

Petrología y geocronología U-Pb de la Formación Noreán y riolitas asociadas ubicadas en los flancos oriental y occidental del Valle Medio del Magdalena, Colombia

Yenny Paola Casallas Veloza

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D.C., Colombia 2021

Petrología y geocronología U-Pb de la Formación Noreán y riolitas asociadas ubicadas en los flancos oriental y occidental del Valle Medio del Magdalena, Colombia

Yenny Paola Casallas Veloza

Trabajo de investigación presentado como requisito parcial para optar al título de:

Magister en Ciencias Geología

ec a. 3-f-Director:

Ph.D. Carlos Augusto Zuluaga Castrillón

Co-Director:

Cindy Lizeth Urueña Suárez Candidata Ph.D. Universidad de Lund, Suecia

Confirmation

Línea de Investigación: Petrología y Geoquímica

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D.C., Colombia 2021

A mis padres Rosi y Pedro, por darme su apoyo incondicional.

En algún lugar, algo increíble está esperando a ser descubierto.

Carl Sagan

Agradecimientos

A mis padres por enseñarme el valor del esfuerzo y la perseverancia, y ser mi soporte durante toda mi vida.

Al profesor Carlos Zuluaga por su buena disposición, su orientación, apoyo y exigencia.

A Cindy Urueña por su apoyo desinteresado y sus enseñanzas de geocronología.

A Mary Luz Peña del Servicio Geológico Colombiano, por abrirme las puertas de las instalaciones del Grupo de Investigaciones y Aplicaciones Nucleares y Geocronológicas (GIANG) y darme la oportunidad de aprender de geocronología.

A la Universidad Nacional de Colombia y al Servicio Geológico Colombiano por permitirme continuar con mi formación profesional, y brindarme las instalaciones y el tiempo para lograrlo.

A Nicolás Villamizar, Jimmy Muñoz y David Contreras del GIANG, que hicieron parte de la obtención de imágenes de catodoluminiscencia y análisis de U-Pb en Zr.

A mis amigas Carolina Paz, Lorena Rayo y Carina Álvarez por ayudarme en los momentos difíciles, y apoyarme tanto en lo académico como en lo personal para lograr culminar con éxito.

Resumen

La Formación Noreán ubicada en los flancos oriental y occidental del Valle Medio del Magdalena (VMM) está compuesta por una sucesión de arenitas líticas, feldespáticas, lodolitas y tobas hacia la base, y paquetes predominantes de tobas cristalinas, cristalovítreas y coladas de lavas dacíticas y andesíticas hacia la parte media y superior de la formación, y cuerpos intrusivos (aflorantes en el occidente del VMM). Esta unidad está relacionada geoquímica y geocronológicamente con los cuerpos cartografiados como riolitas en el sector de El Playón al noroccidente de Bucaramanga, pero que en este estudio fueron clasificados modalmente como tobas (cristalina y lítica) y lavas de composición cuarzo traquita. Los análisis geoquímicos de tobas, lavas y cuerpos intrusivos de la Formación Noreán de ambos flancos del VMM, y las tobas del sector de El Playón indican que pertenecen a la serie magmática calco alcalina, y presentan anomalías negativas de Nb, Ta, Sr y Eu, enriquecimiento de los elementos livianos (LREE) y empobrecimiento de los pesados (HREE), y evidencia de influencia cortical en ambientes de arcos volcánicos continentales. Edades absolutas de U-Pb en circones detríticos de arenitas líticas y tobas de la Formación Noreán registran eventos volcánicos en el rango de ~193 Ma a ~171 Ma con edades máximas de depositación, en litoarenitas de la base de la formación, entre ~187 Ma a ~165 Ma, y edades de circones heredados con rangos entre 1400-850 Ma y 1100-850 Ma; y para el sector de El Playón edades absolutas de U-Pb en circones detríticos registran eventos volcánicos a los ~198 Ma y ~185 Ma, y edades de circones heredados con rangos entre 1800-1000 Ma y 650-500 Ma. Estas edades indican que el vulcanismo inicio con la expulsión de tobas hacia el sector de El Playón, y continuó hacia el norte y occidente, hacia el sector de Aguachica y Arenal, mientras se producía material efusivo de lavas dacíticas y procesos de sedimentación. Las posibles unidades de aporte para las tobas de la Formación Noreán y las del sector de El Playón son el Cratón Amazónico o el Gneis de Bucaramanga. Usando la información petrográfica, geoquímica y geocronológica se propone el ambiente de formación de tipo extensional de cuenca intra-arco, en la que se desarrolló un extenso arco volcánico, con pulsos principales de vulcanismo y posterior emplazamiento de cuerpos plutónicos.

Palabras clave: Formación Noreán, secuencia vulcano sedimentaria, riolitas, Valle Medio del Magdalena, geocronología U-Pb, Triásico-Jurásico.

Abstract

Petrology and U-Pb geochronology of the Noreán Formation and rhyolites associates located on the flanks eastern and western Middle Valley Magdalena, Colombia

The Noreán Formation, located on the eastern and western flanks of the Middle Magdalena Valley (VMM), is composed of a succession of lithic and feldspathic sandstones, mudstones, and tuffs at the base, and predominant packages of crystal tuffs, crystal-vitric tuffs, and dacitic and andesitic lava flows, at the middle and upper part of the formation, and intrusive bodies (outcrops in the west of the VMM). This unit is related to the bodies mapped as rhyolites in the El Playón sector to the northwest of Bucaramanga in terms of geochemistry and geochronology, which were herein modally classified as tuffs (crystalline and lithic) and quartz trachyte lavas. The geochemical analyzes of tuffs, lavas, and intrusive bodies of the Noreán Formation on both flanks of the VMM, and the tuffs of the El Playón area show that they belong to the calco-alkaline magmatic series, and indicate negative anomalies of Nb, Ta, Sr, and Eu, enrichment of light elements (LREE) and depletion of heavy elements (HREE), as well as evidence of cortical influence in a continental volcanic arc environment. Absolute ages of U-Pb in detrital zircons of lithic sandstones and tuffs of the Noreán Formation record volcanic events in the range of ~193 Ma to ~171 Ma with maximum deposition ages, in litho-sandstones of the base of the formation, between ~187 Ma to ~165 Ma, and inherited zircon ages ranging between 1400-850 Ma and 1100-850 Ma; and for the EI Playón area, absolute ages of U-Pb in detrital zircons record volcanic events at ~198 Ma and ~185 Ma, and ages of inherited zircons with ranges between 1800-1000 Ma and 650-500 Ma. These ages indicate that the volcanism began with the expulsion of tuffs in the El Playón area, and extended towards the north and west, in the Aguachica and Arenal areas, while producing effusive material from dacitic lavas and sedimentation processes. The possible source rocks for the tuffs of the Noreán Formation and El Playón area are rocks from the Amazon Craton or Bucaramanga Gneiss. Using petrographic, geochemical and geochronological data, an extensional-type formation environment of an intra-arc basin is proposed, in which a wide volcanic arc was developed, with main volcanic pulses and subsequent placement of plutonic bodies.

Keywords: Noreán Formation, volcano-sedimentary sequence, rhyolites, Middle Magdalena Valley, U-Pb geochronology, Triassic-Jurassic.

Contenido

Contenido

1. Ger	neralidades	3
1.1	Localización	3
1.2	Marco Geológico Regional	3
1.3	Formación Noreán	.12
2. Met	odología	.18
2.1	Fase Preliminar	.18
2.2	Fase de Campo	.18
2.3	Métodos Analíticos	.19
2.3.	1 Petrografía	.19
2.3.	2 Determinación de minerales de alteración por Difracción de Rayos X (DRX)	20
2.3.	3 Geoquímica de roca total	.21
2.3.	4 Catodoluminiscencia en circones	.21
2.3.	5 Datación U-Pb en circones mediante LA-ICP-MS	.22
2.4	Localización Muestras Analizadas	.23
3. Asp	pectos petrográficos	.28
3.1	Petrografía Formación Noreán	.30
3.1.	1 Unidad Jncp (clástico-piroclástico)	.30
3.1.	2 Unidad Jnha (hipoabisal andesítico)	.37
3.1.	3 Unidad Jnpe (piroclástico-epiclástico)	.40
3.1.	4 Unidad Jned (efusivo dacítico)	.45
3.2	Unidad informal Riolita (Jr)	49
4. Geo	oquímica	.53
4.1	Análisis de alteración	.53
4.2	Clasificación Geoquímica	55
4.3	Discriminación de series magmáticas	.58
4.4	Ambiente Geotectónico	.63
4.5	Fuente del material	70
5. Geo	ocronología	73
5.1	Morfología de circones	73
5.1.	1 Rocas del flanco oriental, sector Aguachica	73

Pág.

5	 5.1.2 Rocas del flanco occidental, sector Arenal 5.1.3 Rocas del sector El Playón 5.2 Dataciones U-Pb 	78 80 81	
6.	Discusión de Resultados	91	
7.	Conclusiones	101	
A	Anexo: Muestras Analizadas	106	
B	Anexo: Petrografía	108	
C	Anexo: Difractogramas	109	
D.	Anexo: Patrones de Elementos de Tierras Raras (REE) y coeficientes Lambda	121	
Ε.	Anexo: Datos isotópicos U-Pb en circones	123	
Bi	Bibliografía		

Lista de figuras

Pág.

Figura 1-1: Mapa regional generalizado con la ubicación de las muestras de roca
analizadas para este estudio. El mapa geológico base es tomado y adaptado de Gómez
et al., 2015
Figura 1-2: Columna estratigráfica de la Formación Noreán (Clavijo, 1995)15
Figura 2-1: Ubicación estratigráfica de las muestras analizadas en el sector flanco
oriental del VMM. Columna estratigráfica de la Unidad Volcanoclástica de Noreán tomada
y adaptada de Clavijo (1995) y detalle de los sectores muestreados en la vía Aguachica-
Marinilla. En rojo se encuentran las edades concordia determinadas para cada muestra.
Figura 2-2: Localización muestras zona A (sector Aguachica) con las edades
determinadas
Figura 2-3: Localización muestras zona B y C (sector Arenal y Tiquisio) con las edades
determinadas
Figura 2-4: Localización muestras zona D (sector El Playón) con las edades
determinadas
Figura 3-1: Diagramas de clasificación para rocas ígneas intrusivas, extrusivas, tobas y
sedimentarias terrígenas analizadas en este trabajo29
Figura 3-2: Fotografías macroscópicas de rocas de la Unidad Jncp32
Figura 3-3: Fotografías de secciones delgadas de las muestras de la unidad Jncp. A la
derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL)34
Figura 3-4: Fotografías macroscópicas de rocas de la Unidad Jnha
Figura 3-5: Fotografías de secciones delgadas de las muestras de la unidad Jnha. A la
derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL)39
Figura 3-6: Fotografías macroscópicas de rocas de la Unidad Jnpe41
Figura 3-7: Fotografías de secciones delgadas de las muestras de la unidad Jnpe. A la
derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL)44
Figura 3-8: Fotografías macroscópicas de rocas de la Unidad Jned46
Figura 3-9: Fotografías de secciones delgadas de las muestras de la unidad Jned. A la
derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL)48
Figura 3-10: Fotografías macroscópicas de muestras del sector de El Playón51
Figura 3-11: Fotografías de secciones delgadas del sector de El Playón. A la derecha
tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL)52

Figura 4-1: Diagramas para determinación de alteración de las muestras analizadas. (a) Propuesta por Davies & Whitehead, 2006. (b) Propuesta por Large et al., 2001. (c) Diagrama ternario de Otha & Arai, 2007......55 Figura 4-2: Diagramas de clasificación geoquímica de las muestras volcánicas analizadas. (a) Diagrama TAS (Le Bas et al., 1986). (b) Diagrama R1-R2 (De La Roche et al., 1980). (c) Diagrama de elementos inmóviles (Winchester & Floyd, 1977).56 Figura 4-3: Clasificación geoquímica de cuerpos intrusivos que cortan la secuencia de la Formación Noreán hacia el oeste del VMM en la Serranía de San Lucas. Diagrama de Figura 4-4: Diagramas de discriminación de series magmáticas de muestras de lavas, tobas de la Formación Noreán, cuerpos intrusivos y riolitas asociadas. (a) Diagrama de rocas volcánicas de Miyashiro (1974). (b) Diagrama de rocas volcánicas de Irvine & Figura 4-5: Diagramas de discriminación de ambientes geotectónicos (Gorton & Schandl, 2000), de las muestras lavas y tobas de la Formación Noreán, cuerpos intrusivos asociados y muestras del sector de El Playón.64 Figura 4-6: Diagrama de discriminación tectónica de Pearce et al. (1984). Lavas y tobas de la Formación Noreán, y cuerpos intrusivos encontrados en el flanco occidental del VMM caen en los campos de arcos volcánicos, las lavas del sector El Playón en el campo de vulcanismo intraplaca.....64 Figura 4-7: Diagrama de discriminación tectónica de Pearce (1982). Lavas y tobas de la Formación Noreán y cuerpos intrusivos encontrados en el flanco occidental del VMM caen en los campos de lavas de arco, y una toba del sector El Playón en el de Figura 4-8: Diagramas de elementos traza normalizados según Sun & McDonough (1989). (a) Diagrama de las muestras de lava. (b) Diagrama de las tobas. (c) Diagrama de rocas plutónicas. Los sectores de muestreo están discriminados por el color de la línea de acuerdo la convención de los diagramas......66 Figura 4-9: Diagramas de elementos de tierras raras normalizados respecto al condrito de McDonough & Sun (1995). (a) Diagrama de las muestras de lava. (b) Diagrama de las tobas. (c) Diagrama de rocas plutónicas. Los sectores de muestreo están discriminados Figura 4-10: Diagrama Nb/Y vs. Rb/Y (Chazot & Bertrand, 1995) para determinar influencia cortical en las muestras de la Formación Noreán de ambos flancos del VMM. rocas plutónicas y tobas del sector El Playón.....71 Figura 5-1: Imágenes de catodoluminiscencia de granos de circones de diferentes unidades de la Formación Noreán en el flanco oriental del VMM. Los círculos blancos corresponden la ubicación del disparo (spot) de La-ICP-MS. Las edades reportadas corresponden a ²⁰⁶Pb/³²³U con 2-s de incertidumbre......77 Figura 5-2: Imágenes de catodoluminiscencia de granos de circones de diferentes unidades de la Formación Noreán en el flanco occidental del VMM. Los círculos blancos corresponden la ubicación del disparo (spot) de La-ICP-MS. Las edades reportadas corresponden a ²⁰⁶Pb/³²³U con 2-s de incertidumbre......79

Figura 5-3: Diagramas de densidad Kernel de las muestras analizadas de la Formación Figura 5-4: Datos de U-Pb en circones detríticos de arenita lítica de la Formación Bocas. Muestra 18HF-2. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, 2009)......85 Figura 5-5: Datos de U-Pb en circones detríticos de arenita lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-4. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barra azul corresponde a valor rechazado por el software. C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, Figura 5-6: Datos de U-Pb en circones detríticos de arenita lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-14. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, 2009)......86 Figura 5-7: Datos de U-Pb en circones de toba cristalina de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-5. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el Figura 5-8: Datos de U-Pb en circones de toba cristalo lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-6. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-D Edades del evento más antiguo. C) Edad concordia (Diagrama Tera-Wasseburg). D) Rangos de edades (Diagrama Weighted Mean), barras Figura 5-9: Datos de U-Pb en circones de toba cristalo vítrea de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-17. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades Figura 5-10: Datos de U-Pb en circones de toba cristalo vítrea de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-20. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades Figura 5-11: Datos de U-Pb en circones de granito la unidad Jgd aflorante en el occidente del VMM. Muestra 18HF-39. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras

Figura 5-12: Datos de U-Pb en circones de dacita de la unidad Jncp de la Formación Noreán aflorante en el occidente del VMM. Muestra 18HF-40. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el Figura 5-13: Datos de U-Pb en circones de riolita de la unidad r aflorante en el sector de El Playón al oriente del VMM. Muestra 18HF-25. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-F Edades de los eventos más antiguos. C) y E) Edades concordia (Diagrama Tera-Wasseburg). D) y F) Rangos de edades (Diagrama Weighted Mean)......90 Figura 5-14: Datos de U-Pb en circones de una toba lítica vítrea de la unidad r aflorante en el sector de El Playón al oriente del VMM. Muestra 18HF-28. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-F Edades de los eventos más antiguos. C) Edad concordia (Diagrama Tera-Wasseburg). D) y E) Rangos de edades (Diagrama Weighted Figura 6-1: Modelo tectonomagmático propuesto. Figura tomada y adaptada de Mpodozis & Ramos (2008). Texto en color azul, naranja y rojo adicionado a la figura original, de acuerdo con los resultados obtenidos en este trabajo. Edades de los rangos del vulcanismo Jurásico encontrado......101

Lista de tablas

Pág.

Tabla 3-1: Localización de las muestras tomadas para análisis petrográfico de la Unidad Jncp de la Formación Noreán y contacto inferior con la Formación Bocas, sector oriental del VMM
Tabla 3-2: Localización de las muestras tomadas para análisis petrográfico de la Unidad
Inha de la Formación Noreán
Tabla 3-3: Localización de las muestras tomadas para análisis petrográfico de la Unidad
Jnpe de la Formación Noreán 41
Tabla 3-4 ⁻ Localización de las muestras tomadas para análisis petrográfico de la Unidad
Jned de la Formación Noreán
Tabla 3-5: Localización de las muestras del sector de El Plavón para análisis
petrográfico
Tabla 4-1: Resumen de clasificación geoquímica muestras analizadas, de acuerdo a los
diagramas TAS de Le Bas et al. (1986). R1-R2 de De La Roche et al. (1980) y diagrama
de elementos inmóviles de Winchester & Floyd (1977)
Tabla 4-2: Resultados de geoquímica para elementos mayores (%) y trazas (ppm) de las
muestras de lavas, tobas, rocas intrusivas de la Formación Noreán y riolitas asociadas.59
Tabla 4-3: Valores de relaciones de elementos incompatibles de las muestras analizadas
calculados con los resultados geoquímicos presentados en la Tabla 4-270
Tabla 4-4: Relaciones de elementos incompatibles (REI) de reservorios geoquímicos
publicadas por varios autores
Tabla 4-5: Valores normalizados respecto al condrito CI (McDonough & Sun, 1995), y
coeficientes de forma λ (Anenburg, 2020) para las muestras de lavas y tobas de la
Formación Noreán, riolitas asociadas y cuerpos plutónicos72
Tabla 5-1: Muestras tomadas para análisis geocronológicos en el costado oriental del
VMM, en las unidades Jncp y Jned, y Formación Bocas73
Tabla 5-2: Muestras tomadas para análisis geocronológico en el costado occidental del
VMM de cuerpo dacítico y granítico asociado a la Formación Noreán78
Tabla 5-3: Muestras tomadas para análisis geocronológico en el costado oriental del
VMM de cuerpo riolítico, en el sector El Playón80

Introducción

El desarrollo de arcos magmáticos y de cuencas sedimentarias profundas en el borde noroccidental de Sur América durante el Mesozoico se ha explicado bajo dos modelos (Bustamante et al., 2016), por una lado como producto de la apertura del caribe durante el Jurásico medio, mediante la separación de Norte América y Sur América en un ambiente de rifting continental, y por el otro lado como el desarrollo de un arco magmático y cuencas back arc relacionadas desde el Mesozoico Temprano (Zuluaga et al., 2015). Evidencias geocronológicas de estos eventos durante el Triásico-Jurásico se han encontrado en rocas plutónicas, volcánicas y secuencias vulcanosedimentarias (López-Isaza & Zuluaga, 2020) (Sierra nevada de Santa Marta, Guajira y Macizo de Santander), y en Leal-Mejía (2011), INGEOMINAS-UIS (2006 a-d), Cuadros (2012), Cuadros et al. (2013), Ordoñez-Carmona et al. (2009), Mesz (2008) y Frantz et al. (2007) en López-Isaza & Zuluaga (2020) (Serranía de San Lucas). Los nuevos datos petrográficos, geoquímicos y geocronológicos mostrados aquí para la sucesión vulcanosedimentaria de la Formación Noreán, expuesta al noroeste del Macizo de Santander y en la Serranía de San Lucas (flanco oriental y occidental del Valle Medio del Magdalena), y de los cuerpos cartografiados como riolitas encontrados en el sector de El Playón en los municipios de Cáchira y Rionegro contribuyen a la comprensión del ambiente tectónico y los eventos volcánicos que ocurrieron durante el Jurásico en el borde noroccidental de Sur América.

Este trabajo de investigación se desarrolló bajo el Convenio Marco de Cooperación "CENTRO DE EXCELENCIA EN GEOCIENCIAS" entre la Universidad Nacional de Colombia y el Servicio Geológico Colombiano, enmarcándose en las Líneas de Acción: "evolución geológica de placas tectónicas en el noroccidente de Suramérica" y "estudios de geocronología, termocronología y procedencia sedimentaria asociados a caracterización de unidades y procesos tectónicos" con el alcance "conocer la edad de procesos magmáticos, metamórficos, volcánicos y sedimentarios que influenciaron el paisaje de la geografía nacional y la distribución de sus recursos".

OBJETIVO GENERAL

Proponer un marco tectonomagmático y geocronológico de la secuencia vulcanosedimentaria de la Formación Noreán y cuerpos volcánicos asociados expuestos en ambos flancos del Valle Medio del Magdalena.

OBJETIVOS ESPECIFICOS

Identificar aspectos petrográficos de las unidades volcánicas estudiadas de la Formación Noreán y cuerpos volcánicos asociados en muestras de roca recolectadas en campo.

Caracterizar geoquímicamente las unidades volcánicas por medio de análisis de elementos mayores y elementos de tierras raras.

Determinar el ambiente de formación de las unidades volcánicas ubicadas en las zonas de estudio.

Establecer la cronología de los episodios volcánicos de la Formación Noreán y de los cuerpos volcánicos asociados.

Definir relaciones geoquímicas y geocronológicas entre las rocas estudiadas de la Formación Noreán y los cuerpos de riolitas asociados.

1. Generalidades

1.1 Localización

En este trabajo se presenta el estudio de una sucesión de rocas de la Formación Noreán ubicada en ambos flancos del Valle Medio del Magdalena (VMM) en cercanía de los municipios Aguachica del Departamento del Cesar (zona A), Arenal (zona B) y Tiquisio (zona C) del Departamento de Bolívar. Por su posible relación con la Formación Noreán, también se estudiaron unas riolitas que afloran al norte de Bucaramanga, en los municipios de Cáchira del Departamento de Norte de Santander y El Playón del Departamento de Santander (zona D). Las zonas estudiadas se ubican en las planchas geológicas del SGC (escala 1:100.000): 75-Aguachica (Clavijo et al., 1992) para la zona A y B, 74-Guaranda (Gonzáles et al., 2015) para la zona C, y 97-Cachira (Arias & Vargas, 1978) y 109-Rionegro (Ward et al., 1977) para la zona D (Figura 1-1).

1.2 Marco Geológico Regional

La Formación Noreán es producto del vulcanismo Jurásico y aflora en el Macizo de Santander (MS) y en la Serranía de San Lucas (SSL) donde suprayace rocas Neoproterozoicas, Paleozoicas, y Mesozoicas (Triásico-Jurásico); la unidad está en contacto transicional con la Formación Bocas y en contacto fallado con la Unidad Conglomerática de Arenal hacia el sector oriental del VMM (Clavijo, 1995). La sucesión está cubierta parcialmente por rocas del Cretácico y depósitos del Cenozoico que rellenaron el VMM.

Figura 1-1: Mapa regional generalizado con la ubicación de las muestras de roca analizadas para este estudio. El mapa geológico base es tomado y adaptado de Gómez et al., 2015.

El Macizo de Santander es un bloque limitado al oeste por el sistema de fallas, con dirección NW, de Bucaramanga-El Carmen-Los Llanos (sinestral con componente inverso), al norte por las fallas NE de Curumaní (falla dextral) y Arenas Blancas (falla

inversa), al este por las fallas NS de Soapaga-Labateca-Las Mercedes (fallas inversas), y al sur por las fallas NE de Soapaga y Duga (fallas inversas, localmente dextrales). De acuerdo con Zuluaga & López (2019) el macizo tiene una geometría característica de fallas convergentes hacia el núcleo, dando la apariencia de un horst compresional, provocada durante regímenes compresivos con levantamientos basales asociados con procesos orogénicos. El Macizo está dominado por intensa deformación con cambios locales en la vergencia de las fallas inversas debido a la influencia de la terminación "cola de caballo" de la falla lateral derecha de Boconó. Esta terminación es caracterizada por un fuerte componente inverso de la falla Chitaga que progresivamente cambia a lateral izquierdo hacia el sur, paralelo a las fallas de Chucarina y Labateca. La tendencia general de la foliación metamórfica es N-S a NW-SE con ángulos de inmersión variables hacia el E y W, y localmente hacia el sur.

El MS está compuesto por unidades pre-Mesozoicas cristalinas, por cinturones magmáticos de edad Triásico-Jurásico con orientación N-S paralelos a la dirección del macizo y que cortan el núcleo cristalino metamórfico, y algunos cuerpos intrusivos del Paleozoico y Cenozoico. Las unidades pre-Mesozoicas corresponden al Gneis de Bucaramanga, Ortogneis, Esquistos de Silgara y Metasedimentitas de Guaca La virgen (MGV). Los cinturones magmáticos del Triásico-Jurásico están compuestos por las unidades Granodiorita de Onzaga, Diorita del Rio Guaca, Diorita y Granodiorita del Río Suratá (Plutón), Monzogranito de Pescadero, Cuarzo-monzonita de Santa Bárbara, Cuarzo-monzonita de Mogotes, Cuarzo-monzonita de La Corcova, Tonalita de Páramo Rico, Granito de Agua Blanca (Batolito de Agua Blanca), Granito alcalino de Ocaña (Batolito de Ocaña), Batolito de Rionegro. Los cuerpos intrusivos del Paleozoico son los plutones no foliados del Granito de Durania, Granito de Pamplona y Diorita de Sanín-Villa, que ocurren al este y oeste de los extremos del Macizo y con menores tamaños comparados con los plutones Triásico-Jurásicos (Zuluaga & López, 2019).

El Gneis de Bucaramanga es una unidad migmatítica con bandas de leucosomas de tonalitas a granitos foliados y no foliados con espesores variables. Los leucosomas foliados son comúnmente concordantes con la foliación general, mientras que los no foliados muestras relaciones discordantes con los mesosomas. Los mesosomas están representados por gneises y esquistos hornbléndicos, anfibolitas, gneises y esquistos ricos en micas, y gneises cuarzo-feldespáticos con variables cantidades de cordierita, silimanita

y granate, esta litología tiene continuidad regional NW-SE a NE-SW de paquetes alargados que se extienden N-S dentro del macizo. Las estimaciones de presión y temperatura indican que esta unidad alcanzo localmente condiciones metamórficas por encima de 800°C (Zuluaga & López, 2019). La edad del metamorfismo es interpretada por van del Lelij et al. (2016) en el rango de 490-450 Ma de acuerdo con edades U-Pb obtenidas en circones de gneises y leucosomas en migmatitas del Gneis de Bucaramanga (Zuluaga & López, 2019). Estas rocas tienen una edad de exhumación de Eoceno tardío (35-30 Ma) y Oligoceno a Mioceno (25 a 20 Ma) (Urueña, 2014). El Gneis es intruido por las rocas de la Cuarzo-monzonita de Santa Bárbara, Cuarzo-monzonita de Mogotes, Cuarzo-monzonita de La Corcova, Tonalita de Páramo Rico, Plutón de Suratá, Granito de Ocaña y localmente por el Batolito de Rionegro.

La unidad Ortogneis agrupa varios cuerpos ortognéisicos félsicos a intermedios en el MS (Ward et al., 1973), su foliación es concordante con la de los Esquistos de Silgara y el Gneis de Bucaramanga. Uno de sus cuerpos más extensos se encuentra en el núcleo del MS, en el área de Berlín (informalmente llamado Ortogneis de Berlín). Está compuesto por capas gruesas a finas de cuarzo + plagioclasa + feldespato K con cantidades variables de granate, biotita, moscovita, silimanita y magnetita, y prominentes lentes cuarzo + feldespato dentro de una matriz rica en mica. Entre las edades reportadas del Ortogneis de Berlín y cuerpos relacionados se incluyen (i) 450 ± 80 Ma (Rb/Sr en roca total) en un granito gnéisico del Rio Caraba (Goldsmith et al. 1971), (ii) 413 ± 30 Ma (K/Ar en hornblendas) en una metadiorita en cercanías de la ciudad de Ocaña (Goldsmith et al. 1971), (iii) 472 ± 3.4 Ma (U/Pb en circones por ablación laser; van der Lelij, 2013), y (iv) 465 a 421 Ma (K/Ar en roca total; Forero 1990) (Zuluaga & López, 2019). El Ortogneis se encuentra intruido por la Cuarzo-monzonita de Santa Bárbara (intruida a su vez por la Tonalita de Páramo Rico).

Los Esquistos de Silgará son una secuencia metasedimentaria pelítica a semipelítica, con metamorfismo en las facies de epidota a anfibolita, constituida por mármoles, esquistos calco-silicatados, anfibolitas, cuarcitas y esquistos pelítico a semipelíticos. Estimaciones de presión y temperatura para esta unidad arrojan rangos de temperatura entre 500°C y 650°C con presiones por encima de 4 kbar hasta más de 7,2 kbar, en facies anfibolita alta (Zuluaga & López, 2019). Análisis isotópicos (C y O) y dataciones absolutas (U-Pb en

circones detríticos) sugieren que la sedimentación de protolitos se produjo a partir del Neoproterozoico hasta los primeros tiempos del Cámbrico (Arenas, 2004; Silva et al., 2004 en Zuluaga & López, 2019) consistente con edades en circones detríticos de 906,5 \pm 10,5 a 1610,3 \pm 9,8 Ma en el área de Cepitá, y de 506,7 \pm 9,3 a 2586,9 \pm 10,2 Ma en el área de Matanzas (Mantilla-Figueroa et al., 2016). Los esquistos son intruidos por la Cuarzo-monzonita de Mogotes, Tonalita de Páramo Rico, Granito de Agua Blanca (y también en contacto fallado), Plutón de Suratá y Batolito de Rionegro.

La unidad Metasedimentitas de Guaca – La Virgen (MGV), suprayace de manera discordante a los Esquistos de Silgará y está compuesta por pizarras y filitas con cuarzomoscovita-clorita, y con menor contenido de caolinita, illita, plagioclasa y feldespato potásico. Presenta evidencias de metamorfismo dinámico sobreimpuesto en la zona de transición entre diagénesis y metamorfismo. Se han propuesto tres edades principales para el protolito: una edad del Devónico medio: Emsiano (Ward et al., 1973), una edad silúrica: Ludloviano (Forero, 1990), y una edad Carbonífero-Pérmica (Moreno-Sánchez et al., 2005) en Zuluaga & López (2019). Esta unidad es intruida por la Cuarzo-monzonita de Santa Rosita (presumiblemente) y por la Cuarzo-monzonita de Mogotes (Zuluaga & López, 2019).

Los intrusivos del Triásico-Jurásico, están representados por un grupo de batolitos y stocks N-S, compuestos por rocas faneríticas, inequigranulares, con tamaños de grano de medio a fino, y localmente porfiríticas, que localmente están intruidas por diques pegmatíticos, graníticos/tonalíticos. Estas rocas presentan texturas tales como pertítica, feldespatos zonados, mirmequíticas e intercrecimiento granofírico principalmente en diques aplíticos, y localmente deformación en estado sólido hacia los márgenes de los plutones (Zuluaga & López, 2019). Por lo general contienen cuarzo, feldespato K y plagioclasa, localmente muscovita+granate o biotita+hornblenda+epidota. Algunos de estos granitoides contienen a asociación de hornblenda+epidota sugiriendo un carácter peraluminoso, otros tienen la asociación para los circones en rocas del cinturón Triásico-Jurásico se encuentran en rangos entre 212 Ma y 196 Ma (Dörr et al. 1995; Mantilla et al. 2013; van der Lelij, 2013; van der Lelij et al., 2016 en Zuluaga & López, 2019); y las edades de enfriamiento de K-Ar en micas entre 196 Ma y 172 Ma (Ward et al., 1973 en Zuluaga & López, 2019).

Las edades radiométricas U-Pb de cristalización en circones de las intrusiones del Paleozoico se encuentran entre 483 Ma y 430 Ma, y las edades de enfriamiento en micas y anfíboles, y Ar-Ar/K-Ar en roca total entre 461 Ma y 350 Ma (Ward et al. 1973; Boinet et al., 1985 en Zuluaga & López, 2019).

Hacia el sector El Playón al NW de Bucaramanga, el basamento comprende también las mismas unidades del Gneis de Bucaramanga, Formación Bocas, Esquistos de Silgara (Arias & Vargas, 1978) y, Monzogranito de Rionegro (Arango, et al., 2020). El Monzogranito está compuesto predominantemente por monzogranitos, seguidos de sienogranitos, granodioritas, cuarzosienitas, tonalitas, cuarzomonzonitas, monzonitas y cuarzodioritas, según Arango et al. (2020). El sector es limitado al oriente por la falla de Bucaramanga, poniendo en contacto la Formación Bocas y Formación Girón, con Monzogranito de Rionegro (de acuerdo a la cartografía de Arias & Vargas, 1978; y Arango et al., 2020).

La Formación Bocas ha sido cartografiada al este del municipio de Aguachica, correspondiente al límite entre las planchas 75-Aguachica y 76-Ocaña, consiste en una alternancia de arenitas subarcósicas a líticas y lodolitas con intercalaciones aisladas de calizas y algunas capas de tobas y lavas de composición intermedia (Clavijo, 1995). Su edad fue inicialmente interpretada como del Jurásico Inferior (Remy et al., 1975 en Clavijo, 1995) y en el rango Carbonífero al Jurásico (Ward et al., 1973; Mojica et al., 1996); datos recientes de van der Lelij et al. (2016) indican una edad Pérmico o más vieja, aunque Alarcón et al. (2020), basados en estudios paleontológicos, le asignan una edad de Triásico tardío. La unidad aflora en cercanía del municipio de El Playón donde está constituida por limolitas arcillosas, ligeramente calcáreas, lutitas y escasas intercalaciones de conglomerados con guijos de caliza gris, lutita gris y cuarzo en una matriz calcáreo arenosa, la sucesión esta intruida por riolitas y brechas, y presenta comúnmente diques básicos de acuerdo con Arias & Vargas (1978). Un dique de riolita gris porfirítica vesicular que atraviesa la Formación Bocas al oeste de la falla de Santa Marta - Bucaramanga fue datado por el método U-Pb en circones por van der Lelij (2013) indicando edades medias ponderadas de 250,7 ± 4,3 Ma, y edades heredadas edades entre 449,9 ± 9,7 Ma y 1316,9 ± 25,7.

La Unidad Conglomerática de Arenal aflora principalmente cerca al corregimiento de Arenal, y en menor medida cerca al municipio de Aguachica, está compuesta por un conjunto inferior de arenitas conglomeráticas, arenitas líticas y conglomerados, un conjunto intermedio de alternancia de lodolitas-shales y arenitas conglomeráticas, y un conjunto superior constituido por conglomerados alternados con lodolitas. La edad de esta unidad es interpretada como del Jurásico Superior (Clavijo, 1995) y correlacionada con la Formación Jordán (Jurásico Inferior a Medio), se trata hacia su parte inferior de intercalaciones de arenitas, limolita, lutitas y conglomerados, afectados por material volcánico riolítico ya sea en forma concordante o en forma de diques, y hacia la parte superior con predominio de shales generalmente calcáreos con intercalaciones de limolita y arenisca cuarzosa, también con presencia de material volcánico riolítico en forma de silos o diques, con venas calcáreas y cristales de calcita (Daconte & Salinas, 1980).

La Serranía de San Lucas constituye la parte más septentrional de la Cordillera Central, es un bloque limitado al occidente por el sistema de falla de Palestina-Bagre, al norte por el sistema Espíritu Santo-Murrucucú, al oriente por la falla inferida de Morales y al sur por la Falla de Cimitarra (Clavijo et al., 2008). Está conformado por las rocas metamórficas del Gneis de San Lucas (Meso-Proterozoico), de las Filitas y Esquistos de Pinillos (Paleozoico), y por cuerpos intrusivos del Triásico - Jurásico (Granitoide de San Lucas, el Granito de Norosí, la Diorita de Segovia, la Granodiorita de San Martín de Loba y Juana Sánchez). Además, se observan rocas conglomeráticas del Triásico (Formación Sudán), y rocas volcánicas y volcanoclásticas del Jurásico agrupadas en la Formación Noreán o Complejo Volcánico de Noreán (Clavijo et al., 1992; Clavijo, 1995, INGEOMINAS-UIS, 2006 a, d); y unidades sedimentarias desde el Cretácico (Formación Tablazo, Simití, La Luna, Umir), hasta cuaternarias en el flanco oriental (Clavijo et al., 1992; Clavijo, 1995, INGEOMINAS-UIS, 2006 c, d).

El Gneis de San Lucas corresponde a un grupo de gneises cuarzo-feldespáticos, biotíticos y hornbléndicos, gneises migmatíticos, granulitas y granofelsas, en menor proporción gneises anfibólicos y anfibolitas. Se encuentra en contacto discordante hacia el este con el Complejo Volcánico de Noreán, y hacia el oeste en contacto fallado a lo largo de las fallas de Palestina, Amacerí y Malena con las Filitas y Esquistos de Pinillos (González et al., 2015), y en contacto intrusivo con el Granito de Norosí. Las edades reportadas para esta unidad oscilan entre 1124 \pm 22 Ma de U-Pb en circones; 1312 \pm 3,1 Ma y 600 Ma de

Sm-Nd en roca total; 1600 Ma de Sm-Nd en plagioclasas por INGEOMINAS-UIS (2006a); 1502 ± 18 Ma, 1527 ± 14 Ma, 1509 ± 8,2 Ma, 1507 ± 6.0 Ma de U-Pb en circones (Cuadros, 2012 en González et al., 2015); 1500 Ma y 1540 Ma (edades del protolito) y 1180 Ma (del metamorfismo Grenvilliano) de U-Pb en circones (Cuadros, et al., 2013 en González et al., 2015); 1501 Ma de U-Pb en circones (Ordoñez-Carmona et al., 2009 en González et al., 2015) y 434-1237 Ma (con picos principales entre 1330 - 1200 Ma) en un gneis porfiroclástico; 629-1251 Ma (con picos principales entre 1230-1160 Ma) en gneis biotítico; 551-1169 Ma (con picos principales entre 1120 - 1000 Ma) y 1797-1096 Ma (con picos principales entre 1330-1100 Ma) en granofelsas cuarzo feldespáticas (González et al., 2015).

La unidad Filitas y Esquistos de Pinillo, localizada en el borde NW de la SSL, al oeste de la Falla de Palestina está constituida por un conjunto de filitas y esquistos cuarzo sericíticos grafitosos ocasionalmente con andalucita, cuarcitas y metalimolitas. Se encuentran en contacto fallado con el Gneis de San Lucas y localmente reposan discordantemente sobre migmatitas asociadas al Gneis. Su edad ha sido interpretada por Restrepo-Pace (1997) como finales del Silúrico y principios del Devónico (González et al., 2015).

Los cuerpos intrusivos del Triásico-Jurásico con dimensiones batolíticas son el Granito de Norosí y la Diorita de Segovia. Para Leal-Mejía (2011), el Batolito de Norosí incluye las rocas definidas por Bogotá & Aluja (1981) como Batolito Occidental y Batolito de Norosí u Oriental (separados entre sí por una franja de esquistos y neises, cuyos límites están definidos por las fallas Palestina al oriente y El Bagre al occidente) y las rocas granodioríticas aflorantes cerca a los caseríos de Juana Sánchez y San Martín de Loba al norte de la SSL, denominadas por INGEOMINAS-UIS (2006 b) como Granitoides de San Lucas. Para González et al. (2015), el Granito de Norosí se trata del cuerpo intrusivo expuesto al oriente de la Falla de Palestina. La composición de esta unidad varía de granito a granodiorita y monzodiorita, con cuarzo, plagioclasa y feldespato K como minerales esenciales, y anfíbol-biotita como minerales accesorios. El Granito se encuentra en contacto fallado por el occidente por medio de la Falla Palestina con las Filitas y Esquistos de Pinillos y en contacto intrusivo y fallado por medio de la Falla Ariza con el Gneis de San Lucas. Edades reportadas del Granito de Norosí de U-Pb en circones se encuentran entre 185 ± 3,6 Ma y 187 ± 2,8 Ma en granodiorita, 193 ± 5,8 Ma en diorita por Leal-Mejía (2011);

181,8 \pm 3,2 Ma y 178 \pm 4,3 Ma en granodioritas por Cuadros (2012), 173 Ma por Cuadros et al. (2013); 184 Ma por Ordoñez-Carmona et al. (2009); por el método K-Ar en biotita se reportan edades entre 200 a 190 Ma por Mesz (2008); y por el método Rb-Sr en Feldespato-K y roca total en 185 \pm 66 en stocks asociados al Batolito de Norosí por INGEOMINAS–UIS (2006 a), y 185 a 135 Ma en roca total por INGEOMINAS–UIS (2006 a).

La Diorita de Segovia, es un cuerpo alargado, compuesto por dioritas, granodioritas y cuarzodioritas. Se infiere que intruye las Filitas y Esquistos de Pinillos. Edades reportadas por el método de U-Pb en circones para este cuerpo oscilan entre $155,37 \pm 0,81$ Ma y 162 $\pm 2,5$ Ma con edades concordia entre $157 \pm 7,2$ Ma y $158 \pm 0,87$ Ma (Jurásico Medio a Superior); y por el método Lu-Hf en circones entre 152 Ma y 167 Ma por González et al. (2015); U-Pb en circones de $154 \pm 1,6$ Ma por (Frantz et al., 2007 en González et al., 2015), y 158 y 167 Ma por Leal-Mejía (2011).

Hacia el noroccidente, sobre este basamento reposan discordantemente rocas conglomeráticas de la Formación Sudan, compuesta de base a techo por un paquete de conglomerados intercalados con areniscas rojas con láminas constituidas por cantos redondeados a subredondeados de migmatitas, granitos y cuarzo lechoso en proporciones similares; hacia la parte media aparecen limolitas de color rojo y al techo predominan arenitas tobáceas de color amarillo (González et al., 2015). Al norte se encuentra en contacto fallado con el Gneis de San Lucas y el Complejo Volcánico de Noreán (según la denominación a la Formación Noreán dada por INGEOMINAS-UIS, 2006b). La edad ha sido asignada como Triásica (González et al., 2015).

De acuerdo con Clavijo (1995) el patrón estructural del área de estudio a la altura de los municipios de Aguachica y Arenal está controlado por cuatro grupos de fallas y lineamientos. El primer grupo perteneciente a fallas normales con dirección NE-SW, ellas son Noreán, Piedra Rica, Gamarra-Ayacucho, El Piñal, Norosí, Caño Hondo, La Dorada-La Gloria, Arenal, La Honda, La Labranza, San Pedro, San Francisco y Morales. El segundo, con dirección NNW-SSE, correspondientes a la falla inversa con buzamiento al NE de Aguachica y lineamientos el Dique y Palenquillo. El tercer grupo por las fallas inversas, La Morena y La Campana, buzando al NE de rumbo NW-SE. El cuarto grupo por

las fallas Morales y Simoa, con dirección N-S, siendo la de Morales interpretada como normal y reactivada como inversa con buzamiento al este.

1.3 Formación Noreán

La secuencia volcano sedimentaria de la Formación Noreán fue definida por Clavijo (1995). Aflora en la Serranía de San Lucas (SSL) y en el costado NW del Macizo de Santander (MS). Su localidad tipo se encuentra en la vía Buturama-Bombeadero en cercanía del corregimiento de Noreán del municipio de Aguachica (Cesar).

La sucesión fue cartografiada hacia el flanco occidental del Macizo de Santander (Serranía de los Motilones) por Clavijo et al. (1992) y por Royero et al. (1994); allí, fue denominada como Unidad Volcanoclástica de Noreán y tratada en el rango de formación litoestratigráfica. Hacia la SSL, Kassem & Arango (1977) se refieren a la sucesión como rocas sedimentarias y volcánicas del Jura-Triásico, mientras que INGEOMINAS-UIS (2006c) la denominan Formación Noreán, y González et al. (2015) como Complejo Volcánico de Noreán (unidad litodémica).

Clavijo (1995) describe esta sucesión de alrededor de 4.500 m de espesor como compuesta por arenitas y lodolitas líticas subarcósicas, lavas y tobas predominantemente de composición andesítica, con cuerpos hipoabisales (silos y diques) asociados y rocas brechoides; este mismo autor divide la unidad en cuatro conjuntos con base en su litología, composición y estilo de emplazamiento e identifica que la naturaleza volcanogénica de la secuencia determina el carácter lentiforme de los cuatro conjuntos, así como las interdigitaciones entre ellos. Hacia el este del VMM, de base a techo, los cuatro conjuntos son: (i) clástico–piroclástico (Jncp), (ii) piroclástico–epiclástico (Jnpe), (iii) efusivo dacítico (Jned) y (iv) hipoabisal andesítico (Jnha) (Figura 1-2). Hacia el occidente (SSL) se identifican los mismos tres conjuntos superiores y el de la base es descrito como un conjunto efusivo brechoide de conducto (Jna). Por otro lado, Royero (1994) en la Plancha 65-Tamalameque, divide esta sucesión en seis conjuntos litológicos: piroclástico epiclástico (Jnpe), efusivo esferulítico (Jnee), piroclástico y efusivo dacítico (Jnpd), efusivo dacítico (Jned), efusivo riolítico (Jner) e hipoabisal andesítico (Jnha).

La Formación Noreán suprayace en continuidad estratigráfica y en contacto transicional a la Formación Bocas, infrayace en discordancia angular a la Formación Tablazo y está en contacto fallado con la Unidad Conglomerática de Arenal (Jsa) hacia el sector oriental del VMM (Clavijo, 1995; Figura 1-2). En la Plancha 65-Tamalameque, Royero (1994) señala que en algunas zonas infrayace a la Formación Tablazo y se encuentra en contacto fallado con el Gneis de Bucaramanga y las formaciones La Virgen, Tablazo y La Luna. Adicionalmente, para el área de la Plancha 55-El Banco, INGEOMINAS-UIS (2006a) describen que esta formación se presenta en tres franjas con dirección NNW-SSE, dos aflorando al este de la Falla Bucaramanga y otra al occidente de la misma. La faja occidental es la más extensa, es intruida por cuerpos granodioríticos y está limitada al occidente por la Falla de Caracolí, que la pone en contacto con la Formación La Virgen, y al oriente por discontinuidad estratigráfica con la Formación Rio Negro.

Para el sector occidental del VMM (SSL), la secuencia igualmente infrayace, en contacto discordante, a las Formaciones Tablazo y Arenal (Clavijo, 1995) y descansa en inconformidad sobre el Gneis de San Lucas o localmente en contacto fallado e intruido por el Granitoide de San Lucas (INGEOMINAS-UIS, 2006b); también de manera local, como se observa en la plancha 64, suprayace concordantemente a la Formación Morrocoyal y es intruida por rocas ígneas del Jurásico Superior (INGEOMINAS-UIS, 2006a).

La edad de la Formación Noreán inicialmente se estableció por relaciones de campo y estratigráficas como Jurásico Inferior a Medio por Clavijo (1995) y Royero (1994). Una hoja de la planta *Ptilophyllum* colectada en la zona correspondiente a la plancha 75, permitió restringir su edad a no más antigua que el Jurásico Temprano (Clavijo, 1995). Por otro lado, INGEOMINAS-UIS (2006 b, d) reportaron edades usando el método de K-Ar en diques de riolitas que cruzan la Formación Morrocoyal en la plancha 96-Bocas del Rosario de 194 ± 6 Ma que corresponde a la parte baja del Jurásico Temprano, y usando el método de Rb-Sr en lavas y tobas de la zona que abarca la plancha 64-Barranco de Loba de 161 ± 27 Ma correspondiente a la parte alta del Jurásico Medio. Por el método de U-Pb en circones, Leal-Mejía (2011) reportó para el sector de Santa Rosa del sur, edades de un dique porfirítico riodacítico y una toba cristalina dacítica de 201,6 ± 3,6 Ma y 196,1 ± 4,4 Ma, respectivamente. González et al. (2015) reportaron para una toba de lapilli de líticos una edad U-Pb en circones de 189 ± 3,3 Ma y 190 ± 2,2 Ma, para una toba de ceniza de cristales y vidrio una edad 194 ± 2,3 Ma, para una dacita porfirítica 190 ± 3,2 Ma, y también

reportan edades de Lu-Hf en circones entre 180 y 198 Ma. Correa-Martínez et al. (2019) obtuvieron edades U-Pb en circones de una andesita basáltica, una andesita y una riolita de 192,4 \pm 2,2; 184,9 \pm 2,0 y 175, 9 \pm 1,1 Ma. Villamizar et al. (2019), reportan edades de 186 a 174 Ma en muestras de ignimbritas y granito en el borde oriental de la Serranía de San Lucas. Por último, Avellaneda-Cáceres et al. (2020) obtuvieron, en una muestra de sienogranito, edades U-Pb en circones de 176,7 \pm 2,2 Ma, y de 176,0 \pm 2,1 Ma en un dique riolítico, con edades heredadas de 1730 \pm 160 Ma, 1446 \pm 37 Ma, 1353 \pm 54 Ma, 1376 \pm 28 Ma, 1007 \pm 43 Ma, 973 \pm 48 Ma y 600 \pm 61 Ma; y en una toba lítica 191,2 \pm 1,8 Ma, con edades heredadas de 577,7 \pm 5,5 Ma y 1564 \pm 15 Ma.

De acuerdo con Clavijo (1995), la sucesión se acumuló en un ambiente continentalepicontinental muy influenciado por vulcanismo explosivo andesítico-dacítico, rellenando una paleocuenca generada por la interacción compleja de la subducción de la placa Pacifica al occidente y la riftogénesis Caribe al norte al comienzo del jurásico, en lo que hoy corresponde a los valles del Magdalena Medio y Cesar. Citando a Clavijo (1995):

"...El relleno de la cuenca se inicia con la irrupción de un mar somero (Formación Bocas) que ocupa las partes más bajas acompañado de una actividad volcánica incipiente. El proceso continua con la emisión de tobas y la acumulación de litoclastitas tobáceas (segmento inferior del Conjunto Jncp) que sugieren un volcanismo explosivo cuyos centros de emisión estarían a una distancia intermedia del área de depósito (intermediate-source facies de FISHER y SCHMINCKE, 1984) distanciamiento que se acentúa a medida que se asciende estratigráficamente, como lo evidencia la presencia de arenitas y lodolitas subarcósicas fluvio lacustres (segmento medio y superior del Conjunto Jnpe), cuyo potente espesor (aproximadamente 1000 m) es importante extensión areal, no solo atestiguan desplazamiento de la actividad volcánica (facies distantes) sino disminución progresiva de esta última. El volcanismo es aéreo en algunos sectores, subaéreo en otros (depósitos de "surge", presencia de algas en chert). Esta potente secuencia acumulada fue emitida a través de centros volcánicos, cuyas raíces ha expuesto la erosión (Jna, Jr). El evento culmina con la emisión de lavas dacíticas y andesíticas (Jned) y por el emplazamiento de los cuerpos hipoabisales andesíticos (Jhna)".

Para INGEOMINAS-UIS (2006 b, c) la Formación Noreán registra un gran evento volcánico de carácter explosivo a principios y mediados del Jurásico que generó material clástico y efusivo depositado en una cuenta tipo graben. La cuenca fue inundada por un mar somero y drenada por ríos y lagos en la región que actualmente ocupan el Valle Medio del Magdalena, la depresión del Cesar, y las estribaciones orientales de la SSL y occidentales de la Cordillera Oriental. González et al. (2015) afirman que el origen de esta formación

corresponde a un magma único basáltico calco alcalino, originado en un arco volcánico, con contaminación cortical que sufrió cristalización fraccionada, el cual generó una serie de rocas básicas hasta ácidas, predominando las ácidas. Correa-Martínez et al. (2019) indican que las rocas volcánicas y piroclásticas de esta formación se generaron en un ambiente relacionado con subducción, probablemente de margen continental. Avellaneda-Cáceres et al. (2020) concluye que la amplia variación litológica de esta unidad y su afinidad con sistemas volcano-plutónicos calcoalcalinos permite señalar que se formó en un ambiente extensivo.

Figura 1-2: Columna estratigráfica de la Formación Noreán (Clavijo, 1995)

La Formación Noreán es correlacionable en la región oriental con la Formación Jordán (Clavijo, 1995) y al norte con la Formación Guatapurí y posiblemente con los conjuntos ignimbríticos de Caja de Ahorros, La Paila y la Piña aflorantes en las estribaciones orientales de la Sierra Nevada de Santa Marta y en el Valle del Río Cesar (Tschanz et al., 1969 en Clavijo, 1995; en Royero et al., 1994; en INGEOMINAS-UIS, 2006 b, c). También se correlaciona con la Formación La Quinta en la Serranía de Perijá en Colombia y Venezuela (Maze, 1984 en Clavijo, 1995; en INGEOMINAS-UIS, 2006 b, c) y con las formaciones Corual y Los Indios en la Sierra Nevada de Santa Marta, y la Formación Rancho Grande en la Península de La Guajira (Tchanz et al., 1974 en González et al., 2015). Aunque la Formación Nogontova, compuesta por basaltos almohadillados expuestos en la Cordillera Oriental, no tiene dataciones absolutas, por correlaciones estratigráficas se propuso situarla entre el Triásico y el Jurásico medio (Moreno-Sánchez et al., 2016), siendo esta unidad posiblemente correlacionable con los basaltos que se han encontrado (Correa-Martínez et al., 2019 y este trabajo muestra 18HF-23) de la Formación Noreán.

En la región occidental (SSL) se ha correlacionado con una sucesión de capas rojas en la Quebrada La Mojana (Geyer, 1982 en Clavijo, 1995), con una secuencia litológica en la Quebrada Yanacué (Bogotá & Aluja, 1981 en Clavijo, 1995), con el Conjunto Volcánico de Santa Rosa (Bogotá & Aluja, 1981 en INGEOMINAS-UIS, 2006 b, c), y con la Formación Morrocoyal (González et al., 2015). Al sur del Valle Superior del Magdalena se correlaciona con la Formación Saldaña (Cediel et al., 1981 en Royero et al., 1994; en INGEOMINAS-UIS, 2006 b, c).

Por otro parte, se han reportado afloramientos en las estribaciones nororientales de la SSL (Clavijo, 1995; Royero & Clavijo, 2000), hacia el NW del MS (Arias & Vargas, 1978) y al NW de Bucaramanga (Ward et al., 1973) de pequeños cuerpos correlacionables con la Formación Noreán; estos cuerpos han sido cartografiados como riolitas porfiríticas con extensiones hasta de 5 km².

En la SSL, los cuerpos de riolita (Jr) afloran en forma de domos y flujos lávicos genéticamente relacionados (Clavijo et al., 1992). Los domos son de menor extensión, y

las rocas que los conforman tienen textura porfirítica y están compuestos por feldespato potásico, cuarzo y biotita (localmente se observan microgranitos). Los flujos lávicos presentan una composición similar a la de los domos y tienen estructuras de flujo, estos flujos están asociados a las rocas de conducto de la unidad Jnha. No se tienen dataciones radiométricas, pero su edad se interpreta como del Jurásico superior (Clavijo, 1995) y se pueden considerar correlacionables temporalmente con la Formación Noreán (Royero & Clavijo, 2000).

Las riolitas aflorantes al oeste de la Falla de Bucaramanga se han relacionado hacia el sur con la Formación Bocas (Arias & Vargas, 1978); hacia el norte estas riolitas se encuentran en contacto con las unidades informales Ortoneis y Tonalita y con el Gneis de Bucaramanga. Los cuerpos riolíticos presentan características y composición semejantes a las denominadas Riolitas de la Formación Bocas de Ward et al. (1973). Estos cuerpos comprenden riolitas porfiríticas, brechas volcánicas y riodacitas. Particularmente, en cercanías del caserío de La Esperanza (Norte de Santander), el cuerpo está limitado casi totalmente por fallas y atraviesa a una diorita hornbléndica (cartografiada como Jd-Jrb). Estas riolitas fueron sometidas a metamorfismo dinámico, alcanzando alguna de ellas la facie de esquisto verde (Arias & Vargas, 1978).

Cerca al municipio de Abrego y al sur del mismo, se han reportado riolitas en forma de diques y como pequeñas coberteras asociadas con una unidad de composición cuarzomonzonítica (Jc). La relación entre los cuerpos riolíticos al oeste de la Falla de Bucaramanga y las riolitas asociadas a la cuarzomonzonita no ha sido establecida. Según Ward et al. (1973), la edad de estos cuerpos es incierta pero una datación K-Ar en un dique de riolitas cerca al municipio de Ocaña dio una edad de 127 ± 3 Ma. El emplazamiento de estos cuerpos riolíticos se ha interpretado como contralado por la Falla de Bucaramanga (Arias & Vargas, 1978).

