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Resumen

T́ıtulo en español: Método para la segmentación de imágenes de resonancia

magnética cerebrales usando una arquitectura de red neuronal basada en modelos de

atención.

En los últimos años, el uso de modelos basados en aprendizaje profundo para el desarro-

llo de sistemas de salud avanzados ha ido en aumento debido a los excelentes resultados

que pueden alcanzar. Sin embargo, la mayoŕıa de los modelos de aprendizaje profundo

propuestos utilizan, en gran medida, operaciones convolucionales y de pooling, lo que

provoca una pérdida de datos valiosos centrándose principalmente en la información lo-

cal. En esta tesis, proponemos un enfoque basado en el aprendizaje profundo que utiliza

caracteŕısticas globales y locales que son importantes en el proceso de segmentación de

imágenes médicas. Para entrenar la arquitectura, utilizamos bloques tridimensionales

(3D) extráıdos de la resolución completa de la imagen de resonancia magnética. Estas se

enviaron a través de un conjunto de capas sucesivas de redes neuronales convolucionales

(CNN) libres de operaciones de pooling para extraer información local. Luego, enviamos

los mapas de caracteŕısticas resultantes a capas sucesivas de módulos de autoatención

para obtener el contexto global, cuya salida se envió más tarde a la canalización del deco-

dificador compuesta principalmente por capas de upsampling. El modelo fue entrenado

usando el conjunto de datos Mindboggle-101. Los resultados experimentales mostraron

que los módulos de autoatención permiten la segmentación con un Mean Dice Score

0,90 ± 0,036 la cual es mayor en comparación con otros enfoques basados en UNet. El

tiempo medio de segmentación fue de aproximadamente 0,032 s por estructura cerebral.

El modelo propuesto permite abordar adecuadamente la tarea de segmentación de es-

tructuras cerebrales. Aśı mismo, permite aprovechar el contexto global que incorporan

los módulos de autoatención logrando una segmentación más precisa y rápida. En este

trabajo segmentamos 37 estructuras cerebrales y, según nuestro conocimiento, es el ma-

yor número de estructuras bajo un enfoque 3D utilizando mecanismos de atención.

Palabras clave: segmentación de imágenes médicas, aprendizaje profundo, trans-

formers, redes neuronales convolucionales, estructuras cerebrales.
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Abstract

T́ıtulo en inglés: Method for the segmentation of brain magnetic resonance images

using a neural network architecture based on attention models.

In recent years, the use of deep learning-based models for developing advanced healthca-

re systems has been growing due to the results they can achieve. However, the majority

of the proposed deep learning-models largely use convolutional and pooling operations,

causing a loss in valuable data and focusing on local information. In this thesis, we

propose a deep learning-based approach that uses global and local features which are of

importance in the medical image segmentation process. In order to train the architecture,

we used extracted three-dimensional (3D) blocks from the full magnetic resonance ima-

ge resolution, which were sent through a set of successive convolutional neural network

(CNN) layers free of pooling operations to extract local information. Later, we sent the

resulting feature maps to successive layers of self-attention modules to obtain the global

context, whose output was later dispatched to the decoder pipeline composed mostly

of upsampling layers. The model was trained using the Mindboggle-101 dataset. The

experimental results showed that the self-attention modules allow segmentation with a

higher Mean Dice Score of 0.90 ± 0.036 compared with other UNet-based approaches.

The average segmentation time was approximately 0.032 s per brain structure. The pro-

posed model allows tackling the brain structure segmentation task properly. Exploiting

the global context that the self-attention modules incorporate allows for more preci-

se and faster segmentation. We segmented 37 brain structures and, to the best of our

knowledge, it is the largest number of structures under a 3D approach using attention

mechanisms.

Keywords: medical image segmentation, deep learning, transformers, convolutio-

nal neural networks, brain structures.
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1 Introduction

The scientific community has developed tools that allow for obtaining brain informa-

tion so doctors can study the human brain. Among these tools we find brain imaging,

which includes methods such as computed tomography (CT), magnetic resonance ima-

ging (MRI), positron emission tomography (PET), and ultrasound (US), among others.

However, not all methods produce quality images when applied to the brain because

high contrast images are required to study the human brain. Therefore, highly sensitive

methods such as magnetic resonance imaging or positron emission tomography must be

used [1].

Although PET scans are capable of obtaining good quality images, they are not the

preferred choice for specialists as they have several disadvantages. PET scans cannot

reveal structural information at the microscopic and macroscopic levels in the white and

gray matter of the brain; cannot detect changes in brain activation, and pose health risks

due to the required radiation [2]. For these reasons, the MRI method has been widely

used in the brain for medical studies and scientific research [3, 4]. There are several types

of MRI sequences that are capable of improving contrast and brightness in certain types

of tissues. T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery (Flair), and

Diffusion Weighted Imaging (DWI) are among the most common MRI sequences [5].

Traditionally, interpretations of medical images have been made by human experts.

However, the existence of variations in the criteria among various human specialists is

a limitation in relation to the generation of an efficient and precise diagnosis [6]. This

weakness has been addressed through the development of computer aided diagnostic

systems using computer vision for analysis of medical Images [7]. In this field, traditional

algorithms were initially applied for the segmentation of anatomical brain structures,

such as thresholding techniques [8], growth of regions [9], machine learning algorithms for

classification [10], or grouping [11], among others. Based on the growth in computational

capacity and the amount of data available, it is possible to use more robust and complex

modern algorithms based on artificial intelligence capable of achieving better results in

medical segmentation tasks [12].

In fact, a growing number of researchers are using imaging and machine vision tech-
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1 Introduction 2

nology based on artificial intelligence via usage of deep convolutional neural networks.

Convolutional networks have shown more accurate results in most application domains,

including the medical area [13, 14, 15]. The strength of convolutional networks is that

they automatically identify the relevant features without any explicit human supervision

[16].

Furthermore, compared to its predecessor, the fully connected neural networks, convolu-

tional networks significantly reduce the number of trainable parameters of the network,

facilitating computation and making it possible to build large-scale architectures. Also,

they efficiently join the output of the network with the extracted features by jointly

training the classification layers with the feature extraction layers [17].

However, despite their strengths, they still have weaknesses. Convolutional networks

incorporate layers that make use of pooling operations to reduce the size of the feature

map, thus reducing the computation required in subsequent layers. The implications of

this operation is that features of the images introduced in the training are lost, requiring

a greater amount of data to reach convergence [18]. Similarly, this type of network is not

capable of recognizing the pose, texture and orientation of the images, which in brain

segmentation is important since in order to have a good segmentation performance we

need as much information as possible [19].

Consequently, other types of architectures have been proposed to address the weaknesses

of the use of convolutional networks in deep learning architectures. Examples of this are

capsule networks [19] or Transformers [20].

Transformers are a type of self-attention-based network that were primarily designed to

perform tasks in the field of natural language processing. However, these have gained

popularity in the field of images, achieving results comparable to those of architectures

based on convolutional networks. Some advantages of using Transformers in the field

of images are their ability to use effectively the available computation during training,

speed and global context recognition [21].

In the field of medical image analysis, although this type of architecture is being ap-

plied in the segmentation of medical images to detect tumors or segment organs in the

abdominal area [22], its use in the segmentation of brain anatomical structures has not

yet been extensively explored. Due to this, this study was aimed to design a neural net-

work architecture based on attention models directed to the problem of segmentation of

anatomical brain structures.

2



1 Introduction 3

1.1. Research problem

The segmentation of brain magnetic resonance images is of vital importance for the

study of the human brain. In fact, the scientific community uses semi-automatic tools to

support experts in the field of neuroscience in manual brain segmentation tasks. Tools

such as Freesurfer [23], BrainSuite [24] or FSL [25] are some examples of this type of

tool. Even so, existing software still requires human intervention for parameterization, is

computationally expensive relative to the time spent by a human expert, and expert staff

must sometimes make corrections to the resulting segmentation due to system errors.

