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Title in English

Algorithms of differentiation for posets with an involution.

Titulo en español:
Algoritmos de diferenciación para poset con involución.

Abstract: In the last decades, the study and classification of finite-dimensional algebras
with respect to their representation type has been one of the main aims in the theory of
representations of algebras. Nazarova, Roiter, Zavadskij and Bondarenko have introduced
and studied several classes of representations associated to partially ordered sets (posets).
Here we are interested, on the one hand, in the category of representations of a poset
with an equivalence relation, where the equivalence sets have at most two elements; these
kind of posets are called posets with an involution. We give a natural exact structure for
the category of representations of this kind of posets, describe the projective, injective
objects and prove the existence of almost split sequences. On the other hand, we study
the categorical properties of the differentiation algorithms DI and DIII introduced by
Zavadskij in 1991.

Resumen. En las últimas décadas, el estudio y clasificación de álgebras de dimensión
finita con respecto a su tipo de representación ha sido uno de los principales objetivos
en la teoŕıa de representaciones de álgebras. Nazarova, Roiter, Zavadskij y Bondarenko
introdujeron y estudiaron distintas clases de representaciones asociadas a conjuntos
parcialmente ordenados (posets). Aqúı estamos interesados, de una parte, en la categoŕıa
de representaciones de conjuntos parcialmente ordenados con una relación de equivalencia,
donde el conjunto de clases de equivalencia tienen a lo más dos elementos; esta clase de
posets se denominan poset con involución. Damos una estructura natural exacta para la
categoŕıa de representaciones de esta clase de posets, describimos los objetos proyectivos
e inyectivos y probamos la existencia de sucesiones que casi se dividen.Por otro parte,
estudiamos las propiedades categóricas de los lagoritmos de diferenciación DI y DIII
introducidos por Zavadskij en 1991.

Keywords: Representation theory of partially ordered sets, Auslander-Reiten theory,
Matrix problem, Vector Space Representation, differentiation algorithms DI, differentia-
tion algorithms DIII.

Palabras clave: teoŕıa de representación de conjuntos parcialmente ordenados, Teoŕıa
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Acceptation Note

Thesis Work

“ mention”

Jury

Jury

Jury

Advisor
Raymundo Bautista Ramos

Coadvisor
Agust́ın Moreno Cañadas
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Introduction

The theory of representation of posets was introduced and developed by Nazarova, Roiter
and their students in Kiev in the 1970’s. One of their ideas was to use it as a way of
giving a solution of the second Brauer-Thrall conjecture for finite dimensional k-algebras
[21,22,29].

The main tool to classify posets both ordinary and with additional structures has been the
algorithms of differentiation, which are functors defined to reduce dimension of the objects
of the categories involved in the procedure. The first of these algorithms of differentiation
is known as the algorithm with respect to a maximal point, it was introduced by Nazarova
and Roiter in 1972. It was used by Kleiner to obtain a criterion to classify posets of finite
representation type and by Nazarova in order to classify posets of tame representation
type in 1977 [18, 23]. In 1977, Zavadskij introduced the algorithm of differentiation with
respect to a suitable pair of points which was used by Nazarova and Zavadskij himself in
1981 to classify posets of finite growth representation type [24,29,32].

In the early 1990’s the research regarding classification of posets pointed to posets with an
additional structure [9,25,32]. We recall that in 1991 Zavadskij introduced an apparatus of
differentiation for posets consisting of the algorithms of differentiation DI, DII, DIII, DIV
and DV. This apparatus was used by Bondarenko and Zavadskij himself to classify posets
with an involution of tame and finite growth representation type [8]. Afterwards, Zavadskij
and Zabarilo, who was one of his students, introduced equipped posets and classified one-
parameter equipped posets. To do that, he introduced algorithms of differentiation VII-
XVII in order to establish criteria to classify equipped posets of tame and finite growth
representation type in 2003 and 2005 respectively [31,34–36].

Categorical properties of the main algorithms of differentiation have been studied by
Gabriel, Zavadskij, Cañadas et al. Gabriel established this line of research in 1973 and
gave the categorical properties of the algorithm of differentiation with respect to a maximal
point establishing a bijection between indecomposable representations of the correspond-
ing categories. Zavadskij proved categorical properties of the algorithm of differentiation
with respect to a suitable pair of points in 1991 describing also the Auslander-Reiten quiver
of posets of finite growth representation type. He also gave categorical properties of his
generalization of DI to posets with relations in 2005. In the same direction, Zavadskij and
Cañadas gave the categorical properties of the algorithm of differentiation DII in 2006 [11]
and Cañadas et al. described categorical properties of some versions of the algorithms of
differentiation DVII-DIX for equipped posets in 2013 [12–14].

IV



INTRODUCTION V

On the other hand, Auslander-Reiten theory was introduced by Auslander and Reiten [4]
in 1975; their work deals with problems in the representation theory considered directly
with module theoretical techniques. Additionally to the classical module theory available,
including homological methods, they introduced the notion of almost split sequences.
Although they initially developed their ideas in the case of the category modA of finitely
generated modules over an Artin algebra A, this theory has been extended to a number
of other categories including categories of representations of ordinary posets [5,29,33] and
of posets with additional structures [7, 29].

In this sense, the almost split sequences are one of the most important tools for classifi-
cation of finitely generated modules over finite-dimensional k-algebras with tame repre-
sentation type. The most important theorem regarding almost split sequences was given
by Bautista and Martinez [5]. This result claims that there are almost split sequences in
Rep(P).

The purpose of this work is the study of the categorical properties of two of the Zavadskij
reduction algorithms by using Auslander-Reiten quivers. We recall that the general idea
of the reduction algorithms for posets goes as follows: given some suitable conditions take
a small portion K of the poset P and replace it for some other K′ obtaining a new poset
P′. Then given a representation of P, this is changed only in K obtaining a representation
of P′. In our approach we study the Auslander-Reiten quivers of the representations of
K and K′ and see how the reduction algorithms behave and then extend the properties
obtained in this way to the whole partially ordered sets P and P′.

Contributions

The following are the main contributions of this dissertation:

1. In Section 1.3, we describe the relationship between matrix representations and
vector space representations of poset with involution. We present two algorithms
that allow us to associate a matrix representation M = {Mx}x∈P of (P,≤, θ) with a
vector space representation V = (V0, Vz)z∈θ of (P,≤, θ) and conversely.

2. In Section 1.4, we introduce the additivisation Matad(P,≤,θ) of the matrix problem for

posets with involution (P, θ) following Simson’s ideas. An embedding of categories q :
Mat(P,θ) ! Matad(P,θ) is defined and a dense and full functor F : Matad(P,θ) ! Rep(P, θ)
is introduced. This functor preserves the representation type and vanishing only on
a finite set of isomorphism classes of indecomposable objects. In Proposition 1 we
prove that the functor F induces the equivalence of categories

Matad(P,θ)/I! Rep(P, θ) (1)

where I is the ideal generated by objects Iz = ((Iz)0, (Iz)w)w∈θ with (Iz)0 = 0 and
(Iz)w = 0 if z 6= w and (Iz)z = k. As consecuence from above, Proposition 4 proves
that Rep(P, θ) is an exact category.

3. In Chapter 2, we give an exact strcuture for the category of vector space repre-
sentations of poset with an involution. Furthermore, we describe the almost split
sequences for this category. The definitions and propositions presented in this chap-
ter have been results obtained during the research process.
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4. In Chapter 3, the Auslander-Reiten quiver for some posets with involution that we
will call of type Dn is given. Moreover, this result is generalized to posets of type D∞
and the Auslander Reiten quiver for these posets is presented. As in the previous
chapter, the results presented there, are part of the research process.

5. In Chapter 4 and Chapter 5, we present some categorical properties of differenti-
ation algorithm DI and differentiation algorithm DIII for poset with an involution
introduced by Zavadskij in 1991, by using module theoretical approach.

Conferences

The main results of this research have been presented in the following conferences.

1. Coloquio Latinoamericano de Álgebra-PUCE. Quito-Ecuador, 08-2017.

2. IV Jornada de Algebra no Amazonas. Tabatinga-Brasil, 09-2019.

3. 4rd International Colloquium on Representations of Algebras and Its Applications;
Alexander Zavadskij. Bogotá -Colombia, 11-2020.

Research stays

The author is indebted with the Centro de Ciencias Matemáticas of Universidad Nacional
Autónoma de México-Morelia, Professor Raymundo Bautista Ramos for his warm hospi-
tality during his several research stays.

Outline

This thesis is distributed as follows:

In Chapter 1, in sections 1.1 and 1.2 we recall some definitions and well known facts in
representation theory of both ordinary posets and posets with an involution which will
be used in the work; particularly, it deals with matrix representations and vector space
representations. Also, following the ideas presented by Simson in [29] for ordinary posets,
in section 1.3 we describe the correspondence between matrix representations and vector
space representations for posets with an involution. Here we present two algorithms that
allow us to associate a matrix representation M = {Mx}x∈P of (P,≤, θ) a vector space
representation V = (V0, Vz)z∈θ of (P, θ) and conversely. In section 1.4, we introduce
the additivisation Matad(P,θ) of the matrix problem for posets with involution (P, θ). We

define an embedding of categories q : Mat(P,θ) ! Matad(P,θ) and a dense and full functor

F : Matad(P,θ) ! Rep(P, θ) preserving the representation type and vanishing only on a finite
set of isomorphism classes of indecomposable objects, which induces the equivalence of
categories

Matad(P,θ)/I! Rep(P, θ) (2)

where I is the ideal generated by objects Iz = ((Iz)0, (Iz)w)w∈θ with (Iz)0 = 0 and (Iz)w =
0 if z 6= w and (Iz)z = k. We illustrate the existence of a categorical equivalence between
the categories Matad(P,θ) and the category of representations of the tensor differential algebra
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defined by quiver algebra kQ where Q is a quiver that has as many points as the cardinality
of θ plus one. Since this last category has exact structure and almost split sequences, then
Matad(P,θ) has exact structure and almost split sequences. By using this results together

with the equivalence (2) and the Proposition 1.8 of Liu [19], we prove that Rep(P, θ) is
an exact category. Finally, in section 1.5 we present the main classifications theorems for
posets with an involution.

In Chapter 2, in section 2.1 we introduce a collection of sequences ε with some properties
which will play the role of exact sequences and we give a natural exact structure for the
category of representations of posets with an involution (Rep(P, θ), ε) following a different
technique from the one presented in the previous chapter. For this category, we describe
the projective objects and prove that it has enough projectives. Besides, we introduce
the injective objects and in order to show that this category has enough injectives we
introduce a category Repq(P, θ) which is equivalent to Rep(Pop, θ). Further, we obtain
an equivalence of categories between Repq(P, θ) and Rep(P, θ) so by duality, we obtain
the desired result. In section 2.2 we define a functor H : Rep(P, θ) ! modA where
A = EndRep(P,θ)(P ) which sends ε-sequences in exact sequences and for all L ∈ Rep(P, θ),
socH(L) is projective. Thus, this functor H induces an equivalence of categories:

H : Rep(P, θ)! modsp(A).

This result is the main tool used in Chapter 4 to describe the Auslander-Reiten quiver of
posets (K, θ).

In Chapter 3, following the results of the previous chapters, we describe the Auslander-
Reiten quiver for some posets with involution that we will call of type Dn. These results
are generalized to posets of type D∞ and the Auslander Reiten quiver for these posets is
presented. This result is a fundamental tool in the study of the categorical properties of
differentiation algorithm DIII that will be presented in Chapter 5, since the posets (K′, θ′)
under certain conditions can be seen as a poset of type Dn.

In Chapter 4, we present a new proof of categorical equivalence of the differentiation
algorithm DI introduced by Zavadskij [36] by using module theoretical approach. We
recall that this result allows us to establish the categorical equivalence between Rep(P)/I
and Rep(P′)/I′ where P = aO + bM + {c1 < c2 < · · · < cn} is a poset with a suitable pair
of points (a, b) and I = 〈k(a), k(a, c1), . . . , k(a, cn)〉 and I′ = 〈k(a)〉. For this purpose, we
construct the Auslander-Reiten quiver of a subposet K of P and the subposet K′ of P′ and
show the categorical equivalence that exists between Rep(K)/I and Rep(K′)/I′. Taking
into account the definition of the differentiation functor induced by the differentiation
algorithm DI, we can prove this result to the general case.

In the last chapter, we study the categorical properties of differentiation algorithm DIII.
In contrast to the case of differentiation algorithm DI, the functor

′ : R! R′

with R = {U ∈ Rep(P, θ) | U+
a ⊂ U+

b ;U−a = 0}, and R′ = {U ∈ Rep(P′, θ′) | U+
a1 ⊂

U+
B ;U−an = U+

an+1
}, induces a dense and full functor, but in general not faithful:
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F : R/〈φ(λ, n)λ 6=0, K(A, b)〉! R′/〈K(A, b1)〉.



CHAPTER 1

Preliminaries

1.1 Matrix Problems

The matrix problems was introduced by several authors [15, 21, 28], with the purpose of
solving classification problems, which consists in classifying the indecomposable objects of
a given additive category C having a finite unique descomposition property in the sense
that every object X of C has a direct sum descomposition X = X1

⊕
X2
⊕
· · ·
⊕
Xn,

where X1, X2, . . . , Xn are indecomposable objects of C and every such a descomposition
is unique up to permutation and isomorphism.

Roiter and Gabriel [28] introduced a definition of matrix problem of size m× n as a pair
(M,G) formed by an underlying set M ⊂ km×n and a group G ⊂ GLm × GLn such that
XAY −1 ∈ M whenever A ∈ M, and (X,Y ) ∈ G. The question raised by the matrix
problem is to classify the orbits of M under the action of G defined by (X,Y )A = XAY −1.
In other words, it consists of a set M of finite matrices together with a set G of admissible
transformations in rows and columns which determines an equivalence relation, and the
goal is to find a canonical form, i.e. determine a set of canonical matrices such that each
G-equivalence class contains exactly one canonical matrix.

Taking into account that the matrices M ∈Mm,n(k) describe linear transformations, if V
and W are k-vector space such that dimkV = n and dimkW = m and we choose basis in
V and W , then we have an isomorphism of k-vector space

Mm,n(k) ∼= Homk(V,W ).

In case that n and m are non-zero, in order for the above isomorphism to be true in any
case, we introduce the empty matrices Im,0, I0,n, I0,0. That is, matrices with zero number
of rows or columns, for which is satisfied

aIn,0 + bIn,0 = In,0; aI0,n + bI0,n = I0,n,

1



1.1. MATRIX PROBLEMS 2

for all a, b ∈ k, and for A ∈Mm,n(k):

I0,mA = I0,n; AIn,0 = Im,0; Im,0I0,n = 0 ∈Mm,n(k); I0,nIn,0 = I0,0.

The matrix I0,0 corresponds to the identity of the trivial vector space 0. Henceforth, we
will consider I0,0 to be a nonsingular matrix.

We will put Mn,0(k) = In,0, M0,n(k) = I0,n, M0,0(k) = I0,0. Each one of these spaces are
isomorphic to the trivial vector space.

Now, if f : V !W1 and 0 : 0!W2 are linear transformations, then their direct sum is

(
f
0

)
: V
⊕

0!W1
⊕
W2.

Thus, if M ∈Mm,n(k) and Im1,0 are the matrices corresponding to the transformations f
and 0 respectively, then the matrix that corresponds to the direct sum of these transfor-
mations is

M
⊕

Im1,0 =

(
M

0m1,n

)
,

where 0m1,n is the matrix m1 × n of zeros. Similarly

Im1,0

⊕
M =

(
0m1,n

M

)
,

and

M
⊕

I0,n1 = (M 0m,n1),

I0,n1

⊕
M = (0m,n1 M).

1.1.1 Matrix Representations of Posets.

There are many useful matrix problems for which there exist constructive methods for the
classification of their indecomposable objects. One of them is the classification of matrix
representations of partially ordered sets (poset) as will be shown in this section.

Definition 1. A partially ordered set (poset) is a pair ordered (P,≤) which consists of a
not empty set P and a binary relation contained in P× P, called order, such that

1. ≤ is reflexive, which means that x ≤ x for all x ∈ P;

2. ≤ is antisymmetric, that is x ≤ y and y ≤ x then x = y for all x, y ∈ P;

3. ≤ is transitive, meaning that x ≤ y and y ≤ z then x ≤ z for all x, y, z ∈ P.

Two elements x, y of a given poset P are comparable if x ≤ y or y ≥ x.
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A poset is finite (infinite, respectively) if and only if the underlying set is finite (infinite,
respectively).

A poset can be visualized through its Hasse diagram, which is the graphical representation
that represents each element of P as a vertex in the plane and draws a line segment or
curve that goes upward from x to y whenever y covers x . These curves may cross each
other but must not touch any vertices other than their endpoints. Such a diagram, with
labeled vertices, uniquely determines its partial order.

Example 1. Figure 1.1 is a Hasse diagram representing the poset (P,≤) with P =
{a, b, c, d} and a < c, a < d, b < c, b < d.

c

a

d

b

◦ ◦

◦ ◦

Figure 1.1. Hasse diagram of a poset.

If (P,≤) is a poset and a ∈ P, then we denote the subsets of P, aO, aM, aH, and aN, in
such a way that:

aO = {x ∈ P | a ≤ x} ,
aM = {x ∈ P | x ≤ a} ,
aH = aO \ {a},
aN = aM \ {a}.

(1.1)

Subset aO ( aM,respectively) is called the ordinary up-cone ( down-cone,respectively), as-
sociated to the point a ∈ P. Whereas subsets aH and aN are called truncated cones (up
and down, respectively) associated to the point a ∈ P.

For a poset (P,≤) and A ⊂ P, we define the subsets, AO and AM such that

AO =
⋃
a∈A

aO,

AM =
⋃
a∈A

aM.
(1.2)

An ordered set C is called a chain (or a totally ordered set or a linearly ordered set) if and
only if for all p, q ∈ C we have p ≤ q or q ≤ p (i.e., p and q are comparable). On the other
hand, an ordered set P is called an antichain if x ≤ y in P only if x = y. The maximal
cardinality of antichains in a poset P is called the width of P.

Definition 2. A matrix representation of (P,≤) is a collection of matrices M = {Mx}x∈P
with Mx ∈Md0,dx(k). The dimension vector of M is dim(M) = d = (d0, dx)x∈P.
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Definition 3. Two representations M = {Mx}x∈P and N = {Nx}x∈P are equivalent if

1. dim(M) = dim(N).

2. There are nonsingular matrices S0 ∈ Md0(k), Sx ∈ Mdx(k) for each x ∈ P and for
each pair y < x in P exists a matrix Sy,x ∈Mdy ,dx(k) such that

S0Mx = NxSx +
∑
y<x

NySy,x, (1.3)

for all x ∈ P.

In this way we have defined a matrix problem (MP,GP).

Definition 4. If M = (Mx)x∈P and N = (Nx)x∈P are two representations, the direct sum
is

M
⊕

N = (Mx

⊕
Nx)x∈P.

Definition 5. A representation M = (Mx)x∈P is indecomposable if it is not equivalent to
a direct sum L

⊕
N where dim(L) 6= 0 and dim(N) 6= 0.

Example 2. If P = {x} then a matrix representation M with dimension d = (d0, dx)
consists of one vertical stripe M = [ Mx ], Mx ∈ kd0×dx. In this case, two representations
M = [ Mx ] and N = [ Nx ] are equivalent if there exists invertible matrices U and S such
that N = UMS−1.

Remark 1. We can observe that the matrix Mx can be transformed by elementary row
and column transformations into

M =

[
1r 0
0 0

]
, (1.4)

where 1r stands for an identity matrix of size r and 0 for the zero matrix of size (d0 −
r)× (dx − r). In case M has all its linearly independent rows then the right blocks in the
reduced form (1.4) are matrices Md0,0.

Example 3. The two subspace problem is the matrix problem associated with a poset
consisting of two incomparable elements, which consists of the set M of all pairs of matrices
with the same number of rows under the equivalence relation: (M,N) ∼ (M ′, N ′) if there
exists invertible matrices U , S, and T such that M ′ = UMS−1 and N ′ = UNT−1.The
solution for this matrix problem (see, [28]) is given for the following normal form:

M =


1r 0 0 | 0 1r 0
0 1t 0 | 0 0 0
0 0 0 | 1s 0 0
0 0 0 | 0 0 0

 = [1r|1r]
⊕

[1t|]
⊕

[|1s]
⊕

[0|0], (1.5)
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where [1r|1r] = [1|1]
⊕

[1|1]
⊕
· · ·
⊕

[1|1]︸ ︷︷ ︸ = [1|1]r

r

. Similarly [1t|] = [1|]t, [|1s] = [|1]s

and the [0|0] = [|]r
⊕

[|]s′
⊕

[|]s′′, where r is the number of rows of [0|0] and s′(s′′) is the
number of columns of the left (right) stripe.

1.1.2 The Kronecker Problem

There are some classification problems whose matrix problem can be formulated in terms
of matrix representations of poset with additional structures. Among them, is the Kro-
necker problem. This problem is the matrix problem of pairs of matrices (M,N) of the
same size under the equivalence relation: (M,N) ∼ (M ′, N ′) if there exist invertible ma-
trices U, S such that M ′ = UMS−1 and N ′ = UNS−1. So, the problem of classification
of indecomposable Kronecker modules, as we will see next, is equivalent to this matrix
problem and was solved by Kronecker in 1890 for the complex number field k. Due to its
importance in our research, we will dedicate this section to its study following Simson’s
ideas [29].

Consider the Kronecker algebra

Λ =

(
k k2

0 k

)
,

where k is a field and the multiplication is given by the formula

(
d u
0 c

)(
f v
0 e

)
=

(
df dv + ue
0 ce

)
.

Finite dimensional right Λ−modules are called Kronecker modules. Every such a module
X can be identified with the quadruple

X = X1

a
⇒
b
X2,

where X1, X2 are the vector spaces X( 1 0
0 0 ), X( 0 0

0 1 ) respectively, and a, b are linear maps
defined by

a(x) = x( 0 i
0 0 ), b(x) =

(
0 j
0 0

)
,

for x ∈ X1, and {i, j} is the standard basis of k2. Any Λ-homomorphism c : X ′1 ! X can
be identified with a pair (c1, c2) of linear maps

c1 : X ′1 ! X1, c2 : X ′1 ! X2,

such that c2a
′ = ac1 and c2b

′ = bc1. It follows that the category of Kronecker modules is
equivalent to the category of pairs (A,B) of matrices A, B over k of the same size, where
the map from (A′, B′) to (A,B) is a pair (C1, C2) of matrices over k such that C2A

′ = AC1

and C2B
′ = BC1.

This problem is equivalent to the problem of finding canonical Jordan form of pairs (A,B)
of matrices with respect to the following elementary transformations:

(i) all elementary transformations on rows of the block matrix (A,B),
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(ii) all elementary transformations made simultaneously on columns of A and B having
the same index number.

We recall that, if k is an algebraically closed field, then up to isomorphism every indecom-
posable Kronecker module belongs to one of the following three classes [29],[21]:

I = I∗: (a) En J(λ,n) ,

(b) J(λ,n) En ,

where J(λ,n) ∈ {J+
(λ,n), J

−
(λ,n)} and J±(λ,n) denotes a corresponding upper or lower Jordan

block. Whereas, I∗ denotes the dual case defined by the classification problem.

II = III∗: (En, 0n,1) (0n,1,En) ,

III = II∗:

(
01,n

En

) (
En
01,n

)
.

The cases II and III constitute the non-regular cases of this classification, whereas cases I
constitute the regular one.

1.1.3 Matrix Representations of Posets with an Involution

Representations of poset with equivalence relation were introduced by Nazarova and Roiter
with help of the matrix language [22].

Definition 6. A partially ordered set with an equivalence relation is a triple (P,≤, θ),
where (P,≤) is a partially ordered set and in P there is an equivalence relation whose
equivalence classes is θ. If the cardinality of each equivalence class is less than or equal to
two, we will say that triple (P,≤, θ) is a partially ordered set with an involution. If x ∈ P

we will denote by [x] its equivalence class.

Remark 2. From now on we will omit the order relation in the notation for poset with
involution, that is, we will write (P, θ) instead of (P,≤, θ).

If the class [x] is a unit set, in this case we say that x is a small point and in the Hasse
diagrams it will be designated with ◦ whereas if the class [x] has two elements (we will
write x ∼ x∗, if this is the situation) we will say that x is a large point. The large points
are noted in the Hasse diagrams with the symbol •.

If P consists of only small points, then we get representations of partially ordered sets in
the ordinary case as in the Definition 1. Henceforth, frequently a unit class [x] = {x} will
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be identified with x and a class with two elements [x] = {x, x∗} could be considered as
an ordered pair (x, x∗) (the order chosen for points x, x∗ will be done according to the
context).

Example 4. Let (P, θ) be a poset with involution where P is as in Figure 1.2 with a < b,
c < b, c < a∗ and θ = {(a, a∗), b, c}.

(P, θ)=
b

a

a∗

c

◦ •

• ◦

Figure 1.2. Diagram of a poset with an involution

Definition 7. A matrix representation of (P, θ) is a collection of matrices M = {Mx}x∈P
with Mx ∈ Md0,dx(k) such that if x ∼ x∗ then dx = dx∗. The dimension vector of M is
dim(M) = (d0, dx)x∈P.

Definition 8. Two representations M and N are equivalent if

1. dim(M) = dim(N).

2. There are nonsingular matrices S0 ∈ Md0(k), Sx ∈ Mdx(k) for each x ∈ P and for
each pair y < x in P there exists a matrix Sy,x ∈ Mdy ,dx(k) such that Sx = Sy if
[x] = [y] and

S0Mx = NxSx +
∑
y<x

NySy,x,

for all x ∈ P.

Definition 9. If M = (Mx)x∈P and N = (Nx)x∈P are two representations, the direct sum
is

M
⊕

N = (Mx

⊕
Nx)x∈P.

Definition 10. A representation M = (Mx)x∈P is indecomposable if it is not equivalent
to a direct sum L

⊕
N where dim(L) 6= 0 and dim(N) 6= 0.

1.2 k-linear Representations

Another way to approach classification problems for linear transformation systems may
be formulated in terms of a quiver and its representation introduced by Gabriel in 1973
[16]. For this purpose, he introduced the concept of a filtered k-linear representation of a
poset P which is presented in this section.
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1.2.1 Vector Space Representations of Posets

Definition 11. A representation (or filtered k-linear representations or P-space) U of a
poset P is a system of finite-dimensional k-vector spaces of the form

U = (U0, Ux | x ∈ P), (1.6)

where U0 is a finite-dimensional k-space and Ux is a subspace in U0 for each x ∈ P, such
that Ux ⊆ Uy provided that x ≤ y.

Definition 12. A morphism ϕ : U ! V between two representations U and V is a k-linear
transformation

ϕ : U0 ! V0,

such that ϕ(Ux) ⊆ Vx, for each x ∈ P.

Definition 13. The radical of a representation U is the representation radU = (U0, Ux |
x ∈ P) where Ux =

∑
y<xUy is the radical subspace of Ux.

Definition 14. The vector cdimU = (d0, dx | x ∈ P), where d0 = dimkU0 and dx =
dimk Ux/Ux is called the coordinate vector of the representation U .

Definition 15. The direct sum between two representations U, V is a representation

U
⊕

V = W = (W0,Wx | x ∈ P),

such that W0 = U0
⊕
V0 and Wx = Ux

⊕
Vx, for any x ∈ P.

Definition 16. A representation U ∈ repP is said to be indecomposable provided that in
a decomposition of the form U = U1

⊕
U2 either U1 = 0 or U2 = 0, otherwise U is a

decomposable representation.

Given a representation U of a poset P over a field k such that dimk U0 = 1 then U is a trivial
representation. For instance, if A ⊂ P then k(A) is the indecomposable representation of
P, where U0 = k and

Ux =

{
k, if x ∈ AO,
0, otherwise.

(1.7)

In particular, the representation k(∅) has the field k as the ground vector space U0 and
Ux = 0 for any point x ∈ P. We write k(a1, . . . , as) instead of k(A) when A = {a1, . . . , as}.
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1.2.2 Vector Space Representations for Posets with an Involution

Following the ideas presented by Gabriel, Zavadskij introduced filtered k-linear represen-
tation of posets with an involution (P, θ) [38]. Here we introduce an equivalent definition
to the one given by him. For this, we consider (P, θ) a poset with involution. We take V0 a
k-vector space and z ∈ θ, take V z

0 the k-vector space consisting of all functions h : z −! V0.
For x ∈ z, we have the inclusion: ix : V0 −! V z

0 , defined by

ix(v)(y) =


0, if y 6= x,

v, otherwise.

and the projection in the summand x of V z
0 , πx : V z

0 ! V0, that is, for h ∈ V z
0 ,

πx(h) = h(x).

In the following, if V is a k-vector subspace of V z
0 and x ∈ z,

V −x = i−1
x (V ) = {v ∈ V0 | ix(v) ∈ V },

V +
x = πx(V ) = {h(x) | h ∈ V }.

Definition 17. A vector space representation V = (V0, Vz)z∈θ of (P, θ) is given by:

1. a finite-dimensional k- vector space V0,

2. for each z ∈ θ, a vector subspace Vz of V z
0 such that if y < x then

V +
y ⊂ V −x .

Example 5. Let (P, θ) be a poset with an involution where P is as in Figure 1.3 with
a < b∗, a∗ < b, a∗ < b∗ and θ = {(a, a∗), (b, b∗)}.

(P, θ)=
b∗

a

b

a∗

• •

• •

Figure 1.3. Diagram of a poset with an involution.

We will show that V = (V0, V(a,a∗), V(b,b∗)) is a vector space representation of (P, θ), where
V0 = R3, B = {e1, e2, e3} is the canonical basis of V0 and V(a,a∗) = 〈h〉, with

h : (a, a∗) ! R3

a 7! e1

a∗ 7! e2

and V(b,b∗) = 〈h1, h2, h3, h4〉, with
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h1 : (b, b∗) ! R3

b 7! e2

b∗ 7! 0

h2 : (b, b∗) ! R3

b 7! 0
b∗ 7! e1

h3 : (b, b∗) ! R3

b 7! 0
b∗ 7! e2

h4 : (b, b∗) ! R3

b 7! e3

b∗ 7! e3

Indeed, since

V +
a = πa(V(a,a∗)) = R{e1}; V +

a∗ = πa∗(V(a,a∗)) = R{e2};
V −b = i−1

b (V(b,b∗)) = R{e2}; V −b∗ = i−1
b∗ (V(b,b∗)) = R{e1, e2};

then, for a < b∗ is obtained that V +
a ⊂ V −b∗ . For a∗ < b∗, it is satisfied that V +

a∗ ⊂ V
−
b∗ and

for a∗ < b, it is true that V +
a∗ ⊂ V

−
b .

