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Medelĺın and specially its professors for contributing to my personal and professional growth

throughout these past years. Also, I would like to express my sincere gratitude to profes-

sor Freddy Hernández Barajas, my dissertation advisor for his support, for motivating me

to work hard every day and for contributing significantly with his ideas and advice to the

development of this research work.

I also want to express my deep gratitude to my parents Gloria and Francisco, my brother

Mateo and my sister Laura who have been always by my side and have supported me

unconditionally. They are and will always be my greatest gift. Finally, I want to thank my

boyfriend Tomas who has taught me to believe in myself and has given me the strength to

finish this work.





ix

Abstract

The task of estimating parameters is very important in both scientific and industrial ap-

plications. The R programming language provides a wide variety of functions created to find

the maximum likelihood estimates of parameters from distributions and regression models.

In this work the estimtf package with its main functions mle tf and mlereg tf are pre-

sented. This package was design with the aim of finding the maximum likelihood estimates

of distributional and regression parameters using TensorFlow, an open-source library for nu-

merical computation created by Google. To achieve this goal an iterative estimation process

was design in which the TensorFlow optimizers are used to maximize the likelihood function.

To illustrate the use of the estimtf package and evaluate the performance of the estimation

process, a simulation study was performed as well as some applications using real datasets.

From the simulation study, an impact of the sample size, the selected optimizer and the ini-

tial value of the learning rate on the estimates obtained with the mle tf and the mlereg tf

functions was observed. Additionally, the estimates obtained with both functions were very

close to the real value of the parameters and very similar to the estimates obtained with

other R functions that are very popular and widely used for estimating parameters.

Keywords: TensorFlow, estimation of parameters, maximum likelihood, optimization

algorithms.
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Resumen

La tarea de estimar parámetros es muy importante tanto en aplicaciones cient́ıficas como de

industria. El lenguaje de programación R provee una amplia variedad de funciones creadas

para encontrar los estimadores de máxima verosimilitud de parámetros de distribuciones y de

modelos de regresión. En este trabajo se presenta el paquete estimtf junto con sus principales

funciones mle tf y mlereg tf. Este paquete fue diseñado con el objetivo de encontrar los

estimadores de máxima verosimilitud de parámetros distribucionales y de regresión usando

TensorFlow, una libreŕıa de código abierto para computación numérica creada por Google.

Para alcanzar este objetivo se diseñó un proceso de estimación iterativo en el cual se uti-

lizan los optimizadores incluidos en esta libreŕıa para maximizar la función de verosimilitud.

Para ilustrar el uso del paquete estimtf y evaluar el desempeño del proceso de estimación,

se llevó a cabo un estudio de simulación y se presentaron algunas aplicaciones usando bases

de datos reales. A partir del estudio de simulación se observó que el tamaño de muestra, el

optimizador seleccionado y el valor inicial de la tasa de aprendizaje afectan las estimaciones

obtenidas con las funciones mle tf y mlereg tf. Adicionalmente, las estimaciones obtenidas

con ambas funciones resultaron muy cercanas a los verdaderos valores de los parámetros y

muy similares a las estimaciones obtenidas con otras funciones de R, las cuales son muy

populares y comúnmente usadas para la estimación de parámetros.

Palabras clave: TensorFlow, estimación de parámetros, máxima verosimilitud, algo-

ritmos de optimización.
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1. Introduction

In 1922, Fisher stated that one of the fundamental problems of statistics is the problem of

estimation, which involves the choice of the best method to estimate the parameters of a pop-

ulation (Fisher, 1922). Since then and even before, multiple methods have been developed

with the objective of solving this problem. From the frequentist point of view, some of the

most popular and used methods are the method of moments (Pearson, 1936), the maximum

likelihood method (Fisher, 1922) and the least squares method (Legendre, 1805). In the liter-

ature we find authors interested in comparing the performance of these and other estimation

methods such as Bakouch, Dey, Ramos, and Louzada (2017) that compared the maximum

likelihood method, the method of moments, the percentile based estimation, among others,

in the estimation of parameters from a binomial-exponential 2 distribution. On the other

hand, Louzada, Ramos, and Perdoná (2016) compared the maximum likelihood method,

the method of moments, the method of modified moments, the ordinary and weighted least

squares methods and others, in the estimation of the parameters of the extended exponential

geometric distribution and Ling (2018) used the maximum likelihood and the least-squares

approaches to find the estimates of the parameters of the generalized gamma distribution.

In particular, the maximum likelihood method consists of estimating the parameters of a

distribution by maximizing the likelihood function. This method is widely used because

it can be easily implemented and the resulting estimates have many desirable statistical

properties such as consistency and efficiency. The development of computational tools have

facilitated the implementation of this and other estimation methods. One of these tools is

R (R Core Team, 2021) which is an open source language and environment for statistical

computing created by Ihaka and Gentleman (1996) that provides a wide variety of statistical

and graphical techniques. Because R is an open source language, its users can contribute to

its growth and extension by creating packages which are collections of functions and data

sets. By June 2019, there were more than 14.000 packages available on the Comprehensive

R Archive Network (Wickham, 2015). Some of these packages include functions that allow R

users to implement estimation methods like the ones mentioned above and more. In the case

of the maximum likelihood method, R provides some packages such as bbmle, stats4 and

EstimationTools that contain functions especially design to facilitate the implementation of

optimization methods like the Nelder-Mead method, Newton-type methods, quasi-Newton

methods, among others, in maximum likelihood estimation.
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R also includes a package called tensorflow, an interface to TensorFlow which is a library

for numerical computation created by Google. Since the launch of TensorFlow as an open

source library in 2016, many researchers have used this tool for experimentation with ma-

chine learning methodologies, thus contributing to its improvement and making this library

one of the most popular today. The majority of the projects that use TensorFlow are re-

lated to image recognition, object detection and prediction, such as the one developed by

Sawant, Bhandari, Yadav, Yele, and Bendale (2018), who implemented a convolutional neu-

ral network with 5 layers in TensorFlow to detect cancer cells in the brain through MRI. On

the other hand, Nesterov (2014) used TensorFlow for the recognition of handwritten with

a convolutional neural network with 2 layers. Another very popular application is speech

recognition which consists of the identification of words and phrases in a spoken language.

Variani, Bagby, McDermott, and Bacchiani (2017) used 20.000 hours of spontaneous speak-

ing by anonymous voices to train a TensorFlow model design for voice recognition. Other

interesting application involving the use of TensorFlow is the one presented by Do, Son, and

Chaudri (2017), who used TensorFlow and a database of hospitalized patients to predict the

severity of asthma in those patients.

One of the main components of TensorFlow are its optimizers which are algorithms that use

gradient-based numerical optimization to update the parameters of a function with the aim

of minimizing it (Zeiler, 2012). Some of the optimizers included in the TensorFlow library

are the Adam optimizer, the momentum optimizer, the gradient descent optimizer and the

Adagrad optimizer which are mainly used to train neural networks models, however, they

can also be implemented to find the maximum likelihood estimates of distributional and

regression parameters.

The main goal of this work is to present and evaluate the performance of estimtf, an R pack-

age created by Garcés and Hernández (2021) that contains functions that allow R users to

find the maximum likelihood estimates of distributional and regression parameters using the

TensorFlow optimizers. In these functions we designed and implemented an iterative estima-

tion process that uses a TensorFlow optimizer to maximize the log-likelihood function. This

process requires to define the distribution of interest, the parameters to be estimated, an ini-

tial value for these parameters, a TensorFlow optimizer with its respective hyperparameters

and a maximum number of iterations. Also, this package allows to estimate parameters from

distributions which are not necessarily implemented in R and do it in a simple and intuitive

way. Through this work we intent to demonstrate that by using the estimtf package we can

obtain accurate estimates and to compare these estimates with the ones obtained with other

optimization methods available in R.

The main motivation for creating the estimtf package is to take advantage of a powerful tool
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such as the TensorFlow library which is freely available for use and has multiple useful tools

for numerical optimization to carry out a very important and frequently performed task in

statistics, the estimation of parameters. Also, to evaluate the performance of TensorFlow

optimization algorithms, which are very popular in the context of machine learning applica-

tions, in solving the maximum likelihood estimation problem.

This document includes 7 chapters. In chapter 2, the main theoretical aspects associated

with the estimation of distributional and regression parameters are presented, including

the most popular estimation methods and their implementation in R. In chapter 3, the

TensorFlow library and its optimizers are introduced. In chapter 4, the estimtf package and

its main functions with an example of their implementation in R are presented. Chapter 5

contains a simulation study designed to determine the effect that the selected TensorFlow

optimizer, the learning rate and the sample size have in the performance of the estimation

process implemented in the estimtf package. Chapter 6 contains 5 applications with real

data. Finally, in chapter 7 our main conclusions and recommendations are presented.



2. Estimation of distributional and

regression parameters

There are multiple methods for estimating unknown distributional and regression parame-

ters. Particularly, from the frequentist point of view, some of the most used methods are

presented below.

2.1. Method of moments

The method of moments was developed by the mathematician Karl Pearson in the late 1800s

(Pearson, 1936). The main idea behind this method is to equate some certain sample charac-

teristics, such as the mean or variance, to the corresponding expected population values and

solve these equations for the unknown parameters (Devore, 2016). Let X1, X2, . . . , Xn be

a random sample from a distribution with density/mass function f(x|θ1, θ2, . . . , θs), where

θ1, θ2, . . . , θs are unknown parameters. The moment estimators are obtained by equating

the first s sample moments to the corresponding first s population moments and solving for

θ1, . . . , θs:

E (Xs) = ms,

where E (Xs) is the s-th population moment and ms is the s-th sample moment. The method

of moments requires the distribution to have finite moments and the first few moments to be

known. This method often requires less computation than maximum likelihood method (De-

vore, 2016). Finally, the moment estimators are often used as starting values when searching

for maximum likelihood estimates.

2.2. Least squares method

The least squares method was first published by Legendre (1805) followed by a statement

in 1809 by the mathematician Carl Friedrich Gauss claiming to have used this method since



6 2 Estimation of distributional and regression parameters

1795 (Stigler, 1981). It consists of estimating parameters by minimizing the squared distance

between the observed data and the expected values and is most commonly used in linear

regression (Little, 2014). In the context of a regression problem, this method allows obtaining

the regression parameter estimates by minimizing the sum of the squared deviations between

the data and a regression model (Devore, 2016). Let y = (y1, y2, . . . , yn)> be n independent

observations with µi = E(yi) and let X = (xij) denotes the n × p model matrix, where xij
is the value of explanatory variable j for observation i, the ordinary linear model is:

y = Xβ + ε,

where β is a p × 1 parameter vector with p ≤ n and ε is an error term with E(ε) = 0 and

covariance matrix V = var(ε) = σ2I (Agresti, 2015). To obtain parameter estimates β̂ that

best satisfy the linear model, the least squares method determines the values of β1, β2, . . . , βp
that minimizes the sum of the squares deviations:∑n

i=1(yi − µ̂i)2 =
∑n

i=1

(
yi −

∑p
j=1 β̂jxij

)2

.

Assuming that the model matrix X has full rank p, the least squares estimator of β is:

β̂ = (X>X)−1X>y.

2.3. Maximum Likelihood Estimation

The method of maximum likelihood was first introduced by Fisher (1922). This method

consists of finding the values of the distribution parameters that maximize the likelihood

function (Wilks, 2019). This method is frequently used, especially when working with large

sample sizes because the resulting estimators known as Maximum Likelihood Estimates

(MLE) have desirable efficiency properties such as (Devore, 2016):

• The MLE of any parameter θ is approximately unbiased, that is, E[θ̂] ≈ θ.

• The MLE of any parameter θ has a variance as small as or nearly as small as can be

achieved by any estimator, which means that θ̂ is approximately the minimum-variance

unbiased estimator (MVUE) of θ.

• The MLE θ̂ is asymptotically normally distributed (Sweeting, 1980).

Let X1, X2, . . . , Xn be a random sample with mass/density function f(x|θ1, . . . , θs). The

likelihood function L(θ|x) of these random variables is defined as the joint density (Rizzo,

2007):
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L(θ|x) =
∏n

i=1 f(xi|θ),

where, x = (x1, x2, . . . , xn)> and θ = (θ1, . . . , θs)
>. Therefore, a MLE of θ is a value θ̂MLE

that maximizes L(θ|x), that is:

θ̂MLE = arg max
θ∈Θ

L(θ|x),

where Θ is the parameter space. In practice, it is easier to maximize the log-likelihood

function `(θ|x), which is defined as the logarithm of L(θ|x) (Hernández & Usuga, 2019):

`(θ|x) = logL(θ|x) =
∑n

i=1 log f(xi|θ).

The maximum likelihood method starts by defining the score function S(θ) as the first

derivative vector of the log-likelihood, assuming `(θ|x) is differentiable:

S(θ) ≡ ∂
∂θ
`(θ|x).

Then, the MLE θ̂ is obtained from the solution of the score equation (Pawitan, 2013):

S(θ) = 0,

where θ̂ may be a relative maximum, a relative minimum or an inflection point of the log-

likelihood function `(θ|x) (Rizzo, 2007).

2.3.1. Standard error and Wald statistic

The second derivative of the log-likelihood function contains information about the variance

of θ̂ (Rizzo, 2007). The Fisher information matrix I(θ) is the expectation of a s× s matrix

of second derivates of the likelihood with respect to θ, whose elements are defined as:

Iij(θ) ≡ −E
[

∂2

∂θi∂θj
`(θ)

]
.

When evaluated at the MLE, I(θ̂) is known as the observed Fisher information (Pawitan,

2013). Furthermore, the standard errors of the parameters in θ̂ are the square roots of the

diagonal terms in the variance-covariance matrix var(θ̂) defined as:

var(θ̂) =
[
I(θ̂)

]−1

,

therefore, the standard errors are computed as follows:
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se(θ̂) = diag

([
I(θ̂)

]−1/2
)

.

The main use of the standard error is to test the null hypothesis H0 : θ = θ0 using the Wald

statistic (Pawitan, 2013):

z = θ̂−θ0
se(θ̂)

.

Also, it is used to compute the Wald confidence intervals (Pawitan, 2013). The Wald 95%

confidence interval for θ is:

θ̂ ± 1. 96se(θ̂).

2.3.2. Optimization algorithms for Maximum Likelihood Estimation

The Maximum Likelihood Estimation problem can be expressed as a non-linear optimization

problem (Mai Anh, Bastin, & Frejinger, 2014):

min
x∈Rn

f(x),

where f(x) is the objective function. For maximum likelihood estimation this function

represents the negative log-likelihood f(x) = −`(x). According to Rizzo (2007), in finding a

solution some problems may arise such as:

• The derivatives of the likelihood function do not exist or do not exist on all of the

parameter space Θ.

• The optimal value of θ is not an interior point of Θ.

• The likelihood equation is difficult to solve.

Taking into account these problems, optimization algorithms are of great help in trying to

find the optimal solution θ̂. All optimization algorithms begin with an initial guess of the

unknown variable or variables and generate estimates known as iterates until the process

finishes. What differentiates one algorithm from another is the strategy and the information

used to move from one iterate to the next. These algorithms are expected to perform well

for reasonable and arbitrary values of the starting point and to do it as quickly as possible

and without requiring excessive computational resources (Nocedal & Wright, 2006).

There are multiple optimization algorithms that can be used to solve the MLE problem

of which, the best known and used are the Newton-Raphson algorithm, the Fisher-Scoring

algorithm and the Expectation–Maximization algorithm.
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The Newton-Raphson algorithm

The Newton-Raphson algorithm is an iterative procedure commonly used to find maximum

likelihood estimates. As the log-likelihood functions are close to quadratic functions around

their maximum points in many cases, a quadratic approximation of these functions is very

convenient (Storvik, 2011). Therefore, in the case of maximum likelihood estimation, the

main idea behind this algorithm is to approximate the log-likelihood function by a quadratic

function using a Taylor series expansion (Millar, 2011).

Given the k-th estimate θ̂k ∈ Rs of the vector of true parameters θ, the Newton-Raphson

algorithm is defined by the iteration:

θ̂k+1 = θ̂k −
[
H(θ̂k)

]−1

S(θ̂k),

where H(θ̂k) is the s × s Hessian matrix of second-order partial derivatives of the log-

likelihood function evaluated at θ̂k (Millar, 2011). Even though this method is widely used

and is very efficient in optimizing functions that are not to far from quadratic, it may fail

when applying it in more complex problems mainly because the Hessian matrix may not

be positive-definite. On the other hand, when the number of parameters is large or the

likelihood function is very complex, this algorithm can be time consuming (Commenges,

Jacqmin-Gadda, Proust-Lima, & Guedj, 2006).

The Fisher-Scoring algorithm

The Fisher-Scoring algorithm is a variation of the Newton-Raphson algorithm which instead

of using the Hessian matrix itself, it uses the Fisher information matrix I(θ) = −E [H(θ)]

(Agresti, 2015). The Fisher-Scoring algorithm is defined by the iteration:

θ̂k+1 = θ̂k +
[
I(θ̂k)

]−1

S(θ̂k),

where I(θ̂) is the Fisher information matrix evaluated at θ̂k (Storvik, 2011). Even though

there are some cases as in generalized linear models in which I(θ) is easily computed, this

is not the case for all optimization problems and therefore the Fisher-scoring algorithm can

not be easily implemented (Commenges et al., 2006).

The Expectation–Maximization algorithm

The Expectation–Maximization (EM) algorithm was proposed by Dempster, Laird, and Ru-

bin (1977). This algorithm is an optimization method used to find maximum likelihood
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estimates particularly when some parts of the data are missing (Rizzo, 2007).

Given a statistical model that generates two sets of random variables, Y and B, where only

y is observed, and a vector of unknown parameters θ, the EM algorithm consists of the

following two steps:

• Expectation step: Compute the conditional expected value:

Q(θ|θk) = Eθk [logL(θ;y,B)|y],

where θk is the value of θ at iteration k.

• Maximization step: Maximize Q(θ) to obtain a new parameter estimate θk+1 and

return to the Expectation step using the updated value. Repeat until convergence.

The EM algorithm is reliable at finding a global maximum and its implementation is rela-

tively easy, however the convergence can be very slow (Rizzo, 2007).

