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Resumen 

Genética de la conservación de la mayor población cautiva del críticamente 

amenazado caimán del Orinoco (Crocodylus intermedius): 

Una contribución para su supervivencia. 

En el último siglo ha habido un aumento en el número de especies amenazadas y la 

conservación a través de programas de cría en cautiverio se ha vuelto crucial para su 

supervivencia. Una de las principales consideraciones para el diseño de programas de 

reproducción es la preservación de la variabilidad genética que proporciona la materia 

prima para la adaptación. Si el manejo se basa solo en los pedigrí registrados, la 

información puede estar incompleta o inexacta y puede llevar a una subestimación de las 

relaciones de parentesco. Las acciones de manejo incorrectas pueden alterar la viabilidad 

de las reintroducciones debido a la pérdida de diversidad y depresión genética de la 

población de origen. En esta tesis de Maestría, utilizamos un sistema de 17 loci de 

microsatélites para caracterizar la variación genética de la mayor población ex-situ del 

críticamente amenazado Crocodylus intermedius en Colombia a cargo de la Estación de 

Biología Tropical Roberto Franco (EBTRF) con el objetivo de proponer pautas de manejo 

y evaluar reintroducciones pasadas y futuras. En el Capítulo 1 comparamos los índices 

genéticos de las poblaciones Fundadora y Viva y encontramos que los cocodrilos vivos 

mantienen gran parte de la diversidad fundadora, altos niveles de heterocigosidad y una 

baja consanguinidad. En el Capítulo 2 desarrollamos una poderosa herramienta que 

combina información de parentesco, diversidad individual, edad, sexo, tamaño y ubicación 

de los cocodrilos vivos por medio de la cual construimos combinaciones de individuos para 

planificar futuros grupos reproductores que maximicen la diversidad genética de la 

población. Proponemos diferentes núcleos reproductivos y demostramos que los datos 

moleculares pueden ser utilizados para mejorar la gestión del programa mucho más allá 

de lo que se puede lograr solo con la información del pedigrí. Para proporcionar 

información sobre el componente genético de los individuos liberados y sugerir mejoras en 

las reintroducciones, en el Capítulo 3 evaluamos la composición genética de cuatro grupos 

de cocodrilos reintroducidos y de los juveniles que serán liberados. Proponemos que, a 

corto plazo, las reintroducciones solo se realicen en lugares donde se tenga la certeza de 

que las poblaciones se han extinguido por completo. En caso de que la especie esté 

presente, antes de implementar medidas de reintroducción, es necesario evaluar con 

precisión su perfil genético y su situación, así como estimar el tamaño de la población. 

Palabras clave: microsatélites, variabilidad genética, potencial evolutivo, cría en 

cautividad, diversidad individual, reintroducción. 
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Abstract 

Conservation genetics of the largest captive population of the critically endangered 

Orinoco crocodile (Crocodylus intermedius): A contribution for its survival. 

 

During the last century, many species have become endangered, and conservation through 

captive breeding programs has become crucial for their survival. One of the primary 

considerations for the design of reintroduction programs is the preservation of genetic 

variability, which provides the raw material for adaptation. If management is based only on 

recorded pedigrees, information may be incomplete or inaccurate and may lead to an 

underestimation of relatedness. Incorrect management actions can alter the viability of 

reintroductions due to the loss of genetic diversity and genetic depression of the source 

population. In this Master thesis, we used a 17 microsatellite loci system to characterize 

the extent of the genetic variation of the biggest ex-situ population of the critically 

endangered Crocodylus intermedius in Colombia in charge of the Roberto Franco Tropical 

Biology Station (EBTRF) aiming at proposing management guidelines and at assessing 

past and future reintroductions. In Chapter 1 we compared genetic indexes of the Founder 

and Alive populations and we found that the living crocodiles maintain much of the founder 

diversity, high levels of heterozygosity, and a low overall inbreeding. In Chapter 2 we 

developed a powerful tool that combined information of relatedness, individual diversity, 

age, sex, size, and location of the living crocodiles that allowed us to build combinations of 

individuals to plan future breeding groups that maximize the population´s genetic diversity. 

We propose different reproductive nuclei, and we demonstrate that molecular data can be 

used to improve the management of the program, well beyond of what can be achieved 

with pedigree information alone. To provide insights on the genetic component of the 

released individuals and to suggest the improvement of crocodile’s reintroductions, in 

Chapter 3 we evaluated the genetic composition of four groups of crocodiles already 

reintroduced and of juveniles to be released. We propose that in the short term, 

reintroductions should only be carried out in places where it is certain that the populations 

have become completely extinct. In case the species is present before implementing 

reintroduction measures it is necessary to accurately assess its genetic profile and situation 

as well as to estimate population size. 

 

Key words: microsatellites, genetic variability, evolutionary potential, captive breeding, 

individual diversity, reintroduction. 
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Introduction  

 

Time is running out for many of the world’s animal species. Processes such as habitat loss, 

species introduction, overexploitation, pollution, and climate change, combined with 

stochastic factors, are the main drivers of species loss (Primack, 2002; Bertorelle et al., 

2009). By 2020, 9677 species of vertebrates were listed by the International Union for the 

Conservation of Nature (IUCN) as vulnerable, endangered, or critically endangered, which 

represents 18% of the total number of species evaluated. Facing this situation, 

Conservation Biology emerges as a ‘crisis discipline’ that combines ecology, taxonomy, 

genetics, and other areas of knowledge to stem the rapid rise of species loss, supporting 

decision-making and seeking for the protection of threatened species (Bertorelle et al., 

2009). 

Conservation genetics 

Conservation biology requires an efficient, cheap, and rapid method to obtain the 

information necessary for the implementation of conservation strategies, being population 

genetics one of those powerful instruments (Bertorelle et al., 2009). With the use of 

mathematical models and molecular genetic data, it is possible to estimate crucial 

parameters for the evaluation of the health of natural populations and their long-term 

viability, such as effective population size, abundance, population fragmentation, gene flow, 

genetic drift, genetic diversity, sex ratio, patterns of mate choice, relatedness, effective and 

sex-specific dispersal rates, levels of inbreeding, introgressive exchange, viable population 

size, breeding system, effects of bottlenecks and structure (Bertorelle et al., 2009).  

The availability and application of molecular tools for biodiversity conservation have 

advanced considerably over the last 20 years, but microsatellites are still the most used 

tool for population genetics (Witzenberger & Hochkirch, 2011). Even though single 

nucleotide polymorphisms (SNPs) can have a higher precision (Roques et al., 2019) 

microsatellites offer a cost advantage which is particularly important in research with low 

budgets. The potential analytical range of microsatellites extends from species to the 

community level and on the spatial/temporal scale; additionally, they are useful in 

population analyses, which include paternity (Lafferrier et al., 2016), kinship (Recino-Reyes 

et al., 2020), effects of reduced population sizes (Bishop et al., 2009) and effects of 
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reintroduction and restocking (Rodriguez et al., 2011). Currently, the principal disadvantage 

of microsatellites is the limited primers availability for many groups, a step that can be time-

consuming and expensive. Fortunately, the potential for cross-species amplification – the 

amplification using microsatellite primers developed for a species in nearby taxa – and the 

constant increase of primers development, considerably reduce costs and allow the use of 

already designed tools. 

One of the main uses of microsatellites is for the estimation of genetic diversity, one of the 

most important attributes of any population, defined as the variation in the amount of genetic 

information within and among individuals of a population, species, assemblage, or 

community (United Nations, 1992). The evaluation of this parameter in natural and captive 

populations is important to characterize the population structure (Witzenberger & 

Hochkirch, 2013), history (Karsten et al., 2011), and hybridity (Weaver et al., 2008). 

Additionally, it is a crucial parameter for taking decisions in breeding programs developed 

for the reintroduction of individuals (Lapbenjakul et al., 2017).  

Ex-situ populations and their utility for endangered species 
conservation 

Despite in situ conservation represents by far the most effective way to protect endangered 

species, ex-situ conservation of captive-bred animals has become an important tool to 

protect endangered species, and in many cases the only way to save them from extinction 

(Frankham et al., 2007, Bertorelle et al., 2009, Witzenberger & Hochkirch, 2011). For this 

purpose, captive breeding programs can serve for the establishment and conservation of a 

healthy and self-sustaining population, and the formation of a captive stock that resemble 

wild populations as closely as possible for being a source for reintroductions (Frankham 

2008; Goncalves da Silva et al. 2010; Witzenberger & Hochkirch, 2011).  Nevertheless, if 

there is no adequate management, ex-situ populations can be affected by various 

phenomena that can alter the viability of reintroductions, such as the genetic adaptation to 

captivity, the genetic depression due to inbreeding and the loss of genetic diversity that 

occur from the moment of the foundation since the gene pool of the wild population is only 

represented by the individuals used in the foundation process (Frankham et al., 2007, 

Witzenberger & Hochkirch, 2011). 

Population genetics can assist captive conservation programs by providing tools that allow 

the formulation of guidelines that reduce the loss of genetic diversity to the maximum. 
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Variation estimated with molecular markers can be used to reconstruct pedigrees, assess 

founder relationships (Gautschi et al. 2003), identify genetically important individuals 

(Rusello & Amato, 2004), and compare wild and captive populations (Spitzweg et a., 2018). 

Considering that in many cases the kinship relationships are not known, molecular genetic 

analyses guarantee the design of more strategical crosses (Witzenberger & Hochkirch, 

2011).  

Crocodylus intermedius conservation program in Colombia 

Crocodilians are an ancient and successful group, considered the most economically 

valuable reptiles, with a global trade of skin, meat, tourism, and trophy hunting that generate 

economically sustainable-use programs that have underpinned many of the conservation 

projects since the 1980s (Caldwell, 2017; Somaweera et al., 2018). However, the increase 

of human hunting pressures has led to significant declines in their populations worldwide. 

Colombia, the most diverse country in crocodilians species of the world (Morales-

Betancourt et al., 2013), has two species classified with some degree of threat: Crocodylus 

acutus as Vulnerable (VU) and Crocodylus intermedius as Critically Endangered (CR) 

(IUCN, 2020). 

Crocodylus intermedius has suffered a profound decline in their populations during the XX 

century, caused by commercial hunting and collection of eggs for local consumption 

(Castro-Casal et al., 2013). Historically, the species was widely distributed throughout the 

Orinoco Basin in Colombia and Venezuela, inhabiting almost all large rivers (Medem, 

1981). The intense hunting carried out between 1930 and 1960 in the Llanos of Colombia 

and Venezuela driven by the commercial trade for its skin nearly led to its extinction (Castro 

et al., 2012). In Colombia, between 252,300 and 254,000 skins were traded during the 

hunting period, and between 1929 and 1934 it is estimated that 850,000 skins were 

exported from Venezuela (Medem, 1981; Medem, 1983; Castro et al., 2012). Around 1940, 

the skin market began to decline due to the decrease of the species’ populations, although 

opportunistic hunting continued (Medem, 1981; Thorbjarnarson, 1987; Castro-Casal et al., 

2013). Regardless of the scarce and imprecise information that exists, it has been 

estimated that between two and three million of skins could have been exported, although 

this number could be considerably higher (Thorbjarnarson, 1987; Antelo, 2008; Castro-

Casal et al., 2013).   
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To prevent the extinction of the species and to promote populations recovery, integrating it 

into the regional economic and cultural systems, the Ministry of the Environment (MMA by 

its acronym in Spanish), the Alexander von Humboldt Biological Resources Research 

Institute (IAvH) and the National University of Colombia (UNAL) formulated the National 

Program for the conservation of the Orinoco Crocodile (PROCAIMÁN) in 1998 (posteriorly 

updated in 2002). One of the conceived strategies of the program is the repopulation of 

natural habitats, where the Roberto Franco Tropical Biology Station (EBTRF), of the Faculty 

of Sciences of the National University of Colombia, located in Villavicencio, Meta, plays a 

crucial role keeping and breeding individuals in captivity (Ardila-Robayo et al. 2010, Posso-

Peláez et al., 2018).  

The ex-situ population of the EBTRF originated in 1970, when Federico Medem motivated 

by the notable population decline of the species, began the formation of the breeding center 

(Lugo, 1995). That year, the first pair was established with a seven-year-old male named 

Polo coming from Puerto Alicia, near Puerto López, Meta River, Meta department, and a 

female, named Dabeiba, from Puerto López, Río Meta, Meta department. In 1975, another 

male named Custodio arrived from San Carlos de Guaroa, Río Metica, Meta department, 

and in 1976 an old female named Lizeth arrived, coming from Charco Gaitán, Humea River, 

Meta department. In 1986, a male named Pancho arrived from Caño Yatea, Bocas del 

Guachiría, Meta River, Casanare department. In 1979, the Lizeth-Custodio and Dabeiba-

Polo reproductive pairs were established, and although the first nesting occurred in 1986, 

only until 1991 the first offspring were obtained, with the implementation of a room with 

controlled humidity and temperature. Between 1986 and 1996, 25 donated and confiscated 

individuals arrived at the Station. Today, many of the confiscated individuals and the five 

founding crocodiles are dead but they left offspring that generated most of the station’s 

population, and in 2004 the first F2 generation was obtained. Currently, there are 593 

crocodiles under the Station care of which more than 90% are the product of ex-situ 

reproductive events: 361 distributed at the station itself in Villavicencio, 19 in Merecure 

Agrological Park in Villavicencio, 203 in Wisirare Park in Orocué – Casanare department, 

five in Ocarros BioPark in Villavicencio, and five in Piscilago conservation Park in Nariño – 

Cundinamarca department. Together, these individuals probably exceed the number of 

crocodiles known in wildlife in all the distribution range of the species in Colombia (Posso-

Peláez et al., 2018).   
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Despite the diversity of ages and the large number of crocodiles that are kept in captivity, 

the Station has not been able to make the number of releases that are expected in 

accordance with its potential and the measures established in the conservation plan. This 

is due to several reasons; firstly, before 2004 the Station did not have the guidelines for the 

management of animals such as filling databases with the information of every individual, 

a posture control, or monitoring of offspring and reproduction among others (Maldonado & 

Ardila, 2004). Without this information, it is not possible to establish the individuals eligible 

to be released. Moreover, in the National Program for the Conservation of the species 

(PROCAIMÁN), it is established that a genetic characterization of the crocodiles of the 

Station needs to be made to implement management that maintains and increases genetic 

variability, as well as a genetic characterization of the specimens to release (MMA, 2002). 

Although there is a genetic study (Cuervo, 2010; Cuervo-Alarcón & Burbano-Montenegro, 

2012.) this one was hampered by some fundamental problems that make the results not 

conclusive enough to allow the appropriate genetic management that would permit the 

releases. 

Frankham et al. (2007) established that a captive breeding and reintroduction program can 

be viewed as a process involving six stages: 1. the decline of the wild population, 2. the 

foundation of a captive population, 3. the growth of the captive populations to a secure size, 

4. the management of the captive population over generations, 5. the selection of 

individuals for reintroduction, and 6. the management of the reintroduced population 

(Frankham et al, 2007). Considering that in Colombia the captive breeding conservation 

program of C. intermedius is stagnant in stage four, in this Master thesis we aimed at 

performing a conservation genetics study of the captive population in charge of the EBTRF 

using microsatellites molecular markers, allowing to advance in stages four, five and six 

mentioned above. First, we present a Chapter that evaluates the loss of genetic diversity 

since the foundation and the genetic potential currently available. Second, we present a 

Chapter where we formulated guidelines and recommendations to preserve the current 

genetic diversity as much as possible by determining the best breeding combinations. This 

section also determines the relationship between the founders and captive-bred individuals. 

Finally, the third Chapter focuses on releases, where we identify the most distant captive-

bred offspring for reintroduction and evaluate the genetic profile of individuals released in 

four different rivers. The study also presents a reflective discussion on the future of the 
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captive breeding program and the enormous potential it has for repopulation aimed at the 

recovering of the wild populations of C. intermedius in Colombia. 
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1. Chapter 1 

Captive bred populations of the critically endangered Orinoco 
Crocodile (Crocodylus intermedius) are genetic reservoirs to save 

the species from the extinction in Colombia. 

1.1 Abstract 

Ex-situ conservation programs and reintroduction of captive-bred animals have become an 

important tool to protect endangered species, and an example of this is the captive breeding 

program of Crocodylus intermedius in the Roberto Franco Tropical Station (EBTRF) in 

Colombia. Despite the large number of individuals kept in captivity, the Station has not been 

able to release individuals in part by the lack of a genetic characterization that determines 

the current genetic potential of the population. In this study, we used a panel of 17 

microsatellites loci to estimate the number of alleles, allelic richness, allelic frequencies, 

inbreeding, and heterozygosities of the Founder and Alive crocodiles to understand at the 

genetic level, the effect of managing for 50 years a captive breeding program without 

considering genetic profiles. Our results revealed that despite having lost 7.5% of the 

diversity in terms of the number of alleles, the EBTRF living population maintains much of 

its founder diversity, high levels of heterozygosity, and a low overall inbreeding, making it 

suitable for maintaining captive breeding and making wild releases. However, some alleles 

are present in very low frequencies, so management measures should not only seek to 

maintain high levels of heterozygosity but also to prioritize the reproduction of individuals 

that have rare alleles in order not to lose them.  

 

Key words: ex-situ conservation, microsatellites, allelic richness, genetic diversity loss.  
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1.2 Introduction 

In the last century, several species became endangered and require intensive management 

to ensure their survival. Although in-situ conservation represents the most effective way to 

protect endangered species, ex-situ conservation programs and reintroduction of captive-

bred animals have become an important tool to protect endangered species (Witzenberger 

& Hochkirch, 2011), and in many cases, such programs are the only way to save them from 

extinction (Bertorelle et al., 2009). However, nowadays the aim of the ex-situ conservation 

programs goes beyond the survival of the individuals and targets the conservation of the 

genetic diversity over long periods (Ramirez et al., 2006).  

In captive breeding and liberation conservation programs, genetic diversity is a primary 

component of adaptive evolution and is essential to ensure the evolutionary potential that 

allows populations to adapt to changing environments (Frankham et al. 2002). The loss of 

genetic diversity occurs from the moment of foundation, since the gene pool of the captive 

population is only represented by the individuals used in the foundation process, and if there 

is not adequate management of the population, there may be a differentiation of the captive 

population with respect to the wild, causing harmful effects at the time of reintroductions 

(Frankham et al., 2002). Different strategies can be implemented to minimize the loss of 

genetic diversity in captive populations. One of them is the use of polymorphic molecular 

markers such as microsatellites, which framed in the theory of population genetics can 

provide insights into processes such as the change and loss of genetic variability that is 

difficult or impossible to study via traditional approaches (Alcaide et al., 2009).  