Definition 18. If V = (V0, Vz)z∈θ and W = (W0,Wz)z∈θ are two representations of (P, θ),
and ϕ : V0 ! W0 is a morphism of vector spaces, such that for each z ∈ θ, we have the
morphism ϕz : V z

0 ! W z
0 and for h : z ! V0, ϕz(h) = ϕh. Then a morphism V ! W

consists of a morphism of vector space ϕ : V0 !W0 such that

ϕz(Vz) ⊂Wz,

for all z ∈ θ.

Definition 19. If V = (V0, Vz)z∈θ and W = (W0,Wz)z∈θ are two representations of (P, θ)
then their direct sum is

V
⊕

W = (V0

⊕
W0, Vz

⊕
Wz)z∈P.

Now, for a vector space representation (V0, Vz)z∈θ of (P, θ), and for z ∈ θ, we define

V z =
∑
x∈z

∑
y<x

ix(V +
y ) ⊂ Vz.

If (V0, Vz)z∈θ is a representation of a poset with an involution (P, θ) over a field k and
A ⊂ P, then we define the subspaces of V0, denoted V +

A and V −A , in such a way that

V +
A =

∑
a∈A

V +
a ,

V −A =
⋂
a∈A

V −a .

For A = ∅, by definition V +
∅ = 0 and V −∅ = V0.

A representation (V0, Vz)z∈θ of the poset with an involution (P, θ) is called trivial if
dimkV0 = 1. If A ⊂ P, we define the trivial representation that we denote by k(A)
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in such a way that k(A) = (k;Vz)z∈θ, where Vz = kz∩A
O
, which means that for each x ∈ P

we will have

V +
x = V −x =

{
k, if x ∈ AO,
0, in otherwise.

Notice that, by definition k(A) = k(AO) = k(minA). For simplicity we often write
k(X1, ..., Xn) instead of k(X1∪· · ·∪Xn) and in the case that we have a unit set Xi = {xi},
we will make the identification Xi = xi. For instance, k(A, b) = k(A ∪ {b}).

1.3 Vector Space Representations Vs Matrix Representa-
tions for Posets with an Involution

Zavadskij in [38] states that the differentiation algorithms introduced by him were con-
ceived using the matrix language but a strict foundation required a vector language; for
this reason it is very important to describe the relationship between these two ways of
representing the posets with an involution. For this, we take V = (V0, Vz | z ∈ θ) be a
vector space representation of (P, θ) as above.

Then, for each z ∈ θ, we choose V 0
z a direct complement of V z, that is

Vz = V 0
z

⊕
V z.

Now, we choose a basis L for V0 and for each z ∈ θ we choose a basis U(z) of V 0
z . Denote

B(V ) = L
⋃ ⋃
z∈θ

U(z). In the first place, we will prove that the elements of the form

ix(πy(u)) for u ∈ U([y]) are a system of generators for V z, where U([y]) is a basis for V 0
z ,

[y] is a class in θ with y ∈ [y] and x ∈ z, y < x. Indeed, we have for any y ∈ P

πy(V [y]) =
∑
y1<y

πy1(V[y1]).

By definition of V k we have

πy(V [y]) = πy

∑
x∈[y]

∑
y1<x

ix(V +
[y1]

 =
∑
x∈[y]

∑
y1<x

πyix(V +
[y1]) (1.8)

=
∑
y1<y

V +
y1 =

∑
y1<y

πy1(V[y1]). (1.9)

Therefore, it is enough to prove that the space ix(V +
y ) with x ∈ z and y < x is generated

by the elements of the form ix(πy1(u)) with u ∈ U([y1]) and y1 < x. We consider

S(z) = {y ∈ P | (∃x ∈ z)(y < x)},

and we suppose that y is minimal in S(z), then by 1.8, πy(V[y]) = πy(V
0

[y]), thus the space

ix(V +
y ) = ix(πy(V[y])) = ix(πy)(V

0
y ) is generated by elements of the form ix(πy(u)) with
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u ∈ U([y]).

Now suppose by induction that our claim holds true for all elements y1 ∈ S(z) with y1 < y.
By using 1.8 we obtain:

ix(πy(Vy)) = ix(πy(V
0

[y])) +
∑
y1<y

ix(πy1(V[y1])). (1.10)

The space ix(πy(V
0

[y])) is generated by elements of the form ix(πy(u)) with u ∈ U(y). By

induction hypothesis the spaces ix(πy1(V[y1])), with y1 < y, are generated by elements of
the form ix(πy2(u)) with u ∈ U[y2]) and y2 ∈ S(z). For u ∈ U(z) we have

u =
∑
x∈z

∑
l∈L

αxl,uix(l),

where L is a basis for V0. Therefore,

πx(u) =
∑
l∈L

αxl,ul.

Then, for each x ∈ P we obtain the matrix

Mx = (αxl,u) ∈Md0×dz(k),

where d0 = dimkV0 and dz = dimk(Vz/V z) for each x ∈ z.

Thus, we obtain a matrix representation

M(B(V )) = (Mx)x∈P, (1.11)

in terms of the basis B(V ) = L
⋃ ⋃
k∈θ

U(k).

Finally, we will prove that the matrix representation is independent of the choice of the
basis and the complementary subspace. For this we suppose that Ṽ 0

k is another complement

of V k in Vz and basis L̃ and Ũ(k) of V0 and Ṽ 0
k respectively. We take

B̃(V ) = L̃
⋃ ⋃
k∈θ

Ũ(k).

We will prove that M(B(V )) and M(B̃(V )) are equivalent matrix representations.Indeed,
for ũ ∈ Ũ(z) we have:

ũ =
∑

u∈U(z)

βzu,ũu+ λ(u),
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where λ(ũ) ∈ V z. Then by using the system of generators for V k we obtain:

λ(ũ) =
∑
x∈z

∑
y<x

∑
u∈U([y])

βy,xu,ũix(πy(u))

=
∑
x∈z

∑
y<x

∑
u∈U([y])

∑
l∈L

βy,xu,ũixα
y
l,u(ix(l)).

We have l =
∑
i∈L

s
l̃,l
l̃, where S = (sl,l) are a non singular square matrices. Therefore:

ũ =
∑

u,l,l̃,x∈z

s
l,l̃
αxl,uβ

z
u,ũix(l̃) +

∑
x∈z,y<x,u∈U([y])

s
l,l̃
αxl,uβ

y,x
u,ũix(l̃).

It follows the equality

M(B̃(V ))x = SM(B̃(M))xTz +
∑
y<x

SM(B̃(V ))yTy,x,

where T z is the non-singular square matrix (βzu,ũ) and T y,x = (βy,xu,ũ).

From the above we conclude that M(B̃(V )) and M(B(V )) are equivalent matrix repre-
sentations.

Now, given M = (Mx)x∈P a matrix representation of (P, θ) with Mx ∈ Md0×d[x](k), we
can construct a vector space representation V = (V0;Vz | z ∈ θ) of (P, θ) as follows:

we take V0 = kd0 , and for each z ∈ θ, let U(z) be the set of vectors of the form

U(i) =
∑
x∈z

d0∑
j=1

αxj,iix(ej),

where {e1, . . . , ed0} is the canonical basis of V0 and i = 1, 2, . . . , d[x]. We define

Vz =
∑

u∈U(z)

uk +
∑
x∈z

∑
y<x

∑
v∈U([y])

ix(πy(v))k, (1.12)

so, by definition Vz is generated by the vectors u ∈ U(z) and the elements ix(πy(v)) with
x ∈ z, y < x and v ∈ U([y]).

Finally, we take now y < x in P, in order to check that V +
y ⊂ V −x . It is enough to prove

that for any of the above non-zero generators w of V[y] we have that πy(w) ∈ V −x .
In case w = πy(v) with v ∈ U([y]) we have that ix(πy(v)) is one of the generators of V[x],
therefore w ∈ V −x . In case w = iy1(πy2(v))

V[y] =
∑

u∈U([y])

uk +
∑
y∈[y]

∑
y2<y1

∑
v∈U([y2])

iy1(πy2(v))k,

then since πy(w) is non zero, we must have y = y1, πy(w) = πy2(v) with y2 < x and
v ∈ U([y2]) therefore
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ix(w) = ix(πy2(v)) ∈ V[x],

this implies πy(w) ∈ V −x .

The previous constructions allows to describe algorithms as follows:

Algorithm 1

Input: a vector space representation V = (V0, Vz | z ∈ θ) of (P, θ).
Output: a matrix representation M = (Mx)x∈P of (P, θ).

1. For each z ∈ θ, calculate

V z =
∑
x∈z

∑
y<x

ix(V +
y ) ⊂ Vz.

2. For each z ∈ θ, choose V 0
z a direct complement of V z in Vz, that is

Vz = V 0
z

⊕
V z.

3. Choose a basis L for V0.
4. For each z ∈ θ, choose a basis U(z) of V 0

z .

5. For each u ∈ U(z), u =
∑
x∈z

∑
l∈L

αxl,uix(l).

6. For each x ∈ P we obtain the matrix Mx = (αxl,u) ∈Md0×dz(k).

Example 6. We consider the vector space representation for the poset with involution
given in Example 5.

1. For z = (a, a∗) we have U (a,a∗) = 0, and for z = (b, b∗) we have U (b,b∗) = 〈h1〉 +
〈h2〉+ 〈h3〉.

2. If z = (a, a∗) then U0
z = 〈h〉, and if z = (b, b∗) then U0

z = 〈h4〉.

3. Choose L = 〈e1, e2, e3〉 a basis for U0 = R3.

4. For z = (a, a∗) we choose a basis U(z) = 〈h〉, and for z = (b, b∗) we choose a basis
U(z) = 〈h4〉.

5. As U(z) = 〈h4〉+ 〈h〉 we have

h4 =
∑
l∈L

αbl,h4ib(l) +
∑
l∈L

αb
∗
l,h4ib∗(l)

= 0 · ib(e1) + 0 · ib(e2) + 1 · ib(e3) + 0 · ib∗(e1) + 0 · ib∗(e2) + 1 · ib∗(e3),

and

h =
∑
l∈L

αal,h4ia(l) +
∑
l∈L

αa
∗
l,h4ia∗(l)

= 1 · ia(e1) + 0 · ia(e2) + 0 · ia(e3) + 0 · ia∗(e1) + 1 · ia∗(e2) + 0 · ia∗(e3).
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6. Therefore, we obtain the matrix representation for (P, θ)

M=


a a∗ b b∗

1 0 | 0 0
0 1 | 0 0
0 0 | 1 1



The next algorithm allows us to compute a vector space representation V = (V0, Vz | z ∈ θ)
of (P, θ) from a matrix representation M = (Mx)x∈P of (P, θ).

Algorithm 2.

Input: a matrix representation M = (Mx)x∈P of (P, θ) with Mx ∈Md0×d[x](k)

Output: a vector space representation V = (V0, Vz | z ∈ θ) of (P, θ).

1. Take V0 = kd0

2. For each z ∈ θ, take U(z), the vectors set of the form

U(i) =
∑
x∈z

d0∑
j=1

αxj,iix(ej),

where {e1, . . . , ed0} is the canonical basis of V0 and i = 1, 2, . . . , d[x].

3. We define
Vz =

∑
u∈U(z)

uk +
∑
x∈z

∑
y<x

∑
v∈U([y])

ix(πy(v))k.

4. V = (V0, Vz) is a representation for (P, θ).

Example 7. Let (P, θ) be the partially ordered set with an involution as the following
figure

(P, θ)=

c

a

b

d

◦ •

• ◦

Figure 1.4. Diagram of a poset with an involution.

where θ = {(a, b), c, d}. Consider the next matrix representation for (P, θ)

M=



a c d b

1 0 0 0 0| 0 | 1 | 1 0 0 0 0
0 1 0 0 0| 0 | 0 | 0 1 0 0 0
0 0 0 1 0| 0 | 0 | 0 0 1 0 0
0 0 0 0 1| 0 | 0 | 0 0 0 1 0
0 0 0 0 0| 1 | 1 | 0 0 0 0 1



We can give a vector space representation following the ideas given above.
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1. V0 = k5.

2. For z = c or z = d, U(1) = {e5} and U(1) = {e1 + e5} respectively,
for z = (a, b), we find that

U(1) = (e1, e1), U(2) = (e2, e2), U(3) = (0, e3), U(4) = (e3, e4), U(5) = (e4, e5).

3. For z = c, z = d and z = (a, b) we obtain

V(a,b) = k{(e1, e1), (e2, e2), (0, e3), (e3, e4), (e4, e5), (0, e1 + e5)}.
V(c) = k{e5, e1, e2, e3, e4},
V(d) = k{e1 + e4}.

4. So, V = (k5;V(a,b), V(c), V(d)) is a vector space representation of (P, θ).

1.4 Representations of Posets and Categories

Categories are an important element in representation theory. They provide a language as
well as objects of investigation. They arise not only as natural generalizations of algebras
but also as generalizations of various categories of modules. Categories are indispensable
for the combinatorial description of algebras and modules which we shall produce. In the
present section we introduce the basic categorical notions and describe their relations with
classical algebra.

In this section we present the basic categorical notions, [see, [2, 27, 30]], and the category
of representations of posets with involution [32].

Definition 20. A category R is a class of objects together with the following data [30]:

1. a rule which assigns to any pair (U, V ) of objects in R a set R(U, V ), whose elements
are called the morphisms from U to V ;

2. for any triplet (U, V,W ) a composition map

R(V,W )× R(U, V ) −! R(U,W )

(g, f) 7−! g ◦ f

which is associative in the sense that f ◦ (g ◦ h) = (f ◦ g) ◦ h and which admits identity
elements in the sense that each set R(V, V ) contains an element 1V such that 1V ◦ f = f
for all f ∈ R(U, V ) and g ◦ 1V = g for all g ∈ R(V,W ).

Definition 21. Let R be a category. A category R′ is a subcategory of R if the following
four conditions are satisfied:

1. the class of object of R′ is a subclass of the class of objects of R;

2. if U, V ∈ R′ then R′(U, V ) ⊆ R(U, V );

3. the composition of morphisms in R′ is the same as in R;
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4. for each object U ∈ R, the identity morphism 1′U ∈ R′(U,U) coincides with the
identity morphism 1U ∈ R(U,U).

A subcategory R′ of R is called full if R′(U, V ) = R(U, V ) for all U, V ∈ R′.

In a category R there are special types of morphisms which we define below.

Definition 22. Let U and V be objects of a category R and f : U −! V be a morphism
from U to V .

1. We call f a monomorphism if fg = fh for all morphisms g, h : W −! U and all
objects W implies that g = h.

2. We call f an epimorphism if gf = hf for all morphisms g, h : V −! W and all
objects W implies that g = h.

3. We call f an isomorphism if there exists a unique morphism g : V −! U , such that
gf = 1U and fg = 1V . It is denoted by U ∼= V .

Definition 23. Let R and R′ be two categories.

1. A covariant functor F : R −! R′ is a rule which assigns to each object U of R

an object F (U) of R′ and to each morphism f : U −! V in R a morphism F (f) :
F (U) −! F (V ) in R′ in such a way that always F (1U ) = 1F (U) and F (gf) =
F (g)F (f).

2. A contravariant functor F : R −! R′, is a rule which assigns to each object U of
R an object F (U) of R′ and to each morphism f : U −! V a morphism F (f) :
F (V ) −! F (U) in such a way that always F (1U ) = 1F (U) and F (gf) = F (f)F (g).

3. A functor F : R −! R′ is an equivalence, if F admits a quasi-inverse, i.e. a functor
E : R′ −! R such that EF is isomorphic to 1R and FE to 1R′.

It is useful to have another way of describing when two categories are equivalent. We say
that a functor F between categories is faithful if the morphism FU,V : HomR(U, V ) !
HomR′(F (U), F (V )) given by F is a monomorphism for all U, V in R. The functor F is
full if this morphism is an epimorphism. The functor F is dense if for each V in R′ there is
some U in R with F (U) ∼= V . In this way, the following characterization of an equivalence
of categories is obtained.

Theorem 1 (Theorem 1.2, [3]). A covariant functor F between categories is an equivalence
if and only if it is full, faithful and dense.

If there exists an equivalence F of categories R and R′, then we say that R and R′ are
equivalence categories and we note this R ∼= R′.

In this work, we will refer to a covariant functor only as a functor. Now we show the
concept of k-category and ideal in a k-category.
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Definition 24. Let k be a fixed commutative ring, a k-category is a category R whose
morphism sets R(U, V ) are endowed with k-module structures such that the composition
maps are k-bilinear. A k-functor between two k-categories R and S is a functor F : R −! S

whose defining maps F (U, V ) : R(U, V ) −! S(FU,FV ) are k-linear for all U, V ∈ R.

Definition 25. An object U of a k-category R will be called indecomposable if the en-
domorphism algebra R(U,U) = End (U) has precisely two idempotents, namely 0 and
1U 6= 0.

Each k-algebra A gives rise to a k-category which has one object Ω such that Hom (Ω,Ω) =
A. In the sequel, we shall identify k-algebras with the associated k-categories. Homomor-
phisms of algebras then correspond to k-functors. In view of this, k-categories generalize
k-algebras. The generalization carries over to (two-sides) ideals, which are defined as
follows [17].

Definition 26. An ideal I of a k-category R is a family of subgroups I(U, V ) ⊂ R(U, V )
such that f ∈ I(U, V ) implies gfh ∈ I(Z,W ) for all h ∈ R(Z,U) and g ∈ R(V,W ). Each
such ideal I gives rise to a k-quotient category R/I which has the same objects as R and
satisfies (R/I)(U, V ) = R(U, V )/I(U, V ) for all U, V ∈ R.

We recall the definition of the direct sum of two objects U, V ∈ R as in [17]: let R be a k-
category. First we call summation of U and V in R a quintuplet (S, i, j, p, q) consisting of an

object S ∈ R and of morphisms U
i

�
p
S

j

�
q
V such that pi = 1U , qj = 1V and ip+ jq = 1S .

Such summations are known to be “unique up to uniquely determined isomorphisms”.
Therefore, whenever a summation of U and V exists, we will suppose that a “canonical”
one has been chosen. The object S is then called the sum (or coproduct) of U and V in R

and it is denoted by U
⊕
V ; the morphisms p, q are called projections, the morphisms i, j

are called immersions.

For a category R, we let 〈Ui | i ∈ I〉R denote the ideal consisting of all morphisms passed
through finite direct sums of the objects Ui. That is, if ϕ : U ! V ∈ 〈Ui | i ∈ I〉R then

there exist morphisms f, g ∈ R such that ϕ = U
f
−!
⊕
i
Umi
i

g
−! V with mi = 0 for almost

all i.

Definition 27. The k-category R is called additive if U
⊕
V exists for all U, V ∈ R and

if R contains a null object, i.e. an element 0 such that 10 = 0.

Let R be an additive category, a non-null object U ∈ R is said to be indecomposable
provided U ' V

⊕
W implies V = 0 or W = 0 [27].

If [X1], . . . , [Xk] are equivalence classes of indecomposable objects of a given category then

we let [X1, X2, . . . , Xk] denote the union
k⋃
i=1

[Xi].
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Definition 28. Let R be an additive k-category and U, V ∈ R. An idempotent is a
morphism e ∈ R(U,U) such that e2 = e. An idempotent e ∈ R(U,U) splits if there are
morphisms f : V −! U , g : U −! V with gf = 1V and fg = e.

Definition 29. Let k be a commutative ring. An additive k-category K is called Krull-
Schmidt category provided that all idempotents split and the endomorphism ring End(U),
of any object U ∈ K, is a semi-perfect ring.

Theorem 2 (Krull-Schmidt). Let K be a Krull-Schmidt category, let Ui, Vj be indecom-

posable objects in K with 1 ≤ i ≤ s, 1 ≤ j ≤ t, such that
s⊕
i=1
Ui '

t⊕
j=1

Vj, Then s = t, and

there is a permutation π of {1, . . . , s} such that Ui ' Vπ(i) for all i.

Henceforth it is very useful to look at the matrix problems (MP,GP) of poset as the
category whose objects are the matrices M ∈ MP and whose morphisms are pairs of
matrices (S0, Sx) where S0 ∈ GL(d0, k) and Sx ∈ GL(d, k), where d =

∑
x∈P

dx which is a

composition of elementary matrices corresponding to elementary transformation as in 1.3.
This category will be denoted by MatP. In case of poset with involution (P, θ) the category
of matrix representations denoted Mat(P,θ) is a subcategory of MatP, whose morphisms
satisfy the same conditions as the morphisms in MatP, but taking into account that if
[x], [y] ∈ θ are such that [x] = [y] then Sx = Sy. In [29], it is proved that the categories
MatP and Mat(P,θ) are Krull-Schmidt.

A fundamental role in the theory of representations of partially ordered sets is played by the
category MatadP , which consists of additive enlargement of MatP (called an additivisation
of MatP), defined in [29] as the category whose objects are systems

V = (Vx, V0, tx)x∈P,

of finite dimensional k-vector space Vx together with k-linear maps tx : Vx ! V0 for each
x ∈ P. If V = (Vx, V0, tx)x∈P and V ′ = (V ′x, V0, t

′
x)x∈P are objects, a morphism V ! V ′ in

MatadP is a pair (g, g0) of k-linear maps such that the following diagram is commutative

⊕
x∈P

Vx V0

⊕
x∈P

V ′x V ′0

tx

g

t′x

g0

The maps g := (gij) have the upper triangular matrix form where gij : V ′xj ! Vxi are

k-linear maps and gij = 0 if xi � xj holds in P. The composition of maps in MatadP is
defined in a natural way. The integral vector cdn(V ) = (dimV0,dimVx)x∈P is called the
coordinate vector of V .

An embedding of categories

q : MatP ! MatadP (1.13)
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is defined in [29] as follows: if M = (Mx)x∈P is a matrix in MatP and cdn(M) = (d0, dx)
then q(M) := q((Mx)x∈P) = (kdxj , kd0 ,Mxj ) where, Mxj : kdj ! kd0 is the k-linear map
induced by the matrix Mxj in the standard basis.

Lemma 1 (Lemma 2.2, [29]). The map q has the following properties

(a) Block matrices M,N in MatP are GP-equivalent if and only if q(M) ∼= q(N).

(b) A matrix M in MatP is indecomposable if and only if q(M) is indecomposable in
MatadP .

(c) The map q establishes a one to one correspondence between MP-equivalence classes of
the indecomposables objects in MatP and the isomorphism classes of indecomposable
objects in MatadP . Morever, cdn(M) = cdn(q(M)) for all M ∈ MatP.

The vector space representations of a poset can also be viewed categorically. We denote
by RepP and Rep(P, θ) the categories of representations of ordinary poset and poset with
an involution respectively. If the involution is trivial then the category Rep(P, θ) coincides
with category RepP .

An important role in the study of matrix representations and vector space representations
of a poset P is played by the following reduction functor

H : MatadP ! RepP, (1.14)

which assigns to U = (Uxi , U0, txi)x∈P in MatadP the representation H(U) = (V0, Vx | x ∈ P)
where V0 = U0 and

Vx = Im

⊕
xi≤xj

Uxi
txi
−! U0

 ,

for each xj ∈ P. If (g, g0) : U ′ ! U is a map in MatadP , then g0(U ′xj ) ⊆ Uxj , for each xj ∈ P

and we put H(g, g0) = g0.

Theorem 3 (Theorem 3.1,[29]). Let P = {xi | 1 ≤ i ≤ t} be a poset and let H be the
functor 1.14. Then the following staments hold.

a. The functor H is full and dense.

b. If V is indecomposable in MatadP , then H(V ) = 0 if and only if V ∼= k(xj ↗ 0) for
some xj ∈ P, where k(xj ↗ 0) are indecomposable objects in MatadP defined by

k(xj ↗ 0) = (Uxi , U0, txi |xi ∈ P),

with U0 = 0, Uxj = k and Uxi = 0, if xi 6= xj. The linear maps txj are such that
txj : k ! 0 if xi = xj, and txi : 0! 0 if xi 6= xj.
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c. If (MatadP )0 denotes the full subcategory of MatadP , which consists of objects which have
not direct summand of objects in X, where X = {k(xj ↗ 0)|xj ∈ P} then H induces
a representation equivalence H0 : (MatadP )0 ! RepP and an equivalence categories

MatP/I ∼= RepP,

where I = 〈k(xj ↗ 0)|xj ∈ P〉

From 1.13 and 1.14 it is obtained the functor Hq : MatP ! RepP which induces a one to
one correspondence between the equivalence classes of indecomposables in (MatadP )0 and
the isomorphism classes of indecomposables in RepP. If M = (Mxi)xi∈P is a matrix in
MatP and cdn(M) = (d0, dxi)xi∈P then Hq(M) = (U0, Uxj | xj ∈ P), where U0 = kd0 and

Uxj =
∑
xi≤xj

∑
v∈c(Mxi )

kv ⊂ kd0 ,

and v ∈ c(Mxi) means that v is a column of Mxi , considered as a vector in kd0 . The
inverse correspondence U 7!MU , associates to each representation U ∈ RepP the matrix
block of the linear application

(rx1 , rx2 , . . . , rxt) :
t⊕
i=1

Wxi ! U0,

with respect to fixed basis of Wx1 , . . . ,Wxt , U0 and Wxj ⊂ Uxj is a subspace of Uxj , such
that Uxj

⊕
Wxj = Uxj and rxj is the monomorphism composition Wxj ! Uxj ! U0, and

Uxj =
∑
xi≤xj

Uxi =
∑

xi∈xjN

Uxi .

Following the ideas given above, we will now introduce the additivisation Matad(P,θ) of matrix

problem for posets with an involution Mat(P, θ).

The objects V = (V0, Vz)z∈θ
{ta}a∈z
−−−−−! V0 of the category Matad(P,θ) consist of a k- vector

space V0 and a function that assigns to each element z ∈ θ a finite dimensional k-vector
space Vz together with a linear transformation ta : Vz ! V0 for each a ∈ z.

If V ′ = (V ′0 , V
′
z )z∈θ

{t′a}a∈z−−−−−! V ′0 is another object of this category, then a morphism of V
to V ′ consists of linear transformations fz : Vz ! V ′z for z ∈ θ, f0 : V0 ! V ′0 and for each
relation a < b a linear transformation fa,b : V[b] ! V[a] such that the following equation is
satisfied:

f0ta = t′afz +
∑
b<a

t′bfb,a,

for all a ∈ P.
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If g : V ′ ! V ′′ is another morphism then gf is given by (gf)0 = g0f0, (gf)z = gzfz and
for each relation a < b,

(gf)a,b = g[a]fa,b + ga,bf[b] +
∑
a<c<b

ga,cfc,b.

It can be proved that gf is indeed a morphism.

The category Matad(P,θ) is equivalent to the category of representations of the tensor differ-
ential algebra defined by quiver algebra kQ where Q has as many points as the cardinality
of θ plus one. For every z in θ we take a vertex vz and an additional vertex v0. For each
x in P we take a continuous arrow αx : v[x] ! v0, and for each relation x < y a dashed
arrow γx,y : v[y] ! v[x], where for x ∈ P we denote by [x] the class in θ containing x and a
differential δ : kQ! kQ such that

δ(αx) = −
∑
y<x

αyγy,x,

δ(γy,x) =
∑
y<z<x

γy,zγz,x.

For a result independently obtained with different methods by Bautista and Kleiner on the
one hand and by Butler and Burt on the other, in the category of representations of kQ
the idempotents split. This category has an exact structure and almost split sequences.
Thus, in the category Matad(P,θ) the idempotents split, there are an exact structure and
almost split sequences. As in Lemma 1 there is a functor

q : Mat(P,θ) ! Matad(P,θ), (1.15)

with the properties (a), (b), (c).

Also, we have a functor

F : Matad(P,θ) ! Rep(P, θ), (1.16)

defined as follows: let V = (V0, Vz)
{tx}x∈z
−−−−−! V0 be an object of Matad(P,θ). We have a linear

transformation uz : Vz ! V z
0 given by

uz(v) =
∑
x∈z

ix(tx(v)),

let u(z) = uz(Vz) ⊂ V z
0 , then

F (V ) = (V0, V̂z)z∈θ,

where V̂z is the subspace of V z
0 generated by u(z) and the vectors of the form ix(πy(v)),

where y < x and v ∈ U([y]), as in (1.10).

Let now f = (f0, fz, fx<y) be a morphism V ! V ′ in Rep(P, θ). We consider the morphism
f0 : V0 ! V ′0 and for each z ∈ θ the morphism fz0 : V z

0 ! (V ′0)z. This morphism sends V̂z
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in V̂ ′z therefore f0 is a morphism

F (f) : (V0, Ṽz)z∈θ ! (V ′0 , Ṽ
′
z )z∈θ.

Then if (Mx)x∈P is a matrix representation of (P, θ) and it is obtained that Fq((Mx)x∈P)
coincides with the vector space representations associated to (Mx)x∈P as in (1.12). There-
fore, it is obtained that the functor is dense.

For each z ∈ θ, we will consider the object Iz of Matad(P,θ) with (Iz)0 = 0 and (Iz)w = 0 for

z 6= w and (Iz)z = k. Then the following result is obtained.

Proposition 1. The functor F (1.16) induces an equivalence of categories:

Matad(P,θ)/I! Rep(P, θ),

where I is the ideal generated by the objects Iz.

Proof. From definition of F it follows that for all z ∈ θ, F (Iz) = 0, therefore if f is a
morphism in I, then F (f) = 0. So, F induces a functor

F : Matad(P,θ)/I! Rep(P, θ).

Since F is dense, then F is dense. Let us prove that F is full. For this, let V , V ′ ∈
Matad(P,θ)/I and h : V0 ! V ′0 a morphism of F (V ) ! F (V ′). We will define a morphism

f : V ! V ′ such that F (f) = h. We put f0 = h : V0 ! V ′0 . We now define fz : Vz ! V ′z
for z ∈ θ and for each y < x ∈ z a morphism fy,x : Vz ! V ′[y]. In order to do this, for each

pair y < x ∈ z, we take Z(y, x) = V ′[y] and

φ(y, x) = ixπyu([y]) : Z(y, x)! V̂ ′z .

