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Abstract:
In any serious disaster, a gap develops between resource needs and resource avail-
ability. In a severe pandemic, this gap will be worse due to global supply chain
disruptions or delays and the fact that governments and aid organizations will be
overwhelmed responding to all who need assistance. Then, determining the locations
of the resources (i.e., budget for antivirals and preventive vaccinations, Intensive
Care Unit (ICU), ventilators, non-intensive Care Unit (non-ICU), doctors) to be used
during a pandemic is a strategic decision that directly affects the success of pandemic
response operations. The resource allocation could be done using a risk management
perspective, where a demand point has one (or more) associated risk (i.e., geographic
spread, overall poverty, medical preconditions) and the objective is to choose the
amount to be invested in several interventions such that the overall risk exposed by
the demand points is minimized according to budget constraints and health benefits.
Due to the randomness and uncertainty of conditions, not only one but a set of risks
may adversely affect the allocation of resources in the geographical space. Then, the
objectives (one objective for each risk exposed) must be optimized simultaneously.
However, there exists a trade-off among objectives, i.e., an improvement gained for one
objective is only achieved by making concessions to another objective. This thesis aims
to build a mathematically and computational grounded solution to the Multi-objective
risk-based Resource Allocation problem suitable to be used for supporting decision
making in the formulation of management and response policies during a pandemic.
The risk management is studied in a complex network located in some space (city
or town being studied). The risk in some specific place (demand point) is modeled
not only by the vulnerability factor related to the severity of infection but also by the
infectious disease transmission dynamics that emerged from the local interactions
between people. The solution is framed in the current COVID-19 pandemic in Bogotá,
the largest and most crowded city in Colombia.

Resumen:
En cualquier desastre grave, se desarrolla una brecha entre la necesidad y la disponibil-
idad de recursos. En una pandemia, esta brecha se agravará debido a las interrupciones
o retrasos de la cadena de suministro global y al hecho de que los gobiernos y las
organizaciones de ayuda se ven abrumados para responder a todos los que necesitan



asistencia. Entonces, determinar la ubicación de los recursos (por ejemplo, pre-
supuesto para antivirales y vacunas preventivas, Unidad de Cuidados Intensivos (UCI),
ventiladores, Unidad de Cuidados No Intensivos (no UCI), médicos) que se utilizarán
durante una pandemia es una decisión estratégica que afecta directamente el éxito
de las operaciones de respuesta ante una pandemia. La asignación de recursos se
puede realizar utilizando una perspectiva de gestión de riesgos, donde un lugar de
demanda tiene uno (o más) riesgos asociados (por ejemplo, propagación del virus,
pobreza, precondiciones médicas) y el objetivo es escoger la cantidad que se invertirá
en varias intervenciones tal que el riesgo expuesto por los puntos de demanda se
minimiza de acuerdo con las limitaciones presupuestarias y los beneficios para la
salud. Debido a la aleatoriedad y a la incertidumbre de las condiciones, no solo uno,
sino un conjunto de riesgos pueden afectar negativamente la asignación de recursos
en el espacio geográfico. Entonces, los objetivos (un objetivo por cada riesgo expuesto)
deben optimizarse simultáneamente. Sin embargo, existe una compensación entre
los objetivos, es decir, una mejora obtenida para un objetivo solo se logra haciendo
concesiones en otro objetivo. Esta tesis tiene como proposito construir una solución
con base matemática y computacional para el problema de la asignación de recursos
basado en múltiples riesgos adecuada para apoyar a la toma de decisiones en la
formulación de políticas de gestión y respuesta a pandemias. La gestión de riesgo es
estudiada en una red compleja ubicada en algún espacio (ciudad o pueblo en estudio).
El riesgo en algún lugar específico (punto de demanda) se modela no solo por factores
de vulnerabilidad relacionados con la gravedad de la infección, sino también por
las dinámicas de transmisión de la enfermedad que surgen por la interacción entre
personas. La solución se enmarca en la actual pandemia de COVID-19 en Bogotá, la
ciudad más grande y densamente poblada de Colombia.
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Introduction

Motivation

Pandemics are large-scale outbreaks of infectious diseases that can greatly increase
morbidity and mortality over a wide geographic area and cause significant economic,
social, and political disruptions [65]. Significant policy attention has focused on the
need to identify and limit emerging outbreaks that might lead to pandemics and to
expand and sustain investment to build preparedness and health capacity [60]. The in-
ternational community has made progress toward preparing for and mitigating the im-
pacts of pandemics. The 2003 severe acute respiratory syndrome (SARS) pandemic and
growing concerns about the threat posed by avian influenza led the World Health As-
sembly to update the International Health Regulations (IHR) to compel all World Health
Organization member states to meet specific standards for detecting, reporting on and
responding to outbreaks [82, 49]. Despite the great advances in the prevention and
treatment of infectious diseases, the world is unaware to respond to a pandemic or any
similarly global public-health emergency [83, 65].

Furthermore, the coronavirus COVID-19 pandemic has taught us that all efforts we
made for prevention and treatment are not enough and that we are facing the global
health crisis of our time. Since its emergence in Asia late last year, the virus has spread
to every continent except Antarctica. Cases are rising daily in Africa, the Americas, and
Europe [87]. As a result, increasing pressure has been placed on government agen-
cies to do more with less, while also providing the necessary resources to respond effi-
ciently and effectively during an emergency. However, government agencies have finite
resources, so they can’t monitor everything all of the time: they have to decide how
best to allocate their scarce health resources (i.e., budget for antivirals and preventive
vaccinations, Intensive Care Unit (ICU), ventilators, non-Intensive Care Unit (non-ICU),
doctors) across a broad range of risk exposures during a pandemic [66, 4, 14]. This is
called Risk-based resource allocation [31].

In the Risk-based resource allocation for a pandemic response, a demand point has
one (or more) associated risk (i.e., geographic spread, routes of transmission, risk fac-

VII



INTRODUCTION VIII

tors for infection, overall poverty, medical preconditions [127, 80, 65, 81]) and the objec-
tive is to choose the amount to be invested in several interventions such that the overall
risk exposed by the demand points is minimized according to budget constraints and
health benefits. Due to the randomness and uncertainty of conditions, not only one but
a set of risks may adversely affect the allocation of resources in the geographical space.
Then, the objectives (one objective for each risk exposed) must be optimized simulta-
neously [128, 113], but there exists a trade-off among objectives, i.e., an improvement
gained for one objective is only achieved by making concessions to another objective.

Goals and Contribution

In line with the considerations mentioned above, this thesis aims to build a mathe-
matically and computational grounded solution to the Risk-based Resource Allocation
problem suitable to be used for supporting decision-making in the formulation of man-
agement and response policies during a pandemic. The solution is framed in the current
COVID-19 pandemic in Bogotá, the largest and most crowded city in Colombia. This the-
sis aims to achieve the following goals:

• Develop a Transmission Disease Model: To understand the risk caused by the
transmissibility of the disease, an Agent-Based Model (ABM) with transition dis-
ease dynamics will be proposed. The ABM will study the dynamics that emerged
from the interaction between individuals in geographic space (city or town being
studied).

• Develop a Vulnerability Assessment Framework: The risk in some specific place
(demand point) is directly related to the vulnerability. A vulnerability assessment
framework will be proposed in order to analyze not only the transmission dynam-
ics that emerged by the ABM but also a set of vulnerability factors related to the
severity of the infection.

• Define the Risk-based Allocation Framework: for management and pandemic re-
sponse, a risk-based resource allocation framework is proposed. Themodel seeks
to find an optimal allocation of a fixed amount of resources to geographical space
such that risk(s) exposed by the demand point is minimized according to budget
constraints and health benefits.

• Test themodel in a real-world scenario: The transmission disease model, the vul-
nerability assessment framework, and the multi-risk-based resource allocation
framework will be framed in the current COVID-19 pandemic in Bogotá, Colombia.

Themain contribution of this work is to develop a new strategy to resource allocation
in pandemics based on risk management methodologies. The following is a list of this
thesis’ contributions:
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An Agent-based Model for Transmission of Infectious Diseases

In this work, an Agent-basedModel (ABM) is introduced, called INFEKTA (Esperanto word
for infectious), for modeling the transmission of an infectious disease. INFEKTA com-
bines the transmission dynamics of an infectious disease with agents (individuals) that
can move on a complex network of accessible places defined over a Euclidean space
representing a real town or city. The applicability of INFEKTA is shown by modeling the
transmission dynamics of the COVID-19 in Bogotá, Colombia. This work was published
in PLoS one as a research article titled INFEKTA—An agent-basedmodel for transmission
of infectious diseases: The COVID-19 case in Bogotá, Colombia [39].

An Urban Vulnerability Assessment for pandemics

In this work, an Urban Vulnerability Assessment (UVA) methodology is proposed. UVA
investigates various vulnerability factors related to pandemics to assess the vulnera-
bility in urban areas. A vulnerability index is constructed by the aggregation of multiple
vulnerability factors computed on each urban area (i.e., urban density, poverty index,
informal labor, transmission routes). The applicability of UVA is shown by the identi-
fication of high vulnerable areas based on publicly available data where surveillance
should be prioritized in the COVID-19 pandemic in Bogotá, Colombia. This work was
published in Sustainability as a research article titled Urban Vulnerability Assessment
for Pandemic Surveillance: The COVID-19 case in Bogotá, Colombia [86].

A Risk-based Resource Allocation Framework for pandemic preparedness

This work establishes a comprehensive risk-based emergency management framework
that could be used by decision-makers to determine how best to manage medical re-
sources, as well as suggest patient allocation among hospitals and alternative health-
care facilities. A set of risk indices are proposed by modeling the randomness and
uncertainty of allocating resources in a pandemic. The city understudy is modeled as
a Euclidean complex network, where depending on the neighborhood influence of al-
locating a resource in a demand point (i.e., informing citizens, limited social contact,
allocation of a new hospital) different network configurations are proposed. Finally, a
multi-objective risk-based resource allocation (MoRRA) framework is proposed to op-
timize the allocation of resources in pandemics. The applicability of the framework is
shown by the identification of high-risk areas where to prioritize the resource allocation
during the current COVID-19 pandemic in Bogotá, Colombia. This work was submitted
for publication to International Journal of Health Policy and Management as a research
article titled Multi-objective Risk-based Resource Allocation for Urban Pandemic Pre-
paredness: The COVID-19 Case in Bogotá, Colombia [84].

Dissertation Outline

The remainder of this work is organized as follows:
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Chapter 1 provides an augmented description of the background about the risk-
based resource allocation problem, and the basic concepts applied in the development
of the thesis.

Chapter 2 introduces an Agent-Based Model (ABM), called INFEKTA (Esperanto word
for infectious), for modeling the transmission of infectious diseases.

Chapter 3 presents a vulnerability assessment framework for the quantification of
the pandemic potential (severity of infection and transmissibility) which helps to prior-
itize surveillance to control highly vulnerable urban areas.

Chapter 4 establishes a comprehensive risk-based emergency management frame-
work that could be used by decision-makers to determine how best to manage medical
resources.

Finally, some conclusions and future research are outlined.



CHAPTER 1

Theoretical background

Some concepts are key to propose a comprehensive risk-based emergencymanagement
framework to manage medical resources. First, the risk management definition in this
thesis is presented. Then, the complex system background is defined in order to un-
derstand the behavior of biological systems and their components. After that, some
concepts of the resource allocation and multi-objective optimization problem are intro-
duced. Finally, the study area and data sources used in this work are explained.

1.1 Risk management

What is a disaster

Schulz [100] defines disaster and Disaster Management (DM) as follows.

Definition 1.1.1. A disaster is an occurrence of widespread severe damage, injury, loss
of life or property with which a community cannot cope and during which the society
undergoes severe disruption.

Definition 1.1.2. Disaster Management (DM) is the range of activities designed to main-
tain control over disasters and emergencies and to provide a framework for helping
at-risk persons to avoid or recover from the impact of the disaster.

The DM deals with situations before, during and after a disaster and the activities
in the DM context are generally considered in four phases: mitigation, preparedness,
response, and recovery [66, 4, 14]. Coppola [14] defines these phases as follows.

Definition 1.1.3. Mitigation involves reducing or eliminating the likelihood or the con-
sequences of a hazard or both. Mitigation seeks to treat the hazard such that it impacts
society to a lesser degree.

1



CHAPTER 1. THEORETICAL BACKGROUND 2

Definition 1.1.4. Preparadness involves equipping people who may be impacted by a
disaster or who may be able to help those impacted with the tools to increase their
chance of survival and to minimize their financial and other losses.

Definition 1.1.5. Response involves taking action to reduce or eliminate the impact of
disasters that have occurred or is currently occurring, to prevent further suffering, fi-
nancial loss, or a combination of both.

