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Resumen

Método para la detección automatizada de defectos en la producción de láminas

de acero alfajor mediante visión artificial y aprendizaje profundo

La detección de anomaĺıas es de gran importancia en la producción de placas de acero para

garantizar que los productos no tengan defectos. En los últimos años han surgido varios

métodos de aprendizaje profundo para la detección de defectos en superficies de acero

limitándose principalmente a superficies de acero planas. Además, la detección de

anomaĺıas basada en el aprendizaje profundo sigue siendo una tarea dif́ıcil si no se dispone

de suficientes muestras de entrenamiento, lo que suele ocurrir en escenarios del mundo real.

En cuanto a las placas de acero texturizadas, como las láminas alfajor, la disponibilidad de

muestras anómalas es baja, ya que las producciones están optimizadas para minimizar la

aparición de defectos. Por lo tanto, el objetivo principal de este trabajo es la determinación

de un método adecuado basado en el aprendizaje profundo, para la detección de anomaĺıas

superficiales en placas de acero texturizadas. Se entrenaron varios modelos, los que se

compararon en términos de capacidad de segmentación y precisión de clasificación. Por un

lado, se adaptó una red neuronal convolucional pre-entrenada en defectos artificiales a

imágenes procedentes de una ĺınea de producción diferente, de la que solo se dispońıa de

datos libres de anomaĺıas para su entrenamiento. Por otro lado, se entrenó un

autocodificador de forma semi-supervisada para reconstruir imágenes libres de anomaĺıas,

con el fin de identificar las regiones defectuosas midiendo el error de reconstrucción.

Además, se realiza un análisis del espectro de frecuencias para las imágenes de placas de

acero texturizadas bajo la aplicación de la transformada discreta de Fourier. Se descubrió

que un autocodificador de reconstrucción entrenado con una función de pérdida que mide

la similitud estructural, proporciona las localizaciones más precisas de las anomaĺıas

superficiales.

Palabras clave: Aprendizaje profundo, detección de anomaĺıas, autoencoder, CNN,

similitud estructural.
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Abstract

Automated defect detection approach for production processes of patterned

steel plates using computer vision and deep learning

Anomaly detection is of great importance in the production of steel plates, in order to

guarantee that the products are defect-free. Various deep-learning approaches for

defect-detection in steel surfaces have emerged in the recent years, however, they are

mainly limited to plain steel surfaces. Furthermore, deep-learning-based anomaly detection

is still a challenging task if not enough training samples are available, which is often the

case in real world scenarios. As for patterned steel plates, the availability anomalous

samples is low, as productions are optimized to minimize the occurrence of defects. Hence,

the main purpose of this work is the determination of a suitable deep learning-based

method for the detection of surface anomalies in patterned steel plates. Several methods

were trained and compared in terms of segmentation ability and classification accuracy. On

the one hand, a convolutional neural network pretrained on artificial defects was adapted

to images from a different production line, of which only anomaly-free data was available

for training. On the other hand, an autoencoder was trained in a semi-supervised fashion

to reconstruct anomaly-free images, in order to identify defective regions by measuring the

reconstruction error. Moreover, an analysis of the frequency spectrum for images of

patterned steel plates under the application of discrete fourier transform is provided. It was

found out that a reconstructing autoencoder trained with a structural similarity loss

provided the most accurate localizations of surface anomalies.

Keywords: Deep learning, anomaly detection, autoencoders, CNN, structural

similarity
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1 Introduction

1.1. Motivation

Quality control plays an important role in industrial settings. It aims to verify that the

produced goods are defect-free, in order to avoid losses for the company, dissatisfaction of

the clients and prevent safety issues.

One typical method of quality control is surface inspection, which is used to find superficial

irregularities, such as cracks, scratches or dents [36]. Traditionally, such quality related

inspection tasks are often carried out by human workers who are trained on detecting

complex surface anomalies [46]. But investigations have shown that automated solutions

also have great potential [13] [57]. The benefits of automated solutions are numerous: On

the one hand, surface inspection tasks are often monotonous and tiring. Hence, human

inspection is susceptible to errors, as defects can easily be overlooked due to fatigue or

distraction. In fact, observations have shown that humans present a failure rate of 20 % to

30 % in complex visual inspection tasks [42]. Automated systems are not influenced by

these and other individual factors, such as the inspector’s experience, visual acuity or

personal condition. On the other hand, automated systems have a 24/7 availability. Once

implemented, they can run for many years and save running costs.

Hence, it is not surprising that a lot of research has been carried out in the area of

automated defect detection. Many approaches focus on the analysis of 2D images of

produced goods [23] [28] [47] [54]. Therefore, the products are scanned with camera

systems and afterwards processed automatically by means of computer vision, a

sub-discipline of machine learning, that deals with the computational processing and

analysis of digital images in order to understand their content.

Traditional computer-vision methods, including structural, statistical, filter-based or

model-based methods [53], focus on the manual extraction of significant features. The

selection and application of these techniques require a lot of domain knowledge and a

profound understanding of the process.

More recently, deep learning architectures, which are based on neural networks, have

become a very popular tool for visual detection problems and an alternative to manual
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feature extraction techniques, as these architectures are able to learn relevant features

autonomously. Their growing popularity was enabled by the increasing computational

capacities of the recent years. Especially Convolutional Neural networks (CNNs) are widely

used in image processing tasks. Several investigations have shown that neural network

approaches can achieve promising results in image processing tasks or even outperform

traditional methods [49] [52].

One industrial sector, in which computer vision-based defect detection solutions are

applied, is the steel industry, for example for the inspection of steel strips and steel plates.

The German company IMS Messsysteme GmbH develops and manufactures camera

systems which monitor such steel production processes. Their systems are already capable

of detecting defects in plain steel plates, but are not yet developed to analyse structured

surfaces, such as patterned steel plates. Also in the scientific literature, the focus is mainly

drawn on plain steel surfaces, for which there can be found numerous publications (e.g. [13]

[18] [20] [26] [43] [27] [57]), whereas there is still a lack of information about automated

defect detection solutions for patterned steel.

This is taken as motivation to investigate the applicability of computer-vision techniques to

images in patterned steel plates, in order to detect anomalies in their surfaces. Hence, the

goal of this thesis is the development of a computer-vision based solution, which can detect

such anomalous regions in patterned steel plates. Following the current state of the art, the

focus is hereby set on deep-learning architectures.

The success of such deep learning methods is highly dependent on the availability of suitable

data. In anomaly detection tasks, a large image data set which contains both defect-free and

anomalous examples is the optimal case. However, in industrial defect detection problems,

the availability of such data is often limited, as the companies try to minimize the appearance

of defects. Hence, anomalous data is often scarce. For the realization of this work, an image

data set of patterned steel plates was collected, which faces the same problem, containing

almost no defective image samples. In order to overcome this problem, the main focus of

this work is the implementation of a semi-supervised deep-learning method, which can be

trained without anomalous data.

1.2. Problem formulation

Currently, automated defect detection in patterned steel plates, such as diamond plates, is

still a challenging task. This is due to their complex surface structure, for which existing

algorithms for plain steel defect detection based on gray level analysis methods and

thresholding can not be directly applied. Inhomogeneous lighting and dirt particles on the

camera lens complicate automatic detection even more. But recent investigations have
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shown that deep-learning algorithms obtain promising results in the area of texture

analysis [36] and anomaly detection [13] [18]. Inspired by this, a previous project closely

related to this work was realized by the author as master’s thesis at the University of

Duisburg-Essen to develop a supervised deep-learning approach for defect detection in

diamond plates.

However, the approach presents one great difficulty: the developed method is a supervised

deep-learning method, which depends heavily on the availability of both defective and

defect-free image samples. This is a problem, as defective data is difficult to obtain. The

reasons are, on the one hand, that defects occur at very rare intervals and, on the other

hand, that the data captured by the camera systems is not necessarily saved for later use,

as this would require a lot of computational storage capacity. Consequently, the probability

that recording is activated precisely when a defect occurs, is so small, that the data sets

lack of sufficient defective images. In the previous work a workaround was found by

creating defective data synthetically. However, this solution is not ideal, as the creation of

suitable defective images is a laborious and time-consuming process that may require

manual adjustment to make the defects look realistic. It also complicates the adaptability

to other production lines, for which usually also no defective data is available and a

synthetical creation of defect data for each unknown production line is little practical.

Furthermore, it is difficult to verify how good the artificial defect samples represent real

defects and hence, if they are an adequate instrument to train a system that is to be

applied in a real world scenario.

Consequently, the focus of this work is drawn on finding a deep-learning algorithm for

patterned steel plates with a good adaptability to new production lines, which does not

depend on the creation of synthetical defect data for each production line. In this case,

semi-supervised deep learning methods, which do only require normal but no anomalous

data for training, are a suitable instrument. Inspired by publications on other anomaly

detection problems [5] [4] [25] several deep learning methods were elaborated and the

performance on anomaly detection in patterned steel plates evaluated with the aim to

integrate the best solution into existing vision-based defect inspection systems of the IMS

Messsysteme GmbH.

