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Resumen

Enfoque de aprendizaje profundo para identificar enfermedades y

biomarcadores en imagenes de tomograf́ıa de coherencia óptica

Las causas más comunes de ceguera en todo el mundo son las enfermedades de la retina, para

identificarlas y no permitir que lleven a la pérdida de la visión de una persona es necesario un

diagnóstico temprano, hoy en d́ıa el uso de las imágenes OCT para realizar este diagnóstico

se ha incrementado debido a la capacidad de mostrar en detalle biomarcadores como fluidos,

drusas, quistes y focos hiperreflectivos, sin embargo el análisis de las imágenes OCT no es

fácil y consume mucho tiempo incluso para los oftalmólogos expertos lo que combinado con la

sobrecarga de trabajo en el sistema de salud hace aún más dif́ıcil el diagnóstico y seguimiento

de las enfermedades retinales, Con el trabajo de tesis ”Deep Learning Approach to Identify

Diseases and Biomarkers in Optical Coherence Tomography Scans”, se propone un método

para la segmentación de imágenes OCT con el fin de obtener biomarcadores que puedan

ayudar al oftalmólogo a comprobar la respuesta al tratamiento o identificar una enfermedad

de la retina, además se implementó un método de aprendizaje profundo para comprobar qué

enfermedad está presente en una imagen.

Palabras clave: Aprendizaje profundo, tomograf́ıa de coherencia óptica, visión por

computador, aprendizaje de máquinas,segmentación de biomarcadores,clasificación de

enfermedades retinianas, redes Neuronales Generativas Adversarias.

Abstract

Deep Learning Approach to Identify Diseases and Biomarkers in Optical

Coherence Tomography Scans

The most common causes of blindness around the world are retinal diseases, to identify them

and not allow to lead to loss of vision for a person an early diagnosis is necessary, nowadays

the use of OCT scans to perform this diagnostic has increased due to the capacity to show

in detail biomarkers as fluids, drusen, cyst and hyperreflective foci. However the OCT scans

analysis is not easy and time consuming even for experts ophthalmologist and in combination

with the overload work overload in the healthcare system makes even more difficult to diag-

nose and follow-up the retinal disease, at this point comes in to help deep learning allowing

the automated detection of diseases and biomarkers, With the thesis work “Deep Learning

Approach to Identify Diseases and Biomarkers in Optical Coherence Tomography Scans,” a



x

method was proposed to OCT scans segmentation to obtain biomarkers which can help the

ophthalmologist to check response to treatment or identify a retinal disease, furthermore a

deep learning method for check which disease is present in a scan was implemented.

Keywords: Deep Learning, Optical Coherence Tomography scans, Computer vision,

Machine Learning,Biomarkers Segmentation,Retinal Diseases Classification, Genera-

tive Adversarial Networks
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1 Introduction

Visual impairment is a congenital or acquired condition that affects a large part of the pop-

ulation; approximately 39.6 million people are severely visually impaired. Moreover, 279

and 969 million people are mildly or moderately visually impaired, respectively [1][2]. The

leading causes of visual impairments are macular diseases which include age-related macular

degeneration (AMD), diabetic macular edema (DME), and retinal vein occlusion (RVO);

those diseases have received widespread attention in recent years.

AMD generally affects older people after 60 years, is a macular disease characterized by

drusen and laminal deposits between retinal pigment epithelium (RPE) and Bruch’s mem-

brane (BM), causing deformation on those layers, and it can result in an irreversible loss of

central vision, there are two categories for this disease which are wet and dry these can be

differentiated mainly for neovascularization presence or absence [3].

DME is one of the most common retinal disorders causing vision impairment and blindness.

DME is associated with diabetes because increased blood sugar levels cause damage to blood

vessels producing leakage and accumulation of fluid and blood into the retina. DME can be

graded into different stages according to the quantity of fluid leaked in the retina and can

be prevented in early stages[4][5].

One of the precedents technologies from Artificial Intelligence (AI) that has contributed

significantly to the state-of-the-art in image recognition in the medical area is Deep Learn-

ing (DL) [6], achieving outstanding results in solving several health problems. DL because

of presented results helping with retinal diseases becomes essential because retinal diseases

represent a significant cause of blindness worldwide in the elderly population and to people

of productive ages in developing countries[7].

Within the imaging techniques used to diagnose macular diseases, the most common is eye

fundus images; however, the optical coherence tomography (OCT) is most accurate and con-

sidered as the gold standard for macular disease detection [6].

The OCT scans have become widely used by experts in clinical studies in recent years due

to their high resolution, providing an alternative to review cross-sectional imaging on inter-

nal layers and with this, the retinal structures and morphology enabling the detection and

assessment of abnormalities on the retina including different types of findings in the retinal

region such as fluids, HRFs, drusen and cysts[8][9].

The location and shape of those retinal findings provide additional information to the

ophthalmologist, and it can help to grain specific macular diseases such as diabetic mac-

ular edema (DME), age-related macular degeneration (AMD), and retinal vein occlusion
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(RVO)[10].

The experts assess the OCT scans considering the size, number, and location of these abnor-

malities, so-called biomarkers. To identify diseases can be set [11], the biomarkers include

hyperreflective foci (HRF), fluids, cysts, and drusen.

HRF are signs of lipid extravasation, proteinaceous material, and inflammatory cells [12],

in OCT images, those can be seen as dot-shaped lessons with a bigger or equal reflectivity

than retinal pigment epithelium (RPE) and are scattered all over the retina, particularly

over external layers [13] [14].

Fluids refer to the leakage of damaged blood vessels in the macular region; according to

the place where the fluid is accumulated, it receives a name being intra-retinal fluid (IRF),

sub-retinal fluid (SRF), and sub-retinal pigment epithelium (PED) spaces [15] [16] [17].

Fluid accumulation because of blood-retinal barrier disruption constitute areas where cells

are displaced; this is also known as cysts. At last, we got drusen which are deposits of

extracellular debris under the RPE layer [18].

Ophthalmologists to perform diagnose and follow-up patient progression taking decisions

about the treatment of retinal diseases can be assisted with biomarkers segmentation as

cysts, fluids, drusen, and HRFs in conjunction with high-resolution 3D volumes of the retina

information provided by OCT scans. An early diagnosis and treatment of retinal diseases

can avoid vision loss due to retinal diseases such as AMD, RVO, and DME.[15]

Early stages of retinal diseases require a treatment that includes taking nutrition supple-

ments, controlling body weight, or avoiding cigarette smoking; for advanced stages of retinal

diseases, anti-vascular endothelial growth factors (anti-VEGF) therapy is necessary; this

therapy, in addition, requires regular monitoring.[19]

For the diagnose and tracking of retinal diseases is required a manual biomarker identifica-

tion by ophthalmologists. However, this process is time-consuming, tedious, and error-prone

even when is made by experts ophthalmologists, thus producing a heavy workload on the

healthcare system due to monthly visits of patients and also a financial burden for both

healthcare systems and patients[12] [9].

To achieve early identification of a disease can avoid vision loss or, in some cases blindness,

also most expensive treatments. Aided automated computer methods can achieve early

identification in two ways: first through classification, and secondly through the findings

segmentation to help the ophthalmologist to identify the disease in early stages[20] [21].

1.1 Problem Identification

The severity of blindness from far it can be classified by determining the patient’s visual

acuity can be subordinated in mild (visual acuity less than 6/12), moderate (visual acuity

less than 6/18), severe (visual acuity less than 6/60), and blindness (visual acuity less than

3/60). Regarding relative vision deficiency, it is estimated that approximately 826 million

people are affected[22].
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Among the risk factors that significantly influence the presence of some type of visual im-

pairment, according to the world health organization (WHO), are the growth and aging of

the population [19].

Retinal vein occlusion (RVO) and branch retinal vein occlusion (BRVO) are the most impor-

tant vascular disorders and consultation prevalent after diabetic retinopathy (DR) present

in the population between the sixth and seventh life decade. Literature review shows that

presenting metabolic diseases such as diabetes mellitus increases the risk of visual impair-

ment because patients can present two types of conditions which are diabetic retinopathy

and diabetic macular edema. Diabetic macular edema represents the leading cause of visual

loss in the condition[1].

Nowadays, clinical examination and subjective analysis of images by trained ophthalmolo-

gists are the main methods for macular diseases diagnosis such as diabetic macular edema

(DME), age-related macular edema (AMD), and RVO. The two most commonly used types

of diagnostic imaging are eye fundus and OCT images[23]. // OCT has shown to have a

better focus over eye fundus images, ultrasound, and fluorescein angiography because OCT

scans show a better resolution and suitability for clinical work support showing in detail the

retinal morphology. Given the characteristics mentioned above, OCT turns out to be help-

ful to the health professional to choose more effectively the type of interventional treatment

that the patient needs and evaluate the treatment response. Available treatment includes

antivascular endothelial growth factor (anti-VEGF) and vitrectomy surgery [24].

Then we got that there are so many factors that intercede in the individual experience of

patients concerning vision loss within these those that generate the most significant impact

according to WHO are the availability of prevention, treatment interventions, and access to

vision rehabilitation[25].

