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Title in English

Algorithms of differentiation for posets with an involution.

Titulo en espanol:
Algoritmos de diferenciacién para poset con involucién.

Abstract: In the last decades, the study and classification of finite-dimensional algebras
with respect to their representation type has been one of the main aims in the theory of
representations of algebras. Nazarova, Roiter, Zavadskij and Bondarenko have introduced
and studied several classes of representations associated to partially ordered sets (posets).
Here we are interested, on the one hand, in the category of representations of a poset
with an equivalence relation, where the equivalence sets have at most two elements; these
kind of posets are called posets with an involution. We give a natural exact structure for
the category of representations of this kind of posets, describe the projective, injective
objects and prove the existence of almost split sequences. On the other hand, we study
the categorical properties of the differentiation algorithms DI and DIII introduced by
Zavadskij in 1991.

Resumen. En las dltimas décadas, el estudio y clasificacién de dlgebras de dimensién
finita con respecto a su tipo de representacion ha sido uno de los principales objetivos
en la teoria de representaciones de algebras. Nazarova, Roiter, Zavadskij y Bondarenko
introdujeron y estudiaron distintas clases de representaciones asociadas a conjuntos
parcialmente ordenados (posets). Aqui estamos interesados, de una parte, en la categoria
de representaciones de conjuntos parcialmente ordenados con una relacion de equivalencia,
donde el conjunto de clases de equivalencia tienen a lo mas dos elementos; esta clase de
posets se denominan poset con involuciéon. Damos una estructura natural exacta para la
categoria de representaciones de esta clase de posets, describimos los objetos proyectivos
e inyectivos y probamos la existencia de sucesiones que casi se dividen.Por otro parte,
estudiamos las propiedades categoricas de los lagoritmos de diferenciacién DI y DIII
introducidos por Zavadskij en 1991.

Keywords: Representation theory of partially ordered sets, Auslander-Reiten theory,
Matrix problem, Vector Space Representation, differentiation algorithms DI, differentia-
tion algorithms DIII.
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Introduction

The theory of representation of posets was introduced and developed by Nazarova, Roiter
and their students in Kiev in the 1970’s. Omne of their ideas was to use it as a way of
giving a solution of the second Brauer-Thrall conjecture for finite dimensional k-algebras
[21,22,129].

The main tool to classify posets both ordinary and with additional structures has been the
algorithms of differentiation, which are functors defined to reduce dimension of the objects
of the categories involved in the procedure. The first of these algorithms of differentiation
is known as the algorithm with respect to a maximal point, it was introduced by Nazarova
and Roiter in 1972. It was used by Kleiner to obtain a criterion to classify posets of finite
representation type and by Nazarova in order to classify posets of tame representation
type in 1977 [18,123]. In 1977, Zavadskij introduced the algorithm of differentiation with
respect to a suitable pair of points which was used by Nazarova and Zavadskij himself in
1981 to classify posets of finite growth representation type [24,129,32].

In the early 1990’s the research regarding classification of posets pointed to posets with an
additional structure [9,25,32]. We recall that in 1991 Zavadskij introduced an apparatus of
differentiation for posets consisting of the algorithms of differentiation DI, DII, DIII, DIV
and DV. This apparatus was used by Bondarenko and Zavadskij himself to classify posets
with an involution of tame and finite growth representation type [§]. Afterwards, Zavadskij
and Zabarilo, who was one of his students, introduced equipped posets and classified one-
parameter equipped posets. To do that, he introduced algorithms of differentiation VII-
XVII in order to establish criteria to classify equipped posets of tame and finite growth
representation type in 2003 and 2005 respectively [31},34-36].

Categorical properties of the main algorithms of differentiation have been studied by
Gabriel, Zavadskij, Canadas et al. Gabriel established this line of research in 1973 and
gave the categorical properties of the algorithm of differentiation with respect to a maximal
point establishing a bijection between indecomposable representations of the correspond-
ing categories. Zavadskij proved categorical properties of the algorithm of differentiation
with respect to a suitable pair of points in 1991 describing also the Auslander-Reiten quiver
of posets of finite growth representation type. He also gave categorical properties of his
generalization of DI to posets with relations in 2005. In the same direction, Zavadskij and
Canadas gave the categorical properties of the algorithm of differentiation DII in 2006 [11]
and Canadas et al. described categorical properties of some versions of the algorithms of
differentiation DVII-DIX for equipped posets in 2013 [12414].

v
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On the other hand, Auslander-Reiten theory was introduced by Auslander and Reiten [4]
in 1975; their work deals with problems in the representation theory considered directly
with module theoretical techniques. Additionally to the classical module theory available,
including homological methods, they introduced the notion of almost split sequences.
Although they initially developed their ideas in the case of the category mod A of finitely
generated modules over an Artin algebra A, this theory has been extended to a number
of other categories including categories of representations of ordinary posets [5}29}33] and
of posets with additional structures [7,29].

In this sense, the almost split sequences are one of the most important tools for classifi-
cation of finitely generated modules over finite-dimensional k-algebras with tame repre-
sentation type. The most important theorem regarding almost split sequences was given
by Bautista and Martinez [5]. This result claims that there are almost split sequences in
Rep(P).

The purpose of this work is the study of the categorical properties of two of the Zavadskij
reduction algorithms by using Auslander-Reiten quivers. We recall that the general idea
of the reduction algorithms for posets goes as follows: given some suitable conditions take
a small portion X of the poset P and replace it for some other X’ obtaining a new poset
P’. Then given a representation of P, this is changed only in K obtaining a representation
of P'. In our approach we study the Auslander-Reiten quivers of the representations of
K and X’ and see how the reduction algorithms behave and then extend the properties
obtained in this way to the whole partially ordered sets P and P’.

Contributions

The following are the main contributions of this dissertation:

1. In Section [1.3] we describe the relationship between matrix representations and
vector space representations of poset with involution. We present two algorithms
that allow us to associate a matrix representation M = { M, },cp of (P, <,0) with a
vector space representation V = (Vo, V,),ep of (P, <,0) and conversely.

2. In Section we introduce the additivisation Mat?ﬂﬁly <) of the matrix problem for
posets with involution (P, 6) following Simson’s ideas. An embedding of categories ¢ :
Matp g) — Mat‘(lg‘ie) is defined and a dense and full functor F : Mat‘(lg‘fﬂ) — Rep(P,0)
is introduced. This functor preserves the representation type and vanishing only on
a finite set of isomorphism classes of indecomposable objects. In Proposition [1| we
prove that the functor F' induces the equivalence of categories

Mat{§ 5 /9 — Rep(®P, 0) (1)

where J is the ideal generated by objects I, = ((I:)o, (I2)w)wes With (I»)o = 0 and
(I,)y =0if z # w and (I,), = k. As consecuence from above, Proposition 4] proves
that Rep(P, 0) is an exact category.

3. In Chapter 2, we give an exact strcuture for the category of vector space repre-
sentations of poset with an involution. Furthermore, we describe the almost split
sequences for this category. The definitions and propositions presented in this chap-
ter have been results obtained during the research process.
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4. In Chapter 3, the Auslander-Reiten quiver for some posets with involution that we
will call of type D,, is given. Moreover, this result is generalized to posets of type D
and the Auslander Reiten quiver for these posets is presented. As in the previous
chapter, the results presented there, are part of the research process.

5. In Chapter 4 and Chapter 5, we present some categorical properties of differenti-
ation algorithm DI and differentiation algorithm DIII for poset with an involution
introduced by Zavadskij in 1991, by using module theoretical approach.

Conferences

The main results of this research have been presented in the following conferences.

1. Coloquio Latinoamericano de Algebra—PUCE. Quito-Ecuador, 08-2017.
2. IV Jornada de Algebra no Amazonas. Tabatinga-Brasil, 09-2019.

3. 4rd International Colloquium on Representations of Algebras and Its Applications;
Alexander Zavadskij. Bogota -Colombia, 11-2020.

Research stays

The author is indebted with the Centro de Ciencias Matematicas of Universidad Nacional
Auténoma de México-Morelia, Professor Raymundo Bautista Ramos for his warm hospi-
tality during his several research stays.

Outline

This thesis is distributed as follows:

In Chapter 1, in sections [I.1] and we recall some definitions and well known facts in
representation theory of both ordinary posets and posets with an involution which will
be used in the work; particularly, it deals with matrix representations and vector space
representations. Also, following the ideas presented by Simson in [29] for ordinary posets,
in section [I.3] we describe the correspondence between matrix representations and vector
space representations for posets with an involution. Here we present two algorithms that
allow us to associate a matrix representation M = {M,}.cp of (P, <,6) a vector space
representation V. = (Vp,V;).ep of (P,0) and conversely. In section we introduce
the additivisation Mat‘(lgﬂ) of the matrix problem for posets with involution (P,0). We

define an embedding of categories ¢ : Mat(p gy — Mat%f 0) and a dense and full functor

F: Mat?%e) — Rep(P, 0) preserving the representation type and vanishing only on a finite
set of isomorphism classes of indecomposable objects, which induces the equivalence of
categories

Mat%f,@)/fl — Rep(P,0) (2)

where J is the ideal generated by objects I, = ((1)o, (12)w)weo With (I,)o = 0 and (1,),, =
0if z # w and (I;), = k. We illustrate the existence of a categorical equivalence between
the categories Mat?g‘f 0) and the category of representations of the tensor differential algebra
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defined by quiver algebra £Q where () is a quiver that has as many points as the cardinality
of 0 plus one. Since this last category has exact structure and almost split sequences, then
Mat‘(lgﬂ) has exact structure and almost split sequences. By using this results together
with the equivalence (2) and the Proposition 1.8 of Liu [19], we prove that Rep(P,0) is
an exact category. Finally, in section [I.5] we present the main classifications theorems for
posets with an involution.

In Chapter 2, in section [2.1| we introduce a collection of sequences € with some properties
which will play the role of exact sequences and we give a natural exact structure for the
category of representations of posets with an involution (Rep(?P,#), ¢) following a different
technique from the one presented in the previous chapter. For this category, we describe
the projective objects and prove that it has enough projectives. Besides, we introduce
the injective objects and in order to show that this category has enough injectives we
introduce a category Repq(?P,6) which is equivalent to Rep(P°P, ). Further, we obtain
an equivalence of categories between Repq(P, ) and Rep(P,0) so by duality, we obtain
the desired result. In section we define a functor H : Rep(P,0) — mod A where
A = EndRgep(p,0)(P) which sends e-sequences in exact sequences and for all L € Rep(®, 9),
socH (L) is projective. Thus, this functor H induces an equivalence of categories:

H : Rep(P,0) — modg,(A).

This result is the main tool used in Chapter 4 to describe the Auslander-Reiten quiver of
posets (X, 0).

In Chapter 3, following the results of the previous chapters, we describe the Auslander-
Reiten quiver for some posets with involution that we will call of type D,,. These results
are generalized to posets of type Dy, and the Auslander Reiten quiver for these posets is
presented. This result is a fundamental tool in the study of the categorical properties of
differentiation algorithm DIII that will be presented in Chapter 5, since the posets (X', 8")
under certain conditions can be seen as a poset of type D,,.

In Chapter 4, we present a new proof of categorical equivalence of the differentiation
algorithm DI introduced by Zavadskij [36] by using module theoretical approach. We
recall that this result allows us to establish the categorical equivalence between Rep(P)/J
and Rep(P)/T where P = a” + by + {c1 < ca < -+ < ¢, } is a poset with a suitable pair
of points (a,b) and J = (k(a),k(a,c1),...,k(a,c,)) and ' = (k(a)). For this purpose, we
construct the Auslander-Reiten quiver of a subposet X of P and the subposet X’ of P’ and
show the categorical equivalence that exists between Rep(X)/J and Rep(X’)/J. Taking
into account the definition of the differentiation functor induced by the differentiation
algorithm DI, we can prove this result to the general case.

In the last chapter, we study the categorical properties of differentiation algorithm DIII.
In contrast to the case of differentiation algorithm DI, the functor

"R R

with R = {U € Rep(P,0) | U C U,";U; = 0}, and R = {U € Rep(?,0') | U} C

UE; U, = U(j; . .}, induces a dense and full functor, but in general not faithful:
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F R/ m)ago, K(A,b)) — R [(K(A,by)).



CHAPTER 1

Preliminaries

1.1 Matrix Problems

The matrix problems was introduced by several authors [1521,28], with the purpose of
solving classification problems, which consists in classifying the indecomposable objects of
a given additive category C having a finite unique descomposition property in the sense
that every object X of C has a direct sum descomposition X = X1 P XoP---P X,,
where X1, Xo,..., X, are indecomposable objects of C and every such a descomposition
is unique up to permutation and isomorphism.

Roiter and Gabriel [28] introduced a definition of matrix problem of size m x n as a pair
(M, G) formed by an underlying set M C £™*™ and a group § C GL,, x GL,, such that
XAY ! € M whenever A € M, and (X,Y) € G. The question raised by the matrix
problem is to classify the orbits of M under the action of § defined by (X,Y)A = X AY L.
In other words, it consists of a set M of finite matrices together with a set G of admissible
transformations in rows and columns which determines an equivalence relation, and the
goal is to find a canonical form, i.e. determine a set of canonical matrices such that each
G-equivalence class contains exactly one canonical matrix.

Taking into account that the matrices M € My, ,(k) describe linear transformations, if V'
and W are k-vector space such that dim;V = n and dim;W = m and we choose basis in
V and W, then we have an isomorphism of k-vector space

My (k) = Homy (V, W).

In case that n and m are non-zero, in order for the above isomorphism to be true in any
case, we introduce the empty matrices I, o, fo.n, fo,0. That is, matrices with zero number
of rows or columns, for which is satisfied

aIn,O + bIn,O = In,OQ aIO,n + bIO,n = IO,nu



1.1. MATRIX PROBLEMS 2

for all a,b € k, and for A € M, »(k):

IO,mA = IO,n; AIn,O = Im,O; Im,OIO,n =0¢€ Mm,n(k); IO,nIn,O = IO,O-

The matrix Iy corresponds to the identity of the trivial vector space 0. Henceforth, we
will consider I to be a nonsingular matrix.

We will put My, o(k) = In0, Mon(k) = Ion, Moo(k) = Io,o. Each one of these spaces are
isomorphic to the trivial vector space.

Now, if f:V — Wj and 0 : 0 — W; are linear transformations, then their direct sum is

(é) VPO — Wi Wa.

Thus, if M € My, (k) and I, o are the matrices corresponding to the transformations f
and 0 respectively, then the matrix that corresponds to the direct sum of these transfor-

mations is
M
M @ Im170 = <0 > )

mi,n

where Oy, ,, is the matrix m; x n of zeros. Similarly

Im1,O@M - (07\2771) )

and

M@Io,m — (M Om,n1)7
Tom, @ M= Opmn, M).

1.1.1 Matrix Representations of Posets.

There are many useful matrix problems for which there exist constructive methods for the
classification of their indecomposable objects. One of them is the classification of matrix
representations of partially ordered sets (poset) as will be shown in this section.

Definition 1. A partially ordered set (poset) is a pair ordered (P, <) which consists of a
not empty set P and a binary relation contained in P x P, called order, such that

1. < is reflexive, which means that x < x for all x € P;
2. < is antisymmetric, that is x <y and y < x then x =y for all x,y € P;

8. < is transitive, meaning that x <y and y < z then x < z for all x,y,z € P.

Two elements x, y of a given poset P are comparable if x < y or y > z.
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A poset is finite (infinite, respectively) if and only if the underlying set is finite (infinite,
respectively).

A poset can be visualized through its Hasse diagram, which is the graphical representation
that represents each element of P as a vertex in the plane and draws a line segment or
curve that goes upward from = to y whenever y covers x . These curves may cross each
other but must not touch any vertices other than their endpoints. Such a diagram, with
labeled vertices, uniquely determines its partial order.

Example 1. Figure 1.1 is a Hasse diagram representing the poset (P,<) with P =
{a,b,c,d} and a < ¢,a < d,b < c,b<d.

FI1GURE 1.1. Hasse diagram of a poset.

If (P,<) is a poset and a € P, then we denote the subsets of P, a”, a,, a¥, and a,, in
such a way that:

o' ={re?P|a<ua},
ap ={z€?P |z <a},
a’ =a” \ {a},
ax = a, \ {a}.

Subset a¥ ( an,respectively) is called the ordinary up-cone ( down-cone,respectively), as-

sociated to the point a € P. Whereas subsets a¥ and a, are called truncated cones (up
and down, respectively) associated to the point a € P.

(1.1)

For a poset (P, <) and A C P, we define the subsets, AV and A, such that

AV = Uav,

acA

A) = UaA.

a€A

(1.2)

An ordered set C is called a chain (or a totally ordered set or a linearly ordered set) if and
only if for all p,q € C we have p < q or ¢ < p (i.e., p and ¢ are comparable). On the other
hand, an ordered set P is called an antichain if x < y in P only if x = y. The maximal
cardinality of antichains in a poset P is called the width of P.

Definition 2. A matriz representation of (P, <) is a collection of matrices M = { M } e
with My € Mg, q,(k). The dimension vector of M is dim(M) = d = (do, dy) zeop-
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Definition 3. Two representations M = {M,},ep and N = {N,},cp are equivalent if

1. dim(M) = dim(N).

2. There are nonsingular matrices So € Mg,(k), Sz € My, (k) for each x € P and for
each pair y < x in P erists a matriz Sy, € Mg, 4,(k) such that

SoMy = NpSu + Y NySya, (1.3)

y<x

for all x € P.

In this way we have defined a matrix problem (Mg, Gop).

Definition 4. If M = (My)ecp and N = (Ny).ecp are two representations, the direct sum

M @ N= (Mx @ Nx):vEfP'

Definition 5. A representation M = (My)cp is indecomposable if it is not equivalent to
a direct sum LN where dim(£L) # 0 and dim(N) # 0.

Example 2. If P = {z} then a matriz representation M with dimension d = (do,dy)
consists of one vertical stripe M = [ M, |, M, € kdoxds - In this case, two representations
M=[M,] and N = N, | are equivalent if there exists invertible matrices U and S such

that N = UMS~ 1.

Remark 1. We can observe that the matriz M, can be transformed by elementary row
and colummn transformations into

M= [10 8] , (1.4)

where 1, stands for an identity matriz of size r and O for the zero matrix of size (dy —
r) X (dy — 7). In case M has all its linearly independent rows then the right blocks in the
reduced form are matrices Mg, o.

Example 3. The two subspace problem is the matriz problem associated with a poset
consisting of two incomparable elements, which consists of the set M of all pairs of matrices
with the same number of rows under the equivalence relation: (M, N) ~ (M', N') if there
exists invertible matrices U, S, and T such that M’ = UMS™" and N' = UNT~'.The
solution for this matriz problem (see, [28]) is given for the following normal form:

L, 00| 0 1, 0
o 0] 0 0 o
0 00 0 00
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where [1,[1,] = L EPNLED--- PN = L] Similarly [L]) = [1])", [|L] = [1]*

/

and the [00] = [|]” @®I]* D[]*", where r is the number of rows of [0|0] and s'(s") is the
number of columns of the left (right) stripe.

1.1.2 The Kronecker Problem

There are some classification problems whose matrix problem can be formulated in terms
of matrix representations of poset with additional structures. Among them, is the Kro-
necker problem. This problem is the matrix problem of pairs of matrices (M, N) of the
same size under the equivalence relation: (M, N) ~ (M’, N') if there exist invertible ma-
trices U, S such that M’ = UMS~! and N’ = UNS~!. So, the problem of classification
of indecomposable Kronecker modules, as we will see next, is equivalent to this matrix
problem and was solved by Kronecker in 1890 for the complex number field k. Due to its
importance in our research, we will dedicate this section to its study following Simson’s

ideas [29].
ko k2
=0 %)

where k is a field and the multiplication is given by the formula

d uw\ (f v\ __ [df dv+ue

0 ¢/\0 ¢/ \O ce ’
Finite dimensional right A—modules are called Kronecker modules. Every such a module
X can be identified with the quadruple

Consider the Kronecker algebra

a
X =X; = X,
b

where X, X are the vector spaces X (§§), X(§7) respectively, and a, b are linear maps
defined by

a(@) ==(§4), blz)=(59),
for x € X1, and {7, 5} is the standard basis of k2. Any A-homomorphism c: X| — X can
be identified with a pair (¢1,c2) of linear maps

611X1—>X1, 022X1—>X2,

such that coa’ = acy and cob’ = bey. It follows that the category of Kronecker modules is
equivalent to the category of pairs (A, B) of matrices A, B over k of the same size, where
the map from (A’, B') to (A, B) is a pair (C4, C2) of matrices over k such that Co A’ = AC}
and CQB/ == BCl

This problem is equivalent to the problem of finding canonical Jordan form of pairs (A4, B)
of matrices with respect to the following elementary transformations:

(i) all elementary transformations on rows of the block matrix (A, B),
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(ii) all elementary transformations made simultaneously on columns of A and B having

the same index number.

We recall that, if k is an algebraically closed field, then up to isomorphism every indecom-

posable Kronecker module belongs to one of the following three classes [29],[21]:

E,

Jam)

Jam)

Ey,

where J\ ) € {J&n), J(_)\’n)} and J(iA,n) denotes a corresponding upper or lower Jordan

block. Whereas, I* denotes the dual case defined by the classification problem.

II = IIT*:

I = IT*:

(Enyon,l)

(On,1> En)

Ol,n
Eny,

E,
Ol,n

The cases II and III constitute the non-regular cases of this classification, whereas cases 1
constitute the regular one.

1.1.3 Matrix Representations of Posets with an Involution

Representations of poset with equivalence relation were introduced by Nazarova and Roiter
with help of the matrix language [22].

Definition 6. A partially ordered set with an equivalence relation is a triple (P,<,0),
where (P, <) is a partially ordered set and in P there is an equivalence relation whose
equivalence classes is 0. If the cardinality of each equivalence class is less than or equal to
two, we will say that triple (P, <,0) is a partially ordered set with an involution. If x € P
we will denote by [z] its equivalence class.

Remark 2. From now on we will omit the order relation in the notation for poset with
involution, that is, we will write (P, ) instead of (P, <,0).

If the class [z] is a unit set, in this case we say that x is a small point and in the Hasse
diagrams it will be designated with o whereas if the class [z] has two elements (we will
write & ~ x*, if this is the situation) we will say that x is a large point. The large points
are noted in the Hasse diagrams with the symbol e.

If P consists of only small points, then we get representations of partially ordered sets in
the ordinary case as in the Definition (1| Henceforth, frequently a unit class [z] = {z} will
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be identified with = and a class with two elements [x] = {x,2*} could be considered as
an ordered pair (x,z*) (the order chosen for points z,x* will be done according to the
context).

Example 4. Let (P,0) be a poset with involution where P is as in Figure 1.2 with a < b,
c<b,c<a* and 0= {(a,a*),b,c}.

bo o 0¥

N

ae ocC

(?a 9):

FI1cURE 1.2. Diagram of a poset with an involution

Definition 7. A matriz representation of (P, 0) is a collection of matrices M = { M }reop
with M, € Mg, q,(k) such that if x ~ x* then dy = dy~. The dimension vector of M is
d1m<M) = (d(), dz)zep-

Definition 8. Two representations M and N are equivalent if

1. dim(M) = dim(N).

2. There are nonsingular matrices So € Mg,(k), Sz € Mgy, (k) for each x € P and for
each pair y < x in P there exists a matriz S, € Mgy, q,(k) such that S, = S, if
[z] = [y] and

SoMy = NpSo + Y NySya,
y<x

for all x € P.

Definition 9. If M = (M,)zecp and N = (Np)zep are two representations, the direct sum

MEPN = (M. P Na)aer-

Definition 10. A representation M = (M) e is indecomposable if it is not equivalent
to a direct sum LN where dim(L) # 0 and dim(N) # 0.

1.2 k-linear Representations

Another way to approach classification problems for linear transformation systems may
be formulated in terms of a quiver and its representation introduced by Gabriel in 1973
[16]. For this purpose, he introduced the concept of a filtered k-linear representation of a
poset P which is presented in this section.
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1.2.1 Vector Space Representations of Posets

Definition 11. A representation (or filtered k-linear representations or P-space) U of a
poset P is a system of finite-dimensional k-vector spaces of the form

U= (U Us|ze?P), (1.6)

where Uy 1s a finite-dimensional k-space and U, is a subspace in Uy for each x € P, such
that U, C Uy provided that x < y.

Definition 12. A morphism ¢ : U — V between two representations U and V is a k-linear
transformation
¢ : Up — Vo,

such that p(Uz) C Vy, for each x € P.

Definition 13. The radical of a representation U is the representation rad U = (Uy, Uy |

x € P) where Uy = >, Uy is the radical subspace of Uy.

Definition 14. The vector cdimU = (do,d, | © € P), where dy = dimgUy and d, =
dimy, U, /Uy is called the coordinate vector of the representation U.

Definition 15. The direct sum between two representations U,V is a representation

UV =W = (Wo, W, |2 € P),

such that Wy = Us @ Vo and W, = U, @V, for any x € P.

Definition 16. A representation U € rep P is said to be indecomposable provided that in
a decomposition of the form U = Uy @ Us either Uy = 0 or Uy = 0, otherwise U is a
decomposable representation.

Given a representation U of a poset P over a field k such that dimy Uy = 1 then U is a trivial
representation. For instance, if A C P then k(A) is the indecomposable representation of
P, where Uy = k and

U, = (1.7)

k, if x e AY,
0, otherwise.