1.3. Aims

This work aims to contribute a comparison of deep-learning based computer vision

solutions, which can automate the defect detection in patterned steel plates. Hence, this

work provides a promising approach for the optimization of quality control in steel

production. Several architectures were investigated and evaluated. In the industrial

context, this is interesting for the companies that desire to improve their production
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processes. From the investigational point of view, the aim of this work is to present

advances in semi-supervised deep learning, exploring suitable methods on a patterned steel

product, which is so far not widely investigated. To reach this goal, this work presents the

following contributions:

General objective: Development of deep-learning based solution for the defect detection

in patterned steel plates, which is easily adaptable to unknown data of different production

lines and only depends on anomaly-free data.

Specific objectives:

Selection, implementation and evaluation of different deep-learning approaches:

• Transfer learning with only anomaly-free data of a pretrained supervised

architecture,

• Investigation on semi-supervised deep-learning architectures, which can be trained

on exclusively defect-free data from scratch,

Analysis and optimization of the investigated approach by varying the deep learning

parameters,

Systematic evaluation of the different approaches.



2 Background

In this chapter, some relevant background information related to defect detection in

patterned steel plates is provided. A short introduction to the production process of

patterned steel is given. Furthermore, a literature review provides an overview over

significant work that has already been published in the field of surface defect detection and

the concepts of supervised, semi-supervised and unsupervised learning are introduced.

Finally, a general summary of preceding work related to defect detection in patterned steel

plates carried out by the author of this work, as master’s thesis for the University of

Duisburg-Essen, is presented at the end of this chapter.

2.1. Introduction to the production of patterned steel

Patterned steel plates, also known as diamond plates, checker plates or floor plates, are a

steel product with diamond or teardrop shaped elevations. This texture gives the plates their

anti-slip properties, for which they are often used as anti-slip floors.

According to the German norm DIN EN 10363 [11] “Continuously hot-rolled patterned steel

strip and plate/sheet cut from wide strip - Tolerances on dimensions and shape”, there exist

three designs of steel diamond plates, with either a diamond/rhombus pattern (type R) or

a teardrop-shaped pattern (type T and A, of which one has teardrops with sharp and the

other with flattened corners). An example for both a teardrop patterned and a diamond

patterned plate is given in Figure 2-1.

(a) Teardrop pattern (b) Diamond pattern

Figure 2-1: Example of two different designs of patterned steel plates, design T and design

R according to DIN EN 10363
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The steel plates are usually produced in a hot rolling process, during which steel is pressed

into the desired shape in by a rolling mill at high temperatures. In such processes, steel plates

with lengths of several hundred meters or even various kilometers length can be produced

continuously. The systems of the IMS Messsysteme GmbH are designed to be installed as

part of the production line, in order to scan the plates directly after rolling. The plates are

passed through the camera system and can be scanned from both the top and the bottom.

Several line scan cameras are installed in a row in order to capture the whole width of the

steel plates. Figure 2-2 shows a simplified schematic representation of the scanning process

with several cameras scanning the top side of a patterned plate.

Figure 2-2: Schematic representation of the scanning process of patterned steel plates by

parallelly installed line scan cameras

2.2. Basic Concepts

2.2.1. Computer vision

Computer vision is a scientific field that deals with the extraction of meaningful

characteristics from images or videos [10]. Traditional computer vision methods focus on

the manual feature extraction from the images. The extracted features, also called
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hand-crafted features, can then be combined with classifiers like SVM [45], decision trees or

random forest classifiers [7]. Many modern approaches apply artificial neural networks,

which are able to learn relevant features and classification tasks automatically.

2.2.2. Machine Learning and Deep Learning

Machine Learning can be described as an application of artificial intelligence that can

“automatically learn and improve from experience without being explicitly programmed to

do so” [29]. Within this field, deep learning is a sub-discipline of machine learning, which

makes use of deep neural networks in order to solve machine learning tasks. Neural

networks which are considered as “deep”, consist of multiple trainable layers. This enables

the network to learn highly complex characteristics and find complex patterns and

structures in the exploited data [14]. Some typical applications of deep learning are speech

recognition, autonomous driving, fraud detection [8] or computer vision including defect

detection [5].

2.2.3. Convolutional Neural networks

Within computer vision tasks, Convolutional Neural Networks (CNNs) are a widely used

network type, being named after the convolutional layers they are composed of. These

layers consist of a trainable kernel, which is stridden over the layer’s input, e.g. a 2D or 3D

image, producing an output called feature maps [35]. Their kernels allow the network to

extract meaningful features while maintaining the number of trainable parameters

relatively low in comparison to other layer types such as fully connected layers. A CNN can

be used for different image processing tasks, for example image classification or image

segmentation.

Classification networks: Classification networks are used to classify the images into

different categories or classes by assigning a label or classification score to each input

image.

Segmentation Networks: Segmentation networks are used to localize objects in an image.

In contrast to classification networks, which output a single class label for the whole image,

the segmentation network returns a mask that labels every pixel of an image and assigns it

to a certain class [35].

2.2.4. Autoencoders

Autoencoders are a special type of neural network that consist of an encoding and a

decoding part. The encoder is used to create a compressed representation of the input

data, usually for dimensionality reduction [1]. The decoder tries to reconstruct the original
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input from the reduced encoded representation. Both the encoder and the decoder can

consist of multiple trainable layers. If the network layers are convolutional layers, the

network is called Convolutional Autoencoder (CAE) [56]. They are commonly used in

image segmentation or image reconstruction.

2.2.5. Anomaly Detection and Surface Defect Detection

Anomaly detection describes the process of identifying untypical data points whose

characteristics differ from the normal data [58]. Surface defect detection, on the other

hand, describes the identification of anomalies in the surface structure of materials or

objects. Many surface defect detection methods focus on computer vision. While some

approaches are based on neural networks, others use more traditional techniques, where

significant features are extracted manually instead of being self-learned by the system [53].

Surface defect detection can be considered a type of anomaly detection, when classifying

into defective and defect-free. Other approaches aim to distinguish between different types

of defects [13] [18].

2.2.6. Anomaly Detection Techniques

Depending on the available data, anomaly detection techniques can be roughly classified

into three groups, namely supervised, semi-supervised and unsupervised methods [8]. In

anomaly detection, a data sample can be either normal or anomalous.

Supervised: Supervised algorithms for anomaly detection require labelled training data of

both the normal as well as the anomalous class. This means, that for each training data

sample the desired result is known and the network is trained on predicting a result that is

as close as possible to the desired result.

Unsupervised: Unsupervised learning techniques do not require any labelled data. This

has the benefit that the laborious labelling process can be avoided. The system is trained

on data samples of which it is not known if they are normal or anomalous, however, making

the assumption that normal samples are much more frequent than anomalous samples [8].

Semi-supervised: Semi-supervised methods depend only partially on labelled data. In the

context of anomaly detection, it is often assumed that there is only labelled normal data, but

no labelled anomalous data [8]. Such as unsupervised learning, these techniques are useful if

anomalous data is hard to obtain, which is often the case in industrial use-cases.
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2.3. Literature review

Automated defect detection in industrial settings has been widely investigated [53] and

applied to many use cases, such as surface inspection of LED chips [24], wood [38], textiles

[17] [33], or metals [54]. Within the latter, Neogi et al. [32] provide an overview over several

defect detection and classification methods for the steel industry.

2.3.1. Supervised approaches

A great variety of different approaches has been proposed for supervised anomaly detection

in steels and other materials. While Paulraj et. al [34] provided a technique for crack

identification in steel plates based on vibration analysis, many other methods focus on

computer-vision [13] [18]. An Inception-V4 [9] based CNN architecture for the classification

of different defect types in hot rolled steel plates and steel strips was presented by He et al.

[13], achieving classification results of around 95 %. Zhou et al. [57] proposed a very simple

network combining convolutional and pooling layers to classify self-collected images of

seven defect types in hot-rolled steel sheets, achieving classification error rates of just

0,63 %. Another approach, based on Local Binary Patterns combined with nearest neighbor

and SVM classifiers was developed by Song et al. [43]. They introduced the NEU dataset,

which contains images of six defect types from hot rolled steel plates.

The same dataset was used by He et al. [18], who extracted features of different scales from

various layers of a pretrained CNN architecture and combined the features in a neural

network they called multifeature network. In contrast to the previous mentioned

approaches, their method is not only used for the classification of images, but also to

segment the defect areas within the images. Another deep learning method for both

segmentation and classification that was tested on the NEU-dataset, was based on a CNN

architecture named DeCaf [38] and achieved classification accuracies of 99.27 %. Huang et

al. [20] used a dataset named SD-saliency-900, which contains 900 images of three defect

types in hot rolled steel strips, to test a CNN with depth-wise convolutions for

segmentation based on U-Net, an architecture that was introduced in a biomedical context

by Ronneberger et al. [39] for the segmentation of neural cell structures. This architecture

has become widely adopted for image segmentation problems, especially in the medical

sector [16] [44]. The U-Net with depthwise convolutions achieved good segmentation results

of steel defects in comparison with other variations of U-Net.