We take the morphism of k-vector space:

ρ = V ′z
⊕
y<x∈z

Z(y, x)
(u(z),(φ(y,x)))y<x∈z
−−−−−−−−−−−−−! V̂ ′z ,

by definition of V̂ ′z this morphism is an epimorphism. Also, hz0(V̂z) ⊂ V̂ ′z therefore there
exists a morphism

Ψ : Vz ! V ′z
⊕
y<x∈z

Z(y, x),

such that

hz0u(z) = ρΨ, (1.17)

then, if the component of Ψ are the morphisms fz : Vz ! V ′z and for y < x ∈ z, fy,x :
Vz ! V[y], the equality (1.17) implies that

t′xfz +
∑
y<x∈z

t′yfy,x = h0tx.
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Therefore, the family of morphisms (f0, fz, fy,x)z∈θ,y<x∈θ determine a morphism f : V !
V ′ such that F (f) = h. This proves that functor F is full and therefore F is full.

Suppose now that we have a morphism f : V ! V ′ such that F (f) = 0. So, if f is given
by the morphisms family (f0, fz, fy,x)z∈θ,y<x∈θ it is obtained that F (f) = f0 = 0. Let W
be given by the family of linear transformations Vz ! 0 for z ∈ θ. Let g : V ! W given
by the family of morphisms gz : idVz : Vz ! Vz = Wi and g0 = 0 : V0 ! W0 = 0 and for
y < x ∈ z, gy,x = 0.

Let h : W ! V ′ given by the family of morphisms h0 = 0 : 0 ! V ′0 for z ∈ θ, hz = fz :
Wz = Vz ! V ′z . For y < x ∈ z, hy,x = fy,x : Wz = Vz ! V ′[y]. Then g is in effect a
morphism and hg = f and W is a direct sum of objects of the form Iz. So f ∈ I. This
proves that the functor F is faithful. Consequently F is an equivalence of categories.

�

The ideal I of Proposition 1 is an admissible ideal in the Shiping Liu sense; therefore, by
using the Proposition 1.8 of [19] the following result is obtained. It is worth mentioning
that we will obtain this result in Chapter 2 using another technique.

Theorem 4. The category Rep(P, θ) has almost split sequences.

Let (P, θ) be a poset with involution and let us consider ε as the family of sequences of
morphisms:

(V0, Vz)
u
−! (E0, Ez)

v
−! (W0,Wz),

in the category of representations Rep(P, θ) such that:

1. The sequence 0! V0
u
−! E0

v
−!W0 ! 0 is exact.

2. For all z ∈ θ, the sequence 0! Vz
uz−! Ez

vz−!Wz ! 0 is exact.

Definition 30. A sequence

(V0, Vz)
u
−! (E0, Ez)

v
−! (W0,Wz),

is an almost split sequence if u is a source morphism, g is a sink morphism and (u, v) ∈ ε.

Proposition 2. Let

(V 1
0 , V

1
z )z∈θ

f
−! (V 2

0 , V
2
z )z∈θ

g
−! (V 3

0 , V
3
z )z∈θ, (1.18)

an ε-sequence in Rep(P, θ), then this is an almost split sequence if and only if f and g are
irreducible morphisms.
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Proof. We suppose that f and g are irreducible. Since g is irreducible, and Rep(P, θ) has
almost split sequences, then there is an almost split sequence in the form:

(L0, Lz)z∈θ
u
−! (W0,Wz)z∈θ ⊕ (V 2

0 , V
2
z )z∈θ

(v,g)
−−−! (V 3

0 , V
3
z )z∈θ, (1.19)

here u and (v, g) are irreducible morphisms.

We consider the morphism:

(0, f)t : (V 1
0 , V

1
z )z∈θ −! (W0,Wz)z∈θ

⊕
(V 2

0 , V
2
z )z∈θ,

so, it is obtained that (v, g)(0, f)t = gf = 0, and by (1.19) it follows that there exists

h : (V 1
0 , V

1
z )z∈θ −! (L0, Lz)z∈θ,

such that uh = (0, f), where u = (u1, u2)t with u1 : (L0, Lz)z∈θ −! (W0,Wz)z∈θ and
u2 : (L0, Lz)z∈θ −! (V 2

0 , V
2
z )z∈θ. Since u is irreducible then u2 is irreducible and f = u2h,

here u2 is a morphism which is not split epimorphism, as f is irreducible then h is an
isomorphism, so dim(V0) = dim(L0).
As (1.18) is exact it is obtained that

dim(V 1
0 ) + dim(V 3

0 ) = dim(V 2
0 ),

and as (1.19) is exact it follows that

dim(V 1
0 ) + dim(V 3

0 ) = dim(V 2
0 ) + dim(W0);

therefore, dim(W0) = 0. Then the sequence (1.18) coincides with the sequence (1.19);
therefore the sequence 1.18 is almost split. Conversely, if (1.19) is an almost split sequence,
then f and g are irreducible morphisms. �

1.5 The Classification Theorems

The theory of representations of finite dimensional algebras and other algebraic structures
had a rapid development. The investigations in this direction began in the second half of
the last century being stimulated initially by the investigations of Brauer and Thrall in
the 1940s. In these works, Brauer and Thrall made two famous conjectures called B-T, I
and B-T, II.

Brauer-Thrall I. If A is a k-algebra of infinite type, there is no bound on the k-dimension
of indecomposable finitely generated A-modules.

Brauer-Thrall II. If A is a k-algebra of infinite type (over an infinite field k), then for
an infinite number of dimensions there is an infinite number of indecomposable modules
of this dimension.

The first conjecture was proved by Roiter in [28] and later on generalized for Artin algebras
by Auslander in [4]. A proof of the second Brauer Thrall conjecture for finite-dimensional
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k-algebras, k algebraically closed field appears in [21]. The first proof by different methods
was given by Bautista for k algebraically closed with characteristic different from 2 in [6]
and for the case of characteristic 2 Bongartz proved it in [10].

In the last decades, the study and classification of finite-dimensional algebras with respect
to their representation type has been one of the main aims in the theory of representations
of algebras. We recall that an algebra is said to be of finite representation type if there
are only many finite isomorphism classes of indecomposable finite-dimensional modules.
Later, the study was generalized to classify the algebras of infinite representation type.
Special attention has been given to the so-called tame algebras, which are characterized
by having for any fixed dimension only finitely many 1-parameter families of isomorphism
classes of indecomposable modules. By a theorem of Drozd algebras which are not tame
have to be wild which means that the classification of their indecomposable modules is as
difficult as the classification of pairs of square matrices under simultaneous conjugation
[15].

Theorem 5 (Theorem 14.14,[29]). Every finite-dimensional k-algebra A over an alge-
braically closed field k is representation-finite, representation-tame or representation-wild
and these types are mutually exclusive.

The representations of ordinary posets were introduced by Nazarova and Roiter in 1972 to
study of the representations of finite dimensional algebras [20]. The corresponding theory
was developed during the 70s and 80s when in particular the main criteria were obtained
for finite type representation [18], tame [23,25] and finite growth [26].

Kleiner [18] found out the following finite type criterion by using an algorithm of differ-
entiation known as differentiation with respect to a maximal point.

Theorem 6 (Theorem 10.1,[29]). A finite poset P is of finite representation type if and
only if the poset P does not contain as a full subposet any of the following Kleiner’s
hypercritical posets

K1 = S4

◦ ◦ ◦ ◦

K2 = (2, 2, 2)

◦ ◦ ◦
◦ ◦ ◦

K3 = (1, 3, 3)

◦ ◦
◦
◦

◦
◦
◦

K4 = (N, 4)

◦ ◦ ◦
◦ ◦ ◦

◦
◦

K5 = (1, 2, 5)

◦ ◦
◦
◦
◦
◦
◦
◦

Nazarova [23] used differentiation with respect to a maximal point to prove the following
tameness criterion.

Theorem 7 (Theorem 15.3, [29]). A finite poset P of infinite representation type is tame
if and only if P does not contain as a full subposet the following critical posets



1.5. THE CLASSIFICATION THEOREMS 27

N1 = S4

◦ ◦ ◦ ◦ ◦

N1 = (1, 1, 1, 2)

◦ ◦ ◦ ◦
◦

N2 = (2, 2, 3)

◦ ◦ ◦
◦ ◦ ◦

◦

N3 = (1, 3, 4)

◦ ◦
◦
◦

◦
◦
◦
◦

N4 = (N, 5)

◦ ◦ ◦
◦ ◦ ◦

◦
◦
◦

N5 = (1, 2, 6)

◦ ◦
◦
◦
◦
◦
◦
◦
◦

Theorem 8. (Nazarova-Zavadskij 1981). A poset P of tame representation type is of
finite growth representation type if and only if

P )
◦ ◦

◦ ◦ ◦ ◦

In 1990, Nazarova et al [9] gave a generalization to the criterion shown in the Theorem 6
for the case of poset with involution.

Theorem 9 (Theorem, [9]). For a poset with an involution P with an equivalence relation
the following statements are equivalent:

(a) P is tame (over an arbitrary field k);

(b) P does not contain subsets of the form:

N1 = S5

◦ ◦ ◦ ◦ ◦

N2 = (1, 1, 1, 2)

◦ ◦ ◦ ◦
◦

N3 = (2, 2, 3)

◦ ◦ ◦
◦ ◦ ◦

◦

N4 = (1, 3, 4)

◦ ◦
◦
◦

◦
◦
◦
◦

N5 = (N, 5)

◦ ◦ ◦
◦ ◦ ◦

◦
◦
◦

N6 = (1, 2, 6)

◦ ◦
◦
◦
◦
◦
◦
◦
◦

N7

• ◦ ◦ ◦

N8

• ◦ ◦
◦

N9

• • ◦

N10

• • •

(c) P̃ does not contain subsets N1, . . . , N6.
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Where P̃ denoted the ordinary poset obtained from a poset with an involution by replacing
every big point x by a pair of small points x′, x′′ inheriting all relations of the point x ∈ P.

The following is the finite growth criterion given by Bondarenko and Zavadskij [8]:

Theorem 10 (Theorem 2, [8]). A tame poset P with involution is of finite growth if and
only if all chains and nonperiodical cycles in P have no repetitions and do not intersect
mutually (i.e., have no common vertices as graphs).

We recall that if x ∼ y stands for equivalent points x and y and symbol x||y is used to
denote that points x and y are incomparable then a graph Q in a poset P is called a cycle
if it has the form:

x1 ∼ x2||x3 ∼ x4|| . . . ||x2n−1 ∼ x2n, with x1 ∼ x2n, n ≥ 1,

besides a graph Q is said to be a chain in P if it has the form A||B, where a||b for
all a ∈ A and b ∈ B or A||x1 ∼ x2||x3 ∼ x4|| . . . ||x2n−1 ∼ x2n||B, where the set of
vertices A = {a1, a2} and B = {b1, b2} are two-element small points subsets satisfying the
conditions a1||a2 and b1||b2.



CHAPTER 2

An Exact Structure and Almost Split Sequences

for the Category of Vector Space Representations

of Posets with an Involution.

The Auslander-Reiten theory was introduced by Auslander and Reiten in 1975 [4] and has
become a central tool in the theory of representations of finite-dimensional algebras. This
theory has been extended to other categories including categories of representations of
ordinary posets [[5], [29], [33]]. The most important theorem about almost split sequences
in Rep(P) is that they exist. This theorem was given by Bautista and Martinez [1]. Taking
into account that the category of representations of poset with an involution (P, θ) is not
abelian, it is convenient to introduce a collection of sequences ε with some properties which
will play the role of exact sequences.

In this chapter we prove that the category (Rep(P, θ), ε) is exact and has enough injec-
tives and projectives. Later we prove the existence of a categorical equivalence between
(Rep(P, θ), ε) and modsp(A) of socle projectives modules.

2.1 Exact Structure of Rep(P, θ).

Let A be an additive category in which all idempotents split, and let ε be a collection of
pairs of morphisms M

u
−! E

v
−! N . A morphism u : M

u
−! E is called an ε-inflation if

there exists a morphism v : E ! N such that (u, v) ∈ ε. A morphim v : E
v
−! N is called

an ε-deflation if there exists a morphism u : M ! E such that (u, v) ∈ ε.

The pair (A; ε) will be called exact structure if the following conditions are satisfied:

1. The family ε is closed under isomorphisms; that is, if there exists a commutative
diagram:

M E N

M1 E1 N1

u

s

v

t r

u1 v1

29
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where s, t, r are isomorphisms and the top row is in ε, then the bottom row belongs
to ε.

2. If (u, v) ∈ ε, then u is a kernel of v and v is a cokernel of u.

3. idM : M !M is both ε-inflation and ε- deflation.

4. a. For each ε-sequence M
f
−! E

g
−! N and each morphism w : X ! N there are

morphisms β : F ! X and λ : F ! E such that the pair (λ, β) is a pullback of
the pair (g, w) and β is an ε-deflation.

b. For each ε-sequence M
f
−! E

g
−! N and each morphism u : M ! X there are

morphisms α : X ! F and λ : E ! F such that the pair (α, λ) is a pushout of
the pair (u, f) and α is an ε-inflation.

5. The composition of ε-inflations (ε-deflations, respectively) is again an ε-inflation
(ε-deflation, respectively).

6. If u2u1 is an ε-inflation then u1 is an ε-inflation. If v2v1 is an ε-deflation then v2 is
an ε-deflation.

Example 8. 1. The category modA of modules over a ring A is an exact structure.

2. The family of split exact sequences in modA is an exact structure.

In our case, let (P, θ) be a poset with involution and let us consider ε the family of
sequences of morphisms:

(V0, Vz)
u
−! (E0, Ez)

v
−! (W0,Wz),

in the category of representations Rep(P, θ) such that:

1. The sequence 0! V0
u
−! E0

v
−!W0 ! 0 is exact.

2. For all z ∈ θ, the sequence 0! Vz
uz−! Ez

vz−!Wz ! 0 is exact.

Definition 31. A morphism f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ will be called a proper epi-
morphism if f : V0 ! W0 is an epimorphism and for each z ∈ θ, fz : V z

0 ! W z
0 induces

an epimorphism fz : Vz !Wz.

Proposition 3. Let f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ be a proper epimorphism. If U0 =
ker(f) and Uz = ker(fz) ∩ Vz then (U0, Uz)z∈θ is a representation of (P, θ).

Proof. In the first place, we observe that for each z ∈ θ, ker(fz) = U z0 , then Uz =
U z0 ∩ Vz. We suppose now that a < a1 and (x, y) ∈ U(a,b) so, (x, y) ∈ V(a,b) then if
z1 = (a1, b1), (x, 0) ∈ V(a1,b1) as, (x, y) ∈ U(a,b), (f(x), f(y)) = (0, 0) then f(x) = 0;
therefore (x, 0) ∈ U(a1,b1). This proves that in effect (U0, Uz)z∈θ is a representation of
(P, θ). �
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Corollary 1. If f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ is a proper epimorphism and (U0, Uz)z∈θ
is as in the previous proposition, then an ε-sequence

(U0, Uz)z∈θ
g
−! (V0, Vz)z∈θ

f
−! (W0,Wz)z∈θ,

is obtained. Therefore, f is an ε-deflation if and only if f is a proper epimorphism.

Definition 32. A morphism f : (U0, Uz)z∈θ ! (V0, Vz)z∈θ will be called a proper
monomorphism if f : U0 ! V0 is a monomorphism, fz : Uz ! Vz is a monomorphism
for all z ∈ θ and for each z = (a, b) ∈ θ is satisfied that (x, y) ∈ fz(Uz) if and only if
y ∈ f(U0) and (x, y) ∈ Vz.

Proposition 4. If f : (U0, Uz)z∈θ ! (V0, Vz)z∈θ is a proper monomorphism then there
exists a sequence in ε:

(U0, Uz)z∈θ
f
−! (V0, Vz)z∈θ

g
−! (W0,Wz)z∈θ,

Proof. Let g : V0 ! W0 be the cokernel of f . For z ∈ θ we define Wz = fz(Vz).
We will check that (W0,Wz)z∈θ is a representation of (P, θ). Indeed, let (x, y) ∈ W(a,b)

and (a1, b1) ∈ θ with a < a1. Then x = g(x1), y = g(y1) with (x1, y1) ∈ V(a,b) so,
(x, 0) ∈ V(a1,b1), therefore (x, 0) = g(x1, 0) ∈ W(a1,b1). This proves that (W0,Wz)z∈θ is a
representation. We prove now that for each z ∈ θ, the sequence:

0! Uz
fz
−! Vz

gz
−!Wz ! 0,

is exact. Since fz is a monomorphism, gz is an epimorphism and gzfz = 0. It only remains
to prove that if (x, y) ∈ Vz is such that (g(x), g(y)) = (0, 0) then (x, y) ∈ fz(Uz). Since
the sequence

0! U
f
−! V

g
−!W ! 0,

is exact, then (x, y) ∈ f(U). Also (x, y) ∈ Vz and f is a proper monomorphism, it follows
that (x, y) ∈ fz(Uz). This proves our affirmation. �

From the above, it follows that f is an ε-inflation if and only if f is a proper monomorphism.

Proposition 5. The pair (Rep(P, θ), ε) is an exact category.

Proof. The conditions 1, 2 and 3 are verified directly; the conditions 5 and 6 are followed
by our characterization of ε-deflations and ε-inflations. Thus, it remains to prove the
condition 4.
Let us show condition 4a. Let

(U0, Uz)z∈θ
u
−! (E0, Ez)z∈θ

v
−! (V0, Vz)z∈θ,

be an ε-sequence and let f : (W0,Wz)z∈θ ! (V0, Vz)z∈θ be a morphism. We consider the
direct sum (E0

⊕
W0, Ez

⊕
Wz)z∈θ and the morphism:

φ = (v, f) : (E0

⊕
W0, Ez

⊕
Wz)! (V0, Vz)z∈θ.
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Since vz : Ez ! Vz is an epimorphism, then φz = (vz, fz) : Ez
⊕
Wz ! Vz is an epimor-

phism for all z ∈ θ. Therefore, we obtain a sequence in ε:

(L0, Lz)z∈θ
(−h1,h2)t

−−−−−−! (E0

⊕
W0, Ez

⊕
Wz)z∈θ

φ
−! (V0, Vz)z∈θ, (2.1)

and a commutative diagram:

(L0, Lz)z∈θ (W0,Wz)z∈θ

(E0, Ez)z∈θ (V0, Vz)z∈θ

h2

h1 f

v

We will prove that h2 is an ε-deflation; for this purpose, we need to prove that h2 : L0 !
W0 is an epimorphism, and that for all z ∈ θ, hz2 : Lz ! Wz is an epimorphism. h2 is
an epimorhism since if w ∈ W0 and we take f(w) ∈ V0; as v is an epimorphism, then
there exists e ∈ E0 such that f(w) = v(e) so, φ(w,−e) = f(w)− v(e) = 0. As (2.1) is an
ε-sequence, the exact sequence

0! L0
(−h1,h2)t

−−−−−−! E0

⊕
W0

φ
−! V0 ! 0

is obtained. Therefore, there exists x ∈ L0 such that (−h1(x), h2(x)) = (−e, w), so
w = h2(x); which proves that h2 is an epimorphism.

For all z ∈ θ, we have the exact sequence

0! Lz
(−hz1,hz2)t

−−−−−−! (Ez
⊕

Wz)
φz
−! Vz ! 0, (2.2)

and by a similar argument to the previous one it is proved that hz2 : Lz ! Wz is an
epimorphism. This allows us to conclude that h2 is an ε-deflation and since (2.1) is an
ε-sequence then the pair (h1, h2) is a pullback of the pair (v, f).

Now, we will prove the part (b) of the condition 4. We take an ε-sequence as in (2.1) and
a morphism f : (U0, Uz)z∈θ ! (W0,Wz)z∈θ. We consider the morphism

ψ = (u, f)t : (U0, Uz)z∈θ ! (E0

⊕
W0, Ez

⊕
Wz)z∈θ,

and we prove that this is a proper monomorphism. Since u is a monomorphism then

ψ = (u, f)t : U0 ! E0

⊕
W0,

is a monomorphism. For z ∈ θ the morphism uz : Uz ! Ez is a monomorphism too;
therefore ψz = (uz, fz) : Uz ! Ez

⊕
Wz is a monomorphism. In particular, its restriction

to Uz is a monomorphism.

We suppose that z = (a, b) and (u(x), f(x), u(y), f(y)) ∈ Ez
⊕
Wz then (u(x), u(y)) ∈

Ez. Since u is a proper monomorphism then there exists (x0, y0) ∈ Uz such that
(u(x0), u(y0)) = (u(x), u(y)), and since u is a monomorphism then x = x0, y = y0 and
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ψ((x, y)) = (u(x), f(x), u(y), f(y)) with (x, y) ∈ Uz; therefore, ϕ is a proper monomor-
phism. Then the ε-sequence

(U0, Uz)z∈θ
ψ
−! (E0

⊕
W0, Ez

⊕
Wz)z∈θ

(g1,−g2)
−−−−−! (N0, Nz)z∈θ,

and the commutative diagram

(U0, Uz)z∈θ (E0, Ez)z∈θ

(W0,Wz)z∈θ (N0, Nz)z∈θ

u

f g1

g2

are obtained.

In a similar way to case (a) it can be proved that g is a proper monomorphism and therefore
an ε-inflation. From the construction of (N0, Nz)z∈θ we have that the pair (g1, g2) is a
pushout of (u, f). �

2.1.1 The ε-projectives

Definition 33. A representation (P0, Pz)z∈θ will be called ε-projective if given a ε-
deflation g : (E0, Ez)z∈θ ! (V0, Vz)z∈θ and a morphism f : (P0, Pz)z∈θ ! (V0, Vz)z∈θ,
there exists a morphism h : (P0, Pz)z∈θ ! (E0, Ez)z∈θ such that gh = f .

Remark 3. The representation S = (k, Sz)z∈θ with Sz = 0 for all z ∈ θ, is a projective
representation.

Let w = (a, b) ∈ θ, we will define the representation P (w) = (P (w)0, P (w)w), where
P (w)0 = k〈e1, e2〉 the vector space of dimension two with bases e1, e2. If a and b are
incomparable P (w)w = 〈(e1, e2)〉, while if a < b then P (w)w = 〈(0, e1), (e1, e2)〉.

Henceforth, we will use the following notation, if d1, d2 ∈ P then

λ(d1, d2) =

{
1 if d1 < d2,

0 otherwise.

If z = (a1, b1), the space P (w)z is the vector space generated by the vectors
(λ(a, a1)e1, 0), (0, λ(a, b1)e1), (λ(b, a1)e2, 0), (0, λ(b, b1)e2). In case that, w = {a} then
P0(w) = k〈e〉 and for z = (a1, b1)

P (w)z = 〈(λ(a, a1)e, 0), (0, λ(a, b1)e)〉.

It can be verified that P (w) = (P0(w), P (w)z)z∈θ is in effect a representation.

Definition 34. The element (e1, e2) ∈ P (w)w will be called the generator of the represen-
tation (P (w)0, P (w)z)z∈θ, when w = (a, b) while the element e ∈ P (w)w is the generator
when w consists of a single point.
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Proposition 6. Let (V0, Vz)z∈θ be a representation of (P, θ), then if w = (a, b) ∈ θ and
v ∈ Vw there exists an unique morphism f : P (w)! (V0, Vz)z∈θ such that f((e1, e2)) = v.
If w = {a} and v ∈ Vw there exists an unique morphism as before such that f(e) = v.

Proof

1. If w = (a, b) and a < b. Let v = (v1, v2) ∈ V(a,b) and f : P (w)0 ! V0 with f(e1) = v1;
f(e2) = v2. Since (0, v1) ∈ V(a,b), then fw(0, e1) = (0, v1) and fw((e1, e2)) = (v1, v2) ∈
V(a,b); therefore fw(P (w)w) ∈ Vw.

Let (a1, b1) ∈ θ, then P (w)(a1,b1) is generated by the vectors
(λ(a, a1)e1, 0), (0, λ(a, b1)e1), (λ(b, a1)e2, 0), (0, λ(b, b1)e2). If λ(a, a1) 6= 0 then
a < a1 and therefore (v1, 0) ∈ V(a1,b1) and fz(λ(a, a1)e1, 0) = (v1, 0) ∈ V(a,b). In the
same way, it is seen that fz, sends each generator from P (w)(a1,b1) into V(a1,b1). The
uniqueness of f is clear.

2. If w = (a, b) and a, b are incomparable. In this case, P (w)(a,b) = 〈(e1, e2)〉 and
fw((e1, e2)) = (v1, v2) ∈ V(a,b). Therefore, fw(P (w)(a, b)) ∈ V(a,b). For the rest it is
checked as in the previous case.

3. If w = {a}, the proof is similar to the previous cases.

�

Proposition 7. The representations P (w) = (P (w)0, P (w)z)z∈θ have the following prop-
erties:

1. P (w) is an ε-projective representation.

2. End(P (w)) ∼= k if w = (a, b) with a and b incomparable or when w consists of a
single element. If w = (a, b) with a < b then End(P (w)) ∼= k[x]/x2. Therefore P (w)
is indecomposable for all w ∈ θ.

3. For any representation (V0, Vz)z∈θ, there exists an ε-deflation g : (Q0, Qz)z∈θ !
(V0, Vz)z∈θ, where (Q0, Qz)z∈θ is ε-projective.

4. If (Q0, Qz)z∈θ is an indecomposable projective representation of Rep(P, θ), with Qz 6=
0 for some z ∈ θ, then (Q0, Qz)z∈θ ∼= P (w) for some w ∈ θ.

Proof

1. Let f : (E0, Ez)z∈θ ! (V0, Vz)z∈θ an ε-deflation and g : (P (w)0, P (w)z)z∈θ !
(V0, Vz)z∈θ be a morphism. We take fw(e) ∈ Vw, where e is the generator of
(P (w)0, P (w)z)z∈θ. Since fw is surjective there exists v1 ∈ Ew such that fw(v1) = v.
By Proposition 6 there exists a morphism h : (P (w)0, P (w)z)z∈θ ! (E0, Ez)z∈θ such
that h(e) = v1, so fh(e) = g(e). By the uniqueness in the Proposition 6 is obtained
that fh = g. Therefore, (P (w)0, P (w)z)z∈θ is a projective representation.

2. If w = (a, b) or w = {a} then P (w)w = 〈e〉 with e the generator of (P (w)0, P (w)z)z∈θ;
therefore, if f : (P (w)0, P (w)z)z∈θ ! (P (w)0, P (w)z)z∈θ then f(e) = ce with c ∈ k.
Hence, f = c(idP (w)0

). This proves that

End((P (w)0, P (w)z)z∈θ = k(idP (w)) ∼= k.



2.1. EXACT STRUCTURE OF Rep(P, θ). 35

We suppose now that w = (a, b) with a < b, then if e = (e1, e2) is the generator
of P (w)0. We have that P (w)w = 〈(e1, e2), (0, e1)〉. Let f be an endomorphism of
(P (w)0, P (w)z)z∈θ, then fw((e1, e2)) = c(e1, e2) + d(0, e1) with c, d ∈ k. Therefore
f(e1) = ce1, f(e2) = ce2 + de1. In view of Proposition 6 the morphism f is com-

pletely determined by the matrix M(f) =

(
c d
0 c

)
. If f1 is another automorphism

of (P (w)0, P (w)z)z∈θ, then M(f1f) = M(f1)M(f). Hence,

End((P (w)0, P (w)z)z∈θ) ∼=
{(

c d
0 c

)
| c, d ∈ k

}
∼= k[x]/(x2).

3. For V we choose a basis B(0) and for each z ∈ θ such that Vz 6= 0, we choose B(z)
a k-basis of Vz. For each v ∈ B(0) we take the morphism fv : S ! (V0, Vz)z∈θ which
sends 1 ∈ k in v ∈ V and for v ∈ B(z) we have a morphism fv : (P (w)0, P (w)z)z∈θ !
(V, Vz)z∈θ, such that fv(e) = v where e is the generator of (P (w)0, P (w)z)z∈θ. Let
B =

⋃
z
B(z), then we have a morphism

f = (fv)v∈B :
⊕

v∈B(0)

S
⊕
z

⊕
v∈B(z)

P (z)! (V0, Vz)z∈θ;

clearly this morphism is an ε-deflation and the representation⊕
v∈B(0)

S
⊕
z

⊕
v∈B(z)

P (Z),

is ε-projective.

4. Let (Q0, Qz)z∈θ be a projective representation, such that for some z ∈ Qz 6= 0. From
the above, we have a deflation:

P
f
−! (Q0, Qz)z∈θ,

then there exists a morphism h : (Q0, Qz)z∈θ ! P such that fh = idQ. This implies
that (Q0, Qz)z∈θ is a direct sum of P . The last representation is a direct sum of
representations S and P (z); therefore, our representation is isomorphic to one of
these, and as for some z ∈ θ, Qz 6= 0, then (Q0, Qz)z∈θ ∼= P (w) for some w ∈ θ.

�

Remark 4. An exact category is said to have enough projectives if it satisfies property 3
of Proposition 7.

Definition 35. A representation (I0, Iz)z∈θ is called ε-injective if given an ε-inflation
f : (V0, Vz)z∈θ ! (E0, Ez)z∈θ and a morphism g : (V0, Vz)z∈θ ! (I0, Iz)z∈θ, there exists a
morphism h : (E0, Ez)z∈θ ! (I0, Iz)z∈θ such that hf = g.

Henceforth it is convenient to use the following notation to represent poset with involution:
the pair (V0, Vz)z∈θ where V0 is a k-vector space and Vz ⊂ V z

0 , is a representation of (P, θ)
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if and only if for each x ≤ y in P, there exists a linear transformation τ : V[x] −! V[y] such
that the following diagram is commutative

V[x] V
[x]

0

V[y] V
[y]

0

i[x]

τ iyπx

i[y]

where i[x] : V[x] ! V
[x]

0 and iy : V0 ! V
[y]

0 are the inclusions and πx : V
[x]

0 ! V0 is the
projection.