2.3.3. Maximum likelihood estimation in R

In the R programming language, there are multiple general-purpose optimization tools de-

signed to implement and simplify the maximum likelihood estimation method. The base

package in R has the optim function which includes five optimization tools: (1) Nelder-Mead

based on the Nelder-Mead method (J. Nelder & Mead, 1965), (2) BFGS which is a quasi-

Newton method, (3) L-BFGS-B which is a quasi-Newton method that allows setting lower

and/or upper bounds to each parameter (Byrd, Lu, Nocedal, & Zhu, 1995), (4) CG based

on conjugate-gradient algorithm and (5) SANN, a variant of simulated annealing which is an

stochastic global optimization method (Bélisle, 1992). This package also has the nlm func-

tion (Schnabel, Koonatz, & Weiss, 1985) which performs the minimization of functions using

a Newton-type algorithm and the nlminb function that implements PORT (portable For-

tran programs for numerical computation) routines for unconstrained and box-constrained

optimization (Fox, Hall, & Schryer, 1978). Most of the methods mentioned above date from

the 1970s to 1980s, however, these functions are still considered very good tools and they

are still widely used even though there are more recent tools that include features that these

base functions do not include (Nash, 2014).

Furthermore, there are multiple packages especially design to facilitate the implementation

of some of the optimization tools mentioned above. The mle function included in the stats4

package uses optim to estimate parameters via maximum likelihood. The bbmle package
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Bolker and R Development Core Team (2020) includes the mle2 function which is more ro-

bust and has additional warnings and arguments compared to the mle function. The maxLik

package (Henningsen & Toomet, 2011) provides an unified interface for multiple optimiza-

tion routines and unlike the two previous packages that are based on optim, the maxLik

package includes an option to use the Newton-Raphson algorithm. On the other hand, the

EstimationTools package (Mosquera & Hernandez, 2019) includes optimization procedures

such as optim, nlminb and DEoptim. This last procedure implements the differential evo-

lution algorithm for parameter estimation using the maximum likelihood method (Mullen,

Ardia, Gil, Windover, & Cline, 2011).

Finally, it is important to mention that R also includes very useful functions for estimation of

parameters from regression models. The lm function is one of the most popular functions for

parameter estimation and is used to fit linear models through the method of least squares.

Other frequently used function is glm, created to fit generalized linear models (J. A. Nelder &

Wedderburn, 1972). The default method for fitting the models uses Iteratively Reweighted

Least Squares (IWLS). R also includes the gamlss package for fitting GAMLSS, that is,

Generalized Additive Models for Location Scale and Shape (Rigby & Stasinopoulos, 2005).

GAMLSS are univariate distributional regression models where all the parameters of the dis-

tribution of the response variable can be modelled as functions of the explanatory variables

(Stasinopoulos, Rigby, Heller, Voudouris, & De Bastiani, 2017).



3. TensorFlow

TensorFlow is an open source software library for numerical computation that uses directed

graphs (Galeone, 2019). This library was originally developed by the Google Brain Team and

is mainly used for machine learning and deep neural networks research. However, Tensor-

Flow can be applied in a wide variety of other domains like numerical optimization, providing

tools that simplify the optimization process especially when working with gradient descent

methods (RStudio, 2020). Although the core TensorFlow library is implemented in C++,

there are a wide variety of APIs available in several languages like Python, Java, JavaScript,

MATLAB and R. Through these APIs, users of these programming languages can construct

and execute TensorFlow graphs (TensorFlow, 2020).

3.1. TensorFlow graphs

As mentioned before, TensorFlow uses directed graphs also known as data flow graphs to

represent computations. A directed graph is a set of nodes connected with edges that have

a direction associated with them. Nodes in these data flow graphs represent mathematical

operations while the edges represent multidimensional data arrays called tensors on which

the operations are performed (Abadi et al., 2016). Representing computations through data

flow graphs allows for parallelism, that is, allows to execute operations that do not de-

pend on each other simultaneously. Depending on the structure of the graph, TensorFlow

schedules the operations and execute them in the most efficient manner. Also, TensorFlow

is capable of executing these operations in various hardware platforms like GPUs or CPUs

on a single machine or distribute the execution across multiple machines (Abadi et al., 2016).

When working with TensorFlow there are two main steps. First, it is required to build a

data flow graph and then create a TensorFlow Session to execute operations and evaluate

tensors. The data flow graph contains all or some of the following elements:

• Variables: TensorFlow variables represent changeable parameters, that is, variables

are defined when values need to be updated at any point in time. Also, they have to

be initialized before running the data flow graph. When estimating parameters from

probability distributions or regression models, the distributional parameters and the

regression parameters must be defined as variables.
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• Placeholders: A placeholder is a especial tensor used to feed the data into the graph.

They do not need to be initialized as the TensorFlow variables, however, it is required

to specify the type of data to be feed, that is, integer, float, among others. Placeholders

are typically used for feeding response or explanatory variables.

• Constants: TensorFlow constants represent parameters that cannot be change. When

defining a constant it is required to specify its value.

• Operations: TensorFlow operations are graph nodes through which the tensors flow

while performing mathematical operations on them.

Below is a simple program written in R programming language in which TensorFlow constant

addition and multiplication are performed:

# Build data flow graph

x <- tf$constant (5.0, dtype = tf$float32)
y <- tf$constant (12.0 , dtype = tf$float32)
z <- tf$constant (8.0, dtype = tf$float32)
product <- tf$multiply(x, y)

sum <- tf$add(x, y)

result <- tf$add(product , sum)

# Create session and run the graph

sess <- tf$compat$v1$Session ()
sess$run(result)

Code 3.1: Addition and multiplication of constants with TensorFlow

In Figure 3-1, it is possible to observe the data flow graph that represents the program

presented above. As seen in the graph, the output of one node becomes the input of an-

other node and the data flows from one node to the other through the edges. To estimate

distributional or regression parameters the graph must also include a loss measure and an

optimization method which will be discussed later in this chapter.
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Figure 3-1.: Data flow graph representing a program in which some operations are per-

formed on TensorFlow constants.

3.2. Eager execution

Even though TensorFlow was initially created to used directed graphs to represent compu-

tations, it also includes a programming environment known as Eager execution in which

operations are evaluated immediately without the need of building a graph. In this case,

TensorFlow calculates the values of tensors as they appear in the code. When working in

eager mode, elements like graphs, sessions, placeholders, variable initialization, among oth-

ers, are not longer required. The main advantages of eager execution are easier debugging

processes and the possibility to implement the functionalities of the host language. Also,

almost all of the TensorFlow operations are available in eager execution mode (TensorFlow,

2020). The latest versions of TensorFlow come with eager execution by default, however

tf$compat$v1$disable eager execution() function can be used to disable the eager exe-

cution mode and work with TensorFlow graphs.

3.3. Estimation process with TensorFlow

As mentioned previously, our main goal is to estimate parameters from probability distribu-

tions and linear regression models via maximum likelihood using the TensorFlow library. To

do so, we designed an estimation process in which the optimizers included in this library are

used to minimize a loss or cost function defined in this case as the negative log-likelihood

function:

C(θ) = − logL(θ),
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where L(θ) corresponds to the likelihood function that depends on the distribution of in-

terest when estimating parameters from probability distributions or on the distribution of

the response variable when estimating the regression parameters from regression models. A

lot of the optimization algorithms included in the TensorFlow library use gradient-based

numerical optimization to deal with these optimization problems.

3.3.1. Gradient-based numerical optimization

The aim of numerical optimization is to optimize an objective function C(θ) by updating a

set of parameters θ. This optimization process involves an iterative procedure that applies

changes to the parameters at each iteration of the algorithm (Zeiler, 2012):

θt+1 = θt +4θt,

where 4θt represents the change applied to the parameters in iteration t and is called learn-

ing step. Some of these methods use the gradient as the core element for the update of the

parameter vector θ including the majority of the TensorFlow optimizers (Bengio, 2012). In

these cases, TensorFlow becomes a very powerful tool because it includes automatic differ-

entiation techniques that efficiently computes the gradients (TensorFlow, 2020).

The gradient descent algorithms seek to minimize an objective or cost function C(θ) by

updating the parameters in the opposite direction of the gradient of the objective function

with respect to the parameters as follows (Zeiler, 2012):

θt+1 = θt − α∂C(θt)
∂θt

,

where α is a hyperparameter called the learning rate that controls how large is the step taken

in the opposite direction of the gradient and takes a small positive value, usually between 0

and 1. Choosing a value for this hyperparameter is crucial because a small learning rate may

result in a long optimization process as it requires more iterations given the small changes

made to the parameters in each update. On the contrary, a large learning rate requires fewer

iterations but can cause the algorithm to converge quickly to a sub-optimal solution. Some

authors have proposed various strategies to determine the optimal value for the learning rate.

One of them is to start with a large learning rate and if the algorithm diverges, try again

with a learning rate that is three times smaller and repeat this process until no divergence

is observed. Other strategies consists of using a decreasing learning rate, that is, a learning

rate that decreases after every step or a learning rate that remains constant during the first
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steps and at some point starts to decrease after every step following some schedule (Bengio,

2012).

In Figure 3-2, it is possible to observe how the gradient descent algorithm minimizes a

loss function C(θ). Starting in an initial value of θ, the algorithm applies changes to the

parameter in each iteration until it reaches the value of θ that minimizes the loss function.

Figure 3-2.: Illustration of the gradient descent algorithm used to minimize a loss function

C(θ) with only one parameter θ.

The amount of data used to compute the gradient of the objective function may vary in or-

der to find a balance between the accuracy and the time required for the parameter update

(Ruder, 2016). Batch gradient descent, stochastic gradient descent and mini-batch gradient

descent are variants of the gradient descent algorithm which differ by the amount of data

used. Although in practice Mini-batch gradient descent is the most popular, the application

of these three variants depends on the context and main features of the optimization problem

(Ruder, 2016).

Batch gradient descent

Batch gradient descent is one of the variants of the gradient descent algorithm in which the

gradient of the loss function C(θ) with respect to the parameters θ is computed for the

whole data set, that is, the parameters are updated using the average of the gradients of all

observations as follows (Bottou, 2010):

θt+1 = θt − α 1
n

∑n
i=1

∂C(zi,θ)
∂θ

,
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where zi corresponds to the i-th observation of the data set. In this case, for just one pa-

rameter update it is required to calculate the gradients for the entire data set.

Stochastic gradient descent

As mentioned above, when applying batch gradient descent, to move a single step towards

the minimum of the loss function C(θ) it is required to compute the gradients for all the

observations in the data set and when working with large data sets this method is not very

efficient. To deal with this problem stochastic gradient descent (SGD) was created. SGD

is a variant of the gradient descent method in which the gradient of the cost function C(θ)

with respect to the parameters θ is computed for each observation in the data set, that is,

the parameters are updated based on the gradient of a single randomly picked observation

zt as follows (Bottou, 2010):

θt+1 = θt − α∂C(zt,θ)
∂θ

.

Contrary to the batch gradient descent, in this case, one observation at a time is considered

to take a single step towards the minimum of the loss function. Is guaranteed that stochastic

gradient descent as well as batch gradient descent converge to the global minimum for convex

surfaces and to a local minimum for non-convex surfaces.

Mini-batch gradient descent

Both, batch gradient descent and stochastic gradient descent have advantages and disadvan-

tages in their application. Batch gradient descent converges to the global minimum, however

it can be very slow when working with large data sets. On the other hand, stochastic gradi-

ent descent converges faster for large data sets but the loss function fluctuates significantly

because the parameters are updated frequently. To take advantage of the benefits of both

variants and find solution for some of their disadvantages, mini-batch gradient descent was

created. In this case, not the entire data set is used, nor a single observation at the same

time. The parameters are updated based on the average of the gradients of a batch with a

fixed number of observations less than the entire data set called mini-batch (Bengio, 2012):

θt+1 = θt − α 1
B

∑B(t+1)
i=Bt+1

∂C(zi,θ)
∂θ

,

where B is the size of the mini-batch. In this way, the algorithm performs an update for

every mini-batch of B observations (Ruder, 2016).
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3.3.2. Optimization algorithms in TensorFlow

There are a wide variety of gradient descent optimizers included in the TensorFlow library.

In this section, some of these optimizers are presented.

Momentum optimizer

The Momentum method is an extension to SGD created to increase the rate of convergence

by including a momentum term (Rumelhart, Hinton, & Williams, 1986). The update rule

in this case is as follows:

θt+1 = θt − α∂C(θt)
∂θt

+ γ 4 θt ,

where 4θt corresponds to the changed applied to the parameters in the previous iteration

and γ is the momentum parameter. With this method, the modification of the parameter

vector at the current iteration depends on the current gradient as well as on the parameter

change of the previous iteration (Qian, 1999).

AdaGrad optimizer

The adaptative gradient algorithm known as AdaGrad is an algorithm for gradient-based

optimization that uses a different learning rate for every parameter θi at every time step t

(Duchi, Hazan, & Singer, 2011). The learning rate is modified based on the past gradients

that have been computed for each parameter (Ruder, 2016). The update rule for AdaGrad

is as follows (Zeiler, 2012):

θt+1 = θt − α√∑t
τ=1 g

2
τ+ε

gt,

where g2
t is the square of the gradient of the parameters at the t-iteration, gt contains the

gradients of the objective function with respect to the parameters at step t and ε is an

small positive number added to avoid division by zero. An initial value α for the learning

rate must be defined before starting the optimization process. The main advantage of this

algorithm is that is no longer required to tune manually the learning rate before starting the

optimization process. However, because the sum of squares of all previous gradients of the

parameters keeps growing after every iteration, the learning rate decreases until it becomes

infinitesimally small, stopping the progress of the algorithm (Ruder, 2016).
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AdaDelta optimizer

In order to overcome the main disadvantage of AdaGrad algorithm regarding the continual

decay of the learning rates, AdaDelta was created (Zeiler, 2012). Instead of accumulating

all squared gradients until step t, this algorithm restricts the number of accumulated past

gradients to some fixed number w and accumulates the previous squared gradients as an

exponentially decaying average of the squared gradients (Zeiler, 2012). The update rule for

AdaDelta is as follows:

θt+1 = θt −
√
E[4θ2]t+ε√
E[g2]t+ε

gt,

where E[g2]t and E[4θ2]t are defined as:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t

E[4θ2]t = γE[4θ2]t−1 + (1− γ)4 θ2
t ,

where γ is a decay constant. It is required to initialize E[g2]t and E[4θ2]t before starting

the optimization process. The main advantages of this method is that it ensures that even

after many iterations the learning process continues. Although, with the original version of

this method is not required to set an initial learning rate, the implementation of this method

in TensorFlow allows to set this initial value.

RMSprop optimizer

RMSProp is an adaptive learning rate method proposed by Geoff Hinton that was developed

around the same time that the AdaDelta optimizer to overcome the disadvantages of the

AdaGrad algorithm (Ruder, 2016). The update rule for RMSprop is as follows:

θt+1 = θt − α√
E[g2]t+ε

gt,

where E[g2]t is defined as:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t ,

where γ is a decay constant that Hilton suggests to be set to 0.9. As shown above, the

RMSprop is very similar to the AdaDelta algorithm.
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Adam optimizer

The Adaptive Moment Estimation method (Adam) is an adaptive leaning rate method that

combines the advantages of the AdaGrad and the RMSprop methods (Kingma & Ba, 2014).

Adam, as well as RMSprop, updates the exponentially decaying average of the squared gra-

dients vt and also the exponentially decaying average of the gradients mt as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t ,

where β1, β2 ∈ [0, 1). Also, mt and vt are estimates of the 1st moment and the 2nd raw

moment of the gradient respectively. As mt and vt vectors are always initialize as 0’s, they

are biased towards zero. Because of this, instead of using these estimates, the bias-corrected

estimates are computed and used to update the parameters as follows:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

θt+1 = θt −
α√
v̂t + ε

m̂t.

AdaDelta, RMSprop and Adam are very similar algorithms that work well in similar sce-

narios, however, the bias-correction helps Adam slightly outperform RMSprop (Ruder, 2016).

3.3.3. Hyperparameters of the TensorFlow optimizers

As seen in the previous section, the TensorFlow optimizers differ by the update rule, that

is, by the strategy used to change the value of the parameters from one iteration to another.

Each update rule involves what are known as hyperparameters. The hyperparameters are

values that are manually specified and that help estimate parameters. In Table 3-1, the

hyperparameters of each TensorFlow optimizer are presented as well as their default values.

These default values are set in the tensorflow package. From Table 3-1, we observe that all

optimizers have hyperparameter α which corresponds to the learning rate. Also, there are

some hyperparameters that do not have default values and therefore, the user must provide

these values when using the respective optimizer.
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It is important to mention that it is not possible to know the best value for an hyperpa-

rameter on a given problem. We can search this value by trial and error or by designing a

tuning process in which we use multiple values for the hyperparameter in the optimization

process and determine with which of these values we obtain the best results.

Optimizer Hyperparameters Hyperparameter names Default values

GradientDescent α learning rate -

Momentum
α learning rate -

γ momentum -

Adagrad
α learning rate -

ε epsilon 1× 10−7

Adadelta

α learning rate 0.001

γ rho 0.95

ε epsilon 1× 10−8

RMSProp

α learning rate -

γ decay 0.9

ε epsilon 1× 10−10

Adam

α learning rate 0.001

β1 beta1 0.9

β2 beta2 0.999

ε epsilon 1× 10−8

Table 3-1.: Default values and names of hyperparameters of TensorFlow optimizers.

For more information about the hyperparameters of each TensorFlow optimizer go to the

TensorFlow website.

3.3.4. Gradient descent method versus the Newton-Raphson method

The gradient descent method and the Newton-Raphson method are some of the most im-

portant approaches for solving optimization problems. As shown previously, the Newton-

Raphson is a second-order gradient method, which means that it uses the second derivatives

to update the parameters in each iteration as follows:

θk+1 = θk −
[
H(θ̂k)

]−1

S(θk), (3-1)

https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/
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On the other hand, the gradient descent method is a first-order gradient method that updates

the parameters as follows:

θk+1 = θk − α
∂C(θk)

∂θk
, (3-2)

The Newton-Raphson method is very efficient especially when close to the minimum and it

usually converges after just a few iterations. However, its main disadvantage is the cost of

forming and storing the Hessian and the cost of computing the Newton step (3-1) (Boyd &

Vandenberghe, 2004). Also, in some cases when the starting point is to far away from the

true value, the iteration process may fail (Yang, 2021). Due to the greater complexity of this

method, it is not frequently used in machine learning problems. This is why, the majority

of the TensorFlow optimizers are based on the gradient descent method.

In the case of the gradient descent method, its main advantage is its simplicity as it only

requires first-order information to update the parameters values. On the other hand, de-

spite being an easily applicable method its convergence can be very slow. Additionally, is

a method that depends heavily on the choice of the step size or as it is commonly known

in machine learning, the learning rate. This is why the efforts of a lot of authors have been

concentrated in the creation of optimization algorithms based on this method such as the

Adam optimizer, the Adagrad optimizer, the RMSProp optimizer, among others, which use

adaptive learning rates.

Due to the differences in the way each of these approaches addresses the optimization prob-

lem, their implementation depends on the problem to solve. However, some authors recom-

mend to combine both methods by using the gradient descent method at the initial stage of

the optimization process and for the last iterations use the Newton-Raphson method (Nes-

terov, 2014).