In particular, the representation k(&) has the field k£ as the ground vector space Uy and
U, = 0 for any point = € P. We write k(ay,...,as) instead of k(A) when A = {aq,...,as}.
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1.2.2 Vector Space Representations for Posets with an Involution

Following the ideas presented by Gabriel, Zavadskij introduced filtered k-linear represen-
tation of posets with an involution (P, 6) [38]. Here we introduce an equivalent definition
to the one given by him. For this, we consider (P, 0) a poset with involution. We take V} a
k-vector space and z € 6, take Vi the k-vector space consisting of all functions h : z — V4.
For z € 2z, we have the inclusion: i : Vo — V{7, defined by

0, if y # ,

v, otherwise.
and the projection in the summand x of Vi§, 7, : Vi — Vp, that is, for h € Vj,
7z(h) = h(x).
In the following, if V' is a k-vector subspace of Vj{ and z € z,

Ve =i (V) = {ve Vo lis(v) €V},
V)t = (V) = {h(z) | h € V}.

xT

Definition 17. A wvector space representation V.= (Vy, V) .co of (P,0) is given by:
1. a finite-dimensional k- vector space Vj,
2. for each z € 0, a vector subspace V, of Vi§ such that if y < x then

+ —
V,mC V.

Example 5. Let (P,0) be a poset with an involution where P is as in Figure 1.3 with
a<b* a*<b,a* <b" and 0 = {(a,a"), (b,0%)}.

b* e ob

X

ae oq*

(?7 9):

FI1GURE 1.3. Diagram of a poset with an involution.

We will show that V = (Vo, V(g a=), Vis,p+)) 18 a vector space representation of (P,0), where
Vo = R3, B = {e1,e2,e3} is the canonical basis of Vo and Via,ary = (h), with

-~ R3
— 61
H

h: (a,a")

*

a €9

and Viy y+y = (h1, ha, hs, ha), with
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hi: (b,b*) — R3 ho: (b,b*) — R3
b — e b — 0
b* — 0 b* — e

hs: (bb*) — R3 hg: (b,b*) — R3
b — 0 b —  e3
b* — €92 b* — €3

Indeed, since

VaJr = 7TGL(V(a,a*)) =R{e1}; Vat = Ta> (V(a,a*)) =R{ez};
Vy =iy (Vo) = R{eals Vi =i (Vo)) = Rier, ea}s

then, for a < b* is obtained that V;m C V.. For a* < b*, it is satisfied that Vic V- and
for a* < b, it is true that V. C Vi, .

Definition 18. IfV = (Vy, V.).cp and W = (Wy, W) e are two representations of (P, 0),
and ¢ : Vo — Wy is a morphism of vector spaces, such that for each z € 0, we have the
morphism ¢® : Vi — W§ and for h : z — Vi, ¢*(h) = ¢h. Then a morphism V. — W
consists of a morphism of vector space ¢ : Vo — Wy such that

SOZ(VZ) c W,
for all z € 0.

Definition 19. If V = (Vy, V.).cg and W = (Wy, W,).co are two representations of (P, 0)
then their direct sum is

VEpW = (Vo @ Wo, V- P W-)es.

Now, for a vector space representation (Vp,V.,).cq of (P,0), and for z € 0, we define
VoYY v
rxez y<x

If (Vb,V.).co is a representation of a poset with an involution (P, ) over a field k£ and
A C P, then we define the subspaces of V[, denoted VX and V', in such a way that

Vi=X Vi,
a€A
Vi=N V.
a€A

For A = @, by definition V' = 0 and V; = V4.

A representation (Vp,V).co of the poset with an involution (P,0) is called trivial if
dimgVp = 1. If A C P, we define the trivial representation that we denote by k(A)
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in such a way that k(A) = (k; V3).cq, where V, = k*"4" which means that for each z € P
we will have

k, if zeAY,

0, in otherwise.

Wzmz{

Notice that, by definition k(A) = k(AY) = k(min A). For simplicity we often write
k(Xy, ..., X,) instead of k(X1 U---UX,,) and in the case that we have a unit set X; = {z;},
we will make the identification X; = z;. For instance, k(A,b) = k(AU {b}).

1.3  Vector Space Representations Vs Matrix Representa-
tions for Posets with an Involution

Zavadskij in [38] states that the differentiation algorithms introduced by him were con-
ceived using the matrix language but a strict foundation required a vector language; for
this reason it is very important to describe the relationship between these two ways of
representing the posets with an involution. For this, we take V' = (Vp,V, | z € 0) be a
vector space representation of (P, ) as above.

Then, for each z € 0, we choose V a direct complement of V', that is
vy

Now, we choose a basis £ for Vj and for each z € § we choose a basis U(z) of V2. Denote

B(V) = LU JU(z). In the first place, we will prove that the elements of the form
z€0
iy (my(u)) for u € U([y]) are a system of generators for V, where U([y]) is a basis for V2,

[y] is a class in 6 with y € [y] and = € z, y < z. Indeed, we have for any y € P

Ty (Vi) = D my (Vigy)).

Yy1<y

By definition of V; we have

my (Vi) = my Z Z Zar(v[:l] = Z Z Wyia:(v[;_l]) (1.8)

z€ly] y1<z z€y] 1<z
=2V = 2 T (Vi) (1.9)
1<y <y

Therefore, it is enough to prove that the space ix(V;“) with = € z and y < z is generated

by the elements of the form i, (my, (v)) with v € U([y1]) and y1 < 2. We consider
S(z) ={yeP[Brez)(y <o)},

and we suppose that y is minimal in S(z), then by my(Viy)) = 7ry(V[2}), thus the space

ix(V,") = ia(my(Viy)) = ie(my) (V) is generated by elements of the form i, (my(u)) with
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u € U(ly))-

Now suppose by induction that our claim holds true for all elements y; € S(z) with y; < y.
By using[1.§] we obtain:

iz(my(Vy)) = ix(”y(v[g])) + Z iz (my; (Viy)))- (1.10)
y1<y

The space iz(ﬂ'y(‘/[g])) is generated by elements of the form i, (m,(u)) with v € U(y). By
induction hypothesis the spaces i, (my, (Vjy,])), with y1 <y, are generated by elements of
the form i, (my, (u)) with u € Ufys]) and ya2 € S(z). For u € U(z) we have

u= 2.2 afix(l),

rezlel

where £ is a basis for V. Therefore,

To(u) = > of I
lel

Then, for each x € P we obtain the matrix
M, = (O‘Zu) € Mdyxd. (k),

where dy = dimVp and d, = dimg(V,/V,) for each z € z.

Thus, we obtain a matrix representation

M(B(V)) = (Mz)zep, (1.11)

in terms of the basis B(V) = L|J U U(k).
keb

Finally, we will prove that the matrix representation is independent of the choice of the
basis and the complementary subspace. For this we suppose that Vk? is another complement

of V. in V, and basis £ and U (k) of V) and ‘N/ko respectively. We take

B(V) = LU UUk).

ke

We will prove that M(B(V)) and M (B(V)) are equivalent matrix representations.Indeed,
for u € U(z) we have:

ueld(z)
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where A\(u) € V.. Then by using the system of generators for V;, we obtain:

=22 > Bliis(m(w)

€z y<z uel([y])

_ZZ Z Zﬁuulzalu% ))

w€z y<z uell([y]) leL

We have [ = }_ s7,l, where S = (s;;) are a non singular square matrices. Therefore:
ieL

U= Y sl Biai0)+ D> sgef,Bumi.0).

w,l,lz€z rez,y<z,ucU([y])
It follows the equality

M(B(V)), = SM(B(M)), T, + y;x SM(B(V))yTy.a.

where T7 is the non-singular square matrix (37 -) and T%* = (577).

From the above we conclude that M(B(V)) and M(B(V)) are equivalent matrix repre-
sentations.

Now, given M = (My)zep a matrix representation of (P,6) with My € Mgyxq,, (k), we

can construct a vector space representation V = (Vo; V, | z € 0) of (P, 0) as follows:

we take Vo = k%, and for each z € 6, let U(z) be the set of vectors of the form

U(i) = ZZ%Z x(¢5);

TEZ j=
where {e1,...,eq,} is the canonical basis of Vg and i = 1,2,...,d|,). We define
Y Yy Y s (12
ueU(z) z€z Yy<T vel([y])

so, by definition V. is generated by the vectors u € U(z) and the elements i, (m,(v)) with
x € z,y <z and v e Uy]).

Finally, we take now y < x in P, in order to check that V;r C V. It is enough to prove
that for any of the above non-zero generators w of V},; we have that m,(w) € V.

In case w = my(v) with v € U([y]) we have that i, (m,(v)) is one of the generators of Vi,
therefore w € V. In case w = iy, (my, (v))

Viy = > uk+ > Y >y (my, (v)E,

ueU([y]) y€[y] ¥2<y1 vel([y2])

then since my(w) is non zero, we must have y = y, 7y (w) = my,(v) with yo» < x and
v € U([yz]) therefore
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in (W) = iz (7y, (V) € Viay,

this implies m,(w) € V.

The previous constructions allows to describe algorithms as follows:

H Algorithm 1 H
Input: a vector space representation V = (V,V, | z € 0) of (P,0).
Output: a matrix representation M = (My),ep of (P,0).

1. For each z € 0, calculate

Ve= Y Y (Vi) C Vi

rez y<x
2. For each z € 6, choose V? a direct complement of V, in V,, that is
V.=V'PV..

3. Choose a basis £ for Vj.
4. For each z € 6, choose a basis U(z) of V2.

5. For each u € U(z), uw= ) > of,iz(l).
x€zlel

6. For each z € P we obtain the matrix M, = (af,) € Mg, (k).

Example 6. We consider the vector space representation for the poset with involution
given in Example 5

1. For z = (a,a”) we have U, -y = 0, and for z = (b,0*) we have Uy = (h1) +
(ho) + (h3).

2. If z = (a,a*) then U = (h), and if z = (b,b*) then U? = (hy).
3. Choose L = (e, ea,e3) a basis for Uy = R3.
4. For z = (a,a*) we choose a basis U(z) = (h), and for z = (b,b*) we choose a basis
U(z) = (ha).
5. As U(z) = (ha) + (h) we have
ha =Y afpin(l) + > afy,iv (1)

leL leL
=0-idp(e1) +0-ip(e2) +1-ip(eg) + 0 -ip=(e1) + 0 - ip=(e2) + 1 - ip=(e3),

and

h=>Y"ofpiall) + > afy,ia (1)

lel leL
=1- ia(€1) +0- ia(eg) +0- ia<€3) +0- g+ (61) +1-ig+ (62) 4+ 0 - igx (63).
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6. Therefore, we obtain the matriz representation for (P, 0)

b*

I
O O~ 2
_ oo o o
_— o O

The next algorithm allows us to compute a vector space representation V = (Vp, V. | z € 0)
of (P,0) from a matrix representation M = (My),ecp of (P,0).

H Algorithm 2. H
Input: a matrix representation M = (My)zep of (P,0) with My € Mg, xay,, (k)
Output: a vector space representation V = (V,V, | z € ) of (P,0).

1. Take Vy = k%
2. For each z € 0, take U(z), the vectors set of the form
do
U() = T 3 adinley)
ez )=
where {e1,...,eq,} is the canonical basis of Vg and i = 1,2,...,d[,.
3. We define
Vo= 20 wk+ 3000 > ia(my(v)k.
ueU(z) z€z y<z velU(ly])
4.V = (Vo,V,) is a representation for (P,6).

Example 7. Let (P,0) be the partially ordered set with an involution as the following
figure

@)
@]
[

S

(P,0)=

FI1GURE 1.4. Diagram of a poset with an involution.

where 8 = {(a,b),c,d}. Consider the next matriz representation for (P,0)

a c d b
1000 0 O] 1] 10O0O0O0
01 000 O] O01]O0OT1O0TUO0ODO
M={0 0 01 0 0O | 0O | 0OT1O00
0000 1 0 | 0| 0O0OO0OT1TSFW0
000 O0OT1 ] 1] 00O0TO0°T1

We can give a vector space representation following the ideas given above.
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1. Vo = k°.

2. Forz=corz=d,U(1)={es} and U(1) = {e1 + e5} respectively,
for z = (a,b), we find that

U(l) = (61,61), U(Q) = (62,62), U(3) = (0,63), U(4) = (63,64), U(5) = (64,65).
3. For z=c,z=d and z = (a,b) we obtain

Viap) = k{(e1,e1), (€2, e2), (0, e3), (€3, ea), (€4, €5), (0,1 + e5)}.
‘/(C) = k{€5,€1,€2,€3,€4},
V(d) = k{el + 64}.

4. So, V = (k% Viaw)s Viey Via)) 8 a vector space representation of (P,0).

1.4 Representations of Posets and Categories

Categories are an important element in representation theory. They provide a language as
well as objects of investigation. They arise not only as natural generalizations of algebras
but also as generalizations of various categories of modules. Categories are indispensable
for the combinatorial description of algebras and modules which we shall produce. In the
present section we introduce the basic categorical notions and describe their relations with
classical algebra.

In this section we present the basic categorical notions, [see, [2,27,30]], and the category
of representations of posets with involution [32].

Definition 20. A category R is a class of objects together with the following data [30):

1. a rule which assigns to any pair (U, V') of objects in R a set R(U, V'), whose elements
are called the morphisms from U to V;

2. for any triplet (U, V,W) a composition map
R(V,W) x R(U, V) — R(U, W)
(9,1) — gof

which is associative in the sense that f o (goh) = (f o g) o h and which admits identity
elements in the sense that each set R(V,V') contains an element 1y such that 1y o f = f
forall f € R(U,V) and go 1y = g for all g € R(V,W).

Definition 21. Let R be a category. A category R’ is a subcategory of R if the following
four conditions are satisfied:

1. the class of object of R' is a subclass of the class of objects of R;
2. ifU, VeR then R'(U, V) CR(U,V);

3. the composition of morphisms in R’ is the same as in R;
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4. for each object U € R, the identity morphism 1y, € R'(U,U) coincides with the
identity morphism 1y € R(U,U).

A subcategory R’ of R is called full if R'(U,V) =R(U,V) for all U,V € R'.
In a category R there are special types of morphisms which we define below.

Definition 22. Let U and V be objects of a category R and f: U — V be a morphism
from U to V.

1. We call f a monomorphism if fg = fh for all morphisms g,h : W — U and all
objects W implies that g = h.

2. We call f an epimorphism if gf = hf for all morphisms g,h : V — W and all
objects W implies that g = h.

3. We call f an isomorphism if there exists a unique morphism g :V — U, such that
gf =1y and fg =1y. It is denoted by U =2 V.

Definition 23. Let R and R’ be two categories.

1. A covariant functor F : R — R’ is a rule which assigns to each object U of R
an object F(U) of R' and to each morphism f : U — V in R a morphism F(f) :
FU) — F(V) in R in such a way that always F(1y) = 1pqy and F(gf) =
F(g)F(f)-

2. A contravariant functor F : R — R, is a rule which assigns to each object U of
R an object F(U) of R' and to each morphism f : U — V a morphism F(f) :
F(V) — F(U) in such a way that always F(1y) = 1p@y and F(gf) = F(f)F(g).

3. A functor F : R — R is an equivalence, if F' admits a quasi-inverse, i.e. a functor
E: R — R such that EF is isomorphic to 1¢ and FE to 1.

It is useful to have another way of describing when two categories are equivalent. We say
that a functor F' between categories is faithful if the morphism Fyy : Homg(U,V) —
Homg/ (F(U), F(V)) given by F' is a monomorphism for all U,V in R. The functor F is
full if this morphism is an epimorphism. The functor F' is dense if for each V in R’ there is
some U in R with F(U) = V. In this way, the following characterization of an equivalence
of categories is obtained.

Theorem 1 (Theorem 1.2, [3]). A covariant functor F between categories is an equivalence
if and only if it is full, faithful and dense.

If there exists an equivalence F' of categories R and R, then we say that R and R’ are
equivalence categories and we note this R = R’.

In this work, we will refer to a covariant functor only as a functor. Now we show the
concept of k-category and ideal in a k-category.



1.4. REPRESENTATIONS OF POSETS AND CATEGORIES 18

Definition 24. Let k be a fired commutative ring, a k-category is a category R whose
morphism sets R(U, V') are endowed with k-module structures such that the composition
maps are k-bilinear. A k-functor between two k-categories R and 8 is a functor F': R — §
whose defining maps F(U, V) : R(U,V) — 8(FU, FV) are k-linear for all U,V € R.

Definition 25. An object U of a k-category R will be called indecomposable if the en-
domorphism algebra R(U,U) = End (U) has precisely two idempotents, namely 0 and

1y # 0.

Each k-algebra A gives rise to a k-category which has one object 2 such that Hom (92, Q) =
A. In the sequel, we shall identify k-algebras with the associated k-categories. Homomor-
phisms of algebras then correspond to k-functors. In view of this, k-categories generalize
k-algebras. The generalization carries over to (two-sides) ideals, which are defined as
follows [17].

Definition 26. An ideal I of a k-category R is a family of subgroups I(U, V') C R(U, V)
such that f € J(U, V) implies gfh € I(Z, W) for all h € R(Z,U) and g € R(V,W). FEach
such ideal 3 gives rise to a k-quotient category R/J which has the same objects as R and
satisfies (R/I)(U, V) = R(U,V)/I(U,V) for all U,V € R.

We recall the definition of the direct sum of two objects U,V € R as in [17]: let R be a k-
category. First we call summation of U and V in R a quintuplet (S, i, 7, p, ¢) consisting of an

@ J
object S € R and of morphisms U = S < V such that pi = 1y, gj = 1y and ip+ jg = 1g.
P q

Such summations are known to be “unique up to uniquely determined isomorphisms”.
Therefore, whenever a summation of U and V exists, we will suppose that a “canonical”
one has been chosen. The object S is then called the sum (or coproduct) of U and V in R
and it is denoted by U @ V'; the morphisms p, g are called projections, the morphisms 1, j
are called immersions.

For a category R, we let (U; | i € I)g denote the ideal consisting of all morphisms passed
through finite direct sums of the objects U;. That is, if ¢ : U — V € (U; | ¢ € I)g then

there exist morphisms f,g € R such that o = U I, Qpu™ 9, V with m; = 0 for almost
i

all 4.

Definition 27. The k-category R is called additive if U@V exists for all U,V € R and
if R contains a null object, i.e. an element 0 such that 15 = 0.

Let R be an additive category, a non-null object U € R is said to be indecomposable
provided U ~ V@ W implies V =0 or W =0 |27].

If [X4],...,[Xk] are equivalence classes of indecomposable objects of a given category then
k
we let [ X7, Xo, ..., X}] denote the union J [X;].
i=1
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Definition 28. Let R be an additive k-category and U,V € R. An idempotent is a
morphism e € R(U,U) such that e?> = e. An idempotent e € R(U,U) splits if there are
morphisms f:V — U, g: U — V with gf = 1y and fg =e.

Definition 29. Let k be a commutative ring. An additive k-category X is called Krull-
Schmidt category provided that all idempotents split and the endomorphism ring End(U),
of any object U € K, is a semi-perfect ring.

Theorem 2 (Krull-Schmidt). Let K be a Krull-Schmidt category, let U;, V; be indecom-
s t
posable objects in K with 1 <1i <s, 1< j <t, such that QU; ~ @V;, Then s =t, and
i=1 j=1
there is a permutation m of {1,...,s} such that U; = V() for all i.

Henceforth it is very useful to look at the matrix problems (Mg, Gp) of poset as the
category whose objects are the matrices M € Mg and whose morphisms are pairs of

matrices (Sp, Sy) where Sy € GL(dp, k) and Sy € GL(d, k), where d = ) d, which is a
z€eP
composition of elementary matrices corresponding to elementary transformation as in [L.3]

This category will be denoted by Matp. In case of poset with involution (P, #) the category
of matrix representations denoted Mat p g) is a subcategory of Matp, whose morphisms
satisfy the same conditions as the morphisms in Matyp, but taking into account that if
[z], [y] € 6 are such that [z] = [y] then S, = S,. In [29], it is proved that the categories
Maty and Mat(p g) are Krull-Schmidt.

A fundamental role in the theory of representations of partially ordered sets is played by the
category Mat(‘};d, which consists of additive enlargement of Matp (called an additivisation
of Matgp), defined in [29] as the category whose objects are systems

V = (Vz7 ‘/ba tw)a}Ei])a

of finite dimensional k-vector space V, together with k-linear maps ¢, : V, — Vj for each
zeP UV = (Vy, Vo, tz)eep and V' = (V) Vi, ") ,ep are objects, a morphism V — V' in
Mat%d is a pair (g, go) of k-linear maps such that the following diagram is commutative

PV —=

z€eP
gT 901\
t/

bV — Wy

z€eP
The maps g := (gi;) have the upper triangular matrix form where g;; : Vrfj — V,, are
k-linear maps and g;; = 0 if z; A z; holds in P. The composition of maps in Matf},d is
defined in a natural way. The integral vector cdn(V) = (dimVj, dimV,),cp is called the
coordinate vector of V.

An embedding of categories

q : Matp — Mat3? (1.13)
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is defined in [29] as follows: if M = (M,),cp is a matrix in Matp and cdn(M) = (do, d,)
then q(M) := q((My)zep) = (kdﬁj,kdO,MIj) where, M, : k% — k% is the k-linear map
induced by the matrix M, in the standard basis.

Lemma 1 (Lemma 2.2, [29]). The map q has the following properties

(a) Block matrices M, N in Maty are Gp-equivalent if and only if (M) = q(N).
(b) A matriz M in Maty is indecomposable if and only if q(M) is indecomposable in
Mat4?.

(¢) The map q establishes a one to one correspondence between Myp-equivalence classes of
the indecomposables objects in Matyp and the isomorphism classes of indecomposable
objects in Matd?. Morever, cdn(M) = cdn(g(M)) for all M € Matsp.

The vector space representations of a poset can also be viewed categorically. We denote
by RepP and Rep(P, 0) the categories of representations of ordinary poset and poset with
an involution respectively. If the involution is trivial then the category Rep(P, #) coincides
with category Rep? .

An important role in the study of matrix representations and vector space representations
of a poset P is played by the following reduction functor

H : Mat$ — Rep P, (1.14)

which assigns to U = (Uy,, Uo, ts, ) zep in Mat3? the representation H(U) = (Vo, Vi, | © € P)
where V) = Uy and

ta.
Ve=Tm | PU., = U],

:EiS:E]'

for each x; € P. If (g, go) : U’ — U is a map in Mat%?, then gO(U;j) C Uy, for each z; € P
and we put H(g, g0) = go-

Theorem 3 (Theorem 3.1,[29]). Let P = {x; | 1 < i < t} be a poset and let H be the
functor|1.14. Then the following staments hold.

a. The functor H is full and dense.

b. If V is indecomposable in Mat%d, then H(V) = 0 if and only if V = k(z; / 0) for
some x; € P, where k(x; /' 0) are indecomposable objects in Mat“?d defined by

k(wj /! 0) = (U:Eia UOataci|='L'i S CP),

with Uy = 0,U; = k and Uy, = 0, if ©; # x;. The linear maps ty; are such that
te;  k—0 if zi=u1;, and iy, :0—0 if z; # ;.
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c. If (Matgéd)o denotes the full subcategory of Matag;d, which consists of objects which have
not direct summand of objects in X, where X = {k(x; / 0)|x; € P} then H induces
a representation equivalence Hy : (Matgﬁd)o — Rep P and an equivalence categories

Maty/J = Rep P,

where 3 = (k(z; / 0)|z; € P)

From and it is obtained the functor Hq : Matp — Rep P which induces a one to
one correspondence between the equivalence classes of indecomposables in (Mat%d)g and
the isomorphism classes of indecomposables in RepP. If M = (M,,),,ecp is a matrix in

Matp and cdn(M) = (do, ds,; )z;cp then Hq(M) = (Uo, Uy, | x; € P), where Uy = k9 and

Uy =Y. Y. kvcCk®,

zi<zjvec(Myz,)

and v € ¢(M,,) means that v is a column of M,,, considered as a vector in k%. The
inverse correspondence U — Mp, associates to each representation U € Rep P the matrix
block of the linear application

t
(Pars Ty - ooy Tay) @le — U,

i=1

with respect to fixed basis of Wy, ..., Wy,,Uy and W,, C U, is a subspace of Uy, such

that Uy, b Wy, = Uy, and ry; is the monomorphism composition W, — U, — Uy, and
U= Y U= Y U
z; <z Ti€Tj,

Following the ideas given above, we will now introduce the additivisation Mat‘(lﬂ‘f 0) of matrix
problem for posets with an involution Mat (P, ).

The objects V. = (Vo, V2).co RGN Vo of the category Mat%f 0) consist of a k- vector

space Vy and a function that assigns to each element z € 6 a finite dimensional k-vector
space V, together with a linear transformation t, : V, — V} for each a € z.

IV = (V§,V])zeo Habocz, Vy is another object of this category, then a morphism of V.

to V' consists of linear transformations f, : V, — V/ for z € 0, fo : Vy — V{ and for each
relation a < b a linear transformation fup : Vjy — V], such that the following equation is
satisfied:

fOta = ti;fz + Zt;;fb,aa

b<a

for all a € P.
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If g : V' — V" is another morphism then gf is given by (gf)o = gofo, (9f). = g.f. and
for each relation a < b,

(gf>a,b = g[a] fa,b + ga,bf[b] + Z ga,cfc,b-

a<c<b

It can be proved that gf is indeed a morphism.

