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Las matemáticas son el lenguaje en el que

Dios escribió el universo
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Abstract

Suspense is an affective state ubiquitous in human life, from art to quotidian events.

However, little is known about the behavior of large-scale networks during suspenseful

experiences. To address this question, we examined the continuous brain responses

of participants watching a suspenseful movie along with a reported level of suspense

from viewers. We employed sliding window analysis and Pearson correlation to measure

functional connectivity states along time. Then, we used Mapper, a tool of Topological Data

Analysis, to obtain a graphical representation capturing the brain’s dynamical transitions

across states. Our analysis revealed changes in the functional connectivity within and

between Salience, Fronto-Parietal, and Default networks associated with suspense. In

particular, the functional connectivity between Salience and Fronto-Parietal networks

increased with the level of suspense. In contrast, the connections of both networks with

the Default network decreased. Together, our findings expose the dynamical changes of

functional connectivity at the network level associated with the variation of suspense

and reveal topological analysis as a potentially powerful tool for studying dynamic brain

networks.

Keywords: Suspense, fMRI, Dynamic functional connectivity, Topological data anal-

ysis, Mapper
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Resumen

El suspenso es un estado emocional omnipresente en la vida humana, desde el arte hasta

los eventos cotidianos. Sin embargo, se sabe poco sobre el comportamiento de las redes

cerebrales a gran escala durante las experiencias de suspenso. Para abordar esta pregunta,

examinamos continuamente las respuestas cerebrales de participantes que ven una peĺıcula

de suspenso junto a un reporte de los espectadores ds su nivel de suspenso. Empleamos el

análisis de ventana deslizante y el ı́ndice de correlación de Pearson para medir los estados

de conectividad funcional a lo largo del tiempo. Luego, usamos Mapper, una herramienta

del análisis topologico de datos, para obtener una representación gráfica que captura

las transiciones dinámicas del cerebro a través de los estados. Nuestro análisis reveló

cambios en la conectividad funcional dentro y entre las redes saliente, fronto-parietal y por

defecto asociadas con el suspenso. En particular, la conectividad funcional entre las redes

saliente y fronto-parietal aumentó con el nivel de suspenso. Por el contrario, las conexiones

de ambas redes con la red por defecto disminuyeron. Nuestros resultados muestran los

cambios dinámicos de la conectividad funcional a nivel de red asociados con la variacion de

suspenso y revelan al análisis topológico de datos como una herramienta potencialmente

poderosa para estudiar la redes dinámicas del cerebro.

Palabras clave: Suspenso, fMRI, Conectividad funcional dinámica, Análisis topológico

de datos, Mapper.
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1

Introduction

Researchers have been interested in the brain mechanisms underlying human emotional

response since the early days of psychological science. Even though this question remained

ignored beginning the second half of last century [3] in the last few decades neuroscience

has again embraced emotion as a relevant research topic [4, 5].

One of the most powerful emotions that permeate many aspects of our life, from quotidian

events to many leisure activities like reading or watching a film is suspense. Suspense is an

affective state associated with conflict, dissonance, instability, or uncertainty regarding an

emotionally significant event that on some level is not susceptible to influence or control

which motivates future-oriented expectation or prediction and desire for a resolution [1].

Suspense is relevant in areas like media [6, 7], arts, [8, 9], sociology [10] and psychology

[11, 12], but despite this and the increasing attention of neuroscience on emotions, to

the best of our knowledge the number of studies in this field related to suspense is

still small, [1, 2, 13–19], therefore the neuronal and psychological mechanisms intrinsic to

suspenseful experiences are not yet fully understood, nonetheless, the path of understanding

is set: “characterizing circuit interactions is believed to be key to unravelling how emotion

is organized in the brain” [20].

We can understand the brain as a complex system or network, in which mental states

emerge from the interaction between multiple physical and functional levels [21]. One

of the most fruitful approaches to brain architecture is in terms of functional networks.

Functional networks are defined as graphs whose nodes are neural elements of the brain

(i.e., voxels, regions) and the edges are defined by mean of functional connectivity (FC); a

measure of the statistical dependence between the neural activity of nodes [22]. However

Most network-based neuroimaging studies utilize a static brain network repre-

sentation which constructs a network using data from an entire scan session.

In essence, these networks summarize the strength of functional connectivity

between pairs of brain regions throughout a scan session. However, many

changes in the brain occur at shorter time scales on the order of milliseconds

1



2 CHAPTER 1. INTRODUCTION

(for neuronal activity) or seconds (for cerebral blood flow). Static network

analyses are agnostic to these changes occurring at shorter time scales; however,

recent interest in how networks change has led to the development of methods

to examine dynamics in functional connectivity more generally [23].

Therefore, the use of dynamic brain networks arise to enhance the understanding time-

evolving neurophysiological processes, so-called dynamic functional connectivity (dFC)

in contrast to the static functional connectivity (sFC) that does not consider temporal

factors. Indeed, recent research on the affective brain have demonstrated that a variety of

emotional experiences are associated with dynamic interactions of large-scale networks

(LSN) [24–34]. However, to our knowledge, there are not studies in suspense experiences

yet.

In the last few years, neuroscientists have started to use Topological Data Analysis (TDA)

for studying static brain networks [35–37] and dynamic ones [38, 39]. TDA is a recent and

fast-growing field that emerged from various works in applied (algebraic) topology and

computational geometry. It is mainly motivated by the idea that topology and geometry

provide a powerful approach to infer robust qualitative, and sometimes quantitative

information about the structure of data [40].

In particular, the topological-based method called Mapper [41] was used to reveal the

dynamical organization of the brain associated with cognitive tasks performed over time [39].

In this work, Mapper proved to be a novel method that represents the brain’s overall

dynamical as a combinatorial object capable of (1) providing insights about how the brain

dynamically adapts in a multitask paradigm (2) tracking transitions at a much faster

time scale than before and (3) finding neural markers for individual differences in task

performance. By contrast, little is known about the brain’s temporal organization during

suspense experiences.

1.1 Contributions

This study explores, for the first time, the phenomena of suspense from a network-based

perspective. We hypothesize that variations in the intensity of suspense are associated

with changes in the functional connectivity within and between large-scale networks.

The results of this study will contribute to understand the brain’s mechanisms underlying

the affective state of suspense. In addition, the results would support the approach of

conceiving emotional processing at the level of dynamic interactions between large-scale
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networks.

Furthermore, this work contributes to establishing the growing field of Topological Data

Analysis as a source of novel and potentially powerful methods to study the brain’s

connectome.

1.2 Structure of thesis

The thesis is organized as follows:

Chapter 2 We define psychologically and neurologically the emotional state of suspense.

Besides, we present the neural models and the dynamic interactions of LSN associated

with emotions, and finally, we give the topological and statistical definition of Mapper.

Chapter 3 We describe our data including the selection of the Regions of interest (ROIs),

we explain the sliding window method (SWM) to form the metric space and each

step of Mapper’s algorithm. Additionally, we expound the analysis of the output

graph.

Chapter 4 We present the construction of the Mapper graph and the results of its analysis.

Chapter 5 We characterize the graph result of Mapper and we identify the functional

connectivity patterns associated with the suspense responsible for the graph’s features.

In addition, we indicate the limitations of the study and and ideas for future

researches.

Chapter 6 We give the conclusions of the thesis.



2

Background

To study suspenseful experiences from a dynamic network viewpoint, we first introduce

in Section 2.1 a psychological model of tension and suspense by Lehne and Koelsch. In

the following Section 2.2, we present two current neurological models that associates the

processes of emotions with the interactions of large-scale networks, specially, the models

arise as plausible neurological explanations for the model of Lehne and Koelsch. Next, in

Section 2.3 we link the LSN to suspense and related emotions to it. Finally, in Section 2.4

we introduce Mapper as an advantageous tool to study dynamic brain networks and show

its definition.

2.1 A model of tension and suspense

Experiences of tension and suspense permeate many aspects of life, from quotidian events to

many leisure activities such as reading or watching a movie. The ubiquitousness of tension

and suspense suggests that they build on very basic cognitive and affective mechanisms. In

fact, Lehne and Koelsch [1] argue that even if suspenseful experiences are found in different

contexts, they are built on the same underlying psychological processes and consequently

they have proposed a domain-independent model of tension and suspense. The model is

shown in Fig. 2.1 below.

According to this model, experiences of tension originate from the perception

of an initiating event that is associated with conflict, instability, dissonance,or

uncertainty which triggers future-directed processes of prediction, expectation

and anticipation (modulated by previous knowledge, situational factors, or

personality).These predictive processes create a space of possible outcome

events (note that these anticipated outcome events can be conscious or uncon-

scious, and more or less specific). A divergence between the affective values

of anticipated events (i.e., their desirability) then results in an experience of

tension [1].

4



2.1. A MODEL OF TENSION AND SUSPENSE 5

Figure 2.1: Model of tension and suspense proposed by Lehne and Koelsch. An initiating

event associated with conflict, dissonance, instability, or uncertainty triggers processes of

expectation, anticipation, and prediction that depend on previous knowledge, context, and

personality factors. The future-directed processes generate a space of anticipated outcome

events that vary with regard to their affective values/desirability: a positive outcome

is associated with hope and negative outcomes with fear. The divergence between the

opposite outcomes leads to the subjective experience of tension. (Reprinted from [1])

The key components of this model are:

Conflict, dissonance and instability Experiences with this characteristic, create a

yearning for more stable or consonant states.

Uncertainty Uncertainty is an essential component underlying tension experience (al-

though its exact role is a matter of debate, see the paradox of suspense [10]). Usually

it takes the form of an implicit or explicit question (e.g., the classic “Whodunit?” in

a detective story), triggering an experience of tension that resolves when an answer

to the question is provided.

Expectation, prediction and anticipation Events that unfold in time are constantly

evaluated against a background of predictions that are continuously updated during

their temporal evolution. The anticipated events with positive valence elicit emotions
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of hope, whereas negative events create fear (or anxiety if the anticipated events are

more diffuse and not clearly specified) and both states can co-occur causing both

positive or negative outcomes are possible.