Definition 1.1.6. Recovery involves returning victims’ lives to abnormal states following
the impact of disastrous consequences. The recovery phase generally begins after the
immediate response had ended and can persist for months or years thereafter.

The activities related to mitigation and preparedness, i.e.,pre-disaster phase, are
considered as Risk Management while the activities related to response and recovery,
i.e., post-disaster phase, are considered as Crisis Management.

Definition of Risk

Although there are different definitions of risk, this study uses the one given by [50].
Risk is composed by two components, hazard, and vulnerability.

Definition 1.1.7. Hazard is the probability that a disaster (i.e., COVID-19) occurs.

Definition 1.1.8. Vulnerability is the possibility that damages (i.e., fatalities, injuries,
property damage, or other consequences) occur at a demand point because a resource
is not allocated.

Risk is then defined as the expected damages due to a particular hazard for a given
area and reference period. Based on mathematical calculations, the risk of the demand
point i can be determined as a product of hazard (H ) and vulnerability (V ) [25].

R (i ) = H (i ) ×V (i ) (1.1)

Risk-based resource-allocation

There are four steps in a risk-based resource-allocation process [31]:

1. Defining the risk: The process begins by defining what risks the government
agency cares about. Gaining a deep, clear, and common understanding of the
risk exposures the government agency is tasked with addressing.

2. Measuring the exposure: Estimating the level of risk posed by specific targets
is a critical input for prioritizing the deployment of constrained resources. First,



CHAPTER 1. THEORETICAL BACKGROUND 3

identify an expansive set of possible drivers of risk. Second, get historical data to
understand what risks were realized. Finally, conduct statistical analysis to deter-
mine which of the possible drivers predict adverse events.

3. Setting the strategy: Once the risks have been defined and measured, the gov-
ernment agency needs to decide on an optimal strategy to deal with those risks.
The government agency should have a strategy to mitigate the risks by decreasing
both the likelihood and severity of an adverse event.

4. Executing and learning: Conducting risk-management activities, such as inspec-
tions, getting feedback on what is working and what is not, and learning from that
feedback. Most agencies operate in a complex and dynamic environment, where
there are unlimited opportunities to improve and the risks change over time.

1.2 Complex Systems

The complex system model approach considers a system as a large number of entities
(equally complex systems that have autonomous strategies and behaviors) that interact
with each other in local and non-trivial ways [64, 67, 99]. This approach provides a
conceptual structure (a multi-level complex network [117, 58]) that allows characterizing
the interrelation and interaction between elements of a system and between the system
and its environment [7, 36, 5].

Compartmental Model

A compartmental model tracks changes in compartments without specifying which in-
dividuals are involved [37] and typically reflects health states relevant for transmission
(e.g., susceptible, exposed, infectious, and recovered). These kinds of models represent
epidemics of communicable disease using a population-based, non-spatial approach.
The conceptual framework for this approach is rooted in the general population model
which divides a population into different population compartments [52]. Compartmen-
talization typically reflects health states relevant for transmission (e.g., susceptible, ex-
posed, infectious, recovered), though more partitioning is possible according to age
and/or other relevant host characteristics. Heterogeneous and temporal behavior is
modeled through the incorporation of relevant time-dependent social mixing, com-
munity structures and seasonality, relevant for infectious disease dynamics [75, 98].
Process dynamics are captured in transition rates, representing the rate by which an
average individual transitions between compartments.
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Agent-Based Models for infectious disease

Agent-Based Models (ABMs) are a type of computer simulation for the creation, disap-
pearance, and movement of a finite collection of interacting individuals or agents with
unique attributes regarding spatial location, physiological traits, and/or social behavior
[45, 119, 123]. ABMs work bottom-up, with population-level behavior emerging from the
interactions between autonomous individuals and their environment [95, 123]. They al-
low the history of every individual to be tracked and network structures to be explicitly
represented. In general, ABMs allow [56]:

• To introduce local interaction rules at the individual level, which closely coincide
with physical and social interaction rules.

• To include behaviors that may be randomized at the observational level, but can
be deterministic from a mathematical point of view.

• To incorporate a modular structure and to add information through new types of
individuals or by modifying current rules.

• To observe system dynamics that could not be inferred from the examination of
the rules of particular individuals.

Complex network

A complex network is a graph with non-trivial topological features, features that model
real systems in biology, economics, computer science, applied mathematics, and epi-
demiology [63, 112, 55, 109, 54]

Definition 1.2.1. An undirected graph G is pair (V , E ), where V is a finite set and E is a
binary relation onV . The setV is called the vertex set of G , and its elements are called
vertices (singular: vertex). The set E is called the edge set of G , and its elements are
called edges. The edge set E consists of an edge is a set (u,v ), where u,v ∈ V and u , v .

Definition 1.2.2. An adjacent vertex of a vertexv in a graphG is a vertex that is connected
to v by an edge.

Definition 1.2.3. The neighborhood of a vertex v (N (v )) in a graph G is the subgraph of
G induced by all vertices adjacent to v .

Definition 1.2.4. Regardless the metric space under consideration (points, spatial units,
binary strings, DNA strands) [85], the neighborhood class N is defined as the set of all
neighborhoods in a graph G , i.e., N = {N (v )|v ∈ V }.
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1.3 Resource Allocation

The resource allocation problem seeks to find an optimal allocation of a fixed amount
of resources to activities to minimize the cost incurred by the allocation [72, 48].

Given a finite set of resources R = {(r1, r2, . . . , ra)|ri ∈ Ò+} whose total amount is
equal to T , it is required to allocate it to a activities so that the objective value f (R) is
minimized, see equation 1.2. The objective value may be interpreted as the cost or loss,
or the profit or reward, incurred by the resulting allocation [48].

min f (R) =
a∑

i=1

fi (ri )

subject to
a∑

i=1

ri = T

subject to to to to tori ≥ 0, i = 1, 2, . . . , a

(1.2)

where ri represents the amount of resource allocated to activity i and fi (ri ) is the cost
incurred by allocating the resource ri at the i -th activity. If the resource is divisible, ri
is a continuous variable that can take any non-negative value. If it represents persons,
processors, or trucks, on the other hand, variable ri becomes a discrete variable that
takes non-negative integer values (discrete resource allocation problem).

Multi-objective optimization

The multi-objective optimization problem (MoP) can be mathematically defined as fol-
lows.

min f (x) = (f1(x), f2(x), . . . , fm(x))
T

subject to x ∈ Ω
(1.3)

where x = (x1, x2, . . . , xn)
T is the n-dimensional decision variable vector from the de-

cision space Ω; f : Ω → Θ ⊆ Òm consists a set of the m objective functions that map x

from n-dimensional decision space Ω to m-dimensional objective space Θ.

Definition 1.3.1. Given two decision vectors x , y ∈ Ω, x is said to Pareto dominate y ,
denoted by x ≺ y , iff fi (x) ≤ fi (y ), for every i ∈ {1, 2, . . . ,m}, and fj (x) < fj (y ), for at
least one index j ∈ {1, 2, . . . ,m}.

Definition 1.3.2. A decision vector x ∗ ∈ Ω is Pareto optimal iff there is no x ∈ Ω such
that x ≺ x ∗.

Definition 1.3.3. The Pareto set (PS) is defined as

P S = {x ∈ Ω|x is Pareto Optimal} (1.4)
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Definition 1.3.4. The Pareto Front (PF) is defined as

P F = {f (x) ∈ Òm |x ∈ PS } (1.5)

Since objectives in (1.3) conflicted with each other, no point in Ω simultaneously
minimizes all the objectives. The best trade-offs among the objectives can be defined
in terms of PF.

1.4 Study Area and Data Sources

The proposed framework here is framed in the current COVID-19 pandemic in Bogotá
city, the largest and most crowded city in Colombia. Bogotá is a metropolitan city with
7.412.566 inhabitants living in an area of 1630 km2 (410 km2 urban and 1220 km2 rural),
at an altitude of 2640 m, with an annual temperature ranging from 6 to 20 °C, and an-
nual precipitation of over 840 mm. Bogotá has composed of 621 Urban Sectors (Urban
Sector is a cartographic division created by the National Administrative Department of
Statistics (DANE) [22]). Each Urban sector belongs to one of the 112 Zonal Planning Units
(UPZ) [107], see Figure 1.1.

74°2'W 74°1'W 74°0'W

4°5'N

4°6'N

4°7'N

4°8'N

5km

N

(a) Zonal Planning Units (UPZ)

74°2'W 74°1'W 74°0'W

4°5'N

4°6'N

4°7'N

4°8'N

5km

N

(b) Urban sectors

Figure 1.1. Spatial distribution of Bogotá using Zonal Planning Units (UPZ) (left) and Urban sec-
tors (right).

The information used in this thesis is obtained from the National Department of
Statistics (DANE), District Planning Secretary of Bogotá (SDP), and the District Mobil-
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ity Secretary of Bogotá (SDM). Data comprised public information about demographic,
transportation, socio-economic, and health conditions reported from 2011 to 2020. A
summary of the datasets is presented as follows:

• MON_2017 [104, 106]: Dataset provided by SDP containing a set of monographs
which provides a physical, demographic and socioeconomic description of Bogotá
and its Zonal Planning Units (UPZ).

• SDM_2017 [103]: Dataset provided by SDM presenting detailed official information
of mobility characterization in Bogotá.

• CNPV_2018 [22]: Dataset provided by DANE containing the national census made
in 2018 which provides socio-demographic statistics of Colombia.

• DANE_2018 [23]: Dataset provided by DANE containing the results of the Multidi-
mensional Poverty Index which encompasses educational and health quality, work
and housing conditions, and access to public services.

• DANE_2020 [24]: Dataset provided by DANE presenting a vulnerability index based
on demographic and health conditions relevant for COVID-19 pandemic.

Since the datasets’ information are in different spatial units (i.e., Urban sectors, UPZ),
the Urban sector is chosen for the study. Then, information at the UPZ level is trans-
formed into Urban sectors by spatial transformation (i.e., UPZ values are assigned to
each Urban sector contained in this).



CHAPTER 2

Modeling transmission dynamics for infectious
diseases

This chapter presents an agent-based model, called INFEKTA, for simulating the trans-
mission of infectious diseases, not only the COVID-19, under social distancing policies.
INFEKTA combines the transmission dynamic of a specific disease, (according to param-
eters found in the literature) with demographic information (population density, age,
and gender of individuals) of geopolitical regions of the real town or city under study.
Agents (virtual persons) can move, according to its mobility routines and the enforced
social distancing policy, on a complex network of accessible places defined over a Eu-
clidean space representing the town or city. The transmission dynamics of the COVID-19
under different social distancing policies in Bogotá city, the capital of Colombia, is simu-
lated using INFEKTA with one million virtual persons. A sensitivity analysis of the impact
of social distancing policies indicates that it is possible to establish a ’medium’ social
distancing policy (i.e., close 40% of the places) to achieve a significant reduction in the
disease transmission.

2.1 Introduction

Infectious diseases have a substantial impact on public health, health care, macroeco-
nomics, and society. The availability of options to control and prevent the emergence,
expansion, or resurgence of pathogens demands continuous evaluation using different
methods. Mathematical models allow characterizing both the behavior and the emer-
gent properties of biological systems, such as the transmission of infectious diseases.
[61, 30, 5]. Many biological systems have been modeled in terms of complex systems
since their collective behavior cannot be simply inferred from the understanding of
their components [68, 70].

8
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Computer-based algorithms are used to model properties and dynamic interactions
between agents (e.g. persons, cells) or groups of agents within, and across levels of
influence in complex systems [36, 58]. In general, agent-based modeling (ABM) can
be used for testing theories about underlying interaction mechanics among the sys-
tem’s components and their resulting dynamics. It can be done by relaxing assump-
tions and/or altering the interaction mechanisms at the individual agent level. ABMs
can increase the understanding of the mechanisms of complex dynamic systems, and
the results of the simulations may be used for estimating future scenarios [56].

In the past, ABMs have been employed to address various infectious diseases such
as, a bioterrorist introduction of smallpox [43], control of tuberculosis [78], implementa-
tion of distancing measures and antiviral prophylaxis to control H5N1 influenza A (bird
flu) [33], design of vaccination strategies for influenza [13], devise evacuation strate-
gies in the event of airborne contamination [29], and curtail transmission of measles
through contact tracing and quarantine [28]. In the literature review, some other novel
works that include heterogeneous agents and social distancing were proposed tomodel
COVID-19 [32, 12].