The category Mat?gﬁ) is equivalent to the category of representations of the tensor differ-
ential algebra defined by quiver algebra k@ where () has as many points as the cardinality
of 0 plus one. For every z in 0 we take a vertex v, and an additional vertex vy. For each
z in P we take a continuous arrow oy : vj) — vo, and for each relation x < y a dashed
ATTOW gy & Uy — V[z], Where for x € P we denote by [z] the class in 0 containing x and a
differential § : kQ — kQ such that

6(az) = _Zay'Yy,x;

y<z

5(%1,36) = Z Yy,2Vz,x+

y<z<x

For a result independently obtained with different methods by Bautista and Kleiner on the
one hand and by Butler and Burt on the other, in the category of representations of kQ
the idempotents split. This category has an exact structure and almost split sequences.
Thus, in the category Mat‘(lg‘fﬁ) the idempotents split, there are an exact structure and
almost split sequences. As in Lemma 1 there is a functor

q : Mat(pg) — Mat{§ ), (1.15)
with the properties (a), (b), (c).
Also, we have a functor
F : Mat{§ 5y — Rep(®, 0), (1.16)

defined as follows: let V = (1, V) RCIEENR

transformation u, : V, — V{ given by

Vb be an object of Mat?gﬂ). We have a linear

let u(z) = u,(V,) C V7, then

F(K) = (Voavz)z€97

where V, is the subspace of Vi generated by u(z) and the vectors of the form i,(m,(v)),

where y < x and v € U([y]), as in (|1.10]).

Let now f = (fo, f=, fu<y) be amorphism V. — V' in Rep(?P, ). We consider the morphism
fo: Vo — Vj and for each z € 6 the morphism f§ : Vi — (V{)?. This morphism sends V,
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in V! therefore fy is a morphism
}P(f) :(v67€é)z€9 - (v87€Z)z€9‘

Then if (My).cp is a matrix representation of (P, #) and it is obtained that Fq((M).cp)
coincides with the vector space representations associated to (M ),ep as in (1.12)). There-
fore, it is obtained that the functor is dense.

For each z € 6, we will consider the object I, of Mat?g 0) with (I,)o = 0 and (I,),, = 0 for
z #w and (I,), = k. Then the following result is obtained.
Proposition 1. The functor F induces an equivalence of categories:

Mat‘(lg‘fﬂ)/ﬂ — Rep(P,0),

where J is the ideal generated by the objects I,.

Proof. From definition of F' it follows that for all z € 6, F/(I,) = 0, therefore if f is a
morphism in J, then F(f) = 0. So, F induces a functor

F : Mat{§ 5 /7 — Rep(?,0).

Since F is dense, then F is dense. Let us prove that F is full. For this, let V, V' ¢
Mat?gﬂ) /J and h : Vy — V§ a morphism of F(V) — F(V'). We will define a morphism
f: V. — V' such that F(f) = h. We put fo = h: Vy — Vj. We now define f, : V, — V/
for z € 6 and for each y < x € z a morphism f, , : V. — V[;] In order to do this, for each
pair y < z € z, we take Z(y,x) = V[;} and

oy, @) = ismyu(ly]) : Z(y, ) — V.

We take the morphism of k-vector space:

p=V! @ Z(y, z) (u(2),(o(y,2)))y<ze= v

z)
y<zrez

by definition of V/ this morphism is an epimorphism. Also, hZ(V.) C V/ therefore there
exists a morphism

vV, -V, @ Z(y,x),

y<xrez
such that

hiu(z) = p¥, (1.17)

then, if the component of ¥ are the morphisms f, : V. — V] and for y < z € 2, fy :
V. — V], the equality (1.17)) implies that

tofet D thfya = hota.

y<xez
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Therefore, the family of morphisms (fo, f2, fy,z)2c0,y<zco determine a morphism f:V —
V' such that F(f) = h. This proves that functor F is full and therefore F is full.

Suppose now that we have a morphism f : V — V' such that F(f) = 0. So, if f is given
by the morphisms family (fo, f., fyz)zc6,y<ceco it is obtained that F(f) = fo = 0. Let W
be given by the family of linear transformations V, — 0 for z € §. Let g : V. — W given
by the family of morphisms g, : idy, : V, — V, = W; and go =0 : Vo — Wy = 0 and for
Yy<wTE€z,gys=0.

Let h : W — V' given by the family of morphisms hg =0:0 — Vj for z € 6, h, = f, :
W,=V, -V Fory<uzé€ z hy,z:fy,z:WZ:VZHV[;. Then ¢ is in effect a
morphism and hg = f and W is a direct sum of objects of the ijorm I,. So f € J. This
proves that the functor F is faithful. Consequently F' is an equivalence of categories.

The ideal J of Proposition [1|is an admissible ideal in the Shiping Liu sense; therefore, by
using the Proposition 1.8 of [19] the following result is obtained. It is worth mentioning
that we will obtain this result in Chapter 2 using another technique.

Theorem 4. The category Rep(P,0) has almost split sequences.

Let (P,0) be a poset with involution and let us consider € as the family of sequences of
morphisms:

(Vba Vz) & (E07Ez) i’ (W07 WZ)7
in the category of representations Rep(P, 6) such that:

1. The sequence 0 — 1 5 By S Wy — 0 is exact.

2. For all z € 0, the sequence 0 — V, 25 B, 5 W, — 0 is exact.

Definition 30. A sequence
(Vo Vz) = (Eo, E2) = (Wo, We),

is an almost split sequence if u is a source morphism, g is a sink morphism and (u,v) € €.

Proposition 2. Let
(%17%1)269 L (%27 Vf)ze@ i} (‘/E)s,vvzg)ZG@v (118)

an e-sequence in Rep(P,0), then this is an almost split sequence if and only if f and g are
irreducible morphisms.
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Proof. We suppose that f and g are irreducible. Since g is irreducible, and Rep(P, #) has
almost split sequences, then there is an almost split sequence in the form:

(v,9)

(L()a LZ)ZGO - (W(), Wz)ze@ S (‘/027 Vz2)269 - (VO37 V3)2607 (1'19)

z

here u and (v, g) are irreducible morphisms.

We consider the morphism:

(0 f) (‘/07 z)Z€9_> W07 2269@‘/07 z 2697
so, it is obtained that (v, g)(0, f)! = gf = 0, and by (1.19) it follows that there exists

h: (‘/01’ Vzl)ZGQ - (L07Lz)z€07

such that uh = (0, f), where u = (uy,u2)" with uy : (Lo, L:).co — (Wo, Ws).co and

91 (Lo, L2).eo0 — (VE,V2).cq. Since u is irreducible then ug is irreducible and f = ush,
here w9 is a morphism which is not split epimorphism, as f is irreducible then h is an
isomorphism, so dim(Vp) = dim(Lyg).

As is exact it is obtained that
dim(Vi) + dim(V) = dim(V),
and as is exact it follows that
dim(Vy) + dim (V') = dim(Vg) + dim(Wp);

therefore, dim(Wy) = 0. Then the sequence (|1.18)) coincides with the sequence ([1.19));
therefore the sequence is almost split. Conversely, if (1.19) is an almost split sequence,
then f and g are irreducible morphisms. |

1.5 The Classification Theorems

The theory of representations of finite dimensional algebras and other algebraic structures
had a rapid development. The investigations in this direction began in the second half of
the last century being stimulated initially by the investigations of Brauer and Thrall in
the 1940s. In these works, Brauer and Thrall made two famous conjectures called B-T, 1
and B-T, II.

Brauer-Thrall I. If A is a k-algebra of infinite type, there is no bound on the k-dimension
of indecomposable finitely generated A-modules.

Brauer-Thrall I1. If A is a k-algebra of infinite type (over an infinite field k), then for
an infinite number of dimensions there is an infinite number of indecomposable modules
of this dimension.

The first conjecture was proved by Roiter in [28] and later on generalized for Artin algebras
by Auslander in [4]. A proof of the second Brauer Thrall conjecture for finite-dimensional
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k-algebras, k algebraically closed field appears in [21]. The first proof by different methods
was given by Bautista for k algebraically closed with characteristic different from 2 in [6]
and for the case of characteristic 2 Bongartz proved it in [10].

In the last decades, the study and classification of finite-dimensional algebras with respect
to their representation type has been one of the main aims in the theory of representations
of algebras. We recall that an algebra is said to be of finite representation type if there
are only many finite isomorphism classes of indecomposable finite-dimensional modules.
Later, the study was generalized to classify the algebras of infinite representation type.
Special attention has been given to the so-called tame algebras, which are characterized
by having for any fixed dimension only finitely many 1-parameter families of isomorphism
classes of indecomposable modules. By a theorem of Drozd algebras which are not tame
have to be wild which means that the classification of their indecomposable modules is as
difficult as the classification of pairs of square matrices under simultaneous conjugation
[15].

Theorem 5 (Theorem 14.14,]29]). Every finite-dimensional k-algebra A over an alge-
braically closed field k is representation-finite, representation-tame or representation-wild
and these types are mutually exclusive.

The representations of ordinary posets were introduced by Nazarova and Roiter in 1972 to
study of the representations of finite dimensional algebras [20]. The corresponding theory
was developed during the 70s and 80s when in particular the main criteria were obtained
for finite type representation |1§|, tame [23],25] and finite growth [26].

Kleiner [1§] found out the following finite type criterion by using an algorithm of differ-
entiation known as differentiation with respect to a mazximal point.

Theorem 6 (Theorem 10.1,[29]). A finite poset P is of finite representation type if and
only if the poset P does not contain as a full subposet any of the following Kleiner’s
hypercritical posets

K1 =84 Ko =(2,2,2) K3 =(1,3,3) Kq = (N,4) Ks = (1,2,5) O
|

0] (@]

| |

(o] (@] (@] (@]

[ | |

O O O (@] (@] o O O o O

| | | | | | | | | |

O O O O O O O o O O o O O o O O

Nazarova [23] used differentiation with respect to a maximal point to prove the following
tameness criterion.

Theorem 7 (Theorem 15.3, [29]). A finite poset P of infinite representation type is tame
if and only if P does not contain as a full subposet the following critical posets
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N1 =84 N1:(1,1,1,2) NQ:(2,2,3>

o]

|

o o O O

| |

(@] O O O O 0] (o] (o] (o] o O O
N3 =(1,3,4) Ny = (N,5) N5 =(1,2,6)

(]

|

(@] (@]

| |

O o O

| | |

o O o O

| | | |

o O o O O o O

[ N [

O O O o O O O O O

Theorem 8. (Nazarova-Zavadskij 1981). A poset P of tame representation type is of
finite growth representation type if and only if

O (@]
P2 [X]|
O [©]

¢} (¢]

In 1990, Nazarova et al [9] gave a generalization to the criterion shown in the Theorem 6
for the case of poset with involution.

Theorem 9 (Theorem, [9]). For a poset with an involution P with an equivalence relation
the following statements are equivalent:

(a) P is tame (over an arbitrary field k);

(b) P does not contain subsets of the form:

N1 =85 Noy=(1,1,1,2) N3 =(2,2,3) Ny =(1,3,4) N5 = (N, 5)

O

|

o O

| |

o O o]

| [ |

o] O O o O O O O

| | [ |

(o] (o] (@] (@] (@] o O O O O O O (o] (o] (@] o O O

Ne = (1,2,6) Nz Nsg Ng Nio
@]
|
@]
|
(@]
|
O
|
o O (o)
| |
o O O ® O O O ® O O ® o O e o o

(c) P does not contain subsets Ny, ..., Ng.
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Where P denoted the ordinary poset obtained from a poset with an involution by replacing
every big point x by a pair of small points =', x" inheriting all relations of the point x € P.

The following is the finite growth criterion given by Bondarenko and Zavadskij [8]:

Theorem 10 (Theorem 2, [8]). A tame poset P with involution is of finite growth if and
only if all chains and nonperiodical cycles in P have no repetitions and do not intersect
mutually (i.e., have no common vertices as graphs).

We recall that if z ~ y stands for equivalent points x and y and symbol z||y is used to
denote that points x and y are incomparable then a graph @ in a poset P is called a cycle
if it has the form:

x1 ~ xol|lxs ~ x4l] .. ||T2n—1 ~ Ty, With 1 ~ z9,, n>1,

besides a graph @ is said to be a chain in P if it has the form A||B, where al|b for
all a € Aand b € B or Allz1 ~ za|lxs ~ z4]|...||zen—1 ~ z2p||B, where the set of
vertices A = {a1,as} and B = {b1, b} are two-element small points subsets satisfying the
conditions a||ag and by ||bs.



CHAPTER 2

An Exact Structure and Almost Split Sequences
for the Category of Vector Space Representations
of Posets with an Involution.

The Auslander-Reiten theory was introduced by Auslander and Reiten in 1975 [4] and has
become a central tool in the theory of representations of finite-dimensional algebras. This
theory has been extended to other categories including categories of representations of
ordinary posets [[5], [29], [33]]. The most important theorem about almost split sequences
in Rep(?P) is that they exist. This theorem was given by Bautista and Martinez [1]. Taking
into account that the category of representations of poset with an involution (%, ) is not
abelian, it is convenient to introduce a collection of sequences € with some properties which
will play the role of exact sequences.

In this chapter we prove that the category (Rep(P,0),e) is exact and has enough injec-
tives and projectives. Later we prove the existence of a categorical equivalence between
(Rep(P,0),¢) and mod,(A) of socle projectives modules.

2.1 Exact Structure of Rep(P,6).

Let A be an additive category in which all idempotents split, and let € be a collection of
pairs of morphisms M - E - N. A morphism v : M 5 F is called an e-inflation if
there exists a morphism v : E — N such that (u,v) € . A morphim v : E % N is called
an e-deflation if there exists a morphism w : M — E such that (u,v) € e.

The pair (A;e) will be called ezact structure if the following conditions are satisfied:

1. The family ¢ is closed under isomorphisms; that is, if there exists a commutative
diagram:
M-+ FE "3 N
Lol

M, ' By 2 Ny

29
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where s, t,r are isomorphisms and the top row is in €, then the bottom row belongs
to €.

2. If (u,v) € ¢, then u is a kernel of v and v is a cokernel of u.

3. idy : M — M is both e-inflation and e- deflation.

4. a. For each e-sequence M ER E 2% N and each morphism w : X — N there are
morphisms 3 : F — X and A : F' — E such that the pair (), 3) is a pullback of
the pair (g, w) and S is an e-deflation.

b. For each e-sequence M I, E % N and ecach morphism v : M — X there are
morphisms « : X — F and A : E — F such that the pair (a, A) is a pushout of
the pair (u, f) and « is an e-inflation.

5. The composition of e-inflations (e-deflations, respectively) is again an e-inflation
(e-deflation, respectively).

6. If usuy is an e-inflation then u; is an e-inflation. If v9vy is an e-deflation then wvs is
an e-deflation.

Example 8. 1. The category modA of modules over a ring A is an exact structure.

2. The family of split exact sequences in modA is an exact structure.

In our case, let (P,0) be a poset with involution and let us consider e the family of
sequences of morphisms:

Vo, V2) = (Eo, E.) = (Wo, W),

in the category of representations Rep(P, 6) such that:

1. The sequence 0 — 1 L Ey 5 Wy — 0 is exact.
2. For all z € 0, the sequence 0 — V, 25 B, 5 W, — 0 is exact.

Definition 31. A morphism f : (Vo,V.).co — (Wo, W) .co will be called a proper epi-
morphism if f: Vo — Wy is an epimorphism and for each z € 0, f*: Vi — W{ induces
an epimorphism f? :V, — W,.

Proposition 3. Let f : (Vo,V.),co — (Wo,W.).co be a proper epimorphism. If Uy =
ker(f) and U, = ker(f*) NV, then (Uy,U.).co is a representation of (P,0).

Proof. In the first place, we observe that for each z € 0, ker(f*) = Uj, then U, =
Uj N'V,. We suppose now that a < a1 and (z,y) € Upgy so, (2,y) € V(g then if
1 = (Cll,bl),(l',(]) € ‘/(al,bl) as, ($7y) € U(a,b)a (f(‘/l")af(y)) = (070) then f(ﬂ?) = 0;
therefore (z,0) € Uy, p,)- This proves that in effect (Up,U.).cp is a representation of

(P, 0). [
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Corollary 1. If f : (Vo,V2).co — (Wo, W) .cq is a proper epimorphism and (Uy,U,).co
s as in the previous proposition, then an e-sequence

(U07 UZ)Z€9 i) (V()a Vz)ze@ i’ (W@, Wz)ze@:

is obtained. Therefore, f is an e-deflation if and only if f is a proper epimorphism.

Definition 32. A morphism f : (U, U.)reog — (Vo,V2)2eo will be called a proper
monomorphism if f : Uy — Vy is a monomorphism, f* : U, — V, is a monomorphism
for all z € 0 and for each z = (a,b) € 0 is satisfied that (x,y) € f*(U,) if and only if
y € f(Up) and (z,y) € V..

Proposition 4. If f : (Up,U,).co — (Vo,Vz).co is a proper monomorphism then there
exists a sequence in €:

(Uo, Us)aco L (Vo, Ve)sco L (Wo, W) co,

Proof. Let g : Vi — Wy be the cokernel of f. For z € 6 we define W, = f*(V,).
We will check that (Wo, W.).cg is a representation of (P,6). Indeed, let (z,y) € W4y
and (a1,b1) € ¢ with a < a1. Then x = g(z1), y = g(y1) with (z1,91) € V(ap) so,
(z,0) € Viq, ), therefore (z,0) = g(w1,0) € W4, p,). This proves that (Wo, W ).cq is a
representation. We prove now that for each z € 6, the sequence:

0—U, v, Sow, o,

is exact. Since f* is a monomorphism, g7 is an epimorphism and g? f* = 0. It only remains
to prove that if (z,y) € V, is such that (g(z),g(y)) = (0,0) then (z,y) € f*(U,). Since
the sequence

0—-ULviw_o,

is exact, then (z,y) € f(U). Also (x,y) € V, and f is a proper monomorphism, it follows
that (z,y) € f*(U,). This proves our affirmation. [ |

From the above, it follows that f is an e-inflation if and only if f is a proper monomorphism.

Proposition 5. The pair (Rep(P,0),¢) is an exact category.

Proof. The conditions 1,2 and 3 are verified directly; the conditions 5 and 6 are followed
by our characterization of e-deflations and e-inflations. Thus, it remains to prove the
condition 4.

Let us show condition 4a. Let

(UOa Uz)z€0 = (E07EZ)Z69 N (%a ij)zéé)a

be an e-sequence and let f : (Wy, W,),co — (Vo, V2 ).co be a morphism. We consider the
direct sum (Ey @ Wy, E. € W) .cp and the morphism:

¢ = (’U,f) : (EO@W(J:EZ@WZ) - (Vb?vz)zEO-
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Since v* : E, — V, is an epimorphism, then ¢, = (v*, f*) : E,@ W, — V. is an epimor-
phism for all z € . Therefore, we obtain a sequence in ¢:

hi,h
(Lo, L2)oco 2 (B @ Wo, B. D W.)zc0 % (Vo, Va)oco, (2.1)

and a commutative diagram:

<L07 Lz)zG@ *> (WO’ Wz)zE@

b I

(Eo, E-)co — (Vo, V2)zco

We will prove that hy is an e-deflation; for this purpose, we need to prove that ho : Ly —
Wy is an epimorphism, and that for all z € 0, h5 : L, — W, is an epimorphism. hy is
an epimorhism since if w € Wy and we take f(w) € Vpy; as v is an epimorphism, then
there exists e € Ep such that f(w) = v(e) so, ¢(w, —e) = f(w) —v(e) =0. As is an

g-sequence, the exact sequence

(—h1,h2)t
L LN

0— Lo Ec@Wo % vy —0

is obtained. Therefore, there exists © € Lo such that (—hi(x), ha(z)) = (—e,w), so
w = ha(x); which proves that ho is an epimorphism.

For all z € 0, we have the exact sequence

0— L. T (g Bw.) Lov o, (2.2)

and by a similar argument to the previous one it is proved that h3 : L, — W, is an
epimorphism. This allows us to conclude that hg is an e-deflation and since (2.1)) is an
e-sequence then the pair (hi, he) is a pullback of the pair (v, f).

Now, we will prove the part (b) of the condition 4. We take an e-sequence as in (2.1)) and
a morphism f : (Up,U,).co — (Wo, W).co. We consider the morphism

v = (u, )" : (Uo,Uz)ze0 — (Eo D Wo, E- D W2)-e0,

and we prove that this is a proper monomorphism. Since u is a monomorphism then

Y= (u, )" : Uo — Eo P W,

is a monomorphism. For z € 6 the morphism v* : U, — E, is a monomorphism too;
therefore * = (u?, f*) : U, — E, @ W, is a monomorphism. In particular, its restriction
to U, is a monomorphism.

We suppose that = = (a,b) and (u(x), f(2), u(y), f(3)) € B @W. then (u(z),u(y)) €
E,. Since u is a proper monomorphism then there exists (zg,y9) € U, such that
(u(zo),u(yo)) = (u(z),u(y)), and since u is a monomorphism then x = xg, y = yp and
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Y((z,y)) = (u(z), f(z),uly), f(y)) with (z,y) € U,; therefore, ¢ is a proper monomor-
phism. Then the e-sequence

(Un,Us)zeo > (Eo P Wo, E. P W-):co 979, (No, N-) e,

and the commutative diagram

(UO’UZ)ZEG — (EOaEz)zEG

! b

(W07WZ)Z€9 L (N07Nz)z€9

are obtained.

In a similar way to case (a) it can be proved that g is a proper monomorphism and therefore
an e-inflation. From the construction of (Ny, N.).cy we have that the pair (g1,¢92) is a
pushout of (u, f). [ |

2.1.1 The e-projectives

Definition 33. A representation (Py, P.),co will be called e-projective if given a e-
deﬂation g: <E07EZ)Z€9 - (Vo,Vz)zee and a morphism f : <P07Pz)z€9 - (‘/07‘/2)2697
there exists a morphism h : (Py, P.),co — (Fo, E.).cq such that gh = f.

Remark 3. The representation S = (k,S.).co with S, = 0 for all z € 0, is a projective
representation.

Let w = (a,b) € 0, we will define the representation P(w) = (P(w),, P(w)y), where
P(w), = k(e1,e2) the vector space of dimension two with bases ej,es. If a and b are
incomparable P(w),, = ((e1, e2)), while if a < b then P(w),, = ((0,e1), (e1, €2)).

Henceforth, we will use the following notation, if di,dy € P then

1 if di <ds,

0 otherwise.

Ad1,d2) = {

If 2 = (a1,b1), the space P(w), is the vector space generated by the vectors
(AMa,ar)er,0), (0, A(a,bi)er), (A(b,a1)e2,0), (0, A(b,b1)e2). In case that, w = {a} then
Py(w) = k(e) and for z = (a1,b1)

P('U})Z = <()\(CL, a1>67 0)7 (07 )\(CL, b1>6)>
It can be verified that P(w) = (Py(w), P(w),).ecp is in effect a representation.
Definition 34. The element (e1,e2) € P(w)y, will be called the generator of the represen-

tation (P(w)o, P(w):).co, when w = (a,b) while the element e € P(w),, is the generator
when w consists of a single point.
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Proposition 6. Let (Vo,V,).co be a representation of (P,0), then if w = (a,b) € 6 and
v €V, there exists an unique morphism f : P(w) — (Vo, Vz).co such that f((e1,e2)) = v.
If w={a} and v € V,, there exists an unique morphism as before such that f(e) = v.

Proof

L. Ifw = (a,b) and a < b. Let v = (v1,v2) € V(g3 and f : P(w)o — Vo with f(e1) = vy;

f(e2) = va. Since (0,v1) € Via,p)» then fw(0,e1) = (0,v1) and f,((e1,e2)) = (v1,v2) €
Viap); therefore fi,(P(w)w) € V.
Let (a1,01) € 6, then P(w)q, ) is generated by the vectors
(A(a,ai)e1,0), (0, A(a, br)er), (A(b,a1)ez2,0), (0, A(b,b1)e2). If A(a,a1) # O then
a < ay and therefore (v1,0) € Vi, ;) and f.(A(a,a1)e1,0) = (v1,0) € V(3. In the
same way, it is seen that f,, sends each generator from P(w)(ahbl) into V| . The
uniqueness of f is clear.

a1,b1)

2. If w = (a,b) and a,b are incomparable. In this case, P(w)s = ((e1,e2)) and
fw((e1,e2)) = (vi,v2) € V(qyp). Therefore, fi,(P(w)(a,b)) € Viqp). For the rest it is
checked as in the previous case.

3. If w = {a}, the proof is similar to the previous cases.

Proposition 7. The representations P(w) = (P(w)o, P(w),).co have the following prop-
erties:

1. P(w) is an e-projective representation.

2. End(P(w)) = k if w = (a,b) with a and b incomparable or when w consists of a
single element. If w = (a,b) with a < b then End(P(w)) = k[x]/x2. Therefore P(w)
1s indecomposable for all w € 6.

3. For any representation (Vo,V,).cq, there exists an e-deflation g : (Qo,Qz).co —
(%7 Vz)ze@; where (QOa Qz)ze@ is e-projective.

4. If (Qo, Q) eco is an indecomposable projective representation of Rep(P, 0), with Q, #
0 for some z € 0, then (Qo, Q) z2co = P(w) for some w € 6.

