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Abstract
In this thesis, we have reviewed the theory of Adaptive Dynamics, a theoretical back-
ground originated in evolutionary biology linking demographic dynamics to evolutio-
nary changes, allowing it to describe evolutionary dynamics in the long-term when consi-
dering innovations as small and rare events in the market time scale. From this perspecti-
ve, three mathematical models have been formulated to describe evolutionary branching:
the coexistence between resident and similar innovative technologies and their further di-
vergence in the evolutionary space. The first model addresses the problem of determining
conditions on the energy market diversification from adaptive dynamics and the impact
the imposition/allocation of taxes/subsidies may have on controlling market diversifi-
cation. The second model explores the Coffee Berry Borer (Hypothenemus hampei) and its
role in the evolutionary diversification of the coffee market; the influence that consumer’s
preference and control practices have on diversification is studied in detail, and corres-
pond to the main source of insights. Finally, the third model in the fifth chapter, describes
the competition among public transport systems, considering the number of transpor-
ted passengers as the differentiation attribute is presented, the analysis allows to answer
the question of under what condition the market diversifies, and which are the levels of
transported passengers that will be reached in the long term depending on the budget
allocation rate destined to increase the number of users. Adaptive dynamics describes
evolution through an ordinary differential equation known as the canonical equation,
which smooths on a continuous path the successive processes of innovation and subs-
titution. This approach considers interactions to be the evolutionary driving force and
considers the feedback between evolutionary change and the selection forces that agents
undergo. One of the main (general) contributions of this thesis is to illustrate in detail
how the theory of adaptive dynamics is very useful in areas of knowledge quite distant
from evolutionary biology, in particular for engineering, given that its results predict the
systems’ long-term dynamics, as well as to control in the demographic/market timescale
and to influence the long-term behavior of the evolving attributes in the evolutionary ti-
mescale.

Keywords: Technological Change, Adaptive Dynamics, Evolutionary Branching, Dynamic
Systems, Energy Market, Coffee Market; Market Diversification; Coffee Berry Borer; Pu-
blic Transportation; Simulation Modeling.
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Resumen
En la ejecución de esta tesis, hemos revisado la teorı́a de la dinámicas adaptativas, un
trasfondo teórico que se origina en la biologı́a evolutiva, que vincula la dinámica de-
mográfica con los cambios evolutivos, y permite describir la dinámica evolutiva a largo
plazo al considerar las innovaciones como eventos pequeños y raros en la escala de tiem-
po del mercado. Desde esta perspectiva, se han formulado tres modelos matemáticos que
permiten describir la ramificación evolutiva, es decir, la coexistencia entre tecnologı́as
innovadoras residentes y similares y su posterior divergencia en el espacio evolutivo.
El primer modelo aborda el problema de determinar las condiciones para la diversifica-
ción del mercado energético a partir de las dinámicas adaptativas y el impacto que la
imposición/asignación de impuestos/subsidios puede tener en el control de la diversifi-
cación del mercado. El segundo modelo explora la broca del café (Hypothenemus hampei)
y su papel en la diversificación evolutiva del mercado cafetero; la influencia que las pre-
ferencias de los consumidores y las prácticas de control tienen sobre la diversificación
se estudia en detalle y corresponde a la principal fuente de información. Además, en el
quinto capı́tulo, se presenta un modelo para la competencia entre los sistemas de trans-
porte público, considerando el número de pasajeros transportados como el atributo de
diferenciación; el análisis permite responder a la pregunta bajo qué condiciones se diver-
sifica el mercado y cuáles son los niveles de pasajeros transportados que se alcanzarán
a largo plazo dependiendo de la tasa de asignación presupuestaria destinada a aumen-
tar el número de usuarios. La teorı́a de las dinámicas adaptativas describe la evolución a
través de una ecuación diferencial ordinaria conocida como ecuación canónica, que sua-
viza en una trayectoria continua los procesos sucesivos de innovación y sustitución. Este
enfoque considera las interacciones como la fuerza impulsora de la evolución y tiene en
cuenta la retroalimentación entre el cambio evolutivo y las fuerzas de selección que sufren
los agentes. Una de las principales contribuciones mas generales de esta tesis es ilustrar
en detalle cómo la teorı́a de las dinámicas adaptativas es útil en áreas de conocimiento
bastante distantes de la biologı́a evolutiva, en particular para la ingenierı́a, dado que sus
resultados permiten predecir el comportamiento de los sistemas a largo plazo, ası́ como
controlar dicho comportamiento en la escala de tiempo demográfica/de mercado e influir
en la dinámica a largo plazo de los atributos en evolución en la escala de tiempo evolutiva.

Palabras clave: Cambio Tecnológico, Dinámicas Adaptativas, Ramificación Evolutiva, Sis-
temas Dinámicos, Mercado Energético, Mercado del Café; Diversificación del mercado;
Broca del Café; Transporte público; Simulación de modelos.



Contents

Acknowledgements V

Abstract VII

1. Introduction 1

2. Theory 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Resident-mutant model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Resident model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2. Invasion and substitution in the resident-mutant model . . . . . . . 12

2.3. Adaptive dynamics canonical equation . . . . . . . . . . . . . . . . . . . . . 15
2.3.1. Evolutionary equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2. Evolutionary Branching . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Previous modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Conditions on the energy market diversification from adaptive dynamics 25

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1. Innovative-Standard model . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2. Innovative-Standard model local stability . . . . . . . . . . . . . . . . 30
3.2.3. Standard energy model and invasion conditions . . . . . . . . . . . . 34

3.3. Evolutionary dynamics under cooperation and competition . . . . . . . . . 36
3.3.1. Functional coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2. Selection gradient and invasion conditions . . . . . . . . . . . . . . . 38
3.3.3. Adaptive dynamics canonical equation . . . . . . . . . . . . . . . . . 40
3.3.4. Coexistence and divergence . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Degenerated scenarios in the energy market . . . . . . . . . . . . . . . . . . . 48
3.5. Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4. Coffee Berry Borer (Hypothenemus hampei) and its role in the evolutionary

diversification of the coffee market 53

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



X Contents

4.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1. Standard-special coffee model . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2. Standard coffee model, invasion fitness, and invasion conditions . . 60
4.2.3. The AD canonical equation and conditions for branching in the qua-

lity attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4. Innovation dynamics after branching . . . . . . . . . . . . . . . . . . 66

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1. The standard coffee model . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2. Innovation dynamics in the single-coffee market: stability and bi-

furcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3. Innovation dynamics in the standard-special coffee market: the emer-

gence of diversity through branching . . . . . . . . . . . . . . . . . . 73
4.3.4. Innovation dynamics under consumers’ preference for high-quality 76
4.3.5. Innovation dynamics under consumers’ preference for low quality . 79

4.4. Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5. Model for the competition among public transport systems 85

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2. Generalized model for competition of public transport systems . . . . . . . 87

5.2.1. Innovation in the generalized model for public transport systems . . 90
5.2.2. Invasion conditions and canonical equation of adaptive dynamics . 95
5.2.3. Sufficient conditions for market diversification . . . . . . . . . . . . . 97

5.3. Model for one established and one innovative transport system . . . . . . . 98
5.3.1. Resident model and local stability analysis . . . . . . . . . . . . . . . 98
5.3.2. Resident innovative model and fitness function . . . . . . . . . . . . 104
5.3.3. AD canonical equation and its stability analysis . . . . . . . . . . . . 105
5.3.4. Coexistence and divergence conditions . . . . . . . . . . . . . . . . . 110
5.3.5. Origin of diversity through branching . . . . . . . . . . . . . . . . . . 113

5.4. Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. Conclusions and recommendations 121

A. Glossary 125

Bibliography 129



List of Figures

1-1. Left: Different selection pressures and different genetic derivations can act in diffe-
rent environments, isolated populations can eventually become separate species.
Right: Influenced by disruptive selection, a monomorphic population may beco-
me dimorphic in certain relevant attributes. Image elaborated by the author. . . . . 1

1-2. Use of telecommunication services in Switzerland. Squares: analog telephones.
Diamonds: digital telephones. Inverted triangles: subscribers to analog mobile
phone services. Triangles: subscribers to digital mobile phone services. Stars: pu-
blic payphones. Circles: internet hosts. Reprinted from [31]. . . . . . . . . . . . . . 2

3-1. Phase portrait corresponding to the 7th scenario in Table 3-2, where c(x2, x1)c(x1, x2) >

1, H(x1, x2) > 1 and H(x2, x1) > 1. As it can be deduced from the stability propo-
sitions and, as it is shown in the Table, P0 and P3 are unstable and P1 and P2 are
both locally asymptotically stable. In this case, initial conditions determine which
equilibria is going to attract a particular trajectory. For the simulations, we consi-
der x1 and x2 in order to have c(x1, x2) = 1.1, c(x2, x1) = 1.15, K(x1) = K(x2) = 70
and r(x1) = r(x2) = 0.3. This is a scenario corresponding to competition favoring
the SE; i.e., c(x1, x2) > c(x2, x1), which could mean, for instance, a bigger taxes
imposition on IE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3-2. Maximum capacity function K(x) = k1x2

k2
2+x2 , plotted only for three different values

of k2 (left) and interaction function c(x1, x2) =
(c2

1+c2
2)x1x2

c2
1x2

1+c2
2x2

2
, conveniently plotted

only for positive values of x1 and x2 (right). Parameter values used are r = 0.3,
c1 = 1, c2 = 2, k1 = 100, k2 = 10 (solid), k2 = 20 (dashed) and k2 = 40 (dash-dot). . 37

3-3. Different regions in the (x1, x2)−plane where invasion conditions given in (3-5)
are satisfied. Blue regions above the line x2 = x1 correspond to negative selec-
tion gradients, and gray regions below that line correspond to positive selection
gradients. Left: c2

2 − c2
1 = 0.1025 > 0 (c1 = 1 and c2 = 1.05 were used). Right:

c2
2 − c2

1 = −0.1025 < 0 (with c1 = 1.05 and c2 = 1). Note that a big innovation is
required to have a cooperative market just after an innovation in a market domi-
nated by SE generation technology. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-4. Numeric simulation of evolutionary dynamics of the characteristic trait x descri-
bed by the ADCE (3-10), considering r = 0.3, c1 = 1, c2 = 2, k1 = 100, k2 = 10,
µ = 1, and σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-5. Region D of attribute divergence in the (c1, c2)−plane . . . . . . . . . . . . . . . . 44



XII List of Figures

3-6. Classification of stable evolutionary equilibria as BP, TP or BBP in the (c1, c2)−plane 45

3-7. Numeric simulation of market dynamics under trait dependent maximum capa-
city K and interaction function c. Left: shows the market dynamics considering
r = 0.3, k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, x = x1 = x1 = 31.7662 and x2 = 1.1x1.
Since x1 > 0 and x2 > 0, it correspond to competition in the market. Before the
innovation occurs (solid line), the simulation corresponds to the resident model
(3-2) with the initial condition n(0) = 50. Under the absence of competition, the
equilibrium n = K(x) = 90.9836 is reached. After the innovation, the simula-
tion corresponds to system (3-1) with initial conditions n1(0) = K(x1) = 90.9836
(dashed line) and n2(0) = 10 (dash-dot line). Note that (c1, c2) ∈ R, thus the evo-
lutionary equilibrium is a branching point (BP) and market diversification arises.
This market dynamics describes a case when IE invades the market but does not
substitute SE. Then they share the market. Right: corresponds to the same parame-
ter configuration, but with c2 = 2. In this case x1 = x1 = 15.2753 and x2 = 1.1x1.
Then the initial conditions are n1(0) = K(x1) = 70 and n2(0) = 10. Note that
(c1, c2) ∈ T. Thus the evolutionary equilibrium is a terminal point (TP), and the-
refore diversification is not possible. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-8. Characteristic traits considering x2 < x1. It shows the trait dynamics with r = 0.3,
k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, corresponding to the branching point
x1 = 31.7662 shown in Figure 3-7-left. The first part of the curve (before the inno-
vation occurs) corresponds to the simulation of equation (3-10) with initial condi-
tion x(0) = 15.8831. After the innovation, the curves correspond to the simulation
of Eqs. (3-15) and (3-16) with initial conditions x1(0) = x1 and x2(0) = 0.9x1. . . . 48

3-9. Numeric simulation of market dynamics under the influence of trait dependent
maximum capacity K and interaction function c. Shows the market dynamics con-
sidering r = 0.3, k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, x = x1 = x1 = 17.3205 and
x2 = 1.1x1. Since x1 > 0 and x2 > 0, it correspond to competition in the market. Be-
fore the innovation occurs (solid line), the simulation corresponds to the resident
model (3-2) with the initial condition n(0) = 50. Under the absence of competition,
the equilibrium n = K(x) = 75 is reached. After the innovation, the simulation co-
rresponds to system (3-1) with initial conditions n1(0) = K(x1) = 75 (dashed line)
and n2(0) = 10 (dash-dot line). Note that (c1, c2) belongs to the border between
branching and terminal points regions. The conditions of coexistence and diver-
gence in this case result in: ∂2λ

∂x1∂x2
(xi, xi) = ×10−04 < 0 and ∂2λ

∂x2
2
(xi, xi) = 0, thus the

evolutionary equilibrium is a boundary branching point (BBP) and market diver-
sification is an artifact, since it is possible to obtain two sources of generation that
coexist in the market, but really, in the long term, it is not possible to differentiate
one from the other and therefore diversification is not possible. . . . . . . . . . . . 50



List of Figures XIII

4-1. (A) Anual registered Colombian coffee production in thousands of bags of 60 kg
of green coffee. (B) Value of exports to all destinations - Anual total. Unit: Millions
of dollars [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4-2. (A) Competition function f (q1, q2) with f1 = 1.1 and f2 = 1. The restriction to
q1 = 1 is shown by the orange curve. (B) Planar representation of the restriction
to q1 = 1 for both f1 = 1.1 (orange) and f1 = 1/1.1 (blue). As highlighted in the
zoomed inset, for f1 = 1.1 (consumers’ preference for higher coffee quality; orange
curve), the share loss for coffee type 1 (with quality q1 = 1) is larger than 1 and
maximum when q2 = f1 = 1.1 ( f (1, 1.1) = 1.0046). At this value of q2, the share
loss f (q2, q1) for coffee type 2 can be read on the orange curve, because f (q2, q1) =

f (1, q1/q2) ( f (1, 1/1.1) = 0.9865). Similarly, for f1 = 1/1.1 (consumers’ preference
for lower coffee quality; blue curve), the maximal share loss for coffee type 1 (again
equal to 1.0046) is realized for q2 = 1/1.1 = 0.9090, while the corresponding share
loss for coffee type 2 can be read (on the blue curve) as f (1, q1/q2) = f (1, 1.1)
(again equal to 0.9865). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-3. (A) In a diversified market with strategies q1 and q2, an innovation q′ in the coffee
quality q1 invade and substitute q1 if q′ < q1; similarly, an innovation q′ in the
coffee quality q2 invade and substitute q2 if q′ > q2. (B) innovative strategies q1

and q2 evolves one toward each other, in this scenario further diversification is not
posible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4-4. The contour map defined by the invasion fitness λ(q1, q2) is shown to illustra-
te four different scenarios, the invasion regions correspond to the points on the
(q1, q2)−plane for which the invasion fitness is positive (blue regions). Parameters
are shown in Table 4-1 with β = 0.05, h = 0.2 and f1 and µ as indicated in the
panel title. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-5. Regions of definition of q̄1 (when real and non negative) are shown in dashed blue.
The region where B0 > 1 is at the left of the red curve (B0 = 1). The bifurcation
curve is shown in solid black. The parameter values used are those shown in Table
4-1. (A) considering µ = 0.2, notice q̄1 is non-negative for pairs (h, β) such that
B0 > 1 (points at the left of the red curve and at the right of the black bifurcation
curve). (B) for µ = 0.2, in this case, q̄1 is non-negative for pairs (h, β) at the left
of the black bifurcation curve. Panels (C) and (D) illustrate the same situation, but
considering the (h, µ)−plane and β = 0.05. . . . . . . . . . . . . . . . . . . . . . 72

4-6. The value corresponding to coexistence condition (4-14) at q̄1 is shown (red sha-
ding when negative), considering the parameter values as in Table 4-1. The black
curves correspond to the fold bifurcation and red curves to B0 = 1. The (h, β)−plane
is considered with µ = 0.2 for f1 = 1/1.1 (panel A) and f1 = 1.1 (panel B). The
(h, µ)−plane is considered in lower panels with β = 0.05, for f1 = 1/1.1 (panel
C) and f1 = 1.1 (panel D). Notice that the coexistence condition holds (red shaded
region) in the whole definition and stability region of q̄1 (compare with Fig. 4-5). . 74



XIV List of Figures

4-7. The contour map illustrates in blue shading the positive values of the divergence
condition (4-16) at q̄1. The parameters are considered as in Table 4-1. The black cur-
ves correspond to the fold bifurcation and red curves to B0 = 1. (A) It is considered
the (h, β)−plane with f1 = 1/1.1, and µ = 0.2. (B) The (h, β)−plane but f1 = 1.1,
with µ = 0.2. (C) Considers the (h, µ)−plane with β = 0.05 and f1 = 1/1.1 and
(D) considers the (h, µ)−plane with β = 0.05 and f1 = 1.1. . . . . . . . . . . . . . 75

4-8. Dynamics before and after innovation, considering the parameters in Table 4-1,
with µ as indicated in the panel title, β = 0.05 and h = 0.2. To illustrate the sce-
nario when consumers’ preference favors high quality coffee we set f1 = 1.1 (see
the right panels in Fig. 4-7). Before the innovation occurs (black), the simulation
corresponds to the standard coffee model (4-1, 4-2 4-6). After the innovation, the
simulation corresponds to the standard-special coffee model (4-1, 4-2, 4-4) and
illustrate the escenarios of substitution (green) and diversification (red ). Fanally
the impact of increasing control practices after diversification is shown (blue). . . . 77

4-9. (A) Shows the canonical eq. (5-18) before innovation (black) and the 2-dimensional
canonical eqs. (4-21) after innovation, considering the parameters in Table 4-1,
β = 0.05, with µ = 0.2 (red) and µ = 0.5 (blue) to illustrate the impact that adult
CBB death rate has on diversification. This scenario corresponds to consumers’
preference favoring high quality coffee ( f1 = 1.1). (B) Shows the plots of standard
coffee at equilibrium N̄(q1) before innovation (dashed black). After innovation,
shows both standard N̄1(q1, q2) and special N̄2(q1, q2) equilibria with µ = 0.2 (so-
lid red and dashed red resp.) and µ = 0.5 (solid blue and dashed blue resp.) . . . . 78

4-10. agro-industrial dynamics before and after innovation, considering the parameters
in Table 4-1, with µ = 0.6, β = 0.05 and f1 = 1/1.1 (consumers’ preference favors
low quality coffee). Before the innovation (black), the simulation corresponds to
the standard coffee model (4-1, 4-2 4-6). After the innovation, the simulation co-
rresponds to the standard-special coffee model (4-1, 4-2, 4-4) with µ = 0.6 (red)
and µ = 0.3 (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-11. (A) Shows the canonical eq. (5-18) before innovation (black) and the 2-dimensional
canonical eqs. (4-21) after innovation, considering the parameters in Table 4-1, β =

0.05, with µ = 0.6 (red) and µ = 0.3 (blue and green) when consumers’ preference
favors low quality coffee ( f1 = 1/1.1). (B) Shows the plots of standard coffee at
equilibrium N̄(q1) before innovation (dashed black). After innovation, shows both
standard N̄1(q1, q2) and special N̄2(q1, q2) equilibria with µ = 0.6 (solid red and
dashed red resp.) and µ = 0.5 (solid blue and dashed blue resp.) . . . . . . . . . . 81

5-1. Function α(u) chart for parameters a = 1, a1 = 0.8, a2 =
√

250. . . . . . . . . . . . 92



List of Figures XV

5-2. Left: Photography of an articulated Transmilenio bus, the mass-transport com-
pany in the city of Bogota, Colombia. They have a 160-passenger capacity. Right:
Photograph of a biarticulated bus of Transmilenio: they have a 250-passenger ca-
pacity. This type of bus is a recent incorporation in the busses fleet. Reproduced
from transmilenio.gov.co. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5-3. Chart of function c(u1, u2), for parameters f1 = 1.05 and f2 = 1, for illustration
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5-4. Simulation scenarios for the resident model (5-22) in the fase plane with a = 1,
a1 = 0.8, a2 =

√
250, u1 = 160. Left d = 0.9 is used to have δ(u1)

α(u1)
= 1.0515 > 1, then

the absence equilibrium Ea
= (0, 1) is the only equilibria in Ω and it is LAS. Right:

fase portrait for d = 0.3 to have δ(u1)
α(u1)

= 0.3505 < 1 and l = 0.01 < 0.0462 = l∗(u1),

then the partial adoption equilibrium is Ep
1 = (0.3832, 0.2337) is LAS. . . . . . . . 101

5-5. A simulation scenario of the resident model (5-22) in the fase plane for a single TS,
with a = 1, a1 = 0.8, a2 =

√
250, d = 0.3, u1 = 160. In this case δ(u1)

α(u1)
= 0.3505 < 1

and l = 0.1 > 0.0462 = l∗(u1) then the total adoption equilibrium Et
1 = (1, 0.5388)

is located above the non-smoothness curve C, i.e., it belongs to Ω+, and is LAS,
while Ep

1 /∈ Ω1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5-6. Regions of partial adoption (red) and total adoption (blue) according to the local
stability analysis summarized in the Table 5-2 with a = 1, d = 0.3, a1 = 0.8,
a2 =

√
250 and f2 = 1 and f1 = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . 103

5-7. Contour map of the fitness function (5-30) with the values of the parameters in
Table 5-1, and the panel title. The color range allows for establishing the regions
in the (u1, u2)−plane where the fitness function is positive (blue regions), and
therefore where the invasion of the innovative TS is possible. The solid black line
correspond to λ(u1, u2) = 0, and the green solid line to points where u2 = u1,
where also λ vanishes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5-8. AD canonical equation equilibria ui for different values of l (l = l∗ in dashed
orange), for f1 = 0.9 (panel A) and for f1 = 1.1 (panel B); in both cases have
been used a2 =

√
250. The line color has been used to illustrate the sign of the

associated eigenvalue f ′(ui), blue when positive, then ui is unstable, and red when
f ′(ui) < 0, so that ui in those cases is LAS. Panels C and D illustrate the same
situation considering a2 =

√
500. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5-9. (A) Illustration of the coexistence condition (5-35) for different values of l and
f1 = 0.9. (B) The same scenario but f1 = 1.1. The line color indicates the sign if
the coexistence condition in the labeled equilibrium, red when negative and blue
when positive. The parameters are set as indicated in Table Parameters. . . . . . . 111



XVI List of Figures

5-10. (A) Illustration of the divergence condition (5-36) for different values of l and f1 =

0.9 in the equilibria where coexistence is met. (B) The same scenario but f1 =

1.1. The line color indicates the sign if the divergence condition in the labeled
equilibrium, red when negative and blue when positive. The parameters are set as
indicated in Table Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5-11. Market dynamics before (solid black) and after diversificación (green and blue)
for users’ preference for low capacity TS ( f1 = 1/1.1). Before innovation the simu-
lations correspond to the resident model (5-29) for partial adoption (l = 0.2) and
total adoption (l = 0.4) and the other parameters as in Table 5-1. After innovation
the simulations correspond to the resident-innovative model (5-29). See the text
for further details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5-12. Evolutionary dynamics of the number of transported passengers when consumer
prefer a TS capable of transported a low number of passengers ( f1 = 1/1.1). In
solid black the simulation of the AD canonical equation for u1 is shown (left) and
the corresponding market equilibrium values are shown at the center (x1(u1)) and
at the right (y1(u1)). Similarly, in green they are illustrated the solutions of the
canonical equations after branching for u1 and u2 (right) and the corresponding
equilibrium values in the market (x1,2(u1, u2))-center and (y1,2(u1, u2))-right. . . . 115

5-13. Market dynamics before (solid black) and after diversificación (green and blue)
when consumer prefer a TS capable of transported a high number of passengers
( f1 = 1.1). Before innovation the simulations correspond to the resident model
(5-29) for partial adoption (l = 0.2) and total adoption (l = 0.4) and the other
parameters as in Table 5-1. After innovation the simulations correspond to the
resident-innovative model (5-29). The other parameters as indicated in the panel,
and Table 5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5-14. Evolutionary dynamics of the number of transported passengers for users’ pre-
ference for high capacity TS ( f1 = 1.1). In solid black the simulation of the AD
canonical equation for u1 is shown (left) and the corresponding market equili-
brium values are shown at the center (x1(u1)) and at the right (y1(u1)). Similarly,
in green they are illustrated the solutions of the canonical equations after bran-
ching for u1 and u2 (right) and the corresponding equilibrium values in the market
(x1,2(u1, u2))-center and (y1,2(u1, u2))-right. The other parameters as indicated in
each panel, and Table 5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Tables

2-1. Notation used in the resident-mutant model. . . . . . . . . . . . . . . . . . . . . 10

3-1. Description of state variables and coefficients with their corresponding ranges.
∗CGC: cumulative generation capacity. . . . . . . . . . . . . . . . . . . . . . . . 30

3-2. Classification of local stability. Scenarios marked with an * correspond to impossi-
ble scenarios (see the text for further details). LAS: Locally Asymptotically Stable.
U: Unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3-3. Parameter description and the corresponding baseline values used at simulations. 37

4-1. State variables and parameters of the agro-ecological and market models, together
with initializations and baseline values respectively employed in simulations. ∗brs
= individuals of CBB in any state of maturation. . . . . . . . . . . . . . . . . . . 61

4-2. Conditions on β, µ and h guaranteeing that q̄1 is a stable nontrivial singular solu-
tion. The threshold values β∗, µ∗ and h∗ were defined respectively in (4-22). The
bifurcation thresholds βk, µk and hk were derived in (4-24), (4-25) and (4-26) res-
pectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-1. Description of state variables and parameters . . . . . . . . . . . . . . . . . . . . 91
5-2. Resident model local stability results. . . . . . . . . . . . . . . . . . . . . . . . . 103





1. Introduction

The formation of new species, called speciation, is one of the central points of evolu-
tionary theory. It occurs through the genetic and phenotypic divergence of populations of
the same species, which adapt to different environmental niches, either within the same,
or in different habitats. In allopatric speciation, two populations are geographically sepa-
rated by natural or artificial barriers, while in parapatric speciation, the two populations
evolve toward geographic isolation, through the exploitation of different environmental
niches in contiguous habitats. In either of these two cases, geographical isolation consti-
tutes an exogenous cause of speciation, instead of an evolutionary sequence [8, 31].

On the other hand, sympatric speciation considers a population in a single geo-
graphical location. As such, it is disruptive selection that exerts selection pressures, which
favor extreme characteristics over average characteristics. This phenomenon may result,
for example, from competition for alternative environmental niches, in which speciali-
zing may be more advantageous than being a generalist. Consequently, the population
divides into two groups which are initially similar, but which later diverge on separate
evolutionary paths (branches), each driven by their own mutations, undergoing what is
called evolutionary branching. In Figure 1-1, the evolutionary branching point concept, a
product of sympatric speciation, is shown [8, 36].

Figure 1-1.: Left: Different selection pressures and different genetic derivations can act in dif-
ferent environments, isolated populations can eventually become separate species.
Right: Influenced by disruptive selection, a monomorphic population may become
dimorphic in certain relevant attributes. Image elaborated by the author.
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Human evolution shows empirical evidence of this evolutionary phenomenon. Hu-
mans form part of the hominidae family, which includes great apes (bonobos, chimpan-
zees, gorillas, and orangutans) and other extinct humanoid species. Since Darwin and the
publication of The Descent of Man (1871), countless fossils have been found and dated,
which show that humans and great apes shared a common ancestor approximately six or
seven million years ago. The causes of the evolutionary branching which led to humans
are a source of great debate. However, one of the most intriguing potential causes is the
evolution of articulated language, thanks to fine control of the larynx or the mouth, which
is regulated by a particular gene [31, 57].

Generally speaking, the basic units capable of evolution through innovation and
competition processes are not limited to living organisms. Multiple examples of evolu-
tionary branching can, in fact, be found in material products, ideas, and social norms
[23, 29, 58]. In particular, commercial products are replicated each time that a product is
bought, and services each time they are used. They go extinct whenever they are aban-
doned by users. Thus, improved versions are occasionally introduced, which are cha-
racterized by small innovations. These interact in the market with the prior established
versions. Said interactions are usually competitive, and involve rivalry between products
from both the same and different categories.

Figure 1-2.: Use of telecommunication services in Switzerland. Squares: analog telephones. Dia-
monds: digital telephones. Inverted triangles: subscribers to analog mobile pho-
ne services. Triangles: subscribers to digital mobile phone services. Stars: public
payphones. Circles: internet hosts. Reprinted from [31].

One example of this is shown in Figure 1-2, in which the evolution of different com-
munication services in Switzerland, between 1980 and 2000, is shown. The arrival of di-
gital telephones was a successful innovation, which has led to the substitution of analog
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telephones. This phenomenon is reported as attribute substitution. On the other hand, ob-
serve that internet hosts (circles) seem to coexist with both digital telephones and digital
mobile telephone service subscribers [31].

With the information discussed up to this point, it is possible to answer to the ques-
tion of what constitutes the theory of adaptive dynamics (AD). In general, it is a theore-
tical background which originates in evolutionary biology, and links demographic dyna-
mics to evolutionary changes. It further permits the description of evolutionary dynamics
in the long term, considering innovations to be small and rare events [31, 34, 45, 46]. This
theory focuses on the evolutionary dynamic of quantitative adaptation attributes in the
long term, and disregards genetic details, through the use of asexual demographic mo-
dels. Among the most relevant aspects is that it recognizes interactions as the driving
evolutionary force, and considers feedback between evolutionary change and the forces
of selection experienced by the agents [31, 32, 36].

One of the reasons to consider, is pointed out from the work of Shummpeter [82],
who establishes the need to differentiate between invention, innovation and diffusion. In
its definition, innovation refers to the economic application of an invention (the develop-
ment of a new “product”), while diffusion refers to the generalization of its use by buyers
and production by different firms [71]. While this concept of associating innovation with
the emergence of new products is valid, and in fact has been fundamental in the growth
of global industries, it must be considered that economic development is not limited to
the industrial sector, but the service sector as a source of great business opportunities.
However, the services sector is usually considered as “intangible” and “interactive”, so
the concept of innovation has been more difficult to define. In that sense, Gallouj [43]
considers the fact that innovations in services are influenced by a set of forces (driving
forces) that he identifies as incentives or obstacles to the innovation process, divided into
what he calls “trajectories”, and corresponding to the professional, technological and so-
cial management and that are composed by different agents in each level, such as clients,
competitors, the government, etc. [60].

Using the theoretical framework of adaptive dynamics, the canonical equation, co-
rresponding to an ordinary differential equation, is presented to describe the behavior
over time of the characteristic attribute as a result of innovation processes. The theoretical
framework of adaptive dynamics has been used recently to model a varied spectrum of
situations involving innovations or genetic variations; in particular, technological inno-
vations: [23, 29], social interactions: [58], mutualistic interactions: [19, 34, 36, 40], compe-
tition: [24, 36, 53], predator-prey dynamics [1, 2, 17, 27, 32, 34, 59, 61], evolution of disper-
sal: [13,28,73] dynamics in allele space: [12,55], canibalistic interactions: [18,30], and food
chains: [32] among many others.

One of the most important feature of the AD approach is to describe evolutionary
branching, that is the coexistence between a resident and a similar mutant type and their
further divergence in phenotypic space. In other words, the development of two diffe-
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rent forms of organisms with a common ancestor [31]. Recently, many authors have used
this approach to study different branching situations; however, there are still interesting
theoretical and applicative unanswered questions in relation to degenerate branching si-
tuation.

In the second chapter of this thesis, from the genetic point of view, the Adaptive Dy-
namics approach is briefly described, the AD Canonical Equation is heuristically deduced
and conditions on evolutionary stability, and specifically on evolutionary branching, are
also presented. It should be clarified at this point, that it is not the objective of this work to
make a theoretical/mathematical contribution, this chapter has been included in order to
provide the reader with the theoretical tools necessary to understand the applications de-
velopment in the subsequent chapters, and it also justifies the inclusion of the expression
“theory” in the title of this thesis. For a more precise information on theoretical matters,
the interested reader is encouraged to visit [31]. In addition, detailed mathematical deve-
lopments of the theory can be found in documents such as: [4, 10, 17, 20, 31, 34, 44–46].

In the third chapter, we study a mathematical model based on ordinary differential
equations to describe the dynamic interaction in the market of two types of energy ca-
lled standard and innovative. The development of better tools to promote the validation
of expert knowledge and facilitate the analysis of historical data to quantify the effects
of future events on energy markets are well paid in terms of accuracy, transparency, re-
producibility and learning, as well as understanding the market [86]. In this context, is
necessary to carry out methodological advances in the description of energy markets and
how intrinsic characteristics, such as the source of generation, emissions reduction, final
price to the consumer, generation technologies, generation capacity, costs of generation or
any other related characteristic, influence competition conditions (and viceversa) and the
rise of diversity in markets with stablished energy agents been forced to compete with
innovative technologies, raised from variations in one or several of those characteristics.

The model consists of an adaptation of the generalized Lotka-Volterra system in
which the parameters are assumed to depend on a quantitative and continuous attribute
characteristic of energy generation. Using the analysis of the model the fitness function
for the innovative energy is determined, from which conditions of invasion can be esta-
blished in a market dominated by the conventional generation technology. The canonical
equation of the adaptive dynamics is studied to know the long-term behavior of the cha-
racteristic attribute and its impact on the market. Then we establish conditions under
which evolutionary ramifications occur, that is to say, the requirements of coexistence
and divergence of the characteristic attributes, whose occurrence leads to the origin of
diversity in the energy market.

In the fourth chapter, an agroecological application is shown. The Coffee Berry Borer
(CBB) is the main pest affecting coffee crops around the world. It causes major economic
losses and diminishes beverage quality. Herein, a mathematical model, from the perspec-
tive of the Adaptive Dynamics, is studied. This allows for the establishment of conditions
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for diversity in the coffee market, with quality considered a differentiating attribute. The
implementation of this study involves three stages: first, a deterministic model is formu-
lated, based on differential equations, with coffee production and CBB population as the
agroecological context, prior to the processing of different quality coffees, based upon
damage caused by the pest. Second, the long term dynamics of quality traits, from the
perspective of adaptive dynamics, are studied, so as to establish conditions in which com-
petition between standard and special coffee results in invasion, coexistence, substitution,
or extinction of these products. Finally, we established the conditions for the occurrence
of evolutionary branching points in the adaptive dynamics of quality traits, in order to
relate the proportional catch rate by the farmer (harvesting) to demographic parameters
of CBB population and to get insights on the impact that control strategies available to
regulate CBB population may have on the long-term evolution of coffee quality and the
possibility of diversification into different and coexisting qualities.

In the fifth chapter a generalized model has been formulated for the competition
between transport systems in a city, considering that the interaction occurs under the sa-
me market platform and competition is determined by the proportion of users adopting
each transport system and, additionally, a measure of the amount of budget that the in-
vestor makes available in order to promote the expansion of the transportation system
among users is considered. Later, under the assumptions of stability, a generalized model
is formulated, to describe competition in the market when that stability is disturbed by
the entry of an innovative transport system. From the perspective of the adaptive dyna-
mics, it is possible to determine general conditions that must be met to guarantee or not
the success of the innovation as the one managing to penetrate and expand into the mar-
ket. This information is obtained from study of the sign of the fitness function for specific
model coefficients. Additionally, the approach through adaptive dynamics is used to es-
tablish the long term dynamics of the quantitative attribute and permits the classification
of the evolutionary equilibra as terminal points, those in which the evolution definitively
halts, like the points where substitution takes place.