In this chapter, an agent-based model approach is proposed, called INFEKTA (Es-
peranto word for infectious). INFEKTA mainly differs from existing works in that it aims
to generate individuals and a complex network of places based on the population den-
sity of a determined city including individual interaction in public transportationmeans.
INFEKTA models the disease transition at the person level and takes into consideration
individual infection disease incubation periods and evolution, medical preconditions,
age, daily routines (movements from house to destination places and back, including
transportation if required), and enforced of Non-Pharmaceutical Interventions such as
social distancing policies may flatten the curve.

The remaining of this chapter is organized as follows. Section 2.2 presents the agent-
based model of infectious disease propagation, called INFEKTA, and its five-layer com-
ponents. Section 2.3 describes the applicability of INFEKTA for modeling the transmis-
sion dynamics of the COVID-19 in Bogotá, Colombia. Finally, Section 2.4 discusses some
of the conclusions and potential future developments.

2.2 INFEKTA Agent-Based Model

The agent-based model of infectious disease propagation, called INFEKTA, consists of
five-layer components:
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Space

The virtual space (for a city or town being studied) is a Euclidean complex network [117]:
Nodes are places (located in some position of the 2D Euclidean space) where individuals
can be at some simulation time and edges are routes (straight lines) connecting two
neighbor places.

• Place (Node) - A place may be of three kinds: home (where individuals live), public
transportation station (PTS), and interest place (IP) i.e., school, workplace, mar-
ket, and transportation terminal. IPs and PTSs are defined in terms of capacity
(maximum number of individuals that can be at some simulation step time). IPs
and PTSs may be restricted, during some period, to some or all individuals. Place
restriction is established according to the social distancing rule that is enforced
during such a period.

• Neighbor (Edge) - A PTS is a neighbor to another according to the public trans-
portation system of the city or town being studied. Homes and IPs are considered
neighbors to its closest PTS in the 2D Euclidean space. No home is a neighbor to
any other home neither an IP is a neighbor of any other IP. Finally, a home and an
IP are considered neighbors if they are neighbors of the same PTS. Each individual
has a Home and an IP. The closest distances are computed between each Home
and IP and between these places with the closest PTS using their longitude and
latitude. If the distance between a Home and IP is shorter than the distance to a
PTS this home will be connected directly to an IP instead of their closest PTS. Oth-
erwise, the closest PTS is connected to each Home and IP respectively. Detailed
information can be found in Figure 2.2 of Section Virtual Space Setup.

Time

Virtual time is defined in INFEKTA at two resolution levels: days for modeling the trans-
mission dynamics of the infectious disease, and hours for modeling the moving and in-
teraction of individuals. Therefore, if an individual gets infected more than once during
the same day, INFEKTA considers all of them as a single infection event. Any individual
movement is carried on the same hour, it was started, regardless of the traveled Eu-
clidean distance nor the length of the path (number of edges in the complex network).

Individuals

A virtual individual in INFEKTA is defined in terms of his/her demographic, mobility, and
infectious disease state information.
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• Demographics - The demographic information of a virtual individual consists of:
i) Age of the individual; ii) Gender of the individual female o male; iii) Location
of the individual at the current time step; iv) Home of the individual, v) Impact
level of medical preconditions on the infectious disease state if the individual is
infected, and vi) IP interest of going to certain type of IPs.

• Mobility - The ability of an individual to move through space (using the graph
defining the space for determining the route as proposed in [92, 93]). Each indi-
vidual has a mobility plan for every day, plan that is carried on according to the
enforced social distancing policy and her/his infectious disease state. The mobil-
ity plan is modeled in INFEKTA as a collection of simple movement plans to have i)
Policy: social distancing policy required for carrying on the mobility plan; ii) Type:
may be mandatory, i.e., must go to the defined interest place) or optional, i.e.,
any place according to individual’s preferences; iii) Day: day of the week the plan
is carried on, maybe weekly, weekend, Monday, ..., Sunday; iv) Going Hour time
an individual moves from Home to an IP; v) Duration in hours for coming back to
home, and vi) Place: if the plan type is mandatory, it is a specific place, otherwise
it is an IP selected by the individual according to his/her IP preferences.

Infectious Diseases Dynamic

Figure 2.1 shows the general transition dynamics of any infectious disease at the indi-
vidual level in INFEKTA. This model can be adjusted to any specific infectious disease by
setting some of the probabilities to specific values. For example, if no evidence recov-
ered individuals become immune or susceptible again, such probabilities can be set to
0.0.

Any individual can potentially be in one of seven different infectious disease states
or health states in INFEKTA: Immune (M ), Susceptible (S ), Exposed (E ), Asymptomatic-
Infected (IA), Seriously-Infected (IS ), Critically-Infected (IC ), Recovered (R ), Dead (D ),
and Immune (M ). As it can be noticed, the terminology can be adapted from the com-
partmental models in epidemiology – namely, from the SEIR (Susceptible-Exposed-
Infectious-Recovered) model. In INFEKTA, the infectious state of the SEIR model is di-
vided into asymptomatic-infected, seriously-infected, and critically-infected in order to
capture how age, gender, IP preferences, medical preconditions (co-morbidity), and so-
cial distancing policies can impact the evolution of the infectious disease in an individ-
ual. INFEKTA introduces both the M state since some individuals are naturally immune
to or can become immune to (after recovering) certain infectious diseases and the Dead
(D ) state to distinguish between recovered and dead individuals.

Since rates are defined at the individual level, these rates can be defined by taking
into consideration, for example, rates at the population level (obtained from a com-
partmental model), age, gender, and co-morbidity presented in the individual. Remem-
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Infectious disease states
S := Susceptible
E := Exposed
IA := Asymptomatic-Infected
IS := Seriously-Infected
IS := Critically-Infected
R := Recovered
M := Immune
D := Dead

S E

U
IA

U

B
IS

U
IC

U
D

R

U
M

α β γ

1 − γ

θ

1 − θ

φ

1 − φ

ω
1 − ω

1 − β

Figure 2.1. General transmission dynamics of any infectious disease at individual level in IN-
FEKTA. Probabilities are individual based and are defined according to the infectious
diseases and characteristic such as current location, age, gender, and so on. Sym-
bol U, on state X , indicates that an individual must stay some period of time TX at
such state X before being able to change to other state. Symbol B, indicates that
individuals on state X can infect Susceptible (S ) individuals.

ber that those rates are not defined at some time scale (as in compartmental models)
but define the rule determining changes in the health status of individuals being close
enough for interacting at the infectious disease transmission level or after some period
of time being in some state. In this way, an individual can change with probability α

from S state to state E if it are close enough to an asymptomatic-Infected (IA) individ-
ual. Further, it will change from state IA to state IS with probability θ and if it has been
on state IA a period of time TIA .

• α : is the transmission rate and incorporates the encounter rate between suscep-
tible and infectious individuals together with the probability of transmission.

• β : is the rate at which individualsmove from the Exposed (E ) to the Asymptomatic-
Infected state (IS ). It’s complement (1 − β ) is the rate of individuals with symp-
tomatic cases.

• γ: is the rate at which individuals move from the exposed (IA) to the Seriously-
Infected state (IS ).

• θ: is the rate at which individuals move from the Seriously-Infected (IS ) to the
Critically-Infected state (IC ).

• φ: is the death rate.

• ω: is the immune rate that incorporates the probability of becoming immune.

• TE : Time an individual will be at the Exposed (E ) state before changing to the
Asymptomatic-Infected (IA) or Seriously-Infected (IS ) states.

• TIA : Time an individual will be at the Asymptomatic-Infected (IA) state before
changing to the Seriously-Infected (IC ) or Recovered (R ) states.
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• TIS : Time an individual will be at the Seriously-Infected state (IS ) before changing
to the Critically-Infected (IC ) or Recovered (R ) states.

• TIC : Time an individual will be at the Critically-Infected (IC ) before changing to
the Dead (D ) or Recovered (R ) states.

• TR : Time an individual will be at the Recovered state (R ) before changing to the
Immune (M ) or Susceptible (S ) states.

INFEKTA can consider that two individuals are close enough for interacting at the
transmission of the infectious disease if they are at the same place (home, interest
place, or public transportation station) at the same time. To simplify this checking pro-
cess, it is possible to consider that an individual just visited its home, final interest
place, and both the initial and final PTSs when using the public transportation system.

Social Distancing Policy

The social distancing policy is described in INFEKTA as a finite sequence of rules, each
rule having i) Start Time: an initial day for applying the social distancing policy rule;
ii) End Time: final day for ending the social distancing policy rule; iii) Level: indicates
the kind of restriction applied to the mobility of persons and accesses to places, and
iv) Enforce: defines the specific mobility and access restrictions of the social distancing
policy.

2.3 Modeling Transmission Dynamics of COVID-19 in Bogotá

INFEKTA is used for modeling the transmission dynamic of COVID-19 in Bogotá at level of
UPZ1. Each UPZ belongs to one of the 19 urban districts in Bogotá. The urban perimeter
population of Bogotá is 7.412.566, and Bogotá massive public transportation system is
called Transmilenio (TM). TM is a bus-based system, which has 143 stations and moves
near to 2.500.000 citizens every day.

Virtual Space Setup

Geographical information of Bogotá is used as the Euclidean space where the moving
and interaction complex network is defined. Each one of the TM stations is located and
added to the complex network according to the real TM system [110]. Also, the airport
and the regional bus terminal are located and connected to the nearest TM station.

1Simplification is considered a fundamental part of modeling and simulation [118]. Although INFEKTA is
model simplification of a real infectious disease dynamics, it is a model focused on system elements that
matter, and that are feasible to understand.
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Demographic information from 112 UPZ is used for generating in the Euclidean space
interest places (Workplaces (W), markets (M), and schools (S)), homes (H), and people(P).
Places are generated, in each one of the districts, following a 2D multivariate normal
distribution N ∼ (µ,Σ) (µ is the geographic center of the UPZ and Σ is the co-variance
matrix defined by the points determining the perimeter of the district). The number of
places in each UPZ is generated based on the population density of each UPZ accord-
ing to the data available in 2017 [105]. Table 2.1 shows the amount of data generated
for each type of place and people, also the number of TM stations (Bus), and terminal
transportation that is used in the simulation, and Table 2.2 shows detailed information
on the number of interest places generated by UPZ.

Table 2.1. Data used in the simulation of INFEKTA.

Agent Instance Type Amount

Place

Home (H) Home (H) 297260
Public Transportation Station (PTS) Bus (B)* 143

Interest place (IP)

Workplace (W) 118952
School (S) 59483
Market (M) 98126
Terminal (T)* 2

Individual Individual People (P) 998213
∗ Real places.

Figure 2.2 shows an example of 1000 virtual places in the Euclidean map of Bogotá
[107]; also, the figure shows the associated complex network of connected places (nodes
are places and edges are routed between places).

Individuals setup

An heterogeneous (varying gender, age, district and home) group of almost one million
of individuals (998213) is generated using a stratified sampling based on the demo-
graphic information of the city for each district according to the projections to 2030
[105]. An individual is classified, according to her/his age, as: Child = [0-9], Adolescent
= [10-19], Adult = [19-49], Senior = [50-69], and Older = 70+. Table 2.3 shows the total
demographic information of virtual people.

The explicit impact level of medical preconditions on the state of the COVID-19 dy-
namic is not included in this preliminary modeling. The transition rates are wrapped in
INFEKTA and allow modelers to change and play with different rates. Therefore, we set
the initial values of these rates as shown in Table 2.4.

Also, a sequence of activities is randomly assigned to each individual to define a
diary routine (in discrete intervals of 5 min). This is done according to the person’s age
and the hour of the day. For example, some agents Adolescent go to school, and some
Adult agents go to work. Time to start a routine -going from Home to IP and return-
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Table 2.2. Number of interest places generated by UPZ group by District
Amount of places

DISTRICT Homes(H) Markets(M) Schools(S) Workplaces(W)
(01) Usaquén 19135 6307 3830 7625
(02) Chapinero 5410 1801 1100 2184
(03) Santa Fe 3944 1284 790 1578
(04) San Cristóbal 16806 5526 3367 6725
(05) Usme 14600 4840 2930 5875
(06) Tunjuelito 9106 2966 1817 3597
(07) Bosa 23103 7656 4650 9253
(08) Kennedy 40797 13452 8135 16322
(09) Fontibón 13458 4447 2688 5374
(10) Engativá 34428 11402 6906 13787
(11) Suba 41045 13517 8200 16423
(12) Barrios Unidos 9381 3101 1864 3776
(13) Teusaquillo 5896 1912 1163 2336
(14) Los Mártires 3921 1300 798 1581
(15) Antonio Nariño 4485 1503 885 1819
(16) Puente Aranda 10462 3454 2097 4189
(17) La Candelaria 1174 395 239 460
(18) Rafael Uribe 15282 5048 3058 6108
(19) Ciudad Bolívar 24827 8215 4966 9940
TOTAL 297260 98126 59483 118952
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House Bus Workplace Market School Terminals

(a) Bogota with georeferenced places (b) Bogota complex network

Figure 2.2. Example of 1000 georeferenced places in Bogotá (left) and it’s corresponding rep-
resentation in the euclidean complex network (right).

