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Universidad Nacional de Colombia
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agradecer a todos mis compañeros y a mi familia, por apoyarme aun cuando mis ánimos
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Resumen

El aprendizaje profundo ha tenido un impacto notable en el análisis de imágenes médicas.

Desde clasificar tejidos hasta localizar áreas anormales en una región, herramientas como las

redes neuronales convolucionales (CNNs) y sus múltiples arquitecturas han mostrado resul-

tados prometedores en esta área de la medicina. En patoloǵıa digital, estos modelos neu-

ronales se están convirtiendo cada vez más en una herramienta vital en el apoyo diagnóstico

y pronóstico para los patólogos. Actualmente, múltiples instituciones médicas utilizan CNNs

en sus laboratorios para optimizar el tiempo de búsqueda de regiones anormales en imágenes

médicas digitales - como lo son las muestras de biopsias -, generando automáticamente in-

formación relevante en el diagnóstico y pronóstico de un paciente. Su aplicabilidad se ha

logrado en gran medida gracias a la existencia de habilitadores tecnológicos, como hard-

ware especializado (p.e., procesadores gráficos o GPUs), que permiten manipular y procesar

grandes cantidades de datos de manera simultanea. Sin embargo, las GPUs no puede proce-

sar las imágenes en algunos casos debido a su tamaño. Las imágenes histopatológicas son

un ejemplo de este tipo de imágenes, donde el tamaño de las imágenes pueden ser del orden

de hasta 25.000 x 30.000 ṕıxeles. Se han diseñado estrategias que permiten manipular este

tipo de imágenes, desde optimizar la forma de entrenar las CNNs hasta dividir la imagen

en parches con un tamaño manejable. Sin embargo, analizar la biopsia, elegir las áreas de

interés y crear las etiquetas correspondientes, son procesos que se realizan de forma manual

y resultan dispendiosos para el especialista. Por lo tanto, es necesario desarrollar nuevas

estrategias para apoyar al patólogo en estas tareas. En este documento, se plantean tres

metodoloǵıas que permiten apoyar al patólogo en el análisis de imagenes histopatológicas de

tejido prostático.

El primer diseño emplea transformaciones de color que proporcionan información adicional

sobre la imagen. Se mostró cómo estas técnicas mejoran y resaltan las estructuras presentes

en el tejido (se logra una mejor definición de los núcleos, aumenta el contraste en el estroma

y las células epiteliales, etc.). Estas transformaciones de color tienen la ventaja de que su

implementación no genera un costo computacional considerable, permitiendo manipular la

imagen de forma rápida, incluso en ordenadores que no posean un hardware especializado.

El segundo diseño analiza el proceso de segmentación de una imagen con redes neuronales

convolucionales. Se expuso el problema que se genera cuando se trata de clasificar estas

imágenes dividiéndola en pequeños parches, en donde el tiempo de segmentación por im-

agen puede llegar a las 24 horas o más. En consecuencia, se diseña una estrategia para

mitigar este problema empleando un porcentaje de pixeles de la imagen para segmentarla.

Esta técnica permite disminuir el tiempo de segmentación a solo 5 minutos por imagen.

Además, se logró demostrar experimentalmente, que la información que se pierde a medida

que se disminuye el porcentaje de pixeles es muy pequeña (cerca del 5%), en comparación

con el proceso en donde se emplean todos los pixeles de la imagen. Finalmente, nuestro
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tercer diseño consiste en crear una metodoloǵıa que permite localizar las áreas sospechosas

en imágenes de cáncer de próstata utilizando redes neuronales convolucionales. Empleando

los resultados de la etapa anterior, se diseña una red neuronal convolucional que posee una

cantidad pequeña de parámetros de entrenamiento (cerca de 50 mil). Esta red realiza dos

tareas distintas: segmentar el estroma y segmentar el tejido sospechoso. Uniendo estos dos

resultados y descartando los pixeles que pertenecieran al estroma segmentado, se logra lo-

calizar zonas sospechosas en imágenes de tejido prostático. Adicionalmente esta red se diseñó

pensando en el costo computacional que generan algunas redes en el estado del arte, y en el

sobredimensionamiento del problema que puede surgir al emplear dichas redes.

Palabras Claves: Tejido de próstata, Redes neuronales Convolucionales, optimización,

Segmentación , Balance de Blancos
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Abstract

Deep learning has had a noticeable impact on medical image analysis. From classifying

tissues to locating abnormal areas in a region, CNNs and their multiple architectures have

shown a future in this area of medicine. In digital pathology, these neural models are increas-

ingly becoming a vital tool in diagnostic and prognostic support for pathologists. Currently,

multiple medical institutions use CNNs in their laboratories to optimize the search time

for abnormal regions of a complete tissue slide (biopsy sample), automatically generating

diagnoses and prognoses of a patient, etc. This success of CNN was achieved mainly by

using specialized hardware (GPUs) that allow large amounts of data to be manipulated and

processed. However, analyzing the biopsy, choosing the areas of interest and creating the

corresponding labels are processes that are carried out manually and are costly for the spe-

cialist. Therefore, it is necessary to develop new strategies to support the pathologist in

these tasks. In this document, three methodologies are proposed that allow the pathologist

to be supported in the analysis of histopathological images of prostate tissue.

The first layout employs color transformations that provide additional information about

the image. It was shown how these techniques improve and highlight the structures present

in the tissue (the shape of the nuclei was better defined, the contrast increased in the stroma

and epithelial cells, etc.). These color transformations have the advantage that their imple-

mentation does not generate a considerable computational cost, allowing the image to be

manipulated quickly, even on computers that do not have specialized hardware. The second

design analyzes the segmentation process of an image with convolutional neural networks.

The problem generated when we try to classify these images by dividing them into small

patches, where the segmentation time per image can reach 24 hours or more, was exposed.

Consequently, we designed a strategy to mitigate this problem by using a percentage of pixels

in the image to segment it. This technique allowed the segmentation time to be reduced to

only 5 minutes per image. In addition, we were able to demonstrate experimentally that the

information lost as we decrease the percentage of pixels is very small (about 5%), compared

to the process where all the pixels of the image are used. Finally, our third design creates

a methodology that locates suspicious areas in prostate cancer images using convolutional

neural networks. Using the previous stage results, we design a convolutional neural network

with a small number of training parameters (about 50 thousand). This network performs

two distinct tasks: segmenting the stroma and suspect tissue. Combining these two results

and discarding the pixels that belonged to the segmented stroma, it is possible to locate

suspicious areas in images of prostate tissue. Additionally, this network was designed con-

sidering the computational cost generated by some networks in the state of the art and the

over-sizing of the problem that can arise when using these networks.
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Keywords: Prostate tissue, Convolutional Neural Networks, Optimization, Segmenta-

tion, White Balance technique
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1 Introduction

In Colombia, prostate cancer occupies the first place in cancer incidence in the male pop-

ulation. In 2017, the mortality rate due to prostate cancer was 14.9 deaths per 100,000

men1. Prostate cancer screening tests can help find cancer early, making it easier to treat. A

frequent form of cancer detection is analyzing the PSA (Prostate-Specific Antigen) found in

the patient’s blood. Another form of detection is through digital rectal examination. When

the results of these tests indicate some anomaly, a small sample of prostate tissue (biopsy)

is extracted to be analyzed under a microscope [1].

Pure samples cannot be analyzed directly as they have a transparent coloration typical of

the tissue. Therefore, for proper analysis, pathologists use stains to color the tissue. One of

the most used stains in histological tissues is the H & E stain [2]. This staining allows cell

nuclei to be dyed in dark purple; the stroma or muscle tissue becomes pinkish, the red blood

cells turn light red, and the cytoplasm becomes light purple. An example of this staining

can be seen in Figure 1-1.

