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Resumen 
 

Influencia de la Micro-Geometría de un Scaffold para regeneración ósea en los 
esfuerzos en el tejido en formación 

 

Los scaffolds para ingeniería de tejidos son dispositivos que han ganado una enorme atención en 

múltiples disciplinas durante las últimas décadas, como apoyo para los procesos de reparación que 

no ocurren de forma espontánea por medio de mecanismos naturales. Dado que los procedimientos 

in vitro e in vivo permiten evaluar los diferentes factores claves en el diseño de scaffolds y sus 

resultados, la investigación in silico brinda una herramienta excepcional para entender los procesos 

que ocurren dentro de estos dispositivos y cómo las diferentes variables de diseño influencian sus 

resultados finales. 

 

Es bien sabido que las señales biomecánicas son relevantes en los procesos de reparación ósea y 

éstas están relacionadas con los estímulos transmitidos al ambiente de reparación como el callo en 

procesos normales o a las estructuras de soporte como dispositivos ortopédicos de fijación y/o 

scaffolds que favorecen el proceso de regeneración. En las últimas décadas los investigadores han 

hecho esfuerzos por caracterizar los estímulos biofísicos favorables para la formación de hueso y 

otros tipos de tejidos. Diferentes configuraciones geométricas de un scaffold pueden transmitir las 

cargas al tejido en formación en diferentes maneras dependiendo de la topología de su 

microestructura, pero no es claro como es este proceso durante la regeneración, y más aún, se 

desconoce como el ambiente biofísico dentro del scaffold está cambiando como consecuencia de 

su degradación. Pese a lo anterior, ha sido demostrado que hay micro-geometrías de scaffolds más 

favorables que otras para la regeneración ósea. 

 

El objetivo general es investigar computacionalmente como la micro-geometría de un scaffold para 

regeneración ósea influencia los esfuerzos en el tejido en formación. Para lograr este objetivo, un 

marco computacional basado en el método de los elementos finitos es usado para representar la 

evolución del tejido dentro del scaffold, en conjunto con análisis estadísticos para determinar la 

evolución de los esfuerzos en el tejido. Dicho marco tambien es usado para encontrar parámetros 

favorables que definen la micro-geometría de diferentes diseños de scaffolds. Los resultados 

obtenidos en esta tesis enriquecen la comprensión y discusión sobre los fenómenos biofísicos que 

suceden dentro del scaffold, permitiendo identificar mejores diseños desde una perspectiva 

biomecánica. 

 

Palabras clave: Scaffold, Hueso, Modelamiento, Computacional, Degradación, 

Diferenciación, Tejido en formación.   



X Influence of the Micro-Geometry of a Scaffold for Bone Regeneration on the 

Stresses of the Newly Formed Tissue 

 

  

Abstract 

Influence of the Micro-Geometry of a Scaffold for Bone Regeneration on the 
Stresses of the Newly Formed Tissue  

 

Scaffolds for tissue engineering are porous devices that have gain an enormous attention in the last 

decades for multiple disciplines, as solution to help the repair process that cannot heal 

spontaneously by natural mechanisms. Since the in vitro and in vivo procedures test the different 

key factors in the design and its outcomes, in silico research brings an unbeatable tool for 

understanding the processes that occur within these devices and how different design variables will 

influence the final result of the treatment. 

 

It is well known that the biomechanical cues are relevant in the bone repair processes and those are 

related to the stimuli transmitted to the repair environment, as the callus in a normal healing process, 

or to the support structure, such as orthopedic fixation devices and/or the scaffold to help the 

regeneration process. Researchers in the last decades have made efforts to characterize the 

favorable biophysical stimuli to the formation of bone and other types of tissue. Different geometric 

configurations of the scaffold microstructure can transmit the loads to the newly formed tissue in 

different ways, depending on the topology of the microstructure, but it is not clear how this process 

takes place during the regeneration, and moreover, how it changes if the biophysical environment 

is changing, as a consequence of the scaffold degradation. However, it has been demonstrated that 

there are more favorable scaffold micro-geometries to the bone healing process than others.  

 

The general aim of this research was to investigate computationally, how the micro-geometry of 

scaffolds for bone regeneration influences the stresses on the newly formed tissue. To achieve this 

objective, an in silico framework based on the finite element method is used to represent the tissue 

evolution inside the scaffold and statistical analysis is used to determine the evolution of the stresses 

within the neo-formed tissue. The in silico framework is also used to find favorable parameters that 

define the micro-geometry of different bone tissue scaffold designs. The results obtained in this 

thesis enrich the understanding and discussion regarding the biophysical phenomena that occur 

inside the scaffold, thus allowing to identify better designs from a biomechanical perspective. 

 

Keywords: Scaffold, Bone, Healing, Computational, Modeling, Degradation, 

Differentiation, Newly formed tissue. 
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1.  Introduction 

 

A scaffold for regenerative medicine is defined as a 3D porous structure for physically 

supporting cells and tissues that provides a suitable environment for cellular processes in 

tissue regrowth and development. These processes are influenced by various factors of 

biological, chemical and physical nature and they occur at different temporal and size 

scales. At macro-scale, the scaffold becomes a temporary structure that supplies functions 

such as guaranteeing a biomechanical integrity to the target tissue [1], load bearing among 

others. At micro-scale, cells infiltrate and colonize the available volume inside the porous 

scaffold, where they can undergo many processes, e.g. proliferation, migration 

differentiation and synthesize extracellular matrix (ECM). At the same time, the scaffold 

material and micro-geometrical features will determine the mechanical properties of the 

whole scaffold at macroscopic level. 

 

Commonly, the tissues are composed of cells and ECM, which is synthesized and 

maintained by specialized cells. When a scaffold is used, it behaves like a temporary 

substitute for the ECM. The cells are either seeded or migrate from the surrounding tissue 

into the scaffold. Then, they produce new matrix inside the void spaces, thus filling the 

pores and other spaces produced by scaffold degradation, as long as the scaffold material 

is biodegradable. 

 

Bone is one of the most studied tissues in regenerative medicine and tissue engineering, 

since it is one of the most implanted and transplanted tissues worldwide [2], [3]. Bone loss 

by trauma or disease remains one of the main challenges of the clinical practice and the 

regenerative medicine. Its healing process inside scaffolds is a very complex phenomenon, 

whose exact mechanisms remain unclear. Many studies have been conducted to enhance 

understanding and performance of bone regeneration within scaffolds. This process is 

regulated by a set of different signals that influences cell behavior. A classic approach used 

to focus mainly on biochemical signals but, in recent years, physical signals have gained 

attention from researchers [4]. One of the most important physical signals is the mechanical 

stimulus, which is a signal related to loads, deformations and thus stresses on cells and 

tissues. The importance of a mechanical stimulus is that this signal plays a key role in the 

fate of cell: this theory is known as mechano-regulation [5]. This stimulus depends on both 
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the macroscopic biomechanical environment and scaffold micro-geometrical features, such 

as pore shape and size. However, the relation between these features and mechanical 

stimulus on cells and tissues is not clear yet [1]. 

 

The critical size bone defects represents a challenge for clinical context, as they are healing 

orthopedic defects that do not heal spontaneously and where no union or mal union could 

be occur [6], [7]. One of the main reasons of the no union case is the wrong differentiation 

of the MSC [8]. A delayed union is another problem in the clinical practice, since the injury 

could take more time to heal than expected [7]. These issues are studied in the regenerative 

medicine field and can be managed with cell and gene therapies, using MSC and bone 

grafts, where the latter still show issues related to rejection and availability. Among bone 

grafts, scaffolds are a promising solution to repair critical-sized bone defects that would 

normally require bone substitutes [9]. They can be composed of biomaterials that support 

the newly formed tissue and cells, and promote its appropriate differentiation [10]. 

 

Mechanical stimuli are difficult to determine on cells and tissues within scaffold, because of 

the complexity of the micro-geometrical features of the device and due to the structural 

changes produced by scaffold degradation. Oftentimes, the complexity of the scaffold 

topology is produced by its fabrication method. These porous structures can be obtained 

by physical and chemical methods where most of them produce irregular porosities and 

hinder a precise control over the micro-geometrical features [11]. A strategy that has been 

gaining attention in last years is to obtain scaffolds by advanced manufacturing 

technologies, e.g. additive manufacturing processes. A great advantage of additive 

technologies is their capability of obtaining a better geometric control than other methods, 

which opens up the possibility to make regular structures to achieve a regularity in the 

physical conditions throughout the scaffold domain, and thus in the newly formed tissue. 

 

As discussed previously, mechanical stimuli have a key role in bone healing and are related 

to the scaffold features. Consequently, the lack of knowledge about mechanical effects on 

newly formed tissue produced by the scaffold can lead to the use of scaffold designs that 

produce unexpected tissues or start bone resorption processes in some regions. 

 

There is a need to enhance scaffold design from a biomechanical perspective and taking 

into account its interactions with biological processes. Additionally, the assessment of the 
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new designs and their evolution in time is required. It is a common practice that the criteria 

used to design scaffolds are based on trial and error approaches. To assess scaffold 

designs (in vitro or in vivo), costly and time-consuming experiments are required. Therefore, 

assessment through computer simulation is a good option to complement and evaluate the 

scaffold designs, hence reducing the number of expensive trials. 

 

Reviewing the main points above and considering its importance, it can be stated that the 

temporal evolution of the state of stresses on the newly formed tissue, inside a 

biodegradable scaffold, is unknown with respect to its micro-geometrical characteristics. In 

this context, this research addressed the question “How does the micro-geometry of 

scaffolds for bone regeneration influence the stresses on the newly formed tissue?” Our 

initial hypothesis is that the scaffold micro-geometrical characteristics, such as shape, size 

and pore interconnection, have a significant relation to stress patterns and magnitudes on 

the newly formed tissue. 

 

The aim of this research is to determine how the micro-geometrical features of a scaffold 

for bone healing influence the newly formed tissue from a biomechanical perspective, that 

is, how are the stresses within these evolving tissues and if there are any relationships 

between these stresses and the predicted behavior regarding its mechanobiological 

performance. This aim is divided into three specific objectives. The first one is to find 

possible relationships between the scaffold micro-geometrical features and the stress 

distributions on the newly formed tissue. The second one is to determine how geometrical 

and physical changes produced by scaffold degradation influence the stresses on the newly 

formed tissue and the mechanical behavior of the scaffold-tissue system. Finally, the third 

objective is to suggest trial scaffold micro-geometrical features that produce favorable 

stress distributions for typical loading conditions of bone tissue, that is, provide an adequate 

mechanobiological stimulation. By means of these objectives, it was possible to respond 

the research question and demonstrate our initial hypothesis. This hypothesis was 

confirmed initially for regular geometries. Also, as result of the analysis of the different 

scaffold designs, it was possible to compare the predicted performance of each of them 

and establish which design and which parameters are suitable for a set of loads, from a 

biomechanical perspective.  

 



6 Introduction 

 

  

In order to achieve the proposed objectives, a combination of in silico approaches based 

on the finite element method (FEM) were used to determine and predict the behavior of 

scaffolds under several conditions. We proposed and simulated a considerable number of 

scenarios to determine stress distributions. Finally, by means of statistical analyses, we 

determined relationships between the scaffold micro-geometrical features, the stress 

distributions on the newly formed tissue and their changes over time. As part of the research 

process developed, a stage of qualitative and quantitative verification of the results obtained 

through simulation using scenarios from scientific literature was performed to corroborate 

the consistency of those results. 

 

For simplicity purposes, the research was limited to a biomechanical perspective, and 

conditions such as vascularization, oxygen and nutrients supply and removing of waste 

were supposed as ideal. Also, the temperature influence and the metabolic effects caused 

by the scaffold degradation were neglected. 

 

The knowledge of the relation between micro-geometrical features and the stresses within 

the scaffold and the newly formed tissue will allow a better understanding of what is 

happening biomechanically inside the scaffold. Additionally, the possibility of identifying 

favorable scaffold micro-geometrical features for bone regeneration can become a tool to 

enhance the scaffold design and performance in the bone tissue engineering field. 

 

The thesis is articulated in six chapters. Chapter two presents a review of the theoretical 

background with the relevant concepts used along this dissertation and the state of the art 

in the field of scaffolds for bone tissue engineering. Chapter three describes the 

methodology to model scaffolds, compute the stress distributions and predict the tissue 

phenotypes that will be developed inside the scaffold considering the geometry and loads 

applied on the scaffold-tissue system at a very early stage of the healing, that is, without 

taking into account the evolution in time. Afterward, in this chapter a statistical analysis is 

performed to verify if there are relations between the geometrical scaffold features and the 

stress state acting on the neo-formed tissue. Chapter four is focused on the optimization of 

different scaffold unit cells to maximize the formation of bone. Chapter five describes a 

methodology to simulate the evolution in time of the scaffold-tissue system. Finally, in 

chapter six, all the results obtained will be discussed together and possible conclusions will 

be drawn. 
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As contributions, we present a description of the relationships between scaffold micro-

geometrical features and the stresses on the newly formed tissue. Based on these 

relationships, it will be possible to enhance scaffold performance and obtain possible 

strategies to control it. 

 

The enhancement of design and performance of scaffolds will have a direct consequence 

in the application of these devices in the clinical practice, where the control and 

predictability of the biological responses on the patient is a key requirement to apply these 

technologies. 

 

Finally, this work will be useful in future research as a computational framework to include 

and assess other stimuli such as biochemical gradients in the field of bone tissue 

engineering. 

 





 

 
 

2.  Theoretical background 

 

The major goals of tissue engineering are to apply engineering principles and methods to 

restore organs, tissues or their functionality, and enhancing wound healing. This field is 

highly multidisciplinary and requires interactions from professionals of clinical medicine, 

several fields of engineering and basic sciences like math, physics, chemistry and life 

sciences [12]. Three components have been identified as key factors in tissue engineering: 

Cells, Regulatory Signals and Scaffolds [13], known as Tissue Engineering Triad (TET). 

Based on the TET and with particular emphasis on the Bone Tissue Engineering (BTE) 

context, we introduce and describe the generalities needed to contextualize this research. 

 

2.1 Cells 
 

The cell, as a basic biological unit, is the first element of the triad. From a structural 

perspective, these units are composed of a membrane that separates them from their 

external environment. Cytoskeleton, cytoplasm, nucleus and other sub-cellular components 

are surrounded and enclosed by this cell membrane. Intra and extra cellular events occur 

due to cascades of biochemical signals triggered by cell-environment or cell-to-cell 

interactions. Specialized cells work together to synthesize and maintain an ECM to perform 

their processes and form a tissue. This occurs in vivo, as well as in cell cultures for study 

purposes. Regardless of the cell environment, there is a need to maintain an adequate and 

continuous supply of nutrients and oxygen, as well as to remove metabolic waste products 

to maintain the necessary cell functions to keep the cell alive. In the tissue engineering field, 

the cells can be autologous, allogenic or xenogeneic. Autologous cells are derived from the 

own cells of the individual, allogenic cells are derived from a donor of the same species and 

xenogeneic cells are derived from other species [13]. 

 

In BTE, it is important to delve into the concepts of the target tissue, i.e. the bone, which is 

one of the most influenced tissues by physical signaling, due to its natural physiological 

function: body support and protection of organs. Therefore, bone cells are notably 

influenced by physical cues which produce several responses by mechano-transduction 

mechanisms. These responses may belong to the processes of bone development and 

bone healing, which have been extensively studied and well documented in the literature 
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[5], [14]–[17]. BTE uses the knowledge about bone biology, healing, structure and 

mechanics to repair and regenerate bone tissue successfully. 

 

Bone is a connective tissue with a high degree of complexity from different scale levels and 

it has unique capabilities, such as renewing and healing itself, and adaptation to its 

biomechanical environment [14]. It carries out important functions at different levels. For 

example, at macroscale, it has the functions to be the main structural framework of the 

muscle-skeletal system, to protect vital organs and store bone marrow, and at lower scales, 

to serve as reserve of mineral salts and also endocrine functions [15]. 

 

From a material perspective, bone is a porous biocomposite comprised by organic and 

inorganic phases with structural features from nano to macro-scale levels. The former 

phase is composed of cells, collagen fibers oriented and other proteins, and the latter by 

hydroxyapatite crystals and calcium carbonates [14]. Mineral components from the 

inorganic phase provide compression resistance, whilst organic phase components confer 

tensile resistance. It is possible to distinguish between two types of bone: immature or 

woven bone and mature bone. The immature bone has an unorganized structure that 

exhibits isotropic properties and is present at early stages of development and repairing of 

bone and in pathological conditions [16]. 

 

The mature bone is a hierarchical structure that can be either cortical or compact, or 

spongy, cancellous or trabecular, which approximately encompass the 80% and 20% of 

total bone in humans, respectively [17]. The porosities of these types can vary between 5 

to 95 percent [18]. Histologically the mature bone types are composed of the same 

elements but in different organization, hence, different function. Some common elements 

are the lamellae, which are thin layers of calcified bone matrix that envelop small spaces 

called lacunae, where the cells responsible of the bone tissue maintenance reside. 

Connections between lacunae and bone surface are achieved by small channels, called 

canaliculae. 

 

Spongy bone is made of irregular trabeculae composed of lamellae covered by a thin layer 

of connective tissue known as endosteum. This bone type has high porosities that range 

from 50 to 95% and it is filled by bone marrow [18]. On the other hand, compact bone is 

composed of concentric layers of lamellae forming dense structures known as haversian 
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system or osteon, with central connectivity called haversian canal, and transverse 

connectivity by canaliculae to supply the inner cells by means of blood vessels. Different 

osteons are interconnected by means of transverse branches known as Volkmann 

channels. As trabecular bone, the compact bone is enveloped externally by a membrane 

of connective tissue called periosteum and also have endosteum covering the bony 

interconnectivity channels.  

 

Bone exhibits principally five types of cells that work in synergistic way to develop and 

maintain its processes: osteoprogenitor cells, osteoblasts, osteocytes, bone lining cells and 

osteoclasts [16], [19]. The first four have a common lineage from Mesenchymal Stem Cells 

(MSC) and they are a result of its subsequent differentiation process. MSC are multipotent 

cells which can differentiate into osteoprogenitor cells (among others such as adipocytes) 

that will further become pre-osteoblasts, and mature osteoblasts that synthesize bone 

matrix proteins, known as osteoid, which in turn will be mineralized to model the bone tissue 

[20]. Finally, several osteoblasts are enveloped by the locally produced osteoid and become 

osteocytes to carry out activities of monitoring and upkeep of a balanced environment for 

the bone, such as the calcium phosphorus balance and the adaptation in response to 

mechanical stimulation [21]. The rest of osteoblast transforms into bone lining cells, which 

have flat morphology and lie inactive on the bone surface, and their functions are not 

completely understood. Osteoblasts can also undergo programmed cell death known as 

apoptosis [19]. 

 

Unlike bone lining cells, osteoblasts and osteocytes, osteoclasts come from the 

hematopoietic stem cells lineage and have a considerable bigger size than the cells of 

mesenchymal lineage [19]. Osteoclast is responsible of resorption of bone matrix by means 

of enzymatic degradation, essential activity in bone remodeling. Additionally to the 

aforementioned cells, fibroblasts and chondrocytes are other types of cells of mesenchymal 

lineage involved in bone formation and healing processes. Fibroblasts are the characteristic 

cells of fibrous tissue and chondrocytes are the characteristic cells of cartilage tissue. All 

these cells belong to the family of connective tissue cells [22]. 

 

Physiologically, the processes of bone synthesis and resorption are always active 

throughout life since the embryonic development. These processes occur simultaneously 

through the coordinated actuation of osteoblast and osteoclast groups that together form 
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bone remodeling units (BMUs), which perform the remodeling process regulated by a 

variety of biophysical and biochemical stimuli [23]. 

 

Ossification or osteogenesis is the process in which the bone formation occurs. It could be 

of two types: endochondral and intramembranous. The former consists in the straight bone 

formation by the osteoblast differentiated from MSC cells, while the latter implies the 

presence of cartilage cells to form a cartilaginous matrix as temporal template that will finally 

be replaced later by the bone tissue. The osteogenesis of most bones is endochondral, a 

low proportion is intramembranous, and some bones require both mechanisms. 

 

The process of bone development, remodeling and healing occurs in a different way. When 

the bone tissue is damaged, healing is involved [24]. There are several varieties of bone 

along the skeletal system of vertebrae species, depending on the anatomic site, which 

leads to different healing processes depending on the bone function and ubication [16], 

[25]. The bone repairs in primary/direct healing or indirect/secondary healing depending on 

the severity of the injury and other factors such as gap size, amount of fragments, 

interfragmentary strains, lack of vascularization and the presence of pathological conditions 

such as infections. 

 

The direct healing mechanism will be present in small bone injuries, such as little cracks 

and gaps, where there is alignment of cortical fragments and stability (no displacement) in 

the damaged tissue and neighboring zones. If those conditions are fulfilled, BMUs create 

channels over the wound and refill it with new bone, process known as Haversian 

remodeling. If the intensity of the injury is higher, e.g. the gap is large, the disruption of the 

tissues will lead to a hemorrhagic response. This response will produce a clot in the tissue 

debris that will be invaded by fibroblast and neo vascular network forming the granulation 

tissue and then a structure known as soft callus composed of remnant clot and debris, 

fibrous tissue and blood vessels [24]. This early phase is known as inflammatory phase and 

it is part of the secondary healing process, also called spontaneous or direct healing, that 

is, the most common pathway of bone healing [26], [27].  

 

As the time passes, the soft callus evolves to a hard callus by the action of MSC that invade 

the hematoma, and then differentiate into fibroblasts and chondrocytes to form a 

fibrocartilage matrix. When this matrix obtains enough blood supply, it will be calcified to 
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serve as a highly vascularized scaffold for the woven bone formation by osteoblasts. All 

these events comprise the reparative phase. From the newly formed tissue in the early 

state of healing until the ossification of hard callus and its transformation to woven bone, it 

is worth noting that these tissues have an unorganized structure, unlike the mature bone 

[28]. 

 

At the end of the reparative phase and after recovering the gap and enough stiffness to 

support the physiological functions, the remodeling phase will start recovering the original 

shape and adapting the structure to the physiological biomechanical environment. 

Oftentimes, intramembranous and endochondral ossification are combined during bone 

healing [29]. Trabecular bone fractures heal through intramembranous ossification while 

diaphyseal fractures heal through endochondral ossification [30]. In humans, the average 

healing time from the injury formation until a significant degree of healing is between 6-12 

weeks, depending on the specific bone. The gap bridging occurs in the first days, while the 

remodeling phase takes the remainder of the time, even months or years. In summary, 

Figure 2.1(a) shows the main cellular evolution that takes place in the secondary healing 

process after the cloth formation, and Figure 2.1(b) shows the three phases of this process 

globally. 

 

2.2 Regulatory signals 

 

Cell activities can be understood as sensing, transduction and responding activities. The 

last group is well identified by biology as recruitment, migration, proliferation, differentiation, 

apoptosis, synthesizing of ECM and other proteins and biomolecules. Behind all these 

activities there are many very complex mechanisms regulated by multiple signaling 

pathways that influence its behavior. Three fundamental pathways of the cell to 

communicate with other cells or the environment are mechanical, electrical and biochemical 

[31], [32]. Some additional pathways from the physical environment are thermal, magnetic, 

ultrasound and photostimulation, which have been recognized and researched in the last 

years [33]. 

 

Biochemical signaling is a pathway that has attracted the interest of researchers in the last 

three decades. Chemical reactions series between biomolecules and substances of proteic 
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nature, such as grow factors, cytokines and hormones occur intracellularly and 

extracellularly. The signaling agents pass messages using molecular mechanisms to 

trigger or shutdown cellular activities, that is, acting as positive or negative regulators 

following a complex sequence of well-orchestrated events [34]. The nature of signaling may 

come from endogenous expression, interaction with stimulator or inhibitor substances 

secreted by other cells, by chemical reactions or by ECM interactions. Even cell activities 

such as apoptosis trigger other activities using biochemical signaling, thus releasing agonist 

or antagonist messengers. To name a rough example, there are numerous molecular 

mechanisms involved in secondary healing of bone tissue, where recruitment of cells, 

osteoblastogenesis, chondroblastogenesis, synthesis of cartilage, apoptosis of 

chondrocytes, synthesis of osteoid and its subsequent mineralization occur by the action of 

several time-coupled biochemical cascades. 

 

Figure 2-1: (a) Cellular evolution and (b) phases of secondary bone healing. 

 

 
 

In the BTE context, Bone Morphogenetic Proteins (BMPs), Insulin-like Growth Factors 

(IGFs), Fibroblast Growth Factors (FGF), Vascular Endothelial Growth Factors (VEGF), 
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Platelet Derived Growth Factors (PDGF) and Transforming Growth Factor-β (TGF-β) 

proteins have a paramount influence on bone development and healing [35]. Both 

Intramembranous and endochondral ossification mechanisms have similar biochemical 

signaling in its development. Some biochemical signaling pathways are exclusive for 

development, others are exclusive for healing, and some have place in both, such as the 

Wnt pathway [36]. 

 

Although the biochemical and mechanical pathways are usually recognized as the most 

important in bone biology, electromagnetic signaling has been investigated due to 

molecular mechanisms, such as pumps, transporters and ion channels (molecular 

machines), and their close relationship with physiological, cellular and tissue electrical 

dynamics and other phenomena as galvanotaxis [37]. Transmembrane voltage gradients 

and bioelectrical cues have an instructive role. Regarding BTE, significant attention has 

been gained by the piezoelectric nature of bone and the presence of electric fields in cyclic 

loading that could benefit bone healing. Electro stimulation has demonstrated positive 

osteogenic effects at molecular and cellular levels [31]. It is proven that different cellular 

mechanisms and functions in bone biology are influenced by electrical stimulation, such as 

migration, proliferation, attachment, adhesion, organization, differentiation and apoptosis, 

among others [38]. Despite the poor understanding of the mechanism underlying this 

phenomenon [39], several signals have been identified, such as electrical currents and 

potentials, and electric and electromagnetic pulsed fields. These fields can be exogenous 

or endogenous [40] and have shown positive influence on the skeleton system in 

morphogenesis and regenerative processes. 

 

Other physical signals less investigated are ultrasound and photostimulation. Ultrasound 

consists in mechanical sound waves at high frequencies, which are supposed to affect 

(accelerates and enhance) bone ossification processes and angiogenesis by means of the 

generation of mechanical forces, e.g. acoustic gradient pressures, that produce micro fluid 

flows and influence the diffusion processes of biochemical factors [41], [42].  On the other 

hand, photostimulation employs a source of light to produce stimuli that modulate 

biochemical events in cells and tissues [33]. 

 

The role of physical signals and their influence has been debated for years and most 

researches have been focused on biochemical signaling. The general process by which 
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cells sense external loading transmitted through the ECM is known as mechano-sensing 

and the cellular response (biophysical and biochemical) derived from this process is known 

as mechano-transduction [43]. 

