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Bogotá, Colombia

2021





Planning under Uncertainty using a
Dynamical Systems Approach for

Autonomous Vehicles
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”You don’t know where you are standing”.

Angela Rosa Miranda. Intuition of a basic loca-

lization problem.
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Abstract
Title: Planning under Uncertainty using a Dynamical Systems Approach for Autonomous

Vehicles

The problem of Motion Planning for Robotic Systems (in this work: robot or vehicles)

has been well studied. Some significant outcomes have been accomplished, and good results

demonstrated in practical situations in industry and other commercial uses. Nevertheless,

high computational cost and several assumptions on the problems present open challenges

and opportunities for research. This work presents strategies to help in the solution of the

navigation and other related problems for four different scenarios: unknown vehicle model,

unknown positions/orientation of the vehicle, unknown map to navigate and unknown

intention of other vehicles in the same environment. First, realistic simulation is used to

overcome the lack of a model, or the difficulties to calculate it. Simulated environments

have taken advantage of the improvements in computer systems in the last decades; for

example, computer games have progressively shown more realistic environments, these

environments have already been used to train models by fooling the sensors of robots and

making them to learn from gameplays, in this fashion, simulators are used here to help

solving the navigation problem. It is also presented here a feedback-based motion planer

for a simple bouncing robot, showing how it can navigate a complex world even if the

current position is not know all the time. Of course the map must be known before hand

to create such a plan, for the case where the map is not known a priori, a strategy for

simultaneous localization and mapping is presented here to determine the world around

and the position of the vehicle in such map. Finally, when considering simpler robots,

it might be necessary to use multiple of them to succeed at a particular task, and they

might also be in the presence of a third party robot, hence, a strategy is presented here



x

to communicate and avoid collisions while preserving privacy.

Keywords: Motion Planning, Sim-to-real, Dynamical Systems, SLAM, Aquatic Vehicles.
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Resumen
T́ıtulo: Planeación bajo incertidumbre usando una aproximación de los sistemas dinámi-

cos para veh́ıculos autónomos

La planeación del movimiento para sistemas robóticos (o simplemente robots, o veh́ıcu-

los) es un problema bastante bien estudiado. Resultados significativos se han obtenido en

la literatura y se han llevado a la práctica en la industria y otros usos comerciales. Sin

embargo, altos costos computacionales y simplificaciones hechas en la formulación de los

problemas presentan retos abiertos y oportunidades de investigación. Este trabajo presen-

ta estrategias para ayudar en la solución del problema de navegación, y otros relacionados,

en cuatro escenarios: Cuando no se conoce el Modelo que describe el veh́ıculo, No se conoce

la posición ni orientación del veh́ıculo, no se conoce el Mapa del lugar, Y cuando no se co-

noce la intención (aliado/adversario) de otros robots en el ambiente. Primero, se presenta

una estrategia que usa ambientes simulados reaĺısticos para superar la falta de modelo del

veh́ıculo o las dificulatades que conlleven su cálculo. Los ambientes simulados se han be-

neficiado de las mejoras en los sistemas computarizados de la última década; por ejempo,

los juegos de computadora han progresivamente mostrado ambientes más y más realistas,

y estos han sido ya usados para entrenar robots al mostrarle a los sensores del robot esta

información como cierta, de tal forma que se logra que los robots aprendan de secuencias

del juego, de esta misma forma, en este trabajo se usan los simuladores para ayudar a

resolver el problema de la navegación. También se presenta un esquema de planeación

basado en la retro alimentación para un sencillo robot que rebota, mostrando cómo dicho

robot puede navegar ambientes complejos sin saber su posición en todo momento. Por

supuesto el mapa debe ser conocido para crear tal esquema de planeación, cuando no se

conoce el mapa, la estrategia conocida como Localización y Mapeo Simultaneos, puede
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usarse para determinar el mapa alrededor y encontrarse en el mismo. Finalmente, cuando

se consideran robots más simples, puede llegar a ser necesario usar más de un robot para

cumplir una tarea, y puede que en el ambiente hayan robots adversarios, por lo tanto, se

presenta una estrategia que permite comunicarse para evitar colisiones que mantiene la

privacidad al mismo tiempo.

Palabras clave: Planeación de movimiento, Simuladores, Sistemas dinámicos, SLAM, veh́ıcu-

los acuáticos.
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1 Introduction

1.1. Motivation

We are in exciting times in the area of Autonomous Mobile Robots which are assigned

progressively to more of our everyday duties. Applications are already making a major

impact in critical areas of society such as healthcare, manufacturing, warehousing and self-

driving vehicles [PCY+16a] (See Figure 1.1). There is a series of Mobile Robots domains

that will be of fundamental importance in the near future such as remote operation,

construction, surveillance, environmental monitoring and oceanic exploration. In order to

be able to achieve the goals in these domains, mobile robotic systems, or simply robots,

need to solve the task of navigation along with other related tasks such as patrolling,

coverage, and persistent monitoring. The solutions to these tasks differ depending on the

environment where the robots execute them. As an example, the complexity is minimal

for a piston robot with a single degree of freedom, on the other hand, a vehicle inside a

fluid with different currents has more challenges to travel the same distance as the former

robot.

Most times, when people think about vehicles, they consider three categories: terres-

trial, aerial and aquatic vehicles; nowadays improved versions of these vehicles are also

used for extraterrestrial exploration. Motion is common ground for all of them, and they
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a. b. c.

d. e. f.

g. h. i.

Figure 1-1: Examples of mobile robots: a. Manufacture industry arms [man]; b. Waymo

Pacifica driverless minivan[way]; c. Surveillance and filming drone [Pix]; d.

Boston Dynamics Humanoid robot Atlas [Dyna]; e. Boston Dynamics spot,

dog-like robot for sensing and inspection [Dynb]; f. Kiwibot: An autono-

mous delivery robot [kiw]; g. Unmanned Surface Vehicle [usv]; h: Unmanned

Underwater Vehicle MARUM-SEAL [uuv]; and i. Mars Rover, the Mars ex-

ploration robot [rov].
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all require a plan for moving. Motion Planning is at a higher degree of abstraction and,

it is also common for all of these kinds of vehicles; the difference lies in the details of the

vehicle itself: the kinematics and dynamics make concrete the difference during the execu-

tion of the plan. Furthermore, if only kinematics is considered, an airplane can be moved

along a road the same as a ground vehicle would; also, hover-crafts move on the surface

of the water the same as they do on the ground. For that matter, dynamics would be the

ultimate differentiator. For ground vehicles, dynamics basically describe the interaction

between part of the robot: wheels, feet, crawler, etc. and the surface they are moving on;

for aerial vehicles, the interactions not only rely on part of it but on the complete robot,

and this is also the case for surface and underwater vehicles. Considering all this, it can

be thought of the last kind of vehicles as a generalization of the former, and thus, the

strategies developed for the latter can potentially be accommodated for the former. The

work presented here takes this into consideration and devotes its efforts to underwater

vehicles in the expectation of applying the strategies proposed to other kinds of vehicles.

Complex environments requires complex sensors, at least this is the common use. Nevert-

heless, it is an interesting question as to what is the minimum amount of sensing needed

to complete one task. It is well known that the more sensing is introduced, the more noise

an variability, then, reducing the amount of sensors or the complexity of sensors would be

beneficial for the plan execution. In this scenario it would be interesting to use multiple

simple robots, i.e. with simple shapes, sensors, actuators, etc., to complete a particular

task; that, however, introduces another layer of complexity which is the communication

among the robots, and possibly the need to communicate securely in the presence of ad-

versarial robots. In this work, it is also presented some considerations in this direction:

a strategy to coordinate navigation keeping private sensitive information of the plan to

execute. For all these scenarios trials is a key process since it allows to correct details
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that might not be found during the planning process. Not only the controller, that keeps

the robot following the plan, takes advantage of a set of trials, but also the plan itself

can be “repaired” based on the trials and outcomes. Performing trials is most of the time

impossible due to restrictions of one or many of the following: location, budget, time,

device availability, among others. Even if none of these restrictions holds, trials using real

robots can be catastrophic for the projects. A method that provides the ability to perform

the required number of trials without any of the above concern is simulation, and it is

seen more often how simulated environment trials are used to outperform autonomy in

vehicle planning [Tes][Mus]. In this work, we also present a strategy that takes advantage

of the simulated environments to find feasible plans of motion.

Altogether, this work presents strategies to the following incremental considerations:

unknown model dynamics or kinematics, that can be addressed using realistic simulators,

unknown robot’s states, that can be addressed by feedback planning; unknown mapping,

addressed by simultaneously localization and mapping; and unknown confidentiality in

multi-robotic settings addressed by secure communications.

1.2. Challenges and Existing Approaches

Motion is a key element in the process of controlling a robot for a particular task.

The Motion Planning problem involves the actual determination of movements and paths

through a defined, possibly cluttered, space; allowing the robot to go from some starting

conditions to another set of goal conditions, avoiding to collide into obstacles, or other

robots, during the movement [LV11]. These conditions include the robot’s set of parame-

ters that identify it and its behavior at any point in time, also called the robot’s state.

The motion plan is executed through actuators (e.g., wheels, thrusters, propellers) that
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allow the robot to change its state.

The strategies to solve the motion planning problem can be divided into two main

approaches: Combinatorial Planning and Sampling-based Planning [LaV06a]. They differ

in their completeness and in the amount of dimensions they can handle. Combinato-

rial planning algorithms construct a discrete representation of the problem that exactly

contains all the possible solutions, hence they work in low state-dimensionality for sim-

ple robots, and they are complete, meaning that they always find a solution if at least

one exists. Sampling based planning, on the other hand, only attempts to represent part

of the problem, sufficiently enough to contain a solution. Thus, it can work with high

state-dimensionality, complicated robot shapes and also with kinematics and dynamics

constraints. Some Sampling-based method, such as [YF16a], [CK09], [AmCA14a], are de-

fined as probabilistically complete, this means that the probability of finding an existing

solution gets closer to 1 as the number of samples grows to infinity. In real-world appli-

cations, especially in high state-dimensionality and the presence of obstacles (i.e., part

of the space that cannot be crossed), the combinatorial approach is not practical due to

the high computational requirements. The obstacles mentioned impose global constraints,

there are also local constraints that arise from the natural movements of the robot. In-

tuitively, an object cannot instantaneously stop or start moving, these constraints are

introduced as differential constraints to account for smoothness in the movement.

The traditional approach to solving the motion planning problem is to first compute a

collision-free path, this path is subsequently smoothed to satisfy differential constraints,

after this, a nominal trajectory is calculated to follow the path satisfying the robot’s dy-

namics; and finally, a controller is designed to maintain the execution within the nominal

trajectory [LaV11c]. This incremental approach has a clear disadvantage of strongly rel-

ying on any decision taken in previous steps, that is, every decision limits the scope of
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the later steps.

To overcome this limitation, planning under differential constraints covers steps 1, 2 and

3 in a single consideration by incorporating kinematics and dynamics of the robot into the

planning process, producing a path that satisfies the differential constrains. Nevertheless,

At the end of the process a controller is still needed to maintain the robot in the path. The

controller step is usually achieved by the use of sensors (e.g., GPS, compass, gyroscope,

accelerometer). A combination of these sensor readings is used to estimate the current

state and, based on this estimation, take corrections. Difficulties in this approach arise

due to the uncertainty generated by unreliable motions of the robot, or due to poor state

estimations obtained by imperfect sensors. The more sensors, the more uncertainty is

added to the system. [LDFT16] and [DT15] present an example of a controller strategy.

Their controller requires the exact locations of the obstacles and off-board sensing is used

to track the robot’s position. Additionally, a pre-calculated convex free region is provided

to the controller, to alleviate the difficulties mentioned. In the latter document, it is

also shown how large computational effort is needed to compute the mentioned convex

free-region in the presence of less than ten obstacles.

Feedback-based Motion Planning deal with the limitations of the previously described

approaches. Here, inferred states are fed to a policy to obtain an action. By performing

actions and feeding back the new inferred state to the policy in an iterative fashion, the

goal is achieved. Even though sensing or action errors are still a concern, the policy acts

as a dynamic re-planner always redirecting the robot to the goal. Despite the benefits of

this strategy, the feedback motion planning methods have to deal with the curse of di-

mensionality as they do not work well for larger dimensions and high-resolution sampling,

because the plan is calculated over the entire space. [MT16] is an example of a feedback-

based motion plan. The concept of a funnel, first introduced in [Mas85a], is used here to
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compose trajectories based on current states. Although the selection and composition of

funnels is performed on-line, the higher computational cost is caused by the computations

of the funnel’s library off-line.

One important feature that this approach offers is the possibility to accomplish a plan

even if the environment or its conditions are changing; this feature makes feedback-based

motion planning a more robust approach to the motion planning problem. However, it is

worth to mention that in order to be able to account for the different scenarios that can

be found in these dynamical environments, more computational effort has to be done in

the construction of the library, and afterwards, in the selection of the appropriate funnels.