3.4. TensorFlow for R

As mention previously, there are a wide variety of APIs available in several languages that

allow users to interact with the TensorFlow library. In the particular case of the R program-

ming language, the R interface to TensorFlow consists of a collection of R packages that

provide a variety of interfaces to TensorFlow for different tasks and levels of abstraction.

One of these packages is tensorflow (Allaire & Tang, 2021), a low-level interface to the Ten-

sorFlow computational graphs. With this package it is possible to create TensorFlow graphs,

initiate TensorFlow sessions, define variables and placeholders and implement the Tensor-

Flow optimizers to minimize a loss function. For more details of the tensorflow package go
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to the TensorFlow website.

Another available package in R is tfprobability (Keydana, 2020), an interface to the Python

library TensorFlow Probability for statistical computation and probabilistic modeling. These

package includes multiple statistical distributions and methods such as the mean, the mode,

the standard deviation, the variance, among others. For more details of the tfprobability

package go to the tfprobability website. Some functions included in both of these pack-

ages are used in the estimtf package.

https://tensorflow.rstudio.com/
https://rstudio.github.io/tfprobability/index.html


4. estimtf package

The estimtf package (Garcés & Hernández, 2021) allows the implementation of the max-

imum likelihood method to estimate parameters of multiple probability distributions and

linear regression models using TensorFlow.

The main functions in this package are mle tf which allows the user to estimate parame-

ters of some probability distributions and mlereg tf to estimate parameters of some linear

regression models. The estimtf package also includes the summary function to compute and

return some summary statistics related with the estimates, the print function to display the

parameters estimates and the plot loss function to display a graph that contains the loss

value, that is, the negative log-likelihood value in each iteration of the estimation process

(see Appendix A for more details).

4.1. Estimation process with the estimtf package

In general terms, the estimation process designed and implemented in the estimtf package

consist of the following steps:

1. Identify the parameters to be estimated depending on the provided distribution and

the list of fixed parameters. For each parameter to estimate, a TensorFlow variable is

created with its respective initial value using the tf$Variable() function.

2. Depending on the user selection of the TensorFlow optimizer and the provided hyperpa-

rameters such as the learning rate, define the optimizer using the tf$compat$v1$train()
function.

3. Define the loss function which corresponds to the negative log-likelihood function for

the provided distribution.

4. Start the iterative process to find the parameters values that minimize the loss function.

The parameters values change from one iteration to another starting from the provided

initial values until convergence or until the maximum number of iterations is reached.

5. Compute the Hessian matrix and the standard error for each estimated parameter.
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6. Compute the Z-score and the p-value of the significance test for each estimated pa-

rameter.

4.2. Available distributions

When working with the estimtf package, it is possible to estimate parameters for eight well-

known distributions presented in Table 4-1, for which the user must only provide the name

of the distribution.

Distribution pdf / pmf Domain Parameters

Normal f(x|µ, σ) = 1√
2πσ

e−
1

2σ2
(x−µ)2 −∞ ≤ x <∞ −∞ < µ <∞, σ > 0

Poisson p (x|λ) = e−λλx

x!
x = 0, 1, . . . 0 ≤ λ <∞

Weibull f(x|γ, β) = γ
β
xγ−1e−

xγ

β 0 ≤ x <∞ γ > 0, β > 0

Exponential f(x|β) = 1
β
e−

x
β 0 ≤ x <∞ β > 0

Lognormal f(x|µ, σ) = 1√
2πσ

exp (−(log x−µ)2/(2σ2))
x

0 ≤ x <∞ −∞ < µ <∞, σ > 0

Beta f(x|α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 0 ≤ x ≤ 1 α > 0, β > 0

Gamma f(x|α, β) = 1
Γ(α)βα

xα−1e−
x
β 0 ≤ x <∞ α > 0, β > 0

Binomial p (x|n, p) =
(
n
x

)
px(1− p)n−x x = 0, 1, . . . , n 0 ≤ p ≤ 1

Table 4-1.: Available distributions in the estimtf package for which the user must only

provide the name of the distribution.

In addition to the eight distributions included in Table 4-1, the estimtf package allows users

to estimate parameters for other discrete or continuous distributions that are not necessar-

ily implemented in R by providing its probability mass/density functions. These functions

must be defined as R functions whose arguments are the distributional parameters. As new

distributions are being created constantly, this is a very important and useful feature of the

estimtf package because it facilitates the process of parameter estimation carried out by the

authors and those interested in these distributions. In further sections, we show how to use

the estimtf package for estimating parameters of distributions different from those presented

above.
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4.3. Installing the estimtf package in R

To be able to use the estimtf package we recommend to follow the next steps:

1. Download Anaconda (Optional). TensorFlow depends on Python to work so it is

recommended to install Anaconda, the most popular Python distribution platform.

For download visit the Anaconda website.

2. Install the reticulate package. This R package provides an R interface to Python

modules, classes and functions.

3. Install the tensorflowpackage. After installation load the package.

4. Use the install tensorflow() function to install TensorFlow python module.

5. Load the tensorflow package and confirm that the TensorFlow installation succeeded

making sure there are no errors when using a TensorFlow function.

6. Install the devtools package. This R package is very useful for package development.

7. Install the estimtf package. This R package can be installed from GitHub. After

installation load the package and use it.

Steps 2 to 7 can be carried out by running the following code in R:

# Step 2

install.packages("reticulate")

# Step 3

install.packages("tensorflow")

library(tensorflow)

# Step 4

install_tensorflow ()

# Step 5

library(tensorflow)

tf$constant("Hello Tensorflow")

# Step 6

install.packages("devtools")

# Step 7

devtools :: install_github("SaraGarcesCespedes/estimtf", force=TRUE)

library(estimtf)

Code 4.1: Code of recommended steps for installing the estimtf package in R.

https://docs.anaconda.com/anaconda/install/
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In the case of having problems with the installation of the estimtf package, we recommend

to use Google Colab, an interactive notebook provided by Google that allows to write and

execute R and Python code. To use the notebook with R, use this URL:

https://colab.research.google.com/create=truelanguage=r. To use the estimtf pack-

age in Google Colab, only step 7 is required.

4.4. Maximum likelihood estimation of distributional

parameters

As mentioned above, with the mle tf function it is possible to estimate distributional pa-

rameters given a random sample from a distribution. The following is the structure of the

mle tf function:

mle_tf(x,

xdist = "Normal",

fixparam = NULL ,

initparam ,

bounds = NULL ,

optimizer = "AdamOptimizer",

hyperparameters = NULL ,

maxiter = 10000,

tolerance = .Machine$double.eps)

Code 4.2: Structure of the mle tf function.

To estimate parameters with this function the user must provide the following arguments:

• x: a vector with data.

• xdist: the name of the distribution of interest (Table 4-1) or the name of the R

function that contains the probability density/mass function of the distribution.

• fixparam: a list with the names of the fixed parameters and their respective values.

• initparam: a list with the initial values of the parameters to be estimated.

• bounds: a list with lower and upper bounds for each parameter to be estimated. The

list must contain the parameters names and vectors with the bounds.

• optimizer: the name of the TensorFlow optimizer to use in the estimation process.

https://lnkd.in/d-2gHsT 


28 4 estimtf package

• hyperparameters: a list with the names and values of the hyperparameters of the

selected optimizer. The hyperparameters names and their default values of each opti-

mizer are presented in Table 3-1.

• maxiter: the maximum number of iterations for the estimation process.

• tolerance: a small positive number. The estimation process stops when the difference

between the loss value or the parameters values from one iteration to another is lower

than this value.

Some of these arguments have default values as can be seen in Code 4.2. If information

for the arguments x and initparam is not provided, the estimation process will not be

performed. The mle tf function returns a list containing the parameters estimates, their

standard deviations, the estimated variance-covariance matrix and the number of iterations

to convergence. For more details about the mle tf function see Appendix A.

It is important to mention that if the user wants to estimate parameters from a distribution

not included in Table 4-1 using the mle tf function, it is required to provide the name

of an R object of class function that contains the probability mass/density function of the

distribution of interest. This function must have as arguments x and the parameters of the

distribution. Also, the probability mass/density function must not contain curly brackets.

The only curly brackets that the function can contain are those that enclose the function,

that is, those that define the beginning and end of the R function. Within the function, the

user should not add curly brackets as this can generate problems in the computation of the

log-likelihood function. The following code shows how to define the probability mass/den-

sity function to estimate the parameters of the extended exponential geometric distribution

(Adamidis, Dimitrakopoulou, & Loukas, 2005) with a probability density function given by:

f(x; γ, β) = βγe−βx

(1−(1−γ)e−βx)2
.

# Define the pdf of the EEG distribution

deeg <- function(x, beta , gamma) {

(beta * gamma * exp(-beta * x))/(1 - (1 - gamma) * exp(-beta * x))^2

}

Code 4.3: How to define the probability density function of the EEG distribution in R when

using the mle tf function.
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The mle tf function in practice

To illustrate the use of the mle tf function we simulate data from a normal distribution

with µ = 10 and σ = 3 and try to estimate these parameters using the mle tf function.

The following, is the code written in R to estimate the parameters of a normal distribu-

tion using the mle tf function of the estimtf package. First, we have to load the package

and create a vector with the data to be fitted. Then we have to provide values for the ar-

guments of the mle tf function. It is required to provide the initial values of the parameters.

# load the estimtf package

library(estimtf)

# simulate data from normal distribution

x <- rnorm(n = 1000, mean = 10, sd = 3)

# use the mle_tf function

estimation_1 <- mle_tf(x = x,

xdist = "Normal",

initparam = list(mean = 1.0, sd = 1.0),

bounds = NULL ,

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate = 0.1))

Code 4.4: Process to estimate parameters of a normal distribution using the mle tf function.

In Code 4.5, the R output obtained by estimating the parameters µ and σ from the normal

distribution using the mle tf function is presented. This output provides the parameter

estimates, their standard error and the Z-score and p-value for the significant test of each

parameter. We observe that the MLE µ̂ = 10.009 and σ̂ = 2.954 obtained using the mle tf

function, are very close to the true value of the parameters µ = 10 and σ = 3 respectively.



30 4 estimtf package

# print the results

summary(estimation_1)

## Distribution: Normal

## Number of observations: 1000

## TensorFlow optimizer: AdamOptimizer

## ---------------------------------------------------

## Estimate Std. Error Z value Pr(>|z|)

## mean 10.00952 0.09343 107.13 <2e-16 ***

## sd 2.95464 0.06659 44.37 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Code 4.5: Summary of the estimates of parameters µ and σ using the mle tf function.

4.5. Maximum likelihood estimation of regression

parameters

To estimate parameters of linear regression models, the mlereg tf function should be used.

The following is the structure of this function:

mlereg_tf(ydist = y ~ Normal ,

formulas ,

data ,

available_distribution = TRUE ,

fixparam = NULL ,

initparam = NULL ,

link_function = NULL ,

optimizer = "AdamOptimizer",

hyperparameters = NULL ,

maxiter = 10000,

tolerance = .Machine$double.eps)

Code 4.6: Structure of the mlereg tf function.

To estimate parameters with this function the user must provide the following arguments:

• ydist: a formula object that specifies the response variable name and distribution.

The distribution is either the name of the distribution of interest (Table 4-1) or the
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name of the R function that contains the probability density/mass function of the

distribution.

• formulas: a list with objects of type formula, one for each parameter to be estimated,

that specifies its linear predictor.

• data: a data frame containing the response variable and the covariates.

• available distribution: if TRUE the distribution of the response variable is one of

the available distributions in the package (Table 4-1).

• fixparam: a list with the names of the fixed parameters and their respective values.

• initparam: a list with the initial values of the parameters to be estimated.

• link function: a list with names of the parameters to be linked and the corresponding

name of the link function. The available link functions are: log, logit, squared and

identity.

• optimizer: the name of the TensorFlow optimizer to use in the estimation process.

• hyperparameters: a list with the names and values of the hyperparameters of the

selected optimizer. The hyperparameters names and their default values of each opti-

mizer are presentes in Table 3-1.

• maxiter: the maximum number of iterations for the estimation process.

• tolerance: a small positive number. The estimation process stops when the difference

between the loss value or the parameters values from one iteration to another is lower

than this value.

Some of these arguments have default values as can be seen in Code 4.6. If information

for the arguments formulas and data is not provided, the estimation process will not be

performed. The mlereg tf function returns a list containing the parameters estimates, their

standard deviations, the estimated variance-covariance matrix and the number of iterations

to convergence. For more details about the mlereg tf function, see Appendix A.

It is important to mention that if the user wants to estimate parameters from a distribution

not included in table 4-1 using the mlereg tf function, it is required to provide the name

of an R object of class function that contains the probability mass/density function of the

distribution of interest. This function must have as arguments the response variable and the

parameters of the response variable distribution. Also, the probability mass/density function

must not contain curly brackets. The only curly brackets that the function can contain are
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those that enclose the function, that is, those that define the beginning and end of the R

function. Within the function, the user should not add curly brackets as this can generate

problems in the computation of the log-likelihood function. The following code shows how to

define the probability mass/density function when the distribution of the response variable

Y is the extended exponential geometric distribution (Adamidis et al., 2005):

# Define the pdf of the response variable ’Y’ distribution

deeg <- function(y, beta , gamma) {

(beta * gamma * exp(-beta * y))/(1 - (1 - gamma) * exp(-beta * y))^2

}

Code 4.7: How to define the probability density function of the EEG distribution in R when

using the mlereg tf function.

Notice that when using the mlereg tf function, the names of the R function arguments must

be the name of the response variable and the name of the parameters of the response variable

distribution. On the contrary, when using the mle tf function the name of the arguments

must be x and the name of the parameters of the distribution of interes.

The mlereg tf function in practice

To illustrate the use of the mlereg tf function we simulate a random sample with Y ∼
N(µ, σ2) where µ = β0 − β1x, σ = 3, x ∼ U(−3, 3) and try to estimate β0 = 5 and β1 = −2

using the mlereg tf function. The following, is the code written in the R to estimate the

parameters of a simple linear regression model using the mlereg tf function of the estimtf

package. First, we have to load the package and create a data frame with the data for the re-

sponse variable and the covariates. Then we have to provide values for the arguments of the

mlereg tf function. With this function we have to specify the distribution of the response

variable using a formula object and as in this case the distribution of interest is available in

the estimtf package, the argument available distribution must be equal to TRUE. As the

σ parameter is constant, we must provide its value through the fixparam argument. Finally,

when using the mlereg tf function, if we do not provide the list with initial values for the

parameters, default values of zero are used in the estimation process.

# load the estimtf package

library(estimtf)

# simulate data from a simple linear regression model

x <- runif(n = 1000, min = -3, max = 3)

y <- rnorm(n = 1000, mean = 5 - 2 * x, sd = 3)

data <- data.frame(y = y, x = x)
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# use the mlereg_tf function

estimation_2 <- mlereg_tf(ydist = y ~ Normal ,

formulas = list(mean = ~ x),

data = data ,

available_distribution = TRUE ,

fixparam = list(sd = 3),

initparam = list(mean=list(Intercept =1.0,x=0)),

link_function = NULL ,

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate = 0.1))

Code 4.8: Process to estimate parameters of a simple linear regression model using the

mlereg tf function.

In Code 4.9 the R output obtained by estimating the parameter µ from the normal distribu-

tion using the mlereg tf function is presented. As the parameter µ is a function of covariate

x, this output provides the estimates of coefficients β0 and β1, their standard error and the

Z-score and p-value for the significant test of each coefficient. We observe that the MLE

β̂0 = 4.810 and β̂1 = −2.014 obtained using the mlereg tf function, are very close to the

true value of the coefficients β0 = 5 and β1 = −2 respectively.

# print the results

summary(estimation_2)

## Distribution: Normal

## Number of observations: 1000

## TensorFlow optimizer: AdamOptimizer

## ----------------------------------------------------------------

## Distributional parameter: mean

## ----------------------------------------------------------------

## Estimate. Std..Error t.value Pr...t..

## (Intercept) 4.81055 0.09492 50.68 <2e-16 ***

## x -2.01495 0.05412 -37.23 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## ----------------------------------------------------------------

Code 4.9: Summary of the estimates of parameter µ using the mlereg tf function.

To see the code of the mle tf and the mlereg tf functions and more information about

the estimtf package, visit this GitHub repository. Also, to learn more about how to use

the package, visit this Colab notebook in which we included some examples with their

https://github.com/SaraGarcesCespedes/estimtf
https://colab.research.google.com/drive/1Qmzr-qzLfwSIxDXIDY4ycb_hcd_iltVs?usp=sharing


34 4 estimtf package

respective R code.

Finally, it is important to mention that when using the mle tf function or the mlereg tf

function, the estimation process may fail because when evaluating the negative log-likelihood

function during an iteration R returns NaN which stands for Not A Number and suggests that

an invalid computation was conducted. This can be caused for multiple reasons including

problems with the input data, a high learning rate or a poor choice of the initial values of

the parameters. In this case, the user should follow some of these recommendations and

start the process again:

• Reduce the learning rate.

• Check the input data as it is possible that some of the values are neither integer nor

float.

• Change the initial values provided for the parameters.

• Try different optimizers.

It is also important that when estimating parameters from regression models, the user de-

termines first if it is necessary to apply a link function to the parameters that are linear

functions of the explanatory variables.

4.6. Starting values for the parameters

A lot of optimization methods including all the TensorFlow optimizers are iterative and

therefore, require the user to specify some initial point from which to begin the iterations.

One of the main challenges facing these methods is how the choice of this initial point affects

their performance. In some cases, the initial point can cause the algorithm to fail. On the

other hand, when the algorithm does converge it influence the speed of convergence and its

ability to find the global minimum (Goodfellow, Bengio, & Courville, 2016).

Despite being extremely important for numerical optimization, the problem of selecting the

initial point is complex and we do not intend to address it in this work. However, as the

functions of the estimtf package require to set an initial point, in this section we mention

some of the methods frequently used for this selection:

• Begin with the estimates obtained by other estimation methods, like the method of

moments (Karlis & Xekalaki, 2003).
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• Start from different initial values and stop after a small number of iterations. Keep

the initial value that led to the largest value of the log-likelihood after those initial

iterations (Karlis & Xekalaki, 2003).

• If there are bounds on the parameters, use the midpoints of the intervals as initial

values. For positive parameters, use the square root of the upper bound. Also, these

initial values should not be on a bound (Nash, 2014).

• Use “good starting values” suggested in the literature or based on expert knowledge

(Nash, 2014).

• If it is known that the problem can be solved starting from any value, use 1 as the

initial value for all the parameters (Nash, 2014).

These are some of the methods recommended to set the initial values of parameters in op-

timization problems and can be used to initiate the estimation process implemented in the

mle tf function and the mlereg tf function.