To determine the presence of cancer in the tissue sample, pathologists must examine each

area of the image looking for the morphological characteristics of the glands present in the

sample. In the 1960s, a scale was established to indicate the degree of aggressiveness of

prostate cancer. This indicator is known as the Gleason Scale. This is based on the normal

architecture of the glandular tissue (shape, size and differentiation of the glands)[3]. Figure

1-2 shows the Gleason scale. Diagnosis procedure based on the Gleason scale consists of

dividing an area of the image into two portions. Each zone is given a value between 1 and 5,

where a value of 1 corresponds to mildly aggressive or benign tumors and 5 to tumors with a

high degree of cancer. Once the two values have been assigned to the area of interest, these

values are added. In Table 1-1 we can see the interpretation for each of the sum ranges.

Thanks to the emergence of digital scanners, the histological sample can be digitized to

produce a high-resolution image. This allows for better visualization of tissue, faster scrolling

through the sample, and brought ease to sharing information between pathologists in search

for a second opinion. However, to give a complete patient diagnosis, the pathologist must

1Instituto Nacional de Canceroloǵıa ESE. Análisis de la Situación del Cáncer en Colombia 2015. Primera

edición. Bogotá D.C: Instituto Nacional de Canceroloǵıa ESE
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Figure 1-1: Example of an image with H & E staining. Pink color corresponds to muscular

tissue, purple to epithelium, and dark purple to cells.

1. Small, uniform glands

2. More space (stroma) 
Between glands

3. Distinctly Infiltration of
cells from glands at margins

4. Irregular masses of neoplastic
cells with few glands

5. Lack of occasional glands,
sheets of cells

Well differentiated

Moderately
differentiated

Poorly
differentiated
Anaplastic

Figure 1-2: Gleason scale - adapted from [4].
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Gleason Score

Gleason Scale Interpretation

Gleason 2 - 6 Well-differentiated tumor tissue, little presence of cancer, better prognosis.

Gleason 7 Moderately differentiated tissue, gland infiltrates

Gleason 8 -10 Poorly distinguishable tumor tissue, aggressive cancer, worse prognosis

Table 1-1: Gleason pattern

analyze the sample completely. This process is complex and time-consuming [5], so it is

necessary to use new methodologies to reduce the time spent in this type of analysis. In the

last decade, new computational techniques have been designed to analyze digitized samples

using Computer Vision techniques.

For instance, in [6, 7, 8, 9, 10, 11], the authors designed different methodologies based on

Machine Learning techniques that allowed establishing differences between the morphology

of the tissues in the images and the Gleason patterns automatically. They used low-level

characteristics such as the proportion of the gland perimeter, the area occupied by a gland,

the distances from the center of the gland to the border, etc. The authors used Support

Vector Machines (SVMs) to classify tissues, particularly because it presented advantages

such as having a higher performance index (precision and accuracy) with a good level of

robustness, and allowing faster results than CNNs.

In some cases, it is not only required to differentiate the Gleason scales in an image, but it is

also necessary to detect the gland and classify it. Hua et al. [12] introduces a methodology

in which co-occurrence matrices and color histograms are used as the model’s main features.

The segmentation is performed with SVMs, achieving a gland detection rate of 86%.

Mahoor et al. [13] proposes the use of a Shearlet filter bank to detect whether a gland is

benign or malignant. Like the Gabor filter bank, Shearlet filters allow you to extract edge

and texture features using different rotations. The classifier used was the SVM, with an

accuracy rate of 86%. Tabesh et al. [14] used texture characteristics, color, and morphological

descriptions to classify the tissue into areas with a high presence of cancer and regions with

a low presence of cancer. The model was trained with the k-nearest neighbors, Gaussian

and SVM classifiers, the latter with the best detection rate: 81%. Kumar et al. [15] designed

a classifier with 4 features: color channel histograms, fractal dimension features, fractal

code features, and wavelet features. The purpose was to detect the presence of tumors in

the tissue (tumor class and non-tumor class). The model was trained with Gaussian linear

and quadratic classifiers, where the quadratic classifier obtained the best performance: 77%

tumor detection.

In the previous works, feature extraction is a determining factor in the model’s performance.
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However, it is necessary to invest time in identifying the characteristics that allow to model an

image, which can generate subjectivity problems. Since the advent of CNN, not only has this

problem been eliminated, but ranking performance has increased. In [16, 17, 18, 19, 20, 21],

the authors present different methodologies for gland segmentation based on CNNs. The

purpose is to detect, segment, and classify whether or not the gland in question is cancerous.

The indices obtained when carrying out this process were higher than 92%, surpassing the

techniques mentioned above.

Although CNN models are robust, some tasks have a high computational cost ((for example,

when it comes to going through an image and detecting or classifying the pixels), and the

time required for both training and validation can take hours. In this document, we aim

to present three tools that allow the pathologist to be supported in the task of making the

diagnosis. Chapter 1 shows a series of color transformations that enable the tissue to be

visualized with better detail than the original image. In chapter 2, we expose a bottleneck

when CNNs are used to segment images by patches, in which we design a novel solution (a

different perspective in the way of going through an image) that considerably mitigates this

problem. And finally, in chapter 3, we use the results of the previous chapter to create a

methodology to locate regions with a high degree of cancer in prostate images. Finally, in

the future work section, we propose some pending tasks in the framework of this research.



2 Color enhancement of Histological

Prostate Image

Tissue imaging classification is one of the most important steps in prostate cancer diagno-

sis. The pathologist relies on the gland’s structure to assign a Gleason grade to the tissue

image. However, due to the limitations inherent to the acquisition process, the images have

low illumination and low contrast, which significantly influences the analysis of the tissue.

Therefore, it is required to transform these low-quality images to highlight features that ease

the pathologist’s diagnostic process.

This Chapter presents some image processing techniques focused on enhancing contrast in

histopathological images of prostate tissue. The proposed approach consists of the imple-

mentation of 44 classical color transformations without the application of any filter. A group

made up of 3 pathologists will analyze each of these transformations to select those that pro-

vide relevant information for the diagnosis of prostate cancer. This Chapter is divided into

the following sections. Section 2.1 describes contrast manipulation, histogram manipula-

tion, and color manipulation focused on enhancing image contrast. Section 2.2 describes

the white balance technique, which is one of the most widely implemented algorithms in

histopathological imaging. Section 2.3 enunciates the 44 color transformations implemented

in this work, and their application in state-of-the-art. Section 2.4 addresses the methodol-

ogy implemented for the group of 3 pathologists to analyze each of the color transformations

shown in Section 2.3. In Section 2.5 we present the results of the analysis and the transfor-

mations selected by the pathologists, and finally, in Section 2.6 we present the conclusion of

the Chapter.

2.1 Image Enhancement

Image enhancement processes consist of a collection of techniques that seek to improve the

visual aspect of an image or convert it to a more suitable form for analysis by a human or a

machine [22]. The digital image enhancement techniques provide a multitude of options to

improve the visual quality. The imaging modality greatly influences the appropriate choice of
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such methods, the task in question, and the visualization conditions [23]. For the realization

of this Thesis, three classes of algorithms were used [24]:

• Histogram manipulation: The histogram is a graph that indicates how often each

degree of light intensity or color in the image is displayed. The intensity levels are gen-

erally represented by numbers ranging from 0 to 255, with 0 denoting a low intensity

(the lowest) and 255 denoting a high intensity (the highest). This approach involves

altering the values in an image’s histogram to boost the image’s contrast. The algo-

rithms selected from this section were: the histogram equalization and the adaptive

equalization of the histogram.

• Contrast manipulation: One of the most common image defects is low contrast,

which results from a narrow and possibly nonlinear image width range. Some objects

present in the image cannot be easily or correctly identified. This technique consists of

the direct manipulation of the pixels of an image with linear and nonlinear functions

that make it possible to readjust the intensity levels of the image. Implementing these

algorithms is observing the objects with better clarity than before, and they could be

due to the lighting problem not being detailed. The algorithm chosen for the document

is white balance.