Due to these limitations, multiple organizations have chosen to use fully automatic soft-

ware based mainly on artificial intelligence, achieving better results than traditional

algorithms in the area of brain segmentation [12]. However, most of the proposed ar-

chitectures are based on the use of convolutional neural networks as the basic building

block. Currently, there is a recent focus on the use of neural attention that has not been

widely addressed in this domain. For this reason, it is of interest to explore the bene-

fits of the application of attention models in the problem of automatic segmentation of

anatomical brain structures.

1.2. Problem statement

Given an 3D image X ∈ RH×W×D×C where H represents height, W width, D depth, and

C the number of channels. Each of the images Xj, being j the total number of MRIs

of the dataset, have a pixel-wise label map Y ∈ ZH×W×D where the value of a voxel

(h,w, d) in Y is a positive integer that determines the class the voxel in X belongs to

in the same coordinates. In this study, the defined classes are multiple brain structures

and a background class defined as Y j(h,w, d) = {E1, E2, E3, ..., Eq}.

Be Φ(R, θ,W k) = Υ a neural network that receives an input RH×W×D×C to which

it applies linear and nonlinear transformations defined by hyperparameters θ through

k layers with W weights. This neural network should generate as result the output

Υ ∈ ZH×W×D which is a 3D image of predicted classes for each voxel in Z.

Therefore, the problem of segmenting anatomical brain structures given an MRI X is to

find the neural network Φ(R, θ,W k) with the set of hyperparameters θ, the number of

layers k, the weights W i from pairs of images (xj, yj) by numerical optimization of the

loss function ℓ(Y j,Φ) that allows to predict the class Eq of each voxel given a new MRI

X
′
.

3



1 Introduction 4

Although some aspects of the structure of the network and the optimization model have

been simplified, this thesis also includes, as a problem, defining the architecture that

allows segmenting a set of q brain structures within an MRI.

1.3. Objectives

1.3.1. General objective

To design a method for automatic segmentation of anatomical brain structures from

magnetic resonance images using deep learning techniques based on attention models.

1.3.2. Specific objectives

1. Determine the set of brain magnetic resonance images that will be part of the

dataset and select the set of anatomical brain structures to segment.

2. Define the preprocessing scheme of the defined magnetic resonance images to model

the input of the neural network architecture.

3. Design the neural network architecture that allows the segmentation of the defined

anatomical brain structures.

4. Evaluate and compare the implemented neural network model with those existing

in the state of the art.

1.4. Contributions

A method capable of segmenting 37 brain structures from magnetic resonance images

is designed. It is, to the best of our knowledge, the largest number of structures under

a 3D approach using attention mechanisms. From this proposed method it was obtained:

1. A trained deep neural network architecture, based on U-Net [26], capable of seg-

menting 37 brain structures using attention mechanisms.

4



1 Introduction 5

2. A trained neural network architecture capable of segmenting brain structures in

less time than those established in the state of the art thanks to the use of attention

mechanisms.

3. The article Deep 3D Neural Network for Brain Structures Segmentation Using Self-

Attention Modules in MRI Images which was published in the Q1 level journal

Sensors that can be found here.

1.5. Document structure

This document is organized as follows: we present an introduction of the addressed

problem in Chapter 1, Chapter 2 shows the background of the research problem, Chapter

3 describes the proposed method for the segmentation of anatomical brain structures.

Chapter 4 includes the obtained results of the proposed method. Finally, Chapter 5

constitutes the main conclusions as well as future research.
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2 Background

In general, multiple methods for the segmentation of brain magnetic resonance images

have been proposed. These methods can be grouped as follows: manual methods, spatial

dimensionality-based methods (2D and 3D), pixel/voxel intensity-based methods, atlas-

based methods, surface-based methods, and methods based on deep learning techniques

[27].

The manual segmentation of magnetic resonance images is based on the use of highly

trained personnel to obtain the different types of brain tissues. In order to perform seg-

mentation, experts commonly use manual delineation tools that allow them to delineate

different regions of the brain. Some examples of these tools are FreeSurfer [23], Brain-

Suite [24], FSL [25], ITK-SNAP [28], 3D Slicer [29], SPM [10], and Horos [-], among

others.

In terms of the spatial dimensionality methods, these are subdivided into 3D and 2D

approaches. Three-dimensional-based segmentation approaches seem to be the natural

way to approach the problem because it allows to exploit the three-dimensional nature

of MRI by considering each voxel and its relationship to neighbors at different acquisi-

tion planes (sagittal, coronal, and axial). However, the 3D approach still has limitations,

mainly related to the high computational cost in computers with limited memory, the

increase in the complexity of the models and the number of parameters, making the

learning process slower [30, 31, 32]. Therefore, researchers usually use the 2D represen-

tation of a brain MRI to avoid memory restraints and computational limitations of the

3D representation.

Intensity-based methods attempt to find a threshold value that separates the different

tissue categories. These methods include techniques of thresholding, growth of regions,

classification, and grouping [8]. In [33, 34], authors presented work on pixel intensity

using thresholding techniques to segment brain tumors.

Works that use region growth techniques, use the similar characteristics of pixels found

together to perform the separation of a common region [35]. Region growth techniques

have been applied for the segmentation of brain tumors [9], organs [36], cerebral vessels

6



2 Background 7

[37], and lesions in both the brain and the breast, applying other techniques such as

morphological filters [38] or with quantitative values such as the measurement of the

roughness of the tumor border [39]. Within this group, we also find classification and

grouping techniques that make use of labeled and unlabeled data for their operations. In

fact, multiple brain segmentation tools that are widely used in the scientific community,

such as FreeSurfer [23], 3D Slicer [29], and SPM [10] make use of Bayesian Classifiers.

The k-means algorithm is the most used in clustering because it is simple to implement,

relatively fast, and produces good results. Some examples of work for tissue or tumor

segmentation are presented in [11] and in [40], where the k-means algorithm is combi-

ned with a vector support machine and a Fuzzy C-means algorithm with thresholding

techniques, respectively.

Atlas-based methods are those that make use of brain anatomical information from a

specific population for image segmentation. Likewise, in [41, 42, 43, 44], it is shown that

this method is not limited to the use of a specific atlas; multiple atlases and techniques

such as tag fusion can also be used to improve the delimitation of brain regions.

Several works have also been proposed that make use of deformable models. These

techniques are part of the group of surface-based methods where the main objective is

the delimitation of regions with similar characteristics through the use of elastic curves

[45]. Similar to the approaches mentioned above, surface-based methods have been used

for the segmentation of brain regions [46] and tumors [47, 48].

Recently, deep learning has become an area of interest in the scientific community due

to the important results that have been achieved in multiple disciplines [13, 14, 15, 49,

50]. The strength of convolutional networks is that they automatically identify relevant

characteristics without any explicit human supervision [16]. In addition, compared with

their predecessors, fully connected neural networks, convolutional networks significantly

reduce the number of trainable network parameters, facilitating computation and making

it possible to build large-scale architectures. Likewise, they efficiently link the output

of the network with the extracted characteristics by jointly training the classification

layers and the characteristic extraction layers [17]. Specifically, in the problem of brain

magnetic resonance imaging segmentation, deep learning has achieved better results than

previously exposed methods [12]. Within the deep learning branch, there are multiple

algorithms based on neural networks that have been developed with specific objectives,

such as autoencoders [51], Boltzmann machines [52], recurrent neural networks [53],

convolutional neural networks [54], and Transformers [20], among others. Convolutional

neural networks are precisely the algorithms most widely used by researchers to perform

image segmentation and classification tasks, given that they have achieved the best

results to date.

