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Abstract
Diabetic retinopathy (DR) is the result of a complication of diabetes affecting the retina.
It can cause blindness if left undiagnosed and untreated. The ophthalmologist performs the
diagnosis by screening each patient and detecting in ocular imaging the lesions caused by
DR, namely, microaneurisms, hemorrhages, cotton wool spots, venous beading and neovas-
cularization. However, the analysis of ocular findings is cumbersome, time-consuming, and
demanding. Due to the insufficient amount of trained specialists to diagnose the illness,
and the actual growing population with DR, it is important to develop a method to assist
the DR diagnosis. This thesis presents two approaches for the automatic classification of
DR using eye fundus images. The first one utilizes convolutional neural networks, transfer
learning and shallow machine learning classifiers to identify the main ocular lesions related
to DR and then use them to diagnose the illness. The second one is a multitask model which
predicts simultaneously ocular lesions and DR. These approaches follow a similar workflow
to that of clinicians, providing information that can be interpreted clinically to support the
prediction. To achieve this goal a subset of the kaggle EyePACS and the Messidor-2 datasets,
are labeled with ocular lesions by a certified opthalmologist. The kaggle EyePACS subset is
used as training set and the Messidor-2 dataset is used as test set for both, the lesions and
DR classification models. The results indicate that both methods achieve results comparable
with state-of-the-art performances. The best results are obtained using the first approach
with a multi layer perceptron as classifier for the automatic detection of DR, however, the
multitask approach lead to similar results and has a simpler architecture.

Keywords: ocular lesions, diabetic retinopathy, convolutional neural networks, transfer
learning, multitask models, shallow machine learning classifiers.
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Resumen
Título en español: Detección automática de retinopatía diabética usando aprendizaje pro-
fundo y hallazgos médicos.
La retinopatía diabética (RD) es el resultado de una complicacion de la diabetes que afecta
la retina. Puede causar ceguera si no se diagnostica ni se trata. El diagnóstico de esta enfer-
medad se hace mediante el escaneo de cada paciente y el análisis de imágenes oculares para
detectar lesiones causadas por la RD, como microaneurismas, hemorragias, manchas algo-
donosas, arrosamiento venoso y neovascularización. Sin embargo, el análisis de las lesiones
oculares es engorroso, lento y exigente. Debido a la cantidad insuficiente de especialistas
capacitados para diagnosticar la enfermedad y al crecimiento actual de la población con RD,
es importante desarrollar un método para ayudar en el diagnóstico de esta enfermedad. Esta
tesis presenta dos enfoques para la clasificación automática de la RD utilizando imágenes de
fondo de ojo. El primero utiliza redes neuronales convolucionales, transferencia de apren-
dizaje y clasificadores clásicos de aprendizaje de máquina para identificar las principales
lesiones oculares relacionadas con la RD y luego usarlas para diagnosticar la enfermedad. El
segundo es un modelo multitarea que predice simultáneamente lesiones oculares y RD. Estos
enfoques siguen un flujo de trabajo similar al de los médicos, proporcionando información
que puede interpretarse clínicamente para respaldar la predicción. Para lograr este objetivo,
un subconjunto de las bases de datos kaggle EyePACS y Messidor-2 fueron etiquetados con
lesiones oculares por un oftalmólogo certificado. El subconjunto de kaggle EyePACS se uti-
liza como conjunto de entrenamiento y el de Messidor-2 se utiliza como conjunto de prueba
tanto para los modelos de detección de lesiones, como para los de clasificación de RD. Los
resultados indican que ambos enfoques logran desempeños comparables con los métodos del
estado del arte. Los mejores resultados se obtienen utilizando el primer enfoque con un
perceptrón multicapa como clasificador para la detección automática de RD, sin embargo,
el enfoque multitarea conduce a resultados similares y tiene una arquitectura más simple.

Palabras clave: lesiones oculares, retinopatía diabética, redes convolucionales, trans-
ferecia de aprendizaje, modelo multitarea, clasificadores clásicos de aprendizaje de
máquina.
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1. Introduction

Diabetic retinopathy (DR) is an ocular disease that affects patients with undiagnosed, un-
treated, or undertreated diabetes mellitus. DR causes damage to the vessels in the eye
inducing leakage of fluid within the retina, exudates, and intraretinal hemorrhages. If the
disease progresses it may lead to decreased vision and even blindness [54]. This illness ap-
pears in 40% to 45% of diabetic patients at any time of their lives, from which about 5%
face vision-threatening complications [20, 7].

An ophthalmologist performs the DR diagnosis through a meticulously visual inspection
of the retina according to the ICDR grading system [68], which determines the DR level
according to the presence of retinal lesions such as microaneurysms (MA), hemorrhages (H),
exudates (EX), cotton wool spots (CWS), intraretinal microvascular abnormalities (IRMA),
venous beading (VB), and neovascularization (NV) [15, 54]. The initial clinical signs of
DR are MA, that allow leakage of blood from the affected capillaries, they appear as small
reddish dots on the superficial layers of the retina. MA tends to have weak walls that can
break, leading to H of variable size and shape [45]. Damaged retinal vessels allow lipoproteins
precipitates to leak, forming EX that have a yellowish color and an irregular shape. These
EX exhibit a characteristic brightness in comparison to the contrast presented in MA and
H. CWS are lesions caused by ischemia of the nerve fiber layer in the retina and emerge
as yellowish-white spots with irregular edges. Signs of more advanced DR include irregular
constriction and dilation of venous vessels in the retina, known as venous beading [14], as well
as neovascularization, which appears as red fronds of abnormal vascular networks. These
vessels may show up arranged in a radiating pattern or without a distinct pattern [31].

As much as 95% of the cases of vision loss and blindness can be prevented with regular
screening and appropriate management [10]. Despite the importance of a timely diagnosis
fewer than half of patients with DR are aware of their condition [54]. Due to the asymp-
tomatic nature of the early stages of this disease [41], diabetic patients should be screened
frequently with a fundus exam to look for early signs and make an on-time detection [9, 45].
However, access to specialized care by an ophthalmologist is limited for some populations,
because most of the ophthalmologists in the world are concentrated in urban areas and big
cities. The development of an automated detection system for DR could improve access to
specialized care by reducing the time, cost, and effort of screening [51, 43]. In addition,
the diabetic population is expected to increase 54% by 2030, while the projected increase of
ophthalmologists is only 2% [27]. Thus, the need to integrate automatic detection methods
in the screening process responds to these challenges in the present and future panorama of
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diabetic retinopathy.
Dealing with the previous issues, we propose a model for the automatic detection of

DR that relies on the identification of its ocular lesions. The proposed method is different
from state-of-the-art models based on Convolutional Neural Networks (CNNs), because it
follows the workflow of the clinicians in the process of DR diagnosis. This approach has
the advantage of providing additional information regarding the lesions found in the input
image what improves the interpretability of the model. The experimental results show that
this strategy also improves the overall classification performance of the system.

1.1. Problem statement

We propose a novel deep learning method for the automatic classification of DR. This model
incorporates information about the medical findings that are considered by ophthalmologists
in the process of diagnosis. A Computer-assisted diagnosis (CAD) system could lower the
workload of ophthalmologists, support during difficult to diagnose cases, and allow more
people to access a diagnosis. We identified some challenges in the design and development
of a CAD system for DR:

1. Few examples of ocular lesions related to DR in the public datasets with eye fundus
images: the available datasets that include labels for lesions related to DR are small,
this is due to labeling images at a lesion level is costly, tedious, and time-consuming
[43]. There are larger datasets with binary or grade labels for DR; however, they are
imbalanced with the normal class as the dominant.

2. The available automatic detection methods are not robust enough: many of the state-
of-the-art methods for automatic detection of DR can not be used in real applications
because they are unable to generalize.

3. Lack of interpretability: most of the work done on the automatic detection of DR is
based on binary or grade classification, few efforts have been done in the improvement
of the interpretability of the models. However, in medical applications the user needs
to know why the models predict what they predict, to gain trust and confidence in the
system [53].

The main drawback of the actual approaches, is that they are specialized in the individual
classification of either DR or its ocular lesions. However, information related to the ocular
lesions could be useful to ophthalmologists. Regarding this issue, it is proposed to design
a deep learning method for the automatic identification of clinically meaningful findings for
the automatic diagnosis of DR in retinal fundus images.

Considering the aforementioned, the main research question is:

• How to incorporate medical findings in a deep learning model for identifying diabetic
retinopathy in retinal fundus photographs?
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1.2. Objectives

1.2.1. General Objective

• To develop a classification model based on deep learning to support the diagnosis of
DR using eye fundus images incorporating medical findings.