4.7. Details of the estimation process

As mentioned before, the functions of the estimtf package implement an iterative optimiza-

tion process designed to use a TensorFlow optimizer to minimize the negative log-likelihood

function. Before starting this iterative process, it is required to define all tensors that

represent the random variables and the parameters to estimate, as well as the optimizer

responsible for the minimization of the objective function and the values for its hyperparam-

eters. Finally, it is important to set a value for the tolerance which is used as a criterion to

end the iterative process.

In Algorithm 1, we present the iterative optimization process implemented in the functions

mle tf and mlereg tf of the estimtf package. This process starts by initializing the param-

eters using the initial values provided by the user and initializing the number of iterations

t. Then, we enter a while loop in which the gradients of the objective function C(θ) are

computed. These gradients are the partial derivatives of the objective function with respect

to each of the parameters. With these gradients, we compute φ(·) which represents the rule

used by the selected optimizer to update the parameters in each iteration. This rule varies

by optimizer but in general it requires the gradients and the values for the optimizer hyper-

parameters represented by h. After updating the parameters’ values, we evaluate them in

the objective function. If the objective function value has not changed much with respect to
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the value in the previous iteration, it means that the values of the parameters did not change

significantly and therefore, the computed gradients are very small. This indicates that we

are close to the global minimum of the function in the case that the objective function is

convex or at least close to a local minimum when this function is not convex. To determine

if the change from one iteration to another in the objective function is small enough to stop

the optimization process, a tolerance value ε is used. If the absolute difference between the

objective function value in the actual iteration and in the previous iteration is lower than ε,

the optimization process stops and the maximum likelihood estimates are set as the current

values of the parameters. Otherwise, the process continues and all the steps mentioned above

are repeated until the condition mentioned above is met or until the maximum number of

iterations is reached.

As a result of this optimization process, the maximum likelihood estimates are provided, as

well as the total number of iterations required, the value of the objective function in the last

iteration and the values of the parameters, the gradients and the objective function obtained

in each iteration of the optimization process. All this information is provided to be analyzed

by the user if required.

Algorithm 1 Optimization algorithm implemented in the functions mle tf and mlereg tf

Require: Objective function f ; Maximum number of iterations T ; Tolerance ε; Vector with

values for the hyperparameters of the TensorFlow optimizer h;

θ(0) ← initial point in the domain of f

t← 0

while t ≤ T do

g(t) ← ∂C(θ(t))

∂θ(t) . C(θ) represents the negative log-likelihood function

4θ(t) ← φ(θ(t), g(t),h) . φ(·) depends on the selected optimizer

θ(t+1) ← θ(t) −4θ(t)

if |C(θ(t+1))− C(θ(t))| < ε then

Stop

end if

t← t+ 1

end while
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4.8. Bounds on the parameters

The optimization problems can be constrained or unconstrained. When solving the maxi-

mum likelihood problem depending on the distribution or regression model, it mat be re-

quired to set lower and upper bounds on the parameters that we want to estimate. The

conditions imposed on these parameters are in the form of single bounds as follows (Nash,

2014):

loweri ≥ θi or θi ≥ upperi,

or in the form of interval bounds:

loweri < θi < upperi.

Depending on the type of bounds that the parameters require, a transformation is applied

on each parameter to prevent them from taking values outside the imposed limits in any

iteration of the estimation process.

On of the main features of the estimtf package is that allows R users to define bounds on the

parameters when using the mle tf function or the mlereg tf function to find their maxi-

mum likelihood estimates.

4.8.1. Set bounds with the mle tf function

The mle tf function has an argument called bounds through which users must provide a

list with lower and upper bounds of each parameter of interest. If the user does not provide

this information, it is assumed in the estimation process that no limits on the parameters

are required. On the contrary, when the user does provide the parameters bounds, these are

classified as single bound or interval bounds. For the parameters that have single bounds, we

apply a transformation from the original parameter θ to an internal parameter θ∗ as follows

(Nash, 2014):

θ∗ = log(θ).

On the other hand, for the parameters that have interval bounds, we apply a transformation

from the original parameter θ to an internal parameter θ∗ as follows (Nash, 2014):

θ∗ = arctanh
(

2× (log(θ)−lower)
(upper−lower) − 1

)
.
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Although a transformation is applied to the original parameters for the optimization process,

the results are reported in the original scales of the parameters. Also, for the parameters

that have bounds, the standard errors, the Z-values and the p-values are reported as NA.

Finally, it is important to mention that prior to the optimization process, the initial values

provided for the parameters through the argument initparam of the mle tf function are

checked to ensure that they are not outside the limits defined for each parameter in the

argument bounds.

4.8.2. Set bounds with the mlereg tf function

The mlereg tf function has an argument called link function through which users must

provide a list with a link function g(θ) for each parameter of interest. The link functions

help us avoid problems of estimation in the limits of parametric space by transforming the

linear predictors of the parameters of interest. If the user does not provide this information,

no link function is applied to the parameters.

The following link functions are available when using the mlereg tf function:

Parameter range Link function Formula link function

−∞ to ∞ identity θ

0 to ∞ log log(θ)

squared θ2

0 to 1 logit log
(

θ
1−θ

)
Table 4-2.: Link functions available in the mlereg function.
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In this section, we performed a simulation study to analyze the effect that the sample size,

the learning rate and the optimizer have in the performance of the estimtf package while

estimating parameters from a distribution or a linear regression model. To do so, we created

different scenarios to determine under which conditions good estimates are obtained. The

simulations were programmed and performed using the statistical programming language R

and the estimtf package. We used version 2.0 of TensorFlow and version 4.0.5 of R.

5.1. Methodology

For the simulation study four scenarios were considered in which we generated samples from

the extended exponential geometric distribution and the Poisson distribution. In each sce-

nario we changed the parameter vector θ, the sample size n, the learning rate α and the

TensorFlow optimizer.

In all scenarios we set the initial values of the parameters at 0.5. We decided to use this

value to avoid that the initial point of the estimation process was in the limit of any of the

parameters and therefore cause it to fail. Also, we decided to use the same initial value for

all the parameters in all scenarios to avoid helping the estimation process in any way.

5.2. The Poisson distribution

The Poisson distribution is a discrete distribution that measures the probability of a given

number of occurrences of an event happening in a specified time interval (Kissell & Poserina,

2017). A discrete random variable X has a Poisson distribution with parameter λ if the

probability mass function of X is given by (Devore, 2016):

P (X = x|λ) =
λxe−λ

x!
, (5-1)
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where x = 0, 1, 2, 3, . . .; λ > 0 and E(Y ) = V (Y ) = λ.

5.3. The extended exponential geometric distribution

The extended exponential geometric distribution (EEG) is a two parameter distribution

proposed by Adamidis et al. (2005). This distribution is often used in modelling lifetime

data and according to Louzada et al. (2016), it can also be used in applications in medicine.

Let X be a random variable representing a lifetime data. If X has an extended exponential

geometric distribution, its probability density function (pdf) is given by:

f(x|γ, β) =
βγe−βx

(1− (1− γ)e−βx)2
, (5-2)

where x > 0, γ > 0 and β > 0.

5.4. Scenarios of the simulation study

The following are the four scenarios considered in the simulation study.

5.4.1. Scenario 1: Poisson distribution without covariates

In this scenario we considered the following model:

Yi ∼ P (λ),

λ = 2.91,
(5-3)

with i = 1, 2, . . . , n where n is the sample size. The parameter was set as θ = λ = 2.91 with

θ0 = 0.5 as the initial value of the parameter for the estimation process. The value of λ was

chosen trying to replicate the data from a study of female horseshoe crabs on the Gulf of

Mexico analyzed by Agresti (2015). The data set contains 173 observations of the number of

male crabs attached to the posterior spine of a female crab. The male crabs are called satel-

lites and they attach to female crabs as they migrate to shore to reproduce. Also, it contains

information about the female crab’s color, weight and width (Table 5-1). The complete
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data set can be found in the following website: http://users.stat.ufl.edu/ aa/glm/-

data/Crabs.dat.

crab y weight color

1 8 3.05 2

2 0 1.55 3

3 9 2.3 1

4 0 2.1 3

5 4 2.6 3

6 0 2.1 2

7 0 2.35 1

8 0 1.9 3

9 0 1.95 2

10 0 2.15 3

11 0 2.15 3

12 0 2.65 2

13 11 3.05 2

14 0 1.85 4

15 14 2.3 2

Table 5-1.: Data from a study of female horseshoe crabs on the Gulf of Mexico. color (1,

medium light; 2, medium; 3, medium dark; 4, dark), weight (kg).

5.4.2. Scenario 2: Poisson distribution with covariates

In this scenario we considered the following model:

Yi ∼ P (λi),

log(λi) = β0 + β1x1i,

X1 ∼ N(2.5, 0.6),

(5-4)

with i = 1, 2, . . . , n where n is the sample size. The parameter vector was set as θ = (β0 =

−0.42, β1 = 0.58) with θ0 = (0.5, 0.5) as the vector of initial values of the regression param-

eters for the estimation process. As in the previous scenario, the values of β0 and β1 were

chosen trying to replicate the data presented in Table 5-1.

http://users.stat.ufl.edu/~aa/glm/data/Crabs.dat
http://users.stat.ufl.edu/~aa/glm/data/Crabs.dat
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5.4.3. Scenario 3: EEG distribution without covariates

In this scenario we considered the following model:

Yi ∼ EEG(β, γ),

β = 4,

γ = 2,

(5-5)

with i = 1, 2, . . . , n where n is the sample size. The parameter vector was set as θ = (β =

4, γ = 2)> with θ0 = (0.5, 0.5)> as the vector of initial values of the parameters for the esti-

mation process. The values of β and γ were chosen based on a simulation study performed

by Louzada et al. (2016).

5.4.4. Scenario 4: EEG distribution with covariates

In this scenario we considered the following model:

Yi ∼ EEG(βi, γi),

log(βi) = β10 + β11x1i,

log(γi) = β20 + β21x2i,

X1 ∼ U(0, 1),

X2 ∼ U(0, 1),

(5-6)

with i = 1, 2, . . . , n where n is the sample size. The parameter vector was set as θ = (β10 =

0.5, β11 = 1.5, β20 = 2, β21 = −3) with θ0 = (0.5, 0.5, 0.5, 0.5) as the vector of initial values

of the regression parameters for the estimation process. The values of β10, β11, β20 and β21

were chosen to emulate a distribution similar to the one presented in the previous scenario.

For all scenarios we considered 3 TensorFlow optimizers: Adam, RMSProp and Adagrad,

3 different values for the learning rate α = 0.1, 0.01, 0.001 and 6 values for the sample size

n = 20, 50, 100, 200, 500, 1000. By combining these values we created 54 different cases in

each scenario. For each case, N samples were generated using the models presented above

and with each sample we obtained the maximum likelihood estimate θ̂ for the parameter

vector θ using the estimtf package.
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5.5. Criteria for performance evaluation

To evaluate the performance of the estimtf package in estimating the k parameter θk of the

parameter vector θ we used the following metrics:

Mean
(
θ̂k

)
=

1

N

i=N∑
i=1

θ̂ki, MSE
(
θ̂k

)
=

1

N

i=N∑
i=1

(θk − θ̂ki)2, Bias
(
θ̂k

)
=

1

N

i=N∑
i=1

(θk − θ̂ki),

where N = 1000 and θ̂ki corresponds to the estimate of the k parameter θk included in the

parameter vector θ.

5.6. Simulation process

In each scenario, the simulation process used to evaluate the performance of the estimtf

package consists of the following steps:

1. Generate n observations from model 5-3, model 5-4, model 5-5 or model 5-6 depending

on the scenario. In the case of the EEG distribution, the observations were generated

using the inverse transform method (Ross, 2006). For the Poisson distribution, we

used the rpois() function.

2. Compute the maximum likelihood estimate θ̂ for the parameter vector θ using the

mle tf function or the mlereg tf function (depending on the scenario) of the estimtf

package.

3. Repeat N = 1000 times steps 1 and 2.

4. Compute the Mean, the MSE and the Bias for θ̂.

For each simulation we set the maximum number of iterations of the optimization process,

that is, argument maxiter of the mle tf function and the mlereg tf function at 10000.

5.7. Results

In this section, we present the results of the four scenarios of the simulation study. For each

estimate we analyze the graphs for the Mean, the MSE and the Bias to determine under

which conditions we obtain the best results. The dotted lines included in the graphs corre-

spond to the expected values of these metrics.
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5.7.1. Results scenario 1

Figure 5-1 shows the mean of the maximum likelihood estimate λ̂ obtained with different

TensorFlow optimizers, sample sizes and learning rates. We observe that with the RMSProp

optimizer and with the three different values of the learning rate, the mean of the estimates

are close to the real value of the parameter λ, especially when n > 50. On the contrary,

with the Adagrad optimizer and the Adam optimizer we obtained good estimates only with

a learning rate of 0.1. In the case of the the Adagrad optimizer, we observe this behaviour

because it is designed in such a way that the learning rate decreases significantly in each

iteration and therefore, when starting the optimization process with small learning rates as

0.01 and 0.001, the change in the parameter values from one iteration to another is very

small. From this result we can conclude that with this distribution in particular, when us-

ing the Adagrad optimizer it is recommended to use an initial learning rate greater than 0.01.

Figure 5-2 shows the MSE of the maximum likelihood estimate λ̂ obtained with different

TensorFlow optimizers, sample sizes and learning rates. From Figure 5-2 we observe that

the MSE of λ̂ decreases to a value very close to 0 as the sample size increases with the Adam

optimizer and the RMSProp optimizer regardless of the value of the learning rate. In the

case of the Adagrad optimizer, only with a learning rate of 0.1 we obtained a MSE close to 0.

Finally, figure 5-3 shows the bias of the maximum likelihood estimate λ̂, obtained with dif-

ferent TensorFlow optimizers, sample sizes and learning rates. From Figure 5-3 we observe

that with the RMSProp optimizer, the Bias of λ̂ is close to 0 especially when n > 50 with the

different values of the learning rate. On the other hand, when using the Adagrad optimizer

and the Adam optimizer, only with a learning rate of 0.1 the Bias gets close to 0.
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Figure 5-1.: Mean of estimates of λ = 2.91 for N simulated samples considering different

values of the sample size n, the learning rate and the optimizer.
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Figure 5-2.: MSE of estimates of λ = 2.91 for N simulated samples considering different

values of the sample size n, the learning rate and the optimizer.
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Figure 5-3.: Bias of estimates of λ = 2.91 for N simulated samples considering different

values of the sample size n, the learning rate and the optimizer.

In general, in this scenario we obtained estimates close to the true value of the parameter λ

of the Poisson distribution when using the RMSProp optimizer. In the case of the Adagrad

optimizer and the Adam optimizer it is very important to use an initial learning rate greater

than 0.01 to get more accurate estimates of λ.
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5.7.2. Results scenario 2

Figure 5-4 shows the mean of the maximum likelihood estimates β̂0 and β̂1 obtained with

different TensorFlow optimizers, sample sizes and learning rates. We observe that with the

Adam optimizer the estimates are close to the real values of the parameters especially when

working with a learning rate of 0.1 and when n > 50. In the case of the RMSProp optimizer,

we obtained estimates close to the real value of the parameters when using learning rates of

0.01 and 0.001. With the Adagrad optimizer, the best performance is achieved when working

with a learning rate of 0.1 just like in the previous scenario.

Figure 5-5 shows the MSE of the maximum likelihood estimates β̂0 and β̂1 obtained with

different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-5 we ob-

serve that for all optimizers, the MSE of β̂0 and β̂1 gets close to 0 only when working with

a sample size grater than 50. In the particular case of the Adam optimizer, the lowest MSE

are obtained when using a learning rate of 0.1. With the RMSProp optimizer errors are

closer to 0 when when using learning rates of 0.01 and 0.001. In the case of the Adagrad

optimizer, only with a learning rate of 0.1 we obtained a MSE close to 0.

Finally, figure 5-6 shows the bias of the maximum likelihood estimates β̂0 and β̂1 obtained

with different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-6

we observe that with the Adam optimizer the bias is very close to 0 when working with a

learning rate of 0.1 and n > 50 for both parameters. In the case of the RMSProp optimizer,

we obtained a bias closer to 0 as n increased when using learning rates of 0.01 and 0.001

for both parameters. On the other hand, when using the Adagrad optimizer, only with a

learning rate of 0.1 the bias is close to 0.

In general, in this scenario we obtained estimates close to the true values of the parameters

β̂0 and β̂1 of the Poisson regression model with all three optimizers but for specific values of

the learning rate.
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Figure 5-4.: Mean of estimates of β0 = −0.42 and β1 = 0.58 for N simulated samples

considering different values of the sample size n, the learning rate and the

optimizer.
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Figure 5-5.: MSE of estimates of β0 = −0.42 and β1 = 0.58 for N simulated samples

considering different values of the sample size n, the learning rate and the

optimizer.
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Figure 5-6.: Bias of estimates of β0 = −0.42 and β1 = 0.58 for N simulated samples

considering different values of the sample size n, the learning rate and the

optimizer.

5.7.3. Results scenario 3

Figure 5-7 shows the mean of the maximum likelihood estimates β̂ and γ̂, obtained with

different TensorFlow optimizers, sample sizes and learning rates. We observe that for β̂ and

γ̂, with the Adam optimizer and the RMSProp optimizer and with the three different values

of the learning rate, as the sample size increases, the estimates are closer to the real value

of the parameters β and γ. On the contrary, with the Adagrad optimizer we obtained good

estimates only with a learning rate of 0.1. From this result we can conclude that with this

distribution in particular, when using the Adagrad optimizer it is recommended to use an

initial learning rate greater than 0.01.

Figure 5-8 shows the MSE of the maximum likelihood estimates β̂ and γ̂, obtained with dif-

ferent TensorFlow optimizers, sample sizes and learning rates. From Figure 5-8 we observe

that the MSE of β̂ and γ̂ decreases to a value very close to 0 as the sample size increases

with the Adam Optimizer and the RMSProp optimizer regardless of the value of the learning

rate. However, it is important to notice that with these optimizers, the MSE of the esti-

mates when n = 20 is very high especially in the case of the γ parameter. Therefore, we can

conclude that when estimating the parameters of the EEG distribution it is recommended

to work with n > 20 especially when using the Adam or the RMSProp optimizer. In the
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case of the Adagrad optimizer, only with a learning rate of 0.1 we obtained a MSE close to 0.

Finally, figure 5-9 shows the bias of the maximum likelihood estimates β̂ and γ̂, obtained

with different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-9 we

observe that with the Adam optimizer and the RMSProp optimizer, the Bias of β̂ and γ̂

approaches 0 as n increases with the three different values of the learning rate. On the other

hand, when using the Adagrad optimizer and a learning rate of 0.1 the Bias gets closer to 0

as the sample size increases, however, with a lower learning rate, the Bias is always greater

than 0 regardless of the sample size.