The Orinoco Crocodile (Crocodylus intermedius) is endemic to the Orinoco Basin in 

Colombia and Venezuela, being one of the most endangered species among the 23 extant 

crocodilians species of the world, and it is considered as the most threatened vertebrate 

species in the Neotropics (Moreno-Arias & Ardila-Robayo, 2020). During the 20th century, 

commercial hunting of the Orinoco Crocodile motivated by the high demand for its skin 

brought it to the brink of extinction. Currently, the population status of the species is unknown 

and last censuses report a general trend of poor recovery or population decline (Medem, 

1981; Lugo 1996; Seijas et al. 2010; Espinosa-Blanco & Seijas 2012; Babarro, 2014; Parra-

Torres et al., 2020). Thus, the Orinoco Crocodile is considered as “Critically Endangered” 

by the International Union for the Conservation of Nature (IUCN) and it is included in 
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Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna 

and Flora (CITES; Castaño-Mora, 2002).  

Protection measures were contemplated since 1970s in Colombia and Venezuela by setting 

an indefinite ban on the exploitation of the species (Godshalk 1982, Catro-Casal et al., 

2013). At the same time, motivated by the critical situation of C. intermedius, Federico 

Medem started the principal captive breeding program for the conservation of the crocodile 

in Colombia at the Roberto Franco Tropical Biology Station (EBTRF) of the Faculty of 

Sciences of the National University of Colombia located in Villavicencio - Meta department. 

In the 50 years of the program, the crocodile population of the EBTRF grew from the 

reproduction of 26 confiscated individuals and five wild crocodiles to the actual size of almost 

600 individuals distributed in five different locations known as ex-situ subpopulations: 

Piscilago, Wisirare, Merecure, Ocarros, and the EBTRF. 

Since 1998 the EBTRF is part of the National Program for the Conservation of the Orinoco 

Crocodile (PROCAIMÁN; MAM, 2002) as it represents the largest stock of individuals of the 

species in Colombia, probably containing more crocodiles than those found in the wild 

(Posso-Peláez et al., 2018). Nevertheless, despite the diversity of ages and the large 

number of individuals kept in captivity, the Station has not been able to release individuals 

principally by the lack of a genetic characterization that determines the most apt individuals 

to be released, as well as a management that maintains and increases the population´s 

genetic variability. In addition, due to the long time that the program has been in operation, 

it is not known the loss of diversity that could have been generated from the moment of the 

foundation in 1970 to today. 

Therefore, in this study, we aimed at evaluating and comparing genetic diversity parameters 

of Founder and Alive individuals of C. intermedius in the EBTRF. For this, we used a panel 

of 17 microsatellites loci to estimate allelic richness, frequencies, and heterozygosities in 

living and founder crocodiles, to understand at the genetic level the effect of managing a 

captive breeding program without considering the genetic profile of the individuals and the 

population.  
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1.3 Methods 

1.3.1 Sampling 

Since 2004 tissue samples have been taken from most of the crocodiles comprising the ex-

situ population in charge of the EBTRF. Scales and muscle samples were preserved in pure 

ethanol and kept at -20°C until processing. Since the Station does not have a database 

where the information of the individuals is reported, a search was made according to the 

archive records deposited in the Station's file to know about the origin and status of the 

crocodiles. All the animals are microchipped allowing individual identification.  

In total, the study included 461 individuals. The complete dataset comprised 37 crocodiles 

from wild origin either acquired through direct captures (with known geographical origin) or 

seizures from wildlife and breeding centers. These included five of the six dead wild founders 

(Lizeth, Dabeiba, Pancho, Custodio, and Juancho, except for Polo who died in 1998), two 

dead individuals of Vichada River, six young individuals of Cravo Norte River (one dead and 

five with 11 years old in 2021), and 24 seized individuals (13 dead). The remaining 424 

samples corresponded to captive offspring (F1 and F2, Figure 1).   

1.3.2 Laboratory procedures and genotyping 

Genomic DNA was extracted from preserved tissue using the Invisorb® Spin Tissue Mini Kit 

(Stratec) following manufacturer protocols. Since no specific primers for microsatellite loci 

of C. intermedius are available, 17 primers developed for other species of the genus and 

already evaluated for cross-amplification by Laferriere et al., (2016) were used in the present 

study. To amplify microsatellite DNA, four PCRs multiplex were performed (Table 1) using 

the Multiplex PCR kit MyTaq™ HS Mix (Bioline, USA). Reactions were prepared in a final 

volume of 10 μL including 5 μL of MyTaq™ HS Mix, 0.2 μL of 10X each primer (except for 

Cj122 and Cj109 that 0.4 μL were added), a final concentration of 4ng/ μL of DNA and the 

excess of ultra-pure water to complete. Thermocycling conditions were as follows: a 

preliminary denaturation stage at 95 °C for 4 minutes, followed by 30 denaturation cycles at 

95 °C for 30 seconds, two different annealing temperatures (Table 1) for 45 seconds and 

extension at 72 °C for 30 seconds, ending with a temperature of 72 ° C for 5 minutes. 

Fragment lengths were determined using an ABI 3500 Genetic Analyzer. For this purpose, 

1 µl of the PCR product was diluted in 99 µl water; 1 µl of this dilution was mixed with 8.5 µl 

Hi-Di Formamide (Applied Biosystems), 0.25 µl water and 0.25 µl GeneScan-600 LIZ Size 
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Standard (Applied Biosystems). The Gene-Mapper 3.7 (Applied Biosystems Foster City, CA) 

and Osiris 2.13.1 (NCBI) software were used for scoring fragment lengths using as reference 

the alleles reported by Laferriere et al., (2016). Genetic laboratory work was conducted at 

the Molecular Ecology Laboratory of the Genetics Institute, National University of Colombia 

in Bogotá.  

1.3.3 Data Analysis  

For the estimation of the genetic diversity, the EBTRF crocodile population was subdivided 

into two groups. The first group was composed of 37 F0 crocodiles coming from natural 

populations or confiscated, who represent the genetic potential that the Station has had 

since it was founded. The second group contained 440 individuals including F0, F1, and F2 

generations distributed in the different ex-situ subpopulations of the station, which represent 

the current potential diversity of the EBTRF. We took this division considering that the 

presence of both young and adult individuals in each generation and the low reliability of the 

archive records, prevented subdividing the population by generations.  

To estimate null allele frequencies at each locus on the whole dataset we used FreeNA 

(Chapuis & Estoup, 2007) and CERVUS 3.0.7 (Kalinowski et al., 2007) software, and null 

alleles were considered when the frequency was higher than 0.05 in both programs results. 

Expected heterozygosities (He) and observed heterozygosities (Ho) were estimated using 

ARLEQUIN 3.5.1.2 (Excoffier et al. 2005). The same software was used to test for Hardy 

Weinberg equilibrium (HWE) and linkage equilibrium; Bonferroni corrections were applied 

for both calculations. The number of alleles per locus (nA), allelic richness (AR), allelic 

frequencies and inbreeding coefficient (FIS) were calculated in FSTAT 2.9.3.2 (Goudet, 

2001). FIS significance for excess and defect of heterozygous was evaluated in Genepop 

4.7.5 (p-value < 0.005, Raymond & Rousset, 1995). Statistical significance differences for 

allelic richness, Ho, and FIS between population subdivisions were tested with 15,000 

permutations in FSTAT 2.9.3.2 (Goudet, 2001). Allele dropout was estimated using MICRO-

CHECKER 2.2.3 (van Oosterhout et al., 2004).  
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1.4 Results 

The 17 microsatellite loci were successfully amplified for 458 of the 461 available samples 

from crocodiles of the EBTRF ex-situ population. For the other three samples, between one 

and six loci were not obtained. One of the 17 loci resulted monomorphic (CpP1610) in both 

population divisions and there was no evidence for loci with null allele frequencies or for 

allele dropout.   

A total of 69 alleles were observed in the sampled individuals but the number differed 

between both subpopulations: 67 in F0 crocodiles and 64 in Alive crocodiles, representing 

92.5% of the F0 alleles (Table 2). The F0 population presented five private alleles while the 

Alive population presented two (Table 3), suggesting that in the living population we found 

wild individuals or with non-genotyped parents. The number of alleles per locus ranged from 

2 to 9 in the F0 population with a mean of 4.2, and from 2 to 8 with a mean of 4 in the Alive 

population. The allelic richness varied between 2 and 5.391 (averaging 3.853) in the F0 

population and between 2 and 4.955 (averaging 3.369) in the Alive population. Some alleles 

had considerably higher frequencies than others (e.g., 337 vs. 341/343 in locus Cj127, Table 

3). Although there were loci where allele frequencies did not change considerably between 

F0 and Alive populations (e.g., CpP3216, CUJ131, CpDi13), there were other loci that 

showed strong changes, and even loss of alleles (e.g., Cj109, Cj18, Cj391, Cpp801).  

The level of observed heterozygosity (Ho) varied between 0.081 and 0.784 (averaging 

0.573) in the F0 population and between 0.339 and 0.813 (averaging 0.617) in the Alive 

population. The expected heterozygosity (He) varied between 0.080 and 0.807 (averaging 

0.587) in the F0 population and from 0.297 and 0.769 (averaging 0.574) in the Alive 

population. The inbreeding coefficient FIS varied between -0.168 and 0.198 (averaging 

0.025) in the F0 population and between -0.195 and 0.122 (averaging -0.075) in the Alive 

population.  

Six loci in the F0 population and 14 loci in the Alive population showed significant deviation 

from the Hardy-Weinberg equilibrium after Bonferroni corrections, and the six F0 loci in 

deviation were shared with the Alive loci in deviation. No significant linkage disequilibrium 

was found between pairs of loci. The F0 population showed deviations in the FIS coefficient 

in one locus for defect of heterozygous, and in five loci por excess of heterozygous. In the 

Alive populations two loci presented deviations in the FIS coefficient for defect of 

heterozygous (Table 2). Even though the Alive population showed a higher Ho than the F0 
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population, differences between each group were not significant (H0 p=1). Likewise, 

although the F0 crocodiles showed generally higher allelic richness and FIS compared to the 

Alive ones, differences were statistically not significant (AR p = 0.169, FIS p =1).  

1.5 Discussion 

This study represents one of the few examples of the application of genetic tools for the 

management of captive-bred populations of endangered reptiles, as most of the studies are 

conducted in mammals and birds (Witzenberger & Hochkirch, 2011). The results presented 

here are pivotal for the feasibility of the captive breeding program of the Orinoco Crocodile 

in Colombia, a strategy for its conservation. Our results revealed that the EBTRF living 

population maintains much of its founder diversity, high levels of heterozygosity, and a low 

overall inbreeding, making it suitable for maintaining captive breeding and making wild 

releases. 

Howbeit, the EBTRF population covers a very restricted range of the historical natural 

distribution of the species in Colombia, and key individuals (e.g., from Vichada department) 

presented rare alleles, suggesting that the genetic diversity of the station does not cover the 

unknown threatened possible diversity available in the wild. For this reason, it is necessary 

and urgent to evaluate wild populations, as well as to enrich the diversity of the Station´s 

population by bringing wild individuals coming from unsampled sites (e.g., Guayabero / 

Duda / Lozada Rivers) and ensuring their reproduction. 

1.5.1 Genetic diversity of captive population of EBTRF  

The expected heterozygosity obtained in the currently living crocodiles of the EBTRF is 

similar and even higher to that reported for other wild populations of species of the genus 

Crocodylus. An He of 0.552 has been reported for C. moreletii (McVay et al. 2008), 0.572 

for C. acutus (Mauger et al., 2017), 0.579 for C. porosus (Isberg et al., 2004), 0.45 for C. 

niloticus (Hekkala et al., 2010) and between 0.47 and 0.66 for captive populations of C. 

rhombifer (Weaver et al., 2008). This shows that although the captive population of Orinoco 

Crocodile experienced an allele loss compared with the Founder population, it maintains an 

important part of the variability in terms of heterozygosity, presenting genetically viable 

individuals to be reproduced and used for conservation and management purposes.  
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Our results showed that there is no statistical difference between the observed 

heterozygosity values and the allelic richness between the Alive and the Founder 

populations. However, a decrease in variability is detected by the loss of alleles (Table 3). 

This phenomenon had already been reported in captive populations of the Jamaican yellow 

boa Chilabothrus subflavus (Tzika et al., 2008), where a loss of genetic diversity is detected 

in the first generations by the allelic richness and not by the heterozygosities, reflecting the 

limited efficiency of tests based on heterozygosity variations to detect recent inbreeding 

(Luikart et al., 1998). Such consequence has been related to the differential reproduction of 

the individuals (Tzika et al., 2008). A similar situation was detected in the EBTRF, where the 

variations in allele frequencies showed that only few reproduced founders segregated alleles 

to the next generation. This result is also confirmed by the archive records of the individuals 

and the information provided by the personnel of the station. Also, heterozygosity is 

important for the short-term success of captive populations but is an overly optimistic 

estimate of the effects of a bottleneck in the long term, since little heterozygosity is expected 

to be lost (Nei et al., 1975; Allendorf, 1986). Therefore, the loss of alleles is a more 

appropriate measure to evaluate the loss of genetic diversity since it will have a significant 

effect on the future adaptability and survival of species in the wild (Allendorf & Luikart, 2007, 

Jamieson & Lacy, 2012). Consequently, knowing the genetic profile of individuals is crucial 

to develop strategies to prevent genetic loss, since for example one founder from Vichada 

River (microchip 95919774) did not reproduce causing the loss of four alleles in the current 

captive population. 

According to our inbreeding results, most of the living crocodiles are not related (Table 2). 

This is because the few breeding pairs comprised unrelated and genetically diverse 

individuals. Furthermore, there has not been a generational turnover that may cause the 

reproduction between relatives. It is noteworthy that the inbreeding coefficient is higher in 

F0 than in the Alive population, and that in the living population we have deviations in five 

loci due to excess heterozygotes while in the F0 population there is only none. This may be 

because initially there were many confiscated individuals that came from the same breeding 

farm, which were possibly related to each other. However, most of these crocodiles did not 

reproduce and, if they did, they were combined with wild or seized crocodiles, generating a 

decrease in the FIS of the living population and even an excess of variability.  

When comparing with the F0 population, two unique alleles were found in the Alive one. 

Firstly, allele 203 of locus Cj18 is present in five individuals that came from eggs collected 
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in Merecure, one of the ex-situ subpopulations of the Program. Information provided by one 

of the Station's oldest officials (Willington Martínez) suggested that there was an F0 in 

Merecure, probably dead and not genotyped, that could probably be the source of this allele. 

Additionally, allele 354 of the CCj101 locus was found in nine juvenile crocodiles from 

Wisirare that came from wild collected eggs.  

In the Alive population, some alleles have very low frequencies (e.g., allele 203 at locus 

Cj18; allele 193 at locus Cj131; alleles 157, 161, 171, 173, and 179 at locus Cj391; Table 

3). In that sense, to maximize the genetic variability of the station, two management goals 

need to be considered: first, to maintain high levels of heterozygosity by combining unrelated 

genetically variable individuals, and second to prioritize individuals that have rare alleles to 

not lose them. Considering that the captive population is not completely hosted in 

Villavicencio, it is necessary to evaluate the genetic profile of each ex-situ subpopulation to 

identify crocodiles with rare alleles to restructure the breeding pairs. We are sure that with 

the introduction of a breeding strategy that considers the genetic profile of each individual 

and combines less related crocodiles, the percentage of genetic diversity preserved can be 

significantly increased. 

1.5.2 Genetic diversity respect to wild populations 

The single study of C. intermedius population genetics considering wild individuals was 

carried out in Hato El Frío in Venezuela by Laferriere et al. (2016). When comparing EBTRF 

population with El Frío Biological Station population, the Venezuelan individuals have a 

greater diversity in terms of alleles composition, with 90 alleles in the 17 loci (an average of 

5.3 alleles per locus) compared to 69 in the EBTRF (a maximum average of 4.19 alleles per 

locus). It is remarkable that the locus CpP1610 was monomorphic in our study while in 

Venezuela it was polymorphic with two alleles, but with one allele strongly predominant over 

the other. This considerable difference is probably because the founding crocodiles in the 

EBTRF were few, especially those from the wild, causing a genetic bottleneck during the 

foundation process.  

Contrarily, the He / Ho level in the EBTRF was a little higher than in Venezuela (0.617 / 

0.574 vs 0.524 / 0.544 respectively). This difference was probably due to the different ways 

in which individuals are reproducing; even though the Venezuelan individuals were born 

from reintroduced individuals, they follow the principles of a natural population; while, in the 
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EBTRF they have been dependent on arbitrary human management, which has reproduced 

the same individuals without a generational change.  

Finally, unlike the Venezuelan population which did not present significant deviations from 

Hardy-Weinberg expectations at any locus, in the EBTRF we found deviations in six loci for 

the F0 group and 14 loci for live crocodiles. The deviation in F0 is to be expected since they 

do not make up a population but constitute a group of individuals extracted from different 

natural populations, confiscated or from hatcheries. For the living crocodile population, 

deviations from the equilibrium are also expected since the animals originated from a few 

breeding pairs crossed without scientific basis or management. 

1.5.3 Previous genetic assessment of EBTRF  

The captive breeding program of the EBTRF plays a key role in the Orinoco Crocodile 

conservation in Colombia. Nonetheless, management of these captive population was not 

guided with the standards necessary to conserve and maximize genetic diversity, even if the 

genetic monitoring of individuals was recommended more than one decade ago (Williams & 

Osentoski, 2007). According to the review of the archive records, the pedigree information 

or the relationship of the breeders has not been fully considered for the management of the 

animals. Additionally, given the overpopulation in the EBTRF, the spatial disposition of the 

individuals has been done only considering the size of the crocodiles and the capacity of the 

tanks.   