Table 2.3. Demographic information of virtual people grouped by District. District (D), Total(T),
Male(M), Female(F).

Child Adolescent Adult Senior older
D TOTAL [0-9] [10-19] [19-49] [50-69] 70+

T M F T M F T M F T M F T M F T M F
(01) 62358 33485 28873 11143 5601 5542 4599 2337 2262 28561 15163 13398 14157 7990 6167 3898 2394 1504
(02) 17459 9272 8187 2176 1075 1101 1199 598 601 8473 4410 4063 4148 2301 1847 1463 888 575
(03) 13145 6541 6604 2930 1371 1559 1076 509 567 5774 2856 2918 2554 1340 1214 811 465 346
(04) 51501 26341 25160 13343 6472 6871 4628 2269 2359 22840 11683 11157 8499 4625 3874 2191 1292 899
(05) 55236 27907 27329 16168 7801 8367 5378 2621 2757 24251 12321 11930 7940 4286 3654 1499 878 621
(06) 25394 12793 12601 5865 2791 3074 2228 1072 1156 11582 5815 5767 4340 2316 2024 1379 799 580
(07) 82103 41953 40150 22635 11015 11620 7200 3542 3658 37699 19349 18350 12313 6712 5601 2256 1335 921
(08) 135750 69517 66233 32179 15606 16573 10909 5349 5560 63480 32467 31013 24067 13080 10987 5115 3015 2100
(09) 48288 25416 22872 10311 5122 5189 3665 1840 1825 23352 12250 11102 8843 4923 3920 2117 1281 836
(10) 111026 57864 53162 22632 11102 11530 8331 4132 4199 52205 27028 25177 21980 12094 9886 5878 3508 2370
(11) 149078 78324 70754 33063 16409 16654 11747 5894 5853 70984 37201 33783 26900 14964 11936 6384 3856 2528
(12) 30578 15877 14701 5002 2418 2584 2052 1003 1049 13456 6867 6589 7579 4113 3466 2489 1476 1013
(13) 19180 10230 8950 2428 1205 1223 1283 642 641 8958 4680 4278 4812 2674 2138 1699 1029 670
(14) 12536 6210 6326 2365 1099 1266 947 445 502 5670 2776 2894 2742 1428 1314 812 462 350
(15) 13827 7090 6737 2999 1445 1554 1117 544 573 5968 3032 2936 2826 1528 1298 917 541 376
(16) 32801 16654 16147 6186 2948 3238 2474 1192 1282 15382 7731 7651 6563 3509 3054 2196 1274 922
(17) 3059 1434 1625 483 212 271 278 123 155 1369 633 736 731 360 371 198 106 92
(18) 47610 24149 23461 11532 5536 5996 4113 1995 2118 21440 10850 10590 8312 4471 3841 2213 1297 916
(19) 87284 44552 42732 25410 12375 13035 8172 4024 4148 38710 19868 18842 12614 6883 5731 2378 1402 976
TOTAL 998213 515609 482604 228850 111603 117247 81396 40131 41265 460154 236980 223174 181920 99597 82323 45893 27298 18595
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Table 2.4. Parameters of INFEKTA and their estimations for COVID-19.

Symbol Description COVID-19 estimations ReferencesChild Teen Adult Senior Older
α Probability of S → E 0.180 [32]
β Probability of E → IA 0.000 0.800 0.200 [16]
γ Probability of IA → IS 0.000 0.008 0.058 0.195 0.350 [121]
θ Probability of IS → IC 0.050 0.050 0.050 0.198 0.575 [32]
φ Probability of IC → D 0.400 0.500 [32]
ω Probability of R → M 0.999 -
TE Time (days) at E Γ(α = 5.100, β = 0.860) [35]
TIA Time (days) at IA 3 14 5 [9]
TIS Time (days) at IS T r i angul ar (7, 8, 9) [131]
TIC Time (days) at IC T r i angul ar (5, 7, 12) [131]
TR Time (days) at R U (80, 100) -

is randomly selected in the interval from the 4h and 7h returning between the 17h and
20h. Some agents may move using the PTS and some others while going directly to their
destination place. The route an individual takes is defined according to the complex
network . Figure 2.3 shows three examples of different routines (paths over the graph)
for the individuals.

Social Distancing Rule Setting

The level attribute of the social distancing rule for the COVID-19 in the virtual Bogotá is
defined as follows:

• None: No restrictions to the mobility neither to access to places.

• Medium: Many places and few stations are restricted (depending on the type, ca-
pacity, etc). Some type of individuals is restricted to stay at home (except those
with the required mobility level). i.e., close 40% of the places.

• Extreme: Few places are accessible to persons while few stations are restricted.
Almost every individual is restricted to stay at home (except those with the re-
quired mobility level). i.e., close 80% of the places.

Results

The methodology of INFEKTA (Data preprocessing; places, population, and routes assig-
nation; network creation) is available in a Github repository, see Appendix A. A total
of 20 experiments are run and the results (COVID-19 dynamics, sensitive analysis, and
social distance policies) shown below are the mean of those experiments. Figure 2.4
shows the evolution of the epidemic dynamics over time and for each UPZ.
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Figure 2.3. Example routines carried by individuals. Individual 38 (top): [Child, F, School, 1]; In-
dividual 73128 (middle): [Adult, M, Workplace, 47]; Individual 349915 (bottom): [Older,
F, Workplace, 90].

A sensitive analysis is made to the infection rate (α ) parameter to check the ro-
bustness of the model. The sensitivity analysis is shown in Figure 2.5. Notice that by
increasing or decreasing the infection disease rate (Figure 2.5 (left)), the peak of the
transmission dynamics is reached sooner or later on time. When low infection disease
rates, the number of cases is also low, reducing the impact on the economy. On the
other hand, for high infection disease rates (Figure 2.5 (right)) the peak is reached in an
early stage, and around half of the population is on one of the infected states (Asymp-
tomatic, Seriously, Critically).

Also, different scenarios are analyzed, where each one of the social distancing poli-
cies is enforced just after 15 simulation days, see Figure 2.6. As it can be noticed, the
evidence suggest how social distancing rules help to mitigate the exponential growth
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Figure 2.4. Evolution of the epidemic dynamics. Full dynamics over time (left), and dynamics
for each UPZ at specific time (right).
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(a) α = 0.09
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(b) α = 0.18
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(c) α = 0.36

Figure 2.5. Sensitive analysis for the infection probability α . α = 0.09 (left), α = 0.18 (middle),
α = 0.36 (right).

in the transmission disease dynamics (COVID-19), reducing the number of infectious
cases (Asymptomatic, Seriously, and Critically). Interestingly, when the extreme social
distancing rule (access to approximately 80% of interest places is restricted) the trans-
mission disease dynamic displays a big second wave with more cases than the first
wave.

Although the intention is not to predict geographic spread for the city, some similar-
ities can be observed between the total Seriously-Infected cases in INFEKTA (we assume
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(b) Medium - close 40% of places
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(c) Extreme - close 80% of places

Figure 2.6. Social Distancing initialized at day 15 and ended at day 60 of the simulation. None
- No restrictions (left), Medium - close 40% of places (middle), and Extreme - close
80% of places (right).

that individuals in Seriously-Infected state are cases tested in Bogotá) and the current
concentration of COVID-19 cases confirmed in Bogotá [79], see Figure 2.7. The results
show how UPZ with more cases found with INFEKTA matches with geographic areas with
more COVID-19 cases. Then, how population distribution is generated from real density
data of Bogotá, INFEKTA can be useful to explore policies by Zonal Planning Units (UPZ)
or territorial divisions of a selected place providing to recommend actions for before,
during, and after pandemic i.e., in planning and coordination efforts through leadership
and coordination across sectors.

2.4 Summary

Modeling the Transmission dynamic of an infectious disease such as the COVID-19 is
not an easy task due to its highly complex nature. When using an Agent-Based Model
(ABM), several different characteristics can be modeled, for example, the demographic
information of the population being studied, the set of places and themobility of agents
in the city or town under consideration, social distancing rules that may be enforced,
and the special characteristics of the infectious disease being modeled. INFEKTA is an
ABM that allows researchers to combine and study all of those characteristics.



CHAPTER 2. MODELING TRANSMISSION DYNAMICS FOR INFECTIOUS DISEASES 21

Less cases

More cases

(a) Total Seriously-Infected cases in INFEKTA (b) Real COVID-19 cases confirmed in Bogotá

Figure 2.7. Comparison between total Seriously-Infected cases in INFEKTA (left) and the real
COVID-19 cases confirmed in Bogotá (right). The colored boxes in the right map
(confirmed casesmap) corresponds to the concentrations of the cases in 1000meters
on December 30, 2020, in Bogotá.

The preliminary results modeling the transmission dynamics of the coronavirus
COVID-19 in Bogotá city, the largest and most crowded city in Colombia, indicate that
INFEKTA may be a valuable asset for researchers and public health decision-makers for
exploring future scenarios when applying different social distancing policy rules and
controlling the expansion of an infectious disease. Although this study is doing a rough
and not so real approximation of the transmission dynamics of the COVID19, similar
behaviors can be contained, in the preliminary experiments, to those reported for the
COVID-19 in the real world. Therefore, INFEKTA may be able to provide more accurate
results if its parameters are set to real ones: disease transmission rates, virus, incuba-
tion periods, comorbidity, houses, interest places, routines, population size (close to
nine million virtual individuals for Bogotá).

The next chapter introduces a vulnerability assessment framework to analyze not
only the transmission dynamics that emerged by the INFEKTA, but also a set of vulner-
ability factors related to infectious diseases.



CHAPTER 3

Vulnerability assessment for pandemics surveillance

In this chapter, an Urban Vulnerability Assessment (UVA) methodology is proposed. UVA
investigates various vulnerability factors related to pandemics (severity of infection and
transmissibility) to assess the vulnerability in urban areas. A vulnerability index is con-
structed by the aggregation of multiple vulnerability factors computed on each urban
area (i.e., urban density, poverty index, informal labor, and transmission routes). This
methodology is useful in a-priori evaluation and development of policies and programs
aimed at reducing disaster risk (DRR) at different scales (i.e., addressing urban vulnera-
bility at national, regional, and provincial scales), under diverse scenarios of resources
scarcity (i.e., short and long-term actions), and for different audiences (i.e., the general
public, policy-makers, international organizations). The applicability of UVA is shown
by the identification of high vulnerable areas based on publicly available data where
surveillance should be prioritized in the COVID-19 pandemic in Bogotá, Colombia.

3.1 Introduction

Vulnerability Assessment describes the degree to which socioeconomic systems and
physical assets in geographic areas are either susceptible or resilient to the impact
of a disaster (i.e., pandemic). Once the vulnerability is evaluated across areas, it is
possible to prioritize them and undertake preventative action and response efforts (i.e.,
planning and coordination, reducing the spread of disease, and continuity of health care
provision) [17, 73, 81, 65]. In the urban context, the Urban Vulnerability Assessment (UVA)
helps to determine what types of preparedness and response activities might support
an optimal Urban Strategic Planning (USP) to assist the decision-making processes [96].

Several models have been proposed to establish vulnerable urban areas over the in-
fectious disease domain, that is, vector-borne diseases [42], Dengue [17], malaria [53, 41],

22
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and Ebola [73]. Recently, in [69] a COVID-19 vulnerability index for urban areas in India
was proposedwhich aggregates weighted scores of a set of variables related to COVID-19
precaution of social distance and lockdown in four metro cities in India. Nevertheless,
relative preferences between criteria-based judgments for the gathering of preferences
for indicators (vulnerability factors) is needed in those models, having some limitations
such as expert bias, or hierarchical criteria to weight the factors [122, 76].

On the other hand, the recently UN-Habitat response plan for the current COVID-19
pandemic underlined the urban-centric character of the disease, indicating that above
95% of the cases are located in urban areas [116]. The World Health Organization (WHO)
emphasized that the first transmission in the COVID-19 pandemic did happen in the in-
ternationally connected megacities [126]. Further, interconnected cities in South Amer-
ica (i.e., Bogotá) are presumably more susceptible given their population densities, low
income, job informality, and lack of affordable health services [71].