However, the aforementioned methods were tested on images of plain surfaces. Attempts

for anomaly detection on structured surfaces applying CNNs were proposed by Weimer et

al. [52], Huang et al. [19] or Racki et al. [36], who tested their models on the DAGM

dataset, a synthetically created image collection which contains 10 types of different
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textures, each providing normal and anomalous images. Racki et al [36] proposed a

two-stage segmentation and classification network, based on a light-weight architecture

that requires low computational costs. Their architecture was refined by Tabernik et al [46]

and Bozic et al. [6] and tested on a dataset of electrical commutators as well as on another

dataset of plain steel surface images named Severstal steel dataset.

Other investigations on textured structures were published for the textile sector. Li et al.

[23] combine several small CNN architectures to a wide but compact network, in order to

detect typical fabric defects. With another fabric dataset, Zhang et al. [55] tested several

network architectures based on YOLO [37], a well known network for image segmentation. A

method for defect classification which requires only a small amount of samples was proposed

by Wei et al. [51]. However, although the amount of defective samples can be small for some

approaches, all of the methods require defect samples for training. In order to overcome this

problem, unsupervised or semi-supervised methods can be more suitable.

2.3.2. Unsupervised approaches

Unsupervised approaches, which do not require labelling of images, are often based on

autoencoders. In a setting where defective samples are rare or not available, the

autoencoder learns a feature representation that can reconstruct the pattern of defect-free

samples and fails to reconstruct defective anomalies [25]. An architecture for patterned

fabric anomaly detection was proposed by Mei et al. [28], who trained an architecture of

stacked autoencoders on different levels of a gaussian pyramid.

In another approach an autoencoder was trained with an optimized loss function, adding

some regularizers to it, in order to minimize the distance and restrict the spread range of

defect-free samples [47]. It was trained on the MVTecAD dataset, an image collection of 15

sub-datasets of different patterns and objects, such as carpet, grid, bottleneck or screws [3]

[2] collected by Bergmann et al. The dataset was tailored to unsupervised anomaly detection.

Each sub-dataset consists of solely defect-free samples for training and both defect-free and

defective samples and their corresponding ground truths for testing. The creators of this

dataset themselves proposed two unsupervised deep learning approaches, which they tested

on the dataset. On the one hand, they proposed to train a convolutional autoencoder with a

structural similarity loss function, which encourages the network to minimize the differences

in mean value, variance and covariance between the input image and its reconstruction [5].

They could show that this method let to improved results in comparison with the widely

used L2-loss, which minimizes the squared difference between each pixel of the input image

and its reconstruction. On the other hand, they proposed an approach where several student

networks learn to predict the output of a pretrained teacher network. It is based on the idea

that the student networks, which were only trained on regressing anomaly-free samples, fail
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to reconstruct the teachers output for anomalous samples. The authors tested their methods

against various unsupervised deep learning approaches [3]. One of these approaches was

designed to extract features of good data with a CNN and cluster them in a dictionary,

finding anomalies by checking how much a test sample deviates from the learned features

in the dictionary [30]. Other approaches proposed by Schlegl et al. [41] [40] were based on

General Adversarial Networks (GAN) and originally introduced in the context of medical

image processing. GANs consist of a generator and a discriminator, which are trained in

an adversarial way, such that the generator learns to create real looking images, while the

discriminator is trained to distinguish between real images and the generator’s fake images.

In comparison to these network types, both the student-teacher network [4], as well as the

SSIM autoencoder [5] performed well in their respective comparative analyses.

2.3.3. Semi-supervised approaches

The MVTec dataset was further adapted to several semi-supervised learning approaches

[25] [31] [48], which were also based on autoencoders. Liu et al. [25] designed an

encoder-decoder-encoder structure, where the reconstructed image of the decoder is

encoded again into a latent vector. A residual of the two latent vectors of both the input

image and the reconstructed image was taken as a measure for the presence of anomalies.

Wang et al. [48] proposed an autoencoder, where the ideal dimension of the latent space is

determined by a probability model. Both Liu et al. [25] and Wang et al. [48] trained their

models on solely defect-free data. Napoletano et al. [31] extended the autoencoder

structure by interposing a normality pass filter between the encoder and the decoder in

order to filter out anomalous features. They detected anomalies by comparing the output

of an autoencoder with and an autoencoder without a normality pass filter. The

autoencoder was trained primarily on a large independent image database and then

adapted on only defect-free samples.

Other approaches apply another concept of semi-supervised learning. Instead of relating it

to the presence of only the anomaly-free images, it is related to the kind of training

procedure, which is partially executed in an unsupervised manner, and partially in a

supervised manner. One example is the classification approach by He et al [12], who

trained an autoencoder in an unsupervised manner on defect images in steel strips and

steel plates, in order to extract significant features and then use the feature vector of the

encoder as a discriminator which can classify different defect types, which was further

trained in a supervised manner.

An example from the textile industry was provided by Li et al. [22]. Two stacked

autoencoders were trained, one of them on positive and negative samples and the other on

only negative samples, using the residual of their outputs for defect localization. The
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autoencoders were firstly pretrained in an unsupervised manner before being stacked and

fine-tuned on a labelled dataset. Although being designed for use cases with limited

defective samples, the availability for at least some defective samples is crucial for this

approach.

The above mentioned approaches provide a wide overview over the current state of the art

with respect to anomaly detection in both plain as well as several patterned and structured

surfaces. The introduction of the MVTecAD dataset as well as the corresponding

investigations by Bergmann et al. [5] [3] provide a good baseline for anomaly detection

approaches which can even be trained without anomalous images. However, the approaches

do not cover investigations on patterned steel plates. For this reason, this work focuses

precisely on patterned steel anomaly detection. Inspired by the investigation of Bergmann

et al. [3] semi-supervised autoencoders are investigated as optional method. They are

compared to the adaption of a supervisedly trained architecture which was developed in

some pre-work by the author. It differs from the focus of this work by having been trained

on artificially created defect data and is further introduced in the following section.

2.4. Previous work

Prior to this work, a supervised deep learning method for the detection of defects in patterned

steel plates has been elaborated. Inspired by the architecture of Racki et al. [36] a CNN-

based network structure was implemented that produces two outputs: a segmentation map,

which provides a pixel-wise location of defects and a classification score, which labels an

analysed image as either defect-free or defective. As only defect-free image material was

available, a synthetical data set of defective images was generated by merging error-free

images of patterned steel plates with images of defective regions from plain steel plates. A

special attention was drawn to periodic defects, which are errors that repeat themselves at a

certain interval, for example because of a defect in the cylindric steel roller. They are of high

interest, as these types of errors can damage the whole production batch. The developed

network structure showed very good results in terms of defect localization and classification,

with a classification accuracy from over 99 % in detecting defects and over 95 % in detecting if

their occurrence is periodic. The part of that approach which covers the CNN-based anomaly

detection is presented in more detail in the following sections.

2.4.1. Data preparation

For the realization of the work, two image datasets of patterned steel from industrial

production lines were available, both of them depicting the teardrop shaped pattern (see

section 2.1). The data, which was provided in the form of .avi video files, was cut into

image patches of size 512x512 pixels and 256x256 pixels respectively. As the provided data
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did not contain defective image samples, defects were inserted synthetically into some of

the image patches. For this task, a dataset of defects in plain steel plates was used. The

defect regions in the plain steel images were labelled, cut out and inserted into a random

position in the patterned steel image. The steps are shown in figures 2-3 and 2-4. Vertical

and horizontal flipping and 180° rotating was applied as data augmentation, such that a

total of 1756 defect images could be created. Together with the resulting defect patch

(Figure 2-4a), a ground truth image (Figure 2-4b) showing the location of a defect was

created.

(a) original defect image (b) labelled defect region (c) defective area cut out

Figure 2-3: Defect labelling

(a) (b)

Figure 2-4: (a) Defect inserted into a patterned steel image (b) Ground truth

2.4.2. Architecture

The baseline for the deep learning approach was the two-stage CompactCNN architecture

introduced by Racki et al. [36]. The first stage was designed to return a segmentation map

which shows the location of a defect in the input image. If no defect is present in the

image, the network returns a segmentation map in which all values are close to zero. The

segmentation stage consists of nine convolutional layers clustered into three blocks and one

additional convolutional layer, which returns the segmentation map. Within the blocks,

every convolutional layer is followed by batch normalization and a rectified liear unit

(ReLU) activation function. The final layer is followed by a hyperbolic tangent (tanh)

activation function. In each block, the number of feature maps is doubled. The height and

width of the features is reduced by half in the first and second block by applying a stride of
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2 in the block’s first convolutional layers. Hence, the total height and width of the output

segmentation map is reduced to a quarter of the input image size.