2.1.2 Representations by Quotients

Let (P, θ) be a poset with an involution and k be a field. A representation by quotient
(V0, jz)z∈θ, consists of a k-vector space V0 and for each z ∈ θ an epimorphism jz : V z

0 ! Vz
such that if a1 < a and z = (a, b), z1 = (a1, b1) then there exists a morphism τ : Vz ! Vz1
such that

τjz = jz1ia1πa.

A morphism f : (V0, jz)z∈θ ! (V ′0 , j
′
z)z∈θ consists of a linear transformation f0 : V0 ! V ′0

and for each z ∈ θ a linear transformation fz : Vz ! V ′z such that the following diagram
commutes

V z
0 Vz

(V ′0)z V ′z

jz

fz0 fz

j′z

We denote by Repq(P, θ) the category of quotient representations.

Proposition 8. There are functors

C : Rep(P, θ)! Repq(Pop, θ),

defined by C((V0, Vz)z∈θ) = (V0,Coker(iz))z∈θ, where iz : Vz ! V z
0 is the inclusion and

K : Repq(Pop, θ)! Rep(P, θ),

where K((V0, jz))z∈θ = (V0,Ker(jz)z∈θ). Further, CK ∼= idRepq(Pop,θ) and KC ∼= idRep(P,θ)

therefore Rep(P, θ) is equivalent to Repq(Pop, θ).

Proof Let (V0, Vz)z∈θ be an object of Rep(P, θ) and we take jz : V z
0 ! V ′z the cokernel

of iz. We suppose that x ∈ z and y ∈ z1 with x < y then we obtain the morphism
iyπx : V z

0 ! V z1
0 and a morphism τ : Vz ! Vz1 such that iz1τ = iyπxiz. Therefore there

exists a morphism τ ′ : V ′z ! V ′z1 such that the following diagram is commutative
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A :

Vz V z
0 V ′z

Vz1 V z1
0 V ′z1

iz

τ iyπx

jz

τ ′

iz1 jz1

This proves that (V0, jz)z∈θ ∈ Repq(Pop, θ).

Now, let f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ be a morphism in Rep(P, θ); we denote rz : Wz !
W z

0 the inclusion and by r′z : W z
0 ! W ′z its cokernel. The morphism gz : Vz ! Wz is

obtained, and it is such that fz0 iz = rzgz. Therefore there exists a morphism fz : V ′z !W ′z
such that the following diagram is commutative

B :

Vz V z
0 V ′z

Wz W z
0 W ′z

iz

gz fz0

i′z

fz

rz r′z

thus, fz0 is a morphism of C((V0, Vz)z∈θ) in C((W0,Wz)z∈θ). We define C(f) = fz0 .

Now, if (V0, jz)z∈θ is an object of Repq(Pop, θ), by using diagram A, is obtained that
K((V0, jz)z∈θ) ∈ Rep(P, θ). If f : (V0, jz)z∈θ ! (W0, r

′
z)z∈θ is a morphism in Repq(Pop, θ)

such that f0 : V0 ! W0 then by using B is obtained that f0 produces a morphism of
K((V0, jz)z∈θ) in K((W0, r

′
z)z∈θ). The rest of the proof is clear. �

Henceforth, if W is a k-vector space D(W ) = Homk(W,k).

Proposition 9. There are contravariant functors

D1 : Rep(P, θ)! Repq(P, θ),

with D1((V0, Vz)z∈θ) = (D(V0), D(iz))z∈θ where iz : Vz ! V z is the inclusion and D(iz) :
D(V z) = D(V )z ! D(Vz) and

D2 : Repq(P, θ)! Rep(P, θ),

with D2((V, jz)z∈θ) = (D(V ), im(D(jz))), further D2D1
∼= idRep(P,θ) and D1D2

∼=
idRepq(P,θ).

Proof. We identify D(V Z
0 ) = D(V0)z. Let (V0, Vz)z∈θ ∈ Rep(P, θ), then D1((V0, Vz)z∈θ) =

(D(V0), D(iz))z∈θ where iz : Vz ! V z
0 is the inclusion. Then if a ∈ z, a1 ∈ z1 with a1 < a.

Hence there exists a morphism τ : Vz1 ! Vz such that

izτ = iaπa1iz1 ;

therefore,
D(τ)D(iz) = D(iz1)D(πa1)D(ia),
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We observe that D(ia1) : D(V0)z1 ! D(V0) is equal to πa1 and D(πa) : D(V0) ! D(V0)z

is equal to ia; therefore
D(τ)D(iz) = D(iz1)ia1πa.

The above implies that D1((V0, Vz)z∈θ) ∈ Rep(P, θ). It is clear that

f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ

is a morphism in Rep(P, θ), then D(f0) : D(W0)! D(V0) determines a morphism D1(f) :
D1((W0,Wz)z∈θ) ! D1((V0, Vz)z∈θ). The rest of the proposition proceeds in a similar
way. �

Definition 36. We consider εq the class of sequences in Repq(P, θ) which have the form

(V 1
0 , j

1
z )z∈θ

f
−! (V 2

0 , j
2
z )z∈θ

g
−! (V 3

0 , j
3
z )z∈θ,

such that
0 −! V 1

0
f0−! V 2

0
g0−! V 3

0 −! 0,

and
0 −! V 1

z
fz
−! V 2

z
gz
−! V 3

z −! 0,

are exact, where jiz : (V i
0 )z ! V i

z .

Proposition 10. The functor D1 sends ε-sequences to εq-sequences and the functor D2

sends εq-sequences in ε-sequences. In particular, a morphism f : (V0, Vz)z∈θ ! (V ′0 , V
′
z )z∈θ

in Rep(P, θ) is an ε-inflation (ε-deflation, respectively) if and only if D1(f) is an ε-
deflation (ε-inflation, respectively).

Corollary 2. The class of morphisms εq is an exact structure. Further the category
Repq(P, θ) has enough injectives.

Corollary 3. The exact category (Rep(P, θ), ε) has enough injectives. The indecomposable
injectives of this category have the form KD1(Pz) for z ∈ θ and KD1((k, 0z)z∈θ), where
Pz and (k, 0z)z∈θ are projectives in Rep(Pop, θ).

Proof The indecomposable injectives of Repq(Pop, θ) have the form D1(Pz) and
D1((k, 0z))z∈θ. Since the functor K is an equivalence of categories such that sends εq-
sequences in ε-sequences then the injectives indecomposables of Rep(P, θ) are the form
KD1(Pz) for z ∈ θ and KD1((k, 0z)z∈θ). �

Remark 5. KD1((k, 0z)z∈θ) = J is the representation J = (J0, Jz)z∈θ such that J0 = k
and Jz = kz.
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2.2 The Endomorphism Algebra

Let (P, θ) be a poset with an involution. We know that in the exact category (Rep(P, θ), ε)
a system of representatives of isomorphism classes of indecomposable projectives is given
by P z for z ∈ θ and S = P 0. We take P =

⊕
z∈θ
P z
⊕
S and A = EndRep(P,θ)(P ). We have

the functor H : Rep(P, θ)! modA given by

H(L) = HomRep(P,θ)(P ,L).

The functor H sends ε-sequences in exact sequences, because P is ε-projective. We observe
that H(P ) = A. Let P j with j = z ∈ θ or j = 0. If we consider the projection πj : P ! P j
and the inclusion σj : P j ! P , we obtain the idempotent ej = σjπj ∈ EndRep(P,θ)(P ) = A.
We have

1A =
∑
z∈θ

ez + e0,

and
A =

⊕
z∈θ

ezA
⊕

e0A.

Lemma 2. H(Pz) ∼= ezA, H(S) = e0A.

Proof. We have the morphism H(πj) : H(P ) ! H(P j) and H(σj) : H(P j) ! H(P ). It
is obtained that H(πj)H(σj) = H(1P j

) = 1H(P j). Therefore H(σj) is a monomorphism

and induces an isomorphism of H(P j) in ImH(σj). Since

H(σj) = H(ej)H(σj), H(ej) = H(σj)H(πj),

then ImH(σj) = ImH(ej) = ejA. �

Lemma 3. For L = (L0;Lz)z∈θ ∈ Rep(P, θ) is obtained

socH(L) ∼= (e0A)l,

with l = dimk(L0).

Proof. Let I = θ ∪ {0}
rad(A) =

⊕
i,j∈I

eiradAej ,

with eiradAej = rad(Pj , Pi) = {f : Pi ! Pj | f is not an isomorphism}. Since
e0rad(A) =

⊕
j∈I
e0radAej = e0radAe0 = 0.

Then (H(L)e0)radA = H(L)(e0radA) = 0. Therefore, H(L)e0 ⊂ socH(L). On the other
hand, socH(L) =

⊕
i∈I

socH(L)ei and socH(L)ei = socH(L) ∩H(L)ei. Now, we will prove

that for i 6= 0, socH(L) ∩H(L)ei = 0. We have

H(L)ei = HomRep(P,θ)(P i, L).

We suppose that s ∈ socH(L) ∩ H(L)ei then if s 6= 0, s : (P i)0 ! L0 is a non zero
morphism, so there exists x ∈ (P i)0 such that s(x) 6= 0. On the other hand, there exists a
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morphism t : S ! P i such that if y is a generator of S, t(y) = x, so st 6= 0, the morphism
t : S ! P i is not an isomorphism because i 6= 0, then t ∈ radA, therefore s = 0. From
this it follows that

H(L)e0 ⊂ socH(L) ⊂ H(L)e0.

Consequently, H(L)e0 = socH(L). This implies that there is an epimorphism
(e0A)m ! H(L)e0. Since e0A is simple then H(L)e0

∼= (e0A)l for some integer l.

Since, e0A = e0Ae0
∼= EndA(e0A) ∼= EndRep(P,θ)(S) ∼= k. Therefore,

dimkH(L)e0 = ldimk(e0A) = l,

dimkH(L)e0 = dimk(S,L) = dimkL0,

�

Definition 37. Let f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ be a morphism in Rep(P, θ). We define
Im(f) = (f(V0), fz(Vz))z∈θ.

We can see that Im(f) ∈ Rep(P, θ), also the morphism f induces a proper epimorphism

f : (V0;Vz)z∈θ ! Im(f).

Proposition 11. 1. If f : L ! L′ is a proper epimorphism in Rep(P, θ) then H(f) :
H(L)! H(L′) is an epimorphism.

2. If f : (V0, Vz)z∈θ ! (W0,Wz)z∈θ is such that f : V0 ! W0 is a monomorphism then
H(f) is a monomorphism.

Proof.

1. Since f is a proper epimorphism there is an ε-sequence L′′
g
−! L

f
−! L′, and since

H is exact, the following sequence in modA is obtained

0 −! H(L′′)
H(g)
−−−! H(L)

H(f)
−−−! H(L′) −! 0,

and therefore our statement is true.

2. Let V = (V0, Vz)z∈θ, W = (W0,Wz)z∈θ and P = (P 0, P z)z∈θ. Now

H(f) = Hom(1, f) : HomRep(P,θ)(P , V )! HomRep(P,θ)(P , θ,W ),

then, if 0 6= s ∈ HomRep(P,θ)(P , V ) and as f : V0 ! W0 is a monomorphism, then
fs : P 0 !W0 is non zero, so fs is non zero and therefore H(f) is a monomorphism.

�
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Proposition 12. For all L ∈ Rep(P, θ), socH(L) is projective, in particular socA =
socH(P ) is projective. Therefore,

1. A is a right peak algebra.

2. For L ∈ Rep(P, θ), H(L) is socle projective, that is, H(L) ∈ modsp(A).

3. Let J = (k, kz)z∈θ, then H(J) ∼= E, where E is the injective envelope of the simple
e0A.

4. The functor H induces an equivalence of categories:

H : Rep(P, θ)! modsp(A),

Proof. Items (1) and (2) are obtained from the previous lemmas.
Now we will check item (3): since socH(J) = e0A, therefore there is a monomorphism

H(J)! E,

where E, the injective envelope of e0A is D(Ae0).
It follows that for each z ∈ θ, D(Ae0)ez = D(ezAe0) and

ezAe0 = HomRep(P,θ)(S, P z)
∼= (P z)z

∼= kz.

Therefore,
dimkD(ezAe0) = card(z),

then for all z ∈ θ, dimk(Jz) = dimkEez. This implies that the monomorphism H(J)! E
is an isomorphism.
To check item (4), we first observe that there is an isomorphism

H : HomRep(P,θ)(P i, P j)! HomA(eiA, ejA),

Indeed, the composition of morphism H with monomorphism HomA(eiA, ejA) ∼= ejAei
is an isomorphism, so H is too. This implies that H : HomRep(P,θ)(Q,Q

′) !
HomA(H(Q1), H(Q2)) is an isomorphism when Q1, Q2 are ε-projectives in (Rep(P, θ), ε).
Let now, L ∈ Rep(P, θ), by (3) of Proposition 7 we have ε-sequences

K(L) −! Q1(L) −! L,

K1(L) −! Q2(L) −! K(L).

As H is an exact functor the exact sequences in modsp(A)

0 −! H(K(L)) −! H(Q1(L)) −! H(L) −! 0,

0 −! H(K1(L)) −! H(Q2(L)) −! H(K(L)) −! 0,

are obtained. Therefore, if fL is the composition of Q2(L) −! K(L) with K(L) −! Q1(L)
and gL : Q1(L) −! L the projective presentation of L

Q2(L)
fL−! (Q1(L))

gL−! L,
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and the projective presentation of H(L)

H(Q2(L))
H(fL)
−−−−! H(Q1(L))

H(gL)
−−−−! H(L).

are obtained.

Let α : L ! L′ be a morphism in Rep(P, θ), then there exist morphisms h1 : Q1(L) !
Q1(L′), h2 : Q2(L)! Q2(L′) and commutative diagrams

Q2(L) Q1(L) L

Q2(L′) Q1(L′) L′

fL

h2 h1

gL

α

fL′ gL

H(Q2(L)) H(Q1(L)) L

H(Q2(L′)) H(Q1(L′)) H(L′)

H(fL)

H(h2) H(h1)

H(gL)

α

H(fL′ ) H(gL)

The functor H is faithful; indeed if H(α) = 0 then there exists a morphism t : H(Q1(L))!
H(Q2(L′)) such that H(fL′)t = H(h1). Here t = H(s) for some s : Q1(L) ! Q2(L′),
therefore fL′s = h1, which implies that α = 0.

Now, we prove that H is full: let β : H(L) ! H(L′) be a morphism, then there exist
morphisms t1 : H(Q1(L)) ! H(Q1(L′)),and t2 : H(Q2(L)) ! H(Q2(L′)) such that
H(gL′)t1 = βH(gL), H(fL′)t2 = t1H(fL). Then there exist morphisms h1 : Q1(L) !
Q1(L′), h2 : Q2(L) ! Q2(L′) such that fL′h2 = h1fL and due to the properties of
projective presentations, there is a morphism α : L! L′ such that gL′h1 = αgL. Applying
functor H we obtain the equalities

H(gL′)H(h1) = H(α)H(gL) = βH(gL).

Since H(gL) is an epimorphism then H(α) = β.

Finally, we prove that H is a dense functor. Let M ∈ modsp(A), so soc(M) ∼= (e0A)l for
some natural l. Therefore, an injective envelope

u : M ! H(J)l

and a projective cover
v : H(Q)!M

are obtained, where Q is an ε-projective. We take f = uv : H(Q) ! H(J), then there
exists g : Q! J such that H(g) = f . We have a proper epimorphism v′ : Q! Im(g) and
an inclusion u′ : Im(g) ! J l, and g = u′v′. Then f = H(g) = H(u′)H(v′) with H(v′) an
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epimorphism and H(u′) a monomorphism. Therefore

M = Imf ∼= H(Im(g)).

�

In [29] it was proved that category modsp(A) has almost split sequences, therefore as
consequence from (4) of Proposition 12 we obtain the following proposition.

Theorem 11. The category Rep(P, θ) has almost split sequences.

Proposition 13. Let P = {1, 2, . . . ,m} be a poset and P̂ = P ∪ {0} with i < 0, for all
i ∈ P. Then the algebra A = EndRep(P,θ)(P ) ∼= I(P̂), the incidence algebra of P̂.

Proof. For i, j ∈ P̂ : ejAei = HomRep(P,θ)(P i, P j)
∼= k if j ≤ i, in other cases ejAei = 0.

�



CHAPTER 3

The Auslander-Reiten Quiver of Posets with an

Involution of Type Dn.

In this chapter, by using the results from the previous chapter, we construct the Auslander-
Reiten quiver for a poset type that we will denote by Dn. This result is of interest to us
since it will be used in Chapter 5 where we will describe the categorical properties of the
DIII differentiation algorithm. In this chapter we will assume that k is an algebraically
closed field.

3.1 Poset with an Involution of Type Dn

We denote by Dn to the poset with an involution (P,≤, θ) where (P,≤) = {an < an−1 <
· · · < a1 < b1 < b2 < · · · < bn−1 < bn} and θ = {(ai, bi)}i=1,...,n. We denote by Rep(Dn)
the category of representations of the poset Dn.

The Hasse diagram of the poset Dn is as follows

(P, θ)=

bn

bn−1

b1

a1

an−1

an

•
•
•
•...•

...

•

Figure 3.1. Hasse diagram of poset with an involution of type Dn

We consider the following representations of Dn :

a. L1,i = (L0,L(aj ,bj))j≥1 where L0 = k{e} and

44
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L(aj ,bj) =

{
(0, 0), if j < i,

〈(0, e)〉, if j ≥ i.
(3.1)

b. L2,i = (L0,L(aj ,bj))j≥1 where L0 = k{e} and

L(aj ,bj) =

{
〈(0, e), (e, 0)〉, if j ≤ i,
〈(0, e)〉, if j > i.

(3.2)

c. L3,i = (L0,L(aj ,bj))j≥1 where L0 = k{e1, e2} and

L(aj ,bj)) =


〈(0, e1), (e1, 0)〉, if j < i,

〈(0, e1), (e1, e2)〉, if j = i,

〈(0, e1), (0, e2)〉, if j > i.

(3.3)

It is clear that each one of the previous representations are indecomposable.

Remark 6. The representation S = (k, Sz)z∈θ with Sz = 0 for all z ∈ θ, is called a trivial
indecomposable representation of Dn.

Proposition 14. The representations above is the complete list of non trivial indecom-
posable representations of Dn.

Proof. We will prove by induction on n that any representation of Dn can be written as
a direct sum of some representations isomorphic to those presented in the previous list.

Let V = (V0, V(a1,b1)) be a representation of D1. We consider the corresponding matrix
representation (Ma1 ,Mb1), so there are nonsingular matrices S, T such that

SMa1T = Na1 , SMb1T = Nb1 ,

where (Na1 , Nb1) is the direct sum of pairs of matrices as follows:

(a)

(
En
01,n

)
,

(
01,n

En

)
.

(b)

(
01,n

En

)
,

(
En
01,n

)
.

(c) (En, 0n,1), (0n,1, En).

(d) (0n,1, En), (En, (0n,1).

(e) Jλ,n, En.

(f) En, Jλ,n.



3.1. POSET WITH AN INVOLUTION OF TYPE DN 46

By Definition 8, the matrix representation (Ma1 ,Mb1) is equivalent to the matrix
representation (Na1 , Nb1). Therefore the vector space representation V is isomorphic to
the direct sum of the matrix representations listed above.

We will check in each case the corresponding vector space representation. For this, we
will remember from section 1.3 and by using the notation of this section that for V =
(km, V(a1,b1)), taking U = U(a1,b1) and U+ = πa1(U) it is obtained that U and (0, U+)
generate V(a1,b1).

(a) In this case the vector space representation is given by (kn+1, V(a1,b1)) where the
space V(a1,b1) ⊂ kn+1

⊕
kn+1, with

U(1) = (e1, e2), U(2) = (e2, e3), . . . , U(n) = (en, en+1),

thus, U+ = {e1, . . . , en} and

V(a1,b1) = 〈(e1, e2), (e2, e3), . . . , (en, en+1)〉 ∪ 〈(0, e1), (0, e2), . . . , (0, en)〉
= 〈(e1, 0), (0, e1), (e2, 0), (0, e2), . . . , (0, en), (en, en+1)〉,

from here it follows

(kn+1, V(a1,b1)) = L2,1(e1)
⊕
· · ·
⊕

L2,1(en−1)
⊕

L3,1(en, en+1).

(b) Here the vector space representation is (kn+1, V(a1,b1)) and

U(1) = (e2, e1), U(2) = (e3, e2), . . . U(n) = (en+1, en),

then U+ = {e2, e3, . . . , en+1}, and

V(a1,b1) = 〈(e2, e1), (e3, e2), . . . , (en+1, en)〉 ∪ 〈(0, e2), (0, e3), . . . , (0, en+1)〉
= 〈(0, e2), (e2, e1), (e3, 0), (0, e3), . . . , (en+1, 0), (0, en+1)〉.

Therefore,

(kn+1, V(a1,b1)) = L3,1(e2, e1)
⊕
,L2,1(e3)

⊕
· · ·
⊕

L2,1(en+1).

(c) The corresponding vector space representation in this case is (kn, V(a1,b1)), where

U(1) = (e1, 0), U(2) = (e2, e1), . . . U(n) = (en, en−1), U(n+ 1) = (0, en),

here, U+ = {e1, e2, . . . , en} and

V(a1,b1) = 〈(e1, 0), (e2, e1), . . . , (en, en−1), (0, en)〉 ∪ 〈(0, e1), (0, e2), . . . , (0, en)〉
= 〈(e1, 0), (0, e1), (0, e2), (e2, 0), . . . , (en, 0), (0, en)〉.

Therefore,

(kn, V(a1,b1)) = L2,1(e1)
⊕

L2,1(e2)
⊕
· · ·
⊕

L2,1(en),

(d) This case is similar to the previous one.
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(e) Here the vector space representation is (kn, V(a1,b1)) and

U(1) = (λe1, e1), U(2) = (λe2 + e1, e2), . . . , U(n) = (λen + en−1, en),

then, if λ 6= 0, U+ = {e1, e2, . . . , en} and

V(a1,b1) = 〈(λe1, e1), , (λe2 + e1, e2), . . . , (λen + en−1, en)〉 ∪ 〈(0, e1), (0, e2), . . . , (0, en)〉
= 〈(e1, 0), (0, e1), (0, e2), (e2, 0), . . . , (en, 0), (0, en)〉,

therefore,

(kn, V(a1,b1)) = L2,1(e1)
⊕

L2,1(e2)
⊕
· · ·
⊕

L2,1(en).

Now, if λ = 0 and n = 1, U(1) = (0, e1), in this case

(k, V(a1,b1)) = L1,1(e1).

For n ≥ 2,

U(1) = (0, e1), U(2) = (e1, e2), . . . U(n) = (en−1, en),

so, U+ = 〈e1, e2, . . . , en−1〉 then

V(a1,b1) = 〈(0, e1), (e1, e2), . . . , (en−1, en)〉 ∪ 〈(0, e1), (0, e2), . . . , (0, en−1)〉
= 〈(e1, 0), (0, e1), (0, e2), (e2, 0), . . . , (en−2, 0), (0, en−2), (0, en− 1), (en−1, en)〉,

therefore,

(kn, V(a1,b1)) = L2,1(e1)
⊕

L2,1(e2)
⊕
· · ·
⊕

L2,1(en−2)
⊕

L3,1(en−1, en).

(f) Here the vector space representation is (kn, V(a1,b1)) and

U(1) = (λe1, λe1), U(2) = (e2, e1 + λe2), . . . U(n) = (en, en−1 + en−1 + λen),

as U+ = 〈e1, e2, . . . , en〉 then

V(a1,b1) = 〈(e1, λe1), (e2, e1 + λe2), . . . , (en, en−1 + λen)〉 ∪ 〈(0, e1), (0, e2), . . . , (0, en)〉
= 〈(e1, 0), (0, e1), (0, e2), (e2, 0), . . . , (en, 0), (0, en)〉.

So,

(kn, V(a1,b1)) = L2,1(e1)
⊕

L2,1(e2)
⊕
· · ·
⊕

L2,1(en).

This shows our result for case n = 1.

We assume the result is true for Dn−1. Let V = (V0, V(aj ,bj))j≥1 be a representation of Dn.
We take D1 = (an < bn; (an, bn)) and V = (V0, V(an,bn)) a representation of D1. Then
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V(an,bn)) = (0, V1)
⊕

(V2, 0)
⊕

(0, V2)
⊕ l⊕

i=1
L3,1(ei, fi),

where, V0 = V1
⊕
V2
⊕
V3
⊕
V ′3
⊕
W , with V3 = 〈e1, e2, . . . , el〉 and V ′3 = 〈f1, f2, . . . , fl〉.

Let φ : V3 ! V ′3 be an isomorphism such that φ(ei) = fi, then

l⊕
i=1

L3,1(ei, fi) = (0, V3)
⊕

Hφ(V3, V
′

3),

where, Hφ(V3, V
′

3) = {(u, φ(u)) | u ∈ V3}. Thus,

V(an,bn) = (0, V1)
⊕

(V2, 0)
⊕

(0, V3)
⊕

Hφ(V3, V
′

3),

Let Dn−1 = {an−1 < · · · < a1 < b1 < · · · < bn−1; (a1, b1), . . . , (an−1, bn−1)} and V =
(V0, V(ai,bi))i≤n−1 be the restriction of the representation V to Dn−1.

Remark 7. If u ∈ V2
⊕
V3 then (u, 0) and (0, u) are in V(ai,bi) for all i < n. Indeed, if

u ∈ V2, (u, 0) ∈ V(an,bn). As an < ai, (u, 0) ∈ V(ai,bi) and as ai < bi, (0, u) ∈ V(ai,bi) too. If
u ∈ V3 then (u, φ(u)) ∈ V(an,bn). As an < ai, (u, 0) ∈ V(ai,bi); therefore (0, u) ∈ V(ai,bi).

Remark 8. If (u, v) ∈ V(ai,bi) with i < n then u and v are in V1
⊕
V2
⊕
V3. Indeed,

as ai < bn, (0, u) ∈ (an, bn), therefore u ∈ V1
⊕
V2
⊕
V3. Analogously, as bi < bn then

(0, v) ∈ V(an,bn), thus v ∈ V1
⊕
V2
⊕
V3.

We consider V ′ = (V1, V(ai,bi))i≤n−1 where

V ′(ai,bi) = {(u, v) ∈ V(ai,bi) | u, v ∈ V1},

and V ′′ = (L, V ′′(ai,bi))i≤n−1, with L = V2
⊕
V3
⊕
V ′3
⊕
W and

V ′′(ai,bi) = {(u, v) ∈ V(ai,bi) | u, v ∈ L}.

Both V ′ and V ′′ are representations of Dn−1.

Affirmation. V = V ′
⊕
V ′′.

We just have to prove that for all i < n,

V(ai,bi) = V ′(ai,bi)
⊕

V ′′(ai,bi).

Let (u, v) ∈ V(ai,bi), due to Remark 8, u = u1 + u2, v = v1 + v2 where v1, v2 are in V1, and
u2, v2 are in V2

⊕
V3; thus (u2, v2) = (u2, 0) + (0, v2) ∈ V(ai,bi), so (u1, v1) ∈ V(ai,bi) and

since u1, v1 are in V1, it is obtained that (u1, v1) ∈ V ′(a1,b1) and clearly (u2, v2) ∈ V ′′(ai,bi).
This proves our claim.

Now, by application of the induction hypothesis

V ′ =

(⊕
s

L1,s(e1,s)

)⊕(⊕
t

L2,t(e2,t)

)⊕(⊕
r

L3,r(e3,r, f3,r)

)
,
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where V0 = 〈e1,s, e2,t, e3,r, f3,r〉.

Let L̂1,s(e1,s) = (ke1,s, (L̂1,s)(ai,bi))i≤n such that its restriction to Dn−1 coincides with L1,s

and L̂an,bn = k(0, e1,s).

The representation L̂2,t(e2,t) = (ke2,t, L̂2,t)(ai,bi) is such that its restriction to Dn−1

coincides with L2,t(e2,t) and (L̂2,t)(an,bn) = k(0, e2,t). Similarly, L̂3,r(e3,r, f3,r) =

(〈e3,r, f3,r〉, (L̂3,r)(ai,bi)) is the representation such that its restriction a Dn−1 is

L3,r(e3,r, f3,r) and (L̂3,r)(an,bn) = 〈(0, e3,r), (0, f3,r)〉.
We consider h1, h2, . . . , hm a basis for V2 then

V =

(⊕
s

L̂1,s(e1,s)

)⊕(⊕
t

L̂2,t(e2,t)

)⊕(⊕
r

L̂3,r(e3,r, f3,r)

)⊕(
m⊕
i=1

L2,n(hi)

)⊕(
l⊕

i=1

L3,n(ei, fi)

)
.

Clearly, L̂1,s(e1,s) = L1,s(e1,s) as representations of Dn, similarly L̂2,t(e2,t) = L2,t(e2,t) as

representations of Dn and L̂3,r(e3,r, f3,r) = L3,r(e3,r, f3,r) as representations of Dn. From
here our result is obtained. �

Henceforth, if ϕ : U ! V be a morphism, we denote B = {e} or B1 = {e1, e2} a canonical
bases of U0 or V0 when dimkU0 = 1 = dimkV0, or dimkU0 = 2 = dimkV0 respectively.

Lemma 4. Hom(L1,i,Ls,j) =


0 if s = 1 and i < j,

k if (s = 1 ∧ i ≥ j) ∨ (s = 3 ∧ i ≤ j) ∨ s = 2,

k2 if s = 3 ∧ i > j.

Proof Let ϕ ∈ Hom(L1,i,Ls,j). If s = 1 and i < j, then ϕ : k{e} ! k{e} is such that
ϕ((0, e)) ⊂ (0, 0) so, ϕ = 0, whereas if i ≥ j it is obtained that ϕ((0, e)) ⊂ (0, e), so ϕ(e) =
λe, with λ ∈ k. Now, if s = 2 then ϕ : k{e}! k{e1} is such that ϕ(0, e) ⊂ 〈(e1, 0), (0, e1)〉
and ϕ((0, e)) ⊂ (0, e) therefore, ϕ(e) = λe1, with λ ∈ k. Finally, if s = 3 and i ≤ j, then
ϕ : k{e}! k{e1, e2} is such that ϕ(0, e) ⊂ 〈(e1, 0), (0, e1)〉, ϕ(0, e) ⊂ 〈(0, e1), (e1, e2)〉 and
ϕ(0, e) ⊂ 〈(0, e1), (0, e2)〉, so, ϕ(e) = λe1, with λ ∈ k, whereas if i > j ϕ : k{e}! k{e1, e2}
is such that ϕ(0, e) ⊂ 〈(0, e1), (0, e2)〉, so ϕ(e) = λ1e1 + λ2e2, with λ1, λ2 ∈ k. �

Lemma 5. Hom(L2,i,Ls,j) =

{
k if (s = 2 ∧ i ≤ j) ∨ (s = 3 ∧ i < j),

0 otherwise.

