
Fast Security Constraint Optimal Power Flow
using Parallel and Heterogenous Computing

Diego Fernando Rodŕıguez Medina

Universidad Nacional de Colombia

Department of Electrical Engineering

Bogotá, Colombia

2021

Fast Security Constraint Optimal Power Flow
using Parallel and Heterogenous Computing

Diego Fernando Rodŕıguez Medina

A thesis submitted in partial fulfillment of the requirements for the degree of:

Doctor of Engineering

Thesis Director:

Sergio Rivera, PhD

Thesis Committee:

Di Wu, PhD

Jaime Pinzón, PhD

Marcelo Elizondo, PhD

Research line: Power System Optimization

Universidad Nacional de Colombia

Department of Electrical Engineering

Bogotá, Colombia

2021

iii

Agradecimientos

Hay pocos momentos en los que no es fácil comunicar las muchas cosas que pasan por la

cabeza. Sin embargo, trataré de hacerlo en unas cortas ĺıneas. Primero deseaŕıa agradecer

al profesor Sergio Rivera que más que un director ha sido un amigo durante más de seis

años de relación. De esta misma forma, agradecerle al comité de jurados (Dr. Di Wu, Dr.

Jaime Pinzón, Dr. Marcelo Elizondo), que de manera desinteresada y amable han optado

por leer las páginas que se registran en este documento, dando las mejores recomendaciones

y sugerencias. Además de esto un gran agradecimiento a mi amiga durante estos últimos

años, Gabriela Andrade “Pequeño Iceberg” que me ha ayudado enormemente con la edición

de la tesis y acompañado en más de un momento dif́ıcil de estos últimos años.

Es imposible evitar nombrar a las personas especiales que han estado acompañándome

durante toda mi vida, como son mis padres Jorge y Flor que han formado lo que hoy soy.

A mi hermano que, a pesar de ser tan diferentes, amo de forma inimaginable. A mi

segunda mamá que es mi Tı́a Naty, a quién siempre llevaré en mi corazón y a quién

sencillamente debo mi personalidad. De igual forma unas gracias especiales a mi amigo

desde el colegio William Mej́ıa, con el que hemos sorteado un gran número de retos, los

cuales, afortunadamente, no han logrado vencernos. A mis amigos de la Universidad, en

especial Andrés Angulo que ha estado d́ıa y noche apoyándome en las labores que debo

desarrollar, a Carlos Ávila y a todos los que no hemos perdido contacto a pesar de la

distancia (Camilo, David, Fernando, Sebastián, Ruben, Carlos M, Rafa). También a mis

amigos de colegio (David, Alejandro, Peter, Néstor, Diego, Ángela, Laura) con los que

siempre hemos sido una familia. A Ruth que siempre ha estado orgullosa de cada uno de

mis logros y ha seguido cada uno de ellos. A Diego Gómez y Wilmer Garzón que más que

un apoyo en mi equipo de consultoŕıa, han sido unos grandes compañeros y co-equiperos en

todo el desarrollo de esta tesis. Podŕıa decir que gracias a ellos no perd́ı la esperanza de

finalizar este documento. Es innegable agradecer a mi equipo de GERS que ha sido una

pieza fundamental en este proceso (Juan G., Victoria G., Carolina R., Jose H., Cristhian

G., Daniela Z., Daniel S., Andrés Z., Daniel G., Manuel T., Manuel F., Ricardo A., David

A. y todos los que pasaron por la escuela de Estudios Internacionales).

Por último, pero no menos importante, un agradecimiento gigantezco a mi especial

“Maracaibo” quién sabe que llevo en mi corazón y que alegró más de un momento en este

proceso. Ella sabe que puede alegrarme muchos más, sólo que no todo es tan fácil en este

mundo desordenado. Ella sabe cuánto sueño con tenerla a mi lado, la adoro.

A todos un especial y caluroso agradecimiento. Soy consciente que mi vida no seŕıa lo mismo

sin ustedes.

iv

Acknowledge

There are few moments when it is not easy to communicate the many things that go

through your head. However, I will try to do it in a few short lines. First, I would like to

thank Professor Sergio Rivera, who more than a director has been a friend for more than

six years of relationship. In the same way, thank the committee members (Dr. Di Wu, Dr.

Jaime Pinzón, Dr. Marcelo Elizondo), whose in a disinterested and friendly way have

chosen to read the pages that are recorded in this document, giving the best

recommendations and suggestions. In addition to this, a big thank you to my friend in

recent years, Gabriela Andrade ”Little Iceberg” who has helped me enormously with the

thesis edition and accompanied me in more than one difficult moment of this period.

It is impossible to avoid naming the special people who have been accompanying me

throughout my life, such as my parents Jorge and Flor who have formed what I am today.

To my brother who, despite being so different, I love in an unimaginable way. To my

second mother who is my Aunt Naty, whom I will always carry in my heart and to whom I

simply owe my personality. In the same way, a special thanks to my friend from school

William Mej́ıa, with whom we have overcome a large number of challenges. To my friends

from the University, especially Andrés Angulo who has been supporting my days and nights

at GERS, Carlos Ávila and all who keep in touch despite the distance (Camilo, David,

Fernando, Sebastián, Ruben, Carlos M, Rafa). Also to my friends from school (David,

Alejandro, Peter, Néstor, Diego, Ángela and Laura) with whom we have always been a

family. To Ruth who has always been proud of each of my accomplishments and followed all

of them. To Diego Gómez and Wilmer Garzón who, more than a support in my consulting

team, have been great colleagues throughout the development of this thesis. I could say that

thanks to them I did not lose hope of finalizing this document. It is undeniable to thank my

GERS team that has been a fundamental piece in this process (Juan G., Victoria G,

Carolina R., Jose H., Cristhian G., Daniela Z., Daniel S., Andrés Z., Daniel G., Manuel

T., Manuel F., Ricardo A., David A. and all those who went through the school of

International Studies)

Last but not least, a special thanks to my special “Maracaibo” who knows what is in my

heart. She made me happy in more than one moment during all the years of this work. She

can keep me happy even in this not well organized world. “La adoro” and dream it.

To all a special and warm thanks. I am aware that my life would not be the same without

you.

v

Abstract

Optimal and secure grid operation is paramount for modern power systems. However, the

ever increasing system size, number of conventional and renewable sources, not to mention

system loads and power system controllers, make the satisfaction of those requirements in

on-line applications not an easy task. Different approaches have been applied to meet

power system security criteria and reach optimal cost during real-time operation.

Nevertheless, the strategies are mostly employed in small power systems, using strong

assumptions or lack of advanced and efficient software-hardware interaction. That makes

some of the applications infeasible in real operation or very costly in terms of hardware

implementation. As a solution for those limitations, this research will address the problem

of Security Constrained Optimal Power Flow (SCOPF) using the potential of Parallel and

Heterogeneous Computing (PHC). By this approach, this research is looking to expand the

application of advanced computing techniques for the solution of real-time power system

problems that simultaneously involves security and optimal cost. The intention is to

understand the strategies and principles for computer memory management, data

structures and SCOPF re-formulation to optimally satisfy security and time response for

proper power system operation.

Keywords: Security Constrained Optimal Power Flow (SCOPF), Optimal Power Flow

(OPF), Parallel Computing (PC), Complex Power Networks, Real-Time SCOPF, Graphical

Processing Unit (GPU).

vi

Resumen

Cálculo Rápido de Flujo de Potencia Óptimo con Restricciones de Seguridad

utilizando Computación Paralela y Heterogénea

El funcionamiento óptimo y seguro de la red eléctrica es primordial para los sistemas de

enerǵıa modernos. Sin embargo, el tamaño cada vez mayor de dichos sistemas, aśı como la

cantidad de fuentes convencionales y renovables, sin mencionar las cargas del sistema y los

controladores del sistema de enerǵıa, hacen que la satisfacción de esos requisitos en las

aplicaciones en tiempo real no sean una tarea fácil. Se han aplicado diferentes enfoques

para cumplir con los criterios de seguridad del sistema de enerǵıa y alcanzar un costo

óptimo durante la operación en tiempo real. Sin embargo, las estrategias se emplean

principalmente en sistemas académicos de pequeñas dimensiones, utilizando fuertes

suposiciones o falta de software-hardware avanzado y eficiente interacción. Eso hace que

algunas de las aplicaciones sean inviables en operación real o muy costosas en términos de

implementación de hardware. Como una solución para esas limitaciones, esta investigación

abordará el problema del flujo de enerǵıa óptimo con restricciones de seguridad (SCOPF)

utilizando el potencial de la computación paralela y heterogénea (PHC). Mediante este

enfoque, esta investigación busca expandir la aplicación de técnicas informáticas avanzadas

para la solución de problemas de sistemas de potencia en tiempo real que involucran

simultáneamente seguridad y costo óptimo. La intención es comprender las estrategias y

los principios para la gestión de la memoria de la computadora, las estructuras de datos y

la reformulación de SCOPF para satisfacer de manera óptima la seguridad y el tiempo de

respuesta para correcto funcionamiento del sistema de potencia.

Palabras Clave: Flujo de Potencia Optimo, Seguridad en Sistemas de Potencia,

Computación Paralela, Redes de Potencia Complejas, Operación en Tiempo Real, Unidad

de Procesamiento Gráfico .

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Research Statement . 6

1.3 Objectives . 8

1.3.1 General Objective . 8

1.3.2 Specific Objectives . 8

1.4 Thesis Outline . 8

1.4.1 Chapter 2: Background and Literature Review 8

1.4.2 Chapter 3: Parallel Power Flow Algorithm in Low Cost Embedded

Computer Architectures Empowered by GPU 8

1.4.3 Chapter 4: Security Constraint Optimal Power Flow Formulation and

Solutions with Constraint Handling 9

1.4.4 Chapter 5: SCOPF for Medium and Large Power Systems 9

1.4.5 Chapter 6: Conclusions and Contributions 9

1.5 Publications . 9

1.6 Awards . 10

2 Background and Literature Review 11

2.1 Security Constraint OPF . 13

2.2 Parallel and Heterogeneous Computer Architectures 15

2.2.1 Modern Computer Architectures . 16

2.2.2 GPUs . 18

2.3 Applications of PHC to Power Systems . 21

2.4 Applications of PHC to OPF and SCOPF 28

3 Parallel Power Flow Algorithm in Low Cost Embedded Computer Architectures

Empowered by GPU 33

3.1 Power Flow Architecture . 34

3.2 Power Flow Vectorization . 36

3.3 Power Flow Vectorization in Embedded Computer Using a GPU 39

3.3.1 Ybus Matrix Computation . 40

3.3.2 P, Q and J Computation . 42

3.4 Results and Discussion . 42

3.5 Conclusions . 47

viii Contents

4 Security Constraint Optimal Power Flow Formulation and Solutions with

Constraint Handling 48

4.1 Security-constrained OPF: An Overview . 49

4.1.1 Categories of SCOPF Problem . 50

4.1.2 SCOPF Solution Strategies . 50

4.2 Formulation of the SCOPF Problem . 53

4.2.1 Complete Formulation . 53

4.2.2 Proposed Approach . 58

4.3 Methodology . 60

4.3.1 Parallel OPF (Optimal Power Flow) 61

4.3.2 Contingencies . 61

4.3.3 Constraint Handling rules . 64

4.4 Results . 68

4.5 Discussion . 74

4.6 Conclusions . 74

5 SCOPF using an PHC Strategy for Medium and Large Size Power Systems 75

5.1 Introduction . 75

5.2 Mathematical Formulation . 76

5.3 Heterogeneous and Parallel Implementation CPU-GPU 80

5.3.1 PHC Architecture . 80

5.3.2 Network Data . 81

5.3.3 Sparse Matrix . 81

5.3.4 Data Transfer CPU-GPU . 83

5.3.5 GPU Architecture . 83

5.3.6 CPU Architecture . 86

5.4 Case Study . 87

5.5 Results . 87

5.5.1 Accuracy and Convergence of PHC Architectures 87

5.5.2 PHC Architectures Performance . 88

5.5.3 Sparse Linear Solver Performance . 91

5.5.4 Discussion . 91

5.6 Conclusions . 94

6 Contributions and Concluding Remarks 96

6.1 Contributions . 96

6.2 Answering the Research Questions . 97

6.3 Directions for Future Research . 97

References 99

List of Figures

2-1 Power system operating states [1] . 12

2-2 The canonical stored program architecture [2] 16

2-3 Typical memory hierarchy and performance for a modern computing system [2] 17

2-4 Turing TU102/TU104/TU106 Streaming Multiprocessor (SM) [3] 20

2-5 GPU applications in power systems . 23

2-6 PHC applications in power systems . 26

2-7 Parallel OPF algorithm using CPU and GPU platforms 29

2-8 Ybus and Jacobian matrices of 19402-bus power system 30

3-1 Definition of instruction to evaluate and the information required 38

3-2 Definition of the required information as the input of the parallel computation 39

3-3 Parallel computation of defined instruction and output data 40

3-4 Cuda Kernel for computing P,Q,J matrix using Numba 45

3-5 Nodal power balance using the developed algorithm run on Nvidia-Jetson Nano 46

3-6 Time elapsed for load flow convergence using the developed algorithm run on

Nvidia-Jetson Nano . 46

3-7 Cost-ratio comparison between the platform’s cost and the microgrid’s total

cost regarding the microgrid generation capacity for different segments . . . 46

4-1 Overview of sections composing the main algorithm 61

4-2 Parallel optimal power flow. 62

4-3 Contingencies selection flowchart . 62

4-4 Active power re-dispatch and PV/PQ switch algorithm 66

4-5 FSM transitions . 67

4-6 Branch limits updating . 67

4-7 Voltage limits updating . 69

4-8 Cost and violations in function of iterations for network 1 for different

percentage of CS . 70

4-9 Cost and violations in function of iterations for Network 2 for different

percentage of CS . 70

4-10 Cost and violations in function of iterations for Network 3 for different

percentage of CS . 72

4-11 Average time per contingency in function of number of buses 73

x List of Figures

5-1 Flow chart of fast SCOPF algorithm . 79

5-2 Typical architecture of GPUs . 84

5-3 Execution model of a CUDA program . 84

5-4 Client-Server architecture [4] . 85

5-5 Average solver time for different power system sizes 92

List of Tables

2-1 Summary of memory hierarchy - Technical and economical specifications [2] . 17

3-1 Array input for computing Ybus in GPU regarding the pre-processing stage . 40

3-2 Computation of the matrix Ybus in GPU . 41

3-3 Ybus GPU Kernel Output . 41

3-4 P, Q and J kernel input . 42

3-5 P, Q and J kernel calculations . 43

3-6 P, Q and J kernel output . 43

3-7 Jetson Nano Technical Features . 44

4-1 Description of networks tested . 71

4-2 Summary Results for different percentage of CS 73

5-1 Pseudo code for SCOPF algorithm (Average Time) 80

5-2 Networks variables . 82

5-3 Description of networks tested . 87

5-4 Cost and errors in serial and parallel algorithm execution using network 1 . . 88

5-5 Average Time for first iteration of the complete SCOPF (s) 88

5-6 Speed up under different strategies for first algorithm iteration 90

5-7 Results for one iteration of the SCOPF algorithm using parallel architectures

for CPU and CPU-GPU . 93

Acronyms

ADMM Alternating Direction Multipliers Method. 48, 51, 52

AGC Automatic Generation Control. 76, 77

ALM Augmented Lagragian Method. 48, 51, 52

ALU Arithmetic Logic Unit. 16

BD Benders Decomposition. 48, 51, 52, 74

BESS Battery Energy Storage Systems. 27

CISC Complex Instruction Set Computing. 16

COO Sparse Coordinate Format. 81

CPU Central Processing Unit. ix, 8, 9, 15, 16, 18, 19, 22, 24, 25, 27–31, 34, 39, 44, 75, 76,

78, 80, 81, 83, 85–89, 91, 94, 96–98

CS Contingency Screening. ix, 68, 71, 72, 74

CSCOPF Corrective Security Constrained Optimal Power Flow. 14, 50, 51

CSR Compressed Sparse Row Format. 40, 81

CUDA Parallel Computing Platform and Programming model developed by NVIDIA. 81,

83, 85, 94

DAEs Differential-Algebraic Equations. 22, 25

DC Direct Current. 22, 50–52

DE Differential Evolution. 31

DEC Decoupled Power Flow. 24

EA Evolutionary Algorithm. 52

EC Embedded Computer. 8, 33, 34, 36, 39, 42, 44, 47

2 Acronyms

EMS Energy Managment System. 11

EMT Electromagnetic Transient. 22, 27, 28

FERC Federal Energy Regulatory Commission. 49

FPGA Field Programmable Gate Array. 15, 21, 22, 25, 27, 28, 31

FSM Finite State Machine. 64, 65, 71

GA Genetic Algorithm. 52

GPGPU General Purpose Graphics Processing Unit. 18, 19

GPU Graphical Processing Unit. v, ix, 8, 9, 15, 18, 19, 21–25, 28–31, 34, 39, 40, 42, 44, 47,

75, 76, 78, 80, 81, 83, 85–89, 91, 94, 96–98

HC Heterogeneous Computing. 15, 19, 96

HPC High Performance Computing. 9, 15, 31, 74, 96

HVDC High Voltage Direct Current. 21

IAI Interlaced Alternating Implicit. 25

IED Intelligent Electronic Devices. 34

ILP Instruction Level Parallelism. 18

IPOPT Interior Point Optimization. 28, 31, 60, 61, 68

ISA Instruction Set Architecture. 16

LD/ST Load/Store units. 19

LDAG Layered Directed Acyclic Graph. 22

LEM Local Energy Markets. 98

MA Metaheuristic Algorithm. 52

MILP Mixed Integer Linear Programming. 48

MIMD Multiple Instruction, Multiple Data. 21

ML Machine Learning. 52

Acronyms 3

MM Metaheuristic Method. 28, 30

MPI Message Passing Interface. 21, 25, 27, 31

NERC North American Electric Reliability Corporation. 49

NNZ Non Zeros. 28

NP-Hard Nonlinear Programming Problems-Hard. 50

OPF Optimal Power Flow. v, vii, ix, 8, 13, 24, 27–32, 34, 49, 51, 52, 60, 65, 74, 76, 78, 88,

89, 97, 98

PC Parallel Computing. v, 9, 15, 21, 22, 25, 27, 31, 76, 87, 96, 98

PCI Peripheral Component Interconnect. 83

PDC Parallel and Distributed Computing. 15

PEC Personal Computer. 33, 34, 44, 47

PF Power Flow. 49

PHC Parallel and Heterogeneous Computing. v, vii, ix, 6, 8, 9, 13, 18, 21, 23–29, 31, 75,

76, 80, 87–89, 91, 94, 97

POW Point of Wave. 31

PSCOPF Preventive Security Constrained Optimal Power Flow. 14, 49, 50

PSO Particle Swarm Optimization. 24, 27, 28, 31

QC Quatum Computing. 15

RAM Random Access Memory. 16

RISC Reduce Instruction Set Computer. 15, 16

SCOPF Security Constrained Optimal Power Flow. v, vii, 8, 9, 12, 13, 25, 27–29, 31, 48–53,

58, 60, 68, 71, 74–78, 80, 81, 87–89, 91, 94, 96–98

SFU Special Function Units. 19

SIMD Single Instruction, Multiple Data. 21, 22, 24, 25

SIMT Single Instruction Multiple Threads. 6

4 Acronyms

SLP Successive Linear Programming. 51

SM Streaming Multiprocessors. 19, 83

SP Streaming Processor. 83

SP Scalar Processor. 19

TC Tensor Cores. 19

TEF Transient Energy Function. 31

TS Transient Stability. 22, 25, 28, 31

TSCOPF Transient Stability-Constrained Optimal Power Flow. 25, 27, 28, 31

ULM Universal Line Models. 22

UMM Unified Machine Models. 22

1 Introduction

1.1 Motivation

Since the start of electric power systems, electrical engineers and system operators have

managed the grid in real-time, balancing the energy produced by generation plants and the

demand consumed by different customers. Nowadays, the increase of energy sources and

loads have expanded the complexity of this labor, so numerous intelligent systems and

sophisticated solutions such as Energy Managment Systems (EMS), Dynamic Stability

Assessment (DSA) tools, Market Management Systems (MMS), Advanced Distribution

Management Systems (ADMS), among others are required to efficiently and securely

operate the vast amount of system elements.

Previous solutions not only monitored and operated electrical elements but also ran

algorithms and routines using Optimal Power Flow (OPF) models to satisfy optimal

system operation and control in a normal state. The objective of the OPF includes finding

optimal generation dispatch and control settings in the machines, without exceeding limits

in the grid elements to maximize one or more objectives [5]. Nevertheless, optimal

operation during normal state is not enough in our society with a high dependence on

electricity, making the desire of maintaining system security an overriding factor. System

security follows a planning and operation criteria that keep the system operating within

secure limits after the failure of one or more elements [6, 7]. In response to those

requirements, Security-Constrained Optimal Power Flow (SCOPF) formulation allows for

an optimal solution satisfying security constraints. These constraints involve the loss of a

line, a generation unit, or an element that may cause power interruption or abnormal

operation [8].

Several general purpose optimization solvers and solution methods have been implemented

to find SCOPF problem solutions in the last era, however limitations in computer

capabilities and technology cost resulted in limited optimal solutions. The main reason is

that the current power system has expanded considerably in the last century [9], increasing

the number of lines, nodes, loads, and generation units in the grid thus making the system

more complex. Trying to solve these ever increasing problems, grid operators and the

research public were required to make model simplifications to satisfy effective time

responses in the control center. The assumptions included linearizing AC power flow

6 1 Introduction

formulation (using Decouple Optimal Power Flow (DCOPF) to ignore voltage and reactive

power in the system, avoiding discrete system changes, removing systems controls, etc., to

identify feasible solutions with an efficient cost and time [10].

There are several technology and OPF formulation advances that hypothesize that the

entire SCOPF problem can be solved in a useful time for grid operators with an improved

system cost. Computer power boost [11], new SCOPF approaches, and grid operation

techniques as well as computer accessibility, exalt the previous premise.

As mentioned above, different approaches have been chosen to use developments in PHC in

order to efficiently use the resources available in a computer or in large-scale clusters with

hundreds of nodes. Most of these problems have identified great potential in solving

problems focused on changes in power flow and transient stability [12–16]. A vast majority

of approaches have used parallel computing, mostly using computer CPU cores, however,

the high cost, and high temperatures generated during software processing, low latency of

memory access, as well as barriers to the simple execution of instructions in parallel has

limited the massive use of this alternative. On the other hand, other approaches have

opted for cloud processing or the use of GPUs, the latter being one of the most used in

handling high volumes of information with regular processing patterns due to the benefits

shown at low cost.

The use of a GPU allows for the processing of a large number of homogeneous operations,

with a reduced time due to the thousands of cores and the Single Instruction Multiple

Threads (SIMT) structure it handles. On the other hand, the CUDA language, developed

in previous years [17,18], makes interaction with this type of hardware more flexible. These

and other benefits make using GPUs for highly computationally and complex problems a

feasible solution in terms of cost and response times. However, its benefits are limited by

the requirements of regular computing patterns [18].

In order to use the PHC potential and increase the computational capacity applied to

power systems, ensuring optimal, secure operation, as well as fast processing, this work

proposes the SCOPF implementation using the integration of the applied CPU and GPU

potential to SCOPF solutions.

1.2 Research Statement

The increase of electrical energy consumption and dependence has motivated power system

operation to function optimally and securely. Nowadays, operators must guarantee

constant and efficient energy flows not only in normal states but also in emergency

1.2 Research Statement 7

conditions, with one or more elements out of service. However, this requirement is not

easily satisfied as a result of the number of variables and system sizes involved in the power

systems. Controllable and non-controllable variables include loads, switchable capacitors

and reactors, conventional and renewable sources, and breakers. System sizes depend on

the number of substations, transmission lines, and transformers. A greater number of

variables and system sizes results in extreme memory requirements and unacceptable

computation times for SCOPF, as a result of high dimensionality, non-linearity, and

non-convexity of the problem.

Multiple strategies have been implemented to solve SCOPF problems satisfying accuracy

and calculation times required by grid codes. These strategies rarely are applied to high

size systems (more than 1,000 nodes) and use complete problem definition. In contrast,

most have been applied to small and medium size systems based on simplifications of the

problem definition [19]. The simplifications include contingency filtering [20, 21], network

compression [19] and linearization using DC flow [22], among others. Although these

simplifications allow us to satisfy computation times and optimal solutions demanded by

the operators, they still require robust and high processing platforms with an excessive

number of cores or extreme approximations that affect the performance of the solution

algorithms and the cost of the solution. Some technology advances have shown outstanding

results with the use of small size PHC architectures with large data volumes and

homogeneous processing; however, the use of these strategies have not been fully exploited

in the solution of SCOPF problems.

In order to reduce the current limitations associated with the number of problem

simplifications and excessive calculation times, advances in the area of PHC are proposed

as a possible solution. However, new problem formulations will be required to reduce the

gap between SCOPF and the use of CPU and GPU hardware. Through the research we

will focus on the solution of SCOPF problems for medium and large power system using

the PHC architectures. The research plans to answer the following questions:

• What specific SCOPF features and formulations are suitable for being parallelized

using PHC architectures?

• How much faster can the evaluation be completed using PHC integration to solve

SCOPF problems in comparison with a traditional solution using only CPU cores?

• Does the strategy satisfy the on-line security times and optimum solutions required by

system operators?

8 1 Introduction

1.3 Objectives

1.3.1 General Objective

Design a SCOPF algorithm using PHC in order to improve computation time and near

optimal solution for on-line applications.

1.3.2 Specific Objectives

1. Identify main SCOPF features and formulations suitable for being parallelized in PHC

architectures satisfying on-line security time limits.

2. Propose a SCOPF formulation using a PHC architecture to speed up near optimal

solutions in Medium and Large Scale Power Systems.

3. Assess the performance of the algorithm with Medium and Large Scale Power Systems

in on-line time frames.

1.4 Thesis Outline

The dissertation is divided in the set of chapters below. Chapter 3 supports Objective 1.

Chapter 3 and 4 support Objective 2. Chapter 5 supports Objective 3.

1.4.1 Chapter 2: Background and Literature Review

This chapter presents a literature review covering the topics to be covered in the dissertation.

First, the formulation of the Security Constrained Optimal Power Flow (SCOPF) problem

is presented and the possible strategies that have been developed to solve this problem

are shown. Subsequently, a review of the Parallel and Heterogeneous Computing (PHC)

architectures currently offered by the market is made. A review of parallel structures applied

to power systems and particularly to the Optimal Power Flow (OPF) and SCOPF solution

is included. Finally, an in-depth review is done on the PHC application using Central

Processing Unit (CPU) and Graphical Processing Unit (GPU).

1.4.2 Chapter 3: Parallel Power Flow Algorithm in Low Cost

Embedded Computer Architectures Empowered by GPU

In this chapter, an algorithm based on the Newton-Raphson is vectorized and executed in a

low-cost EC. The algorithm optimizes the execution time vectorizing Ybus matrix, Jacobian

matrix, and power injected flows using a GPU architecture. The algorithm is evaluated in

different test power systems using Python and a computing board NVIDIA Jetson Nano.

1.5 Publications 9

The results show a feasible implementation for near real time power system planning and

operation.

1.4.3 Chapter 4: Security Constraint Optimal Power Flow Formulation

and Solutions with Constraint Handling

This chapter presents an implementation of SCOPF using a constraint handling strategy

together with PC architecture to solve medium, large and complex power system in near

real time. The strategy identifies the activities that consume higher times and uses special

PC architectures to solve the problem in 5 and 45 minutes. The strategy was tested in

power system with sizes from 500 to 11,615 buses in local computer and higher system sizes

in ARPA computer cluster.