Emotional significance of anticipated events The anticipated events need to have

some emotional significance (e.g., a medical diagnosis, job interview, etc.) to generate

tension or suspense. Whereas this is relatively obvious for real life experiences, it is

not the case for the tension experiences created by many forms of media entertainment

such as music or movies. Although, for instance, in narrative plots, this can be

explained by processes of identification and empathy with the characters of the plot,

making them on some level, personally significant.

Lack of control During a tension event there is an inability to influence the course of

the situation. This sense of lack of control may generate a feeling of helplessness

that can add to the experience of tension. This is particular clear in suspense movies

when viewers are aware of an inevitable danger for the protagonist but are unable to

warn him, then adding more tension to the viewer.

Nonetheless, the model proposed by Lehne and Koelsch is a psychological model of tension

and suspense, as we are interested in the neural mechanisms underlying suspenseful

experiences, in the following section we present some neurological models of emotions.

2.2 A network-based approach of emotions

The current hypothesis on the emotional brain asserts that instances of any emotion

category are not expected to be specifically related to increased activation in any single

brain region or set of regions, indeed, brain regions traditionally associated with emotions

(e.g. amygdala, insula, hypothalamus among others) show consistent activation in other

mental phenomena (e.g. memory, prospection, empathy among others) [42]. Instead,

emotions are the result of the dynamic interaction of the LSN, influencing and shaping

one another in real time according to the principles of constraint satisfaction [5].

Large-scale networks

Large-scale networks are defined as a collection of interconnected brain areas that interact

to perform circumscribed functions [43]. They have been successfully delineated in resting-

state FC. This approach examines synchronized patterns of spontaneous oscillations in
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blood-oxygen level dependent (BOLD) signal measured at rest with functional magnetic

resonance imaging (fMRI) [44].

In the present investigation, we consider three of the six LSN defined in [45]. The regions

considered for each network are presented in section 3.2:

Salience network This network is involved in the identification of important or salient

information and may include internally generated (i.e. remembered) information.

At the same time, it has been suggested that this network mediates the connection

between Default and Fronto-Parietal networks. In [44], it is part of a bigger network,

the Midcingulo-Insular network which also comprehends the Ventral-Attention and

Dorsal-Attention networks.

Fronto-Parietal Task Control Network Also known as central executive, executive

control or Lateral Frontoparietal network. The functions of this system include

executive functions, such as goal-oriented cognition, working memory, inhibition and

task switching.

Default Network Also known task-negative or Medial Frontoparietal network. Even

though there is not consensus in its primary functions, it is likely to be involved

in the formation, temporal binding, and dynamic reconfiguration of associative

representations based on current goal states, the detection of the associative relevance

of internal and external stimuli, providing value coding, semantic associations,

monitoring the environment, imagination, future-thinking and contextual associative

processing.

The network-based approach of emotions is asserted by two different models.

A constructionist model

The psychological constructionist approach of emotion, proposed by Lindquist, Barret et

al. [5, 42, 46], assumes that emotions are psychological events that emerge out of more

basic psychological operations (psychological primitives) that are not specific to emotion.

They suggest a set of four basic psychological operations that are a first approximation to

psychological primitives:

Core affect Is the representation of sensations from inside the body that can be experi-

enced as a bodily symptom or as feelings of pleasure/displeasure with some degree of
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arousal. It is associated with limbic and paralimbic brain regions within the Salience

network.

Exteroceptive sensation Is the representation of sensations from outside the body (e.g.,

visual, auditory, tactile, and olfactory sensations). It is associated with modal and

hetero-modal sensory cortices.

Conceptualization This is an automatic and effortless process which links perceptions

of sensory input from the world with input from the body to create a meaningful

psychological moment. Is is believed to be associated with the midline cortical,

lateral, prefrontal, and temporal regions within the Default network.

Emotion words In their view, emotion categories are abstract categories that are socially

constructed and humans use words as the glue that holds the category together, thus,

emotion words anchor emotion categories which work in hand with conceptualization.

It is related to language-relevant brain regions.

Executive attention This operation helps to determine which conceptual representations

are utilized to make meaning out of that state, and which are suppressed. It is

supported by the Fronto-Parietal network

In this way, to construct emotional experiences: sensations and feelings from the body

(core affect) and from the world (exteroceptive sensation) are made meaningful by past

experiences, including knowledge about the emotion categories encoded in language

(conceptualization and emotion words). This process is regulated by executive control.

Particularly, the model of tension of suspense of Lehne and Koelsch is compatible with the

constructionist model: the conflict, dissonance and instability of situations (exteroceptive

sensation) combined with the the sensation of uncertainty and expectation (core affect)

that are made meaningful by its emotional significance and the lack of control generate

the affective state of suspense.

A dynamic emergent processes model

On the other hand, Pessoa [20,47,48] proposes the following model:

The brain basis of emotion involves large-scale cortical/subcortical networks

that are distributed and sensitive to bodily signals. The high degree of signal

distribution and integration provides a nexus for the intermixing of information
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related to perception, cognition, emotion, motivation, and action. Importantly,

the functional architecture consists of multiple overlapping networks that are

highly dynamic and context sensitive. Thus, how a given brain region affiliates

with a specific network shifts as a function of task demands and brain state [20].

As Pessoa explains, there are important differences between the two models: In the

constructionist model, basic operations map onto distributed networks, notably those

characterized during resting-state functional magnetic resonance imaging. In the present

model, there are no domain-general basic operations. The mind-brain is not built from

a set of finite primitives, but from dynamic emergent processes. Here, the proposed

functionally integrated systems are flexible and dynamic, thus highly context dependent,

for example, the cortex-amygdala system, it does not have a core function like “affect

generation”, instead, its particular functional state determines how it will contribute to

multiple mental operations, which involve not only arousal, vigilance, and novelty, but

also attention, value determination, and decision making more broadly.

The Pessoa’s model emphasize the inherent dynamic nature of connections within and

between networks in function of emotional context. Furthermore, the brain regions involved

in emotional processes may in principle, remain the same trough diverse emotions, and are

the temporal properties of the connections and syncronization between regions that would

determine the uniqueness of each emotion [4]. Thus, we could expect to find evidence of

interactions related to several emotions as we present in next section.

2.3 Large scale networks in suspense

2.3.1 Dynamic brain networks of related emotions

Various researches that have found evidence of large-scale networks interactions related

to several emotions like anger, sadness, fear, disgust and happiness [24–34]. Especially,

we find guiding results of mental states related to suspense like anxiety, anticipation and

stress.

For example, Hermans et. al. [26] discovered that acute stress prompts a reallocation

of resources to the Salience network, promoting fear and vigilance, at the cost of the

Fronto-Parietal network. After stress subsides, resource allocation to these two networks

reverses, which normalizes emotional reactivity and enhances higher-order cognitive pro-

cesses important for long-term survival, demonstrating the dynamical changes of network

organization.
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Furthermore, Najafi, Kinnision and Pessoa in [33] analyzed the dFC within and between the

Default, Fronto-Parietal and Salience and subcortical regions during anxious anticipation.

To stimulate periods of anxious trough a visual stimuli: two dots slowly meandered on a

screen randomly, when they collide and unpleasant mild electric shock was delivered. In

this way the scanning time was divided into periods of approach (dots moving closer) and

periods of retreat (dots moving apart). During periods of retreat the Salience network

exhibited the strongest chances during approach and/or retreat periods, the positive

functional connections increased during approach, and decreased during retreat. In the

same way, positive dFC between the Salience and Fronto-Parietal networks increased

during approach and decreased during retreat. However, the opposite was found between

the Salience and the Default networks, it decreases during approach and increases during

retreat. At the same time, the negative functional connections between the Salience and

the Default networks displayed an opposite pattern, thus, an increase during approach

periods (and a decrease during retreat).

On the other hand, the dFC between the Salience network and subcortical regions like

amygdala, periaqueductal gray (PAG) , and the bed nucleus of the stria terminalis (BNST)

increased during approach and decreased during retreat, also the BNST became more

central for people with greater anxiety [27]. This reveals how network organization unfolds

with time during periods of anxious anticipation.

2.3.2 Brain structures related to suspense

In the last few years, researchers have identified some brain structures involved in the

experience of suspense through different experiments. It is worthy to highlight the variety

of sources to provoke suspense in each investigation and how the found brain activity is

consistent with the network-based approach.

• A functional magnetic resonance imaging (fMRI) study [15], investigating the relation

of neural activity with tension experiences during music listening revealed that

tension is associated to neuronal activity in the pars orbitalis of the inferior frontal

gyrus and the amygdala and pointed to a possible functional role of the orbitofrontal

cortex and amygdala in linking processes of expectancy and prediction to affective

experience. These regions are linked to the Salience and the Default networks.

• Another fMRI investigation [16] , this time, exploring the neural correlates of suspense

during the reading of a literary text, found out suspense is related to activity in

the medial frontal cortex, posterior temporal and temporo-parietal regions, as well
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as the dorsolateral prefrontal cortex along the inferior frontal sulcus including the

inferior frontal gyrus and premotor cortex. These regions are associated with the

Fronto-Parietal and the Default network indicating that the emotional experience

of suspense depends on brain areas associated with mentalizing, social cognition,

predictive inference and possibly cognitive control.

• Recently, using functional magnetic resonance imaging scans of people watching a

suspenseful movie [2] is obtained a highest correlation between suspense ratings

and the activation of the midcingulate gyrus, the angular gyrus and the right lateral

prefrontal cortex regions and moderately high correlation with the anterior cingulate,

the bilateral anterior insula, bilateral frontal cortices, the precuneus, medial prefrontal

cortex, and the bilateral angular gyri. These regions are prominent parts of the

Salience and the Fronto-Parietal networks, hence, being linked to the integration of

sensory, emotional, and cognitive information, and particularly to processes related

to anxious apprehension and anticipatory anxiety.

2.4 The Mapper approach to dynamic brain networks

From this perspective, it is clear that the brain is an inherently dynamic system, LSN

dynamically evolve and reconfigure as a function of context. Not only the research on

the emotional brain moved towards a dynamic-network based approach, the research on

cognition, behavior, and consciousness took the same path to uncover the brain network

reconfiguration over time. [23, 39,49].