The speedup of the diagnostic process allows the early diagnosis, timely treatment of macu-

lar diseases, and facilitating decision-making by healthcare experts, increasing the number of

people diagnosed and decreasing healthcare costs. Automated computed assisted methods

can support the detection and diagnosis of macular-related findings and macular diseases to

relieve the workload of ophthalmologists.[26]

However, the training of DL methods to automatically detects macular diseases requires

large datasets. To our knowledge, there are no works that face the problem of classifying

simultaneously three macular diseases such as AMD, RVO, and DME; most of the works

are focused on DME and AMD detection, RVO has been an issue non-explored. The main

works use support vector machines (SVM). The second great challenge that arises is the

segmentation of fluids without taking into account retinal layers. By identifying the retinal

layers, the area of interest for each image can be extracted and, through this segment, easily

biomarkers[27][28]. To face the identified problem, the following research questions appear:

• Which are the advantages that provide us the use of deep learning for OCT images for

identifying retinal diseases?
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• How to measure which deep learning method has the best performance facing OCT

image analysis?

• How can the quality of the fundus image be improved automatically using deep learning

models?

• Which method based on deep learning allows optimal segmentation of fluids in OCT

images?

1.2 Main and Specific Goals

1.2.1 Main Goals

To use deep learning to retinal diseases identification through experimentation with OCT

images from different public databases.

1.2.2 Specific Goals

• To propose/adapt a deep learning method to biomarkers segmentation in OCT images

through experimentation with annotated masks from public databases.

• To propose/adapt a deep learning method to retinal diseases classification (RVO, DME,

AMD) through experimentation with annotated biomarker images.

• To systematically validate and evaluate obtained results determining the usefulness of

the classification through the comparison against identified algorithms in the literature

review.

1.3 Contributions

Several products were produced through the realization of this work, these include datasets

and conference papers.

1.3.1 Conference papers

During the conduct of this research the following conference papers were developed :

• Segmentation of retinal fluids and hyperreflective foci using deep learning approach in

optical coherence tomography scans



1.4 Thesis Structure 5

1.3.2 Datasets

• A dataset based on Duke dataset annotated with binary masks of retinal fluids 1.

• A dataset based on Duke dataset annotated with binary masks of HFs 2.

1.4 Thesis Structure

The remainder of this thesis is structured as follows: The second chapter presents the back-

ground and related works. The third chapter presents the first problem tackled: the biomark-

ers such as HRFs and fluids (intraretinal and subretinal fluids). Fourth chapter shows second

tackled problem which is based on drusen,cyst HRFs AND fluids also the also OCT image

classification for diseases like DME, AMD and RVO. Finally, the fifth chapter presents the

thesis conclusions and ideas for future work.

1https://github.com/yeisonlegarda/fluidsdukemarkeddataset
2https://github.com/yeisonlegarda/focisdukemarkeddataset.git
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2.1 OCT images classification

The leading causes of visual impairments are macular diseases, among which can be found

age-related macular degeneration (AMD), diabetic macular edema (DME), and retinal vein

occlusion (RVO); those diseases have received widespread attention in recent years. AMD

generally affects older adults after 60 years, existing two categories for this disease which

are wet and dry those are mainly differentiated for neovascularization presence or absence

[3][29], DME it’s one of the most common retinal disorders associated with diabetes because

of increased blood sugar levels damage blood vessels producing leakage and accumulation of

fluid and blood into the retina [4] [5], table 2-1 shows the summary of work done for the

topic of disease classification with OCT scans.

2.1.1 AMD classification

Khalid et al. [30] proposed a fusion method that consists of image denoising and layer

extraction from OCT images. First, the RPE layer is extracted from the image. Some

characteristics such as minimum, maximum, variation, energy surface, and zero crossings are

stratified from this layer. Zero-crossings characteristics provide information about drusen.

An SVM classifier is trained using these features to classify an image into healthy or ARMD

(Age-related macular degeneration) suspect. If the OCT image is classified as a suspect,

then the fundus image is used to confirm an early warning or if the subject already has

the disease. After this process, drusen areas in fundus images are extracted using Otsu

thresholding algorithm. If the drusen appear on both images, the subject is classified as

suffering from ARMD. Maximilian et al. [31] proposed a model based on Inception-v3

architecture, where the last layer allows to detect exudative AMD or healthy images.

Naohiro et al. [24] crop OCT scans into three patches and uses two CNN to classify the

image between AMD, normal, with, or without exudative change. At last, the three patches

are joined to obtain the original image classification, class activation mapping (CAM) was

applied on both CNN to get the pathological region on the image. On the other hand, Serener

et al. [32] analyzed two different architectures: Alexnet and ResNet to predict between dry

and wet AMD looking best results with ResNet.

Sun et al. [23] performed fine tunning on RESNET50 to feature extraction over OCT volumes

labeled as AMD, DME, or healthy. The feature extraction gives a 2-D vector for a slice that
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is stacked with others of volume. All volumes are classified by three models those are CNN,

CNN with convolutional block attention module (CNN CBAM) and SVM. The use of SVM

and CNN CBAM provided better results than other proved methods. Alqudah et al. [33]

take a different approach which consists of preprocessing images and using double-density

wavelet transform-based adaptive thresholding and propose and CNN architecture to classify

OCT images among AMD, CNV, DME, drusen, and normal labels.

In 2021, Zhiyan et al. [3] reported a model that combines two eye imaging (OCT and fundus)

to improve previous results. This method used a DCNN with two inputs, an OCT image and

a fundus image. For training, imageNet weights on RESNET-50 are loaded and fine-tuned

on a separated model. The fine tunned models are unified in a single network for feature

extraction and to classify between wet AMD, dry AMD, Polypoidal choroidal vasculopathy

(PCV).

2.1.2 DME classification

For DME classification task, some works have been done. In 2019 Hassan et al.[2] fuses OCT

and fundus images, where two CNNs perform feature extraction for each individual source

of information. These features are concatenated, and an SVM is trained to perform the

classification. Moura et al.[1] took a similar approach when using CNNs as AlexNet, VGG-

19, and Inception-V3 to feature extraction and an SVM to perform classification, where the

best results were achieved by using VGG-19.

Ibrahim et al.[4] applied sparsity-based block-matching and 3D-filtering (BM3D) to denoise

images. Then a modified VGG16 is used to generate heat maps and performs ROI extraction

around the generated mask with red and yellow colors on the map. Features were extracted

by Histogram of Oriented Gradients (HOG), and DAISY feature descriptor is combined with

VGG16 and provided to a Neural Network (NN) to classify between CNV, DME, drusen, and

normal. Aya et al [5] performed transfer learning on Inception V3 and Xception architectures

training last ten layers to classify between normal, Choroidal neovascularization CNV, DME.

2.1.3 RVO classification

As far as we know, there are not many works on RVO classification most recent was conducted

by Daisuke et al., [34] who making use of two approaches, SVM and a DNN architecture

known as VGG-16, to classify images between RVO and non-RVO. Data augmentation is

performed over images performing brightness adjustment, noise changes, and gamma correc-

tion. For classification, the best performing method was the DNN. At last, for determining

nonperfusion area (NPA), a heatmap was employed using a gradient-weighted class activation

mapping (Grad-CAM) over VGG-16.
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2.2 OCT scans segmentation

The classification of AMD, DME, and RVO diseases and the location of clinical findings

related to these diseases is a clinical challenge because the agreement among experts is based

on the years of expertise in retina [8][9]. Some experts perform a screening through the OCT

volume looking for in each scans amount of findings and location of these abnormalities called

biomarkers to identify diseases [11]. Thus, an early diagnostic and proper treatment must be

performed by experts to avoid loss of vision due to retinal diseases such as AMD, RVO, and

DME. So, the automatic and accurate identification of these biomarkers is vital to diagnoses

and follow-up patient progression. Deep learning methods have shown outstanding results

in locating and segmentation biomarkers such as fluids, cyst, drusen, and HRFs. However,

these works only tackle individual biomarkers in most cases, and reports with all of these

biomarkers are not found. Table 2-2 presented a summary with the most representative

works on the segmentation task of macular biomarkers.

2.2.1 HRFs segmentation

Schlegl et al. [13] proposed a generative adversarial network to biomarkers segmentation in

those biomarkers includes HFRs and fluid. This model was trained to extract retinal layers

for the image, using a residual loss for the discriminator, which allows the generator to

provide images with similar statistics as the training data. Thus the network is trained with

healthy images to identify anomalous regions on the image a residual image is calculated.

The proposed method name is AnoGAN.

Then, Schlegl et al. [35] proposed another approach that applied some architectures as

SemSeg, ResUnet, and ResUnet plus with cross-entropy loss and dice loss. Semseg network

contains encoder and decoder blocks with layers of size 16-64-64-128 and 3x3 filters. The

ResUnet is a UNET architecture with residual blocks on it. Those residual units allow

learning the residual functions between inputs and outputs, not only the mapping of those.