The only genetic characterization of the EBTRF ex-situ population was carried out by Cuervo 

(2010). However, this first genetic attempt was hampered by some fundamental problems 

that made the results not suitable for use in the crocodile population management. Firstly, 

the sampling coverage of the captive population was limited, and this was not evaluated in 

the interpretations. For example, of the five wild founders mentioned above, only one was 

used in the analysis, and of the 32 crocodiles reported as F0 according to archive records 

until 2010, only 17 were included. Secondly, Cuervo (2010) used polyacrylamide gels to 

genotype individuals, but this method can give a weak resolution in the identification of 

alleles. We genotyped the same crocodiles and obtained different numbers of alleles for the 

same loci: Cuervo (2010) found four alleles at locus Cj18 (six in our study), five alleles at 

locus Cp305 (three in our study), 16 alleles at locus Cj16 (five in our study), 15 alleles at 

locus CpP302 (four in our study) and one at locus Cj131 (three in our study). Furthermore, 
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the artificial division of the samples used by Cuervo (2010) in two groups based on age is 

inadequate, returning inconsistent results. The F0 group, which corresponded to the 

founders, was made up of adult individuals; and the F1 group, was made up of juveniles. 

This last generation was divided into two groups based on the results obtained: those born 

in captivity from adults and those juveniles that are presumed to have been collected from 

clutches in the wild. However, justifying a population division based solely on the age is 

wrong since it is known that there are F1 individuals born in 1991 or 1994, and by 2010 

potential parents of many crocodiles could have died, leading to a poor estimation of the 

juveniles from the wild. This shows an admixture of F0, F1, and F2 generations in 

established groups, as well as a wrong determination of crocodiles with wild origin. Under 

these results, Cuervo (2010), proposes that the profile of the wild juveniles could be 

representing the wild populations, but they are reflecting the profile of the station. Therefore, 

to obtain congruent interpretations and not make unsubstantiated assumptions it is 

recommended to combine the genetic information, the information of origin of each crocodile 

even if it is incomplete, and the knowledge provided by the people who have worked in the 

program.  

 

Finally, knowing that the ex-situ population managed by the EBTRF has a high genetic 

potential that can be used for the recovery of wild populations of C. intermedius, in Chapter 

2 we will evaluate the genetic profile of each individual that makes up the ex-situ population 

to develop management strategies. These will consider: the location of the individuals in the 

ex-situ subpopulations, the identification of the most diverse juvenile crocodiles to be 

released and the determination of the most appropriate viable breeding combinations that 

maximize genetic diversity.  
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1.7 Tables and Figures 

 

 

Figure 1. Adult individuals of Crocodylus intermedius hosted at Roberto Franco Tropical 

Biology Station in Villavicencio, Meta department. 
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Table 1. Primer sequence information and distribution in each PCR Multiplex. 

Locus Primer sequences (5’- 3’) Dye 
Multiplex 

Mix 

Annealing 
temperature 

(˚C) 

CpP3216 
F: CAGTCGGGCGTCATCAGATTAATTCATTGGCTCTC JOE 1 57˚C 

R: GTTTATGCCTTTGCCTTTAG    

     

CpP305 

F: GTTTGTAGCTGGAACCTGATAGTG HEX 1 57˚C 

R: CAGTCGGGCGTCATCAGGTTAACACGTGGTAACTACA    

     

CpP1409 
F: GTTTATGCCCTACTGGTTATCTATC FAM 1 57˚C 

R: CAGTCGGGCGTCATCAGGGAAGGGGATTTAATAAT    

     

CpP302 
F: GTTTGGAACCCAAGAACTTACAAC ROX 1 57˚C 

R: CAGTCGGGCGTCATCATTGGGTTTAGTCAGCACATA    

     

CpP1610 
F: CAGTCGGGCGTCATCATAGAGGGATTTTGACTGT ROX 1 57˚C 

R: GTTTGATTATTTTGTCTGGGTTCTT    

     

CpP314 
F: GTTTGAAATGCCACTAATACACACA TAMRA 1 57˚C 

R: CAGTCGGGCGTCATCACCAATTCTTCAGGTCCTTAT    

     

Cj16 
F: CATGCAGATTGTTATTCCTGATG JOE 2 57˚C 

R: TGTCATGGTGTCAATTAAACTC    

     

Cu5123 
F: GGGAAGATGACTGGAAT HEX 2 57˚C 

R: AAGTGATTAACTAAGCGAGAC    

     

Cj122 
F: GTTTCATGCTGACTGTTTCTAATCACC ROX 2 57˚C 

R: GGAACTACAATTGGTCAACCTCAC    

     

Cj18 
F: ATCCAAATCCCATGAACCTGAGAG JOE 3 60˚C 

R: CCGAGTGCTTACAAGAGGCTGG    

     

CUJ131 
F: GTCCCTTCCAGCCCAAATG TAMRA 3 60˚C 

R: CGTCTGGCCAGAAAACCTGT    

     

Cj109 
F: GTATTGTCAACCCCACCGTGTC TAMRA 3 60˚C 

R: GTTTCCCCTCCACAGATTTACTTGC    

     

C391 
F: ATGAGTCAGGTGGCAGGTTC FAM 3 60˚C 

R: CATAAATACACTTTTGAGCAGCAG    

     

Cj101 
F: ACAGGAGGAATGTCGCATAATTG FAM 4 57˚C 

R: GTTTATACCGTGCCATCCAAGTTAG    

     

CpDi13 F: GTTTGTGTCAGCCTATACATGTT HEX 4 57˚C 
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R: CAGTCGGGCGTCATCAGTCTCAGAGTATGCCTAGAA    

     

Cj127 
F: CCCATAGTTTCCTGTTACCTG ROX 4 57˚C 

R: GTTTCCCTCTCTGACTTCAGTGTTG    

  
   

CpP801 
F: CAGTCGGGCGTCATCATTGGCATTAGATTGGTAGAC TAMRA 4 57˚C 

R: GTTTCTATGCCAAAGCTACAAC    
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Table 2. Genetic diversity of the F0 and Alive populations of Crocodylus intermedius in the Roberto Franco Tropical Biology Station. N 

– sample size, nA – alleles per locus, AR – allelic richness, Ho – observed heterozygosity, He – expected heterozygosity, HWE – 

Hardy-Weinberg equilibrium, FIS - inbreeding coefficient.  

*  Significance for heterozygous defect 

** Significance for heterozygous excess 

    F0 population (total alleles = 67)   Alive population (total alleles = 64) 

Locus 
Null 

alleles  
  N nA 

Private 
alleles 

AR Ho He HWE FIS   N nA 
Private 
alleles 

AR Ho He HWE FIS 

 
CpP3216 

No  37 2 - 2.000 0.432 0.477 Yes 0.094  439 2 - 2.000 0.547 0.457 No -0.195** 

 CpP305 No  37 3 - 3.000 0.595 0.665 Yes 0.107  439 3 - 2.973 0.51 0.581 No 0.122 

CpP1409 No  37 3 - 2.870 0.351 0.419 Yes 0.163  439 3 - 2.996 0.658 0.568 No -0.159** 

CpP302 No  37 4 - 3.985 0.784 0.673 Yes -0.168  439 4 - 3.995 0.754 0.700 No -0.076** 

CpP314 No  37 3 - 3.000 0.568 0.618 Yes 0.083  439 3 - 3.000 0.647 0.664 Yes 0.021 

Cj16 No  37 5 1 4.824 0.595 0.548 No -0.087  440 4 - 3.804 0.625 0.563 No -0.112 

CU5123 No  37 4 - 3.740 0.784 0.682 Yes -0.152  440 4 - 3.983 0.734 0.690 No -0.067 

Cj122 No  37 5 - 5.000 0.784 0.801 Yes 0.022  439 5 - 4.955 0.813 0.769 No -0.057 

Cj18 No  37 5 1 4.483 0.757 0.700 Yes -0.082  439 5 1 4.115 0.647 0.612 No -0.057 

CUJ131 No  37 3 - 2.870 0.378 0.488 No 0.226  439 3 - 2.155 0.542 0.505 No -0.069 

Cj109 No  37 6 2 4.966 0.703 0.694 No -0.013  439 4 - 3.908 0.772 0.694 No -0.112** 

Cj391 No  37 9 1 7.616 0.676 0.807 No 0.164*  439 8 - 4.436 0.565 0.524 No -0.078 

CCj101 No  37 3 - 2.740 0.541 0.532 No -0.017  440 4 1 2.661 0.602 0.484 No -0.240 

CpDi13 No  37 3 - 2.936 0.405 0.504 No 0.198*  440 3 - 2.813 0.489 0.509 No 0.035* 

Cj127 No  37 3 - 2.226 0.081 0.08 Yes -0.019  440 3 - 2.154 0.339 0.297 Yes -0.144** 

CpP801 No  37 6 - 5.391 0.730 0.712 Yes -0.026  440 6 - 3.949 0.632 0.571 No -0.109 
                    

Mean       4.19   3.853 0.573 0.587   0.025     4   3.369 0.617 0.574   -0.075 

SD       1.759   1.414 0.200 0.178   0.122     1.461   0.889 0.120 0.116   0.089 
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Table 3. Allelic frequencies of 16 polymorphic microsatellite loci in F0 and Alive populations of 

Crocodylus intermedius in the Roberto Franco Tropical Biology Station. 

Locus Allele 
F0  

(N=37) 

Alive  
(N=437)   Locus Allele 

F0  
(N=37) 

Alive  
(N=437) 

 CpP3216 
137  0.622  0.646   

 CUJ131 

185  0.649  0.500  

141  0.378  0.354   191  0.311  0.495  

     193  0.041  0.005  

 CpP305 176  0.297  0.094       
 192  0.419  0.441   

Cj109 

372  0.216  0.346  
 196  0.284  0.466   374  0.189  0.063  
     376  0.014 a 0.000  

CpP1409 

245  0.230  0.281   382  0.095  0.230  

249  0.730  0.577   384  0.473  0.362  

253  0.041  0.142   388  0.014 a 0.000  

 
    

    

CpP302 

194  0.459  0.432   

 Cj391 

153  0.338  0.653  

196  0.149  0.177   157  0.068  0.015  

200  0.311  0.137   161  0.014  0.007  

208  0.081  0.253   169  0.054  0.104  
     171  0.014  0.003  

 CpP314 

254  0.527  0.354   173  0.176  0.013  

258  0.216  0.362   175  0.189  0.195  

262  0.257  0.285   179  0.122  0.010  
     183  0.027 a 0.000  

Cj16 

141  0.081  0.056   
    

151  0.041 a 0.000   

CCj101 

354  0.000  0.010 a 

167  0.649  0.588   356  0.514  0.627  

171  0.162  0.288   358  0.027  0.011  

173  0.068  0.068   360  0.459  0.351  
     

    

 CU5123 

202  0.243  0.241   

CpDi13 

358  0.054  0.045  

214  0.027  0.105   360  0.635  0.605  

216  0.392  0.209   362  0.311  0.350  

220  0.338  0.444   
    

     

Cj127 

337  0.959  0.819  

Cj122 

378  0.189  0.154   341  0.014  0.005  

380  0.189  0.307   343  0.027  0.176  

386  0.284  0.185   
    

390  0.189  0.082   

CpP801 

166  0.054  0.002  

392  0.149  0.271   170  0.068  0.181  

     174  0.014  0.001  

Cj18 

203  0.000  0.006a 
 178  0.311  0.162  

207  0.297  0.200   182  0.419  0.606  

209  0.149  0.162   186  0.135  0.047  

211  0.432  0.563       
213  0.108  0.069       
215  0.014a 0.000       

                
 

a Private allele for that locus in that population 
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2. Chapter 2 

Conservation management guidelines for the breeding program of the 
Orinoco Crocodile (Crocodylus intermedius) in Colombia using a 

microsatellite marker system. 

2.1 Abstract 

Captive breeding and reintroduction have been essential tools to recover critically 
endangered species. A critical purpose of the ex-situ populations is the preservation of the 
genetic variation, but this is not an easy task since genetic diversity is commonly lost through 
each generation. Furthermore, this becomes a challenge when the ex-situ populations have 
been initiated from wild individuals coming from already genetically depauperate 
populations. Thus, the establishment of management guidelines of reproduction in such 
programs should be a high priority. Fifty years ago, the National University of Colombia 
began a breeding program for the conservation of the critically endangered Orinoco 
crocodile Crocodylus intermedius. In this ex-situ population, the information of every single 
individual was not rigorously compiled thought-out the development of the breeding 
program, restricting the establishment of reproductive combinations between unrelated 
individuals. Since the conservation of the genetic diversity depends mostly on the choice of 
the breeding individuals, we developed a powerful tool aimed at maximizing that diversity, 
based on the information coming from the genotyping of 16 microsatellite loci system. Our 
results allowed us to estimate the individual diversity of the living crocodiles, as well as the 
relationship between them. This information combined with information of age, sex, size, 
and location, allowed us to build combinations to plan future breeding groups that maximize 
the population´s genetic diversity. We propose different reproductive nuclei within six 
subpopulations that make up the program, and we demonstrate that molecular data can be 
used to improve management of the program well beyond what can be achieved with 
pedigree information alone.  

 

Key Words: ex-situ conservation, population genetics, genetic diversity, unique alleles.  
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2.2 Introduction 

 

The Orinoco caiman Crocodylus intermedius (Gray, 1819) is a true freshwater crocodile 

whose historical distribution covered all the lowlands of the Orinoco basin in Colombia and 

Venezuela (Medem, 1981). During the 20th century, the species suffered a profound decline 

throughout its distribution range caused mainly by commercial hunting, generating its current 

classification as critically endangered of extinction (CR) by the IUCN (2020). To tackle this 

situation, two direct conservation strategies have been suggested and followed in Colombia. 

Firstly, its protection has been legally regulated by prohibition decrees and through practices 

of improvement and protection of its habitats (Castro-Casal et al., 2013). Secondly, as in 

other crocodilian species (e.g., Alligator sinensis; Xu et al., 2005), a captive breeding 

program has been established with the aim of recovering wild populations through the 

release of individuals (MMA, 2002).  

The captive breeding program was established in 1971 by Federico Medem, and currently 

hosts almost 600 individuals. The main headquarters of the program and the largest number 

of crocodiles are in the Roberto Franco Tropical Biology Station in Villavicencio, Meta 

department, with 361 individuals. Additionally, there are other four support subpopulations 

located in the Parque Agroecológico Merecure in Villavicencio (Meta department) with 19 

individuals, Bioparque los Ocarros in Villavicencio (Meta department) with five individuals, 

Parque Ecotemático Wisirare in Orocué (Casanare department) with 169 individuals and the 

Aquatic and Conservation Park Piscilago in Nariño (Cundinamarca department) with four 

individuals. Finally, the program plans to integrate the sixth subpopulation at the Universidad 

de los Llanos (Unillanos) also in Villavicencio, where tanks are currently being adapted. 

One of the priorities in the ex-situ programs is the conservation of genetic variability through 

the production of offspring with high genetic diversity, since it is necessary that the juveniles born 

can resist and adapt to the environmental pressures of the habitat in which they are released 

(Araki et al, 2007). It is also important that bred individuals provide enough genetic diversity 

to the in-situ populations (i.e., de novo population or genetic reinforcement of already 

existing ones). Howbeit, one of the concurrent problems in captive breeding programs is the 

loss of the genetic diversity of the ex-situ populations (Witzenberger & Hochkirch, 2011). In 

the case of the captive breeding program of C. intermedius, although a good diversity was 

recorded in terms of heterozygosity, there was a loss of genetic diversity and a change in 
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allelic frequencies between the founder individuals and the current population (Chapter 1). 

This has been the result of establishing the reproductive nuclei without having a genetic 

basis, combining crocodiles based on the distribution of the individuals in the subpopulations 

considering only the age and size of the individuals, and the capacity of the tanks. In 

addition, although there is an archive record with the information of each individual, in many 

cases it is incomplete and does not contain a location control or monitoring of offspring and 

reproduction (Maldonado & Ardila, 2004).  

The success of a reintroduction program is determined by the ability of individuals to repro- 

duce and thrive (Dylan, 2008). Hence, if the aim of an ex-situ breeding program is to serve 

for the reintroduction of individuals to the natural habitat, the probability of species’ long-

term survival will be increased by efforts to restore as much genetic variation as possible 

(Goncalves et al., 2010). Nevertheless, this is not always an easy task, and several 

management considerations must be considered. Although detailed studbooks constitute 

the simplest means for the proper management of captive populations, the correct parental 

allocation of individuals is not always possible without the use of molecular data, and 

pedigree information is not necessarily sufficient for the selection of the best breeding pairs 

(Tzika et al., 2008). Additionally, founders are assumed to be unrelated (founder 

assumption), but this is not always true (e.g., individuals born of the same brood) and thus 

may lead to an underestimation of relatedness resulting in incorrect management actions 

(Russello & Amato, 2004). To solve this, genetic information can guide the choice of 

individuals with the lowest mean kinship to be parents of subsequent generations to 

maximize the retention of genetic variation in the offspring, since it reduces the overall level 

of relatedness, maximizes founder representation, and minimizes the expression of 

deleterious alleles in inbred animals (Montgomery et al., 1997).  

Knowing that the EBTRF counts with a high genetic potential for the recovery of wild 

populations of C. intermedius but such genetic diversity is unevenly distributed in the 

population, two management guidelines need to be considered to produce neonates that 

maximize genetic variability: first, maintenance of high levels of heterozygosity by combining 

unrelated genetically variable adult individuals, and second prioritization of combinations 

with individuals that have rare alleles in order to not lose them (Chapter 1). Therefore, in this 

study, we combine information from studbook data and molecular genetic analyses to guide 

the combinations of individuals that maximize the genetic diversity of the captive breeding 

program of the endangered C. intermedius in Colombia. To ascertain relationships among 
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the founders and living crocodiles, we genotyped a big part of the five subpopulations from 

the breeding project using 16 polymorphic microsatellite loci. Based on this data, we 

analyzed their relationship and developed recommendations for the combination of breeding 

groups.  

2.3 Methods 

2.3.1 Sampling 

Between 2004 and 2020, scales and/or muscle samples were taken from 73% of the 

crocodiles belonging to the captive breeding program coordinated by the EBTRF. Of the 

available samples, we processed 453 individuals. The missing samples are from the two 

largest subpopulations: 95 individuals from the EBTRF and 40 from Wisirare; the 

subpopulations of Merecure, Ocarros, and Piscilago were genotyped entirely.   

From the processed samples, 15 corresponded to dead individuals: one crocodile from 

Piscilago, two females from Wisirare, three wild individuals (among which we found the 

crocodiles called Pancho and Dabeiba), eight individuals seized from the Rango Rudd 

hatchery, and a seized crocodile without provenance. The 438 remaining samples 

corresponded to the F0, F1, and F2 living crocodiles: 19 located in Merecure, 278 in the 

EBTRF, five in Ocarros, four in Piscilago, and 127 in Wisirare. Scales and muscle samples 

were preserved in 96% ethanol and kept at -20°C until processing.  