1.4.4 Chapter 5: SCOPF for Medium and Large Power Systems

This chapter shows the result of using a CPU and GPU based PHC architecture using the

previously developed algorithm to solve SCOPF problems in medium, long and complex

networks. The structure optimizes the tasks that can be parallelized in order to reduce the

algorithm’s execution times using CPU cores and GPU threads. The results were successful

for large networks.

1.4.5 Chapter 6: Conclusions and Contributions

This chapters wrap up the concluding remarks of this research and proposes some research

questions as future work. The key research questions presented in Section 1.2 are also

addressed in this chapter.

1.5 Publications

The list of documents below were published during the development of this thesis:

• A Fast Decomposition Method to Solve a Security Constrained Optimal Power Flow

(SCOPF) Empowered by High Performance Computing (HPC) (Under Review) [23].

• Low-Cost Analysis of Load Flow Computing Using Embedded Computer Empowered

by GPU [24].

• A Review of Parallel Heterogeneous Computing Algorithms in Power Systems [25].

• Smart Microgrids Operation Considering Expert Knowledge and Ensembled Based

Metaheuristic Optimization Algorithms (Under Publication) [26].

10 1 Introduction

• A Fast Decomposition Method to Solve a Security-Constrained Optimal Power Flow

(SCOPF) Problem Through Constraint Handling [27]

• Algorithms for Bidding Strategies in Local Energy Markets: Exhaustive Search through

Parallel Computing and Metaheuristic Optimization [28].

• Teaching using a synchronous machine virtual laboratory [29].

• Smart Microgrids Operation Considering a Variable Neighborhood Search: The

Differential Evolutionary Particle Swarm Optimization Algorithm [30].

• Mathematical Formulation and Numerical Validation of Uncertainty Costs for

Controllable Loads [31].

• 2018 Grid Optimization Competition Evaluating the Performance of Modern Heuristic

Optimizers on Stochastic Optimization Problems applied to Smart Grids Test bed A :

Stochastic OPF in Presence of Renewable Energy and Controllable Loads [32].

• 2018 Competition on Operational Planning of Sustainable Power Systems: Testsbeds

and Results [33].

1.6 Awards

• A Fast Decomposition Method to Solve Security Cosntrained Optimal Power Flow

Empowered by Parallel and Heterogeneous Computing. Premio ÁMBAR a la

Investigación 20/21 [34].

• Preventive Security Constrained Optimal Power Flow Using An Ensembled Method:

Constraints Relaxation With Analitycal Optimization Combined With A Heuristic

Method. ARPA Award. [35].

• Posicionamiento Óptimo de cuadrillas basado en estad́ısticas de Tránsito de Google

Maps e Indicadores de Confiabilidad. Finalista Premio ÁMBAR a la Investigación

2018 [36].

• Herramienta para la Programación de Redes Inteligentes con Recursos Energéticos de

Alta Incertidumbre. Finalista Premio ÁMBAR a la Innovación 2019 [37].

2 Background and Literature Review

Power systems require decisions that allow for their secure and optimal operation. Optimal

operation is defined under lower cost criteria. On the other hand, security is defined as the

ability of a power system to withstand sudden disturbances such as short circuits and the

anticipated loss of system components [38]. These two characteristics mentioned above

result from the requirements of operating manuals and network codes [39], in addition to

the regularization of [40] markets.

Traditionally, power systems have been designed and operated to withstand contingency

conditions of existing elements. According to this, network codes require that power

systems be designed and operated in compliance with disturbance-performance criteria,

supporting abnormal operating situations such as contingencies. The latter can include the

output of one or more elements. Those outages are known as N-1 and N-K criteria [8] and

are required to ensure that the system continues to operate normally in the face of

unexpected variations.

Furthermore, due to the existence of economic transactions during the normal operation of

the power system, it is necessary to optimize the operation costs, which is mainly achieved

through the reduction of generation costs [5]. The optimization of operation costs has

increased in complexity due to the wide variety of types of generations in the system,

including hydraulic plants, fossil fuel dependent plants, and others that are booming. This

is the case for both solar and wind renewable energies [41]. Figure 2-1 shows the different

states that involve the operation of a power system [1]. In Normal State, the system will

satisfy the normal operating ranges and ensure that it operates optimally. In this state, the

connected load (equality constraint) must be met in the system without having violations

of the thermal limits of lines and stresses (inequality constraint) throughout the system. A

more extensive review of these constraints is observed in 2.1. Since the monitoring systems

of the following system EMS can normally execute multiple assessments of possible

contingency states, scenarios can be detected where a possible output of the system

element can cause load loss, overload on lines, or cascading effects that could lead to

blackouts. Such a state of operation is called the Alert State. In this state, the operator

receives alarms of possible conditions that may generate some risk. In order to reduce the

risk, maneuvers to avoid unsafe conditions are executed (In this condition, equality and

12 2 Background and Literature Review

inequality constraint are maintained1). The system can reach Emergency State or In

Extremis when a disturbance severe enough to leave an area without power or violate the

safe voltage operating limits and line loadability (In this state the constraint of equality

and inequality are not satisfied). Once this condition has been identified, the system

operator must reduce violations that occurred and start the recovery process. This process

is called Restorative State.

Normal State
(Tracking load, minimizing cost,

system coordination)

Restorative

In extremis

Alert

Emergency

Controlled transition

Uncontrolled transition

Violation
of limits

Emergency
control

Emergency
control

System
restoration

Preventive
control

System
restoration

Reduction in
Reserve
Margine

Figure 2-1: Power system operating states [1]

In order to increase system security, reduce the existing risks of load loss, line overhead,

and cascading events, some approaches [42–46] have suggested strategies to cover the states

highlighted in green in Figure 2-1. In this way, not only is the optimal operation of the

system guaranteed in the normal state of operation, but also in the emergency and

extremis states. This includes the loss of loads and violations in the operating variables of

various elements of the system, which are avoided. Studies focused on these solutions are

framed in the area of SCOPF. These are based on optimal system operation in compliance

with existing constraints during the normal operating and contingency [45] states.

Although these strategies [45] consider the green states of Figure 2-1, they have been

applied mostly to operation planning. This has culminated from the long processing times

resulting from the large number of decision variables and constraints in the system. The

1In Alert State the occurrence of contingencies are not considered. This state appears when the system

goes out of a certain security level or adverse weather conditions appear

2.1 Security Constraint OPF 13

SCOPF problems require the intensive use of computational resources and considerable

extensions of evaluation time. This limits your application to tools that require short

times, such as on-line security applications, such as the on-line security2.

As a result of the above, evaluations in small-scale power systems or with simplifications in

formulation have been proposed [42, 47, 48] in order to meet the limitations of computation

and time. This suggests that a review and modification to the existing formulation of the

existing formulation SCOPF and the computational architecture of PHC applied to online

security could allow the desired time and optimal requirements to be met. The sections

below describe the formulation of the problem SCOPF problema, a brief description of the

computing architectures, and shows the advances of those applications to power systems.

2.1 Security Constraint OPF

The SCOPF problems are an extension of the de OPF3, SCOPF problems can generally be

formulated as shown below [45]:

min
x0, ..., xc, u0, ..., uc

f0(x0, u0) (2-1a)

s.t. g0(x0, u0) = 0, (2-1b)

h0(x0, u0) ≤ Ll, (2-1c)

gsk(x
s
k, u0) = 0 k = 1, ..., c, (2-1d)

hsk(x
s
k, u0) ≤ Ls k = 1, ..., c, (2-1e)

gk(xk, uk) = 0 k = 1, ..., c, (2-1f)

hk(xk, uk) ≤ Lm k = 1, ..., c, (2-1g)

|uk − u0| ≤ ∆uk k = 1, ..., c (2-1h)

Where f0 is the targeted function, k corresponds to the pre-contingency and

post-contingency scenarios (k = 0 pre-contingency and c corresponds to the

post-contingency scenario number c), xk is the vector of state variables (magnitudes and

voltage angles), xsk is the vector in the short-time frame (before the technical maneuvers

made by the operator), uk is the vector of control variables (generator power, voltages in

terminals, shunt reactive compensators, transformer taps and pass shifter, breakers status),

∆uk is the vector of maximum allowed adjustments. Ll, Lm and Ls are the long (normal),

medium, and short (emergency) term limits. Limits are different depending on the

2On-line and Real-time terms will be used indistinctly for time frames of less than an hour. This time frame

includes generator droop responses and does not intend to cover in-deep analysis of Transient States
3Some authors consider that given the extension OPF is a section of SCOPF

14 2 Background and Literature Review

maximum limits and constraint time.

Constraints 5-1b and 5-1c denote contingencies of pre-contingency states, 5-1d - 2-1h post-

contingency states. Equality constraints 5-1b, 5-1d and 5-1f include nodal balances to meet

the load. 2-1h allows the operator to make adjustments to the system after a contingency

has happened. Due to the definition of the problem, two possible SCOPF formulations are

considered:

• Preventive Security Constrained Optimal Power Flow (PSCOPF): is a

particular formulation of the SCOPF problem in which corrective actions are not

considered in the system. This does not include the re-dispatch of generation units4

along with the automatic response of adjustment elements such as the derivation and

tap elements in transformers. Formulation including only preventive action includes

equations 5-1a - 5-1e [44,49].

• Corrective Security Constrained Optimal Power Flow (CSCOPF): This

formula considers generation re-dispacth for the removal of violations in the system.

Formulation including corrective actions includes equations 2-3a - 2-1h [43,47,50,51].

Different strategies have been used to reduce the solution time of these problems, as they

require the evaluation of different contingencies. Some include serial and successive

assessments of contingencies; however, the execution time is prolonged. Other approaches

include the decomposing of the problem into one master problem and another group of

subproblems (e.g.. Benders, Dantzig-Wolfe, Talukdar-Giras, etc.). Equations 2-2a - 2-3c,

shows the approximation using such strategies [48]. The Equation 2-2a - 2-2c shows the

master problem, while 2-3a - 2-3c is the result of subproblems when including security

constraints.

min f0(x0, u0) (2-2a)

s.t. g0(x0, u0) = 0, (2-2b)

h0(x0, u0) ≤ hmax (2-2c)

The c contingency subproblems are then

min 1T · εk (2-3a)

s.t. gk(x
0
k, u0 + εk) = 0, (2-3b)

hk(x
0
k, u0 + εk) ≤ hmax (2-3c)

4Only automatic response of droop is considered in generators

2.2 Parallel and Heterogeneous Computer Architectures 15

The 1T vector is a vector of ones, while εk represents the required preventive controls. This

representation removes the readjustments, passing them as constraints to the master

problem. In order to remove the violation the constraint is added as a Bender cut of the

shape,where λ is the Lagrange multiplier vector associated with constraints.

1T · εk + λ(u∗0 − u0) ≤ 0 (2-4)

Similar methods [42, 46, 51] allow to include and parallelize the various systems, however,

their application has been used in small networks of few nodes [42], with a limited number of

contingencies and without having the advantages of vectorization achieved through existing

computational structures [41, 52,53].

2.2 Parallel and Heterogeneous Computer Architectures

High Performance Computing (HPC) and Parallel and Distributed Computing (PDC) are

considered inseparable concepts nowadays [15, 54], [7, Introduction Paragraph 2]. This is

the result of the interaction of different hardware structures that composed modern

computers. Computers for multiple processing tasks include heterogeneous, parallel and

distributed architectures [55, page 179]. Traditionally, HPC had been generally related

with computers with high technical features that overpass normal computer specifications

or common system performance [56]. E.g. Vector and Reduce Instruction Set Computer

(RISC) processors were considered sophisticated in the past but nowadays may be taken

for granted.

During this research, the concept of HPC will be related with Parallel Computing (PC)

and Heterogeneous Computing (HC) concepts, that may differ with the conventional

approach as noted by [56]. Definition of HPC that includes high performance computers is

not pondered since computer technologies tend to change in the near term. E.g. Quatum

Computing (QC) is a present trend that will change the existing terms of high performance

computers. To avoid any possible confusion, the definition from [57] for Heterogeneous

Computing (HC) will be adopted in this research while parallel processing will relate all

structures that executes multiple tasks simultaneously. HC includes processors of different

types, such as acrfullcpus, Graphical Processing Unit (GPU)s and Field Programmable

Gate Array (FPGA)s. Nevertheless, this research is related with CPU + GPU

environments.

In the following subsections, computer architecture for regular microarchitectures using

CPUs and GPUs systems will be further discussed.

16 2 Background and Literature Review

2.2.1 Modern Computer Architectures

Memory

Control Unit

Accumulators

Arithmetic and
Logic Unit (ALU)

Input and Output Devices

Figure 2-2: The canonical stored program architecture [2]

Modern architectures generally follow the canonical model for a stored program

architecture viewed in Figure 2-2. This generally consists of a Control Unit, at least one

Arithmetic Logic Unit (ALU) and some kind of immediate memory (accumulators or

registers) which allows for calculations. These are put together into a CPU which in turn

interacts with longer term memories: main memories such as Random Access Memory

(RAM) and main storage devices such as hard drives. More specifically, modern

architectures add on this simpler scheme incorporating more advanced concepts and

technologies such as Instruction Set Architecture (ISA), which specifies how binary

instructions should be formatted and thus understood by the processor; main memories,

which make it possible for an initial program to load other programs (e.g. an operating

system); code branching, so a program can instruct what should be executed next; Reduce

Instruction Set Computer (RISC) and Complex Instruction Set Computing (CISC)

architectures, which make a compromise between hardware simplicity and compiler

efficiency vs hardware complexity and coding efficiency; caches; super-scalar execution;

parallelism; among others [2].

There are many reasons to include caches and intermediate memories into computing

systems, one of the major ones being to take full advantage of temporal locality and spatial

locality to increase performance. Locality generally refers to a common occurrence in

2.2 Parallel and Heterogeneous Computer Architectures 17

programs where recently (or close) accessed locations will be accessed again (or for the first

time in the case of close addresses) [2]. However, it is important to note the differences in

access speed and size as they relate to the different memory resources available. Memory

access to a RAM resource typically takes much longer than accessing data in processor

registers and caches, but in turn registers and caches have a higher price/storage ratio and

hence typically have much less storage capacities. Such differences in speed, storage and

price can be seen in Figure 2-3, where the different components of a modern computer

memory hierarchy are represented from top to bottom as they relate to the CPU, and

Table 2-1, where the general magnitudes of relevant properties for the memory hierarchy

components are displayed.

Slow CheapLarge

Fast ExpensiveSmall

Registers

Cache

Memory

Disk

Figure 2-3: Typical memory hierarchy and performance for a modern computing system [2]

Table 2-1: Summary of memory hierarchy - Technical and economical specifications [2]

Level 1 2 3 4

Name Registers Cache Memory Disk

Size ˜1kB ˜1MB ˜1GB ˜1GB

Access time ˜1ns ˜10ns ˜100ns ˜1000ns

Bandwidth ˜10000MB/s ˜1000MB/s ˜100MB/s ˜10MB/s

Cost ˜100$/MB ˜100$/MB ˜10$/MB ˜0.1$/MB

Managed By Programmer Processor OS OS

As memory accesses are generally needed to retrieve instructions and data, the processor is

normally able to operate only as fast as the memory, which is a problem known as the Von

Neumann Bottleneck or Memory Wall [2]. Technologies such as the caches as mentioned

18 2 Background and Literature Review

earlier help to mitigate this kind of problem.

A better understanding of these architectures can provide researchers with better tools for

taking advantage of performance potential in terms of Instruction Level Parallelism (ILP),

Pipelining and Heterogeneous Computing in general. Typically, parallelism in general

purpose microarchitecture has been historically achieved through pipelining, which is

basically dividing any process into sequential separate and shorter stages (adding

associated short-term memory registers) in order to let data flow (and be processed) into a

new stage as soon as the next stage has finished its previous data processing, thus allowing

the throughput (output speed) to be as fast as the slowest processing stage. A more

detailed explanation of pipelining can be found at [2].

2.2.2 GPUs

The first versions of microprocessors focused on the serial processing of [2, 58]. In this way,

a new task was executed only after an ongoing process had finished. On the other hand,

current processors have evolved in such a way that current CPUs integrate new structures

that allow the parallelism of tasks, through structures and architectures that involve the

operation of multiple cores and pipelining. However, [58] mentions that parallelism in

multiple cores not only integrates the execution of arithmetic operations and direct

parallelism of activities, but also includes complex tasks such as cache management,

instruction decoding, and branch prediction, among others. On the other hand, the

existence of vector structures in the GPU may allow better results using another structure

for memory management and the execution of tasks. These vector processors allow the

parallel execution of homogeneous processes [2]. The previous advances resulted from

developments of hardware from manufacturers (NVIDIA and AMD) mainly focused on

image processing; particularly, video games. These have made vector structure processing

products, such as GPUs, available to the public [58]. Similarly, manufacturers have created

languages like CUDA that allow for more GPU-friendly interaction.

As with most PHC systems, it is almost always necessary to tune algorithm and software

implementations in General Purpose Graphics Processing Unit (GPGPU)5 for them to fit

the parallel models, which requires an understanding of both architectural and programming

models [59] and [3, page 21].

5The terms GPGPU and GPU will be used indistinctly through this research. However, Computer Science

terminology relates GPU with graphical processing units dedicated to graphics rendering. On the other

hand, GPGPU is a GPU that performs specialized calculations that are usually performed by the CPU

2.2 Parallel and Heterogeneous Computer Architectures 19

2.2.2.1 GPU Microarchitecture

One way to exploit data parallelism is through the use of powerful co-processors as GPUs.

This section presents an overview of the key aspects of GPU architecture, focusing

particularly on Nvidia architectures.

Today’s GPU architectures contain thousands of computer cores along with information

flow management units. In this type of solution, several of the hardware components are

in turn part of its hierarchical structure at the software level, such is the case of memory

banks and caches. These elements are made up of several Streaming Multiprocessors (SM),

which contain a scheduler (more generally a thread scheduler) that normally manages the

flow of information packets called warps. This scheduler distributes arithmetic operations

or processes through multiple processing units called Scalar Processor (SP). SPs can be

integer SPs or floating SPs, which allow operations with integer or floating values depending

on the precision and processing speed required. Turing architecture’s SMs, as in previous

Nvidia architectures, also comprise a plurality load/store units Load/Store units (LD/ST)s

which calculate source and destination addresses and a plurality of Special Function Units

Special Function Units (SFU) which accelerate the execution of transcendental instructions

at hardware-level [3, 58, 59]. Figure 2-4 presents a schematic of the SM for Nvidia Turing

GPU architectures [3], with many of the above-highlighted components.

Recently introduced by previous Nvidia architectures, Turing architectures include a

plurality of TC, which are specialized execution units designed specifically for performing

the tensor/matrix operations which in the context of GPGPU are specially useful for Deep

Learning and Neural Networks applications [3]; also Turing includes Real-Time Ray

Tracing (RT) Cores, which have applications mainly in tasks related to the rendering of

visually realistic 3D models, although its applications on GPGPU may be worthwhile

exploring in the future.

The HC GPGPU structure, includes two kind of devices: The “host” or CPU system and

“device” or GPU system. The first is able to launch different processing task in the latter.

The data flow allows copy and paste operations from and to the device’s global memory

(normally the RAM in the graphic card). In GPGPUs, there is also a threat-scheduler that

distributes blocks of threads to different SMs for the final execution at SPs. Additionally,

the L2 cache allows data caching for redundant global memory accesses made by SMs [59].

The SM register file provides registers for threads execution. The L1 cache allows

additional data caching for global memory accesses made by different threads. Finally,

shared memory allows different threads to explicitly share data [59].

Based on the previous computing structure, the use of appropriate software design that

20 2 Background and Literature Review

Figure 2-4: Turing TU102/TU104/TU106 Streaming Multiprocessor (SM) [3]

2.3 Applications of PHC to Power Systems 21

inter-operates efficiently with existing hardware is an inherent factor to speed up

computing processing and satisfy real-time requirements.

2.3 Applications of PHC to Power Systems

The evolution of energy systems and the integration of new technologies, such as

non-conventional renewables, distributed generation, battery energy storage systems, High

Voltage Direct Current (HVDC) lines, among others, have made the simulation of the

electrical system a challenge for the application of various services. In particular, larger

and more complex systems require longer processing times to calculate and solve these

problems. As a result, multiple authors have looked for alternatives to speed up the

calculation time, in such a way that more optimal solutions are found in reduced

computing ranges. One of these alternatives is the use of PHC to execute the tasks in a

parallel way, avoiding the delays that sequential execution brings with it. In the last three

decades, different developments have allowed the application of PHC architectures to

power systems. The initial alternative was the use of PC clusters communicated through

the use of Message Passing Interface (MPI). Subsequently, fog and cloud computing

technologies were used not only to speed up calculation time, but also to manage large

volumes of information, e.g. the data records in Smart grids. Finally, during the last

decade, different advances suggested the use of FPGA and GPU architectures as useful and

optimized mechanisms for the parallelization of tasks. The FPGA architecture allows

applying techniques focused on Multiple Instruction, Multiple Data (MIMD), which enable

the execution of different instructions at multiple points simultaneously. On the other

hand, the GPU architecture is based on the Single Instruction, Multiple Data (SIMD)

architecture that allows for simultaneous execution of the same task at multiple points.

Then, technologies like fog and cloud computing were used not only to reduce simulation

time, but also as a solution to handle all the measured data from smart grids. Finally, over

the last decade, researchers have found in FPGA and GPU architectures a useful and

optimized mechanism for parallelizing tasks. The FPGA architecture allows the

application of the MIMD technique where different instructions can be simultaneously

executed at multiple data points. On the other hand, the GPU architecture provides the

ability to use the SIMD technique for common tasks where the same operation is

performed on multiple data points at the same time. As a result of the GPU architecture,

focused on SIMD operations and the various developments aligned with the programming

of GPU instructions in non-graphic programming languages such as C, C ++, FORTRAN,

among others, researchers have observed how to use GPUs for the solution of power system

problems with structures presenting common recurring instructions. The literature review

revealed more than 200 investigations that make use of PHC in the last three decades.

Figure 2-5 shows studies of power systems using GPUs. Figure 2-6 shows power system

22 2 Background and Literature Review

applications, using structures like PC clusters, fog, cloud computing and FPGAs.

In Figure 2-5, it is shown that Power Flow Analysis is the application with the most

research using GPU. Different authors have focused their projects on reducing the

convergence time of the methods for calculating the solution of flow equations. This has

been achieved through the parallelization of specific stages of the iterative algorithms using

the GPU. Depending on the algorithm and the type of system (Transmission or

Distribution), different strategies have allowed the parallelization of steps such as

impedance and Jacobian matrix construction for solving power flow problems using GPUs.

In [60], a strategy is proposed to accelerate the convergence rate of the gradient algorithm

conjugated with a multigrid preconditioning method. The strategy is implemented in GPU

accelerating the traditional analysis using the Direct Current (DC) algorithm. In [61], the

integration of a GPU solver is used to improve the convergence rate of a conjugate gradient

algorithm using a Chebyshev polynomial preconditioner. In [62], the authors make a

proposal for a preconditioned conjugate gradient solver that uses the mixture of two

alternatives: preconditioner Jacobi diagonal and polynomial Chebyshev to solve the load

flow problem through an algorithm that integrates the Fast Decouple Power Flow

algorithm integrated with the Inexact Newton on GPU. In [63], efficient data management

strategies are used through parallelism with primitive parallel functions such as map

function, reduction, and scan for various steps of the algorithm. The strategies look for

acceleration of the Newton-Raphson and Gaussian power flow algorithms using GPU.

The second GPU application area with the most citations was Transient Stability (TS) and

Electromagnetic Transient (EMT). In [64] and [65], the authors propose the parallelization

of the non-linear Differential-Algebraic Equations (DAEs), since they present discretized

and vectorized structures. This allows the slow coherence method to be applied to

simultaneously divide TS calculations into multiple processors. The structure is

appropriate to use a SIMD strategy and solve the Differential-Algebraic Equations (DAEs)

system. In such a way that the authors show a hybrid CPU-GPU to solve dispersed large

matrices in parallel. On the other hand, the EMT area shows relevant GPU applications.

In [66] the models of electrical elements such as lines, motors, and generators are

represented through discretized models (lumped models, Universal Line Models (ULM)

and Unified Machine Models (UMM)). These models offer a suitable structure in terms of

vectorization and linearization and can be solved on the GPU. In [67] hybrid algorithms for

homogeneous and heterogeneous computation are proposed in order to solve large systems.

In heterogeneous computing, control signals and Norton equivalent current sources

representing different electrical elements are processed. The nodal injection currents are

solved on the GPU, using a Layered Directed Acyclic Graph (LDAG) method. The method

sequentially links parallel primitives and fused multiply-add that performs add operation

for the linear models. Finally, the nodal voltages are calculated from the nodal injection

2.3 Applications of PHC to Power Systems 23

Figure 2-5: GPU applications in power systems

24 2 Background and Literature Review

currents and the existing impedance matrix.

The following applications with the greatest use are smart grids and renewable integration,

which largely integrate the use of GPUs. GPU structures have allowed the integration of

measurements of meteorological conditions and ranging data [68]. On the other hand, it

has been applied to solve operational planning processes such as OPF that include the

uncertainty of non-conventional renewable generation resources [41]. [69] performs a review

of PHC applications to power systems. In this review, the GPU is shown as a suitable

alternative for the visualization of smart grids in real time and in off-line calculations.

Finally, in [70] a distribution in a GPU cloud system is proposed to solve a dispatch

problem in real time. In that study, the use of a recurrent neural network wavelet is

proposed to perform generation dispatch.

The next with a large number of citations in GPU use applied to power systems is the

contingency analysis and OPF. In these approximations the OPF is used to reduce

simulation times in the energy flow analysis. Since the algorithms can perform a greater

number of iterations with shorter times, it is expected to find better optimals in shorter

time frames. The strategies propose hybrid CPU-GPU structures to solve a large number

of contingencies and scenarios. [71] proposes a contingency screening using Decoupled

Power Flow (DEC) using GPU in order to speed up the contingency ranking. The

algorithm includes calculations of nodal voltages and calculations of power flows in lines

during N-1 conditions of lines and generators. Regarding OPF application, Section 2.4

presents how OPF is parallelized using the SIMD technique.

After the application of optimization in the operation of GPU-OPF networks, estimation of

dynamic state and power quality are listed as relevant in the use of GPU. The dynamic

estimation of the power system state is implemented with an extended method of a

two-level Kalman filter, in which a CPU-GPU structure is used [72]. The stages of

parameter identification, prediction, and state filtering of the Kalman filter are executed in

parallel on GPU. In the same way, the calculation of the Jacobian matrix and the system

of linear equations solution for the estimation of system states is also executed in GPU.

Regarding the area of power quality, [73] shows an optimized algorithm that uses the

modified S transform and a parallel stacked sparse auto-encode to capture disturbances in

current and voltage wave forms. Another field of use of GPU is the acceleration of

algorithms for the identification of variables during the processes of model validation. [74]

uses GPU-accelerated Particle Swarm Optimization (PSO) algorithms to identify

parameters in models of synchronous machines such as permanent magnets.

Other references that use GPU architectures (less than 5 citations) include: Optimization

for the definition of design variables of electric vehicles [75], reduction of the calculation

2.3 Applications of PHC to Power Systems 25

time of Monte Carlo simulations with simple random sampling in order to execute

probabilistic power flow calculations [76], visualization of electrical networks in real time

with elevation models for friendly interaction with electrical variables [77], energy demand

forecasting using computational intelligence techniques such as Levenberg-Marquardt

learning through a multilayer perceptron architecture of a neural network [78],

approximation of small signal solutions of large networks using different solution methods:

Chebyshev discretization, time integration operator discretization, linearmultistep and Pad

e approximant [79] and acceleration of the short-circuit current contributions through

various branches when there is a fault at specific points. In the latter, the authors use the

GPU to accelerate the inversion of the admittance matrix to later perform the calculation

of injection currents at various points with the SIMD technique [80]. Regarding Transient

Stability-Constrained Optimal Power Flow (TSCOPF), section 2.4 presents a hybrid

CPU-GPU approach to accelerate the constraint analysis of each contingency and validate

the TS of the optimal solution. For the SCOPF application, no previous work was found.

