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Abstract

Nowadays, data-driven modelling in structural and geo-engineering problems using Statisti-

cal Pattern Recognition and Machine Learning provides powerful and more versatile tools

within a predictive framework. In contrast to the mainstream orientations of the state-of-art

in data-driven structural and geo-engineering surrogates, which are based on advanced and

(hyper-)parametrized classifiers, this thesis is focused on data representation issues. Firstly,

for vectorial slope/landslide data, feature-based vector spaces are enriched and enhanced

according to the Occam’s razor principle, which is achieved through three simple but po-

werful existing variants of a transparent classifier as the nearest neighbor rule. Secondly,

for non-vectorial SHM data, powerful and highly discriminant dissimilarity-vector spaces

are built-up using spectral/time-frequency information from structural states, adopting a

proximity-based learning scheme. In both cases, the results show the importance of a proper

data representation and its key role in a bottom-up design for surrogate modelling.

Keywords: Classifier system design, Data-driven surrogates, Dissimilarity pattern re-

cognition, Landslides, Pattern representation, Slope stability, Structural health moni-

toring.
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Resumen

Actualmente, el Reconocimiento de Patrones Estad́ıstico y el Aprendizaje de Máquinas pro-

veen herramientas poderosas y versátiles para el modelamiento predictivo de problemas de

estructuras civiles, mecánicas y de la geo-ingenieŕıa. A diferencia de las principales tenden-

cias en el estado del arte en los sustitutos basados en datos en problemas de estructuras y

de geo-ingenieŕıa, esta tesis se enfoca en la representación de los datos. Primero, para datos

vectoriales de taludes/deslizamientos, los espacios vectoriales basados en caracteŕısticas son

enriquecidos y mejorados de acuerdo al principio de la navaja de Occam o de parsimonia,

el cual se logra mediante tres simples pero poderosos variantes ya existentes del clasificador

de vecinos más cercanos. Segundo, para datos no-vectoriales pertenecientes al Monitoreo de

Salud Estructural, son construidos, poderosos y altamente discriminantes, espacios de disi-

militudes usando información espectral/tiempo-frecuencia, tomando un esquema de aprendi-

zaje basado en proximidades. En ambos casos, los resultados demuestran la importancia de

una apropiada representación de datos y su influencia en el diseño incremental de modelos

sustitutos.

Palabras clave: Deslizamientos, Diseño de sistemas de clasificación, Estabilidad de

taludes, Monitoreo de salud estructural, Reconocimiento de patrones basado en disi-

militudes, Representación de patrones, Sustitutos basados en datos.
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1 Introduction

1.1. Motivation

Some facts could give us a better understanding about the importance, in our society, of

the disaster risk management and its effects on natural hazard engineering [134]: firstly, on

average 60, 000 people are killed by natural disasters per year around the world (see Figure

1-1a), where this death toll represents, approximately, a range from 0,1% to 0,4% of the

global deaths (see Figure 1-1b).

Global deaths from natural disasters, 1990 to 2019
Absolute number of global deaths per year as a result of natural disasters. "All natural disasters" includes those

from drought, �oods, extreme weather, extreme temperature, landslides, dry mass movements, wild�res, volcanic

ac�vity and earthquakes.
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Source: EMDAT: OFDA/CRED Interna�onal Disaster Database, Université catholique de Louvain – Brussels – Belgium

OurWorldInData.org/natural-disasters/ • CC BY

(a) Global deaths caused by all natural di-

sasters, from 1990 to 2019.

Deaths from natural disasters as a share of total deaths, 1990 to 2017
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(b) Deaths from all natural disasters as a

share of total deaths, from 1990 to 2017:

World and Colombia tolls.

Figure 1-1: Natural disasters statistics: human deaths. Source [134]

Secondly, the global damage costs from all natural disasters have been increasing since the

90’s, reaching global values of 350 billion USD (see Figure 1-2a), and where, for instance,

Colombia suffered a direct economic loss of 56,68 billion USD in 2018; in fact, Colombia is

one of the countries with the highest economic loss level for that year (see Figure 1-2b).

Catastrophic events, such as earthquakes, hurricanes, landslides or wind turbulence, can

introduce unexpected degradation and damage in civil, aerospace or mechanical infrastruc-

tures; therefore, the application of damage assessments and structural performance strategies

could be of paramount importance for preventing damage issues. In this sense, Structural

Health Monitoring (SHM), —from a Pattern Recognition perspective—, assesses the health

state of an infrastructure through data processing and statistical analysis [49, 172] i.e., SHM
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Global damage costs from natural disasters, All natural disasters, 1980 to
2019
Total economic cost of damages as a result of global natural disasters in any given year, measured in current US$. Includes
those from drought, �oods, extreme weather, extreme temperature, landslides, dry mass movements, wild�res, volcanic
ac�vity and earthquakes.
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(b) Economic loss in USD per country in

2018.

Figure 1-2: Natural disasters statistics: economical loss. Source [134]

is a damage detection strategy that seeks to extract information from samples of dynamic

response measurements, which are recorded by a distributed array of sensors located on the

structure, in order to predict its structural performance and safety [155].

Simultaneously, in very recent years, there has been a growing interest in the development

of the so-called data-driven (also known as data-based or model-free) algorithms, to obtain

useful information from large or small data sets with the aim of predicting future trends and

to make suitable, and perhaps economical, decisions in science, engineering, industry and

finance [18]. In this sense, the Statistical Pattern Recognition (SPR) and Machine Learning

(ML) theory offers powerful and efficient tools to address this type of problems, especially

when they imply uncertain and complex models, with a high degree of engineering knowledge

and heavy hardware and software requirements [153]. It means that SPR/ML systems beco-

me data-driven surrogates when the original problem does not need a detailed engineering

explanation regarding how the prediction was obtained [129]; moreover, they also allow to

build a boosted physics-informed predictive system [80]. A graphical explanation about a

data-driven approach using tools from the SPR/ML is shown in Fig. 1-3. Up to this point,

the main components are highlighted: input data, algorithm for learning and prediction.

Figure 1-3: A generic data-driven approach using tools from the SPR/ML.

The predictive modelling on geotechnical/natural-hazard engineering and on the assessment
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of structural safety and performance illustrates the importance of this approach [177, 101].

Some particular examples from these areas can be found in flash flood prediction [165],

stream-flow forecasting [180], landslide susceptibility mapping [128], slope stability evalua-

tion [94], reliability analysis of geotechnical structures [90], earth science informatics [87],

site-specific characterization of soils [28], pattern recognition for vibration measurements

[172], damage prediction [159], building information modelling considering natural hazards

[167], among others [7, 181]. In addition, several efforts to set up specialized datasets 1 2 for

prediction tasks in geotechnical/natural-hazard engineering have been carried out.

Two data-driven problems are of interest in this thesis. On the one hand, the slope stability

analysis and the landslide susceptibility assessment which are well-established areas within

geotechnical/natural-hazard engineering [74], due to their key role on the reliability of critical

infrastructures such as networks of highways, roads, tunnels or bridges. On the other, SHM

which is a comparatively recent discipline within the assessment of structural safety and

performance that, originally, has involved scientific areas such as signal processing, SPR/ML

methods, decision theory or probabilistic risk assessment [154, 52].

Although the aforementioned problems are different, from an engineering perspective, both

require —given the high level of economical and life losses— data-driven approaches that will

ensure its reproducibility and facilitate a fair comparison across diverse SPR/ML systems.

Typically, these SPR/ML systems are composed of several steps (see Figure 1-4), including

two key ones [43]: (1) representation and (2) learning and generalization.

Representation
Learning and 

Generalization

Evaluation

AdaptationSensor Classification

Unlabeled object

to be classified

Classifier

Figure 1-4: A schematic diagram of a SPR/ML system using a 2-D vector space represen-

tation. Adapted from [42]

The first one concerns how an individual real-world object or phenomenon is numerically des-

cribed by feature vectors, probability models, (dis-)similarity representations, among others.

1https://hazmapper.org/
2https://www.nextgenerationliquefaction.org/

https://hazmapper.org/
https://www.nextgenerationliquefaction.org/
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The last one is related to obtain decision boundaries between pattern classes through sta-

tistical decision theory or geometric tools. The adaptation is an intermediate step in which

representations, learning methods or prior knowledge are simplified, enriched or ‘adapted’ for

obtaining a satisfactory trade-off between recognition accuracy and required computational

resources. In the evaluation stage, the performance of the SPR/ML system is estimated via

some kind of loss function.

This thesis is devoted entirely to the issue of representation in slope/landslide and SHM

predictions, considering them as classification tasks. Indeed, it should be noted that this

stage is outside the mainstream orientations of nowadays data-driven slope/landslide and

SHM assessments based on SPR/ML surrogates, which are mostly restricted to learning and

generalization. The emphasis of this thesis, within a SPR/ML scheme, is depicted in the Fig.

1-5.

Representation
Learning and 

Generalization

Evaluation

AdaptationSensor Classification

Figure 1-5: A generic data-driven approach using tools from the SPR/ML.

1.2. Problem statement

In slope stability analysis and landslide susceptibility, the data are usually represented by

features such as cohesion (c), friction angle (φ), unit weight (γ) and geometric properties

(slope angle or height) for the first case, or geological and topographic factors such as land

coverage, type of slide material, rainfall conditions, etc., for the second one. The limited

availability of these data, strictly from real-world cases, have led to the design of heavily

(hyper-)parameterized SPR/ML systems for dealing with the uncertainty associated to this

scarcity of data (see Section 3.1). In addition, these datasets are sparse, noisy, uncertain and

spatially variable which, in turn, entails the need to understand the structure and distribution

of the data [126].

In contrast with the feature-based approach, most data obtained from any real-world SHM

implementation, such as digitally-acquired signals, contours or images of different sizes, are

often considered as non-vectorial or syntactic data [52, 159, 9] i.e., they do not correspond

—in their raw form– to a feature representation and, hence, no feature space is originally

defined. Although the SHM community has paid a lot of attention to statistical model
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development for feature discrimination, obtaining a discriminative set of highly damage-

sensitive features is a hard task for these non-vectorial or data [111, 51, 151]. To tackle this

issue, once again, (hyper-)parameterized SPR/ML systems have also been designed, such as

(deep-)neural networks, support vector machines (SVM), ensemble learning methods, etc.

Indeed —in many cases— inappropriate setups are adopted i.e., SPR/ML systems which

use, during training, data from both damaged and undamaged conditions providing, thus,

additional information to any computational learning technique under unrealistic settings

(see Section 3.2). A more fair or realistic scenario consists in only using undamaged examples

for training, since data from damaged conditions are often unavailable or very costly to be

acquired. Such a setting is known as a one-class classification approach.

In parameter-laden SPR/ML systems, to determine suitable values for (hyper-)parameters

by cross-validation is not a straightforward task, which, in most situations, lacks the interpre-

tability and, besides, imposes pre-fixed concepts from a particular domain expertise [81, 82]

to ensure a proper performance. Therefore, these parameter-laden algorithms may fail in

finding the optimal values for their (hyper-)parameters, potentially causing overtraining or

hindering the reproducibility of the results. Accordingly, in [56, p. 3134] it is claimed that

“A researcher may not be able to use classifiers arising from areas in which he/she is not an

expert (for example, to develop parameter tuning), being often limited to use the methods

within his/her domain of expertise”. In [158, p. 27] a long-pursued parameter-free approach,

for SPR/ML, is referred as: “Ideally, a learning method is automatic, i.e., no parameters

need to be set by the user”. In this sense, a practical SPR/ML system should have as few

parameters to tune as possible while, at the same time, reaching predictive models that

are able to adequately explain the real-world data. This parameter-free or parameter-light

approach implies simpler SPR/ML systems (see, for example, [30, pp. 3-7] or [5, p. 86]). Mo-

reover, this reasoning is consistent with the so-called Occam’s razor, which “is the principle

of parsimony [which claims that] a model should be simple enough for efficient computation

and complex enough to be able to capture data specifics” [14, pp. 104].