Proof

1. Let f : (E07Ez)z69 - (V()aVz)ZGO an e-deflation and g - (P(w)07p(w)z)z69 -
(Vo,Vz).co be a morphism. We take f“(e) € Vi, where e is the generator of
(P(w)g, P(w),).cqp. Since f¥ is surjective there exists v; € E,, such that f*(v1) = v.
By Proposition [f] there exists a morphism h : (P(w)o, P(w):).co — (Eo, E-).co such
that h(e) = v1, so fh(e) = g(e). By the uniqueness in the Proposition [f] is obtained
that fh = g. Therefore, (P(w)g, P(w),).co is a projective representation.

2. If w = (a,b) or w = {a} then P(w),, = (e) with e the generator of (P(w)o, P(w)).co;
therefore, if f : (P(w)o, P(w);).co — (P(w)o, P(w),).co then f(e) = ce with ¢ € k.
Hence, f = c(idp(y),). This proves that

End((P(w)o, P('U})Z)Zeg = k(de(w)) = k.
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We suppose now that w = (a,b) with a < b, then if ¢ = (e, e2) is the generator
of P(w)p. We have that P(w),, = ((e1,€2),(0,e1)). Let f be an endomorphism of
(P(w)o, P(w),).co, then fi,((e1,e2)) = c(e1,ea) + d(0,e1) with ¢,d € k. Therefore
f(e1) = cex, f(e2) = cea + der. In view of Proposition [6] the morphism f is com-
c d
0

of (P(w)o, P(w):)ep, then M(f1f) = M(f1)M(f). Hence,

pletely determined by the matrix M(f) = . If f1 is another automorphism

Bud(P(wlo. Pw):)een) = { (5 0) Vevd e b p = klal/(02)

3. For V we choose a basis B(0) and for each z € § such that V, # 0, we choose B(z)
a k-basis of V. For each v € B(0) we take the morphism f, : S — (Vo, V>),ecp which
sends 1 € kinv € V and for v € B(z) we have a morphism f, : (P(w)o, P(w);).co —
(V,V.).co, such that f,(e) = v where e is the generator of (P(w)g, P(w),).co. Let
B =JB(z), then we have a morphism

f fv vEB @ S@ @ V07V)z€0§

vEB(0) 2 wEB(z
clearly this morphism is an e-deflation and the representation
D sP EB
v€B(0) 2 vEB(z
is e-projective.

4. Let (Qo, Q:).cp be a projective representation, such that for some z € @, # 0. From
the above, we have a deflation:

B L (Q07 Qz)zéea

then there exists a morphism % : (Qo, Q:).co — P such that fh = idg. This implies
that (Qo, @z).co is a direct sum of P. The last representation is a direct sum of
representations S and P(z); therefore, our representation is isomorphic to one of
these, and as for some z € 0, Q, # 0, then (Qo, Q).co = P(w) for some w € 6.

Remark 4. An exact category is said to have enough projectives if it satisfies property 3
of Proposition [T}

Definition 35. A representation (Iy,1.).co is called e-injective if given an e-inflation
f : (‘/()7‘/;)269 - (EOsz)zEG and a mOTphism g: (‘/07 ‘/z)zEH - (107Iz)z€0y there erists a
morphism h : (Eo, E,).cog — (Io,1;).co such that hf = g.

Henceforth it is convenient to use the following notation to represent poset with involution:
the pair (Vp, V. ).eco where Vj is a k-vector space and V, C V{f, is a representation of (P, 6)
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if and only if for each z <y in P, there exists a linear transformation 7 : V,; — V},; such
that the following diagram is commutative

Z[r]
Vi) — V™

V[y} [y] Vo[y]

where ifa] * Via] — VOM and iy : Vo — VOM are the inclusions and 7 : VO[I] — Vp is the
projection.

2.1.2 Representations by Quotients

Let (P,0) be a poset with an involution and k be a field. A representation by quotient
(Vo, jz)zep, consists of a k-vector space V and for each z € 6 an epimorphism j, : Vi — V,
such that if a1 < @ and z = (a,b), 21 = (a1, b1) then there exists a morphism 7 :V, — V,,
such that

T)z = Jxn1ta1Ta-

A morphism f : (Vp,j2)2c0 — (Vi,J.)2co consists of a linear transformation fy : Vo — Vj
and for each z € # a linear transformation f# : V, — V/ such that the following diagram
commutes

Vi o VL

Vlfo l .

V/
We denote by Repq(P,0) the category of quotient representations.

Proposition 8. There are functors

C : Rep(P,0) — Repq(P?,0),
defined by C((Vo, Vz).eco) = (Vo, Coker(iz)).cq, where i, : V, — Vi is the inclusion and

K : Repq(P,0) — Rep(P,6),

where K ((Vo,j2))zco = (Vo, Ker(jz).eq). Further, CK = idgepypor gy and KC = idgep(p g)
therefore Rep(P, 0) is equivalent to Repq(PP,6).

Proof Let (Vp, V,).co be an object of Rep(P,0) and we take j, : V§ — V/ the cokernel
of 7,. We suppose that © € z and y € z; with x < y then we obtain the morphism
iyme Vi — Vo' and a morphism 7 : V, — V;, such that i,,7 = iym,i,. Therefore there
exists a morphism 7' : V] — V] such that the following diagram is commutative
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7f'z z jz !

Vz %) v

T TyTe T/

a e
V., — v vy
21 0 21

This proves that (Vo, j.).co € Repq(P°P,6).

Now, let f: (Vo,V.).co0 — (Wo, W).co be a morphism in Rep(P, 0); we denote r, : W, —
W§ the inclusion and by 7, : Wi — W its cokernel. The morphism g, : V, — W, is
obtained, and it is such that f§i, = r.g.. Therefore there exists a morphism f, : V] — W/
such that the following diagram is commutative

‘/tz iz ‘/OZ bz V/

z

B . 9=z lf(’)z lfz

W, —s Wi — W/

z

thus, f§ is a morphism of C'((Vo, V2).ep) in C((Wo, W2).co). We define C(f) = f§.

Now, if (Vo,j.).co is an object of Repq(P°P,0), by using diagram A, is obtained that
K((Vo, j:)-c0) € Rep(P,0). Tf f : (Vo jz)=co — (Wi, 7)-co is a morphism in Repq (P77, )
such that fo : Vo — Wy then by using B is obtained that fy produces a morphism of
K((Vo,Jz)2e0) in K((Wo,7%,).co). The rest of the proof is clear. [ |

Henceforth, if W is a k-vector space D(W) = Homy (W, k).

Proposition 9. There are contravariant functors
Dy : Rep(P,0) — Repq(P,0),

with D1((Vo, V) ze0) = (D(Vb), D(i2)).co where iy : V, — VZ is the inclusion and D(i,) :
D(V*)=D(V)* - D(V,) and

Dy : Repq(P,60) — Rep(P,0),

with DQ((V,jZ)Zeg) = (D(V),Z?TL(D(]Z))), further _DQDl = idRep(fP,G) and D1D2 =
ZdRepq(fP,G) :

Proof. We identify D(Vi?) = D(Vp)?. Let (Vo, Vz).eo € Rep(P, 0), then Dy ((Vo, V2).co) =
(D(Vb), D(i2))seo where i, : V, — Vi is the inclusion. Then if a € 2, a1 € z; with a; < a.
Hence there exists a morphism 7 : V,; — V, such that

1T = 14Taqy1z 5

therefore,
D(7)D(iz) = D(iz)D(mq,)D(ia),
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We observe that D(iq, ) : D(Vp)* — D(V}) is equal to m,, and D(m,) : D(Vy) — D(Vp)?
is equal to i4; therefore
D(7)D(i,) = D(i, )ia, ma.

The above implies that D;((Vo, V2).co) € Rep(P, 0). It is clear that
i (va Vz)ze@ - (W07 Wz)zé@

is a morphism in Rep(P, 0), then D(fy) : D(Wy) — D(Vy) determines a morphism D;(f) :
Di(Wo, W) .c0) — D1((Vo,Vz).c0). The rest of the proposition proceeds in a similar
way. |

Definition 36. We consider e, the class of sequences in Repq(P, ) which have the form

. f . g .
(‘/()17];)269 - (VOQ?]?)ZEO - (%Sng)zem

such that
1 fo 2 9o

O—>VO — Vj —>V03—>07
and
0V vz ys

are exact, where ji : (V§)* — V.

Proposition 10. The functor D1 sends e-sequences to €4-sequences and the functor Do
sends £q4-sequences in e-sequences. In particular, a morphism f: (Vo,V.).co — (V5. V2)2eco
in Rep(P,0) is an e-inflation (e-deflation, respectively) if and only if D1(f) is an e-
deflation (e-inflation, respectively).

Corollary 2. The class of morphisms g4 is an exact structure. Further the category
Repq(P, 0) has enough injectives.

Corollary 3. The ezact category (Rep(P, 0), ) has enough injectives. The indecomposable
injectives of this category have the form KDi(Py) for z € 0 and KD1((k,0;).cq), where
P, and (k,0).co are projectives in Rep(P,0).

Proof The indecomposable injectives of Repq(P°P,6) have the form D;(P,) and
D1((k,0:)).co. Since the functor K is an equivalence of categories such that sends e,

sequences in e-sequences then the injectives indecomposables of Rep(P, ) are the form
KD, (P,) for z € § and KD1((k,0).ec0)- [ |

Remark 5. KD1((k,0,).co) = J is the representation J = (Jo, J.).co such that Jo = k
and J, = k*.
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2.2 The Endomorphism Algebra

Let (P, 0) be a poset with an involution. We know that in the exact category (Rep(P, ), ¢)
a system of representatives of isomorphism classes of indecomposable projectives is given

by P, for z € 0 and S = P;. We take P = (P, S and A = Endgep(p,9)(L). We have
z€l
the functor H : Rep(P,0) — modA given by

H(L) = HomRep('P,G) (P, L).

The functor H sends e-sequences in exact sequences, because P is e-projective. We observe
that H(P) = A. Let P; with j =z € § or j = 0. If we consider the projection 7; : P — P;
and the inclusion o : Bj — P, we obtain the idempotent e; = o;7; € Endgep(p,0)(P) = A.

We have
1p = Zez + eo,
z€0
and
A=Pe. AP eA.
z€0

Lemma 2. H(P,) 2 e, A, H(S) = epA.

Proof. We have the morphism H(7;) : H(P) — H(P;) and H(o;) : H(P;) — H(P). It
is obtained that H(m;)H (0;) = H(lp,) = 1u(p P,)- Therefore H(oj) is a monomorphism

and induces an isomorphism of H (B]) in ImH (a]) Since

H(oj) = H(ej)H(oj), H(ej) = H(oj)H (mj),
then ImH (0;) = ImH (ej) = e;A. |
Lemma 3. For L = (Lo; L.).co € Rep(P,0) is obtained
socH (L) = (egA)',
with | = dimy,(Lo).

Proof. Let I = 60U {0}
rad(A) = @eiradAej,
igel
with e;radde; = rad(P;,P) = {f : P, — P; | f isnot an isomorphism}. Since
eorad(A) = PeoradAe; = eoradAeo =0.
jel
Then (H(L)eg)radA = H(L)(epradA) = 0. Therefore, H(L)ey C socH(L). On the other

hand, socH (L) = @socH(L)e; and socH(L)e; = socH (L) N H(L)e;. Now, we will prove
iel
that for ¢ # 0, socH (L) N H(L)e; = 0. We have

H(L)GZ = HOmRep(g:ﬂ) (Bl, L)

We suppose that s € socH(L) N H(L)e; then if s # 0, s : (P;)o — Lo is a non zero
morphism, so there exists x € (P;)o such that s(x) # 0. On the other hand, there exists a
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morphism ¢ : § — P, such that if y is a generator of S, t(y) = z, so st # 0, the morphism
t: S — P; is not an isomorphism because i # 0, then ¢t € radA, therefore s = 0. From
this it follows that

H(L)ey C socH(L) C H(L)eg.

Consequently, H(L)eg = socH(L). This implies that there is an epimorphism
(egA)™ — H(L)eg. Since egA is simple then H(L)eg = (egA)! for some integer [.

Since, egA = egAeg = Enda(epA) = Endgrep(pg)(S) = k. Therefore,
dimgH (L)eg = Idimg(egA) =1,

dimy H (L)eg = dimg (S, L) = dimy Ly,
|

Definition 37. Let f : (Vo, V.).co0 — (Wo, W) .co be a morphism in Rep(P, 0). We define
Im(f) = (f(Vo), £*(V2))ze0-

We can see that Im(f) € Rep(P, ), also the morphism f induces a proper epimorphism

[ (Voi Vz)zeo — Im(f).

Proposition 11. 1. If f : L — L’ is a proper epimorphism in Rep(P,0) then H(f) :
H(L) — H(L') is an epimorphism.

2. If f: (Vo, V) c0 — (Wo, Wy) g is such that f: Vo — Wy is a monomorphism then
H(f) is a monomorphism.

Proof.

1. Since f is a proper epimorphism there is an e-sequence L” % L ERyY, , and since
H is exact, the following sequence in modA is obtained

H(g) 1)
) — )

0— H(L" H(L H(L') =0,

and therefore our statement is true.
2. Let V = (VoaVz)zeea W= (W07Wz)z€9 and P = (BO?Bz)ZEQ' Now
H(f) =Hom(1, f) : Homgepp,6) (L, V) — Homgep.0) (2, 0, W),

then, if 0 # s € Hompepp9) (L, V) and as f : Vo — Wy is a monomorphism, then
fs: Py — Wy is non zero, so fs is non zero and therefore H(f) is a monomorphism.
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Proposition 12. For all L € Rep(P,6), socH(L) is projective, in particular socA =
socH (P) is projective. Therefore,

1. A is a right peak algebra.
2. For L € Rep(P,0), H(L) is socle projective, that is, H(L) € modsy(A).

3. Let J = (k,k*),cqg, then H(J) = E, where E is the injective envelope of the simple
€0A.

4. The functor H induces an equivalence of categories:

H : Rep(P,0) — mod,(A),

Proof. Items (1) and (2) are obtained from the previous lemmas.
Now we will check item (3): since socH(J) = epA, therefore there is a monomorphism

H(J)— E,

where E, the injective envelope of egA is D(Aey).
It follows that for each z € 6, D(Aeg)e, = D(e,Aep) and

e.Aeg = HomRep(?ﬁ) (§7 Bz) = (Ez)z = k7

Therefore,
dimy D(e,Aegy) = card(z),

then for all z € 6, dimy(J,) = dimgEe,. This implies that the monomorphism H(J) — FE
is an isomorphism.
To check item (4), we first observe that there is an isomorphism

H : Hompgep(p,g)(P;, P;) — Homa(e;A, e;A),

Indeed, the composition of morphism H with monomorphism Homa(e;A,e;A) =2 ejAe;
is an isomorphism, so H is too. This implies that H : Homgeype)(Q, Q) —
Homu(H(Q1), H(Q2)) is an isomorphism when @1, Q2 are e-projectives in (Rep(P, 0),¢).
Let now, L € Rep(P, ), by (3) of Proposition [7| we have e-sequences

K(L)— @Q1(L) — L,
Ki(L) - Q2(L) — K(L).

As H is an exact functor the exact sequences in modgy(A)
0 — H(K(L)) — H(Q:(L)) — H(L) — 0,
0 — H(Ki(L)) — H(Q2(L)) — H(K(L)) — 0,

are obtained. Therefore, if f1, is the composition of Q2(L) — K(L) with K (L) — Q1(L)
and gz, : Q1(L) — L the projective presentation of L

Qa(L) 15 (Qi(1) & 1,
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and the projective presentation of H(L)

H(Qa(L)) 2 (Qu(r)) 22 H(L).

are obtained.

Let « : L — L' be a morphism in Rep(P, 0), then there exist morphisms h; : Q1(L) —
Q1(L), he : Q2(L) — Q2(L') and commutative diagrams

Qa(L) —2 QuL) 2=~ I,

b

Qu(1) 12

H(Qa(L) 22 m(Qur)) 190,

lH ha) lH(hl) la
1

HQx(r) T HQu(1)) 29 (1)

The functor H is faithful; indeed if H(«) = 0 then there exists a morphism ¢ : H(Q1(L)) —
H(Q2(L")) such that H(fr/)t = H(hy). Here t = H(s) for some s : Q1(L) — Q2(L)),
therefore fr/s = hq, which implies that o = 0.

Now, we prove that H is full: let 8 : H(L) — H(L’) be a morphism, then there exist
morphisms ¢ : H(Q1(L)) — H(Q:1(L)),and t2 : H(Q2(L)) — H(Q2(L')) such that
H(gr)th = BH(gr), H(fr)ta = t1H(fr). Then there exist morphisms hy : Q1(L) —
Q1(L"), he : Q2(L) — Q2(L') such that fr/he = hyfr, and due to the properties of
projective presentations, there is a morphism « : L — L’ such that g;/h1 = agr. Applying
functor H we obtain the equalities

H(gr)H(hi) = H(a)H(gr) = BH(grL)-
Since H(gy,) is an epimorphism then H(«a) = 5.

Finally, we prove that H is a dense functor. Let M € mods,(A), so soc(M) 22 (egA)! for
some natural [. Therefore, an injective envelope

w: M — H(J)
and a projective cover
v:H(Q)— M

are obtained, where @ is an e-projective. We take f = wv : H(Q) — H(J), then there
exists g : @ — J such that H(g) = f. We have a proper epimorphism v’ : Q — Im(g) and
an inclusion u’ : Im(g) — J', and g = v/¢'. Then f = H(g) = H(«')H(v') with H(v') an
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epimorphism and H (u’) a monomorphism. Therefore
M =Imf = H(Im(g)).

In [29] it was proved that category mods,(A) has almost split sequences, therefore as
consequence from (4) of Proposition 12| we obtain the following proposition.

Theorem 11. The category Rep(P,0) has almost split sequences.

Proposition 13. Let P = {1,2,...,m} be a poset and P = P U {0} with i < 0, for all

i € P. Then the algebra A = Endgey(pg)(P) = I(P), the incidence algebra of P.

Proof. Fori,j € P: ejAe; = Hompgepp0) (P, P;) = k if j < i, in other cases e;jAe; = 0.
|



CHAPTER 3

The Auslander-Reiten Quiver of Posets with an
Involution of Type D,,.

In this chapter, by using the results from the previous chapter, we construct the Auslander-
Reiten quiver for a poset type that we will denote by D,,. This result is of interest to us
since it will be used in Chapter 5 where we will describe the categorical properties of the
DIII differentiation algorithm. In this chapter we will assume that k is an algebraically
closed field.

3.1 Poset with an Involution of Type D,

We denote by D,, to the poset with an involution (P, <,0) where (P, <) = {a,, < an—1 <
e <ap <bp <by<--- <bpo1 < by} oand 0 = {(a;,b;)}i=1,....n. We denote by Rep(Dy,)
the category of representations of the poset D,,.

The Hasse diagram of the poset D,, is as follows

ap ®

FIiGURE 3.1. Hasse diagram of poset with an involution of type D,

We consider the following representations of D,, :

a. »Cl,i = (,CQ, ﬁ(aj,b ))jZl where ,CQ = k{e} and

J

44
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s _ oo, it j<i, 51)
%) 7040, e)), it > '

b. Lo; = (Lo, La;p;))j>1 Where Lo = k{e} and

J

5(aj,bj)={<(0’e)’(e’0)>’ posn (3.2)

((0,€)), if >

C. ﬁgﬂ' = (ﬁo, ‘C(a]—,b ))jZl where Eo = k{el, 62} and

J

<(0,61), (61,0)>, if j < i,
Lia;p) =4 ((0,€1), (e1,e2)), if  j =1, (3.3)
<(07 61)7 (07 62)>7 if ] > 1.

It is clear that each one of the previous representations are indecomposable.

Remark 6. The representation S = (k,S,).,co with S, =0 for all z € 0, is called a trivial
indecomposable representation of D,,.

Proposition 14. The representations above is the complete list of non trivial indecom-
posable representations of Dy,.

Proof. We will prove by induction on n that any representation of D,, can be written as
a direct sum of some representations isomorphic to those presented in the previous list.

Let V = (Vo, Va, 4,)) be a representation of D;. We consider the corresponding matrix
representation (Mg, , My, ), so there are nonsingular matrices S, T such that

SMa,T = No,,  SM,,T = Ny,,

where (N, , Np,) is the direct sum of pairs of matrices as follows:

@ (0n) (%)
® (%) (o)
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By Definition the matrix representation (M,,,Mp,) is equivalent to the matrix
representation (Ng,, Np,). Therefore the vector space representation V is isomorphic to
the direct sum of the matrix representations listed above.

We will check in each case the corresponding vector space representation. For this, we
will remember from section and by using the notation of this section that for V =
(K™, Vigy 1)), taking U = U, p,) and Ut = mq, (U) it is obtained that U and (0,U)
generate Vi, p,).-

(a)

(d)

In this case the vector space representation is given by (k"1 Viay b)) Where the
space Vg, p,) C k"1 @ k", with

U(l) = (617 62)7 U(2) = (627 63)7 ceey U(TL) = (€n> €n+1)7
thus, UT = {e1,...,e,} and

Via b)) = ((e1,e2), (e2,€3), ..., (en,ent1)) U((0,e1),(0,€2),...,(0,en))
= <(61a O)v (Oa 61)7 (627 0)7 (07 62)7 RN (Oa €n), (ena €n+1)>,

from here it follows
(K™ Viay by) = L21(e1) @+ D La,1(en—1) B L1 (en, ens1)-
Here the vector space representation is (k"*!, Viay p1)) and
U) = (e2,e1), U(2) = (e3,e2), ... U(n)=(ent1,6n),
then Ut = {es,€3,...,€nt1}, and

V(al,bl) = <(€27 61), (637 62)7 SERE) (€n+1a en)) U <(07 62)7 (07 63), SRR (O> €n+1)>
= <(O7 62)’ (627 61)7 (6370)’ (Ov 63)7 ) (€n+1, 0)7 (Oa en+1)>'

Therefore,
(K" Viar b)) = Laa(ez,e1) @, La1(e3) B - @D Lai(entr)-
The corresponding vector space representation in this case is (K", V(4, p,)), where
U(1) =(e1,0), UQ2)=(ez,e1), ... Un)=(enen-1), Uln+1)=(0,en),
here, UT = {ey,e2,...,6e,} and

Via pn) = ((€1,0), (e2,€1), ..., (€nsen—1),(0,e,)) U((0,e1),(0,e2),...,(0,en))
((e1,0),(0,e1),(0,e2), (€2,0),...,(en,0),(0,e,)).

Therefore,

(K™, Viay b)) = L2,1(e1) D L2,1(e2) D - D L2,1(en),

This case is similar to the previous one.
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()

Here the vector space representation is (k" V(al,bl)) and
U(l) = ()\61761), U(Q) = (/\€2+€1,62), ceey U(Tl) = ()\en—i—en_l,en),
then, if A # 0, UT = {ey,es,...,e,} and

Via b)) = ((Ae1,e1),, (Aea +e1,e2), ..., (Aen +en—1,e,)) U((0,e1),(0,e2),...,(0,en))
= ((e1,0),(0,e1),(0,e2), (€2,0), ..., (en,0),(0,e,)),

therefore,
(™, Vg ,py)) = Lai(e1) D Laa(e2) @ - D Laa(en).
Now, if A\=0and n =1, U(1) = (0,e1), in this case

(5, Viay b)) = L11(e1)-

For n > 2,
U)=(0,e1), U(2) = (e1,e2), ... U(n)=(ep-1,6n),

so, UT = (e1,e9,...,en,_1) then

V(al,bl) = <(0, 6’1), (61, 62), ceey (en,l, en)> @] <(0, 61), (0, 6’2), ey (0, €n71)>
= ((e1,0),(0,e1),(0,e2), (€2,0),...,(€r—2,0),(0,en—2), (0,en — 1), (en—1,€n)),

therefore,

(K" Viay b)) = L2,1(e1) D La1(e2) B+ D La1(en—2) B L3a(en—1,€n).

Here the vector space representation is (k", V(4, 5,)) and
U) = (Aer,Aer), U(2) = (ea,e1+Xea), ... U(n) = (en,en-1+en_1+ Aey),
as U' = (e1,e9,...,6,) then

Via b)) = ((e1,Ae1), (e2,e1 + Aea), ..., (€n, en—1 + Aen)) U((0,e1), (0,€2),...,(0,en))
= ((e1,0),(0,e1),(0,e2), (€2,0),...,(en,0),(0,e,)).

So,

(™, Vg ,by)) = Lai(e1) D Laa(e2) @ - D Laa(en).

This shows our result for case n = 1.

We assume the result is true for D,,_1. Let V = (1, V(aj,bj))jzl be a representation of D,,.
We take D1 = (an < by; (an,b,)) and V = (Vo, V4, »,)) @ representation of Di. Then
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I
Vianbn)) = (0,V1) B (V2,0) B(0,V2) D @53,1(%7]%)7

where, Vo = ViV @ Vs Vs P W, with V3 = (e1,e2,...,¢) and V5 = (f1, fa, ..., fi).
Let ¢ : V3 — V3 be an isomorphism such that ¢(e;) = f;, then

l
PLsile i) = (0,V5) P Hy(V5,V3),
=1
where, H¢(VY37‘/3/) = {(U, ¢(U)) | u e V:?} Thus,
Viansn) = (0, V1) @D (V2,0) (0, Va) @D Hy(V5, V3),

Let D1 = {ap-1 < - < ag < by < -+ < byp_1;(a1,01),...,(an-1,bn—1)} and V. =
(Vo, Via, b;))i<n—1 be the restriction of the representation V' to D;,—1.