On the other hand, Figure 2-6 describes the relevant contributions in power system

applications using PC clusters, fog and parallel computing, and FPGAs. These strategies

do not follow the SIMD architecture but rather use another structure for the parallelization

of activities. In this type of structure, the most relevant activity is TS analysis. In [81] a

proposal is given using the relaxed and very dishonest Newton’s method to solve discretized

algebraic equations using the trapezoidal rule. The authors in this study show the creation

of a cluster that integrates high-performance processing on an InteliPSC / 2 supercomputer

and the shared memory of an Alliant FX / 8 system. In [82], parallelization is performed

by dividing subsystems using the Interlaced Alternating Implicit (IAI) algorithm. The

algorithm parallelizes in subsystems and hierarchically solves each system of DAEs

independently using a block bordered diagonal form algorithm. In [83], dynamic simulation

results of large networks are shown using a decomposition in subsystems through a shared

model of parallel programming. The method divides the large network into smaller

networks and solves them independently using multi-core computers and OpenMP.

The next area of application for these PHC strategies is contingency analysis. In [84]

and [85] an asynchronous strategy is shown that allows optimization of available resources

to reduce the execution time of thousands of contingencies in large-scale networks. This

alternative comprises a master-slave structure. The master schedules the clients and each

client executes the contingencies. Also this proposal uses scheduling and stealing

methodologies to optimize the load balancing of workers (slaves). This allows all workers to

always be executing tasks, in such a way that as soon as a client is available, it is assigned

with new contingencies in order to optimize the use of resources. Master-slave

communication is achieved via MPI.

26 2 Background and Literature Review

Figure 2-6: PHC applications in power systems

2.3 Applications of PHC to Power Systems 27

After contingency analysis, power flow analysis and smart grid applications are most

frequently cited in PHC architectures. In [86], a parallel LU decomposition algorithm is

implemented using 20 multi-core processors in order to solve systems of equations

represented in large matrices. Factorization and parallelization is applied with Newton and

Fast Decoupled algorithms in order to reduce execution times. [87] presents a

parallelization of the Jacobian matrix that allows parallelization of the LU factorization.

The algorithm is implemented in a computer that also contains an FPGA. The smart grids

area shows applications for the control and operation of networks in real time. [88] presents

a cloud structure that allows for big data processing, in such a way that scalability, agility

and flexibility are guaranteed. Similarly, the authors highlight the need to guarantee

cybersecurity based on the relationship of identity, signature and proxy encryption. In [89],

a generation programming proposal is made. It integrates the management of distributed

resources together with electric vehicles to satisfy the energy demand. The problem is

solved through PSO algorithms and a Mixed Integer Linear programming technique. The

objective functions include the costs of: distributed generation, demand response, charging

and discharging of Battery Energy Storage Systems (BESS), charging of electric vehicles,

non-supplied demand, generation curtailment and energy from external networks. Each

multi-objective problem or combination is solved independently in each computer core.

The next applications with more usage of PHC technologies are OPF and SCOPF with

eight and four previous works, respectively. Section 2.4 shows parallel approaches of OPF

and SCOPF where the optimization problem is decomposed in reduced subproblems that

are solved in independent processor units. The solutions are implemented in CPU clusters.

The latest application group of PHC technologies in power grids includes (less than four

benchmarks): dynamic state estimation, power network planning, TSCOPF, reliability,

EMT studies, dynamic modeling, short circuit analysis, simple economic dispatch with

safety restrictions in generation, probabilistic load flow for hydrothermal generation. [90]

shows the parallelization of a large power system where the state estimator is divided into

each area individually. The areas exchange information through a central coordinator. The

alternative identifies areas of similar sizes in order to homogeneously divide the

computational loads across the existing computer network. The MPI high-performance

communication (MPICH2) allows the interaction of the coordinator and the various areas.

[91] performs a multi-period generation scheduling. The method integrates a cluster of

transputers. The coarse-grain version of the parallel genetic algorithm is implemented. The

subpopulations are distributed in different processes, and information is exchanged among

them. An approach of TSCOPF implemented in a PC-cluster is shown in section 2.4.

In [92] the authors propose a parallel metaheuristic method in order to solve a TSCOPF

28 2 Background and Literature Review

problem that seeks to identify the optimal reinforcements of the network in order to

guarantee the desired reliability in a power network. [93] analyzes and compares real-time

TS solution algorithms and instantaneous relaxation algorithms. On the other hand, nodal

variations are also compared with EMT simulations in real time. The computing system

includes multi-core, multiprocessor, and FPGA computers. [94] implements a PSO

algorithm in Open CL to identify the parameters of photovoltaic models. The evaluation of

the different particles is carried out in parallel simultaneously.

In [95] probability density curves are created by parallelizing the execution of Monte Carlo

simulations in different virtual machines. [96] performs an economic dispatch using an

Interior Point Optimization (IPOPT) strategy including generation limits, system losses,

and chunk generation cost functions. The algorithm validates that the limits in lines are

met, guaranteeing the security of the system. [97] performs a probabilistic power flow to

assess generation uncertainty by dividing Monte Carlo routines across multiple CPU cores.

Finally, [98] includes a differential evolution algorithm for optimizing the dispatch of a

hydrothermal generation unit including power flow restrictions. Multiple populations are

divided into individual processors in such a way that there are independent solutions.

2.4 Applications of PHC to OPF and SCOPF

As shown in 2.3, different applications of the SIMD architecture in GPU have been focused

on OPF problems, including TSCOPF. These problems have been solved through hybrid

strategies that include CPU-GPU elements. Figure 2-7 shows an example of a hybrid

CPU-GPU OPF algorithm based on a Metaheuristic Method (MM) and the

Newton-Raphson algorithm. The MM is used to find the optimal operating variables of the

electrical system using voltages in buses and generation from the machines, so that the

greatest benefit and the lowest cost are obtained. The algorithm shows the tasks performed

sequentially in CPU and parallelly in GPU. CPU-GPU and GPU-CPU data migration

seeks to be minimized in order to avoid bottlenecks associated with long transfer times.

This last activity is one of the main challenges of the CPU-GPU interaction.

The algorithm starts loading the power system data, then the selected MM is initialized.

After the initialization, the MM instructions for the first iteration are performed. The

CPU transfers the power system data to the GPU allocating the required memory. The

first task executed by the GPU corresponds to computing the bus voltages based on

voltage magnitudes and angles. Then, GPU calculates the Ybus. The CPU transfers the

Ybus from the GPU. To properly allocate the required GPU memory to store the Jacobian

matrix, the CPU computes the non-zero elements of the Jacobian matrix based on the

Ybus information. Then, the CPU transfers NNZ to the GPU allocating the required

2.4 Applications of PHC to OPF and SCOPF 29

Parallel implementation of an Optimal Power Flow in CPU-GPU
with a metaheuristic method and Newton Raphson algorithm

Start

CPU GPU

Load power
system data

Initialize
metaheuristic

method

Calculate bus
voltages

Apply
metaheuristic

logic

Calculate
admittance matrix

N
e
w

to
n

 R
a
p

h
s
o
n

 a
lg

o
ri

th
m

Calculate bus
current

Calculate Jacobian
matrix

Calculate Δθ and
Δ|V| with linear

solver

Update bus
voltages

Calculate
mismatch ΔP and

ΔQ

Transfer power
system data to GPU

Transfer admittance
matrix to CPU

Validate nonzero
elements of

Jacobian matrix

Transfer information
of nonzero

elements to GPU

Evaluate objective
function

Update local and
global fitness

Evaluate exit
condition

Transfer objective
function evaluation

to CPU

End

Data transfer between
CPU and GPU

Check
convergence

Does
Newton Raphson

converge?

Is
the exit condition

met?

Yes

No

Yes

No

Transfer Jacobian
matrix to CPU

Transfer Δθ and
Δ|V| to GPU

Transfer ΔP and ΔQ
to CPU

Figure 2-7: Parallel OPF algorithm using CPU and GPU platforms

30 2 Background and Literature Review

Figure 2-8: Ybus and Jacobian matrices of 19402-bus power system

memory.

For the first iteration of the Newton-Raphson algorithm, the GPU calculates the bus currents

based on the bus voltages and the Ybus that are already in the GPU memory. Once bus

currents are calculated, the GPU computes the Jacobian matrix. The CPU transfers the

Jacobian matrix from the GPU. Then, the CPU calculates the power flow unknown variables

using a linear solver and transfers the solution of the system of linear equations to the GPU.

Then, the GPU updates the bus voltages and computes the mismatch equations. Finalizing

the Newton-Raphson algorithm, the CPU transfers the mismatch equations from the GPU

and checks the algorithm convergence. If Newton-Raphson converged, the OPF follows to

the GPU for evaluating the defined objective function. Otherwise, the algorithm returns to

the bus current calculation in the GPU.

Once the objective function is evaluated for all elements of the MM, the CPU transfers the

objective function results from the GPU. Finally, the CPU updates the local fitness for

each MM element; similarly, the global fitness with the best local fitness. The CPU

evaluates the defined exit condition for the MM. If the exit condition is met, the MM ends

returning the optimal solution found during the OPF execution. Otherwise, the algorithm

returns to the task where the MM instructions for the next iteration are performed.

[13] and [99] use a parallelized optimal power flow structure as described in Figure 2-7.

The authors of these papers include a solution to the OPF problem using MM and Newton

2.4 Applications of PHC to OPF and SCOPF 31

Raphson algorithms on an HPC platform that includes interaction CPU-GPU. The PSO

algorithm is used to find optimal operating points that consider generation cost,

transmission losses, and environmental costs related to large-scale CO2 emissions. In this

research, the authors use the GPU to parallelize the calculation of the different iterations

that initialize the particles’ position and velocity, the fitness of all the particles, the update

of the position, and the movement of the particles and the swarm.

Regarding TSCOPF, [100] performs the parallelization of an algorithm that includes

optimization of a power system and the calculation of transient stability in different

generation scenarios. The algorithm runs OPFs on the CPU and does a transient stability

calculation at each OPF iteration using a GPU platform. The review did not find a PHC

application that includes SCOPF through CPU-GPU algorithms that will take the

potential of each hardware element.

On the other hand, Section 2.3 shows the usages in OPF and SCOPF applications of not

only GPU architecture but also PHC technologies such as PC-clusters, fog and cloud

computing, and FPGA. [101] presents a parallel OPF solution developed on a computer

cluster. The system is divided into different geographic regions that optimize the dispatch

of units in each area. At each iteration the voltage vectors are updated in magnitude and

angle. To interconnect the areas in the network, nodes are used with fictitious generators

that inject or consume active and reactive power and exchange information with the other

areas through interconnection interfaces. The OPF uses an IPOPT method. System tests

were performed on Sun Ultra Sparc workstations.

In [102] a parallel DE algorithm is presented to solve a TSCOPF problem. The algorithm

uses Point of Wave (POW) and Transient Energy Function (TEF) simulations. The

optimization function includes the costs associated with generation in the system. The

algorithm evaluates the security of each generation dispatch through simulations in steady

state and faulted conditions. Initially the rotor angles are calculated and later the TEF to

define the expected stability in the system. The algorithm is implemented in a Beowulf PC

cluster with a machine acting as a master and another 30 worker nodes that execute

operations as slaves. The communication is executed with MPI protocols. The general

population is divided into subpopulations so that they execute the DE algorithm at each

node. Each run calculates the load flow, fitness, and TS. The control node manages the

initialization, reproduction, and updating of the individuals in the various populations.

In [48] the decomposition of a SCOPF problem is carried out using a Bender decomposition

algorithm. The decomposition includes a master problem, along with slave nodes that solve

the algorithm and add breaks at each iteration. The problem only includes a preventive

SCOPF that a master OPF problem and N subproblems that verify correct operation in

32 2 Background and Literature Review

the event of contingency N contingencies. The problem solves the base OPF problem and

independently dispatches the power networks with each contingency included. If the

system with the contingency applied is feasible, the base solution is accepted, otherwise a

Bender cut or constraint is added to the master problem. The algorithm is executed until

the necessary cuts are added in such a way as to guarantee an optimal and secure solution.

3 Parallel Power Flow Algorithm in Low

Cost Embedded Computer

Architectures Empowered by GPU

The execution of power flows in real time as well as supervision and control systems such

as SCADA and EMS have increased their importance significantly today. This has been

the result of a greater number of devices that generate and consume energy throughout the

day, such as energy storage systems, demand response and distributed generation.

In this chapter, a low-cost alternative for the rapid execution of power flows is described.

These strategies are relevant to guarantee the security of the different elements existing in

the network. By means of power flows that determine the voltage and current values, the

high and low voltage values are determined at different points of the network as

substations; overloads in transformers, lines and other devices; required levels of generation

at different points in the system, etc. Since these values have been highly relevant, they

have been executed on computers with high performance characteristics, mainly desktop

computers and also Personal Computers (PEC). These specifications turn out to be

expensive when it is required to process systems with a high number of buses, lines,

generators and loads. This fact, together with the cost of software licensing, has

considerably increased the costs of these solutions. In systems as microgrids, this cost is

considerable in on-grid and islanded systems. [103,104]

To reduce these costs in transmission and distribution systems, as well as small-scale

energy systems as microgrids, low-cost systems such as embedded computers have

appeared, which allow the execution of tasks of high technical requirement with vectorized

structures. [105] shows a normalized cost of different microgrids depending on size and

microgrid’s application (Campus/Institutional, Commercial/Industrial,Community and

Utility Scale). In the report, authors show that software and hardware for control plays a

relevant role in microgrids cost of small size (7-10 kW) systems. A PEC cost is 10 to 20

times higher than ECs. An additional feature for ECs is their energy efficiency that

requires less energy consumption to process complex tasks [106]. Those features makes ECs

a promising alternative to increase microgrids penetration without penalizing entire system

performance.

34
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

On the other hand, ECs can include a GPU for processing tasks with multiple processor to

accelerate certain repetitive routines that can run with parallel structures as described in

Section 3.2. Previous works had been performed in power system areas as steady state and

transient states [107], power flow, OPF and metaheuristic optimization [13, 41, 108], etc.

The approaches showed time speed up increase with CPU-GPU structures.

All previous approaches had integrated CPU-GPU structures; however, their

implementation had been used in hardware based on PEC or desktops that include GPUs.

Commonly GPU integrated in ECs are not as powerful as the prior structures. The reason

is that execution time is highly dependent of hardware specifications and tasks

requirements. In the case of microgrids with multiple measurements and large power

system with time responses in less than 1 minute. The solution is considerable feasible and

properly fits the time window for fast screening during on-line screening or operation

planning. E.g. microgrids can use power flow simulation for early system analysis to

guarantee secure system operation or to include generation and load re-dispatches or

curtailments. Similarly, ECs can be used for frequency and voltage control. In frequency

regulation, primary and secondary control actions, start up or shut down of generation

unit, voltage control, OPF are some of the functions included in network controllers that

can be implemented in ECs platforms [109–111]. The platforms can interact with data

concentrator units that capture and send control signals (circuit breaker states, current and

voltage magnitudes, active and reactive power, etc.) from several Intelligent Electronic

Devices (IED) through wired lines or wireless communication channels.

To keep power system security during normal and contingency operation online load flow

analysis is performed using a vectorized algorithm to be implemented in a low cost EC

wtih GPU atchitectured. The algorithm’s structure uses a vectorized Newton-Raphson

method to take advantage of the GPU architecture. The parallel structure as the entire

algorithm and results are shown in the sections below.

3.1 Power Flow Architecture

During planning, operation and control of power systems load flow assessment is performed

to guarantee that all electrical elements operate inside secure limits. In steady state, this

analysis uses the node-voltage equations that are solved based on the kirchhoff’s current law,

network impedance, grid configuration, loads and generators in the system. For AC system,

3.1 Power Flow Architecture 35

the nodal equations are described as follows:

Pi =
N∑
k=1

|Ei||Ek| [Gik cos (θi − θk) +Bik sin (θi − θk)] (3-1)

Qi =
N∑
k=1

|Ei||Ek| [Gik sin (θi − θk)−Bik cos (θi − θk)] (3-2)

Where:

N = Number of buses of the system

Pi = Active power of the ith bus

Qi = Reactive power of the ith bus

Ei = Voltage magnitudes regarding the ith bus

Ek = Voltage magnitudes regarding the kth bus

θi = Voltage phase angles regarding the ith bus

θk = Voltage phase angles regarding the kth bus

Gik = Conductance of the ijth component of the Ybus matrix

Bik = Susceptance of the ijth component of the Ybus matrix

Given the non-linearity of these equations, the Newton Raphson method is well know method

to solve this system of equations iteratively. To implement this method, it is necessary to

compute the Jacobian matrix (J) defined by:

∆P
(k)
2

...

∆P
(k)
n

∆Q
(k)
2

...

∆Q
(k)
n

=

∂P2

∂δ2

(k)

· · ·
∂P2

∂δn

(k)
∂P2

∂|V2|

(k)

· · ·
∂P2

∂|Vn|

(k)

...
. . .

...
...

. . .
...

∂Pn

∂δ2

(k)

· · ·
∂Pn

∂δn

(k)
∂Pn

∂|V2|

(k)

· · ·
∂Pn

∂|Vn|

(k)

∂Q2

∂δ2

(k)

· · ·
∂Q2

∂δn

(k)
∂Q2

∂|V2|

(k)

· · ·
∂Q2

∂|Vn|

(k)

...
. . .

...
...

. . .
...

∂Qn

∂δ2

(k)

· · ·
∂Qn

∂δn

(k)
∂Qn

∂|V2|

(k)

· · ·
∂Qn

∂|Vn|

(k)

∆δ
(k)
2
...

∆δ
(k)
n

∆|V (k)
2 |
...

∆|V (k)
n |

(3-3)

Equation 3-3 in short form is written as

J =

∂Pi

∂θ

∂Pi

∂|E|
∂Qi

∂θ

∂Qi

∂|E|

 (3-4)

36
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

The expressions to compute J are presented in Equations 3-5 to 3-8.

∂Pi

∂θk
= |Ei||Ek| [Gik sin (θi − θk)−Bik cos (θi − θk)] (3-5)

∂Pi

∂|Ek|
= |Ei| [Gik cos (θi − θk) +Bik sin (θi − θk)] (3-6)

∂Qi

∂θk
= −|Ei||Ek| [Gik cos (θi − θk) +Bik sin (θi − θk)] (3-7)

∂Qi

∂|Ek|
= |Ei| [Gik sin (θi − θk)−Bik cos (θi − θk)] (3-8)

The power residuals ∆Pi and ∆Qi are the difference of the scheduled and calculated power

values:

∆Pi = P sch
i − Pi (3-9)

∆Qi = Qsch
i −Qi (3-10)

The new estimates for bus voltage magnitudes and angles are:

θnew = θ + ∆θ (3-11)

| Enew |=| E | + | ∆E | (3-12)

Algorithm 1 shows the Newton Raphson algorithm where the inputs are the data of the

system branches to build the Ybus matrix, each generator’s power (Pgen,Qgen), and the

information of the system loads (Pload,Qload).

The algorithm outputs are the nodal voltage magnitudes and angles. In order to exploit

the GPU potential in an EC sections in green are proposed to be vectorized as described in

Section 3.2 and Section 3.3.

3.2 Power Flow Vectorization

The operation vectorization consists of modeling one or more tasks of an algorithm as

vector or matrix operations. The first step is identifying the common operations within an

algorithm. Generally, these common operations are known as single instructions. These

instructions correspond to tasks where calculations for a data set are not related to

calculations for another data set. The basic example of this type of instruction is the

3.2 Power Flow Vectorization 37

Algorithm 1 NR Algorithm for LF Analysis

1: procedure LF NR EC(Branch,Pgen,Qgen,Pload,Qload)

2: E, θ ← [1] , [0]

3: Ybus ← Y busCalc (Branch)

4: Pnet ← Pgen −Pload

5: Qnet ← Qgen −Qload

6: for j ← 0 to 10 step 1 do . LF-NR - Iteration

7: P,Q,J← f (Ybus,E, θ) . eqs. (3-1), (3-2) and (3-5) to (3-8)

8: ∆P,∆Q← Pnet −P,Qnet −Q

9: ε← max (abs (∆P,∆Q))

10: if ε < 1× 10−7 then

11: Break

12: end if

13:

14:

[
∆θ

∆E

]
←
[
J
]−1
[

∆P

∆Q

]
. eq. (3-4)

15:

16: θ,E = θ + ∆θ,E + ∆E

17: end for

18: return E, θ

19: end procedure

addition of vectors. The addition is performed element by element, and this operation only

requires the information from the vector data. The addition of the set of elements of the

vectors at the same position is independent of the operations applied to the remaining

elements at the other positions.

Regarding the power flow algorithm, tasks such as computing the Ybus matrix, calculating

the Jacobian matrix, and updating the active and reactive power mismatch vector are

common operations. These operations are single instructions that correspond to the active

and reactive power balance equations and the first-order partial derivatives of these

equations regarding the voltage magnitudes and angles.

Figures 3-1, 3-2, and 3-3 present the parallel calculation of the active and reactive power

vectors for all power system buses. Figure 3-1 shows the single instruction to evaluate and

the required data of the power system. As shown in Figure 3-1, the necessary information

to calculate the active and reactive powers for all buses are the voltage magnitudes and

angles and the corresponding branch conductances and susceptances. This information is

transferred from the CPU memory to the GPU memory. Once the information is in the

GPU’s global memory, the definition of the single instruction as a function is implemented

38
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

Pi = Vi Vk Gik cos θik + Bik sin θik

N

k=1

= Pi1 + Pi2 +⋯+ PiN

Qi = Vi Vk Gik sin θik − Bik cos θik

N

k=1

= Qi1 + Qi2 +⋯+ QiN

i k Vi Vk Gik Bik θik

1 1 𝐕𝟏 𝐕𝟏 𝐆𝟏𝟏 𝐁𝟏𝟏 𝛉𝟏𝟏

1 2 𝐕𝟏 𝐕𝟐 𝐆𝟏𝟐 𝐁𝟏𝟐 𝛉𝟏𝟐

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 N 𝐕𝟏 𝐕𝐍 𝐆𝟏𝐍 𝐁𝟏𝐍 𝛉𝟏𝐍

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N 1 𝐕𝐍 𝐕𝟏 𝐆𝐍𝟏 𝐁𝐍𝟏 𝛉𝐍𝟏

N 2 𝐕𝐍 𝐕𝟐 𝐆𝐍𝟐 𝐁𝐍𝟐 𝛉𝐍𝟐

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N N 𝐕𝐍 𝐕𝐍 𝐆𝐍𝐍 𝐁𝐍𝐍 𝛉𝐍𝐍

Instruction to evaluate
Single Instruction (SI)

Required information
Multiple Data (MD)

GPU memory

GPU with N Multiprocessors (MP)

Global memory

MP
SP SP SP SP

SP SP SP SP

Shared memory

…

Figure 3-1: Definition of instruction to evaluate and the information required

to evaluate each Pik and Qik parallelly in the GPU.

Figure 3-2 shows how the GPU calculates all Pik and Qik parallelly. The GPU uses the

information from its global memory and creates a kernel where defines the required

resources (number of blocks and threads) to perform the instruction evaluation. The kernel

creates a grid where the number of tasks running in parallel corresponds to the number of

blocked times the number of threads. Based on the number of blocks and threads, the

GPU thread scheduler assigns the multiprocessors and the corresponding scalar processors

required to execute the calculation. Each scalar processor computes one of the Pik and Qik

equations. All scalar processors, depending on the GPU capabilities, execute the evaluation

parallelly. Suppose the number of blocks and threads exceeds the limit of evaluations that

the GPU can run simultaneously. In that case, the wrap scheduler creates a queue to

execute all evaluations grid by grid.

Finally, Figure 3-3 shows how the GPU saves all Pik and Qik values calculated in Figure 3-2.

Once all evaluations finish, the kernel saves the result in the GPU memory. This information

is available for other kernel executions.

3.3 Power Flow Vectorization in Embedded Computer Using a GPU 39

Input

i k Vi Vk Gik cos θik + Bik sin θik

1 1 𝐕𝟏 𝐕𝟏 𝐆𝟏𝟏𝐜𝐨𝐬 𝛉𝟏𝟏 + 𝐁𝟏𝟏 𝐬𝐢𝐧 𝛉𝟏𝟏

1 2 𝐕𝟏 𝐕𝟐 𝐆𝟏𝟐𝐜𝐨𝐬 𝛉𝟏𝟐 + 𝐁𝟏𝟐 𝐬𝐢𝐧 𝛉𝟏𝟐

⋮ ⋮ ⋮

1 N 𝐕𝟏 𝐕𝐍 𝐆𝟏𝐍 𝐜𝐨𝐬 𝛉𝟏𝐍 + 𝐁𝟏𝐍 𝐬𝐢𝐧 𝛉𝟏𝐍

⋮ ⋮ ⋮

N 1 𝐕𝐍 𝐕𝟏 𝐆𝐍𝟏𝐜𝐨𝐬 𝛉𝐍𝟏 + 𝐁𝐍𝟏𝐬𝐢𝐧 𝛉𝐍𝟏

N 2 𝐕𝐍 𝐕𝟐 𝐆𝐍𝟐𝐜𝐨𝐬 𝛉𝐍𝟐 + 𝐁𝐍𝟐𝐬𝐢𝐧 𝛉𝐍𝟐

⋮ ⋮ ⋮

N N 𝐕𝐍 𝐕𝐍 𝐆𝐍𝐍𝐜𝐨𝐬 𝛉𝐍𝐍 + 𝐁𝐍𝐍 𝐬𝐢𝐧 𝛉𝐍𝐍

Parallel computation

GPU with N Multiprocessors (MP)

Global memory

MP
SP SP SP SP

SP SP SP SP

Shared memory

…

i k Vi Vk Gik Bik θik

1 1 𝐕𝟏 𝐕𝟏 𝐆𝟏𝟏 𝐁𝟏𝟏 𝛉𝟏𝟏

1 2 𝐕𝟏 𝐕𝟐 𝐆𝟏𝟐 𝐁𝟏𝟐 𝛉𝟏𝟐

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 N 𝐕𝟏 𝐕𝐍 𝐆𝟏𝐍 𝐁𝟏𝐍 𝛉𝟏𝐍

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N 1 𝐕𝐍 𝐕𝟏 𝐆𝐍𝟏 𝐁𝐍𝟏 𝛉𝐍𝟏

N 2 𝐕𝐍 𝐕𝟐 𝐆𝐍𝟐 𝐁𝐍𝟐 𝛉𝐍𝟐

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N N 𝐕𝐍 𝐕𝐍 𝐆𝐍𝐍 𝐁𝐍𝐍 𝛉𝐍𝐍

Figure 3-2: Definition of the required information as the input of the parallel computation

3.3 Power Flow Vectorization in Embedded Computer

Using a GPU

The GPU architecture is used to parallelize specific power flow process that include

repetitive calculations. Parallelism in the GPU is used to speed up Ybus and J matrices

and the ∆P,∆Q, P, and Q vectors. The methodology follows the general structure

in [13].

Power flow strategies cannot be completely implemented in GPU since the not all

structures are allowed to be effectively parallelizable. Algorithm 1 shows a classical

Newton-Raphson sequentially executed. Green operations are vectorized to reduced large

matrices formation and nodal balance calculations. The vectorized operations are firstly

organized in data arrays during a pre-processing stage. Once data is pre-processed, GPU

vectorized operations are computed in a GPU kernel. GPU results are requested from the

CPU. The output data array are finally transferred from the GPU to CPU in the EC.