According to the above-listed issues, the starting point for this thesis is the observation

that the ability to properly extract knowledge from a data set, to make decisions, is the

cornerstone of the data-driven approach and, therefore, it is well-known that the issue of data

representation is as important as the statistical model development [76]. In other words, the

better data representation, potentially the clearer or sharper separation between classes is

achieved and, hopefully, parameter-free or parameter-light SPR/ML systems will be sufficient

for a successful classification. In turn, this parameter-free or parameter-light approach may

be a very important step towards the design of interpretable or explainable SPR/ML systems

[109, 12], focusing on the reasoning of “letting the data speak for themselves”. Currently, an

interpretable concept-learning is not only an active new research direction in the SPR/ML

areas, but also in slope stability evaluation [135, 100] and SHM [121].

Consequently, this thesis seeks to respond the following questions:
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− By default, data-driven slope stability evaluation is defined by features. Accordingly, is

it possible to obtain competitive or better performances than state-of-art models, from

a bottom-up design of SPR/ML systems, such that parameter-free/light feature-based

models are accomplished? Moreover, could this feature representation be enhanced

without a significant increase in the number of model parameters?

− If compelling evidence exists of alternative approaches to deal directly with non-

vectorial data i.e., dissimilarity representations, is it possible to obtain competitive

or better performances than state-of-art feature-based models in data-driven SHM,

from alternative data representations and adopting a bottom-up design of SPR/ML

systems, such that parameter-free/light dissimilarity-based models are accomplished?

1.3. Objectives

The main goals of this thesis are summarized as follows:

− Explore mathematical properties and practical possibilities of enriched dissimilarity

representations, based on spectral/time-frequency information and one-class classifiers,

for structural health monitoring.

− Evaluate advantages or disadvantages of employing (non-)metric information contained

on dissimilarity spaces with applications to structural health monitoring.

− Examine the importance about the reproducibility and the interpretability issues on

methods and/or research based on statistical pattern recognition, in particular, for

the case of structural health monitoring and geotechnical/natural-hazard engineering,

through the use of classifiers that have few, or none, (hyper-)parameter(s) to tune.

− Validate the proposed methodology using computational simulations.

1.4. Structure of the thesis

After this introduction, Chapter 2 starts with a basic background for this thesis, which in-

cludes a brief description of the learning mechanism in SPR/ML, followed by an explanation

about nearest feature classifiers; in particular, the Nearest Feature Line and the Rectified

Nearest Feature Line Segment classifiers are presented. Also, hypersphere-based scalings

techniques and one-class classifiers within a parameter-free/light approach are described.

Then, the fundamental concepts of proximity learning are provided, focusing on dissimila-

rity embeddings as an alternative to representation issues when we deal with non-vectorial

or syntactic data.
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Chapter 3 presents the related work for slope/landslide susceptibility analysis and SHM using

SPR/ML techniques. Chapter 4 presents the main contributions of the thesis through three

sections which correspond to the three associated papers. Paper 1 is based on the design

of SPR/ML systems according to the Occam’s razor principle for slope vectorial data. On

the other hand, Paper 2 is dedicated to slope/landslide vectorial data with emphasis on an

enrichment of the representational capacity of the data set or an enhancement of the distance

learning. Lastly, Paper 3 proposes a dissimilarity-based pattern recognition approach for

SHM non-vectorial data. As a whole, all three papers present an alternative and a bottom-up

framework for the design of highly competitive SPR/ML systems for two particular problems

in engineering. Finally, conclusions and future work are discussed in Chapter 5.



2 Learning classifier systems using

(non-)metric and (non-)vectorial data

This chapter is devoted to basic concepts in Statistical Pattern Recognition (SPR). In this

direction, it gives a special importance to representation i.e., how the object or data is repre-

sented and the choice of discriminant (invariant-)features, following the original, and main,

aim of the field of SPR 1: “... the core research topic of [statistical] pattern recognition, the

topic that makes it different from the related domains [machine learning, neural networks and

statistics], is to study object representations in which the relevant pattern classes naturally

emerge”. For years, a number of authors have already highlighted, —and supported—, this

difference [76, 42]. The object or data representations typically used in SPR/ML are shown

in Figure 2-1, and the respective contributions (papers) of this thesis upon this roadmap

are also indicated.

Figure 2-1: Typical object or data representations used in SPR/ML. Adapted from [40].

Within this framework, there has been a particular focus on classifier systems with few,

or none, (hyper-)parameter(s) to tune, in order to study the learning and generalization

1https://37steps.com/108/pr-core-business/

https://37steps.com/108/pr-core-business/
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in relation to the issue of representation providing interpretability of the results of applied

SPR/ML systems.

2.1. Statistical pattern recognition

Pattern recognition (PR) is a scientific discipline of computer science that, according to

Bishop [15, p. vii] originated in engineering. From a theoretical and practical perspective,

PR studies methods for designing intelligent machines which learn to discriminate patterns

for a specific recognition task under noisy or uncertain conditions, simulating the human

and biological ability of perception and intelligence [5, 153] (see Fig. 2-2). In this context, a

pattern can be seen as “any relation present in the data, whether it be exact, approximate

or statistical” [138, p. 8]. Practical applications of PR include machine vision, computer-

aided diagnosis, remote sensing, speech recognition, financial forecasting, data mining and

knowledge discovery, among others [163].

Generator

of samples

System

Model or

function

Figure 2-2: Model of a learning machine. Adapted from [26].

In SPR, each pattern is represented by a feature vector i.e., a d-dimensional vector of real

numbers that characterize a certain object which is composed by d features or attributes,

each one corresponding to a dimension in a proper vector space, called feature-based vector

space. This feature-based vector space is a well-equipped vectorial space due to their powerful

geometrical and analytical tools that, in many cases, are not available in other representations

[163]. However, choosing the right set of features for a specific recognition problem is often

a difficult and challenging task; indeed, this task usually ends up being a subjective and

knowledge-dependent process [38].

Under this rationale, the purpose of a SPR/ML system can be defined as follows [69]: on

the basis of n samples, denoted as Z := {(x1, y1) , ..., (xn, yn)} ∈ X × Y , to build a model

or function, f (x, γ) : X → Y , that predicts unseen data, T = {t1, ...tk}. Conventionally,
X ∈ Rd is the set of feature vectors or inputs and Y ∈ R is the set of associated measured

output or labels, where Z set is called training set, the set of unseen data is called test set

and the function or model f (x, γ) is the learning machine. Furthermore, the samples in Z
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are assumed independently identically distributed from an unknown probability measure,

dP (x, y), and γ ∈ Γ is the set of (hyper-)parameters of a particular function or model.

From a statistical learning perspective, the quality of a learning machine is determined by

the risk function:

R (γ) =

∫
X
L (y, f (x, γ)) dP (x, y) (2-1)

which is a Stieltjes integral defined as the expected value of the loss function L (y, f (x, γ))

that, in essence, estimates the difference between the learning machine and the actual output.

If P (x, y) is derivable, then Eq. 2-1 becomes:

R (γ) =

∫
X
L (y, f (x, γ)) p (x, y) dxdy (2-2)

Thus, the aim of a parsimonious SPR/ML system is to minimize the value of the risk function

with the simplest learning machine e.g., to obtain the learning machine with the lowest

number of (hyper-)parameters to adjust in Eq. 2-2, according to the so-called Occam’s razor

(see Section 1.2). Since the expected risk can be minimized only by a finite set of samples,

then it is only possible to compute an approximation of the expected risk, known as Empirical

Risk Minimization principle (ERM) and defined as:

Re (γ, n) =
1

n

n∑
i=1

L (f (xi, γ)) (2-3)

The main learning modes considered in SPR/ML are [138]: (un)supervised learning, semi-

supervised learning and reinforcement learning. This thesis pays special attention to su-

pervised learning and, in particular, to the classification task. In this case and particu-

larly for two classes, the data consists in n pairs of feature vectors xi ∈ Rd and labels

yi ∈ {+1,−1}, so that z := {(xi, yi) ,∀i ∈ {1 : n}}. For classifications involving multiples C
clases, yi ∈ {1, 2, ..., C}. The loss function assumes the form:

L (y, f (xi, γ)) =

{
0, if y = f (x, γ)

1, otherwise
(2-4)

and the ERM is defined as:

Re (γ, n) =
1

n

n∑
i=1

I (yi = f (xi, γ)) (2-5)

being I the indicator function.
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2.2. Learning parameter-free/light classifier systems

The design of parameter-free or parameter-light SPR/ML systems is a suitable step towards

the concept-learning of interpretable Artificial Intelligence [109] and, within this framework,

the nearest neighbor (NN) classifier is recognized as a transparent classifier [10]. That means

that, it is —by itself— highly understandable for a human due to its clear geometrical

interpretation [18, p. 192].

The NN classifier builds a local decision boundary using the nearest prototype feature point,

xc
i , to the unlabeled point, x. In its most basic form this method chooses the label of the

xc
i and the nearness is conventionally quantified using the Euclidean distance [13]. A simple

extension considers k nearest prototype feature points to the unlabeled point, x, thus, this

rule classifies x by assigning it the class label most frequently represented of the k nearest

prototype feature points. The empirical risk, for a binary problem, is defined as [26]:

Re (γ, n) =
1

k

n∑
i=1

(yi − f (xi, γ)) Ik (xi,x) (2-6)

where k is the number of nearest prototype feature points and Ik (xi,x) = 1 if xi is one of

the k feature point nearest to x and zero in other case. Here, f (xi, γ) ∈ {+1,−1}. The value
f (xi, γ) for which the empirical risk is minimized is [26]:

f (xi, γ) =

{
1 1

k

∑n
i=1 yiIk (xi,x) > 0,5

0 otherwise
(2-7)

NN is one of the simplest non-parametric classifiers [31] with a very competitive performance2

in complex SPR/ML problems subject to (non-)vectorial data [174, 12] and its accuracy, in

Euclidean spaces, achieves at most twice the Bayes error rate in an asymptotic sense [118].

However, its performance is closely related to: (1) the representational capacity of the data

set i.e., the smaller the training set size, the higher the loss in its performance, as well as, (2)

on the structure of the data e.g., unbalanced feature scales or meaningless features. Similarly,

its performance depends on the choosen distance [39]. To cope these limitations, extensive

enhanced methods based on geometrical strategies [21] or adaptive (non-)metric distance

learning [61] have been proposed.

This thesis pays special attention, in the first case, to one of the most well-known enrich-

ment rules of the NN method —originated from the Machine perception and Computer vision

community— called the nearest feature rules, which employ a linear interpolation and extra-

polation between sample points or prototype feature points of the same class [92, 93, 27]. For

2An example is the technological strategy that won the first Netflix progress prize, in 2007, which was based

on the NN rationale [11].
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the later case, a family of (non-)metric learning distances, based on the fundamental concept

of territorial hyperspheres, are studied for complex and noisy datasets. Both approaches are

detailed in the following sections. In addition to that, data descriptors or one-class classifiers

are briefly mentioned.

2.2.1. Nearest feature classifiers

In general, classification methods based on nearest feature rules are designed under simple

but powerful geometrical concepts whose major advantage is supported by the enrichment of

the feature space or the enhancement of the distance learning. This enrichment is achieved

through some kind of approximation between the prototype feature points which, similarly

to NN, does not imply any tunning parameter.