In general, in this scenario we obtained estimates close to the true values of the parameters

β and γ of the EEG distribution with the Adam optimizer and the RMSProp optimizer

especially with n > 20. In the case of the Adagrad optimizer, it is very important to use an

initial learning rate greater than 0.01 to get more accurate estimates.
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Figure 5-7.: Mean of estimates of β = 4 and γ = 2 for N simulated samples considering

different values of the sample size n, the learning rate and the optimizer.
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Figure 5-8.: MSE of estimates of β = 4 and γ = 2 for N simulated samples considering

different values of the sample size n, the learning rate and the optimizer.

−0.4

−0.2

0.0

0 250 500 750 1000
n

B
ia

s 
 β̂

Learning rate

0.001

0.01

0.1

Adam optimizer

−0.6

−0.4

−0.2

0.0

0 250 500 750 1000
n

B
ia

s 
 β̂

Learning rate

0.001

0.01

0.1

RMSProp optimizer

0

1

2

3

0 250 500 750 1000
n

B
ia

s 
 β̂

Learning rate

0.001

0.01

0.1

Adagrad optimizer

−1.0

−0.5

0.0

0 250 500 750 1000
n

B
ia

s 
 γ̂

Learning rate

0.001

0.01

0.1

Adam optimizer

−1.5

−1.0

−0.5

0.0

0 250 500 750 1000
n

B
ia

s 
 γ̂

Learning rate

0.001

0.01

0.1

RMSProp optimizer

0

1

0 250 500 750 1000
n

B
ia

s 
 γ̂

Learning rate

0.001

0.01

0.1

Adagrad optimizer

Figure 5-9.: Bias of estimates of β = 4 and γ = 2 for N simulated samples considering

different values of the sample size n, the learning rate and the optimizer.
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5.7.4. Results scenario 4

Figure 5-10 shows the mean of the maximum likelihood estimates β̂10 and β̂11, obtained

with different TensorFlow optimizers, sample sizes and learning rates. We observe that for

β10 with the Adam optimizer and with the three different values of the learning rate, as the

sample size increases, the estimates are closer to the real values of the parameter. For β11,

the estimates are close to its true value with the three different values of the learning rate and

regardless of the sample size. With the RMSProp optimizer, we observe the same behavior

as with the Adam optimizer when using a learning rate of 0.01 or 0.001. With a learning

rate of 0.1, the mean of the estimates of β10 and β11 deviates from the expected values. On

the contrary, with the Adagrad optimizer we obtained good estimates only with a learning

rate of 0.1. Therefore, as in the previous scenarios, with this distribution in particular when

using the Adagrad optimizer it is recommended to start with a higher learning rate as it

decreases significantly throughout the iterations.

Figure 5-11 shows the mean of the maximum likelihood estimates β̂20 and β̂21, obtained with

different TensorFlow optimizers, sample sizes and learning rates. We observe that for β20

and β21, with the Adam optimizer and the RMSProp optimizer and specially with a learning

rate of 0.01 or 0.001, as the sample size increases, the estimates are closer to the real value

of the parameters. On the contrary, with the Adagrad optimizer we obtained estimates close

to the real values of the parameters only when using a learning rate of 0.1.
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Figure 5-10.: Mean of estimates of β10 = 0.5 and β11 = 1.5 for N simulated samples

considering different values of the sample size n, the learning rate and the

optimizer.
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Figure 5-11.: Mean of estimates of β20 = 2 and β21 = −3 for N simulated samples consider-

ing different values of the sample size n, the learning rate and the optimizer.
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Figure 5-12 shows the MSE of the maximum likelihood estimates β̂10 and β̂11, obtained

with different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-12 we

observe that the MSE of β̂10 and β̂11 decreases to a value very close to 0 as the sample size

increases with the Adam optimizer and the RMSProp optimizer regardless of the value of

the learning rate. In the case of the Adagrad optimizer, we observe that the MSE of β̂10 and

the MSE of β̂11 get very close to 0 as n increases only when using a learning rate of 0.1. It

is important to notice that the MSE of β̂10 when using a learning rate of 0.01 or 0.001 and

the Adagrad optimizer is close to 0 for different values of the sample size, which contradicts

what is observed in the Figure 5-10. This is because the initial value for all the regression

parameters were set at 0.5 and for this parameter in particular this value is equal to the real

value of the parameter. As these learning rates are small, the value of the parameter does

not vary much with respect to its initial value during the estimation process and therefore,

the MSE is small regardless of the conditions.

Figure 5-13 shows the MSE of the maximum likelihood estimates β̂20 and β̂21, obtained

with different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-13 we

observe that the MSE of β̂20 and β̂21 decreases to a value very close to 0 as the sample size

increases with the Adam optimizer and the RMSProp optimizer regardless of the value of

the learning rate. In the case of the Adagrad optimizer, only with a learning rate of 0.1 we

obtained a MSE close to 0 when n > 50. Also, it is important to notice that the MSE of

the estimates of parameters β20 and β21 when the sample size is small and regardless of the

learning rate and the optimizer, is higher than the MSE of the estimates of parameters β10

and β11 in the same conditions. This allows us to conclude that in general the performance

of the mlereg tf function in estimating the parameter β10 and β11 is much better than in

estimating parameters β20 and β21 when the sample sizes are small.
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Figure 5-12.: MSE of estimates of β10 = 0.5 and β11 = 1.5 for N simulated samples consid-

ering different values of the sample size n, the learning rate and the optimizer.
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Figure 5-13.: MSE of estimates of β20 = 2 and β21 = −3 for N simulated samples consider-

ing different values of the sample size n, the learning rate and the optimizer.
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Figure 5-14 shows the bias of the maximum likelihood estimates β̂10 and β̂11, obtained with

different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-14 we ob-

serve that with the Adam optimizer, the Bias of β̂10 approaches 0 as n increases with the

three different values of the learning rate. On the other hand, the Bias of β̂11 fails to approach

0 in most cases. When using the RMSProp optimizer, we observed that with a learning rate

of 0.1 the Bias differs always from 0 especially with large sample sizes. Finally, in the case

of the Adagrad optimizer, only with a learning rate of 0.1 we observe the expected results,

that is, the Bias gets closer to 0 as the sample size increases.

Figure 5-15 shows the bias of the maximum likelihood estimates β̂20 and β̂21, obtained with

different TensorFlow optimizers, sample sizes and learning rates. From Figure 5-15 we ob-

serve that with the Adam optimizer, the Bias of β̂20 and β̂21 approaches 0 as n increases with

the three different values of the learning rate. With the RMSProp optimizer we observed

this same behavior especially with learning rates of 0.01 and 0.001. On the other hand,

when using the Adagrad optimizer and a learning rate of 0.1 the Bias gets closer to 0 as the

sample size increases, however, with a lower learning rate the Bias is far from 0 regardless

of the sample size.
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Figure 5-14.: Bias of estimates of β10 = 0.5 and β11 = 1.5 for N simulated samples consid-

ering different values of the sample size n, the learning rate and the optimizer.
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Figure 5-15.: Bias of estimates of β20 = 2 and β21 = −3 forN simulated samples considering

different values of the sample size n, the learning rate and the optimizer.

In this scenario we obtained estimates close to the true values of the regression parameters

β10 and β11 with the Adam optimizer and the RMSProp optimizer for specific values of the

learning rate. In the case of the Adagrad optimizer it is very important to use an initial

learning rate greater than 0.01 to obtain more accurate estimates of these parameters. For

parameters β20 and β21, we observed that the three optimizers did not performed as ex-

pected when the sample sizes were small. Otherwise, with n > 50, a behavior similar to

that obtained in the estimation of the parameters β10 and β11 was observed with the Adam

optimizer, the RMSProp optimizer and the Adagrad optimizer.
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As mentioned in the estimtf package section, one of the main features of the estimtf package

is the possibility to estimate parameters from distributions that are not yet implemented in

R. In this chapter the mle tf function is used to estimate parameters from three different

probability distributions not implemented in R using real data sets. Also, the mlereg tf

function is used to estimate the coefficients of 2 linear regression models. On the other

hand, we considered important to compare the estimates obtained with the mle tf function

with estimates provided by other R functions that use different optimization methods to

maximize the likelihood function. Therefore, we estimated the parameters using the nlm,

nlminb and optim functions. In the case of the optim function, the L-BFGS-B method and

the Nelder-Mead method are used. In the case of the linear regression models, we compared

the results with the glm function and the gamlss functions.

To estimate the parameters we took into account the results obtained in the simulation study.

Therefore, we set the initial learning rate as 0.01 and we selected the Adam optimizer for the

estimation process. Also, we set the maximum number of iterations at 10000. Finally, as in

the simulation study, we set the initial values of the parameters at 0.5 for all the applications.

6.0.1. Extended exponential geometric distribution

As mentioned in the previous chapter, the extended exponential geometric distribution is a

distribution with parameters γ and β proposed by Adamidis et al. (2005). To illustrate the

use of the estimtf package we consider a real data set analyzed by Louzada et al. (2016).

This data set refers to the ages in months of 18 patients who died of causes other than cancer.

0.3 4 7.4 15.5 23.4 46 46 51 65

68 83 88 96 110 111 112 132 162

Table 6-1.: Data set of ages (in months) of 18 patients who died of causes other than cancer.

The following is the code written in the R programming language for estimating the param-

eters of the EEG distribution using the mle tf function of the estimtf package. First, we
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have to load the package and create a vector with the data to be fitted (Table 6-1). Then

we have to create an R function that contains the probability density function of the EEG

distribution and whose arguments are the random variable x and the parameters of this

distribution. Finally, we have to provide values for the arguments of the mle tf function.

In this case, we set the initial values for both parameters as 0.5.

# Call required libraries

library(estimtf)

# Create vector with data

x <- c(0.3, 4, 7.4, 15.5, 23.4, 46, 46, 51, 65, 68, 83, 88, 96, 110,

111, 112, 132, 162)

# Define the probability density function of the EEG distribution

deeg <- function(x, beta , gamma) {

(beta * gamma * exp(-beta * x))/(1 - (1 - gamma) * exp(-beta * x))^2

}

# Use mle_tf function to estimate the parameters

estimation <- mle_tf(x = x, xdist = deeg ,

initparam = list(beta = 0.5, gamma = 0.5),

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate =0.01) ,

maxiter = 10000)

Code 6.1: R code for the estimation of parameters λ and γ from the EEG distribution using

the mle tf function.

In Code 6.2 the R output obtained by estimating the parameters β and γ of the EEG dis-

tribution using the mle tf function is presented. From the summary we observe that the

maximum likelihood estimates of these parameters are β̂ = 0.0252 and γ̂ = 3.5521.

# print the results

summary(estimation)

## Number of observations: 18

## TensorFlow optimizer: AdamOptimizer

## Negative log -likelihood: 92.7191

## ---------------------------------------------------

## Estimate Std. Error Z value Pr(>|z|)

## beta 0.025283 0.008111 3.117 0.00183 **

## gamma 3.545941 2.873021 1.234 0.21712

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Code 6.2: Summary of the estimates of parameters β and γ using the mle tf function.
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In Code 6.3 we present the R code for estimating parameters β and γ using the nlm, the

nlminb and the optim function. To estimate parameters with these functions it is required

to provide the negative log-likelihood function and an initial values for each parameter. In

the case of the nlminb function and the optim function, lower and upper limits for the pa-

rameters are also required.

# Define the negative log -likelihood function

loglike_fun <- function(param) {

beta <- param [1]

gamma <- param [2]

-sum(log((beta * gamma * exp(-beta * x)) /

(1 - (1 - gamma) * exp(-beta * x))^2))}

# Estimation with nlm function

result_nlm <- nlm(f = loglike_fun , p = c(0.5, 0.5))

# Estimation with nlminb function

result_nlminb <- nlminb(objective = loglike_fun , start = c(0.5, 0.5),

lower = c(0.001 , 0.001) , upper = c(Inf , Inf))

# Estimation with optim function

result_optim1 <- optim(par = c(0.5, 0.5), fn = loglike_fun ,

method = "Nelder -Mead")

result_optim2 <- optim(par = c(0.5, 0.5), fn = loglike_fun ,

method = "L-BFGS -B", lower = c(0.001 , 0.001) ,

upper = c(Inf , Inf))

Code 6.3: R code for the estimation of parameters λ and γ from the EEG distribution using

the nlm, nlminb, optim functions.

It is important to notice that unlike the nlm, the nlminb and the optim function, when using

the mle tf or the mlereg tf function, the user does not have to compute the log-likelihood

function since this task is part of the estimation process implemented in these functions.

This is of one of the main advantages of the mle tf and the mlereg tf function because it

is possible that some users do not know how to compute the log-likelihood function in R and

this could make the estimation of parameters more difficult when using the nlm, the nlminb

or the optim function.

In Table 6-2 we compared the estimates obtained from the different R functions and their

respective execution times. From Table 6-2, we observed that the estimates of both parame-

ters obtained from the nlm, optim and nlminb functions are very similar to each other while

the estimates obtained with the mle tf function differ from these estimates although the dif-

ference is not very significant. On the other hand, we observed a significant difference in the
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execution time of the mle tf function with respect to the other functions. This high execu-

tion time is due to the fact that the chosen learning rate is relatively small and as mentioned

above, a small learning rate may result in a long optimization process. Also, the maximum

number of iterations is high and this may also increase the execution time. Therefore, if we

want to reduce this time we must select a higher learning rate or a lower number of iterations.

R function Execution time (seconds) β̂ γ̂

mle tf 30.4079 0.0252 3.5459

nlm 0.1069 0.0261 3.9192

optim (Nelder-Mead) 0.0293 0.0261 3.9289

optim (L-BFGS-B) 0.0037 0.0261 3.9299

nlminb 0.0297 0.0261 3.9199

Table 6-2.: Processing time and estimates of the parameters of the EEG distribution ob-

tained with R functions: mle tf, nlm, optim, nlminb.

Figure 6-1 shows the histogram of the data presented in Table 6-1 and the estimated density

curves obtained with the R functions mle tf, nlm, optim and nlminb. From Figure 6-1,

we observed that the 4 density curves are very similar and show a good fit. In this particular

case, it can be concluded that to estimate the parameters β and γ of the EEG distribution, it

is possible to use any of the functions presented above since they have a similar performance

in terms of the quality of the estimates. However, in terms of execution time, the nlm, optim

and nlminb functions would be preferred.
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Figure 6-1.: Histogram and estimated density curves super-imposed over the data presented

in Table 6-1.

6.0.2. Distribution for instantaneous failures

Ramos and Louzada (2019) proposed a new distribution with parameter λ that allows for

the occurrence of instantaneous failures that are natural in many areas. This distribution is

a combination of a reparametrized version of the Zakerzadeh and Dolati distribution with a

particular case of the gamma model (Zakerzadeh & Dolati, 2009). A non-negative random

variable X with a distribution for instantaneous failures has the following probability density

function:

f(x|λ) =
1

λ2(λ− 1)
(λ2 + x− 2λ)e−

x
λ , (6-1)

where x ≥ 0 and λ ≥ 2 is the shape parameter. To illustrate the use of the estimtf package,

an example will be carried out using a data set analysed by Muralidharan and Khabia (2014)

which represent monthly rainfall (in mm) during year 2004 in Andhra Pradesh. This data

set was also analyzed by Ramos and Louzada (2019).
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3.4 0.0 0.0 15.8 232.8 8.8

123.2 47 154 103.2 89.8 12.2

Table 6-3.: Data set of monthly rainfall (in mm) during year 2004 in Andhra Pradesh.

The following is the code written in the R programming language for estimating the param-

eter of the distribution for instantaneous failures using the mle tf function of the estimtf

package. As λ ≥ 2, for its initial value we draw a sample of size 1 from a normal distribution

with µ = 5 and σ = 1. Thus, the initial value for λ was set as 6.1661.

# Call required libraries

library(estimtf)

# Create vector with data

x <- c(3.4, 0.0, 0.0, 15.8, 232.8 , 8.8, 123.2 , 47, 154,

103.2 , 89.8, 12.2)

# Define the probability density function of the distribution for

instantaneous failures

dinstantaneousfailures <- function(x, lambda) {

(1 / (( lambda ^ 2) * (lambda - 1))) * (lambda ^ 2 + x - 2 * lambda) *

exp(-x / lambda)

}

# Use mle_tf function to estimate the parameters

estimation <- mle_tf(x = x,

xdist = dinstantaneousfailures ,

initparam = list(lambda = 6.1661) ,

bounds = list(lambda = c(2, Inf)),

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate = 0.01) ,

maxiter = 10000)

Code 6.4: R code for the estimation of parameter λ of the distribution for instantaneous

failures using the mle tf function.

In Code 6.5 the R output obtained by estimating the parameter λ of the distribution for

instantaneous failures using the mle tf function is presented. From the summary we observe

that the maximum likelihood estimate of this parameter is λ̂ = 65.08. It is important to

notice that the standard error, Z-value and p-value are NA. As mentioned in chapter 4, when

bounds are defined for the parameter to be estimated, the standard error and consequent

statistics values are not presented in the summary because as an internal transformation

of the parameter is made, these values do not correspond to those of the parameter in its

original scale.
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# print the results

summary(estimation)

## Number of observations: 12

## TensorFlow optimizer: AdamOptimizer

## Negative log -likelihood: 62.2489

## ---------------------------------------------------

## Estimate Std. Error Z value Pr(>|z|)

## lambda 65.08 NA NA NA

Code 6.5: Summary of the estimates of parameter λ using the mle tf function.

In Code 6.6 we present the R code for estimating parameter λ using the nlm, the nlminb

and the optim function.

# define the negative log -likelihood function

loglike_fun <- function(param) {

lambda <- param

-sum(log ((1 / (( lambda ^ 2) * (lambda - 1))) *

(lambda ^2 + x - 2*lambda) * exp(-x/lambda)))}

# estimation with nlm function

result_nlm <- nlm(f = loglike_fun , p = 6.166147)

# estimation with nlminb function

result_nlminb <- nlminb(objective = loglike_fun , start = 6.166147 ,

lower = 2, upper = Inf)

# estimation with optim function

result_optim1 <- optim(par = 6.166147 , fn = loglike_fun ,

method = "Nelder -Mead")

result_optim2 <- optim(par = 6.166147 , fn = loglike_fun ,

method = "L-BFGS -B", lower = 2, upper = Inf)

Code 6.6: R code for the estimation of parameter λ from the distribution for instantaneous

failures using the nlm, nlminb, optim functions.

In Table 6-4 we compared the estimates obtained with the different R functions and their

respective execution times. From Table 6-4, we observed that the estimates of the param-

eter λ obtained with the mle tf, nlm, optim and nlminb functions are very similar. On

the other hand, we observed a difference in the execution time of the mle tf function with

respect to the other functions. Although this difference is not very large, we could try to

decrease the execution time of this function by increasing the learning rate or by decreasing
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the number of iterations.