 

The underlying mechanism for this research is the mechanical pathway. There are different 

mechanical cues acting on tissues and influencing its behavior. Particularly, several 

musculoskeletal tissues seem to be more sensible to mechanical signaling than other 

tissues in biological systems, because their physiological functions are related to 

mechanical functions and its lineage comes from mesenchymal tissue. Several categories 

have been identified and can be grouped, on the one hand, into substrate features such as 

topography and stiffness that cells are capable to sense to adapt its shape and respond to 

it. On the other hand, extrinsic cues such as forces and strains come from macroscopic or 

organ tissue levels and are transferred to the cell level by means of axial and shear stress 

and strains, and/or by its tensorial components, strain energy density, residual stresses, 

wall shear stresses, hydrostatic pressures and shear stresses induced by fluid flow, among 

others [31], [44]. The fluid flow may act electrostatically showing the interrelation between 

different pathways [45]. In this sense, it is worth noting that the fundamental pathways can 

be coupled, for instance, physical pathways (mechanical or electrical) trigger the 

biochemical response. Additionally, redundant signaling assures the successful 

accomplishment of programed biological events. In general, physical signaling will be 

transduced to biochemical signaling [13]. 

 

Cytoskeleton plays a fundamental role in cell sensing activities. It is believed that cells 

sense strain by means of its attachment mechanism, while fluid flow is sensed by cell 

membrane. Both of them produce cell deformations that lead to trigger cascade signaling 

[46]. However, the precise mechanisms are not understood completely. 

 

The mechanical cues have the potential to trigger bone tissue and cell activities if they are 

applied continuously. Different theories and models were proposed by different researchers 

in last thirty years to explain the behavior of cells under the different mechanical stimuli. 

Therefore, the next section reviews the main models available in the literature to explain 

this phenomenon regarding osteogenic pathway. 
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2.3 Mechano-regulation theories and models 

 

Mechanobiology is the field that bridges cellular biology, biochemistry and mechanics to 

expand the understanding of how the different biomechanical stimuli and sensing and 

transductions mechanisms of cells interact and respond, i.e., how is the mechano-

regulation process of diverse cell functions. Both soft and hard tissues are thought to be 

modulated in activities like growth and remodeling by the action of mechanical cues, such 

as stress. In this context, non-specific tissue mathematical models has been proposed to 

enhance the understanding of this phenomenon [47], [48]. 

 

Diving deep into hard tissues, many researchers recognized that bone modeling and 

remodeling respond to stress trajectories. Specifically, one of these researchers was Julius 

Wolff, who suggested that the shape and architecture of bone are related to mechanical 

stress by a mathematical law, known as Wolff's law. Although, Wolff did not prove his 

assertions, the law was proved years later through the work of Wilhelm Roux. Roux's work 

was related to tissue differentiation and inspired one of the first research works on the 

physical signals that was carried out by Friedrich Pauwels, who suggested several 

hypotheses regarding the relationship between biophysical stimuli and tissue phenotypes 

in bone healing.  

 

Pauwels assumed that the mechanical stimuli on tissues (such as forces, deformations and 

thus stresses) are transferred in similar form from the macroscopic to cell level [49]. 

Prendergast et al. describe Pauwels hypotheses as follows [49]: 

 

1. "Deformation causes mesenchymal stem cells to differentiate to form fibrous connecting 

tissue whereas hydrostatic compression causes them to differentiate to form cartilage; 

combined stress states tend to cause tissue differentiation of fibrocartilage." [52, p. 360]. 

 

2. "Bone formation only occurs after soft tissue formation has stabilised the mechanical 

environment." [52, p. 360]. 

 

These hypotheses have some limitations, such as the difficulty of the author to measure 

strains and stresses within the bone and the absence of a specific stimulus for bone 
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formation [50]. However, other authors worked on these hypotheses using animal and 

numerical models, which were useful for developing later theories and researches focused 

on determining the mechanical signals that control cell differentiation and other cellular 

processes. 

 

One of the first attempts of a quantitative theory of bone repair was the interfragmentary 

strain (IFS) theory  proposed by Perren et al. [51]. Based on the tolerance of tissues to 

rupture, they hypothesize strain levels in which tissue differentiation fate is driven by the 

ratio between the relative displacement of the fracture ends versus the original gap width. 

In this sense, bone formation is expected for IFS<2%, cartilage tissue is expected for 

2%<IFS<10%, and IFS>10% represents granulation tissue and thus no-union. Albeit this 

approach has a one-dimensional character and is not completely related to in vivo 

observations, it describes a basis of knowledge about how the mechanical environment 

influences the tissue differentiation and evolution in fracture healing. Since IFS theory does 

not consider the multiaxial state of stress and strain, later models include this feature using 

different invariants of stress and strain tensors to address this issue. 

 

Formally, the first and classic mathematical description of bone remodeling and adaptation 

was introduced by Frost with the mechanostat theory, in which activation thresholds were 

proposed for processes such as modeling, remodeling, damage and maintenance of the 

existing conditions for load bearing bones [52]. The concept of bone as a material 

composed of a solid porous matrix and fluid constituents and the adaptative elasticity theory 

based on this concept were introduced and discussed by Cowin [53], [54]. Based on Cowin, 

Huiskes and Weinans presented an alternative theory of adaptative elasticity with the strain 

energy density as control variable and its applications using FEM [55], [56]. 

 

Some of the modern highlighted researches in this topic were carried out by Carter [57], 

who correlated new tissue formation with the local stress history. Claes and Heigele used 

principal strain and hydrostatic pressure to predict the differentiation of the callus tissue 

close to calcified surfaces in fracture healing [58]; and Prendergast proposed octahedral 

shear strain and interstitial fluid velocity as variables of stimulus function [59], [60]. 

 

Mathematical formulations have also been proposed in an attempt to translate these 

theories into functional models capable of predicting and being comparable to experimental 



Chapter 2 19 

 

findings. To tackle the qualitative limitation of Carter’s theory,  the osteogenic index (OI) 

was introduced in order to obtain consistent physiological patterns [61]: 

 

𝑂𝐼 = ∑ 𝑛𝑖(𝑆𝑖 + 𝑘𝐷𝑖)

𝑐

𝑖=1

 

 

where c is the number of load cases, 𝑛𝑖 the number of their repetitions, 𝑆𝑖 the octahedral 

shear stress, 𝐷𝑖 the hydrostatic compressive stress and 𝑘 is an experimental constant. 

 

Figure 2-2: Mechano-regulation diagram proposed by Lacroix and Prendergast. 

 

 
Image taken from Lacroix et al., 2002 [60]. 

 

The model proposed by Prendergast and later models developed by his co-workers 

contained also biological relevant processes in bone healing such as cell movement, 

proliferation and synthesis of matrix by differentiated cells [62]. These features make it a 

suitable model to describe and predict biomechanical behaviors in bone healing processes 

[63]. 

 

The models previously discussed, are related to the mechanical stimuli that influence bone 

healing. However, another process that influences the mechanical stimuli is bone 

remodeling. This process consists in bone adaptation of its structure and properties to the 

mechanical loading. 
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From the previous mathematical models, several computational models have been 

proposed to study the effects of different physical and biochemical factors involved, that are 

thought as key factors in modeling, remodeling, healing and even in tissue engineering 

scenarios. In general, the models describe the biological process of bone healing from 

differentiation and from remodeling perspectives. Representative researches in 

computational mechanobiology models such as [64]–[67] use remodeling theories for 

different topics of bone development and healing, while other authors such as [68]–[71] 

employ differentiation theories. Interesting features such as callus tissue growth have been 

incorporated in this kind of models to assess the volumetric evolution of tissue, unlike other 

models that use a fixed geometry of the problem [72]. 

 

The purpose of previous theories is to represent the events in bone development and 

healing, and predict outcomes of different scenarios close to those observed 

experimentally. Alternatively, strategies to achieve this objective have been developed, 

such as cellular automata using local rules to model bone healing [73]. More sophisticated 

models have been published as the developed by Shefelbine et al. [30] and Wang et al. 

[74] that uses fuzzy logic and classic theories to model bone fracture healing. Interesting 

alternatives to model processes such as volumetric tissue growth and tissue deposition 

inside scaffolds have been also documented in the literature [75]–[77]. 

 

Previous studies promise to be powerful tools to predict bone tissue behavior, but also have 

certain limitations. As models, they have simplifications that include partially or totally 

neglect many aspects on the physical, biological and chemical standpoints.  

 

Most of the aforementioned models are phenomenological models. The internal 

relationships in the model seek to describe the data observed in a phenomenon of interest 

in the best possible way through statistical or empirical facts. On the other hand, 

mechanistic models stablish explicit and independent relationships for the key factors 

involved in the phenomenon of interest in order to explain it widely in the range of the 

different variables through deterministic laws. However, both of them have advantages and 

disadvantages related to the amount of available data to feed the model and the difficulty 

to implement it. 
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2.4 Scaffolds 

 

Another key factor in the TET is the scaffold. This structure has some requirements such 

as being able to provide a suitable environment for cellular processes, guarantee the 

mechanical stiffness of the neotissue-scaffold system, allow its vascularization and prevent 

the invasion of fibrous tissue [78]. Many scaffold properties play a role in order to bring an 

appropriate micro-environment to the structure and surround host tissues. There are many 

complex interactions between cells and the scaffold contact surface interface that produce 

biochemical responses that will affect the newly formed tissue. These interactions are, 

firstly, due to intrinsic properties of the base material or material properties, which are 

directly related to the cell response from a molecular level to a cellular level and modulate 

processes such as cell attachment (binding sites), biochemical interactions, protein-surface 

interactions, degradation kinetics and adsorption phenomena, among others [79]. 

 

Regarding material properties, two key design requirements for scaffold materials are 

described in the literature: biocompatibility and bioresorbability. The former is ability of the 

material to interact with a biological environment without producing adverse effects or 

responses, whereas the latter is its ability to degrade in an in vivo environment in non-toxic 

components that can be eliminated from the body [80]. 

 

Besides the aforementioned roles of the scaffold, some studies have suggested that the 

scaffold micro-geometrical features influence the mechanical stimuli on the newly formed 

tissue within the scaffold [81]. However, this influence is not clear yet due to the scale level 

and the different particularities of the scaffold micro-geometrical features. These features 

are considered of great importance in the mechanical environment, since the microstructure 

governs the bone mechanical function [29]. Furthermore, the scaffold microstructure may 

determine the spatial and directional distribution of newly formed tissue [82]. Additionally, 

the scaffold geometry becomes more complex when the scaffold degradation occurs, which 

makes the micro-geometrical features and physical properties time dependent. However, 

there are constructs that are designed as permanent for different situations such as 

implants that do not change its geometry notably as time passes [83]. It is worth noting that 

in the context of the scaffold micro-geometrical features discussed in this work, the micro-



22 Theoretical background 

 

  

scale is referred to sizes in the range of 50-500 μm, according to the definition and scales 

presented in [82], [84]. 

 

Design parameters of scaffolds are mostly related to material properties and micro-

geometrical features. The global mechanical stiffness depends on the elastic modulus 

properties of the base material that composed the scaffold and on the micro-geometrical 

features such as pore size, pore shape and pore interconnections. These properties 

influence cell morphology, cell migration, vascularization and permeability, where the last 

one has effects on transport of mass, nutrients, oxygen, regulatory factors and removal of 

metabolic wastes [80]. Properties such as curvature and tortuosity of pores and 

interconnections between them determine design parameters, such as specific surface 

area, which are related to the available area for cell attachment. 

 

The mechanical stiffness of the tissue-scaffold system determines the strain over the 

regenerated tissue hence the mechanical stimuli over it, even if it is supported by 

orthopedical hardware or employed on an immediate loading bearing application. Another 

consequence of the mechanical strain will be the displacement of pore fluid, thus creating 

a fluid flow inside the pores and the tissue. Elastic stiffness, fracture toughness and 

compressive strength are typical measures of the mechanical reliability of the scaffold for 

weight bearing applications [85], [86]. 

 

Frequently, the specific pore features cannot be described due to the poor control over 

geometry, given by the classic fabrication methods that will be further discussed below. In 

this sense, porosity is a simpler physical property and easier to measure. It is defined as 

the ratio between the available void space for neo-tissue growth and the volume occupied 

by the scaffold material. 

 

Ideal specific features of bone scaffolds that may depend on the combined effect of material 

properties and micro-geometrical features are also described in the literature [87][88]. 

Osteoconductivity is the ability to support bone cell processes such as adhesion, 

proliferation and synthesis of ECM. Osteoinductivity refers to the ability to induce new bone 

formation by stimuli. In fact, the greatest part of the bone fracture healing process is 

dependent on osteoinduction [87]. Osteogenicity is the capability of containing cells that are 

able to differentiate into bone cells and synthesize ECM. Osteointegrity denotes the 
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capability of forming an adequate union with native bone. Finally, biofunctionality is the 

ability to perform its functions in an in vivo environment. 

 

The fabrication techniques to obtain scaffolds are one of the main constraints to tweak the 

different key parameters in the design of these constructs. The different manufacture 

techniques limit the type of materials that can be used, thus affecting the material properties 

of the construct and the controllability of its different physical features. 

 

Principally, there are four global methods of scaffold manufacturing. On the one hand, the 

first two methods lead to the production of porous structures [89]. The classic and one of 

the most employed approach is the obtention of pre-made porous scaffolds from different 

materials and technologies, which will be discussed in more detail below. Another strategy 

is based on the postulate that histoarquitecture of same native tissues is optimal to conduit 

healing processes [31], therefore, scaffolds for tissue engineering are obtained from the 

decellularization of similar tissues derived from the same species (allogenic) or from 

different species (xenogeneic), to provide a naturally derived structure that serves as 

support [90]. These decellularized structures exhibit numerous biological properties that 

facilitate the tissue growth inside them, but also can potentially provoke immune responses 

and subsequent rejection. 

 

On the other hand, the last two global methods are oriented to produce engineered 

constructs containing cells without a cell seeding step to finally implant or inject them in the 

injured region [89]; The self-assembly process uses natural or synthetic polymeric networks 

known as hydrogels to produce small blocks with encapsulated cells to build the desired 

structure. Similarly, the assembling of two-dimensional cell sheets containing cells and 

ECM synthesized by them aims to conform a tridimensional construct that is used as 

scaffolding technique in tissue engineering. The main weakness of these methods is the 

poor mechanical properties of the achieved constructs.  

 

Considering the pre-made scaffolding group, the first and most experimentally used 

scaffolds generations were obtained by conventional physical and chemical processes 

such as foaming methods, casting methods, fiber-based methods, sintering, solvent casting 

in combination with space holders, particulate leaching, porogen leaching, phase 

separation, cryogelation and freeze drying, among others [11], [91]. These methods use 
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ceramic-based materials such as hydroxyapatite (HA), tricalcium phosphate (TCP), 

bioactive glasses and natural or synthetic polymers, e.g. collagen, silk, cellulose, alginate, 

gelatin, chitosan, poly-glycolic acid  (PGA), poly-lactic-co-glycolic acid (PLGA) and poly-L-

lactic acid (PLLA) [92], [93]. A limitation of these methods is that they lack a precise control 

over pore morphology, whilst allowing some tunability of features in a statistical base, such 

as average porosity and pore size, but not in critical factors like pore shape and 

interconnectivity. As a result, all these methods produce irregular micro-geometries that do 

not guarantee a regular physical environment throughout the scaffold. 

 

From a stiffness perspective, the discussed manufacturing techniques produce soft-

polymers based scaffolds and stiff mineralized scaffolds, but a limitation of most of the 

materials employed in these processes is its inapplicability in weight bearing locations due 

to the low stiffness, low elasticity and brittleness. This means that these materials do not 

have suitable mechanical properties [31]. Metals and their alloys are more appropriate for 

load bearing applications, but they outperform its elastic properties regarding native tissues. 

In consequence, these materials produce negative effects that reduce the mechanical 

stimulation on surrounding tissues and lead to their resorption, phenomenon known as 

stress shielding [86]. Also, the poor degradation capabilities of metals and their alloys 

prohibit its use in non-permanent applications. Engineered composites attempt to 

overcome the different drawbacks of the materials, thus taking advantage of the great 

potential of tunability properties of the different materials that formed it. 

 

From the pre-made scaffolds type, there is a special interest in fabrication approaches that 

make possible to obtain regular geometries through advanced manufacturing technologies 

such as additive layer processes (e.g. 3D printing, fused deposition, stereolithography and 

selective laser sintering). Some advantages of regular geometries are their ability to offer a 

physically, and biologically homogeneous environment, which is traduced into predictable 

and reproducible features. A homogeneous environment also avoids common effects of 

random irregular porosity such as dead porosity and incomplete interconnectivity, which 

leads to poor cell seeding (mainly in the core region), insufficient vascular networking and 

low cell viability [94]. However, materials with suitable biological and physical properties 

that can be used in these processes are still limited. Biofunctionalization strategies, such 

as surface modification, surface and bulk treatments and coatings to enhance the 

interactions between cells, tissue and scaffold, have been used to address the lack of 
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appropriate biological properties of the synthetic materials [31]. Through of some of those 

advanced manufacturing techniques, it is possible to achieve the concept of bioprinting, in 

which cells, biomaterials and biochemical factors are integrated to print living structures 

[95], [96]. 

 

Regular scaffolds are also an ideal platform to study cell behavior in vitro under controlled 

environments and to verify these results through computer simulation. The regular structure 

allows isolating a representative unit cell or a volume of interest to analyze and make 

conclusions about the whole structure behavior, thus reducing the computational cost of 

analysis [97]. 

 

Some common pore shapes used in regular-structured scaffolds are prismatical [76], 

spherical [66], lattice-like [66], tetrakaidecahedral [80], [98], truncated cuboctahedron [99], 

and those produced by orthogonal perforations of simple forms, such as ellipses and 

rectangles on a solid domain [81], [100]. 

 

Porous scaffolds can show a foam-like or a regular structure that could be mechanically 

analyzed by models for open-cell foams from cellular solids to describe their mechanical 

behavior [80], including relative Young's modulus, stress-strain curves and failure 

mechanisms. 

 

As previously mentioned, a simple requirement derived from the scaffold pore geometry is 

the specific surface-area volume ratio (SA/V). There is a strong correlation between cell 

attachment and the SA/V, which can be calculated by assuming the scaffold as an open-

cell foam and depends on the pore size and the relative density. For instance, for the 

tetrakaidecahedral model of an open-cell foam, this area is inversely proportional to the 

mean pore size [101]. 

 

Scaffold typical loads can be the same loads that bone could be experiment at the 

macroscale: tension, compression, shear, torsion, bending and combinations between 

these loading types [102]. At the microscale, representative unit cells are generally loaded 

by axial (tensile or compressive), transverse (shear) load conditions and combinations of 

them, besides shear loading caused by interstitial fluid flow. There is a relation between 
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macro-scale loads and interstitial fluid flow, because the deformation experimented by axial 

and shear deformation induces a flow through the porous media. 

 

The scaffold biodegradation is an important requirement to allow growth tissue within the 

structure, thus successfully healing the defect of interest. This is a complex phenomenon 

that must occur in a controlled and balanced manner as the tissue grows and becomes 

capable to support its natural functions. Additionally, it is possible to include biochemical 

factors, drugs and nutrients in the biomaterial to be released in a controlled way in order to 

benefit the healing process. 

 

Degradation mechanisms of biomaterials are highly environment dependent [103]. Some  

environmental factors that influence the behavior of the material are pH, temperature, 

mechanical strains and subsequent disintegration, light, radiation and chemical interactions 

with oxygen, water or other fluids [104]. The types of materials used to build tissue 

engineering conduits determine the mechanism of degradation. Architectural features such 

as micro/nano porosities and high SA/V accelerate the degradation by increasing the 

contact with body fluids, water intake and cell contact. 

 

Metals and its alloys such as those based on magnesium and iron [105] degrade by 

electrochemical corrosion processes, while ceramics degrade principally by means of two 

mechanisms: chemical dissolution in body fluids and cellular mediated action [106]. 

Polymers can be degraded in two pathways. The first is by the action of water, process 

known as hydrolysis. It is caused by the water diffusion in the material, in which 

hydrophilicity and hydrophobicity properties of materials and enzymatic interactions with 

the biological environment affect the process. The second pathway is the oxidative one 

caused by reactive molecules derived from host cellular activities [107].  

 

Degradation in polymers results in erosion processes of two types that can occur 

simultaneously: surface erosion and bulk erosion. In the former, the polymer erodes from 

the external surface towards the inside, which represent a volume reduction in the exterior 

surfaces in contact with the degradative agents. In contrast, the latter loses mass by the 

penetration of the degradative agents through the entire volume (Figure 2-3). 
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Figure 2-3: Schematic of the surface and bulk erosion mechanisms of polymers 

degradation. 

 

 

 

Depending on the material type, degradation leads to a change of properties. Indicators of 

this process are commonly molecular weight (in biopolymers), mass loss, porosity change, 

changes of mechanical properties, such as stiffness, and morphological variations due to 

erosion such as pore size change, among others [103]. An interesting concern in 

biomaterials is the active control of the degradation rate to address the open loop approach, 

in which once the biomaterial is implanted, any control is exerted on the degradation 

process [104].  

 

A highlighted simulation work on scaffold degradation and its relation with the newly formed 

tissue was carried out by Adachi et al. [66]. They develop a framework for the optimal design 

of a porous scaffold microstructure by computational simulation of bone regeneration to 

study the relationships between pore shape, growth tissue and mechanical function, taking 

into account the material degradation. In this study, they developed a simple model in which 

the domain is discretized using voxel elements to describe the degradation of scaffold 

material based on bulk erosion due to hydrolysis, which is represented by a system of 

coupled equations. The details of this model and its implementation are described in 

chapter 5 of this thesis.  
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Nowadays, It is possible to find more complex models that describe scaffold degradation 

[108]–[115]. Also, simpler phenomenological models have been reported in the literature to 

represent the geometrical changes produced in the scaffold due to the surface erosion 

degradation mechanism [116]. However, Adachi's model is still enough for several 

applications that require to consider polymer scaffold degradation in a simple way [82], 

[117]. 

 

2.5 State of the art: Scaffolds design and assessment 

 

Scaffolds for tissue engineering have had a rapid development in last two decades, 

evidenced by the exponential increase of publications on this subject [118]. There are 

several fronts of research in different disciplines in the concerns of design, fabrication, 

application and assessment of these devices. 

 

The development of assessment techniques for scaffolds has become strong in order to 

obtain better predictive capabilities and reduce the trial and error and open loop approaches 

in which the only data available refer to the performance of the device during its use (in 

situ). Evaluation procedures in vitro, in vivo and in silico have been developed in the 

literature to determine the relevance of the different scaffold design factors identified.  

 

Currently, there are several experimental studies that evaluate the mechanical, biochemical 

and biological responses of scaffolds in in vitro and in vivo environments, where the latter 

are assessed principally using animal models. Cell viability is one of the most important 

factors in in vitro approaches, and there is an incessant evaluation of the scaffold fabrication 

methods and enhancements to increase cell survival. 

 

Regular and irregular geometries have been employed to evaluate the influence of micro-

geometrical features in experimental researches. For instance, some authors have studied 

the effect of pore size on cell attachment [101], the effect of the scaffold geometric features 

on global rate of tissue formed [119], the effects of different pore sizes and materials in vivo 

[120], cartilage-bone transitional scaffold structures [121], internal architecture assessment 

and characterization [122] and assessment of in vitro and in vivo responses of a regular 

and cell seeded scaffold [123]. A comparison with other grafting techniques such as 
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autografts, xenografts, and allografts was carried out in [124]. Permanent scaffolds that are 

not designed to disappear in the body for loading bearing applications are proposed in order 

to treat critical defects [83], [125]. Also, scaffolds have been used as platforms to study new 

signaling and stimulation techniques such as those based on ultrasound [126], [127]. 

 

Regarding scaffold fabrication, new manufacturing methodologies and engineered 

materials have gained major interest, especially in materials such as hydrogels, composites 

and bioactive glasses [128]. Evaluation of mechanical properties designed vs. those 

obtained after the fabrication process has been carried out [129]. Current topics of interest 

are the development of bioprinters and bioinks for different scenarios, modification of 

surface features of the materials, and coatings and treatments in materials to enhance the 

healing process that can include drugs, genetic material, growth factors and even cells [96], 

[130]–[136]. 

 

3D printing and bioprinting techniques are valuable due to their potential in tissue repair 

and artificial organ development. Each day various materials are studied to be employed in 

these techniques. Interestingly, it is possible to find experimental results illustrating that the 

scaffold microarchitecture is capable of guiding the tissue formation at early stages of 

implantation and enhance noticeably bone volume and functionality, thus showing the 

importance of the micro-geometry control in bioprinted structures [137], [138]. 

 

Unfortunately, consequences of experimental research in this field are the high costs 

associated with the methods and techniques required, especially if in vivo approaches are 

involved. These studies require advanced techniques to perform the analyses, such as 

micro Computed Tomography (micro-CT), Magnetic Resonance Imaging (MRI), Atomic 

Force Microscopy (AFM), Scanning Electronic Microscopy (SEM) and Confocal Imaging 

(CI), among others. Also, cell cultures and biological tests require specialized equipment, 

supplies and personal to ensure the reliability and validity of the studies. Usually together 

with the biological assessment of scaffolds, there is a mechanical properties assessment, 

which requires additional custom test machines or adaptations for this purpose [138], [139]. 

 

In response to the aforementioned shortcomings, analytical and computational techniques 

allow avoiding to some extent the issues of experimental studies. On the one hand, 

analytical works have been performed regarding structural analyses of scaffolds [99], [140], 
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and regarding the modeling of the contractile forces applied to scaffold struts [141]. On the 

other hand, in silico analyses are considerably more frequent, since they have the potential 

to provide tools to simulate nature events without falling into costly experimental 

techniques, and to allow computer design strategies based upon the real nature of 

biological and biophysical phenomena. In this way, the design and understanding of 

scaffold behavior and its interactions with the biological environment are the main goals to 

study these devices.  

 

The research in this topic requires integrative approaches that combine mathematical and 

computational modeling with experimental research. For example, Afshar et al. carried out 

experimental and numerical procedures to assess the mechanical behavior of graded 

porosity scaffolds [142]. Another example of these approaches was presented by Carlier et 

al., who developed a bioregulatory model to predict the effect of calcium phosphate 

scaffolds on the behavior of osteogenic cells. Their model was based on the framework by 

Geris et al. [70] and the authors dedicated experimental work to fed the model [143]. 

Extending the integration procedures, concepts such as Computer Assisted Tissue 

Engineering (CATE) combine the tissue engineering field with advanced modeling, 

fabrication and simulation techniques [144]. Since the phenomena that occur inside the 

scaffolds have different scale levels, multiscale approaches have been developed in order 

to integrate the events that occur in the different scales [145], [146].  

 

Currently, it is supposed that the same biological principles of the fracture healing 

phenomena occur inside the bone scaffolds, for this reason, numerous studies around this 

topic are constantly reported. The integration of these phenomena is commonly studied 

with processes such as angiogenesis [147], release of biochemical cues [148], different key 

factors of biological and biophysical nature and interactions with fluid and its dynamics. 