Chapter six correspond to conclusions and recommendations; in the appendix, a
glossary is included to facilitate the reading for those who are not familiar with the jar-
gon, and to precise genetic definitions in context of the AD approach. Finally, the cited
bibliography can be found.





2. Theory

2.1. Introduction

Evolution by natural selection, has been described as “one of the oldest and most
astounding and complex dynamical processes on Earth” [32]. Indeed, understanding the
origin of new species remains one of the core problems in evolutionary biology. Traditio-
nally, there are two basic approaches to understand the actual mechanisms by which a
phenotypic cluster of individuals splits into two distinct descendant clusters with restric-
ted gene flow between them [32, 36]:

Allopatric speciation: the subpopulations of a given species are thought to beco-
me geographically isolated, after which they follow separate evolutionary paths,
eventually leading to different species that are reproductively isolated even after
secondary contact.

Sympatric speciation: it is assumed that there are different habitats favoring dif-
ferent genotypes, but the different genotypes occur sympatrically (occupying the
same or overlapping geographic area) and are pooled for mating. One then studies
the necessary conditions for reproductive isolation to evolve between the genotypes
that are favored in the different habitats.

Three biological ingredients are considered in the Darwinian evolution of a quan-
titative trait: (i) reproduction passes the trait through generations altering heritable cha-
racteristics of individual agents, (ii) trait values variations are generated by mutations
processes and, (iii) selection as a result from interactions between individuals and their
environment, then selecting the best performances. In this context, Adaptive dynamics
(AD) makes a link between ecological and evolutionary theory, it defines fitness as a
quantity to measure the long-term per capita growth rate of a rare mutant in an environ-
ment that is determined by externally fixed parameters on the one hand and by the po-
pulation density and the phenotype of the resident population on the other [36]. Then, to
this usual influence of environment on the population, it adds the reverse influence of the
population on the environment by considering how the ecological interactions modify
fitness, i.e., ecological interactions are the evolutionary driving force, and the feedback
between evolutionary change and the ecological conditions experienced by individuals is
considered [10, 36, 44].
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AD framework describes evolution through an ordinary differential equation known
as the AD Canonical Equation ( [31] and references therein); for deriving analytical re-
sults, in the Canonical Equation formulation, other assumptions arises, for example, on
the demographic timescale mutations are sufficiently rare and small to have small effect
on the mutant trait, so that mutants encounter monomorphic resident populations that
are at their ecological equilibrium. This corresponds to assuming a separation of ecolo-
gical and evolutionary timescales, with the ecological dynamics occurring faster than the
evolutionary dynamics [31, 34, 36, 46, 65]. Each condition is briefly described below.

Condition 1. Mutations are rare. If mutations are rare on the demographic times-
cale (so-called mutation-limited evolution), the resident populations are challenged by
one mutation at a time and are at equilibrium when a mutant appears; then, population
genetics supports the idea that sexual reproduction can be neglected, so that one can look
at long-term evolutionary dynamics of quantitative traits by using, at least for qualitati-
ve purposes, asexual demographic models, where individuals are characterized by their
phenotypes. Since the demographic and evolutionary timescale are kept separated, each
time a mutation occurs in one of the relevant traits, the resident and the mutant popula-
tion have plenty of time to interact and define the new structure of the community before
the next mutation occurs. In particular, if the mutant population replaces the resident po-
pulation, the trait undergoes an evolutionary step (on the evolutionary timescale), while
if mutants go extinct the trait does not change.

Condition 2. Mutations are small. Invading mutants generically replaces the co-
rresponding residents, so that the final of a successful mutation is a small variation of the
trait. If mutations are small (as is the case most of the time, in particular for quantitative
traits), evolution proceeds by small steps in trait space and, in the limit of infinitesimal
mutations, one can pretend to describe evolutionary trajectories by means of ODE’s.

Condition 2 allows to consider the limit case of infinitesimal mutations and to ap-
proximate a stochastic sequence of successful mutations by a smooth evolution of traits
governed by a system of ODE’s, one ODE for each trait: the AD Canonical Equation,
whose evolutionary trajectories may lead to:

Stationary evolutionary regimes: which may be terminal points of evolutionary
dynamics or sources of diversity (Evolutionary Branching).

Non stationary evolutionary regimes: Red Queen Dynamics.

Evolutionary extinction: correspond to three different types: evolutionary runaway,
evolutionary murder and evolutionary suicide.

Natural selection is assumed to be described by means of deterministic demographic
models where sex, space, and physiological details as age, stage and energy reserves, do
not appear. Thus, all individuals of a population are identical and uniformly distributed,
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the habitat is homogeneous and each population is identified by its abundance and by
the values of all its characteristic traits.

Mutations with small effect. It is considered that a mutation have a small effect
only in one trait: the case in which the traits characterizing the population are contro-
lled by non overlapping sets of genes, each with small effect on the controlled trait; if
this is the case, their concomitant mutations are so strongly correlated that is possible to
define a one-dimensional equivalent trait and the results for resident populations cha-
racterized by mutations which only influences a single (scalar) trait, can be applied. In
such situations, conditions under which invasion implies substitution are not valid at an
equilibrium of the canonical equation. Thus, once the evolutionary dynamics have found
a halt at the stable equilibrium of the canonical equation, a further investigation of the
resident-mutant model is required.

Therefore, the mutant population is identified by the same trait values carried by
the resident population in which the mutation has occurred, except for the trait affected
by the mutation, which is slightly different. After each mutation, the mutant population
is very scarce, but it has the potential to spread and replace the resident population. Since
mutations are rare events, demography has plenty of time between successive mutations
to define the resident population.

2.2. Resident-mutant model

We study the interaction of two similar densities n1 = n1(t) and n2 = n2(t) at a time
t, and p additional densities or state variables packed in the vector:

N(t) = (N1(t), . . . , Np(t)) ∈ Rp.

These p states could correspond to other resident “groups” of same species as den-
sities n1 and n2, or could describe environmental states corresponding to the problem’s
context, not necessarily from the same species. To be consistent, consider n1, n2 and every
density in N of the same species, to differ from each other in the value of a characteris-
tic trait x; in particular, taking the value x1 in the density n1, referred here as resident
trait and resident density, respectively; similarly, x takes the value x2 in the density n2,
referred as mutant trait and mutant density respectively. Now it is defined the simplest
possible notation by sacrificing the detailed description of the community structure; i.e.,
no discrimination between species, characteristic traits, and morphs within each species,
to avoid a cumbersome notation (see Table 2-1).

The biotic environment is a whole community identified by the abundances n1, n2

and N of resident and mutant densities and by a set of parameters characterizing the
interactions between agents of same or different states. Usualy it is assumed a constant
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Table 2-1.: Notation used in the resident-mutant model.

Symbol Description

x1 Characteristic trait affected by mutation: resident value
x2 Characteristic trait affected by mutation: mutant value
n1 Abundance of the resident population
n2 Abundance of the mutant population
N Vector of other resident populations abundance or environmental states.

environment to focus on evolutionary dynamics generated by mutations and interaction
processes.

Denote by ṅ1/n1 = g(n1, n2, N, x1, x2, x1) the per-capita growth rate of resident den-
sity in a time t, resulting form the balance of b(n1, n2, N, x1, x2, x1) and d(n1, n2, N, x1, x2, x1),
the per-capita birth and death rates, respectively; i.e.,

g(n1, n2, N, x1, x2, x1) = b(n1, n2, N, x1, x2, x1)− d(n1, n2, N, x1, x2, x1), (2-1)

where the last argument x1 in g(n1, n2, N, x1, x2, x1), stands to indicate the g function
for the density n1. Been n1 and n2 interacting densities of the same species, it is assu-
med a symmetric per-capita growth rate for the mutant density n2 in a time t; thus, the
per-capita growth rate for the mutant density n2 is obtained by exchanging the final ar-
gument in the definition of g−function to x2, i.e., ṅ2/n2 = g(n1, n2, N, x1, x2, x2) with
b(n1, n2, N, x1, x2, x2) and d(n1, n2, N, x1, x2, x2) the corresponding per-capita birth and
death rates. Notice either one of the two densities can be considered as mutant, provi-
ded that the other one is considered the resident. For the remaining states in N, one can
define their per-capita growth rate Ṅi/Ni = gi(n1, n2, N, x1, x2) where i covers the dimen-
sion of the vector N, to avoid this notational inconvenience, we pack the growth rates in
the vector function G(n1, n2, N, x1, x2); thus, the dynamics of the community is described
by the following (p + 2)−dynamic system:


ṅ1 = n1g(n1, n2, N, x1, x2, x1)

ṅ2 = n2g(n2, n1, N, x2, x1, x2)

Ṅ = G(n1, n2, N, x1, x2).

(2-2)

Some important properties can be observed from this formulation:

P1: g(n1, 0, N, x1, x2, x1) = g(n1, 0, N, x1, ·, x1) and G(n1, 0, N, x1, x2) = G(n1, 0, N, x1, ·),
i.e., if the second argument vanishes (n2 = 0), then g and G do not depend anymore
on their fifth argument, since the growth rate of a density n1 cannot be affected by
the trait of a non existing density n2.
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P2: g(n1, n2, N, x1, x2, x̃) = g(n2, n1, N, x2, x1, x̃), for any trait value x̃, i.e. the order in
which both densities are considered does not matter. By the same consideration,
G(n1, n2, N, x1, x2) = G(n2, n1, N, x2, x1).

2.2.1. Resident model

In the absence of mutation the resident-mutant model (2-2) degenerates into the so-
called resident model, obtained when n2 = 0 and consisting of the (p + 1)−dynamic
system:

{
ṅ1 = n1g(n1, 0, N, x1, ·, x1)

Ṅ = G(n1, 0, N, x1, ·). (2-3)

It is assumed that in suitable ranges of the trait x1, the model (2-3) has a stable and
positive equilibrium where the resident density n2 and the environment defined by N are
constant. This steady state is given by,

(n1, N) = (n1(x1), N(x1)), (2-4)

and satisfies the system of p + 1 equations,

g(P, x1) = g(n1(x1), 0, N(x1), x1, ·, x1) = 0, G(P) = G(n1(x1), 0, N(x1), x1, ·) = 0, (2-5)

where P = (n1(x1), 0, N(x1), x1, ·) and (P, x1) = (n1(x1), 0, N(x1), x1, ·, x1). It is assumed
that the equilibrium (2-4) is the only strictly positive attractor of model (2-3), i.e., it is the
only attractor at which resident density can share the environment (this assumption can
be relaxed), thus, the evolutionary dynamics can be defined only in the open set X of the
trait space x1 in which (2-4) exist. The set X is called the evolution set.

The equilibrium (2-4) is a point in the demographic state space (n, N) that is stable
and strictly positive for all x1 ∈ X , but it may present degeneracies that can be studied
directly from the eigenvalues of the Jacobian matrix Jr(x1) of (2-3), recalling g(P, x1) = 0
by (2-5), then,

Jr(x1) =


n1gn1(P, x1) n1gN1(P, x1) · · · n1gNp(P, x1)

F1
n1
(P) F1

N1
(P) · · · F1

Np
(P)

...
...

...

Fp
n1(P) Fp

N1
(P) · · · Fp

Np
(P)

 , (2-6)

where P = (n1(x1), 0, N(x1), x1, ·) as defined in (2-5), and the subscript r stands to denote
that the Jacobian matrix correspond to the “resident” model.
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2.2.2. Invasion and substitution in the resident-mutant model

Invasion refers to the case when a mutant density spreads in the environment, while
substitution occur when the mutant density replaces the resident density, leading to a step
in the evolution of the trait affected by the mutation (from x1 to x2). Just after the mutation,
the resident and mutant densities are at (or close to) the equilibrium of resident-mutant
model (2-2),

(n1, n2, N) = (n1(x1), 0, N(x1)). (2-7)

Notice that the face n2 = 0 (an invariant set of the resident-mutant model) of the
demografic state space (n1, n2, N) degenerates into the resident model (2-3), and the face
n1 = 0 (also an invariant set of the resident-mutant model) degenerates into the mutant
model:

{
ṅ2 = n1g(0, n2, N, ·, x2, x2)

Ṅ = G(0, n2, N, ·, x2).
(2-8)

By the property P2 above, model (2-8) is the same model (2-3) with n1 and x1 repla-
ced by n2 and x2. Thus, provided x2 ∈ X , the equilibrium (n2, N) = (n2(x2), N(x2)) is
the only strictly positive attractor of model (2-8) and its associated eigenvalues are those
of the Jacobian matrix Jr(x1) from (2-6) replacing x1 by x2. Moreover, the point

(n1, n2, N) = (0, n2(x2), N(x2)), (2-9)

is another equilibrium of the resident-mutant model (2-2).
The stability of equilibria (2-7) can be studied through linearization of mutant-resident

model (2-2). To write the Jacobian matrix J(x1, x2) = (Jij), for i, j = 1, . . . , p + 2 is enough
to take partial derivatives respect to n1, Nk (for k = 1, . . . , p) and n2 (in that suitable or-
der), substitute (n1, n2, N) = (n1(x1), 0, N(x1)), and recall P1 and (2-5) to have,

J1,1 = ∂
∂n1

(n1g(n1, n2, N, x1, x2, x1)) = 1 · g(P, x1) + n1
∂g
∂n1

(P, x1),

J1,2 = ∂
∂N1

(n1g(n1, n2, N, x1, x2, x1)) = n1
∂g

∂N1
(P, x1),

J1,p+1 = ∂
∂Np

(n1g(n1, n2, N, x1, x2, x1)) = n1
∂g

∂Np
(P, x1),

J1,p+2 = ∂
∂n2

(n1g(n1, n2, N, x1, x2, x1)) = n1
∂g
∂n2

(P, x1),
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J2,1 = ∂
∂n1

F1(n1, n2, N, x1, x2) =
∂F1

∂n1
(P),

J2,2 = ∂
∂N1

F1(n1, n2, N, x1, x2) =
∂F1

∂N1
F(P),

J2,p+1 = ∂
∂Np

F1(n1, n2, N, x1, x2) =
∂F1

∂Np
F(P),

J2,p+2 = ∂
∂n2

F1(n1, n2, N, x1, x2) =
∂F1

∂n2
(P),

J3,1 = ∂
∂n1

(n2g(n2, n1, N, x2, x1, x2)) = 0,

J3,2 = ∂
∂N1

(n2g(n2, n1, N, x2, x1, x2)) = 0,

J3,p+1 = ∂
∂Np

(n2g(n2, n1, N, x2, x1, x2)) = 0,

J3,p+2 = ∂
∂n2

(n2g(n2, n1, N, x2, x1, x2) = 1 · g(0, n1(x1), N(x1), x2, x1, x2),

thus, the jacobian matrix of (2-2) takes the form,

J =



n1gn1(P, x1) n1gN1(P, x1) · · · n1gNp(P, x1) n1gn2(P, x1)

F1
n1
(P) F1

N1
(P) · · · F1

Np
(P) F1

n2
(P)

...
...

...
...

Fp
n1(P) Fp

N1
(P) · · · Fp

Np
(P) Fp

n2(P)

0 0 · · · 0 g(0, n1(x1), N(x1), x2, x1, x2)


,

where P = (n1(x1), 0, N(x1), x1, ·) as defined before. This matrix can be written as,

J(x1, x2) =

[
Jr(x1) . . .

0 g(0, n1(x1), N(x1), x2, x1, x2)

]
(2-10)

Due to the block structure of (2-10), the eigenvalues are given by those of Jr(x1)

which have negative real part by the stability of equilibria (2-7), and the eigenvalue,

λ(x1, x2) = g(0, n1(x1), N(x1), x2, x1, x2), (2-11)

which correspond to the growth rate of a very scarce mutant density, and is called the
invasion eigenvalue, invasion fitness or fitness function of the mutant density, and gives
the initial exponential growth rate of the mutant density appeared in the environment
dominated by the resident density.
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Similarly, the eigenvalue λ(x2, x1) correspond to the equilibrium (2-9); since Jr(x1)

and Jr(x2) have eigenvalues with negative real part, hence, the local stability of equilibria
(2-7) and (2-9) are related only to the sign of their invasion eigenvalues. The invasion
eigenvalues λ(x2, x1) and λ(x1, x2), generically have opposite sign, so that if equilibrium
(2-7) is stable, then equilibrium (2-9) is unstable, and viceversa.

To derive conditions over the sign of λ(x1, x2), first consider the case when the resi-
dent and mutant densities are identical (x1 = x2), then, by virtue of P2 and (2-5),

λ(x1, x1) = g(0, n1(x1), N(x1), x1, x1, x1) = g(n1(x1), 0, N(x1), x1, x1, x1) = 0. (2-12)

On the other hand, the assumption x2 = x1 (identical resident and mutant traits),
implies that there is actually one density n1 + n2, therefore,

(ṅ1 + ṅ2) = (n1 + n2)g(n1 + n2, 0, N, x1, x1, x1),

which implies that the two densities are characterized by the same growth rate

g(n1, n2, N, x1, x1, x1) = g(n2, n1, N, x1, x1, x1),

or equivalently, for any 0 ≤ φ ≤ 1,

g(n1, n2, N, x1, x1, x1) = g ((1− φ)(n1 + n2), φ(n1 + n2), N, x1, x1, x1) . (2-13)

The last statement can be generalized for any trait value x as in the following pro-
perty:

P3: For any 0 ≤ φ ≤ 1 and any x ∈ X ,

g(n1, n2, N, x, x, x̃) = g ((1− φ)(n1 + n2), φ(n1 + n2), N, x, x, x̃) ,

i.e., any partition of the total density n1 + n2 into two categories with the same stra-
tegy x must result in the same growth rate for strategy x̃. Analogously, for G,

G(n1, n2, N, x, x) = G ((1− φ)(n1 + n2), φ(n1 + n2), N, x, x) .

Moreover, by P1, P3 and (2-5), all the points of the segment,

(n1, n2, N) =
(
(1− φ)n1(x1), φn1(x1), (1− φ)N(x1) + φN(x1)

)
,

connecting (2-7) with (2-9), are equilibria of the resident-mutant model (2-2) when x1 =

x2. Those equilibria are neutrally stable (they are not unstable since (n1 + n2, N) con-
verges to the equilibrium (2-4) of the resident model (2-3), but do not attract all nearby
trajectories), and hence have a vanishing eigenvalue, λ(x1, x1) = 0, and those from Jr(x1).
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Second, notice that the function λ(x1, x2) has opposite sign for x2 > x1 or x2 < x1,
with x2 close to x1. In deed, excluding nongeneric cases we have ∂

∂x2
λ(x1, x2) 6= 0, and

expanding in Taylor series around x2 = x1, one gets,

λ(x1, x2) = λ(x1, x1) + (x2 − x1)
∂λ

∂x2
(x1, x1) +O(|x2 − x1|2).

Since λ(x1, x1) = 0 by virtue of (2-12), thus if (x2 − x1)
∂λ
∂x2

(x1, x1) is positive, i.e,
when:

∂λ

∂x2
(x1, x1) > 0, x2 > x1,

or,
∂λ

∂x2
(x1, x1) < 0, x2 < x1,

the invasion eigenvalue λ(x1, x2) is positive and the equilibrium (2-7) is unstable, while
the equilibrium (2-9) is stable (mutant density invades), and vice versa if:

(x2 − x1)
∂λ

∂x2
(x1, x1),

is negative (mutant density goes extinct). From now on the quantity:

∂λ

∂x2
(x1, x1), (2-14)

is going to be called selection derivative.
The question of whether invasion implies substitution of the resident density, re-

quieres the study of the global behavior of the resident-mutant model (2-2). In Appendix
B of [31], it is proved the next theorem.

Theorem 2.2.1 (Invasion implies substitution) Given x1 in the evolution set X , if (x2 −
x1)

∂λ
∂x2

(x1, x1) > 0 and |x2− x1| and ||(n1(0) + n2(0)− n(x1), N(0), N(x1))|| are sufficiently
small, then the trajectory (n1(t), n2(t), N(t)) of the resident-mutant model (2-2) tends toward
equilibrium (2-9) for t→ ∞.

2.3. Adaptive dynamics canonical equation

Consider x and x̃ two similar values for the qualitative trait, an X a set of other non
mutating traits characterizing the community. From the previous section it follows that if
the selection derivative :

∂λ

∂x̃
(x, x, X), (2-15)



16 2 Theory

is positive, then the mutant population characterized by x̃ > x replace the resident popu-
lation, while mutations characterized by x̃ < x leave no trace in the community; a similar
analysis can be made in the case where (2-15) is negative. Consider x as a collection of
traits xi for i = 1, 2, . . ., then the selection derivative relative to each trait is given by

∂

∂x̃i
λ(x1, x2, . . . x̃i)

∣∣∣∣
x̃i=xi

. (2-16)

The evolutionary change is a stochastic process determined by both the process of
mutation and demographic stochasticity; i.e., even advantageous mutations may fail to
invade due to accidental extinction. Thus the rate of evolutionary change ẋ can not be
described by a deterministic model, and can only be interpreted as the average evolu-
tionary change among all possible realizations of the mutation process and demographic
stochasticity, i.e.,

ẋ = lı́m
dt→0

E[x(t + dt)− x(t)]
dt

, (2-17)

where E[·] is the standard expected value operator and t spans the evolutionary timescale.
Denoting P(x, x̃, X, dt)dx̃ the probability distribution that a community traits (x, X) ∈ X
at a time t will be characterized by traits (x̃, X) and (x̃ + dx̃, X) at time t + dt, then (2-17)
becomes,

ẋ = lı́m
dt→0

1
dt

∫ ∞

−∞
(x̃− x)P(x, x̃, X, dt)dx̃, (2-18)

where P(x, x̃, X, dt) is defined as the product of three different probabilities (Dercole F.
and Rinaldi S. in [31] computes separately each probability):

Pm, the probability that a mutation occurs in the time interval [t + dt], given by,

Pm(x, X, dt) = µ(x)b(n(x, X), 0, N(x, X), x, ·, X)n(x, X)dt +O(dt2), (2-19)

where µ(x) is the frequency of mutations in the population, b(n, 0, N, x, ·, X)dt is the
probability of a single birth andO(dt2) is the probability of more than one mutation
(but gives no contribution to the limit (2-18)).

P′, the probability that a mutant trait is between x̃ and x̃ + dx̃, given by,

P′(x, x̃− x) =
1
ε

D
(

x,
x− x̃

ε

)
, (2-20)



2.3 Adaptive dynamics canonical equation 17

D denotes a suitable probability distribution for the mutational step (x̃− x) and va-
riance given by E[(x̃− x)2] = ε2σ2(x). Here ε is a timescaling factor used to separate
the demographic and evolutionary timescales by considering ε → 0, thus a small
amount dt of evolutionary time correspond to a large amount dt/ε of demographic
time.

Ps, the probability that the mutant substitutes the resident,

Ps(x, x̃, X) =


λ(x, x̃, X)

λb(x, x̃, X)
, if

∂

∂x̃
λ(x, x̃, X)

∣∣∣∣
x̃=x

(x̃− x) > 0

0, otherwise.
(2-21)

where λ is the fitness eigenvalue defined in the previous section, which splits into

λ(x, x̃, X) = λb(x, x̃, X)− λd(x, x̃, X).

Under this results, is posible to get P = PmP′Ps as,

P(x, x̃, X, dt) = µ(x)λb(x, x̃, X)n(x, X)P′(x, x̃− x)Ps(x, x̃, X)dx̃dt, (2-22)

and substituting (2-22) into the limit (2-18), one gets,

ẋ = µ(x)λb(x, x̃, X)n(x, X)
∫ ∞

−∞
(x̃− x)P′(x, x̃− x)Ps(x, x̃, X)dx̃. (2-23)

If the selection derivative (2-15) is positive then, (2-23) correspond to,

ẋ = µ(x)λb(x, x̃, X)n(x, X)
∫ ∞

x
(x̃− x)P′(x, x̃− x)

λ(x, x̃, X)

λb(x, x̃, X)
dx̃. (2-24)

Now, considering that λ(x, x, X) = 0, by the first order expansion,

λ(x, x̃, X)

λb(x, x̃, X)
=

1
λb(x, x̃, X)

∂

∂x̃
λ(x, x̃, X)

∣∣∣∣
x̃=x

(x̃− x) +O(|x̃− x|2)

which is justified in the limit ε→ 0 where (x̃− x) becomes infinitesimal, one gets,

ẋ = µ(x)n(x, X)
∂

∂x̃
λ(x, x̃, X)

∣∣∣∣
x̃=x

∫ ∞

x
(x̃− x)2P′(x, x̃− x)dx̃ (2-25)
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Due to the symmetry of P′, the integral is nothing but half of the variance ε2σ2(x) of
the probabiliy distribution P′, Then:

ẋ =
1
2

µ(x)σ2(x)n(x, X)
∂

∂x̃
λ(x, x̃, X)

∣∣∣∣
x̃=x

(2-26)

The same result can be obtained from (2-23), if the selection derivative is negative.
Equation (2-26) is called the Adaptive Dynamics Canonical Equation (ADCE), and can be
seen that the rate of change ẋ is influenced by three factors, as summarized by F. Dercole
and S. Rinaldi in [32]:

How often a mutation occurs in population; in fact, µn is proportional to the number
of mutations occurring in population per unit of evolutionary time.

How large is the trait change entailed by the mutation, zero mean and variance ε2σ2,
ε being a scaling factor separating the demographic and evolutionary timescales in
the limit ε→ 0;

How likely it is that the initially scarce mutant population invades and replaces
the corresponding resident population. The probability of invasion consists of two
factors:

• First, if the selection derivative (2-15) does not vanish, only mutations with trait
value either larger or smaller than the resident value can invade.

• Second, mutations at selective advantage may be accidentally lost in the initial
phase of invasion when they are present only in a few items. The probability
of success in the initial phase of invasion is shown to be proportional to the
selective advantage of the mutation, as measured by the selection derivative.
Finally, successful invasion generically implies substitution.

2.3.1. Evolutionary equilibria

To understand the evolutionary dynamics complexity of the AD Canonical Equa-
tion in (2-26), recall this is a nonlinear continuous-time dynamical system defined in the
evolutionary set X , whose attractors (evolutionary attractors) can be of several types

Evolutionary equilibria

Evolutionary cycles.

Strange attractors.
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Evolutionary trajectories can therefore tend toward a point in the trait space or
toward a periodic or aperiodic solution. However, evolutionary dynamics can also be
characterized by unstable evolutionary equilibria, cycles or strange invariant sets, thus,
long-term evolution can depend on the evolutionary paths followed in the past. In 2- or
3-dimensional trait space, graphical representations of the state portrait are useful in the
dynamics understanding.

Evolutionary equilibria of (2-26) are points (x, X) ∈ X where the selection derivati-
ves (2-16) vanish (recall µ(x), σ(x) and n(x, X) are positive for all (x, X) ∈ X ),

∂λ

∂x̃
(x, x, X) = 0, (2-27)

but in such case, the invasion implies substitution theorem 2.2.1 does not hold, and a
deeper analysis of the resident-mutant model (2-2) is needed.

In a community characterized by a single trait, the stability of evolutionary equili-
bria can be studied through linearization of (2-26), the eigenvalue associated to x ∈ X
is

∂

∂x

(
κ(x)

∂λ

∂x̃
(x, x)

)∣∣∣∣
x=x

= κ(x)
(

∂2λ

∂x∂x̃
(x, x) +

∂2λ

∂x̃2 (x, x)
)

where κ(·) =
1
2

µ(·)σ2(·)n(·). Therefore the evolutionary equilibria x is an attractor for
the evolutionary dynamics if and only if

∂2λ

∂x∂x̃
(x, x) +

∂2λ

∂x̃2 (x, x) < 0

or the evolutionary equilibria x is unstable if that quantity is greater than zero.
In a community characterized by more than one trait, the values of µi(xi), σi(xi) and

ni(x1, x2, . . .) depend on i = 1, 2, . . ., and, thus affect the eigenvalues associated to the
evolutionary equilibrium, then the functions λi do not determine anymore the stability of
evolutionary equilibria.

Those points on the boundary of X are called Boundary equilibria. There, only the
selection derivatives relative to nonvanishing resident populations annihilate. In those
points different situations may occur:

Evolutionary murder: the equilibrium abundance of one of the resident populations
gradually vanishes along an evolutionary trajectory approaching the boundary of
X , when the boundary is reached (in a finite time), the vanishing population goes
extinct and the other resident populations play the role of murderers.

Evolutionary runaway: in the previous case, if there were no murderers, the extin-
ction will be obtained asymptotically.
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Evolutionary suicide: the equilibrium abundances of the resident populations do
not vanishes when the evolutionary trajectory approaches the boundary of X , so
that, the boundary is reached in finite time even in the absence of murderers.

In conclusion, reaching the boundary of the evolution set X , implies the evolutio-
nary extinction of one or more resident populations.

2.3.2. Evolutionary Branching

Evolutionary branching occurs when selection splits a phenotypically monomorphic
population into two distinct phenotypic clusters. A prerequisite for evolutionary bran-
ching is that directional selection drives the population toward a fitness minimum in
phenotype space. Therefore evolutionary branching offers a general basis for understan-
ding adaptive speciation [36]. Evolutionary branching is a feature hard to account for in
usual mutation-selection systems and is one of the privileged subjects of adaptive dyna-
mics framework [44].

The invasion implies substitution Theorem 2.2.1 does not hold when selection de-
rivative vanishes as in (2-27), then, an important question that arises is whether these
points actually are evolutionary attractors. In the context of classical models of evolu-
tion, reaching such attractors implies that evolution comes to a halt (evolutionary at-
tractors only occur at fitness maxima). However, Geritz et al. 1998 and Meszena et al.
2001, showed this is not necessarily true in the framework of adaptive dynamics; becau-
se frequency-dependent ecological interactions drive the evolutionary process, and then
it is possible that an evolutionary attractor represents a fitness minimum at which the
population experiences disruptive selection. Adaptive dynamics demonstrates that once
the fitness minimum is reached, the population may split into two distinct and diverging
in trait values. Thus, in adaptive dynamics, evolutionary convergence toward a fitness
minimum can lead to evolutionary branching [36, 45, 63]. In [31], Dercole F. and Rinaldi
S. describe in detail the results on the trait dynamics close to an evolutionary equilibria x
(where the selection derivative vanishes), to show that,

A mutant population can coexist with a resident population, giving rise to an extra
population and an extra equation in the AD canonical equation. i.e. resident-mutant
coexistence is possible for X = X, x close to x̃ and if,

∂2λ

∂x∂x̃
(x, x, X) < 0. (2-28)

Two coexisting resident and mutant populations diverge in trait values, and there
is the so called evolutionary branching, if,
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∂2

∂x̃2 λ(x, x, X) > 0. (2-29)

Evolutionary equilibria can be partitioned in three types: Branching Points: a sta-
ble evolutionary equilibria at which at least one of the traits can branch, i. e., at which
both branching conditions (2-28) and (2-29) hold with respect to at least one trait. Termi-
nal Points: a stable evolutionary equilibria, where coexistence and divergence condition
holds, i.e., non branching points where evolution has a halt, and finally, Boundary Bran-
ching Points: correspond to border points between the branching and terminal points. At
all effects, this points correspond to bifurcation points in the AD canonical equation.

2.4. Previous modeling

A new class of models to incorporate Darwinian evolution of a quantitative trait
have been presented by Hofbauer and Sigmund (1990), Marrow et al. (1992) and Metz
et al. (1992). Later, in 1996, one important advance is due to Diekmann and Law, who
derives an ordinary differential equation to describe the rate of change over time of the
expected trait value in a monomorphic population, the so called canonical equation of
adaptive dynamics [10].

Particularly, Hofbauer and Sigmund proposed a dynamics to model the effect of
adaptation and relate it with the stability of equilibria; also, they discuss some examples
concerning, in particular, iterated interactions and gamete sizes [49].

In 1992, Marrow et al. presented a model for the coevolution of body size of pre-
dators and their prey. Body sizes were assumed to affect the interactions between in-
dividuals, and the Lotka-Volterra population dynamics arising from these interactions
provide the driving force for evolutionary change. The results point to a “loser wins”
principle, in which the evolution leads to a weakening of the interaction between preda-
tor and prey [61].

Also in 1992, Metz et al. developed an study on the definition of “fitness” in eco-
logical scenarios; their fundamental message is that the best fitness measure in a varia-
ble nonlinear world is one based on dominant Lyapunov exponentes; their study, also
pointed out several issues like environmental variability and the effect of locally finite
populations as important matters that should be considered by theoreticians in further
investigations [65].

The origin of the canonical equation of adaptive dynamics is due to the paper of
Diekmann and Law, back in 1996, they developed a dynamical theory of coevolution in
ecological communities. The derivation explicitly accounts for the stochastic components
of evolutionary change and is based on ecological processes at the level of the individual
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and discuss extensions of the derivation to more general ecological settings, in particu-
lar they allow for multi-trait coevolution and analyze coevolution under nonequilibrium
population dynamics [34].

In 1996, Atamas studied the hypothesis that degenerate recognition with subsequent
selection of recognizing elements can explain self-organization of these systems. An enti-
rely numerical model was explored, using the cellular automata approach. Three intrinsic
features of a common selective system were incorporated into this model: a large num-
ber of recognizing elements; degenerative recognition of stimuli by these elements; and
subsequent selection. He conclude that systems with a large number of recognizing ele-
ments, degenerative recognition, and selection of recognizing elements can self organize
based upon the pattern of the incoming stimuli. In his paper, the branching arises due to
a competition between similar abstract “recognizers” to recognize some signals. In this
framework, a monomorphic population may split into two distinct sub-populations in
order to decrease this competition [6, 44].

Geritz in 1998, present a general framework for modeling adaptive trait dynamics
in which they give a full classification of the singular strategies in terms of ESS-stability,
convergence stability, the ability of the singular strategy to invade other populations if
initially rare itself, and the possibility of protected dimorphisms occurring within the sin-
gular strategy’s neighborhood. Of particular interest is a type of singular strategy that
is an evolutionary attractor from a large distance, but once in its neighborhood a popu-
lation becomes dimorphic and undergoes disruptive selection leading to evolutionary
branching [45].

Genieys et al. in 2009 investigated an ingro-differental equation to study its pattern
formation and branching capacity. The equation is related to the model presented in 1996
by Atamas and with Turing reaction-diffusion models for morphogenesis, except for the
origin of structures, which in the model of Turing came from the competition of an acti-
vator and an inhibitor, whereas in the work of Genieys came from the competition inside
of a single population [44].

In [36], Doebeli M. and Dieckmann U. use classical ecological models for symmetric
and asymmetric competition, for mutualism, and for predator-prey interactions to des-
cribe evolving populations with continuously varying characters. For these models, they
investigate the ecological and evolutionary conditions that allow for evolutionary bran-
ching and establish that branching is a generic and robust phenomenon. Also study the
evolution of assortative mating as a quantitative character. They show that evolution un-
der branching conditions selects for assortativeness and thus allows sexual populations
to escape from fitness minima. They conclude that evolutionary branching offers a ge-
neral basis for understanding adaptive speciation and radiation under a wide range of
different ecological conditions.

In 2008 is published the book “Analysis of Evolutionary Processes” by Dercole F.
and Rinaldi S. where the authors make a wide and deep description of the Adaptive
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Dynamics framework from the theoretical and applicative point of view. They present
the proofs of many of the results and present several applications to illustrate the most
important issues in the theory. This book is of mandatory lecture for the interested reader
[31].

In 2010, F. Dercole and S. Rinaldi, published a paper devoted to the presentation of
the first chaotic evolutionary attractor, obtained through the AD approach. They consi-
dered a Lotka–Volterra tritrophic food chain composed of a resource, its consumer, and
a predator species, each characterized by a single adaptive phenotypic trait, and showed
that for suitable modeling and parameter choices the evolutionary trajectories approach
a strange attractor in the three-dimensional trait space. The study is performed through
the bifurcation analysis of the canonical equation of Adaptive Dynamics. In their conclu-
sions they consider, first, that the study of evolving systems with more complex structures
would reveal more complex chaotic regimes; second, briefly discuss about the possibility
of identifying other chaotic evolutionary attractors through mathematical models, and
about the possibility to dig into field and laboratory evolutionary time series and detect
the footprint of deterministic chaos, as two major questions that arises from their study.
Finally, they consider that chaotic Red Queen implies that evolutionary trajectories may
not be predicted beyond a short evolutionary time, despite the forces of natural selection
are strong and deterministic, which has important implications for questions of interest
that include pathogen unpredictable evolution, the maintenance of genetic diversity in
homogenized landscapes, and the process of speciation [32].