40
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

i k Pik Qik

1 1 𝐏𝟏𝟏 𝐐𝟏𝟏

1 2 𝐏𝟏𝟐 𝐐𝟏𝟐

⋮ ⋮ ⋮ ⋮

1 N 𝐏𝟏𝐍 𝐐𝟏𝐍

⋮ ⋮ ⋮ ⋮

N 1 𝐏𝐍𝟏 𝐐𝐍𝟏

N 2 𝐏𝐍𝟐 𝐐𝐍𝟐

⋮ ⋮ ⋮ ⋮

N N 𝐏𝐍𝐍 𝐐𝐍𝐍

OutputParallel computation

i k Vi Vk Gik cos θik + Bik sin θik

1 1 𝐕𝟏 𝐕𝟏 𝐆𝟏𝟏 𝐜𝐨𝐬 𝛉𝟏𝟏 + 𝐁𝟏𝟏 𝐬𝐢𝐧 𝛉𝟏𝟏

1 2 𝐕𝟏 𝐕𝟐 𝐆𝟏𝟐 𝐜𝐨𝐬 𝛉𝟏𝟐 + 𝐁𝟏𝟐 𝐬𝐢𝐧 𝛉𝟏𝟐

⋮ ⋮ ⋮

1 N 𝐕𝟏 𝐕𝐍 𝐆𝟏𝐍 𝐜𝐨𝐬 𝛉𝟏𝐍 + 𝐁𝟏𝐍 𝐬𝐢𝐧 𝛉𝟏𝐍

⋮ ⋮ ⋮

N 1 𝐕𝐍 𝐕𝟏 𝐆𝐍𝟏 𝐜𝐨𝐬 𝛉𝐍𝟏 + 𝐁𝐍𝟏 𝐬𝐢𝐧 𝛉𝐍𝟏

N 2 𝐕𝐍 𝐕𝟐 𝐆𝐍𝟐 𝐜𝐨𝐬 𝛉𝐍𝟐 + 𝐁𝐍𝟐 𝐬𝐢𝐧 𝛉𝐍𝟐

⋮ ⋮ ⋮

N N 𝐕𝐍 𝐕𝐍 𝐆𝐍𝐍𝐜𝐨𝐬 𝛉𝐍𝐍 + 𝐁𝐍𝐍 𝐬𝐢𝐧 𝛉𝐍𝐍

GPU with NMultiprocessors (MP)

Globalmemory

MP
SP SP SP SP

SP SP SP SP

Shared memory

…

Figure 3-3: Parallel computation of defined instruction and output data

3.3.1 Ybus Matrix Computation

Since admittance matrices in large power system have a large degree of sparsity, a

Compressed Sparse Row Format (CSR) format to store sparse matrices is used. Data array

for Ybus matrix formation is shown in Table 3-1. The array is used as input array in the

GPU. R and X are the real and imaginary parts of each branch impedance, GC and BC

are the conductance and susceptance of the buses, a is the transformer ratio, and l is the

number of branches.

Table 3-1: Array input for computing Ybus in GPU regarding the pre-processing stage

R1 X1 Gc1 Bc1 a1

R2 X2 Gc2 Bc2 a2

...
...

...
...

...

Rl Xl Gcl Bcl al

3.3 Power Flow Vectorization in Embedded Computer Using a GPU 41

Table 3-2: Computation of the matrix Ybus in GPU

Y s =
1

R1 + jX1

Ytt = Y s+
Gc1 + jBc1

2
Ytt/a

2
1

−Y s/a1

Y s =
1

R2 + jX2

Ytt = Y s+
Gc2 + jBc2

2
Ytt/a

2
2

−Y s/a2

...

Y s =
1

Rl + jXl

Ytt = Y s+
Gcl + jBcl

2
Ytt/a

2
l

−Y s/al

Once the data is transferred and organized in the GPU in data spaces that contain R, X,

GC , BC and a as described in Table 3-1. Calculations of the vectorized structure is

performed using multiple GPU threads. Each thread calculates independent equations as

shown in Table 3-2. Ys represents series impedance of each branch.

The output array is the full of calculations computed by each thread as shown in

Table 3-3. The impedance matrix Ybus is formed by the assembled structure during the

Newton Raphson algorithm execution. Ytt, Yff , Yft, Ytf are the Ybus elements for each

branch.

Table 3-3: Ybus GPU Kernel Output

Ytt1 Yff1 Yft1 Ytf1
Ytt2 Yff2 Yft2 Ytf2

...
...

...
...

Yttl Yffl Yftl Ytfl

42
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

Table 3-4: P, Q and J kernel input

i1 k1 Gi1k1 Bi1k1 |E|i1 |E|k1 θi1 θjk1
i2 k2 Gi2k2 Bi2k2 |E|i2 |E|k2 θi2 θk2
...

...
...

...
...

...
...

...

il kl Gilkl Bilkl |E|il |E|kl θil θkl

3.3.2 P, Q and J Computation

Algorithms that uses CPU-GPU structures have limitations in the data transfer process

between CPU - GPU migration since bandwidth is a limiting factor in the hardware. This

bottleneck generates considerable time delays in algorithm’s execution. To reduce the data

exchange process, the load flow analysis maximizes the GPU operations during each

iteration. The algorithm performs one vectorized GPU kernel to calculate P and Q

vectors, and the matrix J during each data transfer. Previous vectors and matrices are

computed using the GPU input array presented in Table 3-4. Once the input array is in

the GPU memory, the kernel performs all different calculations in parallel using the

existing GPU threads, solving the power flow equations as described in Table 3-5. Each

GPU thread performs independent calculations of each equation. GPU output is shown in

Table 3-6. Matrix J is assembled using the CSR format including the slack bus and other

PV buses. Similarly, ∆P and ∆Q are calculated based on Equations 3-1 and 3-2. The

results are presented in Table 3-6. The power imbalances result of calculated and actual

power in a bus are calculated in parallel.

3.4 Results and Discussion

The hybrid CPU-GPU algorithm is implemented in a low cost hardware infrastructure

Nvidia Jetson Nano. This EC includes the features described in Table 3-7.

NVIDIA CUDA framework and platform are the GPU structures with high maturity in

terms of programming interfaces between graphic and non-graphic programming languages

such as C, C++, and FORTRAN [112, 113]. Similarly, popular software as Python and

Matlab included libraries and toolkits that make the interaction with NVIDIA GPUs a less

complex task. The Algorithm 1 to manage multiple GPU cores is implemented using

Numba module in Python programming language [114]. Sections in green from the LF-NR

algorithm 1 empowered by the GPU kernels are parallellized using the structure in Figure

3-4. GPU kernels allow the calculation of the vectors P and Q and the matrix J. The

input Data refers to the array shown in Table 3-1, while S corresponds to the output array

3.4 Results and Discussion 43

Table 3-5: P, Q and J kernel calculations

|Ei1||Ek1| [Gi1k1 sin (θi1 − θk1)−Bi1k1 cos (θi1 − θk1)]
|Ei1| [Gi1k1 cos (θi1 − θk1) +Bi1k1 sin (θi1 − θk1)]

−|Ei1||Ek1| [Gi1k1 cos (θi1 − θk1) +Bi1k1 sin (θi1 − θk1)]
|Ei1| [Gi1k1 sin (θi1 − θk1)−Bi1k1 cos (θi1 − θk1)]

|Ei1||Ek1| [Gi1k1 cos (θi1 − θk1) +Bi1k1 sin (θi1 − θk1)]
|Ei1||Ek1| [Gi1k1 sin (θi1 − θk1)−Bi1k1 cos (θi1 − θk1)]
|Ei2||Ek2| [Gi2k2 sin (θi2 − θk2)−Bi2k2 cos (θi2 − θk2)]
|Ei2| [Gi2k2 cos (θi2 − θk2) +Bi2k2 sin (θi2 − θk2)]

−|Ei2||Ek2| [Gi2k2 cos (θi2 − θk2) +Bi2k2 sin (θi2 − θk2)]
|Ei2| [Gi2k2 sin (θi2 − θk2)−Bi2k2 cos (θi2 − θk2)]

|Ei2||Ek2| [Gi2k2 cos (θi2 − θk2) +Bi2k2 sin (θi2 − θk2)]
|Ei2||Ek2| [Gi2k2 sin (θi2 − θk2)−Bi2k2 cos (θi2 − θk2)]

...

|Ei2||Ek2 | [Gilkl sin (θil − θkl)−Bilkl cos (θil − θkl)]
|Eil | [Gilkl cos (θil − θkl) +Bilkl sin (θil − θkl)]

−|Eil ||Ekl | [Gilkl cos (θil − θkl) +Bilkl sin (θil − θkl)]
|Eil | [Gilkl sin (θil − θkl)−Bi2kl cos (θil − θkl)]
|Eil ||Ekl | [Gilkl cos (θil − θkl) +Bilkl sin (θil − θkl)]
|Eil ||Ekl | [Gilkl sin (θil − θkl)−Bilkl cos (θil − θkl)]

Table 3-6: P, Q and J kernel output

∂Pi

∂θk

∂Pi

∂|Ek|
∂Qi

∂θk

∂Qi

∂|Ek|
Pi1 Qi1

∂Pi

∂θk

∂Pi

∂|Ek|
∂Qi

∂θk

∂Qi

∂|Ek|
Pi2 Qi2

...
...

...
...

...
...

∂Pi

∂θk

∂Pi

∂|Ek|
∂Qi

∂θk

∂Qi

∂|Ek|
Pil Qil

44
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

Table 3-7: Jetson Nano Technical Features

GPU NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores

CPU Quad-core ARM Cortex-A57 MPCore processor

Memory 4 GB 64-bit LPDDR4, 1600MHz 25.6 GB/s

Storage 16 GB eMMC 5.1

Camera 12 lanes (3x4 or 4x2) MIPI CSI-2 D-PHY 1.1 (1.5 Gb/s per pair)

Connectivity Gigabit Ethernet, M.2 Key E

Display HDMI 2.0 and eDP 1.4

USB 4x USB 3.0, USB 2.0 Micro-B

Others GPIO, I2C, I2S, SPI, UART

Mechanical 69.6 mm x 45 mm

260-pin edge connector

presented in Table 3-3. SciPy library [115] allows the computation of the inverse of the

Jacobian matrix included in the algorithm in Figure 3-4.

The hybrid CPU-GPU algorithm response time is aligned with on-line power system

applications. The LF-NR algorithm is benchmark using the MATPOWER package [116]

comparing computation time and power flow results. Test systems included IEEE30,

Case300, 2869 Pegase, 9241 Pegase and ACIVSg25k included in MATPOWER library. The

MATPOWER performance is evaluated in a PC with an AMD Rayzen™ 5 3600 with six

cores and 12 logical processors. To ensure that the algorithm performance using the

NVIDIA Jetson Nano fits properly with online power system applications, the LF-NR

method provided by the MATLAB-language power system simulation package

MATPOWER [116] is employed to compare the computation time and the result of the

algorithm. The test systems correspond to the cases IEEE30, IEEE300, 2869PEGASE,

9241PEGASE, and ACIVSg25k provided by MATPOWER. The MATPOWER

performance is evaluated in a PC with an AMD Rayzen™ 5 3600 with six cores and 12

logical processors. The LF-NR in Algorithm 1 implemented in Python is computed in

MATPOWER using only CPU memory without interaction with GPU. Figure 3-5 shows

the power balance error ε for the test cases. The error is negligible (less than 1× 10−13

difference in the results) for MATPOWER and Python running in the PEC and EC.

Five different test cases systems were used to compare the LF-NR algorithm performance

using the NVIDIA Jetson Nano, the AMD Rayzen™ 5 3600 CPU with Python and

MATPOWER. Figure 3-6 shows the computation time for the three platforms. The results

shows that large power systems e.g. 25,0000 buses (ACIVSg25k) are solved in 3.1 s. On the

other hand, small systems e.g. 30 buses (IEEE30) are solved in 0.1 s.

3.4 Results and Discussion 45

@guvector ize ([(f l o a t 6 4 [:] , f l o a t 6 4 [:])] , ’ (n)−>(n) ’ , t a r g e t=’ cuda ’)

def P Q J Kernel (Data , S) :

E i = Data [0]

E k = Data [1]

D theta = Data [2] −Data [3]

G ik = Data [4]

B ik = Data [5]

s i n d = s i n (D theta)

cos d = cos (D theta)

Jacobian e lements

S [0] = E i ∗E k ∗(G ik∗ s in d −B ik ∗ cos d)

S [1] = (G ik∗ cos d+B ik ∗ s i n d)∗ E i

S [2] = −S [1] ∗ E k

S [3] = S [0] / E k

Pi and Qi

S [4] = E i ∗E k ∗(G ik∗ cos d+B ik ∗ s i n d)

S [5] = E i ∗E k ∗(G ik∗ s in d −B ik ∗ cos d)

Figure 3-4: Cuda Kernel for computing P,Q,J matrix using Numba

46
3 Parallel Power Flow Algorithm in Low Cost Embedded Computer

Architectures Empowered by GPU

1
2

3
4

5
ite

ra
tio

n

10
3

10
1

10
1

10
3

error - log(||)
Ca

se
ie

ee
30

ie
ee

30
0

28
69

pe
ga

se
92

41
pe

ga
se

AC
IV

Sg
25

k

F
ig

u
re

3
-5

:
N

o
d
al

p
ow

er
b
al

an
ce

u
si

n
g

th
e

d
ev

el
op

ed

al
go

ri
th

m
ru

n
on

N
v
id

ia
-J

et
so

n
N

an
o

ie
ee

30
ca

se
30

0
28

69
pe

ga
se

92
41

pe
ga

se
AC

TI
VS

g2
5k

Po
we

r S
ys

te
m

 C
as

e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Elapsed Time - [s]

pl
at

fo
rm

NV
ID

IA
_JE

TS
ON

pc
_p

yt
ho

n
pc

_m
at

po
we

r

F
ig

u
re

3
-6

:
T

im
e

el
ap

se
d

fo
r

lo
ad

fl
ow

co
n
ve

rg
en

ce
u
si

n
g

th
e

d
ev

el
op

ed
al

go
ri

th
m

ru
n

on
N

v
id

ia
-J

et
so

n

N
an

o

0
10

20
30

40
50

60
70

M
icr

og
rid

 g
en

er
at

io
n

ca
pa

cit
y

[k
W

]

010203040 Cost - ratio [%]

Se
gm

en
t

Ca
m

pu
s

Co
m

m
er

cia
l

Co
m

m
un

ity
Ut

ilit
y

Pl
at

fo
rm

Nv
id

ia
 je

ts
on

PC

F
ig

u
re

3
-7

:
C

os
t-

ra
ti

o
co

m
p
ar

is
on

b
et

w
ee

n
th

e
p
la

tf
or

m
’s

co
st

an
d

th
e

m
ic

ro
gr

id
’s

to
ta

l
co

st
re

ga
rd

in
g

th
e

m
ic

ro
gr

id
ge

n
er

at
io

n
ca

p
ac

it
y

fo
r

d
iff

er
en

t

se
gm

en
ts

3.5 Conclusions 47

Figure 3-6 shows that NVIDIA Jetson Nano computation time is higher than other

platforms. These kind of responses are expected considering the EC and PEC technical

features. EC calcultation time is on average 10 times slower than PEC. Nevertheless, the

price difference between the PC and NVIDIA Jetson platforms is approximately 10 times

whitouth including the licensing cost of MATLAB required for MATPOWER execution.

Similarly, energy efficiency is higher NVIDIA Jetson Nano when the LF-NR algorithm is

used for on-line calculations. All computation times in the five test cases fit properly for

on-line operation and control of power grids.

Figure 3-6 also shows that the proposed vectorized LF-NR algorithm in Pyhton results in

as faster response than MATPOWER. The proposed vetorization using a Numba library in

the AMD Rayzen™ 5 3600 CPU is computationally more efficient than the LF-NR function

in MATPOWER.

Authors in [105] reported the ratio for different generation sizes in diverse microgrids as

seen in Figure 3-7. Figure 3-7 shows the ratio between platform’s cost and the microgrid’s

total cost for different microgrids capacities. Two platforms are used for comparison the

AMD Rayzen™ 5 3600 CPU and the NVIDIA Jetson Nano. An average cost of $1,000 and

$100 USD was used for EC and PEC. For small generation capacity PEC plays a relevant

role in the total microgrid cost. Nevertheless, as the system capacity increases, the PEC

cost impact is reduced. E.g. For a 5 kW of generation capacity, the cost-ratio is between

4.9 % and 9.4 % depending on the total size. For a similar generation capacity, the

cost-ratio is between 0.5 % and 1 % of the microgrid’s total cost for a EC platform. For

60 kW, the cost-ratio is between 0.4 % and 0.8 % for a PEC and 0.05 % and 0.08 % for an

EC.

3.5 Conclusions

The low-cost strategy described in the chapter is suitable for online load flow analysis in

power grids, specially microgrids. The Newton-Raphson is partially implemented vectorized

in an Embedded Computer (EC). The EC in the implementation was a NVIDIA Jetson Nano

empowered with a Graphical Processing Unit (GPU) to process the vectorized sections. The

computation times in the EC are within 3 s for large power systems (e.g. 25,000 buses)

making the strategy a cost-effective solution appropriate for an online analysis.

4 Security Constraint Optimal Power

Flow Formulation and Solutions with

Constraint Handling

The Security Constrained Optimal Power Flow (SCOPF) problem focuses on solving a

power system operation optimization problem, while maintaining network security. In this

way, the network not only operates at the lowest cost or highest benefit, but also

guarantees that it continues its normal operation when one or more outages appear are

presented. Grid codes normally request to satisfy (N-k criteria) with all variables within

acceptable limits as described in Chapter 2 [117–121]. Multiple approaches have been

proposed to solve this highly complex problem. The difficulty of the problem is a result of

its nature, which describes it as a non-linear, non-convex, static problem, optimization of a

large system, which normally includes integer variables such as taps position in

transformers, switching of capacitor and reactor banks, switching of demand blocks when

demand response is allowed in the grid [119, 120, 122, 123]. This type of problem is

described as Mixed Integer Linear Programming (MILP).

Different authors have proposed various strategies to make the SCOPF problem have a

more simplified implementation for computer simulation. Some approaches include

modifications to the formulation of the optimization problem in terms of the objective

function and constraints, among these are: linearization, the simplification to guarantee

problme’s convexity1, the decomposition into more simplified and computationally

individual problems (eg Alternating Direction Multipliers Method (ADMM), Augmented

Lagragian Method (ALM), Benders Decomposition (BD), etc.). On the other hand, other

approaches include reducing the feasible space, such is the case of alternatives such as

contingency screening when systems have a large number of elements that can go out of

operation. These strategies allow the simplification of the problem, yielding results with a

normally acceptable level of precision and reduced simulation times. However, the

alternatives have been tested in networks with few buses, lines, loads and generators. Some

applications have been adapted to large networks for real-time execution; nevertheless,

some deviations, oversimplifications of the original problem have limited its

1Simplification from Complex Problems to Quadratic Problem Formulation

4.1 Security-constrained OPF: An Overview 49

implementation.

This chapter shows an alternative to solve a SCOPF problem for medium and large

networks. This chapter describes an implemented fast decomposition strategy for the

SCOPF problem. The algorithm allows modifications to the feasible problem’s space

adding or modifying the set of existing constraints. The algorithm is executed in parallel,

taking advantage of the computational potential in computer cores at the local level, or

computer cluster in group of multiple nodes. The benefits of implementation include:

• Modifications of the solution space, adding or modifying constraint of the SCOPF

problem.

• Adding Spin Reserve constraints as well as AGC control.

• Filtering contingencies depending on the system operation state.

• Decomposition and addition of constraints based on parallel PFs that increase the

simulation speed and reduce problem’s complexity of simultaneous OPF problems for

hundreds of contingencies.

• Generation re-dispatch showing a PSCOPF problem.

• PV / PQ switching to ensure convergence in large power networks.

The chapter presents: some strategies to solve the problem, the complete formulation of

the SCOPF problem, explains the approach used to solve it, shows the results obtained,

conducts discussions about the algorithm and finally concludes.

4.1 Security-constrained OPF: An Overview

In order to reduce the operating costs of interconnected power systems, regulatory entities

such as North American Electric Reliability Corporation (NERC) and Federal Energy

Regulatory Commission (FERC) have highlighted the importance of operating the grid in

an optimal and secure manner. These entities have mentioned that power system operation

should not be optimized only in the long term, but also in the short term or near real

time [122, 124, 125]. In [125], it is mentioned that the annual savings associated with an

improvement of 5% of the OPF algorithms, could lead to improvements of up to six billion

dollars annually in United States.

50
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

Nevertheless, such improvements are not easily achievable due to the complexity offered by

the SCOPF formulation. This complexity becomes greater when the system size increases,

resulting in high computational burden to solve systems with a large number of elements

and contingencies [126,127]. This makes Nonlinear Programming Problems-Hard Nonlinear

Programming Problems-Hard (NP-Hard) one of the most difficult cases [128]. This

condition reduces the possibility of finding global optimum using the complete formulation

of the SCOPF problem in limited time [118]. Some strategies to reduce problem

complexity and get a solution in short time are shown in the rest of the section.

4.1.1 Categories of SCOPF Problem

As described in Chapter 2, there are two variants of SCOPF that allow the constraints

associated with contingencies to be included. The PSCOPF [121, 123] makes adjustments

to the pre-contingency case in such a way that it is possible to carry out redispatches or

adjustments to control variables (eg. power of the generators that participate in the

infrequency control, automatic tap-changers, switching of power banks, reactors and

secondary voltage control) [119, 127], in order to guarantee that the secure operating limits

are not exceeded in the different electrical elements. Some examples of PSCOPF are shown

in [126, 129], showing over-tightened solution regions and long computation times due to

the high number of contingencies [121, 123, 127, 130, 131]. On the other hand, the CSCOPF

allows adjustments to the generation dispatch and other control variables. The control is

not only applied in the pre-contingency state but also after the operation of one of the

elements of the power system. Examples of CSCOPF implementation can be found

in [118, 123, 126]. However, most of these works have shown limited proposals that include

active power droop control, the PV / PQ switching, the lack of modeling of power system

controllers and neither the cost of remedial actions.

Other models include additional variables, such as risk assessment [117, 132, 133],

constraints associated with the solution time [134], and stochastic modelling [130,135]. The

above requirements include computational time limitations and memory management when

used in medium-sized and large-scale power systems, as well as with considerable numbers

of contingencies [123,135].

4.1.2 SCOPF Solution Strategies

4.1.2.1 Linearization and Convexification

Linearization techniques are commonly used to simplify nonlinear problems. In the case of

power systems, DC simplifications are normally applied. This technique has been

4.1 Security-constrained OPF: An Overview 51

commonly applied to solve problems [124,129,132,136]. Although the approach works well

in small systems, with low reactive power flows, a significant absence of voltage control, a

lower number of reactive shunt elements or conditions with high load flows [119], they are

inefficient in systems that do not present these conditions. Most of the approximations

offer modifications on the solution methods such as Successive Linear Programming

(SLP) [118], others act on the objective function of the problem. Other proposals include

modifications to the existing information, creating quasi-real measurements that allow

decoupling the solutions in active and reactive power. The previous strategy allows to

accelerate the solution of the quadratic optimization problems [137].

4.1.2.2 Decomposition Strategies

Decomposition strategies focus on dividing a problem into small simplified subproblems

with simpler solutions. Among the most popular strategies are: the Augmented Lagragian

Method (ALM), the Alternating Direction Multipliers Method (ADMM) the Benders

Decomposition (BD).

In OPF, ALM has been used to solve distributed systems [138]. In [139], the authors

propose ALM to solve a reactive flow OPF for a large electrical network that has been

distributed. However, applications of ALM with SCOPF is not reported.

In [132, 138, 140], ADMM is used to divide a complex problem and parallelize it in such a

way that the simultaneous solution of an OPF problem is allowed. In [121] authors propose

problem solution in a system with 3,012 nodes and 4 contingencies. The problem is solved

in parallel simultaneously in 3,582 seconds. This computation time is not promising for

larger power systems with a greater number of contingencies.

BD has been applied in various power system optimization problems. In [126] a strategy to

solve a CSCOPF is applied; however, the algorithm is apply to very small power networks

e.g. only 6 buses. In [117,122] larger systems of 118 and 2,351 nodes were solved. However,

DC simplifications of the power flow equations were used. In [121] a BD model is used to

solve networks of more than 3,000 nodes; however, the algorithm took 1,165 seconds with

only 4 contingencies. [141] shows results for larger power networks of 2,312 and 3,013 nodes

and 990 contingencies using the BD method.

4.1.2.3 Optimization Techniques

Both the OPF and SCOPF problems are non-convex, eliminating the idea of finding a

global optimum mathematically [142]. Various approaches have been carried out in order

52
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

to explore extensive solution spaces, including Genetic Algorithm (GA), Metaheuristic

Algorithm (MA) and Machine Learning (ML). Some strategies using optimization

algorithms for OPF solution include: earthworms, fuzzy logic tuned firefly, and historical

data-based approaches are presented in [143–145]. Although the algorithms find global

optimum, they are used in small power system, reaching 300 buses. Similarly, the authors

mention that these algorithms do not ensure a defined number of iterations to find a

solution.

Different authors have made hybrid proposals that integrate not only exact mathematical

formulations but also searches with MA. In [142] an OPF problem is solved by means of

GA that group chromosomes, to later use a precise method such as Newton-Raphson in

order to have a good initial solution point and later apply a precise method. The algorithm

reduces existing constraints by not considering overhead limits. In [123] a simplified

problem is solved through a DC approximation using ALM and ADMM algorithms. BD is

used to solve a system using an Evolutionary Algorithm (EA) for contingency selection

in [130]. However, its use is reported in small systems of 118 nodes.

4.1.2.4 Contingency Screening

Some alternatives to accelerate the SCOPF problem’s solutions as well as reducing the

problem size, is using a contingency filtering. In this type of strategy, the number of

possible contingencies that may appear in a system is reduced, highlighting the most severe

ones or those that restrict the secure power system response as shown in [119,120]. In [146]

the umbrella contingency method is used, which generates a contingency ranking according

to contingency impact on the grid. The impact is measured by the magnitude of

Lagrangian multipliers associated with the post-contingency states. The method requires

the solution of the complete SCOPF problem to generate the contingency ranking. Solving

the complete SCOPF solution makes the proposal unfeasible for real-time application.

Other authors propose diverse algorithms in real-time. In [147] a weighted method and a

central eigenvector of the Laplacian matrix method is proposed. The method adds

elements to the Laplacian matrix based on line overloads that may result after an outage.

When high number of contingencies appear, a considerable number of elements of the

matrix are fill out, showing long computation times for real time. On the other hand, [130]

uses EA to perform contingency filtering; however, the algorithm demands at least one

complete iteration to identify contingencies that affect network security.

In [118], a contingency filtering was performed according to the criticality and impact

index for each single contingency. The contingency rank is defined in terms of system

4.2 Formulation of the SCOPF Problem 53

impact. Nevertheless, the method requires multiple power flow solutions for all the set of

contingencies, making its application unfeasible in real time.

4.2 Formulation of the SCOPF Problem

4.2.1 Complete Formulation

In this chapter the SCOPF is focus on cost Ctot minimization as shown in:

min(Ctot) = min

(∑
g∈G

cg

)
+ δcσ +

1− δ
|K|

∑
k∈SC
k 6=0

cσk

 (4-1)

Where:

G = Set of generators

cg = Generation cost of generator g

cσ = Total constraint violation penalty in base case

cσk = Total constraint violation penalty in contingency k

K = Set of all contingencies

δ = Weight assigned to the penalty cost in the base case

Lower and upper bounds for different variables x are defined as x and x

SC = {0, 1, 2, 3, ..., |K| − 1, |K|} (4-2)

Where:

sc = Particular scenario of the set SC

sc0 = Base case

sci = i-th contingency scenario

In this chapter, contingency are associated with outage of a line, transformer, capacitor

bank or generator at a time (N − 1 contingency).