The Nearest Feature Line classifier

The Nearest Feature Line (NFL) classifier was originally proposed in [92]. It is a template

matching procedure which generalizes each pair of prototype feature points,
{
xc
i ,x

c
j

}
, in the

same class by a linear approximation, Lc
ij, called feature line (see Figure 2-3 left side). This

feature line is defined by the span Lc
ij = sp(xc

i ,x
c
j). A new unlabeled point x (also known as

query) must be projected onto Lc
ij as follows:

x̃c
ij = xc

i + τ(xc
j − xc

i) (2-8)

where τ is the position parameter given by τ = (x − xc
i) · (xc

j − xc
i)/∥xc

j − xc
i∥ ∈ R and x̃c

ij

is the projection of the query point.

Figure 2-3: Query point and its distance to feature line (left) or to feature plane (right).

Adapted from [114].
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The classification of x is done by assigning the class label ĉ to it according to the most

frequent label among the k nearest feature lines:

d(x, Lĉ
îĵ
) = min

1⩽c≤C, 1≤i,j≤nc, i ̸=j
d(x, Lc

ij) (2-9)

where

d(x, Lc
ij) = ∥x− x̃c

ij∥ (2-10)

A theoretical justification of NFL was shown in [189]. The authors proved its effectiveness

on problems with small datasets, due to additional information provided by the feature lines

passing through each pair of samples; thus, the representativeness of the prototype feature

points set is generalized.

Similarly, the Nearest Feature Plane (NFP) classifier belongs to this family of algorithms. The

formulation of NFP is a geometrical extension of NFL but, in this case, three prototype points

of the same class {xc
i ,x

c
j,x

c
m} are used during the classification, obtaining a generalization

through a triangular subspace or feature plane, Pc
ijm, in a Euclidean space [27]. This feature

plane is defined as P c
ijm = sp(xc

i ,x
c
j,x

c
m). A new unlabeled point x is projected onto Pc

ijm,

as follows:

x̃c
ijm = Xc

ijm

(
Xc

ijm
⊤Xc

ijm

)−1
Xc

ijm
⊤x (2-11)

with Xc
ijm =

[
xc
i x

c
j x

c
m

]
. Considering k = 1, the classification of the query point, x, is done

similarly to Eq. 2-9:

d
(
x, P ĉ

îĵm̂

)
= min

1⩽c≤C, 1≤i,j,m≤nc, i ̸=j ̸=m
d(x, P c

ijm) (2-12)

where

d(x, P c
ijm) = ∥x− x̃c

ijm∥ (2-13)

Regarding NFL, the interpolating or extrapolating parts of some feature lines could cause two

trespass mistakes: extrapolation inaccuracy pointed out in [185] and interpolation inaccuracy

considered in [37]; a graphical explanation is given in Figure 2-4. In fact, there exists a third

drawback: its large computation cost [190].

Nevertheless, several modified or refined NFL approaches have been reported in the literature

in order to handle these issues. In [185], the Nearest Neighbor Line (NNL) was presented; it

is a fast algorithm that deals with the extrapolation inaccuracy. For the study reported in

[188], the authors extended the NFL method with a new distance metric. In [190] a pattern

classification method, the Nearest Feature Midpoints (NFM), was developed. In NFM, the

classification is based on the minimum Euclidean distance between a query sample and the
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Figure 2-4: Inaccuracies caused by trespassing: extrapolation (left) and interpolation

(right). Adapted from [37].

middle point on a feature line. NFM deals with the extrapolation problem under a simple

and fast computing framework.

A Center-based Nearest Neighbor (CNN) classifier was reported in [60] based on the Eucli-

dean norm between the query point and the feature line defined by the center of the class

and a training sample. CNN can significantly reduce the computational cost. The Restricted

Nearest Feature Line with Angle (RNFLA) was suggested in [54], which solves the problem

of far away prototypes in NFL i.e., the RNFLA classifier computes the angle between the

query point and each of the feature lines to overcome the extrapolation inaccuracy. In all

cases, the refined NFL approaches borrow the geometrical NFL concept to redefine a new me-

tric. Hence, refined NFL rules inherit somehow the drawbacks of the original NFL, specially

concerning the trespassing issue.

The Rectified Nearest Feature Line Segment classifier

Among these methods, a refined approach which overcomes both interpolation and extra-

polation inaccuracies linked to NFL, called the Rectified Nearest Feature Line Segment

(RNFLS), was developed in [37]. RNFLS tackles both issues in a two-stage procedure: first,

when the query lies in the extrapolation part, just a feature line segment is used, denoted by

L̃c
ij. That is, the distance to the line is assumed between the query, x, and the closest point

of the feature line segment, z ∈ L̃c
ij. Thus, Eq. 2-10 becomes:

d(x, L̃c
ij) = min

z∈L̃c
ij

∥x− z∥ (2-14)

Secondly, if the query lies in the interpolation part, an examination of the territories of each

class is carried out. Besides if the feature line trespasses a sample territory which belongs to

other class, this feature line would be removed. This sample territory, Txc
i
⊆ Rn, is defined
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by:

Txc
i
=
{
h ∈ Rn : ∥h− xc

i∥ ≤ ρxc
i

}
(2-15)

where ρxc
i
is expressed as:

ρxc
i
= min

1⩽c,r≤C, c̸=r

∥∥xc
i − xr

j

∥∥ ∀j = 1, . . . , n (2-16)

and where the union of the sample territories, beloging to the same class, leads up to the

class territory Tc =
⋃
c

Txc
i
.

Although its main drawback is the computational cost, this method enhances the classifica-

tion ability and is applicable to very complex problems in pattern recognition [91, 113].

2.2.2. Hypersphere-based scalings

Two hypersphere-based scalings are considered in this thesis: the Hypersphere classifier (HC)

[97] and the Adaptive Nearest Neighbor (ANN) classifier [169], which are powerful methods

that adapt the metric used in such a manner that weigh distances to prototype feature

points which are well inside their class [112]. In other words, HC and the ANN classifier

involve a locally adaptive distance measure of a new unlabeled point x by means of an

weighting process. Notice that, these techniques are particularly useful when x is near the

class boundaries where there is a possibility of overlap between classes or noise level [169, 12].

For HC [97] the region of influence of a given prototype feature point xc
i ∈ Rd is defined as

ηi = ρi / 2, where ρi is its radius computed by Eq. 2-16. So, the distance from x to xc
i , for

HC, is given by:

dHC (x,xc
i) = ∥x− xc

i∥ − gηi (2-17)

where g is the parameter that controls the overlapping between hyperspheres from different

classes. Fig. 2-5a shows a graphical explanation about HC which considers two classes: the

c class and the r class. For example, the ‘adapted’ distance from x to xc
5 is depicted by the

green line, dHC (x,xc
5). In this case, it is assumed that the ‘contrary’ nearest prototype of xc

5

is xr
3.

The original version of the HC method proposes a value of g = 2, resulting in:

dHC (x,xc
i) = ∥x− xc

i∥ − ρi (2-18)

For the ANN classifier [169], the distance is scaled as follows (see Fig. 2-5b):

dANN (x,xc
i) =

∥x− xc
i∥

ρi
(2-19)

where the two components of the Eq. 2-19 are highlighted by two green segments.
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(a) The Hypersphere classifier (HC).
(b) The Adaptive Nearest Neighbor (ANN)

classifier.

Figure 2-5: Hypersphere-based scalings techniques considered in this thesis.

2.2.3. One-class classifiers

One-class classification, also called data description, is a SPR/ML approach, where the main

goal is to describe and distinguish one class of objects, called target class, from all other

possible objects, called outlier class. This classification problem is subject to classes with

very poorly balanced data or where one of the classes is totally absent [161]. This approach is

motivated by real-world problems such as anomaly/damage detection for machine condition

monitoring or SHM [50, 139, 9], or imbalanced data sets for structural/geotechnical reliability

[106], where most of the data corresponds to undamaged, safe or “healthy” data.

In general, all one-class classifiers have the following form [118]:

O (x | X , γ) = I (d (x | X , γ) < θ)

=

{
1, if x is classified as a target

−1, otherwise
(2-20)

where I (·) is the indicator function, which defines if a query x is accepted or rejected as

target object given a (dis)similarity measure d between the query vector x and the training

set X . The model complexity parameter is referred as γ which is determined during the

training phase e.g., proper tuning of penalty value, kernel function and its width for one-

class support vector machines, and θ represents a rejection fraction of the target class such

as 0.1, for instance. Similarly, the rejection fraction is defined as:

min θ (2-21)

s.t.
1

n

n∑
i=1

I (d (x|X , γ) ≥ θ) = ε (2-22)
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Figure 2-6: One-class classifier representation for (un)damaged structures. The dashed line

describes the target class corresponding to undamaged data (black points),

while the outlier class is outside the enclosed region, representing therefore the

damaged data (red asterisk).

A wide set of one-class classifiers, belonging to proximity and density-based models, are

considered in this thesis [162, 78]:

1. The nearest neighbor based data description (NNDD): This method uses the distance

from a query object, x, to the first nearest neighbor in the target-training set,NN tr (x),

for its labelling. NNDD does not need any (hyper-)parameter to be optimized. In this

case, the indicator function (Eq. 2-20) becomes:

I (d (x | X , γ) < θ) = I
(

∥x−NN tr (x)∥
∥NN tr (x)−NN tr (NN tr (x))∥

⩽ 1

)
(2-23)

2. The k-nearest neighbor data description (k-NNDD): This method is similar to NNDD,

however, it uses the distance to the k-nearest neighbor where k is found by a leave-

one-out density estimation over the target-training set.

3. The Parzen density data description (parzenDD): This classifier is an extension of the

Gaussian mixture classifier, where the density estimation is computed by a mixture

of Gaussian kernels centered at the individual target-training objects following the

expression:

I (d (x | X , γ) < θ) = I (pp (x) ⩽ θ)

pp (x) =
1

n

∑
i

pn (x,xi, hI) (2-24)
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where pn is the kernel and h > 0 is the bandwidth. If a sample is out of the estimator,

then it is assumed as outlier.

4. The support vector data description (SVDD): In this case, the description of the target-

training set is carried out through a hypersphere with minimal volume around a center,

a. A flexible shape decision boundary can be obtained using a plethora of kernel set-

tings. The SVDD is defined by:

I (d (x | X , γ) < θ) = I
(
∥x− a∥2 ⩽ R2

)
= I

(
(x · x)− 2

∑
i

αi (x · xi) +
∑
i,j

αiαj (xi · xj) ⩽ R2

)
(2-25)

with 0 ⩽ αi ⩽ C being the Lagrange multipliers, and the parameter C is a tradeoff

between the volume of the description and the errors. Now, R2 is computed as the

distance from the center of the sphere a to one of the support vectors on the decision

boundary:

R2 = (xk · xk)− 2
∑
i

αi (xi · xk) +
∑
i,j

αiαj (xi · xj) ∃xk ∈ SVbound (2-26)

5. The minimum spanning tree data description (mstDD): This is a graph-based learning

method which generates linear subspaces between target-training data, obeying the

minimum spanning tree principle. The mstDD follows a form given by:

I (d (x | X , γ) < θ) = I (dmst (x|X ⩽ θ))

dmst (x|X ) = min
eij∈mst

d (x|eij) (2-27)

If the value of τ , defined in Eq. 2-8, is 0 ⩽ τ ⩽ 1 then the distance dmst can be obtained

via Eq. 2-9 making appropriate changes [78]. Otherwise, the distance is computed under

the same rationale from Eq. 2-14. Conventional selection of the rejection fraction is the

minimum or maximum length of the linear subspace generated by each class.

2.3. Generalized kernels and statistical/machine learning

with proximity data

Most real-world data are not originally defined by a set of isolated features. Examples

of this include spectra, time and biological sequences, images, graphs, etc. In fact, there

exists evidence that a human observer is primary led by differences between objects, later

similarities come and finally a description is made by means of feature and models [45].