In this chapter, a conceptual framework for Urban Vulnerability Assessment (UVA) for
pandemics is proposed. This UVA conducted a comprehensive review of relevant litera-
ture to identify vulnerability factors influencing pandemics. These are then condensed
into an index that allowed to establish and rank potentially vulnerable urban areas. The
vulnerability rank is built using Borda’s count aggregationmethod, which does not need
experts knowledge nor additional parameters. UVA is framed in the current COVID-19
pandemic in Bogotá, the most densely populated city of Colombia. Using publicly avail-
able data of Bogotá, UVA creates a spatially explicit description of vulnerability for the
COVID-19 pandemic. This modeling application study provides a potential tool to in-
form policy-makers to prioritize resource allocation and devise effective mitigation and
reconstruction strategies for affected populations in Bogotá.

This chapter is divided into three sections. Section 3.2 develops the methodology of
Urban Vulnerability Assessment (UVA) for pandemic surveillance. Section 3.3 describes
the applicability of UVA for the current COVID-19 pandemic in Bogotá, Colombia. Finally,
Section 3.4 discusses some of the conclusions and potential future developments.

3.2 Urban Vulnerability Assessment

The conceptual framework of Urban Vulnerability Assessment (UVA) for pandemics
surveillance is illustrated in Figure 3.1. UVA involves four main stages. The first stage is
the identification of vulnerability factors influencing pandemics (Figure 3.1, panel (a)).
The second stage is to transform the raw input data from each vulnerability factor into
a probability distribution (Figure 3.1, panel (b)). The third stage groups geographic areas
with similar characteristics into classes to assign a vulnerability level (Figure 3.1, panel
(c)). After that, an aggregation method is applied to create a unique rank for each class
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(Figure 3.1, panel (d)), where a higher rank is assigned to a higher vulnerability level
(Figure 3.1, panel (e)).

(a) Literature review (b) Find distribution (c) Group by similar
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Figure 3.1. Schematic diagram of the Urban Vulnerability Assessment for Pandemic Surveil-
lance.

Literature Review

A focused literature search [59] is conducted to identify a set of peer-reviewed studies
that possibly examined types of vulnerability factors related to pandemics. The studies
consider both factors related to past pandemics (i.e, 1881 Fifth cholera, 1918 Spanish flu
influenza, 1957 Asian flu influenza, 2003 SARS, 2009 h1n1, 2013 West Africa Ebola) and
factors found in the current COVID-19 pandemic. The literature search used a combina-
tion of search strings to retrieve studies in the Google Scholar database (i.e., (hazard
OR uncertain* OR risk* OR vulnerab*) AND (disease OR pandemic* OR endemic*) AND
(analysis OR factor* OR assess*)). The search included peer-reviewed English language
journal articles (called “studies” in the review) published between 1982 and 2020. The
retrieved studies for which the study’s title, abstract, or keywords indicated the study
examined a type of vulnerability in pandemics. Then, a manual assessment is made for
every study against eligibility criteria:

• The study provided a quantitative or conceptual analysis of vulnerability factors
related to infectious diseases (or pandemics).

• The core of the study included vulnerability.
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• The study focuses on urban areas.

• The study focuses more on the vulnerability at the geographic area level than on
the individual level.

Afterward, the vulnerability factor the study focused on, the geographic focus of the
study, and the methods used to assess the vulnerability are recorded. This involved
examining the title, abstract, keywords, or full-text version. The country or region(s)
where the study focused is listed. For theoretical studies without a clear geographic
focus, the geographic location is listed as Not Applicable (NA). Table 3.1 summarizes
the 11 studies that are considered for the analysis of vulnerability factors related to
pandemics.

Statistical Data Analysis

Let S be a geographical space under investigation (i.e., state, country, or city) defined in
terms of a finite set of P smaller spatial units (i.e. countries, census tracts, or zip codes);
that is S = {1, 2, . . . , P }. Let V be a set of M vulnerability factors, andVk the values of
the P spatial units in the k -th vulnerable factor Vk = {vk ,1, . . . ,vk ,P }. The raw data for
each factor are normalized across all spatial units over the range 0 (best) to 1 (worst).
Different normalization methods exists in the literature [40]. The method chosen in this
study is to build an estimation of the Probability Density Function (PDF) of the data,
and then transform it via its Cumulative Density Function (CDF), so intervals with higher
likelihood of containing data are assigned to higher portion of the normalized interval
[0,1]. This is called probability integral transform [6]. An estimate to the PDF fVk at
specific spatial unit x is made using the Kernel Density Estimation (KDE) method.

fVk (x) =
1

Pλ

P∑
i=1

Kλ(x ,vk ,i ), (3.1)

whereK is the kernel (a non-negative function) and λ is the smoothing parameter called
the bandwith.

Then, to normalize the raw data at spatial unit x over the range 0 (best) to 1 (worst)
in the k -th vulnerable factor, the probability integral transform is applied.

x ′ = FVk (x), (3.2)

where FVk is the CDF of the k -th vulnerable factor.
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Table 3.1. Summary of studies considered to vulnerability factors related with pandemics.
Reference Vulnerable Factor(s) Geographic Focus Methods Main Findings
[10] a. Essential worker

b. Household size
c. Age
d. Gender

Singapur Demographic, clini-
cal, treatment, and
laboratory data

Describe incidence
and vulnerability fac-
tors for pandemic in
healthcare personnel

[65] e. Geographic spark
f. Geographic spread
g. Burden quantification
h. Disease importation
a. Essential worker
i. Healthcare access

NA Epidemiology evi-
dence of previous
infectious diseases

Covers the concern-
ing of vulnerability,
impacts, mitiga-
tion and pandemic
knowledge gaps

[46] j. Medical preconditions
c. Age
d. Gender
a. Essential worker

United King-
dom

Epidemiology evi-
dence of COVID-19

How the vulnerability
might vary in different
population groups or
settings

[47] k. Time delay illness
l. Insufficient follow-up
c. Age
d. Gender

China Demographic, clini-
cal, treatment, and
laboratory data

Provides insights in
early vulnerability as-
sessment using pub-
licly available data

[80] i. Hospital capacity
m. Water and sanitation
n. Logistics
o. Per capita income
p. Public education

NA Conceptual frame-
work for epidemic
preparedness and
response

Epidemic Prepared-
ness Index (EPI) for
assessing resilience
to epidemic and
pandemic outbreaks

[73] i. Health infrastructure
q. Urban density
f. Disease dynamics
r. Economic growth

NA Literature review
and expert elicita-
tion

Identify the most
vulnerable countries
to infectious disease
outbreaks

[74] q. Urban density
s. High-density facilities
h. Worldwide movement
m. Inadequate sanitation

NA Epidemiology evi-
dence of previous
infectious diseases

Identification of spe-
cific factors responsi-
ble for disease emer-
gence

[111] o. Socioeconomic status
c. Age
t. Rural or urban living

New Zealand Epidemiology evi-
dence of previous
infectious diseases

Description of vul-
nerability factors for
death in an outbreak
of pandemic

[81] u. Public transportation
s. Nearby food market
o. Overall poverty rate
i. Healthcare access
v. Public services access

NA Vulnerable indi-
cators for area
classification

Identify geographic
areas to be priori-
tized for preventative
action and response
efforts

[127] f. Geographic spread
k. Infectious period

NA Demographic, clini-
cal, treatment, and
laboratory data

Epidemiological
modeling to reduce
the disease burden

[1] p. Education levels
o. Poor households
t. Urbanization
q. Population density
m. Housing condition
i. Health care availability
j. Chronic morbidity

India Epidemiology evi-
dence of COVID-19

Social vulnerability
index for manage-
ment and mitigation
of COVID-19

Note: Studies retrieved from the literature search. NA means not applicable.

Cluster Analysis

To identify spatial units with similar levels of vulnerability, areas with similar vulnera-
bility profiles are clustered. Here, the cluster analysis uses the information contained
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in their vulnerability profile (expressed from their CDF for theM vulnerability factors) to
form spatial groups that are relatively homogeneous in vulnerability, that is, synthesize
the spatial units into k partitions.

UVA allows the decision-maker to select the number of cluster partitions in which
the spatial units will be grouped (i.e., the selection made according to the number of
vulnerability levels desired). Each sub-set of solutions C = {C1, . . . ,CL} obtained by
a cluster algorithm [3] (i.e., k-means) contains a number Pj of spatial units of similar
characteristics. In this way, the decision tool makes it possible to obtain a suitable
number of k relevant possible vulnerable assessments (i.e., k = 3 vulnerability of low,
medium, and high; k = 10 vulnerability from 1 to 10).

Create Vulnerability Index

To assign a vulnerability level (rank) to each cluster, a Borda’s count aggregationmethod
is proposed [27]. The Borda’s method takes as input a set of ranks R = {R1, . . . , RM }
(where Rk is an order of the Clusters C = {C1, . . . ,CL} in the k -th vulnerability factor),
and produces a single rank by mixing the orders of all the input ranks. The number
of points (weight) assigned for each ranking varies depending on which variant of the
Borda count is used. For this, let tCi

Rk
be the position of the Cluster Ci in the rank Rk ,

and wRk the weight assigned for the rank Rk . A new aggregated value of ranking or the
i -th Cluster is defined as:

R(Ci ) =
M∑
k=1

wRk

(
|C| − tCi

Rk

)
. (3.3)

To assign a vulnerability level, vulnerability factor ranks Rk are made by sorting
the centroid values of Ci for each M vulnerability factor. Next, these M ranks (R =

{R1, . . . , RM }) are combined using Borda’s count aggregation method to obtain a unique
aggregated vulnerability rank.

Finally, the vulnerability rank is associated with a vulnerability index, that is, a higher
rank indicates higher vulnerability.

3.3 Vulnerability index for COVID-19 in Bogotá

The methodology of UVA (Data preprocessing; normalization, cluster definition, and
aggregation method; vulnerability indices) is available in a Github repository, see Ap-
pendix A.
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Vulnerability Domains

Given the data of the Urban sectors of Bogotá and the vulnerability factors found in
the literature review (see Section 3.2), a set of three relevant domains is proposed: (i)
Where and how a person lives,(ii) Where and how a person works, and (iii) Where and
how a personmoves around (The proposed domains are used for the convenience of the
reader and could change depending on the data analysis made in the geographic area.
It helps the reader to associate vulnerability factors related. These domains do not
influence the process of assigning vulnerability to a spatial unit.). These three domains
contain the input for the quantitative analysis. Table 3.2 shows the domains proposed
and the vulnerability factors associated with them.

• Where and how a person lives: Several demographic factors influence the degree
of vulnerability of the urban sector to the pandemic. The literature emphasizes
factors such as urban density, age, and the urban living (i.e., socio-spatial segrega-
tion). The level of education or literacy, and the quality of the health care system
(i.e., included in the poverty index) can also play a helpful role in mitigating the
spread and effects of infectious diseases [73]. Further, most data on the COVID-19
pandemic suggest that people with underlying comorbid conditions such as high
blood pressure, diabetes, respiratory and cardiovascular disease, and cancer are
more vulnerable than people without them.

• Where and how a person works: Urban sectors with high-density facilities (i.e, ed-
ucational buildings, cultural buildings, sports buildings, food markets, all formal
labor) are more vulnerable to the spread of contagious diseases due to space lim-
itations within and between households, growth and mobility, and limited water,
sanitation, and hygiene (WASH) infrastructure. Also, most workers in the informal
economy (i.e., informal labor) have higher exposure to occupational health and
safety vulnerability as they have no appropriate protective equipment, are forced
to work daily for their sustenance, and must afford all their expenses from cash
out-of-pocket due to their limited banking access [44].

• Where and how a person moves around: Understanding transmissibility, risk of
geographic spread, transmission routes, and infection vulnerability factors (i.e.,
geographic impact) provides the baseline for epidemiological modeling that can
inform the planning of response and containment efforts to reduce the burden
of disease [127]. Also, there have been claims that the use of public transport
(i.e., public transportation dependency) increases the likelihood of the disease
spreading [81].
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Table 3.2. Vulnerability domains for the COVID-19 case in Bogotá, Colombia.
Vulnerability Domains Vulnerability Factor(s) Definition Dataset
Where and
how a person
lives

Urban density
(q.)

Number of people inhabiting
a given urban area

CNPV_2018

Age (c.) Number of people aged
15–34 years (SARS-CoV-2
incidence increased [38])

CNPV_2018

Comorbidities (j.) Groups areas according to
their demographics and co-
morbidities

DANE_2020

Poverty index (p.
and i.)

Multiple deficiencies in
health, education and
standard of living

DANE_2018

Socio-spatial
segregation (t.)

Absence of interaction be-
tween individuals of differ-
ent social groups

[2] ∗

Where and
how a person
works

Educational (s.) Number of educational
buildings (i.e., preschool,
primary and high-school,
research centers, technical
training centers, Universi-
ties)

MON_2017

Cultural (s.) Number of cultural buildings
(i.e., theaters, concert halls,
libraries, museums, civic
centers, community halls)

MON_2017

Sports (s.) Number of sports buildings
(i.e., stadiums, coliseums,
sports clubs, country, race-
tracks, swimming pools)

MON_2017

Food markets (s.) Number of food market
buildings (i.e., Central mar-
ket, market square)

MON_2017

Formal Labor (s.) Number of commercial
buildings with license

MON_2017

Informal Labor
(s.)