1.2.2. Specific Objectives

• To develop a deep learning model to identify aneurysms, hemorrhages, cotton wool
spots, neovascularization, and venous beating in eye fundus images.

• To develop a strategy to incorporate medical findings into a deep learning model for
diabetic retinopathy prediction.

• To systematically evaluate the model on test data sets.

1.3. Main contributions

This work presents a methodology to include ocular lesions information in the DR automatic
detection. The main contributions are as follow:

• A new dataset with fine-grained lesions annotations for microaneurysms, hemorrhages,
cotton wool spots, venous beading, neovascularization, exudates and global labels for
diabetic macula edema, and referable condition for 3209 images from the kaggle Eye-
PACS dataset and 1689 images from the Messidor-2 dataset.

• A strategy that follows the workflow of the clinicians in the DR diagnosis, which
increases the interpretability of the model decision. The method for the detection of
DR relies on the identification of its related retinal abnormalities and provides both,
DR detection along with the classification of 5 lesions used by ophthalmologists to
diagnose this illness.

• Exploration of two different strategies to incorporate lesion related to DR in the illness
automatic detection.

The following papers have been published or accepted in conferences:

• Toledo-Cortés S., delaPava M., Perdomo O., González F.A. (2020) Hybrid Deep
Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quan-
tification. In: Fu H., Garvin M.K., MacGillivray T., Xu Y., Zheng Y. (eds) Ophthalmic
Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069.
Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_21
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• Perdomo-Charry, O., Pérez-Pérez, A., delaPava-Rodríguez, M., Ríos-Calixto, H.,
Arias-Vanegas, V., Lara-Ramírez, J., Toledo-Cortés, S., Camargo-Mendoza, J., Rodríguez-
Alvira, F., González-Osorio, F. (2020). SOPHIA: System for Ophthalmic Image Acqui-
sition, Transmission, and Intelligent Analysis. Revista Facultad De Ingeniería, 29(54),
e11769. https://doi.org/10.19053/01211129.v29.n54.2020.11769

• Accepted in SIPAIM2021 conference: delaPava M., Ríos-Calixto, H., Rodríguez-
Alvira, F., Perdomo O., González F.A. (2020). A deep learning model for classification
of diabetic retinopathy in eye fundus images based on retinal lesion detection.



2. Related works

In this Chapter we present an overview of the most representative methods associated with
the automatic detection of DR using eye fundus images. We classify them into three cate-
gories, the classification of DR-related ocular lesions, the detection of DR, and the classifi-
cation of DR based on the identification of ocular lesions.

The first methods proposed for the detection of DR or its related lesions use classical
image processing techniques involving a stage to build a handcrafted feature set. However,
the most recent methods are based on CNNs which extract a representation of the images
that allow to identify DR patients [71]. In contrast to classical image processing systems,
which use predefined features as an intermediate stage for classification, CNNs models can
independently extract the appropriate representation and directly classify an image.

2.1. Diabetic retinopathy-related lesions detection

Most of the methods reported regarding the automatic detection of DR-related lesions are
focused on the detection of red lesions, namely, MA, H, and EX.

The methods proposed usually extract retinal structures as a preprocessing step. Followed
by a two-stage approach, in which a set of potential candidates are identified and later refined
using classical image processing methods and hand-crafted features [43].

Alaguselvi and Murugan present an approach that uses the contrast limited adaptive
histogram equalization method and the matched filter to remove retinal blood vessels, the
optic disc, and noise from eye fundus images. Then a morphology method is applied to
identify H, MA, and EX [5]. Similarly, Chen et al., preprocess the images by suppressing the
retinal blood vessels and use a multi-scale sparse coding-based learning algorithm to learn the
individualized retinal background and identify salient lesions [13]. Alternatively, Amin et al.,
present the combination of Gabor filter mathematical morphology, statistical and geometric
features to detect EX and to grade DR using different ensembles of classifiers [6]. Qiao,
Ying, and Zhou preprocessed the images using an enhancement for dark lesions on the edge
of curvelet and morphological closures. Then they perform a candidate lesions detection for
MA using a matched Filter with a 2-dimensional Gaussian kernel and a candidate extraction
maximizing mutual information [48].

Few methods have been published regarding the automatic detection of NV. Hassan et al.,
describe a method that combines image normalization, compactness classifier, morphology-
based operator, Gaussian filtering, and thresholding techniques to highlighted NV in fundus
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images [25].
Other works use CNNs for the detection of lesions, which avoids building a set of features,

as required by the classical ML classification techniques. Chudzik et al., use transfer learning
along with a patch-based CNN with a Dice loss function for the detection of MA, this method
requires three stages, namely, preprocessing, patch extraction, and classification [15]. Lam
et al., implement a multitask approach where a GoogleNet architecture is used to classify 5
classes, specifically, normal, MA, dot-blot H, EX, or CWS, and high-risk lesions such as NV,
VB, and scarring [35]. A dataset of macula-centered retinal fundus images is constructed
in [57], it has labels for 12 abnormal findings. This dataset is used to train a network for
the classification of each finding, the method also generates a heatmap that highlights their
location. Alternatively, Orlando et al., use an ensemble of CNN and classical ML classifiers.
They identified MA and H using CNN and hand-crafted features, where lesion candidates
are discriminated by a random forest classifier using final augmented features [44].

2.2. Diabetic retinopathy classification

In 2008 were published the earliest methods for the automatic detection of DR using eye
color fundus images. These first works usually have three steps: preprocessing, hand-crafted
feature extraction and classification. For example in Li et al., perform a preprocessing step
based on histogram equalization, morphological operators, and binarization followed by a
feature extraction step, in which morphological operations are used to obtain six features
namely, red, green, and blue layer of perimeter and layer of area, these features are finally
used to train a neural network and classify the images [38].

However, most of the recent methods for the automatic detection of DR involve CNNs.
The method proposed by Gayathri et al., uses a CNN to extract features of retinal fundus
images and use them to grade DR using classical ML classifiers as support vector machine,
AdaBoost, naive Bayes, random forest, and J48 [21]. Wan et al., implement transfer learning
and hyper-parameter tuning, using AlexNet, VggNet, GoogleNet, and ResNet architectures
for the classification of DR [64]. A similar approach is presented by Ashikur et al., using the
AlexNet and GoogleNet architectures [8], and by Gulshan et al., implementing the Inception-
v3 architecture for DR grading [23]. Li et al., use CNN models and transfer learning for
the binary classification of DR, they explore three different strategies: fine-tuning just some
layers of pretrained networks, use the pretrained models as features extractors to train a
support vector machine ,and fine-tune all the layers of pretrained networks, leading this last
one to the best results [39].

Leibig et al., state that difficult to diagnose cases of DR are unavoidable, so the prediction
of the automatic diagnostic methods should be associate with a measure of the uncertainty of
the decision. To do so, they evaluate drop-out based Bayesian uncertainty measures in deep
learning methods for the binary classification of DR. The authors show that the inclusion of
uncertainty in the predictions can improve diagnostic performance [36].
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Other approaches include ensembles of CNNs. Qummar et al., present an ensemble of
five CNNs, namely, Resnet50, Inceptionv3, Xception, Dense121, and Dense169 to classify
the different stages of DR [49]. Gulshan et al., use an ensemble of 10 Inception-V3 networks
pretrained on the ImageNet dataset, and fine-tuned them for the binary classification of DR,
the authors use the Messidor-2 dataset as the test set, however, they re-labeled privately the
images [24]. Voets et al., re-implemented the main method in Gulshan et al., and evaluate
it using the available labels of the Messidor-2 dataset, however, they were not able to get
the same reported performances, showing the challenges faced when trying to reproduce the
results of deep learning methods [63].

Other implementations are inspired in the process of diagnosis of the clinicians. Wang
et al., propose a weakly supervised learning framework, called Zoom-in-Net. It is based on
CNNs that mimics the zoom-in process of the clinicians to identify lesions in the images, the
proposed method classifies DR and highlights suspicious regions [67]. Zeng et al., implement
a siamese-like CNN that analyzed images from both eyes of a patient, as a clinician does to
diagnose DR [73].