• Color Manipulation: Also known in the literature as color transformations. These

techniques make it possible to change the initial color space to a different color space

to observe in whole or in part (through the newly created bands) features that em-

phasize the content of the original image [25]. Assuming the original image in RGB

representation, the transformations selected in this section were: XYZ, YCrCb, I1I2I3,

CMYK, YIQ, Lab, HSI, and HMMD [26].

The justification for selecting these transformations can be seen in the Section 2.3

2.2 White Balance

In digital image processing, white balance is one of the most popular contrast manipulation

techniques. It involves applying a linear transformation to the image in order to balance the

color predominance and alter the image intensity. The histogram reflects this modification,

with intensity values stretched to extremes, allowing the image’s contrast to dramatically

improve. Figure 2-1 shows a histological picture of benign prostate tissue with histograms

(one for each channel). In Figure2-1a, the image shows a low contrast that is reflected in

the histogram of each RGB channel. In Figures 2-1b, 2-1c and 2-1d we find that the pixels

are grouped in a range that does not cover the extremes; that is, none of the pixels is white

(value of 255) or black (value of 0). Figure 2-2a shows the image with the white balance
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algorithm. Figures 2-2b, 2-2c and 2-2d show the stretching of the histogram. Notice that

white balance does not change the overall shape of the histogram.

(a) Original image.
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(b) Red channel histogram.
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(c) Green channel histogram.
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(d) Blue channel histogram.

Figure 2-1: Image of prostate tissue categorized as benign, along with its respective RGB

channel decomposition.

(a) Balanced image.
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(b) Red channel histogram.
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(c) Green channel histogram.
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(d) Blue channel histogram.

Figure 2-2: Image of prostate tissue after applying the white balance algorithm, in addition

to its respective RGB decomposition.

According to [27], white balance can be achieved by computing:

Cwb = Lout + (Hout − Lout)
(
Ix,y − Lin
Hin − Lin

)γ
(2-1)
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where:

Cwb is the image that results after applying white balance.

Lin is the smallest pixel value that in this case is given by the 1st percentile of the image.

Lout is the value of the smallest output pixel you want to reach, which in this case is 0.

Hin is the largest pixel value that is given by the 99th percentile of the image.

Hout is the value of the largest output pixel you want to reach, which in this case is 1.

Ix,y is the original low contrast image.

γ is the gamma correction factor that in the white balance technique is equal to 1.

2.3 Color transformations

In works such as [28, 29, 30] employ different types of color models that are used as char-

acteristics or parameters that facilitate the segmentation or classification of prostate tissue.

The use of these color models is because they present some relevant information regarding

the area to be classified. Given the results obtained in these works, it was proposed to use

some color spaces, together with histogram and contrast manipulation techniques, which

would allow the pathologist to reveal visual information regarding the original image ex-

tracted from the microscope. Considering the amount of color manipulation, histogram, and

contrast techniques that exist, it was decided to choose those that were easy to implement

or were previously implemented in some programming language, in addition to having been

used in other scientific articles. The list of algorithms can be seen in Table 2-1. The 44

techniques were divided into three new categories that describe the nature of each one to

analyze each one of them:

• Color Transformations using RGB

• Linear Transformations based on RGB

• Non-linear Color Transformations.

The techniques shown in Table 2-1 were selected thanks to different works framed in the

area of digital image processing detailed below.

Baldevbhai et al. [31], implemented the XYZ and L * a * b color spaces for the segmentation

of medical images under the clustering paradigm. The authors used only the pixel intensity

characteristics of the image with which they designed a new methodology for segmentation.

Gasparri et al. [32], used the HSI color space as a base technique to develop a new method of

automatic segmentation of vasculature in retinal images for the study of diabetic retinopathy.

The authors recommend the use of the HSI color space since this space can separate the
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Linear

Transformations

based on RGB

Non-linear

Color

Transformations

Color

Transformations

using RGB

XYZ + WB H → HSI
Histogram

Equalization (E)

Y → YCbCr S → HSI
Adaptive Histogram

Equalization (AE)

Cb → YCbCr I + WB → HSI White Balance (WB)

Cr → YCbCr H → HMMD Channel R → RGB

I1 + WB → Hearing Min + WB → HMMD Channel G → RGB

I2 + WB → Hearing Max + WB → HMMD Channel B → RGB

I3 → Hearing D + WB → HMMD Channel R + WB

C + WB → CMYK L + WB → Lab Channel G + WB

M + WB → CMYK a → Lab Channel B + WB

Y → CMYK b + WB + AE → Lab Channel R + E

K → CMYK u → Luv Channel G + E

Y + WB → YIQ v → Luv Channel B + E

I + WB → YIQ Channel R + AE

Q → YIQ Channel G + AE

U → YUV Channel B + AE

V → YUV+WB WB + AE

Table 2-1: List of color transformations used.
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intensity of the essential information from the color even when they are affected by the

lighting changes, a problem they had with the images used.

Wurood et al. [33] applied histogram equalization and adaptive histogram equalization tech-

niques to improve the contrast of medical magnetic resonance imaging (MRI). The authors

reported excellent efficiency to improve the contrast of MRI images with high quality. For

this, they considered quality measures such as MSE, PSNR, and SNR to evaluate the quality

of the improved medical MRI images.

Singh et al. [34], created a new technique to improve image contrast using discrete wavelet

transform and Luv color space. The result of this new technique is better quality images

with less noise and blur.

Lastly, the HMMD, YCbCr, I1I2I3, CMYK, YIQ and YUV color spaces were used by Arash

Abadpour [26], where he made the first experimental evaluations to compare the representa-

tion based on the analysis of main components (PCA) of the images in color of nature with

the respective representations based on the color space. This framework is used to design

color image processing algorithms with superior performance, such as coloring, compression,

segmentation, deliberate distortion, etc.

2.4 Algorithm evaluation methodology

The rating scales consist of a series of qualitative categories in which an observer must issue

a judgment, indicating the presence of a characteristic. One of the most used rating scales

is the Likert Scale [35]. Although many of the evaluations are subjective, they determine

some patterns or behaviors according to the subject being evaluated.

An image quality test was used to analyze each of the 44 color transformations. The pro-

cedure consisted of showing four images chosen at random from the set of images to 3

pathologists, of which two have experience in the area of urogenital pathology. A color

transformation was applied to each of these images (the same transformation for the 4).Each

pathologist rated the images on a scale of 0 to 4, where:

• Qualification 0: The transformation does not provide any information to the pathol-

ogist.

• Qualification 1: The transformation provides little information, but even so, it is

discarded by pathologists.

• Qualification 2: The transformation provides little information, but does not high-
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light, in some cases, the areas of interest for the pathologist.

• Qualification 3: The transformation provides valuable information, but, in some

cases, fails to highlight areas of interest to pathologists.

• Qualification 4: The transformation provides information of great value to the health

specialist. Areas of interest for pathologists are highlighted.

2.5 Results

In the process of qualifying color transformations, pathologists chose 23 techniques, that is,

52.27% of our algorithm list. These obtained a score of 3 or 4 on our scale, qualifying them

as useful for a better diagnosis. The percentage of highlighted techniques was calculated by

dividing the transformations that had an excellent performance, that is, those that had a

rating of 3 or 4, by the total number of transformations that were used.

The results of the qualification carried out by the pathologists for each group of algorithms

(linear transformations based on the RGB space, non-linear color transformations and trans-

formations using the RGB space) can be seen in Figures 2-3, 2-4 and 2-5:

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

Linear Transformations based on RGB Pathologist 1
Pathologist 2
Pathologist 3

Figure 2-3: Graphs of the qualifications by the three pathologists corresponding to the linear

transformations based on the RGB color space.

