versiones automatizadas de Ex-
ponential Smoothing y ARIMA. Este estudio evalia la precision de los prondsticos de dos
algoritmos de agregacién de expertos 1) ML-Prod y 2) ML-Poly mediante un estudio de
simulacién, antes de aplicar el método superior a un portafolio diversificado. Después de
evaluar la precision de los prondsticos, se eligio el algoritmo superior ML-Poly para pronosti-
car los rendimientos esperados y mostroé resultados prometedores fuera de la muestra para los
portafolios considerados, devolviendo valores superiores para los parametros de rendimiento
seleccionados y resultados inferiores marginales en términos de ratio de rotacion. Mediante
el estudio de simulacién, también se validaron los resultados de los portafolios.

Palabras clave: (Media-varianza, Shrinkage, Generalized Random Forests, drboles de
decision, ARIMA automatizado, Exponential Smoothing, agregaciéon de expertos, op-

timizacién de portafolios).

Abstract

This thesis proposes to apply forecasts produced by expert aggregation as novel predictor
of expected returns to 2 different portfolio strategies: 1) mean-variance as proposed by
Markowitz (1952) and 2) shrinkage of the covariance matrix S as in Ledoit and Wolf (2004).
Experts were built by generating forecasts with quantile regression as in generalized random
forests and automatised versions of exponential smoothing and ARIMA. This study eval-
uates the predictive performance of two forecast combination algorithms 1) ML-Prod and
2) ML-Poly using a simulation study, before applying the superior method to a portfolio
scenario. After evaluating prediction accuracy, the superior ML-Poly algorithm was chosen
to forecast expected returns and showed promising out-of-sample results for the considered
portfolios, returning superior values for the selected performance parameter and only mar-
ginal inferior results in terms of turnover ratio. Using the simulation study, the results of
the portfolios were also validated.

Keywords: (Mean-Variance, Shrinkage, generalized random forests, decision trees,
automatic ARIMA, exponential smoothing, expert aggregation, portfolio optimisa-

tion).
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1. Introduction

In modern portfolio theory one of the main problem investors face, is the effective or optimal
distribution of assets between different investments in order to achieve the highest possible
return without taking too high a risk. Markowitz (1952) paved the way for modern portfolio
theory by deriving the mean-variance optimization, which requires estimates for the mean
vector and the covariance matrix of excess returns to solve the mean-variance quadratic
optimization problem. While his work has been awarded the Nobel Price, it still revealed
weaknesses determining expected returns ji and providing a stable Covariance Matrix S. To
stabilize mean-variance optimization and reduce the noise in covariance matrix estimators

Jagannathan and Ma (2003), Ledoit and Wolf (2004) proposed to shrink S.

These approaches might have improved the portfolio’s robustness, but still face challenges
when evaluating them out-of-sample. DeMiguel, Garlappi and Uppal (2009) compared the
performance of 14 different prominent portfolios to that of the 1/N strategy across seven
empirical datasets of monthly returns concluding that in summary none of the various op-
timizing models consistently delivers a Sharpe ratio or a CEQ return higher than that of the
naive portfolio, which also maintains a low turnover. Especially the estimation of y is known
to be more difficult and to have a larger impact on the portfolio weights (Merton, 1980),
which concluding lead to a bad out-of-sample performance (Ban et al., 2018; DeMiguel,
Garlappi, Nogales et al., 2009).

Due to the growth of financial markets and computational power becoming cheaper, fore-
casting time series has gained a lot of attention in recent years, with literature producing a
variety of approaches. In this context, statistical learning is proven to be effective in improv-
ing descriptive, predictive and prescriptive analytics. Hence, it can help recognize patterns
in big data, analyse consumer behaviour or simply make better forecasts of future stock
prices (Schmidhuber, 2014). Considering estimation errors inherent in the sample expected
returns [, a more accurate estimate should lead to improved portfolio results.

One of the most common class of forecasting methods are exponential smoothing algorithms,
on which some of the most successful methods are based on. Time series can be found in
many different contexts including monthly stock prices, weekly sales of a product, monthly
unemployment figures for a region, and quarterly imports of a country. These time series
are often characterized by patterns such as upward/downward trends or seasonal variations.
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Exponential smoothing algorithms exploit these patterns by estimating forecasts that are
weighted combinations of past observations, with recent observations given relatively more
weight than older observations (Hyndman et al., 2008).

Another well-known technique is ARIMA (p,d,q), which is used to forecast future equity
returns based on historical data of the considered assets. Dong et al. (2020) analysed an
automatized variation of the ARIMA algorithm and found that longer sample windows tend
to capture a more complete spectrum of the industrial and business cycle by moderating the
short-term noise and shocks in the capital market and therefore leads to satisfying forecasting
accuracies. Moreover, they found that the degree of integration is mostly 1 for the equities
and the time windows they tested, confirming the widely accepted belief that the market is
partially efficient and asset prices largely follow random walk. Also, the auto-regression’s
order was typically 1 or 2, proofing the existence of momentum. The same could be noticed
for the order moving average, showing the influence of market noise.

Also to be considered when estimating returns is their distribution, which can be exploited
using quantile regression to reflect precise information about features and different points
of their distribution function by computing various quantiles. A framework is included in
random forests, an ensemble technique proposed by Breiman (2001) that combines vari-
ous algorithms (e.g. boosting, linear models). They analyse a set of many individual base
learners and construct weights for them to forecast new data points (Biau et al., 2008).
Random forests are well suited to deal with large real-life tasks, since they can deal with
small sample sizes and high-dimensional feature spaces and can easily be parallelized. One
of the most recent algorithm known as generalized random forests proposed by Athey et al.
(2019) abandons the idea of obtaining the final forecast by averaging estimates over each
member of the ensemble and instead treats forests as adaptive nearest neighbour estimates.

While each of the aforementioned algorithms has advantages and disadvantages when ad-
apting on structural breaks in the data, expert aggregation or forecast combinations have
frequently been found to produce on average better forecasts than methods based on the
individual model. Timmermann (2006) described expert aggregation as a diversification
strategy that improves forecasting performance in the same manner as asset diversification
leads to a better portfolio performance. Empirical evidence was delivered by Makridakis and
Hibon (2000), who forecasted 3003 time series in the so-called M3-competition and found
that on average the accuracy of combinations of various methods outperform, the specific
models that are being combined.

Following the findings of Makridakis and Hibon (2000), recent expert aggregation algorithms
were developed by Gaillard et al. (2016), who established expert-dependent regret bounds
and time varying learning rates. Therefore, this thesis proposes to abandon the idea of



using the traditional estimates for the expected returns of two different strategies 1) the
mean-variance portfolio as proposed by Markowitz (1952) and 2) an extension to the model
by shrinking the covariance matrix as in Ledoit and Wolf (2004) and replace them by a
combination of forecasts generated by the three aforementioned models to utmost improve
the out-of-sample performance.

This thesis is organized highlighting modern portfolio theory in chapter 2 including the
estimation of optimal weights for both portfolio strategies. Chapter 3 details the theor-
etical framework for exponential smoothing, automatic ARIMA, quantile regression and
expert aggregation based on the ML-Prod and ML-Poly algorithm by Gaillard et al. (2016).
Chapter 4 highlights the methodology of how the forecasts are generated and applied to
the portfolios. Chapter 5 first details a simulation study to evaluate the forecasting per-
formance of the proposed expert aggregation algorithms and compares them to automatic
ARIMA and exponential smoothing, before applying the superior ML-Poly algorithm to the
simulated portfolios and a diversified dataset. Section 5.1 evaluates the out-of-sample port-
folio performance of the two traditional approaches in comparison to models applying the
chosen estimate as [i. For the analysis several performance parameter are determined such
as annualized returns, Sharpe ratios, certainty equivalent, turnover and Omega ratio. Each
parameter is validated using the simulation study and results are visualized with box-plots
and confidence intervals are reported in the appendix table C-1. Chapter 6 summarizes the
results obtained and discusses these findings.



2. Portfolio selection models

One of the simplest approaches to allocate wealth is investing naive throughout the portfolio.
Ignoring all available data the weights are allocated 1/N with N being the number of assets
and are then rebalanced each month. This approach is simple, but proven to outperform
many optimization approaches due to estimation errors (DeMiguel, Garlappi, Nogales et
al., 2009). Therefore, this simple but efficient investment strategy is included as additional
benchmark.

2.1. Mean-variance optimization

In modern portfolio theory one of the central objectives are the optimal distribution of cap-
ital across various investments and the investigation of investment behaviour on the capital
markets. Markowitz (1952) laid the foundation of modern portfolio theory by assuming that
investors mainly focus on returns and the associated variance/risk. Thus, he proposed to op-
timize portfolios based on individual risk aversion resulting in the Global Minimum-Variance
Portfolio (GMVP) and the Tangency Portfolios. His idea is commonly referred to as Capital
Asset Pricing Model and has been further investigated focusing on the relationship between
systematic risk and expected return by Lintner (1965), Mossin (1966), Sharpe (1970)).