Bound variables for voltage, active and reactive power are shown below:

vi ≤ vi ≤ vi ∀i ∈ Isc ∧ ∀sc ∈ SC (4-3)

Where:

54
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

Isc = Set of active buses in scenario sc.

vi = Voltage magnitude on bus i.

pg ≤ pg ≤ pg ∀g ∈ Gsc ∧ ∀sc ∈ SC (4-4)

qg ≤ qg ≤ qg ∀g ∈ Gsc ∧ ∀sc ∈ SC (4-5)

Where:

Gsc = Set of active generators in scenario sc

pg = Active Power of generator g

qg = Reactive power of generator g

Line overloads constraints are shown below:

√
(poe)

2 + (qoe)
2 ≤ Rev

o
ie + σsc,se ∀e ∈ Esc ∧ ∀sc ∈ SC (4-6)

√
(pde)

2 + (qde)
2 ≤ Rev

d
ie + σsc,se ∀e ∈ Esc ∧ ∀sc ∈ SC (4-7)

σsc,se ≥ 0 ∀sc ∈ SC (4-8)

Where:

poe = Active power from origin bus of the line e

qoe = Reactive power from origin bus of the line e

pde = Active power to destination bus of the line e

qde = Reactive power to destination bus of the line e

Esc = Set of active transmission lines in scenario sc

voie = Voltage magnitudes at the origin bus in the line e

vdie = Voltage magnitudes at the destination buses respectively for the line e

Re = Maximal allowed current in line e expressed in MVA at rated voltage

σsc,se = Slack variable that accommodates the current in excess of line e’s capacity

σsc,se is used for penalty calculation, for scenario sc

Transformer constraint are shown below:√
(pof)

2 + (qof)
2 ≤ sf + σsc,sf ∀f ∈ F sc ∧ ∀sc ∈ SC (4-9)

√
(pdf)

2 + (qdf)
2 ≤ sf + σsc,sf ∀f ∈ F sc ∧ ∀sc ∈ SC (4-10)

4.2 Formulation of the SCOPF Problem 55

σsc,se ≥ 0 ∀sc ∈ SC (4-11)

σsc,sf ≥ 0 ∀sc ∈ SC (4-12)

Where:

pof = Active power from origin bus of the transformer f

qof = Reactive power from origin bus of the transformer f

pdf = Active power to destination bus of the transformer f

qdf = Reactive power to destination bus of the transformer f

F sc = Set of active transformer branches in scenario sc

voif = Voltage magnitudes at the origin bus in the transformer f

vdif = Voltage magnitudes at the destination buses respectively for the transformer f

Sf = Maximal allowed current in line f expressed in MVA at rated voltage

σsc,sf = Slack variable that accommodates the current in excess of transformer f ’s capacity

σsc,sf is used for penalty calculation, for scenario sc.

To avoid discrete models for reactive devices, shunt capacitor or reactors are considered as

generators with Pg = 0.

bcsi v
2
i ≤ qcsi ≤ bcsi v

2
i ∀i ∈ Isc ∧ ∀sc ∈ SC (4-13)

Where:

qcsi = Reactive power of commutable shunt on bus i

bcsi = Susceptance value of the commutable shunt on bus i

vi = Voltage magnitude on the bus i.

Active and reactive power balance constraints are shown below:

∑
g∈Gsci

pg − pscLi − g
sc
fsi
v2
i −

∑
e∈Esc,oi

poe−∑
e∈Esc,di

pde −
∑

f∈F sc,oi

pof −
∑

f∈F sc,di

pdf =

σsc,P+
i − σsc,P−i ∀i ∈ Isc ∧ ∀sc ∈ SC

(4-14)

σsc,P+
i ≥ 0 ∀i ∈ Isc ∧ ∀sc ∈ SC (4-15)

56
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

σsc,P−i ≥ 0 ∀i ∈ Isc ∧ ∀sc ∈ SC (4-16)

∑
g∈Gsci

qg − qscLi − (−bscfsi − b
sc
csi

)v2
i −

∑
e∈Esc,oi

qoe−∑
e∈Esc,di

qde −
∑

f∈F sc,oi

qof −
∑

f∈F sc,di

qdf =

σsc,Q+
i − σsc,Q−i ∀i ∈ Isc ∧ ∀sc ∈ SC

(4-17)

σsc,Q+
i ≥ 0 ∀i ∈ Isc ∧ ∀sc ∈ SC (4-18)

σsc,Q−i ≥ 0 ∀i ∈ Isc ∧ ∀sc ∈ SC (4-19)

Where:

pscLi = Active load power on bus i in scenario sc

qscLi = Reactive load power on bus i in scenario sc

gscfsi = Conductance of the fixed shunts on bus i in scenario sc

bscfsi = Susceptance of the fixed shunts on bus i in scenario sc

Esc,o = Set of active lines in scenario sc that have bus i as the origin bus

Esc,d = Set of active lines in scenario sc that have bus i as the destination bus

F sc,o = Set of active transformers in scenario sc that have bus i as the origin bus

F sc,d = Set of active transformers in scenario sc that have bus i as the destination bus

σsc,P+
i = Slack variables for the positive parts of the violation of P balance for bus i in sc.

σsc,P−i = Slack variables for the negative parts of the violation of P balance for bus i in sc.

σsc,Q+
i = Slack variables for the positive parts of the violation of Q balance for bus i in sc.

σsc,Q−i = Slack variables for the negative parts of the violation of Q balance for bus i in sc.

Lack of power is avoided using a spin reserve constraint that guarantees load supplied

during a generation outage.

∑
g∈A

(
P g − Pg

)
+ σA ≥ maxg∈(χ

⋂
A)P g (4-20)

Where:

χ = Set of all generators that appear in at least one contingency

σA = An area spin reserve slack variable for each affected area A in the base case

4.2 Formulation of the SCOPF Problem 57

Penalization cost in Eq. 4-1 is computed as shown below:

Cσ
sc =

∑
i∈I

αp

(
σsc,P+
i + σsc,P−i

)
+
∑
i∈I

αq

(
σsc,Q+
i + σsc,Q−i

)
+
∑
f∈F

αef
(
σsc,sf

)
+
∑
e∈E

αef (σsc,se) + ασσA,sc
(4-21)

Constraint violations that arise in the pre- and post-contingency cases are penalized

following a piece-wise linear function. The violations are divided into: small, medium and

large depending on the violation size. This penalty cost was related to soft constraints, to

force feasible problem’s solution using slack variables. The soft constraints are related with

lines and transformers overloads, that appear when current and apparent power limits are

exceeded. On the other hand, voltages in buses and the active and reactive power in

generators were associated with hard constraints. Violations of the hard constraints, makes

the problem infeasible.

On the other hand, in order to keep the frequency within the expected limits, a power

balance constraint is included. Secondary regulation allows generation balance inside each

zone using the generation droop of certain machines. The droop modeling is included

through predefined participation factors defined by the network operator [148]. Once a

generation contingency has occurred, the system must guarantee that the existing power

generated in the area is sufficient to satisfy the demand in the area.

P sc
g =

Pg if P 0

g + ag∆P
sc ≤ Pg

P 0
g + ag∆P

sc if Pg ≤ P 0
g + ag∆P

sc ≤ Pg

Pg if P 0
g + ag∆P

sc ≥ Pg

(4-22)

Where:

P sc
g = Real power of the g generator in the affected area to the sc contingency

ag = Participation factor of the generator g

P 0
g = Active power of the generator g in the base case

∆P sc = Difference of real power generation between the base case and the sc contingency

The handling of PV/PQ switching is a quite common problem in large scale power grids.

The strategy implemented includes the use of voltage stability limit criteria when a sc > 0.

The strategy keeps the voltage magnitude to the original voltage level before the outage is

applied. However, if reactive limits violation appears, a transition to PQ is performed [149]:
V sc
g = V 0

g if Qg ≤ Qsc
g ≤ Qg

Vg ≤ V sc
g ≤ V 0

g if Qsc
g = Qg

V 0
g ≤ V sc

g ≤ Vg if Qsc
g = Qg

(4-23)

58
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

Where:

Qsc
g = Reactive power generated variable in the contingency sc

V 0
g = Voltage magnitude variables in the generators in the base case

V sc
g = Voltage magnitude variables in the generators in contingency sc

4.2.2 Proposed Approach

Simultaneously considering all the existing contingencies in a system is a high

computational demanding task. This problem increases in complexity when large power

systems are evaluated. With large power systems, not only the matrix size increases but

also the dispersed structure. This fact substantially increases the linear equations solution

times.

To simplify the SCOPF problem that could result when including the base case and

constraints and the N contingency states, and their constraints, the propose strategy

includes constraint handling in the base case. In this way, post-contingency cases are

evaluated and existing violations are observed in the new scenarios. Once the constraints

are generated, the existing constraints of the base case are modified iteratively without

generating new constraints or expanding the size and complexity of the base case problem.

According to this strategy, the objective function of the base case is:

C =
∑
g∈G

Cg + δCσ (4-24)

x(m) and x(m) are used to denote lower and upper bounds of the variable x during each m

iteration. The iterative process for constraints update appears below:

vi(m) ≤ vi ≤ vi(m) ∀i ∈ I (4-25)

pg(m) ≤ pg ≤ pg(m) ∀g ∈ G (4-26)

qg(m) ≤ qg ≤ qg(m) ∀g ∈ G (4-27)

√
(poe)

2 + (qoe)
2 ≤ Re(m)voie + σse ∀e ∈ E (4-28)

√
(pde)

2 + (qde)
2 ≤ Re(m)vdie + σse ∀e ∈ E (4-29)

√
(pof)

2 + (qof)
2 ≤ sf (m) + σsf ∀f ∈ F (4-30)

4.2 Formulation of the SCOPF Problem 59

√
(pdf)

2 + (qdf)
2 ≤ sf (m) + σsf ∀f ∈ F (4-31)

bcsi v
2
i ≤ qcsi ≤ bi

cs
v2
i ∀i ∈ I (4-32)

∑
g∈Gi

pg − pLi − gFSi v2
i −

∑
e∈E0

i

poe −
∑
e∈Edi

pde−∑
f∈F oi

pof −
∑
f∈F di

pdf = σP+
i − σP−i

(4-33)

∑
g∈Gi

qg − qLi − (−bFSi − bCSi)v2
i −

∑
e∈E0

i

qoe −
∑
e∈Edi

qde−∑
f∈F oi

qof −
∑
f∈F di

qdf = σQ+
i − σQ−i

(4-34)

∑
g∈A

(P g(m)− Pg) + σA ≥ maxg∈(χ
⋂
A)P g (4-35)

Slack variables magnitudes is used for penalization cost computation:

Cσ =
∑
i∈I

αp(σ
P+
i + σP−i) +

∑
i∈I

αq(σ
Q+
i + σQ−i)+∑

f∈F

αef (σ
s
f) +

∑
e∈E

αef (σ
s
e) + ασσA

(4-36)

Where

αp = Penalization function for P

αq = Penalization function for Q

αef = Penalization function for power flow in lines and transformers

ασ = Penalization function for area power balance

Penalization cost functions are accordingly:

α(x) =

k1|x| if 0 ≤ |x| ≤ x1

k2|x| if x1 < |x| < x2

k3|x| if |x| ≥ x2

(4-37)

60
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

The optimization problem can finally be summarized in vector form as:

minimize
xc, u0

f(x0, u0)

subject to g(xc, u0) = 0, ,

h(xc, u0) ≤ B(m),

(4-38)

In order to increase the solution speed, it is required to use optimization solvers that are

efficient and handle high-dimensional problems. In [150] a solution strategy is proposed

based on the use of IPOPT. In [151], [152] and [153], IPOPT is shown as a

high-performance algorithm for solving power system problems that includes OPF,

SCOPF, and state estimation.

4.3 Methodology

The solution process initially includes the SCOPF decomposition into subproblems that

include a master problem and other subproblems (contingency states). The first stage

includes solving the base case OPF. Since the problem is non-convex, different initialization

points were used to verify that the optimum point achieved coincides under different initial

points. The second stage includes the modification of the limits of the existing constraints

according to the results in the contingency states.

An algorithm based on existing tools in Matpower [154] and IPOPT [150, 155] is used to

solve the SCOPF described in Section 4.2 [156, 157]. The algorithm consisted of data

processing stages for the input and output of information and data results. The other

stages were classified into three different groups: Parallel OPF, contingencies and

constraints update.

Figure 4-1 shows the iterative process for updating constraint limits and solving the

SCOPF problem. The pre and post processing stages include blocks for handling shunt

reactive elements, which presented discrete reactive compensation blocks. These stages are

found in the SwShunts2Gen and SwGen2Shunts blocks (see Figure 4-1). With these blocks

it is possible to include shunt compensation devices using a continuous model. Continuos

functions allow OPF solution using the IPOPT. The other stages parallel OPF, constraint

handling and contingencies, are described in depth in later sections. For algorithm stop,

the following rules were included: penalty cost after new iteration does not have a

considerable cost reduction or a maximum number of iterations is reached.

4.3 Methodology 61

Figure 4-1: Overview of sections composing the main algorithm

4.3.1 Parallel OPF (Optimal Power Flow)

The RunOPF routine runs in parallel as shown in Figure 4-2. The load parallel seeds

function creates different initialization points to be solved using the IPOPT. Different

solvers used different solution variables for initialization as well as different tolerance levels

to verify solution times and optimal points reached. The linear solvers used were

Multifrontal Massively Parallel sparse direct Solver (MUMPS cite AGULLO2008, MA57

cite Duff2004, or MA86 cite Hogg2010AnIS).

Different optimal solutions can be reached according to the selected algorithm and the

defined tolerance. Once convergence is found, the optimum reached is verified. If the

solution is less than the initial one, the time is increased and the tolerance value reduced.

Once all the seeds have finished or the maximum time threshold reached, the best optimum

is chosen as the starting point of all the master problem and sub-problems. The next stage

is the screening contingencies.

4.3.2 Contingencies

4.3.2.1 Contingency Screening and Ranking

Since the number of contingencies in a large power system is considerable, contingency

ranking and screening is used for medium and large-scale networks (e.g. more than 1,000

buses). The methodology for that selection comprised a set of sorted lists that reflected the

likelihood for each contingency to develop overloads, voltage violations, and

non-convergences. The strategy considers branches and generators independently, as shown

in Figure 4-3.

The main features for contingency screening are summarized in Figure 4-3 and described

in the criteria below:

62
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

Load parallel seeds

Acceptable Tol?

Seed 1
Linear solver 1

Ipopt Tol 1

RunOPF
Worker 1

Seed 2
Linear solver 2

Ipopt Tol 2

RunOPF
Worker 2

Seed n
Linear solver n

Ipopt Tol n

RunOPF
Worker n

Check first in finish

To select
contingencies

Wait extra time Check lower cost

No

Yes

Figure 4-2: Parallel optimal power flow.

Figure 4-3: Contingencies selection flowchart

4.3 Methodology 63

• Apparent Power (S): Apply to both branch and generator contingencies.

• Reactive Power (Q): Apply to branch contingencies.

• Reactive Power Difference (Qd): Apply to computed branch and generator

contingencies as Q difference between origin and destiny buses.

• Power factor (pf): computed with Equation 4-39 for both branch and generator

contingencies.

pf = cos

(
atan

(
Q

P

))
(4-39)

Where:

– pf : Power factor

– atan: Four-quadrant inverse tangent function

– P,Q: Active and Reactive power

• Power factor difference (pfd): Apply to reactive power difference. pfd is a computed

difference between from and to buses.

• Rated voltage: This criteria sorted branch contingencies according to the highest rated

voltage between origin and destiny buses.

• Connectivity : Number of links among buses. Higher number of links represent higher

stress in the system when a link is out of service.

Based on Figure 4-3, contingency screening is performed for branch outputs and generator

outputs. 7 criteria were used for line or transformer outputs, 2 criteria for generator

outputs. Most of the lists were sorted in descending order, except for Power factor and

Connectivity which were sorted in ascending order and marked with (*).

Once all lists were sorted according to the aforementioned criteria, a unique list of

contingencies were computed from combination of those criteria. Each branch and

generator were respectively ranked on each of the 7 and 2 lists depicted in Figure 4-3.

Given this, all the positions a single branch or generator occupied in the different lists were

averaged to create a unique list of sorted contingencies for branches and generators,

respectively. From these two lists, one for branches and one for generators, the top x

contingencies were selected to continue as the input for Contingency evaluation stage.

64
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

4.3.2.2 Contingency Evaluation

In order to increase the solution speed, multiple computer cores are used to solve multiple

contingencies in parallel. The algorithms shown in Figure 4-4 depict the calculation

process in parallel. Once the contingency appears, the power flow is solved using a Newton

Raphson method with the same generation and load conditions as the base case.

If there are contingencies with large power variations in the pre-post contingency state,

considerable differences are stored in the variables ∆P (Equation 4-22). These conditions

can appear when a line transfers large power flows or generation in an area is lost. When

this situation appears in the problem, an adjustment in generators active power of the area

is carried out. The new generator set point is carried out according to the participation

factors of the generators in the area. Those generators that reach active power limits are

fixed to their maximum limits, the remaining ∆P is distributed among the other existing

units. The process is repeated iteratively until all the power difference is completely

covered by the existing units, using the participation factors of each generator.

Some additional conditions that may arise include differences in active power between the

programmed active power and real power flow results due to QV violations in certain

generators (photovoltaic). In such cases, the PV buses were switched to PQ in order to

satisfy Equation 4-23. These modifications can generate changes in the voltage magnitude

of the PQ buses as well as in the power network losses. Changes in the power losses result

in active power differences that can be observed in the slack variables. These conditions

require new iterations of the algorithm in order to re-dispatch the existing units. New

generation re-dispatches reduces ∆P differences. The process is repeated until the

minimum deviation threshold is reached.

If the algorithm does not achieve solution from the units re-dispatch, a new Noconv State

is created as described in the finite state machine in Section 4.3.3.1.

4.3.3 Constraint Handling rules

4.3.3.1 Finite State Machine

The stage of Finite State Machine (FSM), is created to update the base case constraint

limits according to the non-convergence cases. The stage updates soft and hard limits for

branches overloads and bus voltages violations identified in the run selected Contingencies

Stage in Figure 4-1.

Once the set of relevant contingencies in Section 4.3.2.1 are selected and run, violations are

4.3 Methodology 65

collected and summarized in the categories: overloads, voltage violations, and

non-convergence. Once all the previous information is organized and listed, the FSM

updates the inequality constraints in the OPF base case problem prior next iteration.

Figure 4-5 shows the different states and transitions of the FSM stage. The FSM states

are described in Section 4.3.3.2.

4.3.3.2 Updating Constraint Limits

The constraints limits were tuned based on FSM states, Figure 4-5. The rules in the FSM

update the B(m) term in Equation 4-38.

When a violation appears on a line or transformer, an overloads state is activated as shown

in Figure 4-6. The results update maximum loading branch limits.

When a bus voltage violation appears, rules in Figure 4-7 are applied. In this case, the

rule is updated base on Equation 4-40.

((vk − vmin < 0.125)||(vmax − vk < 0.125))

& |vbase − vlim| < 0.01
(4-40)

Power factor in the destination or origin buses was included as another criteria for voltage

update limits. Low power factors show reactive power requirements and end up in low

voltages in the destination bus and overvoltages in the destination bus once an outage

appears on the branch.

Once marginal voltage or power factor criteria is not met, contingencies are updated in the

base case as follows:

qdf < qfmax (4-41)

qof < qfmax (4-42)

qde < qemax (4-43)

qoe < qemax (4-44)

66
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

k
=

 1

i=
m

ax
It

or
sw

in
g

bu
s

<
 T

O
L?

E
nd

C
on

tin
ge

nc
ie

s
(K

)
S

ta
rt

N
o

Ye
s

A
pp

ly
 c

on
tin

ge
nc

y
k

to
 b

as
e

ca
se

Id
en

tif
y

pa
rt

ic
ip

at
in

g
ge

ne
ra

to
rs

i=
1

i=
i+

1

Ye
s

R
un

 p
ow

er
 f

lo
w

A
re

 Q
lim

s
vi

ol
at

io
ns

?
N

o

Ye
s

In
cr

ea
se

 D
el

ta
 a

nd
 r

ec
al

cu
la

te

P
g

pa
rt

ic
ip

at
in

g
ge

ns

A
re

 g
en

s
ex

ce
ed

in
g

m
ax

lim
it

an
d

av
ai

la
bl

e
ge

ns
?

D
o

Q
V

 v
io

la
tio

ns

ex
is

t?
C

ha
ng

e
vi

ol
at

ed

P
V

/P
Q

 b
us

es
 t

o
P

V

C
om

pu
te

 a
nd

 s
av

e
vi

ol
at

io
ns

Ye
s

k=
K

?

k=
k+

1

N
o

Ye
s

N
o

N
o

Figure 4-4: Active power re-dispatch and PV/PQ switch algorithm

4.3 Methodology 67

Figure 4-5: FSM transitions

Figure 4-6: Branch limits updating

68
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

When maximum and minimum voltage limits violations appear, limits are updated as

shown in Figure 4-7.

Finally, if the state is non-convergence, the maximum generation limits are updated, as

well as the branch limits modified. The limits new limits follow the following updates

Pg(25%), Re(10%), sf (10%).

4.4 Results

The SCOPF problem mentioned in Section 4.2 is solved with the algorithm proposed in

Section 4.3. The algorithm was implemented in Matpower Toolbox [154] using an IPOPT

solver [150, 155]. The set of evaluated networks are shown in Table 5-3. These networks

were used in the ARPA-E Grid Optimization Competition - Challenge 1 [157]. The same

Table 5-3 shows the results for the proposed algorithm. All networks were solved using a

64-bit Linux distribution of Matlab® 2019, Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz,

128 GB RAM memory and 16 cores.

To achieve the optimal solution of the base case, a total of 16 seeds were evaluated using a

parallel distribution in 16 computer cores in order to optimize the systems under study.

The evaluation of multiple initial points can allow different optimal solution [127]. The 16

seeds included different combinations, modifying the following fields:

• Linear Solver: mumps, ma57 [150].

• Strategy: monotone (default), adaptive [150].

• Oracle: quality function (default), Loqo [150].

• Seed: initialization of decision variables from a base case (warm starting), from “zero”

condition (cold starting) or from previous algorithm iterations [158],

• Initial voltage: from a base case (warm starting) or set to 1 p.u.

Initially, Contingency Screening (CS) was tested. Each network in Table 5-3 was tested

with different percentages of the total number of contingencies (25%, 50%, 75%, and

100%). The percentages were applied to generation, line and transformer contingencies.

To identify the performance of the algorithm, the evaluation of 100% of the number of

contingencies was initially carried out to identify the total of violations resulting from

overloads and under- and over-voltages, the non-convergences of the contingency scenarios

4.4 Results 69

n
=

 1

Is
 c

on
tin

ge
nc

y
n

a
br

an
ch

 c
on

tin
ge

nc
y?

C
om

pu
te

 v
io

la
tio

ns

le
ve

ls
Δ

v

D
oe

s
a

m
ar

gi
na

l
vi

ol
at

io
n

ex
is

t?
P

ow
er

 f
ac

to
r

>
 0

.9
5?

V
m

ax
=

m
in

(V
m

ax
(m

),
V

m
ax

-
Δ

v)
V

m
in

=
m

ax
(V

m
in

(m
),

V
m

in
+

 Δ
v)

V
m

ax
=

m
in

(V
m

ax
(m

),
1+

0.
8(

V
ba

se
-1

))
V

m
in

=
m

ax
(V

m
in

(m
),

 1
+

0.
8(

V
ba

se
-1

))

A
dd

 m
ax

 r
ea

ct
iv

e
po

w
er

 F
lo

w
 c

on
st

ra
in

t
Q

m
ax

=
0.

9m
in

(Q
0b

as
e,

Q
db

as
e)

Id
en

tif
y

bu
se

s
w

ith

vo
lta

ge
 v

io
la

tio
n

(I
)

V
>

V
m

ax
?

Q
m

in
=

0.
8Q

ba
se

Q
m

ax
=

0.
8Q

ba
se

i=
I?

n=
N

?

E
nd

C
on

tin
ge

nc
ie

s
w

ith

vo
lta

ge
 v

io
la

tio
ns

 (
N

)
S

ta
rt

Ye
s

i =
 1

N
o

N
o

Ye
s

i=
 i+

1

Ye
s

n=
 n

+
1

N
o

N
o

Ye
s

N
o

Ye
s

N
o

A
re

 g
en

er
at

or
s

co
nn

ec
te

d
to

 t
he

 b
us

i?

N
o

Ye
s

Ye
s

V
m

ax
=

m
in

(V
m

ax
(m

),
1+

0.
8(

V
ba

se
-1

))
V

m
in

=
m

ax
(V

m
in

(m
),

 1
+

0.
8(

V
ba

se
-1

))

Figure 4-7: Voltage limits updating

70
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

1 2 3 4 5

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4
L
o
g
(C

o
s
t

*
)

0

20

40

60

80

100

120

140

160

180

200

V
io

la
ti
o
n
s

25%

50%

75%

100%

25%

50%

75%

100%

Figure 4-8: Cost and violations in function of iterations for network 1 for different

percentage of CS

1 2 3 4 5 6 7

iterations

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

c
o

s
t

10
6

10

20

30

40

50

60

70

80

90

v
io

la
ti
o

n
s

25%

50%

75%

100%

25%

50%

75%

100%

 980 s

 862 s 1307 s

 1673 s

Figure 4-9: Cost and violations in function of iterations for Network 2 for different

percentage of CS

4.4 Results 71

Table 4-1: Description of networks tested

Net. Buses Generators Loads Branches Transformers Cont. Shunts Areas

1 500 224 281 540 193 786 44 1

2 4,918 1,340 3,070 4,412 2,315 5,085 732 31

3 11,615 899 19,272 13,967 5,936 8,747 1,332 1

were also identified. The total operating cost included penalty cost for violations of soft

and hard constraints and nodal imbalances. The voltage violations not solved by the FSM,

are solved modifying the nodal balances, according to Equations 4-33 and 4-34. The

penalty cost in Equation 4-37 used k1 = 1000, k2 = 5000, k3 = 10e6, x1 = x2 = 2, and

x3 = 50.

Figure 4-8 shows the cost achieved during each iteration¡ similarly, shows the number of

existing violations for network 1. The results of the algorithm are shown under different

percentages in the CS process. Figure 4-8 shows convergence of the SCOPF algorithm in 5

iterations. The minimum cost achieved was $ 2.63e5. The tests showed a similar cost when

only 50% CS is used.

Cost∗ = log10

(
Cost

Cmin

)
(4-45)

Figure 6-8 shows non significant time differences in medium networks such as Network 1.

In this network, total solution time using 25% contingencies is 33.08 s, while using 100%

contingencies resulted in 42 s. This shows that an increase of 75% of the contingency

number, results in 25% of time increase.

Figure 4-9 shows the results for a large power network like Network 2. In this case the

minimum cost is similar (with a difference of less than 2%) using 50% and 75% CS. The

algorithm shows convergence in 5 iterations for different percentages of CS. On the other

hand, the number of final violations due to bus imbalances is 33 using 50% CS and 23

when using 100% CS. In terms of time, the algorithm with 25% finished in (682 s) and the

final cost was lower than for the system using 100% CS. Using 75% CS, convergence of the

SCOPF algorithm was achieved in just 4 iterations, however, the total time was greater

than 25% (980 s). Results using only 25% are shown aligned with real-time applications.