Percentage of informal em-
ployed according to its work-
place

[108] ∗

Where and
how a person
moves around

Public Trans-
portation Depen-
dency (u.)

Number of Trips generated
throughout the day (trips
longer than 15 min)

SDM_2017

Transmission
routes (f.)

Asympthomatic number
people at the peak of the
pandemic

INFEKTA
∗

Geographic impact
(k.)

Number of dead people after
100 simulation days

INFEKTA
∗

Note: Letters in the table refer to factors presented in the Section 3.2, Table 3.1.
∗ Values calculated in the cited paper.

Vulnerability Analysis

To understand the distribution of the vulnerability factors over the urban sectors, the
raw data for each factor is normalized across all urban sectors over the 0 (less vulner-
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able) to 1 (most vulnerable) range. Figure 3.2 shows the normalization for the three
domains. The vulnerability value for each factor is associated with the probability inte-
gral transform using the KDE method (KDE uses the Gaussian kernel for its estimations
and Scott’s Rule for the bandwidth selection [102].). The results show the spatial cor-
relation that exists for some vulnerability factors, especially for the Where and how
she/he works domain. In contrast to the Where and how she/he lives domain, the spa-
tial correlation is not clear and the vulnerability is distributed across the geography
area under study (Bogotá).

Vulnerability Index

To provide a better vulnerability characterization, the UVA framework generates three
different indices to assess vulnerability in various ways (depending on the cluster par-
titions). Vulnerability index I has three different clusters that distinguish low, medium,
high exposure groups to disease harm. Index II has five different clusters (k = 5) to
distinguish lowest, low, medium, high, highest vulnerability groups. And, index III has
ten clusters (k = 10) to represent vulnerability groups on a scale from 1 to 10. Fig-
ure 3.3 shows the cluster analysis made to build the vulnerability indices. The clusters’
centroids (Figure 3.3-middle) are used to sort the vulnerability factors in descending
order. This sort is interpreted as vulnerability ranking which is used for the analy-
sis. Then, to aggregate the 14 ranks (one for each vulnerable factor in Table 3.2) in a
unique vulnerability ranking the Borda’smethod is used (Figure 3.3-bottom). The unique
vulnerability ranking is then transformed into a vulnerability index, where a higher
rank indicates higher vulnerability. In absence of a rationale for using any weighting,
scheme [91, 97, 69], equal weights are assigned to each vulnerable rank for calculating
the overall vulnerability index, according to other studies [34, 1].
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Figure 3.2. Normalization for vulnerability factors using the probability integral transform.
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Figure 3.3. Vulnerability Ranking I with k = 3 (left panel), Ranking II with k = 5 (middle panel),
and Ranking III with k = 10 (right panel). For each Vulnerability Ranking: clusters
generated using the k-means method (top), its corresponding centroid values for
each vulnerable factor (middle), and the unique rank generated using the Borda’s
count method (bottom). (The class identifier 1, . . . , k for the clusters of the vulner-
ability indices with different k partitions (k = 3 left, k = 5 medium, k = 10 right)
does not be the same between models (i.e., the class identifier variate from index to
index). ).

Figure 3.4 shows the final three vulnerability index constructed with UVA. In index
I, the results show high vulnerable urban sectors in the southwest part of the city. On
the other hand, index II shows how some urban sectors change from medium to low
or high-vulnerability, with respect the index I. Further, index III presents an interesting
scenario where the spatial correlation between urban sectors is not remarkable getting
an unbiased vulnerability index for COVID-19.
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Figure 3.4. Vulnerability indices generated using Urban Vulnerability Assessment (UVA) for the
current COVID-19 pandemic in Bogotá. Vulnerability index I has 3 levels from low to
high (a); Vulnerability index II has 5 levels from lowest to highest (b); and Vulnera-
bility index III has 10 levels from 1 to 10 (c).

Although the intention is not to predict the risk of infection for an urban sector, some
similarities between vulnerability indices proposed and the current concentration of
COVID-19 cases confirmed in Bogotá [79] can be observed (Figure 3.5). The results show
how vulnerable areas found with UVA overlap with urban areas with more COVID-19
cases. This indicates that the UVA framework proposed could be used to recommend
actions for before, during, and after a pandemic that is, to planning and coordination
efforts through leadership and coordination across sectors, to assess if the risk of a
pandemic could increase in specific geographic areas.

3.4 Summary

An Urban Vulnerability Assessment (UVA) for pandemic surveillance is proposed. It is
based on a set of 14 vulnerability factors found in the literature. The UVA output de-
fines a composite measure of community-level vulnerability and its spatial distribu-
tion, identifying and ranking potentially higher vulnerability areas. The UVA is framed
in the current COVID-19 pandemic in Bogotá, the largest and the most crowded city in
Colombia. UVA creates not only one, but a set of vulnerability indices (i.e., low-high,
lowest-highest, and 1–10) to pandemic surveillance.

The results suggest a connection between high-vulnerability levels and increased
impact and spread of the disease at different geographic levels. Therefore, upon thor-
ough evaluation, UVA could become a relevant tool in the development of policies and
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(a) Vulnerability indices proposed in UVA (b) Confirmed COVID-19 cases in Bogotá

Figure 3.5. Comparison between the vulnerability indices proposed in this study (a) and the real
COVID-19 cases confirmed in Bogotá (b). The colored boxes show the concentrations
of the cases in 1000 meters on December 30, 2020, in Bogotá, where the red color
indicates more confirmed COVID-19 cases and fewer cases are in yellow.

programs aimed at reducing disaster risk (DRR) at different city scales (i.e., addressing
urban vulnerability at national, regional, and provincial scales), in diverse scenarios of
resource scarcity (i.e., short and long-term actions), and for different audiences (i.e., the
citizens, policy-makers, international organizations).

The next chapter introduces a comprehensive risk-based emergency management
framework that could be used by decision-makers to determine how best to manage
medical resources. The framework uses the vulnerability assessed with UVA to quantify
the risk over the spatial units under study.



CHAPTER 4

Risk-based Resource Allocation for pandemic

This chapter establishes a comprehensive risk-based emergency management frame-
work that could be used by decision-makers to determine how best to manage med-
ical resources, as well as suggest patient allocation among hospitals and alternative
healthcare facilities. A set of risk indices are proposed by modeling the randomness
and uncertainty of allocating resources in a pandemic. The city understudy is modeled
as a Euclidean complex network, where depending on the neighborhood influence of
allocating a resource in a demand point (i.e., informing citizens, limit social contact,
allocate a new hospital) different network configurations are proposed. Finally, a multi-
objective risk-based resource allocation (MoRRA) framework is proposed to optimize
the allocation of resources in pandemics. The applicability of the framework is shown
by the identification of high-risk areas where to prioritize the resource allocation during
the current COVID-19 pandemic in Bogotá, Colombia.

4.1 Introduction

Policy attention has focused on the need to identify emerging outbreaks that might
lead Pandemics, and to expand investment to build preparedness and health capac-
ity [60]. In the preparedness pandemic, effective allocation of limited health resources
(i.e., budget for antivirals and preventive vaccinations, Intensive Care Unit (ICU), ventila-
tors, non-Intensive Care Unit (non-ICU), doctors) plays a critical role in order to reduce
the number of cases, hospitalization, and deaths. Despite the great advances in the
prevention and treatment of infectious diseases, the world is unaware to respond to a
pandemic or any similarly global public-health emergency [83, 65].

In most countries, health care systems operate at or above maximally designed ca-
pacity. Many hospitals just do not have sufficient pre-existing resources to respond to

35
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surge capacity in an outbreak [8]. Unlike with natural disasters, where the greatest need
for resources often occurs early in the time course, pandemic resource requirements
will build over months. Outbreaks that become pandemics generally do not take hold
in multiple locations at exactly the same time, they are geographically and temporally
patchy [57].

Many government agencies and health planners are responsible for overseeing and
monitoring future outbreaks. However, they can’t monitor everything all of the time,
they have to decide how best to allocate their scarce resources across a broad range of
risk exposures. This is called “risk-based resource allocation.” [31]. Different types of
government agencies face risk-based resource allocation decisions: agricultural land
and water resources [94, 125, 62], system design in a Distributed Environment [129, 88],
terrorism [124, 89, 90], and Natural Hazards (i.e., tornados, hurricanes, earthquakes)
[120, 132, 77]. In the Risk-based resource allocation for pandemic response, a demand
point has one (or more) associated risk (i.e., geographic spread, overall poverty, medi-
cal preconditions), and the objective is to choose the amount to be invested in several
interventions such that the overall risk exposed by the demand points is minimized ac-
cording to budget constraints and health benefits. Due to the randomness and uncer-
tainty of conditions, not only one but a set of risks may adversely affect the allocation
of resources in the geographical space. Then, the objectives (one objective for each risk
that a demand point may be exposed) must be optimized simultaneously [128, 113], but
there exists a trade-off among objectives, i.e., an improvement gained for one objective
is only achieved by making concessions to another objective.

This chapter aims to describe and illustrate a Multi-objective Risk-based Resource
Allocation framework (MoRRA) that could be used by decision-makers to determine how
best to manage medical resources, as well as suggest patient allocation among hospi-
tals and alternative healthcare facilities. In MoRRA, different definitions of risk-based
resource allocation are given depending on the geographical space and its neighbor-
hood configuration. This study is carried out during the COVID-19 in Bogotá, Colombia
where identify geographic areas with high-risk factors are identified to prioritize re-
sources to control the outbreak and to generate recommendations for future outbreaks.

The remainder of this chapter is organized as follows. In the next section, the back-
ground knowledge, the risk-based resource allocation (RRA) problem, and the formula-
tion of themulti-objective RRA (MoRRA) are given. In Section 4.3, the experimental setup
for MoRRA is described and the numerical results of a case study (the current COVID-19
Pandemic in Bogotá, Colombia) are presented. Finally, conclusions and potential future
developments are discussed in the last section.
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4.2 Risk-based Resource Allocation

Following the risk-based resource allocation methodology presented in Section 1.1, the
proposed framework involves threemain stages. The first stage is the identification and
definition of the risk. The second stage is the estimation of the level of risk posed in
a demand point. Once the risk has been defined and measured, an optimal strategy is
proposed to minimize the risk exposure.

Risk definition

Following the definition presented in chapter 1.1. Risk is then defined as the expected
damages due to a particular hazard for a given area and reference period. Based on
mathematical calculations, the risk of the spatial unit i can be determined as a product
of hazard (H ) and vulnerability (V ) [25].

R (i ) = H (i ) ×V (i ) (4.1)

Risk measuring

Hazard assessment

The hazard assessment describes the identification of what hazards can be expected
and how they might change in the short and medium-term as a result of environmental
phenomena or processes [50]. First of all, all of the potential hazards are identified.
Then the areas that could be affected by the hazard are marked, this is called Hazard
Mapping. The magnitude, intensity, and frequency of the hazards are determined.

Vulnerability assessment

Vulnerability Assessment describes the degree to which socioeconomic systems and
physical assets in geographic areas are either susceptible or resilient to the impact of
a disaster (i.e., pandemic). Several models have been proposed to establish vulnerable
urban areas over the infectious disease domain, i.e., vector-borne diseases [42], Dengue
[17], malaria [53, 41], Ebola [73], and COVID-19 [69, 86].

Risk strategy

Urban space

Let S be the geographical space under study (i.e. state, country, or city) defined in
terms of a finite set of P smaller spatial units (i.e. countries, census tracts, or zip codes);
that is S = {1, 2, . . . , P }. Here the spatial units are located in some position of the 2D
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Euclidean complex network G = (S, E ) [117], and the edges E are connection between
two nodes given the spatial relation meet .

Definition 4.2.1. The spatial relation meet (i , j ) occurs when i has at least one point in
common with j in the boundary, but their interiors do not intersect [26].

Risk-based Resource Allocation Problem (RRA)

Let Λ be the risk values associated for each spatial unit in S; that is Λ =

{(λ1, λ2, · · · , λP )|λi ∈ Ò+}, the Risk-based Resource Allocation Problem looks for the
optimal way to allocate the resources R to each demand point (spatial unit) i such that
the overall risk over V is minimized. Here, the cost incurred fΛ,i (ri ) by allocating the
resource ri at the i -th activity depends on the neighborhood influence of allocating a
resource in i (i.e., informing citizens, limit social contact, allocate a new hospital), see
equation 4.2.

fΛ,i (ri ) = λi (1 − ri ) +
∑

k ∈N (i )

λk (1 − αi ,k ri ) (4.2)

where ri is the impact factor to allocate a resource to the i -th demand point (0 ≤ ri ≤ 1),
N (i ) is the neighborhood of i -th demand point, and αi ,k is the influence factor in k when
a resource is allocated in i (0 ≤ αi ,k ≤ 1).