Table 2-2 shows the color transformations that pathologists classified as useful. These al-

lowed highlighting the structures present in the images of prostate tissue such as cytoplasm,

stroma, and nuclei. The white balance, which was the best-qualified transformation, man-

aged to improve the perception of the contour and the shape of the nuclei.
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0
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Non-linear Color Transformations Pathologist 1
Pathologist 2
Pathologist 3

Figure 2-4: Graphs of the qualifications by the three pathologists corresponding to the non-

linear transformations.
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Color Transformations using RGB Pathologist 1
Pathologist 2
Pathologist 3

Figure 2-5: Graphs of the qualifications by the three pathologists corresponding to the linear

transformations using the RGB color space.
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Linear Transformations

based on RGB

Non-linear Color

Transformations

Color Transformations

using RGB

Y(YIQ) + WB L(L*a*b) + WB WB + EA

I(YIQ) + WB b(L*a*b) + WB + EA R(RGB) + EA

I1 + WB V(Luv) R(RGB) + WB

I2 + WB Min(HMMD) + WB G(RGB) + WB

Y(YCrCb) Max(HMMD) + WB B(RGB) + WB

Cr(YCrCb) I(HSI) + WB R(RGB)

XYZ + WB G(RGB)

B(RGB)

WB

EA

Table 2-2: Transformations summary

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2-6: Example of rating an image
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Figure 2-6 shows different images qualified by pathologists. Figure 2-6a corresponds to the

original image of a sample of prostate tissue of a Gleason 5 pattern with a magnification of

20x.

Figures 2-6b and 2-6c show color spaces whose rating was 0. In these, we can see re-

spectively the V (YUV) color space plus white balance and Cb (YCbCr) color space. For

pathologists, these types of transformations did not provide any information relevant to the

image enhancement process. On the contrary, they deleted information contained in the

original image.

Figures 2-6d, 2-6e, 2-6f and 2-6g are color spaces whose ratings varied between 1 and 2.

In these, we can see the image equalization, H (HIV) color space, XYZ color space and a

(L*a*b) color space, respectively. Although some of these transformations do not provide all

the complete information related to the diagnosis, the prognosis, and the predictive factors

if they highlight the cell nuclei and allow us to see the basal cells that are important for the

diagnosis of pathology.

Figure 2-6h is the color space whose ratings varied between 3 and 4. In these image, we can

see Red (RGB) color space plus white balance. These color space allowed the pathologists

to visualize with better clarity the nuclei present in the tissue. Also, it show important

characteristics for the diagnosis of pathology of prostate tissue managing to provide more

benefits than the microscope.

Finally, Figure 2-6i is the transformation that coincided in the evaluation with four by the

pathologists and corresponded to the white balance. This technique allowed them to observe

with a better contrast all the structures present in the images, adding important information

to perform the corresponding diagnosis.

2.6 Conclusion

The color transformations used in this work not only improved the visual quality of the image

but also highlighted some areas of great importance for the diagnosis of prostate cancer. For

example, the nuclei were highlighted in a way that the perception of the contour and shape

was improved. Linear color transformations and transformations based on RGB space were

the ones that scored the best. The technique that received a rating of 4 unanimously from

pathologists was the white balance, as it accentuated the image structures much better with

regard to the other transformations. Finally, the methodology used in this section managed

to cover a fundamental problem in the area of images contrast of the prostate tissue to help

in the diagnosis and evaluation of this disease.



3 Incremental Image Segmentation

Using CNNs

In the previous chapter, we showed some color transformations to improve the contrast of

structures such as nuclei, cytoplasm, and stroma. These color spaces provided a visual

tool for pathologists to easily identify areas of interest and rule out tissues that are not

considered malignant. In recent years, many diagnostic support systems have processing

techniques to improve tissue visualization and use machine learning algorithms to classify,

detect, and segment histological images. For example, this is the case with convolutional

neural networks. However, including these new methodologies implies new challenges in

terms of computational cost to segment histological images since they are of considerable

size.

In this chapter, we explain one of the challenges involved in using CNNs in histopathological

images and how it can be solved by designing a new segmentation methodology. We proposed

an algorithm that optimizes the segmentation time utilizing a percentage of image pixels.

Additionally, we show that as we decrease the rate of pixels used to segment the image,

the network’s performance does not vary much compared to the use of all the image pixels.

This chapter is divided into four sections. Section 1 introduces the main components of a

convolutional neural network: the convolutional layer, the pooling layer, the perceptual field,

and the fully connected layer. Section 2 exposes the classification problem in histological

images using CNN. In addition, we show an alternative to mitigate the classification problem

where we propose the new methodology to segment areas of interest in prostate cancer

images. Section 3 presents the results of this technique, where we expose the impacts of the

segmentation with different percentages of pixels and experimentally demonstrate that the

method does not produce significant errors with the different rates of pixels. Finally, section

4 presents the respective conclusions of the chapter.
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3.1 Introduction

CNNs use image recognition and classification to detect objects, recognize faces, identify

abnormalities in medical images, and more [36]. CNNs are primarily used to classify images,

group them by similarities, and then recognize the objects present in them. They are made

up of neurons with weights and biases that can be learned. Each specific neuron receives

numerous inputs and then computes a weighted sum that is passed through an activation

function [37].

A CNN has two stages:

1. Feature extraction

2. Classification

The first stage consists of the automatic feature extraction, in the form of convolution

masks [38]. This was a breakthrough in feature engineering. In classical Machine Learn-

ing techniques (such as SVM, decision trees, etc.) [39], the user was required to select the

characteristics he considered relevant a priori. This generated two important drawbacks:

determining the number of characteristics necessary to model a classification problem (this

implied that the user had to know very well about the topic being investigated or hire expert

personnel on the subject), and the introduction of bias or human error. Thanks to the new

methodology of extracting characteristics utilizing convolutions, these two disadvantages

could be considerably mitigated. The second stage uses a multilayer perceptron that uses

the information extracted in the first stage to solve the classification problem.

3.1.1 Basic architecture of a CNN

Convolutional neural networks have three distinct layers: input, hidden, and output layers.

In the input layer, we define the perceptual field that the neural network must use (the size

of the input data). The hidden layers are where the convolutions (feature extraction) are

performed. In the output layer is where we find the final CNN ranking. Next, we will detail

each of the contents of each layer.

Perceptual Field (Input Layer)

In general, we define the perceptual field as the size of the window that will allow us to

extract the features in the convolutional layer. In order to initialize the convolutional neural
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network, we must first establish the size of the input data in tensor form (image height x

image width x image channels). Once the size of the perceptual field is defined, it cannot

be modified during the training and validation of the network. For example, if a perceptual

field of 32x32x3 pixels is defined, the images to validate the convolutional model must be

32x32x3 pixels in size. The selection of the perceptual field size is made depending on the

problem to be solved, and the capacity of the underlying hardware.

Convolutional Layer (Hidden Layer)

The convolutional layer is responsible for extracting the features of the input layer or the

layers prior to it. Usually, a dot product of the convolution kernel is performed with the

input matrix of the layer, as shown in Equation 3-1.

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]f [m− j, n− k] (3-1)

Where G[m,n] is the feature map; f represents the image or the input matrix; h is the

convolution kernel; m,n are the row and column of the image, respectively; and j, k are the

accumulation indexes.

As the convolution kernel slides along the input matrix, the operation generates a feature

map (Figure 3-1), which becomes the input of the next layer.

0 0 1 1 1 0
1 0 1 1 1 0
0 1 1 0 1 0
1 1 1 1 0 0
0 0 0 0 1 1
1 0 0 1 1 1

1 0 1
1 0 1
1 0 1

4 3 6 2

INPUT DATA KERNEL CONVOLUTED FEATURE

Figure 3-1: Example of the convolution operation.

Pooling Layer (Hidden Layer)

Pooling layers allow us to reduce the dimensions of the feature map by grouping a set of

neurons into a single one (local pooling) and positioning it in a new feature map. There are



xxxii 3 Incremental Image Segmentation Using CNNs

two common types of pooling: maximum and average. Maximum pooling uses the maximum

value of each set of neurons in the feature map, while average pooling uses the average set

of neurons. In Figure 3-2, we can see in detail the application of the pooling layer in the

feature map.