Proof Let ϕ ∈ Hom(L2,i,Ls,j). If s = 1 then ϕ : k{e} ! k{e} is such that
ϕ〈(0, e), (e, 0)〉 ⊂ (0, 0) when i < j, and ϕ〈(0, e), (e, 0)〉 ⊂ 〈(0, e)〉 when i ≥ j so, in
both cases it is obtained ϕ = 0. If s = 2 and i > j then ϕ : k{e} ! k{e} is such that
ϕ〈(0, e), (e, 0)〉 ⊂ (0, 0), so ϕ = 0, whereas if i ≤ j, ϕ〈(0, e), (e, 0)〉 ⊂ 〈(0, e), (e, 0)〉, then
ϕ(e) = λe with λ ∈ k. Finally, let s = 3. If i < j then ϕ : k{e} ! k{e1, e2} is such that
ϕ〈(0, e), (e, 0)〉 ⊂ 〈(0, e1), (e1, 0)〉 and ϕ〈(0, e)〉 ⊂ 〈(0, e1), (e1, e2)〉, then ϕ(e) = λe1, with
λ ∈ k, whereas if i ≥ j, ϕ〈(0, e), (e, 0)〉 ⊂ 〈(0, e1), (e1, e2)〉 and ϕ〈(0, e)〉 ⊂ 〈(0, e1), (0, e2)〉,
so ϕ = 0. �

Lemma 6. Hom(L3,i,Ls,j) =


k2, if (s = 2 ∧ i ≤ j) ∨ (s = 3),

k, if (s = 1 ∧ i ≥ j) ∨ (s = 2 ∧ i > j),

0, if s = 1 ∧ i < j.
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Proof. Let ϕ ∈ Hom(L3,i,Ls,j). If s = 1 and i ≥ j then ϕ : k{e1, e2} ! k{e} is
such that ϕ〈(0, e1), (e1, 0)〉 ⊂ 〈(e, 0)〉, ϕ〈(0, e1), (0, e2)〉 ⊂ 〈(e, 0)〉, and ϕ〈(0, e1), (e1, e2)〉 ⊂
〈(e, 0)〉, so, ϕ(e1) = 0 and ϕ(e2) = λe, with λ ∈ k, whereas if i < j, ϕ = 0, since
ϕ〈(0, e1), (e1, e2)〉 ⊂ (0, 0). Now if s = 2 and i ≤ j, it is obtained that ϕ〈(0, e1), (e1, e2)〉 ⊂
〈(e, 0)〉, so ϕ(e1, e2) = (ϕ(e1), ϕ(e2)) = λ1e1 + λ2e2 , with λ1, λ2 ∈ k; now if i < j,
ϕ〈(0, e1), (e1, e2)〉 ⊂ 〈(0, e)〉, so ϕ(e1) = 0, and ϕ(e2) = λe2. When s = 3, ϕ : k{e1, e2}!
k{e1, e2} is such that if i = j, then ϕ〈(0, e1), (e1, e2)〉 ⊂ 〈(0, e1), (e1, e2)〉, so ϕ(e1) =
λe1 and ϕ(e2) = βe1 + λe2 and if i > j, then ϕ〈(0, e1), (e1, 0)〉 ⊂ 〈(0, e1), (e1, e2)〉 and
ϕ〈(0, e1), (e1, e2)〉 ⊂ 〈(0, e1), (0, e2)〉, so ϕ(e1) = 0 and ϕ(e2) = λ1e1 + λ2e2. Finally, if
i < j then ϕ〈(0, e1), (e1, e2)〉 ⊂ 〈(0, e1), (e1, 0)〉 and ϕ〈(0, e1), (0, e2)〉 ⊂ 〈(0, e1), (e1, e2)〉, so
ϕ(e1) = λe1 and ϕ(e2) = βe1. �

Proposition 15. Let ϕ : U ! V be a non zero morphism in Rep Dn with U, V ∈ Rep Dn

then the following statements hold.

1. ϕ is a monomorphism if and only if it satisfies one the following conditions:

(a) U = L1,i and V = Ls,j where s = 1 and i ≥ j or, s = 2, or s = 3.

(b) U = L2,i and V = Ls,j where s = 2 and j ≥ i or, s = 3 and i < j.

(c) U = S and V = Ls,j where s ∈ {1, 2, 3} and j ∈ {1, 2, . . . , n}.

2. ϕ is an epimorphism if and only if it satisfies one the following conditions:

(a) U = L1,i and V = Ls,j where s = 1 and i ≥ j or, s = 2 or, s = 3 and i > j.

(b) U = L2,i and V = Ls,j where s = 2 and j ≥ i.
(c) U = L3,i and V = Ls,j where s = 1 and i ≥ j or s = 2 or s = 3 and i = j.

Proof. Let ϕ : U ! V be a morphism. We denote B = {e} or B1 = {e1, e2} a canonical
basis of U0 or V0 when dimkU0 = 1 = dimkV0, or dimkU0 = 2 = dimkV0 respectively.

1. (a) If U = L1,i, then dimkU0 = 1. Thus, if V = Ls,j with s = 1 or s = 2, then
dimkV0 = 1. Therefore if ϕ 6= 0, it is a monomorphism. It is worth noting, that
if s = 1 and i ≥ j then ϕ = 0. If s = 3, i.e., V = L3,j , dimkV0 = 2, when i < j,
ϕ(e) = λe1 with, λ ∈ k and if i ≥ j then ϕ(e) = λ1e1 + λ2e2 with λ1, λ2 ∈ k.
Therefore, ϕ is a monomorphism.

(b) If U = L2,i, then dimkU0 = 1. Thus, if V = Ls,j with s = 2 then dimkV0 = 1,
when j ≥ i, ϕ 6= 0, therefore it is a monomorphism. In case that V = L3,j then
dimkV0 = 2 and ϕ(e) = λe1 when i < j, which is a monomorphism. Otherwise
ϕ = 0. Finally, if s = 1 then ϕ = 0.

(c) If U = L3,i, then dimkU0 = 2. Thus if V = L3,j , dimkU0 = 2, when i = j it
is obtained that ϕ(e1, e2) = (λe1, βe1 + λe2) therefore ϕ is a monomorphism,
whereas if i 6= j then ϕ is not a monomorphism since ϕ(e1, e2) = (λe1, βe1+λe2),
or ϕ(e1, e2) = (λe1, βe1 + λe2). Now, if s = 2 or s = 1 and ϕ 6= 0, then ϕ is not
monomorphism since ϕ(e1) = 0 and ϕ(e2) = λe.

2. (a) If U = L1,i and V = Ls,j with s = 1 and i ≥ j or s = 2, then dimkV0 = 1 and
ϕ(e) = λe, where λ ∈ k so Im(ϕ) ∼= k. It is worth noting, that if s = 1 and i ≥ j
then ϕ = 0. If s = 3 then dimkV0 = 2 and ϕ(e) = λe1, or ϕ(e) = λ1e1 + λ2e2,
if i ≤ j or i > j respectively, then ϕ is an epimorphism when i > j.
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(b) If U = L2,i and V = Ls,j with s = 2 and i ≥ j then ϕ is an epimorphism
since ϕ(e) = λe and Im(ϕ) ∼= k. If s = 3 and i < j, ϕe = λe1 where λ ∈ k
then Im(ϕ) ∼= k, but dimkV0 = 2, thus ϕ is not an epimorphism. If s = 1, we
obtained that ϕ = 0.

(c) If U = L2,i and V = Ls,j with s = 1 and i < j or s = 2 and i > j, then
ϕ(e1) = 0 and ϕ(e2) = λe2, so Im(ϕ) ∼= k and therefore ϕ is an epimorphism
since dimkV0 = 1. Analogously, we obtain that if s = 2, ϕ is an epimorphism.
Finally, if s = 3, dimkV0 = 2 and ϕ(e1) = λe1 and ϕ(e2) = βe1+λe2, when i = j
therefore ϕ is an epimorphism, whereas when i 6= j we obtain that ϕ(e1) = 0
and ϕ(e2) = λ1e1 + λ2e2, or ϕ(e1) = λe1 and ϕ(e2) = βe1 so Im(ϕ) ∼= k and
thus is not an epimorphism.

�

Corollary 4. Let ϕ : Lk,i ! Ls,j be a non zero morphism in RepDn with k, s ∈ {1, 2, 3}
and i, j ∈ {1, 2, . . . , n} then the following statements hold.

(a) kerϕ ∼=

{
k, if k = 3 ∧ (s = 1 ∨ s = 2 ∨ (s = 3 ∧ i 6= j)),

0, otherwise.

(b) Imϕ ∼=

{
k2, if k = 3 ∧ i = j,

k, otherwise.

Proof It follows from the previous proposition. �

Proposition 16. The following is a complete list of all the ε-sequences that there exist in
RepDn.

(a) L1,k ! L3,j ! L1,s, where s ≤ j and k, j, s ∈ {1, 2, . . . , n}.

(b) L1,k ! L3,j ! L2,s, where k, j, s ∈ {1, 2, . . . , n}.

(c) L2,k ! L3,j ! L1,s, where k < j, s ≤ j, and k, j, s ∈ {1, 2, . . . , n}.

(d) L2,k ! L3,j ! L2,s, where k < j, and k, j, s ∈ {1, 2, . . . , n}.

(e) S! L3,n ! L2,n.

Proof. It is a consequence of Corollary 4 and Proposition 15. �

Proposition 17. For the morphisms in the ε-sequences of the previous proposition we can
affirm the following:

(a) L1,k ! L3,j is an irreducible morphism if and only if k = j = 1 or k = j + 1.

(b) L3,j ! L1,s is an irreducible morphism if and only if j = s.

(c) L2,k ! L3,j is an irreducible morphism if and only if j = k + 1.
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(d) L3,j ! L2,s is an irreducible morphism if and only if j = s.

Proof

(a) If k = j = 1, then, ϕ : L1,1 ! L3,1, where ϕ = 〈(1, 0)t〉. ϕ is neither a section nor
a retraction since ϕ1 : L3,1 ! L1,1 is such that ϕ1 = 〈(0, 1)〉 and ϕϕ1 6= idL3,1 and
ϕ1ϕ 6= idL1,1 . The unique representation U ∈ Ind(Dn), such that ϕ = ϕ1ϕ2 with
ϕ1 : L1,1 ! U and ϕ2 : U ! L3,1 is U = L1,1. In this case, ϕ1 = id which is
a section, so, ϕ is irreducible. Now, if k = j + 1 then ϕ : L1,j+1 ! L3,j , where
ϕ = 〈(0, 1)t〉. ϕ is neither a retraction nor a section since Hom(L3,j ,L1,j+1) = 0.
In this case there is no U ∈ Ind(Dn) such that ϕ1 : L1,1 ! U , ϕ2 : U ! L3,1 and
ϕ = ϕ2ϕ1. Therefore ϕ is an irreducible morphism. Reciprocally, we suppose that
ϕ is irreducible and k 6= 1 or j 6= 1 and k 6= j + 1. If we consider U = L3,1 then we
will obtain that ϕ = ϕ2ϕ1 with ϕ1 : L1,1 ! U , ϕ2 : U ! L3,1, where ϕ1 = 〈(1, 0)t〉

is not a section and ϕ2 =

〈(
0 1
0 0

)〉
is not a retraction, which contradicts that ϕ

is an irreducible morphism.

(b) If j = s, then, ϕ : L3,s ! L1,s, where ϕ = 〈(0, 1)〉. ϕ is neither a section nor a
retraction since Hom(L1,s,L3,s) = 〈(1, 0)t〉 and ϕϕ1 6= idL3,1 and ϕ1ϕ 6= idL1,1 . The
unique representation U ∈ Ind(Dn), such that ϕ = ϕ1ϕ2 with ϕ1 : L3,1 ! U and
ϕ2 : U ! L1,1 is obtained when U = L1,1. In this case ϕ2 = id and therefore is a
section, so ϕ is irreducible. Reciprocally, if we suppose that ϕ is irreducible and j 6= s
then if we consider U = L1,s then we will obtain that ϕ = ϕ2ϕ1 with ϕ1 : L3,1 ! U
and ϕ2 : U ! L1,s, where ϕ1 = 〈(0, 1)〉 is not a retraction and ϕ2 = 〈1〉 is not a
section, which contradicts that ϕ is an irreducible morphism.

(c) If j = k + 1, then ϕ : L2,k ! L3,k+1, where ϕ = 〈(1, 0)t〉. ϕ is neither a section
nor a retraction since if ϕ′ ∈ Hom(L3,k+1,L2,k) = 〈(0, 1), (1, 0)〉 then ϕ′ϕ 6= idL2,k

and ϕϕ′ 6= idL3,k+1
. The unique representation U ∈ Ind(Dn), such that ϕ = ϕ1ϕ2

with ϕ1 : L2,k ! U and ϕ2 : U ! L2,j is obtained when U = L2,k. In this case,
ϕ1 = 〈id〉 and ϕ2 = 〈(1, 0)〉. Thus, ϕ = ϕ2ϕ1, and ϕ1 is a retraction, so ϕ is
irreducible. Reciprocally, if we suppose that ϕ is irreducible and j > k + 1 then if
we consider U = L3,k+1 then we will obtain that ϕ = ϕ2ϕ1 where ϕ1 : L2,k ! U and

ϕ2 : U ! L3,j , with ϕ1 = 〈(1, 0)t〉 is not a retraction and ϕ2 =

〈(
1 0
0 0

)〉
is not a

section, which contradicts that ϕ is an irreducible morphism.

(d) If j = s, then, ϕ : L3,j ! L2,j , where ϕ = 〈(1, 0)〉. ϕ is neither a section nor a
retraction since Hom(L2,j ,L3,j) = 0. The unique representation U ∈ Ind(Dn), such
that ϕ = ϕ1ϕ2 with ϕ1 : L2,k ! U and ϕ2 : U ! L2,j is obtained when U = L2,j .
In this case ϕ1 = 〈(0, 1), (1, 0)〉 and ϕ2 = 〈id〉, so ϕ2 is a section. Reciprocally, if we
suppose that ϕ is irreducible and j 6= s then if we consider U = L3,s then we will
obtain that ϕ = ϕ2ϕ1 where ϕ1 : L3,j ! U is not a retraction and ϕ2 : U ! L2,s is

not a section, with ϕ1 =

〈(
0 1
0 0

)〉
and ϕ2 = 〈(1, 0)〉, which contradicts that ϕ is

an irreducible morphism. �

Corollary 5. The following is a complete list of all almost split sequences that there exist
in Rep Dn.
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1. L1,1 ! L3,1 ! L1,1.

2. L1,i+1 ! L3,i ! L2,i for 0 < i < n.

3. L2,i ! L3,i+1 ! L1,i+1 for 0 < i < n.

4. S! L3,n ! L2,n.

In this way we obtain that the Auslander-Reiten quiver for Dn is given by

L1,1

L3,1

L1,2 L2,1

L3,2

L1,3 L2,2

L3,3

...
...

...

L3,n−1

L1,n−1 L2,n−1

L3,n

S L2,n

Figure 3.2. Auslander-Reiten quiver of poset with involution of type Dn.

The previous results can be extended to posets of type D∞ in the following way. We define
the functor

Ξn : Rep(Dn)! Rep(D∞)
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such that if V = (V0, V(ai,bi))1≤i≤n then Ξ(V ) = (V0, V(ai,bi))1≤i with V(aj ,bj) = (0, V0) for
j > n.

Clearly if f : V !W is a morphism in Rep(Dn) determined by the morphism f : V0 !W0

then this morphism is the same in the category Rep(D∞). So, taking Ξn(f) = f we have
defined the functor Ξn. Analogously we define a functor: Θn : Rep(Dn) ! Rep(Dn+1)
and it is obtained that Ξn+1Θn = Ξn.

Proposition 18. The indecomposable representations of D∞ are the representations

L̂s,i = Ξi(Ls,i) plus the simple trivial representation S.

Proof. Let V = (V0, V(ai,bi))1≤i be an indecomposable representation of D∞. We suppose

that V(a1,b1) = 0, then for each n the restriction of V to Dn is the form (V )Dn =
s⊕
i=1
Ls

with Ls = L1,i with i > 1 or the trivial representation. Since V0 is finite dimensional

there exists n and finite sum W =
s⊕
i=1
Ls in Dn such that for all m > n, V restricted to

Dm coincides with the restriction of Ξn(W ) to Dm, therefore V = Ξn(W ) and since V is
an indecomposable, then V = Ξn(L1,n).

Now we suppose that V(a1,b1) 6= 0 then V restricted to Dn is the form
s⊕
i=1
Ls where each Ls

is the form Lj,i with j = 1, 2, 3 and at least one Ls has the form L2,i or L3,i. As before,
there exists n such that for all m ≥ n the restriction from V to Dm coincides with the
restriction of Ξn(W ) to Dm therefore V = Ξn(Lj,n) with j = 2 or j = 3. �

Proposition 19. Let a : X
u
−! Y

v
−! Z be an almost split sequence in Rep(Dn) with X

different from the trivial representation. Then

b : Ξn(X)
Ξn(u)
−−−! Ξn(Y )

Ξn(v)
−−−! Ξn(Z),

is an almost split sequence in Rep(D∞).

Proof. The sequence b is a nontrivial ε-sequence in Rep(D∞) whose extremes are inde-
composable. Let h : Y ! Ξn(Y ) be a morphism that is not a retraction in Rep(D∞)
with Y indecomposable, then Y = Ξm(W ) with W indecomposable in Rep(Dm) for some
m > n. We have that Ξm(a) is an almost split sequence in Rep(Dm), so we can suppose
that m = n and then h = Ξm(w) where w : W ! Z is a morphism that is not a retraction.
Therefore, there exists g : W ! Y with vg = w, thus h = Ξm(v)Ξm(g). This proves our
assertion. �

3.2 Tube Deformation.

To describe the Auslander-Reiten quiver for posets of type D∞, it is necessary to introduce
functors HT : V ! Rep(D∞), HS : V ! Rep(D∞) and HT,S : V ! Rep(D∞) with V the
category whose objects are the pairs U = (U0, φU ) where φU : U0 ! U0 is a k-application
such that φm(U) = 0 for some m ≥ 1, as it is shown in the following.
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We observe that the category V is equivalent to the subcategory of k[x]-modules, whose
objects are the k[x]-modules M such that xmM = 0 for some integer m. Then if the pair
U = (U0, φU ) is considered as a k[x]−module is obtained that rad(U) = φU (U0). A system
of representants of the indecomposable objects of V is given by the objects V n = (V n

0 , φV n)
such that V n

0 = 〈en, φ(en), . . . , φn(en)〉 with φn+1(en) = 0. In this case V n ∼= k[x]/
(xn + 1). The irreducible morphisms of this category are given by λi : V i ! V i+1 such
that λi(ei) = φ(ei+1) and νi : V i+1 ! V i such that νi(ei+1) = ei.

We will define a functor HT : V ! Rep(D∞) as follows: for V n = (V n
0 , φV n) ∈ V we

define HT (V n) = L1,n(top(V n)) and we can see that if f : V n ! V m is a morphism

then f induces a morphism f̂ : top(V n) ! top(V m) such that HT (f) = f̂ : HT (V n) !
HT (V m) is a morphism in Rep(D∞). It is clear that HT (f) 6= 0 if and only if f is
an epimorphism. HS : V ! Rep(D∞) is defined as zero for n = 1 and for n ≥ 2, as
HS(V n) = L2,n−1(soc(V n)). As before, if f : V n ! V m is a morphism, then f induces a
morphism f : soc(V n) ! soc(V m) which is the morphism HS(f) : HS(V n) ! HS(V m),
then HS(f) is different from zero if and only if f is a monomorphism.

Finally, the functor HT,S : V! Rep(D∞) is defined as HT,S(V 1) = V 1 and for m > 1:

HT,S(V m) = L3,m−1(soc(V m), top(V m)).

Thus, natural morphisms of functors are obtained:

η : HT ! HT,S ; ρ : HT,S ! HS ,

for each n, the ε- sequence:

HT (V n)
ηV n
−−! HT,S(V n)

ρV n
−−! HS(V n)

is obtained. For n ≥ 2, the sequence previous is an almost split sequence.

The morphism λn : V n ! V n+1 induces a morphism

λn : HS(V n)! HT,S(V n+1).

The epimorphism νn : V n+1 ! V n induces a morphism νn : HT,S(V n+1)! HT (V n).
For n ≥ 2, the almost split sequence:

HS(V n)
λn−! HT,S(V n+1)

νn−! HT (V n)

is obtained. The morphism ν1 : V 2 ! V 1 induces a morphism ν1 : HT,S(V 2)! HT (V 1).
The sequence:

HT (V 1)
λ1−! HT,S(V 2)

ν1−! HT (V 1),

is an almost split sequence. In this way, we obtain that the Auslander-Reiten quiver for
D∞ is given by
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S HT (V 1)

HT,S(V 2)

HT (V 2) HS(V 2)

HT,S(V 3)

HT (V 3) HS(V 3)

HT,S(V 4)

...
...

...

HT,S(V n)

HT (V n) HS(V n)

HT,S(V n+1)

HT (V n+1) HS(V n+1)

...
...

...

Figure 3.3. Auslander-Reiten quiver of a poset with an involution of type D∞.



CHAPTER 4

Categorical Properties of Algorithm of

Differentiation DI

The algorithm of differentiation with respect to a suitable pair of points (called algorithm
DI too) was introduced by Zavadskij in 1977. It can be seen as a generalization of the
algorithm of differentiation with respect to a maximal point introduced by Nazarova and
Roiter in 1972, which can be applied to posets with width at least two [21, 22, 32, 36].
Afterwards in 1991 he described the categorical properties of this algorithm. That is,
Zavadskij proved that DI induces a categorical equivalence between quotient categories
and a corresponding relationship between the number of indecomposable representations
in the original category and the category of representations of the derived poset [37].

In this chapter, we present a new proof of such categorical equivalence by using module
theoretical approach, which allows us to give the indecomposable objects and the irre-
ducible morphisms explicitly. For this purpuse, we follow the ideas of Bautista et al [5,7].
That is, we can extend a poset P, to obtain an algebra Λ, which is right peak, left peak
and 1-Gorenstein. Moreover, the category of representations of posets is equivalent to
the category U, of right modules with projective socle, which do not have the projective
injective module as a direct summand as presented in the section 2.2.

4.1 Differentiation with Respect to a Suitable Pair of Points
(DI)

The following is the definition of the algorithm of differentiation DI with respect to a
suitable pair of small points (a, b) for a poset with involution and it is corresponding
theorems as in [32].

Definition 38. Let P be a finite poset then a pair of small points (a, b) ∈ P is said to be
suitable (suitable for differentiation DI) if

P = aO + bM + C,

57
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where C = {c1 < c2 < · · · < cn} is a small-point chain (eventually empty) and, moreover,
the points a, b, ci are mutually incomparable. The derivative poset (P′, θ′) is obtained from
the poset (P, θ) with respect to the pair (a, b) as follows:

1. The chain C is changed by two chains C+ = {c+
1 < · · · < c+

n } and C− = {c−1 <
· · · < c−n }.

2. The following relations are added: c−i < c+
i , a < c+

i , c
−
i < b, for all 1 ≤ i ≤ n.

3. Any of the points c−i , c
+
i inherit all relations of the order which the point ci had before

with points of a subset P\C.

It is supposed that the two element classes are not changed. That is θ′ = θ. That is, if
L = L(P) is the modular lattice generated by P then the derived poset of P is a subposet
of L such that

P′ = P′(a,b) = P\ C + {a+ c1, . . . , a+ cn}+ {c1b, . . . cnb}, with a+ ci = c+
i , cib = c−i .

The following figure illustrates this differentiation.

(P, θ) (P′, θ′)

a c1

c2

c3

...

cn−1

cn b

◦ ◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

a

c+
1

c+
2

c+
3

...

c+
n

c−1

c−2

c−3

... c−n

b

(a, b)
−!′

Figure 4.1. The diagram of a poset with involution (P, θ) and its corresponding derivate poset.

Denote the categories by R = Rep(P, θ) and R′ = Rep(P′, θ′). The differentiation functor
D(a,b) : R! R′ also denoted ′ : R! R′ is defined in the following way,

� To each object U = (U0, Uz)z∈θ ∈ R an object U ′ = (U ′0, U
′
z)z∈θ′ ∈ R′ is assigned as

follows:

U ′0 = U0,

U ′a = Ua,

U ′b = Ub,

U ′
c+i

= Ua + Uci , 1 ≤ i ≤ n,

U ′
c−i

= Ub ∩ Uci , 1 ≤ i ≤ n

U ′z = Uz, for remaining classes z ∈ θ′.

(4.1)

� If ϕ : U ! V is a morphism in R then ϕ′ = ϕ.
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Remark 9. We note that k′(a) = k′(a, ci) = k(a), 1 ≤ i ≤ n. Indeed, we recall that
k(a) = (U0, Ux)x∈P, where U0 = k, Ux = k if x ≥ a and Ux = 0 otherwise. By applying
the functor 4.1 we obtain U ′0 = k, U ′a = k, U ′

c+i
= Ua + Uci = k, U ′

c−i
= Uci ∩ Ub = 0 and

U ′b = Ub = 0. So, k(a)′ = k(a). Analogously, k(a, ci) = (U0, Ux)x∈P, where U0 = k, Ux = k
si x ≥ ci or x ≥ a, in otherwise Ux = 0. To applying the functor 4.1 we obtained U ′0 = k,
U ′a = k, U ′

c+i
= Ua + Uci = k, U ′

c−i
= Uci ∩ Ub = 0 and U ′b = Ub = k. So, k(a, ci)

′ = k(a).

Example 9. Let P the poset as in the Figure 4.2.

(P, θ) (P′, θ′)

a c b
◦ ◦ ◦ (a, b)

−!′ ◦

◦

◦

◦

a

c+

c−

b

Figure 4.2. The diagram of a poset (P, θ) and its corresponding derivate poset (P′, θ′).

We consider U = (U0, Ua, Uc, Ub) = (k⊕k, k⊕0, 0⊕k, (1+1)k), with (1+1)k = {(λ, λ) | λ ∈
k} a representation of P. Applying the functor 4.1 we obtain U ′ = (U0, Ua, Uc+ , Uc− , Ub)
where

U ′0 = U0 = k ⊕ k,
U ′a = Ua = k ⊕ 0,
U ′b = Ub = (1 + 1)k
U ′c+ = Ua + Uc = (k ⊕ 0) + (0⊕ k) = k ⊕ k,
U ′c− = Ub ∩ Uc = (1 + 1)k ∩ (0⊕ k) = 0,

Therefore, U ′ = (U0, Ua, Uc+1
, Uc−1

, Ub) = (k ⊕ k, k ⊕ 0, k ⊕ k, 0, (1 + 1)k)) = (k, k, k, 0, 0)⊕
(k, 0, k, 0, (1 + 1)k)) = k(a)⊕ k(c+

1 , b).

Now, we consider k(a) = (U0, Ua, Uc, Ub) = (k, k, 0, 0). By applying the functor 4.1 we
obtain U ′0 = k, U ′a = k, U ′c+ = Ua + Uc = k, U ′c− = Uc ∩ Ub = 0 and U ′b = k. So, k(a)′ =

(U0, Ua, Uc− , Uc+ , Ub) = (k, k, 0, k, k) = k(a). Analogously, k(a, c) = (U0, Ua, Uc, Ub) =
(k, k, k, 0). To applying the functor 4.1 we obtained U ′0 = k, U ′a = k, U ′c+ = Ua + Uci = k,

U ′c− = Uci ∩ Ub = 0 and U ′b = k. So, k(a, ci)
′ = k(a).

We consider the subposet K of P, with K = P\{aH + bN} = a+ b+ {c1 < c2 < · · · < cn}.
In this case, the Hasse diagrams of the poset K and K′ by applying the differentiation
functor (4.1), are described in the following figure:
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(K, θ) (K′, θ′)

a c1

c2

c3

...

cn−1

cn b

◦ ◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

a

c+
1

c+
2

c+
3

...

c+
n

c−1

c−2

c−3

... c−n

b

(a, b)
−!′

Figure 4.3. Diagrams of a poset K and its corresponding derivative poset K′.

From now on, in this chapter we denote by I the ideal in the category Rep(K) formed
by the morphisms that are factored through finite direct sums of objects in the set A =
{k(a), k(a, c1), . . . , k(a, cn)} and by I′ the ideal in Rep(K′) formed by the morphisms that
are factored through k(a). Besides we denote by C (C′, respectively) the Auslander-Reiten
Quiver of Rep(K) (Rep(K)′, respectively) and we designate by C( C′, respectively) the
Auslander-Reiten Quiver of Rep(K)/I(Rep(K)′/I′, respectively).

We consider the following representations of K : P (0) = k(0), P (a) = k(a), P (b) = k(b),
k(a, b) and for 1 ≤ i ≤ n, P (ci) = k(ci), k(a, ci), k(ci, b), k(a, ci, b), R(cn−i)(e1, e2) =
(U0, Ua, Uc1 , . . . , Ucj , . . . , Ucn , Ub), where:

U0 = 〈e1, e2〉,
Ua = 〈e1〉,
Ub = 〈e2〉,

Ucj =

{
〈e1 + e2〉, if n− i ≤ j ≤ n,

0, if j < n− i.

(4.2)

and Rl(cn−i)(e1, e2) = (U0, Ua, Uc1 , . . . , Uci , . . . , Ucn , Ub), for 1 ≤ l ≤ i where

U0 = 〈e1, e2〉,
Ua = 〈e1〉,
Ub = 〈e2〉,

Ucn−j−1 = 〈e1, e2〉 for j = 1, . . . , l,

Ucn−l
= 〈e1 + e2〉,

Ucn−j = 0, for j > i.

(4.3)

Henceforth, we will put R0(cn−i) = R(cn).