Many methodologies have been developed to investigate dFC [50]. In particular, as

mentioned in the introduction, Saggar et al. [39] analyzed brain dynamical organization

associated with ongoing cognition using Mapper, a topological based method for data

analysis introduced in 2007 [41].

With the intention of testing the efficacy of this methodology in estimating a representation

of the brain’s dynamical organization and capturing transitions in the whole brain activity,

they employed an fMRI dataset with known ground truth about the timing of transitions

between mental states as dictated by tasks (working memory, arithmetic operations, and

a visuospatial search task) along with blocks of rest.

As a result, the output given by Mapper “can be conceptualized as a low-dimensional

depiction of how the brain dynamically evolved across different functional configurations

during the scan” [39]. This approach tracks both within- and between-task transitions

at a much faster time scale (4-9 s) than before. In addition, the Mapper’s output of all
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participants indicates there is more consistency in the whole-brain functional configurations

during the math and memory task compared to the less demanding resting state, also,

participants with specialized whole-brain configurations for different tasks were those with

the highest overall task performance. Furthermore, it is possible to identify the underlying

patterns of brain activity putatively responsible for the observed topological features in

the output graph.

In contrast to other techniques, this method does not arbitrarily collapse data in space or

time and has the ability to solve fundamental issues like:

• Uncovering the temporal and spatial scales that best capture clinically and behav-

iorally relevant brain dynamics.

• Understanding whether the dynamical landscape of possible configurations is best

conceptualized as continuous or discrete.

• Recognizing what constitutes healthy and aberrant dynamics.

Altogether, Mapper is “a novel method to distill the complex brain dynamics associated

with ongoing cognition into a set of interactive and behaviorally relevant representations

by taking full advantage of the original temporal and spatial scales of the data” [39].

This result derives from the fact that Mapper ”can be used to reduce high dimensional

data sets into simplicial complexes with far fewer points which can capture topological and

geometric information at a specified resolution”. In general, Mapper has certain advantages

over other methods of data analysis such that:

• It can be applied to any data embedded into a metric space non-necessarily Euclidean.

It is especially applicable when metrics are not derived from traditional ones.

• The method has the ability to capture details even in a large data set.

• This approach is invariant under small deformations, thus, is more robust to noise

than other methods.

• The output can have various scales of resolution, which is useful in distinguishing

between real features and artifacts, since features will persist through different levels

of resolution.

• The output as a combinatorial object is helpful to distinguish the relations between

the data, e.g., similarity or periodicity, and is easier to manipulate computationally.



2.4. THE MAPPER APPROACH TO DYNAMIC BRAIN NETWORKS 13

• Its properties of coordinate and deformation invariance make it suitable for examining

data across participants and projects.

Therefore, Mapper has also been applied to various problems such as the characterization

of states in biomolecular folding pathways [51, 52], mutational profiles in breast-cancer

patients [53], discovering cord and brain injuries [54] and the distribution of malaria in

Colombia [55].

We describe here the Mapper method starting from its mathematical definition and following

its application to data.

2.4.1 The Topological Mapper

Definition 2.1. An abstract simplicial complex A is a finite collection of sets such that if

α ∈ A and β ⊂ α implies β ∈ A.

We call the sets in A simplices and they are finite. The dimension of a simplex α is dim

α = |α| − 1 where |α| is the cardinal of the set α. The simplex α it is called a k-simplex if

its dimension is k. We define the dimension of the complex as the maximum dimension of

any of its simplices. The vertex set is the union of all simplices, V (A) =
⋃
α∈A α. [56].

Definition 2.2. A cover of a set X is a collection of open sets U = {Uα}α∈A such that

X ⊂ ⋃i∈I Ui

Let X be a topological space and U = {Uα}α∈A a finite cover of X.

Definition 2.3. The nerve of the cover U is the simplicial complex N(U) whose vertex

set is the index set A, and where any subset {α0, ..., αk} ⊂ A spans a k-simplex in N(U)

if and only if Uα0 ∩ ... ∩ Uαk 6= ∅

Suppose there is a continuous map f : X → Z. We called f a filter function and Z a

parameter or filter space. Let Z be equipped with a covering U = {Uα}α∈A, again for some

finite indexing set A. Since f is continuous, the sets f−1(Uα) also form an open covering

of X.

For each α, f−1(Uα) is decomposed in its path connected components, so we write

f−1(Uα) =
⋃cα
i=1 Vα(i), where cα is the number of connected components in f−1(Uα). As

f−1(Uα) is a cover of X, the union of all connected components is too. We note as f ∗X(U)

the covering of X obtained this way.
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Definition 2.4. The Mapper construction MX(U , f) of X using f and U is the simplicial

complex defined as

MX(U , f) := N(f ∗X(U))

According to the nerve theorem for Mapper [57] for suitable open covers, the space X is

homotopy equivalent to Mapper construction of X. Therefore, we could expect to recover

meaningful geometrical and topological information of X from the output of Mapper.

2.4.2 The Statistical Mapper

It is analogous to the topological Mapper but is developed precisely for point cloud

data. “The main idea in passing from the topological version to the statistical version is

that clustering should be regarded as the statistical version of the geometric notion of

partitioning a space into its connected components” [41]. Consider a finite point cloud

data. We can split the construction of Mapper in the following steps:

1. Choose a meaningful distance for the point cloud data. In this way, we form a finite

metric space X to represent the cloud data.

2. Define a filter function f : X → Z to some metric space Z.

3. Select a finite covering U = {Uα}α∈A of Z.

4. Decompose each f−1(Uα) into clusters using a clustering algorithm C, we note as

Vα(i) the i-th cluster of f−1(Uα) and cα a index set of the clusters. Note that

f ∗X(U) = {Vα(i)}α∈A,i∈cα is a finite cover of X.

5. Construct the nerve N(f ∗X(U)).

As a remark, in the literature, the first step is not part of the Mapper construction,

nevertheless, we consider it is a fundamental step when working with data.

As a result, we have a simplicial complex, theoretically speaking of a certain dimension

k depending on the intersection of the open sets, however, in practice only the 0- and

1-simplices obtained in the nerve are kept. In this way, we form the 1-nerve complex of

Mapper which it is structured like a graph. This graph is subjected to further investigation

depending on the context of the analysis.
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It is worthy to note the Mapper output is highly dependent on the filter function and the

covering used. We show this fact in the following example

Example 2.5. Let X be a sample of the unitary circle center at the origin of R2 with

a small amount of noise. Let the parameter space be the interval [0, 1]. To show the

dependency of the Mapper construction on the filter and the covering we define two filter

functions fi(x) = ||x− pi||2 with p1 the left most point in the data and p2 = (0, 0). To find

a covering, we divide the range of the filters into a set of smaller intervals which overlap.

This gives us two parameters to control the resolution, the number of intervals (N) and

the percentage overlap between successive intervals (p). In this case, we form U2 with

N = 2 and p = 20% and U3 with N = 3 and p = 30%. We show the results in Figure 2.2

Note that MX(U2, f1) and MX(U3, f2) fail to resemble the homotopy type of the unitary

circle, meanwhile, MX(U3, f1) is homotopy equivalent to the unitary circle, giving the best

approximation for the sample data.
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Figure 2.2: Mapper ring data example. The data is sampled from a noisy circle. We use

two different filters and two open covers dividing the range of the filters. For each interval

we compute the clustering of the points lying in each interval and connect the clusters

whenever they have non empty conversation. At the bottom are the simplicial complexes

formed by the combination.
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Materials and methods

3.1 Data acquisition

We analyzed an open dataset acquired by the Cambridge Center for Aging and Neuroscience

(Cam-CAN) [58,59].

Participants

A total number of 700 participants were selected to take part of this study including 100

individuals in each decile age 18-87 and an equal number of men and women. Eligibility

measures included cognitive health, meeting hearing and English language requirements,

and being eligible for MRI scanning. [59] The final sample for the fMRI time series analysis

including 492 participants.

Stimuli

Films are widely used to elicit emotion in a variety of research studies [60], like no

other artistic resource, films have the ability to engage attention and evoke powerful and

memorable emotions, not only individually but shared across an audience. Perhaps the

most notorious example of this is the genre of suspense. In spite of the different ways

humans react to even identical stimuli, “it seems fair to say that film-watchers undergo the

closest thing to a global or common response when viewing stress-causing moments within

films” [18]. Therefore, movies are well suited to advance in this project since the changes

of network connectivity can be temporally related to the intensity rates of suspense and

they are more likely to be easily identified through all subjects.

The stimulus is an edited version of Alfred Hitchcock’s “Bang! You’re Dead”, a black

and white television drama portraying a little boy that plays around with a charged

revolver thinking it is a toy gun. The film has been previously used in fMRI studies on

17
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synchronization of the brain responses across viewers ( [2], [61]), indeed, the suspenseful

film evoked a global response at a neural level.

In the study, the full 25-minute episode was condensed to 8 minutes while maintaining the

narrative. Participants were instructed to watch, listen, and pay attention to the movie

(they were not aware of its title) [58].

Continuous Response Measurement Sample

A total of 22 human raters were recruited to provide continuous response measures [62].

While viewing the same edited clip from the fMRI sample, participants were directed

to “continuously evaluate the degree of suspense” they were experiencing using an online

rating tool [63] . We use the averaged degree of reported suspense calculated in [2]. We

present the degree of suspense through time in Figure 3.1.

Figure 3.1: Continuous reports of suspense. The group-averaged time series of continuous

ratings of suspense.The gray-shaded vertical blocks indicate movie scenes comprising

close-ups of the gun when the kid has it aimed at a person. Replicated from [2].

fMRI scanning and processing

A total of 193 volumes were acquired using a 3T Siemens TIM Trio System with a 32-

channel head coil. For the functional scan, T2*-weighted echo planar images (EPIs) were
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acquired using a multi-echo sequence (Repetition time (TR) = 2.47 seconds; 5 echoes; flip

angle 78 deg; 32 axial slices; field of view = 192 mm × 192 mm; voxel-size = 3 mm × 3

mm × 4.44 mm) with an acquisition time of 8 minutes and 13 seconds. More details are

in the report on [58].