At last, the ResUnet plus includes one more block on the encoder and decoder. The best-

obtained results were for ResUnet Plus. Katona et al.[36] performed the detection of pigment

epithelial detachment (PED), outer retinal tubulation (ORT), looking for HFRs; through

the application of Weiner filter and localizing points with a hessian detector. For HFRs

segmentation, they arent focus on segmenting and taking the changes in the HFRs amounts,

so they use standard Artificial Neural Networks (ANN), Deep Rectifier Neural Networks

(DRNN), and convolutional neural networks. For ANN and DRNN, training is given to

network two input types: the raw pixel data with intensities of the vicinity. The second

input is about features like a weighted sum of pixel intensities in the neighborhood.

Varga et al. [14] tested eight different models for HRFs segmentation; images from OCT-

scans are converted into black-on-white, for DRNs and ANN feature vectors are extracted.

Feature vectors have got the raw pixel information, intensity, and 23X23 vicinity, the in-
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formation provided by filters as Laplacian of Gaussian (LoG), the distance between the

processed pixel and internal limiting membrane (ILM), Retinal Pigment Epithelium (RPE),

and intraretinal fluid accumulation (IRF), the calculation about the difference between HF

and blood vessels and pigment particles. With this information, networks are trained, for

CNNs and Fully Convolutional Neural Networks (FCN), image patches of 23 X 23 are passed.

Yu et al.[37] Uses a Deep Convolutional network, applying on the image a bilateral filter

and taking patches of 33 X 33, 65 X 65, 85 X 85, and 115 X 115, manually deleting false

focis. The networks used are GoogleNet and Resnet. The best model was GoogleNet, with

patches of 65x65.

In 2020, Xie et al.[12] using a bilateral filter and sigmoid transfer function follow by histogram

equalization to enhance images. Network architecture is trained with image patches of

128X128X3, to 3D UNET are integrated dilated convolutions to capture multiscale and

low range information. Moraes et al. [38] used a similar approach using OCT scans and

demographics information about patients. This data is passed through a 3-dimensional

segmentation network. The segmentation network uses 2d convolutions; analyzing features

as the neurosensory retina (NSR), retinal pigment epithelium (RPE), IRF, SRF, subretinal

hyperreflective material SHRM, hyperreflective foci (HRF), drusen, fibrovascular pigment

epithelium detachment (fvPED), and serous PED (sPED). For images, the biomarkers are

measured after treatment, noticing that except by drusen, biomarkers decrease.

Finally, Okuwobi et al.[?] used a bilateral filter to denoise the OCT images. After denoising

ROI extraction and HFs quantification is performed, the ROI extraction is made through

fuzzy c-means clustering. For HFs estimation, an algorithm has been proposed that works

through voxel ordering and adding those into a forest to remove duplicated and redundant

regions. At last, these two processes are merged.

2.2.2 Fluids segmentation

Fluids segmentation is one of the areas with the most developed works, and it can be seen

that most of those works in the first few years use graph theory to perform segmentation.

Xu et al.[39] used a non-linear three-dimensional anisotropic diffusion filter and sequence of

brightness curve transform to image denoising this allows to differentiate the layers of retina

and biomarkers, continuing with the taking of subregions called strata and a set of features

are calculated those include textural, structural, and positional information, for testing it

was used a k-nearest-neighbor classifier, this method allows to classify even small regions,

however, the method provided depends on retinal layer segmentation, if segmentation is

poorly made, results are bad. Oguz et al.[27] reported the segmentation with Boykov graph

cut algorithm with node costs given by a weighted sum of a layer-dependent Mahalanobis

intensity distance and the skewness measure. In the same way, Rashno et al [16] employ

graph theory placing the images in a neutrosophic domain and after this, for segmentation of

first and last layer a method based on graph shortest path is applied, for fluid segmentation
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is applied a method based on graph cut, to increase segmentation accuracy design a cost

function based on kernel mapping.

Roy et al [40] perform multiclass segmentation for retinal layers and fluids through a deep

learning framework based on a fully convolutional network named Retinal Layer segmenta-

tion network (ReLayNet) this network incorporates unpooling stages with skip connections

for image segmentation. Schlegl[35] with OCT images from different vendors and diseases as

AMD, DME, and RVO, propose a network with encoder and decoder path to classify pixel

into three classes intraretinal fluid, subretinal fluid, and normal tissue. Tennakoon et al.

[15] propose an adversarial network with a generator network based on UNET, also use a

combined loss function consisting of an adversarial loss term.

Seebock et al. [21] process images for different vendors to make domains as equals as possible

with an algorithm using mean filter operation with a kernel size of 3x3 and another mean

filter with a kernel of size 1x1x3 and histogram matching using spectralis OCT volumes as

a template, after transformations a CycleGANs with two generators and two discriminators

was applied, the fist pair generator discriminator works for domain translation, the second

one performs fluid segmentation, there were trained four models with patches of 64,128,125

and 460, the best result was for patches with size 460.

Wen et al. [23] proposed an improvement for UNET based on multiscale input, two archi-

tectures named 16 and 32 were proposed these numbers denote the number of convolutional

kernels in the first encoder block, to train the network was used a joint loss function was

based on weighted multi-class cross-entropy and dice loss. Then, Chen et al, develop a mod-

ification over UNET but this time the modification involves adding Squeeze-and-Excitation

block (SE-block) on the entire network, this method uses a graph-based segmentation to

extract retinal layers, subsequently as preprocessing stage the BM3D algorithm to image

denoising and color reversing was used, after fluid segmentation images are classified into

normal or AMD depending on whether the image has got fluid pixels.

Xiaoming et al [9] performed the automated fluid segmentation based on a modified UNET

which has got an encoder a two decoder paths with attention gates, also was tried a regression

loss, this model was trained using image patches of 256 x 256.

2.2.3 Cyst segmentation

As mentioned in the previous sections, the cyst segmentation case applied methods include

graph theory, SVM, and CNN networks. Oguz et al. [27] presented a graph optimization

for image segmentation method where a node in a graph represents each voxel and assigning

weights according to the terminal and neighboring nodes. Once the graph is built, to find

the optimal solution max-flow algorithm is used. Meanwhile, Gopinath et al. [10] employs

total variational denoising. After this, ROI is extracted using maximally stable extremal

regions(MSER), and on the extracted region is used a random forest with 50 trees to classify

between a cyst and no cyst regions.
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Girish et al.[41] to denoise image used an Unbiased Fast Non-Local Means (UFNLM), and

for image segmentation is used an FCN based on UNET. Gopinath et al. [42] introduce

a total variational denoising method and using an ensemble between Generalized Motion

Pattern (GMP) and a CNN model, which learns a function to produce a probability map

with pixels having a significant probability of benign cysts.

Girish et al. [43] applied Bayesian non-local means (BNLM) filter to denoise images. Also,

retinal layers are segmented using optical coherence tomography segmentation and evalua-

tion GUI tool; for intra-retinal cysts segmentation was used a marker-controlled watershed

transform; for cyst segmentation, a k-means algorithm performs some post preprocessing

stages, selecting a cluster with minimum centroid and removing segmented outlier regions.

2.2.4 Drusen segmentation

For drusen, some other works were carried out as Rui et al.[19] that with a directional

graph search method perform Bruch’s membrane segmentation, and with a hybrid contrast

map, separate healthy OCT scans for those that have drusen. In the last step, Top-Hat

transform and Otsu thresholding are used to extract drusen, also a median filter to generate

the definitive drusen area. Some other jobs are mainly based on UNET. As for Rhona et

al.[44] who uses a UNET model modifying it with pyramid feature maps and making use

of dice loss function to segment the outer boundary retinal pigment epithelium (OBRPE),

Bruch’s membrane (BM), and drusen as an external class. Also, in 2019 Shekoufeh et al.

[18] employed a U shape model to perform multiclass using the same encoder and different

decoders to make binary classification and join those results.

Mishra et al. [28] used a UNET model to produce probability maps of layer, drusen, and

interest regions in OCT images. With those probability maps, a graph-based method was

used to calculate path shortest path with Dijkstra’s algorithm in junction with SD-OCT

scan gradient to determine layer segmentation, and a cubic spline fitting was used to correct

small segmentation error.

Table 2-1: State-of-the-art summary for disease classification over OCT images

Year Reference Disease Method Dataset

2018 [30] AMD

Image denoising and layer extraction from

OCT images, after feature extraction SVM

is used to classify an image into healthy or

ARMD (Age-related macular degeneration)

suspect, if the image is classified as suspect

then fundus image is used to confirm an early

warning or if the subject already has the dis-

ease.

Private
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2018 [45] AMD

Graph theory, watershed transform, and

CNN to identify biomarkers and combine

those with demographic information pass-

ing into a sparse Cox proportional hazards

(CPH) model regularized by least absolute

shrinkage and selection operator (LASSO).