In other words, the basis of the human recognition and perception of patterns is mainly

composed by the totality of the information contained in the object/data [44]. This process
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has two steps: (1) the objects are detected in their totality and (2) the isolated object is

recognized. These two steps are interconnected and verified by each other.

At first, the pioneering work proposed in [65] emphasized the importance about the notion of

proximity in statistical/machine learning method, where a proximity measure, P : X ×X →
R, can be understood as a function from an arbitrary pair of data to a real value. However,

the full potential of proximity-based learning starts with the formalization of the kernel

methods that mainly learn from proximity data by means of similarity functions which are

related to the inner product [69, 104].

For kernels it is asssumed that there exists a function ΦH : X → H that maps the input

data to a high-dimensional feature (Hilbert) space which is associated to the inner product

⟨ΦH (xi) ,ΦH (xj)⟩H. So, kernels are functions K : X ×X → R associated to ΦH and ⟨·, ·⟩H
such that K (xi,xj) = ⟨ΦH (xi) ,ΦH (xj)⟩H [138]. This generalization from a inner product

to a kernel function is known as the ‘kernel trick’. The kernel matrix K ∈ Rn×n resulting

from this kernel trick must be symmetric and positive definite i.e., ∀q ∈ Rn : q⊤Kq ⩾ 0.

As SPR/ML applications increased, the considered input data become more and more com-

plex. Hence, nowadays SPR/ML methods must deal with non-vectorial, structural and, in

general, with generic proximity data, e.g., text data, graphs, digital images, time series,

genome-sequences, probabilistic models, etc. [108]. Conversely, kernel methods were origi-

nally designed for vectorial data. So, such methods are not directly applicable to generic

proximity data and, therefore, kernels for structured data have been proposed in order to

represent this non-vectorial information such as, graph kernels, gap-weighted subsequences

kernels, P-kernels, among others [138]. Nevertheless, this kind of information is composi-

tional and coding it in a set of fixed-length and highly discriminant vectors is still a very

challenging task [41, 107].

An appealing alternative to learn from proximity data is offered by proximity-based repre-

sentation spaces built with distances or dissimilarities [118]. This thesis is focused on these

representation spaces, paying special attention to classification in a simple yet powerful

proximity-based representation space so-called the dissimilarity-based vector space.

2.3.1. Proximity-based representation spaces

The representation spaces are data-dependent inner product spaces that encode the proxi-

mity information via domain-specific measures [122]. Suitable structure-aware measures have

been devised by different learning frameworks; some examples are: Smith Waterman align-

ment in bioinformatics [107], compression distance for text analysis [82], non-metric measures

in template matching [41], edit distances in time series analysis [170], Kullback–Leibler di-

vergence measures in information-theoretic domains [117], or tangent distances [68], among

others. One of the main reasons for using these domain-specific measures is their degree of

accuracy and the intrinsic incorporation of prior knowledge about the problem [122, 108].
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A special elastic measure, called Dynamic Time Warping (DTW) [132], which provides non-

metric information between time series is used in this thesis. A time series is a sequence

s of size [t] × [w]. In order to compute the distance between two time series s1 and s2 of

length j and l, respectively, we need to define a warping or alignment path of order j × l as

a sequence α = (α1, α2, . . . , αq) ∈ A, being A an array of size [j]× [l]. Two conditions must

be met: the first one is α1 = (1, 1) and αq = (j, l) for any warping path, and the second one

is αr+1−αr ∈ {(1, 0) , (0, 1) , (1, 1)} , ∀1 ≤ r < q. The cost function of a warping along α for

s1 and s2 is obtained by:

Cα (s1, s2) =
∑

(i,r)∈α

∥ s1 − s2 ∥2, α ∈ A (2-28)

where ∥ · ∥ is the Euclidean norm and where the DTW is then defined as:

ddtw (s1, s2) = min
α

Cα (s1, s2) (2-29)

In general, in many theoretical or practical problems, domain-specific measures are often

either non-metric or non-Euclidean, and thus violate mathematical assumptions of SPR/ML

algorithms; that means, the positive definiteness and symmetry conditions are unfulfilled

[122, 45]. Moreover, the proximity-based representations are related to the field of non-

Mercer kernels in SPR/ML theory [119], where it is well recognized that non-metric or non-

Euclidean information generates powerful vector spaces to classify non-vectorial or syntactic

data [148, 149].

The dissimilarity-based vector space

The dissimilarity representation for SPR/ML consists of a finite numerical representation

based on relative differences between objects, which might span a space i.e., consider the

collection of these dissimilarity values as entries of a vector in a so-called dissimilarity-

based vector space, with suitable properties for the use of statistical/machine learning tools

[120, 118] (see Figure 2-7). Thus, this proximity-based learning has a direct application in

the following SPR/ML problems:

− When the data are non-vectorial type such as shapes, digital images, spectra or time

series. In SHM non-vectorial data correspond, for instance, to accelerations or displa-

cements measured or (un)damaged images (see Section 4.3).

− When the data are structural type, i.e., strings, graphs. In SHM this one corresponds,

for instance, to recent applications of transfer learning [62].

− When the vector representation lies in a high-dimensional space;

− When a feature representation is composed by mixed types;
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Figure 2-7: Dissimilarity-based representation in comparison to the feature-based represen-

tation. Adapted from [116].

− To design nonlinear classifiers from a given feature space.

The formalization of that representation is as follows. Let X = {x1, x2, . . . , xN} be a training

set of N objects and P = {p1, p2, . . . , pn} ⊆ X be a set of n prototype objects, which are

representative instances of the classes. If dds is a dissimilarity measure between objects, then

an object x ∈ X is represented by a row vector of dissimilarities given by:

d (x,P) = [dds (x, p1) dds (x, p2) . . . dds (x, pn)] (2-30)

Therefore, the dissimilarity representation for the training set X is then obtained when the

dissimilarity matrix

D (X ,P) ∀xi ∈ X , i ∈ {1 : N} (2-31)

is computed. Similarly, the dissimilarity matrix D (T ,P) must be also obtained for the test

set T = {t1, t2, . . . , tk} with k objects.

In general, a dissimilarity matrix DN×n = (dij) ∀i, j has the following properties [118]:

1. Non-negativity: dij ≥ 0

2. Identity of indiscernibles: dij = 0 iff objects i and j are identical
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3. Symmetry: dij = dji

4. Triangle inequality: dij < dik + dkj

5. Euclidean property: A N ×n matrix D = (dij) is Euclidean if there exists an isometric

Euclidean embedding into a Euclidean space

6. Compactness property: If objects i and j are very similar, then dij < δ

7. True representation: If dij < δ then objects i and j are very similar

8. Continuity property: Given (X , dds) a generalized metric space, the dissimilarity mea-

sure dds : X ×X −→ R+
0 is continuous at x, y, if xn, yn ∈ X with limn−→∞ xn = x and

limn−→∞ yn = y ⇒ limn−→∞ d(xn, yn) = d(x, y)

Fulfillment of the first two properties produces positive definite dissimilarity matrices and

fulfillment of the first four properties defines a metric space. This approach is adopted in

this thesis, where the dissimilarity matrix is adressed as a data-dependent mapping D (·,P) :

X → Rn, from the representation set to the so-called dissimilarity-based vector space.

In this regard, a linear classifier trained in a dissimilarity space D (X ,P) is given by:

f (D (x,P)) =
n∑

j=1

ϖjd (x, pj) +ϖ0 = w⊤D (x,P) +ϖ0 (2-32)

where f (D (x,P)) = 0 defines the classifier. According to this one, for example, a linear

Bayesian classifier for a binary problem is defined as:

f (D (x,P)) = w⊤D (x,P)⊤ +ϖ0 (2-33)

where w = C−1
ϖ (m1 −m2) and ϖ0 = −1

2
(m1 −m2)

⊤C−1
ϖ (m1 −m2)+ log

(
pw1

pw2

)
. Here, pw1

and pw2 corresponds to class prior probabilities and Cϖ is the sample covariance matrix;

m1 and m2 are the class mean in the dissimilarity space. For more details and classifiers in

dissimilarity spaces, see [118].

Finally, the dissimilarity based vector space is an Euclidean one, which preserves all the

non-Euclidean or non-metric information [122, 41], and is equipped with its own norm and

inner product. Each dimension, given by Eq. 2-30, corresponds to the dissimilarity d (·, pi)
to a prototype pi. Notice that, d (·, pi) can be seen as a dissimilarity-based feature vector.
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Pseudo-Euclidean linear embedding space

In this approach, the dissimilarity matrix D (X ,X ) is embedded by a proper isometric

(distance-preserving) mapping in a pseudo-Euclidean spaces E = R(p,q) = Rp ⊕ Rq, which is

endowed with a nondegenerate indefinite inner product ⟨·, ·⟩E such that this one is positive

definite in Rp and negative definite in Rq. Typically, E require either corrections on proximity

data or nontrivial reformulations of the classification scheme [45].

Final remark

There is another approach to deal with these dissimilarity matrices known as the pretopo-

logical approach [41]. In this case, the nearest neighbor rule is applied directly to D (T ,P),

considering balls around training data. The main disadvantage of this approach is the dete-

rioration in its performance for small training sets.
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This chapter is about the literature review for the two practical problems mentioned in

Section 1.1. Accordingly, there is a section for each research problem.

3.1. Geotechnical/natural-hazard problem:

Slope/landslide safety evaluation

SPR/ML methods have very recently taken the lead on data-driven slope/landslide safety

evaluation tasks using real-world datasets. Very heavily (hyper-)parameterized classifiers

have been studied for slope stability prediction, including many proposals based on Artificial

Neural Networks (ANN), whose learning depends on the number of layers and neurons

(nodes), the number of training epochs or the selection of an appropriate activation function

[103].

For the prediction of the Factor of Safety (FOS) in slope stability analysis, several trial-

and-error or empirical techniques have been reported in the literature for the adjustment

of parameters in the learning scheme of ANN models [140, 29], ensemble of Kohonen self-

organizing maps (SOM) and Bayesian ANNs [55] as well as for the tuning process for per-

ceptrons [1]. Das et al. [34] adjusted the hyper-parameters of two feed-forward ANNs using

two techniques: a heuristic global optimization called differential evolution and a Bayesian

regularization method which, in turn, require additional parameters. Also, drawbacks such

as slow training speed, local minimum solution problems or overtraining have been reported

[96, 66, 88].

A hybrid stacking ensemble of classifiers —11 classifiers—, using data from the Finite Ele-

ment Method (FEM) and real-world cases, was proposed in [79]. In this case, the selection

of classifiers is optimized by an artificial bee colony (ABC) algorithm, however, the particu-

lar hyper-parameters corresponding to each classifier were adjusted by using particle swarm

optimization (PSO) algorithms, which imply a “two-level” optimization process for a large

number of hyper-parameters. Similarly, hybrid ML systems based on ANN were proposed in

[84], for predicting of FOS of slopes; such systems use the following optimization techniques

to adjust their hyper-parameters: genetic algorithms (GA), PSO, imperialist competitive al-

gorithm (ICA), and ABC algorithms. Rukhaiyar et al. [137] suggested an empirical approach

to adjust the architecture of a PSO-ANN system for predicting the FOS of slopes.
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Hoang et al. [70] made a comparative study taking three powerful SPR/ML techniques:

Radial Basis Function Neural Network (RBFNN), Least Squares Support Vector Machines

(LSSVM), and the Extreme Machine Learning (ELM). In the experimental setup, they men-

tion the importance about the hyper-parameters (e.g., the regularization constant and the

kernel function for the LSSVM or the number of neurons in the hidden layer for the ELM). A

powerful ensemble SPR/ML system has been suggested in [131], where a grid search method

was employed to adjust the individual hyperparameters and a GA optimization to build the

ensemble classifiers. In order to deal with this (hyper-)parameter setting, gradient boosting

machines have been applied [186].