The imaging data were processed using the nipype framework [64] including motion

correction, slice-time correlation, co-registration and nonlinear normalization to the MNI

template. Functional data were detrended and high-pass filtered at 0.01 Hz and time series

were extracted using NiLearn [65]. From the original dataset of 646 participants some

participants were excluded if the data was incomplete or exhibited abnormal behavior

resulting in a final sample of 492 participants with 193 volumes of 231.502 voxels. We use

the processed data from [2].

3.2 Regions of interest

The whole volume is divided in regions using brain parcellations. Brain parcellations

provide fundamental insights into the organizational principles of the human brain and

are great strategies of data reduction, enabling information from hundreds of thousands

of voxels or vertices to be compressed into manageable sets of regions reflecting distinct

entities [66].

The chosen parcellation is the Shen et al. atlas [67], a groupwise graph-theory-based

parcellation approach to define nodes (regions) for network analysis. The atlas defined

in [68] comprehends 268 regions covering the whole brain. Additionally, the regions are

grouped into nine networks: Somato-Motor, Cingular-opercular, Auditory, Default, Visual,

Frontal-Parietal, Salience, Ventral-Attention and Dorsal-Attention [45]. The information

of each region is retrieved from the BioImage Suite Web [69].

In accordance with the previous researches on brain structures related to suspense and

dynamic interactions of LSN in anxious anticipation and stress presented in Section 2.2 we

focus on Salience, Fronto-Parietal and Default networks. Therefore, our Regions of interest

(ROIs) are from these networks, excluding some regions whose anatomical regions do not

correspond to the ones commonly linked to these networks in the literature. Nevertheless,

we maintained the temporal regions in the Fronto-Parietal and Default networks.

Ultimately, we considered 74 regions from Shen Atlas. The distribution of the regions by

network and lobes are in the Appendix A (Table A1) . The corresponding anatomical

regions from the Automated anatomical labeling atlas (AAL) for each network are shown

in Table 3.1. Note that some regions are present in more than one network, this detail
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arises from the fact the atlases are different, meanwhile AAL is based on anatomy, the

Shen Atlas gives priority to connectivity, thus the regions can overlap.

Salience

1 Angular Gyrus R 7 Frontal Orbital Cortex

2 Paracingulate Gyrus 8 Dorsolateral superior Frontal Gyrus

3 Inferior Frontal Gyrus 9 Medial superior Frontal Gyrus L

4 Middle Frontal Gyrus 10 Cingulate Gyrus ant. Division R

5 Insular Cortex 11 Supramarginal Gyrus post. division R

6 Frontal Pole 12 Frontal Operculum Cortex

Fronto-Parietal

1 Frontal Pole 6 Inferior Frontal Gyrus pars opercularis

2 Superior Frontal Gyrus 7 Inferior Frontal Gyrus pars triangularis

3 Middle Frontal Gyrus 8 Middle Temporal Gyrus R

4 Supramarginal Gyrus 9 Inferior Temporal Gyrus R

5 Precentral Gyrus 10 Superior Parietal Lobule

Default

1 Hippocampus 12 Orbital superior Frontal Gyrus

2 Frontal Pole 13 Inferior Frontal Gyrus pars triangularis

3 Temporal Pole 14 Dorsolateral superior Frontal Gyrus

4 Precuneus 15 Medial superior Frontal Gyrus

5 Frontal Orbital Cortex 16 Superior Temporal Gyrus ant. division

6 Frontal Medial Cortex 17 Middle Temporal Gyrus post. division

7 Angular Gyrus L 18 Middle Temporal Gyrus ant. Division

8 Paracingulate Gyrus 19 Superior Temporal Gyrus post. division

9 Fusiform gyrus 20 Cingulate Gyrus post. division

10 Lingual Gyrus 21 Parahippocampal Gyrus post. division

11 Middle Frontal Gyrus

Table 3.1: Regions considered for each network. If R or L are not specified then both

hemispheres are contemplated.
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Figure 3.2: Regions of the Salience, Fronto-Parietal and Default networks depicted on the

brain.
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3.3 Characterization of the states

The final dataset consists on P = 492 patients, each with a scan of N = 74 regions tracked

in T = 193 volumes (states). Let us consider only one patient, i.e., an N × T matrix

representing regional activity magnitudes as a function of time. Our aim is comparing the

T brain volumes to capture time-evolving changes. We can characterize each state by its

pattern of activity i.e., BOLD activity for each region, by its pattern of connectivity i.e.,

the FC between the regions or a mixed of both approaches [50].

For example, Saggar et. al. [39] in their application of Mapper, considered the first

characterization, thus each state is represented by a vector of N entries. On the other

hand, following our hypothesis on dFC, we characterize each state by an N ×N matrix

capturing the FC between the regions. The simplest way to generate a set of dynamic

graphs is the sliding window method.

3.3.1 Sliding window method

First, to asses FC between regions, we apply the Pearson correlation, the most common

measure for functional connectivity [70]. Pearson correlation is a statistic measure of

linear correlation between two sets of data. Given two samples X = {x0, ..., xn} and

Y = {y0, ..., yn} the Pearson correlation between X and Y is defined as

r(X, Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√

(
∑n

i=1(xi − x̄)2) (
∑n

i=1(yi − ȳ)2)
(3.1)

where

x̄ =
1

n

n∑
i=1

xi

Now, in the framework of the sliding window method (SWM), we select a window of

size W . Then, we define a N ×W matrix representing the regional activity within the

temporal span from time t = 1 to time t = W . Subsequently, we compute the FC between

each pair of regions. Afterwards, the window is shifted (slided) by a step S, and the

same calculations are repeated over the time interval [1 + S,W + S ]. This process is

iterated until the window spans the end part of the time series. (Figure 3.3A top part).

This procedure yields U = T −W + 1 windows each with N × (N − 1)/2 values, which

are summarized into a connectivity matrix describing the state of the brain during the

examined temporal interval. Let us call State i the matrix found from the window [i, i+W ].
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When we consider all windows, we recover a set of U connectivity matrices describing the

temporal evolution of whole-brain FC (Figure 3.3A lower part) [70,71].

As is noted from the description of the SWM we need to choose the parameters W and

S. For S, we choose 1 TR as step since it has been proved to be the optimal value to

detect connectivity changes between the windows [71]. On the other hand, W is a matter

of debate, since the output of the SWM can be highly dependant on it. Too short window

lengths increase the risk of introducing spurious fluctuations [72], in contrast, too long

windows are not capable to capture short-lived FC variations. Nevertheless, previous

studies suggested that window sizes around 30− 60 s are able to produce robust results in

dFC and in most cases, different window lengths, when chosen in this interval stabilize

and do not yield substantially different results [70,73]. Consequently, we choose W = 18

TR which gives an span of approximately 44/5s falling into the recommended interval as

we want.

A

State 176
State 25

State 13
State 1

Sliding Window

Figure 3.3: Sliding windows analysis. A We compute

the connectivity for each pair of brains regions over a

temporal interval spanned by a window (upper part). We

iterate this process until the window spans the end part

of the time series. At the end, the procedure yields 176

states, each described by a connectivity matrix (lower

part).B We iterate the process for all the patients and

afterwards we compute the average (using Fisher’s trans-

form) connectivity matrix for each state.

Sliding window analysis for all subjectsB

1 . . .

2 . . .

492 . . .

State 176
State 25

State 13
State 1

. . .

Average over all subjects

Afterwards, we use the SWM over all individuals. Since the correlation matrices among

the patients may be quite variable, to smooth and stabilize the correlation coefficients

between the regions [74], we take the average of all connectivity matrices for each State
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(Figure 3.3B). For this average, we first apply Fisher’s transformation to all correlations,

then we average and subsequently back-transform the values. In this way, we reduce the

bias induced by the bounds of correlation at -1 and 1 [75].

3.3.2 Thresholding connectivity matrices

Having estimated the connectivity matrices for each state, we need to apply a global thresh-

old τ in order to dismiss negative connections and spurious or weak positive connections.

Let C = [cij] be a connectivity matrix. We form the matrix Ĉ = [ĉij]

ĉij =

{
cij if cij ≥ τ

0 otherwise
(3.2)

As usual, if there is a nonzero element in the connectivity matrix, this is equivalent

to saying there is a weighted and undirected edge between the respective nodes on the

corresponding functional network.

Now, with the purpose of choosing a proper τ we consider the notion of connection density.

We can define the connection density κ as

κ =
2ε

N(N − 1)
(3.3)

where ε is the total number of edges which weight is equal or greater than τ .

From [76] we know brain graphs typically have connection densities below 0.5 since over

this value brain graphs present random topologies. Since the density decreases when τ

increases, we choose the minimum τ such that the density of all states do not surpass

0.5. Specifically, we start at τ = 0.3 and we increase τ at a step of 0.1 until every State’s

density is below 0.5.

3.4 The Mapper construction

Before describing in detail the steps on the Mapper process we summarize it in Figure 3.4

as a comprehensive guide.
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A fMRI data

Tim
e (3

D volu
me ev

ery
TR

s)

B Sliding window method
Time

R
eg

io
n
s

C Filtering (or projecting data in
low-dimensional space)

D Binning & clustering

E Combinatorial representation as a
simplicial complex (or graph)

Near points

indicate similar brain
connectivity matrices

The space is divided with overlapping bins
Inside each bin the points are clustered

Cluster nodes are
connected by an edge if
they have common points

Figure 3.4: The schematic flowchart of the Mapper construction. A The process start

with pre-processed fMRI dataset from 492 participants. B The sliding window method

is applied to compute the functional connectivity over time. C In the filtering step the

set of connectivity matrices are projected into a two-dimensional space. D The space is

divided into smaller bins determined by the number in each dimension and the percent of

overlap between them. Next, partial clustering is applied within each bin. E To create a

compressed combinatorial representation (graph) each cluster is treated as a node and two

nodes are connected if they share data points (connectivity matrices in this case).
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3.4.1 The metric space

From our characterization of the states, we have two mathematical representations, the

vector and the connectivity graph.