Private

2018 [31] AMD
Inception-v3 training last layer to detect ex-

udative AMD or healthy images.
Private

2019 [24] AMD

Crop the OCT image into three patches and

uses two CNN to classify the image between

AMD and normal, second CNN classifies the

image into with or without exudative change,

at last, the three patches are joined to obtain

the original image classification, class activa-

tion mapping (CAM) was applied on both

CNN to get the pathological region on image

Private

2019 [32] AMD

Alexnet and ResNet architectures to predict

between dry and wet AMD, ResNet proves

to get better results

Private

2019 [2] DME

Train an AlexNet architecture to distinguish

between OCT and fundus images than by

using Wiener filter images are denoised and

using structure tensor interest region was ex-

tracted, with a CNN performs feature extrac-

tion, and using neural networks and SVM

perform the classification, the best result is

given by mixing feature extraction with CNN

and classification with SVM

Private

2019 [1] DME

AlexNet, VGG-19 and Inception-V3 to fea-

ture extraction and a SVM to perform clas-

sification, best results were achieved by using

VGG-19.

Private
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2019 [34] RVO

SVM and a DNN architecture known as

VGG-16 to classify images between RVO

and non-RVO, data augmentation its per-

formed over images performing brightness

adjustment, noise changes, and gamma cor-

rection, for classification the best performing

method was the DNN, at last, for determin-

ing nonperfusion area (NPA) was employed

a heatmap using a gradient-weighted class

activation mapping (Grad-CAM) over VGG-

16.

Private

2020 [23] AMD

Fine tunning on RESNET50 to feature ex-

traction over OCT volumes labeled as AMD,

DME, or healthy, the feature extraction gives

a 2-D vector for a slice which is stacked with

others of volume, all volumes are classified by

three models those are CNN, CNN with con-

volutional block attention module and sup-

port vector machine (SVM), the use of SVM

and CNN CBAM provides better results.

Private,

Duke[46]

2020 [33] AMD

Image denoising with double-density wavelet

transform-based adaptive thresholding and

propose and CNN architecture to classify

OCT images among AMD, CNV, DME,

drusen, and normal labels.

Private,

Duke[46]

2020 [4]
DME,

CNV

Sparsity-based block-matching and 3D-

filtering (BM3D) to denoise images, then a

modified VGG16 is used to generate heat

maps and performs ROI extraction around

the mask generated by red and yellow colors

in a map, with this extracted ROI features

extracted by Histogram of Oriented Gradi-

ents (HOG) and DAISY feature descriptor

are combined with VGG16 and provided to

a Neural Network (NN) to classify between

CNV, DME, drusen and normal

Private



14 2 Related Works

2020 [5] DME,CNV

Transfer learning on Inception V3 and Xcep-

tion architectures training last ten layer to

classify between normal, Choroidal neovas-

cularization (CNV), DME

Private

2021 [3]
AMD,

PCV

DCNN with two inputs an OCT image and a

fundus image, for training weights from im-

ageNet on RESNET-50 are loaded and fine-

tuned on a separated model, the fine tunned

models will be unified in a single network

for feature extraction and to classify between

wet AMD, dry AMD, Polypoidal choroidal

vasculopathy (PCV) and normal

Private

Table 2-2: State-of-the-art summary for biomarkers segmentation (Flu-

ids,HRFs,Cyst,Drusen) on OCT images

Year Reference Biomarker Method Dataset

2015 [39] Fluid

Non-linear three-dimensional anisotropic dif-

fusion filter and sequence of brightness curve

transform to image denoising this allow to

well seeing the layers of retina and biomark-

ers, the method is based on taken subregions

called strata and a set of features are calcu-

lated those include textural, structural, and

positional information, and for testing it was

used a k-nearest-neighbor classifier

Private

2016 [27] Cyst

Median filter for image denoising and reti-

nal layer segmentation, after those steps each

voxel in the image represents a graph node,

and the weights between the node and termi-

nal and neighborhood nodes represent reg-

ulation constraints and image appearance,

with this graph construction a max-flow al-

gorithm it’s used to perform segmentation.

OPTIMA[47],

Duke[46]
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2016 [10] Cyst

total variational denoising to image denois-

ing, after this its extracted ROI using Maxi-

mally stable extremal regions(MSER) and on

the extracted region it’s used a random for-

est with 50 trees to classify between a cyst

and no cyst regions.

OPTIMA[47]

2017 [11] Drusen

U-NET model to extract the Bruch’s mem-

brane (BM) and the retinal pigment epithe-

lium (RPE) layer and after segmenting it its

used Dijkstra’s algorithm to connect bound-

aries with minimum cost also takes another

approach this time segmenting the space be-

tween layers and based on layer on both cases

drusen are detected by rectification, polyno-

mial fitting, and thresholding.

Private

2017 [19] Drusen

Directional graph search method Bruch’s

membrane was segmented with a hybrid con-

trast map healthy OCT scans are separated

for those that have drusen in the last step is

used Top-Hat transform and Otsu threshold-

ing to extract drusen the segmentation has

got some corrections which include a logical

or and also a median filter to generate the

definitive drusen area

Private

2017 [13] HRFs

Generative adversarial network to biomark-

ers segmentation in those biomarkers in-

cludes HFRs and fluid, the networks were

trained extracting retinal layers for image,

for training the networks it’s used a resid-

ual loss for the discriminator and a loos on

discriminator which allows the generator to

provide images with similar statistics as the

training data and generating an anomaly

score which indicates that a similar image

was seen during the training phase, thus the

network is trained just with healthy images,

to identify anomalous regions on the image

a residual image its calculated, the proposed

method its called AnoGAN

Private
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2017 [40] Fluid

Multiclass segmentation for retinal layers

and fluids through a deep learning frame-

work based fully convolutional end-to-end

called Retinal Layer segmentation network

(ReLayNet) this network incorporates un-

pooling stages with skip connections for im-

age segmentation the oct scan is sliced width-

wise.

Duke[46]

2017 [16] Fluid

Graph theory-based image segmentation,

but the images in a neutrosophic domain and

after this, for segmentation of first and last

layer a method based on graph shortest path

is applied, then for fluid segmentation it’s ap-

plied a method based on graph cut and for in-

crease segmentation accuracy designs a cost

function based on kernel mapping.

OPTIMA[47],

UMN[16]

2018 [15] Fluid

Adversarial network with a generator net-

work based on UNET also as loss function

use combined loss function consisting of a ad-

versarial loss term,

RETOUCH

[48]

2018 [35] Fluid

OCT images from different vendors and dis-

eases as AMD, DME, and RVO, propose a

network with an encoder-decoder path to

classify pixel into three classes intraretinal

fluid, subretinal fluid, and normal tissue

Private

2018 [49] Fluid

GAN network to perform retinal layers and

fluid segmentation, the generator segmenta-

tion network is designed as a UNET but in-

spired in RelayNet which allows multiclass

segmentation, the discriminator network is a

fully convolutional architecture that is mod-

ified for segmentation thus the output of dis-

criminator it’s a matrix with the same size of

the input image when training network for

discriminator a spatial cross-entropy loss is

used.

Duke[46]
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2018 [35] HRFs

Architectures as SemSeg, ResUnet, and Re-

sUnet plus with cross-entropy loss and dice

loss, Semseg network contains encoder and

decoder blocks with layers of size 16-64-64-

128 and 3x3 filters; the ResUnet is a UNET

architecture ith residual blocks on it, those

residual units allows to learn the residual

functions between inputs and outputs not

only the mapping of those, and at least the

ResUnet plus which includes one more block

on encoder and decoder.

Private

2018 [36] HRFs

Detection of pigment epithelial detachment

(PED), outer retinal tubulation (ORT) look-

ing for HFRs through the application of

Weiner filter and localizing points with a

hessian detector; for HFRs segmentation

they arent focus on segmenting but also on

tacking the changes in the HFRs amounts,

so they use standard Artificial Neural Net-

works (ANN), Deep Rectifier Neural Net-

works (DRNN) and convolutional neural net-

works, for ANN and DRNN training it’s

given to network two input types: the raw

pixel data with intensities of the vicinity,

the second input it’s about features like a

weighted sum of pixel intensities in the neigh-

borhood, the distances from layers and fluid

and intensities from 40 pixel long vertical

strips. The best obtaining results are from

CNN

Private
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2018 [45]
HRFs,

Drusen

Segmentation over Drusen and HRFs, drusen

were segmented using a threshold over

drusen thickness to detect those, also was ap-

plied a watershed transform to get individual

drusen, for HFRs it was used a convolutional

neural network, information about drusen,

HFRs and demographic and genetic features

as age, gender, smoking status and some risk

alleles of single-nucleotide polymorphisms, a

predictive model using sparse Cox propor-

tional hazards (CPH) is set

Private

2019 [21] Fluid

For two different vendors with AMD, DME,

and RVO images to make domains as equals

as possible uses mean filter operation with

a kernel size of 3x3 and another mean filter

with a kernel of size 1x1x3, after that an ini-

tial histogram matching using spectral OCT

volumes as a template, after transformations

a CycleGAN with two generators and two

discriminators its applied, the fist pair gen-

erator discriminator works for domain trans-

lation, the second one performs fluid segmen-

tation, there are trained four models with

patches of 64,128,125 and 460 best result are

for patches with size 460

Private

2019 [50] Fluid

Three phases are used to simultaneous seg-

ment three-class retinal fluid (IRF, SRF, and

PED), first with graph cut the retinal lay-

ers are extracted, second with a multiclass

FCN IRF, SRF, and PED are segmented,

this FCN it’s like a UNET network but re-

ceives two channels one containing a relative

distance map with image intensity informa-

tion, and also some changes in the last path

to avoid overfitting and lastly, three ran-

dom forest classifier it’s used to avoid over-

segment, one random forest per each type of

fluid

RETOUCH

[48],

Kermany[51]
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2019 [52] Fluid

3D UNET to have into account correlation

of the spatial position between the OCT im-

ages, in this network input and output are

changed from a 2D image to a 3D image, also

all convolutional kernels are 3D structures

Private

2019 [18] Drusen

U-NET model to segment to segment reti-

nal pigment epithelium (RPE) and Bruch’s

membrane (BM) and this is turned into a

cost map on those its used Dijkstra’s algo-

rithm to connect images for RPE and BM

with minimum accumulated cost in the cost

map. lastly are performed to steps to get

drusen segmentation are: rectification and fi-

nal false positive elimination.