Since the first paper developing AD a wide range of applications and theoretical
developments have been published; in particular, technological mutations: [23,29], social
interactions: [58], mutualistic interactions: [19,34,36,40], competition: [24,36,53], predator-
prey dynamics [1, 2, 17, 27, 32, 34, 59, 61], evolution of dispersal: [13, 28, 73] dynamics in
allele space: [12, 55], canibalistic interactions: [18, 30], and food chains: [32] among many
others. In addition, detailed mathematical developments of the theory can be found in
documents such as: [4, 10, 17, 20, 31, 34, 44–46].





3. Conditions on the energy market

diversification from adaptive dynamics

3.1. Introduction

The energy market is a complex system in a rapidly varying context in which decision-
making is difficult. Its complexity is due to a large number of physical and economic
factors involved. In particular, physical factors may be related to climatic conditions and
have an unpredictable medium- and long-term behavior, as well as an unknown effect on
aspects of the market such as supply, demand, and price. Market regulations and public
policies generate causal relationships between all these elements producing highly com-
plex interactions. Other factors associated with technological and social changes, such
as innovations in energy generation or changes in consumption patterns, which are not
predictable in the medium or long term, are also determinants [86].

In recent years there has been a significant development of alternative energy gene-
ration technologies, as reported in [9], who find that the EU ETS has increased low-carbon
innovation among regulated firms by as much as 10 %, while not crowding out patenting
for other technologies. They also find evidence that the EU ETS has not affected licen-
sing beyond the set of regulated companies. These results imply that the ETS accounts
for nearly a 1 % increase in European low-carbon patenting compared to a counterfactual
scenario. In this context, it is necessary to study the energy market, and in particular, the
dynamics that arise after the introduction of innovative technologies, using mathematical
tools that help to describe the inherent complexity of the system. In the study of energy
markets, it is necessary to take into account some intrinsic characteristics or attributes,
such as generation source, emission reduction, final consumer price, generation techno-
logies, generation capacity, level of investment, among many others. Also, it is essential
to describe how its dynamics in the long-term influences the conditions of interaction
between agents established in the market and those who consider themselves innovative.
In [50] they define environmental innovations as a product, process, marketing and orga-
nizational changes leading to a noticeable reduction of environmental burdens. Positive
ecological effects can be explicit goals or side-effects of innovations.

The Adaptive Dynamics constitute a theoretical background originating in evolu-
tionary biology that link demographic dynamics to evolutionary changes and allows to
describe evolutionary dynamics in the long-term when considering mutations as small
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and rare events in the demographic time scale [31, 34, 45, 46]. Adaptive dynamics descri-
bes evolution through an ordinary differential equation known as the canonical equation
of the adaptive dynamics. This approach focuses on the long-term evolutionary dynamics
of continuous (quantitative) adaptive traits and overlooks genetic detail through the use
of asexual demographic models, which is justified under different demographic and evo-
lutionary timescales. This approach considers interactions to be the evolutionary driving
force and takes into account the feedback between evolutionary change and the selection
forces that agents undergo [31, 32, 36, 41].

In the present chapter a mathematical model based on ordinary differential equa-
tions is studied, to describe the dynamics of a market dominated by a standard energy
(SE) generation technology in interaction with an innovative energy (IE) generation tech-
nology. Initially, the model consists of an adaptation of the Lotka-Volterra equations un-
der the consideration that interaction between both types of energy can occur in a market
based on competition or cooperation as interaction strategies, as described by [37] in a
cross-country study on the relationship between diffusion of wind and photovoltaic solar
technology. In both cases, SE and IE are measured with the cumulative generation capa-
city (CGC) as a non-negative real number defining its level of penetration into the mar-
ket. Under those scenarios, we determine conditions for EI to invade and establish into
the market, giving rise to diversification. The model parameters are defined as functio-
nal coefficients depending on the values of a characteristic quantitative and continuous
trait to determine some relevant aspects of energy generation. In general, adaptive dyna-
mics theory allows us to study the long-term evolutionary dynamics of the quantitative
attributes that characterize both energies CGCs and to describe how they affect the inter-
action dynamics in the short-term (market timescale). On the other hand, it also allows
us to establish how the conditions of interaction in the market influence the evolutionary
dynamics of the attributes, and ultimately, to determine which innovative characteristics
can invade or which attributes disappear definitively.

Using the theoretical framework of adaptive dynamics, the canonical equation, co-
rresponding to an ordinary differential equation, is presented to describe the behavior
over time of the characteristic attribute as a result of innovation processes. The theoretical
framework of adaptive dynamics has been used recently to model a varied spectrum of
situations involving innovations or genetic variations; in particular, technological inno-
vations, as in [23], where the authors explore the emergence of technological variety ari-
sing from market interaction and technological innovation. Particularly, existing products
compete with the innovative ones resulting in a slow and continuous evolution of the un-
derlying technological characteristics of successful products. Also in that context, in [29]
is studied technological change and its impact on sustainable fisheries. The analysis is
performed by means of Adaptive Dynamics and the results are qualitatively consistent
with those obtained long ago through the principles of bioeconomics, it is fair to stress
that the underlying assumptions are different. In fact, in the bioeconomic approach fleet
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technology does not evolve and fishing effort varies to produce economic optimization,
while in the Adaptive Dynamics approach technological innovation is the key driver. A
very interesting application of adaptive dynamics approach, came from social interac-
tions, in [58], the authors propose a model to investigate the dynamics of fashion traits
purely driven by social interactions. They assume that people adapt their style to maxi-
mize social success, and we describe the interaction as a repeated group game in which
the payoffs reflect the social norms dictated by fashion.

Many other examples of the adaptive dynamics framework applied to biology can
be found. Mutualistic interactions are studied in [40] where the authors show that asym-
metrical competition within species for the commodities offered by mutualistic partners
provides a simple and testable ecological mechanism that can account for the long-term
persistence of mutualism. In the competition context, [44] present a model devoted to
the study of an evolutionary system where similar individuals are competing for the sa-
me resources. Examples can be found in predator-prey dynamics, evolution of dispersal,
dynamics in allele space, canibalistic interactions etc. In addition, detailed mathemati-
cal developments of the theory can be found, particularly in [31] a thorough review of
theoretical aspects and applications is made.

In the second section of this chapter, the reader will find a description of the adap-
tation made to the Lotka-Volterra model to describe the interaction between two similar
types of energy. Local stability is described and invasion conditions determined. In the
third section, an explicit definition of the coefficients of the model according to the stan-
dard and innovative attributes is stated, to consider some particular aspects of the market
and later to determine how they influence the conditions of invasion of the innovative
energy. The canonical equation is described and, from this point, the long-term evolutio-
nary dynamics of the characteristic attributes follows. In particular, there are conditions
under which there is evolutionary branching that allow market diversification. We illus-
trate the situation with numerical simulations. Finally the conclusions and the references
are shown.

3.2. Model description

3.2.1. Innovative-Standard model

Some technical assumptions on the model are the following: (a) we consider two
types of energy generation, which are differentiated by the technology used (we refer to
them in this paper as energy generation technology). (b) Each energy generation techno-
logy is characterized by the value of a given characteristic attribute quantifiable by means
of a real number, i.e. a measure of the technology. It can be assumed that a higher attribute
value is related to more advanced technologies, although innovations are not necessarily
preferred by consumers. (c) In the absence of innovations, the generation of established
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energy reaches a specific equilibrium value on a time scale that we call the “market ti-
me scale”. (d) Innovations are rare events on the market time scale, i.e., they occur on
a much longer time scale that we call “evolutionary time scale.” This separation of the
scales allows us to assume that the market is in equilibrium when an innovation occurs
and that the market is affected by a single innovation at the same time [31]. (e) Finally, it
is assumed that the innovations are small, that is, the innovative attribute only differs so-
mewhat from the established quality; this corresponds to consider marginal innovations
that give origin to energies similar to those established.

Consider an energy market dominated by a Standard Energy generation techno-
logy (SE), with cumulative generation capacity (CGC) n1 = n1(t) at any time t, and
assume there is some standard characteristic trait x1 to determine a suitable feature of
SE generation. It can be, for example, the final price of energy to the consumer or other
characteristics such as energy saving, emission reduction, or generation capacity or level
of investment. Suppose a marginal innovation occur in this characteristic trait, slightly
changing the value x1 to x2 and leading to the appearance of an Innovative Energy gene-
ration technology (IE), with CGC n2 = n2(t), different from n1, and characterized by the
trait x2, called innovative characteristic trait from now on.

Generation growth rate. Consider the CGC n of a given generation technology to
grow at rate r(x), as a function of the characteristic trait x. This function describes how
fast n increases depending on the value of x. Growing rate r should be considered as a
positive function r(x) > 0 for all x ∈ R.

Maximum capacity. Let the function K(x) to describe the maximum cumulative ge-
neration capacity that some generation technology can reach and allocate into the market,
as a function of its characteristic trait x. As generation and demand grow, it is realistic to
consider K as a nonnegative function of x, bounded above by some maximum value co-
rresponding to technical limitations or imposed normative obeying public police.

Interaction coefficient. Define the function c(xi, xj) to determine the interaction into
the energy market between the i generation technology with CGC ni and the j generation
technology with CGC nj. It correspond to the rate of increase/decrease of CGC suffered
by ni by the presence of nj; we assume c(xi, xi) = 1 to indicate internal competition; i.e.,
c(x1, x1) = 1 correspond to internal competition between SE generation technologies,
and similarly, c(x2, x2) = 1 correspond to internal competition between IE generation
technologies.

Additional general situations can occur depending on the region of the (x1, x2)−plane
where the point (x1, x2) is located:

If c(xi, xj) > 1, for xi 6= xj, external competition predominates over internal com-
petition; that is, c(xi, xj) > 1 implies that the competition between generation tech-
nology i and generation technology j is stronger than competition between systems
generating the same type of energy.
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If 0 ≤ c(xi, xj) ≤ 1, for xi 6= xj, then internal competition predominates over exter-
nal competition. It has to be stronger competition between different SE generation
technologies among each other than the competition between SE and IE genera-
tion technologies. In particular, if c(xi, xj) = 0, there is no interaction at all and if
c(xi, xj) = 1, both competitions are equally strong.

If c(xi, xj) < 0, for xi 6= xj, the interaction between generation technologies i and j
does not correspond to competition but to cooperation, a situation that can describe
the integration of systems. In this case, each one is rewarded by the presence of the
other.

In general, it is assumed x2 close to x1, i.e., the innovation is small and it has a
small effect. So doing, such an innovation always compete with the established one and,
only after diversification, the market could turn cooperative. Additionally, there might
be mixed cases. For instance, when c(x1, x2) > 1 and c(x2, x1) < 1 for x2 > x1, the
low-tech energy generation suffers the high-tech more than itself, and conversely, when
c(x1, x2) < 1 and c(x2, x1) > 1 for x2 > x1 the high-tech energy generation suffers the
low-tech more than itself.

Under the assumptions described, we propose an interaction Lotka-Volterra model:


ṅ1 = n1r(x1)

(
1− n1 + c(x1, x2)n2

K(x1)

)
= n1g(n1, n2, x1, x2, x1)

ṅ2 = n2r(x2)

(
1− n2 + c(x2, x1)n1

K(x2)

)
= n2g(n1, n2, x1, x2, x2),

(3-1)

defined on the set Ω = {(n1, n2) : n1 ≥ 0, n2 ≥ 0}. Note that both relative growth
rates ṅ1/n1 and ṅ2/n2 can be expressed by means of a single function g that in the AD
framework is called fitness generating function

g(n1, n2, x1, x2, x̃) = r(x̃)
(

1− c(x1, x̃)n1 + c(x̃, x2)n2

K(x̃)

)
.

Considering that we have assumed the condition c(x̃, x̃) = 1, for all x̃ ∈ X , in system
(3-1),

g(n1, n2, x1, x2, x1) = r(x1)

(
1− n1 + c(x1, x2)n2

K(x1)

)
,

represents the relative growth rate ṅ1/n1 of SE generation technology. Along the same
lines, the relative growth rate of IE, ṅ2/n2, is given by g(n1, n2, x1, x2, x2). A more general
description of state variables, functional coefficients and parameter description can be
found in Table 3-1.
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Table 3-1.: Description of state variables and coefficients with their corresponding ranges.
∗CGC: cumulative generation capacity.

State variables description Units
n1(t) CGC∗ for Standard Energy, characterized by x1 MW
n2(t) CGC for Innovative Energy, characterized by x2 MW

Parameter description Ranges
x1 Quantitative continuous characteristic trait defining SE x1 ∈ R

x2 Quantitative continuous characteristic trait defining IE x2 ∈ R

r(xi) CGC growing rate as a function of xi, for i = 1, 2 r > 0
K(xi) Maximum CGC as function of xi, for i = 1, 2 K > 0 MW
c(x1, x2) Interaction coefficient between both CGC as a function of x1 and

x2

c ∈ R

3.2.2. Innovative-Standard model local stability

The importance of the local stability analysis of the model is that it will provide us
with relevant information regarding the dynamics of the market of the types of energy
that interact, and will allow establishing conditions under which the coexistence is pos-
sible or the definitive disappearance of any of them. In particular, it is essential to know
under what circumstances EI can invade and remain into the market.

By solving the system ṅ1 = 0, ṅ2 = 0 is possible to find four steady states of system
(3-1) given by:

P0(n0
1, n0

2) = (0, 0), corresponding to the absence of SE and IE in the market.

P1

(
0, n1

2(x2)
)
= (0, K(x2)), corresponding to the exclusion of SE from the market

and the IE is dominant.

P2(n2
1(x1), 0) = (K(x1), 0), corresponding to the exclusion of IE from the market and

the SE is dominant.

P3
(
n3

1(x1, x2), n3
2(x1, x2)

)
=
(

c(x1,x2)K(x2)−K(x1)
c(x2,x1)c(x1,x2)−1 , c(x2,x1)K(x1)−K(x2)

c(x2,x1)c(x1,x2)−1

)
, corresponding to

the case when SE and IE are both present and share the market.

Notice P3 can be written as:

P3(n3
1, n3

2) =

(
K(x1) (H(x1, x2)− 1)
c(x2, x1)c(x1, x2)− 1

,
K(x2) (H(x2, x1)− 1)
c(x2, x1)c(x1, x2)− 1

)
,

where:

H(x1, x2) =
c(x1, x2)K(x2)

K(x1)
, and H(x2, x1) =

c(x2, x1)K(x1)

K(x2)
.
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Therefore, P3 ∈ Ω if and only if both of its coordinates are non-negative, this implies
two different situations:

Case I: c(x2, x1)c(x1, x2) < 1, then P3 ∈ Ω if and only if

H(x1, x2) < 1 and H(x2, x1) < 1.

In particular, when H(x1, x2) = 1 and H(x2, x1) < 1, P3 coalesce with P1, and when
H(x1, x2) < 1 and H(x2, x1) = 1, P3 coalesce with P2.

Case II: c(x2, x1)c(x1, x2) > 1, then P3 ∈ Ω if and only if

H(x1, x2) > 1 and H(x2, x1) > 1.

Analogously to the previous case, when H(x1, x2) = 1 and H(x2, x1) > 1, P3 coales-
ce with P1, and when H(x1, x2) > 1 and H(x2, x1) = 1, P3 coalesce with P2.

At this point, local stability analysis will bring some insights into the market dyna-
mics and will help to answer a further question of under what conditions can IE spread
into the market and interact or even substitute SE. Indeed, If we consider a market domi-
nated exclusively by SE, the instability of P2 is related to the possibility for an IE to invade
the market, while the existence and stability of P3 are related to the coexistence of both
kinds of energy sharing the market, leading to diversification.

Proposition 3.2.1 The steady state P0 of system (3-1) is always unstable.

Proof The Jacobian matrix of system (3-1) at P0 is given by,

A(P0) =

[
r(x1) 0

0 r(x2)

]
.

Then, the corresponding eigenvalues are r(x1) and r(x2), both positive by definition;
therefore, steady state P0 is unstable.

Proposition 3.2.2 The steady states P1 and P2 of system (3-1), are locally asymptotically stable
if and only if H(x1, x2) > 1 and H(x2, x1) > 1 respectively.

Proof The Jacobian matrix of system (3-1) at P1 can be written as:

A(P1) =

[
r(x1) (1− H(x1, x2)) 0
−r(x2)c(x2, x1) −r(x2)

]
.

Then, the corresponding eigenvalues are r(x1) (1− H(x1, x2)) < 0 if and only if
H(x1, x2) > 1, as stated in the Proposition, and −r(x2) < 0 by definition. On the other
hand, the Jacobian matrix of system (3-1) at P2 is given by,
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A(P2) =

[
−r(x1) −r(x1)c(x1, x2)

0 r(x2) (1− H(x2, x1))

]
.

Then, the corresponding eigenvalues are −r(x0) < 0 and r(x2) (1− H(x2, x1)) < 0
if and only if H(x2, x1) > 1. This proves the proposition.

Proposition 3.2.3 Given the steady state P3, when exists in Ω, its local stability is described in
the following way:

I. If c(x2, x1)c(x1, x2) < 1, H(x1, x2) < 1 and H(x2, x1) < 1, then P3 is locally asymptoti-
cally stable.

II. If c(x2, x1)c(x1, x2) > 1, H(x1, x2) > 1 and H(x2, x1) > 1, then P3 is unstable.

Proof The Jacobian matrix of system (3-1) at P3 can be written as,

A(P3) =

 − r(x1)[H(x1, x2)− 1]
c(x2, x1)c(x1, x2)− 1

− [H(x1, x2)− 1] r(x1)c(x1, x2)

c(x2, x1)c(x1, x2)− 1

− [H(x2, x1)− 1] r(x2)c(x2, x1)

c(x2, x1)c(x1, x2)− 1
− r(x2)[H(x2, x1)− 1]

c(x2, x1)c(x1, x2)− 1

 .

Let ∆ denote the determinant of A(P3); then, it can be written as:

∆ = −r(x1)r(x2)[H(x1, x2)− 1][H(x2, x1)− 1]
c(x2, x1)c(x1, x2)− 1

,

and similarly, let T be the trace of A(P3), then:

T = −r(x1)[H(x1, x2)− 1] + r(x2)[H(x2, x1)− 1]
c(x2, x1)c(x1, x2)− 1

.

To be consistent, consider the cases when P3 ∈ Ω. This implies two different situa-
tions:

Case I: c(x2, x1)c(x1, x2) < 1, then P3 ∈ Ω if and only if

H(x1, x2) < 1 and H(x2, x1) < 1.

In this scenario, ∆ > 0 and T < 0. Then P3 is locally asymptotically stable [75].
As stated above, when H(x1, x2) = 1 and H(x2, x1) < 1, P3 coalesce with P1 and
transfers its stability to P1 when H(x1, x2) > 1, case when P3 /∈ Ω although it exists
and it is unstable (indeed, H(x1, x2) > 1 and H(x2, x1) < 1 implies ∆ < 0). Similarly,
if H(x1, x2) < 1 and H(x2, x1) = 1, P3 coalesce with P2, and transfers its stability. In
fact, H(x1, x2) < 1 and H(x2, x1) > 1 implies ∆ < 0 and P3 /∈ Ω and it is unstable.
Both situations correspond to transcritical bifurcations [48, 75]. In Table 3-2 these
results are summarized.
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Case II: c(x2, x1)c(x1, x2) > 1, then P3 ∈ Ω if and only if

H(x1, x2) > 1 and H(x2, x1) > 1.

Notice that, in this case, ∆ < 0, then P3 ∈ Ω but it is unstable. Analogously to the
previous case, when H(x1, x2) = 1 and H(x2, x1) > 1, P3 collides with P1, and when
H(x1, x2) > 1 and H(x2, x1) = 1, P3 meets with P2. Both situations correspond to
transcritical bifurcations also (see Table 3-2).

Table 3-2.: Classification of local stability. Scenarios marked with an * correspond to impossible
scenarios (see the text for further details). LAS: Locally Asymptotically Stable. U: Uns-
table.

Case Condition P0 P1 P2 P3

c(x2, x1)c(x1, x2) < 1 H(x1, x2) > 1; H(x2, x1) < 1 U LAS U /∈ Ω
H(x1, x2) < 1; H(x2, x1) > 1 U U LAS /∈ Ω
H(x1, x2) > 1; H(x2, x1) > 1* U LAS LAS /∈ Ω
H(x1, x2) < 1; H(x2, x1) < 1 U U U LAS

c(x2, x1)c(x1, x2) > 1 H(x1, x2) > 1; H(x2, x1) < 1 U LAS U /∈ Ω
H(x1, x2) < 1; H(x2, x1) > 1 U U LAS /∈ Ω
H(x1, x2) > 1; H(x2, x1) > 1 U LAS LAS U
H(x1, x2) < 1; H(x2, x1) < 1* U U U /∈ Ω

It is important to clarify that the last scenario in Table 3-2 is not possible. If H(x1, x2) <

1 and H(x2, x1) < 1, then H(x1, x2)H(x2, x1) < 1 implies c(x2, x1)c(x1, x2) < 1, contradic-
ting the case hypothesis of being c(x2, x1)c(x1, x2) > 1. A similar situation occurs in the
third scenario in Table 3-2, if H(x1, x2) > 1 and H(x2, x1) > 1, then H(x1, x2)H(x2, x1) > 1
which implies c(x2, x1)c(x1, x2) > 1, contradicting the case of being c(x2, x1)c(x1, x2) < 1.

In Figure 3-1 the phase portrait of system (3-1) is shown, which corresponds to the
case c(x2, x1)c(x1, x2) > 1, H(x1, x2) > 1 and H(x2, x1) > 1. As stated in Table 3-2, P0 and
P3 are unstable and P1 and P2 are both locally asymptotically stable. In this case, initial
conditions determine which equilibria is going to attract a particular trajectory. Note that
this is the unique scenario guaranteeing two simultaneous locally asymptotically stable
equilibria. Thus the market final state will depend only on the initial conditions.

Note that condition H(x1, x2) > 1 implies c(x1,x2)K(x2)
K(x1)

> 1 and then c(x1, x2) > 0.

Similarly, condition H(x2, x1) > 1 implies c(x2,x1)K(x1)
K(x2)

> 1 and thus c(x2, x1) > 0. Such
situations can only occur in the case when we have competitive interactions (see the c fun-
ction description in subsection 2.1 ). On the other hand, H(x1, x2) < 1 and H(x2, x1) < 1
implies c(x1,x2)K(x2)

K(x1)
< 1 and c(x2,x1)K(x1)

K(x2)
< 1 respectively. These conditions can be satisfied

when c is positive or negative. Therefore, the corresponding interaction scenario can be
competition or cooperation.
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Figure 3-1.: Phase portrait corresponding to the 7th scenario in Table 3-2, where
c(x2, x1)c(x1, x2) > 1, H(x1, x2) > 1 and H(x2, x1) > 1. As it can be deduced
from the stability propositions and, as it is shown in the Table, P0 and P3 are unstable
and P1 and P2 are both locally asymptotically stable. In this case, initial conditions
determine which equilibria is going to attract a particular trajectory. For the simu-
lations, we consider x1 and x2 in order to have c(x1, x2) = 1.1, c(x2, x1) = 1.15,
K(x1) = K(x2) = 70 and r(x1) = r(x2) = 0.3. This is a scenario corresponding
to competition favoring the SE; i.e., c(x1, x2) > c(x2, x1), which could mean, for
instance, a bigger taxes imposition on IE.

The local stability analysis implies that the energy market will not crash under any
circumstances, guaranteeing a permanent energy supply from any (or both) generation
technologies; i.e., there is at least one stable equilibria corresponding to dominance of SE,
or IE or their coexistence to supply energy demand.

3.2.3. Standard energy model and invasion conditions

From the AD theory, invasion is ruled by the sign of the fitness function of the IE, as
given by ṅ2/n2, from the g function at P2(n2

1(x1), 0) = (K(x1), 0). To describe this situation
with more detail, we take into account that just before an innovation occurs, it is assumed
that only SE is available to supply energy demand, that is n2 = 0. For simplicity we
denote x1 = x, n1 = n. Therefore the energy market is modeled by only one differential
equation,
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ṅ = nr(x)
(

1− n
K(x)

)
, (3-2)

corresponding to the classical logistic equation. It is known that (3-2) has two equilibria
given by n0 = 0 which are always unstable, and n1 = K(x) is always asymptotically
stable under the definitions given to r and K. Being SE the only generation technology
available in the market, it is assumed that n reaches its maximum capacity K(x) to satisfy
the market demand.

Once an innovation occurs, it is interesting to determine whether or not the IE can
invade and share the market (coexist) with the SE. Just after the innovation, it is assumed
that system (3-1) is at equilibrium P2(n2

1(x1), 0) = (K(x1), 0). As discussed in the proof of
Proposition 3.2.2, the Jacobian matrix at P2 is given by:

A(P2) =

[
−r(x1) −r(x1)c(x1, x2)

0 r(x2) (1− H(x2, x1))

]
.

Define the fitness function of the IE as the innovative eigenvalue, also known as the
invasion eigenvalue in the Adaptive Dynamics language, to have,

λ(x1, x2) = r(x2) (1− H(x2, x1)) . (3-3)

Clearly, P2 stability is determined by the sign of λ(x1, x2), i.e. if λ(x1, x2) > 0, then
P2 is unstable and therefore IE can invade the market. On the other hand, if λ(x1, x2) < 0,
then P2 is locally asymptotically stable and the IE is going to be excluded indefinitely from
the market (see Proposition 3.2.2). For a further study of this situation, assume the non
degenerate situation ∂λ

∂x2
(x1, x2) 6= 0. Then the first order Taylor expansion of λ(x1, x2)

around x2 = x1 is,

λ(x1, x2) = λ(x1, x1) + (x2 − x1)
∂λ

∂x2
(x1, x1) + O(|x2 − x1|2). (3-4)

Note that the term λ(x1, x1) in the previous expansion,

λ(x1, x1) = r(x1) (1− c(x1, x1)) = 0,

therefore λ(x1, x2), described as in (3-4), has opposite sign for x2 > x1 or x2 < x1, with x2

close to x1. Thus if (x2 − x1)
∂λ
∂x2

(x1, x1) is positive, i.e, if

∂λ

∂x2
(x1, x1) > 0, x2 > x1, or

∂λ

∂x2
(x1, x1) < 0, x2 < x1,

(3-5)
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the invasion eigenvalue λ(x1, x2) is positive and equilibria P2 is unstable. In such case,
IE invades into the market, and vice versa, if (x2 − x1)

∂λ
∂x2

(x1, x1) is negative, P2 is locally
asymptotically stable and IE goes extinct. From now on the quantity:

∂λ

∂x2
(x1, x1), (3-6)

is going to be called selection gradient for the innovative energy. In the next section,
specific coefficients are established according to the characteristic traits and the meaning
and scope of the described invasion condition will be analyzed in more depth.

The question of whether invasion implies substitution of the standard energy, re-
quires the study of the global behavior of the standard-innovative model. In Appendix B
of [31], the following theorem is proved.

Theorem 3.2.4 (Invasion implies substitution) Given x1 in the evolution set X , if (x2 −
x1)

∂
∂x′λ(x1, x2) > 0 and |x2 − x1| and |(n1(0) + n2(0) − n(x1))| are sufficiently small, then

the trajectory (n1(t), n2(t)) of the standard-innovative model (3-1) tends toward equilibrium P1

for t→ ∞.

3.3. Evolutionary dynamics under cooperation and

competition

3.3.1. Functional coefficients

Consider a market where the CGC growing rate r does not depend on the characte-
ristic traits, and therefore it is constant.

To define the maximum capacity function K, we consider it as an increasing function
of x, for x ≥ 0, decreasing to zero if x < 0, and bounded above by some maximum value
k1 corresponding to technical limitations, imposed normative obeying public policies, or
technical or financial restrictions. As an example, if we consider the amount of money in-
vested in new technology as a measure of the technology of energy generation then, very
large positive values of x (own resources) or negative values (resources coming from the
indebtedness), would allow to increase the maximum generation capacity K. We consider
the expression,

K(x) =
k1x2

k2
2 + x2

,

such that K(x)→ k1 as x → ±∞ as in Figure 3-2-left. Note that K(x) increases [decreases]
rapidly when x is small and positive [negative], but at large positive [negative] values of
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x (larger inversion from own resources [indebtedness], for instance), the maximum capa-
city grows up [decreases down] slowly to [from] its maximum k1.

A large value of k2 implies that it is necessary to invest more resources (large x) to
reach the maximum value k1, while a small value of k2 implies that the maximum level
k1 is reached with smaller investments (smaller x). Geometrically, K(x) increses rapidly
for all 0 < x <

√
3k2
3 , (rapidly decreases if −

√
3k2
3 < x < 0) and increases slowly to k1,

for all x >
√

3k2
3 (decreases slowly from k1 if x < −

√
3k2
3 ). This correspond to the fact that

the graph of K has two inflection points at x = ±
√

3k2
3 . Figure 3-2-left, shows the plot of K

with the parameter values described in the caption.
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Figure 3-2.: Maximum capacity function K(x) = k1x2

k2
2+x2 , plotted only for three different values of

k2 (left) and interaction function c(x1, x2) =
(c2

1+c2
2)x1x2

c2
1x2

1+c2
2x2

2
, conveniently plotted only for

positive values of x1 and x2 (right). Parameter values used are r = 0.3, c1 = 1, c2 = 2,
k1 = 100, k2 = 10 (solid), k2 = 20 (dashed) and k2 = 40 (dash-dot).

Table 3-3.: Parameter description and the corresponding baseline values used at simulations.
Parameter description Value

k1 Upper bound for the maximum capacity K, due to technical limi-
tations or imposed public policies

100 MW

k2 Measure of the speed at which maximum capacity can grow 10
c1 Subsidies if positive/Taxes if negative or any other similar policy

on SE
Varies

c2 Subsidies if positive/Taxes if negative or any other similar policy
on IE

Varies

In the formulation of the interaction function c, we want to consider the symmetry
regarding line x2 = x1 as an important issue. In fact, by definition, c(x1, x2) corresponds
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to the increasing/decreasing rate of CGC suffered by n1 by the presence of n2 and, conver-
sely, c(x2, x1) corresponds to the increasing/decreasing rate of CGC suffered by n2 by the
presence of n1. If c(xi, xj) < 0, for i, j = 1 or 2, the interaction described by c corresponds
to cooperation, and it corresponds to competition if c(xi, xj) > 0. If c(x1, x2) = c(x2, x1)

the interaction is called fair, and it is called unfair in any of the cases c(x1, x2) > c(x2, x1)

or c(x1, x2) < c(x2, x1). Consider the interaction function between both kind of energies
is given by the function:

c(x1, x2) =
(c2

1 + c2
2)x1x2

c2
1x2

1 + c2
2x2

2
, (3-7)

depicted in Figure 3-2-right. Note that c ∈ R, for all x1 and x2. Function c corresponds
to competition if x1 and x2 have the same sign (first and third quadrants of the (x1, x2)-
plane) and to cooperation if x1 and x2 have opposite signs (second and fourth quadrants
of the (x1, x2)-plane). The coefficient c has a set of maximums on the line x2 = c1

c2
x1, where

the maximum competition takes place and its value is c2
1+c2

2
2c1c2

. It has a set of minimums at

the line x2 = − c1
c2

x1 where the cooperation is maxima and its value is − c2
1+c2

2
2c1c2

. Symmetric
competition occurs when c1 = c2. In this case the lines of maxima and minima coincide
with x2 = x1 and x2 = −x1 respectively. On the other hand, c2 > c1 [conversely c2 < c1]
implies asymmetric interaction in favor of n2 [conversely n1].

Symmetric interaction is not likely to occur in almost any market. Therefore we will
consider the asymmetric case by stating c1 6= c2. Both parameters can be considered as
the effect of market policies in the competition, such as subsidies awarded, or any other
similar policy when c1, c2 > 0 or, some privative policy as taxes imposition when c1, c2 <

0. In general, whether an innovation is stimulated or unstimulated depends on if x1 > x2

or x2 > x1 and also on whether they are positive or negative. If c2 > c1 and x1 > 0,
a small innovation x2 is stimulated by interaction if x2 < x1. Geometrically, the point
(x1, x2) is below the diagonal (closer to the line of maxima) and c(x1, x2) > 1, while the
point (x2, x1) is above the diagonal and c(x2, x1) < 1. It is unstimulated if x2 > x1.

3.3.2. Selection gradient and invasion conditions

A more detailed study of the invasion conditions will be discussed in this subsec-
tion. Under the definitions of r, K and c described above, the IE growing rate, also known
as fitness function (5-14) takes the form:

λ(x1, x2) = r

(
1−

(c2
1 + c2

2)(k
2
2 + x2

2)x3
1

(k2
2 + x2

1)(c
2
1x2

2 + c2
2x2

1)x2

)
,

and the selection gradient is explicitly given by:
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∂λ

∂x2
(x1, x1) =

[
k2

2(3c2
1 + c2

2)− (c2
2 − c2

1)x2
1
]

r
x1(k2

2 + x2
1)(c

2
1 + c2

2)
.

The invasion conditions were discussed in the previous section and established in
(3-5). Now, with the explicit expressions for r, K and c, we will study invasion in the
energy market in a more detailed way. Since r > 0 and (k2

2 + x2
1)(c

2
1 + c2

2) > 0 in every
case, then sign of the selection gradient is given by:

k2
2(3c2

1 + c2
2)− (c2

2 − c2
1)x2

1
x1

. (3-8)

If c2
2 − c2

1 > 0, then
∂λ

∂x2
(x1, x1) < 0, implies two cases:

x1 > 0 ⇐⇒ k2
2(3c2

1 + c2
2)− (c2

2 − c2
1)x2

1 < 0

⇐⇒
k2

2(3c2
1 + c2

2)

c2
2 − c2

1
− x2

1 < 0

⇐⇒ x1 ∈ (xI , ∞).

Similarly,
x1 < 0 ⇐⇒ k2

2(3c2
1 + c2

2)− (c2
2 − c2

1)x2
1 > 0

⇐⇒ x1 ∈ (−xI , 0),

where xI = k2

√
3c2

1+c2
2

c2
2−c2

1
. In any of this cases, innovations with x2 > x1 invade.

On the other hand,
∂λ

∂x2
(x1, x1) > 0 for x1 > 0 implies x1 ∈ (0, xI) and for x1 < 0

implies x1 ∈ (−∞,−xI) in both cases, innovations with x1 > x2 invade.

In Figure 3-3-left, its is shown the schematic structure of the invasion region in the
(x1, x2)−plane when c2

2 − c2
1 = 0.1025 > 0 (c1 = 1 and c2 = 1.05 were used), blue

regions above the line x2 = x1 correspond to negative selection gradients, and gray
regions below that line correspond to positive selection gradients.

If c2
2 − c2

1 < 0 (equivalently c2
1 − c2

2 > 0), we can rewrite (3-8) as:

k2
2(3c2

1 + c2
2) + (c2

1 − c2
2)x2

1
x1

,

therefore, x1 > 0 implies
∂λ

∂x2
(x1, x1) > 0 and the innovations with x1 > x2 invade;

similarly, x1 < 0 implies
∂λ

∂x2
(x1, x1) < 0 and the innovations with x2 > x1 invade.
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In Figure 3-3-right its is shown the schematic structure of the invasion region in the
(x1, x2)−plane when c2

2 − c2
1 = −0.1025 < 0 (c1 = 1.05 and c2 = 1 were used),

as in the previous case, blue regions above the line x2 = x1 correspond to negative
selection gradients, and gray regions below that line correspond to positive selection
gradients.