To calculate the distance between the states in the form of vectors, we use the Manhattan

distance, in other words, we sum up the differences in the activity of the regions. On the

other hand, to measure the difference in form of graphs, we sum up the differences in the

functional connectivity for each pair of regions, formally let G = (V,E) and G′ = (V ′, E ′)

be the connectivity matrices of some States. We define their distance D(G,G′) as

D(G,G′) =
∑
i<j

∣∣eij − e′ij∣∣ (3.4)

where eij is the weight of the edge connecting vertices i and j.

3.4.2 Filter function

The election of the filter function is inevitably application-specific, however some functions

have been proposed [41, 77–79]. These functions rely on distance, thereby, they carry

geometric information about the data even in non-euclidean spaces. The Mapper is highly

dependent on f , thus different choices of filters could highlight distinct properties of the

data.

The filter we used is an algorithm for nonlinear dimensionality reduction method called

Isometric mapping (Isomap) that uses geodesic distances to learn the global geometry of

the data set and converges asymptotically to the true structure [80]. With this filter we

aim to preserve and highlight the neighboring States exploiting the local linearity of the

dataset.

Previous to describing this approach, we present the following definitions:

• n is the number of empirical objects in our dataset.

• δij is the dissimilarity between objects i and j.

• X is an n×m matrix that describes a point configuration of n points in m-dimensional

Euclidean space. The elements of X are called configurations of the objects.

Now, we describe an outline of the algorithm:



3.4. THE MAPPER CONSTRUCTION 27

• k-nearest neighbors graph: We construct a graph of n where nodes i and j are

connected if i belongs to the k nearest neighbors of j or vice versa. We set the weight

of the edge to δij. Note that this relation is not symmetric.

• Shortest path: We compute the geodesic distance matrix ∆ between all pairs of

nodes. ∆ij corresponds to the length of the shortest path between nodes i and j.

• MDS: We apply the classical Multidimensional Scaling (MDS) [81] to matrix ∆. In

this algorithm we find the eigendecomposition of the centered matrix B = −1
2
J∆(2)J ,

where J = I − 1
n
O is the centering matrix with I as the identity matrix and O

the matrix of all 1’s, both of size n × n. Then we take the first m eigenvectors

(corresponding to the m largest eigenvalues) as the columns of X.

3.4.3 Covering

Considering the filter function stated above, the parameter space Z is a real n-space

Rm, for simplicity m is equal to 2. The next step is finding a suitable open covering

U = {Uα}α∈A.

Theoretically speaking, Mapper makes no assertions restricting the shape of the sets Uα,

but regular coverings are preferred for example rectangles, hexagons or balls [41,82]. Each

of these shapes depends on parameters selected by the user, in particular we use rectangles

uniformly distributed in the parameter space. The parameters for this covering are the

number of intervals (n) that each dimension of the parameter space is divided in and the

percentage of overlapping between intervals called overlap (o). Thus, we have a cover of n2

rectangles. These parameters determined the coarseness of the Mapper output: low values

of n would generate a small number of nodes each containing probably a large amount of

data points, thus, we would have the risk of loosing structural information, on the other

hand, high values of n make computational expensive Mapper since it would generate

nodes that do not carry additional information of the underlying structure. Meanwhile,

high values of o could generate spurious connections (edges) on the combinatorial object

and low values of o could loss them, again, losing structural information.

As the choice of different parameters leads to different and even misleading outputs, tuning

them is crucial. For this project, we are going to choose them aiming to replicate the

homology of our data.

For this purpose we use another topological tool called persistent homology. The details

are presented elsewhere [56]. Briefly, for a given real ε we create a cover of open balls of

radius ε centered in each data point. Then, we compute the homology of the cover’s nerve.
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Subsequently, we repeat this algorithm for 0 < ε < R, the homological classes that persist

trough a large range of ε reveal the homology of the set.

As we simply consider the 0- and 1- simplices in the Mapper output, we only need to compute

the 0 and 1 homology of the dataset, meaning, the number of connected components and

the number of 1-dimensional holes i.e., circles.

3.4.4 Clustering

Clustering is the task of grouping by some natural criterion of similarity. Even though

there is not a clear definition of cluster [83] the heuristic is that the inter-point distance

within each cluster would be smaller than the distance between clusters. Mapper does not

specify a clustering algorithm, however, the desired characteristics of the clustering are: a)

Is not restricted to data in Euclidean space, b) Do not require specifying the number of

clusters before hand [41].

In our research, we consider the agglomerative hierarchical clustering methods since this

type of clustering satisfies the mentioned characteristics. There are different types of

methods depending on how we calculate the distance between two clusters. For example,

in the single-link method [84], the distance between any two clusters C and D is defined

as the minimum distance between the elements in C and D:

d(C,D) = min
i∈C,j∈D

d(i, j) (3.5)

In contrast, the complete-link method defines the distance between clusters using the

maximum.

d(C,D) = max
i∈C,j∈D

d(i, j) (3.6)

The hierarchical method works as follows:

1. We start with each data point as his own cluster.

2. We calculate D = {d(C,D) | C,D clusters }.
3. We form a new cluster C ′ = C0 ∪D0 as the new cluster if d(C0, D0) = h = minD

and go back to step 2.

4. We finish when there is only one cluster.

Let us call the values h’s from step 3, heights. Note that for each height we have a different

set of clusters, moreover, we can extend the relation to all values between 0 and the last

height (Figure 3.5b ), then, it is crucial to choose which set represents an appropriated



3.4. THE MAPPER CONSTRUCTION 29

clustering of the data. We use the cut-off method proposed in the Mapper implementation

called continuous to choose the proper h.
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(a) Sample of 27 points divided into two

groups.
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(b) Dendogram representing the arrangement

of the clusters produced by hierarchical clus-

tering. Each vertical line represents a cluster,

when two of them met in an horizontal line, it

means the clusters merge at that height form-

ing a new cluster.

Figure 3.5: Example of hierarchical clustering and the method we used to determine the

best clustering

Let us use a toy example (Figure 3.5a) to show how the continuous cut-off method works.

It is simple: we form the vector h of heights from step 3 and we calculate the kernel

density estimation [85] of h (Figure 3.5c ). We use a Gaussian kernel and we have the

possibility of tuning the bandwidth of the kernel. After that, we choose as the cut-off

height the minimum height (continuous interval) where the density is smaller than certain

ε of order 10−8. If none of the heights satisfy this condition we choose the last height of



30 CHAPTER 3. MATERIALS AND METHODS

the range, meaning, we choose a single cluster. In this way, we follow the heuristic, we

aim to have larger distances between clusters compared to distances inside clusters. In the

example shown in Figure 3.5, after calculating the density of h we find that h ≈ 0.469

is the cut-off height, this height corresponds to a clustering of two clusters and perfectly

matches the initial configuration of our sample.

3.4.5 Software

For this construction, we use the implementation of Mapper developed by Piekenbrock et.

al in R language [82,86] . Besides, for the filter we use the implementation of Isomap found

in the Python’s package scikit-learn [87] and Python’s package ripser [88] to calculate the

persistent homology.

3.5 Analysis of the Mapper graph

3.5.1 Special nodes

Let us give some definitions from graph theory. Let G = (V,E) be a graph.

Definition 3.1. G′ = (V ′, E ′) with V ⊆ V is a connected component of G if any two

nodes in V ′ are path connected and the edges of E ′ only connects nodes of V ′.

Definition 3.2. Let C be a path of G. C is a cycle if the first and last nodes are the

same.

Let u be a vertex of G and let Gu be the graph after removing u.

Definition 3.3. u is a connector node if the number of connected components of Gu and

G are different.

Definition 3.4. u is a cyclic node if the number of cycles of Gu and G are different.

3.5.2 State transitions

To estimate the transitions of the FC in our brain networks, we convert the Mapper’s graph

into a weighted adjacency matrix for States. Let us called this matrix State Transition

Matrix (STM). For each pair of States, we count the number of times c they are contained
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by the same node or the nodes containing these States are connected by an edge in the

graph. After, we set c as the weight of the edge connecting the former pair. We see in

Figure 3.6 a minimalist example. For instance, for S1 and S4 their corresponding entry is

4 since they share node 3 (+1), and are in the connected nodes 1/3, 2/3 and 3/4 (+3).

STM of States Si

S1 S2

S3

1

S1
S2

2

S4

S1

3

S4

4

S1 S2 S3 S4

S1 0 6 3 4

S2 6 0 2 2

S3 3 2 0 1

S4 4 2 1 0

Figure 3.6: Example of State Transition Matrix (STM) with a graph with four nodes and

four states.

3.5.3 Underlying connectivity patterns

With the purpose of anchoring the graph and their properties into neurophysiology, we

measure the strength of connections inside and between large-scale networks to detect the

changes in the FC responsible for the observed features. For this measurement, we utilized

the within- and between-network connectivity weights, defined in [33] as follows:

WN1,N1 =
2

n1(n1 − 1)

∑
i,j∈N1,i<j

cij (3.7)

WN1,N2 =
1

n1n2

∑
i∈N1,j∈N2

cij (3.8)

where N1 and N2 are networks, n1 and n2 are the number of regions respectively and cij
is the measure of functional connectivity between regions.

To compute dynamic changes in the network’s connections, we measure all weights within

and between networks for each State forming a time series. Specifically, we form six
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time series corresponding to three within-networks weigths,(Salience, Fronto-Parietal and

Default) and three between-network weights (Salience/Fronto-Parietal, Salience/Default

and Fronto-Parietal/Default).

To evaluate the relationship between the dynamics of the networks and the level of suspense,

we calculate the Pearson correlation between the level of suspense (Fig. 3.1) and the

resulting six time series. Note that meanwhile the level of suspense understood as a time

series has a length of T = 193, our time series corresponds to U = 176 states. Therefore,

we consider the ratings of suspense between times t = 11 and t = 186.

We evaluate the statistical significance of our results through the null model explained in

section 3.6.

3.6 Statistical test for dFC

To validate that our results are due to real changes in the FC of the brain we define a

“statistical hypothesis test in which the null hypothesis corresponds to the correlation being

static and the alternative hypothesis corresponds to the correlation being dynamic” [89].

To start we need a proper null distribution. As suggested in [89], the null hypothesis under

which the distribution of the test is constructed should correspond to the sFC.