R function Execution time (seconds) λ̂

mle tf 4.06 65.08

nlm 0.0211 64.8414

optim (Nelder-Mead) 0.0201 64.8601

optim (L-BFGS-B) 0.0026 64.8414

nlminb 0.0081 64.8414

Table 6-4.: Processing time and estimates of the parameters of the distribution for instan-

taneous failures obtained with R functions: mle tf, nlm, optim, nlminb.

Figure 6-2 shows the histogram of the data presented in Table 6-3 and the estimated density

curves obtained with the R functions mle tf, nlm, optim and nlminb. From Figure 6-2,

we observed that the density curves built from the estimates provided by the mle tf, nlm,

optim and nlminb functions are very similar as expected and they all show a good fit. In

this particular case, it can be concluded that to estimate the parameter λ of the distribution

for instantaneous failures, it is possible to use any of the functions presented above since

they have a similar performance in terms of the quality of the estimates. However, in terms

of execution time, the nlm, optim and nlminb functions would be preferred.
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Figure 6-2.: Histogram and estimated density curves super-imposed over the data presented

in Table 6-3.

6.0.3. Transmuted Rayleigh distribution

The transmuted Rayleigh distribution was proposed by Merovci (2013) as an extension of

the Rayleigh distribution to provide more flexibility in modeling real data. This distribution

is mainly used to model lifetime data which is very important in many applied sciences such

as medicine and engineering. A random variable X has a transmuted Rayleigh distribution

if its pdf is given by:

f(x|σ, λ) =
x

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
, (6-2)

where x > 0, σ > 0, and |λ| ≤ 1.

To illustrate the use of the estimtf package we consider a real data set analyzed by Dey,

Raheem, and Mukherjee (2017). This data set consists of 100 measurements on breaking

stress of carbon fibres (in GPa).
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0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25

1.36 1.41 1.47 1.57 1.59 1.61 1.69 1.71 1.73 1.80

1.84 1.87 1.89 1.92 2.00 2.03 2.05 2.12 2.17 2.35

2.38 2.41 2.43 2.48 2.50 2.53 2.55 2.56 2.59 2.67

2.73 2.74 2.76 2.77 2.79 2.81 2.82 2.83 2.85 2.87

2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.15 3.19 3.22

3.27 3.28 3.31 3.33 3.39 3.51 3.56 3.60 3.65 3.68

3.70 3.75 4.20 4.38 4.42 4.70 4.90 4.91 5.08 5.56

1.58 1.60 1.61 1.70 1.85 2.04 2.17 2.17 2.48 2.55

2.82 2.98 3.11 3.16 3.19 3.23 3.31 3.39 3.68 3.69

Table 6-5.: Data set of breaking stress of carbon fibres (in GPa).

The following is the code written in the R programming language for estimating the pa-

rameters of the transmuted Rayleigh distribution using the mle tf function of the estimtf

package. In this case, we set the initial values for both parameters as 0.5.

# Call required libraries

library(estimtf)

# Create vector with data

x <- c(0.39 ,0.81 ,0.85 ,0.98 ,1.08 ,1.12 ,1.17 ,1.18 ,1.22 ,1.25 ,

1.36 ,1.41 ,1.47 ,1.57 ,1.59 ,1.61 ,1.69 ,1.71 ,1.73 ,1.80 ,

1.84 ,1.87 ,1.89 ,1.92 ,2.00 ,2.03 ,2.05 ,2.12 ,2.17 ,2.35 ,

2.38 ,2.41 ,2.43 ,2.48 ,2.50 ,2.53 ,2.55 ,2.56 ,2.59 ,2.67 ,

2.73 ,2.74 ,2.76 ,2.77 ,2.79 ,2.81 ,2.82 ,2.83 ,2.85 ,2.87 ,

2.88 ,2.93 ,2.95 ,2.96 ,2.97 ,3.09 ,3.11 ,3.15 ,3.19 ,3.22 ,

3.27 ,3.28 ,3.31 ,3.33 ,3.39 ,3.51 ,3.56 ,3.60 ,3.65 ,3.68 ,

3.70 ,3.75 ,4.20 ,4.38 ,4.42 ,4.70 ,4.90 ,4.91 ,5.08 ,5.56 ,

1.58 ,1.60 ,1.61 ,1.70 ,1.85 ,2.04 ,2.17 ,2.17 ,2.48 ,2.55 ,

2.82 ,2.98 ,3.11 ,3.16 ,3.19 ,3.23 ,3.31 ,3.39 ,3.68 ,3.69)

# Define the probability density function of the transmuted Rayleigh

dtr <- function(x, sigma , lambda) {

(x / sigma ^2)*exp(-(x^2) / (2*sigma ^2)) * (1 - lambda + 2 * lambda * exp

(-(x^2) / (2*sigma ^2)))

}

# Use mle_tf function to estimate the parameters

estimation <- mle_tf(x = x, xdist = dtr ,

initparam = list(lambda = 0.5, sigma = 0.5),

bounds = list(lambda = c(-1, 1), sigma = c(0, Inf)),

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate = 0.01) ,

maxiter = 10000)

Code 6.7: R code for the estimation of parameters λ and σ from the transmuted Rayleigh

distribution using the mle tf function.
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In Code 6.8 the R output obtained by estimating the parameters σ and λ of the transmuted

Rayleigh distribution using the mle tf function is presented. From the summary we observe

that the maximum likelihood estimates of these parameters are σ̂ = 1.649 and λ̂ = −0.908.

# print the results

summary(estimation)

## Number of observations: 100

## TensorFlow optimizer: AdamOptimizer

## Negative log -likelihood: 141.4435

## ---------------------------------------------------

## Estimate Std. Error Z value Pr(>|z|)

## sigma 1.649 NA NA NA

## lambda -0.908 NA NA NA

Code 6.8: Summary of the estimates of parameters σ and λ using the mle tf function.

In Code 6.9 we present the R code for estimating parameters λ and σ using the nlm, the

nlminb and the optim function.

# define the negative log -likelihood function

loglike_fun <- function(param) {

lambda <- param [1]

sigma <- param [2]

-sum(log((x / sigma ^2)*exp(-(x^2) / (2*sigma ^2)) *

(1 - lambda + 2 * lambda * exp(-(x^2) / (2*sigma ^2)))))}

# estimation with nlm function

result_nlm <- nlm(f = loglike_fun , p = c(0.5, 0.5))

# estimation with nlminb function

result_nlminb <- nlminb(objective = loglike_fun , start = c(0.5, 0.5),

lower = c(-1, 0.001) , upper = c(1, Inf))

# estimation with optim function

result_optim1 <- optim(par = c(0.5, 0.5), fn = loglike_fun ,

method = "Nelder -Mead")

result_optim2 <- optim(par = c(0.5, 0.5), fn = loglike_fun ,

method = "L-BFGS -B", lower = c(-1, 0.001) ,

upper = c(1, Inf))

Code 6.9: R code for the estimation of parameters λ and σ from the transmuted Rayleigh

distribution using the nlm, nlminb, optim functions.
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In Table 6-6 we compared the estimates obtained with the different R functions and their

respective execution times. From Table 6-6, we observed that the estimates of both param-

eters obtained with the mle tf, optim and nlminb functions are very similar to each other

while the estimates obtained with the nlm function differ significantly from these estimates.

This is possibly due to the initial values passed to the function. Finally, as in the two pre-

vious applications, the execution time of the mle tf function is higher than the execution

time of the other three functions.

R function Execution time (seconds) λ̂ σ̂

mle tf 11.6136 -0.908 1.649

nlm 0.1577 13717.2360 4.7465

optim (Nelder-Mead) 0.0484 -0.9192 1.6459

optim (L-BFGS-B) 0.0034 -0.9189 1.6461

nlminb 0.0088 -0.9189 1.6461

Table 6-6.: Processing time and estimates of the parameters of the transmuted Rayleigh

distribution obtained with R functions: mle tf, nlm, optim, nlminb.

Figure 6-3 shows the histogram of the data presented in Table 6-5 and the estimated density

curves obtained with the R functions mle tf, nlm, optim and nlminb. In this case, the

density curve for the nlm function is not included in this graph because it is very different

from the other curves and therefore it is not possible to visualize it in the graph. From

Figure 6-3, we observed that all three density curves corresponding to the mle tf, optim

and nlminb functions are very similar and show a good fit. In this particular case, it can

be concluded that to estimate the parameters σ and λ of the transmuted Rayleigh distri-

bution, it is possible to use any of the functions presented above since they have a similar

performance in terms of the quality of the estimates. However, in terms of execution time,

the nlm, optim and nlminb functions would be preferred.
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Figure 6-3.: Histogram and estimated density curves super-imposed over the data presented

in Table 6-5.

6.0.4. Poisson regression model

The Poisson regression model assumes that the response variable Y , which is a count and

only takes discrete and non-negative values, has a Poisson distribution with probability mass

function given by:

P (Y = y|λ) =
λye−λ

y!
, (6-3)

where y = 0, 1, 2, . . .; λ ≥ 0 and E(Y ) = V (Y ) = λ. In order to incorporate the covariates,

the mean is included in the model using a log-link function:

log(λi) = X>i β =

p∑
j=1

βjxij, (6-4)

where Xi denotes the vector of explanatory variables, and β denotes the vector of regression

parameters.
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To illustrate the use of the estimtf package we consider the data set from a study of female

horseshoe crabs on the Gulf of Mexico presented in Table 5-1. In this case, we are going

to fit a Poisson regression model in which the response variable is Y = number of satellites

and the explanatory variables are the female crab’s color and weight.

Yi ∼ Poisson(λi),

log(λi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4,
(6-5)

where i = 1, 2, . . . 173, xi1 denotes weight and xij = 1 when the female crab has color j and

xij = 0 otherwise, for j = 2, 3, 4.

The following is the code written in the R programming language for estimating the coef-

ficients β0, β1, β2, β3 and β4 using the mlereg tf function of the estimtf package. First, we

have to load the package and define the data frame that contains the data for the response

variable y and the covariates weight and color. Then, we have to provide values for the

arguments of the mlereg tf function. As the Poisson distribution is included in Table 4-1,

we only have to provide the name of the distribution in the ydist argument. In this case,

we set the initial values for the coefficients as 0.5.

# Call required libraries

library(estimtf)

# Create data frame with data for response explanatory variables

data <- read.table("Crabs.dat", header=T)

data <- data %>% select(y, color , weight)

data$color <- as.factor(data$color)
data <- as.data.frame(data)

# Use mlereg_tf function to estimate the coefficients

estimation <- mlereg_tf(ydist = y ~ Poisson , data = data ,

formulas = list(lambda = ~color + weight),

available_distribution = TRUE ,

initparam = list(lambda = 0.5),

link_function = list(lambda = "log"),

optimizer = "AdamOptimizer",

hyperparameters = list(learning_rate = 0.01) ,

maxiter = 10000)

Code 6.10: R code for the estimation of coefficients of the Poisson regression model using the

mlereg tf function.
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In Code 6.11 the R output obtained by estimating the coefficients β0, β1, β2, β3 and β4 of

the Poisson regression model using the mlereg tf function is presented. From the summary

we observe that the maximum likelihood estimates of these parameters are β̂0 = −0.0070,

β̂1 = 0.5354, β̂2 = −0.2181, β̂3 = −0.4663 and β̂4 = −0.4706.

# print the results

summary(estimation)

## Distribution: Poisson

## Number of observations: 173

## TensorFlow optimizer: AdamOptimizer

## ----------------------------------------------------------------

## Distributional parameter: lambda

## ----------------------------------------------------------------

## Estimate. Std..Error Z.value Pr...z..

## (Intercept) -0.007007 0.233010 -0.030 0.97601

## color2 -0.218131 0.152793 -1.428 0.15340

## color3 -0.466363 0.174963 -2.665 0.00769 **

## color4 -0.470660 0.207808 -2.265 0.02352 *

## weight 0.535451 0.068366 7.832 4.8e-15 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## ----------------------------------------------------------------

Code 6.11: Summary of the estimates of coefficients of the Poisson regression model using

the mlereg tf function.

In Table 6-7 we compared the estimates obtained from the different R functions and their

respective execution times. From Table 6-7, we observed that the estimates of the coeffi-

cients β1, β2, β3 and β4 obtained with the mlereg tf function and with the glm function are

very similar. However, in the case of the coefficient β0, the difference between the estimates

obtained with both functions is greater.

In this particular case, based on the results presented in Table 6-7 it can be concluded

that to estimate the coefficients β0, β1, β2, β3 and β4 of this Poisson regression model (6-5),

it is possible to use the glm function or the mlereg tf function since they have a similar

performance in terms of the quality of the estimates. However, in terms of execution time,

the glm function would be preferred.
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R function Execution time (seconds) β̂0 β̂1 β̂2 β̂3 β̂4

mleref tf 20.5997 -0.0070 0.5354 -0.2181 -0.4663 -0.4706

glm 0.0135 -0.0497 0.5461 -0.2051 -0.4498 -0.4520

Table 6-7.: Processing time and estimates of the coefficients of the Poisson regression model

obtained with R functions: mlereg tf, glm.

6.0.5. Flexible Weibull extension regression model

The flexible Weibull extension (FWE) distribution is a distribution with two parameters µ

and σ proposed by Bebbington, Lai, and Zitikis (2007). Its probability density function is

given by:

f(y|µ, σ) =

(
µ+

σ

y2

)
e(µy−

σ
y ) exp

(
−eµy−

σ
y

)
, (6-6)

where y > 0, µ > 0 and σ > 0. The FWE regression model assumes that the response

variable Y has a FWE distribution as follows:

yi ∼ FWE(µi, σi),

log(µi) = X>i β = β0 +

p∑
j=1

βjXij,

log(σi) = Z>i ρ = ρ0 +

p∑
j=1

ρjZij,

(6-7)

where Xi, Zi denote the vectors of explanatory variables, and β, ρ denote the vectors of

regression parameters.

To illustrate the use of the estimtf package we generate n = 50 observations from the

FWE regression model (6-8) using the rFWE function of the RelDists package which contains

multiple distributions that are very useful for reliability analysis (Hernandez, Usuga, Patino,
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Mosquera, & Urrea, 2021).

yi ∼ FWE(µi, σi),

log(µi) = β10 + β11x1i = 1.21− 3× x1i,

log(σi) = β20 + β21x2i = 1.26− 2× x2i,

x1 ∼ U(0, 1),

x2 ∼ U(0, 1),

(6-8)

where i = 1, 2, . . . 50. In Table 6-1 we observe the data for the response variable Y and the

explanatory variables X1 and X2 of the FWE regression model presented above.

Observation y x1 x2 Observation y x1 x2

1 0.526 0.313 0.942 26 0.569 0.431 0.878

2 1.238 0.346 0.201 27 1.926 0.716 0.556

3 0.436 0.421 0.695 28 0.927 0.381 0.484

4 0.725 0.695 0.604 29 0.384 0.003 0.732

5 0.839 0.174 0.821 30 0.717 0.242 0.292

6 0.526 0.374 0.596 31 0.929 0.775 0.798

7 0.768 0.427 0.975 32 0.601 0.952 0.97

8 3.035 0.491 0.008 33 0.882 0.42 0.266

9 0.79 0.953 0.676 34 2.775 0.416 0.059

10 0.973 0.139 0.5 35 0.899 0.418 0.281

11 1.737 0.614 0.306 36 1.035 0.231 0.348

12 0.998 0.093 0.161 37 4.031 0.848 0.218

13 1.657 0.823 0.913 38 1.353 0.523 0.134

14 0.547 0.117 0.661 39 1.089 0.384 0.432

15 3.96 0.887 0.234 40 1.985 0.451 0.038

16 0.688 0.116 0.131 41 0.221 0.08 0.967

17 0.515 0.643 0.65 42 0.61 0.488 0.188

18 1.84 0.878 0.468 43 2.678 0.785 0.458

19 0.949 0.203 0.395 44 0.903 0.09 0.289

20 0.988 0.314 0.577 45 1.991 0.71 0.543

21 0.255 0.512 0.705 46 2.979 0.708 0.448

22 1.307 0.16 0.095 47 3.624 0.875 0.068

23 3.67 0.662 0.047 48 0.319 0.728 0.858

24 4.189 0.888 0.87 49 2.343 0.818 0.937

25 1.885 0.688 0.014 50 1.361 0.532 0.706

Table 6-8.: Data with 50 observations on 3 variables from the FWE regression model (6-8).
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The following is the code written in the R programming language for estimating the coeffi-

cients β10, β11, β20 and β21 using the mlereg tf function of the estimtf package. In this case,

we have to create an R function that contains the probability density function of the FWE

distribution (6-6). On the other hand, as in the previous applications, we set the initial

values for the coefficients as 0.5.

# Call required libraries

library(estimtf)

# Define the probability density function of the FWE distribution

dFWE <- function(y, mu , sigma){

(mu + sigma/(y^2))*(exp(mu * y - sigma/y))*exp(-exp(mu * y - sigma/y))

}

# Use mlereg_tf function to estimate the coefficients

# data: an R data frame containing the data presented in Table 6-9

estimation <- mlereg_tf(ydist = y ~ dFWE ,

formulas = list(mu = ~ x1, sigma = ~x2),

available_distribution = FALSE ,

data = data ,

initparam = list(mu = 0.5, sigma = 0.5),

optimizer = "AdamOptimizer",

link_function = list(mu = "log", sigma = "log"),

hyperparameters = list(learning_rate = 0.01) ,

maxiter = 10000)

Code 6.12: R code for the estimation of coefficients of the FWE regression model using the

mlereg tf function.

In Code 6.13 the R output obtained by estimating the coefficients β10, β11, β20 and β21 of

the FWE regression model using the mlereg tf function is presented. From the summary

we observe that the maximum likelihood estimates of these parameters are β̂10 = 1.442,

β̂11 = −3.092, β̂20 = 1.671 and β̂21 = −2.411. By comparing these estimates with the real

values of the parameters β10 = 1.21, β11 = −3, β20 = 1.26 and β21 = −2 we observe that the

estimates obtained using the mlereg tf function are similar to these values even though the

sample size is not very large which allows us to conclude that the estimation process was

successful.
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# print the results

summary(estimation)

## Number of observations: 50

## TensorFlow optimizer: AdamOptimizer

## ----------------------------------------------------------------

## Distributional parameter: mu

## ----------------------------------------------------------------

## Estimate. Std..Error Z.value Pr...z..

## (Intercept) 1.4420 0.1863 7.741 9.9e-15 ***

## x1 -3.0927 0.3507 -8.819 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## ----------------------------------------------------------------

## Distributional parameter: sigma

## ----------------------------------------------------------------

## Estimate. Std..Error Z.value Pr...z..

## (Intercept) 1.6713 0.1951 8.568 < 2e-16 ***

## x2 -2.4114 0.3521 -6.849 7.42e-12 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

## ----------------------------------------------------------------

Code 6.13: Summary of the estimates of coefficients of the FWE regression model using the

mlereg tf function.