7



2 Background 8

Convolutional neural networks are a type of neural network that was created by Le-

Cun but was inspired by Fukushima’s work on the neocognitron for the recognition of

handwritten Japanese characters [55]. In the study of brain magnetic resonance imaging

using neural network architectures, it is common to see convolutional neural networks as

the basis of the architectures. In fact, in [56], the authors presented a solution for brain

tissue segmentation on MRI images taken in infants approximately six to eight months

of age using CNNs in the deep learning architecture.

Similarly, the authors of [57] were able to use CNNs for the segmentation of subcortical

brain structures using the datasets of Internet Brain Segmentation Repository (IBSR)

and LPBA40 [24].

Some of the most important deep learning solutions have been proposed using a 2D

representation allowing researchers to segment more structures than a 3D representation

allows them to do. In fact, the segmentation of more than 25 brain structures into a 3D

representation has been achieved by a few works, while using a 2D representation, deep

learning works can segment more than 95 brain structures [58].

The use of this type of neural network is not limited to the segmentation of brain tissues

or brain structures. These have also been used in the segmentation of brain lesions, as in

[59, 60, 61], the segmentation of brain tumors [62, 63, ?] [60 (missing) ], the detection of

ischemic strokes [64], and even genomic prediction of tumors [65]. The most important

thing to note from these works is that many use branches within their neural network

architectures. In general, they use two branches, where one of them is focused on the

extraction of globally related characteristics (global context), while the other is in charge

of the extraction of local characteristics (local context) to achieve better segmentation.

One of the architectures most commonly used in medical image segmentation tasks is the

U-Net architecture [26]. Due to the structure of its architecture, U-Net has advantages

over other convolutional neural network architectures of its time. This was built having a

path that encodes the characteristics of the image and then continues with its expansion,

that is, an encoder-decoder structure. In addition, to avoid the vanishing gradient and

explosion problem, the U-Net architecture incorporates skip connections, between the

encoder and decoder layers, which improves performance in small datasets compared

with other architectures at the time.

Multiple neural network architectures based on U-Net have been proposed for the field

of medical image segmentation. The primary goals of these works were to improve the

network by using skip connections between the layers of the coding and expansion path

[66, 67] and to combine the architecture with others such as SegNet [68]. It is important

to note that several of these studies were also applied to the segmentation of white

8



2 Background 9

matter, gray matter, and cerebrospinal fluid from brain magnetic resonance images.

However, convolutional neural networks have serious limitations. One of them is the

loss of image characteristics due to pooling operations [18]. This is because the CNNs

require these operations to reduce the feature maps resulting from the convolutions and

thus reduce the computation required in subsequent layers. Due to this, a large amount

of data is necessary in the training process for deep learning networks to be able to

generalize and achieve good results [18].

On the other hand, researchers have proposed multiple deep learning architectures ba-

sed on attention mechanisms such as the Transformer’s architecture [32, 33, 69]. This

one was initially proposed in the field of natural language processing [70] as being in

charge of transforming one sequence into another from multiple attention blocks [20].

The Transformers replaced the recurrent neural network models (RNN) used until then

for the translation of texts because it solved its main weakness. This was because the

performance of the recurring models fell when very long sequences were introduced due

to the long-term dependency learning problem [69], and although this problem was at-

tacked by the Long Short-Term Memory (LSTM) networks, they did not achieve as good

results as the Transformers. This became possible since the latter, through self-attention

mechanisms, are capable of processing the entire sequence entered, even if it is very long,

optimizing processing times due to parallel processes within the network.

Thus, the scientific community has achieved that the Transformer’s architecture can

obtain results comparable to those established as the state of the art in computer vision

methods [71]. In fact, some methods based on Transformers’ architectures were proposed

for the segmentation of medical images. The TransUNet [22] network, which is based on

the U-Net architecture [26], consists of a set of convolutional layers to extract the most

important characteristics of the image. The resulting feature maps are then the input to

successive attention blocks, which then send this output to the decoder. The decoder is

fabricated of convolutional and upsampling layers to achieve the output of a segmented

image. It is necessary to mention that the set of convolutional layers is connected with

the layers of the decoder through skip connections.

Also, another Transformer-based architecture is the Medical-Transformer network [72],

which is based on the use of two branches for its operation. The important thing to

highlight in this study is that it has a local and global branch, as has been proposed

in various convolutional neural network architectures and the use of convolutions in the

feature coding process. Specifically, the local branch has a greater number of encoder

and decoder blocks than the global branch. The encoder blocks are fabricated of 1 ×
1 convolutional layers, normalization, Rectified Linear Unit (ReLU) activations, and

multiple layers of attention for its operation, while the decoder has closed axial attention

9
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layers.
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3 Method for the segmentation of

anatomical brain structures

In this study, a 3D architecture of deep neural networks is proposed for the task of

segmenting volumes associated with brain structures from MRI. Our proposal uses an

encoder/decoder approach, strengthening the connection between them by incorpora-

ting self-attention modules and skip connections. The attention modules as well as the

convolution operations allow the network to incorporate global and local features, and

achieve a more detailed segmentation of the edges of structures.

However, the segmentation of multiple brain structures is a complex problem since

computational resources must be used in an optimized way to be able to segment a large

number of structures in a 3D representation. Furthermore, it is important to mention

that the brain has a different structure that varies in size and shape, which represents

a great challenge for the scientific community in terms of developing and training deep

neural network architectures since there are not multiple nor large publicly available

datasets.

Therefore, this method can be divided into multiple stages: dataset selection, data pre-

processing, design of the deep neural network for brain segmentation, loss functions and

class weights, and metrics and training parameters.

3.1. Dataset

Public availability of properly sized and labeled datasets for training deep learning mo-

dels is a common constraint in the medical image field. This problem increases in the

subfield of brain segmentation where a large number of correctly labeled brain structures

is needed and where data based on MRIs is limited. The selection of the dataset was

carried out having in mind two principal characteristics: data volume and the number

of manually labeled brain structures.

11
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Therefore, we selected the publicly available Mindboggle-101 dataset [73] which repre-

sents the largest dataset of manually labeled brain MRIs. This dataset contains 101

manually labeled human brain images from healthy patients using the Desikan-Killiany-

Tourville (DKT) protocol, containing more than 100 brain structures in each volumetric

segmentation file aseg + aparc. In this dataset, brain structures are labeled based on the

brain hemisphere where they are located (e.g., left hippocampus and right hippocam-

pus). Authors scanned five subjects for this dataset and selected others from open-source

datasets. The inclusion criteria of external MRIs was:

1. Public MRIs with Non-restrictive license.

2. Healthy participants.

3. High quality MRIs.

4. Multi-modal MRI acquisition (T2- weighted, diffusion-weighted scans, etc.).

Additionally, it is important to mention that authors initially preprocessed and segmen-

ted all brain MRI volumes using freesurfer (version 5.1.0) recon-all processing pipeline

prior the final segmentation with their proposed Desikan-Killiany-Tourville labeling pro-

tocol.

This processing pipeline can be divided as follows:

1. Step 1 (autorecon1):

Motion correction and conform

Non-Uniform Intensity Normalization

Tailarach transform computation

Intensity normalization

Skull strip

2. Step 2 (autorecon2):

Linear volumetric registration

CA intensity normalization

CA non-linear volumetric registration

12
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CA Register Inverse

Remove neck

EM register, with skull

CA label (sseg: Volumetric Labeling) and statistics

Intensity normalization 2

Mask brain final surface

White matter segmentation

Fill

Tessellation

Orig surface smoothing 1

Inflation 1

QSphere

Automatic topology fixer

Orig surface smoothing 2

Inflation 2

3. Step 3 (autorecon3):

Spherical inflation

Ipsilateral surface registation

Jacobian

Average curvature

Cortical parcellation

Surface volume

13
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Parcellation statistics

Cortical Parcellation

Parcellation statistics

Cortical sibbon mask

Segmentation statistics

White matter parcellation

Brodmann Area Maps (BA Maps) and Hinds V1 Atlas

3.2. Data preprocessing

The Mindboggle-101 dataset is not a dataset that can be used directly for deep learning

purposes. We had to apply some preprocessing steps prior training the deep neural net-

work architecture in order to use the data and optimize the usage of our computational

resources.