Other approaches similar to the funnel metaphor are described in [BR11], [AmCA14a],

[AmAK+18] and [WSF+18]. There, the estimated position of the robot is not a single

point in the state space; rather, it is distributed over a belief space. Gaussian distribution

is typically chosen as the distribution of the position, so that the robot’s position is

described by the mean position and a variance around it.

The work in [HSF+13] presents some representative multi-objective optimization of a

controller. The linear quadratic regulator (LQR) formulation is used for the controller,

where a cost function accumulated over all the trajectory execution time is minimized.

This work again shows the high-computational effort needed to accomplish the task. In

[XQX+14], the authors use dynamical system analysis to find a trajectory in a parameters

space. They use a gradient function which implies a significantly high computational cost

for multi-obstacle scenarios. Aside from the well known disadvantage of local minima of

such a strategy.

A different approach, which tries to overcome the need for large computational and

sensing requirements, is described in [ABS17a]. There, Alam et al. used as little as just

contact sensors and a clock to solve the navigation and coverage problem. They descri-
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bed the environment using a discrete method from dynamical systems called Generalized

Cell-to-cell Mapping (GCM). The properties shown by this representation allowed them

to find minimal navigation plans and coverage policies. In [ABS18] they use the same tools

to determine the position of the robot with limited sensing; this is a crucial subtask to

solve the motion planning problem, most common approaches assume the initial position

as given. [CS02] showed how this cell-to-cell mapping can be used not only to solve the

motion planning problem but also to evaluate the solutions found. The key concept in this

work is the use of Markov chains as the representation of the environment. This repre-

sentation exposes some important properties such as attractors, basins of attraction, and

transient regions. Also, Alam et al. use the same approach in [ARBS18a] to solve the co-

verage problem for oceanic drifters, specifically, they find the minimum number of devices

needed to cover certain area, and the policy to move in long-term periods. Their drifters

are moving in the ocean, and they represent the water flow pattern using data from the

Regional Ocean Modeling System (ROMS) [SM05]. This flow model helps to construct

a Markov chain over which the GCM technique is then used. Reis et al also investigate

the motion planning problem in marine environments in [RFA+17a] and [RFA+17c]. The

localization subtask is harder in this kind of environments, since GPS is denied under

water, and visibility is at best limited. Bathymetry and others measurable water proper-

ties can be used to improve localization as shown in [AS18][MRCS17]. In [ARBS18c], a

Hidden Markov Model was used, along with the GCM strategies constructed from ROMS

data, to find the most probable path followed by an aquatic vehicle.
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1.3. Proposed Approach

As presented above, the problem of Motion Planning has been well studied. Some im-

portant results have been accomplished that showed to perform satisfactorily in practical

situations such as industry and other commercial uses. But still high computational cost,

and a set of assumptions on the problems (previously discussed), present open challenges

and opportunities for research. This work builds on the philosophy of augmenting the

simplicity of each one of the task that must be faced to do Motion Planning. Taking this

into account, the following strategies are presented in this work: a strategy that uses open

software and home-computers to calculate robot’s transitions and find feasible paths for

the navigation problem; a building block to construct feedback plans for simple robots; a

sampling scheme to create a representation of the environment where a vehicle is moving

so that it can localize and update the map while reducing the amount of data needed; and

a coordination strategy, such that, if simple robot are used to complete complex tasks,

the answer would be in the number of simple robots needed to succeed, the last strategy

is extremely useful when multiple groups of robots are sharing the same environment to

solve different tasks.

1.3.1. Key Themes and Contributions

In this work, four strategies are presented to contribute to the Motion Planning problem

under the same number of considerations:

When the robot model is unknown or hard to calculate.

When the state of the robot is unknown or uncertain.

When the map where the robot is moving is unknown or uncertain.
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When there are other actors in the environment and it is not known whether they

are allies or adversaries.

An Aquatic Unmanned Vehicle mission planning software pipeline using realistic

simulators

The first contributions is made to the scenario where the robot model is not known or

is hard to calculate, in this case realistic simulators can be used to calculate the outcome

of a particular action. The simulator does not need to know the dynamics or kinematics of

every particular robot, instead, it builds on the simple blocks of the physics of the objects

in the simulation; the emerging outcome would account for the dynamics and kinematics

implicitly. Chapter 2 presents a pipeline to find a feasible path using a variation of the

well known RRT algorithm. The pipeline presented only uses open software, and shows

how practical scenarios can be simulated using home computers.

Computing Feedback Plans from Dynamical System Composition

The second contribution is made to the scenario were the state of the robot is not

known, feedback plans are useful since they do not create a single plan to reach a position,

instead, they create a policy with action to perform all around the map. The strategy

proposed, does not rely on a pre-descretization of the action space which is the common

use. Considering this, such algorithm would outperform a descritization that does not

include an action needed to complete a task. Chapter 3 presents a strategy to calculate

feedback plans for a simple bouncing robot.
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Feedback Motion Planning on a self updating map

The third contribution is made to the scenario where the map is currently unknown and

hence the position is also known. Building upon previous missions in the same area, and

the readings of the sensors for an aquatic environment, a strategy is presented in Chapter

4 to construct/update the map and localize in it. This is known as the Simultaneous

Localization and Mapping (SLAM) problem.

Coordinated multi-robot planning while preserving individual privacy

The fourth contribution is made to the scenario where multiple robots navigate the

same environment, a major concern in this scenario is that the robots might collide to

each other; the first though to solve this issue is to coordinate by sharing the position

and destination, but if the other robots are adversarial, sensitive information such as the

destination, must be kept private. Chapter 5 presents a strategy to coordinate navigation

with other robots while preserving privacy. Encrypted data of the destinations is used to

predict collisions, and thus, avoid them.

1.4. Thesis Organization

The remainder of this document is organized as follows: Chapter 2 (An Aquatic Un-

manned Vehicle mission planning software pipeline using realistic simulators) presents a

strategy to find a feasible path using a variation of the RRT algorithm and a simulator

to determine the dynamics, kinematics and uncertainty in the movement of the robot.

Chapter 3 (Computing Feedback Plans from Dynamical System Composition) presents a

novel feedback planning strategy that does not rely on action space discretization. Chapter
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4 (Toward Simultaneous Localization and Mapping in Aquatic Dynamic Environments)

Presents a dynamical representation for Motion Planning in aquatic environment. Chap-

ter 5 (Coordinated multi-robot planning while preserving individual privacy) presents a

strategy to securely navigate in the presence of adversarial robots avoiding collisions by

sharing path information while keeping private sensitive information. Finally, Conclusions

and some future perspectives are drawn in Chapter 6.



2 Black-box Modeling for Motion

Planning for underwater vehicles

using realistic simulators

Part of this work was submitted as a scientific note at Bolet́ın de Investigaciones Ma-

rinas y Costeras ISSN: 0122-9761 — ISSN: 2590-4671 (online).1

Researching marine environments is challenging because of its features. New technology

such as AUV’s (Aquatic Unmanned Vehicles) has gained a lot of attention since, they are

reliable equipment that accounts for affordability and maneuverability. One consequence

can be evidenced in the fact that more than 80 % of the oceans are still unmapped, unex-

plored, and unobserved. When sufficient trials can be conducted, and several outcomes

can be studied, a robotic system would be more securely deployed and would accomplish

the objective. Nevertheless, running field trails can be expensive in both computational

and economic sense. We propose a pipeline that provides the option to do enough trials in

simulated environments. Once the simulation trials are conducted and the path is deter-
1The author acknowledges Leonardo Bobadilla for his contribution in the developements of the ideas,

simulations and guiding.
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mined, the real-world deployment of the robotic system would be more secure and more

likely to achieve its goals. The strategy is based on the well-known RRT algorithm (Ra-

pidly exploring Random Trees). We considered a variation of this algorithm to take into

account the kinematics, dynamics, and uncertainty of the vehicles’ movement. The pipe-

line proposed here allows for running more secure experimentation for both the system

itself and the researchers.

2.1. Introduction

Researching marine environments is challenging because of its features such as high dy-

namism, poor visibility, extreme temperatures, extreme pressures, and wildlife (flora and

fauna) that can affect equipment. For these reasons, research in these environments has

been entrusted to robotic systems: traditionally large equipment mounted on dedicated

ships. Even though new technology such as AUV’s (Aquatic Unmanned Vehicles) has lo-

wered the budget and improved maneuverability, field experimentation requirements make

it difficult and sometimes unaffordable, especially in developing countries, to do enough

trials to get a mission completed. A consequence of these difficulties can be evidenced in

the fact that more than 80 % of the oceans, which in turn comprehends around 70 % of

the earth’s surface, are still unmapped, unexplored, and unobserved [N+19]. This finally

translates into a poor understanding of the processes that occur in these environments,

which of course, have direct and indirect repercussions on human activities: health-related,

economic, and environmental.

In this context, if sufficient trials can be conducted, and several outcomes can be

studied, the robotic system would be more securely deployed and would accomplish the

objective with highest probabilities. Nevertheless, running field trials can be expensive in
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both computational and economic sense; on the one hand, determining the set of actions

needed by the robotic system to accomplish a goal is a non-trivial problem in aquatic

environments, nor even for short straight-line paths. Moreover, mathematically modeling

a complex vehicle to plan the set of actions beforehand is a challenging problem on its

own; the uncertainty associated can be hazardous for the system itself. On the other hand,

failed trials can be catastrophic and stop the complete project by losing the assets and

the budget to replace them. The pipeline proposed here provides the option to do enough

trials in simulated environments. Once the simulation trials are conducted and the path

is determined, the real-world deployment of the robotic system would be more secure and

more likely to achieve its goals.

2.2. Related Work

Every robotic system needs a plan to perform the actions to accomplish its goals. Also,

every robotic system deals with motion, whether part of it or the whole system moves.

Designing the set of actions needed to accomplish a movement from one point to anot-

her is called Motion Planning. The classical approach divides the process into four steps

[LaV11c, pp. 108-118]: first, a feasible path is found; second, the path is smoothed to

account for constraints in the robot movement. For example, an autonomous robotic boat

cannot do sharp turns, that is also the case for regular boats; third, the path is revisi-

ted to account for dynamic constraints; that is, the boat cannot immediately accelerate

or decelerate; and finally, a controller is designed to keep the robot in the path. Each

one of these steps has several challenges for research. Some strategies such as Planning

Under Differential Constraints aim to address several of these steps in a single considera-

tion [SJP15][JP12][LL06]. In this sense, we present a strategy that accounts for feasible
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paths, while considering kinematics and dynamics.

Complementary to this, computers have dramatically increased their capabilities even

faster than expected by Moore’s Laws [M+65]. By 2021 the components of the compu-

tational processors are as small as 2 nm [McC21], which translates into smaller and faster

computers, also more efficient in energy consumption. These technologies have opened

the gates to a new generation of autonomous robots, particularly for the aquatic environ-

ments, where relative small platforms are being used to conduct exploration exhibiting

endurance of days and weeks. Also allowing for on-board advanced calculation despite the

size of the embedded controllers; these, of course, impacts the complexity of the controller

mentioned on step four, and so it is also true for re-planning strategies.

One domain that has greatly benefited from these technologies is gaming consoles. the

higher computational strength allows for making calculations and generating realistic

environments as a player moves around a digital world. Furthermore, the use of artifi-

cial intelligence techniques have been used to make these world generation models look

photo-realistic [RAK21]. These kind of Simulations have been used to train robotic sys-

tems such as self-driving cars [GMF19][Mus], warehousing operations [VDP+18], house-

holding [VPSP17] and other domains. The same technology is also used to train humans

in immersive simulations for safe learning industrial equipment manipulation [CLY+20].

Following these ideas, in this work a simulated environment is used to explore the surroun-

dings, as the real vehicle would, to find a feasible path in a form of a policy. The dynamics

for the vehicle are emulated using the operating system of the actual robots and the out-

come is accounted by the simulator, that is somehow an instance of the strategy hardware-

in-the-loop [Led99]; this is very convenient since the policy obtained can be transferred

into the real robots, the last step is known as sim-to-real [RVR+17][JKR+19][ZQW20],

i.e., a transference of the data learned during the process into the real robot. There is an
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extra step in between hardware-in-the-loop and sim-to-real which is Virtual Reality for

Robots (VRR) [SNL20], after obtaining the policies the sensors of the actual robot can

be fooled to believe it is moving in the real world environment, but the data spooled to

the sensors is still being generated by the simulator by keeping a “ghost” of the robot and

calculating what the sensor would “see”, the generated sensed data is sent through the

operating system.

2.3. Problem Formulation

Given a marine environment W ∈ R3. Let O ∈ W represent the set of locations that

are inaccessible for a vehicle A ∈ W . The robot’s position and pose is described by a

configuration q ∈ C, q = (x, y, z, h), where C is the set of all possible configurations, x, y, z

are coordinates and h is a unit quaternion representing the orientation in space. Let A(q)

represent the robot transformed to configuration q, then Cobs = {q ∈ C | A(q) ∩ O = ∅}

is the obstacle region and Cfree = C \ Cobs is the free region, i.e., the configurations where

the robot does not collide into any obstacle.