The influence of the (hyper-)parameter setting in Kernel methods, such as kernel type or

width selection, have been also pointed out. In [142, 141] the importance of a proper tuning

task on classification and regression using SVM was discussed. Sensitivity issues on parame-

ter adjustment in relevance vector machine techniques are also mentioned; see [184]. In [143]

three types of kernel functions were considered, namely: polynomial, Radial Basis Function

(RBF) and Spline, whose parameters are tuned by trial-and-error. Zhang et al. [182] sugges-

ted an optimized adaptive relevance vector machine (ARVM). They carried out an analysis

of width hyper-parameter values for three types of kernels: Gauss, Cauchy and Laplace. On

the other hand, in [89] a very advanced quantum-behaved particle swarm optimization for

obtaining optimal hyper-parameters in a LSSVM system was presented. Kumar et al. [86]

proposed two SPR/ML models based on the idea of Minimax Probability Machine (MPM):

the Linear MPM and the Kernelized MPM; they assumed a RBF and tuned the value of

width via trial and error. A GA optimization was applied in [183] for training a SVM model.

Similarly, these drawbacks for an either (hyper)parameter sintonization are also highlighted

in other slope stability prediction problems based on a data-driven perspective [70, 187, 95].

Likewise, in landslide susceptibility prediction [133], numerous SPR/ML systems have been

proposed: statistical learning techniques, in a physics-based model parameter identification

scheme, using computational models and real-world data [64] or fuzzy classifiers [164] which

depend on weight values of the belief and the fuzzy membership function values. A review

about landslide susceptibility mapping using SVM was carried out in [75]. In this review, it is

again highlighted the need for an optimization process in any SVM model, particularly, the

type of kernel and the regularization parameter. A comparative study of three ML methods

—random forest (RF), boosted regression three (BRT) and SVM— was made in [4]. Each

classifier, in this case, requires to adjust several hyper-parameters. Chen et al. [23] applied an

adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a SVM

and a Generalized Additive Model (GAM) for landslide susceptibility; all of them being

parameter-laden algorithms. Similarly, comparison and/or ensemble of SPR/ML systems

[22, 124] that, in spite of their high performances, present a lot of parameters to tune such

as min/max size of the group, bag size, base classifier definition etc., are also reported in the

literature. A weight optimization process of a back-propagation architecture for ANN [168],
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as well as bagging ensembles of classifiers [123], have been considered.

Recently, deep-learning applications have turned into a popular topic in the literature about

landslide susceptibility prediction. In [73], the authors was considered a fully connected spare

autoencoder (FC-SAE) optimized with a dropout approach; in this case, a large data set was

required for a proper adjusting. Hua et al. [72] used a deep-ANN initialized by a Dynamic

Bayesian Network (DBN) with the ReLU activation function for detecting the occurence

of landslides, while Yang et al. [175] developed a dynamic displacement model using time

series decomposition information to feed a long short-term memory (LSTM) neural network.

A grid search method was applied to search optimal hyper-parameters of the LSTM NN

model.

3.2. Assessment of structural safety and performance

problem: Structural Health Monitoring

The following related work on data-based SHM emphasizes the anomaly detection focus from

SPR/ML in which the mainstream research about data-based SHM relies on a statistical

model development for feature discrimination from measured information [52], which is typi-

cally non-vectorial such as images, acceleration time-series, etc.; therefore, the usage of many

feature extraction methods, from different families, has been reported: early studies using

(un-)damaged features extraction from chaos theory and nonlinear dynamics modelling were

proposed in data-based SHM [110, 105, 115, 171]. Conventional dimensionality reduction

techniques such as Principal Component Analysis (PCA), kernel PCA and Locally Linear

Embedding (LLE), among others, are also combined to obtain highly (un-)damage-features

using a damage index scheme [98, 99].

Feature extraction techniques from (non-)stationary time series are hihlighted in the litera-

ture due to their importance to capture most discriminant information from nonlinear and

(non-)stationary acceleration time series [53, 157]. In [17] it is discussed a support vector

classifier trained in a feature-vector space which, in turn, is built with autoregressive (AR)

patterns extracted from each acceleration time-series; furthermore, the autocorrelation fun-

ction is employed to choose the order of the AR model. Similarly, in [67] the authors studied

a distance-based anomaly detection using AR features for a sensorized W8 × 13 I-beam in

steel. In [150] Shi et al. made a cointegration analysis using a decomposition of the SHM

signals for environmental and operational variations where a large number of parameters we-

re estimated, including the ARMA coefficients, the smoothing parameter, among others. In

[179], the sensitivity of autorregressive (AR) model properties is used as a damage detection

index that is validated through a large-scale bridge slab experiment; in this case, parameter

adjustments were also reported. An ensemble based anomaly detection using three levels

of the Mahalanobis-squared distance (MSD) was conducted in [146], along with one-class
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nearest neighbor (NN) rule for damage identification. Four deep learning algorithms were

applied in [33]: MultiLayer Perceptron, Long Short Term Memory network, 1D Convolutio-

nal Neural Network, and Convolutional Neural Networks (CNN) to SHM. The results of such

study point out to the need of an appropriate tuning of the algorithm (hyper-)parameters.

Regarding feature extraction in time series, a number of practical issues with respect to the

adjustment of a set of (hyper-)parameters have been mentioned, ranging from typical model

order selection [58, 57, 144], to adjustments depending on the method, such as the need of

user-defined thresholds [156], the window size for moving PCA and the number of environ-

mental and operational variability with similar response [85] or stationary assumptions [16].

Some approaches to solve these difficulties have been reported in [46, 47].

Advanced (hyper-)parameterized SPR/ML systems for SHM have also been proposed, such

as deep-SVM [176], where the feature set is extracted with an encoder network which, in turn,

requires to adjust the number of hidden layers, the set of weights and the activation functions,

apart from the kernel function of the support vector data descriptor. An unsupervised damage

diagnosis framework was proposed in [77], whose main contribution is the representation of

the structural time series by means of a deep auto-encoder. In [83] a brief reference about

data-based SHM was reported using CNN for one-dimensional time series. On the other

hand, in [160], an experiment was carried out using the time-frequency images from the set

of time series for the purpose of detecting the damage under an anomaly detection scheme.

In this experiment, information from both damaged and undamaged states was used during

the training phase.

Similarly, a time-frequency image classification from time series using wavelet analysis and

CNN was studied in [24]. The authors of [20] carried out a comparative study about the

performance of one-class SVM along several deep learning-based architectures (autoencoder,

robust autoencoder, one-class neural networks, soft-bound one-class deep SVDD and hard-

bound one-class deep SVDD) where parameters such as the encoder and decoder network

layers are tunned for the best classifier. Also, a CNN application on real-time damage de-

tection using damaged and undamaged data during training is found in [3]. Likewise, in [2],

an enhanced CNN for data-based SHM using time series was developed, with the aim of

reducing the amount of measurements required for a proper training.

Less attention has been paid to non-conventional data representations in the scientific lite-

rature. A symbolic data representation of time series which is characterized by statistical

quantities such as histograms or interquartile intervals is proposed in [32, 145]. In this case,

a clustering analysis was applied. This representation has been fed to three classification

methods: Bayesian Decision Trees, ANN and SVM [6]. Soon later, an extension of such a re-

presentation was developed in [35], where a time-frequency Interquartile Range (TF-IQRM)

is achieved from time series measured for real-time unsupervised data-based SHM. Other

extension is studied in [36], where an augmented IQRM was applied in a novelty detection
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context. Additionally, frequency representations are encountered [178]: frequency domain de-

composition [102], coherence function based damage detection [130, 136] or selected modal

frequencies [152, 147].

Future research trends on data-based SHM using feature extraction processing are discussed

in [166, 8]. Recently, an alternative is emerging: the Population-based approach to SHM

(PBSHM) [63] which, in essence, is an application of transfer learning to SHM by using

dissimilar configurations of civil, mechanical or aerospace structures.



4 Contributions

This chapter summarizes each published article and provides a brief mention about the main

contribution of each of them, without going into technical details in order to avoid poten-

tial conflicts related to the copyright agreement with the publishers as well as to minimize

unnecesary repetition with the content that is already included in the published versions.

Papers 1 and 2 (Sections 4.1 and 4.2) address the third objective of the thesis, while Paper 3

(Section 4.3) addresses the first two objectives. All papers imply a validation process using

computational simulations.

4.1. Paper 1: Parameter-light classifiers for vectorial

slope stability data1

This paper addresses the slope stability problem, from geotechnical engineering, as a data-

driven task using real-world data. The premise around this contribution is supported by the

Occam’s razor principle i.e., to choose the simplest SPR/ML method whose results are equal

to or, even, better than the results reported by complex methods for the same problem.

In this respect, classical but very effective SPR/ML methods were applied, assuming an

incremental evaluation during the design cycle and achieving, finally, very sound results.

Two publicly available data sets of real-world slope stability were considered: the first one

is a typhoon-induced slope collapsing from a region in Taiwan, called here Taiwan data set

[25]. A description of the the main properties is shown in Table 4-1. Also, all the data from

this set are presented in Table 4-3. It is composed by 76 instances of which 55 examples

belong to stable slopes (label Y=0) and 21 ones belong to collapsed slopes (label Y=1); each

instance has 15 features.

The last one is a collection from several countries of earth slope stability assessment data,

called here Multinational data set [71]. It consists of 6 features for 84 instances of stable

slopes (label Y=1) and 84 of unstable ones (label Y=0). A description of the the main

properties is shown in Table 4-2 and all the data from this set are presented in Table 4-4.

1This section was published as: Y.M. Ospina-Dávila and Mauricio Orozco-Alzate. Parsimonious design of

pattern recognition systems for slope stability analysis in Earth Science Informatics, Springer Nature,

Vol. 13, 2020, pp. 523-536. https://doi.org/10.1007/s12145-019-00429-5
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Table 4-1: Main properties of the Taiwan data set. Source [25]

Factor Feature Min. Max. Average SD

IF1 Slope aspect (◦) 0.0 345.0 174.0 103.7

IF2 Slope gradient (◦) 30.0 90.0 61.3 12.1

IF3 Slope height (m) 5.0 60.0 17.7 10.7

IF4 Slope form (◦) -44.9 47.7 2.4 13.8

IF5 Formation type 1.0 5.0 4.5 0.9

IF6 Angle between slope aspect and depositional trend (◦) 0.0 180.0 92.9 31.3

IF7 Angle between slope gradient and stratigraphic inclination (◦) -10.0 80.0 49.9 19.2

IF8 Rock mass size (m) 0.2 2.5 0.6 0.4

IF9 Rock mass volume (%) 20.0 100.0 71.2 14.2

IF10 Vegetation coverage percentage (%) 5.0 95.0 74.1 17.0

IF11 Vegetation coverage thickness (m) 0.5 4.0 2.2 1.0

IF12 Catchment area (m2) 406.0 132,901.0 12,495.0 25,927.0

IF13 Excavation height of slope toe (m) 2.0 30.0 5.5 4.0

IF14 Variance in gradient (◦) 0.0 35.0 9.6 11.1

IF15 Maximum accumulated typhoon rainfall (mm) 941.1 1947.3 1728.9 391.4

Table 4-2: Main properties of the Multinational data set. Source [71]

Factor Feature Min. Max. Average SD

IF1 Unit weight (kN/m3) 12.0 31.30 21.76 4.13

IF2 Soil cohesion (kPa) 0.00 300.0 34.12 45.82

IF3 Internal friction angle (◦) 0.00 45.0 28.72 10.58

IF4 Slope angle (◦) 16.00 59.0 36.10 10.22

IF5 Slope height (m) 3.60 511.0 104.19 132.68

IF6 Pore pressure ratio 0.00 45.0 0.48 3.45
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Table 4-3: Taiwan data set. Source [25].
IF1 IF2 IF3 IF4 IF5 IF6 IF7 IF8 IF9 IF10 IF11 IF12 IF13 IF14 IF15 Y