One of the most discussed topics is the estimation of expected returns i and the covariance
matrix 2 to optimize the portfolio. Assuming that historical returns are normally distrib-
uted Markowitz (1952) decided to use the means of historical returns to calculate fi and the
maximum likelihood estimator to approximate the sample covariance matrix S resulting in
the following equations:

SN (2-1)
§=7 >~ i~ (2-2)

These parameters are then used to optimize the desired portfolio weights. The GMVP only
requires the sample variances to estimate a vector of weights minimizing risk, which is defined
as
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In contrast, Tangency Portfolios additionally consider the investors risk aversion and max-
imize the return for a given level of risk. Their vector of weights is defined as

(2:3)

wWyy =

Wwr = = a-é Z_l/j* (2—4)
H—=Ty

, where fi* = [i —ry.
The Portfolios then can be displayed along the efficient frontier with the turning point rep-
resenting the GMVP, which also separates the efficient from inefficient part of the portfolios.

To improve portfolio performance one might additionally introduce short sale constraints,
both options are displayed in figure 2-1.

Efficient Frontiers

0.06 -
7 Efficient
= - - FALSE
§0.04- ¢ 4 ” ¢ — TRUE
A~ ., ¢ *
£ S
s NIt Short-Sells
L0.02- =
% . ... — Allowed
= Tl — Prohibited

0.00 -

0.00 0.05 0.10 0.15
Volatility

Figure 2-1.: Efficient frontier

Unfortunately this procedure is proven to be less reliable, since the random process that
leads to the expected returns cannot be precisely determined (DeMiguel, Garlappi, Nogales
et al., 2009). Therefore, the main challenge that portfolio optimization models face is the
approximation of estimates, which is particularly noticeable when considering a high amount
of assets (Ledoit and Wolf, 2004). Another problem is the tangency portfolio’s tendency to
assume extreme weights caused by these noisy estimates, which can have a serious impact
on the portfolio’s out-of-sample performance (DeMiguel, Garlappi and Uppal, 2009). The
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GMVP is proven to be more robust due to only considering the variance to optimize the
portfolio. Approaches to improve accuracy included constraining weights, shrinking the
covariance matrix or considering additional factors.

2.2. Shrinkage of the covariance matrix

To minimize estimation error of the covariance matrix S Ledoit and Wolf (2004) proposed
to shrink its extremes towards the centre. Their approach is designed to recognize the most
extreme positive coefficients in S and pull them down while the extremely low estimated
coefficients are pulled up. The two main questions that arise are: to which goal should one
shrink and with which intensity?

The operational shrinkage estimator is defined as:

~

, where 5% is the optimal shrinkage intensity, F' the shrinkage target and S the sample
covariance matrix.

The shrinkage target F has to meet two requirements simultaneously. 1) It should consider
only few degrees of freedom and 2) reflect important characteristics of the parameters to
be forecasted. Ledoit and Wolf (2004) decided to use the constant-correlation model, which
states that all the (pairwise) correlations are identical. Therefore, other models should be
applied when a portfolio contains assets from different classes such as stocks and bonds.

The main challenge is to find an appropriate constant for the shrinkage intensity between
0 and 1, that minimizes the compromise of S and F. Hence, the goal is to estimate the
minimum between covariance matrix and shrinkage estimator defined as ¢*. When choosing
the optimal shrinkage intensity 0* it is important to consider that shrinkage estimators
analysed in (Frost and Savarino, 1986) break down when N > T because their loss functions
involve the inverse of S. Ledoit and Wolf (2004) proposed to estimate the optimal shrink
intensity using a quadratic loss function based on the Frobenius norm approximating the
difference between true and sample covariance matrix.



3. Estimating expected returns

From literature arose many different machine learning algorithms to estimate expected re-
turns each with their own advantages and disadvantages, on the other hand methods that
combine experts have been found in empirical studies to produce better forecasts on aver-
age than the forecasting models considered (Timmermann, 2006). This study proposes to
combine experts applying the ML-Poly and ML-Prod algorithm by Gaillard et al. (2016)
to further improve forecast accuracy. Experts are built using the automatic ARIMA and
exponential smoothing algorithm by Hyndman and Khandakar (2008). Additionally, gener-
alized random forests as in Athey et al. (2019) are constructed and forecasts are generated
via quantile regression, where different quantiles include varying information on the distri-
bution of returns. Finally, the forecasts produced by the different algorithms are combined
to improve the overall forecast accuracy.

3.1. Exponential smoothing

Exponential smoothing describes a class of forecasting methods, on which some of the most
successful algorithms are based on. While time series arise in varying contexts and industries,
all have in common that they are often characterized by patterns such as upward /downward
trends or seasonal variations. Exponential smoothing algorithms can exploit these charac-
teristics by estimating forecasts that are weighted combinations of past observations, with
recent observations given relatively more weight than older observations (Hyndman et al.,
2008). They allow considerable flexibility in the specification of the parametric structure.
Anderson (2012), Aoki and Havenner (1991), Hannan and Deistler (2012) proposed innova-
tions formulations of the model, which are included in the Forecast package in R.

Each model, referred to as state space models, consists of a measurement equation to de-
scribe the observed data and some state equations to determine how unobserved components
or states (level, trend, seasonal) change over time (Hyndman et al., 2008). Traditionally,
exponential smoothing methods only produce point forecasts, while the underlying model
additionally provides a framework for computing prediction intervals and other properties.
In state space models the minimum mean squared error forecasts are the estimates from
exponential smoothing. For each method exists a model with additive and multiplicative
errors with similar point forecasts if the same smoothing parameter values are used, but will
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produce different prediction intervals.

Let vy, denote the observation at time t, and let x; be a “state vector” containing unobserved
components that describe the level, trend and seasonality of the series. A general linear
innovations state space model can be written as

Yo = w(we1) + (1) + 6, (3-1)

vy = F(x-1) + 9(2-1)e, (3-2)

where ¢, is a white noise series and F, g and w are coefficients. Equation 3-1 describes the
relationship between the unobserved states x;_; and the observation g, and equation 3-2
defines the evolution of states over time. To choose the best model, Hyndman et al. (2008)
propose to use a penalized method based on the in-sample fit, since other accuracy meas-
ures such as the mean squared error (MSE) might suffer of too few out-of-sample errors.
Applications of the automatic forecasting strategy showed that the proposed methodology
is particularly good at short-term forecasting, and especially for seasonal short-term series,
outperforming the other analysed methods.

In a first step in exponential smoothing the trend component is determined, which is a
combination of a level term (¢) and a growth term (b). Future trend types then are estimated
by combining the level and growth in various ways. Let T}, denote the forecast trend over
the next h time periods, and let ¢ denote a damping parameter (0 < ¢ < 1) (Hyndman
et al., 2008). Concluding, the five trend types or growth patterns are defined:

None: T, =7
Additive: T, = £+ bh
Additive damped: Th=L+(p+ ¢+ ...+ "
Multiplicative: T}, = 0"

Multiplicative damped: T}, = €b(¢ + ¢* + ... + ¢")

A damped trend method is appropriate when there is a trend in the time series, but one
believes that the growth rate at the end of the historical data is unlikely to continue more
than a short time into the future Hyndman et al. (2008). These equations lead to dim the
trend as the length of the forecast horizon increases, which often improves the forecasting
accuracy. After a trend is chosen, a seasonal component, either additively or multiplicatively
is introduced. Lastly, an error term is added, which is also additively or multiplicatively.
Ignoring the error component leads to the following 15 exponential smoothing methods:
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Table 3-1.: ETS methods

Trend component Seasonal Component
N A M
(None) (Additive) (Multiplicative)
N (None) N,N N,A N.M
A (Additive) AN AA AM
Ad (Addltlve damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
M, (Multiplicative damped) My, N My, A My M

Cell (N,N) describes the simple exponential smoothing method, cell (A N) describes Holt’s
linear method, and cell (A4,N) describes the damped trend method. Holt-Winters’ addit-
ive method is given by cell (A,A), and Holt-Winters’ multiplicative method is given by cell
(A,M). The other cells correspond to less commonly used but analogous methods. Consider-
ing the two different error terms (additive, multiplicative) results in two possible state space
models for each method in 3-1. Each model gives equivalent point forecasts when applying
the same parameter values, but differs in their prediction intervals. Hence, there are 30
potential models described in this classification. The state space equations for each model
of the ETS framework are summarized in table A-1 appendix A.

3.2. ARIMA

Box and Jenkins (1970) developed the commonly known ARIMA model for forecasting,
an extrapolation method that uses historical time series data to generate a forecast. An
ARIMA model is expressed by three steps 1) identifying, 2) estimating and 3) diagnosing the
underlying model. It combines an auto regressive model (AR) in the first part of the equation
with a moving average model (MA) in its second part of the equation. The generalized form
of the Autoregressive Integrated Moving Average (ARIMA) to fit non-seasonal data is given
by

¢(B)(1 — By = ¢+ 0(B)e, (3-3)
where ¢, denotes a white noise process with variance ¢? and a mean of zero, B is the back-

shift operator and ¢(.), (.) are the polynomial orders of (p, q). According to Brockwell and
Davis (2006) causality and invertibility are given by assuming that ¢(.),6(.) have no roots
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for |z| < 1.

Equation 3-3 can also be described as a linear function of past values and errors, expressed
in

Yi=0o+51Yic1 +B8Yi o+ .+ BYp+ &+ 0161 + ...+ Oueiy, (3-4)

where Y; is the forecasted value, which is expressed as a function of its own lag variables
in the past time period along with the summation of its own random error term ¢,. In this
context p and ¢ are the respective auto regressive and moving average lags. The level at
which Y; becomes stationary is referred to as I (d) indicating the integration order. Hence,
ARIMA models (p,d,q) take into account the lag of the dependent variable, the random error
arising out of the estimation and order in which the variable becomes stationary, where the
order p and ¢ is identified by the auto correlating function (ACF) and partial autocorrelation
function (PACF).