The first step was directed towards the creation of an array representation of the original

MRIs and segmentation masks in the dataset making it straightforward for training deep

learning models. This is because brain MRIs in this dataset come in a .MGZ file format

which is used to store high-resolution structural data and is not transparent for training

deep learning models.

Additionally, for the selected structures, we created a label remapping strategy with IDs

1 to 37 having the ID 0 set for background (see Table 3-1. We created the segmentation

ground truth files by taking the aseg+aparc files and mapping the existing IDs to our

desired IDs. After this, we applied a min-max scaling to the voxel values to be in a range

between 0 and 1. This intensity rescaling was performed using the histogram equalization

technique over each individual MRI.

Then, we applied a filter in each MRI where empty slides were removed from the brain

volumes, leaving on average 192 slides per brain plane. These preprocessed MRI volumes

were divided into nonoverlapping subvolumes of size 64 × 64 × 64 voxels that were

saved in single files containing stacks of volumes per brain MRI (see Figure 3-1). These

resulting arrays were saved in uint8 data type for the preprocessed ground truth files and

in float32 for the preprocessed brain volumes. It is important to mention that these data

14
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types were applied to the arrays with the aim of optimizing computational resources.

Also, we created the stacks of volumes per MRI because our hard disk could not handle

the number of reading petitions per block Tensorflow was asking for.

Finally, we divided the dataset into two sets in the ratio of 8:2. The first set was for

training the neural network architecture, and the second one was for validating it. Due

to the Mindboggle-101 dataset contains multiple datasets such as OASIS-TRT-20 which

contains 20 MRIs, NKI-22 that contains 22 MRIs, among others, we performed the

dataset division maintaining the original dataset distribution, making sure that the

validation set had at least one MRI from all the datasets.

Figure 3-1: MRI volume divided into nonoverlapping subvolumes.

The computational implementations were performed with the open source library for

numerical computation Tensorflow and run on a computer with a 5th generation Intel

I7 4820k@3.70 GHz processor, 64 GB of RAM memory, and two Nvidia 1080TI video

cards with 11 GB of GDDR 5x RAM at 405 MHz.
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Table 3-1: Label remapping strategy for brain structures having ID 0 set for back-

ground.

Brain Structure Proposed ID FreeSurfer ID

Left cerebral white matter 1 2

Right cerebral white matter 2 41

Left cerebellum white matter 3 7

Right cerebellum white matter 4 46

Left cerebellum cortex 5 8

Right cerebellum cortex 6 47

Left lateral ventricle 7 4

Right lateral ventricle 8 43

Left thalamus 9 10

Right thalamus 10 49

Left putamen 11 12

Right putamen 12 51

3rd ventricle 13 14

4th ventricle 14 15

Brain stem 15 16

Left hippocampus 16 17

Right hippocampus 17 53

Left ventral DC 18 28

Right ventral DC 19 60

Ctx left caudal middle frontal 20 1003

Ctx right caudal middle frontal 21 2003

Ctx left cuneus 22 1005

Ctx right cuneus 23 2005

Ctx left fusiform 24 1007

Ctx right fusiform 25 2007

Ctx left inferior parietal 26 1008

Ctx right inferior parietal 27 2008

Ctx left lateral occipital 28 1011

Ctx right lateral occipital 29 2011

Ctx left post central 30 1022

Ctx right post central 31 2022

Ctx right rostral middle frontal 32 1027

Ctx left rostral middle frontal 33 2027

Ctx left superior frontal 34 1028

Ctx right superior frontal 35 2028

Ctx left insula 36 1035

Ctx right insula 37 2035
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3.2.1. Skull Stripping preprocessing step

In order to properly perform brain segmentation processes an additional preprocessing

step is required. Skull stripping is an important and initial preprocessing step that most

MRI studies use to remove non-brain tissue and decrease the amount of propagated error

algorithms could have in the process of brain tissue segmentation, volumetric measure-

ment, longitudinal analysis, multiple sclerosis analysis, among others [74].

The inclusion of non-brain tissue in MRI images can lead to misclassifications due to

the similar voxel/pixel value intensities have to the desired brain segmentation (clas-

ses). In [75], authors showed the importance of using the skull stripping preprocessing

step for a more accurate and sensitive analysis of voxel-based morphometry (VBM) in

brain morphology. Similarly, in [76], authors demonstrated the positive impact of skull

stripping for brain gray-matter segmentation.

It is important to mention that, similar to the brain segmentation field study, there

are multiple state-of-the-art brain tools that have developed their own skull stripping

algorithms as a preprocessing step such as AFNI [77], ANTS [78] or Brain Surface

Extraction (BSE) [79] for further MRI processing. In figure 3-2, a taxonomy on the

developed skull stripping algorithms is presented based on [74] where we find manual,

classical and more recent skull stripping algorithms, the last one based on deep learning

by using mostly convolutional neural networks (CNNs).

Figure 3-2: Skull stripping algorithsm classified in groups. Image taken from [74]

Generally, skull stripping manual and classical methods usually are expensive in human,

time and economical resources. For example, the manual delineation of a single MRI

volume takes between 15 to 120 minutes requiring trained specialized personnel [80].
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Therefore, multiple algorithms have been proposed to tackle this issue where the best

results have been achieved in the deep learning field [74].

However, the majority of the proposed deep learning algorithms have been using CNNs

as the main block in the architecture design. We aimed to explore the advantages of

attention mechanisms for the skull stripping preprocessing step.

Therefore, we proposed an deep neural network architecture for skull stripping using the

Neurofeedback Skull-stripped (NFBS) repository [81]. The NFBS repository is a publicly

available dataset that has 125 T1-weighted MRI scans that are manually skull-stripped

as can be seen in figure 3-3. They have a matrix volume of 256× 256× 192 with a voxel

size of 1 × 1 × 1mm3. Also, the age of subjects ranges from 21 to 45 years old. This

dataset was created having in mind machine learning developers. Consequently, the data

is ready to use for the creation of machine learning algorithms.

Figure 3-3: Skull stripping dataset process example taken from [81]

In figure 3-4, we show the proposed deep neural network algorithm for the skull strip-

ping preprocessing step using transformer layers as the main block in the architecture.

We designed the architecture using a 3D representation in order to have more spatial

relationship information.

18
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For the training process, we used the same preprocessing pipeline developed for the

Mindboggle-101 dataset (see figure 3-1). The only difference is the label-remapping

strategy that, in this case, was used for binary segmentation (label 0 for non-brain tissue,

1 for brain tissue). We explain in detail the self-attention mechanism via transformers

in section 3.3 and how it is combined with the rest of the architecture design.

Figure 3-4: Proposed deep neural network architecture for Skull Stripping

3.3. Deep neural network for brain segmentation

The proposed deep neural network architecture is structured as an encoder-decoder

architecture. The contracting path follows the typical architecture of a convolutional

neural network. However, we applied Transformer layers at the end of this path using

the extracted feature maps from the CNN layers. The expansive path was composed of a

successive combination of convolutional neural networks and upsampling layers in order

to reach the original spatial resolution. This can be seen in figure 3-5. Also, to avoid

gradient vanishing and explosion problems, we adopted skip connections between the

encoder-decoder paths via the usage of Res paths (see figure 3-6), initially proposed in

[68].