Private,

Duke[46]

2019 [44] Drusen

U shape model for performing multiclass us-

ing the same encoder and different decoders

to make binary classification and join those

results

Private

2019 [41] Cyst

Unbiased Fast Non-Local Means (UFNLM)

to image denoising, inspired by Google’s

Xception network taking depthwise separa-

ble convolution layers to propose a DSCN

architecture

OPTIMA[47]

2019 [42] Cyst

Total variational denoising method and us-

ing an ensemble between Generalized Mo-

tion Pattern (GMP) and a CNN model which

learns a function to produce a probability

map with pixels having a major probability

of benign cysts.

OPTIMA[47],

Duke[46],

Private
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2019 [14] HRFs

Try 8 models for HRFs segmentation, images

from OCT-scans are converted into black-on-

white, for DRNs and ANN feature vectors are

extracted, those have got the raw pixel in-

formation, intensity, and 23X23 vicinity, the

information provided by filters as Laplacian

of Gaussian (LoG), the distance between the

processed pixel and internal limiting mem-

brane (ILM), Retinal Pigment Epithelium

(RPE) and intraretinal fluid accumulation

(IRF), the calculation about the difference

between HF and blood vessels and pigment

particles, with this information networks are

trained, for CNNs and Fully Convolutional

Neural Networks (FCN) image patches of 23

X 23 are passed, the best result were given

by FCN.

Private

2019 [37] HRFs

Deep Convolutional network, applying on the

image a bilateral filter and taking patches of

33 X 33, 65 X 65, 85 X 85, and 115 X 115

manually deleting false foci, networks used

are GoogleNet and Resnet, best model uses

the GoogleNet with patches of 65x65

Private

2020 [43] Cyst

Bayesian nonlocal means (BNLM) filter to

denoise the image, also retinal layers are

segmented using optical coherence tomogra-

phy segmentation and evaluation GUI tool,

Marker controlled watershed transform for

intra-retinal cysts segmentation from optical

coherence tomography B-scans, for cyst seg-

mentation a k-means algorithm performing

some post preprocessing stages as selecting

cluster with minimum centroid and remov-

ing segmented outlier regions was used

OPTIMA[47]

2020 [53] Fluid

Fully convolutional neural network (FCNN)

which name depth max pooling-based net-

work (DMP Net), and in conjunction with

mutex dice loss (MDL), allows to segment

retinal layers and fluids.

Duke[46]
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2020 [54] Fluid

Convolutional neural network and its trans-

fer learning for another study over fluid seg-

mentations, after that, training the network

with vertically sliced OCT images.

Private

2020 [23] Fluid

Improvement for UNET based on multiscale

input, a nested Unet shape, and multiscale

output and labeling, two architectures were

proposed 16 and 32 that denotes the num-

ber of convolutional kernels in the first en-

coder block, for training the network it used

a joint loss function based on weighted multi-

class cross-entropy and dice loss, best perfor-

mances were for MDAN-UNet-32.

Duke[46]

2020 [20] Fluid

Graph-based segmentation to extract reti-

nal layers, BM3D algorithm to image de-

noising and color reversing as the preprocess-

ing stage, the proposed network to perform

segmentation is a UNET with Squeeze-and-

Excitation block (SE-block) integrated after

fluid segmentation images are classified into

normal or AMD images if the predicted im-

age has got fluid pixels in it

UMN[16]

2020 [8] Fluid

Transforms the image into a Neutrosophic

(NS) domain and with Dijkstra algorithm

calculates inner limiting membrane (ILM)

and retinal pigmentation epithelium (RPE)

layers for model segmentation and proposes

an FCN structure with encoder a decoder

with a depth of 4 for each one.

UMN[16]

2020 [8] Fluid

Puts images in an NS domain, and extracts

ILM and RPE layers as ROI and the middle

layers outer plexiform layer (OPL) and inner

segment myeloid (ISM) are segmented using

the proposed graph shortest path, for fluid

segmentation a clustering method it is used

accompanied by a cost function derived from

fuzzy c-means clustering

UMN[16],

Duke[46],

OPTIMA[47]
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2020 [55] Fluid

Denoising images with BM3D algorithm with

a sigma value of 25, and with use of FCNNs

such as VGG16, Alexnet, and GoogLenet

and also DCNNs as UNET, SegNet and

Deeplabv3+ performs images segmentation,

for DCNNs a post-processing stage was ap-

plied which consists of a median filter

OPTIMA[47],

RETOUCH

[48]

2020 [56] Fluid

UNET modified network which got five con-

tracting and expanding paths with 3X3X3

convolutions, for training using weighted

cross-entropy as the loss function.

RETOUCH

[48]

2020 [28] Drusen

UNET model to produce probability maps of

layer, drusen, and interest regions in OCT

images, with those probabilities, maps a

graph-based method is used to calculate path

shortest path with Dijkstra’s algorithm in

junction with SD-OCT scan gradient deter-

mine layer segmentation and a cubic spline

fitting is used to correct small segmentation

error.

Private

2020 [12] HRFs

Bilateral filter and sigmoid transfer function

follow by histogram equalization to enhance

images, then network architecture is trained

with image patches of 128X128X3, to 3D

UNET are integrated dilated convolutions to

capture multiscale and low range informa-

tion, in the last layer of encoder path

Private

2020 [?] HRFs

Bilateral filter to denoise the image, after de-

noising ROI extraction and HFs quantifica-

tion its performed, the ROI extraction made

through fuzzy c-means clustering, for HFs es-

timation is proposed an algorithm that works

through voxel ordering and adding those into

a forest to remove duplicated and redun-

dant regions, at last, this two processes are

merged,

Private
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2021 [9] Fluid

Modified UNET which has got a encoder

a two decoder paths with attention gates,

also its tried a regression loss,this model was

trained using image patches of 256 x 256

OPTIMA[47]



3 Segmentation of retinal fluids and

hyperreflective foci using deep

learning approach in optical coherence

tomography scans

This chapter explores the segmentation of fluids and HRFs through the experimentation

with a publicly available dataset known as UMN that provided us with mask annotated

images for intraretinal fluids and subretinal fluids, we also explored the segmentation task

in the Duke dataset which only provided us with OCT scans. The OCT scans from Duke

dataset were annotated by an expert ophthalmologist from the ophthalmology department

of Universidad Nacional de Colombia.

In segmentation tasks of fluids and HRFs, should be considered previous works such as the

one carried out by Abhijit Guha Roy et al. [40] who proposed an architecture composed of

two blocks encoder-decoder and classification block to classify named RelayNet, where each

pixel between ten classes belonging to layers and fluids. Sung Ho Kang et al. [57] fused two

UNets, the first one makes normal segmentation, and the second one takes the segmented

image and output to provide a result segmentation. Gao et al. [58] designed a double

branched fully convolutional network to automatically segment fluid and hyperreflective foci

in OCT images. In addition, Liling Guan et al [59] created a backbone based on ResNet-

50 to delimit contours using the Distance regularized LSE (DRLSE) modified curvature

diffusion equation (MCDE). László Varga et al [14] tested four layers with a RELU activation

termed FCN to perform HFs segmentation. Chenchen Yu et al [37], made some changes over

GoogLeNet and ResNet to segment images processing patches of those. Zailiang Chenab et

al [20] suggested the use of squeeze and excitation blocks over an UNet, after applying a

denoising algorithm known as BM3D all processes to improve the results provided by the

UNet model. At last, Idowu Paul Okuwobi et all [?] implemented the use of a component

tree to classify pixels previously filtering the images by an algorithm that uses morphological

reconstruction to preserve edges and main images characteristics. This work was published

in the 16th International Symposium on Medical Information Processing and Analysis, 2020.



3.1 Introduction 25

3.1 Introduction

Retinal diseases are the main risk factors that significantly influence the presence of some

type of visual disability in childhood. The detection of those diseases in early stages may

help to prevent vision loss or blindness [60]. Currently, the diagnosis of retinal diseases such

as diabetic macular edema (DME), age-related macular degeneration (AMD), central retinal

vein occlusion (CRVO), and branch retinal vein occlusion (BRVO) is mainly based on clinical

examination and analysis of ocular images by trained ophthalmologists [61].