2.3.2 Laboratory procedures and genotyping 

Genomic DNA was extracted from preserved tissues using the same laboratory procedures 

described in Chapter 1. We amplified 16 polymorphic loci of microsatellite tested for cross- 

amplification by Laferriere et al., (2016); for that four PCRs multiplex were performed 

(Multiplex 1: CpP302, CpP305, CpP314, CpP1409, CpP3216; Multiplex 2: Cj16, Cj122, 

Cu5123; Multiplex3: Cj18, Cj109, C391, CUJ131 and Multiplex 4: Cj101, Cj127, Cp801, 

CpDi13), using the Multiplex PCR kit MyTaq™ HS Mix (Bioline, USA). Reactions and 

thermocycling conditions were used as described in Chapter 1. Fragment lengths were 

determined using an ABI 3500 Genetic Analyzer. The Gene-Mapper 3.7 (Applied 

Biosystems Foster City, CA) and Osiris 2.13.1 (NCBI) software were used for scoring 

fragment lengths. Genetic laboratory work was conducted at the Molecular Ecology 

Laboratory of the Genetics Institute, National University of Colombia in Bogotá.  
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2.3.3 Data Analysis  

▪ Identification of key individuals with the presence of rare alleles 

To facilitate the development of management guidelines, the living crocodile population was 

subdivided into five groups according to the location of individuals in the subpopulations 

(i.e., EBTRF, Ocarros, Piscilago, Wisirare, and Merecure). The number of alleles per locus 

(nA), allelic richness (AR), allelic frequencies, and inbreeding coefficient (FIS) were 

calculated for each group using FSTAT 2.9.3.2 (Goudet, 2001). FIS significance for excess 

and defect of heterozygous was evaluated in Genepop 4.7.5 (p-value < 0.005, Raymond & 

Rousset, 1995). Through this information, we identified genetically relevant individuals 

containing alleles with low frequencies.  

▪ Identification of kinship relationships within founding individuals 
and within living crocodiles 

Relationships among crocodiles were inferred using ML-RELATE (Kalinowski et al., 2006), 

a Maximum Likelihood-based software that estimates relatedness coefficient (r) for each 

pair of individuals, providing a list of several possible relationships (i.e., Half-Sibling, Full-

Sibling, Parents-Offspring and Unrelated). This index was combined with the Homozygosity 

by Loci index (see below) to propose the best combinations that maximize genetic diversity. 

Relatedness was analyzed within the five subpopulations to determine the degree of 

relationship of the crocodiles that have been reproducing. Finally, to test the “founder 

assumption”, relatedness was also estimated among the five individuals coming from Cravo 

Norte river (one dead and four located in the EBTRF) and within the individuals seized from 

the Rangos Rudd hatchery (eight dead, two located in Piscilago, one in Ocarros and one in 

Wisirare). 

▪ Assessment of parental veracity 

To prove the provenance veracity of the captive-bred individuals registered in the archive 

records, we ran a parental pairs analysis with known sexes using the likelihood-based 

approach implemented in the software CERVUS 3.0.7 (Kalinowski et al., 2007). Two levels 

of confidence were set at 80% (relaxed) and 95% (strict). Positive LOD scores (the 

logarithms of the likelihood ratios) were compared to identify the most likely parents for each 
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offspring. Using the potential fathers of each of the groups, simulations of 10,000 offspring 

genotypes were run, each at a sampling rate of 100% and with a proportion of mistyped loci 

set at 0.01. Determinations were made conforming to the established sets with the location 

and origin of the individuals. The eggs registered as coming from the Pancho - Dabeiba 

couple were evaluated with the genotypes of these two founders. The eggs registered as 

coming from Piscilago were evaluated considering as potential parentals the seven 

crocodiles that have been in Piscilago. The same was done for the eggs and individuals 

from Wisirare, Merecure, and Ocarros. The parent pairs analysis for the individuals from 

EBTRF eggs was not conducted since it is not certain that these eggs come from the Station 

and since there are many dead individuals who could be potential parents but were not 

genotyped. By not having the complete data set, even if supported kinship relationships are 

established, these can probably be wrong.  

▪ Identification of individuals with high genetic diversity 

For the formulation of guidelines and recommendations to preserve current genetic diversity 

as much as possible, we estimated inbreeding coefficients at the individual level for each of 

the living crocodiles using the GENHET 2.3 R script (Coulon, 2010). We estimate the 

Homozygosity by Loci (HL) which is a homozygosity index that weights the contribution of 

each locus depending on their allelic variability (Aparicio et al., 2006). Hereby, each 

crocodile is assigned a value ranging from 0 (all loci are heterozygous) to 1 (all loci are 

homozygous), allowing us to identify the most genetically diverse individuals.  

▪ Management formulations  

To guide the choice of reproductive pairs that will produce neonates with high genetic diversity, the r 

and the HL indexes were combined with additional information from every single crocodile 

(i.e., size, age, sex, origin, current location) in a dynamic table. Using this tool, we proposed 

several options of viable crosses in the five subpopulations already established and in the 

reproductive nucleus that will soon be established in Unillanos University in Villavicencio, 

Meta department. The combinations were formulated considering the number of tanks 

currently available and those to be built in the future. 
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2.4 Results 

The 16 microsatellite loci were successfully amplified for 450 of the 453 processed samples. 

For the missing three samples, between one and six loci were not obtained but were 

included in the analyzes. Our data set represents 73% of the living crocodiles of the Station. 

A total of 64 alleles were identified in the sampled individuals but the number differed 

between the five subpopulations (Table 1). As expected, the largest subpopulations (EBTRF 

and Wisirare) showed the highest number of alleles (61 and 56 alleles, respectively), while 

the population with the lowest number of alleles was Piscilago (43 alleles).  

In turn, Wisirare and EBTRF subpopulations were the only ones to present unique alleles 

(one and four, respectively). However, although the other populations did not present unique 

alleles, they presented alleles at very low frequencies (Table 2). Allele 203 (Cj18) was 

present in five individuals, allele 193 (Cj131) in three individuals, 157 (Cj391) in 13 

individuals, 151 (Cj391) in six individuals, 171 (Cj391) in three individuals, 173 (Cj391) in 

nine individuals, 179 (Cj391) in nine individuals, 354 (CCj101) in nine individuals, 358 

(CCj101) in seven individuals, 341 (Cj127) in four individuals, 166 (Cpp801) in two 

individuals and 174 (CpP801) in two individuals. We identified and prioritized in the 

management guidelines the 60 reproductive individuals that contained alleles at low 

frequencies distributed in the five subpopulations (Table 3, Table S1). Despite being a 

priority, individual 181 was not considered since it has the penis partially amputated and 

cannot reproduce. The rest of the alleles were found in at least 35 living crocodiles. The 

individual diversity (HL) of the living individuals that make up the entire ex-situ population 

varied between 0.075 and 0.947. However, 95% of individuals had an index lower than 0.6 

and most are grouped between 0.2 and 0.5 (Figure 1).  

The results below are presented by subpopulation, evaluating the set of indices in each 

case. All the parental combinations were assembled by using the developed dynamic tool 

(Table S2) that combines the r and the HL indexes with complementary important 

information regarding every single crocodile (i.e., size, age, sex, origin, and current location). 

Using this tool, several options for logistical viable crosses were proposed considering the 

priority crocodiles identified with the allele frequencies, combining them with unrelated 

crocodiles in reproductive age that showed the lower HL. According to the specific 

requirements and necessities of each of the six subpopulations, we established options of 

combinations that guarantee the recovery of rare alleles and minimize mean kinship.  
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2.4.1 Ocarros subpopulation 

The Ocarros subpopulation is made up of five adult individuals (three F0 males and two 

females) which are around 30 years old. Despite being the population with the lowest 

number of individuals along with Piscilago, this subpopulation is the third most diverse in 

number of alleles, containing 81% of the alleles present throughout the Program (Table 1). 

Nevertheless, according to the archive records and the information provided by the station 

officials, Ocarros contributed the least to the growth of the C. intermedius ex-situ population. 

According to the archive records, only two crocodiles currently in the EBTRF come from 

Ocarros eggs, but when performing the parental pairs analysis, potential parents from 

Ocarros were not identified (Table 5).  

Since the five crocodiles of Ocarros are in the same tank, to avoid competition from the 

males and generate a productive reproduction, Ocarros has requested the exchange of two 

males for two reproductive females. The three males found in Ocarros are priority crocodiles 

since they have scarce alleles, but two of them have a relatedness coefficient greater than 

0 with the females (Table 3a). Therefore, we suggest leaving male 156 and complete the 

nucleus with two females from the EBTRF. Based on the dynamic table (Table S2) and 

according to the parameters of priority females that are in reproductive age, an r = 0 with 

the male and an HL as low as possible, we choose females 172 and 272 to complete the 

reproductive nucleus (Table 3a). 

2.4.2 Unillanos subpopulation 

In accordance with the agreement made between the National University of Colombia and 

the Universidad de los Llanos, two tanks are being built to host two reproductive nuclei, each 

one composed of one male and three females. We propose to leave within each nucleus the 

priority males that are going to be exchanged in Ocarros, mentioned above. Since male 154 

has an HL of 0.199, we select six priorities breeding females that have a higher HL 

coefficient than the male (between 0.309 and 0.363, Table 3b). On the other hand, since 

that male 157 has a high HL coefficient (0.614), we selected females with an r = 0 with the 

male and an HL as low as possible, even if they were not priority individuals (Table 3b). 
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2.4.3 Piscilago subpopulation 

The Piscilago subpopulation is made up of four individuals (two F0 males and two females) 

that are around 30 years old. Compared to Ocarros that have a similar number of crocodiles, 

Piscilago has the lowest number of alleles (43), containing 67% of the alleles present 

throughout the Program. Nevertheless, according to the archive records and the information 

provided by the station officials, together with Wisirare, Pisilago is the population that has 

contributed the most to the growth of the C. intermedius ex-situ population. According to the 

archive records, 68 crocodiles currently in the EBTRF, came from Piscilago eggs. However, 

when performing the parental pairs analysis, 42 were confirmed as offspring of Piscilago 

crocodiles (Table 5). 

Currently, Piscilago has two tanks but only one has a reproductive nucleus with the females 

115-118 and the male 214, while male 213 is in an isolated tank only for exhibition (Table 

3c). In accordance with the agreements made between the National University of Colombia 

and Piscilago, this subpopulation can receive an additional female for the tank containing 

the reproductive nucleus already established, and an additional nucleus composed of two 

females and one male in a new tank that they are currently adapting. Considering that the 

two males and the female 118 are priority crocodiles and that the relationship of this female 

with both males is greater than 0 (a degree of relationship of Half and Full Sibling), we 

proposed to leave both males in the nuclei and bring the female 118 to EBTRF for the 

inclusion in another reproductive nucleus (Table 3f). According to the parameters of priority 

females (if possible), that are in reproductive age, an r = 0 with the male involved and a HL 

as low as possible, we choose females 197 and 204 to complete the reproductive nucleus 

already established in tank 1, and females 238 and 456 to establish the new reproductive 

nucleus with male 213 in tank 3 (Table 3c). Finally, we propose to transfer to the exhibition 

tank male 181 housed in the EBTRF, since it has an amputated penis being unable to 

contribute to the breeding program but being appropriated to be exhibited.   

2.4.4 Merecure subpopulation 

Merecure subpopulation is made up of 19 individuals (eight females and 11 males) born 

between 1991 and 1994, that contain 75% of the alleles found in the captive population. 

Merecure has contributed considerably to the growth of the ex-situ population: of the 54 

individuals registered as originating from Merecure eggs, with the parental pairs analysis 47 

were confirmed (Table 5).  
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Currently, all the crocodiles of Merecure are in the same tank. However, to avoid competition 

between males and generate productive nuclei, it is intended to leave two males with six 

females in the tank. One female and three males were identified as priority crocodiles (Table 

3d and Table S1). However, considering that males 141 and 145 present the same priority 

allele and that 145 has a greater HL than 141, males 138 and 141 were chosen to configure 

the two reproductive nuclei. According to the parameters of priority females (if possible), that 

are in reproductive age, an r = 0 with both males and the HL as low as possible, we choose 

females 134, 152, 376, 165, 520, and 170 to establish the reproductive nucleus (Table 3d). 

2.4.5 Wisirare subpopulation 

The Wisirare subpopulation is made up of 167 individuals of which 160 are juveniles, 

containing 88% of the alleles found in the ex-situ population. We genotyped the seven 

crocodiles that make up the living brood foot which are around 30 years old and 120 of the 

juveniles that supposedly come from these parental crocodiles. We found that juveniles 

1147, 1162, 1163, 1166, 1169, 1176, 1177, 1184, 1188, 1202, 1204, 1228, 1230 are the 

only representatives of allele 354 (in locus CCj101) in the C. intermedius ex-situ population. 

Unlike all the other subpopulations, Wisirare presents deviations of the FIS coefficient in 12 

of the 16 evaluated loci due to heterozygotes excess (Table 1). Of the 115 crocodiles 

recorded as originating from Wisirare eggs, 80 found potential parents in this subpopulation. 

Since we found an unrelated kinship level and a low HL in the individuals that make up the 

brood foot (Table 3f) and considering that the transport to Wisirare is the most complicated, 

for management guidelines we suggest leaving the pairs as they are, keeping two nuclei 

together or apart. 

2.4.6 EBTRF subpopulation 

The EBTRF represents the largest of the C. intermedius subpopulations. It is made up of 

361 crocodiles, of which we genotyped 278: 90 juveniles, 185 adults (born between 1996 

and 2010), and three remain to be confirmed. It contains 95% of the alleles from the entire 

captivity program and four unique alleles.  

Considering priority individuals that have not been assigned to any reproductive nucleus, 

we proposed five reproductive nuclei for the Station. They were established by minimizing 

the number of individuals involved and combining priority and non-priority individuals (Table 
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3f). In these, we found female 118 that would be taken from Piscilago and the highest 

number of priority crocodiles that remained in the EBTRF (Table S1). 

2.4.7 Founder assumption  

When testing the relationships between the founding crocodiles that came from the same 

sites, we found that several are related (Table 4). Although the six individuals from Cravo 

Norte showed unrelatedness in some cases, most are related as Half and Full-Sibling (Table 

4a). The same happened in the seized crocodiles from the Rango Rudd hatchery, where we 

found Unrelated individuals, but most are related as Half and Full-Sibling and even as 

Parental-Offspring. 

2.5 Discussion 

The breeding program for Crocodylus intermedius in Colombia aims at                             

preserving and increasing as much as possible the current genetic diversity and at producing 

neonates with the highest genetic diversity possible to support management actions. To 

achieve this goal, we proposed a powerful system of 16 microsatellite loci to estimate the 

relationship and the individual diversity of the living crocodiles, that combined with 

information of age, size, sex, and location, also allowed us to design combinations to plan 

future breeding groups in each subpopulation. This innovative tool enables to 

simultaneously maximize genetic diversity combining diverse individuals and achieve a 

genetic gain by minimizing the relationships between the individuals combined.  

Our work is novel and necessary since most of the captive breeding projects are not 

monitored genetically and only recently attention has been paid to the pedigree or 

relatedness of breeders using conservation genetic approaches (Spitzweg et al., 2018). 

Furthermore, it is the first study to combine relatedness information with the Homozygosity 

by Loci, which can be very useful when the number of individuals involved is large and 

discriminating only with the r index may not be enough. In addition, if the first proposed 

combinations cannot be achieved (e.g., if crocodiles do not have an adequate state of health, 

if they do not adapt well to the reproductive nuclei, or if they die) the tool allows to easily 

develop alternative crosses that fulfill the same purposes.  

Our results are promising since despite the living crocodiles retained approximately 92% of 

the genetic diversity of the wild-caught founder individuals (Chapter 1), the presence of five 
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unique alleles and 12 rare alleles (Table 2), the difference in the number of alleles and the 

allele frequencies among the five subpopulations, showed that the diversity is unevenly 

distributed between groups. If no action is taken to balance this, the loss of genetic diversity 

in the next few generations can be very drastic, jeopardizing the viability of the program 

(Groombridge et al., 2012). To solve this, we explicitly recommend using the combination of 

genetic data with the information from the archive records provided here and not relying 

solely on the latter, since as we found when performing the parent pairs analysis, a large 

part of the archive file is wrong in determining the origin of the individuals. In addition, we 

make a strong call to be more rigorous when recording this information and to make it clear 

if it is not certain. Finally, we explicitly recommend implementing conservation genetic 

assessments for other captive breeding projects to preserve the maximum genetic diversity 

and to avoid inbreeding depression (as also recommended by Xu et al., 2005; Tzika et al., 

2008; Spitzweg et al., 2018).  

We recommended completing the dataset with the missing crocodile samples to include 

them in the management guidelines since some of these crocodiles can be very relevant 

(e.g., five individuals from Cravo Norte River that have not been genotyped). In turn, it is 

necessary to genotype the crocodiles that are going to be born to have a complete genetic 

profile of the program and to evaluate future trends in allele frequencies and restructure 

combinations if necessary. 

We suggest bringing to the ex-situ program new crocodiles from wild populations to refresh the 

genetic diversity and avoid future inbreeding (Chapter 1). These individuals must be genotyped to 

determine the presence of rare alleles, the individual genetic diversity, and their level of 

relationship. As we demonstrated here, the basic assumption of unrelated founders may be 

incorrect, particularly given the often-imprecise nature of information on their origin 

(Gautschi et al., 2003). Fortunately, in the case of the Cravo Norte and Rango Rudd 

crocodiles, all of them were males, so there was not option to combine them. In the case of 

the Cravo Norte crocodiles, according to the information provided by the station officials, 

there is a high probability that these individuals came from the same clutch. With this, the 

differences in the kinship relationships found between these individuals could be indicating 

multiple paternity, a phenomenon already identified for the species in Venezuela (Laferriere 

et al., 2016).  
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Based on our data, we suggest that selective breeding should be implemented, and some 

mating combinations must be avoided. Of the 60 crocodiles identified as a priority, 48 were 

assigned to a reproductive nucleus. Of the 13 missing, nine do not have reproductive size, 

two have a high Homozygosity by Loci (0.808 and 0.947) and the last one is located in 

Merecure and it is not recommended to transport it elsewhere. Nevertheless, we 

recommend considering them for future management guidelines.  

Finally, in Merecure, Wisirare, and EBTRF we proposed the establishment of reproductive 

nuclei with more than one male. If reproduction is possible with the established ones (e.g., 

in case that coexistence between males and females allows it), this may be an option to 

further maximize diversity, since multiple paternity would allow obtaining clutches from both 

males. 