2. Metodología

Las rocas volcánicas de la Formación Noreán y las riolitas asociadas en ambos costados del Valle Medio del Magdalena se sometieron a análisis petrográfico y geoquímico con el fin de definir sus características e identificar los eventos eruptivos. Para ello, se realizó petrografía de secciones delgadas de roca, difracción de Rayos X para las muestras de roca con alteración hidrotermal, geoquímica de minerales mayores, menores y traza de muestras de roca, separación y montajes de circones para datación por el método U-Pb por LA-ICP-MS. En el Anexo A se muestra la relación de las muestras tomadas y el tipo de análisis realizado. A continuación, se describen las fases en las que se desarrolló este proyecto de investigación:

2.1 Fase Preliminar

Previo al trabajo de campo, una vez identificado el problema de investigación, se hizo la recopilación bibliográfica de la información disponible de las unidades volcánicas estudiadas durante el levantamiento geológico regional y estudios detallados más recientes. Por otra parte, se seleccionaron muestras de roca de la Formación Noreán del sector occidental del VMM (zonas denominadas para este trabajo B y C) adquiridas en comisiones de campo de campañas anteriores a la correspondiente para este trabajo, por parte del Grupo de investigación "TECNICAS APLICADAS A TECTONICA Y ANALISIS DE CUENCAS" del Departamento de Geociencias de la Universidad Nacional de Colombia (UNAL). La ubicación de las muestras se presenta en las Figura 1-1, Figura 2-2, Figura 2-3, Figura 2-4.

2.2 Fase de Campo

El trabajo de campo se distribuyó en tres zonas. En las dos primeras se realizó un muestreo de la Formación Noreán durante una comisión de campo hacia el costado occidental del VMM en cercanías de los municipios de Arenal del departamento del Cesar (zona B, Plancha 75-Aguachica) y del municipio Tiquisio del departamento de Bolívar (zona C, Plancha 74-Guaranda); en esta campaña de campo se recolectaron muestras de roca para análisis petrográfico (17 secciones delgadas - SD), para geoquímica de roca total (4 muestras, GRT), para análisis de minerales arcillosos de alteración (3 muestras, DRX), y

para determinación de edad absoluta de U/Pb en circones (2 muestras, U-Pb). Un segundo trabajo en campo se realizó hacia el sector oriental del VMM donde fue definida la sección tipo por Clavijo (1995) en cercanías del municipio Noreán (zona A) del departamento del Cesar (Plancha 75) en la vía Buturama-Bombeadero, en el que se tomaron muestras de roca para análisis petrográfico de 25 SD, 8 para GRT, 6 para DRX, y 7 para U-Pb.

Las muestras tomadas en el sector oriental del VMM (Zona A), se ubicaron de acuerdo a la columna estratigráfica definida y adaptada de Clavijo (1995). Durante el trabajo se escogieron secciones específicas de la columna para su muestreo en la zona A (Figura 2-2). La ubicación geográfica de las muestras de la zona A se presenta en la Figura 2-1 y las de la zona B y C en la Figura 2-3.

Se realizó un tercer trabajo de campo hacia el sector del municipio de El Playón (zona D) del departamento de Santander. Una vez identificada la ubicación de los cuerpos cartografiados como riolitas, se tomaron muestras de roca de las zonas con menor meteorización a simple vista y más fácil acceso. Se seleccionaron 7 muestras para SD, de las cuales solo se pudieron analizar 3 porque las demás presentan alteración hidrotermal penetrativa; 2 para GRT, 2 para DRX y 2 para U-Pb (Figura 2-4).

2.3 Métodos Analíticos

2.3.1 Petrografía

La preparación de las muestras para secciones delgadas consiste en hacer tabletas de las muestras que se quieren observar al microscopio y desbastar hasta obtener un espesor un poco mayor a 30 micras, posteriormente se hace un pulido fino con carburo No. 600 y 1000 hasta obtener un espesor de 30 micras (el espesor se controla con los tonos de birrefringencia de los cuarzos, plagioclasas o dependiendo de los minerales que contenga la roca). Las secciones delgadas se elaboraron una parte en los laboratorios del Servicio Geológico Colombiano (SGC) y otra parte en los laboratorios del Departamento de Geociencias de la UNAL.

La petrografía de 43 secciones delgadas se realizó en un microscopio petrográfico Olympus BX51 en las instalaciones del Departamento de Geociencias de la UNAL. Para la caracterización petrográfica de las muestras se tuvieron en cuenta características texturales, tales como grado de cristalinidad, tamaño y forma de los cristales, e identificación de texturas específicas, y composición porcentual (análisis modal). Para muestras en las que se encontraron minerales y texturas ocasionadas por procesos hidrotermales, se escogieron las más representativas para realizar su análisis por DRX.

La clasificación de las rocas volcánicas se realizó utilizando el diagrama QAPF (sobresaturado en sílice) de Streckeisen (1978), las piroclásticas de acuerdo con Wohletz & Grant (1992) y las sedimentarias utilizando la clasificación de Pettijohn (1987). Para la clasificación del tamaño de los cristales, se utilizaron los siguientes rangos, fenocristales para ≥ 2mm, microfenocristales entre 2 mm y 1 mm y los microcristales <1 mm. Las abreviaturas de minerales usadas corresponden a las propuestas en Whitney & Evans (2010), y para los líticos se propusieron las siguientes abreviaturas: Líticos volcánicos (LitV), Líticos intrusivos (LitI) y Líticos metamórficos (LitM). La procedencia de los materiales arcillosos de alteración hidrotermal se interpretó relacionando illita y caolinita como alteración de feldespatos y matrices vítreas, arcillas interestratificadas cloritavermiculita y clorita como alteración de minerales máficos, algunas plagioclasas y matriz vítrea. Los difractogramas de las muestras analizadas se encuentran en el Anexo B.

2.3.2 Determinación de minerales de alteración por Difracción de Rayos X (DRX)

Se analizaron por esta técnica 11 muestras de roca con alteración hidrotermal evidenciada gracias al análisis petrográfico, con el fin de determinar los minerales producto de la alteración. La preparación de las muestras y su análisis se llevaron cabo en el laboratorio de caracterización Litogeoquímica del Departamento de Geociencias de la UNAL. El equipo empleado corresponde a un difractómetro de rayos X Bruker-D2 Phaser con lámpara de cobre y el software utilizado para la interpretación fue el Diffrac Suit EVA. La preparación de las muestras se hizo siguiendo el método de Thorez (1976). Una vez pulverizada la muestra hasta fracción limo y arcillas, se realizó la preparación de ellas en cuatro etapas: 1. Lectura de muestra natural en polvo desorientado; a continuación, se orientó la fracción fina en un vidrio y se hicieron los siguientes análisis; 2. Muestras orientadas al natural; 3. Saturación de las muestras orientadas con etilenglicol y 4. Muestra calcinada a 515°C.

2.3.3 Geoquímica de roca total

Se seleccionaron 18 muestras que no mostraron macroscópicamente alteración o la mínima posible comparada con las demás muestras. La preparación y análisis de ellas se hicieron en el laboratorio de ALS, usando fondos del Departamento de Geociencias de la UNAL. El contenido de elementos mayores y menores se obtuvieron por la técnica de análisis de fluorescencia de rayos X (FRX) y por espectroscopia de emisión atómica de plasma acopado por inducción (ICP-AES). Los elementos traza y tierras raras fueron determinados por espectroscopia de masas con plasma acoplado inductivamente (ICP-MS) previa digestión con agua regia y borato de litio.

2.3.4 Catodoluminiscencia en circones

Teniendo en cuenta la amplia variación litológica de las unidades que componen la Formación Noreán, se prepararon y analizaron 11 muestras de ambos flancos del VMM de tobas (4), lavas (1), arenitas líticas y feldespáticas (3), y de los cuerpos intrusivos (1); además de los cuerpos riolíticos (2) asociados a esta formación.

La preparación de las muestras y los montajes de circones de las muestras fueron realizados en el laboratorio de Termocronología del Grupo de Investigaciones y Aplicaciones Nucleares y Geocronológicas (GIANG) del SGC en Bogotá. Las muestras fueron trituradas en molinos de dientes y bolas, se tomó solamente la fracción fina (malla 200-hasta 75 micras). Posteriormente se hizo separación gravimétrica, primero usando mesa Wilfley y/o concentración por batea, segundo por separación magnética por medio de un separador isodinámico Frantz, y tercero, por medio de líquidos densos (heteropolitugstato de litio en agua-LST), para extraer la fracción más pesada. Seguidamente al concentrado de minerales pesados, se les extrajo 60 a 80 circones por muestra por medio de selección manual en una lupa binocular ("picking"). Una vez seleccionados, éstos se dispusieron en montajes de resina epóxica, puliendo su superficie para exponer los cristales, con polvos de carburo (400, 600, 1000 y 2000) y diamante (6, 3, 1 y 0,25 micras).

Se adquirieron imágenes de catodoluminiscencia (CL) de los zircones separados de las 11 muestras para su determinación geocronológica. La preparación de las muestras y la adquisición de imágenes se hicieron en el Laboratorio de Microscopia Electrónica de

Barrido del GIANG del SGC. La preparación consistió en el recubrimiento de los montajes de circones por evaporación de carbono (grafito) que sirve como material conductor, por medio del equipo Recubridor Denton Desk V, el cual produce una capa de 3 a 10 nm de recubrimiento.

La obtención de imágenes se hizo en el microscopio electrónico de barrido (SEM) marca JEOL JSM IT-300 LV, usando un detector de catodoluminiscencia pancromático CL-Gatan miniCL EGA 0028, el cual obtiene imágenes formadas por fotones con longitudes de onda entre 185-850 nm.

2.3.5 Datación U-Pb en circones mediante LA-ICP-MS

Las muestras fueron analizadas en el Laboratorio de Geocronología U-Th-Pb del SGC, por medio de la técnica de ablación laser unido a espectrometría de masas por plasma acoplado inductivamente (LA-ICP-MS). El espectrómetro de masa es un mono colector Element 2 de la marca Thermo Scientific, y el láser tipo excímero de pulso corto y longitud de onda de 193 nm generado por un sistema ATLEX-I-LR refrigerado por aire, instalado a un sistema de transmisión Photon Machine (Peña Urueña et al., 2018). Los estándares empleados fueron circón Plesovice $337,13 \pm 0,37$ Ma (Sláma et al., 2008) para corrección de relaciones isotópicas, Mount Dromedary 99,12 \pm 0,14 Ma (Renne et al., 1998); FC1 1099 \pm 0,6 (Paces & Miller, 1993); WF-10 530 Ma (Peña Urueña et al., 2018), Temora 2 416,75 \pm 0,24 Ma (Black et al., 2003) y Zircon 91500 1065 Ma (Wiedenbeck et al., 1995), para corrección de exactitud y precisión. Las condiciones analíticas específicas fueron valor máximo de energía 94% (laser output), fluencia 6,91 J/cm², con frecuencia de ablación 8 Hz y 126 disparos por análisis, tomando tiempo de ablación de 28 s y diámetro del spot de 20 micras.

Las edades de U-Pb en los circones fueron obtenidas tras la reducción de datos usando el programa lolite v2.5[®] en IGORPro6.3.6.4[®] con incertidumbres 2 sigma propagadas (Paton et al., 2010). El tiempo de integración para la línea base fue de 0 s - 25 s, y para las muestras y estándares de referencia fue de 17 s - 8 s. Los isotopos ²³⁸U, ²⁰⁶Pb y ²⁰⁴Pb fueron integrados manualmente.
Por último, el análisis estadístico y diagramas concordia se realizó con el software libre IsoplotR (Vermeesch, 2018). Las medidas se consideran discordantes si la relación de ²⁰⁷Pb/²³⁵U y ²⁰⁶Pb/²³⁸U está por encima del 10%, solo las mediciones de los circones con concordancia mayor al 90% fueron aceptados para calcular las edades de cristalización, calculando con 2 desviación estándar (2s). La corrección de plomo común se realizó de acuerdo al modelo de evolución de Stacey & Kramers (1975) para la obtención de las edades corregidas de ²³⁸U/²⁰⁶Pb.

2.4 Localización Muestras Analizadas

De acuerdo con lo descrito en Fase de Campo, la ubicación de las muestras analizadas del sector oriental (Aguachica-zona A) se presenta en la Figura 2-1 y Figura 2-2; las del sector occidental (Arenal y Tiquisio-zona B y C) en la Figura 2-3; y las del sector El Playón (zona D) en la Figura 2-4.

Figura 2-1: Ubicación estratigráfica de las muestras analizadas en el sector flanco oriental del VMM. Columna estratigráfica de la Unidad Volcanoclástica de Noreán tomada y adaptada de Clavijo (1995) y detalle de los sectores muestreados en la vía Aguachica-Marinilla. En rojo se encuentran las edades concordia determinadas para cada muestra.

Figura 2-2: Localización muestras zona A (sector Aguachica) con las edades determinadas.

Figura 2-3: Localización muestras zona B y C (sector Arenal y Tiquisio) con las edades determinadas.

Figura 2-4: Localización muestras zona D (sector El Playón) con las edades determinadas.

3. Aspectos petrográficos

En esta sección se presentan las descripciones petrográficas agrupadas de acuerdo con las unidades propuestas por Clavijo (1995).

La sucesión estudiada de la Formación Noreán consiste de rocas piroclásticas, coladas de lavas y niveles de rocas sedimentarias clásticas (Figura 3-1). En el sector oriental del VMM (sector de Aguachica-Zona A), la sucesión comienza con intercalaciones de capas onduladas de arenitas líticas y arenitas feldespáticas grises de grano medio y fino con lodolitas grises, seguida de tobas cristalinas y cristalo líticas predominantemente, y en menor proporción cristalovítreas, todas ellas con contenido de piroxeno menor al 5%, intercaladas con arenitas feldespáticas y líticas de grano grueso a conglomeráticas color amarillo, con líticos volcánicos y de cuarcitas, y con arenitas líticas de grano medio a fino rojas y lodolitas rojas. Eventualmente hacia la parte media y superior de la Unidad, se encuentran tobas cristalinas grises a verdes, con intensa alteración a clorita. Este conjunto de rocas fue agrupado de acuerdo con la cartografía de Clavijo (1995) en la unidad Jncp: clástico-piroclástico.

Hacia la parte media de la formación, afloran coladas de lavas andesíticas, todas ellas con escasa presencia de cuarzo (<1%) y con piroxeno (<10%) y minerales con hábitos de piroxenos completamente reemplazados por cloritas (<10%), denominados pseudomorfos de piroxenos (probablemente orto piroxenos). Este conjunto de rocas se ha cartografiado como unidad Jnha: Hipoabisal andesítica (Clavijo, 1995). En este estudio se encontró hacia el sector occidental del VMM, en la vía que de Arenal conduce a Tiquisio del Departamento de Bolívar (Zona B), aflorando un cuerpo intrusivo de composición cuarzomonzonítica con abundante contenido de anfíboles, intruyendo la secuencia de lavas de esta unidad.

Suprayaciendo a Jnha, se encuentra la unidad Jnpe: piroclástico-epiclástico (Clavijo, 1995) correspondiente a una secuencia compuesta por tobas con variación composicional entre tobas cristalinas a cristalovítreas, caracterizándose por la presencia de anfíboles (5-15%) y escaso contenido de piroxeno (<5%). En el flanco occidental del VMM, esta sucesión presenta alternancia de tobas con flujos de lava de composiciones andesíticas, riolíticas y dacíticas. Hacia el tope de la unidad, en el flanco oriental, en el sector La Palma, se

encuentran andesitas cortando las tobas, con intensa alteración hidrotermal. En este sector, las tobas presentan intenso fracturamiento y vetilleo de cuarzo, clorita y calcita (rellenando espacios o como alteración de minerales primarios).

Al tope de esta formación, se encuentra la unidad Jned: efusivo dacítico. Al este del VMM, (zona A), se encontró que se compone de lavas andesíticas de color gris oscuro a verdes, y con exposiciones de rocas basálticas. Hacia el oeste según Clavijo (1995), esta copuesta por una secuencia de arenitas y lodolitas tobáceas intercaladas con tobas lítico-cristalinas rosadas-grisáceas y coladas de lavas dacíticas, riodacitícas y andesíticas. En este trabajo se encontró que hacia el costado occidental del VMM, esta unidad está intruida por cuerpos de composición granodiorítica, monzogranítica y cuarzomonzonítica.

En cuanto a los cuerpos cartografiados como riolitas ubicados en los municipios de Cáchira y El Playón (zona D), se encontraron a pesar de la fuerte alteración a minerales arcillosos que ha borrado en la mayoría de sectores sus texturas originales, tres muestras con litologías de toba cristalinas tectonizada, toba lítico-vítrea y una lava cuarzotraquítica.

Figura 3-1: Diagramas de clasificación para rocas ígneas intrusivas, extrusivas, tobas y sedimentarias terrígenas analizadas en este trabajo.

30 Petrología y geocronología U-Pb de la Formación Noreán y riolitas asociadas ubicadas en los flancos oriental y occidental del Valle Medio del Magdalena, Colombia

3.1 Petrografía Formación Noreán

Acorde con las subdivisiones o unidades propuestas por Clavijo (1995) para esta formación, se presentan a continuación las características petrográficas de cada unidad en los sectores analizados:

3.1.1 Unidad Jncp (clástico-piroclástico)

En el sector oriental del VMM, por la vía Buturama-Bombeadero, se encontraron en contacto neto arenitas líticas, cartografiadas como Formación Bocas (Clavijo, 1995), con una sucesión muy amplia de tobas e intercalaciones de tobas y arenitas feldespáticas. Dado que el cambio de unidad litológica de Noreán a Bocas no es muy evidente en campo, la muestra 18HF-1 se enmarca dentro de la unidad Jncp.

Esta unidad se caracteriza en este sector por presentar hacia la base predominantemente intercalaciones de lodolitas grises con arenitas líticas y arenitas feldespáticas de grano medio y fino, seguidas de intercalaciones hacia la parte media de capas gruesas de arenitas líticas (líticos de cuarcitas y rocas volcánicas) desde grano fino hasta conglomeráticas, granosoportadas, y niveles de tobas cristalinas, cristalo líticas y vítricas de color gris morado, con esporádicos cuerpos de tobas líticas (Tabla 3-1, Figura 3-2 y Figura 3-3).

Hacia la parte media de la Unidad, se evidencian interdigitaciones de paquetes de arenitas líticas y arenitas feldespáticas rojas, y lodolitas rojas con esporádicos niveles de tobas cristalinas grises con parches verdes por cloritización. Hacia el tope, las rocas detríticas tienen mejor selección que las de la base, predominan las arenitas feldespáticas de grano muy fino de color gris oscuro a rojo.

Hacia el sector occidental del VMM (Zona B), en la Vía La Plaza-Morales, se encontró una roca dacítica (18HF-40) junto con tobas líticas y cristalinas. Su ubicación en esta unidad se hace teniendo en cuenta la similitud entre su edad y las edades calculadas en este trabajo para las muestras de esta unidad.

Tabla 3-1: Localización de las muestras tomadas para análisis petrográfico de la Unidad Jncp de la Formación Noreán y contacto inferior con la Formación Bocas, sector oriental del VMM.

Muestra	Unidad	Sector	Este	Norte	Altura	Localidad	Clasificación petrográfica
18HF-1	Jncp	Oriente	1058613	1426119	591	Quebrada Noreán	Arenita feldespática de grano fino
18HF-3	Jncp	Oriente	1058282	1426015	532	Vía Aguachica-Marinilla	Toba vítreo cristalina
18HF-4	Jncp	Oriente	1057996	1426016	520	Vía Aguachica-Marinilla.	Arenita lítica de grano muy grueso
18HF-5	Jncp	Oriente	1057950	1426013	505	Vía Aguachica-Marinilla	Toba cristalina
18HF-5A	Jncp	Oriente	1057815	1425869	509	Vía Aguachica-Marinilla	Toba vítreo cristalina
18HF-5B	Jncp	Oriente	1057815	1425869	509	Vía Aguachica-Marinilla	Toba lítica
18HF-5C	Jncp	Oriente	1057815	1425869	509	Vía Aguachica-Marinilla	Toba cristalina
18HF-6	Jncp	Oriente	1057766	1425860	505	Vía Aguachica-Marinilla- El Carmen	Toba cristalo lítica
18HF-6A	Jncp	Oriente	1057766	1425860	505	Vía Aguachica-Marinilla- El Carmen	Toba cristalo vítrea
18HF-11	Jncp	Oriente	1055616	1421058	451	Vía Aguachica-Marinilla- El Carmen	Arenita feldespática de grano muy fino
18HF-13	Jncp	Oriente	1057550	1421398	936	Vía Aguachica- Bombeadero	Arenita feldespática de grano muy fino
18HF-15	Jncp	Oriente	1056535	1420523	699	Vía Aguachica- Bombeadero	Toba cristalina
18HF-16	Jncp	Oriente	1055988	1420036	611	Vía Aguachica- Bombeadero	Arenita feldespática de grano fino
18HF-40	Jncp	Occidente	1013598	1418147	134	Vía La Plaza-Morales	Dacita

Figura 3-2: Fotografías macroscópicas de rocas de la Unidad Jncp.

Toba cristalo lítica, muestra 18HF-6 (sector derecho) y toba cristalo vítrea, muestra 18HF-6A (sector izquierdo)

Toba cristalina, muestra 18HF-15

Las tobas cristalinas y cristalo líticas que componen principalmente esta unidad presentan textura porfirítica de feno y microfenocristales de plagioclasas predominantemente, algunas con feno y microfenocristales de cuarzo y piroxenos y/o seudomorfos de posibles orto piroxenos, y ocasionalmente de feldespatos potásicos; también se observan texturas glomeroporfirítica de agregados de plagioclasas con pseudomorfos clorítizados y rodeados con minerales opacos y otras de agregados de pseudomorfos de piroxenos. Las tobas contienen plagioclasas (15-25%, localmente hasta 43%), feldespato potásico (7-15%), cuarzo (4-24%), piroxeno (< 5%), líticos volcánicos (5-10%, localmente hasta el 33%), líticos intrusivos (localmente hasta 10%) y opacos (<7%). Como minerales accesorios se reconocen apatitos y circones (<1%). En general las muestras tienen de muy bajo a bajo contenido de minerales de alteración (máximo 10%) de illita como alteración de plagioclasas y/o feldespatos, clorita alterando piroxenos, calcita, y/o epidotas reemplazando piroxenos o como inclusiones en plagioclasas. Algunas muestras tienen matrices con silicificación parcial, y micro vetilleo con rellenos de cuarzo secundario o clorita. En general los cristales de las rocas de esta unidad se encuentran rotos (Figura 3-3).

Las plagioclasas se encuentran subredondeadas y algunas fracturadas, todas presentan alteraciones a illita, y bahías de corrosión. Aunque la determinación del tipo de plagioclasa por el Método Miche-Levy no fue posible en la mayoría de los cristales, se midió en algunos cristales resultando contenidos de An₁₃ a An₂₀. Los cuarzos igualmente se encuentran rotos, algunos con bahías de disolución. Los feldespatos potásicos se encuentran rotos y alterados a caolinita. Los piroxenos se encuentran en la mayoría de muestras como pseudomorfos, parcial o completamente reemplazados a clorita, algunos con coronas de minerales opacos. En las muestras en que no están completamente reemplazados se encuentran intensamente fracturados, con rellenos de minerales opacos. De acuerdo a observaciones de todas las secciones delgadas analizadas, se considera que los piroxenos que están siendo reemplazados por clorita, corresponden a ortopiroxenos.

Las rocas sedimentarias clásticas que hacen parte de esta unidad y que se encuentran en intercalaciones con las tobas estudiadas aquí, son arenitas feldespáticas constituidas por cuarzo (40-60%), feldespato (20-30%), líticos metamórficos (<20%), volcánicos (<3%) e intrusivos (<6%), muscovita (<3%), carbonatos (<4%) en una matriz arcillosa (<10%); y arenitas líticas compuestas por cuarzo (<20%), feldespato (<10%), líticos metamórficos

(<5%), volcánicos (<20%) e intrusivos (<10%) y matriz arcillosa (<10%). En general las rocas son granosoportadas, moderadamente seleccionadas y de redondez y esfericidad subangulosa y subprismática, presentan alta compactación, con orientación parcial de los líticos y minerales cuarzo y feldespato.

Las lavas dacíticas encontradas en la vía La Plaza-Morales (zona B), contienen plagioclasa (20-30%), cuarzo (<20%), feldespatos (<5%), anfíbol (<5%). Los feldespatos se encuentran alterados a illita y sericita, y con microvetillas rellenas de minerales opacos; los cuarzos rotos y con bahías de corrosión, en general los cristales están rotos y con bordes de corrosión. Presentan moderada a fuerte alteración, la matriz parcialmente silicificada y los anfíboles parcialmente reemplazados a minerales opacos, clorita y epidota. La roca contiene amígdulas rellenas de cuarzo secundario (<5%).

Figura 3-3: Fotografías de secciones delgadas de las muestras de la unidad Jncp. A la derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL).

Muestra 18HF-1 correspondiente a arenita feldespática de grano fino

Muestra 18HF-4 correspondiente a arenita lítica de grano muy grueso, con líticos metamórficos e intrusivos.

Muestra 18HF-5A correspondiente a toba cristalo lítica.

Muestra 18HF-6A correspondiente a toba vítrica

Muestra 18HF-13 correspondiente a arenita feldespática de grano muy fino

Muestra 18HF-15 correspondiente a toba cristalina

Muestra 18HF-40 correspondiente a dacita

3.1.2 Unidad Jnha (hipoabisal andesítico)

Hacia el sector oriental del VMM, en la localidad de Marinilla – El Carmen se encontró predominancia de cuerpos de andesitas, localmente con capas de tobas. Las andesitas tienen cambios texturales en el tamaño de sus cristales de manera aleatoria, algunas contienen predominancia de fenocristales de plagioclasa y otras como microcristales, en general, las plagioclasas están parcialmente alteradas a clorita. En flanco occidental del VMM, en cercanías de Arenal, afloran cuerpos intrusivos félsicos cuarzomonzoníticos (Tabla 3-2, Figura 3-4 y Figura 3-5).

Tabla 3-2: Localización de las muestras tomadas para análisis petrográfico de la Unidad Jnha de la Formación Noreán.

Muestra	Unidad	Sector	Este	Norte	Altura	Localidad	Clasificación petrográfica
18HF-07	Jnha	Oriente	1055913	1422542	379	Vía Aguachica- Marinilla-El Carmen.	Andesita
18HF-08	Jnha	Oriente	1055919	1421695	384	Vía Aguachica- Marinilla-El Carmen	Andesita
18HF-09	Jnha	Oriente	1055645	1421624	411	Vía Aguachica- Marinilla-El Carmen	Toba cristalina
18HF-10	Jnha	Oriente	1055616	1421058	451	Vía Aguachica- Marinilla-El Carmen	Andesita
16SLAZ-1	Jnha	Occidente	1002981	1419344	175	Vía Arenal-Quebrada Chiquillo	Cuarzomonzonita

Figura 3-4: Fotografías macroscópicas de rocas de la Unidad Jnha.

Las lavas andesíticas varían de color a medida que se asciende estratigráficamente, hacia la mitad de la unidad son rosadas a moradas, mientras que hacia el techo son grises a verdes. Estas lavas presentan textura porfirítica, con fenocristales de plagioclasa y en menor proporción micro fenocristales y microcristales, para un total de plagioclasa (20-40%), piroxeno (10%) y pseudomorfos de ortopiroxeno (<10%). Presentan dos tipos de piroxenos, unos como pseudomorfos que se interpretan como ortopiroxenos debido a los hábitos y las relaciones texturales con los demás minerales, completamente reemplazados por clorita, y otros con extinción inclinada y macla de augita que, a diferencia de los primeros, se encuentran sin alteración relevante. Todas las andesitas presentan ausencia de cuarzo o como mucho el 1%, como minerales accesorio circones y apatitos (<1%). Presentan textura poiquilítica de inclusiones de plagioclasas en clinopiroxenos, glomeroporfirítica de agregados de plagioclasas, piroxenos, pseudomorfos de piroxenos y opacos, y coronas de minerales opacos alrededor de piroxenos (Figura 3-5).

Hacia el costado occidental del VMM, en la vía Arenal-Tiquisio, aflora un cuerpo fanerítico, equigranular de grano grueso, compuesto por plagioclasa (44%), feldespato potásico (9%), cuarzo (10%), piroxeno (4%), anfíbol (17%) y epidota (2%). Contiene textura cumulofírica de cristales de ortoanfíboles, plagioclasas, piroxenos y opacos; agregados de plagioclasas tabulares rodeando cristales subhedrales de piroxenos; y poiquilítica de inclusiones de epidota dentro de anfíboles. Este cuerpo se encuentra en este sector intruyendo la sucesión de andesitas y tobas de esta unidad. Petrográficamente se ha clasificado como cuarzo monzonita.

Figura 3-5: Fotografías de secciones delgadas de las muestras de la unidad Jnha. A la derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL).

Muestra 18HF-7 correspondiente a andesita

Muestra 18HF-8 correspondiente a andesita

3.1.3 Unidad Jnpe (piroclástico-epiclástico)

Esta unidad presenta variación composicional entre tobas cristalinas a cristalovítreas, y expone por sectores incipiente textura de flujo (orientación preferencial de microcristales de plagioclasas en matriz vítrea roja) y fragmentos de líticos pumíticos subredondeados a subangulares hasta de 15 cm. La unidad contiene esporádicamente niveles de lodolitas rojas. Hacia el costado occidental del VMM, abundan intercalaciones de coladas de lavas con variación composicional entre andesíticas, riolíticas y dacíticas. Tanto las tobas como las lavas de esta unidad se diferencian de las descritas en las otras unidades por la presencia de anfíboles que, aunque se encuentran parcialmente opacitizados, se distinguen por sus hábitos (Tabla 3-3, Figura 3-6 y Figura 3-7).

Muestra	Unidad	Sector	Este	Norte	Altura	Localidad	Clasificación petrográfica
18HF-17	Jnpe	Oriente	1055590	1418789	27	Vía Aguachica- Bombeadero/Marinilla	Toba cristalo vítrea
18HF-18	Jnpe	Oriente	1055591	1416788	332	Vía Aguachica- Bombeadero-Marinilla	Toba cristalina
18HF-20	Jnpe	Oriente	1051999	1418949	207	Quebrada Noreán	Toba cristalo vítrea
18HF-21	Jnpe	Oriente	1052786	1421581	424	Vereda El Tope, Finca La Esperanza- Punto La Palma	Toba cristalo vítrea
18HF-21A	Jnpe	Oriente	1052786	1421581	424	Vereda El Tope, Finca La Esperanza- Punto La Palma	Andesita
18HF-22	Jnpe	Oriente	1052415	1421717	323	Vereda El Tope, Finca La Esperanza	Toba cristalo vítrea
18HF-31	Jnpe	Occidente	1005763	1421793	133	Carretera Baratoma- Arenal	Toba cristalina
18HF-32	Jnpe	Occidente	1006494	1422389	100	Carretera Baratoma- Arenal	Toba cristalo vítrea
18HF-34	Jnpe	Occidente (zona C)	986600	1437865	79	Vía Tiquisio-Norosí	Andesita
18HF-38	Jnpe	Occidente	1012746	1417986	167	Vía La Plaza-Morales	Toba cristalo vítrea
16SLAZ-2	Jnpe	Occidente	1002893	1420261	143	Carretera Baratoma- Arenal	Andesita
16SLAZ-9	Jnpe	Occidente	1009399	1423912	136	Carretera Baratoma- Arenal	Andesita
16SLAZ-16	Jnpe	Occidente (zona C)	988993	1437771	67	Vía Tiquisio-Norosí	Riolita

Tabla 3-3: Localización de las muestras tomadas para análisis petrográfico de la Unidad Jnpe de la Formación Noreán.

Figura 3-6: Fotografías macroscópicas de rocas de la Unidad Jnpe.

Toba cristalo vítrea, muestra 18HF-17

Toba cristalina, muestra 18Hf-18

de esta unidad contienen predominantemente plagioclasas Las tobas como microfenocristales y microcristales (15-30%) y fenocristales (5-15%), feldespato potásico (< 5%), cuarzo (< 5% en el sector oriental y 15-20% hacia el sector occidental), piroxeno (< 5%, y localmente <10%), anfíbol (5-15%), líticos volcánicos (5-10%) y líticos intrusivos (<5%). Como minerales accesorios se encuentra esporádicamente circones (<1%). Se encuentran texturas de coladera (sieve) intensa en plagioclasas; poiquilítica de piroxenos en plagioclasas; glomeroporfirítica de plagioclasas con pseudomorfos de piroxenos clorítizados y rodeados con minerales opacos; glomeroporfirítica de piroxenos con anfíbol y minerales opacos; y localmente coronas de anfíbol alrededor de piroxeno (Figura 3-7). En cuanto a los cristales, las plagioclasas tienen bordes de corrosión y presentan alteración a illita, tienen microvetillas rellenas de calcita y algunas parcialmente reemplazadas a clorita; los anfíboles están reemplazados parcialmente por minerales opacos, hematita y clorita; los cristales de cuarzo son subangulares a subredondeados y presentan bahías de disolución; y la matriz vítrea está parcialmente reemplazada por minerales arcillosos de color amarillo verdoso, identificados por DRX como clorita-vermiculita, y parcialmente silicificada. En general, estas tobas presentan alrededor del 10-20% de minerales de alteración.

En cuanto a las coladas de lavas presentes hacia el sector occidental, se clasificaron en andesitas y riolitas. Las andesitas se componen de plagioclasas (20-25%), cuarzo (<5%), piroxeno (4-10%), anfíbol (0-10%), minerales opacos (<10%) y circón (<1%). Las riolitas

se componen de plagioclasas (10-15%), feldespato potásico (25-30%), cuarzo (15-20%), piroxeno (<10%), minerales opacos (<5%) y circón (<1%). En su mayoría presentan intensa a mediana alteración, con anfíboles o piroxenos alterándose a clorita, vetillas rellenas con cuarzo secundario hidrotermal y clorita, y matriz vítrea alterada a hematita y reemplazada por cuarzo secundario.

Hacia el tope de la unidad, en el flanco oriental del VMM, en el sector La Palma se encuentran andesitas con intenso fracturamiento cortando las tobas. Presentan intensa alteración hidrotermal, microscópicamente se observa intenso vetilleo de cuarzo, clorita y calcita (Figura 3-7).

Figura 3-7: Fotografías de secciones delgadas de las muestras de la unidad Jnpe. A la derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL).

Muestra 18HF-18 correspondiente a toba cristalina

3.1.4 Unidad Jned (efusivo dacítico)

Esta unidad consiste en lavas andesíticas con exposiciones locales de basaltos, intercaladas por tobas lítico cristalinas rosadas-grises y arenitas líticas. Se encontró hacia el costado occidental del VMM, intruida por cuerpos de granodioritas y cuarzo monzonitas (Tabla 3-4, Figura 3-8 y Figura 3-9).

Muestra	Unidad	Sector	Este	Norte	Altura	Localidad	Clasificación petrográfica
18HF-19	Jned	Oriente	1055038	1415757	303	Vía Aguachica- Bombeadero-Marinilla	Andesita
18HF-23	Jned	Oriente	1052216	1422049	213	Vereda El Tope, Finca La Esperanza. Quebrada El Nido	Basalto
18HF-36	Jned	Occidente	1006565	1418001	732	Vía La Plaza-Morales	Granodiorita
18HF-37	Jned	Occidente	1010751	1418025	397	Vía La Plaza-Morales	Granodiorita
16SLAZ-20	Jned	Occidente	1007980	1417930	668	Vía La Plaza-Morales	Andesita
16SLAZ-21	Jned	Occidente	1009495	1417966	563	Vía La Plaza-Morales	Cuarzo monzonita
16SLAZ-24	Jned	Occidente	1011055	1418058	361	Vía La Plaza-Morales	Monzogranito
16SLAZ-25	Jned	Occidente	1012073	1418001	242	Vía La Plaza-Morales	Granodiorita

Tabla 3-4: Localización de las muestras tomadas para análisis petrográfico de la Unidad Jned de la Formación Noreán.

Figura 3-8: Fotografías macroscópicas de rocas de la Unidad Jned.

Las andesitas tienen textura porfirítica, con microfenocristales de plagioclasa predominantemente, y microcristales de pseudomorfos de piroxenos embebidos en una matriz vítrea. Las andesitas están compuestas por plagioclasas (fenocristales <15%, microcristales 15-60%), cuarzo (<10%), feldespato potásico (<5%), piroxenos como pseudomorfos (<5%), y apatito como mineral accesorio (<2%). En general las plagioclasas están alteradas a calcita e illita, ya sea todo el cristal o como coronas. Los piroxenos están totalmente reemplazados por clorita y calcita. Las andesitas con plagioclasas con textura de coladera, pseudomorfos de piroxenos con inclusiones o coronas de minerales opacos. Las andesitas presentan microfracturas rellenas de calcita, illita y epidota (Figura 3-9).

Las rocas intrusivas son faneríticas, inequigranulares. Contienen fenocristales y microcristales de plagioclasas (25-50%), cuarzo (10-30%), feldespato potásico (5-15%), pseudomorfos de piroxenos (5-10%), clorita (<10%) y apatito como mineral accesorio (<1%). Las plagioclasas y los feldespatos potásicos se encuentran rotos, con bahías de disolución y alterados a caolinita; los microcristales de cuarzo y piroxenos están muy fracturados, y los anfíboles alterados parcialmente a clorita. Presentan texturas glomeroporfirítica de piroxenos y de plagioclasas con alteraciones a clorita, coronas de opacos alrededor de piroxenos, y poiquilítica de epidota en clorita, plagioclasa y calcita. (Figura 3-9).

Hacia la base de la unidad en el sector oriental (cercanías municipio de Noreán), afloran basaltos de color verde oscuro, holocristalinos, compuestos de plagioclasa (<60%), piroxeno (augita) (<20%), pseudomorfos de piroxeno alterado a clorita (<10%) y opacos (6%). Presentan textura porfirítica gruesa, textura intergranular de microcristales de plagioclasas con piroxenos, glomeroporfirítica de piroxenos y coronas de minerales opacos alrededor de piroxenos. Los pseudomorfos de piroxenos presentan completo reemplazamiento por clorita, y se encuentran intensamente fracturados, se distinguen los piroxenos por sus hábitos (Figura 3-9).

Figura 3-9: Fotografías de secciones delgadas de las muestras de la unidad Jned. A la derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL).

Muestra 18HF-23 correspondiente a basalto

Muestra 18HF-36 correspondiente a granodiorita

3.2 Unidad informal Riolita (Jr)

Los cuerpos cartografiados como riolita en las planchas 97-Cachira (Arias & Vargas, 1978) y 109-Rionegro (Ward et al., 1977), denominado en este trabajo como sector El Playón, en su mayoría corresponden a rocas grises a amarillas porfiríticas de grano fino y en ocasiones masivas por silicificación parcial. Macroscópicamente se reconoció que estas rocas están compuestas por microcristales de plagioclasa embebidos en matriz vítrea, alteradas a caolinita, y en su mayoría con vetilleo de sílice y meteorización.

Por medio del análisis petrográfico en las muestras menos alteradas (3 muestras) se identificaron como tobas líticas y cristalinas (tectonizada) y una lava cuarzotraquítica, compuesta por microcristales de plagioclasa, feldespato alcalino y cuarzo, y líticos verdes

afaníticos angulosos hasta de 2 cm en una matriz masiva de color verde (Tabla 3-5, Figura 3-10 y Figura 3-11). Las rocas se encuentran en contactos irregulares con la Formación Bocas.

A pesar de que macroscópicamente las rocas no se ven alteradas, al microscopio la gran mayoría presenta fuerte alteración a minerales arcillosos que borran casi por completo la textura original de la roca. Una de las muestras analizadas corresponde a una toba cristalina intensamente tectonizada con microfallamiento y plegamiento. Está compuesta principalmente por microfenocristales rotos y desplazados de plagioclasa (<10%), feldespato potásico (<10%), microcristales de cuarzo (<15%), pseudomorfos de posibles anfíboles (<5%), y minerales secundarios por alteración como cuarzo secundario en vetillas y reemplazamiento en la matriz (<15%), caolinita como alteración de feldespatos (<10%) y hematita en fracturas (<5%).

Muestra	Unidad	Sector	Este	Norte	Altura	Localidad	Clasificación petrográfica
18HF-24	r	El Playón	1082193	1327550	188	Vía El Playón-Vereda Matecaña	Alteración pervasiva
18HF-25	r	El Playón	1083534	1326895	353	Vía El Playón-Vereda Matecaña	Toba cristalina
18HF-26	r	El Playón	1084893	1328568	472	Vía El Playón-Vereda Matecaña	Cuarzo traquita
18HF-27	r	El Playón	1091038	1318840	803	Quebrada La Tigra (San Pedro de la Tigra)	Alteración pervasiva
18HF-28	r	El Playón	1085515	1322076	552	Vía El Playón- Escuela La Bateca-Quebrada La Plazuela	Toba lítica vítrea
18HF-29	r	El Playón	1085264	1330633	299	Vía Villa Marcela-Caño miedo - vereda San José	Alteración pervasiva
18HF-30	r	El Playón	1096041	1309610	1161	Vía Trincheras-vereda Galápagos	Alteración pervasiva

Tabla 3-5: Localización de las muestras del sector de El Playón para análisis petrográfico.

La segunda muestra corresponde a una lava clasificada como cuarzo traquita, contiene feno y microfenocristales de plagioclasa (<10%) y feldespato potásico (<20%), y microcristales de cuarzo (<5%), en general todos los cristales se encuentran rotos. Presenta textura glomeroporfirítica de feldespato junto con cuarzo y con plagioclasa. La roca presenta zonas con fuerte alteración, con presencia de clorita, cristales idiomórficos de epidota y hematita.

Figura 3-10: Fotografías macroscópicas de muestras del sector de El Playón.

La tercera muestra corresponde a una toba lítica vítrea, compuesta por microcristales de plagioclasa (<5%), microcristales de cuarzo (<5%), feldespato potásico (<7%), y líticos porfiríticos (30%), afaníticos (<3%) y pumíticos (<2%). La roca presenta líticos volcánicos alterados a clorita; plagioclasas en los líticos y en la matriz reemplazadas por calcita total o parcialmente, y amígdulas rellenas de cuarzo secundario (3%) y calcita (2%) (Figura 3-11).

Figura 3-11: Fotografías de secciones delgadas del sector de El Playón. A la derecha tomada en nicoles paralelos (PPL), a la izquierda en nicoles cruzados (XPL).

Muestra 18HF-25 correspondiente a toba cristalina tectonizada

Muestra 18HF-26 correspondiente a cuarzo traquita

Muestra 18HF-28 correspondiente a toba lítica vítrea

4. Geoquímica

4.1 Análisis de alteración

Las muestras seleccionadas para análisis geoquímico no presentaban a simple vista alteración, pero microscópicamente se encontró, aunque en porcentajes muy bajos, con presencia de minerales secundarios tales como clorita, calcita, illita, caolinita y eventualmente epidota (18HF-10), dispuestos en microvetillas, rellenando espacios abiertos o como reemplazo de minerales de feldespato y matriz vítrea principalmente. En total 8 muestras presentan pérdida por calcinación (Loss On Ignition) de 2% hasta 3,9% (Tabla 4-2). Debido a los indicios de procesos secundarios que afectaron la composición original de las muestras, se realizó el análisis de alteración teniendo en cuenta los diagramas propuestos por Davies & Whitehead (2006), Large et al. (2001) y Otha & Arai, 2007 (Figura 4-1 a, b, c).

Usando el diagrama propuesto Davies & Whitehead (2006) (Figura 4-1a), se espera que rocas volcánicas sin alteración se ubiquen dentro del área que involucra los limites estequiométricos de albita-feldespato potásico (o biotita) y plagioclasa-feldespato potásico, se identificó que las muestras presentan ligera alteración con empobrecimiento de Na₂O y/o K₂O, causado probablemente por metasomatismo alcalino o un ambiente rico en H+ que generó alteración de feldespato potásico a sericita o sericita a caolinita, por incremento de $aK^+/_{aH^+}$ como consecuencia del incremento de aH^+ , de acuerdo con las siguientes reacciones:

Feldespato potásico a sericita:

 $1.5 KAlSi_3O_8 + H^+ \rightarrow 0.5 KAl_3Si_3O_{10}(OH)_2 + K^+$

Sericita a caolinita:

$$2KAl_3Si_3O_{10}(OH)_2 + 2H^+ + 3H_2O \rightarrow 3Al_2Si_2O_5(OH)_4 + 2K^+$$

Large et al. (2001) proponen un área (zona de mínima alteración Figura 4-1) dentro de la cual las muestras, aunque presenten algo de influencia por diagénesis, en la que hay cambios mineralógicos por la formación de minerales silicatados ricos en álcalis (arcillas,

zeolitas y feldespatos), o hidrotermalismo son aceptables para su análisis geoquímico. Las muestras analizadas aquí, se ubican en su gran mayoría dentro de esta área de mínima alteración con influencia de diagénesis (Figura 4-1b); excepto dos muestras (las tobas 18HF-6 y 18HF-25). Sin embargo, es posible que la ubicación de las muestras en este diagrama esté siendo afectada por la removilización de CaO y Na₂O o MgO y K₂O, de acuerdo con Large et al. (2001) para muestras con alteración argílica, ubicándolas dentro del área mínima cuando podrían estar por fuera de ella.

Teniendo en cuenta la incertidumbre de aceptar por completo estas muestras para su análisis geoquímico, se usó el diagrama propuesto por Otha & Arai (2007) (Figura 4-1c). Se encontró que las muestras están en el área esperada para muestras sin alteración (en cercanías de la línea punteada que representa la tendencia composicional de rocas ígneas y muestras representativas) con excepción de la andesita 18HF-21A. Aunque algunas tobas se alejan de la zona punteada, sus valores de LOI están por debajo del 2%. Por lo que estas muestras son aceptadas para su análisis geoquímico.

Acorde con lo anteriormente expuesto, se puede afirmar que a pesar de que estas muestras han sufrido procesos de removilización de álcalis con la formación de arcillas caolinita y sericita, posiblemente por procesos de diagénesis, su alteración es incipiente, y es aceptable en su mayoría, el uso de los resultados geoquímicos de roca total. Las muestras por fuera de las áreas de rocas sin alteración (las lavas 18HF-21A, y las tobas 18HF-5, 18HF-6, 18HF-20, 18HF-25, 18HF-28, 18HF-31) en los diagramas de la Figura 4-1 deben ser tratadas con atención en los diagramas de álcalis.

Figura 4-1: Diagramas para determinación de alteración de las muestras analizadas. (a) Propuesta por Davies & Whitehead, 2006. (b) Propuesta por Large et al., 2001. (c) Diagrama ternario de Otha & Arai, 2007.

4.2 Clasificación Geoquímica

De acuerdo con el diagrama de clasificación TAS (total de álcalis NaO+K₂O y sílice SiO₂) de Le Bas et al. (1986) (Figura 4-2a) las muestras analizadas se ubican entre intermedias a ácidas, correspondientes a traquiandesitas, traquidacitas y riolitas, y una como traquibasalto (18HF-23), clasificada petrográficamente como basalto, y la muestra 18HF-5 queda por fuera de los límites de SiO₂ de la gráfica con contenido de sílice del 80,2%, identificada anteriormente como una muestra con movilización de álcalis, y probablemente aumento relativo del contenido de sílice. Comparando la localización de las muestras con

el diagrama de De La Roche et al. (1980) (Figura 4-2b), en el que se involucra en la abscisa álcalis, se observa que las muestras están ligeramente movidas hacia valores más altos en la abscisa, indicando posible movilización de Si, Na o K, quedando por fuera de la gráfica la muestras 18HF-8, 18HF-21A, 18HF-9, 18HF-40 y 16SLAZ-9.

Teniendo en cuenta la posible removilización de CaO y Na₂O o MgO y K₂O descrita anteriormente en la Figura 4-1a y con las Figura 4-2 a-b, se empleó el diagrama de elementos inmóviles (Winchester & Floyd, 1977). Comparando los diagramas en los que se involucran elementos móviles e inmóviles (Figura 4-2c), se observa en los primeros (Figura 4-2 a,b) que las muestras presentan una tendencia hacia valores altos de sílice, ubicándose predominantemente en riolitas-latitas, mientras que en el diagrama de elementos inmóviles se ubican agrupan en el campo de riodacitas-dacitas. La muestra 18HF-25 se ubica en el campo de las panteleritas, sin embargo, no es confiable su clasificación una vez identificada como roca fuera de los límites aceptables de alteración con el diagrama de la Figura 4-1b. En la Tabla 4-1 se muestra un resumen de la clasificación geoquímica obtenida con los diagramas de los autores usados.

Tabla 4-1: Resumen de clasificación geoquímica muestras analizadas, de acuerdo a los diagramas TAS de Le Bas et al. (1986), R1-R2 de De La Roche et al. (1980) y diagrama de elementos inmóviles de Winchester & Floyd (1977).

Mucetre	TAS	R1-R2	Elementos inmóviles						
widestra	(Le Bas et al., 1986)	(De La Roche et al., 1980)	(Winchester & Floyd, 1977)						
18HF-10	Traquita-traquidacita	Toba cristalo vítrearcífera	Riodacita-dacita						
18HF-21A	NA	NA	Riodacita-dacita						
18HF-23	Traquibasalto	Basalto	Basalto alcalino						
16SLAZ-09	Riolita	NA	Riodacita-dacita						
18HF-34	Traquita-traquidacita	Dacita	Riodacita-dacita						
18HF-37	Traquiandesita	Latita	andesita						
18HF-40	Riolita	Riodacita	Riodacita-dacita						
	Tobas								
18HF-05	NA	NA	Riodacita-dacita						
18HF-06	Traquita-traquidacita	Toba cristalo vítrearcífera	Riodacita-dacita						
18HF-17	Traquiandesita	Traquita	Andesita						
18HF-20	Riolita	Riolita alcalina	Traquiandesita						
18HF-25	Riolita	Riolita alcalina	Comendita-pantelerita						
18HF-28	Riolita	Riolita	Riolita						
18HF-31	Riolita	Riolita	Riodacita-dacita						

Teniendo en cuenta que no hay dudas en el uso de elementos mayores para la clasificación de los cuerpos intrusivos que afectan las rocas de la Formación Noreán en el costado occidental del VMM, gracias a que las muestras se ubican dentro de las zonas

de rocas frescas de los diagramas de la Figura 4-1, se clasifican entonces de acuerdo con el diagrama de Middlemost (1994), como dioritas, monzonitas y granito (Figura 4-3).

Figura 4-3: Clasificación geoquímica de cuerpos intrusivos que cortan la secuencia de la Formación Noreán hacia el oeste del VMM en la Serranía de San Lucas. Diagrama de Middlemost (1994).

4.3 Discriminación de series magmáticas

Se graficaron las muestras en los diagramas de Miyashiro (1974) para rocas volcánicas (Figura 4-4a), en el diagrama de Irvine & Baragar (1971) (Figura 4-4b), y en el diagrama de elementos incompatibles Ta/Yb vs Th/Yb propuesto por Pearce (1982) (Figura 4-4c), con el fin de corroborar la serie magmática a la cual pertenecen.
		Formación Noreán sector oriental						Formación Noreán sector occidental								Sector El Play	
Muestra/ Elemento		Lavas			Tob	bas			Lava	is		Tobas		Plutónicas		Tol	bas
	18HF-10	18HF-21A	18HF-23	18HF-05	18HF-06	18HF-17	18HF-20	16SLAZ-09	18HF-34	18HF-37	18HF-40	18HF-31	16SLAZ-24	16SLAZ-25	18HF-36	18HF-25	18HF-28
SiO ₂	62.2	73.9	48.4	80.2	64.8	58.1	71.5	79.3	64.9	57.8	73.8	76.5	74.6	59.1	61	77.3	69.8
Al ₂ O ₃	14.75	8.96	17.2	11.25	16.05	16.25	15.15	13.15	15.45	17.2	12.4	12.15	13.8	16.45	17	12.65	13
Fe ₂ O ₃	5.68	2.15	9.87	1.23	4.3	6.38	2.43	2.06	5.54	6.81	2.43	1.55	2.98	6.21	5.86	0.54	4.35
CaO	2.95	0.16	8.54	0.34	2.2	2.7	0.37	0.05	3.15	3.77	2.68	0.84	2.1	5.53	2.82	0.04	1.81
MgO	1.81	1.57	5.99	0.26	0.5	4.13	0.61	0.28	1.9	3.35	0.75	0.2	0.77	2.75	2.25	<0.01	0.8
Na ₂ O	4.43	3.32	2.49	3	7.93	6.23	4.84	2.47	4.42	4.48	3.26	2.92	3.58	3.63	4.44	3.69	3.13
K ₂ O	3.46	0.78	2.71	2.85	0.28	1.87	5.23	2.75	3.33	2.42	2.86	4.73	4.36	1.96	3.26	5.38	6.04
Cr ₂ O ₃	<0.002	0.002	0.006	<0.002	<0.002	0.003	<0.002	<0.001	<0.002	<0.002	<0.001	<0.002	0.01	0.01	<0.002	<0.002	<0.002
TiO ₂	0.99	0.21	1.02	0.16	0.61	0.82	0.32	0.25	0.68	0.62	0.24	0.2	0.33	0.6	0.72	0.08	0.51
MnO	0.08	0.03	0.19	0.01	0.1	0.12	0.05	0.12	0.11	0.12	0.07	0.05	0.06	0.12	0.09	<0.01	0.14
P_2O_5	0.31	0.06	0.42	0.03	0.13	0.28	0.09	0.04	0.16	0.15	0.05	0.04	0.07	0.18	0.19	<0.01	0.13
SrO	0.03	0.01	0.07	0.01	0.05	0.04	0.03	<0.001	0.04	0.06	0.05	0.01	0.02	0.04	0.07	0.01	0.02
BaO	0.09	0.07	0.1	0.07	0.01	0.1	0.17	0.18	0.09	0.08	0.13	0.2	0.11	0.08	0.13	0.14	0.03
Ва	797	581	879	668	84.2	910	1425	1515	809	698	1075	1750	980	684	1080	1280	258
Ce	63.1	30.5	59.2	39.2	40	41.2	55.6	66.5	59.1	39.3	40.5	50.9	66.5	43.4	46.6	83.1	85
Cr	30	30	60	10	10	40	10	<10	10	10	20	10	20	20	10	10	10
Cs	0.61	0.43	0.77	0.49	0.33	0.3	0.79	1.99	1.06	3.18	2.72	1.89	3.19	0.88	2.34	0.28	0.36
Dy	6.84	1.21	5.46	3.98	4.33	4.36	2.24	5.86	5.86	4.33	2.67	4.95	4.2	3.93	6.22	7.53	9.64
Er	3.88	0.74	2.93	2.67	2.54	2.74	1.69	3.46	3.41	2.26	1.54	3.07	2.69	2.15	4.1	5.44	6.43
Eu	1.79	0.71	2.05	0.66	1.54	1.38	0.66	1.13	1.53	1.18	0.69	0.73	0.93	1.1	1.32	0.46	1.08
Ga	21.8	12.6	23.6	12.7	22.9	25.1	18.8	11.4	21.8	23.3	11.6	15.4	16	17.9	22.3	22.4	23.4
Gd	7.56	1.35	5.9	3.4	4.31	5.18	1.95	5.23	5.8	4.26	2.63	4.24	4.03	3.95	6.32	6.72	9.1
Hf	9.4	2.8	3.3	4	7.6	5.1	5	6.2	5.7	4.6	3.2	3.8	5.7	4.1	4.9	12.9	15.1
Ho	1.29	0.2	0.96	0.8	0.82	0.9	0.47	1.18	1.3	0.8	0.53	1.18	0.79	0.74	1.29	1.65	2.05
La	29.6	15	29.1	21.2	20.7	18.4	29.4	38	29.8	19.4	23.2	28.1	34.2	21.9	31.1	63.6	39.8
Lu	0.55	0.08	0.4	0.56	0.51	0.45	0.29	0.61	0.57	0.34	0.29	0.62	0.5	0.38	0.49	1.13	1.15
Nb	10.5	2.4	24	8.2	5.9	6.9	10.2	10.2	7.5	4.7	5.1	8.1	9.2	5.5	5.3	31.3	18.2
Nd	31.7	8.8	27.9	16.4	19.2	22.3	17.1	30.6	25.9	18.6	17.6	20.1	29.2	20.9	23.4	47.3	39.5

Tabla 4-2: Resultados de geoquímica para elementos mayores (%) y trazas (ppm) de las muestras de lavas, tobas, rocas intrusivas de la Formación Noreán y riolitas asociadas.