Hyndman and Khandakar (2008) state that the main task for automatic ARIMA forecasting
is selecting an appropriate model order, that is the values p, q,d, P,Q, D. In contrast to the
traditional estimation of p and ¢, the Automatic ARIMA algorithm as implemented in the
Forecast package in R performs a step-wise procedure to optimize the model applying an
information criterion. That is, if d and D are known, the orders p, ¢, P and () can be chosen
via an information criterion such as the AIC:

AIC = —2log(L) +2(p+ ¢+ P+ Q + k), (3-5)

where £ = 1 if ¢ # 0 and 0 otherwise, and L denotes the maximized likelihood of the
model fitted to the differenced data (1 — B™)P(1 — B)%y;. Unfortunately, the full model’s
likelihood y; is not defined and so the value of AIC for different levels of differencing are not
comparable. For a non-seasonal time series Hyndman and Khandakar (2008) suggested to
choose the KPSS unit-root test (Kwiatkowski et al., 1992).

1. The data is tested for a unit root
2. if the test result is significant, the differenced data is tested for a unit root

3. The procedure is stopped by when obtaining the first insignificant result

Hlustration 3-1 shows the general procedure to estimate an ARIMA model on the left hand-
side and displays the application of the automatic ARIMA function in R on the right hand-
side.
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1. Plot the data. Identify
unusual observations and
understand patterns

v

2. If necessary, use a
Box-Cox transformation to
stabilize the variance.

Select model order
manually.

Apply automated
algorithm.

3. If necessary, difference the
data until it appears
stationary using unit-root

tests.
4. Use ACF/ PACF plots of Use automatic ARIMA to
the differenced data to find the best model for the
—®|determine possible candidate considered time series.
models.

Y

5. Try the chosen models 6. Check the residuals from
and apply the AIC to search the chosen model by plotting
o e et meekl, the ACF and by performing

a portmanteau test.

\ 4

o the residuals look
like white noise?

No

7. Calculate forecasts

Figure 3-1.: General process for forecasting with an ARIMA model

3.3. Generalized random forests

Breiman (2001) introduced random forests an algorithm used for statistical learning, which
represents an efficient method for non-parametric conditional mean estimation. They are
used given a data-generating distribution for (X;,Y;) € A xR to estimate ji(z) = E[Y;| X; X, =
x]. To determine any quantity identified via local moment conditions 6(x) Breiman (1996)
defined 3-6 for given data (X;,0;) € X x O.

E[l/)g(x)w(x)(OiNXi = l’] =0 forall ze€ X, (3_6>
where () is a scoring function and v(x) an optional nuisance parameter. The forecast

of a particular test point x is estimated by averaging forecasts across different trees (Amit
and Geman, 1997; Breiman, 1996; Dietterich, 2000; Ho, 1998). Therefore, individual trees
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are grown by recursively adding axis-aligned splits to the tree, where each split is chosen
to maximize the improvement to model fit (Breiman, 1984) also known as greedy recursive
partitioning.

The estimates and their asymptotic behaviour have been studied by various statisticians con-
sidering confidence intervals (Wager and Athey, 2018), consistency (Arlot and Genuer, 2014;
Biau, 2012; Biau et al., 2008; Denil et al., 2014; Lin and Jeon, 2006; Scornet et al., 2015;
Wager and Walther, 2015) and second-order asymptotes (Mentch and Hooker, 2016). Re-
gression forests efficiently stabilize forecasts due to their low bias, but high variance (Athey
et al., 2019; Scornet et al., 2015). They are written as the average of B noisy tree-based
estimates [i,(z), i(r) = B! 25:1 fp(z) (Bithlmann and Yu, 2002). Since noisy solutions
are generally biased, averaging would not improve the model. Another issue of generalizing
forest-based methods is their dependency on whether the adaptive neighbourhood function
obtained by partitioning adequately captures the heterogeneity in 6(-) (Breiman, 2001).

One of the most recent approaches include generalized random forests, which were intro-
duced by Athey et al. (2019). In standard classification or regression forests as proposed
by Breiman (2001) the trees are randomized using bootstrap (or subsample) aggregation,
whereby each tree is grown on a different random subset of the training data, and each
variable is restricted by a random split selection, which is available at each step of the al-
gorithm. Athey et al., 2019 treat forests as a type of adaptive nearest neighbour estimator,
which makes the model more flexible when applying to statistical extensions and therefore,
the idea of obtaining the final forecast by averaging estimates from each member of an en-
semble as in Breiman (2001) can be abandoned.

To begin with, one has to estimate solutions for the equation 3-6, given n independent and
identically distributed samples, indexed ¢ = 1, ...,n. The observable quantity to each sample
O, encodes information relevant to estimating 6, along with a set of auxiliary covariates
X;(x). For non-parametric regression, this observable is defined as O; = {Y;} with Y; € R
and just consists of an outcome, which tends to contain richer information (Athey et al.,
2019). The functions f(z) are estimated by defining similarity weights a;(x) that determine
the relevance of fitting 6(-) at x of the training example i. The target of interest is then
fitted using the empirical refined version of estimating equation (Athey et al., 2019; Fan
et al., 1998; Newey, 1994; Staniswalis, 1989; Stone, 1977; Tibshirani and Hastie, 1987).

However, when applying a forest algorithm as proposed in Breiman (2001) one might face
computational limitations. The computation is typically intensive performing the split-
selection step, so it’s efficient implementation is crucial. Athey et al., 2019 suggested follow-
ing procedure where the splits are in contrast only solved once per node. Each split starts
with a parent node P C X; given a sample of data J: defined as (fp,7p)(J) to be the
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solution to:

Z UG,I/(OZ')

ieJ:X;eP

(0. 70)(J) € argmin, — (3-7)

2

P is then divided into the sub-nodes C4,Cy C X by an axis-aligned cut improving the 6-
estimates utmost possible. The goal is to minimize err(Cy,Cy) = >, ,P[X € (j|X €
P]E[(écj(j) —0(X))?|X € C}], where écj is the parent-node of Cj.

Therefore, an approximate criterion A(Cy, Cs) is optimized by gradient-based estimates for
éol and écz. For the sub-nodes C applies 9~C = éc and they are estimated by 1) determining
Ap as any consistent estimate for the gradient of function v

1
Ar= R e P > V. (00). (3-8)

{i:XiEP}

The responding value is then inserted into equation 3-9, where p and Dp are determined by
solving 3-7 once and 2) estimating 0 as in:

. ) ]
==y o At , _
o= tr {i: Xi € C} D A, ,,(00), (3.9)

{i:X,€C}

where 0p and vp are obtained by solving 3-6 once and £ is a vector that chooses the 6-
coordinate from the (6, v) vector. To prepare the last step pseudo-outcomes are created by
estimating 0,7 and A;l. This step is referred to as

Pi = gTAJ_DlvA

bp,op

(O:) R, (3-10)

The final step is to perform a CART regression split on the pseudo-outcomes p; maximizing
the criterion A(C4,Cy). After executing the regression step, the observations in each sub-
node are relabelled via 3-9 and proceed iteratively.

A(Cy, Cy) = Z|{z Xec}’( > ) (3-11)

I{i:X:€C5}

This approach includes other well-known machine learning algorithms, such as gradient
boosting Friedman (2001) and the model-based recursive partitioning algorithm of Zeileis
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et al. (2008). Empirical results by Athey et al. (2019) show that estimation error from using
the approximate criterion instead of the one proposed by Breiman (2001) are within statist-
ical tolerance.

This framework by Athey et al. (2019) provides a flexible method for non-parametric estim-
ation offering quantile regression, conditional average partial effect estimation and hetero-
geneous treatment effect estimation with instrumental variables.

3.3.1. Quantile regression

For Y a real-valued response variable and X a covariate or predictor variable. A general
objective of statistical analysis is to find relations between X and Y. Classical regression
analysis tries to estimate fi(x) of the conditional mean F(Y|X = x) of the response variable
Y for X = x (Meinshausen, 2006). Therefore, traditional practise of forecasting the mean
stock return assumes a squared loss function

Liewn) = &y, (3-12)

, where e,41 = 7141 — f; is the forecast error and f, the forecast of return ry,,. Considering
this loss function, the optimal return estimate is the conditional mean. For the mean abso-
lute error loss L(e) = |e|, the optimal forecast is the conditional median.

Unfortunately, the conditional mean only reflects one aspect of the distribution of Y. The
conditional distribution function F(y|X = x) is given by the probability that, for X =z, Y
is smaller than y € R, F(y|X =2) = P(Y <y|X = z).

For given X = z the a-quantile for a continuous distribution function @, (z) is defined so
that the probability of Y being smaller than Q. (x) equals exactly a (Koenker, 2005).

Qu(z) =infly: FY|X =2) > a} (3-13)

Concluding, the quantiles can be applied to give more precise information about features
and distribution of the forecasting variable Y than just considering the conditional mean
Koenker (2005). To estimate the return using quantiles o € (0,1) Koenker and Bassett
(1978) proposed the tick loss function

Lo(eti1) = (o — H{errr < 0})ersr. (3-14)

Following the first order condition of 3-12 including the forecast f;, the optimal estimate
is determined via the conditional quantile —a + F(f;) = 0, where F' is the distribution
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function of returns. Therefore, the optimal quantile depends on the distribution of returns
fi=F o).