Then, the objective function fΛ is is calculated among the vertex (spatial units) S.

min fΛ(G , R ) =

|S |∑
i=1

fΛ,i (ri ) (4.3)

subject to
|R |∑
i=1

ri ≤ T

0 ≤ ri ≤ 1

(4.4)

whereT (allocation percentage) is the total of spatial units where a resource should be
allocated (i.e., T = 10% means that only 10% of the total space units will receive the
resource). Here, depending on the network configuration, three configurations in RRA
are proposed (Figure 4.1).

Definition 4.2.2. The RRA-I configuration happens when there are not neighborhood
influence ([i ∈ S,N (i ) = ∅). So, the cost incurred fΛ,i (ri ) is defined as.

fΛ,i (ri ) = λi (1 − ri ) (4.5)

Definition 4.2.3. The RRA-II configuration happens when there are neighborhood influ-
ence at same scale (αi ,k = α ). So, the cost incurred fΛ,i (ri ) is defined as.
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fΛ,i (ri ) = λi (1 − ri )

(a) RRA-I

fΛ,i (ri ) = λi (1 − ri )+
∑

k ∈N(i)

λk (1 − αri )

(b) RRA-II

fΛ,i (ri ) = λi (1 − ri ) +
∑

k ∈N(i)

λk (1 − αi ,k ri )

(c) RRA-III

Figure 4.1. Different configurations of the Risk-based Resource Allocation problem (RRA). Here,
the cost incurred fΛ,i (ri ) by allocate the resource ri at the i -th activity depends on
the neighborhood influence. Without neighbor influence (RRA-I) (left), with neighbor
influence at same scale (RRA-II) (middle), and with neighbor influence at different
scale (RRA-III) (right).

fΛ,i (ri ) = λi (1 − ri ) +
∑

k ∈N (i )

λk (1 − αri ) (4.6)

Definition 4.2.4. The RRA-III configuration happens when there is neighborhood influ-
ence at a different scale. So, the cost incurred fΛ,i (ri ) is defined as.

fΛ,i (ri ) = λi (1 − ri ) +
∑

k ∈N (i )

λk (1 − αi ,k ri ) (4.7)

Using the adjacency matrix A of G , where the αi ,k are the the weight of the edge
w (i , k ), the objective function can be evaluated in terms of A, see Appendix B.

min fΛ(A, R ) =


(χ (A + I ) − d i ag (R )(A + I )) ΛT




1

(4.8)

subject to ‖R ‖1 ≤ T

0 ≤ ri ≤ 1
(4.9)

where χ is the Indicator function that determines when a value of A is different to 0, I
is the identity matrix, d i ag is the function that diagonalizes the vector of resources R ,
and Λ are the risks associated with the demand points.

Multi-objective RRA (MoRRA)

Due to the randomness and uncertainty of conditions (environmental, operational),
RRA also brings many risks that may adversely affect the allocation of resources in the
geographical space. Therefore, it is necessary to introduce a comprehensive set of risk
indices by modeling the randomness and uncertainty of the RRA problems. Then,Multi-
objective Risk-based Resource Allocation aims to optimal way to allocate R to each
demand point (spatial unit) i , in a set of M risk indices; that is Λ̂ = {Λ1, . . . ,ΛM }.
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(a) RRA-I (b) RRA-II (c) RRA-III

Figure 4.2. Complex network representation of Bogotá in the three RRA configurations. RRA-
I(left), RRA-II (middle), and RRA-III (right).

min fΛ̂(G , R ) = (fΛ1(G , R ), . . . , fΛM (G , R ))
T

subject to R ∈ Ω
(4.10)

4.3 Resource allocation for COVID-19 in Bogotá

Urban Space definition

The complex network for Bogotá (using the Urban sector as the spatial unit) in the dif-
ferent RRA configurations is built (Figure 4.2). For RRA-II, the α value is set to 0.5, which
means that influence in the neighborhood when a resource is allocated is half. For RRA-
III, the αi k values are set depending on the distance between vertex; that is less distance
more influence. The αi k are normalized over the range 0 (less influence) and 0.5 (more
influence).

Risk definition in COVID-19

Pandemic hazard Disasters (i.e., the COVID-19 pandemic) rarely exist, because they are
social, arising from a combination of hazard and vulnerability, with vulnerability as the
causative factor. This kind of disaster occurs at multiple levels simultaneously, with
responses to a hazard exposing as many vulnerability problems as the original hazard.
The failure to heed to the pandemic plans alongside the lack of health-care accessible
to everyone meant that the hazard could not be addressed effectively and vulnerability
fundamentals were revealed [51].
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Then, based on mathematical calculations, we assume that the hazard (the new
coronavirus) is constant for all spatial units; that is [i ∈ S,H (i ) = 1.

Pandemic vulnerability

Three domains are proposed on [86] to describe the vulnerability for the COVID-
19 in Bogotá, Colombia. Those domains are: (i) Where and how a person lives (life),
(ii) Where and how a person works (work), and (iii) Where and how a person moves
around (movement). Table 3.2 (previous chapter) shows the domains proposed, the
vulnerability factors associated with them, and the dataset used to calculate the values
for each factor.

Then, based on mathematical calculations, a spatial unit i has associated
three vulnerable factors: life, work, and movement; that is [i ∈ S,V (i ) =

{Vl i f e(i ),Vwor k (i ),Vmovement (i )}.

Risk assessment in COVID-19

Taking the hazard as constant H (i ) = 1, the Vulnerability Assessment is the only part
to worry about. In the previous chapter, a framework for Urban Vulnerability Assess-
ment (UVA) is introduced. UVA condenses a set of vulnerability factors (Table 3.2) into a
vulnerability index that allowed us to establish and rank potentially vulnerable urban
areas in Bogotá. To build the vulnerability index for the three vulnerable domains (life,
work, and movement), the following steps are applied:

1. The raw data for each factor is normalized across all spatial units over the range
0 (best) to 1 (worst). The normalization is already calculated in [86].

2. Synthesize the normalized information of all spatial units into k partitions which
groups spatial units with similar vulnerability profiles. Here, k = 10 is chosen to
generate 10 ranges of vulnerabilities (from 0.5 to 0.95, with step of 0.1).

3. The clusters’ centroids of each group are used to sort the vulnerability factors in
descending order. This sort is interpreted as vulnerability ranking which is used
for the analysis.

4. Then, to aggregate the L ranks (one for each vulnerable factor, then for life L = 5,
work L = 6, movement L = 3) in a unique vulnerability ranking the Borda’smethod
is used.

5. The unique vulnerability ranking is then transformed into a vulnerability index,
where a higher rank indicates higher vulnerability.

The output of this process is the three vulnerability indices (one for each domain).



CHAPTER 4. RISK-BASED RESOURCE ALLOCATION FOR PANDEMIC 42

Risk
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

(a) Life risk

Risk
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

(b) Work risk

Risk
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

(c) Movement risk

Figure 4.3. Risk indices generated for the current COVID-19 pandemic in Bogota.

Finally, to quantify the risk, this study follows the risk definition presented in 4.1.
As H (i ) is assumed as constant, the risk indices are associated with the vulnerability
indices, i.e., Li f e(i ) =Vl i f e(i ),Wor k (i ) =Vwor k (i ), andMovement (i ) =Vmovement (i ) are
the life risk, work risk and movement risk, respectively; for the spatial unit i . Figure 4.3
shows the final three risk indices.

Risk strategy in COVID-19

Experimental Setup

To solve the formulated multi-objective risk-based resource allocation problem, a com-
parison with different multi-objective algorithms (MOEA/D [130], NSGA-III [21], RVEA [11],
and ARMOEA [114]) are made on different configurations (i.e., RRA-I, RRA-II, RRA-III) and
different allocation percentages (i.e., T = 10%, T = 25%, T = 50%). Here, the impact
factor ri is assumed to 0.5, which means that allocates a resource in the spatial unit i
would reduce the risk in half. Values of T and ri are estimated based on the observa-
tions made in the experiments.

Compared Algorithms: The following four state-of-the-art algorithms for multi-
objective functions are considered as peer algorithms.

• MOEA/D [130]: It is representative of the decomposition-based method, the basic
idea of MOEA/D is to decompose a MOP into several single-objective optimization
subproblems through aggregation functions and simultaneously optimizes them.



CHAPTER 4. RISK-BASED RESOURCE ALLOCATION FOR PANDEMIC 43

• NSGA-III [21]: It is based on decomposition with Pareto-adaptive weight vectors.
This approach automatically adjusts the weight vectors by the geometrical char-
acteristics of the Pareto front.

• RVEA [11]: It is a scalarization approach, and termed angle penalized distance ap-
proach that dynamically adjusts the distribution of the reference vectors to bal-
ance convergence and diversity of the solutions in the PFs.

• ARMOEA [114]: It uses an enhanced inverted generational distance indicator, in
which an adaptation method adjusts a set of reference points based on the indi-
cator contributions of candidate solutions.

Performance Metrics: To evaluate the performance of different algorithms for the RRA
problems, each algorithm is run for the same number of generations, and the resulting
solutions (known as Pareto front approximations), are compared using functions that
measure two qualities: (i) solution accuracy, i.e., to determine how similar the solution
is to the true Pareto front and (ii) solution diversity, i.e., to evaluate how well distributed
are the points in the solution. Two of themost usedmetrics called∆p [101] and Coverage
over Pareto Front (CPF ) [115] are selected to compare the accuracy and the diversity of
the solutions found by the different algorithms.

Parameter Setting: Here, the general parameter settings for the experiments are pre-
sented, and afterward, the specific parameter settings for each algorithm in comparison
are given.

1. Genetic operators: The widely used genetic operators, i.e., simulated binary
crossover (SBX) [19] and the polynomial mutation (PM) [20] are employed to create
the offspring population.

• SBX: A real-coded crossover operator whose search power is better than
binary-coded GAs with the single point crossover. SBX is defined in terms
of the probability of creating an arbitrary child solution from a given pair of
parent solutions.

• PM: A real-codedmutation operator whose uses a polynomial probability dis-
tribution to perturb the solution in a parent’s vicinity. The probability distri-
bution in both left and right of a variable value is adjusted so that no value
outside the specified range [a, b] is created.

For the SBX, the distribution index is set to ηc = 30 and the crossover probability
pc = 1.0 is used in all algorithms; for PM the distribution index and the mutation
probability are set to ηm = 20 and pm = 1/n , respectively.

2. Population size: The algorithms chosen for the comparison use a predefined set of
reference points to ensure diversity in obtained solutions. The experiments uses
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the Das and Dennis’s [15] systematic approach that places points on a normal-
ized hyper-plane (M − 1)- dimensional unit simplex. If p divisions are considered
along each objective, the total number of reference points (H ) in an M -objective
problem is given by:

H =

(
M + p + 1

p

)
How the population size is dependent on H , using p = 12, as recommended in
[130, 21, 11, 114], and M = 3 (objective functions - life, work and movement risks),
the population size is set to 91 individuals.

3. Termination Condition: Every algorithm stops when the number of function eval-
uations reaches the maximum number. For all configurations and allocation per-
centages, the maximal number of generations is set to 10000, as recommended
in [130, 21, 11, 114].

4. Specific Parameter Settings in Each Algorithm: For MOEA/D, the weights vectors
are calculated using the penalty-based boundary intersection (PBI), the neigh-
borhood size T is set to 20, and the penalty parameter θ in PBI is set to 5, as
recommended in [130]. For RVEA, the parameter controlling the rate of change of
penalty (α ) and the frequency of employing reference vector adaptation (f r ) are
to 2 and 0.1, respectively, as recommended in [11].

Results

The methodology of MoRRA (Data preprocessing; MATLAB code; PFs; and visualization)
is available in a Github repository, see Appendix A.

Pareto front

The statistical results of the ∆p and CPF metrics values obtained by the four algo-
rithms for the different configurations and allocation percentages over 20 independent
runs are summarized in Table 4.1, where the best results are highlighted. The Wilcoxon
rank-sum test is adopted to compare the results obtained by the four compared al-
gorithms at a significance level of 0.05 (here, the MOEA/D algorithm is taken as the
reference’s algorithm). Symbol ’+’ indicates that MOEA/D is significantly outperformed
by the compared algorithm according to a Wilcoxon rank-sum test, while ’−’ means that
the compared algorithm is significantly outperformed byMOEA/D. Finally, ’≈’ means that
there is no statistically significant difference between the results obtained by MOEA/D
and the compared algorithm. It can be seen that MOEA/D shows the best overall per-
formance among the four compared algorithms over the ∆p metric in the experiments,
while RVEA shows the best overall performance over the CPF metric in experiments.
The results obtained by RVEA (good performance on ∆p and CPF ) in the different con-
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Table 4.1. Statistics∆p andCPF metric valuesof thePareto-optimal solutions foundby the four
compared algorithms for the different RRA configurations and amount allocations.
The numbers in parentheses are the standard deviations.