The second stage was designed to return a classification score, which classifies an image as

defect-free or defective. Both the outputs from the penultimate and the ultimate layer of

the segmentation stage are used as input for this stage. The outputs from the penultimate

layer are passed through another convolutional layer which returns 32 feature maps. Global

max-pooling and global average pooling is performed on these feature maps and on the

output from the last segmentation layer. The results are concatenated and passed through

a fully connected layer to return one single classification score. The score denotes the

probability that an image is defective, being 0 the lowest and 1 the highest probability. The

whole architecture of the CompactCNN is shown in Figure 2-5.

Figure 2-5: CompactCNN network architecture

The original CompactCNN architecture was compared to a modified CompactCNN

architecture, in which the segmentation stage was replaced by a CNN called U-Net [39].

This network was originally developed for biomedical image processing, in order to segment

neural cell structures. It consists of a contracting path and an expanding path. The

contracting path is made of five convolutional blocks with two convolutional layers each.

The number of features is doubled in each block, while the height and width is halved by a

max-pooling operation with a stride of 2 after each block except for the last one. The four

blocks of the expanding path are the counterpart of the contracting path, in which the

number of features is halved in each block while their width and height is doubled by a 2x2

upsampling operation. Furthermore, there are skip connections between the blocks of the

contracting path and the corresponding blocks of the expanding path. This means that the

blocks in the expanding path receive two inputs: the output from the previous block as well

as the output from their counterpart in the contracting path. Both inputs are concatenated

before being passed into the first convolutional layer of the block. Just as in the



2.4 Previous work 15

CompactCNN, the blocks are followed by one last convolutional layer that returns one

single feature map, which is the desired segmentation map. Each convolutional layer is

followed by batch norm and ReLU activation, except for the last layer that uses tanh as

activation, just as in the original CompactCNN. A combination of the CNN with U-Net as

segmentation network is depicted in Figure 2-6.

Figure 2-6: Combined network consisting of U-Net and the CompactCNN classification

stage

For both architectures, the two stages were trained separately. For training of both stages

the Adadelta optimizer with default settings was used. Firstly, the segmentation stage was

trained, in order provide meaningful segmentation maps that can be used for classification

training. Especially for the segmentation stage, several hyperparameters were varied, such

as:

the number of training epochs,

the loss function,

the patch size of the input images,

the number of training samples.

The segmentation stage worked best when trained to minimize a mean squared error (MSE)

loss function according to Equation 2-1. The losses are computed per image batch, where B

denotes the number of images in the batch. M and N denote the the number of pixels in

vertical and horizontal direction, xb the label value from the ground truth for sample b at
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pixel position i, j and x̂b the predicted pixel value. Accordingly, the segmentation stage loss

function calculates a pixel-wise loss. The ground truth labels are in the value set {0,1}.

Ls =
1

BMN

B∑
b=1

M∑
i=1

N∑
j=1

∥∥∥x〈i,j〉b − x̂〈i,j〉b

∥∥∥2 (2-1)

The classification stage was trained for 10 epochs with a binary cross-entropy (BCE) loss:

LC =
1

B

B∑
b=1

[yblog(ŷb) + (1− yb)log(1− ŷb)] (2-2)

Again, B denotes the number of samples, yb the ground truth label of sample b, which is

either 0 or 1, and ŷb the predicted label.

The segmentation stage was either trained on only defective samples or on both defect-free

and defective samples with a ratio of 1:1 or 1:3 (defective : defect-free), where the number

of defective samples was fixed to 1756. When segmentation training was performed on only

defective samples, the classification training was performed on a 1:1 ratio, in order provide

some defect-free samples for teaching the network to distinguish between the two types of

images. In the other cases the ratios for segmentation and classification were the same.

2.4.3. Evaluation of previous work

In general, the U-Net architecture performed better on image segmentation than the

CompactCNN segmentation stage, offering a more precise pixel based localization of the

defective area. This is not surprising, as the U-Net is the deeper architecture with more

trainable parameters.

It was further found out that a 25 epoch training was sufficient, as a longer training on 100

epochs did not lead to a significant improvement of segmentation results. Furthermore,

training tended to work best when the segmentation stage was trained on a mix of

defect-free and defective images.

The best results for each dataset and each image size are summarized in tables 2-1 and 2-2

when trained on the CompactCNN architecture and the combined U-Net+CompactCNN

architecture. Table 2-1 shows the AUC-score as a measure for the segmentation performance

of the network. The AUC-score gives information on how well the defective and the defect-

free pixels in the images can be separated. Its score ranges from 0 to 1, being 1 the optimal

score.
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Table 2-1: Segmentation results: AUC Score for different datasets and image sizes

Network Dataset 1 Dataset 2

256x256 512x512 256x256 512x512

CompactCNN 0.9942 0.9889 0.9912 0.9958

U-Net + CompactCNN 0.9986 0.9967 0.9993 0.9976

Table 2-2 shows the classification accuracy, which denotes the ratio of correctly classified

images among all tested images. A further description of both the AUC and the accuracy

metric is given in chapter 3.3. In all the cases the U-Net based architecture outperformed

the CompactCNN with AUC-scores and classification accuracies of over 99,5.

Table 2-2: Classification accuracies for different datasets and image sizes

Network Dataset 1 Dataset 2

256x256 512x512 256x256 512x512

CompactCNN 0.9942 0.9889 0.9912 0.9958

U-Net + CompactCNN 0.9986 0.9967 0.9993 0.9976

A visualization of the predictions from both the CompactCNN and the U-Net+CompactCNN

is given in Figure 2-7.

Figure 2-7: Examples of network outputs for CompactCNN and U-Net+CompactCNN.

From left to right: Input image, ground truth, CompactCNN prediction, U-

Net + CompactCNN prediction
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Although the images are originally grayscale images, a colormap ranging from dark purple

to yellow was chosen for a clearer indication of the different shades in the predictions. The

images show, how the U-Net segmentation maps provide a clearer localization of the defective

areas, whereas the prediction of the CompactCNN is rather weak. The score on the top of the

images indicates the probability that the analyzed image is defective, being 1 the maximum

probability.
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This chapter provides information on the methodology applied to detect anomalies in

patterned steel plates under the assumption that no defect data is available from the

production lines under investigation. This is the main difference to the previously

introduced work. The chapter is structured as follows: Firstly, a description of the available

image data is given. Afterwards, the investigated methods are describes in detail. Finally,

the metrics used for evaluation of the methods are explained and the implementation

details are provided.

3.1. Available Data

Grayscale 2D images from five different production batches were collected to conduct the

experiments. Four of these represent a teardrop shaped pattern according to Figure 2-1 and

the last one a diamond shaped pattern. The data was cropped into patches of size 256 x 256

pixels. A representative image collection of 2000 defect-free images per dataset was chosen

as training set. The test datasets contain 200 images each, of which one half is composed

of anomaly-free images and the other half of anomalous images. Whenever real anomalies

could be found in the image material, they were included into the test set. For the datasets

with no or not sufficient real anomalous data, the anomalous test data was complemented

with artificial defect data created with the same method introduced in chapter 2.4.1. Figure

3-1 shows one anomaly-free (green margin) and one anomalous image as well as a close-up

of the defect region (red margin) from each dataset.

Datasets

1) Teardrop 1: The first teardrop test set contains 50 real and 50 artificial anomalous

images. The real anomalous data mainly depicts several defective regions that occurred

periodically as well as some other irregularities found in the image material.

2) Teardrop 2: The image material for the second dataset does not contain any real

anomalies, such that defects were added synthetically.
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3) Teardrop 3: Noteworthy is the inhomogeneous background texture of this dataset,

which appears in many of the anomaly-free images. This makes the distinguishability

between non-defective and defective textures more difficult. As for the previous mentioned

dataset, all anomalous images were created artificially.

4) Teardrop 4: This dataset also exhibits a rather inhomogeneous background structure.

Large parts of the available image material were excluded due to excessive amount of

impurities in front of the camera lenses. Some smaller impurities such as watermarks were

included into the test set (Figure 3-1d). They are not a production defect, but still they

should be detected as anomalies by automated deep-learning solutions.

5) Diamond: This dataset differs from the others in the type of pattern. The defects were

inserted artificially.