Remark 7. If u € Vo V3 then (u,0) and (0,u) are in V(g »,) for all i < n. Indeed, if
u € Va, (u,0) € Vig, b,y As an < ai, (u,0) € Vig, 1)) and as a; < bi, (0,u) € Vig, p,) too. If
u € V3 then (u, p(u)) € Via, p,)- As an < ai, (u, 0) Vias b); therefore (0,u) € Vig, p,)-

Remark 8. If (u,v) € V{4, with i < n then u and v are in Vi VoD V3. Indeed,
as a; < by, (0,u) € (an,by), therefore u € Vi P Vo @ Vs. Analogously, as b; < by, then
(0,v) € Vig, b)), thusv € Vi Va P V3.

We consider V' = (V1, V(q, p,))i<n—1 Where

v/ f{(uv)evab | u,v € 1},

(ah i

and V" = (L, ‘/(/(;zﬁbi))ignfla with L=V, P Vs Vs D W and

Vit = {(00) € Viguy | w0 € I},

Both V/ and V" are representations of D,,_1.

Affirmation. V=V V".
We just have to prove that for all ¢ < n,

V(az‘,bz‘) = V(/ai,bi) @ V(/t/li,bi)‘

Let (u,v) € V(ai’bi), due to Remark u = Uy + u2, v = v1 + vo where vy, v are in Vi, and
uz, vy are in Vo @ V3; thus (uz,v2) = (u2,0) + (0,v2) € Vig, p,), 50 (u1,v1) € V{q,p,) and
Sin(‘je u1,v1 are in ‘./1’ it is obtained that (uj,v1) € V(/al,ln) and clearly (ug,v9) € V(’(; b
This proves our claim.

Now, by application of the induction hypothesis

V! = (@L1,5(61,5)> @ <@Lz,t(62,t)> @ (@Lgvr(egw,fg,r)) ,
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where Vy = (61,57 €2.t,€3,r, f3,7">‘

Let 'El,s<el,s) = (keq s, ('El,s)(ai,bi))iﬁn such that its restriction to D, coincides with £ g
and L, . = k(0,e1.5).

The representation J;'g,t(ez’t) = (keg,t,ﬁg,t)(%bi) is such that its restriction to D,_1
coincides with Lot(eg;) and (ﬁQ,t)(an,bn) = k(0,e24). Similarly, ﬁg,r((ig,,,«,fg’r) =
(<€3,r,f3,r>,(23377:)((12.7171.)) is the representation such that its restriction a D, 1 is

L3(€e3,r, f3,) and (ﬁg,r)(an,bn) = ((0,e3,-), (0, f3,))-
We consider hq, ho, ..., hy, a basis for V5 then

Ve (@zm(el,s)) ® (@ﬁg,xeu)) ® (@zg,r<eg,h fg,») ® (@@,n@)) ® (@Lm&,m) .

Clearly, '3178(61,5) = L1 s(e1,5) as representations of D,,, similarly ﬁg’t(egjt) = Lot(eay) as
representations of D,, and L3, (e3r, f3r) = L3,(e3r, f3,r) as representations of D,,. From
here our result is obtained. |

Henceforth, if ¢ : U — V be a morphism, we denote B = {e} or By = {e1,e2} a canonical
bases of Uy or Vj when dim;Uy = 1 = dimgVj, or dim,Uy = 2 = dimgVjy respectively.

if s=1 and @<}y,
Lemma 4. Hom(Ly;,Ls;) = ¢ k if (s=1ANi>j)V(s=3ANi<j)Vs=2
K2 if s=3Ai> ]

Proof Let ¢ € Hom(Ly;,Ls ;). If s =1 and i < j, then ¢ : k{e} — k{e} is such that
©((0,e)) C (0,0) so, ¢ = 0, whereas if ¢ > j it is obtained that ¢((0,¢e)) C (0,e), so ¢(e) =
e, with A € k. Now, if s = 2 then ¢ : k{e} — k{e1} is such that ©(0,e) C {((e1,0),(0,e1))
and ¢((0,e)) C (0,e) therefore, p(e) = Aer, with A € k. Finally, if s = 3 and ¢ < j, then
¢ : k{e} — k{e1,ea} is such that ¢(0,e) C ((e1,0),(0,e1)), ©(0,e) C ((0,e1), (e1,e2)) and
©(0,e) C ((0,e1),(0,e2)), so, p(e) = Xe1, with X € k, whereas if i > j ¢ : k{e} — k{e1,e2}
is such that ¢(0,e) C ((0,e1),(0,e2)), so p(e) = Aie1 + Agea, with A1, A2 € k. [ |

kooif (s=2Ai<j)V(s=3ANi<}j),

0 otherwise.

Lemma 5. Hom(Ly;, Ls ;) = {

Proof Let ¢ € Hom(Ls;, Ls;). If s = 1 then ¢ : k{e} — k{e} is such that
©{((0,e),(e,0)) C (0,0) when i < j, and ¢{((0,e),(e,0)) C ((0,e)) when ¢ > j so, in
both cases it is obtained ¢ = 0. If s = 2 and ¢ > j then ¢ : k{e} — k{e} is such that
©((0,e), (e,0)) C (0,0), so ¢ = 0, whereas if i < j, p((0,¢),(e,0)) C ((0,e), (e,0)), then
(e) = Xe with A € k. Finally, let s = 3. If i < j then ¢ : k{e} — k{e1,e2} is such that
©((0,¢€), (e,0)) C ((0,e1),(e1,0)) and ¢((0,¢e)) C ((0,e1), (e1,e2)), then p(e) = ey, with
A € k, whereas if i > j, ©((0,¢), (e,0)) C ((0,e1), (e1,e2)) and ¢((0,¢)) C ((0,e1), (0, e2)),
so ¢ = 0. |

K2, i (s=2Ai<j)V(s=3),
Lemma 6. Hom(L3;, L, ;) = { k, if (s=1ANi>j)V(s=2ANi>j),
0, i s=1A0<]j
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Proof. Let ¢ € Hom(L3;,L,;). If s = 1 and i > j then ¢ : k{er,ea} — k{e} is
such that ¢((0,e1), (e1,0)) C ((e,0)), p{(0,e1),(0,e2)) C {(e,0)), and p((0,e71), (e1,€2)) C
((e,0)), so, p(e1) = 0 and p(e2) = e, with A € k, whereas if ¢ < j, ¢ = 0, since
©{((0,e1), (e1,e2)) C (0,0). Now if s =2 and i < j, it is obtained that ©{((0,e1), (e1,€e2)) C
((e,0)), so p(e1,e2) = (p(e1),p(e2)) = Arer + Agea , with A\, A2 € k; now if i < j,
©((0,e1), (e1,e2)) C ((0,€)), so p(e1) =0, and p(ea) = Aea. When s =3, ¢ : k{e1,ea} —
k{ei,ea} is such that if i = j, then ¢((0,e1),(e1,e2)) C ((0,e1), (e1,€2)), so (e1) =
Aer and @(ez) = fBer + Aeg and if @ > j, then ¢((0,e1),(e1,0)) C ((0,e1), (e1,e2)) and
©((0,e1), (e1,e2)) C ((0,e1),(0,e2)), so p(e1) = 0 and p(ea) = Are; + Ageo. Finally, if
i < j then ¢((0,e1), (e1,e2)) C ((0,e1), (e1,0)) and ©((0,e1), (0,e2)) C ((0,e1), (e1,e2)), so
(e1) = Aep and ¢(e2) = Pey. (]

Proposition 15. Let ¢ : U — V be a non zero morphism in Rep D,, with U,V € Rep D,
then the following statements hold.

1. ¢ is a monomorphism if and only if it satisfies one the following conditions:

(@) U=Ly; and V = L, j where s=1 and i > j or, s =2, or s = 3.
(b) U=La; andV =L where s=2 and j >i or, s=3 and i < j.
(c) U=8 and V = Ly where s € {1,2,3} and j € {1,2,...,n}.

2. @ is an epimorphism if and only if it satisfies one the following conditions:

(@) U=Ly; andV =L where s=1andi>j or, s=2 or, s=3 and i > j.
(b) U=La; andV = Ly where s =2 and j > i.
(c) U=L3; andV =L, wheres=1andi>jors=2ors=3andi=j.

Proof. Let ¢ : U — V be a morphism. We denote B = {e} or B; = {e;,ea} a canonical
basis of Uy or Vy when dimpUy = 1 = dimgVp, or dimiUy = 2 = dimy V) respectively.

1. (a) If U = L1, then dim;Uy = 1. Thus, if V = L, ; with s = 1 or s = 2, then
dimg Vg = 1. Therefore if ¢ #£ 0, it is a monomorphism. It is worth noting, that
if s=1and¢>jthen p =0. If s =3,ie., V = L3, dim;Vp = 2, when 7 < j,
p(e) = Xep with, A € k and if i > j then ¢(e) = Aje; + Ageg with A, Ao € k.
Therefore, ¢ is a monomorphism.

(b) If U = Ly, then dimUp = 1. Thus, if V = L, ; with s = 2 then dim;Vp =1,
when j > i, ¢ # 0, therefore it is a monomorphism. In case that V' = L3 ; then
dim;Vp = 2 and ¢(e) = Ae; when 7 < j, which is a monomorphism. Otherwise
@ = 0. Finally, if s =1 then ¢ = 0.

(C) IfU = ,5372‘, then dimpUy = 2. Thus if V = ,530‘, dimpUy = 2, when ¢ = j it
is obtained that ¢(ej,e2) = (Ae1, fe; + Aeg) therefore ¢ is a monomorphism,
whereas if i # j then ¢ is not a monomorphism since ¢(e1, e2) = (Ae1, fe1+Aea),
or p(e1,e3) = (Ae1, fe; + Aez). Now, if s =2 or s =1 and ¢ # 0, then ¢ is not
monomorphism since p(e1) = 0 and p(e2) = Xe.

2. (a) fU=Ly;and V =L, withs=1and ¢ > j or s = 2, then dim;Vy = 1 and
p(e) = Xe, where A € kso Im(yp) = k. It is worth noting, thatif s = 1 and i > j
then ¢ = 0. If s = 3 then dimgVy = 2 and ¢(e) = Aeq, or p(e) = Aieg + Aaeq,
if ¢ < j or i > j respectively, then ¢ is an epimorphism when ¢ > j.
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(b) f U = Lg; and V = L, ; with s = 2 and ¢ > j then ¢ is an epimorphism
since p(e) = Ae and Im(p) = k. If s = 3 and i < j, pe = Ae; where A € k
then Im(p) = k, but dimgVy = 2, thus ¢ is not an epimorphism. If s = 1, we
obtained that ¢ = 0.

(c) f U =Lg;and V = L,; with s =1and i < j or s =2 and i > j, then
p(e1) = 0 and p(e2) = Aea, so Im(p) = k and therefore ¢ is an epimorphism
since dimy V) = 1. Analogously, we obtain that if s = 2, ¢ is an epimorphism.
Finally, if s = 3, dimyVp = 2 and p(e1) = Ae; and ¢(e2) = Se1+Aea, when i = j
therefore ¢ is an epimorphism, whereas when i # j we obtain that ¢(e;) = 0
and p(e2) = Arer + Ageg, or p(e1) = Aep and p(ez) = fer so Im(p) = k and
thus is not an epimorphism.

Corollary 4. Let ¢ : L,; — L, be a non zero morphism in RepD,, with k,s € {1,2,3}
and i,j € {1,2,...,n} then the following statements hold.

k, if k=3A(s=1Vs=2V(s=3Ai#j)),

0, otherwise.

(a) kerp = {

k2 if k=3ANi=34
(b) Imgo%{ ’ ! =a

k, otherwise.

Proof It follows from the previous proposition. |

Proposition 16. The following is a complete list of all the e-sequences that there exist in
RepD,,.

(a) L1 — L3 j — L1s, where s < j and k,j,s € {1,2,...,n}.

(b) L1 — L3 — Lo, where k,j,s € {1,2,...,n}.

(c) Loy — L3 — L1, where k <j, s<j, and k,j,s € {1,2,...,n}.

(d) Loy — L3 — Lo, where k < j, and k,j,s € {1,2,...,n}.

(e) S — L?),n - £’2,n'

Proof. It is a consequence of Corollary |4 and Proposition |

Proposition 17. For the morphisms in the e-sequences of the previous proposition we can
affirm the following:

a) L1 — L3, 15 an irreducible morphism if and only if k=j7=1 ork=j+ 1.
) J
(b) L3; — L1 is an irreducible morphism if and only if j = s.

(c) Lo — L3 is an irreducible morphism if and only if j =k + 1.
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(d) L35 — Lo is an irreducible morphism if and only if j = s.
Proof

(a) If k = j =1, then, ¢ : £11 — L31, where ¢ = {(1,0)"). ¢ is neither a section nor
a retraction since @7 : £31 — L11 is such that 1 = ((0,1)) and @1 # idg,, and
¢1¢ # idg, ;. The unique representation U € Ind(Dy), such that ¢ = 192 with
p1 :L11 — Uand g2 : U — L3371 is U = L11. In this case, ¢1 = id which is
a section, so, ¢ is irreducible. Now, if £ = j 4+ 1 then ¢ : £y ;41 — L3, where
© = ((0,1)). ¢ is neither a retraction nor a section since Hom(£L3 j, £1 j11) = 0.
In this case there is no U € Ind(D,,) such that ¢ : L1171 — U, ¢2 : U — L3 and
p = 1. Therefore ¢ is an irreducible morphism. Reciprocally, we suppose that
¢ is irreducible and k # 1 or j # 1 and k # j + 1. If we consider U = L3 then we
will obtain that ¢ = a1 with @1 : £L11 — U, @2 : U — L31, where p1 = ((1,0)")

is not a section and o = <<8 (1)>> is not a retraction, which contradicts that ¢

is an irreducible morphism.

(b) If j = s, then, ¢ : L33 — L1, where ¢ = ((0,1)). ¢ is neither a section nor a
retraction since Hom(£1 s, £3) = ((1,0)") and @1 # idg,, and @19 # idg, . The
unique representation U € Ind(D,,), such that ¢ = p1p2 with w1 : L31 — U and
w2 : U — Ly is obtained when U = £11. In this case p2 = id and therefore is a
section, so ¢ is irreducible. Reciprocally, if we suppose that ¢ is irreducible and j # s
then if we consider U = £1 ¢ then we will obtain that ¢ = pa¢1 with @1 : L31 — U
and @3 : U — L5, where ¢ = ((0,1)) is not a retraction and ¢y = (1) is not a
section, which contradicts that ¢ is an irreducible morphism.

(¢) If j = k+1, then ¢ : Lo — L3p41, where ¢ = ((1,0)"). ¢ is neither a section
nor a retraction since if ¢’ € Hom(L341,L2x) = ((0,1),(1,0)) then ¢'¢ # idg,,
and @y’ # idg, .., The unique representation U € Ind(D,,), such that ¢ = p1p9
with ¢ : Loy — U and @2 : U — Lg; is obtained when U = Lg . In this case,
p1 = (id) and @9 = ((1,0)). Thus, ¢ = pap1, and ¢; is a retraction, so ¢ is
irreducible. Reciprocally, if we suppose that ¢ is irreducible and 7 > k + 1 then if
we consider U = L3 141 then we will obtain that ¢ = p2p1 where @1 : Lo — U and

. : . 1 .
o : U — L3, with p1 = ((1,0)") is not a retraction and ¢y = <<O 8)> is not a
section, which contradicts that ¢ is an irreducible morphism.

(d) If j = s, then, ¢ : L3; — Loj, where ¢ = ((1,0)). ¢ is neither a section nor a
retraction since Hom(£Ls j,£3 ;) = 0. The unique representation U € Ind(D,,), such
that ¢ = @192 with @1 : Lo, — U and g : U — L9 ; is obtained when U = Lo ;.
In this case ¢1 = ((0,1),(1,0)) and 2 = (id), so 3 is a section. Reciprocally, if we
suppose that ¢ is irreducible and j # s then if we consider U = L3¢ then we will
obtain that ¢ = @21 where 1 : L3 ; — U is not a retraction and ¢o : U — Lo is

not a section, with ¢ = <<8 é>> and o9 = ((1,0)), which contradicts that ¢ is

an irreducible morphism. |

Corollary 5. The following is a complete list of all almost split sequences that there exist
in RepD,.
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1. L11— L31 — L11.
2. Liit1 — L — Lo for 0 <i<n.
3. Lo; — L3iy1 — L1 for 0 <i<n.

4. 8 — L3,n - L2,n-

In this way we obtain that the Auslander-Reiten quiver for D, is given by

FI1GURE 3.2. Auslander-Reiten quiver of poset with involution of type D,,.

The previous results can be extended to posets of type Dy in the following way. We define
the functor

En : Rep(D,,) — Rep(Dyo)
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such that if V = (V[), V(ai,bi))lﬁién then Z(V) = (W, V(ai,bi))lﬁi with V(ajl)j) = (0, Vp) for
j>n.

Clearly if f : V' — W is a morphism in Rep(D,,) determined by the morphism f : V — W)
then this morphism is the same in the category Rep(Ds). So, taking =, (f) = f we have
defined the functor Z,,. Analogously we define a functor: ©,, : Rep(D,) — Rep(Dp+1)
and it is obtained that =,410, = =,.

Proposition 18. The indecomposable representations of Do, are the representations

IAlsﬂ- = Zi(Ls,) plus the simple trivial representation S.

Proof. Let V = (Vj, ‘/(ai,bi))lﬁi be an indecomposable representation of Dy,. We suppose
S

that V{4, 4,) = 0, then for each n the restriction of V' to D, is the form (V)p, = €@ Ls
1=

with Ly = £1; with ¢ > 1 or the trivial representation. Since Vj is finite dimensional

S
there exists n and finite sum W = @ Ls in D,, such that for all m > n, V restricted to
i=1
D,, coincides with the restriction of =, (W) to D,,, therefore V = =, (W) and since V is
an indecomposable, then V = Z,,(£L1,,).

Now we suppose that V{4, 3,) # 0 then V restricted to Dy, is the form @L where each L

is the form £;; with j = 1,2,3 and at least one Ly has the form Lgl or L3;. As before,
there exists n such that for all m > n the restriction from V to D,, coincides with the
restriction of =, (W) to Dy, therefore V = Z,,(£;,) with j =2 or j = 3. [

Proposition 19. Let a : X 5 Y % Z be an almost split sequence in Rep(D,,) with X
different from the trivial representation. Then

b:Zn(X) = 5,(v) 2 5,(2),
is an almost split sequence in Rep(Dyo).

Proof. The sequence b is a nontrivial e-sequence in Rep(Ds,) whose extremes are inde-
composable. Let h : Y — Z,(Y) be a morphism that is not a retraction in Rep(Dy)
with Y indecomposable, then Y = Z,,,(W) with W indecomposable in Rep(D,,) for some
m > n. We have that =,,(a) is an almost split sequence in Rep(D,;), so we can suppose
that m = n and then h = Z,,(w) where w : W — Z is a morphism that is not a retraction.
Therefore, there exists g : W — Y with vg = w, thus h = Z,,(v)=,,(g). This proves our
assertion. |

3.2 Tube Deformation.

To describe the Auslander-Reiten quiver for posets of type Dy, it is necessary to introduce
functors Hr : V — Rep(D), Hg : V — Rep(Doo) and Hr g : V — Rep(Doo) with 'V the
category whose objects are the pairs U = (Up, ¢yy) where ¢y : Uy — Uy is a k-application
such that ¢E”U) = 0 for some m > 1, as it is shown in the following.
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We observe that the category V is equivalent to the subcategory of k[z]-modules, whose
objects are the k[z]-modules M such that ™M = 0 for some integer m. Then if the pair
U = (Uy, ¢u) is considered as a k[z]—module is obtained that rad(U) = ¢y (Up). A system
of representants of the indecomposable objects of V is given by the objects V" = (V{*, ¢pyn)
such that V' = (en, d(en),...,¢"(e,)) with ¢"Tl(e,) = 0. In this case V" = k[z]/
(2™ 4 1). The irreducible morphisms of this category are given by \; : V¢ — V! such
that \;(e;) = ¢(eir1) and v; : VL — V¥ such that v;(ej11) = e;.

We will define a functor Hy : V — Rep(Dy) as follows: for V" = (V' ¢yn) € V we
define Hp (V") = L1,(top(V"™)) and we can see that if f : V" — V™ is a morphism
then f induces a morphism f : top(V") — top(V™) such that Hy(f) = f : Hp(V") —
Hp (V™) is a morphism in Rep(Ds). It is clear that Hp(f) # 0 if and only if f is
an epimorphism. Hg : V — Rep(Dy) is defined as zero for n = 1 and for n > 2, as
Hg(V™) = Lo p—1(soc(V™)). As before, if f: V™ — V™ is a morphism, then f induces a
morphism f : soc(V"™) — soc(V™) which is the morphism Hg(f) : Hs(V") — Hg(V™),
then Hg(f) is different from zero if and only if f is a monomorphism.

Finally, the functor Hr g :V — Rep(Dso) is defined as Hy g(V?) = V! and for m > 1:
Hr,s(V™) = L3 m-1(soc(V™), top(V™)).
Thus, natural morphisms of functors are obtained:
n:Hr — Hrg; p:Hrs— Hg,
for each n, the e- sequence:
Hr (V") #5 Hrg(V") 25 Hs (V")

is obtained. For n > 2, the sequence previous is an almost split sequence.

The morphism A, : V* — V"*! induces a morphism

Ayt He(V™) — Hpg(V™H.

The epimorphism v, : V"1 — V" induces a morphism v,, : Hr s(V"™) — Hp (V™).
For n > 2, the almost split sequence:

A
Hg (V") = Hrg (V') =5 Hr(V")
is obtained. The morphism 11 : V? — V! induces a morphism v, : Hy g(V?) — Hr(V?!).
The sequence:

Hr (VY 2% Hys(V2) 2 Hp(VY),

is an almost split sequence. In this way, we obtain that the Auslander-Reiten quiver for
Do is given by
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FIGURE 3.3. Auslander-Reiten quiver of a poset with an involution of type Dy.



CHAPTER 4

Categorical Properties of Algorithm of
Differentiation DI

The algorithm of differentiation with respect to a suitable pair of points (called algorithm
DI too) was introduced by Zavadskij in 1977. It can be seen as a generalization of the
algorithm of differentiation with respect to a maximal point introduced by Nazarova and
Roiter in 1972, which can be applied to posets with width at least two [21}[22}32}36].
Afterwards in 1991 he described the categorical properties of this algorithm. That is,
Zavadskij proved that DI induces a categorical equivalence between quotient categories
and a corresponding relationship between the number of indecomposable representations
in the original category and the category of representations of the derived poset [37].

In this chapter, we present a new proof of such categorical equivalence by using module
theoretical approach, which allows us to give the indecomposable objects and the irre-
ducible morphisms explicitly. For this purpuse, we follow the ideas of Bautista et al [5.[7].
That is, we can extend a poset P, to obtain an algebra A, which is right peak, left peak
and 1-Gorenstein. Moreover, the category of representations of posets is equivalent to
the category U, of right modules with projective socle, which do not have the projective
injective module as a direct summand as presented in the section

4.1 Differentiation with Respect to a Suitable Pair of Points
(DI)

The following is the definition of the algorithm of differentiation DI with respect to a
suitable pair of small points (a,b) for a poset with involution and it is corresponding
theorems as in [32].

Definition 38. Let P be a finite poset then a pair of small points (a,b) € P is said to be
suitable (suitable for differentiation DI) if

P=a"+b,+0C,

o7
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where C' = {c; < cg < -+ < ¢y} is a small-point chain (eventually empty) and, moreover,
the points a,b, ¢; are mutually incomparable. The derivative poset (P',60") is obtained from
the poset (P, 0) with respect to the pair (a,b) as follows:

1. The chain C is changed by two chains CT = {c¢f < --- < ¢} and C~ = {¢] <
-<cy )}

2. The following relations are added: c; < c ,a < cl ¢ <b, foralll <i<n.

3. Any of the points c; , c;r inherit all relations of the order which the point ¢; had before
with points of a subset P\C'.

It is supposed that the two element classes are not changed. That is ' = 0. That is, if

L = L(P) is the modular lattice generated by P then the derived poset of P is a subposet
of L such that

P="7, ») =P\C+{a+teci,...,a+c}+{cib,...cpb}, witha+e;=cf, cb=c; .
The following figure illustrates this differentiation.

(P,0) (7,0 C+ b

n O o

: lo /\ \O_/
o ab\//\/%

4 \/CQ

FIGURE 4.1. The diagram of a poset with involution (P, ) and its corresponding derivate poset.

ag Clg

Denote the categories by R = Rep(P,0) and R' = Rep(P',¢'). The differentiation functor
D(ap) : R — R also denoted ' : R — R’ is defined in the following way,

e To each object U = (Up,Uy).co € R an object U' = (U}, UL)co € R’ is assigned as

follows:
UO [j()7
U(; = U,,
Ué = Uy,

Uy =Us+Usy 1<i<n (4.1)
U_=0U,nU,, 1<i<n
c; g

! s s /
U, =U,, for remaining classes z € 6'.

e If p: U — V is a morphism in R then ¢’ = .
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Remark 9. We note that k'(a) = k'(a,¢;) = k(a), 1 < i < n. Indeed, we recall that
k(a) = (Uo,Uy)pep, where Uy =k, U, = k if x > a and U, = 0 otherwise. By applying
the functor we obtain U} = k, U, = k, Ué+ =U,+ U, =k, Ué._ =U, NU, =0 and
U, =U,=0. So, k(a) = k(a). Analogously, kl(a,ci) = (Up, Uy)ze?, where U=k, U, =k
st x> ¢ orx > a, in otherwise U, = 0. To applying the functor we obtained Uy = k,
Up=k U, =Us+Us, =k U_=U,NUy=0 and Uy = Uy = k. So, k(a,c;)' = k(a).