To approximate a suitable null distribution, we generate a large number of phase-

randomized surrogate time series following the method introduced in [90]. In this method,

given a time series x(t) we take its discrete Fourier transform X(f)

X(f) = F{x(t)} = A(f)eiφ(f)

where A(f) is the amplitude and φ(f) is the phase. Note that X(f) is evaluated at discrete

frequencies. Then, we rotate the phase φ at each frequency f by an independent random

variable ψ which is chosen uniformly in the range [0, 2π). That is

X̃(f) = A(f)eiφ(f)+ψ(f

Finally, we obtain the surrogate time series calculating the inverse Fourier transform

x̃(t) = F−1{X(f)eiψ(f)}

By the Weiner-Khintchine theorem x̃(t) has the same autocorrelation function as x(t).

However , for multivariate time series, not only we want the linear properties for each
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time series, but we also want to reproduce the linear correlations between time series.

Suppose we have m simultaneously measured variables x1(t), ...xm(t) with zero mean and

unit variance and let X1(f), ...Xm(f) denote their respective Fourier transforms. By an

extension of the Weiner-Khintchine theorem, the Fourier transform of the cross-correlation

function is the cross spectrum:

X∗j (f)Xk(f) = Aj(f)Ak(f)ei[φk(f)−φj(f)] (3.9)

Since Eq. 3.9 only involves the differences of phases, to preserve all linear auto-correlations

and cross-correlations, we only need to add the same phase ψ(f) for all j. That is,

x̃j(t) = F−1{Xj(f)eiψ(f)}

In our case, to form a set of surrogate data, for each patient, we have 74 time courses

corresponding to our ROIs and we phase-randomized them by the same phase. We repeat

this process on all 492 patients. We iterate this process a thousand times to obtain a

proper null distribution.

The second step for the statistical hypothesis is picking a test capable to detect dFC. We

choose variance as our test since it is the most widely used and the most straightforward [89].

Let ci be the connection value for some pair regions at State i and form the time series

c0, ..., cU .We can calculate the variance of the sample correlation series and we will note it

by κ

η2 =
1

U

U∑
i=1

(ci − µ)2 (3.10)

where µ is the mean of the time series.

In this way, the absence of dFC corresponds to the null hypothesis

H0 : η = 0 (3.11)

and the presence of dFC corresponds to the alternative hypothesis

H1 : η > 0 (3.12)

Suppose we reject the null hypothesis for our data i.e., η0 > 0 To decide whether η0
is statistically significant or not, we calculate the variance for each of the surrogate
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copies. Since we chose a proper null distribution, we should end with a distribution

approximating the unknown null distribution of η. Then, we calculate the percentile of η0
in the distribution of η, if η0 falls within the 5% highest values or lowest values (if the

test is one-sided) we can conclude it is statistically significant [89]. As usual we note the

significance level as p (percentile) and we choose 0.05 as our threshold. In this way, we

reject η0 if p > 0.05.

From the test, we can determine the pair of regions that present a significant dynamic

functional connectivity and exclude from our analysis the pairs which do not have a

positive variance.



4

Results

4.1 Characterization of the states

We used the SWM in all subjects and took the average overall resulting in a matrix of

dimensions 176× 74× 74 corresponding to 176 States represented in connectivity matrices

of 74 regions. In Figure 4.1 we show the connectivity matrices for some States.

State 5 State 55 State 105

State 130 State 150 State 170

0.2

0.0

0.2

0.4

0.6

0.8

Functional connectivity

Salience

Fronto-Parietal

Default

Salience

Fronto-Parietal

Default

Figure 4.1: Snapshots of correlation matrices of some States. The regions are ordered by

networks (Salience, Fronto-Parietal and Default) and each network by lobes (Prefrontal,

MotorStrip, Insula, Parietal,Temporal, and Limbic).

Subsequently, we calculated τ to threshold all connectivity matrices (Eq. 3.2). We found

that τ = 0.37 satisfies the condition we gave. We can see in Figure 4.2 an histogram of

the densities (Eq. 3.3) of the resulting matrices. The density values are between 0.325

35
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Figure 4.2: Histogram of the densities of the

States’ connectivity graphs.

and 0.475, having a range R = 0.15. At

the same time, all resulting graphs (after

thresholding) are connected i.e., there is a

path between any pair of nodes we choose.

On the other hand, when we did the SWM

in our null distribution we found their τ

values are either 0.34 or 0.35 and generate

States which ranges of their density values

R are between 0.0307 and 0.0925. In this

way, both values, τ and R, are at the top of

their null distributions.

Nonetheless, we reran the following Mapper

construction without considering the density

and just taking τ = 0. The results from this analysis are presented in Appendix C.

4.2 Statistical test for dFC

We calculated the variance (Eq. 3.10) of the FC through time, to do so, we formed a

matrix η of 74× 74 where ηij is the variance of FC between regions i and j trough time.

On the other hand, we computed the p-value for each variance, then, we formed matrix

p of same dimensions as η where pij is the p-value of ηij. In Figure 4.3 we see a matrix

divided in upper and lower triangular parts. The lower part corresponds to η meanwhile

the upper part corresponds to p.

The 64% of the pairs of regions presented a variance greater than 0, in addition, approx-

imately 93% have a p-value less than 0.05. On the other hand, the pairs that had zero

variance were the result of zero-constant time series due to to the fact that we threshold

the connectivity matrices.

From these results, we could proceed with our analysis without omitting the pair of regions

that present a null variance since their time series were null and did not affect the distance

calculation nor the pairs that had a non-zero variance but have a high p-value since they

only represented the 7% of the total.

In addition, we can conclude the data shows indeed a dynamical behavior in the FC since

its variance is greater than 0, thus, rejecting the null hypothesis.
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Figure 4.3: Variance of the FC trough time for each pair of regions.

4.3 The Mapper construction

We calculated the distance between the states in the two characterizations we presented.

For the vector space, the distance matrix is presented in Appendix B in Figure B1A and

for the graph space, the matrix is in Figure 4.4. On the other hand, as mentioned in

Section 3.4 we calculated the 0- and 1-homology of our dataset using persistent homology.

The results are presented in the persistence diagram (Fig. 4.5).

In the diagram, each dot represents a homological class, for example, each blue dot is

a connected component. The x coordinate of the dot corresponds to the ε value when

the homology class appears (Birth) and the y the epsilon value when the homology class

disappears (Death). The dotted line represents the infinity. Thus, the farther the dot is

from the diagonal, the more persistent is. Let us call persistence the difference between

the Death and Birth. With this term, we have one connected component with infinity

persistence and one circle with persistence 97 (from 125 to 222) with the rest of circles not

surpassing 25 in persistence. Thus, mathematically speaking, we could infer the objective

homology is H0 = 1 and H1 = 1, i.e., a shape homologically equivalent to a circle.
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Figure 4.4: Distance matrix of States
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Figure 4.5: Persistence diagram presenting

the homology of the set of States. Hi stands

for i-homology.

Besides, we used Isomap to filter our data to R2. Note that Isomap has a parameter

k corresponding to the number of nearest neighbors we have to considered. However,

the previous computation gave us a suitable k = 30 since we used geodesic distance to

highlight the homological properties. The result of the filtering is shown in Figure 4.6,

each dot represents a State, for qualitative examination, we have colored the States by

their level of suspense and join the dots with a line indicating the flow of time. In Figure

4.6B we show the level of suspense for the States as a guidance to better recognize the

corresponding State in the filtering.

Following, we generated 25 different covers of the parameter space varying the intervals

from 4 to 8 (steps of 1) and the overlap from 25 to 45 (steps of 5). The results are shown

in Figure B3 on the Appendix. Then, we localized the Mapper graphs that resemble the

objective homology with the minimum amount of nodes and multi-color nodes. At the

end, the best Mapper graph is generated by the rectangular cover of parameters n = 6 and

o = 35 (Appendix Fig. B2A).

The final graph (Figure 4.7), posses 52 nodes (as opposed to 176 States) and 100 edges.

For qualitative analysis, the size and color of the nodes are based on the States they

contain. In this way, we can observe the flow of time and its relation with the suspense.
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Figure 4.6: A Isomap filtering. The colored States are joined by a degraded pink-purple

line representing the flow of time i.e., State i is joined with a segment with State i− 1 and

a slightly darker segment with State i+ 1. B Reported level of suspense for the States

(see Fig. 3.1)
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Figure 4.7: Final Mapper graph. Each node is sized in proportion to the number of

contained States. The nodes are colored using a pie chart denoting A the level of suspense

B the index of the States



40 CHAPTER 4. RESULTS

4.4 Analysis of the Mapper graph

Let us consider the graph in Figure 4.8a. In this graph, we can define three groups of

nodes which we enclosed with colored patches: yellow, green and blue.

(a) Mapper graph. The nodes are numbered and

colored denoting the indices of States. In yellow,

green and blue are enclose noteworthy groups

of nodes.

25 50 75 100 125 150 175
States
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ve

l o
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ns
e

Node 28 Node 10

1-22 89-109 112-145 146-176

(b) Level of suspense of the States. The

vertical colored rectangles indicate the intervals

associated with the groups of nodes from the

Mapper graph. Besides, the contained States

of nodes 10 and 28 are indicated by patterned

rectangles.

Figure 4.8: Analysis of Mapper graph. We show the relation between the graph and the

States including their level suspense.

The groups are defined by two common properties:

• In a process similar to the Girvan–Newman algorithm [91] for community detection,

we can define groups as the ones left behind after removing connector nodes. Specifi-

cally, the groups we considered are defined by the connector nodes 15, 26 and 10,

respectively.

• They are mono-colored groups. This stems from the fact that the States contained

inside all nodes in a group form an interval of States. For instance, the yellow group
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has all States between 1 and 22, it is not the case, one State inside the interval is

missed. Thus, we can associate intervals of States to each group. In Figure 4.8b we

identify the level of suspense of the related intervals.

In particular, the yellow interval corresponds to the States of low suspense. The gray

interval, explained later, possesses States of decreasing suspense even though it has a peak.

The green interval encloses States of increasing suspense including a peak of suspense,

meanwhile the blue interval has one peak and two troughs of suspense.