Also, scaffolds oriented to bioreactors and other in vitro scenarios and the modeling of 

specific culture conditions have been computationally studied. Pham et al. determined the 

flow-induced stresses over the surface of regular structured scaffolds used typically in 

bioreactors and found statistical distributions to describe them [149]. Zhao et al. studied the 

mechanical stimulation of bone cells in a scaffold caused by fluid flow and mechanical 

loading [150]. Nevertheless, their study uses discrete cells and does not take into account 

the changes in geometry and mechanical properties caused by the newly formed tissue 

and by the scaffold degradation. Finally, Campos and Lacroix conducted simulations to 
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characterize and analyze commercial scaffolds to demonstrate that structural variability of 

scaffolds affects the micromechanical cell environment on structural and fluid dynamics 

concerns [151]. 

 

Regarding geometrical features, tissue evolution has been discussed in the literature for 

different complex architectures of scaffolds such as triply periodic minimal surfaces 

(TPMS), geometries obtained by mean of reversed engineered techniques, and features 

such as gradients, multiporosity and multilayer  [100], [152]–[157]. Other works pointed out 

the matching of biophysical properties regarding the host tissue environment at different 

scale levels, which is thought as criteria of goodness in those constructs [158]–[160]. For 

this purpose, homogenization theories are applied to describe the global properties of the 

entire structures through the properties of an enough representative volume, or the contrary 

process known as localization [64]. 

 

Due to the geometrical complexity of the microstructure of scaffolds, it is impossible to 

couple and solve simultaneously the different equations required to predict the scaffold 

behavior without computational methods. FEM allows solving the equations that predict the 

scaffold behavior in coupled form. This method is the most common computational 

technique in mechanical analyses of scaffolds for tissue engineering [161], while for 

analyses that involve permeability and fluid interactions, computational fluid dynamics 

(CFD) predominates. 

 

Representative approaches to in silico scaffold analyses were carried out by Adachi et al. 

[66] and Byrne et al. [62]. These approaches were highlighted to consider the evolution of 

tissue inside the scaffold and the changes regarding physical properties of the scaffold-

tissue system, both under frameworks based on FEM. As previously discussed, Adachi et 

al. integrated and simulated phenomena such as degradation with tissue growth driven by 

mechanical stimuli on two different pore shapes, lattice-like and spherical. Their results 

showed that pore shapes are related to the bone growth pattern. Another representative 

work related to scaffold simulation was performed by Sanz-Herrera et al. who explore the 

bone growth inside a regular scaffold composed of cells with a Face Centered Cubic (FCC) 

structure [64]. 
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Using Prendergast's theory of mechano-regulation, Byrne et al. developed a simulation of 

bone regeneration in a regular scaffold to assess design parameters such as porosity, 

Young's modulus and dissolution rate. The simulation model was based on discrete 

elements for both the scaffold and the newly formed tissue inside the scaffold. This work 

was limited to square pore shape, but it gives a platform to assess and predict the behavior 

of scaffolds with specific geometries considering the changes of properties of the tissue 

synthesized by different cells, main cell activities, and the scaffold dissolution in a linear 

form. 

 

Several studies have used concepts from Byrne's model to design scaffolds for specific 

purposes such as reconstruction of tendon attachment [162], prediction of bone ingrowth 

into a coated porous implant [163] and optimization purposes [164]. A highlighted research 

influenced by Byrne’s work was performed by Boccaccio and coworkers [81] to optimize 

the microstructure geometry of bone tissue scaffolds. Their study was based on regular 

structured open porous scaffolds and graded scaffolds [100], generated by orthogonal 

"perforations" on a solid cube of basic geometric 2D forms such as ellipses and rectangles, 

and by 3D beams to form regular unit cells, irregular structures and geometries similar to 

those obtained in extrusion based methods [165]–[167]. This model modifies the geometric 

parameters of the pore and evaluates the tissue growth produced by repeating this process 

until the stopping criteria are satisfied, i.e., when the amount of bone predicted is 

maximized. 

 

Limitations of these studies are the restricted number of pore shape geometries and that 

they consider neither the behavior of cells in time nor the environmental changes caused 

by the scaffold degradation. Some approaches to analyze periodic structures typical from 

solid free form fabrication (SFF), taking into account the degradation process, were 

performed by Gorriz et al. [168] and Chen et al. [164]. The last group of authors presents a 

multiobjective optimization of the scaffold structure regarding criteria, such as permeability 

and stiffness. 

 

Even though there are a huge number of key factors identified in the design of scaffolds 

and the optimization approaches have been developed for isolated or a limited number of 

these key factors. However, this situation leads to obtain improved structures optimized 
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only in relation to one or few parameters. It is worth noting that eventually some parameters 

can be opposed, as in the case of porosity and stiffness. 

 

Another perspective to scaffold design is presented by Velasco and his co-workers [169], 

who used reaction-diffusion equations to generate the scaffold micro-geometry. Also, It is 

possible to find work related to the design of the scaffold microstructure based on 

biomimetic approaches [144], [170], [171], which are supposed to provide a better 

environment for the biological processes. 

 

Despite the significant progress in research of scaffolds for bone tissue engineering, there 

is no successful clinical translation of the strategies proposed into a clinical and commercial 

context [172], [173]. Although the many efforts for optimizing the performance of scaffolds 

in practice, the in vivo experimental research still results in a wide range of outcomes, 

sometimes showing inefficacy. This issue is related to some limitations in the tissue 

engineering field such as the lack of biomaterials with suitable properties and difficulties in 

the management of cells [10]. 

  

2.6 Brief numerical overview 

2.6.1 Finite Element basics 

 

Many phenomena in the contexts of physics, biology, chemistry, and even economics 

problems are described mathematically by Partial Differential Equations (PDE) that usually 

could be difficult to solve in complex domains. To overcome this issue, the finite element 

method is presented as a computational alternative to solve these complex systems of 

PDE. This method is a numerical approximation technique based on governing equations 

including the constitutive terms that describe the particular phenomenon analyzed with 

boundary conditions. The constitutive equations have the following form, since they were 

developed for problems of elasticity based on Hooke’s law: 

 

{𝐅} = [𝐊]{𝐮}                                 (2.1) 
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where K is an inherent set of properties of the domain, u is a set of behaviors and F is a 

set of external actions or conditions [174]. 

 

Roughly, the concept behind this technique is the division of the domain of interest into 

several discrete elements called finite elements. These elements are geometrically defined 

through a mesh that discretizes all the domain and the resultant elements are linked by 

entities known as nodes. A set of simultaneous algebraic equations that will be solved 

locally in each node is established. After solving it, equations are assembled in a global 

system, then, an interpolation process is applied over the entire domain, thus obtaining the 

solution of the problem. For this reason, the method is unaffordable without a computational 

implementation. For further details of the method, please refer to Chandrupatla et al. [175]. 

 

2.6.2 Elasticity 

 

It describes the mechanical behavior of deformable solids, with respect to how they deform 

by the action of external loadings. This behavior is typically characterized by the following 

constitutive equation: 

 

𝝈𝑖𝑗 = 𝑪𝑖𝑗𝑘𝑙𝜺𝑘𝑙                                         (2.2) 

 

where 𝝈𝑖𝑗 is the Cauchy tensor, 𝑪𝑖𝑗𝑘𝑙 is the constitutive elastic tensor and 𝜺𝑘𝑙 is the strain 

tensor [176]. 

2.6.3 Poroelasticity 

 

The poroelasticity theory comes from soils mechanics and additionally to the classic theory 

of the elastic media, it involves concepts regarding the pore pressures and strains. 

Assuming the tissue as a biphasic poroelastic medium, its behavior can be described using 

the following equations [176]: 

 

Continuity Equation for biphasic media: 

 

𝛁 ∙ (∅𝑠𝒗𝑠 + ∅𝑓𝒗𝑠) = 0                   (2.3) 
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where ∅𝑠, ∅𝑓 are the volume fractions and 𝒗𝑠, 𝒗𝑓 are the velocities of the solid and liquid 

phases, respectively. 

 

Effective stress: 

 

𝛔̅∗ = 𝝈̅ + 𝜒𝒖𝒘𝑰                     (2.4) 

 

where 𝛔̅∗ is the effective stress of the porous medium, 𝝈̅ is the effective stress in the solid 

matrix, 𝜒 is the saturation and 𝒖𝑤 is the wetting liquid pressure. 

 

Darcy's Law: 

 

𝑸 = −𝑲 ∙ 𝛁(𝒉)                  (2.5) 

 

where Q is the volumetric flow rate, K is the permeability of the medium and h is the 

piezometric head. 

 

2.7 Conclusions 

 

After a comprehensive analysis of the scientific literature on scaffolds for bone tissue 

engineering, this chapter shows the generalities involved in the processes that occur within 

a scaffold for bone regeneration and its principal concepts. These processes are complex 

and influenced by phenomena of different nature. The scope of this dissertation will be 

limited to understand and describe the events occurring during the scaffold use until its 

dissolution, from a biomechanical perspective and with special emphasis on the influence 

of the scaffold micro-geometrical features, such as pore shape, size and interconnection 

between the scaffold pores, on these events. 

 

The state-of-the-art shows that there are many efforts to understand, characterize, and 

assess the influence of design parameters of the scaffold and their responses (Biological 

and mechanical), but experimentally these studies require costly and time-consuming 

experiments and there is still a discussion about some key factors in the design and the 

control of the in vivo outcomes. Regarding in silico methods, they have been applied to the 
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design, assessment and verification of the influence of different scaffold design parameters. 

However, several processes inside the scaffold are understood and modeled as black-box 

systems. Particularly, there is no theoretical or computational description of stress patterns 

and distributions related to the micro-geometrical features and their changes during the 

tissue growth and/or scaffold degradation. This knowledge is important since the stresses 

are related to the mechanical stimuli, thus they regulate the tissue development within the 

scaffold, together with biochemical and other biophysical stimuli. 

 

Combination of computational analysis and design methods, additive manufacturing, 

optimization, and simulation techniques will allow making predictions and comparisons 

between different designs in computational environments. This will in turn allow designers 

to select the suitable features from a theoretical standpoint and then fabricate this kind of 

devices, thus helping to reduce extensive experimental tests. 

 

In the future, it is necessary to search for strategies to monitor and control the properties of 

scaffolds in in vivo scenarios. The tracking and control in the scaffold properties, such as 

the degradation and loss of mechanical stiffness will allow better control over the biological 

outcomes, for instance, reducing the early failure of the scaffolds for fast degradation or 

controlling the releasing of growth factors [104]. 

 

The concepts reviewed here indicate the complex phenomena that occur regarding the 

scaffolds for bone tissue engineering. Many disciplines are involved and an interdisciplinary 

research is necessary in order to achieve better techniques and solutions with the potential 

to be translated into clinical scenarios. All these efforts should try to lead this discipline to 

the application of concepts of patient-specific and precision medicine. 

 

The searching for better scaffolds that successfully help to heal bone fractures is still a 

relevant concern for researchers in biomaterial and tissue engineering field. The 

understanding of the phenomena occurring inside the scaffold and the interactions between 

them could lead to obtain more repeatable and efficient outcomes and increase its 

functionality and scalability in order to enhance the available treatments for fracture healing. 



 

 
 

3.  Stresses on newly formed tissue 

 

The aim of this chapter is to introduce a methodology for modelling the mechanobiological 

behavior of scaffolds and analyzing the stresses acting within the newly formed tissue. 

These strategies allow exploring the biophysical phenomena that occur within the tissue 

that fills regular scaffold geometries in early stages of healing and finding possible 

relationships between the scaffold micro-geometrical features and the stress distributions 

developing inside the newly formed tissue. 

3.1 Representative volume modeling 

 

To determine the stresses of the newly formed tissue inside a bone tissue scaffold when 

micro-geometrical features of pores changes, finite element models for representative 

volumes (RV) of different microgeometries of scaffolds were modeled. The RVs are 

consistent with the scaffold geometries studied experimentally by Entezari et al. [138] and 

similar in the size with those used in computational studies from other authors [66], [117]. 

RVs of different families and sizes of pores were represented in a cube with side of h=2.34 

mm (Figure 3-1) including different arrangements of the studied unit cells, which are 

expected to produce different biophysical responses. Following the shape, size and 

porosity of the conventional square architecture presented in [138], square pores with a 

side 0.39 mm were modeled thus obtaining a reference porosity of 50%.  

 

A script to model the different geometries was implemented in the Python interface of the 

FEM software package Abaqus® (version 6.12, Dassault Systèmes, Vélizy-Villacoublay, 

France) to provide automated parametric analysis and post-processing operations. The 

different pore geometries were modeled through unit cells, in which pores are made using 

perforations of rectangular or elliptic cross sections along the faces of unit cells and 

geometric primitives, such as spheres and cylinders, which will be discussed in detail in 

next section. Once the pore is created inside the raw unit cell, the resultant geometry is 

replicated using an orthogonal pattern to form the entire RV including 3x3x3 unit cells. 
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Figure 3-1: Model of scaffold representative volume (RV). 

 

 

 

After defining the geometry of the scaffold, an identical solid cube of RV size is created and, 

by means of subtraction Boolean operations, the negative of the scaffold is obtained, which 

represents the geometry of the newly formed tissue inside the scaffold. The biomaterial that 

composes the scaffold and the granulation tissue were defined with the isotropic materials 

properties consigned in Table 3-1 to configure a poroelastic analysis of the scaffold-tissue 

system, according to those used in [62], [81]. The entire domain was meshed with 

tetrahedral pore fluid/stress elements C3D4P of average element size of 35 μm and 

maximum deviation factor for the curvature control of 0.01. 

 

Table 3-1: Material properties used in the model. 

 

Material properties Granulation Tissue Scaffold 

Young’s Modulus [MPa] 0.2 1000 

Poisson’s ratio 0.167 0.3 

Porosity 0.8 0.5 

Permeability [m4/N/s] 1E-14 1E-17 

Bulk of grain [MPa] 2300 13920 

Bulk of fluid [MPa] 2300 2300 
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Once the geometry of scaffold-tissue system is defined, a tie constraint between the shared 

surfaces of granulation tissue and the scaffold material is settled. A clamp boundary 

condition was set in the bottom of the RV, while a ramp load function F is applied during 

one second through a rigid plate also tied on the upper surface of the RV and constrained 

to move only in vertical direction, to produce an apparent uniform compression loading 

through the structure (Figure 3-1). To simulate the free exudation of the fluid, pore pressure 

in the outside surfaces was set to zero according to Byrne et al. [62]. 

 

3.2 Geometry setup 

 

As stated above, the reference geometry was a scaffold with square pores and 50% 

porosity. Additionally, a set of three different geometries was investigated: square pores 

with porosities of 25%, 75% and 90% were obtained using the equation 3.1 developed for 

these rectangular architectures. 

 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
(𝐿𝑈𝐶 ∙ 𝑋 ∙ 𝑌) + (𝑋 ∙ 𝑌 ∙ (𝐿𝑈𝐶 ∙ 𝑋)) + (𝑋2 ∙ (𝐿𝑈𝐶 − 𝑌))

𝐿𝑈𝐶
3 ∙ 100% (3.1) 

 

where 𝐿𝑈𝐶 is the length of the unit cell, which according to the studied RV size, is 𝐿𝑈𝐶 =
ℎ

3
=

0.78 𝑚𝑚. X and Y are the horizontal and vertical dimension of the square section of the 

pore, respectively. 

 

The resultant cross sections from the parameters X and Y will be cut through faces in planes 

XY and ZY, while the cut extrusion perpendicular to the XZ plane will be hypothesized to 

have a square shape with a X side (Figure 3-2), according to Boccaccio et al. [81]. The 

parameters X and Y that define the four initial porosities are combined into a new set of 16 

geometries (Table 3-2) in order to explore the influence on the change of these parameters 

in the stresses of the newly formed tissue (Figure 3-3). The diagonal of the set in Figure 3-

3 (left) shows the square geometries A, F, K and P with porosities of 25%, 50%, 75% and 

90% respectively. The pore dimension Y will be increased in each geometry from left to 

right, while the X dimension increases from top to down in the array. Rows will have same 

X parameter, and columns will have the same Y parameter. 
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Table 3-2: Micro-geometrical parameters and resultant porosities for rectangular pore 

array. 

 

Geometry ID X (mm) Y (mm) Porosity (%) 

A 0.2545 0.2545 25.00 

B 0.2545 0.3900 32.63 

C 0.2545 0.5254 40.27 

D 0.2545 0.6272 46.01 

E 0.3900 0.2545 41.31 

F 0.3900 0.3900 50.00 

G 0.3900 0.5254 58.68 

H 0.3900 0.6272 65.20 

I 0.5254 0.2545 59.72 

J 0.5254 0.3900 67.36 

K 0.5254 0.5254 75.00 

L 0.5254 0.6272 80.74 

M 0.6272 0.2545 74.95 

N 0.6272 0.3900 80.42 

O 0.6272 0.5254 85.88 

P 0.6272 0.6272 90.00 

 

 

Figure 3-2: Cubic Unit Cell Geometry. 
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Figure 3-3: Profile view of the array of rectangular (Left) and elliptic (Right) unit cells. 

 

 

 

Similar to the creation of the set of rectangular pore family, an elliptic pore set was proposed 

to complete the hexahedron families studied by Boccaccio et al. in [81] and defined by 

micro-geometrical parameters in orthogonal directions. In the array of elliptic pore family, 

the Y dimension defines the ellipse axis oriented in load direction and the X dimension 

defines the ellipse axis perpendicular to load direction. In the diagonal of the array, X and 

Y dimensions have equal values producing circular pore profiles (Figure 3-3, right). 

 

Scaffold geometries with spherical pores are interesting for analysis due to their curvature 

properties that can favor the cellular processes [119]. In the case of spherical pores 

modeling, it is possible to obtain two different topologies due to the geometric constraints 

reported in a previous study by the author [177]. In the arrangement of this pore family, the 

parameter in the vertical direction is the spherical pore diameter Ds, which increases from 

top to bottom, and the parameter in the horizontal direction is the cylindrical interconnection 

diameter Dc, which increases from left to right, as disposed in Figure 3-4a. 
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Figure 3-4: Spherical pores: (a) Arrangement of pore set (b) Small (ST) and (c) large 

(LT) topologies (Adapted from [177]). 
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Depending on the size of cylindrical interconnection, the topologies could become very 

similar to hexahedron with circular pores, that is, the diagonal geometries in the elliptic pore 

family set (Figure 3-3, right). As the diameter of cylindrical interconnection gets close to the 

diameter of sphere, the sphere pore will disappear, and the geometry will only have the 

cylindrical perforation. Since we are not interested in the spherical geometry getting close 

to those obtained by circular perforations, we will try to move away from this geometry 

family and make strong the spherical component rather than the cylindrical component. In 

this way, to make the spherical component in the cell topology predominant, the maximum 

value that the cylindrical parameter must have is set at 90% of the value provided by the 

constraint Ds/1.4142, as reported in our previous study [177]. 

 

Taking as reference the diagonal porosities from rectangular pore families, the minimum 

porosity of the spherical arrangement was set to 25%. To avoid that the unit cell become 

circular pores topology, the maximum Dc for porosity of 25% was set in 65% from the 

maximum possible value. This Dc is increased to values of 80% and 95% of the maximum 

possible value to analyze the influence of the Dc parameter on the stresses within the 

granulation tissue. In the same way, geometries with 37.5% and 50% of porosity were 

obtained and the same previous percentages for Dc were explored to complete a set of 

nine geometries. In the proposed set, rows will have fixed Ds values and columns will have 

fixed percentages of the Ds values in the row (65%-80%-95%). This set is composed of the 

“small” topology (ST) characterized by the spherical pore and completely inside the unit cell 

(Ds<Luc) [177], which allows a maximum value of porosity close to 68%. To obtain 

porosities of 75% and 90%, it is necessary to use the “large” topology (LT), in which the 

spherical pore exceeds the unit cell dimensions (Ds>Luc) (Figure 3-4c). 

 

In the large topology, the constraints between Dc and Ds interfere with the use of fixed 

percentages of Dc as those used in ST topologies. Considering this, three values of Dc 

between the minimum and maximum obtainable from the constraints were selected to 

analyze the influence of the changes of this parameter on the stresses of the granulation 

tissue. Target porosities of 60%, 75% and 90% were achieved using the minimum Dc 

parameter. A total of nine geometries were studied in the LT topology family. 
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3.3 Stress analysis 

 

A poroelastic analysis is performed for each family and geometry in the proposed 

arrangement in order to determine how the changes in the parameters influence the 

stresses in the granulation tissue, which is supposed to fill the scaffold pores in an early 

stage of the bone healing process.  

 

Due to the complexity of the general state of stress in the tissue, we used reduced stress 

measures such as von Mises stress, which incorporates the components of the Cauchy 

tensor into a single scalar value, and the maximum principal stress absolute. These 

measures of stress are inherently isotropic and common in finite element models of tissue 

mechanics [178]. The material models employed for scaffold and biological tissue were of 

isotropic nature. 

 

The von Mises stress for all elements in the granulation tissue domain for each geometry 

was plotted using frequency distribution histograms to determine the predominance of 

stresses on the tissue. Maximum principal stress absolute shows the predominant principal 

stress over each element, hence its histograms in all tissue domain allows establishing the 

proportion of elements of the tissue that are in compression and tension for each scaffold 

geometry. 

 

After the model execution, stress components of each element in the model and its 

invariants were obtained. Von Mises stress distributions were extracted using a custom 

Python script and statistical measures such as mean (VMMean) and median (VMMedian) 

were calculated in the newly formed tissue.  

 

Distributions of von Mises stress and maximum principal absolute stress were depicted to 

observe the changes of stresses produced by the change of micro-geometrical features in 

the topology families. All those stress histograms related to each geometry were normalized 

regarding the counts, thus producing that the integral under the histogram be equal to one. 

Finally, these histograms were compared to identify features and patterns in the 

distributions. 

 



Chapter 3 45 

 

3.4 Mechanobiological approach 

 

To measure the mechanobiological performance of each geometry in the proposed arrays, 

the mechanobiological approach of Prendergast et al. [59] in equation 3.2 was used: 

 

𝑺 =
𝛾

𝑎
+

𝜈

𝑏
 

(3.2) 

 

where S is the mechano-regulatory stimulus, 𝛾 is the octahedral shear strain, 𝝂 is the 

interstitial fluid flow velocity, and, a and b are experimental constants, with values of 3.75 

(dimensionless) and 3 μm/s, respectively [179]. 

 

From equation (3.2), the octahedral shear strain 𝛾 is defined using the principal strains 

𝜀𝐼 ,  𝜀𝐼𝐼 ,  𝜀𝐼𝐼𝐼 obtained from FEM analysis: 

 

𝛾 =
2

3
√(𝜀𝐼 − 𝜀𝐼𝐼)2 + (𝜀𝐼𝐼 − 𝜀𝐼𝐼𝐼)2 + (𝜀𝐼 − 𝜀𝐼𝐼𝐼)2 (3.3) 

 

Solving equation (3.2) with values provided by the boundaries of mechano-regulation 

diagram (Figure 2-2), it is possible to determine the changes of cell phenotype in each 

element [81]. The following inequalities were utilized: 

 

                             𝑺 > 3                          Fibroblasts (Produce Fibrous tissue) 

                      1 < 𝑺 ≤ 3                      Chondrocytes (Produce Cartilage tissue) 

                 0.53 < 𝑺 ≤ 1                   Osteoblasts (Produce Immature bone tissue) 

                 0.01 < 𝑺 ≤ 0.53                Osteoblasts (Produce Mature bone tissue) 

                      0 < 𝑺 ≤ 0.01                                         Bone resorption 

 

The predicted scaffold performance and statistical measures were related to the 

geometrical parameters using the MATLAB curve fitting toolbox in order to find expressions 

that show the existing relations (Version R2016b, MathWorks, Natick, MA, USA). We 



46 Stresses on Newly Formed Tissue 

 

  

determined the performance of scaffold in terms of the amount of bone predicted in relation 

to the cell volume and the available space for tissue growth. 

 

Total bone (TB) is defined as the volume occupied by elements in which the differentiation 

of MSC to immature (𝑣𝑖𝑏) and mature bone (𝑣𝑚𝑏) is predicted, divided by the total volume 

of the RV (𝑉𝑅𝑉), that is, ℎ3. 

 

𝑇𝐵 =
∑ 𝑣𝑚𝑏 + ∑ 𝑣𝑖𝑏

𝑉𝑅𝑉
∙ 100% (3.4) 

 

Bone relative tissue (REL) is calculated dividing the total bone predicted by the volume 

available for tissue growth in the RV, i.e. the porosity. 

 

𝑅𝐸𝐿 =
𝑇𝐵

𝑉𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
=

𝑇𝐵

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦
 (3.5) 

 
 

3.5 Results and discussion 

 

In this section, the results regarding the stresses on newly formed tissue for the studied 

sets will be discussed, which are presented through tables, response surfaces and 

histograms. 

3.5.1 Rectangular pores  

 

Each geometry of the rectangular set and its respective geometrical parameters of pores, 

resultant porosities, VMMean, VMMedian and TB and REL percentages are presented in 

Table 3-3. Third order polynomial surfaces were generated to illustrate the influence on the 

micro-geometrical parameters that define the pores in the von Mises mean and median of 

rectangular pores family set (Figure 3-5). The detailed statistics of coefficients and 

goodness of fit can be found in Annex A. Von Mises mean statistics show a slightly better 

goodness of fit than von Mises median statistics in response surfaces, all with values of 

R2>0.99.  
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Table 3-3: Micro-geometrical parameters, stress statistics on the newly formed tissue 

domain, and TB and REL for rectangular pore array for 1 MPa. 

 

Geometry 

ID 

X 

(mm) 

Y 

(mm) 

Porosity 

(%) 

VMMean 

(MPa) 

VMMedian 

(MPa) 
TB (%) REL (%) 

A 0.2545 0.2545 25.00 0.00280 0.00233 22.45 89.80 
B 0.2545 0.3900 32.63 0.00252 0.00209 31.04 95.12 
C 0.2545 0.5254 40.27 0.00232 0.00189 39.03 96.92 
D 0.2545 0.6272 46.01 0.00219 0.00175 44.90 97.58 
E 0.3900 0.2545 41.31 0.00353 0.00299 35.21 85.23 
F 0.3900 0.3900 50.00 0.00316 0.00270 45.84 91.68 
G 0.3900 0.5254 58.68 0.00289 0.00243 56.18 95.73 
H 0.3900 0.6272 65.20 0.00270 0.00224 63.29 97.07 
I 0.5254 0.2545 59.72 0.00566 0.00475 39.78 66.61 
J 0.5254 0.3900 67.36 0.00537 0.00472 48.14 71.46 
K 0.5254 0.5254 75.00 0.00506 0.00442 57.57 76.76 
L 0.5254 0.6272 80.74 0.00480 0.00419 65.50 81.12 
M 0.6272 0.2545 74.95 0.01067 0.00868 26.19 34.94 
N 0.6272 0.3900 80.42 0.01097 0.00981 18.75 23.31 
O 0.6272 0.5254 85.88 0.01101 0.01002 11.98 13.94 
P 0.6272 0.6272 90.00 0.01086 0.00987 8.19 9.10 

 

Figure 3-5: Response surfaces of pore parameters vs. von Mises mean (Left) and von 

Mises median (right) of rectangular pore family for 0.5 MPa, 1 MPa and 1.5 MPa. 
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In the range of the pore dimensions, the response surface shows that the increase of size 

of pore in the load direction Y slightly affects the von Mises stress mean and median, while 

the increase in the size of pore perpendicular to load direction X increases notably those 

statistics, as the parameter value gets close to 𝐿𝑈𝐶. Three magnitudes of load F equal to 

0.5 MPa, 1 MPa and 1.5 MPa were simulated to validate whether the load influences the 

response surface. The response surfaces do not change in shape with the different applied 

loads but von Mises statistics magnitudes do change. This behavior suggests a linear 

relation between the von Mises stress in the granulation tissue elements and the load in 

the scaffold-tissue system. Histogram graphs were developed and plotted for each pore 

type in the same scheme of the pore array to study the von Mises stress distributions in the 

newly formed tissue. All distributions are not symmetric as expected since there is no 

uniformity in the stresses inside the pores (Figure 3-6). 