	Formación Noreán sector oriental									Forma	ción Norea	án sector c	occidental			Sector El Playón	
Muestra/		Lavas			Toł	bas			Lava	is		Tobas		Plutónicas		Tol	bas
Liemento	18HF-10	18HF-21A	18HF-23	18HF-05	18HF-06	18HF-17	18HF-20	16SLAZ-09	18HF-34	18HF-37	18HF-40	18HF-31	16SLAZ-24	16SLAZ-25	18HF-36	18HF-25	18HF-28
Pr	7.36	2.55	7.11	4.68	4.79	5.18	5.3	7.95	6.71	4.58	4.34	5.48	7.42	5.13	5.93	14.15	9.81
Rb	89.3	16.7	56	64.8	5.3	30.8	113.5	58.6	83.2	61.3	62.2	113	114.5	43	68.7	101.5	98.3
Sm	6.52	1.51	6.18	3.47	4.22	5.43	2.28	5.81	5.7	3.69	3.11	4.06	5.41	4.51	5.02	8.43	7.98
Sn	2	1	1	1	2	2	1	1	1	4	1	1	2	2	1	2	3
Sr	257	58.7	598	107	430	335	238	43.8	354	527	347	73.3	218	439	562	85.4	138
Та	0.8	0.5	1.4	1	0.8	0.7	1	0.6	0.8	0.6	0.3	0.9	0.7	0.3	0.6	2.7	1.4
Tb	1.03	0.2	0.97	0.58	0.68	0.69	0.39	0.84	0.87	0.58	0.43	0.83	0.64	0.61	0.96	1.11	1.37
Th	4.42	2.06	2.18	4.92	2.31	3	8.03	7.42	5.03	2.34	2.96	6.56	7.42	2.99	2.4	8.84	4.58
Tm	0.61	0.21	0.43	0.48	0.49	0.48	0.29	0.53	0.66	0.41	0.24	0.56	0.45	0.34	0.63	0.97	0.9
U	1.54	0.64	1.17	1.45	0.9	1.07	2	1.36	1.25	0.68	0.72	1.42	2.39	0.85	0.49	1.98	1.16
V	115	41	259	<5	66	178	16	11	111	147	24	<5	46	135	129	<5	12
W	101	199	48	200	241	54	89	1	99	101	2	145	1	1	118	218	142
Y	35.2	5.6	25.2	21.2	23.2	23.4	12.8	38	32.3	22.3	17.2	30.8	26.9	21.3	46.7	42.6	52.7
Yb	3.92	0.57	2.63	3.12	2.68	2.55	1.64	3.85	3.57	2.45	1.64	3.85	2.99	2.31	3.06	6.81	6.84
Zr	341	102	118	112	303	181	190	198	228	159	104	119	186	139	178	359	751
Ag	LDL	LDL	LDL	LDL	LDL	LDL	LDL	<0.5	LDL	LDL	<0.9	LDL	<0.6	<0.7	LDL	LDL	LDL
As	LDL	LDL	LDL	LDL	LDL	LDL	LDL	14	LDL	LDL	<5	LDL	9	8	LDL	LDL	LDL
Cd	LDL	LDL	LDL	LDL	LDL	LDL	LDL	<0.5	LDL	LDL	<0.5	LDL	<0.5	<0.5	LDL	LDL	LDL
Co	LDL	LDL	LDL	LDL	LDL	LDL	LDL	2	LDL	LDL	3	LDL	5	14	LDL	LDL	LDL
Cu	LDL	LDL	LDL	LDL	LDL	LDL	LDL	7	LDL	LDL	7	LDL	19	24	LDL	LDL	LDL
Li	LDL	LDL	LDL	LDL	LDL	LDL	LDL	30	LDL	LDL	30	LDL	30	20	LDL	LDL	LDL
Мо	LDL	LDL	LDL	LDL	LDL	LDL	LDL	<1	LDL	LDL	1	LDL	2	2	LDL	LDL	LDL
Ni	LDL	LDL	LDL	LDL	LDL	LDL	LDL	<1	LDL	LDL	7	LDL	2	4	LDL	LDL	LDL
Pb	LDL	LDL	LDL	LDL	LDL	LDL	LDL	7	LDL	LDL	12	LDL	16	8	LDL	LDL	LDL
Sc	LDL	LDL	LDL	LDL	LDL	LDL	LDL	5	LDL	LDL	5	LDL	7	14	LDL	LDL	LDL
Ti	LDL	LDL	LDL	LDL	LDL	LDL	LDL	<10	LDL	LDL	<10	LDL	<10	<10	LDL	LDL	LDL
Zn	LDL	LDL	LDL	LDL	LDL	LDL	LDL	49	LDL	LDL	44	LDL	25	75	LDL	LDL	LDL
LOI	2.27	3.8	3.89	1.51	1.33	3.77	1.57	2.53	1.88	2.62	2.98	1.89	0.77	1.91	3.51	1.02	1.94
Total	99.05	95.02	100.9	100.92	98.29	100.79	>102.00	>102	101.65	99.48	101.7	101.28	>102	98.57	101.34	100.85	101.7
ΣREE	165.75	63.63	151.22	101.2	106.81	111.24	119.3	171.55	150.78	102.18	99.41	128.67	159.95	111.35	136.44	248.4	220.65
Rb/Sr	0.35	0.28	0.09	0.61	0.01	0.09	0.48	1.34	0.24	0.12	0.18	1.54	0.53	0.10	0.12	1.19	0.71

		Fo	ormación N	loreán sec	tor orienta	I				Forma	ción Norea	án sector c	occidental			Sector El Playón	
Muestra/ Elemento		Lavas			Tol	bas			Lava	is		Tobas		Plutónicas		To	bas
	18HF-10	18HF-21A	18HF-23	18HF-05	18HF-06	18HF-17	18HF-20	16SLAZ-09	18HF-34	18HF-37	18HF-40	18HF-31	16SLAZ-24	16SLAZ-25	18HF-36	18HF-25	18HF-28
Y/Nb	3.35	2.33	1.05	2.59	3.93	3.39	1.25	3.73	4.31	4.74	3.37	3.80	2.92	3.87	8.81	1.36	2.90
Zr/Nb	32.48	42.50	4.92	13.66	51.36	26.23	18.63	19.41	30.40	33.83	20.39	14.69	20.22	25.27	33.58	11.47	41.26
La/Nb	2.82	6.25	1.21	2.59	3.51	2.67	2.88	3.73	3.97	4.13	4.55	3.47	3.72	3.98	5.87	2.03	2.19
Ba/Nb	75.90	242.08	36.63	81.46	14.27	131.88	139.71	148.53	107.87	148.51	210.78	216.05	106.52	124.36	203.77	40.89	14.18
Ba/Th	180.32	282.04	403.21	135.77	36.45	303.33	177.46	204.18	160.83	298.29	363.18	266.77	132.08	228.76	450.00	144.80	56.33
Rb/Nb	8.50	6.96	2.33	7.90	0.90	4.46	11.13	5.75	11.09	13.04	12.20	13.95	12.45	7.82	12.96	3.24	5.40
Th/Nb	0.42	0.86	0.09	0.60	0.39	0.43	0.79	0.73	0.67	0.50	0.58	0.81	0.81	0.54	0.45	0.28	0.25
Th/La	0.15	0.14	0.07	0.23	0.11	0.16	0.27	0.20	0.17	0.12	0.13	0.23	0.22	0.14	0.08	0.14	0.12
Ba/La	26.93	38.73	30.21	31.51	4.07	49.46	48.47	39.87	27.15	35.98	46.34	62.28	28.65	31.23	34.73	20.13	6.48
Zr/Hf	36.28	36.43	35.76	28.00	39.87	35.49	38.00	31.94	40.00	34.57	32.50	31.32	32.63	33.90	36.33	27.83	49.74
Rb/Cs	146.39	38.84	72.73	132.24	16.06	102.67	143.67	29.45	78.49	19.28	22.87	59.79	35.89	48.86	29.36	362.50	273.06
Sm/Nd	0.21	0.17	0.22	0.21	0.22	0.24	0.13	0.19	0.22	0.20	0.18	0.20	0.19	0.22	0.21	0.18	0.20
Ce/U	40.97	47.66	50.60	27.03	44.44	38.50	27.80	48.90	47.28	57.79	56.25	35.85	27.82	51.06	95.10	41.97	73.28
Ba/Ce	12.63	19.05	14.85	17.04	2.11	22.09	25.63	22.78	13.69	17.76	26.54	34.38	14.74	15.76	23.18	15.40	3.04
Nb/U	6.82	3.75	20.51	5.66	6.56	6.45	5.10	7.50	6.00	6.91	7.08	5.70	3.85	6.47	10.82	15.81	15.69

LDL: Por debajo del límite de detección

En los diagramas en los que se involucran elementos mayores, diagrama de Miyashiro (1974) e Irvine & Baragar (1971), las muestras se ubican predominantemente en el campo de la serie calco alcalina, la muestra de toba de El Playón 18HF-25 no se graficó ya que su contenido de MgO está por fuera del límite de detección del equipo utilizado. En el diagrama de Miyashiro (1974) tres muestras se ubican en el campo de la serie toleítica: en la toba 18HF-28, ubicada en el sector El Playón, se identificó movilización de K₂O, se ubica fuera de la zona de aceptabilidad de muestras sin alteración de la Figura 4-1, y la traquita 18HF-10 presenta LOI de 2.27% con resultado poco confiable, por lo tanto ambas muestras fueron descartadas para la determinación de la serie magmática; por último el basalto 18HF-23, muestra enriquecimiento Fe₂O₃ y MgO, comparado con las demás muestras, y menor contenido de SiO₂, como es de esperarse en los basaltos de arco con mayor contenido de minerales ferromagnesianos.

En el tercer diagrama (Figura 4-4c) se ratifica que las muestras pertenecen a la serie calco alcalina para estas muestras, usando elementos inmóviles con el fin de evitar posibles equivocaciones por enmascaramiento de procesos secundarios tales como deformación, metamorfismo o simple erosión (Pearce, 1982).

Figura 4-4: Diagramas de discriminación de series magmáticas de muestras de lavas, tobas de la Formación Noreán, cuerpos intrusivos y riolitas asociadas. (a) Diagrama de rocas volcánicas de Miyashiro (1974). (b) Diagrama de rocas volcánicas de Irvine & Baragar (1971). (c) Diagrama de elementos traza de Pearce (1982).

4.4 Ambiente Geotectónico

Para definir el régimen tectónico en el cual se generaron las rocas, se empleó el diagrama de discriminación de ambientes usando los elementos traza incompatibles Ta, Th y Yb propuesto por Gorton & Schandl (2000) (Figura 4-5), y los diagramas de Pearce et al. (1984) (Figura 4-6) y Pearce (1982) (Figura 4-7).

El diagrama Ta/Yb – Th/Yb es útil para identificar ambientes de rocas volcánicas intermedias y félsicas ya que el comportamiento no conservativo del Th en ambientes de arco permite distinguir zonas tectónicas (Gorton & Schandl, 2000). Con este gráfico se evidencia que las muestras estudiadas se ubican tanto en el campo de margen continental activo (ACM) como en el de vulcanismo intraplaca (WPVZ), y solo la muestra 18HF-23 (geoquímicamente clasificada como basalto toleítico) en el campo de basaltos intraplaca (Figura 4-5). Adicionalmente, se puede identificar que la mayoría de las muestras localizadas en el flanco occidental del VMM, con color verde en la Figura 4-5, se ubican predominantemente en el campo de margen continental activo (ACM), con excepción de la lava 18HF-37 y la granodiorita 18HF-36, mientras que las muestras tomadas en el flanco oriente del VMM en el sector de Aguachica y El Playón, con colores rojo y morado respectivamente, se ubican en el campo de zona volcánica intraplaca (WPVZ), pudiéndose interpretar como la transición del vulcanismo de un ambiente a otro.

Figura 4-5: Diagramas de discriminación de ambientes geotectónicos (Gorton & Schandl, 2000), de las muestras lavas y tobas de la Formación Noreán, cuerpos intrusivos asociados y muestras del sector de El Playón.

Por otro lado, los diagramas de discriminación tectónica propuestos por Pearce et al. (1984), reflejan el ambiente de formación de las rocas de la Formación Noreán (tobas y lavas) tanto del costado oriental, del occidental, así como de los cuerpos intrusivos encontrados en el flanco occidental, son de arco volcánico; mientras que las tobas del sector de El Playón uno de vulcanismo intraplaca (Figura 4-6).

Figura 4-6: Diagrama de discriminación tectónica de Pearce et al. (1984). Lavas y tobas de la Formación Noreán, y cuerpos intrusivos encontrados en el flanco occidental del VMM caen en los campos de arcos volcánicos, las lavas del sector El Playón en el campo de vulcanismo intraplaca.

▲ Lavas oriente ▲ Lavas Occidente ■ Tobas oriente ■ Tobas El Playón ■ Tobas Occidente ● Plutónicas occidente

Figura 4-7: Diagrama de discriminación tectónica de Pearce (1982). Lavas y tobas de la Formación Noreán y cuerpos intrusivos encontrados en el flanco occidental del VMM caen en los campos de lavas de arco, y una toba del sector El Playón en el de vulcanismo intraplaca.

Los diagramas spider de elementos traza normalizados respecto al manto primitivo (Sun & McDonough, 1989) para las muestras analizas (Figura 4-8) muestran una pendiente ligeramente negativa, con enriquecimiento de los elementos incompatibles (LILE: Cs, Rb, y Ba; Th, U y LREE: La, Ce, Pr, Nd, Sm, Eu) al lado izquierdo de las gráficas (entre 10 y 100 veces al valor normalizado) sobre los compatibles (HREE: Gd, Tb, Dy, Ho, Er, Yb, y Y) con menores abundancias, de acuerdo Pearce & Peate (1995), esta tendencia se relaciona con magmas de arcos volcánicos continentales.

En términos generales, las muestras de lavas y tobas de los sectores oriental y occidental del VMM y de El Playón, y los cuerpos intrusivos que cortan la Formación Noreán en el sector occidental, presentan comportamiento similar entre ellas, con anomalías negativas de Nb-Ta, Sr y Eu (excepto la andesita 18HF-21A), anomalía positiva de Pb, U y Ba (excepto las tobas 18HF-6 y 18HF-28), y un ligero enriquecimiento de Zr, sobre todo en las tobas del sector de El Playón. La anomalía negativa de Nb-Ta es una importante características de rocas volcánicas generadas en zonas de subducción de arcos volcánicos (Rollinson, 1993), la anomalía positiva de Zr como elemento menos móvil, sugiere una relación de corteza continental como fuente (El-Bialy, 2010), la anomalía positiva de Pb es características de arcos volcánicos continentales andesíticos (Zheng,

2019) y las anomalías positivas de Ba y U también son características de magmas relacionados a zonas de subducción.

En la Figura 4-8a, se observa que la muestra 18HF-21A tomada en el sector oriental del VMM (Aguachica) tiene un comportamiento diferente a las demás, presentando anomalía positiva de Eu, negativa de Sm y está mucho más empobrecida en elementos pesados. En cuanto a las muestras de tobas tomadas en el sector de El Playón 18HF25 y 18HF-28, se observa que ellas presentan menor empobrecimiento de los elementos pesados, fuerte anomalía negativa de Eu y positiva de Zr en comparación con las demás tobas (Figura 4-8b), indicando que ellas presentan mayor contaminación cortical comparadas con las tobas de los otros sectores.

Figura 4-8: Diagramas de elementos traza normalizados según Sun & McDonough (1989). (a) Diagrama de las muestras de lava. (b) Diagrama de las tobas. (c) Diagrama de rocas plutónicas. Los sectores de muestreo están discriminados por el color de la línea de acuerdo la convención de los diagramas.

Los diagramas de elementos de tierras raras (REE) normalizados respecto al condrito (McDonough & Sun, 1995) muestran igualmente una pendiente ligeramente negativa, con enriquecimiento en los elementos livianos (LREE) y pendiente casi horizontal en los elementos pesados (Gd-Er), y una curva suavemente cóncava hacia arriba con tenue enriquecimiento de Yb, Lu. El comportamiento de los REE es en general muy parecido entre las muestras de lavas, tobas y rocas plutónicas (Figura 4-9), para cada sector analizado del VMM.

Teniendo en cuenta que los patrones de REE normalizados respecto al condrito CI por lo general tienen formas suavizadas, como en este estudio, dificultando la comparación entre muestras, se calcularon los coeficientes de forma (λ) (Tabla 4-5) siguiendo la metodología

y aplicación desarrollada por Anenburg (2020) (Anexo E). La aplicación desarrolla combinaciones de λ generadas computacionalmente para construir patrones REE normalizados respecto al condrito, que abarcan la mayoría de los patrones REE que pueden ocurrir en materiales naturales (Anenburg, 2020) y es así como se logra comparar cuantitativamente, por medio de los coeficientes, los patrones de las muestras.

Figura 4-9: Diagramas de elementos de tierras raras normalizados respecto al condrito de McDonough & Sun (1995). (a) Diagrama de las muestras de lava. (b) Diagrama de las tobas. (c) Diagrama de rocas plutónicas. Los sectores de muestreo están discriminados por el color de la línea de acuerdo la convención de los diagramas.

En general, las muestras analizadas tienen concentraciones de REE en promedio 138 ppm (Tabla 4-2) y fraccionamiento de los REE, con relación de (La/Yb)N entre 17,9 y 4,0. La concentración de La (15-30 ppm) varía entre 78 y 168 veces el condrito, mientras que la de Lu (0,3-0,6 ppm) varía entre 12 y 47 veces el condrito. El grado de fraccionamiento de los elementos livianos (LREE) es alto respecto a los HREE, con la relación de (La/Sm)N entre 6,2 y 2,8; mientras que los elementos pesados (HREE) están ligeramente fraccionados representados en una pendiente casi horizontal, con una relación de (Gd/Yb)N entre 0,8 y 1,9. La mayoría de muestras presentan anomalías negativas de Eu y curvas ligeramente cóncavas hacia arriba hacia en los REE medios a pesados, para lo cual Wilson (1989) sugiere la ausencia de granate en la fuente, con excepción de la andesita 18HF-21A, en el que se observa empobrecimiento de los HREE.

En cuanto a la anomalía de Eu, la relación de EuN/Eu* (Tabla 4-5) para las lavas tiene valores de 0,2 a 0,9 expresadas como anomalías negativas, y dos muestras de lavas con anomalías positivas (18HF-21A y 18HF-23) con relación entre 1,0 a 1,5 (Figura 4-9a). Para el caso de las tobas, las anomalías negativas con la relación de EuN/Eu* está entre 0,4 y 0,8 y dos muestras (18HF-06 y 18HF-20) con anomalías positivas con valores entre 1,0 y 1,1 (Figura 4-9b). Para las rocas plutónicas, todas ellas tienen anomalías negativas con la relación de EuN/Eu* entre 0,6 y 0,8 (Figura 4-9c). En las gráficas del Anexo E (usando la metodología propuesta por Anenburg, 2020) en las que las muestras se ajustan a los patrones, las anomalías de Eu (sobre todo de los plutones) son más fáciles de observar.

4.5 Fuente del material

Las rocas volcánicas estudiadas presentan textura porfirítica indicando tiempo de residencia suficiente para formar feno y microfenocristales en una cámara magmática antes de su erupción, teniendo la posibilidad de interaccionar con la corteza continental. Para identificar la influencia de la corteza, se hizo una comparación de las relaciones de elementos incompatibles (REI) de valores promediados para cada muestra (Tabla 4-3) con los reportados para los reservorios geoquímicos (Tabla 4-4). Para las muestras de este estudio se encontró que las muestras tienen relaciones de elementos incompatibles cercanos a los de las rocas de corteza continental, con valores de Zr/Nb, La/Nb, Ba/Nb, Ba/Th, Rb/Nb, Th/Nb y Ba/La, mayores a los establecidos para corteza continental (16,2; 2,2; 54; 124; 4,7; 0,44 y 25, respectivamente) según Weaver (1991); valores de Zr/Hf, Th/U, Sm/Nd y Rb/Sr dentro de los rangos para reservorios de corteza continental (31-36; 3,8-5,9; 0,17-0,25 y 0,22-0,33, respectivamente) de acuerdo con Rudnick & Fountain (1995); y valores de Ce/U, Ba/Ce y Nb/U muy diferentes a corteza continental (Manto, MORB) según Halliday et al. (1995); todo lo anterior indicando que los componentes de la corteza continental contribuyeron en la evolución del magma.

Locali- zación	Tipo de roca	Zr/Nb	La/Nb	Ba/Nb	Ba/Th	Rb/Nb	Th/Nb	Ba/La	Zr/Hf	Th/U	Sm/Nd	Rb/Sr	Ce/U	Ba/Ce	Nb/U
Oriente	Lavas	26.63	3.43	118.20	288.50	5.93	0.46	31.96	36.15	2.65	0.20	0.24	46.41	15.51	10.36
Onente	Tobas	27.5	2.91	91.83	163.25	6.10	0.55	33.38	35.34	3.19	0.20	0.30	34.45	16.72	23.76
	Lavas	26.01	4.09	153.92	256.62	10.52	0.62	37.33	34.75	4.26	0.20	0.47	52.56	20.19	6.87
Occidente	Tobas*	14.69	3.47	216.05	266.77	13.95	0.81	62.28	31.32	4.62	0.20	1.54	35.85	34.38	5.7
	Plutónicas	26.36	4.52	144.89	270.28	11.08	0.60	31.54	34.29	3.84	0.21	0.25	58	17.89	7.05
EL Playón	Tobas	26.37	2.11	27.54	100.56	4.32	0.27	13.3	38.78	4.21	0.19	0.95	57.62	9.22	15.75

Tabla 4-3: Valores de relaciones de elementos incompatibles de las muestras analizadas calculados con los resultados geoquímicos presentados en la Tabla 4-2.

*No son valores promedio, sino valores únicos.

Tabla 4-4: Relaciones de elementos incompatibles (REI) de reservorios geoquímicos publicadas por varios autores.

Weaver, 1991												
Reservorios geoquímicos/REI	Zr/Nb	La/Nb	Ba/Nb	Ba/Th	Rb/Nb	Th/Nb	Ba/La					
Manto Primitivo	14.8	0.94	9	77	0.910	0.117	9.6					
N-MORB	30	1.07	4.3	60	0.36	0.07	4.0					
Corteza continental	16.2	2.2	54	124	4.70	0.44	25.0					

			Weaver, 1	991			
OIB (HIMU)	2.7-5.5	0.64-0.82	4.7-6.9	39-85	0.30-0.43	0.071-0.123	6.2-9.3
OIB (EM-1)	3.5-13.1	0.78-1.32	9.1-23.4	80-204	0.69-1.41	0.094-0.130	11.3-19.1
OIB (EM-2)	4.4-7.8	0.79-1.19	6.4-13.3	57-105	0.58-0.85	0.105-0.168	7.3-13.5

Rudnick & Fountain, 1995												
Reservorios geoquímicos/REI	Zr/Hf	Th/U	Sm/Nd	Rb/Sr								
Corteza Continental inferior	36	5.9	0.25	0.33								
Corteza Continental media	31	3.9	0.18	0.22								
Corteza Continental superior	33	3.8	0.17	0.32								

Halli	Halliday et al., 1995											
Reservorios geoquímicos/REI	Ce/U	Ba/Ce	Nb/U									
Manto Primitivo	85	3.9	34									
MORB	180±79	1.1±0.6	49±9									
OIB	88±26	4.5±1.3	48±11									

Adicionalmente, el diagrama de Nb/Y vs. Rb/Y propuesto por Chazot & Bertrand (1995) permite distinguir la influencia de composiciones y fundidos corticales para la relación de Rb/Nb>1 (Figura 4-10).

Figura 4-10: Diagrama Nb/Y vs. Rb/Y (Chazot & Bertrand, 1995) para determinar influencia cortical en las muestras de la Formación Noreán de ambos flancos del VMM, rocas plutónicas y tobas del sector El Playón.

Muestra	La _N	Ce _N	Pr _N	Nd _N	Smℕ	Eu _N	Gdℕ	Τb _N	Dyℕ	Ном	Er _N	Yb _N	Lu _N	(La/ Yb)	(La/ Sm)	(Gd/ Yb)	(Ce/ Yb)	(Ce/ Sm)	(Eu/ Yb)	Eu _N ∕	λ0	λ1	λ2	λ3	λ4
10115.05			=											N	N	N	N	N	N						
18HF-05	89,5	63,9	50,4	35,9	23,4	11,7	17,1	16,1	16,2	14,7	16,7	19,4	22,8	4,6	3,8	0,9	3,3	2,7	0,6	0,6	3	8	101	-284	2341
18HF-06	87,3	65,3	51,6	42,0	28,5	27,4	21,7	18,8	17,6	15,0	15,9	16,6	20,7	5,2	3,1	1,3	3,9	2,3	1,6	1,1	3	9	62	-428	6077
18HF-10	124,9	102,9	79,3	69,4	44,1	31,8	38,0	28,5	27,8	23,6	24,3	24,3	22,4	5,1	2,8	1,6	4,2	2,3	1,3	0,8	4	10	29	-496	-2177
18HF-17	77,6	67,2	55,8	48,8	36,7	24,5	26,0	19,1	17,7	16,5	17,1	15,8	18,3	4,9	2,1	1,6	4,2	1,8	1,5	0,8	3	9	40	-655	-5229
18HF-20	124,1	90,7	57,1	37,4	15,4	11,7	9,8	10,8	9,1	8,6	10,6	10,2	11,8	12,2	8,1	1,0	8,9	5,9	1,2	1,0	3	12	70	274	14244
18HF- 21A	63,3	49,8	27,5	19,3	10,2	12,6	6,8	5,5	4,9	3,7	4,6	3,5	3,3	17,9	6,2	1,9	14,1	4,9	3,6	1,5	2	15	47	814	12990
18HF-23	122,8	96,6	76,6	61,1	41,8	36,4	29,6	26,9	22,2	17,6	18,3	16,3	16,3	7,5	2,9	1,8	5,9	2,3	2,2	1,0	3	11	23	-95	8030
18HF-25	268,4	135,6	152,5	103,5	57,0	8,2	33,8	30,7	30,6	30,2	34,0	42,3	45,9	6,3	4,7	0,8	3,2	2,4	0,2	0,2	4	11	128	-890	-9764
18HF-28	167,9	138,7	105,7	86,4	53,9	19,2	45,7	38,0	39,2	37,5	40,2	42,5	46,7	4,0	3,1	1,1	3,3	2,6	0,5	0,4	4	8	85	-635	-10998
18HF-31	118,6	83,0	59,1	44,0	27,4	13,0	21,3	23,0	20,1	21,6	19,2	23,9	25,2	5,0	4,3	0,9	3,5	3,0	0,5	0,5	3	8	85	-10	5386
18HF-34	125,7	96,4	72,3	56,7	38,5	27,2	29,1	24,1	23,8	23,8	21,3	22,2	23,2	5,7	3,3	1,3	4,3	2,5	1,2	0,8	4	10	65	-422	-7747
18HF-36	131,2	76,0	63,9	51,2	33,9	23,4	31,8	26,6	25,3	23,6	25,6	19,0	19,9	6,9	3,9	1,7	4,0	2,2	1,2	0,7	4	9	34	643	83
18HF-37	81,9	64,1	49,4	40,7	24,9	21,0	21,4	16,1	17,6	14,7	14,1	15,2	13,8	5,4	3,3	1,4	4,2	2,6	1,4	0,9	3	10	42	-304	-374
18HF-40	97,9	66,1	46,8	38,5	21,0	12,3	13,2	11,9	10,9	9,7	9,6	10,2	11,8	9,6	4,7	1,3	6,5	3,1	1,2	0,7	3	14	94	-1375	-13900
16SLAZ- 09	160,3	108,5	85,7	67,0	39,3	20,1	26,3	23,3	23,8	21,6	21,6	23,9	24,8	6,7	4,1	1,1	4,5	2,8	0,8	0,6	4	13	96	-1423	-20030
16SLAZ- 24	144,3	108,5	80,0	63,9	36,6	16,5	20,3	17,7	17,1	14,5	16,8	18,6	20,3	7,8	3,9	1,1	5,8	3,0	0,9	0,6	3	13	91	-1156	-7177
16SLAZ- 25	92,4	70,8	55,3	45,7	30,5	19,5	19,8	16,9	16,0	13,6	13,4	14,3	15,4	6,4	3,0	1,4	4,9	2,3	1,4	0,8	3	12	69	-882	-5121
Están	dar	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu											
CI chor (McDonc Sun, 1	ndrite ough & 995)	0,237	0,613	0,092 8	0,45 7	0,14 8	0,05 63	0,19 9	0,03 61	0,24 6	0,05 46	0,16	0,16 1	0,02 46											

Tabla 4-5: Valores normalizados respecto al condrito CI (McDonough & Sun, 1995), y coeficientes de forma λ (Anenburg, 2020) para las muestras de lavas y tobas de la Formación Noreán, riolitas asociadas y cuerpos plutónicos.

5. Geocronología

5.1 Morfología de circones

Las imágenes de catodoluminiscencia (CL) en circones permitieron identificar las características morfológicas y estructuras internas, asociadas a su evolución durante el crecimiento de los cristales en la cámara magmática; permitiendo realizar interpretaciones sobre su origen y el de las rocas que los contiene. Usando imágenes de CL se seleccionaron los puntos para análisis geocronológico en los circones. A continuación, se presentan las características morfológicas de los circones seleccionados para cada sector muestreado:

5.1.1 Rocas del flanco oriental, sector Aguachica

En el flanco oriental del VMM, se tomaron muestras de la unidad Jncp, base de la Formación Noreán, y de la unidad Jnep. De la primera se seleccionaron dos arenitas líticas (18HF-4 y 14), una toba cristalina (18HF-5) y una cristalo vítrica (18HF-5). De la segunda unidad se eleccionaron dos muestras de tobas cristalovítreas (18HF-17 y 20). Adicionalmente se tomó una muestra de una arenita lítica de lo que cartográficamente corresponde a la Formación Bocas (18HF-2) (Tabla 5-1, Figura 2-1 y Figura 2-2).

Código muestra	Ubicación	Este	Norte	Altura	Unidad	Clasificación litológica
18HF-2	Vía Aguachica-Bombeadero	1058975	1422250	1275	Fm. Bocas (¿?)	Arenita lítica
18HF-4	Vía Aguachica-Marinilla	1057989	1426019	520	Jncp	Arenita lítica
18HF-14	Vía Aguachica-Bombeadero	1056982	1420819	875	Jncp	Arenita lítica
18HF-5	Vía Aguachica-Marinilla	1057943	1426016	505	Jncp	Toba cristalina

Tabla 5-1: Muestras tomadas para análisis geocronológicos en el costado oriental del VMM, en las unidades Jncp y Jned, y Formación Bocas.

Código muestra	Ubicación	Este	Norte	Altura	Unidad	Clasificación litológica
18HF-6	Vía Aguachica-Marinilla-El Carmen	1057759	1425863	505	Jncp	Toba cristalo lítica
18HF-17	Vía Aguachica-Bombeadero	1055583	1418791	427	Jnpe	Toba cristalo vítrea
18HF-20	Quebrada Noreán	1051992	1418951	207	Jnpe	Toba cristalo vítrea

Las muestras de litoarenitas 18HF-2 y 18HF-4 presentan dos tipos de circones, correspondientes con dos poblaciones de edades. El primer tipo, predominantemente, corresponde a cristales subredondeados, con núcleos xenocrísticos redondeados, con zonación interna truncada, irregular y en parches, menos brillantes (menor contenido de Uranio) que los anillos a su alrededor (Figura 5-1A). El segundo tipo corresponde a cristales prismáticos, subhedrales a euhedrales, bipiramidales en su mayoría alargados, con zonación continua homogénea, y bordes más brillantes que las bandas internas (Figura 5-1B). Cada población morfológica presenta rangos de edades diferentes, la primera con edades desde 1400-850 Ma (Meso-Neoproterozoico) correspondiente a circones heredados, y la segunda con edades entre 205-180 Ma (Jurásico Inferior) (Figura 5-4 y Figura 5-5).

La muestra de litoarenita 18HF-14 presenta predominantemente circones prismáticos cortos, la mayoría rotos, euhedrales a subhedrales, con zonación continua homogénea (Figura 5-1A). También presenta escasos cristales subredondeados, subhedrales, con núcleos xenocrísticos, localmente recristalizados y con zonación en parches (Figura 5-1B). La población predominante de cristales presenta edades entre 190-150 Ma (Jurásico inferior-medio) (Figura 5-6).

Una característica común de los granos que presentan núcleos xenocrísticos en las tres muestras de litoarenitas estudiadas, es que presentan bordes subredondeados, sugiriendo desgaste por transporte por retrabajamiento de materiales provenientes de fuentes antiguas (Corfú et al., 2003).

Los circones de las tobas presentan características comunes, generalmente se presenta como cristales prismáticos alargados, euhedrales, solo algunos cristales son subredondeados o prismáticos cortos, bipiramidales, presentan dos tipos de zonación, una oscilatoria continua desde el núcleo hacia los bordes con abundantes anillos de

crecimiento; y otra oscilatoria truncada en el núcleo, discontinua, con crecimiento de pocos anillos a su alrededor. De acuerdo a Corfu et al. (2003), dichas discontinuidades pueden indicar reabsorciones profundas en fases tempranas del circón y localmente revelan que el crecimiento ha ocurrido en diferentes orientaciones cristalográficas.

Por otro lado, cada muestra de toba presenta sus particularidades. En las muestras 18HF-5 y 18HF-6 predominan los cristales bipiramidales, idiomórficos con tonos oscuros y zonación apenas visible (áreas homogéneas) correspondiente a las edades más viejas; en la muestra 18HF-6 se encuentran algunos cristales con finas fracturas que atraviesan el cristal de núcleo a borde, interpretado como efecto de una rápida descompresión durante la erupción de rocas volcánicas (Corfu et al., 2003); la muestra 18HF-17 tiene escasos circones en su mayoría rotos con zonación continua con bordes brillantes; y la muestra 18HF-20 contiene abundantes cristales bipiramidales, comúnmente con bordes corroídos, raras veces rotos, y algunos con intercalaciones de bandas oscuras y brillantes, y/o diferente luminosidad, variado entre tonos grises medio mate y grises claros muy brillantes (Figura 5-1).

En cuanto a las poblaciones de edades, se encontró una notable diferencia entre las muestras de las tobas cristalina y cristalo lítica 18HF-5 y 18HF-6 respectivamente, y las tobas cristalovítricas 18HF-17 y18HF-20. En la 18HF-5 y 18HF-6 independiente de la morfología de sus cristales, se evidencian dos poblaciones de eventos, uno con edades entre 1100 y 850 Ma (Meso-Neoproterozoico) y otro reciente de 220 a 160 Ma (Triásico superior-Jurásico superior) (Figura 5-7 y Figura 5-8); mientras que en las tobas 18HF-17 y 18HF-20 son escasos los datos de edades de ~800 Ma, y predomina en ambas muestras el evento más reciente con edades entre 190 y 165 Ma (Jurásico inferior a medio) (Figura 5-9 y Figura 5-10).

Figura 5-1: Imágenes de catodoluminiscencia de granos de circones de diferentes unidades de la Formación Noreán en el flanco oriental del VMM. Los círculos blancos corresponden la ubicación del disparo (spot) de La-ICP-MS. Las edades reportadas corresponden a ²⁰⁶Pb/³²³U con 2-s de incertidumbre.

5.1.2 Rocas del flanco occidental, sector Arenal

Como se mencionó en el capítulo de Aspectos Petrográficos, hacia el sector occidental del VMM (Zona B), se encontró una roca dacítica y cuerpos graníticos (cartografiados como la unidad Jgd), junto con una sucesión de tobas. Estas muestras 18HF-39 y 18HF-40 (Tabla 5-2, Figura 2-3) fueron datadas y sus edades comparadas con las obtenidas para el sector oriental.

Tabla 5-2: Muestras tomadas para análisis geocronológico en el costado occidental del VMM de cuerpo dacítico y granítico asociado a la Formación Noreán.

Código muestra	Ubicación	Este	Norte	Altura	Unidad	Clasificación litológica
18HF-39	Vía La Diaza Maralas	1010202	1418014	450	Jgd	Granito
18HF-40	VIA La Piaza-Morales	1013598	1418147	134	Jncp	Dacita

Los circones de las muestras del occidente del VMM presentan características típicas de circones ígneos, son cristales prismáticos alargados predominantemente, y algunos acortados, euhedrales en su mayoría, bipiramidales, con zonación ondulatoria. En ambas muestras se identifica que predominan cristales con disrupción de la zonación oscilatoria concéntrica, siendo la zonación del centro del cristal diferente a los anillos de crecimiento de los bordes, indicando que no hubo un proceso de cristalización sucesiva dentro de la cámara magmática. Presentan diferentes tonalidades en la zonación, sin ninguna relación con la edad. Como características particulares, la muestra de granito 18HF-39 presenta cristales en su mayoría idiomórficos, algunos con fracturas transversales al eje c. En algunos cristales, las edades del núcleo son menores que las de los bordes, indicando posible recristalización durante su formación. Por otro lado, la muestra de dacita 18HF-40 presenta abundantes cristales rotos, y de menor tamaño que en el granito (Figura 5-2).

En cuanto a las edades de cristalización se determinó para el granito edad concordia de cristalización de 179,51 \pm 0,37 Ma (Jurásico inferior) y para la dacita de 192,62 \pm 0,30 Ma (Jurásico inferior).

Figura 5-2: Imágenes de catodoluminiscencia de granos de circones de diferentes unidades de la Formación Noreán en el flanco occidental del VMM. Los círculos blancos corresponden la ubicación del disparo (spot) de La-ICP-MS. Las edades reportadas corresponden a ²⁰⁶Pb/³²³U con 2-s de incertidumbre.

5.1.3 Rocas del sector El Playón

De los cuerpos de riolita expuestos en el sector de El Playón (zona D) se tomaron dos muestras de roca, una clasificada modalmente como toba cristalina y otra como tova lítica vítrea (Tabla 5-3 y Figura 2-4).

Tabla 5-3: Muestras tomadas para análisis geocronológico en el costado oriental del VMM de cuerpo riolítico, en el sector El Playón.

Código muestra	Ubicación	Este	Norte	Altura	Unidad	Clasificación litológica	
18HF-25	Vía El Playón-Vereda Matecaña	1083528	1326896	353		Toba cristalina	
18HF-28	Vía El Playón- Escuela La Bateca- Quebrada La Plazuela	1085509	1322077	552	r	Toba lítica vítrea	

La muestra de toba cristalina 18HF-25, presenta tres poblaciones de cristales, asociada cada una de ellas a una población de edades de cristalización. La primera corresponde a cristales subhedrales, prismáticos cortos algunos piramidales, con bordes irregulares o corroídos, con tamaños entre 80 - 100 micras, con zonación truncada, y parches muy brillantes en su interior (Figura 5-2A1). La segunda población corresponde a cristales con morfologías elongadas, subredondeados, con abundancia de cristales muy brillantes sin zonación, y otros con tonos opacos con zonación truncada y tamaños menores a 100micras (Figura 5-2A2). La tercera población presenta cristales anhedrales, con morfologías elongadas, subredondeados, con zonación no continua hacia los bordes, núcleos con zonación interna truncada y luminosidad de tonos medios a bajos (Figura 5-2A3).

La muestra de toba lítica vítrea 18HF-28, presenta dos poblaciones de cristales. La primera corresponde a cristales prismáticos, subhedrales, con zonación truncada, con parches muy brillantes y muy oscuros en su interior y bordes irregulares o corroídos, son en su mayoría ≤100micras (Figura 5-2B1). La segunda población corresponde a cristales anhedrales, subredondeados, algunos sin zonación, otros con bandas muy sutiles y amplias, y otros con zonación truncada. Se encontraron cristales con edades mayores en el borde que en el núcleo indicando posibles recristalización y sobreimposición de eventos, algunos con núcleos xenocrísticos redondeados y de tonos más oscuros que los bordes, lo que según

Corfú et al. (2003) podría indicar un mayor contenido de uranio que en los bordes claros (Figura 5-2B2).

En cuanto a las poblaciones de edades, se encontró que ambas muestras tienen tres poblaciones. La toba cristalina expone la primera población con edades entre 220 y 180 Ma; la segunda población entre 600 y 500 Ma, y la tercera entre 1050 y 900 Ma (Figura 5-13), relacionadas con las poblaciones morfológicas descritas anteriormente (Figura 5-2 A1-3).

Por su parte la toba lítica vítrea presenta la primera población con edades entre 200 y 175 Ma, y la segunda población entre 640 y 560 Ma, y la tercera entre 1800 y 1000 Ma (Figura 5-14); la primera población de edades se relaciona con la primera población morfológica (Figura 5-2B1), mientras que la segunda y tercera población de eventos se asocian con la segunda población morfológica (Figura 5-2 B2).

5.2 Dataciones U-Pb

En la Tabla 5-4 se muestra una compilación para las muestras analizadas de la Formación Noreán y de las riolitas asociadas de las edades concordia (Tera-Wasserburg) calculadas para eventos magmáticos recientes, edades concordia (Tera-Wasserburg) o rangos de edades (media ponderada o Weighted Mean) de circones de eventos antiguos, y la máxima edad de depositación calculada a partir de los 3 cristales más jóvenes en las muestras de arenitas líticas, de acuerdo con la metodología de Dickinson & Gehrels (2009). Los resultados isotópicos U-Pb con sus incertidumbres medidas en las muestras se encuentran en el Anexo E. Tabla 5-4: Edades calculadas del último evento magmático y de circones heredados de las muestras estudiadas de la Formación Noreán, y cuerpos riolíticos asociados en los flancos oriental y occidental del Valle Medio del Magdalena.

Muestra	Clasificación Modal/macroscópica*	Edad ultimo evento magmático ^(a) (Ma)	MSDW	N	Rango de edades ultimo	Circones heredados		Edad máxima de		/
					evento magmático ^(b) (Ma)	Rango de edad (Ma)	N	depositación (Ma)	Unidad	Localización VMM
18HF-02	Arenita lítica*	192,65 ± 0,47	1,6	12	205-180	1300-900 ^(b)	55	186,11 ± 0,98	Jncp	Oriente
18HF-04	Arenita lítica	190,91 ± 1,71	0,084	5	205-180	1400-900 ^(b)	58	186,95 ± 2,47	Jncp	Oriente
18HF-05	Toba cristalina	180,82 ± 0,56	1,5	44	200-160	1050-850 ^(b)	6	/	Jncp	Oriente
18HF-06	Toba cristalo lítica	184,37 ± 1,51	0,39	16	220-160	987,09 ± 6,21 ^(a) (MSWD: 0,41) 1100-850 ^(b)	10	/	Jncp	Oriente
18HF-14	Arenita lítica*	175,56 ± 0,71	1,4	24	190-150	1000-850 ^(b)	4	164,67 ± 1,94	Jncp	Oriente
HF-17	Toba cristalo vítrea	171,50 ± 1,12	0,41	4	180-165	/	/	/	Jncp	Oriente
18HF-20	Toba cristalo vítrea	173,10 ± 0,62	0,78	20	190-150	/	/	/	Jncp	Oriente
18HF-39	Granito*	179,51 ± 0,37	0,42	51	200-160	/	/	/	Jgd	Occidente
18HF-40	Dacita	192,62 ± 0,30	0,11	53	220-170	/	/	/	Jpe	Occidente
18HF-25	Toba cristalina	198,15 ± 0,61	0,0026	23	220-180	$536,27 \pm 2,65 \ ^{(a)}$ (MSWD: 1,3) $650-500 \ ^{(b)}$ 977,40 \pm 3,44 $^{(a)}$ (MSWD: 0,0024) 1050-900 $^{(b)}$	8 10	/	r	El Playón
18HF-28	Toba lítica vítrea	185,83 ± 1,11	0,034	6	200-175	590,74 ± 3,54 ^(a) (MSWD: 0,57) 640-560 ^(b) 1800-1000 ^(b)	4 31	/	r	El Playón
(a) Edades concordia (Tera-wasserburg) (b) Rango Weathered Mean										

En los diagramas de estimación de densidad Kernel de la Figura 5-3, se muestra las poblaciones de densidades registradas en los circones analizados. En cuanto a las distribuciones de densidades, cada sector presenta sus propias características: En las muestras del sector oriental del VMM, los circones detríticos de las muestras de arenitas líticas (18HF-2 y 18HF-4) tienen distribución bimodal muy marcada, y sutil en una muestra de arenita lítica (18HF-14) y en las tobas (18HF-5, 18HF-6, 18HF-17 y 18HF-20); en el sector occidental se encontraron poblaciones unimodales (18HF-39 y 18HF-40), y en el sector de El Playón poblaciones multimodales (18HF-25 y 18HF-28).

En todas las muestras se encontró un evento volcánico de larga duración alrededor de los 220-150 Ma correspondiente a la edad del vulcanismo, con cristales de circones con morfologías típicas de rocas volcánicas -descritas anteriormente-, durante el cual se generaron las rocas de la Formación Noreán, el cuerpo intrusivo 18HF-39 (granito) localizado en el sector occidental del VMM (SSL) y las muestras de tobas del sector El Playón.

Usando las edades concordia calculadas para todas las muestras (gráfico *A* en Figura 5-4 hasta Figura 5-14) se acotaron edades para el evento magmático más reciente. Hacia el sector oriental el vulcanismo se registró entre ~192 Ma y ~171 Ma (Jurásico inferior-medio), hacia el sector occidental entre ~192 Ma y ~179 Ma (Jurásico inferior), y hacia el sector de El Playón entre ~198 Ma y ~185 Ma (Jurásico inferior) (Tabla 5-4). Los rangos del vulcanismo se determinaron usando medias ponderadas (gráficas Weighted Mean). Para el sector oriental del VMM, se encontraron en las muestras de arenitas líticas, edades entre 205 Ma y 150 Ma (gráfico *B* en Figura 5-4 hasta Figura 5-6), y en las tobas entre 220 Ma y 150 Ma (gráfico *B* en Figura 5-7 hasta Figura 5-10Figura 5-10). Para el sector occidental del VMM, edades entre 220 Ma y 160 Ma (gráfico *B* en Figura 5-11 y Figura 5-12). Y para el sector El Playón, las edades de la actividad volcánica están entre 220 Ma y 175 Ma (gráfico *B* en Figura 5-14) (Tabla 5-4).

Figura 5-3: Diagramas de densidad Kernel de las muestras analizadas de la Formación Noreán en los flancos oriental y occidental del VMM, y riolitas asociadas.

En cuanto a las edades heredadas en los sectores del oriente del VMM y El Playón se determinaron (por medio de diagramas de media ponderada), rangos de edades correspondientes a fuentes Proterozoicas. En el oriente del VMM las muestras de circones detríticos de las arenitas registran edades de 1400 Ma a 850 Ma (Meso-Neoproterozoico)

(gráfico *C* en Figura 5-4 hasta Figura 5-6), y en las tobas registran rangos de edades entre 1100Ma y 850 Ma (gráfico *C* en Figura 5-7 y gráfico *D* Figura 5-8) y edad concordia para la muestra 18HF-6 de 987,09 \pm 6,21 Ma (gráfico *C* Figura 5-8) (Neoproterozoico-Toniano). Mientras que en El Playón se encontraron tres rangos de edades; el primero entre 1800 Ma y 1000 Ma (Paleo-Mesoproterozoico), el segundo entre 1050 Ma y 900 Ma (Mesoneoproterozoico) y el tercero entre 650 Ma y 500 Ma (Neoproterozoico) (gráfico *D* y *F* Figura 5-13, y gráfico D y E Figura 5-14); con edades concordia de 977,40 \pm 3,44 Ma (Neoproterozoico-Toniano) y 536,27 \pm 2,65 Ma (Cámbrico) en la muestra de riolita 18HF-25 (gráfico E y C en Figura 5-13); y 590,74 \pm 3,54 Ma (Neoproterozoico-Ediacarano) en la toba lítica vítrea 18HF-28 (gráfico C Figura 5-14).

Adicionalmente, se calculó la máxima edad de depositación a partir de los 3 cristales más jóvenes en las muestras de circones detríticos de las arenitas líticas de acuerdo a Dickinson & Gehrels (2009). Como era de esperarse, la edad encontrada es más reciente que la registrada del evento volcánico para cada muestra. Para la 18HF-02 su máxima edad de depositación es 186,11 \pm 0,98 Ma (Jurásico inferior); para la 18HF-4 es de 186,95 \pm 2,47 Ma (Jurásico inferior); y para la 18HF-14 es de 164,67 \pm 1,94 Ma (Jurásico medio).

Figura 5-4: Datos de U-Pb en circones detríticos de arenita lítica de la Formación Bocas. Muestra 18HF-2. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, 2009).

Figura 5-5: Datos de U-Pb en circones detríticos de arenita lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-4. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barra azul corresponde a valor rechazado por el software. C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, 2009).

Figura 5-6: Datos de U-Pb en circones detríticos de arenita lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-14. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C) Rango edades eventos más antiguos (Diagrama Weighted Mean). D) Máxima edad de depositación calculada a partir de los 3 cristales más jóvenes (Dickinson & Gehrels, 2009).

Figura 5-7: Datos de U-Pb en circones de toba cristalina de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-5. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el software. C) Rango edades eventos más antiguos (Diagrama Weighted Mean).

Figura 5-8: Datos de U-Pb en circones de toba cristalo lítica de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-6. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-D Edades del evento más antiguo. C) Edad concordia (Diagrama Tera-Wasseburg). D) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el software.

Figura 5-9: Datos de U-Pb en circones de toba cristalo vítrea de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-17. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean).

Figura 5-10: Datos de U-Pb en circones de toba cristalo vítrea de la unidad Jncp de la Formación Noreán en el oriente del VMM. Muestra 18HF-20. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean).

Figura 5-11: Datos de U-Pb en circones de granito la unidad Jgd aflorante en el occidente del VMM. Muestra 18HF-39. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el software.

Figura 5-12: Datos de U-Pb en circones de dacita de la unidad Jncp de la Formación Noreán aflorante en el occidente del VMM. Muestra 18HF-40. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean), barras azules corresponden a valores rechazados por el software.

Figura 5-13: Datos de U-Pb en circones de riolita de la unidad r aflorante en el sector de El Playón al oriente del VMM. Muestra 18HF-25. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-F Edades de los eventos más antiguos. C) y E) Edades concordia (Diagrama Tera-Wasseburg). D) y F) Rangos de edades (Diagrama Weighted Mean).

Figura 5-14: Datos de U-Pb en circones de una toba lítica vítrea de la unidad r aflorante en el sector de El Playón al oriente del VMM. Muestra 18HF-28. A-B Edades del evento más reciente. A) Edad concordia (Diagrama Tera-Wasseburg). B) Rangos de edades (Diagrama Weighted Mean). C-F Edades de los eventos más antiguos. C) Edad concordia (Diagrama Tera-Wasseburg). D) y E) Rangos de edades (Diagrama Weighted Mean).

6. Discusión de Resultados

Los datos obtenidos por medio de los análisis de petrografía, geoquímica de roca total y edades absolutas permitieron definir aspectos genéticos y cronológicos de los eventos magmáticos, aportando ideas del ambiente geotectonomagmático en que se formaron las rocas estudiadas de la sucesión de la Formación Noreán en los flancos oriental y occidental del VMM, y las del sector de El Playón.

A partir de las observaciones de campo y del análisis petrográfico se evidenció que la sucesión estudiada de la Formación Noreán está compuesta hacia la base por intercalaciones de rocas detríticas como arenitas líticas, feldespáticas y lodolitas con tobas, seguida de secuencias muy espesas de tobas y coladas de lavas. En este trabajo se mantuvo la nomenclatura propuesta por Clavijo (1995) para las unidades líticas: unidad Jncp (clástico-piroclástico), unidad Jnha (hipoabisal andesítico), unidad Jnpe (piroclástico-epiclástico) y unidad Jned (efusivo dacítico).

Hacia la base de la Formación Noreán, estudiada en el sector oriental del VMM (zona A-Aguachica), se encuentran intercalaciones de arenitas líticas y arenitas feldespáticas de grano medio y fino, y lodolitas grises, seguidas de tobas cristalinas, cristalo líticas y vítricas, de color gris morado, con esporádicas tobas líticas. La presencia de arenitas feldespáticas y arenitas líticas con contenidos de líticos metamórficos (<20%), y en menor proporción volcánicos (<3%) e intrusivos (<6%) en una matriz arcillosa (5-10%) indica aporte continental proveniente de un basamento metamórfico del Meso-Neoproterozoico (definido por medio de edades heredadas encontradas en los circones detríticos analizados en este estudio). Las tobas contienen feno y microfenocristales de plagioclasas, feldespatos y cuarzos euhedrales a subhedrales, fracturados en matrices vítreas, y presencia ocasional de amígdulas rellenas de minerales secundarios, indicando descompresión rápida generadora de las fracturas por un vulcanismo tipo explosivo. Este conjunto de rocas fue denominado Jncp.

En el costado occidental del VMM, en medio de un conjunto de tobas líticas y cristalinas se encuentra una colada de lava dacítica (18HF-40) con textura porfirítica, indicando tiempo de residencia suficiente para crecimiento de fenocristales, presenta edades de cristalización similares a las obtenidas en los circones detríticos de la muestra de arenita lítica (18HF-2) ubicada en el costado oriental del VMM. Muestras de rocas detríticas terrígenas (arenitas líticas y feldespáticas), volcánicas (tobas) en ambos sectores del VMM, y coladas de lavas hacia el occidente indican que además de un vulcanismo explosivo, transporte de material continental y volcánico, el comienzo de la Formación Noreán se dio también bajo condiciones de vulcanismo efusivo (lavas dacíticas).

Teniendo en cuenta la cartografía de las planchas 75-Aguachica (Clavijo et al., 1992) la muestra 18HF-2 pertenecería a la Formación Bocas, sin embargo en este trabajo se ubica en la base de la unidad Jncp, y la edad de sus circones detríticos marcaría el comienzo del vulcanismo para este sector del VMM, ya que: i) durante el reconocimiento en campo no se encontró un cambio litológico o estructural indicativo del límite entre la Formación Noreán y la Formación Bocas, ii) petrográficamente esta muestra tiene características similares a las otras arenitas tomadas de la unidad Jncp de la Formación Noreán (contenido de cuarzo 20-60%, feldespato 10-20%, fragmentos líticos volcánicos y metamórficos 10-20% en matriz arcillosa menor del 10%, y iii) las edades calculadas (edad de sus fuentes de aporte y máxima edad de depositación) presentan rangos similares a la muestra de arenita lítica tomada de la base de la unidad Jncp (18HF-4), todo lo anteriormente expuesto indica que se generó en el mismo ambiente que las demás muestras clásticas tomadas de la unidad Jncp.

Cortando la secuencia de intercalaciones de arenitas y lodolitas con tobas de la unidad Jncp, se encuentran coladas de lavas, unidad denominada Jnha. Estas lavas modalmente se clasifican como andesitas, con textura porfirítica, de color gris a moradas, y se caracterizan composicionalmente por el bajo contenido o escases de cuarzo y feldespato potásico (<1%) y la presencia de dos tipos de piroxenos (orto y clino), algunos completamente reemplazados por clorita (probablemente los ortopiroxenos), y otros subhedrales de clinopiroxeno. Hacia el occidente del VMM, se encontró dentro de esta unidad un cuerpo fanerítico, equigranular de grano grueso clasificado como cuarzomonzonita (16SLAZ-1), la ausencia de datos de GRT para esta muestra, no permite definir si tanto las lavas de esta unidad Jnha así como el intrusivo comparten la misma fuente.

La secuencia de tobas que se encuentran suprayaciendo las unidades descritas anteriormente, denominada unidad Jnpe, se caracteriza por la presencia de anfíboles (5-15%), escaso contenido o ausencia de piroxeno (<5%), localmente líticos de pumitas hasta de 15 cm y texturas de flujo, y esporádicos niveles de lodolitas rojas. Suprayaciendo afloran espesas coladas de lavas, denominada la unidad Jned, compuesta por lavas andesíticas y dacíticas y contiene, aunque en baja proporción tobas lítico cristalinas y arenitas líticas. Hacia el sector oriental del VMM aparecen exposiciones de basaltos (18HF-23), y hacia el costado occidental son intruidas por cuerpos de granodioritas (18HF-36, 18HF-37 y 16SLAZ-25), cuarzomonzonitas (16SLAZ-21) y monzogranito (16SLAZ-24).

En cuanto a los cuerpos cartografiados como riolitas en el sector de El Playón, se encontró que la mayoría presentan una intensa alteración a minerales arcillosos, clorita, epidota, hematita y están parcialmente silicificados, sin embargo, se pudieron clasificar modalmente tres muestras como cuarzo traquita, toba lítica vítrea y una toba cristalina la cual se encuentra fuertemente tectonizada.

Todas las tobas estudiadas en este trabajo presentan cristales de plagioclasa, algunas cuarzo y plagioclasa, la mayoría de los cristales están fracturados, algunos con bordes redondeados (indicando transporte antes de su depositación) y con bahías de corrosión, y aunque no todas las muestras presentan alteración, en la mayoría de lavas y tobas se encuentran minerales arcillosos como producto de alteración de la matriz vítrea, los minerales máficos y los feldespatos, y algunas muestras presentan procesos de devitrificación de la matriz. Además, se reconocieron minerales secundarios producto de la circulación de fluidos hidrotermales, rellenando fracturas y vesículas o reemplazando pseudomórficamente cristales. La mayoría de las vesículas y fracturas están rellenas por calcita y sílice. Gracias a la caracterización de los minerales arcillosos usando DRX, se encontró que los feldespatos y las matrices vítreas presentan alteración a illita y caolinita, y los minerales máficos se encuentran alterados a arcillas interestratificadas cloritavermiculita o a clorita. En cuanto al análisis geoquímico, se encontraron valores de LOI, en la mayoría de las muestras estudiadas, inferiores al 2%, sin embargo, usando los diagramas de alteración (Figura 4-1) se observó que algunas de las tobas y lavas presentan movilización de K₂O evidenciada con la presencia de caolinita, illita y sericita en muestras tales como 18HF-06, 18HF-10, 18HF-28, 18HF-36, 18HF-37, 16SLAZ-24 y 16SLAZ-25, determinada mediante análisis de DRX o petrográficos.