Example 9. Let P the poset as in the Figure 4.2.

(?,0) (P,0")

o ob
LN
a c

(a,b)
FIGURE 4.2. The diagram of a poset (P,0) and its corresponding derivate poset (P',6’).

We consider U = (Uy, Uy, Ue, Up) = (k®k, k®0,00k, (14+1)k), with (1+1)k = {(A\,\) | A €
k} a representation of P. Applying the functor [4.1] we obtain U' = (Uy, Uy, Upr, U~ , Up)

where

Uy =Uy=kak,
U, =U,=k&0,

U, =Uy=(1+1)k

U, =Us+Uc=(k@0)+(0Dk)=kdk,
U. =U,NU.=1+1)kN(0dk)=0,

Therefore, U = (Up, Uy, Ucl+, Uc;, Up) = (k®k,kd0,kdk,0,(1+1)k)) = (k,k,k,0,0) D
(k,0,k,0,(1+1)k)) = k(a) ® k(c], b).

Now, we consider k(a) = (Uy, Uy, U, Up) = (k,k,0,0). By applying the functor we
obtain Uy =k, U, =k, U, =Us +U. =k, U._ =U.NUy, =0 and Uy = k. So, k(a) =
(U0, Ua, U, U, Up) = (k,k,0,k, k) = k(a). Analogously, k(a,c) = (Uy,Uq,U., Up) =
(k,k,k,0). To applying the functor we obtained Uy =k, U, =k, U, =U, + U, =k,
U_=U;NUy,=0 and Uy = k. So, k(a,c;) = k(a).

We consider the subposet K of P, with X = P\{a¥ +ba} =a+b+{c1 <ca < - <eu}
In this case, the Hasse diagrams of the poset X and X’ by applying the differentiation
functor (4.1)), are described in the following figure:
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(jc7 0) Cn O O b (gC/, 9/) c’;’Li»O o b
C’nflo C;_ o) ’ \ /
P +,/ \\
3 o , c
- 3
20 (a,b) o / \ /

v N

Cl

FIGURE 4.3. Diagrams of a poset X and its corresponding derivative poset X'.

From now on, in this chapter we denote by J the ideal in the category Rep(X) formed
by the morphisms that are factored through finite direct sums of objects in the set A =
{k(a),k(a,c1),...,k(a,c,)} and by I’ the ideal in Rep(X’) formed by the morphisms that
are factored through k(a). Besides we denote by € (€', respectively) the Auslander-Reiten
Quiver of Rep(X) (Rep(X)’, respectively) and we designate by C( €', respectively) the
Auslander-Reiten Quiver of Rep(X)/J(Rep(X)' /T, respectively).

We consider the following representations of X : P(0) = k(0), P(a) = k(a), P(b) = k(b),
k(a,b) and for 1 < i < n, P(¢) = k(¢), k(a,c),k(ci,b), k(a,c;,b), R(cp—i)(e1,e2) =
(Uo,Uq,Ueys - -, Ueyy - - ., U, , Up), where:

Uy = (e1, e2),
Ug = (e1),
U, = <62>7 (4 2)
U (e1 +e2), if n—i<j<n,
71 o, if j<n-—i.

and Rl(cp—i)(e1,e2) = (U, Ua, Ueys -y Uy« ., Ue, s Up), for 1 <1 < i where

Up = (e1, e2),
Ua <61>7
Up = (e2),

Henceforth, we will put R°(c,_;) = R(cy).

Analogously, we consider the representations for X': k(0); k(a); k(b); k(a,b); for 1 <i<n
k(e );k(c); k(e ,b);k(a,c; ) and for 1 < < 4, k:(cj,cj_).

Proposition 20. The differentiation functor’: R — R’ defined by formulas @1) induces
a quiver isomorphism of C in C'. Consequently, the above list is the complete list of
indecomposable representations of Rep (X) and Rep (X)'.
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Proof. In Rep(X) we obtain the irreducible morphisms between projectives:
k() — k(a), k(D) — k), k(0) = k(cn) = k(en—1) — -+ — k().

We have the following commutative diagram D(i) :

k(eni)(er +e2) — s Rlcn_s)(e1, e2)

lfQ lgl

k(cn—i—1)(e1 + e2) —2— R(cn—i—1)(e1 + €2)

such that the sequences S(D(7)) :

(fi,—F2)" (91.92)"
k(cn—i)(e1 + e2) ——— R(cn—i)(e1,e2) @ k(cn—i-1)(e1 + e2) ——— R(cn—i—1)(e1,€2)
are e-sequences.

Also, we have the e-sequence k(c1)(e1 + e2) — R(c1)(e1, e2) — k(a,b)(e2),.

We have the commutative diagram

(A1,22)T

k(D) k(a)(e1) @ k(b)(e2)

\L)\g l( vi,2)

E(cn)(e1 + e2) —=— R(cp)(e1, e2)

and the e-sequence

(A1,A2,—A3
RN

k(O)(f) L k(a)(er) @D kb)(e2) @D klen)(er + e2) 2 R(ey) (e, ).

As k(() is a simple object, if k() — V is a irreducible morphism then V is projective.
Therefore V' = k(a), k() or, k(c,), hence the sequence SD(0) is an almost split sequence
and then 7(R(c,)) = k(D) and

vs : k(cp)(e1 + e2) — R(cn)(e1, e2),

is an irreducible morphism. If k(c,)(e1 + e2) — V is an irreducible morphism and V' is
not projective then there exists an irreducible morphism 7(V) — k(c,)(e1 + e2), then
7V = k(@) and V' = R(cy)(e1, e2); therefore the only irreducible ones up to multiples non
trivial scalars that come out of k(c,)(e1 + e2) are f1,—fo. Therefore SD(0) is an almost
split sequence.

By induction it is proved that SD(1),...,SD(n—2) are almost split sequences. In partic-
ular the irreducible morphism k(c1)(e1 + e2) — R(c1)(e1, e2) is obtained and this is up to
multiple non-trivial scalars the only irreducible coming out of k(c1)(e1 + e2). This implies
that there is an almost split sequence

k(c1)(e1 + e2) — R(c1)(e1,e2) — k(a,b)(e2).
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We have the irreducible morphism k(b)(e1 + e2) — R(cy)(e1,e2). If k(b)(e1 + e2) — V is
an irreducible morphism, where V is not projective; therefore there exists an irreducible
morphism 7(V) — k(b)(e1 + e2), so 7V = k(0); hence V. = R(c,)(e1 + e3). Thus we
obtained the almost split sequence

k(b)(e1 + e2) — R(ep)(e1,e2) — k(a,cy).

Analogously, we obtained the almost split sequence

k(a)(er + e2) — R(ep)(e1,e2) — k(b, cn).
We have the commutative diagrams D(3, j) :

Ri(caj)(e1,e2) —2— R (cj)(e1, e2)

(
lfz lgl

Ri(cp—j—1)(e1,e2) -2, R (cp—j—1)(e1, e2)

and the e-sequence SD(i,j):
i (ff2)" i+l i (91,92) 41
R (cnj)(e1, €2) === R (cnj)(e1, e2) @D R (en—j1)(e1, €2) == R (e j1)(er, €2).

Let now R(cp)(e1,e2) — V be an irreducible morphism. In this case V can not be
projective; therefore there exists an irreducible morphism 7(V') — R(¢y,)(e1, e2) then 7(V)
is k(a), k(b) or k(cn), hence V' is equal to k(b,cy)(e2) or k(a,cy)(e1) or R(cn—1)(e1,e2),
from here the almost split sequence:

R(cy)(e1,e2) — k(b cp) @ k(a,cn) @R(cn)(el, eg) — Rl(cn_l).

is obtained. So, SD(0,1) is an almost split sequence and by induction all sequences
SD(0,7) with j =1,...,n— 2.

In general, we have the e- sequences H (i) :
Ri(cn,i)(el, 62) — /{I(b, Cnfi) @ k:(a, Cn,i) @ Ri(Cn—z'—l)(el,eg)—>Ri+1(cn_i_1).

As the sequence SD(0,1) is an almost split sequence, we obtain the irreducible morphisms
R'(cn-1)(e1, €2) — R'(cp2)(e1, e2);

therefore the irreducible morphism
R'(ca—2)(e1, e2) — R*(ca—2)(e1, €2)

is obtained.

With the previous procedures it is proved that H(1) is an almost split sequence and as
before it is proven that the sequences SD(i, j) with i < n — 2 are almost split sequences.
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Following in this way, it is proved that for ¢ < n — 2 the sequences O(b, 1) :
k(b cn_i)(e1 +e2) — R (cpi—1)(e1 + e2) — k(a, cni_1),
and O(a,i) :
k(a,cn—;)(e1 +e2) — Ri“(cn,i,l)(el, es) — k(b, cn—i—1),
are almost split sequences, then we have irreducible morphisms:
E(ci)(er + e2) — R(cr)(er, e2) — RY(c1)(e1,en) — -+ — R™ Yer)(er, e2) — k(b c1)(er).

Then the e-sequence:

k(ci)(e1 +e2) — R(c1)(e1,e2) — k(a,b)(e1),
is obtained, and by induction the - sequences
L(0) : R(cy)(e1,e2) — RY(c1)(er, e2) @k(a,b)(el) — k(a,b,cy)(e1),
and for 1 <i<n—2,
L(i) : R'(c1)(e1, ea) — R (cy)(eq, e2) @k(a, b, cn—it1)(e1) — k(a,b,cn_;)(er)

are obtained.

As the representations k(a, b), k(a,b,cp), ..., k(a,b,c1) and k(a,c1), k(b, c1) are injectives,
the construction of Auslander-Reiten quiver of X is completed.
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4.1.
FI1GURE 4.4. The Auslander-Reiten quiver of a poset K
N
N
OO ‘O’C
o 8
“ -
o~
&
/
N N N
o /NKO v
\é\o o 0
o
/ Nl &
o
o
N\
N ' \ S
o G P o
A\ v / -
* N N G4
A Ay ® v
o
o
N
e > 3 >
A S . ¢ o
P / & —
Q:" va A ‘@L
) N
«v/q' o/(b N N N 2
@wo —_— ,,J\"(b RCid g &> o®
N & & & & -
@
/ *
o
D / N
e D A\ S >
o® id 5 2 P 3 > o
\n“ _— q)\oo q‘\oo q}@ w@v > ——— o
» /@ & & & %\y
~
~.o“l
o
“ » 2 » > S o~ o
. — o & — _— _—
N o NG v G v o\ v
» ¢ N N N NS o
/ & o & Ao S
N
&
D 2
~ 9
i o 2
D X N S & & & 9
4 % o
@L ol x @\ & & N
o
D ) N
~ P D
o o’ @”/ w/% \&& A ™
A o \a o o "



4.1. DIFFERENTIATION WITH RESPECT TO A SUITABLE PAIR OF POINTS (DI) 65

Analogously, in Rep(X’) we obtain the irreducible morphisms between projectives:

k(@) — k() k(D) — k(c)) — k(ey_y) — -+ — k(c]).

We have the following commutative diagram D(i) :

such that the sequences S(D(1)) :

T
ket (e) L ket n)(e) @ k(e )(e) LT ket b)),
are an a—sequences.

We have the diagram:

and the e-sequence

KO)(0) 22 ko)) @ k() () 5 k(e b)),

As k(D) is a simple object, if k() — V is an irreducible morphism then V' is a projective;
therefore V = k(b) or V = k(c,); hence the sequence SD(0) is an almost split sequence
and then 7(k(c},b)) = k(D) and

vy k(cy)(e) — ke, b)(e),

is an irreducible morphism. If k(c;)(e) — V is an irreducible morphism and V is not
a projective, then there exists an irreducible morphism 7(V) — k(c;)(e). According to
7(V) = k(D) and V = k(c}!,b)(e), the only irreducible ones up to multiple non trivial
scalars that come out of k(c;)(e) are fi, fo. Thus, SD(0) is an almost split sequence.

By induction it is proved that SD(1),...,SD(n—2) are almost split sequences. In partic-
ular, since the irreducible morphisms k(cj)(e) — k(a)(e) and k(c])(e) — k(c],b)(e) are
obtained, these are up to multiple non-trivial scalars the only irreducibles coming out of
k(c1)(e). This implies that there is an almost split sequence

k(e )(e) — k(cf,b)(e) @D k(a)(e) — k(a,b)(e).

We have the irreducible morphism k(b)(e) — k(c™,b)(e). If k(b)(e) — V is an irreducible
morphism, where V is not projective. Therefore there exists an irreducible morphism
7(V) — k(b)(e), so 7V = k(D); hence V = k(c",b)(e), so we obtain the almost split
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sequence

k(b)(e) — k(cy,b)(e) — k(ey,).

We have the commutative diagrams D(j) : (1< j <n —2)

ket b)(e) —E k(ct_j,cn)(e)

n 3 'n, jron
lfz lgl
key_jo1)(e) == kley_;_1,¢0)(e)

and the e-sequences SD(j):

k(C+ ) b)(e) (f17f2)

n—j’

(91,92)
n 70 n @k Cn— J— 1’ )ﬂ)k(c:zrfjfbc;zk)(e)'

Let k(c;},b) — V be an irreducible morphism, in this case V cannot be projective; therefore
there exists an irreducible morphism (V) — k(c},b) then 7(V) is k(b) or k(¢ ); hence V
is equal to k(c,)(e) or k(¢ ;,b)(e), from here the almost split sequence:

k(c;"l_’ @k k( Cp—1-€ n)(e)a

is obtained. So, SD(1) is an almost split sequence and by induction all sequences SD(j)
with 7 =1,...,n — 2 are too.

In general, we have the e- sequences H (i) :
k<c:—jvc;—j+1)(e) - k(C:{—j—pC;—jH) @k(cg—j) - k(CI_j_pc;_j)(e)‘

As the sequence SD(1) is an almost split sequence, we obtain the irreducible morphisms

k(cjz_—lvcr:)( )_> k( Cp—2,C n)(e)

Therefore the irreducible morphism

k(@iw@?)( ) — k(e Cp—2:Cp1)(€),

is obtained.

With the previous procedures, it is proved that H(1) is an almost split sequence and as
before, it is proven that the sequences SD(j) with 1 < j < n—2 are almost split sequences.

Now, for i =n,n —1,...,4, we have the commutative diagrams E(i,j) tn—i+2<j<
n—2)
- f
k(c;’z—fjﬂci )(6) —1> k( Cp— 72 Ci 1)( )

lfg lgl

k(eh_ 1)) =2 k(el_;_y ¢ y)(e)
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and the e-sequences SD(i, j):

T
k(C+ ) C-i)(e) (f17f2) ]’C

n—737 "1

- (91,92) -
n 7 Ci 1 @k Crn— =1 ¢ ()%k(cz—j—l’ci—l)(e)7

Let now k(¢ ,,¢;)(e) — V be an irreducible morphism. In this case V cannot be

Cn—2:Cn
prOJectlve therefore there exists an irreducible morphism T(V) — k‘( e o, cn)(e ) then 7(V)

)
is k( Cp1:Cn )(€) Or k( Cp_z,b)(e); hence V' is equal to k( Cp2:Cp_1)(€) © k( Cn3:Cp ) (€),

from here the almost split sequence:

k(e g en)(e) = k(e) g ) (€) @D k(e g, cn)(€) = (el s, 1)(e),

is obtained. Thus, 515(2) is an almost split sequence and by induction all sequences
SD(j) with j =2,...,n—2 are too. As before it is proven that the sequences SD(j) with
7 < n — 2 are almost split sequences.

Following in this way it is proved that for ¢ < n — 2, the sequences

O(b, i) : k(b,cni)(e1 +ea) — R (chi_1)(e1 + e2) — k(a,cn_i—1),
are almost split sequences, then we have irreducible morphisms:

kel )(e) = kel b)(e) = klcf, en)(e) = - — k(e e5)(e) = K(ey ) (en),
Then the e-sequence
L(0) : k(c},b)(e) — k(cf, ¢;,) @D k(a, b)(e) — k(a,cn)(e),

is obtained, and by induction for 0 < i < mn — 2, the sequences

L(i) : k(cy ,c,_;) — k(ct,en_i_y) @D kla, c,_;)(e) — K(a, cni—1)(e).

are obtained. As the representations k(a,b), k(a,c;,),...,k(a,c; ) and k(c; ) are injective,
the construction of Auslander-Reiten quiver of X’ is completed.
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FIGURE 4.6. The Auslander-Reiten quiver of a poset X’
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Now, we consider the derivation ' : R — R" as in (4.1)). For 1 <[ < i we have that
R'(cni)(e1, e2)' = k(a)(er) P k(c) i e _i1)(ea),

R(ci)(er, e2)' = k(a)(er) P k(c], b)(ea),

further,

k(a) = k(a), k(b) =
k(a,c;) = k(a), ;

Finally, if X % Y 5 Z is an almost split sequence in Rep(X) with 1x,1y ¢ J, then the
sequence X — Y = Z in Rep(K)/J has the following properties:

1. vu =0.

2. If h: W — Y is a morphism such that vh = 0, then h is factored by wu.

3. If g: W — Z is a morphism in Rep(X)/J which is not a retraction then is factored
by v.

The first and third paragraphs are clear. For the second we consider h = h; with h; :
W — Y being a morphism in Rep(X), so vh; = uv with v : W — L and p : L — Z where
L is the sum of some of the indecomposable ones that generate J.

Since 1z ¢ J, then p is not retraction, so it is factored by v and it is obtained that u = vpuy,
thus vh = vuqv that is, v(h — pyv) = 0. Therefore, there exists g : W — X such that
ug = h — pyv thus ug = h.

Let F : Rep(X)/J — Rep(X)'/7 be the functor induced por (4.1, then F(X) is projective
in Rep(X') if and only if X is projective in Rep(X).

Let w : X — Y be a sink morphism en Rep(X) with Y ¢ J then if Y is projective and
h : Z — X is a morphism such that uh = 0 then h = 0. Indeed, if this happens then
uh =vA, with A\: Z — W and v: W — Y and where W € J. Since Y ¢ J, there exists a
morphism s : W — X such that v = us. Therefore uh = us), so u(h — s\) =0 and as u
is injective we obtain that h = s\, thus h = 0.

Let f: X — Y be a morphism in Rep(X)/J such that F(f) = f' = 0. We will prove that
f=0.If X =Y or there exists an arrow from X to Y it is clear. Let us observe that
if there are two paths from X to Y in Rep(X)/J these have the same length, the same
occurs in Rep(X') /7.

We will prove our result by induction on the length of the paths from X to Y. Our result
is true when the length is one. Suppose that the result be true for lengths less than n and
suppose that the length of the path from X to Y is n. Then we have a sink morphism

(F(w),....F(u), N : F(Z) PP FZ)PL— FY),
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with L € J and a sink morphism

(ul,...,ur)T:Zl@--~@ZTHY,

with f = Zusvs Therefore F/(f) = Z F(usvs) = 0. If Y is projective, F'(Y') is projective,

and thus ( (v1),...,F(v)) = 0, Wthh implies F'(v;) = 0, for all 4, 1 < i < r and by
induction hypothesis v1 = 0,...,v, = 0, so f = 0. Now, we suppose that Y is not
projective, then there exists an almost split sequence in Rep(K)

W( sV Zl@ @Z @L (utyur ) Y,

and we have the almost split sequence in Rep(X’):

F(W) (F(a1),....F(ar),F(v)) Zl @ @F )@F(L) (F(u1), . F(ur),F(p1)) F(Y),

,
in the category Rep(X')/J" we have Y F(ujv;) = 0 then by property 2 above, there exists

j=1
p: X — W such that F(a;)F(p) = F(vj). Since the length of the paths from X to Z; are
strictly less than n, by induction hypothesis v; = aj, thus f = > uja;p = 0. |

J
Proposition 21. Let £ = k(a,¢;) or L = k(a) in Rep(P,0). Then

1. If f : V]x — Llx is a morphism in Rep(X), then f : V — L is a morphism in
Rep(P, 6).

2. If g : Ll — Vl]x is a morphism in Rep(X) then g : L — V is a morphism in
Rep(P,0).

Proof Let f : V]x — k(a,c)(e)lx is a morphism in Rep(X). We will see that
f:V — k(a,¢) is a morphism in Rep(P, ). Let z € 0, such that z # a,b,c1,..., ¢,

Let (A, ) € Ve and let z = (z,y). If £ < b, y < bthen A\, u € V} and since k(a, ¢;), = 0 and
F(Vi) C k(a, )y then f(A) = 0, f(1) = 0; therefore (f(N), f(1)) = (0,0) C k(a i) = 0.
Ifx>a,y>a, f(A\)=ce f(u)=Ceand (f(N), f(n) = (ce,de) € k(a,c;).. Analogously
if £ > a,y <b, then f(\) =0, f(n) = ce and f(\ p) = (ce,0) € k(a,c;)(e),. Therefore, f
is a morphism in Rep(?P,0).

Now, we prove that g : k(a,c¢;) — V is a morphism in Rep(P, ). Let z € 0 different from
a,b,cy,...,cp. We suppose that z = (z,y) if < b,y < b. We have k(a,c;), = (0,0),
therefore ¢g*k(a,c;), € V.. We suppose that x > a,y < b, Then if (\,u) € k(a,¢).
it is obtained that A\ = ce,u = 0, ce € k(a,c;),, therefore g(ce) € V, and since x >
a, (g(ce),0) € V., so that g*(k(a,c;),) C V.. Similarly it is proved when z > a,y > a. For
L = k(a), the proof is similar. [ |

Corollary 6. Let L be equal to k(a,c;) or k(a) such that L|x is a direct summand of V|,
then L is a direct summand of V' in Rep(P,0).
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Proof If L|x is a direct summand of V|x, then there exists a morphism in Rep(X),
f:V]x — Llx and g : L|gx — V| such that fg = 1. By previous proposition f and g
are morphisms in Rep(P, #); hence L is direct summand of V' in Rep(%P,0). [ ]

Proposition 22. Let W be a representation of Rep(P',0"). The following statements hold:

1. If f: Wlx — k(a)|x is a morphism in Rep(X') then f: W — k(a) is a morphism
in Rep(P,0").

2. If g : k(a)|xr — W is a morphism in Rep(X)', then g : k(a) — W is a morphism
in Rep(P',0").

Proof.

1. If z € 0 is such that z # a,b,cf,...,cj{,cf,...,c;. We take (A\,u) € W, if x < b
then A € Wj, so, f(A) € k(a)p, = 0. Hence, if x < b,y < b, f(A\) = f(r) = 0 and in
this case (f(N), f(n)) = (0,0) € k(a,) then f#(W,) C k(a),. If x > a,y < b, f(\) =
ce, f(p) = 0 and (f(A), f(u)) = (ce,0) € k(a),. If z > a,y > a, f(n) = e then
(f(N), f(p) = (ce,de) € k(a),. So, in any case f*(W,) C k(a,).

2. We have k(a)(e)a = (e) so gle) € W,  Let z € 6 such that z #
a, by, ek e, e, I < by < b k(a)(e)z = 0; hence g*(k(a)(e),) € W,
if x < by > a,k(a), = {(0,ce) | ¢ € k}'. Here, y > ayg(e) € Wy; there-
fore, (0,g(e)) € W,. If x > a,y > a,k(a)(e), = {f(ce,ce) | (¢,d) € k}, so

(g(ce), g(c'e)) = c(g(e),0) + ¢(0,9(€)) € W-. |

As a consequence of the previous proposition we obtain the following corollary.

Corollary 7. If k(a)|x is a direct summand of Wy in Rep (X') then k(a) is a direct
summand of W in Rep (P, 6").

Theorem 12. Let P = a” + by +{c1 < ca < -+ < ¢y} be a poset with a suitable pair of
points (a,b). Then the differentiation functor

"R — R,
defined by formulas (4.1)) induces an equivalence between quotient categories

R/(k(a),k(a,c1),...,k(a,cy)) = R'/{k(a)).

Proof. Let us prove that the functor is dense. Let M € R’ be an object without direct

summand k(a). We consider M |4 = @ M*™ where M" is indecomposable in Rep(X’). By

Corollary m, each M™" is not isomorphism to k(a, ¢;) or k(a). By Proposition , for each

M™ there exists an object V* in Rep(X) such that (V%) = T* @ M" where T" = k(a)

or T" = 0. Let V = @ V" € Rep(X), and we consider for each z € 6, with z # a,b,¢;

the subspace V, = (T"). @ M. of Vi and for a,c;,b, Vo, = @V, Vo, = PV and
u u

u
W, = @ V" respectively.
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We will prove that V' = (V, V) .cg is a representation of (P, 0). Indeed, (PT") P M is a

representation of (P',60"). We suppose that z and 27 are different from a, b, ¢; such that z
and z1 is in 0'; if z = (z,y), 21 = (z1,91) with 2y <z, v € V| then (1,0) € V..

Let z = (z,y) and a < z, then V, = @V} . Let A € V' = (V¥), = (Tu)a P M,, so
(A\,0) e (T, V"), C V.. Similarly, if b < z and A € (V") it is proved that (X, 0) € V..
In case that ¢; <z, and A € (V*),, it is obtained that (V") . =V + V' = (Tu @ M)+

By definition ¢ < z; therefore as A € (T'u & M)+, then ()\,10) e(T,PM),CV..