 

Figure 3-6: Normalized von Mises distributions of rectangular sets for 1 MPa. 
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In general, the von Mises stress distributions show right skewed shapes, with the presence 

of two peaks (bimodal): one close to the lowest von Mises stress values and one close to 

the mode region (Figure 3-7). 

 

Figure 3-7: Normalized von Mises distribution of rectangular F geometry for 1 MPa. 

 

 

 

Geometry A shows multimodal distribution with an edge peak close to zero, which is the 

highest peak, or in other words the mode. When Y increases and pore geometry turns into 

B, the distribution becomes bimodal with an edge peak close to zero von Mises values. 

Finally, this peak is redistributed in the transition from B to D, and the histogram shape 

becomes a pure right skewed unimodal distribution with the highest peak in the row. 

Physically this implies that stresses in tissue elements are crowded towards the central 

tendency and the outliers values decrease. This fact is reflected on the reduction of 

VMMean and VMMedian as Y increases in the ABCD, EFGH and IJKL rows. In the case 

of the MNOP row, von Mises statistics increases, and bone amounts decreases as Y 

increases, thus suggesting the presence of an inflection line when the X dimension gets 

close to 𝐿𝑈𝐶. 
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Increasing pore dimension X leads to a spread/widening of the stress in elements towards 

greater magnitude values in all columns of the array and promotes the increase of peaks 

towards multimodal shapes for low Y values columns. 

 

Histogram representations for F geometry were plotted for the three load regimes studied 

(Figure 3-8). The shape of distribution is the same for the different loads and the difference 

is the values of stress of the elements in the horizontal axis, thus demonstrating that the 

stress distribution shape depends essentially on the geometry of the pores and not on load 

magnitude. 

 

Figure 3-8: Stress distributions for 0.5 MPa, 1MPa and 1.5 MPa in rectangular F 

geometry. 

 

 

 

Square and cubic polynomial fits between mean and median values and relative amount of 

bone predicted were obtained for 0.5 MPa, 1 MPa and 1.5 MPa to depict the relation 

between von Mises statistics and relative amount of bone predicted (Figure 3-9). Non-linear 

negative correlation between von Mises stress and REL was found. Contrary to the case of 

pore parameters and von Mises statistics relations, VMMedian shows a slightly better 

goodness of fit than VMMean in the curves from cubic fittings, all with values of R2>0.95. 

Coefficients and goodness of fit statistics of these curves can be found in detail in Annex 

A. 
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Figure 3-9: Curve fitting between the relative amount of bone predicted (REL) and the 

VMMean (Left) and VMMedian (right) for rectangular pore set for 0.5 MPa, 1 MPa and 1.5 

MPa. 
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For each geometry in the array, maximum principal stress absolute histograms were plotted 

in Figure 3-10 and in general, these graphs exhibit two groups around the zero point: one 

with the frequency of elements with positive values of maximum principal stress and one 

with negative values. The positive group shows right skewed distribution, while the negative 

group shows left skewed shape. Some features observed in von Mises stress histograms 

are present in these distributions, such as multimodality in the lowest values of Y dimension, 

the smoothing of the shape as the Y dimension increases and the increase of absolute 

values when X increases. 

 

Figure 3-10: Normalized histogram of the maximum principal stress absolute of 

rectangular geometry for 1 MPa. 
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Examining ABCD and EFGH rows in the array of maximum principal stress absolute, the 

predominance and frequency seem to be related to performance, since less elements under 

compression are present in better performance geometries of scaffold to induce bone and 

the highest frequency of elements under positive maximum principal stress coincides with 

better performance topologies. Increasing pore dimension along the load axis reduces 

elements in compression, while increasing the dimension perpendicular to the load 

direction increases the amount and frequency of elements under compression. There is a 

change of tendency in the rows IJKL and MNOP. In I, J and K geometries, the 

predominance and maximum frequency is in negative values of maximum principal stress, 

while in L geometry the maximum frequency is in positive values. Finally, in MNOP row, 

the predominance of the maximum principal stress negative values is shown in the four 

geometries and same that in the previous rows, as the Y dimension increases in the row, 

the distribution is smoothed. 

 

As in von Mises distributions, the change of scaffold loading does not affect the shape 

regarding the frequency, and just scale the axis in which stresses values are represented 

(Figure 3-11). 

 

Figure 3-11: Distributions of the normalized maximum principal stress absolute for 0.5, 1 

and 1.5 MPa for rectangular J geometry. 
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3.5.2 Elliptic pores  

 

The diagonal of rectangular scaffold array is composed of square pores, which is a 

particular case of rectangular shape when the dimension of its sides is equal. The 

equivalent situation in the elliptic pore family is that the diagonal includes circles. Adjusting 

the axis dimension of circles to obtain the same porosities in the diagonal of rectangular 

scaffolds set leads obtaining similar porosities in the remainder of the sixteen geometry 

array. 

 

Comparing the von Mises statistics of rectangular and elliptic pores (Tables 3-3 and 3-4) in 

the first two rows of the array, there is a tendency of stresses to be higher in rectangular 

pores than in elliptic pores. On the contrary, in the last two rows stresses are higher in 

elliptic pores than in rectangular pore geometries. As the von Mises statistics are 

considerably higher in the last rows, particularly in the last row whose values of stresses in 

elliptic pores reach more than the double of the value obtained by the rectangular pores, 

the curvature of the surface seems to be slightly greater in elliptic pores response surfaces 

(Figure 3-12). 

 

Table 3-4: Micro-geometrical parameters, stress statistics on the newly formed tissue 

domain, and TB and REL for elliptic pore array for 1 MPa. 

 

Geometry 

ID 

X 

(mm) 

Y 

(mm) 

Porosity 

(%) 

VMmean 

(MPa) 

VMMedian 

(MPa) 
TB (%) REL (%) 

A 0.28797 0.28797 25.00 0.00258 0.00224 23.27 93.08 
B 0.28797 0.44243 32.51 0.00221 0.00190 31.67 97.44 
C 0.28797 0.59965 40.33 0.00199 0.00167 39.71 98.47 
D 0.28797 0.72503 46.57 0.00187 0.00153 46.02 98.83 
E 0.44243 0.28797 41.22 0.00360 0.00304 35.46 86.03 
F 0.44243 0.44243 50.00 0.00298 0.00261 47.09 94.18 
G 0.44243 0.59965 58.67 0.00268 0.00233 57.06 97.26 
H 0.44243 0.72503 65.69 0.00249 0.00215 64.63 98.39 
I 0.59965 0.28797 60.02 0.00703 0.00613 34.15 56.89 
J 0.59965 0.44243 67.40 0.00622 0.00554 41.82 62.04 
K 0.59965 0.59965 75.00 0.00575 0.00517 50.56 67.42 
L 0.59965 0.72503 80.90 0.00543 0.00492 59.51 73.56 
M 0.72503 0.28797 76.56 0.02420 0.02003 7.77 10.15 
N 0.72503 0.44243 81.29 0.02521 0.02198 4.16 5.12 
O 0.72503 0.59965 86.11 0.02647 0.02372 1.49 1.73 
P 0.72503 0.72503 90.00 0.02701 0.02458 0.46 0.51 
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Figure 3-12: Response surfaces of pore parameters vs. von Mises mean (Left) and von 

Mises median (right) of elliptic pore family for 0.5 MPa, 1 MPa and 1.5 MPa. 

 

 

 

Von Mises stress distributions for elliptic pores (Figure 3-13) did not show substantial 

differences with respect to those shown in rectangular pores. Additional peaks in lower 

stress values were found in the first column of the array and less pronounced secondary 

peaks in the BFJN column. 

 

 

 

 

 

 

 



56 Stresses on Newly Formed Tissue 

 

  

Figure 3-13: Normalized von Mises distributions of elliptic sets for 1 MPa. 

 

 

 

The comparison of the histograms of maximum principal stress absolute of rectangular and 

elliptic pores presented in Figures 3-10 and 3-14 respectively, shows that in the first row of 

the array, the peaks of counts in the stresses close to zero are lower in elliptic pores. As Y 

increases, the peaks are less pronounced in elliptic geometries than in rectangular ones, 

suggesting a wide uniformity of the stresses around the central tendency. This effect can 

be related to the curved surfaces generated by the rounded profile of pores that reduces 

the stress concentrations compared with those the produced by right angles. In contrast, 

peaks are more pronounced in the last two rows in elliptic set compared with rectangular 

set.  
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In general, the difference between positive and negative maximum principal stresses is 

upheld for both geometries, but in L geometry rectangular pores have the majority of 

elements in tension, while in the elliptic case the majority is in compression.  

 

Figure 3-14: Normalized histograms of maximum principal stress absolute of elliptic 

geometries for 1 MPa. 

 

 

 

As in the rectangular pore set, the shape of both von Mises and maximum principal stress 

absolute distributions (Figure 3-15) are not influenced by the magnitude of load acting on 

the scaffold tissue system. 
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Figure 3-15: Distributions of the normalized maximum principal stress absolute for 0.5, 1 

MPa and 1.5 MPa in elliptic E geometry. 

 

 

 

Again, a nonlinear negative correlation is found between the relative amount of bone 

predicted and von Mises statistics (Figure 3-16). Performance regarding the amount of 

bone predicted is remarkably affected as the X parameter increases in elliptic pore scaffolds 

compared with rectangular pore scaffolds. This behavior is consistent with the fact observed 

in von Mises statistics in which the stresses are considerably higher in elliptic pores than in 

rectangular pores in the last rows of the array. Data of von Mises statistics and REL fit well 

with cubic polynomial curves for 0.5 MPa and 1 MPa loads. In the case of 1.5 MPa, the 

behavior is better described by exponential or polynomial fourth degree curves. 

 

3.5.3 Spherical pores results 

 

The nature of spherical pores family presented here is different from the previous studied 

geometries, since the parameters control symmetrically the geometrical features. This 

implies that any change in these parameters is not distinguished between parallel and 

perpendicular directions of the load. 

 

Nine sets of small topologies (ST) and large topologies (LT) were analyzed. According to 

our findings in previous works [177], small topologies have one constraint that defines an 

upper bound of Dc related to Ds, while large topologies have two constraints, upper and 

lower values of Dc related to Ds. The solution space is very complex due to these 

constraints and for this reason the two topologies are analyzed separately. 
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Figure 3-16: Curve fitting between the relative amount of bone predicted and the VMMean 

(Left) and VMMedian (right) in elliptic pore set for 0.5 MPa, 1 MPa and 1.5 MPa. 
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Small topology 

 

Table 3-5 presents the parameters obtained to reach the desired reference porosities by 

using the constraint equation between Dc and Ds from [177]. This equation defines the 

maximum value of Dc to avoid the spherical topology become the same of circular pores. 

 

Table 3-5: Mean and median stresses on the newly formed tissue domain for small 

spheric pore array for 1 MPa. 

 

Geometry 

ID 
Ds (mm) Dc (mm) Porosity (%) 

VMMean 

(MPa) 

VMMedian 

(MPa) 
REL (%) 

A 0.53363    0.24527 25.00% 0.00262 0.00187 90.52 
B 0.53363    0.30187 29.76% 0.00260 0.00210 93.78 
C 0.53363    0.33960 36.50% 0.00271 0.00232 95.53 
D 0.64882    0.29821 37.50% 0.00263 0.00198 92.40 
E 0.64882    0.36702 42.42% 0.00274 0.00225 94.34 
F 0.64882    0.41290 49.89% 0.00297 0.00256 94.86 
G 0.74531    0.34256 50.00% 0.00290 0.00225 91.76 
H 0.74531    0.42161 54.17% 0.00309 0.00258 93.37 
I 0.74531    0.47431 61.29% 0.00346 0.00306 91.05 

 

High degree surfaces of response will hardly give relevant data about the behavior of the 

geometric design parameters and the VMMean, due to the narrow range of von Mises 

statistics and constraints between Dc and Ds. To avoid badly conditioned fitting, polynomial 

first degree surfaces were plotted to analyze the relation between these parameters and 

the stresses (Figure 3-17), obtaining values of R2>0.85. Additional goodness of fit 

measurements can be found in detail in Annex A. However, the generated surface does 

not take into account the constraints in the solution space. 

 

Figure 3-17: Response surfaces of pore parameters vs. von Mises mean (Left) and von 

Mises median (right) of spheric small topology for 1 MPa. 
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Response surfaces in Figure 3-17 suggest that the sphere component in the topology has 

lower influence in the von Mises statistics, while the cylindrical component affects more the 

stresses of the granulation tissue inside the pores. Due to the narrow range of von Mises 

statistics in the set of small topology and the high relative amounts of bone predicted for 

each one of its geometries, curve fitting could not be done successfully. 

 

Regarding the von Mises stress histograms presented in Figure 3-18, geometries A, B and 

C show three peaks, D, E and F exhibit double peaked distributions, and H and I geometries 

exhibit a plateau shape. As Dc increases, VMMean and VMMedian increase and 

redistribute the principal peak or mode towards the tail, thus leading to multimodal stress 

distributions and plateau formations. As von Mises statistics increases, there is a stress 

redistribution along the tail of the histogram and a decrease in standard deviation. An 

increase in Ds exhibits a smoothing of the peaks suggesting an increase in the uniformity 

of the stresses in the granulation tissue. 

 
Figure 3-18: Normalized von Mises distributions of small spheric set under 1 MPa. 
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The change of parameters allowed in spherical ST topologies lead to no substantial stress 

variations, which means that the mechanical environment is relatively stable. This fact is 

consistent with the tight values in von Mises statistics and predicted relative amounts of 

bone. This hypothesis is also supported by the maximum principal stress absolute plots 

shown in Figure 3-19, in which it is evidenced that stresses do not change their maximum 

values in stress axis and the main changes are in small smoothing of peaks in the frequency 

axis and increase of density around the central region. The plots show that in spherical 

pores with small topology, most elements are subjected to a positive maximum principal 

stress and maximum frequencies correspond to these regions, but G and H have similar 

maximum frequencies for elements under both tensile and compression stress. 

 

Figure 3-19: Normalized histograms of maximum principal stress absolute for small 

spheric set under 1 MPa. 
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Large topology 

 

Spherical large topologies allow reaching high porosity values that are not achievable with 

small topology. These porosity values produce more notable changes in von Mises 

statistics and the relative amount of bone predicted for each geometry as shown in Table 

3-6. However, it is important to remember that the space of solution in the large topology 

has upper and lower constraints for Dc related to Ds, which introduces an additional 

limitation in the exploration of its micro-geometrical parameters. 

 

Contrary to the behavior in small topologies, von Mises statistics are more influenced by 

Ds parameter than Dc, as shown in the first order surfaces plotted in Figure 3-20. R2 

indicator for this geometry is greater than 0.83, thus showing better fit for von Mises median 

as in the previous analysis. 

 

Table 3-6: Mean and median stresses on the newly formed tissue domain for large 

spheric pore array for 1 MPa. 

 

Geometry 

ID 
Ds (mm) Dc (mm) Porosity (%) 

VMMean 

(MPa) 

VMMedian 

(MPa) 
REL (%) 

A 0.8190    0.250 60.0 0.00366 0.00254 89.11 
B 0.8190    0.414 61.8 0.00348 0.00283 89.14 
C 0.8190    0.578 72.7 0.00501 0.00447 78.11 
D 0.9044    0.460 75.0 0.00531 0.00439 76.22 
E 0.9044    0.549 76.2 0.00541 0.00474 73.14 
F 0.9044    0.638 81.5 0.00785 0.00705 42.57 
G 1.0180    0.660 90.0 0.01646 0.01485 2.70 
H 1.0180    0.689 90.2 0.01770 0.01615 2.08 
I 1.0180    0.718 91.2 0.02403 0.02194 0.92 

 

Figure 3-20: Response surfaces of pore parameters vs. von Mises mean (Left) and von 

Mises median (right) of spheric large topology for 1 MPa. 
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Since the variations of von Mises statistics and performance in the amount of bone 

predicted were more evident in large topologies than in small ones and the ranges were 

encompassed widely, it is possible to observe the evolution of the amount of bone when 

the von Mises statistics increase in the granulation tissue due to the increment in 

geometrical parameters (Figure 3-21).  

 

Figure 3-21: Curve fitting between the relative amount of bone predicted and VMMean 

(left) and VMMedian (right) for spheric large topology set under 1 MPa. 

 

 

 

Curve fitting was achieved by the use of the exponential first degree curve with R2>0.97. It 

is worth noting that similar porosities in small and large spherical topologies could lead to 

similar von Mises statistics and performance, as observed when comparing I geometry in 

the small topology set to B geometry in the large topology set. 

 

Histograms of von Mises stress for large topologies exhibit unimodal shape as shown in 

Figure 3-22. Increase in Ds produces displacement in von Mises values and widens the 

distribution body. On the other hand, increase in Dc produces a redistribution around the 

central region of the histogram, thus reducing the modal peak.  

 

In Figure 3-23, interestingly and contrary to small pores geometries, the predominant 

maximum principal stress of the elements in the domain of granulation tissue is negative. 

This fact illustrates that small changes in the geometrical parameters of a same pore family 

can produce significant changes in the general state of stresses in the newly formed tissue. 
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Figure 3-22: Normalized von Mises distributions of the large spheric pore set under 1 

MPa. 

 

 

 

3.6 Conclusions 

 

This chapter examined the stresses in the newly formed tissue inside some regular 

scaffolds topologies and how they change when the geometrical parameters that define 

these topologies are altered. 

 

A computational framework to study the mechanobiological behavior of the tissue growing 

inside the scaffolds was successfully implemented. The methodologies developed here 

enhance the knowledge about the biophysical phenomena that occur inside a scaffold and 

become a promising strategy to achieve better designs according to mechanobiological 

criteria. 
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Figure 3-23: Normalized histograms of maximum principal stress absolute for large 

spheric pore set under 1 MPa. 

 

 

 

The differences observed between the results of stresses and performance among the 

studied topologies suggest that each topology has significant parameters, which are 

different between the distinct topology families. 

 

There is a stability effect in lower porosities in the studied sets that hold the stresses in a 

favorable range and lead to predict high relative amounts of bone. However, it is possible 

obtain more absolute amount of bone by the use of high porosity structures and the proper 

selection of the geometrical parameters of the pores. 

 

We found that small features on the geometries influence the stresses on granulation tissue 

even in the same families, such as spherical pores in whose stresses behave different in 
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two topologies from the same family. In general, von Mises statistics and performance 

exhibit nonlinear negative correlations in all studied topologies. 

 

For both maximum principal stresses of compression and tension groups, it was not 

possible to find an association between the predominance and the performance, since for 

some geometries tension predominance was observed in best performance geometries but 

in others compression predominance coincides with the best performance geometries. 

Therefore, it was not possible to draw a stress state configuration that, in general, favors 

the differentiation of bone tissue inside the scaffold. 

 

The parameters were not studied in the full range, especially in low porosities below 25% 

in which the mechanical stimulation on tissue will be very low. Therefore, the performance 

will have decreasing values as the stimulus becomes lower until reaching a zero value. In 

an attempt to describe a complete behavior of the relation between von Mises statistics and 

performance, probably a complete description along the entire stress axis will be a 

piecewise function according to the thresholds of the mechanobiological approach used. 

The function will start at values close to zero, and then increases with a positive sigmoid 

shaped or S-shaped function from these lower values, in which granulation tissue is not 

sufficiently stimulated. After to reach the segment studied here, in which in the range of von 

Mises statistics values is narrow, the performance will be close to a maximum value, then 

it will finally decrease, thus showing an inverse sigmoid or S-shaped function. It is worth 

noting that scaffolds with low porosities are not suitable in tissue engineering field since the 

final purpose is to obtain structures with high porosities to allow the maximum amount of 

tissue and favor the differentiation to the desired phenotype. 

 

Finally, this chapter allows elucidating the phenomenon and gives insights on the interplay 

in geometrical design parameters, stresses, and performance of regular bone scaffolds. 

However, simplifications were made, specially associated with the non-existence of the time 

evolution behavior of the system. Therefore, further studies are needed to determine how 

these temporal effects influence the phenomena inside the scaffold-tissue system. 





 

 
 

4.  Optimization of micro-geometrical features 

of unit cells 

 

In the previous chapter, it was observed that some scaffold geometries perform better than 

others if they are compared based on a mechanobiological criterion. The aim of this chapter 

was to implement a procedure, based on the Prendergast mechanobiological criterion and 

for different load schemes, to find the optimal geometrical parameters of different scaffolds 

families of beam-based repeating unit cells, namely, truncated cuboctahedron, truncated 

cube, rhombic dodecahedron and diamond. The content of this chapter is based on 

publication I (see Associated publications). 

 

The methodology presented in chapter 3 regarding the mechanobiological approach is 

adequate to suggest a performance criterion to evaluate designs of scaffold 

microgeometries. For this purpose, a script to automatize the construction of three-

dimensional finite element models is included in an iterative procedure that evaluates the 

mechanobiological performance of each scaffold geometry and perturbs its geometrical 

parameters towards an optimal value that maximizes the predicted amount of bone for 

different load regimes. Optimizing the scaffold performance from a mechanobiological 

perspective, could produce a faster healing process, increase the success rate of the 

scaffold implantation, and reduce expensive costs of experimental trials. 

 

4.1 Modeling of the beam-based unit cells 
 

The previous chapter described the modelling of unit cells of hexahedrons for rectangular, 

elliptic and spherical pore geometries. However, the literature provides an extensive 

number of interesting regular geometries known as cellular solids [80]. Particularly, some 

of them are microarchitectures of engineered biomaterials suitable for TE applications and 

with possibilities of translating into scaffold fabrication with advanced manufacturing 

techniques, as discussed in section 2.4. The analyses of mechanical properties and their 

analytical relationships have been carried out regarding regular microgeometries such as 

FCC, BCC, minimal surfaces, and the different families of beam-based and regular 

structures [64], [140], [152], [180], [181]. 
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From all geometries previously described, a group of unit cells of interest was selected: 

truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond structure 

[140]. Since these geometries have a different nature from those based on hexahedrons, 

their geometrical definition is formed by regular oriented beams with a square or circular 

section. The topology was fixed for each geometry family, i.e., the orientation of the beams 

is not altered in the parametrical analysis. 

 

The micrometrical feature that controls the stiffness of the system and thus, the 

mechanobiological performance is the parameter D that defines the cross section of the 

beams. These beam-based geometries are one-parametric in contrast to those presented 

in the previous chapter which are two-parametric, that is, all the beams included inside the 

unit cell were hypothesized to possess the same cross section dimension D. In the case of 

the circular cross section, D represents the diameter of the section, while in the case of the 

square cross section, D is the side length of the square. 

 

The side of the cubic unit cell in which each different microstructure is delimitated was equal 

to Q=637 μm, which is based on the dimensions of the volume studied by Byrne et al. [62]. 

The different topologies of the four unit cells studied have the following general modeling 

methodology. First, a bi-dimensional trajectory was defined. Second, the sweep of the cross 

section along the trajectory was performed. Third, by exploiting the symmetry of the unit 

cells, the solids generated by sweep were replicated using some CAD tools available in 

ABAQUS®, such as mirror, translate, rotate, etc. Finally, the unit cell generated was cut 

along the faces of a cube (in which the unit cell is inscribed) to make the unit cell replicable 

in the three directions. The details of the modeling of each geometry are described below. 

 

4.1.1 Truncated cuboctahedron 

 

The first step to generate the truncated cuboctahedron structure was to make an octagonal 

trajectory with equal sides L1 that served afterward to sweep a selected cross-section and 

generate a solid sub-unit that contains eight beams (Fig. 4-1(a)). Taking advantage of the 

symmetry of the cell, two axes were defined and the sub-units were replicated around them 

and displaced to form the unit cell (Fig. 4-1(b)). To link the sub-units, beams from vertex to 

vertex of longitude L1 were added (Fig. 4-1(c)).  
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Figure 4-1: Steps followed to build the truncated cuboctahedron unit cell (a-e). An 

octagonal trajectory t1 was first traced. Then, a sweep of the circular or a square cross 

section was performed along t1, thus obtaining a solid subunit including eight beams (a). 

Two axes (a1_x and a1_y) were hence defined and, through rotation operations around them, 

the original solid sub-unit was replicated five times (b). The resulting disconnected sub-

units were finally connected by means of beams (c). The unit cell generated was cut along 

the planes πM1, πM2, …πM6, thus obtaining the final unit cells: circular (d) and square (e) 

cross section. 

 

 

 

To ensure the capability to replicate the unit cell infinitely, the full unit cell was cut using 

four planes defined by a cube with dimensions Q for both circular cross section (Fig. 4-1(d)) 

and square cross-section beams (Fig. 4-1(e)). The Q dimension was selected according to 

previous works [165] and the relation between Q and L1 was defined as:  

 

𝑄 = 𝐿1 ∙ (1 + 4 ∙ cos (
𝜋

4
)) (4.1) 

 

Truncated cuboctahedron topology shows octagonal, hexagonal and square 

interconnectivity. To determine the upper bounds that limit the interconnectivity of this 
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topology, relationships between Q, L1 and D dimensions were developed and can be found 

in the Annex B. 

 

4.1.2 Truncated cube 
 

A similar previous strategy was employed to model the truncated cube, but only the 

replication of the octagonal sub-units was required and the rotation about the axes so that 

the unit cell was linked completely (Figs 4-2(a) to 4-2(b)).  

 

Figure 4-2: Steps followed to build the truncated cube unit cell (a-d). After building the 

first solid sub-unit (a), two axes were defined (a2_x and a2_y, (b)) and replications of the 

original sub-unit were performed by rotating it around a2_x and a2_y. The unit cell obtained 

was cut along the same planes πM1, πM2, …, πM6 which delimit the cubic volume Q×Q×Q 

((c) circular cross section, (d) square cross section). 