255 45 22 21
23 245 22 3
98 32 1 123
32 12 0 88

255 22
98 123

142 17
44 53

Figure 3-2: Example of the pooling layer over a matrix. The red area corresponds to max-

pooling operation, and the blue area corresponds to average-pooling operation.

Fully Connected Layer (Output Layer)

This layer uses the final feature map as input to a neural network known as a multilayer

perceptron [40]. This network is used as a classifier, where the last set of neurons is equivalent

to the set of classes to be classified in terms of probabilities. In figure 3-3, we can see an

example of fully connected layer architecture.

3.2 Inference problem in images with CNN.

With architectures like those in Section 1, CNNs can solve many classification problems

with a high percentage of accuracy. For example, in imaging, convolutional neural networks

were used to determine if a patient who suffered from COVID-19 has any condition in the

lungs [41]. To do this, they use computed tomography images of the chest for the training

and validation of the neural model. Another example in this area is using CNNs to detect

pneumonia in X-ray images (around 5,800 images) [42]. Many similar articles in the literature

use CNN to classify medical images.

However, in large images with a lot of information such as histopathological images, this

form of classification is not possible. Normally, in the previous examples, images smaller
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Figure 3-3: Example of a fully connected network. The red box corresponds to the input

of the network (it consists of 4 neurons); the blue box corresponds to the hid-

den layers of the network (it consists of two intermediate layers each of three

neurons); the black box corresponds to the output of the network (consists of

3 neurons) and finally the purple box corresponds to the loss function of the

network.

than 512x512 pixels are used, that is, they use the entire image to classify. In histological

images, we have much larger images, with 3 channels each. Suppose we want to classify

images of prostate tissue into benign or malignant tissue. We must design a deep network

so that it can extract enough information which generates a huge number of parameters

(around 1×1030 or more) that, even having the most powerful GPU, it will not even be able

to train the network.

Additionally, for a CNN to achieve good accuracy rates, a representative data set [43] is

required. In the histopathology databases, we can find a data set of up to 900 images with

their respective annotations, with which, using a CNN, we will not be able to obtain a good

performance in the classification.

Not all computer vision problems are posed in terms of classification (categorizing a set

of data). It is often required to locate or segment a particular area in the image. In the

analysis of histological images, this task is the most frequent. From this perspective, it is

not necessary to work with a complete image, it is enough to divide the image into small

patches, then select the patches that belong to a particular class and finally train the neural

network with these small images.

This is a huge advantage. First, we eliminate the problem of missing data since by dividing

an image into small patches, we increase the size of the training and testing data set, and
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improve the performance of the neural network. Second, we attenuate considerably the large

perceptual field problem since the perceptual field is reduced to the size of the patch, thus

reducing model size.

However, this new form of segmentation creates a new bottleneck. Once the training and

validation of the neural model is finished, the next step is to verify the results on an image.

To do this, the image to be segmented is traversed using a window of the same size as the

patches [44]. Each window is evaluated by the network, thus obtaining a label for each

window. At the end of this operation, the segmented image will be obtained. Training a

CNN for segmentation requires far fewer images than image recognition since any real-field

image with the corresponding labeling can be used to obtain multiple training patches, and

the CNN itself has fewer parameters to tune. Although this scheme uses a much smaller CNN

than those used in image recognition, evaluating all the resulting sliding windows (nearly

the same number of pixels in the image to be segmented) becomes much more demanding

than evaluating a larger model using the entire image at once.

In the next section we will show the solution that was designed to solve the bottleneck by

solving a problem of segmentation of the muscular structure (stroma) in images of prostate

tissue.

3.3 Proposed method

As mentioned above, to solve this problem, the following task was proposed: segment the

stroma from the rest of the structures present in images of prostate tissue. The idea arose

from the work of [45], where they used the super-pixel technique to segment the epithelium

and stroma in histopathological images (tissue microarrays) of oropharyngeal tissue. Our

approach is to separate muscle tissue using convolutional neural networks with our database.

3.3.1 Database

The dataset consists of 100 images in microarray format (See Figure 3-5b) of prostate

tissue, which were acquired at 40x optical magnification (0.23 microns per pixel) with a

digital camera (NanoZoomerXR digital slide scanner) producing 3100x3100 pixel images of

size. Our database is a subset of [46] consisting of 641 images in a microarray format. Our

data subset consists of 25 benign tissue images, 25 Gleason 3 images, 25 Gleason 4 images,

and 25 Gleason 5 images. The original database labels were not used (the authors’ job was

to detect suspicious areas and classify them in one of the four existing categories), but the
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(a) Label images

(b) Original Images

Figure 3-4: Example of our database with its labels and images

labels were created with the help of pathologists. In Figure 3-4 , we can see an example of

our data set with their respective labels.

3.3.2 Preprocessing

Before entering the training and validation stage of the neural network, we submitted the

database to two pre-processes. The first pre-processes consist of the white balance technique

[47] that allows us to improve the image’s contrast (Figure 3-5b). After the technique is

applied, we scale the image in the range of [0, 1]. The goal of scaling the image is to change

the pixel values to use a common scale without altering the differences between value ranges

or losing information. Also, this step is important for neural network models to improve the

training process.
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(a) Original Images

(b) White Balance Process

Figure 3-5: Processing of the database using the white balance technique.

3.3.3 Network Architecture

The MobileNet [48] architecture was used with a perceptual field of 124×124 pixels. The use

of predefined networks saves us from going through the iterative process involved in designing

a neural network. In addition, this network has the fewest number of parameters (compared

to the other predefined networks) and has been used to address image classification tasks

[49]. In this work, we adapt the network to classify whether or not the central pixel of any

given patch of 124 × 124 pixels in size corresponds to the stroma. However, there is no

central pixel in a 124× 124 pixel window, but rather a 2× 2 square as shown in Figure 3-6.

We choose the pixel located in the lower right corner of the 2 × 2 windows as the central

pixel of the perceptual field.

When we talk about a central pixel, we refer to a value of the matrix. This value is usually a

half pixel. However, this is true when the dimension of the patch is an odd number. In cases

where they are an even number, the central pixel is not extracted so directly. The neural

network creates a small 2 × 2 square where you must select the central pixel using one of

its sides, as explained above. The selection of the pixel is given by analyzing with a specific

example, where our neural network selects the lower right pixel.
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Perceptual field–
slidingwindows
size124x124

Input Image

Central Pixel

Figure 3-6: CNN Perceptual Field. The dotted boxes indicate that the window slides across

the image, overlapping each window and getting a label at the end.

3.3.4 CNN Training and Validation

For network training, we use the Transfer Learning technique. This technique allows us to

use the characteristics (weights) of a network already trained with a very large data set to

take advantage of them in our classification task. The trained weights correspond to the

ImageNet database.

For the training set, we used 3,200 patches (1,600 background class patches and 1,600 Stroma

class patches), and for the test set, we used 800 patches (400 background class patches and

400 Stroma class patches).In Figure 3-7, we can see some examples of the patches used for

each class of the training and test sets.

The training parameters and the Transfer Learning application were taken according to the

Keras documentation1.

To improve the training performance of our neural network, we employ fine-tuning, which

consists of retraining the CNN with a lower learning rate with a smaller number of epochs.