Some methods have been used under real clinical scenarios leading to promising results
to integrate them in the DR diagnosis system. Rajalakshmi et al., take retinal images of
301 patients using a smartphone-based device, called Remidio "Fundus on phone" (FOP).
The images taken are graded for DR and diabetic macular edema (DME) by a reference
standard, the ophthalmologists, and an artificial (AI) DR screening software named, Eye-
ArtTM. After comparing both diagnoses, they found that the AI-based grading algorithm
along with smartphone-based imaging can be used to reliably identify patients with DR [50].
Similarly, Abramoff et al., demonstrate that AI methods can bring specialty-level diagnostics
to primary care settings, and present the first autonomous AI diagnostic system authorized
by the FDA in any field of medicine, which detects more than mild DR and DME [4].

2.3. Diabetic Retinopathy automatic detection using
ocular lesions information

In this section, we present an overview of the most representative methods that detect or
extract features of ocular lesions for the classification of DR.

The most common approach contains three stages: a first segmentation step, a second
step that extracts manually a set of features from DR-related lesions, and a third step
that uses these features to classify or grade DR. Sharif et al., present a model that combines
independent component analysis with a curve fitting technique to remove retinal blood vessels
and the optic disc from eye fundus images. A feature set of DR-related lesions is built, which
includes the count number of EX, H, and MA, they also incorporate the mean and standard
deviations of candidate regions on the images. Then, a multi-class Gaussian Bayes classifier
and a multi-SVM are trained with the feature set to grade DR [56]. Similarly, Abdelmaksoud
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et al., use the U-Net network to segment EX, MA, H, and blood vessels. Then a set of features
as co-occurrence matrix, areas, and bifurcation points count are calculated to grade DR using
a SVM [2]. Paing et al., propose a method that uses histogram matching, morphological
opening, and canny method to segment blood vessels, EX and MA. Some features as area
and counts are estimated to classify the stages of DR using a customized artificial neural
network [45]. Akram et al., implement a method that initially removes blood vessels and
optic disc. Then, a set of morphological descriptors such as shape, color, and statistical
features are used to train a weighted combination of multivariate m-Mediods and a Gaussian
mixture model to identify potential candidates for MA, H, and EX. Finally, the fundus image
is graded on a DR scale according to medical conditions that include the type and count of
lesions [61].

Other approaches perform the feature extraction skipping the initial segmentation step.
Seoud et at. initially detect MA and H using a strategy to extract shape features with
morphological image flooding, that discriminate between lesions and other structures. They
calculate a set of shape features that do not require segmentation of the candidates and
those features are later used for the identification of the candidate regions [55].

All these methods use only red lesions for the detection of DR and most of them implement
classical ML methods. However, recently the role of bright lesions for DR grading has also
been investigated along with deep learning techniques.

Recent works propose models to automatically perform feature extraction from DR-
related lesions to classify the illness. Yang et al., present a two-stages CNN-based algorithm
trained with image patches and a weighted lesion map on the input, which can detect DR
severity and its related lesions [70]. Wang et al., design a hierarchical multi-task deep learn-
ing framework for the classification of the severity of DR and its related lesions such as MA,
H, CWS, VB, NV, and others [65]. Similarly, Zago et al., investigate a lesion localization
model using two CNNs patch-based approaches. Additional information such as a lesion
probability map and the maximum value of a probability map are used to classify DR [71].
Recently, Zhou et al., partially released pixel-level and image-level fine-grained annotations
of lesions related to DR named the FGADR dataset. They reported individual modules for
the segmentation of lesions to extract features that are integrated into a grading model to
improve DR classification results [76].

Our model is different from the previous works because:

1. It does not require the segmentation of retinal structures or lesions as a preprocessing
step.

2. Our method follows the same opthalmologist workflow in which initially A, H, CWS,
VB, and NV are identified to later diagnose DR. Our model provides both lesions and
DR classification.

3. In many previous works, the test set in unclear, private, or the DR labels from public
datasets are re-labelled privately. Our DR detection model is evaluated in the Messidor-
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2 dataset with the already publicly available labels and all the lesions labels used to
train the models will be released.



3. Datasets

To perform the experiments in this work, we build a dataset that provides labels for DR-
related lesions. To be able to compare our performance with state-of-the-art results we
selected frequently used datasets for DR detection and annotated DR-related lesions on
them. This Chapter presents an overview of the existing publicly available datasets with
DR and DR-related lesions annotations, the detailed description of our dataset, and its
comparison with the currently available.

3.1. Diabetic retinopathy grading datasets

We selected two datasets to be partially labeled with ocular lesions related to DR. The
selection is made between the currently publicly available datasets with eye fundus images
and DR annotations used in the state-of-the-art to train and evaluate models for the DR
automatic detection. An overview of these datasets is presented briefly as follows:

Kaggle-EyePACS [32]: it is the largest set of high-resolution retina images with 35,126
training images and 53,576 testing images taken under a variety of imaging conditions, some
images contain artifacts, are out of focus, underexposed, or overexposed. The images are
labeled with left or right labels and noisy grades on a scale of 0, 1, 2, 3, 4, which stand for
no DR, mild, moderate, severe, and proliferative DR respectively.

Kaggle-APTOS2019 [59]: this dataset has 3,662 training images with public labels
for DR on a scale of 0 to 4 and 1,928 testing images with private labels. The images were
taken under a variety of imaging conditions, some images contain artifacts, are out of focus,
underexposed, or overexposed light.

DIR-5K [42]: this dataset was build analyzing 5,000 patients. The images present a
range of varied image resolutions. Trained human readers under quality control management
annotated eight labels including normal, diabetes, glaucoma, cataract, AMD, hypertension,
myopia, and other diseases/abnormalities.

Messidor [29]: it contains 1200 eye fundus color images of the posterior pole taken
with the same camera with a 45-degree field of view, the sizes of the images vary between
1440 × 960, 2240 × 1488 or 2304 × 1536 pixels. It provides DR grading on a scale of 0 to 3,
and grades for risk of macula edema on a scale of 0 to 2.

Messidor-2 [30]: it is an extension of the Messidor dataset. It contains 529 examinations
(1058 images) from the Messidor dataset and 345 examinations (690 images) never-before-
published. Overall, the Messidor-2 dataset contains 1748 macula-centered eye fundus images
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that came in pairs and were acquired with a 45-degree field of view with sizes between
1440 × 960 and 2304 × 1536 pixels. The dataset provides a spreadsheet with the image
pairing, but, it does not contain annotations for DR. However, Abramoff et al., released on
its webpage the images with a binary classification for DR, which is used in the experiments
here performed [3].

DDR [37]: this dataset has 13673 fundus images, from which 6266 are healthy and
6256 have DR. The images in this dataset have DR grading (no DR, mild DR, moderate
DR, severe DR, proliferative DR), pixel-level annotations for 4 different lesions and gradable
labels. It has 6835 training images (6320 are gradable), 2733 validation images (2503 are
gradable) and 4105 test images (3759 are gradable).

3.2. Diabetic retinopathy lesions datasets

We present an overview of the datasets that include ocular lesions related to DR and compare
them with the proposed dataset to clarify its contributions.

DRIVE [58]: the Digital Retinal Images for Vessel Extraction dataset was made publicly
available in 2004. It has 40 color fundus photographs acquired with 45-degree field of view
with 768 × 584 pixels, from which, 7 contain pathologies, namely exudates, hemorrhages,
and pigment epithelium changes. The dataset includes the segmentation of the vessels in all
the images, which are JPEG compressed.

ImageRet [34, 33]: this dataset is subdivided into two sub-databases, DIARETDB0
with 130 images and DIARETDB1 with 89 images, which were made publicly available
in 2008. The images were acquired with a 50 field of view at a size of 1500¯1152 pixels in
PNG format. The images were annotated for 4 DR-related lesions, namely, microaneurysms,
hemorrhages, and hard and soft exudates.

STARE [28]: this dataset consists of 400 images with labels for 39 possible manifesta-
tions. It also provides, blood vessel segmentation for 40 images, two artery/vein labelings of
10 images, and optic nerve segmentation for 80 images. The data can be found in [22].

IDRiD [40]: this dataset provides data to perform three different tasks: segmentation,
classification, and localization:

• Segmentation: it has 81 images with segmentation for microaneurysms, hemorrhages,
hard exudates, and soft exudates. It also includes segmentation of the optic disk.

• Disease grading: it has 516 images divided in the train (413 images), and the test set
(103 images). It provides severity grades for DR, and DME.