3.4. Expert aggregation

To estimate forecasts by combining experts, a learner has to make sequential forecasts over
a series of rounds by weighting each expert K (Cesa-Bianchi and Lugosi, 2006; Freund et al.,
1997; Gaillard et al., 2016; Littlestone and Warmuth, 1994; Vovk, 1998). For each round
t =1,..,T, the learner forecasts a value by choosing a vector p, = p; 4, ..., py, of positive
weights that sum up to one. In a next step the weights p;, are assigned to each expert k
and the weighted average is forecasted.

Ge = Driths (3-15)
k

Each expert’s k loss (i ; € [a, b] is then cumulated, resulting in the learner’s loss gt =p/l =
Zle Prilre, Where £y = ({14,...,lk;). The learner then minimizes its cumulative loss by
controlling his regret Ry 7 against each expert k, where Ry r = ZKT(!Z —lk,t). In a worst
case scenario, the best bound guaranteed on the standard regret Ry, is of order O(vT In K)
(Cesa-Bianchi and Lugosi, 2006).

Cesa-Bianchi et al. (2007) succeeded in improving the algorithm by providing second-order
(variance-like) bounds on the regret, leading to two types of bounds, each with its own
advantages and disadvantages. The first formulation in the form of

In K d
RieS ==+ ny G, (3-16)
t=1

for all experts k, where n < 1/2 is a parameter of the algorithm (Gaillard et al., 2016). By
optimizing n with knowledge of the losses, one would achieve the desired bound

Rkt:O

)

(3-17)

but there is no known method that achieves 3-17 for all experts k without mentioned hind-
sight. The second bound established by Cesa-Bianchi et al. (2007) is a uniform regret bound,
having the drawback of not reflecting that it is harder to compete with some experts than
with others. In consequence, Gaillard et al. (2016) proposed to aim for expert-dependent
regret bounds and formulated a second-order bound of the form
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T
Ry, = 0( K> (f— zk,t)2>, (3-18)
t=1

which holds for all experts k. Furthermore, they developed a variant of the Prod algorithm
by Cesa-Bianchi et al. (2007) with two innovations. 1) The analysis for Prod is extended to
multiple learning rates 7 similar to a variant of the Hedge algorithm with multiple learning
rates as proposed by Blum and Mansour (2007). To prevent that standard tuning techniques
for the learning rates lead to an additional O(v/7T In K') multiplicative factor, Gaillard et al.
(2016) introduced learning rates 7y, that vary with time to convert this factor to O(Inln7T),
which they consider to be consistent.

Another approach is the application of polynomial potentials that can be useful to minimize
regret as illustrated in (Cesa-Bianchi and Lugosi, 2003). Gaillard et al. (2016) based their
ML-Poly algorithm on them with order p = 2. The bound is characterised by a poor
dependency on the number of experts K. The adequate dependencies might be achieved by
considering polynomial functions of arbitrary orders p (Cesa-Bianchi and Lugosi, 2003). For
all sequences of loss vectors £; € [0,1]%, the cumulative loss of algorithm 4 is determined
with learning rates defined as:

1
M1 = — (3-19)
1+ Zi:ll (68 - Ek,S)Q

The opera package by Gaillard et al. (2016) in R provides a wide range of combination

algorithms including other approaches. This thesis limits its investigation on applying the
ML-prod and ML-poly algorithm to aggregate experts and evaluate the results afterwards.
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The analysis is done performing a rolling window study to generate allocation weights for the
mean-variance and shrinkage portfolio. Traditionally, the data of the previous M months is
used to estimate the parameters required to implement a particular strategy. Based on a
T-month historical data set of returns an estimation window of M = 120 months is chosen
to estimate the mean and the respective covariance matrices for each month ¢, starting with
t = M + 1. These estimates are then applied on the respective functions to determine the
relative portfolio weights of each strategy. Using the expected returns in month ¢ and the
portfolio weights in month M, the out-of-sample portfolio returns for month ¢ are estimated.
This process continues for each month ¢ + 1 by determining the portfolio weights for month
t, adding the return for the next period ¢t + 1 in the data set and discarding the earliest
return until the end of the data set is reached. The result is a series of monthly 7" — M
out-of-sample portfolio returns generated by each investment strategy applied.

4.1. A new combined estimate

As mentioned, the reliable estimation of /i is quite challenging when following mean-variance
optimization, especially when trying to maximize returns at a given risk level, the estimation
error can lead to poor out-of-sample results (DeMiguel, Garlappi, Nogales et al., 2009). Es-
pecially affected by this observation is the mean-variance portfolio, which tends to produce
extreme weights due to estimation error in the covariance matrix S, which can be improved
by shrinking its extremes towards the centre as proposed by Ledoit and Wolf (2004) which
minimizes estimation error.

Before aggregating experts different forecasts for the expected return have to be generated.
The models to determine the estimate include a state space model for exponential smooth-
ing, automatic ARIMA and generalized random forests to perform quantile regression and
estimate a number of quantiles giving more information on the returns distribution and fea-
tures by applying the proposed variations (Gaillard et al., 2016) of the Prod by Cesa-Bianchi
et al. (2007) and the Poly algorithm in Cesa-Bianchi and Lugosi (2003) both with multiple
learning rates. The forecasting accuracy of both aggregation models is compared via three
statistical errors, before applying the superior estimate to a portfolio scenario.
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4.1.1. State space framework

For exponential smoothing Hyndman et al. (2008) suggest to choose the best fitting algorithm
by applying Akaike’s Information Criterion (AIC), which is based on likelihood rather than
one-step forecasts and therefore is able to select between the additive and multiplicative
error models. The AIC is defined as:

AIC = L*(©, &) + 2¢, (4-1)

where ¢ is the number of parameters in 6 plus the number of free states in xy, and © and 7
denote the estimates of © and xy. The model returning the lowest AIC is then chosen. The
resulting algorithm can be described as:

1. For each series, all appropriate models are applied, optimizing the parameters of the
model for each scenario.

2. According to AIC the best of the models is chosen.

3. Point forecasts are produced using the best model (with optimized parameters) for as
many steps ahead as required.

4. Forecasting results for the best model are obtained either using the analytical results, or
by simulating future sample paths for {y,11, ..., ynis} and finding the /2 and 1 — «r/2
percentiles of the simulated data at each forecast horizon. If simulation is used, the
sample paths can be generated using the Gaussian distribution for errors (parametric
bootstrap) or using the resampled errors (ordinary bootstrap).

The algorithm is implemented using a rolling window of M = 90 months to estimate the
next value t + 1, repeating this process until the end of the dataset is reached. To assure
comparability between ARIMA and state space framework, the same methodology is applied
for both algorithms.

4.1.2. Automatic ARIMA

The first as expert considered model is an automatized variation of the well-known ARIMA
algorithm. Hyndman and Khandakar (2008) developed a method that automatically selects
the best fit for the respective model and additionally includes a framework for a variety of
exponential smoothing algorithms. They propose to apply a penalized method based on the
in-sample fit, since accuracy measures as the mean squared error (MSE) might face issues
creating a sufficiently large number of out-of-sample errors to draw reliable conclusions. The
automatic ARIMA method performs a step-wise procedure to select the order of (p, q)(P, Q)
by applying Akaike’s Information Criterion (AIC) and specify the degree of integration d
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and D. Instead of directly minimizing the AIC to choose all of the parameters, which might

lead to over-differencing. Hyndman and Khandakar (2008) propose to use unit root-tests to
first estimate D and d and then proceed to select the values p and ¢ by minimizing the AIC.

They defined the resulting procedure as:

Step 1:

Step 2:

Four possible models are tested to start with

e ARIMA(2,d,2) if m = 1 and ARIMA(2,d,2)(1,D,1) if m > 1.

e ARIMA(0,d,0) if m = 1 and ARIMA(0,d,0)(0, D,0) if m > 1.

e ARIMA(1,d,0) if m = 1 and ARIMA(1,d,0)(1, D,0) if m > 1.

e ARIMA(0,d,1) if m = 1 and ARIMA(0,d,1)(0, D, 1) if m > 1.
If d+ D < 1, these models are fitted with ¢ # 0, otherwise ¢ = 0. Of these four models,
the one with the smallest AIC value is selected, referred to as “current” model. It is
denoted by ARIMA(p, d, q) if m =1 or ARIMA(p,d, q)(P, D,Q),, ift m > 1
Up to thirteen variations on the current model are considered:

e where one of p,q, P and @ is allowed to vary by £+1 from the current model

e where p and ¢ both vary by £1 from the current model;

e where P and @) both vary by 41 from the current model;

e where the constant ¢ is included if the current model has ¢ = 0 or excluded if the
current model has ¢ # 0.

Whenever a model with lower AIC is found, it becomes the new “current” model and
the procedure is repeated. This process finishes when there cannot be found a model
close to the current model with lower AIC.

To avoid issues with convergence or near unit-roots, several constraints on the fitted models

are introduced:

e The values of p and ¢ are not allowed to exceed the specified upper bounds of 5 in each

case.

The values of P and () are not allowed to exceed the specified upper bounds of 2 in
each case.

Any model which is “close” to non-invertible or non-causal is rejected. Specifically, the
roots of ¢(B)®(B) and 0(B)O(B) are estimated. If either has a root that is smaller
than 1.001 in absolute value, the model is rejected.