In Table 3-1 we find the training parameters of each part (CNN Training and CNN Fine

Tuning)

During training, our model achieved an accuracy of 0.9399 and a loss function of 0.2 after five

epochs. The training was carried out using the Google Collaboratory platform in a virtual

1https : //keras.io/guides/transferlearning/
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(a) Example of Background patches

(b) Example of Stroma patches

Figure 3-7: Example of the patches of each class (background and stroma). Each patch is

124x124 pixels in size.
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CNN Training Parameters

Parameters
CNN Training

Part 1

CNN Fine-tuning

Part 2

Loss Function Binary Cross Entropy Binary Cross Entropy

Optimizer Adam Adam

Learning rate -2 -5

Epoch 20 5

Table 3-1: Parameter table for both trainings of the convolutional neural network

machine with 12Gb of RAM, 64Gb of hard disk, and a Tesla K80 GPU. The algorithms were

coded in Python using the Keras, Tensorflow, Opencv, and Numpy libraries.

3.3.5 Inference - Proposed Algorithm

Once the network has been trained, the next step is to segment an image and compare the

result with the label image. To carry out the segmentation, we have to use a window the size

of the patches and slide it over the entire image. Each patch will be superposed, generating

a label in each patch evaluation by the model.

However, as discussed in the previous section, this process is time-consuming since each image

of size N×M pixels requires N*M evaluations of the network to be segmented. For this, we

proposed to make a change in the segmentation methodology. This consists of an incremental

solution providing a subset of randomly chosen sliding windows. The segmented image is

formed by evaluating said subset with the CNN and assuming that the labels obtained from

said evaluation affect the label of the central pixel and an area (or neighborhood) that

includes and surrounds the pixel.

For the implementation of our method, we divide the algorithm into 2 parts:

Creation of the point cloud

As mentioned above, we randomly create sliding windows to test each window with the

CNN. To do this, we transform the RGB image to L*a*b to use luminance as the base

image. To this component, we apply the scale-space algorithm. Since the images in our

database have structures at different scales, it is necessary to use this algorithm to make the

image’s characteristics invariant to scale. The next step is randomly selecting a percentage

of pixels following a uniform distribution. Each pixel corresponds to the central pixel of each
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sliding window. We call this selection of points the sampling rate. In Figure 3-8, we can see

how point clouds are generated with different sampling rates.

Point Cloud Evaluation

We use the generated point cloud to locate the central pixels of each window in the image.

We then evaluate those windows and accumulate the result into a vector. Finally, this vector

is transformed into a matrix corresponding to the segmented image.

3.4 Results

To analyze if our method allowed us to segment the image faster and with a minimum of

information loss, we used a series of analyzes and metrics to evaluate it. First, we take as

the main basis a segmentation with a sampling rate of 100%; that is, all the image pixels

were used. We then use sampling rates of 50%, 25%, 12.5%, 6.25%, 3.125%, and 1.625%. We

compared each sampling rate to 100% to see how similar these resulting images were. In table

3-2, we can see the confusion matrices for each sampling rate. Note that the percentages on

the main diagonal correspond to how much the sampling rate resembled the main sampling

rate. The inverted diagonal corresponds to the error percentages compared with the main

sampling rate.

As we increase the sampling rate, the True Positive and True Negative values (The main

diagonal of the confusion matrix) become more like the original. The range of these values is

between 98% (the maximum) and 94.5% (the minimum). If we use only 1.625% of the image

pixels, we can obtain 94.5% True Positives and 96.5% True Negatives from the segmentation

performed with the 100% sampling rate.

To reinforce our results, we present three segmentation metrics widely used in the literature:

precision, sensitivity, and the Dice index. The Dice index is a metric that measures, on a

scale from 0 to 1, the level of similarity between a binary image A and another B (a value of

0 indicates that they are different, and a value of 1 indicates that they are the same). The

precision quantifies the number of positive class predictions that belong to the positive class.

Recall quantifies the number of positive class predictions made from all positive examples in

the data set. Table 3-3 shows the results. These percentages correspond to how close each

metric was to the metric generated by the main sampling rate.

Using the definition of true positive (TP), false positive (FP) and false negative (FN), the
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(a) Point cloud for Benign tissue

(b) Point cloud for Gleason 3 tissue

(c) Point cloud for Gleason 4 tissue

(d) Point cloud for Gleason 5 tissue

Figure 3-8: Example of point clouds generated by different sampling rates. The first column

corresponds to the original image. The second column corresponds to the point

cloud with a sampling rate of 50%. The third column corresponds to the point

cloud with a sampling rate of 12.5% and the last column corresponds to the

point cloud with a sampling rate of 3.125%.
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Predicted

0 1

A
ct

u
a
l 0 97.2% 2.8%

1 2.0% 98.0%

(a) Confusion Matrix Rate sampling 50%

Predicted

0 1

A
ct

u
a
l 0 97.2% 2.8%

1 2.1% 97.9%

(b) Confusion Matrix Rate sampling 25%

Predicted

0 1

A
ct

u
a
l 0 96.8% 3.2%

1 2.8% 97.2%

(c) Confusion Matrix Rate sampling 12.5%

Predicted

0 1
A

ct
u
a
l 0 96.7% 3.3%

1 3.4% 96.6%

(d) Confusion Matrix Rate sampling 6.25%

Predicted

0 1

A
ct

u
a
l 0 96.4% 3.6%

1 4.5% 95.5%

(e) Confusion Matrix Rate sampling 3.125%

Predicted

0 1

A
ct

u
a
l 0 96.3% 3.7%

1 5.5% 94.5%

(f) Confusion Matrix Rate sampling

1.5625%

Table 3-2: Confusion matrices for each sampling rate. Note that the difference between the

sampling rate of 50% and that of 1.5625% have a difference of less than 4% in

each cell.
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equations of the metrics used can be written as follows:

Dice =
2TP

2TP + FP + FN
(3-2)

Precision =
TP

TP + FP
(3-3)

Recall =
TP

TP + FN
(3-4)

Dice Index Precision Recall

50% sampling rate 97.59 97.20 97.98

25% sampling rate 97.54 97.20 97.88

12.5% sampling rate 96.99 96.80 97.88

6.25% sampling rate 96.65 96.70 96.60

3.125% sampling rate 95.96 96.40 95.54

1.5625% sampling rate 95.44 96.30 94.59

Table 3-3: Values of the metrics used in each sampling rate. Note that there is less than 4%

loss of information as we use a smaller value of the sampling rate.

As fewer pixels are used for segmentation, the time required for the proposed method to give

us a labeled image decreases markedly. In Table 3-4, we can see the average time required

for each sampling rate.

Sampling rate value (%) Time

100 >24h 0’ 0”

50 1h 52’ 18”

25 0h 42’ 36”

12.5 0h 23’ 24”

6.25 0h 12’ 36”

3.125 0h 6’ 36”

1.5625 0h 4’ 08”

Table 3-4: Average time required to segment an image using different sampling rates.

Finally, in Figure 3-9 we can see some examples of segmentation with the different sampling

rates.
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(a) Original Image.

(b) Pre-processed image.

(c) Ground truth.

(d) Stroma Segmentation using exhaustive segmentation (all the pixels in the image).

(e) Stroma Segmentation using only 25% of the pixels in the image).

(f) Stroma Segmentation using only 6.25% of the pixels in the image).

(g) Stroma Segmentation using only 1.5625% of the pixels in the image).

Figure 3-9: Results of the stages of our proposed methodology
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3.5 Conclusion

The designed method allowed us to reduce the time required by a convolutional neural

network to segment an image. We use different sampling rates of 50%, 25%, 12.5%, 6.25%,

3.125%, and 1.5625% to analyze our algorithm’s convergence through confusion matrices.

Additionally, we use metrics such as the Dice index, recall, and precision to validate that the

method converges experimentally. Using only 1,625% of the pixels of an image, we obtained

94% similarity concerning the 100% sampling rate (using all the pixels) in an average time of

5 minutes; that is, we managed to reduce the time significantly considerable without major

loss of information.