(a) (b) (c) (d) (e)

Figure 3-1: Example images for each dataset from left to right: (a) Teardrop1, (b)

Teardrop2, (c) Teardrop3, (d) Teardrop4, (e) Diamond. The top row shows

a defect-free, the two bottom rows a defective sample and a close-up of the

defective region
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3.2. Methods

3.2.1. Transfer learning on U-Net

As the previously introduced U-Net architecture provided very accurate segmentation results

when it was trained in a supervised manner, it was tested to do a transfer learning on this

architecture with the aim to adapt the network to the images of a different production line,

of which only good data is available. This method is not semi-supervised as it assumes that

of at least one production line there are defective images available to serve as a pretraining

dataset. However, once this condition is fulfilled, no defect data of other production lines

shall be needed for the adaptation. In our case, the teardrop 2 dataset was used as pretraining

dataset. It was modified in a way that artificial defects were inserted into half of the training

images applying the same method as introduced in Chapter 2.4.1. That way, 1000 defective

and 1000 defect-free samples were obtained for training. It was taken care that none of the

artificial defects for training appeared in the test datasets. The network architecture was

pretrained on that dataset, in order to learn to extract meaningful characteristics which

define the defective areas. Pretraining was done in the same way as mentioned in chapter

2.4.2 for 25 epochs with an MSE loss function and Adadelta optimizer. After pretraining,

the parameters learned by the network were kept and the data was mixed with exclusively

defect-free data of another production line. In these experiments, the teardrop 1 dataset

served as the anomaly-free transfer learning dataset, to which the network should adapt.

Training was carried out for another 5 epochs. The performance of the adapted network

architecture was measured on the test images of the teadrop 1 dataset.

3.2.2. L2 and SSIM Autoencoder

As autoencoders are a common tool for semi- and unsupervised learning and have shown

superior results in anomaly detection than other approaches, such as GANs [3], an

autoencoder architecture was tested on the patterned steel dataset. The architecture and

training procedure were adapted from the publications of Bergmann et al. [5] [3]. 10.000

randomly cropped image patches of size 128x128 were created from the training dataset

with images of size 256x256. These patches were used to train the autoencoder, whose

architecture is shown in Figure 3-2.

The encoding part consists of nine convolutional layers of which some have a stride of 2, in

order to reduce the output feature size. The stride defines the distances at which the layer’s

kernel is applied to the input image, meaning that for a stride of 2 the kernel is applied every

second pixel. The last layer of the encoding part is a latent vector of variable size z. In our

experiments the latent vector’s size is set to z = 100 by default. The decoding path is the

inverse version of the encoding path using deconvolutions in order to upscale the features.

Every convolutional layer is followed by a LeakyReLU activation function with slope 0.2,
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Figure 3-2: Network structure of the L2 and SSIM Autoencoder

except for the last layers of both the encoder and the decoder, which use a linear activation

function and a sigmoid activation function respectively.

Training

An Adam optimizer with an initial learning rate of 2 · 10−4 and a weight decay of 10−5 was

used for training, which was carried out for 200 epochs. From the 2000 images contained in

the training dataset, 80 % were used for training and the other 20 % for validation.

The architecture was trained with two different loss functions: On the one hand with a

squared L2 loss, on the other hand with a structural similarity loss. The L2 loss computes

the squared difference between input image and the reconstruction image at each pixel [5].

The resulting difference image is called residual map. To apply it as a loss function, which

requires a single scalar value, the results over all the pixels were averaged. This is also

known as mean squared error, as introduced in Equation 2-1. In the following sections, the

non-squared version of the difference image is referred to as L2 residual map.

The structural similarity [50] of two image patches p and q is a measure of luminance

l(p, q), contrast c(p, q) and structure s(p, q), where the luminance is a function of the mean

intensities µ, the contrast of the variance σ and the structure of the covariance σpq of p and

q:

l(p, q) =
2µpµq + c1
µ2
p + µ2

q + c1
(3-1)

c(p, q) =
2σpσq + c2
σ2
p + σ2

q + c2
(3-2)



3.2 Methods 23

s(p, q) =
σpq + c2

2σ2
pσ

2
q + c2

(3-3)

SSIM(p, q) = l(p, q)αc(p, q)βs(p, q)γ (3-4)

α, β and γ define the weighting of each component. If they are set equal to 1, the components

can be substituted and the structural similarity can be expressed as:

SSIM(p, q) =
(2µpµq + c1)(σpq + c2)

(µ2
p + µ2

q + c1)(2σpσq + c2)
(3-5)

The constants c1 and c3 are set to c1 = 0,01 and c2 = 0,03 by default. p denotes a window of

size K x K in the input image, while q denotes the corresponding window of the same size in

the reconstruction image. By default, K is set to 11 [5]. The windows are slid over the images,

i.e. displaced pixel per pixel, and the SSIM score is computed for every possible position.

This creates a residual map with the same height and width as the input and reconstruction

image. The values of the SSIM index range between -1 and 1, where -1 indicates a low

similarity and 1 a high similarity. In order to obtain a function that can be minimized,

1−SSIM is computed. When applied as a loss function, the mean is calculated over all the

values in the residual map.

Thresholding

The residual maps were also used as evaluation criterion, in order to decide if an area is

anomalous or not. A location is considered to be anomalous, if the residual exceeds a certain

threshold. The threshold is to be selected, such that it accurately separates the values of

the anomalous areas from the values of the anomaly-free areas, though defining a suitable

threshold based on only anomaly-free data is challenging. Under the assumption that an

anomaly-free region should produce a smaller residual than an anomalous region, one could

attempt to choose biggest residual value among the good data as threshold, such that 100 %

of the anomaly-free pixels fall below it. However, this selection is very sensitive to outliers

and noise. Hence, it is more robust to choose a threshold, which allows a certain percentage

of outliers among the good data. By default, we chose a threshold which located 98 % of the

anomaly-free data below the threshold and allowed an outlier rate of 2 %. In statistical terms,

this threshold can be described as the 98th percentile of the data. The threshold was selected

as the 98th percentile of the anomaly-free validation data. Other percentile selections were

also investigated within the experiment.
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Testing

During testing, a prediction on the images from the test data was executed, in order to

obtain their reconstruction. As the test images have a size of 265x256, but the network takes

an input of size 128x128, the input images were predicted section-wise. It would be possible

to apply a stride of 128, i.e. to execute one prediction every 128 pixels, such that one section

begins precisely where the previous one ends. However, according to Bergmann et al. [5],

it results more beneficial to choose overlapping sections, as the reconstructions produced

by network can vary slightly with their spatial location. Therefore, a reconstruction was

predicted every 32 pixels and the overlapping reconstructions were averaged. Afterwards,

the L2 and SSIM residual maps were calculated based on the averaged reconstructions and

the thresholds determined. For the autoencoder trained on the L2 loss, the L2 residual map

was thresholded during evaluation. For the SSIM autoencoder both the L2 and the SSIM

residuals were computed.

Post-Processing

After thresholding, the segmented areas were post-processed, in order to eliminate single

pixels or small areas, whose values surpass the thresholds, although they are just caused

by outliers or noise. Their elimination was carried out with an opening operation. Opening

is a morphological operation which removes small areas from an image - in this case from

the thresholded residual map - while preserving larger objects. Openings require a structural

element, e.g. a small rectangle or a disk, which can be slid over the residual map. Any element

so small that it can be completely covered by the structuring element, is removed from the

image. Following the proposal of Bergmann et al. [3] a circular structuring element (disk)

was used. For the experiments in this work, a default disk radius of 4 pixels was applied.

3.2.3. Excursus: Analysis of Frequency Spectrum

The analysis of the frequency spectrum is a common tool in image processing, which can

be useful for a variety of applications such as filtering or image reconstruction. Images can

be transformed into the frequency domain by applying Fourier transform, a technique which

decomposes an image into its sine and cosine components. For 2D images, a 2-dimensional

discrete Fourier transform is applied. It represents the image by a fixed number of frequencies,

which corresponds to the number of pixels. The mathematical expression for the 2D discrete

Fourier transform [15] for an image of size M x N is given as:

F (u, v) =
M−1∑
i=0

N−1∑
j=0

f(i, j)e−ı2π
ui
M

+ vj
N (3-6)

F (u, v) denotes the representation of the image in the frequency domain, which is a
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function of the horizontal and vertical frequencies u and v. f(i, j) describes the image in

spatial domain as a function of the pixel positions i and j. M is the number of rows and N

the number of columns. The resulting function is conformed of complex numbers, which

consist of a real part R and an imaginary part I. The imaginary unit is denoted with ı. In

order to visualize the magnitudes of the frequencies u and v, the amplitudes of the complex

numbers can be calculated. Representing a complex number by their amplitude and angle

is an alternative to representing it by its real and imaginary component. The amplitudes

|F (u, v)| and angles Φ(u, v) can be calculated as shown in equations 3-7 and 3-8. The

logarithmic term is introduced to the amplitude spectrum in order to better capture and

visualize the extremely big value range of the amplitudes.

|F (u, v)| = log(
√
R2(u, v) + I2(u, v)) (3-7)

Φ(u, v) = tan−1
I(u, v)

R(u, v)
(3-8)

For highly repetitive structures, such as the patterned steel plates, the images are usually

characterised by a very specific set of frequencies, which can be identified in the frequency

domain. Figure 3-3 visualizes the magnitude spectrum for an example image from each of

the five datasets.