The results of another large network are shown in Figure 4-10. In this case, network 3

reaches convergence using 50%, 75% and 100% of CS. With 25%, the penalty was high,

being 64 times higher than the minimum cost reached with higher percentages of

72
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

contingency screening.

Table 4-2 summarizes the results for Network 3. In that system, a very low number of

contingencies results in a high number of violations. Although the number of violations to

the voltage constraints is low (0.18%) with respect to the total number of buses, the final

cost is unacceptable. The cost achieved with 50%, 75% and 100% CS is acceptable. In

terms of cost and time, the best performance was achieved using 75% CS.

Figure 4-11 shows the average contingency time for different newtwork sizes using a cluster

of 16 and 72 cores. The difference in time for network 3 shows 52ms/cont. Thus, a 25%

reduction in total contingencies would decrease 341 s per iteration. In that way 4 iterations

of the algorithm would require approximately 1,178 s (19.6 min). This time is less than

half the total time using 100% CS of 2.542 s.

Compared to other proposals, mainly that of Bender Decomposition in [159], the proposed

methodology turns out to be faster. In [159] the average contingency time is 750 ms, while

a network of 2,312 buses using this methodology presents times less than 50 ms when

executed in 16 and 72 parallel cores.

1 2 3 4 5 6

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L
o
g
(C

o
s
t

*
)

0

500

1000

1500

V
io

la
ti
o
n
s

25%

50%

75%

100%

25%

50%

75%

100%

Figure 4-10: Cost and violations in function of iterations for Network 3 for different

percentage of CS

4.4 Results 73

Table 4-2: Summary Results for different percentage of CS

Screening

percentage

25 50 75 100

Convergence

Time [s]

2200 2817 2542 5352

Cost (1e8) [$] 1.3467 0.0211 0.0264 0.0231

Violations 22 2 0 2

4 6 8 10 12 14 16 18 20

Buses number [10 3]

0

50

100

150

200

250

300

350

400

450

ti
m

e
 p

e
r

c
o
n
ti
n
g
e
n
c
y
 [
m

s
/C

o
n
t]

72 workers

16 workers

Figure 4-11: Average time per contingency in function of number of buses

74
4 Security Constraint Optimal Power Flow Formulation and Solutions

with Constraint Handling

4.5 Discussion

The CS process increases its effectiveness in large power networks. This is supported by

the medium-sized network such as Network 1 (500 buses). This Network does not show

positive results when contingency filtering is included. In that case times are not

significantly reduced by including this strategy.

The number of cores available is another high-impact factor for fast contingency screening.

This is one of the main processes of the algorithm. For online applications, the percentage

of contingencies selected is related to the available time for algorithm solution, system size

and the number of available cores. The criteria in Figure 4-3 are applied once the desired

percentage of contingencies in the algorithm is known.

Traditional strategies rely on the use of SCOPF decomposition using multilevel

optimization [126]. The proposed algorithm is based on power flow solutions. This strategy

makes the algorithm easier for implementation with faster solution times.

4.6 Conclusions

This chapter proposes a SCOPF algorithm using modifications to a base OPF. The method

shows practical applications for medium and large size systems, including networks with

dimensions greater than those commonly analyzed in the literature. Parallel computing

supported not only the search for initial optimum but also for contingency simultaneous

solutions.

The strategy used is based on the power flow solution, which allows fast solutions

compared to other strategies such as BD. This procedure speeds up troubleshooting time,

making it effective for large power networks.

The CS algorithm showed adequate performance when filtering greater than 50%

contingencies, this shows a suitable strategy for on-line SCOPF. Other vectorized and High

Performance Computing (HPC) structures can offer a possible method for algorithm

acceleration as shown in Chapter 3.

5 SCOPF using an PHC Strategy for

Medium and Large Size Power

Systems

5.1 Introduction

Given the greater dependence on electricity by our society, a high priority has been given

to the continuity of electricity service. For this reason, multiple network codes have chosen

not only to include in their demands requirements related to operation at the lowest cost,

but also to safe operation. In this way a balance is struck between optimal and safe

operation. These two conditions are covered by formulations such as Security Constrained

Optimal Power Flow (SCOPF) [117–121]. The Department of Energy (DOE) estimates

that billions of dollars could be saved by optimizing the operation of the system and

ensuring that the system can operate in the event of an N-1 contingency. For this reason

the energy industry has turned its attention to this type of development. However, some

limitations do not make this exercise an easy task. Among them is the non-linear and

non-convex nature of the problem, which together with the integration of a large

continuous and integer decision variables make it fit into the category of complex mixed

optimization problems [119,120,122,123].

There have been different proposals for solving this type of problem. Some include

linearization, convexification, decomposition, decomposition and contingency screening,

among others [27, 160]. These strategies have had responses made in small and medium

networks, but limited applications have appeared in large networks as shown in Chapter 4.

Reducing its application in real networks that have thousands of buses and contingencies.

One of the alternatives to reduce the solution time of the SCOPF problem is the use of

non-traditional structures such as Parallel and Heterogeneous Computing (PHC). The

reference [161] shows accelerations of up to 56 times the normal computation time used to

solve an OPF problem. It does this by using CPU and GPU structures. In this case, the

algorithms are applied to 300 bus networks. The authors in [162] compare different

solution strategies based on CPU and GPU frameworks. In that approach, a power flow

problem is solved for a system with up to 3,012 buses using a CPU-GPU structure.

76
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

Reference [41] shows a compensation algorithm for asynchronous parallelization, which

allows solving large and sparse networks with a large number of contingencies. The

algorithm is tested on networks of up to 13,659 buses.

Although these PHC architectures have been applied using CPU and GPU to electrical

systems, the majority have been carried out in power flow, transient stability, contingency

evaluation, smart grids, among others. Section 2.3 shows limited applications in the

solution of SCOPF and OPF on large power networks using CPU-GPU architectures. This

section accelerates the execution of the SCOPF algorithm based on the handling of

constraints from Chapter 4, using an PHC architecture based on CPU-GPU. The main

objective of the acceleration process is to meet the required operation times with structures

that do not involve robust and high-cost networks. The algorithm includes the

complementary constraints from Chapter 4 such as spin reserve and AGC, contingency

screening, generation re-dispatch, and PV/PQ switching.

This chapter applies a PHC architecture in medium, large and complex power grids, to solve

SCOPF problem. The algorithm includes:

• Acceleration of the Parallel Computing (PC) strategy in Chapter 4 using a PHC

architecture that optimizes data management using CPU and GPU to solve SCOPF

problems in medium, large and complex power systems.

• Application of integrated sparse matrix algorithms in SCOPF to solve medium and

large power grids.

The rest of the chapter is organized as follows. Section 5.2 presents a summarized

formulation of the SCOPF problem and explains the propose strategy to solve it. Section

5.3 present the PHC architectures tested in the research. Section 5.4 make a list of the

study tests and conditions to evaluate PHC architecture performance. Section 5.5 shows

the results for benchmark networks and PHC architectures. Finally, section 5.6 presents

conclusions and future work in the area of SCOPF using PHC in large and complex power

grids.

5.2 Mathematical Formulation

One formulation for SCOPF is shown in [156]. The problem is represented with a bi-level

formulation. A base case for the normal state of operation, denoted k = 0. N − 1 scenarios

for K contingency cases, represented by indices k in the set SC = 1,, K. Contingencies

represent faults in generators, lines, and transformers. The decision variables are divided

into two groups: The base case includes voltage magnitudes and angles, real and reactive

5.2 Mathematical Formulation 77

power in generators and controllable reactive shunt devices. The contingency cases in K

include the variables of the normal operation case, together with the AGC variables or area

power balance variables, represented by ∆P sc. The number of decision variables is denoted

by nxy. The vectors of the primary variables are represented by xk ∈ Rnxy for k = {0}
∪ SC. Soft constraints are included in order to have workable solutions in the SCOPF

formulation [156]. Slack variables are represented by σk ∈ Rnσk where nsk . Nodal balance

variables are represented by σk,+ and σk,− and lines and transformers by σk,s.

The SCOPF formulation is expressed as below:

minimize
x0, σ

0, xk, σ
k

c(x0) + c0(σ0) +
1

|K|
∑
k∈SC

ck(σ
k) (5-1a)

subject to

f0(x0) = σ0,+ − σ0,−, (5-1b)

g0(x0) ≤ σ0,s, (5-1c)

fk(xk) = σk,+ − σk,− k ∈ SC, (5-1d)

gk(xk) ≤ σk,s k ∈ SC, (5-1e)

hk(x
p,q,v
0 , xp,q,v,∆P

k

k) = 0 k ∈ SC, (5-1f)

xk ∈ χx, σk ∈ Σk, k ∈ {0} ∪ SC (5-1g)

The objective in (5-1a) includes the costs associated with generation operation and

violations in nodal imbalances or overloads in transformers and lines under normal and

contingency states. Nodal balance and branch overload constraints are represented in

(5-1b) and (5-1c). In the case of contingency, they are represented by (5-1d) and (5-1e).

The contingency generation constraints are shown in (5-1f). The superscripts p, q are

associated with injections of active and reactive power from generators, v is associated with

objective generator voltages. ∆P k represents the power fit between base and contingency

cases. The last constraint (5-1g) is associated with χx and Σk extended real coordinate

space, respectively Rnxy and Rnσk . Therefore, the constraints on (5-1g) include upper and

lower bounds on the slack and decision variables. The complete formulation can be seen in

Chapter 4 and [40].

The challenges of this problem are reduced in: Non-linearity and non-convexity for nodal

balances (5-1b) and (5-1d). The non-linear, non-convex and non-differentiable responses

(5-1f). The constraint (5-1f) includes the addition of binary variables or iterative strategies

as in Chapter 4. Another relevant factor is related to the systems size, which increase the

complexity of the base case solution and contingencies number. The network includes

thousands of buses and branches in the system that are close to real networks as shown

in [156]. Constraints in (5-1b) to (5-1g) limit easy parallelization.

78
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

The proposed methodology follows the algorithm in Chapter 4. The methodology solves a

bi-level problem to solve a base case and contingencies. The base case solution includes the

definition of generation, line and transformer values in order to obtain the lowest system

cost. Subsequently, it updates the constraint limits for each of the existing elements in

order to satisfy the maximum allowed in case of faults and out of service conditions for the

existing elements. In other words, the methodology does not include new contingencies for

the base case. Solving the SCOPF problem not only guarantees an optimal solution of the

base case but also close to optimal operations in contingency state.

Figure 5-1 shows a summary of the algorithm used in Chapter 4 for the solution of

SCOPF. The methodology breaks down the problem into a base case and a study case.

The first stage in blue dotted lines includes the solution of the OPF subject to normal

operating constraints. The second stage in green lines, include constraint handling using an

update of the existing limits through a finite state machine. In this way the steady state

constraints are updated (5-1b)-(5-1c). The process stops under three conditions: a) The

penalty cost is less than a defined percentage of the objective function b) A number of

iterations is reached c) A time limit is reached. The full approach is described in Chapter

4.

Since the real-time responses to the SCOPF problem can be limited due to the processing

times required when solving large networks, different strategies have been applied by

different authors. These include contingency screening, power flow simplifications and

parallel computing.

The contingency screening process and flow assessments during contingency states are

included in [163]. The contingency screening is carried out for both generation and line

outputs. The generator outputs are organized using apparent power and power factor

measurements. Contingencies in lines and transformers use the variables of load flow,

voltage levels and power factor. The power flows give preliminary information of stress

system conditions that can generate greater impacts on the network. OPF runs are not

performed in the contingency screening stages.

In order to accelerate processes with a long execution time such as the contingency

assessment process, an architecture using GPU and CPU is applied in this chapter. The

use of mixed computing environments enables efficient solutions for large and complex

networks. A detailed description of the parallel structure is given in Chapter 2 and section

5.3.

5.2 Mathematical Formulation 79

Parallel OPF

Stop

Load Data

Reactive

Shunts

to

Generators

RunOPF

Select

Contingencies

Run Selected

Contingencies

FSM (m)

Generators to

Reactive

Shunts

Violations, iterations or

time limit?

Start

Constraint

handling

Contingencies

Post-processing

Pre-processing

Figure 5-1: Flow chart of fast SCOPF algorithm

80
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

Table 5-1: Pseudo code for SCOPF algorithm (Average Time)

Pseudo Code Time (s)

Pre-processing 19.69

Run OPF 732.99

Select Contingencies 823.44

Run Contingencies 16,276.86

Constraint handling 0.29

Post-processing 1.51

Total Time 17,854.8

5.3 Heterogeneous and Parallel Implementation CPU-GPU

To reduce the solution time of the SCOPF algorithm, an PHC architecture is proposed.

The following sections describe the proposed architecture and the GPU and CPU

architectures.

5.3.1 PHC Architecture

The solution of large and complex networks has today become one of the realities that

control centers and system operators must face. The strategies shown in [119, 163] appear

as possible solutions to ensure quick responses while simultaneously achieving optimal and

secure operation.

Table 5-1 shows the processing times required to solve a SCOPF problem using a single

core of a 4,918 bus network using a single computer core. As described in the table, the

most time consuming process is contingency resolution. This process is presented as the

bottleneck of the algorithm.

Based on [24, 161], the use of thousands of threads can be achieved from vectorized data

structures. For these solutions to be economical, the use of local CPUs and GPU threads is

done. The acceleration of the algorithm in this section, Figure 5-1, is done using dozens of

GPU cores to reduce execution time during contingency assessment. All other activities are

kept supported using CPU structures.

To accelerate the execution of the SCOPF algorithm, the step that is a candidate to be

accelerated is the contingency evaluation, not only because it is the most time consuming,

but also the one that presents an adequate structure to be parallelized. According to the

algorithm in Figure 5-1, contingency parallelization is used to update the constraints of

5.3 Heterogeneous and Parallel Implementation CPU-GPU 81

the base case optimization problem, as shown in the equations (5-1b) - (5-1c). Some

strategies suggest the use of cloud services, use of CPU parallelization and even various

GPU strategies [84, 85, 164–175]. The implementation from parallelizations that include

CPUs is one of the most tentative; however, the cost of thousands of cores and the

complexity of creating multi-node clusters, shows it as a not-so-easy-to-implement solution.

The general structure of the SCOPF algorithm is mainly programmed with Matlab using

CPU cores. The activities of parallelization of activities using GPU through the CUDA

language. In this architecture the objects mainly reside on the CPU and interact with the

GPU through different data pointers. The host calls class methods and launches CUDA

kernels that execute the operations on the device.

5.3.2 Network Data

Data entry is done through MATPOWER, which performs a reading of the available buses,

connection branches, transformers and loads, as well as the operating costs of each of the

generation units. This data is transferred to the device from the CPU that copies the data

to the device using different pointers in order to create the admittance matrix, the

Jacobian, the complex voltages, power arrays and the GPU unbalance vectors. The

Jacobian matrix and the nodal imbalance matrix are copied to the host in order to proceed

to solve with Solvers dedicated to this task. Table 5-2 shows the list of variables used in

the power flow.

CPU keeps control of data stored on GPU saving the pointers in a single structure. This

data also contains the CUDA Handles for use cusparce and cublas libraries functions and

stream id for kernel concurrency.

5.3.3 Sparse Matrix

As large-power systems handle a large number of elements, these are stored following the

Sparse Coordinate Format (COO) and the Compressed Sparse Row Format (CSR). For an

array A of dimension nxn with nnz number of nonzero elements, the COO format uses ai
for row indices, aj for column indices, and ax array containing nonzero values from the

matrix, this means A[ai[i], aj[i]] = ax[i]. The CSR format also consists of tree arrays, two

of those are aj and ax, the same as the COO format, the last ap of length n + 1, storing

the location of the first zeros of each row in aj and ax and the number of nonzero values in

the i-th row is ap[i + 1] − ap[i]. The COO matrix must be built before calculating ap from

the CSR matrix. The use of both formats does not require a significant number of

82
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

Table 5-2: Networks variables

Variable Data type Stored in

bus type int array CPU/GPU

bus type index int array CPU/GPU

bus pd real array CPU

bus pq real array CPU

bus ds real array CPU

bus bs real array CPU

valV complex array CPU/GPU

valdx real array CPU/GPU

br status real array CPU

br f int array CPU

br t int array CPU

br r real array CPU

br x real array CPU

br b real array CPU

br tap real array CPU

br shift real array CPU

gen gbuson real array CPU

gen pgon real array CPU

gen qgon real array CPU

Ybus SparceMatrix CPU/GPU

Jacobian SparceMatrix CPU/GPU

mismatch real array CPU/GPU

Sbus complex array GPU

Ibus complex array GPU

5.3 Heterogeneous and Parallel Implementation CPU-GPU 83

resources, however, it allows to increase the efficiency of the algorithm when it is executed.

5.3.4 Data Transfer CPU-GPU

CPU sends branch arrays to GPU (status, R, X, B, TAP, SHIFTF, F and T) GS and BS

arrays from bus info and base MVA. GPU computes Ybus matrix and returns it to CPU in

COO format. After this step, GPU only keeps stored Ybus matrix in both COO and CSR

formats. Once previous process is complete, CPU sends set of generators arrays (GBUS,

PG, QG) complementary BUS arrays (PD, QD, bus type, bus type index) and seed value

for voltages array to GPU. GPU computes Sbus and keeps stored voltage array, bus type,

bus type index and Sbus.

On Newton-Raphson loop, GPU sends mismatch vector and Jacobian matrix in COO format

to CPU. After that, CPU solves the linear system. GPU gets and uses the voltage deltas

array from CPU. In order to accelerated host-device communication and make possible data

transmission and kernel execution, transmitted variables are stored in page-locked memory.

5.3.5 GPU Architecture

The GPU architecture is described in Figure 5-2 and Chapter 2. GPU are made up of

Streaming Multiprocessors (SM) that contain different numbers of Streaming Processor

(SP). Each SP containts arithmetic-logical units that allow calculations using floats and

integers points. SMs share information using the global memory that uses a low latency

channel. SMs provide kernels for the execution of different threads. The CPU and the

GPU interact using a Express data bus - PCI. The developments shown in this Chapter

were run on NVIDIA GeForce GTX 1060 card. This card has a GeForce GTX 1060 chip,

1280 SPs, 10 MPs, 98K shared Memory Per Multiprocessor, 65K 32 bit registers per MP

and 6GB of DDR5 SDRAM. The GPU was programmed using CUDA language that allows

execution of task in NVIDIA environments.

The CUDA execution architecture is shown in Figure 5-3. Programs are started on the

CPU host and sent to the device-GPU. Different kernels are sent simultaneously in thread

blocks. Each programming thread is assigned to independent SPs. The records are

executed individually until each process is closed. Nevertheless, threads share information

within each memory block and not among them.

84
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

33 de #

Academy

33 de #

PHC in Power Systems
Power Flow

P V V G cos θ B sin θ P P ⋯ P

Q V V G sin θ B cos θ Q Q ⋯ Q

i k V V G B θ

1 1 𝐕𝟏 𝐕𝟏 𝐆𝟏𝟏 𝐁𝟏𝟏 𝛉𝟏𝟏
1 2 𝐕𝟏 𝐕𝟐 𝐆𝟏𝟐 𝐁𝟏𝟐 𝛉𝟏𝟐
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 N 𝐕𝟏 𝐕𝐍 𝐆𝟏𝐍 𝐁𝟏𝐍 𝛉𝟏𝐍
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N 1 𝐕𝐍 𝐕𝟏 𝐆𝐍𝟏 𝐁𝐍𝟏 𝛉𝐍𝟏
N 2 𝐕𝐍 𝐕𝟐 𝐆𝐍𝟐 𝐁𝐍𝟐 𝛉𝐍𝟐
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

N N 𝐕𝐍 𝐕𝐍 𝐆𝐍𝐍 𝐁𝐍𝐍 𝛉𝐍𝐍

Instruction to evaluate
Single Instruction (SI)

Required information
Multiple Data (MD)

GPU memory

GPU with N Multiprocessors (MP)

Global memory

MP
SP SP SP SP

SP SP SP SP

Shared memory

…

Figure 5-2: Typical architecture of GPUs

34 de #

Academy

34 de #

PHC in Power Systems
Power Flow

Kernel 1

Kernel 2

Ex
ec

ut
io

n

Block
(0,0)

Block
(0,2)

Block
(0,1)

Kernel 1

Kernel 2
Block
(0,0)

Block
(0,1)

Host Device

Grid 2

Block
(0,0)

Block
(0,1)

Block
(0,2)

Block
(0,0)

Block
(0,1)

Block
(1,2)

Block
(1,0)

Block
(1,1)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,3)

Thread
(1,3)

Thread
(0,2)

Thread
(0,1)

Thread
(1,2)

Thread
(0,0)

Thread
(1,0)

Thread
(1,1)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(2,2)

Thread
(2,3)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(0,0)

Thread
(2,0)

Thread
(2,1)

Thread
(3,0)

Thread
(3,1)

Thread
(3,2)

Thread
(3,3)

Grid 1

Figure 5-3: Execution model of a CUDA program

5.3 Heterogeneous and Parallel Implementation CPU-GPU 85

5.3.5.1 Client-Server Architecture

cudaMemcpyAsync(D2H)

HD1 K1.1 K1.2 K1.3 DH1
HD2 K2.1 K2.2 K2.3 DH2

HD3 K3.1 K3.2 K3.3 DH3
HD4 K4.1 K4.2 K4.3 DH4

a) Serial GPU Execution

b) Concurrent GPU Execution

cudaMemcpyAsync(H2D) Kernel <<<>>>

Figure 5-4: Client-Server architecture [4]

CUDA allows the execution of multiple kernels concurrently. To do this CUDA uses

streams. These streams are defined as ”A sequence of operations that are executed in

issue-order on the GPU” [4]. Operations requested from different streams can be executed

at the same time, if enough resources are available on the GPU. Multiple requests can be

sent from the host, however, the request will be limited by the existing bottleneck in data

transfer process. In this way only one problem can be transferred through the existing

host-device channel. Figure 5-4 shows an example of a serial and parallel sequence. As the

serial execution is observed, it includes a beginning and an end of a kernel. On the other

hand, the execution of 4 kernels shows simultaneous execution, nevertheless, the execution

does not start simultaneously.

5.3.5.2 Kernel Design Strategy

One kernel functions group can be executed N times in parallel if N different CUDA

streams are launched. Since all scenarios are independent, if each scenarios have associated

an stream, N scenarios can be computed in parallel. The proposed implementation assign a

GPU stream to each available CPU core, an stream run all the steps of power flow from an

scenario except for the linear solver that run on the CPU. In this way, each scenario can be

solved asynchronously, but facing possible bottlenecks in communications, since there is

only one channel between the GPU and the host. Even so, the possibility of running

kernels while new kernels are being transferred will improve the performance of the

algorithm. compared to do all the process in a single stream where the calculations and

communication must be given serially.

Kernels were provided by self-built cusparse and cublas libraries. For cusparse and cublas

functions, a handle is required, to this handles a stream id was set to keep concurrency.

86
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

5.3.5.3 Newton Raphson

One of the activities that requires the highest computational resources consumption is

contingency evaluation. The process performs power flow evaluations after taking one or

more elements in the system out of operation. For this process, only the fault of one

element will be used. Different algorithms have been proposed for the solution, however,

one of the ones that shows the highest convergence rate as well as precision is the Newton

Raphson. The Newton Raphson algorithm is used in this opportunity. Algorithm 2 shows

a partially GPU implementation. The stages in blue are those that have been parallelized.

Initially the information is loaded into the CPU and transferred to the GPU using matrix

notation. The processes are parallelized for the formation of the Jacobian matrix and the

vector of nodal balances. At this point the elements J11, J12, J21 and J22 of the Jacobian

matrix and Pi, Qi, ∆Pi and ∆Qi are calculated, from the vector of nodal balances. Once

the arrays are created, they are sent to the CPU for solution. The convergence errors are

calculated. If the nodal balance errors are not met, the process is repeated until

convergence is reached in the algorithm.

Algorithm 2 Pseudo-Code for Parallel Power Flow Evaluations using Newton Raphson

Method
1: procedure LF NR EC(Buses, Branches,Pgen,Qgen,Pload,Qload)

2: Vi, θi ← [1] , [0]

3: Ybus ← Y busCalc (Branch)

4: while ε > φ do

5: Pi ← Pi =
∑N

k=1 ViVk (Gik cos(θik) +Bik sin(θik))

6: Qi ← Qi =
∑N

k=1 ViVk (Gik sin(θik) +Bik cos(θik))

7: ∆Pi,∆Qi ← ∆Pi = PGi − PLi − Pi,∆Qi = QGi −QLi −Qi

8: J← f (Ybus,V, θ)

9:

[
∆θ

∆V

]
←
[
J
]−1
[

∆P

∆Q

]
10: θi,Vi ← θi + ∆θi,Vi + ∆Vi

11: ε = max(∆Pi,∆Qi)

12: end while

13: return V, θ

14: end procedure

5.3.6 CPU Architecture

As shown in Table 5-1, the activity with the highest consumption of algorithm processing

time is the contingency processing. This process is accelerated using a GPU architecture.

5.4 Case Study 87

Table 5-3: Description of networks tested

Network Buses Generators Loads Branches Transformers Contingencies Shunts Areas

1 500 224 281 540 193 800 44 1

2 4,918 1,340 3,070 4,412 2,315 5,074 729 31

3 11,612 899 19,272 13,967 5,936 8,747 1,332 1

4 19,402 973 12,928 22,950 11,754 13,391 2,451 1

5 30,000 3,526 10,648 32,020 3,373 10,810 1,275 16

The other stages are accelerated by CPU parallel implementations. Non-parallelized

activities are those with relatively low processing times or structures not suitable to be

parallelized. The PC in this research was equipped with 4 physical Intel (R) Core (TM)

i7-7700HQ 2.80GHz CPU cores running on Windows 10 operating system.

5.4 Case Study

To evaluate the results of the SCOPF strategy outlined in this Chapter, five medium and

large networks were used. These datasets appeared in Challenge 1 of the ARPA GO

Competition [157]. Table 5-3 shows the networks used along with the number of buses,

generators, loads, lines, reactors, capacitors, and areas in each system. The larger the size

of the system, the greater the number of variables in it.

5.5 Results

The results for different network sizes in Table 5-1 are shown in this section. The

modifications in the algorithm are compared with the original algorithm from Chapter 4.

These comparisons are made in terms of convergence and errors in final cost using a

PC-only strategy and another PHC strategies that includes both CPU and CPU

architectures for 500 buses network.

5.5.1 Accuracy and Convergence of PHC Architectures

The convergence of the SCOPF implementation is verified using the preliminary results

obtained in Chapter 4. Accelerations across PHC architectures using CPU and GPU are

compared in terms of number of iterations and final cost for both the base case and

contingency case. The results were confirmed by medium-sized network 1. The error

during each algorithm iteration was less than ∆P < 10−10, ∆Q < 10−10, ∆vm < 10−10 and

∆c < 10−7 for the first 5 iterations as shown in Table 5-4. The above confirms that

88
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

Table 5-4: Cost and errors in serial and parallel algorithm execution using network 1

Iteration Cost Serial ∆Cost ∆Vm ∆Va ∆P ∆Q

1 1,302,553.42 1.35e-07 5.66e-15 1.32e-14 1.26e-10 8.60e-10

2 471,034.72 7.08e-07 5.21e-15 3.10e-14 9.60e-11 9.98e-10

3 471,112.28 5.19e-06 5.51e-15 3.52e-14 9.29e-11 8.79e-10

4 471,034.72 7.08e-07 5.48e-15 3.30e-14 9.91e-11 8.26e-10

5 471,640.67 8.62e-07 5.60e-15 3.31e-14 9.31e-11 6.63e-10

Table 5-5: Average Time for first iteration of the complete SCOPF (s)

Buses mp Serial mp Par GPU Serial GPU Par

500 535.77 13.91 117.97 64.86

4,918 1,304.06 386.95 2,741.35 715.24

11612 7,713.68 2,405.68 11,531.30 2,310.95

19,402 – 5,131.94 – 4,848.93

30,000 – 17,202.84 – 5,270.00

parallelization using either CPU or GPU will only impact the algorithm’s execution time

and not the optimal solution.