Figure 3-3.: Different regions in the (x1, x2)−plane where invasion conditions given in (3-5)
are satisfied. Blue regions above the line x2 = x1 correspond to negative selec-
tion gradients, and gray regions below that line correspond to positive selection
gradients. Left: c2

2 − c2
1 = 0.1025 > 0 (c1 = 1 and c2 = 1.05 were used). Right:

c2
2 − c2

1 = −0.1025 < 0 (with c1 = 1.05 and c2 = 1). Note that a big innovation is re-
quired to have a cooperative market just after an innovation in a market dominated
by SE generation technology.

Note that, although functional parameters r, K and c are defined for all x1 and x2 in
R, and also the interaction dynamics from system (3-1) is well defined for both strategies
(cooperation and competition), the invasion conditions determine configurations (specific
regions of the (x1, x2)−plane) under which the invasion of the innovative attribute is
possible, and configurations that lead to its disappearance. Additionally, note that a big
innovation is required to have a cooperative market just after an innovation in a market
dominated by SE generation technology.

3.3.3. Adaptive dynamics canonical equation

The behavior and long-term evolution of the attribute x1 that characterizes energy
market is now described as a result of advantageous innovations on this attribute allo-
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wing for survival of the respective CGC in the market. The goal in this section is to des-
cribe the ADCE briefly. The reader is invited to review [10,26,31,46], to expand the infor-
mation shown, in particular, those regarding to the equation deduction.

The dynamics of x1 is given by the ordinary differential equation:

ẋ1 =
1
2

µ(x1)σ
2(x1)n(x1)

∂λ

∂x2
(x1, x1). (3-9)

In [31], there it is a full deduction of this equation. A parameter ε → 0 is considered,
as a scaling factor separating the market timescale (the time considered above in all the
derivatives of n1 and n2), from the evolutionary timescale for x1. In fact, a small amount dt
of time on the evolutionary timescale corresponds to a large amount of time dt/ε on the
market timescale. This fact allows affirming that between one innovation and the next,
the market has time enough to find an equilibrium configuration. It is worth clarifying
that while n1 and n2 are on the market timescale, x is on the evolutionary timescale. All
the derivatives concerning the time are represented with dot notation.

Equation (3-9) is known as the ADCE. In the context of this work, µ(x1) is proportio-
nal to the probability that an IE entering the market corresponds to an innovation. σ(x1)

is proportional to the standard deviation of the measure of the change in the attribute in
which innovation occurs. n(x1) represents the market equilibrium before innovation (i.e.,
n(x1) = K(x1)), and ∂λ

∂x2
(x1, x1) is the selection gradient of the x1 attribute on which the

innovation is performed.
Denoting x = x1 for simplicity, and considering µ(x) = µ and σ2(x) = σ2 (i.e. they

do not depend upon the characteristic trait), the ADCE is given by:

ẋ =
µσ2k1r

2(c2
1 + c2

2)

[(c1 − c2)(c1 + c2)x2 + k2
2(3c2

1 + c2
2)]x

(k2
2 + x2)2

. (3-10)

To study this non linear differential equation, it is necessary to find the equilibrium
points (evolutionary equilibria from now on) by solving ẋ = 0, to find:

x0 = 0, x1 = k2

√
3c2

1 + c2
2

c2
2 − c2

1
= xI and x2 = −k2

√
3c2

1 + c2
2

c2
2 − c2

1
= −xI ,

which are real values when c2
2 − c2

1 > 0. We obtain the region R

R = {(c1, c2) ∈ R2 : c2
2 − c2

1 > 0}.

Now, to study the stability of equilibria xi, for i = 0, 1, 2, define

f (x) =
µσ2k1r

2(c2
1 + c2

2)

[(c1 − c2)(c1 + c2)x2 + k2
2(3c2

1 + c2
2)]x

(k2
2 + x2)2

,



42
3 Conditions on the energy market diversification from adaptive

dynamics

as the right hand of (3-10); then, linearizing,

d f
dx

(x) = − µσ2k1r
2(c2

1 + c2
2)

x4(c2
1 − c2

2) + 6x2(c2
1 + c2

2)k
2
2 − (3c2

1 + c2
2)k

4
2

(k2
2 + x2)3

,

and we get:

d f
dx

(x0) =
σ2µk1r(3c2

1 + c2
2)

2k2
2(c

2
1 + c2

2)
> 0 for all c1, c2,

and,

d f
dx

(x1) =
d f
dx

(x2) = −
µσ2k1r(c2

1 − c2
2)

2(3c2
1 + c2

2)

4k2
2(c

2
1 + c2

2)
< 0 for all c1, c2.

Note that x0 is always unstable and xi, for i = 1, 2 is always locally asymptotically
stable. Thus, in the market, repeated innovations and replacements of generation techno-
logies with new ones, drives the attribute x toward any of the equilibrium values x1 or
x2. In Figure 3-4 some numeric solutions of the canonical equation 3-10 are shown, with
the parameters described in the corresponding caption.

An important result at this point is that condition c2
2 − c2

1 > 0 not only determines
scenarios for evolutionary equilibria to exist but also to be locally asymptotically stable.
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Figure 3-4.: Numeric simulation of evolutionary dynamics of the characteristic trait x described
by the ADCE (3-10), considering r = 0.3, c1 = 1, c2 = 2, k1 = 100, k2 = 10, µ = 1,
and σ = 1.

Now, it is necessary to study evolutionary dynamics in a neighborhood of the evolu-
tive equilibria xi, for i = 1, 2. Since in the vicinity of the singular strategy, ∂λ

∂x2
(x1, x1) = 0,
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then the market and evolutionary dynamics are dominated by the second derivatives of
the fitness function.

3.3.4. Coexistence and divergence

Geritz et al. [45, 46] showed that if the coexistence condition holds, innovative and
standard energies mutually invade each other. This situation implies the instability of
both “single trait” equilibria P1 and P2, i.e., coexistence describes the situation when the
values of the characteristic traits of the IE and the SE are in the vicinity of the equili-
brium x, defining energies that are similar to each other, and sharing the market, that
is, “coexist”. On the other hand, if the coexistence condition does not hold, both ener-
gies mutually exclude and any of the “single trait” equilibria gains stability. In particular,
Dercole and Rinaldi in [31], proves that IE-SE coexistence is possible if:

∂2λ

∂x1∂x2
(xi, xi) < 0, i = 1, 2. (3-11)

Explicitly we have,

∂2λ

∂x1∂x2
(xi, xi) = −

4r(c2
2 − c2

1)c
2
2c2

1
k2

2(c
2
1 + c2

2)
2(3c2

1 + c2
2)

< 0, i = 1, 2.

Note that coexistence condition holds when c2
2 − c2

1 > 0. This situation corresponds
to (c1, c2) ∈ R, which was defined above for the existence of xi, for i = 1, 2 in R. This
result can be stated as follows: evolutionary stability, implies coexistence of IE and SE
characteristic traits.

An equally important question as coexistence is whether it can be guaranteed that
the two attributes that coexist after the invasion of IE are indeed similar and not identical.
That is, if it is not possible to differentiate x1 from x2, then the condition of coexistence
would only mean that, in practice, there is only one type of energy that has been “vir-
tually” separated into two classes. In this way, the divergence is understood as the dissi-
milarity between the values of the SE and IE characteristic attributes. This situation allows
differentiating one from the other, implying the “Origin of Diversity” in the market. It is
shown in [31] that x1 and x2 attributes diverge from each other, when:

∂2λ

∂x2
2
(xi, xi) > 0, i = 1, 2. (3-12)

Explicitly,

∂2λ

∂x2
2
(xi, xi) =

(c2
2 − c2

1)(3c2
1 − c2

2)r
k2

2(3c2
1 + c2

2)(c
2
1 + c2

2)
> 0, i = 1, 2,
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Figure 3-5.: Region D of attribute divergence in the (c1, c2)−plane

then, divergence is possible when (c1, c2) ∈ D, being D the portion of the (c1, c2)−plane,
described by:

D = {(c1, c2) ∈ R2 : (c2
2 − c2

1)(3c2
1 − c2

2) > 0},

as illustrated in Figure (3-5) in gray areas. Then we can classify evolutionary equilibria in
three categories:

Branching points (BP). They are locally asymptotically stable evolutionary equili-
bria in which the attribute can branch, which occurs when both conditions (3-11)
and (3-12) are satisfied. This implies that the BP occur when (c1, c2) ∈ D, as illus-
trated in Figure 3-5 and in the gray area in Figure 3-6 (labeled BP), where xi ∈ R is
locally asymptotically stable and, in addition, conditions (3-11) and (3-12) are satis-
fied.

Terminal Points (TP). They are locally asymptotically stable evolutionary equili-
bria, but they are not branching points. At these points the evolution and diversi-
fication is not possible. We have this situation when any of the conditions (3-11) or
(3-12) fails. In this case it corresponds to (c1, c2) ∈ T, where

T = {(c1, c2) ∈ R2 : c2
2 − c2

1 > 0, 3c2
1 − c2

2 < 0}.

This region is shown in Figure 3-6 (in blue and labelled with TP).
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Figure 3-6.: Classification of stable evolutionary equilibria as BP, TP or BBP in the (c1, c2)−plane

Bifurcation Branching Points (BBP). This situation corresponds to the border points
between branch and terminal points. In this case we obtain the set of straight lines:

BBP = {(c1, c2) ∈ R2 : c2
2 − c2

1 = 0,∨, 3c2
1 − c2

2 = 0}.

This bifurcation is unfolded in detail in [16, 22].

An example of competitive market dynamics under asymmetric interaction c2 > c1

is shown in Figure 3-7-left. It illustrates the market dynamics under the influence of
trait dependent maximum capacity K and interaction function c. The left panel shows
the market dynamics considering r = 0.3, k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, x1 =

x1 = 31.7662 and x2 = 1.1x1. Since x1 > 0 and x2 > 0, then the interaction corres-
ponds to competition in the market, according to the model (3-1). The initial conditions
n1(0) = K(x1) = 90.9836 and n2(0) = 10 were used. This scenario considers x2 > x1

and gives a coexistence condition ∂2λ
∂x1∂x2

(x1, x1) = −2.8763× 10−4 < 0 and a divergence

condition ∂2λ
∂x2

2
(x2, x2) = 1.9008× 10−4 > 0. Hence, it corresponds to the case when both

conditions (3-11) and (3-12) hold and then x1 is a Branching Point (BP). This market dyna-
mics describes a case when IE invades the market but does not substitute SE. Thus they
share the market.

By the other hand, Figure 3-7-right illustrates an escenario when the evolutionary
equilibrium x1 is a terminal point. The same parameters are considered but c2 = 2. The-
refore x1 = x1 = 15.2753 and x2 = 1.1x1 and the initial conditions n1(0) = K(x1) = 70
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Figure 3-7.: Numeric simulation of market dynamics under trait dependent maximum capacity
K and interaction function c. Left: shows the market dynamics considering r = 0.3,
k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, x = x1 = x1 = 31.7662 and x2 = 1.1x1. Since
x1 > 0 and x2 > 0, it correspond to competition in the market. Before the innova-
tion occurs (solid line), the simulation corresponds to the resident model (3-2) with
the initial condition n(0) = 50. Under the absence of competition, the equilibrium
n = K(x) = 90.9836 is reached. After the innovation, the simulation corresponds
to system (3-1) with initial conditions n1(0) = K(x1) = 90.9836 (dashed line) and
n2(0) = 10 (dash-dot line). Note that (c1, c2) ∈ R, thus the evolutionary equilibrium
is a branching point (BP) and market diversification arises. This market dynamics
describes a case when IE invades the market but does not substitute SE. Then they
share the market. Right: corresponds to the same parameter configuration, but with
c2 = 2. In this case x1 = x1 = 15.2753 and x2 = 1.1x1. Then the initial conditions are
n1(0) = K(x1) = 70 and n2(0) = 10. Note that (c1, c2) ∈ T. Thus the evolutionary
equilibrium is a terminal point (TP), and therefore diversification is not possible.

(recall x1 depends on c2) and n2(0) = 10 were used. Since x1 > 0 and x2 > 0, then the
interaction corresponds also to competition. The coexistence condition is ∂2λ

∂x1∂x2
(x2, x2) =

−8.2286× 10−4 < 0 and the divergence condition ∂2λ
∂x2

2
(x2, x2) = −2.5714× 10−4 < 0. The

last one does not hold as stated by (3-12). In fact, as (c1, c2) ∈ T, the evolutionary equili-
brium x1 corresponds to a terminal point (TP) and evolution has a halt. Thus no market
diversification is possible.

After the branching has occurred (i.e., both, coexistence and divergence conditions
hold), the IE and SE share the market at the strictly positive equilibrium on the market
space P3 = (n1(x1, x2), n2(x1, x2)). Thus the IE becomes standard (i.e., there are two simi-
lar SE generation technologies with CGC n1 and n2 and characterized by the trait values
x1 and x2 respectively). Now, it is possible to consider a new innovation to occur in any of
the traits x1 or x2 leading to the appearance of a new (similar but slightly different) trait
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x′1 or x′2. This situation will be shown in the next two 3× 3 systems:


ṅ1 = n1r(x1)

(
1− n1+c(x1,x2)n2+c(x1,x′1)n

′
1

K(x1)

)
= n1g(n1, n2, n′1x1, x2, x1)

ṅ2 = n2r(x2)
(

1− c(x2,x1)n1+n2+c(x2,x′1)n
′
1

K(x2)

)
= n2g(n1, n2, n′1x1, x2, x2)

ṅ′1 = n′1r(x′1)
(

1− c(x′1,x1)n1+c(x′1,x2)n2+n′1
K(x′1)

)
= n′2g(n1, n2, n′1x1, x2, x′1),

(3-13)

and 
ṅ1 = n1r(x1)

(
1− n1+c(x1,x2)n2+c(x1,x′2)n

′
2

K(x1)

)
= n1g(n1, n2, n′1x1, x2, x1)

ṅ2 = n2r(x2)
(

1− c(x2,x1)n1+n2+c(x2,x′2)n
′
2

K(x2)

)
= n2g(n1, n2, n′1x1, x2, x2)

ṅ′2 = n′2r(x′2)
(

1− c(x′2,x1)n1+c(x′2,x2)n2+n′2
K(x′2)

)
= n′1g(n1, n2, n′1x1, x2, x′2).

(3-14)

After branching, it is irrelevant which one of the SE is called x1 or x2, and systems
above are equivalent. The AD canonical equation governing the interaction of both SE’s
characteristic traits can be derived by repeating the analysis shown above. The invasion
fitness of the IE’s n′1 and n′2 are given by

λ(x1, x2, x′1) = g(0, n1(x1, x2), n2(x1, x2), x′1, x1, x2),

and,
λ(x1, x2, x′2) = g(0, n1(x1, x2), n2(x1, x2), x′2, x1, x2).

The canonical equation reads, respectively,

ẋ1 =
1
2

µ1σ2
1 n1(x1, x2)

∂λ1

∂x′1
(x1, x2, x′1)

∣∣∣∣
x′1=x1

, (3-15)

and,

ẋ2 =
1
2

µ2σ2
2 n2(x1, x2)

∂λ2

∂x′2
(x1, x2, x′2)

∣∣∣∣
x′2=x2

, (3-16)

where n1(x1, x2) and n2(x1, x2) are the coordinates corresponding to the coexistence equi-
libria P3; i.e.,

n1(x1, x2) =
c(x1, x2)K(x2)− K(x1)

c(x2, x1)c(x1, x2)− 1
, and, n2(x1, x2) =

c(x2, x1)K(x1)− K(x2)

c(x2, x1)c(x1, x2)− 1
.

The explicit expressions of Equations (3-15) and (3-16) are omitted since they are
very long. Nevertheless, they can be generated and handled by means of symbolic compu-
tation as in [27].
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Figure 3-8.: Characteristic traits considering x2 < x1. It shows the trait dynamics with r = 0.3,
k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, corresponding to the branching point x1 =

31.7662 shown in Figure 3-7-left. The first part of the curve (before the innovation
occurs) corresponds to the simulation of equation (3-10) with initial condition x(0) =
15.8831. After the innovation, the curves correspond to the simulation of Eqs. (3-15)
and (3-16) with initial conditions x1(0) = x1 and x2(0) = 0.9x1.

Figure 3-8 shows the evolutionary dynamics of the characteristic traits under asym-
metric interaction (c2 > c1) and considering x2 < x1. The first part of the curve (before
the innovation occurs) corresponds to the simulation of Equation (3-10) with initial con-
dition x(0) = 15.8831. After the innovation, the curves correspond to the simulation of
Equations (3-15) and (3-16) considering the parameter configuration described in the co-
rresponding caption. Initially, x grows towards x1 until the branching occurs. Then, the
dynamics is the result of the interaction between the innovative energy IE and the stan-
dard energy SE. The attribute x1 permanently grows, while x2 initially decreases. This
makes perfectly sense since each of them is being governed by a different canonical equa-
tion, and therefore coexist under different selection pressures.

3.4. Degenerated scenarios in the energy market

The analysis of the proposed model allows us to observe that degenerate evolutio-
nary branching arises when the derivatives in (3-11) or (3-12) vanishes. This scenarios
correspond to the region

BBP = {(c1, c2) ∈ R2 : c2
2 − c2

1 = 0,∨, 3c2
1 − c2

2 = 0},
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corresponding to the Boundary Branching Points. This points correspond to the usual
bifurcation points of the canonical equation. Evidently when c2

2 − c2
1 = 0, the equilibrium

solutions x1 and x2 of the canonical equation (3-10) are not defined, and also, as has been
already proven, x0 is always unstable, therefore in this case, the market does not have
evolutionarily stable strategies and diversification is not possible. This is an undesirable
scenario for the energy market. In deed, under the assumptions of this model, it implies
that the investment (indebtedness, if it is considered a negative x) in power generation
will grow without bound. This result is artificial, since in part it responds to the fact that
the model does not consider restrictions imposed by demand or the budget that can be
invested.

On the other hand, if 3c2
1 − c2

2 = 0; that is, if c2 =
√

3c1, we obtain that the equi-
librium points of the canonical equation are x1 = 17.3205 and x2 = −17.3205 (certainly
the selection gradient ∂λ

∂x2
(xi, xi) vanishes for i = 1 or 2). Both equilibria are LAS, the-

refore correspond to evolutionary strategies, in which an evolutionary branch could oc-
cur. The conditions of coexistence and divergence in this case result in: ∂2λ

∂x1∂x2
(x1, x1) =

−7.5000× 10−04 < 0 and ∂2λ
∂x2

2
(x1, x1) = 0 respectively. What it indicates, that although

it is possible to obtain two sources of generation that coexist in the market, really, in the
long term, it is not possible to differentiate one from the other. Equivalent results were
obtained for x2.

In the Figure 3-9, this situation is illustrated, in which it can be observed, addi-
tionally, that the innovative energy, although it manages to coexist with the established
energy, does not really manage to efficiently penetrate into the market to establish itself
in it.

3.5. Results and Conclusions

Local stability analysis of model (3-1) brings information on the market dynamics
and helps to answer a further question of under what conditions can IE spread into the
market and interact or even substitute SE. Indeed, in a market dominated exclusively by
SE, the instability of P2 is related to the possibility for an IE to invade the market, while
the existence and stability of P3 are related to the coexistence of both kinds of energy
sharing the market, leading to diversification. Additionally, stability analysis implies that
energy market will not crash under any circumstances, guaranteeing a permanent energy
supply from any (or both) of the generation technologies. This situation means that there
is at least one stable equilibrium corresponding to the dominance of SE, or IE or their
coexistence, to satisfy energy demand. Even more, it shows that both cooperative and
competitive strategies are adequate to guarantee market stability.

The interaction function c describes both, competition and cooperation, depending
on the values of the characteristic traits: competition on the first and third quadrants of
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Figure 3-9.: Numeric simulation of market dynamics under the influence of trait dependent ma-
ximum capacity K and interaction function c. Shows the market dynamics conside-
ring r = 0.3, k1 = 100, k2 = 10, c1 = 1, c2 = 1.2, x = x1 = x1 = 17.3205 and
x2 = 1.1x1. Since x1 > 0 and x2 > 0, it correspond to competition in the market.
Before the innovation occurs (solid line), the simulation corresponds to the resident
model (3-2) with the initial condition n(0) = 50. Under the absence of competition,
the equilibrium n = K(x) = 75 is reached. After the innovation, the simulation co-
rresponds to system (3-1) with initial conditions n1(0) = K(x1) = 75 (dashed line)
and n2(0) = 10 (dash-dot line). Note that (c1, c2) belongs to the border between bran-
ching and terminal points regions. The conditions of coexistence and divergence in
this case result in: ∂2λ

∂x1∂x2
(xi, xi) = ×10−04 < 0 and ∂2λ

∂x2
2
(xi, xi) = 0, thus the evolu-

tionary equilibrium is a boundary branching point (BBP) and market diversification
is an artifact, since it is possible to obtain two sources of generation that coexist in
the market, but really, in the long term, it is not possible to differentiate one from the
other and therefore diversification is not possible.

the (x1, x2)−plane and cooperation at the second and fourth quadrants of the (x1, x2)-
plane. However, although functional parameters r, K and c are defined for all x1 and x2

in R, and also the interaction dynamics defined by (3-1) is well defined for both market
configurations, the invasion conditions determine specific regions of the (x1, x2)−plane
under which the invasion of the innovative attribute is possible, and configurations that
lead to its disappearance. Furthermore, it was proven that under convenient configura-
tions of subsidies awarded (or taxes imposed) to both energy generation technologies, it
is possible to determine scenarios in order to evolutionary equilibria to exist, to be locally
asymptotically stable and also, it was shown that evolutionary stability implies coexis-
tence.
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Under the assumptions of our analysis, evolutionary equilibria of the ADCE can be
terminal points, where no marginal innovation can invade into the market. However, evo-
lutionary equilibria can also be branching points, where innovative energy can penetrate,
coexist and diversify the market, concerning the previously established. In this context,
although both parameters c1 and c2 describe the dynamics in the market time scale, they
finally make a difference in the evolutionary time scale. In fact, the expressions c2

2 − c2
1

and 3c2
1 − c2

2 are a measure of the strength of diversification through innovation. Taking
into account the geometric characteristics of the interaction function c, we can say that
diversification occurs in markets that are at least slightly asymmetric and in which IE is
stimulated over SE, either by the allocation of subsidies or by the imposition of lower
taxes.

In order to understand the evolution of the system after the second branch, it is
necessary to repeat the analysis obtaining a 3−dimensional canonical equation and then
try to verify if the attributes converge to evolutionary solutions where the conditions of
coexistence and divergence are satisfied. Due to the complexity of the expressions, it is
necessary to perform the verification by computational methods. Finally, repeated pro-
cess of innovation can give origin to a rich variety of different kinds of energy generation
technologies. However, it is important to note that, this processes of emergence and disap-
pearance of energy generation technologies is influenced by a wide range of external and
internal factors, which may exert additional selection processes on innovations. Specific
situations should be studied in greater depth and detail in order to achieve an informed
decision making.

It has been proved for the model formulated in this chapter, that there are two con-
ditions under which the degenerate evolutionary branching scenarios occur. The first one
corresponds to the case in which the value of taxes (or subsidies) assigned to each type of
energy are equal, a scenario that is undesirable for the energy market. In deed, under the
assumptions of this model, it implies that the investment (indebtedness, if it is conside-
red x as a negative number) in power generation will grow without bound. The second
scenario corresponds to the case in which the condition of divergence is vanished, a situa-
tion in which the innovative energy, although it manages to coexist with the established
energy, does not really manage to enter the market to establish itself in it. Additionally, a
vanishing divergence condition indicates, that although it is possible to obtain two sour-
ces of generation that coexist in the market, really, in the long term, it may not be possible
to differentiate one from the other.

The conditions established in this study to classify evolutionary equilibria as bran-
ching points, terminal points or degenerate branching points, can be used as control stra-
tegies that allow to reach precise objectives in relation to the long-term behavior of the
energy market. It is inferred from the analysis of the model, under the assumptions con-
sidered here, that for the energy market to function in a “healthy” manner, it is necessary
to exercise strict control over the taxes or subsidies that it is decided to apply to the sour-



52
3 Conditions on the energy market diversification from adaptive

dynamics

ces of energy generation depending on the objectives that the regulatory agent wants to
achieve. If the objective is to promote market diversification, it must establish interac-
tion rules that locate the system in the branching points region, but if, on the contrary,
the regulatory agent wants to avoid that new generation technologies have the possibi-
lity of entering the market, it is in the region of terminal points, or even the degenerate
evolutionary branching region, where the system must be located.



4. Coffee Berry Borer (Hypothenemus

hampei) and its role in the

evolutionary diversification of the

coffee market

4.1. Introduction

There are many elements which combine to make colombian coffee a unique pro-
duct. Firstly, coffee farmers manually harvest only ripe coffee cherries, which requires
great effort due to the topography of the colombian Andes. Secondly, farmers carry out
post-harvest processes, which entail the elimination of defective grains, pulping, wa-
shing, and drying. Later, the coffee is threshed to obtain parchment coffee, the raw roas-
ting material. The economic importance of coffee as an export good is well justified by
the impact it has on thousands of colombian families and millions of consumers around
the world [38].

According to the National Federation of Coffee Growers1, (FNC for the acronym in
Spanish), about 560000 families grow coffee in Colombia on farms of less than 5 hectares
and they are responsible for 69 % of production. Of the 940000 hectares of coffee grown in
Colombia, around 780000 correspond to technified crops, which means they are planted
with improved coffee varieties, such as rust resistant trees (about 80 % compared to only
35 % that were in 2010). The annual production of Colombian coffee from 1956 to 2018,
reported in Fig. 4-1A, shows a positive trend, with turnarounds typically related to cli-
matic phenomena (such as El Niño). It is however evident from Fig. 4-1B that the revenue
from exportations is not directly related to production. Global economic factors, such as
the interaction with other international coffee markets, and even changes in the currency
exchange rates, definitely influence the revenue, but there is a growing consensus on the
role played by the coffee quality attributes, with respect to which the production is no-
wadays increasingly diversified. Indeed, a wide variety of specialty coffees are currently
produced, and consumers around the world are learning the value of high quality coffee,
for which they are willing to pay higher prices. The FNC defines the special coffees as

1Retrieved from https://www.federaciondecafeteros.org

https://www.federaciondecafeteros.org
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Figure 4-1.: (A) Anual registered Colombian coffee production in thousands of bags of 60 kg of
green coffee. (B) Value of exports to all destinations - Anual total. Unit: Millions of
dollars [38].

those obtained through (i) the development of new equipment and new forms of prepa-
ration, which guarantee better beverage quality, (ii) the association of coffee production
with concepts such as sustainability, (iii) caring for the environment, (iv) social responsi-
bility, and (v) economic equity. Special coffees are becoming a source of income for small
producers who mainly market their product locally or through alternative trade shops, or
who manage to export their coffee with certificated origin and production. According to
the report “Global Specialty Coffee Market Size by Grade (80-84.99, 85-89.99, 90-100) by
Application (Home, Commercial) by Region and Forecast 2019 to 2025”2, the world mar-
ket for coffee reached revenues up to USD 35.9 billion in 2018, with a prospect of USD
83.6 billion by 2025. Unfortunately, in Colombia, the systematic collection, analysis, and
dissemination of accurate information on the production, processing, and sales of special
coffees is not yet consolidated, mainly because special coffees are often produced in small
quantities and marketed directly by the producer. Currently, the FNC statistical records
of coffee exports are only available by type: green, decaffeinated green, roasted in beans,

2Retrieved from https://www.adroitmarketresearch.com

https://www.adroitmarketresearch.com
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roasted and ground, and extract and soluble [38].
Beyond the main denominations (i)-(v) of special coffees, one of the factors that most

impacts the quality of coffee is the cultivation protocols, that must be optimized to mi-
nimize the attack of pests and diseases, eliminate outer fruit layers, and control humi-
dity [67]. The most widespread coffee pest worldwide is a beetle, the coffee berry borer
(CBB) Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) [72]. CBB adult fe-
males bore into coffee beans through the navel and into the endosperm, where it makes
galleries to deposit its eggs. CBB causes different types of damage to the product, which
are caused by (i) boring and feeding habits of adult and immature insects, which cause a
reduction in yield and final product quality, and (ii) physical damage, which causes bored
beans to become vulnerable to infection and further pest attacks [15]. Montoya’s investi-
gation [67] strove to define what CBB infestation percentages and what levels of damage
permit to obtain of a coffee drink of acceptable quality. Specifically, the investigation sup-
ports the hypothesis that, beyond the damage, the CBB directly impacts the coffee market,
by introducing a variety of different coffee types/qualities, classified depending on the
proportion of bored grains that pass to production.

As a result of this situation, significant efforts have been made to identify the best
CBB control strategies, as biological control, carried out via different types of interaction,
mainly parasitism and predation [42, 51, 66, 68, 77]. Chemical control methods, use a se-
ries of insecticides to kill insects in adult states [72]. In addition, cultural control refers
to agricultural practices, the safest of all possible, which consist, among others, in collec-
ting adult, overripe, and dry grains (black grains no longer useful), in order to prevent
adult CBB insects from finding refuge, and therefore preventing their reproduction [3,72].
Institutions supporting coffee production in Colombia, such as the FNC, recommend a
combination of the three strategies, known as the Integrated CBB Control [14, 72].

This calls for a more comprehensive view of the CBB phenomenon, that includes the
market dynamics and its feedback on coffee production and on the whole agro-ecological
context. It is indeed the final coffee consumer who exerts the selection to determine which
new products invade the market and which get established or eliminated. In turn, strate-
gic decisions on the production and commercialization sides are source of innovation for
coffee types and qualities, innovations that are then filtered by the market competition.
In this sense, it is important to study this feedback loop between market and production
of coffee, when CBB damage is considered a cause of quality differentiation. Such a study
should be able to determine the conditions under which an innovative special coffee, cha-
racterized by some quality attribute that differentiates it from standard coffee, can invade
the market and either replace or coexist with standard coffee. In particular, conditions for
coexistence open up the possibility for further diversification, even of two initially similar
products. Under this comprehensive view, the role CBB control strategies will be particu-
larly highlighted, not only limited at the pest containment, but extended to control the
emergence of market niches for different coffee products.
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These kinds of questions are addressed by evolutionary modeling approaches, and
particularly by the Adaptive Dynamics (AD) framework [31, 34, 45, 46, 64]. AD is a theo-
retical modeling framework which originated in evolutionary biology and describes the
long-term evolution of quantitative traits (i.e., continuous attributes determined by the
cumulative contributions of many genes). The key feature of AD is to explicitly consider
the feedback loop that binds demographic and evolutionary change. In biology, demo-
graphy selects the traits who win the competition and evolution proceeds through se-
quences of genetic mutations that are selected by demography. In economics, the role of
mutations and selection are played by innovations on the production side and market
competition on the consumer side. By focusing on incremental innovations, put forward
at a frequency that is low compared to the market dynamics, AD describes the evolution
of the products’ traits (the coffee quality in our case) in terms of a differential equation,
called the AD canonical equation, thus characterizing evolutionary equilibria as well as
transients and non-stationary regimes [17, 25, 27, 32, 35]. Most importantly, AD endoge-
nously integrates the changing system’s diversity, as the number of coexisting product
types increases when innovative and established products coexist and further differen-
tiate, evolutionary branching, and is pruned when evolution eliminates outcompeted
products, evolutionary extinction [22, 36, 45, 46] (see [11, 21, 26, 44] for further theoretical
developments). This is the most important added value of AD to the economic literature
on diversification. As extensively discussed in [23], product diversity is both a means and
a result of economic development and growth in variety is crucial and not independent
from growth in production [47,80,81,83]. In the AD framework, product diversity indeed
emerges as a result of the feedback between innovation and competition processes.

Since its introduction, a wide range of applications have been published. Biologi-
cally oriented applications have addressed competition [24, 36, 53], and predator–prey
interactions [1, 2, 17, 27, 32, 35, 59], food chains [32], mutualistic [19, 34, 36, 40] and canni-
balistic interactions [18, 30], evolution of dispersal [13, 28, 73], and even evolution at the
genetic level [12, 55]. In the socio-economic context, technological innovations [23, 29, 85]
and the evolution of fashion traits [58] have been investigated with the tools of AD. Ho-
wever, to the best of our knowledge, no application have addressed an agro-industrial
phenomena, such as coffee production.

Here, a stylized AD model is formulated and analyzed to describe the evolution
of coffee quality. An agro-ecological model describes the growth and harvest of the cof-
fee plantation coupled with the demography of a CBB population, the latter explicitly
structured into immature and adult individuals to reflect the damage caused by their re-
production and feeding habits. A market model describes the competition of different
coffee types, defined by the proportion of healthy versus bored grains used in their pro-
duction. Consumer preference favoring high or low quality is considered in competition
describe their budget limitations, therefore, the model indirectly considers the rol of cof-
fee prices. The model is, e.g., useful to derive the conditions under which a special coffee
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invades a market dominated by standard one; and conditions under which the special
coffee eventually eliminates the standard one from the market, product substitution, or
the two types coexist by sharing the market. Linking this conditions to the consumers’
preference for low or hight quality coffees is a way to consider their budget limitations
and the roles of coffee price in market diversification. Finally, the AD canonical equation
describes the evolution of coffee quality, closing the feedback loop between the introduc-
tion of new coffee types and their competition in the market. The analysis of the model
provides insights on the impact of CBB population on the evolving structure of the coffee
market. The major result is that, independently of the consumers’ preference for high or
low quality, a mild control of the CBB population allows the emergence of several coffee
types/qualities through evolutionary branching, whereas a strong (and expensive) pest
control would impoverish the market diversity and could therefore lead to an economic
loss.

4.2. Methods

4.2.1. Standard-special coffee model

We consider a coffee plantation of H hectares and n trees per hectare, each tree with
the average productivity ρ (kilos of mature coffee beans on a healthy, unharvested tree,
on average [5]). We do not consider seasonality, so the product k = nHρ gives us the
biomass of coffee beans reached at equilibrium by the healthy, unexploited plantation
(factors such as soil, climate, care, affecting production, are included in the parameter ρ,
see [5]). This simplification allows us to use the logistic equation to describe the growth
of the healthy coffee biomass C(t) available in the plantation on a daily basis, with net
growth rate r (the difference between daily production rate and loss of overripe and dry
grains at low density) and carrying capacity k.

To include the effect of CBB on coffee production, we model the CBB population
with two classes, according to the state of maturity of individuals. Let I(t) be the density
of immatures (eggs, larvae, and pupae) and M(t) be the density of adult females in the
plantation. Because adult females cause damage, by boring healthy beans to oviposit, we
consider an average daily production of bored coffee given by the term βC(t)M(t). Bored
coffee beans translate into a new class of unhealthy coffee, denoted by Cb(t), for which we
use a loss rate d possibly higher than the one included in the net growth rate r of healthy
coffee.

Assuming that coffee growers harvest coffee (healthy and bored) proportionally to
the available biomass (constant harvesting effort h), we get the following two equations
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for the growth of coffee:

Ċ = rC
(

1− C
k

)
− βCM− hC, (4-1a)

Ċb = βCM− (d + h)Cb. (4-1b)

At the same time, the demography of the CBB population is described by

İ = εβCM− (ω + δ)I, (4-2a)

Ṁ = ωI − µM, (4-2b)

where parameter ω is the maturation rate (1/ω is the average duration of the immature
stage), ε is the CBB reproductive efficiency (the food-to-oviposition conversion rate), and
δ and µ are the mortality rates (from natural causes or as a result of control strategies
by the farmer) in the two classes. Equations (4-1) and (4-2) constitute the agro-ecological
model.