(a) Teardrop 1 (b) Teardrop 2 (c) Teardrop 3 (d) Teardrop 4 (e) Diamond

Figure 3-3: Magnitude spectrum in frequency domain for all datasets. Top row: image in

spatial domain, Bottom row: frequency spectrum

The frequency images show how the frequency spectra vary with the data sets. The dark

areas in the images correspond to frequencies with low amplitudes and the light areas to

high amplitudes. The teardrop-shaped images possess a narrow frequency spectrum in
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horizontal direction and a spreading spectrum in vertical direction that opens up like a

cone beginning at the center point. For each dataset the appearance varies slightly. The

diamond shaped pattern on the other hand stretches along both axes with the shape of an

X.

In order to make use of this characteristic information, it was investigated if a deep learning

architecture could be applied to reconstruct an image in the frequency domain instead of

reconstructing it in the spatial domain. This idea was inspired by Lappas et al. [21], who

introduced Fourier transform to autoencoders for anomaly detection. Their approach was

based on encoding the spatial image itself in combination with the real and imaginary parts

of the Fourier transform with separate encoders. In contrast, the approach in this work

was based on encoding solely the logarithmic magnitude spectrum, in order to train the

autoencoder on identifying and reconstructing only the most dominant frequencies of the

corresponding pattern. To achieve this, the autoencoder introduced in the previous section

3.2.2 was adapted and trained on the the frequency images instead of images in the spatial

domain. Training was done with the same hyperparameters as for the images in spatial

domain. The schematic of this method is visualized in Figure 3-4.

Figure 3-4: Structure of Fourier-based Autoencoder

The information of the angle Φ of the frequency spectrum was preserved as necessary

information to transform the reconstructed amplitudes back to the spatial domain. This

was done by applying inverse discrete Fourier transform [15]:

f(i, j) =
1

MN

M−1∑
i=0

N−1∑
j=0

F (u, v)eı2π
ui
M

+ vj
N (3-9)

3.3. Metrics

Metrics are measures that are used to evaluate the performance of a machine learning

model on a given task. This section provides an overview over the performance metrics
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used in this work. The outputs of the model can be either positive or negative and are

denoted as follows:

True positives (TP): defective instances which are classified correctly (true label

positive, prediction positive).

False positives (FP): defect-free instances that are erroneously predicted as defective

(true label negative, prediction positive).

True negatives (TN): defect-free instances which are classified correctly (true label

negative, prediction negative).

False negatives (FN): defective instances that are misclassified as defect-free (true label

positive, prediction negative).

The definition of what is an instance depends on the task. For classification, one image is

considered as one instance, which receives either the label negative if there is no anomaly

in the image or positive if an anomaly is present. For segmentation tasks, each pixel in the

image receives an individual label. The definitions given above are the basis for the following

evaluation metrics.

3.3.1. True Positive Rate (TPR)

The true positive rate, also known as sensitivity or recall is the ratio describing how many

of all existing positive instances were accurately detected, i.e. predicted as positive. It is

defined as:

TPR =
TP

TP + FN
(3-10)

3.3.2. True Negative Rate (TNR)

Similar to the TPR, the TNR or specificity describes the ratio of all correctly identified true

negatives:

TPR =
TN

TN + FP
(3-11)

3.3.3. False Positive Rate (FPR)

This measure is the counterpart of the TNR, measuring the ratio of all incorrectly classified

negatives, i.e. the negatives which are falsely classified as positives:
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FPR =
FP

TN + FP
= 1− TNR (3-12)

3.3.4. Accuracy (ACC)

The accuracy is a measure to evaluate the overall classification performance, hence it

measures the ratio of all correctly classified instances, which includes both TNs and TPs,

and is defined as:

ACC =
TN + TP

TN + FP + TP + FN
(3-13)

3.3.5. AUROC

The area under the receiver operating characteristic curve (AUC-ROC or AUROC) is a

measure of separability for binary classification problems. The ROC-curve is a graphical

chart that plots the TPR against the FPR for various thresholds. The AUC-score measures

the area under the ROC-curve and operates in the range of [0,1). A score close to one is

desirable, as it indicates that the two classes can be separated very well.

3.3.6. Intersection over Union (IoU)

The intersection over union is a measure that can be used to describe how well the predicted

anomaly region and the true anomaly region overlap. Therefore, the overlap of the area is

divided by the union of the area.

For binary classification, the IoU, or Jaccard score can be expressed as:

IoU =
TP

FP + TP + FN
(3-14)

3.4. Implementation Details

All experiments were executed on a PC with an Intel(R) Xeon(R) CPU E5-2670, 32GB RAM

and an NVIDIA GeForce GTX 1080 Graphics Card. The SSIM and L2 Autoencoder were

implemented in Tensorflow 2.2 with Python 3.8. The U-Net+CompactCNN architecture was

adapted from a previous implementation which was realized with Pytorch 1.9.
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In the following section, the results on the investigated methods are presented and

discussed. A comparison of the different methods is given below. Afterwards, the methods

are discussed in more detail.

The autoencoder trained on the SSIM loss provided the by far best segmentation and

classification results. Therefore, the most extensive studies were executed on this

architecture. The L2 autoencoder and the transfer learning on U-Net offer much room for

improvement, as they only provided a very rough location of the defects and tended to miss

some defects in numerous cases. Figure 4-1 provides an overview over the segmentations of

all three methods. The manually annotated ground truths are indicated with green borders

and the segmentation results of the methods are marked red within the image. The

examples are taken from dataset 1, which contains the most real anomalies and was tested

on all three methods. The first example in Figure 4-1 shows a production defect in the

material, while the other is no production defect, but an anomaly in the image caused by

impurities, which should also be marked, as it is a deviation from the normal pattern.

(a) Original (b) Groundtruth (c) U-Net (d) L2 (e) SSIM

Figure 4-1: Predictions on dataset 1 of U-Net after transfer learning and the L2 and SSIM

Autoencoder
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4.1. Transfer Learning on U-Net

The transfer learning approach was based on pretraining the network in a supervised fashion

on one dataset with artificial defects and then adapt it to another dataset by mixing solely

anomaly-free images of this second dataset among the training data. The main idea, to

enable the network to learn meaningful defect features in the pretraining step and finally

adapt to the slightly altered base texture of another dataset in the second training step, did

not provide very accurate results. Even after training only for a small number of 5 epochs

during the transfer learning, the network had learned to classify most of the images from the

“new” dataset as anomaly-free, even if they had anomalies in it. This is not surprising, as the

network only got to see anomaly-free images of that dataset during training. Nonetheless, it is

an indicator that the anomaly characteristics learned during pretraining were not transferred

very well on images with a slightly different texture.

4.2. L2 and SSIM autoencoder

The L2 and SSIM autoencoder segmentation and classification ability varied with the dataset.

In general, the autoencoder tended to segment and classify better when trained on an SSIM

loss. These results are quantified in tables 4-2 and 4-1.

The accuracy scores for each dataset show that the total ratio of correctly classified images

is higher for the SSIM autoencoder. The accuracy, as well as the true positive rate and true

negative rate, vary greatly depending on the threshold selection. As mentioned in Section

3.2.2, the threshold was selected as the 98-th percentile of a subset of the anomaly-free

training data, which means that 98 % of the values in the residual maps of the good data

had to be below the selected threshold. For the SSIM autoencoder, this threshold selection

provided a rather good trade-off for the true positive rate and true negative rate, which

means that both anomalous and anomaly-free samples were classified correctly by a similar

proportion. As the optimal threshold can vary for each dataset, a more detailed threshold

selection is presented in Section 4.2.1 for the SSIM autoencoder.

For the L2 autoencoder, the threshold selection based on the 98-th percentile did not lead

to satisfying results, as most of the defects were overlooked. A lower threshold selection

could augment the number of correctly detected anomalous areas, but would also lead to a

much higher rate of misclassified normal samples (false positives), such that no threshold

with a satisfying number of total correct classifications could be obtained. Furthermore, for

two of the datasets (Teardrop 3 and Diamond) the L2 autoencoder failed to converge

during training. Hence, there is no evaluation listed in tables 4-1 and 4-2 for these

datasets, as no reconstruction image could be produced by the L2 autoencoder in those

cases. The convergence failure may be due to the very noisy background texture, which is

characteristic for both the Teardrop 3 and Diamond dataset and makes it more difficult for
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the encoder to learn a latent space representation from which a reconstruction can be

created accurately. We conclude that per-pixel based losses like the L2 loss are not a

suitable loss function for datasets with a very noisy background texture like the Teardrop 3

and Diamond dataset.