Problem I: Getting feasible trajectories from BlackBox marine simulator

Given a starting configuration qS and a set of goal configurations QG, determine if there

exists a set of configurations X̃ = {q0, q1, ..., qn} such that each configuration qi−1 can be

reached from qi, and q0 = qS, qn ∈ QG. The set of configurations X̃ is called a trajectory,

and when q0 = qS, qn ∈ QG it is called a feasible trajectory.

Problem II: Trajectory Risk Analysis

Given a set of feasible trajectories X̂ = {X̃1, X̃2, ..., X̃n} determine which is the least ha-

zardous trajectory to reach the goal region.
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2.4. Methods

Algorithm 1: SimulatedRRT(S, U , T , n, qS, QG)
Input: S,U ,T ,n, qS, QG – a simulator, a set of actions, the duration of the action,

the number of steps for the algorithm, the starting position, the goal region

Output: R – a graph (V ,E) that might contain a feasible path to the Goal region.

1 R.V ← qS R.E ← ∅

2 for step in n do

3 if random() < 10 then

4 qr ← random point(QG);

5 else

6 qr ←random point(S);

7 qclosest ←R.closestNode(qr);

8 for u in U do

9 q ← S.execute(u, qclosest);

10 if q then

11 R.V.add(q);

12 R.E.add(qclosest,q);

13 return R

It is proposed here a strategy based on the well-known RRT algorithm (Rapidly explo-

ring Random Trees) [LaV98]. A variation of this algorithm was considered to take into

account the kinematics, dynamics, and uncertainty. The strategy presented also allows for

complex landscapes with complex obstacle regions. It is A BlackBox strategy that lets a
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Figure 2-1: Light Autonomous Underwater Vehicle (LAUV).

physics simulator take the heavy lifting of calculating the dynamics of the vehicle, perform

the actions and deal with the uncertainty associated as described in [LaV06a]. The robot

considered in this document is a torpedo-shaped Light Autonomous Underwater Vehicle

(LAUV) [dSTMdS07][SMC+12], shown in figure 2-1. It has a single propeller, and a set of

four fins disposed around the vehicle with 90◦ of separation. With this configuration, the

vehicle can roll, pitch, and yaw by combining the rotation of the fins. Also, the propeller

can move clockwise and counterclockwise to move forward or backward. At each time, the

vehicle has a position in the space (x,y,z) and orientation (roll, pitch, yaw) that combined

together define the state of the vehicle uniquely, and it is known as configuration.

The RRT variation used is described next: Starting from the desired initial configura-

tion qS, the root of the tree starts to grow toward the branches. The algorithm selects a

random position in the environment and finds the closest node in the current tree to that

position. A set of k actions are performed from the mentioned closest node for a period of

time T , and the reached configurations are added to the tree saving: the parent node, the

action performed at the parent, and a set of way-points visited during T . The algorithm

continues selecting random positions in the environment; a portion of the time (10 %) the

goal position is selected to guide the search by adding a bias toward the goal.

The simulator used is Gazebo 9 [KH04]. This open-source software provides phy-

sics simulation and rendering capabilities. The underwater physics are provided by

a Gazebo plugin available in the ROS project (Robot Operating System) [QGC+09]
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Figure 2-2: Simulation General Scheme: Gazebo calculates the physics and renders the

simulation. ROS orchestrates the communication between the environment

and the robots, also directs actions and messages through Topics and Ser-

vices. RViz is utility software that allows visualizing all the data traversing

the topics.

UUV Simulator [MSV+16]. ROS is a set of libraries that allow both the simulation and

deployment of robotic applications. The algorithm described previously was implemented

as a ROS Node, which is the unit execution block in the ROS environment as shown in

Figure 2-2. The ROS Node is a script that can be written in C++ or Python; the RRT

implementation described was coded in python. One of the advantages of these settings

is that the simulator only knows the building blocks physics, that is: the physics of the

propeller, the physics of the fins, the physics of movement for the shape of the robot in

the water, and all this put together in an iterative simulation predicts realistically the

outcome for the actions taken. This outcome is established without actually modeling the

robot kinematics nor considering the particular dynamics of the robot; that is why this

strategy is called BlackBox modeling: the simulator serves as a BlackBox and provides

the outcomes.
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Figure 2-3: Representation of the RRT in simulation. The LAUV marked with letter O

represents the current configuration to be expanded. The lines represent the

different outcomes from performing the actions from configuration O

2.5. Experimental Results

Figure 2-3 shows the algorithm in action. Particularly, shows all the outcomes after

executing the set of available actions. One big advantage of simulated environments is

replicability: based on a selected seed, the exact same simulation can be repeated several

times, if a scenario is found where a modification needs to be performed on the plan

or on the settings of the vehicle, it can be fully tested before configuring the actual

robots. Another benefit of this property is exploited in this work, once a particular action

is executed for the defined period, the vehicle can be set back to the initial conditions,

including the position and velocities of the vehicle, to perform another action, this behavior

would be impossible in real life.
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Figure 2-4: Simulated environment where multiple robots are deployed to cover diffe-

rent regions or to complement the coverage, other entities such as human

operators can also be considered.

2.6. Conclusions and Future Work

The scheme of simulations presented in this work, also allows to select safer paths; since

in the simulation the information of the world is complete, the distance to every obstacle

can be calculated all the time. With this information, hazardous maneuvers that takes

the vehicle too close to an obstacle can be avoided. This is also the case for compliance

with regulations: if a mission needs to be executed in a region where some particular

restrictions apply, the feasible path can be obtained in such a way that aims to prevents

accidental noncompliance.

The safety can also be extended to other parties in the environment. As shown in

Figure 2-4 multiple robots can be simulated, the communication among them can also be

simulated and safe zones can be defined to maneuver while preserving safety for human

operators and other vehicles.

Finally this simulated environments also apply to ground vehicles in the presence of

delicate goods, as is the case for warehouses shown in Figure 2-5. Real world disasters



2.6 Conclusions and Future Work 23

Figure 2-5: Delicate obstacles: the warehouse settings is a special case in which the

obstacle region is not only unsafe for the vehicle but for the business itself.

Safety planning for autonomous vehicles is critical.

have been recorded in surveillance cameras showing how a minimal collision with the

obstacle region can destroy the complete warehouse, safer paths are critical to prevent

that kind of outcomes. Also, the obstacle region can be re-defined based on multiple

deployments and navigations of the simulated warehouse. In such a manner that design

is also possible through simulations. Figures 2-4 and 2-5 were constructed following the

same strategy, for which the operating system is common for both simulations and real

robots, this allows for completing the three steps: hardware-in-the-loop, virtual reality for

robots and sim-to-real. The evident further step of this work is to transfer the obtained

paths to real world robots.



3 Computing Feedback Plans from

Dynamical System Composition

This work was presented at IEEE 15th International Conference on Automation Science

and Engineering (CASE).1

Computing plans for systems with differential constraints is a fundamental component

in numerous robotic applications. Most previous approaches are based on creating mo-

tion plans between an initial and a goal location. However, a more robust approach is to

compute feedback plans over the entire configuration space to account for uncertainty in

the robot’s motions. In this paper, we therefore propose a new method that constructs a

feedback plan by incrementally composing the long-term behavior of the robot’s motions

for a set of actions. Our method takes advantage of dynamical system analysis techniques

and efficient combinatorial algorithms. We implement our method in simulations conside-

ring a robot under a simple bouncing behavior. A feedback plan for the robot to reach the

goal region starting from any location of an environment is successfully constructed using

the implementation of our method. Our method is also applicable to non-linear systems

with uncertainty.
1The authors acknowledges Tauhidul Alam, Leonardo Bobadilla and Ryan N. Smith for their contribu-

tion in the developements of the ideas, simulations and guiding.
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3.1. Introduction

Feedback motion planning under differential constraints is the problem of computing

plans for global robot navigation from any location of the environment to a goal region.

This is also a fundamental problem in control and robotics. In traditional path planning

approaches, a collision-free path τ is computed from a known initial configuration to reach

a goal region, then τ is smoothed to satisfy differential constraints. A trajectory for a robot

considering its geometry, motion model and time is then designed that attempts to follow

the smoothed τ [LaV11a].

However, there is no additional information as feedback in the traditional approach to

tackle the unpredictability of future configurations. Furthermore, all the uncertainties and

disturbances are predominantly not taken into account in the system model. To overcome

this issue, it is crucial to compute a feedback plan when the initial configuration is not

known or the plan execution is not predictable due to disturbances or errors in the system

model. This feedback plan is constructed to ensure that the robot knows which action to

take when an unexpected configuration appears during the plan execution [LaV06b].
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Figure 3-1: This pipeline summarizes our proposed feedback plan construction method.

The modules inside the techniques box can be implemented using different

algorithms that are efficient for particular problems. The pipeline is iterated

as many times as required to improve the feedback plan.
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The construction of a feedback plan is significantly more challenging than path plan-

ning. The feedback motion planning methods suffer the curse of dimensionality as they

do not work well for larger dimensions and high-resolution sampling. Nonetheless, these

methods have some advantages over path planning methods. One advantage is that a

feedback plan helps to adjust the paths or trajectories of robots in the presence of mode-

ling errors or any other form of uncertainty in future configurations. Another advantage

is that a feedback plan can work as a dynamic replanner if the robot deviates from its

path during the execution; this is possible because the plan is calculated over the entire

free configuration space. Moreover, a feedback plan can be utilized both in open- and

closed-loop control.

This paper aims to examine a numerical feedback planning method for a robot to

reach a goal region of an environment. The complexities of the value iteration and the

policy iteration based feedback planning methods [KLM96] rely on the discretization over

the action space. However, our method does not discretize the action space. Thus, the

complexity of our method does not depend on the cardinality of the action set. This

improves the running time of our method which makes it suitable for online applications.

We also use a dynamical system technique called generalized cell-to-cell mapping (GCM)

[Hsu13] to find the long-term behavior of the robot’s motions for a set of available actions.

The main contribution of this work is to propose a new method for constructing a

feedback motion plan by composing the long-term behavior of different actions of a robot.

First, we select an action from the action space and calculate the long-term behavior of the

robot’s motion for the selected action using GCM. Then, we compute an initial feedback

plan from the calculated long-term behavior. We repeat the same process and combine

the calculated long-term behavior for different actions until a goal region can be reached

from any configuration of the environment. At the end of the process, the feedback plan
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is fully constructed. This feedback plan provides the robot’s action at every configuration

of the environment. Even though our method is tested with a linear system, it is also

applicable to stochastic and nonlinear systems.

The rest of the paper is organized as follows: Section 3.2 describes related efforts in the

literature that serves as a starting point to elaborate on our method. Section 3.3 introduces

our environment and robot motion model, and formulates the problem of interest. Section

3.4 presents our proposed method developed to address the problem of interest. Section

3.5 presents the model used to test our approach and some simulation results. Finally, we

show some conclusions and directions for future work in Chapter 6.

3.2. Related Work

Sampling-based motion planners such as the Probabilistic Roadmaps (PRM) [SLOK96]

and Rapidly-exploring Random Trees (RRT) [LaV98] along with their asymptotically

optimal versions such as RRT* and PRM* [KF11] have been used ubiquitously in robotics.

Our work is more closely related to variants of these methods that incorporate differential

constraints [SJP15, WVDB13]. Sampling-based approaches find an open loop trajectory.

However, a feedback plan will be more useful when uncertainty is present. As such, our

effort is related to approaches [AMCA14b, hJKF15, YF16b] that use sampling-based ideas

to compute feedback plans.

Connected to our idea, Mason introduced the metaphor of a funnel for a feedback policy

which collapses a large set of initial conditions into a smaller set of conditions [Mas85b].

Burridge et al. [BRK99] extended this idea as a sequential composition of feedback policies

or funnels from a set of initial conditions to a goal region.

Tedrake [TMTR10] presents a feedback motion planning algorithm which uses the
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locally valid linear quadratic regulator (LQR) controllers into a nonlinear feedback policy

that probabilistically covers a reachable subset of configuration space with a relatively

sparse set of trajectories.

Majumdar and Tedrake presented a pre-computed library of funnels using the convex

optimization that represents different maneuvers of the system within bounded disturban-

ces or parametric model uncertainties [MT17]. However, the offline computation of the

robust funnel library will make this approach inefficient when there are additional changes

in the uncertainties at runtime as the whole funnel library is required to be re-computed

in this scenario. A global vector field computation algorithm in configuration spaces for

smooth feedback motion planning is presented in [ZLM09]. A potential field can be used

in feedback control [RK92] to define a navigation function. Nonetheless, this potential

field method suffers from local minima and does not scale well.