Harvested coffee is used for the production of parchment coffee and subsequent
commercialization. Depending on the mix of healthy and bored coffee beans, we consider
parchment coffee of two different qualities, which share the market with sold quantities
(kg per day, on average) denoted by N1(t) and N2(t), respectively. These will henceforth
be referred to as “standard coffee” for N1, of quality q1, and as “special coffee” for N2, of
quality q2. The quality q is assumed to be a continuous attribute that controls the mix of
healthy and bored coffee beans. Specifically, we use the smooth sigmoid function

Q(q) =
qα

qα
0 + qα

, α > 1, (4-3)

from 0 (at q = 0) to 1 (when q→ ∞), for the fraction of the harvest of healthy coffee to be
used in production, the complementary fraction 1−Q(q) taken from the harvest of bored
coffee. The resulting quality therefore depends of the quality attribute q, but also on the
agro-ecological context. The threshold parameter q0 separates low quality coffee (qi < q0,
so that Q(qi) < 1/2), promoting the use of bored coffee beans, from high quality coffee
(qi > q0, Q(qi) > 1/2), promoting the use of healthy beans, i = 1 or 2.

Consumers’ demand is not explicitly considered in this model. However, consu-
mers’ budget constraints are translated into the preference for high or low quality coffees.
Consumers’ preference is a source of competition between the two types of coffee, that
we include in the following Lotka-Volterra market competition model:

Ṅ1 = N1
(
Q(q1)hC + (1−Q(q1))hCb − f (q1, q1)N1 − f (q1, q2)N2

)
, (4-4a)

Ṅ2 = N2
(
Q(q2)hC + (1−Q(q2))hCb − f (q2, q1)N1 − f (q2, q2)N2

)
, (4-4b)

where Pi = Q(qi)hC + (1− Q(qi))hCb is the production of coffee type i and f (qi, qj) is
the competition function, measuring the loss of market share for coffee type i for each
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Figure 4-2.: (A) Competition function f (q1, q2) with f1 = 1.1 and f2 = 1. The restriction to q1 = 1
is shown by the orange curve. (B) Planar representation of the restriction to q1 = 1
for both f1 = 1.1 (orange) and f1 = 1/1.1 (blue). As highlighted in the zoomed
inset, for f1 = 1.1 (consumers’ preference for higher coffee quality; orange curve),
the share loss for coffee type 1 (with quality q1 = 1) is larger than 1 and maximum
when q2 = f1 = 1.1 ( f (1, 1.1) = 1.0046). At this value of q2, the share loss f (q2, q1)

for coffee type 2 can be read on the orange curve, because f (q2, q1) = f (1, q1/q2)

( f (1, 1/1.1) = 0.9865). Similarly, for f1 = 1/1.1 (consumers’ preference for lower
coffee quality; blue curve), the maximal share loss for coffee type 1 (again equal to
1.0046) is realized for q2 = 1/1.1 = 0.9090, while the corresponding share loss for
coffee type 2 can be read (on the blue curve) as f (1, q1/q2) = f (1, 1.1) (again equal
to 0.9865).

unit sold of coffee type j ( f (qi, qi) = 1). In the absence of special coffee (type 2) and
with a constant production Pi (at an equilibrium of the agro-ecological model (4-1, 4-2)),
standard coffee (type 1) penetrates the market logistically, with initial rate (Ṅ1/N1 at low
N1) assumed to be the production itself. Eventually, the sold amount reaches production
(market clearing, i.e., N1 = P1), that sets a single-coffee market with quality q1.

For the competition function, we use the log-normal formulation proposed in [23]
in a context of technological change:

f (q1, q2) = exp

(
ln2 f1

2 f 2
2

)
exp

(
− 1

2 f 2
2

ln2
(

f1q1

q2

))
. (4-5)

See Fig. 4-2A for a graphical representation. Coffee qualities with low or high ratio
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q1/q2 are assumed to weakly compete ( f tends to zero as the ratio goes to either zero or
infinity), because targeted by customers with widely different budgets. On the contrary,
similar coffees do compete. How competition fades as the ratio q1/q2 leaves 1 is controlled
by parameter f2, that plays the role of the log-normal standard deviation. A key compe-
tition parameter is f1: it indicates the consumers’ preference for higher ( f1 > 1) or lower
( f1 < 1) coffee quality, depending on budget constraints. Indeed, if f1 > 1, the share loss
f (q1, q2) for coffee type 1 is larger/smaller than 1 if q2 is larger/smaller than (and close
to) q1, while the loss f (q2, q1) is reciprocally smaller/larger than 1 (see Figure 4-2B, oran-
ge curve), which gives a competitive advantage to the larger quality. Vice-versa, f1 < 1
gives a competitive advantage to the lower quality (see Figure 4-2B, blue curve), while
competition is symmetric for f1 = 1.

The agro-ecological and market model (4-1, 4-2, 4-4) constitute our henceforth called
“standard-special coffee model.” It is subject to non-negative initial conditions. In Table
4-1, we summarize the state variables and parameters, respectively indicating the initial
conditions and the baseline values used in simulations.

4.2.2. Standard coffee model, invasion fitness, and invasion conditions

Before special coffee enters the market, standard coffee (type 1) is the only option,
and the two eqs. (4-4a,b) of the standard-special coffee model degenerate into the single
equation

Ṅ1 = N1 (Q(q1)hC + (1−Q(q1)) hCb − N1) . (4-6)

Equation (4-6), jointly with the agro-ecological eqs. (4-1, 4-2) constitute our henceforth
called “standard coffee model.” As already discussed in Section 4.2.1, the model directs
the market dynamics to an equilibrium at which all the production is sold (N1 = P1).
Including the variables of the agro-ecological model, and also the special coffee (type 2)
with no sales (N2 = 0), we denote this equilibrium with

E0 :
(
C, Cb, I, M, N1, N2

)
=
(
C̄, C̄b, Ī, M̄, N̄(q1), 0

)
, (4-7)

where

N̄(q1) = Q(q1)hC̄ + (1−Q(q1))hC̄b (4-8)

shortly denotes the “standard coffee equilibrium.” Note that E0 is also an equilibrium for
the standard-special coffee model (4-1, 4-2, 4-4).

Invasion of a small amount of special coffee (type 2), arising from an innovation
when the market is at (or close to) E0 is possible only if the quality q2 of the special coffee
is such that E0 is an unstable equilibrium for the standard-special coffee model. On the
contrary, i.e., if E0 is a locally asymptotically stable (LAS) equilibrium of the standard-
special coffee model, then the initially small sales N2 of special coffee will drop and the
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Table 4-1.: State variables and parameters of the agro-ecological and market models, together
with initializations and baseline values respectively employed in simulations. ∗brs =
individuals of CBB in any state of maturation.

State variable description Init. Cond. Units

C Average healthy coffee biomass 1 kg
Cb Average bored coffee biomass 0 kg
M Average number of CBB adult females 1 brs∗

I Average number of immature CBB insects 0 brs
N1 Average amount of standard coffee sold per day 1 kg
N2 Average amount of special coffee sold per day 0.1 kg

Parameter description Value Units Ref.

q1 Quality of standard coffee varies – –
q2 Quality of special coffee varies – –
r Net coffee growth rate 0.8 d−1 [5]
H Average number of cultivated hectares 1 ha ad hoc
n Average number of coffee trees per hectare 5484 tree·ha−1 [5]
ρ Average productivity per tree 0.3 kg [5]
k Coffee biomass reached at equilibrium 1645.2 kg –
h Harvesting rate 0.2 d−1 –
d Bored coffee loss rate 0.1 d−1 [72]
β Effective CBB boring rate varies d−1 –
ε CBB reproductive efficiency 0.02 kg−1 ad hoc
ω CBB maturation rate 1/7.95 d−1 [39]
µ Adult CBB death rate varies d−1 –
δ Immature CBB death rate 1/13.8 d−1 [39]
q0 Production-mix quality threshold 10 – ad hoc
α Production-mix sensitivity exponent 3 – ad hoc
f1 Quality consumers’ preference (high > 1; low < 1) varies – ad hoc
f2 Quality width of competing coffees 1 – ad hoc

the special coffee will exit the market soon after its introduction. The stability of E0 is
determined by the sing of the so-called “invasion fitness” of the innovation [31, 65]

λ(q1, q2) = Q(q2)hC̄ + (1−Q(q2))hC̄b − f (q2, q1)N̄(q1), (4-9)

that is technically the eigenvalue of the system’s Jacobian at the equilibrium E0 associa-
ted with the eigenvector with nonzero N2-component. More economically, the invasion
fitness is the the per-unit penetration rate, in terms of initial sales (N2 nearly zero), of
the special coffee quality q2, facing the established quality q1 at its equilibrium N̄(q1).
Indeed, λ(q1, q2) can be derived from eq. (4-4b) as Ṅ2/N2, by setting N1 = N̄(q1) and
N2 = 0 in the right-hand side and by replacing C and Cb with their equilibrium values.
Note that λ(q1, q1) = 0. This is economically obvious, because standard coffee is at the
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market equilibrium.

4.2.3. The AD canonical equation and conditions for branching in the

quality attribute

The dynamics described by the standard-special coffee model (4-1, 4-2, 4-4) occur in
the agro-ecological, industrial, and market timescales, simply “market timescale” in the
following, where time t is measured in days. The main assumption of Adaptive Dynamics
(AD) is that this timescale is faster than the one on which innovations in the production
process are put forward in the market. In terms of the quality attribute here considered,
if new types of coffee are put on sale on average every τ days, we assume τ is relatively
large. The timescale t/τ, on which the unit represents the average time between two con-
secutive innovations, is called the “innovation timescale.” This is the timescale on which
AD describes the dynamics of the coffee quality attributes, that is indeed innovation-
driven and henceforth called “innovation dynamics.”

In the scenario in which only one type of coffee is established in the market, with
quality q1, and in the technical limit of rare (large τ) and small innovations, the expected
innovation dynamics of the intrinsically stochastic path of q1 is described by the following
differential equation

q̇1 =
1
2

σ2(q1)N̄(q1)
∂

∂q2
λ(q1, q2)

∣∣∣∣
q2=q1

, (4-10)

where the dot-notation here stands for the time-derivative on the innovation timescale.
Eq. (5-18) is the AD canonical equation for the quality attribute q1 [31, 34]. It describes
the expected dynamics of q1 resulting from a sequence of substitutions of the currently
established coffee by an innovative one.

When an innovative type of coffee q2 is put on sale, the established quality q1 is at
(or close to) its equilibrium N̄(q1) (see eq. (4-8)), because of the large time τ elapsed since
the previous innovation. The sign of the invasion fitness λ(q1, q2) therefore determines
whether the innovation invades or quickly disappears. Moreover, one of the theoretical
pillar of AD, the “invasion implies substitution” theorem [26, 31], says that if q2 is suffi-
ciently close to q1, invasion under a nonzero “selection gradient”

s(q1) =
∂

∂q2
λ(q1, q2)

∣∣∣∣
q2=q1

, (4-11)

implies the substitution of the former quality by the new one. Mathematically speaking,
this means that the point of substitution

E1 :
(
C, Cb, I, M, N1, N2

)
=
(
C̄, C̄b, Ī, M̄, 0, N̄(q2)

)
, (4-12)
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is also an equilibrium of the standard-special coffee model (4-1, 4-2, 4-4) and that the
trajectories originating close to E0 with low initial sales N2 of the new quality coffee q2

converge to E1. After the substitution transient, the coffee quality q1 is kicked out of the
market and replaced by quality q2, that can therefore be renamed q1, i.e., the new esta-
blished quality.

Note that the selection gradient determines the direction of the innovation process.
Geometrically, it is the slope of the fitness landscape at (q1, q1) in the direction of the
special coffee quality q2. Considering the fitness first-order expansion w.r.t. q2 at q2 = q1,
i.e.,

λ(q1, q2) = λ(q1, q1)︸ ︷︷ ︸
0

+ s(q1)(q2 − q1) + · · · , (4-13)

one sees that under a positive selection gradient, the quality q1 is replaced by innovati-
ve products with higher quality; vice-versa, under a negative selection gradient, lower
quality coffees win the competition (in both cases, it results s(q1)(q2 − q1) > 0 for q2

sufficiently close to q1).
Because of the timescale separation obtained for large τ, innovations can be consi-

dered one at a time and each substitution transient takes a small time on the innovation
timescale. Assuming that innovations are randomly introduced into the market (at fre-
quency 1/τ) with mean quality equal to the currently established q1 and small standard
deviation σ(q1)/τ, the expected quality dynamics become smooth on the innovation ti-
mescale and ruled by the AD canonical eq. (5-18). The name canonical follows from the
fact that, in evolutionary biology, the selection gradient appears in other evolutionary
models based on fitness landscapes, such as quantitative genetics [34].

The AD canonical eq. (5-18) can be used as long as the quality attribute q1 is far from
a stationary solution q̄ that nullifies the selection gradient (4-11), a so-called “singular
strategy” in the AD jargon. Indeed, close to a singular strategy, invasion does not neces-
sarily imply substitution. Let us restrict the attention to a stable singular strategy q̄, i.e., an
attracting equilibrium of eq. (5-18), toward which the innovation process directs the qua-
lity attribute q1. In particular, expanding the invasion fitness λ(q1, q2) up to second-order
w.r.t. both (q1, q2) at (q̄, q̄), one can see that λ(q1, q2) and λ(q2, q1) can both be positive
close to (q̄, q̄), so that both quality attributes can invade a market established by the other.
Without going into the details of the expansion (originally developed in [45, 46, 64] and
also included in [31]), this occurs under the condition

∂2

∂q1∂q2
λ(q1, q2)

∣∣∣∣
q1=q2=q̄

< 0 (4-14)

in a region of the plane (q1, q2) that, locally to (q̄, q̄), is a cone with vertex in (q̄, q̄) and
symmetric opening w.r.t. the anti-diagonal (q̄ − q, q̄ + q). This is the region of “coexis-
tence” of coffee types 1 and 2, because for (q1, q2) in this region, the trajectories of the
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standard-special coffee model (4-1, 4-2, 4-4) originating close to equilibria E0 and E1 con-
verge to an internal equilibrium of coexistence, characterized by positive sales N̄1(q1, q2)

and N̄2(q1, q2) of both coffee types [26],

N̄1(q1, q2) =
h(Q(q2)C̄ + (1−Q(q2))C̄b)

f (q2, q1)
, (4-15a)

N̄2(q1, q2) =
h(Q(q1)C̄ + (1−Q(q1))C̄b)

f (q1, q2)
, (4-15b)

The coexistence of two different, though very similar, types of coffee is the first step
to go from a single-coffee market to a diversified one. However, to really generate two
different products, the innovation process must be such that, after the coexistence is es-
tablished, successive innovations move q1 and q2 in opposite directions. First of all, the
invasion fitness of an innovative type q′ facing two established coffee types with qualities
q1 and q2 is a function of the three arguments (q1, q2, q′), that we denote by Λ(q1, q2, q′).
Its expression is not important here and will be derived in the next section. Let us here
consider Λ(q1, q2, q′) as a function of the innovative quality q′, for given q1 and q2 (let us
also assume q2 > q1, though this choice is irrelevant). Taking into account that Λ(q1, q2, q′)
vanishes at both q′ = q1 and q′ = q2 (because of the market equilibrium), the quadratic
expansion of Λ w.r.t. q′ is shaped, locally to q̄, as in Fig. 4-3. Working out the details (see
again [45,46,64] or [31]), it turns out that the discriminant between the two cases is linked
to the invasion fitness in the single-coffee market (see eq. (4-9)). Specifically, if

∂2

∂q2
2

λ(q̄, q2)

∣∣∣∣∣
q2=q̄

> 0, (4-16)

innovations in the quality q1 invade and replace the established coffee type 1 if q′ <
q1, while the same occurs for the coffee type 2 if q′ > q2 (in both cases the invasion
fitness Λ(q1, q2, q′) is positive, see Fig. 4-3A). As a result, the quality attributes q1 and q2

get further diversified and the market selection is said to be “disruptive” at the singular
strategy. On the contrary, if

∂2

∂q2
2

λ(q̄, q2)

∣∣∣∣∣
q2=q̄

< 0, (4-17)

only innovations that make q1 and q2 even more siw.r.t.milar win the competition. As a
result, even if the model formally allows for the coexistence of two similar coffee types,
in practice, the market remains single-product (see Fig. 4-3B). Singular strategies charac-
terized by condition (4-17) are said to be locally “evolutionarily stable” (ESS), that means
protected from the invasion of similar strategies. Note that evolutionarily stability is a
different concept from the dynamical stability of the equilibria of the canonical eq. (5-18).
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q1 q2

(A)

q′

∂2

∂q2
2

λ(q̄, q2)|q2 = q̄>0

q1 q2

(B)

q′

∂2

∂q2
2

λ(q̄, q2)|q2 = q̄<0

Figure 4-3.: (A) In a diversified market with strategies q1 and q2, an innovation q′ in the coffee
quality q1 invade and substitute q1 if q′ < q1; similarly, an innovation q′ in the coffee
quality q2 invade and substitute q2 if q′ > q2. (B) innovative strategies q1 and q2

evolves one toward each other, in this scenario further diversification is not posible.

To underline the difference, the latter concept is often called “convergence stability” in
the AD jargon.

Convergence stable singular strategies characterized by conditions (4-14) and (4-16)
are called “branching points” (BP) of the innovation process [45, 46, 64]. If q̄ is a BP, the
dynamics of the quality attribute q1 is first attracted by q̄, in a phase in which the mar-
ket is single-product (there is only one type of established coffee that is at the market
equilibrium for each value of q1), but with q1 evolving on the innovation timescale. Once
close to q̄, a second coffee type with quality q2 gets established in the market (because of
the coexistence condition (4-14)) and a second phase with two coexisting and evolving
products begins. The disruptive condition (4-16) implies that the two quality attributes
q1 and q2 initially diverge one from the other at the beginning of this second phase. To
study the further innovation dynamics of q1 and q2, we need to derive a two-dimensional
AD canonical equation, in which substitution sequences are considered for both the esta-
blished coffee types. This is done in the following section.

Convergence stable singular strategies at which one or both of the conditions (4-14)
and (4-16) hold with reversed inequality sign are called “terminal points” (TP) of the
innovation process [31]. Indeed the innovation dynamics driven by rare and small inno-
vations halt there. Cases with vanishing second fitness derivatives in (4-14) and (4-16) are
bordering cases between BP and TP and are technically bifurcation points [16, 22].
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4.2.4. Innovation dynamics after branching

After a branching at q̄, the market sets at the equilibrium

Ec :
(
C, Cb, I, M, N1, N2

)
=
(
C̄, C̄b, Ī, M̄, N̄1(q1, q2), N̄2(q1, q2)

)
(4-18)

of the standard-special coffee model (4-1, 4-2, 4-4). The explicit expressions for the equi-
librium sales N̄1(q1, q2) and N̄2(q1, q2) can be computed but are here omitted for brevity.
Nevertheless, they have been handled by means of symbolic computation.

Similarly to the case of the single-coffee market, the invasion fitness Λ(q1, q2, q′) of
an innovative coffee type with quality attribute q′, facing the two established coffee types
1 and 2, is the per-unit penetration rate of the innovative coffee, in terms of initial sales N′

(N′ nearly zero), when coffee types 1 and 2 are at the market equilibrium Ec. To derive the
per-unit penetration rate (Ṅ′/N′), we need to extend the standard-special coffee model to
a three-type model, including the standard, special, and innovative types. We here write
only the differential equation for the innovative type:

Ṅ′

N′
= Q(q′)hC + (1−Q(q′))hCb − f (q′, q1)N1 − f (q′, q2)N2 − N′, (4-19)

from which it immediately follows the expression of the invasion fitness:

Λ(q1, q2, q′) = Q(q′)hC̄ + (1−Q(q′))hC̄b

− f (q′, q1)N̄1(q1, q2)− f (q′, q2)N̄2(q1, q2). (4-20)

Again assuming that innovations are rare events on the daily market time-scale that
introduce small variations in coffee quality (i.e., quality q′ is close to either q1 or q2), the
expected innovation dynamics followed by the two established qualities q1 or q2 are ruled
by the following two-dimensional AD canonical equation:

q̇i =
1
2

σ2
i (qi)N̄i(q1, q2)

∂

∂q′
Λ(q1, q2, q′)

∣∣∣∣
q′=qi

. (4-21)

4.3. Results

4.3.1. The standard coffee model

An in-depth study of all stationary solutions of the standard coffee model (4-1, 4-2,
4-6) is not the goal of this paper, thus such a task remains available for a future work.
However, the model has five stationary solutions Si = (C̄, C̄b, M̄, Ī, N̄1), for i = 0, . . . , 5, a
brief discussion of them follows:

• S0 = (0, 0, 0, 0, 0). Constant solution always existing and corresponds to the absence
of all magnitudes in the model. It lack practical interest. However, it is easy to prove



4.3 Results 67

that the eigenvalues of the linearization matrix, are: λ1 = r− h, λ2 = −d− h, λ3 =

−µ, λ4 = −δ−ω and λ5 = 0. Therefore, if r− h > 0 it is unstable, but if the contrary
is true, it is not possible to study its stability with standard methods.

• S1 =
(

k(r−h)
r , 0, 0, 0, 0

)
. This solution makes sense only under the condition r− h >

0, and corresponds to the presence of healthy coffee and the absence of both CBB
and standard coffee sales (no standard coffee is produced). This scenario reflects
situations in which coffee grows naturally, without human or CBB intervention. The
eigenvalues of the linearization matrix in the neighborhood of this equilibrium are:

λ1 = −(r− h), λ2 =
kh(r− h)Q(q1)

r
, λ3 = −(h + d),

λ4,5 =
−r(δ + µ + ω)±

√
4εβωkr(r− h) + r2(δ− µ + ω)2

2r
,

Under the condition r − h > 0 and since 0 < Q(q1) ≤ 1, λ2 > 0 is obtained,
and there is sufficient information to state that E1 is always unstable. If Q(q1) = 0,
(only bored coffee is used), then λ2 = 0. On the other hand, if r − h = 0, then the
equilibrium E1 collides with E0, a situation in which several null eigenvalues are
obtained.

• S2 =
(

k(r−h)
r , 0, 0, 0, kh(r−h)

r
Q(q1)
b(q1)

)
. With r− h > 0, this constant solution corresponds

to the scenario with both coffee production and standard coffee sales, but in the
absence of CBB. In this case, a collision occurs with E0 when r− h = 0 and, provided
r− h > 0 and Q(q1) = 0, then E2 collides with E1.

In the description of the following constant solutions, for ease of reading, the follo-
wing has been defined:

B0 =
εβωkr

εβhωk + µr(δ + ω)
.

as a biological parameter, corresponding to the ”net reproduction rate of CBB” [76,78,79].

• S3 =
(

µ(ω+δ)
εβω , µr(δ+ω)

εβω(h+d)
B0−1

B0
, r

β
B0−1

B0
, µr

βω
B0−1

B0
, 0
)

. This constant solution reflects the
presence of healthy and bored coffee and CBB, but the absence standard coffee sales
. Note that B0 > 1 is a necessary and sufficient condition for C̄b > 0, M̄ > 0 and
Ī > 0, a case in which there will be CBB in both adult and immature stages in the
coffee crop. Also, if B0 = 1 then µ(ω+δ)

εβω = k(r−h)
r , as can be proven by means of

algebraic processes, then, B0 = 1 implies that E3 and E1 collide.
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• S4 = E0 =
(

µ(ω+δ)
εβω , µr(δ+ω)

εβω(h+d)
B0−1

B0
, r

β
B0−1

B0
, µr

βω
B0−1

B0
, µ(ω+δ)

εβω
B0Q(q1)h+(B0−1)(1−Q(q1))r

B0b(q1)

)
.

Finally, if B0 > 1, this constant solution represents the only equilibrium in which
there is a presence of both healthy and bored coffee, presence of CBB in both states
of maturity and standard coffee sales. Again, B0 = 1 implies that E2 and E4 collide.

Solving the condition B0 > 1 for the CBB boring and death rates β and µ and for the
harvesting rate h, gives

β > β∗=
µr(δ + ω)

εωk(r− h)
, µ < µ∗=

εβωk(r− h)
r(δ + ω)

, h < h∗= r
(

1− µ(δ + ω)

εβωk

)
. (4-22)

These three parameters are often considered in the following, because they allow to dis-
cuss the joint effects of coffee production and CBB control practices. For instance, an in-
tense harvesting rate h greater than h∗, would be enough to achieve CBB elimination.

Equilibrium E0 is the invasion equilibrium for the special coffee entering the market.
Whose stability conditions determine the possibility that a small sold quantity of special
coffee (arising from an innovation) can enter and share the market with standard coffee.

4.3.2. Innovation dynamics in the single-coffee market: stability and

bifurcation analysis

The invasion fitness (4-9) can be explicitly determined and handled numerically to
illustrate invasion regions in the (q1, q2)−plane. In Fig. 5-7 the contour map of λ(q1, q2)

is shown for consumers’ preference for low quality coffee ( f1 = 1/1.1 in panels A and C)
and when consumers prefer high quality coffee ( f1 = 1.1 in panels B and D), the other
parameters are as described in the caption. Each panel illustrates in blue the region where
a small sold amount of special coffee N2, can invade in a single-coffee market dominated
by standard coffee N1. The solid green curve and the solid black line (the diagonal q2 =

q1) correspond to points where the invasion fitness λ vanishes; geometrically, two zero-
level curves of λ intersect transversally, therefore the partial derivatives of λ are zero in
any direction, particularly, the selection gradient vanishes, thus the intersection points
(q̄i, q̄i) for i = 1 or 2 correspond to singular strategies, i.e., the q̄i are equilibria of the AD
canonical equation, presented in Sect. 4.2.3).

The adult CBB death rate µ has been decreased from µ = 0.6 in Fig. 5-7A, where
there are two intersections points, to µ = 0.3 in Fig. 5-7C without intersection points.
Similarly, the adult death rate is increased from µ = 0.2 in Fig. 5-7B to µ = 0.5 in Fig. 5-
7D to illustrate how, under the consumers’ preference for high quality coffee, increasing
CBB control leads to disappearance of both intersection points. Notice that when q̄i do not
exist, the consumer preference is the dominating force driving the innovation processes,
so that the quality attribute diverge for f1 > 1 and go to zero for f1 < 1. Denote these
as “trivial solutions”, that correspond to a single coffee with top quality (100 % healthy
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Figure 4-4.: The contour map defined by the invasion fitness λ(q1, q2) is shown to illustra-
te four different scenarios, the invasion regions correspond to the points on the
(q1, q2)−plane for which the invasion fitness is positive (blue regions). Parameters
are shown in Table 4-1 with β = 0.05, h = 0.2 and f1 and µ as indicated in the panel
title.

coffee beans) for f1 > 1, and to the worst-quality (100 % bored coffee beans) for f1 < 1.
This occurs for large µ under f1 > 1 (Fig. 5-7D), because with a low CBB population,
the harvest is mainly composed of healthy coffee beans, so that increasing the quality
does not reduce the production. Vice-versa, for f1 < 1, the equilibria q̄i disappear for
low µ (Fig. 5-7C), because only with a well-developed pest the harvest can sustain a low
quality production. Interestingly, for intermediate µ a stable equilibrium q̄1 exists and the
unstable solution q̄2 separates its basin of attraction from the one of the trivial solution.
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To have an explicit expression for the AD canonical eq. (5-18), the selection gradient
s(q1) is calculated, obtained from the expression (4-9) and equilibrium coordinates of E0:
C̄, C̄b and N̄(q1), it is obtained the canonical eq. (5-18) as,

q̇ = F(q) =
1
2

mσ2 h2µ2(ω + δ)2 [F2(qα)2 + F1qα + F0
]

(qα
0 + qα)3β3ε3ω3k(h + d) f 2

2 q

(
qα +

rqα
0

h + d
B0 − 1

B0

)
where,

F2 = −εβωk(h + d) ln f1,

F1 = −qα
0

[
αεβωk (2h + d− r) f 2

2 + µr(ω + δ)
(

α f 2
2 − ln f1

)
+ εβωk(d + r) ln f1

]
,

F0 = −B0 − 1
B0

εβωkrq2α
0 ln f1.

This equation makes no sense for B0 < 1, because the equilibrium coordinates M̄
and Ī would be negative. Then, the singular strategies for B0 > 1, satisfying q̇1 = 0, are
given by,

q̄1,2 =

−F1 ±
√

F2
1 − 4F2F0

2F2

1/α

, (4-23)

denoting q̄1 the “plus” solution, and q̄2 the “minus” solution. Note equilibria q̄1 and q̄2

coincide when F2
1 − 4F2F0 = 0 (both equilibria collide through a fold bifurcation, indeed,

there is no equilibria when F2
1 − 4F2F0 < 0). To illustrate this bifurcation through simu-

lations, we consider two scenarios: firstly, the effective CBB boring rate β to vary as a
function of the harvesting rate h (considering the other parameters as fixed constants),
and secondly, the adult CBB death rate µ to vary also as a function of the harvesting rate
h. The bifurcation curve establishes a threshold that will be used in the next subsection to
establish CBB control policies that promote or impede market diversification, according
to the interests of the decision-maker.

Clearing β from the vanishing square root in (4-23), two explicit expressions for β

defining bifurcation curves βk(h) and βb(h) are obtained,

βb(h) =
µr(δ + ω)

εωk(r− d− 2h)
,

and,

βk(h) =
µr(δ + ω)(2 ln f1α f 2

2 − α2 f 4
2 − ln2 f1)

εωk
(

2 ln f1α f 2
2 (d + r)− (r− d− 2h)(α2 f 4

2 + ln2 f1)
) . (4-24)

Subscript k is related to the curve color used in Fig. 4-5 (k stands for solid black,
while subscript b is used to differentiate both expressions). Although not reported here,
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we have verified that provided f1 < 1, the curve βk is at the right of the curve βb, and
vice-versa, if f1 > 1. Indeed, when f1 = 1 both curves coalesce, it merits note that no
singular strategies are obtained in the thin region defined by the two expressions.

An equivalent situation occurs when the adult CBB death rate µ is related to the
harvesting rate by the farmer h; in this case, clearing µ from the bifurcation curve F2

1 −
4F2F0 = 0 the following expressions are obtained:

µb(h) = −
2εβωk

r(δ + ω)
h +

εβωk(r− d)
r(δ + ω)

,

and,

µk(h) =
[
− 2εβωk

r(δ + ω)
h +

εβωk(r− d)
r(δ + ω)

]
α2 f 4

2 + ln2 f1(
ln f1 − α f 2

2

)2 +
εβωk(r− d)

r(δ + ω)

2α f 2
2 (d + r) ln f1(

ln f1 − α f 2
2

)2
(d− r)

, (4-25)

corresponding to a pair of lines in the (h, µ)−plane. With β = 0.05, Fig. 4-5 shows the
graph of µk(h) in solid black, and the graph of µb(h) is omitted since it plays no role in
the analysis.

Similarly, if h is cleared from F2
1 − 4F2F0 = 0, two expressions are obtained for the

bifurcation curve, given explicitly by:

hb(µ) = −
βdεωk− εβωkr + δµr + µωr

2εβωk

and,

hk(µ) = −
[εβωk(d− r) + (δ + ω)µr]

[
α2 f 4

2 + ln( f1)
2]+ 2 ln( f 1)α f 2

2 [εβωk(d + r)− (δ + ω)µr]
2εβωk

[
α2 f 4

2 + ln( f1)2
] .

(4-26)

In Table 4-2 these expressions are used to establish regions where the singular strategy of
the canonical equation is a branching point.

Fig. 4-5 (panels A and B for µ = 0.2) illustrates the value reached by the singular
strategy q̄1 when the effective CBB boring rate and the harvesting rate are varied: for
consumers’ preference favoring low quality coffee f1 = 1/1.1 in Fig. 4-5A, and for consu-
mers’ preference favoring high quality coffee f1 = 1.1 in Fig. 4-5B. Each panel shows the
curve B0 = 1 in solid red and the fold bifurcation curve βk(h) in solid black.

Considering that only B0 > 1 makes sense is clear that the blue shaded region bet-
ween the black and red curves allows for estimating the values of h and β required to ob-
tain non-negative singular strategies. Similarly, panels C and D in Fig. 4-5 (for β = 0.05),
illustrate the singular strategy q̄1 when the adult CBB death rate and the harvesting rate
are varied. For consumers’ preference favoring low quality f1 = 1/1.1 (see Fig. 4-5C),
the singular strategies are obtained in the shaded region between the black bifurcation
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Figure 4-5.: Regions of definition of q̄1 (when real and non negative) are shown in dashed blue.
The region where B0 > 1 is at the left of the red curve (B0 = 1). The bifurcation curve
is shown in solid black. The parameter values used are those shown in Table 4-1.
(A) considering µ = 0.2, notice q̄1 is non-negative for pairs (h, β) such that B0 > 1
(points at the left of the red curve and at the right of the black bifurcation curve).
(B) for µ = 0.2, in this case, q̄1 is non-negative for pairs (h, β) at the left of the black
bifurcation curve. Panels (C) and (D) illustrate the same situation, but considering
the (h, µ)−plane and β = 0.05.

line µk(h) and the red line B0 = 1. For consumers’ preference for high quality f1 = 1.1
(Fig. 4-5D) the definition region is located at the left of the black bifurcation line.

The stability of a singular strategy q̄ is determined by the sign of the associated ei-
genvalue ds(q1)

dq1
|q1=q̄, where s(q1) is the selection gradient s(q1) defined in (4-11), when
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Table 4-2.: Conditions on β, µ and h guaranteeing that q̄1 is a stable nontrivial singular solution.
The threshold values β∗, µ∗ and h∗ were defined respectively in (4-22). The bifurcation
thresholds βk, µk and hk were derived in (4-24), (4-25) and (4-26) respectively.

Consumers’ preference Condition on β Condition on µ Condition on h

Preference for low quality ( f1 < 1) β∗ < β < βk µk < µ < µ∗ hk < h < h∗

Preference for high quality ( f1 > 1) βk < β µ < µk h < hk

negative the singular strategy is stable, and it is unstable if the associated eigenvalue is
positive. Considering the parameter definitions and baseline values in Table 4-1, the re-
gion of stability of the singular strategy q̄1 correspond to the same shaded blue regions in
Fig. 4-5, in which the singular strategy q̄1 is defined; on the other hand, in those scenarios
q̄2 is unstable.

In general, considering the thresholds in (4-22), (4-24) and (4-25), under preferen-
ce for low quality coffee ( f1 < 1), it is required an effective CBB boring rate satisfying
β∗ < β < βk and µk < µ < µ∗ to guarantee that q1 is a stable singular strategy, but when
consumers prefer high quality coffee ( f1 > 1) it is required βk < β and µ < µk. Regar-
ding the harvesting rate (observe Fig. 4-5A), when consumers prefer low quality coffee,
stability is achieved for intermediate harvesting rates h (between 0.3 and 0.8 approxima-
tely), while when consumers favor high quality coffees as in Fig. 4-5B, stability occurs for
small values of h (below 0.3 approximately); harvesting rates in the white region between
the black bifurcation and red line (still B0 > 1) can be used, but in this case we lose the
singular strategy and therefore the coffee quality becomes top (100 % healthy beans). As
mentioned before, intense harvesting rates lead to B0 < 1, the region at the right of the
red curve, and (theoretically) to CBB elimination, an escenario lacking of meaning for our
model. Similarly in Fig. 4-5C, when consumers’ preference favors low quality coffee, a
low adult CBB death rate µ permits intermediate harvesting rates (hk < h < h∗, with
hk as described in (4-26)) and viceversa, a high adult CBB death rate allows for smaller
harvesting rates (h < hk). These analytical results are presented in Table 4-2.

4.3.3. Innovation dynamics in the standard-special coffee market: the

emergence of diversity through branching

Once we have a stable singular strategy q̄1, closed forms for the coexistence (4-14)
and divergence (4-16) conditions were obtained and have been handled numerically to
illustrate results. Fig. 4-6A shows the coexistence condition in the (h, β)−plane when con-
sumers favor low quality coffee ( f1 = 1/1.1, panel A), observe that coexistence condition
is satisfied in the shaded red region corresponding to the stability region (compare with
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Figure 4-6.: The value corresponding to coexistence condition (4-14) at q̄1 is shown (red shading
when negative), considering the parameter values as in Table 4-1. The black cur-
ves correspond to the fold bifurcation and red curves to B0 = 1. The (h, β)−plane
is considered with µ = 0.2 for f1 = 1/1.1 (panel A) and f1 = 1.1 (panel B). The
(h, µ)−plane is considered in lower panels with β = 0.05, for f1 = 1/1.1 (panel C)
and f1 = 1.1 (panel D). Notice that the coexistence condition holds (red shaded re-
gion) in the whole definition and stability region of q̄1 (compare with Fig. 4-5).