• Localization: it has 516 images divided into the train set (413 images) and the test
set, with optic disc center location and fovea center location.
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FGADR [75]: is a large-scale fine-grained annotated DR dataset with 2,842 images,
which is partially available to the date. It is divided into two sets with pixel-level DR-
related lesion annotations and image-level labels:

• Seg-set: contains 1,842 images with both pixel-level lesion annotations and image-
level grading labels for DR in a range 0 to 4, annotated by three ophthalmologists.
The lesions annotated are microaneurysms (MA), hemorrhages (H), hard exudates
(EX), cotton wool spots (CWS), intra-retinal microvascular abnormalities (IRMA),
and neovascularization (NV). It also provides image-level labels for laser mark (LM)
and proliferate membrane (PM).

• Grade-set: contains 1,000 images with grading labels on range 0 to 4 for DR, annotated
by six ophthalmologists, which gives it high annotation confidence.

e-ophtha [18]: it is made of two sub-databases with pixel-level annotations:

• e-ophtha-MA: it has 148 binary masks for microaneurisms or small hemorrhages and
233 images with no lesion.

• e-ophtha-EX: it contains 47 images with binary masks for exudates and 35 images with
no lesion.

Each folder in the dataset corresponds to a patient, which may have more than one color
fundus image in jpeg format.

DRiDB [47]: this dataset has 50 images with annotations for both, pathologies and
normal eye fundus structures. The experts segmented areas related to microaneurysms,
hemorrhages, neovascularizations, hard and soft exudates. They also marked the blood
vessels, optic disc, and macula. The dataset also provides grading for DR for each image in
the dataset.

DDR [37]: The dataset include segmentation and labels for 4 different lesions. This
dataset has 13673 fundus images from which 757 have at least one lesion. There is a total
of 601 images with hemorrhages, 570 with microaneurisms , 239 have soft exudates and 486
present hard exudates.

3.3. Diabetic Retinopathy Ocular Lesions Labels
(DROLL) dataset:

Most of the available datasets have either grading/binary labels for DR or labels for some
ocular lesions. The FGADR dataset is the only one that provides both, however,it is only
partially available to the date.
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Since our objective is to classify DR using lesions information, we decide to select two
datasets employed in the literature for the detection of DR, to create and release a large-
scale dataset with fine-grained labels of six ocular lesions and two diagnostic labels. The
kaggle-EyePACS is selected since it is the largest available and therefore it could contain
more images with lesions examples. The Messidor-2 is also selected since it includes most
of the images from the Messidor dataset and both are widely used to evaluate models in
the literature. However, we use the available DR labels to evaluate our models so our
performances could be compared with state-of-the-art results. The construction details of
the DROLL dataset are explained as follows:

1. Dataset construction: an ophthalmologist with supra-specialty in the retina from the
Fundación Oftalmológica Nacional from Colombia selected 3209 retinal images from
the kaggle-EyePACS dataset. The ophthalmologist performed the manual choice of
these images based on the quality of fundus images and the presence of DR-related
lesions. The Messidor-2 dataset was also analyzed by the specialist who determined
that 1689 images are suitable for lesion level annotation. The expert labeled the images
with six ocular findings: aneurysms, hemorrhages, cotton wool spots, venous beading,
neovascularization, and exudates. In addition, these images were manually annotated
with binary labels for referable and non-referable patients and the grade of DME on a
scale of 0 to 3 for no DME, mild, moderate, and severe.

2. Annotation criteria: the whole images were evaluated in their entire area as follows:
first, a meticulous analysis looking for any lesions on the optic nerve and the macular
region is performed. Then, the extra-macular retina and outside the vascular arches
areas are examined in detail to find possible DR-related lesions. Finally, each image
was classified in a fine-grained way as positive for that specific finding if at least one
ocular lesion was identified. Regardless of whether it was a single injury or many, or
whether it affected the center of the macula or its periphery. In addition, the images
were labeled as DME in an image-level way according to the ETDRS scale. Also,
images were classified as a referable image if at least an ocular lesion was present in
all image areas, regardless of which one.

The DROLL dataset is subdivided into two subsets:

• DROLL kaggle-EyePACS set: it has fine-grained labels for 3209 images from the kaggle-
EyePACS dataset.

• DROLL Messidor-2 set: it has fine-grained labels for 1689 images from the Messidor-2
dataset.

The models for the detection of findings in this work are trained using the DROLL kaggle-
EyePACS set and tested using the DROLL Messidor-2 set.
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A detailed description of the labels of ocular lesions in the sets of the DROLL dataset
is presented in Table 3-1. In this Table is shown that the DR-related findings MA, H, and
CWS are the most common lesions in the DROLL dataset, due to these ocular findings
appear in the initial stages of subjects with DR. On the other hand, VB and NV have few
examples in the dataset, these lesions are scarce to find because they only appear in the
advanced grades of DR. Finally, since EX are used to grade the risk of DME both conditions
have the same number of examples. The kaggle-EyePACS set was selected trying to include
as many ocular findings as possible, this is reflected in the proportion of referable examples,
which implies that almost 80% of the images have at least one ocular lesion.

The Table 3-2, presents the description of the labels in the DROLL dataset for DME,
DME grades (DME1, DME2, DME3), referable and DR, the DR labels analysed in this
table, are the publicly available corresponding to the images labeled by the FON experts.
The kaggle EyePACS DROLL set has a bigger proportion of examples of this conditions than
the Messidor-2 DROLL set. The referable condition is the most commonly found in the sets
and most of DME examples belong to the grade 2.

Table 3-1.: Description of DR-related ocular lesions labels from the customized Kaggle Eye-
PACS (Training test) and Messidor-2 (Test set) data sets.

Ocular lesions labels
DROLL set MA H CWS VB NV EX

Kaggle EyePACS
1728 1427 656 722 142 1821

53.83% 44.45% 20.44% 22.49% 4.42% 56.44%

Messidor-2
876 443 133 47 15 196

51.86% 26.22% 7.87% 2.78% 0.89% 11.60%

Table 3-2.: Description of the labels for DME, DR and referible conditions from the cus-
tomized Kaggle EyePACS (Training test) and Messidor-2 (Test set) data sets.

Image-level labels
DROLL set REF DME DME1 DME2 DME3 DR

Kaggle EyePACS
2559 1821 419 1122 280 2016

79.72% 56.7% 13.05% 34.95% 8.72% 62.80%

Messidor-2
893 196 44 102 50 377

52.87% 11.61% 2.61% 6.04% 2.96% 22.32%

We compare in Table 3-3 the DROLL dataset with others publicly available with fine-
grained labels of DR-related ocular lesions. It can be noticed that the DROLL dataset is the
largest currently available with lesion-level labels and it is the only one that includes all the
DR-related lesions used by the ophthalmologist to diagnose DR. We hope that this dataset
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opens opportunities to develop new approaches for the classification of retina lesions and to
improve interpretability in the DR detection models, leading to more reliable methods for
the clinicians.

Table 3-3.: Comparison of ocular lesion labels between the DROLL dataset and public
dataset. pigment epithelium changes (PEC), intraretinal microvascular abnor-
malities (IRMA).

Dataset MA H CWS VB NV EX PEC IRMA Images Imgs with
lesions

DRIVE X X X 40 7
DIARETDB0 X X X X X 130 110
DIARETDB1 X X X X 89 84
STARE X X 400 361
IDRiD X X X X 81 81
FGADR X X X X X X 1842 1842
e-ophtha X X 463 195
DRiDB X X X X X 50
DDR X X X X 13673 757
Our dataset X X X X X X 4899 3075

Fig. 3-1 a) presents the number of images in the Messidor-2 DROLL set that are annotated
as healthy (represented with the number 0) or have one or multiple of the following ocular
lesions: A, H ,CWS, VB and NV. This figure shows that most of the images with ocular
lesions in the Messidor-2 DROLL set have one or two of them at the same time, examples
with up to 3 different lesions are more scare. This is due to it is difficult to find patients
with such an advance level of DR. In Fig. 3-1 b) the public labels for DR of the Messidor-2
dataset are analyzed along with the DROLL lesions labels, most of the images annotated as
healthy in the public labels, have either, 0 or 1 lession and almost none have more than 3
different lesions. Consistently, most of the images annotated as DR patients in the public
labels, present up to 2 different lesions according to the DROLL annotations. Fig. 3-1 c)
presents the correlation matrix between the different lesions. It shows that the patients that
have the latter DR findings, like VB or NV also present the early signs of the illness such as
A and H.