We built this work on our previous studies. Previously, we employed GCM in common

path planning and coverage for a resource-constrained robot [ABS17b] in which the robot

utilized only a clock and contact sensors to execute its simple bouncing behavior. In other

studies, GCM was also applied in deployment [ARBS18b] and localization [ARBS18d] for

minimally-actuated drifting vehicles. The long-term water flow patterns were analyzed

from the water flow fields in order to deploy and localize these drifting vehicles. However,

we did not take into account the robot’s action for finding the long-term water flow

patterns since the drifting vehicles are passive.

3.3. Preliminaries

This section defines the discrete planning model and formulates our considered problem.



3.3 Preliminaries 29

3.3.1. Model Definition

We consider a two-dimensional environment as a workspace W = R2 containing an

obstacle region O ⊂ W . We assume that the workspace W is bounded. The free space in

the environment is defined as E = W \ O. A robot, defined as A ⊂ W , can move in the

free space E .

The configuration space of the robot A is denoted as C = E×S1 where S1 represents the

robot’s orientations between 0 and 2π. Let q ∈ C denote the configuration of robot A, in

which q = (xt, yt, θ) where (xt, yt) represents its position and θ represents its orientation.

Specifically, a configuration qI ∈ C is designated as the robot’s initial configuration. A

set of configurations QG ⊂ C is designated as the robot’s goal configurations or the goal

region. The free configuration space is defined as:

Cfree = {q ∈ C | A(q) ∩ O = ∅}, (3-1)

which is the set of all configurations at which the transformed robotA(q) does not intersect

the obstacle region O.

Let U(q) denote the action space for each configuration q, which represents the set of

all possible actions that could be executed from q. Therefore, the set U of all possible

actions over all configurations is defined as:

U =
⋃
q∈C

U(q). (3-2)

Each action u ∈ U(q) is an m-dimensional vector where m is the number of possible

actions from q.

When u is applied from the current configuration q, a new configuration q′ is produced

as specified by a configuration transition function f . Let uT be the termination action for
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which, when uT is applied from a configuration q then q is again obtained as a result.

This function f can be utilized in expressing a configuration transition equation:

q̇ = f(q, u) = fu(q). (3-3)

The new configuration q′ can be obtained by integrating the configuration transition

equation in a period of time 4t:

q′ =
∫ 4t

0
fu(q)dt. (3-4)

Eq. 3-4 represents the motion model of the robot. A feedback plan π is defined as a

function π : Cfree → U which produces an action u = π(q) ∈ U(q), for any configuration

q ∈ Cfree, to reach the goal region QG. If the goal region is reached, then the termination

action should be applied. This is specified as part of the feedback plan: π(q) = uT , if

q ∈ QG.

3.3.2. Problem Formulation

When a robot knows its initial configuration, then a plan can be computed by a se-

quence of actions from the known initial configuration. However, this approach is memory

intensive since a replanner will be required whenever the robot deviates from the cal-

culated plan. We assume here that the robot does not know its initial configuration a

priori.

In this context, it is appropriate to find a feedback plan that maps every configuration

to an action. A feedback plan is called a solution to the problem if it causes the goal

region to be reached from every configuration in Cfree.

This motivates us to formulate our problem of interest as follows:
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Problem 1. Constructing a feedback plan: Given a workspace W, a set of

goal configurations QG, a set of possible actions U , and the motion model of a robot f ,

construct a feedback plan π for the robot to reach the goal region QG from any initial

configuration.

3.4. Methods

In this section, we describe our cell decomposition of the configuration space. We also

provide a brief summary of the generalized cell-to-cell mapping method, and the pipeline

of constructing a feedback plan.

3.4.1. Cell Decomposition

First of all, we discretize the Cfree into a finite number of cells. This discretized con-

figuration space is termed as the cell state space. We define the set of cells as Z =

{1, 2, . . . , zi, . . . zN} where N is the total number of cells and zi ∈ Z corresponds to a

configuration q in Cfree. The movement of A over Cfree can be represented as a series of

cells in Z.

Let e(k) be the cell representing the robot’s configuration at a time t = k4t with

k = 0, 1, . . . and 4t been the time interval between two configuration inspections.

If the system evolution is deterministic, then a function P : Z −→ Z is defined such that:

e(k + 1) = P (e(k)). (3-5)

This system evolution P is called a simple cell-to-cell mapping (SCM) [Hsu13] in the cell

state space.
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3.4.2. Generalized Cell-to-Cell Mapping

If the evolution is non-deterministic and p(k) is the probability distribution of the

system configurations at the time k4t, then the evolution of the system is given by:

p(k + 1) = Pp(k) = P(k+1)p(0), (3-6)

where P is the one-step transition probability matrix, P(k) denotes the k-step transition

probability matrix and p(0) is the initial probability distribution, also let pij be the (i, j)th

element of P , denoting the transition probability from cell i to cell j; and let p(k)
ij be the

(i, j)th element of P(k), denoting the k-step transition probability from i to j, i.e., the

transition probability to reach cell j after k steps are executed starting from cell i.

This representation of probabilistic transitions corresponds to the generalized cell-to-cell

mapping method [SH90]. The transition probability matrix P can be generated from a

weighted directed graph G = (V,E), also termed as a weighted digraph. The set of ver-

tices V is equivalent to the set of cells Z, such that ∀v ∈ V, ∃z ∈ Z, and ∀e ∈ E that

represent a relation between vertex vi and vertex vj then pij > 0.

A strongly connected component defined as SCC ⊆ V is a subset of vertices such

that ∀vi, vj ∈ SCC ⇒ p
(k)
ij > 0 for some k. A persistent set, SCCl, is a SCC such that

pij = 0 for every vi ∈ SCCl and vj 6∈ SCCl. A SCC that is not a persistent set is called a

transient set. In addition, the transitive closure of a graph G is the set of reachable vertices

for each vertex in G. It is important to note that any two vertices in a persistent set have

the same transitive closure and the size is equal to the size of the SCC that contains them.
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3.4.3. Feedback Plan Construction

The overall pipeline of our feedback plan construction method is illustrated in Fig. 3-1.

It first selects an action from the action space. For the selected action, a graph G is built

from the cell state space through the robot motion model.

The G is further analyzed to determine the persistent sets and the transient sets. A

composition of these persistent sets is used herein to construct a feedback plan π by fin-

ding common paths between them. The transient sets are also used to connect between the

persistent sets. Note that every different action produces different persistent and transient

sets. Thus, a robot can navigate among different regions of the workspace by changing

the actions and escaping the persistent sets for an action.

Algorithm 2 constructs a feedback plan π. In line 1, the plan π is initialized for every

configuration. Algorithm 2 runs until every configuration in π has an action assigned. In

line 2, the function cell(q) returns the cell that maps to the configuration q. In line 3,

an action u is sampled from the action space U . Lines 4 and 5 call Algorithms 3 and 4

respectively to construct a graph G = (V,E) and analyze its transient and persistent sets.

In line 6, the plan π is updated using the Dijkstra’s shortest path algorithm [CLRS01].

We define R = (V,E1) as a new graph extracted from the persistent and transient sets of

G in which E1 ⊂ E. The complexity of the shortest path algorithm is O(|E|+ |V |log|V |).

This complexity dominates over the complexities of Algorithms 3 and 4.

Algorithm 3 builds a graph G for a particular action u. From every cell in Z, the

configuration transition function f is integrated S times (steps). Every transition found

in the robot’s movement is recorded into G. In line 1, G is initialized with vertices Z and

no edges. In line 3, the function configuration(zi) returns the configuration q mapped
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Algorithm 2: ConstructPlan(Z, QG, U , f , S, 4t)
Input: Z, QG, U , f , S, 4t – the cell state space, the goal region, the action

space, a configuration transition function, the number of steps of the

robot’s motion, the time interval between two configuration inspections

Output: π – a feedback plan.

1 π ← ∅

2 while ∃q, s.t. π[cell(q)] = ∅ do

3 u← sample(U)

4 G← BuildGraph(Z, u, f, S,4t)

5 R← GCM(G, |Z|)

6 π ← ShortestPath(R,QG)

7 return π

by the cell zi. In line 6, a new configuration q′ is obtained by integrating f using the action

u, and 4t time. In line 9, G.Ekj holds the weight of the edge between vertices k and j. If

this edge does not exist in G.E then it is first added. Here the transitions between pairs

of vertices are accounted as they are encountered.

The complexity of Algorithm 3 is O(|Z| ·S · I) where I is the complexity of integrating

f (line 6). Since S and I are constants in our models, the complexity is O(|Z|).

Algorithm 4 constructs a new graph R based on the persistent and the transient sets

of G. For this, it finds the transient closure TC using the strongly connected components

SCC of G. Then, it finds those SCC whose elements have the same transitive closure. In

line 1, R is initialized with Z as vertices and no edges. Lines 2 and 3 calculate the strongly

connected components and transitive closure using the Tarjan’s algorithm [Tar72], the

complexity of this algorithm is O(|V |+ |E|). In this type of graphs, i.e., those describing
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Algorithm 3: BuildGraph(Z, u, f, S,4t)
Input: Z, u, f, S,4t – the cell state space, an action, a configuration transition

function, the number of steps of the robot’s motion, the time interval

between two configuration inspections

Output: G – the graph (V ,E) resulting from the motion model using u.

1 G.V ← Z G.E ← ∅

2 for zi in Z do

3 q ← configuration(zi)

4 k ← zi

5 for t← 1 to S do

6 q′ ← integrate(f, u, q,4t)

7 j ← cell(q′)

8 if k 6= j then

9 G.Ekj + +

10 k = j

11 q ← q′

12 return G
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a grid in 2D, each vertex has at most 8 edges, this means that |E| ≤ 8 ∗ |V |. Therefore,

the complexity reduces to O(|V | + 8|V |) = O(|V |) = O(|Z|). Lines 6-14 determines if a

SCC is persistent or transient. The complexity is O(|Z|), since this is checked once for

every cell.

In lines 16 and 19, G.Ei means the edges starting from i in G. In lines 17 and 20,

R.E1ki holds the weight of the edge between vertices k and i, if this edge is not in R.E1

then it is created. The weight is set proportional to the number of cells in the TC. Recall

that this is equal to |SCC| for persistent sets. The more cells in a SCC, the more likely

this set is to be used in the final plan. Considering that the graph is built from an action

previously selected, our algorithm prefers to use the actions that produce fewer subgraphs,

i.e., largest SCCs. In line 20, the weight is penalized so that the shortest path in the line

6 of Algorithm 2 prefers to use the edges inside the persistent sets. Note in lines 17 and

20, for an edge i→ k in the graph, another edge k ← i is created in R, this is intentional

to run the shortest path algorithm backward from the target set. The sets persistent and

transients sum up to |Z|, thus, the overall the complexity is O(|Z|).

3.5. Experimental Results

Our proposed method was tested using a simple bouncing robot. The bouncing robot

follows a simple strategy: the robot will continue its straight motion unless a wall is hit, in

this case, it bounces and rotates by a specific angle and continues its straight motion. The

action space defined for the bouncing robot is U = [0, 2π] which represents the bouncing

angle.

Fig. 3-2 shows the bouncing behavior for an angle ≈ 15◦. Actions are in radians which

are approximated to degrees here. In this example, a larger map is shown for better
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Algorithm 4: GCM(G, |Z|)
Input: G,|Z| – a graph, the number of cells in the mapping

Output: R – a graph (V ,E1) where R.E1ij is the weight of the edge between

vertices i and j.

1 R.V ← Z R.E1 ← ∅

2 SCC = stronglyConectedComp(G)

3 TC = transitiveClosure(G,SCC)

4 persistents = NIL

5 transients = NIL

6 for component in SCC do

7 is persistent = True

8 for j in component do

9 if len(component) 6= len(TC[j]) then

10 is persistent = False

11 transients.add all(component)

12 break

13 if is persistent then

14 persistents.add all(component)

15 for i in persistents do

16 for k in G.Ei do

17 R.E1ki ← min(R.E1ki, 1/len(TC[i]))

18 for i in transients do

19 for k in G.Ei do

20 R.E1ki ← min(R.E1ki, penalty)

21 return R
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understanding the nature of the robot’s behavior in which the robot is moving straight

until a wall is hit. Examples in Figs 3-3 and 3-4 are presented using a smaller map for

better appreciating different persistent sets. The robot starts at zi facing east and moves

straight east until it hits the wall. After the hit, the robot rotates following the action u

until it can continue the straight motion. For the action u ≈ 15◦, four bounces occur when

the first wall is hit, then a ∼ 90◦ rotation is performed and the robot can continue its

straight movement. It is worth mentioning that this workspace is discretized into cells and

that a set of configurations map to a single cell. Whenever the cell changes, this change

is registered as a transition in the graph G. Starting from every cell in Z, the number of

steps S and their transitions are recorded into G. The graph G is fully constructed at the

end of this process. For a particular bouncing angle u, a specific graph is constructed.

zi

Figure 3-2: A generated path from the simulation of a bouncing robot (depicted by

orange circles). The illustrated path is simulated for S = 120 steps starting

from cell zi facing east. The bouncing angle is u ≈ 15◦

.