2.5.1 Wisirare subpopulation  

The Wisirare subpopulation is the largest contributor to the ex-situ population growth of C. 

intermedius. Between 2005 and 2011 the eggs spawned by Wisirare females were 

transferred to the EBTRF facilities in Villavicencio, in part because there was not an 

incubation infrastructure. However, after 2011 the entire egg incubation and rearing process 

could be completed in Wisirare. As a result, in Wisirare we found only one priority crocodile, 

which together with the management dynamics and allelic frequencies suggest that the 

current diversity of the station may reflect the great over-representation that Wisirare has 

generated, overshadowing the contributions of the other subpopulations. 

The deviation of 12 of the 16 loci due to excess heterozygotes in Wisirare may be the result 

of always reproducing the same individuals that have a low HL, generating a group of 

individuals without generational turnover with many heterozygotes out of Hardy-Weinberg 

proportions. This should be a factor to consider when releasing these crocodiles since 

according to the genetic situation of the wild populations, depression could be generated by 

outbreaking (Banes et al., 2016) 

Finally, in Wisirare we found 13 juvenile individuals that are the only ones containing allele 

354 (locus CCj101) in the ex-situ population. Since this allele is not found in any of the dead 

founders (Chapter 1) or in Wisirare's brood foot, these individuals likely come from a wild 

origin. This hypothesis is supported by the fact that in Wisirare the collection of wild eggs 

from Cravo Norte has been carried out, for their incubation and subsequent release. 
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Therefore, it is necessary to wait for these individuals (or part of them) to grow, to be sexed, 

and included in the reproductive nucleus to add this allele to the ex-situ breeding program. 

Also, we suggested adding individual 1192 to the reproductive nucleus when it grows up 

since it has an allele at low frequencies (193, locus Cj131). 

2.5.2 EBTRF subpopulation 

The EBTRF contains the largest subpopulation (about 370 individuals), the largest number 

of tanks available, and a high genetic diversity involving four unique alleles. More than 150 

crocodiles have passed through the EBTRF and have died, from recent hatchlings to the 

first clutches of 1991 and the F0. After 2005, fewer eggs from the EBTRF were incubated 

since eggs from Wisirare, Piscilago and later Merecure began to be carried to the Station. 

Considering that the EBTRF subpopulation has the highest number of adult crocodiles with 

unique diversity, it is necessary to re-implement the brood foot with these individuals. It is 

urgent to maintain a balance in the proportion of incubations of eggs according to the place 

where they come from, and the number of parents that produce them. 

In the EBTRF we found juvenile individuals that we considered in priority because they 

contain alleles at low frequencies. However, these individuals are not yet at the reproductive 

age, so we recommend keeping them until they grow to be included in the reproductive 

nuclei.  

 

With the implementation of the crosses proposed here, the program will ensure obtaining a 

highly genetically variable offspring preserving all the available genetic diversity. By 

combining the offspring produced by different reproductive pairs, we will be able to form 

groups of unrelated and highly diverse individuals, which, according to the requirements of 

natural populations, would be able to be released into the wild (Chapter 3). 
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2.7 Tables and figures 

 

 

Figure 1. Distribution of individual diversity (homozygosity by loci, HL) of the living 

crocodiles that make up the ex-situ population managed by the Roberto Franco Tropical 

Station. The values above the columns indicate the number of individuals in each 

category.
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Table 1. Genetic diversity of the current five ex-situ subpopulations of Crocodylus intermedius managed by Roberto Franco Tropical 

Biology Station (EBTRF).  N – sample size, nA – alleles per locus, AR – allelic richness, FIS - inbreeding coefficient.  

 

*  Significance for heterozygous defect 

** Significance for heterozygous excess 

 

 

 

 

 

    Merecure (total alleles=48)   EBTRF (total alleles=61)   Ocarros (total alleles=52)   Piscilago (total alleles=43)   Wisirare (total alleles=56) 

Locus   N nA PA AR Fis   N nA PA AR Fis   N nA PA AR Fis   N nA PA AR Fis   N nA PA AR FIS 

 CpP3216  19 2 - 1.976 -0.478  278 2 - 1.971 -0.096  5 2 - 1.800 0.000  4 2 - 2 -0.500  127 2 - 1.973 -0.388** 

 CpP305  19 2 - 1.995 0.350  278 3 - 2.386 0.132  5 3 - 2.600 -0.067  4 3 - 3 -0.600  127 3 - 2.726 0.034 

CpP1409  19 3 - 2.666 -0.094  278 3 - 2.508 -0.092  5 3 - 2.778 -0.200  4 2 - 2 -0.200  127 3 - 2.783 -0.331** 

CpP302  19 4 - 3.323 -0.050  278 4 - 3.391 -0.024  5 3 - 2.778 -0.200  4 3 - 3 -0.091  127 4 - 3.400 -0.187** 

CpP314  
19 3 - 2.755 -0.109 

 
278 3 - 2.845 0.063 

 5 3 - 3 0.200 
 

4 3 - 3 0.000 
 127 3 - 2.830 -0.119 

Cj16  19 3 - 2.806 -0.537**  278 4 - 2.688 -0.087  5 3 - 2.778 -0.200  4 3 - 3 -0.286  127 4 - 2.639 -0.120** 

CU5123  19 4 - 3.668 -0.097  278 4 - 3.408 -0.065  5 4 - 3.578 0.077  4 3 - 3 -0.412  127 4 - 2.971 -0.125** 

Cj122  18 4 - 3.268 0.053  278 5 - 3.899 -0.022  5 5 - 4.556 0.030  4 5 - 5 -0.200  127 5 - 3.657 -0.219** 

Cj18  19 3 - 2.206 -0.320  278 5 2 2.994 -0.007  5 2 - 2.000 -0.600  4 2 - 2 -0.200  126 4 - 3.197 -0.150** 

CUJ131  19 3 - 2.120 0.309  278 2 1 1.989 -0.094  5 3 - 2.978 1.000  4 2 - 2 0.143  126 3 - 1.990 -0.371** 

Cj109  19 4 - 3.569 0.031  278 4 - 3.037 -0.073  5 4 - 3.600 -0.103  4 3 - 3 -0.125  126 4 - 3.452 -0.221** 

Cj391  19 3 - 2.149 0.092  278 7 - 2.889 -0.078  5 6 - 5.356 0.111  4 2 - 2 0.143  126 5 - 2.180 -0.246** 

CCj101  19 2 - 1.807 -0.172  278 3 - 2.091 -0.157  5 2 - 2.000 -0.600  4 2 - 2 0.571  127 4 1 2.261 -0.454** 

CpDi13  19 3 - 2.755 -0.495**  278 3 - 2.263 0.135*  5 3 - 2.800 -0.391  4 3 - 3 -0.286  127 3 - 2.059 -0.085 

Cj127  19 3 - 2.258 -0.234  278 3 - 1.819 -0.103  5 1 - 1 NA  4 2 - 2 0.000  127 2 - 1.808 -0.221 

CpP801  19 2 - 1.897 -0.259  278 6 1 3.053 -0.106  5 5 - 4.400 0.000  4 3  3 0.500  127 3 - 2.531 -0.181** 

Mean    3  2.576 -0.126   3.813  2.702 -0.042   3.250  3.000 -0.063   2.688  2.688 -0.096   3.500  2.654 -0.212 

SD    0.730  0.617 0.262   1.377  0.595 0.085   1.291  1.108 0.379   0.793  0.793 0.322   0.894  0.578 0.126 
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Table 2. Allelic frequencies of 16 polymorphic microsatellite loci in the current five ex-situ 

subpopulations of Crocodylus intermedius in charge of the Roberto Franco Tropical Biology 

Station (EBTRF). N – sample size. a Private allele, b Alleles with very low frequencies. 

 

Locus Allele 
Merecure 

(N=18) 

EBTRF 
(N=278) 

Ocarros 
(N=5) 

Piscilago 
(N=4) 

Wisirare 
(N=126) 

 CpP3216 

 
137  0.667 0.644 0.900 0.625 0.641 

141  0.333 0.356 0.100 0.375 0.359 

       

 CpP305 

176  0.000 0.061 0.100 0.375 0.168 

192  0.444 0.493 0.800 0.500 0.313 

196  0.556 0.446 0.100 0.125 0.520 
     

  

CpP1409 

245  0.250 0.295 0.200 0.750 0.246 

249  0.611 0.606 0.700 0.250 0.520 

253  0.139 0.099 0.100 0.000 0.234 

 
    

  

CpP302 

194  0.472 0.424 0.700 0.750 0.426 

196  0.194 0.171 0.100 0.000 0.203 

200  0.083 0.142 0.200 0.125 0.129 

208  0.250 0.263 0.000 0.125 0.242 
  

     

 CpP314 

254  0.278 0.415 0.400 0.375 0.219 

258  0.556 0.344 0.300 0.250 0.391 

262  0.167 0.241 0.300 0.375 0.391 
     

  

Cj16 

141  0.194 0.067 0.200 0.250 0.004 

167  0.528 0.588 0.700 0.625 0.582 

171  0.278 0.299 0.100 0.125 0.285 

173  0.000 0.047 0.000 0.000 0.129 
     

  

 CU5123 

202  0.333 0.255 0.200 0.375 0.203 

214  0.222 0.128 0.100 0.000 0.047 

216  0.222 0.209 0.600 0.375 0.184 

220  0.222 0.408 0.100 0.250 0.566 
     

  

Cj122 

378  0.056 0.169 0.200 0.375 0.121 

380  0.278 0.268 0.200 0.125 0.406 

386  0.417 0.225 0.400 0.250 0.063 

390  0.000 0.063 0.100 0.125 0.133 

392  0.250 0.275 0.100 0.125 0.277 

       

Cj18 

203  0.000 0.009 a,b 0.000 0.000 0.000 

207  0.361 0.221 0.400 0.250 0.125 

209  0.028 0.149 0.000 0.000 0.227 

211  0.611 0.572 0.600 0.750 0.523 

213  0.000 0.049 0.000 0.000 0.125 
 

      

       

 CUJ131 

185  0.222 0.439 0.400 0.500 0.672 

191  0.750 0.561 0.400 0.500 0.324 

193  0.028b 0.000 0.200 b 0.000 0.004 b 



  

 

51 
 

       

Cj109 

372  0.361 0.363 0.400 0.375 0.305 

374  0.139 0.027 0.100 0.000 0.129 

382  0.222 0.239 0.100 0.125 0.215 

384  0.278 0.371 0.400 0.500 0.352 

       

 Cj391 

153  0.722 0.622 0.300 0.500 0.730 

157  0.028b 0.020 b 0.000 0.000 0.004 b 

161  0.000 0.000 0.100 b 0.000 0.020 b 

169  0.250 0.138 0.100 0.000 0.016 

171  0.000 0.005 a, b 0.000 0.000 0.000 

173  0.000 0.011 b 0.100 b 0.500b 0.000 

175  0.000 0.191 0.200 0.000 0.230 

179  0.000 0.013 b 0.200 b 0.000 0.000 

       

CCj101 

354  0.000 0.000 0.000 0.000 0.035 a, b 

356  0.833 0.635 0.600 0.375 0.586 

358  0.000 0.016 b 0.000 0.000 0.004 b 

360  0.167 0.349 0.400 0.625 0.375 

       

CpDi13 

358  0.278 0.041 0.100 0.125 0.012 

360  0.556 0.590 0.600 0.625 0.645 

362  0.167 0.369 0.300 0.250 0.344 

       

Cj127 

337  0.750 0.820 1.000 0.875 0.816 

341  0.056 b 0.004 b 0.000 0.000 0.000 

343  0.194 0.176 0.000 0.125 0.184 

       

CpP801 

166  0.000 0.002 b 0.100 b 0.000 0.000 

170  0.222 0.196 0.100 0.000 0.152 

174  0.000 0.002 a, b 0.000 0.000 0.000 

178  0.000 0.164 0.300 0.125 0.176 

182  0.778 0.568 0.400 0.750 0.672 

186  0.000 0.068 0.100 0.125 0.000 
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Table 3. Suggested parental combinations for the six proposed ex-situ subpopulations of 

Crocodylus intermedius in Colombia. a. Unillanos b. Ocarros c. Piscilago d. Merecure e. 

Wisirare f. EBTRF. The values in parentheses represent the Homozygosity by Loci for each 

individual. The values within the table represent the relatedness coefficient between both 

individuals compared. Females in the rows, males in the columns. Individuals in bold 

represent priority crocodiles. Relationships: U Unrelated; HS Half sibling; FS Full sibling; PO 

Parental offspring. 

a. Ocarros 

Current situation     Suggested combinations 

F/M 154 (0.199) 156 (0.485) 157 (0.614)  F/M 156 (0.485) 

155 (0.448) 0 U 0 U 0 U 
 155 (0.448) 0 U 

 158 (0.227) 0.124 U 0 U 0.115 HS 
 158 (0.227) 0 U 

     172 (0.249) 0 U 

     272 (0.292) 0 U 

b. Unillanos 

Suggested combinations 

                Tank 1                 Tank 2  

F/M 154 (0.199)  F/M 157 (0.614) 

126 (0.363) 0 U  240 (0.170) 0 U 

171 (0.309) 0 U  256 (0.137) 0 U 

168 (0.334) 0 U  235 (0.213) 0 U 

 

c. Piscilago 

 

 

 

 

Current situation   Suggested combinations    

Tank 1 Tank 2  Tank 1  Tank 2  Tank 3  

F/M 
214 
(0.459) 

213 
(0.351)  F/M 214 (0.459)  

181 
(Amputated 

male) 
 F/M 213 (0.352) 

115 (0.227) 0 U 0 U  115 (0.227) 0   238 (0.330) 0 

118 (0.352) 0.350 1   258 (0.211) 0    239 (0.326) 0 

    345 (0.307) 0      
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d. Merecure 

Current combinations         

F/M 
131 

(0.377) 
132 

(0.316) 
135 

(0.468) 
136 

(0.247) 
137 

(0.403) 
138 

(0.214) 
139 

(0.417) 
141 

(0.454) 
142 

(0.509) 
143 

(0.391) 
145 

(0.707) 

130 (0.317) 0.180 HS 0.418 PO 0.176 HS 0.264 HS 0.500 PO 0.007 U 0 U 0.079 U 0.259 HS 0 U 0 U 

133 (0.498) 0 U 0.244 HS 0 U 0.178 U 0.195 HS 0 U 0.129 U 0.130 HS 0.210 HS 0 U 0.009 U 

134 (0.377) 0.202 HS 0.067 U 0.127 HS 0 U 0.272 HS 0.014 U 0.290 FS 0 U 0 U 0.078 U 0 U 

147 (0.405) 0.467 PO 0.628 FS 0.138 HS 0.133 HS 0.555 PO 0 U 0.392 FS 0.070 U 0.351 HS 0.029 U 0 U 

148 (0.170) 0.468 PO 0 U 0.414 FS 0.486 PO 0.446 PO 0.300 FS 0.258 HS 0.038 U 0.511 PO 0.216 U 0.136 HS 

150 (0.264) 0 U 0.333 HS 0.102 U 0.136 HS 0.182 HS 0.522 FS 0.416 PO 0.236 HS 0.500 PO 0.098 U 0 U 

151 (0.425) 0.087 U 0.500 PO 0.038 U 0.230 U 0.583 FS 0.270 HS 0.710 FS 0.096 U 0.451 FS 0.243 U 0 U 

152 (0.283) 0.375 FS 0 U 0.462 FS 0.632 FS 0.250 HS 0 U 0 U 0 U 0.071 U 0.507 PO 0.014 U 

 
Suggested combinations  
F/M 138 (0.214) 141 (0.454) 

134 (0.377) 0 U 0 U 

152 (0.283) 0 U 0 U 

376 (0.207) 0 U 0 U 

165 (0.438) 0 U 0 U 

520 (0.532) 0 U 0 U 

170 (0.534) 0 U 0 U 

 

e. Wisirare 

Current and suggested combinations 

F/M 385 (0.466) 389 (0.195) 

384 (0.433) 0 U 0 U 

387 (0.309) 0 U 0 U 

388 (0.288) 0 U 0 U 

391 (0.170) 0 U 0.209 U 

392 (0.260) 0 U 0 U 
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f. EBTRF 

Suggested combinations 

Tank 1  Tank 4 

F/M 
579 

(0.304) 
593 

(0.334)  F/M 
519 

(0.250) 206 (0.486) 

221 (0.490) 0 U 0 U  118 (0.351) 0 U 0 U 

306 (0.245) 0 U 0 U  164 (0.310) 0 U 0 U 

450 (0.217) 0 U 0 U  232 (0.589) 0 U 0 U 
  453 
(0.319) 0 U 0 U  378 (0.470) 0 U 0 U 

       

Tank 2  Tank 5 

F/M 
179 

(0.525) 
183 

(0.540)  F/M 197(0.265) 204 (0.278) 

288 (0.199) 0 U 0 U  231(0.264) 0 U 0 U 

220 (0.261) 0 U 0 U  295(0.261) 0 U 0 U 

275 (0.338) 0 U 0 U  290 (0.347) 0 U 0 U 

274 (0.266) 0 U 0 U  255 (0.350) 0 U 0 U 

291 (0.225) 0 U 0 U  583 (0.372) 0 U 0 U 

286 (0.358) 0 U 0 U  365 (0.385) 0 U 0 U 

       

Tank 3      

F/M 
592 

(0.289)      

233 (0.292) 0 U      

590 (0.288) 0 U      

270 (0.296) 0 U      

364 (0.302) 0 U      
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Table 4.    Relatedness coefficient and possible relationship within the founder crocodiles 
from Cravo Norte River (a) and Rango Rudd. hatchery (b).  
 
Relationship: U Unrelated; HS Half sibling; FS Full sibling; PO Parental offspring. 
 