Usando gráficas de elementos mayores para clasificar las muestras, se encontró que las muestras 18HF-05, 18HF-08, 18HF-21A, 18HF-09, 18HF-40 y 16SLAZ-09 presentan aumento de Si, Na o K saliéndose de los límites de las gráficas, causado por la devitrificación de la matriz. Teniendo en cuenta esta consideración de los álcalis, se realizó la clasificación de las rocas volcánicas utilizando el diagrama de elementos inmóviles, siendo clasificadas como riodacitas y dacitas (Figura 4-2). En general no se observa diferencia en composición geoquímica entre las 8 lavas y 6 tobas estudiadas de ambos flancos del VMM y las rocas del sector de El Playón, encontrándose las clasificaciones modales en alta concordancia con la geoquímica. En cuanto a las 3 muestras de los cuerpos intrusivos que cortan a la Formación Noreán en el costado occidental del VMM, estos no presentan indicios de alteración y fueron clasificadas como dioritas y granitos (Figura 4-3).

Se determinó que independiente del tipo modal de roca y de su ubicación en ambos flancos del VMM, todas las muestras analizadas corresponden a la serie magmática calco alcalina (Figura 4-4). Aplicando el diagrama de ambientes tectónicos de Gorton & Schandl (2000) de la Figura 4-5, se enmarcaron las muestras occidentales de tobas y lavas de la Formación Noreán y los plutones que la cortan, en un ambiente de margen continental activo, y las del oriente junto con las del sector El Playón en un vulcanismo intraplaca. Por otro lado, usando los diagramas de Pearce et al. (1984) y Pearce (1982) (Figura 4-7) se enmarcaron las muestras de Noreán y los plutones en el tipo de margen continental activo, y las de El Playón en vulcanismo intraplaca. En ambos ambientes, la formación de las muestras analizadas tiene influencia de la corteza continental. Esta influencia o "contaminación cortical" se evidenció a) al comparar las relaciones de elementos incompatibles (REI) de las muestras analizadas con los valores de reservorios geoquímicos, b) usando el diagrama de Nb/Y vs. Rb/Y propuesto por Chazot & Bertrand (1995), y c) identificando las anomalías en las gráficas de elementos traza y REE.

Usando las REI, se encontró que las muestras estudiadas están dentro o por encima de los rangos establecidos para corteza continental según Weaver (1991), dentro de los rangos de corteza continental propuesto por Rudnick & Fountain (1995) (Tabla 6-1), y que poseen valores de Ce/U, Ba/Ce y Nb/U muy diferentes a los definidos para reservorio de Manto y MORB según Halliday et al. (1995) (Tabla 4-3).

Tabla 6-1: Resumen valores de relaciones de elementos incompatibles (REI) en ppm de
las muestras analizadas y los valores establecidos para corteza continental según Weave
(1991) y Rudnick & Fountain (1995).

Muestra/REI (ppm)	Zr/Nb	La/Nb	Ba/Nb	Ba/Th	Rb/Nb	Th/Nb	Ba/La	Zr/Hf	Th/U	Sm/Nd	Rb/Sr		
Muestras	14,7-	2,1-	27,5-	100-	4,3-	0,27-	13,3-	31,3-	2,7-	0,19-	0,24-		
estudiadas	26,6	4,1	216,1	288	13,9	0,81	62,3	38,8	4,6	0,21	0,95		
Valores	16,2	2,2	54	124	4,7	0,44	25	31-	3,8-	0,17-	0,22-		
establecidos								36	5,9	0,25	0,33		
para corteza continental	Weaver (1991)								Rudnick & Fountain (1995)				

En cuanto al diagrama de Nb/Y vs. Rb/Y propuesto por Chazot & Bertrand (1995), se determinó que tanto las tobas, como las lavas de ambos flancos del VMM de la Formación Noreán, las tobas del sector El Playón y los cuerpos intrusivos al occidente del VMM, tienen valores con rangos de Rb/Nb por encima de 3 (entre 4,46 a 13,45), sugiriendo influencia de la corteza superior (Figura 4-10).

Tanto lavas y tobas de ambos flancos del VMM, como las muestras del sector de El Playón y cuerpos que intruyen a la Formación Noreán en el occidente del VMM presentan anomalías negativas de Nb-Ta, Sr y Eu, anomalías típicas de zonas de subducción, así como enriquecimiento de los elementos livianos y empobrecimiento de los pesados (Figura 4-8 y Figura 4-9) indicando igualmente, contaminación cortical en ambientes de arcos volcánicos continentales.

Algunas particularidades fueron identificadas en estos diagramas: la muestra de andesita tomada en el sector de Aguachica (18HF-21A) presenta indicios de menor contaminación cortical comparada a las demás lavas, debido a su anomalía positiva de Eu y alto empobrecimiento de los elementos pesados, por lo contrario, dos tobas del sector El Playón (18HF-25 y 18HF-28), presentan bajo empobrecimiento de los elementos pesados, fuerte anomalía negativa de Eu y positiva de Zr, indicando mayor contaminación cortical
comparada a las tobas de los otros sectores. Indicios de aumento de la contaminación cortical en las muestras de tobas de El Playón puede deberse a que su material fuente tuvo más tiempo de residencia o mayor contacto cortical en su trayectoria ascendente, ya que la formación de tobas involucra tanto material producto de la actividad volcánica en sí misma, así como material que puede ser "arrancado" tanto del basamento como del edificio volcánico durante el ascenso del fluido.

El análisis geocronológico y morfológico de los circones, permitió determinar similitudes y diferencias entre los sectores estudiados. En cuanto a morfología de los cristales, se encontró que, tanto en las arenitas líticas, como en las tobas, las edades más antiguas se encuentran en los cristales redondeados o con núcleos xenocrísticos y con zonación oscilatoria truncada o con zonas de recristalización, mientras que las edades más recientes se encuentran en los cristales prismáticos, subhedrales, bipiramidales con zonación continua homogénea. En las muestras del VMM y de El Playón se encontraron poblaciones de edades del Triásico-Jurásico y edades heredadas del Proterozoico (correspondientes a muestras de tobas, lavas y arenitas líticas), mientras que en las del sector occidental solo registran edades del Jurásico (en muestras de dacita y granito), coincidiendo con las edades reportadas por Villamizar et al. (2019) de la Formación Noreán en el borde oriental de la Serranía de San Lucas (flanco occidental del VMM), de 174 a 186 Ma (Jurásico inferior), en muestras de ignimbritas y granito. Es así que las poblaciones de edades calculadas de eventos volcánicos durante el Jurásico coinciden en todos los sectores estudiados (Figura 5-3).

Las edades obtenidas de las muestras de la Formación Noreán en el oriente del VMM, registran eventos en a) circones detríticos de arenitas líticas (18HF-2, 18HF-4 y 18HF-14) de la unidad Jncp (base de la Formación Noreán) con edades: i) medias ponderadas entre 1400-850 Ma (Meso-Neoproterozoico), ii) eventos con edades concordia entre 192,65 \pm 0,47 Ma; 190,91 \pm 1,71 y 175,56 \pm 0,71 Ma (Jurásico inferior) para cada una de las muestras, y iii) edades de máxima depositación para las arenitas líticas 18HF-2 y 18HF-4 de ~186 Ma, y para la arenita lítica 18HF-14 de ~164,67 Ma; y en b) circones detríticos de tobas (18HF-5, 18HF-6, 18HF-17 y 18HF-20) con edades de i) eventos anteriores ocurridos entre 1100 Ma - 850 Ma (Meso-Neoproterozoico), y ii) circones de eventos volcánicos con edades de 184,37 \pm 1,51 Ma; 180,82 \pm 0,56 Ma; 173,10 \pm 0,62 Ma; y 171,50 \pm 1,12 Ma (Jurásico inferior-Jurásico medio), con rangos de edades medias ponderadas entre 220

Ma - 150 Ma (Triásico-Jurásico). Esto significa que la actividad volcánica en este sector comenzó desde los ~220 Ma, ya que si bien las edades concordia reportadas desde ~193 Ma hasta ~171 Ma (*bulk age*) representan las edades de cristalización de la roca, se encontraron cristales de circones con edades del Triásico.

Teniendo en cuenta que las muestras analizadas de dacita y granito (18HF-40 y 18HF-39) del flanco occidental del VMM, poseen edades concordia de cristalización de las rocas de 192,62 \pm 0,30 Ma y 179,51 \pm 0,37 Ma respectivamente, y comparándolas con las edades del último evento volcánico obtenidas en el flanco oriental, se encontró que el comienzo de la Formación Noreán no implicó únicamente procesos de vulcanismo explosivodepositación (evidenciados en los espesos paquetes de tobas a lo largo de la secuencia) y aporte terrígeno continental (evidenciado con las sucesiones de arenitas líticas y feldespáticas intercaladas con las tobas), sino que además involucró eventos efusivos coetáneos (similitud en edades entre la dacita y la arenita lítica 18HF-2). Es decir que el vulcanismo generador de la secuencia de la Formación Noreán, y que aportó material para el relleno de la cuenca del Valle Medio del Magdalena, implicó paralelamente actividad volcánica desde el Triásico-Jurásico, procesos de transporte-depositación del material (con edades máximas de depositación de ~186 Ma y ~164 Ma), y ascenso de magma con formación de cuerpos plutónicos (179,51 \pm 0,37 Ma) a la par de formación de tobas.

El hecho de que las edades de máxima depositación para las muestras de litoarenitas de la unidad base Jncp, estén siendo superpuestas por edades más recientes de tobas, implica que en los comienzos de la Formación Noreán hubo agradaciones por vulcanismo muy voluminoso en cortos periodos de tiempo, interdigitando aporte terrígeno (niveles de arenitas, limolitas y lodolitas) con depósitos volcánicos (tobas). El pulso intrusivo tomado en cuenta en este estudio como parte de la actividad volcánica generadora de la Formación Noreán, puede estar también relacionado con el Batolito (Granito) de Norosí, ya que las edades reportadas por Cuadros (2012) son similares, correspondientes a 181,8 \pm 3,2 Ma y 178 \pm 4,3 Ma en granodioritas del Batolito.

Por otro lado, las edades obtenidas de los circones de las muestras de tobas del sector de El Playón arrojan tres poblaciones de edades: la primera correspondiente al evento más reciente con edades concordia de 198,15 \pm 0,61 Ma y 185,83 \pm 1,11 Ma (Jurásico inferior) con rangos de edades medias ponderadas entre 220 Ma - 175 Ma (Triásico-Jurásico); la segunda con rangos de edades medias ponderadas entre 1800 Ma - 1000 Ma (Paleo-

Mesoproterozoico), y la tercera entre 650 Ma - 500 Ma (Neoproterozoico-Cámbrico). Indicando al igual que en las muestras del sector de Aguachica-Noreán, el comienzo de la actividad volcánica en el Triásico (~220 Ma).

Las posibles fuentes de materiales causantes de los rangos de edades del Meso-Neoproterozoico (1400-850 Ma) en los circones estudiados para las muestras del sector de Aguachica, y de las edades Paleo-Mesoproterozoico (1800-1000 Ma) y Neoproterozoico-Cámbrico (650-500 Ma) en los circones estudiados para las muestras del sector de El Playón podrían ser el cratón amazónico con edades entre c.a. 1300 Ma - 900 Ma reportadas por Ibanez-Mejia at al. (2011), o el Gneis de Bucaramanga, con una edad del último evento metamórfico de 490 Ma - 450 Ma (Van del Lelij et al., 2016), y que probablemente sufrió otros eventos que afectaron su protolito con edades <1700 Ma (Cordani et al. 2005; Ordóñez-Carmona et al. 2006 en Zuluaga & López, 2019).

Con base en las edades reportadas de los eventos volcánicos y los resultado de geoquímica de las rocas localizadas en ambos flancos del VMM pertenecientes a la Formación Noreán, y las de El Playón se puede afirmar que para estos sectores se produjeron coetáneamente durante el Jurásico varios episodios volcánicos calco alcalinos con rango de edades entre ~198 Ma hasta los ~171 Ma, comenzado la emisión volcánica en el sector de El Playón a los 198,15 ± 0,61 Ma (toba 18HF-25), pero con previa actividad volcánica desde los ~220 Ma, junto con una edad media ponderada reportada por van der Lelij (2013) de 250,7 ± 4,3 Ma para un dique de riolita que corta la Formación Bocas al oeste de la falla de Santa Marta – Bucaramanga, en cercanías de El Playón. El vulcanismo pudo haberse desplazado posteriormente hacia el norte y occidente, representado por muestras datadas en: i) 192,65 ± 0,47 Ma (arenita lítica 18HF-02) en el sector de Noreán, ii) 192,62 ± 0,30 Ma (dacita 18HF-40) del sector de Arenal (flanco occidental del VMM), y iii) 192,4 ± 2,2 Ma para una andesita basáltica reportada aproximadamente a 16 km al NNE del municipio de Aguachica.

A la luz de los datos petrográficos, geoquímicos y geocronológicos expuestos anteriormente, se propone el marco tectonomagmático y geocronológico en el que se desarrollaron las secuencias volcánicas y las rocas plutónicas estudiadas. Partiendo de lo expuesto en forma resumida:

- En ambos flancos del VMM, la Formación Noreán está compuesta por secuencias de tobas, arenitas y limolitas líticas y lavas.
- La presencia de coladas de lavas de composición ácida a intermedia (andesitas y riolitas), por su naturaleza altamente viscosa por el alto contenido de SiO₂, sugiere proximidad de la fuente de emisión, es decir que el foco volcánico de las lavas del oriente del VMM, no necesariamente correspondió al mismo de las lavas del occidente.
- Geoquímicamente se encontró que todas las muestras son intermedias a ácidas, de carácter calco alcalino.
- Las muestras de tobas y lavas de la Formación Noreán y del sector El Playón, así como los cuerpos plutónicos presentan enriquecimiento de LILE sobre HREE, anomalías negativas de Nb-Ta, positivas de Pb, y Zr particularmente en el sector de El Playón, como indicadores de su generación en un ambiente de subducción de arco volcánico o margen continental activo.
- Se encontraron evidencias que componentes de la corteza continental contribuyeron en la evolución del magma, provocando a que las muestras se ubiquen en el límite de margen continental activo a vulcanismo intraplaca del diagrama de Gorton & Schandl (2000).
- Usando diagramas de discriminación geotectónica se enmarcan las muestras de tobas y lavas de la Formación Noreán, y los cuerpos plutónicos que las cortan en el occidente del VMM, en un margen continental activo; y las tobas de El Playón en un vulcanismo intraplaca (Pearce et al., 1984). Mientras que en los diagramas de Gorton & Schandl (2000), las muestras se ubican en un ambiente transicional entre margen continental activo (para las muestras del occidente del VMM) y vulcanismo intraplaca (muestras del oriente y del sector El Playón), indicando que la evolución del magmatismo se dio desde un bajo ángulo de subducción a un entorno extensional.
- Teniendo en cuenta los datos de U-Pb en circones se pudo deducir:
 - Un amplio evento volcánico durante el Jurásico inferior a medio, desde ~198
 Ma (en el sector El Playón) hasta ~171 Ma (*bulk age*), con indicios de la actividad volcánica desde los ~220 Ma.
 - Depositación (~186 Ma y ~164 Ma en arenitas líticas) y vulcanismo coetáneamente (~192 Ma en dacita, ~198 Ma a ~171 Ma en tobas) en ambos flancos del VMM.

Eventos heredados de i) 1400 Ma a 850 Ma (Meso-Neoproterozoico) hacia el sector Aguachica y de 1800 Ma a 1000 Ma (Paleo-Mesoproterozoico) en el sector El Playón, y ii) de 650 Ma a 500 Ma (Neoproterozoico-Cámbrico) en el sector El Playón posiblemente provenientes del cratón Amazónico o del Gneis de Bucaramanga.

El ambiente corresponde a un ambiente extensivo de cuenca intra-arco, en el que se desarrolló posiblemente un gran arco volcánico, en el que el vulcanismo empezó en el costado oriental del VMM en el sector El Playón, continuó hacia el norte en el sector de Aguachica, y coetáneamente hacia el occidente en el flanco oriental de la SSL, produciendo las rocas expuestas actualmente en ambos flancos del VMM. Posteriormente a los pulsos principales del vulcanismo, fueron emplazados los cuerpos plutónicos estudiados (Figura 6-1).

Es importante anotar que Sarmiento (2001) y Sarmiento-Rojas et al. (2006) proponen el desarrollo de una cuenca relativamente estrecha hasta de 150 km de ancho ubicada en lo que actualmente corresponde al flanco noroccidental de la Cordillera Oriental, al oeste de Bucaramanga. Estos autores relacionan el desarrollo de la cuenca con la ruptura inicial de Pangea durante el Triásico tardío-Jurásico Medio (entre ~208 y 185 Ma) y Jurásico Medio (entre ~180 y 176 Ma). En todo caso, la cuenca que se extiende desde el sur de Colombia hasta la Guajira representa un debilitamiento termal de la litosfera, con formación de grabens y semigrabens que actuaron como depocentros inicialmente para material continental y más tarde sedimentación marina somera antes de iniciar la invasión del mar que caracteriza la cuenca Cretácica (Jaillard et al., 1990, 2000; Toussaint, 1995; Sarmiento-Rojas et al., 2006; Ramos and Aleman, 2000; Ramos, 2009; Pindell and Kennan, 2009 en Bustamante et al., 2016; Clavijo, 1995; Clavijo et al., 2008).

Figura 6-1: Modelo tectonomagmático propuesto. Figura tomada y adaptada de Mpodozis & Ramos (2008). Texto en color azul, naranja y rojo adicionado a la figura original, de acuerdo con los resultados obtenidos en este trabajo. Edades de los rangos del vulcanismo Jurásico encontrado.

7.Conclusiones

Petrográficamente se determinó que la Formación Noreán está constituida en ambos flancos del VMM por rocas heterogéneas, correspondientes a tobas, coladas de lavas, rocas terrígenas, y cuerpos intrusivos, y no se evidenció diferencia alguna con las rocas estudiadas en el sector de El Playón.

La sucesión estudiada de la Formación Noreán en el flanco oriental del VMM en el sector de Aguachica, está constituida hacia la base por rocas con influencia terrígena como arenitas líticas, feldespáticas y lodolitas intercaladas con episodios volcánicos explosivos que aumentan su influencia con el tiempo, representados en grandes paquetes de tobas predominantemente cristalinas y cristalovítricas, y escases o ausencia de niveles de arenitas y lodolitas hacia la parte media y superior de la secuencia, y vulcanismo efusivo expresado con coladas de lavas de andesitas y riolitas. La presencia de líticos volcánicos en las arenitas líticas de la base de la Formación Noreán indica aporte de un basamento cristalino en el inicio de la sedimentación.

Contenidos de cristales de plagioclasa, feldespato potásico y cuarzo fracturados, con bordes corroídos subredondeados, junto con amígdulas rellenas de minerales secundarios como rasgos texturales de las tobas estudiadas de la secuencia de la Formación Noreán son indicativos de vulcanismo explosivo e indican procesos de transporte durante su formación.

Los cuerpos intrusivos de granodiorita, monzogranito y cuarzomonzonita que fueron encontrados en el sector de Arenal cortando la secuencia efusiva dacítica (Jned) y las coladas de lavas de la unidad hipoabisal andesítica (Jnha) de la Formación Noreán pueden estar asociados con el Granito de Norosí como apófisis, esto se deduce de la similitud en las edades de cristalización encontradas en este trabajo con las reportadas para el Granito por Cuadros (2012), Cuadros et al. (2013) e INGEOMINAS–UIS (2006 a).

Los basaltos encontrados dentro de la unidad Jned, pueden estar asociados con los reportados por Correa-Martínez et al. (2019) con edad de U-Pb en circones de $192,4 \pm 2,2$ Ma, y posiblemente con los de la Formación Nogontova propuesta por Moreno-Sánchez et al. (2016), expuestos en la Cordillera Oriental, con edad estratigráfica del Triásico y el Jurásico medio.

Los cuerpos riolíticos muestreados en el sector de El Playón corresponden a una toba cristalina fuertemente tectonizada, una toba lítica vítrea y una lava cuarzotraquítica, todas ellas afectadas por alteración hidrotermal evidenciada por la presencia de clorita, epidota y hematita.

Las muestras de tobas y lavas de la Formación Noreán presentan procesos secundarios de alteración hidrotermal, por una parte, debido a la movilización de K₂O evidenciada por la presencia de matrices vítreas y feldespatos alterados a illita y caolinita, y por otro lado, por la alteración de minerales máficos a clorita, clorita-vermiculita, calcita y eventualmente epidota.

Las muestras analizadas de la Formación Noreán en ambos flancos del VMM, los cuerpos plutónicos que la cortan expuestos en el occidente del VMM (sector Arenal), y las tobas del sector El Playón corresponden a la serie magmática calco alcalina. Presentan anomalías negativas de Nb, Ta, Sr y positiva de Pb, enriquecimiento de los elementos livianos (LILE) y empobrecimiento de los pesados (HREE), como indicativos de ambientes de subducción y arcos volcánicos continentales.

Las muestras del sector de El Playón presentan bajo empobrecimiento de los elementos pesados, anomalía negativa de Eu y positiva de Zr sugiriendo mayor contaminación cortical comparada con las tobas de los otros sectores, porque tuvo durante su formación mayor contacto o más tiempo de residencia o contacto cortical en su trayectoria ascendente, o porque su material fuente es diferente, ya sea que proviene del basamento, así como del edificio volcánico.

Las morfologías de los circones analizados están directamente relacionadas con las poblaciones de edades encontradas.

Los circones detríticos de las arenitas líticas y tobas de la Formación Noreán del flanco oriental presentan dos poblaciones de edades concordia, la más reciente correspondiente al vulcanismo del Jurásico en arenitas líticas con edades de 192,65 \pm 0,47 Ma; 190,91 \pm 1,71 Ma y 175,56 \pm 0,71 Ma (Jurásico Inferior) y en tobas con edades de 184,37 \pm 1,51 Ma; 180,82 \pm 0,56 Ma; 173,10 \pm 0,62 Ma y 171,50 \pm 1,12 Ma (Jurásico Inferior) que corresponden a cristales con morfología subhedral a euhedral, con cristales prismáticos bipiramidales en su mayoría alargados, con zonación continua homogénea; y una segunda población de edades medias ponderadas con rangos entre 1400 y 850 Ma (Meso-Neoproterozoico) en las arenitas líticas y, 1100 y 850 Ma (Meso-Neoproterozoico) en los cristales de tobas.

Los circones de las muestras de dacita que se encuentran en la base de la Formación Noreán y del granito que intruye una secuencia de tobas en el flanco occidental del VMM, presentan características típicas de circones ígneos con cristales prismáticos alargados y bipiramidales y con disrupción de la zonación oscilatoria concéntrica, con edades concordia de cristalización de 192,62 \pm 0,30 Ma y 179,51 \pm 0,37 Ma (Jurásico inferior) respectivamente.

Las tobas (cristalina y lítica vítrea) del sector de El Playón contienen circones con hábitos prismáticos algunos piramidales, con bordes irregulares, subhedrales y con zonación truncada con edad concordia de cristalización del último evento volcánico de 198,15 \pm 0,61 Ma y 185,83 \pm 1,11 Ma (Jurásico Inferior), y otros cristales con morfologías elongadas, subredondeados, con abundancia de cristales muy brillantes sin zonación o zonación truncada, con tamaños de circones menores que los de la Formación Noreán (\leq 100micras), y algunos con edades más viejas en borde que en el núcleo indicando posibles eventos de recristalización y sobreimposición de eventos heredados, probablemente metamórficos, con poblaciones de edades medias ponderadas en los rangos de 1800 a 1000 Ma (Paleo-Mesoproterozoico) y 650 a 500 Ma (Neoproterozoico-Cámbrico).

El vulcanismo calco alcalino comenzó hacia el sector de El Playón con la expulsión de tobas a los 198,15 \pm 0,61 Ma y continuó con la emisión de lavas dacíticas a los 192,62 \pm 0,30 Ma, mientras paralelamente se desarrollaban procesos de depositación de material terrígeno en ambos flancos del VMM, con edades de máxima depositación de 186,95 \pm 2,47; 186,11 \pm 0,98 Ma y 164,67 \pm 1,94 Ma.

Las edades medias ponderadas determinadas para las tobas tanto de la Formación Noreán en el flaco oriental del VMM, así como en el sector El Playón, indican que la actividad volcánica tuvo lugar desde los ~220 Ma, y la expulsión de material volcánico se dio desde los ~198 Ma hasta los ~171 Ma.

Las posibles fuentes de aporte de materiales correspondientes a las edades heredadas pudieron ser el Cratón Amazónico o el Gneis de Bucaramanga.

Variedad litológica en ambos flancos del VMM, procesos coetáneos de vulcanismo efusivo (lavas), intrusiones y procesos de transporte-depositación (tobas y arenitas líticas) con edades desde el Triásico-Jurásico, presencia de coladas de lavas ácidas-intermedias en ambos flancos del VMM permiten sugerir una cierta proximidad del área de aporte, y ambientes de transición entre margen continental activo y vulcanismo intraplaca en los que se enmarcan las muestras estudiadas, son indicadores de un ambiente volcánico extensivo de intra-arco, en el que se desarrolló un gran arco volcánico, con influencia de la corteza

continental en sus productos volcánicos. Por otra parte, las edades encontradas en los cuerpos plutónicos estudiados, permiten sugerir que fueron emplazados posteriormente a los principales pulsos del vulcanismo.

A. Anexo: Muestras analizadas

Código	F _1,	N and a second second	A 14		I I a la la al	T 's a de seco		An	álisis	
Muestra	Este magna	Norte magna	Altura	Ubicación	Unidad	Tipo de roca	SD	DRX	GRT	U-Pb
18HF-1	1058975	1422250	1275	Vía Aguachica- Bombeadero	Jncp	Arenita feldespática				
18HF-2	1058613	1426119	591	Quebrada Noreán	Jncp	Arenita lítica				
18HF-3	1058282	1426015	532	Vía Aguachica- Marinilla	Jncp	Toba vítreo cristalina				
18HF-4	1057996	1426016	520	Vía Aguachica- Marinilla	Jncp	Arenita lítica				
18HF-5	1057950	1426013	505	Vía Aguachica- Marinilla	Jncp	Toba cristalina				
18HF-5A	1057815	1425869	509	Vía Aguachica- Marinilla	Jncp	Toba vítreo cristalina				
18HF-5B	1057815	1425869	509	Vía Aguachica- Marinilla	Jncp	Toba lítica				
18HF-5C	1057815	1425869	509	Vía Aguachica- Marinilla	Jncp	Toba cristalina				
18HF-6	1057766	1425860	505	Vía Marinilla-El Carmen	Jncp	Toba cristalo lítica				
18HF-6A	1057766	1425860	505	Vía Marinilla-El Carmen	Jncp	Toba cristalo vítrea				
18HF-7	1055913	1422542	379	Vía Marinilla-El Carmen	Jnha	Andesita				
18HF-8	1055919	1421695	384	Vía Marinilla-El Carmen	Jnha	Andesita				
18HF-9	1055645	1421624	411	Vía Marinilla-El Carmen	Jnha	Toba cristalina				
18HF-10	1055616	1421058	451	Vía Marinilla-El Carmen	Jnha	Andesita				
18HF-11	1055616	1421058	451	Vía Marinilla-El Carmen	Jncp	Arenita feldespática				
18HF-13	1057550	1421398	936	Vía Aguachica- Bombeadero	Jncp	Arenita feldespática				
18HF-14	1056989	1420817	875	Vía Aguachica- Bombeadero	Jncp	Arenita lítica				
18HF-15	1056535	1420523	699	Vía Aguachica- Bombeadero	Jncp	Toba cristalina				
18HF-16	1055988	1420036	611	Vía Aguachica- Bombeadero	Jncp	Arenita feldespática				
18HF-17	1055590	1418789	427	Vía Aguachica- Bombeadero	Jnpe	Toba cristalo vítrea				
18HF-18	1055591	1416788	332	Vía Aguachica- Bombeadero	Jnpe	Toba cristalina				
18HF-19	1055038	1415757	303	Vía Aguachica- Bombeadero	Jned	Andesita				
18HF-20	1051999	1418949	207	Quebrada Noreán	Jnpe	Toba cristalo vítrea				
18HF-21	1052786	1421581	424	Vereda El Tope (Aguachica)	Jnpe	Toba cristalo vítrea				

Código	Esto magna	Norto magna	Alturo	Ubicación	Unidad	Tipo do roco		An	álisis	
Muestra	LSIE Mayna	None mayna	Allula	Obicación	Unidad	Tipo de Toca	SD	DRX	GRT	U-Pb
18HF-21A	1052786	1421581	424	Vereda El Tope (Aguachica)	Jnpe	Andesita				
18HF-22	1052415	1421717	323	Vereda El Tope (Aguachica)	Jnpe	Toba cristalo vítrea				
18HF-23	1052216	1422049	213	Vereda El Tope (Aguachica)	Jned	Basalto				
18HF-25	1083534	1326895	353	Vía El Playón- Vereda Matecaña	r	Toba cristalina				
18HF-26	1084893	1328568	472	Vía El Playón- Vereda Matecaña	r	Cuarzo traquita				
18HF-28	1085515	1322076	552	Vía El Playón- Escuela La Bateca	r	Toba lítica vítrea				
18HF-31	1005763	1421793	133	Carretera Baratoma- Arenal	Jnpe	Toba cristalina				
18HF-32	1006494	1422389	100	Carretera Baratoma- Arenal	Jnpe	Toba cristalo vítrea				
18HF-33	985696	1437858	61	Vía Tiquisio- Norosí	Jnpe	Andesita				
18HF-34	986600	1437865	79	Vía Tiquisio- Norosí	Jnpe	Andesita				
18HF-35	1006180	1417220	810	Vía La Plaza- Morales	Jned	Granodiorita				
18HF-36	1006565	1418001	732	Vía La Plaza- Morales	Jned	Granodiorita				
18HF-37	1010751	1418025	397	Vía La Plaza- Morales	Jned	Granodiorita				
18HF-38	1012746	1417986	167	Vía La Plaza- Morales	Jnpe	Toba cristalo vítrea				
18HF-39	1010202	1418014	450	Vía La Plaza- Morales	Jgd	Granito				
18HF-40	1013598	1418147	134	Vía La Plaza- Morales	Jncp	Dacita				
16SLAZ-1	1002981	1419344	175	Quebrada Chiquillo	Jnha	Cuarzo monzonita				
16SLAZ-2	1002893	1420261	143	Vía Baratoma- Arenal	Jnpe	Andesita				
16SLAZ-9	1009399	1423912	136	Vía Baratoma- Arenal	Jnpe	Andesita				
16SLAZ- 16	988993	1437771	67	Quebrada Chiquillo	Jnpe	Riolita				
16SLAZ- 20	1007980	1417930	668	Vía La Plaza- Morales	Jned	Andesita				
16SLAZ- 21	1009495	1417966	563	Vía La Plaza- Morales	Jned	Cuarzo monzonita				
16SLAZ- 24	1011055	1418058	361	Vía La Plaza- Morales	Jned	Granodiorita				
16SLAZ- 25	1012073	1418001	242	Vía La Plaza- Morales	Jned	Granodiorita				

B. Anexo: Petrografía

Ver Anexos al final del documento

C. Anexo: Difractogramas

A continuación, se relacionan los difractogramas obtenidos del análisis por Difracción de Rayos X (DRX) en muestras alteradas. Los porcentajes reportados son relativos, no corresponden al contenido del mineral en el total de la muestra.

Muestra: 18HF-04. Muestra natural sin orientación

Muestra: 18HF-04. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-07. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-10. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-17. Muestra natural sin orientación

Muestra: 18HF-17. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-20. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-21A. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-25. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-28. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-33. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-35. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

Muestra: 18HF-35. Muestra natural sin orientación

Muestra: 18HF-38. Muestra orientada natural (N), orientada calcinada a 515°C (515), orientada glicolada (EG)

D. Anexo: Patrones de Elementos de Tierras Raras (REE) y coeficientes Lambda

Muestras lavas:

Muestras tobas:

Muestras Plutónicas:

E. Anexo: Datos isotópicos U-Pb en circones

			Relacione	s isotópica	s		Rho			Edac	les			<i></i>	
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_02_62	0.199	0.01	0.029	0.00062	0.0508	0.0025	0.261	184.3	8.8	184.3	3.9	220	100	100.0	0.3
18HF_02_67	0.2053	0.0078	0.02941	0.00061	0.0518	0.0021	0.146	189.4	6.6	186.8	3.8	264	88	98.6	0.5
18HF_02_45	0.1969	0.0078	0.02943	0.00048	0.0486	0.0017	0.473	182.3	6.6	187.0	3	131	75	102.6	0.4
18HF_02_74	0.2076	0.0094	0.02953	0.00049	0.0511	0.0022	0.314	191.3	7.9	187.6	3.1	247	96	98.1	0.4
18HF_02_71	0.206	0.016	0.02971	0.00057	0.0502	0.0035	0.517	189	14	188.7	3.6	230	130	99.8	0.5
18HF_02_63	0.221	0.029	0.03012	0.00085	0.0535	0.007	0.121	200	24	191.3	5.3	330	240	95.7	0.5
18HF_02_64	0.2074	0.0084	0.03014	0.00055	0.0496	0.0014	0.796	191.1	7	191.4	3.4	193	67	100.2	0.3
18HF_02_59	0.208	0.012	0.03048	0.00055	0.0506	0.003	0.067	191.4	9.9	193.5	3.4	210	120	101.1	0.7
18HF_02_65	0.2077	0.0038	0.031	0.00044	0.049	0.00096	0.293	191.5	3.2	196.8	2.7	145	44	102.8	0.4
18HF_02_66	0.2254	0.0098	0.03125	0.0005	0.0533	0.0022	0.318	206.2	8.1	198.3	3.1	344	93	96.2	0.4
18HF_02_80	0.2368	0.0098	0.03197	0.00079	0.0543	0.0025	0.100	215.5	8.1	202.8	4.9	360	100	94.1	0.8
18HF_02_58	0.251	0.017	0.03231	0.00053	0.0568	0.0038	0.171	226	14	205.0	3.3	440	140	90.7	1.1
18HF_02_15	1.513	0.06	0.1511	0.0027	0.0728	0.0027	0.364	933	24	907.0	15	1013	67	97.2	0.0
18HF_02_37	1.563	0.06	0.1533	0.002	0.0737	0.0028	0.200	953	24	920.0	11	1036	82	96.5	1.8
18HF_02_3	1.637	0.066	0.1538	0.0062	0.0766	0.0012	0.925	982	26	921.0	35	1108	32	93.8	0.3
18HF_02_11	1.526	0.089	0.1557	0.0033	0.0727	0.004	0.333	943	33	933.0	18	990	120	98.9	1.2
18HF_02_2	1.645	0.062	0.1572	0.0024	0.0749	0.0026	0.390	985	24	941.0	14	1064	74	95.5	0.1

Nota: Filas resaltadas en azul representas análisis que no fueron considerados en el cálculo de edades.

			Relaciones	s isotópica	s		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_02_14	1.571	0.026	0.158	0.0025	0.0727	0.0014	0.293	958	10	948.0	15	1002	38	99.0	0.9
18HF_02_8	1.652	0.068	0.1586	0.0025	0.0749	0.0029	0.342	987	26	949.0	14	1050	77	96.1	0.2
18HF_02_9	1.62	0.11	0.1589	0.0043	0.0724	0.004	0.623	960	35	950.0	24	990	120	99.0	0.2
18HF_02_77	1.724	0.055	0.1604	0.0035	0.0767	0.0029	0.046	1016	21	959.0	20	1099	75	94.4	0.2
18HF_02_13	1.62	0.036	0.1611	0.0036	0.0721	0.002	0.225	980	15	963.0	20	992	55	98.3	1.3
18HF_02_32	1.605	0.028	0.1615	0.0023	0.07292	0.00096	0.672	972	11	965.0	13	1015	28	99.3	0.3
18HF_02_29	1.624	0.076	0.1616	0.0031	0.0742	0.003	0.514	976	30	966.0	17	1028	84	99.0	0.2
18HF_02_54	1.661	0.055	0.1634	0.0026	0.0753	0.0021	0.543	992	21	976.0	14	1069	58	98.4	0.7
18HF_02_31	1.71	0.04	0.1637	0.004	0.0752	0.0019	0.443	1011	15	977.0	22	1067	50	96.6	0.2
18HF_02_75	1.657	0.03	0.1641	0.0027	0.0735	0.0011	0.629	994	12	980.0	15	1030	28	98.6	0.2
18HF_02_27	1.58	0.04	0.1642	0.0029	0.0704	0.0013	0.684	961	16	980.0	16	944	42	102.0	0.5
18HF_02_7	1.612	0.081	0.1648	0.0034	0.0698	0.0031	0.472	971	32	983.0	19	900	91	101.2	0.0
18HF_02_44	1.638	0.024	0.1652	0.0024	0.0725	0.0013	0.245	984.8	9.4	986.0	13	1003	38	100.1	0.2
18HF_02_61	1.617	0.029	0.1652	0.0025	0.0723	0.00096	0.690	976	11	986.0	14	992	27	101.0	1.7
18HF_02_38	1.92	0.15	0.1659	0.0032	0.0828	0.0062	0.288	1075	53	989.0	18	1260	150	92.0	0.5
18HF_02_1	1.667	0.043	0.1676	0.0029	0.0716	0.0013	0.711	995	16	999.0	16	972	37	100.4	0.0
18HF_02_26	1.664	0.086	0.1696	0.0035	0.0738	0.0039	0.143	990	33	1010.0	19	1030	100	102.0	0.2
18HF_02_16	1.798	0.037	0.1699	0.0021	0.0766	0.0016	0.275	1044	13	1011.0	12	1114	39	96.8	0.3
18HF_02_39	1.677	0.042	0.1709	0.0027	0.0724	0.0013	0.701	999	16	1017.0	15	993	36	101.8	0.7
18HF_02_28	1.708	0.031	0.172	0.0031	0.07225	0.00073	0.844	1011	12	1023.0	17	992	21	101.2	0.8
18HF_02_6	1.89	0.12	0.173	0.017	0.0774	0.0031	0.968	1070	44	1024.0	93	1114	76	95.7	0.1
18HF_02_50	1.724	0.039	0.1725	0.003	0.0721	0.0016	0.409	1017	15	1026.0	17	984	44	100.9	1.2
18HF_02_57	1.771	0.066	0.1727	0.0038	0.0757	0.0025	0.477	1032	24	1027.0	21	1088	70	99.5	0.2
18HF_02_5	1.716	0.053	0.1731	0.0048	0.0734	0.0021	0.528	1013	20	1029.0	26	1016	58	101.6	0.6
18HF_02_22	1.73	0.026	0.1752	0.0031	0.07188	0.00094	0.692	1019.4	9.6	1041.0	17	985	26	102.1	0.3
18HF_02_69	1.765	0.026	0.1755	0.0032	0.0728	0.0014	0.334	1032.4	9.7	1042.0	18	1005	38	100.9	0.2
18HF_02_60	1.722	0.084	0.1764	0.009	0.0712	0.0013	0.934	1013	30	1046.0	49	973	37	103.3	0.5
18HF_02_23	1.781	0.037	0.1765	0.0035	0.0731	0.00074	0.877	1038	13	1048.0	19	1016	21	101.0	0.1
18HF_02_76	1.891	0.035	0.1771	0.0035	0.0776	0.0014	0.557	1077	12	1051.0	19	1141	39	97.6	0.4
18HF_02_78	2.04	0.11	0.1775	0.0029	0.0833	0.004	0.493	1125	36	1053.0	16	1252	91	93.6	0.8
18HF_02_79	1.899	0.027	0.1786	0.0029	0.07722	0.00085	0.746	1080.3	9.3	1059.0	16	1126	22	98.0	0.4
18HF_02_21	1.809	0.031	0.1792	0.0023	0.0743	0.0012	0.449	1048	11	1062.0	13	1048	32	101.3	0.3
18HF_02_34	1.771	0.04	0.1795	0.0038	0.0719	0.001	0.800	1034	15	1064.0	21	987	29	102.9	0.1

			Relaciones	s isotópica:	S		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_02_47	1.811	0.034	0.1797	0.0033	0.07329	0.0007	0.868	1049	12	1065.0	18	1021	19	101.5	0.1
18HF_02_20	1.938	0.057	0.1799	0.0047	0.07863	0.00078	0.943	1093	20	1066.0	26	1162	20	97.5	0.3
18HF_02_68	1.98	0.033	0.188	0.0036	0.077	0.0011	0.690	1108	11	1110.0	20	1120	30	100.2	0.6
18HF_02_4	2.116	0.088	0.1918	0.0049	0.0798	0.0023	0.730	1151	29	1136.0	27	1197	54	98.7	0.1
18HF_02_12	2.11	0.057	0.1942	0.0028	0.079	0.0017	0.609	1151	18	1144.0	15	1168	42	99.4	0.5
18HF_02_48	1.972	0.069	0.1954	0.0073	0.0748	0.0012	0.904	1104	23	1150.0	39	1061	34	104.2	0.2
18HF_02_41	1.957	0.042	0.1955	0.0052	0.07433	0.00073	0.939	1100	14	1150.0	28	1053	19	104.5	0.0
18HF_02_49	1.98	0.019	0.1972	0.0025	0.07344	0.00092	0.394	1108.6	6.6	1160.0	14	1029	26	104.6	0.4
18HF_02_33	2.191	0.049	0.199	0.0041	0.08013	0.00074	0.911	1177	16	1170.0	22	1199	18	99.4	0.3
18HF_02_25	2.17	0.042	0.1996	0.0032	0.0806	0.0013	0.599	1171	13	1173.0	17	1210	32	100.2	0.5
18HF_02_17	2.315	0.056	0.202	0.0043	0.0833	0.0013	0.772	1216	17	1186.0	23	1274	30	97.5	0.4
18HF_02_51	2.378	0.073	0.2028	0.004	0.0858	0.0018	0.736	1235	21	1190.0	21	1330	41	96.4	0.3
18HF_02_43	2.264	0.055	0.203	0.0042	0.0823	0.0013	0.765	1203	17	1191.0	23	1256	31	99.0	0.4
18HF_02_30	2.128	0.058	0.2069	0.0052	0.0748	0.0013	0.783	1157	19	1212.0	28	1060	34	104.8	0.2
18HF_02_36	2.514	0.047	0.211	0.0031	0.08666	0.00096	0.806	1275	14	1234.0	16	1352	21	96.8	0.8
18HF_02_42	2.21	0.21	0.213	0.01	0.0746	0.0054	0.672	1190	67	1243.0	54	1000	150	104.5	0.9
18HF_02_24	2.41	0.13	0.217	0.011	0.0821	0.0012	0.963	1248	37	1263.0	59	1254	30	101.2	0.3
18HF_02_73	2.595	0.057	0.2289	0.0041	0.08329	0.00086	0.885	1298	16	1328.0	21	1275	20	102.3	0.2
18HF_02_35	2.811	0.048	0.2465	0.0043	0.0826	0.0013	0.584	1358	13	1420.0	22	1264	32	104.6	0.3
18HF_02_19	3.236	0.081	0.2589	0.0054	0.091	0.0012	0.850	1469	18	1484.0	28	1445	25	101.0	0.3
18HF_02_46	3.562	0.077	0.2756	0.0049	0.0948	0.0014	0.735	1540	17	1569.0	25	1523	28	101.9	0.5
18HF_04_66	0.161	0.01	0.02318	0.00056	0.0504	0.0033	0.051	151	9	147.7	3.5	200	130	97.8	0.7
18HF_04_61	0.207	0.012	0.02839	0.00066	0.053	0.0031	0.178	191	10	180.5	4.2	310	120	94.5	0.5
18HF_04_67	0.2092	0.0062	0.03012	0.00059	0.0505	0.0011	0.678	192.8	5.2	191.3	3.7	214	51	99.2	0.4
18HF_04_57	0.2104	0.0092	0.0303	0.00093	0.0495	0.0013	0.806	193.7	7.7	192.4	5.8	180	63	99.3	0.3
18HF_04_56	0.2137	0.0077	0.03047	0.00066	0.0501	0.0014	0.632	196.4	6.4	193.5	4.1	196	62	98.5	0.4
18HF_04_68	0.2326	0.0092	0.03094	0.00047	0.0554	0.0021	0.298	212.1	7.5	196.4	2.9	414	81	92.6	0.5
18HF_04_13	1.557	0.05	0.1525	0.0036	0.0728	0.0021	0.499	956	19	915.0	20	1010	56	95.7	0.4
18HF_04_62	1.54	0.036	0.1548	0.0035	0.0732	0.0014	0.655	949	15	927.0	20	1016	39	97.7	0.4
18HF_04_9	1.596	0.064	0.1553	0.0029	0.0745	0.0025	0.555	982	24	930.0	16	1060	64	94.7	0.0
18HF_04_37	1.61	0.036	0.1557	0.0029	0.0733	0.0012	0.695	973	14	936.0	15	1024	33	96.2	0.1
18HF_04_38	1.575	0.062	0.1558	0.0029	0.0713	0.0022	0.644	958	24	937.0	16	955	63	97.8	0.1
18HF_04_28	1.626	0.041	0.1569	0.0039	0.0729	0.0012	0.784	979	16	939.0	22	1009	32	95.9	0.4

			Relaciones	s isotópica	S		Rho			Edac	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_04_15	1.591	0.028	0.1568	0.0023	0.0732	0.0011	0.579	966	11	939.0	13	1017	31	97.2	0.4
18HF_04_33	1.684	0.091	0.1571	0.0039	0.0766	0.0035	0.540	1004	35	940.0	22	1089	92	93.6	0.3
18HF_04_24	1.604	0.031	0.157	0.0024	0.0723	0.0013	0.480	971	12	940.0	13	997	37	96.8	0.1
18HF_04_27	1.597	0.031	0.1571	0.0027	0.0717	0.0013	0.515	969	12	940.0	15	983	34	97.0	0.3
18HF_04_6	1.6	0.039	0.1584	0.0034	0.0725	0.001	0.826	972	15	948.0	19	1002	29	97.5	0.1
18HF_04_42	1.603	0.043	0.1586	0.0027	0.073	0.0016	0.579	970	17	949.0	15	1007	46	97.8	0.1
18HF_04_30	1.667	0.059	0.1589	0.003	0.0747	0.0026	0.298	994	23	950.0	17	1065	63	95.6	0.2
18HF_04_52	1.556	0.041	0.1589	0.0028	0.0713	0.0018	0.396	955	17	951.0	16	958	53	99.6	0.1
18HF_04_29	1.624	0.028	0.1592	0.0021	0.0727	0.0011	0.533	981	11	952.0	11	1007	29	97.0	0.1
18HF_04_32	1.631	0.044	0.1595	0.0026	0.0724	0.0017	0.503	981	17	954.0	15	989	51	97.2	0.3
18HF_04_5	1.586	0.083	0.1608	0.0027	0.0711	0.0032	0.566	961	33	961.0	15	998	84	100.0	0.4
18HF_04_65	1.598	0.039	0.1609	0.0036	0.0727	0.0013	0.711	969	15	962.0	20	1002	37	99.3	1.2
18HF_04_22	1.659	0.03	0.1611	0.0029	0.0731	0.0012	0.586	992	12	963.0	16	1025	34	97.1	0.3
18HF_04_69	1.644	0.075	0.1613	0.0034	0.0743	0.0031	0.408	989	30	964.0	19	1046	88	97.5	0.3
18HF_04_8	1.64	0.027	0.1617	0.0025	0.0729	0.0009	0.703	985	11	966.0	14	1010	25	98.1	0.2
18HF_04_58	1.619	0.023	0.1616	0.0022	0.07218	0.00081	0.675	977.1	8.8	966.0	12	990	22	98.9	0.1
18HF_04_7	1.628	0.032	0.1623	0.003	0.07124	0.00098	0.741	983	13	969.0	17	968	26	98.6	0.7
18HF_04_53	1.62	0.041	0.1623	0.0027	0.0725	0.0016	0.511	977	16	969.0	15	993	45	99.2	0.2
18HF_04_55	1.598	0.028	0.1622	0.0031	0.0725	0.0011	0.660	969	11	969.0	17	997	30	100.0	0.1
18HF_04_19	1.714	0.036	0.1657	0.0035	0.07296	0.00086	0.843	1013	13	988.0	19	1011	24	97.5	0.2
18HF_04_50	1.742	0.077	0.1663	0.005	0.0749	0.0018	0.858	1021	29	991.0	27	1070	51	97.1	0.4
18HF_04_51	1.679	0.034	0.1667	0.0026	0.0729	0.0013	0.531	1000	13	994.0	15	1025	40	99.4	0.1
18HF_04_45	1.859	0.038	0.167	0.0039	0.0789	0.0012	0.767	1066	14	995.0	22	1168	31	93.3	0.1
18HF_04_11	1.701	0.029	0.167	0.003	0.0728	0.0012	0.558	1011	11	995.0	16	1007	34	98.4	0.7
18HF_04_3	1.662	0.034	0.1683	0.0028	0.07159	0.00095	0.763	993	13	1002.0	16	972	27	100.9	0.3
18HF_04_10	2.011	0.061	0.1726	0.0031	0.0844	0.0027	0.201	1117	20	1026.0	17	1290	63	91.9	0.6
18HF_04_40	1.869	0.099	0.1759	0.0065	0.0756	0.0025	0.786	1065	35	1044.0	36	1083	67	98.0	0.1
18HF_04_49	1.859	0.065	0.1775	0.0035	0.0767	0.0025	0.398	1065	23	1053.0	19	1102	66	98.9	0.4
18HF_04_14	1.878	0.024	0.1777	0.003	0.0748	0.00092	0.688	1073	8.6	1054.0	16	1067	26	98.2	0.0
18HF_04_21	1.983	0.054	0.1803	0.0042	0.0776	0.002	0.489	1108	19	1068.0	23	1130	51	96.4	0.1
18HF_04_43	1.958	0.048	0.1806	0.0038	0.0779	0.0012	0.782	1100	17	1070.0	21	1143	30	97.3	0.4
18HF_04_20	1.956	0.034	0.1812	0.0027	0.0767	0.0013	0.457	1102	12	1073.0	15	1109	34	97.4	0.4
18HF_04_63	1.966	0.07	0.185	0.0055	0.0781	0.0014	0.865	1101	23	1094.0	30	1146	34	99.4	0.4

			Relaciones	s isotópica	s		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_04_71	1.829	0.039	0.1872	0.0034	0.0734	0.0014	0.543	1055	14	1106.0	19	1020	39	104.8	0.5
18HF_04_44	2.015	0.035	0.188	0.0027	0.0774	0.001	0.684	1122	12	1110.0	15	1130	26	98.9	0.5
18HF_04_48	2.12	0.058	0.1946	0.0057	0.0793	0.0013	0.835	1154	19	1145.0	31	1178	32	99.2	0.7
18HF_04_31	2.162	0.03	0.1949	0.0033	0.0785	0.0012	0.523	1172	9.5	1148.0	18	1157	30	98.0	0.2
18HF_04_64	2.099	0.046	0.1957	0.0037	0.0791	0.0012	0.733	1151	14	1152.0	20	1172	30	100.1	0.2
18HF_04_54	2.123	0.027	0.1965	0.0023	0.0779	0.00069	0.740	1156.1	8.6	1157.0	13	1143	18	100.1	0.4
18HF_04_16	2.344	0.054	0.198	0.0041	0.0837	0.0018	0.521	1225	16	1164.0	22	1290	45	95.0	0.4
18HF_04_12	2.323	0.075	0.1979	0.0049	0.0825	0.0018	0.738	1217	23	1164.0	26	1253	43	95.6	0.4
18HF_04_39	2.194	0.053	0.1983	0.004	0.0791	0.0011	0.818	1178	17	1166.0	22	1173	27	99.0	0.3
18HF_04_59	2.283	0.051	0.1995	0.004	0.084	0.0013	0.738	1210	17	1172.0	21	1290	32	96.9	0.3
18HF_04_36	2.56	0.11	0.2013	0.0035	0.0904	0.003	0.701	1290	29	1182.0	19	1422	66	91.6	0.2
18HF_04_34	2.459	0.037	0.2037	0.0029	0.0861	0.001	0.687	1260	11	1195.0	15	1340	23	94.8	0.2
18HF_04_41	2.278	0.062	0.2042	0.0043	0.07998	0.00096	0.907	1204	19	1197.0	23	1195	24	99.4	0.2
18HF_04_25	2.375	0.082	0.2049	0.0059	0.0817	0.0014	0.869	1233	24	1201.0	32	1236	34	97.4	0.2
18HF_04_60	2.343	0.078	0.208	0.0036	0.0809	0.0019	0.743	1223	24	1218.0	19	1221	48	99.6	0.1
18HF_04_4	2.624	0.057	0.2139	0.0046	0.0893	0.0013	0.773	1306	16	1249.0	24	1408	28	95.6	0.2
18HF_04_1	2.435	0.037	0.2172	0.003	0.0805	0.0012	0.475	1252	11	1270.0	16	1207	29	101.4	0.0
18HF_04_70	2.81	0.12	0.2335	0.0094	0.0886	0.0019	0.868	1353	33	1351.0	49	1391	41	99.9	0.4
18HF_04_47	2.993	0.049	0.2383	0.0044	0.0911	0.0012	0.720	1408	12	1377.0	23	1447	25	97.8	0.5
18HF_04_35	3.387	0.069	0.2535	0.0046	0.0948	0.0014	0.712	1500	16	1456.0	24	1533	27	97.1	0.7
18HF_05_22	0.186	0.021	0.02596	0.00075	0.0516	0.0062	-0.131	176	17	165.2	4.7	270	210	93.9	0.4
18HF_05_50	0.183	0.014	0.02609	0.00068	0.0495	0.0036	0.312	170	12	166.0	4.2	160	140	97.6	1.4
18HF_05_48	0.19	0.015	0.02675	0.00068	0.0518	0.0039	0.302	179	12	170.2	4.3	250	150	95.1	0.7
18HF_05_64	0.193	0.015	0.02732	0.00051	0.0501	0.0035	0.520	178	13	173.7	3.2	190	140	97.6	0.7
18HF_05_58	0.198	0.0045	0.02733	0.00048	0.0508	0.0011	0.446	184.1	4	173.8	3	235	53	94.4	0.2
18HF_05_12	0.187	0.012	0.02743	0.00058	0.0499	0.0029	0.438	175.5	9.8	174.4	3.6	180	120	99.4	0.3
18HF_05_74	0.187	0.021	0.02742	0.00067	0.0491	0.0055	0.120	173	18	174.4	4.2	170	190	100.8	0.8
18HF_05_53	0.214	0.035	0.02751	0.0009	0.0548	0.009	0.079	193	29	174.9	5.6	340	320	90.6	0.8
18HF_05_72	0.202	0.021	0.02753	0.00083	0.0541	0.006	-0.093	185	18	175.0	5.2	380	230	94.6	0.6
18HF_05_51	0.2006	0.0071	0.02756	0.00042	0.0512	0.0015	0.581	185.5	6	175.3	2.6	255	71	94.5	0.3
18HF_05_10	0.196	0.02	0.02757	0.00081	0.0534	0.005	0.418	181	17	175.3	5.1	340	200	96.9	1.2
18HF_05_31	0.1932	0.0048	0.02767	0.00041	0.05	0.0013	0.218	179.3	4.1	176.0	2.6	192	56	98.2	0.6
18HF_05_62	0.191	0.024	0.02768	0.00086	0.0501	0.0054	0.658	176	20	176.0	5.4	170	210	100.0	0.8