Table 4-1: Classification results for the SSIM and L2 autoencoder

Method Metric Teardrop 1 Teardrop 2 Teardrop 3 Teardrop 4 Diamond

TNR 0.99 0.88 0.41 0.64 0.93

SSIM-AE TPR 0.92 0.79 0.61 0.72 0.57

ACC 0.955 0.835 0.51 0.68 0.75

TNR 1.0 1.0 - 1.00 -

L2-AE TPR 0.26 0.11 - 0.06 -

ACC 0.63 0.55 - 0.53 -

Table 4-2: Segmentation results for the SSIM and L2 autoencoder

Method Metric Teardrop 1 Teardrop 2 Teardrop 3 Teardrop 4 Diamond

SSIM-AE IOU 0.202 0.267 0.066 0.121 0.148

AUC 0.922 0.965 0.740 0.870 0.829

L2-AE IOU 0.031 0.023 - 0.001 -

AUC 0.916 0.965 - 0.909 -

For all the other datasets, a reconstruction image could be produced by the both the SSIM

and L2 autoencoder. The reconstruction images of both autoencoders can be seen in Figure

4-2, in which one example is given for each dataset. On the top row, the original images

are shown for comparison. The graphic also displays the corresponding residual maps

which visualize the differences between the original images and the reconstructions. The L2

residual is basically the per-pixel distance, which can be calculated as the absolute values

of subtracting the original image from its reconstruction of the L2 autoencoder. For the

datasets Teardrop 3 and Diamond, where the L2 autoencoder did not achieve to build a

reconstruction image, the displayed L2 residual map was calculated as the difference

between the input image and the reconstruction from the SSIM autoencoder. In the L2

residual map, the white pixels denote great differences between original and reconstruction.
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Figure 4-2: Segmentation examples of the L2 and SSIM autoencoder
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Differently from the L2 residual map, the SSIM residual map provides a measure for the

structural similarity at each point according to Equation 3-5. At each pixel position, the

similarity score between an 11x11 pixels sized area around that position in the original

image and the reconstruction is computed. White areas in the SSIM residual map indicate

a low similarity between original and reconstruction.

The segmentation images provided in the two bottom rows of Figure 4-2 visualize the final

segmentation result after post-processing. The L2 segmentation result was based on

thresholding the L2 residual map from the L2 autoencoder. For the SSIM autoenocoder,

both the L2 residual map and the SSIM residual map were calculated and an anomalous

region was detected if either of the residuals surpassed their corresponding threshold.

Subsequently, the results for each dataset are discussed in more detail.

Teardrop 1: This dataset has the most homogeneous texture of all the datasets and,

hence, showed the best classification results. While 99 % of the anomaly-free images were

classified correctly (TNR), also 92 % of the anomalous samples were recognized (TPR)

correctly by the SSIM autoencoder. This gives an overall accuracy of 95.5 %. The example

for this dataset in Figure 4-2 illustrates that the reconstruction of the SSIM autoencoder

achieves to eliminate the defective area more accurately than the reconstruction of the

L2 autoencoder. The figure points out the difference between the resulting L2 and SSIM

residual maps. While the L2 residual map emphasizes very slim defect regions, which are

prone to be filtered out by the post-processing algorithm, the SSIM residual map highlights

a broader area around the defect. The results can be observed in the segmentation images.

In the L2 segmentation, most areas have been eliminated during post-processing, such that

only a very rough localization is provided, whereas the SSIM autoencoder highlights a

broader region as anomalous. From the SSIM segmentation image it can be seen, why the

IoU score is only 0.202 despite the high classification accuracy. Although the defective

region is recognized roughly, the ground truth and the prediction do not overlap perfectly.

This is difficult to achieve, as on the one hand, an accurate ground truth definition itself is

a challenging task, as the transitions between anomalous and non-anomalous regions are

smooth. This makes it difficult to define optimal contours, which can be precisely predicted

with one single threshold. On the other hand, the post-processing for outlier elimination

smoothens the contours of the predicted defect areas whereas the ground truth has sharp

contours. However, a low IoU is not a serious issue as long as the defect gets generally

detected.

Teardrop 2: For this dataset, both autoencoders provide an accurate reconstruction. The

AUC-score, which is 96.5 for both the L2 and the SSIM autoencoder reflects the similar

good performance. In comparison with the Teardrop 1 dataset, the texture has slightly more

variations which results in less accurate classification results.
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Teardrop 3: For this dataset, the background texture contains a lot of noise and

especially the anomaly-free sample shown in Figure 3-1 in the previous chapter shows how

even among the good data, the pattern is interspersed with black irregular lines, such that

more good samples are erroneously classified as anomalous. This is reflected by the low

true negative rate of 41 %. In general, it is more difficult to select a suitable threshold

which distinguishes between the anomalous and anomaly-free areas. This is reflected in the

lower accuracy as well as the significantly lower AUC-value.

Teardrop 4: The fourth dataset also tends to exhibit an inhomogeneous background

texture, for which the overall classification accuracy of just 68 % was reached with the

SSIM autoencoder. This indicates that a the SSIM autoencoder works well on the

homogeneous structures but leaves room for improvement for production lines, whose

image texture is not that even. Accordingly, the AUC-score and IoU-score indicate lower

segmentation performance than for the evenly structured datasets 1 and 2. A comparison

of the ROC-curves can be found in Figure 4-3.

Diamond: The diamond dataset is the only one with a different pattern. Noticeable is again

the noisy background which gets reconstructed in a smoothed form by the autoencoder. As

the L2 autoencoder failed to converge, the L2 residual map and the SSIM residual map

both compute the differences between the SSIM reconstruction and the original image. The

residual maps in Figure 4-2 show that it can be valuable to take the L2 residual map into

account as well.

Figure 4-3: ROC-Curves for SSIM and L2 autoencoder
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4.2.1. Variation of threshold for the SSIM autoencoder

The choice of a suitable threshold is a key element for an accurate anomaly detection as it

greatly influences the results. If it is chosen too low, areas are classified as defective, which

are actually defect-free. On the contrary, if it is chosen too high, real anomalous regions

might be missed. If no threshold can be found which separates the two classes accurately at

all points, a threshold that provides a good trade-off between the number of falsely

classified anomaly-free samples and anomalous samples has to be found. This section

provides an overview over the influence of different threshold selections on the classification

and segmentation results tested on the SSIM autoencoder. For all datasets, the

classification results are summarized in Table 4-3 and the segmentation results in

Table 4-4. As introduced in Chapter 3.2.2, the threshold was calculated solely on the

residual maps of anomaly-free data, such that a certain percentage q of the pixel values lies

below this threshold, called the q-th percentile. The percentage q was varied between 95 %

and 99 %, where a higher percentage is associated with a higher threshold.

The results listed in Table 4-3 show for all the datasets how the true negative rate drops

with a rising threshold, while, in contrast, the true positive rate increases. The highest overall

classification accuracies were achieved selecting the 97 % or 98 % percentile as threshold.

Table 4-3: Classification results with different percentiles for threshold estimation

Percentile Metric Datasets

Teardrop 1 Teardrop 2 Teardrop 3 Teardrop 4 Diamond

TNR 0.94 0.54 0.08 0.46 0.44

0.95 TPR 0.97 0.94 0.92 0.83 0.88

ACC 0.955 0.74 0.50 0.645 0.66

TNR 0.97 0.71 0.24 0.55 0.79

0.97 TPR 0.96 0.90 0.75 0.79 0.73

ACC 0.965 0.805 0.495 0.67 0.76

TNR 0.99 0.88 0.41 0.64 0.93

0.98 TPR 0.92 0.79 0.61 0.72 0.57

ACC 0.955 0.835 0.51 0.68 0.75

TNR 1.00 0.95 0.80 0.77 1.00

0.99 TPR 0.80 0.56 0.30 0.53 0.36

ACC 0.90 0.755 0.505 0.65 0.68
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Table 4-4: Segmentation results: Intersection over Union (IoU) based on different percentiles

for threshold estimation

Percentile Datasets

Teardrop 1 Teardrop 2 Teardrop 3 Teardrop 4 Diamond

0.95 0.186 0.253 0.043 0.217 0.161

0.97 0.196 0.288 0.058 0.168 0.171

0.98 0.202 0.267 0.066 0.121 0.148

0.99 0.211 0.164 0.044 0.054 0.098

For the IoU score, which quantifies the precision of the segmented areas, the tendency is a

bit less clear. While the IoU for dataset 1 improves with higher thresholds, other datasets

show an improved IoU on lower threshold selection. Just for the Teardrop 3 dataset with

the very inhomgeneous texture, the network failed to locate the defects precisely, which is

visible by the extremely low IoU as well as the classification accuracy just around 50

percent for all thresholds. It is also visible that the threshold with the best classification

accuracy did not necessarily match the threshold for the precisest defect segmentation. In

general, it can be concluded that the threshold selection is a flexible procedure, which has

to be adjusted for each dataset individually.