Fig. 4-5A), i.e., stability implies coexistence; the same situation can be observed in the
Fig. 4-6B where the coexistence condition is illustrated when consumers favor high qua-
lity coffee ( f1 = 1.1). Similarly, Figures 4-6C and 4-6D illustrate the coexistence condition
in the (h, µ)−plane at q̄1; the results are equivalent to those obtained for h and β, i.e., the
coexistence condition is satisfied in the same region of stability of q̄1.

To illustrate when the selection is disruptive, i.e., the divergence condition (4-16).
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Figure 4-7.: The contour map illustrates in blue shading the positive values of the divergence
condition (4-16) at q̄1. The parameters are considered as in Table 4-1. The black curves
correspond to the fold bifurcation and red curves to B0 = 1. (A) It is considered the
(h, β)−plane with f1 = 1/1.1, and µ = 0.2. (B) The (h, β)−plane but f1 = 1.1, with
µ = 0.2. (C) Considers the (h, µ)−plane with β = 0.05 and f1 = 1/1.1 and (D)
considers the (h, µ)−plane with β = 0.05 and f1 = 1.1.

Shaded blue regions in Fig. 4-7 show the divergence condition at q̄1 in the (h, β)−plane
(panels A and B), respectively in the (h, µ)−plane (panels C and D), when consumers
favor low quality coffee ( f1 = 1/1.1) in panel A [resp. C] and when consumers favor high
quality coffees ( f1 = 1.1) in panel B [resp. D]. It is worth noting that the divergence regions
are the same obtained for stability and coexistence. Then, the shaded regions correspond
to points where evolutionary branching takes place, allowing for the emergence of market
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diversity. The major result here is that strategy q̄1 satisfies the divergence condition both
for f1 > 1 and f1 < 1, in the same regions of convergence stability and coexistence,
defining the evolutionary branching regions.

The importance of identifying the region of evolutionary branching lies in the fo-
llowing. If the parameters are set as in Table 4-2 (for instance h = 0.2 and µ = 0.6 in
Fig. 4-7C), the AD canonical equation (5-18) will reach a convergence stable strategy (a
branching point) for the coffee quality type 1 (q̄1) allowing for the market diversification;
i.e., an innovative coffee of quality q2 can invade and diversify the market, in deed, both
sold amounts of standard (N1) and special (N2) coffees will share the market. From the-
re on, the evolutionary dynamics of both coffee qualities is driven by the 2D canonical
equation (4-21) and will reach a two dimensional equilibrium (q∗1 and q∗2), where the star
superscript is used to differentiate this new equilibruim for coffee type 1 from the former
one q̄1. In the next two subsections, we analyze the case in which branching develops,
creating diversity, and then we perturb µ to illustrate the impact of varied control polices
on diversification.

Results equivalent to those obtained in the (h, β)−plane were also attained (but not
reported here) in the (h, ε)− and (h, ω)−planes, which indicates a very close relationship
between the effective CBB boring rate β, CBB reproductive efficiency ε and CBB matura-
tion rate ω; it means that a control strategy affecting any of said rates seems to have direct
or indirect impacts on the others. Similarly, results equivalent to those in the (h, µ)−plane
are also obtained in the (h, δ)−plane, i.e., for the purposes of the model considered herein,
control strategies for adult and immature CBB are equally effective. If this study is repea-
ted focussed on the other parameters, CBB control policies that guarantee diversification
in the market may be obtained, such as those found for β, µ and h in Table 4-2.

4.3.4. Innovation dynamics under consumers’ preference for

high-quality

Dynamics in the market timescale before innovation is governed by the standard
coffee model (4-1, 4-2, 4-6). Fig. 4-8, in solid black, shows the dynamics for q1 = 1, h =

0.2, β = 0.05, µ as indicated in the panel titles, initial conditions C(0) = 1, Cb(0) = 0,
M(0) = 1, I(0) = 0, and N1(0) = 0.1 and considering preference for high quality coffee
( f1 = 1.1), such that we meet the policies described in Table 4-2. In those cases, for µ = 0.2
we get B0 = 2.2645 and for µ = 0.5 is B0 = 1.3718, then an equilibrium E is reached
setting the market as dominated by the single standard coffee (type 1). To illustrate the
evolutionary dynamics, Fig. 4-9A shows the simulation of the canonical equation (5-18)
in dashed black, with initial condition q1(0) = 1; from which the evolutionary trajectory
describes the standard coffee quality growing up to the branching point q̄1 = 4.8831;
simultaneously, Fig. 4-9B tracks the sold amount of standard coffee at equilibrium N̄(q1)

(dashed black), where q1 is the numeric solution of (5-18) shown in Fig. 4-9A.
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Figure 4-8.: Dynamics before and after innovation, considering the parameters in Table 4-1, with
µ as indicated in the panel title, β = 0.05 and h = 0.2. To illustrate the scenario when
consumers’ preference favors high quality coffee we set f1 = 1.1 (see the right pa-
nels in Fig. 4-7). Before the innovation occurs (black), the simulation corresponds to
the standard coffee model (4-1, 4-2 4-6). After the innovation, the simulation corres-
ponds to the standard-special coffee model (4-1, 4-2, 4-4) and illustrate the escenarios
of substitution (green) and diversification (red ). Fanally the impact of increasing con-
trol practices after diversification is shown (blue).

The last three panels in the bottom of Fig. 4-8 (red, green and blue) show the dy-
namics after innovation of the standard and special coffee governed by the eqs. (4-1, 4-2,
4-4). To illustrate a substitution scenario (green) we use q1 = 1, q2 = 1.03q1 and the initial
conditions at E. Notice the sales of special coffee N2 increases from a very scarce average
until it dominates the market, while the standard coffee is eliminated.

In of Fig. 4-8 (red), the coexistence scenario is shown, in this case, q1 = q̄1, q2 =

1.03q̄1 and N1(0) = 0.1 are used, with the other initial conditions for the agro-ecological
compartment at E. Note both sold amounts of special and standard coffees manages to
share the market, creating diversity; indeed, the evolutionary dynamics of standard q1

and special q2 qualities are governed by the 2D canonical equation (4-21), illustrated in
Fig. 4-9A (red) with initial conditions at q1(1) = q̄1 and q2(1) = 1.03q̄1. Notice that special
quality (dashed red) coexists and diverges from the standard quality (solid red), particu-
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Figure 4-9.: (A) Shows the canonical eq. (5-18) before innovation (black) and the 2-dimensional
canonical eqs. (4-21) after innovation, considering the parameters in Table 4-1, β =

0.05, with µ = 0.2 (red) and µ = 0.5 (blue) to illustrate the impact that adult CBB
death rate has on diversification. This scenario corresponds to consumers’ preference
favoring high quality coffee ( f1 = 1.1). (B) Shows the plots of standard coffee at equi-
librium N̄(q1) before innovation (dashed black). After innovation, shows both stan-
dard N̄1(q1, q2) and special N̄2(q1, q2) equilibria with µ = 0.2 (solid red and dashed
red resp.) and µ = 0.5 (solid blue and dashed blue resp.)

larly, the special quality reach the equilibrium q∗2 = 6.1326 while the standard reach the
equilibrium q∗1 = 0.4375. Fig. 4-9B (red) shows the corresponding standard and special
coffees’ sold amounts at the equilibria N̄1(q1, q2) and N̄2(q1, q2), particularly we have at
the end of these curves N̄1(q∗1 , q∗2) = 90.4880 (dashed red) and N̄2(q∗1 , q∗2) = 85.9428 (solid
red).

Once diversification arises, and the sold amounts of special N1 and standard N2

coffees are stablished into the market, the value of the adult CBB death rate has been
increased to µ = 0.5, in order to illustrate the effect that a more intense control policy
would have (see Fig. 4-8 in blue). Here the standard-special coffee model (4-1, 4-2, 4-4)
is simulated with q1 = q∗1 , q2 = q∗2 and initial conditions at the standard and special
coffee sales at equilibrium N̄1(0) = N̄1(q∗1 , q∗2) and N2(0) = N̄2(q∗1 , q∗2). It can be seen
both standard (solid blue) and special (dashed blue) coffees manages to share the market.
Regarding the evolutionary dynamics governed by the 2D canonical equation (4-21), in
Fig. 4-9A, once the qualities q1 and q2 reach their equilibrium values (final point in the
red curves) the adult CBB death rate has been increased to µ = 0.5 (blue curves); not only
both qualities persist, but they begin to grow unbounded, that is to say, that the quality of
the coffee improves progressively as time passes, particularly with the quality of special
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coffee q2 growing much faster than the quality of standard coffee q1. A similar analysis
can be done from Figs. 5-7B and 5-7D, where increasing the CBB death rate from µ = 0.2
to µ = 0.5 cause the disappearance of the singular strategy q̄1, and permits the coffee
quality to increase unboundedly. Fig. 4-9A (in blue) tracks the quantities sold of special
and standard coffees at equilibrium N̄1(q1, q2) and N̄2(q1, q2), where q1 and q2 are the
solutions of the 2D canonical equation (in blue) shown in Fig. 4-9A.

Mathematically speaking, here we could note that a fold scenario, similar to the one
found in the canonocal equation (5-18), is most likely present also in the 2D canonical
equation, i.e., the equilibrium present for µ = 0.2 seems not to be anymore present for
µ = 0.5. Nevertheless, the detailed analysis of the 2D canonical equation is outside the
scope of the present paper.

4.3.5. Innovation dynamics under consumers’ preference for low

quality

Fig. 4-10 shows in solid black the standard model (4-1, 4-2 4-6) before innovation
under consumers’ preference for low quality ( f1 = 1/1.1), with q1 = 30, µ = 0.6 and
µ = 0.3 as indicated in the panels title. To meet the policies in Table 4-2 we have set h = 0.2
and β = 0.05, the other parameters are as described in Table 4-1. In this case B0 = 1.2124
for µ = 0.6 and B0 = 1.8608 for µ = 0.3. In both scenarios an equilibrium E is reached
such that, as expected, the standard coffee N1 is the only product available and dominates
the market (as illustrated for µ = 0.6 in the third row-first column panel). Evolutionary
dynamics for the standard quality q1 is illustrated in Fig. 4-11A. It corresponds to the
numerical simulations of the canonical eq. (5-18) (dashed black), with initial condition
q1(0) = 30; notice q1 decreases until reaching the branching point q̄1 = 24.8104. Fig. 4-
11B, the corresponding sold amount of standard coffee at equilibrium N̄(q1) is shown,
where q1 is the numerical solution to the AD canonical equation.

After innovation, the dynamics is governed by the standard-special coffee model (4-
1, 4-2, 4-4). Firstly, the escenario where substitution takes place is illustrated for µ = 0.6,
q1 = 30 and q2 = 0.97q1 (green in Fig. 4-10) with initial conditions at E and N2(0) =

0.1. In this scenario, coexistence is not posible, in deed, the small initial sold amount of
special coffee (dashed red) invades the market and grows until manages to eliminate the
standard coffee N1 (solid red). There is no place for diversification since at the end only
type 2 coffee will be available in the market.

The escenario of market diversification is illustrated Fig. 4-10 (red), where the only
change w.r.t. the previous simulation is q1 = q̄1 and q2 = 0.97q1. Here the sold amount of
special coffee N2 (dashed red) can invade the market but do not eliminate the standard
coffee N1 (solid red); both types of coffee share the market, giving origin to diversity. The
evolutionary dynamics of the standard and special qualities q1 and q2 is governed by the
2D canonical equation (4-21), with initial condition at q1(20) = q̄1 and q2(20) = 0.97q1,
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Figure 4-10.: agro-industrial dynamics before and after innovation, considering the parameters
in Table 4-1, with µ = 0.6, β = 0.05 and f1 = 1/1.1 (consumers’ preference fa-
vors low quality coffee). Before the innovation (black), the simulation corresponds
to the standard coffee model (4-1, 4-2 4-6). After the innovation, the simulation co-
rresponds to the standard-special coffee model (4-1, 4-2, 4-4) with µ = 0.6 (red) and
µ = 0.3 (blue).

and illustrated in Fig. 4-11A (red). It can be seen that both qualities stabilize at different
equilibrium levels, q∗1 = 286.8386 (solid red) and q∗2 = 20.4216 (dashed red) respectively.
As for Fig. 4-11B, it tracks the equilibrium sold amounts of standard N̄1(q1, q2) (in solid
red) and special N̄2(q1, q2) (dashed red) coffees, where q1 and q2 are the solutions of the
2D canonical equation.

Once the market is diversifies, i.e., N1 and N2 are stablished coffees in the market,
in the log term they reach equilibrium levels N̄1(q∗1 , q∗2) = 182.2967 and N̄2(q∗1 , q∗2) =

174.2238 for quality attributes also at equilibrium q∗1 and q∗2 . Then adult CBB death rate is
decreased to µ = 0.3 (blue in Fig. 4-10) to illustrate the effect of a weaker pest control po-
licy. In this case, initial conditions are at E, but N1(0) = N̄1(q∗1 , q∗2) and N2(0) = N̄2(q∗1 , q∗2).
Notice both the standard coffee N1 (solid blue) and special coffee N2 (dashed blue) share
the market at very similar levels. Nevertheless, as illustrated in Fig. 4-11A, both standard
quality q1 (solid blue) and special quality q2 (dashed blue), corresponding to the 2Dcano-
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Figure 4-11.: (A) Shows the canonical eq. (5-18) before innovation (black) and the 2-dimensional
canonical eqs. (4-21) after innovation, considering the parameters in Table 4-1, β =

0.05, with µ = 0.6 (red) and µ = 0.3 (blue and green) when consumers’ preference
favors low quality coffee ( f1 = 1/1.1). (B) Shows the plots of standard coffee at
equilibrium N̄(q1) before innovation (dashed black). After innovation, shows both
standard N̄1(q1, q2) and special N̄2(q1, q2) equilibria with µ = 0.6 (solid red and
dashed red resp.) and µ = 0.5 (solid blue and dashed blue resp.)

nical equation (4-21), with initial conditions at q1(200) = q∗1 and q2(200) = 0.97q∗1 , goes
to zero, i.e., in the long term, both coffees will evolve to the worst quiality (coffees made
up from large proportion of bored coffee). On the other hand, Fig. 4-11B shows the sold
amounts of standard coffee N̄1(q̄1, q̄2) (solid blue) and special coffee N̄2(q̄1, q̄2) (dashed
blue), where q1 and q2 are the solutions of the canonical eqs. (4-21) illustrated in Fig. 4-11A
(blue). Note, both equilibrium densities increases and stabilizes at the same equilibrium
value. In this case, with µ = 0.3, we fall into a region where the singular strategy does not
exist, that is, the reduced CBB control policy operates against the diversification in the
market. In deed, in the long term, only one type of coffee of quality q1 = q2 = 0 (virtually
splited in the sold amounts N1 and N2) will remain in the market.

This situation can be analyzed from the Fig. 4-7C, if we start in a colored point with
µ = 0.6 (recall h = 0.2 in this scenario), and then decrease µ, the singular solution q1
is a branching point until the black boundary, then q̄1 disappears (note in Fig. 5-7C with
µ = 0.3, there is no intersection between green and black lines), then the quality q1 start to
decrease to zero. This interesting result implies that once a branching point is reached and
the market is diversified, reducing adult CBB control will favor the commercialization of
lower quality coffees, which makes perfect sense, since a low adult CBB death rates means
more damage to coffee production.
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4.4. Discussion and Conclusions

A deterministic model describing the agro-industrial dynamics of coffee was for-
mulated. Adult and immature CBB populations were considered to reflect the damage
caused by their reproduction and feeding habits, as well as their impact on coffee qua-
lity. Harvested coffee was divided into two categories depending on quality, determined
by the proportion of bored coffee beans used in production, here we have called low-
quality coffees as standard and high-quality coffees as special, although this decision is
arbitrary from the mathematical point of view. Quality is considered to be a quantitative
differentiating attribute between competing coffee types. The role of consumer preferen-
ce favoring high or low quality is considered in competition as a way to describe their
budget limitations, therefore, indirectly the model considers the role of coffee price.

The analysis showed that coffee production strongly depends upon the harvesting
rate that should be lower than the net coffee growth rate, so as to guarantee a non-
vanishing coffee production. Although a complete stability analysis was left for a future
paper, it is shown that CBB presence in the crop is determined by a ”net reproduction
rate“ grater than 1 as sufficient and necessary condition. Thresholds to guarantee CBB
presence relating the harvesting rate to the effective boring rate, and to the adult CBB
death rate were found. These thresholds can be used by the farmer as means to reach pest
elimination, mainly through parasitism [52, 77] and predation [42, 68], but also chemical
and cultural control strategies are available; indeed, integrated control, as combination of
several of control strategies, is considered to be the best [42, 52, 68, 77].

Under the presence of CBB, there is at least one stable equilibrium corresponding
to the presence of every state variable considered in the model: the invasion equilibrium,
whose stability helped to answer the question of under which conditions an innovative
coffee type can penetrate, spread and compete with a stablished one into the market. The
long-term dynamics of quality traits were studied from the perspective of adaptive dyna-
mics, in order to establish the conditions under which evolutionary competition between
both types of coffees results in market diversification. In the present context, the net re-
production rate, the consumers’ preference regarding coffee quality, and the bifurcation
thresholds play important roles in diversification through innovation, and permitted the
formulation of policies on the adult CBB death rate, the effective CBB boring rate and
harvesting effort which, in turn, determine the possibility of market diversification.

The main insight/recommendations for practitioners and policy makers that fo-
llows from the analysis of our model, is that the effective CBB boring rate plays an im-
portant role not only in the agro-ecological dynamics, but the evolutionary dynamics of
quality, and therefore CBB control practices must be carefully analyzed. Indeed, the deci-
sion to increase or decrease pest control after diversification, is closely related to consu-
mers’ preference for high or low quality coffees, and has an impact on the evolutionary
dynamics of quality in the long term. Under consumer’s preference for higher quality,
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when reducing the CBB control the market remains diversified, but increasing the action
of control strategies to reduce its population, may work against diversification, in this ca-
se, coffees are made more and more with healthy beans, preventing, in the long-term, for
sustained coffee types in the market of differentiable quality. On the other hand, under
consumer’s preference for lower quality, increasing the CBB control gives only the top
quality when the CBB goes extinct, while reducing the control polices permits an increase
in the CBB population and the production of low quality coffees, but direct evolution to
a vanishing quality, then the market will be composed by a single coffee quality virtually
separated into two types. In this last case, the intermediate control strategies, allowing for
coffees of different qualities to be produced, that must be considered in order to maintain
diversification.

To briefly discuss pest control strategies that are be used to affect boring or death
rates, we focus on biological control by parasitoids and predators, as one of the most
widely used; in the first case, wasps are highlighted, mainly Cephalonomia stephanoderis
and Prorops nasuta, but also Phymastichus coffea and Cephalonomia hyalinipennis, in smaller
proportions [77]. In the second case, predation with coleoptera Leptophloeus and Cathar-
tus quadricollis [42], or with lizards of the Anolis genus [66]. Effective predators for CBB
control include ants that, depending on the species, can consume CBB in either adult
or immature stages [68]. An additional type of biological control is the use of entomo-
pathogens, in particular Beauveria bassiana, a fungus capable to attain mortality levels up
to 84 % in field conditions; however, it has a slow infection process, allowing the adult
CBB to live long enough to bore into coffee beans [51]. Chemical control methods are a
variety of insecticides used to kill adult insects (affecting the boring rates and the adult
CBB death rate); has been demonstrated, through fieldwork, that it have little or no ef-
fect on immature stages, as they live inside the bean and the chemicals thus cannot reach
them [72]. Our analysis allows to determine the maximum harvesting rate tolerated by
CBB population given the adult CBB death rate or the effective CBB boring rate; CBB
control through harvesting is a cultural control defined by the FNC as Re-Re (Recoger and
Repasar, in Spanish), and makes reference to collecting ripe and overripe grains from the
coffee plantation and a few days later to check and collect again in order to prevent adult
CBB insects from finding refuge and therefore preventing their reproduction [3, 72].

It is important to highlight that our model considers the proportion of healthy and
bored coffee used in production to be the differentiating factor in coffee quality. Further
studies should be performed, in order to consider alternate forms of quality differen-
tiation, such as the introduction of innovative agro-industrial processes that affect coffee
washing, drying, roasting, or other crucial processes in coffee production, transformation,
or commercialization.

Finally, although the National Federation of Coffee Growers of Colombia periodi-
cally publishes statistical information on coffee production and marketing, this is limited
to green coffee and some with industrial treatment such as decaffeinated green, roasted
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in beans, roasted and ground, and extract and soluble. These statistics do not include spe-
cialty coffees in any of their main denominations (origin, preparation, sustainability, etc.),
thus, we cannot compare our model with real data from the Colombian coffee market,
indeed, as a final recommendation, it is essential that in Colombia a system allowing to
collect, analyze and disseminate accurate information on the production, processing and
sale of specialty coffees be defined, even more considering that these products become
the main source of income for small producers that can access better economic benefits
by producing high quality coffees valued by consumers for their attributes, for which they
are willing to pay higher prices, which results in higher producer income and welfare.



5. Model for the competition among

public transport systems

5.1. Introduction

Public transport is important to ensure population’s mobility, however, congestion
in cities continues to be one of the main problems, and government policies have failed
to promote the use of public transport in an effective and sustainable way [71]. Paulley
et. al., [74] address the problem of demand, presenting a synthesis of published and un-
published information, considering the effect of variables such as travel cost, quality of
service and vehicle ownership as the most significant affecting the dynamics of demand
for public transportation. However, these factors should not be studied in isolation; the-
refore, should be considered the impact of many other variables, among which include
developments in transportation and technology such as pricing, changes in the size of the
vehicle, control of emissions, etc.

The main barrier to the growth of public transport use is related to the limited bud-
get, which has promoted the scheme of service provision through private operators com-
peting in the market, while governments are mainly responsible for the aspects related
to the regulation of the competition conditions, and the infrastructure for operation of
the service [71]. This public-private scheme, which applies in most urban areas, is based
on the principle that greater investment by the private sector promotes competition and
should promote efficiency; moreover, it should also promote public transport operators to
be more innovative in order to maintain their position in the market. However, although
there are many studies that can be found focused on studying the economic effect of regu-
lations, there are few studies focused on studying the concept of innovation in the public
transport sector [60].

One of the reasons to consider, is pointed out from the work of Shummpeter [82],
who establishes the need to differentiate between invention, innovation and diffusion. In
its definition, innovation refers to the economic application of an invention (the develop-
ment of a new “product”), while diffusion refers to the generalization of its use by buyers
and production by different firms [71]. While this concept of associating innovation with
the emergence of new products is valid, and in fact it has been fundamental in the growth
of global industries, it must be considered that economic development is not limited to
the industrial sector, but the service sector as a source of great business opportunities.
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However, the services sector is usually considered as “intangible” and “interactive”, so
the concept of innovation has been more difficult to define. In that sense, Gallouj [43]
considers the fact that innovations in services are influenced by a set of forces (driving
forces) that he identifies as incentives or obstacles to the innovation process, divided into
what he calls “trajectories”, and corresponding to the professional, technological and so-
cial management and that are composed by different agents in each level, such as clients,
competitors, the government, etc. [60].

One of the aspects that exerts more pressure on innovation in transport systems
is the growth of cities and the subsequent need for efficient public transport services.
In 1960, only seven megacities existed, understood as large cities, or metropolitan areas,
with more than ten million inhabitants and large population densities; by 2010, this num-
ber had increased to 27, and by 2020, it is projected that this number will grow to 37 [7,54].
In this growth process, cities cannot ignore fundamental aspects of their own economic
and demographic development, or the complex network of interactions generated the-
reby. One fundamental question is the relationship between population growth, demo-
graphic development, and public transport infrastructure. Bogotá - Colombia, in particu-
lar, is going through a key decision-making moment regarding the possibility of incor-
porating a metro system as one of its leading forms of transport. In contrast, the current
mass-transit system, Transmilenio, operates using articulated buses. Unquestionably, the
project involves innovations at all the levels mentioned above and the obvious need to
address the question: under what conditions could a mass-transport system invade, ex-
pand in the market, and coexist with current, established city transport systems, in the
long term.

This type of question is closely related to other studies from the standpoint of evo-
lutionary biology, and which have allowed the development of adaptive dynamics as a
useful mathematical framework for the study of these questions. However, beyond bio-
logy, this theoretical framework has recently been used to model a broad spectrum of
non-genetic innovation phenomena; for example in the technological context with works
like [23, 29] where the origin of technological diversity is explored from the interaction
in the market; e.g., existing products compete in the market with innovative products,
resulting in a continuous and slow evolution of the characteristic attributes of success-
ful products. A similar work has addressed the problem of determining conditions on
the energy market diversification from adaptive dynamics perspective [85], considering
technological innovation in the energy generation processes. Analogies between the eco-
logical processes of competition and collaboration with the dynamics of markets are po-
werful conceptual tools when used in the appropriate contexts; indeed, Nair et. al., [69]
establishes that the complexity of technological change, the ecological and institutional
dynamics can allow regimes of coexistence of competing technologies. In [44] is presen-
ted a model devoted to the study of an evolutionary system where similar individuals are
competing for the same resources, and [70] studied model designed for a user-resource
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scenario in the context of technological innovation.
Here, a generalized model has been formulated for the competition between trans-

port systems in a city, considering that interaction occurs under the same market platform
and competition is determined by the proportion of users adopting each transport system.
To measure the budget that the investor makes available, in order to promote the trans-
portation system expansion among users is considered. The model is a generalization
of the one presented in [84], as a product of a research project on urban metabolism for
Bogotá Colombia, where just a local stability analysis of the 1−dimensional case is perfor-
med, to understand the dynamics of the city with only one transport system, then, some
discussion on the invasion conditions on the resident/innovative model was shown. The
generalization consists in considering that there are N established transport systems in
the city, and when they are theoretically in “equilibrium” an innovative competitor arises
increasing the model to N + 1 transport systems, therefore, the generalization consists in
formulating the N−resident/1−innovative model and describing some general theory
(as invasion conditions) related to that model.

Using the theoretical framework of adaptive dynamics it is possible to determine
general conditions that must be met to guarantee or not the success of the innovation as
the one managing to penetrate and expand into the market; this information is obtained
from study of the sign of the fitness function for specific model coefficient expressions. La-
ter, the canonical equation, corresponding to ordinary differential equation, is presented
to describe the behavior over time of the characteristic attribute as a result of innovation
processes. The approach is used to establish the long term dynamics of the quantitative
attribute and allows the classification of the equilibria as terminal points (those in which
the evolution definitively halts), like the points where substitution takes place.

5.2. Generalized model for competition of public

transport systems

In order to formulate a generalized model, consider a city with N interacting trans-
port systems (TS), quantity assumed to occur in a finite number. Each individual on the
population uses a specific TS, which is characterized through a particular continuous at-
tribute u as a real number and can be assumed bounded or not, depending on its meaning,
in general it can be any physical measure in a suitable scale, associated with aspects such
as comfort, security, availability, travel cost or travel duration among others; in our exam-
ples below, we consider u to be the average number of passengers the TS can transport.
Particularly, u1, u2, . . . , uN are the respective attributes that characterize (differentiate) the
N TSs. For simplicity, we will refer as i−th TS when it is characterized by the attribute ui.

Denote xi = xi(t); 0 ≤ xi ≤ 1, for i = 1, . . . , N the proportion of people who adopt
the i−th TS, thus, the city’s population is subdivided into N subpopulations such that
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∑N
i=1 xi = 1. To formulate a model describing “competition” of the N TS through the

adoption that population makes of each of them, consider a reformulation and a genera-
lization of the model studied by [70], designed for a user-resource scenario. Consider that
the N populations xi interact through the generalized system:

ẋi = r(yi; ui)xi

(
1− xi −

N

∑
k=1,k 6=i

c(ui, uk)xk

)
, i = 1, . . . , N, (5-1)

Note that it has been assumed that competition between TSs of the same class is sym-
metrical, therefore c(ui, ui) = 1, a fact that is reflected in the term −xi appearing in the
parentheses and also in the restriction k 6= i on the sum. We assume that financial resour-
ces are exclusively allocated for the enhancement of the innovation adoption, the size of
this resource budget is represented by yi = yi(t) which can take values, after rescaling,
on 0 ≤ yi ≤ 1, for i = 1, . . . , N; then r(yi; ui) is some expression describing the intrinsic
growth rate of the i−th TS by new users, depending on the state variable yi and the i−th
TS attribute.

On the other hand, c(ui, uk) is the interaction rate between i−th and k−th TS. A
number of situations are then obtained; first, if c(ui, uk) > 1, inter-system competition
prevails over intra-system competition. As a simple example of this, if i−th TS corres-
ponds to a city taxi system, while system k corresponds to a public bus system, then
c(ui, uk) > 1 implies that taxi competition with buses is stronger than the competition
between the taxis themselves. If 0 ≤ c(ui, uk) ≤ 1, then intra-system competition pre-
vails over inter-system competition. Returning to the public taxi and bus example, in this
scenario, competition between the taxis themselves is stronger than competition between
taxis and buses. Particularly, c(ui, uk) = 0 indicates that there is no interaction between
the two TS, and c(ui, uk) = 1 indicates that the interaction between the two TS is sym-
metrical, i.e., affects both systems equally. Finally, if c(ui, uk) < 0, the interaction between
transport systems does not correspond to competition, but rather cooperation, a situation
which can describe integrated TSs, and is not going to be considered in this model.

The simplest way to define the adoption rate r is through the linear dependency:

r(yi; ui) = α(ui)yi − δ(ui), i = 1, . . . , N, (5-2)

where α(ui) is the instantaneous adoption rate of the i−th TS based on the characteristic
attribute ui and δ(ui) is the rate at which the i−th TS is abandoned (multiple reasons may
justify this fact, as dissatisfaction or users getting their own car), for a fixed value ui; this
definition implies that the adoption rate r(yi) increases in direct proportion to the size
of the allocated present budget α(ui)yi, and decreases according to adoption failure δ(ui),
and decreases at a rate δ. The dimensions of α(ui) and δ(ui) are 1/time (yi is adimensional
after rescaling) which is consistent with the units of the intrinsic growth rate. In general
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it is assumed α(ui) > δ(ui), for all i = 1, . . . , N, however, even for small values of yi, it is
possible to have r(yi) < 0, for this reason the equation (5-1) is modified to have,

ẋi = r(yi; ui)xi − |r(yi; ui)| x2
i − |r(yi; ui)| xi

N

∑
k=1,k 6=i

c(ui, uk)xk, i = 1, . . . , N,

then, by factoring in the intrinsic rate of growth r and xi, we can write in the form

ẋi = r(yi; ui)

(
1− sign (r(yi; ui)) xi − sign (r(yi; ui))

N

∑
k=1,k 6=i

c(ui, uk)xk

)
xi, i = 1, . . . , N.

(5-3)

To establish budget dynamics yi, it must be considered that investment can not be
unlimited, then it is assumed that the investor places resources in direct proportion to the
budget not yet placed, i.e., l(ui)(1− yi), where l(ui) is the rate with which the unalloca-
ted budget is allocated. Finally, the budget for the expansion of the i−th TS is used or
“consumed” in a magnitude ε(ui)α(ui)yixi, where ε(ui)α(ui) denotes the efficiency with
which the resources yi are “converted” into new users. Therefore, the term assumes that
budget use is proportional to the product of instantaneous rate of technology adoption
ε(ui)α(ui) and xiyi representing the interaction between users and TSs (a mass action
law). The equations for the budget is as follows:

ẏi = l(ui)(1− yi)− εi(ui)α(ui)xiyi, i = 1, . . . , N. (5-4)

In conclusion, the equations (5-3) and (5-4) define the 2N−differential equations,
given by:


ẋi = r(yi; ui)

[
1− sign (r(yi; ui))

(
xi +

N

∑
k=1,k 6=i

c(ui, uk)xk

)]
xi

ẏi = l(ui)(1− yi)− ε(ui)α(ui)xiyi,

(5-5)

for i = 1, . . . , N. Model (5-5) will be referred to as the “resident” model from now on.
System (5-5) is subject to non negative initial conditions xi(0) and yi(0), for i = 1, . . . , N
and defined in the region:

ΩN = {xi, yi ∈ R : 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, i = 1, . . . , N} (5-6)
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5.2.1. Innovation in the generalized model for public transport

systems

Model (5-5) for N transport systems should have at least one locally asymptotically
stable equilibrium inside ΩN in which they can “coexist”. Denote u = (u1, . . . , uN) to the
vector of all the characteristic attributes, then, the coexistence equilibrium can be written
as,

EN = (x1(u), y1(u), . . . , xN(u), yN(u)). (5-7)

Suppose a technological innovation occur in the j−th attribute uj, for some j =

1, . . . , N; changing the value of uj to ũj. The innovation introduced corresponds to some
change that physically modifies the j−th TS or the organization processes thereof; in ge-
neral, it is assumed an small innovation with small effect, which allows the interaction
between transportation systems to be carried out under the same market platform. The
innovative attribute gives rise to a small proportion of users x̃j(t) of the innovative TS,
entering to compete with the N established TS, and to the corresponding initial budget
fully disponible for allocation (ỹi = 1). The innovations success or failure can be studied
by extending the system (5-5) in two equations: one for x̃j and another for the correspon-
ding budget ỹj. Explicitly it will be:



ẋi = r(yi; ui)

[
1− sign (r(yi; ui))

(
xi + c(ui, ũj)x̃j +

N

∑
k=1,k 6=i

c(ui, uk)xk

)]
xi

ẏi = l(ui)(1− yi)− ε(ui)α(ui)xiyi

˙̃xj = r(ỹj; ũj)

[
1− sign

(
r(ỹj; ũj)

) (
x̃j + c(ũj, ui)xi +

N

∑
k=1,k 6=i

c(ũj, uk)xk

)]
x̃j

˙̃yj = l(ũj)(1− ỹj)− ε(ũj)α(ũj)x̃jỹj,

(5-8)

for i = 1, . . . , N. Model (5-8) is going to be called “resident-innovative” model from now
on. Note that the model (5-5) corresponds to the model (5-8) when x̃j = 0 and ỹj = 1.
Even though, in the equation of the innovative TS, is a bit strange to keep the compe-
tition between the innovative and the i−th TS out of the sum, our decision is based on
symmetry reasons. In Table 5-1, find a description of state variables and of the coefficients
used in the resident system.

In the following section a local stability analysis is performed to describe the model
behavior for N = 1 and latter the evolutionary behavior of the characteristic attribute
is studied for a situation with two TS, one stablished and one innovative. Such analysis
are made considering the parameters as described here, but particularly for its numeri-
cal study, certain considerations have been made on the coefficients, it has been assumed
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Table 5-1.: Description of state variables and parameters

Description of the state variables Value

xi Proportion of people using the i−th TS -

yi Budget disponible to allocate for the expansion of the i−th TS -

Description of parameters Value

ui Characteristic attribute describing the i−th TS Varies

α(ui) Instant rate of adoption of the i−th TS -

δ(ui) = d Rate at which the i−th TS is abandoned by users 0.2

l(ui) = l Rate at which new resources are allocated for expansion of the i−th TS Varies

ε(ui) = ε Efficiency of the i− th TS in converting the investment in new users 0.9

c(ui, uk) Interaction rate between i−th and k−th TS’s -

a Maximum adoption rate of the i−th TS 1

a1 Users’ sophistication sensitivity 0.8

a2 Most absorbable number of passengers
√

250

f1 Users’ preference (high (> 1), low (< 1)) Varies

f2 Strength of similar coffees’ competition 1

that, the proportion at which new resources l(u) = l are allocated, TS efficiency to “con-
vert” the investment into new users ε(u) = ε, and the rate at which the TS is abandoned
by users δ(u) = d, are constants. It has been assumed that the rate of instant adoption
depends on the characteristic attribute u, through the function:

α(u) = a exp

(
− 1

2a2
1

ln2

(
u
a2

2

))
. (5-9)

The rate α(u) makes perfect sense when u is small, and has no competition from
other transport systems [23]. A maximum a occurs when u = a2

2, in order to indicate the
value of the attribute which is easiest to absorb. On the other hand, for a transport system
with a very low or very high number of users, α(u) tends to vanish out with sensitivity
controlled by a1. It is assumed that 0 ≤ a ≤ 1 and a1, a2 are non negative (see Figure 5-1).