			Relacione	s isotópica	5		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_05_68	0.208	0.015	0.02777	0.00075	0.0547	0.0038	0.283	191	13	176.5	4.7	360	150	92.4	0.5
18HF_05_43	0.194	0.023	0.02784	0.00069	0.0498	0.0059	0.108	178	20	177.0	4.3	200	230	99.4	0.8
18HF_05_46	0.208	0.018	0.0279	0.001	0.0555	0.0042	0.491	191	15	177.1	6.3	390	160	92.7	0.7
18HF_05_45	0.206	0.02	0.02797	0.00077	0.0531	0.0049	0.312	189	17	177.8	4.8	280	180	94.1	1.1
18HF_05_73	0.2118	0.0075	0.02802	0.00042	0.0544	0.0018	0.362	194.9	6.3	178.1	2.6	387	78	91.4	0.8
18HF_05_26	0.1875	0.0095	0.02802	0.00048	0.0485	0.0022	0.463	174.2	8.1	178.2	3	124	91	102.3	0.3
18HF_05_60	0.2022	0.0093	0.02815	0.00057	0.0511	0.0019	0.614	186.7	7.9	179.0	3.6	234	80	95.9	0.3
18HF_05_6	0.2	0.011	0.02817	0.00068	0.0528	0.0027	0.374	184.9	9.7	179.1	4.2	300	110	96.9	1.0
18HF_05_57	0.207	0.012	0.02829	0.00098	0.0532	0.0025	0.586	193.2	9	179.8	6.2	320	100	93.1	0.6
18HF_05_59	0.1997	0.0051	0.0283	0.00057	0.0503	0.0013	0.379	184.8	4.3	179.9	3.5	202	60	97.3	0.2
18HF_05_49	0.213	0.013	0.02833	0.0007	0.0525	0.0027	0.561	195	11	180.1	4.4	290	110	92.4	0.5
18HF_05_20	0.202	0.015	0.02852	0.00063	0.0514	0.0038	0.164	186	13	181.3	3.9	260	150	97.5	0.5
18HF_05_21	0.197	0.011	0.02853	0.00044	0.0494	0.0022	0.797	182.3	9.3	181.3	2.8	200	100	99.5	0.7
18HF_05_9	0.219	0.012	0.02854	0.00085	0.0565	0.0025	0.592	200.9	9.7	181.4	5.3	449	98	90.3	0.7
18HF_05_23	0.202	0.043	0.02855	0.00099	0.051	0.01	0.547	171	28	181.5	6.2	140	320	106.1	0.7
18HF_05_63	0.222	0.034	0.02873	0.00085	0.0535	0.0077	0.399	200	28	182.6	5.3	370	290	91.3	0.7
18HF_05_75	0.2096	0.0089	0.02881	0.0005	0.0527	0.002	0.450	191.1	6.6	183.1	3.1	302	81	95.8	0.3
18HF_05_18	0.205	0.019	0.02887	0.00087	0.0522	0.0044	0.428	189	16	183.5	5.5	290	170	97.1	0.6
18HF_05_67	0.222	0.029	0.02893	0.00079	0.0556	0.007	0.275	202	24	183.8	5	380	260	91.0	0.6
18HF_05_66	0.221	0.015	0.02911	0.0008	0.053	0.0033	0.398	202	13	184.9	5	310	130	91.5	0.5
18HF_05_44	0.22	0.019	0.02911	0.00081	0.0542	0.0048	0.081	201	16	184.9	5	320	180	92.0	0.6
18HF_05_39	0.223	0.013	0.02923	0.00061	0.054	0.0032	0.132	206	10	185.7	3.8	340	130	90.1	0.5
18HF_05_34	0.206	0.01	0.02935	0.00057	0.0503	0.0022	0.435	190	8.4	186.5	3.6	203	93	98.2	1.3
18HF_05_71	0.2127	0.007	0.02946	0.00065	0.0522	0.0013	0.654	195.7	5.8	187.2	4.1	288	59	95.7	0.3
18HF_05_17	0.215	0.031	0.0295	0.001	0.0539	0.0074	0.316	195	25	187.2	6.3	270	260	96.0	0.9
18HF_05_24	0.215	0.026	0.02977	0.00078	0.0522	0.0059	0.400	196	21	189.1	4.9	240	220	96.5	0.7
18HF_05_30	0.2062	0.004	0.02985	0.00038	0.05048	0.00097	0.342	190.3	3.4	189.6	2.4	213	44	99.6	0.3
18HF_05_69	0.2153	0.0063	0.03069	0.00067	0.0508	0.0013	0.531	197.9	5.2	194.8	4.2	225	59	98.4	0.3
18HF_05_56	0.221	0.011	0.03086	0.00077	0.0515	0.0027	0.141	202.1	8.9	195.9	4.8	250	110	96.9	0.4
18HF_05_16	0.2267	0.0052	0.03258	0.00057	0.05074	0.0008	0.727	207.4	4.3	206.7	3.6	226	37	99.7	0.3
18HF_05_1	0.2347	0.0084	0.03469	0.00095	0.0515	0.0022	0.105	213.9	6.9	219.8	5.9	249	92	102.8	0.4
18HF_05_27	1.485	0.038	0.1405	0.0025	0.076	0.0017	0.517	923	15	847.0	14	1090	45	91.8	0.4
18HF_05_19	1.505	0.031	0.1501	0.0026	0.0732	0.0014	0.502	934	13	901.0	14	1014	38	96.5	0.2

			Relaciones	s isotópica	s		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_05_42	1.62	0.018	0.1536	0.0018	0.07494	0.00077	0.596	977.9	7	921.0	10	1066	21	94.2	0.3
18HF_05_28	1.684	0.046	0.1587	0.0028	0.0765	0.0022	0.239	1009	19	956.0	17	1111	60	94.7	0.2
18HF_05_14	1.768	0.037	0.1696	0.0035	0.07622	0.00093	0.828	1033	14	1010.0	19	1099	24	97.8	0.1
18HF_05_13	1.755	0.038	0.1702	0.0036	0.07703	0.0007	0.910	1028	14	1013.0	20	1121	18	98.5	0.1
18HF_06_24	0.188	0.023	0.0264	0.0011	0.0547	0.008	-0.460	174	20	167.8	7.1	340	280	96.4	0.7
18HF_06_29	0.195	0.014	0.02641	0.00085	0.0526	0.0031	0.588	181	12	168.0	5.3	320	130	92.8	0.8
18HF_06_19	0.189	0.02	0.0268	0.001	0.0515	0.0058	-0.012	175	17	170.6	6.5	230	210	97.5	0.8
18HF_06_31	0.203	0.02	0.0271	0.0013	0.0552	0.0057	0.142	186	17	172.1	8	360	210	92.5	0.5
18HF_06_20	0.205	0.022	0.0273	0.0011	0.0531	0.0046	0.652	193	20	173.8	7	410	180	90.1	0.8
18HF_06_7	0.199	0.026	0.0277	0.0012	0.0524	0.0074	-0.088	183	22	175.8	7.3	240	260	96.1	0.6
18HF_06_53	0.194	0.035	0.0277	0.0013	0.0498	0.0088	0.208	177	30	175.8	7.9	180	330	99.3	1.0
18HF_06_13	0.201	0.038	0.0278	0.0016	0.0526	0.0092	0.389	183	32	177.0	10	240	340	96.7	0.5
18HF_06_44	0.205	0.026	0.02828	0.00095	0.0535	0.0073	-0.165	192	23	179.8	6	310	260	93.6	0.6
18HF_06_48	0.214	0.021	0.02858	0.00073	0.0512	0.0052	-0.007	196	17	181.7	4.5	340	180	92.7	0.9
18HF_06_22	0.229	0.029	0.0297	0.0018	0.0579	0.0066	0.438	209	24	188.0	11	480	240	90.0	0.4
18HF_06_54	0.198	0.04	0.0296	0.0016	0.0512	0.0075	1.020	181	33	188.2	9.9	270	290	104.0	0.7
18HF_06_1	0.206	0.055	0.0308	0.0016	0.048	0.012	0.414	186	46	196.0	10	60	450	105.4	0.5
18HF_06_42	0.216	0.013	0.0312	0.0012	0.0515	0.0038	-0.074	199	11	197.8	7.4	240	150	99.4	0.4
18HF_06_50	0.2243	0.0089	0.03187	0.00056	0.0514	0.0017	0.566	205.4	7.4	202.2	3.5	251	76	98.4	0.3
18HF_06_58	0.245	0.021	0.0329	0.0012	0.0541	0.0042	0.424	225	18	208.5	7.2	330	160	92.7	1.0
18HF_06_57	0.256	0.022	0.035	0.0014	0.054	0.0039	0.548	231	18	222.0	8.4	410	130	96.1	0.2
18HF_06_18	1.502	0.046	0.1465	0.0037	0.0749	0.0016	0.724	930	19	881.0	21	1061	43	94.7	0.1
18HF_06_28	1.513	0.086	0.1512	0.0057	0.0745	0.0038	0.478	933	35	907.0	32	1040	100	97.2	0.6
18HF_06_35	1.56	0.12	0.1562	0.0054	0.0738	0.0051	0.439	958	46	935.0	30	1030	140	97.6	0.1
18HF_06_3	1.597	0.067	0.1591	0.0083	0.0751	0.0028	0.706	968	26	951.0	46	1065	75	98.2	0.5
18HF_06_11	1.593	0.045	0.1591	0.0041	0.073	0.0016	0.674	967	18	952.0	23	1010	44	98.4	0.5
18HF_06_17	1.67	0.035	0.1632	0.0032	0.0745	0.0012	0.687	997	13	974.0	18	1052	33	97.7	0.0
18HF_06_56	1.63	0.13	0.1649	0.0065	0.0704	0.0038	0.795	987	52	983.0	36	920	110	99.6	1.2
18HF_06_60	1.67	0.095	0.172	0.0041	0.0705	0.0041	0.156	994	37	1023.0	23	920	120	102.9	0.1
18HF_06_43	1.877	0.06	0.181	0.0061	0.0766	0.002	0.685	1072	21	1072.0	33	1107	52	100.0	0.2
18HF_06_55	2.015	0.052	0.1938	0.004	0.0759	0.0022	0.236	1120	18	1142.0	22	1086	58	102.0	0.1
18HF_06_12	2.461	0.055	0.2132	0.0052	0.083	0.0012	0.812	1263	17	1245.0	28	1268	30	98.6	0.4
18HF_14_13	0.179	0.025	0.0251	0.0013	0.0535	0.0068	0.417	167	22	159.5	8.4	310	260	95.5	1.0

			Relacione	s isotópica	S		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_14_38	0.17	0.052	0.0255	0.0018	0.05	0.015	0.198	166	42	162.0	11	80	540	97.6	0.5
18HF_14_32	0.18	0.03	0.0262	0.0014	0.048	0.01	-0.717	167	27	166.6	8.9	90	390	99.8	0.6
18HF_14_12	0.202	0.045	0.0264	0.0014	0.06	0.014	-0.085	184	38	167.8	8.9	540	430	91.2	0.7
18HF_14_24	0.207	0.045	0.0267	0.0016	0.053	0.01	0.585	188	38	170.0	10	370	400	90.4	0.5
18HF_14_11	0.2	0.042	0.0269	0.0012	0.059	0.012	0.252	182	35	170.9	7.4	530	350	93.9	0.3
18HF_14_27	0.24	0.14	0.0272	0.0019	0.064	0.038	-0.091	190	120	173.0	12	100	1100	91.1	1.1
18HF_14_31	0.182	0.067	0.0272	0.0013	0.047	0.017	0.198	179	51	173.0	8.4	280	550	96.6	1.6
18HF_14_10	0.208	0.026	0.0272	0.0015	0.0553	0.0054	0.662	191	22	173.2	9.1	390	210	90.7	0.4
18HF_14_16	0.177	0.018	0.0274	0.0011	0.0484	0.0046	0.358	165	15	174.0	6.7	170	200	105.5	0.6
18HF_14_44	0.177	0.025	0.02736	0.00079	0.0479	0.0061	0.560	165	21	174.0	5	90	240	105.5	0.8
18HF_14_56	0.199	0.056	0.0274	0.0014	0.054	0.016	-0.208	179	47	174.2	9	190	530	97.3	0.7
18HF_14_50	0.202	0.048	0.0274	0.0014	0.051	0.012	0.153	183	41	174.3	9	290	450	95.2	0.8
18HF_14_26	0.189	0.023	0.0275	0.0014	0.0523	0.0052	0.607	175	20	175.1	8.8	270	210	100.1	0.6
18HF_14_43	0.206	0.037	0.0276	0.0015	0.057	0.01	0.227	188	32	175.4	9.3	410	360	93.3	1.4
18HF_14_2	0.207	0.041	0.0276	0.0013	0.055	0.012	-0.330	188	35	175.6	8.1	320	420	93.4	0.4
18HF_14_36	0.205	0.046	0.0278	0.0016	0.053	0.012	0.093	186	39	176.5	9.8	240	410	94.9	0.8
18HF_14_41	0.205	0.029	0.0279	0.0016	0.0509	0.0096	-0.756	189	24	177.4	9.8	190	350	93.9	1.1
18HF_14_25	0.183	0.04	0.0283	0.0017	0.049	0.011	0.038	168	35	180.0	11	100	410	107.1	1.2
18HF_14_54	0.222	0.046	0.0285	0.0013	0.056	0.01	0.694	200	38	180.9	7.9	370	370	90.5	0.8
18HF_14_34	0.199	0.027	0.0285	0.0013	0.0533	0.0081	-0.211	190	25	181.0	8.1	280	300	95.3	0.6
18HF_14_3	0.13	0.15	0.0287	0.0021	0.048	0.038	4.205	170	130	182.0	13	-200	1000	107.1	0.6
18HF_14_17	0.211	0.019	0.02939	0.00089	0.0534	0.0043	0.466	198	17	186.7	5.6	320	170	94.3	0.6
18HF_14_52	0.21	0.12	0.0295	0.0027	0.062	0.03	0.963	179	95	187.0	17	410	760	104.5	1.1
18HF_14_9	0.207	0.04	0.0299	0.00097	0.052	0.0099	0.171	189	34	189.9	6.1	230	370	100.5	0.5
18HF_14_45	1.407	0.095	0.1413	0.006	0.0732	0.0043	0.508	898	37	852.0	34	1000	120	94.9	0.9
18HF_14_15	1.54	0.05	0.1513	0.0058	0.0764	0.0018	0.791	945	20	908.0	33	1102	47	96.1	0.5
18HF_14_20	1.519	0.05	0.157	0.0068	0.0733	0.0022	0.722	937	20	940.0	38	1017	62	100.3	0.3
18HF_14_1	1.639	0.079	0.1678	0.0085	0.0721	0.0021	0.828	983	31	999.0	47	984	61	101.6	0.5
18HF_17_20	0.186	0.022	0.02654	0.00066	0.0523	0.0069	-0.476	173	19	168.8	4.1	270	270	97.6	2.2
18HF_17_13	0.191	0.016	0.02698	0.00094	0.0521	0.0041	0.349	177	14	171.6	5.9	270	160	96.9	1.4
18HF_17_14	0.1818	0.0088	0.0272	0.0011	0.0503	0.0031	0.046	169.5	7.5	173.0	6.9	200	130	102.1	0.8
18HF_17_9	0.199	0.012	0.02812	0.00094	0.0522	0.0037	-0.067	184	10	178.8	5.9	280	150	97.2	1.4
18HF_17_3	1.482	0.064	0.1509	0.0062	0.0729	0.0041	0.110	922	26	905.0	35	1020	120	98.2	0.7

			Relaciones	s isotópica	S		Rho			Edac	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_20_17	0.166	0.036	0.02368	0.00095	0.048	0.011	-0.223	155	30	150.8	6	290	340	97.3	1.9
18HF_20_30	0.166	0.024	0.02388	0.00076	0.0508	0.0072	0.199	154	22	152.1	4.8	130	250	98.8	2.7
18HF_20_9	0.161	0.029	0.02565	0.00091	0.0501	0.0088	0.223	158	25	163.2	5.7	170	280	103.3	1.2
18HF_20_20	0.188	0.072	0.0257	0.0012	0.053	0.021	-0.228	155	64	163.2	7.6	-220	580	105.3	1.5
18HF_20_15	0.17	0.071	0.0258	0.0013	0.049	0.021	-0.159	158	65	163.9	8.3	-240	560	103.7	0.9
18HF_20_23	0.162	0.028	0.02688	0.00081	0.0444	0.0078	-0.008	156	24	171.0	5.1	30	240	109.6	1.7
18HF_20_2	0.202	0.028	0.02712	0.00078	0.0544	0.0076	0.066	185	24	172.5	4.9	340	240	93.2	1.2
18HF_20_13	0.171	0.016	0.02716	0.00068	0.0459	0.0044	0.041	161	13	172.7	4.3	70	160	107.3	1.8
18HF_20_5	0.185	0.036	0.02732	0.00086	0.052	0.0099	0.213	166	32	173.7	5.4	110	320	104.6	1.1
18HF_20_10	0.191	0.035	0.0274	0.0011	0.056	0.01	0.224	184	29	174.0	7.2	320	300	94.6	1.3
18HF_20_41	0.195	0.088	0.0275	0.0013	0.061	0.025	0.889	170	79	174.8	8	-50	580	102.8	1.6
18HF_20_25	0.174	0.042	0.0275	0.0011	0.051	0.012	0.233	163	36	175.3	6.9	120	350	107.5	2.0
18HF_20_45	0.215	0.056	0.028	0.0011	0.053	0.014	-0.019	195	47	178.6	6.8	0	410	91.6	1.5
18HF_20_37	0.201	0.033	0.0281	0.00092	0.0531	0.0089	-0.006	182	28	178.6	5.8	140	280	98.1	1.3
18HF_20_7	0.203	0.042	0.0282	0.0011	0.049	0.011	-0.376	184	35	179.0	7	160	330	97.3	1.5
18HF_20_1	0.193	0.046	0.0283	0.001	0.051	0.012	0.160	168	40	180.0	6.4	20	370	107.1	0.9
18HF_20_8	0.184	0.024	0.0285	0.00073	0.0476	0.006	0.266	171	20	181.1	4.6	70	210	105.9	2.1
18HF_20_29	0.166	0.059	0.0291	0.0012	0.055	0.015	1.830	184	52	184.6	7.5	-70	420	100.3	1.5
18HF_20_40	0.233	0.061	0.03	0.0012	0.056	0.015	-0.077	178	52	190.3	7.6	20	430	106.9	1.0
18HF_20_32	0.2	0.076	0.0305	0.0014	0.051	0.018	0.629	196	65	193.4	8.9	-30	480	98.7	1.2
18HF_20_3	0.234	0.026	0.03054	0.00082	0.0547	0.0059	0.240	210	21	193.9	5.1	270	190	92.3	1.6
18HF_20_14	0.721	0.034	0.0909	0.002	0.0574	0.0024	0.462	552	19	561.0	12	476	90	101.6	0.3
18HF_20_19	0.894	0.087	0.1031	0.0034	0.0641	0.0067	-0.057	636	48	632.0	20	660	200	99.4	0.9
18HF_25_32	0.2086	0.0089	0.02887	0.00074	0.0514	0.0021	0.369	191.7	7.4	183.4	4.6	276	84	95.7	1.0
18HF_25_51	0.201	0.03	0.0293	0.001	0.0509	0.0076	0.113	189	24	186.0	6.4	220	240	98.4	1.0
18HF_25_49	0.205	0.018	0.0294	0.0011	0.049	0.0047	-0.014	189	14	186.9	7	140	160	98.9	1.2
18HF_25_54	0.21	0.019	0.02957	0.00086	0.0523	0.0044	0.371	194	16	187.8	5.4	290	160	96.8	0.7
18HF_25_47	0.199	0.015	0.02958	0.00092	0.0497	0.0037	0.236	184	13	188.5	5.9	180	140	102.4	1.2
18HF_25_55	0.197	0.011	0.03	0.001	0.0485	0.0031	0.039	182.5	9.6	190.8	6.5	130	120	104.5	1.6
18HF_25_33	0.199	0.013	0.0303	0.0011	0.0482	0.0029	0.414	182	11	192.1	6.9	120	110	105.5	1.1
18HF_25_43	0.22	0.015	0.03074	0.00087	0.0503	0.0035	0.158	201	12	195.1	5.4	200	140	97.1	1.1
18HF_25_38	0.219	0.017	0.0309	0.0011	0.0517	0.0042	0.125	202	14	196.2	6.6	270	150	97.1	0.9
18HF_25_34	0.21	0.019	0.031	0.0011	0.0478	0.0042	0.269	192	15	196.8	7	110	160	102.5	0.8
			Relacione	s isotópica	S		Rho			Edac	les				
--------------	-------------------------------------	-------	-------------------------------------	-------------	--------------------------------------	--------	---------------------	-------------------------------------	-----	-------------------------------------	-----	--------------------------------------	-----	-------------------	------
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_25_52	0.198	0.02	0.03102	0.00098	0.0488	0.0047	0.302	186	17	196.8	6.1	140	170	105.8	0.8
18HF_25_39	0.222	0.014	0.03111	0.00099	0.0506	0.003	0.367	206	12	197.4	6.2	210	120	95.8	1.1
18HF_25_46	0.216	0.014	0.03125	0.00095	0.05	0.0034	0.127	198	12	198.3	6	210	130	100.2	0.9
18HF_25_40	0.231	0.013	0.0319	0.0011	0.052	0.0032	0.147	209	11	202.6	6.6	260	120	96.9	1.6
18HF_25_30	0.219	0.011	0.03199	0.00079	0.0494	0.0024	0.311	201	9.2	202.9	4.9	175	94	100.9	1.2
18HF_25_53	0.218	0.016	0.0322	0.0011	0.0492	0.0035	0.298	202	13	204.4	6.7	180	130	101.2	0.9
18HF_25_14	0.221	0.012	0.0327	0.0011	0.0494	0.0028	0.237	202	10	207.0	7.1	170	110	102.5	1.0
18HF_25_28	0.233	0.012	0.03261	0.0009	0.0523	0.0027	0.263	211.3	9.7	207.5	5.7	280	110	98.2	1.9
18HF_25_29	0.223	0.016	0.03279	0.00098	0.0505	0.0037	0.157	204	13	207.9	6.1	170	130	101.9	1.0
18HF_25_57	0.238	0.034	0.03298	0.00099	0.0549	0.008	0.009	213	29	209.1	6.2	230	260	98.2	1.1
18HF_25_15	0.233	0.02	0.0333	0.0012	0.051	0.0042	0.305	213	16	211.0	7.3	320	150	99.1	1.3
18HF_25_42	0.246	0.015	0.0335	0.0011	0.053	0.0032	0.287	223	12	212.3	6.7	310	120	95.2	1.6
18HF_25_35	0.226	0.016	0.0345	0.001	0.0481	0.0034	0.209	206	13	218.8	6.3	110	130	106.2	1.1
18HF_25_6	0.42	0.041	0.0528	0.0023	0.0597	0.0058	0.234	358	29	332.0	14	490	190	92.7	0.5
18HF_25_13	0.463	0.036	0.0622	0.0026	0.0541	0.0045	0.134	384	25	388.0	16	330	160	101.0	1.2
18HF_25_36	0.644	0.019	0.079	0.0016	0.0597	0.0018	0.311	507	12	489.8	9.8	572	65	96.6	0.4
18HF_25_7	0.67	0.1	0.0854	0.0043	0.0575	0.0087	0.128	512	60	527.0	25	340	260	102.9	1.3
18HF_25_20	0.699	0.043	0.0855	0.0024	0.0606	0.0039	0.125	538	26	528.0	14	590	130	98.1	0.5
18HF_25_21	0.772	0.055	0.092	0.003	0.0619	0.0047	0.080	582	31	567.0	18	580	150	97.4	0.4
18HF_25_1	0.756	0.029	0.0948	0.0029	0.058	0.0023	0.356	570	17	583.0	17	495	88	102.3	0.5
18HF_25_3	0.73	0.13	0.0973	0.0044	0.057	0.01	0.185	548	76	597.0	26	370	310	108.9	0.9
18HF_25_23	0.869	0.072	0.1016	0.004	0.0601	0.0051	0.186	627	39	622.0	23	580	170	99.2	1.1
18HF_25_22	0.9	0.16	0.1022	0.0048	0.065	0.012	-0.016	645	87	626.0	28	510	330	97.1	1.5
18HF_25_25	1.541	0.059	0.1551	0.0047	0.0729	0.0027	0.436	945	23	928.0	26	1011	79	98.2	0.6
18HF_25_4	1.582	0.074	0.1565	0.0052	0.0723	0.0027	0.610	958	28	936.0	29	1021	75	97.7	0.3
18HF_25_9	1.577	0.096	0.1579	0.0053	0.0718	0.0042	0.345	959	36	943.0	29	980	120	98.3	0.3
18HF_25_16	1.576	0.046	0.1581	0.0032	0.073	0.0021	0.367	967	17	946.0	18	1020	56	97.8	0.4
18HF_25_5	1.612	0.073	0.1622	0.0057	0.0725	0.0031	0.458	973	28	967.0	32	964	91	99.4	0.2
18HF_25_11	1.575	0.08	0.1653	0.0041	0.069	0.0033	0.360	957	32	991.0	24	860	100	103.6	1.5
18HF_25_2	1.714	0.073	0.1709	0.0053	0.0737	0.0031	0.381	1016	27	1019.0	29	1013	84	100.3	0.4
18HF_25_17	1.82	0.13	0.1719	0.0063	0.0769	0.0059	0.107	1059	46	1020.0	35	1070	140	96.3	1.4
18HF_25_27	1.852	0.051	0.1721	0.0043	0.0778	0.0015	0.735	1064	18	1025.0	23	1141	40	96.3	0.1
18HF_25_50	2.203	0.086	0.1821	0.0046	0.0903	0.0029	0.573	1184	28	1082.0	25	1428	61	91.4	0.2

			Relaciones	s isotópica	s		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_25_18	4.02	0.13	0.293	0.01	0.1013	0.0032	0.549	1643	27	1657.0	52	1631	59	100.9	0.6
18HF_25_19	5.78	0.19	0.3144	0.0089	0.1342	0.0039	0.557	1947	30	1764	43	2135	51	90.6	0.2
18HF_25_24	5.48	0.18	0.352	0.01	0.1119	0.0037	0.425	1893	29	1944	49	1826	58	102.7	1.4
18HF_25_26	6.53	0.2	0.358	0.0077	0.1324	0.0032	0.620	2047	27	1970	37	2123	42	96.2	1.2
18HF_25_8	6.64	0.26	0.376	0.014	0.1306	0.0049	0.519	2059	33	2050	66	2083	67	99.6	1.4
18HF_28_51	0.192	0.038	0.02811	0.00099	0.0485	0.0099	-0.090	164	33	178.6	6.2	30	320	108.9	3.0
18HF_28_37	0.183	0.025	0.02836	0.00081	0.0443	0.0062	-0.014	171	21	180.2	5.1	-20	210	105.4	2.2
18HF_28_38	0.185	0.015	0.02854	0.00065	0.0461	0.0039	-0.017	170	13	181.4	4.1	20	150	106.7	1.8
18HF_28_50	0.224	0.018	0.0304	0.0011	0.0517	0.0041	0.254	202	15	192.1	6.4	290	150	95.1	2.0
18HF_28_55	0.253	0.088	0.0312	0.0014	0.067	0.022	0.486	207	78	197.6	9	110	570	95.5	1.0
18HF_28_16	0.23	0.041	0.0313	0.0011	0.057	0.011	-0.338	202	35	198.5	6.9	200	320	98.3	1.1
18HF_28_46	0.304	0.058	0.0412	0.0016	0.054	0.011	-0.242	257	45	260.0	9.7	280	310	101.2	1.2
18HF_28_48	0.703	0.039	0.0912	0.0023	0.0561	0.0032	0.164	541	24	562.0	13	430	110	103.9	1.2
18HF_28_20	0.807	0.044	0.0953	0.0021	0.061	0.0033	0.221	596	25	586.0	12	580	110	98.3	0.2
18HF_28_28	0.95	0.12	0.1015	0.003	0.0635	0.0082	0.021	659	65	622.0	17	650	240	94.4	1.2
18HF_28_30	0.93	0.1	0.1027	0.0035	0.0661	0.0076	-0.068	664	54	629.0	21	750	220	94.7	1.1
18HF_28_27	1.596	0.054	0.1511	0.0027	0.0768	0.0024	0.403	965	21	907.0	15	1104	61	94.0	0.6
18HF_28_36	1.4	0.13	0.153	0.0046	0.0669	0.0065	0.015	886	57	919.0	26	730	200	103.7	0.9
18HF_28_31	1.609	0.084	0.159	0.0036	0.0722	0.0043	-0.131	967	33	950.0	20	900	120	98.2	0.8
18HF_28_13	1.62	0.11	0.1608	0.0036	0.0729	0.0049	0.195	979	42	960.0	20	950	140	98.1	0.4
18HF_28_17	1.747	0.05	0.1633	0.0022	0.0785	0.002	0.456	1022	18	975.0	12	1137	50	95.4	0.2
18HF_28_32	1.664	0.059	0.1639	0.0031	0.0723	0.0024	0.382	988	23	980.0	17	1001	70	99.2	0.2
18HF_28_8	1.67	0.11	0.1673	0.0037	0.0735	0.0048	0.193	993	40	996.0	20	980	130	100.3	0.4
18HF_28_9	1.55	0.11	0.1697	0.0042	0.0671	0.005	0.027	947	41	1009.0	23	780	150	106.5	0.4
18HF_28_43	1.55	0.12	0.1726	0.0045	0.066	0.0049	0.288	936	49	1025.0	25	780	150	109.5	1.7
18HF_28_29	2.04	0.27	0.1746	0.0068	0.078	0.011	-0.083	1116	97	1034.0	37	1110	260	92.7	0.7
18HF_28_24	1.95	0.19	0.1737	0.0046	0.0809	0.0072	0.441	1101	67	1035.0	26	1140	190	94.0	1.4
18HF_28_21	1.85	0.12	0.1821	0.0044	0.0728	0.0049	0.083	1053	42	1080.0	25	940	150	102.6	0.6
18HF_28_26	2.06	0.12	0.1895	0.0044	0.0789	0.004	0.504	1142	38	1123.0	25	1160	110	98.3	0.6
18HF_28_15	2.56	0.15	0.1933	0.0035	0.0939	0.004	0.917	1258	32	1138.0	19	1442	55	90.5	0.1
18HF_28_10	1.94	0.25	0.1945	0.0076	0.0732	0.0098	0.021	1122	91	1152.0	40	960	250	102.7	0.4
18HF_28_52	2.085	0.087	0.1982	0.0057	0.0777	0.0036	0.176	1140	27	1164.0	30	1113	96	102.1	1.4
18HF_28_25	2.28	0.12	0.2032	0.0057	0.0827	0.0047	0.111	1216	39	1190.0	31	1230	120	97.9	0.4

			Relacione	s isotópica	S		Rho			Edac	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_28_3	2.224	0.044	0.2039	0.0035	0.0793	0.0015	0.483	1191	14	1197.0	19	1176	38	100.5	0.2
18HF_28_12	2.3	0.17	0.2058	0.0053	0.0804	0.0059	0.195	1200	56	1205.0	28	1150	150	100.4	0.8
18HF_28_53	2.398	0.057	0.2059	0.0036	0.0845	0.0024	0.077	1243	17	1206.0	19	1307	56	97.0	0.8
18HF_28_4	2.49	0.14	0.2268	0.0061	0.0805	0.005	0.009	1276	43	1315.0	32	1190	120	103.1	1.8
18HF_28_34	2.64	0.17	0.2284	0.0055	0.0833	0.0057	0.014	1297	50	1328.0	30	1210	150	102.4	0.7
18HF_28_1	3.269	0.091	0.2428	0.0048	0.0969	0.0025	0.454	1470	22	1403.0	25	1568	46	95.4	0.2
18HF_28_22	2.75	0.11	0.2447	0.0054	0.0811	0.0031	0.355	1339	32	1409.0	28	1211	75	105.2	0.7
18HF_28_33	3.269	0.059	0.2601	0.0048	0.0906	0.0015	0.589	1475	14	1489.0	25	1436	32	100.9	0.4
18HF_28_6	4.34	0.33	0.286	0.01	0.1086	0.0085	0.165	1649	73	1617.0	50	1740	150	98.1	1.3
18HF_28_23	4.91	0.19	0.2935	0.0085	0.117	0.0041	0.494	1794	32	1660.0	43	1912	63	92.5	0.9
18HF_28_35	3.98	0.15	0.294	0.0056	0.0985	0.0036	0.312	1628	30	1660.0	28	1592	70	102.0	0.5
18HF_28_2	3.86	0.12	0.2982	0.0059	0.0948	0.0029	0.343	1605	26	1681.0	29	1535	57	104.7	0.4
18HF_28_19	4.94	0.33	0.3115	0.0091	0.1135	0.0072	0.331	1793	57	1744.0	45	1810	120	97.3	2.4
18HF_28_11	4.69	0.32	0.3348	0.0087	0.1049	0.0077	-0.016	1760	59	1858.0	42	1650	130	105.6	1.0
18HF_39_25	0.1796	0.008	0.02577	0.00087	0.0493	0.0024	0.251	167.6	6.9	164	5.5	190	110	97.9	1.4
18HF_39_31	0.196	0.016	0.0266	0.0011	0.052	0.0032	0.679	181	14	169.0	7	320	150	93.4	0.8
18HF_39_9	0.1845	0.008	0.02664	0.0006	0.0506	0.0023	0.164	171.8	6.9	169.5	3.8	220	100	98.7	0.8
18HF_39_30	0.1919	0.0072	0.02678	0.00078	0.052	0.0019	0.421	178.2	6.1	170.3	4.9	278	83	95.6	0.7
18HF_39_58	0.19	0.01	0.02683	0.00085	0.0516	0.0023	0.536	176.1	8.6	170.6	5.3	257	98	96.9	0.5
18HF_39_1	0.193	0.018	0.0269	0.00094	0.0537	0.0052	0.083	179	16	171.1	5.9	310	200	95.6	0.6
18HF_39_23	0.1755	0.0083	0.02697	0.00095	0.0478	0.0016	0.707	164	7.2	171.6	5.9	88	75	104.6	1.0
18HF_39_7	0.1854	0.0087	0.02705	0.0009	0.0509	0.0024	0.348	172.6	7.4	172.0	5.7	200	110	99.7	1.0
18HF_39_50	0.188	0.014	0.0273	0.001	0.0495	0.003	0.589	175	12	173.6	6.3	200	140	99.2	0.7
18HF394	0.19	0.016	0.0274	0.001	0.0518	0.0044	0.197	176	14	174.1	6.6	250	180	98.9	0.6
18HF_39_55	0.1872	0.0091	0.02743	0.00075	0.0503	0.0017	0.740	174.1	7.8	174.4	4.7	204	77	100.2	0.9
18HF_39_34	0.2008	0.0091	0.0275	0.0013	0.0551	0.0032	0.214	185.7	7.7	174.6	8.3	400	130	94.0	0.4
18HF_39_39	0.191	0.023	0.0276	0.0012	0.0509	0.0059	0.282	177	20	175.3	7.5	210	230	99.0	0.7
18HF_39_32	0.1917	0.0079	0.02765	0.00063	0.0504	0.0025	-0.129	178	6.7	175.8	3.9	210	110	98.8	1.1
18HF_39_59	0.192	0.014	0.02773	0.00094	0.0507	0.0032	0.502	178	12	176.3	5.9	220	130	99.0	0.6
18HF_39_54	0.194	0.0063	0.0277	0.001	0.0507	0.0015	0.632	180	5.4	176.4	6.2	240	73	98.0	0.8
18HF_39_36	0.192	0.019	0.02776	0.00073	0.05	0.0046	0.388	177	17	176.5	4.6	200	190	99.7	0.6
18HF_39_28	0.185	0.012	0.0278	0.001	0.0478	0.0028	0.444	172	10	176.6	6.2	90	120	102.7	0.6
18HF_39_15	0.195	0.013	0.02779	0.00079	0.0512	0.0039	-0.145	181	11	176.7	4.9	230	160	97.6	0.6

			Relaciones	s isotópica	S		Rho			Edad	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_39_8	0.186	0.012	0.0279	0.0011	0.0484	0.0025	0.599	173	10	177.1	6.8	120	110	102.4	0.6
18HF_39_35	0.192	0.014	0.0281	0.0011	0.0485	0.0024	0.771	178	12	178.5	7.1	120	110	100.3	0.5
18HF_39_51	0.187	0.011	0.0281	0.0012	0.0498	0.0035	0.069	177	10	178.6	7.8	180	150	100.9	0.5
18HF_39_6	0.191	0.013	0.0281	0.0013	0.0495	0.0024	0.702	177	11	178.9	8	170	100	101.1	0.9
18HF_39_45	0.1954	0.0091	0.0282	0.0011	0.0511	0.0023	0.458	181.1	7.8	179.6	7	230	100	99.2	0.6
18HF_39_60	0.2013	0.0084	0.02826	0.00084	0.0522	0.002	0.466	186.1	7.1	179.7	5.3	285	84	96.6	0.6
18HF_39_47	0.1978	0.0084	0.02833	0.00096	0.0521	0.0023	0.348	183.1	7.1	180.1	6	280	100	98.4	0.8
18HF_39_13	0.1887	0.0059	0.02833	0.00087	0.0484	0.0018	0.280	175.4	5	180.1	5.5	122	82	102.7	0.8
18HF_39_21	0.191	0.01	0.0284	0.0011	0.0495	0.0026	0.366	177.4	8.7	180.8	6.6	170	110	101.9	0.7
18HF_39_27	0.2022	0.0094	0.0285	0.001	0.0507	0.0028	0.105	186.8	7.9	180.9	6.3	220	120	96.8	0.7
18HF_39_37	0.2065	0.0069	0.02847	0.00076	0.0537	0.0022	0.084	190.5	5.8	181.0	4.8	347	91	95.0	1.0
18HF_39_5	0.195	0.011	0.02848	0.00099	0.0502	0.0027	0.382	183.2	8.7	181.0	6.2	200	120	98.8	1.2
18HF_39_3	0.193	0.011	0.0285	0.0006	0.05	0.0024	0.578	179.3	9.1	181.1	3.7	190	110	101.0	0.8
18HF_39_22	0.2061	0.0089	0.02852	0.00092	0.0511	0.0028	-0.035	190.2	7.5	181.3	5.8	240	120	95.3	0.8
18HF_39_19	0.204	0.017	0.02854	0.00072	0.0512	0.004	0.351	188	14	181.4	4.5	240	160	96.5	1.1
18HF_39_53	0.2	0.011	0.0287	0.0011	0.0508	0.0019	0.734	185	9.6	182.3	6.6	227	84	98.5	0.6
18HF_39_2	0.2159	0.0093	0.0288	0.0012	0.0552	0.0025	0.429	198.3	7.8	182.7	7.2	410	100	92.1	0.9
18HF_39_29	0.191	0.021	0.0288	0.0013	0.0504	0.0055	0.223	177	18	182.8	8.4	200	220	103.3	0.5
18HF_39_12	0.193	0.011	0.02882	0.00083	0.0485	0.0026	0.367	179.2	9	183.2	5.2	150	120	102.2	0.8
18HF_39_56	0.197	0.011	0.0289	0.0011	0.0504	0.0019	0.740	182.1	9.5	183.5	6.6	207	83	100.8	0.7
18HF_39_10	0.202	0.011	0.0289	0.001	0.05	0.0019	0.721	186.2	9.2	184.0	6.3	193	83	98.8	1.1
18HF_39_57	0.222	0.0096	0.0293	0.0011	0.0545	0.0022	0.508	203.4	8	186.4	7.2	382	89	91.6	0.5
18HF_39_14	0.1959	0.0086	0.02947	0.00063	0.0484	0.0022	0.169	181.5	7.3	187.2	3.9	118	98	103.1	0.8
18HF_39_26	0.211	0.012	0.0298	0.0011	0.0501	0.0026	0.453	195	10	189.2	6.7	190	110	97.0	0.6
18HF_39_44	0.205	0.012	0.0298	0.0012	0.0511	0.0017	0.836	189.2	9.7	189.2	7.6	240	74	100.0	0.7
18HF_39_11	0.194	0.013	0.03	0.0011	0.0472	0.0029	0.419	179	11	190.5	6.6	70	120	106.4	0.5
18HF_39_48	0.228	0.017	0.03	0.0013	0.056	0.0036	0.511	208	14	190.6	8	430	140	91.6	0.7
18HF_39_61	0.206	0.014	0.03002	0.00083	0.0505	0.0029	0.555	190	12	190.6	5.2	210	120	100.3	0.7
18HF_39_33	0.2159	0.0064	0.03002	0.00089	0.0522	0.0016	0.465	198.4	5.3	190.7	5.5	287	70	96.1	1.0
18HF_39_20	0.2071	0.0093	0.03041	0.00082	0.0499	0.0023	0.256	191	7.8	193.1	5.1	190	100	101.1	1.0
18HF_39_16	0.236	0.03	0.0315	0.0019	0.0541	0.0044	0.860	214	24	200	12	390	180	93.5	0.7
18HF_39_52	0.229	0.0096	0.03252	0.00081	0.0523	0.0019	0.507	209.3	8	206.3	5.1	292	81	98.6	0.8
18HF_39_18	1.337	0.059	0.13	0.0046	0.0749	0.0024	0.696	861	26	788	26	1061	65	91.5	0.4

			Relaciones	s isotópica	S		Rho			Edac	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_39_17	2.223	0.07	0.1934	0.0066	0.0834	0.0026	0.551	1194	19	1139	35	1273	61	95.4	0.2
18HF_40_49	0.1761	0.009	0.02406	0.00051	0.0527	0.0025	0.374	164.5	7.8	153.2	3.2	300	100	93.1	0.6
18HF_40_67	0.207	0.025	0.0279	0.0013	0.0546	0.0059	0.451	189	21	177.6	8.4	330	210	94.0	0.6
18HF_40_9	0.209	0.021	0.02794	0.00062	0.0545	0.0047	0.707	194	17	177.7	3.9	410	180	91.6	0.8
18HF_40_3	0.197	0.0077	0.02827	0.00053	0.0509	0.0018	0.429	183.9	7.1	179.7	3.3	225	76	97.7	0.5
18HF_40_69	0.207	0.013	0.02843	0.00082	0.0524	0.0035	0.087	191	11	180.7	5.1	280	140	94.6	0.9
18HF_40_66	0.207	0.024	0.0287	0.0011	0.0537	0.0059	0.320	189	20	182.2	7.1	290	210	96.4	0.7
18HF_40_8	0.193	0.012	0.02892	0.00061	0.0487	0.0029	0.292	179	10	183.8	3.8	130	130	102.7	1.0
18HF_40_70	0.215	0.016	0.02906	0.00088	0.0546	0.004	0.241	197	13	184.6	5.5	350	150	93.7	0.6
18HF_40_53	0.221	0.025	0.02918	0.00079	0.0567	0.0064	0.129	201	21	185.4	5	440	210	92.2	0.9
18HF_40_61	0.199	0.022	0.02928	0.00097	0.0483	0.0046	0.580	183	19	186.0	6.1	140	170	101.6	0.7
18HF_40_55	0.223	0.018	0.02931	0.00085	0.0551	0.0033	0.805	203	15	186.2	5.3	380	120	91.7	0.6
18HF_40_57	0.204	0.015	0.02935	0.0007	0.0508	0.0039	0.023	191	12	186.5	4.4	240	140	97.6	0.6
18HF_40_1	0.225	0.019	0.02946	0.00072	0.0557	0.0047	0.147	205	16	187.2	4.5	390	170	91.3	0.4
18HF_40_16	0.2116	0.0098	0.02955	0.00063	0.0533	0.0024	0.290	194.6	8.2	187.7	4	325	96	96.5	0.7
18HF_40_52	0.211	0.019	0.02959	0.00079	0.0512	0.0042	0.435	193	16	188.0	4.9	260	170	97.4	0.4
18HF_40_62	0.212	0.021	0.02969	0.00077	0.0523	0.0049	0.332	197	19	188.6	4.8	330	200	95.7	0.6
18HF_40_5	0.224	0.016	0.02973	0.00071	0.0545	0.0036	0.384	204	13	188.8	4.4	380	130	92.5	0.5
18HF_40_39	0.214	0.013	0.02974	0.00048	0.0534	0.0032	0.183	196	11	188.9	3	320	130	96.4	0.5
18HF_40_4	0.222	0.015	0.02976	0.00082	0.054	0.0035	0.302	203	13	189.0	5.2	340	140	93.1	0.4
18HF_40_35	0.212	0.011	0.02987	0.00069	0.053	0.0023	0.560	196.8	8.5	189.7	4.3	312	95	96.4	0.6
18HF_40_22	0.2152	0.0088	0.0299	0.00068	0.0536	0.002	0.429	197.7	7.4	189.9	4.3	343	82	96.1	0.7
18HF_40_7	0.2095	0.0099	0.02999	0.00075	0.0511	0.0029	-0.153	192.9	8.2	190.5	4.7	230	110	98.8	0.6
18HF_40_54	0.2023	0.0068	0.03014	0.00075	0.0493	0.0019	0.158	186.9	5.8	191.4	4.7	156	80	102.4	0.2
18HF_40_38	0.216	0.015	0.03015	0.00085	0.0535	0.0035	0.342	198	13	191.5	5.3	350	130	96.7	0.5
18HF_40_12	0.2273	0.0094	0.03022	0.00051	0.0551	0.0022	0.287	207.7	7.7	191.9	3.2	397	89	92.4	0.7
18HF_40_26	0.205	0.013	0.03022	0.00062	0.0503	0.0032	0.152	191	11	191.9	3.9	220	130	100.5	0.6
18HF_40_58	0.204	0.013	0.03021	0.00076	0.0498	0.0031	0.255	188	11	191.9	4.7	180	130	102.1	0.7
18HF_40_19	0.221	0.016	0.03031	0.00063	0.0533	0.0036	0.369	202	14	192.5	4	310	140	95.3	0.5
18HF_40_24	0.21	0.011	0.03041	0.00065	0.0504	0.0026	0.241	193	9.5	193.1	4.1	230	110	100.1	0.4
18HF_40_18	0.2131	0.0094	0.03056	0.0005	0.0509	0.002	0.464	195.9	7.8	194.1	3.1	222	85	99.1	0.7
18HF_40_60	0.211	0.026	0.03057	0.00098	0.0505	0.0063	0.082	192	22	194.1	6.2	220	230	101.1	0.4
18HF_40_51	0.221	0.017	0.03059	0.00083	0.053	0.0038	0.362	202	14	194.2	5.2	300	150	96.1	0.4

			Relaciones	s isotópica	5		Rho			Edac	les				
Código punto	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	206/238- 207/235	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Pb ²⁰⁷ /Pb ²⁰⁶	±2σ	% Concordancia	Th/U
18HF_40_13	0.219	0.016	0.0306	0.00077	0.0544	0.0045	-0.237	203	14	194.3	4.8	330	170	95.7	0.6
18HF_40_31	0.216	0.024	0.03061	0.00079	0.0516	0.0053	0.429	197	20	194.3	4.9	280	190	98.6	0.6
18HF_40_56	0.221	0.017	0.03077	0.00063	0.0515	0.0036	0.460	202	14	195.4	3.9	240	140	96.7	0.4
18HF_40_6	0.21	0.0082	0.0308	0.00075	0.0503	0.0019	0.363	193.4	6.9	195.5	4.7	199	81	101.1	0.8
18HF_40_20	0.204	0.013	0.03079	0.00063	0.0492	0.0034	-0.114	188	11	195.5	4	150	140	104.0	0.5
18HF_40_41	0.203	0.012	0.0309	0.00061	0.0493	0.0029	0.182	187	10	196.2	3.8	160	120	104.9	0.5
18HF_40_14	0.2188	0.009	0.03099	0.00067	0.0514	0.0021	0.276	200.7	7.5	196.7	4.2	269	93	98.0	0.6
18HF_40_47	0.229	0.011	0.03107	0.00052	0.0536	0.0023	0.464	209.1	9.5	197.3	3.3	340	93	94.4	0.6
18HF_40_2	0.2087	0.0071	0.03111	0.00055	0.0484	0.0012	0.711	192.3	5.9	197.5	3.5	120	53	102.7	0.8
18HF_40_37	0.2098	0.009	0.03114	0.00073	0.0496	0.0017	0.604	193.2	7.5	197.6	4.5	185	80	102.3	0.5
18HF_40_10	0.229	0.017	0.03125	0.00082	0.0537	0.0043	-0.055	209	14	198.3	5.1	320	160	94.9	0.6
18HF_40_27	0.216	0.015	0.03125	0.00068	0.0517	0.0033	0.404	201	11	198.4	4.2	250	130	98.7	0.5
18HF_40_30	0.232	0.02	0.03127	0.00095	0.0549	0.0046	0.255	210	17	198.5	5.9	440	170	94.5	0.6
18HF_40_11	0.226	0.012	0.03111	0.00085	0.0526	0.0026	0.387	206	10	198.7	5.7	316	98	96.5	0.7
18HF_40_28	0.219	0.012	0.03173	0.00085	0.0511	0.0028	0.244	200.6	9.8	201.3	5.3	230	120	100.3	0.4
18HF_40_43	0.215	0.012	0.03178	0.00059	0.0501	0.0031	-0.178	197.5	9.8	201.7	3.7	210	130	102.1	0.5
18HF_40_21	0.245	0.019	0.032	0.00081	0.0565	0.0043	0.220	222	16	203	5.1	430	170	91.4	0.4
18HF_40_50	0.233	0.021	0.0321	0.0011	0.0537	0.0043	0.467	212	17	203.8	6.9	320	160	96.1	0.5
18HF_40_25	0.207	0.018	0.03221	0.00095	0.0485	0.0044	0.039	190	15	204.4	5.9	120	170	107.6	0.6
18HF_40_42	0.224	0.011	0.03244	0.00077	0.0518	0.0024	0.355	204.8	9.2	205.8	4.8	259	98	100.5	0.4
18HF_40_44	0.227	0.017	0.03262	0.00094	0.0516	0.0039	0.168	207	14	206.9	5.9	280	160	100.0	0.4
18HF_40_40	0.252	0.024	0.03334	0.00093	0.0563	0.0049	0.428	227	19	211.4	5.8	410	180	93.1	0.4
18HF_40_23	0.2489	0.0089	0.03405	0.00085	0.0527	0.002	0.259	225.5	7.3	215.8	5.3	302	81	95.7	2.2
18HF_40_45	0.256	0.027	0.0349	0.0011	0.0544	0.0055	0.285	229	21	221.1	7	330	200	96.6	0.4
18HF_40_63	1.464	0.044	0.1511	0.0038	0.0709	0.0017	0.636	915	18	907.0	21	949	50	99.1	1.4
18HF_40_64	1.496	0.041	0.1532	0.0038	0.0716	0.0015	0.682	928	16	918.0	21	969	43	98.9	0.5
18HF_40_34	1.697	0.035	0.1661	0.0033	0.07615	0.00079	0.869	1007	13	990.0	18	1098	21	98.3	0.1
18HF_40_68	1.923	0.089	0.1763	0.0068	0.0768	0.0032	0.530	1091	32	1046.0	37	1114	80	95.9	0.4

Bibliografía

Alarcón CM, Clavijo-Torres J, Mantilla-Figueroa LC, Rodríguez JG. (2020). Nueva propuesta de edades para el registro sedimentario de las formaciones Bocas y Jordán y su relación con el desarrollo de la actividad magmática del Grupo Plutónico de Santander (cordillera Oriental, Colombia). Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44 (173):1137-1151, octubre-diciembre de 2020. https://doi.org/10.18257/ raccefyn.1208

Anenburg, M. (2020). Rare earth mineral diversity controlled by REE pattern shapes. Mineralogical Magazine, 84(5), 629-639. doi:10.1180/mgm.2020.70

Arango, M. I., Rodríguez, G., Zapata, G. & Correa Martínez, A. M. (2020). Monzogranito de Rionegro. En Catálogos de las unidades litoestratigráficas de Colombia: Macizo de Santander. Vol. 1. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585279445.5

Arias, A. & Vargas, R. (1978). Geología de las planchas 86-Abrego y 97-Cáchira. Escala: 1:100.000. Memoria explicativa. INGEOMINAS, Bogotá.

Avellaneda-Cáceres, W.D.; Anaya-Arias, C.A.; Ayala, A.C.; Mantilla-Figueroa, L.C.; Bernal-Olaya, R. & Velandia, F. (2020). Contribuciones al conocimiento de la edad de los cuerpos ígneos plutónicos, hipoabisales y volcanoclásticos aflorantes en el área del municipio de Pailitas (Cesar, Colombia). Boletín de Geología, 42(2), 105-127. doi: 10.18273/revbol.v42n2-2020006.

Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C. (2003). TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 200, 155–170. doi:10.1016/S0009-2541(03)00165-7

Bustamante, C., Archanjo, C. J., Cardona, A., & Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Geological Society of America Bulletin, 128(11-12), 1762–1779. doi:10.1130/b31307.1

Chazot, G. & Bertrand, H. (1995). Genesis of silicic magmas during Tertiary continental rifting in Yemen. Lithos 36, 69–83.

Clavijo, J. (1995). Mapa Geológico de Colombia. Plancha 75 - Aguachica. Escala 1:100.000. Memoria explicativa. INGEOMINAS, Bucaramanga.

Clavijo, J., Barbosa, G., Camacho, J., Bernal, L., Royero, J.M., & Castro, E. (1992). Geología de la Plancha 75 - Aguachica. Escala 1:100.000. Mapa Geológico. INGEOMINAS, Bogotá.

Clavijo, J., Mantilla, F. L. C., Pinto, J., Bernal, L. y Pérez, A. (2008). Evolución geológica de la serranía de San Lucas, norte del valle medio del Magdalena y noroeste de la cordillera Oriental. Boletín de Geología, Vol. 30, N°1, pp. 45-62.

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., & Kinny, P. (2003). Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, V. 53, p. 469–500. doi:10.2113/0530469.

Correa-Martínez, A.M., Rodríguez, G., Arango, M.I., & Zapata-García, G. (2019). Petrografía, geoquímica y geocronología U-Pb de las rocas volcánicas y piroclásticas de la Formación Noreán al NW del Macizo de Santander, Colombia. Boletín de Geología, 41(1), 29-54. DOI: 10.18273/revbol.v41n1-2019002.

Cuadros, F. (2012). Caracterização geoquímica e geocronológica do embasamento mesoproterozóico da parte norte da serrania de San Lucas (Colômbia). v, 113 f., il. Dissertação (Mestrado em Geologia). Universidade de Brasília.

Cuadros, F. A., Botelho, N. F., Ordoñez-Carmona, O., & Matteini, M. (2013). Edades U-Pb en zircón por LA-MC-ICP-MS del Neis de San Lucas y el Batolito de Norosí en la parte septentrional de la Serranía de San Lucas. Memorias. XIV Congreso Colombiano de Geología, Primer Simposio de Exploradores.

Daconte, R., & Salinas, R. (1980). Geología de las planchas 66 (Miraflores) y 76 (Ocaña). Departamento Norte de Santander. Memoria Explicativa escala 1:100.000. 116 p. Bucaramanga.

Davies, J.F. & Whitehead, R.E. (2006). Alkali-Alumina and MgO-Alumina molar ratios of altered and unaltered rhyolites. Exploration and Mining Geology, Vol. 15, Nos. 1-2, pp. 75-88.

De La Roche H., Leterrier J. T., Grandclaude P., Marchal M. (1980). A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature. Chemical Geology, 29(1-4), 183-210. https://doi.org/10.1016/0009-25 41(80)9 0 020.

Dickinson, W. R. & Gehrels, G. E. (2009). Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Coloradoplateau mesozoic database. Earth Planet Sci. Lett. 288 (1–2), 115–125. https://doi.org/ 10.1016/j.epsl.2009.09.013.

El-Bialy, M. Z. (2010). On the Pan-African transition of the Arabian-Nubian Shield from compression to extension: The post-collision Dokhan volcanic suite of Kid-Malhak region, Sinai, Egypt, Gondwana Research. Vol. 1, p. 26-43, <u>https://doi.org/10.1016/j.gr.2009.06.004</u>

Goldsmith, R., Marvin, R.F., & Mehnert, H.H. (1971). Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. U.S. Geological Survey Professional Paper, 750-D: D44-D49.

Gómez, J., Montes, N.E., Nivia, Á. & Diederix, H., compiladores. (2015.) Atlas Geológico de Colombia 2015. Escala 1:500.000. Servicio Geológico Colombiano, 26 planchas. Bogotá D.C.

González, H., & Londoño, A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia. Diorita de Segovia. Batolito de Segovia (Jds). Cordillera Central, Departamentos de Antioquia y Bolívar. Bogotá: INGEOMINAS.

González, H., Maya, M., Camacho, J., Cardona, O.D., & Vélez, W. (2015). Elaboración de la cartografía geológica de un conjunto de planchas a escala 1:100.000 ubicadas en cuatro bloques del territorio nacional, identificados por el Servicio Geológico Colombiano. Plancha 74-Guaranda. Servicio Geológico Colombiano.

Gorton, M. P & Schandl, E.S. (2000). From continents to island arc: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist. Vol. 38, pp. 1065-1073.

Halliday, A.N., Lee, D., Tommasini, S., Davies, G. R., Paslick, C. R., Fitton, G. & James, D. E. (1995). Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters 133, 379-395 pp.

Ibanez-Mejia, M., Ruiz, J., Valencia, V.A., Cardona A., Gehrels, G.E. & Mora, A.R. (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research 191, 58– 77. Doi: 10.1016/j.precamres.2011.09.005

INGEOMINAS-UIS. (2006a). Cartografía geológica de 9.600 km2 de la serranía de San Lucas: Planchas 55 (El Banco), 64 (Barranco de Loba), 85 (Simití) y 96 (Bocas del Rosario). Aporte a su evolución geológica. Memoria explicativa de la Plancha 55 - El Banco. INGEOMINAS.

INGEOMINAS-UIS. (2006b). Cartografía geológica de 9.600 km2 de la serranía de San Lucas: Planchas 55 (El Banco), 64 (Barranco de Loba), 85 (Simití) y 96 (Bocas del Rosario). Aporte a su evolución geológica. Memoria explicativa de la Plancha 64- Barranco de Loba. INGEOMINAS.

INGEOMINAS-UIS. (2006c). Cartografía geológica de 9.600 km2 de la serranía de San Lucas: Planchas 55 (El Banco), 64 (Barranco de Loba), 85 (Simití) y 96 (Bocas del Rosario). Aporte a su evolución geológica. Memoria explicativa de la Plancha 85-Simití. INGEOMINAS. INGEOMINAS-UIS. (2006d). Cartografía geológica de 9.600 km2 de la serranía de San Lucas: Planchas 55 (El Banco), 64 (Barranco de Loba), 85 (Simití) y 96 (Bocas del Rosario). Aporte a su evolución geológica. Memoria explicativa de la Plancha 96- Bocas del Rosario. INGEOMINAS.