 
 

 

 

 

 

 

 

 

Table 5. Number of individuals with registered provenance with and without potential 

parents in each assigned subpopulation. N – sample size 

  

Dabeiba-Pancho 
(N=7) 

Ocarros  
(N=2) 

Merecure  
(N=54) 

Piscilago  
(N=68) 

Wisirare 
(N=115) 

Number of individuals 
with potential parents 

7 0 47 46 80 

Number of individuals 
without potential 

parents 

0 2 7 22 35 

      

a.  575 579 581 584 592 593 

575 -      

579 0.247HS -     

581 0.102 U 0.618 FS -    

584 0.466 FS 0 U 0 U -   

592 0.360 HS 0.634 FS 0.781 FS 0 U -  
593 0.232 HS 0.441 FS 0.482 FS 0.006 U 0.498 FS - 

b.  105 106 122 127 128 156 162 163 213 214 215 385 

105 -            

106 0.545 FS   -           

122 0.500 PO 0.198 HS -          

127 0 U 0.066 HS 0.500 PO -         

128 0.410 FS 0.231 HS 0.267 HS 0.345 FS -        

156 0.122 HS 0.145 HS 0.415 FS 0.500 PO 0 U  -       

162 0.260 HS 0.227 HS 0.828 FS 0.370 HS 0.163 HS 0.307 HS -      

163 0 U 0 U 0.500 PO 0.567 PO 0.130 U 0.282 HS 0.421 FS -     

213 0.500 PO 0.352 FS 0.259 HS 0.200 U 0 U 0.302 HS 0.252 HS 0 U -    

214 0.168 HS 0.133 HS 0.588 PO 0.346 HS 0 U 0.670 PO 0.671 FS 0.292 HS 0.350 HS -   

215 0 U 0 U 0.435 FS 0.362 HS 0 U 0.752 FS 0.340 HS 0.259 HS 0.122 U 0.756 FS -  

385 0 U 0 U 0.436 FS 0.351 HS 0.591 FS 0.009 HS 0.344 HS 0.539 FS 0.003 U 0.120 U 0.009 U - 
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2.8 Annexes 

Table S1. Information of priority crocodiles presenting alleles at low frequencies.  

HL- Homozygosity by loci.  

Annexed table in Excel format. 

Table S2. Dynamic table generated to guide management guidelines comparing all living 

individuals of the program. HL- Homozygosity by loci. r- relatedness coefficient  

Annexed table in Excel format. 
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3. Chapter 3 

Behind the release of Crocodylus intermedius’ individuals from a 
captive-breeding program in Colombia: the genetic approach. 

3.1 Abstract 

Translocation of captive breed individuals is a major tool in the management of threatened 
species. In Colombia, the critically endangered Crocodylus intermedius became locally 
extinct in great part of its original distribution and showed negative trends on populations 
recovery. Thus, efforts to rescue wild populations have been mainly focused on the 
reintroduction of individuals from a captive breeding program; to date, 240 crocodiles have 
been reintroduced. However, such translocations did neither consider the genetic 
component of the released individuals, nor the genetic profile of the intervened populations. 
To provide insights on the genetic component of the released individuals and to inform future 
movements, we used 16 polymorphic microsatellite loci to genotype and analyze: 1. Fifty-
three crocodiles already moved into Guayabero / Losada, Guarrojo, Manacacias, and Tomo 
Rivers (four river nuclei with different conservation scenarios) and 2. Fifty-nine individuals 
that will be released in the Tomo River, contributing to the reinforcement of a de novo 
population. To enhance the population’s long-term survival, it is necessary to include 
crocodiles with genetic diversity as high and different as possible from the already 
incorporated. Individuals released in Guayabero / Losada Rivers represent the only 
intervention to a possibly stable remaining population, while individuals released in 
Manacacias and Guarrojo Rivers represent interventions in non-cohesive populations. In 
both cases, crocodiles translocated presented kinship relationships and diversity indices that 
can be improved by considering the genetic profiles before liberations. We propose that in 
the short-term, reintroductions should only be carried out in places where it is certain that 
the populations have become extinct (e.g., Tomo or Bita Rivers in Tuparro National Natural 
Park). In case the species is still present, it is necessary to accurately estimate the genetic 
profile (i.e., diversity, population size and structure, inbreeding) before implementing 
reintroduction and other management actions.  

Key words: microsatellites, population structure, de novo population, genetic potential, 

genetic diversity. 

3.2 Introduction  

Reintroductions from captive breeding programs are important tools for recovering 

endangered species, allowing the re-establishment of a population at a site where it has 

become extinct or currently exists in small numbers (Seddon et al., 2012). However, the aim 

of reintroductions goes beyond simply increasing the number of individuals but should also 

target genetic aspects that may be critical to the successful establishment of reintroduced 

populations (Drauch & Rhodes, 2007; Casena et al., 2016). Genetic variation is the basis 
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for a species’ evolutionary flexibility and responsiveness to environmental change in that it 

provides the raw material for future adaptations (Keller et al., 2012). Nevertheless, genetic 

assessments tend to have a lower priority because of the long-time frame over which genetic 

factors act, relative to other agents of decline such as habitat loss (Jamieson et al., 2008; 

Jamieson & Lacy, 2012).  

When reintroduction is based on individuals raised in captivity, the amount of genetic 

diversity available for translocation will be governed by the genetic constitution of the source 

population, which is heavily influenced by the species’ population history and the bottlenecks 

experimented during the creation of the captive programs (Groombridge et al., 2012). The 

first bottleneck occurs before conservation measures when populations become 

endangered and small (Keller et al., 2012). The second bottleneck occurs when the captive 

breeding population is founded with a few wild-caught individuals, which will be the only 

source of genetic material for the growth of the population (Keller et al., 2012). If genetic 

rules such as equalizing founder representation or avoiding close inbreeding are not 

considered, the population may lose genetic diversity over the generations (see Chapter 1; 

Ballou & Lacy, 1995; Ballou et al., 2010; Jamieson & Lacy, 2012). Finally, if we do not 

consider genetic profiles, when animals are released back into their former range, the 

population may experience the third bottleneck. Taking those factors into account, to provide 

the best possible start (Lacy, 1994), apart from having genetic requirements at the time of 

establishing and manage captive breeding programs (Chapter 2), there must be a genetic 

consideration in the selection of the individuals to be released (Jamieson & Lacy, 2012). 

Maximizing genetic diversity is not enough since historical population profiles and future 

translocation strategies are intrinsically linked (Groombridge et al., 2012). In cases where 

isolated remnant populations have already lost considerable genetic diversity or experience 

high levels of inbreeding, introductions of new genetic variants can prevent the negative 

consequences of disrupted gene flow and isolation (Tallmon et al., 2004; Hedrick & 

Fredrickson, 2010). Contrarily, deliberate out-crossing can lead to unintentional genetic 

consequences in the form of outbreeding depression and disruption of local gene 

adaptations (Edmands, 2007; Jamieson & Lacy, 2012). When these genetic and population 

structure considerations are considered, targeted reintroductions have shown high-

efficiency recovery even when species might be beyond hope genetically (e.g., Falco 

punctatus, Nicoll et al., 2004; Acrocephalus sechellensis, Richardson et al., 2006).  
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Reintroduction has become an important management tool for the conservation of the 

critically endangered Crocodylus intermedius (Graves, 1891) (see Lafferier et al., 2016) that 

was historically distributed along the Orinoco River basin (Castro et al., 2012). In Colombia, 

the commercial hunting of the last century caused the decline of its natural populations, 

which today is reflected in three different situations. Firstly, the species became totally 

extinct in several localities such as the Tomo, Bita, Ariporo, Cravo Sur, La Hermosa, or 

Picapico Rivers (Lugo, 1997; Castro et al., 2012; Balaguera-Reina et al., 2017; Parra et al., 

2020).  Secondly, some populations became locally extinct but with remaining individuals 

such as in the middle course of the Meta River or in the Vichada River (Castro et al., 2012). 

Thirdly, some populations decreased in size but remained stable, for instance, the Cravo 

Norte River (Castro et al., 2012) and probably Guayabero River (Balaguera-Reina et al., 

2017). Thus, each of these sites has different population status and conservation 

necessities. For example, the largest population restricted to Ele, Lipa, and Cravo Norte 

Rivers in the Arauca department, seems to maintain its viability despite the killing of adults 

and the harvest of nests, while for other populations the natural recovery is almost 

impossible (e.g., Vichada subpopulation Castro et al., 2012). 

To assist in the recovery of the species in Colombia, a captive breeding program for its 

conservation was established in 1971 in the Roberto Franco Tropical Station (EBTRF) in 

Villavicencio, Meta department. Currently, the ex-situ population maintains more than 600 

crocodiles distributed in five subpopulations, from which the 240 crocodiles released into the 

wild came. To date, the following crocodiles have been released: 71 in the Tomo River in El 

Tuparro National Park (Vichada); 32 in the La Aurora Civil Society Nature Reserve (CSNR) 

(Casanare); 29 on the Cravo Norte River (Arauca); 20 in the CSNR Corozito (Casanare); 25 

in the CSNR Palmarito (Casanare), 40 in the CSNR Hato Venecia (Casanare); 15 in the 

Manacacias River (Meta); four in the Guayabero / Losada Rivers in La Macarena (Meta); 

and four in the Guarrojo River (Meta). 

However, those reintroductions did neither contemplate the genetic component of 

individuals, nor the genetic profile of the intervened populations. Considering that genetic 

management must be a part of any translocation strategy to ensure the success of 

reintroduction programs (Groombridge et al., 2012), in this study we aimed at: 1. providing 

and evaluating the genetic characterization of four already performed releases and 2. 

providing relevant suggestions for future interventions. For this, we used 16 polymorphic 
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microsatellite loci to genotype and analyze 53 individuals released in the 

Guayabero/Losada, Manacacias, Guarrojo, and Tomo Rivers and 59 individuals to be 

released in a coming event. The analysis of this genetic information is crucial for: 1. the 

genetic understanding of the interventions already performed, 2. the recognition of the gene 

pool of the crocodiles intended to be introduced, and 3. informing coming translocations. 

3.3 Methods 

3.3.1 Sampling 

Tissue samples were taken from individuals of C. intermedius released in four distinct nuclei 

of the natural distribution of the species (Figure 1). The first release comprised four 

crocodiles (two females and two males) from the EBTRF subpopulation, introduced into the 

Guayabero/Losada Rivers near to La Macarena municipality in the Meta department in 

2015. The Guayabero/Losada Rivers apparently host a stable natural population (Figure 

1A). The second release comprised 14 individuals (11 females and three males) from the 

EBTRF subpopulation, introduced into the Manacacias River, Puerto Gaitán municipality, 

Meta department in 2017. The Manacacias River apparently hosts seldom vagrant 

individuals and does not constitute a cohesive population (Figure 1B). The third release 

comprised four females from the EBTRF subpopulation, introduced into the Guarrojo River, 

Puerto Gaitán municipality, Meta department in 2018. Guarrojo River apparently hosts 

seldom vagrant individuals and does not constitute a cohesive population (Figure 1C). The 

fourth release comprised 31 individuals from the Wisirare subpopulation, introduced in the 

Tomo River, in the Tuparro National Natural Park in 2019. The Tomo River is part of the 

historical distribution of the species, but its population was extirpated (Figure 1D).  

Additionally, tissue samples were taken from 59 of the 80 juvenile individuals that we 

consider potential to be released because: 1. they are not part of the reproductive nuclei 

(established in Chapter 2), 2. they have a size between 180 and 240 cm (Figure 2), and 3. 

they are healthy and have had a normal growth according to the growth model estimated in 

the EBTRF (María del Pilar Venegas and Germán Preciado, EBTRF officials, pers. comm.).  

Scales and muscle samples were preserved in pure ethanol and kept at -20°C until 

processing. All the translocated and to be released individuals were marked with microchips 

that allow their identification, except from the Tomo River’s crocodiles.  
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3.3.2 Laboratory procedures and genotyping 

Genomic DNA was extracted from the 115 preserved tissues using the same laboratory 

procedures described in Chapter 1. We amplified 16 polymorphic loci of microsatellite tested 

for cross-amplification by Laferriere et al., (2016); four PCRs multiplex were performed 

(Mix1: CpP302, CpP305, CpP314, CpP1409, CpP3216; Mix2, Cj16, Cj122, Cu5123; Mix3: 

Cj18, Cj109, C391, CUJ131; Mix4: Cj101, Cj127, Cp801, CpDi13) using the Multiplex PCR 

kit MyTaq™ HS Mix (Bioline, USA). Reactions and thermocycling conditions were used as 

described in Chapter 1. Fragment lengths were determined using an ABI 3500 Genetic 

Analyzer. The Gene-Mapper 3.7 (Applied Biosystems Foster City, CA) and Osiris 2.13.1 

(NCBI) software were used for scoring fragment lengths. Genetic laboratory work was 

conducted at the Molecular Ecology Laboratory of the Genetics Institute, National University 

of Colombia in Bogotá. 

3.3.3 Data Analysis  

▪ Identification of genetic diversity  

In all crocodiles (i.e., the four groups of released individuals and the group of individuals to 

be released), number of alleles per locus and allelic frequencies were calculated in FSTAT 

2.9.3.2 (Goudet, 2001). Considering that the liberation carried out in the Tomo River is the 

only one that contributes to the creation of a population de novo, to have a starting point we 

estimate inbreeding coefficient (FIS) in FSTAT 2.9.3.2 (Goudet, 2001), expected 

heterozygosities (He) and observed heterozygosities (Ho) in ARLEQUIN 3.5.1.2 (Excoffier 

et al. 2005). The same software was used to test for Hardy Weinberg equilibrium (HWE) and 

linkage equilibrium; Bonferroni corrections were applied for both calculations. FIS 

significances for excess and defect of heterozygous were evaluated in Genepop 4.7.5 (p-

value < 0.005, Raymond & Rousset, 1995). 

▪ Identification of kinship relationships  

Relationships between the crocodiles released at each site and between the crocodiles to 

be released were inferred using ML-RELATE (Kalinowski et al., 2006), a Maximum 

Likelihood-based software that estimates relatedness coefficient (r) for each pair of 

individuals and provides a list of several possible relationships (Half-Sibling, Full-Sibling, 
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Parental-Offspring and Unrelated). Considering that the program does not consider size and 

age factors and that the relationship indexes between Full Siblings and Parents/ Offspring 

are similar, in cases where we find Parental/Offspring relationships, we consider them as 

Full Sibling relationships since the crocodiles are in the same size and age ranges and it is 

improbable a Parent-Offspring relationship.   

▪ Determination of individual diversity  

To determine the level of diversity of each analyzed individual, we estimated inbreeding 

coefficients at the individual level using the GENHET 2.3 R script (Coulon, 2010). We 

estimated the Homozygosity by Loci (HL), which is a homozygosity index that weights the 

contribution of each locus depending on their allelic variability (Aparicio et al., 2006). 

Consequently, each crocodile is assigned a value ranging from 0 (all loci are heterozygous) 

to 1 (all loci are homozygous), allowing us to identify the individual diversity of each 

crocodile. To identify crocodiles to be released, we considered individuals that had an HL 

<0.6, which is the condition of 95% of the live crocodiles that we find in the Program (Chapter 

2).  

3.4 Results  

The 16 polymorphic microsatellite loci were successfully amplified for the 112 processed 

samples. In the released individuals we found 54 alleles, but the number varied between 

each group (Table 1). In the four individuals released into the Guayabero/Losada Rivers we 

found 42 alleles (on average 2,6 alleles per locus), in the 15 individuals of the Manacacias 

River we found 53 alleles (on average 3,3 alleles per locus), in the 4 individuals of the 

Guarrojo River we found 54 alleles (on average 3,4 alleles per locus) and in the 31 

individuals of the Tomo River, we found 49 alleles (on average 3,1 alleles per locus). In the 

59 potential crocodiles to be released, we found 56 alleles (on average 3,5 alleles per locus).  

The observed heterozygosity (Ho) and expected heterozygosity (He) in the Tomo River 

group were 0.637 and 0.547, respectively and the inbreeding coefficient FIS was -0.164 

(Table 1). Of the 16 evaluated loci, locus CpP801 was not found in Hardy-Weinberg 

equilibrium, and loci Cj391 and CpP801 presented statistically significant deviations in the 

inbreeding coefficient FIS due to excess of heterozygotes. 
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Allele frequencies varied between groups. While we found alleles that maintained an equal 

frequency in the four liberations, even when comparing with potential crocodiles to be 

released (e.g., alleles 200 locus CpP302, allele 167 locus Cj16, alleles 337 and 343 locus 

Cj127, Table 2), other alleles presented different frequencies in each group (e.g., allele 386 

locus Cj122, allele 185 and 191 locus CUJ131, allele 372 locus Cj109, allele 182 locus 

Cpp801, Table 2). Additionally, some alleles were not found in all groups. For example, allele 

141 locus Cj16 was found in individuals released in the Manacacias and Guayabero/Losada 

Rivers, but it was not found in the other liberations or potential crocodiles to be released. 

Furthermore, allele 157 and 173 locus Cj391 were only found at very low frequencies in 

crocodiles to be released and in individuals released in the Manacacias River. Alleles 358 

locus CCj101, 358 locus CpDi13 and 166 locus CpP801 were only found in individuals to be 

released (Table 2). 

The individual diversity (HL) of the four Guarrojo River individuals varied between 0.287 and 

0.429 (Figure 3, Table 3 a). Individuals 599 and 44 had a Half Sibling relationship and 

individuals 603 and 599 had a Full Sibling relationship; the other crocodiles were not related 

(Table 3a). The individual diversity of the four Guayabero/Losada Rivers individuals was 

0.458 and 0.597 for the two females and 0.447 and 0.578 for the two males (Figure 3 and 

Table 3b). Individuals 321 (female) and 201 (male) had a Full Sibling relationship, and 

individual 615 (female) had a Half Sibling relationship with individuals 208 (male) and 321 

(female) (Table 3b). The individual diversity of the 14 Manacacias River individuals varied 

between 0.215 and 0.604 for the females and between 0.336 and 0.539 for the males (Figure 

3 and Table 3c). When comparing the relationships between the 14 individuals, we found 

10 Half Sibling relationships, 12 Full Sibling relationships, and 69 Unrelated relationships 

(Table 3c). Finally, the individual diversity of the Tomo River individuals varied between 0.03 

and 0.581 (Figure 3 and Table 3d). Of the 465 relationships determined when comparing 

the 31 individuals, we found 278 Unrelated relationships, 100 Half Sibling relationships, and 

87 Full Sibling relationships (Table 3d). 

The individual diversity of the juveniles to be released varied between 0.136 and 0.801, and 

of the 59 individuals, three had a Homozygosity by Loci higher than 0.6 (individuals 584, 

596, and 610, Table S2). Of the 1891 relationships determined when comparing the 59 

individuals, we found 1352 Unrelated relationships, 282 Half Sibling relationships, and 257 

Full Sibling relationships (Table 3d). With the kinship information provided (Table S1) and 
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the genotypes of these individuals (Table S2), it is possible to establish liberation groups 

that contain individuals with an HL <0.6 that are the least related possible, and that have 

specific allele frequencies.  