If there are any errors arising in the non-linear optimization routine used for estimation,
the model is rejected, since any model that is difficult to fit is probably not a good
model for the data.
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A valid model is guaranteed to be returned, because the model space is finite and at least
one of the starting models will be accepted (the model with no AR or MA parameters). The
algorithm produces then forecasts using the selected model. For its application a window
length has to be chosen. While short windows might preserve the most recent momentum
of returns, a longer window controls short-term noise and shocks in the capital market.
Therefore, a rolling window of M = 90 Months is chosen to forecast the next value, repeating
this process until the end of the dataset is reached. Considering the extensive analysis
required to visualize the residuals of all ARIMA fits, this paper refrains from reviewing
them.

4.1.3. Quantile regression

Athey et al. (2019) proposed an innovation of random forests by Breiman (2001) that can
be used to fit any quantity of interest identified to a set of local moment equations. The
method considers a weighted set of nearby training examples, but instead of using classical
kernel weighting functions that are prone to dimensionality, an adaptive weighting function
is suggested to better account for heterogeneity. They extended the underlying framework
to develop new methods for quantile regression, conditional average partial effect estimation
and heterogeneous treatment effect estimation. Especially, quantile regression has desirable
features for making forecasts since different quantiles of interest contain more information on
features and distribution of returns. Hence, for forecast combination it is useful to consider
a range of quantiles, instead of focusing just on the mean or median.

Athey et al. (2019) described the generalized random forest algorithm, which predefines all
tuning parameters such as the number of trees B to 2000 and the sub-sampling rate s used
in Subsample as:

Algorithm 1 Generalized random forests with honesty and subsampling
Procedure: GeneralizedRandomForest (set of examples S, test point x)
weight vector a <— Zeros(|S|) for b =1 to total numbers of trees B do

set of examples I <— Subsample(S,s)

sets of examples Jy, Ja < Splitsample(T)

tree T < GradientTree(J,, X) > See the GradientTree algorithm 2

N « Neighbors(z, T, J2) &> Returns those elements of J; falling into the same leaf as z in
tree T

for all example e € A do

ale]+ = 1/|N]|

output é(:c), the solution to the GradientTree algorithm with weights o/ B

The function Zeros creates a vector of zeros of length |S|; Subsample draws a subsample of



4.1 A new combined estimate 21

size [ from S without replacement; and SplitSample randomly divides a set into two evenly-
sized, non-overlapping halves (Athey et al., 2019).

Since the computation of growing trees is typically dominated by the split-selection step,
it is critical for this step to be designed as efficient as possible. The authors follow other
popular statistical algorithms by choosing a gradient-based approximation, that includes
gradient boosting (Friedman, 2001) and the model-based recursive partitioning algorithm
(Zeileis et al., 2008), leading to the formulation of the following gradient tree algorithm:

Algorithm 2 Gradient Tree
Gradient trees are grown as subroutines of a generalized random forest.

Procedure: GradientTree (set of examples J, domain X')

node Py < CreateNode(J, X)

queue Q <« InitializeQueue Py while NotNull(node P < Pop(Q)) do

(ép, vp, Ap) < SolveEstimatingEquation(P) > Calculates equations 3-7 and 3-8.
vector Rp + GetPseudOOutcomes(ép, vp, Ap) > applies equation 3-10 over P.
split X <= MakeCartSplit(P, Rp) > optimizes equation 3-11.

if SplitSucceeded(X) then

SetChildren(P, GetLeftChild(Y), GetRightChild(X))

AddToQueue(Q GetLeftChild(Y))

AddToQueue(Q GetRightChild (X))

output tree with root node F,

The function InitializeQueue initializes a queue with a single element; Pop returns and re-
moves the oldest element of a queue Q, unless Q is empty in which case it returns null.
MakeCartSplit runs a CART split on the pseudo-outcomes, and either returns two child
nodes or a failure message that no legal split is possible (Athey et al., 2019).

The generalized random forest is constructed to exploit cross-information of assets. There-
fore, the forests are constructed containing a lagged matrix of all the 40 assets initially
considered in 4-3 to explain the remaining 10 stocks in the portfolio. 9 different Quantiles
from 0.1 to 0.9 are estimated for each considered asset. A sample of M = 120 months is
chosen to train the algorithm and generate out-of-sample forecasts for 247 months.

4.1.4. Forecast combination

Lastly, the forecasts generated by ARIMA, quantile regression and the state space frame-
work are combined using the two aforementioned approaches. Figure 4-1 illustrates the
aggregation process, with expert advice as inputs to a decision maker, who in turn yields a
response.
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Figure 4-1.: Aggregation of experts

Gaillard et al. (2016) developed innovations of two forecast combination algorithms 1) the
ML-Prod by Cesa-Bianchi et al. (2007) and 2) the polynomially weighted average algorithm
in Cesa-Bianchi and Lugosi (2003). For 1) they introduce new second-order regret bounds
in terms of excess losses, which denote the differences between instantaneous losses suffered
by the algorithm and the ones passed by each model, also referred to as experts.

Algorithm 3 Prod with multiple learning rates
Parameters: a vector n = (1, ...,n) of positive learning rates
Initialization: a vector wy = (w1, ...,wk o) of non-negative weights that sum to 1

For each round t = 1,2, ...
1. form the mixture p, defined component-wise by Drt = MeWht—1 / N w,_,
2. observe the loss vector £; and incur loss th = ptT £,

3. for each expert k perform the update wyy = wgi—1(1 + nk(ét —lit))

The second algorithm uses polynomial potentials to minimize the regret with order p = 2.
Gaillard et al. (2016) state that its bound has the same weak dependency on the number
of experts K and on T as the other algorithm. Following Cesa-Bianchi and Lugosi (2003)
the right dependencies might be achieved by considering polynomial functions of arbitrary
orders p.

Forecasts with both algorithms are generated and then compared with each other and, also
with the forecasts generated by ETS and automatic ARIMA. For their comparison various
statistical errors are included such as the mean forecast error (ME), the root-mean square
deviation (RMSE) and the mean absolute error (MAE). The better performing forecaster is
then applied on the respective portfolio strategies. Since the model’s estimates will return
noisier data than the traditional forecasts and consequently would lead to a high turnover
ratio, all the portfolios are constrained, so that their minimum allocation is 0.09 and their
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Algorithm 4 Polynomially weighted averages with multiple learning rates
Parameter: a rule to sequentially pick positive learning rates n = (914, ..., M.t)
Initialization: the vector of regrets with each expert Ry = (0, ...,0)

For each round t = 1,2, ...

1. pick the learning rated 7,1 according to the rule

2. form the mixture p, defined component-wise by py, ; = M¢—1(Rit)+/m,_1 (Re—1)+ where
x, denotes the vector of the non-negative parts of the components x,

3. observe the loss vector #; and incur loss ét = ptT Y

4. for each expert k update the regret: Ry, = Ry ;-1 + & — gy

maximum 0.11. The long estimation windows and the strict constraints should lead to stable
portfolio weights for all strategies K with low turnovers to minimize involved trading.

4.2. Stock selection

For an optimized scenario, assets that preferably are uncorrelated and historically perform
well should be chosen in order to assure the best possible portfolio performance. To generate
an overview of the S&P500 and be able to appropriately filter the data an analysis of the
whole index is carried out. First, the monthly data from 1990-01-01 to 2020-08-01 of all
assets included in the index is downloaded from Yahoo Finance using the quantmod package

in R.
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Figure 4-2.: S&P500 analysis

Next, to avoid generating in-sample hindsight the data is filtered for Date < 2004 — 01 — 01
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and each asset’s mean log return and standard deviation are determined. The results are
visualized in figure 4-2 showing the relation of risk and reward of all stocks to determine
appropriate filters to pursue an optimized stock selection. The density shows that the ma-
jority of assets finds itself with mean log returns below 0.2 and a standard deviation of below
0.125, while many having at least 120 trading months up to the selected date. Based on
these finding the data is filtered for Date < 2004 — 01 — 01, 120 minimum trading months
and a standard deviation of 0.15. Next, the assets are ranked by their mean log return and
limited to 40, leaving numerous stocks.

Then, the remaining 40 assets are hierarchical clustered into 10 groups. Due to advantages
when identifying small clusters, an agglomerative clustering algorithm known as AGNES is
applied, which includes various clustering techniques (Landau and Chis Ster, 2010).

1. Complete linkage clustering: It estimates all pairwise dissimilarities between the
elements in cluster 1 and 2, and identifies the largest value of these dissimilarities as
the distance between the two clusters. It tends to produce more compact clusters.

2. Single linkage clustering: It estimates all pairwise dissimilarities between the ele-
ments in cluster 1 and 2, and identifies the smallest of these dissimilarities as a linkage
criterion. It tends to produce long, “loose” clusters.

3. Average linkage clustering: It estimates all pairwise dissimilarities between the
elements in cluster 1 and 2, and identifies the average of these dissimilarities as the
distance between the two clusters.

4. Ward’s minimum variance method: It minimizes the total within-cluster vari-
ance. At each step the pair of clusters with the minimum between-cluster distance are
merged.

To identify which algorithm measures more accurately the dissimilarities between clusters
of observations, the agglomerative coefficient is applied to select the best clustering method.
The parameter identifies stronger clustering structures, with values closer to 1 representing a
better fit. The following table shows the coefficients returned for each clustering algorithm.