 

 
 

In the same way, the full cell was cut using the cube of dimension Q for both cross-sections 

(Figs 4-2(c) to 4-2(D)). In this case, Q and L2 hold the next relation: 

 

𝑄 = 𝐿2 ∙ (1 + 2 ∙ cos (
𝜋

4
)) (4.2) 
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4.1.3 Rhombic dodecahedron 

 

The third geometry modelled was the rhombic dodecahedron, a structure composed of 24 

beams (Figure 4-3). The initial bidimensional trajectory was a rhombic shape with side 

dimensions of L3, determined by the relation: 

 

𝑄 = 4 ∙ 𝐿3 ∙ 𝑠𝑖𝑛(𝛼) (4.3) 

 

Figure 4-3: Steps followed to build the rhombic dodecahedron unit cell (a-g). A rhombic 

trajectory t3 was first traced and then the sweep of a circular or a square section was 

performed (a), thus obtaining a first solid sub-unit. After defining the axis a3_x (b), three 

replications of the initial sub-unit were obtained by rotating it around a3_x by the angles π/2, 

π and 3π/2. To link completely the cell, half subunits were finally added in the horizontal 

plane πH (c) and in the vertical plane πV(d) of the cell. The resulting unit cell was finally cut 

along the faces of the planes πM1, πM2, …πM6 ((e) circular cross section, (f) square cross 

section). In order to evaluate the effect of the cell orientation, the same rhombic topology 

with a rotation of π/2 was modelled (g). 
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This relationship was made to guarantee the L3 dimensions for all the beams of the unit 

cell. To determine the upper bounds Dmax_3 that limit the interconnectivity of the truncated 

cube topology, relationships between Q, L3 and D dimensions were developed (Annex B). 

 

The first step was sweeping the cross-section through the path defined by the two-

dimensional trajectory (Fig. 4-3(a)). Afterward, the replication of three rhombic sub-units 

around the x axis was performed (Fig. 4-3(b)). To link completely the cell, half sub-units 

were added in horizontal and vertical planes (Figs 4-3(c) to 4-3(d)). Once the cell was 

defined, the cut was made inside the cube (Figs 4-3(e) to 4-3(f)). The resultant cell exhibited 

rhombic interconnectivity. Additionally, to evaluate the effect of cell orientation, the same 

rhombic topology with a rotation of ninety degrees was modeled in Figure 4-3(g). 

 

4.1.4 Diamond structure 

 

The last cell is the diamond structure known for its angles of 109.47 degrees between the 

axis of its beams (b1, b2, b3 and b4), where the length of these beams is denoted as L4 

(Figure 4-4(a)). Although the diamond unit cell has symmetry properties, there are some 

geometrical issues in this type of cell. First, the connection in the different beams is not 

continuous (Fig. 4-4(b)). To solve this issue, spheres with 1.1 times the dimension D of the 

beams were included in the intersections (Fig. 4-4(c)). Once the unit cell was built, a change 

of orientation was necessary to align the structure vertices V1, V2, V3, and V4 with those of 

the cubic volume. For this purpose, the distance between the free vertexes of the structure 

should be fit to the transversal distance of the cube face (Fig. 4-4(d)). The final unit cells for 

circular and square cross-sections are shown in Figures 4-4(e) and 4-4(f), respectively. 

Geometrical upper bounds for the diamond structure are shown in Annex B. The 

relationship between Q and L4 assumes the form: 

 

𝑄 = 2√2 ∙ 𝐿4 ∙ 𝑠𝑖𝑛 (
𝛽

2
) (4.4) 

 

Additionally to the beam-based unit cells, by following the same procedure previously 

described, a parametric spherical unit cell was modelled to mirror it in orthogonal directions 

and obtain scaffolds with spherical topology. As the parameters Dc and Ds control the 
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geometry of these scaffold families, those parameters were perturbed in order to get new 

candidate solutions toward a geometry that maximizes the amount of bone predicted.  

 

Figure 4-4: Steps followed to build the diamond unit cell (a-f). This unit cell was built by 

performing the protrusion of the cross section along linear paths (a) inclined to each other 

by the angle β=109.47°. In order to guarantee the continuity (b) between the single beams, 

connection spheres were included in the model (c). Once the unit cell was built, it was 

properly oriented so that vertices V1, V2, V3 and V4 are coincident with those of the cubic 

volume Q×Q×Q (d). Cuts were finally performed along the faces of the planes πM1, πM2, 

…πM6((e) circular cross section, (f) square cross section). 

 

 

 

4.2 Geometrical modeling of the scaffold tissue-scaffold 
system 

 

Once all the cells were defined, the replication of each of them in the three orthogonal axes 

was performed using a mirror technique. The resultant scaffold has cubic shape according 

to Byrne et al. [62]. To model the scaffold-tissue system, a negative volume of scaffold was 

obtained using a Boolean operation. The scaffold and the granulation tissue were 

assembled together with an upper rigid plate to the load application (Fig. 4-5(a)). The link 
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between these elements was a tie constraint to guarantee the same displacement in the 

whole system. A compression load F was applied linearly during one second in the center 

of the plate to produce an apparent compressive load p, thus representing a typical in vivo 

mechanical solicitation of the system [182]. Boundary conditions were established, such as 

clamp over the lower face of the system and pore pressure equal to zero to represent the 

free exudation of the granulation tissue in the side faces (Fig. 4-5 (a)) [62]. 

 

Figure 4-5: Boundary and loading conditions acting on the scaffold model (a). By 

exploiting the symmetry of the problem, the volume analyzed was reduced to one quarter 

of the total volume (b). Symmetry constraints were utilized on the faces of the model lying 

on the symmetry planes π1–2 and π3–2, where the absence of any fluid flow was imposed 

((b) and (c)). 

 

 

 

All quarter volumes were discretized into finite elements. The meshing process was 

performed using Abaqus Mesher with an average size of 30 µm and maximum deviation 

factor of 0.01. The elements were defined as C3D4P (ABAQUS documentation), which are 

linear tetrahedral four node displacement-pore pressure elements. All the reduced scaffolds 

and negatives, that is, the granulation tissue within, together with their respective meshes 

are shown in the Figure 4-6. 
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Figure 4-6: Scaffold and granulation tissue models (first two columns) and finite 

element mesh used (second two columns). 
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In order to compare the effects of pressure on the mechanobiological response, seven 

values of load F were hypothesized and applied in the different scaffolds to produce the 

following p values: 0.05, 0.1, 0.15, 0.25, 0.5, 1 and 1.5 MPa. Additionally, data from 

previous studies of hexahedral [81] and rhombicuboctahedron [165] were added to the 

simulated scaffolds. Linear interpolation was used to obtain the unavailable cases of load 

in the modeled scaffolds as well as in the previous studies. Material properties were the 

same used in Table 3-1 from chapter 3. 

 

4.3 Optimization Algorithm 

 

To find the optimal dimensions of the cross sections for each beam-based scaffold and 

each load case, an ad hoc algorithm was used and written in Matlab based on [81]. This 

algorithm allowed selecting the type of cell, shape of cross-section and particular load case 

(Fig. 4-7 Steps (1) – (3)). The next steps were the initialization of the D parameter (4) to 

create the python script that start the geometrical and FEM modeling of the scaffold (5).  

 

The parameter D represents the diameter and side for circular and square cross sections, 

respectively. The ranges of the D values are defined by a lower and upper bound for each 

type of cell. The lower bound Dmin is established as 28 µm following the hypothesis that 

values smaller than this are not of interest for the load cases studied [165]. On the other 

hand, the upper bounds Dmax were determined by means of geometrical considerations 

related to shape of cross sections, Q and Li, where i is each unit cell studied (Annex B).  

 

After finishing the FEM analysis (6), the necessary data to compute the mechanical stimulus 

were saved in a .dat file and later the algorithm did the calculations associated with the 

obtained bone volume (Steps (7)-(9)). Using the volume of bone obtained for the D value 

used, the algorithm computes an objective function (10) and perturbs the function through 

the Matlab function fmincon to find a new value of D that produces a higher volume of bone. 

This process is repeated until the stopping criterion is satisfied, which means that the 

largest amount of bone for the specific type of cell was reached (steps (11)-(13)). 
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Figure 4-7: Schematic of the algorithm written in Matlab environment to determine the 

optimal dimension D for different unit cell geometries. 
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4.4 Results and discussion 
 

Increasing dimensions of the optimal diameter D were predicted for increasing levels of 

load (Fig. 4-8(a)), which is consistent with our expectations. In fact, as the load increases, 

the resulting scaffold deformation increases too (if D remains constant), which leads to the 

formation of soft tissues, such as fibrous tissue and/or cartilage, according to equation (3.2) 

and the resultant inequalities of its solution. To contrast the excessive deformation, the 

algorithm increases the dimension D, thus making the scaffold stiffer and promoting the 

formation of bone. However, the trend of the optimal D in function of the load is asymptotic 

(Fig. 4-8(a)). Due to the constraints imposed to the upper bound Dmax _1, the unlimited 

increase of the cross section is not allowed and, consequently, a saturation load exists. 

Behind this load, the optimal D cannot increase anymore but must be D=Dmax _1. 

 

Figure 4-8: Optimization of the truncated cuboctahedron unit cell. Values of the optimal 

diameter D (a) and of BO%MAX (b) predicted for different levels of load. 

 

 



Chapter 4 81 

 

Interestingly, the amounts of bone BO%MAX predicted for the circular and square cross 

sections are very close at low load levels but differ significantly with higher values of p (Fig. 

4-8(b)). This behavior can be explained by the fact that the saturation load (psat_ss = 0.5 

MPa) is smaller for the square cross section than that predicted for the circular cross section 

(psat_cs = 1 MPa). In other words, for the square cross section the range of the load values 

p, where the algorithm can properly optimize the cross section dimension D, is smaller than 

in the case of the circular cross section. Consequently, for higher load levels than those of 

the saturation load, the amounts of bone BO%MAX predicted for the square cross sections 

are smaller than those obtained for the circular ones. 

 

In the case of the truncated cube, the optimal diameter D was predicted to be greater as 

levels of the applied compression load p increase (Fig. 4-9(a)).  

Figure 4-9: Optimization of the truncated cube unit cell. Values of the optimal diameter 

D (a) and of BO%MAX (b) predicted for different levels of load. 
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However, for the truncated cube unit cell, the saturation load was smaller than that 

predicted for the truncated cuboctahedron and for both, square and circular cross sections, 

it assumed the value of psat_ss=psat_cs =0.25 MPa (Fig. 4-9(a)). In other words, for higher 

values of p than the saturation load, the optimization algorithm always gives the same 

scaffold geometry in output. The amounts of bone BO%MAX predicted for the circular cross 

section were overlapping to those predicted for the square cross section for load values 

within the intervals 0.05 < p < 0.15 MPa and p > 1.5 MPa, while differing significantly within 

the interval 0.15 < p < 1.5 MPa (Fig. 4-9(b)). In particular, for p=1.5 MPa, very small 

amounts (≈ 1%) of bone BO%MAX were predicted to form. 

Figure 4-10: Optimization of the rhombic dodecahedron unit cell. Values of the optimal 

diameter D (a) and of BO%MAX (b) predicted for different levels of load. 
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The trend of the optimal value of D in function of the load p for rhombic dodecahedron, is 

increasing, but does not present an asymptote, as in the previously analyzed cases. In 

other words, within the load levels hypothesized in this study, the saturation condition is 

never met (Fig. 4-10(a)), hence the optimizer can identify the optimal scaffold geometry for 

all the values of p. The amounts of bone predicted for the square cross section were 

practically overlapped to those computed for the circular one (Fig. 4-10(b)). 

 

An interesting aspect of the rhombic dodecahedron unit cell is that it can be oriented, with 

respect to the loading direction, in two different ways: orientation A (previously analyzed in 

Fig. 4-10) and orientation B, where the longer diagonal of the rhombic elements is parallel 

and perpendicular, respectively, to the loading direction (Fig. 4-11(a)). Interestingly, for 

orientation B, the optimal dimensions D are significantly larger than those computed for 

orientation A (Fig. 4-11(b)). This result can be explained by the fact that with orientation A 

the beams can better distribute/transfer the load within the scaffold construct, compared 

with orientation B, hence the optimization algorithm can predict rather small values of D. 

Conversely, in the case of orientation B the spatial arrangement of beams is less favorable 

and, therefore, the algorithm tends to balance this disadvantage by increasing dimension 

D. Given that the optimal diameters D are larger for orientation B, hence a larger volume of 

the scaffold system is occupied by beams, it follows that a smaller volume is available for 

bone, which explains why smaller amounts of bone BO%MAX were predicted for this 

orientation (Fig. 4-11(c)). Interestingly, no important differences were observed between 

BO%MAX values computed for the circular cross section and those computed for the square 

one. 

 

In the diamond structure, circular and square cross sections showed a different behavior 

(Fig. 4-12(a) and (b)). In fact, while the square cross section presented a saturation point 

at p=1 MPa, for the circular one no saturation load was found within the load interval 

studied. The values of BO%MAX were very close for low levels of p and started to diverge as 

the square cross section reaches the saturation point (Fig. 4-12(b)). After this point, the 

difference became larger as the optimizer increased further the value of D in the case of 

the circular section but could not make the same for the square cross section. 
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Figure 4-11: Comparison between two different unit cell orientations: Orientation A and 

Orientation B. (a) Values of BO%MAX (b) and optimal diameter D (c) predicted by the 

algorithm for different levels of load and for the two different cell orientations. 
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Figure 4-12: Optimization of the diamond unit cell. Values of the optimal diameter D (a) 

and of BO%MAX (b) predicted for different levels of load. 

 

 

 

4.4.1 Comparison of different unit cells 

 

The amounts of bone predicted by the proposed optimization algorithm for the different unit 

cells studied were compared with those obtained in previous studies for other unit cells, 

namely, a rhombicuboctahedron [165] unit cell including beams with both circular and 
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square cross section and a hexahedron unit cell with both elliptic and rectangular pores [81] 

(Fig. 4-13(a)). On the one hand, the BO%MAX predicted for all the unit cells studied in the 

case of the circular cross section were compared with those obtained for 

rhombicuboctahedron with circular cross section and hexahedron with elliptic pores (Fig. 4-

13(b)). On the other hand, the BO%MAX predicted in the case of the square cross section 

were compared with those computed for rhombicuboctahedron with square cross section 

and hexahedron unit cell with rectangular pores (Fig. 4-13(c)). In the case of the circular 

cross section and for very low levels of load, the best unit cell was predicted to be the 

truncated cube. For medium-low loads, the rhombic dodecahedron produced the largest 

amounts of bone, while for the highest ones, the hexahedron unit cell with elliptic pores was 

the best (Fig. 4-13(b)).  

 

A very intriguing behavior was observed for the truncated cube that was predicted to be the 

best unit cell for low values of p and the worst for high levels of load (Fig. 4-13(b)). In the 

case of the square cross section and for the entire range of load studied, the best unit cell 

was predicted to be the hexahedron unit cell with rectangular pores (Fig. 4-13(c)). In 

general, for low values of load, the diamond was predicted to be the worst unit cell, while 

for high values, the worst unit cell was the truncated cube (Fig. 4-13(c)). This is true in both 

circular and square cross sections. 

 

For all the optimized scaffolds, the percentage of the volume occupied by the mature bone 

(i.e. the same quantity so far denoted as BO%MAX), the scaffold itself and other tissues 

(cartilage, fibrous tissue etc.) were diagrammed in function of the load (Fig. 4-14). For the 

sake of brevity, the results regarding only the circular cross section were reported. For low 

values of load, small percentages of volume were predicted to be occupied by other tissues 

but, for higher values, these percentages became significant especially in the truncated 

cuboctahedron (Fig. 4-14(a)) and the truncated cube (Fig. 4-14(b)) unit cells. This behavior 

can be explained by the saturation load that was predicted to be very low just in these unit 

cells. For all the load cases studied, the smallest volume percentage occupied by a scaffold 

was predicted for the truncated cube (Fig. 4-14(b)). 
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Figure 4-13: Comparison of the amounts of bone BO%MAX predicted to form for different 

unit cell geometries (a) with both circular (b) and square (c) cross sections. In order to 

improve the visualization of data, a logarithmic scale was used on the axis of the load. 
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Figure 4-14: Percentage of volume occupied by mature bone, scaffold and other tissues 

predicted for truncated cuboctahedron (a), truncated cube (b), rhombic dodecahedron (c) 

and diamond (d) unit cells. For the sake of brevity, only the results regarding the circular 

cross section are reported. Note. The percentage occupied by mature bone is the same 

quantity so far denoted as BO%MAX. 

 

 

 

Interesting behaviors have been observed regarding of the mechanobiological performance 

of the modeled scaffolds and its relationship with the micro-geometrical features that define 

them. However, in silico models based on optimization algorithms present an important 

limitation. There are as many optimization models in the literature as there are optimized 

variables. The resulting solution is, therefore, optimal with respect to the variable taken into 

account, but not optimal in general terms. Mechanical and biological properties measured 

in terms of physical characteristics, such as surface area, permeability, stiffness, and 

porosity, are commonly used variables for optimization. However, all these quantities are, 

in general, not reciprocally independent. 

 



Chapter 4 89 

 

4.5 Conclusions 
 

Beam-based scaffolds made from different unit cells were modelled in this study to evaluate 

their mechanobiological performance. Results show that such scaffolds allow the formation 

of large amounts of bone for low levels of load, whereas for high values of load, scaffolds 

based on hexahedron unit cells are preferable instead. A very intriguing behavior was 

observed for the truncated cube that was predicted to be the best unit cell for low values of 

p and the worst for high levels of load. For low values of load, the diamond was predicted 

to be the worst unit cell, while for high values, the worst unit cell was the truncated cube. 

The study can guide in the choice of the best scaffold to implant in a given anatomic region 

and provides useful information to the scaffold designers regarding the geometrical 

constraints and the amount of material needed to build the construct. 

 

From the previous results, it can be theorized that different unit cells could be suitable in 

different loading ranges of magnitude. Additionally, the general trend is that beams with a 

circular cross section perform better than those with square cross sections. This fact is 

consistent with the experimental evidence in which cells prefer curved surfaces for 

attachment and for developing processes such as proliferation and migration. 

 

As an extension of the scope of this dissertation, we highlight our implementation of a 

similar procedure to the one used in the present chapter. It was developed to suggest 

favorable micro-geometrical features from a mechanobiological standpoint for scaffolds 

with irregular structures. These scaffolds are generated using a bio-inspired design 

technique to mimic natural structures, such as trabecular bone, which is a highly organized 

and irregular structure with trabeculae oriented according to the principal stress direction 

(Annex C). 





 

 
 

5.  Time evolution scaffold modeling 

 

This chapter describes the implementation of a simplified model to assess the temporal 

evolution of the newly formed tissue within the scaffold regarding the changes in the 

biophysical environment. These changes are the result of an increase of the mechanical 

properties of the differentiated tissue and the physical changes in the scaffold produced by 

its dissolution. Analyses of stresses in a set of rectangular geometry family, considering 

and neglecting the scaffold dissolution, were performed to study the structural response 

within the newly formed tissue. 

 

The third chapter of this dissertation explored the stresses in the newly formed tissue at an 

early stage of healing, where it can be assumed that there are some “static” conditions, 

such as no changes in the micro-geometry, in the mechanical properties of scaffold and in 

the newly formed tissue stiffness. In an effort to address the temporal component of healing 

inside a scaffold, a simplified mechanobiological model was implemented to represent in a 

more truthful way the phenomena that occur when the tissue is evolving inside the scaffold. 

The problem is highly time-dependent since both the scaffold physical properties and the 

micro geometrical environment are changing constantly due to the material dissolution. 

However, there are scenarios in which the micro-geometry and properties of an implanted 

biomaterial remain unaltered or have small changes in large time periods such as 

permanent implants, metallic scaffolds, etc. 

5.1 Representative volume modeling 

 

Following the conditions employed for the RV described in chapter 3, the dimensions were 

hypothesized to be the same as those defined before, that is, the side of the entire RV is 

2.34 mm long and the porosity of the reference geometry is 50%.  This porosity is obtained 

using square pores with a size of 0.39 mm, which are modeled inside a cubic unit cell of 

0.78 mm. Since the analysis including the time variable can require computationally much 

more time than the “static” case [81], a domain reduction was used comparable to the one 

used in chapter 4. Therefore, taking advantage of the symmetry of RV and following Byrne 

et al. [62], only one-eighth of this volume has been modelled as a cubic RV of 1.17 mm of 

side. 
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Symmetry conditions were established in the three orthogonal internal planes of RV. With 

respect to the entire RV used in Figure 3-1, the selected one-eighth is enclosed by the 

dashed line (Figure 5-1). In this way, it is possible to reduce the load F to one quarter, thus 

producing the same effect that if the complete load were applied to the complete RV, that 

in this chapter is, an apparent compression load of 1 MPa produced by a point load of 

1.3689 N. 

 

Figure 5-1: Representative volume reduction. Taking advantage of the symmetry, only 

one-eighth is necessary to represent the entire RV. 

 

 

 

5.2 Geometry setup 

 

Since the reference geometry was selected as a square pore of 50% of porosity, an array 

of sixteen geometries was proposed. However, as explained in the next sections, the 

requirements of the model architecture involve the voxelization of the domains that will 

correspond to the mesh employed in the FEM model. Consequently, the definition of pore 

dimension will be limited to the resolution provided by the voxels, i.e., the finite elements.  

 

A script was developed to select the finite elements that correspond to each pore geometry 

defined by the dimensions X and Y reported in Table 3-3. The selected elements represent 

the pore geometries used in chapter 3 as closely as possible that the resolution provided 
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by the voxels allows (Figure 5-2). Despite this drawback, the size of pores was fairly 

approximated to the pore dimensions of the rectangular set obtained previously. 

 

Figure 5-2: Profile view of voxelized rectangular arrangement geometries. 

 

 

 

 

5.3 Mechanobiological approach 

 

The mechanobiological approach proposed by Prendergast et al. was used and described 

in equation (3.2). However, in order to include an upper bound of the mechanical stimuli S 

in the tissue, a new range for fibrous tissue and a condition of necrosis by high stimuli were 

established according to Sandino and Lacroix [183] together with the boundaries reported 

in [184]. The new resultant inequalities of the solution of equation (3.2) with the new ranges 

are: 
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                             6 < 𝑺                                               Necrosis 

3 < 𝑺 ≤ 6               Fibroblasts (Produce Fibrous tissue) 

1 < 𝑺 ≤ 3        Chondrocytes (Produce Cartilage tissue) 

0.267 < 𝑺 ≤ 1         Osteoblasts (Produce Immature bone tissue) 

0.01 < 𝑺 ≤  0.267   Osteoblasts (Produce Mature bone tissue) 

                              0 < 𝑺 ≤ 0.01                           Bone resorption 

 

The stimulus S calculated, and hence the predicted tissue, is for each entire element. One 

of the most relevant hypotheses in previous chapters is that the tissue phenotype can be 

predicted for each element, despite the fact that the elements are tetrahedrons with different 

size and ratios, produced by the mesh process of the complex geometries studied. This 

approach can arise difficulties when modelling the temporal behavior of the cells, such as 

the migration of cells and the change of the mechanical properties produced by the 

synthesis of ECM by the differentiated cells, which often implies an increase in properties, 

for instance, the Young’s modulus.  

 

To address the previous issue and looking for uniformity in the elements to guarantee 

independence of the mesh process in each geometry, the studied RV is composed of voxels 

defined by cubic finite elements C3D8RP of a fixed side of 24 μm. This strategy brings 

possibilities to link the finite element domain with a cell domain composed of a lattice of 

cells to model cellular processes, such as cell proliferation and movement.  

 

The cell domain was programmed in Matlab and is composed of simple cubic lattice 

structures. In these structures, each cell is separated from the others by a distance of 24 

μm, that is, the side of the cubic finite elements, so that in this way the centroid of each 

voxel coincides with each cell position [185]. Therefore, each element has a cell inside it 

and the lattice will have as many cells as elements the RV has (Figure 5-3). Although this 

is a simplistic way to model it, these facts are consistent with the size of the MSC reported 

in [186] and it can be assumed that a cell and its ECM are both included in each finite 

element [62]. 
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Figure 5-3: Neighboring in the lattice and cell domains of the highlighted cell-element 

position. 

 

 

5.4 Cell behavior modeling 

 

Some mechanisms of dispersal of cells have been discussed in the literature. The most 

used mechanisms by researchers are diffusion models, which have a deterministic nature. 

An alternative used by some authors is the random walk, which is the probabilistic 

description of the trajectory of an entity (particle, body, cell, animal etc.) from successive 

random steps. This approach seems interesting, since it exhibits the stochastic nature of 

the cell dispersal, often observed experimentally [187]. 

 

The parallel existence of both the cells and finite elements domains used is suitable to 

model the cell behavior in a discrete form. The biological behavior of cells included in the 

modelling was the cell proliferation and movement, both modelled using a non-biased 

random walk approach, that is, without a preferent direction. MSC are seeded randomly at 

the first iteration of the simulation in the lattice in 1% of the total of the initial available space 

for cells in the granulation tissue [62]. Then, the proliferation and migration process start 

with a rate of one per iteration until all the available spaces are colonized [187]. Each 

iteration represents one day of the time course of healing. 
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MSC have a maturation time of seven days and before this time, it is not possible to 

differentiate them. After the MSC reach the maturation time, they can be differentiated into 

the different phenotypes established in the mechanoregulation ranges contemplated in this 

chapter. The differentiation probability is controlled by a rate of 30% after reaching the 

maturation time in MSC [62]. Once cells are differentiated, they can also begin proliferation 

and migration processes. Although the de-differentiation, trans-differentiation and 

apoptosis processes can occur in fracture healing, they were not considered in this work.  

 

The cell can move or keep the position in the lattice in each iteration if there are available 

adjacent positions, which are defined by a 6-neighborhood connectivity that allows six new 

possible states of the cell, as depicted in Figure 5-4. Proliferation by mitosis occurs in a 

similar way, the mother cell divides and creates a new cell that can adopt, from the possible 

states, an adjacent position to the original one, which can be occupied or not after the 

division [49]. 

 

Figure 5-4: Cell migration and proliferation scheme. 
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Looking for the consistency of the cell lattice with the biological reality, it is possible to verify 

that if the entire domain reaches the saturation of cells, i.e., all existent positions are filled, 

there will be 110592 cells in the RV or 69000 cells/mm3 approximately. This value is 

consistent with the density of cells in mature bone tissue according to the ranges 

established in the literature, which can vary between 32000 and 93000 cells/mm3 [188]. In 

the fracture healing process, if MSC reach a density higher than 100000 cells/mm3, a 

saturation effect can be produced, where the only way in which the cell can survive and 

proliferate is by increasing the size of the callus [71]. 

 

The time window in which the healing process is simulated in this work was twelve weeks, 

which is consistent with the time of inflammation and reparative phase in a normal bone 

healing process in humans and the time used in in vivo animal models for assessment of 

scaffold architectures [138]. The remodeling phase exhibits different biological and 

biomechanical events, spending most of the time in the full process of healing that can last 

from months to years. For this reason, this phase is not considered in this work. 