Furthermore, when we focused on the cyclic nodes, two of them stand out since they are

bicolored:
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Figure 4.9: Cluster corresponding to

node 28

• Node 10 connects the blue group to the rest

of the graph. It contains States from different

intervals, specifically it contains the set {90,

100-103, 147,148, 154-163, 165-170} of States.

In Figure 4.8b we indicate these States with

a diagonal pattern.

• Node 28 connects the yellow group to the

graph. As before, it connects two different

intervals of States {26, 27, 29, 106, 107, 108}.
We indicate these States with a dotted pattern

in the Figure 4.8b. In addition, it is connected

to the connector nodes 15 and 26.

Besides, we defined an extra group that contains the nodes connected to node 10 that are

not part of the blue group. We enclose this new group with a gray patch. Furthermore,

the gray patch also includes part of the States contained in Node 28.

Additionally, we calculate the State Transition Matrix (STM) for our Mapper graph (Fig.

4.10). The connections in the matrix are easily explained by the features present in the

graph:

• The two well-defined sub-matrices that we find in the inferior part of the diagonal

in descendent order correspond to the connections inside the groups green and blue,

respectively.

• The general absence of connections of the interval 112-145 with other intervals derives

from the fact that the green group is connected to the graph only through node 26.
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• There are two blocks of connections outside the diagonals. The upper one derives

from the connections of node 28 and the one below to node 10 corresponding to the

gray group.
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Figure 4.10: State Transition Matrix (STM)
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Figure 4.11: Upper part of the dendogram

representing the clustering of the rows of

the distance matrix.

Along with this analysis, we wanted to

contrast the groups found with the Mapper

graph against clustering from the distance

matrix directly with the complete-link

method (Eq. 3.6). In the Figure 4.11 we

see the steps of the clustering. Our cut-off

method detects a single cluster, however we

chose as cut-off height 250 to obtain the

three clusters shown in Table 4.1

Cluster 1 Cluster 2 Cluster 3

60-79 32-59 1-31

115-145 80-114

146-176

Table 4.1: Table of intervals of States

forming the clusters

Next, we computed the weights within- and between networks between all pairs of networks.

The corresponding time series are shown in Figure 4.12. We colored the intervals associated

with the groups of nodes from the Mapper graph. Within these intervals, we can describe

some particular features.

To begin with, all series present a peak and a subsequent descending in the yellow interval.

Second, the Salience & Default and Fronto-Parietal & Default series present a very steep

increasing transition between green and blue intervals, giving a great difference between

the averages. This difference in averages is also present in Salience & Fronto-Parietal and
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Default & Default series. Finally, the Salience & Default and Fronto-Parietal & Default

series also present a difference of the average connection between gray and green intervals.
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Figure 4.12: Time series of connections’ weights within- and between-networks (purple)

and the average value (dashed gray). The vertical colored rectangles indicate the intervals

associated with the groups of nodes from the Mapper graph in Figure 4.8a.

Additionally, for each series we calculated the Pearson correlation with the level of suspense

cutting from different States as starting points, i.e., we did not consider the States before

the starting States. All the correlation values are presented in Figure B4 in Appendix

B. As an interesting remark, the correlation values from State 1 to 29 have a similar

tendency expected from the similarity of the yellow interval pointed out before, and the

values started to increase (in absolute value) from State 68, coinciding with the trough of

suspense right before the first suspense peak associated with a close-up of the gun aiming

an innocent person (Fig. 3.1). Thus, we chose 29 as the starting State where we considered

the correlation values, since we focus in the section of medium and high suspense. The

values presented in Table 4.2.
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Networks Correlation value

Salience & Salience 0.09

Fronto-Parietal & Fronto-Parietal 0.15

Salience & Fronto-Parietal 0.44

Default & Default -0.29

Salience & Default -0.55

Fronto-Parietal & Default -0.29

Table 4.2: Correlation values between the level of suspense and the series of weights

within- and between-networks. The number of State indicates the position from where we

considered the series.

We observed a positive correlation for the connectivity weights within Salience and Fronto-

Parietal networks as well as between the networks. However, the correlation value between

them drops when we omit the first States. In addition, for the Salience & Fronto-Parietal

series in the gray interval descends and increases in the green interval. This is similar to

the behavior of the suspense’s level.

In contrast, we found a negative correlation for the connectivity weights within the Default

network, however, when we admit the first States the value turns positive. In contrast,

the correlation values for the connections between the Default and the other two networks

are negative. In these series, it is evidently an opposite tendency to suspense, especially in

the green interval where the connections’ weights descend. In addition, all series with the

Default network have lower values of connections in comparison with the other three pairs

since their values are between 0.1 and 0.22, meanwhile the minimum for the other pairs is

0.3.

Finally, none of the samples in the null distribution present correlation values with the same

sign and close absolute values e.g., r values for the pair of Salience and Fronto-Parietal

networks are less than 0.45 in samples that coincide with the signs.
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Discussion

In the present study, we employed Mapper, a topological based tool to investigate, for

the first time, the experience of suspense using a network-based approach. We found

that the functional connectivity within and between Salience, Fronto-Parietal and Default

networks changed dynamically as the level of suspense varied. Additionally, we generated a

graphical representation of the brain’s transitions through different functional connectivity

States exhibiting the relationship of the States between them and the level of suspense.

5.1 The Mapper construction

Let us begin the discussion unraveling the result in each step of the Mapper construction.

Starting with the filter (Fig. 4.6) we can identify some characteristics of the States and

relate them with the distance matrix and the Mapper graph. To begin with, the degraded

line in general has not large trails between States, indicating that neighboring States in

time are neighbors in distance. This is also clear in the reddish band around the diagonal

in the distance matrix. The feature is derived from the SWM, since State i and State i+ 1

record the correlation of pairs of time series that only differ in one entry.

In the graph, this characteristic is evidenced in the general uniformity in the color of the

nodes, indicating that neighboring States remain in the same clusters. Besides, this fact

is confirmed by the State Transition Matrix, where most connections are present on the

diagonal.

Another feature we can recover from the filter is the fact that States between 30 and 70

are far from the rest reflected in the absence of crossings in the right upper part of the

filter. In the same way, we can verify the distances of these States with other are above

200. We also confirm the Mapper graph also retains this characteristic in the STM, since

we can appreciate the absence of connections in the interval between 37 and 89 with other

States. From the difference of intervals before (30-70 / 37-89), we can point the key of this

45
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topological construction. In the filter, close to the center, States around 75 (dark orange

color) and around 117 (green color) intersect each other’s lines. When we apply clustering

to the open set containing them (See Appendix Figure B2), the algorithm recognizes, using

the original distances of the States, they are in different clusters, thus, not being part of

the same node. In this way, the filter, which offers a first good approximation of the data,

can create artifacts derived from the projection, nonetheless, from this initial information,

Mapper tries to detect the real structure of the data.

In the search for a good approximation of the data, we generated different graphs (Fig.

B3) varying the parameters. We perceive not all graphs have homologies H0 = 1 nor

H1 = 1, showing the mentioned need of tuning. In particular, for H1, we can describe the

reason of this variation. Let us explain using our final graph.

As mentioned, node 28 is the key to form the cycle, its connection between the initial

section to the middle part of States guarantees the formation of the loop. Yet, when we see

the corresponding clustering (Fig. 4.9) it looks like it should be broken into two disjointed

nodes, then breaking the loop. The reason is simple, from the persistent homology we

know the circular shape appears from the distance 125, evidenced in the merge height of

the node 28 found in 126. Then, if we let all open sets to be cut in heights less than 125

we would never recover the objective homology. Thus, we allowed this counter-intuitive

clustering, not only to respect the cut-off method but to recover the homology of the data,

and we chose our Mapper graph allowing the minimum of these nodes or as we call them,

multicolor nodes.

Before continuing, we want to highlight the results from the same analysis without setting

a threshold presented in Appendix C. We find the results are quite similar, both have

an homology of the circle (Fig. C2), the filters have the same shape (Fig. C3) and the

Mapper graph (after similar selection) presented common characteristics like maintaining

the homology, general uniformity in the color of the nodes and detection of akin groups

in the graph. However, the multicolor nodes are bigger and more numerous, some of the

times, due to a spurious clustering detection. Thus, we can conclude the set threshold

maintains the structure of the data, reducing the possible noise of the data. On the other

hand, the density values we found after thresholding were between 0.325 and 0.475. The

range is similar to the density values found in [92] after a similar process.

Then, moving to the final graph, we recognized different groups of nodes when we identified

the connector and cyclic nodes, which are the key to preserving the homology. As we could

associate the groups with intervals of States we detected a peculiarity in the flow of time:

the blue and green groups are neighboring intervals, but in the graph, the blue group is

completely separated from the green one and instead is connected with the gray group by
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the node 10, which is separated in terms of intervals. Given this behavior by intervals,

we did a clustering directly from our distance matrix (Figure 4.11). In particular, the

third cluster is pretty interesting, the first interval is comparable with the yellow group,

the second with the gray group, and the third is exactly the blue group. Their belonging

to the cluster denotes a similarity given precisely by nodes 10 and 28 in our graph. In

addition, we find an interval analogous to the green group in the first cluster, as expected,

a different cluster from the groups before.

Having said that, some studies have used this approach of hierarchical clustering [93,94] or

k-means [95,96] to summarize the obtained States into smaller sets. The Mapper approach

has the same ability to recover the set’s information without constraining the number of

sets or collapsing the data into big groups. In addition, it generates a combinatorial object

(graph) that shows the relationship between the sets, indicates the States that are key

in the formation of the groups, and remarkably reveals how the brain navigates through

different States during the scan.

5.2 Dynamic brain networks in suspense

Let us follow the discussion with the the within- and between-network connectivity weights,

to ultimately link the results with the graph’s shape.

The results from the series of connectivity’s weights within and between networks revealed

that all networks exhibit functional connectivity changes during the scan. In addition, we

related the variations of connectivity to changes of the level of suspense via the Pearson

correlation. Interestingly, the correlation values varied if we took as starting points for

the computation States related to the increase of suspense (Figure B4), showing that

the networks demonstrate a differentiated behaviour in the presence of the stimulus of

suspense.