Now, we suppose 2 < a and (\,v) € (PT,. P M)., then A € (P T, d M), = P(V"), =
PV = V,. Similarly, if © < b, then for (\,v) € V,, A € V},. When z < ¢, it is obtained
that « < ¢; and (\,v) € V, = (T, & M*),. Thus

re @rDr., =DV, = DN < Ve,

u u

and therefore, V' € Rep(?P,0).

Now we have

(Vi) = PVl = PP M)l = PT. P M),

and for z € 0/, z # a,b,cf,c; it is obtained that V] = V, = (T, @ M).; therefore
V' =@T.P M.

Finally, we will prove that the functor is faithful and full. Let f : U — V be a morphism in
Rep(P, #) and we suppose that f' = hohy : U' — V', where hy : U’ — k(a), he : k(a) — V'
are morphisms in Rep(P,6’). Therefore, we have that f’|i is factored by k(a). By
Proposition [20], fx : Ulx — V|« is factored through the objects k(a,¢;),k(a), and by
Proposition [21], f is factored through the objects k(a,¢;), k(a) in Rep(P,6). Thus the
functor is faithful.

Let now f: U’ — V' be a morphism in Rep(P’,60"). We will consider the morphism

flaer = U'lger = (Ulx)" = Vg = (V)

By Proposition [20], there exists h : Ulx — Vlx such that K’ = g = f + A2\;, where
A1 :U'|lgr — k(a)(X) and Ao : k(a)(X) — U'|x for a finite dimensional k-vector space X.
By (1) and (2) of Proposition 22], A; and Ay are morphisms in Rep(?',6’); therefore g is
a morphism in Rep(%,¢’).

By definition h = g : Uy — Vy and for z € 0, z # a,b,c;, we have that h*(U,) =
g*(UL)@ V., = V.. Therefore, h is a morphism in the category Rep(P,0) and b’ = g =
f 4+ A2A1. This proves our result. |



CHAPTER 5

Categorical Properties of Algorithm of
Differentiation III

In this chapter we will study the categorical properties of the differentiation algorithm DIIT
following the ideas used for the differentiation algorithm DI presented in the previous
chapter. It is worth mentioning that this algorithm is essentially different from such
an algorithm, in the sense that the most basic case that can be presented is a poset P
consisting of two big incomparable equivalent points a, b which is of the tame representation
type (see, [32]).

5.1 Algorithm of Differentiation III

Definition 39. A pair of points (a,b) of a poset (P,0) is said to be suitable for Differ-
entiation III if P = a" + by, where a,b are big incomparable equivalent points. In this
situation, the derivative poset (P',0") is obtained from the poset (P,0) as follows:

1. the point a is replaced by an infinite decreasing chain a; > az > as--- and the point
b by an infinite increasing chain by < by < bs---;

2. a relation a1 < by is added with its induced relations;

3. 0" is obtained from 6 by deleting the class {a,b} and adding the classes {an,by},
n>1.

The following Figure 5.1 illustrates the Hasse diagram for this differentiation.

73
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)
(2,6) (,0) P
0
o)
b |2
° o b1
A 1 A
(a,b)
B B
a o aje
ag
a3
a~b a4f a; ~ b;

FIGURE 5.1. The diagram of a poset with involution (P, 6) and its corresponding derivate.

Let the subsets A,B C P be A = a"\{a}; B = b,\{b}. Then R and R’ denote the
following subcategories of Rep(P,0) and Rep(P’, ") respectively for n > 1:

R ={U € Rep(?,0) | U C U;;U, =0}, (5.1)
R ={U € Rep(?,0') | U, UL U, =US }. (5.2)

The differentiation DIII induces the functor ’: R — R’ which is defined as follows:

e To each object U = (Uy,U,).co € R an object U = (U},U).co € R is assigned
such that

Ué = Uy,
U.=U,, forz=# (an,by), (5.3)
Ul iy = (UE,Uo) N U, + (0,U7),

where Uy = {(to, 1) | (to,t1) € Utapy, (t1,£2) € Uty - (b1, tn) € Uy}

e If ¢: (Uo,U.)zc0 — (Vb, V2)2ep is a morphism in R, then ¢’ := ¢ : Uy = Uj — V] =
.

Remark 10. It follows from the definition above that K(A,b) = K(A,by).

Example 10. We consider the poset with an involution (P,0) where P is as in Figure
5.2, with a < ¢, d < b and 6 = {(a,b), (c,d)} are the equivalence class.
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°b
(P,6) (7.6) |
P
P
[ ] bl
ce ®) E} ce o d
(a,b)
ae e aje
a~b a0
ase
c~d a |
° a; ~ b;

FIGURE 5.2. The diagram of a poset (P,6) and its corresponding derivate poset (P’,6’).

We consider the representation of (P,0), U = (Uo, Uapy, U(c,ay), where

Uy = RY,
Utp) = ((0,€1), (€1, €2), (0, e3), (e3, e4))
Ueay = ((0,e1), (€1, €2), (0, €3), (e3, ea)).
As Uf = {e1,e3} and UbJr = {e1,e9,e3,e4} then, UF C UbJr, also U; = 0. Therefore
U € R. By applying the functor we obtained that
Uy = Uy = k",
Ulay oy = U, U0) N U gy + (0,U57) = ((0, 1), (e1, e2), (0, e3)),
Ulage) = U Uo) VU, )+ (0,UF) = ((0,€2), (0, €4), (0, €1), (0, €3)),  (5.4)
and for n > 3,
Ulas ) = U5, U0) NUP () + (0,U5) = (0, €2), (0, €4), (0, 1), (0, e3)),

Proposition 23. U’ = (Uj,U.).cor defined by formulae z'n is an object of the category
R

Proof. It is enough to check with the classes (a;,b;) of 8’ = 0\{(a,b)} U {(ai,b;)}. In the
first place, we prove that (Uy )™ C (U, , )7 let z € (U; )", then there exists w € Up

such that (w,z) € U(’an by)> SO (w,2) € (U, Up) N U([Z}b) + (0,U,). Therefore (w,z) =

w, z1) + (0, 20) with 21 € U™, 20 € UF. As Ut € U we have (0,w) € Uy, so, coupling
a B b (7)

this with (w, z1) € U([Z]b) we obtain that (0,z1) € U([Zz)l] and as (0,22) € (0,U;) then

(0,21 + 22) = (0,2) € U([Zz)l]; therefore z € (Ul;n+1)_'
In the second place, we prove that (U, )~ = (U, )", which is equivalent to proving that

An+1
l](/L =, l]‘f‘)ll(j— ﬂll[n} — ll/ )+
n B

(a,b) Gn+1
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o If z € (U,,)" then (2,0) € U/, , ; that is, (2,0) € (U5, Up) N U([Zlb) +(0,U7) so,

(2,0) = (z,w)+(0,v), withw € Ut ,v € U, and w+v = 0; thus (2,0) € (U4, U )N
U([Z]b) and therefore z € 7, (U4, U;) N U([n] ))- Conversely, if 2 € (U, U) N

U([”] )) then there exists w € Uy such that (z,w) € (US,U;7) N U([n] b) S , (zw) €

U/ ) also (0,w) € U(an b, Since w € U} then (2,0) € U(an b’ therefore z €

(an,b
Ua,)™
o ( an+1) 7o (UL, US) N U([ })). If z € (U,,,,)" then there exists w such that
(z,w) € an+1 bnt1)’ that is, (z,w) € (UB’UO) n U([Z,Z)” + (OvU;—) , 80 (2,w) =
(2,w1) + (0,wn), then (z,w — wy) € (Uf, Ua) N ULy therefore 2 € mo((Uf,Ua) N

U(a’b)). Conversely, if z € m,((UZ,U.;) N U[n}b)) then there exists w € Up such that

(a
(z,w) € (U, UF) nU, with w € Uf NU = U since U} € Uyt by definition of

(a,b)
R; therefore there exists ¢ € Up such that (w,t) € Ugyp) and as (z,w) € U([Z]b) then
(2,t) € U([n+)1] and therefore 2 € (U, )" [ |

Proposition 24. If ¢ : (Up,U,).co — (Vo,V2).co is a morphism in R then ¢/ = ¢ :
(U0, UL)eor — (Vo, V) eor is a morphism in R'.

Proof Taking into account that ¢ = 6\{(a,b)} U {(ai,b;)}, then for all z € 0, ¢'(U))

&' (U,) = ¢(U,) C V, =V]. Let z = (ai, b;), we will prove that ¢(U.) C V/. If (z,y) €
Ula; ;) then (z,y) € (UL, Up) N U(ia,b) +(0,U;); that is, z € U NUS and y € U,” + U,
and therefore ¢(z) C Vg NV," and ¢(y) C V;" + V55 thus ¢(z,y) = (¢(z),¢(y)) C
(Vi Vo) NV + (0, V5 ) Vian o) u

Lemma 7. Let V. = (Vo,V.),cq be a representation of (P,0) and let Wy be a wvector
subspace of Vy, for each big point z = (x,y) € 6 we consider the subspace W, of V.
consisting of (u,v) € V., such that u,v € Wy and for each small point z = [x] € 0,W, =
V. NWy. Then (Wp, Wz)zeg is a representation of (P,0).

Proof We suppose that y < z in P and u € W; C V;‘. Then if the class x consists
of (z,21) then (u,0) € Vig. As u € W, then (u,0) € W, if [z] consists only of z, then
uw€ Vg NW = VNV[:C]. Therefore, W is a representation of (P, ). [ |

Let (Up, U.).co be an object of R, by hypothesis U, C Ub+. For each v € Ub+ there exists
u € Uy such that (u,v) € Uggp), if (u1,v) € Uy, then (u —u1,0) € Uy, but U, =0,
then u = uy. Therefore, if v € U,', then there exists an unique ¢(v) such that (¢(v),v) €
Uy As Ut c U;’, thus we obtain the map ¢ : Ub+ — UbJr such that (¢(v),v) € Ugyp).-
It is clear that ¢ is a lineal transformation and U,y = {(¢(v),v) | v € U, }.

By Fitting lemma there exist subspaces Wy, Wy of U; such that Vo = W1 @ W, and
¢ = ¢1 D P2 where ¢1 : Wi — Wi is not singular and ¢o : Wy — Wy is nilpotent. We have
that Uy = W1 @ W2 W for a subspace W of V. We consider L = W2 P W and by using
the notation of Lemma @ we consider the representations: Wi = ((W1)o, (W1).).e0, L =

(L(]a iz)zee-
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Proposition 25. (Uy,U,),co = Wi D L.

Proof. First we will describe Wy. If 2,y € a¥ and u € (Wi)o, (u, ¢y (u)) € Ulap)s
as a < m, then (u,0) and (0,u) € V() and it is in (Wi)q,). This implies that
(W) (@y) = (W1)o, 0) (0, (W1)o)- i

If 2 € a¥ and y € by and (u,v) € (W1)(y), then as y < b, (0,v)
¢(v) = ¢1(v) = 0; therefore v = 0, and as before (u,0) € (W1)(,) for all u € (W7)o, so in
this case (W1)(z4) = ((W1)o,0), and analogously if z,y € ba then (W1),,) = ((0,0)). If
] consists only of 2, and = € ¥, then (W1)[,) = Wy, if © € by then (W)}, = 0.

So, we have Uy = (W1) @ Lo.

Now, let (u,v) € Uley)s With u = uy +ug;v = v1 +v2,u1,v1 € Wijug;ve € L. We suppose
that x,y € a¥, then (u,v) = (u1,0) + (0,v1) + (u2,v2); as (u1,0) and (0,v1) € Uy, then
(u2,v2) € Uy, consequently is in L., and (u1,v1) € (W)

m

Ulap)s SO

I~

(z,y)

Now we suppose that © € a¥ and y € ba. As y < b then (0,us + v2) € Uy, and
0 = ¢(uz + v2) = ¢1(ua) + ¢2(v2); thus ¢1(ug) = 0 so ug = 0. As z € a" then
(u1,0) € Ugap) then, (u,v) = (u1,0) + (v1,v2) thus (vi,v2) € Uyyp) and therefore is in
[Nj(avb). If z,y € ba then if (u,v) € Uy it is obtained as before that u,v € L. The
same reasoning is done if x or y consist of a single element. Finally, it is clear that

Uta) = W) (ap) @ Liap)- u

Definition 40. Ifu # 0 € Ub+ we denote by m,, the integer such that ¢5™(u) # 0 and
o5 (u) = 0.

Definition 41. A subset B of UbJr 1s called a strict system of generators of UbJr if the set
B={pt(d) |beB and 0<i<my},

s a k-basis of Ub+.

Proposition 26. The space UbJr has a strict system of generators.

Proof. The space U, has a structure of k[z]-module where for u € U,", z2u = ¢o(u). Since

U," is finite dimensional over k and ¢, is nilpotent then U,” = @ L(i), where I is a finite
i€l

set and for each i € I there is an isomorphism of k[z]-modules 1; : k[z]/(z™*1) — L(4).

Let 1, the image of 1 € k[z] in L(7). It is clear that the set B formed by the elements

b(i) = ¥;(1;) is a strict system of generators for U,'. [ |
If B is a strict system of generators for UbJr , then there are numbers m; > mg > -+ >

my, = 0 such that B = B1|JBaJ---UB with B; = {b € B | m(b) = m;}.
Let Xz = <Bz> then

U, =X1@¢2(X1)EB“'@Qﬁgbl(){l)@)@@-"@@f);m(Xz)EB'“@XL-

From now on we will put m(B) = (my,...,mzp).
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Lemma 8. (i) If x is a nonzero element of ¢(X;) with 0 < i < m;, then m(z) = m; — .

(i) Let B, be a k-basis for X;, then B' = B UB2J---UBim1 UB,UBisaU---UBy is

a strict system of generators for UbJr.

(iii) Let b € B; and y € ¢y ™ " Xip1) D - Py (X)) If we put b =
b+ y, it is obtain m(b') = m(b) = m;. If B, = (B;\{b})U{V'}, then B’ =
BiUBoU - UBim1t UBLU- - UBL is a strict system of generators for U, .

(iv) Ker(¢2) =65 (X))@ Dy ™ (Xp-1) D X1

(v) The morphism o' induces an isomorphism of

Xi@ oy (X)) @ D (X in (X)) @B+ D (X0).

Proof. (i) It is clear.

(ii) Since B is a strict system generators of U;" the set B={ph(b) | beB,0<i<m(b)}
is a k-basis of Ub+ . We observe the equality

l
Card(B) =) (m; + 1)Card(B;).
=1

Let B} be a basis of X; = (B;), then Card(B}) = Card(B;). We take B’ = {¢}(b) | b €
B0 <i<m(b)}. It is obtained

Card(B') =) "(ms + 1)Card(B,) + (m; + 1)Card(B}) = Card(B) = dim(U;').
SFi

Since the elements of ¢%(Bi) can be written as linear combinations of elements in qﬁ%(B;)
then the elements of B’ are a system of generators of UbJr and besides the number of these
elements coincides with the dimension of UbJr thus B’ is a basis for UbJr . This implies that
B’ is a strict system of generators.

(iii) It is true that y = uj+1 + - - - + uy, with

Ui+1 € ¢m1+1 m (Xi-‘,-l)’ u; € ngli_miJrl (Xz)7 ... Ul € ¢m1 mHl(Xl).
By (i), m(uit+1) = m(u;) = - -- = m(u1) = m;. Therefore
i+1

3i(b+y) = +Z¢ us)

and @5 H(b 4 y) = 0, thus m(b +y) = m,. As in (ii) let us take B; = {$4(b) | b€ B,0 <
i < m()}, B = {¢h(b) | b e B0 < i< m(b)}. Since m(b+y) = m;, the cardinality
of B is equal to the cardinality of B’. Additionally all elements of B can be written as
linear combinations of elements in B’, so the latter is a set of generators of UbJr with the
cardinality equal to dim(Ul;F ), therefore B’ is a basis for UbJr and thus a strict system of
generators.
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(iv) Let Yy = X1 D p(X1) D Dby (X1), Yo =
Xo@Dh(X2) DD dy?(Xa),..., Y = Xz We take y = y1 + 32 + - + yL
with y; € Y;, then ¢a(y) = ¢2(y1) + d2(y2) + d2(yr—1) where ¢2(y;) € Y;; therefore
¢2(y) = 0 if and only if ¢o(y;) = 0 for each i = 1,..., L. Each y; has the form

Yi = 2i1 + 0 Zimgs

where z;1 € Xi, ..., zim, € ¢5"(X;), thus
G2(yi) = pa(zin) + -+ + 05 (zim,) € G2(X0) D $3(X) P - - B 857 (X0).

It is obtained from (i) that if z; ; # 0 for j < m;, then ¢2(z; ;) # 0, so ¢2(y) = 0 if and
only if ¢a(y;) = 0 for all 4, if and only if 2; ; = 0 for j < m;, therefore ¢2(y) = 0 if and only
if z; ; = 0 for j < m;, thus ¢2(y) = 0 if and only if y € ¢5" (X1) P 95 (X2) D --- D X

(v) The morphism ¢5" induces an epimorphism

XD XD P E) — )P P et

where the kernel is zero. Indeed, let y = y1 +y2 + -+ + ym, with y; € X;, y2 €
JTI (X ), € 63T (X)). From (3), i s # O then 63" (ys) # 0 therefore
if y # 0 then ¢5" (y) # 0. This proves our claim. [ |

Proposition 27. There exists a strict system of generators B of Ub+, where m(B) =
(mi1,...,mr) and subsets B, C B; = {b € B | m(b) = m;} such that

U = (BL) P o (BL_) P P s ((B1)

Proof. Since there exists a strict system of generators B for U;", by suitable changes
using (47) and (i77) of Lemma [8| we will find a strict system of generators such that our
proposition is satisfied.

Let X; = (B;) and 3;, i =1,..., L defined as follows,

HL—XL@%L H(Xr-1) @¢JL *(Xp2) @D EP s (X1) = ker g, (5.5)
X)P o (X))@ P oy (x1) for 1<i<l, (5.6)

and we consider Uy, _1,Ur_9,...,U; such that

Ug = U1 @(’HL,1 ﬂUg),
Hr 1 NUg U2 @®Hr-2NUR),
’HL,QQUE = Ur_3 @(HLfgﬂUg),

Ho N UE = U @(Hl N Ug)

To prove our result, it is enough to show that there is a strict system of generators B and
subsets B! C B; such that U;_; = ¢5"((B})) for i = 1,..., L. For this, we will prove by
induction on ¢ the following affirmation:
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Affirmation 1. There is a strict system of generators B such that for each j < i, Uj_1 =

27 (B)) with B, C B;.

Proof. We suppose i = 0, then Uy = H1 N UL = ¢4 (X1) N U C ¢5(X1). Here, ¢h"
induces an isomorphism of X; in ¢5" (X1), so there exists a subspace Z C X such that

51 (Z) = Up. Let B be a k-basis of Z and BY a complementary basis of X;, then B} UB/
is a k-basis of X; and from (ii) of Lemma (8 changing B; by B} U B/ if it is necessary, we

can suppose that B} C By and ¢35 ((B))) = ¢35 (Z) = Up.
We suppose that our afirmattion is true for ¢ and we will prove for ¢ + 1.
Since Hiy1 NUL = U; @(H; NUSE) and Hip1 N U C Hipr, that is,

Hir N Ug c ¢;ni+l (Xii1) @ ¢;nrmi+1 (X;) EB .. EB ¢£n1*mi+1 (X1)).

By (v) of Lemma [8] there exists

ZC Xin @ 0.6 @ e @ ¢y H(X)

such that ¢ "™ (Z) = U;.

We consider a basis l1,ls, ...,Il; of Z, then
ll = I + Y1,
la = x2+ys,
lt = X+ Y,

where for 1 < s <t, x5 € X;41, and each ys € ¢p" "THX) DDy TH(X).

We will check that the set {x1, z2, ..., 2} is linearly independent. Indeed, let ¢1,...,¢ € k
such that cix1 + coxs + - -+ + ¢y = 0, then
cily + calo + -+ + ey = cryr + coy2 + - + e

Thus,

w=c1oy )+ A ady ) = gy THy) o ady T (W), (5.7)
it is obtained that,

w € ¢y (Z) Ny (X)) D @D it (X1) =UinH; = 0.
Therefore,
qbgni(clll +coly + - + Ctlt) =0,
and by (v) of Lemma
cily +colo+ -+ ¢l =0,
which implies that
C1:C2:"':Ct:0,

thus z1,...,x; are linearly independent. By (ii) of Lemma |8, we can suppose that

x1,...,2¢ € B; and by applying several times (iii) of Lemma |8, we can change B; in
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such a way that [1,ls, ...,l; € B;. Thus we obtain a strict system of generators B such
that Z = (B) with B, C B;. This follows that B satisfies our affirmation for i + 1. [ |

We consider the subposet K of P where X = P\(A+ B) = {a,b | a||b} and 6 = {(a,b)} as
the only equivalence class. The Hasse diagram in this case is presented in the following
Figure 5.2:

o)
(X, 0) (K, 0') B
7o
186
[ ] bl
m
° ° a,b ale
. ’ (a,b) ‘
QQT
a~b a3T
a4f a; ~ b;

FIGURE 5.3. The diagram of a poset (X, 8) and its corresponding derivate poset (X', 6).

From now on we will assume for a representation U = (Up,U,).cq of (P,0) that there
exists a strict generator system B for UbJr which satisfies the conditions of Proposition

With the notation of such proposition we will put B’ =

7

L
U B., B’ is the complement of
=1

B! in B; and B” =

%

L[J "
BY.
=

We will also use the following notation B’ = {ey, }yen/, B” = {ey tuenr and B = B’ |JB".
If e, € B;, we will put m, = m;. For e, € B we will denote by L£L™«"1(e,) to the
representation of K defined by

Lglqul = <€m ¢(€u)’ R ¢)mu (eu)>a
L?;?b;rl - <(07 (bmu (eu))7 (¢mu (eu)7 ¢mu71(eu))’ SRR (‘b(eu)v eu)>

Lemma 9. Let U € R and {e,}uen be a strict system of generators for Ulf such that the
properties of Proposition 27| are satisfied. Then
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a. Ifue B’ and my, = 0 then (Lm“+1(eu))/ _ Ll,l(eu) and if my > 1 then (Lm“+1(€u))/ _
L11(X (u)) @B L3m, (¢ (en), en) where,

X(w) {o,m y i ma =1,
(@™ Hey), .- dley)), if My > 2,

b. If u € B” and my > 0 then (L™ (e,)) = L11(X (v)) D L£1my+1(en) where,

X(w)=1" o
@)y B, M1,

Proof. a.

(L) = (ew, dlew), ..., 6™ (eu))

((0,0™ " (ew)), (67" (€u), 0), (0, 8™ (ew)), -, (0,0(en))), i 1<i<mu—1,
@™ (ew)
)

(LTqubrl)) = <(0,¢(€u)) ( mu(e 7€U)7(07¢mu_1(eu)) 7777 (07¢(6u))>7 if 1= My,

((0,0™“(ew)), (0,0™* " (ew)), - .- (0,€eu)), if 7> may.

By considering X (U) = (¢(ey), ..., ¢™1(e,)) then we obtain that

Ly = (e, 9™ (ew) @X
(Clar)) = (573?,2}91@(%“5)

where,
((0,9™(eu)), (9" (ew),0)),  if 1<i<my—1,
(L)t = (@™ (ew)sen), (0,6™(en)), i i =my,
((0,0™(eu)), (0, €4)), if i >my.
and
(Cpthyy = (0, 6(e)), ., (0,6™ (eu))
Therefore,

(L™ (ew)) = (X(U), (L’(““*ﬁ)’g) D ((ew o™ (eu)), (L1 )1
— L (X)) @D Lo (6™ e0), )
b. If m, = 0 then £(ew) = (£5,£(,, p) = ({eu), (0, e4)) thus
(L1 (ew)) = (L), (£, )" = ((eu), (0, €4))) = L11(ew)).
If my > 1 then £ F1(e,) = (Lmu“,zgubjl) where

Lot = (ey, dlew), - - -, ™ (ew))
L7 = (0, 6™ (ea)), (6™ (en), 6™ (ew)) - - (Blew), €))).
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Since (47! (e)) = (45" 1Y, (£213)") with

(LY = (U N L5 (ew), £ (ew)) N (L™ (ew) )+ (0, (L™ (e)) ),

(ai,bi)

here UB ﬂLmqul(eu) = 0, '(Lm“+1(€u))2_ = <¢mu (€u4)7¢m"_1(€u i
(Lm““(eu) a1 = {(0,0™ = (ew)), (6™ (eu), ™ (ew)), .- -, (9

(L5t = (e, dlew), - .., ™ (ew))

(mery {<<o,¢m< D), (0,6 ew). ., (0, 6(en))
@b (0,6 (ew) -, (0, b(en)), (0, )

By considering X(U) = (¢(ey), ..., 0" (e,)) then we obtain that

(L5t = (eu) P X(U)
my+1 my+1 Mmy+1
<L(a27z_z)) (L(a“—i))l@<ﬁ(a“2—))

» ¢ew)) and

€u), €y)} then

if 1<i<m,

1> My

where
(L7 = ((0,6™ (), (0,6™ e .., (0, 6(e)))
and
m 0, if 1<i<my,
(L(aﬁj)é = P
((0,e4)), if i>my.
Therefore,

(6™ (ew)) = (X(U), (67110 @D (eu), (£73

= L11(X(U)) P L1m,+1(ew)-

)2)

Proposition 28. Let U € R and {e,}uep be a strict system of generators for UbJr such

that the properties of Proposition are satisfied. Then

Ulx = £4Z(U) D D £™ (e D D £+ (ew) P SWUs)

ueB’ ueB
My >1 My, >0

where S(Us) = (Us, Uggp) = 0). Even more,

Ul = £12(Z(0) D P £11(X () @ La,m. (6™ (en), ) P P L1.1(X ()

ueB’ weB!
Mqy >0 Mgy >0

where S(Us) = (Us, U(g, p,) = 0).