Irvine, T. N. & Baragar, W. R. A. (1971). A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, vol. 8, issue 5, pp. 523-548. https://doi.org/10.1139/e71-055.

Kassem, T., & Arango, J.L. (1977). Mapa fotogeológico de la Serranía de San Lucas. Escala 1:500.000. INGEOMINAS.

Large, R.R., Gemmel, J.B., Paulick, H., & Huston, D.L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic Geology, 96(5), 957-971. doi: 10.2113/gsecongeo.96.5.957.

Leal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes: A tectonomagmatic approach. PhD Thesis, Universitat de Barcelona, España, 989 p.

Le Bas, M.J., Le Maitre, R. W., Streckeisen, A. & Zanettin B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, Volume 27, Issue 3, June 1986, Pages 745–750, <u>https://doi.org/10.1093/petrology/27.3.745</u>

Mantilla, F.L.C., Bissig, T., Valencia, V., and Craig, H. (2013). The magmatic history of the Vetas-California mining district; Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45: 235-249.

Mantilla-Figueroa, L.C., García-Ramírez, C.A., y Valencia, V.A. (2016). Propuesta de escisión de la denominada 'Formación Silgará' (Macizo de Santander, Colombia), a partir de edades U-Pb en circones detríticos. Boletín de Geología, 38(1), 33-50. doi: 10.18273/revbol.v38n1-2016002.

McDonough, W.F. & Sun, S.S. (1995). The composition of the Earth. Chemical Geology, v. 120, p. 223-253. <u>https://doi.org/10.1016/0009-2541(94)00140-4</u>

Middlemost, E. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews. Volume 37, Issues 3–4, Pages 215-224. <u>https://doi.org/10.1016/0012-8252(94)90029-9</u>

Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins: American Journal of Science, v. 274, p. 321-355.

Mojica, J., Kammer, A., Ujueta, G. (1996). El Jurásico del Sector Noroccidental de Suramérica. Geología Colombiana 21, 3–40.

Moreno-Sánchez, M., Toro-Toro, L.M., Gómez-Cruz, A., y Ruiz, E.C. (2016). Formación Nogontova, una nueva unidad litoestratigráfica en la Cordillera Oriental de Colombia. Boletín de Geología, 38(2), pp. 55-62. <u>http://dx.doi.org/10.18273/revbol.v38n2-2016003</u>

Mpodozis, C. & Ramos, V. A. (2008). Tectónica Jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones? Revista de la Asociación Geológica Argentina 63 (4), pp. 481 – 497.

López–Isaza, J.A. & Zuluaga, C.A. (2020). Late Triassic to Jurassic magmatism in Colombia: Implications for the evolution of the northern margin of South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 40 p. Bogotá. <u>https://doi.org/10.32685/</u> pub.esp.36.2019.03

Ordóñez–Carmona, O., Frantz, J.C., Chemale, F. & Londoño, C. (2009). Serranía de San Lucas: Mineralizaciones auríferas, intrusiones de 1500 Ma, metamorfismo Grenville y magmatismo jurásico. XII Congreso Colombiano de Geología. Memoirs in CD ROM, T003– R117, 1 p. Paipa, Boyacá.

Otha, T. & Arai, H. (2007). Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology. Vol. 240, issue 3-4, pp. 280-297. <u>https://doi.org/10.1016/j.chemgeo.2007.02.017</u>

Paces, J. B. y Miller Jr., J. D. (1993). Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights into physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98 (B8), 13997-14013. Doi: 10.1029/93JB01159.

Paton, C., Woodhead, J. D. Hellstrom, J. C. Hergt, J. M., Greig, A. y Maas, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Gechemistry Geophysics Geosystems, 11(3), 1-36. Doi: 10.1029/2009GC002618.

Pearce, J.A. (1982). Trace element characteristics of lavas from destructive plate boundaries; p. 525-548 in, Thorp, R.S., ed., Andesites: Orogenic Andesites and Related Rocks, John Wiley and Sons, New York, 724 p

Pearce, J. A., Harris N.W. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrology 25: 956-983. doi:10.1093/petrology/25.4.956.

Pearce, J. A. & Peate, D.W. (1995). Tectonic implications of the composition of volcanic magmas. Annual Review of Earth and Planetary Sciences. Vol. 23, p. 251-285. <u>https://doi.org/10.1146/annurev.ea.23.050195.001343</u> Peña Urueña, M. L., Muñoz Rocha, J. A. y Urueña, C. L. (2018). Laboratorio de Geocronología en el Servicio Geológico Colombiano: avances sobre datación U-Pb en circones mediante la técnica LA-ICP-MS. Boletín Geológico, 44, 39-56.

Pettijohn, F., Potter, P. & Siever, R. (1987). Sand and sandstone, Springer – Verlag, New York, Segunda edición.

Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. V., Owens, T. L. y DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in ⁴⁰Ar/³⁹Ar dating. Chemical Geology, 145(1-2), 117-152. Doi: 10.1016/S0009-2541(97)00159-9.

Restrepo-Pace, P.A., Ruiz, J., Gehrels, G., & Cosca, M. (1997). Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas. Earth and Planetary Science Letters, 150(3-4), 427-441. 10.1016/S0012-821X(97)00091-5.

Rollinson, H. R. (1993). Using geochemical data; evaluation, presentation interpretation. Longman Group Ltd., London, 343pp.

Royero, J.M. (1994). Geología de la Plancha 65, Tamalameque (Departamentos del Cesar y Bolívar). Memoria Explicativa. INGEOMINAS, 78p. Bucaramanga.

Royero, J., Clavijo, J., Bernal, L., & Barbosa, G. (1994). Geología de la Plancha 65-Tamalameque. Escala 1:100.000. Mapa Geológico. INGEOMINAS. Bogotá.

Royero, J.M. & Clavijo, J. (2000). Mapa geológico generalizado del departamento de Bolívar. Escala 1:400.000. Memoria explicativa. INGEOMINAS, Bucaramanga.

Rudnick, R.L. & Fountain, D.M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267–309.

Sarmiento, L.F. (2001). Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes. Inferences from tectonic models. Ph. D. Thesis. Tectonics Department Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam. Publication number: 2002.01.01. ISBN 9287-25-5

Sarmiento-Rojas, L.F., Van Wess J.D. & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. Journal of South American Earth Sciences. Vol. 21, p. 383–411.

Sláma, J. Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A. & Hanchar, J. M. (2008). lešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), 1-35, doi: 10.1016/j.chemgeo.2007.11.005.

Stacey, J.S., & Kramers, J.D. (1975). Approximation of terrestrial lead isotope evolution by a two1329 stage model. Earth and Planetary Science Letters, v. 26, p. 207–221, doi: 10.1016/0012-1330821X(75)90088-6.

Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks; recommendation and suggestions. Neues Jahrbuch für Mineralogie - Abhandlungen, 134, 1-14.

Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Sanders, M.J. Norry (Eds.). Magmatism in oceanic basins (pp. 313-345). Oxford: Geological Society of London, Special Publication, 42.

Thorez, J. (1976). Practical identification of clay minerals. Institute of Mineralogy. (G. Lelotte, editor). Liege State University, Belgium, 90 pp.

Urueña, C. (2014). Metamorfismo, exhumación y termocronología del Neis de Bucaramanga (Macizo de Santander, Colombia). Tesis de Magister en Ciencias Geología. Universidad Nacional de Colombia. Bogotá, 209 pp.

Van der Lelij, R. (2013). Reconstructing North-Western Gondwana with implications for the evolution of the lapetus and Rheic Oceans: A geochronological, thermochronological and geochemical study (tesis de doctorado). Université de Genève. DOI: 10.13097/archive-ouverte/unige:31653

Van Der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M., & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the lapetus, Rheic and Pacific Oceans. Gondwana Research. https://doi.org/10.1016/j.gr.2015.01.011

Vermeesch, P. (2018). IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, v.9, p.1479-1493, doi: 10.1016/j.gsf.2018.04.001.

Villamizar, N., Piraquive, A., Urueña, C., Muñoz, J., Peña, M., Romero, O., Amaya, S. & López, J. (2019). Proveniencia de los sedimentos Pérmicos-Jurásicos de las formaciones Bocas Y Girón en la cuenca del Valle Medio del Magdalena. XVII Congreso colombiano de Geología, IV Simposio de Exploradores. Memorias, pp. 1121.

Ward, D.E., Goldsmith, R., Cruz, J. & Restrepo, H. (1973). Geología de los Cuadrángulos H-12 Bucaramanga y H-13 Pamplona. Departamento de Santander. Boletín Geológico, 21(1-3), 1-133.

Ward, D., Goldsmith, R., Jimeno, A., Cruz., J, Restrepo, H. & Gómez, E. (1977). Geología de la plancha 109 Rionegro. Escala 1:100.000. Mapa geológico. INGEOMINAS.

Weaver, B.L. (1991). The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–397.

Whitney, D.L., & Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, Vol. 95, pp. 185-187. doi: 10.2138/am.2010.3371.

Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., & Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x.

Wilson, M. (1989). Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London, 466 p. https://doi.org/10.1007/978-1-4020-6788-4

Winchester, J.A., & Floyd, P.A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325-343.

Wohletz, K. & Grant H. (1992). Volcanology and Geothermal Energy. Berkeley: University of California Press, <u>http://ark.cdlib.org/ark:/13030/ft6v19p151/.</u>

Zheng, Y. (2019). Subduction zone geochemistry. Geoscience Frontiers 10, p. 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003.

Zuluaga, C.A. & López, J.A. (2019). Ordovician orogeny and Jurassic low–lying orogen in the Santander Massif, northern Andes (Colombia). In: Cediel, F. & Shaw, R.P. (editors), Geology and tectonics of northwestern South America: The Pacific–Caribbean–Andean junction. Frontiers in Earth Sciences. Springer Nature Switzerland, p. 195–250. <u>https://doi.org/10.1007/978-3-319-76132-9_4</u>

Zuluaga, C., Pinilla, A. & Mann, P. (2015). Jurassic silicic volcanism and associated Continental-arc Basin in northwestern Colombia (southern boundary of the Caribbean plate), in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 137–160.

C)escri	pción Pe	trográfica	a Muestra	as en Secc	ión Delga	ada
				Localización			
Código Muestra:		18-HF-03	Uni	dad:	Jncp	Localidad:	Vía Aguachica-Marinilla
Coordenadas Este (MA	GNA)	1.058.282	Coordenadas N	lorte (MAGNA):	1.426.015	Departamento:	Cesar
			Descr	ipción Macroscópio	ca		
Tipo de roca: Piroclástica Descripción muestra: Roca j mixta de vidrio y microcrista Color: Gris Tamaño relativo de los crista	porfirítica, d ales. ales: Inequi	cristales de plagioo granular	clasas en matriz				
			Desci	ipción Microscópic	а		
Textura: Porfirít	ica						
Otras texturas: Glomer	roporfirítica	a de pseudomorfo	s de piroxeno				
Descripción general Roca vo de la roca pseudo	olcánica cor omorfos de	n textura porfirític piroxeno. La matr	a contiene fenocris iz está devitrificada	tales de Plagioclasa a y alterada a clorita	is rotas en matriz mix a, oxidada y con parc	ta de microcristale hes locales de calc	es rotos de plagioclasa, cuarzo ita anhedral.
			Сог	nposición (%Vol.)		Matriz	
	Cristale	s y fragmentos cri	stalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %
		Plagioclasa		0	3	1	4
	Psei	Luarzo	reno	0	8	1	13
		Opacos		0	0	1	1
			Total cristales y fi	ragmentos cristalino	DS		19
	I	Fragmentos Líticos	5				
			Total frag	mentos líticos			0
	N	linerales accesorio	DS				
		Circón		0	0	<1	0
	Mi	nerales de alterac	ión				
		Calcita		0	0	2	2
		Clorita		0	0	1	1
	Min	erales de introduc	ción				
		Óxidos		0	0	<1	0
		Calcita		0	0	1	1
			Vidrio	volcánico			77
						Total	100
			Composic	ión mineral norma	lizada		
Componentes		Porcentaje (%)					
Cristales y fragmentos cri	istalinos	20					
Fragmentos Líticos	S	0		Clasificad	ción modal	Toba vítre	eo cristalina
Vidrio volcánico		80					
Total		100		Se	egún	Adaptado c	le Cook, 1965

Cristales

Plagioclasa (PI): Cristales subhedrales, tabulares, rotos. Presentan macla polisintética. Ligeramente alterados a calcita y clorita. Presentan inclusiones de circones y epidotas.

Cuarzo (Qz): Cristales rotos, escasos, anhedrales, con extinción ondulante.

Pseudomorfos de piroxeno (Pse): Cristales anhedrales a subhedrales, tabulares. Se encuentran rotos y completamente reemplazados por cristales anhedrales de calcita y epidota.

Descripción de minerales de alteración o secundarios

Calcita: Anhedral, presente en los pseudomorfos y la matriz en parches aleatorios.

Epidota (Ep): Abundantes cristales anhedrales junto con clorita en la matriz

Clorita (Chl): Cristales anhedrales, como alteración parcial en plagioclasas, y en parches alterando la matriz vítrea.

Ilita (Ilt): En agregados distribuidos aleatoriamente en la matriz.

Observaciones

Roca con fuerte alteración hidrotermal. En la matriz se observa bandas de oxidación dando textura de flujo, también se observan parches gruesos de calcita con patinas de oxidación, junto con epidota e ilita.

Roca con intenso fracturamiento y rellenas de óxidos y carbonatos. Hacia los bordes de las vetillas presencia de óxidos.

Registro fotográfico

Microfotografía de la textura general de la roca. Microcristales de plagioclasa y cuarzo en matriz devitrificada, con parches de alteración de carbonatos y/o epidotas anhedrales. 10X, PPL y XPL.

Detalle clorita (Chl) alterando la matriz, en compañía de parches de calcita (Ca) y ilita (Ilt). 10X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada							
				Localización										
Código M	luestra:	18-HF-05	Uni	dad:	Јпср	Localidad:	Vía Aguachica-N	∕larinilla						
Coordenadas E	ste (MAGNA)	1.055.811	Coordenadas N	lorte (MAGNA):	1.420.545	Departamento:	Cesar							
			Desc	ripción Macroscópi	са									
Tipo de roca: Piroclá Descripción muestra feldespato y anfíbole Color: Gris. Tamaño relativo de l	stica : Roca de grano gr es. los cristales: Inequi	rueso, compuesta granular	a por Plagioclasa,		The second									
			Desc	cripción Microscópi	са									
Textura: Otras texturas:	Porfirítica Glomeroporfirítica de solo cristales d Poiquilítica: Inclus Flujo: Orientación	orfirítica omeroporfirítica: Agregados de cristales de plagioclasa, cuarzo, pseudomorfos de piroxeno y muscovita rodeados por hematite. Y agregados e solo cristales de plagioclasa. piquilítica: Inclusiones de pseudomorfos de piroxeno en cristales de plagioclasa. ujo: Orientación de microcristales de plagioclasa de la matriz.												
Descripción general de la roca	Roca volcánica co piroxeno. Los mici	oca volcánica con textura porfirítica, contiene feno y microfenocristales de cuarzo y microfenocristales de plagioclasa y pseudomorfos d roxeno. Los microcristales de la matriz tienen una sola orientación. Composición (%Vol.)												
	Composición (%Vol.) Matriz													
	Cristales	s y fragmentos c	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %							
		Plagioclasa		2	5	8	15							
		Cuarzo	<u></u>	3	7	11 	21							
	Pseu	idomorfo de pirc	oxeno	0	3	1	4							
			Total cristales y f	fragmentos cristalin	los		55							
	F	ragmentos Lítico	os				•							
			Total frag	gmentos líticos			0							
	м	inerales accesor	ios											
		Apatito		0	0	<1	0							
	Mir	nerales de altera	ción											
		Epidota		0	0	1	1							
		Ilita		0	0	<1	0							
			ucción	U	U	2	2							
		erales de introdu		-	-	-								
					0	0	0							
			Vidric			Total	42							
						iotai	100							
			Composi	ción mineral norma	alizada									
Compor	ientes	Porcentaje (%)												
Cristales y fragme	entos cristalinos	57		Clasificac	ión modal	Toba c	cristalina							
Fragmento	os Líticos	0												
Vidrio vo	lcánico	43		Se	gún	Adaptado c	de Cook, 1965							
Tot:	al	100												

Cristales

Plagioclasa (PI): An16 por el método Michel-Levy. Cristales subhedrales, tabulares, rotos. Presentan macla de Carlsbad con polisintética. Ligeramente alterados a ilita. Presentan inclusiones de pseudomorfos de piroxeno.

Feldespato (Fsp): Cristales subhedrales, presentan intensa textura sieve dando la sensación de que están rotos. Tienen alteración a caolinita, algunos cristales con bordes de oxidación.

Cuarzo (Qz): Cristales subhedrales. No se encuentran rotos. Subangulares a subredondeados.

Pseudomorfo de piroxeno (Pse): Escasos cristales, intensamente fracturados, reemplazados casi en su totalidad por minerales opacos.

Apatito (Ap): Cristales subhedrales, distribuidos aleatoriamente en la roca.

Descripción de minerales de alteración o secundarios

Epidota (Ep): Cristales subhedrales en texturas glomeroporfirítica.

Opacos (Opq): Como alteración de piroxenos, cristales anhedrales. Presentes en texturas glomeroporfirítica, junto con epidota.

Observaciones

La matriz presenta modera silicificación.

Registro fotográfico

Microfotografía de la textura general de la roca. Microfenocristales de plagioclasa (PI), feldespato (Fsp) y cuarzo (Qz) en matriz mixta, con pseudomorfos de piroxeno (Pse) reemplazados por minerales opacos. 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada							
				Localización										
Código M	luestra:	18-HF-05A	Uni	dad:	Jncp	Localidad:	Vía Aguachica-N	Marinilla						
Coordenadas E	ste (MAGNA)	1.057.815	Coordenadas N	lorte (MAGNA):	1.425.869	Departamento:	Cesar							
			Desc	ripción Macroscópi	са									
Tipo de roca: Piroclá Descripción muestra y cristales de plagioc Color: Gris Tamaño relativo de l	istica 1: Roca porfirítica, clasas en matriz vít los cristales: Inequi	compuesta por fi rea. igranular	ragmentos líticos											
			Desc	ripción Microscópi	са									
Textura:	Porfirítica													
Otras texturas:	Eluio: Orientación	de microcristale	s de plagioclasa de	la matriz										
Descripción general de la roca	And a series of the series													
	1		Co	mposición (%Vol.)		Matriz	1							
	Cristales	s y fragmentos ci	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %							
		Plagioclasa		0	3	5	8							
		Cuarzo		0	0	4	4							
	Pseu		oxeno	0	2	0	2							
		Opacos	Total cristales v	fragmentos cristalin	os	1	15							
	F	ragmentos Lítico	os											
		Volcánico		3	1	0	4							
			Total frag	gmentos líticos			0							
	M	linerales accesor	ios											
				0	0	0	0							
	Mir	nerales de altera	ción											
		Sericita		0	0	4	4							
	(Cuarzo secundari	0	0	0	7	7							
		Clorita		0	0	5	5							
		Еріаота	• /	U	U	2	2							
	Mine	erales de introdu	ccion											
				0	0	0	0							
			Vidrio	o volcánico			65							
						Total	100							
			Composi	ción mineral norma	llizada									
Compor	nentes	Porcentaje (%)												
Cristales y fragme	entos cristalinos	19		Clasificac	ión modal	Toba vítre	eo cristalina							
Fragmento	os Líticos	0												
Vidrio vo	lcánico	81		Se	gún	Adaptado d	e Cook, 1965							
Tot	al	100												

Cristales

Plagioclasa (Pl): Cristales subhedrales, tabulares, rotos. Intensamente alterados a sericita. Presentan bordes reabsorbidos Cuarzo (Qz): Escasos cristales subredondeados, sin alteración.

Pseudomorfos de piroxeno (Pse): Cristales anhedrales ,alargados completamente reemplazados por cristales anhedrales de clorita, epidota y minerales opacos. Opacos (Opq): Cristales anhedrales, en bandas finas paralelas a textura de flujo de la matriz.

Líticos

Volcánicos (LitV): Compuestos por microfenocristales de plagioclasa y cuarzo en matriz mixta de plagioclasa y vidrio volcánico. Parcialmente reemplazados por cuarzo secundario.

Descripción de minerales de alteración o secundarios

Sericita: Cristales anhedrales a subhedrales tabulares fibrosos, como alteración de plagioclasas y piroxenos. Epidota (Ep): Abundantes cristales anhedrales junto con clorita en pseudmorofos de piroxeno

Clorita (Chl): Cristales anhedrales, textura fibrosa, reemplazando completamente piroxenos y en parches en la matriz.

Observaciones

Roca con fuerte alteración hidrotermal. En la matriz se observa bandas de oxidación dando textura de flujo.

Registro fotográfico

Microfotografía de la textura general de la roca. Lítico volcánico con textura porfirítica en matriz mixta de vidrio volcánico y microcristales de plagioclasas (PI) y cuarzo (Qz). 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muesti	ras en Sec	ción Delg	gada							
				Localización										
Código M	uestra:	18-HF-05B	Uni	dad:	Jncp	Localidad:	Vía Aguachica-	Marinilla						
Coordenadas E	ste (MAGNA)	1.057.815	Coordenadas N	lorte (MAGNA):	1.425.869	Departamento:	Cesar							
			Des	cripción Macroscóp	pica									
Tipo de roca: Piroclá Descripción: Roca vo subredondeados de Color: Gris a amarillo Tamaño relativo de l	stica Icánica explosiva, (líticos volcánicos y). os cristales: Inequi	con fragmentos a v vidrio volcánico, granular.	ngulosos y grano soportado.											
_	- C /:		Des	cripcion Microscóp	ica									
Textura:	Porfirítica													
Otras texturas:	Flujo: Orientación Poiquilítica: Inclus	de microcristales siones de epidota	s de plagioclasa de en plagioclasas de	la matriz. líticos volcánicos.										
Descripción general de la roca	Roca volcánica co de plagioclasa, cu clorita y cuarzo se	volcánica con textura porfirítica contiene fenocristales de plagioclasa cuarzo y líticos volcánicos embebidos en matriz mixta de microcr agioclasa, cuarzo y vidrio volcánico. La matriz está parcialmente devitrificada y silicificada. Roca con minerales de alteración a ilita, epic a y cuarzo secundario. Composición (%Vol.)												
			C	omposición (%Vol.)									
	Cristale	s y fragmentos ci	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %							
		Plagioclasa		0	0	3	3							
		Cuarzo		3	6	4	13							
		eldespato potasi		0	2	2	4							
			Total cristales v	fragmentos cristalin		5	25							
		Fragmentos Lítico												
		Volcánico	-	25	°	0	22							
		Intrusivo		9	° 0	0	9							
			Total frag	gmentos líticos	, v	, v	42							
	N	linerales accesor	ios	-										
				0	0	0	0							
		noralas da altora	ción	<u> </u>	0	0	0							
				-	-									
			0	0	0	<1 2	0							
			0	0	0	1	2							
		Epidota		0	0	1	1							
		Clorita		0	0	6	6							
	Min	erales de introdu	cción											
				0	0	0	0							
			Vidrie	o volcánico	1		23							
						Total	100							
			Compos	ición mineral norm	alizada									
Compor	ientes	Porcentaje (%)		r		1								
Cristales y fragme	gmentos cristalinos 28			Clasificad	ción modal	Tob	a lítica							
Fragmento	os Líticos	47												
Vidrio vo	lcánico	26		Se	egún	Adaptado o	le Cook, 1965							
Tota	al	100			-		,							

Cristales

Plagioclasa (PI): Microcristales subhedrales, tabulares, con parches de alteración a caolinita.

Feldespato (Fsp): Cristales subhedrales, rotos y algunos con bordes de disolución.

Cuarzo (Qz): Fenocristales subhedrales, rotos y con microfracturas con rellenos de óxidos.

Pseudomorfos de piroxeno (Pse): Cristales anhedrales, reemplazados por epidota junto con clorita y hacia el núcleo crecimiento de cuarzo secundario.

Opacos (Opq): Cristales anhedrales, masivos y en parches alrededor de líticos.

Líticos

Volcánicos (LitV): Líticos de textura afanítica, hipocristalina, parcialmente reemplazados por cuarzo secundario formando textura perlítica, se conservan algunos cristales de plagioclasa con bahías de corrosión, rotas y con inclusiones de epidota.

Intrusivos (Litl): Un tipo de líticos de textura fanerítica, equigranular, compuestos por microcristales euhedrales de plagioclasa, feldespato y cuarzo, con inclusiones de epidota dentro de plagioclasa. Otro tipo de textura fanerítica, inequigranular, compuestos por fenocristales de plagioclasa y microcristales de cuarzo, con inclusiones de epidota dentro de plagioclasa.

Descripción de minerales de alteración o secundarios

ilita: Cristales anhedrales a subhedrales tabulares fibrosos, junto con epidota reemplazando piroxenos Epidota (Ep): Cristales anhedrales, presente como inclusiones de plagioclasa en fragmentos líticos y en parches en la matriz de la roca.

Observaciones

Se observan agregados subredondeados de minerales arcillosos con habito acicular junto con cristales de ilita, rodeados por cuarzo secundario. Roca muy oxidada y fracturada con alteración hidrotermal

Registro fotográfico

Microfotografía de la textura general de la roca. Líticos volcánicos con textura afanítica y fragmentos de cristales de cuarzo (Qz), plagioclasa (PI), feldespato (Fsp) y agregados de clorita (ChI). 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada						
				Localización									
Código M	luestra:	18-HF-05C	Uni	dad:	Jncp	Localidad:	Vía Aguachica-N	Marinilla					
Coordenadas E	ste (MAGNA)	1.057.815	Coordenadas N	lorte (MAGNA):	1.425.869	Departamento:	Cesar						
			Desc	ripción Macroscópi	ica								
	Descripció	n: Roca hipohialir	Tipo na, con cristales de Tamaño relativo	o de roca: Piroclástic plagioclasa, piroxer Color: Gris o de los cristales: In	ca no, cuarzo con altera equigranular.	ción a epidota y clo	prita.						
			Desc	cripción Microscópi	са								
Textura:	Porfirítica												
Otras texturas:	Glomeroporfirític de epidota, interc Bahías de corrosio Perlítica: En bahía Poiquilítica: Inclus Coronas: Mineralo	a: Agregados de p calados con banda ón: En cristales de as de cristales de siones de piroxen es opacos como o	olagioclasa, cuarzo, as de minerales opa e cuarzo y plagiocla cuarzo junto con cl os en plagioclasas. coronas alrededor o	, feldespato y epido acos y ocasionalmen Isas. orita. Inclusiones de crist de pseudomorfos de	ta. Agregados con un nte calcita anhedral a ales de calcita en cua e piroxeno y alrededo	a orientación prefe subhedral. rzo. or de agregados de	erencial de cristales a epidota.	anhedrales					
Descripción general de la roca	Roca volcánica co plagioclasa, cuarz encuentran agreg	ca volcánica con textura porfirítica contiene fenocristales de plagioclasa, cuarzo y feldespato embebidos en matriz mixta de microcristales de gioclasa, cuarzo y vidrio volcánico. La matriz está parcialmente silicificada con texturas plumosas por cuarzo secundario. En la matriz se cuentran agregados de epidota, opacos y calcita. Composición (%Vol.)											
	Composición (%Vol.)												
	Cristale	s y fragmentos cr	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %						
		Plagioclasa		3	6	10	19						
		Cuarzo		15	5	4	24						
	F	eldespato potásio	co	0	2	5	7						
	Pseu	udomorfo de piro	xeno	0	1	0	1						
			Total cristales y	fragmentos cristalir	105		51						
	I	Fragmentos Lítico	DS										
			Total frag	gmentos líticos			0						
	N	linerales accesor	ios										
				0	0	0	0						
	Mi	nerales de altera	ción										
		Epidota		0	0	1	1						
		Cuarzo secundari	0	0	0	8	8						
		Opacos		0	0	3	3						
		Calcita		0	0	1	1						
	Min	erales de introdu	cción										
		Epidota		0	0	2	2						
			Vidrie	o volcánico			34						
						Total	100						
			Composi	ción mineral norma	alizada								
Compor	nentes	Porcentaje (%)											
Cristales y fragme	Cristales y fragmentos cristalinos 60				ción modal	Toba c	ristalina						
Fragmento	os Líticos	0											
Vidrio vo	lcánico	40		Se	egún	Adaptado d	le Cook, 1965						
Tota	al	100											

Cristales

Plagioclasa (PI): Cristales subhedrales, rotos, con bordes reabsorbidos, bordes redondeados. Presentan macla de Carlsbad, y algunos cristales combinados con polisintética. Los fenocristales contienen inclusiones pseudomorfos de piroxenos. Presentan texturas glomeroporfirítica acompañados con epidota. Algunos cristales tienen intensa textura sieve.

Feldespato (Fsp): Cristales subhedrales, rotos y algunos con bordes de disolución, fuertemente alterados a caolinita, algunos presentan inclusiones de cristales anhedrales de calcita.

Cuarzo (Qz): Fenocristales y microfenocristales anhedrales y rotos, con bordes redondeados y algunos con bahías de disolución. En las bahías se encuentran rellenos de cuarzo secundario con clorita y epidota. Inclusiones de cristales de calcita.

Pseudomorfos de piroxeno (Pse): Cristales anhedrales, conservan parcialmente tonos de segundo orden. La mayoría se encuentran facturados y reemplazados por clorita y calcita. Presentan coronas de calcita y de minerales opacos.

Opacos (Opq): Cristales anhedrales, en bandas o coronas en los agregados de epidota y en coronas alrededor de pseudomorfos de piroxenos.

Descripción de minerales de alteración o secundarios

Texturas plumosas en la matriz generada por cuarzo secundario.

Cristales subhedrales de calcita en la matriz con coronas de epidota.

Observaciones

Agregados en la matriz de epidota, bandeada con opacos y calcita.

Registro fotográfico

Microfotografía de la textura general de la roca. Fragmentos de cristales de cuarzo (Qz), plagioclasa (PI), feldespato (Fsp). Agregado de epidota con bandas de minerales opacos junto con textura plumosa en la matriz por cuarzo secundario . 2X, PPL y XPL.

Detalle de matriz con cuarzo secundario (textura plumosa) y agregado de epidota con bandas de opacos. Inclusión de calcita (Ca) en cuarzo (Qz). 4X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ión Delga	ıda					
				Localización								
Código M	luestra:	18-HF-06	Uni	dad:	Jncp	Localidad:	Vía Aguachica-Mar Carmen	rinilla-El				
Coordenadas E	ste (MAGNA)	1.057.766	Coordenadas N	lorte (MAGNA):	1.425.860	Departamento:	Cesar					
			Desc	ripción Macroscóp	ica							
Tipo de roca: Piroclás Descripción: Roca po medio a grueso. Com líticos volcánicos e in Color: Gris a rosada Tamaño relativo de lo	stica rfirítica, compuesta ipuesta de feldespa trusivos. Intensam os cristales: Equigra	a de cristales y líti ato, plagioclasa, cu ente diaclasa da anular.	cos de grano uarzo y anfíbol, y									
			5	•								
Textura	Porfirítica		Desc									
	Fluio: Orientación	de microcristalos	de plagioclasa do la	a matriz								
Otras texturas:	Poiquilítica: Inclus	iones de epidota	en plagioclasas de l	íticos volcánicos.								
Descripción general de la roca	Roca volcánica cor matriz vítrea.	n textura porfirítio	ca contiene cristales	s de plagioclasa, cua	ırzo y feldespato , jun	to con líticos volcáni	cos e intrusivos embel	bidos en				
	Composición (%Vol.)											
	Cristale	s y fragmentos cr	istalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %					
		Plagioclasa		0	28	15	43					
	F	cuarzo eldespato potásio	0	0	3	6	/ 9					
		Epidota		0	0	1	1					
			Total cristales y	fragmentos cristalir	nos		59					
		Fragmentos Lítico	S									
		Volcánico		6	2	0	8					
		Intrusivo		8	3	0	11					
			Total frag	gmentos líticos			19					
	Μ	linerales accesori	os									
		Apatito		0	0	1	1					
	Mir	nerales de altera	ción									
		caolinita		0	0	<1	0					
		Cuarzo secundari	0	0	0	1	1					
		Opacos		0	0	7	7					
		arales de introd.	cción	0								
		eraies de introdu		<u> </u>	0	0	0					
			ا به اما		0	U	12					
			viario			Total	100					
							100					
			Composi	ción mineral norm	alizada							
Compon	ientes	Porcentaje (%)										
Cristales y fragme	entos cristalinos	66		Clasifica	ción modal	Toba cris	talo lítica					
Fragmento	os Líticos	21										
Vidrio vo	lcánico	13		S	egún	Adaptado de	e Cook, 1965					
Tota	al	100				<u> </u>						

Cristales

Plagioclasa An 13 (PI): Microfenocristales subhedrales a anhedrales. Presenta bordes redondeados, tienen macla polisintética. Cristales rotos y fracturados, con rellenos de minerales opacos. Presentan texturas glomeroporfirítica de plagioclasas únicamente, y plagioclasas con feldespato. Cristales con ligera alteración caolinita. Feldespato (Fsp): Cristales subhedrales a anhedrales, con macla de microclina. Algunos cristales con ligera alteración caolinita.

Cuarzo (Qz): Fenocristales anhedrales, subredondeados a suban gulosos. Cristales rotos, algunos con bahías y bordes de disolución.

Apatito (Ap): Cristales subhedrales a euhedrales, como inclusiones en feldespatos y distribuidos en la matriz.

Opacos: Cristales subhedrales a euhedrales tabulares a romboédricos, rotos. Alrededor de líticos y agregados en la matriz. Algunos presentan textura de flujo acompañados con epidota.

Líticos

Intrusivos (LitI): Líticos de textura fanerítica, inequigranular, compuestos por microcristales euhedrales de feldespato y cuarzo. Líticos redondeados. Volcánicos (LitV): Líticos de textura porfirítica, microcristales de plagioclasa en vidrio volcánico. La matriz tiene silicificación parcial (textura plumosa de cuarzo secundario) y alterada a clorita. Algunos líticos presentan matriz devitrificada y alterada a minerales opacos, conservan textura de flujo.

Descripción de minerales de alteración o secundarios

Caolinita: alterando plagioclasas y feldespatos.

Epidota (Ep): Cristales anhedrales, presente como inclusiones de plagioclasa en fragmentos líticos y en parches en la matriz de la roca.

Observaciones

Agregados en la matriz de epidota, bandeada con opacos y calcita.

Registro fotográfico

Microfotografía de la textura general de la roca. Líticos volcánicos con textura porfirítica y fragmentos de cristales de plagioclasa (PI), feldespato (Fsp) y cuarzo (Qz) diseminados dentro de la matriz y de líticos volcánicos con cristales de epidota (Ep) y ligera alteración a clorita. 2X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada										
				Localización						
Código M	uestra:	18-HF-06A	Uni	dad:	Jncp	Localidad:	Vía Aguachica-Marinilla-El			
Coordenadas E	Este (MAGNA) 1.057.766 Coordenadas N		lorte (MAGNA):	1.425.860	Departamento:	Cesar				
			Desc	ripción Macroscópi	ica					
Tipo de roca: Piroclá Descripción: Roca co volcánicos y vidrio v Color: Gris rojizo Tamaño relativo de l	stica n fragmentos de c olcánico, matriz sc os cristales: Inequi	cristales angulosc oportada igranular.	os, líticos							
			Desc	cripción Microscópi	са					
Textura:	Porfirítica									
Otras texturas:	Poiquilítica: Inclus Coronas de opaco	siones de ilita y e os alrededor de p	pidota en plagiocla: seudomorfos.	sas.						
Descripción general de la roca	ipción general Roca volcánica con textura porfirítica contiene cristales de plagioclasa, cuarzo y pseudomorfos de piroxeno, y líticos volcánicos embebidos en de la roca matriz vítrea devitrificada y alterada a clorita. Presenta vetilleo de calcita y ilita.									
			Cc	omposición (%Vol.)		1. 11 - 1 + 12 - 2				
	Cristales	s y fragmentos ci	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %			
	Plagioclasa				15	11	26			
	Deer	Cuarzo		0	0	4	4			
		adomorio de piro	Total cristales v	U fragmentos cristalir		1	31			
	F	- Fragmentos Lítico	os							
		Volcánico		3	2	0	5			
		Volcanico	Total frag	gmentos líticos	2	0	5			
	M	linerales accesor	ios							
				0	0	0	0			
	Mir	nerales de altera	ción							
		ilita		0	0	1	1			
	(Cuarzo secundari	0	0	0	6	6			
		Opacos		0	0	1				
		Calcita		0	0	3	3			
	Mine	erales de introdu	cción	-		-				
				0	0	0	0			
			Vidrie	o volcánico	Ĩ	<u> </u>	53			
						Total	100			
			Composi	ción mineral norma	alizada					
Compon	entes	Porcentaje (%)								
Cristales y fragme	ntos cristalinos	35	,	Clasificad	ción modal	Toba cristalo vítrea				
Fragmento	os Líticos	6	,							
Vidrio vo	lcánico	60		Se	egún	Adaptado c	le Cook, 1965			
Total 100										

Cristales

Plagioclasa (PI): Microcristales subhedrales con macla polisintética. Presenta bordes redondeados, con coronas y bahías de reacción. Los cristales se encuentran rotos, con fracturas rellenas de ilita. Algunos cristales están fuertemente reemplazados por sílice y cuarzo, otros contienen inclusiones de ilita y epidota. Cuarzo (Qz): Diminutos cristales anhedrales, rotos y con sobrecrecimiento de cuarzo secundario.

Pseudomorfos de piroxeno (Pse): Cristales anhedrales, subredondeados, reemplazados por ilita y clorita y algunos con epidota, Presentan coronas de opacos. Opacos (Opq): Cristales anhedrales, masivos y en parches alrededor de líticos y diseminados en la matriz.

Líticos

Volcánicos (LitV): Un tipo de líticos de textura porfirítica, con microfenocristales de plagioclasa, feldespatos y cuarzo, en la matriz plagioclasa y cuarzo, con matriz parcialmente silicificada y parches de clorita, calcita y epidota. Otros líticos totalmente desvitrificados con diminutos cristales de cuarzo y parches de calcita.

Descripción de minerales de alteración o secundarios

ilita: Cristales anhedrales a subhedrales tabulares fibrosos, junto con epidota reemplazando piroxenos y dentro de cristales de plagioclasa Epidota (Ep): Cristales anhedrales, presente como inclusiones de plagioclasa y reemplazando piroxenos.

Observaciones

Vetilleo de calcita y cuarzo secundario con ilita. La matriz presenta parches de calcita anhedral.

Registro fotográfico

Microfotografía de la textura general de la roca. Líticos volcánicos y fragmentos de cristales de plagioclasa (PI) y cuarzo (Qz) como parte de la matriz. 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muesti	as en Seco	ción Delg	ada			
				Localización						
Código M	uestra:	18-HF-09	Unio	dad:	Jnha	Localidad:	Vía Aguachica-N	/larinilla		
Coordenadas Es	Coordenadas Este (MAGNA) 1.055.645 Coordenadas N			lorte (MAGNA):	1.421.624	Departamento:	Cesar			
			Desc	ripción Macroscóp	ica					
Tipo de roca: Piroclás Descripción: Roca po con fenocristales de Color: Gris verdosa Tamaño relativo de lo	stica rfirítica, matriz sop plagioclasa. os cristales: Inequiį	portada, matriz de granular.	e grano muy fino							
				• • • • • • • • • • • • • • • • • • • •				•		
_			Desc							
Textura:	Portiritica									
Otras texturas:	Glomeroporfirítica: Agregados de plagioclasa y pseudomorfos de anfíbol. Otros agregados de calcita con minerales opacos y clorita Bahías de corrosión: En cristales de plagioclasas. Coronas: Minerales opacos como coronas alrededor de pseudomorfos de anfíbol y alrededor de algunos cristales de plagioclasa.									
Descripción general de la roca	Roca volcánica con textura porfirítica, hipohialina por recristalización de la matriz. Compuesta por fenocristales de plagioclasa y microcristales de pseudomorfos de anfíbol completamente reemplazados por clorita, calcita y minerales opacos, y líticos volcánicos. Matriz intensamente silicificada y alterada a clorita-vermiculita. Roca con alteración de minerales a clorita, cuarzo secundario y calcita. Vetilleo de calcita y cuarzo secundario.									
			Co	mposición (%Vol.						
	Cristales	s y fragmentos cr	istalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %			
		Plagioclasa		7	10	6	23			
		Cuarzo		0	0	5	5			
		Feldespato		0	0	0	0			
	Pse	udomorfo de anf	íbol	0	1	3	4			
			Total cristales y f	fragmentos cristalir	nos		32			
	F	ragmentos Lítico	os							
		Volcánico		0	1	0	1			
			Total frag	gmentos líticos		-	1			
	м	inerales accesor	ios							
				0	0	0	0			
	Mir	nerales de altera	ción							
		Fnidota		0	0	1	1			
	· · · · · · · · · · · · · · · · · · ·	Cuarzo secundari	0	0	0	12	12			
		Onaros	-	0	0	3	3			
		Calcita		0	0	4	4			
	(Clorita-Vermiculit	a	0	0	15	15			
		Clorita	-	0	0	1	1			
	Mine	erales de introdu	cción	-	1					
	(Cuarzo secundari	0	0	0	2	2			
		Calcita		0	0	4	4			
		Clorita		0	0	1	1			
			Vidric	o volcánico			24			
			514110			Tatal	100			
						IUIdI	100			

Г

Composición mineral normalizada								
Componentes	Porcentaje (%)							
Cristales y fragmentos cristalinos	56		Clasificación modal	Toba cristalina				
Fragmentos Líticos	2							
Vidrio volcánico	42		Según	Adaptado de Cook 1965				
Total	100		Segun					

Cristales

Plagioclasa (PI): Cristales subhedrales, con bordes subredondeados, textura sieve, con inclusiones de clorita, calcita y sericita. Presentan macla de Carlsbad y polisintética. Algunos cristales rotos y con bahías de corrosión. Presentan textura glomeroporfirítica de fenocristales de plagioclasa y pseudomorfos de anfíbol, intensamente alterados a calcita oxidada y clorita microcristalina. Cristales con coronas de minerales opacos. Algunos cristales reemplazados parcialmente por clorita y epidota.

Cuarzo (Qz): Cristales anhedrales, rotos, como parte de la matriz.

Pseudomorfos de anfíbol (Pse): Cristales subhedrales, conservan hábito. Reemplazados por calcita predominantemente, epidota y minerales opacos. El algunos se preserva tonos de segundo orden.

Opacos (Opq): Cristales anhedrales, en coronas alrededor de pseudomorfos de anfíboles y diseminados en la roca. Algunos parcialmente traslúcidos de color rojo intenso.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica, parcialmente reemplazados por minerales opacos y alterados a clorita-vermiculita.

Descripción de minerales de alteración o secundarios

Roca con parches rojos por oxidación, intensamente alterada a clorita-vermiculita (Chl-Vrm) y silicificada.

Calcita (Ca): Microcristales anhedrales a subhedrales en la matriz, rellenando vetillas y en texturas glomeroporfirítica con minerales opacos y clorita. Muchos cristales con excelente exfoliación.

Epidota (Ep): Cristales diminutos, anhedrales, reemplazando anfíboles junto con calcita y en parches aleatoriamente en la matriz.

Observaciones

Roca con intensa alteración hidrotermal. Intenso vetilleo de calcita euhedrales y cuarzo secundario.

Microfotografía de la textura general de la roca. Fragmentos de cristales de plagioclasa (PI), y calcita (Ca) y clorita-vermiculita (Chl-Vrm) como alteración de la roca. 2X, PPL y XPL.

Microfotografía de la textura general de la roca. Fragmentos de cristales de plagioclasa (PI) y líticos volcánicos (LitV), pseudomorfo de anfíbol completamente reemplazado por calcita. Arriba se conserva un cristal de anfíbol (Amp). Matriz con alteración a clorita-vermiculita (ChI-Vrm). 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ión Delga	da			
Localización										
Código M	luestra:	18-HF-15	Uni	dad:	Jncp	Localidad:	Vía Aguachica-Bo	mbeadero		
Coordenadas E	ste (MAGNA)	1.056.535	Coordenadas N	lorte (MAGNA):	1.420.523	Departamento:	Cesar			
			Desc	ripción Macroscópi	са					
Tipo de roca: Piroclás Descripción: Roca de plagioclasa. Color: Gris Tamaño relativo de lo	stica grano fino, matriz os cristales: Inequig	soportada, con m granular.	icrocristales de							
			Desc	rinción Microscóni	ra					
Textura	Porfirítica		200							
Otras texturas: Descripción general de la roca	Glomeroporfirítica: Agregados de plagioclasa, opacos, calcita, cuarzo secundario y clorita. Sieve en plagioclasas Poiquilítica: Inclusiones de sericita en feldespatos y plagioclasas Coronas: Minerales opacos como coronas alrededor de calcita.									
			Co	mnosición (%Vol.)						
	Cristales	s y fragmentos cr	istalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %			
		Plagioclasa		10	15	3	28			
		Cuarzo		0	1	3	4			
	Psei	eldespato potasio	xeno	0	3	0	3			
			Total cristales y	fragmentos cristalin	 OS		36			
	F	ragmentos Lítico	DS							
		Volcánicos		4	2	0	6			
			Total frag	gmentos líticos			6			
	М	linerales accesori	ios							
				0	0	0	0			
	Mir	nerales de altera	ción							
		Epidota		0	0	<1	0			
		Opacos		0	0	5	5			
		Calcita		0	0	9 11	9 11			
	Mine	erales de introdu	cción	-						
		Calcita		0	0	5	5			
	Vidric		o volcánico		<u> </u>	28				
						Total	100			
Composi	antes	Porcentaia (9/)	Composi	cion mineral norma	iiizada					
Componentes Cristales y fragmentos cristalinos		51				T = L = C = - D				
Fragmento	os Líticos	9		Clasified			u			
Vidrio vo	lcánico	40		<u>د</u> م	gún	Adantado de	2 Cook 1965			
Tot	al	100		36			2 COOK, 1903			

Cristales

Plagioclasa An20 (Pl): Cristales subhedrales tabulares, rotos, con bordes redondeados. Presentan macla de Carlsbad y polisintética. Los cristales contienen alteración a sericita y carbonato. Presentan texturas glomeroporfirítica de plagioclasa, opacos, calcita, cuarzo secundario y clorita.

Feldespato (Fsp): Cristales anhedrales con inclusiones de sericita.

Cuarzo (Qz): Escasos microfenocristales anhedrales y rotos como parte de la matriz.

Pseudomorfos de piroxeno (Pse): La mayoría de cristales anhedrales y solo algunos subhedrales con hábitos prismáticos, completamente reemplazados a calcita, clorita y minerales opacos.

Opacos (Opq): Cristales anhedrales, en la matriz y alrededor de calcita.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica, microcristales de plagioclasa y abundantes minerales opacos anhedrales embebidos en vidrio volcánico alterado a clorita.

Descripción de minerales de alteración o secundarios

Calcita (Ca): Microcristales diseminados en la matriz, subhedrales.

Epidota (Ep): Diminutos cristales anhedrales, parcialmente oxidados, distribuidos en la matriz.

Clorita (Chl): Abundantes en la matriz, dentro de plagioclasas y junto con cristales de calcita.

Observaciones

Matriz intensamente alterada a clorita de grano muy fino.

Registro fotográfico

Microfotografía de la textura general de la roca. Fragmentos de cristales de plagioclasa (PI), feldespato (Fsp) y lítico volcánico. 4X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada		
				Localización					
Código M	uestra:	18-HF-17	Unio	dad:	Jnpe	Localidad:	Vía Aguach	ica-	
Coordenadas E	ste (MAGNA)	1.055.590	Coordenadas N	Norte (MAGNA): 1 418 789		Departamento:	Cesar	1df If 1111d	
			Desci	rinción Macroscón	ica				
			Desc						
Tipo de roca: Piroclás Descripción: Toba co plagioclasa, piroxenc Color: Gris violeta Tamaño relativo de l	stica n la matriz de color o y epidota en matr os cristales: Inequi	r violeta con mici riz vítrea. Roca m granular.	rofenocristales de atriz soportada.						
			Desc	ripción Microscópi	ca				
Textura:	Porfirítica								
Otras texturas:	Sieve intensa en plagioclasa. Poiquilítica: Cuarzos con inclusiones de piroxenos y plagioclasas. Glomeroporfirítica: Agregados de plagioclasas con pseudomorfos clorítizado y rodeados con minerales opacos. Otros de agregados de pseudomorfos de piroxenos. Pseudomorfos de piroxenos y piroxenos alterados a minerales clorita y calcita o minerales opacos. Coronas: Minerales opacos como coronas alrededor de pseudomorfos, plagioclasas y piroxenos.								
Descripción general de la roca	Roca volcánica cor líticos volcánicos e calcita y clorita. Ro	n textura porfiríti embebidos en ma oca con fuerte al	ica contiene cristale atriz vítrea intensam teración hidroterma	s de plagioclasa, cu nente alterada a clo nl.	arzo, piroxenos y psu rita. Roca con vesícul	domorfos de piroxo as rellenas de clori	enos y piroxenos, junt ta, calcita y opacos. V	to con etilleo de	
			Co	mposición (%Vol.)			T T		
	Cristales	s y fragmentos c	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %		
		Plagioclasa		13	8	5	26		
		Cuarzo		0	7	0	7		
		piroxeno		0	4	1	5		
			Total cristales y f	fragmentos cristalir	105		38		
	F	Fragmentos Lítico	DS						
		Volcánico		0	1	0	1		
			Total frag	gmentos líticos			1		
	м	linerales accesor	ios						
				0	0	0	0		
	Mir	nerales de altera	ción		1	I			
		ilita		0	0	1	1		
		Calcita		0	0	7	7		
		Opacos		0	0	4	4		
		Clorita		0	0	8	8		
		Oxidos de hierro)	0	0	1	1		
		Epidota		0	0	<1	0		
	Mine	erales de introdu	icción						
		Calcita		0	0	2	2		
		Clorita		0	0	2	2		
	(Cuarzo secundari	o	0	0	1	1		
			Vidric	o volcánico			36		
						Total	100		

Composición mineral normalizada								
Componentes	Porcentaje (%)							
Cristales y fragmentos cristalinos	51		Clasificación modal	Toba cristalo vítrea				
Fragmentos Líticos	1							
Vidrio volcánico	48		Según	Adaptado de Cook, 1965				
Total	100		Jegun					
Descrinción de cristales y líticos								

Cristales

Plagioclasa (PI): Cristales subhedrales, tabulares, con bordes redondeados, tienen macla polisintética. Presentan intensa textura sieve con fuerte alteración a ilita y cristales anhedrales de clorita. Algunos cristales completamente reemplazados por clorita y calcita, con parches de epidota diminuta. Algunos fenocristales rotos con rellenas de óxidos de hierro rojo traslúcido. Presentan texturas glomeroporfirítica de plagioclasas con pseudomorfos clorítizado y rodeados con minerales opacos. Piroxeno (Px): Cristales subhedrales prismáticos cortos y reemplazados parcial o totalmente por clorita. Presentan coronas de minerales opacos y rellenos en las fracturas.

Cuarzo (Qz): Fenocristales anhedrales, rotos, algunos con inclusiones de piroxenos y plagioclasas.

Opacos: Cristales anhedrales. Presente en la roca como coronas alrededor de piroxenos, plagioclasas y pseudomorfos, rellenando espacios entre los cristales de texturas glomeroporfirítica y dentro de fracturas de piroxenos y plagioclasas.

Pseudomorfo de piroxeno (Pse): Cristales euhedrales prismáticos alargados, reemplazados por completo por clorita. Presentan coronas de minerales opacos. Pseudomorfos de piroxeno (Pse): Cristales subhedrales a anhedrales, prismáticos cortos a redondeados, alterados a clorita. Presentan coronas de minerales opacos.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica, microcristales de plagioclasa y piroxeno en vidrio volcánico. Líticos muy alterados a ilita.

Descripción de minerales de alteración o secundarios

ilita: Cristales anhedrales fibrosos dentro de plagioclasas.

Epidota (Ep): Cristales anhedrales diminutos en algunos cristales de plagioclasa.

Clorita (Chl): Cristales fibrosos color verde muy pleocroicos y tonos anómalos de birrefringencia, alterando piroxenos, anfíboles, parcialmente plagioclasas y

rellenando vesículas.

Calcita (Ca): Cristales anhedrales, relieve alto, alterando plagioclasas y rellenando vesículas.

Observaciones

Vesículas rellenas de cuarzo secundario con textura plumosa y calcita, o solo con clorita, y minerales opacos.

Vetilleo de calcita, con clorita y epidota diminuta.

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI), pseudomorfo de piroxeno (Pse) y vesícula rellena de calcita (Ca) y clorita (ChI). 2X, PPL y XPL.

Detalle de plagioclasas (PI) rotas, con fracturas rellenas de óxidos de hierro rojos, piroxenos rotos y pseudomorfos (Pse) alterados a clorita (ChI). 4X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada										
Localización										
Código M	uestra:	18-HF-18	Uni	dad:	Jnpe	Localidad:	Vía Aguachi Bombeadero/N	ica- 1arinilla		
Coordenadas E	ste (MAGNA)	1.055.591	Coordenadas N	lorte (MAGNA):	1.416.788	Departamento:	Cesar			
			Desc	ripción Macroscópi	са					
Tipo de roca: Piroclás Descripción: Toba co anfíboles, feldespato Color: Gris violeta Tamaño relativo de lo	stica n cristales de granc y clorita. os cristales: Inequig	medio a grueso, granular.	de plagioclasas,							
			Desc	cripción Microscópio	са					
Textura:	Porfirítica									
Otras texturas: Descripción general de la roca	Bahías de disolución de plagioclasas. Poiquilítica: Inclusiones de muscovita en plagioclasas. Inclusiones de piroxenos en anfíboles. Glomeroporfirítica: Agregados de plagioclasas únicamente, otros agregados de piroxenos con anfíbol y minerales opacos. Pseudomorfos clorítizado y rodeados con minerales opacos. Otros de agregados de psudomorfos de anfíboles y piroxenos alterados a minerales clorita y calcita o minerales opacos. Coronas: Minerales opacos alrededor de anfíboles y piroxenos. Piroxenos con coronas de anfíboles. Al Roca volcánica con textura porfirítica, matriz soportada. Contiene cristales de plagioclasa, cuarzo, piroxenos y psudomorfos de piroxenos y anfíboles									
			Contraction Contraction	magición (9/)/ol)						
					Minuchana anistal					
	Cristales	s y fragmentos cr	istalinos	Fenocristai (≥ 2mm) %	(2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %			
		Plagioclasa		14	10	4	28			
		Cuarzo		0	2	0	2			
		Antibol		0	9	4	13			
		PILOXEIIO	Total cristales v	U fragmentos cristalin	<u></u>	4	43			
	F	ragmentos Lítico	os							
				0	0	0	0			
	<u> </u>		Total frag	gmentos líticos	-	I	0			
	M	inerales accesori	ios							
		Circón		0	0	-1	0			
				0	0	<1	0			
		ierales de altera	cion							
		Opacos		0	0	4	4			
	Mine	erales de introdu	cción							
		Calcita		0	0	3	3			
	(Cuarzo secundari	0	0	0	5	5			
Vidrio			o volcánico			33				
						Total	100			
			Composi	ción mineral norma	lizada					
Compon	ientes	Porcentaje (%)								
Cristales y fragme	entos cristalinos	57		Clasificar	ión modal	Toba grietalina				
Fragmento	os Líticos	0		Clasmode						
Vidrio vo	lcánico	43		ç.,	gún	Adantado de	Cook 1965			
Total 100										

Cristales

Plagioclasa (PI): Cristales subhedrales, parcialmente rotos, con bordes redondeados, tienen macla de periclina y polisintética. Presentan bahías de disolución. Cristales con inclusiones de muscovita.

Ortoanfíboles (Amp): Cristales euhedrales a subhedrales, verdes muy pleocroicos, con finas coronas de minerales opacos. Algunos presentan inclusiones de piroxenos. Presentan coronas de minerales opacos.

Clinopiroxeno (Px): Microcristales anhedrales y rotos con coronas o rellenos de minerales opacos. Fenocristales presentan macla de augita, perfecta exfoliación a 90°. Algunos cristales reemplazados parcialmente por cuarzo secundario.

Cuarzo (Qz): Microcristales anhedrales, subredondeados y algunos rotos

Opacos: Cristales anhedrales. Diseminados en la matriz, en parches y otros como coronas de anfíboles. Presentes en texturas glomeroporfirítica de piroxeno y anfíboles. Circón (Zr): Cristal subhedral, en la matriz de la roca.

Descripción de minerales de alteración o secundarios

Observaciones

Matriz parcialmente silicificada en parches.

Vetillas de calcita y cuarzo secundario.