Complete  Single Average Ward
0.5293 0.2625 0.4071 0.7066

The ward algorithm returns the best coefficient with 0.7066 and is therefore applied. Figure
4-3 visualizes the resulting hierarchical cluster structure for all 40 assets initially considered.
From each group the best performing stock is automatically chosen, assuring most possible
portfolio diversification.
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Figure 4-3.: Dendrogram of S&P500

The resulting portfolio of 10 assets is summarized in table 4-1, giving information on their
industry sector, rank, mean log return, standard deviation of log returns cluster group.

Table 4-1.: Stock choice

Symbol Sector Rank Mean.log.return Sd.log.return Cluster
BLL Materials 1 0.0409 0.0985 1
AOS Industrials 2 0.0401 0.1240 2
BF-B Consumer Staples 3 0.0380 0.0896 3
HEFC Energy 4 0.0356 0.1090 4
JKHY  Information Technology 5) 0.0352 0.1330 )
NKE  Consumer Discretionary 6 0.0351 0.1210 6
CSCO  Information Technology 8 0.0342 0.1340 7
PFE Health care 10 0.0313 0.0841 8

MXIM Information Technology 14 0.0270 0.1320 9

GE Industrials 27 0.0245 0.0729 10

Assets of different industry sectors with levels of risk (standard deviation) varying between
0.0729 and 0.1340 are used. The best performing asset has a monthly mean return of 0.0409
and the worst 0.0245. The data available starts in 1990-02-01 and ends in 2020-08-01,
resulting in 367 monthly returns or 247 out-of-sample periods considering the 120 months
needed to estimate the parameters to optimize the traditional portfolio models.



26 4 Methodology

4.3. Portfolio performance parameter

Before analysing each portfolio’s performance, the forecasting accuracy of the proposed al-
gorithm is evaluated. For performance evaluation of each portfolio 5 indicators are computed
1) out-of-sample returns, 2) Sharpe ratio 3) certainty equivalent return, 4) Turnover and 5)
Omega Ratio. A vector for each performance parameter saves the out-of-sample results to
each strategy k.

4.3.1. Sharpe ratio

The Sharpe ratio is one of the most used parameters when evaluating the portfolio’s per-
formance, since it represents a relationship between returns and variance. The parameter is

defined as

SRy = py — o, (4-2)

where py, is the return generated by strategy k and oy, its standard deviation (Sharpe, 1964).

4.3.2. Certainty equivalent

The certainty equivalent (CEQ) is a guaranteed return that an investor would accept now
instead of taking advantage of the chance of a higher but uncertain return in the future. In
other words, the security equivalent is the guaranteed amount of money that a person sees
as desirable as a risky asset (DeMiguel, Garlappi, Nogales et al., 2009). The CEQ return
is estimated as the risk-adjusted rate of return minus the risk-free rate and is defined for
strategy k as

CEQ, = ju — 507 (4-3)

where /iy is the mean and 67 the variance of out-of-sample excess returns generated by
strategy k and y is defined as risk aversion and following common practice set to y = 1
(DeMiguel, Garlappi, Nogales et al., 2009).

4.3.3. Turnover ratio

Turnover is defined as the percentage of a portfolio that is sold in a particular month or year.
To get a feel for the amount of trading that is required to implement each portfolio strategy,
the relative turnover is calculated, i.e. the sum of the absolute value of the trading volume
multiplied by 1 by the number of months (DeMiguel, Garlappi, Nogales et al., 2009). Under
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realistic conditions a high turnover leads to high transaction costs, which is not desirable.
The turnover is defined as

T— N

1 ~ -
Y SN (Wijarr = Wasel), (4-4)

t=1 j=1

Turnover =

where Wm’t is the portfolio weight in asset j at time ¢ before rebalancing under strategy k;
Wk,j,tﬂ is the portfolio weight after the realignment at t 4+ 1. For example, in the case of the
naive diversification, kajyt = Wk‘,j7t+1 = 1/N, but Wk,j’t may differ between t and ¢ + 1 due
to changes in asset prices (DeMiguel, Garlappi, Nogales et al., 2009).

4.3.4. Omega ratio

The Omega ratio can be compared to the Sharpe ratio, but instead of considering only the
first two moments of the return distribution, it considers all given moments.

_ faoo[l — F(r)]dr
S F(r)dr

where F' is the cumulative probability distribution function of the returns and 6 denotes the

Q(0)

(4-5)

target return threshold, defining gains vs losses. A larger ratio is interpreted as that the
portfolio provides more gains relative to losses for 6 and consequently would be preferred.



5. A simulation experiment

This section highlights a simulation experiment to review the forecasting accuracy of the
considered expert aggregation algorithms and select the superior in a portfolio context.
Therefore, the data included in the S&P500 is first filtered for months > 340 and a stand-
ard deviation of < 0.15 resulting in n = 247 of 500 possible assets. The data is then randomly
sampled for 40 time series and eventual NA’s are removed to construct the generalized ran-
dom forests using 120 months as training data. Following, 10 stocks are sampled from the
remaining 40 assets to construct random portfolios, resulting in data sets of 348 months each.
This sampling procedure is repeated 50 times simulating 50 different portfolios. Next, the
previously described methodology is applied to generate forecasts with exponential smooth-
ing, automatic ARIMA and quantile regression, which are then used to aggregate experts
by applying the ML-Prod and ML-Poly algorithm. Forecasts of exponential smoothing,
ARIMA, ML-Prod and ML-Poly are then statistically evaluated and compared to provide
insight on their forecasting accuracy. After determining which algorithm performs on aver-
age the best, forecasts generated with the superior model are used to optimize the respective
portfolio strategies for each month M using the simulated portfolios and the optimal diver-
sified dataset described in section 4.2 to validate if the improved estimate leads to a better
out-of-sample portfolio performance.

Table 5-1.: Arithmetic means for forecast accuracy of ARIMA, ETS, ML-Prod and ML-Poly

Forecast Model Error statistics

ME RMSE MAE
ETS 0.0063 0.0328 0.0246
ARIMA 0.0048 0.0367 0.0245
ML-Poly 0.0008 0.0365 0.0226
ML-Prod 0.0234 0.0455 0.0364

Table 5-1 reports the arithmetic means for ME, RMSE and MAFE obtained for the simulated
datasets. Exponential smoothing and automatic ARIMA perform on-par with a marginal
difference for the reported mean error statistics. The ML-Prod algorithm does not appear
to further improve forecasting accuracy, in contrast to the ML-poly algorithm, that reports

superior means for ME with 0.0008, RMSE with 0.0365 and MAE with 0.0226.
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Box-plot forecasting accuracy
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Figure 5-1.: Box-plot forecasting performance

A more detailed insight on forecasting accuracy is visualized in the box-plot 5-1, which
reveals that for all sampled time series every considered algorithm generates precise forecasts.
As for expert aggregation with the ML-Prod algorithm forecasting accuracy is not further
improved showing inferior quartiles for all three statistics. On the other hand, polynomial
potentials appear to be well-suited for this type of expert aggregation with superior accuracy
measurements for ME and MAE when reviewing the quartiles and medians, but with a wider
interquartile range for the RMSE and superior median when compared to the ML-Prod
algorithm. Full statistics including confidence intervals are reported in the appendix B-1.

ML-Poly forecasts
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ML-Prod forecasts
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Figure 5-2.: Forecasts of expert aggregation for the HollyFrontier Corporation
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The two graphs in figure 5-2 display the forecasts generated by the two expert aggregation
algorithms for the HollyFrontier Corporation (HFC), which has a mean log return of 0.0356
and standard deviation of 0.109. The black line shows the estimation window of asset returns
with the red line showing the out-of-sample period and each model’s forecasts are expressed
with the turquoise line.

The figures show that both algorithms improve with increasing number of iteration, which
is especially notable for the ML-Prod algorithm, which requires a longer period of time in
comparison to the polynomial potentials that seem to fit the data with high accuracy in few
iterations. Hence, both should lead to a superior portfolio performance in comparison to the
traditional estimates of expected returns.

Next, the on experts allocated weights by each forecast combination algorithms for the
optimized dataset are visualized in figure 5-3, with the left graph displaying weights over
time generated by the ML-Prod algorithm and the other illustrating weights estimated with
polynomial potentials.
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Figure 5-3.: Weights of experts

Lines named q0.x denote the weights on forecasts produced by the different quantiles, arima
and ets refer to the automatised versions of these models. Both plots show that the al-
gorithms mainly apply weights on the forecasts produced by automatic ARIMA and exponen-
tial smoothing. While the ML-Prod algorithm over time decreases the weights on quantiles,
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the ML-Poly algorithm is more straightforward but with heavier fluctuating weights on the
experts. In this study the superior model is applied to the portfolio strategies, which is
following this analysis the ML-Poly algorithm. Additionally, the statistical errors for the 10
time series included in the optimal diversified dataset are reported in table B-2 appendix B.

5.1. Portfolio evaluation

After evaluating the forecasting performance of each algorithm, the rolling window study
previously described is applied, to optimize the presented optimizations strategies K and
the results are saved in a data frame of portfolio returns. Using this data, annualized returns,
Sharpe ratios, CEQ, turnover and Omega ratios of each strategy K are calculated. Table
5-2 reports the returned parameters for the optimal diversified dataset, where Tang denotes
the classical mean-variance portfolio and Shrink its extension by shrinking the covariance
matrix. Portfolios ending with .comb are the innovations that implement the proposed
forecast combination as expected return. A first look at the table indicates a superior
performance for models that include the proposed aggregated expert as i in terms of returns,
Sharpe ratio, CEQ and Omega ratio.