Fig 3-2 a) shows the number of images in the kaggle EyePACS DROLL set that are
annotated as healthy or have one or multiple of the following lesions: A, H ,CWS, VB and
NV. In contrast with Fig. 3-1 a), this set has a more even number of patients with 1, 2 and, 3
different ocular lesions. Fig. 3-2 b), shows a similiar behavior to Fig. 3-1 c) in which patients
with letter DR signs also present the early lesions of the illness. In Fig. 3-2 c) the public DR
labels of the kaggle EyePACS dataset are analyzed along with the DROLL lesions labels, it
is shown that most of the healthy patients have maximum one ocular DR-related lesions and
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all the images with up to 3 different DR-related lesions are labeled as DR patients. Fig. 3-2
d) shows the number of different lesions in patients with different grades of DR, it can be
noticed that the higher the degree of DR, the greater the predominant number of ocular
DR-related lesions in the images.

(a) Number of images with 0 up to 5
different lesions.

(b) Number of healthy and diabetic
retinopathy images with 0 up to
5 different lesions.

(c) Count number of pairwise cases
for each lession in the DROLL
dataset.

Figure 3-1.: Description of the number of images with ocular lesions in the Messidor-2-
DROLL set.
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(a) Number of images with 0 up to 5
different lesions.

(b) Count number of pairwise cases
for each lession in the DROLL
dataset.

(c) Number of healthy and diabetic
retinopathy images with 0 up to
5 different lesions.

(d) Number of images with 0 up
to 5 different lesions by diabetic
retinopathy grade.

Figure 3-2.: Description of the number of images with ocular lesions in the kaggle EyePACS-
DROLL set dataset.



4. Detection of diabetic retinopathy
lesions in eye fundus images.

Aiming to do the automatic detection of DR more relatable to the actual process clinicians do,
we initially attempt to identify ocular lesions related to DR. This Chapter presents a transfer
learning strategy that uses pre-trained CNNs as feature extractors and classical ML methods
as classifiers. Alternatively, we train a multitask method that predicts simultaneously ocular
lesions, and DR. We also apply t-SNE to visualize the features used to detect the lesions.
All the methods are trained using the kaggle EyePACS DROLL set and evaluated using the
Messidor-2 DROLL set.

4.1. Lesions detection using convolutional neural
networks and shallow machine learning models

Conventional ML techniques are limited in image recognition applications because the data
on its raw form needs to be mapped into a set of features insensitive to some variations on the
input that are irrelevant in the discrimination process, but sensitive to other characteristics
that some times are minor but relevant to discern between classes. Traditionally, domain
experts have had to build handcrafted features to train ML methods, however, this can be
avoided using a general-purpose learning procedure like deep learning, which allows learning
automatically a representation from raw data [69, 43].

Deep learning is a representation learning method, with multiple levels of representations
that can learn complex functions by applying multiple non-linear transformations consec-
utively. The deeper layers of a deep learning model learn general descriptors, while the
higher layers are capable to identify elements important in the discrimination of different
classes in high-dimensional data [17]. The first implementations include networks with full
connectivity between adjacent layers, however, it was found that CNNs are easier to train
and generalize better. CNNs have been used in computer vision applications in the past,
but, they have gain more popularity since the ImageNet competition in 2012, in which they
were used to classify 1000 different classes using a dataset of about a million images, along
with efficient use of graphics processing units (GPUs), dropout regularization, and effective
data augmentation [60].

Nevertheless, training a CNN from scratch has some challenges. Since a large number of
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weights in a network are randomly initialized, a limited number of training examples can
lead to a local minimum of the cost function causing an unwanted performance. That is
why CNNs require a large training dataset, what in turn leads to the need for extensive
computational and memory resources. However, large datasets are not always available, for
example in the medical domain, where expert annotations are costly, tedious, and time-
consuming. Other scenarios that make it difficult to train a model from scratch are the
unbalance of available datasets, and the overfitting problems which make it necessary to
iteratively adjust the network parameters, which is tedious, time-consuming, and demands
expertise [60, 43]. To tackle this issue some common practices include:

• Fine-tune: it is a training strategy in which the weights of a network trained for a
specific task with a large amount of labeled data are used to initialized other network
with the same architecture. This network is taken as starting point of a new training
process for a different task. The last fully connected layer of the pre-trained network
is usually replaced with another that matches the number of classes for the new task.
However, a larger number of randomly initialized layers and regularizations can be
explored. Initially, only the layers randomly initialized are trained and then deeper
layers are also tuned. A common practice that leads to good results is to only fine-tune
the last layers of the network due to the early layers of a CNN learn general image
features and subsequent layers learn more specific image features. Nevertheless, it can
be necessary to fine-tune the entire network, if the applications are very different [60].

• Transfer learning: it is a transmission process that modifies the knowledge learned
from a source domain to improve the prediction performance of a target domain that
only has a small training dataset [46]. In this method, the last fully connected layer
of a CNN trained for a general task is deleted and the remaining network is viewed
as a feature extractor. This new configuration is used to extract features from a new
dataset to train a classifier for a new task [64].

The pipeline of our proposed method for the detection of DR-related lesions is depicted
in Figure 4-1. The lesion detection is based on a transfer learning strategy in which a single
network is used as a feature extractor to train independent classifiers for the detection of
each finding.

Initially, the eye fundus images are preprocessed to resize them to 512 × 512 pixels and
remove the black edges. Then we implement transfer learning using:

• An Inception-V3 pretrained on ImageNet and fine-tuned on the DR detection. The
training details and the results are reported in Chapter 5.

• The pre-trained backbone models for DR detection reported by He et al. [26]. The
authors implement an embedding of two attention blocks into different backbones net-
works, namely, DenseNet121, Xception, ResNet50, and MobileNet. He et al. train
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Figure 4-1.: An overview of the proposed method for ocular lesions detection.

their networks using two different datasets, specifically, the training set of the Kaggle
EyePACS dataset and the DDR dataset. The files of the models are named accord-
ingly to the backbone and the dataset used as training set. The ones used as feature
extractors in the experiments in this work are: xception_CAB_EyePACS.h5, xcep-
tion_CAB_DDR.h5, resnet50_CAB_EyePACS.h5, densenet121_CAB_EyePACS.h5
and densenet121_CAB_DDR.h5.

Finally, multiple shallow classifiers are trained for the detection of DR-related lesions
using the features extracted from each of the previous CNNs and the fine-grained labels of
the Kaggle-EyePACS DROLL set. The best overall performing method is selected as the
classifier for the detection of lesions.

The classifiers and the parameters explored for the automatic detection of DR-related
lesions are:

1. Support vector machine (SVM): the parameters explored are the regularization param-
eter (C), the kernel, and the gamma (γ) kernel coefficient.

2. Gaussian Process (GP): the kernels "RBF" and "Mattern" are evaluated. The kernel
parameters explored are lower length scale bound, upper length scale bound, lower
noise level, and upper noise level.

3. Multilayer Perceptron (MLP): the number of layers, number of neurons, activations
and learning rate are explored.
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4.2. Lesions detection using a multi-task model

Multi-task is a training method that uses a shared representation to train machine learning
models to perform multiple related tasks simultaneously [16]. It is a kind of inductive
transfer in which a model can be improved by an inductive bias introduced by auxiliary
tasks that help the model to generalize better, which can help to avoid overfitting on one
single task [52]. However, the training process of this kind of method can face negative
transfer or destructive interference, which means that the learning tasks have conflicting
needs, so improve the performance of one of them leads to worsening the performance in the
other [16].

Multi-task learning methods have been classified into two main groups:

• Hard parameter sharing: it is the most conventional strategy used along with neural
networks. In this approach, the same hidden layers of a model are shared and used as
a feature extractor. Then individual output layers for each task are build to perform
multiple tasks. This outline is called shared trunk [52, 16].

• Soft parameter sharing: in this approach, each task has its task-specific model, however,
the parameters are kept similar using a joint objective function. It can be seen as a
kind of multitask optimization [16].

There are multiple optimization methods in literature to train a multi-task model. How-
ever the most commonly used is the loss weighting. In this strategy the individual loss func-
tions for different tasks are combined into an aggregated single one, usually as a weighted
sum of the task-specific loss functions [16].

We implement a multi-task approach using a shared trunk structure and a loss weighting
loss function for the integration of lesions information on the DR automatic detection. The
overall structure of the method is shown in Figure 4-2.

Feature extraction MLP

Figure 4-2.: Multi-task model for the detection of DR and its related ocular lesions.

We implemented as feature extractor the same architectures mentioned in Section 4.1. We
use as classifier a MLP using fully connected layers and dropout layers in between. The last
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fully connected layer has six neurons, one to classify each lesion and an additional one for
the prediction of DR. We include class weights and explored the following hyperparameters
during the network design process: number of layers, number of neurons, learning rate, and
dropout. A weighted binary cross-entropy is used as the loss function. In specific, the weights
were calculated based on the number of examples of each ocular lesion.