5.5 Material properties in the tissue domain 

 

There are two types of materials in the domain: The scaffold material and the tissue 

material. The variation of mechanical properties of tissue obey to the tissue stiffening that 

occurs in the normal development over time after cells synthesize ECM and it begins its 

maturation. This stiffening was simulated using a smoothing procedure to avoid sudden 

changes in the tissue stiffness that are not physiologically reasonable. The procedure 

consisted in the computation of the average ten previous values predicted 𝐸̅ and an 

exponential law [189], as described in equations 5.1 and 5.2, respectively: 

 

𝐸̅ =
1

10
∑ 𝐸𝑖

𝑖𝑡=𝑛

𝑖𝑡=−9

                                                             (5.1) 

 

where 𝐸𝑖 is the Young’s modulus for the each 𝑖 tissue phenotype and n is the present 

iteration. 

 

𝐸𝑖 = 𝐾𝑖𝑒𝛽𝑖𝑡                                                                (5.2) 
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where 𝐾𝑖 and 𝛽𝑖  are the parameters that control the shape of the exponential curve for 

each 𝑖 phenotype and 𝑡 is the iteration [189]. The assumption of the mechanobiological 

approach in which each cell and its ECM is contained in each element allows avoiding the 

use of the mixture law often used in previous studies to determine the mechanical 

properties of the elements with different cells inside and enhance the accuracy in which the 

phenomenon is observed. 

 

The time in which Equation (5.2) reaches the value of the predicted tissue is sixty days 

according to [62], [164]. After this time, the maximum value is maintained, that is, the value 

of the predicted phenotype reported in Table 3-1. Constants 𝐾𝑖 and 𝛽𝑖 for each phenotype 

were determined according to these values. Only the Young’s modulus was calculated 

using the exponential law. Other properties were computed using only the average of the 

ten previous historical values, similarly to equation (5.1). 

 

If degradation of the elements of scaffold occurs, there will be new space available for tissue 

growing and the degraded element will be filled by granulation tissue, thus acquiring its 

properties and becoming available space for MSC colonization. The change of the 

properties of the scaffold material due to dissolution will be discussed in the next section. 

Both resorbed elements by low stimuli and elements in which necrosis are predicted by 

excess of mechanical stimuli will adopt the mechanical properties of granulation tissue but 

these elements will not be available for new cells. 

5.6 Degradation modeling 
 

The mechanical properties used throughout this dissertation were those of the type found 

in biomaterials such as polymers. These materials have interesting possibilities to vary its 

properties, for instance, by modifying the molecular weight or the monomers and 

copolymers that compound them. 

 

The dissolution of these polymers produces alterations in different physical properties as 

discussed in chapter 2. Principally, there are two mechanisms in which the different 

polymers degrade: surface erosion and bulk erosion. In the first mechanism, the biomaterial 

is eroded in its surface layer by an agent and in the second one, all the entire volume is 

attacked by the agent. Both of them are produced by chemical reactions. 
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As discussed in chapter 2, the model proposed by Adachi et al. [66] is enough for 

considering the degradation phenomenon. For simplicity purposes, this model was used to 

represent the scaffold degradation in which it is assumed that the molecular weight loss 

due to hydrolysis depends on the content of an aqueous solution in the domain, governed 

simply by a diffusion equation. However, this approach is very simple and disregards the 

possible loading effects, the stochastic nature of the phenomenon, and the crystallization 

and autocatalytic effects proper of the polymer degradation. Despite this, the modular 

architecture of the proposed computational framework will allow including the programming 

of different degradation mechanisms, as reported in [104], [114], [168], [185], [190], or 

experimental curves that represent the molecular weight loss, since it is strongly related to 

the mechanical properties of the polymers. 

 

Adachi’s model is characterized by the use of the following set of coupled equations: (5.3), 

(5.4) and (5.5): 

 

𝑬𝒔(𝑾(𝒕)) = 𝑬𝒔𝟎
𝑾(𝒕)

𝑾𝟎
                           (5.3) 

 

where Es is the Young's modulus of scaffold material that depends on molecular weight W 

in time t, Es0 is the initial Young's modulus and W0 is the initial molecular weight. The 

decrease rate in molecular weight due to hydrolysis 𝑾̇ depends on the local water content 

c: 

 

𝑾̇(𝒄) = −𝜷𝒄        (5.4) 

 

where 𝜷 is a constant of the material. The rate of water content 𝒄̇ is governed by the 

following diffusion equation:  

 

𝒄̇ = 𝜶𝛁𝟐𝒄      (5.5) 

 

where 𝜶 is the diffusion coefficient in the bulk of the polymers. Solving the previous 

equations for the scaffold elements, the model computes their molecular weight and 

compares them with a threshold value. If the molecular weight is lower than the threshold 
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value, the element is considered completely degraded, loses its mechanical function and 

becomes a void space. 

 

For the implementation of the previous model in this work, a diffusion analysis for the RV 

domain was performed in Abaqus® for each iteration of the time window observed to solve 

equation (5.5) with 𝜶 =4x10-4 mm2. In this way, it is possible to determine the properties of 

the scaffold material elements modified by the loss of the molecular weight due to hydrolysis 

process using equations (5.3) and (5.4) with Es0=1000 MPa, 𝛽 = 4000 (dimensionless), and 

𝑊0 = 70000 g/mol, in the case of elements that are not degraded according to [66]. If the 

element degrades, that is, the molecular weight reaches the threshold of 10000 g/mol, it 

becomes a granulation tissue element and an available space for a new MSC that 

eventually will start the tissue differentiation process. Then, the mechanical properties of 

the element will be governed by equations (5.1) and (5.2). 

 

In the degradation model presented here, there is an important supposition: The diffusion 

analysis neglects the change of the boundaries in the domain of aqueous solution, 

assuming that the solution domain is the initial pore topology. However, the process is much 

more complex since each released volume could become part of the aqueous solution, 

hence a new source of water diffusion. This issue is defined mathematically as a moving 

boundary problem [191]. Nevertheless, it is not expected that the supposition about the 

domain affects notably the result. Further research in this topic is needed to verify the 

effects of the moving boundaries. Moreover, it should be emphasized that the degradation 

modeling presented in this chapter do not attempt to represent the complexity of the 

chemical reactions involved in the degradation process. The intention of this model is to 

predict the physical alterations in the scaffold such as changes in geometry and mechanical 

properties, produced by the interaction with an aqueous solution. 

5.7 Algorithm description 

 

Previous sections discussed the different modules that conform the architecture of the 

model. The model starts with the selection of the scaffold geometry from the studied array 

and then the initial conditions of the simulation are defined. Subsequently, the lattice 

domain is created and then seeded with MSC in 1% of the selected randomly positions of 
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the structure. Afterward, the finite element domain is created and, depending on whether 

the scaffold is designated as biodegradable or not, a diffusion analysis is performed. 

 

An iterative procedure starts after the scaffold dissolution behavior is determined, that is, if 

it occurs or not. Cellular processes initialize and occur as detailed in previous sections. 

Then, in each iteration a biphasic poroelastic FEM analysis was performed with the updated 

mechanical properties obtained from previous days simulated. Finally, the entire process 

starts again until the final day is reached (See Figure 5-5).  

 

The same stress measurements from chapter 3 were computed in each iteration to analyze 

the behavior of the stress within the tissue. However, unlike chapter 3 outcomes, in this 

model the properties of the tissue are evolving over time, so the Python scripts were 

modified to obtain data in each iteration. The absolute and relative amount of each tissue 

phenotype were calculated and stored similarly to equations 3.4 and 3.5 to observe the 

different effects in the tissue produced by the different scaffold geometries in each iteration. 

 

Since mechanical properties of the voxels are changing in each iteration, the global stiffness 

of the entire tissue-scaffold system is changing in time. To determine the value of the RV 

stiffness in the load direction and be able to see its evolution in the course of simulation, 

the coefficient 𝐶22 of the effective stiffness tensor 𝐶𝑖𝑗 is computed using equations 5.6, 5.7 

and 5.8 [192]. This coefficient is one of the most vital parameters to reflect the mechanical 

performance in the scaffold [164]. 

 

𝐶𝑖𝑗 =
𝜎̅𝑖𝑗

𝜀𝑖̅𝑗
 (5.6) 

 

where 𝜎̅𝑖𝑗 and 𝜀𝑖̅𝑗 are the average stresses and strains, defined in the entire domain by: 

 

𝜎̅𝑖𝑗 =
1

𝑉𝑅𝑉
∫ 𝜎𝑖𝑗(𝑥, 𝑦, 𝑧)𝑑𝑉

 

𝑉

 (5.7) 

 

𝜀𝑖̅𝑗 =
1

𝑉𝑅𝑉
∫ 𝜀𝑖𝑗(𝑥, 𝑦, 𝑧)𝑑𝑉

 

𝑉

 (5.8) 
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where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are the stress and strain in the domain, respectively. 

 

Figure 5-5:  Brief algorithm flowchart. 
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5.8 Verification 
 

To verify the similarity between the results obtained in the early stage of the tissue and the 

model presented in this chapter, Figure 5-6 shows the overplotted stress distribution 

histograms of both the reference geometry from chapter 3 and the one obtained in this 

chapter. It is possible to observe that both geometries induce an equivalent stress 

distribution in the newly formed tissue although different kinds and sizes of elements were 

used to discretize these geometries. Statistics from both histograms were similar: VMMean 

3.16E-3 MPa for the static model, initial VMMean 3.06E-3 MPa for the time evolution model, 

and the same VMMedian 2.70E-3 MPa value in both cases. C22 parameters also exhibit 

similar values: 280 for the static model vs. the initial value of 272 from the time evolution 

model. The differences between the values were around 3% and are reasonable due to 

both discretization techniques and the particularities of the models [193], [194]. 

 

Figure 5-6: Stress distributions histograms overplotted for F geometry. Histogram of the 

reference geometry from chapter 3 is colored in orange and the one obtained in this chapter 

is colored in blue. The intersection between both appears in brown. 
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Several simulations were carried out to determine their variability, since there is a stochastic 

component in each simulation provided by the cell seeding and the individual behavior of 

cells, which depend on probabilistic activities. The square 50% reference geometry was 

used for the runs, with load=1 MPa and without degradation for simplicity purposes (Table 

5-1). 

 

Table 5-1: Comparison of different runs of the algorithm under the same conditions for 
the reference geometry. 
 

RUN Bone 

(%) 

Cartilage 

(%) 

Fibrous 

(%) 

Resorption 

(%) 

Necrosis 

(%) 

Final VMMean 

(MPa) 

Final 

C22 

1 46.76 3.23 0 0 0 1.058 1093 
2 46.66 3.33 0 0 0 1.058 1087 
3 46.76 3.23 0 0 0 1.057 1090 
4 46.76 3.23 0 0 0 1.057 1088 
5 46.79 3.20 0 0 0 1.058 1093 
6 46.81 3.18 0 0 0 1.060 1095 
7 46.69 3.30 0 0 0 1.057 1090 

 

As expected, despite the stochastic components of the simulation, the system has a trend 

at the end and the variability in each run exhibits differences by less than 0.15% 

approximately in each final tissue phenotypes, 3E-3 MPa in the final VMMean and 8 in the 

final 𝐶22 index. This fact is reasonable because the mechanical environment is not changing 

abruptly even when there is a high number of cells already differentiated. However, these 

cells still do not reach the maximum stiffness level of the exponential law, therefore, it is 

expected that the mechanical environment changes notably due to the influence of the 

newly formed tissue inside the scaffold only after sixty days of simulation. 

 

The conceptual implementation developed here corresponds largely to the works by 

Prendergast and Byrne. In order to verify the consistency of the proposed model, feasible 

scenarios with results reported in the literature were implemented using it with the 

parameters employed by [49], [62], [184]. Scaffolds of square geometries with porosities of 

30%, 50% and 70% were simulated by the model described in this chapter in order to 

compare the phenotype outcomes with those provided for the same geometries by Byrne 

et al. for 1 MPa, 2 MPa and 4 MPa compression loading conditions. Variation of cell size 

was necessary to reach each porosity, and had values in the range described by [186]. 
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The scaffold degradation was turned off in this test since the degradation mechanism 

implemented here is different to the one presented by Byrne et al., which had a linear form 

while here it was governed by a diffusion equation emulating some features of the real 

phenomenon. 

 

Figure 5-7 shows a comparison of the percentages of phenotypes used in this model and 

those published by Byrne et al. The comparison shows that the results presented here have 

good agreement with Byrne’s results. However, differences are expected, since there are 

different conditions in the modeling of both studies, such as the possible slight differences 

in size and structure, constants, details of the mesh and others not clearly stated, and of 

course the absence of mixture law that was replaced in this model by cells per each finite 

element. 

 

Figure 5-7: Comparison between the present model and results by Byrne et al. [62]. 
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After verifying the consistency of our model with Byrne’s results, it was interesting to verify 

the consistency of the predictions of the model with the experimental results available in 

the literature. An important limitation for the in silico research of scaffolds is the lack of data 

about the performance in in vivo and in vitro scenarios with detailed data. Despite this, the 

experimental results provided by Entezari et al. allow some comparisons with the proposed 

in silico framework. Entezari control architecture was useful to determine the size of the RV 

studied in this work. Although it is not exactly equivalent to the geometries of the scaffold 

modelled here (Figure 5-8), it is possible to make some analogies to compare the values 

produced by our model with the results obtained experimentally. 

 

Figure 5-8: Left: Control geometry used by Entezari. Adapted from [138]. Red square is 

the region of interest used to idealize the square reference geometry. Right: Square 

reference geometry. 

 

 

 

The first comparison regards the stiffness of the scaffold prior to implant. The square 50% 

geometry used as reference along this dissertation matches conveniently with the control 

architecture (Architecture A) used by Entezari et al. that has a conventional square mesh-

like pattern presented in Figure 5-8 [138]. Material properties of the scaffold were modified 

to match those reported by Entezari, who used a ceramic material with Young’s modulus 

of 33 GPa and Poisson ratio of 0.3. All the remaining properties were the same used for 

the modeling of polymers in previous chapters. 
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The four architectures studied by Entezari prior to implantation remain in a range of stiffness 

of 12-16 GPa approximately and all have porosities around 50%. The reference geometry 

implemented in this thesis exhibits a stiffness of 9.84 GPa approximately, that is, 

underestimation regarding the experimental comparison (Figure 5-9). 

 

Figure 5-9:  Comparison of stiffness prior to implant from Entezari’s architectures with 

the stiffness of the reference geometry. Adapted from [138]. 

 

 

 

In the study developed here, one of the most helpful results obtained by Entezari et al. is 

the bone volume/available volume index, which allows comparisons between the 

experimental architectures with our reference geometry. However, there is an important 

limitation since there is no specific loading condition in [138]. To solve this issue, it is 

possible to find in the literature a range of apparent stress results of the superposition in 

different load cases of daily activities in human calvaria (0 - 0.9 MPa) [195]. On the other 

hand, external loading schemes have been used in the ranges of 1 MPa - 2.8 MPa. 

 

From the range presented in [195], it was hypothesized a set of 3 values of apparent 

compressive stress: low (0.25 MPa), medium (0.5 MPa) and high (0.75 MPa). Using these 

values in the reference geometry model and with the mechanical properties of the scaffold 

prior to the implantation, the index in Figure 5-10 was obtained and compared with that 

reported experimentally. 
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Figure 5-10:  Comparison of Bone volume/Available volume index from Entezari’s results 

with the reference geometry in hypothesized low, medium and high loads, considering 

properties of the scaffold prior implantation and properties hypothesized post implantation. 

 

 

 

For medium and high loads, Figure 5-10. shows that the index is close to the half of those 

reported experimentally. Low load exhibits a low amount of bone, which is expected 

considering that the Young’s modulus was 33 times the one used in chapter 3 and the load 

was also reduced in a percentage of 75%, which led to a substantial reduction of the 

mechanical stimuli. 

 

It is reported that the mechanical properties of the scaffold decrease when it is implanted. 

In bioceramics similar to those employed by Entezari et al., the reduction of stiffness 

reaches up to 60% of its dry value [196]. Using a hypothetical reduction of 75% of the value 

of Young’s modulus prior to implantation, results for a hypothetical wet scaffold were 

obtained. 
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The results obtained from the hypothesized scenario showed that the model is in a 

reasonable range of tissue prediction regarding the experimental scenario. However, there 

are many uncertain data around the experimental setup that made difficult the definition of 

the conditions for modeling the phenomenon. 

 

An important supposition was that the bioceramic material is not losing its properties and 

geometry while the tissue is growing during the time window. However, in practice, the 

action of a dissolution effect is expected after implantation, although it is not noticeable. 

5.9 Results 

 

5.9.1 Rectangular scaffolds without degradation 

 
The dimension of the pores for each geometry in the arrangement and their respective 

porosities are listed in Table 5-2. Initial (IVMMean, IVMMedian) and final (FVMMean,  

FVMMedian) von Mises statistics and effective normal stiffness C22 were calculated to 

analyze the evolution in time of the mechanical properties of the tissue-scaffold system. 

 

Table 5-2: Initial and final von Mises mean and median stresses on the newly formed 

tissue domain of rectangular pore arrangement for 1 MPa and initial and final effective 

normal stiffness for each scaffold-tissue system in the rectangular arrangement without 

considering the degradation. 

 

Geometry 

ID 

X 

(mm) 

Y 

(mm) 

Porosity 

(%) 

IVMMean 

(MPa) 

IVMMedian 

(MPa) 

FVMmean 

(MPa) 

FVMMedian 

(MPa) 

Initial 

C22 

Final 

C22 

A 0.243 0.243 23.19 2.77E-03 2.34E-03 1.3022 1.0183 530 1105 
B 0.243 0.390 31.24 2.43E-03 2.02E-03 1.3113 9.40E-01 491 1269 
C 0.243 0.536 39.3 2.19E-03 1.78E-03 1.3424 9.16E-01 464 1514 
D 0.243 0.633 44.67 2.05E-03 1.64E-03 1.3739 1.204 452 1771 
E 0.390 0.243 40.62 3.44E-03 3.01E-03 1.0863 1.0378 304 960 
F 0.390 0.390 50 3.06E-03 2.70E-03 1.0574 0.9397 272 1090 
G 0.390 0.536 59.37 2.74E-03 2.37E-03 1.0439 0.8522 253 1225 
H 0.390 0.633 65.62 2.55E-03 2.16E-03 1.0577 0.7680 245 1383 
I 0.536 0.243 60.69 5.61E-03 4.61E-03 0.9176 0.6845 135 358 
J 0.536 0.390 68.74 5.48E-03 4.99E-03 0.9410 0.8209 115 486 
K 0.536 0.536 76.8 5.16E-03 4.67E-03 0.9113 1.0596 104 610 
L 0.536 0.633 82.17 4.87E-03 4.39E-03 0.9182 1.1180 99 647 
M 0.633 0.243 75.53 1.05E-02 8.09E-03 0.4923 0.1829 57 78 
N 0.633 0.390 81.24 1.15E-02 1.02E-02 0.4161 0.1906 46 61 
O 0.633 0.536 86.96 1.16E-02 1.07E-02 0.3231 0.2136 39 50 
P 0.633 0.633 90.77 1.12E-02 1.01E-02 0.2695 0.2277 36 46 
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Despite the voxel discretization, the pore parameters and porosities obtained under this 

approach were fairly close to those obtained in chapter 3. Similarly, initial von Mises 

statistics and the effective normal stiffness C22 indicators obtained were close to those 

obtained for the geometries modeled through the CAD environment. 

 

For each increment in time window, histograms of von Mises stress were obtained for each 

geometry in the rectangular arrangement. For simplicity purposes, Figure 5-11 shows the 

histograms of 3 time points: days 1, 42 and 84 for the reference geometry F under a 

compression load of 1 MPa. As expected, the distribution is comparable to that obtained in 

chapter 3 since the geometry and loading conditions are similar in both cases. 

Figure 5-11:  Histograms of von Mises stress in 3 time points for F geometry. 

 

 

 

There is a very intriguing behavior in which the distribution become unimodal during the 

time evolution from the twenty days until the fifty days and then return to a similar pattern 

such as the start shape, but with mode or highest frequency close to a value of von Mises 

of 1 MPa. 

 

Figure 5-12 shows the initial von Mises stress distribution for each geometry in the 

arrangement. Once again, as expected, the distributions are similar to those observed in 

Figure 3-6 in chapter 3 and the same behaviors occur as dimensions X and Y increase, 

that is, spreading of the von Mises values in the elements as dimension X increases and 

the crowding of the values around the central region as Y dimension increases. 
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Figure 5-12: Normalized initial stress distribution for each geometry in the arrangement. 

 

 

 

Figure 5-13 shows the final von Mises stress distributions obtained at the end of the twelve 

weeks period. Each row of the arrangement has different features in their histograms. First 

row ABCD exhibits 3 regions with stress concentrations. A common feature that can be 

observed in all geometries is a concentration of low stresses, which corresponds to the 

volume occupied by soft tissues since these tissues are not bearing the load. A second 

stress concentration of the first row occurs around a von Mises value of 1 MPa, that is, as 

the macroscopic load exerted in the system, and this value corresponds to the mode in B, 
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C and D geometries. In A geometry the mode is close to zero values, thus suggesting the 

presence of more soft tissues than in the other geometries in the row. 

 

Figure 5-13:  Normalized final stress distribution for each geometry in the arrangement. 

 

 

 

A remarkable feature observed is that, as Y dimension increases in rows ABCD and EFGH, 

the number of elements with low stress values are reduced, i.e. elements differentiated to 

soft tissues. Moreover, a major concentration also occurs in the peak around the 1 MPa 

value and the Y dimension increases as well. This suggests that at the end of the tissue 

stiffening, more elements are bearing the apparent compressive load exerted on the 
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system. The second row exhibits bimodal shape histograms and keep the features 

discussed for the first row. 

 

The temporal evolution of the von Mises stress mean for the reference geometry F is shown 

in Figure 5-14. The increase of this von Mises statistic is related to the rate equation 

behavior, which also influence the stiffness of all models. An exponential behavior such as 

the pure rate equation would be expected, but reach the maximum values of stiffness for 

the differentiated phenotypes in different times produces instead an exponential behavior 

such as the pure rate equation, a behavior with S-shape, corresponding to the logistic 

growth typical from the dynamics of biological populations [197]. 

 

Figure 5-14:  Evolution of Von Mises stress mean in time for F geometry. 

 

 

 

Von Mises stress starts with low values, since the newly formed tissue is not supporting 

load and the scaffold biomaterial carries out the loading instead, bearing it almost in its 

totality. When the newly formed tissue becomes stiffer, that is, MSC differentiate into bone 

cells and take some time so that the synthesized tissue gets stiffer, this tissue starts to carry 

the load and then, the stresses in the tissue increase. This explains why as the relative 

amount of bone increases in the row, the final VMMean increases too. A comparison 
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between the temporal behavior of VMMean for each geometry in the arrangement is shown 

in Figure 5-15. 

 

Figure 5-15:  Evolution of Von Mises stress mean in time for each geometry in the 

arrangement. The curve corresponding to the current position of the arrangement is plotted 

in blue, while the rest of geometries are plotted in grey. 

 

 

 

Each geometry develops different amounts of tissues that finally lead to different final 

stiffness in the tissue-scaffold system. Figure 5-16 describes the effective normal stiffness 

behavior in time of each geometry, all influenced by the behavior of the rate equation. The 

stiffer scaffold-tissue system was the D geometry, while the lowest was the P geometry. 

The higher stiffness values of the system are consistent with the stiffness values reported 

for FCC scaffolds by Sanz-Herrera et al. [64]. 
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Figure 5-16:  Effective normal stiffness evolution in time of each geometry in the 

arrangement. Current position is plotted in blue, while the rest is plotted in grey. 

 

 

 

Maximum principal stress absolute histograms in 3 time points show curious behaviors 

(Figure 5-17). As in the von Mises histograms, there is a tendency of the positive and 

negative portions of the histogram to become unimodal as time passes. Finally, the 

negative portion exhibits two peaks, one close to zero values, which is related to the 

elements that do not differentiate into bone and one close to -1 MPa, corresponding to the 

nature of apparent compressive loading with 1 MPa value. A very low amount of elements 

with positive maximum principal stress absolute is observed for this geometry. As usual in 

the comparisons with the results from the rectangular arrangement of chapter 3, the initial 

maximum principal stress absolute distributions obtained from the time evolution model for 

all geometries are consistent with those estimated previously (Figure 5-18). 
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Figure 5-17:  Histograms of the maximum principal stress absolute in 3 time points for F 

geometry. 

 

 

 

Figure 5-18:  Initial maximum principal stress absolute histograms for each geometry in 

the arrangement. 
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For the final maximum principal stress absolute distributions for the geometries in the 

rectangular arrangement (Figure 5-19), it was found an interesting characteristic. ABCD 

and EFGH rows exhibit a predominance in the stresses in the negative portion of the 

histogram, which implies that the bone tissue developed in these geometries is successfully 

assuming the load in the scaffold-tissue system. 

 

Figure 5-19:  Final maximum principal stress absolute histograms for each geometry in 

the arrangement. 

 

 

 

To observe the relations between the pore dimension parameters and stresses in the 

formed tissue inside the scaffold, final von Mises mean statistics were used to generate the 

corresponding response surface, since it has better goodness of fit than the mean (Figure 

5-20). Similarly, final von Mises stress mean were used to show the relation between the 

stresses inside the differentiated tissue and the relative amount of bone (Figure 5-21). 
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Details of goodness of fit for both the response surface and the curve fitting for final von 

Mises mean can be found in Annex A. 

 
Figure 5-20:  Response surfaces of pore parameters vs. final von Mises mean of 

rectangular arrangement for 1 MPa. 

 

 

 

Figure 5-21:  Curve fitting between the relative amount of bone predicted (REL) and the 

final VMMean for 1 MPa. 
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Contrary to the response surfaces obtained in chapter 3 comparing the same parameters, 

the response surface obtained herein exhibits an inverse nonlinear relation with the X 

dimension and it is not very sensitive to the changes in Y parameters. This behavior is 

natural since the presence of soft tissue implies low stresses on the volume of tissue 

regenerated, while the differentiation of tissue in bone allows the regenerated tissue to bear 

load and hence increase the stresses within it. This fact is restated by the correlation 

between the relative amount of bone and final von Mises mean showed in Figure 5-21, in 

which less stress implies less bone tissue and vice versa. 

 

Results in Table 5-3 confirm that since the mechanical environment inside the scaffold 

starts to change notably after 60 days, the results of the different amount of tissue 

phenotypes will be consistent with the initial biomechanical environment reported in chapter 

3. The cell behavior features in the model do not affect significantly the results of the 

differentiation of tissue despite the presence of the stochastic component of cell behavior. 

However, the situation will be different if the scaffold degrades due to the new available 

spaces for the tissue growth will be affected by the changes of the mechanical environment, 

which is completely different due to the maturation of the initial tissue and the degradation 

of scaffold, as we will observe in next section. 

 

Table 5-3: Final predicted tissue phenotypes for each geometry in the rectangular 

arrangement. 