In Fig. 3-3(a) the graph G was constructed using u ≈ 25◦; for this action, a persistent

set was found and the cells that comprise it are shown as red circles. Fig. 3-3(b) shows

cells (red and green circles) in two persistent sets found in the constructed graph G for

another action u ≈ 26◦. Every cell is in either a persistent or a transient set. Nevertheless,
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in our implementation, we disregarded persistent and transient sets consisting of a single

cell. The edges inside the persistent set are kept for the calculation of the plan π. This

complete process is repeated for different actions until the following three conditions are

met:

1. Every cell in Z is in a persistent or in a transient set.

2. At least one cell in QG is in a persistent set.

3. A path exists between every cell in Z and at least one cell in QG.

Fig. 3-4 illustrates the final feedback plan. The red circles represent the cells in Z. Con-

figurations with the same (x,y) position and different orientations are superimposed in

the Fig. 3-4. The green lines going from the center of a cell zi represent the actions π(zi)

for the final plan π. The blue segments starting at the lower left corner cell z0 show the

followed path by a robot selecting the actions from the plan π. The robot finally arrives

in the goal region marked as G following the path based on the plan π. Note that, in Fig.

3-4, the goal region G is comprised of a set of cells at the same location but they have

different orientations.

3.6. Conclusions and Future Work

This chapter presented a numerical method to compute a feedback-based plan in poly-

nomial time that does not rely on a discretization of the action space. Therefore, the

complexity does not depend on such discretization. Instead, the complexity of the met-

hod only depends on the number of cells defined in the free configuration space. The

definition of this number of cells depends on the resolution desired, and could also be
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(a)

(b)

Figure 3-3: Persistent Sets. (a) Cells (red circles) in one persistent set for a constructed

graph using one action u ≈ 25◦. (b) Cells (red and green circles) in two

persistent sets for a constructed graph using another action u ≈ 26◦.

applicable to a multi-resolution approach. The proposed method used the notion of the

long-term behavior of the robot’s motions using samples from the action space. We found

the persistent sets and the transient sets as the long-term behavior of a robot’s selected

action. A feedback plan was successfully constructed by decomposing the long-term beha-

vior of the bouncing robot’s motions for different actions to reach a goal region from any

location of an environment following a simple bouncing strategy.

If a discretization D of the action space U is fixed, and the action that can accomplish

a particular task is not selected in D, then an algorithm A could not solve this task using

D. Hence, our method outperforms A. Additionally, the low computational capabilities

needed by our method makes it suitable for on-board applications. Furthermore, the mo-

dularity of our method also allows it to be used in a collaborative fashion by multiple
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G

Figure 3-4: An illustration of the computed final plan π. Red circles represent a set of

configurations with the same position (x,y) and different orientations. Green

lines pointing out from the cell center zi represent the direction of the next

cell that will be reached after applying an action π(zi). Multiple green lines

are drawn per cell to account for multiple orientations. The goal region is

marked as G. The Blue lines show a path followed by a robot from z0 (lower

left corner) using the plan π.

robots. Our method is general and it only needs the equation of motion f and the action

space U as input. This equation of motion can be nonlinear and might also include uncer-

tainty. We tested our method with the simple bouncing strategy of a robot. However, our

immediate goal is to test it in other commonly used autonomous vehicles [PČY+16b] and

more concretely, we will be focusing on robots with higher degrees of freedom. Our method

can be considered an alternative to popular methods such as value iteration and policy

iteration [BBBB05] and feedback plan generation for systems with uncertainty [SB18].

Our immediate task is to compare experimentally our method to traditional methods in

order to analyze its advantages and disadvantages. In our future research, we will look

at different schemes to sample the action space. Our proposed method opens multiples

avenues in this direction. An interesting approach to decide the sampling strategy based
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on learning from previous samples would be a major contribution. Others algorithms for

computing and replanning the shortest path, such as ARA*, D*, or RRT*[YF16b] would

benefit to improve our method presented in this Chapter.



4 Toward Simultaneous Localization

and Mapping in Aquatic Dynamic

Environments

Part of this work was finalist in the student’s poster competition at IEEE Oceanic

Engenieering Society OCEANS Conference. 1

4.1. Feedback Motion Planning on a self updating map.

Given the oceanic environment’s stochastic nature and the significant spatial and tem-

poral scales of most ocean processes, sampling is sparse at best. Predictive models are

necessary to augment decision-making to ensure that robots are in the right place and

time for optimal or efficient sampling. Although interesting ocean features are aperiodic

and stochastic in nature, they do exhibit coherent structure, which can generally be seen

from aerial or remotely sensed data. In this paper, we provide a strategy to build a dy-

namic representation of an aquatic environment, based on different water parameters,
1The author acknowledges Tauhidul Alam;Gregory M. Reis, Leonardo Bobadilla, Ryan N. Smith for

their contribution in the developments of the ideas, the data and simulations
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that allows a vehicle to find its position within the representation and keep the mentioned

representation up to date simultaneously using a sampling strategy.
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4.2. Introduction

The complexity of oceanic processes and the chronic under-sampling of the coastal

oceans, and marine ecosystems in general, inevitably leads to the persistent call for sus-

tained exploration and sampling efforts [RP03]. Recently, it has become more cost-effective

and logistically sustainable to use Autonomous Underwater Vehicles (AUVs) and Auto-

nomous Surface Vehicles (ASVs) as platforms of choice for marine sampling efforts, rather

than traditional ship-based methods. The scientific literature has accepted the use of these

assets, and operational oceanography is increasingly deploying more of these vehicles to

observe dynamic processes [DMM+11]. These robots provide a non-intrusive and repea-

table way to observe the oceans up close. They also allow augmenting the data provided

by existing methods with endurances ranging from a few days to months. Moreover, they

have speeds commensurate to observing spatiotemporal scales of the evolution of dynamic

or episodic events, such as algal blooms, ocean fronts, and Lagrangian Coherent Struc-

tures. Given the stochastic environment and the large (> 50 km2) spatial and temporal

scales of significant ocean processes, sampling is sparse at best. Therefore, predictive mo-

dels are necessary to augment decision making to ensure that robots are in the right place

and time for sampling, and consequently registering the phenomena. However, no single

model provides an informed view or representation of an ocean feature that enables in-

telligent or efficient sampling in a principled manner. Thus, forecasting where a robot

should sample in the immediate future is challenging and has previously been addressed

by pre-planned missions designed by oceanographic domain experts. To address this sam-

pling design problem, i.e., deciding where to sample next, the task of localization must

be addressed first. Ideally, an underwater robot deployed in an unknown aquatic environ-

ment will create a representation of its surroundings, localize in it, and use this map to
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navigate. This problem is known as the Simultaneous Localization and Mapping (SLAM)

problem [TBF05, T+02, Thr00]. Here, we present the first steps towards developing a

strategy that uses a predicted representation of an aquatic feature based on interpolated

data to solve the SLAM problem. The rest of the chapter is organized as follows: Section

4.3 presents related work to the strategy proposed. In section 4.4 the model and problem

are defined. Section 4.5 presents the methods to acquire and process the data. Finally,

some conclusions and ideas for future work are presented in section 4.7.

4.3. Background and Related Work

There have been significant studies in recent years in the utility and implementation

of autonomous underwater, and surface vehicles for persistent surveillance of the ocean

[JEK+15, SLS15]. Example studies enabled include the dynamics of physical phenomena,

e.g., ocean fronts [ZGBR12] and algal assemblages [CSM+08], temperature and salinity

profiles [WZ11, SP11, LSYF08], and the onset of harmful algae blooms [SCL+10, ZFP+07,

DPM+12, CBKS08]. These works have primarily focused on developing sampling strate-

gies for single, or a small number of, AUVs working in conjunction with stationary sensors,

embedded networks, research vessels, and ASVs to maximize data collection for the va-

rious physical processes. However, ocean processes are intrinsically linked to the fluid

dynamics and underlying bathymetry, yet most research does not explicitly account for

these directly.

Although the ocean environment is naturally stochastic and aperiodic, it does exhibit

coherent structures that can be exploited. Similar structures have been exploited in other

scenarios, such as facial recognition [PEWF08, FLCS12, LSF07], city modeling [FZ03],

novel view synthesis for 3D visualization [CMR10], and robotic localization tasks [SE12,
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URO+08]. The reason for the limited adoption in the marine environment is that there

are still significant engineering challenges for large-scale field deployments. Additionally,

the structure exhibited by ocean processes is spatiotemporally dynamic, and we lack a

sufficient understanding to know a priori how to best model/represent an ocean feature

(what it should look like). Hence, it makes sense to leverage these processes’ inherent

structure or the bathymetry structure that forces these processes to occur in specific

regions, given certain conditions, to enhance sampling and further our understanding.

Given this need for stochastic representations of the environment, we propose to develop

a representative model to provide a robot an understanding of what it should expect in

a given sampling scenario. The specifics and adaptations of how the plan is executed

are left to on-board decisions, which are based on comparing the predicted model with

samples. The model proposed takes advantage of the following observation: Given a set

of water parameter readings, the current position can be narrowed down by determining

the locations within a set of maps where the reading could have been taken. As the

position gets refined, the maps can also be updated. Consistently, these updates should

be incorporated using the readings. Also, the next best location to sample, i.e., where to

take the readings from, should be determined to reduce the error variance. This process

can be performed iteratively to keep the map up to date and would be particularly useful

to keep dynamic environment maps updated and reliable.

From the realization of the SLAM problem’s importance in the mid-80s, there have

been significant advances in solving it, to a point where the problem is theoretically ‘sol-

ved’ [DWB06]. Despite this, the problem is far from being easily applicable, especially for

realistic large and dynamic environments. The conventional solutions are formulated in a

framework where a set of landmarks are defined and updated through time, as observa-

tions are taken. The vehicle pose is highly correlated to the sensing of the landmarks. This
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observation is used to structure the problem in a Bayesian form. For dynamical environ-

ments, the landmark solution encounters the problems of displacements, cluttering, and

removal of the landmarks. In the case of highly dynamical environments, being oceanic

environments one of them, solutions to this problem such as the deletion of discarded

landmarks [Bai02] are not suitable.

Most solutions rely on the use of Bayesian filters, particularly the Extended Kalman Fil-

ters (EKF) and particle filters [DGA00]. The problems associated with the computational

complexity of this kind of solution have been addressed by sparsification of information,

partitioned updating, and sub-mapping [BDW06]. Previous work has been developed on

map augmenting such as denseSLAM [NGN06], where the authors exploit the use of multi-

layered maps; for denseSLAM, additional information such as occupancy, traversability,

or elevation is kept to augment a navigation map. This idea is particularly useful for aqua-

tic environments since many properties in the water can be used to determine a region.

Also, the sensing of these properties is highly correlated to the vehicle pose and position.

All this sheds light on using water properties as landmarks to solve the SLAM problem

for aquatic environments. The SLAM problem solution’s complexity is quadratic in the

number of features [GN01]. The algorithm is also quadratic in space. This computational

complexity is a big concern for large environments and augmented representations.

The spatial characteristic and the ‘smoothness’, i.e., the continuity of the values over

the space, of the data collected present an opportunity to sample the data, alleviating

the memory burden. Some other variable phenomena that exhibit these properties, for

example, soil physicochemical properties [HHS04], has been accurately interpolated using

Kriging [Ste12]. This method finds the best unbiased linear prediction of unknown values

minimizing the error variance. Finally, In [RFA+17b], the authors described a methodology

to update the position p0 on a terrain augmented map generated by a linear combination
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of water parameters. These results are promising about the use of water parameters to

augment information regarding location in the workspace.

This chapter presents the first steps in developing a model for predicting the spatiotem-

poral dynamics of interesting aquatic features. This work aims to exploit an updating

schema of water parameters starting from 2D sensed parameters maps as a prior. He-

re, we present a data-driven approach to creating the foundation for model synthesis

that considers water parameters, fluid dynamics, and the region of interest’s underlying

bathymetry. Following this scheme, an augmented bathymetry map is constructed using

measured physical and biological variables, such as pH, salinity, turbidity, temperature,

dissolved oxygen, and chlorophyll density that outperform traditional bathymetry strate-

gies. Specifically, we apply the Kriging interpolation method to predict the non-sampled

data points and determine the best next sample position, producing in the process the

map-updating property.

The dynamical representation presented in this chapter has particular utility in planning

efficient (time, energy, etc.) sampling missions that can focus on exploitation rather than

exploration. This chapter’s primary contribution is the development of an algorithmic

tool-chain that generates the foundation for planning algorithms that promotes pheno-

mena exploration by determining the best places to move in the navigation mission while

decreasing the error variance in the prediction.

The rest of the chapter is organized as follows: In Section 4.4, the notation used though

out this document is introduced, and the problem of interest is formulated, Section 4.5

develops the methods, Section 4.6 presents preliminary results. Finally, Some conclusions

are drawn in Chapter 4.7.
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Figure 4-1: YSI Ecomapper, the underwater vehicle used to gather physicochemical data

in the environment.