4.3. Results

We perform a systematic exploration and evaluation of the SVM, GP, MLP and multi-task
methods for the detection of DR-related lesions using the features obtained from each of
the following pre-trained models: xception_CAB_EyePACS.h5, xception_CAB_DDR.h5,
resnet50_CAB_EyePACS.h5, densenet121_CAB_EyePACS.h5, densenet121_CAB_DDR.h5,
vgg16_CAB_EyePACS.h5, vgg16_CAB_DDR.h5 and the fine-tuned Inception-V3. After
an initial exploration, it is found that the best overall performing methods published by [26],
are the ones trained using the EyePACS dataset. A more exhaustive exploration is made us-
ing only the CNNs trained using this dataset, all the comprehensive results are presented in
Anexo A and the AUC for the best performing classifier for each CNN explored is presented
in Table 4-1.

Table 4-1.: The best classifier and AUC for each backbone explored in the automatic de-
tection of ocular lesions.

Finding xception resnet50 densenet121 vgg16

MA
AUC 0.7837 0.7820 0.8055 0.8003

Classifier MLP MLP MLP MLP

H
AUC 0.9303 0.9129 0.9370 0.9284

Classifier MLP MLP GP classifier Multi-task

CWS
AUC 0.8904 0.8622 0.9021 0.8633

Classifier MLP MLP MLP MLP

VB
AUC 0.8496 0.7006 0.8538 0.8172

Classifier MLP Multi-task Multi-task Multi-task

NV
AUC 0.9651 0.9693 0.9693 0.9464

Classifier MLP GP regressor GP regressor Multi-task

The best results are obtained using the backbone in the densenet121_CAB_EyePACS
model, which is selected as feature extractor for the lesion detection task. The detailed
results of the detection of MA, H, CWS, VB, and NV using this model are reported in
Table 4-2, where the best overall performing classifier is the MLP. The findings MA and VB
presented greater difficulty to be detected than H and NV. This may be because, sometimes
H are big and NV are usually accompanied by other lesions since it appears in the latter
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stages of the disease, which can help the model to detect them. The predictions obtained
using the backbone in the densenet121_CAB_EyePACS model as feature extractor and the
MLP as classifier are used in the design of the DR detection model in Chapter 5.

Table 4-2.: Results of the detection of DR-related ocular lesions using the
densenet121_CAB_EyePACS backbone model as a feature extractor.
The parameters reported are sensitivity (Se), specificity (Sp) and threshold
(tr).

Finding Metric GP classifier GP regressor SVM MLP Multi-task

MA

AUC 0.8011 0.7865 0.7516 0.8034 0.7973
Sp 0.7109 0.7023 0.8733 0.6974 0.7011
Se 0.7043 0.7141 0.5833 0.7146 0.7226
tr 0.38 0.25 0.05 0.19 0.25

H

AUC 0.9370 0.9332 0.8503 0.9340 0.9273
Sp 0.8451 0.8472 0.9775 0.8459 0.8603
Se 0.8690 0.8600 0.7088 0.8804 0.8419
tr 0.38 0.23 0.05 0.26 0.37

CWS

AUC 0.8492 0.8825 0.6884 0.8950 0.8833
Sp 0.7667 0.7622 0.9485 0.8219 0.8271
Se 0.7594 0.8571 0.4135 0.8496 0.8045
tr 0.32 0.13 0.05 0.3 0.4

VB

AUC 0.7525 0.7299 0.6432 0.8084 0.8538
Sp 0.6461 0.6565 0.8526 0.7618 0.7728
Se 0.6808 0.6808 0.455 0.6808 0.8085
tr 0.34 0.23 0.2 0.64 0.48

NV

AUC 0.9401 0.9693 0.6205 0.9650 0.9516
Sp 0.8393 0.9074 0.9164 0.8900 0.9068
Se 0.8666 0.9333 0.3333 0.9333 0.9333
tr 0.25 0.1 0.5 0.45 0.57

In Figure 4-3 are presented more details of the results on the detection of ocular lesions
using the densenet121_CAB_EyePACS model as feature extractor and the MLP as classifier.
The images on the left present the distribution of the predictions of the models, it can be
seen that the model achieves to predict the images with the lesion closer to 1 and the images
without the lesions closer to 0. In the images in the middle, is shown how multiple metrics
of the methods for the detection of each finding change with the threshold. The intersection
between the curves of the sensitivity and specificity is used as the threshold of the model
and corresponds to the one reported in Table 4-2. In the same Figure, in the last column is
also shown the confusion matrix for each method for the detection of ocular lesions.
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Figure 4-3.: Predictions visualization, threshold analysis and confusion matrix using a MLP
as classifier and densenet121_CAB_EyePACS backbone as feature extractor.
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Figure 4-4.: Visual representation of the images with and without microaneurysms (MA),
hemorrhages (H), cotton wool spots (CWS), venous beading (VB), neovascu-
larization (NV) in the Messidor-2 DROLL set using the t-SNE technique.
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4.3.1. Graphical representation

The T-distributed Stochastic Neighbor Embedding (t-SNE) strategy is applied to each oc-
ular finding using the extracted features obtained using the backbone in the densenet121
_CAB_EyePACS model. This strategy helps to visualize the models in a 2D space, getting
a better representation to improve the interpretability of the model.

The principal component analysis (PCA) is applied to perform a dimensionality reduction
to 15 of the features obtained from the Messidor-2 dataset, which is used to implement the
t-SNE method and get a two-dimensional map of the features, as shown in Figure 4-4.
MA and H present a better visual cluster separation than CWS and VB. The CWS and
VB representations show an overlap of the negative over the positive classes. The few NV
examples limited a proper qualitative analysis of the ability to separate the data using the
t-SNE representation.



5. Diabetic Retinopathy detection
using lesions information.

Ophthalmologists diagnose DR based on the presence or absence of ocular lesions, namely,
microaneurisms, hemorrhages, cotton wool spots, venous beading, and neovascularization.
In this Chapter we present a strategy that follows their workflow, by integrating lesion
information into two DR automatic detection methods:

1. In Section 5.1, we use the lesions classification model from Chapter 4 to build a feature
set by concatenating the prediction of each lesion, and train a DR detection method.

2. In Section 5.2, we develop a multitask approach in which DR is predicted along with
its related ocular lesions.

We also propose two base-lines to compare the performance of our approaches for the
detection of DR:

1. We fine-tune the Inception-V3 architecture pre-trained on ImageNet using the kaggle
EyePACS training set. The last fully connected layer is replaced by a randomly initial-
ized MLP with dropout. Multiple configurations of the MLP are evaluated using the
features obtained from the Inception-V3 network pretrained on ImageNet. Specifically,
the number of layers, number of neurons, activation, and learning rate are analyzed.
The best-performing architecture is used to replace the original last fully connected
layer in the pretrained model. In the final training process, we froze the architecture
of the Inception-V3 network, in such a way that only the new elements are trained for
10 epochs, then the latter half of the architecture is tuned for the new task, preserving
the early half of the weights of the model. The results are presented in Table 5-2,
under the Method name ’Fine-tuned Inception-V3’.

2. We evaluate the complete architectures reported by [26] and used as feature extractor
in Chapter 4 on the Messidor-2 dataset. The performance of each model is reported
in Table 5-2.

5.1. Lesions predictions for DR detection

The pipeline of the proposed method for the automatic detection of DR using lesions infor-
mation is depicted in Figure 5-1. The method has two main stages, the first one is lesion
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detection, which is described in Section 4.1 and the second one is the DR classification,
presented here. In the second stage, training and test feature sets are build by concatenat-
ing the predictions of the lesion detection model over the kaggle EyePACS DROLL set and
the Messidor-2 dataset respectively. In this way each image in the datasets is represented
by a 5-dimensional vector. The training feature set is used to train different classifiers for
the binary classification of DR. The same classifiers (SVM, GP, and MLP) and parameters
described in Section 4.1 for the detection of DR-related lesions, are also explored for the
DR automatic detection. The best results are reported and compared with state-of-the-art
methods using the Messidor-2 dataset as the test set.

Figure 5-1.: An overview of the proposed method for ocular lesions detection and DR clas-
sification. The model is organized in three consecutive stages as follows: lesion
detection (first block), lesion prediction (second block) and DR detection (third
block).