 

Geometry 

ID 

Bone ABS 

(%) 

Cartilage ABS 

(%) 

Fibrous ABS 

(%) 

Resorption ABS 

(%) 

Necrosis ABS 

(%) 

A 21.39 1.79 0 0 0 
B 30.22 1.01 0 0 0 
C 38.58 0.71 0 0 0 
D 43.99 0.67 0 0 0 
E 35.00 5.59 0.02 0 0 
F 46.69 3.30 0 0 0 
G 57.67 1.69 0 0 0 
H 64.30 1.32 0 0 0 
I 37.99 20.97 1.71 0 0.008 
J 46.14 22.00 0.59 0 0 
K 56.70 19.88 0.21 0 0 
L 64.66 17.46 0.04 0 0 
M 24.37 39.10 10.33 0 1.725 
N 16.47 51.91 11.98 0 0.862 
O 8.68 68.62 9.17 0 0.474 
P 5.34 78.49 6.68 0 0.247 
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The porosities and load scheme used in this chapter do not reduce the mechanical 

stimulation of the tissue until the point in which the resorption process can be occur. 

Reaching this point could be possible if the porosity in the system or the load scheme 

exerted is very low or if the stiffness is high as the one used in verification simulating 

bioceramic materials. This resorption region will be located before a region where 

practically all tissue is induced to bone, which is consistent with the results reported in the 

literature for low load regimes [62], [81]. 

 

Regarding cell behavior inside the reference geometry, Figure 5-22 shows the temporal 

evolution of the cells by means of the normalized available volume inside the pore. At the 

beginning of the simulation, 1% of the volume available is seeded with MSC and the 

remaining 99% stays available. As time passes, MSC invade the domain reaching their 

maximum value around day 9 when the available volume approximates to 0%. 

Differentiation of mature MSC starts at day 7, which for this reference geometry is predicted 

just for osteoblast and chondrocytes phenotypes. At day 30, most cells are differentiated. 

This fact is consistent with some in silico data from the literature, which state that low 

porosities produce high relative amounts of bone [62], [81]. 

 

Figure 5-22:  Cell behavior inside reference F geometry for 1 MPa. 
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In contrast with the aforementioned results, in practice a scaffold with low porosities 

presents some drawbacks that make it unviable, such as the reduction of specific surface 

area for cell attachment as well as the reduction of permeability that leads to a deficient 

exchange of mass and supply of oxygen and nutrients. 

 

5.9.2 Rectangular scaffolds with degradation 

 

Each scaffold from the sixteen arrangement was simulated including the degradation 

approach described in section 5.6. Table 5-4 indicates the initial and final results obtained 

from the simulations: 

 

Table 5-4: Initial and final mean and median stresses on the newly formed tissue 

domain of rectangular pore arrangement for 1 MPa, and initial and final effective normal 

stiffness for each scaffold-tissue system in the rectangular arrangement considering the 

degradation. 

 
Geometry 

ID 

X 

(mm) 

Y 

(mm) 

Porosity 

(%) 

IVMmean 

(MPa) 

IVMMedian 

(MPa) 

FVMmean 

(MPa) 

FVMMedian 

(MPa) 

Initial 

C22 

Final 

C22 

Final 

day 

A 0.243 0.243 23.19 2.77E-03 2.34E-03 1.1769 1.302E-1 530 164 84 
B 0.243 0.39 31.24 2.43E-03 2.02E-03 1.1405 3.975E-1 491 279 84 
C 0.243 0.536 39.30 2.19E-03 1.78E-03 1.0277 6.603E-1 464 685 84 
D 0.243 0.633 44.67 2.05E-03 1.64E-03 9.86E-1 6.096E-1 452 1308 84 
E 0.390 0.243 40.62 3.44E-03 3.01E-03 1.1578 3.237E-1 304 91 84 
F 0.390 0.390 50.00 3.06E-03 2.70E-03 1.1178 5.911E-1 272 233 84 
G 0.390 0.536 59.37 2.74E-03 2.37E-03 1.0496 1.0101 253 460 84 
H 0.390 0.633 65.62 2.55E-03 2.16E-03 1.0095 1.1372 245 639 84 
I 0.536 0.243 60.69 5.61E-03 4.61E-03 1.33E-1 1.224E-1 135 3 25 
J 0.536 0.390 68.74 5.48E-03 4.99E-03 2.07E-1 1.992E-1 115 1 25 
K 0.536 0.536 76.80 5.16E-03 4.67E-03 2.61E-1 2.53E-1 104 1 25 
L 0.536 0.633 82.17 4.87E-03 4.39E-03 3.23E-1 3.09E-1 99 1 25 
M 0.633 0.243 75.53 1.05E-02 8.09E-03 1.16E-1 9.74E-2 57 2 18 
N 0.633 0.390 81.24 1.15E-02 1.02E-02 1.69E-1 1.55E-1 46 1 18 
O 0.633 0.536 86.96 1.16E-02 1.07E-02 2.11E-1 2.04E-1 39 1 18 
P 0.633 0.633 90.77 1.12E-02 1.01E-02 2.32E-1 2.27E-1 36 1 18 

 

The initial conditions are the same as those obtained in the previous section for the 

scaffolds without degradation obtained from each geometry in the rectangular arrangement. 

Under the degradation parameters used here, all the scaffold geometries degrade to 100%.  

 

When the scaffold loses its mechanical function, i.e., the global stiffness in the system is 

lower than 1, the simulation ends and then the immediately previous result is settled as the 

last day. Geometries A to H keep their mechanical function and reach day 84, but 

geometries I to L lose it at day 25 and geometries M to P at day 18. 
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It should be emphasized that in the modeling of the tissue evolution that considers the 

scaffold degradation, the domain of the newly formed tissue is changing, particularly 

increasing as the scaffold is losing volume and hence, the newly formed tissue gains it. 

 

The von Mises stress histograms plotted in Figure 5-23, obtained in 3 time points of the 

course of healing for the reference geometry, were compared with the histograms obtained 

for the same geometry but without degradation (Figure 5-11). The comparison revealed 

that the same initial conditions of stress can be observed in day 1 because the degradation 

process is not affecting the mechanical environment at that point. On the contrary, the 

histogram in day 42 shows that the newly formed tissue is already assuming much more 

load than the same case without degradation, because the scaffold has been losing 

gradually its mechanical function.  

 

Figure 5-23:  Histograms of von Mises stress in 3 time points for F geometry. 

 

 

 

Due to the filling of the newly formed tissue in the volume released by the scaffold when it 

degrades, a significant volume with low von Mises stress will be present at the end of the 

twelve weeks window in the distribution. The reason is that this new tissue is not plenty 

maturated and hence exhibits no stresses such as the one carried by the bone with its final 

stiffness. 

 

A concentration of the elements around a specific von Mises stress values is observed as 

Y dimension increases at the end of the first two rows in the sixteen geometries 

arrangement (Figure 5-24). The last two rows show only the final distribution before the 
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tissue-scaffold system loses its mechanical function, i.e., distributions of tissue inside a 

failed scaffold. These distributions are consistent with those observed when the tissue is in 

development and it is not capable of bearing loads. 

 

Figure 5-24:  Normalized final stress distributions for each geometry in the arrangement 

at the end of simulation. Geometries in rows IJKL and MNOP lose their mechanical function 

before reaching day 84. 

 

 

 

Comparing the von Mises stress statistics with those observed in the simulations without 

degradation, the degradation produces a reduction of the von Mises mean and notably 
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reduces the final von Mises median in the first row of the arrangement (See Table 5-4). 

This fact is attributable to the presence of newly formed tissue in the released spaces 

produced by the degradation, which could be soft tissues or hard tissues that begin to form 

but do not reach their maximum stiffness value that requires sixty days after the 

differentiation. Therefore, the stresses in the last formed tissues were low and they affect 

the statistics by reducing its values. It is worth noting that if porosity is low in the scaffold, it 

is expected that its total degradation takes more time than one with higher porosity and, 

therefore, the low porosity geometry is capable of supporting the load more time than the 

high porosity geometry. 

 

Geometries E, F and G from the second row exhibit higher values of von Mises mean than 

the scenario without degradation. The reason is that the values of von Mises stresses are 

more dispersal when the scaffold degrades and are not crowded in a region, as in the case 

when the mechanical environment provided by the scaffold is not changing. H geometry 

exhibits a peak of counts of elements with values around a von Mises stress greater than 

1 MPa, thus suggesting that the scaffold degradation induces regions with load 

concentrations greater than the load exerted macroscopically. 

 

Figure 5-25:  Evolution of Von Mises stress mean in time for F geometry with (orange) and 

without degradation. 
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The evolution of the statistics in the newly formed tissue is different if the degradation is 

considered or not, as observed in the von Mises stress mean for the F geometry in both 

cases (Figure 5-25). The rate in which the mean increases is higher in the model that 

degrades and has exponential shape due to the loss of stiffness in the system. This high 

rate is finally interrupted when the scaffold loses its structural connectivity and it becomes 

slow by the action of the new volume released and by the stiffening of the tissues that were 

differentiated initially. The temporal behavior of the stiffness for each geometry in the 

arrangement is shown in Figure 5-26. 

 

Figure 5-26:  Evolution of Von Mises stress mean in time for F geometry with degradation. 

Current position is plotted in blue, while the rest is plotted in grey. 
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Consistently with the results obtained previously from von Mises stress, the maximum 

principal stress histogram for reference geometry indicates that the tissue is already 

assuming load considerably at mid time of simulation (Figure 5-27). The main peak in the 

distribution indicates that an important volume is not bearing efficiently load at that moment 

and this effect is held until the end of the simulation. 

 

Figure 5-27:  Histograms of the maximum principal stress absolute in 3 time points for F 

geometry. 

 

 

 

The first rows of the final histograms for maximum principal stress absolute (Figure 5-28) 

show that as Y dimension increases, the amount of elements under compressive stresses 

start to stack and the tissue elements that are not bearing load reduces. However, the last 

two rows do not show the final results and the distributions exhibited are undeveloped and 

reveal mostly that the elements are experiencing a compressive load. The region of 

crowded elements around a von Mises stress value previously mentioned is observed in 

the portion of negative maximum principal stress, thus corroborating that these elements 

are supporting the compressive load applied to the scaffold-tissue system. 
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Figure 5-28:  Final histograms of the final maximum principal stress absolute for each 

geometry in the arrangement. 

 

 

 

Although the last two rows in the arrangement of maximum principal stress absolute do not 

reach the end of simulation and fail early, they show that as dimension Y increases, the 

number of elements submitted to a positive stress reduces. 

 

The absolute percentages of each phenotype at the end of simulation are presented in 

Table 5-5. Despite the last rows in the arrangement lose their mechanical function before 

reach the twelve weeks period, almost the entire volume was invaded by MSC that 

subsequently differentiated in various phenotypes. 

 

High levels of necrosis occur in the last row even if the simulation only reaches day 18, 

which indicates that the scaffold lost early its capability of bearing the load and producing 
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an excess of mechanical stimulation on the newly formed tissue that leads to a necrosis 

process. 

 

Table 5-5: Final predicted tissue phenotypes for each geometry in the rectangular 

arrangement. 

 

Geometry 

ID 

Bone ABS 

(%) 

Cartilage ABS 

(%) 

Fibrous ABS 

(%) 

Resorption ABS 

(%) 

Necrosis ABS 

(%) 

A 76.65 21.62 1.03 0 0.49 
B 82.99 15.69 0.83 0 0.47 
C 86.85 12.38 0.60 0 0.15 
D 90.11 9.74 0.14 0 0.001 
E 63.52 31.32 2.19 0 2.96 
F 70.56 24.37 1.55 0 3.49 
G 76.79 19.91 0.92 0 2.36 
H 80.87 16.48 0.88 0 1.74 
I 25.58 37.69 11.62 0 2.27 
J 20.14 49.25 11.73 0 2.62 
K 16.73 60.00 11.19 0 2.74 
L 16.18 65.30 10.60 0 2.24 
M 7.99 32.47 27.10 0 25.04 
N 4.28 23.47 34.51 0 31.93 
O 1.29 17.94 40.21 0 35.93 
P 0.38 14.37 45.16 0 35.63 

 

An interesting pattern can be observed in the cartilage tissue predicted, which reduces in 

each row as Y dimension increases. However, in the third row, as Y dimension increases 

the amount of cartilage tissue predicted increases too. This suggests that the geometrical 

parameters in this row are the most favorable for cartilage development. This data could be 

useful since cartilage tissue is hypoxic, so the vascularization is less critical. It is an 

avascular nature tissue, which can be attractive to stimulate since it does not heal itself. 

 

Both response surfaces and curve fitting were performed previously for different geometry 

arrangements. Since two entire rows of the simulations of the studied arrangement in this 

chapter fail, it is meaningless to compare the results obtained from the different scaffolds 

geometries of the arrangement. 

 

Regarding the stiffness of each simulation, Figure 5-29 shows the effective normal stiffness 

evolution, i.e. the C22 index of each geometry in the rectangular arrangement studied. The 

geometry with the greatest final C22 was D as in the simulations without degradation. This 

was expected since in this geometry, more bone tissue was predicted and then, it has 

notably the capability of reaching a high stiffness value. However, all geometries 
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experimented a reduction in their final C22 value in different proportions. The failure of the 

last two rows of the arrangement in days 18 and 25 is indicated in Figure 5-27. 

 

Figure 5-29:  Effective normal stiffness evolution in time of each geometry in the 

arrangement. Current position is plotted in blue, while the rest is plotted in grey. 

 

 

 

Figure 5-30 shows the normalized volume occupied by different cells and the development 

of its respective tissues in the time window. The stabilization of the different tissues occurs 

after fifty days compared to twenty days for the tissues in scaffolds without degradation. 

Large amounts of cartilage were predicted comparing to those obtained for the same micro-

geometry in previous section. 
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Figure 5-30:  Cell behavior inside reference F geometry for 1 MPa. 

 

 

 

A remarkable result in this chapter is to explore whether a relationship exists among 

scaffold micro-geometry and its degradation or not. Figure 5-31 show the normalized 

average molecular weight in time for each geometry in the rectangular arrangement, thus 

indicating that there are different rates of the physical changes in the scaffold, produced by 

its micro-geometry. 

 

Mass loss percentage from each geometry is presented in Figure 5-32 in the course of the 

time window studied. This corroborates the fact that low porosities take more time to 

degrade. 

 

5.10 Conclusions 

 

The main aim of this chapter was to introduce a methodology for modeling the behavior in 

time of the newly formed tissue inside different scaffold geometries. First, the evolution of 

the tissue ignoring the dissolution of the scaffold was conducted and afterward, a scaffold 

degradation approach was included in the model to compare both scenarios. 
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Figure 5-31:  Normalized average molecular weight in time for each geometry in the 

rectangular arrangement. Current position is plotted in blue, while the rest is plotted in grey. 

 

 

 

Using the concept of pore geometry arrangements from chapter 3, the stresses in the newly 

formed tissue inside the different scaffold topologies were obtained and it was observed 

how they change for each topology, which represents the initial biomechanical environment 

condition. If degradation is not considered, the changes of the biophysical environment will 

be governed principally by the rate equation and the logistic growth behavior produced. If 

degradation occurs, it was observed that the complexity of the mechanical environment 

increases considerably. The statistics are notably affected because when a scaffold 

element degrades and the produced void space is filled by newly formed tissue, the 

stresses in the system could change abruptly. The reason is that a low stress value is added 

into the group of tissue elements that have possibly already increased its properties, thus 
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influencing the statistic values. Indeed, the degradation has a paramount influence in the 

biomechanical behavior of the tissue-scaffold system. 

 

Figure 5-32:  Mass Loss in time for each geometry in the rectangular arrangement. 

Current position is plotted in blue, while the rest is plotted in grey. 

 

 

 

It was demonstrated that the distribution of the stresses is changing in time even if 

degradation happens or not and that stress statistics can describe some interesting features 

that occur within the newly formed tissue.  

 

Curiously, the stress correlations determined in this chapter are contrary to those 

determined in chapter 3. High stresses at the end of time in a geometry that considers the 

evolution of the tissue in time indicates that the scaffold has developed neo-formed bone 
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and it reaches its natural stiffness. In contrast, the static model indicates that more stress 

in the newly formed tissue affects the prediction of bone tissue negatively. 

 

The results presented help to understand how micro-geometry features influence the 

degradation of the structure and modify the physical environment. The scaffold environment 

changes easily, even just during the implantation. Nevertheless, the pore orientation seems 

an influencing factor to achieve highly osteogenic microarchitectures. The failure observed 

for the scaffolds and the estimated necrosis volume could help to understand why scaffolds 

failed in some experimental scenarios, hence reiterating the need of keeping the 

mechanical function enough time until the tissue is capable of bearing the load. 

 

Many assumptions were made since the proposed model is a simplified model. Some of 

these suppositions are that the tissue is involved in an ideal scenario regarding the 

vascularization, host tissue competition and supply of nutrients and oxygen or the simplistic 

way to model the scaffold degradation. However, in real life the phenomenon inside the 

scaffold is affected by countless conditions of different nature that still are not clearly 

defined. 

 

The verification process carried out reveals that the results presented here are reasonable 

for both in silico and experimental data available in the literature, which confirmed the 

correctness of the developed model. A better approximation of the results will be possible 

as new experiments are made with controlled variables and environments, or they are 

designed trying to validate an in silico study as the one presented here in order to calibrate 

the parameters and the model used. 

 

Although the model has an important stochastic component, there is a particular tendency 

for each geometry in the results among different runs. This indicates that the initial 

mechanical environment has a more important role in the fate of the newly formed tissue 

than the random cellular process, thus suggesting the applicability of static analysis. 

However, these analyses are useful only for early stages of tissue development under ideal 

conditions and mostly for scenarios in which the scaffold does not degrade or takes a 

considerable time to do it. 
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An important limitation was that the permeability properties of the scaffold, which is known 

to be relevant for its performance, was neglected. Further research regarding permeability 

is still needed. 

 

Each day the models become more complex as well as computational available power 

allows it. Thanks to this, it was possible to present here a high-resolution model with basic 

units of cell size and a parallel finite element domain. Of course, this model can easily be 

adjusted to achieve more complex geometries than the rectangular family studied in this 

chapter. 

 

 

 

 

 

 

  



 

 
 

6.  Conclusions and future perspectives 

 

The motivation of this research stem from some questions about the neo tissue that is 

forming inside a scaffold after its implantation: How does the micro-geometry of the 

scaffolds for bone regeneration influence the stresses on the newly formed tissue? How 

are those stresses? How they change as time passes? From these questions, the following 

hypothesis rises: the micro-geometrical features of the scaffold, such as pore shape and 

size, have a significant relation with the stress distributions on the newly formed tissue. 

 

After a comprehensive review of the literature and of the state-of-the-art in this topic, there 

was no clear information about the stresses in the newly formed tissue. However, the review 

in chapter 2 reveals the enormous complexity behind the scaffolds for bone tissue 

engineering, which is an interdisciplinary scientific field that requires the integration of 

knowledge from life sciences, physics, mathematics and engineering. The bone tissue 

scaffolds are a promissory solution for bone healing treatments, especially to tackle the 

limited availability of bone substitutes. Despite the constant advances on this field, solutions 

translated into clinical and commercial scenarios are still unsuccessful because the 

outcomes move in a wide range of success and failure, some of them contradictory. This is 

due to the fact that many processes occurring inside the scaffolds are not yet unveiled and 

the experimental studies do not control clearly all the key factors supposed to influence the 

process. In the context of this research, one of these factors is the relation between the 

scaffold micro-geometry and the final outcomes regarding to regenerated tissue. 

 

In an effort to start responding the raised questions, chapter 3 presents a methodology to 

develop models of the scaffold-tissue systems at an early stage of the reparative phase of 

bone healing, in which the scaffolds are filled by granulation tissue that is rich in 

mesenchymal stem cells. Even if this model does not consider the evolution over time of 

the tissue, it allows determining how are the stresses that the newly formed tissue 

experiments after being implanted at in vivo hypothetical scenarios under compressive 

load. Although the newly formed tissue does not load bearing, a slight load is transferred to 

it through the scaffold structure. This load produces deformations and stresses that are 

related to the mechanical stimulation that promotes the formation of the different tissue 

phenotypes involved in the bone healing process. 
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Several sets of topologies of pores for different families of regular scaffolds, such as 

rectangular, elliptical and spherical, were proposed in order to observe how the stresses 

change when there are variations in the micro-geometrical parameters that define the 

pores. It was found that each parameter has a different influence in the stress distribution 

produced by the scaffold in the tissue and in the statistical magnitudes obtained from it. The 

purpose of these statistics was to introduce simplified measures that allow characterizing 

the general state of the stresses in the tissue, since it contains numerous terms that are 

represented by the stress tensor and they vary through the studied domain. 

 

It was found that the change of the parameters that define the pores are correlated to the 

von Mises statistics determined for each geometry in the proposed pore arrangements and 

to the amount of bone predicted determined with a mechanoregulatory model for tissue 

differentiation widely used in mechanobiology research. Regarding the micro-geometrical 

parameters, it was found that in the axial-oriented pore families, such as rectangular and 

elliptical, the parameters that mostly influence the performance of the scaffold were those 

perpendicular to the load direction. The results show that the orientation of pores has a 

great significance for the mechanical signaling that the scaffold transmits to the newly 

formed tissue. This suggests the importance of the pore orientation in relation to the applied 

load as key feature, even more than other common measured features of the scaffolds. For 

instance, porosity is usually a measure employed for the characterization of scaffolds, but 

from a mechanobiological perspective, similar porosities can lead to very different 

performance of the structure. In this way, the pore orientation combined with other physical 

measurements such as porosity could be a better criterion to select a geometry in order to 

fulfill the design requirements for the device. 

 

This research has demonstrated that the selection of the adequate micro-geometrical 

features of the scaffolds is critical for their performance. From the selection of these 

features, it is possible to control design elements such as pore size, effective surface for 

cell attachment, porosity, stiffness, among others. However, many signals that control the 

fate of the regeneration depend neither on the micro-geometrical features of the scaffold 

nor on the physical signaling.  

 

A negative correlation was found between the stress statistics in the newly formed tissue 

and the amount of bone predicted. It suggests that the stimulation level in medium 
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porosities for a scaffold with mechanical properties of polymers and medium-high loads is 

enough to stimulate the bone formation through the stimulation of mesenchymal cells to 

differentiate in osteogenic phenotypes. However, according to the experimental findings 

and most mechanoregulation theories, if the stimulation is too low, resorption process could 

be induced. This condition could be produced when the stiffness properties of the material 

are too high, as in the case of bioceramics and biometals, or, equivalently, if the load is too 

low. The results of the different arrangements regarding stresses and the amount of bone 

produced reiterate that a combination of geometrical parameters can be found to maximize 

the performance of the scaffold regarding the mechanobiological criterion. 

 

The stress distribution shape does not depend on the size of the unit cell or the load applied 

to the system, but is more influenced by the morphology of the pores. The shape of the 

distribution remains when the load is modified, however, the value of stress statistics 

changes because the values of the bins in the stress axis scale together. If the load is 

reduced, the histogram scales to left; and if the load increases, the histogram scales to 

right. This is a consequence of the linearity of the constitutive models used. 

 

To explore how the geometrical parameters influence the mechanobiological performance 

of other geometry families, several geometries of the beam-based scaffolds category were 

analyzed in chapter 4. The modeling procedure was integrated with an optimization 

algorithm that perturbs the geometrical parameters that define the cross section beam of 

the scaffold. The simulations predict that the beam-based scaffolds studied allow the 

formation of large amounts of bone for low levels of load. In contrast, for high values of 

load, scaffolds based on axial-oriented pore families perform better. Also, the differences 

in the behavior of the circular and square section of the beams were analyzed. Circular 

sections obtained better performance, which is consistent with experimental observations 

that state more bone formation in curved surfaces. 

 

The identification of the micro-geometrical features that can affect the bone healing requires 

the study of different categories of pore shapes in a systematic way. However, none of such 

studies are available so far in the literature. The in silico assessment of different scaffold 

features, such as beam section, size, orientation and pore features of different geometric 

families, can provide useful information to scaffold designers regarding the geometrical 

aspects and, for instance, the amount of material needed to build the construct. The 
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proposed algorithms could guide designers in the manufacturing of custom scaffolds that 

better suit the anthropometric and physiological requirements of the patient, thus allowing 

a successful healing in the shortest possible time.  

 

Another interesting result of this research project was the modeling and analysis of the 

irregular scaffold geometries, which exhibit a remarkable performance under the 

mechanobiological assessment. A procedure was developed to model beam-based 

scaffolds with irregular structure inspired in the trabecular bone arrangement obtained from 

a combination of load adaptive and mechanobiological algorithms to design and optimize 

the irregular structures. Different boundary and loading conditions were hypothesized to act 

on the scaffolds, and in all of them, the irregular scaffolds adapted to the load were 

predicted to perform better than the others. The developed framework can be used to 

design and optimize high performance scaffolds to bear complex load distributions.  

 

Thanks to the results obtained to this point, some of the questions initially raised have been 

responded and our hypothesis begins to be confirmed. However, one of the main 

challenges regarding the modeling of bone tissue scaffolds is to predict its evolution in time. 

For this reason, we implemented a simplified model to explore how the stresses are 

changing from the early state when the scaffold is filled of granulation tissue to an evolved 

tissue state driven by a mechanoregulatory algorithm. The model developed is based on 

voxels that represent both the basic geometrical unit and the cells as basic biology unit.  

 

A computational framework was presented consisting in a high-resolution model with basic 

units of cell size and a parallel finite element domain. It allows modeling the biological and 

mechanical evolution of the newly formed tissue with the phenomena of the scaffold 

degradation. The developed model predicted the evolution of the stress distributions as well 

how the tissue differentiates and its mechanical properties evolve in time. According to 

some experimental observations, cells differentiate and synthesize ECM to compose tissue 

that will increase its mechanical properties in time exponentially. It was determined that the 

mechanical environment is not notably altered by the action of the tissue stiffening in the 

first days after injury. Without degradation, the scaffold biomechanical environment at first 

days was comparable to the one determined for the pore rectangular arrangement in 

chapter 3. 
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Introducing the degradation modeling into the tissue differentiation model in time reveals 

the expected changes produced in the environment due to the loss of mechanical properties 

and the erosion of the geometry shape of the scaffold. The stress distributions show that 

changes in the biomechanical environment are considerably bigger than those produced 

only by the tissue maturation. It was evidenced in the rate of change of the von Mises 

statistics that was faster when the scaffold degrades. This behavior is expected since the 

scaffold-tissue system will fail if the scaffold does not hold its stiffness enough time until the 

tissue can support the load. This fact was observed in several geometries of the rectangular 

arrangement studied. 

 

Observing the data regarding the stiffness of the scaffold-tissue system, molecular weight 

and mass loss of the scaffold, it is possible to state that different topologies will lead to 

different rates of variations in the biomechanical environment in which the tissue is 

developing. Indeed, the degradation has more influence on this environment than the slow 

modifications introduced by the tissue synthesis and maturation. 