Figure 4-4 provides an examples of the Teardrop 1 dataset whose IoU improves with a rising

threshold. The figure shows how excessive areas around the defective area are eliminated

with increasing thresholds, such that the predicted defect area fits better into the annotated

ground truth area.

(a) Groundtruth (b) 95 (c) 97 (d) 98 (e) 99

Figure 4-4: Different segmentation results based on different percentiles for threshold

selection
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4.2.2. Variation of the structuring element during post-processing for

the SSIM autoencoder

Similar to the threshold selection, the post-processing technique also greatly influences the

segmentation and classification. As the the post-processing was executed with an opening

technique with a circular structuring element (see Section 3.2.2), the size of this element was

varied and the changes observed. Its radius was varied between 1 and 5. The results for the

usage of no structuring element are also listed in tables 4-5 and 4-6.

Table 4-5: Classification results with respect to varying the radius of the circular structuring

element during post-processing

Datasets Metric Size of structuring Element

none 1 2 3 4 5

TNR 0.00 0.49 0.82 0.97 0.99 0.99

Teardrop 1 TPR 1.00 1.00 0.99 0.96 0.92 0.79

ACC 0.50 0.745 0.905 0.965 0.955 0.89

TNR 0.00 0.16 0.45 0.71 0.88 0.97

Teardrop 2 TPR 1.00 1.00 0.99 0.94 0.79 0.59

ACC 0.50 0.58 0.72 0.825 0.835 0.78

TNR 0.00 0.00 0.07 0.22 0.41 0.71

Teardrop 3 TPR 1.00 1.00 0.98 0.84 0.61 0.35

ACC 0.50 0.50 0.525 0.53 0.51 0.53

TNR 0.00 0.03 0.40 0.54 0.64 0.74

Teardrop 4 TPR 1.00 0.99 0.91 0.81 0.72 0.55

ACC 0.50 0.51 0.65 0.675 0.68 0.645

TNR 0.00 0.06 0.21 0.60 0.93 0.98

Diamond TPR 1.00 1.00 0.97 0.84 0.57 0.33

ACC 0.50 0.53 0.59 0.72 0.75 0.68
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Table 4-6: Segmentation results: Intersection over Union (IoU) with respect to varying the

radius of the circular structuring element during post-processing

Datasets Metric Size of structuring Element

0 1 2 3 4 5

Teardrop 1 0.128 0.174 0.190 0.197 0.202 0.201

Teardrop 2 0.157 0.245 0.268 0.276 0.267 0.229

Teardrop 3 IoU 0.043 0.064 0.067 0.070 0.066 0.056

Teardrop 4 0.155 0.180 0.170 0.149 0.121 0.095

Diamond 0.071 0.157 0.169 0.173 0.148 0.101

The best classification results were achieved using structuring elements with a radius of 3 or

4 pixels, which is a bit higher than the circular element with radius 2 that was used in the

publication of Bergmann et al. [3]. The elements of this size provided also the most accurate

segmentation areas with the highest IoU scores. However, as most of the IoU scores range

around 0.2, there is still a lot of room for improvement, in order to match the predicted

defect areas more accurately with the ground truths. Figure 4-5 visualizes the changes of

the prediction in relation to the size of the structuring element of the opening procedure. The

ground truth is shown in green (Figure 4-5a). Figure 4-5b shows the segmentation result,

if no post-processing is performed. Additionally to the defect areas, several other pixels are

highlighted red, especially at the outer borders of the teardrops. Applying a radius of 2

already removes these small areas. Applying an opening with a disk radius of 4 even leads

to the total elimination of one of the defect areas on the bottom right side, which was still

detected with smaller disk sizes. This image was taken from the Teardrop 1 dataset.

(a) ground truth (b) No post-processing (c) Radius 2 (d) Radius 4

Figure 4-5: Different segmentation results based on different sizes of the structuring element

for post-processing
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4.3. Autoencoder with Fourier Transform

This section provides the result of training the SSIM autoencoder architecture on

reconstructing the magnitude spectrum of a patterned steel plate image instead of

reconstructing the image in the spatial domain. For this, the image had to be converted by

the Fourier transform and fed into the autoencoder. The original image and the

corresponding magnitude spectrum are shown in figures 4-6a and 4-6b. The autoencoder,

which was trained on reconstructing the magnitudes of anomaly-free images, returned a

reconstructed magnitude spectrum which is shown in Figure 4-6c. By inverse Fourier

transform a reconstruction of the input image can be recovered (Figure 4-6d).

(a) Original image (b) Magnitude (c) Reconstructed

magnitude

(d) Reconstruction

Image

Figure 4-6: Results of reconstructing the magnitude spectrum of a patterned steel plate

image with an autoencoder

It can be seen that in the reconstructed magnitude spectrum only the most dominant

frequencies were preserved while the other frequencies were almost eliminated. After

transforming the frequency spectrum back into the spatial domain, it can be seen that the

resulting reconstruction image preserved the diamond pattern well. Due to the frequency

filtering, the contours were slightly smoothened. However, the reconstruction still provides

too detailed information, such that not just the repetitive structure of the teardrop pattern

was reconstructed, but also the defect, however less dominant than in the original image.

In order to limit the extend of this work, the frequency analysis has not been executed in

more detail. However, if this approach could be further investigated, for example by

choosing other hyperparameters, such as for example a smaller latent vector size for the

autoencoder model, it could be an interesting method for anomaly detection for images

with repetitive textures.
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5.1. Conclusions

In this work, a deep learning solution for the detection of anomalies in patterned steel

surfaces under the assumption that only anomaly-free data is available has been presented.

For this, several deep learning approaches have been implemented and compared, in order

to check their suitability for the given problem.

Transfer learning of an architecture, which had been pretrained on artificial defects in a

supervised manner, has been performed on images of another production line and

compared to semi-supervised approaches, which were trained on only anomaly-free data

from scratch.

The transfer learning was done under the assumption that both non-defective and defective

samples were available for at least one production line and the samples were mixed with

solely non-defective samples from another production line. This idea did not prove to be

ideal, as the deep learning model tended to overlook defects in the test data.

More accurate results could be achieved with an autoencoder trained in a semi-supervised

manner with a structural similarity loss function. The autoencoder was trained to build a

defect-free reconstruction of the input images. It was shown that applying structural

similarity as loss function and as method to build the residual between an image and its

reconstruction leads to better segmentation and classification results than an autoencoder

trained on a pixel-based loss function such as L2.

For datasets with a very homogeneous structure and few noise, up to 95.5 % of the images

could be classified correctly. The precision of the segmented defect area leaves room for

improvement, as it matches the annotated ground truths only roughly.

Furthermore, the images were investigated in the frequency domain applying Fourier

transform. An autoencoder was trained to reconstruct the magnitude spectrum of

anomaly-free data. As for the SSIM and L2 autoencoder trained on spatial domain images,

the autoencoder should return an anomaly-free reconstruction of any anomalous input

image. However, the reconstruction was too detailed, such that the defective areas were not
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eliminated in the reconstruction. Further investigations on the setting are recommended in

order to improve the results.

In general, the presented results on patterned steel plates live up to other state-of-the-art

investigations in semi- and unsupervised anomaly detection, which focus on training on

only anomaly-free data [3]. Comparing the methods to supervised deep learning approaches,

they have the advantage that no tedious collection or artificial creation of defect data is

necessary. However, at the current point, supervised deep learning methods provide more

accurate segmentation and classification results with regard to automated defect detection

in patterned steel.

5.2. Future Research

Among the investigated methods, the SSIM based autoencoder provided the best results.

On datasets with very inhomogeneous background textures, however, the applied method

tended to misclassify the anomaly-free images, as the non-defective inhomogenities were

marked as possible defects. This problem could be minimized by the development of an

additional classifier, which receives all marked anomalous areas as possible defect

candidates and classifies them into uncritical anomalies and critical production defects. In

this manner, false positive areas could be eliminated. Furthermore, uncritical anomalies,

such as dirt on the camera or watermarks could be identified and distinguished from

production defects.

Another option for optimizing the segmentation results could be the improvement of the

post-processing. The currently applied opening technique with a circular structuring

element can filter out very small areas and single pixels, which are erroneously classified as

defective, but the resulting predicted areas deviate from the ground truths. An improved

morphological post-processing could increase the precision of the segmented defect areas, in

order to match the ground truths more perfectly.

Furthermore, the Fourier based deep learning can be further investigated. The presented

investigations show that the autoencoders are able to reconstruct the most dominant

frequencies from the encoder’s compressed representation, but the reconstruction is still too

detailed. It could be tested if changes in the architecture or the latent space dimension can

encourage the autoencoder to predict an anomaly-free reconstruction.
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Finally, it is planned to transfer the existing deep learning model developed in Python into

a C# based environment, in order to integrate it into the defect detection systems installed

in the production lines. Once this is done, it is recommended to execute experiments on the

inference time on these systems, in order to evaluate the model’s suitability for real-time

applications.
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