4.4. Model and Problem Definition

4.4.1. Model Definition

The autonomous underwater vehicle (AUV) modeled in our chapter is the Ecomapper

illustrated in Fig. 4-1. The marine environment is modeled as a 2-D layer which is denoted

as W ⊂ R2. Let O represent the set of locations that are inaccessible for the robot

(obstacles). The free space for the vehicle is represented by E =W \O. The motion map

Mm is modeled as a discrete Markov chain over a set of discrete locations in E and captures

the long-term behavior of the water flow patterns. On the other hand, the augmented

bathymetry map Mb is a collection of n functions mi
t : E → R for i ∈ {1, . . . , n} and time

t, where each mi
t is a spatial field representing a variable quantity that can be measured

by the AUV at a specific time step. The map that the robot will use is M = Mm ×Mb.

Let M be the collection of all possible such maps. The robot will receive sensing data

from an observation space Y .

The AUV starts with an initial information state or belief state of the map M0 ∈ M

and an initial information state on his position in E denoted p0. The initial map M0 can be

obtained from the previous knowledge of water current flows or from previously deployed

missions in the case of physical and biological variables. As the vehicle moves, it needs
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to update its belief state p0 and M0 by incorporating information from an observation

y ∈ Y .

4.4.2. Problem Formulation

Our problem of interest is to update the map M0 once a new observation yt is obtained

and to determine what is the best next position to sample.

Map Update and Next Sample Position: Given the map Mk at the current time

step k, incorporate a sensing observation yk and determine the next position pk+1 to obtain

an updated map estimate Mk+1 that reduces the error variance on the map estimation.

4.5. Method

In this section, we detail our method for solving the problem formulated in Section 4.4.

4.5.1. Algorithm Description

To make the problem tractable, we will create a parameterized version of each mi
k ∈Mk

in the augmented bathymetric map. The previous works showed that the more variables

are taken into account, the more variation is found, and the more reliable is the localization

subtask. For the SLAM problem, this is also the case.

Each mi
k is constructed by interpolation using Kriging. This interpolation method is

widely used in geological sciences to estimate distributions of properties based on spatially

referenced samples. The method finds the best linear unbiased prediction of values in-

between samples minimizing the error variance in the prediction. This kind of interpolation

works naturally for the properties of aquatic environments. To estimate a water parameter
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value at an unknown position z(x0) ∈ mi
k where x0 is a vector denoting a position in

W . z(x0) can be considered as a realization of a random function Z(x) and can also be

estimated using n samples at positions x1, x2, ...xn such that

z∗(x0) =
n∑
i=1

λiz(xi) (4-1)

is an estimation of the true unknown value of z(x0), where λi are the kriging coefficients.

For this estimation to be unbiased, the coefficients λi need to compliance to:
n∑
i=1

λi = 1 (4-2)

Furthermore, since the aquatic environment is highly dynamic, the assumption on

stationarity in equation 4-1 does not hold. Instead a set of L drift functions must be

considered to account for the dynamics of the environment. The following formula is

obtained:

z∗(x0) =
n∑
i=1

λiz(xi) +
L∑
j=1

µjfj(x0) (4-3)

where µl are Lagrange multipliers. This estimator is known as the Universal Kriging. The

functions fj must be established from the data. The advantage of using Kriging over other

interpolation methods is on the ability to estimate also the variance in the prediction error:

σ2 =
n∑
i=1

λiγi0 +
L∑
j=1

µjfj(x0) (4-4)

When new data is obtained and needs to be incorporated into the estimations, the naive

approach is to recalculate all the coefficients and Lagrange multipliers. Fortunately, it

has been shown [Eme09] that the values in λi are redistributed when a new data-point is

added or removed from the sample set. Hence, the following relation is demonstrated:

∀α ∈ {1, ..., n}, λα|n(x) = λα|n+1(x) + λn+1|n+1(x)λα|n(x+ 1) (4-5)
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where λα|n is the coefficient at position α given n sample points. Also the variance is

updated by the following equation:

σ2
n(x) = σ2

n+1(x) + λ2
n+1|n+1(x)σ2

n(xn+1). (4-6)

Where σ2
n+1(x) is the error variance when predicting z(x) from the data at locations

x1, ...,xn,x(n+1). [Eme09] also shows how this relation can be used to determine, from

a set of candidate sampling points, which one is better for sampling, i.e., which one reduces

the variance on the error. Consequently, in this paper, we use this framework to conduct a

surveillance mission, in which every following point is chosen to as reducing the variance

in the error and therefore to gain more information about the phenomena surveyed. The

complete scheme is summarized in algorithm 5.

Algorithm 5: Surveillance(M0)
Input: M0 – The set of maps at time 0 (prior)

Output: Mk+1 – map updated.

1 k ← 0

2 yik ← READ DATA()

3 Mk ←M0

4 while (true) do

5 x0 ← SLAM(Mk)

6 xcandidates ← NEIGHBOURS(x0)

7 xn+1 ← BEST CANDIDATE(xcandidates)

8 MOV E(xn+1)

9 M(k + 1)← UPDATE(Mk)

10 return Mk+1
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Figure 4-2: World used for simulation purpuses.

4.6. Experimental Validation

4.6.1. Data Acquisition

In this paper, we examine sensor data about water quality and bathymetry from mul-

tiple missions of a YSI EcoMapper AUV at the Lake Nighthorse, CO, USA (37o13′13,4′′

N, 107o53′53,7′′ W) as illustrated in Fig. 4-3, in April and May 2018 and July 2019. The

duration of each mission was around 4 to 6 hours. The variables sensed used in this work

include: Bathymetry, temperature, ph, salinity and turbidity. Fig. 4-4 shows the locations

where the data was sampled measured from the upper-left corner of the inlet of lake.

Additionally, the algorithm was tested using a simulated environment. The Gazebo 9

physics engine was used along with a ROS (Robot Operating System) set of packages

named Unmanned Underwater Vehicle Simulator [MSV+16] for aquatic environment si-

mulations. The simulations are run in a 1km square region with designed bathymetry that

includes different elevations.

4.6.2. Experimental Setup

To validate Algorithm 5, the data obtained should be meaningful to determine the

current position. The data collected shows consistency, despite being gathered in different
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Figure 4-3: Aerial image of our region of interest – the Lake Nighthorse, CO, USA.

(37o13′13,4′′ N, 107o53′53,7′′ W)

Figure 4-4: 1000 data points used to asses the region of interest. An area of 80m× 80m

was considered
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Figure 4-5: Variance in a. pH, b. Turbidity, c. Bathymetry for the data collected.

Figure 4-6: pH kriage

time stamps, even though some data was collected a year apart form the other. Figure 4-5

show the three more notable variables: pH, Turbidity and Bathymetry. The former helps

as a comparison since Bathymetry is expected to suffer less changes. Figure 4-6 shows

how pH exhibits the same behavior. Turbidity has some larger variations in the region

where the river water flows throughout the inlet into the lake. Nevertheless, some portion

of the space is still presenting less variation and this serves as additional information for

localization purpuses.
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Figure 4-7: pH Kriage Error Variance

4.6.3. Experimental Result

4.7. Conclusions and Future Work

This chapter builds on previously developed representations of aquatic environments

and constructed a preliminary solution to the SLAM problem in underwater settings.

simple motion models are combined with physicochemical readings of the water to find

initial candidate locations. The strategy presented here was tested preliminarily in a

dataset acquired from deployments in the Lake Nighthorse, CO.

In the short-term, we would like to test our ideas with different datasets. We will

proceed to validate our ideas in datasets in ocean deployments. We believe that due to

the variability in ocean motions and science parameters, localization will be more precise

once the map is built. On the other hand, richer models for constructing the maps should

be explored to account for these factors.

Another avenue to be explored, based on Chapter 3, is a comparison of our ideas against

established SLAM approaches [SNS11, CHL+05, TBF05] and in particular, underwater
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Figure 4-8: Possible positions based on the proposed SLAM

Figure 4-9: Inferred Position based on the proposed SLAM
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SLAM approaches [RRTN07, RRNT06, RRTN08]. Although our approach shares the same

high-level idea of updating a belief or information state [LaV06b, L+12], we do not need a

precise dynamical model of the vehicle’s motion and our sensing modalities are different.



5 Coordinated multi-robot planning

while preserving individual privacy

Part of this work was presented at IEEE International Conference on Robotics and

Automation (ICRA) 20191

5.1. Introduction

If many current predictions are to be believed, autonomous robots will be increasingly

used in shared, contested, resource constrained, and adversarial scenarios. Certainly these

traits underscore tasks such as automated delivery, battlefield awareness, and surveillance.

In each of these cases, multiple robots operating concurrently often can achieve their ends

more efficiently by cooperating to mediate their use of shared resources. But, as the

information that the robots possess is sensitive or restricted, this poses the question of

how to preserve individual privacy whilst coordinating. More broadly, privacy preservation

is becoming a growing concern in robotics, and this paper examines several particular
1The author acknowledges the contribution of Li Li in the initial idea and the implementation of the cir-

cuits. Also, Tauhidul Alam, Dylan A. Shell, and Leonardo Bobadilla provided help on the development

of the ideas and methodology.
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scenarios where we envision it being relevant to the context of coordination among robots.

(a) (b)

(c) (d)

Figure 5-1: An experimental evaluation of the privacy-preserving monitoring task for

two parties Alice and Bob using two iRobot Create 2.0 platforms: (a) At

time = 0 second, Alice and Bob start executing their paths; (b) Since an

intersection is found (without sharing information), Alice moves and Bob

stays still; (c) At time = 20 seconds, Alice finishes her path; (d) At time

= 40 seconds, both robots have reached their goals with no collisions and

without either revealing the path details to the other party.

The following two examples, one within the commercial/civilian context and another

with a military setting, provide motivating scenarios:

− An obstacle to the widespread commercial use of small Unmanned Aerial Vehicles

(UAVs) is the potential for collisions, not only against each other but also against

larger manned aircraft [faa]. As various airborne vehicles are owned and operated by

different companies and stakeholders, it would be ideal if one could provide assuran-

ces of collision-free paths without mandating the disclosure of information that some
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parties would be uneasy revealing.

− Consider a covert mission against some adversary where multiple robots must coordi-

nate, for example, to rendezvous behind enemy lines. In the event of one of the robots

being abducted or compromised, we would like guarantees that any information that

might be extracted from the captured agent will not make the other robots vulnerable.

The above mobile robotics applications can be modeled in a Secure Multi-Party Compu-

tation (SMC) [Yao86, Yao82, GMW87] Framework. We think that SMC can model an

important class of problems in mobile robotics for what we call mutually distrusting coope-

ration; in this type of problem one has multiple interacting robots that need to achieve

tasks jointly within a shared environment but wish to limit the disclosure of their in-

formation. The contribution of our paper is showing the practical feasibility of Secure

Multi-Party Computation in Robotics and Autonomous Systems. We hope to attract the

attention of other researchers to this area. There have been few practical implementations

of SMC, and to the best of our knowledge, this is one of the first implementations of SMC

in Robotics. More concretely, the contributions of our paper are:

1. A secure path intersection protocol based on the polygon intersection ideas presented

in [AD01] and simplified to make its implementation feasible using open source

software packages.

2. A protocol that ensures that two robots will not collide while executing their task,

its software implementation, and hardware proof of concept experiments.

3. A new, secure 3D path collision protocol that can be used in plans involving time

or 3D workspaces.
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The rest of the chapter is organized as follows. Section II describes related efforts in the

literature. Section III introduces our model, the environment, and robot capabilities; and

formulates the problem of interest. Section IV presents the proposed methods developed

to address the problems of interest. Section V presents simulation and software develop-

ment and physical deployment to show the feasibility of our approach. Finally, we show

preliminary conclusions and directions for future work in Section VI.

5.2. Related Work

The motivation of our work comes from the area of Secure Multi-Party Computations [Yao86,

Yao82] where a group of players needs to compute a joint function without disclosing their

inputs. A well known particular case of this formulation is Yao’s Millionaire Problem whe-

re two millionaires Alice and Bob want to know who has the most money without revealing

their wealth to each other. The approach is general and can solve any function that can

be encoded as a circuit. However, if the function is complicated, the use of garbled circuits

will not be practical. This limitation has led to the development of specific protocols for

SMC problems in particular domains [DA01] such as Linear Algebra, Statistics, Machine

Learning, Networking, and Computational Geometry.

In particular, due to the close connection of planning algorithms to Computational

Geometry, our ideas take inspiration from Secure Computational Geometry [FA04, AD01,

LYHZ11, HAGS09, SYDP06] that proposes geometric constructions to computational

problems involving intersections [AD01] (point in polygon, polygon-polygon intersection)

or based on distance [FA04] (distance between parametric equations and line segments).