4 Location of suspicious areas using

CNNs

In the previous section, we designed a methodology (Transfer Learning with the MobileNet

network) that allowed us to segment muscle tissue in images of prostate tissue. We were

able to optimize the segmentation (inference) time of our convolutional neural network only

using a percentage of image pixels, where we managed to reduce the time from 24 hours

to just 5 minutes with a very low loss of information (around 4% ). However, in the state

of the art, a very important task carried out with neural networks in medical imaging is to

locate tissue abnormalities. Using the results of chapter 2, in this chapter, we will implement

a methodology that allows us to locate suspicious areas in images of prostate tissue. For

this, we will design our own neural network and train it from scratch. This will reduce

the inference complexity and also the time needed to segment the image. This chapter is

organized as follows. In section 1 we will make an introduction to the different existing neural

architectures in the literature that are used in histopathological images and the problem

that can be extrapolated from these deep networks. In section 2 we will show our proposal

convolutional neural network to locate suspicious tissue areas. In section 3 we will present

the results obtained and finally, in section 4 we will give the conclusion of the chapter.

4.1 Introduction

It is common to see authors employ predefined neural architectures to solve computer vision

problems in the state-of-the-art [50]. By using predefined models that have been trained on

a large data set, the training process becomes much more manageable. Among the benefits

that exist when using this methodology, we can mention the most significant:

• Few training data: As previously trained weights are used, few images can be used to

adapt the convolutional model to the new data set. This process is known as Transfer

Learning.

• High Network Performance: When the neural network is retrained with the new
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data, the model starts with good performance (good accuracy, little overfitting, few

parameters to tune, etc.). For this reason, few periods and small learning rates are

used.

In the following articles, we can see how this methodology generates good results using

histopathological images. Hameed et al. [51] present a deep learning approach for breast

tissue classification on histopathological images. The database used consisted of 845 images

of size 1278 × 760 pixels extracted from 544 Whole-Slide Images. The classes used were

images with carcinoma (437) and images without carcinoma (408). They used the Transfer

Learning technique with the VGG19 and VGG16 [52] networks for training. The perceptual

field of the network was 224×224×3 pixels (the image was scaled to 1278×760 pixels). The

procedure used these patches to classify them into one of the two classes described above.

The results obtained by the authors were 95.29% in the F1 score, 97.73% in the recall, and

95.29% in the precision.

Sitaula et al. [53] also used the Transfer Learning technique with the VGG16 pre-trained

neural network to classify histopathological images of breast tissue. The authors used the

BACH database of 400 images of 2048× 1536 pixels. The perceptual field of CNN is 224×
224 × 3 pixels. However, the authors did not scale the image but instead used extracted

patches of 224× 224 size as input to the neural network. It is required to classify the images

into 4 different classes: normal, benign, in situ, invasive. The inference process consisted of

using the patches as features of an image and using a support vector engine to classify these

features into one of 4 classes. In the normal class, the results were 90% in the precision,

recall, and F1-score. The results were 91%, 89%, and 90% for the benign class. The results

were 94%, 94%, and 94% for the in situ class. Finally, the results were 93%, 96%, and 94%

in the invasive class.

In these examples, we saw how they used the VGG16 and VGG19 neural architecture (Fig-

ure 4-1 1) to classify images of breast tissue. However, this pre-trained network contains

around 138 million parameters. Therefore, the number of parameters affects the training

and inference time, and it is required to use hardware with greater capacity to handle this

type of network.

This is not the only architecture used in histopathological image classification. For example,

Han et al. [54] used the AlexNet neural network (Figure 4-22) to localize areas with a

high degree of cancer in images of prostate tissue. They used 268 WSI images from which

960×960 pixel images were extracted. Each portion of the image corresponds to the regions

1https : //www.researchgate.net/figure/F ig−A1−The−standard−V GG−16−network−architecture−
as− proposed− in− 32−Note− that− onlyf ig3322512435

2https : //neurohive.io/en/popular − networks/alexnet − imagenet − classification − with − deep −
convolutional − neural − networks/
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Figure 4-1: Basic architecture of the VGG16 neural network. This network contains about

138 million parameters. VGG19 architecture is similar to VGG16, the difference

is that VGG19 contains three additional convolutional layers.
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of interest of the investigation. Two labels were used: cancer class and benign class. The

training process consisted of extracting nuclei and Lumen features from the images. They

then used the pre-trained model to detect the zones with the highest nuclei concentration and

classify this characteristic in the cancer class and the rest of the zones (highest concentration

of Lumen) in the benign class.

Figure 4-2: Basic architecture of the AlexNet neural network. The neural network contains

61 million parameters.

As a last example, Wang et al [55] develop an automated system that allows the recognition

of tumor areas for pathology images of lung cancer. They used 27 WSI images from which

patches of 300x300 pixels were extracted. In total, 5,344 patches were extracted, of which

2,139 corresponded to the benign class, 2,475 to the tumor class, and 750 to the white

background class. The Inception V3 architecture (Figure 4-33) with a 300× 300 perceptual

field and pre-trained weights in ImageNet was used to train the CNN model. The overall

prediction accuracy of the CNN model on the test set was 89.8%; accuracy was 88.1% for

tumor patches and 93.5% for benign patches.

As we can see in the previous examples, pre-trained neural architectures to solve histopatho-

logical image classification and segmentation problems have a good performance index. How-

ever, this methodology offers good performance at a high price: the weight of the network

and the high number of parameters. Thanks to the designed method in chapter 2, we can cre-

ate more data by dividing the image into small patches. This implies that it is not necessary

3https : //www.researchgate.net/figure/Convolutional−neural−network−architecture−Inception−
v3− used− in− this− study − Inception− v3f ig3328775405
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Figure 4-3: Basic architecture of the Inception V3 neural network. The neural network

contains 24 million parameters.

to use the Transfer Learning technique. Therefore, we can simplify the problem by creating

a convolutional neural network with much fewer parameters and good performance, as in

the examples cited. In section 2, we will present our new methodology to locate suspicious

areas in images of prostate cancer.

4.2 Proposed methodology

In state-of-the-art, they expose different ways to optimize a neural network, from better

training forms [56, 57] to optimizing the inference time [58, 59]. In this document, we select

one of the elementary techniques that optimize the processing time: reduce the size of the

image. To use this technique, we make an assumption: that the characteristics of the image

are maintained, that is, that the loss of information, when going from the original scale to a

smaller one, is low. Therefore, the perceptual field is also reduced since we are not using the

original image (compared to how it was done in chapter 2). Due to the simplifications that

were made, it was proposed to divide the methodology into two separate processes that are

executed sequentially:

• Stroma segmentation.

• Location of abnormal areas.

4.2.1 DataBase

The database corresponds to the same database that was used in chapter 2 of this document

(See Database section of Chapter 2)
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4.2.2 Preprocessing

Three processing techniques were used to have a data set as uniform as possible. We first

applied the staining normalization technique [60]. This allows us to reduce the variance of

the staining that exists between prostate images. Second, we use the white balance technique

to increase the contrast of the image structures: stroma, nuclei, glands, and lumen (it is the

same technique used in the processing stage of chapter 2). Finally, we scaled the images

from 3100x3100 pixels to 752× 752 pixels. In Figure 4-4, we observe these techniques.

Original Image StainNormalization DownscalingWhite Balance

Figure 4-4: Database preprocessing. The image corresponds to a Gleason 4 tissue.

4.2.3 Architecture Network

The architecture of the convolutional neural network can be seen in Figure 4-5. The feature

extraction process consists of three convolutional layers and two maximal pooling layers. The

classification process consists of 32 neurons with a dropout of 0.5, followed by the network’s

output containing two neurons. The perceptual field of the network, that is, the size of

the input to the network, is 32 × 32 × 3. The size was selected by visual inspection, where

the stroma and epithelial tissues were analyzed for the smallest dimension. It may contain

enough information for the neural network to work well. Selection criteria were based on

the amount of muscle tissue and nuclei that could cover the perceptual field of the network

and the number of cells present in the cytoplasm that could cover the same perceptual field

of the network.