OCT is the most reliable image used by experts to assess the whole morphology of the

retina [62]. The ocular examination is summarized as follows: the ophthalmologists look

for some findings in images such as hyperreflective foci, fluids, cysts, and drusen. Then, ac-

cording to the finding’s position and size in the OCT, they perform the diagnosis of retinal

disease [63]. The proper detection helps experts to apply effectively the interventional treat-

ment and follow-up that the patient needs, such as antivascular endothelial growth factor

(anti-VEGF) and vitrectomy surgery that improves the patient’s response to treatment.

Deep learning has achieved outstanding results in the last 9 years in computer vision task [35].

Due to the successful results, deep learning has been studied as an automatic diagnostic

process in screening programs to allow remote identification of ocular diseases that relieves

the workload of ophthalmologist [64]

3.2 Methodology

The overall pipeline to segment OCT scans contains two stages. The first block is the

preprocessing stage that performs the Region of Interest (RoI) extraction from scans, after

resizing the scan to a resolution of 256 × 256 keeping aspect ratio and, the application of

transformation on the resized scan and its respective mask (data augmentation. The second

stage integrates two CNNs into an ensemble model. The first CNN is a Pix2Pix model and

the second CNN is a modified deep retinal understanding model (DRIU) [65] as shown in

Figure 4-1.

Figure 3-1: Block diagram of the proposed method to fluid and HFs segmentation.
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3.2.1 Preprocessing stage

The RoI detection in all scans was performed to extract the relevant information used to feed

our CNN ensembled. The RoI extraction was done with a YOLO object detection model [66].

This model was trained with 1000 images from the Duke dataset where were manually labeled

with a bounding box that comprises the whole retinal layers. The output of the RoI detection

model is the coordinates of the bounding box that closed retinal layers of each scan. After,

the scans and the mask with the fluids and HFs were cropped according to each bounding

box. The cropped scans and masks were resized into a resolution of 256×256. These resized

images were used to apply transformation such as shearing, zooming, and horizontal flip on

images and mask at the same time to augment the data.

3.2.2 Deep learning ensemble method

SEUNet is a CNN model based on UNet but with the integration of Squeeze-and-Excitation

blocks (SE-block). These blocks enhanced feature maps allowing give better results than

a simple UNet [20]. The DRIU architecture is a deep learning model based on VGG-19

CNN used for the segmentation of optic disc and blood vessels in eye fundus images [65].

The modified DRIU model contains squeeze and excitation blocks in the last layers to im-

prove the performance in the segmentation task. The Pix2Pix architecture allows applying

the translation of features from an image to another image. This model has been used in

tasks as colorizing images and reconstructing objects from diverse representations [67]. In

particular, Pix2Pix was used in retinal fluid and HFs segmentations to learn the represen-

tation of the segmented images. Pix2Pix architecture contains two stages: a generator and

a discriminator, the generator stage is similar to UNet CNN but adding skip connections

between blocks to help the generator avoids bottlenecks; the discriminator stage keeps the

same function played in a GAN model to discriminate between real data and data created

by the generator. A Patch-GAN was implemented as the discriminator in the Pix2Pix model

to force low-frequency correctness.

Our proposed approach contains a SEUNet model ensembled with a modified DRIU ar-

chitecture and a Pix2Pix. The motivation for the model is that the combination of these

architectures may improve the detection of small lesions. In particular, SEUNet and Pix2Pix

models have the best prediction in lesions with medium and large sizes. Otherwise, the mod-

ified DRIU shows the best performance in lesions with small sizes.

3.2.3 Dataset

The Duke dataset is a free public available dataset that contains 384 spectral domain-OCT

volumes from subjects control and AMD conditions [68]. We analyzed the whole dataset

to select a representative subset of 10 subjects varying from 9 to 21 images OCT scans per

subject. The scans were manually labeled by an ophthalmologist obtaining 209 scans with
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retinal fluids and HFs. Then, this subset was randomly split into three data sets with 70%

of scans for the training set, 10% for the test, and the remaining of the sample for the

validation set. The distribution of scans was the following: 146 scans for training, 42 scans

for validation, and 21 for the test set, in image 4-3 from the Duke dataset are shown joined

to expert ophthalmologist segmentation.

Figure 3-2: a) Scan without findings, b) Scan with fluids (blue) and HFs (red).

3.2.4 Evaluation

The performance metric used to evaluate our results was the Dice coefficient as formulated

in eq. 4-1. The Dice coefficient is a statistical measure to analyze the similarity between two

images. The Dice measure a range between 0 and 1, where closer values to 1 represent the

most similarity between the predicted image and real segmented image [55].

DSC =
2TP

2TP + FP + FN
(3-1)

where, true positive (TP) and false positive (FP) values represent the concordance pixels of

background and foreground between predicted image and original image; and false negative

(FN) values represent the disagreement between predicted image and original image.

The evaluation was done with the comparison of two CNN ensemble versions of SEUNet

against UNet, SEUNet, DRIU, Pix2Pix as baseline models. We explored the original UNet,

the UNet with SE-Blocks termed as SEUNet architecture. Besides, the original DRIU and

the modified DRIU with SE-BLOCKS in the last layer to obtain a fine segmentation were

tested.
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The loss function for UNet and SEUNet was a binary cross-entropy plus Dice loss and,

for DRIU architectures was used a binary cross-entropy plus the Jaccard as a unified loss

function. These hyperparameters were founded by exploring in a grid search. The batch

size and learning rate that obtained the lowest loss function in the first experiment with 50

epochs were chosen to increase the number of epochs. According to the best performance

reported in tests for UNet, SEUNet, and DRIU, the models were trained using 450 epochs,

a batch size of 16 images and a learning rate of 0.003 with Adam optimizer The Figure 3-3

shows the loss and performance metric values, during training for SEUNET method.

Figure 3-3: Loss and Dice performance train(blue) and validation (orange).

3.3 Results

The best models used in training and validation sets after exploring hyperparameters in a

grid search were evaluated on the test set. The Dice coefficient obtained for retinal fluids and

HFs segmentation tasks in validation and test sets is presented in Table 3-1, DICE coefficient

on test and validation sets of fluids and HFs, it was compared over architectures like: UNet,

SEUNet, DRIU, and Pix2Pix, those networks, results for our method are in general for HFs

better than other models showing a test and validation dice measure of 0,6935 and 0,4437,

for fluids SEUNet gives a really good performance, an ensemble with Pix2Pix architecture

improve results on test dataset giving a dice of 0,6245.

Baseline models presented commonly fail on performing segmentation on small areas, those

kinds of areas are presented at most HFs. However, the adding of squeeze and excitation

blocks at the last layers of DRIU shows an improvement in segmentation results for HFs as

shown in Figures 3-4 and 3-5. These figures allow us to compare the obtained segmentations

of baseline methods regarding the proposed ensemble method, those images show the dice

coefficient per image meanwhile in Table 3-1 results show the mean dice coefficient for images

in the respective dataset.
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UNet SEUNet DRIU Pix2Pix ensemble Pix2Pix ensemble DRIU

Fluids

Validation 0,5672 0,7241 0,6509 0,4257 0,7205 0,7084

Test 0,5333 0,6236 0,5525 0,4352 0,6245 0,5972

Hyperreflective foci

Validation 0,5393 0,6835 0,6839 0,4070 0,6418 0,6935

Test 0,3756 0,4272 0,4385 0,3407 0,3800 0,4437

Table 3-1: Results comparison over models and data sets for retinal fluids and hyperreflec-

tive foci. In bold is the highest DICE coefficient for the test set.

Figure 3-4: Fluid segmentation perform over dataset
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Figure 3-5: Hfs segmentation perform over dataset

3.4 Discussion and conclusions

Ophthalmologists guide their diagnosis according to the clinical findings found in scans.

Thus, fluid and HFs segmentation plays an important role in eye disease classification-

assisted diagnosis. This work provides an approach to automatically detect and segment



3.4 Discussion and conclusions 31

retinal fluids and HFs to support clinical decision-making in retinal diagnosis. This method

reduces the time-consuming spend in the detection of findings and it could offer information

about the fluid quantity in volumes.

HFs segmentation is a demanding time task even for experts because of small sizes and

the closer presence to large retinal fluids of these findings. The obtained segmentation

masks using the proposed ensembled model with Pix2Pix present the best results in HFs

detection as reported in Table 1 and Figures 3-4. Otherwise, the baseline methods have

a bad performance in most of the areas with a doted o very small segmentation region as

normally present with HFs finding.

The method performance was compared with state-of-the-art methods, where our proposed

method using the ensembled model of SEUNet with Pix2Pix presents the best results in the

segmentation task of HFs and retinal fluid.

Other finding such as drusen may help to identify some diseases like retinal vein occlusion

and vitreoretinal traction. However, datasets with drusen segmentation are still a need. The

available datasets have bad quality and a reduced number of images. Moreover, the free

public OCT data sets have no segmentation mask with ocular findings. In this work, we

released a new image dataset with binary masks of retinal fluids and HFs available in two

repositories 1 2.

A major number of scans must be required to increase the significance of the obtained

results. On the other hand, the segmentation of other findings will be studied in future

works. Finally, we consider that the integration of this model with models to classify retinal

disease could be used in screening programs to deliver additional relevant information to

ophthalmologists.