3.5 Discussion 

The current conservation of the Orinoco crocodile is critical (Castro et al., 2012), and one of 

the most promising strategies to recovery is reintroduction. We presented the genetic 

profiles and kinship relationships of 53 individuals of Crocodylus intermedius released in 

four localities part of its historical distribution: Guayabero/Losada, Manacacias, Guarrojo, 

and Tomo Rivers. This baseline provides us with crucial information for planning and 

directing future interventions for the recovery of the species. We found a high release 

potential in captive juvenile individuals based on our evaluations of the genetic profile and 

kinship relationships which combined with health, sex, and location allow us to plan future 

actions. With the information provided, the forward steps include the selection of the most 

appropriate genetically diverse and less related crocodiles, according to logistic capacities, 

to contribute to natural population constitution or enrichment.  

Considering that the long-term success of the reintroduction programs is influenced by key 

demographic and genetic components (Drauch & Rhodes, 2007), based on our genetic 

results, we discuss about specific reintroduction initiatives in the context of the natural 

populations intervened. 

3.5.1 De novo population: the Tomo River  

The reintroductions made in the Tomo River represent the only translocation to the wild 

where the species seems to be locally extinct without apparent remnant individuals, making 

it the only release that contributes to the creation of a de novo population. Although 71 

individuals from the Wisirare subpopulation have been reintroduced in the Tuparro National 

Natural Park in Tomo River, only samples of 31 individuals were studied. When comparing 

the subpopulation of origin with the subsample of the released individuals, we found that 

while in Wisirare there were 56 alleles, in the Tomo River´s released individuals there were 

49 alleles (Table 1). Alleles 141 (CJ16), 193 (CUJ131), 157/161 (Cj391), 354/358 (CCj101), 

and 358 (CpDi13) are absent in the released individuals but present in the Wisirare 
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subpopulation at very low frequencies (Chapter 2), making them prone to being lost and not 

being included in releases by chance.  

When comparing the allele frequencies between both groups, we found that, although there 

are loci where the frequencies varied a little (e.g., allele 213 locus CJ18 or allele 374 locus 

Cj109), in general they were similar in both groups (Table 2). It would be expected that if we 

evaluate allele frequencies adding the 40 released non-genotyped crocodiles, the genetic 

frequencies will not vary much and should adjust to the frequencies of the Wisirare 

subpopulation. 

Despite that the original –now extinct– population of Tomo River may have had a particular 

genetic fingerprint, one approach to enhance the long-term survival of these de novo 

populations is maximizing the genetic diversity introduced (Groombridge et al., 2012). To 

reach that objective and considering that the ex-situ population of C. intermedius has a 

genetic diversity greater than that found in the Wisirare subpopulation (Chapter 2), it is 

necessary to complement the management with crocodiles coming from other 

subpopulations that have a genetic diversity as high and different as possible from the one 

already included. In addition, individuals released in Tuparro River come from a maximum 

of nine parents (Chapter 2), which is reflected in that approximately 40% of the evaluated 

relationships have a kinship level of Half or Full Sibling (Table 3d).  

In the group of potential individuals to be released from the EBTRF subpopulation, we found 

that alleles 157/161 (Cj391), 358 (CCj101), (CpDi13), 179 (Cj391), and 166/186 (CpP801) 

are not present in the Tomo River´s released individuals (Table 2). To increase genetic 

variability, individuals to be released that have these alleles can be identified in Table S2 

and should be prioritized in the next translocation event that will take place in the Tomo 

River. Considering the genetic profile of those individuals (Table S2) and the kinship 

relationships between them (Table S1), it is possible to assemble unrelated groups that 

contain the greatest amount of genetic diversity. The number of individuals per group will be 

determined by the number of logistically viable individuals to be moved. 

The Tomo River is an ideal place to introduce crocodiles in the short term because it lies 

within a protected area and there is almost no human presence. This aspect is very 

important since the killing of adult specimens due to local inhabitants’ fear could reduce the 

number of adult crocodiles in the wild (Castro et al., 2012). For this reason, releases should 
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be made with a strong component of environmental education and in the meantime, areas 

without human presence can be prioritized and intervened with the individuals that have the 

genetic, size, health, and age requirements to be released (Table S2). Another place with 

similar conditions is the Bita River in the Tuparro National Natural Park, which is part of the 

historical distribution range of the species and where no relictual population or remnant 

individuals have been reported either (Parra et al., 2020).  

3.5.2 Stable relictual populations: Guayabero/Losada Rivers 

Among the four release events evaluated, the liberation in the Guayabero/Losada Rivers 

was the only one performed in one of the four relict populations of C. intermedius in 

Colombia (Castro et al., 2012). The two females and two males released had an individual 

diversity lower than that found in general in the ex-situ population (Chapter 2), and they 

showed a high degree of relationship. This reflects the need to implement genetic 

management when choosing the crocodiles, since the incorporation of individuals with low 

genetic diversity could have long-term repercussions (Jamieson & Lacy, 2012). 

The Guayabero River complex in Colombia was defined as one of the areas with the most 

optimal conditions for long-term preservation and maintenance of C. intermedius 

populations (Balaguera-Reina et al., 2017), but the last censuses were made more than 10 

years ago and currently, we do not know the status of those populations (Castro et al., 2012). 

Furthermore, in such places where it is believed that stable relictual populations remain, the 

hybridization and introgression caused by the reintroduction of different genetic lineages 

may have negative effects on the population’s overall fitness. If two populations have been 

separated for a long time or if there are significant habitat differences, the populations are 

likely to show significant genetic divergence and possibly local adaptations (Frankham et 

al., 2010; Frankham et al., 2011; Banes et al., 2016). Without considering the populations’ 

genetic profile, reintroductions could generate homogenization, an effect already reported 

in other species (e. g. Psittacula eques, Groombridge et al., 2012). 

For C. intermedius, Medem (1981) established that the Maipures and Atures streams in 

Vichada could represent natural geographical barriers for the movement of crocodiles and 

that before the populations decline of the XX century, differences (e.g., in population sizes) 

were evident when comparing populations located in the lower part of the streams (Guaviare 

River and tributaries) with those found in the upper portion of the streams (Meta River and 
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tributaries) (Medem, 1981). Although an approach to the genetic of natural populations 

found limited evidence of geographical structuring and suggested that the Orinoco Crocodile 

could be managed as a single genetic unit in Colombia (Posso-Peláez et al., 2018), the 

results are questionable due to the molecular marker used (Cytochrome b and Cytochrome 

c oxidase subunit 1; Posso-Peláez et al., 2018), the lack of inclusion of localities recognized 

as Regional Habitat Priority / Conservation Crocodilians Units (RHP / CCU) (Balaguera-

Reina et al. 2017) and especially the lack of samples from the Guaviare River zone. 

Therefore, it is necessary to reevaluate the existence of a genetic structure in the 

populations of C. intermedius in Colombia with variable genetic markers that have been 

successful in inferring population structure in crocodilids, such as microsatellites and the 

control region of the mitochondria (Ray & Densmore, 2003; Lapbenjakul et al. 2017; Rossi 

et al. 2020; Vashistha et al. 2020). The presence of a genetic footprint in this isolated and 

relictual population is highly expected, therefore it should be assessed, recognized, and 

preserved.  

While we do not know the presence of a structure and the current state of the population of 

the Guayabero River complex, we can neither know the effect that the four released 

individuals may have had in the population (if they survived and reproduced), nor can we 

plan future interventions. In these cases, a good approach for the conservation of the 

species is through the reintroduction of wild-caught rather than captive-reared crocodiles, 

considering that at least the survival probability increases by eliminating threats such as egg 

and neonate predation (e.g., see Barros et al., 2010). These efforts have been carried out 

in Wisirare, where eggs from the Rivers Ele and Cravo Norte have been collected to incubate 

them and release the hatchlings. This strategy could also be implemented in other rivers.  

3.5.3 Unstable remnant populations: Manacacias and Guarrojo Rivers 

Aside from the two stable populations of C. intermedius in Colombia (Cravo Norte and 

Guayabero River complexes), two other non-stable relictual populations composed of some 

solitary individuals have been reported in the Vichada River and the middle course of the 

Meta River (Castro et al., 2012). Currently, these unstable populations are considered the 

most threatened, and their natural recovery without human intervention is almost impossible 

(Castro et al., 2012). However, despite the censuses carried out by Federico Medem in the 

1970s, by the Ministry of the Environment in the 1990s, by the Chelonia Association and the 



  

 

68 
 

EBTRF in the past decade (Barahona &  Bonilla, 1999; Lugo 1996; Castro et al., 2012), it is 

probable that remnants of other populations persist but have not been identified yet, such 

as in the Guarrojo, Manacacías, Yucao, Arauca Rivers or in the section of the Meta River 

that borders Venezuela (Rafael Antelo, pers. comm; see Balaguera-Reina et al., 2017).  

Despite not knowing the situation and even the presence of the species in rivers such as the 

Manacacias and the Guarrojo, 14 and four individuals were released in 2017 and 2018, 

respectively. The individuals involved presented similar individual genetic diversity indices 

compared with those found in the captive breeding program (Chapter 2), and in both groups 

most individuals are not related. However, we consider that this diversity could be 

maximized, and relatedness minimized by knowing the genetic profiles before releasing.  

In the case of the Manacacias River, although there are allele frequencies that are almost 

identical when compared with the frequencies of the EBTRF subpopulation (e.g., locus 

CpP3216, EBTRF subpopulation allele frequencies available in Chapter 2), there are other 

alleles that present very different frequencies (e.g., alleles at locus CUJ5123). Additionally, 

we found alleles in the EBTRF that are not present in the released individuals (alleles 390 

locus Cj122, 207 locus Cj18, 171 locus Cj391, 358 locus CCj101, 358 locus CpPdi12, 341 

locus Cj127,174 locus CpP801). This is because liberations considered C. intermedius 

populations as a single genetic unit (Posso-Peláez et al., 2018), did not contemplate genetic 

profiles and the sample is not large enough to capture a representative diversity of the 

EBTRF subpopulation. In the case of the Guarrojo River, since only four individuals were 

released, the allelic frequencies obtained are also the result of having chosen genotypes 

randomly. What is noteworthy is that this group of four individuals of the Guarrojo River has 

12 more alleles than the four individuals released in Guayabero/Losada Rivers and one 

more allele than the 14 individuals released in Manacacias River. 

As we have already mentioned, since we do not know the current state of the populations, 

we cannot infer about the effects that the inclusion of these individuals may cause (if they 

survived and reproduced). If it is determined that these populations are incapable of 

recovering naturally and if they are in a vortex of extinction due to inbreeding and small 

populations size, the introduction of novel genetic variants can augment genetic diversity, 

reversing indications of inbreeding depression and increasing population sizes (Banes et 

al., 2016). The benefits of ‘genetic rescue’ have been demonstrated in several conservation 

initiatives (e.g., Puma concolor coryi Pimm et al., 2006; Ovis canadensis Hogg et al., 2006; 
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Groombridge et al., 2012), being effective even with the inclusion of a single migrant (e.g., 

Canis lupus Vila et al., 2003), and have resulted not only in increasing the fitness but 

succeeded in restoring genetic diversity to ancestral levels (e.g., Tympanuchus cupido 

Bouzat et al., 2009).  Nevertheless, what is clear is that only by comparing levels of genetic 

variation before and after, we may be able to measure the need and the effect of genetic 

rescue (as suggested by Groombridge et al., 2012). As long as we do not have this 

information, as in the case of stable populations, a measure of immediate conservation is 

through the incubation and subsequent release of wild individuals.   

3.5.4 The future of releases 

Long-term monitoring of genetic diversity and inbreeding in reintroduced populations needs 

to be incorporated into field programs, to provide the data and the statistical power to look 

for the consequent effects of the genetic interventions and to plan long-term actions such as 

later supplementary translocations (Groombridge et al., 2012). Nevertheless, even 

introductions can be effective management strategies, recovery and long-term viability 

would not be realized unless there are complementary managements that ensure 

reproductive ecological and environmental conditions such as the presence of nesting 

beaches, preserved riparian landscape, or human coexistence and tolerance among others 

(Bouzat et al., 2009; Jamieson & Lacy, 2012; Keller et al., 2012).  

It is necessary to evaluate the effectiveness of releases to determine whether it is possible 

to improve the choice of individuals to be released. For example, by modeling mark-

recapture monitoring data, it is possible to adjust management decisions on the age of 

individuals to be released, which can vary even among sites (Casena et al., 2016).  

While neutral genetic markers can be employed to assess various parameters relevant to 

population genetics, they may not reflect variation at functional loci important to the fitness 

of the species in question (Reed & Frankham, 2001; van Tienderen et al., 2002; Bekessy et 

al., 2003). If the numbers of founders required to translocate variation from a population are 

determined by neutral variation, the numbers needed to retain the higher levels of functional 

variation could be underestimated (Groombridge et al., 2012). Then, using a combination of 

genome-wide neutral markers and specific ‘critical’ loci (e.g., genes of the MHC; Hughes, 

1991) may be the safest way to assess neutral and adaptive genetic diversity (Groombridge 

et al., 2012). 
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Studies like the presented here illustrate how genetic management may have an impact 

upon the reintroductions since translocations must be done based on the requirements of 

natural populations, which are only understood by studying them. By ignoring the genetic 

structure of populations and the genetic profile of the individuals’ release, allelic frequencies 

and reintroduced genetic diversity are the result of chance, which in the end will not 

contribute to ensure the survival of the populations and, on the contrary, affect their 

dynamics and the genetic structure. 
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3.7 Tables and figures 

 

Figure 1. Green circles identify the location of the four relict populations of C. intermedius 

in Colombia (dark grey): (1) Cravo Norte River complex, (2) Middle curse of the Meta 

River, (3) Vichada River and (4) Guayabero River complex. Orange circles identify the four 

releases events (red lines): (A) Guayabero/Losada Rivers, (B) Manacacias River, (C) 

Guarrojo River and (D) Tomo River. Taken and modified from Castro et al. (2012). 
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Figure 2. Potential juvenile crocodiles to be released located at the Roberto Franco 

Tropical Biology Station (EBTRF) in Villavicencio, Meta.  
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Figure 3. Distribution of individual diversity (homozygosity by loci, HL) of the individuals 

released in the four localities and in the group of potential individuals to be released. The 

values within the columns indicate the number of individuals in each category. 
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Table 1. Genetic diversity of the four groups of individuals released and potentials to be released of Crocodylus intermedius in charge 

of the Roberto Franco Tropical Biology Station. 

 N – sample size, nA – alleles per locus, Ho – observed heterozygosity, He – expected heterozygosity, HWE – Hardy-Weinberg 

equilibrium, FIS - inbreeding coefficient.  

   

Juveniles’ potential 
to be released 

(total # of alleles = 
56) 

  
Guayabero (total 
# of alleles = 42) 

 
Manacacias 

(total # of alleles 
= 53) 

 Guarrojo (total # 
of alleles = 54) 

 Tomo (total # of alleles = 49)  

Locus   N nA   N nA   N nA   N nA   N nA Ho He HWE FIS   

 CpP3216   59 2   4 2 
 14 2 

 4 2 
 

31 2 0.3548 0.4744 Yes 0.255 
 

 CpP305   59 3   4 2 
 14 3 

 4 3 
 

31 3 0.4839 0.5923 Yes 0.186 
 

CpP1409   59 3   4 3 
 14 3 

 4 3 
 

31 3 0.7419 0.5653 Yes -0.319 
 

CpP302   59 4   4 4 
 14 4 

 4 4 
 

31 4 0.6452 0.6626 Yes 0.027 
 

CpP314   59 3   4 3 
 14 3 

 4 3 
 

31 3 0.7742 0.6748 Yes -0.15 
 

Cj16   59 3   4 3 
 14 4 

 4 4 
 

31 3 0.6774 0.5537 Yes -0.228 
 

CU5123   59 4   4 4 
 14 4 

 4 4 
 

31 4 0.8065 0.6478 Yes -0.25 
 

Cj122   59 5   4 4 
 14 4 

 4 5 
 

31 5 0.8065 0.7314 Yes -0.105 
 

Cj18   59 4   4 3 
 14 4 

 4 4 
 

31 4 0.7097 0.5854 Yes -0.217 
 

CUJ131   59 2   4 2 
 14 2 

 4 2 
 

31 2 0.4516 0.3554 Yes -0.277 
 

Cj109   59 4   4 2 
 14 4 

 4 4 
 

31 4 0.8387 0.6446 Yes -0.308 
 

Cj391   59 6   4 2 
 14 6 

 4 6 
 

31 3 0.8065 0.5484 Yes -0.482 * 
 

CCj101   59 3   4 2 
 14 2 

 4 2 
 

31 2 0.5807 0.495 Yes -0.176 
 

CpDi13   59 3   4 2 
 14 2 

 4 2 
 

31 2 0.4839 0.4744 Yes -0.02 
 

Cj127   59 2   4 2 
 14 2 

 4 2 
 

31 2 0.1613 0.1507 Yes -0.071 
 

CpP801   59 5   4 2 
 14 4 

 4 4 
 

31 3 0.871 0.5881 No -0.493 *   

Mean     3.5     2.625     3.313     3.375     3.063 0.637 0.547   -0.164  

SD     1.155     0.806     1.138     1.204     0.929 0.201 0.140   0.208   

               * significance for heterozygous excess  
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Table 2. Allelic frequencies of 16 polymorphic microsatellite loci in the four groups of 

individuals released and potentials to be released of Crocodylus intermedius in charge of 

the Roberto Franco Tropical Biology Station. 