Analogously, we consider the representations for K′: k(∅); k(a); k(b); k(a, b); for 1 ≤ i ≤ n
k(c−i ); k(c+

i ); k(c+
i , b); k(a, c−i ) and for 1 ≤ i < j, k(c+

i , c
−
j ).

Proposition 20. The differentiation functor ′ : R! R′ defined by formulas (4.1) induces
a quiver isomorphism of C in C′. Consequently, the above list is the complete list of
indecomposable representations of Rep (K) and Rep (K)′.
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Proof. In Rep(K) we obtain the irreducible morphisms between projectives:

k(∅)! k(a), k(∅)! k(b), k(∅)! k(cn)! k(cn−1)! · · ·! k(c1).

We have the following commutative diagram D(i) :

k(cn−i)(e1 + e2) R(cn−i)(e1, e2)

k(cn−i−1)(e1 + e2) R(cn−i−1)(e1 + e2)

f1

f2 g1

g2

such that the sequences S(D(i)) :

k(cn−i)(e1 + e2)
(f1,−f2)T

−−−−−−! R(cn−i)(e1, e2)
⊕
k(cn−i−1)(e1 + e2)

(g1,g2)T

−−−−−! R(cn−i−1)(e1, e2)

are ε-sequences.

Also, we have the ε-sequence k(c1)(e1 + e2)! R(c1)(e1, e2)! k(a, b)(e2),.

We have the commutative diagram

k(∅) k(a)(e1)
⊕
k(b)(e2)

k(cn)(e1 + e2) R(cn)(e1, e2)

(λ1,λ2)T

λ3 (ν1,ν2)

ν3

and the ε-sequence

k(∅)(f)
(λ1,λ2,−λ3)
−−−−−−−! k(a)(e1)

⊕
k(b)(e2)

⊕
k(cn)(e1 + e2)

(ν1,ν2,ν3)
−−−−−−! R(cn)(e1, e2).

As k(∅) is a simple object, if k(∅) ! V is a irreducible morphism then V is projective.
Therefore V = k(a), k(b) or, k(cn), hence the sequence SD(0) is an almost split sequence
and then τ(R(cn)) = k(∅) and

ν3 : k(cn)(e1 + e2)! R(cn)(e1, e2),

is an irreducible morphism. If k(cn)(e1 + e2) ! V is an irreducible morphism and V is
not projective then there exists an irreducible morphism τ(V ) ! k(cn)(e1 + e2), then
τV = k(∅) and V = R(cn)(e1, e2); therefore the only irreducible ones up to multiples non
trivial scalars that come out of k(cn)(e1 + e2) are f1,−f2. Therefore SD(0) is an almost
split sequence.

By induction it is proved that SD(1), . . . , SD(n−2) are almost split sequences. In partic-
ular the irreducible morphism k(c1)(e1 + e2)! R(c1)(e1, e2) is obtained and this is up to
multiple non-trivial scalars the only irreducible coming out of k(c1)(e1 + e2). This implies
that there is an almost split sequence

k(c1)(e1 + e2)! R(c1)(e1, e2)! k(a, b)(e2).
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We have the irreducible morphism k(b)(e1 + e2) ! R(cn)(e1, e2). If k(b)(e1 + e2) ! V is
an irreducible morphism, where V is not projective; therefore there exists an irreducible
morphism τ(V ) ! k(b)(e1 + e2), so τV = k(∅); hence V = R(cn)(e1 + e2). Thus we
obtained the almost split sequence

k(b)(e1 + e2)! R(cn)(e1, e2)! k(a, cn).

Analogously, we obtained the almost split sequence

k(a)(e1 + e2)! R(cn)(e1, e2)! k(b, cn).

We have the commutative diagrams D(i, j) :

Ri(cn−j)(e1, e2) Ri+1(cn−j)(e1, e2)

Ri(cn−j−1)(e1, e2) Ri+1(cn−j−1)(e1, e2)

f1

f2 g1

g2

and the ε-sequence SD(i, j):

Ri(cn−j)(e1, e2)
(f1,f2)T

−−−−−! Ri+1(cn−j)(e1, e2)
⊕

Ri(cn−j−1)(e1, e2)
(g1,g2)
−−−−! Ri+1(cn−j−1)(e1, e2).

Let now R(cn)(e1, e2) ! V be an irreducible morphism. In this case V can not be
projective; therefore there exists an irreducible morphism τ(V )! R(cn)(e1, e2) then τ(V )
is k(a), k(b) or k(cn), hence V is equal to k(b, cn)(e2) or k(a, cn)(e1) or R(cn−1)(e1, e2),
from here the almost split sequence:

R(cn)(e1, e2)! k(b, cn)
⊕

k(a, cn)
⊕

R(cn)(e1, e2)! R1(cn−1).

is obtained. So, SD(0, 1) is an almost split sequence and by induction all sequences
SD(0, j) with j = 1, . . . , n− 2.

In general, we have the ε- sequences H(i) :

Ri(cn−i)(e1, e2)! k(b, cn−i)
⊕

k(a, cn−i)
⊕

Ri(cn−i−1)(e1,e2)!Ri+1(cn−i−1).

As the sequence SD(0, 1) is an almost split sequence, we obtain the irreducible morphisms

R1(cn−1)(e1, e2)! R1(cn−2)(e1, e2);

therefore the irreducible morphism

R1(cn−2)(e1, e2)! R2(cn−2)(e1, e2)

is obtained.

With the previous procedures it is proved that H(1) is an almost split sequence and as
before it is proven that the sequences SD(i, j) with i ≤ n− 2 are almost split sequences.
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Following in this way, it is proved that for i ≤ n− 2 the sequences O(b, i) :

k(b, cn−i)(e1 + e2)! Ri+1(cn−i−1)(e1 + e2)! k(a, cn−i−1),

and O(a, i) :

k(a, cn−i)(e1 + e2)! Ri+1(cn−i−1)(e1, e2)! k(b, cn−i−1),

are almost split sequences, then we have irreducible morphisms:

k(c1)(e1 + e2)! R(c1)(e1, e2)! R1(c1)(e1, e2)! · · ·! Rn−1(c1)(e1, e2)! k(b, c1)(e1).

Then the ε-sequence:

k(c1)(e1 + e2)! R(c1)(e1, e2)! k(a, b)(e1),

is obtained, and by induction the ε- sequences

L(0) : R(c1)(e1, e2)! R1(c1)(e1, e2)
⊕

k(a, b)(e1)! k(a, b, cn)(e1),

and for 1 ≤ i ≤ n− 2,

L(i) : Ri(c1)(e1, e2)! Ri+1(c1)(e1, e2)
⊕

k(a, b, cn−i+1)(e1)! k(a, b, cn−i)(e1)

are obtained.

As the representations k(a, b), k(a, b, cn), . . . , k(a, b, c1) and k(a, c1), k(b, c1) are injectives,
the construction of Auslander-Reiten quiver of K is completed.
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Figure 4.4. The Auslander-Reiten quiver of a poset K
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Figure 4.5. The Auslander-Reiten quiver of a poset K
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Analogously, in Rep(K′) we obtain the irreducible morphisms between projectives:

k(∅)! k(b) k(∅)! k(c+
n )! k(c+

n−1)! · · ·! k(c+
1 ).

We have the following commutative diagram D(i) :

k(c+
n−i)(e) k(c+

n−i, b)(e)

k(c+
n−i−1)(e) k(c+

n−i−1, b)(e)

f1

f2 g1

g2

such that the sequences S(D(i)) :

k(c+
n−i)(e)

(f1,f2)T

−−−−−! k(c+
n−i, b)(e)

⊕
k(c+

n−i−1)(e)
(g1,g2)
−−−−! k(c+

n−i−1, b)(e),

are an ε-sequences.

We have the diagram:

k(∅) k(b)(e)

k(c+
n )(e) k(c+

n , b)(e)

λ1

λ2 ν1

ν2

and the ε-sequence

k(∅)(e) (λ1,λ2)
−−−−! k(b)(e)

⊕
k(c+

n )(e)
(ν1,ν2)
−−−−! k(c+

n , b)(e).

As k(∅) is a simple object, if k(∅)! V is an irreducible morphism then V is a projective;
therefore V = k(b) or V = k(c+

n ); hence the sequence SD(0) is an almost split sequence
and then τ(k(c+

n , b)) = k(∅) and

ν2 : k(c+
n )(e)! k(c+

n , b)(e),

is an irreducible morphism. If k(c+
n )(e) ! V is an irreducible morphism and V is not

a projective, then there exists an irreducible morphism τ(V ) ! k(c+
n )(e). According to

τ(V ) = k(∅) and V = k(c+
n , b)(e), the only irreducible ones up to multiple non trivial

scalars that come out of k(c+
n )(e) are f1, f2. Thus, SD(0) is an almost split sequence.

By induction it is proved that SD(1), . . . , SD(n−2) are almost split sequences. In partic-
ular, since the irreducible morphisms k(c+

1 )(e) ! k(a)(e) and k(c+
1 )(e) ! k(c+

1 , b)(e) are
obtained, these are up to multiple non-trivial scalars the only irreducibles coming out of
k(c1)(e). This implies that there is an almost split sequence

k(c+
1 )(e)! k(c+

1 , b)(e)
⊕

k(a)(e)! k(a, b)(e).

We have the irreducible morphism k(b)(e)! k(c+, b)(e). If k(b)(e)! V is an irreducible
morphism, where V is not projective. Therefore there exists an irreducible morphism
τ(V ) ! k(b)(e), so τV = k(∅); hence V = k(c+, b)(e), so we obtain the almost split
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sequence
k(b)(e)! k(c+

n , b)(e)! k(c−n ).

We have the commutative diagrams D̄(j) : (1 ≤ j ≤ n− 2)

k(c+
n−j , b)(e) k(c+

n−j , c
−
n )(e)

k(c+
n−j−1)(e) k(c+

n−j−1, c
+
n )(e)

f1

f2 g1

g2

and the ε-sequences SD̄(j):

k(c+
n−j , b)(e)

(f1,f2)T

−−−−−! k(c+
n−j , c

−
n )(e)

⊕
k(c+

n−j−1, b)(e)
(g1,g2)
−−−−! k(c+

n−j−1, c
+
n )(e).

Let k(c+
n , b)! V be an irreducible morphism, in this case V cannot be projective; therefore

there exists an irreducible morphism τ(V )! k(c+
n , b) then τ(V ) is k(b) or k(c+

n ); hence V
is equal to k(c−n )(e) or k(c+

n−1, b)(e), from here the almost split sequence:

k(c+
n , b)! k(c−n )(e)

⊕
k(c+

n−1, b)(e)! k(c+
n−1, c

−
n )(e),

is obtained. So, SD̄(1) is an almost split sequence and by induction all sequences SD̄(j)
with j = 1, . . . , n− 2 are too.

In general, we have the ε- sequences H(i) :

k(c+
n−j , c

−
n−j+1)(e)! k(c+

n−j−1, c
−
n−j+1)

⊕
k(c−n−j)! k(c+

n−j−1, c
−
n−j)(e).

As the sequence SD̄(1) is an almost split sequence, we obtain the irreducible morphisms

k(c+
n−1, c

−
n )(e)! k(c+

n−2, c
−
n )(e).

Therefore the irreducible morphism

k(c+
n−2, c

−
n )(e)! k(c+

n−2, c
−
n−1)(e),

is obtained.

With the previous procedures, it is proved that H(1) is an almost split sequence and as
before, it is proven that the sequences SD̄(j) with 1 ≤ j ≤ n−2 are almost split sequences.

Now, for i = n, n− 1, . . . , 4, we have the commutative diagrams D̂(i, j) : (n− i+ 2 ≤ j ≤
n− 2)

k(c+
n−j , c

−
i )(e) k(c+

n−j , c
−
i−1)(e)

k(c+
n−j−1, c

−
i )(e) k(c+

n−j−1, c
−
i−1)(e)

f1

f2 g1

g2
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and the ε-sequences SD̂(i, j):

k(c+
n−j , c

−
i )(e)

(f1,f2)T

−−−−−! k(c+
n−j , c

−
i−1)(e)

⊕
k(c+

n−j−1, c
−
i )(e)

(g1,g2)
−−−−! k(c+

n−j−1, c
−
i−1)(e),

Let now k(c+
n−2, c

−
n )(e) ! V be an irreducible morphism. In this case V cannot be

projective; therefore there exists an irreducible morphism τ(V )! k(c+
n−2, c

−
n )(e) then τ(V )

is k(c+
n−1, c

−
n )(e) or k(c+

n−2, b)(e); hence V is equal to k(c+
n−2, c

−
n−1)(e) or k(c+

n−3, c
−
n )(e),

from here the almost split sequence:

k(c+
n−2, c

−
n )(e)! k(c+

n−2, c
−
n−1)(e)

⊕
k(c+

n−3, c
−
n )(e)! k(c+

n−3, c
−
n−1)(e),

is obtained. Thus, SD̂(2) is an almost split sequence and by induction all sequences
SD̂(j) with j = 2, . . . , n− 2 are too. As before it is proven that the sequences SD̂(j) with
j ≤ n− 2 are almost split sequences.

Following in this way it is proved that for i ≤ n− 2, the sequences

O(b, i) : k(b, cn−i)(e1 + e2)! Ri+1(cn−i−1)(e1 + e2)! k(a, cn−i−1),

are almost split sequences, then we have irreducible morphisms:

k(c+
1 )(e)! k(c+

1 , b)(e)! k(c+
1 , c
−
n )(e)! · · ·! k(c+

1 , c
−
2 )(e)! k(c−1 )(e1),

Then the ε-sequence

L(0) : k(c+
1 , b)(e)! k(c+

1 , c
−
n )
⊕

k(a, b)(e)! k(a, cn)(e),

is obtained, and by induction for 0 ≤ i ≤ n− 2, the sequences

L(i) : k(c+
1 , c
−
n−i)! k(c+

1 , c
−
n−i−1)

⊕
k(a, c−n−i)(e)! k(a, cn−i−1)(e).

are obtained. As the representations k(a, b), k(a, c−n ), . . . , k(a, c−1 ) and k(c−1 ) are injective,
the construction of Auslander-Reiten quiver of K′ is completed.
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Figure 4.6. The Auslander-Reiten quiver of a poset K′
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Figure 4.7. The Auslander-Reiten quiver of a poset K
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Now, we consider the derivation ′ : R! R′ as in (4.1). For 1 ≤ l ≤ i we have that

Rl(cn−i)(e1, e2)′ = k(a)(e1)
⊕

k(c+
n−i, c

−
n−i+1)(e2),

R(ci)(e1, e2)′ = k(a)(e1)
⊕

k(c+
i , b)(e2),

further,

k(a)′ = k(a), k(b)′ = k(b), k(a, b)′ = k(a, b), k(ci)
′ = k(c+

i ),
k(a, ci)

′ = k(a), k(b, ci)
′ = k(c−i ), k(a, ci, b)

′ = k(a, c−i ).

Finally, if X
u
−! Y

v
−! Z is an almost split sequence in Rep(K) with 1X , 1Y /∈ I, then the

sequence X
u
−! Y

v
−! Z in Rep(K)/I has the following properties:

1. vu = 0.

2. If h : W ! Y is a morphism such that vh = 0, then h is factored by u.

3. If g : W ! Z is a morphism in Rep(K)/I which is not a retraction then is factored
by v.

The first and third paragraphs are clear. For the second we consider h = h1 with h1 :
W ! Y being a morphism in Rep(K), so vh1 = µν with ν : W ! L and µ : L! Z where
L is the sum of some of the indecomposable ones that generate I.

Since 1Z /∈ I, then µ is not retraction, so it is factored by v and it is obtained that µ = vµ1,
thus vh = vµ1ν that is, v(h − µ1ν) = 0. Therefore, there exists g : W ! X such that
ug = h− µ1ν thus ug = h.

Let F : Rep(K)/I! Rep(K)′/I′ be the functor induced por (4.1), then F (X) is projective
in Rep(K′) if and only if X is projective in Rep(K).
Let u : X ! Y be a sink morphism en Rep(K) with Y /∈ I then if Y is projective and
h : Z ! X is a morphism such that uh = 0 then h = 0. Indeed, if this happens then
uh = νλ, with λ : Z ! W and ν : W ! Y and where W ∈ I. Since Y /∈ I, there exists a
morphism s : W ! X such that ν = us. Therefore uh = usλ, so u(h− sλ) = 0 and as u
is injective we obtain that h = sλ, thus h = 0.

Let f : X ! Y be a morphism in Rep(K)/I such that F (f) = f ′ = 0. We will prove that
f = 0. If X = Y or there exists an arrow from X to Y it is clear. Let us observe that
if there are two paths from X to Y in Rep(K)/I these have the same length, the same
occurs in Rep(K′)/I′.

We will prove our result by induction on the length of the paths from X to Y . Our result
is true when the length is one. Suppose that the result be true for lengths less than n and
suppose that the length of the path from X to Y is n. Then we have a sink morphism

(F (u1), . . . , F (ur), λ)T : F (Z1)
⊕
· · ·
⊕

F (Zr)
⊕

L! F (Y ),
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with L ∈ I and a sink morphism

(u1, . . . , ur)
T : Z1

⊕
· · ·
⊕

Zr ! Y,

with f =
r∑
s=1

usvs. Therefore F (f) =
r∑
s=1

F (usvs) = 0. If Y is projective, F (Y ) is projective,

and thus (F (v1), . . . , F (vr)) = 0, which implies F (vi) = 0, for all i, 1 ≤ i ≤ r and by
induction hypothesis v1 = 0, . . . , vr = 0, so f = 0. Now, we suppose that Y is not
projective, then there exists an almost split sequence in Rep(K)

W
(a1,...,ar,ν)T

−−−−−−−−! Z1

⊕
· · ·
⊕

Zr
⊕

L
(u1,...,ur,µ1)
−−−−−−−−! Y,

and we have the almost split sequence in Rep(K′):

F (W )
(F (a1),...,F (ar),F (ν))T

−−−−−−−−−−−−−−! f(Z1)
⊕
· · ·
⊕

F (Zr)
⊕

F (L)
(F (u1),...,F (ur),F (µ1))
−−−−−−−−−−−−−−! F (Y ),

in the category Rep(K′)/I′ we have
r∑
j=1

F (ujvj) = 0 then by property 2 above, there exists

ρ : X !W such that F (aj)F (ρ) = F (vj). Since the length of the paths from X to Zj are
strictly less than n, by induction hypothesis vj = aj , thus f =

∑
j
ujajρ = 0. �

Proposition 21. Let L = k(a, ci) or L = k(a) in Rep(P, θ). Then

1. If f : V |K ! L|K is a morphism in Rep(K), then f : V ! L is a morphism in
Rep(P, θ).

2. If g : L|K ! V |K is a morphism in Rep(K) then g : L ! V is a morphism in
Rep(P, θ).

Proof Let f : V |K ! k(a, ci)(e)|K is a morphism in Rep(K). We will see that
f : V ! k(a, ci) is a morphism in Rep(P, θ). Let z ∈ θ, such that z 6= a, b, c1, . . . , cn.
Let (λ, µ) ∈ Vz and let z = (x, y). If x < b, y < b then λ, µ ∈ Vb and since k(a, ci)b = 0 and
f(Vb) ⊂ k(a, ci)b then f(λ) = 0, f(µ) = 0; therefore (f(λ), f(µ)) = (0, 0) ⊂ k(a, ci)z = 0.
If x > a, y > a, f(λ) = ce, f(µ) = c′e and (f(λ), f(µ)) = (ce, c′e) ∈ k(a, ci)z. Analogously
if x > a, y < b, then f(λ) = 0, f(µ) = ce and f(λ, µ) = (ce, 0) ∈ k(a, ci)(e)z. Therefore, f
is a morphism in Rep(P, θ).

Now, we prove that g : k(a, ci)! V is a morphism in Rep(P, θ). Let z ∈ θ different from
a, b, c1, . . . , cn. We suppose that z = (x, y) if x < b, y < b. We have k(a, ci)z = (0, 0),
therefore gzk(a, ci)z ∈ Vz. We suppose that x > a, y < b, Then if (λ, µ) ∈ k(a, ci)z
it is obtained that λ = ce, µ = 0, ce ∈ k(a, ci)z, therefore g(ce) ∈ Va and since x >
a, (g(ce), 0) ∈ Vz, so that gz(k(a, ci)z) ⊂ Vz. Similarly it is proved when x > a, y > a. For
L = k(a), the proof is similar. �

Corollary 6. Let L be equal to k(a, ci) or k(a) such that L|K is a direct summand of V |K,
then L is a direct summand of V in Rep(P, θ).



4.1. DIFFERENTIATION WITH RESPECT TO A SUITABLE PAIR OF POINTS (DI) 71

Proof If L|K is a direct summand of V |K, then there exists a morphism in Rep(K),
f : V |K ! L|K and g : L|K ! V |K such that fg = 1L. By previous proposition f and g
are morphisms in Rep(P, θ); hence L is direct summand of V in Rep(P, θ). �

Proposition 22. Let W be a representation of Rep(P′, θ′). The following statements hold:

1. If f : W |K′ ! k(a)|K′ is a morphism in Rep(K′) then f : W ! k(a) is a morphism
in Rep(P′, θ′).

2. If g : k(a)|K′ ! W |K′ is a morphism in Rep(K)′, then g : k(a)! W is a morphism
in Rep(P′, θ′).

Proof.

1. If z ∈ θ is such that z 6= a, b, c+
1 , . . . , c

+
n , c
−
1 , . . . , c

−
n . We take (λ, µ) ∈ Wz, if x < b

then λ ∈ Wb so, f(λ) ∈ k(a)b = 0. Hence, if x < b, y < b, f(λ) = f(µ) = 0 and in
this case (f(λ), f(µ)) = (0, 0) ∈ k(az) then fz(Wz) ⊂ k(a)z. If x > a, y < b, f(λ) =
ce, f(µ) = 0 and (f(λ), f(µ)) = (ce, 0) ∈ k(a)z. If x > a, y > a, f(µ) = c′e then
(f(λ), f(µ)) = (ce, c′e) ∈ k(a)z. So, in any case fz(Wz) ⊂ k(az).

2. We have k(a)(e)a = 〈e〉 so g(e) ∈ Wa. Let z ∈ θ such that z 6=
a, b, c+

1 , . . . , c
+
n , c
−
1 , . . . , c

−
n . If x < b, y < b, k(a)(e)z = 0; hence gz(k(a)(e)z) ∈ Wz

if x < b, y > a, k(a)z = {(0, ce) | c ∈ k}‘. Here, y > ayg(e) ∈ Wa; there-
fore, (0, g(e)) ∈ Wz. If x > a, y > a, k(a)(e)z = {f(ce, c′e) | (c, c′) ∈ k}, so
(g(ce), g(c′e)) = c(g(e), 0) + c′(0, g(e)) ∈Wz. �

As a consequence of the previous proposition we obtain the following corollary.

Corollary 7. If k(a)|K′ is a direct summand of W |K′ in Rep (K′) then k(a) is a direct
summand of W in Rep (P′, θ′).

Theorem 12. Let P = aO + bM + {c1 < c2 < · · · < cn} be a poset with a suitable pair of
points (a, b). Then the differentiation functor

′ : R! R′,

defined by formulas (4.1) induces an equivalence between quotient categories

R/〈k(a), k(a, c1), . . . , k(a, cn)〉 ∼! R′/〈k(a)〉.

Proof. Let us prove that the functor is dense. Let M ∈ R′ be an object without direct
summand k(a). We consider M |K′ =

⊕
Mu where Mu is indecomposable in Rep(K′). By

Corollary 7 , each Mu is not isomorphism to k(a, ci) or k(a). By Proposition 20 , for each
Mu there exists an object V u in Rep(K) such that (V u)′ = T u

⊕
Mu where T u = k(a)

or T u = 0. Let V =
⊕
V u ∈ Rep(K), and we consider for each z ∈ θ, with z 6= a, b, ci

the subspace Vz = (
⊕
u
T u)z

⊕
Mz of V z

0 and for a, ci, b, Va =
⊕
u
V u
a , Vci =

⊕
u
V u
ci and

Vb =
⊕
V u
b respectively.
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We will prove that V = (V0, Vz)z∈θ is a representation of (P, θ). Indeed, (
⊕
u
T u)

⊕
M is a

representation of (P′, θ′). We suppose that z and z1 are different from a, b, ci such that z
and z1 is in θ′; if z = (x, y), z1 = (x1, y1) with x1 < x, ν ∈ V +

x1 then (ν, 0) ∈ Vz.
Let z = (x, y) and a < x, then Va =

⊕
V u
a . Let λ ∈ V u

a = (V u)′a = (Tu)a
⊕
Ma, so

(λ, 0) ∈ (Tu
⊕
V u)z ⊂ Vz. Similarly, if b < x and λ ∈ (V u)b it is proved that (λ, 0) ∈ Vz.

In case that ci < x, and λ ∈ (V u)ci , it is obtained that (V u)′
c+i

= V u
ci + V u

a = (Tu
⊕
M)c+i

.

By definition c+
i < x; therefore as λ ∈ (Tu⊕M)c+i

, then (λ, 0) ∈ (Tu
⊕
M)z ⊂ Vz.

Now, we suppose x < a and (λ, ν) ∈ (
⊕
u
Tu
⊕
M)z, then λ ∈ (

⊕
Tu ⊕M)a =

⊕
u

(V u)′a =⊕
u
V u
a = Va. Similarly, if x < b, then for (λ, ν) ∈ Vz, λ ∈ Vb. When x < ci, it is obtained

that x < c−i and (λ, ν) ∈ Vz = (
⊕
u
Tu ⊕Mu)z. Thus

λ ∈ (
⊕
u

Tu
⊕

M)c−i
=
⊕
u

(V u)′
c−i

=
⊕
u

(V u
ci ∩ V

u
b ) ⊂ Vci ,

and therefore, V ∈ Rep(P, θ).

Now we have

(VK′)
′ =

⊕
u

(V u)′|K′ =
⊕
u

(Tu
⊕

Mu)|K′ =
⊕
u

(Tu
⊕

M)|K′ ,

and for z ∈ θ′, z 6= a, b, c+
i , c
−
i it is obtained that V ′z = Vz = (

⊕
u
Tu
⊕
M)z; therefore

V ′ =
⊕
u
Tu
⊕
M .

Finally, we will prove that the functor is faithful and full. Let f : U ! V be a morphism in
Rep(P, θ) and we suppose that f ′ = h2h1 : U ′ ! V ′, where h1 : U ′ ! k(a), h2 : k(a)! V ′

are morphisms in Rep(P′, θ′). Therefore, we have that f ′|K′ is factored by k(a). By
Proposition 20 , fK : U |K ! V |K is factored through the objects k(a, ci), k(a), and by
Proposition 21 , f is factored through the objects k(a, ci), k(a) in Rep(P, θ). Thus the
functor is faithful.
Let now f : U ′ ! V ′ be a morphism in Rep(P′, θ′). We will consider the morphism

f |K′ : U ′|K′ = (U |K)′ ! V ′|K′ = (V |K)′

By Proposition 20 , there exists h : U |K ! V |K such that h′ = g = f + λ2λ1, where
λ1 : U ′|K′ ! k(a)(X) and λ2 : k(a)(X)! U ′|K′ for a finite dimensional k-vector space X.
By (1) and (2) of Proposition 22 , λ1 and λ2 are morphisms in Rep(P′, θ′); therefore g is
a morphism in Rep(P′, θ′).
By definition h = g : U0 ! V0 and for z ∈ θ, z 6= a, b, ci, we have that hz(Uz) =
gz(U ′z)

⊕
V ′z = Vz. Therefore, h is a morphism in the category Rep(P, θ) and h′ = g =

f + λ2λ1. This proves our result. �



CHAPTER 5

Categorical Properties of Algorithm of

Differentiation III

In this chapter we will study the categorical properties of the differentiation algorithm DIII
following the ideas used for the differentiation algorithm DI presented in the previous
chapter. It is worth mentioning that this algorithm is essentially different from such
an algorithm, in the sense that the most basic case that can be presented is a poset P

consisting of two big incomparable equivalent points a, b which is of the tame representation
type (see, [32]).

5.1 Algorithm of Differentiation III

Definition 39. A pair of points (a, b) of a poset (P, θ) is said to be suitable for Differ-
entiation III if P = aO + bM, where a, b are big incomparable equivalent points. In this
situation, the derivative poset (P′, θ′) is obtained from the poset (P, θ) as follows:

1. the point a is replaced by an infinite decreasing chain a1 > a2 > a3 · · · and the point
b by an infinite increasing chain b1 < b2 < b3 · · · ;

2. a relation a1 < b1 is added with its induced relations;

3. θ′ is obtained from θ by deleting the class {a, b} and adding the classes {an, bn},
n ≥ 1.

The following Figure 5.1 illustrates the Hasse diagram for this differentiation.

73
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(P, θ) (P′, θ′)

a

A

b

B

a ∼ b

•

•

•
•
•
•

•
•
•
•

a1

A

a2

a3

a4
...

b1

B

b2

b3

b4

...

ai ∼ bi

(a, b)
−!
III

Figure 5.1. The diagram of a poset with involution (P, θ) and its corresponding derivate.

Let the subsets A,B ⊆ P be A = aO\{a}; B = bM\{b}. Then R and R′ denote the
following subcategories of Rep(P, θ) and Rep(P′, θ′) respectively for n ≥ 1:

R = {U ∈ Rep(P, θ) | U+
a ⊂ U+

b ;U−a = 0}, (5.1)

R′ = {U ∈ Rep(P′, θ′) | U+
a1 ⊂ U

+
B ;U−an = U+

an+1
}. (5.2)

The differentiation DIII induces the functor ′ : R! R′ which is defined as follows:

� To each object U = (U0, Uz)z∈θ ∈ R an object U ′ = (U ′0, U
′
z)z∈θ′ ∈ R′ is assigned

such that

U ′0 = U0,

U ′z = Uz, for z 6= (an, bn),

U ′(an,bn) = (U+
B , U0) ∩ U [n]

(a,b) + (0, U+
a ),

(5.3)

where U
[n]
(a,b) = {(t0, tn) | (t0, t1) ∈ U(a,b), (t1, t2) ∈ U(a,b), . . . , (tn−1, tn) ∈ U(a,b)}.