1https : //github.com/yeisonlegarda/fluidsdukemarkeddataset.git
2https : //github.com/yeisonlegarda/focisdukemarkeddataset.git
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classification using a deep learning

approach in optical coherence

tomography scans

This chapter explores segmentation of different biomarkers such as fluids, HRFs, drusen,

and cysts through the experimentation with OCT images, some state of art architectures

were tested for this work, and also a proposed method based on a DRIU network modified,

in addition to segmentation, binary and multiple classifications are also explored for labeled

OCT scans; scans used for classification and segmentation were annotated by an expert

ophthalmologist from the ophthalmology department of Universidad Nacional de Colombia.

4.1 Introduction

There is an upward trend of population aging and, consequently, a significant increase in the

global burden of chronic diseases. Among these, the most representative ocular disorders

are age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinal vein

occlusion (RVO).[69] These diseases converge in macular edema development, which is the

most important cause of visual impairment due to structural and functional sequelae.[70]

These exudative retinal diseases are responsible for most blindness cases that affect the

macula both with the generation of edema and the development of an intense inflammatory

response that accelerates the damage progression.[71][72].

Macular edema is the fluid accumulation or swelling that occurs in the retinal extracellular

space in the macula, which is an important area located in the center of the retina and

needed for sharp vision and fine detail, and color recognition. This build-up of fluid leads

to abnormal macular thickening and represents an important cause of central vision loss.[70]

Therefore, early detection of macular edema is critical for proper diagnosis and management

to get better visual results.[70]

The structural and functional integrity of the retina is maintained by a state of relative

dehydration that ensures its transparency and optimal transmission of light to the photore-

ceptors. The accumulation of fluid in the intra and subretinal regions results from the loss
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of balance of the active and passive mechanisms that govern the entry and exit of fluid, as

represented by the Starling equation when a pathological condition interrupts the integrity

of the blood-retinal barrier. It is composed of both an inner and an outer barrier. The inner

one comprises the vascular endothelium, basement membrane, and pericytes, and the outer

one is made up of the retinal pigment epithelium.[70][73].

The pathogenesis of diabetic macular edema includes a hyperglycemic state that causes tissue

damage through oxidative stress, advanced glycation end products, blood flow impairment,

hypoxia, pericytes, and endothelial cells loss, inflammation, and decrease of neural protective

factors such as glial cell line-derived neurotrophic factor.[74][75] In cases of retinal vein

occlusion, the formation of macular edema results from the cytokine release, hypoxia, and

increased hydrostatic pressure and vascular stasis leading to the subsequent interstitial fluid

accumulation, according to Starling equation.[76][77]

The choroidal neovascular membranes related to wet age-related macular degeneration con-

duce to fluid accumulation in the macular area due to disruption of the retinal pigment

epithelium (outer blood-retinal barrier), with the amplification of endothelial damage and in-

creased vascular permeability by proinflammatory cytokines, hypoxia, pro-angiogenic molecules

and oxidative stress (breakdown of the inner blood-retinal barrier).[72][78].

The differentiation of macular edema etiology is of vital importance for the recognition of

visual prognosis and the most suitable therapeutic approach. Optical coherence tomography

(OCT) is the method of choice for studying macular edema.[70] it allows the best evaluation

by recognizing the proper location, extension, and significant disease patterns that are so

helpful to determine the underlying pathology.[79]

The most representative patterns of diagnostic images are capable of being identified, pro-

cessed, and quantified. These findings are known as biomarkers, which are certain character-

istics that can be objectively measured and evaluated as indicators of normal or pathological

biological processes, with their respective diagnostic, predictive and prognostic values.[80],[81].

Macular edema due to choroidal neovascular membrane secondary to wet age-related macular

degeneration exhibits distinctive biomarkers such as drusen, hyperreflective foci, drusenoid

pigment epithelial detachment (PED) and subretinal fluid.[82][?]. Diabetic macular edema

shows disorganization of retinal inner layers (DRIL), epiretinal membrane, intraretinal fluid,

and hyperreflective foci.[83][84]. Macular edema due to retinal vein occlusion reveals typical

biomarkers like retinal macrocysts, hyperreflective foci, subretinal fluid, and outer limiting

membrane disruption.[85][37].

The growing incidence of the above-mentioned age-related ocular diseases increases the num-

ber of office visits, regular specialized check-ups, treatment sessions, and diagnostic tests,

which are much higher than the number of expert specialists who can analyze them promptly.

As a comprehensive strategy to overcome these needs there is digital health, and among its

strategies, the application of artificial intelligence arises to support diagnosis, access, and

timely reading of diagnostic images.

Many challenges exist in working with OCT images and machine learning, these include data
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availability because legal reasons and privacy make it impossible to share data information

with which the methods were trained and tested, OCT images also have some singularities

such as highly noisy foreground and background textures are quite similar, images between

different vendors have too many differences in appearance and features, doing for an auto-

mated method harder to perform generalization over these kinds of images, mostly of times

this problem is tackled by adding stages of pre-processing and post-processing but and al-

though additional steps don’t limit the usability of the methods, they do require domain

knowledge; at last biomarkers, segmentation is hard due to the different sizes, shapes and

location that these have.

In this work, an automated end-to-end system based on a deep learning algorithm is proposed

to automatically perform the segmentation of biomarkers ( drusen, HRF, fluids, and cyst)

and classification of diseases having into account the results from segmentation performed

on OCT images. The remainder of the article is organized as follows: Section 4.2 explains

in detail the proposed method, dataset, and evaluation. Section 3.3 shows the experimental

results obtained in the segmentation task. Finally, section 4.4 reports the main discussion,

conclusions and future works.

4.2 Methodology

4.2.1 Dataset

The scans were manually annotated with biomarkers by an expert ophthalmologist; biomark-

ers include fluids(IRF, SRF), HRF, cyst, and drusen; expert ophthalmologist also labeled

each OCT scan with disease (AMD, DME, RVO) for cases where the disease could be seen in

the scan if scan image hasn’t got any disease this was labeled as control, a total of 1343 images

were annotated, these images were divided into seven different datasets four of which belongs

to biomarkers segmentation and the rest belonging to diseases, datasets were balanced to get

the same proportion of images in segmentation case between images with findings and those

without any finding, similarly was done for diseases wit healthy images and images where

the disease could be seen. After having balanced datasets each one is partitioned between

training, test, and validation containing 70%,20% and 10% of total images respectively the

total images pet set are related in Table 4-1.
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Segmentation

Training Test Validation Total

Drusen 498 146 70 714

HRF 486 141 68 695

Fluids 242 70 34 346

Cyst 250 74 34 360

Classification

AMD 154 46 22 222

RVO 244 72 34 350

DME 26 9 3 38

Table 4-1: Images per dataset resume for image classification and segmentation on OCT

scans

4.2.2 Deep learning method

The overall pipeline for the segment and classify OCT images are shown in figure 4-1, this

includes the first step for segment cyst, drusen, HRF, and fluids, a second step includes

classify the image between three diseases these include AMD, DME, and RVO.

Figure 4-1: Block diagram of the proposed method to classify and segment OCT images.

OCT scans segmentation

For image segmentation two architectures there were used: ResUNet++[86] this is an archi-

tecture based on ResUNet which is a UNET architecture with residual blocks on it, those
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residual units allow to learn the residual functions between inputs and outputs not only the

mapping of those ones[35], on ResUNet++ squeeze-and-excitation (SE) blocks are added on

encoder path after each block [86], SE has shown to be a point of improvement for CNNs by

replacing some of the network components with its equivalent to SE, the result its a SENet

which allows to increases the sensitivity of the network to relevant features and suppress

irrelevant ones through the use of two operations squeeze that refers to global spatial infor-

mation embedding into a channel description equation 4-1 [87] shows the squeeze operation

based on global average pooling.

Zc =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j) (4-1)

where H is the height and W the weight of the input tensor and Uc the c-the feature map

of the input. After squeeze operation comes excitation operation [?] [87] made for getting

channel-wise dependencies, this can be achieved by employing a sigmoid activation.

s = σ(W2δ(W1z)) (4-2)

where W1 and W2 denote the fully connected operation δ refers to RELU operation and σ

the sigmoid operation.

Lastly, a rescaling of feature map with activation s its performed equation 4-3 [87] shows

the operation which it’s a channel-wise multiplication.

X̄ = ScUc (4-3)

where X̄ is the SE operation output, Sc and Uc the scalar and the feature map respectively.

For segmentation also was used a DRIU architecture based on VGG-19 was used for the

segmentation of optic disc and blood vessels in eye fundus images[65], some changes were

performed on this architecture, the first one was adding batch normalization layers to improve

the training speed and training convergence also the batch normalization layer can improve

the network generalization ability[52] another change was adding ES blocks on last layers of

the network, figure 4-2shows the network architecture used.
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Figure 4-2: Modified DRIU architecture for biomarkers segmentation in OCT scans

For segmentation, training images are normalized, and data augmentation is performed,

operations for data augmentation include flip and random crops over images.