55 65 10 33.7 3 20 0 0.6 80 70 1 1422 6 15 1947.3 0

25 65 12 9.4 2 90 65 0.7 70 85 3 1829 8 15 1947.3 0

190 50 15 -4 1 90 50 0.3 50 80 1 2134 2 0 1947.3 0

20 70 12 -2.8 5 90 70 0.8 75 85 1 5182 3 0 1947.3 0

300 55 12 -7.2 5 90 55 0.6 80 80 3.5 5690 3 0 1947.3 0

265 60 15 2.4 5 90 60 0.9 75 90 4 1422 3 0 1947.3 0

315 55 12 2.7 5 90 55 0.7 75 85 2 1290 3 0 1947.3 0

30 65 10 7.2 5 90 65 0.7 70 90 3 1475 3 0 1947.3 0

55 60 15 9.4 5 90 60 0.8 75 95 3 2120 3 0 1947.3 0

260 70 13 -7 5 90 70 0.6 75 80 2.5 16036 3 0 1947.3 0

310 65 8 13 5 90 65 0.5 70 85 3 737 4 25 1947.3 0

310 50 12 9.7 5 90 50 0.5 75 95 3 1659 2 0 1947.3 0

60 90 12 2.3 5 90 60 1.2 95 75 1.5 922 4 30 1947.3 0

25 70 12 47.7 5 180 40 1.1 95 80 1 1106 4 20 1947.3 0

100 60 11 28.3 5 90 60 0.5 70 75 2.5 1016 3 0 1947.3 0

335 65 15 8.3 5 90 35 1.2 90 80 1 2032 4 15 1947.3 0

45 70 15 -4.1 5 90 20 1.1 90 75 2 2337 5 0 1947.3 0

85 60 17 -8.1 5 90 60 0.6 70 80 2.5 5284 3 0 1947.3 0

345 70 11 8.2 5 100 40 0.8 85 80 0.5 2032 7 15 1947.3 0

90 85 11 -6.6 5 100 65 0.9 90 60 1.5 5995 5 20 1947.3 0

0 70 15 8 5 90 70 0.7 75 80 3 1626 4 0 1947.3 0

310 50 23 -18.5 5 90 50 0.8 75 80 4 3455 2 0 1947.3 0

290 65 18 11.4 5 90 65 0.9 75 85 4 1524 4 0 1947.3 0

70 65 25 -5.6 5 150 35 0.7 80 95 4 813 4 0 1947.3 0

105 65 25 -3.7 5 140 20 0.5 75 70 1.5 3861 4 0 1947.3 0

80 60 12 20.5 5 90 60 0.7 80 85 1.5 813 3 0 1947.3 0

295 70 15 9 5 150 40 0.8 80 80 1.5 2337 4 10 1947.3 0

280 60 17 -9.6 5 90 60 0.8 80 80 2 4369 4 0 1947.3 0

280 85 15 12.5 5 170 70 0.9 90 75 1 4267 9 15 1947.3 0

250 70 20 15.6 4 100 55 0.8 85 85 1 2337 9 15 1947.3 0

245 30 18 4.6 5 90 30 0.3 50 70 2.5 2032 3 0 1947.3 0

230 30 17 -7.1 5 90 30 0.3 50 70 2.5 2845 3 0 1947.3 0

50 50 15 9.8 5 90 50 0.2 50 90 3 3861 4 0 1947.3 0

130 50 12 9 5 0 -10 0.7 80 70 0.5 1931 5 0 1947.3 0

130 60 15 -4.3 5 90 60 0.5 75 80 1 12802 5 0 1947.3 0

260 55 7 17.4 5 90 55 0.5 70 85 2.5 813 4 15 1947.3 0

125 50 17 -6.6 5 90 50 0.3 70 85 3 3658 4 0 1947.3 0

290 65 6 4.5 5 90 65 0.3 60 80 2.5 1422 4 20 1947.3 0

200 90 20 2.1 5 125 80 2.3 97 60 1 2337 10 15 1947.3 0

125 70 13 5.5 5 110 55 0.7 75 80 1 2134 8 15 1947.3 0

80 70 10 15.9 5 90 70 0.5 70 70 3 1626 2 35 1947.3 0

290 50 13 9.1 5 90 50 0.4 70 80 1 1219 5 15 1947.3 0

245 70 7 -4.9 5 90 70 0.5 75 65 1 1727 6 30 1947.3 0

190 55 15 -8.4 5 90 55 0.6 75 65 1 2134 10 20 1947.3 0

225 60 6 12.9 5 90 60 0.7 75 60 1 2743 5 20 1947.3 0

200 60 12 13.8 5 90 60 0.7 75 30 0.5 1727 7 20 1947.3 0

325 60 6 9.1 5 120 10 1.2 85 70 3.5 1931 4 35 1947.3 0

335 60 5 8 5 90 60 0.6 75 90 4 3455 3 30 1947.3 0

215 60 9 19.4 5 90 60 0.6 75 65 3 914 8 25 1947.3 0

215 90 7 -9.7 5 90 60 2.5 100 55 1.5 711 5 30 1947.3 0

225 60 6 17.4 5 90 60 0.7 75 70 3 2642 4 25 1947.3 0

255 60 5 -16.7 5 90 60 0.5 70 80 3 38204 4 25 1947.3 0

265 45 5 29 5 90 45 0.8 75 55 3 914 4 25 1947.3 0

270 45 10 -22 5 90 45 0.5 70 80 3 24081 7 15 1947.3 0

120 60 20 1.5 3 0 10 0.3 65 80 2 12396 5 0 952.4 1
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40 50 20 -9.8 3 90 50 0.4 65 80 2 20118 4 0 942.4 1

35 65 25 -5.2 3 90 65 0.2 55 75 1.5 3150 15 15 950.6 1

110 60 25 -8.6 3 10 10 0.5 90 80 2.5 9754 3 0 941.1 1

165 70 20 16.3 3 60 20 0.3 40 75 1.5 406 12 10 968 1

95 70 45 -6.3 5 170 60 0.3 65 60 1 12599 8 5 1153 1

95 75 60 -44.9 5 120 55 0.3 60 30 1 55695 13 0 1383.9 1

160 50 50 -13.2 5 90 50 0.2 50 80 3.5 74797 5 0 1393.8 1

190 70 50 -3 5 90 65 0.3 75 60 1 1626 30 10 1505.7 1

240 40 25 -22 5 90 40 0.6 50 90 4 97373 4 0 1733 1

0 70 25 -26.6 5 90 70 0.7 60 80 3 112682 9 30 1918.8 1

185 80 23 15 5 180 55 0.7 80 5 0.5 3048 14 20 1947.3 1

330 70 30 0 3 90 70 0.3 65 90 2.5 27332 2 0 958.7 1

100 40 25 0 3 50 0 0.3 70 80 3.5 15343 2 0 967.9 1

40 60 30 0 3 90 60 0.3 60 80 2 3353 5 10 967.9 1

30 60 20 0 3 90 60 0.3 65 80 2 2134 5 10 967.9 1

175 60 25 0 3 50 10 0.3 50 80 2 11380 7 0 949.2 1

0 60 25 0 2 90 60 0.2 50 85 3.5 7925 8 0 953.5 1

215 45 30 0 3 90 45 0.2 20 20 1.5 80574 6 0 987.8 1

150 50 40 0 5 90 50 0.2 40 20 2 47552 3 0 987.7 1

275 40 20 0 5 90 40 0.6 75 80 3 132901 4 0 984.8 1

Table 4-4: Multinational data set. Source [71].
IF1 IF2 IF3 IF4 IF5 IF6 Y

18.68 26.34 15 35 8.23 0 0

16.5 11.49 0 30 3.66 0 0

18.84 14.36 25 20 30.5 0 1

18.84 57.46 20 20 30.5 0 1

28.44 29.42 35 35 100 0 1

28.44 39.23 38 35 100 0 1

20.6 16.28 26.5 30 40 0 0

14.8 0 17 20 50 0 0

14 11.97 26 30 88 0 0

25 120 45 53 120 0 1

26 150.05 45 50 200 0 1

18.5 25 0 30 6 0 0

18.5 12 0 30 6 0 0

22.4 10 35 30 10 0 1

21.4 10 30.34 30 20 0 1

22 20 36 45 50 0 0

22 0 36 45 50 0 0

12 0 30 35 4 0 1

12 0 30 45 8 0 0

12 0 30 35 4 0 1

12 0 30 45 8 0 0

23.47 0 32 37 214 0 0

16 70 20 40 115 0 0

20.41 24.9 13 22 10.67 0.35 1

19.63 11.97 20 22 12.19 0.41 0

21.82 8.62 32 28 12.8 0.49 0

20.41 33.52 11 16 45.72 0.2 0

18.84 15.32 30 25 10.67 0.38 1

18.84 0 20 20 7.62 0.45 0

21.43 0 20 20 61 0.5 0

19.06 11.71 28 35 21 0.11 0

18.84 14.36 25 20 30.5 0.45 0
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21.51 6.94 30 31 76.81 0.38 0

14 11.97 26 30 88 0.45 0

18 24 30.15 45 20 0.12 0

23 0 20 20 100 0.3 0

22.4 100 45 45 15 0.25 1

22.4 10 35 45 10 0.4 0

20 20 36 45 50 0.25 0

20 20 36 45 50 0.5 0

20 0 36 45 50 0.25 0

20 0 36 45 50 0.5 0

22 0 40 33 8 0.35 1

24 0 40 33 8 0.3 1

20 0 24.5 20 8 0.35 1

18 5 30 20 8 0.3 1

26.49 150 33 45 73 0.15 1

26.7 150 33 50 130 0.25 1

26.89 150 33 52 120 0.25 1

26.57 300 38.7 45.3 80 0.15 0

26.78 300 38.7 54 155 0.25 0

26.81 200 35 58 138 0.25 1

26.43 50 26.6 40 92.2 0.15 1

26.7 50 26.6 50 170 0.25 1

26.8 60 28.8 59 108 0.25 1

22.4 10 35 45 10 0.4 0

20 20 36 45 50 0.5 0

20 0 36 45 50 0.25 0

20 0 36 45 50 0.5 0

22 0 40 33 8 0.35 1

20 0 24.5 20 8 0.35 1

27 40 35 43 420 0.25 0

27 50 40 42 407 0.25 1

27 35 35 42 359 0.25 1

27 37.5 35 37.8 320 0.25 1

27 32 33 42.6 301 0.25 0

27 32 33 42.4 289 0.25 1

27.3 14 31 41 110 0.25 1

27.3 31.5 29.7 41 135 0.25 1

27.3 16.8 28 50 90.5 0.25 1

27.3 26 31 50 92 0.25 1

27.3 10 39 41 511 0.25 1

27.3 10 39 40 470 0.25 1

25 46 35 47 443 0.25 1

25 46 35 44 435 0.25 1

25 46 35 46 432 0.25 1

26 150 45 30 200 0.25 1

18.5 25 0 30 6 0.25 0

18.5 12 0 30 6 0.25 0

22.4 10 35 30 10 0.25 1

21.4 10 30.34 30 20 0.25 1

25 46 35 46 393 0.25 1

25 48 40 49 330 0.25 1

31.3 68.6 37 47 305 0.25 0

25 55 36 45.5 299 0.25 1

31.3 68 37 47 213 0.25 0

18.66 26.41 14.99 34.98 8.2 0 0

28.4 29.41 35.01 34.98 100 0 1

25.96 150.05 45 49.98 200 0 1
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18.46 25.06 0 30 6 0 0