In Table 6-9 we compared the estimates obtained from the different R functions and their

respective execution times. From Table 6-9, we observed that the estimates of most of these

coefficients obtained with the gamlss function are closer to the real values than those ob-

tained with the mlereg tf function. In addition, the execution time of the gamlss function

is significantly lower than the execution time of the mlereg tf. Based on these results, it

can be concluded that to estimate the coefficients β10, β11, β20 and β21 of this FWE regression

model (6-8), the gamlss function would be preferred because of the quality of its estimates

and its efficiency.

R function Execution time (seconds) β̂10 β̂11 β̂20 β̂21

mleref tf 65.76 1.442 -3.092 1.671 -2.411

gamlss 0.44 1.073 -2.742 1.249 -2.065

Table 6-9.: Processing time and estimates of the coefficients of the FWE regression model

obtained with R functions: mlereg tf, gamlss.
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In this last application we observed the higher execution time while using the estimtf pack-

age. As mentioned earlier, it is possible to try to decrease this time by increasing the learning

rate and/or decreasing the maximum number of iterations. Therefore, in Table 6-10 we com-

pared the absolute error of the estimates of each parameter obtained in different scenarios

in which we used learning rates higher than 0.01 and maximum number of iterations lower

than 10000 which were chosen originally for the estimation process. Regarding the execution

time, we observed that the increase in the value of the learning rate actually contributed to

the decrease in the execution time. On the other hand, we observed that as the maximum

number of iterations decreases, the execution time decreases as well regardless of the learning

rate value.

Also, it is important to notice that the highest errors are obtained when using learning rates

lower than 0.5 and a number of iterations lower than or equal to 500. This shows that the

selection of the learning rate must depend on the number of iterations or vice versa. That is,

as we decrease the learning rate we must increase the number of iterations of the estimation

process to avoid affecting the quality of the estimations. Finally, in Table 6-10 we observed

that most of the absolute errors of the estimates obtained with the different values for the

learning rate and the maximum number of iterations, do not vary much with respect to

the reference scenario in which we used a learning rate of 0.01 and 10000 iterations. This

indicates that for this case in particular we can use other values for these hyperparameters

and get good estimates in less time.

With the applications shown in this chapter we can state that it is possible to use the estimtf

package to find the maximum likelihood estimates of the parameters of multiple distributions

or regression models using real data sets. In the case of distributional parameters, with this

package we obtained very similar estimates to the ones obtained with functions like nlm,

nlminb and optim, which are very popular and have been traditionally used for this task.

Finally, in the case of the Poisson regression model we obtained estimates very similar to

those of the glm function, which is widely used to fit generalized linear models, and in

the case of the FWE regression model we concluded that the performance in estimating the

coefficients of the gamlss function was superior to the performance of the function mlereg tf

in terms of the estimates error and execution time.
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learning rate maxiter Execution time (seconds) β10 β11 β20 β21

0.01

100 9.012 1.518 2.665 0.628 1.514

500 17.407 1.574 2.304 0.391 0.533

1000 28.107 1.218 1.919 0.161 0.138

5000 69.272 0.232 0.093 0.411 0.411

10000 65.760 0.232 0.092 0.411 0.411

0.05

100 10.356 1.632 2.327 0.468 0.666

500 19.228 0.019 0.356 0.325 0.394

1000 24.726 0.235 0.098 0.412 0.411

5000 25.731 0.235 0.098 0.412 0.411

10000 26.182 0.235 0.098 0.412 0.411

0.1

100 4.141 1.359 2.053 0.207 0.198

500 9.232 0.236 0.100 0.412 0.411

1000 9.651 0.236 0.101 0.412 0.411

5000 10.077 0.236 0.100 0.412 0.411

10000 18.436 0.236 0.100 0.412 0.411

0.5

100 5.155 0.146 0.009 0.383 0.538

500 7.595 0.237 0.105 0.412 0.410

1000 7.885 0.237 0.105 0.412 0.410

5000 8.090 0.237 0.105 0.412 0.410

10000 17.323 0.237 0.105 0.412 0.410

Table 6-10.: Absolute error of estimates of β10, β11, β20 and β21 obtained using the

mlereg tf() function and differente values for the learning rate and the max-

imum number of iterations.



7. Conclusions, recommendations and

future work

This chapter provides some conclusions based on the work presented above and recommen-

dations for the use of the estimtf package, as well as proposals for future work focused

primarily on improving the performance and results obtained with the package.

7.1. Conclusions

In this work we presented the estimtf package. This package allows R users to find the max-

imum likelihood estimates of parameters of probability distributions and regression models

using the TensorFlow optimizers. Our main goal was to introduce the main characteristics,

functionalities and advantages of the estimtf package and illustrate the use of the mle tf

function and the mlereg tf function using real datasets. On the other hand, we used a

simulation study to show that there are some variables such as the learning rate that can

affect the results obtained with this package and that it is possible to obtain good estimates

using both functions mle tf and mlereg tf.

Although the TensorFlow library and in particular the TensorFlow optimizers are mostly

used to train neural network models, with this work we showed that they can also be im-

plemented for estimating distributional and regression parameters. To achieve this, it was

necessary to design an iterative estimation process in which the value of the parameters

change from one iteration to another according to an update rule that depends on the opti-

mizer. We were able to implement this estimation process in R through the estimtf package

taking advantage of packages such as tensorflow and tfprobability.

One of the main advantages of the estimtf package is the possibility of estimating parame-

ters of distributions that are not necessarily implemented in R. In this case, the user must

provide an R object of class function with the mass/density function of the distribution of

interest. On the other hand, unlike optimization functions such as optim or nlm, when using

the functions from the estimtf package, the user does not have to compute the log-likelihood
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function in order to find the maximum likelihood estimates.

Through a simulation study it was shown that the estimates obtained with the mle tf func-

tion and the mlereg tf function are affected by the sample size n, the TensorFlow optimizer

and the initial value of the learning rate for the selected optimizer when estimating param-

eters of the Poisson distribution and the EEG distribution. For both distributions included

in the study, we can conclude that when using the Adam optimizer and the RMSProp opti-

mizer, the majority of the estimates obtained with these functions were close to the actual

values of the parameters for most learning rate and sample size combinations, especially with

large sample sizes. However, for some parameters, the error of the estimates is very high

when n < 50. On the other hand, with the Adagrad optimizer, only with a learning rate

of 0.1, we obtained good estimates. Which lead us to conclude that for distributions like

Poisson and EEG, when using the Adagrad optimizer is recommended to set a value higher

than 0.01 for the initial learning rate.

In the application section we observe that the maximum likelihood estimates of the parame-

ters of the EEG distribution, the distribution for instantaneous failures and the transmuted

Rayleigh distribution, obtained with the mle tf function are very similar to the ones ob-

tained with the optim, nlm and nlminb functions which use optimization methods such

as L-BFGS-B, the Newton-type algorithm and PORT routines respectively and that are

very popular and frequently used to solve optimization problems. Also, the estimates of the

coefficients of the Poisson regression model obtained with the mlereg tf function are very

similar to the ones obtained with the glm function which is a very known and widely used

function to fit generalized linear models.

Although in the simulation study and in the applications chapter, parameters of only a

few probability distributions and linear regression models were estimated, it is important

to emphasize that the performance in terms of precision of the estimates of the mle tf and

mlereg tf functions in most of the cases was very good. This allows us to begin to trust

the estimates provided by the estimtf package and to conclude that it is indeed possible to

use the TensorFlow optimizers to solve the maximum likelihood problem. This gives R users

the possibility to access a reliable tool with which they can find the maximum likelihood

estimates of parameters of multiple distributions and regression models in an intuitive and

simple way while taking advantage of a very powerful library such as TensorFlow.

Finally, according to the results presented in previous sections it is not possible to con-

clude that the optimization method implemented in the estimtf package is better in terms

of precision and efficiency than other traditional methods such as quasi-Newton methods

or PORT routines. However, with this work we not only managed to achieve one of the

main objectives which was to evaluate whether it is possible to use TensorFlow optimizers to
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find the maximum likelihood estimates of distributional and regression parameters. We also

managed to show that the performance of these algorithms in estimating these parameters

is good under certain conditions.

7.2. Recommendations

As the learning rate decreases, the changes in the values of the parameters from one iteration

to another are less significant and therefore, the time required for the algorithm to converge

is longer. With this in mind, it is recommended to increase the number of iterations of the

optimization process as the initial learning rate value is smaller.

As in the previous sections we concluded that the optimizer and the initial value of the

learning rate affect the quality of the estimates, it is important to know very well the way in

which each optimizer updates the values of the parameters during the optimization process

to choose correctly the initial value of the learning rate. For example, in the case of the Ada-

grad optimizer the user must provide an initial value for the learning rate greater than 0.01 in

order to obtain accurate estimates. If required, the user can try with different combinations

of the optimizer and its hyperparameters values to determine which one gets the best results.

When estimating parameters from distributions not included in Table 4-1, the user must

provide the mass/density function of the distribution of interest. To avoid getting errors

during the estimation process it is important to make sure that the function has the right

arguments which are mentioned in the estimtf package section. Also, the user must avoid

adding curly brackets when writing the mass/density function.

The optimization process may fail because the parameters take values outside their space.

To avoid this when estimating distributional parameters, the user should provide limits to

the parameters to impose restrictions during the estimation process. On the other hand,

when estimating regression parameters the user must determine if it is required to apply a

link function to all or some of the parameters to be estimated. Also, we recommend the

user to try with different optimizers, with different values for the learning rate and to check

if there is any problem with the input data. Finally, when working with a distribution not

included in Table 4-1, if the process keeps failing even after following all the recommen-

dations, it is possible that some invalid computation is being performed when evaluating

the log-likelihood function. Therefore the user must review the function and try to make

changes to avoid these numerical problems.
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7.3. Future work

From the application section we conclude that the execution time of the mle tf function

and the mlereg tf function is greater than the execution time of functions such as optim,

nlminb, nlm and glm. We acknowledge that the execution time is a very important factor

when choosing a function to carry out a specific task. Therefore, we consider that it is cru-

cial to work on improving the efficiency of the functions included in the estimtf package in

order to provide R users accurate results in less time. One of the ideas we have to improve

not only the efficiency of the package, but also the quality of its estimates is by combining

TensorFlow’s optimization algorithms that use the descent gradient method with other op-

timization methods such as Newton-Raphson.

The simulation study presented earlier was designed to determine if the sample size, the

selected optimizer and the initial value for the learning rate had an effect on the maximum

likelihood estimates obtained with the mle tf function and the mlereg tf function. As

there are other variables involve in the estimation process such as the maximum number of

iterations and the values for the optimizer hyperparameters other than the learning rate, it

would be interesting to determine if these variables have an effect on the estimates obtained

with both functions. Also, as in the simulation study we only included the Poisson distribu-

tion and the EEG distribution, we will continue to study different distributions to determine

the values of the hyperparameters from which good estimates are obtained and to replicate

these conditions in the estimation of parameters of similar distributions.

For now, the estimtf package has eight available distributions for which the user must only

provide the name of the distribution. In order to simplify the implementation of the the

mle tf function and the mlereg tf function, we intend to continue increasing the list of

available distributions so that the user does not have to worry about providing the mass/-

density function of the distribution of interest. Also, we consider important to improve the

provided summary of the estimates by adding more information about the estimation process

and metrics such as the AIC for model selection.

Another really important aspect of a package is its documentation. We have been and

we will continue working in improving the documentation related to package dependencies,

package functions, its inputs, outputs and general functionalities. In order to improve the

user experience when using the functions of the estimtf package, it is essential to provide

information about the errors that may occur during the estimation process. For this reason,

we plan to include in the package manual a list of errors for each function of the estimtf

package, the cause of these errors and recommendations to solve them.

In the simulation study, only the mle tf and the mlereg tf functions of the estimtf package
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were used to estimate the parameters of the Poisson and EEG distributions. However, we

consider it important to compare the results of these functions in terms of error and precision

of the estimates and in terms of execution time, with the results of other similar functions

available in R. For this reason, we plan to extend this simulation study by including other

functions, which will allow us to determine more clearly if there is any significant difference

in the performance of these functions and of the estimtf package functions.

Finally, due to the fact that in optimization problems such as maximum likelihood estima-

tion, situations may arise in which the optimization algorithm fails due to for example poor

specification of the initial point, it is important to perform a stability and sensitivity analysis

of the optimization algorithm implemented in the mle tf and mlereg tf in different extreme

situations and determine how its performance is affected in these conditions.



A. Appendix: estimtf package manual

In this appendix, we present the manual of the estimtf package. This manual contains

detailed information of the arguments and outputs of each function included in the package

as well as some examples of the use of these functions which can be run in R.
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mlereg_tf mlereg_tf function

Description

Function to find the Maximum Likelihood Estimates of regression parameters using TensorFlow.

Usage

mlereg_tf(
ydist = y ~ Normal,
formulas,
data,
available_distribution = TRUE,
fixparam = NULL,
initparam = NULL,
link_function = NULL,
optimizer = "AdamOptimizer",
hyperparameters = NULL,
maxiter = 10000,
tolerance = .Machine$double.eps

)

Arguments

ydist an object of class "formula" that specifies the distribution of the response vari-
able. The default value is y ~ Normal. The available distributions are: Normal,
Poisson, Binomial, Weibull, Exponential, LogNormal, Beta and Gamma. If
you want to estimate parameters from a distribution different to the ones men-
tioned above, you must provide the name of an object of class function that
contains its probability mass/density function. This R function must not contain
curly brackets other than those that enclose the function.

formulas a list containing objects of class "formula". Each element of the list represents
the linear predictor for each of the parameters of the regression model. The
linear predictor is specified with the name of the parameter and it must contain
an ~. The terms on the right side must be separated by +.

data a data frame containing the response variable and the covariates.
available_distribution

logical. If TRUE, the distribution of the response variable is one of the fol-
lowing distributions: Normal, Poisson, Binomial, Weibull, Exponential,
LogNormal, Beta and Gamma.
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fixparam a list containing the fixed parameters of the model only if they exist. The pa-
rameters values and names must be specified in the list.

initparam a list with the initial values of the regression coefficients to be estimated. The
list must contain the regression coefficients values and names. If you want to use
the same initial values for all regression coefficients associated with a specific
parameter, you can specify the name of the parameter and the value. If NULL
the default initial value is zero.

link_function a list with names of parameters to be linked and the corresponding link function
name. The available link functions are: log, logit, squared and identity.

optimizer a character indicating the name of the TensorFlow optimizer to be used in the op-
timization process. The default value is 'AdamOptimizer'. The available opti-
mizers are: "AdadeltaOptimizer", "AdagradDAOptimizer", "AdagradOptimizer",
"AdamOptimizer", "GradientDescentOptimizer", "MomentumOptimizer" and
"RMSPropOptimizer".

hyperparameters

a list with the hyperparameters values of the selected TensorFlow optimizer. If
the hyperparameters are not specified, their default values will be used in the
oprimization process. For more details of the hyperparameters go to this URL:
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train

maxiter a positive integer indicating the maximum number of iterations for the optimiza-
tion algorithm. The default value is 10000.

tolerance a small positive number. When the difference between the loss value or the
parameters values from one iteration to another is lower than this value, the
optimization process stops. The default value is .Machine$double.eps.

Details

mlereg_tf computes the log-likelihood function based on the distribution specified in ydist and
linear predictors specified in formulas. Then, it finds the values of the regression coefficients that
maximizes this function using the TensorFlow opimizer specified in optimizer.

The R function that contains the probability mass/density function must not contain curly brackets.
The only curly brackets that the function can contain are those that enclose the function, that is,
those that define the beginning and end of the R function.

Value

This function returns the estimates, standard errors, Z-score and p-values of significance tests of
the regression model coefficients as well as some information of the optimization process like the
number of iterations needed for convergence.

Note

The summary,print,plot_loss functions can be used with a mlereg_tf object.

Author(s)

Sara Garcés Céspedes <sgarcesc@unal.edu.co>
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Examples

#----------------------------------------------------------------------------------
# Estimation of coefficients of a Poisson regression model

# Data frame with response variable and covariates
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
data <- data.frame(treatment, outcome, counts)

# Use the mlereg_tf function
estimation_1 <- mlereg_tf(ydist = counts ~ Poisson,

formulas = list(lambda = ~ outcome + treatment),
data = data,
initparam = list(lambda = 1.0),
optimizer = "AdamOptimizer",
link_function = list(lambda = "log"),
hyperparameters = list(learning_rate = 0.1))

# Get the summary of the estimates
summary(estimation_1)

#----------------------------------------------------------------------------------
# Estimation of coefficients of a linear regression model with one fixed parameter

# Data frame with response variable and covariates
x <- runif(n = 1000, -3, 3)
y <- rnorm(n = 1000, mean = 5 - 2 * x, sd = 3)
data <- data.frame(y = y, x = x)

# Use the mlereg_tf function
estimation_2 <- mlereg_tf(ydist = y ~ Normal,

formulas = list(mean = ~ x),
data = data,
fixparam = list(sd = 3),
initparam = list(mean = list(Intercept = 1.0, x = 0.0)),
optimizer = "AdamOptimizer",
hyperparameters = list(learning_rate = 0.1))

# Get the summary of the estimates
summary(estimation_2)

#----------------------------------------------------------------------------------
# Estimation of parameter lambda of the Instantaneous Failures distribution

# Create an R function that contains the probability density function
pdf <- function(y, lambda) { (1 / ((lambda ^ 2) * (lambda - 1))) *

(lambda^2 + y - 2*lambda) * exp(-y/lambda) }

# Data frame with response variable
y <- c(3.4, 0.0, 0.0, 15.8, 232.8, 8.8, 123.2, 47, 154, 103.2, 89.8, 12.2)
data <- data.frame(y)

# Use the mlereg_tf function
estimation_3 <- mlereg_tf(ydist = y ~ pdf,

formulas = list(lambda = ~1),
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data = data,
initparam = list(lambda = rnorm(1, 5, 1)),
available_distribution = FALSE,
optimizer = "AdamOptimizer",
hyperparameters = list(learning_rate = 0.1),
maxiter = 10000)

# Get the summary of the estimates
summary(estimation_3)

mle_tf mle_tf function

Description

Function to find the Maximum Likelihood Estimates of distributional parameters using TensorFlow.