The values of the parameters used in simulations are stated ad hoc for illustration
purposes; however, the value of attribute ui, is based partially on the capacity of the
Transmilenio’s articulated buses (massive TS in the city of Bogotá, Colombia) around 160-
person capacity, then, we assume ui = 160 (Figure 5-2-left shows one of these buses). The
value of a2

2 = 250 correspond to the actual capacity of the Transmilenio’s bi-articulated
buses (see Figure 5-2-right), and correspond to the current average number of users to
reach the maximum adoption rate per users.

On the other hand, c(ui, uk) is the interaction rate between TS’s i and k, as described
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Figure 5-1.: Function α(u) chart for parameters a = 1, a1 = 0.8, a2 =
√

250.

Figure 5-2.: Left: Photography of an articulated Transmilenio bus, the mass-transport company
in the city of Bogota, Colombia. They have a 160-passenger capacity. Right: Photo-
graph of a biarticulated bus of Transmilenio: they have a 250-passenger capacity. This
type of bus is a recent incorporation in the busses fleet. Reproduced from transmile-
nio.gov.co.

in the generalized model formulation and is assumed as in [23] to take the following
expression:

c(ui, uj) = exp

(
ln2 f1

2 f 2
2

)
exp

(
− 1

2 f 2
2

ln2

(
f1ui

uj

))

Observe that the interaction rate between TSs c(ui, uj) depends on the ui/uj ratio,
and tends toward zero when it tends toward zero, or when it tends toward infinity, which
reflects that TSs which are very different compete weakly. A graphic representation of the
function is shown in Figure 5-3.

If f1 > 1, the TSs that move the greatest average of passengers tend to have a com-
petitive advantage. On the other hand, if 0 < f1 < 1, the TSs that move a lower average
number of passengers will be those which have the advantage. A large f2 value implies
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Figure 5-3.: Chart of function c(u1, u2), for parameters f1 = 1.05 and f2 = 1, for illustration
purposes.

that very different TSs also compete strongly. When f1 = 1, competition between TSs is
symmetrical.

Competition among the N + 1 TSs in the city is assumed under a common market
platform, regulated by governmental entities in charge of establishing public policies in
this regard; in this sense, the participation of TSs that intervene in the market outside
the legal framework is not considered in this model. This assumption is reflected in the
fact that the differential equation for the proportion of users and the budge are described
by a pair of functions f and g depending on the proportion of users, the budget and the
attributes values; in other words, the “relative diffusion rate” of the innovative TS with
attribute ũj, for some j is given by the f−function defined as,

˙̃xj

x̃j
= r(ỹj; ũj)

[
1− sign

(
r(ỹj; ũj)

) (
x̃j + c(ũj, ui)xi +

N

∑
k=1,k 6=i

c(ũj, uk)xk

)]
= f (x1, y1, . . . , xN, yN, x̃j, ỹj; u1, . . . , uN, ũj);

(5-10)

particularly, the relative diffusion rate ẋ1/x1 of the TS with attribute u1 is obtained when
ũj = u1 and replacing x̃j with x1 and ỹj with y1. Similarly,

˙̃yj = l(ũj)(1− ỹj)− ε(ũj)α(ũj)x̃jỹj
= g(x1, y1, . . . , xN, yN, x̃j, ỹj; u1, . . . , uN, ũj),

is the corresponding function for the proportion of budget.
Due to the symmetry of model (5-8), it is not really important which of the two

transport systems related by the innovation is considered the innovative TS and which is
the resident, so by exchanging xj for x̃j y yj for ỹj it is verified,
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f (x1, y1, . . . , x̃j, ỹj, . . . , xN, yN, xj, yj; u, ũj) = f (x1, y1, . . . , xi, yi, . . . , xN, yN, x̃j, ỹj; u, ũi)

(5-11)

where u = (u1, . . . , uN) anew for simplicity. This is an important property of f that will
be exploited in the derivation of invasion conditions in the next subsection. Meanwhile,
consider that

EN+1 = (x1(u), y1(u), . . . , xN(u), yN(u), 0, 1), (5-12)

is an equilibrium of (5-8) just after the innovation is introduced, referred as the “invasion
equilibrium”. In other words, at the time of innovation, by the assumption of local and
asymptotically stability, the city’s TSs were at the equilibrium EN given in (5-7), which im-
plies that the Jacobian matrix J(EN) of (5-5) has 2N eigenvalues with real negative part.
By extending the resident model (5-5) to the model (5-8), we want to determine conditions
under which the innovative TS can “invade” into the market. To do this, stability condi-
tions must be studied. In deed, if equilibrium EN+1 is unstable, it implies that a scarce
proportion of users of the innovative TS will grow and allow its expansion in the market;
on the contrary, if EN+1 is LAS, then that initial proportion of users will tend to disappear
in finite time.

To determine the local stability of equilibrium (5-12), a small perturbation is made
around it and the behavior of the associated linear system is studied. The corresponding
Jacobian matrix takes the form:

J(EN+1) =



J(EN)N×N AN×2

[
α(ũj)− δ(ũj)

] (
1− c(ũj, ui)xi −

N

∑
k=1,k 6=i,j

c(ũj, uk)xk

)
0

02×N
−ε(ũj)α(ũj) −l(ũj)


(5-13)

Note that J(EN+1) corresponds to a diagonal matrix by blocks and that the upper
left block coincides with J(EN), which is the Jacobian matrix of the resident model, and
therefore contributes 2N eigenvalues with negative real part. On the other hand, the lower
right block, associated with the equations of the innovative TS, is a diagonal block with
an eigenvalue given by −l(ũj) < 0 and therefore the local stability of EN+1 is determined
by:
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λj(u1, . . . , uj, . . . , uN, ũj) =
[
α(ũj)− δ(ũj)

] (
1− c(ũj, ui)xi −

N

∑
k=1,k 6=i,j

c(ũj, uk)xk

)
, (5-14)

defined as the “fitness function” of the innovative TS and represents the relative diffusion
rate ˙̃xj/x̃j at the invasion equilibrium; therefore, it can be obtained directly from the f
function defined above; particularly from (5-10) at EN+1, to get:

λj(u, ũj) = f (x1, y1, . . . , . . . , xN, yN, 0, 1; u, ũj) (5-15)

In the adaptive dynamics language, the f function is referred as the “fitness genera-
ting function” [31]. For simplicity, in the next section we write

λj(u, uj, ũj) = λj(u1, . . . , uj, . . . , uN, ũj)

where u = (u1, . . . , uj−1, uj+1, . . . , uN) in that suitable order.

5.2.2. Invasion conditions and canonical equation of adaptive

dynamics

The theory of adaptive dynamics allows to relate the fitness function obtained from
the market model, with the long-term evolutionary dynamics of the innovative attribute,
result achieved through the so called “canonical equation of the adaptive dynamics” [31],
to be studied with more detail in the following sections. In order to relate both results,
we will obtain the invasion conditions of the innovative attribute through the first order
expansion in Taylor’s series of (5-14). The following description is generic in this kind
of models, it is included here for comprehension purposes. The first order expansion in
Taylor series around ũj = uj neglecting high order terms, takes the form:

λj(u, uj, ũj) = λj(u, uj, uj) + (ũj − uj)
∂λj

∂ũj
(u, uj, uj). (5-16)

where u = (u1, . . . , uj−1, uj+1, . . . , uN). On the other hand, λ(uj, uj) = 0 by means of (5-15)
and then using property (5-11). So, the first order expansion takes the form:

λj(u, uj, ũj) = (ũj − uj)
∂λj

∂ũj
(u, uj, uj). (5-17)
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The expression
∂λj
∂ũj

(u, uj, uj) is called “selection gradient” in the language of adap-
tive dynamics, it is responsible for “selecting ” the attributes that will be favored in the
competition; in fact, λj(u, uj, ũj) > 0 is obtained when one of the two invasion conditions
stated below is satisfied:

C1.
∂λj

∂ũj
(u, uj, uj) < 0 and ũj < uj.

C2.
∂λj

∂ũj
(u, uj, uj) > 0 and ũj > uj.

If condition C1 or condition C2 holds, equilibrium EN+1 is LAS, therefore the inno-
vative TS can invade into the market. On the other hand, if neither of such conditions
holds, then EN+1 is unstable and the initial proportion of users introduced by the innova-
tions vanishes, leading to the extinction of the innovative TS.

The dynamic of the attributes, henceforth called the evolutionary dynamic, will help
to explain the characteristics of the innovation and competition process which acts on the
market. Dercole et al., [31], describes the processes which should be considered for rigo-
rous formulation of the canonical equation, which describes the evolutionary behavior
(in the long term) of attribute u.

First, consider that the dynamics described by the resident-innovative model (5-8)
occur in the “market timescale” measured by the variable t; while the dynamics of the
attribute u, takes place on an “evolutionary timescale”. Not completely separate times-
cales are considered, but a small scaling factor τ is introduced, which separates the two
timescales considering that τ → 0. Thus, a large amount of time in the market scale
dt/τ corresponds to a small amount of evolutionary time dt. F. Dercole and S. Rinaldi
in [31], describe the stochastic processes that must be followed rigorously derive of the
differential equation describing the evolutionary behavior of the attribute, arriving at the
canonical equation of adaptive dynamics, in our context it looks like,

u̇j = τ2 1
2

µ(uj)σ
2(uj)xj(u, uj)

∂λj

∂ũj
(u, uj, uj)

where µ(uj) is the frequency of innovations and τ2σ2(uj) is related to the variance (small
innovations are been considered). The above equation is correct only when τ → 0, which
completely separates the two timescales. Factor τ2 is obtained due to the assumption (cha-
racteristic of the theory of adaptive dynamics) that innovations are rare and small events,
which allows to consider one innovation at a time and to group the resident-innovative
model in an infinitesimal amount of evolutionary time. On the other hand, considering
small innovations, allows to “soften” the average evolutionary trajectory described by
the equation (5-18) [31]. Rigorously speaking, the variable of evolutionary time must be



5.2 Generalized model for competition of public transport systems 97

defined as τ2t, however, hoping that there are no confusions, the symbol t is used here
for the time and the factor τ2 is simply removed; then, the canonical equation takes the
form,

u̇j =
1
2

µ(uj)σ
2(uj)xj(u, uj)

∂λj

∂ũj
(u, uj, uj) (5-18)

For simplicity, we assume µ(uj) = µ and Ω2(uj) = Ω2 as constant values in the
model examples bellow. as a consequence, equilibria are constant solutions (u, uj) in the
equation where all derivatives in (5-19) are nullified, that is,

∂λj

∂ũj
(u, uj, uj) = 0. (5-19)

for each attribute uj. At such points the canonical equation is meaningless, therefore, in
a neighborhood of an evolutionary equilibrium, it is necessary to make a deeper analysis
of the model, as will be illustrated in the next section.

The stability of the equilibria can be discussed through linearization of the canonical
equation (5-18); however, it is important to keep in mind that µ(uj), Ω2(uj) and xj(u, uj)

in general depend on j, therefore, small variations can affect the stability of the equilibria.

5.2.3. Sufficient conditions for market diversification

Evolutionary branching occur when the resident and innovative TSs can coexist and
the selection is disruptive; that is, when the selection favors extreme quality attributes u
instead of the intermediate ones. Evolutionary branching demand, in the first instance,
that the resident attribute uj is in a neighborhood of an asymptotically stable strategy u
(a LAS constant solution of the canonical equation (5-18)) which vanishes the selection
gradient and locally attracts evolutionary dynamics driven by rare and small innovations
[22].

Second, coexistence has to be possible for (u, uj, ũj) in a vicinity of the singularity;
Geritz, Metz, et.al. in [45,46,64], show that coexistence in the special-standard model (5-8)
is possible for uj and ũj close to u, if

∂2λj

∂uj∂ũj
(u, u, u) < 0. (5-20)

Finally, for the selection to be disruptive; i.e., to have two products that coexist (one
stablished and one innovative) and diverge in attributes, a sufficient condition is,
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∂2λj

∂ũ2
j
(u, u, u) > 0. (5-21)

A region where the equilibria exists, is locally asymptotically stable, and both co-
existence and divergence conditions are satisfied or not, can be studied to classify the
equilibria in three categories: (i) Branching points (BP): LAS equilibria in which quality
attribute can branch, which occurs when both coexistence and divergence conditions are
satisfied. (ii) Terminal points (TP): LAS equilibria, but they are not branching points. At
these points the evolution stops completely. This case arises when any of the coexisten-
ce or divergence conditions is not satisfied, and (iii) Bifurcation branching points (BBP):
Corresponds to border cases between branching points and terminal points.

After the innovation has occurred, conditions have been established for the occu-
rrence of evolutionary ramifications, that is, when both the conditions of coexistence and
divergence are satisfied. In that case, it is expected that the dynamics in the production
timescale tend to some coexistence equilibrium

EN+1 =
(
x1(u), y1(u), . . . , xN(u), yN(u), xN+1(u), yN+1(u)

)
of system (5-8). In that case, the innovative TS with x̃j and ỹj manages to penetrate and
establish itself, becoming into an additional resident TS and reaching the equilibrium
values xN+1(u) and yN+1(u). This phenomenon is called “origin of diversity”.

At this point, a second innovation can occur in any of the N + 1 resident TSs and
all the process starts again. In general, a sequence of technological innovations can be
studied through the methodology described, as it is going to be illustrated with some
detail in the following section.

5.3. Model for one established and one innovative

transport system

5.3.1. Resident model and local stability analysis

In this section of the paper, a detailed description of the case N = 1 is presented.
To illustrate the model, we consider initially a city with a resident TS, characterized by a
particular attribute, u1, which is assumed to be positive and associated with the average
number of passengers who are transported. Under the description of model (5-5), the
equations for ẋ1 and ẏ1 conform a 2-dimensional resident system, given explicitly by the
equations:
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{
ẋ1 = (α(u1)y1 − δ(u1)) [1− sign (α(u1)y1 − δ(u1)) x1] x1

ẏ1 = l(u1)(1− y1)− ε(u1)α(u1)x1y1,
(5-22)

defined for non negative initial conditions x1(0) and y1(0) in the square,

Ω1 = {x1, y1 ∈ R : 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1} .

Note that system (5-22) is non-smooth on the curve C =
{
(x1, y1) ∈ Ω1 : y1 = δ(u1)

α(u1)

}
.

Therefore the system must be studied independently in the regions

Ω+ =

{
(x1, y1) ∈ Ω1 :

δ(u1)

α(u1)
< y1 ≤ 1

}
and Ω− =

{
(x1, y1) ∈ Ω1 : 0 ≤ y1 <

δ(u1)

α(u1)

}
.

Some special techniques are necessary to understand the model behavior on the
curve C.

Local stability analysis

First we consider the system (5-22) defined in the region Ω−, that is, when 0 ≤ y1 <
δ(u1)
α(u1)

, to have the differential equations,

{
ẋ1 = (α(u1)y1 − δ(u1)) [1 + x1] x1

ẏ1 = l(u1)(1− y1)− ε(u1)α(u1)x1y1.
(5-23)

In this case one have the constant solutions:

Ea
1 = (0, 1) for the absence of TS in the city, in practice have no interest beyond the

purely mathematical, however, the Jacobian matrix of (5-23) at Ea
1 is,

J
(

Ea
1

)
=

[
α(u1)− δ(u1) 0

−ε(u1)α(u1) −l(u1)

]
,

whose eigenvalues L1 = α(u1)− δ(u1) and L2 = −l(u1), then if δ(u1)
α(u1)

> 1 they are
both negative and therefore the equilibrium is locally asymptotically stable (LAS),
as illustrated in Figure 5-4-left with the parameters as described in the caption.



100 5 Model for the competition among public transport systems

The second equilibrium is Ep
1 =

(
l(u1)(α(u1)−δ(u1))

δ(u1)ε(u1)α(u1)
, δ(u1)

α(u1)

)
, corresponding to partial

adoption by users. It only has sense if δ(u1)
α(u1)

< 1 and l(u1)(α(u1)−δ(u1))
δ(u1)ε(u1)α(u1)

< 1 to be in the
square Ω1. From the second condition, clearing the rate at which new resources are
allocated for expansion of the TS we get the condition,

l(u1) < l∗(u1) =
δ(u1)ε(u1)α(u1)

α(u1)− δ(u1)
. (5-24)

Observe that Ep
1 ∈ C, the non-smoothness curve, therefore it is not in Ω− but on its

boundary; however, the linearization matrix in Ep
1 provides information on the local

behavior of the system. The characteristic polynomial is given by:

p(L) = L2 +
l(u1)α(u1)

δ(u1)
L+

l(u1)(α(u1)− δ(u1)) [α(u1)δ(u1)ε(u1) + l(u1)(α(u1)− δ(u1))]

ε(u1)δ(u1)α(u1)

(5-25)

Provided δ(u1)
α(u1)

< 1 the coefficients of p(L) are all positive and by the two-dimensional

case of Routh-Hurwitz criterion it can be concluded that Ep
1 is LAS. Note that in this

case, Ea
1 = (0, 1) is still an equilibrium but is not in Ω− but in Ω+, therefore its

dynamics is governed by the system of equations (5-26) described below.

In the Figure 5-4-right it can be seen that all the orbits of the system cross from the
region Ω+ (above the switching curve) to the region Ω− or vice versa, depending
on whether the crossing point on C is respectively to the right or to the left of the
partial adoption equilibrium point Ep

1 .

Finally, there is a third equilibrium is E∗ =
(
−1,− l

α(u1)ε(u1)−l(u1)

)
which do not

belongs to Ω1 and will not be discussed here.

Now we consider the system (5-22) defined in the region Ω+, that is, when δ(u1)
α(u1)

<

y1 ≤ 1, to have the differential equations,

{
ẋ1 = (α(u1)y1 − δ(u1)) [1− x1] x1

ẏ1 = l(u1)(1− y1)− ε(u1)α(u1)x1y1,
(5-26)

which has the constant solutions:

Ea
1 = (0, 1) for the absence of TS in the city, the Jacobian matrix of (5-26) at Ea

1 is the
same J

(
Ea

1
)

showed above. Then, as δ(u1)
α(u1)

< 1 in Ω+, then Ea
1 is unstable (U) by the

eigenvalues criterion.



5.3 Model for one established and one innovative transport system 101

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of users, x1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
ai

la
bl

e 
bu

dg
et

, y
1

y1 = (u1)
(u1)

y1 = 1Ea
1

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of users, x1

0.0

0.2

0.4

0.6

0.8

1.0

Av
ai

la
bl

e 
bu

dg
et

, y
1

y1 = (u1)
(u1)

+Ea
1

Ep
1

Figure 5-4.: Simulation scenarios for the resident model (5-22) in the fase plane with a = 1, a1 =

0.8, a2 =
√

250, u1 = 160. Left d = 0.9 is used to have δ(u1)
α(u1)

= 1.0515 > 1, then the

absence equilibrium Ea
= (0, 1) is the only equilibria in Ω and it is LAS. Right: fase

portrait for d = 0.3 to have δ(u1)
α(u1)

= 0.3505 < 1 and l = 0.01 < 0.0462 = l∗(u1), then

the partial adoption equilibrium is Ep
1 = (0.3832, 0.2337) is LAS.

Also, the equilibrium Ep
1 =

(
l(u1)(α(u1)−δ(u1))

α(u1)δ(u1)ε(u1)
, δ(u1)

α(u1)

)
∈ C, subject to the conditions

δ(u1)
α(u1)

< 1 and l(u1) < l∗(u1) as in (5-24). The local analysis in a vicinity of Ep
1 , leads

to the characteristic polynomial

p(L) = L2 +
l(u1)α(u1)

δ(u1)
L+

l(u1)(α(u1)− δ(u1)) [α(u1)δ(u1)ε(u1)− l(u1)(α(u1)− δ(u1))]

ε(u1)δ(u1)α(u1)

(5-27)

The condition l(u1) < l∗(u1), as defined in (5-24) all the coefficients in (5-27) are
positive, therefore it is LAS under this conditions, by the Routh-Hurwitz criterion.

The third equilibria Et
1 =

(
1, l(u1)

l(u1)+ε(u1)α(u1)

)
corresponds to total adoption of the

TS by the users, or maximum possible adoption. Notice that l(u1)
l(u1)+ε(u1)α(u1)

< 1
always, then to ensure that this constant solution is at Ω+ it is only required that
δ(u1)
α(u1)

< l(u1)
l(u1)+ε(u1)α(u1)

, then we get the condition:
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Figure 5-5.: A simulation scenario of the resident model (5-22) in the fase plane for a single TS,
with a = 1, a1 = 0.8, a2 =

√
250, d = 0.3, u1 = 160. In this case δ(u1)

α(u1)
= 0.3505 < 1

and l = 0.1 > 0.0462 = l∗(u1) then the total adoption equilibrium Et
1 = (1, 0.5388) is

located above the non-smoothness curve C, i.e., it belongs to Ω+, and is LAS, while
Ep

1 /∈ Ω1.

l(u1) > l∗(u1) =
δ(u1)ε(u1)α(u1)

α(u1)− δ(u1)
(5-28)

This implies that the equilibrium Et
1 is located in the region Ω+ if and only if l(u1) >

l∗(u1), case in which Ep /∈ Ω1. The eigenvalues of the linearization matrix in Et
1 are

given by:

L1 =
δ(u1)ε(u1)α(u1) + l(u1) (δ(u1)− α(u1))

α(u1)ε(u1) + l(u1)
and L2 = −αε− l < 0

Observe that L1 < 0, if and only if δ(u1)ε(u1)α(u1) < l(u1) (α(u1)− δ(u1)), then,
since δ(u1)

α(u1)
< 1, it is required l(u1) > l∗(u2) as in (5-28) for Et

1 to exist in Ω+ and to
be LAS, see Figure 5-6 for illustration.

As shown in the analysis above, the condition δ(u1)
α(u1)

< 1 is sufficient to state that
system (5-22) always have one stable equilibrium with either partial or total adoption of
the TS. In Table 5-2, the local stability results are summarized. Observe that, when system
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Figure 5-6.: Regions of partial adoption (red) and total adoption (blue) according to the local
stability analysis summarized in the Table 5-2 with a = 1, d = 0.3, a1 = 0.8, a2 =√

250 and f2 = 1 and f1 = 0.9.

adoption is total, the resources invested are never completely consumed as the equilibria
value 0 < l(u1)

l(u1)+ε(u1)α(u1)
< 1 is achievedd

Table 5-2.: Resident model local stability results.

Region Condition Absence of TS’s Partial adoption Total adoption

Ω− : 0 ≤ y1 < δ(u1)
α(u1)

1 < δ(u1)
α(u1)

Ea
1 is LAS Ep

1 /∈ Ω− -
δ(u1)
α(u1)

< 1 and l(u1) < l∗(u1) Ea
1 /∈ Ω− Ep

1 ∈ C is LAS -

Ω+ : δ(u1)
α(u1)

< y1 ≤ 1 l(u1) < l∗(u1) Ea
1 is U Ep

1 ∈ C is LAS Et
1 /∈ Ω+

l(u1) > l∗(u1) Ea
1 is U Ep

1 /∈ Ω1 Et
1 ∈ Ω+ is LAS

When δ(u1)
α(u1)

= 1, the jacobian matriz at Ea
1 has a zero eigenvalue and the equilibria

losses its hyperbolicity, in deed, in such scenario Ep
1 = Ea

1 and a transcritical bifurcation
occur, where both equilibria interchange stability. On the other hand, if l(u1) = l∗(u1),
then Et

1 = Ep
1 =

(
1, δ(u1)

α(u1)

)
, i.e., both equilibria collide on the curve C as can be proved by

simple algebraic procedures, again a transcritical bifurcation occur [33, 48, 56, 62, 75].
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5.3.2. Resident innovative model and fitness function

As shown in the previous section, if δ(u1)
α(u1)

< 1 the resident TS system (5-22) will
stabilize at some non trivial equilibrium (partial or total adoption) denoted from now on
by:

E1 = (x1(u1), y1(u1)).

Suppose that an innovation occur in the established TS, corresponding to some tech-
nological modification which physically affects the established TS, and leads to the ap-
pearance of an innovative TS characterized by the value of attribute u2. In general, it is
assumed that the innovation is small, and will have a minimal effect, which permits the
interaction between transport systems to occur below the same conditions, and on the
same market platform. In this case, the difference between the two TSs is in the average
number of users which they can transport per mobile unit. The innovative TS gives rise to
a small proportion of users x2 = x2(t) who compete with the established TS. The success
or failure of the innovation may be studied through the resident system (5-8) for N = 2.
Explicitly, the 4-dimensional system will exist as follows:



ẋ1 = [α(u1)y1 − δ(u1)] [1− sign(α(u1)y1 − δ(u1)) (x1 + c(u1, u2)x2)] x1

ẏ1 = l(u1)(1− y1)− ε(u1)α(u1)x1y1

ẋ2 = [α(u2)y2 − δ(u2)] [1− sign(α(u2)y2 − δ(u2)) (x2 + c(u2, u1)x1)] x2

ẏ2 = l(u2)(1− y2)− ε(u2)α(u2)x2y2.

(5-29)

This model goes by the name resident-innovative system. Note that, for the model
characteristics, must be satisfied that 0 ≤ x1 + x2 ≤ 1.

At the time in which innovation occur, the established TS is at the equilibrium E1; in
other words, it is assumed that this equilibrium is LAS, and as such, the Jacobian matrix
denoted here J(E1) has two eigenvalues with a real negative part. When the resident-
innovative system is studied, it may be of interest to determine the conditions for the
innovative TS of attribute u2 can “invade” the market. For this, stability conditions at the
equilibrium:

E2 = (x1(u1), y1(u1), 0, 1),

of absence of innovative TS must be studied. In deed, the 0 and 1 values in the last two
coordinates of E2 indicate that the innovative TS has not yet entered the market, and that
the entirety of the budget is available for allocation. In order to determine local stability,
a small disruption is created around it, and the behavior of the linear system associated
is studied [75]. The corresponding Jacobian matrix takes diagonal form in blocks:
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J(E2) =

 J(E1) · · ·

0
(α(u2)− δ(u2)) [(1− sign(α(u2)− δ(u2))c(u2, u1)x1(u1))] 0

−ε(u1)α(u1) −l(u2)

 ,

where J(E1) is a 2× 2 matrix, with both of their eigenvalues with real negative parts. In
deed, it corresponds to the Jacobian matrix of the resident system (5-22) at a LAS equi-
librium. The 0 in the bottom left block is a null 2× 2 matrix. Thus, J(E2)’s eigenvalues
are those contributed by J(E1), together with λ1 = −l(u2), which evidently is negative,
owing to the positivity of l(u), and λ2 = (α(u2)− δ(u2)) [(1− sign(α(u2)− δ(u2))c(u2, u1)x1(u1))],
whose sign will depend on the functions that it involves,

λ(u1, u2) = λ2 = (α(u2)− δ(u2)) [1− sign(α(u2)− δ(u2))c(u2, u1)x1(u1)] (5-30)

Through the study of the sign of this function for specific u1 and u2, the possibility
of innovative TS invasion may be established. In order to numerically study the previous
system, recall that the proportion in which new resources are allocated for transport sys-
tem expansion is l(ui) = l, that the TS efficiency to “convert” the investment into new
users is given by ε(ui) = ε, and that the rate at which the TS is abandoned by users
δ(ui) = d are constants for i = 1, 2.

In Figure 5-7 it is shown the contour map of the fitness function λ(u1, u2) for f1 > 1,
which means that the TS capable of transporting a greater average of passenger will have
the competitive advantage, the other parameters are as described in the caption. It can
be seen that the fitness function is negative in the red regions and positive in the blue
ones. The solid green line correspond to u2 = u1 and the black solid line is l(u1) = l∗(u1)

describing a switching curve since if l < l∗, then x1(u1) =
l(α(u1)−d)

dεα(u1)
in (5-30), and if l > l∗,

then x1(u1) = 1. Finally, the red solid line correspond to the points where α(u2) = d
another switching curve for (5-30), in fact, for the points on this curve, λ(u1, u2) = 0.

5.3.3. AD canonical equation and its stability analysis

In order to study the evolutionary dynamics of an attribute u1, it is necessary to
determine the canonical equation of adaptive dynamics, given by the expression:

u̇1 =
1
2

µ(u1)σ
2(u1)x1(u1)

∂λ

∂u2
(u1, u1) = f (u1), (5-31)

where µ(u1) = µ is innovation frequency, and σ2(u1) = σ2 is variance. The canonical
equation considers the frequency at which innovations are presented in the TS market,
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Figure 5-7.: Contour map of the fitness function (5-30) with the values of the parameters in Table
5-1, and the panel title. The color range allows for establishing the regions in the
(u1, u2)−plane where the fitness function is positive (blue regions), and therefore
where the invasion of the innovative TS is possible. The solid black line correspond
to λ(u1, u2) = 0, and the green solid line to points where u2 = u1, where also λ

vanishes.

and the size of the variations obtained in each innovation. Consider the function f defi-
ned by the right hand side of (5-31), the x(u1) value corresponds to the number of users of
stablished TS at equilibrium before the innovation, therefore, based on the stability analy-
sis of the resident model made in the previous section, provided α(u1) > d, we have two
cases:
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If l < l∗, then x1(u1) =
l(α(u1)−d)

α(u1)dε
, corresponding to the partial adoption equilibrium

in the resident model.

If l > l∗, then x1(u1) = 1, corresponding to the total adoption equilibrium in the
resident model.

Therefore, l = l∗ is a switching curve for the differential equation. The case when
α(u1) ≤ d should be discarded since it makes x(u1) = 0, and therefore we would have
u̇1 = 0 by (5-31), which lacks practical interest. On the other hand, the partial derivative
∂λ
∂u2

(u1, u1), is called the selection gradient, and is associated with the forces of selection
exerted by the TS users on the long-term dynamics of the characteristic attribute u1. Spe-
cifically for the coefficients defined in our model (recall that c(u1, u1) = 1) and since
α(u1) > d, the selection gradient is,

∂λ

∂u2
(u1, u1) = −α′(u1) (x1(u1)− 1)− [α(u1)− d] [x1(u1) + cu2(u1, u1)x1(u1)] ,

where the subscript u2 in cu2(u1, u1) denotes partial differentiation. Equilibria of the AD
canonical equation are constant solutions of equation (5-31), therefore, they are obtained
by solving f (u1) = 0. In either case, they correspond to the points where ∂λ

∂u2
(u1, u1) = 0.

Two explicit solutions are given by:

u1 = a2
2e−a1

√
−2 ln(d/a) and u2 = a2

2ea1
√
−2 ln(d/a), (5-32)

and additional equilibria occur only in the case of partial adoption, given by the expres-
sion,

u = a2
2 exp

(
a2

1l(aez − d)2 ln f1

a f 2
2 ez(a(dε− l)ez + dl)

)
, (5-33)

where z is a solution of the transcendent equation g(z) = 0, with,

g(z) = a4(2 f 4
2 (de− l)2z + a2

1l2 ln2 f1)e4z − 4a3dl(− f 4
2 (de− l)z + a2

1l ln2 f1)e3z

+2a2d2l2( f 4
2 z + 3a2

1 ln2 f1)e2z − 4aa2
1d3l2 ln2 f1ez + a2

1d4l2 ln2 f1.
(5-34)

Regarding the analytical equilibria in (5-32), note u1 and u2 are defined as positive
real numbers if, and only if a ≥ d, i.e., the maximum rate of instant adoption a must be
greater or equal than the rate at which the technology is abandoned by users d, which
makes perfect sense, since it ensures that the TS has the ability to stay on the market. Both
equilibria satisfy u1 ≤ u2, indeed, as a ≥ d,
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−a1
√
−2 ln(d/a) ≥ 0 ⇐⇒ e−a1

√
−2 ln(d/a) ≤ 1

⇐⇒ a2
2e−a1

√
−2 ln(d/a) ≤ a2

2
⇐⇒ u1 ≤ a2

2.

Similarly it can be shown that a2
2 ≤ u2. Therefore, u1 corresponds to the strategy of

reducing in the long term the number of transported passengers per mobile unit, and u2

to the strategy of increasing in the long term that number (in deed, using the parameters
described in Table 5-1, particularly a2 =

√
250 as usual here, it is obtained u1 = 59.5111

and u2 = 1050.2242). Particularly,

a = d⇐⇒ u1 = u2,

then, if a = d, both equilibria collide by means of a fold bifurcation.
The function g is an increasing for z > 0, but have some oscillations otherwise. A

numeric method has been used to identify the solutions of g(z) = 0, varying the budget
allocation rate for l < l∗ (partial adoption). The numerical method consists of evaluating
the function g(z) in the interval [−10, 0.1] with a partition of 10000 nodes for a fixed
l (wider intervals were used, but no additional roots were identified). For each pair of
consecutive points in the partition ξ j and ξ j+1 the possibility of changing the sign is found
in order to establish an interval where possibly a root of the function is found; that is to
say, if sign(g(ξ j)) 6= sign(g(ξ j+i)), then the interval [aj, bj] must contain a root of g(z),
where aj = mı́n{ξ j, ξ j+1} and bj = máx{ξ j, ξ j+1} (one, two or four of these intervals were
found depending on the value of a2, but a further analysis of a2 has not been developed
yet, since our focus at this point is one parameter behavior: l ). Each interval is used
in a bisection method (10000 iterations) to identify a good aproximation of z̄j (in every
case, an error was obtained up the order at least of 10−18. This procedure is repeated for
every l ∈ [0, l∗], with a partition of 500 vales for l. Once the solutions z̄ are identified for
each l, they are substituted into the expression (5-33) and scattered in a one parameter
bifurcation diagram, with l in the horizontal axis and the equilibria ui in the vertical axis.
For l > l∗ (total adoption), only the analytical equilibria u1 and u2 (constants on l) were
plot, recall l is defines as a proportion in [0, 1].

Figure 5-8 illustrate the results and using a2 =
√

250 (panels A and B) to illustrate a
scenario with two numerical equilibria (a2 =

√
500 is shown to illustrate a scenario with

four numerical equilibria, see Figure 5-8, panels C and D) and the other parameters are
as described in Table 5-1. The switching line l = l∗ = 0.2349 (panels A and B) has been
illustrated in dashed orange, therefore, at the left is the region of partial adoption, and at
the right is the region of total adoption (for a2 =

√
500, we get l∗ = 0.4013, panels C and

D). Numeric equilibria ui are shown in Figure 5-8A for f1 = 0.9 to illustrate the case when
users favor a TS capable of transporting a lower average number of passengers; the case
when users favor a greater average number of passengers ( f1 = 1.1) is shown in Figure
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Figure 5-8.: AD canonical equation equilibria ui for different values of l (l = l∗ in dashed orange),
for f1 = 0.9 (panel A) and for f1 = 1.1 (panel B); in both cases have been used a2 =√

250. The line color has been used to illustrate the sign of the associated eigenvalue
f ′(ui), blue when positive, then ui is unstable, and red when f ′(ui) < 0, so that
ui in those cases is LAS. Panels C and D illustrate the same situation considering
a2 =

√
500.

5-8B. Similarly, Figure 5-8C corresponds to f1 = 0.9, while Figure 5-8D illustrates the case
f1 = 1.1.