21.36 10.05 30.33 30 20 0 1

15.99 70.07 19.98 40.02 115 0 0

20.39 24.91 13.01 22 10.6 0.35 1

19.6 12 19.98 22 12.2 0.41 0

21.78 8.55 32 27.98 12.8 0.49 0

20.39 33.46 10.98 16.01 45.8 0.2 0

19.03 11.7 27.99 34.98 21 0.11 0

17.98 4.95 30.02 19.98 8 0.3 1

20.96 19.96 40.01 40.02 12 0 1

20.96 34.96 27.99 40.02 12 0.5 1

19.97 10.05 28.98 34.03 6 0.3 1

18.77 30.01 9.99 25.02 50 0.1 1

18.77 30.01 19.98 30 50 0.1 1

18.77 25.06 19.98 30 50 0.2 0

20.56 16.21 26.51 30 40 0 0

16.47 11.55 0 30 3.6 0 0

18.8 14.4 25.02 19.98 30.6 0 1

18.8 57.47 19.98 19.98 30.6 0 1

28.4 39.16 37.98 34.98 100 0 1

13.97 12 26.01 30 88 0 0

24.96 120.04 45 53 120 0 1

18.46 12 0 30 6 0 0

22.38 10.05 35.01 30 10 0 1

21.98 19.96 36 45 50 0 0

18.8 15.31 30.02 25.02 10.6 0.38 1

18.8 14.4 25.02 19.98 30.6 0.45 0

21.47 6.9 30.02 31.01 76.8 0.38 0

13.97 12 26.01 30 88 0.45 0

17.98 24.01 30.15 45 20 0.12 0

22.38 99.93 45 45 15 0.25 1

22.38 10.05 35.01 45 10 0.4 0

19.97 19.96 36 45 50 0.25 0

19.97 19.96 36 45 50 0.5 0

20.96 45.02 25.02 49.03 12 0.3 1

20.96 30.01 35.01 40.02 12 0.4 1

19.97 40.06 30.02 30 15 0.3 1

17.98 45.02 25.02 25.02 14 0.3 1

18.97 30.01 35.01 34.98 11 0.2 1

19.97 40.06 40.01 40.02 10 0.2 1

18.83 24.76 21.29 29.2 37 0.5 0

18.83 10.35 21.29 34.03 37 0.3 0

18.77 25.06 9.99 25.02 50 0.2 0

18.77 19.96 9.99 25.02 50 0.3 0

19.08 10.05 9.99 25.02 50 0.4 0

18.77 19.96 19.98 30 50 0.3 0

19.08 10.05 19.98 30 50 0.4 0

21.98 19.96 22.01 19.98 180 0 0

21.98 19.96 22.01 19.98 180 0.1 0

20.41 33.52 11 16 45.7 0.2 0

18.84 0 20 20 7.62 0.45 0

19.06 11.7 28 35 21 0.11 0

18.84 14.36 25 20 30.5 0.45 0

14 11.97 26 30 88 0.45 0

18 24 30.15 45 20 0.12 0

22.4 10 35 45 10 0.4 0

20 20 36 45 50 0.5 0
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22.4 100 45 45 15 0.25 1

27 50 40 42 407 0.25 1

31.3 68 37 46 366 0.25 1

27 35 35 42 359 0.25 1

27 37.5 35 38 320 0.25 1

27 32 33 42 289 0.25 1

27 14 31 41 110 0.25 1

27 31.5 29.7 41 135 0.25 1

27 16.8 28 50 90.5 0.25 1

27 26 31 50 92 0.25 1

27 10 39 41 511 0.25 1

27 10 39 40 470 0.25 1

25 46 35 47 443 0.25 1

20 20 36 45 50 0.25 0

19.63 11.97 20 22 21.19 0.4 0

25 55 36 44 299 0.25 1

27.3 10 39 40 480 0.25 1

25 46 35 46 393 0.25 1

16.5 11.49 0 30 3.66 0 0

25 120 45 53 120 0 1

19.06 11.75 28 35 21 0.11 0

18.84 14.36 25 20.3 50 45 0

4.1.1. Aim

Most of state-of-art methods applied in data-driven slope stability analysis, from a SPR/ML

perspective, are highly parameter-laden algorithms which imply, in many cases, unclear and

knowledge-dependent tunning processes. Examples are (deep-)neural networks or (deep-

)Kernel methods whose tunning processes often require a large number of parameters to

adjust. In contrast, this paper proposes an incremental parsimonious path, starting with a

previous data visualization step in order to check data distribution in a two-dimensional

space; techniques such as the Principal Component Analysis (PCA) and the Multidimensio-

nal Scaling (MDS) were applied to the original data and to the distance matrix computed

from them, respectively. The main goal of the data visualization is to define a roadmap for

the learning and generalization phase in the design of a SPR/ML system (see Fig.1-4), such

that the designer is able to choose a proper classification technique according to the problem

requirements that is, to be sure that the solution is not more complex than the problem.

The aim of the classifier is then to categorize the slope state in either stable or collapsed.

According to this motivation, this paper seeks a parameter-light approach, considering that

most geotechnical and geological engineers do not have practical knowledge on statisti-

cal/machine learning, particularly regarding validation or tunning issues, and using simple

and classical SPR/ML methods would require very few (hyper-)parameters to adjust.
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4.1.2. Methods

In this paper, three steps can be distinguished: first, a data normalization, next, a data

visualization and, finally, the training phase of the classifiers. For the data normalization,

we select the z-score normalization procedure, where for each feature, all the instances are

offset-corrected by the mean and scaled by the standard deviation. This mean and standard

deviation are computed from the training set and applied to both, the training set and the

test set.

After that, two different dimensionality reduction techniques are used: PCA which is a

linear method and MDS which is a non-linear method that works with the matrix of pairwise

distances. This data visualization process enables us a bottom-up design of a parameter-light

SPR/ML system. In particular, the following classifiers were trained: the nearest neighbor

rule (1-NN), the k-nearest neighbor rule (k-NN), the linear discriminant (Bayes) classifier

(LDC), the quadratic discriminant (Bayes) classifier (QDC), the Parzen classifier and an

automatic neural network classifier (AANN). Here, 1-NN does not require any free-parameter

tunning, while the AANN requires at least three of them.

Furthermore, for all the experiments, the very same setup that was used in [25] and [71] was

considered.

4.1.3. Results

The experiments show that the Taiwan data set has a sharped separability between stable

and collapsed data, see for example the data distribution in the two-dimensional PCA and

MDS space (Figure 4-1). For this data set, high accuracies were obtained for both, the

original 15-dimensional space and the two-dimensional PCA space, which is consistent with

the visualization results (see Figure 4-2).

In other words, this data set indicates that parameter-light classifiers should, at first, address

the classification problem without sophisticated and (hyper-)parameter SPR/ML systems.

Notice also that, in Figure 4-2(a), the accuracy of a very advanced parameter-laden classifier

was included, which uses an artificial bee colony optimization for SVM, called BeeSVC,

developed in [25].

On the other hand, the Multinational data set does not show a sharped separability between

stable and collapsed data (Figure 4-3), however, parameter-light classifiers such as 1-NN

and k-NN achieve competitive results compared to state-of-art SPR/ML methods proposed

in the literature. For this experiment, the accuracy of a very advanced parameter-laden

classifier was included, which uses a metaheuristic-optimization tunning for a least squares

support vector classifier (MO-LSVC), proposed in [71].
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Figure 4-1: Taiwan data set. Data visualizations using PCA and MDS.
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space (after applying PCA).

Figure 4-2: Taiwan data set. Classification accuracies, along with standard deviations for

20 runs.
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Figure 4-3: Multinational data set. Data visualizations using PCA and MDS.
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for 20 runs.
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4.2. Paper 2: Enriched and enhanced parameter-light

classifiers for vectorial slope/landslide stability data2

This paper is an extension of the previous study referenced in Section 4.1 but still preserving

the main goal is of keeping the models as simple as possible in the design of SPR/ML

systems applied to data-based slope stability analysis and landslide prediction. With this

in mind, and supported by the visualization findings from the previous study, this paper

explores the importance of enriching the data representation —instead of overcomplicating

the classification rule itself via (non-)metric distance learning— for vectorial slope/landslide

stability data.

The Taiwan data set [25] and the Multinational data set [71] were used in this paper. In

addition, a rainfall-induced landslide susceptibility data set, called the Yongxin data set,

was included in order to extend the scope of the computational experiments. It is released

on a companion repository (see the URL in Ref. [48]), which is located at the western

part of Jiangxi Province, China (see Fig. 4-5). In this data set, 16 factors were included

whose graphical distribution over Yongxin area can be seen in Fig. 4-6 and 4-7, among

which are the following: altitude (m), aspect, distance to faults (m), land use, lithology,

Normalized Difference Vegetation Index (NDVI), plan curvature, profile curvature, rainfall

(mm/y), distance to rivers (m), distance to roads (m), slope, type of soil, Stream Power

Index (SPI), Sediment Transport Index (STI) and Topographic Wetness Index (TWI); for

further explanation and details, see [48]. Also, this data set is composed by 728 examples,

where one half corresponds to landslide case (label Y=1) and the other half corresponds to

non-landslide case (label Y=0).

4.2.1. Aim

Originally, the data that involve a data-based slope/landslide prediction analysis are given

as measured parameters, that means, they require a SPR/ML system design directly based

on features. With this feature-based representation given in advance, two purposes related to

computational learning could be considered in order to boost the classification performance:

(1) to enhance the data representation or (2) to adapt the metric employed. In this paper,

these goals are subject to a interpretable view of point, which enables potential experts

—from geosciences or geotechnical areas— to evaluate the results without tricky tunning

processes.

With the aim of designing parameter-light classifiers, this paper encloses the experimental

2This section is under review in the Mathematical Geosciences journal, Springer Nature, as: Y.M. Ospina-

Dávila and Mauricio Orozco-Alzate. Enriching representation and enhancing nearest-neighbor classifica-

tion of slope/landslide data by using rectified-feature-line segments and hypersphere-based scalings: A

reproducible experimental comparison.
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Figure 4-5: Yongxin area. Source [48] (permission granted by Elsevier Ltd. by order number

5333851293554)
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Figure 4-6: Yongxin area: landslide factors. Source [48] (permission granted by Elsevier

Ltd. by order number 5333851293554)
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Figure 4-7: Yongxin area: landslide factors (Continuation). Source [48] (permission granted

by Elsevier Ltd. by order number 5333851293554)
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comparison into the NN rule family i.e., starting from its basic formulation until using

advanced NN classifiers which, in general, require far few (hyper-)parameters to adjust.

Thus, just classification methods from this family are compared each other. Moreover, the

experimental setup and results are under a very reproducible framework in order to enable

comparisons between methods or algorithms.

4.2.2. Methods

Considering the NN classifier as a parameter-light classifier, this paper relies on a simple,

but powerful, extension of this one that belongs to the family of the so-called nearest feature

classifiers known as RNFLS [37] (see Section 2.2) and that pursues enriching the represen-

tation by using linear interpolations and extrapolations. Conversely, adaptive (non-)metric

distance-learning strategies, such as the Hypersphere classifier (HC) [97] or the Adaptive

Nearest Neighbor (ANN) classifier [169] are applied when trying to enhance the classifica-

tion via (non-)metric distance learning.

4.2.3. Results

The results are based on two slope stability data sets and another one that belongs to

landslide susceptibility. In addition, as explained above, the experiments were restricted to

the NN familiy of classifiers, namely: 1-NN, ANN, HC and RNFLS. According to the results,

the most important insightful conclusion is that, for this slope/landslide data, it is more

useful to focus computational learning strategies on enhancing data representation than on

adaptive (non-)learning distance procedures. In this aspect, the RNFLS method achieves the

best accuracy performance for all the data sets and the most noticeable improvement over

the baseline 1-NN classifier; see Table 4-5.