The lesions detection model is made up of the backbone in the densenet121_CAB_EyePACS
model as feature extractor and the MLP as the classifier. Our model is intended to improve
the interpretability of the automatic DR detection model, however, it is important to de-
termine if our approach affects the performance of the model by adding the intermediate
step for lesion detection. So, for a fair comparison, we tested the models from He et al. in
the same test set used to evaluate our approach, the Messidor-2 dataset. It is important to
note that we did not reannotate the labels for DR of the Messsidor-2 dataset, all the DR
detection models are evaluated with the already publicly available annotations so they can
be compared with state-of-the-art methods.
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5.2. Multitask model

The performance of the detection of DR of the multi-task method described in the Chapter
4 in Section 4.2, is reported in this Chapter.

5.3. Results

Once the training and test features sets are built, the models SVM, GP, MLP, and multi-
task are explored and evaluated for the binary prediction of DR. The results are presented
in Table 5-1. The best performing classifier, namely, MLP, is compared with the baseline
methods and state-of-the-art approaches in Table 5-2.

Classifier AUC Specificity Sensitivity Threshold
SVM 0.9393 0.9794 0.6737 0.05

GP classifier 0.9392 0.8544 0.8674 0.44
GP regressor 0.9392 0.8582 0.8621 0.45

MLP 0.9482 0.8750 0.8859 0.38
Multitask 0.9479 0.8783 0.8859 0.36

Table 5-1.: DR detection using support vector machine (SVM), Gaussian process classi-
fier (GP classifier), Gaussian process regressor (GP regressor) and multi layer
perceptron (MLP)

The proposed method trained with the kaggle EyePACS DROLL set and evaluated in
Messidor-2 shows competitive performance in AUC and consistent results in sensitivity and
specificity when compared to the baseline models trained for the DR detection task as
shown in Table 5-2. Despite some state-of-the-art methods have better performances, they
only classify DR, unlike our approach that also provides information about the DR-related
lesions, which provides interpretability and makes the DR detection process more familiar
for clinicians, since it follows a workflow similar to their own.
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Table 5-2.: Comparison of proposed method with state-of-the-art DR detection methods
tested on Messidor-2 dataset. The top 3 results for each metric are marked in
bold(1), italic(2), and underline(3) respectively.

Training set
(Set of images) Method AUC Sensitivity Specificity
EyePACS

train (35126)
densenet121_CAB_DDR [26] 0.765 0.359 0.990(1)

EyePACS
train (35126)

densenet121_CAB_EyePACS [26] 0.782 0.395 0.954(2)

EyePACS
train (35126)

resnet50_CAB_EyePACS [26] 0.884 0.753 0.801

EyePACS
train (35126)

xception_CAB_DDR [26] 0.908 0.877 0.861

EyePACS
train (35126)

xception_CAB_EyePACS [26] 0.908 0.880(3) 0.855

EyePACS
train (35126)

Fine-tuned Inception-V3 0.8447 0.8011 0.7023

EyePACS
custom
(57146)

Voets et al. [62] 0.800 0.737 0.697

EyePACS
custom
(28102)

Zhou et al. [74] 0.960(1) - -

EyePACS
custom
(75137)

Gargeya and Leng [20] 0.940(3) 0.930(1) 0.870

IDRiD Zago et al. [71] 0.944 0.900 0.87
EyePACS
custom
(3209)

densenet121_CAB_EyePACS
backbone and MLP

0.9482(2) 0.8859(2) 0.875(3)

EyePACS
custom
(3209)

Multitask 0.9479 0.8783 0.8859
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5.3.1. Graphical representation

Initially, using the principal component analysis technique we perform a dimensionality
reduction to 3, which is used to implement the t-SNE method and get a two-dimensional
map of the features. The result is shown in Figure 5-2, where the DR and no DR examples
have few overlapping.

Figure 5-2.: Visual representation of the images with and without diabetic retinopathy
(DR) in the Messidor-2 DROLL set using the t-SNE technique.



6. Diabetic macular edema and
referible cases classification

Although it is out of the initial objectives of this thesis, in this chapter, we take advantage
of the availability of labels for diabetic macular edema (DME) and referable cases (RF) in
the DROLL dataset by developing two approaches to detect these conditions. In one of
the approaches, we use the features from the backbone in the densenet121_CAB_EyePACS
model and the same classifiers used in previous chapters. In the other one, we proposed a
multitask approach in which DR, DME, RF, and ocular lesions are detected simultaneously.

6.1. Classification of diabetic macular edema

The vision-threatening retinopathy is classified as severe non-proliferative DR or diabetic
macular edema (DME). Worldwide approximately 93 million people are affected by DR and
21 million are affected by DME. DME is a condition in which fluid is accumulated in the
macula, and it is characterized by retinal thickening, exudates, hemorrhages with or without
microaneurysms and blot hemorrhages in the macula region [12]. It is the most common cause
of moderate visual loss in diabetic patients, although, it is not unique in them, its prevalence
in this population is high, up to 42% in type 1 and 53% in type 2 diabetes mellitus patients
[72]. It is important to detect DR and DME, because in addition to its visual complications
consequences, they are signs of the presence of other diabetes complications in other organ
systems [19].

The diagnostic of DME is made using optical coherence tomography, however, the cost
and availability limit its use for screening. Rather, eye fundus images are used to identify
EX, which is a good indicator of DME risk [12, 66]. EX are lipids and fluids that leak from
damaged capillaries, they appear at different locations with variable shapes and sizes, with
bright yellowish or white color [1].

We attempt to classify DME following the same methodology used for the detection of
DR-related lesions in Chapter 4. We extract features using the backbone in the model
densenet121_CAB_EyePACS and explore SVM, GP, and MLP as final classifiers. The
method is depicted in Figure 6-1.
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Figure 6-1.: Proposed model for the detection of DME cases.

6.2. Referable patients classification

Many diabetic patients receive a premature ophthalmologic referral since it is recommended
to screen annually this population. A screening protocol in the primary care setting that
automatically classifies patients with DR and healthy ones could help to reduce the referrals
from 100% of diabetic patients, which is the actual recommendation to approximately 53%
[11].

The DROLL dataset has labels for referable patients in which a patient is annotated as
referable if DME or DR is present. We build a classification method for referable patients
extracting features from the backbone in the model densenet121_CAB_EyePACS and ex-
ploring SVM, GP, and MLP as classifiers. Figure 6-2 shows the proposed method.

Figure 6-2.: Proposed model for the detection of RF cases.

6.3. Multi-task model for multi-conditions detection

We propose a multi-task method for the simultaneous detection of DR, DME, RF cases, and
ocular lesions, namely, MA, H, CWS, VB, and NV. We implement the multi-task method
using a shared trunk structure and a loss weighting loss function, similarly to the one pre-
sented in Chapter 4. The features from the densenet121_CAB_EyePACS backbone and a
MLP as the classifier, are used to build the model. The overall structure of the method is
presented in Figure 6-3.
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Feature extraction MLP

Figure 6-3.: Multitask model for the detection of ocular lesions, DR, DME and RF cases.

6.4. Results

In this section, we present the results of the methods for the detection of DME and RF cases
using a single model and a multitask approach.

6.4.1. Diabetic macular edema detection

The results of the experiments for the detection of DME are shown in Table 6-1, the multitask
method leads to a better AUC metric than the GP and SVM. Although the MLP has a
slightly lower AUC metric, it presents a higher specificity (Sp) and and sensitivity (Se) than
the multi-task model.

Classifer AUC Specificity Sensitivity Threshold
GP regressor 0.8960 0.8064 0.8112 0.55

SVM 0.9393 0.7653 0.7676 0.2
MLP 0.9457 0.8761 0.8571 0.5

Multitask 0.9475 0.7349 0.7278 0.5

Table 6-1.: DME detection using multiple classifiers.

6.4.2. Referable cases detection

Table 6-2 shows the results of the detection for referable classes using multiple models. The
multitask method presents a significantly higher performance than the other approaches,
this can be due to the inductive bias introduced by the lesions, DR, and DME detection
auxiliary tasks, which could help the model to generalize better.
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Classifer AUC Specificity Sensitivity Threshold
GP regressor 0.7572 0.7010 0.6976 0.69

SVM 0.7204 0.6947 0.6998 0.9
MLP 0.7915 0.7522 0.7634 0.3

Multitask 0.9512 0.8822 0.8947 0.56

Table 6-2.: Referable using multiple classifiers.