Usage

mle_tf(
x,
xdist = "Normal",
fixparam = NULL,
initparam,
bounds = NULL,
optimizer = "AdamOptimizer",
hyperparameters = NULL,
maxiter = 10000,
tolerance = .Machine$double.eps

)

Arguments

x a vector containing the data to be fitted.

xdist a character indicating the name of the distribution of interest. The default value
is 'Normal'. The available distributions are: Normal, Poisson, Binomial,
Weibull, Exponential, LogNormal, Beta and Gamma. If you want to estimate
parameters from a distribution different to the ones mentioned above, you must
provide the name of an object of class function that contains its probability
mass/density function. This R function must not contain curly brackets other
than those that enclose the function.

fixparam a list containing the fixed parameters of the distribution of interest only if they
exist. The parameters values and names must be specified in the list.

initparam a list with initial values of the parameters to be estimated. The list must contain
the parameters values and names.

bounds a list with lower and upper bounds for each parameter to be estimated. The list
must contain the parameters names and vectors with the bounds. The default
value is NULL.
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optimizer a character indicating the name of the TensorFlow optimizer to be used in the es-
timation process The default value is 'AdamOptimizer'. The available optimiz-
ers are: "AdadeltaOptimizer", "AdagradDAOptimizer", "AdagradOptimizer",
"AdamOptimizer", "GradientDescentOptimizer", "MomentumOptimizer" and
"RMSPropOptimizer".

hyperparameters

a list with the hyperparameters values of the selected TensorFlow optimizer. If
the hyperparameters are not specified, their default values will be used in the
oprimization process. For more details of the hyperparameters go to this URL:
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train

maxiter a positive integer indicating the maximum number of iterations for the optimiza-
tion algorithm. The default value is 10000.

tolerance a small positive number. When the difference between the loss value or the
parameters values from one iteration to another is lower than this value, the
optimization process stops. The default value is .Machine$double.eps.

Details

mle_tf computes the log-likelihood function of the distribution specified in xdist and finds the
values of the parameters that maximizes this function using the TensorFlow optimizer specified in
optimizer.

The R function that contains the probability mass/density function must not contain curly brackets.
The only curly brackets that the function can contain are those that enclose the function, that is,
those that define the beginning and end of the R function.

Value

This function returns the estimates, standard errors, Z-score and p-values of significance tests of the
parameters from the distribution of interest as well as some information of the optimization process
like the number of iterations needed for convergence.

Note

The summary,print,plot_loss functions can be used with a mle_tf object.

Author(s)

Sara Garcés Céspedes <sgarcesc@unal.edu.co>

Examples

#-----------------------------------------------------------------------------
# Estimation of parameters mean and sd of the normal distribution

# Vector with the data to be fitted
x <- rnorm(n = 1000, mean = 10, sd = 3)

# Use the mle_tf function
estimation_1 <- mle_tf(x,

xdist = "Normal",
optimizer = "AdamOptimizer",
initparam = list(mean = 1.0, sd = 1.0),
hyperparameters = list(learning_rate = 0.1))
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# Get the summary of the estimates
summary(estimation_1)

#-----------------------------------------------------------------------------
# Estimation of parameter lambda of the Instantaneous Failures distribution

# Create an R function that contains the probability density function
pdf <- function(X, lambda) { (1 / ((lambda ^ 2) * (lambda - 1))) *

(lambda^2 + X - 2*lambda) * exp(-X/lambda) }

# Vector with the data to be fitted
x <- c(3.4, 0.0, 0.0, 15.8, 232.8, 8.8, 123.2, 47, 154, 103.2, 89.8, 12.2)

# Use the mle_tf function
estimation_2 <- mle_tf(x = x,

xdist = pdf,
initparam = list(lambda = rnorm(1, 5, 1)),
bounds = list(lambda = c(2, Inf)),
optimizer = "AdamOptimizer",
hyperparameters = list(learning_rate = 0.1),
maxiter = 10000)

# Get the summary of the estimates
summary(estimation_2)

plot_loss plot_loss function

Description

Function to display a graph that contains the loss value computed in each iteration of the optimiza-
tion process performed using the mle_tf function or using the mlereg_tf function.

Usage

plot_loss(object, ...)

Arguments

object an object of class MLEtf for which the construction of a graph with the loss
values is desired.

... additional arguments affecting the constructed graph.

Details

plot_loss.MLEtf function displays a graph of the loss value, which correspond to the negative
log-likelihood computed in each iteration of the optimization process.

Author(s)

Sara Garcés Céspedes <sgarcesc@unal.edu.co>
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Examples

#---------------------------------------------------------------
# Estimation of both normal distrubution parameters

# Generate a sample from the normal distribution
x <- rnorm(n = 1000, mean = 10, sd = 3)

# Use the plot_loss function
plot_loss(mle_tf(x,

xdist = "Normal",
optimizer = "AdamOptimizer",
initparam = list(mean = 1.0, sd = 1.0),
hyperparameters = list(learning_rate = 0.1)))

print.MLEtf print.MLEtf function

Description

Function to display the estimates of parameters from probability distributions using the mle_tf
function or parameters from regression models using the mlereg_tf function.

Usage

## S3 method for class 'MLEtf'
print(x, ...)

Arguments

x an object of class MLEtf for which a visualization of the estimates is desired.

... additional arguments affecting the displayed estimates.

Details

print.MLEtf function displays the estimates of parameters from probability distributions and re-
gression models.

Author(s)

Sara Garcés Céspedes <sgarcesc@unal.edu.co>

Examples

#---------------------------------------------------------------
# Estimation of both normal distrubution parameters

# Generate a sample from the normal distribution
x <- rnorm(n = 1000, mean = 10, sd = 3)

# Use the print function
print(mle_tf(x,

xdist = "Normal",
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initparam = list(mean = 1.0, sd = 1.0),
optimizer = "AdamOptimizer",
hyperparameters = list(learning_rate = 0.1)))

summary.MLEtf summary.MLEtf function

Description

Function to produce result summaries of the estimates of parameters from probability distributions
using the mle_tf function or parameters from regression models using the mlereg_tf function.

Usage

## S3 method for class 'MLEtf'
summary(object, ...)

Arguments

object an object of class MLEtf for which a summary is desired.

... additional arguments affecting the summary produced.

Details

summary.MLEtf function displays estimates and standard errors of parameters from statistical distri-
butions and regression models. Also, this function computes and displays the Z-score and p-values
of significance tests for these parameters.

Author(s)

Sara Garcés Céspedes <sgarcesc@unal.edu.co>

Examples

#---------------------------------------------------------------
# Estimation of both normal distrubution parameters

# Generate a sample from the normal distribution
x <- rnorm(n = 1000, mean = 10, sd = 3)

# Use the summary function
summary(mle_tf(x,

xdist = "Normal",
optimizer = "AdamOptimizer",
initparam = list(mean = 1.0, sd = 1.0),
hyperparameters = list(learning_rate = 0.1)))
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B. Appendix: R code used in the

simulation study

In this appendix, we present the R code used in the simulation study for all the scenarios.

B.1. Scenario 1

# Function to generate a sample of size n of the Poisson distribution

gen_data <- function(lambda , n) {

datos <- rpois(n, lambda = lambda)

return(datos)

}

# Function to replicate gen_data function

auxiliar <- function(n) {

lambda <- 2.91

datos <- gen_data(lambda , n)

return(datos)

}

Code B.1: Functions to generate data from the Poisson distribution with parameter λ.

# Function to perform one simulation

one_simul <- function(n, learning_rate , optimizer) {

# Generate the random samples

datos <- auxiliar(n)

# Use the mle_tf function to estimate parameters of the Poisson

distribution

estimation_2 <- try(mle_tf(x = datos ,

xdist = "Poisson",

initparam = list(lambda = 0.5),

optimizer = optimizer ,

hyperparameters =list(
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learning_rate=learning_rate),

maxiter = 10000) ,

silent = TRUE)

# Get the estimates

if (class(estimation_2)[1] == "try -error") {

estimates <- rep(NA, 2)

} else {

estimates <- c(estimation_2$outputs$estimates)
}

results <- c(estimates)

result <- cbind(t(results), n, learning_rate , optimizer)

# Save the results

write(x = t(result), file = ’simul_sincov_poisson.txt’, ncol = 5,

append=TRUE)

}

Code B.2: Function to perform one simulation for each of the 54 cases in scenario 1.

# Function to replicate the one_simul function

mult_simul <- function(x) {

n <- x[1]

n <- as.numeric(n)

learning_rate <- x[2]

learning_rate <- as.numeric(learning_rate)

optimizer <- x[3]

# replicate nrep times the one_simul function

res <- replicate(n=nrep ,

expr=one_simul(n = n,

learning_rate = learning_rate ,

optimizer = optimizer))

}

# Specify the parameters for the simulation

n <- c(20, 50, 100, 200, 500, 1000)

learning_rate <- c(0.1, 0.01, 0.001)

optimizer <- c("AdamOptimizer", "RMSPropOptimizer", "AdagradOptimizer")

nrep <- 1000

values <- expand.grid(n = n,

learning_rate = learning_rate ,

optimizer = optimizer)

values$optimizer <- as.character(values$optimizer)

# Start simulation

apply(values , 1, mult_simul)

Code B.3: Function to replicate 1000 times the one simul function for scenario 1.
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B.2. Scenario 2

# Function to generate a sample of size n of the Poisson regression model

gen_data <- function(lambda , x1 , n) {

datos <- rpois(n, lambda = lambda)

datos_final <- c(datos , x1)

return(datos_final)

}

# Function to replicate gen_data function

auxiliar <- function(n) {

beta0 <- -0.42

beta1 <- 0.58

x1 <- rnorm(n, 2.5, 0.6)

lambda <- exp(beta0 + beta1 * x1)

datos <- gen_data(lambda , x1, n)

return(datos)

}

Code B.4: Functions to generate data from the Poisson regression model with coefficient β0

and β1.

# Function to perform one simulation

one_simul <- function(n, learning_rate , optimizer) {

# Generate the random samples

datos <- replicate(n=n_repeticiones , expr=auxiliar(n= 1))

datos <- as.data.frame(t(datos))

colnames(datos) <- c("y", "x1")

# Use the mlereg_tf function to estimate parameters of the Poisson

regression model

formulas <- list(lambda = ~x1)

estimation_2 <- try(mlereg_tf(ydist = y ~ Poisson ,

formulas = formulas ,

data = datos ,

available_distribution = TRUE ,

fixparam = NULL ,

initparam=list(lambda= 0.5),

link_function=list(

lambda="log"),

optimizer = optimizer ,

hyperparameters = list(

learning_rate = learning_rate),

maxiter = 10000) ,

silent = TRUE)
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# Get the estimates

if (class(estimation_2)[1] == "try -error") {

estimates <- rep(NA, 2)

} else {

estimates <- c(estimation_2$outputs$estimates)
}

results <- c(estimates)

result <- cbind(t(results), n, learning_rate , optimizer)

# Save the results

write(x = t(result), file = ’simul_cov_poisson.txt’, ncol = 6,

append=TRUE)

}

Code B.5: Function to perform one simulation for each of the 54 cases in scenario 2.

# Function to replicate the one_simul function

mult_simul <- function(x) {

n <- x[1]

n <- as.numeric(n)

learning_rate <- x[2]

learning_rate <- as.numeric(learning_rate)

optimizer <- x[3]

# replicate nrep times the one_simul function

res <- replicate(n=nrep ,

expr=one_simul(n = n,

learning_rate = learning_rate ,

optimizer = optimizer))

}

# Specify the parameters for the simulation

n <- c(20, 50, 100, 200, 500, 1000)

learning_rate <- c(0.1, 0.01, 0.001)

optimizer <- c("AdamOptimizer", "RMSPropOptimizer", "AdagradOptimizer")

nrep <- 1000

values <- expand.grid(n = n,

learning_rate = learning_rate ,

optimizer = optimizer)

values$optimizer <- as.character(values$optimizer)

# Start simulation

apply(values , 1, mult_simul)

Code B.6: Function to replicate 1000 times the one simul function for scenario 2.
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B.3. Scenario 3

# Function to generate a sample of size n of the EEG distribution

gen_data <- function(gamma , beta , n) {

gamma <- gamma

beta <- beta

# Define the probability density function

f <- function(x) {(beta * gamma * exp(-beta * x)) / (1 -

(1 - gamma) * exp(-beta * x))^2}

# Define the cumulative distribution function

Fa <- function(x) {integrate(f, 0, x)$value}
Fa <- Vectorize(Fa)

# Inverse of the cumulative distribution function

F.inv <- function(y){uniroot(function(x){Fa(x) - y}, interval=c(0, 1),

extendInt = "upX")$root}
F.inv <- Vectorize(F.inv)

# Generate a random sample from U(0,1) and evaluate in F.inv

Y <- runif(n, 0, 1)

datos <- F.inv(Y)

return(datos)

}

# Function to replicate gen_data function

auxiliar <- function(n) {

gamma <- 2

beta <- 4

datos <- gen_data(gamma , beta , n)

return(datos)

}

Code B.7: Functions to generate data from the EEG distribution with parameters β and γ.

# Function to perform one simulation

one_simul <- function(n, learning_rate , optimizer) {

# Generate the random samples

datos <- auxiliar(n)

# Define the probability density function of the EEG distirbution

pdf <- function(X, beta , gamma) {

(beta*gamma*exp(-beta * x))/(1 -(1 - gamma)*exp(-beta * x))^2

}

# Use the mle_tf function to estimate parameters of the EEG

distirbution

estimation_2 <- try(mle_tf(x = datos ,

xdist = pdf ,

initparam = list(beta = 0.5,
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gamma = 0.5),

optimizer = optimizer ,

hyperparameters = list(

learning_rate = learning_rate),

maxiter = 10000) ,

silent = TRUE)

# Get the estimates

if (class(estimation_2)[1] == "try -error") {

estimates <- rep(NA, 2)

} else {

estimates <- c(estimation_2$outputs$estimates)
}

results <- c(estimates)

result <- cbind(t(results), n, learning_rate , optimizer)

# Save the results

write(x = t(result), file = ’simul_sincov.txt’, ncol = 6, append=TRUE)

}

Code B.8: Function to perform one simulation for each of the 54 cases in scenario 3.

# Function to replicate the one_simul function

mult_simul <- function(x) {

n <- x[1]

n <- as.numeric(n)

learning_rate <- x[2]

learning_rate <- as.numeric(learning_rate)

optimizer <- x[3]

# replicate nrep times the one_simul function

res <- replicate(n=nrep ,

expr=one_simul(n = n,

learning_rate = learning_rate ,

optimizer = optimizer))

}

# Specify the parameters for the simulation

n <- c(20, 50, 100, 200, 500, 1000)

learning_rate <- c(0.1, 0.01, 0.001)

optimizer <- c("AdamOptimizer", "RMSPropOptimizer", "AdagradOptimizer")

nrep <- 1000

values <- expand.grid(n = n, learning_rate = learning_rate ,

optimizer = optimizer)

values$optimizer <- as.character(values$optimizer)

# Start simulation

apply(values , 1, mult_simul)

Code B.9: Function to replicate 1000 times the one simul function for scenario 3.
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B.4. Scenario 4

# Function to generate a sample of size n of the EEG distribution

gen_data <- function(gamma , beta , x1 , x2 , n) {

gamma <- gamma

beta <- beta

# Define the probability density function

f <- function(x) {(beta * gamma * exp(-beta * x)) / (1 -

(1 - gamma) * exp(-beta * x))^2}

# Define the cumulative distribution function

Fa <- function(x) {integrate(f, 0, x)$value}
Fa <- Vectorize(Fa)

# Inverse of the cumulative density function

F.inv <- function(y){uniroot(function(x){Fa(x) - y}, interval=c(0, 1),

extendInt = "upX")$root}
F.inv <- Vectorize(F.inv)

# Generate a random sample from U(0,1) and evaluate in F.inv

Y <- runif(n, 0, 1)

datos <- F.inv(Y)

datos_final <- c(datos , x1, x2)

return(datos_final)

}

# Function to replicate gen_data function

auxiliar <- function(n) {

beta0 <- 0.5

beta1 <- 1.5

beta2 <- 2

beta3 <- -3

x1 <- runif(n, 0, 1)

x2 <- runif(n, 0, 1)

beta <- exp(beta0 + beta1 * x1)

gamma <- exp(beta2 + beta3 * x2)

datos <- gen_data(gamma , beta , x1, x2, n)

return(datos)}

Code B.10: Functions to generate data from the EEG distribution with parameters β and γ

which are in terms of linear predictors.

# Function to perform one simulation

one_simul <- function(n_repeticiones , learning_rate , optimizer) {

# Generate the random samples

datos <- replicate(n = n_repeticiones ,

expr = auxiliar(n = 1))

datos <- as.data.frame(t(datos))
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colnames(datos) <- c("y", "x1", "x2")

# Use the mlereg_tf function to estimate parameters of the EEG

distribution

formulas <- list(beta = ~x1, gamma = ~x2)

estimation_2 <- try(mlereg_tf(ydist = y ~ pdf ,

formulas = formulas ,

data = datos ,

available_distribution = FALSE ,

fixparam = NULL ,

initparam = list(beta =0.5, gamma = 0.5),

link_function = list(

beta = "log", gamma = "log"),

optimizer = optimizer ,

hyperparameters = list(learning_rate =

learning_rate),

maxiter = 10000) ,

silent = TRUE)

# Get the estimates

if (class(estimation_2)[1] == "try -error") {

estimates <- rep(NA, 2)

} else {

estimates <- c(estimation_2$outputs$estimates)
}

results <- c(estimates)

result <- c(results , n_repeticiones , learning_rate , optimizer)

# Save the results

write(x = t(result), file = ’simul_cov.txt’, ncol = 8, append = TRUE)

}

Code B.11: Function to perform one simulation for each of the 54 cases in scenario 4.

# Function to replicate the one_simul function

pdf <- function(y, beta , gamma) {(beta * gamma * exp(-beta * y)) / (1 - (1

- gamma) * exp(-beta * y))^2}

mult_simul <- function(x) {

n <- x[1]

n <- as.numeric(n)

learning_rate <- x[2]

learning_rate <- as.numeric(learning_rate)

optimizer <- x[3]

optimizer <- as.character(optimizer)

# replicate nrep times the one_simul function

res <- replicate(n = nrep ,

expr = one_simul(n = n,
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learning_rate = learning_rate ,

optimizer = optimizer))

}

# Specify the parameters for the simulation

n <- c(20, 50, 100, 200, 500, 1000)

learning_rate <- c(0.1, 0.01, 0.001)

optimizer <- c("AdamOptimizer", "RMSPropOptimizer", "AdagradOptimizer")

nrep <- 1000

values <- expand.grid(n = n,

learning_rate = learning_rate ,

optimizer = optimizer)

values$optimizer <- as.character(values$optimizer)

# Start simulation

apply(values , 1, mult_simul)

Code B.12: Function to replicate 1000 times the one simul function for scenario 4.
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