Table 5-2.: Portfolio parameter summary for diversified dataset

Portfolio Cumulated | Annualized | Sharpe | CEQ Turnover | Omega
return return ratio return ratio ratio
Naive 2.6171 0.1200 0.1307 | 0.0095 | 0.0526 1.8123
Tang 2.6484 0.1218 0.1322 | 0.0096 | 0.0532 1.8261
Shrink 2.6349 0.1211 0.1318 | 0.0096 | 0.0528 1.8237
MV.comb | 3.0237 0.1411 0.1478 | 0.0111 | 0.0684 1.9385
Shr.comb | 3.0307 0.1415 0.1481 | 0.0111 | 0.0682 1.9407

Although, the turnover ratios for .comb-models are marginal higher and therefore hypothet-
ically involve more transaction costs, one can argue that their superior returns outweigh the
additional expenses. Results from the simulation study are summarized in appendix C table
C-1 including confidence intervals and medians.

5.1.1. Portfolio returns

A first impression of each portfolio’s performance is provided by the cumulative returns of
each strategy, which are shown in figure 5-4. The graph clearly shows that the proposed
forecaster leads to an improvement in comparison to the returns generated by the tradi-
tional portfolios. Introduced constraints on the portfolio weights and the diversification
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performed to obtain the dataset stabilise both traditional optimization approaches, so that
they achieve similar returns when compared to the naive portfolio and furthermore, react
well to capital market shocks. In this context, the mean-variance based strategies generate
marginal superior annualized returns than the naive portfolio which generates 0.1200.

Portfolio returns
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Figure 5-4.: Cumulated portfolio returns

On the other hand, the proposed combined expert leads to an improved performance for
both considered portfolios. Comparing them mean-variance and shrinkage portfolio seem to
perform equally differing only marginal in their generated returns. In detail, the MV.comb
with 0.1411 is marginally outperformed by the shrinkage with 0.1415.

Box-plot annualized returns
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Figure 5-5.: Box-plot of simulated annualized returns

Simulation study results are displayed in the box-plot 5-5, which confirms previous findings,
that the portfolios generate greater portfolio returns with the proposed forecaster as estimate.
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5.1.2. Sharpe ratio

The lowest value for the Sharpe ratio is returned by the naive diversification with 0.1307
and is outperformed by the tangency portfolio with 0.1322 and shrinkage with 0.1318, which
differ only marginal in their performance, which is less surprising considering the slight
differences in returns generated. The proposed estimate leads to superior Sharpe ratios for
both, reporting 0.1478 for the mean-variance and 0.1481 in case of the shrinkage portfolio.

Box-plot Sharpe ratios
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Figure 5-6.: Box-plot of simulated Sharpe ratios

These results are confirmed via confidence intervals of the simulation study and can be
accessed in appendix C table C-1. The box-plot 5-6 of Sharpe ratios visually confirms that
traditional strategies perform on-par and applying the proposed estimate leads to superior
values for both strategies in comparison to their base models considering their median, first
and third quartile.

5.1.3. Certainty equivalent return

The previously obtained results for Sharpe ratio and cumulated returns are also confirmed
for the CEQ return. Reporting a value of 0.0096 for the tangency portfolio, for Shrinkage
0.0096 and the naive diversification 0.0095, which concluding perform quite similar in an
optimal scenario. When including the combined forecast as expected return both strategies
are improved reporting 0.0111 for the mean-variance and shrinkage portfolio.

Figure 5-7 shows that upper and lower quartiles as well as medians for the improved
strategies both are superior in comparison to their base models and confirm the first observa-
tion of superior certainty equivalent returns for models that include the combined forecaster.
Among the group of strategies using expert aggregation only marginal differences are notable
when comparing them to each other with the shrinkage slightly outperforming the tangency
portfolio.
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Box-plot certainty equivalent return
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Figure 5-7.: Box-plot of simulated certainty equivalent return

5.1.4. Turnover ratio

Revisiting the turnover ratios in table 5-2, it can be noted that the strict allocation rules
lead to low turnovers for all optimization strategies. Due to price changes in the value of
assets, the naive portfolio has to be rebalanced monthly so that its turnover ratio amounts to
0.0526, which is the lowest of all investment strategies. The tangency portfolio with 0.0532
and the related shrinkage approach with 0.0528 return respectively low turnovers due to
the stringent allocation rule and the long estimation windows of the covariance matrix and
expected returns, leading to stable estimates and portfolio weights.

Monthly portfolio turnover
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Figure 5-8.: Monthly portfolio turnover
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Figure 5-8 displays the monthly turnover of each strategy K. During economic crisis like in
2000 or 2008 all portfolios react and augment their trading. Naive, tangency and shrinkage
portfolio all involve marginal less trading over the whole period than models with the com-
bined forecaster. Both strategies with aggregated experts as expected return experienced
the same effect during crisis, but with lower peaks in comparison to their average turnover,
indicating overall more trading.

The proposed estimator by combining forecasts is quite noisy (see figure 5-2) and therefore
leads to more fluctuating portfolio weights that would produce undesired turnover ratios, if
not constrained, which indicates the strong influence of the expected returns on the weights
allocated. Due to the allocation constraints introduced, resulting portfolio weights are ro-
bust but still vary more than strategies that include the traditional estimates. For the
mean-variance portfolio with combined forecaster the turnover ratio is 0.0684, and is less
surprising marginal higher than that of the shrinkage portfolio with 0.0682, showing the
effect of shrinking the covariance matrix S.
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Figure 5-9.: Box-plot of simulated turnover ratios

Figure 5-9 shows that traditional strategies return comparable turnover ratios when con-
sidering the first and third quartile, with a marginal greater median for mean-variance and
shrinkage optimization. The naive portfolio and traditional approaches are characterised by
less turnover than models using the combined forecaster, which leads to a more extensive
turnover ratio for the considered models. As demonstrated by the theory, a high portfolio
turnover may result in correspondingly high transaction costs. Since these are treated very
differently on the financial markets, no assumption was made in this regard.

5.1.5. Omega ratio

The Omega ratios in table 5-2 show that the naive portfolio returns the lowest value with
1.8123, marginally followed by the shrinkage approach with 1.8237 and the tangency portfo-
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lio with 1.8261. As for other performance parameters observed, both models with combined
forecaster return also in terms of Omega ratio superior values. In detail the proposed estim-
ate leads to improved Omega ratios returning 1.9385 for the mean-variance and 1.9407 for
the shrinkage portfolio.
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Figure 5-10.: Box-plot of simulated Omega ratios

Omega ratios of the simulated portfolios are displayed in figure 5-10. Each strategy shows
various upward outliers. Naive, tangency and shrinkage portfolio all seem to perform on par,
with similar outliers, while both strategies that implement the proposed estimate return su-
perior quartiles and medians in comparison to their base models. Full statistics are reported
in appendix C.



6. Conclusion

DeMiguel, Garlappi, Nogales et al. (2009) showed that estimation errors hamper portfolio
performance for numerous investment strategies. Especially the erroneous determination of
expected returns has a great impact on the portfolio weights, which in conclusion are con-
structed badly and lead to poor out-of-sample performances. Recent research has therefore
focused on relations between assets such as their correlations to optimize portfolios (Lépez
de Prado, 2016). In contrast, this study’s main objective was to introduce a novel robust
estimate of expected returns via expert aggregation to replace the traditional estimates of fi
for the tangency and shrinkage portfolio, referred to as base models. Additionally, the naive
strategy was included as benchmark, since it is associated with little effort and historically
performs well in terms of returns and turnover ratio.

To construct the experts popular forecasting algorithms such as exponential smoothing,
ARIMA and quantile regression were applied and afterwards aggregated to construct an
improved estimate. Due to the amount of data considered, automatised versions of the first
two algorithms were applied. They determine optimal model fits for each rolling window of
the time series to forecast the next value. Hyndman and Khandakar (2008) state that linear
exponential smoothing methods are all special cases of ARIMA models, while non-linear ex-
ponential smoothing do not have equivalent ARIMA counterparts. Both models fit well for
linear and non-linear data, and also embrace deterministic trends and stochastic components
of the data. Additionally, they include drifts and are able to incorporate random walks.

Gaillard et al. (2016) proposed various expert aggregation methods that improve weights
of each forecaster over time. Thus, forecasts were created applying the 1) ML-Prod and 2)
ML-Poly algorithm, and after carrying out a simulation study to evaluate the forecasting
performance of each model the superior ML-Poly was selected as expected return for portfo-
lio optimization. Due to the noisy estimate, which in consequence would lead to undesired
high turnover ratios and to assure comparability between the strategies, all portfolio weights
were similarly constrained to a minimum allocation of 0.09 and maximum of 0.11.

To build an optimal diversified portfolio an analysis of the S&P500 was carried out based on
hierarchical clustering and ranking assets using their mean log return. In addition, a simula-
tion study was used to confirm all observations made with the optimized dataset. Therefore,
the 5 resulting portfolios were tested on their cumulated and annualized returns, Sharpe
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ratios, CEQ, turnover and Omega ratios. Strategies that included the proposed estimate
experienced an improvement in their performance when comparing them to their respective
base models, delivering superior statistics for all performance parameter except turnover.
Since assumptions regarding resulting transaction costs were not made, one can only ar-
gue that the superior returns of the improved models lead to outweigh additional expenses.
Differences in performance for the strategies with expert aggregation, can be explained by
their covariance matrix estimation, which was kept traditional. When applying the proposed
forecast combination the shrinkage portfolio slightly outperformed the mean-variance optim-
ization considering all performance parameter. These observations were also confirmed in
the simulation study.