Table 4-5: Classification accuracies. Estimations for Taiwan and Multinational were made

with leave-one-out; 5-fold cross-validation was used for Yongxin.

Classifiers

Dataset 1-NN ANN HC RNFLS

Taiwan 0.9333 0.9467 0.9467 0.9600

Multinational 0.9286 0.9286 0.9167 0.9405

Yongxin 0.6689 0.7033 0.7005 0.7225

From a SPR/ML perspective, these results is consistent with many research literature in

geotechnical/natural-hazard engineering, where is pointed out that most of data sets are

scarce; in other words, these problems can be considered as learning from small-data (see

Section 1.2).
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4.3. Paper 3: Parameter-light classifiers for non-vectorial

proximity SHM data3

Data-based Structural Health Monitoring (SHM), from a SPR/ML perspective, commonly

involves sophisticated and, in many cases, hyper-parameterized classifiers which require a

domain-dependent and, quite often, non-trivial feature extraction preprocessing step, on

which the classifier performance is very dependent. Consequently, when the features ex-

tracted are not discriminating enough, on the one hand, advanced state-of-the-art machine

learning methods, such as ensemble learning methods, deep neural networks, etc., are propo-

sed or, on the other hand, unrealistic settings are adopted, such as classification frameworks

which use simultaneously data from damaged and undamaged conditions. An alternative

linked to the notion of proximity —when non-vectorial data is originally measured— is the

so-called dissimilarity representation. This paper is dedicated to this approach when consi-

dered for SHM.

In fact, this proposal offers a suitable framework for the design of highly competitive data-

based SHM methods, from a SPR/ML perspective, considering a bottom-up strategy subject

to real-world settings. Furthermore, this one can be considered as an important step towards

a featureless parameter-free data-based SHM approach.

Two well-known publicly available data sets are used in order to validate the results: the

three-storey building structure behaving nonlinearly from Los Alamos Laboratory [59] and

a large-scale grandstand simulator from Qatar University [3].

4.3.1. Aim

The data measured in SHM are, in general, non-vectorial, e.g., images from (un)damaged

conditions or time series of structural accelerations or displacements, among others. In this

sense, this paper seeks a proper representation of these non-vectorial vibration data and

their right embedding in vector spaces. In particular, a novel framework was developed

for building dissimilarity-vector spaces from spectral/time-frequency information that, in

turn, comes from data-based SHM. This framework includes several alternatives of spectral

estimation, in particular the multitaper spectral density estimator, coupled with the DTW

distance, resulting in a real-world SPR pipeline that in its last step makes use of classification

techniques to predict the structural damage. In addition, we used only undamaged data

during training which is not just more realistic but also highlights a challenging SHM setting.

This was addressed by using an one-class classification approach i.e., classifiers which learn

—during training— a decision boundary around the undamaged class in absence of damaged

3This section was published as: Y.M. Ospina-Dávila and Mauricio Orozco-Alzate. Dissimilarity-

vector spaces based on Dynamic Time Warpings of spectral/time-frequency information for struc-

tural health monitoring in Computers & Structures, Elsevier, Vol. 263, 2022, pp. 106754.

https://doi.org/10.1016/j.compstruc.2022.106754
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data, enclosing the first ones by means of (hyper-)spheres or (hyper-)planes, among others

shapes, in order to properly detect unseen (un-)damaged data.

It is important to note that building dissimilarity-based vector spaces is not a pre-designed

task, moreover, capturing the most discriminative information by using an appropriate dissi-

milarity or distance measure neither is self-evident. As mentioned above, this problem turns

even more challenging by the fact that only undamaged data is utilized during the training

phase, resulting in a more real-world context for SHM.

4.3.2. Methods

The dissimilarity representation addressed in this paper, for the data-based SHM problem,

is mainly based on the following steps: from the spectral/time-frequency information ob-

tained for each one of the measured signals —using the Multitaper power spectral density

estimation, the Coherence function, the Short-Time Fourier Transform (STFT) and the

Multitaper spectrograms— its corresponding dissimilarity-vector space is built up for each

spectral/time frequency method and using the DTW distance as dissimilarity measure. In

these vector spaces, the following one-class classifiers are trained: the nearest neighbor based

data description (NNDD), the k-nearest neighbor data description (k-NNDD), the Parzen

density data description (parzenDD), the support vector data description (SVDD) and the

minimum spanning tree data description (mstDD).

4.3.3. Results

As mentioned before, two data sets were used in this paper. The first one, the three-storey

building structure behaving nonlinearly from Los Alamos Laboratory [59] (see Figure 4-8),

is a benchmark vibration test that comprises 17 different structural state conditions, each

of them composed by 50 measurements as listed in Table 4-6. The second one, the Qatar

University (QU) grandstand simulator [3, Figure 4-9], is a large laboratory stadium structure

with 30 accelerometers located in its joints.

These two publicly available data sets are used to validate the featureless parameter-light

data-based SHM approach proposed here, which is endowed with a powerful discriminant

ability using one-class classifiers, obtaining thus sound results, under very challenging con-

ditions. Consider, for the Three-storey building structure data set, the Multitaper power

spectral density along with the DTW distance results (see Figure 4-10). If you choose, for

example, a fraction of 15% (or 100%) representation objects extracted from the training

set, the minimum spanning tree (mst) classifier trained in the dissimilarity space achieves

an error of 0,0% for both, target rejected error and the outlier accepted error.

A similar situation occurs in the Qatar University (QU) grandstand data set case, for the

same classifier and for the following fractions of representation objects from the training

set: 10%, 15%, 25%, 45%, 80% − 95% (see Figure 4-11). Notice that the accuracy of our
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Figure 4-8: Three-storey building structure and shaker. Source [59].

Table 4-6: Structural state conditions from three-storey building. Source [59].

Label Condition Description

State01 Undamaged Added mass of 1,2 kg at the 1st floor

State02 Undamaged Added mass of 1,2 kg at the base

State08 Damage Gap (0,13 mm)

State09 Damage Gap (0,10 mm)

State10 Damage Gap (0,05 mm)

State11 Damage Gap (0,15 mm)

State12 Damage Gap (0,20 mm)

State13 Undamaged Baseline condition

State14 Damage Gap (0,20 mm) and mass of 1,2 kg at the 1st floor

State15 Damage Gap (0,10 mm) and mass of 1,2 kg at the 1st floor

State16 Damage Gap (0,20 mm) and mass of 1,2 kg at the base

State17 Undamaged Stiffness reduction in column 1BD

State18 Undamaged Stiffness reduction in column 1AD and 1BD

State21 Undamaged Stiffness reduction in column 3BD

State22 Undamaged Stiffness reduction in column 3AD and 3BD

State23 Undamaged Stiffness reduction in column 2AD and 2BD

State24 Undamaged Stiffness reduction in column 2BD
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Figure 4-9: The Qatar University (QU) grandstand simulator. Source https://www.stru

cturaldamagedetection.com/benchmark/damage/

framework is competitive with respect to those of the state-of-art methods.

https://www.structuraldamagedetection.com/benchmark/damage/
https://www.structuraldamagedetection.com/benchmark/damage/
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(a) Multitaper power spectral density
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(b) Coherence function
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(c) STFT spectrogram
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Figure 4-10: Three-storey building structure data set. Performance of several one-class clas-

sifiers.
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Figure 4-11: The Qatar University (QU) grandstand data set. Performance of several one-

class classifiers.



5 Conclusions and future work

This thesis addressed, on the one hand, the slope stability analysis and the landslide suscep-

tibility assessment and, on the other hand, the SHM task, both from a data-driven perspec-

tive using SPR/ML techniques. Recent studies confirm the importance of this perspective

on geotechnical/natural-hazard engineering, recognizing it as a distinctive research field un-

der the name of ‘data-centric geotechnics’ [127, 125]. Likewise, for the SHM case, a ‘learning

from data’ approach is highly appreciated [19]. This perspective is of major importance when

assessments and predictions for complex engineering systems should be executed in a on-line

or real-time framework. Furthermore, the results obtained in this thesis deliver state-of-art

performance dealing with highly complex and uncertain engineering systems. In spite that

advanced simulation methods are available for these kind of engineering decisions, such as

the Finite Element Method (FEM) or meshless methods, these ones are time consuming,

expensive and difficult to calibrate.

In the following, the concluding remarks and insights in each of these directions will be

presented, where relatively low and imbalanced sample sizes are the common restriction.

5.1. Concluding Remarks

− In contrast to advanced but heavily (hyper-)parameter-laden SPR/ML systems such

as (deep-)NN/Kernel methods, the ones designed in this thesis are parameter-light. In

general, this framework allows simple and interpretable systems that can be useful in

a practical context. Indeed, this parameter-light approach enables comparisons across

methods or to reproduce results.

− Even though (deep-)NN/Kernel methods are powerful tools for designing data-driven

models in engineering, they require large volume of training data for each class, in

order to guarantee the accuracy of the SPR/ML system. In contrast, for a real-world

context, slope/landslide and SHM are —typically— sparse, noisy, and poorly balanced.

Under these conditions, the SPR/ML systems proposed in this thesis are appropriate

and competitive.

− For the slope stability analysis, a bottom-up design is crucial for SPR/ML implementa-

tions; in fact, the parsimonious design of SPR/ML systems for slope stability proposed

here showed that classical classifiers could properly solve the problem. In particular,
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better results than state-of-art SPR/ML systems can be achieved using parameter-light

classifiers for two well-known data sets used in the scientific literature (Taiwan and

Multinational data sets).

− This bottom-up design in data-driven slope/landslide analysis helped identify the im-

portance about a feature-based enrichment of data. This suggests that classifiers which

generate some kind of subspace are recommended instead of adaptive techniques which

are useful in noisy data sets.

− Data-based SHM was addressed by using a time series anomaly detection approach. In

this sense, recent studies —from data mining community— indicate that much simpler

and existing SPR/ML methods may be so competitive as (deep-)NN/Kernel methods

[173]. Sound results obtained in this thesis for data-based SHM, supported by a dis-

similarity pattern recognition and proximity learning approach, could be considered

as an example of this claim. It is important to note that this ‘proximity’ or ‘dissimi-

larity’ data-based SHM has the following interesting properties: It is featureless, fast

and more intuitive.

5.2. Future Work

The results obtained in this thesis, for the data-driven geotechnical/natural-hazard enginee-

ring approach, motivate the following future works:

− Applying other classifiers that enrich the feature space. This category includes affine

and convex hull based classifiers and the NFP rule, among others. Moreover, in the

literature, there are research studies that associate the SVM classifier and the convex

hulls for classification that might be of practical interest.

− Geotechnical reliability of soil or rock slopes as a surrogate modelling task by using

the above mentioned classifiers and including uncertainty propagation techniques such

as Karhunen-Loéve expansions.

− One of the most important factors affecting the landslide susceptibility is rainfall.

Therefore, finding proper patterns in rainfall time series (e.g., using shapelets or motifs)

could be a key element in an early warning scheme along with an unsupervised or one-

class classification.

On the other hand, potential extensions for a dissimilarity SHM research can be explored

considering:

− A combination of object representations, such as Symbolic Data Object and spectral/time-

frequency decompositions, in order to build robust dissimilarity spaces. Under this ra-

tionales, (non-)elastic measures such as the DTW, the Derivative DTW (DDTW), the
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Weighted DTW (WDTW), the Time Warp Edit Distance (TWED), among others, can

be useful.

− An unsupervised scheme (e.g., clustering) in dissimilarity spaces. In this direction,

real-time strategies could be proposed using the whole information contained in the

structural signals in a proximity learning approach.
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