The functional connections within the Salience network have a small correlation value with

the suspense’s level. This result is not in line with the one reported by Najafi et. al. [33]

where the connections within the network presented the strongest change, increasing in

periods of anxious anticipation and decreasing when the threat creating anxiety retreated.

Even though we did not find a paired behavior with the level of suspense, the network

presents the highest values of connections, with a interval between 0.4 and 0.5, thus, having

a sustained connection during suspense. A potential reason is that the movie stimulus is

motivationally salient, peaks of suspense signaled potential dangerous events, meanwhile,

troughs of suspense signaled safety and hopeful events.
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Contrasting, the behavior of the connections between the Salience and Fronto-Parietal

networks are similar to Najafi’s work, in fact, with a larger and significant correlation,

indicating the communication between the two networks increased in the presence of the

stimulus of suspense. Meanwhile, the connections within the Fronto-Parietal network do

not possess a high positive correlation with suspense, however, the connections’ weights

decreased as the level of suspense does, this remark corresponds to the gray patch and the

connections’ weights stayed the same when the suspense increased, as we see in the green

patch. The behaviour is similar to Najafi’s results.

On the other hand, the connections’ weights between the Default network with the Salience

and Fronto-Parietal networks had a large and moderate anti-correlation with the level of

suspense, respectively. The results are again in line with Najafi’s work and reveal that

the increasing suspense is associated with the segregation of the Default network from

the Salience and Fronto-Parietal network, at the same time, the decrease of the suspense

prompts again the communication between the networks.

Conversely, the correlation of the suspense with the connections within the Default network

is negative, which differs from the result in [33] where is positive. However, it can be argued

that likewise the connections within the Fronto-Parietal network, the series presented a

positive large correlation value considering the series from State 1. This result derives from

the fact that the starting sections of both connectivity weight series are below the average.

This behaviour suggests that the large sudden rise in suspense increased the connection

within the series, but the following smaller increments did not have the same effect.

Besides the negative correlation values, the regions in the Default network have connectivity

weights in the interval between 0.2 and 0.3. These values are low in comparison to the

other series. The thresholding is partially responsible for the low values, since most of the

values that were reduced to 0 belong to the Default network, then the average values of

connections diminished, however, this fact indicates that the lower values on the matrices

are precisely in the Default network. We consider that it indicates that the communication

within and between the Default network during the scan is not strong and could be

related to the low activity of the Default network during externally oriented tasks [97]. In

particular, the regions in the temporal lobe have the lowest connectivity values, especially

with the Salience and Fronto-Parietal regions, as we observe in Figure 4.1, it is consistent

with the fact that temporal regions are not usually consider inside the Default network

given the small connection with the other regions within the network.

Then, going back to the graph, one of the most significant features is the separation between

the green and the blue group. This disconnection emerges from the transition between

the green and blue intervals, especially in the Salience & Default and Fronto-Parietal &
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Default networks where the series present a steep rising slope. Furthermore, the change

is associated with a transition from a period of increasing suspense to a descend. Hence,

the graph captures one the most significant transition between different States that is

associated with the level of suspense.

On the other hand, we have nodes 10 and 28 that connect separate intervals. We speculate

that the similarity of the States in these intervals is related to steep changes in the

suspense. For example, both gray and blue groups are peaks between two local minima

within a difference less than 15 TR. In the same way, the transition between low and high

suspense happens in 5 TR. This result could even imply the functional connectivity of the

networks are similar in steep variations of suspense, independent of its direction (upwards

or downwards). Nevertheless, this relationship is hard to determine given the transitions

are fast and less than our window width of 18 TR.

As a final remark, when we tried to compute the Mapper graph with same approach as

Saggar et al. [39], computing the distance between the States without computing the FC

(Figure B1) the results were defective, since the data did not show any structure related to

time or suspense. Importantly, this outcome reveals that the experience of suspense relies

on the dynamic connectivity within and between networks and not only on the variation

of activation of the regions inside each network. This illustrates an important principle,

differences in activation can be disassociated from differences in co-activation.

5.3 Limitations and future directions

The results presented here must be considered in the context of experimental and method-

ological limitations. To begin with, the movie we used as stimuli was originally designed

to evoke suspense [61], but not to contrast levels of suspense, in contrast with [33] where

the experiment was designed to have defined periods of anxiety and relief. In the movie,

we had a short period of low suspense followed by a period of sustained high suspense,

thus, we had a transition from low to high suspense but not the opposite. Besides, in the

second part we have difficulty to identify the transitions between peaks and trough of

the level suspense. This fact in combination with the low temporal resolution of fMRI

pose an upper limit for our ability to resolve the neural effects of suspense in time. Our

results suggest future researches to design experiments with multiple blocks of low and

high suspense, including periods of transition from both states.

Furthermore, our results are circumscribed to Shen Atlas, used to define the brain regions

and the selection of brain regions for each network based on the work of Power et al. [45].
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However, we hypothesize the results will be similar for a different selection of atlas based

on functional connectivity and network separation since we did not consider roles for

particular regions but general behaviors of connected regions. Nonetheless, an interesting

path for future research could be considering the hypothesis of overlapping networks, where

specific regions belong to several intersecting networks and its participation at a given

time is context dependant [47].

We should also consider that observed dFC might be related to time-varying noise (e.g.,

subject motion and variable respiratory and cardiac rhythms), nevertheless, the filtering

and processing of the data diminished the effects of this noise.

Additionally, we inherited the limitations of the SWM such as the lack of a gold standard

for the choice of the window length, the window step, the type of window and other

parameters [71]. As suggested in [72] one promising way to overcome this parameter

dependency is the use of time frequency analysis like the wavelet transform coherence

(WTC). Furthermore, other methods to asses the FC, alternative to the Pearson correlation

have been proposed, like applying the the regularization strategy to the inverse of the

covariance matrix [95] or using magnitude squared coherence or power spectrum coherence

[98,99].

Besides, future research should investigate the contributions of the subcortical regions

linked to emotional experiences [5] like the amygdala, PAG, BNST, hypothalamus and

thalamus in the dynamic interactions of the networks in the presence of suspense. Due to

time limitations, in the present investigation it was not possible to extend the analysis to

these structures. In addition, the work could be extended to recognize the contribution

of the regions inside each network, e.g., the Frontal Orbital Cortex inside the Salience

network.

Finally, another venue for future research could be applied the proposed methodology

used in the thesis to the study of the dynamic processes related to emotions like anger,

happiness, sadness among others. Looking forward, it can be argued, we could characterize

each emotion by the temporal transitions between different connectivity states [4].
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Conclusions

Inspired by the psychological model of suspense by Lehne and Koelsch [1] and its consistency

with a network-based approach of the emotional brain [20,42], in our study, we examined

the hypothesis that the emotional experience of suspense depends on dynamic interactions

within and between large-scale networks. For this purpose, we use Mapper, a topological

based tool revealed as a ”novel method to distill brain dynamics” [39].

Our study appears to be the first to find dynamic functional changes within and between

the the Salience, Fronto-Parietal and Default networks associated with the variation of

the level of suspense. In particular, the functional connectivity between the Salience and

Fronto Parietal networks has a positive correlation with the level of suspense. Conversely,

we found a negative correlation with the functional connectivity between the Salience and

Fronto-Parietal networks with the Default network. These findings add substantially to our

understanding of the neural processes underlying the emotional experience of suspense and

demonstrate the potential of understanding emotional experiences as dynamic interactions

of domain-general neural systems.

Finally, through the use of Mapper, we obtained a graph that recovers the shape of the

data in a low-dimensional representation and depicts how the brain evolved across different

functional States in time, revealing the brain’s dynamical organization across variations of

the level of suspense. Furthermore, the results of this thesis highlight the topological-based

methods as novel and powerful alternatives to carry out future researchs on dynamic

networks.
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Network Lobe Region x y z

Default

Prefrontal 151 -46.17 28.27 -7.22

Parietal
42 14.65 -68.45 35.0

183 -51.32 -56.27 20.49

Temporal

51 27.18 11.62 -39.15

52 40.02 18.98 -34.26

53 52.88 10.85 -21.83

63 61.87 -23.62 -2.74

64 56.48 -8.54 -14.32

185 -37.83 6.06 -37.72

186 -34.72 18.69 -32.33

187 -49.52 11.07 -30.45

188 -49.85 6.4 -15.1

190 -57.61 -6.41 -22.62

191 -58.94 -29.97 3.52

197 -56.94 -14.55 -6.83

198 -26.65 -42.8 -16.04

Limbic

83 8.04 34.71 17.2

85 5.36 -39.11 26.89

86 12.37 -57.2 18.01

90 6.33 -57.19 38.09

93 28.75 -36.86 -0.1

95 28.02 -28.48 -13.67

219 -5.79 34.17 26.29

222 -8.46 -58.91 17.62

225 -6.46 -54.26 37.38

226 -8.73 -42.78 50.25

227 -7.46 -42.13 13.4

229 -21.52 -36.99 5.77

230 -32.13 -40.14 -3.96

233 -20.73 -30.76 -11.18

Table A1: MNI coordinates of the regions from Shen atlas. The regions are numbered

between 1 and 268 according to the Shen atlas and are organized by network and lobes.
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Figure B1: Results for the time-points analysis. A Distance matrix of time-points.

B Isomap filtering. The timepoints are colored with the level of suspense.
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Figure B2: Final mapper graph and its generating cover. A Covering of the parameter

space. Each dimension is divided in 6 intervals with an overlap of 35% forming a regular

cover of rectangles. B Final mapper graph. Each node is sized in proportion to the number

of contained States and colored using a pie chart by the level of suspense of these States.
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Figure B3: Perturbation of parameters and its effect on shape graphs. We depict graphs

for 25 different combinations of the two parameters: number of interval and number of

parameters
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Figure C2: Persistence diagram presenting

the homology of the set of States. Hi stands
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Figure C3: A Isomap filtering. The colored States are joined by a degraded pink-purple

line representing the flow of time i.e. State i is joined with a segment with State i− 1 and

a slightly darker segment with State i+ 1. B Reported level of suspense for the States

(see Fig. 3.1)
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Figure C4: Final Mapper graph. Each node is sized in proportion to the number of

contained States. The nodes are colored using a pie chart denoting A the level of suspense

B the index of the States
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