5.5.2 PHC Architectures Performance

The application of PHC frameworks to SCOPF problems is tested in this section. For this

purpose, different computing architectures including CPU and partial GPU are

implemented and tested. The networks in Table 5-3 are used to test the performance of

the algorithm in Figure 5-1 under different computational architectures. The networks will

include the evaluation of all the contingencies set based on system size and contingency

screening procedure. The strategy follows recommendations included in [27] to reduce

calculation times under limited computational resources. Total required time for the

solution of first iteration of each system is shown in Table 5-5.

Various strategies were implemented following the flow diagram in Figure 5-1. The OPF

solution is carried out in CPU architecture and the contingency evaluation that requires

excessive calculation time is carried out using different parallel computing structures. The

main differences in the evaluations are: 1) The scenarios are evaluated sequentially or serially

2) the parallelization using CPU cores is based on developed Matlab environments 3) In the

algorithms that use partially parallelized structures using GPU, the Client - Server structure

described in Section 5.3.5.1 is followed. All strategies use the same algorithm, however, they

5.5 Results 89

change their computational execution structure. Table 5-5 and 5-6 describes the results for

the set of strategies evaluated. mp Serial uses serial CPU cores, mp Par uses Parallel CPU

cores, GPU Serial uses GPU threads and GPU Par uses GPU threads.

5.5.2.1 Regular CPU One Core

For this PHC structure a single CPU core is used so that the algorithm is evaluated serially.

Thus the activities are evaluated one after the other. Times for one iteration of medium

and large-sized systems are shown in column 2 of Table 5-5. Networks greater than 20,000

nodes require excessive times even for one iteration. The solution time includes the initial

OPF solution, contingency evaluation and constraint handling times. This test is a reference

for benchmark in the performance of architectures that include parallel processing. The

acceleration achieved for one algorithm iteration in medium and large networks is shown in

Table 5-6. The acceleration achieved follows the relationship in equation 5-2. Where Tx is

the time reported in the columns and Ty in the rows.

Sx,y = Tx/Ty (5-2)

Large power network of 19,402 and 30,000 buses are not executed serially since the required

time was higher than 4 hours.

5.5.2.2 Parallel CPU

In order to reduce the execution time encountered with the serial strategy, a parallel strategy

using multiple CPU cores is employed. The strategy is implemented in Matlab. The entire

algorithm that follows this strategy uses CPU cores for both serial and parallelized activities.

Each CPU core executes a contingency for simultaneous evaluation. For this test, a total of

4 cores are used, which are those existing in the processing unit. The times found for one

SCOPF algorithm operation are shown in column 4 of Table 5-5. The acceleration achieved

is shown in cells formed by combinations of columns and rows in Table 5-6. In this case, the

acceleration of the algorithm executed in parallel with respect to that executed in series is

shown in the element in mp Par-mp Serial of each network tested. In this case, accelerations

of 38,52 are shown in medium-sized networks and more than 3 in large networks using only

CPU cores. The acceleration obtained varies according to the size of the network. This is

observed as a result of the solution time of each network, which when distributed is greatly

reduced.

5.5.2.3 Serial GPU

Another PHC structure that includes CPU cores and GPU threads is evaluated. This time

the vectorized strategy of Chapter 3 and Section 5.3.5.3 are included. The parallelized

activities are the ones in green in Figure 5-1. The initial solution includes contingency

90
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

Table 5-6: Speed up under different strategies for first algorithm iteration

Buses Strategy mp serial mp par GPU Serial GPU Par

500

mp serial 1.00 38.52 4.54 8.26

mp par 0.03 1.00 0.12 0.21

GPU Serial 0.22 8.48 1.00 1.82

GPU Par 0.12 4.66 0.55 1.00

4918

mp serial 1.00 3.37 0.48 1.82

mp par 0.30 1.00 0.14 0.54

GPU Serial 2.10 7.08 1.00 3.83

GPU Par 0.55 1.85 0.26 1.00

11612

mp serial 1.00 3.21 0.67 3.34

mp par 0.31 1.00 0.21 1.04

GPU Serial 1.49 4.79 1.00 4.99

GPU Par 0.30 0.96 0.20 1.00

19,402

mp serial – – – –

mp par – 1 – 1.0584

GPU Serial – – – –

GPU Par - 0.9449 - 1

30000

mp serial – – – –

mp par – 1 – 3.2643

GPU Serial – – – –

GPU Par – 0.3063 – 1

5.5 Results 91

assessment that creeps into the GPU environment. In the GPU the power flow equations

are parallelized. Inside the GPU concurrency is not considered , which does not allow the

processing of multiple contingencies inside the GPU. In this case, larger network sizes

result in longer computation times. One of the relevant parameters is the transfer times

associated with high latency in the CPU-GPU channel. This time has a great impact on

the total solution time. In most networks the transfer time degrades the accelerations

achieved during other stages inside the GPU. The results are shown in greater times and

accelerations less than 1 as shown in Tables 5-5 and 5-6.

Large power network of 19,402 and 30,000 buses are not executed serially since the required

time was higher than 4 hours.

5.5.2.4 Concurrent GPU

In order to run multiple networks, representing various contingencies, the architecture shown

in Section 5.3.5.1 is implemented. The architecture allows to use the maximum capacity of

the GPU, executing multiple contingencies that come from different kernels of available

CPUs. 4 networks are run simultaneously and launched from CPU cores. Solution times

are efficient in very large networks such as 20,000 and 30,000 including transfer times as

described in Tables 5-5 and 5-6.

5.5.3 Sparse Linear Solver Performance

Three linear solvers were evaluated for step 9 of Algorithm 2. LU3 from mplinsolve

(matpower solver), Intel MKL Pardiso via pypardiso interface [176] and NICSLU [177]. 50

pairs of Jacobian and mismatch vectors were taken from each power system network. On

average, mplinsolve took 71.42 ms to solve the system while pypardiso and NICSLU needed

89.48 and 49.12 ms respectively.

5.5.4 Discussion

The results in Tables 5-5 and 5-6 show that PHC structures are adequate with current

computational resources to solve SCOPF problems. The results are shown in networks of

500 to 30,000 buses using a considerable amounts of computational resources in demanding

processes such as contingency evaluation. PHC structures are found to be suitable for the

solution of medium and large power grids. However, the results show that structures with

only computer cores are more efficient for medium-sized networks. Meanwhile, structures

that use hybrid CPU and GPU structures have better results in large power networks, in

this case greater than 20,000 buses, as shown in Table 5-7.

92
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

500 4918 11615 19402 30000 All

Network bus number

0

50

100

150

200

T
im

e
(m

s
)

mplinsolve

pypardiso

NICSLU

Figure 5-5: Average solver time for different power system sizes

5.5 Results 93

Table 5-7: Results for one iteration of the SCOPF algorithm using parallel architectures for

CPU and CPU-GPU

500

Initialize Ybus Sbus mis f convergence Jacobian Solver updateV CPU-GPU Transfer Total

CPU (ms) 0.16 0.89 0.12 0.09 0.10 0.03 1.25 2.63 0.21 0.00 5.48

CPU (%) 2.92 16.31 2.17 1.61 1.90 0.48 22.75 47.98 3.88 0.00 100

GPU (ms) 0.15 51.48 1.93 0.02 0.01 0.02 44.79 2.25 0.25 8.80 109.7

GPU (%) 0.14 46.93 1.76 0.02 0.01 0.02 40.84 2.05 0.23 8.02 100

4,918

Initialize Ybus Sbus mis f convergence Jacobian Solver updateV CPU-GPU Transfer Total

CPU (ms) 0.64 6.65 0.40 0.66 0.51 0.04 10.48 28.14 1.44 0.00 48.96

CPU (%) 1.31 13.58 0.81 1.35 1.03 0.07 21.40 57.49 2.94 0.00 100

GPU (ms) 0.77 56.28 12.91 0.03 0.01 0.04 36.30 26.94 0.25 13.82 147.35

GPU (%) 0.52 38.20 8.76 0.02 0.01 0.02 24.63 18.29 0.17 9.38 100

11,612

Initialize Ybus Sbus mis f convergence Jacobian Solver updateV CPU-GPU Transfer Total

CPU (ms) 1.40 20.09 0.86 1.92 1.37 0.06 34.96 240.21 3.85 0.00 304.72

CPU (%) 0.46 6.59 0.28 0.63 0.45 0.02 11.47 78.83 1.26 0.00 100

GPU (ms) 1.72 39.84 9.07 0.06 0.01 0.07 31.37 184.14 0.30 26.47 293.05

GPU (%) 0.59 13.59 3.10 0.02 0.00 0.02 10.70 62.84 0.10 9.03 100

19,402

Initialize Ybus Sbus mis f convergence Jacobian Solver updateV CPU-GPU Transfer Total

CPU (ms) 2.58 37.45 1.41 3.11 2.31 0.08 71.24 331.38 6.60 0.00 456.16

CPU (%) 0.56 8.21 0.31 0.68 0.51 0.02 15.62 72.65 1.45 0.00 100

GPU (ms) 3.20 36.36 8.26 0.06 0.02 0.10 32.39 281.34 0.36 47.56 409.65

GPU (%) 0.78 8.88 2.02 0.02 0.00 0.02 7.91 68.68 0.09 11.61 100

30,000

Initialize Ybus Sbus mis f convergence Jacobian Solver updateV CPU-GPU Transfer Total

CPU (ms) 3.70 43.23 2.12 18.32 15.14 0.43 609.62 5343.02 62.04 0.00 6,097.62

CPU (%) 0.06 0.71 0.03 0.30 0.25 0.01 10.00 87.62 1.02 0.00 100

GPU (ms) 4.64 35.72 7.87 0.43 0.10 0.59 201.66 1601.18 2.73 121.35 1,976.27

GPU (%) 0.23 1.81 0.40 0.02 0.01 0.03 10.20 81.02 0.14 6.14 100

94
5 SCOPF using an PHC Strategy for Medium and Large Size Power

Systems

In the case of medium-sized networks, it is observed that the activities that are executed

more efficiently in CPU than in GPU are the calculations Ybus and the Jacobian matrix.

This way they run faster on CPU. The other activities show lower GPU times. At this

network size, a high negative impact on information transfer times between CPU-GPUs is

observed. This is the result of the low time required for other activities and the high

latency in the transfer process. The results also show a high impact on the solution time of

the systems of equations using different solvers. Using the specified algorithm the more

efficient solver was NICSLU followed by MATPOWER and PyPardiso.

Results on large networks show faster responses for the execution of PHC structures that

use CPU and GPU. Most activities on large networks are performed more efficiently on

GPUs. Although the transfer time has an impact on the total execution time, the

percentage that this requires with respect to the total is low. The result is a PHC structure

optimized for GPU execution using constraint handling. The results for the solution of the

equations generated by the formulation also show a better performance of NICSLU over

the MATPOWER and PyPardiso solvers.

5.6 Conclusions

This Chapter proposes the acceleration of the algorithm shown in Chapter 4 in order to

accelerate the solution of a SCOPF problem. The strategy shown includes the use of an

PHC architecture capable of accelerating the solution time of the proposed strategy. The

algorithm and the proposed architecture are tested using large networks that include a

considerable number of buses, loads, lines and contingencies. The systems used exceed the

size of the common systems in the literature. The PHC framework uses a hybrid of CPU

and GPU architectures to speed up the process of calculating power flows in the

contingency assessment stage.

The algorithm is based on a bi-level algorithm that solves a base problem that includes the

normal operation of the system and a second stage of the system under contingency. Once

the base case is solved, the limits of each of the existing constraints are updated not only

to guarantee an optimal operation in a steady state but also once each of the different

contingencies have been applied. Each contingency updates the limits of the different

constraints. Since the algorithm is mainly based on power flows, it is suitable for

implementation using the CPU and GPU framework from Chapter 3.

The architecture is implemented in a laptop, however, its structure is suitable to be applied

in clusters of CPUs and GPUs. The structure is evaluated with Matlab and CUDA in the

case of the stages that include the use of GPUs.

5.6 Conclusions 95

6 Contributions and Concluding Remarks

6.1 Contributions

In this thesis, a presentation of the High Performance Computing (HPC) architectures

applied to the analysis of power systems, particularly Security Constrained Optimal Power

Flow (SCOPF) is made. The research performs a review of the applications of HPC

structures in power systems analysis, showing a limited application of these structures to

SCOPF problems in Chapter 2.

The first contribution of this research is a proposed vectorized power flow architecture for

local microgrid control. Chapter 3 shows the implementation of a vectorized algorithm to

solve large power networks using low cost embedded computers using an HC architecture.

The proposal makes a feasible implementation for a local controller to guarantee secure

operation of isolated or grid-connected microgrids. The strategy works in near real time.

As a second contribution of this work, an efficient algorithm for the solution of large and

complex SCOPF problems is implemented using secure constraint handling using a

heuristic algorithm. Chapter 4 shows successful results for real time operation in large

power systems. The architecture was based on PC architectures that involve computer

clustering techniques. The strategy was tested on near real time with appropriate

outcomes.

As a third contribution of this thesis, a HPC that includes CPU cores and GPU threads is

implemented. Chapter 5 shows the results exploit the potential of CPU cores and

vectorized GPU structures for contingency evaluation. The responses show that hybrid

architectures are cost effective solutions to accelerate the solution of SCOPF problems.

The results show that CPU and GPU are feasible and appropriate architecture for the

solution of SCOPF in real-time.

6.2 Answering the Research Questions 97

6.2 Answering the Research Questions

What specific SCOPF features and formulations are suitable for being parallelized using

PHC architectures?

The research shows different approaches for the solution of the SCOPF problem. The

results shows that PHC are effective strategies for the solution of the problem. Since the

security feature is one of the main features of the problem, the evaluation of multiple

contingency in large power systems is a burdensome when system of thousands of buses

and lines are analyzed. The research and results showed that contingency evaluation as the

solution of large and complex problem formulation are the main features to be accelerated

in SCOPF using PHC architectures.

How much faster can the evaluation be completed using PHC integration to solve SCOPF

problems in comparison with a traditional solution using only CPU cores?

Multiple strategies showed the application of parallel structures for the solution of different

power system networks. Previous researcher results show promising applications of CPU

cores and GPU structures to solve power system problems; however, limited application

had been shown in SCOPF . The application show that GPU implementation allow faster

result than single CPU cores in large power networks. This condition makes the

application of PHC a cost-effective solution to accelerate the algorithm responses. The

application show responses x3.26 faster using a conventional PC. The strategy is scalable

to CPU and GPU clusters.

Does the strategy satisfy the on-line security times and optimum solutions required by

system operators?

The responses of the SCOPF using PHC structures show feasible solutions in terms of time

and optimal final points. The implementation in this research avoids multiple OPFs and

uses power flow runs to perform constraint handling. The results show a considerable

reduction in algorithm execution time making the strategy adequate for real-time

operation. The final optimal solution shows successful results in large power networks,

making the strategy feasible in terms of optimal point and final computing time. The

strategy is scalable in industrial environments.

6.3 Directions for Future Research

Some ideas for future research are listed below:

98 6 Contributions and Concluding Remarks

• In the development of this thesis, a PC proposal is made using CPU cores to solve

non-convex problems that include LEMs. Although the strategy was appropriate,

parallel clusters could be implemented on GPUs in order to increase performance and

further reduce processing time.

• Current work shows promising results including a local GPU and multiple cores on a

personal computer and a Workstation. The results can be exploited and reproduced

in clusters of CPUs and GPUs. The solution can also be extended to the use of

Cloud or Fog services and integration of CPUs and GPUs for the SCOPF solution,

which would accelerate the calculation and solution process of the system in a more

considerable way.

• During this work, processes that consume a large number of resources and time

during the solution of SCOPF have been accelerated. These activities included the

execution of contingencies, which in large networks are exhaustive due to the number

of lines, transformers, generators, loads and reactive compensations. During the

development of the thesis, different tests were carried out in order to find suitable

solvers of equations for the solution of OPF using vectorized structures. However, the

results were not competitive in terms of execution time. Looking for more efficient

structures in the solver could significantly reduce execution times.

References

[1] Q. Wang, Risk-based Security-Constrained Optimal Power Flow: Mathematical

Fundamentals, Computational Strategies, Validation, and use within Electricity

Markets. PhD thesis, Iowa State University, 2013.

[2] D. Page, A Practical Introduction to Computer Architecture. Springer, 2009.

[3] NVIDIA, “NVIDIA Turing GPU,” White Paper, 2018.

[4] S. Rennich, “Cuda c/c++ streams and concurrency,” tech. rep., 2012.

[5] G. Wood, A; Wollenberg, B; Sheblé, Power Generation, Operation and Control. Wiley,

2014.

[6] F. Garcia, N. D. Sarma, V. Kanduri, G. Nissankala, K. Gopinath, J. Polusani,

T. Mortensen, and I. Flores, “ERCOT control center experience in using real-time

contingency analysis in the new nodal market,” IEEE Power and Energy Society

General Meeting, pp. 1–8, 2012.

[7] Z. Li and F. Yang, Advanced metering infrastructure and graphics processing unit

technologies in electric distribution networks. No. 9789811070006, Springer Singapore,

2018.

[8] NERC, “Standard TPL-001-4 — Transmission System Planning Performance

Requirements,” vol. 2, 2014.

[9] J. K. Debnath, W. K. Fung, A. M. Gole, and S. Filizadeh, “Simulation of large-scale

electrical power networks on graphics processing units,” 2011 IEEE Electrical Power

and Energy Conference, EPEC 2011, pp. 199–204, 2011.

[10] J. Baranowski and D. J. French, “Operational use of contingency analysis at PJM,”

IEEE Power and Energy Society General Meeting, pp. 13–16, 2012.

[11] TOP500, “Home — TOP500 Supercomputer Sites,” 2020.

[12] R. Gnanavignesh and U. J. Shenoy, “Parallel Sparse LU Factorization of Power

Flow Jacobian using GPU,” IEEE Region 10 Annual International Conference,

Proceedings/TENCON, vol. 2019-Octob, no. C, pp. 1857–1862, 2019.

100 References

[13] I. Araújo, V. Tadaiesky, D. Cardoso, Y. Fukuyama, and Á. Santana, “Simultaneous

parallel power flow calculations using hybrid CPU-GPU approach,” International

Journal of Electrical Power and Energy Systems, vol. 105, no. February 2018, pp. 229–

236, 2019.

[14] Q. Shi, C. Yuan, W. Feng, G. Liu, R. Dai, Z. Wang, and F. Li, “Enabling Model-Based

LTI for Large-Scale Power System Security Monitoring and Enhancement with Graph-

Computing-Based Power Flow Calculation,” IEEE Access, vol. 7, pp. 167010–167018,

2019.

[15] P. Duan, S. Xu, H. Chen, X. Yang, S. Wang, and E. Hu, “High Performance Computing

(HPC)for Advanced Power System Studies,” 2nd IEEE Conference on Energy Internet

and Energy System Integration, EI2 2018 - Proceedings, pp. 1–9, 2018.

[16] K. Tang, S. Dong, B. Zhu, Q. Ni, and Y. Song, “GPU-Based Real-time N-1 AC Power

Flow Algorithm with Preconditioned Iterative Method,” IEEE Power and Energy

Society General Meeting, vol. 2018-Augus, pp. 1–5, 2018.

[17] G. Ruetsch and B. Oster, “Getting Started with CUDA What is CUDA ?,” Materials,

vol. 17, no. 4, pp. 223–224, 2008.

[18] T. Soyata, GPU Parallel Program Development Using CUDA. 2018.

[19] L. Platbrood, H. Crisciu, F. Capitanescu, and L. Wehenkel, “Solving very large-scale

security-constrained optimal power flow problems by combining iterative contingency

selection and network compression,” 17th Power Systems Computation Conference,

PSCC 2011, 2011.

[20] F. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Applications of security-

constrained optimal power flows,” Modern Electric Power Systems Symposium,

MEPS06, p. 7, 2006.

[21] F. Capitanescu, “Critical review of recent advances and further developments needed

in AC optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57–68,

2016.

[22] O. Alsaç, J. Bright, M. Prais, and B. Stott, “Further developments in lp-based optimal

power flow,” IEEE Transactions on Power Systems, vol. 5, no. 3, pp. 697–711, 1990.

[23] D. Rodriguez-Medina, D. Gomez, S. Rivera, and J. Gers, “A fast decomposition

method to solve a security-constrained optimal power flow (scopf) empowered by

heterogeneous and parallel computing (hpc) (under review),” PES General Meeting,

pp. 52812–52824, 2022.

References 101

[24] D. Rodriguez, D. Alvarez, D. Gomez, J. Gers, and S. Rivera, “Low-cost analysis of load

flow computing using embedded computer empowered by gpu,” Proceedings - IEEE

PES ISGT NA 2021: “Technology Solutions for an Evolving Grid”, 02 2021.

[25] D. Rodriguez, D. Gomez, D. Alvarez, and S. Rivera, “A review of parallel

heterogeneous computing algorithms in power systems,” Algorithms, vol. 14, no. 10,

2021.

[26] D. Rodriguez, A. Angulo, D. F. Gomez, A. David, J. Gil, and S. Rivera,

“Smart Microgrids Operation Considering Expert Knowledge and Ensembled Based

Metaheuristic Optimization Algorithms (Under Review),” International Journal of

Electrical and Computer Science, vol. 12, 2021.

[27] T. Valencia-Zuluaga, D. Agudelo-Martinez, D. Arango-Angarita, C. Acosta-Urrego,

S. Rivera, D. Rodriguez-Medina, and J. Gers, “A Fast Decomposition Method to Solve

a Security-Constrained Optimal Power Flow (SCOPF) Problem through Constraint

Handling,” IEEE Access, vol. 9, pp. 52812–52824, 2021.

[28] A. Angulo, D. Rodŕıguez, W. Garzón, D. F. Gómez, A. Al Sumaiti, and S. Rivera,

“Algorithms for bidding strategies in local energy markets: Exhaustive search through

parallel computing and metaheuristic optimization,” Algorithms, vol. 14, no. 9, 2021.

[29] J. Ramı́rez-Romero, D. Medina, and S. Rivera, “Teaching using a synchronous machine

virtual laboratory,” Global Journal of Engineering Education, vol. 22, pp. 123–130, 06

2020.

[30] J. Garcia-Guarin, D. Rodriguez, D. Alvarez, S. Rivera, C. Cortes, A. Guzman,

A. Bretas, J. R. Aguero, and N. Bretas, “Smart microgrids operation considering

a variable neighborhood search: The differential evolutionary particle swarm

optimization algorithm,” Energies, vol. 12, no. 16, pp. 1–13, 2019.

[31] S. Vargas, D. Rodriguez, and S. Rivera, “Mathematical Formulation and Numerical

Validation of Uncertainty Costs for Controllable Loads,” Revista Internacional de

Métodos Numéricos para Cálculo y Diseño en Ingenieŕıa, vol. 12, 2019.

[32] S. Rivera, D. Rodriguez, and I. Erlich, “2018 Grid Optimization Competition

Evaluating the Performance of Modern Heuristic Optimizers on Stochastic

Optimization Problems applied to Smart Grids Test bed A : Stochastic OPF

in Presence of Renewable Energy and Controllable Loads,” Intelligent Systems

Subcommittee Power System Analysis, Computing, and Economic Committee,

no. January, 2018.

102 References

[33] J. Arevalo, D. Medina, J. Rueda, and S. Rivera, “2018 competition on operational

planning of sustainable power systems: Testsbeds and results,” WSEAS Transactions

on Power Systems, vol. 14, pp. 98–106, 08 2019.

[34] D. Rodriguez, D. Gomez, W. Garzon, D. Alvarez, S. Rivera, and J. Gers,

“Posicionamiento Óptimo de cuadrillas basado en estad́ısticas de Tránsito de Google

Maps e Indicadores de Confiabilidad,” 2018.

[35] D. Rodriguez, J. M. Gers, T. Valencia, C. Acosta, D. Agudelo, and D. Arango,

“Ensembled Method: Constraints Relaxation With Analytical Optimization With

Combined Heuristic Method,” tech. rep., 2020.

[36] D. Rodriguez and T. Valencia, “Posicionamiento Óptimo de cuadrillas basado en

estad́ısticas de Tránsito de Google Maps e Indicadores de Confiabilidad,” 2018.

[37] J. Garćıa, D. Rodŕıguez, and S. Rivera, “Herramienta para la Programación de Redes

Inteligentes con Recursos Energéticos de Alta Incertidumbre,” 2019.

[38] NERC, Reliability Assessment Guidebook. 1 ed., 2010.

[39] N. Garcia, “Parallel power flow solutions using a biconjugate gradient algorithm and

a Newton method: A GPU-based approach,” IEEE PES General Meeting, PES 2010,

no. 5, pp. 1–4, 2010.

[40] ARPA, “About the Competition — Grid Optimization Competition,” 2019.

[41] S. Huang and V. Dinavahi, “Fast Batched Solution for Real-Time Optimal Power Flow

with Penetration of Renewable Energy,” IEEE Access, vol. 6, pp. 13898–13910, 2018.

[42] V. H. Hinojosa and F. Gonzalez-Longatt, “Preventive security-constrained DCOPF

formulation using power transmission distribution factors and line outage distribution

factors,” Energies, vol. 11, no. 6, pp. 1–13, 2018.

[43] Y. Yu and P. Luh, “Scalable corrective security-constrained economic dispatch

considering conflicting contingencies,” International Journal of Electrical Power and

Energy Systems, vol. 98, no. December 2017, pp. 269–278, 2018.

[44] Y. Yang and Y. Feng, “Large-scale preventive security constrained optimal power flow

based on compensation method,” IEEE Power and Energy Society General Meeting,

vol. 2015-Septe, 2015.

[45] F. Capitanescu, J. L. Martinez Ramos, P. Panciatici, D. Kirschen, A. Marano

Marcolini, L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges, and future

trends in security constrained optimal power flow,” Electric Power Systems Research,

vol. 81, no. 8, pp. 1731–1741, 2011.

References 103

[46] H. Harsan, N. Hadjsaid, and P. Pruvot, “Cyclic Security Analysis for Security

Constrained Optimal Power Flow,” IEEE Transactions on Power Systems, vol. 12,

no. 2, pp. 948–953, 1997.

[47] Q. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “Solving corrective risk-

based security-constrained optimal power flow with Lagrangian relaxation and Benders

decomposition,” International Journal of Electrical Power and Energy Systems, vol. 75,

pp. 255–264, 2016.

[48] Y. Li and J. D. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE

Transactions on Power Systems, vol. 24, no. 1, pp. 494–495, 2009.

[49] Q. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “A computational strategy to

solve preventive risk-based security-constrained OPF,” IEEE Transactions on Power

Systems, vol. 28, no. 2, pp. 1666–1675, 2013.

[50] V. H. Hinojosa, “Comparative Corrective and Preventive Security-Constrained

DCOPF Problems Using Linear Shift-Factors,” Energies, pp. 1–16, 2020.

[51] J. Mohammadi, G. Hug, and S. Kar, “A benders decomposition approach to corrective

security constrained OPF with power flow control devices,” IEEE Power and Energy

Society General Meeting, 2013.

[52] S. Huang and V. Dinavahi, “Performance analysis of GPU-accelerated fast decoupled

power flow using direct linear solver,” 2017 IEEE Electrical Power and Energy

Conference, EPEC 2017, vol. 2017-Octob, no. 1, pp. 1–6, 2017.