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI) con bordes redondeados, anfíbol (Amp) con inclusiones de piroxeno (Px). Anfíboles y piroxenos con coronas de minerales opacos. 4X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada								
				Localización				
Código M	uestra:	18-HF-20	Uni	dad:	Jnpe	Localidad:	Quebrada No	oreán
Coordenadas E	ste (MAGNA)	1.051.999	Coordenadas N	lorte (MAGNA):	1.418.949	Departamento:	Cesar	
			Desc	ripción Macroscópi	са			
Tipo de roca: Piroclástica Descripción: Roca porfirítica con fenocristales de plagioclasa, feldespato, anfíboles y piroxeno, con líticos porfiríticos de grano muy fino embebidos en matriz afanítica rosada. Color: Gris rosada Tamaño relativo de los cristales: Inequigranular.					10 20 1000 METRIC			
			Desc	rinción Microscónio	ra			
Textura:	Porfirítica		Dest					
Otras texturas: Bahías de disolución de plagioclasas. Poiquilítica: Inclusiones de minerales opacos en biotitas. Glomeroporfirítica: Agregados de plagioclasas.								
Descripción general Roca volcánica con textura porfirítica, matriz soportada. Contiene cristales de plagioclasa, cuarzo, piroxenos y psudomorfos de piroxenos y de la roca anfíboles embebidos en matriz vítrea parcialmente silicificada.								
			Co	mposición (%Vol.)		Matriz		
	Cristales	s y fragmentos ci	istalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %	
	Plagioclasa			7	24	5	36	
	Cuarzo			0	1	0	1	
		Opacos	Total aviatales of	0	0	3	3	
	F	ragmentos Lítico	os	fragmentos cristalin	05		40	
		Volcánico		0	8	0	8	
			Total frag	gmentos líticos			8	
	м	inerales accesor	ios					
		Circón		0	0	2	2	
	Mir	nerales de altera	ción					
	C	Clorita-Vermiculit	a	0	0	10	10	
	(Cuarzo secundari	0	0	0	7	7	
		Ilita		0	0	1	1	
	Mine	erales de introdu	cción					
				0	0	0	0	
			Vidric	o volcánico			32	
						Total	100	
			•	-: 4	1			
Compon	entes	Porcentaje (%)	Composi	cion mineral norma	iiizada			
Cristales y fragme	ntos cristalinos	50			ián madal	T-Louis	talo vítra-	
Fragmento	os Líticos	10		Clasificac	ion modal	i oba cris	נמוט עוניפס	
Vidrio vo	lcánico	40						
Tota	al	100		Se	gún	Adaptado d	e Cook, 1965	

Cristales

Plagioclasa (PI): Cristales euhedrales a subhedrales, tabulares, con bordes redondeados y algunos rotos. Tienen macla polisintética, algunos cristales combinada con macla de Carlsbad. Presentan textura moteada por alteración a ilita. Algunos microcristales en agregados.

Cuarzo (Qz): Microcristales anhedrales, escasos, subredondeados.

Opacos: Cristales anhedrales. Diseminados en la matriz, en parches y otros como coronas de anfíboles. Presentes en texturas glomeroporfirítica de piroxeno y anfíboles.

Circón (Zr): Cristal subhedral, en la matriz de la roca.

Líticos

Volcánicos (LitV): Líticos de textura afanítica y otros de textura porfirítica con microcristales de plagioclasa y matriz vítrea devitrificada. Algunos líticos silicificados.

Descripción de minerales de alteración o secundarios

Matriz alterada a Clorita-vermiculita (Cl) parcialmente silicificada.

Clorita-Vermiculita (Chl-Vrm): De grano muy fino, como alteración de la matriz vítrea.

llita: Cristales diminutos, como alteración de plagioclasas.

Observaciones

Vetillas rellenas de minerales opacos.

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI) y líticos volcánicos (LitV) en matriz vítrea parcialmente alterada a Clorita-vermiculita (CI). 2X, PPL y XPL.

	Desci	ripción Pet	rográfica	Muestra	s en Secci	ón Delga	da	
				Localización				
Código N	luestra:	18-HF-21	Uni	dad:	Jnpe	Localidad:	Vereda El Tope,	Finca La
Coordenadas E	ste (MAGNA)	1.052.786	Coordenadas N	lorte (MAGNA):	1.421.581	Departamento:	Cesar	La Failla
			Descrip	oción Macroscópica				
Tipo de roca: Piroclástica Descripción: Roca porfirítica de grano grueso, con cristales de plagioclasa y líticos en matriz vítrea de grano fino. En la roca se encuentra vetilleo de cuarzo, calcita y mineralización de cobre. Color: Gris verde. Tamaño relativo de los cristales: Inequigranular.								
			Descrip	oción Microscópica				
Textura:	Porfirítica							
Otras texturas: Descripción general de la roca	tras texturas: Sieve en plagioclasas. Coronas y bahías de alteración a ilita y minerales arcillosos en plagioclasas. Glomeroporfirítica: Agregados de plagioclasas. cripción general de la roca Roca volcánica con textura porfirítica, matriz soportada. Contiene cristales de plagioclasa en matriz con microlitos de plagioclasa y vidrio devitrificado. Presenta abundancia de vesículas rellenas de minerales arcillosos verde, clorita y hematite. Roca con intenso vetilleo y muy alterada. Vetillas rellenas de clorita.							
			Com	posición (%Vol.)				
	Crista	lles y fragmentos cris	talinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
Plagioclasa				20	10	8	38	
Total cristales y fra				gmentos cristalinos	5		38	
		Fragmentos Líticos						
			Total fragm	entos líticos			0	
		Minerales accesorios	5					
				0	0	0	0	
	ז	Minerales de alteració	ón					
		Clorita-Vermiculita		0	0	10	10	
		Clorita		0	0	9	9	
		llita Opacos		0	0	1	1	
	M	inerales de introduce	ión	Ū	0	5	5	
		merales de introduce		0	0	0	0	
			Vidrio v	olcánico	0	0	39	
						Total	100	
			Composició	on mineral normali	zada			
Compor	nentes	Porcentaje (%)						
Cristales y fragme	entos cristalinos	49		Clasifica	ción modal	Toba cris	stalo vítrea	
Fragmento	os Líticos	0						
Vidrio vo	lcánico	51		Se	egún	Adaptado c	le Cook, 1965	
Tot	Total 100 Adaptado de Cook, 1965							

Cristales

Plagioclasa (PI): Cristales subhedrales, algunos rotos. Presentan textura sieve, coronas y bahías de alteración a ilita y clorita. Presentan macla polisintética, algunos cristales de periclina. Algunos agregados de microcristales rodeados por minerales opacos.

Opacos: Abundantes cristales anhedrales, diseminados en la matriz, rellenando vetillas y otros como coronas de agregados de plagioclasas.

Descripción de minerales de alteración o secundarios

Clorita-Vermiculita (Chl-Vrm): Como alteración de la matriz vítrea. Clorita (Chl): Acompañando clorita-vermiculita, como alteración de la matriz vítrea.

Observaciones

Vetillas rellenas de minerales opacos.

Vesículas rellenas de clorita-vermiculita (Chl-Vrm) y clorita (Chl).

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI) en matriz vítrea alterada a clorita-vermiculita (ChI-Vrm) y clorita (ChI). 2X, PPL y XPL.

Microfotografía de la textura general de la roca. Intenso microfracturamiento y vetilleo en la roca junto con vesículas rellenas de clorita-vermiculita (Chl-Vrm) y clorita

(Chl). 4X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada								
				Localización				
Código M	luestra:	18-HF-22	Uni	dad:	Jnpe	Localidad:	Vereda El Tope, Esperanz	Finca La za
Coordenadas E	ste (MAGNA)	1.052.415	Coordenadas N	lorte (MAGNA):	1.421.717	Departamento:	Cesar	
			Descrip	ción Macroscópica				
Tipo de roca: Piroclástica Descripción: Roca porfirítica de grano grueso con vetilleo de calcita. Color: Gris verde. Tamaño relativo de los cristales: Inequigranular.								
			Descrip	ción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Sieve en plagioclasas. ras: Coronas y bahías de alteración a sericita y minerales arcillosos en plagioclasas. Glomeroporfirítica: Agregados de cristales de plagioclasa y calcita oxidada, otros agregados de pseudomorfos de anfíboles con minerales opacos.							
Descripción general Roca volcánica con textura porfirítica, contiene feno y microfenocristales de plagioclasa y líticos volcánicos en vítrea criptocristalina muy alterada a de la roca caolín, con vesículas rellenas de clorita. Roca con intenso vetilleo y muy alterada. Vetillas rellenas de calcita.								
	1		Comj	posición (%Vol.)				
	Cristales y fragmentos cristalinosFenocristal (≥ 2mm) %Microfenocristal Microcri (<1 mm) %Matri Microcri (<1 mm)					Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		5	13	4	22	
	P	seudomorfos de anfíbo	ol Fatal ariatala a sufra	0	4	6	10	
		Fragmentos Líticos	lotal cristales y frag				32	
		Volcánicos		0	4	0	4	
			Total fragm	entos líticos			4	
		Minerales accesorios						
				0	0	0	0	
	1	Vinerales de alteració	n					
		Clorita		0	0	6	6	
		Opacos		0	0	11	11	
		Calcita		0	0	6	6	
	M	inerales de introducci	ón					
		Calcita		0	0	4	4	
		Clorita		0	0	2	2	
			Vidrio v	olcánico			35	
						Total	100	
			Composició	n mineral normaliz	ada			
Compor	nentes	Porcentaje (%)						
Cristales y fragme	entos cristalinos	45						
Fragmento	os Líticos	6		Clasificad	ción modal	Toba cris	talo vítrea	
Vidrio vo	lcánico	49						
Tota	al	100		Se	egún	Adaptado d	e Cook, 1965	

Cristales

Plagioclasa (PI): Cristales subhedrales, algunos rotos. Presentan textura sieve, con abundantes bahías de corrosión. Presentan macla de Carlsbad y polisintética. Presentan abundante crecimiento de sericita y alteración a minerales arcillosos.

Pseudomorfos de anfíbol (Pse): Cristales subhedrales prismáticos alargados y tabulares, reemplazados por completo por clorita y parcialmente por calcita. Presentan coronas de minerales opacos.

Opacos: Abundantes cristales anhedrales, diseminados en la matriz y como coronas de pseudomorfos de anfíboles.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica con microfenocristales de plagioclasa con bordes muy corroídos y textura sieve gruesa embebidos en matriz vítrea fuertemente oxidada. Otros líticos porfiríticos con matriz devitrificada.

Descripción de minerales de alteración o secundarios

Clorita (Chl): Como alteración en pseudomorfos de anfíboles.

Calcita (Ca): Cristales anhedrales reemplazando pseudomorfos de anfíboles, alterando en parches la matriz y rellenando microvetillas.

Observaciones

Intenso vetilleo fino de calcita anhedral, parcialmente oxidada. Matriz parcialmente reemplazada a calcita anhedral. Bandeamiento local de minerales opacos anhedrales.

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI) y microcristales de pseudomorfos de anfíbol (Pse) reemplazados a clorita (ChI) y calcita (Ca) en matriz vítrea con vesículas rellenas de clorita (ChI). 2X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada								
				Localización				
Código M	luestra:	18-HF-25	Uni	dad:	r	Localidad:	Vía El Playón-Vered	a Matecaña
Coordenadas E	ste (MAGNA)	1.083.534	Coordenadas N	lorte (MAGNA):	1.326.895	Departamento:	Norte de Sant	tander
			Desc	ripción Macroscópi	ica			
Tipo de roca: Piroclá Descripción muestra feldespatos alterado Color: Gris a blanco Tamaño relativo de l	stica :: Roca porfirítica co os a caolín. Parcialn los cristales: Inequi	on microcristales nente silicificada. igranular	s de cuarzo y Intenso vetilleo.				C C C C C C C C C C C C C C C C C C C	A PESOS
			Desc	cripción Microscópi	са			
Textura:	Porfirítica							
Otras texturas:	Microfallamiento. Bandas de cuarzo plegados Pseudomorfos: Posibles anfíboles reemplazados por opacos.							
Descripción general Roca volcánica con textura porfirítica, contiene fenocristales de plagioclasa, cuarzo y feldespatos alragados y deformados en matriz vítrea y de la roca silicificada, por sectores con alteración a caolín. Roca con intensa alteración y deformación.								
			Co	mposición (%Vol.)		Matriz	I	
	Cristales	s y fragmentos ci	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		0	3	5	8	
		Cuarzo		0	8	5	13	
	F	eldespato potasi	20 	0	0	12	12	
			Total cristales v	fragmentos cristalir		5	36	
							30	
		-ragmentos Litico	DS					
		/		0	0	0	0	
			Total frag	gmentos líticos			0	
	М	linerales accesor	ios					
		Epidota		0	0	<1	0	
		Circón		0	0	<1	0	
	Mir	nerales de altera	ción					
	(Cuarzo secundari	0	0	0	15	15	
		Caolinita		0	0	9	9	
	Mine	erales de introdu	cción				,	
		Hematite		0	0	E	5	
		nematite	Videi		0	J	ی ۲۵	
			viuri			Tatal		
						TOTAL	100	
			Composi	ción mineral norma	alizada			
Compor	nentes	Porcentaje (%)						
Cristalos y fragma	ntos cristalines	E1						
		51	,	Clasificad	ción modal	Toba c	ristalina	
Fragmento	os Líticos	0						
Vidrio vo	lcánico	49	,	Se	egún	Adaptado d	e Cook, 1965	
Total 100								

Cristales

Cuarzo (Qz): Microcristales subhedrales, alargados, rotos, algunos como cristales aislados, otros en agregados. Hacia un sector de la placa, los cristales se encuentran en agregados y bandas, totalmente tectonizados, orientados junto con la matriz. Presentan patinas de oxidación de la roca.

Plagioclasas (PI): Escasos cristales, euhedrales, con macla de periclina. Hacia el sector teconizado de la lámina no se distinguen PI por reemplazamiento de sílice. Estan alteradas a caolinita.

Feldespato (Fsp): Microcristales anhedrales, alterados a caolinita y deformados.

Peudomorfos (Pse): Minerales subhedrales prismáticos largos, totalmente reemplazados por opacos y óxidos naranjas, probablemente se trató de anfíboles.

Descripción de minerales de alteración o secundarios

Aparente vetilleo de cuarzo secundario, no se distingue si se trata de alteración hidrotermal, o plegamiento y deformación de cristales por fallamiento. En general la matriz tiene reemplazamiento por cuarzo secundario. Toda la roca tiene bandeamiento de caolinita como alteración de plagioclasa y vidrio volcánico. Por sectores la roca presenta agregados de óxidos naranja traslúcidos (óxidos de hierro).

Observaciones

Roca intensamente tectonizada, presenta microfallamiento y plegamiento. Cristales rotos y desplazados. Cristales deformados. La descripción de minerales y conteo se hace en el sector de la lámina con menor fallamiento.

Registro fotográfico

Microfotografía de la textura general de la roca. Sección con microfracturamiento, bandas desplazadas. Pseudomorfos de anfíboles (?). 4X, PPL y XPL.

	Descri	oción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada	
				Localización				
Código M	luestra:	18-HF-28	Uni	dad:	r	Localidad:	Vía El Playón- Escue Quebrada La P	la La Bateca- lazuela
Coordenadas E	ste (MAGNA)	1.085.515	Coordenadas N	lorte (MAGNA):	1.322.076	Departamento:	Santande	er
			Desc	ripción Macroscóp	ica	I		
Tipo de roca: Piroclá Descripción: Roca gr angulosos desde 2 m pumitas grises-rosad También fenocristale matriz de grano fino líticos y matriz. Color: Gris verdosa Tamaño relativo de l	stica ris verdosa, textura nm hasta 8 cm de ro las, y fragmentos ve es euhedrales de fe silícea de color gris	porfirítica, fragn oca de grano fino erdes de roca co Idespatos y cuarz verdosa. Posible granular.	nentos líticos -gris silícea, de n textura afanítica. zo embebidos en emente Chl en					
			Desc	l cripción Microscópi	са			
Textura:	Porfirítica	Porfirítica						
Otras texturas:	Poiquilítica: Plagio	clasas con crecin	niento de calcita.					
Descripción general de la roca	Roca volcánica cor líticos porfiríticos o	n textura porfiríti con matriz devitr	ca compuesta de lít ificada y parcialmer	ticos volcánicos por nte silicificada, ader	firíticos, pumitas, lític nás de cristales de cu	os afaníticos fuerte arzo, plagioclasa y	e alteración hidroterm feldespato.	nal verdes y
			Co	mposición (%Vol.))			
	Cristales	s y fragmentos c	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		0	0	3	3	
		Cuarzo		0	4	1	5	
	F	eldespato potási	со	0	5	2	7	
			Total cristales y	fragmentos cristalin	105		15	
	F	ragmentos Lítico	DS					
	V	olcánico-porfiríti	са	24	5	0	29	
	v	olcánico-afanítio	:0	0	3	0	3	
		Volcánico-pumita	a	0	2	0	2	
			Total frag	gmentos líticos	·		34	
	м	inerales accesor	ios					
				0	0	0	0	
	Mir	nerales de altera	ción					

Calcita	0	0	2	2
Opacos	0	0	1	1
Clorita	0	0	8	8
Caolinita	0	0	2	2
Minerales de introducción				
Calcita	0	0	2	2
Clorita	0	0	2	2
Cuarzo secundario	0	0	3	3
V	idrio volcánico			31
			Tatal	100

Composición mineral normalizada								
Componentes	Porcentaje (%)							
Cristales y fragmentos cristalinos	19		Clasificación modal	Toba lítica vítrea				
Fragmentos Líticos	43							
Vidrio volcánico	39		Según	Adaptado de Cook 1965				
Total	100		Jegun					

Cristales

Feldespato (Fsp): Cristales subhedrales a anhedrales, rotos, con bordes de disolución y parcialmente reemplazados por sílice. Cuarzo (Qz): Fenocristales anhedrales a subhedrales, redondeados.

Plagioclasa (PI): Cristales subhedrales, tabulares, como parte de la matriz. Con inclusiones de calcita de alteración subhedral y clorita. Opacos: Cristales anhedrales, en la matriz aleatoriamente.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica, microcristales de plagioclasa matriz devitrificada con parches de minerales opacos. Volcánicos (LitV): Líticos con textura afanítica, de color verde, intensamente alterados a clorita, con formas redondeadas y distribuidos aleatoriamente en la roca. Volcánicos (LitV): Líticos de pumitas vesiculares con rellenos de cuarzo hidrotermal, calcita, clorita y caolinita, y vetilleo de calcita y cuarzo en matriz vítrea oxidada y devitrificada.

Descripción de minerales de alteración o secundarios

Clorita (Chl): Cristales esferoidales con hábito acicular, verde muy pleocroicos y tonos bajos de birrefringencia, alterando líticos volcánicos. Calcita (Ca): Cristales subhedrales, con excelente planos de exfoliación, dentro de plagioclasas, líticos y en parches en la matriz.

Cuarzo: Rellenando amígdulas de líticos de pumitas y reemplazando parcialmente feldespatos.

Caolinita como alteración de líticos volcánicos.

Observaciones

Vesículas rellenas de cuarzo secundario con textura plumosa.

Registro fotográfico

Microfotografía de la textura general de la roca. Cristales de plagioclasa (PI), y feldespato potásico (Fsp) con líticos volcánicos (LitV) porfiríticos (arriba) y otros reemplazados por completo por clorita (ChI). Crecimiento de calcita (Ca) en plagioclasa (PI). 2X, PPL y XPL.

	Descri	ipción Pe	trográfica	a Muestr	as en Secc	ión Delga	ada	
				Localización				
Código M	luestra:	18-HF-31	Uni	dad:	Jnpe	Localidad:	Carretera Barato	ma-Arenal
Coordenadas E	ste (MAGNA)	1.005.763	Coordenadas N	lorte (MAGNA):	1.421.793	Departamento:	Bolívar	
		1.005.705	Decer		1.121.735	Departamento.		
			Descr					
Tipo de roca: Piroclá Descripción: Toba cr Color: Café Tamaño relativo de l	istica istalina lítica. Sin to los cristales: Inequ	extura de flujo. igranular.				10 20 30		
			Dosci	rinción Microscóni				
Textura:	Porfirítica		Desci					
Otras texturas: Descripción general de la roca	Sieve intensa en p Poiquilítica: Plagio Bahías de disoluci Pseudomorfos de Coronas: Mineralo Roca volcánica co silicificada parcial	plagioclasa. oclasas con inclusic ión en cuarzos y fel anfíboles y piroxe es opacos como co on textura porfirític mente, junto con r	ones de ilita y cuarz despatos potásicos nos alterados a mir ronas alrededor de a con fenocristales nicrocristales de fe	os con inclusiones 5. herales clorita y cal e pseudomorfos de de cuarzo beta y p ldespato, plagiocla	de calcita. cita o minerales opac anfíbol. lagioclasa, y líticos vo sa cuarzo y pseudom	os. Icánicos embebido orfos de anfíbol.	s en matriz mixta de	vitrificada y
			Coi	mposición (%Vol.)				
	Cristale	es y fragmentos cri	stalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		2	6	15	23	
		Cuarzo		13	5	2	20	
		Feldespato		0	0	2	2	
	Pse	eudormorfo de anf	íbol	0	0	1	1	
			Total cristales y f	ragmentos cristalin	OS		46	
		Fragmentos Líticos	5					
		Volcánico		0	1	0	1	
			Total frag	mentos líticos			1	
	N	Minerales accesorio	DS					
				0	0	0	0	
	Mi	inerales de alterac	ión					
		ilita		0	0	3	3	
		Calcita		0	0	2	2	
		Opacos		0	0	1	1	
		Clorita		0	0	1	1	
		Cuarzo secundario)	0	0	7	7	
		oxidos de hierro	ción	U	U	2	2	
	IVIII	iei ales de introduc		0	0	0	0	
			10.1.1	U	U	U	0	
			viario	voicanico			3/	
						lotal	100	

Composición mineral normalizada								
Componentes	Porcentaje (%)							
Cristales y fragmentos cristalinos	55		Clasificación modal	Toba cristalina				
Fragmentos Líticos	1							
Vidrio volcánico	44		Según	Adaptado de Cook 1965				
Total	100]	Jegun					
	Descripción de cristales y líticos							

Cristales

Cuarzo (Qz): Fenocristales euhedrales, algunos con bahías de disolución. Algunos con inclusiones de calcita.

Feldespato (Fsp): Cristales subhedrales a anhedrales, rotos, intensamente alterados a minerales arcillosos y ilita. Presentan bahías de disolución.

Plagioclasa (PI): Cristales subhedrales, tabulares, rotos, con bordes redondeados y bahías de disolución. Presenta textura sieve. Cristales alterados a ilita y calcita.

Pseudomorfo de anfíbol (Pse): Cristales subhedrales, prismáticos alargados, rotos. Intensamente alterados a clorita con coronas de minerales opacos e inclusiones de óxidos de hierro rojos traslúcidos.

Opacos: Cristales anhedrales, diseminados en la matriz y como coronas de pseudomorfos de anfíboles.

Circón (Zr): Diminutos cristales subhedrales, como accesorio de la roca.

Apatito (Ap): Cristales idiomórficos, como accesorio de la roca.

Líticos

Volcánicos (LitV): Líticos de textura porfirítica, microcristales de cuarzo, plagioclasa y anfíbol en matriz devitrificada y parcialmente silicificada con texturas plumosas.

Descripción de minerales de alteración o secundarios

ilita: Cristales anhedrales fibrosos dentro de feldespatos.

Calcita (Ca): Cristales anhedrales, relieve alto, alterando plagioclasas y la matriz.

Cuarzo secundario: Cristales con hábito tabular alterando la matriz.

Clorita (Chl): Cristales diminutos como alteración en pseudomorfos de anfíbol.

Observaciones

Matriz parcialmente silicificada (cuarzo secundario) y con parches de calcita como alteración.

Registro fotográfico

Microfotografía de la textura general de la roca. Fenocristales de cuarzo (Qz), y microcristales de feldespatos potásicos (Fsp) y plagioclasa (PI), y lítico volcánico (LitV) en matriz vítrea parcialmente silicificada. 2X, PPL y XPL.

	Descri	pción Pe	etrográfic	a Muestr	as en Seco	ción Delg	ada	
				Localización				
Código N	Auestra:	18-HF-32	Uni	dad:	Jnpe	Localidad:	Carretera Barator	ma-Arenal
Coordenadas E	Este (MAGNA)	1.006.494	Coordenadas N	lorte (MAGNA):	1.422.389	Departamento:	Cesar	
			Desc	ripción Macroscóp	ica			
Tipo de roca: Pirocla Descripción: Roca p criptocristalina. Color: Gris-amarillo Tamaño relativo de	ástica orfirítica de cristale los cristales: Inequ	es de cuarzo y felo igranular.	despato en matriz		10 20 30 40 50			
			Desc	ripción Microscóp	ica			
Textura:	Porfirítica							
Otras texturas:	Sieve intensa en p Poiquilítica: Plagio Bahías de disoluci Pseudomorfos de Coronas: Mineralo	olagioclasa. oclasas con inclus ón en cuarzos y f anfíboles y pirox es opacos como o	siones de ilita y cua feldespatos potásico renos alterados a m coronas alrededor o	rzos con inclusione os. inerales clorita y ca le pseudomorfos d	s de calcita. alcita o minerales opa e anfíbol.	acos.		
Descripción general de la roca	l Roca volcánica co devitrificada.	n textura porfirít	ica con fenocristale	s de cuarzo beta, p	lagioclasa y orto anfi	íboles, y líticos volca	ánicos, en matriz lige	ramente
			Co	mposición (%Vol.)				
	Cristale	s y fragmentos cı	ristalinos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		2	8	14	24	
		Cuarzo		9	2	3	14	
		Feldespato		0	0	5	5	
		Anfíbol		0	2	2	4	
			Total cristales y	fragmentos cristalii	nos		47	
	1	ragmentos Lítico	DS					
		Volcánico		4	0	0	4	
			Total frag	gmentos líticos			4	
	N	linerales accesor	ios					
				0	0	0	0	

Minerales de alteración				
illita	0	0	1	1
Opacos	0	0	<1	0
Clorita	0	0	<1	0
Minerales de introducción				
	0	0	0	0
Vidrio volcánico				
			Total	100

	_	Composi	ción mineral normalizada						
Componentes	Porcentaje (%)								
Cristales y fragmentos cristalinos	47		Clasificación modal	Toba cristalo vítrea					
Fragmentos Líticos	4								
Vidrio volcánico	48		Según	Adaptado de Cook 1965					
Total	100		Jegun						
		Descrip	ción de cristales y líticos						
	Descripción de cristales y líticos								
Cristales Cuarzo (Qz): Fenocristales euhedrales, algunos con bahías de disolución. Presentan inclusiones de anfíboles. Feldespato (Fsp): Cristales subhedrales a anhedrales, rotos, intensamente alterados a minerales arcillosos y ilita. Presentan bahías de disolución. Plagioclasa (PI): Cristales subhedrales, tabulares, con intensa textura sieve. Cristales muy fracturados, con bordes redondeados y bahías de disolución. Anfíbol (Pse): Cristales subhedrales, prismáticos alargados, con extinción recta. Ligeramente alterados a clorita y delgadas coronas de minerales opacos. Líticos Volcánicos (LitV): Líticos de textura porfirítica, microcristales de plagioclasa en matriz silicificada y alterada a minerales arcillosos.									
	i	lita: Cristales anheo	trales fibrosos dentro de feldespatos						
	Clorit	a (Chl): Cristales dinec	minutos como ligera alteración de anfíbc	ol.					
			Observaciones						
		Matriz p	arcialmente devitrificada.						
		R	egistro fotográfico						
Report Holgrafia Pl Q2 Q2 Q2 Q2 Q2 Q2 Q2 Amp Litty Q2 Q2 Amp Litty Q2 Q2 Amp Q2 Q2 Amp Litty Q2 Amp Q2 Q2 Amp Litty Q2 Amp Litty Q2 Amp Q2 Amp Litty Litty Litt									
	Microfotografía de la textura general de la roca. Fenocristales de cuarzo (Qz), y microcristales de feldespatos potásicos (Fsp), plagioclasa (PI) y anfíbol (Amp) y lítico volcánico (LitV) en matriz vítrea. 2X, PPL y XPL.								

	Desc	ripción Petr	rográfica	Muestras	s en Secció	ón Delgac	la	
			L	ocalización				
Código Mues	stra:	18-HF-38	Uni	dad:	Jnpe	Localidad:	Vía La Plaza-N	1orales
Coordenadas Este	(MAGNA)	1.012.746	Coordenadas N	lorte (MAGNA):	1.417.986	Departamento:	Bolívar	
			Descripc	ión Macroscópica				
Tipo de roca: Piroclástic Descripción: Roca porfir matriz volcánica. Color: Verde Tamaño relativo de los o	ca rítica, fenocrista cristales: Inequi	ales de plagioclasa y lítico granular.	os intrusivos en					
			Descripo	ción Microscópica				
Textura: Po	rfirítica							
Otras texturas: Bal Pse	hías de disolucio eudomorfos de	ón en cuarzos y feldespa anfíboles y piroxenos alt	tos potásicos. terados a minerales	s clorita y calcita o r	minerales opacos.			
Descripción general Ro de la roca cua	general Roca volcánica con textura porfirítica compuesta de fenocristales de cuarzo, plagioclasa y feldespato potásico en matriz mixta de microcri ca cuarzo y plagioclasa y vidrio volcánico, con amígdulas rellenas de cuarzo secundario. Matriz parcialmente silicificada.							ales de
	Composición (%Vol.)							
	Crist	ales y fragmentos crista	linos	Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		0	0	1	1	
		Cuarzo		0	8	8	16	
		Pseudormorfo de anfíbo		0	0	2	21	
		Т	otal cristales y frag	mentos cristalinos			40	
		Fragmentos Líticos						
		Intrusivo		0	0	3	3	
			Total fragme	ntos líticos			3	
		Minerales accesorios						
				0	0	0	0	
		Minerales de alteración						
		ilita		0	0	1	1	
-		Calcita		0	0	1	1	
		Clorita		0	0	2	2	
	n	Ainerales de introducció	n	U			1	
	Ň	Cuerze segundaria				2	2	
			Vidria va	U		2	2 E0	
						Total	100	
						iotai	100	
			Composición	n mineral normaliza	ada			
Component	tes	Porcentaje (%)						
Cristales y fragmento	os cristalinos	43						
Fragmentos Lí	íticos	3		Clasificad	ción modal	Toba cris	talo vítrea	
Vidrio volcár	nico	54						
Total		100		Se	egún	Adaptado d	e Cook, 1965	

Cristales

Cuarzo (Qz): Fenocristales subhedrales, con bahías de disolución, cristales subredondeados.

Feldespato (Fsp): Cristales anhedrales, subredondeados, con alteración a ilita y con bahías de disolución.

Plagioclasa (PI): Cristales subhedrales, tabulares, rotos. Presentan macla de Carlsbad. Cristales alterados a ilita.

Pseudomorfo de anfíbol (Pse): Cristales subhedrales, tabulares, completamente reemplazados por minerales opacos o calcita. Por sectores se distinguen tonos de segundo orden de birrefringencia. Cristales plegados.

Opacos: Cristales anhedrales, reemplazando anfíboles.

Líticos

Intrusivo (LitV): Líticos de textura fanerítica, compuesto por cristales diminutos de cuarzo, plagioclasa y piroxeno.

Descripción de minerales de alteración o secundarios

ilita: Cristales anhedrales fibrosos dentro de feldespatos y como alteración de la matriz.

Calcita (Ca): Cristales anhedrales, alterando la matriz.

Cuarzo secundario: Cristales con hábito tabular rellenando vesículas.

Clorita (Chl): Cristales diminutos anhedrales como alteración de vidrio volcánico.

Epidota: Diminutos cristales anhedrales como alteración de la matriz, junto con calcita y clorita.

Observaciones

Matriz con parches de calcita y clorita como alteración.

Registro fotográfico

Microfotografía de la textura general de la roca. Microfenocristales de cuarzo (Qz) y feldespatos potásicos (Fsp) en matriz vítrea. 2X, PPL y XPL.

	Desc	ripción Pet	rográfica	Muestra	is en Secci	ón Delga	da	
			I	Localización				
Código N	luestra:	16SLAZ-2	Uni	dad:	Jnpe	Localidad:	Carretera Baratoma-Arenal	
Coordenadas I	Este (MAGNA)	1.002.893	Coordenadas N	lorte (MAGNA):	1.420.261	Departamento:	Bolívar	
			Descrip	ción Macroscópica				
		Descripción muestr	Tipo d ra: Roca porfirítica, Colo Tamaño relativo d	le roca: Volcánica , muy fracturada y c or: Amarillo-café le los cristales: Ineq	con moderada a alta uigranular	oxidación		
			Descrip	oción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Glomerofírica: ag Pseudomorfos de Ppsedumorfos de	regados de plagioclasas plagioclasas reemplaza anfíboles reemplazado	y anfíboles. das por cuarzo sec s a clorita.	undario.				
Cristalinidad:	Hipohialino							
			Compos	sición mineralógica		Matria		
		Minerales principales		Fenocristal	Microfenocristal	Microcristal %	TOTAL EN ROCA %	
		Plagioclasa		(2 21111) % 0	(2-1 mm) %	17	22	
		Cuarzo		0	0	2	2	
		Feldespato potásico		0	0	0	0	
		Anfíbol		0	0	5	5	
	-	Minerales accesorios						
		Opacos		0	0	7	7	
		Minerales de alteració	n					
		Clorita		0	0	6	6	
		Óxidos de hierro		0	0	8	8	
		Caolinita	,	0	0	5	5	
	Ň	linerales de introducció	on	0	0	0	0	
		óvidos		0	0	8	2	
		UNICOS	Vidrio vo	l olcánico	0	2	35	
						Total	100	
			Composició	n mineral normaliz	ada			
Min	eral	Porcentaie (%)						
Plagio	clasa	92						
Cua	rzo	8		Clasificad	ción modal	Andesita		
Feldespato	o potásico	0					1070	
Tot	tal	100		Se	egun	Streckei	sen, 1976	

Plagioclasa (PI): Cristales subhedrales, macla de Carlsbad, en microfenocristales y microcristales como parte de la matriz. Presenta intenso reemplazamiento a cuarzo secundario y caolinita. Cristales fracturados.

Cuarzo (Qz): Cristales subhedrales, con bordes de disolución.

Anfíboles (Amp): Cristales subhedrales, prismáticos largos, con tonos de segundo orden, muy alterados. Algunos cristales reemplazados a clorita, otros con oxidación parcial.

Opacos: Cristales anhedrales dentro de la matriz y dentro y alrededor de anfíboles y plagioclasas. Son isotrópicos, pero algunos parcialmente traslúcidos.

Descripción de minerales de alteración o secundarios

Clorita subhedral y de grano fino predominantemente, como alteración de anfíboles.

Caolinita de grano muy fino, color pardo, como alteración de plagioclasas.

Amígdulas con rellenos hacia los bordes de cuarzo secundario, caolinita y óxidos de hierro.

Óxidos de hierro: Cristales anhedrales, presentes dentro y alrededor de los cristales de anfíboles, en la matriz y en las amígdulas.

Detalle de clorita como alteración de plagioclasa, junto con silicificación parcial de la roca. 2X, PPL y XPL.

	Desc	ripción Pet	rográfica	Muestra	s en Secci	ón Delga	da			
			L	ocalización						
Código M	luestra:	16SLAZ-9	Uni	dad:	Jnpe	Localidad:	Carretera Baratoma-Arenal			
Coordenadas E	ste (MAGNA)	1.009.399	Coordenadas N	lorte (MAGNA):	1.423.912	Departamento:	Bolívar			
			Descripo	ción Macroscópica						
		Descripción mues	Tipo de tra: Roca porfirítica Co Tamaño relativo de	e roca: Volcánica a, muy fracturada y olor: Rosada e los cristales: Inequ	con moderada silicif uigranular	ïcación.				
	I		Descrip	ción Microscópica						
Textura:	Porfirítica									
Otras texturas:	Coronas de opacit Coronas de sericit Poiquilítica: inclus	ización de anfíboles. a alrededor de plagiocla iones de anfíboles denti	sas. o de plagioclasas.							
Cristalinidad:	Hipohialino									
	1		Compos	ición mineralógica						
	Minerales principales Fenocristal Microfenocristal Matriz Microcristal %									
		Plagioclasa		(2 21111) /8 1	9	15	25			
		Cuarzo		0	0	0	0			
		Feldespato potásico		0	0	0	0			
		Anfíboles		0	0	8	8			
		Minerales accesorios			-	F				
		Minerales de alteración	1		<u> </u>	6				
				0	0	6	6			
	N	Ainerales de introducció	'n	U	0	4				
		Cuarzo secundario		0	0	20	20			
			Vidrio vo	lcánico			37			
						Total	100			
			Composiciór	n mineral normaliza	ada					
Mine	eral	Porcentaje (%)								
Plagio	clasa	100		Clasificac	ión modal	And	esita			
Cuar	zo	0								
Tot	Total 100 Streckeisen, 1976									

Plagioclasa (Pl): Cristales subhedrales, tabulares, rodeadas y reemplazadas como cuarzo secundario, y sericita. Anfíboles (Amp): Cortes transversales y longitudinales idiomórficos. Se encuentran con coronas de minerales opacos (opacitización). Opacos: Cristales anhedrales en la matriz, dentro y alrededor de la anfíboles y plagioclasas.

Descripción de minerales de alteración o secundarios

Cuarzo (Qz sec): Cristales subhedrales en vetillas, reemplazando la matriz y rellenando espacios. Calcedonia (Cha) (?) en la matriz y alrededor de plagioclasas. No se tiene certeza. También podría tratarse de devitrificación.

2X, PPL y XPL.

	Descri	ipción Pe	trográfic	a Muestr	as en Seco	ción Delg	ada		
				Localización					
Código N	luestra:	16SLAZ-16	Uni	dad:	Jnpe	Localidad:	Vía Tiquisio-Norc	osí	
Coordenadas E	ste (MAGNA)	988.993	Coordenadas N	orte (MAGNA):	1.437.771	Departamento:	Bolívar		
			Descr	ipción Macroscópi	ca				
			Tipo Descripción Tamaño relativo	de roca: Volcánica muestra: Roca po Color: Gris de los cristales: Ind	rfirítica. equigranular				
Touture	Dorfirítico		Desci		a			_	
Textura:	Portintica								
Otras texturas: Pseudomorfos: Reemplazamiento de posibles anfíboles por minerales opacos.									
Cristalinidad:	Hipohialino								
	1		Comp	osición mineralógi	ca		1		
	η	Ainerales principale	25	Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %		
				(≥ 2mm) %	(2-1 mm) %	(<1 mm) %			
		Plagioclasa		4	5	7	16		
		Cuarzo		0	12	5	17		
		Feldespato potásico) 	4	5	9	18		
		seudomorto (Amp	?)	0	0	1	1		
			5	0	0	~1	<1		
				0	0	~1	~1		
	N	inerales de alteraci	ón	0	0	2	2		
		Óxidos	011	0	0	5	5		
		llita		0	0	<1	<1		
	Mir	nerales de introduc	ción						
		Cuarzo		0	0	5	5		
			Vidrio	volcánico			36		
						Total	100		
			•						
			Composic	ion mineral norma	lizada				
Mine	eral	Porcentaje (%)	· · ·			r			
Plagio	clasa	31		Clasificad	ción modal	Ri	olita		
Cuar	720	33							
reidespato		35		Se	egún	Streckei	sen, 1976		
iot	aı	100							
			Decer	inción do minoral	-				

Plagioclasa (PI): Cristales subhedrales a anhedrales, rotos. Fuertemente alterados a caolinita . Algunos cristales reemplazados por cuarzo secundario. Cuarzo (Qz): Cristales subhedrales, fracturados. Algunos presentan bordes de disolución con la matriz y coronas de oxidación.

Feldespato potásico (Fsp): Cristales subhedrales, con núcleos y/o coronas de alteración de caolinita.

Pseudomorfos (Pse): Reemplazamiento de minerales tabulares por óxidos.

Zircón: Cristales subhedrales, diminutos.

Opacos: Cristales anhedrales dentro de la matriz, y dentro y alrededor de la anfíboles y plagioclasas.

Descripción de minerales de alteración o secundarios

Feldespatos intensamente alterados a caolinita.

Silicificación parcial de microcristales de plagioclasas y de la matriz vítrea.

Reemplazamiento de minerales (anfíboles?) por óxidos,

Observaciones

Sección delgada mayor a 30 micras. Matriz vítrea intensamente oxidada. Cristales rotos. Microvetillas rellenas de sílice.

Registro fotográfico

Microfotografía de la textura general de la roca, se observan plagioclasas intensamente alteradas. Se evidencia que el espesor de la lámina es alto por los tonos altos de birrefringencia del cuarzo. 2X, PPL y XPL.

Feldespatos con coronas de alteración a caolinita. 2X, PPL y XPL.

	Desci	ripción Pet	rográfica	Muestra	is en Secci	ión Delga	Ida	
				Localización				
Código N	Auestra:	16SLAZ-20	Unio	dad:	Jned	Localidad:	Vía La Plaza-Morales	s
Coordenadas	Este (MAGNA)	1.007.980	Coordenadas N	lorte (MAGNA):	1.417.930	Departamento:	Bolívar	
			Descrip	ción Macroscópica			•	
		Descripc	Tipo d ión muestra: Roca Tamaño relativo d	le roca: Volcánica porfirítica. Contien Color: Gris le los cristales: Ineq	e pirita diseminada. uigranular			
			Descrip	ción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Coronas de opacit Bahías de disoluci	tización de anfíboles. ón en cuarzos.						
Cristalinidad:	Hipocristalino							
			Compos	sición mineralógica			1 1	
		Minerales principales		Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %	
				(≥ 2mm) %	(2-1 mm) %	(<1 mm) %		
		Plagioclasa		0	4	15	19	
		Cuarzo		3	4	5	12	
		Feldespato potásico		0	0	4	4	
				4	0	5	9	
				0	0	-1	0	
		Apalito Minerales de alteració	n	0	0	<1	0	
		Óxidos		0	0	Δ	4	
		Opacos		0	0	2	2	
	N	linerales de introducci	ón	0	0	L	2	
		Sericita		0	0	5	5	
			Vidrio vo	olcánico		-	45	
						Total	100	
			Composició	n mineral normaliz	ada			
Min	eral	Porcentaje (%)						
Plagic	oclasa	54		Clasificar	ión modal	Δης	lesita	
Cua	Irzo	34						
Feldespate	o potásico	11		Se	gún	Streckei	sen, 1976	
То	tal	100			-			
			Descrip	pcion de minerales				

Plagioclasa (PI): Cristales subhedrales, tabulares, con macla de Carlsbad y ocasionalmente polisintética. Presentan intensa alteración a sericita.

Cuarzo (Qz): Cristales subhedrales, con bordes y bahías de disolución.

Feldespato: Cristales subhedrales, intensamente alterados a sericita

Anfíboles (Amp): Cristales subhedrales a anhedrales, reemplazados casi en su totalidad por óxidos hierro, presentan coronas de opacitización, algunos de ellos están plegados y rotos.

Apatito: Cristal subhedral.

Opacos: Cristales anhedrales dentro de la matriz, y tabulares como posibles reemplazamientos de anfíboles microcristalinos.

Descripción de minerales de alteración o secundarios

Feldespatos intensamente alterados a caolinita.

	Descr	ripción Pet	trográfica	a Muestra	is en Secci	ión Delga	da	
				Localización				
Código M	luestra:	18-HF-07	Uni	dad:	Jnha	Localidad:	Vía Aguachica-M Carmer	arinilla-El 1
Coordenadas E	ste (MAGNA)	1.055.913	Coordenadas N	lorte (MAGNA):	1.422.542	Departamento:	Cesar	
			Descrip	oción Macroscópica				
Tipo de roca: Volcán Descripción muestra matriz fina equigran Color: Rosado Tamaño relativo de	ica 1: Roca porfirítica, ular de grano muy los cristales: Inequi	con microfenocristales fino de vidrio volcánico granular	s de Pl y Px en o.					
			Descrip	oción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Bahías de corrosió Sieve en plagiocla Poiquilítca: Inclusi Ofítica: Fenocrista Subofítica: Fenocr Pseudomorfos: Cr Cumulofírica de p Glomeroporfirítica	on en plagioclasas. sas. ones de clorita en plag les de piroxeno con in istales de plagioclasa d istales completamente iroxenos. a: Agregados de piroxe	gioclasas. clusiones de plagio con inclusiones de p e reemplazados a cl enos, plagioclasas y	clasas. piroxeno. lorita. opacos.				
Cristalinidad:	Hipohialino							
			Compo	sición mineralógica				
		Minerales principales	i	Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %	
		Plagioclasa		(≥ 2mm) % 11	(2-1 mm) %	(<1 mm) %	29	
		Cuarzo		0	0	0	0	
		Feldespato potásico		0	0	0	0	
		Piroxeno		8	3	1	12	
		Opacos		0	0	2	2	
		Minerales accesorios						
		Apatito		0	0	1	1	
		Minerales de alteració	n					
		Clorita		0	0	6	4	
		Epidota		0	0	2	2	
		Caolinita		0	0	1	1	
		Clorita-vermiculita		0	0		<1	
	M	inerales de introducci	ón		•			
		Cuarzo		0	0	4	4	
		Arcillas		0	0	5	5	
			Vidrio vo	olcánico		-	40	
						Total	100	
			Composició	on mineral normaliz	zada			
Mine	eral	Porcentaie (%)						
Plagio	clasa	100]	
Cuar	720	0		Clasificad	ión modal	And	esita	
Feldespato	potásico	0		<u> </u>				
Tot	al	100		Según Streckeisen, 1976				

Plagioclasa (PI): Cristales euhedrales a subhedrales, con bordes moderadamente redondeados, bahías de disolución y algunos cristales textura sieve. Tienen macla de Carlsbad con polisintética. Contienen inclusiones de piroxenos subhedrales, y en menor medida clorita y epidota. Algunos microcristales en agregados con piroxenos. Los fenocristales tienen finos bordes de clorita-vermiculita (ChI-Vrm). Los cristales presentan ligera alteración a caolinita (KIn).

Piroxeno (Px): Fenocristales subhedrales rotos, microfenocristales euhedrales en agregados con plagioclasas y opacos. Algunos cristales presentan inclusiones de plagioclasa, otros de clorita.

Clorita (Chl): Cristales anhedrales, como alteración de mineral primario, presenten como inclusiones de piroxenos y en agregados con piroxenos y plagioclasa o rellenando amígdulas.

Opacos: Cristales anhedrales, alrededor de piroxenos o aleatorios en la matriz.

Descripción de minerales de alteración o secundarios

Amígdulas rellenas de clorita (Chl) y/o clorita-vermiculita (Chl-Vrm) y ocasionalmente epidota hacia los bordes.

Matriz alterada a epidota, óxidos y clorita.

Parches en la matriz de cuarzo textura mosaico junto con clorita y/o cristales de epidota bien desarrollada.

Observaciones

Microfotografía de la textura general de la roca. Textura glomeroporfirítica de piroxenos, plagioclasa y opacos. Amígdulas rellenas de clorita (Chl) y clorita-vermiculita (Cl). 2X, PPL y XPL.

	Desc	ripción Pet	rográfica	Muestra	s en Secci	ón Delga	da	
			L	ocalización				
Código N	luestra:	18-HF-08	Uni	dad:	Jnha	Localidad:	Vía Aguachica-Mari Carmen	inilla-El
Coordenadas E	ste (MAGNA)	1.055.919	Coordenadas N	lorte (MAGNA):	1.421.695	Departamento:	Cesar	
			Descripo	ción Macroscópica				
Tipo de roca: Volcán Descripción muestra Epidota. Color: Rosado Tamaño relativo de	ica 1: Roca porfirítica c los cristales: Inequi	con Plagioclasas alterada granular	is a Clorita o					
			Descrip	ción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Bahías de corrosió Subofítica: Fenocr Pseudomorfos: Cr Glomeroporfirítica Coronas de opacit	ón en plagioclasas. istales de plagioclasa co istales probablemente d a: Agregados de plagiocl ización: Coronas de min	n inclusiones de pir le ortopiroxenos to asas, piroxenos, pse erales opacos alrec	roxeno. talmente reemplaz eudomorfos y opac dedor de piroxenos	ados por clorita y ilit os. Y otros agregado	a. os de plagioclasas, p	oseudomorfos y opacos.	
Cristalinidad:	Hipohialino							
			Compos	ición mineralógica	-			
		Minerales principales		Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %	
		Plagioclasa		14	5	2	21	
		Cuarzo		0	0	0	0	
		Feldespato potásico		0	0	0	0	
		Piroxeno		5	3	2	10	
	Pse	udormorfo de ortopirox	eno	5	3	2	10	
				0	0		0	
		Minerales accesorios			T			
		Apatito		0	0	2	2	
		Minerales de alteración		-	-	-		
		Clorita		0	0	2	2	
				0	0	2	6	
	N	Ainerales de introducció	'n	0	0	0	0	
		Cuarzo		0	0	5	5	
			Vidrio vo	lcánico			42	
						Total	100	
			Composición	n mineral normaliz	ada			
Mine	eral	Porcentaje (%)						
Plagio	clasa	100		Clasificad	ción modal	And	esita	
Cuar	20	0						
reidespato Tot	al	0 100		Se	egún	Streckei	sen, 1976	
							4	

Plagioclasa (PI): Cristales subhedrales a anhedrales, con bahías de disolución. Intensamente alterados a ilita, con rellenos dentro de las fracturas de clorita de grano muy fino. Los fenocristales presentan inclusiones de pseudomorfos de anfíboles y piroxenos. Presentes en textura glomeroporfirítica con piroxenos, pseudomorfos y opacos. Clinopiroxeno- Augita (Aug): Cristales subhedrales a euhedrales, con macla de augita, extinción inclinada, fuertemente fracturados y alterados a clorita. Presentan coronas de opacitización. Presentan texturas cumulofíricas, parcialmente alterados a clorita y óxidos.

Pseudomorfos de ortopiroxeno (Pse): Abundantes en la roca. Cristales completamente reemplazados a clorita. Presentan formas prismáticas alargadas. La mayoría se encuentran rotos. Dentro de las fracturas se encuentran rellenos de minerales opacos. Algunos cristales tienen inclusiones de epidota. Apatito (Ap): Cristales diminutos euhedrales, distribuidos aleatoriamente en la roca.

Descripción de minerales de alteración o secundarios

Clorita (Chl): Minerales subhedrales, muy pleocroicos, tonos azules de birrefringencia, como alteración de anfíboles y rellenando fracturas de plagioclasas. Ilita: Cristales diminutos como alteración de plagioclasas.

Opacos (Opq): Cristales anhedrales. Se encuentran rodeando cristales de piroxeno y pseudomorfos de anfíbol, y rellenando microfracturas. Microfracturas en la roca con rellenos de cuarzo secundario (Qz)

Observaciones

Microfotografía de la textura general de la roca. Textura glomeroporfirítica de piroxenos, plagioclasa, pseudomorfo de ortopiroxeno y opacos. Microfracturas rellenas de cuarzo. 2X, PPL y XPL.

	Desc	ripción Peti	rográfica	Muestras	s en Secci	ón Delgad	da	
			Lo	ocalización				
Código M	luestra:	18-HF-10	Uni	dad:	Jnha	Localidad:	Vía Aguachica-Mari Carmen	inilla-El
Coordenadas E	ste (MAGNA)	1.055.616	Coordenadas N	lorte (MAGNA):	1.421.058	Departamento:	Cesar	
			Descripci	ión Macroscópica				
Tipo de roca: Volcán Descripción muestra Plagioclasa parcialm oxidados en una mat Color: Lila Tamaño relativo de l	ica 1: Roca porfirítica c ente reemplazados triz de grano muy f los cristales: Inequi	de color morado o lila con s por epidota y microcrista ïno. igranular	fenocristales de ales de anfíboles					
			Descripc	ión Microscópica				_
Textura:	Porfirítica							
Otras texturas:	Bahías de corrosió Sieve en plagiocla Poiquilítca: Inclusi Pseudomorfos: Cr Glomeroporfirítica Subofítica: Fenocr Coronas de opacit	ón en plagioclasas. sas. iones de apatitos en plagio istales probablemente de a: Agregados de plagioclas istales de plagioclasa con tización: Coronas de minei	oclasas. piroxenos totalme sas, pseudomorfos, inclusiones de pseu rales opacos alrede	nte reemplazados p opacos y calcitas se udomorfos de pirox dor de piroxenos.	oor clorita y/o epidot ecundarias. eno.	a.		
Cristalinidad:	Hipohialino							
			Composi	ción mineralógica		N de tui-		
		Minerales principales		Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal % (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		28	8	4	40	
		Cuarzo		0	0	0	0	
		Feldespato potásico		0	0	0	0	
		Pseudormorfo de piroxen	0	0	8	3	11	
		Opacos		0	0	4	4	
					0			
		Apatito		0	0	1	1	
		Zircon Minerales de alteresión		0	U	L 1		
		Clorita		0	0	5	5	
		Calcita		0	0	2	3	
		Ilita		0	0	2	2	
		Caolinita		0	0			
		Epidota		0	0	2	2	
		Minerales de introducció	n					
		Cuarzo		0	0	4	4	
			Vidrio vol	cánico			26	
						Total	100	
			Composición	mineral normaliza	da			
Mine	eral	Porcentaje (%)						
Plagio	ciasa	100		Clasificac	ión modal	And	esita	
Eoldocrat-		U						
	al	100		Se	gún	Streckei	sen, 1976	
	ui	100						

Plagioclasa (PI): Cristales subhedrales tabulares, con bordes redondeados y bahías de corrosión. Intensa textura sieve. Presentan macla polisintética combinada con Carlsbad. Fuertemente alterados a ilita y epidota bien desarrollada. Los cristales contienen inclusiones de pseudomorfos de piroxenos.

Pseudomorfos de piroxeno (Pse): Cristales subhedrales hexagonales a anhedrales, aislados en la matriz y como agregados con plagioclasas y opacos. Fracturados con fracturas rellenas de opacos. Completamente reemplazados por clorita, calcita anhedrales y/o epidota bien desarrollada. Presentan coronas de opacos.

Opacos (Opq): Abundante contenido de minerales opacos aleatorios en la matriz y alrededor o dentro de texturas glomeroporfirítica.

Apatito (Ap): Cristales diminutos subhedrales, distribuidos aleatoriamente en la roca y dentro de plagioclasas. Cristales accesorio.

Zircón (Zr): Diminutos cristales subhedrales dentro de pseudomorfos, plagioclasas y en las texturas glomeroporfirítica. Cristales accesorio.

Descripción de minerales de alteración o secundarios

Ilita (Ilt): Microcristales como alteración de plagioclasas.

Epidota (Ep): Cristales subhedrales como alteración de plagioclasas y en pseudomorfos.

Calcita (Ca): Cristales anhedrales en pseudomorfos de piroxenos.

Clorita (Chl): Minerales subhedrales, muy pleocroicos, tonos azules de birrefringencia, como alteración de pseudomorfos de piroxenos y rellenando fracturas.

Opacos (Opq): Cristales anhedrales. Se encuentran rodeando pseudomorfos de piroxeno.

Microvetillas con rellenos de cuarzo secundario (Qz), calcita y epidota.

Observaciones

Matriz ligeramente alterada a caolinita (KIn).

Registro fotográfico

Microfotografía de la textura general de la roca. Fenocristal de plagioclasa fuertemente alterado a sericita. Microfractura rellena de cuarzo. 2X, PPL y XPL.

Detalle de plagioclasas intensamente alteradas a ilita y pseudomorfos reemplazados completamente por clorita, calcita y epidota. Microvetilla de cuarzo. 4X, PPL y XPL.

	Desc	ripción Pet	rográfica	Muestra	s en Secci	ón Delga	da	
			L	ocalización				
Código M	luestra:	18-HF-19	Uni	dad:	Jned	Localidad:	Vía Aguachi Bombeadero/M	ca- arinilla
Coordenadas E	ste (MAGNA)	1.055.038	Coordenadas N	lorte (MAGNA):	1.415.757	Departamento:	Cesar	
			Descrip	ción Macroscópica			•	
Tipo de roca: Volcán Descripción muestra embebidos microcris Color: Gris Tamaño relativo de l	ica : Textura porfirític stales de Plagioclas los cristales: Inequi	ca, matriz microcristalin ca. igranular	a, masiva gris,			cm		
			Descrip	ción Microscópica				
Textura:	Porfirítica							
Otras texturas:	Sieve en plagiocla: Poiquilítca: Inclusi Pseudomorfos: Cr Coronas de opacit	sas. ones de minerales opac istales probablemente o ización: Coronas de mir	os en pseudomorfo de piroxenos totalm nerales opacos alreo	os de piroxenos. nente reemplazados dedor de pseudomo	s por clorita y calcita orfos. Coronas de cal	cita alrededor de p	lagioclasas.	
Cristalinidad:	Hipohialino		•					
			Compos	icion mineralogica		Matriz		
		Minerales principales		Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal % (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		17	8	4	29	
		Cuarzo		0	0	0	0	
		Feldespato potásico		0	0	0	0	
	P:	seudormorto de piroxei	10	0	2	4	6	
		Minoralos accosorios		0	0	6	6	
		Anatito		0	0	3	3	
		Minerales de alteración	1					
		Clorita	-	0	0	4	4	
		Calcita		0	0	11	11	
		Ilita		0	0	2	2	
	N	Ainerales de introducció	ón					
		Calcita		0	0	3	3	
		Epidota		0	0	1	1	
			Vidrio vo	lcánico			35	
						Total	100	
			6	• ••••••••••••••••••••••••••••••••••••				
			Composició	n mineral normaliza	aua			
Mine	eral	Porcentaje (%)		r				
Plagio	clasa	100		Clasificac	ión modal	And	lesita	
Cuar	ZO	0						
Feldespato	potásico	0		Se	gún	Streckei	sen, 1976	
Iot	aı	100						

Plagioclasa (PI): Cristales subhedrales a euhedrales, tabulares, con bordes ligeramente redondeados. Presentan macla polisintética. Textura sieve con rellenos de calcita. Fuertemente alterados a ilita y calcita. Algunos cristales presentan coronas de calcita.