We used self-attention mechanisms via Transformers in the encoder path. This consists

of successive I layers of Transformers composed of Multi-Head Self-Attention (MHSA)

modules and Multi-Layer Perceptron (MLP) blocks, each preceded by a normalization

layer. The MLP blocks use the RELU activation function with a regularization dropout

layer.

The attention mechanism was computed in parallel inside each of the heads of the MHSA

modules in each transformer using a set of vectors named as query, key, and value vectors

[20]. The query vector q ∈ Rd was matched against all key vectors organized in a matrix

K ∈ Rk×d using an algebraic operation known as the dot product. The results were then
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Figure 3-5: Neural network architecture for 3D brain MRI segmentation.

Figure 3-6: Skip connections design based on convolutional layers.

scaled using a scaling factor 1√
dk

and normalized using a softmax function to obtain the

weights. The attention matrix inside each MHSA head is computed as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (3-1)

where Q, K, and V are matrices representing a set of queries, keys, and values, respec-

tively.

Finally, the results of each head were concatenated and linearly projected into a matrix

sequence at the end of the MHSA module. This can be described as:

MHSA(Q,K, V ) = Concat(head1, head2, ..., headh)W
o (3-2)

having headi = Attention(QWQ
i , KWK

i , V W V
i ) where the projections are parameter
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matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel is

the dimension of the Transformer’s hidden layers.

In the proposed architecture, we used the extracted feature maps from previous convolu-

tional layers as the input of the first transformer layer, using a trainable linear projection.

Indeed, we reshaped the feature maps X ∈ RH×W×D×C into a flattened representation

as the transformer layers expect a sequence as input. Then, we applied positional em-

bedding over the feature maps to add location information for the segmentation process.

This can be described as:

fxq,k,v
i = FeatureMapsEmbedding(flatten(xi)) (3-3)

where positional embedding adds location information useful in the segmentation pro-

cess. This can be seen as:

z0 = [F1;F2;F3; ...;FN ] + Epos, F ∈ R, Epos ∈ RN×L (3-4)

where F denotes the feature maps in conjunction with the linear projection and Epos

the position embedding and N = H×W×D×C
16

. After successive layers of Transformers,

the output of the last transformer has a shape zI ∈ Rd×N . We applied a reshape before

the decoder path to recover its 3D dimensionality.

3.4. Loss Functions and Class Weights

3.4.1. Skull stripping preprocessing step

For the segmentation of brain tissue we used a distribution-based loss function called

Binary Crossentropy (BCE) [82]. This loss function derives from the Bernoulli distribu-

tion and is widely used in the deep learning field [83]. It can be understood as a measure

of the difference between two probability distributions for a given random variable or

set of events. Formally, it can be defined as:

BinaryCrossentropy(x, y) = −(x log(y) + (1− x) log(1− y)) (3-5)

where x represents the ground truth image and y the predicted output given by the
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model for the input image.

3.4.2. Segmentation of brain structures

Segmentation of brain structures is a highly imbalanced problem due to the significant

differences in size in the structures, presenting greater availability of information in the

image for those of greater size. Even the size difference between the structures and the

background is usually significant.

Therefore, multiple loss functions and weighting strategies for loss functions were pro-

posed for improving imbalanced brain structure segmentation [84]. In the proposed ap-

proach, we used a combination of Dice Loss [85] and Focal Loss [86]. Dice Loss (DL) has

its origin in the Dice Similarity Coefficient (DSC), which is widely used as a metric for

computer vision segmentation to calculate the similarity between two images.

Later, in [86], it was adapted as a loss function useful in medical image segmentation

tasks, improving the imbalance problem between foreground and background. It is for-

mulated as:

WeightedDiceLoss = 1− 2

∑S
j=1wj

∑N
i=1 yijpij∑S

j=1wj

∑N
i=1 yij + pij

(3-6)

where wj is the weight of the jth brain structure and S is the total number of segmen-

tation classes, yij is the label of voxel i to belong to brain structure j and pij is the

probability of voxel i to belong to brain structure j.

Meanwhile, Focal Loss (FL) is a variation in Binary Cross-Entropy that works better

with highly imbalanced datasets. It down-weights the contribution of easy examples and

mostly focuses on the hard ones. It can be described as follows:

FocalLoss = −αt(1− pt)
γ log(pt) (3-7)

where pt with p ∈ [0, 1] is the model’s estimated probability for the class, (1−pt)
γ is the

modulating term with γ as the focusing parameter that controls its strength.

The combination of these two loss functions helped us to alleviate the imbalance pro-

blem in the segmentation of anatomical brain structures and encourages the correct

segmentation of tissue boundaries. Indeed, the use of class weights while training deep

22



3 Method for the segmentation of anatomical brain structures 23

neural network architecture was necessary due to the large number of small structures

the brain has compared with the total number of brain voxels. In order to calculate the

class weights, we used the median frequency balancing algorithm, which is formulated

as follows:

αc = medianFreq/freq(c) (3-8)

3.5. Data augmentation techniques

There are two main limitations in the process of training a deep neural network archi-

tecture in the medical field for classification or detection. The first one is the small data

available and the second one is the class imbalance scenario [87]. Therefore, in order

to mitigate this problem we used random elastic deformations and random rotations as

data augmentation techniques.

Specifically, we applied random rotations by selecting randomly 2 axis and applying the

rotation in the remaining axis. On the other side, random elastic deformations in brain

imaging is a wide and natural way to apply data augmentation over a dataset. In this

technique, the shape, geometry and size of the object are modified imitating the stress

field induced by forces over the human living tissue.

An example of applying elastic deformations in a MRI can be seen in figure 3-7. As

can be seen in the figure, in order to properly apply elastic deformations in the training

dataset, this technique has to be applied in the MRI mask using the same configuration

as in the original MRI.

3.6. Metrics and training parameters

In order to evaluate the performance of the proposed segmentation methods, the ground

truth and model prediction from the MRIs were compared. The selected metric for this

comparison is the DSC which can be seen as a harmonic mean of precision and recall

metrics. This metric can be mathematically expressed as:

DSC(x, y) = 2× x ∩ y

x+ y
(3-9)
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Figure 3-7: Example of elastic deformation in a MRI from the Mindboggle-101 data-

set. (a) Original MRI and mask; (b) Elastically deformed images. Source:

Author.

where x represents the ground truth image and y represents the predicted output given

by the model for the input image. The marked labels for x and y should be binary

represented for each class where all voxels included in a given class should have a value

of 1 and 0 for all the others. Therefore, the DSC must be calculated individually for

each class having output values in a range between 0 (no segmentation) and 1 (perfect

segmentation). Consequently, precision is the accuracy of positive predictions while recall

is the ratio of positive elements that were predicted correctly by the segmentation model.

These metrics can be expressed as:

precision =
TP

TP + FP
(3-10)
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recall =
TP

TP + FN
(3-11)

where TP is the number of true positive predictions, FP the number of false positive

predictions and FN the number of false negative predictions for a given class.

Also, the Intersection over Union (IoU) metric is included in this study as an evaluation

metric for specific structures. It is useful for comparing similarities between two shapes

A and B and determining true positives and false positives from a set of predictions. It

can be expressed as:

IoU =
A ∩B

A ∪B
(3-12)

The training process used a lineal learning rate schedule, initially set at 0.001 and de-

creased after the 12th iteration to a power of 0.5, while the batch size is set by default at

8. It used the Adam algorithm as the neural network optimizer. For the transformer ar-

chitecture based on the Visual Transformer (ViT) architecture [21], we set the successive

layers and heads per layer at 4, the hidden size at 64, the MLP size at 192, the dropout

rate at 0.1, the normalization rate at 0.0001, and a patch resolution of 8 × 8 × 8. It is

important to mention that the hyper-parameters were chosen via experimental design.
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4 Results

In this section, the results obtained from the experimentation carried out during the

investigation are presented.