Metric Problem Amount MOEA/D NSGAIII RVEA ARMOEA

∆p

RRA-I
10% 4.887e+2 (8.97e-1) 4.902e+2 (6.71e-1) − 4.883e+2 (6.70e-1) ≈ 4.890e+2 (6.77e-1) ≈
25% 4.437e+2 (1.25e+0) 4.467e+2 (1.24e+0) − 4.440e+2 (1.19e+0) ≈ 4.443e+2 (1.26e+0) ≈
50% 3.751e+2 (1.73e+0) 3.788e+2 (1.42e+0) − 3.759e+2 (1.84e+0) ≈ 3.768e+2 (1.39e+0) −

RRA-II
10% 3.564e+3 (3.32e+0) 3.572e+3 (2.19e+0) − 3.562e+3 (4.88e+0) + 3.568e+3 (3.37e+0) −
25% 3.384e+3 (4.36e+0) 3.399e+3 (4.99e+0) − 3.388e+3 (8.34e+0) ≈ 3.393e+3 (6.69e+0) −
50% 3.113e+3 (4.39e+0) 3.129e+3 (5.26e+0) − 3.116e+3 (8.36e+0) ≈ 3.121e+3 (6.79e+0) −

RRA-III
10% 3.588e+3 (2.92e+0) 3.594e+3 (2.40e+0) − 3.588e+3 (3.13e+0) ≈ 3.592e+3 (2.61e+0) −
25% 3.441e+3 (4.08e+0) 3.452e+3 (3.18e+0) − 3.442e+3 (5.50e+0) ≈ 3.446e+3 (4.12e+0) −
50% 3.211e+3 (4.73e+0) 3.226e+3 (4.81e+0) − 3.215e+3 (6.46e+0) − 3.219e+3 (6.00e+0) −

CPF

RRA-I
10% 7.920e-2 (3.67e-2) 1.193e-1 (2.99e-2) + 2.160e-1 (5.06e-2) + 1.028e-1 (3.08e-2) ≈
25% 6.570e-2 (3.96e-2) 1.264e-1 (2.79e-2) + 2.044e-1 (7.11e-2) + 1.009e-1 (4.06e-2) +
50% 6.940e-2 (3.18e-2) 1.267e-1 (2.49e-2) + 1.938e-1 (5.20e-2) + 1.112e-1 (3.77e-2) +

RRA-II
10% 3.287e-2 (3.09e-2) 1.188e-1 (5.11e-2) + 1.803e-1 (4.85e-2) + 1.316e-1 (5.39e-2) ≈
25% 2.397e-2 (2.01e-2) 1.244e-1 (6.34e-2) + 2.210e-1 (8.94e-2) + 1.213e-1 (4.84e-2) +
50% 3.584e-2 (2.11e-2) 1.248e-1 (4.90e-2) + 2.432e-1 (8.10e-2) + 1.413e-1 (9.87e-2) +

RRA-III
10% 3.908e-2 (2.94e-2) 1.217e-1 (3.99e-2) + 2.273e-1 (6.45e-2) + 1.244e-1 (5.90e-2) +
25% 4.659e-2 (3.33e-2) 1.053e-1 (3.28e-2) + 2.001e-1 (5.78e-2) + 1.088e-1 (3.70e-2) +
50% 2.554e-2 (1.99e-2) 1.272e-1 (2.89e-2) + 2.205e-1 (6.75e-2) + 1.080e-1 (3.68e-2) +

+: MOEA/D shows significantly worse performance in the comparison.
−: MOEA/D shows significantly better performance in the comparison.
≈: There is no significant difference between the compared results.

figurations and allocation percentages will be used in the rest of this section for the
following results.

The range of the non-dominated solutions found with RVEA are shown in Figure 4.4.
The Pareto front behavior shows promising convergence performance as well as a good
distribution on problems with different configurations and allocation percentages.

Decision making

To visualize the solution in the Bogotá network map, a pseudo-weight vector ap-
proach proposed in [18] is used. This method calculates the normalized distance to the
best solution regarding each objective.

First, one solution is selected with equal pseudo-weights (wl i f e = 1/3, wwor k = 1/3,
wmovement = 1/3) for each different RRA configurations and allocation percentages equal
to %10 (Figure 4.5). The results shows an interesting scenario where the spatial correla-
tion between urban sectors is not remarkable getting an unbiased risk-based resource
allocation for COVID-19.

Further, Figure 4.6 shows the solutions found with MoRRA in the real COVID-19 cases
confirmed in Bogotá. This results indicate that theMoRRA framework proposed could be
used to recommend actions for before, during, and after a pandemic that is, to planning
and coordination efforts through leadership and coordination across sectors, to assess
if the risk of a pandemic could increase in specific geographic areas.
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Figure 4.4. The approximate Pareto optimal solutions obtained by RVEA on problems with dif-
ferent configurations (RRA-I, RRA-II, RRA-III) and allocation percentages (10%, 25%,
50%).

4.4 Summary

AMulti-objective Risk-based Resource Allocation (MoRRA) framework for Pandemic Pre-
paredness is proposed. MoRRA could be used to build evidence for planning, modeling,
and epidemiological studies to better inform the public, policymakers, and interna-
tional organizations and funders as to where and how to improve surveillance, response
efforts, and delivery of resources. The proposed MoRRA is tested in the current COVID-
19 Pandemic in Bogotá city, the largest and crowded city in Colombia. MoRRA creates
not only one, but a set of risk indices (i.e., life, work, movement) and uses it to apply
the risk-based resource allocation.

Although the risk factors involved in the framework are structural, the proposed
approach is flexible, does not require expert support or knowledge, and allows policy-
makers, and international organizations to prioritize resource allocation in short and
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Figure 4.5. Solution visualized in Bogotáwith different configurations of RRA and 10%of alloca-
tion percentage using equal pseudo-weights (wl i f e = 1/3,wwor k = 1/3,wmovement =
1/3).
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long-term actions for affected populations in a city. For instance, using the solutions
with more weight in the movement risk a short-actions (i.e, staying home, limit close
contact, avoid crowds, limit non-essential travel) can be taken to reduce the risk in
the city. Further, using the solutions with more weight in the life risk, it is possible to
advance in long-term territorial reorganization plans (i.e., reduce socio-spatial segre-
gation, decent housing, bio-secure protocols for high-density facilities) as the results
indicate for the COVID-19 in the urban area of Bogotá.
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Figure 4.6. Solutions found with MoRRA over the real COVID-19 cases confirmed in Bogotá. The
colored boxes show the concentrations of the cases in 1000meters on December 30,
2020, in Bogotá, where the red color indicates more confirmed COVID-19 cases and
fewer cases are in yellow.



Conclusions and Future work

Conclusions

Resource allocation in a pandemic presents an intractable problem because unlike nat-
ural disasters, where the greatest need for resources often occurs early in the course of
time, pandemic resource requirements generally take hold in multiple locations at the
same time (i.e., they are geographically and temporally patchy). Different frameworks
have tried to solve the problem of resource allocation in a pandemic, but all of them
have issues that must be resolved before one can even begin to attempt a solution:
the role of medicine as a monopolistic profession, the ethical status of the goods and
services, and role social values.

Since the problem of resource allocation in a pandemic can be done using a risk
management perspective, it is possible to integrate different risk-based models to find
a solution for it. This thesis addresses the problem of Risk-based Resource Allocation
suitable to be used for supporting decision-making in the formulation of management
and response policies during a Pandemic.

Themain contribution is a framework that could become a relevant tool in the devel-
opment of policies and programs aimed at reducing disaster risk (DRR) at different city
scales (i.e., addressing urban vulnerability at national, regional, and provincial scales),
in diverse scenarios of resource scarcity (i.e., short and long-term actions), and for dif-
ferent audiences (i.e., the citizens, policy-makers, international organizations). Espe-
cially:

• An agent-based model, called INFEKTA, for simulating the transmission of infec-
tious diseases, not only the COVID-19, under social distancing policies is pre-
sented. INFEKTA combines the transmission dynamic of a specific disease with
demographic information of geopolitical regions of the real town or city under
study. Results were published and indicate that INFEKTA may be a valuable asset
for researchers and public health decision-makers for exploring future scenarios

50
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when applying different social distancing policy rules and controlling the expan-
sion of an infectious disease.

• An Urban Vulnerability Assessment framework, called UVA, is introduced. UVA in-
vestigates various vulnerability factors related to pandemics (severity of infection
and transmissibility) to assess the vulnerability in urban areas. A vulnerability in-
dex is constructed by the aggregation of multiple vulnerability factors computed
on each urban area (i.e., urban density, poverty index, informal labor, transmission
routes). The results suggest a connection between high-vulnerability levels and
increased impact and spread of the disease at different geographic levels.

• A comprehensive risk-based emergency management framework, called MoRRA is
presented. MoRRA could be used by decision-makers to determine how best to
manage medical resources, as well as suggest patient allocation among hospitals
and alternative healthcare facilities. A set of risk indices are proposed by model-
ing the randomness and uncertainty of allocating resources in a pandemic. The
results indicate that the MoRRA framework could be used to recommend actions
for before, during, and after a pandemic that is, to planning and coordination ef-
forts through leadership and coordination across sectors, to assess if the risk of
a pandemic could increase in specific geographic areas.

• Finally, the transmission disease model (INFEKTA), the vulnerability assessment
framework (UVA), and the comprehensive risk-based emergency management
framework (MoRRA) were tested in the current COVID-19 pandemic in Bogotá, the
capital of Colombia.

Future work

The contributions and results obtained in this thesis open several perspectives for fur-
ther research in this important field.

One direction is in the INFEKTA model. Here, the work will concentrate on study-
ing the transmission of COVID-19 in Bogotá by considering different scenarios of social
distancing rules and by using more realistic information about: i) Relation between
personal information and propagation rates of the COVID-19, ii) Places and routes, iii)
Population size, and iv) Age and Medical preconditions.

On the other hand, in the UVA framework, it would be possible to calculate the index
at the neighborhood level. Furthermore, the relative importance of the assessment
criteria to assign weights to construct the vulnerability index is an issue to be addressed
in future research. Also, data used in this study are 1–4 years old and might not have
captured vulnerability well in urban sectors in which rapid changes have occurred up
to the present day.
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Finally, in the MoRRA framework, the work will concentrate on the executing
and learning step in the risk-based resource allocation strategy. To conduct risk-
management activities, such as inspections, getting feedback on what is working and
what is not, and learning from that feedback could improve the decision-making pro-
cess. Furthermore, scaling to other cities, or even at the country level is a possibility
that can be covered in the future.
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APPENDIX

Appendix A: Supplementary Material

appA

INFEKTA repository. A repository containing the source code of the simulator and a
technical report explaining the modeling methodology is available at INFEKTA github.

UVA repository. A repository containing the source code of the vulnerability assessment
methodology and a technical report explaining the modeling is available at UVA github.

MoRRA repository. A repository containing the source code of the multi-objective re-
source allocation problem and a technical report explaining the modeling methodology
is available at MoRRA github.
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APPENDIX

Appendix B: Matrix Notation of RRA

appB

To derive (4.8) for (4.3), the Euclidean Complex Network G is represented with its
adjacency matrix A. Then, I want to demonstrate.

min fΛ(G , R ) = min fΛ(A, R )

when fΛ(A, R ) is written as.

fΛ(A, R ) =


(χ(A + I ) − d i ag (R )(A + I ))ΛT




1

Here, χ is the indicator function that determines when a value of A is different to 0, I is
the identity matrix, d i ag is the function that diagonalize the vector of resources R , and
Λ are the risks associated with the demand points.

Expanding fΛ(A, R ), we have.

fΛ(A, R ) =










©­­­«
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1

where αi ,j is 1 where exist an edge between i and j and it is 0 otherwise (indicator
function χ ). Solving.
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fΛ(A, R ) =
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Grouping similar terms.

fΛ(A, R ) =
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Each term in the column vector can be written as (4.2).

fΛ(A, R ) =











fΛ,i (ri )
...

fΛ,p(rp)











1

Applying 1-Norm.

fΛ(A, R ) =

|S |∑
i=1

fΛ,i (ri )

So, it is sufficient to prove that (4.3) could be written as (4.8) when the graph G is
representing by its adjacency matrix A.
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