 

Through the data obtained in this chapter, the initial questions that were raised can be 

responded. The models that do not consider the time show the initial state of the stresses 

and a transitory prediction of the tissues that could be developed, while the tissue evolution 

model exposes how the stress distributions are when the tissue is differentiated and gained 

its final mechanical properties reported. However, the final stress distributions depend on 

the differentiated tissue. It is expected that the stresses are bigger if the scaffold stimulates 

the differentiation of bone tissue, since it will be capable to bear the load acting on the 

regenerated after obtaining its final mechanical properties. On the contrary, if soft tissues 

such as fibrous, cartilage or even if the granulation tissue remain by the prediction of 

resorption or necrosis processes, the tissues developed will not be capable of bearing the 

load and the scaffold-tissue system will fail. 

 

From this work, it can be inferred that the state of stresses on the newly formed tissue is 

changing depending on the way in which the tissue is synthesized and its mechanical 

properties are obtained. Indeed, the scaffold micro-geometrical features can notably 

influence this process. 
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The verification procedure allows corroborating the consistency of the results regarding in 

silico and experimental literature. However, the work is limited by the many assumptions 

made, since the proposed models were simplified models of the phenomena that occur into 

the scaffold and an ideal scenario was supposed regarding the vascularization, host tissue 

competition and supply of nutrients and oxygen, and removal of wastes. 

 

We suppose that in general the same principles by which the fracture heal occurs in a 

normal injury will take place within scaffolds. For the sake of simplicity, we overlooked 

phenomena that are natural in fracture healing such as changes on loading during the 

differentiation process, and de-differentiation processes. Also, an important drawback of 

this work is that the frequency in the load application was ignored. However, a theoretical 

model that describes a clear and direct relationship among the scaffold geometry, loads 

schemes, their frequency of application and the consequent tissue outcome at the end of 

the process is still unknown. 

 

More research on bone tissue engineering scaffolds is necessary to tackle the limited 

clinical success of these devices and the wide range of outcomes. By means of integrative 

approaches of in vivo or in vitro scenarios and simulation, it is possible to develop better 

models to describe the phenomena more closely to its real nature. However, a challenge 

in those experimental studies is to guarantee factors such as enough vascularization, load 

schemes and the use of different regular scaffold geometries with controlled environments. 

Knowledge about the behavior of regular microstructures can lead to enhance the 

understanding of the behavior of irregular structures. 

 

The time evolution model presented is adaptable to different time curves of tissue behavior 

and degradation of materials, thus allowing adaptation to specific cases or regions with 

particular physiological environments. Even without the time evolution capabilities, the 

biomechanical environment modelled using “static” models is useful to predict the scaffold 

behavior and could be an interesting tool taking into account the relation low cost vs. the 

resources spent in a time evolution model. 

 

The differences in the stress distributions rise the question about whether there is a pattern 

or feature in the stress distributions that characterize an appropriate scaffold. Probably, the 

identification of distinctive features of the distribution can suggest strategies of design 
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without incurring in complex mechanobiological analyses. It is necessary to search for 

better characterizers, since histograms exhibit features in the stress distributions that are 

distinctive of each geometry but could also be hard to analyze and use in the design 

scenario. 

 

Even without mechanobiological data, knowing statistical parameters of a stress distribution 

inside the scaffold, such as median and mean, allow comparing them with favorable values 

stablished in this research to choose scaffold designs without complex mechanobiological 

routines. Stress distributions in combination with artificial intelligence techniques could be 

interesting tools to predict scaffold behavior and performance without complex approaches. 

 

Depending on the clinical scenario, time and nature of the tissue that is intended to recover 

can lead to different necessities. For instance, for rapid filling and more spontaneous 

regeneration, inducing cartilage to stablish an endochondral ossification environment can 

be useful, or stimulating immature bone in order to create a less rigid environment adequate 

to remodeling. Mature bone regenerated allows a rigid environment, but it can be less 

propense to allow vascularization, while immature bone has high osteogenic cell density 

and potential of organization that should be guided naturally by the macroscopic 

environment of the injury. The proposed in silico framework can be adjusted to design 

scaffolds considering all these specific requirements. 

 

Clearly, this research is far to be finished, instead this is just the beginning of the 

development of a multiscale integrative approach that takes into account the key aspects 

that govern the tissue behavior growing inside biodegradable scaffolds. Integrative 

approaches for scaffold design should be adopted, based on a full understanding of the 

different key factors of biological chemical and physical nature and including experimental 

support to validate and feed the computational models employed. In the distant future, 

implanted scaffolds should have controllable properties in non-invasive ways, for instance, 

changes in their topology in a controlled manner using an external signal to control the 

degradation properties. These developments should be directed towards concepts such as 

precision medicine, in which the medical treatments are oriented to the specific conditions 

and necessities of the patient.  

 





 

 
 

A. Annex: Goodness of fit details 

Different models were used to fit the relations among the micro-geometrical parameters, 

stress statistics and performance of the studied geometries. The models were named 

according to the MATLAB definitions (Version R2016b, MathWorks, Natick, MA, USA) and 

the parameters of each arrangement and load case are defined below. 

 

Table A-1: Function fitting models 

Model Equation form 

Third order polynomial 

surfaces (Poly33) 
f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p30*x^3 + 
p21*x^2*y + p12*x*y^2 + p03*y^3 

Cubic polynomial curve 

(Poly3) 
f(x) = p1*x^3 + p2*x^2 + p3*x + p4 

Fourth order polynomial curve 

(Poly4) 
f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5 

Exponential first order curve 

(Exp1) 
f(x) = a*exp(b*x)  

First order polynomial surfaces 

(Poly11) 
f(x,y) = p00 + p10*x + p01*y 

Square polynomial curve 

(Poly2) 
f(x) = p1*x^2 + p2*x + p3 

 

 

Table A-2: Function fitting details for rectangular pore geometry under 0.5 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

31.86 0.9871 0.9851 1.565 Poly2 
p1 =  -1.515e+06  (-2.035e+06, -9.954e+05) 
p2 =        3076  (-503.4, 6655) 
p3 =       98.58  (93.95, 103.2) 

VMMedian 
vs. REL 

99.45 0.9596 0.9534 2.766 Poly2 
p1 =  -1.405e+06  (-2.472e+06, -3.387e+05) 
p2 =         428  (-6032, 6888) 
p3 =       101.5  (94.23, 108.7) 

X Y vs. 
VMMean 

1.437e-08 0.9997 0.9992 4.894e-05 Poly33 

p00 =   -0.006526  (-0.009367, -0.003684) 
p10 =     0.07078  (0.05676, 0.08481) 
p01 =   -0.002267  (-0.01629, 0.01176) 
p20 =     -0.1886  (-0.2192, -0.1579) 
p11 =    -0.01317  (-0.03089, 0.004552) 
p02 =     0.00835  (-0.02226, 0.03896) 
p30 =      0.1681  (0.1455, 0.1907) 
p21 =     0.02823  (0.01403, 0.04242) 
p12 =     -0.0106  (-0.0248, 0.003598) 
p03 =   -0.003134  (-0.02571, 0.01944) 

X Y vs. 
VMMedian 

4.295e-08 0.9988 0.997 8.461e-05 Poly33 

p00 =   -0.006769  (-0.01168, -0.001857) 
p10 =     0.06734  (0.04309, 0.09158) 
p01 =   0.0004646  (-0.02378, 0.02471) 
p20 =     -0.1792  (-0.2322, -0.1263) 
p11 =    -0.01055  (-0.04118, 0.02009) 
p02 =     0.00115  (-0.05177, 0.05407) 
p30 =       0.152  (0.113, 0.191) 
p21 =     0.04392  (0.01937, 0.06846) 
p12 =    -0.02575  (-0.05029, -0.001202) 
p03 =    0.005657  (-0.03336, 0.04468)  
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Table A-3: Function fitting details for rectangular pore geometry under 1.0 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

383.1 0.9745 0.9682 5.65 Poly3 

p1 =  -1.184e+08  (-6.026e+08, 3.659e+08) 
p2 =   2.012e+06  (-7.006e+06, 1.103e+07) 
p3 =  -1.802e+04  (-6.557e+04, 2.954e+04) 
p4 =       130.4  (58.1, 202.7) 

VMMedian 
vs. REL 

187 0.9875 0.9844 3.955 Poly3 

p1 =  -9.401e+07  (-3.353e+08, 1.473e+08) 
p2 =   1.286e+06  (-2.752e+06, 5.325e+06) 
p3 =  -1.409e+04  (-3.342e+04, 5250) 
p4 =       120.3  (93.74, 147) 

X Y vs. 
VMMean 

5.855e-08 0.9997 0.9992 9.879e-05 Poly33 

p00 =    -0.01315  (-0.01889, -0.007415) 
p10 =      0.1415  (0.1132, 0.1698) 
p01 =   -0.003571  (-0.03188, 0.02474) 
p20 =     -0.3768  (-0.4385, -0.315) 
p11 =    -0.02698  (-0.06275, 0.008795) 
p02 =     0.01456  (-0.04723, 0.07634) 
p30 =      0.3356  (0.29, 0.3811) 
p21 =     0.05801  (0.02936, 0.08667) 
p12 =    -0.02206  (-0.05072, 0.006593) 
p03 =   -0.004337  (-0.0499, 0.04122) 

X Y vs. 
VMMedian 

1.706e-07 0.9988 0.997 0.0001686 Poly33 

p00 =    -0.01355  (-0.02333, -0.003757) 
p10 =      0.1341  (0.08583, 0.1825) 
p01 =     0.00159  (-0.04673, 0.04991) 
p20 =     -0.3572  (-0.4627, -0.2518) 
p11 =    -0.02126  (-0.08231, 0.03979) 
p02 =   0.0006836  (-0.1048, 0.1061) 
p30 =       0.303  (0.2253, 0.3808) 
p21 =      0.0883  (0.03939, 0.1372) 
p12 =    -0.05176  (-0.1007, -0.002855) 
p03 =     0.01267  (-0.06508, 0.09043) 

 

Table A-4: Function fitting details for rectangular pore geometry under 1.5 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

371.4 0.974 0.9675 5.564 Poly3 

p1 =  -3.543e+07  (-1.771e+08, 1.062e+08) 
p2 =   1.492e+06  (-2.466e+06, 5.449e+06) 
p3 =  -2.376e+04  (-5.507e+04, 7559) 
p4 =       154.8  (83.41, 226.2) 

VMMedian 
vs. REL 

265.3 0.9815 0.9768 4.702 Poly3 

p1 =  -7.399e+07  (-1.59e+08, 1.101e+07) 
p2 =   2.398e+06  (2.641e+05, 4.532e+06) 
p3 =  -2.917e+04  (-4.45e+04, -1.385e+04) 
p4 =       154.4  (122.8, 186) 

X Y vs. 
VMMean 

1.242e-07 0.9997 0.9992 0.0001438 Poly33 

p00 =    -0.01956  (-0.02791, -0.01121) 
p10 =      0.2105  (0.1693, 0.2517) 
p01 =   -0.004837  (-0.04606, 0.03638) 
p20 =     -0.5613  (-0.6512, -0.4713) 
p11 =    -0.03989  (-0.09198, 0.01219) 
p02 =     0.02019  (-0.06978, 0.1102) 
p30 =      0.5008  (0.4344, 0.5671) 
p21 =      0.0858  (0.04407, 0.1275) 
p12 =    -0.03243  (-0.07416, 0.009296) 
p03 =   -0.005355  (-0.07169, 0.06098) 

X Y vs. 
VMMedian 

3.837e-07 0.9988 0.997 0.0002529 Poly33 

p00 =    -0.02031  (-0.03499, -0.005626) 
p10 =      0.2012  (0.1287, 0.2737) 
p01 =    0.002315  (-0.07016, 0.07479) 
p20 =     -0.5358  (-0.694, -0.3777) 
p11 =    -0.03184  (-0.1234, 0.05973) 
p02 =    0.001188  (-0.157, 0.1594) 
p30 =      0.4545  (0.3379, 0.5712) 
p21 =      0.1323  (0.0589, 0.2056) 
p12 =     -0.0775  (-0.1509, -0.004137) 
p03 =     0.01884  (-0.09779, 0.1355) 
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Table A-5: Function fitting details for elliptic pore geometry under 0.5 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

50.98 0.9975 0.9969 2.061 Poly3 

p1 =  -7.108e+07  (-1.101e+08, -3.206e+07) 
p2 =   7.897e+05  (5.563e+04, 1.524e+06) 
p3 =       -5250  (-8845, -1656) 
p4 =       105.3  (100.8, 109.7) 

VMMedian 
vs. REL 

35.96 0.9982 0.9978 1.731 Poly3 

p1 =    9.94e+06  (-2.182e+07, 4.17e+07) 
p2 =   -7.21e+05  (-1.299e+06, -1.43e+05) 
p3 =      -607.7  (-3560, 2345) 
p4 =       101.3  (97.88, 104.7) 

X Y vs. 
VMMean 

2.791e-07 0.9993 0.9981 0.0002157 Poly33 

p00 =    -0.03847  (-0.05012, -0.02682) 
p10 =      0.2951  (0.2448, 0.3453) 
p01 =    0.001246  (-0.04902, 0.05151) 
p20 =       -0.67  (-0.7657, -0.5744) 
p11 =    -0.05519  (-0.1107, 0.0003423) 
p02 =     0.01694  (-0.07873, 0.1126) 
p30 =      0.4961  (0.4347, 0.5575) 
p21 =     0.06711  (0.02841, 0.1058) 
p12 =   -0.005002  (-0.0437, 0.03369) 
p03 =   -0.008741  (-0.07015, 0.05267) 

X Y vs. 
VMMedian 

4.359e-07 0.9985 0.9962 0.0002695 Poly33 

p00 =    -0.03481  (-0.04937, -0.02025) 
p10 =      0.2625  (0.1997, 0.3254) 
p01 =    0.004753  (-0.05806, 0.06756) 
p20 =     -0.5889  (-0.7085, -0.4694) 
p11 =    -0.06209  (-0.1315, 0.007303) 
p02 =      0.0128  (-0.1068, 0.1324) 
p30 =      0.4274  (0.3506, 0.5041) 
p21 =     0.08343  (0.03507, 0.1318) 
p12 =    -0.01058  (-0.05893, 0.03778) 
p03 =   -0.005001  (-0.08174, 0.07174) 

 

Table A-6: Function fitting details for elliptic pore geometry under 1.0 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

78.72 0.9965 0.9956 2.561 Poly3 

p1 =  -9.421e+06  (-1.548e+07, -3.36e+06) 
p2 =   5.522e+05  (3.241e+05, 7.803e+05) 
p3 =  -1.261e+04  (-1.485e+04, -1.038e+04) 
p4 =       123.9  (118.4, 129.4) 

VMMedian 
vs. REL 

88.45 0.9961 0.9951 2.715 Poly3 

p1 =  -8.853e+06  (-1.508e+07, -2.629e+06) 
p2 =   5.439e+05  (3.173e+05, 7.704e+05) 
p3 =  -1.293e+04  (-1.524e+04, -1.061e+04) 
p4 =         121  (115.6, 126.4) 

X Y vs. 
VMMean 

1.114e-06 0.9993 0.9981 0.0004309 Poly33 

p00 =    -0.07691  (-0.1002, -0.05364) 
p10 =      0.5902  (0.4897, 0.6906) 
p01 =     0.00231  (-0.09811, 0.1027) 
p20 =       -1.34  (-1.531, -1.149) 
p11 =     -0.1103  (-0.2212, 0.0006559) 
p02 =     0.03418  (-0.157, 0.2253) 
p30 =      0.9923  (0.8696, 1.115) 
p21 =      0.1341  (0.05681, 0.2114) 
p12 =   -0.009985  (-0.0873, 0.06733) 
p03 =    -0.01767  (-0.1404, 0.105)  

X Y vs. 
VMMedian 

1.749e-06 0.9985 0.9962 0.00054 Poly33 

p00 =    -0.06967  (-0.09884, -0.04051) 
p10 =      0.5249  (0.3991, 0.6508) 
p01 =     0.00993  (-0.1159, 0.1358) 
p20 =      -1.177  (-1.417, -0.9378) 
p11 =     -0.1245  (-0.2635, 0.01453) 
p02 =     0.02485  (-0.2147, 0.2644) 
p30 =      0.8543  (0.7006, 1.008) 
p21 =      0.1671  (0.07024, 0.264) 
p12 =    -0.02109  (-0.118, 0.07578) 
p03 =   -0.009545  (-0.1633, 0.1442) 
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Table A-7: Function fitting details for elliptic pore geometry under 1.5 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

324.2 0.9847 0.9791 5.429 Poly4 

p1 =   1.867e+08  (-5.824e+08, 9.557e+08) 
p2 =  -2.329e+07  (-9.178e+07, 4.52e+07) 
p3 =   1.049e+06  (-8.458e+05, 2.943e+06) 
p4 =  -2.029e+04  (-3.659e+04, -3999) 
p5 =         147  (108.9, 185) 

VMMedian 
vs. REL 

323 0.9847 0.9837 4.803 Exp1 
a =       153.6  (136.9, 170.3) 
b =      -187.5  (-216.4, -158.7) 

X Y vs. 
VMMean 

2.511e-06 0.9993 0.9981 0.0006469 Poly33 

p00 =     -0.1154  (-0.1503, -0.08043) 
p10 =      0.8851  (0.7343, 1.036) 
p01 =    0.003598  (-0.1472, 0.1544) 
p20 =       -2.01  (-2.297, -1.723) 
p11 =     -0.1654  (-0.3319, 0.001209) 
p02 =     0.05098  (-0.236, 0.3379) 
p30 =       1.488  (1.304, 1.672) 
p21 =      0.2012  (0.08517, 0.3173) 
p12 =    -0.01512  (-0.1312, 0.101) 
p03 =     -0.0263  (-0.2105, 0.1579) 

X Y vs. 
VMMedian 

3.923e-06 0.9985 0.9962 0.0008086 Poly33 

p00 =     -0.1044  (-0.1481, -0.06077) 
p10 =      0.7873  (0.5989, 0.9757) 
p01 =     0.01459  (-0.1738, 0.203) 
p20 =      -1.766  (-2.125, -1.407) 
p11 =     -0.1862  (-0.3944, 0.02195) 
p02 =     0.03769  (-0.321, 0.3963) 
p30 =       1.282  (1.051, 1.512) 
p21 =      0.2503  (0.1052, 0.3954) 
p12 =    -0.03182  (-0.1769, 0.1132) 
p03 =    -0.01454  (-0.2447, 0.2157) 

 

Table A-8: Function fitting details for spheric small topology under 1 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

Ds Dc vs. 
VMMean 

5.855e-08 0.9997 0.9992 9.879e-05 Poly11 
p00 =    0.001348  (0.0005825, 0.002113) 
p10 =   0.0007067  (-0.0009769, 0.00239) 
p01 =     0.00298  (0.000812, 0.005148) 

Ds Dc vs. 
VMMedian 

1.706e-07 0.9988 0.997 0.0001686 Poly11 
p00 =   0.0007331  (0.0001422, 0.001324) 
p10 =  -0.0004619  (-0.001762, 0.0008383) 
p01 =    0.005333  (0.003659, 0.007007) 

 

Table A-9: Function fitting details for spheric large topology under 1 MPa 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

VMMean 
vs. REL 

383.1 0.9745 0.9682 5.65 Exp1 
a =       176.6  (132.8, 220.3) 
b =      -175.6  (-227.1, -124.1) 

VMMedian 
vs. REL 

187 0.9875 0.9844 3.955 Exp1 
a =       151.6  (115.3, 187.9) 
b =      -173.5  (-232, -115) 

X Y vs. 
VMMean 

5.855e-08 0.9997 0.9992 9.879e-05 Poly11 
p00 =    -0.05744  (-0.09682, -0.01806) 
p10 =     0.06935  (0.01299, 0.1257) 
p01 =    0.007176  (-0.02489, 0.03924) 

X Y vs. 
VMMedian 

1.706e-07 0.9988 0.997 0.0001686 Poly11 
p00 =    -0.05285  (-0.08891, -0.0168) 
p10 =     0.06223  (0.01063, 0.1138) 
p01 =    0.008648  (-0.02071, 0.038) 
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Table A-10: Function fitting details for rectangular geometry under 1 MPa in time 

Function 

fitting 

SSE R-square Adjusted 

R-square 

RMSE Model Coefficients 

(with 95% confidence bounds): 

FVMMean 
vs. REL 

714.7 0.9577 0.9512 7.415 Poly2 
       p1 =      -56.35  (-92.41, -20.29) 
       p2 =       180.8  (120.7, 240.9) 
       p3 =      -42.47  (-64.79, -20.15) 

X Y vs. 
FVMMean 

0.006053 0.9969 0.9924 0.03176 Poly33 

       p00 =       5.087  (3.521, 6.654) 
       p10 =      -30.08  (-37.95, -22.2) 
       p01 =     0.09739  (-7.778, 7.972) 
       p20 =       72.01  (54.63, 89.39) 
       p11 =       4.376  (-5.662, 14.41) 
       p02 =      -1.958  (-19.34, 15.42) 
       p30 =       -57.2  (-70.1, -44.3) 
       p21 =      -4.661  (-12.76, 3.438) 
       p12 =      -2.194  (-10.29, 5.905) 
       p03 =       2.355  (-10.55, 15.26) 

 

 





 

 
 

B. Annex: Definition of the upper 
bounds for beam-based scaffolds 

The definition of the upper bounds is taken from Publication I for each beam-based 

geometry studied. (Rodríguez-Montaño et al., Comparison of the mechanobiological 

performance of bone tissue scaffolds based on different unit cell geometries. Journal of the 

mechanical behavior of biomedical materials, 2018, vol. 83, p. 28-45.) 

 

B1. Truncated cuboctahedron 

 

The upper bound Dmax_1 for the truncated cuboctahedron, circular cross section is defined 

as the beam diameter for which the square interconnection formed by the orange bars 

showed in Fig. B-1(a) disappears. This occurs when: 

𝐷𝑚𝑎𝑥 _1 = 𝐿1          (B1) 

In the case of the square cross section the square interconnection disappears when (Fig. 

B-1(b)): 

𝐷𝑚𝑎𝑥 _1 = 𝐿1 ∙
√2

2
          (B2) 

B2. Truncated Cube 

 

The upper bound Dmax_2 for the truncated cube, circular cross section is defined as the beam 

diameter for which the triangular interconnection formed by the orange bars showed in the 

Fig. B-2(a) disappears. If rc is the radius of the circle inscribed in the triangular 

interconnection, it follows that this interconnection will disappear when the following 

relationship is satisfied:  

𝐷𝑚𝑎𝑥 _2 = 2 ∙ 𝑟𝑐           (B3) 

The radius rc of a circle inscribed in a triangle with area AT and perimeter PT is given by: 

𝑟𝑐 =
2 ∙ 𝐴𝑇

𝑃𝑇
          (B4) 
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Figure B-1:  Definition of the upper bound Dmax _1 for the truncated cuboctahedron unit 

cell, circular (a) and square (b) cross section. 

 

 

 

Figure B-2:  Definition of the upper bound Dmax _2 for the truncated cube unit cell, circular 

(a) and square (b) cross section. 
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Therefore, the following relationship between the upper bound Dmax_2 and the beam length 

L2 can be written: 

 

𝐷𝑚𝑎𝑥 _2 = 2 ∙ 𝑟𝑐 =  
𝐿2 ∙ √3

3
          (B5) 

 

To compute Dmax_2 in the case of square cross section, the triangular interconnection must 

be projected onto the lateral plane δ (Fig B-2(b)). This triangular interconnection will 

disappear when Dmax_2/2 = rc which leads to the following relationship: 

 

𝐷𝑚𝑎𝑥 _2 = 2 ∙ 𝑟𝑐 =  
𝐿2

1 + √2
          (B6) 

 

B3. Rhombic Dodecahedron 

 

The upper bound Dmax_3 for the rhombic dodecahedron unit cell with both circular and 

square cross section is defined as the beam diameter for which the rhombic interconnection 

shown in Fig B-3(a) disappears. If d is the height of the triangle shown in Fig. B-3(a), the 

following relationships can be written to compute Dmax_3 in function of the beam length L3 

and the angle α = 53.13°:  

 

{
𝑑 = 𝐿3 ∙ cos (

𝛼

2
) ∙ sin (

𝛼

2
)

𝐷𝑚𝑎𝑥 = 2 ∙ 𝐿3 ∙ cos (
𝛼

2
) ∙ sin (

𝛼

2
)

          (B7) 
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Figure B-3:  Definition of the upper bound Dmax _3 and Dmax _4 for the rhombic 

dodecahedron (a) and the diamond (b-d) unit cell, respectively, with both circular and 

square cross section. 

 

 

 

B4. Diamond 

The upper bound Dmax_4 of the diamond unit cell with circular cross section is defined as the 

beam diameter for which the rhombic interconnections (highlighted in orange in Fig. B-3(b)) 

will disappear. If s is the height of the triangle shown in Fig. B-3(c), the following 

relationships can be written: 

 

{
𝑠 = 𝐿4 ∙ cos (

𝛽

2
) ∙ sin (

𝛽

2
)  

𝐷𝑚𝑎𝑥 _4 = 2 ∙ 𝐿4 ∙ cos (
𝛽

2
) ∙ sin (

𝛽

2
)  

          (B8) 

 

where β = 109.47°. 
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Dmax_4 for the square cross section depends on the orientation of the beams included in the 

unit cell. However, it is possible to state that in the worst case Dmax_4 for square cross section 

will be equal to Dmax computed for the circular section (Equation B8) divided by √2 (Fig. B-

3(d)): 

𝐷𝑚𝑎𝑥 _4 =
2

√2
∙ 𝐿4 ∙ cos (

𝛽

2
) ∙ sin (

𝛽

2
)         (B9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

C. Annex: Irregular Load Adapted 
Scaffold Optimization: A 
computational Framework Based on 
Mechanobiological Criteria 

 

The original publication can be found here: 

https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.9b01023 

 

Abstract: 

 

By combining load adaptive algorithms with mechanobiological algorithms, a computational 

framework was developed to design and optimize the microarchitecture of irregular load 

adapted scaffolds for bone tissue engineering. Skeletonized cancellous bone-inspired 

lattice structures were built including linear fibers oriented along the internal flux of forces 

induced by the hypothesized boundary conditions. These structures were then converted 

into solid finite element models, which were optimized with mechanobiology-based 

optimization algorithms. The design variable was the diameter of the beams included in the 

scaffold, while the design objective was the maximization of the fraction of the scaffold 

volume predicted to be occupied by neo-formed bony tissue. The performance of the 

designed irregular scaffolds, intended as the capability to favor the formation of bone, was 

compared with that of the regular ones based on different unit cell geometries. Three 

different boundary and loading conditions were hypothesized, and for all of them, it was 

found that the irregular load adapted scaffolds perform better than the regular ones. 

Interestingly, the numerical predictions of the proposed framework are consistent with the 

results of experimental studies reported in the literature. The proposed framework appears 

to be a powerful tool that can be utilized to design high-performance irregular load adapted 

scaffolds capable of bearing complex load distributions.

https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.9b01023
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