OCT scans classification

Classification over scans is performed with two approaches first one was taking the single

scan and the second one was taking the scan and passing through models for segment fluid,

cyst, and HRF placing each prediction on an image channel respectively, for drusen a linear

combination of data prediction was made on the first and third channel of resulting image

after staking predictions of fluid, cyst and HRF, the resulting image of previous operations

it’s superimposed on the original image, figure show image for the first and second approach.
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Figure 4-3: a) Single Scan , b) Scan with fluids (red),cyst(green), HRF (blue) and drusen

(purple) predicted by models.

Scans for classification both cases (single scan, scan with predictions), are normalized and

also to perform data augmentation operations like horizontal flip, zooming, and cropping,

after operations an Inception-ResNet-v2 architecture is used for training the classification

model, Inception-ResNet-v2 architecture uses residual connections version for Inception-v4

network[ChristianSzegedy2016]. To verify both classifications approaches DUKE dataset

[46] was used, this dataset contains 269 volumes for AMD patients and 115 control volumes

each volume contains 100 images, to use this dataset due to noise of images BM3D algorithm

with a sigma value of 12 it was used for denoising, after denoising images the classifications

models were applied with a voting strategy to classify each volume between control and

AMD, for voting strategy was defined a threshold given by the average of AMD OCT slices

predicted on control volumes then if a volume has several slices marked as AMD less than

the average, the volume is considered as a normal subject.

4.3 Results

4.3.1 Evaluation

To evaluate the network’s architecture was used dice coefficient shown in equation 4-4 this

is a performance metric that measures the pixel’s overlap between two images, allowing to

look up for the similarity between ground truth and segmentation provided by models [8].
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DSC =
2TP

2TP + FP + FN
(4-4)

In equation 4-4 TP is true positive pixels, FP false positive pixels, and FN false negative

pixels after comparing ground truth with segmentation results.

For scans classification were used the following performance metrics: accuracy, sensitivity

and specificity shown in equations 4-5 4-6 4-7 respectively. [29][20]

Accuracy =
TP + TN

TP + TN + FP + FN
(4-5)

Sensitivity =
TP

TP + FN
(4-6)

Specificity =
TN

TN + FP
(4-7)

4.3.2 Results

Scans segmentation

Table 4-2 shows the results for OCT scans segmentation we compare the proposed architec-

tures with state of the art architectures, as can be seen our method achieves best results for

fluid segmentation and comparable results with model which obtains best result for three of

four segmented biomarkers, this is RESUNET++, however for training and prediction pro-

posed method has got a better performance this takes 40 minutes and a second to training

and predict a single scan respectively, whereas RESUNET++ takes 1 hour and 2 seconds for

training and predict single OCT scan respectively, training for both methods were performed

for 200 epochs, in images 4-4,4-5,4-6 and 4-7 segmentation for OCT slices in test dataset

are shown respectively, those segmentation are the result of manual segmentation performed

by the expert ophthalmologist and automatic segmentation performed by the RESUNET++

and proposed method.

Fluids HRF Cyst Drusen

Validation Test Validation Test Validation Test Validation Test

RESUNET++ 0.6650 0.6213 0.5728 0.5686 0.8269 0.8211 0.6346 0.6037

Proposed 0.6968 0.6657 0.5834 0.5432 0.8183 0.8000 0.6806 0.5973

SEUNET 0.6639 0.6594 0.5344 0.4537 0.8321 0.7200 0.5967 0.5269

DRIU 0.6508 0.6213 0.5369 0.5209 0.8151 0.7877 0.6646 0.5291

Table 4-2: Dice coefficient for biomarkers segmentation over tested architectures
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Figure 4-4: Fluid segmentation performed by expert ophthalmologist, RESUNET++ and

proposed method over different OCT scans
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Figure 4-5: Cyst segmentation performed by expert ophthalmologist, RESUNET++ and

proposed method over different OCT scans
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Figure 4-6: Drusen segmentation performed by expert ophthalmologist, RESUNET++

and proposed method over different OCT scans
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Figure 4-7: HRFs segmentation performed by expert ophthalmologist, RESUNET++ and

proposed method over different OCT scans

Scans classification

Oct scan classifications were made with Inception-ResNet-v2 but with different approaches

in images as was already explained, in the image including segmentation case were taken

images from results of the proposed method and RESUNET++, tables 4-3 and 4-4 show

metrics results for AMD and RVO classification respectively, as can be seen, the best results

are achieved by the image with segmentation information for the proposed method in AMD

case, for RVO results are better for images with segmentation don’t matter the method used

for segmentation.
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Validation Test

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Scan + proposed segmentation 1 1 1 1 1 1 1 1

Scan + RESUNET++ segmentation 1 1 1 1 0.9783 0.9791 0.9783 0.9783

Single scan 1 1 1 1 0.9783 0.9791 0.9783 0.9783

Table 4-3: Classification results for AMD

Validation Test

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Scan + proposed segmentation} 1 1 1 1 0.9583 0.9615 0.9583 0.9583

Scan + RESUNET++ segmentation 1 1 1 1 0.9583 0.9615 0.9583 0.9583

Single scan 1 1 1 1 0.9583 0.9586 0.9583 0.9583

Table 4-4: Classification results for RVO

Table 4-5 shows the classification performance for duke dataset.

Accuracy Sensitivity Specificity

Single scan 0.8142 0.6633 0.9144

Scan + proposed method 0.7035 0.68 0.7171

Scan + RESUNET++ 0.7430 0.7128 0.7631

Table 4-5: Classification results for AMD on DUKE dataset using voting strategy

4.4 Conclusions and discussions

This paper proposes an end-to-end method applied to OCT scans for the automatic segmen-

tation of biomarkers and classification of macular diseases, for the segmentation task were

explored two CNN architectures, the first one based on integrating SE blocks and BN layers

to a DRIU architecture, and the second one making use of RESUNET++ architecture. The

RESUNET++ method performs good results on foci, cyst, and drusen with a dice coefficient

in the test set of 0.5686,0.8211, and 0.6037, respectively for fluids case our method shows

the best performance with a test dice of 0.6657. However, when performing segmentation

RESUNET++ adds false positive pixels on outside retinal layers as can be seen in figures 4-5

and 4-7 which belongs to segmentation for fluids and cysts. The proposed method achieves

the state-of-the-art performance for segmentation architectures, showing an improvement

over the original architecture (DRIU) for OCT scans segmentation.

For the classification of macular diseases using OCT scans, two approaches were explored. An

Inception-ResNet-v2 with the raw scan as an input and the second approach that combines
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the raw OCT scans with the generated segmentation performed by the proposed method and

RESUNET++. Best results are shown by scans without segmentation information; however,

for DME case, very few images are available, so the results may not be generalizable; for

posterior works, more images should be added to DME class, and also other architectures

may be explored comparing their results to look for a performance boost for all classification

cases.

At last for developing this work, hyperparameter tuning presented a significant challenge

because the quality of results depends mainly on the hyperparameters used for training,

then two hyperparameter tuning ways were tested random search and also a grid search,

best performance presented was to random search for which the results obtained for both

classification and segmentation were presented.

The wide variety of vendors for OCT scans is still a problem to be addressed. For this work,

an existing marked with AMD dataset was used for classification using the pre-trained net-

work with our dataset; nevertheless, a preprocessing algorithm should be applied to achieve

good results. For future works, an end-to-end method can be explored to avoid such dis-

crepancies between vendors.



5 Conclusion and future works

This research explored several deep learning approaches to automatically obtain the image

segmentation of macular biomarkers using OCT scans. However, the segmentation of these

macular biomarkers is not an easy task due to the different shapes, sizes, and textures

of the analyzed biomarkers (HRFs, Fluids, Drusen, Cyst). To tackle this problem a deep

learning architecture known as DRIU was modified with elements that have shown pretty

good performance by increasing results over some architectures, the proposed method shows

comparable results with state-of-the-art methods.

In addition, the classification of OCT scans between different macular diseases was explored

in this thesis. Two approaches were taken into account single images classification and im-

ages predicted from segmentation models for all biomarkers, an architecture name inception

Resnet-v2 was chosen for this task, the results after hyperparameter exploration, show that

images with annotated biomarkers do not provide comparable results with single images,

then for binary classification better to give to network architecture images without extra

information, in addition to the binary classification in this research the multiclassification

problem was addressed by making use of the same architecture employed for binary classifica-

tion, this was possible due to data availability provided by the Departamento de oftalmoloǵıa

from Universidad Nacional de Colombia because no public datasets provide annotated scans

with all diseases, this was also the case for OCT scans segmentation.

The obtained results were validated through comparison with the state-of-the-art methods,

because in most cases the images used in the state of the art methods couldn’t be obtained,

due to data privacy or because some public datasets didn’t possess all biomarkers or dis-

eases to be tackled; the results obtained show that proposed methods for classification and

segmentation are comparable to state of art methods.

Finally, some open challenges are still latent, i.e. a strategy to segment and classify OCT

scans from multi-ophthalmology centers, this is the most remarkable challenge because of

the scans differences such as size and quality in this research the way to tackle this problem

was through image denoising but other ways must be explored. Another possible future work

may be the automatic generation of artificial OCT scans with no common ocular findings or

diseases, due to the amount of data needed to get good results in commonly used approaches.
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