[53] M. Wang, Y. Chen, and S. Huang, “GPU-based Power Flow Analysis with Continuous

Newton ’ s Method,” IEEE Conference on Energy Internet and Energy System

Integration (EI2), pp. 1–5, 2017.

[54] L. Y. Kyaw and S. Phyu, “Scheduling Methods in HPC System: Review,” 2020 IEEE

Conference on Computer Applications, ICCA 2020, pp. 1–6, 2020.

[55] L. R, P. M, and B. C, Computational Physics. 2007.

[56] P. Marksteiner, “High-performance computing - An overview,” Computer Physics

Communications, vol. 97, no. 1-2, pp. 16–35, 1996.

[57] H. Andrade and I. Crnkovic, “A Review on Software Architectures for Heterogeneous

Platforms,” Proceedings - Asia-Pacific Software Engineering Conference, APSEC,

vol. 2018-December, pp. 209–218, 2018.

[58] P. N. Glaskowsky, “NVIDIA ’ s Fermi : The First Complete GPU Computing

Architecture,” no. September, 2009.

104 References

[59] M. Marin, G.-e. P. Flow, and A. Distributed, GPU-Enhanced power flow analysis. PhD

thesis, UNIVERSITE DE PERPIGNAN VIA DOMITIA-UNIVERSITY COLLEGE

DUBLIN, 2016.

[60] Z. Feng, X. Zhao, and Z. Zeng, “Robust parallel preconditioned power grid simulation

on gpu with adaptive runtime performance modeling and optimization,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,

no. 4, pp. 562–573, 2011.

[61] Z. Li, J. Zhu, and F. Yang, “How far is the GPU technology from practical power

system applications?,” IEEE Power and Energy Society General Meeting, vol. 2014-

Octob, no. October, 2014.

[62] X. Li, F. Li, and S. Member, “GPU-based Fast Decoupled Power Flow with

Preconditioned Iterative Solver and Inexact Newton Method,” IEEE Power & Energy

Society General Meeting, vol. 8950, no. c, pp. 1–1, 2017.

[63] V. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics processing

units for concurrent evaluation of many networks,” IEEE Transactions on Smart Grid,

vol. 8, no. 4, pp. 1639–1648, 2017.

[64] V. Jalili-Marandi and V. Dinavahi, “Simd-based large-scale transient stability

simulation on the graphics processing unit,” IEEE Transactions on Power Systems,

vol. 25, no. 3, pp. 1589–1599, 2010.

[65] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-scale transient stability simulation

of electrical power systems on parallel gpus,” IEEE Transactions on Parallel and

Distributed Systems, vol. 23, no. 7, pp. 1255–1266, 2012.

[66] Z. Zhou and V. Dinavahi, “Parallel massive-thread electromagnetic transient

simulation on gpu,” IEEE Transactions on Power Delivery, vol. 29, no. 3, pp. 1045–

1053, 2014.

[67] Y. Song, Y. Chen, S. Huang, Y. Xu, Z. Yu, and J. R. Marti, “Fully gpu-based

electromagnetic transient simulation considering large-scale control systems for system-

level studies,” IET Generation, Transmission Distribution, vol. 11, no. 11, pp. 2840–

2851, 2017.

[68] N. Lukač and B. Žalik, “Gpu-based roofs’ solar potential estimation using lidar data,”

Computers Geosciences, vol. 52, pp. 34 – 41, 2013.

[69] R. C. Green, L. Wang, and M. Alam, “Applications and trends of high performance

computing for electric power systems: Focusing on smart grid,” IEEE Transactions on

Smart Grid, vol. 4, no. 2, pp. 922–931, 2013.

References 105

[70] G. Capizzi, G. Lo Sciuto, C. Napoli, and E. Tramontana, “Advanced and adaptive

dispatch for smart grids by means of predictive models,” IEEE Transactions on Smart

Grid, vol. 9, no. 6, pp. 6684–6691, 2018.

[71] G. Zhou, X. Zhang, Y. Lang, R. Bo, Y. Jia, J. Lin, and Y. Feng, “A novel GPU-

accelerated strategy for contingency screening of static security analysis,” International

Journal of Electrical Power and Energy Systems, vol. 83, pp. 33–39, 2016.

[72] H. Karimipour and V. Dinavahi, “Extended kalman filter-based parallel dynamic state

estimation,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1539–1549, 2015.

[73] W. Qiu, Q. Tang, J. Liu, Z. Teng, and W. Yao, “Power quality disturbances recognition

using modified s transform and parallel stack sparse auto-encoder,” Electric Power

Systems Research, vol. 174, p. 105876, 2019.

[74] Z. Liu, X. Li, L. Wu, S. Zhou, and K. Liu, “Gpu-accelerated parallel coevolutionary

algorithm for parameters identification and temperature monitoring in permanent

magnet synchronous machines,” IEEE Transactions on Industrial Informatics, vol. 11,

no. 5, pp. 1220–1230, 2015.

[75] V. Schwarzer and R. Ghorbani, “New opportunities for large-scale design optimization

of electric vehicles using gpu technology,” in 2011 IEEE Vehicle Power and Propulsion

Conference, pp. 1–6, 2011.

[76] G. Zhou, R. Bo, L. Chien, X. Zhang, S. Yang, and D. Su, “Gpu-accelerated algorithm

for online probabilistic power flow,” IEEE Transactions on Power Systems, vol. 33,

pp. 1132–1135, Jan 2018.

[77] Z. Chen, L. Shen, Y. Zhao, and C. Yang, “Parallel algorithm for real-time contouring

from grid dem on modern gpus,” Science China Technological Sciences, vol. 53, pp. 33–

37, May 2010.

[78] T. He, K. Meng, Z.-Y. Dong, Y.-T. Oh, and Y. Xu, “Use of high-performance

graphics processing units for power system demand forecasting,” Journal of Electrical

Engineering and Technology, vol. 5, p. 363–370, Jan 2010.

[79] F. Milano, “Small-signal stability analysis of large power systems with inclusion of

multiple delays,” IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3257–3266,

2016.

[80] B. Shang, Y. Xu, C. Zhang, Y. Chen, Z. Liu, L. Lin, C. Xu, and J. Yu, “Gpu-

accelerated batch solution for short-circuit current calculation of large-scale power

systems,” in 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC),

pp. 1743–1748, 2019.

106 References

[81] J. S. Chai, N. Zhu, A. Bose, and D. J. Tylavsky, “Parallel newton type methods for

power system stability analysis using local and shared memory multiprocessors,” IEEE

Transactions on Power Systems, vol. 6, no. 4, pp. 1539–1545, 1991.

[82] J. Shu, Wei Xue, and Weimin Zheng, “A parallel transient stability simulation for

power systems,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1709–1717,

2005.

[83] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale

power systems using a parallel schur-complement-based decomposition method,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.

[84] S. K. Khaitan, J. D. McCalley, and A. Somani, “Proactive task scheduling and stealing

in master-slave based load balancing for parallel contingency analysis,” Electric Power

Systems Research, vol. 103, pp. 9 – 15, 2013.

[85] S. K. Khaitan and J. D. McCalley, “Scale: A hybrid mpi and multithreading based

work stealing approach for massive contingency analysis in power systems,” Electric

Power Systems Research, vol. 114, pp. 118 – 125, 2014.

[86] Jun Qiang Wu and A. Bose, “Parallel solution of large sparse matrix equations and

parallel power flow,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1343–

1349, 1995.

[87] X. Wang, S. G. Ziavras, C. Nwankpa, J. Johnson, and P. Nagvajara, “Parallel solution

of newton’s power flow equations on configurable chips,” International Journal of

Electrical Power Energy Systems, vol. 29, no. 5, pp. 422 – 431, 2007.

[88] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, “A secure cloud computing based

framework for big data information management of smart grid,” IEEE Transactions

on Cloud Computing, vol. 3, no. 2, pp. 233–244, 2015.

[89] J. Soares, M. A. F. Ghazvini], Z. Vale, and P. [de Moura Oliveira], “A multi-

objective model for the day-ahead energy resource scheduling of a smart grid with

high penetration of sensitive loads,” Applied Energy, vol. 162, pp. 1074 – 1088, 2016.

[90] G. N. Korres, A. Tzavellas, and E. Galinas, “A distributed implementation of multi-

area power system state estimation on a cluster of computers,” Electric Power Systems

Research, vol. 102, pp. 20 – 32, 2013.

[91] Y. Fukuyama and Hsaio-Dong Chiang, “A parallel genetic algorithm for generation

expansion planning,” IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 955–

961, 1996.

References 107

[92] A. Rami, A. Zeblah, H. Hamdaoui, Y. Massim, and F. Harrou, “An efficient artificial

immune algorithm for power system reliability optimisation,” International Journal of

Power and Energy Conversion, vol. 1, no. 2-3, pp. 178–197, 2009. cited By 7.

[93] C. Dufour, V. Jalili-Marandi, and J. Bélanger, “Real-time simulation using transient

stability, electromagnetic transient and fpga-based high-resolution solvers,” in 2012 SC

Companion: High Performance Computing, Networking Storage and Analysis, pp. 283–

288, 2012.

[94] J. Ma, K. L. Man, S.-U. Guan, T. O. Ting, and P. W. H. Wong, “Parameter

estimation of photovoltaic model via parallel particle swarm optimization algorithm,”

International Journal of Energy Research, vol. 40, no. 3, pp. 343–352, 2016.

[95] F. Sato, A. Garcia, A. Monticelli, and A. B. Alves], “Distributed short-circuit

analysis in heterogeneous computer networks,” International Journal of Electrical

Power Energy Systems, vol. 22, no. 2, pp. 129 – 136, 2000.

[96] A. K. Zadeh, K. M. Nor, and H. Zeynal, “Multi-thread security constraint economic

dispatch with exact loss formulation,” in 2010 IEEE International Conference on

Power and Energy, pp. 864–869, 2010.

[97] T. Cui and F. Franchetti, “A multi-core high performance computing framework

for probabilistic solutions of distribution systems,” in 2012 IEEE Power and Energy

Society General Meeting, pp. 1–6, 2012.

[98] J. Zhang, S. Lin, H. Liu, Y. Chen, M. Zhu, and Y. Xu, “A small-population

based parallel differential evolution algorithm for short-term hydrothermal scheduling

problem considering power flow constraints,” Energy, vol. 123, pp. 538 – 554, 2017.

[99] V. Roberge, M. Tarbouchi, and F. Okou, “Optimal power flow based on parallel

metaheuristics for graphics processing units,” Electric Power Systems Research,

vol. 140, pp. 344–353, 2016.

[100] G. Geng, Q. Jiang, and Y. Sun, “Parallel transient stability-constrained optimal power

flow using gpu as coprocessor,” IEEE Transactions on Smart Grid, vol. 8, no. 3,

pp. 1436–1445, 2017.

[101] B. Kim, “A fast distributed implementation of optimal power flow,” IEEE Transactions

on Power Systems, vol. 14, no. 3, pp. 858–864, 1999. cited By 169.

[102] H. R. Cai, C. Y. Chung, and K. P. Wong, “Application of differential evolution

algorithm for transient stability constrained optimal power flow,” IEEE Transactions

on Power Systems, vol. 23, no. 2, pp. 719–728, 2008.

108 References

[103] M. Abedini, “A novel algorithm for load flow analysis in island microgrids using an

improved evolutionary algorithm,” International Transactions on Electrical Energy

Systems, vol. 26, pp. 2727–2743, dec 2016.

[104] Taufik, M. A. Guevara, A. Shaban, and A. Nafisi, “Modeling and Load Flow Analysis

of a Microgrid Laboratory.,” International Journal of Smart Grid and Sustainable

Energy Technologies, vol. 3, pp. 103–111, dec 2019.

[105] J. I. Giraldez Miner, F. Flores-Espino, S. MacAlpine, and P. Asmus, “Phase i microgrid

cost study: Data collection and analysis of microgrid costs in the united states,”

National Renewable Energy Laboratory, 10 2018.

[106] V. Kloh, D. Yokoyama, A. Yokoyama, G. Silva, M. Ferro, and B. Schulze, “Performance

and Energy Efficiency Evaluation for HPC Applications in Heterogeneous

Architectures,” in 2018 Symposium on High Performance Computing Systems

(WSCAD), pp. 162–169, IEEE, oct 2018.

[107] S. K. Khaitan, “A survey of high-performance computing approaches in power

systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–

5, IEEE, jul 2016.

[108] L. Rakai and W. Rosehart, “GPU-accelerated solutions to optimal power flow

problems,” Proceedings of the Annual Hawaii International Conference on System

Sciences, pp. 2511–2516, 2014.

[109] D. Greenwood, K. Lim, C. Patsios, P. Lyons, Y. Lim, and P. Taylor, “Frequency

response services designed for energy storage,” Applied Energy, vol. 203, pp. 115 –

127, 2017.

[110] D. Carreira, G. D. Marques, and D. M. Sousa, “Hybrid energy storage system with a

low cost digital control,” in 2015 9th International Conference on Compatibility and

Power Electronics (CPE), pp. 185–190, 2015.

[111] D. Wu, T. Dragicevic, J. C. Vasquez, J. M. Guerrero, and Y. Guan, “Secondary

coordinated control of islanded microgrids based on consensus algorithms,” in 2014

IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4290–4297, 2014.

[112] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, “Graphics processing unit (GPU)

programming strategies and trends in GPU computing,” Journal of Parallel and

Distributed Computing, vol. 73, pp. 4–13, jan 2013.

[113] H. H. Holm, A. R. Brodtkorb, and M. L. Sætra, “GPU Computing with Python:

Performance, Energy Efficiency and Usability,” Computation, vol. 8, p. 4, jan 2020.

References 109

[114] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-Based Python JIT Compiler,”

in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,

LLVM ’15, (New York, NY, USA), Association for Computing Machinery, 2015.

[115] P. Virtanen, R. Gommers, and et al., “SciPy 1.0: fundamental algorithms for scientific

computing in Python,” Nature Methods, vol. 17, pp. 261–272, mar 2020.

[116] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-

State Operations, Planning, and Analysis Tools for Power Systems Research and

Education,” IEEE Transactions on Power Systems, vol. 26, pp. 12–19, feb 2011.

[117] Q. Wang, J. D. McCalley, T. Zheng, and E. Litvinov, “A computational strategy to

solve preventive risk-based security-constrained OPF,” IEEE Transactions on Power

Systems, vol. 28, pp. 1666–1675, may 2013.

[118] S. A. Sadat, D. Haralson, and M. Sahraei-Ardakani, “Security versus computation time

in IV-ACOPF with SOCP initialization,” in 2018 IEEE International Conference on

Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, jun 2018.

[119] F. Capitanescu, J. M. Ramos, P. Panciatici, D. Kirschen, A. M. Marcolini,

L. Platbrood, and L. Wehenkel, “State-of-the-art, challenges, and future trends in

security constrained optimal power flow,” Electric Power Systems Research, vol. 81,

pp. 1731–1741, Aug 2011.

[120] F. Capitanescu, “Critical review of recent advances and further developments needed

in AC optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57–68, jul

2016.

[121] D. Phan and J. Kalagnanam, “Some efficient optimization methods for solving the

security-constrained optimal power flow problem,” IEEE Transactions on Power

Systems, vol. 29, pp. 863–872, March 2014.

[122] J. Mohammadi, G. Hug, and S. Kar, “A benders decomposition approach to corrective

security constrained OPF with power flow control devices,” in 2013 IEEE Power &

Energy Society General Meeting, IEEE, 2013.

[123] D. T. Phan and X. A. Sun, “Minimal impact corrective actions in security-constrained

optimal power flow via sparsity regularization,” IEEE Transactions on Power Systems,

vol. 30, pp. 1947–1956, jul 2015.

[124] M. Al-Saffar and P. Musilek, “Distributed optimal power flow for electric power systems

with high penetration of distributed energy resources,” in 2019 IEEE Canadian

Conference of Electrical and Computer Engineering (CCECE), IEEE, may 2019.

110 References

[125] R. Louca and E. Bitar, “Robust AC optimal power flow,” IEEE Transactions on Power

Systems, vol. 34, pp. 1669–1681, may 2019.

[126] Y. Li and J. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE

Transactions on Power Systems, vol. 24, pp. 494–495, feb 2009.

[127] F. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Applications of security-

constrained optimal power flows,” in In Proceedings of Modern Electric Power Systems

Symposium, MEPS06, 2006.

[128] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard optimization

problems easy to solve,” in 2012 IEEE Power and Energy Society General Meeting,

IEEE, jul 2012.

[129] V. Hinojosa and F. Gonzalez-Longatt, “Preventive security-constrained DCOPF

formulation using power transmission distribution factors and line outage distribution

factors,” Energies, vol. 11, p. 1497, jun 2018.

[130] Y. Xu, H. Yang, R. Zhang, Z. Dong, M. Lai, and K. Wong, “A contingency

partitioning approach for preventive-corrective security-constrained optimal power flow

computation,” Electric Power Systems Research, vol. 132, pp. 132–140, 2016.

[131] Y. Xu, Z. Y. Dong, R. Zhang, K. P. Wong, and M. Lai, “Closure to discussion

on “solving preventive-corrective scopf by a hybrid computational strategy”,” IEEE

Transactions on Power Systems, vol. 29, p. 3124–3125, Nov 2014.

[132] M. Javadi, A. E. Nezhad, M. Gough, M. Lotfi, and J. P. Catalao, “Implementation

of consensus-ADMM approach for fast DC-OPF studies,” in 2019 International

Conference on Smart Energy Systems and Technologies (SEST), IEEE, sep 2019.

[133] A. Attarha and N. Amjady, “Solution of security constrained optimal power flow for

large-scale power systems by convex transformation techniques and taylor series,” IET

Generation, Transmission & Distribution, vol. 10, p. 889–896, Mar 2016.

[134] A. Werner, K. Duwadi, N. Stegmeier, T. M. Hansen, and J.-H. Kimn, “Parallel

implementation of ac optimal power flow and time constrained optimal power flow

using high performance computing,” in 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC), IEEE, Jan 2019.

[135] E. Karangelos and L. Wehenkel, “An iterative AC-SCOPF approach managing the

contingency and corrective control failure uncertainties with a probabilistic guarantee,”

IEEE Transactions on Power Systems, vol. 34, pp. 3780–3790, sep 2019.

References 111

[136] S. Lee, W. Kim, and B. H. Kim, “Performance comparison of optimal power flow

algorithms for lmp calculations of the full scale korean power system,” Journal of

Electrical Engineering and Technology, vol. 10, p. 109–117, Jan 2015.

[137] Y. Chen, Z. Zhang, Y. Lang, J. Ma, and S. Zheng, “Generalised-fast decoupled state

estimator,” IET Generation, Transmission Distribution, vol. 12, pp. 5928–5938, may

2018.

[138] J. Guo, G. Hug, and O. K. Tonguz, “A case for nonconvex distributed optimization in

large-scale power systems,” IEEE Transactions on Power Systems, vol. 32, pp. 3842–

3851, sep 2017.

[139] M. Granada Echeverri, M. J. Rider Flores, and J. R. S. Mantovani, “Dos técnicas

de descomposición aplicadas al problema de flujo de potencia óptimo multi-areas,”

DYNA, vol. 77, pp. 303 – 312, 06 2010.

[140] J. Guo, G. Hug, and O. Tonguz, “Asynchronous admm for distributed non-convex

optimization in power systems,” arXiv preprint arXiv:1710.08938, 2017.

[141] M. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for

large-scale security-constrained optimal power flow,” 2020.

[142] S. Stankovic and L. Soder, “Optimal power flow based on genetic algorithms and

clustering techniques,” in 2018 Power Systems Computation Conference (PSCC),

IEEE, Jun 2018.

[143] A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast ac optimal

power flow,” arXiv preprint arXiv:1910.01213, 2019.

[144] I. Ghosh and P. K. Roy, “Application of earthworm optimization algorithm for solution

of optimal power flow,” in 2019 International Conference on Opto-Electronics and

Applied Optics (Optronix), IEEE, Mar 2019.

[145] “Optimal power flow using fuzzy-firefly algorithm,” in 2018 5th International

Conference on Electrical Engineering, Computer Science and Informatics (EECSI),

IEEE, Oct 2018.

[146] F. Bouffard, F. D. Galiana, and J. M. Arroyo, “Umbrella contingencies in security-

constrained optimal power flow,” in 15th Power systems computation conference,

PSCC, vol. 5, 2005.

[147] S. Eftekharnejad, “Selection of multiple credible contingencies for real time contingency

analysis,” in 2015 IEEE Power Energy Society General Meeting, pp. 1–5, July 2015.

112 References

[148] H. Bevrani, Robust Power System Frequency Control. Power Electronics and Power

Systems, Springer US, 2008.

[149] J. Zhao, H.-D. Chiang, H. Li, and P. Ju, “On pv-pq bus type switching logic in power

flow computation,” in Proceedings of the 16th power systems computation conference,

vol. 16, p. 7, jul 2008.

[150] HSL, A collection of Fortran codes for large scale scientific computation, 2019 (accessed

December 5th, 2019). Availabel in: http://www.hsl.rl.ac.uk/.

[151] Y. Yuan, X. Wen, and K. Qian, “Preventive/corrective control for voltage stability

based on primal-dual interior point method,” in 2006 International Conference on

Power System Technology, pp. 1–5, 2006.

[152] Xuelian Liu, Jiwen Li, Hongmei Li, and Hongxia Peng, “Fuzzy modeling and

interior point algorithm of multi-objective opf with voltage security margin,” in 2005

IEEE/PES Transmission Distribution Conference Exposition: Asia and Pacific, pp. 1–

6, 2005.

[153] Y. Chen, J. Ma, P. Zhang, F. Liu, and S. Mei, “Robust state estimator based on

maximum exponential absolute value,” IEEE Transactions on Smart Grid, vol. 8,

no. 4, pp. 1537–1544, 2017.

[154] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower,” 2019.

[155] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical Programming,

vol. 106, pp. 25–57, apr 2005.

[156] ARPA-E, “SCOPF Problem Formulation: Challenge 1,” tech. rep., Advanced Research

Projects Agency–Energy), 04 2018.

[157] ARPA-E, Grid Optimization (GO) Competition, 2019 (accessed December 5th, 2019).

Available in: https://gocompetition.energy.gov.

[158] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower user’s manual,” 2019.

[159] M. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for

large-scale security-constrained optimal power flow,” 2020.

[160] Zhang, Solving Large Security-Constrained Optimal Power Flow for Power Grid

Planning and Operations. PhD thesis, Case Western Reserve University, 2020.

[161] S. Huang and V. Dinavahi, “Real-time contingency analysis on massively parallel

architectures with compensation method,” IEEE Access, vol. 6, pp. 44519–44530, 2018.

http://www.hsl.rl.ac.uk/
https://gocompetition.energy.gov

References 113

[162] X. Su, C. He, T. Liu, and L. Wu, “Full Parallel Power Flow Solution: A GPU-

CPU Based Vectorization Parallelization and Sparse Techniques for Newton-Raphson

Implementation,” IEEE Transactions on Smart Grid, vol. PP, no. ii, pp. 1–1, 2019.

[163] M. Bazrafshan, K. Baker, and J. Mohammadi, “Computationally efficient solutions for

large-scale security-constrained optimal power flow,” arXiv, pp. 1–8, 2020.

[164] Z. Huang et al., High-Performance Computing for Real-Time Grid Analysis and

Operation, pp. 151–188. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[165] L. Balduino et al., “Parallel processing in a cluster of microcomputers with application

in contingency analysis,” in 2004 IEEE/PES Transmision and Distribution Conference

and Exposition: Latin America (IEEE Cat. No. 04EX956), pp. 285–290, 2004.

[166] G. Angeline Ezhilarasi et al., “Parallel contingency analysis in a high performance

computing environment,” in 2009 International Conference on Power Systems, pp. 1–

6, 2009.

[167] W. Gao et al., “Distributed generation placement design and contingency analysis with

parallel computing technology,” J. Comput., vol. 4, pp. 347–354, 2009.

[168] Z. Huang et al., “Massive contingency analysis with high performance computing,” in

2009 IEEE Power Energy Society General Meeting, pp. 1–8, 2009.

[169] Yousu Chen et al., “Performance evaluation of counter-based dynamic load balancing

schemes for massive contingency analysis with different computing environments,” in

IEEE PES General Meeting, pp. 1–6, 2010.

[170] S. Jin et al., “A novel application of parallel betweenness centrality to power grid

contingency analysis,” in 2010 IEEE International Symposium on Parallel Distributed

Processing (IPDPS), pp. 1–7, 2010.

[171] A. Mittal et al., “Real time contingency analysis for power grids,” in Euro-Par 2011

Parallel Processing (E. Jeannot, R. Namyst, and J. Roman, eds.), (Berlin, Heidelberg),

pp. 303–315, Springer Berlin Heidelberg, 2011.

[172] S. K. Khaitan et al., Dynamic Load Balancing and Scheduling for Parallel Power

System Dynamic Contingency Analysis, pp. 189–209. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013.

[173] S. K. Khaitan et al., “Parallelizing power system contingency analysis using d

programming language,” in 2013 IEEE Power Energy Society General Meeting, pp. 1–

5, 2013.

114 References

[174] S. K. Khaitan et al., “Proactive task scheduling and stealing in master-slave based

load balancing for parallel contingency analysis,” Electric Power Systems Research,

vol. 103, pp. 9 – 15, 2013.

[175] G. Zhou et al., “The static security analysis in power system based on spark cloud

computing platform,” in 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT

ASIA), pp. 1–6, 2015.

[176] A. Haas, “Pypardisoproject,” 2013.

[177] X. Chen, Y. Wang, and H. Yang, “Nicslu: An adaptive sparse matrix solver for parallel

circuit simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 2, pp. 261–274, 2013.

	Introduction
	Motivation
	Research Statement
	Objectives
	General Objective
	Specific Objectives

	Thesis Outline
	Chapter 2: Background and Literature Review
	Chapter 3: Parallel Power Flow Algorithm in Low Cost Embedded Computer Architectures Empowered by GPU
	Chapter 4: Security Constraint Optimal Power Flow Formulation and Solutions with Constraint Handling
	Chapter 5: SCOPF for Medium and Large Power Systems
	Chapter 6: Conclusions and Contributions

	Publications
	Awards

	Background and Literature Review
	Security Constraint OPF
	Parallel and Heterogeneous Computer Architectures
	Modern Computer Architectures
	GPUs

	Applications of phc to Power Systems
	Applications of phc to opf and scopf

	Parallel Power Flow Algorithm in Low Cost Embedded Computer Architectures Empowered by GPU
	Power Flow Architecture
	Power Flow Vectorization
	Power Flow Vectorization in Embedded Computer Using a GPU
	Ybus Matrix Computation
	P, Q and J Computation

	Results and Discussion
	Conclusions

	Security Constraint Optimal Power Flow Formulation and Solutions with Constraint Handling
	Security-constrained OPF: An Overview
	Categories of SCOPF Problem
	SCOPF Solution Strategies

	Formulation of the SCOPF Problem
	Complete Formulation
	Proposed Approach

	Methodology
	Parallel OPF (Optimal Power Flow)
	Contingencies
	Constraint Handling rules

	Results
	Discussion
	Conclusions

	SCOPF using an PHC Strategy for Medium and Large Size Power Systems
	Introduction
	Mathematical Formulation
	Heterogeneous and Parallel Implementation CPU-GPU
	PHC Architecture
	Network Data
	Sparse Matrix
	Data Transfer CPU-GPU
	GPU Architecture
	CPU Architecture

	Case Study
	Results
	Accuracy and Convergence of PHC Architectures
	PHC Architectures Performance
	Sparse Linear Solver Performance
	Discussion

	Conclusions

	Contributions and Concluding Remarks
	Contributions
	Answering the Research Questions
	Directions for Future Research

	References