4.2.4 Stroma segmentation

Using the network in Figure 4-5, we proposed segmenting the stroma of the images as done

in chapter 2. The objective is to eliminate pixels that are not required for the location of
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Input (32x32x3) Conv2D (16x16x16) MaxPool (2x2) Conv2D (16x8x8) MaxPool (2x2) Conv2D (8x4x4) Fully layer

Class0

Class1

Figure 4-5: Convolutional neural network proposal. Our CNN contains only 47242 trainable

parameters.

anomalies (second stage). As the convolutional neural network and the perceptual field is

small, the required inference time is low.

Figure 4-6: Example of the training and test images. The box on the left is the patches of

the background class and the box on the right is the patches of the stroma class.

To train the network, 1500 patches of 32× 32× 3 in two different classes were used: Back-

ground Class and Stroma Class, and for model validation, 500 patches were used for each

class (See example Figure 4-6). To train our network, we use 40 epochs with a batch size of

8. We use the Adam optimizer with a training rate of 0.0001. In Figure 4-7, we can see the

result of the network training

4.2.5 Location of abnormal areas

After segmenting the stroma of the images, new patches are extracted to enter the same

neuronal model whose function is to detect suspicious areas. The importance of the first

segmentation is that it allows us to focus on the most relevant tissues. Removing a good

percentage of the muscular tissue from the image will reduce the possible false positives in

the inference since the network will not be confused with the stroma tissue. The classes that
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(a) CNN Accuracy plot

(b) CNN Loss plot

Figure 4-7: Plots of neural network training corresponding to Stroma segmentation
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were used were: benign class and malignant class. In training, 4000 patches were used for

each class and 900 patches for model validation (See example Figure 4-8). The neural model

has the same training parameters described in the first stage.In figure 4-9, we observe the

training graphs.

Figure 4-8: Example of the training and test images. The box on the left is the patches of

the benign class and the box on the right is the patches of the malignant class.

4.3 Results

4.3.1 Stroma Segmentation

The neural network showed a performance of 96.7%; that is, of the 1000 images used for the

test, 967 were classified correctly and 33 incorrectly. In Stroma segmentation, the neural

network took an average of 30 seconds. In Figure 4-10, we see the result of some classifica-

tions.

In some images, the presence of stroma is observed. This is because epithelial and stroma

tissues have similar texture characteristics, causing false positives in segmentation. How-

ever, CNN manages to discriminate a good percentage of muscle tissue from the image’s

background. Using this result, we can use the second neural network to locate areas with a

high degree of cancer.
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(a) CNN Accuracy plot

(b) CNN Loss plot

Figure 4-9: Plots of neural network training corresponding to location of abnormal areas
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Figure 4-10: Example of the result of the segmentation in images. The first row corresponds

to the processed image, the second row to the label of the stroma and in the

last row the image segmented by CNN.
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4.3.2 Location of abnormal areas

The neural network showed a performance of 90.72%; that is, of the 1,800 images used for the

test, 1,633 were correctly classified and 167 incorrectly. The average segmentation time was

45 seconds. The segmentation process at this stage consisted of training the same CNN but

with the new labels. The result is a black and white image with the areas that the network

considers suspicious. However, as mentioned above, stroma tissues and glands have similar

characteristics, causing segmentation to have poor performance. For this reason, the same

CNN neural network was trained for two different tasks. When we combine the information

from the first neural network (stroma segmentation) with the information from the second

neural network (location of suspicious areas), the result is a binary image where the maximum

value corresponds to cancer and the minimum value to benign tissue. This allows mitigating

the false positives generated in the segmentation. Table 4-1 shows the operation performed

with the two segmentation. Additionally, we refine the resulting image with a morphological

operation to eliminate those small areas that do not represent a suspicious zone. In Figure

4-11, we show the final results of the location of the malignant tumor areas.

Location of

abnormal area

Stroma

Segmentation
Result

1 1 0

1 0 1

0 1 0

0 0 0

Table 4-1: True table. The values in the table correspond to the pixel values, where 1 equals

the white pixel and 0 the black pixel.

4.4 Conclusion

The proposed design to locate suspicious areas has many advantages over the examples

postulated at the beginning of the chapter. The neural network has a reduced number of

parameters and has performance comparable to that of predefined networks. The strategy

of using two CNNs to perform a task allows us to control the behavior of the neural network

since, being such a small network, we can know what characteristics it is using to segment.

Additionally, the time required for training and inference is reduced (less than one minute),

allowing different iterative tests to be carried out to find a model with better performance.

We show experimentally that it is not necessary to use such deep networks (over-sizing of

the problem); it is enough to make some assumptions at the processing level to design much

smaller models with the same level of precision.
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Figure 4-11: Example of the location of areas with a high incidence of cancer. The first row

corresponds to the original image; the second row refers to the result of applying

Table 4-1 with the results of the two CNNs, and the last row corresponds to

the location of the tissue.
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In this document, we saw three types of tools that facilitate some of the tasks that a pathol-

ogist carries out to diagnose a patient. The first tool is a series of color transformations that

improve the visualization of the structures present in the images of prostate tissue. We used

44 color transformations, of which 52.27% (23 transformations) were qualified as applicable

by specialists. For instance, the white balance technique, a technique that had the highest

rating by pathologists, allowed to increase the image’s contrast, making the edges of the

nuclei better defined. In addition, both the stroma and the epithelial tissue differences were

achieved much better than using the original image.

The second tool is an incremental algorithm that allows segmenting images in a pixel-based

manner based on CNNs faster, without considerable loss of information. The task consisted

of segmenting the stroma of prostate tissue, using a database of 100 images in multi-array

format. In addition, the selected neural model was a pre-trained network called MobileNet.

The designed algorithm significantly reduced the computational cost by using a randomly

sampled subset of patches from the image, providing us with a way of reducing the time

spent by computations from 24 hours of processing to just 5 minutes, with a minimal loss of

information (less than 5%). In addition, this new methodology allows us to analyze many

more images in a time lapse, facilitating the iterative process of validation and evaluation of

future neural models.

Finally, the last tool uses the previous stage’s results to locate suspicious areas in prostate

cancer images.We designed a convolutional neural network that had a small number of

parameters to reduce the computational cost of prediction. We hypothesize that using a

pre-trained neural network such as AlexNet or VGG16 produces an oversized model for the

task to be solved. Our network performs two tasks independently: segmenting the stroma

and locating suspicious areas. Because finding suspicious areas generated a high number

of false positives, we used the information from the stroma segmentation to discard those

misclassified pixels. In the end, we obtained a tool capable of identifying suspicious areas

with a reduced number of false positives.



6 Future work

In the first instance, we propose to analyze the assumptions made in chapter 3, where

we affirm that, when scaling the original image, the present characteristics would not be

modified, and there would be no loss of information. We also define a small perceptual field

selected by simple visual inspection. Finally, it is proposed to carry out an experiment where

the size of the network input is modified to see if the performance of the CNN varies.

During the development of the investigation, we observed that several histopathological

tissues present a similar characteristic to prostate tissue. Therefore, we proposed to apply

the transfer learning technique with our learned weights to see if our model adapts to new

tissues.

Convolutional neural networks are not the only existing methodologies in deep learning.

For example, there are neural models called fully convolutional networks like the U-Net

specifically designed to perform segmentation. It is proposed to implement this type of

neural network with our images and verify if there are advantages or if, on the contrary, our

methodology continues to have excellent results.
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Histopathology color image processing in prostate carcinoma. page 16, 2020.

[48] Yash Sharmay, Lubaina Ehsany, Sana Syed, and Donald E. Brown. HistoTransfer:

Understanding Transfer Learning for Histopathology. pages 1–4, 2021.

[49] Eirini Arvaniti, Kim S. Fricker, Michael Moret, Niels Rupp, Thomas Hermanns, Chris-

tian Fankhauser, Norbert Wey, Peter J. Wild, Jan H. Rüschoff, and Manfred Claassen.
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