6.4.3. Multitask model

Table 6-3 shows the results of the multi-tasks model implemented for the simultaneous
detection of DR, DME, RF, and ocular lesions, namely, MA, H, CWS, VB, and NV. This
results are compared in the same table with the best performances obtained in Chapters 4
and 5. The approach presented in this Chapter manages to improve the detection of MA, but
especially of VB, getting an AUC of 0.9003, which is significantly higher than the obtained
in Chapter 4 of 0.8538. This can be caused by the inductive bias introduced by the DME
and RF task added. It is important to notice that the model has a close AUC to those in
Chapter 5 in the tasks that did not manage to improve the performance.

Medical condition AUC Specificity Sensitivity Threshold
MA 0.8059 0.7146 0.7295 0.27

MA in Chapter 4 0.8034 0.6974 0.7146 0.19
H 0.9288 0.8596 0.8511 0.4

H in Chapter 4 0.9370 0.8451 0.8690 0.38
CWS 0.8811 0.8213 0.8120 0.29

CWS in Chapter 4 0.8950 0.8219 0.8496 0.3
VB 0.9003 0.8423 0.8298 0.53

VB in Chapter 4 0.8538 0.7728 0.8085 0.48
NV 0.9593 0.9301 0.8676 0.62

NV in Chapter 4 0.9693 0.9074 0.9333 0.1
DR 0.9475 0.8704 0.8833 0.32

DR in Chapter 5 0.9479 0.8783 0.8859 0.36

Table 6-3.: Comparison of the results for the detection of lesions and DR, between the
multitask model proposed in this Chapter and the previous results.
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This thesis presents a novel strategy to improve the performance of known pretrained models
for the detection of diabetic retinopathy. Our proposed model follows the current clinical
workflow to perform the diagnosis of this decease. It uses a pretrained model as feature
extractor to detect lesions related to diabetic retinopathy and combine the predictions to
classify this illness. The most remarkable aspect of our proposed method is the combination
of domain knowledge from ophthalmologist experts and the versatility of deep learning to
support medical decision-making. We hypothesize that this model could be an outstanding
option to gain greater acceptance and possible use in real-world applications by clinical staff.

We also propose a multi-task approach using a shared trunk structure to simultaneously
detect aneurisms, hemorrhages, cotton wool spots, venous beading, neovascularization and
diabetic retinopathy. This method has a end-to-end design in which a pretrained model for
the detection of DR is used as feature extractor and a multi layer perceptron as classifier.
The lesion detection results are similar to those obtained training a single model for each
task and the diabetic retinopathy classification performance is slightly lower than the one
achieved using ocular lesions for its detection. The multitask model is intuitive and simple
to implement since only one model is used to predict all the tasks.

The results of this thesis in the diabetic retinopathy classification task are comparable
with state-of-the-art performances, with the advantage that our proposed models also provide
the prediction of ocular lesions.

Even though it is not within the scope of the thesis we perform initial experiments for
the automatic detection of diabetic macular edema and referable patients. We implement
individual models for the automatic classification of each of this conditions and compare
the results with a multi-task model for the simultaneous detection of diabetic retinopathy,
diabetic macular edema, referable cases and ocular lesions. The multi-task approach manage
to either improve or to lead to similar results to those of the models trained specifically for
each task. The effect of the inductive bias introduced by the auxiliary tasks is noticeable in
the detection of venous beading and referable patients, since the multi-task method has an
appreciable performance improvement when compared to the methods trained individually
for this tasks. Therefore, a multi-task approach is able to lead to satisfactory performances
in the simultaneous detection of multiple ocular conditions and lesions.

The future work comprises the systematic study of the proposed method with other
datasets, the implementation of the fine-tuning strategy using the developed end-to-end
models, and the design of a method that also provide the illness grading classification.
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Finally, other illnesses like age-related macular degeneration using ocular lesions like exudates
and drusen could be explored and evaluated.
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Appendices



A. Findings detection additional
results

Table A-1.: Results of the detection of DR-related ocular lesions using the xcep-
tion_CAB_EyePACS backbone model as a feature extractor.

Finding Metric GP classifier GP regressor SVM MLP Multi-task

MA

AUC 0.7714 0.7605 0.7464 0.7837 0.7822
Sp 0.6654 0.6900 0.8696 0.7307 0.6913
Se 0.7032 0.6929 0.5765 0.6872 0.7066
tr 0.42 0.22 0.05 0.18 0.19

H

AUC 0.9116 0.9128 0.8594 0.9303 0.9267
Sp 0.8411 0.8419 0.9719 0.8619 0.8676
Se 0.8419 0.8307 0.7200 0.8623 0.8578
tr 0.42 0.19 0.05 0.2 0.22

CWS

AUC 0.8252 0.8858 0.6870 0.8904 0.8765
Sp 0.7519 0.8226 0.9762 0.8386 0.8079
Se 0.7293 0.8120 0.3759 0.8195 0.7969
tr 0.36 0.12 0.05 0.38 0.31

VB

AUC 0.5374 0.7299 0.5203 0.8496 0.8441
Sp 0.5596 0.6565 0.9311 0.6626 0.7467
Se 0.4681 0.6808 0.0638 0.8511 0.8511
tr 0.35 0.18 0.1 0.47 0.45

NV

AUC 0.6847 0.8334 0.5328 0.9651 0.9564
Sp 0.6804 0.9767 0.9988 0.9587 0.9229
Se 0.7333 0.6 0.0667 0.8 0.8
tr 0.29 0.1 0.1 0.57 0.52
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Table A-2.: Results of the detection of DR-related ocular lesions using the
vgg16_CAB_EyePACS backbone model as a feature extractor.

Finding Metric GP classifier GP regressor SVM MLP Multi-task

MA

AUC 0.7723 0.7637 0.7273 0.8003 0.7974
Sp 0.6801 0.6937 0.9545 0.7269 0.7196
Se 0.6952 0.6952 0.4817 0.7146 0.7215
tr 0.27 0.17 0.05 0.13 0.15

H

AUC 0.9066 0.8944 0.8168 0.9284 0.9284
Sp 0.8290 0.8202 0.9823 0.8571 0.8499
Se 0.8375 0.8172 0.6320 0.8646 0.8736
tr 0.35 0.3 0.05 0.2 0.16

CWS

AUC 0.8438 0.8220 0.5557 0.8633 0.8619
Sp 0.7731 0.7828 0.9910 0.8065 0.7885
Se 0.7895 0.7895 0.1203 0.8120 0.8045
tr 0.19 0.12 0.05 0.38 0.26

VB

AUC 0.6631 0.6007 0.5 0.7489 0.8172
Sp 0.6157 0.5944 1 0.8337 0.8008
Se 0.6809 0.5532 0 0.6383 0.7446
tr 0.32 0.28 0.05 0.56 0.51

NV

AUC 0.8935 0.8605 0.5206 0.9069 0.9464
Sp 0.7993 0.8716 0.9749 0.8142 0.9217
Se 0.8 0.8667 0.0667 0.8667 0.8666
tr 0.14 0.07 0.1 0.37 0.68
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Table A-3.: Results of the detection of DR-related ocular lesions using the
resnet_CAB_EyePACS backbone model as a feature extractor.

Finding Metric GP classifier GP regressor SVM MLP Multi-task

MA

AUC 0.7674 0.7426 0.7524 0.7820 0.7636
Sp 0.7072 0.6789 0.6961 0.7171 0.7060
Se 0.6803 0.6632 0.6849 0.6952 0.6757
tr 0.47 0.15 0.11 0.17 0.2

H

AUC 0.8762 0.8586 0.8508 0.9129 0.9047
Sp 0.7945 0.7697 0.9221 0.8250 0.9318
Se 0.7788 0.7855 0.7200 0.8262 0.7065
tr 0.47 0.15 0.05 0.37 0.21

CWS

AUC 0.7284 0.8429 0.6515 0.8622 0.8500
Sp 0.6696 0.8528 0.9524 0.7769 0.8657
Se 0.6316 0.6842 0.3233 0.8045 0.6316
tr 0.42 0.11 0.1 0.22 0.4

VB

AUC 0.4936 0.6553 0.5 0.6607 0.7006
Sp 0.4762 0.6114 1 0.3922 0.5937
Se 0.4893 0.6383 0 0.7447 0.6595
tr 0.43 0.23 0.5 0.47 0.52

NV

AUC 0.7189 0.9693 0.5 0.9477 0.9446
Sp 0.6368 0.9074 1 0.8817 0.9020
Se 0.6 0.9333 0 0.8666 0.8
tr 0.39 0.09 0.5 0.43 0.4
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