@Ll,l+mu (ew) @ S(Us),

Proof. The first item is clear. The second follows from the first item, since U’|q =

(Ulx)'and from Lemma [9]
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Lemma 10. Let W € R, then Wl = @ W™ where each W" is trivial or W* =
ucJ

L1p,41(ew), or W = Ly (fu,eu), with f, € Wg. If W = Ly,41(e) with L, > 1, then
e¢ Up.

Proof. Since each W" such that is not trivial has the form £, 41(ey) or Loy, (ey) or
L31, (fu,ey). In the first case if [, > 1 then ngzl b) = 0. Then if ¢, € UE, ey = Y _vs with
’ s

vs € Wi, zg = (z,y) with & < by, then (0,v;) € Wiay ,); therefore (0,e,) € W(Qfll’bl) which
is a contradiction; so e, ¢ Wj. If W¥ = Lg, (e,), it is obtained that (W“)f{lu_l = (ey)
and (W“);[lu = 0 which does not happen because W € R'. If W" = L3, (fu,ey) it is
obtained that f € (W) C W, C Wj. This proves our affirmation. [ ]

Proposition 29. Let M € R and f : My — ke be a k-linear transformation. The
following two conditions are equivalent:

1. f: Mlgr — k(A b1)(e)|s is a morphism in RepX' and f(M3) = 0.
2. f:+ M — E(A,b1) is a morphism in R'.

Proof. We will prove that 1. implies 2. For this, it is enough to prove that for z € §', z #
(a;, b;) it is obtained that f*(M,) C k(A,b1)..

Let z = (x,y),(\,u) € M,, we have that f(\) = ce, f(u) = ce. If both z,y € A
(fON), f(p) = cle,0) + (0,e) € k(A,b1), if 2 € A, y € B, then u € MJ. As by
hypothesis f(u) = 0, hence (f(N), f(1)) = c(e,0) € k(A,b1),, if both z,y € B then it is
obtained (f(\), f(n)) = (0,0) € k(A,b1),. Therefore 1. implies 2. Conversely, is clear. H

Proposition 30. Let M be a representation of R’ and g : ke — My be a k-linear trans-
formation. Then the following statements are equivalent:

1. g: k(A b1)(e)|xr — M| is a morphism Rep(X') and g(e) € M, .
2. g:k(A,b1) — M is a morphism in R'.

Proof. It is similar to the previous one. |

Let M € R with
b = DA Dar B B @son),
u€EBq uEBgy u€EB3 u€EBy
such that for u € By, M" = L3, (fu,€u), for u € By, M" = Ly 1, +1(ey) with m, > 0,
for u € 'Bg, M, = Ll’l(eu) with e, € M;, for u € ‘34, MY = [;171(eu) with e, ¢ Mg

Proposition 31. Let M in R’ such that

My = £11(2)EP B Lsm, (furen) P P L1mus1(en) @D S(M).

u€B; u€EBg
My, >0 My >0

The following statements are equivalent:
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1. k(A,b)(e) is a direct summand of M in R'.

2. There exists an element v € Z (M \M4.

Proof. We suppose that 1. is true, then M = k(A,b1)(e) @ L so, M|y = L11(e) D L|x.
If X € M} with y € B, then since by >y, (0,\) € M(q,p,). For y € B,

My =k(Ab) @PLS =L C Lo,
consequently Mg C Lo, thus e ¢ Mg and e € M.

Here (£1my,+1)(ay,b;) = 0 for my > 1, s0

(0,€) € Mgy p,) = (0, Z) @ @ (0, fu))s

ueBq

u€B1

therefore e = + ) ¢, fy with x € Z. Each f, € M and by Lemma fu € Mg then
x € M and since e ¢ M7, then z ¢ M.

Now we suppose that 2. is true. It has

M|y = £11(Z) @ L3, (fu, €u) @ L114my (€0) @S(MS)’

u€ By u€E Ba
My, >0

with M}, = Z\ M} D G% (fu). We have z ¢ M3, so a vector space Z; containing z is
uc b
My >0

obtained and such that Z = Z(\ Mz € Z1. Therefore, we can put
M|g</ = 51,1(.%) @ N

with M3 C N and z € M. Then by Propositionsand k(A,by) is a direct summand
of M. ]

Proposition 32. Let U be a representation of R.

a. Let f : Uy — ke be a linear transformation, then f:U — k(A,b)(e) is a morphism in
R if and only if f: Ulxc — L(e) is a morphism in Rep(X) and f(US) = 0.

b. Let g : ke — Uy be a linear transformation, then g : k(A,b) — U is a morphism in R
if and only if g : L'(e) — U is also a morphism in Rep(X) and g(e) € U

Proof. a. Let y € B and z = (z,y) € . When (\,u) € U,, it is obtained that
(f(N), f(n)) € k(A,b); therefore f(u) =0, so f(U,S) =0 for all y € B. This implies that
f(U%) = 0. Conversely, we suppose that f : Ulx — k(A,b)|lx = £'(e) is a morphism in
Rep(X) and f(Uz) = 0. Then if 2 = (z,y) # (a,b) and (A, u) € U,, with € B, then
A € M7 and f(\) = 0. Now, if both z,y € B, then f*(U,) = 0 = k(A,b)(e),. By contrast,
if both z,y € A, then f(\) = ce and f(u) = e. Thus (f(N), f(n)) = c(e,0) + (0,¢e) €
k(A,b)(e).. Finally, if x € A, y € B it is clear that f(U,) C k(A,b)..
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b. If g : k(A,b) — U is a morphism then f(e) € U, and the restriction to X is a morphism.
Conversely, if g : £1(e) — Ulx is a morphism such that g(e) € Uy, then for z # (a,b)
where z = (x,y) with © € A and y € B, it is obtained that for (A, u) € k(A,b)(e),, with
A = ce, p = 0; hence (g()\),g(r)) = (g9(ce),0) € U,. The remaining cases are similar and
it follows that g(k(A,b).) C U, for all z € 6. [ ]

Proposition 33. Let U € R and Z(U) = @ (en). Then k(A,b) is a direct summand of
u€B
My =0

U if and only if there exists an element x € Z(U) N U \Uz.

Proof. We suppose that k(A,b)(e) is a direct summand of U. We have:

e) P w;

therefore e € U, and U,y = ((0,¢€)) @ Wiqp)- For y < b:

U = o)y Pw, =w, cwy;
+ _ may : :
therefore U C Wy. We have e = Y c,¢™(ey) + 2 with z € Z(U). Since each
ueB(U)
My, >0

¢"™(e,) €Uy and e € Uy, then x € Uy. If m: U|x — L'(e) be the projection,
e) =Y cud™ (m(ew)) + m(x).
Therefore, 7(z) # 0, which implies that = ¢ Uj.

Conversely, we suppose that there exists an element z € Z(U) N U \U;. We have

U=L"2ZU)EP P L (ca) P P £t (e

ueB’ ueB”
ny2>1 Ny 2>1

where U} = @ (¢™(en)) D Z(U) NUL. Since x ¢ Z(U) N Uj we can choose a vector

ueB’
Ny, >0

space Z; containing z such that Z(U) = Z(U) NUZ € Z1, then
1 _ rl + 1
L ZW) = 12 W) N UE) D £1(2).

Therefore £!(x) is a direct summand of £1(Z(U)) and it follows that Ulyx = L1 (2) YW
with Uz, C Wy. Since z € U} by Proposition [32] it is obtained that k(A,b)(z) is a direct
summand of U. |

Remark 11. Suppose M,N € R', with M = (Mo, M.),co, N = (No, N,).co such that
My = No@ L, N, C M, for all z € 0. Suppose that = : My — No, the projection
is a morphism in R, then M = N@L where L is the representatzon associated to the
space L according to Lemma [T I Indeed, for (p,v) € My, p = p1 +v1, v = 11 + vy with
p1,v1 € No, po,ve € L, since (p,v) = (u1,v1) + (p2,v2) and py, vy = (w(p), 7(v)) € My,
then (uo,v2) € L.
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Proposition 34. Let U € R and let {e,}uen be a strict system of generators with the
conditions of Proposition We take X(U) = @ X(u), then

ueB
Moy >1

1. U = k(A,b)(X(U)) DU, with

(U")Hxe = £12(2(U) D glﬁs,mu(wu(eu)’eu)@ Qlﬁl,muﬂ(eu)@S(Us)-
my>1 ueB’

2. k(A,b) is a direct summand of U if and only if k(A, by) is a direct summand of (U").
Proof.

1. Let X the basis of X(U) formed by the elements of the form ¢’(e,). Since

zeX

then z € Uy = (U')} and » ¢ U}, = (U')§. Then by second part of Proposition
the projection 7, of Up in (x) is a morphism in R of U’ in k(A, by)(z); thus the
projection of Uy in X (U) is a morphism in R of U’ in k(A, b1)(X (U)). Therefore by
Remark [I1] and by using the notation of Lemma [7] is obtained that

U = k(A,by)( @L

where

= @ (@ (eu), eu)) @ @ (ew);

My, >0 My, >0
u€eB ueB”

therefore by defining L = (U’)! the first part of our affirmation is obtained.

2. Let M = (U")!, since

M=2L12(Z20)EP P Lam. (@™ en) P P Lrmuri(en) P S(M

ueB’ ueB”
mqy,>1 My >0

By Proposition if k(A,b) is a direct summand of U, there exists x €
Z(U)NU,\Ug. We have U, = (U’), where

Ua= @ @)D ()P M;.

ueB’ ueB
0<j<may >1

Therefore € M and since U = (U')} = Mj, it is obtained that z €
Z(U)N M \M};. By Proposition kE(A,by) is a direct summand of M.

Conversely, if k(A, by) is a direct summand of M, there exists z € Z(U) (N M \M}, =
Z(U)OU,\Mp. Therefore k(A,b) is a direct summand of U.
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We consider the representation £"*1(e) of K, which given by

Ln—i—l Vn( )

Loty = (0,07 (€)), (o (e), 977 (e)), - -- (dnle),€)) = {(dn(v),0) [ v € V™ (e)}
where ¢, : V*(e) — V™(e) is a k linear map with ¢"*! = 0. The k vector space V"(e)

is a k[z]—module where for v € V"(e), v = ¢, (v). If L3, (Pn(e),e) = M then V"(e) =
My(e) € X (e) where

0, if n=1
X(e)_{<¢n(e),...,¢g—1(e)>, it n>2

and if £1 p41(e) = M then V"(e) = My & X (e), where

X(e) = {o, ) ?f n =0,
(Ppn(e),...,0n(e)), if n>1,

Proposition 35. Let h : L3,(¢"(e),e) — L3m(¢™(f), f) be a morphism in Rep(X')

then there exists a morphism of k|x]- modules h = (Z « "(e) — V™(f) where
B: My — X(f),a: X(e) = No and v : X(e) — X(f) and the following statements are

satisfied:

a. ifn=m, thena =0, 3 =0.

b. If n > m then 8 = 0,a(¢'(e)) = 0 for 1 <i < m and a(¢™(e)) = c1¢™(f) for some
c € k.

c. If n <m, then a =0 and S(e) = ¢" " (e), S(¢"(e)) =0

Proof. a. If m = n, a morphism h : L3,,(¢™(e),e) — Lz m(¢™(f), f) is such that
h(e) = c1f + c2¢™(f). Then if we define h : V™M(e) — V™(f) in such a way that
h(¢(e)) = ¢ f, we get our result for this case.

b. In this case h(e) = ¢1 f+ca¢™(f), so we define b : V™(e) — V™ (f) such that h(¢?(e)) =
@ (h(e)). Hence B =0 and a(¢’(e)) =0 for 1 < j < m and a(¢™(e)) = c1¢™(f).

c. We suppose that n < m. In this case h(e) = c1¢™(f),h(¢"(e)) = c2¢™(f). For
this case we define h : V™(e) — V™(f) such that h(e) = c1¢™ ™(f) + cad™(f) and
h(¢i(e)) = ¢i(h(e)). Here o = 0 and B : M — X(f) is such that B(e) = c;¢™ "(f),
B (e)) = 0. .

Proposition 36. Let h: L3 ,(¢"(€e),e) = M — L1 mi1(f) = N be a morphism in Rep(X')
then there exists a morphism of k[x]- modules

- (Z :) : Mo@D X () — No@D X ()
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such that:

a. ifn>m+1thena=0,6=0,

b. if n <m then h=0 and h = 0.

Proof. a. In this case h(e) = cf, so we put h(e) = ¢f and for j > 1, h(¢’(e)) = ¢7(h(e).

Then h = (Z :), where o =0 and g = 0.
b. It is clear. |

Proposition 37. Let h : L1 p11(e) — Lim+1(f) be a morphism in Rep(K') then there
exists a morphism of k[x]- modules

. h «
h:(ﬁ fy):MO@X(e)HNo@X(f)
such that:

a. ifn<m,h:0,ﬁ:0,

b. ifn>m,a=0 and 5 =0.

Proof. The first case is clear and for the second, it is obtained that h(e) = cf. Then we
put h(e) = cf and h(¢'(e)) = c¢'(f), so a =0 and 8 = 0. [ |

Proposition 38. Let h : M = Lypqi1(e) — Lam(¢™(f),f) = N be a morphism in
Rep(X'), then there exists a morphism of k[x]- modules

- (h o\ . L ym
h_<5 W>.V(€) V™(f)
such that:

a. ifn+1<m, thena=0,8=0,

b. ifn+1>m, then a: X(e) — Ny is such that a(¢'(e)) =0 fori # m and a(¢™(e)) =
™ (f), B =0.

Proof. a. It is clear.

b. In this case, we have h(e) = c¢”(f), then h : V™ — V™ is such that h(¢'(e)) =0. M

5.1.1 Integration

Let W be a representation in R’ such that

Wl = w P sws).

ueJ
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with each W* = L1, 41(ey) or W* = L3, (fu, ) and S(Ws) is the trivial representation
with S(Ws)o = Ws. We consider J; ={u € J |, =1}, withly >loa>--- >, >l =1

L
and J = JJ;. Let J = {u e J; | W" = L3;,(fu,eu)} and J = {u € J; | W =
i=1
L1,41(ey)}. For u € J! we take a k-vector space Z, as follows:

0 if ;=0
2= ’ 5.8
{<€i,--~,efj“1>, if ;> 1 (5.8)
Now, for u € J!" we put
(el elyy, > 1

We consider the representation of R’

W =VEPEPK(A,b1)(Z).

ueJ

Affirmation 2. There exists V € R such that V! = W.

Proof. We have that W = (WO, Wz)zeg with Wy = W, P P Z,. We define V) = Wy and
ueJ

for z # (a,b) we put V, = W,. For u € J! we define

V., — <(O7fu)7< u?df)v"‘7(63’65)7(6111ﬂ€u)>7 if l; > 1,
0, e)), if =0,

and for v € J! we define

V _ <(O7 elu)’ crt (eqlﬁ7e’lll)>7 lf ll 2 17
‘0, e)), if 1, =0,

We define Vi, 3 = P V,. We have to prove that V is a representation of (P,6). Let

ucJ
(z,y) € 0, with a < z. We have to prove that V," C V7. We consider (,v) € V{44, so
l—1
(A v) = > (Ausv), with (A, vy) € Vi Il = 1,0, = 0. Foru € J), Ay = cofut Y cjel.
ueJ j=1

we have that f, € Wcztu. Here 2 € A and ;, < z in P and f, € Wi . Therefore
(A,0) € Vigy), thus A € V.

We suppose that a > x. Let A € V' and we take N > ly; since aN > z, then \ € VI =
W,F = W,; therefore A € W, . Here, W(an,by) = GWY As N > 11 > Iy >

an,by”
uedJ
-+ >, then (W(;N bN)) = 0. This implies that A = 0 so, A € V,-. Now, let b > z. It
is obtained that V;t = W, = W, then in R, b; > z; therefore W C W, . We have

Wy, = @ W), . t W =2Ls,,(fuseu), then (W*), = (f,). It W* = L1,+1(ey) then
ueJ
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for &, = 1, Wi, 4,y = 0 and for I, = 0 it is obtained that (W), = (ey). Therefore if
ai, ) b1

A € W, then A = T cufu+ ¥ lu=0. Therefore A € V;.

We consider R the full subcategory R’ consisting of the objects without direct summand
k(A,by). If M € R, we choose M! without direct summand of the form k(A,b;), such
that M = M' @ k(A, by)" for some . In this way we obtain a functor

MR - R

Let U be a object in R, then Uy = U, @ Us with U, = Ub+. We recall that there exists a
k-linear transformation ¢y : U, — V;* such that V, ;) = {(¢v(x),z) |z € V;"}.

We have Ul = @ L™ (e,) @ S(Us) with B(U) being a strict system of generators
ueB(U)
for U with the conditions of the Proposition 27/ and S(Us) = (Us, U(q) = 0).

Let f : U — V be a morphism in R then we have V]x = @ L™ 1(e,) @ S(Vs) with
u€B(V)

B(V') being a strict system of generators for V' with the conditions of the Proposition

and S(Vs) = (Vs, Vigp) = 0) and Vo =V, @ V, V. = V,F. We observe that foéy = év flu,

Indeed, (@p(2), ) € Upap), then (f(dy)), f(x)) € Viap); hence foy(z) = ¢y f(x) for all
x e U,.

Theorem 13. a. The functor (})' : R — R’ induces a dense and full functor, but in
general not faithful:

F e RGO m)as0, (A, 0)) — R (k(A,ba).

b. Let U € R without a direct summand k(A,b) or ¢(A\,n) and let f : U — U be a
morphism in R such that F(f) =0, then f is nilpotent.

Proof. a. Let U,V € R. We take B(U) = {eu}uenw) (B(V) = {eu}uen(v)) be a strict
system of generators with the conditions of Proposition [27| for UbJr (Vb+, respectively). We

have
Ux= @ £™(en) P S
ueB(U)
and
Vi = @ Lt e,) D SV
ueB(V
then
M@@kflbl =NEP P kA b)(X(u),
u€B(U u€B(V)

BU)U{z1}, C(V) = B(V)U{z}. We

with M = (U')},N = (V’) . We take C(U) =
=0 and X (z2) = 0. We have

define M* = S(Uy), M*? = S(Vy), X(z1)

Ml = @ M*, Niw= P M“

uec(U) uec(V)
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By Propositions ,,, for each pair w € B(U),u € B(V), we have a k linear
map:

7 hrw Qo u u’

htu = (mu W) F M P X (u) — My €D X (u)

such that

hu’,u _ Lmu-‘rl(eu) _ Lmu/—l—l(eul)

is a morphism in Rep(X). Also this linear transformation is a morphism in Rep(X’):

7 hu’u u'u u '
hwa= (e o) M @ (K@)~ M B (X))

For u = z; and ug € B(V') we have
7 . hu’,zl . 21 u’ /
P+ (g7 ) 2 Us = MG — Mg P xw),
»<1

with B, ., = 0. This k-linear map gives a morphism S(U,) — ngﬂq(eu/) in the category
Rep(X) and also gives a morphism S(Us) — M* @ £11(X (u') in the category Rep(X).

For u = 21,4’ = 2o the morphism

~

By Us = Mgl - ‘7\46:2 =Vs

gives a morphism S(Us) — S(V5) in Rep(X) and in Rep(X'). For u € B(U) and u' = 29
the morphism: R

hzz,u = hZQ,u : M(Q)L - M52 = Vs
is a morphism in Rep(X’) from M* to S(V;); therefore h., , = 0. We have Uy = Mo® X (U)
and Vo = No@X(V) with My = @ Mg No = @ MY, X(U) = @ X(u),

uel(U) uel(V) uel(U)
X(V)= & X(u). Thus we obtain that the morphism h : Uy — Vj gives a morphism
uel(V)

from Uly to V|x.
Let

- h «

h = : M X(M) — N X(N

(5 2) Mm@ x0n - xn@xw)

where o = (ay 4,) : X(u)— @ M'and f=Buwu): P M"— G X(u).

ueB(U) ueB(V) ueB(U) u€B(V)
It is clear that
vt k(A b1) (X (M)) — k(A b1)(X(N)),

is a morphism in R’. We will prove that o : k(A,b1)(X(M)) — N and 8 : M —
k(A,b1)(X(N)) are morphisms in this category.

We consider the morphism &, : £1,1(X (u)) — N defined by

Qs L11(X (0)) — NV,
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followed by the inclusion N v in N. If oy 7 0, then by Propositions ,,,
u € B(U) with m, > 0 and also v/ € B(V)" with m, > 0 and m, > my, or u €
B"(U),u" € B(V)" with my, +1 > my. In both cases, &, , is the composition of the
projection of

L11(X(u)) = L11(0™ (ew)),

followed by morphism s : £L;1(¢™ (e,)) — N such that sends ¢ (e,) in
1™ (ey) € NX; therefore by Proposition it is obtained that s and therefore
Gy 0 k(A 01)(X(u)) — N are morphisms in R’. Hence, a : k(A,b1)(X(M)) — N is
a morphism in R'.

We consider the morphism 3 : My — £;1(X(N)) which is the sum of the morphisms
B M — L11(X(N))

with Bu@u = Gy By umy Where m, : M — M™" is the projection and 7, : £11(X(u')) —

L11(X(N)) is the inclusion. If B, # 0, then by Propositions ,,, it is
obtained that

My < My, My > 0, and ﬁu/,u(eu) = ¢mu/—mu (eu’)y Bu’,u(quu (eu)) =0,

therefore ﬁu/u(Mg) =0, and by Proposition this morphism is a morphism Bul7u M —
K(A, b (X (V).

From here, it is obtained that 8 : M — k(A,b1)(X(N)) is a morphism in R’. From the
above it follows that the morphism h : M @ k(A, b )(X(M)) — N @ k(A,b1)(X(N)) is a
morphism in R’

We will prove that hisa morphism of U in V in the category R. We know that h restricted
to K is a morphism of Ulx in V. Let now z € 0, z # {a, b}, then

W (U.) = h*(UL) C V! = V..
Therefore, h is a morphism in R and F(h) = h. So, F is full.

b. We suppose that U € R without direct summand of the form k(A,b) or ¢(\,n). By
Proposition M = (U")! does not have a direct summand k(A, by).

Now, let f: U — U be a morphism in R such that F(f) = 0, since

U = k(A,b)(X (M) @D M

()

where h : M — M is a morphism in R’ which is factored through k(A,b;)(W) for some
finite dimensional k-vector space W.
We have then h(M}) = 0, h(Mp) C M, and

M|y = Ll,l(Z) @ @ L3.m, (@™ (ew), eu) @ @ Ll,mle(e“)

ueB’ ueB”
mqy, >0 My >0

where M = (U’)}, then
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and U does not have a direct summand k(A, b), then by Proposition ZO\ M, C Mj.
Since h is factored through k(A,by)(W), for x € My, h(z) = z + z; with z € Z and z in
the vector space generated by the elements ¢ (e,). Here, h(z) and z; is in M, ; therefore
z € My N Z C M; consequently h?(x) = h(z) + h(z1) = h(z1) C ¢(Up). From the above

h?+hB ha+ oy
Bh+yB Ba++”

is obtained. Therefore (f2) = 0, where L is the maximum of the numbers m,,. [ |

(7)) = ( ) (Uo) € o(U0),

Corollary 8. Let U € R without direct summand k(A,b) then (U')! is indecomposable if
and only if U is indecomposable.

Proof. Since U does not have a direct summand k(A,b), then M = (U’)} does not
have a direct summand k(A, b;); therefore the endomorphisms of M which are factored
by sums of k(A,b;) are in radEndg (M). If U is indecomposable and f : U — U is such
that F'(f) =0 then f € radEndg(U); therefore F' induces an isomorphism

Endg (U)/radEndg(U) — Endg/ (M) /radEndg (M);

therefore M is indecomposable.

If U is not indecomposable U = U where U; are indecomposable; therefore
i

M = (U) = U

i

From the above, each ((U?)')! is indecomposable. So, if M is indecomposable, U is too.
|

Corollary 9. Let M and N be in R' and suppose that both objects do not have direct
summand isomorphic to k(A,by). Suppose that f : U — V is a morphism in R such that
F(f): M — N is an irreducible morphism, then f is irreducible.

Proof. First let us prove that f is neither a retraction nor a section. Suppose it were a
retraction, then there exists g : V' — U such that fg = 1y, thus F(f)F(g) = 1y which
does not happen because F(f) is irreducible. In the same way, it is proved that f is not
a section. Now, we suppose that f = vu with v : U — W and v : W — V therefore
F(f) = F(v)F(u), then either F(u) is a section or F'(v) is a retraction. If the first case
occurs, there exists « : F(W) — F(U) such that aF(u) = 1p;. Since the functor F is full,
there exists a : W — U such that a = F(a); therefore F(a)F(u) = F(au) = F(1y) so
F(au—1y) = 0; so by c. of Theorem p = au — 1y is nilpotent. Therefore au = 1y + p
is an isomorphism and therefore u is a section. In a similar way, it is proved that if F'(v)
is a retraction, then v is a retraction. |
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