The stability of any equilibria ui is determined by the sign of the real part of the
associated eigenvalue f ′(ui). The explicit expressions of that eigenvalue are determined
for each equilibria u1 and u2 in the expression (5-32), however they are omitted here sin-
ce they are very long. For the numerical equilibria, the explicit expression f ′ is handled
numerically. In order to illustrate stability, it is shown in blue the point corresponding
to an equilibrium ui where f ′(ui) > 0, and therefore a blue curve, is a curve of unstable
equilibria. Conversely, the red curves correspond to curves of equilibria where f ′(ui) < 0
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and therefore LAS equilibria. Note that in both cases, the stable and unstable equilibria
are intercalated, for example, in Figure 5-8A, the equilibria u3 and u4 (for l < l∗) were
obtained numerically, starting from the bottom up, we get that u3 is LAS (attractor), then
u1 is unstable (repulsor), then u4 is LAS (attractor) and finally u2 unstable (repulsor). An
interesting result is obtained for a2 =

√
500 in Figure 5-8C and D, at l = 0.26 approxima-

tely, that is the occurrence of a tangent bifurcation. The analysis of that results is beyond
our objetives at this moment, but interesting dynamics arises when varying multiple pa-
rameter and a series of 2-parameter bifurcation analysis is left for a future work.

When an innovative TS transporting u2 users per mobile unit in average, is made
available, the established TS of attribute u1 is at (or close to) its equilibrium x(u1). Therefo-
re the sign of the fitness function λ(u1, u2) determines whether the innovation invades or
quickly disappears. Moreover, the “invasion implies substitution” theorem [26, 31], says
that if u2 is sufficiently close to u1, invasion under a nonzero “selection gradient” implies
the substitution of the former attribute by the new one. After the substitution transient,
the attribute u1 is eliminated from the TS market and replaced by the attribute u2, that
can therefore be renamed u1, i.e., the new established attribute. In other words, when an
equilibria of the AD canonical equation is LAS, means that successive innovations which
replace those previous, direct the attribute u1 toward the value of equilibria ui, for i as
appropriate. For instance, in the total adoption case l > l∗ and f1 = 1.1 (see Figure 5-8B),
u2 is LAS, it implies that the successive innovations and substittutions increase in the long
term the number of transported users per mobile unit from u1 = 59.5111 to a TS capable
for transporting a greater average number of users per mobile unit u2 = 1050.2242.

5.3.4. Coexistence and divergence conditions

Close to an equilibria of the canonical equation, invasion does not necessarily imply
substitution. Lets consider an attracting equilibrium of the AD canonical equation u, to-
wards where the innovation process directs the number of passengers transported by mo-
bile unit, expanding the fitness function λ(u1, u2) up to second-order w.r.t. both (u1, u2)

at (u, u), both λ(u1, u2) and λ(u2, u1) can be positive close to (u, u), so that both attributes
can invade a market established by the other. As stated in [45, 46, 64] and also included
in [31]), this occurs when coexistence condition,

∂2λ

∂u1∂u2
(u, u) < 0, (5-35)

is satisfied. Considering that the coexistence condition only makes sense for a stable equi-
librium of the canonical equation, in Figure 5-9A, the coexistence condition is shown by
the curve coloring for the equilibria u3, u4 (if l < l∗, partial adoption) and for u1 (if l > l∗

total adoption). As usual, red means that the coexistence condition is negative and blue
indicates positive values.
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Figure 5-9.: (A) Illustration of the coexistence condition (5-35) for different values of l and
f1 = 0.9. (B) The same scenario but f1 = 1.1. The line color indicates the sign if the
coexistence condition in the labeled equilibrium, red when negative and blue when
positive. The parameters are set as indicated in Table Parameters.

Note that for total adoption and f1 = 0.9, although u1 is a LAS equilibria (the only
one), the coexistence condition at u1 is not satisfied, then, under this conditions, is not
possible that an innovative TS, which arises as a technological adaptation of the transport
system characterized by the attribute u1, can enter the market and coexist with it, this de-
finitively eliminates the possibility of diversification. The same happens when f1 = 1.1,
in this case the LAS equilibrium is u2, but as illustrated in Figure 5-9 B, the coexistence
condition is not satisfied either, then the invasion and subsequent permanence in the mar-
ket of an innovative transport TS entering a market dominated by the TS characterized
by the attribute u1 is not possible either.

On the other hand, in the case of partial adoption (at the left of the dashed line
l = l∗), both LAS equilibria u3 and u4 satisfy the coexistence condition, as is illustrated
by the red equilibria curves. However, the coexistence of two different, although similar,
TSs, is only the first step towards market diversification. In deed, what really generates
two different TSs is that the innovation process is such that the successive innovations of
the two coexisting TSs direct the attributes’ evolution of u1 and u2 in opposite directions.
Without going into the theoretical details, (see again [45, 46, 64] or [31]), we have that
the fitness function in the market dominated by a single TS determines the possibility of
diversification. Specifically, if

∂2λ

∂u2
2
(u, u) > 0, (5-36)

then innovations u2 in the attribute u1, invade and replace the established TS of attribute
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Figure 5-10.: (A) Illustration of the divergence condition (5-36) for different values of l and
f1 = 0.9 in the equilibria where coexistence is met. (B) The same scenario but
f1 = 1.1. The line color indicates the sign if the divergence condition in the labe-
led equilibrium, red when negative and blue when positive. The parameters are set
as indicated in Table Parameters.

u1 if u2 < u1, while the same would happen reciprocally if u2 > u1, as a result, the
attributes u1 and u2 get further diversified and the selection in the market is said to be
disruptive at the equilibrium.

According to the results for the coexistence condition, the analysis of the divergence
condition (5-36) should be limited to the equilibria u3 and u4, obtained numerically for
the case of partial adoption. Figure 5-10 illustrates the sign of this condition using the
color assigned to the equilibrium curve, blue when positive and red when negative. Ad-
ditionally, panel A illustrates the case f1 = 0.9 while panel B illustrates for f1 = 1.1, and
the other parameters as in Table 5-1. It can be seen that when users favor the TS trans-
porting a lower average number of passengers ( f1 = 0.9) than the equilibrium u3 satisfies
the divergence condition for any value l < l∗, while the equilibrium u4 only satisfies the
condition for values between the green dashed line, let’s say l̂ = 0.1514 (value that was
determined approximately by identifying the change of sign of the condition between
consecutive equilibria in the curve) and the threshold value l∗ = 0.2349 (orange dashed).
Something similar occurs when users favor a TS with the capacity to transport a large
average number of passengers, in deed, in this case, it is the equilibrium u4 that only
satisfies the divergence condition for values l̂ < l < l∗, while u3 satisfies this condition
throughout the region of partial adoption l < l∗.

The most important of these results is that the region of divergence, which corres-
ponds here to intervals on the parameter l, determines the conditions under which diver-
sification in the TS market is possible. In fact, as previously indicated, when the diver-
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gence condition is satisfied, it means that a TS characterized by the attribute u2 (although
this choice is mathematically arbitrary) arisen from an innovation in the attribute u1 of
the established TS (at equilibrium) before innovation, can not only enter the market and
coexist with the former (market share), but also the selection forces exerted by users di-
rect the evolutionary dynamics of both attributes in different directions, allowing both TS
differ from each other; that is, creating diversity into the market.

Also note the budget allocation rate l plays an important role. Consider for exam-
ple a rate l < l̂ in the scenario in which a lower number of passengers per mobile unit
is favored ( f1 = 0.9) as shown in Figure 5-10A (at the left of the green dashed line), di-
versification only will be possible in the smallest equilibrium u3, which increases from
u3 = 14.5256 when l = 0 to u3 = 18.3951 when l = l̂; on the other hand, when a TS with
the capacity to transport a high average number of passengers ( f1 = 1.1) is favored (see
Figure 5-10B at the left of the green dashed line), the values of the budget allocation rate
l < l̂, will lead to diversification at the greater equilibrium, which in this case decreases
from u3 = 4365.7749 when l = 0 to u3 = 3485.8130 when l = l̂.

The situation is different when the budget allocation rate satisfies l̂ < l < l∗. Indeed,
when the TS with a lower capacity ( f1 = 0.9) is favored (see 5-10A at the right of the
green dashed line), it is possible to obtain diversification in the smallest equilibrium u3

that varies between the values u3 = 18.3951 when l = l̂ and u3 = 18.4445 when l = l∗;
but diversification can also be obtained in the larger equilibrium, which decreases from
u4 = 225.1267 when l = l̂ to u4 = 127.5442 when l = l∗. An equivalent situation occurs
when users favor the TS that transports a higher average number of passengers (see 5-
10B at the right of the green dashed line); in this case, diversification can be obtained
in both equilibria u3 (the large one) and in u4 (the small one); the first decreases from
u3 = 3485.8130 when l = l̂ to u3 = 3477.1164 when l = l∗, while the second grows from
u4 = 274.8999 when l = l̂ up to u4 = 484.1367 when l = l∗.

5.3.5. Origin of diversity through branching

In Figure 5-11, the scenarios before innovation corresponding to partial adoption
(l = 0.2) and total adoption (l = 0.4) in the resident model (5-22) are illustrated in so-
lid black with u1 = 250, and considering user’s preference in favor of a TS capable of
transport a low number of passengers per mobile unit f1 = 1/1.1. In the case of partial
adoption the initial conditions are x1(0) = 0.01 and y1(0) = 1, indicating that the TS
enters the market with all the budget available to invest and a scarce proportion of users,
and reaches the partial adoption equilibrium Ep

1 = (x1, y1) = (0.8885, 0.2). Note that the
TS is not being used to its maximum capacity and the available budget is not fully con-
sumed either, however this TS no longer has the possibility of growing further. The same
initial conditions were used for the total adoption scenario, but in this case, the equili-
brium Et

1 = (x1, y1) = (1, 0.3077) is reached, which clearly indicates that the TS is at its



114 5 Model for the competition among public transport systems

Figure 5-11.: Market dynamics before (solid black) and after diversificación (green and blue) for
users’ preference for low capacity TS ( f1 = 1/1.1). Before innovation the simula-
tions correspond to the resident model (5-29) for partial adoption (l = 0.2) and
total adoption (l = 0.4) and the other parameters as in Table 5-1. After innovation
the simulations correspond to the resident-innovative model (5-29). See the text for
further details.

full capacity and is left an available budget to invest of approximately 30 %.
After the innovation, the dynamics is governed by the model (5-29); Figure 5-11

illustrates the substitution scenario in blue, while the green curves show the diversifica-
tion scenario. As discussed in the previous section, in the total adoption region, neither
of the two equilibria u1 nor u2 satisfies simultaneously the conditions of stability and co-
existence, therefore, an innovation arising from a slight decrease (remember f1 < 1) in the
average number of transported passengers per mobile unit (u1 = 250 while u2 = 225 for
the innovative TS), leads the number of users of the innovative TS, starting from a very
small proportion x2(0) = 0.01, grow to equilibrium x2 = 1, while the available budget,
which starts at y2(0) = 1, reaches the value equilibrium y2 = 0.3076 (dash-dot blue);
that is, the innovative TS reaches the equilibrium of partial adoption; meanwhile, the pre-
viously established transport system (of attribute u1) is removed from the market (solid
blue), in deed, after innovation it reaches the equilibrium Ea

1 = (0, 1) which indicates that
it does not has any market share.

Before describing the market diversification scenario, we first must consider the case
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Figure 5-12.: Evolutionary dynamics of the number of transported passengers when consumer
prefer a TS capable of transported a low number of passengers ( f1 = 1/1.1). In solid
black the simulation of the AD canonical equation for u1 is shown (left) and the co-
rresponding market equilibrium values are shown at the center (x1(u1)) and at the
right (y1(u1)). Similarly, in green they are illustrated the solutions of the canonical
equations after branching for u1 and u2 (right) and the corresponding equilibrium
values in the market (x1,2(u1, u2))-center and (y1,2(u1, u2))-right.

of partial adoption to simulate the AD canonical equation (5-31), which allows us to obser-
ve the evolutionary dynamics of the attribute u1, in the long term, as shown by the solid
black curve in Figure 5-12-left. The initial condition is u1(0) = 250, and the other parame-
ters as described in the caption. It can be seen that the number of passengers transported,
after successive innovations that replace the previous ones, will decrease until reaching
the equilibrium u1 = 181.4252, which is a branching point, in deed, the stability condition
f ′(u1) = −0.000003, the coexistence condition (5-35) in u1 is −0.000020 and the divergen-
ce condition (5-36) is 0.000012. In Figure 5-12-center and -right, the value of x1(u1) and
y1(u1) where u1 is the solution for the AD canonical equation are shown, with the aim is
to illustrate how the evolutionary dynamics of u1 impacts the market equilibrium in the
evolutionary timescale (solid black respectively).

Now the branching point u1 is used to simulate the coexistence scenario in the
resident-innovative model (5-29) with u1 = u1 = 181.4252 and u2 = 0.9u1 = 163.2825
(green in Figure 5-11), l = 0.2 (partial adoption), with the initial conditions for x1 and y1

at the final values obtained in the simulation of the resident model (5-22) (partial adop-
tion solid black) and x2(0) = 0.01 and y2(0) = 1. Solutions for the established TS are
illustrated in solid green and solutions for the innovative TS are shown in dash-dot green.
Note that the innovative TS manages to penetrate the market and coexist with the esta-
blished TS and with an even greater market share x2 = 0.8550 (dash-dot green), while
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x1 = 0.1411 (solid green), reflecting the preference of users for a lower average number of
transported passengers ( f1 < 1); reciprocally, the TS with the greater market share is the
one that finally has the least available budget. In order to illustrate what happens in the
long term, the AD canonical equations for u1 and u2 are deduced (repeating the process
described in the previous sections and using the fitness function (5-14)). The results are
illustrated in Figure 5-12-left, it can be seen that both attributes u1 (solid green) and u2

(dash-dot green) evolve independently, which makes perfect sense, since after branching,
both are governed by different selection forces exerted from the market (the respective
selection gradients). In this case, the market diversifies with two TS that, in the long term,
correspond to one with a greater capacity u1 and another with a smaller capacity u2. The
evolutionary behavior of the market equilibria x1(u1, u2) and x2(u1, u2) are shown in Fi-
gure 5-12-center, and y1(u1, u2) and y2(u1, u2) are shown in Figure 5-12-right, these last
two panels allow us to estimate the equilibrium value of the proportion of passengers
and available budget that there will be in the long term, as the number of passengers
transported by each TS evolves.

Now we are going to show an example in which users prefer a TS with the capa-
city to transport a large number of passengers ( f1 = 1.1). Figure 5-13 shows the curves
corresponding to the resident model (5-22) in solid black for the case of partial adoption
(l = 0.2) and total adoption (l = 0.4 ), in both scenarios the initial conditions x1(0) = 0.01
and y1(0) = 1 and u1 = 160 has been used. In the case of partial adoption, the TS reaches
the equilibrium Ep

1 = (x1, y1) = (0.8514, 0.233). On the other hand, in the case of total
adoption, the TS reaches the equilibrium Et

1 = (x1, y1) = (1, 0.3418).
As shown previously, the total adoption scenario does not allows the possibility of

obtaining evolutionary branching, for this reason, it has been used to illustrate the case of
market substitution. Indeed, the blue curves in Figure 5-13 were obtained by simulating
the model (5-29) with u1 = 160 for the resident TS (solid blue), while u2 = 192 for the
innovative TS (dash-dot blue), note that u1 < u2 is set to reflect users’ preference for
higher capacity transport systems. As expected, the innovative TS enters the market and
increases its participation to its maximum capacity x2 = 1 and ending with an available
budget of y2 = 0.3204. Meanwhile, the TS that was established before the innovation
(solid blue) is definitely eliminated; indeed, the established TS (which before innovation
was in the total adoption equilibrium) reaches the equilibrium Ea

1 = (x1, y1) = (0, 1),
in which there are no users and the entire budget is available to invest. It is important
to note that even in the scenario of total adoption, which guarantees that the system is
100 % occupied, there is still a budget available (a little more than 32 % according to the
parameters used here).

According to the analysis made in the previous sections, it is the partial adoption
scenario that allows diversification. To illustrate this, we will first discuss Figure 5-14-
left that shows the evolutionary dynamics of the attribute u1 in the long term, that is,
the numerical solution of the AD canonical equation (5-31) (solid black) that corresponds
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Figure 5-13.: Market dynamics before (solid black) and after diversificación (green and blue)
when consumer prefer a TS capable of transported a high number of passengers
( f1 = 1.1). Before innovation the simulations correspond to the resident model
(5-29) for partial adoption (l = 0.2) and total adoption (l = 0.4) and the other para-
meters as in Table 5-1. After innovation the simulations correspond to the resident-
innovative model (5-29). The other parameters as indicated in the panel, and Table
5-1

to a branching point (the stability condition f ′(u1) = −0.000001, the coexistence con-
dition (5-35) in u1 is −0.000005 and the divergence condition (5-36) is 0.000003). Note
u1 grows from the initial condition u1(0) = 160 to the evolutionary equilibrium value
u1 = 344.1248. The behavior of u1 has an impact on the values of the equilibria in the
market x1(u1) and y1(u1) in the evolutionary timescale, as illustrated in the solid black
curves in Figure 5-14-center and -right.

Once the branching point u1 has been reached, an innovative TS, characterized by
an attribute u2 that arises from a small variation in the number of passengers transported,
will be able to invade the market and coexist with the previously established TS. Figure
5-13 (green) shows this scenario, corresponding to the resident-innovative model (5-29)
with u1 = u1 = 344.1248 and u2 = 1.2u1 = 412.9498 and with the initial conditions for x1

and y1 at the final values obtained in the simulation of the resident model (5-22) (partial
adoption solid black) and x2(0) = 0.01 and y2(0) = 1. In this case, both transport sys-
tems reach partial adoption equilibria with x1 = 0.1588 and y1 = 0.6025 for the TS with
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Figure 5-14.: Evolutionary dynamics of the number of transported passengers for users’ prefe-
rence for high capacity TS ( f1 = 1.1). In solid black the simulation of the AD canoni-
cal equation for u1 is shown (left) and the corresponding market equilibrium values
are shown at the center (x1(u1)) and at the right (y1(u1)). Similarly, in green they
are illustrated the solutions of the canonical equations after branching for u1 and u2

(right) and the corresponding equilibrium values in the market (x1,2(u1, u2))-center
and (y1,2(u1, u2))-right. The other parameters as indicated in each panel, and Table
5-1

attribute u1, and x2 = 0.8406 and y2 = 0.2435 for the innovative TS with attribute u2.
The described situation effectively illustrates the origin of diversity through branching.
Indeed, after diversification, each attribute evolves independently, attending to different
selection forces exerted by users from the market, in fact, repeating the analysis described
here, with the help of the fitness function (5-14), it is possible to deduce canonical equa-
tions for u1 and u2 that describe their long-term dynamics (see Figure 5-14-left in green).
As can be seen, both attributes evolve towards different equilibrium values, implying that
in the long term the market will maintain the two transportation options, one with the ca-
pacity to transport a low number of passengers u1 = 59.5111 and the other with capacity
to transport a greater number of passengers u2 = 512.6789. This can also be observed
in Figure 5-14-center and -right, where the equilibrium values in the market are tracked
x1(u1, u2) and y1(u1, y2) (solid green) and x2(u1, u2) y y2(u1, y2) (dash-dot green), which
allow to see how the attributes evolution affect market equilibria in the long term.

5.4. Results and Conclusions

A generalized model, called resident model, has been formulated for the competi-
tion between transport systems in a city, considering that the interaction occurs under
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the same market platform, that is, the intervention of irregular transport systems is not
considered. Competition in the market is determined by the proportion of users adop-
ting each transport system and, additionally, a state variable is included to measure the
amount of budget that the investor makes available in order to promote the expansion of
the transportation system among users. The model proposed here is an initial approach
to the phenomenon, it allows for the study of the dynamics of a city’s transport systems in
various scenarios, and to learn under which conditions one transport system may spread
and become stablished in the market as result of competition.

The example illustrated for one transport system, permits the explicit study of the
basic dynamics and learn under which conditions it may be consistency in the market.
For one transport system, it is possible to obtain explicit conditions under which an equi-
librium of partial adoption or one of total adoption by users of the transport system is
reached; in addition, according to this model, both cases are perfectly achievable without
consuming all the available resources. In fact, the model makes possible to establish ex-
plicit conditions for the level of investment required in each case, information that may
be useful in decision making.

Under the assumption that the resident model is at equilibrium (a consideration
based on the fact that governmental entities in charge of formulating the public policies
to govern the market, establish a priori the basic conditions for competition), a generali-
zed model is formulated, called resident-innovative model, to describe competition in the
market when that equilibrium is disturbed by the entry of an innovative transport sys-
tem. The fitness function was determined and the local stability of equilibria of the AD
canonical equation was numerically studied; when they are LAS, means that successive
innovations which replace those previous, direct the number of passengers toward the
value of equilibria, indicating the number of passenger the transport system will trans-
port in the long term.

In the case of partial adoption, a much richer dynamic is obtained, it has been proven
that the AD canonical equation can have multiple equilibria, in some of them branching
is possible. The conditions under which these ramifications occur also depend on the
users’ preference for transport systems with the capacity to transport a high/low number
of passengers. In the case of preference for transport systems with low capacity, it was
shown that before the innovation, the transport system, initially considered to transport
250 passengers (the approximate capacity of a Transmilenio’s bi-articulated in Bogotá),
stabilizes at a capacity approximately of 180 passengers per mobile unit (a capacity very
similar to that currently available for Transmilenio’s articulated buses). After the inno-
vation, a diversification scenario was shown in which a transportation system evolves
towards approximately 1000 passengers per mobile unit (consider that the simulation ti-
me illustrated in Figure 5-12 was not sufficient to determine a numerical value of that
equilibrium) that could be associated with a metro system like the one implemented in
the city of Medellı́n, which has a capacity of approximately 1200 passengers for each
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three-wagons vehicle. Meanwhile, the other transportation system is evolving towards a
capacity of approximately 100 passengers per mobile unit (could be associated with the
bus system). Analyzing the levels of equilibrium in the market, but in the evolutionary
time scale, it was observed that the transport system with the highest capacity is the one
that reaches the highest levels of use by users while being the one with the most available
budget to invest in new users.

On the other hand, in the scenario in which users prefer a transport system with
greater capacity, it was observed that the number of transported passengers must increa-
se from 160 (considered as the initial condition of AD canonical equation and corres-
ponding to the current capacity from a Transmilenio’s articulate) to 344 passengers per
mobile unit, which far exceeds the capacity of the current bi-articulated vehicles, and
suggests the need for a light metro or tram transport system. After the innovation, the
transport market diversifies with two well-established transport systems, one of which
reduces its capacity of transported passengers by mobile unit to 60 passengers (traditio-
nal bus system), while the other increases its capacity from the initial 344 passengers to
513 passengers per mobile unit approximately.

The main insight of this model is that in the presence of a single transportation
system in the city, the users preference significantly influences the course of the evolu-
tion of the transportation system, with respect to the number of passengers; particularly,
increasing the capacity if users prefer high-capacity transport systems, or reducing the
number of passengers per mobile unit otherwise. Depending on the general preference
of the users (interesting method to measure this preference should be implemented), that
single transport system would have to transport from a minimum of 180 passengers to a
maximum of 345 per movie unit. In a diversified transport system, the preference of the
users is counterintuitive (in deed, the transport system with the highest capacity is ob-
tained in the scenario of preference for low transported passengers and vice versa). This
implies that, although preference influences, it is not the determining factor, since other
factors (some of them considered in the selection gradients, the driving force of evolution)
also influence long-term dynamics. In any case, it can be concluded that, regardless of the
preference of the users, four possibilities arise (at least from the exercise here) regarding
the capacity of the transport systems, which are, a transport system with low capacity (
≈ 60 passengers per mobile unit), two transport systems with intermediate capacity (≈
100 passengers one and ≈ 513 passengers the other); finally, the fourth diversification op-
tion involves a mass transportation system with the capacity to transport more than 1,000
passengers per mobile unit.



6. Conclusions and recommendations

In this thesis three mathematical models have been formulated from the perspective
of the adaptive dynamics allowing to describe evolutionary branching, that is the coexis-
tence between resident and similar innovative technologies and their further divergence
in the market space.

The model in chapter three describe the dynamic interaction in the market of two
types of energy, called standard and innovative. By analyzing the model, conditions on
the possibility of invasion on an innovative generation technology can be established in
a market dominated by a conventional generation technology. The adaptive dynamics
canonical equation was studied to know the long-term behavior of the characteristic at-
tributes and its impact on the market. Then we establish conditions under which evolu-
tionary branching occur, that is to say, the requirements of coexistence and divergence
at the singular strategies, whose occurrence leads to the origin of diversity in the energy
market. Repeated process of innovation can give origin to a rich variety of different kinds
of energy generation technologies. However, it is important to note that, this processes of
emergence and disappearance of energy generation technologies is influenced by a wide
range of external and internal factors, which may exert additional selection processes on
innovations. Specific situations should be studied in greater depth and detail in order to
achieve an informed decision making.

The conditions established in this study to classify evolutionary equilibria as bran-
ching points, terminal points or degenerate branching points, can be used as control stra-
tegies that allow to reach precise objectives in relation to the long-term behavior of the
energy market, particularly on the stated decision to prevent/promote market diversifi-
cation. It is inferred from the analysis of the model, under the assumptions considered
here, that for the energy market to function in a “healthy” manner, it is necessary to exer-
cise strict control over the taxes or subsidies that are decided to apply to the sources of
energy generation, depending on the objectives that the regulatory agent wants to achie-
ve. If the objective is to promote market diversification, it must establish interaction rules
that locate the system in the branching region (favoring innovative generation technolo-
gies over the previously stablished), but if, on the contrary, the regulatory agent wants to
avoid that new generation technologies have the possibility of entering the market, it is
in the region of terminal points, or even the degenerate evolutionary branching region,
where the system must be located. In this way, the tax/subsidy relationship together with
the conditions of evolutionary branching, become control strategies that not only have a
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direct impact on the market in a short time scale, but also determine its structure in the
long term. This way of analyzing control strategies (associated with diversification) is par-
ticularly interesting and differs significantly from the classical strategies of Mathematics
and Engineering.

In chapter four, a deterministic model describing coffee production and harvesting
of a coffee crop was formulated considering mature and immature coffee berry borer po-
pulations to reflect the damage caused by their reproduction and feeding habits, as well
as their impact on coffee quality. Harvested coffee was divided into two categories in
function of quality, low quality being when coffee is produced with a large proportion
of bore-damaged grains and, conversely, high quality coffee being produced with a high
proportion of healthy grains. Quality is considered to be a quantitative differentiating
attribute between competing coffee types. Under coffee berry borer (CBB) persistence,
there is at least one stable equilibrium that corresponded to the presence of every density
considered in the model: the invasion equilibrium, whose local stability helps to show
that the invasion equilibrium instability is related to the possibility of an initial density of
special coffee to spread into the market. The study of the long-term dynamics of quality
traits from the perspective of adaptive dynamics, allowed for the establishment of condi-
tions under which evolutionary competition between standard and special coffees results
in invasion, coexistence, and divergence, making clear that the net reproduction rate of
coffee berry borer is a threshold of determining importance as does the consumers’ prefe-
rences regarding coffee quality, and the bifurcation threshold. They play important roles
in diversification through innovation, and permitted the formulation of policies for the
control of mature CBB and the effective consumption rate of CBB, which, in turn, guaran-
tee the possibility of market diversification. In deed, the decision to apply, or not, strict
CBB population control strategies, directly impacts the possibility of diversification in the
market, beyond the obvious scenarios in which eliminating CBB leads to top quality cof-
fees, while strictly controlling the pest (looking for elimination) leads to coffees of the
lowest quality. In general, the possibility of diversification in the market is closely linked
to the existing relationship between the preference of users for high/low quality and the
control strategies that are implemented in each case, before and after diversification.

Again, the close relationship that analysis through adaptive dynamics theory and
control strategies leads us to believe that further studies should be performed, in order to
consider alternate forms of quality differentiation, such as the introduction of innovati-
ve, agro-industrial processes that affect coffee washing, drying, roasting, or other crucial
processes in coffee production, transformation, or commercialization. Finally, it is impor-
tant that in Colombia a system that allows collecting, analyzing and disseminate accurate
information on the production, processing and sale of specialty coffees be defined, even
more considering that these products have become the main source of income for small
producers that can access better economic benefits by producing high quality coffees va-
lued by consumers for their consistent, verifiable, and sustainable attributes, for which
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they are willing to pay higher prices, which results in higher producer income and wel-
fare.

In the fifth chapter a generalized model has been formulated for the competition bet-
ween transport systems in a city, considering that the interaction occurs under the same
market platform and competition is determined by the proportion of users adopting each
transport system and, additionally, a measure of the amount of budget that the investor
makes available in order to promote the expansion of the transportation system among
users is considered. Later, under the assumptions of stability, a generalized model is for-
mulated, to describe competition in the market when that stability is disturbed by the
entry of an innovative transport system. From the perspective of the adaptive dynamics,
it is possible to determine general conditions that must be met to guarantee or not the
success of the innovation as the one managing to penetrate and expand into the market.
Additionally, the approach through adaptive dynamics is used to establish the long term
dynamics of the quantitative attribute and permits the classification of the evolutionary
equilibra, particularly as evolutionary branching points; i.e., singular strategies in which
diversification arises.

It was shown that in a single transport system scenario, the users’ preference for
high/low capacity systems directly influences the evolutionary dynamics of the number
of transported passengers, bringing the system to a low value of approximately 180 pas-
sengers when low-capacity systems are favored, or at a value of about 344 passengers
per mobile unit, when high-capacity transport systems are preferred. When the market
diversifies, the user’s preference becomes less influential. Indeed, under the diversifica-
tion scenarios, four transport options were found that can be established in the market,
two of them involving intermediate capacity systems (100 or 513 passengers per mobile
unit) and two others that correspond to extreme values (one of low capacity with ap-
proximately 60 passengers and a massive system transporting over 1000 passengers per
mobile unit). This result may indicate that the needs on the transport systems cannot be
met using only buses; in deed, on the one hand, highlights the importance of diversifying
the city with different systems of different capacities, on the other hand, really massive
transport systems such as a metro or tram are required.

In the execution of this thesis, the necessary theoretical aspects surrounding the
theory of adaptive dynamics were reviewed, which constitutes a referent that allows ad-
dressing the issue of technological innovations and how their evolution on the evolu-
tionary time scale is influenced by the selection forces that users/consumers make in the
market. Adaptive dynamics theory describes the evolution of attributes using an ordinary
differential equation, which relates the dynamics on a market scale with evolutionary dy-
namics in the long term. Although this approach has been widely used in the study of
phenomena in biology and ecology, are the applications to market contexts and techno-
logical innovation that makes it an attractive and certainly useful tool in different con-
texts of engineering, economics and the administration. In general, a judgmental analysis
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of the proposed models and robust simulation tools should be created, in order to ma-
ke meaningful contributions and adequately support decision-making in those contexts.
Particularly interesting is how the analysis of phenomena mediated by this tool, allows
the discussion of control strategies to be carried out in an alternative way to the classic
tools of dynamic systems and control theory, in deed, this tool allows us to predict the
effect that control strategies implemented on a short time scale (let’s say the market), can
have on the long term on an evolutionary time scale. This is particularly important when
contrasted with the stated intention of promoting or preventing diversification.



A. Glossary

Allele. Correspond to different subsequences of genetic letters A, C, G and T (see
DNA) that are possible for a gene.

Attractor. Selection is an autonomous process (work in the absence of mutations
and external influences) and, as such, drives the system toward a regime, which can be
stationary as well as non stationary (periodic or wilder, so-called chaotic regime). Such
regimes are called attractors of the dynamical process, since they attract nearby states.

Chromosomes. They are structures, the genetic material of all the species is organi-
zed in so called chromosomes, composed of a DNA molecule and a protein coat.

Demographic dynamics. The population dynamics driven by selection (ecological
or short-term).

Demographic timescale. Characteristic timescale on which the process of selection
drives the system toward one of its attractors.

Demography. Dynamical process that regulates population abundances. Is a non
autonomous process; i.e. not solely determined by the current state.

Deterministic demographic models. Are justified only when the actual number of
individuals in each population is sufficiently large to avoid accidental extinction risks
(demographic stochasticity). We assume that even small abundances correspond to rela-
tively large numbers of individuals.

State of population: determined by the genotypic distribution, which gives the abun-
dance of all genotypes present in the population in a given time.

Dynamics of the population: are the changes in time of the genotypic distribution
that result from birth, death, and migration of individuals.

Dimorphic. See polymorphism.
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Disruptive selection. Also called diversifying selection, describes changes in popu-
lation genetics in which extreme values for a trait are favored over intermediate values. In
this case, the variance of the trait increases and the population is divided into two distinct
groups.

DNA. A DNA molecule consist of two helices of alternating sugar and phosphate
molecules, where each sugar binds to one of four possible molecules called DNA bases:
adenine (A)-thymine (T) and cytosine (C)-guanine (G).

Evolutionary branching. Under the effect of disruptive selection a monomorphic
population may turn dimorphic with respect to some relevant phenotypes, undergoing
what is called an evolutionary branching.

Evolutionary dynamics. In the idealized case of extremely rare mutations, we can
define evolutionary dynamics as the sequence of attractors visited by the demographic
dynamics.

Evolutionary timescale. The timescale on which an evolutionary dynamics deve-
lops.

Fitness. Word used in the biological context to stand for overall ability to survive
and reproduce. Quantitative the fitness function of an individual is defined as the abun-
dance of its progeny in the next generation or, equivalently, as the per-capita growth rate
of the group of individuals characterized by the same phenotypic values, i.e. the abun-
dance variation per unit of time relative to the total abundance of the group.

This definitions say that the abundance of individuals characterized by a given set
of phenotypic values is increasing, at a given time, if the associated fitness is, respectively,
larger than one or positive.

Gene. The portion of the DNA molecule corresponding to a locus is a gene, and may
take one of several forms, called alleles.

Genetic drift. At each generation, the genes that control selectively neutral phenoty-
pes, or that are altered by mutations with no phenotypic effect, are a sample of the genes
present in the parental population, whose offspring are not filtered by any selection pres-
sure. The accumulation of differences in such genes (and related phenotypes) produces
an evolutionary change that biologist call genetic drift.

Genome. The genome of a species is the set of all possible chromosomes characteri-
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zing an individual of the species and is therefore defined by all allelic forms of all genes
of the species.

Genotype. The genotype of an individual is a particular genome relization, given
by the chromosomes carried by the individual.

Loci. Plural of locus.

Locus. Is a particular subsequence of genetic letters (within the sequence of genetic
letters representing a chromosome), whose number, lengths, and positions are specific of
the type of chromosome.

Monomorphic. See polymorphism.

Mutation. Phenotypic changes that reflect heritable changes in the organism genetic
material.

Phenotype. Any individual characteristic determined, to some extent, by the ge-
notype is called a phenotype or phenotype trait, and is therefore a heritable characteristic
from parents to the progeny.

Polymorphism. Is the phenotypic variability within populations. May take the form
of discrete differences, or that of a continuous range of measurable values.

Population genetics. Focusses on the change of genotypic relative abundances, of-
ten called frequencies, but ignores, at least in its classical formulations, the change in
genotypic absolute numbers.

Red Queen dynamics. Independently of sex, we refer the Red Queen dynamics as
evolutionary dynamics that in the absence of external forcing (constant abiotic environ-
ment) lead to non stationary evolutionary regimes.

Species. Can be defined as a group of morphologically and genetically similar in-
dividuals that, when reproduction is sexual, are capable of interbreeding and reproducti-
vely isolated from other such groups.

Trait. Phenotypes with an effect on fitness are able to adapt to the environmental
conditions experienced by individuals and are therefore say to be adaptive; they are of-
ten called adaptive traits and, most of the time simply traits.
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ca Skrebsky Richter, and Marcia Santos da Silva. Inovação em serviços de transporte
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