These secure geometric constructions use the primitives such as Yao’s millionaires, Gar-

bled Circuits, 1-out-N oblivious transfer, and Homomorphic Encryption. In our work, we



64 5 Coordinated multi-robot planning while preserving individual privacy

build our protocols on top of some of these primitives, specifically from [AD01] and sim-

plify them to implement using open source software and inexpensive robot platforms. We

also create new secure primitives to compare paths in 3D as required by our applications.

Our effort is also connected to practical system implementations of SMC [BCD+09].

Security issues in multi-robot networks have been the focus of recent research [RS17,

GKM+17]. In [GKM+17], defense mechanisms for Sybil attacks have been proposed and

implemented in commodity Wi-Fi radios. Their approach has also been tested in mobile

robotic platforms. Privacy issues related to robots have also been investigated in several

recent works [OS15, ZS18, PK16]. Among the investigated robotic privacy techniques,

a differential privacy model is proposed in [PK16] for swarms of heterogeneous robots,

also, combinatorial filters are designed in [OS15] satisfying privacy and utility constraints

which have been explored for the privacy-preserving target tracking [ZS18].

5.3. Model and Problem Definition

5.3.1. Model Definition

The robots move in a 2-D workspace W = R2. The free space of the environment is

defined as E = W \ O, where O ⊂ R2. We initially have two robots Alice and Bob that

operate in a shared environment. Both robots have a representation of the environment E,

can plan obstacle-free paths in the environment, and can communicate with each other.

Let PA be the path of Alice and PB be the path of Bob.
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5.3.2. Problem Formulation

In our first primitive, we require a privacy-preserving mechanism to allow for Alice

and Bob to determine whether their paths (PA and PB) collide without revealing the

path information to the other party. We propose to do this in a decentralized fashion and

without relying on the existence of any trusted third-party. These constraints motivate

our first problem of interest.

Problem 0. Privacy-Preserving Path Intersection: Given two robots, Alice

and Bob with paths PA and PB, inform the robots whether the paths have at least one point

of intersection without sharing the path information.

We will use the above problem as a building block for solving more pragmatic tasks in a

privacy-preserving fashion. We are interested in a continuous monitoring task where both

robots are executing the task but need to guarantee collision avoidance. This motivates

the following problem of interest. Problem 1. Privacy-Preserving Persistent Mo-

nitoring: Given two robots Alice and Bob that are executing a mission in E, ensure,

without sharing any information about their paths or position, that they will not collide.

We are also interested in problems involving time-parametrized trajectories. For this

purpose, we need to construct secure primitives to calculate if two 3D line segments

intersect. This primitive will allow us to solve the following problem.

Problem 2. Ascertaining Rendezvous Securely: There are two robots, Alice

and Bob, and each of them has a time-parametrized trajectory. They want to know if their

paths intersect without sharing either respective paths or the intersection point and time.
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5.4. Methods

In this section, we detail our method for solving the problems formulated in Sec-

tion 5.3.2.

Initially, we need to implement a primitive that can test if two paths intersect. To crea-

te a practical implementation, we build our protocol based on the polygon intersection

protocol presented in [AD01]. This protocol uses a secure dot product implementation

along with Yao’s Millionaires, Garbled circuits, 1-out-of-N oblivious transfer, and homo-

morphic encryption. We simplify this protocol, adapt it for the 2-D path intersection, and

make it suitable for implementation on mobile robots.

5.4.1. Privacy-Preserving Path Intersection

A path P of a robot is represented by a sequence of contiguous segments P = (S1, S2, . . . , Sn).

Each segment Si is composed by its two points ui = (xi, yi) and vi = (x′i, y′i). Meanwhile,

we use a line equation f(x, y) = 0 to represent the line that contains the segment, where

f(u) = f(x, y) = ax+ by + c . We can easily calculate a, b, and c by providing ui and vi.

Suppose Alice has a segment SA = (uA,vA) and the line equation fA(x, y) = 0 that

contains the vertices uA,vA, and Bob has a segment SB = (uB,vB) and the line equation

fB(x, y) = 0 that contains the vertices uB,vB. Then, SA intersects with SB if and only if

one of the following expression is true:

fA(uB) ≤ 0 ∧ fA(vB) ≥ 0 ∧ fB(uA) ≤ 0 ∧ fB(vA) ≥ 0,

fA(uB) ≤ 0 ∧ fA(vB) ≥ 0 ∧ fB(uA) ≥ 0 ∧ fB(vA) ≤ 0,

fA(uB) ≥ 0 ∧ fA(vB) ≤ 0 ∧ fB(uA) ≤ 0 ∧ fB(vA) ≥ 0,

fA(uB) ≥ 0 ∧ fA(vB) ≤ 0 ∧ fB(uA) ≥ 0 ∧ fB(vA) ≤ 0.

To make the computation of the substitution easier, we define an operator t such that
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u t 1 = (x, y, 1), where u = (x, y) is a vector.

Protocol 1 Secure Path Intersection Protocol

Input: Given Alice’s path PA = (SA1 , SA2 , . . . , SAn ) and Bob’s path PB = (SB1 , SB2 , . . . , SBn ).
Output: Whether there is a collision between PA and PB .

1. Alice generates a public/private key pair (kpub
A , kpri

A ) using the Paillier homomorphic encryption sys-
tem.

2. For each pair of segments (SA, SB) where SA = (uA, vA) and SB = (uB, vB):

a) Alice calculates (a1, b1, c1). Bob calculates (a2, b2, c2).

b) Alice generates a vector m = (Ekpub
A

(a1), Ekpub
A

(b1), Ekpub
A

(c1)).

Bob assigns a vector n = (a2, b2, c2).

c) Alice generates two vectors pA = (Ekpub
A

(uA.x), Ekpub
A

(uA.y), Ekpub
A

(1)) and qA =
(Ekpub

A
(vA.x), Ekpub

A
(vA.y), Ekpub

A
(1)). Bob generates two vectors pB = uB t 1 and qB = vB t 1.

d) Alice sends m, pA and qA to Bob.

e) Bob calculates w1, w2, w3, w4, where w1 = m · pB, w2 = m · qB, w3 = n · pA, w4 = n · qA.

f ) Bob generates 4 random numbers r1, r2, r3, r4 and calculates h1, h2, h3, h4, where hi = wi+ri, i =
1, 2, 3, 4.

g) Bob sends h1, h2, h3, h4 back to Alice.

h) Alice computes ti = Dkpri
A

(hi) where i = 1, 2, 3, 4.

i) Alice and Bob use a garbled circuit to check if the following expression is true: (t1 ≤ r1 ∧ t2 ≥
r2 ∧ t3 ≤ r3 ∧ t4 ≥ r4)∨ (t1 ≤ r1 ∧ t2 ≥ r2 ∧ t3 ≥ r3 ∧ t4 ≤ r4)∨ (t1 ≥ r1 ∧ t2 ≤ r2 ∧ t3 ≤ r3 ∧ t4 ≥
r4) ∨ (t1 ≥ r1 ∧ t2 ≤ r2 ∧ t3 ≥ r3 ∧ t4 ≤ r4).

j) Return True if the garbled circuit returns true.

3. Return False.

Let Alice compose three vectors m = (a1, b1, c1),pA = uA t 1,qA = vA t 1, and let

Bob compose three vectors n = (a2, b2, c2),pB = uB t 1,qB = vB t 1, then

i = m · pB, i
′ = m · qB, j = n · pA, j

′ = n · qA.

So far, if Alice sends m,pA,qA to Bob, Bob can easily compute i, i′, j, j′ and do the
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intersection determination logic and finally send the result back to Alice, then each of them

would know if there is a collision, but this reveals detailed information of Alice’s path, and

Bob may send a spurious result to Alice. However, this problem can be addressed by taking

advantage of the Paillier homomorphic encryption system (PES). PES is an additive

homomorphic encryption system [Pai99], meaning that the sum of two encrypted numbers

is the encrypted sum of the plain numbers. Paillier also supports scalar multiplication,

which means that a scalar multiplied by an encrypted number yields the encryption

of the scalar multiplied by the plain number. We emphasize that, though not a fully

homomorphic encryption system, it suffices for the protocol we outline. To prevent the

path information from being revealed, Alice can send encrypted information using PES,

and Bob may perform the computation using these encrypted numbers only. However, in

doing so, Bob might expose his information as stated in [AD01]. To prevent this, Bob adds

some random numbers to the intermediate results (h1 to h4), then sends the outcomes to

Alice. Then, Alice decrypts them and uses them as the inputs to the garbled circuit. Thus,

Protocol 1 securely decides if two paths collide, avoiding leaking any path information.

5.4.2. Privacy-Preserving Persistent Monitoring

Algorithms 6 and 7 show the implementation of the privacy-preserving persistent moni-

toring task for two parties Alice and Bob. A circuit that permits comparison of k segments

at the time is used to compute whether a collision among any combination of the k × k

segments collides or not; for larger paths, k-length subsets are compared at a time, each

referred to as a round. In this scheme, one robot moves k segments at each round. Both

algorithms receive as input the list of segments, the number of segments per round, and

the IP address to communicate with each other via network sockets. The algorithms can
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Algorithm 6: AliceTrajectory(P , k, IP addrB)
Input: P = (S1, S2, . . . , Sn); k < n the number of segments per round; IP addrB Bob’s IP address
Output: C = (c1, c2, . . . , cm), m = dn/ke, cj ∈ {F alse, T rue} for j = 1, 2, . . . , m, and c0 = T rue if

both move for the first round.
1 connect(IP addrB)
2 round← 0 low ← 0 high← low + k

3 kpub
A , kpriv

A ← paillier()
4 while high ≤ n do
5 R← P [low : high]
6 for i← low to high− 1 do
7 m← E(kpub

A , Equation(Ru, Rv))
8 send(m) // encoded parameters

9 receive(ACK) // ACK awaiting

10 pA ← E(kpub
A , Ri,u t 1)

11 qA ← E(kpub
A , Ri,v t 1)

12 send(pA; qA)
13 receive(ACK)
14 dr ← receive()
15 send(ACK)
16 u← D(kpri

A , dr)
17 resultround ← AliceCircuit(u)
18 round← round + 1
19 low, high← high, high + k

20 if low <n and high >n then
21 high, low ← n, n− k

22 return result
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be run to plot the resulting behavior or to send commands to the robot platform.

Algorithm 7: BobTrajectory(P , k, IP addrA)
Input: P = (S1, S2, ..., Sn); k < n the number of segments per round; IP addrA Alice’s IP address
Output: C = (c1, c2, ..., cm), m = dn/ke, cj ∈ {F alse, T rue} for j = 1, 2, . . . , m, and c0 = T rue if

both move for the first round
1 connect(IP addrA)
2 round← 0 low ← 0 high← low + k

3 while high ≤ n do
4 R← P [low : high]
5 for i← low to high− 1 do
6 m← receive() // encoded

7 send(ACK) // ACK receipt

8 pA; qA ← receive()
9 send(ACK)

10 r = (rand(),rand(),rand(),rand())*(k*k)
11 n← Equation(Ru, Rv)
12 pB ← Ru t 1 qB ← Rj t 1

/* dr = h, hi = wi + ri, w1 = (m · pB) */

13 dr ← [(m · pB), (m · qB), (n · pA), (n · qA)]
14 dr ← dr + r

15 send(dr)
16 receive(ACK)
17 resultround ← BobCircuit(r)
18 round← round + 1
19 low, high← high, high + k

20 if low <n and high >n then
21 high, low ← n, n− k

22 return result

Algorithms 6 and 7 detail how the agents share the data they need. Algorithm 6 sends

a variable to Bob (line 8). Bob receives this variable in Algorithm 7 (line 6). An “ ack”

command is used to coordinate this data exchange since the function receive(Ack)

will block the execution until “ ack” arrives. Once both algorithms have calculated and
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received their data, an instance of the circuit is launched. This circuit instance receives

both Alice and Bob’s input and sends the response to both of them. The circuit is launched

via a system call, and the communication is achieved via sockets. If no collision is detected,

Alice and Bob may safely move simultaneously. Otherwise, they will have to take turns.

5.4.3. Rendezvous Using Secure 3D Intersection

For the parties to find each other in the rendezvous problem, it is not enough to detect

the intersection of the paths, but the meeting must occur at the same time. This is why

the problem of secure rendezvous reduces to the calculation of the intersection of two

time-parametrized paths with coordinates (x, y, t). In the 3D case, we need to use a fully

homomorphic encryption system [GB09] since the homomorphic multiplication property

is required between two encrypted numbers. The intersection of segments in the 3D case

can be resolved using the following steps:

1. Determine whether two segments are coplanar.

2. If they are coplanar, solve the problem in a subspace.

Suppose we have four points P1, P2, P3, P4 in a 3D Cartesian space, then segment P1P2 and

P3P4 are coplanar if and only if −−→P1P2 is perpendicular to −−→P1P3×
−−→
P1P4, that is, −−→P1P2·(

−−→
P1P3×

−−→
P1P4) = 0. Accordingly, we introduce a secure coplanar protocol in Protocol 2. A robust

algorithm to determine whether two 2D segments intersect or not was given by [CLRS01].