4.1. Skull stripping preprocessing step segmentation

results

In this subsection, the results of the proposed 3D deep neural network for the segmen-

tation of brain tissue are presented. It is well known in the literature that the process

of segmenting brain MRIs using a 3D representation is computationally more expensive

than the usual 2D approaches the scientific community has commonly used [74].

However, we consider this approach as the best to be used since it brings contextual

information from all the MRI plane perspectives (sagittal, coronal and axial planes) and

that the computational resources have continuously increasing allowing the development

of these algorithms.

In figure 4-1, we present the segmentation visual results of the proposed architecture.

As it can be seen in the image, the segmentation is not perfect. We believe that the

voxel value intensity distributions of the skull are, in places close to the brain tissue,

very similar to the brain tissue. Then, the model is not able to correctly differentiate

between the brain tisse from non-brain tissue. Also, we have to mention that there are

multiple artifacts that the process of capturing an MRI from patients leave and that are

inherent the process itself.

In table 4-2, the quantitatively evaluation of the binary segmentation model is pre-

sented using Precision, Recall and Dice Score for the classes non-brain tissue and brain

tissue. In table 4-3, a comparison between state-of-the-art traditional methods, based on

CNNs and the proposed method is introduced. Additionally, in table 4-1 we present the

segmentation times results (seconds) for the validation dataset in the NFBS repository.
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Figure 4-1: Segmentation results of the proposed architecture for skull stripping in the

axial, sagittal and coronal planes. (a) Original MRI slide; (b) ground truth

mask of the slide; (c) predicted MRI mask of the slide. Source: Author.

There, we can see that our proposed segmentation method based on self-attention mecha-

nisms is not the best in terms of quality metrics. However, it shows a great performance

in segmentation times where transformers take advantage of their parallelized design. It

is also worthwhile mentioning that the CNN-based method was published in 2018 where

computational resources were more limited than in the moment of the development of

this thesis.
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Table 4-1: Segmentation time per brain MRI in the NFBS created validation dataset.

MRI name Segmentation Time (seconds)

A00028185 0,483

A00033747 0,497

A00035072 0,512

A00035840 0,437

A00037848 0,472

A00038998 0,53

A00039431 0,485

A00040193 0,475

A00040573 0,475

A00040628 0,469

A00040944 0,452

A00043520 0,509

A00043704 0,495

A00043722 0,421

A00045590 0,539

A00052560 0,429

A00053851 0,517

A00058999 0,487

A00060632 0,510

A00061204 0,484

A00062210 0,543

A00062266 0,501

A00063008 0,428

A00063589 0,478

A00064081 0,441

Average segmentation time 0,483

Table 4-2: Segmentation results per class in a testing MRI.

Class Precision Recall Dice Score

Non-brain tissue 0.98 0.99 0.98

Brain tissue 0.94 0.93 0.93

Macro average 0.96 0.96 0.96

Weighted average 0.97 0.97 0.97
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Table 4-3: Comparison between methods by the Dice Score and segmentation times

using the NFBS dataset.

Skull stripping algorithm Segmentation Time (s) Dice Score (%)

AFNI [88] 117,7 ±53, 3 91,8 ±1, 0

ANTS [88] 806.9 ±87, 9 95,2 ±0, 4

BSE [88] 3,5 ±0, 7 92,3 ±17, 2

CNN-based method [88] 4,5 ±0, 0 96,5 ±0,4

Proposed Model 0,48 ±0,06 92,0 ±1,4

4.2. Segmentation of brain structures

We quantitatively and visually evaluated the performance of brain structures segmenta-

tion. Figure 4-2 shows the number of voxels for each of the 37 selected structures from

Mindboggle-101 dataset. It can be seen that there are significant differences between

classes. As we mentioned before, to mitigate the effect of class imbalance we use a loss

function combining the weighted coefficient Dice and the Focal Loss.

Figure 4-2: Number of voxels for each of the 37 selected structures from Mindboggle-

101 dataset.

The combination of the aforementioned loss functions and the median frequency balan-

cing algorithm for calculating the class weights allowed us to alleviate the imbalance

problem in the segmentation of anatomical brain structures.

A graphic example of the segmentation result of the proposed deep neural network

architecture can be seen in figures 4-3 and 4-4, where we show the results in the axial,
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sagittal and coronal planes. The local details at the edges of the structures as well as

the global features can be noted compared with the reference image.

Figure 4-3: Segmentation results of the proposed architecture in the axial, sagittal and

coronal planes where red, green, blue, purple, and yellow colors represent

cerebral white matter, cerebellum white matter, cerebellum cortex, tha-

lamus, and putamen structures, respectively. (a) Original MRI slide; (b)

ground truth mask of the slide; (c) predicted MRI mask of the slide. Sour-

ce: Author.
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Figure 4-4: Segmentation results of the proposed architecture in the axial, sagittal

and coronal planes for all 37 brain structures. (a) Original MRI slide; (b)

ground truth mask of the slide; (c) predicted MRI mask of the slide. Sour-

ce: Author.

Quantitatively, we calculated the Precision, Recall, Dice Score and IoU Score per seg-

mented brain structure. The results in table 4-4 show that there are still problems with

the segmentation of some structures, mainly small structures that tend to lower values

of quality metrics.
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Table 4-4: Segmentation results per brain structure in a testing MRI.

Brain Structure Precision Recall Dice Score IoU

Left cerebral white matter 0.95 0.91 0.93 0.86

Right cerebral white matter 0.97 0.89 0.93 0.86

Left cerebellum white matter 0.90 0.75 0.82 0.69

Right cerebellum white matter 0.93 0.77 0.85 0.73

Left cerebellum cortex 0.87 0.82 0.84 0.73

Right cerebellum cortex 0.89 0.72 0.80 0.66

Left lateral ventricle 0.64 0.91 0.75 0.60

Right lateral ventricle 0.78 0.91 0.84 0.72

Left thalamus 0.80 0.92 0.86 0.74

Right thalamus 0.90 0.89 0.89 0.80

Left putamen 0.85 0.84 0.85 0.73

Right putamen 0.91 0.81 0.86 0.75

3rd ventricle 0.57 0.96 0.72 0.56

4th ventricle 0.67 0.94 0.78 0.64

Brain stem 0.87 0.93 0.90 0.83

Left hippocampus 0.88 0.67 0.76 0.62

Right hippocampus 0.89 0.80 0.84 0.73

Left ventral DC 0.78 0.83 0.80 0.68

Right ventral DC 0.62 0.87 0.72 0.57

Ctx left caudal middle frontal 0.84 0.43 0.57 0.40

Ctx right caudal middle frontal 0.50 0.24 0.32 0.20

Ctx left cuneus 0.56 0.65 0.60 0.44

Ctx right cuneus 0.54 0.74 0.62 0.46

Ctx left fusiform 0.68 0.61 0.64 0.48

Ctx right fusiform 0.78 0.65 0.71 0.55

Ctx left inferior parietal 0.64 0.54 0.58 0.42

Ctx right inferior parietal 0.60 0.70 0.65 0.49

Ctx left lateral occipital 0.69 0.74 0.71 0.56

Ctx right lateral occipital 0.73 0.69 0.71 0.56

Ctx left post central 0.54 0.82 0.66 0.49

Ctx right post central 0.71 0.70 0.71 0.55

Ctx right rostral middle frontal 0.57 0.81 0.67 0.50

Ctx left rostral middle frontal 0.51 0.82 0.63 0.46

Ctx left superior frontal 0.74 0.81 0.77 0.63

Ctx right superior frontal 0.77 0.79 0.78 0.65

Ctx left insula 0.81 0.84 0.82 0.70

Ctx right insula 0.70 0.87 0.78 0.64

Macro average 0.75 0.78 0.75 0.63

Weighted average 0.97 0.97 0.97 0.95
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Although to achieve the training process of the deep neural network architecture the

brain is divided into blocks of equal size, the results show that the segmented structures

maintain spatial coherence and can recover its representative organic form as can be

seen in a 3D visual representation shown in Figure 4-5.