Pseudmorfos de piroxeno (Pse): Cristales subhedrales. Completamente reemplazados por clorita y calcita anhedral. Algunos cristales presentan coronas o inclusiones de minerales opacos.

Opacos (Opq): Cristales anhedrales aleatorios en la matriz, alrededor de plagioclasas o pseudomorfos y rellenando microfracturas.

Apatito (Ap): Cristales diminutos euhedrales, distribuidos aleatoriamente en la roca. Cristales accesorio.

Descripción de minerales de alteración o secundarios

Calcita (Ca): Cristales anhedrales en pseudomorfos de piroxenos y en parches en la matriz, y como alteración de plagioclasas.

llita: como microcristales alterando a plagioclasas.

Clorita (Chl): Minerales subhedrales, muy pleocroicos, tonos azules de birrefringencia, como alteración de pseudomorfos de piroxenos.

Epidota (Ep): Cristales anhedrales rellenando microfracturas.

Microvetillas con rellenos de minerales opacos, calcita y epidota anhedral.

Observaciones

Microfotografía de la textura general de la roca. Fenocristales de plagioclasa con textura sieve. 2X, PPL y XPL.

	•	liografica	macona	5 en Jetti	UII Deiga	aa
		Lo	ocalización			
Código N	Auestra: 18-HF-21A	Unid	ad:	Jnpe	Localidad:	Vereda El Tope, Finca La Esperanza- Punto La Palm
Coordenadas I	Este (MAGNA) 1.052.786	Coordenadas No	orte (MAGNA):	1.421.581	Departamento:	Cesar
		Descripci	ón Macroscópica			·
Tipo de roca: Volcár Descripción muestra Pl, FK en matriz vítro mineralización de co sino se observan pa espacios abiertos co esfalerita, óxidos de Color: Gris verdosa Tamaño relativo de	nica a: Se encuentra roca porfirítica de grano g ea de grano fino. En la roca se encuentra v obre. La mineralización no esta estrictame rches en la roca de silicatos de cobre, sulfu on drusas de Qz traslúcido. Minerales de m e cobre, malaquita y azurita. los cristales: Inequigranular	grueso. Cristales de vetilleo de Qz, Ca y ente en las vetillas, uros de cobre y nena: bornita,				
		Descripc	ión Microscópica			
Textura:	Porfirítica					
Otras texturas:	Bordes y bahías de disolución en plagioci Poiquilítca: Inclusiones de apatitos en pla	asas. agioclasas.				
Cristalinidad:	Hipohialino					
		Composi	ción mineralógica	-		
	Minerales principales	;	Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %
	Plagioclasa		$(\leq Z ((((())))))))))))))$		(<	
			0	18	5	23
	Cuarzo		0	18	5	23
	Cuarzo Feldespato potásico		0 0 0	18 0 0	5 0 0	23 0 0
	Cuarzo Feldespato potásico Minerales accesorios		0 0 0	18 0 0	5 0 0	23 0 0
	Cuarzo Feldespato potásico Minerales accesorios Apatito		0 0 0 0	18 0 0 0	5 0 0 1	23 0 0
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració	n	0 0 0 0	18 0 0	5 0 0 1	23 0 0
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita	n	0 0 0 0 0	18 0 0 0	5 0 0 1 12	23 0 0 1 12
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita	n	0 0 0 0 0	18 0 0 0	5 0 0 1 12 6	23 0 0 1 1 12 6
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite	n	0 0 0 0 0 0 0 0 0 0	18 0 0 0 0 0	5 0 0 1 12 6 4	23 0 0 1 1 12 6 4
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite Epidota	n	0 0 0 0 0 0 0 0 0 0	18 0 0 0 0 0 0 0 0 0 0 0	5 0 0 1 1 12 6 4 1	23 0 0 1 1 12 6 4 1
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite Epidota Minerales de introducci	n ón	0 0 0 0 0 0 0 0 0 0	18 0 0 0 0 0 0 0 0 0 0 0	5 0 0 1 1 12 6 4 1	23 0 0 1 1 12 6 4 1
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite Epidota Minerales de introducci Cuarzo	n ón	0 0 0 0 0 0 0 0 0 0 0 0 0	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 1 1 12 6 4 1 1 27	23 0 0 1 1 12 6 4 1 1 27
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite Epidota Minerales de introducci Cuarzo Opacos	ión	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 0	5 0 0 1 1 12 6 4 1 1 27 27 2	23 0 0 1 1 12 6 4 1 1 27 2
	Cuarzo Feldespato potásico Minerales accesorios Apatito Minerales de alteració Clorita Ilita Hematite Epidota Minerales de introducci Cuarzo Opacos	ión	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 0	5 0 0 1 1 12 6 4 1 1 27 27 2	23 0 0 1 1 12 6 4 1 1 27 2 2 24

		Composición	mineral normalizada		
Mineral	Porcentaje (%)				
Plagioclasa	100	Γ	Clasificación modal	Andosita	
Cuarzo	0			Andesita	
Feldespato potásico	0		Sogún	Strockoicon 1976	
Total	100		Segun	Sti etkeisen, 1970	
		Descripc	ión de minerales		
Plagioclasa (PI): Cristales euhedrales a bahías de disolución.	subhedrales tabulares, o	on intensa alteració	n a ilita y clorita. Presentan macla poli	sintética combinada con Carlsbad. Tien	en bordes y

Descripción de minerales de alteración o secundarios

Intenso vetilleo, aproximadamente el 60% de la roca, con presencia de minerales:

*Predominantemente cuarzo secundario, textura diente de perro, cristales bien desarrollados.

*Clorita (Chl) con inclusiones de apatito.

*Hematite (Hem): parcialmente traslúcido

Apatitos euhedrales como inclusiones en el mineral verde

Plagioclasas alrededor de vetillas de clorita y epidota.

llita como alteración de plagioclasas y rellenando vetillas.

Epidota subhedral como inclusiones de mineral verde.

Observaciones

Matriz silicificada parcialmente

Registro fotográfico

Microfotografía de la textura general de la roca. Vetilla rellena de clorita y apatitos, y con bordes de cuarzo secundario. Matriz silicificada. Se alcanzan a observan microfenocristales de plagioclasas. 2X, PPL y XPL.

Detalle de minerales de alteración hidrotermal secundarios. Vetilla rellena de clorita, cuarzo y opacos (hematite), con cristales euhedrales de apatito. 10X, PPL y XPL.

	Des	cripción Pe	trográfic	a Muestr	as en Seco	ción Delga	ada	
				Localización				
Código N	luestra:	18-HF-23	Uni	dad:	Jned	Localidad:	Vereda El Tope, Finca L Quebrada El N	La Esperanza. Nido
Coordenadas E	Este (MAGNA)	1.052.216	Coordenadas N	lorte (MAGNA):	1.422.049	Departamento:	Cesar	
			Descr	ipción Macroscópic	a			
Tipo de roca: Plutón Descripción muestra Color: Gris oscuro Tamaño relativo de	iica a: Roca fanerítica de los cristales: Inequi	e grano fino. igranular				cm		
			Descr	ipción Microscópic	a			
Textura:	Roca inequigranul	ar, porfirítica.						
Otras texturas:	Pseudomorfos de piroxeno alterados a clorita. Cumulofiríca de pseudomorfos de piroxeno. Glomeroporfirítica de piroxenos y pseudomorfos.							
Cristalinidad:	Hipohialino							
	1		Comp	osición mineralógio	ca	Matria		
		Minerales principales		Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Microcristal % (<1 mm) %	TOTAL EN ROCA %	
		Plagioclasa		0	0	58	58	
		Cuarzo		0	0	1	1	
		Feldespato potásico		0	0		0	
		Piroxeno (augita)		0	11	7	18	
		Calcita		3	0		3	
				6	0	0	6	
		Zircón		0	0	0	0	
		Minerales de alteració	ı	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	L Ű		
		Clorita (Px)		8	0	0	8	
		Calcita		1	0	0	1	
		öxidos de hierro		6	0	0	<1	
	N	Ainerales de introducció	ón					
			Vidrio vo	olcánico			5	
						Total	100	
			Composic	ion mineral norma	lizada			
Mine	eral	Porcentaje (%)						
Plagio	clasa	98		Clasificad	ción modal	Bas	alto	
Cuar	rzo	2						
Feldespato	o potásico	0		Según Streckeisen, 1976				
Tot		100						

Plagioclasa (PI): Textura bimodal de plagioclasas euhedrales a subhedrales, tabulares. Presenta dos tamaños, el predominante de 0.5 mm y otro secundario hasta de 1 mm. Todos los cristales tienen el núcleo alterado a minerales arcillosos (caolinita) y sericita.

Cuarzo (Qz): Cristales rotos, anhedrales, subredondeados.

Piroxenos (Px): Cristales prismáticos cortos, subhedrales, facturados, con macla de augita. Presenta dos tamaños, el predominante hasta de 1.5 mm y el secundario de 0.75 mm. Pseudomorfos de piroxeno (Pse): Cristales anhedrales, muy corto con rellenos de opacos (Óxidos de hierro?). Color verde muy pleocoroico y tonos bajos de birrefringencia de gris a violeta. Presentes en dos tamaños, el predominante de 0.75 mm y el secundario de 1.5 mm. Presentan coronas gruesas de óxidos de hierro. Distribuidos en la roca. Alterados a clorita y ocasionalmente a calcita.

Minerales opacos (Opq): Rellenando fracturas de pseudomorfos y como coronas de ellos. Diseminado en la roca. Cristales anhedrales.

Descripción de minerales de alteración o secundarios

Cloritas con buenos planos de exfoliación, muy pleocroicas como alteración de piroxenos.

Parches distribuidos aleatoriamente en la roca de calcitas anhedrales.

Observaciones

	Desc	cripción Pet	rográfica	Muestra	s en Secci	ón Delga	da				
Localización											
Código N	Auestra:	18-HF-26	Uni	idad:	r	Localidad:	Vía El Playón-Vereda Matecaña				
Coordenadas I	Este (MAGNA)	1.084.893	Coordenadas N	Norte (MAGNA):	1.328.568	Departamento:	Norte de Santander				
			Descripe	ción Macroscópica							
Tipo de roca: Volcán Descripción muestr sectores se observa fina blanca. Color: Gris a blanco Tamaño relativo de	nica a: Roca porfirítica c a textura incipiente p los cristales: Inequi	con feldespatos alterado porfirítica de cristales de igranular	s a caolín. En Pl y Qz en matriz								
			Descrip	ción Microscópica							
Textura:	Porfirítica										
Otras texturas: Cristalinidad:	Otras texturas:Glomeroporfirítica: Agregados de feldespato y cuarzo, y feldespato con plagioclasa. Poiquilítca: Inclusiones de minerales opacos en pseudomorfos de piroxenos. Coronas de opacitización: Coronas de minerales opacos alrededor de feldespatos.Cristalinidad:Hipohialino										
				Eenocristal	Microfopocristal	Matriz					
		Minerales principales		(> 2 com) of		Microcristal %	TOTAL EN ROCA %				
		Plagioclasa		(≥ 2mm) %	(2-1 mm) %	(<1 mm) %	10				
		Cuarzo		0	4	2	2				
		Feldespato potásico		13	8	0	21				
		Minerales accesorios				, , , , , , , , , , , , , , , , , , ,					
1		Epidota		0	0	<1	0				
1		Minerales de alteración									
		Cuarzo secundario		0	0	24	24				
	ז	Minerales de introducció	'n								
		Hematite		0	0	3	3				
		Clorita		0	0	5	5				
			Vidrio vo	Icánico			35				
						Total	100				
			Composició	n mineral normaliza	ada						
Min	eral	Porcentaie (%)									
Plagic	oclasa	30									
riagio Cuia	rzo	6		Clasificación modal Cuarzotraquita			traquita				
Feldespate	o potásico	64					1070				
To	tal	100		Se	egun	Streckei	sen, 1976				

Descripción de minerales

Plagioclasa (PI): Cristales subhedrales tabulares, con macla polisintética muy fina junto con macla de Carlsbad. Presentan textura fibrosa por alteración. Los cristales se encuentran rotos, algunos con caolinita de alteración.

Feldespato potásico (Fsp): Cristales subhedrales a anhedrales, textura fibrosa, presentan inclusiones de microcristales de plagioclasa. Presentan bordes de disolución. Presentan texturas glomeroporfirítica de feldespato junto con cuarzo o con plagioclasa. Algunos cristales se encuentran rotos y desplazados, con coronas de minerales opacos.

Cuarzo (Qz): Cristales subhedrales a euhedrales, prismáticos cortos. Se encuentran como cristales aislados o en agregados de cristales de cuarzo. Contacto entre cristales neto, presentan extinción ondulante.

Opacos (Opq): Cristales anhedrales aleatorios en la matriz y rellenando microfracturas.

Descripción de minerales de alteración o secundarios

Roca con moderado a alto microfracturamiento. Vetillas rellenas de hematite, clorita (Chl) y epidota.

Hematite (Hem): Mineral rojo parcialmente traslúcido.

Epidota (Ep): Cristales euhedrales, presentes en las microvetillas.

Observaciones

Matriz desvitrificada y por sectores con silicificación.

Registro fotográfico

Microfotografía de la textura general de la roca. Fenocristales de plagioclasa y feldespatos y microcristales de cuarzo en matriz desvitrificada y con silicificación parcialmente. 2X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada										
	Localización									
Código N	luestra:	18-HF-34	Uni	dad:	Jnpe	Localidad:	Vía Tiquisio-No	orosí		
Coordenadas E	ste (MAGNA)	986.600	Coordenadas N	lorte (MAGNA):	1.437.865	Departamento:	Bolívar			
			Descrip	ción Macroscópica						
Tipo de roca: Volcán Descripción muestra matriz vítrea Color: Gris verde Tamaño relativo de l	ica 1: Roca porfirítica c los cristales: Inequi	con plagioclasas alterad igranular	as a clorita, en		a a a a a a a a a a a a a a a a a a a					
			Descrin	ción Microscónica						
Textura:	Porfirítica		Descrip							
Otras texturas:	Glomeroporfirítica: Agregados de plagioclasa, piroxenos y opacos. Poiquilítca: Inclusiones de epidota en piroxenos. Coronas de alteración de calcita en piroxenos.									
Cristalinidad:	Cristalinidad: Hipocristalino									
Composición mineralógica										
		Minerales principales		Fenocristal (≥ 2mm) %	Microfenocristal (2-1 mm) %	Matriz Microcristal % (<1 mm) %	TOTAL EN ROCA %			
		Plagioclasa		13	3	6	22			
		Cuarzo		0	0	0	0			
		Feldespato potásico		0	0	0	0			
		Clinopiroxeno		0	3	1	4			
		Opacos		0	0	3	3			
		Winerales accesorios			0	2	2			
		Apatito		0	0	3	3			
		Minerales de alteración	1	0	0	Ţ	<u> </u>			
		Clorita (piroxeno)		0	0	7	7			
		llita		0	0	1	1			
		Calcita (piroxenos)		0	0	1	1			
	N	linerales de introduccio	ón				·			
		Epidota		0	0	1	1			
			Vidrio vo	olcánico			57			
						Total	100			
			6	n mineral nerve t	a.d.a					
DAtes	aral	Porcentais (0/)	Composició	n mineral normaliz	aud					
IVIIne	i di	Porcentaje (%)								
Plagio		100		Clasificac	ión modal	Andesita				
Eeldespate	notásico	0								
Tot	al	100		Se	gún	Streckei	sen, 1976			
		100	1							

Descripción de minerales

Plagioclasa (PI): Cristales subhedrales tabulares, con macla de Carlsbad. Presentan textura fibrosa por alteración. Los cristales tienen bordes redondeados y parcialmente alterados a ilita.

Pseudomorfos de piroxeno (Pse): Cristales subhedrales a anhedrales. Presentan macla de augita. Contienen abundantes inclusiones de epidota. Algunos con coronas de alteración a calcita. Intensamente fracturados, con rellenos de clorita.

Opacos (Opq): Cristales anhedrales a subhedrales cúbicos, en agregados con pseudomorfos de piroxenos y rellenando microfracturas.

Apatito (Ap): Cristales diminutos euhedrales a subhedrales distribuidos aleatoriamente en la roca. Cristales accesorio.

Descripción de minerales de alteración o secundarios

Roca con moderado microfracturamiento. Vetillas rellenas de opacos.

Clorita (Chl): Cristales subhedrales., fibrosos, bien desarrollados, se encuentran como alteración de piroxenos.

Epidota (Ep): Cristales subhedrales, presentes como inclusiones de piroxenos y frecuentemente acompañados de clorita.

Calcita (Ca): Cristales anhedrales, alrededor de algunos cristales de piroxenos alterados a clorita.

Observaciones

Roca con moderada alteración hidrotermal propilitica (Ep, Ca, Ilita)

Registro fotográfico

Microfotografía de la textura glomeroporfirítica de pseudomorfos de piroxenos y plagioclasas. Piroxeno (clinopiroxeno augita) completamente reemplazado a clorita y epidota. Opacos asociados a piroxenos. Plagioclasas alteradas a ilita. 2X, PPL y XPL.

Descripción Petrográfica Muestras en Sección Delgada										
				Localización						
Código N	luestra:	18-HF-40	Uni	dad:	Jncp	Localidad:	Vía La Plaza-N	lorales		
Coordenadas E	ste (MAGNA)	1.013.598	Coordenadas N	lorte (MAGNA):	1.418.147	Departamento:	Bolívar			
			Descrij	pción Macroscópica	а					
Tipo de roca: Volcánica Descripción muestra: Roca porfirítica. Color: Gris Tamaño relativo de los cristales: Inequigranular										
			Descri	nción Microscónica						
Textura:	Porfirítica		200011							
Otras texturas:	s texturas: Glomeroporfirítica de plagioclasas y anfíboles. Poiquilítca: Inclusiones de epidota en plagioclasas. Coronas de minerales opacos alrededor de anfíboles. Pseudomorfos de anfíboles reemplazados por minerales opacos.									
Cristalinidad: Hipohialino										
	I		Compo	osición mineralógic	а					
		Minerales principale	s	Fenocristal	Microfenocristal	Matriz Microcristal %	TOTAL EN ROCA %			
				(≥ 2mm) %	(2-1 mm) %	(<1 mm) %				
		Plagioclasa		14	4	3	21			
		Eeldospato potásico		10	2	5	17			
		Piroxeno		0	0	0	2			
		Anfíbol		0	7	3	10			
		Opacos		0	0	5	5			
		Minerales accesorios	5							
		Epidota		0	0	<1	<1			
	r	Minerales de alteració	ón				•			
		Sericita		0	0	6	6			
		Clorita		0	0	1	1			
		llita		0	0	2	2			
		Óxidos		0	0	2	2			
	M	linerales de introducc	ión							
		Calcita		0	0	1	1			
		Calcedonia (2)		0	0	1				
		Calcedonia (!)	Vidrio v	olcánico	0	~1	32			
						Total	100			
			Composicio	ón mineral normali	izada					
Mine	eral	Porcentaje (%)								
Plagio	clasa	53		Clasificad	ción modal	Da	cita			
Ealdocasta	rzo	43								
Tot		5 100		Se	egún	Streckei	sen, 1976			
			J							

Plagioclasa (Pl): Cristales euhedrales a subhedrales, tabulares, con macla de Carlsbad y polisintética. Cristales con microvetillas rellenas de minerales opacos. Bordes subredondeados y corroídos. Presentan fuerte alteración a sericita e ilita, parcialmente reemplazados a calcita. Contienen inclusiones de epidota. En agregados entre plagioclasas y anfíboles.

Descripción de minerales

Cuarzo (Qz): Cristales subhedrales a anhedrales. Cristales rotos. Con bordes y bahías de corrosión. Algunos contienen microvetillas con rellenos de sílice criptocristalina. Cristales con patinas de oxidación.

Ortoanfíboles: Cristales subhedrales a anhedrales, verdes muy pleocroicos, presentan reemplazamiento parcial y coronas de minerales opacos y rojos traslúcidos (hematita) y carbonatos. Presentan alteración a clorita y por sectores a epidota.

Zircón: Cristales subhedrales, diminutos.

Opacos: Cristales anhedrales dentro de la matriz. Otros como alteración de anfíboles, parcial o completamente reemplazándolos.

Descripción de minerales de alteración o secundarios

Epidota: Cristales anhedrales, diminutos, como alteración en anfíboles.

Amígdulas rellenas de cuarzo con textura diente de perro, bordes de calcedonia (?), y cristales anhedrales microcristalinos de calcita (Cal). No se tiene certeza de la presencia de calcedonia, también podria tratarse de devitrificación.

En la matriz se encuentran parches de calcita anhedral, en algunos sectores en contacto con epidota de alteración de anfíboles.

Observaciones

Roca con intensa alteración. Cristales fracturados, con bordes corroídos. Matriz parcialmente silicificada.

Registro fotográfico

Microfotografía de la textura general de la roca. Fenocristales de plagioclasas con textura moteada y microcristales de sericita en el núcleo. 2X, PPL y XPL.

Detalle de amígdula rellena de cuarzo y calcita. Anfíbol con minerales opacos en los planos de exfoliación y alterados a clorita. Fenocristal de cuarzo roto. 4X, PPL y XPL.

	Descripción Petrográfica Muestras en Sección Delgada										
Localización											
Código N	luestra:	16SLAZ-1	Unida	d:	Jnha	Localidad:	Vía Arenal-Quebra	ada Chiquillo			
Coordenadas E	ste (MAGNA)	1.002.981	Coordenadas Noi	rte (MAGNA):	1.419.344	Departamento:	Bolíva	r			
			Descri	pción Macroscópica							
Tipo de roca: Plutón Descripción muestra variación de tamaño Color: Gris claro. Tamaño relativo de	ica a: Cuerpo intrusivo o de grano grueso a los cristales: Equigr	o, grano grueso, cl a fino. ranular	orítizado con								
			Descri	pción Microscópica							
Textura:	Roca fanerítica, in	nequigranular de g	rano grueso.								
Otras texturas:	Cumulofírica de cu Agregados de plag Poiquilítica de inc	ristales de ortoan gioclasas tabulare lusiones de edpid	fíboles, plagioclasas, pi s rodeando cristales su ota dentro de anfíboles	roxenos, opacos. bhedrales de piroxe s.	nos.						
Cristalinidad:	Holocristalino										
	Composición	mineralógica			Composic	ión mineral normali	zada				
Mir	nerales principales		Total en roca %		Mir	neral	Porcentaje (%)				
	Plagioclasa		44		Plagioclasa		70				
Fe	ldespato potásico		9		Feldespat	to potásico	14				
	Cuarzo		10		Cu	arzo	16				
	Piroxeno		4		Тс	otal	100				
	Anfíbol		17					-			
	Opacos		7								
	Epidota		2		Clasifiaa	i é un a da l		a nita			
Mi	nerales accesorios				Clasificad	cion modal	Cuarzo monz	onita			
	Zircón		<1		5.		Strockoison	1976			
	Apatito		2		Se			1370			
Mine	erales de alteració	n									
	Clorita		5								
Miner	ales de introduccio	ón									
			0								
			100								

Descripción de minerales

Plagioclasa (PI): Cristales euhedrales con macla combinada de Carlsbad con periclina. Cuarzo (Qz): Microcristales euhedrales, cristales individuales y en agregados.

Feldespato potásico (Fsp): Cristales subhedrales, textura moteada, con alteración a caolinita y sericita en el centro de los cristales.

Anfíbol (Amp): Cristales pleocroicos de café a verde. Presentan coronas de opatización. Contienen inclusiones de cristales de epidota

Piroxenos (Px): Cristales inequigranulares, presentan dos tamaños, los mayores son fenocristales con tonos de birrefringencia de tonos grises, mientras que los microcristales tienen tonos altos.

Minerales opacos (Opq): Cristales subhedrales a euhedrales cúbicos, probablemente pirita (Py).

Zircón (Zr): Diminutos cristales euhedrales.

Apatito (Ap): Cristales euhedrales, en agregados.

Descripción de minerales de alteración

Clorita (Chl): Cristales euhedrales, bien desarrollados, en los núcleos de los anfíboles como alteración de ellos.

Epidota (Ep): Como inclusiones dentro de anfíboles

	Descr	ipción l	Petrográfica	a Muestra	is en Secc	ión Delga	da		
Localización									
Código N	/uestra:	16SLAZ-21	Unida	d:	Jned	Localidad:	Vía La Plaza-N	۸orales	
Coordenadas E	Este (MAGNA)	1.009.495	Coordenadas Nor	rte (MAGNA):	1.417.966	Departamento:	Bolíva	r	
			Descrip	oción Macroscópica					
	Descripción mu	iestra: Intrusivo,	Tipo fanerítica, tamaño de g Co Tamaño relativo	de roca: Plutónica rano muy grueso co plor: Gris claro. de los cristales: Equ	n abundancia de pla Jigranular	agioclasa y pirita dis	eminada.		
			Descri	pción Microscópica					
Textura: Roca fanerítica, inequigranular de grano grueso.									
Otras texturas: Subofítica: Inclusiones de piroxenos dentro de plagioclasas.									
Cristalinidad:	Holocristalino								
	Composición	mineralógica			Composici	ión mineral normali	zada		
Mi	nerales principales		Total en roca %		Mineral		Porcentaje (%)		
	Plagioclasa		43		Plagic	oclasa	72		
Fe	ldespato potásico		6		Feldespat	o potásico	10		
	Cuarzo		11		Cua	arzo	18		
	Piroxeno		10		То	tal	100		
	Anfíbol		16						
	Opacos		8						
Mi	nerales accesorios				Clasificaci	ión modal	Cuarzo monz	onita	
			0						
Min	erales de alteraciór	ו			Sei	gún	Streckeisen.	1976	
	Clorita		6			5			
Mine	rales de introducció	ón							
			0						
			100						
			Descri	pcion de minerales					
Plagioclasa (PI): Cristales euhedrales con macla combinada de Carlsbad con periclina. Algunos cristales contiene Sericita en el núcleo. Cuarzo (Qz): Cristales limpios, algunos con ligeras coronas de alteración, presentan inclusiones de microcristales de anfíboles. Feldespato potásico (Fsp): Cristales subhedrales, textura moteada, con alteración a caolinita y sericita en el centro de los cristales. Algunos fenocristales con inclusiones de piroxenos. Ortoanfíbol (Amp): Cristales pleocroicos de café a verde. Fuerte alteración a clorita y opacos. Extinción recta. Piroxenos (Px): Cristales inequigranulares, contienen macla de augita. En agregados junto con plagioclasas. Minerales opacos (Opq): Cristales subhedrales a cúbicos y tabulares, probablemente pirita (Py).									
			Descripción d	le minerales de alte	ración				

Clorita (Chl): Cristales euhedrales, bien desarrollados, en los núcleos de los anfíboles como alteración de ellos.

	Descr	ipción P	etrográfica	a Muestra	s en Seco	ción Delga	da	
				Localización				
Código N	/uestra:	16SLAZ-24	Unida	ad:	Jned	Localidad:	Vía La Plaza-I	Morales
Coordenadas I	Este (MAGNA)	1.011.055	Coordenadas No	rte (MAGNA):	1.418.058	Departamento:	Bolíva	r
			Descri	pción Macroscópica				
			Tipo Descripción muest Tamaño relativo	de roca: Plutónica ra: Roca fanerítica d Color: Rosada de los cristales: Inec	e grano fino. quigranular			
			Descr	ipción Microscópica				
Textura: Roca fanerítica, inequigranular.								
Otras texturas: Poiquilítica: Inclusiones de apatito y epidota en plagioclasas. Cumulofírica: Agregados de anfíboles, cloritas y/o piroxenos.								
Cristalinidad:	Holocristalino							
Composición mineralógica Composición mineral normalizada								
Mi	nerales principales		Total en roca %		Mir	neral	Porcentaje (%)	
	Plagioclasa		25		Plagi	oclasa	35	
Fe	ldespato potásico		15		Feldespat	o potásico	21	
	Cuarzo		31		Cuarzo		44	
	Piroxeno		2		Total		100	
	Anfíbol		7					
	Clorita		10					
	Opacos		2		Clasificad	ión modal	Monzograr	nito
	Epidota		1					
Mi	nerales accesorios				Se	gún	Streckeisen,	1976
	Apatito		1					
Min	erales de alteraciór	ו		-				
	Sericita		4	-				
	Epidota		2	-				
Mine	rales de introducció	ón	100					
			Descr	ipción de minerales				
Plagioclasa (Pl): Cris	tales subhedrales, o	con bordes irregu	ılares. Presenta bahías	de corrosión. Crista	les intensamente a	lterados a sericita. A	lgunos cristales con	macla de

microfenocristales, solo unos cuantos como fenocristales. en algunos cristales inclusiones de agregados de epidota anhedral microcristalina.

Cuarzo (Qz): Microcristales euhedrales, cristales individuales y en agregados. Presentes como microcristales.

Feldespato potásico (FK): Cristales subhedrales, ligeramente alterados a sericita. Presentan bahías de corrosión. Presentes como microfenocristales.

Ortoanfíbol (Amp): Microcristales con fuerte pleocroísmo. Cristales individuales y en agregados. La mayoría ligeramente alterados a clorita. Algunos de ellos tienen crecimiento de agregados de microcristales anhedrales de epidota. Por sectores se observan agregados de anfíboles rodeados por clorita, junto con piroxeno. Piroxenos (Px): Cristales subhedrales, fuertemente fracturados. En agregados con clorita y anfíboles.

Cloritas (Chl): Cristales euhedrales a subhedrales, primarias, de grano medio. En agregados junto con anfíboles, y escasamente con piroxenos. Dentro de los agregados minerales opacos anhedrales rellenando espacios o rodeando los cristales. En algunos cristales individuales o en agregados se observa crecimiento de minerales

anhedrales de carbonatos como reemplazamiento de cloritas.

Epidota: Cristales de grano medio, primarias, subhedrales.

Minerales opacos (Opq): Cristales subhedrales a cúbicos y tabulares.

Descripción de minerales de alteración

Epidota: Se distingue de los cristales primarios porque esta como reemplazamiento de anfíboles y plagioclasas, en agregados microcristalinos anhedrales, asociada con

clorita.

Carbonatos: Como alteración de anfíboles, cristales anhedrales, en agregados.

	Descr	ipción F	Petrográfica	a Muestra	s en Sec	ción Delga	ada	
				Localización				
Código N	Auestra:	16SLAZ-25	Unida	ıd:	Jned	Localidad:	Vía La Plaza-I	Morales
Coordenadas	Este (MAGNA)	1.012.073	Coordenadas No	rte (MAGNA):	1.418.001	Departamento:	Bolíva	r
			Descri	pción Macroscópica				
			Tipo Descripción muest Tamaño relativo	de roca: Plutónica ra: Roca fanerítica de Color: Gris de los cristales: Ineq	e grano fino. uigranular			
	1		Descri	pción Microscópica				
Textura:	Roca fanerítica, in	nequigranular.						
Otras texturas: Plagioclasas con coronas de alteración a caolinita y sericita. Agregados de piroxenos, anfíboles, plagioclasa y cloritas.								
Cristalinidad:	Holocristalino							
Composición mineralógica Composición mineral normalizada								
Minerales principales Total en roca %				Mineral		Porcentaje (%)		
	Plagioclasa		32		Plagioclasa		48	
Fe	eldespato potásico		15		Feldespa	to potásico	23	
	Cuarzo		19		Cuarzo		29	
	Piroxeno		7	ļ	Total		100	
	Anfíbol		12					
	Opacos		5	 			•	
	Clorita		2		Clasifica	ción modal	Granodior	ita
	Epidota		3					
M	inerales accesorios				Se	egún	Streckeisen,	1976
Ddia	oralas da altarasiá	n	0	l l				
IVIII			1					
	Caolinita		1					
Mine		ón	0					
			100					
			Descr	ipción de minerales				
Plagioclasa (Pl): Tex periclina, con coror	tura bimodal de pla nas de alteración a c	agioclasas euhedr caolinita y sericita	ales, predominanteme	nte microfenocristal	es y algunas como	fenocristales. Prese	ntan macla de Carlst	oad y

Cuarzo (Qz): Microcristales euhedrales, cristales individuales y en agregados.

Feldespato potásico (Fsp): Cristales subhedrales, textura moteada por alteración a caolinita.

Ortoanfíbol (Amp): Microcristales con fuerte pleocroísmo. Cristales individuales y en agregados con piroxenos y cloritas. con inclusiones de minerales opacos

Piroxenos (Px): Dos tamaños de cristales, unos como microfenocristales y la mayoría como microcristales. Presentan macla de augita, en agregados con plagioclasas. y/o anfíboles

Cloritas (Chl): Cristales euhedrales a subhedrales, primarias, de grano medio. Algunos microcristales anhedrales dentro de plagioclasas.

Epidota (Ep): Cristales de grano medio, primarias, subhedrales.

/inerales opacos (Opq): Cristales subhedrales a cúbicos y tabulares.						
Descripción de minerales de alteración						
Microvetilla rellena de epidota, clorita y cuarzo secundario.						
Observaciones						

Descripción Petrográfica Muestras en Sección Delgada									
Localización									
Código N	/uestra:	18-HF-36	Unida	d:	Jned	Localidad:	Vía La Plaza-	Morales	
Coordenadas I	Este (MAGNA)	1.006.565	Coordenadas No	rte (MAGNA):	1.418.001	Departamento:	Bolíva	ır	
			Descri	pción Macroscópica					
Tipo de roca: Plutór Descripción muestr Color: Gris Tamaño relativo de	nica a: Roca porfirítica o los cristales: Inequ	de grano medio Jigranular							
			Doscri	nción Microccónica					
Toxtura	Roca faperítica ju	nequigranular	Descri						
Otras texturas:	Poiquilítca: Inclus Glomeroporfirític	siones de epidota ca: Agregados de p	diminutos en plagioclas piroxenos con epidotas	as y en cloritas prin y opacos con clorita	narias. Inclusiones d 1.	de diminutos cristale	s de piroxeno en pla	agioclasas.	
Cristalinidad: Holocristalino									
	Composició	n mineralógica			Composio	ción mineral normali	zada		
Mi	nerales principales	5	Total en roca %		Mi	neral	Porcentaje (%)		
	Plagioclasa		51		Plagi	oclasa	65		
Fe	eldespato potásico		8		Feldespa	to potásico	10	-	
	Cuarzo		20		Cu	arzo	25	-	
	Piroxeno		6		Т	otal	100		
			0						
	Epidota		3				[
	Clorita		9		Clasificad	ción modal	Granodior	rita	
Mi	inerales accesorios								
			0		Se	egún	Streckeisen,	1976	
Min	erales de alteració	'n							
	Sericita		<1						
Mine	rales de introducci	ión							
			0						
			100						
			Descri	pción de minerales					
Plagioclasa (Pl): Tex cristales tienen el m inclusiones de epido Feldespato potásico Cuarzo (Qz): Cristalo Piroxenos (Px): Cristal epidotas en textura Clorita (Chl): Cristal Epidota (Ep): Cristal Minerales opacos (tura bimodal de pl nacla de Carlsbad, o ota. o (Fsp): Cristales an es anhedrales. tales prismáticos co Glomeroporfirítica es euhedrales, bier les euhedrales prin Opq): Cristales anh	agioclasas euhedr con abundantes in hedrales, con bor ortos, subhedrales a. n desarrollados, m narios, distribuido edrales, distribuido	ales, tabulares. Present clusiones de clorita bie des redondeados. Algu s, facturados, con macla nuy pleocroicos. Tonos o s en la roca. os en la roca y algunos	a dos tamaños, el p n desarrollada. Algu nos cristales con ind a de augita, extinció de extinción anómal en textura Glomero	redominante de 0. nos cristales ligeral clusiones de clorita n recta. Ligerament os. Presentan inclu	5 mm y otro secunda mente alterados a se . De tamaño 0.5 mm te alterado a clorita. siones de epidota. ita.	rio hasta de 1 mm. ricita. Escasos crista Algunos acompaña	Todos los ales con dos con	
			Descripción o	le minerales de alte	eración				
		D	iminutos cristales de se	ricita como alteraci	ón de plagioclasas.				
				Observaciones					

		-		Localización		-		
Código N	Auestra:	18-HF-37	Unida	ad:	Jned	Localidad:	Vía La Plaza-	Morales
Coordenadas	Este (MAGNA)	1.010.751	Coordenadas No	rte (MAGNA):	1.418.025	Departamento:	Bolíva	ir
			Descri	pción Macroscópica		• · · · · · · · · · · · · · · · · · · ·		
Γipo de roca: Plutór Descripción muestr Color: Gris Γamaño relativo de	າica a: Roca porfirítica c los cristales: Inequ	de grano medio Iigranular		8				
	1		Descri	ipción Microscópica				
Textura:	Roca fanerítica, ir	nequigranular.						
Otras texturas:	Pseudomortos de Bahías de alteraci Textura glomeror Coronas de opaco Poiquilítca: Inclus	 anfíboles reempla ión en plagioclasas porfirítica de piroxe os en piroxenos. siones de epidota e 	azados a clorita ; enos, plagioclasa y cloi en cloritas, plagioclasa	rita. y calcita.				
Cristalinidad:	Holocristalino							
	Composiciór	n mineralógica		Composición mineral normalizada				
Mi	nerales principales	\$	Total en roca %		Mi	neral	Porcentaje (%)	
	Plagioclasa		53	1	Plag	ioclasa	68	1
Fe	Idespato potásico		9	1	Feldespa	to potásico	12	1
	Cuarzo		16	1	Cu	iarzo	21	1
	Piroxeno		6	1	Т	otal	100	1
	Anfíbol		0	1 -				1
	Opacos		1	1				
	Epidota		2	1	Clasifica	ción modal	Granodior	rita
				1				
IVII	nerales accesorios		0	4	Se	egún	Streckeisen,	1976
	erales de alteració	-	0					
Min		in i						
Min	Soricita		1	4				
Min	Sericita		1	-				
Min	Sericita Clorita		1 10 2					

	0									
	100									
Descripción de minerales										
Plagioclasa (PI): Textura bimodal de plagioclasas subhedrales, ta	abulares, bordes r	edondeados. Macla de Carlsbad. Presentan dos tamaños, el predominante de 0.5 mm y								
otro secundario hasta de 0.2 mm. Presentan bahías de alteració	on. Intensa alterac	ión a minerales arcillosos.								
Feldespato potásico (Fsp): Cristales subhedrales, bordes redond	leados. fracturadc	os y alterados intensamente a caolinita. Algunos cristales contienen inclusiones de								
piroxenos diminutos.										
Cuarzo (Oz): Pequeños cristales rotos de 0.25mm, anhedrales, d	listribuidos aleato	riamente.								
Piroxenos (Px): Cristales euhedrales a subhedrales, muy fractura	ados. Tienen macl	a de augita. Presentan dos tamaños, el predominante de 0.5 mm y el secundario de 1.4								
mm. Se encuentran en textura glomeroporfirítica de piroxenos.	plagioclasa v clor									
Clorita (Chl): Cristales euhedrales, bien desarrollados, muy pleo	croicos. Tonos de	extinción anómalos. Presentan inclusiones de epidota.								
Epidota (Ep): Cristales subhedrales a anhedrales dentro de clorit	tas, plagioclasas o	calcita v junto con clorita.								
Minerales onacos (Ong): Cristales anhedrales Diseminado en la	-più da (Ep). Cristales subledrales a anneurales dentro de ciontas, plagioclasas o caleità y junto con cionta. Minerales onacos (Ong): Cristales anhedrales. Diseminado en la roca y como coronas de pirovenos.									
winerales opacos (opq). cristales annearaies. Diseminado en la										
	Descripción de	minerales de alteración								

Parches de calcita anhedrales distribuido aleatoriamente.

Descripción Petrográfica Muestras en Sección Delgada										
				Localización						
Código N	/uestra:	18-HF-1	Uni	dad:	Jncp	Localidad:	Via aguachica-Bombeadero			
Coordenadas I	Este (MAGNA)	1.058.975	Coordenadas N	lorte (MAGNA):	1.422.249	Departamento:	César			
			De	scripción Macroscóp	ica					
Tipo de roca: Sedim Afloramiento: Expu Color: Gris-amarilla Laminación: Plano p Grado de meteoriza	entaria terrígena lesta en capas de 30 paralela ación: Bajo	0 a 60 cm, ondul	osas.							
			De	scripción Microscóp	ica					
Textura:	Granosoportada Tamaño de grano promedio: Arena fina Rango de tamaños: 0.25 a 0.15 mm Textura: Selección: Muy bien seleccionada Redondez promedio: Subredondeado Esfericidad promedio: Subprismático Madurez textural: Madura									
	Composición m	nineralógica-Tan	naño de grano							
	Terrígenos		Total en roca %	Tamaño promedio (mm) 0.25		Clasificación Textural	Arenita de grano fino			
	Feldespato		28	0,15		Según	Folk 1954			
	<u>Micas</u>		4	0,15		Jegun	1018, 1994			
	Zircón		<1	0,25						
	Matriz arcillosa		1			Clasificación Composicional	Arenita feldespática			
	Líticos		Total en roca %			Según	Pettijohn et al. 1973			
	Volcánicos		2			Jegun				
	Intrusivos		0	0.25						
	Metamorneos		100	0,25						
			Des	cripción de minerale	25					
Cuarzo (Qz): Cristale Plagioclasas (Pl): Su Feldespatos potásic Biotita (Bt): Subhed	es elongados, borde bhedrales a subredo os (Fsp): Cristales a rales, ligeramente p	s recristalizados ondeadas, con m nhedrales, textu llegadas, como p	, contienen inclusio acla de periclina y ra sieve, con inclusi arte del armazón.	nes fluidas. polisintética, ligeram ones de muscovita.	ente alterados a m	inerales arcillosos.				

Muscovitas (Ms): Euhedrales, como parte del armazón y en inclusiones de Fsp.

Zircón (Zrn): Subhedrales a anhedrales.

Líticos metamórficos (LitM): Correspondiente a cuarcitas, fragmentos elongados y angulares, con cristales de cuarzo de grano fino. Líticos volcánicos (LitV): Fragmento angulosos afaníticos. Alterados a sericita.

Observaciones

Contiene vetillas secundarias de calcita (Cal).

				Localización			
Código Muestra: 18-		18-HF-04	3-HF-04 Unidad:		Jncp	Localidad:	Vía Aguachica-Marinil
Coordenadas Este (MAGNA) 1.057.9		1.057.996	Coordenadas Norte (MAGNA):		1.426.016	Departamento:	César
			De	scripción Macroscóp	ica	<u> </u>	
							No. Station
po de roca: Sedime foramiento: Alterna ranocrecientes de g e 0.8 a 1 m de espes 60 cm ondulosas. olor: Gris-amarilla aminación: Plano pa rado de meteorizac	entaria terrígena ancia de capas gru rano medio hasta sor, con geometría aralela ción: Bajo	Jesas de litoareni arenitas conglon a tabular, expues	tas neráticas. Capas ta en capas de 30		14 0 1:0000 METRIC 30 40 50 50 50 50 50 50 50 50 50 5		
			De	scripción Microscópi	ica		
	~	•	, 0				
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad prome Madurez textural:	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura	da ado I				
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad prome Madurez textural: Composición n	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado I 1año de grano				
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad prome Madurez textural: Composición n Terrígenos	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado I naño de grano Total en roca %	Tamaño promedio (mm)		Clasificación Textural	Arenita muy gruesa
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad prome Madurez textural: Composición n Terrígenos Cuarzo Feldespato	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado I naño de grano Total en roca % 20 12	Tamaño promedio (mm) 1 0,75		Clasificación Textural Según	Arenita muy gruesa
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad prome Madurez textural: Composición n Terrígenos Cuarzo Feldespato Micas	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado l naño de grano Total en roca % 20 12 4	Tamaño promedio (mm) 1 0,75 0,5 <0 004		Clasificación Textural Según	Arenita muy gruesa Folk, 1954
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad promeo Madurez textural: Composición n Terrígenos Cuarzo Feldespato Micas Calcita Zircón Matriz arcillosa	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado I naño de grano Total en roca % 20 12 4 5 13 13 12	Tamaño promedio (mm) 1 0,75 0,5 <0.004		Clasificación Textural Según Clasificación	Arenita muy gruesa Folk, 1954 Arenita lítica
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad promeo Madurez textural: Composición n Terrígenos Cuarzo Feldespato Micas Calcita Zircón Matriz arcillosa	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado I naño de grano Total en roca % 20 12 4 5 13 13 12	Tamaño promedio (mm) 1 0,75 0,5 <0.004		Clasificación Textural Según Clasificación Composicional	Arenita muy gruesa Folk, 1954 Arenita lítica
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad promeo Madurez textural: Composición n Terrígenos Cuarzo Feldespato Micas Calcita Zircón Matriz arcillosa Líticos Volcánicos	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado l naño de grano Total en roca % 20 12 4 5 13 12 12 12 7 Total en roca % 20	Tamaño promedio (mm) 1 0,75 0,5 <0.004		Clasificación Textural Según Clasificación Composicional Según	Arenita muy gruesa Folk, 1954 Arenita lítica Pettijohn et al., 1973
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad promeo Madurez textural: Composición n Cuarzo Feldespato Micas Calcita Zircón Matriz arcillosa Líticos Volcánicos Intrusivos	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado l naño de grano Total en roca % 20 12 4 5 13 12 12 Total en roca % 20 10	Tamaño promedio (mm) 1 0,75 0,5 <0.004		Clasificación Textural Según Clasificación Composicional Según	Arenita muy gruesa Folk, 1954 Arenita lítica Pettijohn et al., 1973
Textura:	Rango de tamaño Selección: Pobren Redondez promeo Esfericidad promeo Madurez textural: Composición n Terrígenos Cuarzo Feldespato Micas Calcita Zircón Matriz arcillosa Líticos Volcánicos Intrusivos Metamórficos	s: 0.3 a 2 mm nente selecciona dio: Subredondea edio: Subdiscoida : Inmadura nineralógica-Tan	da ado l Total en roca % 20 12 4 5 13 12 12 Total en roca % 20 10 4 10 4 100	Tamaño promedio (mm) 1 0,75 0,5 <0.004		Clasificación Textural Según Clasificación Composicional Según	Arenita muy gruesa Folk, 1954 Arenita lítica Pettijohn et al., 1973

Líticos intrusivos (Litl): Líticos holocristalinos de plagioclasas equigranulares, otros de cuarzo y plagioclasas, y otros de plagioclasa y feldespato potásico.

Líticos volcánicos (LitV): Fragmento Subredondeado, porfiríticos, compuestos por microcristales de plagioclasa y cuarzo en matriz vítrea. Alterados a sericita (?) con escasas inclusiones de diminutos cristales de carbonatos.

Líticos metamórficos (LitM): Correspondiente a cuarcitas, fragmentos elongados y angulares, con cristales de cuarzo de grano fino orientados.

Observaciones

Alrededor de los líticos y cristales se observan minerales de color verde pardo de cloritas (Chl). Algunos feldespatos y anfíboles tienen bordes de alteración a clorita y epidota. La roca tiene alto fracturamiento con rellenos de clorita y parcialmente silicificada con presencia de cuarzo secundario.

				Localización			
Código Muestra: 18-HF-11 Unidad:			dad:	Jncp	Localidad:	Vía Aguachica-Marinilla	
Coordonadas Esta (NAACNA)		4 055 040					C/
Coordenadas	Este (MAGNA)	1.055.616	Coordenadas N	1.421.058	Departamento:	Cesar	
			De	scripción Macroscóp	ica		
Fipo de roca: Sedin Aforamiento: Paqu aminas delgadas c avas volcánicas, co Color: Amarilla Laminación: Artesa Grado de meteoriz	nentaria terrígena uetes masivos de are on bandas de líticos on fuerte fracturamie ación: Bajo	enitas de grano m ígneos (tobas?) s ento.	nuy fino, en suprayaciendo				
			De	scripción Microscópi	ica		
	Granosoportada Rango de tamaños	s: 0.03 a 0.12 mn	n				
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural:	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura	n a muy fina co				
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promeo Esfericidad prome Madurez textural: Composición m	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co naño de grano				
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co naño de grano Total en roca %	Tamaño promedio (mm)		Clasificación Textural	Arenita de grano muy fino
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos Cuarzo Eeldespato	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co naño de grano Total en roca % 61 23	Tamaño promedio (mm) 0,12 0,1		Clasificación Textural	Arenita de grano muy fino
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bie Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos Cuarzo Feldespato Muscovita	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura	n a muy fina co Total en roca % 61 23 3	Tamaño promedio (mm) 0,12 0,1 0,05		Clasificación Textural Según	Arenita de grano muy fino Folk, 1954
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos Cuarzo Feldespato Muscovita criz (Óxidos de hierro	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5	Tamaño promedio (mm) 0,12 0,1 0,05 0,05		Clasificación Textural Según	Arenita de grano muy fino Folk, 1954
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición n Terrígenos Cuarzo Feldespato Muscovita triz (Óxidos de hierro	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso dio: Subprismáti Madura hineralógica-Tan	n a muy fina co Total en roca % 61 23 3 5 1	Tamaño promedio (mm) 0,12 0,1 0,05 0,03		Clasificación Textural Según Clasificación	Arenita de grano muy fino Folk, 1954
Textura: Mat	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional	Arenita de grano muy fino Folk, 1954 Arenita feldespática
Textura: Mat	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Terrígenos Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura hineralógica-Tan	n a muy fina co Total en roca % 61 23 3 5 1 1 1 1 1 2 3	Tamaño promedio (mm) 0,12 0,12 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional	Arenita de grano muy fino Folk, 1954 Arenita feldespática
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura nineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1 1 1 <1 0 Total en roca % 0	Tamaño promedio (mm) 0,12 0,11 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973
Textura: Mat	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1 1 <1 23 3 0 7 5 1 1 1 1 1 1 1 0 7 7 0 7 0 7 0 7 0 7 0 7	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita Líticos Volcánicos Intrusivos Metamórficos	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura hineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1 1 <1 23 3 5 7 1 1 1 1 0 7 7 0 7 0 7 0 7 0 7 0 7 0 7	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita <u>Líticos</u> Volcánicos Intrusivos Metamórficos	s: 0.03 a 0.12 mn promedio: Arena en seleccionada dio: Anguloso edio: Subprismáti Madura nineralógica-Tam	n a muy fina co Total en roca % 61 23 3 3 5 1 1 1 1 21 0 7 0 Total en roca % 0 Total en roca % 0 Total en roca % 0 100	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973
Textura:	Granosoportada Rango de tamaños Tamaño de grano Selección: Muy bio Redondez promec Esfericidad prome Madurez textural: Composición m Cuarzo Feldespato Muscovita criz (Óxidos de hierro Zircón Apatito Muscovita Líticos Volcánicos Intrusivos Metamórficos	s: 0.03 a 0.12 mn promedio: Arena en seleccionada lio: Anguloso edio: Subprismáti Madura nineralógica-Tam	n a muy fina co Total en roca % 61 23 3 5 1 1 1 21 0 Total en roca % 0 Total en roca % 0 Total en roca % 0 6 0 100	Tamaño promedio (mm) 0,12 0,1 0,05 0,03 0,03 0,05		Clasificación Textural Según Clasificación Composicional Según	Arenita de grano muy fino Folk, 1954 Arenita feldespática Pettijohn et al., 1973

Óxidos de hierro (Ox): Cristales anhedrales, alrededor de granos, de color marrón; algunos subhedrales tabulares alargados. Algunos ligeramente traslúcidos, otros totalmente opacos. Líticos intrusivos: Granos subredondeados a subangulares, compuestos de cuarzo diminuto. Apatito: Cristales subhedrales. Muscovita: Cristales euhedrales, tabulares. **Observaciones** Todos los cristales tienen orientación preferencial.

Código Muestra: Coordenadas Este (MAGN	18-HF-13 A) 1.057.550	Unie Coordenadas N Des	dad: lorte (MAGNA):	Jncp 1.421.398	Localidad: Departamento:	Vía Aguachica-Bombeadero	
Coordenadas Este (MAGN	A) 1.057.550	Coordenadas N Des	lorte (MAGNA):	1.421.398	Departamento:		
		Des				César	
			scripción Macroscópi	са			
po de roca: Sedimentaria terr [:] oramiento: Paquetes masivo ontenido de sílice en microcris olor: gris rojizo rado de meteorización: Bajo	ígena s de roca de grano muy tales.	fino, alto		CRI			
		Da	scrinción Microscóni	<u></u>			
Redondez Esfericidad Madurez t	promedio: Anguloso l promedio: Subprismáti extural: Submadura sición mineralógica-Tar	ico naño de grano					
Terrígeno)5	Total en roca %	Tamaño promedio (mm)		Clasificación Textural	Arenita de grano muy fino	
Cuarzo		49	0,12				
Heldespat	. <u>o</u>	1	0,12		Según	Folk, 1954	
Matriz arcillosa 4			<0.004				
Matriz arcii		<u> </u>			Clasificación	Arenita feldesnática	
Matriz arcii Epidota Clorita		5	4 0,1		Composicional	Archita relacipatica	
Epidota Clorita Opacos		5 4	0,1		composicional		
Matriz arcii Epidota Clorita Opacos		4 Total on roca %	0,1		Según	Pettijohn et al., 1973	
Líticos		5 4 Total en roca % 0	0,1		Según	Pettijohn et al., 1973	
Líticos)S S	5 4 Total en roca % 0 0	0,1		Según	Pettijohn et al., 1973	
Matriz arcii Epidota Clorita Opacos Líticos Volcánico Intrusivo Metamórfi)S S COS	5 4 Total en roca % 0 0 0	0,1		Según	Pettijohn et al., 1973	
Matriz arcii Epidota Clorita Opacos Líticos Volcánico Intrusivo Metamórfi)S S COS	5 4 Total en roca % 0 0 0 100	0,1		Según	Pettijohn et al., 1973	

Opacos (Opq): Cristales anhedrales, distribuidos aleatoriamente.

Descripción Petrográfica Muestras en Sección Delgada								
			Localización					
Código Muestra:	Unidad:		Jncp	Localidad:	Vía Aguachica-Bombeadero			
Coordenadas Este (MAGNA) 1.055.988		Coordenadas Norte (MAGNA):		1.420.036	Departamento:	César		
		Descr	ipción Macroscópica	l				
Tipo de roca: Sedimentaria terríge Aforamiento: Alternancia de areni tabulares de 60 cm, con capas tabu rojas. Intenso diaclasamiento Color: Rojo Laminación: Plano paralela Grado de meteorización: Bajo	na itas rojas, de grano m ulares de 20 cm de es	uy fino, en capas pesor de lodolitas			n			
		Descr	ipción Microscópica					
Homogeneidad de la roca: Regular Granosoportada Rango de tamaños: 0.05 a 0.19 mm Tamaño de grano promedio: Arena fina Selección: Moderadamente seleccionada Redondez promedio: subanguloso Esfericidad promedio: Subprismático Madurez textural: Inmadura								
Composici	ón mineralógica-Tan	naño de grano						
Terrígenos		Total en roca %	Tamaño promedio (mm)		Clasificación Textural	Arenita de grano fino		
Plagioclasa Muscovita Matriz arcillosa		20 1 10	0,15 0,05 <0.004		Según	Folk, 1954		
Clorita Óxidos de hierro Opacos		1 18 6	0,05 <0.004 0,3		Clasificación Composicional	Arenita feldespática		
Carbonatos		<1	0,03					
Líticos		Total en roca %			Según	Pettijohn et al., 1973		
Volcánicos		3	0,25					
Intrusivos Metamórficos		0 0 100						
		Descri	pción de minerales					

edal 20 (Q2). Extinción ondulante, contacto recto entre granos, ingera orientación preferencial.

Plagioclasas (PI): Cristales con macla polisintética, cristales rotos, algunos con ligera alteración a minerales arcillosos.

Líticos volcánicos (LitV): Textura porfirítica, de grano fino.

Muscovita (Ms): Cristales anhedrales, en agregados, distribuidos aleatoriamente.

Óxidos de hierro: Cristales anhedrales, ligeramente traslúcidos de color rojo, distribuidos en la roca en parches y bandas con aumento de abundancia.

Opacos (Opq): Cristales anhedrales, distribuidos aleatoriamente.

Carbonatos: Cristales anhedrales, distribuidos en la matriz y en microvetillas.

Observaciones

Roca de color rojizo por abundancia de óxidos de hierro. Microvetillas de carbonatos.