Locus Allele 

Juveniles 
to be 

released 
(N=59) 

Guayabero 
Losada  
(N=4) 

Manacacias 
(N=14) 

Guarrojo 
(N=4) 

Tomo  
(N=31) 

   Locus Allele 

Juveniles 
to be 

released 
(N=59) 

Guayabero 
Losada  
(N=4) 

Manacacias 
(N=14) 

Guarrojo 
(N=4) 

Tomo  
(N=31) 

 
CpP3216 

137 0.661 0.375 0.643 0.500 0.629    
 

Cj18 

207 0.169 0.125 0.143 0 0.048  

141 0.339 0.625 0.357 0.500 0.371    
 209 0.169 0 0.214 0.250 0.274  

          211 0.605 0.750 0.571 0.500 0.581  

 CpP305 

176 0.073 0 0.036 0.250 0.097    
 213 0.056 0.125 0.071 0.250 0.097  

192 0.468 0.375 0.357 0.125 0.452    
  

      
196 0.460 0.625 0.607 0.625 0.452    

 
 CUJ131 

185 0.605 0.125 0.679 0.750 0.774  
          191 0.395 0.875 0.321 0.250 0.226  

CpP1409 

245 0.266 0.250 0.179 0.125 0.258    
 

       
249 0.637 0.500 0.643 0.750 0.597    

 

Cj109 

372 0.323 0.625 0.179 0.250 0.435  

253 0.097 0.250 0.179 0.125 0.145    
 374 0.040 0 0.179 0.125 0.016  

 
         382 0.274 0 0.250 0.500 0.161  

CpP302 

194 0.476 0.25 0.679 0.625 0.516    
 384 0.363 0.375 0.393 0.125 0.387  

196 0.145 0.375 0.036 0 0.194    
 

       
200 0.177 0.125 0.179 0.250 0.113    

  Cj391 153 0.621 0.625 0.357 0.500 0.565  

208 0.202 0.25 0.107 0.125 0.177    
  157 0.040 0 0.071 0 0 

  
 

   
    

 169 0.073 0.375 0.179 0.250 0.065  

 CpP314 

254 0.411 0.125 0.571 0.750 0.290    
  173 0.040 0 0.036 0 0 

258 0.282 0.625 0.250 0 0.355    
  175 0.194 0 0.214 0.250 0.371  

262 0.306 0.250 0.179 0.250 0.355    
  179 0.032 0 0.143 0 0 

 
 

 
   

   
   

 
   

 

Cj16 

141 0 0.125 0.071 0 0   
 CCj101 356 0.581 0.875 0.643 0.375 0.581  

167 0.677 0.750 0.607 0.750 0.613    
  358 0.048 0 0 0 0 

171 0.266 0.125 0.286 0.250 0.242    
  360 0.371 0.125 0.357 0.625 0.419  

173 0.056 0 0.036 0 0.145    
 

       
  

 
   

   
 

CpDi13 

358 0.016 0 0 0 0 

 CU5123 

202 0.290 0.125 0.107 0.750 0.161    
 360 0.653 0.875 0.714 0.625 0.629  

214 0.056 0.250 0.071 0 0.097    
 362 0.331 0.125 0.286 0.375 0.371  

216 0.250 0.250 0.536 0 0.210    
 

       
220 0.403 0.375 0.286 0.250 0.532     

Cj127 
337 0.895 0.875 0.821 0.875 0.919  

          343 0.105 0.125 0.179 0.125 0.081  

Cj122 

378 0.234 0 0.357 0.375 0.145    
 

       
380 0.347 0.125 0.393 0.500 0.419     

CpP801 

166 0.008 0 0 0 0 

386 0.121 0.625 0.107 0 0.065    
 170 0.081 0.125 0.071 0.125 0.323  

390 0.065 0.125 0 0 0.113    
 178 0.202 0 0.179 0.250 0.129  

392 0.234 0.125 0.143 0.125 0.258     182 0.589 0.875 0.536 0.375 0.548  
  

       
 

186 0.121 0 0.214 0.250 0 
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Table 3. Relatedness coefficient and possible relationship within the crocodiles released in the Guarrojo River (a), Guayabero / Losada 

Rivers (b), Manacacias River (c) and Tomo River (d). The values in parentheses represent the Homozygosity per Loci for each 

individual.  

 

Relationships: U Unrelated; HS Half sibling; FS Full sibling   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Guarrojo River     b. Guayabero/Losada Rivers    

           

  
444 (0.305) 

♀ 
473 (0.287) 

♀ 
599 (0.429) 

♀ 
603 (0.343) 

♀    
201 (0.578) ♂ 

208 (0.447) 
♂ 

321 (0.597) 
♀ 

615 (0.458) 
♀ 

444 (0.305) ♀ -     201 (0.578) ♂ -    

473 (0.287) ♀ 0.012 U -    
208 (0.447) ♂ 0.005 U -   

599 (0.429) ♀ 0.281 HS 0 U -   321 (0.597) ♀ 0.374 FS 0.007 U -  

603 (0.343) ♀ 0 U 0.020 U 0.774 FS -  615 (0.458) ♀ 0 U 0.194 HS 0.141 HS - 
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d. Tomo River (Next page) 

 

 

c. Manacacias River              

               

  

212 
(0.475) ♂ 

237 
(0.539) ♂ 

246 
(0.255) ♀ 

501 
(0.260) ♀ 

503 
(0.335) ♂ 

547 
(0.246) ♀ 

578 
(0.478) ♀ 

588 
(0.459) ♀ 

591 
(0.604) ♀  

594 (0.402) 
♀ 

597 
(0.284) ♀ 

605 
(0.362) ♀ 

607 
(0.417) ♀ 

611 
(0.450) ♀ 

212 (0.475) ♂ -              

237 (0.539) ♂ 0 U -             

246 (0.255) ♀ 0.020 U 0.114 U -            

501 (0.260) ♀ 0.011 U 0.055 U 0.259 U -           

503 (0.335) ♂ 0.173 HS 0.165 U 0.254 FS 0 U -          

547 (0.246) ♀ 0.237 U 0 U 0.345 HS 0 U 0.412 FS -         

578 (0.498) ♀ 0.083 U 0 U 0 U 0 U 0 U 0 U -        

588 (0.459) ♀ 0 U 0.263 U 0.073 U 0 U 0.007 U 0.5 FS 0.258 HS -       

591 (0.604) ♀  0.118 U 0.117 U 0 U 0 U 0.244 HS 0.094 U 0.116 U 0.313 HS -      

594 (0.402) ♀ 0.225 HS 0.577 FS 0.097 U 0 U 0.123 U 0 U 0 U 0.067 U 0.032 U -     

597 (0.284) ♀ 0.005 U 0.500 FS 0.038 U 0.073 U 0.157 U 0.019 U 0 U 0 U 0.018 U 0.765 FS -    

605 (0.362) ♀ 0.068 U 0.453 FS 0 U 0 U 0.266 HS 0 U 0 U 0.033 U 0.091 U 0.582 FS 0.538 FS -   

607 (0.417) ♀ 0.123 U 0.501 FS 0.003 U 0 U 0.352 HS 0 U 0 U 0 U 0.126 U 0.652 FS 0.825 FS 0.344 HS -  

611 (0.450) ♀ 0.193 U 0 U 0 U 0 U 0 U 0 U 0.292 HS 0 U 0.069 U 0 U 0 U 0.083 U 0 U -  
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T1 

(0.453) 
T10 

(0.418) 
T11 

(0.415) 
T12 

(0.265) 
T13 

(0.337) 
T14 

(0.441) 
T15 

(0.445) 
T16 

(0.030) 
T17 

(0.477) 
T18 

(0.520) 
T19 

(0.362) 
T2 

(0.144) 
T20 

(0.300) 
T21 

(0.423) 
T22 

(0.581) 
T23 

(0.135) 
T24 

(0.466) 
T25 

(0.216) 
T26 

(0.331) 
T27 

(0.472) 
T28 

(0.325) 
T29 

(0.156) 
T3 

(0.104) 
T30 

(0.149) 
T31 

(0.326) 
T4 

(0.446) 
T5 

(0.215) 
T6 

(0.500) 
T7 

(0.339) 
T8 

(0.254) 
T9 

(0.280) 

T1 
(0.453) -                               

T10 
(0.418) 0 U -                              

T11 
(0.415) 0 U 

0.020 
U -                             

T12 
(0.265) 

0.138 
U 0 U 

0.055 
U -                            

T13 
(0.337) 0 U 0 U 0 U 

0.340 
FS -                           

T14 
(0.441) 0 U 0 U 

0.363 
HS 

0.243 
HS 

0.184 
HS -                          

T15 
(0.445) 

0.328 
HS 

0.079 
U 

0.236 
HS 

0.023 
U 0 U 

0.073 
U -                         

T16 
(0.030) 0 U 0 U 

0.066 
HS 

0.445 
FS 

0.490 
FS 

0.584 
FS 0 U -                        

T17 
(0.477) 

0.227 
HS 0 U 

0.475 
FS 

0.176 
HS 0 U 0 U 

0.536 
FS 

0.118 
U -                       

T18 
(0.520) 

0.318 
HS 0 U 

0.571 
FS 0 U 0 U 

0.082 
U 

0.458 
FS 

0.034 
U 

0.686 
FS -                      

T19 
(0.362) 0 U 

0.332 
HS 0 U 

0.038 
U 0 U 0 U 0 U 0 U 

0.175 
U 

0.014 
U -                     

T2 
(0.144) 0 U 0 U 0 U 0 U 

0.550 
FS 

0.228 
HS 0 U 

0.705 
FS 

0.137 
U 0 U 0 U -                    

T20 
(0.300) 

0.658 
FS 

0.097 
U 0 U 

0.011 
U 0 U 0 U 

0.500 
FS 

0.017 
U 

0.500 
FS 

0.240 
HS 0 U 

0.137 
HS -                   

T21 
(0.423) 

0.144 
U 0 U 

0.316 
HS 

0.453 
FS 

0.249 
U 

0.225 
HS 

0.500 
FS 0 U 

0.400 
FS 

0.271 
HS 

0.179 
HS 

0.008 
U 

0.077 
U -                  

T22 
(0.581) 

0.116 
U 

0.218 
HS 

0.500 
FS 

0.034 
U 0 U 0 U 

0.290 
HS 0 U 

0.500 
FS 

0.668 
FS 

0.319 
HS 0 U 0 U 

0.186 
HS -                 

T23 
(0.135) 0 U 0 U 0 U 

0.635 
FS 

0.697 
FS 

0.039 
U 0 U 

0.208 
U 

0.500 
FS 0 U 

0.244 
HS 

0.028 
U 0 U 

0.390 
FS 0 U -                

T24 
(0.466) 

0.761 
FS 0 U 

0.244 
HS 

0.118 
U 0 U 0 U 

0.073 
U 

0.031 
U 

0.361 
HS 

0.464 
FS 

0.030 
U 

0.087 
U 

0.534 
FS 

0.052 
U 

0.352 
HS 

0.050 
U -               

T25 
(0.216) 

0.273 
HS 0 U 

0.350 
HS 0 U 0 U 0 U 

0.336 
HS 

0.115 
U 

0.436 
FS 

0.500 
FS 

0.341 
HS 

0.033 
U 

0.425 
FS 

0.070 
U 

0.177 
HS 0 U 

0.500 
FS -              

T26 
(0.331) 0 U 

0.440 
FS 

0.302 
HS 0 U 

0.095 
U 

0.127 
U 0 U 

0.040 
U 

0.236 
HS 

0.223 
HS 

0.325 
HS 

0.168 
HS 

0.194 
U 

0.266 
HS 

0.414 
FS 

0.045 
U 

0.144 
U 

0.048 
U -             

T27 
(0.472) 0 U 

0.500 
FS 

0.473 
FS 

0.099 
U 0 U 

0.222 
HS 

0.253 
HS 0 U 

0.253 
HS 

0.278 
HS 

0.532 
FS 0 U 0 U 

0.503 
FS 

0.621 
FS 0 U 0 U 

0.039 
U 

0.500 
FS -            

T28 
(0.325) 0 U 0 U 

0.084 
U 0 U 

0.490 
FS 

0.455 
FS 0 U 

0.090 
U 0 U 0 U 

0.103 
U 

0.407 
FS 0 U 

0.160 
U 0 U 

0.105 
U 0 U 

0.036 
U 

0.269 
HS 0 U -           

T29 
(0.156) 

0.332 
HS 

0.111 
U 0 U 

0.337 
HS 

0.019 
U 0 U 0 U 

0.100 
U 

0.256 
HS 0 U 

0.314 
HS 

0.040 
U 

0.500 
FS 

0.138 
HS 

0.500 
FS 

0.500 
FS 

0.500 
FS 

0.082 
U 

0.270 
HS 

0.329 
HS 0 U -          

T3 
(0.104) 

0.074 
U 

0.001 
U 0 U 

0.136 
U 

0.298 
U 0 U 

0.082 
U 

0.363 
FS 

0.137 
U 

0.009 
U 0 U 

0.649 
FS 0 U 

0.054 
U 0 U 0 U 0 U 0 U 

0.188 
HS 

0.038 
U 

0.264 
HS 

0.062 
U -         

T30 
(0.149) 

0.125 
U 

0.040 
U 

0.220 
HS 

0.500 
FS 

0.216 
HS 

0.061 
U 0 U 

0.289 
FS 

0.217 
HS 0 U 0 U 

0.210 
HS 

0.251 
HS 

0.217 
HS 0 U 

0.500 
FS 

0.164 
HS 

0.034 
U 0 U 

0.146 
U 0 U 

0.1257 
HS 

0.151 
HS -        

T31 
(0.326) 

0.121 
U 

0.004 
U 

0.052 
U 

0.430 
FS 

0.313 
HS 

0.500 
FS 

0.211 
HS 

0.667 
FS 

0.500 
FS 

0.249 
HS 0 U 

0.354 
FS 

0.500 
FS 

0.091 
U 

0.209 
HS 

0.315 
FS 

0.500 
FS 

0.007 
U 

0.034 
U 

0.116 
U 

0.129 
HS 

0.500 
FS 

0.180 
U 

0.113 
U -       

T4 
(0.446) 

0.115 
U 0 U 

0.155 
U 

0.326 
HS 

0.059 
U 

0.078 
U 

0.226 
HS 

0.377 
FS 0 U 

0.010 
U 0 U 

0.058 
U 0 U 

0.219 
HS 

0.082 
U 0 U 0 U 

0.008 
U 0 U 0 U 

0.174 
HS 0 U 

0.319 
HS 0 U 0 U -      

T5 
(0.215) 

0.370 
HS 

0.123 
U 0 U 

0.171 
HS 0 U 

0.042 
U 0 U 0 U 

0.247 
HS 

0.280 
HS 

0.312 
HS 0 U 

0.125 
U 

0.423 
FS 

0.500 
FS 

0.163 
HS 

0.293 
HS 0 U 

0.500 
FS 

0.384 
HS 0 U 

0.565 
FS 

0.067 
U 0 U 

0.046 
U 

0.006 
U -     

T6 
(0.500) 

0.190 
U 

0.264 
HS 0 U 

0.032 
U 0 U 

0.263 
HS 0 U 0 U 

0.189 
HS 

0.075 
U 

0.366 
HS 0 U 0 U 

0.342 
HS 

0.396 
FS 0 U 

0.045 
U 0 U 

0.500 
FS 

0.498 
FS 0 U 

0.139 
HS 

0.083 
U 

0.150 
U 0 U 

0.121 
U 

0.312 
HS -    

T7 
(0.339) 0 U 

0.284 
HS 

0.551 
FS 

0.076 
U 0 U 

0.163 
HS 

0.234 
HS 

0.314 
HS 

0.135 
HS 

0.235 
HS 

0.255 
HS 

0.035 
U 0 U 

0.114 
U 

0.683 
FS 

0.067 
U 

0.002 
U 0 U 

0.419 
FS 

0.577 
FS 

0.029 
U 

0.500 
FS 

0.064 
U 0 U 

0.114 
U 

0.248 
HS 

0.500 
FS 

0.295 
HS -   

T8 
(0.254) 

0.500 
FS 0 U 0 U 

0.500 
FS 

0.160 
HS 0 U 

0.289 
U 

0.249 
HS 0 U 

0.120 
U 0 U 

0.248 
U 0 U 0 U 

0.090 
U 

0.093 
U 

0.530 
FS 0 U 0 U 0 U 

0.148 
HS 0 U 

0.343 
FS 0 U 

0.419 
FS 

0.500 
FS 

0.111 
U 

0.028 
U 0 U -  

T9 
(0.280) 0 U 0 U 

0.053 
U 

0.289 
FS 

0.395 
FS 

0.403 
FS 0 U 

0.077 
U 

0.077 
U 0 U 

0.108 
U 

0.483 
FS 0 U 

0.395 
FS 0 U 

0.130 
U 0 U 0 U 0.2 U 

0.116 
U 

0.450 
FS 0 U 

0.485 
FS 

0.269 
HS 0 U 

0.227 
HS 0 U 

0.137 
HS 

0.068 
U 

0.141 
HS - 
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3.8 Annexes 

 

Table S1. Relatedness coefficient and possible relationship within the crocodile’s 

potential to be released hosted in the Roberto Franco Tropical Biology Station (EBTRF). 

Relationships: U Unrelated, HS Half sibling, FS Full sibling. 

The values in parentheses represent the homozygosity per loci of each individual.  

 

 

Table S2. Genotypes of the 16 polymorphic microsatellite loci for the 59 juvenile crocodiles 

to be released.   

HL: Homocigosity by loci.



    

4. Conclusions 

Successful reproduction (Chapter 1 and 2) and reintroduction (Chapter 3) are necessary 

steps in the recovery of Crocodylus intermedius. For this, the ex-situ population of the 

Orinoco crocodile founded in Colombia 50 years ago and currently in charge of the Roberto 

Franco Tropical Biology Station presents a genetic reservoir for the species towards the 

recovery of wild populations. 

Although from the foundation until today there was a loss of alleles due to an inadequate 

reproductive management in the rearing system that allowed the mating of a limited group 

of reproducers, the population maintains high levels of genetic diversity. Nevertheless, 

genetic variability is unevenly distributed in the population and therefore two management 

guidelines need to be considered: first, maintain high levels of heterozygosity by combining 

unrelated genetically variable adult individuals, and second prioritize the combinations with 

individuals that have rare alleles to not lose them.  

With the introduction of a breeding strategy that considers the genetic profile of each 

individual and combines less related individuals, the percentage of genetic diversity can be 

significantly preserved and increased. Resulting offspring with high genetic diversity can be 

released into the wild according to the requirements of natural populations.  

The EBTRF population covers a very restricted range of the historical natural distribution of 

the species in Colombia. Our results suggested that the genetic diversity of the station does 

not cover the unknown threatened possible diversity available in the wild. It is necessary 

and urgent to evaluate the wild populations, as well as to bring wild individuals from 

unsampled sites, to refresh the diversity of the Program and avoid future inbreeding. 

We propose that in the short-term, reintroductions should only be carried out in places 

where it is certain that the populations have become completely extinct (e.g., Tomo or Bita 

Rivers in Tuparro National Natural Park). We especially recommend including crocodiles 
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with genetic diversity as high and different as possible from the already incorporated in 

Tomo River. 

In case the species is present, it is necessary to accurately estimate the population size 

and assess its genetic profile before implementing reintroduction measures or any other 

management action. Developing activities considering the species as a single genetic unit 

could generate a homogenization of remaining populations, losing genetic diversity and 

evolutionary potential.   

5.  
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