6.1. Discussion

This thesis showed an innovative application of two expert aggregation algorithms in order
to minimize estimation errors of return estimates for two in the literature proposed portfo-
lios and improve each one’s performance. The results indicated that strategies implementing
the improved expected return dominate their respective base models. Combining forecasts
showed promising results, however there is still no consensus on how to best combine indi-
vidual forecasts or which experts to consider. This problematic has been subject to discus-
sions in literature suggesting a mixture of statistical models and expert aggregation when
data is sparse and evolving. Despite the time and effort it takes to elicit expert-generated
data, the wide range of applications and new methods show general research interest.

For ARIMA forecasting the two major issues are the model estimation and the choice of data-
set. First off, there is no clear selection order between different ARIMA models in terms of
the lagged values of the AR process and the MA process. Secondly, it is still wildly discussed
whether ARIMA forecasting should adopt a time series with a longer estimation window or
a shorter one. These challenges can hamper forecasting accuracy and may lead forecasters
to incorrectly conclude that the ARIMA model is inferior to other forecasting techniques.
Thus, it is improbable that large estimation errors that sometimes are generated by ARIMA
models are caused by their inherent weaknesses, but rather by the incorrect determination of
appropriate parameters for an ARIMA forecasting model and, as a consequence, the ARIMA
models are not trained with the correct data set. Dong et al. (2020) tested the automatic
ARIMA algorithm for different rolling windows and found that a long estimation window
and a low forecast horizon perform exceptionally well for forecasting purposes. Therefore,
the rolling window was chosen to be 90 months and the forecast horizon was limited to just
one.

Based on these findings future studies might focus on two aspects. Firstly, one could further
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improve the experts considered by testing different window lengths for the automatic expo-
nential smoothing algorithm or by including macroeconomic factors to the random forest as
predicting variables. Additionally, one might choose to consider additional experts, such as
neural networks to further improve forecasting accuracy of the aggregated expert. Due to
the amount of time needed to generate experts, research opportunities can also be found in
collecting data from experts that are unbiased and in a less-time consuming manner.

Secondly, only few studies focused on rigorously comparing combination forecasting models.
Hence, further investigation is required to analyse experts and statistical forecasts to confirm
the added value of expert judgement. McAndrew et al. (2019) found that the majority of
articles measured success on whether or not the combination scheme could produce a forecast
and visually inspected the results. Latter was used due to the lag of ground truth data, but
in this case, a simulation study should generate hindsight of the forecasting performance of
a novel combination method. Therefore, future research on expert aggregation still needs
to find an appropriate parameter to measure forecast accuracy and develop experiments to
evaluate novel combination algorithms in comparison to existing methods.

Combining experts to produce forecasts can outperform statistical ensembles when data is
sparse, or rapidly evolving. Expert aggregation algorithms are able to gain insight on how
forecasts are made and ultimately how to best use the information each expert provides to
make crucial decisions about future forecasts.



A. State space framework

Appendix A details the statistical models that underlie the exponential smoothing methods.
To distinguish between models with additive and multiplicative errors, a third letter is added
to the classification in table 3-1. Each state space model is labelled ETS(:, -, -) for (Error,
Trend, Seasonal), leaving the following possibilities for each component: Error = {A, M},
Trend = {N, A, A;} and Seasonal = {N, A, M }.

For simple exponential smoothing (A, N, N) with additive errors the forecast equation can
be written as y; = ¢;_1 + e;, so that each observation can be determined by the previous
level plus an error term. To convert given equation into a state space model, the probability
distribution e; has to be specified. For a model with additive errors, Hyndman et al., 2008
assume that the one-step training errors (residuals) are normally distributed white noise with
mean 0 and variance o2, which can be formulated as ¢; = ¢, ~ NID(0, 02). Concluding, the
equations of simple exponential smoothing can be written as:

Y=l +e& (A-la)
gt = &571 + (et (A-lb)

Together with the statistical distribution of the errors, they form the innovations state space
model underlying simple exponential smoothing. A-1la is referred to as measurement equa-
tion and shows the relationship between the observations and unobserved states. For simple
exponential smoothing observation y; is a linear function of the level ¢;_; with a predictable
and unpredictable part of 3, and the error ¢. Formula A-1b describes the state equation,
which illustrates the evolution of the state through time where o governs the amount of
change in successive levels. High values of a leads to rapid changes in level, whereas low
values of a allow only smoother changes.

In the same manner, the models with multiplicative errors can be specified by writing the
one-step-ahead training errors as relative errors:

_ 9~ Utje—1

€t =
Yet—1

where e; = ¢, ~ NID(0,0?%). All resulting state space equations are listed in A-1.
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B. Forecast error statistics

Table B-1.: Confidence intervals and means of accuracy for forecasts generated with auto-
matic ARIMA, ETS and expert aggregation algorithms for time series obtained
in the simulation study

Error statistic ARIMA ETS ML-Poly | ML-Prod
ME

CI 5% -0.0026 -0.0036 -0.0055 0.0124
Mean 0.0048 0.0063 0.0008 0.0234
CI 95% 0.0143 0.0171 0.0052 0.0318
RMSE

CI 5% 0.0102 0.0085 0.0139 0.0278
Mean 0.0367 0.0328 0.0365 0.0455
CI 95% 0.1008 0.0985 0.0965 0.0990
MAE

CI 5% 0.0049 0.0066 0.0054 0.0215
Mean 0.0245 0.0246 0.0226 0.0364
CI 95% 0.0754 0.0749 0.0743 0.0727
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Table B-2.: Forecast accuracy of ETS, ARIMA and expert aggregation algorithms for the
diversified dataset

Error statistics

Forecast model ARIMA ETS

Ticker ME RMSE MAE ME RMSE MAE
AOS 0.0148 0.0195 0.0162 0.0183 0.0197 0.0191
BF-B 0.0183 0.0263 0.0218 0.0189 0.0221 0.0199
BLL 0.0205 0.0622 0.0389 0.0195 0.0367 0.0246
CSCO 0.0008 0.0243 0.0105 0.0006 0.0267 0.0130
GE -0.0043  0.0374 0.0195 -0.0054  0.0256 0.0140
HFC 0.0256 0.0563 0.0346 0.0281 0.0564 0.0382
JKHY 0.0194 0.0180 0.0118 0.0131 0.0166 0.0141
MXIM 0.0105 0.0281 0.0138 0.0085 0.0158 0.0122
NKE 0.0154 0.0254 0.0206 0.0166 0.0182 0.0176
PFE 0.0045 0.0132 0.0082 0.0023 0.0128 0.0095

Error statistics

Forecast model ML-Poly ML-Prod

Ticker ME RMSE MAE ME RMSE MAE
AOS 0.0046 0.0147 0.0099 0.0045 0.0452 0.0308
BF-B 0.0029 0.0182 0.0104 0.0000 0.0386 0.0285
BLL 0.0049 0.0362 0.0199 0.0025 0.0562 0.0335
CSCO 0.0005 0.0275 0.0110 -0.0040  0.0478 0.0258
GE -0.0026  0.0286 0.0159 -0.0101  0.0463 0.0323
HFC 0.0077 0.0451 0.0265 0.0063 0.0604 0.0389
JKHY 0.0021 0.0160 0.0074 0.0004 0.0419 0.0266
MXIM 0.0036 0.0211 0.0096 -0.0009  0.0459 0.0272
NKE 0.0032 0.0288 0.0115 0.0027 0.0452 0.0269

PFE 0.0007 0.0137 0.0066 -0.0040  0.0381 0.0291




C. Simulation study portfolio
performance

Table C-1.: Portfolio performance parameter generated by the simulation study

Portfolio Naive Tang Shrink Mv.comb | Shr.comb
Annualized return | 0.1200 0.1218 0.1211 0.1411 0.1415
CI 5% 0.0470 0.0470 0.0470 0.0613 0.0618
Median 0.0750 0.0750 0.0750 0.0911 0.0920
CI 95% 0.1087 0.1086 0.1087 0.1269 0.1271
Sharpe ratio 0.1307 0.1322 0.1318 0.1478 0.1481
CI 5% 0.0592 0.0592 0.0592 0.0659 0.0661
Median 0.0876 0.0876 0.0876 0.0991 0.0992
CI 95% 0.1488 0.1490 0.1488 0.1649 0.1651
CEQ return 0.0095 0.0096 0.0096 0.0111 0.0111
CI 5% 0.0039 0.0039 0.0039 0.0050 0.0051
Median 0.0061 0.0061 0.0061 0.0073 0.0074
CI 95% 0.0087 0.0086 0.0086 0.0100 0.0100
Turnover ratio 0.0526 0.0532 0.0528 0.0684 0.0682
CI 5% 0.0411 0.0414 0.0413 0.0598 0.0599
Median 0.0489 0.0489 0.0489 0.0640 0.0639
CI 95% 0.0550 0.0550 0.0550 0.0689 0.0687
Omega ratio 1.8123 1.8261 1.8237 1.9385 1.9407
CI 5% 1.3164 1.3164 1.3164 1.3722 1.3740
Median 1.4616 1.4616 1.4616 1.5545 1.5562
CI 95% 1.7878 1.7892 1.7882 1.9120 1.9137
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