The procedure works with 2D vectors. Since the plane (or a line if two segments are

co-linear) spanned by two co-planar line segments is a subspace of the 3D Cartesian

space, the algorithm also works in this subspace. Along these lines, we extended the

algorithm (in Protocol 3) to address secure computation in 3D. This protocol can be used
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to determine whether there is a collision between two 3D paths. Concretely, we have used

it to detect rendezvous securely in two time-parameterized 2D trajectories. The function

DIR(u1,u2,u3, ) used in Protocol 3 computes the normal vector to the plane formed by
−−→u3u1 and −−→u2u1. It also must be pointed out that Protocol 3 does not consider the case when

one vertex from a segment lies directly on the other segment. Additional comparisons are

involved in order to handle this particular case.

Protocol 2 Secure Coplanar Protocol

Input: Given Alice’s segment SA and Bob’s segment SB .
Output: Whether SA and SB are coplanar.

1. Alice generates key pair (kpub
A , kpri

A ) using fully homomorphic encryption system.

2. Alice computes CuA and CvA , i.e., SA encrypted components using kpub
A .

3. Alice sends CuA and CvA to Bob.

4. Bob p = CvA − CuA , m = uB − CuA , n = vB − CuA .

5. Bob computes w = p · (m× n).

6. Bob computes h = w + rB , rB is a random number.

7. Bob sends h to Alice.

8. Alice computes t, decryption of h using kpri
A .

9. Alice and Bob use a garbled circuit to check whether t is equal to rB .

10. Return True if the circuit returns true, otherwise, return False.
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Protocol 3 Secure 3D-Intersection Protocol

Input: Given Alice’s path PA = (SA1 , SA2 , . . . , SAn ), and Bob’s path PB = (SB1 , SB2 , . . . , SBn ).
Output: Whether PA and PB intersects.

1. Alice and Bob generates public / private key pairs (kpub
A , kpri

A ) and (kpub
B , kpri

B ) respectively using fully
homomorphic encryption system.

2. For each pair of segments (SA, SB) where SA = (uA, vA) from Alice and SB = (uB, vB) from Bob.

a) Both Alice and Bob execute Protocol 2 steps 2 to 7, Bob gets rB and h.

b) Bob computes CuB = (E(kpub
B , uB.x), E(kpub

B , uB.y), E(kpub
B , uB.z)), CvB

= (E(kpub
B , vB.x), E(kpub

B , vB.y), E(kpub
B , vB.z)).

c) Bob sends CuB , CvB to Alice.

d) Alice computes: d1 = DIR(CuB , CvB , uA),

d2 = DIR(CuB , CvB , vA),

d3 = DIR(uA, vA, CuB),

d4 = DIR(uA, vA, CvB).

e) Alice generates 2 random numbers rA1 , rA2 and computes l1 = (d1 ·d2)+rA1 , l2 = (d3 ·d4)+rA2 .

f ) Alice sends l1, l2 to Bob; Bob sends the output h from Protocol 2 to Alice.

g) Alice computes t = D(kpri
A , h) and Bob computes t1 = D(kpri

B , l1), t2 = D(kpri
B , l2)

h) Alice and Bob use a garbled circuit to check if the following expression is true: ((t == rB) ∧
(rA1 > l1) ∧ (rA2 > l2)) where t, rA1 , rA2 are inputs fed by Alice and rB , l1, l2 are inputs fed by
Bob.

i) Return True if the garbled circuit returns true.

3. Return False.
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5.5. Experimental Results

5.5.1. Software Implementation of Persistent Monitoring

The online version described in the problem formulation section was implemented in

Python 3. The Fairplay software [BDNP08, MNP+04] for Secure Multi-party Computation

using garbled circuits was integrated into our implementation. Communication between

the parties was achieved via sockets. We also used the Python library python-paillier [pyt]

as it implements the scalar multiplicative and additive homomorphic cryptosystem Pai-

llier [Pai99]. Protocol 1 was implemented in a multi-round fashion, each round consisting

of two k-length paths PA and PB. After each round, the robots decide whether to move

simultaneously, if no collision is detected, or to determine who moves first otherwise. In

the latter scenario, a collision was detected and the robots must move sequentially. A

prior random agreement is used to settle which party has right of way. Fig. 5-2 shows two

desired paths, the protocol rounds are highlighted accordingly for each party. It shows

when a collision would only occur (though only if the paths collide in the same round).

The green circles representing potential collisions never happen owing to the use of our

strategy. The results are plotted in a simulation using Python.

Fig. 5-3 shows the execution of the paths shown in Fig. 5-2; the paths consist of 12

segments each. The implementation uses a subpath of length 4, i.e., k = 4, implying

that 3 rounds must occur. In the first round, see Fig. 5-3(a), the paths in the round are

collision-free and both robots can safely move simultaneously. Fig. 5-3(b) and Fig. 5-3(c)

show round 2, wherein a collision is detected, and the robots decide to move one after the

other. (In this simulation, Alice was randomly selected to go first.) Fig. 5-3(d) shows the

last round. No collision is detected within this round so both Alice and Bob head to their
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destinations simultaneously.
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Figure 5-2: Two desired paths of Alice and Bob in a multi-round simulation run. Three

collisions (red and green circles) are found if two paths are compared as a

whole. Only one collision (red circle) is found in our strategy as we divide the

paths into different segments and compare these segments in several rounds.

5.5.2. Implementation of 3D Intersection

Since the secure intersection decision in 3D environments involves multiplication bet-

ween encrypted numbers, a partial homomorphic cryptosystem like Paillier cannot imple-

ment Protocol 3. Hence, a fully homomorphic cryptosystem is needed instead. The Simple

Encrypted Arithmetic Library (SEAL) [CLP17, SEA] meets the necessary requirements.

This library was developed by the Cryptography Research Group at Microsoft Research

and has a Python wrapper PySEAL [TKS+18, PYS] making it possible to use within

Python.

Unlike the 2D case, where only Alice generates a public/private key pair, in the 3D
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Figure 5-3: Snapshots of the execution of paths shown in Fig. 5-2: (a) Alice and Bob

move together since no collision exists in the first four segments; (b) A co-

llision is detected in the next four segments, thus, Alice moves first; (c) Bob

moves next; (d) Both Alice and Bob move simultaneously as no collision

exists in the final four segments.

case, both Alice and Bob generate key pairs. Thereafter, they exchange their encrypted

points. We let Bob handle the vector computations related to the co-planar determination

and have Alice handle the vector computations related to intersection calculation. This

split is not essential for solving the problem: either Alice or Bob could perform all the

calculations but doing so allows us to distribute the computational load.

Fig. 5-4 presents the simulation results for the algorithm that computes time-parameterized

path collisions for objects moving in 3D space. This exemplifies our motivating example
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Figure 5-4: Collision detection (red circle) in three segments of Alice’s time-

parameterized path (red) and Bob’s time-parameterized path (blue).

of shared areas where manned aircraft and small UAVs need to navigate without revealing

their path information.

Fig. 5-5 shows a secure rendezvous experiment for Alice and Bob using 3D intersection.

If only two dimensions (Fig. 5-5 right) are considered, then two rendezvous points might

be found. However, when the time is considered, by the moment Bob arrives at the meeting

point, Alice may have been there in the past, or she may only arrive in the future and so

no real rendezvous will occur. A rendezvous (Fig. 5-5 left) only occurs when there is an

intersection in R2 × T.

5.5.3. Hardware Experiment

A physical implementation was also conducted to test the persistent monitoring algo-

rithms with two iRobot Create 2 platforms (see Fig. 5-1). The mobile robot platforms are
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Figure 5-5: Rendezvous determination using secure 3D intersection: (left) Only one

point of intersection is found when the time is included as an extra dimension;

(right) An additional false point of intersection is found in 2D that is resolved

in time.

connected to laptops running Ubuntu 12.0 SO, Intel Atom at 2.0 GHz, and 2 GB RAM.

Two robots communicate with each other using the pycreate2 Python library [Pyc]. Fig. 5-

1(a) shows the initial configurations and the intended path. In this experiment, all the

segments are compared to each other. Since one collision is detected, Alice (blue line)

moves first (Fig. 5-1(b) and 5-1(c)). Fig. 5-1(d) shows their final position. The interface

to send commands to the robots takes care of the orientation of the robot, and the dis-

tance traveled at each segment. Finally, the robots face “EAST”. More experiments and

simulation videos can be found at: http://users.cis.fiu.edu/\˜jabobadi/securemp/.

5.6. Conclusion and Future Work

This chapter demonstrated the feasibility of privacy-preserving multi-robot coordina-

tion. We believe that we have just scratched the surface and there are several practi-
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cal avenues for future research. In this work, privacy-preserving computational geometry

primitives are used which verify properties such as the distance between points, line

intersections [FA04], and point in polygons [AD01]. There also exists prior work in pri-

vacy computational geometry that constructs geometric objects. One such example is the

privacy-preserving calculation of convex hulls [HAGS09, EGT10] which has an initial pha-

se based on a data oblivious transfer algorithm that is then followed by secure protocols.

We will explore this route in the future to extend the range of privacy-preserving robotic

tasks that we can solve.

Hereby, a model where both agents need to cooperate in a shared environment but need

to limit the disclosure of information in their coordination is considered. Fully adversarial

motion planning where both Bob and Alice actively try to learn each other’s information

would be a further improvement of this work. It would also be interesting to explore semi-

honest models [BS05] where robots will follow the protocol but one robot is curious to

learn the other robot’s information.

A scheme to allow more than two parties is also a worthy aim, enabling multiple robots

to decide how to move to prevent any collision. It presents several system challenges as to

how many active connections they would manage and how to dynamically handle robots

entering and leaving groups of interacting robots.

Finally, other mobile platforms, such as micro aerial vehicles, could be used for vali-

dation in future implementations. From a motion planning perspective, these ideas can

be used as a final process in motion planning pipelines of autonomous vehicles [LaV11a,

LaV11b]. Although we did not consider kinematic constraints for this version, it would

be interesting to consider them in future works to allow for more complex robots.
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Conclusions and perspectives were mentioned in the final section of each of the previous

chapters; in this chapter, we present a brief summary of the dissertation, some broader

conclusions, and outline some potential directions for future research.

6.1. Summary

In this research, motion planning for autonomous vehicles is studied, based on the

literature three scenarios that present open challenges are considered: Unknown or hard

to calculate vehicle’s model, unknown vehicle configuration, unknown map and unknown

hostility. For each one of these scenarios, a concrete setting is defined and a strategy

is proposed, tested and evaluated. Most of the effort is devoted to underwater vehicles

since they are presented as a generalization of others types of vehicles, such as aerial and

terrestrial; always with the expectation of being able to accommodate the strategies to

other types. Also, it is considered throughout this work, that simplifying sensors, robots

or strategies is a key element to build up for more complex task and settings. That is why

communications among multiple simple robots is inevitable, and also privacy preserving

must be accounted. Consistently, the second scenario is considered for a simple bouncing

robot, but can perfectly be extended to any kind of vehicle using the strategy proposed
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in Chapter 2. In the same line of thought, all the contribution of this work can be put

together to solve larger scale scenarios such that, the model is hard to calculate, the

position is hard to precise, the map is partially unknown and the required task must be

performed avoiding collision with other entities from which the plan is meant to be kept

private.

6.2. Conclusions

The contributions in this research open multiple avenues, unlike the Theory of Compu-

tation where a set of equivalence classes are established along with the relationship bet-

ween each other, also whether the problems from each class can be solved by a particular

computer and the complexity for the solution, Robotic Systems do not have such a perk.

Probably because robotic systems has being though as practical implementation from the

beginning, or perhaps because of the complexity of being deployed into the real world

instead of just being abstracted. Simple robots, such as the bouncing robot presented in

Chapter 3 are means to define such a hierarchy and relationship between different robotics

systems. Some work in this direction have been proposed in [OL08], where a dominance

order is established based on the ability of robots to complete tasks. This equivalence

classes would also be interesting for the environment in which the robot is deployed, it

would be interesting to define the equivalence of robotic system based on the environ-

ment classification. Some clues can be found in the way the properties of the aquatic

environment are used to localize, since similar properties can also be exploited in other

environment either natural or artificial, such as luminosity, WIFI signals, Radio Signals,

intensity of visual guides, etc. In that sense, the strategy presented in this research can

be extended to others environments and furthermore, equivalence classes can be defined.
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6.3. Perspectives

As stated before, a myriad of avenues is unleashed from every contribution. In each

chapter, some perspectives have already been pointed out; in this section, some general

themes will be touched on regarding how to follow the development of this research. The

aforementioned integration of every situation would be the first avenue worth to mention,

for its interesting implications. Extending the planning algorithm for multiple vehicles at

the same time would be a significant contribution to the idea of dividing a task into several

simple robots, not just for achieving coverage but also to another type of task in which

non-centralized communication is the premise for collaboration. Finally, we envisioned

great potential in the further development of secure communication since it is crucial for

the reliability of multiple simple robots developing a particular task.
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