Figure 4-5: Segmentation results of the proposed architecture in 3D. (a) Segmentation

of the 37 brain structures; (b) segmentation of the cerebellum cortex (oran-

ge), putamen (magenta), and hippocampus structures(yellow); (c) segmen-

tation of the brain stem (gray), insula (yellow), and superior frontal struc-

tures (green). Source: Author.

4.2.1. Architecture design determination

The process of designing a deep neural network architecture using transformer layers for

obtaining global features of MRI images was developed via experimental design.

First, we tried using the transformer layers at the beginning of the encoder path as a

way of getting global features of a full image resolution. In order to do this, we split the

MRI at its full resolution into smaller blocks of 64×64×64 as was explained before but,

in this experiment, we gave positional information to these raw split volumes instead of

the feature maps. This process and architecture can be seen in figure 4-6.

These experiments showed that by using this design, the deep neural network archi-

tecture is not able to recognize local features losing definition in the edges in the final

segmentation (see figure 4-7). This is understandable since the nature of the transformer

layers comes from the Natural Language Processing (NLP) field and is focused to find

relationships between the inputed elements. Nevertheless, it was good at recognizing the

area where the brain structure is located in the 3D volumes.

Because of aforementioned issues in the previous architecture design, we tried experi-
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Figure 4-6: Architecture design with Transformer Layers at the beginning of the enco-

der path. Source: Author.

menting with two branches where one of them was focused on the extraction of globally

related features (global context), while the other was in charge of the extraction of local

features (local context). This two-branches representation is not new in deep learning

architectures and it has been used in multiple medical image proposal such as in [62, 72].

Figure 4-7: Segmentation results of the deep architecture with transformers at the be-

ginning of the encoder path. (a) Ground truth mask; (b) Segmentation

result. Source: Author.

Our two-branches proposal used the same volume size of 64× 64× 64 where one branch
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used the same design proposed in figure 4-6 while the second one used a modified

version of MultiResUNet [68] in order to be able to learn from 3D volumes. At the end

of the respective branches, we set an adding layer for the combination of the obtained

segmentation maps.

However, this architecture did not give us the expected results. The problem of seg-

menting multiple brain structures is a highly imbalanced problem that requires as much

data as available. Then, training a 3D deep neural network architecture that has many

millions of parameter is really hard to do in these conditions due to the two branches.

In these experiments we used data augmentation techniques such as random rotations

and elastic deformations to mitigate this problem.

On the computational side, we had multiple problems training this architecture in our

dedicated computer following what is in the literature. The data augmentation techni-

ques, the model and the size of stacks of volumes took the majority of our resources

restraining us to do other experiments that big tech companies apply. It is worth re-

membering that our machine has two Nvidia 1080TI video cards with 11 GB of GDDR

5x RAM.

Therefore, we ran multiple experiments changing the layers to decrease the number

of parameters, the loss functions to improve the segmentation definition and also the

activation functions to see their effects.

The segmentation results of the two-branch architecture proposal can be seen in figure

4-8. It can be noticed that it is not able to properly segment smaller structures due

to the highly imbalanced problem and the size of the architecture. Despite that, these

results were more promising in terms of quality metrics and segmentation details such

as borders and shape of brain structures thanks to the extraction of local context from

the raw volume input through successive layers of convolutional neural networks.

From these experiments, we found that the correct balance between local and global

context is crucial for proper segmentation in highly imbalanced datasets and the ex-

traction of local context from the input data is crucial for adding details to the final

segmentation.

Therefore, our final proposal shown in figure 3-5 included successive convolutional layers

at the beginning of the architecture for local context extraction. Then, we used successive

transformer layers for global context extraction from the extracted feature maps of the

CNNs.

It is worthwhile mentioning that at this point the encoder path has the most important
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Figure 4-8: Segmentation results of the two-branches network proposal. (a) Ground

truth mask; (b) Segmentation result. Source: Author.

features from the 3D image that are useful for global context extraction. Then, we used

3D bilinear upsampling layers combined with CNNs for reaching the original input size

resolution for the number of classes. This can be expressed as 64× 64× 64× n classes.

Finally, we found that by using skip connections between the encoder and decoder paths

based on MultiResUNet [68] paper (see figure 3-6) we improved the segmentation quality

metrics in ≈ 2 points. MultiResUNet paper was developed thinking in medical image

segmentation, then its use was straightforward for this application. We ran multiple

experiments changing the number of internal CNN layers in the skip connection design

but it did not improve the segmentation quality results. The usage of only one branch

improved our segmentation results for multiple brain structures using an imbalanced
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dataset as can be seen in figure 4-4.

In figure 4-9 we can see the Dice Score per epoch in the training and validation sets

for the final proposed architecture. There we can see a progressive improvement in

the validation and training sets dice score metrics. It is worth noting that, due to the

distribution of the dataset explained in section Data preprocessing, we can notice at

the beginning of the training that the validation dice score is slightly higher than the

training dice score.

Figure 4-9: Dice score per epoch in the training and validation sets for the proposed

architecture. Source: Author.

The same metric behaviour can be seen in figure 4-10 where we show the IoU score for

the validation and training sets. The IoU metric has a close mathematical relationship

with the Dice Score in the sense that they are both positively correlated and share a

similar measurement range. From one to zero indicating a perfect match and completely

disjoint, respectively.

Thus, these two metrics are typically considered functionally equivalent. Although, IoU

usually penalizes bad classifications more strongly. We include both metrics in this study

in order to provide useful information for future research and easy comparison in this

area.

Lastly, we include in figure 4-11 the calculated value of the combined loss function

(Weighed Dice Loss and Focal Loss) per epoch. As it is mentioned in the literature, the

usage of the Leaky ReLU [89] activation function in combination of a He-Normal Initiali-

zation [90] technique for the neural network layers was important for a faster convergence

of the architecture. The usage of Leaky ReLU attacked the ”dying ReLU”problem that

could be seen in the training process of the proposed architecture.
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Figure 4-10: IoU score per epoch in the training and validation sets for the proposed

architecture. Source: Author.

4.2.2. Patch resolution size determination

We experimented with patch resolution sizes related to the transformer layers. As was

initially observed in [22], patch resolution size is important since it dictates the number

of complex dependencies that each element will have with others, obtaining finer details

in the segmentation process. The ideal case would be to have a patch resolution size of

1 × 1 × 1. Nevertheless, there are not enough computational resources to train a deep

neural network architecture based on this patch resolution size.

Consequently, we ran experiments on the segmentation of three structures with patch

sizes of 16 × 16 × 16 and 8 × 8 × 8 to see its influence on the segmentation of brain

structures (see Figure 4-12). The experiment of a lower patch size was not possible

since our computational resources were not enough for this configuration.

For this experiment, we set four successive layers of transformers with patch resolution

blocks of 8 × 8 × 8, hidden size at 64, MLP size at 192; dropout rate at 0.1, and nor-

malization rate at 0.0001. Afterwards, we applied a reshape before the decoder path to

recover its 3D dimensionality.

4.2.3. Comparison with other methods

At present, the majority of the proposed deep neural network architectures for brain

segmentation using Transformers are oriented toward the segmentation of brain tumors.
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Figure 4-11: Combined loss function per epoch in the training and validation sets for

the proposed architecture. Source: Author.