� If φ : (U0, Uz)z∈θ ! (V0, Vz)z∈θ is a morphism in R, then φ′ := φ : U0 = U ′0 ! V ′0 =
V0.

Remark 10. It follows from the definition above that K(A, b)′ = K(A, b1).

Example 10. We consider the poset with an involution (P, θ) where P is as in Figure
5.2, with a < c, d < b and θ = {(a, b), (c, d)} are the equivalence class.
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(P, θ) (P′, θ′)

a

c b

d

a ∼ b

c ∼ d

•

• •

• •
•
•
•

• •

•
•
•
•

a1

c

a2

a3

a4
...

b1

d

b2

b3

b4

...

ai ∼ bi

(a, b)
−!
III

Figure 5.2. The diagram of a poset (P, θ) and its corresponding derivate poset (P′, θ′).

We consider the representation of (P, θ), U = (U0, U(a,b), U(c,d)), where

U0 = R4,

U(a,b) = 〈(0, e1), (e1, e2), (0, e3), (e3, e4)〉
U(c,d) = 〈(0, e1), (e1, e2), (0, e3), (e3, e4)〉.

As U+
a = {e1, e3} and U+

b = {e1, e2, e3, e4} then, U+
a ⊆ U+

b , also U−a = 0. Therefore
U ∈ R. By applying the functor 5.3 we obtained that

U ′0 = U0 = kn,

U ′(a1,b1) = (U+
B , U0) ∩ U (a,b) + (0, U+

a ) = 〈(0, e1), (e1, e2), (0, e3)〉,

U ′(a2,b2) = (U+
B , U0) ∩ U2

(a,b) + (0, U+
a ) = 〈(0, e2), (0, e4), (0, e1), (0, e3)〉,

and for n ≥ 3,

U ′(a3,b3) = (U+
B , U0) ∩ U3

(a,b) + (0, U+
a ) = 〈(0, e2), (0, e4), (0, e1), (0, e3)〉,

(5.4)

Proposition 23. U ′ = (U ′0, U
′
z)z∈θ′ defined by formulae in 5.3 is an object of the category

R′.

Proof. It is enough to check with the classes (ai, bi) of θ′ = θ\{(a, b)} ∪ {(ai, bi)}. In the
first place, we prove that (U ′bn)+ ⊆ (U ′bn+1

)−: let z ∈ (U ′bn)+, then there exists w ∈ U0

such that (w, z) ∈ U ′(an,bn), so (w, z) ∈ (U+
B , U0) ∩ U [n]

(a,b) + (0, U+
a ). Therefore (w, z) =

(w, z1) + (0, z2) with z1 ∈ U+
b , z2 ∈ U+

a . As U+
B ⊂ U

−
b we have (0, w) ∈ U(a,b) so, coupling

this with (w, z1) ∈ U
[n]
(a,b) we obtain that (0, z1) ∈ U

[n+1]
(a,b) and as (0, z2) ∈ (0, U+

a ) then

(0, z1 + z2) = (0, z) ∈ U [n+1]
(a,b) ; therefore z ∈ (U

′
bn+1

)−.

In the second place, we prove that (U ′an)− = (U ′an+1
)+, which is equivalent to proving that

(U ′an)− = πa((U
+
B , U

+
a ) ∩ U [n]

(a,b)) = (U ′an+1
)+.
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� If z ∈ (U ′an)− then (z, 0) ∈ U ′(an,bn); that is, (z, 0) ∈ (U+
B , U0) ∩ U [n]

(a,b) + (0, U+
a ) so,

(z, 0) = (z, w)+(0, v), with w ∈ U+
b , v ∈ U

+
a , and w+v = 0; thus (z, 0) ∈ (U+

B , U
+
a )∩

U
[n]
(a,b), and therefore z ∈ πa((U

+
B , U

+
a ) ∩ U [n]

(a,b)). Conversely, if z ∈ πa((U
+
B , U

+
a ) ∩

U
[n]
(a,b)) then there exists w ∈ U0 such that (z, w) ∈ (U+

B , U
+
a ) ∩ U [n]

(a,b) so, (z, w) ∈
U ′(an,bn), also (0, w) ∈ U ′(an,bn) since w ∈ U+

a then (z, 0) ∈ U ′(an,bn); therefore z ∈
(U ′an)−.

� (U ′an+1
)+ = πa((U

+
B , U

+
a ) ∩ U [n]

(a,b)). If z ∈ (U ′an+1
)+ then there exists w such that

(z, w) ∈ U ′(an+1,bn+1); that is, (z, w) ∈ (U+
B , U0) ∩ U [n+1]

(a,b) + (0, U+
a ) , so (z, w) =

(z, w1) + (0, w2), then (z, w − w2) ∈ (U+
B , Ua) ∩ U

[n]
(a,b); therefore z ∈ πa((U+

B , Ua) ∩

Un(a,b)). Conversely, if z ∈ πa((U+
B , U

+
a ) ∩ U [n]

(a,b)) then there exists w ∈ U0 such that

(z, w) ∈ (U+
B , U

+
a ) ∩ U [n]

(a,b) with w ∈ U+
a ∩ U+

b = U+
a since U+

a ⊂ U+
b by definition of

R; therefore there exists t ∈ U0 such that (w, t) ∈ U(a,b) and as (z, w) ∈ U [n]
(a,b), then

(z, t) ∈ U [n+1]
(a,b) and therefore z ∈ (U ′an+1

)+. �

Proposition 24. If φ : (U0, Uz)z∈θ ! (V0, Vz)z∈θ is a morphism in R then φ′ = φ :
(U0, U

′
z)z∈θ′ ! (V0, V

′
z )z∈θ′ is a morphism in R′.

Proof Taking into account that θ′ = θ\{(a, b)} ∪ {(ai, bi)}, then for all z ∈ θ, φ′(U ′z) =
φ′(Uz) = φ(Uz) ⊂ Vz = V ′z . Let z = (ai, bi), we will prove that φ(U ′z) ⊂ V ′z . If (x, y) ∈
U(ai,bi) then (x, y) ∈ (U+

B , U0) ∩ U i(a,b) + (0, U+
a ); that is, x ∈ U+

B ∩ U+
a and y ∈ U+

b + U+
a

and therefore φ(x) ⊆ V +
B ∩ V +

a and φ(y) ⊆ V +
b + V +

a ; thus φ(x, y) = (φ(x), φ(y)) ⊆
(V +
B , V0) ∩ V n

(a,b) + (0, V +
a ) = V ′(an,bn). �

Lemma 7. Let V = (V0, Vz)z∈θ be a representation of (P, θ) and let W0 be a vector
subspace of V0, for each big point z = (x, y) ∈ θ we consider the subspace W̃z of Vz
consisting of (u, v) ∈ Vz, such that u, v ∈ W0 and for each small point z = [x] ∈ θ,W̃z =
Vz ∩W0. Then (W0, W̃z)z∈θ is a representation of (P, θ).

Proof We suppose that y < x in P and u ∈ W̃+
y ⊂ V +

y . Then if the class x consists

of (x, x1) then (u, 0) ∈ V[x]. As u ∈ W , then (u, 0) ∈ W̃ , if [x] consists only of x, then

u ∈ V[x] ∩W = W̃[x]. Therefore, W̃ is a representation of (P, θ). �

Let (U0, Uz)z∈θ be an object of R, by hypothesis U+
a ⊂ U+

b . For each v ∈ U+
b there exists

u ∈ U0 such that (u, v) ∈ U(a,b), if (u1, v) ∈ U(a,b), then (u − u1, 0) ∈ U(a,b), but U−a = 0,

then u = u1. Therefore, if v ∈ U+
b , then there exists an unique φ(v) such that (φ(v), v) ∈

U(a,b). As U+
a ⊂ U+

b , thus we obtain the map φ : U+
b ! U+

b such that (φ(v), v) ∈ U(a,b).

It is clear that φ is a lineal transformation and U(a,b) = {(φ(v), v) | v ∈ U+
b }.

By Fitting lemma there exist subspaces W1,W2 of U+
b such that V0 = W1

⊕
W2 and

φ = φ1
⊕
φ2 where φ1 : W1 !W1 is not singular and φ2 : W2 !W2 is nilpotent. We have

that U0 = W1
⊕
W2
⊕
W for a subspace W of V0. We consider L = W2

⊕
W and by using

the notation of Lemma 7, we consider the representations: W̃1 = ((W1)0, (W̃1)z)z∈θ, L̃ =
(L0, L̃z)z∈θ.
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Proposition 25. (U0, Uz)z∈θ = W̃1
⊕
L̃.

Proof. First we will describe W̃1. If x, y ∈ aH and u ∈ (W1)0, (u, φ−1
1 (u)) ∈ U(a,b),

as a < x, then (u, 0) and (0, u) ∈ V(x,y) and it is in (W̃1)(x,y). This implies that

(W̃1)(x,y) = ((W1)0, 0)
⊕

(0, (W1)0).

If x ∈ aH and y ∈ bN and (u, v) ∈ (W̃1)(x,y), then as y < b, (0, v) ∈ U(a,b), so

φ(v) = φ1(v) = 0; therefore v = 0, and as before (u, 0) ∈ (W̃1)(x,y) for all u ∈ (W1)0, so in

this case (W̃1)(x,y) = ((W1)0, 0), and analogously if x, y ∈ bN then (W̃1)(x,y) = 〈(0, 0)〉. If

[x] consists only of x, and x ∈ aH, then (W̃1)[x] = W1, if x ∈ bN then (W̃1)[x] = 0.
So, we have U0 = (W1)0 ⊕ L0.
Now, let (u, v) ∈ U(x,y), with u = u1 +u2; v = v1 + v2, u1, v1 ∈W1;u2; v2 ∈ L. We suppose
that x, y ∈ aH, then (u, v) = (u1, 0) + (0, v1) + (u2, v2); as (u1, 0) and (0, v1) ∈ U(x,y), then

(u2, v2) ∈ U(x,y) consequently is in L̃(x;y) and (u1, v1) ∈ (W̃1)(x,y).

Now we suppose that x ∈ aH and y ∈ bN. As y < b then (0, u2 + v2) ∈ U(a,b), and
0 = φ(u2 + v2) = φ1(u2) + φ2(v2); thus φ1(u2) = 0 so u2 = 0. As x ∈ aH then
(u1, 0) ∈ U(a,b) then, (u, v) = (u1, 0) + (v1, v2) thus (v1, v2) ∈ U(a,b) and therefore is in

L̃(a,b). If x, y ∈ bN then if (u, v) ∈ U(a,b) it is obtained as before that u, v ∈ L. The
same reasoning is done if x or y consist of a single element. Finally, it is clear that
U(a,b) = (W̃1)(a,b) ⊕ L̃(a,b). �

Definition 40. If u 6= 0 ∈ U+
b we denote by mu the integer such that φmu

2 (u) 6= 0 and
φmu+1

2 (u) = 0.

Definition 41. A subset B of U+
b is called a strict system of generators of U+

b if the set

B̃ = {φi2(b) | b ∈ B and 0 ≤ i ≤ mi},

is a k-basis of U+
b .

Proposition 26. The space U+
b has a strict system of generators.

Proof. The space U+
b has a structure of k[z]-module where for u ∈ U+

b , zu = φ2(u). Since
U+
b is finite dimensional over k and φ2 is nilpotent then U+

b =
⊕
i∈I
L(i), where I is a finite

set and for each i ∈ I there is an isomorphism of k[z]-modules ψi : k[z]/(zmi+1) ! L(i).
Let 1i the image of 1 ∈ k[z] in L(i). It is clear that the set B formed by the elements
b(i) = ψi(1i) is a strict system of generators for U+

b . �

If B is a strict system of generators for U+
b , then there are numbers m1 > m2 > · · · >

mL = 0 such that B = B1
⋃

B2
⋃
· · ·
⋃
BL with Bi = {b ∈ B | m(b) = mi}.

Let Xi = 〈Bi〉 then

U+
b = X1

⊕
φ2(X1)

⊕
· · ·
⊕

φm1
2 (X1)

⊕
X2

⊕
· · ·
⊕

φm2
2 (X2)

⊕
· · ·
⊕

XL.

From now on we will put m(B) = (m1, . . . ,mL).
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Lemma 8. (i) If x is a nonzero element of φi2(Xi) with 0 < i ≤ mi, then m(x) = mi− i.

(ii) Let B′i be a k-basis for Xi, then B′ = B1
⋃
B2
⋃
· · ·
⋃
Bi−1

⋃
B′i
⋃

Bi+1
⋃
· · ·
⋃
BL is

a strict system of generators for U+
b .

(iii) Let b ∈ Bi and y ∈ φ
mi+1−mi

2 (Xi+1)
⊕
· · ·
⊕
φm1−mi

2 (X1). If we put b′ =
b + y, it is obtain m(b′) = m(b) = mi. If B′i = (Bi\{b})

⋃
{b′}, then B′ =

B1
⋃
B2
⋃
· · ·
⋃
Bi−1

⋃
B′i
⋃
· · ·
⋃
BL is a strict system of generators for U+

b .

(iv) Ker(φ2) = φm1
2 (X1)

⊕
· · ·
⊕
φ
mL−1

2 (XL−1)
⊕
XL.

(v) The morphism φmi
2 induces an isomorphism of

Xi
⊕
φ
mi−1−mi

2 (Xi−1)
⊕
· · ·
⊕
φm1−mi

2 (X1) in φmi
2 (Xi)

⊕
· · ·
⊕
φm1

2 (X1).

Proof. (i) It is clear.

(ii) Since B is a strict system generators of U+
b the set B̃ = {φi2(b) | b ∈ B, 0 ≤ i ≤ m(b)}

is a k-basis of U+
b . We observe the equality

Card(B̃) =
l∑

i=1

(mi + 1)Card(Bi).

Let B′i be a basis of Xi = 〈Bi〉, then Card(B′i) = Card(Bi). We take B̃′ = {φi2(b) | b ∈
B′, 0 ≤ i ≤ m(b)}. It is obtained

Card(B̃′) =
∑
s 6=i

(ms + 1)Card(Bs) + (mi + 1)Card(B′i) = Card(B̃) = dim(U+
b ).

Since the elements of φj2(Bi) can be written as linear combinations of elements in φj2(B′i)
then the elements of B̃′ are a system of generators of U+

b and besides the number of these

elements coincides with the dimension of U+
b thus B̃′ is a basis for U+

b . This implies that
B′ is a strict system of generators.

(iii) It is true that y = ui+1 + · · ·+ u1, with

ui+1 ∈ φmi+1−m1

2 (Xi+1), ui ∈ φmi−mi+1

2 (Xi), . . . u1 ∈ φm1−mi+1

2 (X1).

By (i), m(ui+1) = m(ui) = · · · = m(u1) = mi. Therefore

φmi
2 (b+ y) = φmi

2 (b) +
i+1∑
s=1

φmi
2 (us) 6= 0,

and φmi+1
2 (b+ y) = 0, thus m(b+ y) = mi. As in (ii) let us take B̃i = {φi2(b) | b ∈ B, 0 ≤

i ≤ m(b)}, B̃′ = {φi2(b) | b ∈ B′, 0 ≤ i ≤ m(b)}. Since m(b + y) = mi, the cardinality
of B̃ is equal to the cardinality of B̃′. Additionally all elements of B̃ can be written as
linear combinations of elements in B̃′, so the latter is a set of generators of U+

b with the

cardinality equal to dim(U+
b ), therefore B̃′ is a basis for U+

b and thus a strict system of
generators.
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(iv) Let Y1 = X1
⊕
φ2(X1)

⊕
· · ·
⊕
φm1

2 (X1), Y2 =
X2
⊕
φ2(X2)

⊕
· · ·
⊕
φm2

2 (X2), . . . , YL = XL. We take y = y1 + y2 + · · · + yL
with yi ∈ Yi, then φ2(y) = φ2(y1) + φ2(y2) + φ2(yL−1) where φ2(yi) ∈ Yi; therefore
φ2(y) = 0 if and only if φ2(yi) = 0 for each i = 1, . . . , L. Each yi has the form

yi = zi,1 + · · ·+ zi,mi ,

where zi,1 ∈ Xi, . . . , zi,mi ∈ φ
mi
2 (Xi), thus

φ2(yi) = φ2(zi,1) + · · ·+ φmi+1
2 (zi,mi) ∈ φ2(Xi)

⊕
φ2

2(Xi)
⊕
· · ·
⊕

φmi
2 (Xi).

It is obtained from (i) that if zi,j 6= 0 for j < mi, then φ2(zi,j) 6= 0, so φ2(y) = 0 if and
only if φ2(yi) = 0 for all i, if and only if zi,j = 0 for j < mi, therefore φ2(y) = 0 if and only
if zi,j = 0 for j < mi, thus φ2(y) = 0 if and only if y ∈ φm1

2 (X1)
⊕
φm2

2 (X2)
⊕
· · ·
⊕
XL.

(v) The morphism φmi
2 induces an epimorphism

Xi

⊕
φ
mi−1−mi

2 (Xi−1)
⊕
· · ·
⊕

φm1−mi
2 (X1) −! φmi

2 (Xi)
⊕
· · ·
⊕

φm1
2 (X1),

where the kernel is zero. Indeed, let y = y1 + y2 + · · · + ymi with y1 ∈ Xi, y2 ∈
φ
mi−1−mi

2 (Xi−1), . . . , yi ∈ φm1−mi
2 (X1). From (i), if ys 6= 0 then φmi

2 (ys) 6= 0 therefore
if y 6= 0 then φmi

2 (y) 6= 0. This proves our claim. �

Proposition 27. There exists a strict system of generators B of U+
b , where m(B) =

(m1, . . . ,mL) and subsets B′i ⊂ Bi = {b ∈ B | m(b) = mi} such that

U+
B = 〈B′L〉

⊕
φ
mL−1

2 (〈B′L−1〉)
⊕
· · ·
⊕

φm1
2 (〈B′1〉).

Proof. Since there exists a strict system of generators B for U+
b , by suitable changes

using (ii) and (iii) of Lemma 8, we will find a strict system of generators such that our
proposition is satisfied.
Let Xi = 〈Bi〉 and Hi, i = 1, . . . , L defined as follows,

HL = XL

⊕
φ
JL−1

2 (XL−1)
⊕

φ
JL−2

2 (XL−2)
⊕
· · ·
⊕

φJ12 (X1) = kerφ, (5.5)

Hi = φmi
2 (Xi)

⊕
φ
mi−1

2 (Xi−1)
⊕
· · ·
⊕

φm1
2 (X1) for 1 ≤ i < l, (5.6)

and we consider UL−1, UL−2, . . . , U1 such that

U+
B = UL−1

⊕
(HL−1 ∩ U+

B ),
HL−1 ∩ U+

B = UL−2
⊕

(HL−2 ∩ U+
B ),

HL−2 ∩ U+
B = UL−3

⊕
(HL−3 ∩ U+

B ),
...

H2 ∩ U+
B = U1

⊕
(H1 ∩ U+

B ).

To prove our result, it is enough to show that there is a strict system of generators B and
subsets B′i ⊂ Bi such that Ui−1 = φmi

2 (〈B′i〉) for i = 1, . . . , L. For this, we will prove by
induction on i the following affirmation:
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Affirmation 1. There is a strict system of generators B such that for each j ≤ i, Uj−1 =
φ
mj

2 (B′j) with B′j ⊂ Bj.

Proof. We suppose i = 0, then U0 = H1 ∩ U+
B = φm1

2 (X1) ∩ U+
B ⊂ φm1

2 (X1). Here, φm1
2

induces an isomorphism of X1 in φm1
2 (X1), so there exists a subspace Z ⊂ X1 such that

φm1
2 (Z) = U0. Let B′1 be a k-basis of Z and B′′1 a complementary basis of X1, then B′1∪B′′1

is a k-basis of X1 and from (ii) of Lemma 8, changing B1 by B′1 ∪B′′1 if it is necessary, we
can suppose that B′1 ⊂ B1 and φm1

2 (〈B′1〉) = φm1
2 (Z) = U0.

We suppose that our afirmattion is true for i and we will prove for i+ 1.
Since Hi+1 ∩ U+

B = Ui
⊕

(Hi ∩ U+
B ) and Hi+1 ∩ U+

B ⊂ Hi+1, that is,

Hi+1 ∩ U+
B ⊂ φ

mi+1

2 (Xi+1)
⊕

φ
mi−mi+1

2 (Xi)
⊕
· · ·
⊕

φ
m1−mi+1

2 (X1)).

By (v) of Lemma 8, there exists

Z ⊂ Xi+1

⊕
φ
mi−mi+1

2 (Xi)
⊕
· · ·
⊕

φ
m1−mi+1

2 (X1)

such that φ
mi+1

2 (Z) = Ui.
We consider a basis l1, l2, . . . , lt of Z, then

l1 = x1 + y1,
l2 = x2 + y2,

...
lt = xt + yt,

where for 1 ≤ s ≤ t, xs ∈ Xi+1, and each ys ∈ φmi−mi+1

2 (Xi)
⊕
· · ·
⊕
φ
m1−mi+1

2 (X1).
We will check that the set {x1, x2, . . . , xt} is linearly independent. Indeed, let c1, . . . , ct ∈ k
such that c1x1 + c2x2 + · · ·+ ctxt = 0, then

c1l1 + c2l2 + · · ·+ ctlt = c1y1 + c2y2 + · · ·+ ctyt.

Thus,

w = c1φ
mi+1

2 (l1) + · · ·+ ctφ
mi+1

2 (lt) = c1φ
mi+1

2 (y1) + · · ·+ ctφ
mi+1

2 (yt), (5.7)

it is obtained that,

w ∈ φmi+1

2 (Z) ∩ φmi
2 (Xi)

⊕
· · ·
⊕

φm1
2 (X1) = Ui ∩Hi = 0.

Therefore,
φmi

2 (c1l1 + c2l2 + · · ·+ ctlt) = 0,

and by (v) of Lemma 8
c1l1 + c2l2 + · · ·+ ctlt = 0,

which implies that
c1 = c2 = · · · = ct = 0,

thus x1, . . . , xt are linearly independent. By (ii) of Lemma 8, we can suppose that
x1, . . . , xt ∈ Bi and by applying several times (iii) of Lemma 8, we can change Bi in
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such a way that l1, l2, . . . , lt ∈ Bi. Thus we obtain a strict system of generators B such
that Z = 〈B′i〉 with B′i ⊂ Bi. This follows that B satisfies our affirmation for i+ 1. �

We consider the subposet K of P where K = P\(A+B) = {a, b | a||b} and θ = {(a, b)} as
the only equivalence class. The Hasse diagram in this case is presented in the following
Figure 5.2:

(K, θ) (K′, θ′)

a b

a ∼ b

• • •
•
•
•

•
•
•
•

a1

a2

a3

a4
...

b1

b2

b3

b4

...

ai ∼ bi

(a, b)
−!
III

Figure 5.3. The diagram of a poset (K, θ) and its corresponding derivate poset (K′, θ′).

From now on we will assume for a representation U = (U0, Uz)z∈θ of (P, θ) that there
exists a strict generator system B for U+

b which satisfies the conditions of Proposition 27.

With the notation of such proposition we will put B′ =
L⋃
i=1

B′i, B
′′
i is the complement of

B′i in Bi and B′′ =
L⋃
i=1

B′′i .

We will also use the following notation B′ = {eu}u∈B′ ,B′′ = {eu}u∈B′′ and B = B′
⋃
B′′.

If eu ∈ Bi, we will put mu = mi. For eu ∈ B we will denote by Lmu+1(eu) to the
representation of K defined by

Lmu+1
0 = 〈eu, φ(eu), . . . , φmu(eu)〉,

Lmu+1
(a,b) = 〈(0, φmu(eu)), (φmu(eu), φmu−1(eu)), . . . , (φ(eu), eu)〉.

Lemma 9. Let U ∈ R and {eu}u∈B be a strict system of generators for U+
b such that the

properties of Proposition 27 are satisfied. Then
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a. If u ∈ B′ and mu = 0 then (Lmu+1(eu))′ = L1,1(eu) and if mu ≥ 1 then (Lmu+1(eu))′ =
L1,1(X(u))

⊕
L3,mu(φmu(eu), eu) where,

X(u) =

{
0, if mu = 1,

〈φmu−1(eu), . . . , φ(eu)〉, if mu ≥ 2,

b. If u ∈ B′′ and mu ≥ 0 then (Lmu+1(eu))′ = L1,1(X(u))
⊕

L1,mu+1(eu) where,

X(u) =

{
0, if mu = 0,

〈φmu(eu), . . . , φ(eu)〉, if mu ≥ 1,

Proof. a.

(Lmu+1
0 )′ = 〈eu, φ(eu), . . . , φmu(eu)〉

(Lmu+1
(ai,bi)

)′ =


〈(0, φmu+1−i(eu)), (φmu(eu), 0), (0, φmu(eu)), . . . , (0, φ(eu))〉, if 1 ≤ i < mu − 1,

〈(0, φ(eu)), (φmu(eu), eu), (0, φmu−1(eu)), . . . , (0, φ(eu))〉, if i = mu,

〈(0, φmu(eu)), (0, φmu−1(eu)), . . . (0, eu)〉, if i > mu.

By considering X(U) = 〈φ(eu), . . . , φmu−1(eu)〉 then we obtain that

(Lmu+1
0 )′ = 〈eu, φmu(eu)〉

⊕
X(U),

(Lmu+1
(ai,bi)

)′ = (Lmu+1
(ai,bi)

)′1
⊕

(Lmu+1
(ai,bi)

)′2.

where,

(Lmu+1
(ai,bi)

)′1 =


〈(0, φmu(eu)), (φmu(eu), 0)〉, if 1 ≤ i < mu − 1,

〈(φmu(eu), eu), (0, φmu(eu)), if i = mu,

〈(0, φmu(eu)), (0, eu)〉, if i > mu.

and

(Lmu+1
(ai,bi)

)′2 = 〈(0, φ(eu)), . . . , (0, φmu−1(eu))〉

Therefore,

(Lmu+1(eu))′ = (X(U), (Lmu+1
(ai,bi)

)′2)
⊕

(〈eu, φmu(eu)〉, (Lmu+1
(ai,bi)

)′1)

= L1,1(X(U))
⊕

L3,mu(φmu(eu), eu)

b. If mu = 0 then L1(eu) = (L1
0,L

1
(a,b)) = (〈eu〉, 〈(0, eu)〉 thus

(L1(eu))′ = ((L1)′0, (L
1
(ai,bi)

)′ = (〈eu〉, 〈(0, eu)〉) = L1,1(eu)).

If mu ≥ 1 then Lmu+1(eu) = (Lmu+1
0 ,Lmu+1

(a,b) ), where

Lmu+1
0 = 〈eu, φ(eu), . . . , φmu(eu)〉

Lmu+1
(a,b) = 〈(0, φmu(eu)), (φmu(eu), φmu−1(eu)) . . . , (φ(eu), eu)〉).
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Since (Lmu+1(eu))′ = ((Lmu+1
0 )′, (Lmu+1

(ai,bi)
)′) with

(Lmu+1
(ai,bi)

)′ = (U+
B ∩ Lmu+1

0 (eu),Lmu+1
0 (eu)) ∩ (Lmu+1(eu)(a,b))

[i] + (0, (Lmu+1(eu))+
a ),

here, U+
B ∩ Lmu+1

0 (eu) = 0, (Lmu+1(eu))+
a = 〈φmu(eu), φmu−1(eu), . . . , φ(eu)〉 and

(Lmu+1(eu)(a,b))
[i] = {(0, φmu−(i+1)(eu)), (φmu(eu), φmu−i(eu)), . . . , (φi(eu), eu)} then

(Lmu+1
0 )′ = 〈eu, φ(eu), . . . , φmu(eu)〉

(Lmu+1
(ai,bi)

)′ =

{
〈(0, φmu(eu)), (0, φmu−1(eu)), . . . , (0, φ(eu))〉 if 1 ≤ i ≤ mu

〈(0, φmu(eu)), . . . , (0, φ(eu)), (0, eu)〉 if i > mu

By considering X(U) = 〈φ(eu), . . . , φmu(eu)〉 then we obtain that

(Lmu+1
0 )′ = 〈eu〉

⊕
X(U),

(Lmu+1
(ai,bi)

)′ = (Lmu+1
(ai,bi)

)′1
⊕

(Lmu+1
(ai,bi)

)′2

where

(Lmu+1
(ai,bi)

)′1 = 〈(0, φmu(eu)), (0, φmu−1(eu)), . . . , (0, φ(eu))〉

and

(Lmu+1
(ai,bi)

)′2 =

{
0, if 1 ≤ i ≤ mu,

〈(0, eu)〉, if i > mu.

Therefore,

(Lmu+1(eu))′ = (X(U), (Lmu+1
(ai,bi)

)′1)
⊕

(〈eu〉, (Lmu+1
(ai,bi)

)′2)

= L1,1(X(U))
⊕

L1,mu+1(eu).

Proposition 28. Let U ∈ R and {eu}u∈B be a strict system of generators for U+
b such

that the properties of Proposition 27 are satisfied. Then

U |K = L1(Z(U))
⊕ ⊕

u∈B′
mu>1

Lmu+1(eu)
⊕ ⊕

u∈B′′
mu>0

Lmu+1(eu)
⊕

S(Us),

where S(Us) = (Us, U(a,b) = 0). Even more,

U ′|K′ = L1,1(Z(U))
⊕ ⊕

u∈B′
mu>0

L1,1(X(u))
⊕

L3,mu(φmu(eu), eu)
⊕ ⊕

u∈B′′
mu>0

L1,1(X(u))
⊕

L1,1+mu(eu)
⊕

S(Us),

where S(Us) = (Us, U(ai,bi) = 0).

Proof. The first item is clear. The second follows from the first item, since U ′|K′ =
(U |K)′and from Lemma 9.
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Lemma 10. Let W ∈ R′, then W |K′ =
⊕
u∈J

W u where each W u is trivial or W u =

L1,lu+1(eu), or W u = L3,lu(fu, eu), with fu ∈ W+
B . If W u = L1,lu+1(e) with lu ≥ 1, then

e /∈ U+
B .

Proof. Since each W u such that is not trivial has the form L1,lu+1(eu) or L2,lu(eu) or
L3,lu(fu, eu). In the first case if lu ≥ 1 then W u

(a1,b1) = 0. Then if eu ∈ U+
B , eu =

∑
s
vs with

vs ∈W+
zs , zs = (x, y) with x < b1, then (0, vs) ∈W(a1,b1); therefore (0, eu) ∈W u

(a1,b1) which

is a contradiction; so eu /∈ W+
B . If W u = L2,lu(eu), it is obtained that (W u)+

alu−1
= 〈eu〉

and (W u)+
alu

= 0 which does not happen because W ∈ R′. If W u = L3,lu(fu, eu) it is

obtained that f ∈ (W u)+
a1 ⊂W

+
a1 ⊂W

+
B . This proves our affirmation. �

Proposition 29. Let M ∈ R′ and f : M0 ! ke be a k-linear transformation. The
following two conditions are equivalent:

1. f : M |K′ ! k(A, b1)(e)|K′ is a morphism in RepK′ and f(M+
B ) = 0.

2. f : M ! k(A, b1) is a morphism in R′.

Proof. We will prove that 1. implies 2. For this, it is enough to prove that for z ∈ θ′, z 6=
(ai, bi) it is obtained that fz(Mz) ⊂ k(A, b1)z.
Let z = (x, y), (λ, µ) ∈ Mz, we have that f(λ) = ce, f(µ) = c′e. If both x, y ∈ A
(f(λ), f(µ)) = c(e, 0) + c′(0, e) ∈ k(A, b1)z if x ∈ A, y ∈ B, then µ ∈ M+

B . As by
hypothesis f(µ) = 0, hence (f(λ), f(µ)) = c(e, 0) ∈ k(A, b1)z, if both x, y ∈ B then it is
obtained (f(λ), f(µ)) = (0, 0) ∈ k(A, b1)z. Therefore 1. implies 2. Conversely, is clear. �

Proposition 30. Let M be a representation of R′ and g : ke ! M0 be a k-linear trans-
formation. Then the following statements are equivalent:

1. g : k(A, b1)(e)|K′ !M |K′ is a morphism Rep(K′) and g(e) ∈M−A .

2. g : k(A, b1)!M is a morphism in R′.

Proof. It is similar to the previous one. �

Let M ∈ R′ with

M |K′ =
⊕
u∈B1

Mu
⊕
u∈B2

Mu
⊕
u∈B3

Mu
⊕
u∈B4

Mu
⊕

S(Ms),

such that for u ∈ B1,M
u = L3,mu(fu, eu), for u ∈ B2, Mu = L1,mu+1(eu) with mu > 0,

for u ∈ B3, Mu = L1,1(eu) with eu ∈M+
B , for u ∈ B4, Mu = L1,1(eu) with eu /∈M+

B .

Proposition 31. Let M in R′ such that

M |K′ = L1,1(Z)
⊕ ⊕

u∈B1

mu>0

L3,mu(fu, eu)
⊕ ⊕

u∈B2

mu>0

L1,mu+1(eu)
⊕

S(Ms).

The following statements are equivalent:
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1. k(A, b1)(e) is a direct summand of M in R′.

2. There exists an element x ∈ Z
⋂
M−A \M

+
B .

Proof. We suppose that 1. is true, then M = k(A, b1)(e)
⊕
L so, M |K′ = L1,1(e)

⊕
L|K′ .

If λ ∈M+
y with y ∈ B, then since b2 > y, (0, λ) ∈M(a2,b2). For y ∈ B,

M+
y = k(A, b1)+

y

⊕
L+
y = L+

y ⊂ L0,

consequently M+
B ⊂ L0, thus e /∈M+

B and e ∈M−A .

Here (L1,mu+1)(a1,b1) = 0 for mu ≥ 1, so

(0, e) ∈M(a1,b1) = (0, Z)
⊕⊕

u∈B1

〈(0, fu)〉,

therefore e = x+
∑
u∈B1

cufu with x ∈ Z. Each fu ∈M−A and by Lemma 10, fu ∈M+
B then

x ∈M−A and since e /∈M+
B , then x /∈M+

B .

Now we suppose that 2. is true. It has

M |K′ = L1,1(Z)
⊕
u∈B1

L3,mu(fu, eu)
⊕
u∈B2

mu>0

L1,1+mu(eu)
⊕

S(Ms),

with M+
B = Z

⋂
M+
B

⊕ ⊕
u∈B1

mu>0

〈fu〉. We have x /∈M+
B , so a vector space Z1 containing x is

obtained and such that Z = Z
⋂
M+
B

⊕
Z1. Therefore, we can put

M |K′ = L1,1(x)
⊕

N

with M+
B ⊂ N and x ∈M−A . Then by Propositions 29 and 30, k(A, b1) is a direct summand

of M . �

Proposition 32. Let U be a representation of R.

a. Let f : U0 ! ke be a linear transformation, then f : U ! k(A, b)(e) is a morphism in
R if and only if f : U |K ! L1(e) is a morphism in Rep(K) and f(U+

B ) = 0.

b. Let g : ke ! U0 be a linear transformation, then g : k(A, b) ! U is a morphism in R

if and only if g : L1(e)! U is also a morphism in Rep(K) and g(e) ∈ U−A .

Proof. a. Let y ∈ B and z = (x, y) ∈ θ. When (λ, µ) ∈ Uz, it is obtained that
(f(λ), f(µ)) ∈ k(A, b)z; therefore f(µ) = 0, so f(U+

y ) = 0 for all y ∈ B. This implies that

f(U+
B ) = 0. Conversely, we suppose that f : U |K ! k(A, b)|K = L1(e) is a morphism in

Rep(K) and f(U+
B ) = 0. Then if z = (x, y) 6= (a, b) and (λ, µ) ∈ Uz, with x ∈ B, then

λ ∈M+
B and f(λ) = 0. Now, if both x, y ∈ B, then fz(Uz) = 0 = k(A, b)(e)z. By contrast,

if both x, y ∈ A, then f(λ) = ce and f(µ) = c′e. Thus (f(λ), f(µ)) = c(e, 0) + c′(0, e) ∈
k(A, b)(e)z. Finally, if x ∈ A, y ∈ B it is clear that f(Uz) ⊂ k(A, b)z.
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b. If g : k(A, b)! U is a morphism then f(e) ∈ U−A and the restriction to K is a morphism.
Conversely, if g : L1(e) ! U |K is a morphism such that g(e) ∈ U−A , then for z 6= (a, b)
where z = (x, y) with x ∈ A and y ∈ B, it is obtained that for (λ, µ) ∈ k(A, b)(e)z, with
λ = ce, µ = 0; hence (g(λ), g(µ)) = (g(ce), 0) ∈ Uz. The remaining cases are similar and
it follows that g(k(A, b)z) ⊂ Uz for all z ∈ θ. �

Proposition 33. Let U ∈ R and Z(U) =
⊕
u∈B
mu=0

〈eu〉. Then k(A, b) is a direct summand of

U if and only if there exists an element x ∈ Z(U) ∩ U−A \U
+
B .

Proof. We suppose that k(A, b)(e) is a direct summand of U . We have:

U = k(A, b)(e)
⊕

W ;

therefore e ∈ U−A and U(a,b) = 〈(0, e)〉
⊕
W(a,b). For y < b:

U+
y = k(A, b)(e)+

y

⊕
W+
y = W+

y ⊂W0;

therefore U+
B ⊂ W0. We have e =

∑
u∈B(U)

mu>0

cuφ
mu(eu) + x with x ∈ Z(U). Since each

φmu(eu) ∈ U−A and e ∈ U−A , then x ∈ U−A . If π : U |K ! L1(e) be the projection,

e = π(e) =
∑
u

cuφ
mu(π(eu)) + π(x).

Therefore, π(x) 6= 0, which implies that x /∈ U+
B .

Conversely, we suppose that there exists an element x ∈ Z(U) ∩ U−A \U
+
B . We have

U = L1(Z(U))
⊕⊕

u∈B′
nu≥1

Lnu+1(eu)
⊕ ⊕

u∈B′′
nu≥1

Lnu+1(eu),

where U+
B =

⊕
u∈B′
nu>0

〈φnu(eu)〉
⊕
Z(U) ∩ U+

B . Since x /∈ Z(U) ∩ U+
B we can choose a vector

space Z1 containing x such that Z(U) = Z(U) ∩ U+
B

⊕
Z1, then

L1(Z(U)) = L1(Z(U) ∩ U+
B )
⊕

L1(Z1).

Therefore L1(x) is a direct summand of L1(Z(U)) and it follows that U |K = L1(x)
⊕
W

with U+
B ⊂W0. Since x ∈ U+

B by Proposition 32, it is obtained that k(A, b)(x) is a direct
summand of U . �

Remark 11. Suppose M,N ∈ R′, with M = (M0,Mz)z∈θ, N = (N0, Nz)z∈θ such that
M0 = N0

⊕
L, Nz ⊂ Mz for all z ∈ θ. Suppose that π : M0 ! N0, the projection

is a morphism in R, then M = N
⊕
L̃, where L̃ is the representation associated to the

space L according to Lemma 7. Indeed, for (µ, ν) ∈ Mz, µ = µ1 + ν1, ν = ν1 + ν2 with
µ1, ν1 ∈ N0, µ2, ν2 ∈ L, since (µ, ν) = (µ1, ν1) + (µ2, ν2) and µ1, ν1 = (π(µ), π(ν)) ∈ Mz,
then (µ2, ν2) ∈ L̃z.
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Proposition 34. Let U ∈ R and let {eu}u∈B be a strict system of generators with the
conditions of Proposition 27. We take X(U) =

⊕
u∈B
mu≥1

X(u), then

1. U ′ = k(A, b1)(X(U))
⊕

(U ′)#, with

(U ′)#|K′ = L1,1(Z(U))
⊕ ⊕

u∈B′
mu≥1

L3,mu(φmu(eu), eu)
⊕ ⊕

mu≥1
u∈B′′

L1,mu+1(eu)
⊕
S(Us).

2. k(A, b) is a direct summand of U if and only if k(A, b1) is a direct summand of (U ′)#.

Proof.

1. Let X the basis of X(U) formed by the elements of the form φi(eu). Since

X(U) =
⊕
x∈X
〈x〉,

then x ∈ U−A = (U ′)+
A and x /∈ U+

B = (U ′)+
B. Then by second part of Proposition

31, the projection πx of U0 in 〈x〉 is a morphism in R of U ′ in k(A, b1)(x); thus the
projection of U0 in X(U) is a morphism in R of U ′ in k(A, b1)(X(U)). Therefore by
Remark 11 and by using the notation of Lemma 7, is obtained that

U ′ = k(A, b1)(X(U))
⊕

L̃,

where
L =

⊕
mu>0
u∈B

〈(φmu(eu), eu)〉
⊕ ⊕

mu>0
u∈B′′

〈eu〉;

therefore by defining L̃ = (U ′)# the first part of our affirmation is obtained.

2. Let M = (U ′)#, since

M = L1,1(Z(U))
⊕ ⊕

u∈B′
mu>1

L3,mu(φmu , eu)
⊕ ⊕

u∈B′′
mu>0

L1,mu+1(eu)
⊕

S(Ms).

By Proposition 32, if k(A, b) is a direct summand of U , there exists x ∈
Z(U)

⋂
U−A \U

−
B . We have U−A = (U ′)−A, where

(U ′)−A =
⊕
u∈B′

0<j<mu

〈φj(eu)〉
⊕ ⊕

u∈B′′
j≥1

〈φj(eu)〉
⊕

M−A .

Therefore x ∈ M−A and since U+
B = (U ′)+

B = M+
B , it is obtained that x ∈

Z(U)
⋂
M−A \M

+
B . By Proposition 29, k(A, b1) is a direct summand of M .

Conversely, if k(A, b1) is a direct summand ofM , there exists x ∈ Z(U)
⋂
M−A \M

+
B =

Z(U)
⋂
U−A \M

+
B . Therefore k(A, b) is a direct summand of U .
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�

We consider the representation Ln+1(e) of K, which given by

Ln+1
0 = V n(e)

Ln+1
(a,b) = 〈((0, φnn(e)), (φnn(e), φn−1

n (e)), . . . , (φn(e), e))〉 = {(φn(v), v) | v ∈ V n(e)}

where φn : V n(e) ! V n(e) is a k linear map with φn+1
n = 0. The k vector space V n(e)

is a k[x]−module where for v ∈ V n(e), xv = φn(v). If L3,n(φn(e), e) = M then V n(e) =
M0(e)

⊕
X(e) where

X(e) =

{
0, if n = 1,

〈φn(e), . . . , φn−1
n (e)〉, if n ≥ 2,

and if L1,n+1(e) = M then V n(e) = M0 ⊕X(e), where

X(e) =

{
0, if n = 0,

〈φn(e), . . . , φnn(e)〉, if n ≥ 1,

Proposition 35. Let h : L3,n(φn(e), e) ! L3,m(φm(f), f) be a morphism in Rep(K′)

then there exists a morphism of k[x]- modules ĥ =

(
h α
β γ

)
: V n(e) ! V m(f) where

β : M0 ! X(f), α : X(e) ! N0 and γ : X(e) ! X(f) and the following statements are
satisfied:

a. if n = m, then α = 0, β = 0.

b. If n > m then β = 0,α(φi(e)) = 0 for 1 ≤ i < m and α(φm(e)) = c1φ
m(f) for some

c1 ∈ k.

c. If n < m, then α = 0 and β(e) = φn−m(e), β(φn(e)) = 0.

Proof. a. If m = n, a morphism h : L3,m(φm(e), e) ! L3,m(φm(f), f) is such that

h(e) = c1f + c2φ
m(f). Then if we define ĥ : V m(e) ! V m(f) in such a way that

ĥ(φi(e)) = φif , we get our result for this case.

b. In this case h(e) = c1f+c2φ
m(f), so we define ĥ : V n(e)! V m(f) such that ĥ(φj(e)) =

φj(h(e)). Hence β = 0 and α(φj(e)) = 0 for 1 ≤ j < m and α(φm(e)) = c1φ
m(f).

c. We suppose that n < m. In this case h(e) = c1φ
m(f), h(φn(e)) = c2φ

m(f). For
this case we define ĥ : V n(e) ! V m(f) such that ĥ(e) = c1φ

m−n(f) + c2φ
m(f) and

ĥ(φi(e)) = φi(ĥ(e)). Here α = 0 and β : M ! X(f) is such that β(e) = c1φ
m−n(f),

β(φn(e)) = 0. �

Proposition 36. Let h : L3,n(φn(e), e) = M ! L1,m+1(f) = N be a morphism in Rep(K′)
then there exists a morphism of k[x]- modules

ĥ =

(
h α
β γ

)
: M0

⊕
X(e)! N0

⊕
X(f)
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such that:

a. if n ≥ m+ 1 then α = 0, β = 0,

b. if n < m then h = 0 and ĥ = 0.

Proof. a. In this case h(e) = cf , so we put ĥ(e) = cf and for j ≥ 1, ĥ(φj(e)) = φj(ĥ(e).

Then ĥ =

(
h α
β γ

)
, where α = 0 and β = 0.

b. It is clear. �

Proposition 37. Let h : L1,n+1(e) ! L1,m+1(f) be a morphism in Rep(K′) then there
exists a morphism of k[x]- modules

ĥ =

(
h α
β γ

)
: M0

⊕
X(e)! N0

⊕
X(f)

such that:

a. if n < m, h = 0, ĥ = 0,

b. if n ≥ m,α = 0 and β = 0.

Proof. The first case is clear and for the second, it is obtained that h(e) = cf . Then we
put ĥ(e) = cf and ĥ(φi(e)) = cφi(f), so α = 0 and β = 0. �

Proposition 38. Let h : M = L1,n+1(e) ! L3,m(φm(f), f) = N be a morphism in
Rep(K′), then there exists a morphism of k[x]- modules

ĥ =

(
h α
β γ

)
: V n(e)! V m(f)

such that:

a. if n+ 1 ≤ m, then α = 0, β = 0,

b. if n+ 1 > m, then α : X(e)! N0 is such that α(φi(e)) = 0 for i 6= m and α(φm(e)) =
φm(f), β = 0.

Proof. a. It is clear.

b. In this case, we have h(e) = cφn(f), then ĥ : V n ! V m is such that ĥ(φi(e)) = 0. �

5.1.1 Integration

Let W be a representation in R′ such that

W |K′ =
⊕
u∈J

W u
⊕

S(Ws).
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with each W u = L1,lu+1(eu) or W u = L3,lu(fu, eu) and S(Ws) is the trivial representation
with S(Ws)0 = Ws. We consider Ji = {u ∈ J | lu = li}, with l1 > l2 > · · · > lL1 > lL = 1

and J =
L⋃
i=1
Ji. Let J ′i = {u ∈ Ji | W u = L3,li(fu, eu)} and J ′′i = {u ∈ Ji | W u =

L1,li+1(eu)}. For u ∈ J ′i we take a k-vector space Zu as follows:

Zu =

{
0, if li = 0,

〈e1
u, . . . , e

lu−1
u 〉, if li ≥ 1

(5.8)

Now, for u ∈ J ′′i we put

Zu =

{
0, if li = 0,

〈e1
u, . . . , e

lu
u 〉, if li ≥ 1.

(5.9)

We consider the representation of R′

Ŵ = V
⊕⊕

u∈J
K(A, b1)(Zu).

Affirmation 2. There exists V ∈ R such that V ′ = Ŵ .

Proof. We have that Ŵ = (Ŵ0, Ŵz)z∈θ with Ŵ0 = W0
⊕ ⊕

u∈J
Zu. We define V0 = Ŵ0 and

for z 6= (a, b) we put Vz = Ŵz. For u ∈ J ′i we define

Vu =

{
〈(0, fu), (fu, e

lu
u ), . . . , (e2

u, e
1
u), (e1

u, eu)〉, if li ≥ 1,

〈(0, e)〉, if li = 0,

and for u ∈ J ′′i we define

Vu =

{
〈(0, elu), . . . , (e1

u, eu)〉, if li ≥ 1,

〈(0, e)〉, if li = 0,
.

We define V(a,b) =
⊕
u∈J

Vu. We have to prove that V is a representation of (P, θ). Let

(x, y) ∈ θ, with a < x. We have to prove that V +
a ⊂ V −x . We consider (λ, ν) ∈ V(a,b), so

(λ, ν) =
∑
u∈J

(λu, νu), with (λu, νu) ∈ Vu. If lu = 1, λu = 0. For u ∈ J ′u, λu = c0fu+
lu−1∑
j=1

cje
j
u.

we have that fu ∈ W+
alu

. Here x ∈ A and alu < x in P′ and fu ∈ W+
au . Therefore

(λ, 0) ∈ V(x,y), thus λ ∈ V −x .

We suppose that a > x. Let λ ∈ V +
x and we take N > l1; since aN > x, then λ ∈ V +

x =
Ŵ+
x = W+

x ; therefore λ ∈ W−aN . Here, W (aN , bN ) =
⊕
u∈J

W u
aN ,bN

. As N > l1 > l2 >

· · · > lL then (W−(aN ,bN )) = 0. This implies that λ = 0 so, λ ∈ V −a . Now, let b > x. It

is obtained that V +
x = Ŵ+

x = W+
x then in R′, b1 > x; therefore W+

x ⊂ W−b1 . We have

W−b1 =
⊕
u∈J

(W u)−b1 . If W u = L3,lu(fu, eu), then (W u)−b1 = 〈fu〉. If W u = L1,lu+1(eu) then



5.1. ALGORITHM OF DIFFERENTIATION III 91

for lu ≥ 1, W u
(a1,b1) = 0 and for lu = 0 it is obtained that (W u)−b1 = 〈eu〉. Therefore if

λ ∈W+
b1

, then λ =
∑
u∈J ′

cufu +
∑
u∈J ′′

lu = 0. Therefore λ ∈ V −b .

�

We consider R′r the full subcategory R′ consisting of the objects without direct summand
k(A, b1). If M ∈ R′, we choose M# without direct summand of the form k(A, b1), such
that M = M#

⊕
k(A, b1)l for some l. In this way we obtain a functor

(#)′ : R′ ! R′r.

Let U be a object in R, then U0 = Ur
⊕
Us with Ur = U+

b . We recall that there exists a
k-linear transformation φU : U+

b ! V +
b such that V(a,b) = {(φU (x), x) | x ∈ V +

b }.

We have U |K =
⊕

u∈B(U)

Lmu+1(eu)
⊕
S(Us) with B(U) being a strict system of generators

for U with the conditions of the Proposition 27 and S(Us) = (Us, U(a,b) = 0).

Let f : U ! V be a morphism in R then we have V |K =
⊕

u∈B(V )

Lmu+1(eu)
⊕
S(Vs) with

B(V ) being a strict system of generators for V with the conditions of the Proposition 27
and S(Vs) = (Vs, V(a,b) = 0) and V0 = Vr ⊕ Vs, Vr = V +

b . We observe that fφU = φV f |Ur .
Indeed, (φU(x), x) ∈ U(a,b), then (f(φU(x)), f(x)) ∈ V(a,b); hence fφU (x) = φV f(x) for all
x ∈ Ur.

Theorem 13. a. The functor (#)′ : R ! R′r induces a dense and full functor, but in
general not faithful:

F : R/〈φ(λ, n)λ 6=0, k(A, b)〉! R′/〈k(A, b1)〉.

b. Let U ∈ R without a direct summand k(A, b) or φ(λ, n) and let f : U ! U be a
morphism in R such that F (f) = 0, then f is nilpotent.

Proof. a. Let U, V ∈ R. We take B(U) = {eu}u∈B(U) (B(V ) = {eu}u∈B(V )) be a strict

system of generators with the conditions of Proposition 27 for U+
b (V +

b , respectively). We
have

U |K =
⊕

u∈B(U)

Lmu+1(eu)
⊕

S(Us),

and
V |K =

⊕
u∈B(V )

Lmu+1(eu)
⊕

S(Vs),

then
U ′ = M

⊕ ⊕
u∈B(U)

k(A, b1)(X(u)), V ′ = N
⊕ ⊕

u∈B(V )

k(A, b1)(X(u)),

with M = (U ′)#, N = (V ′)#. We take C(U) = B(U)
⋃
{z1}, C(V ) = B(V )

⋃
{z2}. We

define M z1 = S(Us), M
z2 = S(Vs), X(z1) = 0 and X(z2) = 0. We have

M |K′ =
⊕

u∈C(U)

Mu, N |K′ =
⊕

u∈C(V )

Mu.
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By Propositions 35 , 36 , 37 , 38, for each pair u ∈ B(U), u′ ∈ B(V ), we have a k linear
map:

ĥu′,u =

(
hu′,u αu′,u
βu′,u γu′,u

)
: Mu

0

⊕
X(u)!Mu′

0

⊕
X(u′)

such that
ĥu′,u = Lmu+1(eu)! Lmu′+1(eu′)

is a morphism in Rep(K). Also this linear transformation is a morphism in Rep(K′):

ĥu′,u =

(
hu′,u αu′,u
βu′,u γu′,u

)
: Mu

⊕
L1,1(X(u))!Mu′

⊕
L1,1(X(u′))

For u = z1 and u0 ∈ B(V ) we have

ĥu1,z1 :

(
hu′,z1
βu′,z1

)
: Us = M z1

0 !Mu′
0

⊕
X(u′),

with βu′,z1 = 0. This k-linear map gives a morphism S(Us)! Lm
′
u+1(eu′) in the category

Rep(K) and also gives a morphism S(Us)!Mu′
⊕

L1,1(X(u′) in the category Rep(K′).

For u = z1, u
′ = z2 the morphism

ĥz2,z1 : Us = M z1
0 !M z2

0 = Vs

gives a morphism S(Us) ! S(Vs) in Rep(K) and in Rep(K′). For u ∈ B(U) and u′ = z2

the morphism:
ĥz2,u = hz2,u : Mu

0 !M z2
0 = Vs

is a morphism in Rep(K′) from Mu to S(Vs); therefore ĥz2,u = 0. We have U0 = M0⊕X(U)
and V0 = N0

⊕
X(V ) with M0 =

⊕
u∈C(U)

Mu
0 , N0 =

⊕
u∈C(V )

Mv
0 , X(U) =

⊕
u∈C(U)

X(u),

X(V ) =
⊕

u∈C(V )

X(u). Thus we obtain that the morphism ĥ : U0 ! V0 gives a morphism

from U |K to V |K.

Let

ĥ =

(
h α
β γ

)
: M0

⊕
X(M)! N0

⊕
X(N)

where α = (αu′,u) :
⊕

u∈B(U)

X(u) !
⊕

u∈B(V )

Mu and β = (βu′,u) :
⊕

u∈B(U)

Mu !
⊕

u∈B(V )

X(u).

It is clear that
γ : k(A, b1)(X(M))! k(A, b1)(X(N)),

is a morphism in R′. We will prove that α : k(A, b1)(X(M)) ! N and β : M !
k(A, b1)(X(N)) are morphisms in this category.

We consider the morphism α̂u′,u : L1,1(X(u))! N defined by

αu′,u : L1,1(X(u))! Nu′ ,
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followed by the inclusion Nu′ in N . If αu′,u 6= 0, then by Propositions 35 , 36 , 37 , 38,
u ∈ B(U)′ with mu > 0 and also u′ ∈ B(V )′ with mu′ > 0 and mu > mu′ , or u ∈
B′′(U), u′ ∈ B(V )′ with mu + 1 > mu′ . In both cases, α̂u′,u is the composition of the
projection of

L1,1(X(u))! L1,1(φmu′ (eu)),

followed by morphism s : L1,1(φmu′ (eu)) ! N such that sends φmu′ (eu) in
c1φ

mu′ (eu′) ∈ N+
A ; therefore by Proposition 30, it is obtained that s and therefore

α̂u′,u : k(A, b1)(X(u)) ! N are morphisms in R′. Hence, α : k(A, b1)(X(M)) ! N is
a morphism in R′.

We consider the morphism β : MK′ ! L1,1(X(N)) which is the sum of the morphisms

β̂u′,u : M ! L1,1(X(N))

with β̂u′,u = iu′βu′,uπu where πu : M ! Mu is the projection and iu′ : L1,1(X(u′)) !
L1,1(X(N)) is the inclusion. If βu′,u 6= 0, then by Propositions 35 , 36 , 37 , 38, it is
obtained that

mu < mu′ , mu > 0, and βu′,u(eu) = φmu′−mu(eu′), βu′,u(φmu(eu)) = 0,

therefore β̂u′,u(M+
B ) = 0, and by Proposition 29, this morphism is a morphism β̂u′,u : M !

k(A, b1)(X(N)).
From here, it is obtained that β : M ! k(A, b1)(X(N)) is a morphism in R′. From the
above it follows that the morphism ĥ : M

⊕
k(A, b1)(X(M))! N

⊕
k(A, b1)(X(N)) is a

morphism in R′.
We will prove that ĥ is a morphism of U in V in the category R. We know that ĥ restricted
to K is a morphism of U |K in V |K. Let now z ∈ θ, z 6= {a, b}, then

ĥz(Uz) = ĥz(U ′z) ⊂ V ′z = Vz.

Therefore, ĥ is a morphism in R and F (ĥ) = h. So, F is full.

b. We suppose that U ∈ R without direct summand of the form k(A, b) or φ(λ, n). By
Proposition 34, M = (U ′)# does not have a direct summand k(A, b1).

Now, let f : U ! U be a morphism in R such that F (f) = 0, since

U ′ = k(A, b1)(X(M))
⊕

M

where M = (U ′)#, then

f =

(
h α
β γ

)
where h : M ! M is a morphism in R′ which is factored through k(A, b1)(W ) for some
finite dimensional k-vector space W .
We have then h(M+

B ) = 0, h(M0) ⊂M−A and

M |K′ = L1,1(Z)
⊕ ⊕

u∈B′
mu>0

L3,mu(φmu(eu), eu)
⊕ ⊕

u∈B′′
mu>0

L1,mu+1(eu)



5.1. ALGORITHM OF DIFFERENTIATION III 94

and U does not have a direct summand k(A, b), then by Proposition 31, Z
⋂
M−A ⊂M

+
B .

Since h is factored through k(A, b1)(W ), for x ∈ M0, h(x) = z + z1 with z ∈ Z and z1 in
the vector space generated by the elements φmu(eu). Here, h(x) and z1 is in M−A ; therefore
z ∈M−A

⋂
Z ⊂M+

B ; consequently h2(x) = h(z) + h(z1) = h(z1) ⊂ φ(U0). From the above

(f2)(U0) =

(
h2 + hβ hα+ αγ
βh+ γβ βα+ γ2

)
(U0) ⊂ φ(U0),

is obtained. Therefore (f2)L = 0, where L is the maximum of the numbers mu. �

Corollary 8. Let U ∈ R without direct summand k(A, b) then (U ′)# is indecomposable if
and only if U is indecomposable.

Proof. Since U does not have a direct summand k(A, b), then M = (U ′)# does not
have a direct summand k(A, b1); therefore the endomorphisms of M which are factored
by sums of k(A, b1) are in radEndR′(M). If U is indecomposable and f : U ! U is such
that F (f) = 0 then f ∈ radEndR(U); therefore F induces an isomorphism

EndR(U)/radEndR(U)! EndR′(M)/radEndR′(M);

therefore M is indecomposable.
If U is not indecomposable U ∼=

⊕
i
U i where Ui are indecomposable; therefore

M = (U ′)# =
⊕
i

((U i)′)#.

From the above, each ((U i)′)# is indecomposable. So, if M is indecomposable, U is too.
�

Corollary 9. Let M and N be in R′ and suppose that both objects do not have direct
summand isomorphic to k(A, b1). Suppose that f : U ! V is a morphism in R such that
F (f) : M ! N is an irreducible morphism, then f is irreducible.

Proof. First let us prove that f is neither a retraction nor a section. Suppose it were a
retraction, then there exists g : V ! U such that fg = 1V , thus F (f)F (g) = 1N which
does not happen because F (f) is irreducible. In the same way, it is proved that f is not
a section. Now, we suppose that f = vu with u : U ! W and v : W ! V therefore
F (f) = F (v)F (u), then either F (u) is a section or F (v) is a retraction. If the first case
occurs, there exists α : F (W )! F (U) such that αF (u) = 1M . Since the functor F is full,
there exists a : W ! U such that α = F (a); therefore F (a)F (u) = F (au) = F (1U ) so
F (au− 1U ) = 0; so by c. of Theorem 13, ρ = au− 1U is nilpotent. Therefore au = 1U + ρ
is an isomorphism and therefore u is a section. In a similar way, it is proved that if F (v)
is a retraction, then v is a retraction. �
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