Therefore, it is highly difficult to have a fair comparison since these models were oriented

to the segmentation of one imbalanced class, and not for multiple imbalanced classes

excluding background.

Because of this, we implemented the 3D U-Net architecture, using it as our baseline,

with an identical experimental setup of our proposed architecture. This comparison was

carried out by using the Dice score and the Wilcoxon signed-rank test as can be seen in

Table 4-5.

Table 4-5: Comparison between methods by the Dice Score and p-value for the Wilco-

xon signed-rank test comparing proposed-UNet, proposed-DenseUNet sam-

ples pairs using the Mindboggle-101 dataset.

Model Brain Structures Mean Dice Score p-Value

UNet (baseline) 37 0.790 ± 0.0210 0.0012850

DenseUNet (finetuned) 102 0.819 ± 0.0110 0.0211314

Proposed model 37 0.900 ± 0.0360 -

The time needed to perform the segmentation by this architecture and the comparison

with other deep learning models is shown in Table 4-6. It is important to mention that

transformer layers, thanks to the self-attention mechanism, are capable of processing

entire sequences in parallel, optimizing processing times. Unlike CPU processing units,

the GPU architecture was specifically designed to process data in parallel, allowing the

39



4 Results 40

proposed model to take full advantage of computational resources and the Transformer’s

processing pipeline.

Table 4-6: Segmentation time per brain structure for a single MRI scan.

Model Brain Structures Time per Brain Structure Mean Dice Score

DeepNAT [91] 27 ≈ 133 s (on a Multi-GPU

Machine)

0.906

QuickNAT [92] 27 ≈ 0,74 s (on a Multi-GPU

Machine)

0.901

DenseUNet 102 0.64 s (± 0.0091 s) (Single

GPU Machine)

0.819

FreeSurfer [92] ≈ 190 ≈ 75,8 s -

Proposed model 37 0.032 s (± 0.0016 s) (on a

Multi-GPU Machine)

0.903

Additionally, in table 4-7 we show the segmentation time taken to segment the MRIs of

the validation set. There, we can see that the first MRI to be segmented (HLN-12-12)

takes significant more time than the rest of the dataset. This is because the model has

to be loaded in our machine before processing the 3D volumes. In this case, this time

was considered as part of the segmentation process time.
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Table 4-7: Segmentation time per brain MRI in the validation dataset.

MRI name Segmentation Time (seconds)

HLN-12-12 1,208

HLN-12-6 1,203

MMRR-21-10 1,187

MMRR-21-15 1,190

MMRR-21-1 1,234

MMRR-21-20 1,234

MMRR-21-5 1,203

NKI-RS-22-10 1,234

NKI-RS-22-15 1,218

NKI-RS-22-1 1,218

NKI-RS-22-20 1,234

NKI-RS-22-5 1,219

NKI-TRT-20 1,218

NKI-TRT-20-1 1,203

NKI-TRT-20-20 1,203

OASIS-TRT-20 1,198

OASIS-TRT-20-15 1,203

OASIS-TRT-20-20 1,187

OASIS-TRT-20-5 1,171

Average segmentation time 1,208
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Figure 4-12: Patch size influence comparison on structure details segmentation in the

axial, sagittal and coronal planes where red, green, and blue colors re-

present cerebral white matter, cerebellum white matter and cerebellum

cortex structures, respectively. (a) Ground truth mask; (b) segmentation

with patch resolution size of 16 × 16 × 16; (c) segmentation with patch

resolution size of 8× 8× 8. Source: Author.
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5 Discussion and future work

This study presents a deep learning-based model for the segmentation of 37 brain struc-

tures using transformer models. This network was trained with the manually annotated

dataset Mingboggle-101, which contains 101 MRIs with its respective segmentation fi-

les processed using the Desikan-Killiany-Tourville (DKT) protocol [73]. In the scientific

community, it is common to find multiple approaches to perform the segmentation of

MRIs. Therefore, this architecture was indirectly trained to perform segmentation based

on the DKT protocol due to the used dataset.

Our architecture includes self-attention modules to strengthen the connection between

the encoding and decoding phases based on convolutional neural networks. The capa-

bilities of self-attention modules add to the model the possibility of retaining features

across voxels in the input patches of the model. Unlike 2D-based models, the 3D archi-

tecture can find voxel relationships in the three different planes, maximizing the use of

the spatial nature implicit in MRI.

In addition, the results of the proposed segmentation model show that the quality metrics

have a wide range of values. For the Dice Score, for example, the values vary from 0.32

to values of 0.93, showing low-quality segmentations for some structures. We find that

the lower values tend to be related to structures with smaller volumes. The geometry

at the edges of the structures is a factor that we consider influences the quality of

the segmentation. Structures with borders of highly variable geometry tend to have

segmentations with more error. Simpler edge structures generally result in more stable

quality segmentations.

Our intuition in this regard is that this is due, mainly, to the class imbalance problem

and lack of enough data to train the model for those structures specifically. For this

reason, it is important in the future to explore other methods that allow addressing this

problem, for example, improving the calculation of the weights of the classes used in the

loss functions similar to what is performed in [84], or using additional data augmentation

techniques to increase the samples of classes with less information.

Another factor that we considered in the analysis is the fact that deep learning methods
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based on transformers lack the inductive biases inherent in CNNs requiring large amounts

of data to be able to generalize well [21], so their usage in small-size medical datasets

remains difficult without any internal modification in their self-attention module. Incor-

porating these modifications can allow us to improve the segmentation of a large number

of highly unbalanced brain structures using a 3D approach.

The patch resolution size is a determining factor to obtain finer details at the edges

of segmentations. The experiments show an inverse relationship with size, that is, the

smaller the patch size, the more detailed segmentation is obtained at the edges; the

larger the patch size, the segmentations tend to be less detailed. It must be considered

not all structures have geometrically complex edges, there are structures with simpler

geometrics. Therefore, a trade-off between the computational cost of reducing the patch

size and the more detailed segmentation requirements must be considered. Given the 3D

representation used in this study and the memory requirements, it was not possible to

explore values smaller than 8× 8× 8.

The results show that our method uses less time for segmentation with a Mean Dice

Score similar to those found in the state of the art. Additionally, the segmentation

of more than 25 brain structures into a 3D representation is a difficult task that has

only been reported by a few groups of authors [58] due to computational and memory

limitations. However, it is not competitive in terms of the number of segments where the

latest 2D deep learning-based approaches are able to segment more than 100 structures.

Consequently, further study should be carried out to optimize the use of memory and

computational resources in the proposed architecture to segment more brain structures

with a strong focus on the transformer architecture.

On the other hand, due to the lack of a manually skull stripped data for the Mindboggle-

101 dataset we had to use the NFBS repository for the skull stripping preprocessing step.

It is clear that the usage of two different datasets to solve the problem of segmenting

brain structures from MRIs carries some problems. First, we considered that individuals

from both datasets do not have the same age distribution. This might be problematic

since the brains in both datasets could be different in their structures. However, even if

they both have a different age distribution, they are from adult patients. Additionally,

these MRIs were taken in different environments with different machine configurations.

We do not know if the configuration of the machine that was used to capture the MRIs

for both datasets have a final impact in our method. We still have to perform studies

and further exploration in order to verify if this have a great impact on the proposed

method.

Our method still has deficiencies related to the variation in the segmentation quality for

different structures. Class imbalance, as well as the broad geometric nature of the edges
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are factors for which our method is still sensitive. The number of segmented structures

is also a limitation, it is desirable to be able to segment a greater number of structures,

especially compared with 2D-based approaches.

In future work, we will explore the existing computational and memory limitations in

our proposed architecture with a high focus on the transformer layers to see whether

a different tokenization of the patched feature maps can improve its performance and

segment more brain structures.
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